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Zusammenfassung

Mathematische Modelle spielen im Bereich der Wettervorhersage eine immer größere
Rolle. Um diese Modelle bei der Berechnung von Vorhersagen anwenden zu können muss
zuvor verifiziert werden, dass sie eindeutig lösbar sind. Aus diesem Grund beweisen wir in
dieser Arbeit die Existenz und Eindeutigkeit von zeitlich lokalen, starken Lösungen eines
Modells zur Beschreibung von Luftströmungen, die in tropischen Stürmen beobachtet
werden.

Dieses System berücksichtigt Geschwindigkeit, Temperatur, Druck und Feuchtigkeits-
entwicklung tropischer Stürme indem es Impuls-, Masse- und Energieerhaltung nutzt
und mit nichtlinearen Feuchtigkeitsdynamiken koppelt. Es ist auf einem Zeitintervall
und einem beschränkten, zylindrischen Gebiet definiert. Um die Lösbarkeit des Modells
zu zeigen, linearisieren wir es geeignet und beweisen maximale Lp-Regularität für das
linearisierte Modell.

Das linearisierte Modell besteht aus Stokes-Gleichungen mit Free-Slip-Randbedingun-
gen und variablen Koeffizienten und parabolischen Gleichungssystemen mit Robin-
Randbedingungen. Eine weitere Schwierigkeit ergibt sich aus der Tatsache, dass alle diese
Systeme variable Koeffizienten enthalten, d. h. sie hängen von den räumlichen Komponen-
ten ab. In dieser Arbeit untersuchen wir die Stokes-Gleichungen mit Perfect-Slip- und
Free-Slip-Randbedingungen, sowie parabolische Problemen mit Robin-Randbedingungen,
Neumann-Dirichlet Randbedingungen, Perfect-Slip- und Free-Slip-Randbedingungen. Wir
zeigen die maximale Lp-Regularität all dieser Systeme mit variablen Koeffizienten in
zylindrischen Gebieten. Dafür benötigen wir die Retraktionseigenschaft der beteiligten
Spuroperatoren für Sobolev- und Bessel-Potentialräume in zylindrischen Gebieten, die wir
detailliert in dieser Arbeit beweisen. Außerdem verwenden wir ein Lokalisierungsargument
um die maximale Lp-Regularität von Stokes-Gleichungen mit konstanten Koeffizienten in
zylindrischen Gebieten auf solche mit variablen Koeffizienten zu übertragen.

Wir nutzen die Theorie der anisotropen Sobolev- und Bessel-Potentialräume um optimale
Abschätzungen für die nichtlinearen Terme unseres Modells zu erhalten. Dies führt in
Kombination mit dem Fixpunktsatz von Banach und der maximalen Lp-Regularität des
linearisierten Modells zur Existenz und Eindeutigkeit von zeitlich lokalen, starken Lösun-
gen des vollständigen Modells mit optimalen Grenzen für den Integrationsparameter p.
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Summary

Mathematical models play an increasingly important role in the field of weather forecasting.
In order to use these models for the calculation of predictions, their solvability has to
be verified first. For this reason, in this thesis we show the existence and uniqueness
of local-in-time, strong solutions to a model describing the air flow observed in tropical
storms.

This model takes velocity, temperature, pressure and moisture ratios into account by
using the conservation of momentum, mass and energy, and coupling them to nonlinear
moisture dynamics. It is posed on a time interval and a bounded, cylindrical domain.
In order to show solvability of the model, we linearise it suitably and prove maximal
Lp-regularity for the linearised model.

The linearised model is composed of the Stokes equations with free slip boundary
conditions, and parabolic systems with Robin boundary conditions. Another difficulty is
given by the fact that all these systems contain variable coefficients, i. e., they depend on
the spatial components. In this thesis we study the Stokes equations with perfect slip
and free slip boundary conditions, as well as parabolic problems with Robin boundary
conditions, Neumann-Dirichlet boundary conditions, perfect slip and free slip boundary
conditions. We show maximal Lp-regularity of all these systems with variable coefficients
in cylindrical domains. In order to do so, we need the retraction property of the involved
trace operators for Sobolev and Bessel potential spaces in cylindrical domains, which
we prove in detail in this thesis. Moreover, we use a localisation argument to translate
the maximal Lp-regularity of the Stokes equations in cylindrical domains with constant
coefficients to those with variable coefficients.

We use the theory of anisotropic Sobolev and Bessel potential spaces to obtain optimal
estimates for the nonlinear terms of our model. In combination with the Fixed-Point
Theorem of Banach and the maximal Lp-regularity of the linearised model this allows us
to show existence and uniqueness of local-in-time, strong solutions to the full model in
an Lp-setting with optimal restrictions on the integrability parameter p.
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Introduction

We cannot direct the wind.
But we can adjust the sails.

Aristotle

Idai, Haiyan and Katrina. These names are associated with the most devastating tropical
storm of recent years. The cyclone Idai was causing over 700 casualties in Mozambique
and Zimbabwe in 2019 [9], the typhoon Haiyan in the Philippines in 2013 over 6400
casualties [14], and hurricane Katrina in the Caribbean and the East of the United States
in 2005 about 1800 casualties [22]. All of these events have one thing in common: they all
demonstrate the destructive power of winds. But how can such catastrophes be prevented
in the future?

The observation of natural phenomena dates back to the beginning of human history.
From Aristotle, who studied the dynamic of winds as early as 300 B.C., via Kepler, who
in the early 17th century used observation to deduce laws governing the motion of planets
around the sun, to the present day. In order to be able to describe natural phenomena,
particularly Kepler’s laws of planetary motion, Newton developed infinitesimal calculus
in the middle of the 17th century. Independently of Newton, Leibniz, using a geometric
approach instead, also developed this calculus at about the same time. From a today’s
perspective, infinitesimal calculus can be regarded as a precursor to differential calculus
and modern analysis. Almost two-hundred years later, scientists such as Navier and
Stokes have, independently of each other, been able to describe the inner friction of fluids
using differential equations. The Navier-Stokes equations are a mathematical model
to describe the dynamics of viscous Newtonian fluids and gases. Mathematical models
are nowadays a popular tool for the description of phenomena in physics. Through the
use of methods from calculus such models can be analysed and statements about their
solvability can be made. This makes it possible to decide whether it is worthwhile to
use numerical methods to approximate precise solutions of the model, in order to obtain
predictions for real world events.

As Aristotle once said, we cannot direct the wind, but with the help of more precise
predictions we may be able to better judge where and with which impact tropical storms
may occur, in order to soften the consequences of catastrophes such as those caused by
hurricane Katrina, that is, “to adjust the sails”. In order to make better predictions
concerning tropical storms, it is worthwhile to investigate mathematical models in more
depth. Nolan and Montgomery [44] utilised the fact that the behaviour of air and water
can be described using Navier-Stokes equations, and developed the following mathematical
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Introduction

model in order to describe the dynamics of tropical storms:

ρ tu ρ u ∇ u ερΔu ερ∇divu ∇q ρ θ̄ θ
θ̄

∇F ωe3 ρu in J Ω,

div ρu 0 in J Ω,

ρ tθ ρ u ∇ θ ερΔθ ρ u ∇ θ̄ κΔθ̄ in J Ω,

u ν hu ν, βuPΓD u ν PΓhu on J Γ,

βθ
νθ σθθ hθ on J Γ,

u 0 u0 in Ω,

θ 0 θ0 in Ω.

The model introduced by them mainly consists of extended Navier-Stokes equations (first
two equations), which are coupled to the heat equation (third equation). The density ρ
is assumed to be a given, time-independent positive function, ε denotes a constant eddy
viscosity, and θ̄ denotes a given mean value. The model describes velocity u, pressure q
and temperature θ of a tropical storm using conservation of momentum

ρ tu u ∇ u div T Id q G,

conservation of mass

div ρu tρ 0,

and conservation of energy

ρ t θ θ̄ u ∇ θ θ̄ ερΔ θ θ̄ .

Within the equation for the conservation of momentum, the term for the acceleration
tu u ∇ u is contrasted with the inner friction div T Id q , where T is the stress

tensor. In the model by Nolan and Montgomery, the inner friction is represented by the
term ερΔu ερ∇div u ∇q. The function G represents the external forces, which in the
model are given by the Coriolis force ωe3 ρu and the buoyancy ρ θ̄ θ

θ̄
∇F . In [49] Saal

has shown existence and uniqueness of solutions to this model in the Hilbert-space setting.
This leads to the question whether it is also possible to prove existence and uniqueness of
solutions to this model in the general Lp-setting and whether improvements to the model
are possible. In a next step, this could motivate the numerical investigation of this model
in order to find approximate solutions which may in turn improve predictions for tropical
storms. However, it is not easy to see whether the model is thermodynamically consistent.
Furthermore, the model does not take moisture dynamics into account, which however
are known to be a major influence on tropical storms in terms of size and intensity, as
shown for instance by the works of Hill and Lackmann [26], as well as Wu, Su, Fovell,
Dunkerton, Wang and Kahn [56]. This is why we decided to modify the model of Nolan
and Montgomery. We extensively touch upon the modifications of the resulting model in
Section 4.1. We slightly adapt the coefficients of the model of Nolan and Montgomery to
the setting of Novotný, Růžička and Thäter [45], as well as add the term

p0

θ̄
div ρuF ,

which models the creation of heat through volume work. This ensures thermodynamic
consistency within the model. Part of these modifications are the substitution of constant
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coefficients by variable ones, i. e., all relevant coefficients such as viscosity, density, etc.
are replaced by given, positive functions. In order to appropriately incorporate moisture,
we couple the modified system of Nolan and Montgomery to the following nonlinear
moisture dynamics

tmv u ∇ mv ηvΔmv Sev Scd 0 in J Ω,

tmc u ∇ mc ηcΔmc Scd Sac Scr 0 in J Ω,

tmr u ∇ mr ηrΔmr Sac Scr Sev
V

gρm
e3 ∇ ρmmr in J Ω,

βmv
νmv σmv mv hv on J Γ,

βmc
νmc σmcmc hc on J Γ,

βmr
νmr σmr mr hr on J Γ,

mv 0 mv,0, mc 0 mc,0, mr 0 mr,0 in Ω,

which were introduce by Hittmeir, Klein, Li and Titi in [27]. The model of nonlinear
moisture dynamics by Hittmeir, Klein, Li and Titi does not only describe the moisture
dynamics with respect to rain water (mr), but also the moisture dynamics with respect
to vapour (mv) and cloud water (mc). Through the coupling of these models we obtain a
system that unifies the temporal and spatial description of motion, pressure, temperature
and moisture.

The goal of this thesis is to provide a proof of existence and uniqueness of local-in-time,
strong solutions to the above model on a cylinder (Theorem 4.2). That is, we want to
show solvability of a system of partial differential equations consisting of the Navier-Stokes
equations, the heat equation, and nonlinear moisture dynamics, with variable coefficients
on a cylindrical domain. Here, a cylindrical domain Ω refers to a Cartesian product
consisting of a bounded C3-domain A and an interval a, a with a 0, i. e.

Ω : A a, a .

We study the model on a time interval 0, T with T 0, and on a cylindrical domain
Ω, because we are interested in both the temporal, as well as the spatial dynamics of
tropical storms. We have decided to use a cylinder as our model domain, because its
geometry suits the shape of tropical storms, such as tornadoes, very well. One could also
model tropical storms on the upper half plane, which might serve as a simplified version
of the surface of the earth. With equal right, one could also model tropical storms on a
sphere, serving as an approximation to earth as a whole. However, these two domains go
beyond the scope of the present thesis, and are left for future research. For the purpose
of proving solvability of our model, we reduce it to a linear system using linearisation
techniques, such as the ones presented in [6] by Amann. This linearised system contains
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all linear terms of highest order and takes on the following form:

ρ tu ερΔu ∇q fu in J Ω,

div ρu 0 in J Ω,

u ν hu ν on J Γ,

βuPΓD u ν PΓhu on J Γ,

u 0 u0 in Ω,

ρ tθ ερΔθ fθ in J Ω,

βθ
νθ σθθ hθ on J Γ,

θ 0 θ0 in Ω.

tmj ηjΔmj fj in J Ω,

βmj
νmj σmj mj hj on J Γ,

mj 0 mj,0 in Ω,

where the last three equations are repeated independently for every j v, c, r . The
linearised model is thus composed of the Stokes equations with variable coefficients,
as well as of various parabolic problems with Robin boundary conditions and variable
coefficients, each being defined on a cylindrical domain Ω.

Boundary value problems on cylindrical domains have for instance been investigated
by Nau, Saal and Denk [39, 40, 43, 42, 17]. However, all of these works only studied
boundary value problems with constant not variable coefficients. First investigations of
the Stokes equations with variable coefficients in Lp go back to Abels and Terasawa [1, 2].
Moreover, Abels and Weber [3] analysed the inhomogeneous Navier-Stokes equations with
variable density. On the other hand, the Stokes equations with constant coefficients have
been the subject of many studies. Miyakawa [38], Giga [24], Shibata and Shimizu [51]
have been the first to approach the Stokes equations with first-order boundary conditions
in Lp in a rigorous mathematical way. Some investigations of the Stokes equations with
Robin boundary conditions may be found in Saal [48, 47], Shibata and Shimada [50, 52].
For further investigations about the Stokes equations see [11, 19, 23], and for a detailed
overview of the Stokes equations in the Lp-setting we refer to [25].

Because both the Stokes equations, as well as parabolic systems with variable coefficients
in cylindrical domains, have attracted little attention in the literature, we dedicate the first
part of this thesis (Chapters 1–3) to the development of an Lp-theory of such boundary
value problems on cylindrical domain. In order to make such a theory valid not only for
constant but also variable coefficients, we adapt a similar strategy as Denk, Hieber and
Prüss in [15, Therorem 5.7]. They used a localisation argument to transfer maximal regu-
larity of elliptic operators in Banach spaces of class HT with constant coefficients to the
same operators with variable coefficients. In the second part of this thesis (Chapter 4), we
describe the model on tropical storms given above more comprehensively, and rigorously
show its solvability. This is done by showing that the aforementioned linearised model,
i. e. the resulting Stokes equations and parabolic problems, admit a unique solution. To
this end, we make use of results obtained in Sections 3.2 and 2.2, respectively. With the
help of a perturbation argument, we are able to add the nonlinear terms, as well as the
linear terms of lower order as perturbations to the linearised model. The existence of a
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unique solution to our model can then be obtained using the Fixed-Point Theorem of
Banach. In this thesis we study our model on cylindrical domains, and show solvability
for arbitrary data and small time intervals. The investigation of the model’s behaviour
on different domains, and its solvability for arbitrary time intervals and small data are
left for future research.

This thesis is organised as follows.
Chapter 1 starts by introducing general notation and basic function spaces. There, we
establish most of the mathematical notions that are used in later chapters, including
Banach spaces of class HT , property (α), R-boundedness and maximal regularity. More-
over, we give a brief introduction to cylindrical domains and the Helmholtz projection.
This chapter includes a first overview of parabolic problems and the Stokes equations,
as well as of different boundary conditions, which are later discussed in Chapters 2 and
3. We also present a proof of the retraction property of trace maps with respect to the
aforementioned boundary conditions.

Chapter 2 studies elliptic and parabolic problems with variable coefficients on cylindrical
domains. More precisely, here, we investigate elliptic problems with Neumann bound-
ary conditions, both in the case of time-dependent, as well as time-independent data.
Furthermore, we prove maximal regularity for parabolic problems with Robin boundary
conditions, as well as Neumann-Dirichlet boundary conditions, perfect slip boundary
conditions and free slip boundary conditions. Maximal regularity of parabolic problems
with Robin boundary conditions and variable coefficients prove to be particularly useful
in Chapter 4 to show solvability of our model describing the dynamics of tropical storms.
The results in this chapter allow us to extend the Lp-theory for cylindrical boundary
value problems with constant coefficients to such problems with variable coefficients.

Chapter 3 extents the investigation of the previous chapter by studying the Stokes
equations with variable coefficients on cylindrical domains. Here, we prove maximal
regularity for the Stokes equations with perfect slip and free slip boundary conditions,
thereby complementing the Lp-theory of cylindrical boundary value problems with vari-
able coefficients as developed in Chapter 2.

Chapter 4 studies in detail the model on the mechanisms of tropical storms that was
already briefly described in this introduction. Moreover, we prove existence and unique-
ness of local-in-time, strong solutions to this model by using the results of Chapters 2
and 3. Put in another way, we make use of the maximal regularity of parabolic problems
with Robin boundary conditions and of the maximal regularity of the Stokes equations
with free slip boundary conditions. Finally, we use a perturbation argument in order to
prove solvability for this model for arbitrary data and small time intervals.
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1 Preliminaries

The purpose of this chapter is to recall and define terms and concepts that are frequently
used throughout this thesis. This is also to ensure that during the study of this thesis
these concepts are able to be found in one place such that the flow of reading may not
be disturbed. We also give a first introduction to the problems discussed in the first part
of the thesis.
In Section 1.1 we give an overview of the general notation used throughout this thesis.
We also introduce function spaces, reminding the reader of their important properties
such as property α and the class HT . In Section 1.2 we introduce important concepts of
operators such as sectoriality, R-boundedness and maximal regularity. Especially the
concept of maximal regularity plays an important role throughout this thesis. Since we
exclusively focus on problems on cylindrical domains, we devote Section 1.3 entirely to
their introduction. This includes a discussion of their boundary as well as the behaviour
of the Helmholtz projection on cylindrical domains. In Section 1.4 we give a first overview
of problems later on discussed in Chapters 2 and 3, i. e. boundary conditions used in the
context of these problems, as well as necessary regularity and compatibility conditions.
Finally, in Section 1.5 the presentation gets somewhat more formal as we show that trace
maps with respect to the boundary conditions, introduced in Section 1.4, are retractions.

1.1 Essentials
In the first part of this section we collect some basic definitions and notations which
are used throughout this thesis. The second part of this section is meant to serve
as a brief reminder of some function spaces, such as Lp-spaces, and of some of their
important properties such as property α and the class HT . The remainder of this section
is arranged into two paragraphs: an introduction to isotropic function spaces followed by
an introduction to anisotropic function spaces.

General Notation

This paragraph is devoted to an explanation of notations used throughout this thesis.
Among other things, we introduce the divergence, the gradient and the Laplacian
of matrices and vector fields. In addition, we also review the definition of Fréchet
differentiability. Furthermore, normalized vector spaces and their dual spaces are also
recalled.

As usual, N, R and C denote the natural, real and complex numbers, respectively. For any
natural number n N, we then denote by N

n, Rn and C
n the corresponding n-dimensional

natural, real and complex space, respectively. As we adapt the standpoint that the
natural numbers do not contain zero, we introduce the additional set N0 : N 0 for
distinguishability. For any vector x R

n or matrix S R
n n their transposed versions

are denoted by xT and ST , respectively. Likewise xj , for j 1, . . . , n , and Sj,k, for
j, k 1, . . . , n , denote the components of x and S, respectively. Furthermore, for any
two vectors x, y R

n, x y : n
j 1 xjyj indicates their inner product. We also abbreviate

9



1 Preliminaries

the element-wise product of two matrices S, T R
n n by S : T : n

j,k 1 Sj,kTj,k.
Moreover, x y indicates that vector x is orthogonal to vector y. Additionally, for any
real function α, by α : max 0, α we denote the positive part.

If it is clear from the context, ej R
n denotes for j 1, . . . , n the entire j-th real

unit vector, whose components are zero, except for the one at j-th position, which is
one. Then, Id e1, . . . , en denotes the identity matrix in R

n n. We also denote the
identity mapping between normed vector spaces by Id, since this is unlikely to lead to
misconception.

For a normed, real vector space X, X we set X to be the related dual space and
to be the dual pairing. For two Banach spaces X and Y we write X Y , if X

and Y are identical up to equivalence of norms. By L X, Y we denote the space of all
linear continuous operators from the normed space X to the normed space Y and by
Lis X, Y the space of all isomorphisms. For X Y , we use the abbreviations L X and
Lis X . We use R T for the range and N T for the kernel of an operator T L X, Y .
Furthermore, by T X Y we denote the operator norm in L X, Y , which we sometimes
also may write as T L X,Y . We use ρ T for the resolvent set of an operator T . In
general, D T we denote the domain of an operator T .

The divergence of a continuously differentiable vector field u : D R
n, with D R

n

an open subset, is denoted by div u . For a matrix S : D R
n n with columns

s1, . . . , sn : D R
n, such that for x D the identity S x s1 x , . . . , sn x T holds

true, we write

div S : div s1, . . . , sn div s1 , . . . , div sn
T

for the divergence. Throughout this thesis, the gradient of a differentiable function
f : D R is denoted by

∇f : 1f, . . . , nf T

and the gradient of a continuously differentiable vector field u : D R
n by

∇u :

u1
x1

un
x1... . . . ...

u1
xn

un
xn

.

Then, the directional derivative of the vector field u is written as ∇u T h : hu for
h R

n, and the Laplacian as Δu : div ∇u . We use the notation u A to restrict the
domain of a vector field u : D R

n to an open subset A D. In addition, by supp u
we denote the support of the vector field u, which is the closure in D of the set of points
in D where u is non-zero.

Let X and Y be normed vector spaces and U X an open subset. We call a function
A : U Y Fréchet differentiable at x U , if there exists a continuous linear operator
B L X, Y , such that

lim
h 0

A x h A x Bh Y

h X
0.

We denote the Fréchet derivative of A at point x U by DA x : B. If the derivative
exists at all points x U , we call the resulting function DA : U L X, Y the Fréchet

10



1.1 Essentials

derivative of A, which maps x DA x .

The closure, the interior and the boundary of a set G are denoted by Ḡ, G and G,
respectively. Moreover, G H, G

.
H and G H stand for the union, the disjoint union

and the intersection of two sets G and H, respectively. An example of a set, which is
often used in this thesis, is the open ball Br z . It is constructed with respect to the
Euclidean norm with radius r 0 and center point z. The Euclidean norm on R

n and
R

n n are be denoted by . In accordance with the notation above, B̄r z denotes the
closure of the ball Br z .

We also make frequent use of positive constants in estimations or equations. For better
readability when used in chains of inequalities, we denote all positive constants in each
estimate of the chain by C, whenever the actual value of the constant is not important.
If the actual values are important or should be emphasised, we indicate them with their
values or primes, e. g. C , C , . . . and so on.

Function Spaces

Throughout this thesis, we work with many different function spaces, whose definition
we briefly recall here.
Let D R

n be an open subset with dimension n N, k N0 , l 0, 1 and
m N0. Moreover, assume x R

n and j N
n
0 to be a multi-index with j : n

i 1 ji

and j
x : j1

x1 . . . jn
xn

. Then we have

Ck D : f : D R : f is k-times continuously differentiable ,

Ck,λ D : f Ck D : j
xf is Hölder continuous with exponent λ for all j k ,

BCk D : f Ck D : supx D
j
xf x for all j k ,

BUC D : f BC0 D : f is uniformly continuous on D ,

BUCm D : f : D R : j
xf BUC D , j m .

Each of these function spaces can also be restricted to include functions with compact
support only, and we denote them by

Yc D : f Y D : supp f is a compact subset of D ,

Yc D̄ : f D : f Yc R
n ,

for Y Ck, Ck,λ, BUC, BUCm . We set

Cc,σ D : u Cc D n : div u 0 ,

and define the space of solenoidal functions as

Lp,σ D : Cc,σ D ,

where the closure is taken in Lp D,Rn , for 1 p .
Throughout this thesis, vector-valued Lp-spaces are frequently used. In order to define
them, let Ω, A, μ be a measure space and let E be a Banach space. Then, for 1 p ,

11



1 Preliminaries

we define

Lp μ; E : u : Ω E measurable : u Lp μ;E : Ω u p dμ x
1 p

,

N μ; E : u L1 μ; E : u L1 μ; E 0 ,

Lp μ; E : Lp μ; E N μ; E ,

L μ; E : u : Ω E measurable : u L μ; E : ess supx Ω u x ,

Lp,loc μ; E : u : Ω E measurable : K u p dμ x , K Ω compact .

If A is a Borel-Lebesgue σ-algebra and μ is the Lebesgue measure, we use standard
notation by writing Lp Ω, E : Lp μ; E . Furthermore, we write Lp Ω if E R

and Lp Ω n if E R
n, n N. In case the underlying domain Ω is understood from

context, and μ is the Lebesgue measure, we write p for the Lp-norm, 1 p , and
u dx u dμ x . For a domain Ω or real manifold Γ, we denote by , Ω and , Γ the

inner product of L2 Ω n and L2 Γ n, respectively. Then

u Ω
1
Ω Ω

u dx

stands for the mean value of a function u L1 Ω n. With the help of vector-valued
Lp-spaces we are able to define the class HT .

Definition 1.1. cf. [16, Definition 1.11] Let E be a Banach space.

(i) The Hilbert transform H : S R, E S R, E of a function f S R, E is defined
through

H f x : 1
π lim

ε 0 x y ε

f y

x y
dy, x R.

(ii) The Banach space E is of class HT if the Hilbert transformation H can be extended
for one (and thus for all; see [6]) p 1, to a continuous and linear operator
H L Lp R, E .

We denote by S R
n, E the E-valued Schwartz space on R

n, by F : S R
n, E S R

n, E
the Fourier transformation on this space and by S R

n, E the space of E-valued tempered
distributions. For a comprehensive approach to vector-valued distribution spaces and
Fourier multipliers, see [7].
Remark 1.2. There exists alternative descriptions of the class HT . In particular, E is of
class HT if and only if the property “E is a UMD-space” holds, where UMD stands for
unconditional martingale differences, cf. [30, Theorem 2.1.19].
Besides the class HT , the property α is an important property of Banach spaces.

Definition 1.3. [46, Definition 4.2.7] Let Ω, A, μ and Ω , A , μ be probability spaces.
A Banach space E has property α , if a constant α 0 exists such that

N

i,j 1
αijεiεjxij

L2 Ω Ω ,E

α
N

i,j 1
εiεjxij

L2 Ω Ω ,E

for all αij 1, 1 , xij E, N N and all 1, 1 -valued random variables εi on
Ω, A, μ and εj on Ω , A , μ .

12



1.1 Essentials

Isotropic Function Spaces

We would like to remind the reader that for a Banach space E and s the
Bessel potentials are defined by

Bsu : F 1 ξ Bs ξ Fu ξ , u S R
n, E ,

Bs ξ : 1 ξ 2 s 2, ξ R
n.

Thus, we can define the vector-valued Bessel potential spaces as

Hs
p R

n, E : u S R
n, E : u B sf, f Lp R

n, E , s , 1 p ,

with norm

u Hs
p Rn, E : f Lp Rn,E , u Hs

p R
n, E , f Lp R

n, E , u B sf.

Moreover, the Sobolev spaces for s N0 and 1 p are defined as follows,

W s
p R

n, E : u Lp R
n, E : αu Lp R

n, E , α s ,

with norm

u W s
p Rn, E :

α s

αu p
Lp Rn,E , u W s

p R
n, E .

There is also the following relationship between Sobolev spaces and Bessel potential
spaces:
Remark 1.4. If E is a Banach space of class HT , then

Hs
p R

n, E W s
p R

n, E ,

for every s N0, and every 1 p . This can be seen e. g. in [58, Proposition 3].
The Sobolev spaces are defined for s N0 only. We can extend this scale to 0 s
by the construction of the Sobolev-Slobodeckij spaces. Let : 0, N0 with
s : max m N0 : m s for s 0, be the floor function and

u W s
p Rn,E :

α s Rn Rn

αu x αu y p
E

x y n s s p
dx dy

1 p

,

for all 0 s with s N and 1 p . Then the Sobolev-Slobodeckij spaces are for
s 0, N and 1 p defined by

W s
p R

n, E : u W
s

p R
n, E : u W s

p Rn,E ,

u W s
p Rn, E : u p

W
s

p Rn, E
u p

W s
p Rn, E

1 p

, u W s
p R

n, E .

By assuming E to be a Banach space, we can define the E-valued Besov spaces for
s , δ 0, 1 p and 1 q by

Bs
p,q R

n, E : Hs δ
p R

n, E , Hs δ
p R

n, E
1 2,q

,

13



1 Preliminaries

using real interpolation. The family of real interpolation functors is denoted by , θ,q on
the category of all interpolation couples. Later on, we also apply complex interpolation.
For an introduction to real and complex interpolation we would like to refer the reader
to [54] and [10]. We use the abbreviation Bs

p : Bs
p,p and get the relation

Bs
p R

n, E W s
p R

n, E , s 0, N, 1 p ,

see e. g. [7, Equation (5.8)]. For vector-valued function spaces on arbitrary domains
Ω R

n we set

Hs
p Ω, E : u D Ω, E : it exists a g Hs

p R
n, E with g Ω u ,

s , , 1 p ,

W s
p Ω, E : u D Ω, E : it exists a g W s

p R
n, E with g Ω u ,

s 0, , 1 p ,

Bs
p,q Ω, E : u D Ω, E : it exists a g Bs

p,q R
n, E with g Ω u ,

s , , 1 p , 1 q ,

where D Ω, E is the space of E-valued distributions on Ω and g Ω is the restriction of g
on Ω in a distributional sense. The corresponding norms are defined by

u Y Ω,E : inf
g Y Rn,E

g Ω u

g Y Rn,E ,

for Y Hs
p , W s

p , Bs
p,q . Furthermore, we set

0Y J, E : u Y J, E : u 0 0 ,

on an interval J 0, T , T 0, for Y Hs
p , W s

p , Bs
p,q and corresponding s, p

and q as above. These spaces are essentially identical to Bessel potential, Sobolev,
Sobolev-Slobodeckij an Besov spaces. They only differ in so far that every function has
additionally an initial value of zero. The function space

H1
p Ω : φ Lp,loc Ω : ∇φ Lp Ω .

defines the homogeneous Sobolev space of order one, which becomes a semi-normed space
via

φ H1
p Ω ∇φ Lp Ω,Rn , φ H1

p Ω .

For a more detailed treatment of vector-valued Bessel potential, Sobolev, Sobolev-
Slobodeckij or Besov spaces, cf. [7] and [30].

Anisotropic Function Spaces

Let again E be a Banach space. By γ N we denote the number of slices, in which
we divide the Euclidean space in order to allow different regularities in space. By
n n1, . . . , nγ N

γ we denote the dimensions of the slices and use the abbreviation
R

n : R
n1 . . .Rnγ . Moreover, by ω ω1, . . . , ωγ N

γ we denote an arbitrary weight.
We use the abbreviation ξ ξ1, . . . , ξγ R

n, and ω : lcm ω1, . . . , ωγ to denote the
least common multiple of the weight entries ω1, . . . , ωγ . Then, for s the
weighted Bessel potentials are defined by

Bs,ω : F 1 ξ Bs,ω ξ Fu ξ , u S R
n, E ,

Bs,ω ξ : 1 γ
k 1 ξk

2ω ωk
s 2ω

, ξ R
n.

14



1.1 Essentials

Thus, we can define the E-valued anisotropic Bessel potential spaces as

Hs,ω
p R

n, E : u S R
n, E : u B s,ωf, f Lp R

n, E ,

for s , and 1 p , with norm

u Hs,ω
p Rn,E : f Lp Rn,E , u Hs,ω

p R
n, E , f Lp R

n, E , u B s,ωf.

Moreover, the anisotropic Sobolev spaces for s ω N0 and 1 p can be defined in
a similar manner as follows

W s,ω
p R

n, E :
α
k u Lp R

n, E , α N
nk
0

u Lp R
n, X :

α s ωk, k 1, . . . , γ
,

with norm

u W s,ω
p Rn, E :

γ

k 1 α s ωk

α
k u p

Lp Rn, E

1 p

, u W s,ω
p R

n, E .

Here, α
k

α
xα

k
denotes the partial derivative with respect to the k-th component

xk R
nk of x x1, . . . , xγ R

n. According to Amann [8], anisotropic Bessel potential
and Sobolev spaces can also be characterized as follows:

Proposition 1.5. cf. [34, Theorems 3.7.2 & 3.7.3] Let γ N and n, ω N
γ. In addition

nk : n nk , ω : ω ωk for n, ω N
γ and k 1, . . . , γ . Let E be an UMD-space,

that has property α if ω ω, . . . , ω . The spaces H
s ωk
p R

nk , . . . and W
s ω
p R

nk , . . .
stands for the isotropic vector-valued Bessel potential and Sobolev spaces on the slice R

nk ,
respectively. Then the equations

Hs,ω
p R

n, E H
s ω1
p R

n1 , Lp R
n1 , E Lp R

n1 , H
s,ω1
p R

n1 , E

γ
k 1 H

s ωk
p R

nk , Lp R
nk , E , 0 s , 1 p ,

W s,ω
p R

n, E W
s ω1
p R

n1 , Lp R
n1 , E Lp R

n1 , W
s,ω1
p R

n1 , E

γ
k 1 W

s ωk
p R

nk , Lp R
nk , E , s ω N, 1 p ,

are valid.

