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Abstract

MicroRNAs (miRNAs) play an important role in gene regulation by interacting with
messenger RNA (mRNA) sites. To detect these binding sites on the mRNA, biochemi-
cal methods such as Photactivatable-Ribonucleoside-Enhanced Crosslinking and Im-
munoprecipitation (PAR-CLIP) can be conducted. The PAR-CLIP method introduces
T-to-C substitutions at sequenced cDNA that help to distinguish between binding site
positions in the PAR-CLIP data and noise. T-to-C substitutions could, however, also oc-
cur due to other reasons, such as SNPs or mismatches. Most of the few existing statisti-
cal procedures for detecting binding sites in PAR-CLIP data do not account for types of
substitutions other than PAR-CLIP induced substitutions. None of the existing meth-
ods enable the inclusion of additional information that are relevant for the biology of
miRNA binding sites, such as the type of mRNA region that can help to detect binding
sites. Moreover, the focus of existing models lies in detecting binding sites from only

one experiment.

To detect binding sites, BayMADP, a Bayesian hierarchical mixture model taking other
sources of substitutions into account, will be presented in this thesis. This allows
the incorporation of additional information as well as a structure for reflecting de-
pendencies of substitution positions very close to each other. The incorporation of
additional information and neighborhood dependencies allows a better detection of
miRNA-binding sites. Additionally, it also offers a better understanding of the biology
of binding sites. Moreover, a method to combine the results of several PAR-CLIP ex-
periments is developed to state the prediction of binding sites more precisely. Finally,
BayMAP is compared to existing models in applications to real PAR-CLIP data sets as

well as simulated data sets.
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Introduction and Motivation

MicroRNAs (miRNAs) are non-coding RNAs in the length of about 22 nucleotides (nt)
which play an important role in gene regulation [4]. With the aid of Argonaute pro-
teins (Ago), miRNAs bind to target messenger RNA (mRNA) and thereby repress trans-
lation and destabilize mRNA [45]. Over the last years, their involvment in cancer has
been studied (see, e.g.,[1, 16, 52]). Some miRNAs have been shown to be functional in
leukemia of lymphoid origin in adults [34] as well as of myeloid origin in adults [21]
and children [13]. Identification of Ago-binding sites on target mRNA is crucial for un-
derstanding miRNA functions. MiRNAs, mRNAs and their function will be discussed

in Section 2.1.

Crosslinking and immunoprecipitation (CLIP) methods followed by high-throughput
sequencing [24, 32, 38] is currently the standard method for the identification of tar-
get mRNAs. Gene regions that bind to a protein of interest, here Ago, can be identi-
fied or isolated by using a protein specific antibody. Photoactivatable-Ribonucleoside-
Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) is one of these CLIP pro-
cedures and was initially developed by Hafner et al. [24]. PAR-CLIP not only achieves
a high efficacy but also induces a transition of thymine to cytosine (T-to-C) in the se-

quenced complementary DNA (cDNA). PAR-CLIP will be discussed in Section 2.2.

PAR-CLIP can identify genomic binding sites with high efficacy, but due to limited
specificity, a secondary differentiation of real binding sites and noise is necessary. For
the purpose of the distinction of real binding sites and noise via a statistical method,

the PAR-CLIP induced T-to-C substitutions can be helpful. However, not all observed
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T-to-C substitutions are due to PAR-CLIP. They can, for example, also be single nu-
cleotide polymorphisms (SNPs), that are variations in the genome. In addition, not all
reads that overlap a T position within a binding site show the specific T-to-C substitu-
tion. Very low and very high substitution rates and therefore positions, where either
nearly all or nearly none of the observed reads contain the specific T-to-C substitution,
are often due to other reasons than induction by PAR-CLIP [28, 49]. Very low substitu-
tion rates may occur due to sequencing errors or mismatches. Very high substitution
rates can, e.g., result from homozygous SNPs or RNA highly similar, but not identi-
cal to the mapped reference genome [20]. The purpose of this thesis is to distinguish
between PAR-CLIP induced T-to-C substitution positions and non-PAR-CLIP induced

ones, so that binding sites are identified.

Only a few methods to analyze PAR-CLIP data currently exist. Hafner et al. [24] devel-
oped the PAR-CLIP method and discovered the T-to-C substitutions that are typical for
this method. They were also the first to propose a method to detect binding sites by
considering T-to-C substitutions. In their work, a genomic region is declared as a bind-
ing site, if at least five overlapping reads are observed, of which at least 20% consist of
T-to-C substitutions. A window of 41 nucleotides is then centered around the position
with the most frequent T-to-C substitutions. This method is very easy to apply but with
choices more or less arbitrary so that there may be many findings of false positives or
false negatives. Additionally, this simple approach would favor positions, like SNPs,

with substitution rates close to 100%.

PARalyzer developed by Corcoran et al. [12] is currently the most cited and the first
statistical tool for finding binding sites in PAR-CLIP data. This method uses a kernel
density estimation approach, where the estimated density for T-to-C substitution rates
is compared to the estimated density for non-substitutions, i.e. T-to-T. This tool will be

described in more detail in Section 4.1.

Jaskiewicz et al. [28] developed two distinct tools for the identification of binding sites
that were available on the website CLIPZ [43]. However, the website is no longer main-
tained. One tool is based on enrichment in relation to mRNA-seq and one on T-to-C

substitutions. The first method relies on the idea that binding sites with a high affin-




ity to Ago have a higher probability to crosslink with Ago and thus a higher number
of reads. Nevertheless, the number of reads also depends on the abundance of the
mRNA. Therefore, they take the number of PAR-CLIP reads into account in relation to
the number of expected reads, i.e. expected mRNA reads of sequencing without prior

crosslinking and immunoprecipitation.

For the second proposed method Jaskiewicz et al. [28] suggest that the number of T-to-
C substitutions can be modeled by a binomial distribution. To distinguish PAR-CLIP
induced substitution positions from positions with mismatches or SNPs, they suppose
that the probability of having a method-induced substitution position is high if a po-
sition’s substitution rate is probably within a range of a prespecified upper and lower
bound. This range, however, has to be defined in advance, e.g., by considering a trusted
set of binding sites, like a known set of binding sites which have a high coverage in the
data set. Their second method takes into account the specific T-to-C substitutions but

depends on the choices for the trusted data set.

The wavClusteR method, proposed by Sievers et al. [49], enhanced by Comoglio et al.
[11] and published at the same time as the methods by Jaskiewicz et al. [28], is based
on the same idea as the previous method of ranking sites by T-to-C substitutions. They
also presume that for one T-to-C substitution position, the number of substitutions fol-
lows a binomial distribution. Moreover, they also consider information from types of
substitutions other than T-to-C to better distinguish between PAR-CLIP induced sub-
stitutions and other substitutions. For this purpose, they propose a two-component

mixture model, that will be described in more detail in Section 4.2.

BMix, developed by Golumbeanu et al. [20] is another mixture model, that takes into
account low- and high-frequency errors. BMix is based on the idea of wavClusteR but
proposes a three-component mixture model. They additionally assume existence of
dependencies between the different substitution probabilities of each mixture com-
ponent. A mismatch or sequencing error can for example occur at positions that are
supposed to be SNPs, so that the probability of observing a substitution at a SNP po-
sition depends on the probability of observing a mismatch. BMix is described in more

detail in Section 4.3.




STAMMP developed by Torkler [51] is also a mixture model based on the same idea as
wavClusteR [49]. The distribution of the number of substitutions due to mismatches or
SNPs, is estimated by a two-component mixture model taking into account all substi-
tutions except T-to-C. p-values for T-to-C substitution positions are then calculated for
the null hypothesis that T-to-C substitutions are caused by errors. However, p-values
are calculated in such a way, that they favor SNP positions to be declared as PAR-CLIP

induced.

Additionally, there are a handfull of other methods. PARma developed by Erhard et al.
[15] is a method, where clusters are built via overlapping reads in a similar manner to
Hafner et al. [24], but allowing clusters to overlap. They also analyze T-to-C substitu-
tions, but mainly focus on detection of miRNAs binding to detected clusters. PIPE-
CLIP proposed by Chen et al. [8] detects enriched clusters via a zero truncated nega-
tive binomial model and then takes into account the substitution rate. MiClip by Wang
et al. [53] and a method by Yun et al. [55] are based on hidden marcov models, where

T-to-C substitutions are also taken into account.

Most of the described methods consider the specific T-to-C substitutions observed in
PAR-CLIP data. Only few of them account not only for mismatches but also for SNPs for
the non-method-induced substitutions (in particular CLIPZ, wavClusteR and BMix).
None of the methods allow to incorporate additional information that can also be help-
ful for distinguishing PAR-CLIP induced T-to-C substitutions from non-PAR-CLIP in-

duced ones.

It is, for example, well known that binding sites occur most often in the 3’'UTR of the
mRNA than in the CDS and than in the 5’UTR [5]. This information could be consid-
ered by using a Bayesian framework. wavClusteR is already set in a Bayesian context.
However, a posterior density for the substitution rate is computed for each position
separately before a mean of all positions’ posteriors is calculated. This means that the
posterior for a substitution rate highly depends on the total number of reads for the
considered position whereas the estimation of the substitution rate’s density could be

much more precise by considering all positions simultaneously.




Here, a Bayesian method will be proposed, where all positions are considered simul-
taneously for the computation of the posterior density. This method distinguishes, in
a similar way as BMix and wavCluster, between method-induced and non-method-
induced T-to-C substitution positions and allows additionally for supplementary in-
formation, such as the 3’'UTR, the CDS and the 5’UTR or other variables, that may be
important for binding sites. Dependencies between the different substitution proba-
bilities as proposed by BMix are also considered to provide a better estimation and a

better distinction.

In this thesis a three-component mixture model fulfilling the above requirements will
be presented and tested for the capability to distinguish between method-induced T-
to-C substitution positions, mismatches and SNPs via a Bayesian approach. There-
fore, Section 3 gives a theoretical background for Bayesian data analysis adapted to the
requirements stated above, i.e. a mixture model that allows the incorporation of ad-
ditional information. We already presented this method under the name of BayMAP
(Bayesian hierarchical model for the analysis of PAR-CLIP data) in Huessler et al. [27].

The model and its results are represented as a main part of this thesis.

However, in Huessler et al. [27] it is assumed that every position is independent even
if positions that are very close to each other are probably on the same binding site
and therefore not independent. To capture this structure, a derivative of BayMAP will
also be presented in this thesis. The model of BayMAP as published [27], here called
BayMAP 1.0, will ne shown in Section 5.1. The advanced model of BayMABP here called

BayMAP 2.0, will be presented in Section 5.3.

BayMAP as well as several other models, including wavClusteR and BMix, is a method
that is position based. This means that for each T-to-C substitution position, it decides
if the substitutions are probably due to the PAR-CLIP method and if the substitution
position therefore probably lies on a binding site. It is, however, also of interest not
only if the position lies on a binding site but also which region spans the binding site.
Hence, in Section 4, it will be described how binding site regions are identified in wav-
ClusteR and BMix. In Section 5.2, a new method of identifying binding site regions will

be presented.




None of the above presented methods for the analysis of PAR-CLIP data combines in-
formation from multiple PAR-CLIP data sets. The information of a PAR-CLIP data set is
only based on one sample in one experiment. In order to decide if a position is a gen-
eral ubiquitous binding site position, it would however, improve the prediction if data
from several samples were used. In Section 5.4 a method combining the information of

several PAR-CLIP data sets or experimental replicates using BayMAP will be presented.

In order to validate the model, an extensive simulation study is executed and presented
in Section 6. Moreover, BayMAP 1.0 and BayMAP 2.0 are applied to several publicly
available PAR-CLIP data sets. For PAR-CLIP data sets that were created under the same
experimental conditions, the information of these data sets is combined. Results are
then compared to other methods for the analysis of PAR-CLIP data (Section 7). Finally,

in Section 8 results are discussed.
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Biological Background

The aim is to detect miRNA binding sites on the mRNA, as the interaction between
miRNAs and mRNAs play an important role in gene regulation. In this section, first
the interaction itself will be explained. Afterwards, a method that helps to detect these
interactions on the mRNA, the PAR-CLIP method, will be presented. Finally, PAR-CLIP

data will be shown in a descriptive way.

2.1 microRNA-mRNA interactions

To understand the miRNA-mRNA interaction, first a general genomic background will
be given (Section 2.1.1) before the interaction will be described in more detail (Section

2.1.2).

2.1.1 Genomic background

The human genetic information is stored in every cell of the human body. Every cell
consists usually of 23 pairs of chromosomes that were passed on by the parents. Fe-
males have a pair of the chromosomes 1 to 22 as well as two X chromosomes whereas
males carry an X and a Y chromosome instead of the two X chromosomes [48]. Each
chromosome forms a double helix by two strands of coiled deoxyribonucleic acid (DNA).
The double helix consists of two sugar phosphate backbones and inward directed lad-
ders of nucleotides, that is adenine (A), cytosine (C), guanine (G) or thymine (T). The
two strands of DNA are bound together, where A is always bound to T and C always to

G. It is therefore sufficient to know one of the two DNA strands to describe the other
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one [48].

The DNA of two individual human subjects are more than 99% identical. Nevertheless,
millions of bases with genetic variations remain [48]. The most common genetic vari-
ation is the single nucleotide polymorphism (SNP). A SNP is a variation of a DNA base
that occurs in more than 1% of the population [48]. If for example C is observed for a
specific DNA position in the majority of the population, but A is observed in a minority

but not negligible part of the population, the variation is called SNP.

Parts of the DNA are copied into ribonucleic acid (RNA) by unwinding the double helix
and then synthesizing complementary bases to the single DNA strand. In contrary to
DNA, in RNA, uracil (U) is the complementary base pair to A instead of T [3]. When
knowing the RNA, one can conclude from which nucleotide bases in the DNA the RNA

was copied from. The process of copying the DNA into RNA is called transcription.

The RNA molecules can be divided into protein coding and non-coding RNA. Mes-
senger RNAs (mRNAs) are protein coding. The segments of the DNA that encode for
mRNAs are called genes. The information of the mRNA is translated into proteins. The
process from the mRNA to a protein is therefore called translation. These proteins are

essential for the cell structure and cellular activities [3].

Beside the protein coding RNA, i.e. mRNA, several types of non-coding RNA with dif-
ferent functions exist. This includes microRNAs (miRNAs). MiRNAs are responsible for
gene expression regulation, i.e. the regulation of translation and the stability of mRNAs
[6]. Therefore, over- or underexpression of miRNAs can be linked to diseases such as

cancer [52].

2.1.2 mRNAs, microRNAs and their interaction

Before an mRNA can be translated into proteins, the primary RNA transcript is mod-
ified [3]. The two ends of an mRNA are called 5’ end and 3’ end. The primary mRNA
contains two untranslated regions (UTR) at the two ends, the 5° UTR and the 3’ UTR. In
between the ends, there are exons and introns, where only exons are coding sequences

(CDS), i.e. sequences that are translated into proteins. In the modification process of
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s su [ | | intron | | | Bon | ] | | | 3°UTR | 3

5’| 5‘cap | 5‘UTR ‘ Coding sequence (CDS) | 3‘UTR | AAAAAAAAA... ‘3’

Figure 2.1: The process of primary mRNA to mature mRNA

the primary RNA transcript, introns are deleted by a process called splicing. At the 5’
end the 5’ cap is added and at the 3’ end the poly(A)-tail, a long RNA tail only contain-
ing adenine bases [3]. The result is the mature mRNA, where the exons are combined

to the CDS in the middle of the mRNA (see Figure 2.1).

However, the translation into proteins, and therefore the levels of its protein product,
also has to be regulated [3]. One important way of regulation is processed by the inter-

action of the mRNA with miRNAs.

MiRNAs are very small RNA sequences in the length of around 22 nucleotides (nt).
They arise out of transcripts in the form of a hairpin, i.e. transcripts that fold in on
themselves [4]. In a similar way to mRNAs, the primary miRNA is modified by splic-
ing until only the 22 nt long mature miRNA remains. The mature miRNA is bound
by Argonaute (Ago) proteins. The resulting complex is then termed an RNA-induced
silencing complex (RISC). This complex can bind to target mRNA in a partial comple-
mentary fashion, which leads to destabilization, degradation or translational inhibi-
tion [54]. Only one Ago protein, Ago2, can directly cleave mRNA upon fully comple-

mentary binding to its target mRNA [3].

For the interaction between miRNAs and their target mRNA, one can distinguish be-
tween beneficial properties of the miRNA and the mRNA [5] as described in the follow-

ing.

On the mRNA, the binding occurs most often on the 3'UTR [5]. However, it also occurs
on the CDS and even less frequent on the 5° UTR. The effectiveness of the binding, i.e.
the power of inhibiting protein translation, is higher, the closer the binding site is to the
poly(A)-tail. In regions on the mRNA with a lot of AU bases (AU-rich content) the in-

teractions are also more effective [5]. It is also possible to have more than one binding
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site on each mRNA even in close proximity. Those can exhibit concerted function.

In general, miRNAs, that are conserved across species (e.g., human, mouse, rat, dog,
and chicken) have more target sites than unconserved ones [36]. Moreover, comple-
mentary base pairing (Watson-Crick pairing) is essential for binding of miRNA to mRNA.
In binding sites, the Watson-Crick pairing most often comprises positions 2—7 of the 5’
end of the miRNA, the so called seed [5]. A canonical target has complementary base
pairing with the miRNA on positions 2 — 7 plus an adenine base at position 1 or on
positions 2 — 8 or on positions 2 — 8 plus an adenine base at position 1 [5]. There are,
however, many different possibilities for the pairing, e.g., only on the seed or on posi-
tions 3 — 8 or a pairing with one mismatch position on the seed. Additional Watson-
Crick pairing on positions 13 — 16 with at least three pairs can increase efficacy of the

binding [5].

2.2 PAR-CLIP data

The biochemical method PAR-CLIP will be presented, as this method allows the iden-
tification of miRNA targets on the mRNA. Not only the PAR-CLIP method itself will be
described in detail (Section 2.2.1), but also the process of preparing the data after the
PAR-CLIP experiment (Section 2.2.2), so that further analyses can be conducted with
the preprocessed data. Moreover, a descriptive analysis of the considered PAR-CLIP
data sets will be realized in Section 2.2.3, as the descriptive analysis helps to under-

stand the PAR-CLIP data and how the data could be used to detect binding sites.

2.2.1 Targetrecognition - PAR-CLIP

Several bioinformatics tools for the prediction of target mRNAs for a specific miRNA
already exist, and work by looking for Watson-Crick pairing and other conventional
properties. One of the most commonly used target prediction tools is TargetScan [2].
These tools, however, predict hundreds of mRNAs for each prespecified miRNA. Fur-
thermore, they primarily predict canonical and conserved targets on the 3’'UTR. How-
ever, other targets also exist [10, 29]. Instead of predicting targets, experimental ap-

proaches can be used in order to identify miRNA targets.
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MiRNAs build a RISC complex with one of the four human Ago protein so that they can
bind to the target mRNA [46]. To detect the binding sites on the mRNA, immunopre-
cipitation methods can be employed. These biochemical methods use protein spe-
cific antibodies, so that the protein complex can be isolated [7]. To identify bind-
ing sites on mRNAs, one can therefore use Ago-specific antibodies in order to isolate
the RISC complex with the associated mRNA. Crosslinking and Immunoprecipitation
(CLIP) methods expose the cultured cells to ultraviolet light (UV) prior to immunopre-
cipitation. UV crosslinking promotes covalent bonds between proteins and RNA, sta-
bilizing the complex during the experimental isolation procedure [9]. The crosslink-
ing can be enhanced by incorporation of photoreactive ribonucleoside (i.e. a nucle-
obase combined with a ribose sugar) analogs into the cells, namely 4-thiouridine (4-
SU) or 6-thioguanosine (6-SG). Those are incorporated into mRNA instead of a uridine
or guanosine , respectively during transcription. This method, developed by Hafner
etal. [24] and called PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced Crosslink-
ing and Immunoprecipitation), achieves a high efficacy of crosslinked RNA and is there-

fore discussed in detail in this thesis.

Once crosslinking (in the cell) and immunoprecipitation (after lysis, i.e. after break-
ing down the cell) is applied, several steps have to be fulfilled. One is specific to the
bound RNA, so that the ends of a bound RNA are digested and the background of
non-crosslinked fragments reduced. Proteins are also degraded. The next step tar-
gets the remaining mRNAs, i.e. the mRNAs that are bound to Ago, by sequencing these
fragments, i.e. determining the sequence of nucleotides of the RNA fragments. The
RNA sequences cannot be sequenced directly, but have to be transformed and mul-
tiplied. First, adapters are added to the RNA fragments, then the RNA fragments are
transcribed into complementary DNA (cDNA), as this cDNA can be amplified by Poly-
merase Chain Reaction (PCR), that is a method for generating DNA copies. Finally,
these cDNA copies are sequenced. The final collection of these cDNA copies is called
the cDNA library. The sequenced cDNA can then be aligned to the genome so that the
RNA fragments, i.e. the binding sites of the mRNA, can be identified and associated
with their genomic positions. The observed sequences are then called reads and one

can calculate how many reads a genomic position has.
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However, not all of the background or noise, i.e. fragments that were not bound to Ago,
can be removed from the sample. It is therefore important to distinguish between noise
and binding sites. The PAR-CLIP method not only has a higher accuracy in compari-
son to other CLIP methods by the incorporation of 4-SU (or 6-SG) but also induces a
transition of thymine to cytosine (T-to-C) in the sequenced cDNA in 4-SU crosslinked
samples (or guanine to adenine (G-to-A) in the case of 6-SG). This is introduced by
the reverse transcriptase enzyme in the process of cDNA library generation. The pres-
ence of substitutions in crosslinked fragments, and therefore on binding sites, can aid
to distinguish between noise and real binding sites. In the following, only 4-SU, and
therefore T-to-C substitutions, are considered, as it is known for a higher efficacy than

6-SG and is, therefore, typically used [24].

2.2.2 Data preprocessing

Five publicly available PAR-CLIP data sets from three different studies are considered
for further analyses [27]. Two data sets are from Kishore et al. [30] with SRA accession
numbers SRR189784 and SRR189785 (here called Kishore A and Kishore B), one from
Memczak et al. [41] with SRA accession number SRR650321 (here called Memczak)
and two from Gottwein et al. [22] with SRA accession numbers SRR343336, SRR343337
(here called Gottwein A and Gottwein B). Only data sets with Ago2 as the protein of

interest are chosen, as Ago2 is the most prominent Ago protein for gene silencing.

The two PAR-CLIP experiments by Kishore et al. [30] as well as the experiment by Mem-
czak et al. [41] are conducted with cells from the human embryonic kidney (HEK) 293
cell line. HEK 293 cells are transformed primary cultures of HEK cells [23] that are
widely used, e.g., for protein interaction studies [39] such as PAR-CLIP studies. Kishore
et al. [30] used the HEK 293 cell line in order to compare CLIP with PAR-CLIP. Memczak
et al. [41] analyzed the HEK 293 cell line to investigate if the circular RNA (that is RNA
that forms a loop) CDR1-AS has miRNA binding sites. Gottwein et al. [22] wanted to
analyze the role of miRNAs in primary effusion lymphoma. The two considered PAR-
CLIP experiments from Gottwein et al. [22] are conducted with BC-3 cells, a commonly

used cell line for the analysis of primary effusion lymphoma.
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These data sets cannot be used directly but have to be preprocessed. During cDNA
library preparation for RNA sequencing, adapters are added to the 3’ end of the se-
quences. These adapters have to be removed from the data so that the observed reads
contain only the sequences of interest. Adapters as well as read ends with low base

quality are removed by using the bioinformatical tool cutadapt [40].

For the preprocessing of the data, one also has to decide which reads are discarded
because of an inadequate read length. In wavClusteR and BMix, reads of a minimum
length of 15 nt [49] and 14 nt [20] are considered for the analysis. Due to the crystallized
structure of the RNA silencing complex [44], it can be assumed that at least 14 nt are
well protected by the complex. Shorter reads are most likely degraded RNA fragments
arbitrarily sticking to proteins and were thus considered noise in the data. Therefore,

only reads with a minimum read length of 14 nt are considered.

Once the observed reads are trimmed and small reads discarded, the remaining reads
have to be aligned against a reference genome so that one knows to which genes the
observed reads belong. The PARA-suite aligner developed by Kloetgen et al. [31] ad-
ditionally allows for exon-exon junctions by aligning not only against a genomic ref-
erence but also against a transcriptomic reference. The PARA-suite aligner is based
on BWA [37], and also considers the fact that the substitution probability for T-to-C
substitutions is higher than for the other substitutions in PAR-CLIP data. Reads were
therefore aligned against the reference genome and transcriptome GRCh38.p7 using

PARA-suite.

After alignment, it is, hence, known to which genomic positions each sequenced read
belongs. In Figure 2.2 all reads that are observed in the Memczak data set on chromo-
some 1 from position 23506436 to 23506471 are plotted. One horizontal line represents
one observed read in the figure. On positions 23506446 and 23506460 the reference
genome shows a T, whereas 39% and 33%, respectively, display a T-to-C mutation. For
the positions with a substitution, one can then count the total number of reads, that
cover this position and the number of the observed specific substitutions (e.g., T-to-C

substitutions).
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TC TC

Reads

Frrrrrr1r1r17 11171717 17T 1T T T T T T T T T T T T TTTTTT
23506436 23506442 23506448 23506454 23506460 23506466

Genomic Position (Chromosome 1)

Figure 2.2: Observed reads for two T-to-C substitution positions on Chromosome 1 in the Mem-
czak data set.

Using the wavClusteR package in R [47], all positions with a substitution can be iden-
tified. For every substitution position the total number of observed reads for this po-
sition, the number of substituted reads, the type of substitution, e.g., T-to-C, as well
as the belonging chromosome, the position on the chromosome and the strand of the
chromosome are calculated and stored. For the example in Figure 2.2, the correspond-
ing data is represented in Table 2.1. As the two T-to-C substitution positions are the
only positions with substitutions in this example, the data set only consists of two rows.
Since the DNA has two strands, RNA can be copied from both strands. The two strands
are here represented with the signs + and -. The variable substitution stands for the
substitution type, e.g., T-to-C, but could be another substitution type, too, e.g., A-to-G.
The variable count gives the number of reads that have the substitution at this position.

Coverage is the total number of reads that cover this position.

However, positions with a very small number of observed reads, i.e. coverage, can also

be discarded from the data set because of two reasons. First, these positions are not
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likely to lie on binding sites otherwise they would be observed more often. Second,
the data sets are already very large so that there is probably not an important loss of
information by excluding these positions. This ensures that only positions one is really
interested in are included and the computational analysis of the data will be faster
by excluding low coverage positions. When sequencing depth (i.e. the total number
of sequenced reads) is low it is reasonable to set a lower threshold than for data sets,
where sequencing depth is high. Up to now, there is no universal optimal value for
the minimum coverage for the analysis of PAR-CLIP data sets. Hafner et al. [24] and
Corcoran et al. [12] require a minimum of five reads per read group. Corcoran et al.
[12] argue that this minimum number could be higher for a higher read depth. For the

analyses in wavClusteR [11, 49] a minimum coverage of 20 is taken.

In Table 2.2 the total number of mapped reads to chromosomes 1 to 22, X and Y by the
preprocessing described in this section are displayed. For the data sets of Kishore et al.
[30] and Memczak et al. [41], only positions with at least twenty reads per position are
considered. For the data data sets of Gottwein et al. [22] only positions with at least
five reads were considered, as sequencing depth was much smaller than in the other
data sets. Finally, additional variables, such as the mRNA regions, i.e. 3'UTR, 5’UTR

and CDS, are annotated and added to the data sets.

2.2.3 Descriptive analysis

Figure 2.3 shows the number of substitution positions per substitution type (e.g., T-to-
C) for the first data set from Kishore et al. [30]. It is obvious that T-to-C substitutions are
much more frequent than other types of substitutions. This is not surprising, as T-to-C
substitutions are expected to be enriched in the PAR-CLIP experiment. However, the

other types of substitutions are also observed even if they are not expected to be caused

Table 2.1: Data set for the observed reads in Figure 2.2.

Chromosome Position Strand Substitution Count Coverage

1 23506446 - TC 11 28
1 23506460 - TC 13 39
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Table 2.2: Total number of mapped reads for the five considered data sets.

Kishore A KishoreB Memczak Gottwein A Gottwein B

4,467,026 836,295 3,196,429 172,261 172,778

Number of positions with specific substitution

80000
|

40000 60000
| |

total number of bases

20000
|

OEEDDDDDDDDD

GC CG GA GT AT CA CT AC AG TG TA TC A C G T

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07 2.5e+07 3.0e+07

Figure 2.3: Left panel: Number of substitution positions per substitution type for the Kishore A
data set. Right panel: Total number of nucleotides in all reads.

by the PAR-CLIP experiment. These substitutions could be due to several reasons, for
example errors/mismatches or SNPs. One can therefore conclude, that a (small) part of
the T-to-C substitutions is not induced by the PAR-CLIP experiment. The aim is there-
fore to distinguish between T-to-C substitution positions with substitutions induced
by the PAR-CLIP method and T-to-C substitution positions with substitutions that are

not method-induced.

It is here assumed, that observing positions with substitutions that are not method-
induced, is equally likely for the different bases. However, in the data there seem to
be small differences. It stands out that substitutions with T or A as reference are more
frequent than with G or C (see Figure 2.3 right panel). This can be explained, when
regarding the total number of observed bases in the data set, i.e. the number of all
bases with or without substitution (see Figure 2.3 right panel), where it can be seen

that A and T are more frequent than C and G.

When regarding the number of substitution positions per substitution type for the
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Figure 2.4: Number of substitution positions per substitution type.

other data sets in Figure 2.4, it stands out, that T-to-C substitutions are the most com-
mon substitution positions in all data sets. However, in the two data sets from Got-
twein et al. [22], other substitution types, such as A-to-G, A-to-C or T-to-G are nearly
as frequent as T-to-C substitution positions. As the read depth for those two data sets
is not very high, a minimum coverage of five is applied instead of the twenty that are
used for the other data sets (see Section 2.2.2). Even though this different minimum
coverage is applied, the data sets from Gottwein et al. [22] only consist of around 6,000
substitution positions each, whereas the other data sets consist of around 20, 000 posi-
tions (Kishore B), 40,000 positions (Memczak) and 160, 000 positions (Kishore A) with a

higher threshold. If the threshold for the Gottwein A data set were also a minimum cov-
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Table 2.3: Number of T-to-C substitution positions divided by the total number of substitution
positions.

Kishore A KishoreB Memczak Gottwein A Gottwein B

0.54 0.42 0.32 0.15 0.15

erage of twenty, only around one quarter of the original positions would remain. This
means also, that the data set probably contains more noise due to the small minimum
coverage threshold. This could also explain the higher fraction of non-T-to-C substi-
tution positions. As an example, in the Gottwein A data set with five as a minimum
coverage, the number of A-to-G substitution positions is equal to 84% of the number
of T-to-C substitution positions. Whereas this percentage is only equal to 70% when

applying a minimum coverage of twenty.

Table 2.3 shows the fraction of T-to-C substitution positions over all substitution posi-
tions. This proportion is relatively high for the data sets from Kishore et al. [30] with
a value of even more than 50% in data set A, whereas the proportion is only equal to
15% in the data sets from Gottwein et al. [22]. The fraction is also an indicator for the
noise level in the data. The higher the percentage of T-to-C substitution positions the
more of the observed reads are probably reads from binding sites. Furthermore, the
more noise the data have, the more it gets difficult to distinguish between PAR-CLIP
induced T-to-C substitutions and non-PAR-CLIP induced ones. The highest noise level

is therefore probably present for the data sets from Gottwein et al. [22].

One is not only interested in the number of positions that contain a specific substitu-
tion but also in the substitution rates for these positions, i.e. how many of the observed
reads for one position represent a substitution (e.g., a T-to-C substitution). In Figure
2.5 two histograms of substitution rates are plotted for each data set, one for T-to-C

substitution rates and one for all other substitution rates, except T-to-C.

When looking at the histograms of non-T-to-C substitution rates of the data sets from
Kishore et al. [30] and Memczak et al. [41], it stands out, that mostly substitution rates
very close to zero or to one are observed. As these are not T-to-C substitutions, these

substitutions must be due to other reasons than the induction by PAR-CLIP [28, 49].
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Figure 2.5: Left panel: Histograms of T-to-C substitution rates, Right panel: Histograms of non-
T-to-C substitution rates.
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Reasons for very low substitution rates can be the appearance of sequencing errors or
mismatches. High substitution rates can be due to homozygous SNPs (i.e. a SNP at
both chromosomes of the chromosome pair) or RNA highly similar, but not identical

to the mapped reference genome [20, 27].

