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Zusammenfassung

Mathematische Modelle spielen im Bereich der Wettervorhersage eine immer groflere
Rolle. Um diese Modelle bei der Berechnung von Vorhersagen anwenden zu kénnen muss
zuvor verifiziert werden, dass sie eindeutig 16sbar sind. Aus diesem Grund beweisen wir in
dieser Arbeit die Existenz und Eindeutigkeit von zeitlich lokalen, starken Lésungen eines
Modells zur Beschreibung von Luftstromungen, die in tropischen Stiirmen beobachtet
werden.

Dieses System beriicksichtigt Geschwindigkeit, Temperatur, Druck und Feuchtigkeits-
entwicklung tropischer Stiirme indem es Impuls-, Masse- und Energieerhaltung nutzt
und mit nichtlinearen Feuchtigkeitsdynamiken koppelt. Es ist auf einem Zeitintervall
und einem beschriankten, zylindrischen Gebiet definiert. Um die Losbarkeit des Modells
zu zeigen, linearisieren wir es geeignet und beweisen maximale L,-Regularitét fiir das
linearisierte Modell.

Das linearisierte Modell besteht aus Stokes-Gleichungen mit Free-Slip-Randbedingun-
gen und variablen Koeffizienten und parabolischen Gleichungssystemen mit Robin-
Randbedingungen. Eine weitere Schwierigkeit ergibt sich aus der Tatsache, dass alle diese
Systeme variable Koeffizienten enthalten, d. h. sie hingen von den rdumlichen Komponen-
ten ab. In dieser Arbeit untersuchen wir die Stokes-Gleichungen mit Perfect-Slip- und
Free-Slip-Randbedingungen, sowie parabolische Problemen mit Robin-Randbedingungen,
Neumann-Dirichlet Randbedingungen, Perfect-Slip- und Free-Slip-Randbedingungen. Wir
zeigen die maximale L)-Regularitéit all dieser Systeme mit variablen Koeffizienten in
zylindrischen Gebieten. Dafiir benétigen wir die Retraktionseigenschaft der beteiligten
Spuroperatoren fiir Sobolev- und Bessel-Potentialrdume in zylindrischen Gebieten, die wir
detailliert in dieser Arbeit beweisen. Aulerdem verwenden wir ein Lokalisierungsargument
um die maximale L,-Regularitat von Stokes-Gleichungen mit konstanten Koeffizienten in
zylindrischen Gebieten auf solche mit variablen Koeffizienten zu tibertragen.

Wir nutzen die Theorie der anisotropen Sobolev- und Bessel-Potentialraume um optimale
Abschétzungen fiir die nichtlinearen Terme unseres Modells zu erhalten. Dies fiihrt in
Kombination mit dem Fixpunktsatz von Banach und der maximalen L,-Regularitit des
linearisierten Modells zur Existenz und Eindeutigkeit von zeitlich lokalen, starken Losun-
gen des vollstdndigen Modells mit optimalen Grenzen fiir den Integrationsparameter p.
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Summary

Mathematical models play an increasingly important role in the field of weather forecasting.
In order to use these models for the calculation of predictions, their solvability has to
be verified first. For this reason, in this thesis we show the existence and uniqueness
of local-in-time, strong solutions to a model describing the air flow observed in tropical
storms.

This model takes velocity, temperature, pressure and moisture ratios into account by
using the conservation of momentum, mass and energy, and coupling them to nonlinear
moisture dynamics. It is posed on a time interval and a bounded, cylindrical domain.
In order to show solvability of the model, we linearise it suitably and prove maximal
Ly-regularity for the linearised model.

The linearised model is composed of the Stokes equations with free slip boundary
conditions, and parabolic systems with Robin boundary conditions. Another difficulty is
given by the fact that all these systems contain variable coefficients, i.e., they depend on
the spatial components. In this thesis we study the Stokes equations with perfect slip
and free slip boundary conditions, as well as parabolic problems with Robin boundary
conditions, Neumann-Dirichlet boundary conditions, perfect slip and free slip boundary
conditions. We show maximal L,-regularity of all these systems with variable coefficients
in cylindrical domains. In order to do so, we need the retraction property of the involved
trace operators for Sobolev and Bessel potential spaces in cylindrical domains, which
we prove in detail in this thesis. Moreover, we use a localisation argument to translate
the maximal L,-regularity of the Stokes equations in cylindrical domains with constant
coefficients to those with variable coefficients.

We use the theory of anisotropic Sobolev and Bessel potential spaces to obtain optimal
estimates for the nonlinear terms of our model. In combination with the Fixed-Point
Theorem of Banach and the maximal L,-regularity of the linearised model this allows us
to show existence and uniqueness of local-in-time, strong solutions to the full model in
an L,-setting with optimal restrictions on the integrability parameter p.
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Introduction

We cannot direct the wind.
But we can adjust the sails.

ARISTOTLE

Idai, Haiyan and Katrina. These names are associated with the most devastating tropical
storm of recent years. The cyclone Idai was causing over 700 casualties in Mozambique
and Zimbabwe in 2019 [9], the typhoon Haiyan in the Philippines in 2013 over 6400
casualties [14], and hurricane Katrina in the Caribbean and the East of the United States
in 2005 about 1800 casualties [22]. All of these events have one thing in common: they all
demonstrate the destructive power of winds. But how can such catastrophes be prevented
in the future?

The observation of natural phenomena dates back to the beginning of human history.
From Aristotle, who studied the dynamic of winds as early as 300 B.C., via Kepler, who
in the early 17th century used observation to deduce laws governing the motion of planets
around the sun, to the present day. In order to be able to describe natural phenomena,
particularly Kepler’s laws of planetary motion, Newton developed infinitesimal calculus
in the middle of the 17th century. Independently of Newton, Leibniz, using a geometric
approach instead, also developed this calculus at about the same time. From a today’s
perspective, infinitesimal calculus can be regarded as a precursor to differential calculus
and modern analysis. Almost two-hundred years later, scientists such as Navier and
Stokes have, independently of each other, been able to describe the inner friction of fluids
using differential equations. The Navier-Stokes equations are a mathematical model
to describe the dynamics of viscous Newtonian fluids and gases. Mathematical models
are nowadays a popular tool for the description of phenomena in physics. Through the
use of methods from calculus such models can be analysed and statements about their
solvability can be made. This makes it possible to decide whether it is worthwhile to
use numerical methods to approximate precise solutions of the model, in order to obtain
predictions for real world events.

As Aristotle once said, we cannot direct the wind, but with the help of more precise
predictions we may be able to better judge where and with which impact tropical storms
may occur, in order to soften the consequences of catastrophes such as those caused by
hurricane Katrina, that is, “to adjust the sails”. In order to make better predictions
concerning tropical storms, it is worthwhile to investigate mathematical models in more
depth. Nolan and Montgomery [44] utilised the fact that the behaviour of air and water
can be described using Navier-Stokes equations, and developed the following mathematical




Introduction

model in order to describe the dynamics of tropical storms:

pouu + p(u - V)u — epAu — epVdivu + Vg = p%GVF —wes X pu in J x Q,
div(pu) = 0 in J x Q,
P00 + p(u-V)0 —epAl = p(u-V)0 — kAH inJ xQ,
w-v="hy-v, B“PrDi(u)yv = Pphy onJ x T,
690,60 + 0% = hy onJ x T,
u(0) = wo in Q,
0(0) = 6y in Q.

The model introduced by them mainly consists of extended Navier-Stokes equations (first
two equations), which are coupled to the heat equation (third equation). The density p
is assumed to be a given, time-independent positive function, € denotes a constant eddy
viscosity, and 6 denotes a given mean value. The model describes velocity u, pressure g
and temperature ¢ of a tropical storm using conservation of momentum

p(Oru+ (u-V)u)) = div(T — Idq) + G,
conservation of mass
div(pu) = dp = 0,
and conservation of energy
0 (20— 0) + (u- V)(0 — 0)) = epA 0 — )

Within the equation for the conservation of momentum, the term for the acceleration
oru + (u - V)u is contrasted with the inner friction div(7T — Id q), where T is the stress
tensor. In the model by Nolan and Montgomery, the inner friction is represented by the
term epAu — epVdivu + Vg. The function G represents the external forces, which in the
model are given by the Coriolis force —wes x pu and the buoyancy p%VF . In [49] Saal
has shown existence and uniqueness of solutions to this model in the Hilbert-space setting.
This leads to the question whether it is also possible to prove existence and uniqueness of
solutions to this model in the general L,-setting and whether improvements to the model
are possible. In a next step, this could motivate the numerical investigation of this model
in order to find approximate solutions which may in turn improve predictions for tropical
storms. However, it is not easy to see whether the model is thermodynamically consistent.
Furthermore, the model does not take moisture dynamics into account, which however
are known to be a major influence on tropical storms in terms of size and intensity, as
shown for instance by the works of Hill and Lackmann [26], as well as Wu, Su, Fovell,
Dunkerton, Wang and Kahn [56]. This is why we decided to modify the model of Nolan
and Montgomery. We extensively touch upon the modifications of the resulting model in
Section 4.1. We slightly adapt the coefficients of the model of Nolan and Montgomery to
the setting of Novotny, Ruzicka and Théter [45], as well as add the term

%div(qu),

which models the creation of heat through volume work. This ensures thermodynamic
consistency within the model. Part of these modifications are the substitution of constant




coefficients by variable ones, i.e., all relevant coefficients such as viscosity, density, etc.
are replaced by given, positive functions. In order to appropriately incorporate moisture,
we couple the modified system of Nolan and Montgomery to the following nonlinear
moisture dynamics

Ormy + (u - V)my —nyAmy — Sey + Sea = 0 in J x Q,
Orme + (u- V)me — neAme — Seq + Sac + Ser = 0 inJ xQ,
demy + (u - V)my =1 Amy = Sae = Ser + Sev = gr—e3-V(pmmy)  in J xQ,
B dymy, + 0™vm, = hy on J x T,
pmeoyme + o™eme = he onJ x T,
B oymy +o™rme = hy onJ xT,

my(0) = My,  me(0) = meo, mp(0) = myp in 0,

which were introduce by Hittmeir, Klein, Li and Titi in [27]. The model of nonlinear
moisture dynamics by Hittmeir, Klein, Li and Titi does not only describe the moisture
dynamics with respect to rain water (m,), but also the moisture dynamics with respect
to vapour (m,) and cloud water (m.). Through the coupling of these models we obtain a
system that unifies the temporal and spatial description of motion, pressure, temperature
and moisture.

The goal of this thesis is to provide a proof of existence and uniqueness of local-in-time,
strong solutions to the above model on a cylinder (Theorem 4.2). That is, we want to
show solvability of a system of partial differential equations consisting of the Navier-Stokes
equations, the heat equation, and nonlinear moisture dynamics, with variable coefficients
on a cylindrical domain. Here, a cylindrical domain €2 refers to a Cartesian product
consisting of a bounded C3-domain A and an interval (—a, a) with a > 0, i.e.

Q:=Ax (—a,a).

We study the model on a time interval (0,7") with 7' > 0, and on a cylindrical domain
), because we are interested in both the temporal, as well as the spatial dynamics of
tropical storms. We have decided to use a cylinder as our model domain, because its
geometry suits the shape of tropical storms, such as tornadoes, very well. One could also
model tropical storms on the upper half plane, which might serve as a simplified version
of the surface of the earth. With equal right, one could also model tropical storms on a
sphere, serving as an approximation to earth as a whole. However, these two domains go
beyond the scope of the present thesis, and are left for future research. For the purpose
of proving solvability of our model, we reduce it to a linear system using linearisation
techniques, such as the ones presented in [6] by Amann. This linearised system contains
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all linear terms of highest order and takes on the following form:
poyu — epAu + Vq = fy in J x €,
div(pu) =0 in J x ),
u-v="hy-v ondxI,
BYPrDy(u)v = Pphy, on J x T,
u(0) = ug in Q,

POl — epAl = fy in J x €,
90,0 + %0 = hy on J x T,

0(0) = 6, in Q.
6tmj - T]jAmj = fj in J x Q,
B 0,m; + c™imj = h; on J x I,

m;(0) = mjo in Q,

where the last three equations are repeated independently for every j € {v,c,r}. The
linearised model is thus composed of the Stokes equations with variable coefficients,
as well as of various parabolic problems with Robin boundary conditions and variable
coefficients, each being defined on a cylindrical domain €.

Boundary value problems on cylindrical domains have for instance been investigated
by Nau, Saal and Denk [39, 40, 43, 42, 17]. However, all of these works only studied
boundary value problems with constant not variable coefficients. First investigations of
the Stokes equations with variable coefficients in L, go back to Abels and Terasawa [1, 2].
Moreover, Abels and Weber [3] analysed the inhomogeneous Navier-Stokes equations with
variable density. On the other hand, the Stokes equations with constant coefficients have
been the subject of many studies. Miyakawa [38], Giga [24], Shibata and Shimizu [51]
have been the first to approach the Stokes equations with first-order boundary conditions
in L, in a rigorous mathematical way. Some investigations of the Stokes equations with
Robin boundary conditions may be found in Saal [48, 47], Shibata and Shimada [50, 52].
For further investigations about the Stokes equations see [11, 19, 23], and for a detailed
overview of the Stokes equations in the Ly-setting we refer to [25].

Because both the Stokes equations, as well as parabolic systems with variable coefficients
in cylindrical domains, have attracted little attention in the literature, we dedicate the first
part of this thesis (Chapters 1-3) to the development of an L,-theory of such boundary
value problems on cylindrical domain. In order to make such a theory valid not only for
constant but also variable coefficients, we adapt a similar strategy as Denk, Hieber and
Priiss in [15, Therorem 5.7]. They used a localisation argument to transfer maximal regu-
larity of elliptic operators in Banach spaces of class HT with constant coefficients to the
same operators with variable coefficients. In the second part of this thesis (Chapter 4), we
describe the model on tropical storms given above more comprehensively, and rigorously
show its solvability. This is done by showing that the aforementioned linearised model,
i. e. the resulting Stokes equations and parabolic problems, admit a unique solution. To
this end, we make use of results obtained in Sections 3.2 and 2.2, respectively. With the
help of a perturbation argument, we are able to add the nonlinear terms, as well as the
linear terms of lower order as perturbations to the linearised model. The existence of a




unique solution to our model can then be obtained using the Fixed-Point Theorem of
Banach. In this thesis we study our model on cylindrical domains, and show solvability
for arbitrary data and small time intervals. The investigation of the model’s behaviour
on different domains, and its solvability for arbitrary time intervals and small data are
left for future research.

This thesis is organised as follows.

Chapter 1 starts by introducing general notation and basic function spaces. There, we
establish most of the mathematical notions that are used in later chapters, including
Banach spaces of class H7T, property («), R-boundedness and maximal regularity. More-
over, we give a brief introduction to cylindrical domains and the Helmholtz projection.
This chapter includes a first overview of parabolic problems and the Stokes equations,
as well as of different boundary conditions, which are later discussed in Chapters 2 and
3. We also present a proof of the retraction property of trace maps with respect to the
aforementioned boundary conditions.

Chapter 2 studies elliptic and parabolic problems with variable coefficients on cylindrical
domains. More precisely, here, we investigate elliptic problems with Neumann bound-
ary conditions, both in the case of time-dependent, as well as time-independent data.
Furthermore, we prove maximal regularity for parabolic problems with Robin boundary
conditions, as well as Neumann-Dirichlet boundary conditions, perfect slip boundary
conditions and free slip boundary conditions. Maximal regularity of parabolic problems
with Robin boundary conditions and variable coefficients prove to be particularly useful
in Chapter 4 to show solvability of our model describing the dynamics of tropical storms.
The results in this chapter allow us to extend the L,-theory for cylindrical boundary
value problems with constant coefficients to such problems with variable coefficients.

Chapter 3 extents the investigation of the previous chapter by studying the Stokes
equations with variable coefficients on cylindrical domains. Here, we prove maximal
regularity for the Stokes equations with perfect slip and free slip boundary conditions,
thereby complementing the L,-theory of cylindrical boundary value problems with vari-
able coeflicients as developed in Chapter 2.

Chapter 4 studies in detail the model on the mechanisms of tropical storms that was
already briefly described in this introduction. Moreover, we prove existence and unique-
ness of local-in-time, strong solutions to this model by using the results of Chapters 2
and 3. Put in another way, we make use of the maximal regularity of parabolic problems
with Robin boundary conditions and of the maximal regularity of the Stokes equations
with free slip boundary conditions. Finally, we use a perturbation argument in order to
prove solvability for this model for arbitrary data and small time intervals.
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1 Preliminaries

The purpose of this chapter is to recall and define terms and concepts that are frequently
used throughout this thesis. This is also to ensure that during the study of this thesis
these concepts are able to be found in one place such that the flow of reading may not
be disturbed. We also give a first introduction to the problems discussed in the first part
of the thesis.

In Section 1.1 we give an overview of the general notation used throughout this thesis.
We also introduce function spaces, reminding the reader of their important properties
such as property « and the class H7. In Section 1.2 we introduce important concepts of
operators such as sectoriality, R-boundedness and maximal regularity. Especially the
concept of maximal regularity plays an important role throughout this thesis. Since we
exclusively focus on problems on cylindrical domains, we devote Section 1.3 entirely to
their introduction. This includes a discussion of their boundary as well as the behaviour
of the Helmholtz projection on cylindrical domains. In Section 1.4 we give a first overview
of problems later on discussed in Chapters 2 and 3, i.e. boundary conditions used in the
context of these problems, as well as necessary regularity and compatibility conditions.
Finally, in Section 1.5 the presentation gets somewhat more formal as we show that trace
maps with respect to the boundary conditions, introduced in Section 1.4, are retractions.

1.1 Essentials

In the first part of this section we collect some basic definitions and notations which
are used throughout this thesis. The second part of this section is meant to serve
as a brief reminder of some function spaces, such as L,-spaces, and of some of their
important properties such as property a and the class H7. The remainder of this section
is arranged into two paragraphs: an introduction to isotropic function spaces followed by
an introduction to anisotropic function spaces.

General Notation

This paragraph is devoted to an explanation of notations used throughout this thesis.
Among other things, we introduce the divergence, the gradient and the Laplacian
of matrices and vector fields. In addition, we also review the definition of Fréchet
differentiability. Furthermore, normalized vector spaces and their dual spaces are also
recalled.

As usual, N; R and C denote the natural, real and complex numbers, respectively. For any
natural number n € N, we then denote by N”, R™ and C" the corresponding n-dimensional
natural, real and complex space, respectively. As we adapt the standpoint that the
natural numbers do not contain zero, we introduce the additional set Ny := N u {0} for
distinguishability. For any vector x € R™ or matrix S € R™*" their transposed versions
are denoted by 2T and ST, respectively. Likewise x;, for j € {1,...,n}, and S, for
J, ke {l,...,n}, denote the components of x and S, respectively. Furthermore, for any
two vectors z, y € R", x-y := Z?:I x;y; indicates their inner product. We also abbreviate
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the element-wise product of two matrices S, T' € R" ™ by S : T := szzl Si kT k-
Moreover, x 1 y indicates that vector x is orthogonal to vector y. Additionally, for any
real function «, by («)* := max{0, «} we denote the positive part.

If it is clear from the context, e; € R™ denotes for j € {1,...,n} the entire j-th real
unit vector, whose components are zero, except for the one at j-th position, which is
one. Then, Id = (e, ..., e,) denotes the identity matrix in R™*™. We also denote the
identity mapping between normed vector spaces by Id, since this is unlikely to lead to
misconception.

For a normed, real vector space (X, | - |x) we set X’ to be the related dual space and
(- | -) to be the dual pairing. For two Banach spaces X and Y we write X =Y, if X
and Y are identical up to equivalence of norms. By £(X,Y) we denote the space of all
linear continuous operators from the normed space X to the normed space Y and by
Lis(X,Y) the space of all isomorphisms. For X = Y, we use the abbreviations £(X) and
Lis(X). We use R(T) for the range and D(7T") for the kernel of an operator '€ L(X,Y).
Furthermore, by |T'|x_y we denote the operator norm in £(X,Y’), which we sometimes
also may write as |T'|z(xy). We use p(T) for the resolvent set of an operator 7. In
general, D(T') we denote the domain of an operator 7.

The divergence of a continuously differentiable vector field u: D — R"™, with D € R"
an open subset, is denoted by div(u). For a matrix S: D — R™*"™ with columns
S1,-..,8n: D —> R™ such that for z € D the identity S(z) = (s1(x),...,sn(x))T holds
true, we write

div(S) := div(sy,...,sn) = (div(sy),...,div(sp))?

for the divergence. Throughout this thesis, the gradient of a differentiable function
f: D —> R is denoted by

Vfi=(01f,. . onf)T

and the gradient of a continuously differentiable vector field u: D — R” by

Jup ., Qun

oz oz
Vu :=

our . Oun

O0Ln OLn

Then, the directional derivative of the vector field v is written as (Vu)Th =: dpu for
h € R", and the Laplacian as Au := div(Vu). We use the notation u 4 to restrict the
domain of a vector field u: D — R™ to an open subset A € D. In addition, by supp(u)
we denote the support of the vector field u, which is the closure in D of the set of points
in D where u is non-zero.

Let X and Y be normed vector spaces and U € X an open subset. We call a function
A: U — Y Fréchet differentiable at x € U, if there exists a continuous linear operator
Be L£(X,Y), such that

. |A(x 4+ h) — A(x) — Bhly
|h]—0 IR x

=0.

We denote the Fréchet derivative of A at point = € U by DA(x) := B. If the derivative
exists at all points x € U, we call the resulting function DA: U — L(X,Y) the Fréchet

10
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derivative of A, which maps x —— DA(x).

The closure, the interior and the boundary of a set G are denoted by G, G° and G,
respectively. Moreover, G u H, G U H and G n H stand for the union, the disjoint union
and the intersection of two sets G and H, respectively. An example of a set, which is
often used in this thesis, is the open ball B,(z). It is constructed with respect to the
Euclidean norm with radius » > 0 and center point z. The Euclidean norm on R™ and
R™ ™ are be denoted by | - |. In accordance with the notation above, B, (z) denotes the
closure of the ball B, (z).

We also make frequent use of positive constants in estimations or equations. For better
readability when used in chains of inequalities, we denote all positive constants in each
estimate of the chain by C, whenever the actual value of the constant is not important.
If the actual values are important or should be emphasised, we indicate them with their
values or primes, e.g. C’', C”,... and so on.

Function Spaces

Throughout this thesis, we work with many different function spaces, whose definition
we briefly recall here.

Let D < R™ be an open subset with dimension n € N, k € Ny u {0}, [ € (0,1] and
m € Ny. Moreover, assume z € R” and j € Nj to be a multi-index with [j] := >} | j
and @7 := ¢4 ... ¢» . Then we have

CK(D):= {f: D — R: f is k-times continuously differentiable}
cPND) = {f e C*(D) : &7 f is Holder continuous with exponent X for all |j| = k} ,
BCH(D) i= { f € CH(D) : sup,ep|0d f ()| < oo for all |j| <k},
BUC(D) := {f € BC’(D) : f is uniformly continuous on D},
BUC™(D) :={f: D — R :d)f € BUC(D), |j <m}.

Each of these function spaces can also be restricted to include functions with compact
support only, and we denote them by

Y.(D) := {feY(D):supp(f) is a compact subset of D},
Ye(D) = {fip: feYe(RM)},
for Y e {C*,CF*, BUC, BUC™}. We set
Cip(D) :={ueCr(D)" : div(u) = 0},

and define the space of solenoidal functions as

LP,U(D) = CS,OU(D)a

where the closure is taken in L,(D,R"), for 1 < p < o0.
Throughout this thesis, vector-valued Ly-spaces are frequently used. In order to define
them, let (2,4, 1) be a measure space and let E be a Banach space. Then, for 1 < p < oo,
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we define
Lp(u; B) = {u: Q —> E measurable : |ulp, k) := (S lulP d,u(:z))l/p < 0},
N(p; B) = {ue La(p; E) : ul L, ) = 0},
Ly(ps E) = Ly E)/N(p; E),
Lyo(; E) = {u:Q —> F measurable : |u|r (u; F) := ess sup,eq |u(x)| < oo},
Lpjoc(pi; E) = {u: Q — E measurable : . |ulP du(x) < o0, VK < Q compact}.

If A is a Borel-Lebesgue o-algebra and p is the Lebesgue measure, we use standard
notation by writing L,(2, E) := L,(p; E). Furthermore, we write L,(Q) if £ = R
and L,(Q)" if E = R", n € N. In case the underlying domain €2 is understood from
context, and p is the Lebesgue measure, we write | - ||, for the L,-norm, 1 < p < 00, and
fude = (udp(z). For a domain Q or real manifold I', we denote by (-,-)q and (-, -)p the
inner product of Ly(Q2)™ and Lo(I')™, respectively. Then

1
(u)g = 9] jﬁudx

stands for the mean value of a function v € L1(2)". With the help of vector-valued
L,-spaces we are able to define the class HT.

Definition 1.1. cf. [16, Definition 1.11] Let E be a Banach space.

(i) The Hilbert transform $: S(R, E) — S'(R, E) of a function f € S(R, E) is defined
through

f(y)

z—y|ze T Y

($ f)(z) :== L lim

e—0

dy, zeR.

(ii) The Banach space E is of class HT if the Hilbert transformation $) can be extended
for one (and thus for all; see [6]) p € (1,00) to a continuous and linear operator
$HeL(L,(R,E)).

We denote by S(R"™, E') the E-valued Schwartz space on R", by §: S(R", EF) — S(R", E)
the Fourier transformation on this space and by S’'(R", E) the space of E-valued tempered
distributions. For a comprehensive approach to vector-valued distribution spaces and
Fourier multipliers, see [7].

Remark 1.2. There exists alternative descriptions of the class H7T. In particular, £ is of
class HT if and only if the property “E is a UMD-space” holds, where UMD stands for
unconditional martingale differences, cf. [30, Theorem 2.1.19].

Besides the class HT, the property («) is an important property of Banach spaces.

Definition 1.3. [46, Definition 4.2.7] Let (2, A, 1) and (€', A’, i//) be probability spaces.
A Banach space E has property (a), if a constant a > 0 exists such that

N N
/ /
2 OéijEié“j:L'ij Z Eié“jxij

i,j=1 3,j=1

<«
Lo(Qx Y E)

La(QxSY )

for all oy; € {—1,1}, z;; € E, N € N and all {—1, 1}-valued random variables ¢; on
(2, A, p) and €} on (', A’ ).




1.1 Essentials

Isotropic Function Spaces

We would like to remind the reader that for a Banach space E and —oc < s < oo the
Bessel potentials are defined by

Bu = FHE— BYOFu)), ueSR™E),
B3(§) = (L+[¢2)2, £eR™.

Thus, we can define the vector-valued Bessel potential spaces as
Hy(R", E) :={ueS'R", E):u=B"°f, fe L,(R",E)}, —w<s<on, 1<p<o,
with norm
HUHHg(]R",E) = HfHLp(R",E)a u € HS(RHMEL J€ Lp(]RnuE)a u = Bisf’
Moreover, the Sobolev spaces for s € Ng and 1 < p < oo are defined as follows,
Wy (R", E) := {ue Ly(R", E) : 0%u € Ly(R", E), |af < s},

with norm

lulws@n, gy = e ulf @nm) | wEW (R E).

la|<s
There is also the following relationship between Sobolev spaces and Bessel potential
spaces:

Remark 1.4. If E is a Banach space of class HT, then
Hy(R", E) =W, (R", E),

for every s € Ny, and every 1 < p < oo. This can be seen e.g. in [58, Proposition 3].

The Sobolev spaces are defined for s € Ny only. We can extend this scale to 0 < s < o
by the construction of the Sobolev-Slobodeckij spaces. Let |-]: (0,00) — Ny with
|s] := max{m € Ny : m < s} for s € (0,00) be the floor function and

o) - oul -\
. o “ — 0“u(y)|
|“|W5(R",E) = Z f B J . |x _ |n+(s [sDp dz dy )

lal=

for all 0 < s < o with s ¢ N and 1 < p < co. Then the Sobolev-Slobodeckij spaces are for
s€ (0,00)\N and 1 < p < o defined by

W, (R", E)

{ue WplSJ(]Rn, E): |u|W;(R”,E) < OO},
1/p
by = (10 gy 1y ) o 0€ WETE)

By assuming E to be a Banach space, we can define the E-valued Besov spaces for
—0<s<00,0>0,1<p<ooandl<qg< oo by

B} (B E) i= (B} R E), H (. E))

13
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using real interpolation. The family of real interpolation functors is denoted by (-, -)g,, on
the category of all interpolation couples. Later on, we also apply complex interpolation.
For an introduction to real and complex interpolation we would like to refer the reader
to [54] and [10]. We use the abbreviation B, := B} , and get the relation

By(R", E) =W, (R",E), se€ (0,0)\N, 1<p < o0,

see e.g. [7, Equation (5.8)]. For vector-valued function spaces on arbitrary domains
Q C R" we set

Hy(Q,E) = {ueD'(E): it exists a g e Hy(R", E) with g = u},
s€(—00,0), 1 <p< o0,
W5 (Q,E) = {ueD'(QE): it exists a g € WJ(R", E) with gio = u},
se[0,0), 1 <p< oo,
By (L E) = {ueD(Q,FE): it exists a g€ By (R", E) with g = u},

s€(—o,m), 1<p<oo, 1<q< oo,

where D'(§2, E) is the space of E-valued distributions on 2 and g|q is the restriction of g
on {2 in a distributional sense. The corresponding norms are defined by

= i f n
lully(o,r) LA, 19lly ®n B),
go=u

for Y e {H,, W7, B, ,}. Furthermore, we set
oY (J,E) = {ue Y(J,E) : u(0) = 0},

on an interval J = (0,7), T' > 0, for Y € {H;, W7, B, ,} and corresponding s, p
and ¢ as above. These spaces are essentially identical to Bessel potential, Sobolev,
Sobolev-Slobodeckij an Besov spaces. They only differ in so far that every function has
additionally an initial value of zero. The function space

HYQ) :={¢ € Lpioc(Q) : Vo € Ly(Q)}.

defines the homogeneous Sobolev space of order one, which becomes a semi-normed space
via

|</>\Hzg(g) = Vo, crn), ¢E H;(Q)-

For a more detailed treatment of vector-valued Bessel potential, Sobolev, Sobolev-
Slobodeckij or Besov spaces, cf. [7] and [30].

Anisotropic Function Spaces

Let again E be a Banach space. By v € N we denote the number of slices, in which
we divide the Euclidean space in order to allow different regularities in space. By
n = (ni,...,ny) € NV we denote the dimensions of the slices and use the abbreviation
R"™ := R™ x ...R™. Moreover, by w = (w1, ...,wy) € N7 we denote an arbitrary weight.
We use the abbreviation £ = (£1,...,&) € R, and w := lem{wi, ...,w,} to denote the
least common multiple of the weight entries wy,...,wy. Then, for —c0 < s < o the
weighted Bessel potentials are defined by

B = FHE— B (OFu()), ue SR E),
Bs’w(f) — (1_1_2’]::1 ‘£k|2w/wk)5/2w’ ceR™.
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Thus, we can define the E-valued anisotropic Bessel potential spaces as
H;’M(R",E) ={ueS'(R"E):u=B"f feL,(R", E)},
for s € (—o0,0) and 1 < p < 00, with norm
”u”H;’w(R",E) = HfHLp(R",E')a u € H;M(Rn7 E)7 f € Lp(]an E)7 u = Bis,wf‘

Moreover, the anisotropic Sobolev spaces for s € w- Ny and 1 < p < oo can be defined in
a similar manner as follows
opu e Ly(R", E), o€ Ny*
Wy“(R", E) := { ue L,(R", X) :
o] < sfwp, ke {L,... )
with norm
. 1/p
fulwso@epy = [ 3 Y 108l gog | - ueWi®"E).

k=1 |a|<s/wg

Here, 0} = oled / &Tg denotes the partial derivative with respect to the k-th component
xp € R™ of x = (x1,...,24) € R". According to Amann [8], anisotropic Bessel potential
and Sobolev spaces can also be characterized as follows:

Proposition 1.5. cf. [34, Theorems 3.7.2 € 3.7.3] Let v € N and n, w € NY. In addition
ny = n\{ng}, ' = w\{wg} forn, we N and k€ {1,...,~v}. Let E be an UMD-space,
that has property (a) if w # (w,...,w). The spaces H;/wk (R™,...) and W;/W(R"k, o)
stands for the isotropic vector-valued Bessel potential and Sobolev spaces on the slice R™k,
respectively. Then the equations

Hs*(R", E) = H;/WI (R™, L,(R™, E)) N L][,(Ram,lar;’“'1 (R™, E))
L HYFR™, LR, E)),  0<s<o, 1<p<o,

Ws“(RME) = Wy (R™, L,(R™, E)) n Ly(R™, Wyt (R™, E))
Y Wl R LR, E)),  sed N, 1<p< oo,

are valid.

From now on we assume E to be a Banach space of class H7 that has property («).
Then, we can introduce the anisotropic Sobolev-Slobodeckij spaces by

W;M(Rn’ E) = W;/Uh (Rnl,Lp(Rnll,E)) A Lp(Rnl, W;,w'l (Rnll,E))
= (), W (R L(R™, E)), 0<s<am, 1<p<o,

and thus extend the Sobolev scale. By using real interpolation, we can finally define the
anisotropic Besov spaces by

) e -4, +96,
B;’ZJ(RTL,E) _ (H;g W(Rn7E)7H; W(RH7E))1/2,q7

for —o0 < s < 0,6 >0,1<p<ooand 1< q<o0. Using the abbreviation B; := B/
we can again employ another characterisation of anisotropic Besov spaces by

Bs“(R"E) = BY“'(R™,L,(R™, E)) A Ly(R™, By*(R™, E))
= Z:I B;/wk(Rnk’Lp(an’E))’ 0 < 8§ < w’ ]_ < p < CD,

M
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using to [34, Proposition 1.4].

