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Abstract

This thesis deals with computational social choice which combines computational complexity theory,

one of the most important areas of theoretical computer science, with social choice theory which is

highly relevant to economists, politicians, and other figures involved in decision-making processes.

Although being a fairly young research field, springing to life in the early 1990s, computational social

choice has established itself as one of the central pillars of artificial intelligence and multi-agent

systems research.

The central objects of interest for computational social choice are elections, which model decision-

making processes where preferences of different agents or voters over candidates have to be aggre-

gated into a final decision, and voting rules, which specify methods of how to aggregate those pref-

erences. Naturally, all parties involved in an election, e.g., the agents, the organizing chair or even

an outside agent, might have an interest to influence the outcome of an election. So-called election

tampering attempts take many different forms: The agents may submit insincere preferences (i.e.,

strategic voting or election manipulation), the organizing chair might alter the structure of the election

(i.e., electoral control) or an outside agent might want to bribe agents to change their votes to her

liking (i.e., bribery). In this thesis we investigate, from a computational complexity perspective, to

what degree elections evaluated by certain voting rules can be influenced by those types of election

tampering attempts.

Firstly, we study electoral control for the Borda Count which is one of the oldest and most important

voting rules. We consider different types of electoral control such as adding or deleting candidates

or voters and in particular electoral control by partitioning the candidates or voters into two groups.

Furthermore, we consider so-called online electoral control in which candidates or voters appear one

after another in the election and the chair may decide only in the moment of appearance to exert some

control action. We find that Borda is rather resistant against electoral control by proving NP-hardness

of several control problems.

Secondly, we study replacement control which is a special kind of electoral control in which can-

didates or voters that are removed from the election need to be replaced by, as of yet, unregistered

candidates or voters. We find that the complexity of replacement control problems usually follows the

complexity of the corresponding classical control problems. Furthermore, we fill gaps in the litera-

ture regarding the complexity of the classical electoral control problems regarding adding or deleting

candidates or voters.

Thirdly, we consider multiwinner elections in which we seek to elect a fixed-sized set of candidates,

a committee, instead of single candidates. We devise a model and define several decision problems to

model electoral control by cloning of candidates. A candidate is cloned by adding a new candidate to

the election that is very similar to the original candidate. We study the introduced model for cloning

candidates in multiwinner elections for several popular multiwinner voting rules and find a wide range

of complexity results.

The last contribution of this thesis deals with shift bribery, which is a special kind of bribery in which

only one special candidate may be moved forwards or backwards in the voters’ preferences. We study

shift bribery for iterative voting rules that decide the outcome of an election in several rounds. We

find that iterative voting rules are generally very resistant to shift bribery. In contrast to non-iterative

voting rules, for which several examples of vulnerability against shift bribery can be found in the

literature, shift bribery is NP-hard for all of our considered iterative voting rules.
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CHAPTER 1

INTRODUCTION

Collective decision-making, the act of aggregating individual preferences of a group of individuals

into a final decision, is important in almost every social aspect of life ranging from politics over

economics to everyday activities like choosing where to go on vacation. In the wake of digitalization a

multitude of additional settings became important including multi-agent systems, meta-search engines

or recommendation systems for online multimedia platforms like Youtube or Netflix. In each of

those settings there is a set of candidates or alternatives from which we would like to choose one

and a set of agents, which we will call voters, with preferences over the candidates. Depending

on the specific settings candidates might be politicians to be elected, bills to be ratified, applicants

to company positions or objects to be chosen from. The agents might be registered voters, jury or

committee members, or even processes running on servers.

The most common way to aggregate individual preferences and come to a collective decision is to

run an election: collect the preferences of the voters and use an aggregation procedure, which we will

call voting rules, to determine the winning candidate. But, choosing a good voting rule for the job at

hand is more intricate than at first glance. Firstly, it is important to consider in what form the voters’

preferences are given. There may be ordinal preferences meaning voters order the candidates linearly

according to their liking or there may be cardinal preferences in which the voters assign each candidate

points or even a mixture of both. Still, even if we focus on one type of preferences, for example ordinal

preferences, there is a multitude of possible voting rules we could use to aggregate those preferences.