Comparing these substitution rates to the substitution rates of the T-to-C positions, it
is obvious, that the T-to-C positions also have substitution rates very close to zero and
one, but that the substitution rates are more divided over the whole range than the

non-T-to-C substitutions.

The histograms for the data sets from Gottwein et al. [22] show especially a high num-
ber of positions with substitution rates very close to one. Substitution rates close to
zero only seem to occur slightly more often than other substitution rates. Again, this
artifact can be explained by the smaller threshold of five for the minimal coverage for
one position. On the one hand, a position, that is a SNP, will also be observed for po-
sitions with a small coverage with less than twenty reads, since (almost) 100% of the
positions are expected to be substituted. On the other hand, it is very unlikely to ob-
serve a mismatch at a position with only few reads, as the probability for an error or
mismatch for one read should be very small. By including positions, here, with a cov-
erage between 5 and 19, it is therefore expected, that mainly positions that have either
method-induced substitutions or very high substitutions due to SNPs are included.
This can also be seen in the data. 80% of the positions with a substituion rate of more
than 0.9 in the Gottwein A data set are from positions with a coverage smaller than

twenty.

T-to-C substitution positions that have either very low or very high substitution rates
are therefore probably the result of mechanisms other than the PAR-CLIP method.
Method-induced T-to-C substitution rates are expected to lie somewhere in between
this range. This means, that not all reads with T positions that are within a binding
site show a T-to-C substitution. This is probably due to incomplete incorporation of
thio-uridine into the mRNA, so that some reads do not contain the specific T-to-C sub-
stitution [27]. The aim of this work is therefore to distinguish between method-induced

T-to-C substitution positions and non-method-induced ones.
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Statistical background

The substitution positions can be divided into the three groups: mismatch positions,
SNP positions and crosslinked positions, i.e. positions with PAR-CLIP induced T-to-C
substitutions, as described in the previous section. In order to predict to which of the
groups a substitution position belongs, BayMAP was developed as a three component
mixture model set into a Bayesian context. In this section, basics of Bayesian data ana-
lysis are therefore presented along with Bayesian mixture models. Moreover, sampling

methods with which the parameters’ distributions can be estimated are shown.

A density will be denoted by f (-) and a conditional density by f (- | ). If the considered
variable is discrete, then f () is also used as notation for the probability of observing
the value of the variable. For a concrete event, P (-) may also be used as notation for
the probability of this event, e.g., P (T; = m). Background in Bayesian data analysis

presented in this Section is mainly based on Gelman et al. [18].

3.1 Bayesian data analysis

Lety:= (y1 yN)T € RN be a vector of observed dataand 0 := (0; ... 0y;) " € RM be an
unknown parameter vector on which the distribution, from which y is drawn, depends.
In frequentist statistics, @ is supposed to be a vector with fixed but unknown values. By
contrast, in Bayesian statistics, the uncertainty about 0 is represented by a distribution
so that 0 is not supposed to be fixed but rather a random variable. Since it is wished to

learn more about the unknown parameter vector 6 given the data, the density f (y \ 0)

21
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is of interest in Bayesian statistics. This density can be written with Bayes’ theorem as

_f(v]e) re
f(y)

Since y is observed, therefore fixed, and f (y) > 0 does not depend on 0, the constant

JCAR)) x f(y]0) ). (3.1

f (y) can be omitted and f (6 | ¥) is then called proportional (represented by the sign
o) to f(y|0) f(6). The density f (0 | y) is called posterior density, f(y | @) is the

likelihood of the data and f (@) the prior density that is not dependent on the data.

The prior density represents the uncertainty about the unknown parameter 8 before
collecting data. When there is no prior knowledge about 8, a vague prior distribution
can be chosen, such as the uniform distribution or normal distribution with a large
variance. The prior distribution can also depend on data from previous studies or on

additional unknown parameters.

Often conjugate priors are chosen. A prior distribution is conjugate for the class of
likelihood distributions if the posterior distribution arises from the same class of dis-
tributions as the prior. Formally, this means that if the chosen class of prior distribu-
tions is large enough, e.g., the class of all distributions, then every prior distribution
would be conjugate [18]. The class of conjugate prior distributions is thus often re-
stricted to distributions that have the same functional form as the likelihood, e.g., the
exponential family. A prior distribution fulfilling this restriction is called natural conju-
gate prior. In the following, only natural conjugate priors are considered when writing
about conjugacy. The advantage of conjugate priors lies in the interpretability and in

easier computation of the posterior distribution.

One advantage of Bayesian statistics is therefore that additional information and addi-
tional structure can be implemented by the prior distribution. If the parameter vector
0 depends on another parameter vector ¢ = (¢; ... ¢s)' € RS, the unknown parame-

ters can be modeled by a hierarchical model

f0.¢]y)x f(y|0.¢) f(6.6)=F(¥|0) f(0|) f(s), 3.2)

where f (0, ¢ | y) is then called the joint posterior density with the joint prior density
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f (8, ¢) and hyper prior density f (¢).

3.2 Bayesian mixture models

When the data y arise from different data-generating processes, this can be modeled
by a mixture model. A three component mixture model is here required for BayMAP to
distinguish between method-induced substitution positions, SNP and mismatch po-
sitions. Hence, only finite mixture models with a known number of components are
considered here. Let M € N* be the number of components, 6,, with m =1,..., M the
unknown parameter on which the distribution of the m-th component depends and
7, the probability that an arbitrary observation arises from the m-th distribution. The

density for the mixture model can then be written as

M

fyil0,m)= 3 amf(yi|Om) 3.3)

m=1

fori=1,...Nwith@= (0 ...00)", = (m1...100 " and ¥M_ 7, =1, 7, < 0. The

likelihood of the data can then, under the independence assumption, be written as

N

fvlo.x)=1] (miﬂmf(yi | Gm)). (3.4)

i=1

In a mixture model, y; arises from one of the mixture components. For this purpose, an
allocation variable T could be defined, to indicate to which population an observation
belongs, with T; = m if observation i is drawn from the m-th mixture component. The
probability 77, is then equal to P (T; = m | &) and f (y; | 6m) = f (i | Ti = m,0), so that
(3.4) gets

N (M

fiyle.x)=]|>. P(Ti=m|=)f(y:| T: =m,0)|. (3.5)
i=1\m=1

Itis, thus, reasonable to assume that T; follows a categorical distribution Cat (7, ..., 7 ),
so that the density f (¢ | &) is given by
N M

M \
fe|x) =TT [T=w" =11 pim 0 (3.6)
1

):
i=1m=1 m=

—

where t = (¢, ... ty) " with t; €{1,...,M},i=1,...N and 1,,,(¢;) is the indicator function
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with

1, ift;=m
T (i) := .
0, ift;Zm

3.3 Sampling

When fitting the model, one is interested in the posterior distribution. If the model is
simple enough, the posterior distribution could be a well known distribution, such as
the normal or beta distribution, and no further estimation of the posterior is needed.
This is for example the case for binomial data y, i.e. Y ~ Bin(n,0), with a beta distribu-

tion as prior since

FO]yn)o f(y]|0.n) f©)
=Bin(y | n,0) Beta(6 | a,b)
< 07 (1-0)"Y 0% 1-0)""!

— 6y+a—l (1 _e)n—y+b—1

o« Beta(0 | y+a,n-y+b),

where Bin (y | n,60) is the discrete density function of the binomial distribution for the
observed number of successes y with n the number of trials and 6 the success proba-
bility, and Beta (6 | a, b) the density of the beta distribution with parameters a and b.

This means, that the distribution of 6 is known since (0 | y,n) ~Beta(y + a,n— y +b).

If the posterior distribution is not a known distribution, one could sample different val-
ues for 0 from the posterior distribution, so that the shape of the distribution can be
estimated by drawing random values. For instance, in simple non-hierarchical mod-
els, the shape of the posterior density can be estimated by sampling directly from the
posterior distribution, e.g., by approaches as the rejection sampling approach. In hier-
archical models, such as the one in (3.2), it can get more complex to sample from the
joint posterior distribution, as it is a multiparameter model with a joint distribution for

several parameters. Other sampling strategies are therefore required.

The standard procedure to fit such models are Marcov Chain Monte Carlo (MCMC)
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Algorithm 1: Metropolis-Hastings algorithm

1. Choose or draw a starting point 8© with f (G(O) | y) > 0.

2. Forh=1,2,...:

(a) Draw a candidate 8 from a jumping distribution with density _¢ (0*

r(e*|y) / #(ov 6" )
r= . (3.7
1 ]y) /20" [07)

o),

(b) Calculate

(c) Set

e(h—l)

o _ o with probability min(r, 1)
otherwise

h-1)

by drawing u from U(0,1) and setting 8" to 8* if u < r and to 8" otherwise.

algorithms. If one is interested in drawing  from its distribution with density f (0 | y),
the idea is to start with an initial draw 8 and to draw then new samples for 8, where
the h-th draw 8™ is dependent on 0"V The sequence (01,0,,05,...) is then a Markov

chain since

f(e(h) |9(1),0(2)’.__’0(h—1)) :f(a(h) |0(h—1)) .

The density f (O(h) | 0”‘_1)) has to be constructed in such a way that it converges to the

density of the target distribution f (6 | y).

An MCMC algorithm widely used for this task is the Metropolis-Hastings algorithm
[25] which is a basic algorithm that has many special cases. Let the parameter vector
0 be the parameter of interest. The basic algorithm can then be written as shown in

Algorithm 1.

When it is not possible to draw @ directly from its posterior distribution, the idea is
to draw @ iteratively. First, a candidate 8 is drawn from a jumping distribution with
density ¢ (0* | B(h_”). Then, the target density of the candidate 8* given the data is
compared to the target density of 8"~V from iteration (k1) given the data. When the
candidate is more likely under the target distribution, it should remain in the Markov
chain. Otherwise, the candidate should only remain in the Markov chain with a certain

probability, that is the ratio of the two densities. However, when the jumping density
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is not symmetric and it is not equally likely to jump from the old 87 to the new
candidate @* than the other way around, the asymmetry should be taken into account.
In (3.7) the target densities are therefore divided by the jumping density. The Markov
chain of Algorithm 1 is a Markov chain with a unique stationary distribution, where
the stationary distribution is equal to the target density f (0 | y). The Markov chain

converges, therefore, to the posterior distribution (see, e.g., Gelman et al. [18]).

Once the Markov chain has converged to its stationary distribution with enough draws
for 0, early iterations should be discarded, as they highly depend on the starting point
rather than the target distribution. The elimination of the first simulated values of the
Markov chain is called burn-in. The Markov chain can be highly autocorrelated. In or-
der to reduce autocorrelation of the chain and to reduce computer storage, only every
o-th iteration could be kept in the chain. This procedure is called thinning. Thinning

is, however, not necessary if enough draws of the target distribution are present.

In this thesis the normal distribution, with the last value of the Markov chain as a mean
parameter, is used as a jumping distribution. Since the density of the normal distribu-
tion is symmetric, notably _¢ (0* | B(h'”) = ¢ (B(h'” | 0*), the ratio in (3.7) simplifies
to

- SO 1y) 58)

f(e(h—l) |)’) .

When a symmetric density for the jumping distribution is used, the Metropolis-Hastings
algorithm is called Metropolis algorithm. When using for example the normal distri-
bution as a jumping distribution, a crucial step is to define the variance that should be
employed. If the chosen variance is too small, the random walk moves too slowly and
therefore needs too many iterations for convergence. If the variance is too large, the
drawn candidates could be rejected too often, so that the random walk does not move
most of the time (see, e.g., Gelman et al. [18]). The acceptance rate of the candidates
should, thus, neither be too small nor too high. A reasonable acceptance rate could be

in the range between 0.2 and 0.5.

In Algorithm 1, the parameter vector @ is viewed in its entirety. It can, however, be use-

ful to split @ in subvectors and to update @& componentwise. Let 8 be the parameter
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Algorithm 2: Componentwise Metropolis-Hastings algorithm

1. Choose or draw a starting point 8© with f (G(O) | y) > 0.

2. Forh=1,2,...:
Forj=1,...,J:

(a) Draw a candidate 0; from a jumping distribution with density

#lo5]0g.000).

(b) Calculate

1105 ]0%7.5) /#0300
B f(agh—l) yeillj—l),y) /j(agh—l) ’9;,9(_@—1))'

(3.9)

(c) Set

B(h—l)

o — 0" with probability min(r, 1)
otherwise

by drawing u from U(0,1) and setting 8™ to 8* if u < r and to "~V
otherwise.

vector in which one is interested, that can be divided into J € N*, components of sub-
T _

vectors so that 0 = (HIT . BJT) . Let 0(_}’] U represent all components of 8 except for 0 j

with their last drawn values, so that

0(” N _ (a(h)T a(h)Tath l)T e(h—l)T)T
Yy

j+1
The componentwise Metropolis-Hastings algorithm is presented in Algorithm 2.

If it is possible to draw 6 directly from its full conditional distribution with density
f (0 j | 0(_’11._1), y), the jumping distribution can be set to the full conditional distribu-
tion, so that

j(e* |9(h 1) o(h 1) f(e* |0(h 1) y)

This implies, that the ratio r is equal to

rlog10%75) /sl 0% 0)
r= =1,

) [l 1o
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Algorithm 3: Gibbs sampler

1. Choose or draw a starting point 8© with f (0(0) | y) > 0.

2. Forh=1,2,...:
Forj=1,...,J:

Draw B;h) from the full conditional distribution with density

F(o;]027"y).

so that the candidate will be accepted in every iteration. This special case of the com-
ponentwise Metropolis-Hastings algorithm is called Gibbs sampler [19] (see Algorithm
3), and is probably the most frequently used MCMC method in Bayesian modeling. Itis
the simplest of the MCMC algorithms due to the direct sampling of the full conditional
and the advantage of less computation time because of the acceptance rate equal to

one.

When using conjugate priors, the full conditional distributions arise from the same
family so that they are known and the Gibbs sampler can be applied. Whenever possi-
ble, it is therefore reasonable to use conjugate priors. However, it is not always possible
to use conjugate priors or other reasons could speak against it. The Gibbs sampler and
the Metropolis-Hastings algorithm can nevertheless be combined in the component-
wise Metropolis-Hastings algorithm by using the Gibbs sampler for those components,

where direct sampling of the full conditional distribution is possible.

When possible and reasonable, conjugate priors are used for parameters in BayMAP.
Since there are also parameter components for which no conjugate priors are embed-
ded, Algorithm 2, that is combined for Gibbs sampler and Metropolis algorithm, is im-
plemented in this thesis. For those components without conjugate prior, the normal

distribution is used as jumping distribution, so that (3.9) simplifies to

rloj 1% y)
f(e;h—l) |0(—hj_1)’y) '
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A subset of existing statistical methods for

the analysis of PAR-CLIP data

The idea of BayMAP is based on the methods wavClusteR [11, 49] and BMix [20]. Both
methods are positon based methods, which means that it is first predicted for a substi-
tution position if this position is a crosslinked position and therefore belongs to a bind-
ing site. However, a binding site is not only a position but a genomic region. Hence, in a
second step the full binding site region is then estimated around identified crosslinked
positions. In this section, the methods for detecting crosslinked positions as well as
binding site regions around the identified positions are presented for wavClusteR and
for BMix. Moreover, PARalyzer [12] will be described here in more detail, since it is the
first statistical tool for detecting binding sites and commonly used. However, PARa-

lyzer is not a position based method such as wavClusteR and BMix.

Notations can differ in this section from the other notations in this thesis, in particular
in Section 3 and Section 5. This is to prevent the notations in this section from differing

substantially from the original published methods.

4.1 PARalyzer

In PARalyzer [12], a kernel density estimation approach is used to compare the esti-
mated density for T-to-C substitution rates to the estimated density for non-substitu-

tions, i.e. non substituted T positions that are here called T-to-T. First, all reads that

29
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are overlapping by at least a single nucleotide are grouped together. For further analy-
ses, only read groups with at least five reads and two T-to-C substitution positions are
considered. The idea is to then compare T-to-C density with non-substituted T-to-T
density via gaussian kernel-density estimate. For any position j = 1,..., L of the read
group, where L € N* is the length of the considered read group, the density fr_c(j) for
T-to-C substitutions at position j is estimated by

LoD 1 (i—i)?

_cli) = B e Y
Jr—c(j izzinT—»C A2m

and the density fr_ 7(j) for non-substitutions T-to-T at the same position j by

L W 1 _6=p?

_ (.): T-'T'—e 212
Jr-1( izzinT—»T AV27

)

where k(jf)—»c and k(TiLT are the numbers of observed substitutions and non-substitu-
tions at position i = 1,..., L, and n7_¢ and n7_ 7 are the total numbers of T-to-C sub-
stitutions and non-substitutions in the read group. The parameter A is the bandwidth
of the gaussian kernel density estimate, that is fixed for this method to A = 3, as Corco-

ran et al. [12] argue that this value leads to robust results.

The kernel density estimate for position j takes therefore all T-to-C (or T-to-T) substi-
tutions that belong to this read group into account. The closer the substitution posi-
tion is to position j, the more are the substitutions (or non-substitutions) counted for
the density estimate for position j. Corcoran et al. [12] then normalize the estimated
densities by

o)
gr—ctj) = L=cUL_,

Y fr—c@)
i=1

gr—r() = =1

Y fr-r(@
i=1

L L

sothat ) gr—c(j)=1and ) gr_r(j) =1.If gr—c(j) > gr—7(j), position j is consid-
=1 =1

ered to be a binding site.
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Figure 4.1: Example of PARalyzer binding site identification published in Corcoran et al. [12]
for the reference genome GRCh37

In Figure 4.1 an example can be seen how a binding site is identified. The grey bars
represent the observed read depth, the red and blue bars represent the kernel density
estimates for the T-to-C substitutions and the T-to-T non-substitutions. A binding site
is identified at those positions, where the red bars are larger than the blue bars (high-
lighted by the dark orange region). The identified boundaries of the binding site are
then extended up to five nt in each direction if the coverage at these positions is still
greater or equal to five (highlighted by the light orange region). A binding site is then

declared for the whole orange region.

The advantage of this method is that neighborhood information is taken into account.
This means that not only a single T-to-C substitution position is regarded but also T-to-
C substitution positions in the same region, as it is likely that several T-to-C substitu-
tion positions exist on one binding site. However, it is not discussed in Corcoran et al.
[12] why it is reasonable to compare the estimated densities gr—.c(j) with gr—7(j), in
which settings these comparisons provide meaningful results and in which not. For
instance, estimates for gr_.c(j) for a read group with only T-to-C substitution posi-
tions, that have similar substitution rates, are not dependent on the substitution rates
level (i.e. if the rates are high or not) due to the normalization. Depending on the
context, it could, thus, be even difficult to distinguish method-induced substitutions
from mismatches. Furthermore, PARalyzer favors positions with a very high rate of T-

to-C substitutions in comparisons to the other T-to-C positions that can also be due to
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SNPs.

4.2 wavClusteR

wavClusteR that will be presented in this section, is a position-based method for the
detection of PAR-CLIP induced substitution positions. First, crosslinked positions are
identified in wavClusteR (see Section 4.2.1) before binding site regions are identified

around these detected positions (see Section 4.2.2).

4.2.1 Detection of crosslinked positions

wavClusteR [11, 49] is the first method that takes types of substitutions other than T-
to-C into account. First, they assume that the number of substitutions K for one sub-
stitution position follows a binomial distribution with n € N* the number of observed

reads for this position and p € [0, 1] the substitution probability

(K| n,p) ~Bin(n, ).

The ideais then, that T-to-C substitutions can either be due to the PAR-CLIP method or
due to other reasons such as SNPs, mismatches, and sequencing errors. Substitution
types other than T-to-C are probably due to the second group of reasons, the non-

method-induced substitutions.

The distribution of these substitutions can therefore be helpful to distinguish between
method-induced and non-method-induced T-to-C substitutions. It is assumed that
the parameter p follows a mixture distribution of two components, one for the method-
induced substitutions and one for the non-method-induced ones in a Bayesian frame-

work

p~p()=Api(W)+A-1) p2(y) (4.1)

where p; (p) is the densitiy for p for the non-method-induced substitutions and p; (1)
for the method-induced ones, and A € [0, 1] is the weight for the non-method-induced
substitutions distribution. In the case of a substitution other than T-to-C, the weight A

would be equal to one, since the substitutions are not supposed to be method-induced,
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but only non-method-induced. For T-to-C substitution positions, A represents the

probability of a non-crosslinked position.

First, for every substitution position i,i = 1,..., N, with N € N* the total number of
substitution positions, a posterior is calculated with a uniform prior, i.e. Beta(1,1), so

that the posterior for y; is given by
(,LL,' | n;, ki) ~Beta(k;+1,n;—k;+1),

where k; € N* is the observed number of substitutions at position i. Then, p; (u) is
estimated by taking the average of all posterior densities f (; | ki, n;) except for T-to-

C positions with

R 1 Narc
pr(w) = > flui | kiyni),
Nnrc i=1

where N, 7¢c € N* is the number of all substitution positions except for T-to-C. After-
wards, prc (u) is estimated, where pr¢ (1) is the density of p for all T-to-C substitu-
tions. Note, that this density is not equal to p, (1) but to p(g) in (4.1) for T-to-C sub-
stitutions, since p (1) only represents T-to-C substitution positions that are method-
induced and excludes the non-method-induced ones. prc (1) is estimated in the same
manner as p; (¢). The weight parameter A is estimated by taking the type of substitu-
tion, that has the most of substitution positions after T-to-C, and dividing this number
by the number of T-to-C positions. By rearranging Equation (4.1), the density p» () is

then estimated by

>

. prc(w)-Api(w)
p2 = A .
1-4

For evaluation, either the posterior class probability is taken with

(1=A) pa (1)
Api(K)+@=A) p2(p)

or the log-odds ratio with
(1-A) pa () )

A pr (1)

After analyzing these functions, the positions with a posterior class probability larger

log(

than a specific value are not declared as binding site positions, but rather all T-to-C

substitution positions with a substitution rate within a specific interval are considered
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Figure 4.2: Example of coverage function with highly confident T-to-C substitutions (green
bars), wavelet peaks (red circles) and the belonging binding sites (blue lines) published in Siev-
ers et al. [49].

as crosslinked positions. In Sievers et al. [49] the interval between 0.2 and 0.7 is chosen,
as T-to-C positions with substitution rates within this interval are likely crosslinked.
This choice, however, is not justified any further by Sievers et al. [49], so that the se-

lected interval boundaries seem to be arbitrary.

4.2.2 Detection of binding site boundaries

In a second step, after the identification of T-to-C substitution positions that are prob-
ably crosslinked and therefore positions on binding sites, binding sites’ boundaries for
these positions have to be estimated. In wavClusteR, two distinct methods for this esti-
mation are proposed, wherein boundaries are either estimated via wavelet-based peak

calling [49] or mini-rank norm [11].

First, Sievers et al. [49] developed a method for the detection of the boundaries of bind-
ing sites based on continuous wavelet transforms (CWT). CWT is a method that can be
used to detect peaks in functions. Here, it is supposed that on binding sites local peaks
should be observed, as binding site reads should be amplified during the PAR-CLIP
method. Once peaks are detected by CWT, boundaries are identified by regarding dif-
ferences in the coverage function. Sievers et al. [49] suppose that binding sites have
only one peak. They define, therefore, the left boundary as the closest position to the

peak, that still has a positive coverage difference, whereas the previous position has to
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Figure 4.3: Example of the MRN algorithm published in Comoglio et al. [11].

have a negative one. For the right boundary, the same procedure is applied, so that
it is the closest position to the peak with a negative coverage difference, whereas the

following position has a positive one (see example in Figure 4.2).

However, Comoglio et al. [11] argue that their previously developed method based on
CWT, risks having a high number of T-to-C substitution positions identified as method-
induced positions (highly confident T-to-C substitution positions) that cannot be as-
signed to a binding site, as peaks cannot be detected. This could for example happen,
when the coverage geometry of the considered genomic region is complex. They pro-
pose, therefore, to use another method for the identification of binding sites around

highly confident T-to-C substitution positions, the mini-rank norm (MRN).

Around each highly confident T-to-C substitution position, a window w is spanned
that contains all non-zero coverage positions (see first coverage function in Figure 4.3).
Following this, all possible starting and ending positions are regarded. A possible start-
ing position is a position with a positive difference in the coverage function, i.e. a po-
sition, where the coverage is higher than for the position left to it. A possible ending
position is a position with a negative difference in the coverage function. For these
starting and ending positions the absolute differences in the coverage function (blue
and orange triangles in Figure 4.3) are in the two vectors ng and n,. For this window
w a local coverage threshold ¢, is calculated (see second coverage function in Figure

4.3). All values in the two vectors n and n,, that are smaller than §,, are removed.
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For each highly confident T-to-C substitution position all possible combinations of
starting and ending positions for this T-to-C substitution position are regarded sep-
arately. In the example in Figure 4.3 there are two highly confident T-to-C substitution
positions, so that first all possible combinations for the first (upper coverage function
in Figure 4.3) and then for the second highly confident position (lower coverage func-

tion) are regarded.

For one highly confident position, all remaining coverage differences for the starting
positions are ranked, then all remaining coverage differences for the ending positions
are ranked and then the width of the putative cluster is ranked, so that there are three
rank values for each putative cluster candidate. In the upper coverage function of Fig-
ure 4.3, one can see that there is only one possible starting position for the first highly
confident T-to-C substitution position, but three possible ending positions. For the
three combinations of starting and ending positions, the rank of the coverage differ-
ence for the starting position is equal to zero, as there is only one starting position.
The rank of the coverage difference for the ending positions is equal to zero for the
longest cluster here, as it has the highest difference in the coverage function. The two
remaining ending positions have the same difference in coverage function, but to the
one closer to the highly confident position a greater rank is associated. Then the width
of the clusters is ranked, where the shortest width is associated to the smallest rank.
The cluster with the rank vector closest to the vector (0,0,0) in terms of the euclidean

norm is then chosen as the binding site region (blue lines in Figure 4.3).

4.3 BMix

BMix that will be presented in this section, is a position-based method for the detection
of PAR-CLIP induced substitution positions. First, crosslinked positions are identified
in BMix (see Section 4.3.1) before binding site regions are identified around these de-

tected positions (see Section 4.3.2).
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4.3.1 Detection of crosslinked positions

BMix [20] is a mixture model with three binomial components for substitutions due
to mismatches, SNPs and the PAR-CLIP method. The probability that the number of
substitutions Kj is equal to k; at position i for i = 1,..., N, can be written as a mixture

model with discrete density function f (k; | n;)

f(ki| ni)=(1-p)(1-q) Bin(k; | nj, pmm) + g Bin(k; | ni, psxp)

+ p(l - q) Bin(ki | ninuexp)’ (4.2)

where k; € N7 is the observed number of T-to-C substitutions at position i, n; € N*
the number of reads at position i, g € [0,1] the probability that the position is a SNP,
p €10, 1] the probability that the position is crosslinked given that it is not a SNP. The
discrete density function of the binomial distribution for k; substitutions with param-
eters n; and p; € [0,1], j € {mm, SNP, exp} is denoted by Bin (k; | n;, i), where fimm,
psnp and pexp, are the substitution probabilities for mismatch positions, SNP positions

and method induced substitution positions.

Golumbeanu et al. [20] assume that the probability parameters of the binomial dis-
tributions pmm, psnp and pexp are not independent of each other. For a T-to-C SNP
position, a T-to-C substitution is expected. However, sequencing errors could also oc-
cur for SNP positions, where an error could be an observed T-to-A substitution, T-to-G
substitution or a T, each with probability pmm. The probability usnp is therefore as-

sumed to be

usne =1 —3Umm.

This error, however, could also occur on crosslinked positions. A part of the reads of the
crosslinked positions are expected to contain the specific T-to-C substitution. On these
reads, again, the three errors T-to-A, T-to-G or T could happen. On the not-substituted
reads of the crosslinked position, only the error T-to-C will be noticed, as only the num-
ber of T-to-C substitutions is of interest. With y being the probability that a read of a

crosslinked position contains the T-to-C substitution, the probability px;, is therefore
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Figure 4.4: Example of a binding site construction from reads published in Golumbeanu et al.
[20]. The blue lines represent reads that cover the considered T-to-C substitution position (red
point), whereas grey lines are reads that do not cover the red T-to-C substitution position and
grey points represent other (not yet considered) T-to-C substitution positions. The green lines
are clusters that are built based on the observed reads.

assumed to be

Hexp = (1 - Y) Hmm + (1 - 3,Umm) Y.

Furthermore, it is supposed in BMix that eyp is bounded between pmm and 1 - 3pmm,

which leads to the conclustion gy, < 0.25.

Golumbeanu et al. [20] do not only want to use T-to-C substitution positions for the es-
timation of the unknown parameters of the mixture model, but also take into account
A-to-C and G-to-C substitution positions. As it is supposed that only T-to-C substitu-
tions can be experimentally induced by PAR-CLIP, the parameter p in (4.2) is set to zero
for A-to-C and G-to-C substitution positions. The unknown parameters are estimated
by maximizing the likelihood function. Classification is done by calculating the pos-
terior probabilities of the group to which the substitution belongs (mismatch, SNP or

crosslink).

4.3.2 Detection of binding site boundaries

Positions that are identified as PAR-CLIP induced with a posterior probability of 95%
are then used for identifying binding sites around these positions. All aligned sequenc-
ing reads that include this identified PAR-CLIP induced position are merged whereas
boundaries with a coverage of only one are left out. If such a cluster overlaps with an-

other cluster, both are grouped together into one binding site (see Figure 4.4).
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Bayesian model for the analysis of

PAR-CLIP data

As described in the previous sections, the aim of this project is to develop a statisti-
cal method that allows us to distinguish between method and non-method induced
T-to-C substitution positions, so that miRNA binding sites on the mRNA can be iden-
tified. wavClusteR [11, 49] and BMix [20] are two models that enable the classification
of T-to-C substitution positions to one of these groups. However, they do not allow
the incorporation of supplementary information, such as the 3’UTR, the CDS and the
5’UTR. In order to allow for these additional variables, which are relevant for the bi-
ology of binding sites, a fully Bayesian hierarchical model is proposed here, and will
hereinafter be referred to as BayMAP (Bayesian hierarchical Model for the Analysis of
PAR-CLIP data). BayMAP is a three component mixture model, that distinguishes be-
tween method-induced substitution positions and for the non-method induced posi-

tions between SNP and mismatch positions.

In Section 5.1, the model, here called BayMAP 1.0, is presented as it has been published
in the context of this work in Huessler et al. [27]. After the detection of method-induced
substitution positions, one is interested in not only knowing the crosslinked positions
but also the binding site regions belonging to these positions. A method for identifying
the sequence of positions belonging to a binding site by combining reads to a cluster, is
presented in Section 5.2. This method is not published in Huessler et al. [27] and thus

firstly described in this thesis.

39
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In Section 5.1, it is assumed that substitution positions are independent. However, T-
to-C substitution positions very close to each other are probably either both crosslinked
if on the same binding site or both not crosslinked if not on a binding site. This re-
gional dependence can be included to the model in the adjusted version of BayMAP
presented in Section 5.3. This adjusted version is here called BayMAP 2.0 and is also

not published in Huessler et al. [27] and hence firstly described in this thesis.

For the application of BayMAP 2.0 it is necessary to know in advance, i.e. prior to ap-
plication, if two substitution positions are close neighbors or not. Two positions are
here defined as being close neighbors, if they are lying on the same potential binding
site. As this is not known in advance, it has to be estimated. The method that will be
presented in Section 5.2 can not only be employed to determine binding site regions
around highly confident T-to-C substitution positions but also to determine potential
binding site regions for every T-to-C substitution position. It can thus also be applied
prior to the application of the model, so that this information can be used as input for
BayMAP 2.0. BayMAP 2.0 depends therefore on the identification of potential binding

site regions as input.

In order to not only use data from one PAR-CLIP experiment but several and in order
to increase precision, a method for combining results of several PAR-CLIP data sets is
described in Section 5.4. This method is also firstly presented in this thesis. Up to now
and to the best of the author’s knowledge, it is the first method specialized for PAR-CLIP,

that allows the combination of the data from several PAR-CLIP experiments.

5.1 BayMAP 1.0: Detection of PAR-CLIP induced T-to-C substitution

positions

Section 5.1 is divided into the presentation of the model itself (Section 5.1.1), the deriva-
tion of the full conditional distributions, that are necessary for sampling (Section 5.1.2),
the sampling scheme (Section 5.1.3) and the determination of method-induced substi-
tution positions by estimating the probability of the position being crosslinked given

the data (Section 5.1.4). The content of the Sections 5.1.1 and 5.1.4 has already been
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published in Huessler et al. [27], whereas Sections 5.1.2 and 5.1.3 are newly presented

in this thesis.