For a comprehensive approach of anisotropic function spaces we refer e.g. to [55], [§]
and [34]. Using the same construction as for isotropic function spaces, we can define the
anisotropic function spaces on a domain €2 € R".

1.2 R-boundedness and Maximal Regularity

This section is devoted to the explanation of the concept of maximal regularity. Maximal
regularity is of particular importance in this thesis, since every linear system of equations,
such as parabolic problems and the Stokes equations, that has the property of maximal
regularity has a unique solution. Moreover, the solution of a linear system of equations
that has the property of maximal regularity does not “loose” regularity with respect to the
regularity of the given data. This in turn enables us to solve nonlinear partial differential
equation systems. In Chapter 4 we introduce a model, describing the dynamics of tropical
storms, and use the approach of maximal regularity to solve this model. This is done by
linearising the model and by proving an “optimal” regularity of the linearised equations.
The crucial point, therefore, is to prevent any loss of regularity for the linearised system,
i.e. to prove maximal regularity. The concept of maximal regularity is closely related to
sectoriality, R-sectoriality and R-boundedness of operator families. For this reason, we
would like to recall the definitions of these concepts, following references [15] and [36].

The class of sectorial operators is one of the most important classes of closed but
unbounded linear operators. It is defined as follows:

Definition 1.6. cf. [15, Definition 1.1] Let E be a complex Banach space and A a closed
linear operator in F. A is called sectorial if the following two conditions are satisfied,

(Sl) D(A) =L, E)C{(‘Ll) =L, (70070) < IO(A)7
(S2) [[t(t + A) gy < M for all t > 0, and some M < 0.

The class of sectorial operators in F is denoted by S(FE). The spectral angle ¢4 of
A € §(X) is defined by

¢a = inf{g: p(—A) > Tr g, sup |AN+ A) g < o0}

)\EE,T,¢

The sector ¥y in the complex plane is defined by ¥y := {z € C\{0}; |arg z| < 0} for
0 < # < 7. Another important concept for linear operators is R-boundedness. The latter
also provides an important connection to maximal regularity, which is defined later on.

Definition 1.7. [15, Definition 3.1] Let E and F' be Banach spaces. A family of operators
T c L(E,F) is called R-bounded, if there is a constant C' > 0 and p € [1,00) such that

for each N e N, Th,...Txn € T, z1,...,z, € FE and for all independent, symmetric,
{—1,1}-valued random variables ¢; on a probability space (€2, A, 1) the inequality

N N

Z 9 jTj.ﬁlfj < C Z 3 j.%'j

j=1 J=1

Lp(Q,F) Lp(Q,E)
is valid. The smallest such C' is called R-bound of T, we denote it by R(T).

Analogously to the definition of sectoriality we define R-sectoriality.
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Definition 1.8. cf. [15, Definition 4.1] Let E be a Banach space. A sectorial operator
A e S(E) is called R-sectorial if

RA0) := R{t(t+ A)~':t >0} < 0.
The R-angle ¢&f of A is defined by means of
o = inf{p € (0,7) : p(—A) 2 Xr 4, Ra(r — ¢) < 0},

where
RA(0) := RIAMN+ A) 7L X #0, |arg \| < 6}.

Maximal Regularity

In this paragraph we explain the concept of maximal regularity (cf. [36, Section 1.3]) and
its relation to R-boundedness. Let A be a sectorial operator in a Banach space E with
spectral angle ¢4 < 5. The Cauchy problem

a(t) + Au(t) = f(t), =0, u(0)=0

has a solution for any given f € L,([0,7"), E), [0,T") [0, o), which is, according to the
Variation of Constants Formula, formally given by

u(t) = f At s)ds, te0,T).

0

The operator A has the property of mazimal reqularity of type L, for 1 < p < o0 on
J = [0,00), if the solution u of the Cauchy problem is (Fréchet) differentiable almost
everywhere, the solution u takes its values in D(A) almost everywhere and @ and Au
satisfy the estimate

|l gx) + [Aulp,x) < C (||U0HDA(1—1/p,p) + ”f”Lp(J,X)) )

for a constant C' > 0, cf. [46, Section 3.5]. The trace space D4(1 — 1/p,p) is given by

0 1/p
Da(1—1/p,p) = {x €E:[x]i_ypy = (L |t1/P Ae= Al |P dt/t) < OO} ,
with norm

|zl —1/pp = 2| + [2]i—1/pp, @€ Da(l—=1/p,p),

cf. [46, Section 3.4]. That is, the notion of “maximal regularity” refers to the fact that
the regularity of © and Aw is not worse than the one of the given function f, i.e. no
regularity is lost.

Finally, let us consider a theorem describing the relation between maximal regularity
and R-boundedness, as well as R-sectoriality.

Theorem 1.9. [15, Theorem 4.4] Let E be a Banach space of class HT, 1 < p < o0, and
let A be a sectorial operator in E with spectral angle g4 < 5. Then the Cauchy problem

u(t) + Au(t) = f(t), t=0, u(0)=0,

with given function f € L,(R., E) has mazimal reqularity of type L, on [0, ), if and only
if A is R-sectorial with g[)f} < 5. More precisely, the following statements are equivalent

“ ,,“nH'“"”"”W"IHH
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) e Cauchy problem has mazimal regularity of type on |0,00);
The Cauch blem h l l f L, 0
12) the set w+A)" " ipeE 1s R-bounded;
h A(i At R R-bounded
(iii) the set {A(X + A)~': Xe Xy} is R-bounded, for some 0 > 5 ;
1) the set {e="% : z € Xy} is R-bounded for some ¥ > 0;
h Az by R-bounded f U
(v) the sets {e=4t 1t > 0} and {tAe ! : t > 0} are R-bounded.

It can also be shown that statement (ii7) is equivalent to A being R-sectorial with angel
gbﬁ < 5. This establishes the aforementioned connection between maximal regularity and
‘R-sectoriality.

1.3 Cylindrical Domains and the Helmholtz Projection

In this thesis we mainly consider systems of equations on cylindrical domains 2 € R",
n € N\{1}. These cylindrical domains are given as the cartesian product of a bounded
C3-domain A and an interval (—a, a) with a > 0, i.e.

Q:=Ax (—a,a).

The topological boundary of € consists of five different party: the boundary of the top
part I'top := A x {+a} and the bottom part I'ho; := A x {—a} of the cylindrical domain,
the lateral boundary ¥ := dA x (—a,a), as well as the upper edge R'*P and the lower
edge RP° of the cylindrical domain. By

I'i=Tiop UTlbot UX
we denote the smooth part of the boundary, by
R .= RioP ., Rbot
the edges, and by
N=TUR

the entire boundary of 2. However, we mainly use the smooth part I' of the boundary
when we study problems on the boundary of €2, e. g. when studying boundary conditions.

Boundary Operators
For a cylindrical domain Q = A x (—a,a) € R", ne N,
vp: I — R"”
denotes the outward pointing vector, normal to the boundary I' and
Pr(z):=1d(z) — vr(z) ®vp(z) : R" — T,I', z €T,
the projection on the tangent bundle TT of I'. Note that

Pru=u— (rp @vr)u=u— (vpvd)u = u — (vp -w)vp on T,
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Y 0f)

Rtop
Rbot . ‘

Cylindrical domain  and its boundary 052 for n = 3 and circular cross-section A

for a vector field u on €. Since I' is the disjoint union of different boundary parts, also
the outer normal vector v must be understood accordingly. Thus, Pr can be considered
a system of projections onto the respective boundaries. For example, the notation

Pr(Vu)y =0on T,

is supposed to be interpreted as the system

Pr,,,(Vu)rr,, = 0 on I'p,
Ps(Vu)ys = 0 on X,
PPbot (VU)V]_"bot =0 on I'pot,
for u € HS’(Q) It is
Z/]-—‘ltop (33) = ey, for x € Ftop’
Ury. (@) = —ep for x € Ty,
vs(x) = (va(xy,...,zp-1),0) L te, forxzeX,

where va(x1,. .., 2, 1) € R* ! is the outer normal vector on dA. In case the underlying
boundary is understood from the context, we just write v for the outer normal vector
on the respective boundaries. Moreover, Pr,, Ps, Pr, , are projections on the tangent
bundles TTp,, T3 and TTh,q, respectively. The projection onto the normal bundle NT'

of I is denoted by
Qr(x) :=1d(z) — Pr(x) : R" — N,I', zeT.

As for Pr, we can define different parts for Qp. For a detailed discussion of outer unit
vectors, tangential and normal projections, as well as tangential and normal bundles we

refer the reader to [5].

The deformation (+) and the rotation tensor (—) of a vector field u on € are denoted by
Dy (u) := &(Vu + (Vu)T).
For dimension n = 3 and u being a vector field, a simple computation reveals the identity

D (v =—ivxculu onT.

i
\mlll"II||IHI ||||||H“
|
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For any dimension n € N, the deformation tensor also satisfies the relation

PrD_(u)v (Vv — (Vu)Tv — v (Vu)r + v’ (Vu) ')
(Vv — (Vu) v — vl (Vu)r + v (Vu)v)

(Vu = (Vu)') v

—(u )u on I

@ O Bl N|—

on I'. Furthermore,
D_(Vp)ij = 4 (:(Vp); — 0,(V0)) = § (2s0p — 0,0p) = O,

is valid in the distributional sense for any p € H;(Q) due to the symmetry of second
derivatives.

The Helmholtz Projection

In this paragraph we study the Helmholtz projection in L,(€2)", n € N, on a cylindrical
domain 2 = A x (—a,a) where A € R"~! is a bounded C3-domain and a > 0. According
o [41], we have the decomposition

Lp()" = Lpo(2) (—DVH;(Q), 1 <p<oo,
on 2. In this case, we can write the space of solenoidal functions also as
L,s(2) ={ue Ly()" :div(u) =0, u-v =0on T},

which is equivalent to the definition given on page 11 in Section 1.1. By H: L,(Q)" —
L,(2)" we denote the Helmholtz projection, that projects L,(2)" onto L, ,(2) along
VH;(Q) The construction of H relies on the existence of a unique solution g € H;(Q)
to the weak Neumann problem

(Va,Vo)a ={f | &), ¢ HyQ),

for f e OHI,*l(Q) = H;,(Q)', % + 1% = 1. Indeed, given u € L,(€2)"™ we solve the weak
Neumann problem for ¢ € H]%(Q) and f € OHZjl(Q) given as {f | ¢) := (u,V¢)q for
(0XS H;,(Q) and then we obtain Hu = u — Vq.

There are two results concerning the Helmholtz decomposition which we are going to
prove in the following paragraph for later use. Firstly, that the Helmholtz projection has
even higher regularity than shown in [41]. In order to prove that we make use of some
results from elliptic problems that are later discussed in Section 2.1. In addition, in this
proof we use a result about Neumann traces which goes back to Bothe, Kéhne, Maier
and Saal in [12, Lemma 3.4] and can be seen in Lemma 1.16 of this thesis. This leads us
to the propositions:

Proposition 1.10. Let T > 0 and let J = (0,T) or J = R. Let A < R" ! be a
bounded C3-domain and a > 0. Assume Q := A x (—a,a) to be a cylindrical domain and
1 <p<oo. Let H: Ly(Q2)" —> L,(Q)" be the Helmholtz projection. Then we have:

(i) if we Hy(Q)" for m e {1, 2}, then Hu e H}'(Q)",
(it) if we Hy(J, Ly(Q))™ A Ly(J, H}(Q))", then Hu € H)(J, Lys () 0 Ly(J, H2(2))™.
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Proof. (i) Assume that u € H;(Q)" The fact that the trace operator 0, : Hg(Q) —

W]D1 ~ip (T") is a continuous linear retraction, Lemma 1.16, combined with Theorem 2.1
imply the existence of a unique solution ¢ € Hg(Q) to the problem

—Aq = —divu in €, g =u-v on .
For ¢ € C*(Q), we then have
(Vq - u, V¢)Q = (al/q —u-v, d))F - (Aq - diVU, ¢)Q =

which shows that g is a solution to the weak Neumann problem, because C*(€) is dense
in H;,(Q). Hence, we have Hu = u — Vg € H}()". Now, if we assume that u € Hg(ﬂ)”,
then the fact that the trace operator d,: Hj () — WI? —ip (T") is a continuous linear

retraction, Remark 1.17, and using Lemma 2.3 imply that we even have ¢ € HE(Q) Thus,
Hu e H}(Q)".

(ii) Step 1. Let u(t,-) € L,(2)" for t € R. Then, for every t € R, Hu(t,-) € L, ,(2) is
the image of u(t,-) via the Helmholtz projection, due to [41]. Now, we have

V0, 100y = [ V0, 28 < € [t e 0 = Ll 1,00

for some constant C' > 0 that is independent of v and ¢t € R. Using an approximation
argument, we obtain Hu € L,(R, L, »(€2)) to be the image of u € L,(J, L,(2))" via the
Helmholtz projection for J = R. For J = R the time derivative d; can be approximated in
L,(R) by difference quotients. This way we obtain Hu € HI}(R, L, (§2)) for the solution
constructed above, if we additionally have that u € H (R, Ly4(€2)). Now, using extension
and restriction operators between H;(J ) and H[} (R) we are able to obtain the same
result also for J = (0,7).

Step 2. Now, let u(t,-) € Hg(Q)” Then, for every t € R, Hu(t,-) € Hg(Q)” is the image
of u(t,-) via the Helmholtz projection of, due to (7). By using the same arguments as
in step 1, we obtain Hu € L,(J, Hg(Q))” to be the image of u e Ly(J, Hg(Q))” via the
Helmbholtz projection for J = (0,7") or J = R.

Step 3. By combining step 1 and 2, we obtain Hu € H)(J, Ly s(2) N Ly(J, H3(Q))"
to be the image of u € H}(J, Ly(€2))™ n Ly(J, H2(Q))" via the Helmholtz projection for
J=1(0,T) or J=R. O

The second important result of the theory of the Helmholtz decomposition is the fact
that the divergence of a particular antisymmetric matrix is contained in the solenoidal
space L, ,(€2).

Proposition 1.11. Let A € R" ! be a bounded C3-domain, a > 0 and J = (0,T) with
T > 0. Assume §) := A x (—a,a) to be a cylindrical domain, v to be the outer normal
vector on the boundary I’ of Q, C € Ly(J, W) (Q))"*" to be a skew-symmetric matriz with
Cv=0o0onJxI and1 <p < oo. Then we have div(C) € L,(J, Ly +(£2)).

Proof. For an arbitrary 1 € Wpl’(Q)’ ]% + 5 = 1, we can choose a sequence (V)ren S
C*(Q) with ¢, —> 1 for k —> oo in WI},(Q), [4, Theorem 3.18]. Since €2 is bounded

and 0f) is continuous, the function spaces W]},(Q) and Wpl,(Q) are algebraically the same.
Note that

div(AVy) = div(A) - Vi, + A - V2,
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for an A: Q — R™ "™, Hence, we deduce

div(CViy) = div(C) - Vi, + C : V3, = div(C) - Vy,,
due to C': V2, = 0 by the skew-symmetry of C' and the symmetry of V2. By taking
the limit & — o0, we obtain

div(CVvy) = div(C) - V. (1.3.1)

By using the Gaussian integral Theorem [35, Chapter 2.5], which is also valid for L,-spaces
due to [29, Chapter I1.2.5], equation (1.3.1) and C'v = 0 on the boundary, we have

f V@b-didem:J div(CVQp)dx:f va-udaz—f Vi -Cvdo = 0.
Q Q o0 o0

Since the equation is valid for any 1 € W}},(Q), we conclude div(C') € L,(J, Ly 5(§2)). O

1.4 Regularity and Compatibility Conditions

The Chapters 2 and 3 deal with the development of an L,-theory on cylindrical domains.
More precisely, in the next two chapters we study the solvability of parabolic systems of
equations and Stokes equations with different boundary conditions on cylinders. The
special feature of our consideration is that we allow, not only constant, but variable
coefficients in these systems.

This section deals with the introduction of parabolic problems
poru — pAu = f in J x €,
BY(u) = h on J x T, (P|J)yv
u(0) = g in Q,
and the Stokes equations
pou — pAu+aVqg = f inJ x Q,
div(pu) = g in J x Q,
BY(u,q) = h onJ x T,
u(0) = 1wy in Q.

(S[)v

Moreover, we discuss necessary regularity and compatibility conditions of these systems.
As always, by Q := A x (—a,a) € R™ we denote a cylindrical domain being a cartesian
product of a bounded C3-domain A and an interval (—a, a) for some a > 0. In addition,
J =(0,T7), T > 0, denotes a time interval. Moreover, we consider the boundary conditions
exclusively on the smooth part I' = I'igp, U I'tyoy U X of the boundary of 2. Here, I'iop
denotes the boundary of the top and I't,o¢ the boundary of the bottom of 2 and ¥ the
lateral boundary. For a more comprehensive discussion of cylindrical domains and their
boundary we refer the reader to Section 1.3. The density p, the coefficient o and the
viscosity p are assumed to be given. They may be constant or variable, both of which
cases are studied in subsequent chapters. In the constant case, we have p, a, u > 0.
In the variable case, we assume p € W2 () to be a time independent positive function
with positive inverse % e W2(Q) and o € BUCH(Q), € BUC(Q) with infq o, infq p > 0.
Of course, assuming the coefficients constant is a special case of the coeflicients being
variable. But we see later in the Chapters 2 and 3 that for proving maximal regularity of
these systems with variable coefficients we need the maximal regularity of these systems
with constant coefficients, which is why we distinguish the constant and variable case.
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Remark 1.12. (i) Regardless of whether the coefficients are assumed to be constant or
variable, it is sufficient to view the first equation of (P|J)y as

o — pAu = f in J x Q,
since we can replace p by i = %M and f by f = %f.

(ii) Assuming p > 0, p > 0 and « > 0 to be constant, the analogous consideration as
in (i) is sufficient to simplify the momentum equation of (S|J)y as follows

o — pAu+aVg=f in J x Q.
Additionally, it is sufficient to rewrite the divergence equation of (S|.J)y as

div(u) =g in J x Q,

since we can replace g by § = %g.

Now, we introduce the boundary operators BY with parameter V € {R, ND, S+}. After
that, we deal with the necessary regularity condition of the systems (P|J)y and (S|J)y,
and finally we study their compatibility conditions.

Boundary Conditions

In the study of parabolic problems (P|J)y and the Stokes equations (S|J)y, the parabolic
problem with Robin boundary condition and the Stokes equations with free slip boundary
conditions are of special interest to us. They are particularly useful when solving problems
of physics. We see this later when examining a model which describes the dynamics of
tropical storms in Chapter 4. We study the parabolic system with Neumann-Dirichlet,
with perfect slip and with free slip boundary conditions in Chapter 2 and we study the
Stokes equations with perfect slip and with free slip boundary conditions in Chapter 3.
We do not study the Stokes equations with Robin and Neumann-Dirichlet boundary
conditions in this thesis. Therefore, the Robin and the Neumann-Dirichlet boundary
operator, which are defined in the following paragraph, depend on the velocity u only.
Moreover, the Neumann-Dirichlet, the perfect slip and the free slip boundary operators
contain a boundary condition in normal as well as in tangential direction. The Robin
boundary operator is denoted by

BE(u) := p0u +o%u on J xT,
the Neumann-Dirichlet boundary operator is denoted by

u-v = h-v ondJxT,

B¥P(u)=h onJxD =
(50VPFU = Prh OnJXF,

with & > 0, the perfect slip boundary operator is denoted by

S S u-v = h-v onJxT,
B> (u) :=B""(u,q) =h onJxI'
—B"PrD_(u)yv = Prv onJ xT,
and the free slip boundary operator is denoted by
u-v = h-v ondJ xT,

B (u) := B3 (u,q) =h onJxTD =

B*PrD . (u)v Prh on J xT.
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The coefficients % and o“ of the boundary are also assumed to be either constant with
£* >0, c" = 0 or variable, more precisely

B% e BCH(J x T, (0,00)) with inf 5" > 0,
and
ot e BC*(J x T, [0, «©)).

Since I' = I'top UT'hot U X, the boundary operators on I' are considered separately on each
part I'iop, X, I'hor of the boundary I'. For example the perfect slip boundary operator

B (u)=h onJxT,

applied to a vector field u is a shorthand notation for the system

w- VFtop = h ' VFtop’ ﬁuPFtopD“F (U)Vrtop = PFtoph on J X Ft0p7
u-vy = h-vy, fYPryDi(u)vs, = Psh on J x ¥,
Uu- VFbot = h ’ VFbot’ BuPFbot D+ (u)yrbot = Prboth on J X FbOt‘

Remark 1.13. When applying BSE to (P|J)s+ or (S|J)s+ it is sufficient to consider the
tangential boundary condition as

+PrDy(u)v = Prh on J x T,

since we can replace h by h = ﬁ%h, regardless of whether g* is assumed to be constant
or variable.

Necessary Regularity Conditions

To establish an L,-theory for (P|J)y and (S|J)v, V € {R, ND, S+} it is particularly
important to show maximal regularity of these systems of equations. The concept of
maximal regularity, which was introduced in Section 1.2, essentially depends on the
function spaces in which the equations are considered. Therefore, it is essential to detect
the necessary and sufficient regularity conditions for our problems in order to find unique
solutions to them. In order to find them, we proceed similarly to Kéhne in [32, Chapter
3.1]. That is, we consider the first equation of (P|J)y and the momentum equation of
(S]J)v in the base space Ly(J x ©)™. Thus, we require

fFeFI(T) = Ly(J x Q)"

Later, we see that the Stokes equations (S|J)y can be reduced to the parabolic problems
(P|J)v. A unique solution of (P|J)y and (S|J)y should satisfy

we EY(J) = H)(J, Ly(Q))" n Ly(J, H2 ()",
for Ve {ND, S+}, and
uwe s (J) = Hy(J, Lpy(Q) n Ly(J, H2(2)),

for V.= R. In order to obtain a solution to (S|J)y we not only need the velocity u, but
also the pressure ¢. For a unique solution of the Stokes equations the latter should satisfy

Vge Ly(J x Q)"
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Since the momentum equation of (S|J)y only implies regularity for the gradient of the
pressure, we additionally need to require

g€ Ly(J, H}(Q)).

By considering the boundary operators BY, V e {ND, S+}, which do not contain the
pressure, we conclude that a solution of the pressure for the Stokes equations is only
unique up to a constant. Hence, we may fix a particular pressure ¢ by requiring (¢)o = 0
for its mean value. Since Q is a bounded domain consisting of a bounded C3-domain A
and an interval (—a,a), we can use the Poincaré inequality and obtain

la = (@elL,@ < ClValL,@ = ldlgyq, PE H(Q),
for some constant C' > 0 that is independent of ¢ € L,(£2). Thus, we require
g€ E}(J) = {pe Ly(J. Hy(Q)) : (D)o = 0}

for the pressure in (S]J)y.

In the next step, we would like to investigate the divergence equation of (S|J)y, in
particular the regularity of the function g. To derive the necessary regularity conditions
for g we use the Mized Derivative Theorem, which goes back to the work of Sobolevskii
[53]. Following the proof of e.g. Kéhne [32, Proposition 3.9], we obtain the following
result, since the Laplacian fulfils the necessary properties of the proof also on cylindrical
domains.

Proposition 1.14. Let A € R" ! be a bounded C* — domain, a > 0 and Q = A x (—a, a)
be a cylindrical domain with I' = T'4,, U T'yor U X as the smooth part of the boundary of 2.
Let T >0,1<p<o, 7€(0,1] and o € (0,2]. Then the embeddings

Hg((07 T)7 LP(Q)) N LP((O7 Tv Hg(Q)) - Hggl_e)T((Oa T)v HgU(Q)), 0e [07 1]
are valid.
We obtain
Ey(J) — Hy/*(J, Hy ()",

by applying Proposition 1.14 to EZ(J ) and using the regularity of the cylindrical domain
Q. This implies

g e FI(J) := HY?(J, Ly(Q)) A Ly(J, HL ().

To analyse the boundary operators BY for V e {R, ND, S+} in more detail, we need a
result about traces, which can be proven using the work of Denk, Hieber and Priiss [15].

Proposition 1.15. Let A € R"™! be a bounded C? — domain, a > 0 and Q = A x (—a, a)
be a cylindrical domain with I' = 'y, O L'y U X as the smooth part of the boundary of 1.
Let 1 <p < oc. Then for A € {Tp, £, Lot} the following assertions are valid.

(i) The trace operator
s Hy(J, Lp(2)) 0 Lp(J, H () —> Wy~ V2P (J, Ly(A))  Ly(J, WP (A)

1s bounded.
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(ii) The trace operator
ya: Hy2(1,Lp(Q) 0 Ly(J, Hy () — W22, Ly(A)) 0 Ly (J, Wy~ P(4))

is bounded.
Proof. (i) We prove this assertion for A = I't,p. According to [4, Theorem 5.28] we can
extend u € H)(J, Ly(Q)) n Ly(J, H}(Q)) to @ € H)(J,Ly(R™)) n Ly(J, H}(R")). The

trace operator
with H = R"! x {a} is bounded according to [15]. Then, we have that

v Hy(J, Ly(R™) A Ly(J, HAR™)) — Wy 2P (J, Ly(H)) o Ly(J, Wi VP(H)),
. 1 2 1-1/2p 2—1/p
’YFtop . Hp(‘L LP(Q)) N LP(J7 Hp (Q)) - Wp (Ja Lp(Ftop)) N LP(J7 Wp (Ftop))7

with
PYFtop (u) = W(a)‘rtop
is bounded. The cases A € {X, Tt} can be proven analogously by setting H = A x
{—o0,00} for A =X and H = R" ! x {—a} for A = [t.
Ol

(ii) This assertion can be obtained similar to (i), since
v Hy2(J, Ly(R™)) 0 Ly(J, Hy (R™)) — W22 (], Ly (H) 0 Ly(J, Wy ™/ (H)

is bounded according to [15].
Now, combining Proposition 1.14 and 1.15 we obtain for each part I'iop, I's;, I'hot, of the

boundary I' that

N € Wy VPILLA)" A LWy ),
a0, (k) € WP V(T Ly(A)™ A Ly(J, W P(A)™, A € {Tiop, 5 Thot)
for all v € Ej(J) and all j € {1,...,n}, where v, is the corresponding trace on the

boundary A. Thus, if u € E;(J), we have

BR(u) e }Fﬁ’h(J) with
FfEh(T) = {h: T — R" : hyp,,, =: h*P e FETor (),
W =: b e FIP>(J), hp,,, =: hP°" e Tt} and

FEAT) i= W22 (J Ly(A)™ o Ly(J, W2 YP(A)", A€ {Tiop, £, Thot},

for the Robin boundary operator,
PrBNP(u) € TI(J) with
Th(J) = {h: T —> R" : hp, =: ' € T} (J)

hs =:h” € T} (J), hp,, =:h*°" € T, (J)} and
TO(J) := W2 Y2 (I Ly (A)™ A Ly(J, W YP(A)™, A€ {Tiop, , ot }

QrBNP e NI(J) with
NZ(J) ={h: T —R":hp,, = h'°P e Ngmp(J),
W =t h* e NJ(J), hyp,,, =: hP*" e NJbet(J)} and

NM(T) = Wy 2 (J, Ly(A)"™ 0 Ly(J, WEYP(A))"
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for the Neumann-Dirichlet boundary operator and

PrB%%(u) € TR(J),
QrB°*(u) € Nj(J),

for the perfect slip and free slip boundary operators. The norm of IF;}(J ) is defined as

+ [|Pyh|P
a1 Pal]

— p
1Ml = “'PAhHW,}/Q’”?”(J,Lp( Lyp(J Wy P (A))

)P he RN,

L RO PR [ PV

(J,Lp( o (LW VP (M)

and the norm of FQ(J ) is defined as

1/p
ey o= (e + Vsl + il ) HEERO).

F;top

Then the regularity class for the data h on the boundary of system (P|J)g is given by
R,h
he FRR(),
and the regularity class for the data h on the boundary of the systems (P|J)nv, (P|J)s+,
(S|J)nv and (S|J)s+ is given by
h - h . h
heFl(T) = {h e Th(T) : h-veNE(T)}.

Finally, we consider the initial equation of (P|J)y and (S|J)y, V € { R, ND, S+},
with initial data ug. Thanks to Proposition 1.14 and Sobolev’s embedding theorem, the

embedding
u 2—2 n
EY(J) < BUC(J, W2 2/P(Q))
is valid. Thus we obtain

ug € FY := W2-2/P ()"

Necessary Compatibility Conditions

Additionally to the regularity conditions, the data with respect to the systems (P|.J)y and
(S|J)v, Ve{R, ND, S+£}, has to fulfil certain compatibility conditions. With the aid
of compatibility conditions, we may assume that the different pairs of data, (f, g, h, ug)
for (S|J)y and (f, h,uo) for (P|J)y, are compatible with each other. We assume the
solutions and data that follows to be in the function spaces that were identified in the
paragraph above. First of all, the condition

div(ug) = g(0) ifp =2 (C1)

is necessary, i.e. the data g of the divergence equation has to be compatible with the
initial data ug. Furthermore, there is a hidden compatibility condition, which arises from
the divergence condition and the normal boundary condition. We set oH, () := H 1}, Q)

with }D + [% = 1 and define the linear functional

F:F9 x Nb— L (J,0H, ()

27
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for ¢ € F) and n € NZ through

(| Fb,m)) = L drdo - quwdx, be HL(Q).

Integration by parts leads to

(¢ | F(div(u),u-v)) = L Vo-udz, ¢eHy(),
from which we can infer
(0 | F(aiv(u),u-vDli,0) < lullg|élin @) ¢ € Hy (@),
and

[0 | 0F (diviw)w - vDls, ) < [ulggon |8l @y € HY(@).

. . p
are algebraically the same. Therefore, the relation oH,*(Q) = H;,(Q)' implies the

compatibility condition

Since € is bounded and 99 is continuous, the function spaces H () and HI},(Q)

Flg, h-v) e Hy(J,oH, (). (C2)

Moreover, the data h on the boundary has to be compatible with the initial data
up. Since the boundary operators BY have different boundary conditions for every
Ve {R, ND, St} , different compatibility conditions arise for h and uy with respect to
each boundary operator. However, the perfect slip and the free slip boundary operators
only differ up to a sign, which is why we consider the compatibility conditions of these two
operators at the same time. Because of Remark 1.13, we consider the tangential boundary
condition of B5* without the coefficient 5*. Likewise, we also consider the compatibility
condition with respect to the boundary operators B°% without the coefficient 5*. Then,
we have the compatibility condition

B4 0up + o ug = h(0) if p> 3 (C3)r

with respect to the Robin boundary operator. We require

ug-v = h(0)-v  ifp>3,
. ’ (C3)np
55VPF(UQ) = Prh(()) lfp > 3,
with respect to the Neumann-Dirichlet boundary operator, and
up-v = h(0)-v  ifp>3,
’ (C3) s+

iPpDi(uo)y = Pph(O) inp> 3,

with respect to the perfect slip and free slip boundary operator.

Lastly, there are compatibility conditions for A which arise from the boundary conditions
on the edges of 2. We would like to remind the reader that we denote the data h on
Tiop by AP, on 3 by h*, and on I'pey by hP°t. Since the boundary T is composed out
of mutually disjoint parts I'top, £ and I'yo, we have to put special emphasis to make
sure that the continuations of A on these distinct boundary parts are compatible on the
respective connecting edges. That means, we have to show that h'P is compatible with
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h* on the connecting edge of the top and the lateral boundary of the cylindrical domain,
and that hP°' is compatible with 2> on the connecting edge of the bottom and the lateral
boundary of the cylindrical domain. These kind of compatibility conditions only arise
with respect to the Neumann-Dirichlet boundary operator and with respect to the perfect
slip and free slip boundary operators, because they have different conditions for the
tangential and normal part of the boundary. First, we consider the Neumann-Dirichlet
boundary conditions, followed by the perfect slip/free slip boundary conditions.