From now on we assume E to be a Banach space of class HT that has property α .
Then, we can introduce the anisotropic Sobolev-Slobodeckij spaces by

W s,ω
p R

n, E W
s ω1
p R

n1 , Lp R
n1 , E Lp R

n1 , W
s,ω1
p R

n1 , E

γ
k 1 W

s ωk
p R

nk , Lp R
nk , E , 0 s , 1 p ,

and thus extend the Sobolev scale. By using real interpolation, we can finally define the
anisotropic Besov spaces by

Bs,ω
p,q R

n, E : Hs δ,ω
p R

n, E , Hs δ,ω
p R

n, E 1 2,q,

for s , δ 0, 1 p and 1 q . Using the abbreviation Bs,ω
p : Bs,ω

p,p

we can again employ another characterisation of anisotropic Besov spaces by

Bs,ω
p R

n, E B
s ω1
p R

n1 , Lp R
n1 , E Lp R

n1 , B
s,ω1
p R

n1 , E

γ
k 1 B

s ωk
p R

nk , Lp R
nk , E , 0 s , 1 p ,

15



1 Preliminaries

using to [34, Proposition 1.4].
For a comprehensive approach of anisotropic function spaces we refer e. g. to [55], [8]
and [34]. Using the same construction as for isotropic function spaces, we can define the
anisotropic function spaces on a domain Ω R

n.

1.2 R-boundedness and Maximal Regularity
This section is devoted to the explanation of the concept of maximal regularity. Maximal
regularity is of particular importance in this thesis, since every linear system of equations,
such as parabolic problems and the Stokes equations, that has the property of maximal
regularity has a unique solution. Moreover, the solution of a linear system of equations
that has the property of maximal regularity does not “loose” regularity with respect to the
regularity of the given data. This in turn enables us to solve nonlinear partial differential
equation systems. In Chapter 4 we introduce a model, describing the dynamics of tropical
storms, and use the approach of maximal regularity to solve this model. This is done by
linearising the model and by proving an “optimal” regularity of the linearised equations.
The crucial point, therefore, is to prevent any loss of regularity for the linearised system,
i. e. to prove maximal regularity. The concept of maximal regularity is closely related to
sectoriality, R-sectoriality and R-boundedness of operator families. For this reason, we
would like to recall the definitions of these concepts, following references [15] and [36].

The class of sectorial operators is one of the most important classes of closed but
unbounded linear operators. It is defined as follows:

Definition 1.6. cf. [15, Definition 1.1] Let E be a complex Banach space and A a closed
linear operator in E. A is called sectorial if the following two conditions are satisfied,

(S1) D A E, R A E, , 0 ρ A ;

(S2) t t A 1 L E M for all t 0, and some M .

The class of sectorial operators in E is denoted by S E . The spectral angle φA of
A S X is defined by

φA inf φ : ρ A Σπ φ, sup
λ Σπ φ

λ λ A 1 L E .

The sector Σθ in the complex plane is defined by Σθ : z C 0 ; arg z θ for
0 θ π. Another important concept for linear operators is R-boundedness. The latter
also provides an important connection to maximal regularity, which is defined later on.

Definition 1.7. [15, Definition 3.1] Let E and F be Banach spaces. A family of operators
T L E, F is called R-bounded, if there is a constant C 0 and p 1, such that
for each N N, T1, . . . TN T , x1, . . . , xn E and for all independent, symmetric,

1, 1 -valued random variables εj on a probability space Ω, A, μ the inequality

N

j 1
εjTjxj

Lp Ω,F

C
N

j 1
εjxj

Lp Ω,E

is valid. The smallest such C is called R-bound of T , we denote it by R T .

Analogously to the definition of sectoriality we define R-sectoriality.
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1.2 R-boundedness and Maximal Regularity

Definition 1.8. cf. [15, Definition 4.1] Let E be a Banach space. A sectorial operator
A S E is called R-sectorial if

RA 0 : R t t A 1 : t 0 .

The R-angle φR
A of A is defined by means of

φR
A : inf φ 0, π : ρ A Σπ φ, RA π φ ,

where

RA θ : R λ λ A 1 : λ 0, arg λ θ .

Maximal Regularity

In this paragraph we explain the concept of maximal regularity (cf. [36, Section 1.3]) and
its relation to R-boundedness. Let A be a sectorial operator in a Banach space E with
spectral angle φA

π
2 . The Cauchy problem

u t Au t f t , t 0, u 0 0

has a solution for any given f Lp 0, T , E , 0, T 0, , which is, according to the
Variation of Constants Formula, formally given by

u t
t

0
e Atf t s ds, t 0, T .

The operator A has the property of maximal regularity of type Lp for 1 p on
J 0, , if the solution u of the Cauchy problem is (Fréchet) differentiable almost
everywhere, the solution u takes its values in D A almost everywhere and u and Au
satisfy the estimate

u Lp J,X Au Lp J,X C u0 DA 1 1 p,p f Lp J,X ,

for a constant C 0, cf. [46, Section 3.5]. The trace space DA 1 1 p, p is given by

DA 1 1 p, p x E : x 1 1 p,p :
0

t1 pAe Atx p dt t
1 p

,

with norm

x 1 1 p,p : x x 1 1 p,p, x DA 1 1 p, p ,

cf. [46, Section 3.4]. That is, the notion of “maximal regularity” refers to the fact that
the regularity of u and Au is not worse than the one of the given function f , i. e. no
regularity is lost.

Finally, let us consider a theorem describing the relation between maximal regularity
and R-boundedness, as well as R-sectoriality.

Theorem 1.9. [15, Theorem 4.4] Let E be a Banach space of class HT , 1 p , and
let A be a sectorial operator in E with spectral angle φA

π
2 . Then the Cauchy problem

u t Au t f t , t 0, u 0 0,

with given function f Lp R , E has maximal regularity of type Lp on 0, , if and only
if A is R-sectorial with φR

A
π
2 . More precisely, the following statements are equivalent

17
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(i) The Cauchy problem has maximal regularity of type Lp on 0, ;

(ii) the set A iρ A 1 : ρ R is R-bounded;

(iii) the set A λ A 1 : λ Σθ is R-bounded, for some θ π
2 ;

(iv) the set e Az : z Σϑ is R-bounded for some ϑ 0;

(v) the sets e At : t 0 and tAe At : t 0 are R-bounded.

It can also be shown that statement iii is equivalent to A being R-sectorial with angel
φR

A
π
2 . This establishes the aforementioned connection between maximal regularity and

R-sectoriality.

1.3 Cylindrical Domains and the Helmholtz Projection
In this thesis we mainly consider systems of equations on cylindrical domains Ω R

n,
n N 1 . These cylindrical domains are given as the cartesian product of a bounded
C3-domain A and an interval a, a with a 0, i. e.

Ω : A a, a .

The topological boundary of Ω consists of five different party: the boundary of the top
part Γtop : A a and the bottom part Γbot : A a of the cylindrical domain,
the lateral boundary Σ : A a, a , as well as the upper edge Rtop and the lower
edge Rbot of the cylindrical domain. By

Γ : Γtop
. Γbot

. Σ

we denote the smooth part of the boundary, by

R : Rtop . Rbot

the edges, and by

Ω Γ . R

the entire boundary of Ω. However, we mainly use the smooth part Γ of the boundary
when we study problems on the boundary of Ω, e. g. when studying boundary conditions.

Boundary Operators

For a cylindrical domain Ω A a, a R
n, n N,

νΓ : Γ R
n

denotes the outward pointing vector, normal to the boundary Γ and

PΓ x : Id x νΓ x νΓ x : Rn TxΓ, x Γ,

the projection on the tangent bundle TΓ of Γ. Note that

PΓu u νΓ νΓ u u νΓνT
Γ u u νΓ u νΓ on Γ,

18
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a

a

A

Ω

Γbot

Γtop
Σ

Rbot
Rtop

Ω

Cylindrical domain Ω and its boundary Ω for n 3 and circular cross-section A

for a vector field u on Ω. Since Γ is the disjoint union of different boundary parts, also
the outer normal vector ν must be understood accordingly. Thus, PΓ can be considered
a system of projections onto the respective boundaries. For example, the notation

PΓ ∇u ν 0 on Γ,

is supposed to be interpreted as the system

PΓtop ∇u νΓtop 0 on Γtop,

PΣ ∇u νΣ 0 on Σ,

PΓbot ∇u νΓbot 0 on Γbot,

for u H3
p Ω . It is

νΓtop x en for x Γtop,

νΓbot x en for x Γbot,

νΣ x νA x1, . . . , xn 1 , 0 en for x Σ,

where νA x1, . . . , xn 1 R
n 1 is the outer normal vector on A. In case the underlying

boundary is understood from the context, we just write ν for the outer normal vector
on the respective boundaries. Moreover, PΓtop , PΣ, PΓbot are projections on the tangent
bundles TΓtop, TΣ and TΓbot, respectively. The projection onto the normal bundle NΓ
of Γ is denoted by

QΓ x : Id x PΓ x : Rn NxΓ, x Γ.

As for PΓ, we can define different parts for QΓ. For a detailed discussion of outer unit
vectors, tangential and normal projections, as well as tangential and normal bundles we
refer the reader to [5].

The deformation and the rotation tensor of a vector field u on Ω are denoted by

D u : 1
2 ∇u ∇u T .

For dimension n 3 and u being a vector field, a simple computation reveals the identity

D u ν 1
2ν curl u on Γ.
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For any dimension n N, the deformation tensor also satisfies the relation

PΓD u ν 1
2 ∇u ν ∇u T ν ννT ∇u ν ννT ∇u T ν
1
2 ∇u ν ∇u T ν ννT ∇u ν ννT ∇u ν
1
2 ∇u ∇u T ν

D u ν on Γ.

on Γ. Furthermore,

D ∇p ij
1
2 i ∇p j j ∇p i

1
2 i jp j ip 0,

is valid in the distributional sense for any p H1
p Ω due to the symmetry of second

derivatives.

The Helmholtz Projection

In this paragraph we study the Helmholtz projection in Lp Ω n, n N, on a cylindrical
domain Ω A a, a where A R

n 1 is a bounded C3-domain and a 0. According
to [41], we have the decomposition

Lp Ω n Lp,σ Ω ∇H1
p Ω , 1 p ,

on Ω. In this case, we can write the space of solenoidal functions also as

Lp,σ Ω u Lp Ω n : div u 0, u ν 0 on Γ ,

which is equivalent to the definition given on page 11 in Section 1.1. By H : Lp Ω n

Lp Ω n we denote the Helmholtz projection, that projects Lp Ω n onto Lp,σ Ω along
∇H1

p Ω . The construction of H relies on the existence of a unique solution q H1
p Ω

to the weak Neumann problem

∇q, ∇φ Ω f φ , φ H1
p Ω ,

for f 0H 1
p Ω : H1

p Ω , 1
p

1
p 1. Indeed, given u Lp Ω n we solve the weak

Neumann problem for q H1
p Ω and f 0H 1

p Ω given as f φ : u, ∇φ Ω for
φ H1

p Ω and then we obtain Hu u ∇q.

There are two results concerning the Helmholtz decomposition which we are going to
prove in the following paragraph for later use. Firstly, that the Helmholtz projection has
even higher regularity than shown in [41]. In order to prove that we make use of some
results from elliptic problems that are later discussed in Section 2.1. In addition, in this
proof we use a result about Neumann traces which goes back to Bothe, Köhne, Maier
and Saal in [12, Lemma 3.4] and can be seen in Lemma 1.16 of this thesis. This leads us
to the propositions:

Proposition 1.10. Let T 0 and let J 0, T or J R. Let A R
n 1 be a

bounded C3-domain and a 0. Assume Ω : A a, a to be a cylindrical domain and
1 p . Let H : Lp Ω n Lp Ω n be the Helmholtz projection. Then we have:

(i) if u Hm
p Ω n for m 1, 2 , then Hu Hm

p Ω n,

(ii) if u H1
p J, Lp Ω n Lp J, H2

p Ω n, then Hu H1
p J, Lp,σ Ω Lp J, H2

p Ω n.
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1.3 Cylindrical Domains and the Helmholtz Projection

Proof. (i) Assume that u H1
p Ω n. The fact that the trace operator ν : H2

p Ω
W

1 1 p
p Γ is a continuous linear retraction, Lemma 1.16, combined with Theorem 2.1

imply the existence of a unique solution q H2
p Ω to the problem

Δq div u in Ω, νq u ν on Γ.

For φ Cc Ω̄ , we then have

∇q u, ∇φ Ω νq u ν, φ Γ Δq div u, φ Ω 0,

which shows that q is a solution to the weak Neumann problem, because Cc Ω̄ is dense
in H1

p Ω . Hence, we have Hu u ∇q H1
p Ω n. Now, if we assume that u H2

p Ω n,
then the fact that the trace operator ν : H3

p Ω W
2 1 p
p Γ is a continuous linear

retraction, Remark 1.17, and using Lemma 2.3 imply that we even have q H3
p Ω . Thus,

Hu H2
p Ω n.

(ii) Step 1. Let u t, Lp Ω n for t R. Then, for every t R, Hu t, Lp,σ Ω is
the image of u t, via the Helmholtz projection, due to [41]. Now, we have

Hu p
Lp R, Lp,σ Ω

R

Hu t, p
Lp,σ Ω dt Cp

R

u t, p
Lp Ω n dt u p

Lp J, Lp Ω n

for some constant C 0 that is independent of u and t R. Using an approximation
argument, we obtain Hu Lp R, Lp,σ Ω to be the image of u Lp J, Lp Ω n via the
Helmholtz projection for J R. For J R the time derivative t can be approximated in
Lp R by difference quotients. This way we obtain Hu H1

p R, Lp,σ Ω for the solution
constructed above, if we additionally have that u H1

p R, Lp,σ Ω . Now, using extension
and restriction operators between H1

p J and H1
p R we are able to obtain the same

result also for J 0, T .
Step 2. Now, let u t, H2

p Ω n. Then, for every t R, Hu t, H2
p Ω n is the image

of u t, via the Helmholtz projection of, due to (i). By using the same arguments as
in step 1, we obtain Hu Lp J, H2

p Ω n to be the image of u Lp J, H2
p Ω n via the

Helmholtz projection for J 0, T or J R.
Step 3. By combining step 1 and 2, we obtain Hu H1

p J, Lp,σ Ω Lp J, H2
p Ω n

to be the image of u H1
p J, Lp Ω n Lp J, H2

p Ω n via the Helmholtz projection for
J 0, T or J R.

The second important result of the theory of the Helmholtz decomposition is the fact
that the divergence of a particular antisymmetric matrix is contained in the solenoidal
space Lp,σ Ω .

Proposition 1.11. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T with

T 0. Assume Ω : A a, a to be a cylindrical domain, ν to be the outer normal
vector on the boundary Γ of Ω, C Lp J, W 1

p Ω n n to be a skew-symmetric matrix with
Cν 0 on J Γ and 1 p . Then we have div C Lp J, Lp,σ Ω .

Proof. For an arbitrary ψ W 1
p Ω , 1

p
1
p 1, we can choose a sequence ψk k N

Cc Ω̄ with ψk ψ for k in W 1
p Ω , [4, Theorem 3.18]. Since Ω is bounded

and Ω is continuous, the function spaces W 1
p Ω and W 1

p Ω are algebraically the same.
Note that

div A∇ψk div A ∇ψk A : ∇2ψk
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for an A : Ω R
n n. Hence, we deduce

div C∇ψk div C ∇ψk C : ∇2ψk div C ∇ψk,

due to C : ∇2ψk 0 by the skew-symmetry of C and the symmetry of ∇2ψk. By taking
the limit k , we obtain

div C∇ψ div C ∇ψ. (1.3.1)

By using the Gaussian integral Theorem [35, Chapter 2.5], which is also valid for Lp-spaces
due to [29, Chapter II.2.5], equation (1.3.1) and Cν 0 on the boundary, we have

Ω
∇ψ div C dx

Ω
div C∇ψ dx

Ω
C∇ψ ν dσ

Ω
∇ψ Cν dσ 0.

Since the equation is valid for any ψ W 1
p Ω , we conclude div C Lp J, Lp,σ Ω .

1.4 Regularity and Compatibility Conditions
The Chapters 2 and 3 deal with the development of an Lp-theory on cylindrical domains.
More precisely, in the next two chapters we study the solvability of parabolic systems of
equations and Stokes equations with different boundary conditions on cylinders. The
special feature of our consideration is that we allow, not only constant, but variable
coefficients in these systems.

This section deals with the introduction of parabolic problems

ρ tu μΔu f in J Ω,

BV u h on J Γ,

u 0 u0 in Ω,

P J V

and the Stokes equations

ρ tu μΔu α∇q f in J Ω,

div ρu g in J Ω,

BV u, q h on J Γ,

u 0 u0 in Ω.

S J V

Moreover, we discuss necessary regularity and compatibility conditions of these systems.
As always, by Ω : A a, a R

n we denote a cylindrical domain being a cartesian
product of a bounded C3-domain A and an interval a, a for some a 0. In addition,
J 0, T , T 0, denotes a time interval. Moreover, we consider the boundary conditions
exclusively on the smooth part Γ Γtop

. Γbot
. Σ of the boundary of Ω. Here, Γtop

denotes the boundary of the top and Γbot the boundary of the bottom of Ω and Σ the
lateral boundary. For a more comprehensive discussion of cylindrical domains and their
boundary we refer the reader to Section 1.3. The density ρ, the coefficient α and the
viscosity μ are assumed to be given. They may be constant or variable, both of which
cases are studied in subsequent chapters. In the constant case, we have ρ, α, μ 0.
In the variable case, we assume ρ W 2 Ω to be a time independent positive function
with positive inverse 1

ρ W 2 Ω and α BUC1 Ω , μ BUC Ω with infΩ α, infΩ μ 0.
Of course, assuming the coefficients constant is a special case of the coefficients being
variable. But we see later in the Chapters 2 and 3 that for proving maximal regularity of
these systems with variable coefficients we need the maximal regularity of these systems
with constant coefficients, which is why we distinguish the constant and variable case.
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Remark 1.12. (i) Regardless of whether the coefficients are assumed to be constant or
variable, it is sufficient to view the first equation of P J V as

tu μΔu f in J Ω,

since we can replace μ by μ̃ 1
ρμ and f by f̃ 1

ρf .

(ii) Assuming ρ 0, μ 0 and α 0 to be constant, the analogous consideration as
in (i) is sufficient to simplify the momentum equation of S J V as follows

tu μΔu α∇q f in J Ω.

Additionally, it is sufficient to rewrite the divergence equation of S J V as

div u g in J Ω,

since we can replace g by g̃ 1
ρg.

Now, we introduce the boundary operators BV with parameter V R, ND, S . After
that, we deal with the necessary regularity condition of the systems P J V and S J V ,
and finally we study their compatibility conditions.

Boundary Conditions

In the study of parabolic problems P J V and the Stokes equations S J V , the parabolic
problem with Robin boundary condition and the Stokes equations with free slip boundary
conditions are of special interest to us. They are particularly useful when solving problems
of physics. We see this later when examining a model which describes the dynamics of
tropical storms in Chapter 4. We study the parabolic system with Neumann-Dirichlet,
with perfect slip and with free slip boundary conditions in Chapter 2 and we study the
Stokes equations with perfect slip and with free slip boundary conditions in Chapter 3.
We do not study the Stokes equations with Robin and Neumann-Dirichlet boundary
conditions in this thesis. Therefore, the Robin and the Neumann-Dirichlet boundary
operator, which are defined in the following paragraph, depend on the velocity u only.
Moreover, the Neumann-Dirichlet, the perfect slip and the free slip boundary operators
contain a boundary condition in normal as well as in tangential direction. The Robin
boundary operator is denoted by

BR u : βu
νu σuu on J Γ,

the Neumann-Dirichlet boundary operator is denoted by

BND u h on J Γ :
u ν h ν on J Γ,

δ νPΓu PΓh on J Γ,

with δ 0, the perfect slip boundary operator is denoted by

BS u : BS u, q h on J Γ :
u ν h ν on J Γ,

βuPΓD u ν PΓν on J Γ,

and the free slip boundary operator is denoted by

BS u : BS u, q h on J Γ : u ν h ν on J Γ,
βuPΓD u ν PΓh on J Γ.
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The coefficients βu and σu of the boundary are also assumed to be either constant with
βu 0, σu 0 or variable, more precisely

βu BC1 J Γ, 0, with inf
Γ

βu 0,

and

σu BC2 J Γ, 0, .

Since Γ Γtop
. Γbot

. Σ, the boundary operators on Γ are considered separately on each
part Γtop, Σ, Γbot of the boundary Γ. For example the perfect slip boundary operator

BS u h on J Γ,

applied to a vector field u is a shorthand notation for the system

u νΓtop h νΓtop , βuPΓtopD u νΓtop PΓtoph on J Γtop,

u νΣ h νΣ, βuPΓΣD u νΣ PΣh on J Σ,

u νΓbot h νΓbot , βuPΓbotD u νΓbot PΓboth on J Γbot.

Remark 1.13. When applying BS to P J S or S J S it is sufficient to consider the
tangential boundary condition as

PΓD u ν PΓh on J Γ,

since we can replace h by h̃ 1
βu h, regardless of whether βu is assumed to be constant

or variable.

Necessary Regularity Conditions

To establish an Lp-theory for P J V and S J V , V R, ND, S it is particularly
important to show maximal regularity of these systems of equations. The concept of
maximal regularity, which was introduced in Section 1.2, essentially depends on the
function spaces in which the equations are considered. Therefore, it is essential to detect
the necessary and sufficient regularity conditions for our problems in order to find unique
solutions to them. In order to find them, we proceed similarly to Köhne in [32, Chapter
3.1]. That is, we consider the first equation of P J V and the momentum equation of
S J V in the base space Lp J Ω n. Thus, we require

f F
f
p J : Lp J Ω n.

Later, we see that the Stokes equations S J V can be reduced to the parabolic problems
P J V . A unique solution of P J V and S J V should satisfy

u E
u
p J : H1

p J, Lp Ω n Lp J, H2
p Ω n,

for V ND, S , and

u E
z
p J : H1

p J, Lp Ω Lp J, H2
p Ω ,

for V R. In order to obtain a solution to S J V we not only need the velocity u, but
also the pressure q. For a unique solution of the Stokes equations the latter should satisfy

∇q Lp J Ω n.
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Since the momentum equation of S J V only implies regularity for the gradient of the
pressure, we additionally need to require

q Lp J, H1
p Ω .

By considering the boundary operators BV , V ND, S , which do not contain the
pressure, we conclude that a solution of the pressure for the Stokes equations is only
unique up to a constant. Hence, we may fix a particular pressure q by requiring q Ω 0
for its mean value. Since Ω is a bounded domain consisting of a bounded C3-domain A
and an interval a, a , we can use the Poincaré inequality and obtain

q q Ω Lp Ω C ∇q Lp Ω q H1
p Ω , p H1

p Ω ,

for some constant C 0 that is independent of q Lp Ω . Thus, we require

q E
q
p J : p Lp J, H1

p Ω : p Ω 0

for the pressure in S J V .

In the next step, we would like to investigate the divergence equation of S J V , in
particular the regularity of the function g. To derive the necessary regularity conditions
for g we use the Mixed Derivative Theorem, which goes back to the work of Sobolevskii
[53]. Following the proof of e. g. Köhne [32, Proposition 3.9], we obtain the following
result, since the Laplacian fulfils the necessary properties of the proof also on cylindrical
domains.

Proposition 1.14. Let A R
n 1 be a bounded C3 domain, a 0 and Ω A a, a

be a cylindrical domain with Γ Γtop
. Γbot

. Σ as the smooth part of the boundary of Ω.
Let T 0, 1 p , τ 0, 1 and σ 0, 2 . Then the embeddings

Hτ
p 0, T , Lp Ω Lp 0, T, Hσ

p Ω H 1 θ τ
p 0, T , Hθσ

p Ω , θ 0, 1

are valid.

We obtain

E
u
p J H1 2

p J, H1
p Ω n,

by applying Proposition 1.14 to E
u
p J and using the regularity of the cylindrical domain

Ω. This implies

g F
g
p J : H1 2

p J, Lp Ω Lp J, H1
p Ω .

To analyse the boundary operators BV for V R, ND, S in more detail, we need a
result about traces, which can be proven using the work of Denk, Hieber and Prüss [15].

Proposition 1.15. Let A R
n 1 be a bounded C3 domain, a 0 and Ω A a, a

be a cylindrical domain with Γ Γtop
. Γbot

. Σ as the smooth part of the boundary of Ω.
Let 1 p . Then for Λ Γtop, Σ, Γbot the following assertions are valid.

(i) The trace operator

γΛ : H1
p J, Lp Ω Lp J, H2

p Ω W 1 1 2p
p J, Lp Λ Lp J, W 2 1 p

p Λ

is bounded.
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1 Preliminaries

(ii) The trace operator

γΛ : H1 2
p J, Lp Ω Lp J, H1

p Ω W 1 2 1 2p
p J, Lp Λ Lp J, W 1 1 p

p Λ

is bounded.

Proof. (i) We prove this assertion for Λ Γtop. According to [4, Theorem 5.28] we can
extend u H1

p J, Lp Ω Lp J, H2
p Ω to ũ H1

p J, Lp R
n Lp J, H2

p R
n . The

trace operator

γ : H1
p J, Lp R

n Lp J, H2
p R

n W 1 1 2p
p J, Lp H Lp J, W 2 1 p

p H ,

with H R
n 1 a is bounded according to [15]. Then, we have that

γΓtop : H1
p J, Lp Ω Lp J, H2

p Ω W 1 1 2p
p J, Lp Γtop Lp J, W 2 1 p

p Γtop ,

with

γΓtop u γ ũ Γtop

is bounded. The cases Λ Σ, Γbot can be proven analogously by setting H A
, for Λ Σ and H R

n 1 a for Λ Γbot.
(ii) This assertion can be obtained similar to (i), since

γ : H1 2
p J, Lp R

n Lp J, H1
p R

n W 1 2 1 2p
p J, Lp H Lp J, W 1 1 p

p H

is bounded according to [15].

Now, combining Proposition 1.14 and 1.15 we obtain for each part Γtop, ΓΣ, Γbot of the
boundary Γ that

γΛ v W
1 1 2p
p J, Lp Λ n Lp J, W

2 1 p
p Λ n,

νv, γΛ kv W
1 2 1 2p
p J, Lp Λ n Lp J, W

1 1 p
p Λ n, Λ Γtop, Σ, Γbot ,

for all v E
u
p J and all j 1, . . . , n , where γΛ is the corresponding trace on the

boundary Λ. Thus, if u E
u
p J , we have

BR u F
R,h
p J with

F
R,h
p J : h : Γ R

n : h Γtop : htop
F

R,Γtop
p J ,

h Σ : hΣ
F

R,Σ
p J , h Γbot : hbot

F
R,Γbot
p and

F
R,Λ
p J : W 1 2 1 2p

p J, Lp Λ n Lp J, W 1 1 p
p Λ n, Λ Γtop, Σ, Γbot ,

for the Robin boundary operator,

PΓBND u T
h
p J with

T
h
p J : h : Γ R

n : h Γtop : htop
T

Γtop
p J ,

h Σ : hΣ
T

Σ
p J , h Γbot : hbot

T
Γbot
p J and

T
Λ
p J : W 1 2 1 2p

p J, Lp Λ n Lp J, W 1 1 p
p Λ n, Λ Γtop, Σ, Γbot

QΓBND
N

h
p J with

N
h
p J : h : Γ R

n : h Γtop : htop
N

Γtop
p J ,

h Σ : hΣ
N

Σ
p J , h Γbot : hbot

N
Γbot
p J and

N
Λ
p J : W 1 1 2p

p J, Lp Λ n Lp J, W 2 1 p
p Λ n,
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for the Neumann-Dirichlet boundary operator and

PΓBS u T
h
p J ,

QΓBS u N
h
p J ,

for the perfect slip and free slip boundary operators. The norm of FΛ
p J is defined as

h FΛ
p J PΛh p

W
1 2 1 2p
p J,Lp Λ

PΛh p

Lp J,W
1 1 p
p Λ

h νΛ
p

W
1 1 2p
p J,Lp Λ

h νΛ
p

Lp J,W
2 1 p
p Λ

1 p
, h F

Λ
p J ,

and the norm of Fh
p J is defined as

h Fh
p J : h Γtop

p

F
Γtop
p

h Σ
p
FΣ

p
h Γbot

p

F
Γbot
p

1 p

, h F
h
p J .

Then the regularity class for the data h on the boundary of system P J R is given by

h F
R,h
p J ,

and the regularity class for the data h on the boundary of the systems P J NV , P J S ,
S J NV and S J S is given by

h F
h
p J : h T

h
p J : h ν N

h
p J .

Finally, we consider the initial equation of P J V and S J V , V R, ND, S ,
with initial data u0. Thanks to Proposition 1.14 and Sobolev’s embedding theorem, the
embedding

E
u
p J BUC J, W 2 2 p

p Ω n

is valid. Thus we obtain

u0 F
0
p : W 2 2 p

p Ω n.

Necessary Compatibility Conditions

Additionally to the regularity conditions, the data with respect to the systems P J V and
S J V , V R, ND, S , has to fulfil certain compatibility conditions. With the aid

of compatibility conditions, we may assume that the different pairs of data, f, g, h, u0
for S J V and f, h, u0 for P J V , are compatible with each other. We assume the
solutions and data that follows to be in the function spaces that were identified in the
paragraph above. First of all, the condition

div u0 g 0 if p 2 (C1)

is necessary, i. e. the data g of the divergence equation has to be compatible with the
initial data u0. Furthermore, there is a hidden compatibility condition, which arises from
the divergence condition and the normal boundary condition. We set 0H 1

p Ω : H1
p Ω

with 1
p

1
p 1 and define the linear functional

F : Fg
p N

h
p Lp J, 0H 1

p Ω
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for ψ F
g
p and η N

h
p through

φ F ψ, η
Γ

φη dσ
Ω

φψ dx, φ H1
p Ω .

Integration by parts leads to

φ F div u , u ν
Ω

∇φ u dx, φ H1
p Ω ,

from which we can infer

φ F div u , u ν Lp J u Eu
p J φ H1

p
Ω , φ H1

p Ω ,

and

φ tF div u , u ν Lp J u Eu
p J φ H1

p
Ω , φ H1

p Ω .