5.1.1 The model

One data set consists of N € N* substitution positions, where for every substitution
position i, i = 1,..., N, the observed number of substitutions k; € N*, the total number
of observed reads n; € N* as well as the substitution type (e.g., T-to-C) are known (see
also Section 2.2.2). It is here assumed that the random variable K; for the number
of substitutions, follows a distribution with parameters n; and p € [0,1], where p is
the probability of a substitution. A natural choice for this distribution is the binomial
distribution, as for example in wavClusteR. However, only positions with at least one
substitution are considered. Therefore, it is here supposed that K; follows a binomial

distribution truncated for zeros, the zero truncated binomial distribution

K; ~7ZTB (n,-, /J,) with

P(K;=k;,K;>0|n;u)  Bin(k; | n;,u)

PK:k K 0) j = -
(K = ki | Ki >0,n4, ) P(K; >0 | nip) 1-Bin (0 | 75, )

) (5.1)

where Bin (k,- | ni, ,u) is the discrete density function of the binomial distribution for k;

substitutions with n; reads and substitution probability u.

In a Bayesian framework, it is supposed that the unknown parameters, here y, also fol-
low a distribution. The posterior density for the unknown parameter p can be written

as

(k| n) f(u)
Jo £ k| pn) f(u) dp

fu]kn)= o< f (k| wm) f(u), (5.2)

where f(k | U, n) is the likelihood of the data and k := (ky,..., kn), B := (ny,...,80N).
Nevertheless, the substitution probability u for a read of a substitution position is dif-
ferent for each of the here considered three position types, i.e. mismatch positions,
SNPs and crosslinked positions (i.e. positions with method-induced T-to-C substitu-
tions). Similar to wavClusteR and BMix, u thus follows a mixture model with three den-

sities for the three position types. For this purpose, one can define the non-observed
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allocation variable Z; with

€« ”

mm”, if position i is a mismatch position

Zj:={ “SNP”, if position i is a SNP position ) (5.3)

“exp”, if position i is a crosslinked position

Zi~Cat((1-p)) g, 1-p) A-q), pi),

where Cat (+) is the categorical distribution. The probability that a position is crosslinked
with experimentally induced substitutions is p;. If a position is not crosslinked, it
can either be a mismatch position or a SNP position. In case the position i is not
crosslinked, the probability that this position is a mismatch position is equal to g. The
probability P (Z; = “SNP”) is therefore equal to (1 — p;)(1 — g). When position i is not a
T-to-C substitution position but a position with another type of substitution, p; is then

set to zero, as only T-to-C substitutions are induced by the PAR-CLIP method.

A Dirichlet prior is usually used in mixture models for the parameters of a categorical
distribution, as it is a conjugate prior. Here, however, additional information should
be incorporated in the model, such as the mRNA region. The idea is to model this
additional information via the parameter p;. The probability p; that a position is a
crosslinked position should for example, be different for a position on the 3’UTR than
for another position. The parameters p; and q are thus regarded separately without

the usual Dirichlet prior.

Let u:= (umm, USNP, ,Ltexp)T, where umn is the probability of a mismatch substitution,
usnp is the probability of a SNP substitution and ey, is the probability of an experi-
mentally induced, i.e. crosslinked substitution. The mixture density for position i can

then be written as

ki | g, pini) =1—=p) (q- f (ki | pmm, 1) + Q= @) f (ki | usne, 1:))

+pif(ki |,uexp> ni); (5.4)

In BMix, it is assumed that the probability parameters fimm, gsnp and pexp are not in-
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dependent of each other, since, e.g., a SNP position can also have reads with errors or

mismatches. This will be explained in more detail in the following.

The parameter umpy is the probability to observe a C at a position of a read, where a T
is expected. It is, therefore, the probability of observing by error a T-to-C substitution.
However, other errors, such as A-to-G for a position, where an A is expected, could
occur, too. Here, it is assumed that the error probabilities are the same for all substitu-
tion types, i.e. that umm, is the probability of observing by error any of the substitution
types, e.g., A-to-G. This error can occur at every position including SNP positions and
crosslinked positions. At a homozygous T-to-C SNP position, one would expect to ob-
serve the T-to-C substitution for every read. Nevertheless, it is possible to observe by
error either a T-to-A, a T-to-G or a non-substitution, i.e. a T-to-T. In the same way as
in BMix, the observed T-to-C substitution probability for a SNP is, hence, in this work

assumed to be

usne =1 =3Umm. (5.5)

This type of error can also appear at a T-to-C substitution position with experimentally
induced substitutions. However, not all reads are crosslinked at such a position and
one has, thus, to distinguish between crosslinked reads, where a T-to-C substitution is
expected, and non-crosslinked reads, where the T-to-C substitution is not expected. If
aread is crosslinked, a T-to-A, a T-to-G or a T could be observed by error instead of the
expected T-to-C substitution. If the read is not crosslinked, only the error T-to-C would

count for the number of T-to-C substitutions. In BMix, it is, therefore, assumed, that

texp = (1 =) ptmm + (1 = 3ptmm) 7, (5.6)

where y € [0,1] is the probability that a read is crosslinked. In BayMAP, however, this
error is not modeled for peyp. This is justified by the fact that pmm, is expected to be very
close to zero and when applying (5.5), usnp is forced to be very close to one. Thus, when
applying Equation (5.6), ¥ and pexp should be almost equal, since pmm should be very
close to zero. The model would therefore be more complicated without a noteworthy

benefit. Equation (5.5) is thus implemented in BayMAP whereas (5.6) is not.
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Another assumption in BMix is that ymm < psne, so that with (5.5) pmm < (1 = 3mm)-
Solving this equation leads to pymm < 0.25. In order to avoid label switching problems,
e.g., the interchanging of the two groups SNPs and mismatches in the analysis, the

assumption that pyy,;, < 0.25 is also implemented in BayMAP.

It could also be assumed, that pmm < fexp < snp SO that peyp is forced to be somewhere
in the range between a very small substitution rate close to zero and a very large sub-
stitution rate close to one, as it was already expected in Section 2.2.3. On the one hand,
this restriction would complicate the model, since pex, would then be dependent on
other model parameters. On the other hand, the restrictions of ymm < 0.25 together
with pusnp = 1 —3pumm should already force pmm to be close to zero and pgnp to be close

to one, so that restriction for pex, should not be necessary.

Besides the number of substitutions, more information is available that can offer valu-
able clues about the likeliness of a binding site. For example, it is already known, that
a binding site occurs most often in the 3’"UTR, but can also appear in the CDS and, less
often, in the 5’UTR [5]. In order to use this information, a hierarchical model can be
constructed, which also models the probability p; that the substitution position i is a
binding site and has therefore experimentally induced T-to-C substitutions. Note, that
pi is set to zero if the substitution type is not a T-to-C substitution. Fori =1, ..., N
only those i are considered here for which the substitution type is T-to-C, that is noted
here with i = 1, ..., Nyc, where Ntc € N* is the total number of T-to-C substitution

positions.

The probability p; is equal to P (Z; = “exp”). Instead of Z;, the binary response variable
Texp” (Z;) can be considered here. Note that E (T«eyy (Z;)) = P(Z; = “exp”) = p;. When
having a binary response variable, often generalized linear models are applied, where

a function of the expected value is modeled via a generalized linear model

g(pi)=Po+Pi-xin++Pr-xir=x; P (5.7)

fori=1, ..., Nyc where x; := (1 xj1 ... x;z) | € RE*D is a vector with values for covari-

ates of length L+ 1 for position i and = (8o f1 ... ,BL)T € REFD s the corresponding
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vector of length L+ 1 of unknown parameters. The function g(-) is called the link func-
tion that has to be chosen. The logit and the probit link are two very common link

functions. The logit link is defined as

logit(p;) := log(1 pip )
— pi

whereas the probit link is the inverse cumulative distribution function of the standard

normal distribution

o (pi)=xi"B.

Both link functions provide very similar results except for the tails. In classical fre-
quentist inference, the logit link is very often chosen, as the logit is the canonical link
for binomial data. The canonical link has some properties that simplify computation
in comparison to any other link function. This regression model is called logistic re-

gression [14].

In Bayesian statistics, however, the probit regression model has computational advan-
tages over the logistic regression model, as conjugate priors exist for the probit model,
so that Gibbs sampling can be applied [18]. The probability p; that a position has
experimentally induced substitutions (without knowledge of the number of substitu-

tions) is therefore here modeled via the probit model with

) (x.T ﬁ) , ifiis a T-to-C substitution position
_  —1(.Tp) _ i
pi=g  (x;B)= . (5.8)
0 otherwise

The model for BayMAP 1.0 consists of the unknown parameters f, timm, [exp and g, for
which prior distributions have to be specified. The distribution of ugnp can be cal-
culated directly once the distribution of ypyy, is known. As already mentioned, the
probit model allows conjugate priors for the parameter vector . Here independent
vague conjugate priors for each §,,¢ =0,...,L are applied, i.e. a normal distribution
with a large variance. Since ¢q is the parameter of a Bernoulli distribution for non-
experimentally induced positions (either mismatch or SNP), a conjugate prior for the

Bernoulli (and the binomial) distribution is applied, that is the beta distribution. Here,
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the beta distribution with parameters both equal to one is used, i.e. a standard uni-
form prior. No conjugate prior exists for the zero truncated binomial distribution, so
that the conjugate prior for the binomial distribution chosen, is a uniform prior. More

precisely, the following priors for f, tmm, texp and g are used

Br~N(0,10°, ¢=0,...,L,
fimm ~ U (0,0.25),
Ilexp ~ U(O, 1);

q~U(©0,1). (5.9)

The joint posterior distribution of the full model as well as the full conditionals are

derived in the next section.

5.1.2 Full conditional distributions

In Bayesian statistics, one is interested in the analysis of the posterior distribution, that
is the distribution of all model parameters given the data. Let z:= (2 ... zy) ' beavec-
tor with z; € {“mm”, “SNP”, “exp”}, i = 1, ..., N with values for the random latent vari-
able Z:= (7, ... Zy)" with Z;, i =1, ..., N, defined in (5.3). Let X := (x1 xNTC)T €
RNcx(L+D) be the design matrix of the generalized linear model with N7c € N* the

number of T-to-C substitution positions. For BayMAP 1.0 the joint posterior distri-

bution of all unknown parameters including z can be written as

flwzaBlknX)o f(k|pnz) f(rzaqpB|X) (5.10)
=f(k|mnz) f(n) f(zqB]X)
=f(k|wnz)f(p) flzlp=g"(XB).q) f(aB8]|X)
=f(k|pnz) f(n) fz|p=g"(XB).q) f(a) f(B)

The first line in (5.10) is an application of the Bayes theorem, where the denominator
f(k | n,X) is omitted since it does not depend on the parameters of interest and the
latent variable z, so that the proportionality holds. Let the vector K := (Kj ... K ~N) | be

the random vector of the numbers of substitutions, that belongs to the observed data
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k. The first factor of the first line is true, as K does not depend on q and X 3, if z is given,
since the group probabilities are not necessary if the group to which each substitution
belongs is known. The second line is true because of the definition of the conditional
probability where f (a,b) = f(a | b) f (b) for a joint density for a and b. Furthermore,
the probability parameter g does not depend on Z directly. The last line holds, since g

and f are supposed to be independent and both not dependent on X.

Note, that the data for BayMAP 1.0 is not only determined by k, but also includes n and
X. Let f(X | w) and f(n| &) be the densities for X and n dependent on parameter
vectors ¥ and &. A full Bayesian model would thus include these parameters ¥ and
¢. However, when it is assumed that ¥ and & are independent of the other model
parameters, then ¥ and ¢ do not contribute to the distribution of all parameters other

than w and ¢ [18] since

fw.émzaq.plknX)=f(v.&|nX) f(nzaqp|knX). (5.11)

This means, that it is sufficient to only consider the second factor, that is equal to (5.10)

when only interested in y, z, g and .

Since the multiparameter model is too complex to sample directly from the posterior
in (5.10), the componentwise Metropolis-Hastings algorithm is thus implemented in
BayMAP 1.0 (see Algorithm 2). First, starting values for all unknown parameters have
to be chosen or drawn, i.e. u(o), z0, q(o), [i(o). For the next step, the full conditional
distributions of all parameters are needed, i.e. the distribution of a parameter given
all other parameters, so that the distribution of the parameters can be estimated by
randomly sampled values based on the full conditional distributions. If the full con-
ditional distribution of a parameter is a known distribution from which it is possible
to sample directly, Gibbs sampling can be used for this component (see Algorithm 3).
Otherwise, a normal jumping distribution is employed for sampling as described in
Algorithm 2. In this section, the derivations of all full conditional densities, that are

necessary for the implementation of the algorithm, are shown.

The first parameter of interest is . The density of u given all other parameters can be
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written as

flelza.8knX)=f(n|zkn)x f(k|pnz)f(p). (5.12)

The first equality f (¢ | z,q, ,k,n,X) = f(p | z k, n) holds, since it is not necessary
to know ¢, p and X if z is known. This is the case because q and p = g~! (X ) are
parameter vectors to determine the probability for the group to which the substitutions

belong. If these groups are given, there is no need in knowing these probabilities.

The second parameter of interest is the latent variable Z, with full conditional density

for z

flz|ma.BknX)x f(u|zkn) f(z|p=g " (XB).q.k n)

_fle|pnz)-f(p) f(k|nz)-f(z|p.q)
f(k|nz) f(k|n)

o f(k|pnz) f(z]|p.a), (5.13)

where the fraction can be reduced by f (k | n,z). The terms f (u) as well as f (k| n)

can be canceled out, as they do not depend on z.

The full conditional density for the parameter g, that is the probability of having a

mismatch position given that the position is not crosslinked, can be written as

flalpzpknX)=f(q|zp=g"(XB))x f(z]|a.p) f(a), (5.14)

since ¢ is independent of g and K if z is given, as explained above. Moreover, it is

assumed, that g is independent of B, so that f (g | B, X) = f ().

The full conditional distribution of the last parameter of interest f, that is the regres-

sion parameter for the generalized linear model, can be written as

(B 120,k nX) =1 (B| ey (@), X) o< f (Ve (2) | X, B)-£(B),  (5.15)

since the parameter vector f for the generalized linear model is only dependent on the
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data X for the generalized linear model and on the binary variable vector T«eyy (2) :=
(Teexp (21) ... Teexp? (zN))T, that determines if substitutions for positions i, i = 1, ..., N,

are experimentally induced substitutions.

In BayMAP 1.0 the chains are sampled from full conditional distributions with densi-
ties (5.12) - (5.15), so that a sample from the joint posterior distribution with density
(5.10) exists. In the following, concrete densities are inserted in full conditional distri-
butions, e.g., the density of the zero truncated binomial distribution for the density of

k.

For simplicity reasons, gt = (f4mm, Usnp, ,uexp)T is defined in this section as (p1, iz, [.tg)T,
so that m = 1,2,3 represents here the three groups of mismatches, SNPs and experi-
mentally induced substitutions. This is also applied for z;, i =1, ..., N, so that z; €
{1, 2, 3}. Additionally, z;,, fori =1,..., N and m = 1,2, 3 is newly defined to be equal to

one if substitution position i belongs to group m and equal to zero otherwise.

Full conditional distribution of probability parameter u

In Section 5.1.1, K; follows a zero truncated binomial distribution and the restriction
usne = 1 —3umm is considered. However, instead of a zero truncated binomial distri-
bution, easier options with a binomial distribution and with no restriction could have
also been considered. In this section only the conditional distributions for the model
as presented in 5.1.1 are derived. The full conditionals for the other here stated combi-

nations are presented in Appendix A.1.

The advantage of the easiest model with a binomial distribution and no restriction
on ugnp is, that the Gibbs sampler can be implemented (see Appendix A.1). However,
without the restriction of usnp = 1 —3umm, Usnp is no longer forced to be very close to
one. This can lead to label switching problems, e.g., that the group labeled “SNP” ac-
tually represents the experimentally induced substitutions and the other way around.
Moreover, if the binomial distribution were embedded, it would not be taken into ac-

count that positions with zero substitutions are not considered.

The density for p given all parameters with K; following a zero truncated binomial
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distribution and py = 1 -3, is given by (5.12) with

flelzkn)o fk|pnz) f(p).

With the priors for y; and 3 given in (5.9), the second factor of the conditional density

of pis

F() =71 (| p2) f(u2)- f(us)

o< Ty, (1 =3 1) - Tjo.25,11 (2) - Tjo,11 (43) (5.16)

where 10251 (¢2) is the indicator function defined to be equal to one if u, € [0.25,1]

and zero otherwise.

The first factor of the conditional density of u, that is the likelihood, can be written as

fk|pnz)= _ f (ki | oni,zi)

(5.17)

with the assumption of independent entries of K. The parameter u, can then be re-

placed by 1 —3u,. Moreover, the term can be simplified by using

N N _

kizin _ Zi=1kizi1_ Niky
H“l =H =Hy
i=1

where l_cm is the arithmetic mean of all k; belonging to group m, m=1, 2, 3 and N, €

N* is the total number of substitution positions in group m. Let ntm"tal be the sum over




5.1. BayMAP 1.0: Detection of PAR-CLIP induced T-to-C substitution positions 51

all n; belonging to group m, the likelihood then becomes

f(k|pmnz)
ﬁ ( ) ( ()" )Z“ ((1 —3u)" (3p)" " )m (uéf" (1-p)" ™" )ZB
it \ki )\ 1= (1—p)™ 1-(3m)"™ 1-(1-ps)"
R (1 ) NR (g gy Neke (3 ) TN Naks (g gy Naks

) . (5.18)
(1 - (1 _Nl) )le (1 _ (Su ) i)Ziz (1 _ (1 —,ug)ni)ZB

In the denominator of (5.18), however, the product sign cannot be replaced by a sum

in the exponent, as the bases with (1 - (1 - p;)") are notidentical forall i, i =1, ..., N.

The full conditional density of u is thus the product of the likelihood in (5.18) and the

prior of g in (5.16), so that

flulzkn)o f(k|pnz) f(n)

B lel( ) total_le1 (1 3HI)N2k2 (3u ) total_N2k2 HéVSkS( us) total_N3k3
N
[Ty (=007 (1)) 00"
i=
Ty, (T =3p1) - Tjo.25,1) (U2) - Tjo,1) (U3) (5.19)

Full conditional distribution of allocation variable Z

The density of the full conditional distribution of Z is given by (5.13) with

flzlpapkn)o f(k|pnz) f(z|paq).
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As 7, ..., Zy are here assumed to be independent and Z; follows a categorical distri-

bution, the second factor is then

flz|pa)= IJ_V[Cat(Zi | pi»q)

i=1

N
=[1(a-poa)™ (A-pdA-q)* pi°. (5.20)
i=1

The first factor of the full conditional distribution is the likelihood of the data k and
depends on the choice of the distribution of K;, i =1, ..., N, i.e. the binomial distri-
bution or the zero truncated binomial distribution. The density for the full conditional

distribution of Z, where K; follows a binomial distribution is given in Appendix A.2.

From (5.17), it is known, that the likelihood of the data k for K; following the zero trun-

cated binomial distribution is given by

£l pm2) =1 I1

With the weight
ni\
( ’)ufﬁé(l — )"k
ki
Zero ,_

it 1-(1— ) ’

w

the density of the full conditional distribution of Z can be written as

flzlpawkn)ox f(k|pnz) f(z|pq)

n; .

N 3 | |k;
=1111

| 1- Q-

Zim

(A-pg)™ (- pdA-q)™ pie

~.

N
[ (w0 - p@)™ (W™ - pi 1 - @) (w™p) ™
=1

~

(5.21)
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The last line of (5.21) already has the structure of the product over the density functions
of the categorical distribution. However, for a categorical distribution, the weights for
each group have to be probabilities that sum up to one. The weights in (5.21) can there-

fore be divided by their sum

zero

7 = w1 - p)q) + w1 - p) A - q) + Wi p;, (5.22)

so that they sum up to one and thus represent probabilities. This can be done by mul-

tiplying (5.21) by the constant factor (= L )N, since then

1 NN zero Zi zero Zi Zero Zi
f(zlp,c/,u,k,n)oc(wzem) [T(wiea-pa@)™ (wiea-p) - q)* (wi©p)™
i=1

N zerO(l Pz)q) Zi1 zerO(l Pz)(l q) Zi2 lzeropl
-l[==) (2 ) [T

T)Zero
i=1 w

wzero

The latent variable Z;, conditional on the other parameters and the data, hence follows

a categorical distribution with

N
f(z|p,q,p,k,n)o< [] Cat

i=1

’ ’

zero 1 i Zero 1 i 1 Z€eTro i
(L2 WEPO PO W g

wzero wZCI'O wzero

The variable Z; can therefore be sampled directly from its full conditional using the

Gibbs sampler.

Full conditional distribution of the probability g

The density of the full conditional distribution of g, that is the probability for non-
experimentally induced substitution positions to be mismatch positions, is given with
(5.14) by

flalzp)x f(z|ap) f(a).

The prior density f (q) is the density of the uniform distribution on [0, 1] (see (5.9)) and
the density f (z | g, p) is the product over the densities of categorical distributions as

illustrated in (5.20).
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The full conditional density for g therefore becomes

N
flalzp)oc [T(-pa)™ (1 -p)-a)* p™ 01 (q)

i=1

N
=g A - ™ 1011 (q) [] - pp&r+ae pie. (5.24)
i=1

As the terms behind the product sign do not depend on g, the density can be simplified

to

flalzp)oc gM 1 - ™10 (q)

I'(Ny+N>+2)
X
F'(NVi+1D)I'(N2+1)

g™ 1 - ™10, (q)

=Beta(q| M +1,N2+1), (5.25)

where I'(-) is the gamma function. The probability g, conditional on z and p, follows
therefore a beta distribution with parameters (N; + 1), i.e. the number of mismatch
positions plus 1, and (/N2 + 1), i.e. the number of SNP positions plus 1. A Gibbs sampler

can thus also be used in order to sample g from its full conditional distribution.

Full conditional distribution of the parameter vector 8

In (5.15) the distribution of § is only dependent on X and Z with density f | Teexp (2), X)
o [ (lexp’ (2) | X, B)- f (B). Instead of directly using

Ntc Nrc

[ (Teexp 2) | X, ) =[] P(Zi =“exp” | X, B) = [| @ (x; B), (5.26)
i=1 i=1
arandom latent variable Y; for position i =1, ..., Ntc can be added with
(Vi |x:"B)~N(x;"p,1) and (5.27)
Ziz = 10,00 (Y3). (5.28)

An advantage of using the model with the latent variable is, that conjugate priors for
P can be implemented, so that the Gibbs sampler can be used [18]. This means, that

given the values y := (y) ... yny.)' € RVC for the random latent variable ¥ := (V; ... Yj,.)',
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a linear regression is modeled. The variance of Y; in (5.27) is set to one, so that

P(Zi=“exp” | X,p)=P(Y;>0| X, )

P(Yi-x; p>-x; p)

=P (Yi—x; B<x; p)=(x] B), (5.29)

because of the symmetry of the normal distribution and (Y; — xl.T p)~N(©,1).

The full conditional density in (5.15) can then be represented conditionally on y, since

f(ﬁ | 1]“expn (Z) ’X) = jI‘QNTC f(ﬁ | y’ﬂ“exp" (Z) )X)f(y | ﬂ“exp” (Z) ,X) dy

=fN FB1y.X)f(y| Vep (2),X)dy. (5.30)
RATC

In the second line f (B | ¥, X) is not dependent on T« (Z) anymore, as y already in-
cludes the information if the entries of z are equal to “exp”. The aim is here to sample
from the distribution of (8 | Teexp” (2)). This aim can be reached by alternating between
sampling f conditionally on y from density f (8 | ¥,X) and sampling y conditionally
on f from density f (y | Teexp (2), X, B) [17].

Since Y; has to be greater than zero if Z; is equal to “exp” and smaller or equal to zero
otherwise, y; can be sampled from a truncated normal distribution with mean param-

eter xl.T P and variance equal to one.

The regression parameter f§ can therefore be sampled conditioned on y from

fBly.X)x f(y|X.B)f(B) - (5.31)

Since the prior for By, ¢ =0, ..., L, is a normal distribution with mean parameter zero

and variance 108 (see (5.9)) and Bo, ..., Pr are assumed to be independent, the distri-




5.1. BayMAP 1.0: Detection of PAR-CLIP induced T-to-C substitution positions 56

bution of B can also be illustrated by a multivariate normal distribution with

f(B)=N(B|0,0° I1+1)

@+ 1 ﬁTﬁ
=2 02) 2 exp (—5—02 )
167P
X exp (—5?) , (532)

where o2 is here fixed to 108 in order to have a vague prior, 7 is the circle constant and
I+, is the identity matrix of size (L + 1). The last line holds, as only the term in the

exponential function includes the parameter of interest f.

The first factor in (5.31) f(y | X, B) can also be represented by a multivariate normal
distribution, since Y; follows a normal distribution (see (5.27)) with Y7, ..., Yy, as-

sumed to be independent, so that

f(y | X’ﬁ) = N(y | Xﬁ’INTc)
1
x exp —E(y—Xﬁ)T(y—Xﬁ) . (5.33)
The density for § conditional on y can thus be calculated as

f(Bly.X)ox f(y|X.B)f(B)

o exp( 2L Jexp Ly x8)" (v x8)

2
~exp(-3{(r-x8)" (v-xp)+ L2
:exp(—%(yTy—ZﬁTXTy+ﬁT XTX+$IL+1)[3)). (5.34)

The two summands including B in the last line can be written as a quadratic form if the
-1
term y' X (X X+ 51 L+1) X Ty is added to the sum. If adding, it naturally has to be

subtracted of the sum, too, so that the last term of the previous equation is identical to
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1 1 -1 T 1
(B | ¥, X) o exp (_E(ﬂ_(XTX+;IL+1) XTJ’) (XTX‘*‘;ILH)

1 1
- (ﬁ - (XTX+ ;ILH) XTy)

1 -1
+yTy—yTX(XTX+;IL+1) XTy) . (5.35)

The terms of the last line do not depend on S, so that there is no loss of information,
-1
when omitting the factor exp ( y'y-y'x (X X+ 51 L+1) X' y), and therefore the

density simplifies to

1 1 -1 T 1
(B | ¥, X) o exp (—E(ﬁ—(XTX+;IL+1) XTJ’) (XTX+;IL+1)

-1
-(ﬁ—(XTX+ %Im) XTy)), (5.36)

which is proportional to the multivariate normal distribution, so that

1 -1 1 -1
f(BlyX)x N(ﬁ( (XTX+;IL+1) X'y, (XTX+;IL+1) ) . (5.37)

The paramter B and the variable y can therefore be sampled directly from their full
conditional distributions, i.e. the normal distribution and the truncated normal distri-

bution, respectively, using the Gibbs sampler.

5.1.3 Sampling scheme

In order to sample from the joint posterior distribution to learn more about the un-
known parameters, a combination of the componentwise Metropolis-Hastings algo-
rithm (see Algorithm 2) and the Gibbs sampler (see Algorithm 3) is used. This means,
that for those components, where it is possible to sample directly from its full condi-
tional distribution, the Gibbs sampler is implemented and that the other components
are sampled using the normal distribution as a jumping distribution for the compo-

nentwise Metropolis-Hastings algorithm.
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First, start values for the algorithm have to be drawn or chosen. This initialization can

for example be done by the following scheme:
1. Draw ﬁ(o) from N(0;41,1141),

where 07, is the null vector with length (L +1).

2. Calculate p©@ =@ (XB) and

set those entries of p(¥ to zero, where the substitution type is not T-to-C.
3. Draw ¢ from U (0, 1).

4. Draw z\” fori =1, ..., N from Cat((l - pgo)) q?, (1 - p(o)) (1- q(o)),pgo)).

i

o

. Set @ =(0.05,0.85,0.5).

These starting values can, however, also be based on other starting distributions or
they can also be chosen in advance, for example with the aim of reaching convergence
in a shorter amount of time (see e.g., Gelman et al. [18]). The parameter u© is here set
to a fixed value, so that at the beginning p0 <« pg))()p < F‘g\)lp' This has the advantage

that label switching problems between piexp and either pmm or usnp are unlikely.

With these starting values the parameters of interest can then be sampled based on
their full conditional distributions. For iteration h, with h =1, 2, ..., in BayMAP 1.0

this is done by the following scheme:

1. Determine ,ul(ﬁr)n and Hgf\;p by

(a) Drawing p; ., from the jumping distribution N (uﬁflﬁ;” , pfnm),

(b) Calculating pgyp =1—3mm,

(c) Setting [.l* = (/J;knm: /Jng’ Nglq_)l))’

f(u* | 2"V km)
f(ﬂ(h—l) | z(h‘l),k, n)

(e) Drawing u from U (0,1),

(d) Calculating r = with density in (5.19),

[T ifu<r " :“SNP’ ifu<sr

SNP —

(f) Setting ug@n = and

(h-1)

Umm » fu>r (h=1)

Henp s ifu>r




5.1. BayMAP 1.0: Detection of PAR-CLIP induced T-to-C substitution positions 59

2. Determine ,uggo by

(a) Drawing pgy, from the jumping distribution N (ugﬁ;, b pgxp),

(b) Setting p* = ( 1(’1;311’ N(S}Il\}p’ﬂzxp)’

fp 2"V, k,n)
F ({1t 0 557 ) | 270, K, m)

(d) Drawing u from U (0, 1),

(c) Calculating r = with density in (5.19),

[T ifu<sr

: n_{,Wmw (h) ) _

(e) Settlng I‘l( ) - (:urnm: ,uSpr/JeXp) - A L .
(h) (h) (h—1) :

(”mm’ :uSNpr :uexp )’ ifu>r

Note that the parameter p is here divided into two subcomponents including on the
one side umm as well as pusnp and on the other side pexp. It is nevertheless possible to

use the full conditional distribution of the combined p, since for a fixed pexp

[ (tmm, tsne | 2k, 1) o< f (tmm, psne | 2, k1) [ (exp | 2k, 1)

= f(,umm’ HsNP, Hexp | z,k, n) = f([.l | z,k, n) . (5.38)

The same is true for a fixed fimm, s0 that f (texp | z,k,)ox f(p | z,k,n).

First, a candidate for pmm and psnp (or for pexp) is drawn. If the full conditional density
of the candidate is larger than that of the last stored value, i.e. if it speaks more for the
candidate than for the old value, then the candidate is stored as new value, since then
r > 1. If it speaks more for the old value, then r < 1 and the candidate is stored as a new
value with probability r and otherwise the old value. This means, that candidates are

always accepted, if they are increasing the density and sometimes if they are not.

The variance parameters p2  and pgxp of the jumping distribution have to be specified
in such a way, that the acceptance rate is neither too small nor too large (see Section

3.3).
The sampling scheme for the other parameters for h =1, 2, ... continues with:

3. Draw zl(h) fori=1, ..., N from the categorical distribution defined in (5.23) with
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Q) (h-1)) (h-1 ) (h-1) h " (h-
wire” (1= 0) ") wig® (1-p ) (1-4%) g i

Cat jpzero ’ pzero ’ pzero
h (h) (h)
4. Draw g from Beta (N, + 1, Nty +1).
5. Draw ygh) fori=1, ..., Nyc from the truncated normal distribution with density

f (yl(h) | xiTﬁ(h_l), 1’ Yl(h) > 0) , if Zgh) _ “exp”

f(ylgh) |xiTﬁ(h_l),1,Yi(h) < 0), ilegh) # “exp”

where xiTﬁ(h_U

is the mean parameter of the normal distribution and one the

variance parameter.
-1 -1
6. Draw B from N((XTX + #Im) XTyh, (XTX + ﬁlm) ) (see (5.37)).

7. Calculate p = @ (X ﬁ(h)) and

set those entries of p'” to zero, where the substitution type is not T-to-C.
For notations and derivations of the distributions see Section 5.1.2.

The sampling process should be repeated until convergence is reached. Only samples
for iterations should be kept for which the Markov chain has converged. This means,
that convergence has to be checked, e.g., by a graphical representation of the chains,
and early iterations, i.e. the burn-in, should be discarded. In order to reduce autocor-
relation, only every o-th iteration could be kept. The final number of stored iterations

is here called Njer € N*.

5.1.4 Identification of method-induced substitution positions

In order to evaluate if a T-to-C substitution position is crosslinked and therefore a bind-
ing site position, the probability of the position being crosslinked given the data, can
be estimated with the results of the MCMC algorithm. If position i, i = 1,..., Ntc, has
experimentally induced substitutions and is hence crosslinked, the latent variable Z; is
equal to “exp”. As Z; is a latent variable, it is not observed, but realizations are sampled

for every iteration step given all other parameters (for more details see Section 5.1.2).