Neumann-Dirichlet: We proceed in two steps. In the first step we study the compatibility
of the data h'°P with h* on the connecting edge of the top and the lateral boundary
of the cylindrical domain 2. In the second step we consider the compatibility of the
data hP° with > on the connecting edge of the bottom and the lateral boundary of €,
which we obtain analogously to the one of the top edge. For the top of 2 and the lateral
boundary we have

(R vryg, Imeor = [ 1y, JRron, (1.4.1)

[h* - vslgior = [u- vs]gior, (1.4.2)
[00uy,,, Priopyt - vslrior = [Pri, h*P - vs]rion, (1.4.3)
[600s Pt - vy, Irtor = [Poh™ - vry, Jreor, (1.4.4)

if p > 2. Here, [-|gtor denotes the trace on the edge R™P of the cylinder 2. Considering
the left-hand side of (1.4.3), a straightforward calculation shows

[Ml,rtop Pr, u - vs|gie = [0Pr,,, Ol,rmpu - Us) | rtop
= [5Ppmp(Vu)Tthop - Us) | gtop
=0 [l/pmp . (VUPFtOp)VE]Rtop
= 0vry,, - (Vu)rs]|gior
= 5[(Vu) " vry,, - vs]Reor
= 0[(Ouy,, ) - ve]Reor
= (5[61,Ft (u-vs) —u- Ovr,,, vs | gtop
~ 3, (0 vs)ler
= 0[(Oup,, B7) s + BT Oy, vl Rior
= 6[(Oup,, 1) - vs]Ricr

where we used (1.4.2) and the fact that 61’Ftop Pr.,, = Pr, d,Ftop, Pr., vs = vs, 0,,Ft0p Uy =
0, Ous V1o, = 0 on RP. Considering the left-hand side of (1.4.4), we similarly deduce

[561/2PEU . I/I‘top]RtOp = 5[(61/2 htop) . VFtop]'Rmp

again by using (1.4.1) and the fact that 0., Ps = Px0,y, Pevry,, = Vs 0
Oy, Vo, = 0 on RIP. From the right-hand side of (1.4.3) we obtain

Vrtop Uy, = 07

[Prtop htOP ’ VE]Rmp - [h P PFtOp ]Rmp - [htop : VE]Rmp

and analogously from the right-hand side of (1.4.4) we get

[ch2 ’ VFtop]Rt‘)p = [hz : VFtop]Rmp‘
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Combining these results, we derive the compatibility conditions

(5[(5,,Ftop hz)]Rtop Uy, = [thOp]Rtop % if p > 2,

Cc4
(o) ion - vy = [ vy 9> 2 (o

for the data h on the connecting edge of top and lateral boundary of Q. Here, vy = [vp]gtop
and vy = [va]gvot, A € {Ttop, I'bot, 2}, represent the extension of v to the boundary of
the edges R*P and RP°!, respectively. Analogously we obtain

5[(6,,Fbot hz)]Rbot Uy = [hrbgt]Rbot %> ifp > 2,

. (C5)nD
(5[(5,/Ehb0t)]7zbot Uy = [hz]Rbot “ Uy ot if p> 2,

for the compatibility of the data h on the connecting edge of bottom and lateral boundary
of Q.

Perfect slip/free slip: As above, we proceed in two steps. First, we study the compatibility
of the data h'°P with ™ on the connecting edge of the top and the lateral boundary of
the cylindrical domain €2, and then infer the compatibility of the data hP°" with h* on
the connecting edge of bottom and lateral boundary. For the top of €2 and the lateral
boundary we have

[R'P - vry TRtor = [u- vry, IRt0, (1.4.5)

[h* - vs]rior = [u- vs]Rtop, (1.4.6)

[+Pr,,, D (w)rr,, - vsrtor = [Pry,, h'P - vs]giop, (1.4.7)
[£Ps Dy (w)vs - vry,, | Rior = [Poh™ “ Uyop | REOP (1.4.8)

if p > 2. Again, [-]gwp denotes the trace on the edge RY™P of the cylinder Q. A
straightforward calculation shows that we may rewrite the left-hand side of (1.4.7) like

[iPFtopDi (u)yrtop : VE]Rtop = [(aVFtOp u) : VZ]RtOP i %[(avzu) ' VFtop]RtOp

[(al/rtop hE) ' VE]RtOD + %[(auzhtop) ' VFtop]RtOP

D= D=

where we used (1.4.5), (1.4.6) and the fact that Pr,, vs = vy, Ovpyy V8 = 0, Ougiry,, =0
on RYP. Considering the left-hand side of (1.4.8), we similarly arrive at

[£PeDs(w)vs - vrylrior = 250, B7) - vslrior + 5[(00sh™P) - vy, ] Rter,

where again we used (1.4.5), (1.4.6) and the fact that Psvr,, = vry,,, 8,,Ftop vs = 0,

Ovs Vo, = 0 on RIP. Moreover, from the right-hand side of (1.4.7) we see that
[Prtop h’top I/E]’Rmp - [h’top PFtop ]Rmp = [htop ' VE]Rmp
and analogously from the right-hand side of (1.4.8) that
[chz . V[‘top]Rtop = [hE . VFtOp]Rtop.
Combining these results, we finally arrive at the compatibility conditions

[WZ]reor - vr, = H[WPlgior vy ifp > 2,

4
%[ayrtop hZ]Rtop s Uy + %[6,,2 htop]RtOp Vliop = [htop]Rtop %> ifp > 2, ( )Si
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for the data h on the connecting edge of top and lateral boundary of Q. Again vy =
[a]rtor and vy = [va]gbot, A € {Ttop, bot, £}, represent the extension of vy to the
boundary of the edges R'P and R °, respectively. Analogously we obtain

(W ] gbor - vryy, = E[APgber v i p > 2,

) C5)s
%[aurbot hZ]Rbot %> =+ %[6yz tht]Rbot Uy = [tht]Rbot %> lfp > 2, ( ) +

for the compatibility of the data h on the connecting edge of bottom and lateral boundary
of Q.

1.5 Trace Maps

This section is dedicated to the trace operators with respect to the boundary conditions
defined in Section 1.4. That is, such a trace operator map a vector field to one of the
boundary conditions defined in Section 1.4 with respect to all parts I'iop, 2, I'hot, of the
boundary I'. For example,

. TR wh
¢ —> ((c‘ptop V)Y — PpD,(c)‘ptopu,
(¢ -v)v — PpD_(c)sv,
(C‘Fbot ’ V)V - PFD* (C)‘Fbot V)

is the trace operator with respect to the perfect slip boundary operator B°~. Here the
data space is defined as

FR(J) i= {(h'°P, 1™, hPY) e Bl wor (J) x Ty (J) x Fyber(J) -
R'°P and A* fulfil (C4)g_; hP° and A* fulfil (C5)s_}.

In particular, we would like to prove that the trace operators with respect to the boundary
conditions are retractions. However, for the trace operator with respect to the Robin
boundary operator B it is not necessary to prove that it is a retraction. This trace is
used exclusively in the context of the parabolic problem with Robin boundary conditions
(P|J)R in Section 2.2, and there we are able to rely on a result about the trace operator
with respect to Neumann boundary conditions and a perturbation argument. That
the Neumann trace operator is a retraction on a three-dimensional cylindrical domain
Q := A x (—a,a) € R3? has already been proven by Bothe, Kohne, Maier and Saal in [12,
Lemma 3.4]. In Proposition 1.21 we proceed similarly to proof of this lemma in order
to prove that the trace operator with respect to perfect slip boundary conditions is a
linear retraction on n-dimensional cylindrical domains 2 € R™. Accordingly, the result of
Bothe, K6hne, Maier and Saal can also be proved for n-dimensional cylindrical domains
) € R"™ and we obtain the following lemma.

Lemma 1.16. Let A S R ! be a bounded C*-domain, a > 0 and Q = A x (—a,a) be a
cylindrical domain with I' = T'y,p O Lo O X as the smooth part of the boundary of Q. Let
1<p<oo withp+#3andlet J=(0,T) withT > 0. Let also

Ky (J) i= {(h'7, 1%, B € By () x B2 () x FRTon(g)).
Then the Neumann trace operator
k4 h
o Ep(‘]) - Kp (‘])
c = (a’/c|r‘top’ ang, ayc‘rbot)

is a linear retraction.
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Remark 1.17. With the same assumptions as in Lemma 1.16 and the same argument as
in [12, Lemma 3.4], one can also show that the trace operator

d,: W3(Q) — W2 /(D)

is a continuous linear retraction.

The trace operators with respect to the Neumann-Dirichlet, the perfect slip and the
free slip boundary conditions are more complicated to work with, since their boundary
conditions differ in the tangential and in the normal direction. For these trace operators,
we must pay particular attention to the geometry of the cylindrical domain 2 and its
boundary I'. We show exemplarily that the trace operator with respect to the perfect
slip boundary operator is a retraction. The proof of the retraction property of the trace
operators with respect to the Neumann-Dirichlet and the free slip boundary operators
are simpler versions of this proof and we omit them in this thesis. To show that the
trace operator with respect to the perfect slip boundary operator is a retraction, we must
first prove two lemmas. The first lemma gives us the boundedness of a trace map on a
hyper-surface.

Lemma 1.18. Let ¢ > 0 and let D := R"™! x {c} be a affine hyper-surface. Assume
J=1(0,T) and 1 < p < oo. Then the following assertions are valid.

(i) The trace map
3 WAV (] 1,(D)) A L(J, W2 YP(D)) —> W29/2(D) (15.1)
s bounded for p > %
(i) The trace map
3 WY (] 1(D)) A Ly, WD) — WI¥P(D)  (15.2)
is bounded for p > 3.
Proof. Due to [8, Theorem 3.8.1], we can identify

W, Ly (D)) 0 Ly(. Wy~ P(D)) = B VP (] x D)

and
W27 (1, Ly(D)) 0 Ly(J, W, YP(D)) = By, P*D(J x D),
as 1— %, 2— %, T %, 1— % ¢ Ny are non-integer numbers for 1 < p < oo. Here, B;jéwl’w)

denotes an anisotropic Besov space, see page 14 in Section 1.1. From [8, Theorem 4.5.2]
we obtain that the trace maps

v Bg’;l/Pv(Qvl)(J x D) —> Bz’gl/pﬂ/p:(l)(p) = 35;3/10(1))
and
v BLWPCD (] x D) — BLVp=2p()(D) = B 3/7(D).
are bounded. Together with the identities
B2 %/P(D) = W2 3P(D), B) ¥P(D)=w}¥"(D)

for p > % and p > 3, respectively, the assertion follows. O
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Remark 1.19. Lemma 1.18 is also applicable for D as the boundary of a bounded
C3 -domain. This case can be proven by localisation.

The second lemma gives us the surjectivity of the trace operator with respect to the
perfect slip and free slip boundary operators on a C**-domain with compact boundary,
i.e. not yet on a cylindrical domain.

Lemma 1.20. Let k> 2, A > 0 and let A be a CF*- domain with compact boundary dA.
Suppose that 1 < p < o0 and 1—1—% <s< k—I—)\—i-%. Moreover, let Dy (c) := 3(Vex(Ve)T)
and

Cc.__ s—1—1 n . s—1
F = {z € Wi 7VP(0A)" : 2 - v e WP (0A)}.
Then the trace operator
v WPS(A) — F€
c— —PyaDi(c)v + (c-v)v

is a surjective. In case s — % is mot an integer there exists a bounded, linear right inverse

of .

Proof. Let (g,h) € W;fl*l/p((?A)” X Wﬁfl/p(ﬁA)”. We prove the existence of a ¢ €
W, (A)", which satisfies the following system

—PoaD+(c)v = Psag  on 04,
PaAC = PaAh on 514, (1.5.3)
c-v = h-v on 0A.

Consider

—PpaD+(c)v = =3 Poa(Ve+ (Vo) v
= $%P5A5VC — %P@A(VC)V
= FLPudyc+ 1Pou (Vv)e — V(c-v))
= $%P5A8,,C + %P;}A(VU)C — %VaA(c- V)
= F3Ppadyc+ 5(Voav)e — 5Vou(h - v),
with Vga being the gradient on the boundary. The last equation is valid if and only if
¢-v = h-v on the boundary. Then (1.5.3) is equivalent to
Poadye = F(2Ppag — (Voav)c+Voa(h-v))  on 04,
Pyah on 0A,
h-v on 0A.

Psac

cC-vV

The relation —(Vpav)c = —(Vaav)h is valid, since ¢ = h on dA. The vector —(Vgav)c
is tangential on the boundary. Note that Vsa(h - v) is tangential on 0A, too. As a
consequence, §-v = 0 for

Wi 3P(0A) 3 §:= F (2Poag — (Voav)e + Voa(h - v)) .
We can then rewrite (1.5.3) as

Pysdpe = Pyag on 0A,
Pypc = Pyah on 0A, (1.5.4)
h-v on 0A.

cC v
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According to [37, Theorem 2] the trace

o,c = § on 0A,
c = h on 0A,

is surjective and has, in case s — 1 is not an integer, a bounded linear right inverse.
Therefore (1.5.4) and thus (1.5.3) are also surjective and have a bounded linear right
inverse, for the above case. By choosing g := Pya (—PpaD+(c)v + (c-v)v) = P3az and
h = ((=PoaD+(c)v + (c-v)v) -v)v = (2 - v)v for a given z € F* we have shown the
assertion. OJ

With the help of these two lemmas we can now go on to prove the retraction property of
the trace operator with respect to the perfect slip boundary operator on a cylindrical
domain.

Proposition 1.21. Let 1 <p <o withp# 3, p# 2, p# 3, D_(u) = 3((Vu — (Vu)T)
and J = (0,T). Assume A € R"™! to be a bounded C3-domain, a > 0 and Q := Ax(—a,a)
a cylindrical domain with boundary I'. Let also

Fi(J) := (AP, B, B € By (J) x Fo(J) x Fhwi(J) :
h'P and h*® fulfil (C4)s_; h*' and h* fulfil (C5)s_}.

Then the trace operator

p
—> ((C‘Fmp . l/)l/ — PFD_ (C)‘Fmpl/,

(e -v)v — PrD_(c) sy,
(C‘Fbat ’ V)V - PFD_ (C)‘Fbaty)

v:EY(J) — FA(J)

is a bounded linear retraction.

Proof. This proof is to some extend similar to the proof of [12, Lemma 3.4], where a
different trace map was considered. Let (AP, h* hbot) e IFZ(J ). We prove the existence
of a vector field ¢ € Ejj(J), which satisfies the system

C Wy = hP-vp,  onJ x Digp,
—Pr,, D (c)vr,,, = Pry, htop on J x T'igp,
covs = h¥-uy on J x 3, (155
~PsD (c)vs = Psgh™ on J x X,
covp,,, = B up on J x I'pet,
—Pry, D (c)vr,,, = Pp,, b on J x I'pet.
For that purpose we split (1.5.5) into the two systems
U Vn, = WP, onJ X Tip,
—Pr,,,D_(v)vry,, = Pr,,h'P on J x Tiop, (15.6)
vovp,,, = h"wp . on J x Ty,

_Prbot Di (U) VFbot = PFbot tht on J X FbOt?
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and

Z Uy, = 0 on J x I'tep,
7PFtopD7 (z)l/Ftop = O on J X Ftopa

z-vy = (¥ —v) v on J x 3,

= = . ) v (1.5.7)

—PsD_(z)vs = Py(h® + D_(v)vy) on J x X,
Z: I/Fbot =0 on J x Fbota
_PFbotD_ (Z)I/Fbot = O on J X I1}1)0177

with ¢ = v + z. We proceed in two steps.

Step 1. To prove the existence of a solution to system (1.5.6), we are using maximal
regularity of the Stokes equations with boundary conditions, which correspond to the first
two lines of (1.5.6), on a lower half-space and maximal regularity of the Stokes equations
with boundary conditions, which correspond to the last two lines of (1.5.6), on an upper
half-space. By adding the two resulting solutions and multiplying them with appropriate
cut-off functions, we obtain a solution of (1.5.6). The main issue here is to extend h'°P
and hP°' to a lower and upper half-space, respectively. Moreover we have to define data
that accomplishes the appropriate compatibility conditions of such Stokes equations.

We work with the boundaries I'yop, = A x {a}, I'hot = A x {—a} and the outer normals
Ulyop = €n O L'top, vry,, = —€, on e Define the half-spaces

H, :=R" 1 x (—00,a), H_,:=R" 1! x(—a,o).
Then, we have T'yop € 0H, and 'y € 0H_,. There is an extension of h*P to

htoP e FOHe(J) := {h e W2 /2P (J, L,(0H,))" n Ly(J, Wy YP(0H,))" -
heve W, V2(J, Ly(0Ha)) 0 Ly(J, Wy~ P (0H,)))

and of hP°t to

hPot e FOH-a(J) i= {h e W2 122 (J, Ly(0H o))" A\ Ly(J, Wy /P(0H )" :
heve W=V (], Ly(0H o)) n Ly(J, W)~ P(0H )},

using [4, Theorem 4.26].

Next, we have to define appropriate data that accomplish the compatibility conditions of
the Stokes equations with perfect slip boundary conditions on H, and H_,, respectively.
We do this exemplarily for A*°P and the Stokes equations on H,. The case of hP°" and
H_, is analogous. From Lemma 1.18, we obtain

hiP(0) - v e W2T3/P(0H,),
and
PrhtoP(0) e Wi */P(0H,).

To get an appropriate initial value oy for the Stokes equations, we choose T3P =

(ug®, wyP) = (0,0) € W§_2/p(Ha)” in the case of 1 < p < 2. In case of 3 <p < 3 we
again choose uy® = 0 € ng/p(Ha)”*l, but we choose wy® € WpZ*z/p(Ha)l, such that

[we P om, = htoP(0). Since []am, : W2 P (H,) — W2 P(0H,) is surjective, cf. [37,

0 |||| ‘||
al ||\||! ||\ ‘|
i ||‘
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P P

Theorem 2], such a 71)80 exists. Finally, in case p > 3 we choose the variable ’U_)BO as in

the case before and > € szfz/p(Ha)”_l, such that
1 —top 7 to 1 7 to
—§6Vu0 = h,P(0) — §Vphwp(0).

Such a P exists, because 9, : WpQ_Q/p(ﬁHa) — Wpl_?’/p(Ha) is surjective, due to [37,
Theorem 2]. We use the notation Vi := (1,02, -+ , 0, 1)" and AP = (Rt hioP) where
ﬁ;“j’p is the tangential and Bﬁl‘fp is the normal part of ~'°P. By choosing 178013 as described
above, it satisfies

1780p Ulyp = Btop(o) “Ulyop on 0H, if p > %,
—PrmpD—(ﬁ(t)Op)Vrtop = PrtopﬁtOP(O) on 0H, if p > 3.

Now, it is left to define a §*°P that satisfies

div(Tl™) = 5°°(0)
F(Gr, R - vr,,,) € Hy (L (HY (H), |V - ).

For this, consider the system

g —pAp = 0 inJ x H,,
[oulon, = ¥ on J x 0H,,
[pwlom, = hiop on J x 0H,,

o — puAryy = 0 in J x 0H,,
Y(0) = [ug®)om,  in 0H,,
p0) = " in H,,

with Ar := Zz;ll 0% and @ = (@u, Puw), where @, is the tangential and @, is the normal
part of ¢. The system has a unique solution ¢ € Wpl(J, L,(Hg))™ n Ly(J, Wg(Ha))", cf.
[18, Theorem 2.1]. Define §*°P := div(), then the equations

O'P — pAV*P + VpiP = 0 in J x H,,
div(vtoP) = gtop in J x Hyg,
ptop . oy = Btop Uy, on J x 0H,,
—Pr,,,D_(v'P) = P, ht°P on J x OH,,
voP(0) = P in H,,

are well-posed and the compatibility conditions (C1), (C2), (C3)g_ are satisfied by
construction. These are the Stokes equations we were looking for. Due to [32, Corollary
5.6], we obtain a unique solution

P € Hy(J, Ly(Ha))" 0 Ly(J, Hy (Ha))",  p™P € Ly(J, Hy (Ha))-

In the case of the bottom of our cylindrical domain we proceed analogously and obtain a
unique solution

0% e HY(J, Ly(H—-q))" 0 Ly(J, Hy(H=0))", p""€ Ly(J, H}(H_,))
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for the system

3,000 — pAwbot 4 yphot = in Jx H_,,
diV('UbOt) — gbot in J x H—a:
L Uy = Jbot . Uy on J x 0H_,,
—Pp,,,D_(v"%) = Pp, APt on J x 0H_,,
VPOt 0) = gt in H_,.

Let the cut-off function ¢ € C*(R™, [0, 1]) be defined like

_ )0, if z, € (—o0, —a/3),
(@) = {1, if 2, € (a/3,0). (15.8)

Then the convex-combination
t
v = Cv‘gp + (1 - C)v‘bg‘ft e By (J)
fulfils the boundary conditions on bottom and top of €2 by construction.

Step 2. It remains to be shown that a vector field z € E;(.J) exists in such a way that
system (1.5.7) is valid. For that we extend and reflect the cylindrical domain € to obtain
smooth C? domains G4 and G_. As in the previous step we try to find solutions 2% and
z~ for Stokes equations on G or G_ with boundary conditions

2y - vy zﬁz-yg,
—PsD_(34)vs = Pgh™

that also fulfil 2, - vp,,, and —Pp,, D (24 )vr,,, = 0 for 2, on I'yop and for 2= on Tpet,
respectively. Then we add up these solutions with appropriate cut-off functions to obtain
the solution of (1.5.7). The crucial step is the compatibility between lines (1)-(4) and lines
(3)-(6) of system (1.5.7). That means that AP = 0 and h*> with A> - vs = (h* — v) - sy
on ¥ and Peh® = Ps(h* + D_(v)vs) on X have to satisfy (C4)s_ and AP°t = 0 and
h* have to satisfy (C5)s—. Moreover, we need an appropriate extension and reflection
for the domain © to G4 and G_ and also of h> from Q to G and G_. Additionally
we need appropriate data, such that the compatibility conditions of Stokes equations
on G and G are satisfied, respectively. We start to extend the equations (1.5.7) to a
bounded C3-domain. In order to do so, we define Q_, as the domain that results from
extending €2 in a bounded and smooth (at least in the C3-sense) way on the top. We
set YX_, = 6Q_a\fb°t. In the same manner we define 2, and ¥, as the appropriate
extension of €} on the bottom. Next, let G4 denote the domains resulting from reflecting
N4, at +a and set '+ := 0G 4. For example, if n = 3 and the cross-section A of € is a
circle, we connect a smooth cap to €2 at I'y,, to obtain 2_,, and we connect a smooth cap
to © at ['pot to obtain Q. ,. Therefore, the domains G4+ have both the form of a “pill”,
as shown in Figure 1.1. Following this strategy, we can always find a suitable extension,
such that G+ is of class C3.

Next, we show that AP and h* satisfy the compatibility conditions (C4)g_ and extend
h* to G. The case of h”°*, h* and G_ is analogous. Let ¢ € C*(R",[0,1]) be a cut-off
function satisfying (1.5.8). We have that A*°P and h* fulfil (C4)s , the compatibility
conditions are linear and (v satisfies

(v vp,, = P () - Z. on Iep,
_PFtop D* (C’U)I/[‘top = PFtop htOp(O) on Ftop, .




1 Preliminaries
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Figure 1.1: Extension of 2 for n = 3 and a circular cross-section A of

From this, we obtain that A%P and ¢h*> satisfy (C4)s—. Now, we extend ¢ h* by zero to
a function
RS € B+ () im{h € W2TV20(J, (S )" o Ly(, WVe(s )
hev e WEV2(T, Ly(S10)) A Ly(, W2VP(540));
h and h*°P fulfil (C4)g_}.

Then, we extend hZ to ', by an even reflection of (h> 1...n_1 at point +a to
9 + =+ y + I El

(}Nl?r)k(tﬂrlawn)u lf Ip < a,
(Bg)k(ta xla 2a — xn), if Ty = a,

(WD)t 2 2y) = {
fork=1,...,n—1, (¢/,2,) €Ty and t € J, and by an odd reflection of (ﬁf)n at point
+a to

()t ') = BB ), <
—(hE)n(t, 2,20 — xy),  if 2, = a,

for (2’,x,) € Ty and t € J. We obtain iLE ') — R" and have to show that

Y e Fpr(J) o= {he Wp/> PP (T Ly(T )" A Ly(J, W' P ))" :
heveW, 2], Ly(Ty)) A Ly(J, W, P(T));
h and h*°P fulfil (C4)g }.

The outer normal vector Us: I'y — R™ on I'y is also defined by a reflection

L, vs(x',x,) if x, < a,
vy (x', ) = , )
vs(2',2a — x,), if 2, = a,

for («/,2,) € T'y. Note that (hZ), € Wp/* (1, Ly(T1)) A Ly(J, W, "/P(I',)) holds
true for k = 1,...,n — 1, because it was extended evenly. Moreover, we have that
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(h)n € Wo'* PP(1, Ly(T4)) o Ly(L Wy /P(T)), since
ﬁ%-l/rmp = AP .y =0 ifp> 2,

holds true. This can be seen from the first equation of the compatibility condition (C4)g._.
We also obtain that

W s e W V(T Ly(T L)) o Ly(J, W2 1P(T,),

because of

azn (EE : VE)‘Rtop = al/rtop (EE . VE)‘Rtop = 0 lfp > 2,
which holds true because of the second equation of the compatibility condition (C4)g-_.
Consequently h% € Fg* (J).
In the forthcoming step, we have to find appropriate data that satisfy the necessary

compatibility conditions (C1), (C2), (C3)s— with respect to the Stokes equations on G
with perfect slip boundary conditions. From Remark 1.19 we obtain

W5(0) - s € W PP (Ty), 1(0) € Wy ¥/ (L),

For the initial data we choose 2; € ngZ/p(GJr), such that 7 =0 for 1 < p < 3. For
the case % < p < 3 the initial data 2§ has to satisfy

20 = h¥(0)-0x  onT., (1.5.9)
—PgD,(A(T)ﬂg = 0 on F+.
Finally, for the case p > 3, the initial data has to satisfy
550y = RhE(0) - on T,
0 #(0) o * (1.5.10)
—PED_(AJ)ﬁE = PEhE(O) on F+.

We can find a unique 23 solving (1.5.9) on account of [37, Theorem 2] and solving (1.5.10)
on account of Lemma 1.20. Note that in both cases 23 is constructed using a bounded
linear right inverse to the trace map. Hence, (£ ) is even for k =1,...,n—1 and (7 ),
is odd. By choosing 2 like this, it satisfies

g Un = ﬁ%(p)-ﬁg onT', ifp>%,
—PsD_(3)s = Psh%(0) on Ty if p> 3.

Now, it is left to define a g* that accomplishes
div(z5) = g (0)
F(gt h% i) e Hy(J,(Hy(G1), |V - [y)).

For that, consider the system

o —puAp = 0 inJxG,,
[Prlr, = ¢ on J xI'y,
[¢-vr, = h% - s, on J xT'y, (15.11)
oY — nAryy = 0 onJ xTI,,
$(0) = [P, onTy,
p(0) = % in G4,
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which has a unique solution @ € W} (J, L,(G4))™ 0 Ly(J, W2(G4))", due to [18, Theorem
2.1]. Defining g* := div(¢), the equations

02T —puAZt +Vpt = 0 inJ x Gy,

div(¢t) = gt inJ x Gy,

2oy = EE-I)E onJ xT,,

—PsD (3T)ps = Pgh” on J x Ty,
O in G4,

become well-posed and satisfy the compatibility conditions (C1), (C2), (C3)s— by
construction. These are the Stokes equations we were looking for. Due to [32, Theorem
3.30] we obtain a unique solution

£t e Hy(J, Lp(G)" 0 Lp(J HY(G)", pt e Ly(J, Hy(G4)).
Defining
Fti=zf  eEJr()),

we have Z7 - vy = CBE -vson Y and —PgD_(21)-v = PEQEE on Y. Since ]AZE “Ulyop

AN VI, are odd and PpmphE, Pptopéar are even with respect to I'yop, we infer that

(24 )k is even for k = 1,...,n — 1 and (Z;), is odd. Therefore, we get Z, -vr,,, = 0
and — P, D (Z4)vr,,, = 0 on I'typ. Analogously we proceed with I',o. In this case we
extend (1 — ¢)h* to obtain

Fi=2  eEP()

with 27 vy = (1—()52-1/2 onX, —PyD_(27 vy = Pp(l—C)iLZ onX, 27 vp,,, = 0on 'y
and —Pr,,, D_(27)vr,,, = 0 on I'he. Let some cut-off functions (i, (2 € C*(R™,[0,1])
satisfy

0, if x, € (—o0, —2a/3) 1, if , € (—0,a/2)
Cl(x) = . ) (2(1') = .
1, if ,, € (—a/2,0) 0, if z, € (2a/3,0)
Then the sum
z= gl% + Gz e By (J)

satisfies the equations of (1.5.7) on I'yop and I'hor by construction. It is only left to show
that it also satisfies the equations on Y. To this end, we consider

Z Uy =C1§+-I/§;+C257-VE
= (ChY - vg + Q1 = OB - vs
2(712-1/2—!—(1—{)}12-1/2

=h* vy = (¥ —v) vy onJ x X
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and

~PsD_(2)v =~ PeD_(Q1Z")v — PeD_((Z v
= Q(=PsD_(z")vs) + G(=PeD_(Z " )vy)
— Q" vs)en — G(E -vs)ey,
= Q(PsCh™) + G(Ps(1 = O)h%)
= G (ChY - vn)en — G((1 = O™ - vx)e,
= Po(iCh™ + PoGa(1 - Qb
= PyuCh™ + Px(1 — )h*™
= Poh” =Py (h” +D_(v))  onJxX.
Defining ¢ := v + w € E; by combining step 1 and 2 of this proof, we obtain a solution of
system (1.5.5). Therefore, we have proven that there exists a bounded linear right-inverse

to vy for 1 < p < o0 with p # %, p # 2, p # 3, which implies that the trace operator
v: Ep(J) — F’I}(J) is a linear retraction. O

Remark 1.22. The system

Orp —uAp = 0 inJ x Gy,

p-v = fz%y on J xI'y,

—PrD_(¢) v = PpiLE onJ x T,
¢(0) = Zj in G,

does not satisfy the Lopatinskii-Shapiro conditions, see [46, p. 253] for a definition of
these conditions. In the proof of Proposition 1.21 we were therefore using the Stokes
equations instead of using a parabolic problem. Hence, we had to use the dynamic system
(1.5.11) to fulfil all necessary compatibility conditions.

Remark 1.23. Proposition 1.21 is also applicable to bounded C3-domains and to bent half
spaces. This cases may be proven analogously to the proof of Proposition 1.21 or by use
of [54, Theorem 2.9.1].

The proof of the retraction property of the trace operators with respect to the Neumann-
Dirichlet and the free slip boundary operators are simpler versions of the proof of
Proposition 1.21 and we omit them, here. Therefore, we have established the two
important results:

Proposition 1.24. Let 1 < p < o0 with p # %, p#2,p#3,0>0andJ = (0,T).
Assume A € R to be a bounded C3-domain, a > 0 and Q := A x (—a,a) a cylindrical
domain with boundary I'. Let also
GI(J) := (AP, B, hPY € Fp'7 (J) x Fo(J) x Fheor(J) :

h'P and h® fulfil (C4)np; A" and h™ fulfil (C5)Np}.
Then the trace operator

v EYJ) — GR(J)

c > ((C\Ftup . I/)I/ + 55,/PFC‘pr,

(¢jp - V)V + 00, Pregs,
(C‘Fbot . I/)I/ + 561,Prc‘pb0t)

is a bounded linear retraction.
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Proposition 1.25. Let 1 < p < o0 with p # %, p#2,p#3, Di(u) = %((Vu + (Vu)T)
and J = (0,T). Assume A € R"™! to be a bounded C3-domain, a > 0 and Q := Ax(—a,a)
a cylindrical domain with boundary I'. Let also

HZ(J) = {(ht0p7h27hbot) c thr)p % FE ~ ]ngot .
L' and h* fulfil (C4)s+; h'" and h® fulfil (C5)s.}.

Then the trace operator

v EY(J) — HA(J)
c — ((er,, Vv + DI,V
(e - v)v + PrDi(c)sv,
(ery,, - V)V + PrDi (), )

is a bounded linear retraction.

[
B
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2 Maximal L,-Regularity for Elliptic and
Parabolic Problems

In this chapter we extensively study the L,-theory of elliptic and parabolic problems
on cylindrical domains. Laplace operators on cylindrical domains were investigated by
Nau already [39], but for different boundary conditions than those we are interested in.
Also we would like to investigate systems with constant and variable coefficients. On the
one hand, this enables us to construct auxiliary solutions for the pressure using elliptic
problems, see Proposition 3.4. On the other hand, with the help of solutions to parabolic
problems and the Helmholtz decomposition, we gain a better understanding of the Stokes
equations. Of particular interest here are parabolic problems with Robin boundary
conditions as they provide a deeper insight into physical problems; e. g. for proving the
solvability of a model describing the dynamics of tropical storms in Chapter 4.

We start with an analysis of elliptic problems with Neumann boundary condition

—div(aVw) = d inQ,

dw = 0 on I, ()
and then consider parabolic problems of the form
poru — pAu = f inJ x Q,
BY(u) = h  onlJxT, (P|J)v

u(0) = wug in Q.

The boundary operators B, V € {R, ND, S+} are assumed to be as on page 23 in
Section 1.4. By Q := A x (—a,a) € R™ we denote a cylindrical domain consisting of a
bounded C3-domain A and an interval (—a,a) with a > 0. In addition, J = (0,7, T > 0,
denotes a time interval. Moreover, we consider the above systems exclusively on the
smooth part I' = I'to, U I'hop U X of the boundary of Q. Here, I'typ, is the boundary of the
top and @'y of the bottom of €2, and ¥ the lateral boundary. For a more comprehensive
investigation of cylindrical domains and their boundaries, cf. Section 1.3.

For parabolic problems we use the following data spaces
F(J) = Lp(J x Q)",
FA(JT) = {h e Wy27V2P(J, Ly(A)" A Ly(J, WEYP(A)™
h-veWa V2 (J, Ly(A) A Ly(J, W2TP(A))}, A € {Tiop, Dhot, S}
FA(J) = {h: T — R": byp,, =1 h'P e FL*»(J]),
his =t h> e Fy(J), hyr,,, =: P e Fpre ()},
F) = W2—2P ()",
FPA () = W 2120, Ly(A) o Ly(4, W, VP (8)),
Fh(J) = {h: T — R" : hyp,,, =: h'°P e FoTer (),

his =: h* e IF';;?”’E(J)7 hiry,, = pbot ¢ ngrbot}'
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We use the solution space
E5(J) = Hy(J, Ly(Q)) 0 Ly(J, Hy (2),
for parabolic problems with Robin boundary conditions, and
Ep(J) = Hy (J, Lp(2)" 0 Ly(J, Hy ()",

for parabolic problems with Neumann-Dirichlet, perfect slip or free slip boundary condi-
tions. These spaces are defined on page 24 in Section 1.4. From now on we consider the
first equation of the parabolic problems (P|J)y to be of the form

o — pAu = f in J x Q,

regardless of whether the coefficients are constant or variable, cf. Remark 1.12.