Since Ω is bounded and Ω is continuous, the function spaces H1
p Ω and H1

p Ω
are algebraically the same. Therefore, the relation 0H 1

p Ω H1
p Ω implies the

compatibility condition

F g, h ν H1
p J, 0H 1

p Ω . (C2)

Moreover, the data h on the boundary has to be compatible with the initial data
u0. Since the boundary operators BV have different boundary conditions for every
V R, ND, S , different compatibility conditions arise for h and u0 with respect to
each boundary operator. However, the perfect slip and the free slip boundary operators
only differ up to a sign, which is why we consider the compatibility conditions of these two
operators at the same time. Because of Remark 1.13, we consider the tangential boundary
condition of BS without the coefficient βu. Likewise, we also consider the compatibility
condition with respect to the boundary operators BS without the coefficient βu. Then,
we have the compatibility condition

βu
νu0 σuu0 h 0 if p 3 C3 R

with respect to the Robin boundary operator. We require

u0 ν h 0 ν if p 3
2 ,

δ νPΓ u0 PΓh 0 if p 3,
C3 ND

with respect to the Neumann-Dirichlet boundary operator, and

u0 ν h 0 ν if p 3
2 ,

PΓD u0 ν PΓh 0 in p 3,
C3 S

with respect to the perfect slip and free slip boundary operator.
Lastly, there are compatibility conditions for h which arise from the boundary conditions
on the edges of Ω. We would like to remind the reader that we denote the data h on
Γtop by htop, on Σ by hΣ, and on Γbot by hbot. Since the boundary Γ is composed out
of mutually disjoint parts Γtop, Σ and Γbot, we have to put special emphasis to make
sure that the continuations of h on these distinct boundary parts are compatible on the
respective connecting edges. That means, we have to show that htop is compatible with
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hΣ on the connecting edge of the top and the lateral boundary of the cylindrical domain,
and that hbot is compatible with hΣ on the connecting edge of the bottom and the lateral
boundary of the cylindrical domain. These kind of compatibility conditions only arise
with respect to the Neumann-Dirichlet boundary operator and with respect to the perfect
slip and free slip boundary operators, because they have different conditions for the
tangential and normal part of the boundary. First, we consider the Neumann-Dirichlet
boundary conditions, followed by the perfect slip/free slip boundary conditions.
Neumann-Dirichlet: We proceed in two steps. In the first step we study the compatibility
of the data htop with hΣ on the connecting edge of the top and the lateral boundary
of the cylindrical domain Ω. In the second step we consider the compatibility of the
data hbot with hΣ on the connecting edge of the bottom and the lateral boundary of Ω,
which we obtain analogously to the one of the top edge. For the top of Ω and the lateral
boundary we have

htop νΓtop Rtop u νΓtop Rtop , (1.4.1)
hΣ νΣ Rtop u νΣ Rtop , (1.4.2)

δ νΓtop
PΓtopu νΣ Rtop PΓtophtop νΣ Rtop , (1.4.3)

δ νΣPΣu νΓtop Rtop PΣhΣ νΓtop Rtop , (1.4.4)

if p 2. Here, Rtop denotes the trace on the edge Rtop of the cylinder Ω. Considering
the left-hand side of (1.4.3), a straightforward calculation shows

δ νΓtop
PΓtopu νΣ Rtop δPΓtop νΓtop

u νΣ Rtop

δPΓtop ∇u T νΓtop νΣ Rtop

δ νΓtop ∇uPΓtop νΣ Rtop

δ νΓtop ∇u νΣ Rtop

δ ∇u T νΓtop νΣ Rtop

δ νΓtop
u νΣ Rtop

δ νΓtop
u νΣ u νΓtop

νΣ Rtop

δ νΓtop
hΣ νΣ Rtop

δ νΓtop
hΣ νΣ hΣ

νΓtop
νΣ Rtop

δ νΓtop
hΣ νΣ Rtop

where we used (1.4.2) and the fact that νΓtop
PΓtop PΓtop νΓtop

, PΓtopνΣ νΣ, νΓtop
νΣ

0, νΣνΓtop 0 on Rtop. Considering the left-hand side of (1.4.4), we similarly deduce

δ νΣPΣu νΓtop Rtop δ νΣhtop νΓtop Rtop

again by using (1.4.1) and the fact that νΣPΣ PΣ νΣ , PΣνΓtop νΓtop , νΓtop
νΣ 0,

νΣνΓtop 0 on Rtop. From the right-hand side of (1.4.3) we obtain

PΓtophtop νΣ Rtop htop PΓtopνΣ Rtop htop νΣ Rtop

and analogously from the right-hand side of (1.4.4) we get

PΣhΣ νΓtop Rtop hΣ νΓtop Rtop .
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Combining these results, we derive the compatibility conditions

δ νΓtop
hΣ Rtop νΣ hΓtop Rtop νΣ if p 2,

δ νΣhtop Rtop νΓtop hΣ Rtop νΓtop if p 2,
C4 ND

for the data h on the connecting edge of top and lateral boundary of Ω. Here, νΛ νΛ Rtop

and νΛ νΛ Rbot , Λ Γtop, Γbot, Σ , represent the extension of νΛ to the boundary of
the edges Rtop and Rbot, respectively. Analogously we obtain

δ νΓbot
hΣ Rbot νΣ hΓbot Rbot νΣ if p 2,

δ νΣhbot Rbot νΓbot hΣ Rbot νΓbot if p 2,
C5 ND

for the compatibility of the data h on the connecting edge of bottom and lateral boundary
of Ω.
Perfect slip/free slip: As above, we proceed in two steps. First, we study the compatibility
of the data htop with hΣ on the connecting edge of the top and the lateral boundary of
the cylindrical domain Ω, and then infer the compatibility of the data hbot with hΣ on
the connecting edge of bottom and lateral boundary. For the top of Ω and the lateral
boundary we have

htop νΓtop Rtop u νΓtop Rtop , (1.4.5)
hΣ νΣ Rtop u νΣ Rtop , (1.4.6)

PΓtopD u νΓtop νΣ Rtop PΓtophtop νΣ Rtop , (1.4.7)
PΣD u νΣ νΓtop Rtop PΣhΣ νΓtop Rtop , (1.4.8)

if p 2. Again, Rtop denotes the trace on the edge Rtop of the cylinder Ω. A
straightforward calculation shows that we may rewrite the left-hand side of (1.4.7) like

PΓtopD u νΓtop νΣ Rtop 1
2 νΓtop

u νΣ Rtop 1
2 νΣu νΓtop Rtop

1
2 νΓtop

hΣ νΣ Rtop 1
2 νΣhtop νΓtop Rtop

where we used (1.4.5), (1.4.6) and the fact that PΓtopνΣ νΣ, νΓtop
νΣ 0, νΣνΓtop 0

on Rtop. Considering the left-hand side of (1.4.8), we similarly arrive at

PΣD u νΣ νΓtop Rtop 1
2 νΓtop

hΣ νΣ Rtop 1
2 νΣhtop νΓtop Rtop ,

where again we used (1.4.5), (1.4.6) and the fact that PΣνΓtop νΓtop , νΓtop
νΣ 0,

νΣνΓtop 0 on Rtop. Moreover, from the right-hand side of (1.4.7) we see that

PΓtophtop νΣ Rtop htop PΓtopνΣ Rtop htop νΣ Rtop

and analogously from the right-hand side of (1.4.8) that

PΣhΣ νΓtop Rtop hΣ νΓtop Rtop .

Combining these results, we finally arrive at the compatibility conditions

hΣ Rtop νΓtop htop Rtop νΣ if p 2,
1
2 νΓtop

hΣ Rtop νΣ
1
2 νΣhtop Rtop νΓtop htop Rtop νΣ if p 2,

C4 S
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for the data h on the connecting edge of top and lateral boundary of Ω. Again νΛ
νΛ Rtop and νΛ νΛ Rbot , Λ Γtop, Γbot, Σ , represent the extension of νΛ to the

boundary of the edges Rtop and Rbot, respectively. Analogously we obtain

hΣ Rbot νΓbot hbot Rbot νΣ if p 2,
1
2 νΓbot

hΣ Rbot νΣ
1
2 νΣhbot Rbot νΓbot hbot Rbot νΣ if p 2,

C5 S

for the compatibility of the data h on the connecting edge of bottom and lateral boundary
of Ω.

1.5 Trace Maps
This section is dedicated to the trace operators with respect to the boundary conditions
defined in Section 1.4. That is, such a trace operator map a vector field to one of the
boundary conditions defined in Section 1.4 with respect to all parts Γtop, Σ, Γbot of the
boundary Γ. For example,

γ : Eu
p J F̃

h
p J

c c Γtop ν ν PΓD c Γtopν,

c Σ ν ν PΓD c Σν,

c Γbot ν ν PΓD c Γbotν

is the trace operator with respect to the perfect slip boundary operator BS . Here the
data space is defined as

F̃
h
p J : htop, hΣ, hbot

F
Γtop
p J F

Σ
p J F

Γbot
p J :

htop and hΣ fulfil C4 S ; hbot and hΣ fulfil C5 S .

In particular, we would like to prove that the trace operators with respect to the boundary
conditions are retractions. However, for the trace operator with respect to the Robin
boundary operator BR it is not necessary to prove that it is a retraction. This trace is
used exclusively in the context of the parabolic problem with Robin boundary conditions
P J R in Section 2.2, and there we are able to rely on a result about the trace operator

with respect to Neumann boundary conditions and a perturbation argument. That
the Neumann trace operator is a retraction on a three-dimensional cylindrical domain
Ω : A a, a R

3 has already been proven by Bothe, Köhne, Maier and Saal in [12,
Lemma 3.4]. In Proposition 1.21 we proceed similarly to proof of this lemma in order
to prove that the trace operator with respect to perfect slip boundary conditions is a
linear retraction on n-dimensional cylindrical domains Ω R

n. Accordingly, the result of
Bothe, Köhne, Maier and Saal can also be proved for n-dimensional cylindrical domains
Ω R

n and we obtain the following lemma.

Lemma 1.16. Let A R
n 1 be a bounded C3-domain, a 0 and Ω A a, a be a

cylindrical domain with Γ Γtop
. Γbot

. Σ as the smooth part of the boundary of Ω. Let
1 p with p 3 and let J 0, T with T 0. Let also

K̃
h
p J : htop, hΣ, hbot

F
R,Γtop
p J F

R,Σ
p J F

R,Γbot
p J .

Then the Neumann trace operator

γ : Ez
p J K̃

h
p J

c νc Γtop , νc Σ, νc Γbot

is a linear retraction.
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Remark 1.17. With the same assumptions as in Lemma 1.16 and the same argument as
in [12, Lemma 3.4], one can also show that the trace operator

ν : W 3
p Ω W 2 1 p

p Γ

is a continuous linear retraction.
The trace operators with respect to the Neumann-Dirichlet, the perfect slip and the
free slip boundary conditions are more complicated to work with, since their boundary
conditions differ in the tangential and in the normal direction. For these trace operators,
we must pay particular attention to the geometry of the cylindrical domain Ω and its
boundary Γ. We show exemplarily that the trace operator with respect to the perfect
slip boundary operator is a retraction. The proof of the retraction property of the trace
operators with respect to the Neumann-Dirichlet and the free slip boundary operators
are simpler versions of this proof and we omit them in this thesis. To show that the
trace operator with respect to the perfect slip boundary operator is a retraction, we must
first prove two lemmas. The first lemma gives us the boundedness of a trace map on a
hyper-surface.

Lemma 1.18. Let c 0 and let D : R
n 1 c be a affine hyper-surface. Assume

J 0, T and 1 p . Then the following assertions are valid.

(i) The trace map

γ : W 1 1 2p
p J, Lp D Lp J, W 2 1 p

p D W 2 3 p
p D (1.5.1)

is bounded for p 3
2 .

(ii) The trace map

γ : W 1 2 1 2p
p J, Lp D Lp J, W 1 1 p

p D W 1 3 p
p D (1.5.2)

is bounded for p 3.

Proof. Due to [8, Theorem 3.8.1], we can identify

W 1 1 2p
p J, Lp D Lp J, W 2 1 p

p D B2 1 p, 2,1
p,p J D

and

W 1 2 1 2p
p J, Lp D Lp J, W 1 1 p

p D B1 1 p, 2,1
p,p J D ,

as 1 1
2p , 2 1

p , 1
2

1
2p , 1 1

p N0 are non-integer numbers for 1 p . Here, B
s, ω1,ω2
p,p

denotes an anisotropic Besov space, see page 14 in Section 1.1. From [8, Theorem 4.5.2]
we obtain that the trace maps

γ : B2 1 p, 2,1
p,p J D B2 1 p 2 p, 1

p,p D B2 3 p
p,p D

and

γ : B1 1 p, 2,1
p,p J D B1 1 p 2 p, 1

p,p D B1 3 p
p,p D .

are bounded. Together with the identities

B2 3 p
p,p D W 2 3 p

p D , B1 3 p
p,p D W 1 3 p

p D

for p 3
2 and p 3, respectively, the assertion follows.
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Remark 1.19. Lemma 1.18 is also applicable for D as the boundary of a bounded
C3 -domain. This case can be proven by localisation.
The second lemma gives us the surjectivity of the trace operator with respect to the
perfect slip and free slip boundary operators on a Ck,λ-domain with compact boundary,
i. e. not yet on a cylindrical domain.

Lemma 1.20. Let k 2, λ 0 and let A be a Ck,λ- domain with compact boundary A.
Suppose that 1 p and 1 1

p s k λ 1
p . Moreover, let D c : 1

2 ∇c ∇c T

and

F
c : z W s 1 1 p

p A n : z ν W s 1 p
p A .

Then the trace operator

γ : W s
p A F

c

c P AD c ν c ν ν

is a surjective. In case s 1
p is not an integer there exists a bounded, linear right inverse

of γ.

Proof. Let g, h W
s 1 1 p
p A n W

s 1 p
p A n. We prove the existence of a c

W s
p A n, which satisfies the following system

P AD c ν P Ag on A,

P Ac P Ah on A,

c ν h ν on A.

(1.5.3)

Consider

P AD c ν 1
2P A ∇c ∇c T ν
1
2P A νc 1

2P A ∇c ν
1
2P A νc 1

2P A ∇ν c ∇ c ν
1
2P A νc 1

2P A ∇ν c 1
2∇ A c ν

1
2P A νc 1

2 ∇ Aν c 1
2∇ A h ν ,

with ∇ A being the gradient on the boundary. The last equation is valid if and only if
c ν h ν on the boundary. Then (1.5.3) is equivalent to

P A νc 2P Ag ∇ Aν c ∇ A h ν on A,

P Ac P Ah on A,

c ν h ν on A.

The relation ∇ Aν c ∇ Aν h is valid, since c h on A. The vector ∇ Aν c
is tangential on the boundary. Note that ∇ A h ν is tangential on A, too. As a
consequence, g̃ ν 0 for

W 1 3 p
p A g̃ : 2P Ag ∇ Aν c ∇ A h ν .

We can then rewrite (1.5.3) as

P A νc P Ag̃ on A,

P Ac P Ah on A,

c ν h ν on A.

(1.5.4)

33



1 Preliminaries

According to [37, Theorem 2] the trace

νc g̃ on A,

c h on A,

is surjective and has, in case s 1
p is not an integer, a bounded linear right inverse.

Therefore (1.5.4) and thus (1.5.3) are also surjective and have a bounded linear right
inverse, for the above case. By choosing g : P A P AD c ν c ν ν P Az and
h : P AD c ν c ν ν ν ν z ν ν for a given z F

c we have shown the
assertion.

With the help of these two lemmas we can now go on to prove the retraction property of
the trace operator with respect to the perfect slip boundary operator on a cylindrical
domain.

Proposition 1.21. Let 1 p with p 3
2 , p 2, p 3, D u 1

2 ∇u ∇u T

and J 0, T . Assume A R
n 1 to be a bounded C3-domain, a 0 and Ω : A a, a

a cylindrical domain with boundary Γ. Let also

F̃
h
p J : htop, hΣ, hbot

F
Γtop
p J F

Σ
p J F

Γbot
p J :

htop and hΣ fulfil C4 S ; hbot and hΣ fulfil C5 S .

Then the trace operator

γ : Eu
p J F̃

h
p J

c c Γtop ν ν PΓD c Γtopν,

c Σ ν ν PΓD c Σν,

c Γbot ν ν PΓD c Γbotν

is a bounded linear retraction.

Proof. This proof is to some extend similar to the proof of [12, Lemma 3.4], where a
different trace map was considered. Let htop, hΣ, hbot

F̃
h
p J . We prove the existence

of a vector field c E
u
p J , which satisfies the system

c νΓtop htop νΓtop on J Γtop,

PΓtopD c νΓtop PΓtophtop on J Γtop,

c νΣ hΣ νΣ on J Σ,

PΣD c νΣ PΣhΣ on J Σ,

c νΓbot hbot νΓbot on J Γbot,

PΓbotD c νΓbot PΓboth
bot on J Γbot.

(1.5.5)

For that purpose we split (1.5.5) into the two systems

v νΓtop htop νΓtop on J Γtop,

PΓtopD v νΓtop PΓtophtop on J Γtop,

v νΓbot hbot νΓbot on J Γbot,

PΓbotD v νΓbot PΓboth
bot on J Γbot,

(1.5.6)
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and
z νΓtop 0 on J Γtop,

PΓtopD z νΓtop 0 on J Γtop,

z νΣ hΣ v νΣ on J Σ,

PΣD z νΣ PΣ hΣ D v νΣ on J Σ,

z νΓbot 0 on J Γbot,

PΓbotD z νΓbot 0 on J Γbot,

(1.5.7)

with c v z. We proceed in two steps.

Step 1. To prove the existence of a solution to system (1.5.6), we are using maximal
regularity of the Stokes equations with boundary conditions, which correspond to the first
two lines of (1.5.6), on a lower half-space and maximal regularity of the Stokes equations
with boundary conditions, which correspond to the last two lines of (1.5.6), on an upper
half-space. By adding the two resulting solutions and multiplying them with appropriate
cut-off functions, we obtain a solution of (1.5.6). The main issue here is to extend htop

and hbot to a lower and upper half-space, respectively. Moreover we have to define data
that accomplishes the appropriate compatibility conditions of such Stokes equations.
We work with the boundaries Γtop A a , Γbot A a and the outer normals
νΓtop en on Γtop, νΓbot en on Γbot. Define the half-spaces

Ha : R
n 1 , a , H a : R

n 1 a, .

Then, we have Γtop Ha and Γbot H a. There is an extension of htop to

h̃top
F

Ha
p J : h W 1 2 1 2p

p J, Lp Ha
n Lp J, W 1 1 p

p Ha
n :

h ν W 1 1 2p
p J, Lp Ha Lp J, W 2 1 p

p Ha

and of hbot to

h̃bot
F

H a
p J : h W 1 2 1 2p

p J, Lp H a
n Lp J, W 1 1 p

p H a
n :

h ν W 1 1 2p
p J, Lp H a Lp J, W 2 1 p

p H a ,

using [4, Theorem 4.26].
Next, we have to define appropriate data that accomplish the compatibility conditions of
the Stokes equations with perfect slip boundary conditions on Ha and H a, respectively.
We do this exemplarily for h̃top and the Stokes equations on Ha. The case of h̃bot and
H a is analogous. From Lemma 1.18, we obtain

h̃top 0 ν W 2 3 p
p Ha ,

and

PΓh̃top 0 W 1 3 p
p Ha .

To get an appropriate initial value ṽtop
0 for the Stokes equations, we choose ṽtop

0
ūtop

0 , w̄top
0 0, 0 W

2 2 p
p Ha

n in the case of 1 p 3
2 . In case of 3

2 p 3 we
again choose ūtop

0 0 W
2 2 p
p Ha

n 1, but we choose w̄top
0 W

2 2 p
p Ha

1, such that
w̄top

0 Ha h̃top
w 0 . Since Ha : W

2 2 p
p Ha W

2 3 p
p Ha is surjective, cf. [37,
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Theorem 2], such a w̄top
0 exists. Finally, in case p 3 we choose the variable w̄top

0 as in
the case before and ūtop

0 W
2 2 p
p Ha

n 1, such that

1
2 ν ūtop

0 h̃top
u 0

1
2

∇Γh̃top
w 0 .

Such a ūtop
0 exists, because ν : W

2 2 p
p Ha W

1 3 p
p Ha is surjective, due to [37,

Theorem 2]. We use the notation ∇Γ : 1, 2, , n 1
T and h̃top h̃top

u , h̃top
w , where

h̃top
u is the tangential and h̃top

w is the normal part of h̃top. By choosing ṽtop
0 as described

above, it satisfies

ṽtop
0 νΓtop h̃top 0 νΓtop on Ha if p 3

2 ,

PΓtopD ṽtop
0 νΓtop PΓtop h̃top 0 on Ha if p 3.

Now, it is left to define a g̃top that satisfies

div ṽtop
0 g̃top 0

F g̃top, h̃top νΓtop H1
p J, H1

p Ha , ∇ p .

For this, consider the system

tϕ̃ μΔϕ̃ 0 in J Ha,

ϕu Ha ψ on J Ha,

ϕw Ha h̃top
w on J Ha,

tψ μΔΓψ 0 in J Ha,

ψ 0 ūtop
0 Ha in Ha,

ϕ̃ 0 ṽtop
0 in Ha,

with ΔΓ : n 1
k 1

2
k and ϕ̃ ϕ̃u, ϕ̃w , where ϕ̃u is the tangential and ϕ̃w is the normal

part of ϕ̃. The system has a unique solution ϕ̃ W 1
p J, Lp Ha

n Lp J, W 2
p Ha

n, cf.
[18, Theorem 2.1]. Define g̃top : div ϕ̃ , then the equations

tv
top μΔvtop ∇ptop 0 in J Ha,

div vtop g̃top in J Ha,

vtop νΓtop h̃top νΓtop on J Ha,

PΓtopD vtop PΓtop h̃top on J Ha,

vtop 0 ṽtop
0 in Ha,

are well-posed and the compatibility conditions (C1), (C2), C3 S are satisfied by
construction. These are the Stokes equations we were looking for. Due to [32, Corollary
5.6], we obtain a unique solution

vtop H1
p J, Lp Ha

n Lp J, H2
p Ha

n, ptop Lp J, H1
p Ha .

In the case of the bottom of our cylindrical domain we proceed analogously and obtain a
unique solution

vbot H1
p J, Lp H a

n Lp J, H2
p H a

n, pbot Lp J, H1
p H a
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for the system

tv
bot μΔvbot ∇pbot 0 in J H a,

div vbot g̃bot in J H a,

vbot νΓbot h̃bot νΓbot on J H a,

PΓbotD vbot PΓbot h̃
bot on J H a,

vbot 0 ṽbot
0 in H a.

Let the cut-off function ζ C R
n, 0, 1 be defined like

ζ x
0, if xn , a 3 ,

1, if xn a 3, .
(1.5.8)

Then the convex-combination

v ζvtop
Ω 1 ζ vbot

Ω E
u
p J

fulfils the boundary conditions on bottom and top of Ω by construction.

Step 2. It remains to be shown that a vector field z E
u
p J exists in such a way that

system (1.5.7) is valid. For that we extend and reflect the cylindrical domain Ω to obtain
smooth C3 domains G and G . As in the previous step we try to find solutions ẑ and
ẑ for Stokes equations on G or G with boundary conditions

ẑ νΣ h̃Σ νΣ,

PΣD ẑ νΣ PΣh̃Σ

that also fulfil ẑ νΓtop and PΓtopD ẑ νΓtop 0 for ẑ on Γtop and for ẑ on Γbot,
respectively. Then we add up these solutions with appropriate cut-off functions to obtain
the solution of (1.5.7). The crucial step is the compatibility between lines (1)–(4) and lines
(3)–(6) of system (1.5.7). That means that h̃top 0 and h̃Σ with h̃Σ νΣ hΣ v νΣ
on Σ and PΣh̃Σ PΣ hΣ D v νΣ on Σ have to satisfy C4 S and h̃bot 0 and
h̃Σ have to satisfy C5 S . Moreover, we need an appropriate extension and reflection
for the domain Ω to G and G and also of h̃Σ from Ω to G and G . Additionally
we need appropriate data, such that the compatibility conditions of Stokes equations
on G and G are satisfied, respectively. We start to extend the equations (1.5.7) to a
bounded C3-domain. In order to do so, we define Ω a as the domain that results from
extending Ω in a bounded and smooth (at least in the C3-sense) way on the top. We
set Σ a : Ω a Γ̄bot. In the same manner we define Ω a and Σ a as the appropriate
extension of Ω on the bottom. Next, let G denote the domains resulting from reflecting
Ω a at a and set Γ : G . For example, if n 3 and the cross-section A of Ω is a
circle, we connect a smooth cap to Ω at Γtop to obtain Ω a, and we connect a smooth cap
to Ω at Γbot to obtain Ω a. Therefore, the domains G have both the form of a “pill”,
as shown in Figure 1.1. Following this strategy, we can always find a suitable extension,
such that G is of class C3.
Next, we show that h̃top and h̃Σ satisfy the compatibility conditions C4 S and extend
h̃Σ to G . The case of h̃bot, h̃Σ and G is analogous. Let ζ C R

n, 0, 1 be a cut-off
function satisfying (1.5.8). We have that htop and hΣ fulfil C4 S , the compatibility
conditions are linear and ζv satisfies

ζv νΓtop htop 0 νΓtop on Γtop,

PΓtopD ζv νΓtop PΓtophtop 0 on Γtop, .
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a

a

3a

3a

Ω

Ω aΩ a

G

G

x2

x3

x1

Figure 1.1: Extension of Ω for n 3 and a circular cross-section A of Ω

From this, we obtain that h̃top and ζh̃Σ satisfy C4 S . Now, we extend ζh̃Σ by zero to
a function

h̃Σ
F

Σ a
p J : h W 1 2 1 2p

p J, Lp Σ a
n Lp J, W 1 1 p Σ a

n :

h ν W 1 1 2p
p J, Lp Σ a Lp J, W 2 1 p

p Σ a ;
h and h̃top fulfil C4 S .

Then, we extend h̃Σ to Γ by an even reflection of h̃Σ
1,...,n 1 at point a to

ĥΣ
k t, x , xn :

h̃Σ
k t, x , xn , if xn a,

h̃Σ
k t, x , 2a xn , if xn a,

for k 1, . . . , n 1, x , xn Γ and t J , and by an odd reflection of h̃Σ
n at point

a to

ĥΣ
n t, x , xn :

h̃Σ
n t, x , xn , if xn a,

h̃Σ
n t, x , 2a xn , if xn a,

for x , xn Γ and t J . We obtain ĥΣ : Γ R
n and have to show that

ĥΣ
F

Γ
p J : h W 1 2 1 2p

p J, Lp Γ n Lp J, W 1 1 p Γ n :

h ν W 1 1 2p
p J, Lp Γ Lp J, W 2 1 p

p Γ ;
h and h̃top fulfil C4 S .

The outer normal vector ν̃Σ : Γ R
n on Γ is also defined by a reflection

ν̃Σ x , xn :
νΣ x , xn , if xn a,

νΣ x , 2a xn , if xn a,

for x , xn Γ . Note that ĥΣ
k W

1 2 1 2p
p J, Lp Γ Lp J, W

1 1 p
p Γ holds

true for k 1, . . . , n 1, because it was extended evenly. Moreover, we have that
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ĥΣ
n W

1 2 1 2p
p J, Lp Γ Lp J, W

1 1 p
p Γ , since

h̃Σ νΓtop h̃top νΣ 0 if p 2,

holds true. This can be seen from the first equation of the compatibility condition C4 S .
We also obtain that

ĥΣ ν̃Σ W 1 1 2p
p J, Lp Γ Lp J, W 2 1 p

p Γ ,

because of

xn h̃Σ νΣ Rtop νΓtop
h̃Σ νΣ Rtop 0 if p 2,

which holds true because of the second equation of the compatibility condition C4 S .
Consequently ĥΣ

F
Γ
p J .

In the forthcoming step, we have to find appropriate data that satisfy the necessary
compatibility conditions (C1), (C2), C3 S with respect to the Stokes equations on G
with perfect slip boundary conditions. From Remark 1.19 we obtain

ĥΣ 0 ν̃Σ W 2 3 p
p Γ , ĥΣ 0 W 1 3 p

p Γ .

For the initial data we choose ẑ0 W
2 2 p
p G , such that ẑ0 0 for 1 p 3

2 . For
the case 3

2 p 3 the initial data ẑ0 has to satisfy

ẑ0 ν̃Σ ĥΣ 0 ν̃Σ on Γ ,

PΣD ẑ0 ν̃Σ 0 on Γ .
(1.5.9)

Finally, for the case p 3, the initial data has to satisfy

ẑ0 ν̃Σ ĥΣ 0 ν̃Σ on Γ ,

PΣD ẑ0 ν̃Σ PΣĥΣ 0 on Γ .
(1.5.10)

We can find a unique ẑ0 solving (1.5.9) on account of [37, Theorem 2] and solving (1.5.10)
on account of Lemma 1.20. Note that in both cases ẑ0 is constructed using a bounded
linear right inverse to the trace map. Hence, ẑ0 k is even for k 1, . . . , n 1 and ẑ0 n

is odd. By choosing ẑ0 like this, it satisfies

ẑ0 ν̃Σ h̃Σ 0 ν̃Σ on Γ if p 3
2 ,

PΣD ẑ0 ν̃Σ PΣh̃Σ 0 on Γ if p 3.

Now, it is left to define a g̃ that accomplishes

div ẑ0 g̃ 0
F g̃ , h̃Σ ν̃Σ H1

p J, H1
p G , ∇ p .

For that, consider the system

tϕ̃ μΔϕ̃ 0 in J G ,

PΓϕ̃ Γ ψ on J Γ ,

ϕ̃ ν Γ ĥΣ ν̃Σ on J Γ ,

tψ μΔΓψ 0 on J Γ ,

ψ 0 PΓẑ0 Γ on Γ ,

ϕ̃ 0 ẑ0 in G ,

(1.5.11)
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which has a unique solution ϕ̃ W 1
p J, Lp G n Lp J, W 2

p G n, due to [18, Theorem
2.1]. Defining g̃ : div ϕ̃ , the equations

tẑ μΔẑ ∇p 0 in J G ,

div ẑ g̃ in J G ,

ẑ ν̃Σ ĥΣ ν̃Σ on J Γ ,

PΣD ẑ ν̃Σ PΣĥΣ on J Γ ,

ẑ 0 ẑ0 in G ,

become well-posed and satisfy the compatibility conditions (C1), (C2), C3 S by
construction. These are the Stokes equations we were looking for. Due to [32, Theorem
3.30] we obtain a unique solution

ẑ H1
p J, Lp G n Lp J, H2

p G n, p Lp J, H1
p G .

Defining

z̃ : ẑ Ω a
E

Ω a
p J ,

we have z̃ νΣ ζh̃Σ νΣ on Σ and PΣD z̃ ν PΣζh̃Σ on Σ. Since ĥΣ νΓtop ,
ẑ0 νΓtop are odd and PΓtop ĥΣ , PΓtop ẑ0 are even with respect to Γtop, we infer that
z̃ k is even for k 1, . . . , n 1 and z̃ n is odd. Therefore, we get z̃ νΓtop 0

and PΓtopD z̃ νΓtop 0 on Γtop. Analogously we proceed with Γbot. In this case we
extend 1 ζ h̃Σ to obtain

z̃ : ẑ Ω a
E

Ω a
p J

with z̃ νΣ 1 ζ h̃Σ νΣ on Σ, PΣD z̃ νΣ PΓ 1 ζ h̃Σ on Σ, z̃ νΓbot 0 on Γbot
and PΓbotD z̃ νΓbot 0 on Γbot. Let some cut-off functions ζ1, ζ2 C R

n, 0, 1
satisfy

ζ1 x
0, if xn , 2a 3
1, if xn a 2,

, ζ2 x
1, if xn , a 2
0, if xn 2a 3,

.

Then the sum

z ζ1z̃ Ω ζ2z̃ Ω E
u
p J

satisfies the equations of (1.5.7) on Γtop and Γbot by construction. It is only left to show
that it also satisfies the equations on Σ. To this end, we consider

z νΣ ζ1z̃ νΣ ζ2z̃ νΣ

ζ1ζh̃Σ νΣ ζ2 1 ζ h̃Σ νΣ

ζh̃Σ νΣ 1 ζ h̃Σ νΣ

h̃Σ νΣ hΣ v νΣ on J Σ
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and

PΣD z ν PΣD ζ1z̃ ν PΣD ζ2z̃ ν

ζ1 PΣD z̃ νΣ ζ2 PΣD z̃ νΣ

ζ1 z̃ νΣ en ζ2 z̃ νΣ en

ζ1 PΣζh̃Σ ζ2 PΣ 1 ζ h̃Σ

ζ1 ζh̃Σ νΣ en ζ2 1 ζ h̃Σ νΣ en

PΣζ1ζh̃Σ PΣζ2 1 ζ h̃Σ

PΣζh̃Σ PΣ 1 ζ h̃Σ

PΣh̃Σ PΣ hΣ D v on J Σ.

Defining c : v w E
u
p by combining step 1 and 2 of this proof, we obtain a solution of

system (1.5.5). Therefore, we have proven that there exists a bounded linear right-inverse
to γ for 1 p with p 3

2 , p 2, p 3, which implies that the trace operator
γ : Eu

p J F̃
h
p J is a linear retraction.

Remark 1.22. The system

tϕ̃ μΔϕ̃ 0 in J G ,

ϕ̃ ν ĥΣ ν on J Γ ,

PΓD ϕ̃ ν PΓĥΣ on J Γ ,

ϕ̃ 0 ẑ0 in G ,

does not satisfy the Lopatinskii-Shapiro conditions, see [46, p. 253] for a definition of
these conditions. In the proof of Proposition 1.21 we were therefore using the Stokes
equations instead of using a parabolic problem. Hence, we had to use the dynamic system
(1.5.11) to fulfil all necessary compatibility conditions.
Remark 1.23. Proposition 1.21 is also applicable to bounded C3-domains and to bent half
spaces. This cases may be proven analogously to the proof of Proposition 1.21 or by use
of [54, Theorem 2.9.1].
The proof of the retraction property of the trace operators with respect to the Neumann-
Dirichlet and the free slip boundary operators are simpler versions of the proof of
Proposition 1.21 and we omit them, here. Therefore, we have established the two
important results:

Proposition 1.24. Let 1 p with p 3
2 , p 2, p 3, δ 0 and J 0, T .

Assume A R
n 1 to be a bounded C3-domain, a 0 and Ω : A a, a a cylindrical

domain with boundary Γ. Let also

G̃
h
p J : htop, hΣ, hbot

F
Γtop
p J F

Σ
p J F

Γbot
p J :

htop and hΣ fulfil C4 ND; hbot and hΣ fulfil C5 ND .

Then the trace operator

γ : Eu
p J G̃

h
p J

c c Γtop ν ν δ νPΓc Γtop ,

c Σ ν ν δ νPΓc Σ,

c Γbot ν ν δ νPΓc Γbot

is a bounded linear retraction.
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1 Preliminaries

Proposition 1.25. Let 1 p with p 3
2 , p 2, p 3, D u : 1

2 ∇u ∇u T

and J 0, T . Assume A R
n 1 to be a bounded C3-domain, a 0 and Ω : A a, a

a cylindrical domain with boundary Γ. Let also

H̃
h
p J : htop, hΣ, hbot

F
Γtop
p F

Σ
p F

Γbot
p :

htop and hΣ fulfil C4 S ; hbot and hΣ fulfil C5 S .