Once the MCMC chain has converged, the remaining iterations for the converged chain
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can be used to estimate the probability of position i,i = 1,..., Nyc, presenting exper-
imentally induced T-to-C substitutions. As shown in Section 5.1.2, Z; given the data
and all parameters except for Z;, follows a Categorical distribution. In order to esti-
mate the probability, one can, therefore, just count the number of times Z; is chosen
to be experimentally induced and divide it by the number of stored iterations of the

converged chain, so that

Mtel‘
h
Y Teexpr (Zz( ))

h=1 , (5.39)

p(Zi = “exp" | k;, ni) = N
iter

where Njer € NT is the number of stored iterations in the algorithm and zl(,h) is the h-th
entry of the MCMC sample for Z;, h = 1,..., Njter and i = 1,..., Nyc. Nevertheless, this
estimation can only be done for positions that were used in the algorithm for estimat-
ing the distributions. Moreover, all the zl(.h) have to be stored, that means Ntc - Niter
values, where N¢ is the number of all positions with T-to-C substitutions. If it is not

" or if it is wished to estimate the probability for

possible to store all the values for zl(.
positions that were not used in the algorithm, another estimation method has to be

used.

When comparing two models or hypotheses in Bayesian statistics, the Bayes factor is
often used. The Bayes factor is the ratio of the marginal likelihood of two models, that
is the density of the data assuming model 1 divided by the density of the data assuming
model 2. Here, model 1 indicates that Z; = “exp” and model 2 indicates that Z; = “mm”

or Z; = “SNP”, so that the Bayes Factor BF; can be calculated as

1
f (ki | Zi = “exp", n) fo fki |, Zi = “exp”, n;) f (| Zi = “exp”) dp
(K | Zi # “exp", n;

BF; . (5.40)

Tl
| fo ki | 1 Zi # “exp”,ni) f (1| Zi # “exp")

One way to estimate these integrals is Monte Carlo integration, where the mean of the

likelihood over the sampled parameters of the MCMC chain is calculated [42], so that

7 « " 1 Niter (h)
f(ki| Zi=“exp",n;) = N hz f(ki | Mexp,ni) .
iter =1
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The Bayes factor for position i can then be estimated as

Niter B
hzlf(ki | .ut(exi)» ni)

BFi = . G4D

h; (a® - £ (fes | e, ) + 0= g - f (I | s i)

where f(k; | ) is the likelihood of the zero truncated binomial distribution for i =

1,..., Ntc.

If using the Bayes factor, the advantage is that only Njte, entries for pexp, mm and g
have to be stored instead of Nt¢ - Njier entries for Z;. However, the prior information of
the additional variables, such as the mRNA region, is not taken into account. To this
end, one can regard the posterior odds PoO; that compare the probability of model 1

given the data to the probability of model 2 given the data

poo, - P1Zi="ep" | kiyni)
p (Zi # “exp" | k;, ni)

_ f(ki | Zi = “exp",n;) - P(Z; = “exp")
f(ki| Zi # “exp",n;) - P(Z; # “exp")

P(Zl — uexpu)

=BF;-———.
l P(Zl ;é «eXpu)

(5.42)

The last factor in Equation (5.42) is called the prior odds. The posterior odds are the
product of the Bayes factor and the prior odds. The prior odds PrO; can be rewritten
as

P(Z; =“exp")

Pro; =
rvi P(Zi#uexpn)

fLHP(Zi =“exp" | pi=g ' (x:"B)- f(B)dp
_Jr , (5.43)

meP(Z,- #“exp” | pi=g ' x:TB))- f(B)dp

The posterior odds include the information about the supplementary data such as the
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mRNA region. They can be estimated as

1 Niter h)
N: Z pi
— — iter =1
PoO; =BF;- ’ (5.44)
1 Niter

1- p(.h)
]Viter hxz"l !

where pgh) is similar to (5.8) equal to @ (xlT ﬁ(h)) for a T-to-C substitution position, so

that the additional information for each position is also taken into account.

The estimated posterior odds can be easily converted to

PoO;

f’(Z:“ex "V kj,n) = ——
' P | v 1+ PoO;

since

P(Z;="“exp"| ki, n;) _ P(Zi="exp" | ki, ni)

POOl = « " - « n ° (5'45)
P(Z;i # “exp" | ki,ni;) 1-P(Z;="exp" | ki, n;)
If the posterior odds for position i are larger than one, it implies therefore that
P(Zi="“exp" | ki,ni)>0.5. (5.46)

Hence, if PoO; > 1 it is more likely that the T-to-C substitutions at position i are ex-
perimentally induced. The threshold of one is thus used in the following for reporting

crosslinked T-to-C substitution positions.

5.2 Identification of binding site regions

BayMAP focuses on detecting positions that probably lie on a binding site. However,
a binding site is composed of a sequence of genomic positions. For determining the
binding sites around the found positions, different approaches have already been es-
tablished. E.g., in BMix, a cluster is specified around a highly confident position by
the sequence covered by all reads that include this position. Overlapping clusters are
combined to a binding site (see Section 4.3.2). wavClusteR does not take into account

the observed reads directly but rather addresses their coverage. They present two dif-
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Figure 5.1: Histogram of cluster overlaps that are greater than zero and smaller than one for
three different data sets. The observation is marked as red when just the cluster ends are over-
lapping but not the T-to-C substititution positions.

ferent peak finding methods, where a peak in the coverage function is assumed to be

the result of a binding site (see Section 4.2.2).

All highly confident T-to-C substitution positions are assumed to be crosslinked posi-
tions and therefore positions on binding sites. It is therefore quite natural to look at
all the reads that cover a highly confident position and to combine them to a binding
site as done in BMix. When there are two overlapping clusters, it is either possible that
these observations come from just one binding site or from more than one. In BMix
overlapping potential binding sites are just declared as one binding site. In this thesis,
a method is proposed for looking in more detail whether one or several binding sites

should be declared.

In a first step cluster start and end points are defined by the furthest positions of reads
that still cover the highly confident position. In a second step, the overlap of two clus-

ters or potential binding sites g and j is calculated as

# overlapping positions between g and j

0gi =
&J min (length(g), length(}))

If ogj = 0, the two clusters are not overlapping and therefore supposed to be two inde-

pendent potential binding sites. If og; = 1, one of the two clusters is completely em-
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TC TC

Reads
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23506436 23506442 23506448 23506454 23506460 23506466

Genomic Position (Chromosome 1)

Figure 5.2: Observed reads for two T-to-C substitution positions on Chromosome 1 in the Mem-
czak data set. Reads are marked in red if they only contain one of the two considered T-to-C
substitution positions.

bedded in the other one. These potential binding sites are then combined to only one.

The question remains how to proceed with two clusters g and j, where 0 < og; < 1.

In Figure 5.1 the histograms of all overlaps, where 0 < og; < 1, are represented. When
having a closer look to these overlaps in the three different data sets from Kishore and
Memczak, there seems to be a gap around an overlap of 0.5. The red histograms rep-
resent the subset of overlaps, where the T-to-C substitution position of the neighbor
cluster is not part of the overlap. For these subsets, there seems to be a gap, too. When
the overlap is greater than 0.5, the overlap of two neighbors is especially likely to in-
clude both T-to-C substitution positions. Since it is found, that only 1.5% of the clus-
ters of all T-to-C substitution positions in the Kishore A data set have an overlap with
a neighbor cluster with 0 < og; < 1, it seems reasonable to apply a simple method in
order to combine two clusters to one potential binding site or not. In the other data
sets this percentage is even smaller (0.6% in Kishore B as well as in Memczak, 0.0%

in Gottwein A and Gottwein B). In this thesis, it is therefore proposed to combine two
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clusters to one potential binding site, when the cluster overlap is greater than 0.5.

In Figure 5.2 the reads for two T-to-C substitution positions are plotted. In a first step
two clusters would be built around the two T-to-C substitution positions. In the first
cluster only the reads that contain the first T-to-C substitution position are considered
and in the second only the reads that contain the second T-to-C substitution position.
In this case the two clusters overlap, as the reads of the two clusters are overlapping.
However, the clusters are not the same, as there are reads that only contain one of the
two T-to-C substitution positions. Here, the clusters even overlap over both T-to-C sub-
stitution positions, as there are reads that contain both T-to-C substitution positions.
The first cluster starts at position 23506436 and ends at position 23506465. The second
cluster starts at position 23506440 and ends at position 23506471. The number of over-
lapping positions is therefore 26 and the length of the smaller cluster is 30 so that the
overlap in this case is 26/30 = 0.867 > 0.5. The two clusters would, hence, be combined

to one potential binding site.

Another example of overlapping clusters is given in Figure 5.3. There are three T-to-
C substitution positions and it seems that the two positions towards the right belong
together. The cluster of the middle T-to-C substitution position indeed has identical
start and end positions as the cluster around the T-to-C substitution position at the
right. The two T-to-C substitution positions represent hence only one potential bind-
ing site. The cluster on the left on the other hand only has few overlapping positions
to the cluster at the right, that is 25%. Thus, these clusters are not combined to one

potential binding site in contrast to the method proposed in BMix.

5.3 BayMAP 2.0: Detection of PAR-CLIP induced T-to-C substitutions

using read cluster

In BMix and wavClusteR, first high-confident T-to-C substitution positions are iden-
tified. Then, in a second step, binding sites are built around these highly confident
positions. BayMAP can also be used to identify binding site regions after the detection

of binding site positions. However, it can also be of interest to first define potential
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Figure 5.3: Observed reads for three T-to-C substitution positions on Chromosome 8 in the
Memczak data set.

binding sites and to then use this information for the detection of binding site posi-
tions or binding site regions. For this purpose, BayMAP 2.0 is presented in this section,
where potential binding sites are initially built around all T-to-C substitution positions,

so that region information can be added to the model.

Section 5.3 is divided into the presentation of the model of BayMAP 2.0 (Section 5.3.1),
the derivation of the full conditional distributions (Section 5.3.2), the sampling scheme
(Section 5.3.3) and the determination of method-induced substitution positions by es-

timating the probability of the position being crosslinked given the data (Section 5.3.4).

5.3.1 The model

As discussed in the previous section, a binding site is composed of a sequence of ge-
nomic positions and can have several T-to-C substitution positions. Corcoran et al.
[12] explain, that in PAR-CLIP experiments with Ago, the T-to-C substitution rate is the

highest for T positions directly upstream, i.e. in the direction of the 5’ end of the mRNA,
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of the seed match region, but that the experimentally induced T-to-C substitutions also
occur on the seed match region itself and on positions downstream of the seed match
region. If T-to-C substitutions on a binding site are experimentally induced, it is thus
likely that T-to-C substitutions at another position on the same binding site are also
experimentally induced. T-to-C substitutions on the same potential binding site are
,therefore, not independent of each other. The data of neighbor T-to-C substitution
positions could hence help for the detection of crosslinked positions. Here, it is pro-
posed that these dependencies are modeled by adding a random effect to the general-

ized linear model in (5.7):

g(pi):xiTﬁ+ai,i:1,...,NTC. (5.47)

This random effect could be different for every position i as is the case for conditional
autoregressive (CAR) models. In CAR models, the random effects a; are correlated to
random effects of neighboring positions. In the simplest CAR model, i.e. the intrinsic
CAR model, a; follows a normal distribution with the mean of all neighboring random
effects as mean parameter [35]:

T

2
a; | a_;, W,t* ~ N(R_i,ﬁ) , (5.48)

i
where a_; is the vector of length N; with all ay, s # i that are in the neighborhood of a;
with its mean a_;. W is the neighborhood matrix with w;s = 1 if positions i and s are
defined to be neighbors and w;; = 0 otherwise and 172 is a variance parameter. One has
to decide which positions are neighbors and which are not. Are for example all posi-
tions in one potential binding site considered as neighbors or only those positions with
no other T-to-C substitution points directly in between them. This model requires,
however, a density estimation for every T-to-C substitution position i, i = 1,..., Ntc.
These a; are additionally highly correlated for those a; that are on the same potential
binding site. This correlation therefore causes autocorrelation for the MCMC chain of

one a;, so that a high amount of iterations is needed to achieve convergence.

An easier way to deal with the dependence between several substitution positions is

to use normal random effects, where a random effect for every potential binding site
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j=1,..., Neuster is added to (5.7), so that
g(pij)=x]B+aj, (5.49)

where i = 1,...,N; with N; € N* the number of T-to-C substitution positions on the
potential binding site j. The model is in that way easier as there is only one additional
parameter a; for every potential binding site that has to be sampled, but not an a; for
every single T-to-C substitution position, so that, e.g., convergence can be achieved

with a smaller amount of iterations.

As the covariates considered here, e.g., the 3’ UTR, have the same values for the same

potential binding site j, Equation (5.49) can even be more simplified by

g(pj)=xjB+a;=(; (5.50)

pj is, hence, the same for every position i that lies on the potential binding site j.
In Bayesian statistics the random effect can be included by adding a new level to the
generalized linear model [18] . Here, the new level is added by (;, that is supposed to

follow a normal distribution depending on the hyperparameters g and 7
(il x]Tﬁ,Tz~N(ijﬁ,Tz). (5.51)

In order to avoid autocorrelation, the latter method is the method of choice in BayMAP
2.0. However, application results for the intrinsic CAR model will also be presented to

demonstrate that results are not appropriate.

There is, therefore, one additional parameter for which a prior distribution is needed,
that is 72 > 0. Here, a uniform prior for 7 is chosen, as it leads to a conjugate form. A
uniform prior for 7 is equivalent to f (%) o< 77! [18] as can be seen by transformation
of the density. The joint posterior distribution as well as full conditional distributions
for {, p and 72, that are used in BayMAP 2.0 for generating the MCMC chain, can be

found in the next section.
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5.3.2 Full conditional distributions

The model for BayMAP 2.0 has two parameters more than the model for BayMAP 1.0,
thatis &= ({1 ... ¢ Nduster)T and 72, so that a new level for the random effect is added.

The joint posterior distribution (see also (5.10)) then becomes

f(w2,9,8,7% 8| k,n,X)

o flk|pnz)f(u)f(z|p=g" &.q)f(&]|BX.7°)f(a)f(B)F(z°). (552

Note that the covariates are here assumed to have the same values for the same poten-
tial binding site j, so that the matrix X of covariates reduces here to X := (xj ... deuster)T
€ RNewuser*(L+1) The full conditional distributions for g, z and g that are derived in Sec-
tion 5.1.2 do not change. Only p = g~! (X ) has to be replaced by p = g7 (¢). In this
section, hence, only the densities for the full conditional distributions for ¢, f and 72

are derived. For the other full conditional distributions see Section 5.1.2.

Full conditional distribution of

In a similar way to Section 5.1.2, the latent random variable Y can be introduced to
sample the parameter vector ¢. This means that it can be alternated between sampling

¢ depending on y, and sampling y conditionally on { [17].

As stated in (5.51), {; given both ij B and 72 follows a normal distribution. The pa-
rameter (;, j =1, ..., Neuster determines the probability for position i on the potential
binding site j with p;; = pj = ®({;), where i = 1, ..., N; with N; the number of substi-
tution positions on binding site j. As not every T position on a binding site has to have
crosslinked substitutions, determination if the substitutions are crosslinked are drawn
for each position separately. Hence, the latent variable y also has to be sampled for
every T-to-C substitution position on a potential binding site j. In the same way as in

(5.27), the random variable Y;; belonging to the vector Y follows a normal distribution
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with here

(Yij|¢j)~N(;1) and (5.53)

Zij3 =T0,00)(Yi})- (5.54)

Again, Y;; given z;; and {; can thus be sampled from a truncated normal distribution.

The information Y;; for each cluster j can be combined to the cluster means
_ 1 N
Y j:= —Z Y;; , where
ji=1
v N((‘ 1) (5.55)
.J A N] ) .
so that 1_/, j is independently, but not identical, distributed. The distribution of the full

conditional distribution of { can be written as

Neluster

f(&|Xxp,7%y) = Hl f¢ %" B,7%75)
i

Neluster

S Hl f@i1E) % B,7%) (5.56)
i

Both terms in the last line of (5.56) are densities of the normal distribution (see (5.55)
and (5.51)), where the parameter of interest, i.e. (j, is only present inside the exponen-
tial function, so that the other factors can be omitted without loss of information. The

product of the two terms in (5.56) is therefore

2

5ot (Co—xiT
F@E)FE) ] %" BT oc exp —% (y'];]) g :2] d
N;

2
1 ~ _ ( x'Tﬁ (x'Tﬁ)
=eXp(—5(Njy.zj—Z(ijy.ﬁNj(?*T—i‘ch R

1 1 1
X eXp(—E((i (Nj+ﬁ —2(]' (ny-f"’ﬁijﬁ)))

(5.57)
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The proportionality of the third line in (5.57) holds, since the factor exp (—%N j 372]) does
not depend on (. The big nominator in the last line only misses an summand for ap-
plication of the binomial theorem. This missing summand does also not depend on ;.

To the aim of resembling a normal distribution, it can thus be added via multiplication

by
2-20; (Nfﬂﬁ%zxfﬁ) (Nf?ﬁ%zxfﬁ)z
" Tg .2 17 70 N+ 1\ Ntz
i€ € % pr°)ocexp| =2 - exp (- :
Nj+Tl2 Nj+Tl2

_ 2
Njy_j+TL2ijﬁ
(- 2irzn b

1
N]+T_2
X €exp 1

4L
N1+T2

(5.58)

- 1
Njy.j+r—zijﬁ 1 )
Nj+# Nj+_%2

O(N(C]

The parameter ; thus follows, conditional on the data and the other parameters, a

normal distribution. Hence, it can be sampled by using the Gibbs sampler.

Full conditional distribution of 8

The density of the full conditional distribution of § is as follows

fFBlyeX)x F(y|Q)FE| X875 fF(B] 7
< f(&]|X,87°)f(B), (5.59)

since Y does not depend directly on f, but on ¢ and the regression parameter f is here
supposed to be independent of 72. With the prior distribution of (5.9) and o2 = 1075,

f(B) is then
.
f(B)=N(B|0,06°I141)x eXp(—ﬁ ﬁ) : (5.60)

202

As {; given x]T B and 72 follows a normal distribution (see 5.51), the distribution of ¢
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can be written as a multivariate normal distribution with density

(5.61)

(C—Xﬁ)T(C—Xﬁ))

f(z | X’ﬁ’Tz) = N(C | Xﬁ’ TZINcluster) X eXp - 2T2

With (5.59), the densities (5.60) and (5.61) can be combined to

e CTIESE T I S vy SEL ) | T

F(Bl¢1%X) x exp(

since B is only present inside the exponential function of the two normal distributions.
In the same way as in (5.35), the summands including f can be written as a quadratic

form, when adding a term not dependent on f, so that

-1 T

1 1 1
—ZXTC) (—ZXTX + —21L+1)
T T g

f(B187%%)= exp(—% ((ﬁ— (T—lszx+ élm)

1 _+ 1 B
. ﬂ— ;X X+;IL+1 ;X C

+%(TC— (T—IZ)ZCTXT (%XTX—F $1L+1)_1XTZ))

1 o 12 TN
X exp —5 ﬁ— X X+?1L+1 X'¢ ;X X+;IL+1
72 -1
T T
(ﬁ—(X X+;1L+l) X C) )
72 ! 72 -1
X N(ﬁ‘ (XTX+;IL+1) XTZ,‘[Z (XTX+;IL+1) ) . (5.63)

The full conditional distribution is thus also a multivariate normal distribution, and

the parameter f can therefore be sampled by a Gibbs sampler.
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Full conditional distribution of 72

The last parameter is 72 > 0, that is the variance of the random effect, and therefore of

¢ given X B. The density of the full conditional distribution is proportional to

FE 98X, B) o f(y[8)F & X B7°) f(B) S (%)

x f(¢|X,B,72) f(7%) . (5.64)

To the aim of getting the full conditional density of 72, the density of { given X and
the prior density of 72 can be multiplied. As explained in the last passage of Section

5.3.1, the prior for 72 is here chosen to be
1
2 (5.65)

For the density of ¢ in (5.64), the factor of the normal distribution that is multiplied by
the exponential function has now to be taken into account, as it includes 72, The two

distributions can hence be combined to

2

X Inv—%z (T

1 < 2
J-1,— Y (¢;-x] p) ) (5.66)
with J := Njyster fOr @ better representation and Inv- 2 (12 | Y ) the density of the scaled

inverse chi-squared distribution. The conditional posterior distribution is therefore a

scaled inverse chi-squared distribution with J — 1 degrees of freedom and parameter

Sz_

(c;-=T8) .

1 J
]_1]':1

so that 72 can be sampled using a Gibbs sampler.




5.3. BayMAP 2.0: Detection of PAR-CLIP induced T-to-C substitutions using read cluster 75

5.3.3 Sampling scheme

In the same way as in BayMAP 1.0, first the parameters have to be initialized for the

Markov chain (see Section 5.1.3). The initialization is here done by:

1. Draw ﬁ(O) from N(0p1,1141),

where 07, is the null vector with length (L +1).
2. Set{9 = xp©,
3. Set 72" = 1.

4. Calculate p© = @ (¢©) and

set those entries of p¥ to zero, where the substitution type is not T-to-C.
5. Draw g© from U (0, 1).

6. Draw z\” fori =1, ..., N from Cat((l — pgo)) q?, (1 —~ p(o)) (1-47), pgo)).

i

~

. Set @ =(0.05,0.85,0.5).
With this initialization, the sampling scheme for h =1, 2, ... is then:

1. Determine ™, z™ and g as specified in the sampling scheme items (1) to (4)
in Section 5.1.3.
2. Draw ylg?) for j=1, ..., Nguster and i = 1, ..., N; from the truncated normal dis-
tribution with density
(h) | »(h-1) (h) e () _ oy
f(yl.j |(j ,l,Yij >0), 1le.]. = “exp
(h) | »(h=1) (h) e (B L« »
f(yij |(j ,l,Yl.]. 50), 1le.]. # “exp
where { S.h_l) is the mean parameter of the normal distribution and one the vari-

ance parameter.

3. Draw (;.h) for j=1, ..., Nguster from

o 1 Tph-1)
N N;jy; + o % P

(see (5.58)).

1 ) 1
Nj + 72D Nj + 72D
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4. Calculate p™ =@ (C (h)) and

set those entries of p to zero, where the substitution type is not T-to-C.

2(h=1)

-1 (h-1) -1
2
T - T
5. Draw ™ from N (XTX+ IL+1) xTg 72070 (XTX+ . 1L+1) )
o

(see (5.37)).

J 2
6. Draw 72" from Inv- 3{2( - ]LZ ((;h)—ijﬁ(h)) )(see (5.66)).
]:

5.3.4 Identification of method-induced substitution positions

For the identification of method-induced substitution positions, the calculation of the
prior odds PrOj for potential binding sites j = 1,..., Nejuster has to be slightly changed.
In (5.43) one has to replace x; ' f and g by { j

_P(Zj="exp") _ pr(zj ="exp" [ pj =87 (£)))- F¢5) ¢
P(Z; # “exp") pr(Zj #exp” | pr= g (¢3))- £(¢) de;

, (5.67)

so that for Equation (5.44) p;h) is equal to @ ((“ Sh)) instead of ® (x]T ﬁ(h)).

Up to now, the prior odds were used to calculate the posterior odds for position i. This
is still possible by multiplying the Bayes factor for position i and the prior odds for the

potential binding site j that is associated to position i.

However, here, it could also be of interest to account directly for the whole binding
site instead of one position. This could be done by only considering the prior odds for
binding site j without the Bayes factor for position i. This is possible, as Z; is drawn
depending on the data of k; and n;, and (; depends indirectly on all realizations of Z;
for i belonging to binding site j. Consequently, the prior odds for position j depend

on the data available for the potential binding site j.

5.4 Combining several PAR-CLIP data sets

PAR-CLIP experiments as well as the experimental validation of binding sites are la-

bor and cost intensive. Therefore, it would be desirable to combine data sets of sev-
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eral experiments. Furthermore, one would expect to receive more reliable results, if
those were based on more experimental replicates, rather than on one single data set.
For instance, some PAR-CLIP experiment are replicated under the same experimental

conditions and with cells from the same cell line.

The data sets considered in this thesis from Kishore et al. [30] and Gottwein et al. [22]
are each replicated once. In contrast, no replicate exists for the data set from Mem-
czak et al. [41]. Note that one has to be careful when comparing different PAR-CLIP
experiments that are not replicates, as the binding sites could then differ among ex-
periments. Daschkey et al. [13] for example showed that the different Ago proteins can

bind to different miRNAs and mRNAs.

The methods for analyzing PAR-CLIP data presented in Sections 1 and 4 as well as
BayMAP 1.0 (Section 5.1) and BayMAP 2.0 (Section 5.3) are only focusing on the in-
formation of one data set. Up to now, if the results of several PAR-CLIP data sets
should be compared, the overlap of discovered binding site regions has for example
been regarded (see e.g., [22]). However, it can be the case, that some binding sites in
one PAR-CLIP experiment are not detected as binding sites just because of a too small
read depth, whereas they are detected in a second PAR-CLIP experiment because of
the higher read depth. Those binding sites would not be covered by the overlap, since

they are only detected in one out of two data sets.

First, it is of interest to combine the information of the experiments, since all data sets
contain valuable information if the position is a binding site position or not. Second,
itis hence also of interest to use a more elaborate method than the overlap of binding
site regions. When using BayMAP, the information of as many data sets as possible can

be easily combined by estimating the posterior odds.

Let D be the number of independent PAR-CLIP data sets, e.g., created under the same
experimental conditions and k;; and n;,; the number of substituted and the total num-

ber of reads for position i, i = 1,..., Nt¢c, in dataset d, d = 1,..., D. The posterior odds




5.4. Combining several PAR-CLIP data sets 78

for position i given the data of all D data sets can then be written as

P(Z;="“exp" | ki1, ni1, ..., kip, nip)

Po0O; =
' P(Zl # “eXp" | kilrnil’---)kiD’niD)

f ki, kip | Zi =“exp", nir,..., nip) - P(Z; = “exp")

f(kit,....kip | Zi # “exp", ni1, ..., nip) - P(Z; # “exp")

- flki | Zi=“exp”,nin) ... f (kip | Zi = “exp”, nip) P(Z;i = “exp”)
flkin | Zi # “exp”,nin) .- f (kip | Zi # “exp”, nip) - P (Z; # “exp”)

=BFj;-...-BF;p-ProO;. (5.68)

The third line for the equation can be written since independence is assumed. The
prior odds PrO;, when several data sets are present, can be written in the same way as

in (5.43) with
P(Z; =“exp") _ P (Zi = “exp")

ProO; = = , 5.69
i P(Zi#“exp") 1-P(Z;="exp") (669
where P (Z; = “exp") is equal to
f f P(Zi="exp" | pn=8"xi" By),....,pip=8 (%' Bp))
RLJrl RLJrl
By Bp)dBy,.... Bp) - (5.70)

In (5.44) the prior odds are estimated by Monte Carlo integration. Here, however, it is
not possible in the same way, since P (Z; = “exp" | pii =g~ ' (xi ' B1),....,pin =8 ' (x:" Bp))

is not known. This probability is estimated by its mean, so that

- Z p(h)
—_— ]Viter h=1 Ddzl id
Pro; = N | D . (5.71)
1- — p(.h)
Niter h=1 D d;l id

In order to estimate if a position has method-induced substitutions, one can therefore
multiply the single Bayes factors times the combined prior odds. Since not all sub-
stitution positions are present in all replicates, for every position only the available

information.
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Simulation study

In real PAR-CLIP data sets it is not known which positions have method-induced sub-
stitutions and which do not. A simulation study is, therefore, conducted to evaluate
the performance in detecting method-induced substitution positions in comparison
to other methods. Furthermore, this simulation study can be used to verify if the es-
timated densities reflect the true parameters, i.e. if the parameter estimation is un-
biased. This is of special interest for the parameters of the additional variables, as

BayMAP can also be used to analyze these effects for binding sites.

A simulation study is performed for BayMAP 1.0 (see Section 6.1), BayMAP 2.0 (see
Section 6.2) as well as the method of BayMAP that allows to combine the results of

several PAR-CLIP data sets (see Section 6.3).

For each of the methods, i.e. BayMAP 1.0, BayMAP 2.0, wavCluster and BMix, it has to
be specified, when a T-to-C substitution position can be declared as crosslinked posi-
tion. Here, the same probability cutoff of 0.5 is used for all methods [27]. This means
that a position is declared as method-induced for a specific method, e.g., wavClus-
teR, if the probability of being crosslinked is estimated to be larger than 0.5 using this

method.

6.1 BayMAP 1.0

For the simulation study of BayMAP 1.0, first the set up of the main simulation study

is described (see Section 6.1.1). Then, the bias is analyzed for BayMAP 1.0 in Section

79



6.1. BayMAP 1.0 80

6.1.2 to verify the model. Afterwards, the performance in detecting crosslinked T-to-
C substitution positions is evaluated and compared to simpler versions (see Section
6.1.3) of BayMAP 1.0 as well as to BMix and wavClusteR (see Section 6.1.4). Finally, for
BayMAP 1.0 an additional way of simulating data is proposed to further validate the

simulation results (see Section 6.1.5).

The simulation study and its results for BayMAP 1.0 presented in Section 6.1 are already

published in Huessler et al. [27].

6.1.1 Setup of simulation study

The simulated data sets are based on the approach of Golumbeanu et al. [20]. For T-
to-C substitution positions it is not known if the substitutions are method-induced or
not. For all other substitution types it is supposed that observed substitutions are not
linked to the PAR-CLIP method. The idea of Golumbeanu et al. [20] is to take a publicly
available data set, to remove all T-to-C substitution positions and to artificially intro-
duce method-induced substitutions for one substitution type. For this substitution
type, it is therefore known which substitutions are method-induced. An advantage of
this procedure is that a realistic PAR-CLIP data set is used with only very few changes
at positions that are chosen to have PAR-CLIP induced substitutions. This simulation

method is therefore implemented here in a similar way.

Here, the Kishore A data set is used for the simulation study. As discussed in Section
2.2.2, the data set consists of the number of substitutions, the number of reads, the type
of substitutions, e.g., T-to-C, and additional information, i.e. the type of the mRNA
region. First, all T-to-C substitution positions are deleted from the data set. A-to-G
substitutions are chosen as new potential substitutions for binding sites. This choice
for A-to-G is arbitrary, it could also have been all other types of substitution instead of

A-to-G.

The A-to-G substitutions should represent the T-to-C substitutions in a normal PAR-
CLIP data set. As discussed in Section 2.2.3, T-to-C substitution positions are much
more frequent than any other type of substitution. Since A-to-G positions are now the

new T-to-C substitutions, they should also occur more often than the others. For this
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purpose, only as many of the other substitutions are kept, so that the ratio between
their number and the number of A-to-G substitution positions is the same as it was
before in comparison to the number of T-to-C substitution positions. In the original
data set, the number of all non-T-to-C substitution positions together corresponds to
86.5% of the number of T-to-C substitution positions. This means concretely that only
as many non-A-to-G substitution positions are chosen so that the number is equal to
86.5% of the number of A-to-G substitution positions. The deleted positions of the
non-A-to-G substitutions are chosen randomly. Since the A-to-G substitutions repre-
sent T-to-C substitutions in the simulation, they are called T-to-C substitutions from

now on.

Once all positions that should remain in the data set are selected, A-to-G substitution
positions that should be declared as method-induced substitution positions have to
be chosen. For each A-to-G substitution position it is drawn randomly whether this
position should be a method-induced one or not with probability p;. The parameter p;
is the probability that a position i has method-induced substitutions when the number

of substitutions k; is not given.

The percentage of method-induced T-to-C substitution positions of all T-to-C substitu-
tion positions, and therefore an indicator for p;, can be estimated using the non-T-to-C
substitutions. It is assumed that the number of non-method-induced T-to-C substitu-
tions is approximately as high as the total number of substitution positions for another
arbitrary substitution type. Consequently, the percentage of non-method-induced T-
to-C substitution positions can here be estimated by dividing the total number of sub-
stitution positions for one specific substitution, that is not T-to-C, by the total number
of T-to-C substitution positions. The percentage of method-induced T-to-C substitu-
tion positions can then be estimated by calculating one minus this fraction (see also
Sievers et al. [49]). If using the substitution type (that is not T-to-C) with the largest
number of substitution positions from the Kishore A data set, the estimated percent-
age of method-induced T-to-C substitution positions would be equal to 82.1%. For the
substitution type with the smallest number, the estimation would be equal to 97.2%.

These estimates could thus be an indication how to choose the values for p; in the
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Table 6.1: Different scenarios for 8, where the header represents the indices of  and p.

0 3’UTR CDS 5’UTR

0.5 185 1.15 0.75
Scenario large 8

0.69 099 095 0.89

-0. 1. 1. .
Scenario small p -05 > 0 0-5
p 031 0.84 0.69 0.5
Scenario no effect p 085 0.0 0.0 0.0
p 038 0.8 0.8 0.8

simulation study.