2.1 Elliptic Problems: Neumann Boundary Condition

The Laplacian with constant coefficients has been studied already on cylindrical domains,
see [39]. For us, however, the study of elliptic problems on cylindrical domains with
Neumann boundary condition of the form

—div(aVw) = d  in

(E)
ow = 0 on I,

is of importance. Here, 2 € R" is a cylindrical domain and every data d € L,(€2,R) has

to satisfy the compatibility condition §, ddz = 0.

In this section we are interested in systems of the form (E) with variable coefficient
o € BCH(Q,R). In addition, we would like to study the elliptic problem with constant
coefficient &« = 1 for time-dependent data d. Thereby we are interested in even higher
regularity for elliptic problems. We have a special interest in this kind of elliptic problems,
since we encounter them over and over again throughout this thesis as auxiliary problems,
e.g. to prove maximal regularity of the Stokes equations with variable coefficients (see
Proposition 3.8).

Variable Coefficients

Throughout this paragraph we always assume

a € BCHQ,R) with infa >0

to be a (time-independent) positive function. In order to prove that the elliptic prob-
lem (E) has a unique solution w € Hg(Q), we first show that the associated resolvent
problem induces an isomorphism for any data d € L,(2). In the following step we use the
maximal regularity of the resolvent problem to infer the solvability of elliptic problems
with Neumann boundary condition.

Theorem 2.1. Let A € R" ! be a bounded C*-domain and let a > 0. Assume § :=
A x (—a,a) to be a cylindrical domain, a € BUCH(Q) with infoa >0 and 1 < p < 0.
Then there exists a solution w € H2(Q) to the elliptic problem (E) for every d € Ly(£2)
with SQ ddx = 0. Under the additional constraint SQ wdx = 0 this solution is unique.
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Proof. Step 1. First we consider the operator 4, := —div(aVw) in L,(Q2) with domain
D(Ay) ={we Hz(Q) : 0,w = 0}. For A > 0 the resolvent problem for A, is given by

Aw—Va-Vw—aAw = d in ,

(2.1.1)
ow = 0 on I

Now, the Laplacian with constant coefficients on a cylindrical domain is R-sectorial;
see e.g. [39, Theorem 8.22]. Therefore, in case a = 1 there exists A\g > 0 such that
for every A > )¢ the equations (2.1.1) have the property of maximal regularity, i.e. for
every d € L,(2) there exists a unique solution w € D(A4,) to (2.1.1). A similar assertion
is valid for the general case a € BC'(Q) with infga > 0 as can be seen by using a
suitable localisation argument as in [15, Theorem 5.7] or as demonstrated in the proof of
Proposition 3.8. As a consequence, A, is a closed operator for all 1 < p < o0.

Step 2. Now, we consider the operator Byw := —div(aVw) in E, := {q € L,(Q) :
§ ¢dz = 0} with domain D(B,) = {w e H2(Q) : ,w = 0, {,wdz = 0}. Since E, is a
closed subspace of L,(€) and D(B,) = D(A,) n E, is the intersection of D(A,) with
a closed subspace of L,(€2), we infer that B, is a closed operator for all 1 < p < oo.
Because the embedding D(B),) < L,(2) is compact due to [4, Theorem 6.2], B, has a
compact resolvent. Hence, the spectrum o(B),) consists of eigenvalues only. Now, assume
that p = 2, w € D(B3) and Bow = 0. Then, by using partial integration we obtain

0= f —div(aVw) - wdz
Q
:f an-wdx—J ad,w - wdo
Q r

= f o Vw|? dz.
Q

Since info o > 0, we have Vw = 0 almost everywhere in 2. Hence, w is constant. From
SQ wdz = 0 we conclude w = 0. Thus, for the kernel of By we have 9(B2) = {0}, i.e. By
is injective. Since €2 is bounded, we have the linear embedding

G: D(Bp) — D(Bs), 2<p<oo.

Thus, if 2 < p < o0 and w € D(B,) with B,w = 0, then G(w) € D(B3) with By (G(w)) = 0,
which yields G(w) = 0, since M(Bz2) = {0} holds true. Therefore, B, is injective for all
2 < p < 0. We can then conclude B, € L;s(D(B)), E,) for all 2 < p < co0. Since By
with % + I% = 1 is the dual operator of B, the Closed Range Theorem [57, Ch. 5] yields
that By, € Lis(D(By), Ep) for all 1 <p < 2. O

Elliptic Problems with Time Dependent Data

In this paragraph we generalise the result above to time dependent data, at least for the
case of constant coefficients, more precisely for a = 1.

Corollary 2.2. Let T >0 and let J = (0, T) or J =R. Let A < R"™! be a bounded C3-
domain and a > 0. Assume Q := A x (—a,a) to be a cylindrical domain and 1 < p < cC.
Then for every d € Ly(J x Q) with §,, d(t, -) dx = 0 for almost all t € J the equation

—Aw = d m J x €,

(2.1.2)
dw = 0 on J x T,

has a unique solution w € Ly(J, H2(Q)) with §qw(t, -) dx = 0 for almost all t € J. If, in
addition, d € Hj (J, Ly(Q)) for some 7 € (0, 1], then w e H(J, Hg(Q))
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Proof. Step 1. We first assume d € C® (R x ). For every t € R we choose w(t, -) € H2(Q)
to be the unique solution to the problem

—Aw(t, -) =d(t, -) in Q, oyw =0 onl, J w(t, -)dz =0,
Q
which exists based on Theorem 2.1 applied for a = 1. Now, we have

ol 0, ey = |, Tt Wiyt < O [ e, I 0 8 = €Ll

for some constant C' > 0 that is independent of w, d and t. Using an approximation
argument we obtain a unique solution w € L, (R, H. 2(Q)) to (2.1.2) for J = R that satisfies
Sqw(t, -)dz = 0 for almost all t € R for every d € Ly(R x Q) with {, d(t, -) dz = 0 for
almost all t € R. Using extension and restriction operators between Ly(J ) and L,(R) we
obtain the same result also for J = (0, T).

Step 2. For J = R the time derivative ¢; can be approximated in L,(R) by difference
quotients. This way we obtain w € H} (R, H2(Q)) for the solution constructed in the first
step, if we additionally have that d € H) (R, L,(€)). Now, using extension and restriction
operators between H;(J) and H;(]R) we obtain the same result also for J = (0, T').
Finally, an interpolation argument yields the additional assertion for 0 < 7 < 1. O

Higher Regularity of Elliptic Problems

In this paragraph, we study higher regularity of elliptic problems for the case a = 1.
Moreover, we would like to apply this higher regularity to this kind of elliptic problems
with time-dependent data.

Lemma 2.3. Let A € R"! be a bounded C3-domain and a > 0. Assume Q := Ax(—a,a)
to be a cylindrical domain and 1 < p < 0. Then for every d € Ly() with SQ ddx =0
the equation

—Aw = d in €,

(2.1.3)
ow = 0 on I,

has a unique solution w € HS(Q) with §wdz = 0. If, in addition, d € H)(S2), then
w e HS(Q)

Proof. We start with the unique solution w € Hg(ﬂ) of system (2.1.3) with data d €
Cr(Q) H} () subject to the constraints §,wdz = §,ddz = 0 which exists due to
Theorem 2.1. Since d,d € L,(€2), there exists a unique solution v € Hg(Q) to

—Av = f in ,
v = 0 on I'igp U o, (2.1.4)

v = 0 on X,
for f = d,d. Existence and uniqueness of a solution v € Hg(Q) can be proved with the
same arguments as used in the proof of Theorem 2.1; one just has to consider the operator

B, := —Av with domain D(B,) := {v e HQ(Q X):v=0o0nTyp Ul d,v=0on X}
in L, () using [39, Theorem 8.10].

Next, we show that d,w = v e Hg(Q) To this end, we consider the weak problem

(Vz, Va = {f, O, CeXo:={he Hy(Q) : v =0o0n Typ UThe }, (2.1.5)
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which has a unique solution z € X for every right-hand side f € X4. Indeed, if z € X3 is
a solution for f = 0, then we obtain |VZ|%2(Q) = (Vz, Vz)q = 0. This implies that z is
constant almost everywhere in €2, i.e. z = 0 almost everywhere in {2 due to the boundary
conditions. Moreover, if f € Lo(2), we choose z € H3(Q) to be the unique solution to
(2.1.4) and obtain

(VZ, VC)Q = (5VZ, <)F - (sz g)ﬂ = (fv <)Qa ¢ € Xo,

where we used that d,z = 0 on ¥ and ¢ = 0 on I'top, U I'hor. This shows that z is a
solution to (2.1.5) with

V27,0 = (V2, V2)a = (f.2)a < /1%, +<lzl%,
< g 1F 1% + Gl Va7, )

for all ¢ > 0. Here, C, > 0 denotes the constant in Poincaré’s inequality and we
used the inequality of Young. Therefore, we have [Vz|r,q) < C|f|x;. Now, for

peXo:={eC®(Q) : 1 =0on Fiop U I'pot } we have
(Vv = Vo,w,Vo)g

= (al/vv (b)f‘ - (Av, (b)Q - ((V ) en) Vw, V¢)F + (Vw, vaﬂ¢)9
=0 -0

= (andv ¢)Q + (auw7 an¢)F - (Aw, an(b)ﬂ
=0

= ((v-en)d, ¢)r — (d, np) + (d, np)q = 0.
=0

Here, we used that 0,v =0 on X, ¢ = 0 and V¢ = (dp¢)e, on I'iop U T'pot, v+ €, = 0 on
Y, Opw = £0,w = 0 on I'iop U T'yor and that d,w = 0 on X. We have v € HE(Q) for all
1 < p < oo, due to the fact that d,d € C*(Q). Since Xj is dense in X5 we infer that

(Vv —=Vo,w, V()q =0, (e Xs.

This, in term implies that X5 3 d,w = v € H2(Q) due to the unique solvability of (2.1.5).
It follows that d,w = v € H2(Q) for all 1 < p < oo with

62wl 30y = 1020] 30y < Il a0y < Cléndlrye < Cldlmyo (2.1.6)

for d € C*(Q). Due to the fact that C*(Q) < H}(Q) is dense, we infer that the
solution w € Hg(Q) to (2.1.3) for a right-hand side d € H;(Q) subject to the constraints
§owdz = §,ddx = 0 satisfies 9,w € HZ(€2) and the estimate (2.1.6). Hence, we obtain

—Ajqw = —Aw+ Pw
= d+ diwe H)((=a,a), Ly(A)) n Ly((—a,a), H}(A)) in A,
op,w = 0 on 0A,
with —A 4 the Dirichlet-Laplace operator on the bounded C3-domain A. We thus have
w e H;((_C%a)a H]g(A)) N LP((_a'a a)v HS(A))

and deduce that 0;0,w € H;(Q) for all j,k € {1,...,n — 1}. In combination with
OnW € Hg(Q) we therefore obtain w e HS(Q) for the solution to (2.1.3). O

47



2 Maximal Ly,-Regularity for Elliptic and Parabolic Problems

Now, with the same arguments as used in the proof of Corollary 2.2 we obtain the
following result based on Lemma 2.3 instead of Theorem 2.1.

Corollary 2.4. Let T > 0 and let J = (0, T) or J =R. Let AS R™ ! be a bounded C3-
domain and a > 0. Assume Q := A x (—a,a) to be a cylindrical domain and 1 < p < 0.
Then for every d € Ly(J, H;(Q)) with § d(t, -)dz = 0 for almost all t € J the equations

-Aw = d i J x €,
w = 0 on J xT,

have a unique solution w € Ly(J, HS(Q)) with §, w(t, -)dxz = 0 for almost all t € J. If,
in addition, d € H} (J, H;(Q)) for some 7 € (0, 1] then w e HJ (J, H;’(Q))

2.2 Parabolic Problems: Robin Boundary Condition

This section is devoted to the study of parabolic problems on cylindrical domains with
Robin boundary conditions, i.e. to the study of systems of equations of the form

ou — pAu = f inJ x Q,
BYOpu+o'u = h on J x T, (P|J)r
u(0) = wp in Q.

As mentioned before, Nau studied this kind of problems with constant coefficients p,
p* and o, see [39]. Considering (P|.J)g is particularly important for solving physical
problems. We say more about this later when examining a model on the mechanisms of
tropical storms in Chapter 4.

Again Q € R” is assumed to be a cylindrical domain and J = (0,7), T" > 0 a time
interval. We aim to prove the existence of a unique solution

u=u(t,r) e E;(J)
to system (P|J)p for every data
(fsh,uo) € P (T)

which meets the necessary regularity and compatibility conditions. On this account we
introduce the data space Ff B (.J), which is defined to consist of all

(f, hyug) € Ly(J x Q) x FRA(T) x W2=2/P(0)
that satisfy the compatibility condition
B4 0ug + c%ug = h(0) on I'if p > 3, (C3)r

which stems from the boundary condition of (P|J)g. Its necessity was shown in Sec-
tion 1.4.
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Variable Coefficients

In this paragraph we assume

w € BUC(2;R) with igfu > 0,

A% e BCY(J x T, (0,00)) with inf 5 > 0,
and
ot e BC*(J x T, [0,)).

To prove maximal regularity for (P|J)g with variable coefficients we first need a result,
which shows the maximal regularity for perturbed parabolic problems, if the respective
parabolic system has the property of maximal regularity. In the following lemma we prove
maximal regularity for parabolic problems subject to all boundary operators defined
on page 23 in Section 1.4. The reason is that want to use the lemma not for parabolic
problems with Robin boundary conditions only, but also for parabolic problems with
Neumann-Dirichlet boundary conditions, perfect slip boundary conditions and free slip
boundary conditions.

Lemma 2.5. Let A € R"™! be a bounded C3-domain, a > 0 and J = (0,T). Assume
Q:= A x (—a,a) to be a cylindrical domain, € BUC(Q;R) with infq > 0 and BY with
Ve{R, ND, St} to be one of the boundary operators defined in Section 1.4. Assume
additionally

e for V.= R that X(J) := E3(J). Let 1 < p < o withp # 3, f € Ly(J x Q),
R: oX(J) — ]Fg”’h(J) to be a linear function with R(w)(0) = 0 for w € ¢X(J)
with w(0) = 0 in Q. Let h € Ff’h(J), such that (f,h,0) satisfy the necessary
compatibility condition (C3)rg.

e for V€ {ND, St} that X(J) := E4(J). Let Let 1 < p < oo with p ¢ {2,3,3},
fe Fg(J), R: oX(J) — FZ(J) to be a linear function with R(w)(0) = 0 for
w e oX(J) with w(0) = 0 in Q. Let h € Ff’h(J), such that (f,h,0) satisfy the
necessary compatibility condition (C3)np — (C5)np, (C3)s+ — (C5)s+, respectively.

Let the system
o —plAv = f in J x €,

BY(v) = h on J x T, (2.2.1)
v(0)

0 in .

have a unique solution v € X(J) for every data (f, h,vo) € IF]],D’V with V e {R, ND, S+}.
If

IR g sy < CI Il for V = R,
and

”R(Z)H()]F;(J) < C|J|TH'ZH0X(J)a fOT' Ve {ND) Si}v
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for every z € X(J) with z(0) = 0 in Q and some constants T, C' > 0, which are independent
of J, then system

orw — pAw = f in J x €,
BY(w) = h— R(w) on J x T, (2.2.2)
w(0) = 0 in

has a unique solution w € X(J).

Proof. We show that (2.2.2) has the property of maximal regularity for the given time
interval J. To this end, we first show that (2.2.2) has the property of maximal regularity
for a small time interval J = (0,7), T > 0. Let us establish L: X(J) — IFX(j) with
V e {R, ND, St} as the the operator defined through the left-hand side of (2.2.1).
Since (2.2.1) has the property of maximal regularity, the operator L is invertible. We
use the notation oL := Lz (j): oX(J) — OIF'f’V(j). The operator oL ! is bounded
independently of .J, due to the fact that all u € (X(J) satisfy u(0) = 0 in Q. Since
( f , fL, 0) satisfy the necessary compatibility condition according to our assumptions and
R(w)(0) = 0, if w(0) = 0, we can transform (2.2.2) into the operator equation

oL(w) = (f,h— R(w)) = (f,}) + (0, =R(w))
which is equivalent to
w=oL M (f, 1) +oL7H(0, ~R(w)),
since the operator L is invertible. Subtraction of oL ~1(0, —R)(w) yields
(Id = oL (0, =R)(w) = oL~ '(f.h).
It is now left to show that (Id — oL =1(0, —R))~! exists, since this would imply that
w = (Id = oL7'(0, ~R)) "o L™!(f. h)

is the unique solution to (2.2.2). The Neumann series argument provides the existence of
(Id — oL71(0,—R))~ !, if [|[oL=1(0, —R)| < 1. Note that

-1 -1
loL~(0, _R)Hox(j)—mx(j) < oL HO]FZ])D*V(j)_mX(j) | (0, _R)Hox(j)qoyzf’v‘/(jy
According to our assumptions we can estimate
| R g gy < CLwl sy, for V=R,
and
|R(w)] a5y < CLIwl x5y, for Ve {ND, S+},

for some constants 7, C' > 0, which are independent of .J. Thus, we make | R(w)| small
by choosing the interval J sufficiently small, such that [oL™"(0, = R)| x(7y_x(7) 15 less

than one. This is possible, because HOL*IHOFP,R( 7 is bounded independently of .J.
P

—0X(J)
Now, we can conclude that (2.2.2) has the property of maximal regularity for a small
time interval J. To get maximal regularity for (2.2.2) for the time interval .J, we choose
T sufficiently small and such that

kT =T for some k € N,




2.2 Parabolic Problems: Robin Boundary Condition

and successively solve the parabolic system (2.2.2) in a cylindrical domain on the time
intervals

(0,7), (T,2T), ..., ((k—1)T,kT).

With this strategy we obtain a unique solution to (2.2.2) on the time interval J =
(0,7). O

Using some results from Nau [39, Theorems 8.10 & 8.22] about parabolic problems
on cylindrical domains with constant coefficients and applying a similar argument as
Denk, Hieber and Priiss in [15, Theorem 5.7], where they proved maximal regularity
for elliptic operators with variable coefficients in a Banach space of class H7 we can
prove maximal regularity for parabolic problems with variable coefficients and Neumann
boundary conditions. With Lemma 2.5 we can then infer maximal regularity for (P|.J)g.

Theorem 2.6. Let A< R" ! be a bounded C3-domain, a > 0 and J = (0,T). Assume
Q:= A x (—a,a) to be a cylindrical domain, (f,h,ug) € FZI,D’R(J), € BUC(;R) with
infou >0, % e BCY(J xT), % e BC*(J xT), infr B* > 0, and 1 < p < o0 with p # 3.
Then system (P|J)Rr has a unique solution u € E;(.J).

Proof. To prove Theorem 2.6 for a time interval .J, we split system (P|J) g into a parabolic
system with Neumann boundary conditions and a perturbed parabolic problem with
initial value zero. For this we set u := v + w and choose h € Ff’h(J) with

h(0) = f%d,uy on T,
if p > 3. Thus, (P|J)r can be rewritten as the two systems

ov —pulAv = f inJ x €,
p*ov = h onJ xT, (2.2.3)
v(0) = wup  in

and
ow — pAw = 0 in J x €,
BU0,w = h—h—c"v—cw on J x T, (2.2.4)
w(0) = 0 in Q.

Now, to obtain maximal regularity for (P|J)gr, we prove maximal regularity for both
systems independently of each other. We proceed in two steps.

Step 1: Let © € E5(J) be a solution to
BU0,0 =h onJ xT,
which exists due to Lemma 1.16. Furthermore, system

00— pAD = f — (00 — pAo) in J x Q,
g0, = 0 onJ x T,
2(0) = wup—0(0) in Q,

has the unique solution ¥ € IE;(J ). Since the Laplace operator is R-sectorial on a
cylindrical domain, [39, Theorem 8.22], the proof of maximal regularity for the above
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system can be proven by the same methods as the proof of maximal regularity for
elliptic operators with variable coefficients in a Banach space of class H7T [15, Theorem
5.7). We discuss this approach in detail during the proof of Proposition 3.8. Then
v:=10+ 0 € E;(J) is the unique solution of (2.2.3).

Step 2: We define the perturbation R: oE;(J) — OF;?’"(J) through R(w) := c"w,
which is a linear function with R(w)(0) = 0, if w(0) = 0 in . We set

~

h:=h—-h—c"ve Ff’h(J).

Using the definition of & we have

h(0) = h(0) — h(0) — 6™ v(0) = B up + o ug — B%dyug — o™ ug = 0.
Thus, the data (0, h,0) satisfies the compatibility condition (C3)z. If w(0) = 0, the
estimate

IR g ) = o @l ey a, o=y

< CHw||0H;/2(J,LP(Q))mLp(J,H;(Q))

< C|J‘THWHOH;(J,LP(Q))mOH;”(J,H;(Q)

< CTwlorz )
holds true for some constants C, 7 > 0, which are independent of J. According to step 1
system (2.2.3) has the property of maximal regularity for every data (f,h,ug) € Ff F(T).

Thus, all assumptions of Lemma 2.5 are satisfied and we infer maximal regularity for
system (2.2.4).

Combining step 1 and 2 we obtain maximal regularity for (P|J)g on the time interval
J =(0,T). m

2.3 Parabolic Problems: Neumann-Dirichlet Boundary

Conditions

We are again interested in parabolic problems on cylindrical domains. More precisely, in
this section we study systems of the form

ou — pAu = f in J x €,
u-v = h-v on J x T,
00, Pru = Prh onJ x T, (PlJ)vp
u(0) = g in Q,

where 2 € R” with n € N denotes a cylindrical domain and J = (0,7), T > 0, a time
interval. The coefficient § > 0 is assumed to be constant throughout this section, but we
study (P|J)nyp with both constant and variable coefficient p. In addition, we assume
the given data (f, h,up) to satisfy all necessary regularity and compatibility conditions
for system (P|J)nyp. That is,

(f> hv uO) € F57ND(J)7
where the data space Iﬁf "ND () is defined to consist of all

(f, hyuo) € F(J) x Fy(J) x Fy
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that satisfy the compatibility condition

up-v = h(0)-v, if p> 3,
. (C3)nD
30, Pr(ug) = Prh(0), if p> 3,
as well as the compatibility condition
6 51, hz top * L/ = thop op * UV lf > 2,
[( Flan )reor - Vs [ ) Reor - vs ity (CHnp
5[(61’Eh p)]RtOp ' VFtop = [h ]RtOP ' Vrtop lfp > 27

which arises from the boundary condition on the upper edge of €2, and the condition

5[(5,,Fbot hz)]Rbot Uy, = [thOt]Rbot %> lfp > 27

C5
S[(Ous B bot - 1y, = [h]gvor - vry,, i D > 2, (CS)wp

which arises from the boundary condition on the lower edge of 2. In Section 1.4 the
necessity of these regularity and compatibility conditions for (P|J)yp was shown.

We aim to find a unique solution
u=u(t,z) e Ej(J)

to system (P|J)np, since we use it in the following section to solve parabolic problems
with perfect slip boundary conditions. This finally allows us to show in Chapter 3 that
the Stokes equations on cylindrical domains have the property of maximal regularity.

Constant Coefficients

Within this paragraph we assume the coefficient
wn>0

of system (P|J)np to be constant. To prove maximal regularity for the parabolic problem
(P|J)np, we first prove the solvability of the analogous problem with homogeneous
Neumann-Dirichlet boundary conditions. Using the retraction property of the trace
operator with respect to the Neumann-Dirichlet boundary conditions, see Section 1.5, it
is then possible to show the existence of a unique solution u € E;(J) to (P|J)np.

Lemma 2.7. Let A € R"™! be a bounded C3-domain, a > 0 and J = (0,T). Assume
Q:= A x (—a,a) to be a cylindrical domain, 1 < p < oo and 0, ;1 > 0 to be constant.
Then the parabolic system

o — pAu = f in J x €,
u-v = 0 on J x T, (P|J)h:0
§0,Pru = 0 on J x T, NP

u(0) = g in Q.
has a unique solution u € Ey(J), for every data (f,0,uo) € F57ND(J).
Proof. We split each of the functions u, f and wug, into two components such that
u=(v,w) withv: Jx Q- Rt and w: J x Q > R,

f=(fo, fw) € Lp(J x Q"1 x L,(J x Q)1
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and
up = (vo, wp) € W2 2P(Q)" 1 x W2-2P(Q)!,

respectively. In addition, we consider the outer normal vector on the boundary of the
cylindrical domain €2, where we have

v =+e, on A x {ta},
on top and bottom of the boundary of €2 and
v Le, ondA x (—a,a) with v = (v4,0), v4 € R""! the outer normal vector on dA,

on the lateral boundary of 2. The vector e,, defines the unit vector in the n-th direction.
According to this decomposition, (P|J)%79 decouples into the two systems

o — plAv = f, inJ x Q,
ov = 0 on J x A x {ta},
vevg = 0 on J x 0A x (—a,a), (a)
Op Poav = 0 on J x 0A x (—a,a),
v(0) = wo in Q,
and
orw — pAw = fy inJ x €,
w = 0 on J x A x {+a},
Op,w = 0 on J x 0A x (—a,a),
w(0) = wy in Q.

(b)

It is therefore sufficient to show maximal regularity for each of the systems (a) and (b) in
order to prove maximal regularity for (P|J)%79. We proceed in two steps.

Step 1. In order to prove maximal regularity for system (a) it is sufficient to prove
maximal regularity for

ov+Tv = f, inJxQ,
v(0) = v in Q,

with operator T: D(T) € L,(2)" ' — L,(Q)" !, which is defined through T v := —pAwv,
D(T) = {ve W2()" ™ : 0,v =0on A x {#+a}, v-va = 0and d,, Ppav = 0 on 0A x
(—a,a)}. Because of [31, Corollary 6.4, Theorem 6.5] it is sufficient to prove

A+ T e RH™(Ly(Q)) with ¢X, 7 < 5, and for some A > 0.

In order to proceed, we split 7' = T + 15 into the two parts
Ti: D(Ty) € Ly(A)™ ' > L,(A)™ !, Tyv:i=—p(0f +03+---+02_ )
with D(Th) = {v e VVg(A)”f1 cv-vg =0, 0,,Ps4v=0o0n 0A},

and

Ty: D(Ty) € Ly(—a,a)" ' — Ly(—a,a)" t, Tov:= —pd2v
with D(T,) = {v e Wg(—a, a)" t:0,0=0o0nd(—a,a) = {+a}}.

|| I \‘
|| I |




2.3 Parabolic Problems: Neumann-Dirichlet Boundary Conditions

We have
A2 +To € H® for some Ap >0 and with ¢S, , 5, =0,
see e.g. [15]. With a proof similar to that of [29, Theorem 6.1] we obtain
A1+ Ty € H® for some A\ >0 and with ¢5, ,p =0.
We can combine the result for T = T + T4 as follows
A+ TeRH® with A=A + Xy > 0, ¢L,p = 0 and D(T) = D(T}) n D(Ty),

due to [43, Proposition 3.7]. This implies maximal regularity for system (a).

Step 2. To prove maximal regularity for system (b) it is sufficient to prove maximal
regularity for

ow+Tw = fy in J x €,
w(0) = wo in Q,
with operator T: D(T) € Ly(Q) — Ly(Q), Tw := —pAw, D(T) = {w e WZ(Q) : w =

0on A x {#a}, d,,w =0on 0A x (—a,a)}. System (2.3.1) has the property of maximal
regularity, due to [39, Theorem 8.10]. O

(2.3.1)

Now, using the retraction property with respect to the Neumann-Dirichlet boundary
condition (Proposition 1.24), we obtain.

Proposition 2.8. Let A € R" ! be a bounded C3-domain, a > 0 and J = (0,T). Assume
Q:= A x (—a,a) to be a cylindrical domain, §, > 0 to be constant, and 1 < p < o

with p # %, p # 2, p # 3. Then the parabolic system (P|J)np has a unique solution
u e Ey(J) for every data (f,h,uo) € IFII)D’ND(J).

Proof. We choose u; € Ejj, such that
uy v = h-v on J x T,
(561,Ppu1 = Prh on J x F,

which exists by Proposition 1.24. Setting us := u — u;, we obtain from (P|J)yp the
following equations

Orug — pAus = f — Opuy + pAug in J x €,

ug-v = 0 on J x T,
(2.3.2)
00,Prus = 0 onJ x T,
U2(0) = Ug — U1 (0) in €.
Using Lemma 2.7, we obtain maximal regularity for (2.3.2) and thus maximal regularity
for (P|J)nD- O

Remark 2.9. In contrast to the parabolic problem with homogeneous Neumann-Dirichlet
boundary conditions (Lemma 2.7) we cannot prove the existence of a unique solution
u € £y (J) for all 1 < p < oo for the parabolic problem with inhomogeneous Neumann-
Dirichlet boundary conditions. The constraints p # %, p # 2 and p # 3 are due to the
inhomogeneous boundary conditions. More precisely, we have to pay special attention
to the compatibility conditions (C3)np, (C4)np and (C5)nyp. Since the compatibility
condition (C3)yp holds for p > 2 and p > 3, respectively, and (C4)yp and (C5)yp
hold for p > 2, we were not able to show the retraction property of the trace operator
with respect to the Neumann-Dirichlet boundary conditions for the limiting cases p = %,
p =2 and p = 3 with our methods.
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Variable Coefficients
In the following paragraph we assume

w € BUC(;R) with igfu > 0.

We extend the maximal regularity of parabolic problems with constant coefficients in a
cylindrical domain to those with variable coefficients, applying a localisation argument
utilized by Denk, Hieber and Priiss [15, Theorem 5.7]. Following their approach, which is
used again in Proposition 3.8 and is treated there in detail, we have the following result.

Corollary 2.10. Let A S R" ! be a bounded C3-domain, a > 0 and J = (0,T). Assume
Q:= A x (—a,a) to be a cylindrical domain, (f,h,up) € IE‘II)D7ND(J), w € BUC(;R) with
infou >0, and 1 < p < o0 with p # %, p # 2, p# 3. Then system (P|J)np has a unique
solution u € Ep(J).

2.4 Parabolic Problems: Perfect Slip Boundary Conditions

The parabolic problem on cylindrical domains with perfect slip boundary conditions we
are interested in is given as

o — pAu = f in J x €,
u-v = h-v onJ x T,
(P1J)s-
—PrD_(u)v = Prh onJ x T,
u(0) = wug in Q.

We study this system with both constant and variable coefficients . For the constant
coefficient case, we also show that the unique solution of (P|J)g_ is a solenoidal function,
if f is solenoidal. Considering parabolic problems with perfect slip boundary conditions
is interesting, since we use them in the next section to solve parabolic problems with
free slip boundary conditions. Moreover, in Chapter 3, using the Helmholtz projection
and the unique solenoidal solution of (P|.J)s—, we can show that the Stokes equations on
cylindrical domains with constant coefficients have the property of maximal regularity.

Let J = (0,7), T > 0, be a time interval and 2 € R" a cylindrical domain. We are
interested in proving the existence of a unique solution

u = u(t,r) e Ej(J)
to system (P|J)g_ for every data
(f:hyu0) € B, ()

which fulfil the necessary regularity and compatibility conditions. The data space
Iﬁf 5= (J) is defined to consist of all

(f, h,uo) € FY(J) x Fh(J) x F)

that satisfy the following compatibility conditions. For system (P|J)g_ there are com-
patibility conditions, which arise from the compatibility between data h and initial data
ug, which are

up-v = h(0)-v, if p> 3,

C3)s—
—PrD_(up)v = Prh(0), in p > 3, (@3)s
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compatibility conditions which arise from the boundary condition on the upper edge of

[hz]Rtop . VFtop = —[htop]Rtop %> if p > 2, (04)
30, B IRiow - v = 5[0 h*PlRicn - vry,, = [A*Plriop -ve  ifp>2, -
and conditions which arise from the boundary condition on the lower edge of (2
[hZ]Rbot Uy = _[tht]Rbot -vy iftp> 2 (05)
. S—
%[@Fbot hE]Rbot Uy — %[@2 tht]Rbot Ul — [tht]Rbot %y if p > 2.

In Section 1.4 we have shown in detail that these are the necessary compatibility conditions
for (P|J)s—.

Constant Coefficients

In this paragraph we assume the coefficient
w>0

of system (P|J)s— to be constant. To prove maximal regularity for the parabolic system
(P|J)s—, we decompose (P|J)s_ into a system containing the inhomogeneous perfect
slip boundary conditions and a parabolic system with homogeneous perfect slip boundary
conditions. Using the retraction property of the trace operator with respect to the
perfect slip boundary conditions, see Section 1.5, we are able to show that the system
containing the inhomogeneous perfect slip boundary conditions has a unique solution.
The remainder of the proof is then devoted to maximal regularity of the parabolic system
with homogeneous perfect slip boundary conditions.

Proposition 2.11. Let A € R ! be a bounded C3-domain, a > 0 and J = (0,T).
Assume Q := A x (—a,a) to be a cylindrical domain, p > 0 to be a constant and
1 <p<oo withp # %, p # 2, p # 3. Then the parabolic system (P|J)s—, with data
(f, h,ug) € IFII,D’S*(J) has a unique solution u € Ej(J).

Proof. Let us split the velocity into u = @+ @. According to this decomposition, (P|J)s—
decouples into the two systems

w-v = h-v on J x I,
(2.4.1)

—PrD_(a)v = Prh onJ x T,

and

i —pAa = f in J x Q,

uw-v = 0 on J x T,
~ (2.4.2)

—PrD_(a)v = 0 onJ x T,

7:6(0) = 'fL() in Q.