Then the trace operator

γ : Eu
p J H̃

h
p J

c c Γtop ν ν PΓD c Γtopν,

c Σ ν ν PΓD c Σν,

c Γbot ν ν PΓD c Γbotν

is a bounded linear retraction.
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2 Maximal Lp-Regularity for Elliptic and
Parabolic Problems

In this chapter we extensively study the Lp-theory of elliptic and parabolic problems
on cylindrical domains. Laplace operators on cylindrical domains were investigated by
Nau already [39], but for different boundary conditions than those we are interested in.
Also we would like to investigate systems with constant and variable coefficients. On the
one hand, this enables us to construct auxiliary solutions for the pressure using elliptic
problems, see Proposition 3.4. On the other hand, with the help of solutions to parabolic
problems and the Helmholtz decomposition, we gain a better understanding of the Stokes
equations. Of particular interest here are parabolic problems with Robin boundary
conditions as they provide a deeper insight into physical problems, e. g. for proving the
solvability of a model describing the dynamics of tropical storms in Chapter 4.
We start with an analysis of elliptic problems with Neumann boundary condition

div α∇w d in Ω,

νw 0 on Γ,
E

and then consider parabolic problems of the form

ρ tu μΔu f in J Ω,

BV u h on J Γ,

u 0 u0 in Ω.

P J V

The boundary operators BV , V R, ND, S are assumed to be as on page 23 in
Section 1.4. By Ω : A a, a R

n we denote a cylindrical domain consisting of a
bounded C3-domain A and an interval a, a with a 0. In addition, J 0, T , T 0,
denotes a time interval. Moreover, we consider the above systems exclusively on the
smooth part Γ Γtop

. Γbot
. Σ of the boundary of Ω. Here, Γtop is the boundary of the

top and Γbot of the bottom of Ω, and Σ the lateral boundary. For a more comprehensive
investigation of cylindrical domains and their boundaries, cf. Section 1.3.
For parabolic problems we use the following data spaces

F
f
p J Lp J Ω n,

F
Λ
p J h W 1 2 1 2p

p J, Lp Λ n Lp J, W 1 1 p
p Λ n :

h ν W 1 1 2p
p J, Lp Λ Lp J, W 2 1 p

p Λ , Λ Γtop, Γbot, Σ

F
h
p J h : Γ R

n : h Γtop : htop
F

Γtop
p J ,

h Σ : hΣ
F

Σ
p J , h Γbot : hbot

F
Γbot
p J ,

F
0
p W 2 2 p

p Ω n,

F
R,Λ
p J W 1 2 1 2p

p J, Lp Λ Lp J, W 1 1 p
p Λ ,

F
R,h
p J h : Γ R

n : h Γtop : htop
F

R,Γtop
p J ,

h Σ : hΣ
F

R,Σ
p J , h Γbot : hbot

F
R,Γbot
p .
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2 Maximal Lp-Regularity for Elliptic and Parabolic Problems

We use the solution space

E
z
p J H1

p J, Lp Ω Lp J, H2
p Ω ,

for parabolic problems with Robin boundary conditions, and

E
u
p J H1

p J, Lp Ω n Lp J, H2
p Ω n,

for parabolic problems with Neumann-Dirichlet, perfect slip or free slip boundary condi-
tions. These spaces are defined on page 24 in Section 1.4. From now on we consider the
first equation of the parabolic problems P J V to be of the form

tu μΔu f in J Ω,

regardless of whether the coefficients are constant or variable, cf. Remark 1.12.

2.1 Elliptic Problems: Neumann Boundary Condition
The Laplacian with constant coefficients has been studied already on cylindrical domains,
see [39]. For us, however, the study of elliptic problems on cylindrical domains with
Neumann boundary condition of the form

div α∇w d in Ω,

νw 0 on Γ,
E

is of importance. Here, Ω R
n is a cylindrical domain and every data d Lp Ω,R has

to satisfy the compatibility condition Ω d dx 0.
In this section we are interested in systems of the form E with variable coefficient
α BC1 Ω,R . In addition, we would like to study the elliptic problem with constant
coefficient α 1 for time-dependent data d. Thereby we are interested in even higher
regularity for elliptic problems. We have a special interest in this kind of elliptic problems,
since we encounter them over and over again throughout this thesis as auxiliary problems,
e. g. to prove maximal regularity of the Stokes equations with variable coefficients (see
Proposition 3.8).

Variable Coefficients

Throughout this paragraph we always assume

α BC1 Ω,R with inf
Ω

α 0

to be a (time-independent) positive function. In order to prove that the elliptic prob-
lem E has a unique solution w H2

p Ω , we first show that the associated resolvent
problem induces an isomorphism for any data d Lp Ω . In the following step we use the
maximal regularity of the resolvent problem to infer the solvability of elliptic problems
with Neumann boundary condition.

Theorem 2.1. Let A R
n 1 be a bounded C3-domain and let a 0. Assume Ω :

A a, a to be a cylindrical domain, α BUC1 Ω with infΩ α 0 and 1 p .
Then there exists a solution w H2

p Ω to the elliptic problem E for every d Lp Ω
with Ω d dx 0. Under the additional constraint Ω w dx 0 this solution is unique.
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2.1 Elliptic Problems: Neumann Boundary Condition

Proof. Step 1. First we consider the operator Ap : div α∇w in Lp Ω with domain
D Ap w H2

p Ω : νw 0 . For λ 0 the resolvent problem for Ap is given by

λw ∇α ∇w αΔw d in Ω,

νw 0 on Γ.
(2.1.1)

Now, the Laplacian with constant coefficients on a cylindrical domain is R-sectorial;
see e. g. [39, Theorem 8.22]. Therefore, in case α 1 there exists λ0 0 such that
for every λ λ0 the equations (2.1.1) have the property of maximal regularity, i. e. for
every d Lp Ω there exists a unique solution w D Ap to (2.1.1). A similar assertion
is valid for the general case α BC1 Ω with infΩ α 0 as can be seen by using a
suitable localisation argument as in [15, Theorem 5.7] or as demonstrated in the proof of
Proposition 3.8. As a consequence, Ap is a closed operator for all 1 p .

Step 2. Now, we consider the operator Bpw : div α∇w in Ep : q Lp Ω :
Ω q dx 0 with domain D Bp w H2

p Ω : νw 0, Ω w dx 0 . Since Ep is a
closed subspace of Lp Ω and D Bp D Ap Ep is the intersection of D Ap with
a closed subspace of Lp Ω , we infer that Bp is a closed operator for all 1 p .
Because the embedding D Bp Lp Ω is compact due to [4, Theorem 6.2], Bp has a
compact resolvent. Hence, the spectrum σ Bp consists of eigenvalues only. Now, assume
that p 2, w D B2 and B2w 0. Then, by using partial integration we obtain

0
Ω

div α∇w w̄ dx

Ω
α∇w w̄ dx

Γ
α νw w̄ dσ

Ω
α ∇w 2 dx.

Since infΩ α 0, we have ∇w 0 almost everywhere in Ω. Hence, w is constant. From
Ω w dx 0 we conclude w 0. Thus, for the kernel of B2 we have N B2 0 , i. e. B2

is injective. Since Ω is bounded, we have the linear embedding

G : D Bp D B2 , 2 p .

Thus, if 2 p and w D Bp with Bpw 0, then G w D B2 with B2 G w 0,
which yields G w 0, since N B2 0 holds true. Therefore, Bp is injective for all
2 p . We can then conclude Bp Lis D Bp , Ep for all 2 p . Since Bp

with 1
p

1
p 1 is the dual operator of Bp, the Closed Range Theorem [57, Ch. 5] yields

that Bp Lis D Bp , Ep for all 1 p 2.

Elliptic Problems with Time Dependent Data

In this paragraph we generalise the result above to time dependent data, at least for the
case of constant coefficients, more precisely for α 1.

Corollary 2.2. Let T 0 and let J 0, T or J R. Let A R
n 1 be a bounded C3-

domain and a 0. Assume Ω : A a, a to be a cylindrical domain and 1 p .
Then for every d Lp J Ω with Ω d t, dx 0 for almost all t J the equation

Δw d in J Ω,

νw 0 on J Γ,
(2.1.2)

has a unique solution w Lp J, H2
p Ω with Ω w t, dx 0 for almost all t J . If, in

addition, d Hτ
p J, Lp Ω for some τ 0, 1 , then w Hτ

p J, H2
p Ω .
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2 Maximal Lp-Regularity for Elliptic and Parabolic Problems

Proof. Step 1. We first assume d C R Ω̄ . For every t R we choose w t, H2
p Ω

to be the unique solution to the problem

Δw t, d t, in Ω, νw 0 on Γ,
Ω

w t, dx 0,

which exists based on Theorem 2.1 applied for α 1. Now, we have

w p
Lp R, H2

p Ω
R

w t, p
H2

p Ω dt Cp

R

d t, p
Lp Ω dt Cp d p

Lp R Ω

for some constant C 0 that is independent of w, d and t. Using an approximation
argument we obtain a unique solution w Lp R, H2

p Ω to (2.1.2) for J R that satisfies
Ω w t, dx 0 for almost all t R for every d Lp R Ω with Ω d t, dx 0 for

almost all t R. Using extension and restriction operators between Lp J and Lp R we
obtain the same result also for J 0, T .

Step 2. For J R the time derivative t can be approximated in Lp R by difference
quotients. This way we obtain w H1

p R, H2
p Ω for the solution constructed in the first

step, if we additionally have that d H1
p R, Lp Ω . Now, using extension and restriction

operators between H1
p J and H1

p R we obtain the same result also for J 0, T .
Finally, an interpolation argument yields the additional assertion for 0 τ 1.

Higher Regularity of Elliptic Problems

In this paragraph, we study higher regularity of elliptic problems for the case α 1.
Moreover, we would like to apply this higher regularity to this kind of elliptic problems
with time-dependent data.

Lemma 2.3. Let A R
n 1 be a bounded C3-domain and a 0. Assume Ω : A a, a

to be a cylindrical domain and 1 p . Then for every d Lp Ω with Ω d dx 0
the equation

Δw d in Ω,

νw 0 on Γ,
(2.1.3)

has a unique solution w H2
p Ω with Ω w dx 0. If, in addition, d H1

p Ω , then
w H3

p Ω .

Proof. We start with the unique solution w H2
p Ω of system (2.1.3) with data d

Cc Ω̄ H1
p Ω subject to the constraints Ω w dx Ω d dx 0 which exists due to

Theorem 2.1. Since nd Lp Ω , there exists a unique solution v H2
p Ω to

Δv f in Ω,

v 0 on Γtop Γbot,

νv 0 on Σ,

(2.1.4)

for f nd. Existence and uniqueness of a solution v H2
p Ω can be proved with the

same arguments as used in the proof of Theorem 2.1; one just has to consider the operator
Bp : Δv with domain D Bp : v H2

p Ω, X : v 0 on Γtop Γbot, νv 0 on Σ
in Lp Ω using [39, Theorem 8.10].

Next, we show that nw v H2
p Ω . To this end, we consider the weak problem

∇z, ∇ζ Ω f, ζ , ζ X2 : ψ H1
2 Ω : ψ 0 on Γtop Γbot , (2.1.5)
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2.1 Elliptic Problems: Neumann Boundary Condition

which has a unique solution z X2 for every right-hand side f X2. Indeed, if z X2 is
a solution for f 0, then we obtain ∇z 2

L2 Ω ∇z, ∇z Ω 0. This implies that z is
constant almost everywhere in Ω, i. e. z 0 almost everywhere in Ω due to the boundary
conditions. Moreover, if f L2 Ω , we choose z H2

2 Ω to be the unique solution to
(2.1.4) and obtain

∇z, ∇ζ Ω νz, ζ Γ Δz, ζ Ω f, ζ Ω, ζ X2,

where we used that νz 0 on Σ and ζ 0 on Γtop Γbot. This shows that z is a
solution to (2.1.5) with

∇z 2
L2 Ω ∇z, ∇z Ω f, z Ω

1
4ε f 2

X2
ε z 2

X2

1
4ε f 2

X2
εCp ∇z 2

L2 Ω ,

for all ε 0. Here, Cp 0 denotes the constant in Poincaré’s inequality and we
used the inequality of Young. Therefore, we have ∇z L2 Ω C f X2

. Now, for
φ X0 : ψ Cc Ω̄ : ψ 0 on Γtop Γbot we have

∇v ∇ nw, ∇φ Ω

νv, φ Γ

0

Δv, φ Ω ν en ∇w, ∇φ Γ

0

∇w, ∇ nφ Ω

nd, φ Ω νw, nφ Γ

0

Δw, nφ Ω

ν en d, φ Γ

0

d, nφ d, nφ Ω 0.

Here, we used that νv 0 on Σ, φ 0 and ∇φ nφ en on Γtop Γbot, ν en 0 on
Σ, nw νw 0 on Γtop Γbot and that νw 0 on Σ. We have v H2

p Ω for all
1 p , due to the fact that nd Cc Ω̄ . Since X0 is dense in X2 we infer that

∇v ∇ nw, ∇ζ Ω 0, ζ X2.

This, in term implies that X2 nw v H2
2 Ω due to the unique solvability of (2.1.5).

It follows that nw v H2
p Ω for all 1 p with

2
nw H1

p Ω nv H1
p Ω v H2

p Ω C nd Lp Ω C d H1
p Ω , (2.1.6)

for d Cc Ω̄ . Due to the fact that Cc Ω̄ H1
p Ω is dense, we infer that the

solution w H2
p Ω to (2.1.3) for a right-hand side d H1

p Ω subject to the constraints
Ω w dx Ω d dx 0 satisfies nw H2

p Ω and the estimate (2.1.6). Hence, we obtain

ΔAw Δw 2
nw

d 2
nw H1

p a, a , Lp A Lp a, a , H1
p A in A,

νAw 0 on A,

with ΔA the Dirichlet-Laplace operator on the bounded C3-domain A. We thus have

w H1
p a, a , H2

p A Lp a, a , H3
p A

and deduce that j kw H1
p Ω for all j, k 1, . . . , n 1 . In combination with

nw H2
p Ω we therefore obtain w H3

p Ω for the solution to (2.1.3).
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2 Maximal Lp-Regularity for Elliptic and Parabolic Problems

Now, with the same arguments as used in the proof of Corollary 2.2 we obtain the
following result based on Lemma 2.3 instead of Theorem 2.1.

Corollary 2.4. Let T 0 and let J 0, T or J R. Let A R
n 1 be a bounded C3-

domain and a 0. Assume Ω : A a, a to be a cylindrical domain and 1 p .
Then for every d Lp J, H1

p Ω with Ω d t, dx 0 for almost all t J the equations

Δw d in J Ω,

νw 0 on J Γ,

have a unique solution w Lp J, H3
p Ω with Ω w t, dx 0 for almost all t J . If,

in addition, d Hτ
p J, H1

p Ω for some τ 0, 1 then w Hτ
p J, H3

p Ω .

2.2 Parabolic Problems: Robin Boundary Condition
This section is devoted to the study of parabolic problems on cylindrical domains with
Robin boundary conditions, i. e. to the study of systems of equations of the form

tu μΔu f in J Ω,

βu
νu σuu h on J Γ,

u 0 u0 in Ω.

P J R

As mentioned before, Nau studied this kind of problems with constant coefficients μ,
βu and σu, see [39]. Considering P J R is particularly important for solving physical
problems. We say more about this later when examining a model on the mechanisms of
tropical storms in Chapter 4.

Again Ω R
n is assumed to be a cylindrical domain and J 0, T , T 0 a time

interval. We aim to prove the existence of a unique solution

u u t, x E
z
p J

to system P J R for every data

f, h, u0 F
P,R
p J

which meets the necessary regularity and compatibility conditions. On this account we
introduce the data space F

P,R
p J , which is defined to consist of all

f, h, u0 Lp J Ω F
R,h
p J W 2 2 p

p Ω

that satisfy the compatibility condition

βu
νu0 σuu0 h 0 on Γ if p 3, C3 R

which stems from the boundary condition of P J R. Its necessity was shown in Sec-
tion 1.4.
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2.2 Parabolic Problems: Robin Boundary Condition

Variable Coefficients

In this paragraph we assume

μ BUC Ω;R with inf
Ω

μ 0,

βu BC1 J Γ, 0, with inf
Γ

βu 0,

and

σu BC2 J Γ, 0, .

To prove maximal regularity for P J R with variable coefficients we first need a result,
which shows the maximal regularity for perturbed parabolic problems, if the respective
parabolic system has the property of maximal regularity. In the following lemma we prove
maximal regularity for parabolic problems subject to all boundary operators defined
on page 23 in Section 1.4. The reason is that want to use the lemma not for parabolic
problems with Robin boundary conditions only, but also for parabolic problems with
Neumann-Dirichlet boundary conditions, perfect slip boundary conditions and free slip
boundary conditions.

Lemma 2.5. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T . Assume

Ω : A a, a to be a cylindrical domain, μ BUC Ω;R with infΩ μ 0 and BV with
V R, ND, S to be one of the boundary operators defined in Section 1.4. Assume
additionally

• for V R that X J : E
z
p J . Let 1 p with p 3, f̂ Lp J Ω ,

R : 0X J F
R,h
p J to be a linear function with R w 0 0 for w 0X J

with w 0 0 in Ω. Let ĥ F
R,h
p J , such that f̂ , ĥ, 0 satisfy the necessary

compatibility condition C3 R.

• for V ND, S that X J : E
u
p J . Let Let 1 p with p 2, 3

2 , 3 ,
f̂ F

f
p J , R : 0X J F

h
p J to be a linear function with R w 0 0 for

w 0X J with w 0 0 in Ω. Let ĥ F
R,h
p J , such that f̂ , ĥ, 0 satisfy the

necessary compatibility condition C3 ND – C5 ND, C3 S – C5 S , respectively.

Let the system

tv μΔv f in J Ω,

BV v h on J Γ,

v 0 v0 in Ω.

(2.2.1)

have a unique solution v X J for every data f, h, v0 F
P,V
p with V R, ND, S .

If

R z
0F

R,h
p J

C J τ z 0X J , for V R,

and

R z 0Fh
p J C J τ z 0X J , for V ND, S ,
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2 Maximal Lp-Regularity for Elliptic and Parabolic Problems

for every z X J with z 0 0 in Ω and some constants τ, C 0, which are independent
of J , then system

tw μΔw f̂ in J Ω,

BV w ĥ R w on J Γ,

w 0 0 in Ω
(2.2.2)

has a unique solution w X J .

Proof. We show that (2.2.2) has the property of maximal regularity for the given time
interval J . To this end, we first show that (2.2.2) has the property of maximal regularity
for a small time interval J̄ 0, T̄ , T̄ 0. Let us establish L : X J̄ F

V
p J̄ with

V R, ND, S as the the operator defined through the left-hand side of (2.2.1).
Since (2.2.1) has the property of maximal regularity, the operator L is invertible. We
use the notation 0L : L 0Ep J̄ : 0X J̄ 0F

P,V
p J̄ . The operator 0L 1 is bounded

independently of J̄ , due to the fact that all u 0X J̄ satisfy u 0 0 in Ω. Since
f̂ , ĥ, 0 satisfy the necessary compatibility condition according to our assumptions and

R w 0 0, if w 0 0, we can transform (2.2.2) into the operator equation

0L w f̂, ĥ R w f̂ , ĥ 0, R w

which is equivalent to

w 0L 1 f̂ , ĥ 0L 1 0, R w ,

since the operator L is invertible. Subtraction of 0L 1 0, R w yields

Id 0L 1 0, R w 0L 1 f̂ , ĥ .

It is now left to show that Id 0L 1 0, R 1 exists, since this would imply that

w Id 0L 1 0, R 1
0L 1 f̂ , ĥ

is the unique solution to (2.2.2). The Neumann series argument provides the existence of
Id 0L 1 0, R 1, if 0L 1 0, R 1. Note that

0L 1 0, R 0X J̄ 0X J̄ 0L 1
0F

P,V
p J̄ 0X J̄

0, R
0X J̄ 0F

P,V
p J̄

.

According to our assumptions we can estimate

R w
0F

R,h
p J̄

C J̄ τ w 0X J̄ , for V R,

and

R w 0Fh
p J̄ C J̄ τ w 0X J̄ , for V ND, S ,

for some constants τ, C 0, which are independent of J̄ . Thus, we make R w small
by choosing the interval J̄ sufficiently small, such that 0L 1 0, R 0X J̄ 0X J̄ is less
than one. This is possible, because 0L 1

0F
P,R
p J̄ 0X J̄

is bounded independently of J̄ .

Now, we can conclude that (2.2.2) has the property of maximal regularity for a small
time interval J̄ . To get maximal regularity for (2.2.2) for the time interval J , we choose
T̄ sufficiently small and such that

kT̄ T for some k N,
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2.2 Parabolic Problems: Robin Boundary Condition

and successively solve the parabolic system (2.2.2) in a cylindrical domain on the time
intervals

0, T̄ , T̄ , 2T̄ , . . . , k 1 T̄ , kT̄ .

With this strategy we obtain a unique solution to (2.2.2) on the time interval J
0, T .

Using some results from Nau [39, Theorems 8.10 & 8.22] about parabolic problems
on cylindrical domains with constant coefficients and applying a similar argument as
Denk, Hieber and Prüss in [15, Theorem 5.7], where they proved maximal regularity
for elliptic operators with variable coefficients in a Banach space of class HT we can
prove maximal regularity for parabolic problems with variable coefficients and Neumann
boundary conditions. With Lemma 2.5 we can then infer maximal regularity for P J R.

Theorem 2.6. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T . Assume

Ω : A a, a to be a cylindrical domain, f, h, u0 F
P,R
p J , μ BUC Ω;R with

infΩ μ 0, βu BC1 J Γ , σu BC2 J Γ , infΓ βu 0, and 1 p with p 3.
Then system P J R has a unique solution u E

z
p J .

Proof. To prove Theorem 2.6 for a time interval J , we split system P J R into a parabolic
system with Neumann boundary conditions and a perturbed parabolic problem with
initial value zero. For this we set u : v w and choose h̃ F

R,h
p J with

h̃ 0 βu
νu0 on Γ,

if p 3. Thus, P J R can be rewritten as the two systems

tv μΔv f in J Ω,

βu
νv h on J Γ,

v 0 u0 in Ω,

(2.2.3)

and

tw μΔw 0 in J Ω,

βu
νw h h̃ σuv σuw on J Γ,

w 0 0 in Ω.

(2.2.4)

Now, to obtain maximal regularity for P J R, we prove maximal regularity for both
systems independently of each other. We proceed in two steps.
Step 1: Let v̂ E

z
p J be a solution to

βu
ν v̂ h̃ on J Γ,

which exists due to Lemma 1.16. Furthermore, system

tṽ μΔṽ f tv̂ μΔv̂ in J Ω,

βu
ν ṽ 0 on J Γ,

ṽ 0 u0 v̂ 0 in Ω,

has the unique solution ṽ E
z
p J . Since the Laplace operator is R-sectorial on a

cylindrical domain, [39, Theorem 8.22], the proof of maximal regularity for the above
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2 Maximal Lp-Regularity for Elliptic and Parabolic Problems

system can be proven by the same methods as the proof of maximal regularity for
elliptic operators with variable coefficients in a Banach space of class HT [15, Theorem
5.7]. We discuss this approach in detail during the proof of Proposition 3.8. Then
v : v̂ ṽ E

z
p J is the unique solution of (2.2.3).

Step 2: We define the perturbation R : 0E
z
p J 0F

R,h
p J through R w : σuw,

which is a linear function with R w 0 0, if w 0 0 in Ω. We set

ĥ : h h̃ σuv F
R,h
p J .

Using the definition of h̃ we have

ĥ 0 h 0 h̃ 0 σuv 0 βu
νu0 σuu0 βu

νu0 σuu0 0.

Thus, the data 0, ĥ, 0 satisfies the compatibility condition C3 R. If w 0 0, the
estimate

R w
0F

R,h
p J

σuw
0W

1 2 1 2p
p J,Lp Γ Lp J,W

1 1 p
p Γ

C w
0H

1 2
p J,Lp Ω Lp J,H1

p Ω

C J τ w
0H1

p J,Lp Ω 0H
1 2
p J,H1

p Ω

C J τ w 0Ez
p J

holds true for some constants C, τ 0, which are independent of J . According to step 1
system (2.2.3) has the property of maximal regularity for every data f, h, u0 F

P,R
p J .

Thus, all assumptions of Lemma 2.5 are satisfied and we infer maximal regularity for
system (2.2.4).
Combining step 1 and 2 we obtain maximal regularity for P J R on the time interval
J 0, T .

2.3 Parabolic Problems: Neumann-Dirichlet Boundary
Conditions

We are again interested in parabolic problems on cylindrical domains. More precisely, in
this section we study systems of the form

tu μΔu f in J Ω,

u ν h ν on J Γ,

δ νPΓu PΓh on J Γ,

u 0 u0 in Ω,

P J ND

where Ω R
n with n N denotes a cylindrical domain and J 0, T , T 0, a time

interval. The coefficient δ 0 is assumed to be constant throughout this section, but we
study P J ND with both constant and variable coefficient μ. In addition, we assume
the given data f, h, u0 to satisfy all necessary regularity and compatibility conditions
for system P J ND. That is,

f, h, u0 F
P,ND
p J ,

where the data space F
P,ND
p J is defined to consist of all

f, h, u0 F
f
p J F

h
p J F

0
p
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2.3 Parabolic Problems: Neumann-Dirichlet Boundary Conditions

that satisfy the compatibility condition

u0 ν h 0 ν, if p 3
2 ,

δ νPΓ u0 PΓh 0 , if p 3,
C3 ND

as well as the compatibility condition

δ νΓtop
hΣ Rtop νΣ hΓtop Rtop νΣ if p 2,

δ νΣhtop Rtop νΓtop hΣ Rtop νΓtop if p 2,
C4 ND

which arises from the boundary condition on the upper edge of Ω, and the condition

δ νΓbot
hΣ Rbot νΣ hΓbot Rbot νΣ if p 2,

δ νΣhbot Rbot νΓbot hΣ Rbot νΓbot if p 2,
C5 ND

which arises from the boundary condition on the lower edge of Ω. In Section 1.4 the
necessity of these regularity and compatibility conditions for P J ND was shown.
We aim to find a unique solution

u u t, x E
u
p J

to system P J ND, since we use it in the following section to solve parabolic problems
with perfect slip boundary conditions. This finally allows us to show in Chapter 3 that
the Stokes equations on cylindrical domains have the property of maximal regularity.

Constant Coefficients

Within this paragraph we assume the coefficient

μ 0

of system P J ND to be constant. To prove maximal regularity for the parabolic problem
P J ND, we first prove the solvability of the analogous problem with homogeneous

Neumann-Dirichlet boundary conditions. Using the retraction property of the trace
operator with respect to the Neumann-Dirichlet boundary conditions, see Section 1.5, it
is then possible to show the existence of a unique solution u E

u
p J to P J ND.

Lemma 2.7. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T . Assume

Ω : A a, a to be a cylindrical domain, 1 p and δ, μ 0 to be constant.
Then the parabolic system

tu μΔu f in J Ω,

u ν 0 on J Γ,

δ νPΓu 0 on J Γ,

u 0 u0 in Ω.

P J h 0
ND

has a unique solution u E
u
p J , for every data f, 0, u0 F

P,ND
p J .

Proof. We split each of the functions u, f and u0, into two components such that

u v, w with v : J Ω R
n 1 and w : J Ω R,

f fv, fw Lp J Ω n 1 Lp J Ω 1,
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2 Maximal Lp-Regularity for Elliptic and Parabolic Problems

and
u0 v0, w0 W 2 2 p

p Ω n 1 W 2 2 p
p Ω 1,

respectively. In addition, we consider the outer normal vector on the boundary of the
cylindrical domain Ω, where we have

ν en on A a ,

on top and bottom of the boundary of Ω and

ν en on A a, a with ν νA, 0 , νA R
n 1 the outer normal vector on A,

on the lateral boundary of Ω. The vector en defines the unit vector in the n-th direction.
According to this decomposition, P J h 0

ND decouples into the two systems

tv μΔv fv in J Ω,

νv 0 on J A a ,

v νA 0 on J A a, a ,

νAP Av 0 on J A a, a ,

v 0 v0 in Ω,

(a)

and

tw μΔw fw in J Ω,

w 0 on J A a ,

νAw 0 on J A a, a ,

w 0 w0 in Ω.

(b)

It is therefore sufficient to show maximal regularity for each of the systems (a) and (b) in
order to prove maximal regularity for P J h 0

ND . We proceed in two steps.
Step 1. In order to prove maximal regularity for system (a) it is sufficient to prove
maximal regularity for

tv Tv fv in J Ω,

v 0 v0 in Ω,

with operator T : D T Lp Ω n 1 Lp Ω n 1, which is defined through T v : μΔv,
D T v W 2

p Ω n 1 : νv 0 on A a , v νA 0 and νAP Av 0 on A
a, a . Because of [31, Corollary 6.4, Theorem 6.5] it is sufficient to prove

λ T RH Lp Ω with φλ T
π
2 , and for some λ 0.

In order to proceed, we split T T1 T2 into the two parts

T1 : D T1 Lp A n 1 Lp A n 1, T1 v : μ 2
1

2
2

2
n 1 v

with D T1 v W 2
p A n 1 : v νA 0, νAP Av 0 on A ,

and

T2 : D T2 Lp a, a n 1 Lp a, a n 1, T2 v : μ 2
nv

with D T2 v W 2
p a, a n 1 : νv 0 on a, a a .
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2.3 Parabolic Problems: Neumann-Dirichlet Boundary Conditions

We have

λ2 T2 H for some λ2 0 and with φλ2 T2 0,

see e. g. [15]. With a proof similar to that of [29, Theorem 6.1] we obtain

λ1 T1 H for some λ1 0 and with φλ1 T1 0.

We can combine the result for T T1 T2 as follows

λ T RH with λ λ1 λ2 0, φλ T 0 and D T D T1 D T2 ,

due to [43, Proposition 3.7]. This implies maximal regularity for system (a).
Step 2. To prove maximal regularity for system (b) it is sufficient to prove maximal
regularity for

tw Tw fw in J Ω,

w 0 w0 in Ω,
(2.3.1)

with operator T : D T Lp Ω Lp Ω , T w : μΔw, D T w W 2
p Ω : w

0 on A a , νAw 0 on A a, a . System (2.3.1) has the property of maximal
regularity, due to [39, Theorem 8.10].

Now, using the retraction property with respect to the Neumann-Dirichlet boundary
condition (Proposition 1.24), we obtain.

Proposition 2.8. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T . Assume

Ω : A a, a to be a cylindrical domain, δ, μ 0 to be constant, and 1 p
with p 3

2 , p 2, p 3. Then the parabolic system P J ND has a unique solution
u E

u
p J for every data f, h, u0 F

P,ND
p J .

Proof. We choose u1 E
u
p , such that

u1 ν h ν on J Γ,

δ νPΓu1 PΓh on J Γ,

which exists by Proposition 1.24. Setting u2 : u u1, we obtain from P J ND the
following equations

tu2 μΔu2 f tu1 μΔu1 in J Ω,

u2 ν 0 on J Γ,

δ νPΓu2 0 on J Γ,

u2 0 u0 u1 0 in Ω.

(2.3.2)

Using Lemma 2.7, we obtain maximal regularity for (2.3.2) and thus maximal regularity
for P J ND.

Remark 2.9. In contrast to the parabolic problem with homogeneous Neumann-Dirichlet
boundary conditions (Lemma 2.7) we cannot prove the existence of a unique solution
u E

u
p J for all 1 p for the parabolic problem with inhomogeneous Neumann-

Dirichlet boundary conditions. The constraints p 3
2 , p 2 and p 3 are due to the

inhomogeneous boundary conditions. More precisely, we have to pay special attention
to the compatibility conditions C3 ND, C4 ND and C5 ND. Since the compatibility
condition C3 ND holds for p 3

2 and p 3, respectively, and C4 ND and C5 ND

hold for p 2, we were not able to show the retraction property of the trace operator
with respect to the Neumann-Dirichlet boundary conditions for the limiting cases p 3

2 ,
p 2 and p 3 with our methods.
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2 Maximal Lp-Regularity for Elliptic and Parabolic Problems

Variable Coefficients

In the following paragraph we assume

μ BUC Ω;R with inf
Ω

μ 0.

We extend the maximal regularity of parabolic problems with constant coefficients in a
cylindrical domain to those with variable coefficients, applying a localisation argument
utilized by Denk, Hieber and Prüss [15, Theorem 5.7]. Following their approach, which is
used again in Proposition 3.8 and is treated there in detail, we have the following result.

Corollary 2.10. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T . Assume

Ω : A a, a to be a cylindrical domain, f, h, u0 F
P,ND
p J , μ BUC Ω;R with

infΩ μ 0, and 1 p with p 3
2 , p 2, p 3. Then system P J ND has a unique

solution u E
u
p J .

2.4 Parabolic Problems: Perfect Slip Boundary Conditions
The parabolic problem on cylindrical domains with perfect slip boundary conditions we
are interested in is given as

tu μΔu f in J Ω,

u ν h ν on J Γ,

PΓD u ν PΓh on J Γ,

u 0 u0 in Ω.

P J S

We study this system with both constant and variable coefficients μ. For the constant
coefficient case, we also show that the unique solution of P J S is a solenoidal function,
if f is solenoidal. Considering parabolic problems with perfect slip boundary conditions
is interesting, since we use them in the next section to solve parabolic problems with
free slip boundary conditions. Moreover, in Chapter 3, using the Helmholtz projection
and the unique solenoidal solution of P J S , we can show that the Stokes equations on
cylindrical domains with constant coefficients have the property of maximal regularity.