In order to reflect the influence of the additional variables, the probability p; is here
chosen to be different for the different types of mRNA regions. In BayMAP this prob-
ability is modeled via a probit model. When defining fixed values for the parameters
for the binary variables coding for the 3’UTR, the CDS or the 5'UTR, the probabilities
pi can be calculated by the probit model defined in (5.8) with the parameter vector .

Three different settings for § are here employed, that are given in Table 6.1.

In the first setting, B is chosen in such a way, that p3yrr is even higher than the large
estimate of the previous passage of 97.2%, since a binding site is most likely in the
3’UTR. As the estimates of the previous passage are quite large, § is chosen in a way,
that also pcps and psyrr are large, but smaller than psyrg. In the second setting, § has
smaller values, so that also a scenario with smaller values for p; is reflected. In order
to verify if BayMAP also works when there is no effect of the type of the mRNA region.
In the last setting the parameters are set to zero with p, equal to 0.8 comparable to the
smaller estimate of the percentage of method-induced T-to-C substitution positions in

the previous passage.

Each position that is chosen as a position having method-induced substitutions has
now to be modified. The idea is to change the number of substitutions for those posi-
tions. As discussed in Section 5.1.1, the number of substitutions is supposed to follow

a zero truncated binomial distribution (see (5.1)). Given the probability of an experi-
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Table 6.2: Different scenarios for pexp.

Scenario Values
Whole range pexp 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 and 0.9
Small prexp 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225 and 0.25

Beta distribution peyp  For each position randomly drawn from a Beta(2, 10) distribution

mentally induced substitution ey, and the number of reads n; for position i, the num-
ber of substitutions K; can be drawn from the zero truncated binomial distribution.

Since n; is given, only ey, has to be specified.

First, nine different settings with ey, = 0.1, 0.2, ..., 0.9 are considered. However, as
discussed in Section 2.2.3, it seems that the substitution rate for experimentally in-
duced substitutions is close to the substitution rate for mismatches. It appears to be
difficult to distinguish between mismatches and experimentally induced substitutions.
As discussed in Section 5.1.1, umm is assumed to be smaller than 0.25. A special interest
lies therefore in the simulation of data sets with parameters for peyp smaller than 0.25.
Therefore, nine additional settings are considered with pey, = 0.05, 0.075, ..., 0.25.
This means, that in one setting for one simulated data set the probability gy, is the

same for each experimentally induced substitution position.

However, in a real PAR-CLIP data set, the substitution probability for positions on bind-
ing sites could differ for each position in one data set. Additional simulations are there-
fore also done for pexp different for each substitution position. For each position that
is chosen as method-induced, a value between zero and one for pex, has hence to be
drawn. Here a beta distribution is chosen to randomly draw values for pey;, different for
each substitution position, as the beta distribution is defined on the interval [0, 1] and
because of its conjugacy to, e.g., the binomial distribution, an often used distribution

to model probability parameters.

The density function of the beta distribution should be, on the one hand, close to the
histogram of T-to-C substitution rates. On the other hand, the values for pex, should
only reflect substitution rates for the crosslinked positions, so that the density func-

tion should not be high for substitution rates very small (close to zero) and very large
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Figure 6.1: Histogram of T-to-C substitution rates in comparison to a Beta(2,10) density (black
curve) for the Kishore A data set.

(close to one). Hence, a beta distribution with parameters two and ten is chosen as
it is quite close to the histogram of T-to-C substitution rates for the first data set from
Kishore et al. [30] but not too close, so that mismatch and SNP substitution rates are

not reflected in the density function (see Figure 6.1).

There are thus three different scenarios for f§ (see Table 6.1) and three different scenar-
ios for pexp (see Table 6.2). Not every scenario for f is mixed with every scenario for
Hexp, but only the first scenario for §, i.e. the large g, is mixed with every scenario for
Hexp and only the first scenario for the whole range pex, is mixed with every scenario
for B. Note that the scenarios for the whole range pex, and the small pey, each repre-
sent nine different settings, as for each different ey, data sets are simulated, whereas
the beta distribution pex, only represents one setting, as pexp differs for every position

in this scenario.

For all settings but those with the small values for pexp, i.€. fexp = 0.05, 0.075, ..., 0.25,
ten different data sets are simulated. For the settings in which ey, is small, twenty
different data sets are simulated, since it is probably more difficult for the methods
to distinguish between method-induced and non-method-induced substitution posi-

tions because of the smaller values for pex;, that are closer to the expected value of pimm.

The results of the applications of BayMAP 1.0, wavClusteR and BMix are compared and
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evaluated in terms of accuracy. The accuracy is the percentage of correctly identified
positions. Sensitivity and specificity are also compared. Sensitivity, or true positive
rate, is here the fraction of correctly identified method-induced T-to-C substitution
positions out of all method-induced T-to-C substitution positions. Specificity, or true
negative rate, is here the fraction of correctly identified non-method-induced T-to-C
substitution positions out of all non-method-induced T-to-C substitution positions.
Note that BayMAP is not compared to PARalyzer [12], since PARalyzer takes as input
aligned reads, i.e. regions of positions, whereas the here simulated data sets only rep-
resent positions with substitutions, so that PARalyzer cannot be applied on these data

sets.

Results in this section are obtained by applying BayMAP 1.0 employed in R [47] com-
bined with WinBUGS [50]. The corresponding R package will be available online [26]

(for R documentation see Appendix E.1).

The total number of iterations for the application of BayMAP 1.0 is here 15,000. The
first 1,500 iterations of these 15,000 are discarded as burn-in. From the remaining
iterations, every third iteration is used to the aim of autocorrelation reduction. This
leads to 4,500 iterations that are kept for further analyses. Convergence is checked
by trace plots (for example trace plots see Appendix B.1). The chains appear to have
converged, as the mean and the variance of the chains seem to be stable with jumps

large enough that can traverse the whole space.

The posterior odds (see Equation (5.44)) are employed in this Section as criterion if a
position is method-induced or not. Equation 5.39 is not used as an alternative for the
posterior odds, since the chains are run here in WinBUGS, that could not store every

sampled value for the parameter Z;.

6.1.2 Biasin estimation

Before analyzing the performance in terms of accuracy, sensitivity and specificity, it
should be checked, if the estimations in BayMAP 1.0 are unbiased for two reasons.
First, unbiased estimations show that the model is working. Second, it is here of special

interest to analyze the estimated distributions for g to learn more about the biology of
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Figure 6.2: Bias of the mean estimate for peyp for nine different values of pex, for BayMAP for
the simulation settings with ¢ = 0.5, B3'ytr = 1.85, Bcps = 1.15 and B5yrr = 0.75.

miRNA binding sites. Moreover, the estimates for peyp could give further clues about
the substitution rates for method-induced substitutions. Such an analysis is however

only reasonable if parameter estimations are more or less without bias.

In this section, the bias of uexp and g is therefore analyzed. The bias of pmm, Hsnp
and q is not analyzed, since their true values are not known. They are not given, since
a real PAR-CLIP data set is taken for the simulations, where only some positions are
changed that are chosen as method-induced. All other positions, that are not selected
as method-induced, and that are therefore not crosslinked, are not edited, so that the
parameters Umm, Usnp and g do not have to be specified for the simulation study, but
reflect information from the underlying PAR-CLIP data set. These parameters will be

analyzed in more detail in the applications to real PAR-CLIP data sets in Section 7.

In Figure 6.2 the bias of the mean estimate for pexp, is shown for the simulation settings
with a large f and the whole range pexp. For all of the 90 simulated data sets, the mean
of the distribution of gexp vary less than 0.0005 from the true value of pexp. In the sim-
ulation settings with the small f (see Figure C.1), the mean estimates vary less than

0.0006 from the true value.

It seems, that there is a slight overestimation for small values of pexp and a slight under-
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estimation for larger values of pexp, in both settings, i.e. with the large f and the small
p. This finding can be confirmed, when looking at the bias for ey, considering the
settings with the small peyx, (see Figure C.2), where there seem to be very small over-
estimations for peyp < 0.175. However, these differences to the true value of ey, are
such small values, that one could speak of unbiased estimations for these simulation

settings for pexp.

When pexp is drawn from the Beta(2,10) distribution, it is not possible to determine
the bias in the same way as above, as pleyxp is not fixed. This means, that the true peyp is
different for each T-to-C substitution position, whereas peyp is estimated as one param-
eter in BayMAP 1.0. The mean estimates are all around 0.05 (from 0.0499 to 0.0502). In
comparison, the 50% quantile of the Beta(2, 10) distribution from which ey, is drawn,
is equal to 0.15 and the expected value to 0.1667. The peak (mode) of the distribution
is at the value of 0.1. The estimates in the data set of 0.05 is therefore smaller than the

expected value, the 50% quantile and the mode of the theoretical distribution.

Areason for this underestimation in comparison to the location parameters mentioned
above, could be that it is in this setting particularly difficult to distinguish between
mismatches and experimentally induced substitutions. For PAR-CLIP induced substi-
tution positions with a medium substitution rate (for example 0.5), pexp could be un-
derestimated, but BayMAP would nevertheless predict a method-induced substitution
position. Whereas it is important for experimentally induced substitution positions
with small substitution rates that ey is estimated small enough so that it can be dis-
tinguished between mismatches and PAR-CLIP induced substitutions. In scenarios,
where peyxp is not fixed, i.e. the same for every position, it is therefore possible that piexp
is underestimated. The underestimation, however, would lead to a higher accuracy

thanks to a better sensitivity.

It is of special interest if B is estimated without bias, as f could not only be used for
a better prediction of method-induced substitution positions but in particular for an-
alyzing which factors could be important for a binding site. In contrast, even though
it is also of interest to analyze the estimated values for pexp, it is for pex, especially

important that it is estimated in a way that helps to distinguish crosslinked T-to-C sub-
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Figure 6.3: Bias of the mean estimates for the regression parameters in the probit model in
BayMAP in relation to the mRNA position (3’'UTR, CDS, 5’'UTR) with By = 0.5, B3ytr = 1.85,
Bcps = 1.15 and Bsyrr = 0.75. The true values of the parameters for § are shown in parenthe-
ses. For f5ytr two outliers with values 1.05 and 0.73 for pexp = 0.6 are not displayed.

stitution positions from non-crosslinked ones.

Regarding the bias of the means for f of the simulation settings with a large f (Figure
6.3) and with a small B (Figure C.4), it is noticeable that the variances of the estima-
tions is higher for f5yrr and Bcps than for By and f3yrr. These results are not sur-
prising, since there are less substitution positions annotated to the CDS and far less to

the 5’UTR so that estimation could be imprecise.

In the simulation settings with the large f (Figure 6.3), the estimations seem to be more
or less unbiased, as they vary around the zero line. Results for the bias of the large f in

the settings in which the small peyp is considered are similar (see Figure C.3). Whereas
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there seem to be a small overestimation of fy and small underestimation of B3yrr,
Bcps and fBsyrr when regarding the settings with the small f (see Figure C.4). This
means however, that in this case only py is slightly overestimated, since for psyrr,

pcps and psytr, the over- and underestimation are balanced out.

In the simulation setting, in which peyp is not fixed but drawn from a Beta(2,10) dis-
tribution instead, the variances of the mean estimates for § seem also to be higher for
Bsutr and Bceps (Figure C.5). One could argue for a small underestimation of S5 yrg.

Allin all, however, the estimations of  seem to be unbiased and therefore interpretable.

6.1.3 Comparison of BayMAP 1.0 to simpler versions

Before comparing the results of BayMAP 1.0 to other methods, it is here analyzed how
BayMAP 1.0 performs and if also simpler versions of BayMAP 1.0 could be applied or
if BayMAP 1.0 could be applied on reduced data sets. The ten simulated data sets with

the whole range p.x, and the large f are taken for these analyses.

After applying the ordinary BayMAP 1.0 on the whole simulated data sets of the here
considered settings, BayMAP 1.0 is applied only to T-to-C substitution positions, i.e.
without considering other substitution types such as G-to-A. BayMAP 1.0 is also ap-
plied to the whole data set, i.e. with all substitution positions, without considering the
additional variables that had an influence on the probability that the T-to-C substitu-

tion position has substitutions induced by PAR-CLIP (termed no probit).
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Figure 6.4: (BayMAP benchmark with simpler versions) Top panel: Distribution of the accuracy
of BayMAP 1.0 (black), BayMAP 1.0 considering only T-to-C substitution positions (blue), and
BayMAP 1.0 not considering additional variables (red), considering probabilities pex, of T-to-C
substitutions at an experimentally induced position between 0.1 and 0.9. For a better graphical
representation, a very low accuraciy of about 0.02 obtained in an application only with T-to-C
substitutions with pex, = 0.1 is not shown. The very low accuracies of about 0.11 obtained in all
applications not considering additional variables with ey, = 0.9 are also not shown. Bottom
panel: Distribution of the accuracy of BayMAP 1.0 (black), BayMAP 1.0 not considering de-
pendencies between umm and usnp (grey) , BayMAP 1.0 where a binomial distribution for K; is
modeled instead of a zero truncated binomial distribution (dark blue), and BayMAP 1.0 where a
binomial distribution is modeled not considering dependencies between pmm and usnp (light
blue), considering probabilities pexp of T-to-C substitutions at an experimentally induced po-
sition between 0.1 and 0.9.
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Then, BayMAP 1.0 is applied without considering the dependency between usnp and
Mmm (termed without bm). Finally, BayMAP 1.0 is applied where the number of sub-
stitutions K; follows a binomial distribution instead of a zero truncated binomial dis-
tribution (see (5.1)) with and without dependency of usnp and pmm. The box plots for

the accuracy of BayMAP 1.0 as well as simpler versions are shown in Figure 6.4.

Analyzing the accuracy of the original BayMAP 1.0 applied on the whole data set, it
stands out, that BayMAP 1.0 has very high values of accuracy starting with values around

0.98, but mostly larger than 0.99.

First, only T-to-C substitution positions are taken as input data and compared (see top
panel of Figure 6.4). Only taking T-to-C substitution positions would have the advan-
tage, that the data set is smaller and analyzing would be faster. Results of BayMAP 1.0
applied to data sets only consisting T-to-C substitution positions are nearly equal to
the results of BayMAP applied to the whole data sets. However, there exist one outlier

for pexp = 0.1 with an accuracy of only 0.02.

Second, ignoring the additional variables in the model also leads to high accuracy val-
ues but not as good as if the covariates were taken into account (see top panel of Figure
6.4). For pexp = 0.9, results are not shown for the no probit application with a sensitiv-
ity close to zero, which means that experimentally induced substitution positions are
mainly declared as SNPs and the other way around. Obviously, with high T-to-C sub-
stitution rates, additional variables are essential for prediction, although this situation

rarely occurs in real experimental set ups.

When not considering the dependency between pugnp and pmm, results are nearly the
same as for the ordinary BayMAP 1.0. Results seem to be slightly better for BayMAP 1.0
with dependency when ey, is equal to or larger than 0.8. With dependency, usnp is
estimated to be very close to one with medians from 0.994 to 0.996 whereas the medi-
ans vary from 0.840 to 0.968 when not considering the dependency. Although results
in terms of accuracy seem to be comparable, it is nevertheless recommended to use

dependencies, since estimations for pgnp seem to be more reasonable.

Since the data does not consist of positions with zero substitutions, the number of sub-
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stitutions is supposed to follow a zero truncated binomial distribution. It is, neverthe-
less, possible to use the binomial distribution instead which would have the advantage
that the easier Gibbs sampling could be employed. However, supposing the binomial
distribution leads to slightly smaller values for the accuracy especially when peyp is

equal to or smaller than 0.2.

In total, the comparison indicates, that it is possible to use simpler versions of BayMAP
1.0 or to apply BayMAP 1.0 on a reduced data set. However, the best results in terms
of accuracy and the most stable results are obtained by applying the ordinary BayMAP
1.0. Only when not taking into account the dependency between pex, and pmm, the
values for the accuracy are as good as for the ordinary BayMAP. The estimates for pusnp
seem, however, to be less reasonable as explained above. Moreover, it increases the risk
of label switching problems as they occurred for example for the data sets where only
T-to-C substitutions are taken into account and where the additional variables are not

used.

It is therefore recommended to use BayMAP 1.0 as originally proposed, i.e. on the
whole data set considering additional variables assuming the zero truncated binomial

distribution and dependencies between ugnp and pgmm.

6.1.4 Comparison of BayMAP 1.0 to other methods

Although itis important that the parameter estimations are unbiased, it is of even more
interest to analyze if BayMAP 1.0 is able to predict method-induced T-to-C substitution
positions and better than existing methods, as this is BayMAP’s main purpose. Thus,
in this section, the performance of BayMAP 1.0 is analyzed and compared to BMix and

wavClusteR.

The first nine considered simulation settings are those with the whole range pex, and

large f (see Table 6.1 and Table 6.2). Results for this setting are shown in Figure 6.5.
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Figure 6.5: (Simulation whole rage pexp and large f) Distribution of the accuracy (top panel),
sensitivity (middle panel) and specificity (bottom panel) of BayMAP 1.0 (black box plots for
each pexp), wavClusteR (red), and BMix (blue) for ten simulated data sets considering prob-
abilities pexp of T-to-C substitutions at an experimentally induced position between 0.1 and
0.9 with By = 0.5, Byytr = 1.85, Bcps = 1.15 and Bsyrr = 0.75. For a better graphical repre-
sentation, very low values of sensitivity close to zero and of accuracy of about 0.1 obtained in
applications of BMix to data sets with geyp = 0.7, 0.8, or 0.9 are not shown. As thus the 25%
quantiles for pexp = 0.7 and pexp = 0.9 are about 0.11, the accuracies of BMix in these cases are
only displayed as points, but not as box plots.
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All three methods have a high performance with an accuracy higher than 0.99 for pexp
between 0.3 and 0.6 (see Figure 6.5). Outliers for BMix are not shown for a better gra-
phical representation. In total, BMix has eight outliers for ey, = 0.7,0.8 and 0.9 with a
sensitivity close to zero and an accuracy of about 0.11. This shows that especially BMix
has problems to distinguish between SNPs and method-induced substitutions when

Mexp is high.

When looking at the sensitivity and specificity, BayMAP 1.0 outperforms with a high
sensitivity whereas wavClusteR and BMix have better values for the specificity. This
means, that BayMAP 1.0 is good in detecting true method-induced substitution posi-
tions for these settings. It stands out, that BayMAP 1.0 performs better than wavClus-

teR and BMix especially when piexp, is close to zero.

As discussed above, it seems to be crucial to distinguish between mismatch positions
and method-induced substitution positions, since there is evidence in the considered
data that PAR-CLIP induced substitution rates are not very high (see e.g., Figure 6.1). It
is, thus, of special interest to have a closer look into small substitution rates smaller or

equal than 0.25, as most positions seem to have rates in this range.

In Figure 6.6 results of the nine settings with the small pey, and large § are shown. The
closer peyp is to zero the more difficult it gets to distinguish between mismatches and
PAR-CLIP induced substitutions. Consequently, the accuracy decreases with decreas-
ing Uexp in the results. BayMAP 1.0 however, has a higher performance than the other
methods in terms of accuracy, where the difference between BayMAP 1.0 and the other

methods is higher the smaller pexp, is.

This reveals BayMAP’s high performance especially when it is hard to distinguish be-

tween method-induced substitutions and other substitutions.
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Figure 6.6: (Simulation with small ey, and large f) Distribution of the accuracy (top panel),
sensitivity (middle panel) and specificity (bottom panel) of BayMAP 1.0 (black box plots
for each pexp), wavClusteR (red), and BMix (blue) for twenty simulated data sets consid-
ering probabilities of T-to-C substitutions at an experimentally induced position of pex, =
0.05,0.075,...,0.225,0.25 with ¢y = 0.5, B3utr = 1.85, Bcps = 1.15 and Bsyrr = 0.75.
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Itis not only of interest to show that BayMAP 1.0 works well for high values of p but also
for smaller p which means that the data set consists of much more noise. Results for
the settings with the smaller f# and thus a smaller p, are therefore presented in Figure

6.7.

BayMAP 1.0 and BMix both seem to perform very well with an overall mean of accuracy
of 0.99 for BayMAP 1.0 and 0.95 for BMix. BMix has again outliers for pex, = 0.9, where
five values of sensitivity are close to zero so that the accuracy for these data sets is
around 0.34. Even when not considering these five outliers, BayMAP 1.0 still performs

slightly better than BMix in terms of accuracy.

When only looking at the sensitivity, wavClusteR seems to perform well with most val-
ues above 0.99 even for pex, = 0.1, where wavClusteR outperforms the other methods.
However, wavClusteR has much more problems in identifying the right positions with
an overall mean of specificity of only 0.7. With values for the specificity smaller than
0.6 for pexp = 0.1, the slightly better values in sensitivity is largely outweighed by the

small values for specificity.

For now, BayMAP 1.0 had the advantage, that the influence of additional variables was
included in the simulated data sets and that BayMAP is the only method that is able
to model these covariates. Even when f with no effect is considered and when there
is thus no influence of additional variables in the simulated data, BayMAP 1.0 per-
forms well as can be seen in Figure C.6. Seven outliers of BMix for peyp = 0.7 and
0.9 are not shown. Sensitivity of these outliers is close to zero so that accuracy is
around 0.2. Even though there are no additional variables, BayMAP especially per-
forms slightly better than wavClusteR and BMix for small or high values of the sub-
stitution rate (Uexp = 0.1,0.2 and 0.9), i.e. when it is difficult to distinguish between

method-induced and non-method-induced substitutions.
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Figure 6.7: (Simulation whole range pexp and small ) Distribution of the accuracy (top panel),
sensitivity (middle panel) and specificity (bottom panel) of BayMAP 1.0 (black box plots for
each piexp), wavClusteR (red), and BMix (blue) considering probabilities pex, of T-to-C substi-
tutions at an experimentally induced position between 0.1 and 0.9 with §y = —0.5, Bs'ytr = 1.5,
Bcps = 1.0 and Bsyrr = 0.5. For a better graphical representation, very low values of sensitiv-
ity very close to zero and of accuracy of about 0.34 obtained in applications of BMix to data
sets with pexp = 0.9 are not shown. As thus the 25% quantiles for pex, = 0.9 are about 0.34, the
accuracies of BMix in this case are only displayed as points, but not as a box plot.
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As discussed above, pex, has not to be fixed to a value, but can also be drawn from
a distribution, here the Beta(2,10) distribution. All three methods perform well (see
Figure C.7). BayMAP 1.0 and wavClusteR have a slightly higher accuracy than BMix

whereas BMix has here higher values specificity.

6.1.5 Simulation study with PARA-suite

In order to also have a second way of simulation, the simulation tool of PARA-suite
is employed in an additional simulation study. PARA-suite takes a fasta file, that is a
file format for, e.g., RNA sequences, as input and simulates short RNA reads out of it.
Here, a fasta file of the 3’UTR of GRCh38.p7 is taken. Additional input parameters that
are needed, such as substitution rates for the different substitution types (e.g., T-to-C,
A-to-G), can be estimated by analyzing a real PAR-CLIP data set with PARA-suite. The
data set from Memczak et al. [41] is used here for estimating these input parameters. A
noise parameter also has to be given to the tool. Noise can be modeled by the fraction
of reads that should be binding sites in the simulated data. If this fraction is set to
0.1, it means that around 90% of the reads are not reads of binding sites but noise.
Data is here simulated for the nine fractions 0.1, 0.2, ..., 0.9. In PARA-suite reads are
simulated before alignment, so that additional variables that are modeled in BayMAP

by the probit model cannot be considered.

Simulated data sets from the PARA-suite tool for the nine different noise settings are
analyzed (see Figure 6.8). In terms of accuracy, all three methods perform compara-
ble. BayMAP 1.0 has a higher performance in terms of sensitivity when the fraction
of binding sites is low, i.e. when noise is high. wavClusteR even has a sensitivity very
close to zero when the fraction of binding sites is smaller or equal to 0.3. Since a small
value of the fraction of binding sites means that only few reads are binding site reads,
the accuracy is high nevertheless. For small values of the binding site fraction, it is in
particular the specificity that determines the accuracy, as most positions are noise. By
contrast, for large values of the binding site fraction, it is mainly the sensitivity that de-
termines the accuracy. Due to this reason, the values for the accuracy are decreasing
for larger values of the binding site fraction, since the large values of specificity influ-

ence decreasingly the accuracy and the smaller values of sensitivity get more weight.
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Figure 6.8: (Simulation PARA-suite) Distribution of the accuracy (top panel), sensitivity (middle
panel) and specificity (bottom panel) of BayMAP 1.0 (black), wavClusteR (red), and BMix (blue)

for ten simulated data sets considering fraction of binding sites between 0.1 and 0.9 simulated

by PARA-suite. Note that the fraction of binding sites influences the number of reads that are

noise in the data set, but not the number of T-to-C substitions at a binding site (as is the case

for plexp).
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6.2 BayMAP 2.0

For the simulation study of BayMAP 2.0, first the set up of the main simulation study
is described (see Section 6.2.1). Then, the bias is analyzed for BayMAP 2.0 in Section
6.2.2 to verify the model. Finally, the performance in detecting crosslinked T-to-C sub-
stitution positions is evaluated and compared to simpler versions (see Section 6.2.3) of

BayMAP 2.0 as well as to BMix and wavClusteR (see Section 6.2.4).

6.2.1 Setup of simulation study

In Section 6.1, it is assumed, that T-to-C substitution positions are independent of each
other. However, T-to-C substitution positions very close to each other are usually either
both on a binding site or both not on a binding site. This dependency is now added to
the simulated data sets by an additional random effect for each potential binding site

as explained in Section 5.3 with p; = ®(x; "+ a;) =@ ({;).

The idea of simulations is here the same as in Section 6.1.1, where first T-to-C sub-
stitution positions are deleted of the first data set of Kishore et al. [30]. Then, a part
of the A-to-G substitution positions is chosen randomly as method-induced substi-
tution positions and their number of substitutions is changed artificially. As many of
the non-A-to-G substitution positions are deleted as needed, so that the proportion of
non-A-to-G substitution positions to A-to-G substitution positions is the same to the
proportion of non-T-to-C substitution positions to T-to-C substitution positions in the
original data set. In the following the A-to-G substitutions are named here again T-to-C

substitutions, since they present the actual T-to-C substitutions.

When a cluster is not a binding site, then none of the T-to-C substitution positions
should have experimentally induced substitutions. When a cluster is a binding site,
however, not all of the positions are expected to be experimentally induced. In a first
step, it has, hence, to be selected which of the clusters are binding sites, which is done

here with the probability p; = ® (ijﬁ + aj) =P ((j)-

In a second step, the positions with experimentally induced substitutions have to be

chosen. Once a potential binding site j is selected to be a true binding site, it is drawn
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randomly with probability p; for every position on the j-th binding site if the number

of substitutions is changed artificially.

Hence, p; is not only taken here if cluster j is a binding site, but also if position i on
the selected binding site j has method-induced substitutions. This is due to simplic-
ity reasons, so that no further parameters have to be specified. If it is not very likely
that a cluster is selected as a binding site, but it is picked nevertheless, positions on
this binding site have thus not very likely experimentally induced substitutions in this
simulation setting. Therefore, another advantage of this approach is, that most of the
picked binding sites have crosslinked substitution on most of the T-to-C substitution
positions, but that there exist also binding sites with only few or even none of the po-

sitions being method-induced, which could also happen in real PAR-CLIP data.

For the simulation, hence, not only f has to be specified but also a random effect a ;

for every potential binding site as well as the potential binding itself.

The parameter f is set to the same values as in the simulation study in Section 6.1
(see Table 6.1). This means, that three scenarios are considered. In the first scenario
with the large f, the parameters are set to fp = 0.5, f3yrr = 1.85, fcps = 1.15 and
Bsutr = 0.75. In the second scenario with the small , the parameters are set to fy =
—-0.5, Byutr = 1.5, Bcps = 1.0 and B5yrr = 0.5 . Finally, the model is also tested on data,

where there is no effect of the type of the mRNA region with parameters set to fy = 0.85

and B3 urr = Bcps = Ps'utr = 0.

Before choosing the random effect a ; and therefore { ;, it has first to be specified which
of the positions belong to the same binding site. In order to determine potential bind-
ing sites, one could apply the method proposed in Section 5.2 to the data. However, A-
to-G substitution positions are not distributed in the same way as T-to-C substitution
positions, as T-to-C substitution positions are meant to appear much more frequent
due to the PAR-CLIP experiment. This means, that it is less likely, that the read clus-
ters of different A-to-G substitution positions overlap and that they can be combined,
so that smaller regions for the potential binding sites are expected for A-to-G substi-
tution positions.Thus, the distribution of the number of A-to-G substitution positions

per cluster may be different than for T-to-C substitution positions.
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Figure 6.9: Barplot with relative frequencies of the number of T-to-C substitution positions per
cluster for the Kishore A data set. The black line represents the density of the one inflated zero
truncated Poisson distribution with parameters 7 = 0.1 and A =6.

Alternatively, the numbers of A-to-G substitution positions per cluster could be drawn
randomly following the distribution of the number of T-to-C substitution positions per
cluster in the original data set. The barplot in Figure 6.9 shows the distribution of the
number of T-to-C substitution positions per cluster with relative frequencies for the
first considered data set of Kishore et al. [30]. The clusters are determined using the

here presented method in Section 5.2.

Since one is dealing here with the number of times an event occurs, the Poisson distri-
bution that models such numbers, would be an obvious choice. Here, however, a clus-
ter is only built when at least one T-to-C substitution position is present, so that it is
not possible to observe zero T-to-C substitutions for one potential binding site. Instead
of the Poisson distribution, the zero truncated Poisson distribution could therefore be
taken, as it models the number of events, where it is known that at least one event is

observed.

When having a look at the barplot in Figure 6.9, the high number of clusters with only




6.2. BayMAP 2.0 103

one T-to-C substitution position is outstanding. The observation of one seems there-
fore to be inflated. The zero inflated Poisson distribution is already described by Lam-
bert [33]. This distribution can be transformed in such a way that it is a one inflated
zero truncated Poisson distribution, that is firstly described and developed in this the-

sis to the best of the author’s knowledge.

Let C be a random variable following the one inflated zero truncated Poisson distribu-

tion, its density can then be written as
P(C=c)=7mTe=1(c)+ A —m) ZTP(c | A) Teen+(0) , (6.1)

where 7 is the probability of the additional ones, ZTP (¢ | A) is the density of the zero
truncated Poisson distribution with parameter A. The one inflated zero truncated Pois-
son distribution is thus a mixture model, where C is either equal to one with probability

7 or following a zero truncated Poisson distribution with probability (1 — 7). Note, that
P(C=1)=n+1-mZTP(1|A),

since the observed value of a zero truncated Poisson distributed variable could also be

equal to one.

When choosing 7 = 0.1 and A = 6, the one inflated zero truncated Poisson distribution
represents approximately the true distribution of the number of T-to-C substitution

positions per cluster (see black line in Figure 6.9).

In order to determine to which cluster each A-to-G substitution position belongs, as
many random numbers from the one inflated zero truncated Poisson distribution are
drawn, so that the sum of all numbers is greater or equal to the number of A-to-G sub-
stitution positions. If this sum is greater than the number of A-to-G substitution posi-

tions, it would mean that the last cluster contains less positions than drawn.

Once the clusters are specified, an effect for every potential binding site has to be

drawn. As described in (5.51), {; = ijﬁ + a; is supposed to follow a normal distri-
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bution with

(; \ ijﬁ,Tz ~ N(ijﬁ,TZ)

given the variance parameter 72. As the true variance is unknown, 72 also has to be
specified. Here, three different scenarios with 72 =0.25, 72 = 1 and 72 = 4 are consid-
ered, so that the standard deviations are T = 0.5, 7 = 1 and 7 = 2. As a comparison, the
standard deviations in the real data set were estimated in the range from 0.63 to 1.84 as
will be presented in Section 7.1.2. When these random values are drawn from the nor-
mal distribution, p; = ® (( j) can be calculated, so that it can be drawn with probability

p; for cluster j, whether it is a true binding site or not.

Finally, pexp has to be specified that is used for the random drawing of the number
of substitutions for a position that is chosen as experimentally induced. As discussed
in Section 6.1.1, Wexp does not have to be the same for every position. The success of
substitution by crosslinking could be linked to the location on the binding site, so that

the substitution rate is assumed to be different for every position on a binding site.