As early as the age of ancient Greece elections were used to elect representatives or settle disputes

but the scientific study of elections did not start until the late 18th century when the Marquis de

Condorcet [33] started a research field called social choice theory by applying mathematics to voting

theory and rigorously formalizing elections and voting rules. With this, general theorems or statements

can be deduced and voting rules can be characterized which hopefully helps us choose the right voting

rule for the right task.

One of the many famous results of Condorcet’s work is the Condorcet paradox. Consider the follow-

ing linear preferences of three voters over the candidates a, b and c: Voter 1 prefers a to b to c, voter

2 prefers b to c to a, and voter 3 prefers c to a to b. Whichever candidate we choose as the winner

there is always another candidate who is preferred by two of the three voters (e.g., if a is chosen as

the winner, voter 2 and 3 both prefer candidate c to a) implying that it might not be possible to find

a satisfying outcome for an election. Condorcet’s preferred method of voting, thus called the “Con-

dorcet method”, chooses the candidate as the winner of an election that defeats all other candidates in

pairwise comparison. Other famous theorems resulting from this “golden age” of social choice theory

are the Condorcet jury theorem [33], the median voter theorem [18], and May’s theorem [110]. But

the most famous result is certainly due to Arrow [2], who later received a Nobel Memorial Prize in

Economic Sciences together with John Hicks. In his so-called impossibility theorem it was shown

that no voting rule, which accepts votes that rank all candidates, can satisfy three reasonable criteria
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Chapter 1 Introduction

simultaneously:1 (1) If every voter prefers some candidate a over some candidate b, then the voting

rule cannot choose b over a, (2) if the voting rule prefers a to b then this is still the case even if can-

didates other than a and b are removed from the election, and (3) no single voter should be able to

decide the outcome. The theorem implies that there does not exist a “perfect” voting rule.

Another method of voting was proposed by Jean-Charles de Borda to elect the members of the French

Academy of Science in 1770 [20]. In the so-called “Borda method” candidates score points from every

voter depending on where they are placed in the voter’s preference. Condorcet and Borda famously

argued whose voting method is better with Borda once defending his voting method by proclaiming

“My scheme is intended only for honest men” [141]. He is thereby implying that when using his voting

rule a voter can benefit by casting a dishonest vote, which is also called strategic voting. Strategic

voting should ideally be discouraged since it would give the dishonest voters more influence over the

election outcome as the other, honest voters. Alas, Allan Gibbard [78] and Mark Satterthwaite [142]

showed independently from each other that a voting rule that is non-dictatorial, meaning that there

is no single voter who determines the outcome, and non-imposing, meaning every candidate can

possibly win in some election, is necessarily manipulable by strategic voting.2 Since a fair voting

rule should always be non-dictatorial and non-imposing, strategic voting is always possible. This

notion of reasonable voting rules being manipulable is further reinforced by the Duggan-Schwartz

Theorem [48]. Their theorem deals with non-resolute voting rules which means that they are choosing

not a single candidate as the winner but a subset of candidates (i.e., candidates may tie for the win).

Duggan and Schwartz show that a non-resolute voting rule that is anonymous (i.e., all voters are

treated the same), non-imposing, and where there may be voters whose top ranked candidate is not in

the set of winners is necessarily manipulable by strategic voting. The third property is reasonable to

assume for a voting rule in order to have a meaningful set of winners since the winning set of a voting

rule that includes all top ranked candidates in the set of winners would always be very large.

The celebrated Gibbard-Satterthwaite impossibility theorem inspired John Bartholdi III, Craig Tovey,

and Michael Trick in the late 1980s to a series of papers applying computational complexity theory

to social choice theory launching a research field called computational social choice that sits at the

intersection of economics and computer science. Their approach to combat strategic voters was to

choose a voting rule for which it is intractable to decide if an election can be manipulated by strategic

voting. Then, under the condition that the election is large enough which is true in most multi-agent

settings, it might take a strategic voter too long to decide if the election can be manipulated or to even

compute a successful strategic vote [37]. Remarkably, intractability is seen as a positive property for

this use case whereas it mostly seen negatively in computational complexity theory (i.e., the problem

at hand cannot always be solved quickly). This notion is in many ways similar to how computational

complexity was successfully used in cryptography to investigate the vulnerability of cryptosystems to

attacks. Ideally, a cryptosystem should be hard to break, which can be achieved if it takes a long time

for an attacker to break it [135].