The data f := f — (0,0 — pAQ) in J x Q and 4o := uy — @(0) in Q fulfil the necessary
compatibility conditions and consequently, we have (f,0, o) € IE‘]I: 5= (J). From Proposi-
tion 1.21 we already know that the corresponding trace-operator is a retraction and thus
system (2.4.1) has a solution @ € E;(J).
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To prove maximal regularity for (2.4.2) we proceed in two steps.
Step 1. In this step we show that

ata—uAa - f in J x Q,
i-v = —(Vr)i-v=0 onJxI, (2.4.3)
o,Pri = —3(Vrv)i on J x T, o
a(0) = g in 0,

is equivalent to system (2.4.2) and well-posed. For that, consider the zero-th order
operator

= —5(Vrv)a

and prove that —%(pr)ﬂ as well as 0, Prt are tangential on J x I'. The outer normal
vector v as well as the projection Pr are extended canonically to a tubular neighbourhood
of I" that means we extend v constantly in the normal direction with d,v = 0. For
a comprehensive analysis of tubular neighbourhoods see [46, Section 2.3]. Therefore,
Vrv = PrVv on I'. From this, we see that

—%(vpy)a (2.4.4)

is tangential. Next, by assuming @ -v = 0 on J x I'; we infer that

Pro,Pri = Pro,(u— (v®vu)u) = Pro,(u— (4 -v)v)

= Pr(Va'v) = Pr (V((@-v)v)' v

= Pré,u— [(Vr(a-v)@v]Tv — (i v)(Vrrh)r.
Note, that we use 4 - ¥ = 0 in the following equation, since we know it is valid on the
boundary I' and therefore on the tangential part. We do not know however how - v

behaves in the normal direction. For this reason, we could not use @ - v = 0 in the first
line. Thus, we infer from the equations above

Pro,Pru = Pro,u = 0yt — (v Q) (0,u) = 0yt — ((Vﬁ)TV v
— (V) v — (Vi) v )y = (V0)ii-v) v + (V)i )
=0, Pra+ (Vv)a-v)v = 0, Pra + (i - d,v)v
= 0, Pra.

~—

v

This is why —3(Vrv)@ and 0,Pri are tangential, if %-v = 0 on J x I More-
over, we can conclude Vrv € BUCH(Z,R™ ™) and Vrvr,,, = Vryr,,, = 0, since
A< R"!is a bounded C3-domain. Together with @ € E;(J) it follows that —%(Vry)ﬂ €

Wpl/2_1/2p(J, Ly(T)™ n Ly(J, Wpl_l/p(F))". Combined with —%(Vv)a being tangential,

4l
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we obtain —3(Vv)a € IFZ(J). Analogously we obtain
30, Pri + 5(Vrv)a
= iV(Pra)v + 3 Pr(Vv)a
=iV(a-(r® v)ya)tv + %PIT(VV)”EL
= %VQTV — V(@ - v + %[ﬁTVVTPF]T
=valv - I[v@ - v)ev'v - i@ v)vvlv + Ha' vl Pr + at 0,00 " ]"
=ivilv - Iveva v)v+ ia" vl P + @ Vel v )T (2.4.5)
= %VQTV — v e ((Va)y + (Vv)a)] + %[QTVVTPF +a! Vit (v@u]’
= %VQT - %((VQ)TV Vv —3(Vv)ia-v)v + %[ﬂT(Vy)T]T
=vi'v - lvev)\Vvi'v - Jv@v)(Vv)a + (V)i
= 3P (Valv) + 1 Pr((Vv)a)
= 3P (Valv + (Vv)a — V(i -v))
= P (Vi — Va
= —PrD_(a)v
and see that system (2.4.2) is equivalent to (2.4.3).

Step 2. In this final step we show that (2.4.3) has the property of maximal regularity
for the given time interval J. To this end, we establish the linear function R: ¢Ej;(J) —
O]P‘Q(J) with R(@) 1= —5(Vrv)a. It is R(@)(0) = 0, if u(0) = 0. Now, we split @ := v+ w
and choose a h € ]FI:;(‘]) with

h(0)-v = 0 onTif p> 3,
PF}NL(O) = %ayppﬂo on I’ ifp > 3.
Thus, the system (2.4.3) can be rewritten as the following systems:
o —pAv = 0 in J x €,
v-v = 0 on J x T,
1 - (2.4.6)
50.Prv = Prh onJ x T,
U(O) = ﬁ(] in Q,
and
ow—pAw = f inJ x €,
w-rv = 0 on J x T,
1 . (2.4.7)
50,Prw = h— R(w) onJ x T,
w(0) = 0 in Q.

Where h := —3(Vrv)v — Prh. Let ve E5(J) be the solution of system (2.4.6), which
exists according to Proposition 2.8.

To prove maximal regularity for system (2.4.7), we want to use Lemma 2.5. Therefore,
we have to check if all assumptions of Lemma 2.5 are satisfied. System (P|J)xp has the
property of maximal regularity for every data (f, h,ug) € Ff "ND(]), due to Proposition 2.8.

The data (f,h,0) satisfies the compatibility conditions (C3)yp, since we can conclude

h(0) = —1(Vrv)v(0) — Prh(0) = —3(Vrv)ug — 30, Prug = PrD_(up)v = 0
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from equation (2.4.5) and the definition of h. Note that Vv € BUCH(X,R™ ") and
Vryr,, = Vrvr,,, = 0. Therefore, the estimate

_ |1
H - R('LU) ”()]FIZ;L(J) - H§(vry)wH0W;/2_1/2P(J,LP(F))r‘va(J,W;}_l/p(F))

< B _
S HwHOW;ﬂ V2P (1 Ly(T)) ALy (J W~ /2 (1))

N

C
CUT Il gwa=v2w (s 1) aLy w212 ()
C

< O wlors

holds true, if w(0) = 0 in Q. Here, C, 7 > 0 are constants, which are independent of J.
Now, all assumptions of Lemma 2.5 are satisfied and thus system (2.4.7) has the property
of maximal regularity. With this strategy we obtain a unique solution to (2.4.3) on the
time interval J.

These two steps imply maximal regularity for (2.4.2) and thus maximal regularity for
(P|J)s— and our initial assertion. O

Now, with the help of Proposition 2.11 and the Helmholtz decomposition, cf. Section 1.3,
we can prove that system (P|J)s_ with constant coefficients and homogeneous boundary
conditions even has a unique solenoidal solution, if the given function f is solenoidal as
well.

Corollary 2.12. Let A< R" ! be a bounded C3-domain, a > 0 and J = (0,T). Assume
Q = A x (—a,a) to be a cylindrical domain, p > 0, D_(u) = $(Vu — (Vu)T) and
1< p< oo withp # %, p # 2, p#3. Then the parabolic system

oru— pAu = f in J x €,

u-v = 0 on J x T,

—PrD_(u)y = 0 on J x T,
u(0) = wug in €,

(2.4.8)

has a unique solution u € Ej(J) N Ly(J, Ly () for every set of data (f,0,0,uq) €
L,(J, Ly »(€2)) x {0} x {0} x IF?, N Ly, () fulfilling the compatibility conditions (C3)g-_.

Proof. Let u € Ej(J) be the unique solution to system (2.4.8) for the given data
(f,0,0,up), which exists due to Proposition 2.11. We are thus left to show that
uw € Ly(J,Lys(Q)). There is an L,-Helmholtz projection on finite cylinders, due to
[41]. Thus, it is sufficient to prove Hu = u, where H: L,(Q2) — L, ,(€2) denotes the
Helmholtz projection on . Note that —PrD_(u)v = —D_(u)v on the boundary J x '
and that D_(u) is a skew-symmetric matrix. Since —PrD_(u)v = 0, Lemma 1.11 yields
div(D_(u)) € Ly(J, Ly »(€2)). Also the equation

D_(Vp)i; (0:(Vp); — 0;(Vp)i)

2.4.9
(0:0jp — 0;0;p) = 0, ( )

1
2
1
2

holds true (in the sense of distributions) for all p € H;(Q,R”). Since (1 — H)u is a
gradient, we obtain (in the distributional sense) by using (2.4.9) that D_(1 — H)u) = 0.
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From this we conclude

) (2.4.10)

~— ~—

= H(div(2u
= H(uAu).
However, due to Proposition 1.10 we have Hu € Ej(J) n Lp(J, Ly »(£2)). In particular,
pAHu = H(pAuw) in Ly(J x Q).
In the left-hand side of (2.4.8), let us for the moment replace v with Hu. Using (2.4.9)
and (2.4.10) we obtain

otHu — pnAHuw = Hadwu— HpAu

S

—(u)) + pVdiv(u))

= H(dwu — pAu)
= Hf=f in J x Q,
Hu-v = 0 on J x Q,
~PrD_(Hu)v = —PrD_(Hu+ (1 - H)u)v
= —PrD_(u)r =0 on J x T,
Hu(0) = Hugp = ug in Q.
Thus, in combination with Proposition 2.11 we conclude that Hu and u both are the
unique solution to (2.4.8). Consequently, Hu = u. O

Remark 2.13. Corollary 2.12 generalises to the cases p = %, p =2 and p = 3 by using
interpolation results.

Remark 2.14. Our proof of Corollary 2.12 is only valid for constant coefficients as equation
(2.4.10) does in general not hold for variable coefficients p € BUC(2; R).

Variable Coefficients

Denk, Hieber and Priiss proved in [15, Theorem 5.7] maximal regularity for elliptic
operators in a Banach space of class H7 with variable coefficients. For this purpose,
they applied a localisation argument on elliptic operators and used then the maximal
regularity of these elliptic operators with constant coefficients. Since we proved maximal
regularity for (P|J)yp with constant coefficient > 0 in Proposition 2.11, we can use
the strategy of Denk, Hieber and Priiss to prove maximal regularity for (P|.J)yp with
variable coefficient

w € BUC(2;R) with igf,u > 0.

This strategy is used again to prove maximal regularity of the Stokes equations with
perfect slip boundary conditions (Proposition 3.8) and is treated there in detail. Since the
proof of maximal regularity for the Stokes equations is more difficult than for parabolic
problem, we omit it for (P|J)nyp with variable u here.

Corollary 2.15. Let A € R"™! be a bounded C3-domain, a > 0 and J = (0,T). Assume
Q:= A x (—a,a) to be a cylindrical domain, (f,h,ug) € IF;)’S*(J), w € BUC(Q; R) with
infou>0and1l<p<oo withp # %, p # 2, p#3. Then system (P|J)s— has a unique
solution u € Ej(J).

61



2 Maximal Ly,-Regularity for Elliptic and Parabolic Problems

2.5 Parabolic Problems: Free Slip Boundary Conditions

Using the maximal regularity of parabolic problems (P|.J)s— with perfect slip boundary
conditions from Section 2.4, we are able to prove maximal regularity for parabolic
problems on cylindrical domains with free slip boundary conditions of the form

Oru — pAu = f in J x €,
u-v = h-v onJ x T,
(P[)s+
PrDi(u)v = Prh on J x T,
u(0) = g in Q,

with Q € R™ a cylindrical domain and J = (0,7, T' > 0, a time interval. We study this

system directly for variable coefficient u, since we can prove the existence of a unique
solution

u = u(t,r) e E;(J)

to system (P|J)g4 with variable p straight without needing maximal regularity of system
(P|J)s+ with constant coefficient beforehand. The maximal regularity for (P|J)g+
with constant coefficient then follows immediately from considering the system with
variable coefficient. The study of parabolic problems with free slip boundary conditions
is interesting, since we use them in Chapter 3 to show that the Stokes equations on
cylindrical domains have the property of maximal regularity.

The data
(f: hiuo) € F5T(J)
have to satisfy the necessary regularity and compatibility conditions. The necessity of

the regularity and compatibility conditions for (P|J)g+ can be seen in Section 1.4. Then,
the data space FZI; S+ is defined to consist of all

(9, h,ug) € FL(J) x FR(J) x FY
that satisfy the compatibility condition

up-v = h(0)-v, if p> 3,

C3
PrD.(uw)y = Prh(0), inp> 3, (O3)s+

which arises from the compatibility between the data h and the initial data wug, the
compatibility condition

[hz]Rtop . thop = [htop]Rtop %> if p > 2,

. C4)s
%[&/Fmp hE]RtOP cUs %[auz htOP]Rtop Wy = [htOP]Rmp vy if p> 2, ( ) +
which arises from the boundary condition on the upper edge of €2, and the condition

[hE]Rbot Ul = [tht]Rbot s Uy ifp > 2,
%[ﬁyrbot hz]Rbot - Uy + %[(?,,E tht]Rbot Upor = [tht]Rbot %> if p > 2,

(05)S+

which arises from the boundary condition on the lower edge of 2.

|
|
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Variable Coefficients
The coeflicient

w € BUC(;R) with igfu > 0.

of system (P|J)g4 is assumed to be variable throughout this paragraph. To prove
maximal regularity for the parabolic system (P|J)g, we use the same strategy as in the
proof of Proposition 2.11. The difference is that we need the trace result with respect
to free slip boundary conditions instead of the trace result with respect to perfect slip
boundary conditions. Also we use the maximal regularity of parabolic problems with
perfect slip boundary conditions instead of the maximal regularity of parabolic problems
with Neumann-Dirichlet boundary conditions.

Theorem 2.16. Let A S R" ! be a bounded C3-domain, a > 0 and J = (0,T). Assume
Q := A x (—a,a) to be a cylindrical domain, p € BUC(Q;R) with infou > 0 and
1 <p< oo withp # %, p # 2, p # 3. Then a unique solution u € Ey(J) of system
(P|J)sy+ exists for every data (f,h,ugp) € IFI],D’SJr(J).

Proof. As mentioned before, we proceed similarly to Proposition 2.11. That is, we split
the velocity into u = @ + 4, such that (P|J)gs+ decouples into two systems; one that
contains the inhomogeneous free slip boundary conditions of (P|J)g; and one that is
the parabolic system with homogeneous boundary condition:

u-v = h-v on J x T,

PrD.(u)v = Prh onJ x T, (2:5.1)
and

i —pAG = f in J x Q,

uw-v = 0 onJ x T,
~ (2.5.2)

PrDi(a)yv = 0 on J x T,

@) = 1y in Q.

The data f := f — (0,4 — pAd) in J x Q and @ := ug — Qo in Q accomplish the necessary
compatibility conditions (C3)g+—(C5)gy+ and consequently we have (f,0, 1) € IFII)D SE ().
Set @ € Ej(J) as the solution of (2.5.1), which exists according to Proposition 1.25.

It is left to prove maximal regularity for (2.5.2). To this end, we proceed in two steps. In
the first step we show that (2.5.2) can be rewritten as a perturbed parabolic system with
perfect slip boundary conditions and in the second step we prove maximal regularity for
this perturbed system using Lemma 2.5.

Step 1. In this step we show that

ot — pAu = f in J x €,
11~- v = Pp(V&)? v=0  onJx{, (2.5.3)
—PrD_(a)v = —Pr(Va)v on J x T,
a(0) = o in Q,

is equivalent to (2.5.2). Obviously —PrD_(a)v and Pr(Va)v are tangential and therefore
system (2.5.3) is well-posed. Considering

PrD., (@)v = —PrD_(@)v + Pr(Va), (2.5.4)
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we see that (2.5.3) is equivalent to (2.5.2).

Step 2. In this final step we show that (2.5.3) has the property of maximal regularity for
a given time interval J. System (2.5.3) is a perturbed parabolic problem with perfect slip
boundary conditions and a linear perturbation R: oE%(J) —> oF}(J) which is defined
through R(u) := Pr(Va)r. Obviously it is R(u)(0) = 0, if @(0) = 0 in 2. To prove
maximal regularity for (2.5.3) we want to use Lemma 2.5. But since the initial value @g of
(2.5.3) is in general not zero, we have to rewrite (2.5.3) into two systems; one parabolic
system without the perturbation R and with initial value %y and one parabolic system
with perturbation R and initial value zero. In addition, the data of these two systems
should satisfy the necessary compatibility conditions of a parabolic system with perfect
slip boundary conditions, which is (C3)s_—(C5)s—. To this end, we split @ := v + w and
choose a h € FZ(J) with

h0)-v = dg-v=0 onTif p> 3,
Prh(0) = —PrD_(dg)v  onTifp>3.

The equation &g - v = 0 is valid, since we have (f,0, o) € F5’5+(J). Thus, we obtain for
(2.5.3) the according systems

ov—pAv = 0 inJ x €,
v-v = 0 onJ x 1T,
i (2.5.5)
—PrD_(v)v = Prh on J x I
v(0) = g in Q,
and
dw— pAw = f in J x €,
wey = Eﬁ—R(w))-y:O onJ x T, (2.5.6)
—PrD_(w)v = h— R(w) onJ x T,
w(0) = 0 in Q,
with h := —Pp(Vo)v — Pph. Obviously h — R(w) = —Pp ((Vo)v + h + (Vw)v) is

tangential, such that (b + R(w)) - v = 0 in the normal direction. Due to the construction
of h, the data (0, h, ig) fulfils the necessary compatibility conditions (C3)s —(C5)g_ of
system (2.5.5) and we have (0, h, @g) € IFII;’S*(J). According to Corollary 2.15, it exists a
unique solution v € E;(J) to system (2.5.5).

Now, we have to check all necessary assumptions of Lemma 2.5 to prove maximal regularity
for (2.5.6). Considering the construction of h, the equation (2.5.4), the compatibility

of the data (f,0,0, @) with respect to system (2.5.2) and the compatibility of the data
(0, h, p) with respect to system (2.5.5), we have

h(0) = —Pp(Vo(0))v — Prh(0) = —Pp(Vio)v + PrD (i) = —PrD (g)v = 0.

Thus, the data (f,h,0) satisfies the compatibility conditions (C3)s_—(C5)g_ of system
(2.5.6). Let v1,...,vn—1 be a orthonormal basis of the tangent space T,I" for z € I', then

nl
D
>



2.5 Parabolic Problems: Free Slip Boundary Conditions

for wg = 0 the inequality

IR prors ) = P02 |y ey

n—1 n—1
=1 Y o (w vy = D (w0 v)y
=1 =1 ProFj(J)

= |Vr(w - v) = Lr(w)| pporn ()

= CILr(w)] proryy

holds, with Lr(w) := Y. (w - 05,v)7;. Since A € R"! is a bounded C*-domain, we have
in addition
||LF(w)||PF0JFg(J) < C”LF”W,{(F,L(RH,TF))HWHPFOJF;;(J)

C||wHDH;/Q(J,L,,(Q))mL,,(J,H,%(Q))
< ClJ["|w]|

/N

0H(J,Lp(2)) mo Hy 2 (JHA(Q))
< O wlogucry

with constants C, 7 > 0 independent of T'. Moreover, parabolic problems with perfect
slip boundary conditions (P|J)g_ have the property of maximal regularity for every data
(f, hyug) € FZI; S~ (J) according to Corollary 2.15. Thus, all assumptions of Lemma 2.5
are satisfied and we obtain maximal regularity for (2.5.6). Maximal regularity of (2.5.5)
and (2.5.6) implies maximal regularity for (2.5.3).

These steps prove maximal regularity for (2.5.2) and thus maximal regularity for (P|J) g
and our initial assertion.

O]







3 Maximal L,-Regularity of the Stokes
Equations

The Stokes equations have been subject of much scientific research, e.g. [20, 21, 25, 52,
51, 48]. In this chapter we investigate the L,-theory of the Stokes equations on cylinders
in detail. More precisely, we prove maximal regularity of the Stokes equations with
perfect slip and free slip boundary conditions. We are not only interested in the Stokes
equations with constant coefficients p, p and «, but also in the Stokes equations with
variable coefficients. Considering the Stokes equations with free slip boundary conditions
and variable coefficients prove to be valuable. We use these results in Chapter 4 to
show the existence of a local-in-time strong solution to a model on the mechanisms of
tropical storms in an L,-setting, which comprises optimal restrictions on the integrability
parameter p.

We aim to prove maximal regularity of the Stokes equations
poyu — pAu+aVqg = f in J x €,
div(pu) = g inJ xQ,
BY (u,q) h onJ xT,

u(0) = wp in Q.

(S[N)v

For the boundary operators BY, V € { S+}, we take B to be either the perfect slip or
the free slip boundary operator, which are defined as on page 23 in Section 1.4. We denote
by  := A x (—a,a) € R" a cylindrical domain consisting of a bounded C3-domain A and
an interval (—a,a) with a > 0. In addition, J = (0,7, T > 0, denotes a time interval.
Note that the boundary conditions are imposed on the smooth part I' = I'top U I'por U 2
of the boundary of €2. The compatibility conditions on the edges are imposed below.
Here, I'top and I'y,o; denote the boundary of top and bottom of 2, respectively, and ¥
denotes the lateral boundary. For a comprehensive study of cylindrical domains and their
boundary we refer to Section 1.3.

For the Stokes equations we use the data spaces

FJ(J) = Ly (] x )",
Fg(J) = H;/z(J’ LP(Q)) A Lp(‘]7 H;(Q))7
FO(J) = {h e Wy2 72 (], Ly (A)" o Ly(J, W VP (A)™
hev e Wy P, Ly(A) 0 Ly(J, WP (A))}, A€ {Tiop, Dot 3}
]FZ(J) ={h: T — R": hir,,, =: htoP ¢ thop(J),
his =t h” € FJ(J), hp,,, = h*" e F bt (J)},
F) = W22 ()",
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and the solution space

E,(J) := EY(J) x B4(J)
= Hy(J, Ly(0)" o Ly(J, Hy ()" x {g € Lp(J, Hy () : (q)o = 0},

as defined on page 24 in Section 1.4. If the coefficients p, a and p are constant, we
assume the momentum equation of (S|J)y to take the form

Oru — pAu+aVg=f in J xQ,
and the divergence equation of (S|J)y as
div(u) =g inJ xQ,

cf. Remark 1.12

3.1 Stokes Equations: Perfect Slip Boundary Conditions

This section is devoted to the study of the Stokes equations on a cylindrical domain with
perfect slip boundary conditions, i. e.

poru — pAu+aVqg = f in J x Q,
div(pu) = g in J x Q,
w-v = h-v on J x T, (S|J)s—
—PrD_(u)v = Prh on J x T,
u(0) = g in Q.

We study this system with both constant and variable coefficients p, « and pu. Considering
the Stokes equations with perfect slip boundary conditions is interesting, since with their
help and a perturbation argument we are able to show in Section 3.2 that the Stokes
equations with free slip boundary conditions have the property of maximal regularity.
This eventually allows us to prove the existence of a local-in-time strong solution to a
model on the mechanisms of tropical storms in Chapter 4.

Again Q € R™ is a cylindrical domain and J = (0,7"), T' > 0, a time interval. We aim to
prove the existence of a unique solution

(ua Q) = (ua Q)(t? 'I)) € Ep(‘])
to system (S|J)g_ for every data
(f’g7h’7 UO) € ]ng(‘])

which meet the necessary regularity and compatibility conditions. On this account we
introduce the data space Fg ~(J), which is defined to consist of all

(f,9.h,ug) € FJ(J) x FY(J) x Fp(J) x F)

that satisfy the following four compatibility conditions. The first of these conditions is
given by

div(up) = ¢(0) if p > 2, (C1)
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which arises by touching time trace of the divergence equation. Next, the condition
f(g7hV)EH]%(J70H;;1(Q))7 (02)

compelled by the divergence condition and the normal boundary condition. The compat-
ibility condition
ug-v = h(0)-v, ifp>%,

03)s_
“PrD_(u)y = Prh(0), ifp>3, (@3)s

which arises from the boundary conditions of (S|.J)s— on the smooth part of the boundary.
The compatibility condition

[hz]Rtop . VFtop —[htOP]Rtop %> if P> 2, (04)
. S—
%[ayrtop hE]Rtop : I/Z - %[51,2 htop]Rtop : Vrtop = [htop]Rtop . VE lf p > 27

which arises from the boundary condition on the upper edge of 2. The condition

[hZ]Rbot “Ulpot — *[tht]Rbot %y ifp > 2,

(C5)s-—

%[ayrbot hE]Rbot Uy — %[51,2 tht]Rbot Ulpot — [tht]Rbot Uy ifp > 2,

which arises from the boundary condition on the lower edge of €2. The necessity of these
conditions was shown in Section 1.4.

3.1.1 Constant Coefficients
Throughout this subsection we assume the coefficients
p>0,, a>0, u>0

of system (S|J)s— to be constant. As mentioned before, we can then consider system

(S|J)s- as

oo — pAu +aVg = f in J x €,
div(u) = g in J x Q,
w-v = h-v on J x T, (S|J)g7
—PrD_(u)v = Prh onJ x I
u(0) = wp in ,

according to Remark 1.12 (ii). The proof of maximal regularity of the Stokes equations
(S|J)§_ is proceeded in Proposition 3.2. To do so, we split (S|J)§_ into three systems:
the first is composed of the inhomogeneous perfect slip boundary conditions, the second is
composed of the divergence condition and homogeneous perfect slip boundary conditions,
and the third is composed of the Stokes equations containing a homogeneous divergence
condition as well as a homogeneous perfect slip boundary condition. We prove the
existence of a unique solution to the first system by using the retraction property of the
trace operator with respect to the perfect slip boundary conditions, see Section 1.4. By
using a result of Nau [39], we are able to prove the existence of a unique solution to the
second system. Proving maximal regularity of the Stokes equations with homogeneous
divergence condition as well as homogeneous perfect slip boundary conditions are more
involved. We deal with this type of problem in more detail in the following corollary.
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Corollary 3.1. Let A < R" ! be a bounded C*-domain, a > 0 and J = (0,T). Assume
Q := A x (—a,a) to be a cylindrical domain, 1 < p < oo withp # 3, p # 2, p # 3,
(f,0,0,up) € IE‘E*(J), D_(u) = $5(Vu— (Vu)T) and a, > 0. Then system
ou— pAu+aVqg = f n J x Q,
diviu) = 0 in J xQ,
u-v = 0 on J xT, (3.1.1)
—PrD_(u)y = 0 on J x T,
u(0) = g in Q.

has a unique solution (u,q) € Ey(J).

Proof. 1t is known that the L,-Helmholtz projection exists on finite cylinders, cf. [41]. To
prove that (3.1.1) has the property of maximal regularity, we let u € E;(J) N Ly(J, L+ (€2))
be the unique solution of

otu—pAu = Hf inJ x €,

u-v = 0 onJ x T,
(3.1.2)
uPrD_(u)v = 0 on J x T,
u(0) = Hup inQ,

which exists according to Corollary 2.12. Let us define Vq := (1 — H) f. Then, v and Vq
satisfy the equation

ou—pAu+Vg=Hf+(1—-H)f = f,
in J x Q. Since u e Ly(J, L, +(2)), also the equation
div(u) =0 in J x Q,

holds. Furthermore, we have div(u) = 0 in J x Q and up-v = 0 in J x I', due to the
compatibility conditions (C1) and (C3)g_. Therefore, it is ug € ngQ/p(Q)” N L, - (Q)
and we have Hug = ug. Hence, (u,q) € E,(J) is a solution to (3.1.1).

To prove that (u,q) € E,(J) is the unique solution to (3.1.1), let (v,p) € E,(J) be a
solution to (3.1.1) with data f = 0 and ug = 0. Assume (u,q) € E,(J) to be the solution
to (3.1.1) with data f = 0 and up = 0 as constructed above. We have v € L,(J, Ly, »(£2)),
since div(v) =0in J x Q and v-v =0 on J x I'. It follows that Hv = v. Using (2.4.10),
we obtain

o — plAv = H(0pw — pAv) = H(0pw — pAv + aVp) = H(0) =0

in J x Q and v(0) = 0 in Q. Thus, v is a solution to (3.1.2) with data f = 0 and ug = 0.
Due to Corollary 2.12 the system (3.1.2) has a unique solution. Therefore, it is v = w.
The pressure g € Ef(J) is also unique, since its divergence Vg = (1 — H)f is defined
through u and it is assumed to have mean value zero. Thus, (u,q) is the unique solution

to (3.1.1). O

With the help of this proposition we are now able to prove maximal regularity of (S|.J )gﬁ

Proposition 3.2. Let A € R" ! be a bounded C3-domain, a > 0 and J = (0,T). Assume
Q= A x (—a,a) to be a cylindrical domain, 1 < p < o0 with p # %, p#£2, p#3,
o, pp >0 and D_(u) = £(Vu — (Vu)'). Then system (S|J)G_ has a unique solution
(u,q) € Ey(J) for every data (f,g,h,ug) € Fg_(J).
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Proof. We decompose the velocity u = u; + us + ug according to the three systems

uy-v = h-v on J x T,
(3.1.3)
—PrD _(uy)v = Prh onJ xT,
div(ug) = ¢ —div(ug) in J x ),
ug-v = 0 onJ x T, (3.1.4)
—PrD_(ug)v = 0 on J x T,
and
Oruz — pAusz +aVq = f— (0 — pA)ug — (0p — pA)ug inJ x Q,
div(ug) = 0 inJ xQ,
uz-v = 0 on J x (3.1.5)
—PrD_(uz)v = 0 on J x
U3(0) = Uup — ul(O) — UQ(O) in Q.

Our strategy is to find a solution to (3.1.3) and (3.1.4). Then, we are left to deal with
(3.1.5), but where the right-hand side depends on the solutions to (3.1.3) and (3.1.4)
only. Using Corollary 3.1 then yields a unique solution (us, q) to system (3.1.5) and thus
maximal regularity of (S|J)¢ .

Concerning the solvability of (3.1.3):
From Proposition 1.21 we know that the trace operator with respect to perfect slip
boundary condition is a retraction and thus system (3.1.3) has a solution u; € E;(/).

Concerning the solvability (5.1.4):
To obtain a solution uy € Ejj(.J), let us first consider the problem

Ap = g—div(uy) inJ x Q,

(3.1.6)
op = 0 onJ xT.

Making use of [39, Theorem 8.22] gives us a solution Vp € E;(J) to (3.1.6). By using
uz := Vp € E;(J), we obtain a solution that solves the system

div(ug) = div(Vp)=Ap = g—div(uy) inJ xQ,
up-v = Vp-v=ad,p = 0 onJ x T,
—PrD_(uw)v = —PrD_(Vp)vr = 0 on J xT.

This follows from equation (2.4.9) and the fact that the Theorem of Schwarz is valid.
This implies that uz € E;(J) is a solution to (3.1.4).

Concerning the solvability of (3.1.5):
From Corollary 3.1 we obtain a unique solution (us, q) € E,(J) of system (3.1.5).

Combining the solutions of (3.1.3), (3.1.4) and (3.1.5), we obtain a unique solution
(u,q) = (w1 + ug + u3,g3) € By(J) of (S]))§ . m
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3.1.2 Variable Coefficients

Within this subsection we assume the coefficients of (S|J)g— to be variable, i.e.
p € WE(Q,(0,00)) with 1 € WZ (2, (0,0))
and

a € BUCHR), pe BUCH) with igfa, igfu > 0.

We prove that the Stokes equations (S|.J)s— with these coefficients have the property of
maximal regularity. More precisely, the main result of this subsection is:

Theorem 3.3. Let A € R" ! be a bounded C3-domain, a > 0 and J = (0,T) with
T > 0. Assume Q2 := A x (—a,a) to be cylindrical domain, p € W2(Q, (0,00)) with
% e W2(Q,(0,0)), a e BUCHQ), pe BUCHQ) with infqa, infou >0, and 1 < p < ©
with p # %, p # 2, p # 3. Then the Stokes equations (S|J)s— have a unique solution
(u,q) € Ep(J) for every data (f,g,h,uo) € IFE*(J).

The proof of this theorem is provided at the end of this subsection. In the following
paragraph, we state our strategy for proving this theorem.

Strategy

To prove Theorem 3.3, i.e. to show maximal regularity of (S|J)s_, we progressively
simplify system (S|J)g_. That is, in the proof of Theorem 3.3, with the help of a
substitution and a perturbation argument we show that it is sufficient to establish
maximal regularity for the system

o — pAu+aVg = f in J x Q,
div(u) = g in J xQ,
u-v = h-v onJ x I, (3.1.7)
—PrD_(u)v = Prh onJ x T,
u(0) = w in Q,

in order to prove maximal regularity of (S|J)s—. Then, in Proposition 3.9 we see that it
is sufficient to prove maximal regularity for

o — pAu +aVqg = f in J x €,
div(u) = 0 in J x Q,
u-v = 0 onJ xT, (3.1.8)
—PrD_(u)v = Prh  onJxT,
u(0) = 0 in Q,

in order to prove maximal regularity of (3.1.7). So we reduce system (S|J)s_ to the much
simpler problem (3.1.8). The actual proof, then, is to show maximal regularity of (3.1.8),
which is done in Proposition 3.8. To this end, we use the already mentioned localization
argument for variable coefficients, which is also used in Denk, Hieber and Priiss [15,
Theorem 5.7]. However, for this we need additional time regularity property for the
pressure ¢ (Proposition 3.4) and maximal regularity of the Stokes equations with variable
coefficients, which are assumed to be small with respect to the Lo-norm (Proposition 3.7).
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Regularity of the pressure

The following result shows that it is possible to obtain additional time regularity for the
pressure, provided the data meets some additional assumptions.