The main simulated data sets in this section are therefore obtained with pey, drawn
from a Beta(2,10) distribution (see Section 6.1.1). Additional, a fixed pexp = 0.2 is also
considered for the scenario with the large f. For pex, = 0.2, only the combination with
the large B is examined to the aim of not oversizing the simulation study. The value
Mexp = 0.2 is chosen, since one is in particular interested in smaller values of pey, as
discussed in Section 6.1.1 and 0.2 is also relatively close to most of the estimated values

for pexp as will be seen in Section 7.1.2 in Table 7.4.

For each of the different settings, first {; is drawn ten times. Then, for each of the
ten different entries of { = (C 1...C /)T, 10 different data sets are simulated, so that in
total 100 data sets exist for one setting. On all data sets, BayMAP 2.0, BayMAP 1.0,

wavClusteR and BMix are applied.

Additionally, BayMAP 2.0 is also applied to the simulated data sets from Section 6.1,
where peyp is drawn from Beta(2,10). In this way, the functionality of BayMAP 2.0 is

also tested for settings, where there is no underlying effect of the different potential
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binding sites. To estimate if a position has method-induced substitutions, (5.39) is

employed to BayMAP 2.0 as well as BayMAP 1.0.

As described in Section 5.3.4, it is also reasonable to consider prior odds directly for
the detection of binding sites in case of applying BayMAP 2.0, i.e. considering clus-
ters. In the same manner, as in Section 6.1, the accuracy as well as the specificity and

sensitivity are compared.

For calculating the accuracy, specificity and sensitivity, it has to be known for every po-
sition, if it is a binding site position or not. Here, not every position on a binding site
has method-induced substitutions, since first it is chosen if a cluster is a binding site
and then it is chosen for every position on a binding site separately if the position has
PAR-CLIP specific substitutions or not. For the analysis if BayMAP 2.0 correctly identi-
fies method-induced substitution positions, only positions with changed substitutions
should therefore be taken into account. However, the overall aim is to detect binding
sites and not only PAR-CLIP induced substitution positions. Moreover, BayMAP 2.0 is
constructed in a way so that the data of neighbor positions on the same potential bind-
ing site influence the decision for a position. BayMAP 2.0 could therefore also predict
a position as a binding site position just because of the neighbor positions. It is here
hence more appropriate to check whether BayMAP 2.0 detects binding site positions.
True positives for the accuracy, specificity and sensitivity are thus here defined as po-
sitions on chosen binding sites no matter if the position has method-induced substi-

tutions or not.

Results in this section are obtained by applying BayMAP 2.0 employed in R [47]. In
contrast to the previous section, here, WinBUGS [50] is not invoked for the sampling,
but MCMC are obtained in R directly. The corresponding R package will be available

online [26] (see Appendix E.2 for R documentation).

The total number of iterations for the application of BayMAP 1.0 is here 45,000. The
first 15,000 iterations of these 45,000 are discarded as burn-in. From the remaining
iterations, every sixth iteration is used to the aim of autocorrelation reduction. This

leads to 5,000 iterations that are kept for further analyses. Convergence is checked
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by trace plots (for example trace plots see Appendix B.2). The chains appear to have
converged, as the mean and the variance of the chains seem to be stable with jumps

large enough that can traverse the whole space.

6.2.2 Biasin estimation

For studying how BayMAP 2.0 is estimating the parameters, the bias is analyzed here
for T and f for the two settings with the large and the small f. Since the true values
of u and g are not known as explained in Section 6.1.2, they are not analyzed in this

section.

In Figure 6.10 the bias of the mean estimate for 7 is shown for the simulation settings
with the large f. It seems that 7 is overestimated, when 7 = 0.5 or 7 = 1. However, this

overestimation is here expected as discussed in the following.

In the simulation setting, it is first chosen randomly, if a cluster is a binding site. When
a cluster is chosen as binding site, part of the T-to-C substitution positions of this bind-
ing sites are changed artificially. This means in particular that there is a group structure
even if 7 were chosen to be equal to zero. Consequently, 7 is here expected to be over-
estimated, especially when 7 is very small. The bias can therefore not be interpreted

here as an ordinary bias, since true underlying 7 is unknown.

However, the results show, that BayMAP 2.0 is able to detect group structures when
group structures are present. In the simulation settings with the small f (see Figure
C.8) results are similar but the overestimation of 7 is larger. The reason for this is prob-

ably that the noise is larger in these data sets due to the smaller values for p.

In Figure 6.11 the bias of the estimated means for f is represented for the large  and
7 = 1. It is noticeable, that B is underestimated. This underestimation of 3, can also

be found in the other settings (see Figures C.9 - C.13).

An underestimation of §y would lead to an underestimation of the prior probability
that a position is a binding site position that is neither lying on a 3’'UTR nor lying on
a CDS nor lying on a 5’'UTR. It would, however, also lead to an underestimation of

this prior probability for the single types of mRNA regions under the condition that




6.2. BayMAP 2.0 107

the other effects are well estimated, since this effect is composed by 3y and the corre-
sponding parameter for the region. This underestimation is probably due to the fact,
that this smaller effect for the mRNA region can be equalized by the added random ef-
fect. For clusters that are not chosen as binding sites, there are no positions where the
number of substitutions is changed artificially. This also means that there is somehow
a group structure that can be illustrated by the random effect. Hence, this underesti-

mation is not unexpected.
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Figure 6.10: Bias of the mean estimates for 7 considering ten draws of { for each value of 7 with
Bo=0.5, B3yrr = 1.85, Bcps = 1.15 and Bsyrr = 0.75.
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Figure 6.11: Bias of the mean estimates for the regression parameters in the probit model in
BayMAP in relation to the mRNA position (3’'UTR, CDS, 5’UTR) when 7 = 1. The true values of
the parameters for  are shown in parentheses.

For B3 utr, Pcps and Bsyrr small over- or underestimations can be detected in some
settings (see in particular Figure C.11). In total, however, these parameters of ff seem
to be more or less unbiased. Even if the total effect of for example the 3’'UTR is then
underestimated, since it is composed by By and B3 yrr as discussed above, the inter-
pretation of these effects does not change. This is due to the fact that usually not the
composed effect is analyzed, but only the effect itself, since a positive value for f3yrg,
e.g., would mean in general that a method-induced substitution position is more likely

on a 3'UTR than on a position that is neither on a 3’UTR, nor CDS nor 5’UTR.
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6.2.3 Comparison of BayMAP 2.0 to BayMAP 1.0

Before comparing the simulation results of BayMAP 2.0 with other methods, it is of in-
terest, whether BayMAP 2.0 performs well and better in comparison to BayMAP 1.0.
Moreover, the simulation can be used to decide how to identify method-induced sub-
stitutions in BayMAP 2.0. As explained in Section 5.3.4 it could not only be reason-
able in BayMAP 2.0 to estimate the posterior probability that position i has method-
induced substitutions but also to use the prior odds as criterion. These two criteria are
thus compared in this section. For estimating the posterior probability that position i
is crosslinked, here the fraction of how often Z; is sampled as experimentally induced

in the MCMC chain.

In Figure 6.12 the distribution of the accuracy, the sensitivity and specificity is shown
for the settings with the large f, the beta distributed pexp and 7 = 1. The accuracy, sen-
sitivity and specificity is always slightly higher for BayMAP 2.0 compared to BayMAP
1.0 when using the estimated posterior probabilities as criterion for BayMAP 2.0. This

is also true for the other simulation settings (see Figures C.14 - C.24).

Looking at the results obtained with the prior odds in Figure 6.12, it stands out that,
on the one hand, the sensitivity for the prior odds is better than for the ordinary cri-
terion of BayMAP 2.0 with values mostly larger than 0.85, whereas the values for the
ordinary BayMAP 2.0 are mostly only over 0.8. On the other hand, the results of the
specificity for the prior odds vary largely with values between 0.77 and 0.96 whereas
the ordinary BayMAP 2.0 has always very high values between 0.97 and 0.98. The val-
ues for the accuracy for the prior odds are larger here, since most of the positions are
method-induced because of the large f, so that the accuracy is mostly determined by

the sensitivity.

The prior odds seem to have problems in terms of specificity in all settings with a large
P, in particular when 7 is small (see Figures C.14, C.22 - C.24). On the contrary, in the
settings with the no effect g, the prior odds outperform the ordinary BayMAP 2.0 (see
Figures C.19 - C.21). Results are comparable in the settings in which f is small (see

Figures C.16 - C.18).
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It seems, thus, that the ordinary BayMAP 2.0 has a small advantage over BayMAP 1.0
and that the prior odds only have reliable results in some circumstances, in particular
when p has no effect and/or when the variance 72 is large enough. In the other settings,
the prior odds fall behind in terms of specificity with differences up to 0.3 (see Figure
C.22). The specificity is here of special interest, as a high specificity ensures that the
detected crosslinked T-to-C substitution positions are really method-induced. Some
method-induced substitution positions may be missed depending on the sensitivity.
Nevertheless, with a high specificity the number of detected positions can be highly

reduced, so that for these positions further experiments can be conducted.

Allin all, the ordinary BayMAP 2.0 seems to perform well, in particular when regarding
the specificity, that is in the range of 0.97 to 0.98 in all settings. The values for the
sensitivity are not as large as for the specificity with the lowest values between 0.65 and
0.7 in the setting with the small f and 7 = 0.5 (see Figure C.16) and the largest values

around 0.9 in the settings with ey, = 0.2 (see Figures C.22 - C.24).

These smaller values in sensitivity are somehow expected, since T-to-C substitution
positions that do not have artificially changed substitutions but that lie on a binding
site are here considered as crosslinked positions as explained in Section 6.2.1. More-
over, it is not necessary to detect every T-to-C substitution position on one binding site

as method-induced, but it is sufficient to identify at least one of them.

If only one position is identified as crosslinked, this would nevertheless mean, that the
whole cluster is declared as binding site. This will be seen in more detail in the next
section, where BayMAP 2.0 is compared to wavClusteR and BMix. Because of the more

stable results, only the ordinary BayMAP 2.0 is considered in the next section.
6.2.4 Comparison of BayMAP 2.0 to other methods

Position based comparisons

In the previous section, it was shown that BayMAP 2.0 leads to stable results and better
values than BayMAP 1.0 in the here considered simulation settings with very high val-
ues of specificity. In Figure 6.13, BayMAP 2.0 is compared to wavClusteR and BMix for

the simulation settings with the large g, the beta distributed pex, and 7 = 1.
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It is first noticeable, that wavClusteR outperforms the other methods in terms of sensi-
tivity but only achieves relatively small values in terms of specificity. This is even much
more striking in the settings, in which g is small (see Figures C.27 - C.29) and in which
P has no effect (see Figures C.30 - C.32). The values of sensitivity for wavClusteR are
here mostly very close to one, whereas the values of specificity are mostly very close
to zero, so that they are not even shown in the figures for a better graphical represen-
tation. Only in the settings, in which gy is set to 0.2, the values for the specificity of
wavClusteR are comparable to those of BayMAP 2.0 and BMix (see Figures C.30 and
C.31). However, even in these settings, wavClusteR falls behind in terms of specificity,
when 7 is too large, i.e. T =2 (see Figure C.30). In the settings, in which peyp is beta
distributed with the large B, it can also be observed, that wavClusteR’s specificity di-

minishes with a larger 7 (compare Figures C.25 and C.26).

In Figure 6.13 it seems that wavClusteR performs nevertheless better than BayMAP
2.0 and BMix when regarding the accuracy. However, these values are misleading, as
the accuracy is here mostly determined by the sensitivity because of the large f that
leads to much more crosslinked substitution positions than non-crosslinked ones. In
Figures C.30 and C.31 wavClusteR’s accuracy is even comparable to the other methods
despite the very small values of specificity only because nearly all of the positions are

estimated to have method-induced substitutions.

Thus, wavClusteR only seems to perform comparable to the other methods, if a dis-
tinction of method-induced substitutions to non-method-induced ones is not so dif-
ficult because of a fixed peyp, a large f and a small variance 7. In most settings, the
results of wavClusteR are here however not reliable, since most positions are chosen to
be method-induced, which leads to a high sensitivity but a very small specificity. This
means that most of the T-to-C substitutions are detected as crosslinked when using
wavClusteR with a high number of false positives. The aim of reducing the number of
detected binding sites to only those binding sites that are very likely true binding sites,

can therefore not be reached in a reliable way when using wavClusteR.

The results of BayMAP 2.0 and BMix are much more comparable as they are close to

each other in all settings. It is remarkable that BMix outmatches BayMAP 2.0 in al-
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most all settings in terms of sensitivity whereas BayMAP 2.0 wins over BMix in terms of
specificity in all settings (see Figure 6.13 and Figures C.25 - C.35). This leads to slightly

larger values of accuracy for BMix in nearly all settings because of the larger sensitivity.

Binding site based comparisons

However, as explained in the previous section, it is not necessary for detecting a bind-
ing site to detect all of the crosslinked positions of one binding site, but sufficient to
detect as least one. Therefore, the methods are also compared binding site based in-
stead of position based in Figure 6.14 as explained in the following. For BayMAP 2.0,
wavClusteR and BMix, first for every T-to-C substitution position it is decided if this
position is crosslinked or not. For the position based decisions, binding sites are then
declared for regions with at least one position that is declared as experimentally in-
duced. Lets suppose that all methods identify correctly the cluster boundaries. The
number of correctly identified binding sites and correctly identified non-binding sites
over all potential binding sites can then be compared for the different methods instead

of the number of correctly identified positions over all positions.

In Figure 6.14 the values for accuracy are compared for the settings in which f is large
and pexp beta distributed. It is obvious, that on a cluster based comparison, wavClus-
teR does not reach the same accuracy as the other methods, especially when 7 is high.
BayMAP 2.0 performs better than the other methods with values of accuracies around
0.95. The difference in accuracy is more visible for larger 7. In the settings with small

(see Figure C.36) results are similar with a larger gap to wavClusteR.

The fact that BayMAP 2.0 has better values in terms of accuracy compared to wavClus-
teR and BMix when the comparison is binding site based, leads to the conclusion that
BayMAP’s smaller position based sensitivity has an advantage over the other methods.
This is due to the fact that only one detected crosslinked position is enough to declare
a binding site, so that it is easy to falsely identify binding sites. With BayMAP’s high
specificity, it is less likely to falsely detect a binding site. On the other hand, BayMAP’s
sensitivity is large enough, that probably at least one position is identified correctly, so

that the binding site based sensitivity is as good as the one for BMix and wavClusteR.
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Simulations with no binding site effect

It is also of interest to investigate the performance of BayMAP 2.0, when there is no
difference in potential binding sites, i.e. the variance of 72 = 0. The results of BayMAP
2.0 are added to the setting of Section 6.1 in which peyp is drawn from a Beta(2, 10) dis-
tribution. Clusters to which the positions belong, are drawn from the one inflated zero
truncated Poisson distribution as presented in Section 6.2.1. Figure C.37 is basically
the same figure as Figure C.7 with the only difference, that results for BayMAP 2.0 are
added.

In terms of sensitivity (see Figure C.37), BayMAP 2.0 is not performing as good as the
other methods, whereas the specificity is larger than for the other methods. The values
between the accuracy and the sensitivity do not differ much, since most of the posi-
tions are chosen as true experimentally induced substitution positions. The results
show that even when no cluster dependencies are present, BayMAP 2.0 reaches still a

high sensitivity close to 0.9 and a very high specificity around 0.95.

Comparisons dependent on part of crosslinked positions per binding site

In the simulation settings in this section, first it is chosen if cluster j is a binding site
with probability p ;. For a chosen binding site, it is then drawn randomly for each posi-
tion with probability p;, if this position has method-induced substitutions or not. This
means, in particular, that only a part, i.e. between 0 and 100%, of the positions of one
binding site have PAR-CLIP induced substitutions. It could therefore also be of interest
to analyze the performance depending on the fraction of method-induced substitu-
tion positions of a binding site to the aim of learning how many positions should have

method-induced substitutions to predict in a reliable way if a position is crosslinked.

In the simulation study in this section, ten different draws for { were generated for each
setting with then ten simulated data sets for each draw of {. In none of the settings, an
important difference between the ten draws for ¢ could be detected. This leads to the
conclusion that there is not much loss of information, if analyzing the simulated data
sets for the ten draws of § altogether for one setting. As one setting consists of ten draws

for { with ten simulated data sets for each ¢, this combination results in one hundred
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simulated data sets for each setting, that can be analyzed together. If one is interested
in the performance depending on the fraction of crosslinked substitution positions of
a binding site, the here described combination of the data sets ensures that there are

observations even for fractions that are not very frequent.

In Figures 6.15 and C.38 for the large and the small B, the sensitivity is displayed de-
pending on the part of experimentally induced T-to-C substitution positions over all
T-to-C substitution positions for a binding site. This range of zero to one for the frac-
tion is divided into twenty intervals of equal length, so that for example all binding
sites having less than five percent of crosslinked T-to-C substitution positions, i.e. in

the interval [0.00, 0.05), are grouped together.

For every binding site it is regarded if at least one of the T-to-C substitution positions
is declared as method-induced. For each of the twenty groups, the true positive rate,
i.e. sensitivity, is calculated. Note that in some intervals only binding sites with the
same rate of experimental induced T-to-C substitutions belong to the group, e.g., the
interval [0, 0.05) only consists of binding sites with zero experimental induced T-to-C
substitutions and the interval [0.95, 1.00] only consists of experimentally induced T-to-
C substitution positions. Even though only true binding sites are considered here, it is
nevertheless preferable, when the method does not detect the true binding site if none
of the T-to-C substitution positions have experimentally induced substitutions, since

the data does not indicate the presence of a binding site in this case.

For BayMAP 2.0 and BMix the true positive rate for this group with zero PAR-CLIP
induced substitutions is very low with values under 0.1, where BayMAP 2.0 reaches
slightly smaller values than BMix. Even when no method induced substitutions are
present, wavClusteR has high true positive rates, especially in the setting with the smaller
P (see Figure C.38), where nearly all positions are chosen as method induced. This
again indicates that wavClusteR has a high false positive rate and therefore a small
specificity when nearly all of the non-changed T-to-C substitution positions are de-

clared as method induced.
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If at least one position has method-induced substitutions, all three methods perform
very well with true positive rates over 0.8 with one exception for BayMAP 2.0 for the
interval [0.05, 0.10) for 7 = 0.5 and the larger . However, there are only two binding

sites belonging to this group, so that this outlier can be explained.

In general the true positive rate gets the closer to one, the higher the rate of PAR-CLIP
induced substitution positions is. This result is somehow expected, since it should
get easier to detect a binding site the more method-induced substitution positions the
binding site has. However, some artifacts are noticeable, for example slightly smaller
true positive rates for the intervals [0.50, 0.55) and [0.95, 1.00] in comparison to their
neighbor intervals. This can be explained by the fact that many of the binding sites
with all of the positions having method induced substitution positions only consist
of one T-to-C substitution position and many of those with 50% only consist of two
substitution positions. Because of this smaller amount of T-to-C substitution positions
with only one position that has actually method-induced substitution, the detection is

more difficult than for the neighbor intervals with more T-to-C substitution positions.

BayMAP 2.0 has always a slightly smaller true positive rate than the other methods
but nevertheless very high true positive rates when at least one of the positions has
method-induced substitutions and a very small true positive rate when no substitu-
tions are PAR-CLIP induced. This again proves BayMAP’s high capacity of not falsely

detecting binding sites.

6.3 BayMAP combining several PAR-CLIP data sets

Sometimes, several PAR-CLIP data sets exist and one wish to combine the results in
order to receive more reliable predictions. In the previous sections of this chapter, it
was already verified via an extensive simulation study that BayMAP 1.0 and BayMAP
2.0 perform well in comparison to other methods. In this section, the improvement of
BayMAP when combining the results of several PAR-CLIP data sets should be shown

via simulation.

First the set up of the main simulation study is described (see Section 6.3.1). The bias

does not have to be analyzed for the simulation study of the combined results, as this
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method takes as input the results of several separate PAR-CLIP experiments obtained
by BayMAP 1.0 or BayMAP 2.0, where the bias is already analyzed in the respective sec-
tions. For the simulation study with the combined results it is analyzed if the combi-
nation of several BayMAP results leads to an improvement in Section 6.3.2. Results are
not compared to wavClusteR and BMix, as they are already compared in the respective

sections.

6.3.1 Setup of simulation study

The data is generated in a similar way than in the previous Section 6.2.1. As BayMAP’s
general ability for detecting method-induced substitutions has already been proven,
and as the aim is now only to investigate if there is still room for improvement when
the results of several data sets are combined, here, only one setting with 7 = 1, the small

P and the beta distributed pexp is considered.

First, clusters to which the positions belong, are drawn by the one inflated zero trun-
cated Poisson distribution first presented in this thesis (see (6.1)). Then, it is drawn
randomly with probability p; = CD(ij B+ a;) = ®((;) for every cluster j if the cluster
is a binding site or not. Afterwards, based on this global data set, five different data
sets are created. For each of the five data sets, only 80% of the clusters are selected
randomly, so that not every cluster is represented in every data set. For the remaining
binding sites it is then drawn randomly for every T-to-C substitution position of the
binding site and for each of the five data sets separately if the position has method-

induced substitutions and therefore artificially changed substitutions.

This means, that for a pair of those data sets, the probability is equal to 0.64 that both
data sets contain cluster j. If both data sets contain cluster j, this cluster is either in
both data sets a true binding site or in none of them. If cluster j is a binding site, the
positions that have artificially induced substitutions could be different, as not all po-
sitions have to be crosslinked. Even if a position is chosen in both data sets to have
experimentally induced substitutions, the number of substituted reads is probably dif-

ferent for the first and the second data set.

The above explained procedure is replicated twenty times, so that twenty times five
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data sets are created. The total number of iterations for the application of BayMAP
2.0 and BayMAP 1.0 is here 45,000. The first 15,000 iterations of these 45,000 are dis-
carded as burn-in. From the remaining iterations, every sixth iteration is used to the
aim of autocorrelation reduction. This leads to 5,000 iterations that are kept for further
analyses. Convergence is checked by trace plots. The chains appear to have converged,
as the mean and the variance of the chains seem to be stable with jumps large enough

that can traverse the whole space. Results are obtained by R.

6.3.2 Analysis of simulated results

In order to verify if the detection of binding site positions is getting better with a higher
amount of PAR-CLIP data sets, first the accuracy, sensitivity and specificity are calcu-
lated for each of the five data sets separately. These values are then compared to the
results of the combined posterior odds, where between two to five results could be

combined.

The accuracy, the sensitivity and the specificity depending on the number of combined
results are represented in Figure 6.16. Note, that for the combined results for two or
more data sets, not all possible combinations are considered. This means, that for
example for calculating the accuracy in the case of four data sets, only positions are

considered, that are present in exactly four data sets.

In Figure 6.16, there is an improvement in terms of accuracy visible for each additional
number of combined data sets. When having a closer look to the sensitivity and speci-
ficity, it is first remarkable, that the specificity seems not to get better with a higher

amount of considered data sets. The mean value of specificity is in all five cases 0.98.

On the other hand, there are big differences in the sensitivity. The mean value of sen-
sitivity for five combined data sets is almost equal to 0.9, whereas the mean value of
sensitivity without combination is here only almost equal to 0.7. The highest jump can
be observed from no combination to two combined data sets, where the mean value
of sensitivity is almost equal to 0.8. Similar results are obtained when BayMAP 1.0 is

applied to the data sets (see Figure C.39).
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Figure 6.16: The accuracy (left panel), sensitivity (middle panel) and specificity (right panel) for
the combined post odds of BayMAP 2.0 with one to five combined results, where one combined
result means that only the results on one data set without combination are regarded.

As shown here as well as in the previous simulations and applications to PAR-CLIP data
sets, BayMAP’s strength lies in the high specificity, i.e. in not falsely declaring a posi-
tion as binding site position. However, a high specificity can go along with a smaller
sensitivity and therefore a higher amount of undetected binding site positions (false
negatives). When having several PAR-CLIP data sets, it seems that BayMAP’s sensitiv-

ity can be highly improved without loosing in specificity.
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Application to PAR-CLIP data sets

Five publicly available PAR-CLIP data sets are analyzed in this section to validate the
performance of BayMAP with real PAR-CLIP data sets. The preprocessing of the data

sets as well as a descriptive analysis are given in Section 2.2.2 and Section 2.2.3.

This section is divided into two parts. Section 7.1 focuses on the application of the
different presented versions of BayMAP and the results on its own. In the second part
in Section 7.2, the results of BayMAP 1.0 and BayMAP 2.0 are analyzed in terms of de-
tected T-to-C substitution positions and compared to other methods for the analysis

of PAR-CLIP data.

7.1 Application of BayMAP

In this section, the application will be described and parameter estimates analyzed
first for BayMAP 1.0 (see Section 7.1.1) and then for BayMAP 2.0 (see Section 7.1.2). In
addition, application results of the alternative for BayMAP 2.0, the intrinsic CAR model,
that is represented in Section 5.3, will be shown (see Section 7.1.3). For those of the five
data sets for which a replicate exists, the here presented method for combining the

results (see Section 5.4) is then applied and analyzed in Section 7.1.4.

7.1.1 Application of BayMAP 1.0

The represented results here are obtained by applying BayMAP 1.0 employed in R [47]

combined with WinBUGS [50]. The corresponding R package will be available online

123
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[26]. The results in this Section 7.1.1 are the same results as have been published in

Huessler et al. [27].

The total number of iterations for the application of BayMAP 1.0 is here 75,000. The
first 7,500 iterations of these 75,000 are removed as burn-in, since the MCMC chains
first have to be converged. To the aim of reducing autocorrelation, only every 15-th
iteration is used of the remaining ones. This means that 4,500 iterations are kept for
further analyses. Convergence of the chains and therefore of the estimation of the pos-
terior distribution is checked by trace plots (see Appendix B.1). The chains appear to
have converged, as the mean and the variance of the chains seem to be stable with

jumps large enough that can traverse the whole space.

For the analysis of additional information modeled by the probit model, three indicator
variables are considered for the type of the mRNA region, namely the 3’"UTR, the CDS
and the 5’UTR. Thus, the value of the indicator variable for, e.g., the 3’'UTR is given by

1, ifiis aT-to-C substitution position on the 3'UTR
Xi,3’'UTR = . (7.1)
0, otherwise

The corresponding effect is defined as B3 yrr. Xi,cps and x; 5yTr are defined in the
same manner. In the two data sets of Gottwein et al. [22] only five (Gottwein A) and six
(Gottwein B) positions on the 5’UTR are observed, so that this variable is not consid-

ered in further analyses for these two data sets.

Estimates for the conditional densities are represented in Table 7.1. For each parame-
ter and each data set the median is shown as well as the 95% credible interval in square

brackets.
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As discussed in Section 2.2.3, the parameter umm for the probability of observing by
error a substitution, such as T-to-C, is assumed to be very close to zero. This assump-
tion is justified by the high amount of substitution rates very close to zero in all data
sets (see Section 2.2.3). In all data sets the median of its estimated density is very small
with values between 0.0031 and 0.0070 (see Table 7.1). The 95% credible intervals are
also very close to the estimated median with at most 0.0002 of difference. This means,
that umm is very narrowly distributed around its estimated median. Since all estimated
values for pumm are very close to zero, the estimates seem to be reasonable. As psnp
is calculated as 1 - 3umm, these values are as expected very close to 1 and hence also

reasonable.

The probability that a read of a binding site position has the specific T-to-C substitution
is Wexp. In contrast, for umm and psnp it is not directly known which estimates are
expected. The probability piex, could even vary among PAR-CLIP experiments, as each
experiment is different. This diversity can be seen in the median estimates. In the
data sets of Kishore et al. [30] and Memczak et al. [41], yexp varies around 0.2 and 0.3
whereas the estimates are around 0.63 or 0.64 in the two data sets of Gottwein et al.

[22].

An explanation for this phenomenon could be that there is a high number of substitu-
tion rates close to one in the data sets from Gottwein et al. [22] (see Section 2.2.3). The
relative high number of substitution rates close to one in comparison to substitution
rates close to zero are partly due to the chosen threshold of a minimum coverage per
position equal to five instead of twenty. However, when applying BayMAP 1.0 to the
same data sets but with a minimum coverage of twenty, the median estimates for exp
are even slightly larger than before , so that this argument does not hold. The differ-

ences are therefore probably due to the differences in the PAR-CLIP experiments.

The parameter g represents the probability that a non-experimentally induced substi-
tution position is a mismatch position. The median estimate for g vary between 0.13
(Gottwein B) and 0.93 (Kishore A). The estimates for g are very small for the data sets
from Gottwein et al. [22] in comparison to the estimates for the other data sets. This

is partly due to the smaller minimum coverage threshold. The estimates were around
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Table 7.2: Estimated values for g for the AGO PAR-CLIP data sets using the naive approach as
well as BayMAP 1.0

Kishore A KishoreB Memczak Gottwein A Gottwein B

Naive approach 0.96 0.74 0.64 0.10 0.09
BayMAP 1.0 0.93 0.78 0.65 0.14 0.13

0.25 if a threshold of twenty was applied.

In order to verify if these values are reasonable, a naive approach can be used to es-
timate g as explained in the following. The parameter g is only relevant for non-
experimentally induced substitution positions. It is supposed that substitution posi-
tions that are not T-to-C substitutions do not contain experimentally induced substitu-
tions. These non-T-to-C substitution positions can, hence, be considered for the naive
approach. If the number of mismatch and SNP positions were known, one could di-
vide the number of mismatch positions by the sum of mismatch and SNP positions to
estimate g. Since these numbers are unknown, they can be estimated. As discussed in
Section 5.1.1, it is assumed that pusnp = 1 — 3pmm. It is also assumed, that gmm < gsnp.
Under these restrictions pmm is smaller than 0.25 and ugnp is larger than 0.25. This
value can be used as a threshold, that positions with a substitution rate smaller than
0.25 are assigned to be mismatch positions, whereas all other positions are assigned to
be SNP positions. Then, the number of mismatch positions can be divided by the sum

of the amount of mismatch and SNP positions.

These naive estimates for g are represented in comparison to the median estimate us-
ing BayMAP 1.0 in Table 7.2. The estimates for the naive approach for g and those
obtained by BayMAP 1.0 have at most a difference of 0.04. This shows that the BayMAP

1.0 estimates for g seem to be reasonable.

Of more interest than ¢ is the prior probability that position i has method-induced
substitutions with p; = ®(x; B), as one is interested here to distinguish crosslinked
positions from non-crosslinked ones. The probability p; is here supposed to be dif-
ferent depending on additional variables. As BayMAP is the first method for analyzing

PAR-CLIP data allowing for the incorporation of additional information, the estimation
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of B is of special interest.

First of all, it is remarkable that the estimated parameter distributions for the entries
of B spread wider around the estimated median than it was the case for the other pa-
rameters, where the 95% intervals were very narrow. This means, that there is more
uncertainty about the values of f than for the other parameters and it is more difficult

to estimate it.

It was assumed that the effects of the different mRNA regions are positive with the
highest effect for the 3'UTR, than for the CDS and the smallest positive impact for the
5'UTR. These expected positive effects cannot be seen in the data sets from Kishore
et al. [30]. In data set B, even a small negative impact for the 3’UTR is supported with
ﬁg’UTR = —0.1312. In data set A the estimated effect is also negative with ﬁngTR =
—0.0028. However, these negative values are very close to zero. Moreover, the 95%
credible interval includes zero, so that this effect does not seem to be important. The
highest impact is estimated in data set A for the CDS with ﬁCDs =0.1259 and in data set
B for the 5’UTR with ,35’UTR = 0.5859. In contrast, the parameter estimates are as ex-
pected for the other data sets with the highest values for the impact of the 3’'UTR than

for the CDS and the smallest but positive impact for the 5’UTR.

As discussed in Section 2.2.3, the noise level in the data is probably the lowest in the
data sets from Kishore et al. [30], where the expected impact of f could not be seen.
The additional information could therefore be particularly important in PAR-CLIP data
sets with alot of noise, where it is more difficult to distinguish between method-induced

and non-method-induced T-to-C substitution positions.

Estimates for p; are also represented in Table 7.1. Since p; is calculated as p; = ® (x,-T p)
(see (5.8)), the probability psyrr is therefore equal to @ (ﬁo + ,BngTR). It is noticeable
that these estimates are mainly smaller than 0.5. This means that without knowing any
data (i.e. number ob substitutions), the probability for a position having experimen-
tally induced T-to-C substitutions is estimated being smaller than 50%. Only the esti-
mates for the data set from Memczak et al. [41] are an exception, where the probability
having method-induced substitutions for a position on the 3'UTR is even estimated to

be around 66.37%.
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One would assume that the T-to-C substitution positions do not contain a higher amount
of non-method-induced substitutions than the highest number of substitutions for
one of the other types of substitutions, e.g., T-to-A (see also Section 2.2.3). For the
data sets from Kishore et al. [30] this would mean that at least 82.07% (Kishore A) and
74.50% (Kishore B) of the T-to-C substitution positions would be method-induced. For
the data set from Memczak et al. [41] it would be at least 69.85% and for the data sets
from Gottwein et al. [22] it would be at least 16.13% (Gottwein A) and 14.68%. The esti-
mates for p; seem therefore somehow reasonable for the data sets from Memczak et al.
[41] as well as from Gottwein et al. [22]. However, the prior probability of having exper-
imentally induced substitutions for a T-to-C substitution position would be expected
to be much higher for the data sets from Kishore et al. [30]. This could be a sign that
BayMAP 1.0 do not detect all method-induced T-to-C substitution positions. On the
other hand, this could also be a sign, that the number of false positives could be very

small, since only positions could be chosen that are likely crosslinked.