Let J 0, T , T 0, be a time interval and Ω R
n a cylindrical domain. We are

interested in proving the existence of a unique solution

u u t, x E
u
p J

to system P J S for every data

f, h, u0 F
P,S
p J

which fulfil the necessary regularity and compatibility conditions. The data space
F

P,S
p J is defined to consist of all

f, h, u0 F
f
p J F

h
p J F

0
p

that satisfy the following compatibility conditions. For system P J S there are com-
patibility conditions, which arise from the compatibility between data h and initial data
u0, which are

u0 ν h 0 ν, if p 3
2 ,

PΓD u0 ν PΓh 0 , in p 3,
C3 S
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2.4 Parabolic Problems: Perfect Slip Boundary Conditions

compatibility conditions which arise from the boundary condition on the upper edge of Ω

hΣ Rtop νΓtop htop Rtop νΣ if p 2,
1
2 νΓtop

hΣ Rtop νΣ
1
2 νΣhtop Rtop νΓtop htop Rtop νΣ if p 2,

C4 S

and conditions which arise from the boundary condition on the lower edge of Ω

hΣ Rbot νΓbot hbot Rbot νΣ if p 2,
1
2 νΓbot

hΣ Rbot νΣ
1
2 νΣhbot Rbot νΓbot hbot Rbot νΣ if p 2.

C5 S

In Section 1.4 we have shown in detail that these are the necessary compatibility conditions
for P J S .

Constant Coefficients

In this paragraph we assume the coefficient

μ 0

of system P J S to be constant. To prove maximal regularity for the parabolic system
P J S , we decompose P J S into a system containing the inhomogeneous perfect

slip boundary conditions and a parabolic system with homogeneous perfect slip boundary
conditions. Using the retraction property of the trace operator with respect to the
perfect slip boundary conditions, see Section 1.5, we are able to show that the system
containing the inhomogeneous perfect slip boundary conditions has a unique solution.
The remainder of the proof is then devoted to maximal regularity of the parabolic system
with homogeneous perfect slip boundary conditions.

Proposition 2.11. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T .

Assume Ω : A a, a to be a cylindrical domain, μ 0 to be a constant and
1 p with p 3

2 , p 2, p 3. Then the parabolic system P J S , with data
f, h, u0 F

P,S
p J has a unique solution u E

u
p J .

Proof. Let us split the velocity into u û ũ. According to this decomposition, P J S

decouples into the two systems

û ν h ν on J Γ,

PΓD û ν PΓh on J Γ,
(2.4.1)

and

tũ μΔũ f̃ in J Ω,

ũ ν 0 on J Γ,

PΓD ũ ν 0 on J Γ,

ũ 0 ũ0 in Ω.

(2.4.2)

The data f̃ : f tû μΔû in J Ω and ũ0 : u0 û 0 in Ω fulfil the necessary
compatibility conditions and consequently, we have f̃ , 0, ũ0 F

P,S
p J . From Proposi-

tion 1.21 we already know that the corresponding trace-operator is a retraction and thus
system (2.4.1) has a solution û E

u
p J .
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2 Maximal Lp-Regularity for Elliptic and Parabolic Problems

To prove maximal regularity for (2.4.2) we proceed in two steps.
Step 1. In this step we show that

tũ μΔũ f̃ in J Ω,

ũ ν 1
2 ∇Γν ũ ν 0 on J Γ,

1
2 νPΓũ 1

2 ∇Γν ũ on J Γ,

ũ 0 ũ0 in Ω,

(2.4.3)

is equivalent to system (2.4.2) and well-posed. For that, consider the zero-th order
operator

μ 1
2 ∇Γν ũ

and prove that 1
2 ∇Γν ũ as well as νPΓũ are tangential on J Γ. The outer normal

vector ν as well as the projection PΓ are extended canonically to a tubular neighbourhood
of Γ that means we extend ν constantly in the normal direction with νν 0. For
a comprehensive analysis of tubular neighbourhoods see [46, Section 2.3]. Therefore,
∇Γν PΓ∇ν on Γ. From this, we see that

1
2

∇Γν ũ (2.4.4)

is tangential. Next, by assuming ũ ν 0 on J Γ, we infer that

PΓ νPΓũ PΓ ν ũ ν ν ũ PΓ ν ũ ũ ν ν

PΓ ∇ũT ν PΓ ∇ ũ ν ν T ν

PΓ ν ũ ∇Γ ũ ν ν T ν ũ ν ∇ΓνT ν.

Note, that we use ũ ν 0 in the following equation, since we know it is valid on the
boundary Γ and therefore on the tangential part. We do not know however how ũ ν
behaves in the normal direction. For this reason, we could not use ũ ν 0 in the first
line. Thus, we infer from the equations above

PΓ νPΓũ PΓ ν ũ ν ũ ν ν ν ũ ν ũ ∇ũ T ν ν ν

∇ũ T ν ∇ũ T ν ν ν ∇ν ũ ν ν ∇ν ũ ν ν

νPΓũ ∇ν ũ ν ν νPΓũ ũ νν ν

νPΓũ.

This is why 1
2 ∇Γν ũ and νPΓũ are tangential, if ũ ν 0 on J Γ. More-

over, we can conclude ∇Γν BUC1 Σ,Rn n and ∇Γν Γtop ∇Γν Γbot 0, since
A R

n 1 is a bounded C3-domain. Together with ũ E
u
p J it follows that 1

2 ∇Γν ũ

W
1 2 1 2p
p J, Lp Γ n Lp J, W

1 1 p
p Γ n. Combined with 1

2 ∇ν ũ being tangential,
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2.4 Parabolic Problems: Perfect Slip Boundary Conditions

we obtain 1
2 ∇ν ũ F

h
p J . Analogously we obtain

1
2 νPΓũ 1

2 ∇Γν ũ
1
2∇ PΓũ ν 1

2PΓ ∇ν ũ

1
2∇ ũ ν ν ũ T ν 1

2P T
Γ ∇ν ũ

1
2∇ũT ν 1

2∇ ũ ν ν T ν 1
2 ũT ∇νT PΓ

T

1
2∇ũT ν 1

2 ∇ ũ ν ν T ν 1
2 ũ ν ∇νT ν 1

2 ũT ∇νT PΓ ũT
νννT T

1
2∇ũT ν 1

2 ν ∇ ũ ν ν 1
2 ũT ∇νT PΓ ũT ∇νT ννT T (2.4.5)

1
2∇ũT ν 1

2 ν ∇ũ ν ∇ν ũ 1
2 ũT ∇νT PΓ ũT ∇νT ν ν T

1
2∇ũT 1

2 ∇ũ T ν ν ν 1
2 ∇ν ũ ν ν 1

2 ũT ∇ν T T

1
2∇ũT ν 1

2 ν ν ∇ũT ν 1
2 ν ν ∇ν ũ 1

2 ∇ν ũ

1
2PΓ ∇ũT ν 1

2PΓ ∇ν ũ

1
2PΓ ∇ũT ν ∇ν ũ ∇ ũ ν

1
2PΓ ∇ũT ∇ũ ν

PΓD ũ ν

and see that system (2.4.2) is equivalent to (2.4.3).

Step 2. In this final step we show that (2.4.3) has the property of maximal regularity
for the given time interval J . To this end, we establish the linear function R : 0E

u
p J

0F
h
p J with R ũ : 1

2 ∇Γν ũ. It is R ũ 0 0, if u 0 0. Now, we split ũ : v w

and choose a h̃ F
h
p J with

h̃ 0 ν 0 on Γ if p 3
2 ,

PΓh̃ 0 1
2 νPΓũ0 on Γ if p 3.

Thus, the system (2.4.3) can be rewritten as the following systems:

tv μΔv 0 in J Ω,

v ν 0 on J Γ,
1
2 νPΓv PΓh̃ on J Γ,

v 0 ũ0 in Ω,

(2.4.6)

and

tw μΔw f̃ in J Ω,

w ν 0 on J Γ,
1
2 νPΓw ĥ R w on J Γ,

w 0 0 in Ω.

(2.4.7)

Where ĥ : 1
2 ∇Γν v PΓh̃. Let v E

u
p J be the solution of system (2.4.6), which

exists according to Proposition 2.8.
To prove maximal regularity for system (2.4.7), we want to use Lemma 2.5. Therefore,
we have to check if all assumptions of Lemma 2.5 are satisfied. System P J ND has the
property of maximal regularity for every data f, h, u0 F

P,ND
p J , due to Proposition 2.8.

The data f̃ , ĥ, 0 satisfies the compatibility conditions C3 ND, since we can conclude

ĥ 0 1
2 ∇Γν v 0 PΓh̃ 0 1

2 ∇Γν u0
1
2 νPΓu0 PΓD u0 ν 0
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2 Maximal Lp-Regularity for Elliptic and Parabolic Problems

from equation (2.4.5) and the definition of h̃. Note that ∇Γν BUC1 Σ,Rn n and
∇Γν Γtop ∇Γν Γbot 0. Therefore, the estimate

R w 0Fh
p J

1
2 ∇Γν w

0W
1 2 1 2p
p J,Lp Γ Lp J,W

1 1 p
p Γ

C w
0W

1 2 1 2p
p J,Lp Γ Lp J,W

1 1 p
p Γ

C J τ w
0W

1 1 2p
p J,Lp Ω Lp J,W

2 1 p
p Ω

C J τ w 0Eu
p J

holds true, if w 0 0 in Ω. Here, C, τ 0 are constants, which are independent of J .
Now, all assumptions of Lemma 2.5 are satisfied and thus system (2.4.7) has the property
of maximal regularity. With this strategy we obtain a unique solution to (2.4.3) on the
time interval J .
These two steps imply maximal regularity for (2.4.2) and thus maximal regularity for
P J S and our initial assertion.

Now, with the help of Proposition 2.11 and the Helmholtz decomposition, cf. Section 1.3,
we can prove that system P J S with constant coefficients and homogeneous boundary
conditions even has a unique solenoidal solution, if the given function f is solenoidal as
well.

Corollary 2.12. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T . Assume

Ω : A a, a to be a cylindrical domain, μ 0, D u 1
2 ∇u ∇u T and

1 p with p 3
2 , p 2, p 3. Then the parabolic system

tu μΔu f in J Ω,

u ν 0 on J Γ,

PΓD u ν 0 on J Γ,

u 0 u0 in Ω,

(2.4.8)

has a unique solution u E
u
p J Lp J, Lp,σ Ω for every set of data f, 0, 0, u0

Lp J, Lp,σ Ω 0 0 F
0
p Lp,σ Ω fulfilling the compatibility conditions C3 S .

Proof. Let u E
u
p J be the unique solution to system (2.4.8) for the given data

f, 0, 0, u0 , which exists due to Proposition 2.11. We are thus left to show that
u Lp J, Lp,σ Ω . There is an Lp-Helmholtz projection on finite cylinders, due to
[41]. Thus, it is sufficient to prove Hu u, where H : Lp Ω Lp,σ Ω denotes the
Helmholtz projection on Ω. Note that PΓD u ν D u ν on the boundary J Γ
and that D u is a skew-symmetric matrix. Since PΓD u ν 0, Lemma 1.11 yields
div D u Lp J, Lp,σ Ω . Also the equation

D ∇p i,j
1
2 i ∇p j j ∇p i

1
2 i jp j ip 0,

(2.4.9)

holds true (in the sense of distributions) for all p H1
p Ω,Rn . Since 1 H u is a

gradient, we obtain (in the distributional sense) by using (2.4.9) that D 1 H u 0.
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2.4 Parabolic Problems: Perfect Slip Boundary Conditions

From this we conclude

μΔHu 2μdiv D Hu μ∇div Hu

2μdiv D Hu

2μdiv D Hu D 1 H u

2μdiv D u (2.4.10)
2μHdiv D u

H div 2μD u μ∇div u

H μΔu .

However, due to Proposition 1.10 we have Hu E
u
p J Lp J, Lp,σ Ω . In particular,

μΔHu H μΔu in Lp J Ω .
In the left-hand side of (2.4.8), let us for the moment replace u with Hu. Using (2.4.9)
and (2.4.10) we obtain

tHu μΔHu H tu HμΔu
H tu μΔu
Hf f in J Ω,

Hu ν 0 on J Ω,

PΓD Hu ν PΓD Hu 1 H u ν
PΓD u ν 0 on J Γ,

Hu 0 Hu0 u0 in Ω.

Thus, in combination with Proposition 2.11 we conclude that Hu and u both are the
unique solution to (2.4.8). Consequently, Hu u.

Remark 2.13. Corollary 2.12 generalises to the cases p 3
2 , p 2 and p 3 by using

interpolation results.
Remark 2.14. Our proof of Corollary 2.12 is only valid for constant coefficients as equation
(2.4.10) does in general not hold for variable coefficients μ BUC Ω;R .

Variable Coefficients

Denk, Hieber and Prüss proved in [15, Theorem 5.7] maximal regularity for elliptic
operators in a Banach space of class HT with variable coefficients. For this purpose,
they applied a localisation argument on elliptic operators and used then the maximal
regularity of these elliptic operators with constant coefficients. Since we proved maximal
regularity for P J ND with constant coefficient μ 0 in Proposition 2.11, we can use
the strategy of Denk, Hieber and Prüss to prove maximal regularity for P J ND with
variable coefficient

μ BUC Ω;R with inf
Ω

μ 0.

This strategy is used again to prove maximal regularity of the Stokes equations with
perfect slip boundary conditions (Proposition 3.8) and is treated there in detail. Since the
proof of maximal regularity for the Stokes equations is more difficult than for parabolic
problem, we omit it for P J ND with variable μ here.

Corollary 2.15. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T . Assume

Ω : A a, a to be a cylindrical domain, f, h, u0 F
P,S
p J , μ BUC Ω;R with

infΩ μ 0 and 1 p with p 3
2 , p 2, p 3. Then system P J S has a unique

solution u E
u
p J .
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2 Maximal Lp-Regularity for Elliptic and Parabolic Problems

2.5 Parabolic Problems: Free Slip Boundary Conditions
Using the maximal regularity of parabolic problems P J S with perfect slip boundary
conditions from Section 2.4, we are able to prove maximal regularity for parabolic
problems on cylindrical domains with free slip boundary conditions of the form

tu μΔu f in J Ω,

u ν h ν on J Γ,

PΓD u ν PΓh on J Γ,

u 0 u0 in Ω,

P J S

with Ω R
n a cylindrical domain and J 0, T , T 0, a time interval. We study this

system directly for variable coefficient μ, since we can prove the existence of a unique
solution

u u t, x E
u
p J

to system P J S with variable μ straight without needing maximal regularity of system
P J S with constant coefficient beforehand. The maximal regularity for P J S

with constant coefficient then follows immediately from considering the system with
variable coefficient. The study of parabolic problems with free slip boundary conditions
is interesting, since we use them in Chapter 3 to show that the Stokes equations on
cylindrical domains have the property of maximal regularity.

The data

f, h, u0 F
P,S
p J

have to satisfy the necessary regularity and compatibility conditions. The necessity of
the regularity and compatibility conditions for P J S can be seen in Section 1.4. Then,
the data space F

P,S
p , is defined to consist of all

g, h, u0 F
f
p J F

h
p J F

0
p

that satisfy the compatibility condition

u0 ν h 0 ν, if p 3
2 ,

PΓD u0 ν PΓh 0 , in p 3,
C3 S

which arises from the compatibility between the data h and the initial data u0, the
compatibility condition

hΣ Rtop νΓtop htop Rtop νΣ if p 2,
1
2 νΓtop

hΣ Rtop νΣ
1
2 νΣhtop Rtop νΓtop htop Rtop νΣ if p 2,

C4 S

which arises from the boundary condition on the upper edge of Ω, and the condition

hΣ Rbot νΓbot hbot Rbot νΣ if p 2,
1
2 νΓbot

hΣ Rbot νΣ
1
2 νΣhbot Rbot νΓbot hbot Rbot νΣ if p 2,

C5 S

which arises from the boundary condition on the lower edge of Ω.
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Variable Coefficients

The coefficient

μ BUC Ω;R with inf
Ω

μ 0.

of system P J S is assumed to be variable throughout this paragraph. To prove
maximal regularity for the parabolic system P J S , we use the same strategy as in the
proof of Proposition 2.11. The difference is that we need the trace result with respect
to free slip boundary conditions instead of the trace result with respect to perfect slip
boundary conditions. Also we use the maximal regularity of parabolic problems with
perfect slip boundary conditions instead of the maximal regularity of parabolic problems
with Neumann-Dirichlet boundary conditions.

Theorem 2.16. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T . Assume

Ω : A a, a to be a cylindrical domain, μ BUC Ω;R with infΩ μ 0 and
1 p with p 3

2 , p 2, p 3. Then a unique solution u E
u
p J of system

P J S exists for every data f, h, u0 F
P,S
p J .

Proof. As mentioned before, we proceed similarly to Proposition 2.11. That is, we split
the velocity into u û ũ, such that P J S decouples into two systems; one that
contains the inhomogeneous free slip boundary conditions of P J S and one that is
the parabolic system with homogeneous boundary condition:

û ν h ν on J Γ,

PΓD û ν PΓh on J Γ,
(2.5.1)

and

tũ μΔũ f̃ in J Ω,

ũ ν 0 on J Γ,

PΓD ũ ν 0 on J Γ,

ũ 0 ũ0 in Ω.

(2.5.2)

The data f̃ : f tû μΔû in J Ω and ũ0 : u0 û0 in Ω accomplish the necessary
compatibility conditions C3 S – C5 S and consequently we have f̃ , 0, ũ0 F

P,S
p J .

Set û E
u
p J as the solution of (2.5.1), which exists according to Proposition 1.25.

It is left to prove maximal regularity for (2.5.2). To this end, we proceed in two steps. In
the first step we show that (2.5.2) can be rewritten as a perturbed parabolic system with
perfect slip boundary conditions and in the second step we prove maximal regularity for
this perturbed system using Lemma 2.5.
Step 1. In this step we show that

tũ μΔũ f̃ in J Ω,

ũ ν PΓ ∇ũ ν ν 0 on J Ω,

PΓD ũ ν PΓ ∇ũ ν on J Γ,

ũ 0 ũ0 in Ω,

(2.5.3)

is equivalent to (2.5.2). Obviously PΓD ũ ν and PΓ ∇ũ ν are tangential and therefore
system (2.5.3) is well-posed. Considering

PΓD ũ ν PΓD ũ ν PΓ ∇ũ ν, (2.5.4)
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2 Maximal Lp-Regularity for Elliptic and Parabolic Problems

we see that (2.5.3) is equivalent to (2.5.2).
Step 2. In this final step we show that (2.5.3) has the property of maximal regularity for
a given time interval J . System (2.5.3) is a perturbed parabolic problem with perfect slip
boundary conditions and a linear perturbation R : 0E

u
p J 0F

h
p J which is defined

through R ũ : PΓ ∇ũ ν. Obviously it is R ũ 0 0, if ũ 0 0 in Ω. To prove
maximal regularity for (2.5.3) we want to use Lemma 2.5. But since the initial value ũ0 of
(2.5.3) is in general not zero, we have to rewrite (2.5.3) into two systems; one parabolic
system without the perturbation R and with initial value ũ0 and one parabolic system
with perturbation R and initial value zero. In addition, the data of these two systems
should satisfy the necessary compatibility conditions of a parabolic system with perfect
slip boundary conditions, which is C3 S – C5 S . To this end, we split ũ : v w and
choose a h̃ F

h
p J with

h̃ 0 ν ũ0 ν 0 on Γ if p 3
2 ,

PΓh̃ 0 PΓD ũ0 ν on Γ if p 3.

The equation ũ0 ν 0 is valid, since we have f̃ , 0, ũ0 F
P,S
p J . Thus, we obtain for

(2.5.3) the according systems

tv μΔv 0 in J Ω,

v ν 0 on J Γ,

PΓD v ν PΓh̃ on J Γ,

v 0 ũ0 in Ω,

(2.5.5)

and

tw μΔw f̃ in J Ω,

w ν ĥ R w ν 0 on J Γ,

PΓD w ν ĥ R w on J Γ,

w 0 0 in Ω,

(2.5.6)

with ĥ : PΓ ∇v ν PΓh̃. Obviously ĥ R w PΓ ∇v ν h̃ ∇w ν is
tangential, such that ĥ R w ν 0 in the normal direction. Due to the construction
of h̃, the data 0, h̃, ũ0 fulfils the necessary compatibility conditions C3 S – C5 S of
system (2.5.5) and we have 0, h̃, ũ0 F

P,S
p J . According to Corollary 2.15, it exists a

unique solution v E
u
p J to system (2.5.5).

Now, we have to check all necessary assumptions of Lemma 2.5 to prove maximal regularity
for (2.5.6). Considering the construction of h̃, the equation (2.5.4), the compatibility
of the data f̃ , 0, 0, ũ0 with respect to system (2.5.2) and the compatibility of the data
0, h̃, ũ0 with respect to system (2.5.5), we have

ĥ 0 PΓ ∇v 0 ν PΓh̃ 0 PΓ ∇ũ0 ν PΓD ũ0 ν PΓD ũ0 ν 0.

Thus, the data f̃ , ĥ, 0 satisfies the compatibility conditions C3 S – C5 S of system
(2.5.6). Let γ1, . . . , γn 1 be a orthonormal basis of the tangent space TxΓ for x Γ, then
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2.5 Parabolic Problems: Free Slip Boundary Conditions

for w0 0 the inequality

R w PΓ0Fh
p J PΓ ∇w ν PΓ0Fh

p J

n 1

i 1
γi w ν γi

n 1

i 1
w γiν γi

PΓ0Fh
p J

∇Γ w ν LΓ w PΓ0Fh
p J

C LΓ w PΓ0Fh
p J

holds, with LΓ w : i w γiν γi. Since A R
n 1 is a bounded C3-domain, we have

in addition

LΓ w PΓ0Fh
p J C LΓ W 1 Γ,L Rn,T Γ w PΓ0Fh

p J

C w
0H

1 2
p J,Lp Ω Lp J,H1

p Ω

C J τ w
0H1

p J,Lp Ω 0H
1 2
p J,H1

p Ω

C J τ w 0Eu
p J

with constants C, τ 0 independent of T . Moreover, parabolic problems with perfect
slip boundary conditions P J S have the property of maximal regularity for every data
f, h, u0 F

P,S
p J according to Corollary 2.15. Thus, all assumptions of Lemma 2.5

are satisfied and we obtain maximal regularity for (2.5.6). Maximal regularity of (2.5.5)
and (2.5.6) implies maximal regularity for (2.5.3).
These steps prove maximal regularity for (2.5.2) and thus maximal regularity for P J S

and our initial assertion.
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3 Maximal Lp-Regularity of the Stokes
Equations

The Stokes equations have been subject of much scientific research, e. g. [20, 21, 25, 52,
51, 48]. In this chapter we investigate the Lp-theory of the Stokes equations on cylinders
in detail. More precisely, we prove maximal regularity of the Stokes equations with
perfect slip and free slip boundary conditions. We are not only interested in the Stokes
equations with constant coefficients ρ, μ and α, but also in the Stokes equations with
variable coefficients. Considering the Stokes equations with free slip boundary conditions
and variable coefficients prove to be valuable. We use these results in Chapter 4 to
show the existence of a local-in-time strong solution to a model on the mechanisms of
tropical storms in an Lp-setting, which comprises optimal restrictions on the integrability
parameter p.

We aim to prove maximal regularity of the Stokes equations

ρ tu μΔu α∇q f in J Ω,

div ρu g in J Ω,

BV u, q h on J Γ,

u 0 u0 in Ω.

S J V

For the boundary operators BV , V S , we take BV to be either the perfect slip or
the free slip boundary operator, which are defined as on page 23 in Section 1.4. We denote
by Ω : A a, a R

n a cylindrical domain consisting of a bounded C3-domain A and
an interval a, a with a 0. In addition, J 0, T , T 0, denotes a time interval.
Note that the boundary conditions are imposed on the smooth part Γ Γtop

. Γbot
. Σ

of the boundary of Ω. The compatibility conditions on the edges are imposed below.
Here, Γtop and Γbot denote the boundary of top and bottom of Ω, respectively, and Σ
denotes the lateral boundary. For a comprehensive study of cylindrical domains and their
boundary we refer to Section 1.3.
For the Stokes equations we use the data spaces

F
f
p J Lp J Ω n,

F
g
p J H1 2

p J, Lp Ω Lp J, H1
p Ω ,

F
Λ
p J h W 1 2 1 2p

p J, Lp Λ n Lp J, W 1 1 p
p Λ n :

h ν W 1 1 2p
p J, Lp Λ Lp J, W 2 1 p

p Λ , Λ Γtop, Γbot, Σ

F
h
p J h : Γ R

n : h Γtop : htop
F

Γtop
p J ,

h Σ : hΣ
F

Σ
p J , h Γbot : hbot

F
Γbot
p J ,

F
0
p W 2 2 p

p Ω n,
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3 Maximal Lp-Regularity of the Stokes Equations

and the solution space

Ep J : E
u
p J E

q
p J

H1
p J, Lp Ω n Lp J, H2

p Ω n q Lp J, H1
p Ω : q Ω 0 ,

as defined on page 24 in Section 1.4. If the coefficients ρ, α and μ are constant, we
assume the momentum equation of S J V to take the form

tu μΔu α∇q f in J Ω,

and the divergence equation of S J V as

div u g in J Ω,

cf. Remark 1.12

3.1 Stokes Equations: Perfect Slip Boundary Conditions
This section is devoted to the study of the Stokes equations on a cylindrical domain with
perfect slip boundary conditions, i. e.

ρ tu μΔu α∇q f in J Ω,

div ρu g in J Ω,

u ν h ν on J Γ,

PΓD u ν PΓh on J Γ,

u 0 u0 in Ω.

S J S

We study this system with both constant and variable coefficients ρ, α and μ. Considering
the Stokes equations with perfect slip boundary conditions is interesting, since with their
help and a perturbation argument we are able to show in Section 3.2 that the Stokes
equations with free slip boundary conditions have the property of maximal regularity.
This eventually allows us to prove the existence of a local-in-time strong solution to a
model on the mechanisms of tropical storms in Chapter 4.

Again Ω R
n is a cylindrical domain and J 0, T , T 0, a time interval. We aim to

prove the existence of a unique solution

u, q u, q t, x Ep J

to system S J S for every data

f, g, h, u0 F
S
p J

which meet the necessary regularity and compatibility conditions. On this account we
introduce the data space F

S
p J , which is defined to consist of all

f, g, h, u0 F
f
p J F

g
p J F

h
p J F

0
p

that satisfy the following four compatibility conditions. The first of these conditions is
given by

div u0 g 0 if p 2, (C1)

68



3.1 Stokes Equations: Perfect Slip Boundary Conditions

which arises by touching time trace of the divergence equation. Next, the condition

F g, h ν H1
p J, 0H 1

p Ω , (C2)

compelled by the divergence condition and the normal boundary condition. The compat-
ibility condition

u0 ν h 0 ν, if p 3
2 ,

PΓD u0 ν PΓh 0 , if p 3,
C3 S

which arises from the boundary conditions of S J S on the smooth part of the boundary.
The compatibility condition

hΣ Rtop νΓtop htop Rtop νΣ if p 2,
1
2 νΓtop

hΣ Rtop νΣ
1
2 νΣhtop Rtop νΓtop htop Rtop νΣ if p 2,

C4 S

which arises from the boundary condition on the upper edge of Ω. The condition

hΣ Rbot νΓbot hbot Rbot νΣ if p 2,
1
2 νΓbot

hΣ Rbot νΣ
1
2 νΣhbot Rbot νΓbot hbot Rbot νΣ if p 2,

C5 S

which arises from the boundary condition on the lower edge of Ω. The necessity of these
conditions was shown in Section 1.4.

3.1.1 Constant Coefficients
Throughout this subsection we assume the coefficients

ρ 0, α 0, μ 0

of system S J S to be constant. As mentioned before, we can then consider system
S J S as

tu μΔu α∇q f in J Ω,

div u g in J Ω,

u ν h ν on J Γ,

PΓD u ν PΓh on J Γ,

u 0 u0 in Ω,

S J C
S

according to Remark 1.12 (ii). The proof of maximal regularity of the Stokes equations
S J C

S is proceeded in Proposition 3.2. To do so, we split S J C
S into three systems:

the first is composed of the inhomogeneous perfect slip boundary conditions, the second is
composed of the divergence condition and homogeneous perfect slip boundary conditions,
and the third is composed of the Stokes equations containing a homogeneous divergence
condition as well as a homogeneous perfect slip boundary condition. We prove the
existence of a unique solution to the first system by using the retraction property of the
trace operator with respect to the perfect slip boundary conditions, see Section 1.4. By
using a result of Nau [39], we are able to prove the existence of a unique solution to the
second system. Proving maximal regularity of the Stokes equations with homogeneous
divergence condition as well as homogeneous perfect slip boundary conditions are more
involved. We deal with this type of problem in more detail in the following corollary.
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3 Maximal Lp-Regularity of the Stokes Equations

Corollary 3.1. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T . Assume

Ω : A a, a to be a cylindrical domain, 1 p with p 3
2 , p 2, p 3,

f, 0, 0, u0 F
S
p J , D u 1

2 ∇u ∇u T and α, μ 0. Then system

tu μΔu α∇q f in J Ω,

div u 0 in J Ω,

u ν 0 on J Γ,

PΓD u ν 0 on J Γ,

u 0 u0 in Ω.

(3.1.1)

has a unique solution u, q Ep J .

Proof. It is known that the Lp-Helmholtz projection exists on finite cylinders, cf. [41]. To
prove that (3.1.1) has the property of maximal regularity, we let u E

u
p J Lp J, Lp,σ Ω

be the unique solution of

tu μΔu Hf in J Ω,

u ν 0 on J Γ,

μPΓD u ν 0 on J Γ,

u 0 Hu0 in Ω,

(3.1.2)

which exists according to Corollary 2.12. Let us define ∇q : 1 H f . Then, u and ∇q
satisfy the equation

tu μΔu ∇q Hf 1 H f f,

in J Ω. Since u Lp J, Lp,σ Ω , also the equation

div u 0 in J Ω,

holds. Furthermore, we have div u 0 in J Ω and u0 ν 0 in J Γ, due to the
compatibility conditions (C1) and C3 S . Therefore, it is u0 W

2 2 p
p Ω n Lp,σ Ω

and we have Hu0 u0. Hence, u, q Ep J is a solution to (3.1.1).
To prove that u, q Ep J is the unique solution to (3.1.1), let v, p Ep J be a
solution to (3.1.1) with data f 0 and u0 0. Assume u, q Ep J to be the solution
to (3.1.1) with data f 0 and u0 0 as constructed above. We have v Lp J, Lp,σ Ω ,
since div v 0 in J Ω and v ν 0 on J Γ. It follows that Hv v. Using (2.4.10),
we obtain

tv μΔv H tv μΔv H tv μΔv α∇p H 0 0

in J Ω and v 0 0 in Ω. Thus, v is a solution to (3.1.2) with data f 0 and u0 0.
Due to Corollary 2.12 the system (3.1.2) has a unique solution. Therefore, it is v u.
The pressure q E

q
p J is also unique, since its divergence ∇q 1 H f is defined

through u and it is assumed to have mean value zero. Thus, u, q is the unique solution
to (3.1.1).

With the help of this proposition we are now able to prove maximal regularity of S J C
S .

Proposition 3.2. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T . Assume

Ω : A a, a to be a cylindrical domain, 1 p with p 3
2 , p 2, p 3,

α, μ 0 and D u 1
2 ∇u ∇u T . Then system S J C

S has a unique solution
u, q Ep J for every data f, g, h, u0 F

S
p J .
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3.1 Stokes Equations: Perfect Slip Boundary Conditions

Proof. We decompose the velocity u u1 u2 u3 according to the three systems

u1 ν h ν on J Γ,

PΓD u1 ν PΓh on J Γ,
(3.1.3)

div u2 g div u1 in J Ω,

u2 ν 0 on J Γ,

PΓD u2 ν 0 on J Γ,

(3.1.4)

and

tu3 μΔu3 α∇q f t μΔ u1 t μΔ u2 in J Ω,

div u3 0 in J Ω,

u3 ν 0 on J Ω,

PΓD u3 ν 0 on J Ω,

u3 0 u0 u1 0 u2 0 in Ω.

(3.1.5)

Our strategy is to find a solution to (3.1.3) and (3.1.4). Then, we are left to deal with
(3.1.5), but where the right-hand side depends on the solutions to (3.1.3) and (3.1.4)
only. Using Corollary 3.1 then yields a unique solution u3, q to system (3.1.5) and thus
maximal regularity of S J C

S .

Concerning the solvability of (3.1.3):
From Proposition 1.21 we know that the trace operator with respect to perfect slip
boundary condition is a retraction and thus system (3.1.3) has a solution u1 E

u
p J .

Concerning the solvability (3.1.4):
To obtain a solution u2 E

u
p J , let us first consider the problem

Δp g div u1 in J Ω,

νp 0 on J Γ.
(3.1.6)

Making use of [39, Theorem 8.22] gives us a solution ∇p E
u
p J to (3.1.6). By using

u2 : ∇p E
u
p J , we obtain a solution that solves the system

div u2 div ∇p Δp g div u1 in J Ω,

u2 ν ∇p ν νp 0 on J Γ,

PΓD u2 ν PΓD ∇p ν 0 on J Γ.