Proposition 3.4. Let A € R" ! be a bounded C3-domain, a > 0 and J = (0,T) with
T > 0. Assume Q := A x (—a,a) to be a cylindrical domain, o € BUCY(Q), u e BUCH(Q)
with infq o, info p >0, and (u,q) € E,(J) to be a solution to the system

o — pAu +aVqg = f in J x Q,
div(u) = 0 in J x €,
u-v = 0 on J x T, (3.1.9)
—PrD_(uw)v = Prh on J x T,
u(0) = 0 in Q,

where (f,0,h,0) € Fg*(J) satisfy the additional reqularity property
f € o ) (J, Ly(),
for some ¥ € (0,3 — 2—11)) Then
aq € oH} (], Ly(R))
and the estimate
loalrzg o oy < € (Nilomgen + L lomgezycen)

1s valid with constant C' > 0.

Proof. Given 1 € Ly (2), where % + 1% = 1. Elliptic problems with variable coefficients

have maximal L,-regularity due to Theorem 2.1. Thus, we take ¢ € H]?,(Q) with (¢)q =0
to be a solution of
—div(aVe) = oy in Q,

(3.1.10)
oy = 0 on I

Here, atpg := atp — (1)) q, where (¢)q := ﬁ Y, ¢ dz denotes the mean value of ¢ € L,(€).
Due to the fact that the pressure ¢ is assumed to have mean value zero, as well as (3.1.10),
we can deduce by using partial integration

(ag, ¥)a = (¢, a¢)o
= (¢ a¢o)9 + (¢, (ah)a)a
= (Q> 0@0)

— (¢, div (aV))q
= —J qy-quﬁda—I—J aVq-Ve¢ dx
092 Q
= (aVQ7 Vd))fl
In view of the momentum equation, this leads to

(aVq,Vo)a = (f — 0u + pAu, Vo),
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Partial integration furthermore implies
(0tu, qu)g = 0t(u, qu))g =0

and

(,UAU, v¢)ﬂ = LQ
= (5VU7MV¢)59 — (Vu, V(MV¢))Q'

In summary, we have obtained

(aq,¥)q = (Ovu, UV @) 50 — (Vu, V (uVd)) g + (f, Vo) -

Next, we observe that

(Vu)lv - Ve do — f Vu:V(uVe) dx
Q

16Vl @) < lulr @)l VolL, @ < CIVEla @ < CIV*élL, ()
< Clodollr, ) < Cladlr ) < ClYlL, @
and
IV (VoL ) <IVEVElL @) + HMV2¢||LP,(Q)
<IVulr, @ IVelL,, @ + Ik, @ HV2¢HLP,(Q)
< CYlL @ *+ Cllavolr )
ClelL, @

/N

with constant C' > 0, which only depends on Q, « and p. Now, the operator d;: D(d;) <
L,(J) = Ly(J) with D(0;) = QH;(J) has an H*-calculus with angle § and the fractional
power 9} € Lis(D(0)), Ly(J)) with D(97) = [Ly(J), D(d,)]s = Hy (J) for 0 <9 < §— 4,
cf. [46]. Hence, we can estimate ||8f(aq)|\Lp(Q) as

167 (@q) | 1,0

= sup (9/(aq),¥)o

YEeL, ()

4], =1
< sup (0)0,u, uVo)r + sup (6 Vu,V(uVe))a+ sup (3 f, Voo
YEeL, () YeL, () YeL, ()

[, =1 [, =1 [, =1

< C (1070sull,0) + 10! Vull, o + 107 Vul ,0) )

for almost all t € J and C' > 0. We can then infer that
1/p
(5,10 (@I}, g tt)

1/p 1/p 1/p
<c((&, 00l gy dt) " + (5, 109V ul} g dt) ™ + (§, 102117, o dt) )

< C (107 0vul g0,y + 107Vl L n,)) + 107 FlLo0.)

< C (Julymgy + 1 lorg o)
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with constant C' > 0, which only depends on 2, a and p. In conclusion, note that

1/p
laglom (11,0 < C|07 (aq)| (1,0 = C (L Ha?(a(I)Hip(Q) dt) :
Thus, we proved our initial assertion. O

Maximal Regularity of System (3.1.7)

We begin by proving a perturbation argument, which is used several times throughout
this chapter.

Lemma 3.5. Let A € R" ! be a bounded C*-domain, a > 0 and J = (0,T). Assume
Q := A x (—a,a) to be a cylindrical domain, (f,qg,h,uy) € IF;?*(J), 1 <p < o with
p#%,p¢2,p¢3. Let also

L:Ey(J) — F(J)

be a linear operator, where we use the notation oL = Lyg,(5): 0Ep(J) — O]F'f;*(J).
Let (f,h) € FI];(J) X IFZ(J) satisfy the compatibility conditions (C4)s——(Cbh)s— and
h(0) = 0 in Q. Let Ri: E,(J) — Fg(J), Ry: oE,(J) — OIF‘Z(J) be linear functions
with Ra(u,q)(0) = 0 for u € Ej(J) with uw(0) = 0 in Q. If L is an isomorphism, and

[ Bi s @)llgs gy B2 @) gy < CLTI(ws @) o, (), (3.1.11)

or

1
| Ry, )t gy I R2 (s )l < (7 IS |(u, D) oe, 0y, (3.1.12)
0fp —0Lp

for every (u,q) € E,(J) with u(0) = 0 in Q and some constant C,7 > 0, which are
independent of J, then

L(u,q) = (f + Ri(u,q),0,h + Ra(u, q),0) (3.1.13)
has a unique solution (u,q) € E,(J).

Proof. The functions (f, h) € IFZJ; (J) % IFZ’;(J ) satisfy the necessary compatibility conditions,
and R, Ry are linear with Ry(u,q)(0) = 0, if u(0) = 0 in . Therefore, we can rewrite
(3.1.13) as

L(u,q) = (f,0,h,0) + (R1(u, q), 0, Ra(u, q), 0).
This equation is equivalent to
(u,q) = oL~ (f,0,h) + oL~ (Ru(u, q), 0, Ro(u, q)),
since L is an isomorphism due to our assumptions. Subtraction yields
(Id — oL *(R1,0, R2))(u,q) = oL ' (f,0,h).
In the following step we prove that (Id — oL *(R1,0, R2)) is bijective, because then

(u,q) = (Id — oL *(R1,0, R2)) *oL(f,0,h)
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would be the unique solution to (3.1.13). In order to do so, we show that

loL ™ (R1,0, R2) |, (7)o, () < 1.

We have the bounds (3.1.11) or (3.1.12) for every (u,q) € E,(J) with u(0) = 0 in 2 and
some constant C, 7 > 0, which are independent of J. In the case of (3.1.12) we have

HOL_l(Rl?OvRQ)HUEp( J)—oEp(J) HOL HOFS (J)—0Ey(J )”(RhoﬁRQ)HOEP(J)—mIFp(J)
1

—1
< oL ||0]F§*(J)_>OEP(J) T LT £5— o)
P —0%p

= 1.
In the case of (3.1.11), we can make the terms |R;| and | Rz| so small that the estimate

0L (B, 0, Ro)| sy () < 102 ps= (s [ (B 00 B2) g ) o=y < 1

holds. We do this by choosing a sufficiently small time interval J. By applying a Neumann
series argument we obtain the existence of (Id — oL '(Ry,0, Ry)) ! and thus the unique
solvability of (3.1.13) on a small time interval. We can also show the unique solvability
of (3.1.13) for any given time interval J, since the admitted length of the time interval
J does not depend on the data. This is done by successively solving the equation on
small time intervals of fixed length, cf. Lemma 2.5, where a similar argument has been
used. O

Remark 3.6. Let the same assumptions as in Lemma 3.5 apply, with Ry = 0. Then, we
can conclude that

L(u7q) = (f + Rl(uv Q)agahau(J)

has a unique solution (u, q) € E,(J) for every data (f,g,h,up) € IFS*(J) by using the
same arguments as in Lemma 3.5. Since no perturbations exists on the boundary due to
Ry =0, no problems can arise regarding the compatibilities between the boundary and
the initial value.

As mentioned in Strategy, the most difficult part of proving solvability of (3.1.7) is to
prove maximal regularity for system (3.1.8), which is done in Proposition 3.8. Before
we address this issue, however, we first have to prove maximal regularity of the Stokes
equations with variable coefficients which are assumed to be small with respect to the
L -norm, since we use it in the proof of Proposition 3.8.

Proposition 3.7. Let A € R"! be a bounded C*-domain, a > 0 and J = (0,T). Assume
O := Ax(—a,a) to be a cylindrical domain, (f,g,h,ug) € IF;?*(J), 1 <p<oowithp # %,
p#2,p+#3andag, pg > 0. Then there exists an € > 0, such that for all oy € BUC ()
and py € BUC(QY) with infq o, infq u > 0 and ||pu1]ew, |01]w < € the system

oru — (po + p1) Au+ (g + 1) Vg = f inJ xQ,
div(u) = g¢ in J x Q,
u-v = h-v on J x T, (3.1.14)
—PrD_(u)v = Prh on J x T,
u(0) = g in Q,

has a unique solution (u,q) € Ey(J).
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Proof. System (3.1.14) is equivalent to
o — ppAu + agVqg = f+ puAu—a1Vg in J x €,

div(u) = g in J x Q,
u-v = h-v on J x T, (3.1.15)
—PrD_(u)v = Prh on J x T,
u(0) = g in Q.

Let us use L.: Ey(J) — Fg_(J ) to denote the operator defined by the left-hand side
of the above system. Making use of Proposition 3.2 with ¢ = aq, the Stokes equations
with constant coefficients have maximal regularity. Therefore, the operator L. is an
isomorphism. Let R: ¢E,(J) — Fg(J) with R(u,q) := p1Au — a1 Vq define the linear
perturbation in the momentum equation of (3.1.15). Obviously it is R(u,q)(0) = 0, if
u(0) = 0 in Q. Then, we have the following bound on R:
1R (u,q) ||F£(J) = [ Au — alv‘]HLp(JxQ)

< il AUz, rxay + laalle 1Vl rxa)

< H#IHOO HU”LP(J,H’g(Q)) + ||041Hoo HQHLP(J,HI}(Q))

< (llle + lealoo) [ (s ) gz, )

< 2 |(u, ), (1) -

By choosing €, such that € < we obtain

1
2oL’
1

HR(uv(])H]FIJj(]) < HOL, H(’LL, Q)HolEp(J)'

o= (1)—soE, ()

Thus, all assumptions of Remark 3.6 are satisfied and we obtain a unique solution
(u,q) e Ep(J) to

L(ua Q) = (f+R('LL, Q)vg7h7u0)7 (3116)
by applying Remark 3.6. Since (3.1.15) can be rewritten as (3.1.16), (u,q) € E,(J) is
also a unique solution to (3.1.15). O

Using maximal regularity of the Stokes equations with variable coefficients, that are
assumed to be small with respect to the Lo-norm, and some additional time regularity
property for the pressure ¢, we are now able to prove maximal regularity of system
(3.1.8).

Proposition 3.8. Let A € R" ! be a bounded C3-domain, a > 0 and J = (0,T).
Assume Q := A x (—a,a) to be a cylindrical domain, a € BUCH(Q), p € BUCH(Q),
infoa, infou >0, and 1 < p < © with p # %, p# 2, p#3. Then system

o — pAu +aVgqg = f in J x €,
div(u) = 0 in J x €,
u-v = 0 on J x T, (3.1.8)
—PrD_(u)v = Prh on J x T,
u(0) = 0 in Q,

has a unique solution (u,q) € E,(J) for every data f € OW,}/2(J, L,(2) and h e IFZ(J)
that fulfils the compatibility conditions (C1)—~(C8) .
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Proof. This proof is based on the proof of [15, Theorem 5.7], where maximal regularity
of elliptic operators in a Banach space of class H7T with variable coefficients was demon-
strated.

We begin by constructing constants that satisfy the assumptions of Proposition 3.7 for
variable coefficients, so that we can use the former result to prove that system (3.1.8)
has the property of maximal regularity. The given coefficients p and « are uniformly
bounded and continuous. Since € is compact, we can cover {2 by a finite number N € N
of balls U; = B, (x;), such that

u(e) — pa)le <c and  fa(z) — a(e;)e <&, (3.1.17)
for all [z — ;| <rjand j e {1,...,N}. Now, we can define the desired coefficients by
reflection, i.e.

(2) p(z), z € Uj,
wi(x) = L _
J i (acj + ?”]2-7;7;;‘2) , x ¢ Uj,
and
(2) a(z), v e Uj,
aj(z) = . _
J o (:cj + 7“]27;7;3|2) ) z ¢ Uj,
for j € {1,...,N}. Hence for every x ¢ U; we have that r; < |z — x;|. From this we
obtain

2 T — Ty o T — Iy T — Ty

Tj+ri——— — x| = 15| < |rjlx — x| ————5 | = 7.
e e I e

Using (3.1.17), it follows that

HM (f'fj + TJQW) = p(z;)

Le.
|z — @42 h

0

r—x;
a (:L'j +r2 ) — af(x)

<e d
D o —

0

On the other hand, for every z € U; we have |z — ;| < r;. Therefore, it follows again
from (3.1.17) that

|1 (@) = (z))| <& and  [a(2) - a(z)], <e

for every € U;. By definition of o and 41; we can then conclude that ||;(x) — p(x5)] o0 <
e and |oj(x) — afx;)|| < e forallzeQand je {1,...,N}. Due to Proposition 3.7, we
now obtain the property of maximal regularity for systems of the form

ou — pj(x)Au+ aj(x)Vg =  f inJ xQ,
div(u) = 0 inJ xQ,
u-v = 0 on J xT,
—PrD_(u)v = Prh  onJ xT,
u(0) = 0 in Q,
for j € {1,..., N}. However, maximal regularity of the systems above is not immediately

applicable to our system (3.1.8), since yj(z) = p(z) and oj(z) = a(z) only holds for
xeUj, je{l,...,N}. To be able to utilise maximal regularity of the above systems
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for (3.1.8) we choose a partition of unity ¢; € C*(R"), such that 0 < ¢;(x) < 1 and
supp(p;) © U; for j e {1,...,N}. Then, we have supp(p;u)  U; and supp(p;q) < U;.
Therefore, the equalities p(pju) = pj(eju) and a(p;q) = a;(p;q) apply here for j e
{1,...,N}. By multiplying system (3.1.8) with ¢; we then arrive at

oi(pju) — miAlpju) + o;V(gja) = ¢if —pApj-u—2uVeVu+aVe; - q,
div(pju) = Vej-u,
pju-v = 0,
—~PrD_(¢ju)v = Pr(pjh) — %PF(V(,D]' ®u—u® V),
e;u(0) = 0.
(3.1.18)

In a next step we would like to prove maximal regularity for the systems (3.1.18), since
this directly implies maximal regularity of (3.1.8). Because of the way p; and a; were
constructed, the systems (3.1.18) are perturbed version of the systems discussed in
Proposition 3.7. To prove maximal regularity of (3.1.18), we split it into three systems.
Let us set pju = u; + uj + Vn; and @;q = q; + q; — 0yn; + p;An;, where

nj € oHy(J, Hy () n oHy*(J, Hy ()
are solutions to elliptic problems of the form

—An; = =V -u in J x €,
omj = 0 on J x I,

by using the Lemmas 2.1 and 2.3 with X = ¢H}(J) and X = OH;/2(J), respectively.
Then, we obtain the two systems

oruj — piAu; + Vg = @if in J x €,
div(aj) = 0 in J x Q,
uj-v = 0 on J xT, (3.1.19)
—PrD_(u;)v = Pr(pjh) on J x T,
u;j(0) = 0 in
and
oy — pjAuj + ajVgy = —plpj-u—2uVeVu+ a(z)Ve; - q inJ xQ,
div(u;) = 0 in J x Q,
uj-v = 0 on J x I,
—PrD_(uj)v = —3Pr(Vo; ®u—u®Ve;)v+ PrD_(Vn;)v onJ xT,
u;j(0) = 0 in Q.

(3.1.20)

Thus, we have separated system (3.1.18) for every j € {1,..., N} into the Stokes equations
dealing with the given data (f, h) and the Stokes equations dealing with the perturbations
in the momentum equation and on the boundary resulting from the multiplication of
(3.1.8) with ¢;. Both systems have homogeneous divergence equations according to the
existence of 7; defined as above. This splitting allows us to apply Proposition 3.7 to
the systems (3.1.19) and (3.1.20). Now, we proceed in three steps. The first two steps
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establish maximal regularity for the systems (3.1.19) and (3.1.20), whereas in the third
step we estimate 7); appropriately and infer maximal regularity for (3.1.18) and thus, for
our initial system (3.1.8).

Step 1. According to Proposition 3.7, we get unique solutions (u;,g;) € oE,(J) to the
systems (3.1.19) which satisfy

H(ﬂjv (jj) HOIEP(J) < Cl”(f: h)HIFg(J)X]Fg(J)' (3-1'21)
This implies
1Gllo 8 2.2y < Ct5lomscry + 1 lomp (rL,00)) < CI(S, W) es 5y mnen

for je{l,...,N}and V€ (0,1 — %) due to Proposition 3.4.

Step 2. Let uscall L;: ,E,(J) — IFIJj(J) X PFOIE‘Z(J) the operator defined by the left-hand
side of the first and fourth equation of (3.1.20) with ,E,(J) := {(v,p) € oE,(J) : div(v) =
0, v-v =0 onI'}. Then we can rewrite (3.1.20) as

Lj(uj, q5)
= (—pApj - u—2uVep;Vu + aVe;, —3Pr(Ve; @u—u® Vj)v + PrD_(Vn;)v).

Due to Proposition 3.7 the operator L; has the property of maximal regularity for
every data (f,h) € IF‘JJ;(J) x ProFl(J) and j € {1,...,N}. Therefore, Lj_1 exists and
multiplication by Lj_1 leads to

(uj,q;) = L; (0, oD (Vn;)v)
- Lj_1 (1Ag; - u+2uV e Vu—aVe; - q, %Pp(chj Qu—u®Ve;)v).
We want all terms of the equation to exist locally on U;. Therefore, for j € {1,..., N} we

fix some v; € C*(R™) with 1; = 1 on supp(y;) and supp(¢;) © U;. Then, we multiply
the equation above with 1); to obtain

(uj,q5) = ;L5 (0, PeD—(Viy)v) — ;L Ci(uj, g5),

because supp(u;), supp(q;) < supp(y;), since gju = uj +u; + Vn; and ¢;q = q; + q; —
0)577]‘ + ,UJ]'A’nj. Let

Cj(uj, qj) == <MA<PJ‘ ~u(ug) +2uV e Vu(us) — aVe; - q(q;),
LB (Vs @ uluy) — u(uy) @Vw)u)

be the differential operators for j € {1,..., N}, which depend only on (u;, ¢;). This is so,
because (u,q) = Zj Yj(uj +uj + Vnj;), where u;, n; are as defined above. By rearranging
the terms we get

(Id + ﬂ)ijICj) (Uj, q]') = Tl)jLJI(O, PFD, (V’I?j)l/).

In case the inverse (Id + %L;le)*l exists, we would obtain

(wj, q;) = (Id + ¢; L Cy) by L0, PrD—(V;)v)
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and therefore the property of maximal regularity for (3.1.20). In order to prove existence
of the inverse (Id + @ZJijfle)_l, we show that ||1/)jLJICjH < 1 and apply a Neumann
series argument. Regarding the maximal regularity of the operators L; for j € {1,..., N}
we obtain that all L; are bounded, since the operators are defined for (v, p) € E,(J)
which by definition fulfil v(0) = 0 in Q. Thus, we infer

—1 -1
ijLj CjH*Ep(J)—pr(J) < ”q/}jHOOHLJ H]Fg(J)XProFZ(J)_’*EP(‘]) ”CjH*EZ,(J)—JFI];(J)XPFOFS(J)
<1l C”CjH*EP(J)—>F£(J)><PFOFZ(J)'

Moreover, we have
HCj(Uj7 QJ) H]Flf(J) x ProFh(J)
S [pAgj - u+ 20V 9 Vu = aVejqler ) + |3Pr (Ve @ u—u® V)| porn -

By using the regularity of the pressure ¢ from Proposition 3.4 for the first term of the
sum, we obtain

[nBp; - u+2pV e Vu — aVpsa|gr ;)

= Ay - u+2uVp;Vu — aV;q|r,xa)
< O[T |pdgj - u+ 2uV o Vu — aViq| g, @)

N

CUIN (Nl 19 .2y + IVl grp Ly + 104l om0 (.L,020)

/A

C|J|T(”u”ng(J,H1§(Q)) + HUHOH;;(J,H;(Q)) + HQQ||0H;2(J,L,,(Q)))

L™ (luoy + 1 Florger.co)

/N

Here, je {1,..., N} and 9 € (0, % — 2—11?) The second term can be estimated as follows

I3Pr (Ve @u—u® Vi)l propny < ClPr(Ve; ®u)| prorn ()

O Vs ®ul,

IN N

Hy/*(J,Lp(2))n Lp(J,HL(2))

N

CHVSDJ HWA}(J,Q) ”u||0H;/2(J,LP(Q))ﬁLp(J,H; Q)

/N

Cllul g mrrz 1,000 Ly H3)
ClI[™ |ull

/N

H(J,Lp(Q)) o HY ? (J,HL(2))
ClI|" ]l oru (-

/N

Here, C, 7 > 0 are constants which are independent of .J. Then, we can estimate |C}| < ¢
for every fixed € > 0 provided that J is sufficiently small. Since the admitted length of
the time interval J does not depend on the data, we can show [|C;| < ¢ for every fixed
e > 0 for any given time interval. This is done by successively validating this on small
time intervals of fixed length, cf. Lemma 2.5 where a similar argument has been used.
Now we can guarantee

1L Gl <1
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and obtain unique solutions (uj,q;) € E,(J) of the systems (3.1.20) for j € {1,...,N}.

Moreover, they satisfy

|1Pr D (Vn)v | pgrn )
2.
CHV 77] ”OWI}/27l/P(J’Lp(F))mLp(J’W;*UP(F))

1(wss 4)lloE, ()

ClVe; - u”OWI}/Q*I/P(J,LP(Q))mLp(J,H;(Q))
ClN wllo 1,0, 9)) A Ly (213 ()
ClIN" ]l orx (-

INCINCININ N

For the pressure term Proposition 3.4 furthermore implies

(3.1.22)

193] om19 (7L, (0)) S C(”joEg(J) + || = pApj -u —2uVe;Vu + aV%Qlng(J,L,,(Q)))

<C (\IUHOE;;(J) + ||f||F£(J)) ’

for ¥ € (0,%7%).

Step 3. Using Proposition 3.4 once again, we can estimate 7); as follows

I An; = omjlomo ) = 1959 — 4 — Gillomg (12,9

< C”u“oEg(J) + ClH(f) h)H]Fﬁ(])X]FZ(J)'

Additionally using

|Anjllomiaz,) < Clulgre),

which holds by construction, we conclude

H5t77jH0Hg(J,Lp(Q))» ||A77jH0Hg(J,Lp(Q)) < CHUHOIEg(J) +C'|(f,h) ||F£(J)XIF£L(J)'

In the above equations j is always in {1,..., N}. Using

”atnjHLp(J,Hg(Q))a |An; ||0H;(J,LP(Q))mLp(J,Hg(Q)) < C||U||0E;;(J)a

we also infer

10eV ;| L, rx0) = 10:V 03] L, 00.0,0))
< Cloml g gor2 s 1m0

CUIT0ms o g (.o @)L (1 12(2)

<
< |J|T(CHUHOJE;(J) +C'|(f, h)HIFp(J)fo;;(J))

and

1AV L, x0) = 1AV L)

< ClAN 1120 Ly @)m Ly (i)

ClN AN o m1(0.L,(Q)) ALy (1 12(92))

<
< [ ulley ()




3.1 Stokes Equations: Perfect Slip Boundary Conditions

for j e {1,...,N}. Hence, we have
1905145505 = p3eni) e, < OV Tl + UMy (3-1:23)
Finally, (3.1.21), (3.1.22) and (3.1.23) imply that

(u,q) = X;(pju,piq) = > (uj + uj + Vny,q; + @ — oy + pjAn;)
] J

(3.1.24)
= S(u,q) +T(f, h) € )Ep(J).

Here, S and T are two linear operators that satisfy
156t @)y < O ey o ITC My < CIC W gg ey

With the help of a Neumann series argument we can then show that (Id —S) is invertible
and thus that

(u,q) = (Id = S)"'T(f, h)
is the unique solution to system (3.1.8). O

Now, using a perturbation argument and Proposition 3.8 we can prove maximal regularity
of (3.1.7).

Proposition 3.9. Let A € R" ! be a bounded C3-domain, a > 0 and J = (0,T). Assume
Q:= A x (—a,a) to be a cylindrical domain, 1 < p < o with p # %, p#2, p#3and
a e BUCH(Q), ue BUCH(Q) with infq a, infgp > 0. Then system

o — pAu+aVg = f in J xQ,
diviu) = g in J xQ,
u-v = h-v on J x T, (3.1.7)
—PrD_(u)v = Prh on J x T,
u(0) = g in S,

has a unique solution (u,q) € E,(J), for every data (f,g,h,ug) € FE*(J).

Proof. To prove maximal regularity of (3.1.7) our strategy is to define appropriate (u1,q1),
(u2,¢2), (us,q3) € Ep(J), such that their sums u := uy; + ug + uz and ¢ := q1 + ¢2 + ¢3
are unique solutions to (3.1.7).

Concerning the solvability of (u1,q1):

Let H: Ly(Q)" — L,(2)™ denote the Helmholtz projection as introduced in Section 1.3.
We define Vq; := (1 — H)(1/a - f) with (g1)o = 0. Then, let u; € E;(J) be the unique
solution to

orup — pAuy = f—aVq in J x €,

u-v = h-v onJ x T,
(3.1.25)
—PrD_(u1)v = Prh onJ x T,
u1(0) = wug in €,

which exists according to Corollary 2.15.
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Concerning the solvability of (usa,qs2):
For every t € J we choose ¢(t,-) € H2(€2) with (¢)q = 0 to be a solution of the elliptic
problem

—div(aVe(t,:) = g(t,-) —div(u)(t,-) in Q,

- (3.1.26)
e = 0 in Q,

which exists due to Theorem 2.1. Next, let us define
ug 1= —aVp and Q2 = Opp — plAgp.

Since g € F§(J) and div(u;) € OWpl/2(J, L,(9)), we obtain V2 € ngl/2(J, L,(92)) and
(u2,q2) € Ep(J). Now, we define data, such that (ug,q2) is the unique solution to the
Stokes equations with respect to these data. For that purpose, we define
f3 = —0mus + pAus — aVe
= —0(—aVy) + pA(—aVy) —aVeg
= aVip —auVAp —2u(V2e)'Va — n(Aa)Ve — aVg
= a(Vu)Ap = 2u(V2e) ' Va — p(Aa) Ve,

and hg € F(J) with
hs-v = —us-v=—aVy-v=—ad,=0 onJ xT,

Pr(hs) = PrD_(ug)v on J x I

We then obtain f3 € onl/Z(J, L,(Q)), since V2 € OW,}/Q(J, L,(€2)), and h3 € IF]’;(J),
because of Proposition 1.21. Since the given data g and wug satisfy the compatibility
condition (C'1), we have

(g —div(u1))(0) = g(0) — div(ug) = 0.

Thus, we obtain ¢(0) = 0 and therefore f3(0) = 0 and u2(0) = 0. Consequently, we get
that (ug, ¢2) € E,(J) is the solution to

Oua — Aus +aVqg = —f3 in J x €,
div(ug) = g —div(u) inJ xQ,
ug v = —hg-v=0 onJ x T,
—PrD_(ug)v = Ppr(—hs) on J x T,
uz2(0) = 0 in Q.

The data (—f3,9 — div(uy), —hg, 0) satisfies the necessary compatibility conditions by
construction.

Concerning the solvability of (us,qs):
Finally, let (u3,q3) € E,(J) be the unique solution to

Oruz — wAusz + aVgs = f3 in J x €,
div(ug) = 0 inJ xQ,
uz-v = 0 onJ xT,

PrDy(us)v = Prhs on J x §,
’LL3(0) =0 in Q,
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with data (f3, hs) € OW;}Q(J, L,(€2)) x FQ(J) that satisfy the necessary compatibility
conditions (C'1)—(C5)g—. Such a solution exists because of Proposition 3.8.

Combining u := u1 + ug +uz € Ej and ¢ := q1 + g2 + g3 € EZ, we find (u, q) € E,, to be
the unique solution to (3.1.7). O

Proof of Theorem 3.3

To prove maximal regularity of the Stokes equations (S|J)s—, we split them into two
systems, the first system is composed of the inhomogeneous perfect slip boundary con-
ditions, and the second system is composed of the Stokes equations with homogeneous
perfect slip boundary conditions. Using the retraction property of the trace operator with
respect to the perfect slip boundary conditions, cf. Section 1.5, we show the existence of
a solution to the latter system. The remainder of the proof is then devoted to maximal
regularity of the Stokes equations with homogeneous perfect slip boundary conditions.
To this end, we use a substitution to reduce the Stokes equations with homogeneous
boundary conditions to a perturbed version of system (3.1.7). Using Proposition 3.9 and
Lemma 3.5, we then infer maximal regularity of (S]J)g_.

As a first step, we split u into two parts u = 4 + @. Using this decomposition, (S]J)s—
decouples into the two subsystems

w-v = h-v on.J x T,
N (3.1.27)
—PrD_(4)v = Prh on J x T
and
poiti — pAi+aVg = f in J x €,
div(pa) = g in J x €,
i-v = 0  onJxT, (3.1.28)
—PrD_(a)v = 0 on J x T
@0) = i in Q.

The data f := f — (pdytt — pAQ) in J x Q, § := g — div(pl) in J x Q and @y :=
up — U in € satisfy the necessary compatibility conditions (C'1)—(C5)g— by construction,
because these conditions are linear. Consequently we have (f,§,0, @g) € IF;? ~(J). Due to
Proposition 1.21 it is known already that the trace operator with respect to perfect slip
boundary conditions is a retraction. Thus, system (3.1.27) has a solution 4 € E;(J).

To prove maximal regularity of (3.1.28) we proceed in two steps.
Step 1. In this step we show that

orv — nAv + aVyq

f+2anv-V%—|—p77(V%)v in J x €,
div(v) = g in J x €,
vevoo= PF(%<V%®U—’U®V%)>V-V=O onJxT, (3.1.29)

_PD_(v)y = Pp(

o

(V%@v—v@V%))y on J x T,
v(0) = v in 0,
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with 7 := %u € BUCL(Q) and infgn > 0 is equivalent to (3.1.28). Obviously —PrD_(v)v
and Pp(g(V% ®uv—v® V%))V are tangential. Therefore, (3.1.29) is well-posed. Now, let
us consider the equations

0w —nAv + aVq —2pnVu - V% —pn (V%) v

= 8tv—,u(%Av—Vv-V% — (V%) v) + aVyq

= pé, (%v) —uA (%v) +aVy,
and
~PeD_(v)v — Pr (g (v% Qv v® v%)) v
— —P} (Vo (Vo)) v =P (4 (Vi@v-v@ Vi)
—Pet (%V’U-i-v%@v— %(vv)T—q@v%) (3.1.30)
Pl (v (20) - (v;v)T> y

=—pPrD_ (%v) V.

Then, system (3.1.29) is equivalent to

Jole (%U) — A (%v) +aVq = f in J x €,
div p-%v) =g in J x €,
%v v o= 0 onJ x T,
~PrD_(ju)v = 0 onJ xT,
p%v(O) = in Q.

By substituting o = %v and g = %vo we finally have established equivalence between
(3.1.28) and (3.1.29).

Step 2. In this step we show that (3.1.29) has the property of maximal regular-
ity for any given time interval J. Let us define the functions Ry: ¢E,(J) — pr (J)

and Ry: oEp(J) — OFZ(J) with Ri(v,q) := 2pnVuv - V% + pr](V%)v and Ry(v,q) :=
Pr (g (V% v — U®V%)) v. Obviously it is, Ra(v,¢)(0) = 0 for all (v, q) € E,(J) with

v(0) = 0. Now, we split v := v; + v3 and ¢ := ¢ + ¢o. Furthermore, we take a h € FS(J)
such that

hO)-v = wo-v=0 0nFifp>%,
Prh(0) = —PrD (vwo)v  onTifp> 3.

The equation v - v = 0 holds true, since we have (f,§,0,vg) € Fg*(J) and therefore,
compatibility condition (C3)s_ is satisfied. Thus, for (3.1.29) we obtain the systems

oy —nAvyi +aqp = 0 in J x €,
div(vy) = g in J x Q,
vi-v = 0 onJ xT, (3.1.31)

—PrD_(v1)v = Prh on J x T,
v1(0) in Q,

I
4
S
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and
Ovvy —nAvs + gy = f+ Ri(ve, q2) inJxQ,
div(ve) = 0 inJ xQ,
vy v = (h+ Ry(va,q2))-v=0 onJxT, (3.1.32)
—PrD _(0)r = h+ Ry(va, q2) onJ xT,
v(0) = 0 in Q.

Here, f := f + 2pnVu; - V% + pn(V%) and h = —Prh + Pr (g (V% ® vy — 1 ®V%)) v.

Obviously A+ Ra(vs, g2) is tangential to the boundary, such that (h+ R(vs, g2))-v = 0. By
construction of A, the data (0, §, k, vo) fulfils the necessary compatibility conditions (C1)-
(C5)g_ of system (3.1.31) and we have (0, §, h, vg) € F;f*(J). Thanks to Proposition 3.9,
there exists a unique solution (v1,q1) € E,(J) to system (3.1.31).