7.1.2 Application of BayMAP 2.0

Neighborhood information can be important to detect potential binding sites, as sub-
stitution positions close to each other belong probably to the same binding site. Con-
sequently, the original BayMAP published in Huessler et al. [27] has been developed
allowing in BayMAP 2.0 for the inclusion of read cluster or potential binding sites by
random effects (see Section 5.3). For this purpose, read clusters are built and added to
the data set prior to the application of BayMAP 2.0 as presented in Section 5.2. The ap-
plication of BayMAP 2.0 is only meaningful, if the potential binding sites really contain
more than one T-to-C substitution position, so that the information of the neighbor
positions can be taken into account. Thus, the number of clusters and therefore of
potential binding sites for each data set as well as the number of T-to-C substitution
positions and the mean number of substitution positions per cluster are presented in

Table 7.3.

The highest mean number of T-to-C substitution positions per cluster can be observed
for the first data set from Kishore et al. [30] with a mean of 5.8. The mean number

of T-to-C substitution positions is very low for the data sets from Gottwein et al. [22]
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Table 7.3: Number of clusters and number of T-to-C substitution positions for the AGO PAR-
CLIP data sets as well as the mean number of T-to-C substitution positions per cluster.

Kishore A KishoreB Memczak Gottwein A Gottwein B

No. of clusters 14,685 2,318 4,675 767 777
No. of T-to-C positions 85,234 8,368 11,847 930 954
Mean of positions per cluster 5.80 3.61 2.53 1.21 1.23

with a mean of around 1.2. This implies that most of the clusters only contain one
T-to-C substitution position. Again, this could be a sign for the high level of noise in
the data sets from Gottwein et al. [22]. Consequently, the application of BayMAP 2.0
considering read cluster is more interesting for the other three data sets, where more

T-to-C substitution positions are present per cluster on average.

The results here are obtained by applying BayMAP 2.0 employed in R [47]. The corre-
sponding R package will be available online [26]. The total number of iterations for the
application of BayMAP 2.0 is again 75,000, where the first 7,500 are removed as burn-
in and only every 15-th iteration is used of the remaining ones. This means that 4,500
iterations are kept for further analyses. Convergence of the chains and therefore of the
estimation of the posterior distribution is checked by trace plots (see Appendix B.2).
The chains appear to have converged, as the mean and the variance of the chain seem

to be stable and with jumps large enough that can traverse the whole space.

As random effects are now added to the model, a separate effect for each read cluster
is estimated. One is here, however, not interested in the estimates of every single effect
for the potential binding site, but in the variation of these effects. Therefore, the stan-
dard deviation parameter 7 for the random effects is added to the table with estimates
for the conditional posterior densities for every parameter for the five considered data

sets (Table 7.4).

The parameter estimates for exp, hmm, #snp and g only differ very slightly in compar-
ison to the results without consideration of read clusters. More different are the results

of the estimations of S.
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However, the directions of § are mainly the same, so that for the data sets from Mem-
czak et al. [41] and Gottwein et al. [22] the expected impacts of the 3'UTR, the CDS and
the 5'UTR can be observed. In the data sets from Kishore et al. [30] the 3'UTR still has
the smallest impact. It is interesting to see that the estimates for § differ now much
more between the two data sets of Gottwein et al. [22]. This could be due to the fact,
that the standard deviation of the random effects is nearly twice as high for the first
data set (T = 1.8432 in Gottwein Aversus 7 = 0.9111 in Gottwein B). In the data sets from
Kishore et al. [30] this standard deviation parameter is estimated the smallest around
0.64. Even a relatively small standard deviation of around 0.64 is large enough to eas-
ily equalize the effects of . The random effect can hence play an important role for
the prior probability p; if a T-to-C substitution position has method-induced substitu-
tions. Estimates for the conditional posterior densities of p; are here not presented, as

pi is now different for every single read cluster.

In total, the parameter estimates for BayMAP 2.0 seem also to be reasonable. A com-
parison of BayMAP 1.0 and BayMAP 2.0 concerning the ability of distinguishing method-
induced substitution positions from non-method-induced ones will be shown in Sec-

tion 7.2.

7.1.3 Application of BayMAP with CAR

In Section 5.3 it is proposed to use random effects in order to take into account depen-
dencies due to neighborhood. Not only the normal random effect model is presented
there, that is called BayMAP 2.0, but also the intrinsic CAR model. Even though only re-
sults for the normal random effect model are shown in the chapters following Section

5.3, the intrinsic CAR model is also applied to a PAR-CLIP data set.

In order to apply the intrinsic CAR model, one has to decide which positions are de-
fined to be neighbors and which are not. Here, only positions that lie on the same po-
tential binding site are defined as neighbors. Two scenarios are regarded, one in which
all positions on the same potential binding site are defined as neighbors and one in
which no other T-to-C substitution positions lie in between two neighbor positions.

The model is only applied to the data set of Memczak et al. [41] and only on the data




7.1. Application of BayMAP 133

for chromosome 1, so that convergence can be reached in a shorter amount of time.
Instead of the probit model, logistic regression is used, as it is already implemented
in the R-package CARBayes. However, even after 46 million iterations, there does not

seem to be convergence for the parameter «;.

In Figures B.13 and B.14 trace plots are shown for the car model in which only T-to-C
substitution positions on the same cluster are considered as neighbors, when no other
T-to-C substitution positions lie in between these two positions. For the parameters ¢,
7 and pumm convergence seems to be reached in Figure B.13. The chain of the param-
eter Uexp does not seem to vary constantly around a certain value but that this value
changes. However, it has to be noticed that this variation is still in a very small range

with values between 0.1675 and 0.1700.

The parameters p and B3 ytr seem to be correlated. When there are relatively small
values for one parameter, there are relatively high values for the other parameter, so
that at least for positions that lie on the 3'UTR, the effect is equalized. The estima-
tion of f could be more difficult, as there is an additional parameter for every T-to-C

substitution position, that is different for each position.

The estimated variance parameter 72 for this additional parameter a; is estimated very
close to zero with a value around 0.00004. As discussed in Section 5.3.1, «; follows a
normal distribution, where the mean parameter is equal to the mean of all a; with s # i
that are in the neighborhood of position 7, i = 1,..., Nyc and with variance 72 divided
by the number of neighbor positions of position i. If the variance parameter is then
very close to zero, it means that the parameter «; is highly correlated to the parameters
as from the same neighborhood. This high correlation leads to a high autocorrelation
of the parameters of the parameter vector & as can be seen in Figure B.14, for a; with
i =1043,114,448,546,26,1014,467,586, where the eight positions are drawn randomly
out of all possible positions. For none of the eight examples, convergence seems to be

reached and a high autocorrelation is visible even after 46 million iterations.

When having a look at the trace plots for the CAR model in which all T-to-C substitution

positions of the same potential binding site are considered as neighborhood in Figures
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B.15 and B.16, results are similar. Convergence seem to be reached for the parameters
Umm, g and 7. Values for Hexp S€€m to get smaller over time, even when the differences
are very small, since the values lie in a range between 0.1665 and 0.1695. Again, there
seem to be a correlation between Pintercept and Bz ytr. Convergence cannot be reached

for the eight positions for «;.

Because of the high autocorrelation and therefore the high number of iterations that
are needed to reach convergence, these car models do not seem to be a practicable
solution. The solution, that is implemented in BayMAP 2.0, where each cluster has a

separate random effect, appear to be the better answer to the problem.

7.1.4 Combining several PAR-CLIP data sets

In Section 5.4, a method is presented that enables the combination of the results of
several PAR-CLIP data sets. The posterior odds given the data of all data sets can be
estimated by taking the product of all Bayes factors and by multiplying this product by
an estimation of the combined prior odds. The combined post odds are here applied
to the two data sets from Kishore et al. [30] and to the two data sets from Gottwein
et al. [22] with the results from BayMAP 2.0 (see previous section), since replicates are

available.

The Kishore A data set consists of 85,234 T-to-C substitution positions, whereas the
Kishore B data set only consists of 8,368 positions, which is nearly 10% of the T-to-
C substitution positions of the first data set. 6,763 T-to-C substitution positions are
present in both data sets, that is around 8% of the positions of the first data set and

more than 80% of the second data set.

The number of T-to-C substitutions in the two Gottwein data sets are much more well-
balanced. The first data set consists of 930 positions and the second of 954. 622 posi-
tions are T-to-C substitution positions in both data sets, that is around two third of the

T-to-C substitution positions of each data set.

Since there are 6,763 T-to-C substitution positions, that are present in both data sets

from Kishore et al. [30], there are 6, 763 positions for which the combined post odds can
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be calculated. Out of these 6,763 positions, there are 1,010 positions that are not as-
signed to the same group (method-induced or non-method-induced) when analyzing
separately, that is 15% of the 6,763 positions. When applying the combined post odds,
83% of these 1,010 positions are assigned to the group the positions are assigned in the
Kishore A data set. This can be explained by the fact that the Kishore A data set has
a higher read depth, which results in a higher number of substitution positions. The
higher read depth implies less incertitude so that there are more Bayes factors that are
very small or very large so that the Bayes factor of the data set A outweighs the Bayes

factor of data set B more often.

For the data sets from Gottwein et al. [22], there are 622 positions that are present in
both data sets and thus 622 positions for which the combined post odds can be calcu-
lated. Out of these 622 positions, there are 55 positions not assigned to the same group
when analyzing separately, that is nearly 9%. When applying the combined post odds,
42% ot these 622 positions are assigned to the same group as in the Gottwein A data

set.

There is even one position that is assumed to have non-method-induced substitutions
when analyzing the two data sets separately. When regarding the combined post odds,
however, the position is assumed to have method-induced substitutions. This artefact
is due to the fact, that in both data sets the Bayes factor is larger than 1 but the prior
odds smaller than one and outweighing here the Bayes factor. When the combined
post odds are regarded, the Bayes factor, and therefore the number of substitutions,
gets more powerful, since the product of all Bayes factors is calculated, whereas only

the mean of the prior odds is considered.

In Figure 7.1 the values of the logarithm of the post odds calculated for the Kishore A
data set are ploted against the values of the logarithm of the Kishore B data set. For a
better graphical representation only values in between the range of —200 and 200 are
plotted for the Kishore B data set. As discussed above, the post odds of the Kishore A
data set have a higher variation because of the larger read depth. It is noticeable that
there is a linear dependence between the logarithm of the post odds of the first data

set and of the second data set, i.e. the higher the post odds of the first data set are, the
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Figure 7.1: Scatter plot of the logarithm of post odds in the Kishore data sets.

higher they should be in the second data set. Red points in the figure represent the
positions that are assumed to have method-induced substitutions based on the com-
bined post odds, i.e. when the post odds are larger than one. Post odds larger than one
are equivalent to the logarithm of post odds larger than zero. If a position is declared
as method-induced or not is here mostly determined by the fact, if the logarithm of
the post odds of the Kishore A data set are larger than zero due to the higher varia-
tion. There are, however, also positions that are determined by the post odds of the
Kishore B data set (black points in the bottom right corner and red points in the upper

left corner).

In Figure 7.2 the values of the logarithm of the post odds of the two Gottwein data sets

are plotted against each other. Here, only points in between the range of —20 to 20 are
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Figure 7.2: Scatter plot of the logarithm of post odds in the Gottwein data sets.

represented whereas there also exist very few values up to —600 or 600. There seems
to be linear dependence with a slope of one, i.e. the logarithm of the post odds of the
Gottwein B data set is expected to be more or less as high as the logarithm of the post

odds of the Gottwein A data set.

The combined post odds are therefore particularly useful for positions for which the
separate analyzes are ambiguous. Moreover, they even can change the results for one
position, although the separate analyzes are unambiguous for this position as shown
with the data sets from Gottwein et al. [22]. This is due to the larger impact of the data

in comparison to the prior odds when combining results.
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7.2 Comparison to other Methods

For the comparison of the obtained application results to other methods, first, in Sec-
tion 7.2.1, the general set up is presented, how the methods are compared. Then, in
Section 7.2.2, the results of BayMAP 1.0 and BayMAP 2.0 are analyzed and compared
to BMix and wavClusteR. Finally, the detected T-to-C substitution positions of the dif-
ferent methods are compared to canonical and conserved targets of TargetScan [2] in

Section 7.2.3 in order to further validate PAR-CLIP and BayMAP.

7.2.1 Setup of comparison

The main interest of BayMAP is the detection of method-induced T-to-C substitution
positions. Thus, BayMAP 1.0 and BayMAP 2.0 are here analyzed in terms of detection
of crosslinked and non-crosslinked positions, and compared to the methods on which
BayMAP is based, namely wavClusteR and BMix. These methods predict if a T-to-C
substitution position is method-induced or not. In contrast, PARalyzer takes as input
aligned reads and predicts directly binding sites, i.e. regions of positions which makes
a position-based comparison impossible. BayMAP 1.0 and BayMAP 2.0 are therefore
compared to the position-based methods wavClusteR and BMix. Results for BayMAP

1.0, wavClusteR and BMix in this section were already published in Huessler et al. [27].

For each of the methods, i.e. BayMAP 1.0, BayMAP 2.0, wavCluster and BMix, it has
to be specified, when a T-to-C substitution position can be declared as crosslinked.
Here, the same probability cutoff of 0.5 is used for all methods [27]. This means that a
position is declared as method-induced for a specific method, e.g., wavClusteR, if the

probability of being crosslinked is estimated to be larger than 0.5 using this method.

Not only the number of as method-induced detected T-to-C substitution positions is
of interest but also the number of falsely as method-induced detected ones. Obviously,
these false positives cannot be drawn from the T-to-C substitution positions, as it is not
known which of the positions have experimentally induced substitutions and which
do not. However, other substitution types than T-to-C are not caused by the PAR-CLIP

experiment, so that these positions can be taken to estimate the false positive rate as
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proposed by Torkler [51].

The idea is to use the estimated model parameters to also predict for non-T-to-C sub-
stitution positions if the substitutions are crosslinked or not. Since it is assumed that
the non-T-to-C substitution positions are not crosslinked, the number of as method-
induced detected non-T-to-C substitution positions can be divided by the total num-
ber of all non-T-to-C substitution positions to the aim of estimating the false positive
rate. BMix does not provide probabilities that a position has method-induced sub-
stitutions for positions other than T-to-C. However, these scores are here calculated

separately by taking BMix’ estimated model parameters for the considered data set.

BayMAP 1.0 is applied in WinBUGS, where the storage of all values of the latent variable
Z l.(h) is not possible (see Section 5.1.4). The posterior odds (see Section 5.1.4) are there-
fore taken for the estimation if a position has method-induced substitution positions.
Since BayMAP 2.0 is applied in R, the more naive approach of counting the number

of times Z®

;= “exp” (see (5.39)) could be taken. However, this approach is only ap-

plicable for the T-to-C substitution positions as all other positions are never chosen to
have experimentally induced substitutions in the MCMC chain. The posterior odds are

therefore also taken for BayMAP 2.0.

As discussed in Section 5.1.4, the posterior odds can be calculated by multiplying the
Bayes factor and the prior odds. The calculation of the prior odds depends in BayMAP
2.0 on the estimations of the random effects, so that prior odds are different for each
cluster. When counting the number of as method-induced detected non-T-to-C sub-
stittuion positions, the random effects should be taken into account for a correct dec-
laration. However, there are two main problems by the consideration of the random

effects for substitution positions that are not T-to-C.

First, if the non-T-to-C substitution position is not close enough to a T-to-C substitu-
tion position, the position will not belong to a cluster, so that no random effects are
estimated for these positions. Second, if the non-T-to-C substitution position belongs
to a real binding site, this affiliation will ideally be reflected in a high score of the prior

odds. Consequently, it will be more likely to predict a non-T-to-C substitution posi-
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tion as method-induced when the probability is high for surrounding T-to-C substitu-
tion positions that they are method-induced. This dependency is volitional and should
therefore not be used for the estimation of the false positive rate. For BayMAP 2.0, the
random effects are therefore not taken into account, i.e. set to zero, when predicting if

a non-T-to-C substitution position has method-induced substitutions.

7.2.2 Analysis of BayMAP and comparison to other methods

For each of the data sets and each of the methods the number of as method-induced
detected T-to-C substitution positions as well as the number of as method-induced
detected non-T-to-C substitution positions are presented in Table 7.5. The number of
as method-induced detected non-T-to-C substitution positions in BayMAP 2.0 are as
described above. Combined posterior odds for BayMAP 2.0 are also calculated, when
possible. In addition to the position based decisions of BayMAP 2.0 with the posterior
odds, the prior odds (see (5.67)) are used for deciding whether all positions of a cluster
are binding site positions or not. As discussed in Section 5.3.4, they could be used here
for a direct identification of binding sites. Additionally, the total number of all T-to-C
substitution positions as well as the total number of all other substitution positions are
given for all data sets. The percentages that are shown in brackets are the number of
detected T-to-C (or non-T-to-C) substitution positions divided by the total number of

T-to-C (or non-T-to-C) substitution positions.

Comparing BayMAP 1.0 and BayMAP 2.0 with Table 7.5, the numbers of detected T-
to-C substitution positions do not differ a lot between the two versions. For all of the
data sets except for Kishore A, BayMAP 2.0 detects more T-to-C substitution positions
as crosslinked. There are only small differences between the estimated false positive
rates of BayMAP 1.0 and BayMAP 2.0. It is, however, remarkable, that BayMAP 2.0 has
smaller estimated false positive rates for all data sets even if more T-to-C substitution
positions are declared as method-induced for most of the data sets. This leads to the
conclusion that the two versions of BayMAP do not differ importantly but that BayMAP

2.0 has a better detection rate with less false positives than BayMAP 1.0.
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As Table 7.5 reveals, the number of T-to-C substitution positions declared as method-
induced by wavClusteR and BMix is always higher for the five data sets than by BayMAP
1.0 or BayMAP 2.0. wavClusteR even declares around 90% of the T-to-C substitution
positions as PAR-CLIP induced for the two data sets from Kishore et al. [30], which is
about three times more as declared by BayMAP 1.0 or BayBAP 2.0. For the data set from
Memczak et al. [41] all methods find more than 50% of method-induced substitutions.
Again, wavClusteR declares more than the other methods with 78%. The percentages
of detected T-to-C substitution positions are closer to each other for the data sets from
Gottwein et al. [22], where wavCluster and BMix find around 20% and BayMAP around

15%.

The false positive rate on the other hand, that is estimated by the percentage of de-
tected non-T-to-C substitution positions among all non-T-to-C substitution positions
is the smallest for BayMAP for all data sets. Especially wavClusteR shows here a very
high rate of false positives. The estimated false positive rate for the data sets from
Kishore et al. [30] is around 50% for wavClusteR whereas for BayMAP 1.0 as well as

BayMAP 2.0, it is only between 2.4 to 4.5%.

BayMAP is hence able to greatly reduce the number of false findings. This is impor-
tant, since functional validation of miRNA target sites in the laboratory is cumbersome
and cost intensive. However, some of the true PAR-CLIP induced T-to-C substitution

positions may be missed out.

Regarding the number of detected T-to-C substitution positions, when the combined
post odds are considered as presented in Section 5.4 and Section 7.1.4, there are less
detected T-to-C substitution positions for the two Kishore data sets (0.5% less positions
for Kishore A and 0.1% less positions for Kishore B). On the other hand, more positions
are seletected for the two Gottwein data sets (0.2% more positions for Gottwein A and

1.8% more positions for Gottwein B).

When not using a position based decision but the prior odds for BayMAP 2.0 instead,
only for the data set from Memczak et al. [41] more positions are chosen. For Gott-

wein A, the number of detected positions is at least comparable to the position based
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number (106 instead of 150). For all other data sets, the number of detected T-to-C
substitution positions is far behind the position based number. These results stand in
contrast to the expectation, since the positions of a potential binding site are chosen
all together as method-induced or not. Interesting is, that the standard deviation of
the effects for the potential binding sites 7 is estimated the highest for the Gottwein
A and the Memczak data set. It seems therefore that the prior odds as a decision tool
are only reasonable, if the estimated differences in the potential binding sites are large
enough. However, the results indicate, that the position based decision, at least for the

considered data sets, delivers the more preferable outcome.

The top panel of Figure 7.3 shows the probability that a position has method-induced
substitutions as a function of the T-to-C substitution rate for the three methods BayMAP
1.0 (black points), BMix (red points) and wavClusteR (blue line) for the first data set of
Kishore et al. [30] (for other data sets see Figures D.1 to D.4). Results from BayMAP 2.0
are not presented here, as they are very similar to the results from BayMAP 1.0. In wav-
ClusteR this probability is derived from the average of posterior distributions that are
calculated separately for each substitution position (see Section 4.2). This means that
the estimated probability does only depend on the substitution rate, but not for exam-
ple on the number of reads for a specific position. Notably, the probability in function
of the substitution rate can be drawn as a line. On the contrary, in BayMAP and BMix
the number of reads is a factor that is taken into account for calculating the probabil-
ity that a position is method-induced. In BayMAP even the covariates regarded in the

probit model, e.g., the type of mRNA region, affect the estimation of the probability.

Comparing the two histograms of non-T-to-C substitution rates (middle panel) and T-
to-C substitution rates (bottom panel) in Figure 7.3, it is remarkable that very small
substitution rates close to zero are frequent in both histograms, but that small but not
very small substitution rates (around 0.05 to 0.3) only occur more frequent for T-to-C
substitution rates. A crucial step is therefore to distinguish between mismatch sub-
stitution positions and method-induced substitution positions for small substitution

rates.
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Figure 7.3: Top panel: T-to-C substitution rate in comparison to the probability that the po-
sition is experimentally induced for BayMAP 1.0 (black), BMix (red) and wavClusteR (blue) at
5,000 randomly chosen T-to-C substitution positions in the Kishore A data set. Middle/bottom
panel: Histograms for the substitution rates for all substitutions except T-to-C with BayMAP 1.0
estimations for pmm, and usnp indicated by red lines (middle) and only for T-to-C substitutions
with BayMAP 1.0 estimation for pexp. This graphic is published in Huessler et al. [27].
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wavClusteR estimates already that positions with a very small substitution rate have
experimentally induced substitutions (see top panel). This change point for wavClus-
teR is equal to 0.009, which means that a position with 100 observed reads with only
one T-to-C substitution would be identified as method-induced substitution. In Bay-
MAP and BMix this change point is higher (at a rate of about 0.08 for BayMAP and
about 0.06 for BMix). These results also indicate that the number of false positives for

wavClusteR is probably very high in comparison to BayMAP and BMix.

7.2.3 Comparison to TargetScan

As discussed in Section 2.2.1, there exist tools for target prediction such as TargetScan
[2] that predict hundreds of potential binding sites for only one miRNA. These tools of-
ten only predict canonical binding sites whereas a miRNA could also have non-canon-
ical ones. By contrast, canonical and non-canonical binding sites can be detected by
PAR-CLIP. As seen in Table 7.5, BayMAP has a small false positve rate in comparison to
wavClusteR and BMix. The number of potential binding sites, that can be considered
for experimental validation, can therefore be highly reduced by BayMAP. It is, however,
interesting to which extent the results of the methods for analyzing PAR-CLIP data are
comparable to the results of target prediction tools such as TargetScan to the aim of
further validation of PAR-CLIP and BayMAP. In Table 7.6 predicted canonical and con-
served targets of conserved miRNA families derived by TargetScan are compared to all
T-to-C substitution positions (+ 10 nt) as well as the T-to-C substitution positions (+
10 nt) that are identified by BayMAP 1.0, BayMAP 2.0, wavClusteR or BMix as method-

induced substitution positions.

BayMAP-identified crosslinked T-to-C substitution positions seem to slightly enrich for
canonical miRNA target sites compared to all T-to-C substitution positions, since per-
centages of T-to-C substitution positions found in TargetScan are higher when using
BayMAP. However, the degree of enrichment differs between data sets. The percentage
of non-overlapping T-to-C substitution positions is still very high, which leads to the
conclusion, that still a lot of binding sites that are non-canonical or non-conserved can

be identified by using the combination of PAR-CLIP with BayMAP analysis.
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Table 7.6: Overlap between TargetScan and the PAR-CLIP data. The total overlap describes the
percentage of all T-to-C substitution positions that overlap with a canonical and conserved Tar-
getScan site (+/- 10 nt). The percentage for the different methods is the proportion of detected
experimentally induced T-to-C substitution positions that overlap with a canonical and con-

served TargetScan site.

Total BayMAP BayMAP Combined Prior wavClusteR BMix

overlaap %.0 %.0 Post O(rilds Ocids
Kishore A 29.3% 29.7% 29.6% 29.6% 29.0% 29.4% 29.3%
Kishore B 31.8% 34.0% 33.9% 40.6% 9.1% 34.7% 34.1%
Memczak 29.3% 34.7% 34.7% - 35.5% 33.3% 34.7%
Gottwein A 3.7% 8.6% 7.3% 7.2% 7.5% 10.1% 7.8%
Gottwein B 3.8% 9.1% 9.0% 8.0% 20.0% 7.2% 7.6%

When regarding the overlap for the combined post odds, it is interesting that the over-
lap does not change much in comparison to BayMAP 2.0 except for the Kishore B data
set. Instead of an overlap of 33.9%, there is an overlap of 40.6%. This means, that
at least for the Kishore B data set more of the detected T-to-C substitution positions

are TargetScan targets when using the combined posterior odds and therefore also the

Kishore A data.

The overlap is also shown for the prior odds when employing BayMAP 2.0. Except for
the Memczak data set and the Gottwein A data set, the percentage is not reliable be-
cause of the small number of detected positions. In the Memczak data set, however,
the highest percentage of overlap is reached for the prior odds. It is interesting, that
BayMAP 2.0 has always a slightly smaller overlap with TargetScan than BayMAP 1.0.

BayMAP 2.0 detects therefore a higher percentage of non-canonical or non-conserved

binding sites.
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Discussion

BayMAP a three component mixture model, is presented in this thesis for the detec-
tion of experimentally induced T-to-C substitution positions in PAR-CLIP data and
therefore for the detection of miRNA targets on the mRNA. BayMAP is set into a fully
Bayesian hierarchical framework, so that it is possible to include additional prior in-
formation that might be relevant for the probability that a position is a binding site. To
the best of the author’s knowledge, BayMAP is the first method for the analysis of PAR-
CLIP data, that enables this inclusion. BayMAP 1.0 has already been already published
in Huessler et al. [27]. BayMAP 2.0, firstly presented in this thesis, now allows the in-
clusion of neighborhood information in addition to other covariates, so that positions

on the same read cluster are no longer assumed to be independent.

In an extensive simulation study, it is shown, that BayMAP 1.0 estimated very precisely,
i.e. almost without bias the parameters, that is the true substitution probabilities and
the regression parameters. For BayMAP 2.0, a small underestimation of 8, could be de-
tected. However, the other parameters of f seem to be unbiased, i.e. the part of § that
is analyzed for interpretation. Notably, BayMAP can not only be used for distinguishing
experimentally induced substitution positions from non-exerimentally induced ones,
and therefore binding positions from noise, but also for the analysis and interpreta-
tion of additional variables that could be relevant for the probability that a position is

a binding position

In this work, the analysis of additional variables is mainly focused on the type of the

mRNA region. However, other factors that might influence the prior probability for
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having a position with PAR-CLIP induced substitutions could be taken into account.
Such other factors could be, for example, the number of PAR-CLIP reads relative to the

mRNA abundance, or local AU-rich content near to the site.

Besides the precise estimation of the parameters, the simulation study reveals that
BayMAP 1.0 and BayMAP 2.0 both outperform wavClusteR and BMix in terms of ac-
curacy and specificity. In case of difficult decision making, i.e. when pey, is either
very low or very high, the high performance of BayMAP 1.0 is even more pronounced
in comparison to other methods. In the simulation setting for BayMAP 2.0, it is no-
ticeable that wavClusteR seems to often predict almost all of the T-to-C substitution
positions as method-induced, so that not only the sensitivity is close to one, but also
the rate of false positives, leading to a very small specificity. BayMAP 2.0 in contrast,
not only achieves a high sensitivity but in particular a high specificity in comparison to

the other methods.

In applications to experimental Ago PAR-CLIP data sets, this higher performance in
terms of specificity was confirmed. On the one hand, BayMAP 1.0 and BayMAP 2.0
detected less T-to-C substitution positions in total, but on the other hand the estimated
false positive rates were very low. BayMAP seems therefore, particularly useful for the
true detection of binding sites, which means that almost all of the by BayMAP detected

binding sites are true binding sites.

This is a big advantage in comparison to the other methods, since one of the reasons
for the implementation of the PAR-CLIP experiment is the very high number of target
mRNAs by target prediction tools such as TargetScan. Targets identified by BayMAP
can then for example, be further analyzed for functional and biological relevance in

experiments.

The parameter estimates in these applications seemed to be reasonable. However,
the positive impact of the 3’'UTR could not be detected in every PAR-CLIP data set.
It seemed that the impact of the 3’'UTR was particularly important and was estimated
with a positive value when the data is noisy, e.g., as was the case for the data sets from

Gottwein.
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For BayMAP 2.0 it was also proposed to use the prior odds as a decision criterion if a
position has method-induced substitutions, instead of, e.g., the posterior odds. The
prior odds provide particularly good results, when the variance of the random effect is
high. However, for smaller variances, the results of the prior odds seemed to be less re-
liable in applications to the simulated as well as real PAR-CLIP data sets. It is therefore

recommended that the posterior probability that a position is crosslinked is estimated.

It is also recommended to use BayMAP on all substitution positions, i.e. not only T-to-
C substitution positions, with the dependence usnp = 1 —3pmm and a zero truncated
binomial model. It is however also possible to use simpler versions that still perform

better than other methods as shown in the simulation study.

The applications to PAR-CLIP data sets as well as the simulation study indicate that
BayMAP 2.0 performs slightly better than BayMAP 1.0. In the applications to the PAR-
CLIP data sets, BayMAP 2.0 not only identified more T-to-C substitution positions as
being method-induced, but also had a smaller estimated rate of false positives, so that
BayMAP 2.0 should be preferably employed. However, when the main purpose is not
the detection of binding sites but the analysis of variables, such as the mRNA region, it

is advisable to utilize BayMAP 1.0.

It is also possible to adapt the general model of BayMAP. For instance, feyp is not
supposed to be identical for different crosslinked T-to-C substitution positions as ex-
plained in the previous sections. This could be represented in the model by including
anew level for pexp, €.8., Uexp ~ Beta(a, b), where a >0 and b > 0 are the parameters of
the beta distribution. However, this new level would complicate the model with more

parameters to estimate.

Furthermore, a new method is introduced in this thesis for the combination of reads
into a read cluster. In comparison to the wavelet-based peak calling [49] and the Mini-
Rank Norm [11], the here presented method is intuitive and easy to understand, as it is
not based on an underlying model. Instead, it combines overlapping reads of the same
T-to-C substitution position to a read cluster. The here presented method is similar

to the one developed by Golumbeanu et al. [20]. In the latter method, overlapping
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clusters of different T-to-C substitution positions are always combined to one single
cluster. In contrast, the method presented in this thesis is able to identify several peaks
and therefore several read clusters even if reads are overlapping, depending on the

extent of overlap of two clusters.

Moreover, BayMAP is, to the best of the author’s knowledge, the first method special-
ized on PAR-CLIP data, that enables the analysis of several PAR-CLIP data sets at the
same time. The big advantage is that the information of several PAR-CLIP replicates
can be combined so that decisions are more reliable. The more replicates are available,
the higher the impact of the data on the here considered combined posterior odds in
comparison to the prior information. This seems to be reasonable, since the more data
is available, the more the data, i.e. the numbers of substitutions, should influence the
results. The combined posterior odds take the BayMAP results of the seperate PAR-
CLIP data sets as input. The data sets are, hence, first analyzed separately and the

results are then used for the combination.