This follows from equation (2.4.9) and the fact that the Theorem of Schwarz is valid.
This implies that u2 E

u
p J is a solution to (3.1.4).

Concerning the solvability of (3.1.5):
From Corollary 3.1 we obtain a unique solution u3, q Ep J of system (3.1.5).

Combining the solutions of (3.1.3), (3.1.4) and (3.1.5), we obtain a unique solution
u, q u1 u2 u3, q3 Ep J of S J C

S .
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3 Maximal Lp-Regularity of the Stokes Equations

3.1.2 Variable Coefficients
Within this subsection we assume the coefficients of S J S to be variable, i. e.

ρ W 2 Ω, 0, with 1
ρ W 2 Ω, 0,

and

α BUC1 Ω , μ BUC1 Ω with inf
Ω

α, inf
Ω

μ 0.

We prove that the Stokes equations S J S with these coefficients have the property of
maximal regularity. More precisely, the main result of this subsection is:

Theorem 3.3. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T with

T 0. Assume Ω : A a, a to be cylindrical domain, ρ W 2 Ω, 0, with
1
ρ W 2 Ω, 0, , α BUC1 Ω , μ BUC1 Ω with infΩ α, infΩ μ 0, and 1 p

with p 3
2 , p 2, p 3. Then the Stokes equations S J S have a unique solution

u, q Ep J for every data f, g, h, u0 F
S
p J .

The proof of this theorem is provided at the end of this subsection. In the following
paragraph, we state our strategy for proving this theorem.

Strategy

To prove Theorem 3.3, i. e. to show maximal regularity of S J S , we progressively
simplify system S J S . That is, in the proof of Theorem 3.3, with the help of a
substitution and a perturbation argument we show that it is sufficient to establish
maximal regularity for the system

tu μΔu α∇q f in J Ω,

div u g in J Ω,

u ν h ν on J Γ,

PΓD u ν PΓh on J Γ,

u 0 u0 in Ω,

(3.1.7)

in order to prove maximal regularity of S J S . Then, in Proposition 3.9 we see that it
is sufficient to prove maximal regularity for

tu μΔu α∇q f in J Ω,

div u 0 in J Ω,

u ν 0 on J Γ,

PΓD u ν PΓh on J Γ,

u 0 0 in Ω,

(3.1.8)

in order to prove maximal regularity of (3.1.7). So we reduce system S J S to the much
simpler problem (3.1.8). The actual proof, then, is to show maximal regularity of (3.1.8),
which is done in Proposition 3.8. To this end, we use the already mentioned localization
argument for variable coefficients, which is also used in Denk, Hieber and Prüss [15,
Theorem 5.7]. However, for this we need additional time regularity property for the
pressure q (Proposition 3.4) and maximal regularity of the Stokes equations with variable
coefficients, which are assumed to be small with respect to the L -norm (Proposition 3.7).
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3.1 Stokes Equations: Perfect Slip Boundary Conditions

Regularity of the pressure

The following result shows that it is possible to obtain additional time regularity for the
pressure, provided the data meets some additional assumptions.

Proposition 3.4. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T with

T 0. Assume Ω : A a, a to be a cylindrical domain, α BUC1 Ω , μ BUC1 Ω
with infΩ α, infΩ μ 0, and u, q Ep J to be a solution to the system

tu μΔu α∇q f in J Ω,

div u 0 in J Ω,

u ν 0 on J Γ,

PΓD u ν PΓh on J Γ,

u 0 0 in Ω,

(3.1.9)

where f, 0, h, 0 F
S
p J satisfy the additional regularity property

f 0Hϑ
p J, Lp Ω ,

for some ϑ 0, 1
2

1
2p . Then

αq 0Hϑ
p J, Lp Ω

and the estimate

αq 0Hϑ
p J, Lp Ω C u 0Eu

p J f 0Hϑ
p J,Lp Ω

is valid with constant C 0.

Proof. Given ψ Lp Ω , where 1
p

1
p 1. Elliptic problems with variable coefficients

have maximal Lp-regularity due to Theorem 2.1. Thus, we take φ H2
p Ω with φ Ω 0

to be a solution of
div α∇φ αψ0 in Ω,

νφ 0 on Γ.
(3.1.10)

Here, αψ0 : αψ αψ Ω, where ϕ Ω : 1
Ω Ω ϕ dx denotes the mean value of ϕ Lp Ω .

Due to the fact that the pressure q is assumed to have mean value zero, as well as (3.1.10),
we can deduce by using partial integration

αq, ψ Ω q, αψ Ω

q, αψ0 Ω q, αψ Ω Ω

q, αψ0 Ω

q, div α∇φ Ω

Ω
qν α∇φ dσ

Ω
α∇q ∇φ dx

α∇q, ∇φ Ω.

In view of the momentum equation, this leads to

α∇q, ∇φ Ω f tu μΔu, ∇φ Ω .
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3 Maximal Lp-Regularity of the Stokes Equations

Partial integration furthermore implies

tu, ∇φ Ω t u, ∇φ Ω 0

and

μΔu, ∇φ Ω
Ω

∇u T ν μ∇φ dσ
Ω

∇u : ∇ μ∇φ dx

νu, μ∇φ Ω ∇u, ∇ μ∇φ Ω .

In summary, we have obtained

αq, ψ Ω νu, μ∇φ Ω ∇u, ∇ μ∇φ Ω f, ∇φ Ω .

Next, we observe that

μ∇φ Lp Ω μ L Ω ∇φ Lp Ω C ∇φ H1
p

Ω C ∇2φ Lp Ω

C αψ0 Lp Ω C αψ Lp Ω C ψ Lp Ω

and

∇ μ∇φ Lp Ω ∇μ∇φ Lp Ω μ∇2φ
Lp Ω

∇μ L Ω ∇φ Lp Ω μ L Ω ∇2φ
Lp Ω

C ψ Lp Ω C αψ0 Lp Ω

C ψ Lp Ω ,

with constant C 0, which only depends on Ω, α and μ. Now, the operator t : D t

Lp J Lp J with D t 0H1
p J has an H -calculus with angle π

2 and the fractional
power ϑ

t Lis D ϑ
t , Lp J with D ϑ

t Lp J , D t ϑ Hϑ
p J for 0 ϑ 1

2
1
2p ,

cf. [46]. Hence, we can estimate ϑ
t αq Lp Ω as

ϑ
t αq Lp Ω

sup
ψ Lp Ω

ψ p 1

ϑ
t αq , ψ Ω

sup
ψ Lp Ω

ψ p 1

ϑ
t νu, μ∇φ Γ sup

ψ Lp Ω
ψ p 1

ϑ
t ∇u, ∇ μ∇φ Ω sup

ψ Lp Ω
ψ p 1

ϑ
t f, ∇φ Ω

C ϑ
t νu Lp Γ

ϑ
t ∇u Lp Ω

ϑ
t ∇u Lp Ω ,

for almost all t J and C 0. We can then infer that

J
ϑ
t αq p

Lp Ω dt
1 p

C J
ϑ
t νu p

Lp Ω dt
1 p

J
ϑ
t ∇u p

Lp Ω dt
1 p

J
ϑ
t f p

Lp Ω dt
1 p

C ϑ
t νu Lp J,Lp Γ

ϑ
t ∇u Lp J,Lp Ω

ϑ
t f Lp J,Lp Ω

C u 0Eu
p J f 0Hϑ

p J,Lp Ω ,
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with constant C 0, which only depends on Ω, α and μ. In conclusion, note that

αq 0Hϑ
p J,Lp Ω C ϑ

t αq Lp J,Lp Ω C
J

ϑ
t αq p

Lp Ω dt
1 p

.

Thus, we proved our initial assertion.

Maximal Regularity of System (3.1.7)

We begin by proving a perturbation argument, which is used several times throughout
this chapter.

Lemma 3.5. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T . Assume

Ω : A a, a to be a cylindrical domain, f, g, h, u0 F
S
p J , 1 p with

p 3
2 , p 2, p 3. Let also

L : Ep J F
S
p J

be a linear operator, where we use the notation 0L : L 0Ep J : 0Ep J 0F
S
p J .

Let f, h F
f
p J F

h
p J satisfy the compatibility conditions C4 S – C5 S and

h 0 0 in Ω. Let R1 : Ep J F
f
p J , R2 : 0Ep J 0F

h
p J be linear functions

with R2 u, q 0 0 for u E
u
p J with u 0 0 in Ω. If L is an isomorphism, and

R1 u, q
F

f
p J

, R2 u, q 0Fh
p J C J τ u, q 0Ep J , (3.1.11)

or

R1 u, q
F

f
p J

, R2 u, q 0Fh
p J

1
0L 1

0F
S
p J 0Ep J

u, q 0Ep J , (3.1.12)

for every u, q Ep J with u 0 0 in Ω and some constant C, τ 0, which are
independent of J , then

L u, q f R1 u, q , 0, h R2 u, q , 0 (3.1.13)

has a unique solution u, q Ep J .

Proof. The functions f, h F
f
p J F

h
p J satisfy the necessary compatibility conditions,

and R1, R2 are linear with R2 u, q 0 0, if u 0 0 in Ω. Therefore, we can rewrite
(3.1.13) as

L u, q f, 0, h, 0 R1 u, q , 0, R2 u, q , 0 .

This equation is equivalent to

u, q 0L 1 f, 0, h 0L 1 R1 u, q , 0, R2 u, q ,

since L is an isomorphism due to our assumptions. Subtraction yields

Id 0L 1 R1, 0, R2 u, q 0L 1 f, 0, h .

In the following step we prove that Id 0L 1 R1, 0, R2 is bijective, because then

u, q Id 0L 1 R1, 0, R2
1

0L 1 f, 0, h
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3 Maximal Lp-Regularity of the Stokes Equations

would be the unique solution to (3.1.13). In order to do so, we show that

0L 1 R1, 0, R2 0Ep J 0Ep J 1.

We have the bounds (3.1.11) or (3.1.12) for every u, q Ep J with u 0 0 in Ω and
some constant C, τ 0, which are independent of J . In the case of (3.1.12) we have

0L 1 R1, 0, R2 0Ep J 0Ep J 0L 1
0F

S
p J 0Ep J

R1, 0, R2 0Ep J 0Fp J

0L 1
0F

S
p J 0Ep J

1
0L 1

0F
S
p J 0Ep J

1.

In the case of (3.1.11), we can make the terms R1 and R2 so small that the estimate

0L 1 R1, 0, R2 0Ep J 0Ep J 0L 1
0F

S
p J 0Ep J

R1, 0, R2 0Ep J 0F
S
p J 1,

holds. We do this by choosing a sufficiently small time interval J . By applying a Neumann
series argument we obtain the existence of Id 0L 1 R1, 0, R2

1 and thus the unique
solvability of (3.1.13) on a small time interval. We can also show the unique solvability
of (3.1.13) for any given time interval J , since the admitted length of the time interval
J does not depend on the data. This is done by successively solving the equation on
small time intervals of fixed length, cf. Lemma 2.5, where a similar argument has been
used.

Remark 3.6. Let the same assumptions as in Lemma 3.5 apply, with R2 0. Then, we
can conclude that

L u, q f R1 u, q , g, h, u0

has a unique solution u, q Ep J for every data f, g, h, u0 F
S
p J by using the

same arguments as in Lemma 3.5. Since no perturbations exists on the boundary due to
R2 0, no problems can arise regarding the compatibilities between the boundary and
the initial value.
As mentioned in Strategy, the most difficult part of proving solvability of (3.1.7) is to
prove maximal regularity for system (3.1.8), which is done in Proposition 3.8. Before
we address this issue, however, we first have to prove maximal regularity of the Stokes
equations with variable coefficients which are assumed to be small with respect to the
L -norm, since we use it in the proof of Proposition 3.8.

Proposition 3.7. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T . Assume

Ω : A a, a to be a cylindrical domain, f, g, h, u0 F
S
p J , 1 p with p 3

2 ,
p 2, p 3 and α0, μ0 0. Then there exists an ε 0, such that for all α1 BUC1 Ω
and μ1 BUC Ω with infΩ α, infΩ μ 0 and μ1 , α1 ε the system

tu μ0 μ1 Δu α0 α1 ∇q f in J Ω,

div u g in J Ω,

u ν h ν on J Γ,

PΓD u ν PΓh on J Γ,

u 0 u0 in Ω,

(3.1.14)

has a unique solution u, q Ep J .
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3.1 Stokes Equations: Perfect Slip Boundary Conditions

Proof. System (3.1.14) is equivalent to

tu μ0Δu α0∇q f μ1Δu α1∇q in J Ω,

div u g in J Ω,

u ν h ν on J Γ,

PΓD u ν PΓh on J Γ,

u 0 u0 in Ω.

(3.1.15)

Let us use Lc : Ep J F
S
p J to denote the operator defined by the left-hand side

of the above system. Making use of Proposition 3.2 with q αq, the Stokes equations
with constant coefficients have maximal regularity. Therefore, the operator Lc is an
isomorphism. Let R : 0Ep J F

f
p J with R u, q : μ1Δu α1∇q define the linear

perturbation in the momentum equation of (3.1.15). Obviously it is R u, q 0 0, if
u 0 0 in Ω. Then, we have the following bound on R:

R u, q
F

f
p J

μ1Δu α1∇q Lp J Ω

μ1 Δu Lp J Ω α1 ∇q Lp J Ω

μ1 u Lp J,H2
p Ω α1 q Lp J,H1

p Ω

μ1 α1 u, q
0Ep J

2ε u, q
0Ep J .

By choosing ε, such that ε 1
2 0L 1

c
, we obtain

R u, q
F

f
p J

1
0L 1

0F
S
p J 0Ep J

u, q 0Ep J .

Thus, all assumptions of Remark 3.6 are satisfied and we obtain a unique solution
u, q Ep J to

L u, q f R u, q , g, h, u0 , (3.1.16)

by applying Remark 3.6. Since (3.1.15) can be rewritten as (3.1.16), u, q Ep J is
also a unique solution to (3.1.15).

Using maximal regularity of the Stokes equations with variable coefficients, that are
assumed to be small with respect to the L -norm, and some additional time regularity
property for the pressure q, we are now able to prove maximal regularity of system
(3.1.8).

Proposition 3.8. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T .

Assume Ω : A a, a to be a cylindrical domain, α BUC1 Ω , μ BUC1 Ω ,
infΩ α, infΩ μ 0, and 1 p with p 3

2 , p 2, p 3. Then system

tu μΔu α∇q f in J Ω,

div u 0 in J Ω,

u ν 0 on J Γ,

PΓD u ν PΓh on J Γ,

u 0 0 in Ω,

(3.1.8)

has a unique solution u, q Ep J for every data f 0W
1 2
p J, Lp Ω and h F

h
p J

that fulfils the compatibility conditions (C1)– C8 .
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3 Maximal Lp-Regularity of the Stokes Equations

Proof. This proof is based on the proof of [15, Theorem 5.7], where maximal regularity
of elliptic operators in a Banach space of class HT with variable coefficients was demon-
strated.

We begin by constructing constants that satisfy the assumptions of Proposition 3.7 for
variable coefficients, so that we can use the former result to prove that system (3.1.8)
has the property of maximal regularity. The given coefficients μ and α are uniformly
bounded and continuous. Since Ω̄ is compact, we can cover Ω̄ by a finite number N N

of balls Uj Brj xj , such that

μ x μ xj ε and α x α xj ε, (3.1.17)

for all x xj rj and j 1, . . . , N . Now, we can define the desired coefficients by
reflection, i. e.

μj x :
μ x , x Ūj ,

μ xj r2
j

x xj

x xj
2 , x Ūj ,

and

αj x :
α x , x Ūj ,

α xj r2
j

x xj

x xj
2 , x Ūj ,

for j 1, . . . , N . Hence for every x Ūj we have that rj x xj . From this we
obtain

xj r2
j

x xj

x xj
2 xj r2

j

x xj

x xj
2 rj x xj

x xj

x xj
2 rj .

Using (3.1.17), it follows that

μ xj r2
j

x xj

x xj
2 μ xj ε and α xj r2

j

x xj

x xj
2 α xj ε.

On the other hand, for every x Ūj we have x xj rj . Therefore, it follows again
from (3.1.17) that

μ x μ xj ε and α x α xj ε

for every x Ūj . By definition of αj and μj we can then conclude that μj x μ xj

ε and αj x α xj ε for all x Ω̄ and j 1, . . . , N . Due to Proposition 3.7, we
now obtain the property of maximal regularity for systems of the form

tu μj x Δu αj x ∇q f in J Ω,

div u 0 in J Ω,

u ν 0 on J Γ,

PΓD u ν PΓh on J Γ,

u 0 0 in Ω,

for j 1, . . . , N . However, maximal regularity of the systems above is not immediately
applicable to our system (3.1.8), since μj x μ x and αj x α x only holds for
x Ūj , j 1, . . . , N . To be able to utilise maximal regularity of the above systems
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3.1 Stokes Equations: Perfect Slip Boundary Conditions

for (3.1.8) we choose a partition of unity ϕj C R
n , such that 0 ϕj x 1 and

supp ϕj Uj for j 1, . . . , N . Then, we have supp ϕju Uj and supp ϕjq Uj .
Therefore, the equalities μ ϕju μj ϕju and α ϕjq αj ϕjq apply here for j
1, . . . , N . By multiplying system (3.1.8) with ϕj we then arrive at

t ϕju μjΔ ϕju αj∇ ϕjq ϕjf μΔϕj u 2μ∇ϕj∇u α∇ϕj q,

div ϕju ∇ϕj u,

ϕju ν 0,

PΓD ϕju ν PΓ ϕjh 1
2PΓ ∇ϕj u u ∇ϕj ν,

ϕju 0 0.

(3.1.18)

In a next step we would like to prove maximal regularity for the systems (3.1.18), since
this directly implies maximal regularity of (3.1.8). Because of the way μj and αj were
constructed, the systems (3.1.18) are perturbed version of the systems discussed in
Proposition 3.7. To prove maximal regularity of (3.1.18), we split it into three systems.
Let us set ϕju uj ūj ∇ηj and ϕjq qj q̄j tηj μjΔηj , where

ηj 0H1
p J, H2

p Ω 0H1 2
p J, H3

p Ω

are solutions to elliptic problems of the form

Δηj ∇ϕj u in J Ω,

νηj 0 on J Γ,

by using the Lemmas 2.1 and 2.3 with X 0H1
p J and X 0H

1 2
p J , respectively.

Then, we obtain the two systems

tūj μjΔūj αj∇q̄j ϕjf in J Ω,

div ūj 0 in J Ω,

ūj ν 0 on J Γ,

PΓD ūj ν PΓ ϕjh on J Γ,

ūj 0 0 in Ω,

(3.1.19)

and

tuj μjΔuj αj∇qj μΔϕj u 2μ∇ϕj∇u α x ∇ϕj q in J Ω,

div uj 0 in J Ω,

uj ν 0 on J Γ,

PΓD uj ν 1
2PΓ ∇ϕj u u ∇ϕj ν PΓD ∇ηj ν on J Γ,

uj 0 0 in Ω.

(3.1.20)

Thus, we have separated system (3.1.18) for every j 1, . . . , N into the Stokes equations
dealing with the given data f, h and the Stokes equations dealing with the perturbations
in the momentum equation and on the boundary resulting from the multiplication of
(3.1.8) with ϕj . Both systems have homogeneous divergence equations according to the
existence of ηj defined as above. This splitting allows us to apply Proposition 3.7 to
the systems (3.1.19) and (3.1.20). Now, we proceed in three steps. The first two steps
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3 Maximal Lp-Regularity of the Stokes Equations

establish maximal regularity for the systems (3.1.19) and (3.1.20), whereas in the third
step we estimate ηj appropriately and infer maximal regularity for (3.1.18) and thus, for
our initial system (3.1.8).

Step 1. According to Proposition 3.7, we get unique solutions ūj , q̄j 0Ep J to the
systems (3.1.19) which satisfy

ūj , q̄j 0Ep J C f, h
F

f
p J Fh

p J
. (3.1.21)

This implies

q̄j 0Hϑ
p J,Lp Ω C ūj 0Eu

p J f 0Hϑ
p J,Lp Ω C f, h

F
f
p J Fh

p J

for j 1, . . . , N and ϑ 0, 1
2

1
2p due to Proposition 3.4.

Step 2. Let us call Lj : Ep J F
f
p J PΓ0F

h
p J the operator defined by the left-hand

side of the first and fourth equation of (3.1.20) with Ep J : v, p 0Ep J : div v
0, v ν 0 on Γ . Then we can rewrite (3.1.20) as

Lj uj , qj

μΔϕj u 2μ∇ϕj∇u α∇ϕj , 1
2PΓ ∇ϕj u u ∇ϕj ν PΓD ∇ηj ν .

Due to Proposition 3.7 the operator Lj has the property of maximal regularity for
every data f, h F

f
p J PΓ0F

h
p J and j 1, . . . , N . Therefore, L 1

j exists and
multiplication by L 1

j leads to

uj , qj L 1
j 0, PΓD ∇ηj ν

L 1
j μΔϕj u 2μ∇ϕj∇u α∇ϕj q, 1

2PΓ ∇ϕj u u ∇ϕj ν .

We want all terms of the equation to exist locally on Uj . Therefore, for j 1, . . . , N we
fix some ψj C R

n with ψj 1 on supp ϕj and supp ψj Uj . Then, we multiply
the equation above with ψj to obtain

uj , qj ψjL 1
j 0, PΓD ∇ηj ν ψjL 1

j Cj uj , qj ,

because supp uj , supp qj supp ϕj , since ϕju uj ūj ∇ηj and ϕjq qj q̄j

tηj μjΔηj . Let

Cj uj , qj : μΔϕj u uj 2μ∇ϕj∇u uj α∇ϕj q qj ,

1
2PΓ ∇ϕj u uj u uj ∇ϕj ν

be the differential operators for j 1, . . . , N , which depend only on uj , qj . This is so,
because u, q j ψj uj ūj ∇ηj , where ūj , ηj are as defined above. By rearranging
the terms we get

Id ψjL 1
j Cj uj , qj ψjL 1

j 0, PΓD ∇ηj ν .

In case the inverse Id ψjL 1
j Cj

1 exists, we would obtain

uj , qj Id ψjL 1
j Cj

1ψjL 1
j 0, PΓD ∇ηj ν
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3.1 Stokes Equations: Perfect Slip Boundary Conditions

and therefore the property of maximal regularity for (3.1.20). In order to prove existence
of the inverse Id ψjL 1

j Cj
1, we show that ψjL 1

j Cj 1 and apply a Neumann
series argument. Regarding the maximal regularity of the operators Lj for j 1, . . . , N
we obtain that all Lj are bounded, since the operators are defined for v, p Ep J
which by definition fulfil v 0 0 in Ω. Thus, we infer

ψjL 1
j Cj Ep J Ep J ψj L 1

j F
f
p J PΓ0Fh

p J Ep J
Cj Ep J F

f
p J PΓ0Fh

p J

1 C Cj Ep J F
f
p J PΓ0Fh

p J
.

Moreover, we have

Cj uj , qj F
f
p J PΓ0Fh

p J

μΔϕj u 2μ∇ϕj∇u α∇ϕjq
F

f
p J

1
2PΓ ∇ϕj u u ∇ϕj ν PΓ0Fh

p J .

By using the regularity of the pressure q from Proposition 3.4 for the first term of the
sum, we obtain

μΔϕj u 2μ∇ϕj∇u α∇ϕjq
F

f
p J

μΔϕj u 2μ∇ϕj∇u α∇ϕjq Lp J Ω

C J τ μΔϕj u 2μ∇ϕj∇u α∇ϕjq 0Hϑ
p J,Lp Ω

C J τ u 0Hϑ
p J,Lp Ω ∇u 0Hϑ

p J,Lp Ω αq 0Hϑ
p J,Lp Ω

C J τ u 0Hϑ
p J,H1

p Ω u 0Hϑ
p J,H1

p Ω αq 0Hϑ
p J,Lp Ω

C J τ u 0Eu
p

f 0Hϑ
p J,Lp Ω .

Here, j 1, . . . , N and ϑ 0, 1
2

1
2p . The second term can be estimated as follows

1
2PΓ ∇ϕj u u ∇ϕj ν PΓ0Fh

p J C PΓ ∇ϕj u PΓ0Fh
p J

C ∇ϕj u
0H

1 2
p J,Lp Ω Lp J,H1

p Ω

C ∇ϕj W 1 J,Ω u
0H

1 2
p J,Lp Ω Lp J,H1

p Ω

C u 0H1 2 J,Lp Ω Lp J,H1
p Ω

C J τ u
H1

p J,Lp Ω 0H
1 2
p J,H1

p Ω

C J τ u 0Eu
p J .

Here, C, τ 0 are constants which are independent of J . Then, we can estimate Cj ε
for every fixed ε 0 provided that J is sufficiently small. Since the admitted length of
the time interval J does not depend on the data, we can show Cj ε for every fixed
ε 0 for any given time interval. This is done by successively validating this on small
time intervals of fixed length, cf. Lemma 2.5 where a similar argument has been used.
Now we can guarantee

L 1
j Cj 1
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3 Maximal Lp-Regularity of the Stokes Equations

and obtain unique solutions uj , qj Ep J of the systems (3.1.20) for j 1, . . . , N .
Moreover, they satisfy

uj , qj 0Ep J PΓD ∇ηj ν PΓ0Fh
p J

C ∇2ηj
0W

1 2 1 p
p J,Lp Γ Lp J,W

1 1 p
p Γ

C ∇ϕj u
0W

1 2 1 p
p J,Lp Ω Lp J,H1

p Ω
C J τ u 0H1

p J,Lp Ω Lp J,H1
p Ω

C J τ u 0Eu
p J .

(3.1.22)

For the pressure term Proposition 3.4 furthermore implies

qj 0Hϑ
p J,Lp Ω C uj 0Eu

p J μΔϕj u 2μ∇ϕj∇u α∇ϕjq 0Hϑ
p J,Lp Ω

C u 0Eu
p J f

F
f
p J

,

for ϑ 0, 1
2

1
2p .

Step 3. Using Proposition 3.4 once again, we can estimate ηj as follows

μjΔηj tηj 0Hϑ
p J,Lp Ω ϕjq qj q̄j 0Hϑ

p J,Lp Ω

C u 0Eu
p J C f, h

F
f
p J Fh

p J
.

Additionally using

Δηj 0H1
p J,Lp Ω C u 0Eu

p J ,

which holds by construction, we conclude

tηj 0Hϑ
p J,Lp Ω , Δηj 0Hϑ

p J,Lp Ω C u 0Eu
p J C f, h

F
f
p J Fh

p J
.

In the above equations j is always in 1, . . . , N . Using

tηj Lp J,H2
p Ω , Δηj 0H1

p J,Lp Ω Lp J,H2
p Ω C u 0Eu

p J ,

we also infer

t∇ηj Lp J Ω t∇ηj Lp J,Lp Ω

C tηj
0H

ϑ 2
p J,Lp Ω Lp J,H1

p Ω

C J τ
tηj 0Hϑ

p J,Lp Ω Lp J,H2
p Ω

J τ C u 0Eu
p J C f, h Fp J f Fh

p J

and

Δ∇ηj Lp J Ω Δ∇ηj Lp J,Lp Ω

C Δηj
0H

1 2
p J,Lp Ω Lp J,H1

p Ω

C J τ Δηj 0H1
p J,Lp Ω Lp J,H2

p Ω

C J τ u 0Eu
p J ,
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3.1 Stokes Equations: Perfect Slip Boundary Conditions

for j 1, . . . , N . Hence, we have

∇ηj , μjΔηj ρ tηj 0Ep J C J τ u 0Eu
p J C f, h

F
f
p J Fh

p J
. (3.1.23)

Finally, (3.1.21), (3.1.22) and (3.1.23) imply that

u, q j ϕju, ϕjq j uj ūj ∇ηj , qj q̄j tηj μjΔηj

S u, q T f, h 0Ep J .
(3.1.24)

Here, S and T are two linear operators that satisfy

S u, q 0Ep J C J τ u 0Eu
p J and T f, h 0Ep J C f, h

F
f
p J Fh

p J
.

With the help of a Neumann series argument we can then show that Id S is invertible
and thus that

u, q Id S 1T f, h

is the unique solution to system (3.1.8).

Now, using a perturbation argument and Proposition 3.8 we can prove maximal regularity
of (3.1.7).

Proposition 3.9. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T . Assume

Ω : A a, a to be a cylindrical domain, 1 p with p 3
2 , p 2, p 3 and

α BUC1 Ω , μ BUC1 Ω with infΩ α, infΩ μ 0. Then system

tu μΔu α∇q f in J Ω,

div u g in J Ω,

u ν h ν on J Γ,

PΓD u ν PΓh on J Γ,

u 0 u0 in Ω,

(3.1.7)

has a unique solution u, q Ep J , for every data f, g, h, u0 F
S
p J .

Proof. To prove maximal regularity of (3.1.7) our strategy is to define appropriate u1, q1 ,
u2, q2 , u3, q3 Ep J , such that their sums u : u1 u2 u3 and q : q1 q2 q3

are unique solutions to (3.1.7).

Concerning the solvability of u1, q1 :
Let H : Lp Ω n Lp Ω n denote the Helmholtz projection as introduced in Section 1.3.
We define ∇q1 : 1 H 1 α f with q1 Ω 0. Then, let u1 E

u
p J be the unique

solution to

tu1 μΔu1 f α∇q1 in J Ω,

u1 ν h ν on J Γ,

PΓD u1 ν PΓh on J Γ,

u1 0 u0 in Ω,

(3.1.25)

which exists according to Corollary 2.15.
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3 Maximal Lp-Regularity of the Stokes Equations

Concerning the solvability of u2, q2 :
For every t J we choose ϕ t, H2

p Ω with ϕ Ω 0 to be a solution of the elliptic
problem

div α∇ϕ t, g t, div u1 t, in Ω,

νϕ 0 in Ω,
(3.1.26)

which exists due to Theorem 2.1. Next, let us define

u2 : α∇ϕ and q2 : tϕ μΔϕ.

Since g F
g
p J and div u1 0W

1 2
p J, Lp Ω , we obtain ∇2ϕ 0W

1 2
p J, Lp Ω and

u2, q2 Ep J . Now, we define data, such that u2, q2 is the unique solution to the
Stokes equations with respect to these data. For that purpose, we define

f3 : tu2 μΔu2 α∇q2

t α∇ϕ μΔ α∇ϕ α∇q2

α∇ tϕ αμ∇Δϕ 2μ ∇2ϕ T ∇α μ Δα ∇ϕ α∇q2

α ∇μ Δϕ 2μ ∇2ϕ T ∇α μ Δα ∇ϕ,

and h3 F
h
p J with

h3 ν : u2 ν α∇ϕ ν α ν 0 on J Γ,

PΓ h3 : PΓD u2 ν on J Γ.

We then obtain f3 0W
1 2
p J, Lp Ω , since ∇2ϕ 0W

1 2
p J, Lp Ω , and h3 F

h
p J ,

because of Proposition 1.21. Since the given data g and u0 satisfy the compatibility
condition (C1), we have

g div u1 0 g 0 div u0 0.

Thus, we obtain ϕ 0 0 and therefore f3 0 0 and u2 0 0. Consequently, we get
that u2, q2 Ep J is the solution to

tu2 μΔu2 α∇q2 f3 in J Ω,

div u2 g div u1 in J Ω,

u2 ν h3 ν 0 on J Γ,

PΓD u2 ν PΓ h3 on J Γ,

u2 0 0 in Ω.

The data f3, g div u1 , h3, 0 satisfies the necessary compatibility conditions by
construction.

Concerning the solvability of u3, q3 :
Finally, let u3, q3 Ep J be the unique solution to

tu3 μΔu3 α∇q3 f3 in J Ω,

div u3 0 in J Ω,

u3 ν 0 on J Γ,

PΓD u3 ν PΓh3 on J Ω,

u3 0 0 in Ω,
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3.1 Stokes Equations: Perfect Slip Boundary Conditions

with data f3, h3 0W
1 2
p J, Lp Ω F

h
p J that satisfy the necessary compatibility

conditions (C1)– C5 S . Such a solution exists because of Proposition 3.8.

Combining u : u1 u2 u3 E
u
p and q : q1 q2 q3 E

q
p, we find u, q Ep to be

the unique solution to (3.1.7).

Proof of Theorem 3.3

To prove maximal regularity of the Stokes equations S J S , we split them into two
systems, the first system is composed of the inhomogeneous perfect slip boundary con-
ditions, and the second system is composed of the Stokes equations with homogeneous
perfect slip boundary conditions. Using the retraction property of the trace operator with
respect to the perfect slip boundary conditions, cf. Section 1.5, we show the existence of
a solution to the latter system. The remainder of the proof is then devoted to maximal
regularity of the Stokes equations with homogeneous perfect slip boundary conditions.
To this end, we use a substitution to reduce the Stokes equations with homogeneous
boundary conditions to a perturbed version of system (3.1.7). Using Proposition 3.9 and
Lemma 3.5, we then infer maximal regularity of S J S .