Now, it is left to prove maximal regularity for (3.1.32). In order to do so, we want to
apply Lemma 3.5. Therefore, we have to check all necessary assumptions of this lemma.
Considering the construction of h, the equation (3.1.30), the substitution v = pii, the
compatibility of the data (f,g,0,0, o) and the compatibility of the data (0, §, h,vo), we
have

h(0) = —Prh(0) + Pr (g (v% ®@v1(0) — v1(0) ® v%)) y
= PrD_(vo)v + Pr (g (v% ® vy — vo ® v%)) v
— pPrD_ (%vg) v
— pPrD_(Gio)v
- 0.

Then, the data (f,0, h,0) satisfies the compatibility conditions (C'1)~(C5)g_ of system
(3.1.32). Let L: Ey(J) — IFI?*(J) be the operator defined by the left-hand side of
(3.1.32). From Proposition 3.9 it follows that the operator L is an isomorphism. If
v2(0) = 0 in Q, the estimates

HRl(U27Q2)”F£ = HQPT]VUQ . V% + PU(A%)vz

Lp(JxQ)

< HQanUg . V%

- Ion(ad)e|

L,(JxQ Lyp(JxQ)

< 2[plloo s V2], ) [V 50 + 1oleg [0 185 lec [02]1 1, (50

/N

C vzl a1y + C o2l

/&

Cllvall 3y + € lvall om0
clJr HU2HOH;/2(J7H;(Q))
C1J|" (v, @)l ok, () >

N

/A
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and
IRo(w2,@)lgey = [P (5 (V@2 4 2@ V) ) 0] s

< O|Pr(Vy ®@va)l props
<C|V;®uva

(J.Lp(D) A Lp(J Wy~ YP(T))

Hy?(J,Ly(Q) A Lp(J,HL(R))

/N

CIVslwalval, e s sy @)
Clval 12 100 Ly ()
C|J| vz O H(J, Ly (@) HY (JHA(2)

C\J| ”(U27QQ)H01EP(J)

hold true with constants C,7 > 0 that are independent of the time interval J. Therefore,
all assumptions of Lemma 3.5 are satisfied and we obtain a unique solution (vs, g2) € E,(J)
to (3.1.32) by applying this lemma. Thus, (3.1.29) has the property of maximal regularity.

NN

/N

Combining the above two steps implies maximal regularity of (3.1.28) and thus maximal
regularity of (S|J)s—, which was our initial assertion. O

3.2 Stokes Equations: Free Slip Boundary Conditions

In this section we study the Stokes equations on cylindrical domains with free slip
boundary conditions and variable coefficients p, a and pu, i.e. we study equations of the
form

pou — pAu+aVgqg = f in J x €,
div(pu) = ¢ in J x Q,
u-v h-v on J x I, (S|T)s+
PrD. (u)v = Prh on J x I,
u(0) = g in Q.

Using maximal regularity of the Stokes equations with perfect slip boundary conditions
and variable coefficients, see Theorem 3.3, and a perturbation argument (Lemma 3.5)
we are able to deduce maximal regularity of (S|J)s. Considering the Stokes equations
with free slip boundary conditions is rewarding, since with their help we are able to prove
the existence of a local-in-time strong solution to a model on the mechanisms of tropical
storms in Chapter 4.

As in the sections before, 2 € R™ denotes a cylindrical domain and J = (0,7), T > 0, a

time interval. The corresponding data space Fg *(J) to (S|J)s+ is defined to consist of
all

(f,9.h,ug) € FJ(J) x FY(J) x Fp(J) x F}

that satisfy the necessary compatibility conditions. These are according to Section 1.4
the conditions

div(ug) = g(0) if p =2, (C1)

Flg,h-v) e Hy(J,0H, (), (C2)
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up-v = h(0)-v, if p> 3,
. X (C3)s+
PrDi(uw)v = Prh(0), ifp>3,
and the condition
[hZ]Rtop . I/l"top = [htop]Rtop %> lf P > 2, (04)
%[a”l“top hZ]RmP vy + %[61/2 htop]Rmp "Vlop = [htop]RtOP vy if p>2, i

which arises from the boundary condition on the upper edge of €1, as well as the condition

[hz]Rbot Ulpor — [tht]’Rbot Uy if p > 2,

. C5)s
%[&,Fbot hZ]Rbot % + %[ayz tht]Rbot . ]/Fbot = [tht]'Rbot % if P > 2, ( ) *

which arises from the boundary condition on the lower edge of ). The aim of this section
is to find a unique solution

(u, q) = (u(t, z),q(t,2)) € Ep(J)
to system (S]J)g, for every data

(f7g7 h,UQ) € ]F§+(J)

Variable Coefficients

Within this paragraph we assume the coefficients of (S|J)sy to be variable, i.e.
p e W2(Q,(0,)) with L € W2(Q, (0,0))
and

a € BUCHR), pe BUCHQ) with iIngf a, irglzf,u > 0.

The proof of maximal regularity of the Stokes equations (S|.J)s with free slip boundary
conditions can be obtained in an analogous manner as the proof of maximal regularity
for parabolic problems with free slip boundary conditions (Theorem 2.16). But instead of
parabolic problems we have to consider Stokes equations. Moreover, we apply Theorem 3.3
instead of Corollary 2.15 and Lemma 3.5 instead of Lemma 2.5 in order to prove the
maximal regularity of the perturbed system.

Theorem 3.10. Let A < R" ! be a bounded C3-domain, a > 0 and J = (0,T). Assume
Q := A x (—a,a) to be a cylindrical domain, 1 < p < o0 with p # %, p#2, p#3
p € WE(Q,(0,00)) with € WZ(Q,(0,00)), and o € BUCH(Q), p € BUC(Q) with
infg o, infqpu > 0. Then system (S|J)s+ has a unique solution (u,q) € E,(J) for every
data (f,g,h,up) € Fﬁ*(J).
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4 Well-Posedness of a Model on the
Mechanisms of Tropical Storms

Tornadoes, hurricanes and other tropical storms are among the most fascinating natural
phenomena, especially in terms of their power and unpredictability. In order to understand
the behaviour of such phenomena, e. g. where and with what intensity a hurricane hits the
coast of a country, one studies velocity, pressure, temperature and moisture of tropical
storms.

In order to do this, we analyse a mathematical model, which is explained in detail in
the following section. This model consists of a basic tropical storm model describing
the dynamics of tropical storms and was introduced by Nolan and Montgomery in [44].
However, it mainly models velocity, temperature and pressure. The work of Hill and
Lackmann [26], as well as the work of Wu, Su, Fovell, Dunkerton, Wang and Kahn
[56] shows in contrast that moisture has an enormous influence on tropical storms, e. g.
regarding the size of a tropical storm. In [27] Hittmeir, Klein, Li and Titi show how
moisture dynamics with phase changes can be coupled to an already existing model, the
Primitive Equations. In addition, Hittmeir, Klein, Li and Titi introduce their model
of moisture dynamics with phase changes in [28] and proved its well-posedness. This
model includes not only moisture originated from rain water, but also moisture originated
from water vapour and moisture, which was previously bounded in clouds. Therefore,
we decide to couple the nonlinear moisture dynamics from [27] and the basic tropical
storm model from [44] in the same way as in [28]. In addition, we slightly adapt the
coefficients of the basic tropical storm model from [44] to the setting considered by
Novotny, Ruzicka and Théter [45]. With this adjustment, the model satisfies the 2nd
Law of Thermodynamics. This makes the model physically more meaningful.

In conclusion, the general model considered in this thesis which is based on the basic topical
storm model [44] is capable of including moisture dynamics and is thermodynamically
consistent. Our aim is to prove the existence of a unique solution to this model.

In Section 4.1 we first present the model in detail. In Section 4.2 we lay out our strategy
to prove existence and uniqueness of a local-in-time, strong solution to this model. Finally,
we show the existence and uniqueness of a solution to this model in Section 4.3.
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4.1 The Model

The basic tropical storm model we consider in this thesis is given by

poru + p(u - V)u — pAu — A\Vdivu + aVqg = pé%gVF —wes X pu in J x Q,

div(pu) = 0 in J x Q,
p0i0 + p(u - V)0 — podiv(puF) — kA0 = p(u-V)0 — kA in J x Q,
w-v=nhy v, B“PrDi(u)v = Prhy, onJ x T,
90,0 + 0% = hy on J x I,
u(0) = g in Q,
0(0) = 6 in Q.
(TS.1]J)

This system has been introduced by Nolan and Montgomery [44] in order to describe
the dynamics of tropical storms such as tornadoes or hurricanes. For a first rigorous
analytical research see [49]. In comparison to [44], model (TS.1|.J) is adapted slightly to
the setting of Novotny, Ruzicka and Théter [45]. This is done in order to make the model
thermodynamically consistent, see Remark 4.1. To obtain a more precise representation
of the actual conditions inside a tornado or hurricane, the model (75.1|.J) is coupled to
nonlinear moisture dynamics with phase changes, given by

Oymy + (u - V)my —nyAmy — Sey + Seq = 0 in J xQ,
Orme + (u- V)me — neAme — Seq + Sae + Ser = 0 in J xQ,
oy + (u - V)my — 1. Amy = Soe = Ser + Sew = g€z V(pmmy)  in J x Q,
B dymy +o0™vm, = hy onJ xT,
Bme0,me + oc™em. = he onJ x T,
B oymy +o™rme = hy onJ xT,

my(0) = myo, me(0) =meo, mp(0) = myo in €.

(TS.2|J)

This system has been introduced by Hittmeir, Klein, Li and Titi in [27]. The combination
of both systems (7S5|J) = (TS.1|J) + (TS5.2|J), i.e. the basic tropical storm model
coupled to nonlinear moisture dynamics, represents the model we study in this chapter.

Since the model (7TS]J) is supposed to describe the dynamics of a tropical storm, we
assume all above equations to depend both on location and time. In the following, we
assume time to be a positive 1-dimensional variable, and the location to be described by
a 3-dimensional variable, since we are interested in modelling the behaviour on earth.
Hence, by the positive time interval J = (0,7) € R with 7' > 0 we denote the time
domain, and by ©Q € R? the spatial domain. Since the shape of, for example, hurricanes
resembles a cylinder, we would like to study the dynamics of tropical storms in cylinders.
With equal right, one could also study tropical storms on an upper half-space, which
could serve as a simplified model for the surface of earth, or on a sphere, representing
an approximation of earth as a whole, but these two domains go beyond the scope of
the present thesis. That is, we assume €2 to be a cylindrical domain. Then, model
(TS|J) is considered on the cartesian product J x Q. For a comprehensive introduction
to cylindrical domains, their boundary, the deformation tensor and the projection Pr, we
refer back to Section 1.3.




4.1 The Model

The first equation of (7'S.1]J) represents the anelastic equation of momentum, where u
denotes the velocity and g its corresponding pressure. The atmospheric density is denoted
by p and is assumed to be a given, time-independent, positive function with positive
inverse 1/p. The symbol w stands for twice the angular velocity of earth’s rotation,
where we assume rotation to be performed around ez = (0,0, 1)T. Therefore, the term
wes x u represents the Coriolis force. The term 9%59VF on the other hand represents the
buoyancy, with F' € L,(J, H;(Q)) being the potential of the external forces, for example
gravity —gxs, where g stands for the earth’s constant gravitational acceleration. The
temperature @ is assumed to be varying around a given mean value # = #(z). The
second equation of (7'S.1].J) is the anelastic incompressibility condition, which arises
from the law of conservation of mass. The third equation of (7'S.1].J) arises from the
law of the conservation of energy, and the first three equations of (75.2|.J) represent
moisture balances. They can be modelled by the method of Hittmeir, Klein, Li and
Titi [27]. The water vapour mixing ratio m,,, the cloud water mixing ratio m., and the
rain water mixing ratio m, are considered in order to include moisture dynamics for
warm clouds where also phase changes are modelled. Here, moisture is represented as
vapour, cloud water and rain water. Furthermore, the terminal velocity of falling rain V
is assumed to be constant, and p,, denotes the positive density of rain water. By the
term Se, the rate of evaporation of rain water is denoted. Whereas S, stands for the
rate of auto-conversion of cloud water into rainwater by accumulation of microscopic
droplets. The rate of the collection of cloud water by falling rain is denoted by S,.. The
rate of the condensation of water vapour to cloud water and the inverse evaporation
process is denoted by S.q. They are represented as

Sev = Cenl(m,) (mus(0) —mu) ™, €€ (0,1],
Ser = Cormemy,

Suc = Caclme —mi.) "
Sed = Cea(my — mys(0))me + Con(my — mays(0)) 7,

)

where Cey, C¢r, Cue, Ceg, Cep are constant rates. Furthermore, the threshold value for the
cloud water mixing ratio, beyond which auto-conversion of cloud water into precipitation
becomes active,is denoted by the constant m.. The quantity m,s represents the saturation
mixing ratio, which satisfies

Eey(0)

mays(0) = Rpf) — 65(0)’

where E' = R/R, is the ratio of the individual gas constants of dry air and water vapour
and ¢s the saturation vapour pressure given by the Clausius-Clapeyron equation

L 1 1
05(9) = Cs(esmrt) exXp (Rv <estart - 9)> .

Here, L stands for the latent heat per unit mass of water vapour, which we assume to be
constant. Typically, the reference temperature Osq,r = 273.15K is used. Moreover m,s is
positive, and bounded by zero and a positive constant m.;

0 < mys(q,0) < mj,.

The variable coefficients in system (7'S.1].J) are considered in two different settings, one
with an anelastic limit [45] and one as given in [44, 49]. Therefore, for the coefficients in
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the anelastic limit, we have

ioa=p, p=2 k=Fr (4.1.2)

=@, A=A+
p=p 7

wl—=

with positive constants ji, A, and k. These are the shear viscosity, the bulk viscosity and
the heat conductivity at temperature 6, respectively. The term % div(puF’) represents
the heat production due to volume work.

The coefficients in the setting of [44, 49] are given by

w=ep, A=¢€p, a=1, py=0, K=¢€p (4.1.3)

where the positive constant ¢ denotes the eddy viscosity. By combining these two settings
we can obtain any possible combination of constant or variable coefficients u, A, «, pg
and k. The variable coefficients of the moisture balances are valid for both settings and
given by

n; = ﬁ]pma .7 € {U,C,T’},
where the positive constants 7; are the viscosity of water vapour, cloud water and rain
water, respectively, measured at temperature 6.

Remark 4.1. We note that in the coefficient setting of (4.1.2) every sufficiently smooth
solution to (7'S.1|.J) satisfies the energy balance

1d 2 1d 1 012
saclveull, ) + 25 a1 = 0l7,0)

IVl 0 + A+ Amdival, g + £1V(0 — 0)]2,

= | ) GIvauR + 5210 - DF + G+ hidiva — pa) do

+J pu - dyudo + J %(9 —0)0,(0 —0)do.
r r

This follows by multiplying the momentum balance with u, the heat balance with § — @
and integrating over €.

The boundary conditions are represented by the equations 4-5 of (7S.1|J) and by the
equations 4-6 of (7.5.2|J). The boundary conditions for the velocity u are chosen in
such a way that each component of the boundary — top, bottom, lateral boundary —
is impermeable in case of h, - v = 0, and that there is no friction on the boundary in
case of Prh, = 0. For h, # 0, these boundary conditions can be used to introduce a
flux through the boundary, and a friction on the boundary, respectively. Moreover, the
boundary condition for temperature and moisture are Robin boundary conditions. We
assume the boundary coefficients to be variable, more precisely

gk gmi e BCY(J x T, (0,00)) with irrlfﬁk,irrlfﬁmf >0
and
o’ 0™ e BC?(J x T, [0, 0)),

where k € {u,0} and j € {v,c,r}.
The last two equations of (7'S.1|J) and the last equation of (75.2].J) represent the initial
conditions with initial data g, 6y, mj0, j € {v,c,r}.
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4.2 Strategy

The main result of this thesis is the proof of existence and uniqueness of a local-in-time,
strong solution to (7.5]J), i.e. Theorem 4.2, which we discuss shortly. The model (TS|J)
is given by system (7°S.1|J) coupled to system (7:S.2|.J) as already explained in Section 4.1.
To prove existence and uniqueness of a local-in-time, strong solution to (7'S|J), we first
prove the same for (75.1|J) alone, after which we show existence and uniqueness of a
local-in-time strong solution to (7'S.2|J) in a second step. System (7S.1|.J) is completely
independent of the unknown water vapour mixing ratio m,, the unknown cloud water
mixing ratio m. and the unknown rain water mixing ratio m, of (7.5.2|.J). Thus, there is
no obstacle in decoupling (7S.1]J) and (TS.2|J) and proving existence and uniqueness
of a local-in-time strong solution to (7'S.1|.J) independent of (7'S.2|.J). However, system
(7S.2|J) depends on the unknown velocity u and the temperature 6 of system (7.5.1|.J).
But we can in fact prove existence and uniqueness of a local-in-time, strong solution to
(7S.2|J) independent of (7'S.1]J) by assuming the velocity and the temperature to be
given functions. Then, we can obtain a local-in-time, strong solution to the combined
system (7T'S|J) by solving (TS.1|J) first, and then solving (7S.2|.J), using the solutions
for the velocity u and the temperature § obtained from system (7S.1|J).

In order to investigate system (7°S.1|.J) first, we denote by

fu =—(pu-V)u+ A\Vdivu + p%VF — we3 X pu,
fo = ~(pu- V)8 — po div(puF) + (pu - V)0 — KA,

all nonlinear terms and linear terms of lower order of system (75.1|J), and can thus
rewrite (75.1|J) as

pou — pAu + aVg = fy in J x €,
div(pu) =0 in J x Q,
u-v=n"hy-v ondJxT, (S]J)s+
B“PrDi(u)v = Prhy, on J x T,
u(0) = ug in Q,

po — kAO = fy in J x €,
30,0 + c%0 = hy onJ x T, (H|.J)
6(0) = 6y in Q.

In this form, (S|J)g; resembles the Stokes equations with free slip boundary conditions,
which we already studied with variable coefficients on cylindrical domains in Section 3.2.
Furthermore, system (H|.J) resembles the heat equation. This is a parabolic problem with
Robin boundary conditions, which we studied with variable coefficients on cylindrical
domains in Section 2.2. We split (7S.1|J) into a linear operator L and a nonlinear
operator N. We define L to consist of all linear terms of highest order and N to consist
of all nonlinear terms and linear terms of lower order. We do not repeat the definition
of data and solution spaces here, in order to not interrupt the flow of reading. Their
definitions may be found in the Sections 2.2 and 3.2, respectively. By

L:Ey(J) x E5(J) — F2F(J) x FDR(J)
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we denote the linear operator which is defined by the left-hand side of systems (S|.J)s+
and (H|J), and by N the nonlinear operator which is given as

(—p(v - V)v + AVdive — p%VF — weg X pv
0
N(v,p,0) := 0 ) ,
—p(v - V)9 + podiv(pvF) + p(v - V)0
0

for (v, p, ) € Ey(J) x EZ(J). It is convenient to consider the systems (S|.J)s and (H|J)
and thus (7'S.1]J) in the form
L(u7 q7 0) = N(u7 07 0) + (va7 O? hu’ _KA9_7 h0)7
(u,0)(0) = (uo,00).

According to Theorem 2.6 and Theorem 3.10 there exists a bounded inverse of the linear
operator L, which is the solution operator

(4.2.1)

LV B () x FDR(T) = Ey(J) x EX(J)

of the Stokes equations with free slip boundary conditions and of a parabolic problem
with Robin boundary conditions. So let (u*,¢*, 8*) be the solution of

L(u*, g*,0%) (pVF,0, hy, —k A, hg),
(u*,0%)(0) = (uo,0).

Thus, (TS.1|J) is equivalent to
(u’ Q’ 9) = (/LNL7 Cj7 é) + (u*7 q*’ 0*)7
(i,G,0) = oL N (@ + u*,0,0 + 6%) (4.2.2)
=: K(a,q,0).

By using the Contraction Principle we then obtain a unique local-in-time strong solution
to (TS.1|.J).

™

To prove existence and uniqueness of a local-in-time, strong solution to system (7°5.2|.J)
with given u, 6 € Lo (J x Q) we proceed analogously. By

fo= *(U : V)mv + Sev — Sed,

fe= _(u : v)mc + Sea — Sae — Ser,

fT = *(u ’ v)mr + Sac + Scr - Sev + g‘/e:ﬁ : V(pmmr),

m

we denote all nonlinear terms and linear terms of lower order of system (75.2|.J), and
can thus rewrite (75.2]J) as

oym; — n;Am; = f; inJ x €,
" 0,mj + c™im; = h;j onJ xT, (M]J);
m;(0) =mjo inQ,

with j € {v, ¢, 7}. Note that (M|J); represents three systems of equations, one for each
j € {v,c,r}. In this form (M|J); resembles parabolic systems with Robin boundary
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conditions, which we already studied in Section 2.2. We separate (7'5.2]J) into a linear
operator L,, and a nonlinear operator N,,, and define L,,, to consist of all linear terms of
highest order and N,, to consist of all nonlinear terms and linear terms of lower order.
By

R nr z z P,R PR P,R
Ly E2(J) x EX(J) x E2(J) — FRE(J) < FPR(T) x FRE ()

we denote the linear operator, which is defined by the left-hand side of systems (M|.J);
for j € {v,c,r} and by N,, the nonlinear operator, which is given by

Nm(nv) e, nr) =

7(“ : V)nc + Sev(nvy nr) — Scd(nva nc)

_(u : V)nc + Scd(”’ua Ne) — Sac(nc) - Scr(nm nr)

o O— O O

_(u : v)nr + Sac(nc) + Scr(”c; Ny

~

- Sev(nv) nr) + gmeeS . v(pmnr)

o O

for (ny, ne,ny) € B (J) x E5(J) x EZ(J). It is convenient to consider the systems (M]J);
for j € {v,c,r} and thus (7'5.2|J) in the form

Lm(mvamc,mr‘) = Nm(mv,mamr)+(0yhv70ahmoahr)a

4.2.3
(mv; me, mr) (0) = (mv,Oa mec,0, mr,0)~ ( )

According to Theorem 2.6 there exists a bounded inverse of the linear operator L,,, which
is the solution operator

—1. mP,R P,R P,R z z z
L, : FRR(T) < EDR(T) x FRR(J) — E3(J) x E5(J) x E5(J)

for the three parabolic systems with Robin boundary conditions and variable coefficients.
Let (mJ),m%, m¥) be the solution of

;:k’m ) = (Ovh”l)?O?hCaOahT')a

Ly, (mb,m x
va:) O) = (mv,Oymc,07m’r‘,0)-

v
(my,m

Then, (75.2|J) is equivalent to

(mvammmr) = (mvymmmr) =+ (’mijmz,m:),
(My, M, M) = oLyt Ny (1 + mE e + mk m,. +m?) (4.2.4)
=: Ky (Mg, Me, my).

Using the Contraction Principle we then obtain a unique local-in-time, strong solution to
(TS.2]J).

Using this strategy, we are able to show existence and uniqueness of a local-in-time,
strong solution to (7S|J) and thus the main result of this chapter.

Theorem 4.2. Let A R"! be a bounded C3-domain, a > 0, J = (0,T) a time interval
with T > 0, and Q := A x (—a,a) a cylindrical domain. Assume o, p € BUCY(Q), ,
nj € BUC(Q), infq o, infq p, infq &, infqn; >0, j € {v,c,r}, Y, B?, 7 e BCY(JxT), o,

99
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o7 € BC*(J x T), infp g%, infr 62, infp 87 > 0, p, pm € W2 (Q) with infq p, infq pp > 0

and ”7” < p < oo with p # %, p # 2, p#3. Then for every data

(vaa 07 hu7 uo, 7HA077 h97 90) 07 hva my.0, 07 hC7 meo, 01 h?’) mT,O)
eFYH(J) x FER(T) < FPR(T) < FOR(T) x B ()

with inf,eq myo > 0 there is a unique local-in-time, strong solution (u,q, 0, my, me,m;)
to (TS|J) on a mazimal time interval (0,T*) with

T* = T*(pVF,0, hy, ug, —kAB, hg, 09,0, hy, M0, 0, he, me o, 0, by, my o) € J.
The solution satisfies
(u, q,0,my, me,my) € Byp(J) x Ep(J) x E5(J) x E(J) x Ej(J)

for all J = (0,T) with T € (0,T*). Furthermore, the solution depends continuously on
the data.

4.3 Well-Posedness of (TS|J)

The proof of the existence and uniqueness of a local-in-time, strong solution to the model
(TS|J) is provided in the end of this section. In order to show this, we begin by proving
existence and uniqueness of a local-in-time, strong solution to (7°S.1|J), followed by
proving the same for (7'S.2|.J). Then, we are able to prove solvability of the entire model
(TS|J).

4.3.1 Well-Posedness of (TS.1|.J)

In this subsection we study the basic tropical storm model (75.1|J) without nonlinear
moisture dynamics:

pou + p(u - V)u — pAu — AVdivu + aVq = p%VF — wes X pu in J x €,

div(pu) = 0 in J x Q,
u-v = hy-v on J x T,
BYPrDy(u)v = Prhy on J x T,
u(0) = wug in Q,
p0:0 + p(u - V)0 — podiv(puF) — kA0 = p(u-V)0 — kAD in J x Q,
90,0 + 0% = hy on J x T,
0(0) = 6 in Q.
(TS.11J)

We aim to prove existence and uniqueness of a local-in-time, strong solution of system
(TS.1|J). This is shown for two different situations: first for arbitrary data and small
time intervals, and second for arbitrary time intervals and small data. The following two
propositions comprise our results.

Proposition 4.3. Let A « R" ! be a bounded C3-domain, a > 0 be a constant, J = (0,T)
a time interval with T > 0 and Q := Ax(—a,a) a cylindrical domain. Let a, p € BUCYH(R),
k€ BUC(), infqa, infqpu, infor > 0, ¥, B% € BCY(J xT), o € BC?(J x T),
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infr 8%, infr 8% > 0, ”T” < p < oo with p # %, p # 3 and p e W2(Q) with infg p > 0.
Then for

(PVF,0, hy, uo, — kA, hy, 0o) € IE‘S"‘(J) % FII;R(J)

there exists a unique local-in-time strong solution (u, q,0) to system (TS.1|.J) on a mazimal
time interval (0,T*) with

T* = T*(pVF,0, hy, ug, —kAB, hg, 0) € J.
The solution satisfies
(u,q,0) € Ep(j) X E;(j)

for all J = (0,T) with T € (0, T*). Furthermore, the solution depends continuously on
the data.

Proposition 4.4. Let A < R"! be a bounded C3-domain, a > 0 a constant, J = (0,T) a
time interval with T' > 0 and Q := A x (—a, a) a cylindrical domain. Let a we BLICl(Q),
k€ BUC(Q), infqa, infqpu, infor > 0, g, p% € BCY(J xT), 0% € BC?(J x T),
infr g%, infr 8% > 0, %’2 <p < o with p # %, p # 3 and p e W2(Q) with infg p > 0.
Then there is an € = €(J) > 0, such that system (TS.1|J) admits a unique solution

(u, q,0) € Bp(J) x E(J)

for every data (pV'F,0, hy, ug, —KkAB, hg, 0p) € IE‘S*(J) x IE‘IIJD’R(J) that satisfies the condi-
tion

H(pVF7O) h’luu()a _K’Aé) h@a GO)H]FE-F( ) <e.

J)xEL R (T

Furthermore, the solution depends continuously on the data.

In the following, we prove Propositions 4.3 and 4.4 simultaneously.

Proof. We start by fixing J = (0,T) with T > 0, J = (0,T) with T € (0, T] and
(PVF,0, hy,ug, —kAG, hy, 00) € F5 T (J) x TR ().

The Stokes equations with variable coefficients and given data (pVF,0, hy,ug), and the
heat equations with variable coefficients and given data (—xkA#, hg, 6p) have the property
of maximal regularity due to Theorems 3.10 and 2.6. We proceed in two steps.

Step 1. In the first step we show, that the perturbed system

poru — pAu + aVq + %VF +wez x pu — AVdivu = pVF in J x €,

div(pu) = 0 in J x Q,
w-v = hy-v on J x T,
BYPrDi(u)v = Prhy on J x T,
u(0) = wp in Q, (4.3.1)
P00 — KAO — p(u- V)0 — podiv(puF) = —kAO  in.JxQ,
620,60 + 0% = hy on J x T,

0(0) = 6o in Q,
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has the property of maximal regularity by using maximal regularity of the Stokes equations
(S|J)s+ and maximal regularity of the heat equation. The heat equation is a parabolic
problem with Robin boundary conditions (P|J)g. We establish

L:E,(J) x EZ(J) —> FJT(J) x FPR(T)

as the operator defined by the left-hand side of (4.3.1) and the functions
Ryt 0Ep(J) x oBZ(J) = FJ(J) with Ri(u,q,0) := —pZVF — weg X pu + AVdivu
and
Ryt 0Ep(J) x oBZ(J) — FL(J) with Ra(u,q,0) := p(u- V)6 + podiv(puF).
Therefore, and because of linearity, we can write (4.3.1) as

L(uu q, 0) = (va + Rl(ua Q76)7 0, hu,UO, _’%Aé + RQ(’U,, q, 0)7 h’97 90)
= (pVF,O,hu,UO, _’%Aé7 h9790) + (Rl(u7Q7 9),0,0,0,R2(U,q,0),070)-

which is equivalent to
(’U,, q, 0) = Lil(pv}l 07 hua UQ, —HAQ_, h@a 00) + OLil(Rl (’U,7 q, 0)7 07 O? 07 RQ(“? q, 9)7 07 0)7

since (S|J)s+ and (P|J)r have the property of maximal regularity. Subtraction of
oL 1(R1,0,0,0, R2,0,0)(u, q,0) leads to

(Id - OL_l(Rla 0,0,0, R2,0, O)) (ua q, 9) - L_l(vav 0, how, uo, 7’%Aé7 hg, 90)
There is only left to show that (Id —oL7Y(R1,0,0,0, Rs,0, O))_1 exists, because then
(U, q, 9) = (Id - OLil(Rla Oa 07 07 RQa 0’ 0))71 Lil(pVFv 07 h”Un U, _’{Aév h’@, 90)

would be the unique solution to (4.3.1). If [|oL™!(R,0,0,0, Rs,0,0)| < 1, the Neumann
series argument provides us the existence of (Id — oL ' (R1,0,0,0, Ry, 0, 0))71. We know
already that

loL™!(R1,0,0,0, Ra, 0,0) [k, () x 0Bz (J)—0Ep(J)oE3 ()

< HUL?I HOIF;E*(J) xoF (1) —0Ep(J) x 0E2(J)

1 (R1,0,0,0, B3, 0, 00l g, (15 b5 (1) xoFE20)

Next, we want to show that ||R1(u,q,9)|\Ff(J) and HRg(u,q,H)H]Ff(J) can be made arbi-
p P

trarily small. Then |oL~*(R;,0,0,0, Rs,0, )]l 0y (1) x0Ez(J)—0Ep () xoEz () Can be assumed

to be smaller than one, since HOL*lHOFS*( ) 18 bounded. We can
P

J)xoFp (1) =0Ep(J) % 0Bz (J

estimate

lwes x puHLp(JxQ)" CHPUHL,,(JxQ)n

Clplool vl L, (1L, ALy (S )"
CUTI 321 @ L)
ClIIulgru ()

NN CIN N
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H)\VdiquLp(JXQ)n H)\Vdiv (%pu) LX)

HW (V(%) pu+ %div(pu))‘
= [A(vp! 'pu)HLp(JxQ)”
Moo 1V oo oo Il (sx0yn

Clull, s,z @))m ALy (L, @)
clJ HUHOE;(J) )

Ly(JxQ)n

N IN N

< [Pl 0 ool I, x|V oo
< Oz, xa
< CM9] grz ()

”p%VFHL,,(JxQ)

Il [l (e V8o
CIII gy,

[(pu- V)0 L, ix0) <
<

and '
|polloo [div(pu)| 1, (rx0)n

ClpuF],

Ipodiv(pul")| 1, (s x )
Hy/*(J,Lp(Q))" " Lp(J.HL ()"

CHp”OOHFHOCHuHOH;/Q(J,LP(Q))nmLP(LH}%(Q))n
C1I "l g0

INCINCIN N

with constants C, 7 > 0, where C is independent of .J. Also we have § € W2 (Q),

% € Lyu(Q), F e WL(Q) and p € W2 (). Therefore we can make the two terms

| — p% —wes X pu + )\VdiquFgU) and | p(u - V)0 + podiv(puF) small by choosing J

s (s
sufficiently small. Since the admitted length of the time interval J (d(ges not depend on the
data, we can show maximal regularity of (4.3.1) for any given time interval by successively
solving them on sufficiently small time intervals of fixed length, cf. Lemma 2.5 where a
similar argument has been used. Therefore, we can established maximal regularity of

(4.3.1) for any time interval J = (0,7) with T' > 0.