Instead of incorporating the results to the combined posterior odds after running Bay-
MAP 1.0 or BayMAP 2.0, it might be advisable, to adapt the BayMAP model in such a
way that several data sets can be analyzed simultaneously. Instead of K;, the number
of substitutions at position i, K;; could be modeled as the number of substitutions at
position i for data set d. The allocation variable Z; would still be independent of data
set d, since a binding site is supposed to be a binding site in all replicates. However, the
direct imputation makes the model more complex, especially when being interested
in the effects of additional variables. In this thesis, hence, the combined post odds are

chosen due to their simplicity and their easy interpretation.

BayMAP permits the detection of canonical and non-canonical miRNA binding sites. It
is not possible to predict directly which individual miRNA binds to the identified target
site on the given mRNA. However, target prediction tools, such as TargetScan, can also
be used the other way around, so that binding sites that are detected by BayMAP can
be linked to miRNAs. In this work, it is shown that the application of BayMAP leads to
a slightly higher overlap with canonical and conserved TargetScan sites than without

applying BayMAP. These target prediction tools are capable of predicting hundreds of
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mRNAs for one miRNA and mainly focusing on the prediction of canonical and con-
served targets. Only around one third of the by BayMAP detected binding site posi-
tions were also predicted by TargetScan and can thus be linked to a specific miRNA. In
order to also detect non-canonical interactions, motif search algorithms can be imple-
mented, e.g, as proposed by Khorshid et al. [29]. A new Bayesian algorithm could also
be developed for finding miRNAs for the given targets, allowing the incorporation of
genetic information such as primary pairing rules and RNA secondary structure pre-

dictions, i.e. the accessibility of the target site.

Taken together, a deeper understanding of the underlying biology of miRNA regulation
using PAR-CLIP experimental data in combination with the highly specific target site

prediction algorithm presented in this thesis is expected.
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Additional full conditionals

As explained in Section 5.1.2, it could also be assumed that the number of substitutions
K; for positions i = 1, ..., N could, for simplicity reasons, follow a binomial distribu-
tion instead of a zero truncated binomial distribution. Moreover, the restriction that
usne = 1 —3umm could be omitted, so that the model gets easier. In this section, the
full conditional distributions for the easier models are presented. For notations and

definitions see Section 5.1.2.

A.1 Additional full conditional distributions for u

The full conditional density for g when K; follows a binomial distribution and when

there is no restriction on u; and p», is given by

total
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The full conditional density for p when K; follows a zero truncated binomial distribu-

tion and when there is no restriction on y; and uy, is given by

felzkn)o f(k|pnz) f(p)
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When K; follows a binomial distribution and p, = 1 -3y, then the density for p given

all model parameters except for pu can be written as

flelzkn)o f(k|pnz) f(p)
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If there is no restriction on usyp and K; is assumed to follow a binomial distribution,
the Gibbs sampler can be implemented in order to sample from the conditional distri-
bution of u, as u,,, m=1,...,3 follows then a beta distribution. In the other cases, the

Metropolis-Hastings algorithm can be used.
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A.2 Additional full conditional distribution for Z

If K; follows a binomial distribution, the density can be written as

flz|papkn)x f(k|pnz)f(z|pq) (A4)

With the weight

w?rlv? ((k )ﬂm(l pm) " i)

Equations (A.4) can be rewritten, so that Z; follows, conditional on the other parame-

ters, a categorical distribution with density
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where @P" = w?lin(l -piq) + wbm(l -pi)1—q)+ wgn pi- The latent variable Z can

therefore be sampled using the Gibbs sampler.
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Trace plots
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B.1 BayMAP 1.0

Example trace plots for simulated data set
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Figure B.1: Trace plots of the model parameters for BayMAP 1.0 applied to one simulated data

set with pex, = 0.75. 4,500 iterations out of 15,000 were used for parameter estimation using
every third iteration after a burn in of 1, 500.
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Trace plots for Kishore A data set
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Figure B.2: Trace plots of the model parameters for BayMAP 1.0 applied to the Kishore A data.
4,500 iterations out of 75,000 were used for parameter estimation using every 15th iteration
after a burn in of 7,500.
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Trace plots for Kishore B data set
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Figure B.3: Trace plots of the model parameters for BayMAP 1.0 applied to the Kishore B data.

4,500 iterations out of 75,000 were used for parameter estimation using every 15th iteration
after a burn in of 7,500.
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Trace plots for Memczak data set
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Figure B.4: Trace plots of the model parameters for BayMAP 1.0 applied to the Memczak data.
4,500 iterations out of 75,000 were used for parameter estimation using every 15th iteration
after a burn in of 7,500.
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Trace plots for Gottwein A data set
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Figure B.5: Trace plots of the model parameters for BayMAP 1.0 applied to the Gottwein A data.
4,500 iterations out of 75,000 were used for parameter estimation using every 15th iteration
after a burn in of 7,500.
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Trace plots for Gottwein B data set
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Figure B.6: Trace plots of the model parameters for BayMAP 1.0 applied to the Gottwein B data.
4,500 iterations out of 75,000 were used for parameter estimation using every 15th iteration
after a burn in of 7,500.
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Example trace plots for simulated data set

Mexp Mmm
9V}
n
[s2)
- g
o
— o
o o ° .
S «© = <o)
s 3 ER
g
Qe
I o
[} < n
% - 3
s 7 T T T T T 8 1 T T T T T
0 1000 2000 3000 4000 5000 e 0 1000 2000 3000 4000 5000
Iteration Iteration
Blntercept B3'UTR
I 9
LO_ _ —
o —
[ - (] [sp)
= 3 <
g o | S i
o
S o
T T T T T T S} T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Iteration Iteration
Beos Bsutr
- o~ 4
~
g <24 g
= — = o -
> ] >
o | -
o I
"] ] C\l‘ -
(=] T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Iteration Iteration
q T
[o0]
& ~
= -
s © _|
(9] o [ -
= o =
g o g v |
©
S -
o ~
© 1 -
el —
2T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Iteration Iteration

Figure B.7: Trace plots of the model parameters for BayMAP 2.0 applied to one simulated data
set. 5,000 iterations out of 45,000 were used for parameter estimation using every sixth itera-
tion after a burn in of 15, 000.
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Trace plots for Kishore A data set
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Figure B.8: Trace plots of the model parameters for BayMAP 2.0 applied to the Kishore A data.
4,500 iterations out of 75,000 were used for parameter estimation using every 15th iteration
after a burn in of 7,500.
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Trace plots for Kishore B data set
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Figure B.9: Trace plots of the model parameters for BayMAP 2.0 applied to the Kishore B data.
4,500 iterations out of 75,000 were used for parameter estimation using every 15th iteration
after a burn in of 7,500.
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Trace plots for Memczak data set
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Figure B.10: Trace plots of the model parameters for BayMAP 2.0 applied to the Memczak data.
4,500 iterations out of 75,000 were used for parameter estimation using every 15th iteration
after a burn in of 7,500.
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Trace plots for Gottwein A data set
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Figure B.11: Trace plots of the model parameters for BayMAP 2.0 applied to the Gottwein A
data. 95,00 iterations are displayed out of 150,000 iterations here of which only the first 4,500
iterations were used for parameter estimation using every 15th iteration after a burn in of 7, 500.
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Trace plots for Gottwein B data set
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Figure B.12: Trace plots of the model parameters for BayMAP 2.0 applied to the Gottwein A
data. 95,00 iterations are displayed out of 150,000 iterations here of which only the first 4,500
iterations were used for parameter estimation using every 15th iteration after a burn in of 7, 500.
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B.3 BayMAP with CAR
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Figure B.13: Trace plots of the model parameters for the CAR model, where only T-to-C substi-
tution positions are considered as neighbors when they are on the same binding site with no
other T-to-C substitution positions in between. Out of the 46 million iterations, a burn-in of 16
million is used and only every 5,000th iteration is kept.
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Figure B.14: Trace plots of eight randomly drawn alpha; for the CAR model, where only T-to-C
substitution positions are considered as neighbors when they are on the same binding site with
no other T-to-C substitution positions in between. Out of the 46 million iterations, a burn-in of

16 million is used and only every 5,000th iteration is kept.
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Figure B.15: Trace plots of the model parameters for the CAR model, where T-to-C substitution
positions are considered as neighbors when they are on the same binding site. Out of the 46
million iterations, a burn-in of 16 million is used and only every 5,000th iteration is kept.




B.3. BayMAP with CAR

171

1043
©
T
[
= .
©
>
e}
(\i —
|
T T T T T T T
0 1000 2000 3000 4000 5000 6000
Iteration
Olaag
o
o 1|
2 —
g ¥
I
@ ]
[ T T T T T T T
0 1000 2000 3000 4000 5000 6000
Iteration
Olog
[Te)
2
3 w0
s 97
>
L]
T T T T T T T T
0 1000 2000 3000 4000 5000 6000
Iteration
Olgp7
e
g w ]
T 97
> [
o
"\Ii —

T T T T T T T
0 1000 2000 3000 4000 5000 6000

Iteration

value

value

value

value

2 345

1

-4

-8

-0.5

-2.0

Ol114

T T T T T T
1000 2000 3000 4000 5000 6000

Iteration

Ols46

T T T T T T
1000 2000 3000 4000 5000 6000

Iteration

01014

T T T T T T
1000 2000 3000 4000 5000 6000

Iteration

Osg6

T T T T T T
1000 2000 3000 4000 5000 6000

Iteration

Figure B.16: Trace plots of eight randomly drawn « ; for the CAR model, where T-to-C substitu-
tion positions are considered as neighbors when they are on the same binding site. Out of the
46 million iterations, a burn-in of 16 million is used and only every 5,000th iteration is kept.
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Additional simulation results

C.1 BayMAP 1.0

C.1.1 Biasin estimation
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Figure C.1: Bias of the mean estimate for peyp for nine different values of pexp for BayMAP 1.0
for the simulation settings with o = —0.5, B3 yTr = 1.5, Bcps = 1.0 and Bsyrr = 0.5.
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Figure C.2: Bias of the mean estimate for pexp, for nine different values of peyp for BayMAP 1.0
for the simulation settings with g = 0.5, B3ytr = 1.85, Bcps = 1.15 and S5 yrr = 0.75.
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Figure C.3: Bias of the mean estimates for the regression parameters in the probit model in
BayMAP in relation to the mRNA position (3'UTR, CDS, 5’UTR) with §y = 0.5, B3yTr = 1.85,
Bcps = 1.15 and Bsyrr = 0.75. The true values of the parameters for § are shown in paren-
theses. For B5yrr two outliers with values 0.70 and 0.76 for pexp = 0.4 and pexp = 0.9 are not
displayed.
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Figure C.4: Bias of the mean estimates for the regression parameters in the probit model in
BayMAP in relation to the mRNA position (3'UTR, CDS, 5'UTR) with By = —0.5, B3yrr = 1.5,
Bcps = 1.0 and B5yrr = 0.5. The true values of the parameters for § are shown in parentheses.
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Figure C.5: Bias of the mean estimates for the regression parameters in the probit model in
BayMAP in relation to the mRNA position (3'UTR, CDS, 5’'UTR) with By = 0.5, B3ytr = 1.85,
Bcps = 1.15 and Bsytr = 0.75 when pexp, is drawn from the Beta(2, 10) distribution.

C.1.2 Comparison of BayMAP 1.0 to other methods
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Figure C.6: (Simulation whole range pexp and no effect ) Distribution of the accuracy (top
panel), sensitivity (middle panel) and specificity (bottom panel) of BayMAP 1.0 (black box plots
for each pexp), wavClusteR (red), and BMix (blue) considering probabilities piex, of T-to-C sub-
stitutions at an experimentally induced position between 0.1 and 0.9 with p = 0.8 for all posi-
tions in the simulated data sets and therefore without additional variables such as the mRNA.
For a better graphical representation, very low values of sensitivity very close to zero and of ac-
curacy of about 0.2 obtained in applications of BMix to data sets with pexp = 0.7 or 0.9 are not
shown. As thus the 25% quantiles for pexp = 0.9 are about 0.2, the accuracies of BMix in this
case are only displayed as points, but not as a box plot.
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Figure C.7: (Simulation with beta distributed pexp) The accuracy (left panel), sensitivity (mid-
dle panel) and specificity (right panel) for BayMAP 1.0 (black box plots), wavClusteR (red box
plots), and BMix (blue box plots) on ten simulated data sets for which Hexp Was drawn from a
Beta(2,10) distribution for each position separately.
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C.2 BayMAP 2.0

C.2.1 Biasin estimation
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Figure C.8: Bias of the mean estimates for 7 considering ten draws of { for each value of T with
Bo =-0.5, B3y = 1.5, Bcps = 1.0 and s yrr = 0.5.
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Figure C.9: Bias of the mean estimates for the regression parameters in the probit model in
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values of the parameters for § are shown in parentheses.
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Figure C.10: Bias of the mean estimates for the regression parameters in the probit model in
BayMAP 2.0 in relation to the mRNA position (3’'UTR, CDS, 5’UTR) when 7 = 2. The true values
of the parameters for § are shown in parentheses.
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Figure C.11: Bias of the mean estimates for the regression parameters in the probit model in
BayMAP 2.0 in relation to the mRNA position (3'UTR, CDS, 5’UTR) when 7 = 0.5. The true

values of the parameters for § are shown in parentheses.
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Figure C.12: Bias of the mean estimates for the regression parameters in the probit model in
BayMAP 2.0 in relation to the mRNA position (3’'UTR, CDS, 5’"UTR) when 7 = 1. The true values
of the parameters for § are shown in parentheses.
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Figure C.13: Bias of the mean estimates for the regression parameters in the probit model in
BayMAP 2.0 in relation to the mRNA position (3’'UTR, CDS, 5’UTR) when 7 = 2. The true values
of the parameters for § are shown in parentheses.
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C.2.2 Comparison of BayMAP 2.0 to BayMAP 1.0
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Figure C.14: (Simulation 7 = 0.5 with large ) Distribution of the accuracy (top panel), sensi-
tivity (middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots for each

different simulation for {), BayMAP 1.0 (red), BayMAP 2.0 prior odds (blue) considering ten

0.75.
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Figure C.15: (Simulation 7 = 2 with large f)Distribution of the accuracy (top panel), sensitivity
(middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots for each different

simulation for {), BayMAP 1.0 (red), BayMAP 2.0 prior odds (blue) considering ten draws of ¢
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Figure C.16: (Simulation 7 = 0.5 with small ) Distribution of the accuracy (top panel), sen-
sitivity (middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots for each
different simulation for ¢), BayMAP 1.0 (red), BayMAP 2.0 prior odds (blue) considering ten

draws of { for 7

=0.5.
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0.5 with By = —0.5, B3uTR
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2 with small f) Distribution of the accuracy (top panel), sensitivity

(middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots for each different
simulation for {), BayMAP 1.0 (red), BayMAP 2.0 prior odds (blue) considering ten draws of ¢
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Figure C.19: (Simulation 7 = 0.5 with no effect B) Distribution of the accuracy (top panel), sen-

sitivity (middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots for each
different simulation for ¢), BayMAP 1.0 (red), BayMAP 2.0 prior odds (blue) considering ten

=0.

Bcps = PsuTr

0.5 with By = 0.85 and B3 yTr

draws of { for T
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Figure C.20: (Simulation 7 = 1 with no effect §) Distribution of the accuracy (top panel), sen-
sitivity (middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots for each
different simulation for {), BayMAP 1.0 (red), BayMAP 2.0 prior odds (blue) considering ten

=0.

Bcps = BsuTr

draws of ¢ for T = 1 with §y = 0.85 and B3 yrr
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Figure C.21: (Simulation 7 = 2 with no effect §) Distribution of the accuracy (top panel), sen-
sitivity (middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots for each
different simulation for {), BayMAP 1.0 (red), BayMAP 2.0 prior odds (blue) considering ten

=0.

Bcps = BsuTr

2 with By = 0.85 and B3yR =

draws of { for T
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Figure C.22: (Simulation 7 = 0.5 with large § and pexp = 0.2) Distribution of the accuracy (top
panel), sensitivity (middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots

for each different simulation for {), BayMAP 1.0 (red), BayMAP 2.0 prior odds (blue) considering

1.15 and ,BS’UTR =

1.85, Bcps

=0.2 and By = 0.5, B3uTR =

ten draws of ¢ for 7 = 0.5 with pexp

0.75.
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0.2) Distribution of the accuracy (top

panel), sensitivity (middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots

Figure C.23: (Simulation 7 = 1 with large f and plexp

for each different simulation for ), BayMAP 1.0 (red), BayMAP 2.0 prior odds (blue) considering

0.75.

1.15and ,BS’UTR =

1.85, Bcps

ten draws of { for 7 = 1 with piex, = 0.2 and o = 0.5, B3yTrR
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0.2) Distribution of the accuracy (top

panel), sensitivity (middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots

Figure C.24: (Simulation 7 = 2 with large f and plexp

for each different simulation for ), BayMAP 1.0 (red), BayMAP 2.0 prior odds (blue) considering

0.75.

1.15and ,BS’UTR =

1.85, Bcps

ten draws of { for 7 = 2 with piex, = 0.2 and o = 0.5, B3yTrR
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C.2.3 Comparison of BayMAP 2.0 to other methods
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Figure C.25: (Simulation 7 = 0.5 with large ) Distribution of the accuracy (top panel), sensi-
tivity (middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots for each

different simulation for ¢), wavClusteR (red), and BMix (blue) considering ten draws of ¢ for

0.75.

1.15and ﬁS’UTR =

0.5 with B = 0.5, B3ytr = 1.85, Bcps

T=
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2 with large B) Distribution of the accuracy (top panel), sensitivity

Figure C.26: (Simulation ©

(middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots for each different
simulation for ), wavClusteR (red), and BMix (blue) considering ten draws of { for 7 = 2 with

Bo=0.5, B3uTR

0.75.

1.15 and ,BS’UTR =

1.85, Bcps
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1.0 and Bsyrr = 0.5. For a better graphical repre-

sentation, very small values of specificity for wavClusteR between 0.04 and 0.06 are not shown.

1.5, Bcps

sitivity (middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots for each

different simulation for ), wavClusteR (red), and BMix (blue) considering ten draws of { for

Figure C.27: (Simulation 7 = 0.5 with small ) Distribution of the accuracy (top panel), sen-

7 = 0.5 with By = —0.5, B3uTR
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Figure C.28: (Simulation 7 = 1 with small ) Distribution of the accuracy (top panel), sensitivity
(middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots for each different

simulation for {), wavClusteR (red), and BMix (blue) considering ten draws of ¢ for 7 = 1 with

Bo=-0.5, B3uTrR

0.5. For a better graphical representation, very

1.5, Bcps = 1.0 and Bsytr =

small values of specificity for wavClusteR between 0.04 and 0.06 are not shown.
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2 with small f) Distribution of the accuracy (top panel), sensitivity

(middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots for each different
simulation for {), wavClusteR (red), and BMix (blue) considering ten draws of ¢ for 7 = 2 with

Figure C.29: (Simulation t

0.5. For a better graphical representation, very

small values of specificity for wavClusteR between 0.04 and 0.06 are not shown.

= 1.5, ﬁCDS =1.0 and ,BS’UTR

Bo=-0.5, B3uTrR
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Figure C.30: (Simulation 7 = 0.5 with no effect B) Distribution of the accuracy (top panel), sen-

sitivity (middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots for each
different simulation for ), wavClusteR (red), and BMix (blue) considering ten draws of { for

T = 0.5 with By = 0.85 and B3 ytr = Bcps = Bsutr = 0. For a better graphical representation,

very small values of specificity for wavClusteR between 0.04 and 0.61 are not shown.
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0. For a better graphical representation, very

Bcps = Psutr
small values of specificity for wavClusteR between 0.04 and 0.34 are not shown.

Figure C.31: (Simulation 7 = 1 with no effect §) Distribution of the accuracy (top panel), sen-

sitivity (middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots for each
different simulation for ¢), wavClusteR (red), and BMix (blue) considering ten draws of ¢ for

T =1 with By =0.85 and B3 yrr
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Figure C.32: (Simulation 7 = 2 with no effect §) Distribution of the accuracy (top panel), sen-
sitivity (middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots for each

different simulation for ¢), wavClusteR (red), and BMix (blue) considering ten draws of ¢ for

0. For a better graphical representation, very

Bcps = Bsutr

2 with ﬁo =0.85 and ﬁ3'UTR =
small values of specificity for wavClusteR between 0.04 and 0.05 are not shown.
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Figure C.33: (Simulation 7 = 0.5 with large § and pexp = 0.2) Distribution of the accuracy (top
panel), sensitivity (middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots
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0.2) Distribution of the accuracy (top

panel), sensitivity (middle panel) and specificity (bottom panel) of BayMAP 2.0 (black box plots

Figure C.34: (Simulation 7 = 1 with large f and plexp

for each different simulation for {), wavClusteR (red), and BMix (blue) considering ten draws

0.75.

1.15 and ﬁS'UTR =

1.85, Bcps

of { for T = 1 with Hexp = 0.2 and By =0.5, B3 uyrr
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Figure C.36: (Simulation binding site based with small B) Distribution of the accuracy binding
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C.3 BayMAP combining several PAR-CLIP data sets
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Figure D.1: (Kishore B) Top panel: T-to-C substitution rate in comparison to the probability that
the position is experimentally induced for BayMAP (black), BMix (red) and wavClusteR (blue) at
5,000 randomly chosen T-to-C substitution positions in the Kishore B data set. Middle/bottom
panel: Histograms for the substitution rates for all substitutions except T-to-C with BayMAP 1.0
estimations for pmm and usnp indicated by red lines (middle) and only for T-to-C substitutions
with BayMAP 1.0 estimation for pexp.
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Figure D.2: (Memczak) Top panel: T-to-C substitution rate in comparison to the probability that
the position is experimentally induced for BayMAP (black), BMix (red) and wavClusteR (blue) at
5,000 randomly chosen T-to-C substitution positions in the Memczak data set. Middle/bottom
panel: Histograms for the substitution rates for all substitutions except T-to-C with BayMAP 1.0
estimations for pmm and usnp indicated by red lines (middle) and only for T-to-C substitutions
with BayMAP 1.0 estimation for pexp.
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Figure D.3: (Gottwein A) Top panel: T-to-C substitution rate in comparison to the probability
that the position is experimentally induced for BayMAP (black), BMix (red) and wavClusteR
(blue) at 5,000 randomly chosen T-to-C substitution positions in the Gottwein A data set. Mid-
dle/bottom panel: Histograms for the substitution rates for all substitutions except T-to-C with
BayMAP 1.0 estimations for ymm and usnp indicated by red lines (middle) and only for T-to-C
substitutions with BayMAP 1.0 estimation for pexp.
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Figure D.4: (Gottwein B) Top panel: T-to-C substitution rate in comparison to the probability
that the position is experimentally induced for BayMAP (black), BMix (red) and wavClusteR
(blue) at 5,000 randomly chosen T-to-C substitution positions in the Gottwein B data set. Mid-
dle/bottom panel: Histograms for the substitution rates for all substitutions except T-to-C with
BayMAP 1.0 estimations for ymm and usnp indicated by red lines (middle) and only for T-to-C
substitutions with BayMAP 1.0 estimation for pexp.
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Software

E.1 RDocumentation BayMAP 1.0

Description

The baymap function runs WinBUGS on PAR-CLIP data.

Usage
baymap(data, count = "count", coverage = '"coverage",
mutation = "mutation", mutation.type = "TC",
covariates = NULL, dist = c("truncated", "binomial"),

dep = TRUE, n.chains = 1, n.iter 1500, n.thin = 1,

n.burnin = 500 * n.thin, inits.Z NULL, inits.q = NULL,

inits.u = NULL, inits.b = NULL, ...)

## S3 method for class ’baymap’

predict(object, data, count = "count", coverage = '"coverage",
covariates = NULL, dist = c("truncated", "binomial"),
print.i = NULL, add.thin = NULL, ...)

216
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Arguments

data

count

coverage

mutation

mutation.type

covariates

dist

dep

n.chains

n.iter

n.thin

n.burnin

inits.Z

a data frame with at least the count for mutations per ge-
nomic position, the number of reads/coverage and the
mutation type (e.g., T-to-C).

the name of the variable that counts the number of muta-
tions.

the name of the variable that contains the number of
reads.

the name of the variable that contains the different types
of mutations.

the name of the mutation type that is induced by the PAR-
CLIP method.

a vector containing the names for the covariates for the
regression model, e.g., c("tpUTR", "cds", "fpUTR"). Inter-
cept is automatically added as first variable.

the distribution for the number of mutations. Possible en-
tries are "truncated" (default) and "binomial.

a logical value for defining if dependencies between mis-
matches and SNPs are considered (default) or not.
number of Markov chains (default: 1)

number of total iterations per chain (including burn in;
default 4500).

thinning rate. Must be a positive integer. Set n.thin > 1 to
save memory and computation time if n.iter is large.
length of burn in, i.e. number of iterations to discard at
the beginning

a vector containing as inits an allocation for each posi-
tion, where 1 stands for an experimental induced substi-

tution position, 2 for a SNP and 3 for a mismatch.
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inits.q

inits.u

inits.b

object

print.1i

add.thin

Value

a numerical value between 0 and 1 containing as init the
conditional probability for a mismatch position given the
subsitions are not experimentally induced.

a numerical vector containing as inits three values be-
tween 0 and 1 for the substitution probability due to the
PAR-CLIP method, due to SNPs and due to mismatches. If
dep = TRUE the second entry of this vector should be set
to NA.

a numerical vector containing as inits the parameter vec-
tor for the covariates. Only necessary if the vector covari-
ates is not NULL.

Additional arguments to be passed to the baymap func-
tion (see bugs).

a baymap object obtained by baymap().

a positive integer indicating if every ith iteration step
should be printed.

a positive integer containing an additional thinning rate

that should be applied on the baymap() outcome.

The returned object is a result of the bugs function of the R2ZWinBUGS package.

Author(s)

Eva-Maria Huessler, eva-maria.huessler@uni-duesseldorf.de

References

Huessler, E. M., Schifer, M., Schwender, H., Landgraf, P. (2019). BayMAP: a Bayesian

hierarchical model for the analysis of PAR-CLIP data. Bioinformatics, 35(12),

1992-2000.
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See Also

bugs in the R2WinBUGS package

Examples

## Not run:
data(data_test)
res <- baymap(data = data_test)

data_new <- predict(res, data_test)

## End(Not run)

E.2 RDocumentation BayMAP 2.0

baymap A Bayesian hierarchical model for the analysis of PAR-CLIP data

Description

The baymap function runs BayMAP on PAR-CLIP data to detect PAR-CLIP induced

T-to-C substitution positions on binding sites.

Usage
baymap(data, count = "count", coverage = '"coverage",
mutation = "mutation", mutation.type = "TC",
covariates = NULL, dist = c("truncated", "binomial"),

dep = TRUE, n.chains = 1, n.iter = 1500, thin =1,

sd.mu = c(le-04, 1le-04, 1e-04), inits.z = NULL,

inits.q = NULL, inits.mu = NULL, inits.beta = NULL,

ran = FALSE, cluster = '"cluster", inits.tau NULL,

print.i = NULL, save_log = FALSE, save_file = "./results_tmp.RData")




E.2. R Documentation BayMAP 2.0

220

Arguments

data

count

coverage

mutation

mutation.type

covariates

dist

dep

n.chains

n.iter

n.thin

sd.mu

inits.Z

a data frame with at least the count for mutations per ge-
nomic position, the number of reads/coverage and the
mutation type (e.g., T-to-C).

the name of the variable that counts the number of muta-
tions.

the name of the variable that contains the number of
reads.

the name of the variable that contains the different types
of mutations.

the name of the mutation type that is induced by the PAR-
CLIP method.

a vector containing the names for the covariates for the
regression model, e.g., c("tpUTR", "cds", "fpUTR"). Inter-
cept is automatically added as first variable.

the distribution for the number of mutations. Possible en-
tries are "truncated" (default) and "binomial.

a logical value for defining if dependencies between mis-
matches and SNPs are considered (default) or not.
number of Markov chains (default: 1)

number of total iterations per chain (including burn in;
default 4500).

thinning rate. Must be a positive integer. Set n.thin > 1 to
save memory and computation time if n.iter is large.
avector containing three values of standard deviations for
the sampling of mu with a normal jumping distribution.

a vector containing as inits an allocation for each posi-
tion, where 1 stands for an experimental induced substi-

tution position, 2 for a SNP and 3 for a mismatch.
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inits.q a numerical value between 0 and 1 containing as init the
conditional probability for a mismatch position given the
subsitions are not experimentally induced.

inits.mu a numerical vector containing as inits three values be-
tween 0 and 1 for the substitution probability due to the
PAR-CLIP method, due to SNPs and due to mismatches.

inits.beta a numerical vector containing as inits the parameter vec-
tor for the covariates. Only necessary if the vector covari-
ates is not NULL.

ran a logical value indicating if neighborhood dependencies
should be included via a random effect (default) or not.

cluster the name of the varialbe indicating to which cluster a po-
sition belongs. Only necessary if ran is set to TRUE.

inits.tau a numerical value containing as inits the standard devia-

tion of the random effect if ran is set to TRUE.

print.i a positive integer indicating if every ith iteration step
should be printed.
save_log a logical value indicating if temporary results should be

saved or not (default).
save_file file name where temporary results should be stored if

save_log is set to TRUE.

Value

The returned object is a list with sampled MCMC chains for each parameter as
entries and an entry with acceptance values for each sampled value for the

parameter mu.

Author(s)

Eva-Maria Huessler, eva-maria.huessler@uni-duesseldorf.de
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References

Huessler, E. M., Schifer, M., Schwender, H., Landgraf, P. (2019). BayMAP: a Bayesian
hierarchical model for the analysis of PAR-CLIP data. Bioinformatics, 35(12),
1992-2000.

See Also

predict.baymap

Examples

## Not run:
data(data_test)
res <- baymap(data = data_test,

inits.mu = ¢(0.05, 0.85, 0.2), n.iter = 4500)

## End(Not run)

predict  Prediction method for BayMAP results

Description

Predictions if T-to-C substitution positions are PAR-CLIP induced substitutions.

Results of several PAR-CLIP experiments can be combined.

Usage

predict.baymap(object, data, chr = "chr", pos = "pos",
count = "count", coverage = '"coverage',
mutation = "mutation", mutation.type = "TC",

covariates = NULL,
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dist = c("truncated", "binomial"),

ran = FALSE, cluster.id = NULL,

print.i

Arguments

object

data

chr

pos

count

coverage

mutation

mutation.type

covariates

dist

= 100, thin = NULL, burn.in = 0, ...)

either a baymap object or a list of baymap objects if several
PAR-CLIP experiments should be analyzed jointly. If a list
with baymap objects is read in, the class “baymap” should
be assigned to the list prior the analysis by class.

either a data frame with at least the count for mutations
per genomic position, the number of reads/coverage and
the mutation type (e.g., T-to-C) or a list of data frames.
the name of the variable that contains the chromosome
information.

the name of the variable that contains the position infor-
mation.

the name of the variable that counts the number of muta-
tions.

the name of the variable that contains the number of
reads.

the name of the variable that contains the different types
of mutations.

the name of the mutation type that is induced by the PAR-
CLIP method.

a vector containing the names for the covariates for the
regression model, e.g., c("tpUTR", "cds", "fpUTR"). Inter-
cept is automatically added as first variable.

the distribution for the number of mutations. Possible en-

tries are "truncated" (default) and "binomial.
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ran
cluster
print.i
thin
burn.in

Value

a logical value indicating if neighborhood dependencies
should be included via a random effect (default) or not.
the name of the varialbe indicating to which cluster a po-
sition belongs. Only necessary if ran is set to TRUE.

a positive integer indicating if every ith iteration step
should be printed.

an additional thinning rate that should be applied on the
baymap outcome. Must be a positive integer.

length of burn in, i.e. number of iterations to discard at
the beginning.

further arguments for predict.

If a single PAR-CLIP data set is analyzed, the returned object is a data frame

including the prior odds, the bayes factor and the posterior odds. If several

PAR-CLIP data sets are analyzed, the returned object is a list combined predictions

as well as separate predictions for each dara set. Posterior odds greater than one

means that the probability of having a method-incuced substitution position given

the data is larger than 0.5.

Note

Predictions of the separate analyzis are made for all entries of the included data set

even for substitution types other than T-to-C.

Author(s)

Eva-Maria Huessler, eva-maria.huessler@uni-duesseldorf.de

References

Huessler, E. M., Schifer, M., Schwender, H., Landgraf, P. (2019). BayMAP: a Bayesian
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hierarchical model for the analysis of PAR-CLIP data. Bioinformatics, 35(12),
1992-2000.

See Also

baymap

Examples

## Not run:

data(data_test)

res <- baymap(data = data_test,

inits.mu = ¢(0.05, 0.85, 0.2), n.iter = 4500)

data_new <- predict(res, data_test, burn.in = 3000)

## End(Not run)
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