As a first step, we split u into two parts u û ũ. Using this decomposition, S J S

decouples into the two subsystems

û ν h ν on J Γ,

PΓD û ν PΓh on J Γ,
(3.1.27)

and

ρ tũ μΔũ α∇q f̃ in J Ω,

div ρũ g̃ in J Ω,

ũ ν 0 on J Γ,

PΓD ũ ν 0 on J Γ,

ũ 0 ũ0 in Ω.

(3.1.28)

The data f̃ : f ρ tû μΔû in J Ω, g̃ : g div ρû in J Ω and ũ0 :
u0 û0 in Ω satisfy the necessary compatibility conditions (C1)– C5 S by construction,
because these conditions are linear. Consequently we have f̃ , g̃, 0, ũ0 F

S
p J . Due to

Proposition 1.21 it is known already that the trace operator with respect to perfect slip
boundary conditions is a retraction. Thus, system (3.1.27) has a solution û E

u
p J .

To prove maximal regularity of (3.1.28) we proceed in two steps.
Step 1. In this step we show that

tv ηΔv α∇q f̃ 2ρη∇v ∇1
ρ ρη ∇1

ρ v in J Ω,

div v g̃ in J Ω,

v ν PΓ
ρ
2 ∇1

ρ v v ∇1
ρ ν ν 0 on J Γ,

PΓD v ν PΓ
ρ
2 ∇1

ρ v v ∇1
ρ ν on J Γ,

v 0 v0 in Ω,

(3.1.29)
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with η : 1
ρμ BUC1 Ω and infΩ η 0 is equivalent to (3.1.28). Obviously PΓD v ν

and PΓ
ρ
2 ∇1

ρ v v ∇1
ρ ν are tangential. Therefore, (3.1.29) is well-posed. Now, let

us consider the equations

tv ηΔv α∇q 2ρη∇v ∇1
ρ ρη ∇1

ρ v

tv μ 1
ρΔv ∇v ∇1

ρ ∇1
ρ v α∇q

ρ t
1
ρv μΔ 1

ρv α∇q,

and

PΓD v ν PΓ
ρ
2 ∇1

ρ v v ∇1
ρ ν

PΓ
1
2 ∇v ∇v T ν PΓ

ρ
2 ∇1

ρ v v ∇1
ρ ν

PΓ
ρ
2

1
ρ∇v ∇1

ρ v 1
ρ ∇v T v ∇1

ρ (3.1.30)

ρPΓ
1
2 ∇ 1

ρv ∇1
ρv

T
ν

ρPΓD 1
ρv ν.

Then, system (3.1.29) is equivalent to

ρ t
1
ρv μΔ 1

ρv α∇q f in J Ω,

div ρ 1
ρv g in J Ω,

1
ρv ν 0 on J Γ,

PΓD 1
ρv ν 0 on J Γ,

ρ1
ρv 0 v0 in Ω.

By substituting ũ 1
ρv and ũ0

1
ρv0 we finally have established equivalence between

(3.1.28) and (3.1.29).

Step 2. In this step we show that (3.1.29) has the property of maximal regular-
ity for any given time interval J . Let us define the functions R1 : 0Ep J F

f
p J

and R2 : 0Ep J 0F
h
p J with R1 v, q : 2ρη∇v ∇1

ρ ρη ∇1
ρ v and R2 v, q :

PΓ
ρ
2 ∇1

ρ v v ∇1
ρ ν. Obviously it is, R2 v, q 0 0 for all v, q Ep J with

v 0 0. Now, we split v : v1 v2 and q : q1 q2. Furthermore, we take a h̃ F
h
p J

such that
h̃ 0 ν v0 ν 0 on Γ if p 3

2 ,

PΓh̃ 0 PΓD v0 ν on Γ if p 3.

The equation v0 ν 0 holds true, since we have f̃ , g̃, 0, v0 F
S
p J and therefore,

compatibility condition C3 S is satisfied. Thus, for (3.1.29) we obtain the systems

tv1 ηΔv1 αq1 0 in J Ω,

div v1 g̃ in J Ω,

v1 ν 0 on J Γ,

PΓD v1 ν PΓh̃ on J Γ,

v1 0 v0 in Ω,

(3.1.31)

86



3.1 Stokes Equations: Perfect Slip Boundary Conditions

and

tv2 ηΔv2 αq2 f̂ R1 v2, q2 in J Ω,

div v2 0 in J Ω,

v2 ν ĥ R2 v2, q2 ν 0 on J Γ,

PΓD v2 ν ĥ R2 v2, q2 on J Γ,

v2 0 0 in Ω.

(3.1.32)

Here, f̂ : f̃ 2ρη∇v1 ∇1
ρ ρη ∇1

ρ and ĥ : PΓh̃ PΓ
ρ
2 ∇1

ρ v1 v1 ∇1
ρ ν.

Obviously ĥ R2 v2, q2 is tangential to the boundary, such that ĥ R v2, q2 ν 0. By
construction of h̃, the data 0, g̃, h̃, v0 fulfils the necessary compatibility conditions (C1)–
C5 S of system (3.1.31) and we have 0, g̃, h̃, v0 F

S
p J . Thanks to Proposition 3.9,

there exists a unique solution v1, q1 Ep J to system (3.1.31).

Now, it is left to prove maximal regularity for (3.1.32). In order to do so, we want to
apply Lemma 3.5. Therefore, we have to check all necessary assumptions of this lemma.
Considering the construction of h̃, the equation (3.1.30), the substitution v ρũ, the
compatibility of the data f̃ , g̃, 0, 0, ũ0 and the compatibility of the data 0, g̃, h̃, v0 , we
have

ĥ 0 PΓh̃ 0 PΓ
ρ
2 ∇1

ρ v1 0 v1 0 ∇1
ρ ν

PΓD v0 ν PΓ
ρ
2 ∇1

ρ v0 v0 ∇1
ρ ν

ρPΓD 1
ρv0 ν

ρPΓD ũ0 ν

0.

Then, the data f̂ , 0, ĥ, 0 satisfies the compatibility conditions (C1)– C5 S of system
(3.1.32). Let L : Ep J F

S
p J be the operator defined by the left-hand side of

(3.1.32). From Proposition 3.9 it follows that the operator L is an isomorphism. If
v2 0 0 in Ω, the estimates

R1 v2, q2 F
f
p

2ρη∇v2 ∇1
ρ ρη Δ1

ρ v2
Lp J Ω

2ρη∇v2 ∇1
ρ Lp J Ω

ρη Δ1
ρ v2

Lp J Ω

2 ρ η ∇v2 Lp J Ω ∇1
ρ ρ η Δ1

ρ v2 Lp J Ω

C v2 Lp J,H1
p Ω C v2 Lp

C v2 Lp J,H1
p Ω C v2 Lp J,H1

p Ω

C J τ v2
0H

1 2
p J,H1

p Ω

C J τ v2, q2 0Ep J ,
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and

R2 v2, q2 PΓ0Fh
p

PΓ
ρ
2 ∇1

ρ v2 v2 ∇1
ρ ν

0W
1 2 1 2p
p J,Lp Γ Lp J,W

1 1 p
p Γ

C PΓ ∇1
ρ v2 PΓ0Fh

p

C ∇1
ρ v2

0H
1 2
p J,Lp Ω Lp J,H1

p Ω

C ∇1
ρ W 1 J,Ω v2

0H
1 2
p J,Lp Ω Lp J,H1

p Ω

C v2
0H

1 2
p J,Lp Ω Lp J,H1

p Ω

C J τ v2
0H1

p J,Lp Ω H
1 2
p J,H1

p Ω

C J τ v2, q2 0Ep J

hold true with constants C, τ 0 that are independent of the time interval J . Therefore,
all assumptions of Lemma 3.5 are satisfied and we obtain a unique solution v2, q2 Ep J
to (3.1.32) by applying this lemma. Thus, (3.1.29) has the property of maximal regularity.

Combining the above two steps implies maximal regularity of (3.1.28) and thus maximal
regularity of S J S , which was our initial assertion.

3.2 Stokes Equations: Free Slip Boundary Conditions
In this section we study the Stokes equations on cylindrical domains with free slip
boundary conditions and variable coefficients ρ, α and μ, i. e. we study equations of the
form

ρ tu μΔu α∇q f in J Ω,

div ρu g in J Ω,

u ν h ν on J Γ,

PΓD u ν PΓh on J Γ,

u 0 u0 in Ω.

S J S

Using maximal regularity of the Stokes equations with perfect slip boundary conditions
and variable coefficients, see Theorem 3.3, and a perturbation argument (Lemma 3.5)
we are able to deduce maximal regularity of S J S . Considering the Stokes equations
with free slip boundary conditions is rewarding, since with their help we are able to prove
the existence of a local-in-time strong solution to a model on the mechanisms of tropical
storms in Chapter 4.

As in the sections before, Ω R
n denotes a cylindrical domain and J 0, T , T 0, a

time interval. The corresponding data space F
S
p J to S J S is defined to consist of

all

f, g, h, u0 F
f
p J F

g
p J F

h
p J F

0
p

that satisfy the necessary compatibility conditions. These are according to Section 1.4
the conditions

div u0 g 0 if p 2, (C1)

F g, h ν H1
p J, 0H 1

p Ω , (C2)
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3.2 Stokes Equations: Free Slip Boundary Conditions

u0 ν h 0 ν, if p 3
2 ,

PΓD u0 ν PΓh 0 , if p 3,
C3 S

and the condition

hΣ Rtop νΓtop htop Rtop νΣ if p 2,
1
2 νΓtop

hΣ Rtop νΣ
1
2 νΣhtop Rtop νΓtop htop Rtop νΣ if p 2,

C4 S

which arises from the boundary condition on the upper edge of Ω, as well as the condition

hΣ Rbot νΓbot hbot Rbot νΣ if p 2,
1
2 νΓbot

hΣ Rbot νΣ
1
2 νΣhbot Rbot νΓbot hbot Rbot νΣ if p 2,

C5 S

which arises from the boundary condition on the lower edge of Ω. The aim of this section
is to find a unique solution

u, q u t, x , q t, x Ep J

to system S J S for every data

f, g, h, u0 F
S
p J .

Variable Coefficients

Within this paragraph we assume the coefficients of S J S to be variable, i. e.

ρ W 2 Ω, 0, with 1
ρ W 2 Ω, 0,

and

α BUC1 Ω , μ BUC1 Ω with inf
Ω

α, inf
Ω

μ 0.

The proof of maximal regularity of the Stokes equations S J S with free slip boundary
conditions can be obtained in an analogous manner as the proof of maximal regularity
for parabolic problems with free slip boundary conditions (Theorem 2.16). But instead of
parabolic problems we have to consider Stokes equations. Moreover, we apply Theorem 3.3
instead of Corollary 2.15 and Lemma 3.5 instead of Lemma 2.5 in order to prove the
maximal regularity of the perturbed system.

Theorem 3.10. Let A R
n 1 be a bounded C3-domain, a 0 and J 0, T . Assume

Ω : A a, a to be a cylindrical domain, 1 p with p 3
2 , p 2, p 3,

ρ W 2 Ω, 0, with 1
ρ W 2 Ω, 0, , and α BUC1 Ω , μ BUC1 Ω with

infΩ α, infΩ μ 0. Then system S J S has a unique solution u, q Ep J for every
data f, g, h, u0 F

S
p J .
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A Model on the Mechanisms of
Tropical Storms





4 Well-Posedness of a Model on the
Mechanisms of Tropical Storms

Tornadoes, hurricanes and other tropical storms are among the most fascinating natural
phenomena, especially in terms of their power and unpredictability. In order to understand
the behaviour of such phenomena, e. g. where and with what intensity a hurricane hits the
coast of a country, one studies velocity, pressure, temperature and moisture of tropical
storms.

In order to do this, we analyse a mathematical model, which is explained in detail in
the following section. This model consists of a basic tropical storm model describing
the dynamics of tropical storms and was introduced by Nolan and Montgomery in [44].
However, it mainly models velocity, temperature and pressure. The work of Hill and
Lackmann [26], as well as the work of Wu, Su, Fovell, Dunkerton, Wang and Kahn
[56] shows in contrast that moisture has an enormous influence on tropical storms, e. g.
regarding the size of a tropical storm. In [27] Hittmeir, Klein, Li and Titi show how
moisture dynamics with phase changes can be coupled to an already existing model, the
Primitive Equations. In addition, Hittmeir, Klein, Li and Titi introduce their model
of moisture dynamics with phase changes in [28] and proved its well-posedness. This
model includes not only moisture originated from rain water, but also moisture originated
from water vapour and moisture, which was previously bounded in clouds. Therefore,
we decide to couple the nonlinear moisture dynamics from [27] and the basic tropical
storm model from [44] in the same way as in [28]. In addition, we slightly adapt the
coefficients of the basic tropical storm model from [44] to the setting considered by
Novotný, Růžička and Thäter [45]. With this adjustment, the model satisfies the 2nd
Law of Thermodynamics. This makes the model physically more meaningful.

In conclusion, the general model considered in this thesis which is based on the basic topical
storm model [44] is capable of including moisture dynamics and is thermodynamically
consistent. Our aim is to prove the existence of a unique solution to this model.

In Section 4.1 we first present the model in detail. In Section 4.2 we lay out our strategy
to prove existence and uniqueness of a local-in-time, strong solution to this model. Finally,
we show the existence and uniqueness of a solution to this model in Section 4.3.
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4.1 The Model
The basic tropical storm model we consider in this thesis is given by

ρ tu ρ u ∇ u μΔu λ∇divu α∇q ρ θ̄ θ
θ̄

∇F ωe3 ρu in J Ω,

div ρu 0 in J Ω,

ρ tθ ρ u ∇ θ p0 div ρuF κΔθ ρ u ∇ θ̄ κΔθ̄ in J Ω,

u ν hu ν, βuPΓD u ν PΓhu on J Γ,

βθ
νθ σθθ hθ on J Γ,

u 0 u0 in Ω,

θ 0 θ0 in Ω.
(TS.1 J)

This system has been introduced by Nolan and Montgomery [44] in order to describe
the dynamics of tropical storms such as tornadoes or hurricanes. For a first rigorous
analytical research see [49]. In comparison to [44], model (TS.1 J) is adapted slightly to
the setting of Novotný, Růžička and Thäter [45]. This is done in order to make the model
thermodynamically consistent, see Remark 4.1. To obtain a more precise representation
of the actual conditions inside a tornado or hurricane, the model (TS.1 J) is coupled to
nonlinear moisture dynamics with phase changes, given by

tmv u ∇ mv ηvΔmv Sev Scd 0 in J Ω,

tmc u ∇ mc ηcΔmc Scd Sac Scr 0 in J Ω,

tmr u ∇ mr ηrΔmr Sac Scr Sev
V

gρm
e3 ∇ ρmmr in J Ω,

βmv
νmv σmv mv hv on J Γ,

βmc
νmc σmcmc hc on J Γ,

βmr
νmr σmr mr hr on J Γ,

mv 0 mv,0, mc 0 mc,0, mr 0 mr,0 in Ω.
(TS.2 J)

This system has been introduced by Hittmeir, Klein, Li and Titi in [27]. The combination
of both systems (TS J) (TS.1 J) (TS.2 J), i. e. the basic tropical storm model
coupled to nonlinear moisture dynamics, represents the model we study in this chapter.

Since the model (TS J) is supposed to describe the dynamics of a tropical storm, we
assume all above equations to depend both on location and time. In the following, we
assume time to be a positive 1-dimensional variable, and the location to be described by
a 3-dimensional variable, since we are interested in modelling the behaviour on earth.
Hence, by the positive time interval J 0, T R with T 0 we denote the time
domain, and by Ω R

3 the spatial domain. Since the shape of, for example, hurricanes
resembles a cylinder, we would like to study the dynamics of tropical storms in cylinders.
With equal right, one could also study tropical storms on an upper half-space, which
could serve as a simplified model for the surface of earth, or on a sphere, representing
an approximation of earth as a whole, but these two domains go beyond the scope of
the present thesis. That is, we assume Ω to be a cylindrical domain. Then, model
(TS J) is considered on the cartesian product J Ω. For a comprehensive introduction
to cylindrical domains, their boundary, the deformation tensor and the projection PΓ, we
refer back to Section 1.3.
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The first equation of (TS.1 J) represents the anelastic equation of momentum, where u
denotes the velocity and q its corresponding pressure. The atmospheric density is denoted
by ρ and is assumed to be a given, time-independent, positive function with positive
inverse 1 ρ. The symbol ω stands for twice the angular velocity of earth’s rotation,
where we assume rotation to be performed around e3 0, 0, 1 T. Therefore, the term
ωe3 u represents the Coriolis force. The term θ̄ θ

θ̄
∇F on the other hand represents the

buoyancy, with F Lp J, H1
p Ω being the potential of the external forces, for example

gravity gx3, where g stands for the earth’s constant gravitational acceleration. The
temperature θ is assumed to be varying around a given mean value θ̄ θ̄ x . The
second equation of (TS.1 J) is the anelastic incompressibility condition, which arises
from the law of conservation of mass. The third equation of (TS.1 J) arises from the
law of the conservation of energy, and the first three equations of (TS.2 J) represent
moisture balances. They can be modelled by the method of Hittmeir, Klein, Li and
Titi [27]. The water vapour mixing ratio mv, the cloud water mixing ratio mc, and the
rain water mixing ratio mr are considered in order to include moisture dynamics for
warm clouds where also phase changes are modelled. Here, moisture is represented as
vapour, cloud water and rain water. Furthermore, the terminal velocity of falling rain V
is assumed to be constant, and ρm denotes the positive density of rain water. By the
term Sev the rate of evaporation of rain water is denoted. Whereas Scr stands for the
rate of auto-conversion of cloud water into rainwater by accumulation of microscopic
droplets. The rate of the collection of cloud water by falling rain is denoted by Sac. The
rate of the condensation of water vapour to cloud water and the inverse evaporation
process is denoted by Scd. They are represented as

Sev Cevθ mr
ξ mvs θ mv , ξ 0, 1 ,

Scr Ccrmcmr,

Sac Cac mc mac ,

Scd Ccd mv mvs θ mc Ccn mv mvs θ ,

where Cev, Ccr, Cac, Ccd, Ccn are constant rates. Furthermore, the threshold value for the
cloud water mixing ratio, beyond which auto-conversion of cloud water into precipitation
becomes active,is denoted by the constant mac. The quantity mvs represents the saturation
mixing ratio, which satisfies

mvs θ
Ees θ

Rρθ es θ
,

where E R Rv is the ratio of the individual gas constants of dry air and water vapour
and cs the saturation vapour pressure given by the Clausius-Clapeyron equation

cs θ cs θStart exp
L

Rv

1
θstart

1
θ

.

Here, L stands for the latent heat per unit mass of water vapour, which we assume to be
constant. Typically, the reference temperature θstart 273.15K is used. Moreover mvs is
positive, and bounded by zero and a positive constant mvs

0 mvs q, θ mvs.

The variable coefficients in system (TS.1 J) are considered in two different settings, one
with an anelastic limit [45] and one as given in [44, 49]. Therefore, for the coefficients in
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the anelastic limit, we have

μ μ̄, λ λ̄ 1
3 μ̄, α ρ, p0

p̄0

θ̄
, κ κ̄, (4.1.2)

with positive constants μ̄, λ̄, and κ̄. These are the shear viscosity, the bulk viscosity and
the heat conductivity at temperature θ̄, respectively. The term p̄0

θ̄
div ρuF represents

the heat production due to volume work.
The coefficients in the setting of [44, 49] are given by

μ ερ, λ ερ, α 1, p0 0, κ ερ (4.1.3)

where the positive constant ε denotes the eddy viscosity. By combining these two settings
we can obtain any possible combination of constant or variable coefficients μ, λ, α, p0
and κ. The variable coefficients of the moisture balances are valid for both settings and
given by

ηj η̄jρm, j v, c, r ,

where the positive constants η̄j are the viscosity of water vapour, cloud water and rain
water, respectively, measured at temperature θ̄.
Remark 4.1. We note that in the coefficient setting of (4.1.2) every sufficiently smooth
solution to (TS.1 J) satisfies the energy balance

1
2

d
dt ρu 2

L2 Ω
1
2

d
dt

1
p̄0

θ θ̄ 2
L2 Ω

μ̄ ∇u 2
L2 Ω λ̄ 1

3 μ̄ div u 2
L2 Ω

κ̄
p̄0

∇ θ θ̄ 2
L2 Ω

Γ
u ν 1

2 ρu 2 1
2

ρ
p̄0

θ θ̄ 2 λ̄ 1
3 μ̄ div u ρq dσ

Γ
μ̄u νu dσ

Γ

κ̄
p̄0

θ θ̄ ν θ θ̄ dσ.

This follows by multiplying the momentum balance with u, the heat balance with θ θ̄
and integrating over Ω.
The boundary conditions are represented by the equations 4–5 of (TS.1 J) and by the
equations 4–6 of (TS.2 J). The boundary conditions for the velocity u are chosen in
such a way that each component of the boundary – top, bottom, lateral boundary –
is impermeable in case of hu ν 0, and that there is no friction on the boundary in
case of PΓhu 0. For hu 0, these boundary conditions can be used to introduce a
flux through the boundary, and a friction on the boundary, respectively. Moreover, the
boundary condition for temperature and moisture are Robin boundary conditions. We
assume the boundary coefficients to be variable, more precisely

βk, βmj BC1 J Γ, 0, with inf
Γ

βk, inf
Γ

βmj 0

and

σθ, σmj BC2 J Γ, 0, ,

where k u, θ and j v, c, r .
The last two equations of (TS.1 J) and the last equation of (TS.2 J) represent the initial
conditions with initial data u0, θ0, mj,0, j v, c, r .
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4.2 Strategy
The main result of this thesis is the proof of existence and uniqueness of a local-in-time,
strong solution to (TS J), i. e. Theorem 4.2, which we discuss shortly. The model (TS J)
is given by system (TS.1 J) coupled to system (TS.2 J) as already explained in Section 4.1.
To prove existence and uniqueness of a local-in-time, strong solution to (TS J), we first
prove the same for (TS.1 J) alone, after which we show existence and uniqueness of a
local-in-time strong solution to (TS.2 J) in a second step. System (TS.1 J) is completely
independent of the unknown water vapour mixing ratio mv, the unknown cloud water
mixing ratio mc and the unknown rain water mixing ratio mr of (TS.2 J). Thus, there is
no obstacle in decoupling (TS.1 J) and (TS.2 J) and proving existence and uniqueness
of a local-in-time strong solution to (TS.1 J) independent of (TS.2 J). However, system
(TS.2 J) depends on the unknown velocity u and the temperature θ of system (TS.1 J).
But we can in fact prove existence and uniqueness of a local-in-time, strong solution to
(TS.2 J) independent of (TS.1 J) by assuming the velocity and the temperature to be
given functions. Then, we can obtain a local-in-time, strong solution to the combined
system (TS J) by solving (TS.1 J) first, and then solving (TS.2 J), using the solutions
for the velocity u and the temperature θ obtained from system (TS.1 J).
In order to investigate system (TS.1 J) first, we denote by

fu ρu ∇ u λ∇divu ρ θ̄ θ
θ̄

∇F ωe3 ρu,

fθ ρu ∇ θ p0 div ρuF ρu ∇ θ̄ κΔθ̄,

all nonlinear terms and linear terms of lower order of system (TS.1 J), and can thus
rewrite (TS.1 J) as

ρ tu μΔu α∇q fu in J Ω,

div ρu 0 in J Ω,

u ν hu ν on J Γ, S J S

βuPΓD u ν PΓhu on J Γ,

u 0 u0 in Ω,

ρ tθ κΔθ fθ in J Ω,

βθ
νθ σθθ hθ on J Γ, H J

θ 0 θ0 in Ω.

In this form, S J S resembles the Stokes equations with free slip boundary conditions,
which we already studied with variable coefficients on cylindrical domains in Section 3.2.
Furthermore, system H J resembles the heat equation. This is a parabolic problem with
Robin boundary conditions, which we studied with variable coefficients on cylindrical
domains in Section 2.2. We split (TS.1 J) into a linear operator L and a nonlinear
operator N . We define L to consist of all linear terms of highest order and N to consist
of all nonlinear terms and linear terms of lower order. We do not repeat the definition
of data and solution spaces here, in order to not interrupt the flow of reading. Their
definitions may be found in the Sections 2.2 and 3.2, respectively. By

L : Ep J E
z
p J F

S
p J F

P,R
p J
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we denote the linear operator which is defined by the left-hand side of systems S J S

and H J , and by N the nonlinear operator which is given as

N v, p, ϑ :

ρ v ∇ v λ∇divv ρϑ
θ̄
∇F ωe3 ρv

0
0

ρ v ∇ ϑ p0div ρvF ρ v ∇ θ̄
0

T

,

for v, p, ϑ Ep J E
z
p J . It is convenient to consider the systems S J S and H J

and thus (TS.1 J) in the form

L u, q, θ N u, 0, θ ρ∇F, 0, hu, κΔθ̄, hθ ,
u, θ 0 u0, θ0 .

(4.2.1)

According to Theorem 2.6 and Theorem 3.10 there exists a bounded inverse of the linear
operator L, which is the solution operator

L 1 : FS,
p J F

P,R
p J Ep J E

z
p J

of the Stokes equations with free slip boundary conditions and of a parabolic problem
with Robin boundary conditions. So let u , q , θ be the solution of

L u , q , θ ρ∇F, 0, hu, κΔθ̄, hθ ,
u , θ 0 u0, θ0 .

Thus, (TS.1 J) is equivalent to

u, q, θ ũ, q̃, θ̃ u , q , θ ,

ũ, q̃, θ̃ 0L 1N ũ u , 0, θ̃ θ (4.2.2)
: K ũ, q̃, θ̃ .

By using the Contraction Principle we then obtain a unique local-in-time strong solution
to (TS.1 J).

To prove existence and uniqueness of a local-in-time, strong solution to system (TS.2 J)
with given u, θ L J Ω we proceed analogously. By

fv u ∇ mv Sev Scd,

fc u ∇ mc Scd Sac Scr,

fr u ∇ mr Sac Scr Sev
V

gρm
e3 ∇ ρmmr ,

we denote all nonlinear terms and linear terms of lower order of system (TS.2 J), and
can thus rewrite (TS.2 J) as

tmj ηjΔmj fj in J Ω,

βmj
νmj σmj mj hj on J Γ, M J j

mj 0 mj,0 in Ω,

with j v, c, r . Note that M J j represents three systems of equations, one for each
j v, c, r . In this form M J j resembles parabolic systems with Robin boundary
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conditions, which we already studied in Section 2.2. We separate (TS.2 J) into a linear
operator Lm and a nonlinear operator Nm and define Lm to consist of all linear terms of
highest order and Nm to consist of all nonlinear terms and linear terms of lower order.
By

Lm : Ez
p J E

z
p J E

z
p J F

P,R
p J F

P,R
p J F

P,R
p J

we denote the linear operator, which is defined by the left-hand side of systems M J j

for j v, c, r and by Nm the nonlinear operator, which is given by

Nm nv, nc, nr :

u ∇ nc Sev nv, nr Scd nv, nc

0
0

u ∇ nc Scd nv, nc Sac nc Scr nc, nr

0
0

u ∇ nr Sac nc Scr nc, nr Sev nv, nr
V

gρm
e3 ∇ ρmnr

0
0

T

,

for nv, nc, nr E
z
p J E

z
p J E

z
p J . It is convenient to consider the systems M J j

for j v, c, r and thus (TS.2 J) in the form

Lm mv, mc, mr Nm mv, mc, mr 0, hv, 0, hc, 0, hr ,
mv, mc, mr 0 mv,0, mc,0, mr,0 .

(4.2.3)

According to Theorem 2.6 there exists a bounded inverse of the linear operator Lm, which
is the solution operator

L 1
m : FP,R

p J F
P,R
p J F

P,R
p J E

z
p J E

z
p J E

z
p J

for the three parabolic systems with Robin boundary conditions and variable coefficients.
Let mv , mc , mr be the solution of

Lm mv , mc , mr 0, hv, 0, hc, 0, hr ,
mv , mc , mr 0 mv,0, mc,0, mr,0 .

Then, (TS.2 J) is equivalent to

mv, mc, mr m̃v, m̃c, m̃r mv , mc , mr ,
m̃v, m̃c, m̃r 0L 1

m Nm m̃v mv , m̃c mc , m̃r mr

: Km m̃v, m̃c, m̃r .
(4.2.4)

Using the Contraction Principle we then obtain a unique local-in-time, strong solution to
(TS.2 J).

Using this strategy, we are able to show existence and uniqueness of a local-in-time,
strong solution to (TS J) and thus the main result of this chapter.

Theorem 4.2. Let A R
n 1 be a bounded C3-domain, a 0, J 0, T a time interval

with T 0, and Ω : A a, a a cylindrical domain. Assume α, μ BUC1 Ω , κ,
ηj BUC Ω , infΩ α, infΩ μ, infΩ κ, infΩ ηj 0, j v, c, r , βu, βθ, βj BC1 J Γ , σθ,
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4 Well-Posedness of a Model on the Mechanisms of Tropical Storms

σj BC2 J Γ , infΓ βu, infΓ βθ, infΓ βj 0, ρ, ρm W 2 Ω with infΩ ρ, infΩ ρm 0
and n 2

2 p with p 3
2 , p 2, p 3. Then for every data

ρ∇F, 0, hu, u0, κΔθ̄, hθ, θ0, 0, hv, mv,0, 0, hc, mc,0, 0, hr, mr,0

F
S
p J F

P,R
p J F

P,R
p J F

P,R
p J F

P,R
p J

with infx Ω mr,0 0 there is a unique local-in-time, strong solution u, q, θ, mv, mc, mr

to (TS J) on a maximal time interval 0, T with

T T ρ∇F, 0, hu, u0, κΔθ̄, hθ, θ0, 0, hv, mv,0, 0, hc, mc,0, 0, hr, mr,0 J.

The solution satisfies

u, q, θ, mv, mc, mr Ep J̄ E
z
p J̄ E

z
p J̄ E

z
p J̄ E

z
p J̄

for all J̄ 0, T̄ with T̄ 0, T . Furthermore, the solution depends continuously on
the data.

4.3 Well-Posedness of (TS J)
The proof of the existence and uniqueness of a local-in-time, strong solution to the model
(TS J) is provided in the end of this section. In order to show this, we begin by proving
existence and uniqueness of a local-in-time, strong solution to (TS.1 J), followed by
proving the same for (TS.2 J). Then, we are able to prove solvability of the entire model
(TS J).

4.3.1 Well-Posedness of (TS.1 J)
In this subsection we study the basic tropical storm model (TS.1 J) without nonlinear
moisture dynamics:

ρ tu ρ u ∇ u μΔu λ∇divu α∇q ρ θ̄ θ
θ̄

∇F ωe3 ρu in J Ω,

div ρu 0 in J Ω,

u ν hu ν on J Γ,

βuPΓD u ν PΓhu on J Γ,

u 0 u0 in Ω,

ρ tθ ρ u ∇ θ p0 div ρuF κΔθ ρ u ∇ θ̄ κΔθ̄ in J Ω,

βθ
νθ σθθ hθ on J Γ,

θ 0 θ0 in Ω.

(TS.1 J)
We aim to prove existence and uniqueness of a local-in-time, strong solution of system
(TS.1 J). This is shown for two different situations: first for arbitrary data and small
time intervals, and second for arbitrary time intervals and small data. The following two
propositions comprise our results.

Proposition 4.3. Let A R
n 1 be a bounded C3-domain, a 0 be a constant, J 0, T

a time interval with T 0 and Ω : A a, a a cylindrical domain. Let α, μ BUC1 Ω ,
κ BUC Ω , infΩ α, infΩ μ, infΩ κ 0, βu, βθ BC1 J Γ , σθ BC2 J Γ ,

100



4.3 Well-Posedness of (TS J)

infΓ βu, infΓ βθ 0, n 2
3 p with p 3

2 , p 3 and ρ W 2 Ω with infΩ ρ 0.
Then for

ρ∇F, 0, hu, u0, κΔθ̄, hθ, θ0 F
S
p J F

P,R
p J

there exists a unique local-in-time strong solution u, q, θ to system (TS.1 J) on a maximal
time interval 0, T with

T T ρ∇F, 0, hu, u0, κΔθ̄, hθ, θ0 J.

The solution satisfies

u, q, θ Ep J̄ E
z
p J̄

for all J̄ 0, T̄ with T̄ 0, T . Furthermore, the solution depends continuously on
the data.

Proposition 4.4. Let A R
n 1 be a bounded C3-domain, a 0 a constant, J 0, T a

time interval with T 0 and Ω : A a, a a cylindrical domain. Let α, μ BUC1 Ω ,
κ BUC Ω , infΩ α, infΩ μ, infΩ κ 0, βu, βθ BC1 J Γ , σθ BC2 J Γ ,
infΓ βu, infΓ βθ 0, n 2

3 p with p 3
2 , p 3 and ρ W 2 Ω with infΩ ρ 0.