Step 2. By (u*, ¢*, 6*) we denote the unique, maximal regular solution of the perturbed
system (4.3.1), whose components satisfy the inequalities

H(U*a q*)”Ep(J) < M ”(vav 0, ha, uo, 7HA977 he, to (432)

)”IE‘;?*(J)XIE‘II,D’R(J) ’
and

He* ||E§(J) < M2 H (pVF7 07 hU7 uo, —KJAQ, h97 60)HF5+(J)XF5,R (433)

()’

with constants M1, Ms > 0, due to step 1. To deal with the remaining nonlinear terms
and terms of lower order of system (7S.1|J), it is convenient to rewrite them into the
operator equation

(u,0)(0) = (uo,60),
where Lp: Ey(J) x Ej(J) — F§+(J) X Ff’R(J) denotes the linear operator defined by

the left-hand side of (4.3.1). According to step 1, Lp is an isomorphism. The nonlinear
operator N is given by

(4.3.4)

N(v,p,?) := ( —p(v-V)v,0,0, —p(v- V)3, 0),
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for (v, p, ) € Ep(J) x E5(J). Therefore, system (75.1]J) is equivalent to

('U,7 QJ Q) - (ﬂ’a q~7 é) + (U*a q*7 H*)(}U)v
(@,4,0) = oLp'N(a+u*(w),0,0 + 6%(w)) (4.3.5)
=1 K(u,q,0),
where
oLp" s oF 5T (J) x oF) () = 0Ep(J) x oE5(J)

denotes the bounded linear inverse of oL p. Now, we prove existence and uniqueness of a
solution to

(@,4,0) = K(3,G,0), (@4,0) € oBp(J) x oB5(J),
where J = (0,T) with T € (0,T]. Note, that
N(-+u*,0,- 4 0%): qBL(J) x oBL(J) = F* (J) x Fo(J),
is Fréchet differentiable with

—p((@+u*) - V)o— p(5-V)(@+u*) \

DN (i + u*,0,0 4+ 0*)(9,0,9) = 0 i ,
—p((@ +u*) - V)9 — p(0- V)(0 + 0%)

where 4, 0 € OEZ(J_) and 0, ¥ € OEIZ,(j). For p > ™2 set € := p — 2 > 0. Then we
have an embedding

H;76/3p,(2,1)(j) . Hzfe/Sp,(Zl)(j) s Hg,(Q,l)(j)

due to [34, Remark 1.8] with anistropic function spaces

Hg:@vl) = Lp(j X Q),
Hy® HY(J, Ly(Q)) 0 Ly(J, HE (),

H;*€/3p,(271)

H576/3p7(271)

= HY” (T L) A Ly(J, Hy (),
= Hy (], L,(Q) n Ly(J, Hy ().

I

For the definition of anisotropic function spaces, we refer the reader to Section 1.1. We
thus have

lp((@ +u*) - V)0 + p(0 - V)(@ + u®) |, (7x0mm)

lolloo (1N gy1-crsmca.n gy 18 + 0] 2-craman

/A

+ | V(a + u*) ||H;,€/3p,(2,1)(j) ||17H0H576/3p,(2,1)(j))

/&

Clol z-ersn.con @+ ul gz gy + Ol +u®l ye-cron 2 ) [0] z-eromcn 5

N

TIT 5 ~ * ~ * ~
C‘J‘ ”UHOHS’(Q’U(j) Hu +u HHz,(Q,l)(j) + CHU +u ”H;’(Q’l)(j) ”UHOHs—e/Sp,(Q,l)(j)

<

OV 01 gy 7t + 0y )
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for all p > "T”, where the constant C' > 0 is independent of J thanks to the homogeneous

initial conditions. We obtain in the same way
lo((@ +u*) - V)0+p(@ - V)0 + 0%, (7x,mm)
< O+ u* gy p 1 gs ) + CLI 0]y ()10 + 0752 -
We infer for all @ € OIE;‘(J_), fe OIEZZ)(j) the estimate

IDN (@ +u®,0,0+0%) | ogu (1) ms() £S5+ (1) xF9())

< O (| + gy + 16+ 6|55 )
where the constant C' > 0 is independent of .J. Due to (4.3.2) and (4.3.3) we have

[ gy < (t*, 0y () < VAPV E,O, b, o, — A8, b, 60)gs- 1y sr

and

||9*H]E1Za(j) < M2|| (pVF7 07 hua uop, _HAéa h@v 90)||F§+(J)XF5’R(])'

Note, that M, M, > 0 are independent of J, since (u*, ¢*,#*) are defined on the entire
interval J. We define ¢ > 0 such that it fulfils

[(pV F, 0, hy, uo, —kAD, hy, o) <e

HFE*(J)xFé”Rm =

and obtain
DN (@ + u*,0, 0+9*)”B(OE;(j)XOE;(J—)ﬁFg,-;_(j)XOFZI;,R(j))

< I (lal gy () + 101,555 + €My + eMo)
for u e OIE;(j) and 0 € OE}Z,(j). We then infer

HK(&,Q, é) - K(~¢ﬁ>1§)|‘0]Ep(j)on§(j)

for (a,q, é)v (0, D, 5‘) € OEp(j) X oEf,(J_), which satisfy HﬂHolEg(j) + ”éHolEg(j), ”f’HoEg(j) n
||7§H0E§(j) < 0. We define

_ . -
C = sup{llo L™ gms+ (1) xom(),okp () xoB3() * 7 < T
Finally,
| K(0,0, O)HO]Ep(j)on;(j) <C_'”N(U*: 0, 9*)“0]F§+(j)xopfﬂ(j)
<820(M1 + M2)2
implies

|K (i, G, 0) ok (7 xoEx () < C|J|"6C(6 + eMy + eMy) 4 €2C(My + My)? (4.3.7)

for (@,,0) € oEy(J) x o5 (J) with @] g5 + 10],g55) < 0.
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For Proposition 4.3, € > 0 is constituted by the data. Set g = £2C(My + M3)? and
choose a J c J such that

C|J|"C (5 + eMy + eMs) <

D[ —=

Therefore, we obtain
IK(@,4,0) | 5, (7yxoms() S 5+ 5 =90

by using (4.3.7). Combining this with (4.3.6), we get that K is a contraction on a closed
ball with radius §. Now, using the Contraction Mapping Principle, Proposition 4.3 is
proven.

For Proposition 4.4, we set J = J and choose 6§ > 0, such that
o1rCs < 4
and furthermore € > 0, such that
eMy +eMy < §, 2C(My + Ms)? < §.
By applying ¢ and 6 to (4.3.6) and (4.3.7), we get that K is a contraction on a closed

ball with radius 0. Now, using the Contraction Mapping Principle, Proposition 4.4 is
proven. ]

4.3.2 Well-Posedness of (TS5.2|.J)

In this subsection we study the nonlinear moisture dynamics (7°5.2|.J):

Ormy + (u - V)my — nyAmy — Sey + Seqg = 0 inJ xQ,
BT dymy, + o™vmy, = hy, onJ xT,
my(0) = My in €,
Otme + (u- V)me = neAme — Seqg + Sac + Ser - = 0 in J x Q,
pedyme +omeme = he, onJ x T,
me(0) = meo in Q,
demy + (w - V)my — 1 Amy = Sae = Ser + Sew = gr—e3-V(pmmy)  in J x €,
B oymy +0™rm, = hy, onJ x T,
my(0) = mro in Q,
(TS.2]J)

for given u, 0 € L (2). By
.2 z z P,R P,R P,R
Ly Ep(J) x Ep(J) x Ep(J) — F, 7 (J) x F, ¥ (J) x F, ()

we denote the linear operator, which is defined by the left-hand side of the system
(TS5.2|J) and by N, the nonlinear operator, which is given by

Nm(nmnanr)
= < - (’LL : V)nc + Sev(nvanr) - Scd(an nc)70701
— (u-V)ne + Seq(ny,ne) — Sac(ne) — Ser(ne,ny), 0,0

v
— (u-V)n, + Sac(ne) + Ser(ne, ny) — Sew(ny, ny) + g—eg -V(pmn,),0,0 ),

m
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for (ny,ne,ny) € Ej(J) x E5(J) x E5(J). Using the strategy explained in Section 4.2
leads to the following result:

Proposition 4.5. Let A < R" ! be a bounded C3-domain, a > 0, J = (0,T) a time
interval with T > 0 and Q2 := Ax (—a,a) a cylindrical domain. Assume u, 0 € Ly (J x2),

n; € BUC(Q), infqn; > 0, j € {v,c, 7}, Bl e BCY(J xT), 07 € BC?(J x T), infr 7 > 0,

”TJ’Q < p < oo withp # 3 and p,, € W2(Q) with infq p,, > 0. Then for every data

(0, By, 10,0, 0, he, M0, 0, by, mio) € FDE(T) x FPR(T) x BPR(T)

with infzeq myo > 0 there is a unique local-in-time strong solution (m,, mq,m,) to the
nonlinear moisture dynamics (TS.2|J) on a maximal time interval (0, T*) with

T =T* (07 hU7 mMy,0, 07 hC7 meo, 07 h?”a mT,O) € J
The solution satisfies
(M, me,my) € E5(J) x B (J) x Ej(J)

for all J = (0,T) with T € (0,T*). Furthermore, the solution depends continuously on
the data.

Proof. We begin by fixing the data (0, hy, mum0,,0, he, mc,0, hr,mpg) € Ff’R(J) X
IF';;R(J) X FfﬁR(J). Note, that the embedding

myo € W2 2P(Q) — BUC(Q) — C(Q),

is valid due to Sobolev’s Embedding Theorem for p > "T” We require that
¢ := inf m,o(z) > 0.
€ ’

Let my € E;(J) be the unique solution to the parabolic system

omy —nAmy = 0 in J x ),
gmro,my +o™rmE = hy, onJ x T,
mi(0) = myp in Q,

which exists due to Theorem 2.6. Now,
m e C([0,T] x Q),
since
H ) (J, Lp(Q) n Ly(J, H}(Q)) — BUC(J x Q) — C([0,T] x Q)

for p > 242, cf. [8, Theorem 3.9.1]. The fact that m is continuous on [0, 7] x  implies

that there exists a T} € (0, 7], such that

inf m*(t, z) > %,
(t,x) € (0,T1)xQ r(t7) =5
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We denote for Jy = (0,771) by m} € H[}(Jl, L,(2)) N Ly(Jq, Hg(ﬂ)) the unique solution

of the parabolic system

0tm;‘ — njAm;‘ =0 in J; x Q,
Bmidymi +c™im; = hj, on J; x T,
m;‘ (0) = Mjo in Q,

for j € {v,c,r} with infj, xoqm? > %C Such solutions exists according to Theorem 2.6
and they satisfy the estimates

Hm;‘ HE;(J) < MJH (07 h'u, mm,077 07 hC7 mC,()) 07 h’fa m”’o)HIF;?’R(JQfo*R(Jl)xFZIT’R(Jl) (438)
with constants M; > 0. We set
1(0, ho, mM,0, 0, he, Me,0, 0, Ay, mr,O) H]FE!R(])XF;’)'R(J)XIFE’R(J) =: .

Let J = (0,T) c Jy with T € (0,T1]. Due to (4.2.4), it is sufficient to prove existence
and uniqueness of a solution to

(s ey 117) = Ko (1, 1ty 07), - (i, e, 1) € 0BE(T) x oB5(J) x oBZ(T).

For that purpose we show that K, is a contraction on a closed ball of radius §. For such
a ball we have the embeddings

Bs(0) < oH}(J, Ly(Q)) 0 Ly(J, HE () < 0BUC(] x )
— OC([O,T] X Q)

Therefore, we infer

Iz, (7xa) < Clmglgs sy < O 0w, Mes ) | g2 (7)x 0Bz (7 <oz () S €70 (4:3.9)
for (v, Me, 1) € oEp(J) x oEp(J) x oEp(J), [Gvw, e, 1) s 7y oBg (D xoB3 () < O
and j € {v,c,r}. The constants C, C* > 0 are independent of J < J; thanks to the
homogeneous initial conditions.

Choose § < 30% Thus we obtain

Wl

inf mr+m,=3>0, (4.3.10)

(t,x)eJxQ
for all 7, € Bs(0). Now, we have

HSev(m: + mva m: + ﬁ’Lr) - Sev(m: + ﬁw m: + 7717”)HLP(ij)

! )"

Oev”HHOOH(m;l< + mr)ﬁ(mvs - m: — 1) — (m: + ﬁ7“)£(mvs - m: — fiy)

<
< Ceullf]o]| ((myf + 172)* — (mf + 720)%) (1m0 =m0y — 1700) " |

+ Ceo[ 0ol (my + 727)* (205 — M5 — ) * = (s —m = 70) *)
< Cenllb]loo(C" | — plplmuvs — mis — mulloo + [my + 7o 700 — 7o)
< Ceo|0lo (C'Cllvy = o |lp + C" 11 — i)

< C\j\TH (Mg — Tiy, Me = Tie, My — ﬁr)”E;(j)x]Eg(j)xE;(j)?




4.3 Well-Posedness of (TS|J)

where we used for the third estimate
lat —b%| < |a—b|, for a,beR. (4.3.11)
This estimate is obvious if a, b > 0 or a, b < 0. For ¢ > 0 and b < 0 we have
lat —b"|=lal=a=a—-b+b<a—-b<|a—1b|
which is analogous for a < 0 and b > 0. We also used

s — 55| <sup &8s — 3] < E(§)E s — 3 =: C'|s — ]

s>C

03

for s, § > % and £ € (0,1]. This holds true, since (m} + m,), (m* + n,) = % due to
(4.3.10). For the fourth inequality we used

[ + il < [mfloo + § < [mflgzery) +§ < My +§ = C" >0, je{v,e,r},

(4.3.12)
which holds due to (4.3.9) and our choice of 5. We can then conclude
Im + w5 < (C") = C"
and
Im + 1y — Muslloo < M + 11000 + [Mas|oo < O + [Mps]eo =: C (4.3.13)

for m¥ € E;(j), my € OEIZ)(j), mys constant. Note that C, C’, C" , C" > 0 are also
independent of J. With (4.3.11), (4.3.13) and (4.3.12) we obtain as well for j € {v, 7, c} and
(M, e, M) € 0BG (T) x 0B5 () > 0B () with [ =7y + [l gz gy + 1770 |z 7y < 0
that

|Sea(my + M, mg + me) = Sea(my + fw, mg + 7ic) | (7x0) >

H U+ V)(m* + TNrLj) — (u . V)(mj‘ + mj)HLp(jXQ) ,

L,(JxQ)

| (i + 100)) = G (o + 7))

< C|T‘T H(mv = Ty, Me = N, My — )HOEZ J)x0Ez(J)xoEz(J) *
The constant C' > 0 is independent of J < J; again. This implies
HKm(mvv Me, m?‘) - Km (nva Ne, nT)HO]EZ )XOEZ(J)XOEZ(j)
< C|J|TC|| (mv - nva Me — nc, my — )HOEZ )onz(j)on;(j)7 (4.3.14)

for (M, Me, M), (7w, i, y) € oEZ(J) x oE5(J) x oE5(J) that satisfy Hm”||oE§(j) +
el + 170 sy < 8 a0 [l sy + el + el 7y < 0. Here,
- . -
C 1= suptloLn | o7y xorf Py o ) 0BTy x5 (Dxomzy T S 1
Finally, we have
||Km(07070)“01€§( J)xoBz(J)xoEz(J) = < C|N(my, mg, my)| oF D (T xoF L () xoF ) F ()

< Clwl g, (7xays —F—0 0
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where
—(u- V)mE + Seu(mi, me) = Sea(my, my) !
w = —(u-V)mg + Sea(my, mg) — Sac(m) — Ser(mg, my)
—(u-V)my + Sac(mg) + Ser(mg,my) — Sew(my, my) + pimeB -V(pmmy)
In summary, this implies
| Ko (10, T, 172) |2 (7)o B3 (1) oz () < CITITC8 + Cllwlp, (7 qys: (4.3.15)

for (mvvmme) € OE;(j) x OEg(j) x OE;)(j)7 H(mvvmc?mr)||0E§(j)><oEz(j)><0]E§(j) < 0.

The value v > 0 is constituted by the data and we already set § < 30% Now choose a
J < Jy with T € (0,T1], such that

ClJIc <43
and

- 5
Cllwlg,(7xayp < 5-

Therefore, we obtain

NS,

— - s
”Km(mmmmmc)HoEg(j)xo]Eg(j)onzz)(J_) S 2T 32~ g

by using (4.3.15). Combining this with (4.3.14) we get that K, is a contraction on a
closed ball of radius §. Now, using the Contraction Mapping Principle, Proposition 4.5 is
proven. O

Remark 4.6. For the nonlinear moisture dynamics (7'S.2].J) we could prove the existence
and uniqueness of a solution for arbitrary data, but small time intervals only. This is
due to the nonlinear term

Sep = Con0(m )5 (mys(0 —my))*, €€ (0,1],

which occurs in model (7S.2|.J). This term is not Fréchet differentiable, since (m;F)¢ is
not differentiable, for instance, at zero for £ = % Therefore, we had to fix the solution to
the linearisation of (7°5.2|J) on small time intervals and were thus only able to prove
solvability of (7.5.2|J) for small time intervals.

4.3.3 Proof of Theorem 4.2

Finally we consider the entire system (75]J). By using Propositions 4.3 we obtain the
existence and uniqueness of a local-in-time, strong solution (u,q, ) to (7'S.1|.J). Then,
we obtain a solution (m,, me, m,) to (T7:S.2|J) by using Proposition 4.5 and the solutions
(u,0) obtained from (7S.1|J). Thus, (u,q,8, my, me, m,) is the unique local-in-time,
strong solution to the entire model (7T5|.J).




Conclusions

In this thesis we extend the model on the dynamics of tropical storms of Nolan and
Montgomery [44] to a physically more satisfactory description with the goal of proving
the existence and uniqueness of a solution in a general L,-setting. To make the model
thermodynamically consistent, we adapt the coefficients of the model by Nolan and
Montgomery to the setting considered by Novotny, Ruzicka and Théter [45] and by
coupling this system to nonlinear moisture dynamics as introduced in Hittmeir, Klein, Li
and Titi [27], we are also able to take the humidity into account. The improved model is
of the form

0-0

poru+ p(u-V)u — pAu — AVdivu + aVg = p=5=VF —wes x pu inJ x Q,
div(pu) = 0 in J x ),
000 + p(u - V)0 — podiv(puF) — kA0 = p(u- V)0 — kAD in J x Q,
Ormy + (u-V)my — nyAmy — Sey + Seq = 0 in J x Q,
Orme + (u- V)me — neAme — Seq + Sae + Ser = 0 inJ x Q,
G+ (u DYy — e A~ Spe = Ser + Sep = Yooy Vipmmy) i J xQ,
w-v="hy-v, B“PrDi(u)yv = Pphy onJ xT,
620,60 + 0% = hy onJ xT,
B 0,my + o™ m, = hy onJ xT,
predyme +o"eme = he onJ x 1T,
B o,my +o™m, = h, onJ x1T,

u(0) =ug, 6(0) = 6 in Q

my(0) = my0, Mme(0) = meo, mp(0) = myp in Q.

(T5[J7)

Here, Q € R™ denotes a cylindrical domain and J = (0,T") some time interval. The vector
fields u, 0, m,, m,, m. and the gradient V¢ are unknown quantities. An interesting
aspect of our model is the fact that all coefficients are assumed to be variable, in order
to fit both the setting of Nolan and Montgomery and the setting of Novotny, Ruzicka
and Théter. The main focus of this thesis is the proof of solvability of (7S|.J). On that
account, we use a linearisation argument to obtain five uncoupled systems: the Stokes
equations with free slip boundary conditions and four parabolic systems with Robin
boundary conditions. All these systems are defined on cylindrical domains and have
variable coefficients.

In Chapter 2 we prove maximal L,-regularity for parabolic problems with Robin boundary
conditions and variable coefficients on cylindrical domains for the cases 1 < p < 00 and
p # 3. In the same chapter, we prove maximal L,-regularity for parabolic problems with
Neumann-Dirichlet boundary conditions, perfect slip and free slip boundary conditions
forl<p<ooandpé¢ {%,2,3}. We have to exclude the cases of p = %, p=2andp=3,
because we allow for inhomogeneous boundary conditions. To prove maximal regularity
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for parabolic problems with inhomogeneous boundary conditions we use the retraction
property of trace operators with respect to Robin boundary conditions, Neumann-Dirichlet
boundary conditions, perfect slip and free slip boundary conditions, which was shown
in Section 1.5. Our method does not provide the cases p = %, p =2 and p = 3, which
are the critical values for the trace spaces, the way it provides the cases 1 < p < o0 with
pé¢{3,2,3}.

In Chapter 3 we are able to prove maximal L,-regularity of the Stokes equations with free
slip boundary conditions and variable coefficients on cylindrical domains for 1 < p < o
and p ¢ {%, 2, 3}. For that purpose, we use the maximal L,-regularity of the Stokes
equations with perfect slip boundary conditions, which is shown earlier in that chapter. By
applying a localisation argument similar to the one used in Denk, Hieber and Priiss, and
using maximal L,-regularity of parabolic problems with perfect slip boundary conditions
we show maximal Ly-regularity of the Stokes equations with perfect slip boundary
conditions for 1 < p < o0 and p ¢ {%, 2,3}. For the same reason as mentioned above, we
had to exclude the cases p € {%, 2, 3}.

Using the results of Chapters 2 and 3, we are able to show maximal L,-regularity for
the linearisation of the model (TS|J) for 1 < p < o0 and p ¢ {3,2,3} in Chapter 4. In
order to prove the existence and uniqueness of a solution to the entire model (7S|.J), we
split it into a system (7°S.1|J) containing u, ¢ and 6, and a system (7'S.2|.J) containing
m,, m, and m.. The existence and uniqueness of a solution to (7'S.1]J) are shown for
the limiting cases of arbitrary data and small time intervals, as well as for arbitrary
time intervals and small data. For the nonlinear moisture dynamics (7'5.2|J) we prove
the existence and uniqueness of a solution for arbitrary data, but small time intervals
only. By proving existence and uniqueness of a solution to (7'5.2]J) we also have to set

p > ”T” for the integrability parameter. This is because we use the embedding

W2 2/P(Q) < BUC(Q) — C(),

which is only valid for p > "T”, because of Sobolev’s embedding theorem, where n € N

denotes the dimension in the spatial direction. We need the embedding into C(Q) and

thus, the restriction p > ”T”, because the initial data of the rain water mixing ratio

has to be strictly positive. Using the solvability of (7'S.1]|J) and (7S.2]J) we then infer
existence and uniqueness of a local-in-time, strong solution to (7'S|.J) on cylindrical
n+2

domains for 5= < p < oo with p ¢ {%, 2, 3} and small time intervals.

Investigations of the behaviour of (7'S|.J) on different domains and its solvability for
arbitrary time intervals and small data are left for future research. Moreover, the stability
of the model is an interesting aspect for further analyses, as it plays a major role for
numerical considerations.




Contributions

The content of this thesis is based on a joint work with Jiirgen Saal and Matthias Kohne.
The essential parts will be published in [33]. All authors contributed equally to [33].

I proved that parabolic problems with constant coefficients in cylindrical domains (Chap-
ter 2), as well as that Stokes equations with variable coefficients in cylindrical domains
(Chapter 3) have the property of maximal regularity.

The results concerning the maximal regularity of elliptic operators in cylindrical domains
(Chapter 2) and the additional regularity of the Helmholtz-projection (Chapter 1) were
developed by Matthias Kéhne and me. The proof of the retraction property for a trace
operator with respect to perfect slip boundary conditions in Chapter 1 goes back to lively
discussions amongst Jiirgen Saal, Matthias Kéhne and me. Also the development of a
model describing the dynamics of tropical storms (Chapter 4), which is based on already
existing models, goes back to a number of working session of these three. I implemented
the proof of solvability to this model and the proof concerning the retraction property of
the aforementioned trace operator.

I created the figures on page 19 and on page 38 of this thesis using TikZ. The PNGs of
the tornadoes next to each page number were created from the GIF [13].







Bibliography

1]

H. Abels. “Nonstationary Stokes system with variable viscosity in bounded and
unbounded domains”. In: Discrete & Continuous Dynamical Systems-S 3.2 (2010),
p. 141.

H. Abels and Y. Terasawa. “On Stokes operators with variable viscosity in bounded
and unbounded domains”. In: Mathematische Annalen 344.2 (2009), pp. 381-429.

H. Abels and J. Weber. “Local well-posedness of a quasi-incompressible two-phase
flow”. In: Journal of Evolution Equations (2020), pp. 1-26.

R. A. Adams. Sobolev spaces. Academic Press, 1975.

I. Agricola and T. Friedrich. Vektoranalysis: Differentialformen in Analysis, Ge-
ometrie und Physik. Springer-Verlag, 2010.

H. Amann. Linear and Quasilinear Parabolic Problems. Volume I: Abstract Linear
Theory. Monographs in Mathematics. Vol. 89. Birkduser, 1995.

H. Amann. “Operator-valued Fourier multipliers, vector-valued Besov spaces, and
applications”. In: Mathematische nachrichten 186.1 (1997), pp. 5-56.

H. Amann. Anisotropic function spaces and maximal reqularity for parabolic prob-
lems. Part 1. Vol. 6. Matfyzpress, 2010.

BBC. Cyclone Idai: Scores more deaths reported in Mozambique. URL: https :
//www.bbc.com/news/world-africa-47678743 (visited on 05/23/2021).

J. Bergh and J. Lofstrom. Interpolation spaces: an introduction. Vol. 223. Springer
Science & Business Media, 2012.

W. Borchers and H. Sohr. “On the semigroup of the Stokes operator for exterior
domains in Lg-spaces”. In: Mathematische Zeitschrift 196.3 (1987), pp. 415-425.

D. Bothe, M. Kéhne, S. Maier, and J. Saal. “Global strong solutions for a class
of heterogeneous catalysis models”. In: Journal of Mathematical Analysis and
Applications 445.1 (2017), pp. 677-709.

clipartbest.com. tornado. URL: http://www.clipartbest.com/clipart-KijoRbayT
(visited on 06/22/2021).

CNN. Typhoon Haiyan death toll tops 6,000 in the Philippines. URL: https://
edition.cnn.com/2013/12/13/world/asia/philippines-typhoon-haiyan/
index.html (visited on 05/23/2021).

R. Denk, M. Hieber, and J. Priiss. R -boundedness, Fourier multipliers and problems
of elliptic and parabolic type. Vol. 166. 788. American Mathematical Soc., 2003.

R. Denk and M. Kaip. General parabolic mized order systems in L, and applications.
Springer, 2013.

R. Denk and T. Nau. “Discrete Fourier multipliers and cylindrical boundary-value
problems”. In: Proceedings of the Royal Society of Edinburgh Section A: Mathematics
143.6 (2013), pp. 1163-1183.




Bibliography

(18] R. Denk, J. Priiss, and R. Zacher. “Maximal L,-regularity of parabolic problems
with boundary dynamics of relaxation type”. In: Journal of Functional Analysis
255.11 (2008), pp. 3149-3187.

[19] P. Deuring. “The resolvent problem for the Stokes system in exterior domains:
an elementary approach”. In: Mathematical methods in the applied sciences 13.4
(1990), pp. 335-349.

[20] R. Farwig and H. Sohr. “Generalized resolvent estimates for the Stokes system
in bounded and unbounded domains”. In: Journal of the Mathematical Society of
Japan 46.4 (1994), pp. 607-643.

[21] M. Geissert, H. Heck, M. Hieber, and O. Sawada. “Weak Neumann implies Stokes”.
In: Journal fiir die reine und angewandte Mathematik (Crelles Journal) 2012.669
(2012), pp. 75-100.

[22] N. Geographic. Hurricane Katrina, explained. URL: https://www.nationalgeographic.
com/environment/article/hurricane-katrina (visited on 05/23/2021).

[23] Y. Giga. “Analyticity of the semigroup generated by the Stokes operator in L,
spaces”. In: Mathematische Zeitschrift 178.3 (1981), pp. 297-329.

[24] Y. Giga. “The nonstationary Navier-Stokes system with some first order boundary
condition”. In: Proceedings of the Japan Academy, Series A, Mathematical Sciences
58.3 (1982), pp. 101-104.

[25] M. Hieber and J. Saal. “The Stokes equation in the LP-setting: well-posedness
and regularity properties”. In: Handbook of mathematical analysis in mechanics of
viscous fluids 1 (2018), pp. 117-206.

[26] K. A. Hill and G. M. Lackmann. “Influence of environmental humidity on tropical
cyclone size”. In: Monthly Weather Review 137.10 (2009), pp. 3294-3315.

[27] S. Hittmeir, R. Klein, J. Li, and E. S. Titi. “Global well-posedness for passively
transported nonlinear moisture dynamics with phase changes”. In: Nonlinearity
30.10 (2017), pp. 3676-3718.

[28] S. Hittmeir, R. Klein, J. Li, and E. S. Titi. “Global well-posedness for the primi-
tive equations coupled to nonlinear moisture dynamics with phase changes”. In:
Nonlinearity 33.7 (2020), p. 3206.

[29] P. Hobus and J. Saal. “Stokes and Navier-Stokes equations subject to partial slip
on uniform C%'-domains in Lg-spaces”. In: Journal of Differential Equations 284
(2021), pp. 374-432.

[30] T. Hytonen, J. Van Neerven, M. Veraar, and L. Weis. Analysis in Banach spaces.
Vol. I. Martingales and Littlewood-Paley Theory. Vol. 12. Springer, 2016.

[31] N. J. Kalton and L. Weis. “The H*-calculus and sums of closed operators”. In:
Mathematische Annalen 319.2 (2001), pp. 319-346.

[32] M. Kéhne. L,-Theory for Incompressible Newtonian Flows. Springer, 2013.

[33] M. Kohne, E. Reichwein, and J. Saal. On the analysis of a model on the mechanisms
of tropical storms coupled to moisture dynamics. In preparation, 2021.

[34] M. Koéhne and J. Saal. “Multiplication in Vector-Valued Anisotropic Function
Spaces and Applications to Non-Linear Partial Differential Equations”. In: arXiv
preprint arXiv:1708.08593 (2017).

[35] K. Konigsberger. Analysis 2. Springer-Verlag, 2013.




Bibliography

P. C. Kunstmann and L. Weis. “Maximal L,-regularity for Parabolic Equations,
Fourier Multiplier Theorems and H®-functional Calculus”. In: Functional analytic
methods for evolution equations. Springer, 2004, pp. 65-311.

J. Marschall. “The trace of Sobolev-Slobodeckij spaces on Lipschitz domains”. In:
manuscripta mathematica 58.1 (1987), pp. 47-65.

T. Miyakawa. “The LP approach to the Navier-Stokes equations with the Neumann
boundary condition”. In: Hiroshima Math. J 10.3 (1980), pp. 517-537.

T. Nau. LP-Theory of Cylindrical Boundary Value Problems: An Operator-Valued
Fourier Multiplier and Functional Calculus Approach. Springer Science & Business
Media, 2012.

T. Nau. “The Laplacian on cylindrical domains”. In: Integral Equations and Operator
Theory 75.3 (2013), pp. 409-431.

T. Nau. “The LP-Helmholtz projection in finite cylinders”. In: Czechoslovak Mathe-
matical Journal 65.1 (2015), pp. 119-134.

T. Nau and J. Saal. “R-sectoriality of cylindrical boundary value problems”. In:
Parabolic problems. Springer, 2011, pp. 479-505.

T. Nau and J. Saal. “H®-Calculus for cylindrical boundary value problems”. In:
Advances in Differential Equations 17.7/8 (2012), pp. 767-800.

D. S. Nolan and M. T. Montgomery. “Nonhydrostatic, three-dimensional perturba-
tions to balanced, hurricane-like vortices. Part I: Linearized formulation, stability,
and evolution”. In: Journal of the atmospheric sciences 59.21 (2002), pp. 2989-3020.

A. Novotny, M. Ruzicka, and G. Théter. “Rigorous derivation of the anelastic
approximation to the Oberbeck—Boussinesq equations”. In: Asymptotic Analysis
75.1-2 (2011), pp. 93-123.

J. Priiss and G. Simonett. Moving interfaces and quasilinear parabolic evolution
equations. Vol. 105. Springer, 2016.

J. Saal. “Robin Boundary Conditions and Bounded H*-Calculus for the Stokes
Operator”. In: PhD thesis, TU Darmstadt (2003).

J. Saal. “Stokes and Navier—Stokes equations with Robin boundary conditions in a
half-space”. In: Journal of Mathematical Fluid Mechanics 8.2 (2006), pp. 211-241.

J. Saal. “Wellposedness of the tornado-hurricane equations”. In: Discrete & Con-
tinuous Dynamical Systems-A 26.2 (2010), p. 649.

Y. Shibata and R. Shimada. “On a generalized resolvent estimate for the Stokes
system with Robin boundary condition”. In: Journal of the Mathematical Society
of Japan 59.2 (2007), pp. 469-519.

Y. Shibata and S. Shimizu. “L,~L, maximal regularity of the Neumann problem
for the Stokes equations in a bounded domain”. In: Asymptotic Analysis and
Singularities—Hyperbolic and dispersive PDFEs and fluid mechanics. Mathematical
Society of Japan. 2007, pp. 349-362.

R. Shimada. “On the L,-L, maximal regularity for Stokes equations with Robin
boundary condition in a bounded domain”. In: Mathematical methods in the applied
sciences 30.3 (2007), pp. 257-289.

P. E. Sobolevskii. “Fractional powers of coercive-positive sums of operators”. In:
Siberian Mathematical Journal 18.3 (1977), pp. 454-469.




Bibliography

H. Triebel. Interpolation theory, function spaces, differential operators. 1978.
H. Triebel. Theory of Function Spaces II1. Birkh&user, 2006.

L. Wu, H. Su, R. G. Fovell, T. J. Dunkerton, Z. Wang, and B. H. Kahn. “Impact
of environmental moisture on tropical cyclone intensification”. In: Atmospheric

Chemistry and Physics 15.24 (2015), pp. 14041-14053.
K. Yosida. Functional Analysis. Reprint of the 6th Edition 1980. 1995.

F. Zimmermann. “On vector-valued Fourier multiplier theorems”. In: Studia Math.
93 (1989), pp. 201-222.




Eidesstattliche Versicherung

Ich versichere an Eides Statt, dass die Dissertation von mir selbststéndig und ohne
unzuléssige fremde Hilfe unter Beachtung der ,Grundséitze zur Sicherung guter wis-
senschaftlicher Praxis an der Heinrich-Heine-Universitét Diisseldorf” erstellt worden ist.

Diisseldorf,