Then there is an ε ε J 0, such that system (TS.1 J) admits a unique solution

u, q, θ Ep J E
z
p J

for every data ρ∇F, 0, hu, u0, κΔθ̄, hθ, θ0 F
S
p J F

P,R
p J that satisfies the condi-

tion

ρ∇F, 0, hu, u0, κΔθ̄, hθ, θ0 F
S
p J F

P,R
p J

ε.

Furthermore, the solution depends continuously on the data.

In the following, we prove Propositions 4.3 and 4.4 simultaneously.

Proof. We start by fixing J 0, T with T 0, J̄ 0, T̄ with T̄ 0, T and

ρ∇F, 0, hu, u0, κΔθ̄, hθ, θ0 F
S
p J F

P,R
p J .

The Stokes equations with variable coefficients and given data ρ∇F, 0, hu, u0 , and the
heat equations with variable coefficients and given data κΔθ̄, hθ, θ0 have the property
of maximal regularity due to Theorems 3.10 and 2.6. We proceed in two steps.

Step 1. In the first step we show, that the perturbed system

ρ tu μΔu α∇q θ
θ̄
∇F ωe3 ρu λ∇divu ρ∇F in J Ω,

div ρu 0 in J Ω,

u ν hu ν on J Γ,

βuPΓD u ν PΓhu on J Γ,

u 0 u0 in Ω,

ρ tθ κΔθ ρ u ∇ θ̄ p0 div ρuF κΔθ̄ in J Ω,

βθ
νθ σθθ hθ on J Γ,

θ 0 θ0 in Ω,

(4.3.1)
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4 Well-Posedness of a Model on the Mechanisms of Tropical Storms

has the property of maximal regularity by using maximal regularity of the Stokes equations
S J S and maximal regularity of the heat equation. The heat equation is a parabolic

problem with Robin boundary conditions P J R. We establish

L : Ep J E
z
p J F

S
p J F

P,R
p J

as the operator defined by the left-hand side of (4.3.1) and the functions

R1 : 0Ep J 0E
z
p J F

f
p J with R1 u, q, θ : ρ

θ

θ̄
∇F ωe3 ρu λ∇divu

and

R2 : 0Ep J 0E
z
p J F

f
p J with R2 u, q, θ : ρ u ∇ θ̄ p0div ρuF .

Therefore, and because of linearity, we can write (4.3.1) as

L u, q, θ ρ∇F R1 u, q, θ , 0, hu, u0, κΔθ̄ R2 u, q, θ , hθ, θ0

ρ∇F, 0, hu, u0, κΔθ̄, hθ, θ0 R1 u, q, θ , 0, 0, 0, R2 u, q, θ , 0, 0 .

which is equivalent to

u, q, θ L 1 ρ∇F, 0, hu, u0, κΔθ̄, hθ, θ0 0L 1 R1 u, q, θ , 0, 0, 0, R2 u, q, θ , 0, 0 ,

since S J S and P J R have the property of maximal regularity. Subtraction of
0L 1 R1, 0, 0, 0, R2, 0, 0 u, q, θ leads to

Id 0L 1 R1, 0, 0, 0, R2, 0, 0 u, q, θ L 1 ρ∇F, 0, hu, u0, κΔθ̄, hθ, θ0 .

There is only left to show that Id 0L 1 R1, 0, 0, 0, R2, 0, 0 1 exists, because then

u, q, θ Id 0L 1 R1, 0, 0, 0, R2, 0, 0 1
L 1 ρ∇F, 0, hu, u0, κΔθ̄, hθ, θ0

would be the unique solution to (4.3.1). If 0L 1 R1, 0, 0, 0, R2, 0, 0 1, the Neumann
series argument provides us the existence of Id 0L 1 R1, 0, 0, 0, R2, 0, 0 1. We know
already that

0L 1 R1, 0, 0, 0, R2, 0, 0 0Ep J 0Ez
p J 0Ep J 0Ez

p J

0L 1
0F

S
p J 0F

P,R
p J 0Ep J 0Ez

p J

R1, 0, 0, 0, R2, 0, 0
0Ep J 0Ez

p J 0F
S
p J 0F

P,R
p J

.

Next, we want to show that R1 u, q, θ
F

f
p J

and R2 u, q, θ
F

f
p J

can be made arbi-
trarily small. Then 0L 1 R1, 0, 0, 0, R2, 0, 0 0Ep J 0Ez

p J 0Ep J 0Ez
p J can be assumed

to be smaller than one, since 0L 1
0F

S
p J 0F

P,R
p J 0Ep J 0Ez

p J
is bounded. We can

estimate

ωe3 ρu Lp J Ω n C ρu Lp J Ω n

C ρ u Lp J,Lp Ω n Lp J,Lp Ω n

C J τ u
0H

1 2
p J,Lp Ω n Lp J,H1

p Ω n

C J τ u 0Eu
p J ,
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4.3 Well-Posedness of (TS J)

λ∇divu Lp J Ω n λ∇div 1
ρρu

Lp J Ω n

λ∇ ∇ 1
ρ ρu 1

ρdiv ρu
Lp J Ω n

λ ∇ρ 1 ρu
Lp J Ω n

λ ∇ρ 1 ρ u Lp J Ω n

C u Lp J,Lp Ω n Lp J,Lp Ω n

C J τ u
0Eu

p J ,

ρ ϑ̃
θ̄
∇F Lp J Ω ρ θ̄ 1 ϑ̃ Lp J Ω ∇F

C ϑ̃ Lp J Ω

C J τ ϑ̃ 0Ez
p J ,

ρu ∇ θ̄ Lp J Ω ρ u Lp J Ω n ∇θ̄

C J τ u 0Eu
p J ,

and
p0div ρuF Lp J Ω n p0 div ρuF Lp J Ω n

C ρuF
0H

1 2
p J,Lp Ω n Lp J,H1

p Ω n

C ρ F u
0H

1 2
p J,Lp Ω n Lp J,H1

p Ω n

C J τ u 0Eu
p J ,

with constants C, τ 0, where C is independent of J . Also we have θ̄ W 2 Ω ,
1
θ̄

L Ω , F W 1 Ω and ρ W 2 Ω . Therefore we can make the two terms
ρ θ

θ̄
ωe3 ρu λ∇divu

F
f
p J

and ρ u ∇ θ̄ p0div ρuF
F

f
p J

small by choosing J

sufficiently small. Since the admitted length of the time interval J does not depend on the
data, we can show maximal regularity of (4.3.1) for any given time interval by successively
solving them on sufficiently small time intervals of fixed length, cf. Lemma 2.5 where a
similar argument has been used. Therefore, we can established maximal regularity of
(4.3.1) for any time interval J 0, T with T 0.

Step 2. By u , q , θ we denote the unique, maximal regular solution of the perturbed
system (4.3.1), whose components satisfy the inequalities

u , q Ep J M1 ρ∇F, 0, hu, u0, κΔθ̄, hθ, θ0 F
S
p J F

P,R
p J

, (4.3.2)

and

θ Ez
p J M2 ρ∇F, 0, hu, u0, κΔθ̄, hθ, θ0 F

S
p J F

P,R
p J

, (4.3.3)

with constants M1, M2 0, due to step 1. To deal with the remaining nonlinear terms
and terms of lower order of system (TS.1 J), it is convenient to rewrite them into the
operator equation

LP u, q, θ N u, 0, θ ρ∇F, 0, hu, κΔθ̄, hθ

u, θ 0 u0, θ0 ,
(4.3.4)

where LP : Ep J E
z
p J F

S
p J F

P,R
p J denotes the linear operator defined by

the left-hand side of (4.3.1). According to step 1, LP is an isomorphism. The nonlinear
operator N is given by

N v, p, ϑ : ρ v ∇ v, 0, 0, ρ v ∇ ϑ, 0 ,
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4 Well-Posedness of a Model on the Mechanisms of Tropical Storms

for v, p, ϑ Ep J E
z
p J . Therefore, system (TS.1 J) is equivalent to

u, q, θ ũ, q̃, θ̃ u , q , θ w ,

ũ, q̃, θ̃ 0L 1
P N ũ u w , 0, θ̃ θ w

: K ũ, q̃, θ̃ ,

(4.3.5)

where

0L 1
P : 0F

S
p J 0F

P,R
p J 0Ep J 0E

z
p J

denotes the bounded linear inverse of 0LP . Now, we prove existence and uniqueness of a
solution to

ũ, q̃, θ̃ K ũ, q̃, θ̃ , ũ, q̃, θ̃ 0Ep J̄ 0E
z
p J̄ ,

where J̄ 0, T̄ with T̄ 0, T . Note, that

N u , 0, θ : 0E
u
p J̄ 0E

z
p J̄ F

S,
p J̄ F

θ
p J̄ ,

is Fréchet differentiable with

DN ũ u , 0, θ̃ θ ṽ, 0, ϑ̃

ρ ũ u ∇ ṽ ρ ṽ ∇ ũ u
0
0

ρ ũ u ∇ ϑ̃ ρ ṽ ∇ θ̃ θ
0

T

,

where ũ, ṽ 0E
u
p J̄ and θ̃, ϑ̃ 0E

z
p J̄ . For p n 2

3 set ε : p n 2
3 0. Then we

have an embedding

H1 ε 3p, 2,1
p J̄ H2 ε 3p, 2,1

p J̄ H0, 2,1
p J̄

due to [34, Remark 1.8] with anistropic function spaces

H
0, 2,1
p J̄ Lp J̄ Ω ,

H
2, 2,1
p J̄ H1

p J̄ , Lp Ω Lp J̄ , H2
p Ω ,

H
1 ε 3p, 2,1
p J̄ H

1 2 ε 6p
p J̄ , Lp Ω Lp J̄ , H

1 ε 3p
p Ω ,

H
2 ε 3p, 2,1
p J̄ H

1 ε 6p
p J̄ , Lp Ω Lp J̄ , H

2 ε 3p
p Ω .

For the definition of anisotropic function spaces, we refer the reader to Section 1.1. We
thus have

ρ ũ u ∇ ṽ ρ ṽ ∇ ũ u Lp J̄ Ω,Rn

ρ ∇ṽ
0H

1 ε 3p, 2,1
p J̄

ũ u
H

2 ε 3p, 2,1
p J̄

∇ ũ u
H

1 ε 3p, 2,1
p J̄

ṽ
0H

2 ε 3p, 2,1
p J̄

C ṽ
0H

2 ε 3p, 2,1
p J̄

ũ u
H

2, 2,1
p J̄

C ũ u
H

2 ε 3p, 2,1
p J̄

ṽ
0H

2 ε 3p, 2,1
p J̄

C J̄ τ ṽ
0H

2, 2,1
p J̄

ũ u
H

2, 2,1
p J̄

C ũ u
H

2, 2,1
p J̄

ṽ
0H

2 ε 3p, 2,1
p J̄

C J̄ τ ṽ 0Eu
p J̄ ũ u

Eu
p J̄
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for all p n 2
3 , where the constant C 0 is independent of J̄ thanks to the homogeneous

initial conditions. We obtain in the same way

ρ ũ u ∇ ϑ̃ ρ ṽ ∇ θ̃ θ Lp J̄ Ω,Rn

C J̄ τ ũ u
Eu

p J̄ ϑ̃ 0Ez
p J̄ C J̄ τ ṽ 0Eu

p J̄ θ̃ θ
Ez

p J̄ .

We infer for all ũ 0E
u
p J̄ , θ̃ 0E

z
p J̄ the estimate

DN ũ u , 0, θ̃ θ L Eu
p J̄ Ez

p J̄ ,FS,
p J̄ Fθ

p J̄

C J̄ τ ũ u
Eu

p J̄ θ̃ θ
Ez

p J̄ ,

where the constant C 0 is independent of J̄ . Due to (4.3.2) and (4.3.3) we have

u
Eu

p J̄ u , q Ep J M1 ρ∇F, 0, hu, u0, κΔθ̄, hθ, θ0 F
S
p J F

P,R
p J

and

θ
Ez

p J̄ M2 ρ∇F, 0, hu, u0, κΔθ̄, hθ, θ0 F
S
p J F

P,R
p J

.

Note, that M1, M2 0 are independent of J̄ , since u , q , θ are defined on the entire
interval J . We define ε 0 such that it fulfils

ρ∇F, 0, hu, u0, κΔθ̄, hθ, θ0 F
S
p J F

P,R
p J

ε,

and obtain

DN ũ u , 0, θ̃ θ B 0Eu
p J̄ 0Ez

p J̄ ,0F
S,
p J̄ 0F

P,R
p J̄

C J̄ τ ũ 0Eu
p J̄ θ̃ 0Ez

p J̄ εM1 εM2

for ũ 0E
u
p J̄ and θ̃ 0E

z
p J̄ . We then infer

K ũ, q̃, θ̃ K ṽ, p̃,ϑ̃ 0Ep J̄ 0Ez
p J̄

C J̄ τ C̄ δ εM1 εM2 ũ ṽ, θ̃ ϑ̃ 0Eu
p J̄ 0Ez

p J̄ (4.3.6)

for ũ, q̃, θ̃ , ṽ, p̃, ϑ̃ 0Ep J̄ 0E
z
p J̄ , which satisfy ũ 0Eu

p J̄ θ̃ 0Ez
p J̄ , ṽ 0Eu

p J̄

ϑ̃ 0Ez
p J̄ δ. We define

C̄ : sup 0L 1
B 0F

S,
p J̄ 0Fθ

p J̄ ,0Ep J̄ 0Ez
p J̄

: J̄ J .

Finally,

K 0, 0, 0 0Ep J̄ 0Ez
p J̄ C̄ N u , 0, θ

0F
S,
p J̄ 0F

P,R
p J̄

ε2C̄ M1 M2
2

implies

K ũ, q̃, θ̃ 0Ep J̄ 0Ez
p J̄ C J̄ τ δC̄ δ εM1 εM2 ε2C̄ M1 M2

2 (4.3.7)

for ũ, q̃, θ̃ 0Ep J̄ 0E
z
p J̄ with ũ 0Eu

p J̄ θ̃ 0Ez
p J̄ δ.
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For Proposition 4.3, ε 0 is constituted by the data. Set δ
2 : ε2C̄ M1 M2

2 and
choose a J̄ J such that

C J̄ τ C̄ δ εM1 εM2
1
2 .

Therefore, we obtain

K ũ, q̃, θ̃ 0Ep J̄ 0Ez
p J̄

δ
2

δ
2 δ

by using (4.3.7). Combining this with (4.3.6), we get that K is a contraction on a closed
ball with radius δ. Now, using the Contraction Mapping Principle, Proposition 4.3 is
proven.

For Proposition 4.4, we set J̄ J and choose δ 0, such that
3
2C J τ C̄δ 1

2

and furthermore ε 0, such that

εM1 εM2
δ
2 , ε2C̄ M1 M2

2 δ
2 .

By applying ε and δ to (4.3.6) and (4.3.7), we get that K is a contraction on a closed
ball with radius δ. Now, using the Contraction Mapping Principle, Proposition 4.4 is
proven.

4.3.2 Well-Posedness of (TS.2 J)
In this subsection we study the nonlinear moisture dynamics (TS.2 J):

tmv u ∇ mv ηvΔmv Sev Scd 0 in J Ω,

βmv
νmv σmv mv hv, on J Γ,

mv 0 mv,0 in Ω,

tmc u ∇ mc ηcΔmc Scd Sac Scr 0 in J Ω,

βmc
νmc σmcmc hc, on J Γ,

mc 0 mc,0 in Ω,

tmr u ∇ mr ηrΔmr Sac Scr Sev
V

gρm
e3 ∇ ρmmr in J Ω,

βmr
νmr σmr mr hr, on J Γ,

mr 0 mr,0 in Ω,
(TS.2 J)

for given u, θ L Ω . By

Lm : Ez
p J E

z
p J E

z
p J F

P,R
p J F

P,R
p J F

P,R
p J

we denote the linear operator, which is defined by the left-hand side of the system
(TS.2 J) and by Nm the nonlinear operator, which is given by

Nm nv, nc,nr

: u ∇ nc Sev nv, nr Scd nv, nc , 0, 0,

u ∇ nc Scd nv, nc Sac nc Scr nc, nr , 0, 0

u ∇ nr Sac nc Scr nc, nr Sev nv, nr
V

gρm
e3 ∇ ρmnr , 0, 0 ,
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for nv, nc, nr E
z
p J E

z
p J E

z
p J . Using the strategy explained in Section 4.2

leads to the following result:

Proposition 4.5. Let A R
n 1 be a bounded C3-domain, a 0, J 0, T a time

interval with T 0 and Ω : A a, a a cylindrical domain. Assume u, θ L J Ω ,
ηj BUC Ω , infΩ ηj 0, j v, c, r , βj BC1 J Γ , σj BC2 J Γ , infΓ βj 0,
n 2

2 p with p 3 and ρm W 2 Ω with infΩ ρm 0. Then for every data

0, hv, mv,0, 0, hc, mc,0, 0, hr, mr,0 F
P,R
p J F

P,R
p J F

P,R
p J

with infx Ω mr,0 0 there is a unique local-in-time strong solution mv, mc, mr to the
nonlinear moisture dynamics (TS.2 J) on a maximal time interval 0, T with

T T 0, hv, mv,0, 0, hc, mc,0, 0, hr, mr,0 J.

The solution satisfies

mv, mc, mr E
z
p J̄ E

z
p J̄ E

z
p J̄

for all J̄ 0, T̄ with T̄ 0, T . Furthermore, the solution depends continuously on
the data.

Proof. We begin by fixing the data 0, hv, mm,0,, 0, hc, mc,0, 0, hr, mr,0 F
P,R
p J

F
P,R
p J F

P,R
p J . Note, that the embedding

mr,0 W 2 2 p
p Ω BUC Ω C Ω̄ ,

is valid due to Sobolev’s Embedding Theorem for p n 2
2 . We require that

ζ : inf
x Ω

mr,0 x 0.

Let mr E
z
p J be the unique solution to the parabolic system

tmr ηrΔmr 0 in J Ω,

βmr
νmr σmr mr hr, on J Γ,

mr 0 mr,0 in Ω,

which exists due to Theorem 2.6. Now,

mr C 0, T Ω̄ ,

since

H1
p J, Lp Ω Lp J, H2

p Ω BUC J Ω C 0, T Ω̄

for p n 2
2 , cf. [8, Theorem 3.9.1]. The fact that mr is continuous on 0, T Ω implies

that there exists a T1 0, T , such that

inf
t,x 0,T1 Ω

mr t, x 2ζ
3 .
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4 Well-Posedness of a Model on the Mechanisms of Tropical Storms

We denote for J1 0, T1 by mj H1
p J1, Lp Ω Lp J1, H2

p Ω the unique solution
of the parabolic system

tmj ηjΔmj 0 in J1 Ω,

βmj
νmj σmj mj hj , on J1 Γ,

mj 0 mj,0 in Ω,

for j v, c, r with infJ1 Ω mr
2ζ
3 . Such solutions exists according to Theorem 2.6

and they satisfy the estimates

mj Ez
p J Mj 0, hv, mm,0,, 0, hc, mc,0, 0, hr, mr,0 F

P,R
p J1 F

P,R
p J1 F

P,R
p J1

(4.3.8)

with constants Mj 0. We set

0, hv, mv,0, 0, hc, mc,0, 0, hr, mr,0 F
P,R
p J F

P,R
p J F

P,R
p J

: w.

Let J̄ 0, T̄ J1 with T̄ 0, T1 . Due to (4.2.4), it is sufficient to prove existence
and uniqueness of a solution to

m̃v, m̃c, m̃r Km m̃v, m̃c, m̃r , m̃v, m̃c, m̃r 0E
z
p J̄ 0E

z
p J̄ 0E

z
p J̄ .

For that purpose we show that Km is a contraction on a closed ball of radius δ. For such
a ball we have the embeddings

B̄δ 0 0H1
p J̄ , Lp Ω Lp J̄ , H2

p Ω 0BUC J̄ Ω

0C 0, T̄ Ω̄ .

Therefore, we infer

m̃j L J̄ Ω C m̃j 0Ez
p J̄ C m̃v, m̃c, m̃r 0Ez

p J̄ 0Ez
p J̄ 0Ez

p J̄ C δ (4.3.9)

for m̃v, m̃c, m̃r 0E
z
p J̄ 0E

z
p J̄ 0E

z
p J̄ , m̃v, m̃c, m̃r 0Ez

p J̄ 0Ez
p J̄ 0Ez

p J̄ δ,
and j v, c, r . The constants C, C 0 are independent of J̄ J1 thanks to the
homogeneous initial conditions.
Choose δ ζ

3C . Thus we obtain

inf
t,x J̄ Ω

mr m̃r
ζ
3 0, (4.3.10)

for all m̃r B̄δ 0 . Now, we have

Sev mv m̃v, mr m̃r Sev mv ñv, mr ñr Lp J̄ Ω

Cev θ mr m̃r
ξ mvs mv m̃v mr ñr

ξ mvs mv ñv p

Cev θ mr m̃r
ξ mr ñr

ξ mvs mv m̃v p

Cev θ mr ñr
ξ mvs mv m̃v mvs mv ñv p

Cev θ C m̃r ñr p mvs mv m̃v mr ñr
ξ m̃v ñv p

Cev θ C C̃ m̃v ñv p C m̃r ñr p

C J̄ τ m̃v ñv, m̃c ñc, m̃r ñr Ez
p J̄ Ez

p J̄ Ez
p J̄ ,

108
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where we used for the third estimate

a b a b , for a, b R. (4.3.11)

This estimate is obvious if a, b 0 or a, b 0. For a 0 and b 0 we have

a b a a a b b a b a b ,

which is analogous for a 0 and b 0. We also used

sξ s̃ξ sup
s̄ ζ

3

ξs̄ξ 1 s s̃ ξ ζ
3

ξ 1 s s̃ : C s s̃

for s, s̃ ζ
3 and ξ 0, 1 . This holds true, since mr m̃r , mr ñr

ζ
3 , due to

(4.3.10). For the fourth inequality we used

mj m̃j mj
ζ
3 mj Ez

p T1
ζ
3 Mjw

ζ
3 : C 0, j v, c, r ,

(4.3.12)

which holds due to (4.3.9) and our choice of δ. We can then conclude

mr m̃r
ξ C ξ : C

and

mv m̃v mvs mv m̃v mvs C mvs : C̃ (4.3.13)

for mv E
z
p J̄ , m̃v 0E

z
p J̄ , mvs constant. Note that C̃, C , C , C 0 are also

independent of J̄ . With (4.3.11), (4.3.13) and (4.3.12) we obtain as well for j v, r, c and
m̃v, m̃c, m̃r 0E

z
p J̄ 0E

z
p J̄ 0E

z
p J̄ with m̃v 0Ez

p J̄ m̃c 0Ez
p J̄ m̃r 0Ez

p J̄ δ

that

Scd mv m̃v, mc m̃c Scd mv ñv, mc ñc Lp J̄ Ω ,

u ∇ mj m̃j u ∇ mj m̃j Lp J̄ Ω ,

V
gρm

∇ ρm mr m̃r
V

gρm
ρm mr ñr

Lp J̄ Ω

C T̄ τ m̃v ñv, m̃c ñc, m̃r ñr 0Ez
p J̄ 0Ez

p J̄ 0Ez
p J̄ .

The constant C 0 is independent of J̄ J1 again. This implies

Km m̃v, m̃c, m̃r Km ñv, ñc, ñr 0Ez
p J̄ 0Ez

p J̄ 0Ez
p J̄

C J̄ τ C̄ m̃v ñv, m̃c ñc, m̃r ñr 0Ez
p J̄ 0Ez

p J̄ 0Ez
p J̄ , (4.3.14)

for m̃v, m̃c, m̃r , ñv, ñc, ñr 0E
z
p J̄ 0E

z
p J̄ 0E

z
p J̄ that satisfy m̃v 0Ez

p J̄

m̃c 0Ez
p J̄ m̃r 0Ez

p J̄ δ and ñv 0Ez
p J̄ ñc 0Ez

p J̄ ñr 0Ez
p J̄ δ. Here,

C̄ : sup 0L 1
m L 0F

P,R
p J̄ 0F

P,R
p J̄ 0F

P,R
p J̄ , 0Ez

p J̄ 0Ez
p J̄ 0Ez

p J̄
: J̄ J1 .

Finally, we have

Km 0, 0, 0 0Ez
p J̄ 0Ez

p J̄ 0Ez
p J̄ C̄ N mv , mc , mr 0F

P,R
p J̄ 0F

P,R
p J̄ 0F

P,R
p J̄

C̄ w Lp J̄ Ω 3 T̄ 0 0
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where

w :
u ∇ mc Sev mv , mr Scd mv , mc

u ∇ mc Scd mv , mc Sac mc Scr mc , mr

u ∇ mr Sac mc Scr mc , mr Sev mv , mr
v

ρm
e3 ∇ ρmmr

T

.

In summary, this implies

Km m̃v, m̃c, m̃c 0Ez
p J̄ 0Ez

p J̄ 0Ez
p J̄ C T τ C̄δ C̄ w Lp J̄ Ω 3 , (4.3.15)

for m̃v, m̃c, m̃r 0E
z
p J̄ 0E

z
p J̄ 0E

z
p J̄ , m̃v, m̃c, m̃r 0Ez

p J̄ 0Ez
p J̄ 0Ez

p J̄ δ.
The value w 0 is constituted by the data and we already set δ ζ

3C . Now choose a
J̄ J1 with T̄ 0, T1 , such that

C J̄ τ C̄ 1
2

and

C̄ w Lp J̄ Ω 3
δ
2 .

Therefore, we obtain

Km m̃v, m̃c, m̃c 0Ez
p J̄ 0Ez

p J̄ 0Ez
p J̄

δ
2

δ
2 δ

by using (4.3.15). Combining this with (4.3.14) we get that Km is a contraction on a
closed ball of radius δ. Now, using the Contraction Mapping Principle, Proposition 4.5 is
proven.

Remark 4.6. For the nonlinear moisture dynamics (TS.2 J) we could prove the existence
and uniqueness of a solution for arbitrary data, but small time intervals only. This is
due to the nonlinear term

Sev Cevθ mr
ξ mvs θ mv , ξ 0, 1 ,

which occurs in model (TS.2 J). This term is not Fréchet differentiable, since mr
ξ is

not differentiable, for instance, at zero for ξ 1
2 . Therefore, we had to fix the solution to

the linearisation of (TS.2 J) on small time intervals and were thus only able to prove
solvability of (TS.2 J) for small time intervals.

4.3.3 Proof of Theorem 4.2
Finally we consider the entire system (TS J). By using Propositions 4.3 we obtain the
existence and uniqueness of a local-in-time, strong solution u, q, θ to (TS.1 J). Then,
we obtain a solution mv, mc, mr to (TS.2 J) by using Proposition 4.5 and the solutions
u, θ obtained from (TS.1 J). Thus, u, q, θ, mv, mc, mr is the unique local-in-time,

strong solution to the entire model (TS J).
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Conclusions

In this thesis we extend the model on the dynamics of tropical storms of Nolan and
Montgomery [44] to a physically more satisfactory description with the goal of proving
the existence and uniqueness of a solution in a general Lp-setting. To make the model
thermodynamically consistent, we adapt the coefficients of the model by Nolan and
Montgomery to the setting considered by Novotný, Růžička and Thäter [45] and by
coupling this system to nonlinear moisture dynamics as introduced in Hittmeir, Klein, Li
and Titi [27], we are also able to take the humidity into account. The improved model is
of the form

ρ tu ρ u ∇ u μΔu λ∇divu α∇q ρ θ̄ θ
θ̄

∇F ωe3 ρu in J Ω,

div ρu 0 in J Ω,

ρ tθ ρ u ∇ θ p0 div ρuF κΔθ ρ u ∇ θ̄ κΔθ̄ in J Ω,

tmv u ∇ mv ηvΔmv Sev Scd 0 in J Ω,

tmc u ∇ mc ηcΔmc Scd Sac Scr 0 in J Ω,

tmr u ∇ mr ηrΔmr Sac Scr Sev
V

gρm
e3 ∇ ρmmr in J Ω,

u ν hu ν, βuPΓD u ν PΓhu on J Γ,

βθ
νθ σθθ hθ on J Γ,

βmv
νmv σmv mv hv on J Γ,

βmc
νmc σmcmc hc on J Γ,

βmr
νmr σmr mr hr on J Γ,

u 0 u0, θ 0 θ0 in Ω

mv 0 mv,0, mc 0 mc,0, mr 0 mr,0 in Ω.
(TS J)

Here, Ω R
n denotes a cylindrical domain and J 0, T some time interval. The vector

fields u, θ, mv, mr, mc and the gradient ∇q are unknown quantities. An interesting
aspect of our model is the fact that all coefficients are assumed to be variable, in order
to fit both the setting of Nolan and Montgomery and the setting of Novotný, Růžička
and Thäter. The main focus of this thesis is the proof of solvability of (TS J). On that
account, we use a linearisation argument to obtain five uncoupled systems: the Stokes
equations with free slip boundary conditions and four parabolic systems with Robin
boundary conditions. All these systems are defined on cylindrical domains and have
variable coefficients.

In Chapter 2 we prove maximal Lp-regularity for parabolic problems with Robin boundary
conditions and variable coefficients on cylindrical domains for the cases 1 p and
p 3. In the same chapter, we prove maximal Lp-regularity for parabolic problems with
Neumann-Dirichlet boundary conditions, perfect slip and free slip boundary conditions
for 1 p and p 3

2 , 2, 3 . We have to exclude the cases of p 3
2 , p 2 and p 3,

because we allow for inhomogeneous boundary conditions. To prove maximal regularity
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for parabolic problems with inhomogeneous boundary conditions we use the retraction
property of trace operators with respect to Robin boundary conditions, Neumann-Dirichlet
boundary conditions, perfect slip and free slip boundary conditions, which was shown
in Section 1.5. Our method does not provide the cases p 3

2 , p 2 and p 3, which
are the critical values for the trace spaces, the way it provides the cases 1 p with
p 3

2 , 2, 3 .

In Chapter 3 we are able to prove maximal Lp-regularity of the Stokes equations with free
slip boundary conditions and variable coefficients on cylindrical domains for 1 p
and p 3

2 , 2, 3 . For that purpose, we use the maximal Lp-regularity of the Stokes
equations with perfect slip boundary conditions, which is shown earlier in that chapter. By
applying a localisation argument similar to the one used in Denk, Hieber and Prüss, and
using maximal Lp-regularity of parabolic problems with perfect slip boundary conditions
we show maximal Lp-regularity of the Stokes equations with perfect slip boundary
conditions for 1 p and p 3

2 , 2, 3 . For the same reason as mentioned above, we
had to exclude the cases p 3

2 , 2, 3 .

Using the results of Chapters 2 and 3, we are able to show maximal Lp-regularity for
the linearisation of the model (TS J) for 1 p and p 3

2 , 2, 3 in Chapter 4. In
order to prove the existence and uniqueness of a solution to the entire model (TS J), we
split it into a system (TS.1 J) containing u, q and θ, and a system (TS.2 J) containing
mr, mv and mc. The existence and uniqueness of a solution to (TS.1 J) are shown for
the limiting cases of arbitrary data and small time intervals, as well as for arbitrary
time intervals and small data. For the nonlinear moisture dynamics (TS.2 J) we prove
the existence and uniqueness of a solution for arbitrary data, but small time intervals
only. By proving existence and uniqueness of a solution to (TS.2 J) we also have to set
p n 2

2 for the integrability parameter. This is because we use the embedding

W 2 2 p
p Ω BUC Ω C Ω̄ ,

which is only valid for p n 2
2 , because of Sobolev’s embedding theorem, where n N

denotes the dimension in the spatial direction. We need the embedding into C Ω̄ and
thus, the restriction p n 2

2 , because the initial data of the rain water mixing ratio
has to be strictly positive. Using the solvability of (TS.1 J) and (TS.2 J) we then infer
existence and uniqueness of a local-in-time, strong solution to (TS J) on cylindrical
domains for n 2

2 p with p 3
2 , 2, 3 and small time intervals.

Investigations of the behaviour of (TS J) on different domains and its solvability for
arbitrary time intervals and small data are left for future research. Moreover, the stability
of the model is an interesting aspect for further analyses, as it plays a major role for
numerical considerations.
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Contributions

The content of this thesis is based on a joint work with Jürgen Saal and Matthias Köhne.
The essential parts will be published in [33]. All authors contributed equally to [33].
I proved that parabolic problems with constant coefficients in cylindrical domains (Chap-
ter 2), as well as that Stokes equations with variable coefficients in cylindrical domains
(Chapter 3) have the property of maximal regularity.
The results concerning the maximal regularity of elliptic operators in cylindrical domains
(Chapter 2) and the additional regularity of the Helmholtz-projection (Chapter 1) were
developed by Matthias Köhne and me. The proof of the retraction property for a trace
operator with respect to perfect slip boundary conditions in Chapter 1 goes back to lively
discussions amongst Jürgen Saal, Matthias Köhne and me. Also the development of a
model describing the dynamics of tropical storms (Chapter 4), which is based on already
existing models, goes back to a number of working session of these three. I implemented
the proof of solvability to this model and the proof concerning the retraction property of
the aforementioned trace operator.
I created the figures on page 19 and on page 38 of this thesis using TikZ. The PNGs of
the tornadoes next to each page number were created from the GIF [13].
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