The approach used to combat strategic voting can be extended to other forms of election tampering.

Besides voters, other entities involved in elections could try to influence the outcome of an election.

An election’s chair organizing the election could be interested in steering the election into a certain

direction without directly submitting a vote but instead by altering the structure of the election. We

call this form of election tampering “electoral control” and it appears in the real world as, e.g., voter

1To be precise, we also need to require that there are at least three candidates and the votes are unrestricted in their

structure.
2Again, we tacitly assume that there are at least three candidates and the votes are not restricted in some way.
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disenfranchisement [154], cloning of candidates [150], or Gerrymandering [61, 91]. For voter dis-

enfranchisement regulations are introduced to prevent groups of voters from voting that would vote

contrary to the chair’s liking. Felony disenfranchisement is the most common form of voter disen-

franchisement in which people with criminal convictions are excluded from voting. In the US it is

believed that felony disenfranchisement heavily influenced the presidential election in 2000 [105].

By cloning a candidate, i.e., introducing additional candidates to the election that are similar to an

already participating candidate, the chair can split up the support of the cloned candidate. This type

of electoral control is also known as the “strategic candidacy problem” [49]. Gerrymandering is used

in district-based elections in which voters are partitioned into districts usually constrained by their

geographical location. The voters then elect a representative for their district and the representatives

of all districts elect the overall winner in a separate election. By manipulating the district borders the

chair can reduce the impact votes of a certain group of voters have on the overall election result. This

technique was first used by Massachusetts governor Elbridge Gerry in 1812 by creating a salamander

shaped district coining the term “Gerrymandering” [61, 91].

Another way to tamper with an election is bribery. Now, an external agent, who is not part of the

election, is bribing voters to change their vote in some way that favors the external agent’s own

preference. Bribery problems come in many different flavors depending on which voters can be bribed

and how their votes can be changed [70]. Apart from the obvious example of a malicious briber trying

to influence an election, a whole range of real world scenarios can be modeled by bribery problems.

The most common scenarios are political campaign management and as a robustness measure for

election results.3 The former is related to bribery in that the campaign manager “bribes” the voters

to change their votes by running, e.g., targeted ad campaigns. A special kind of bribery in which

only the favorite candidate of the external agent can be moved forward in the votes models a type of

ethical campaign management in which the campaign manager is not allowed to apply smear tactics

to damage the standing of other candidates. The robustness of an election result is important in the

following way. If the winner of the election can be dethroned by only a few changes to the votes, then

the supposed winner might be incorrect due to vote counting errors or manipulation attempts.

Beyond election tampering, computational social choice is concerned with winner determination in

elections—in particular, with possible and necessary winners [99]—winner prediction [35], and iter-

ative elections [112]. Another sub-field deals with multiwinner elections that seek to elect a fixed-

sized set of candidates, a committee, and can be used for, e.g., shortlisting or parliamentary elec-

tions [71]. Over time other research fields were integrated and adapted to computational social choice

to address settings such as meta-search engines [50, 98], information extraction [145], planning [55],

automated scheduling [81], collaborative filtering [128], computational linguistics [124], kidney ex-

changes [134], and assignments of students to schools [79]. Very recently, special attention was given

to participatory budgeting [6, 13, 30] which is concerned with the question of how a budget can be

allocated to different projects depending on the preferences of voters.

In this thesis we will extend the pioneering work of Bartholdi, Tovey, and Trick focusing on the line

of research concerning electoral control and bribery.

3Another way to measure the robustness of election results is the margin of victory [155].
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Chapter 1 Introduction

Outline

In Chapter 2 we will provide the background for the following chapters including preliminary def-

initions and theorems of voting theory and computational complexity theory, and a brief survey of

previous related works in computational social choice. In Chapter 3 we investigate how resistant the

Borda voting rule is against the classical electoral control defined by Bartholdi, Tovey, and Trick [10]

and Hemaspaandra, Hemaspaandra, and Rothe [83]. In Chapter 4 we study electoral control once

again solving open problems to try to complete the puzzle of the computational complexity of elec-

toral control for the most popular voting rules. In particular, we study replacement control for which

we may only remove a candidate or voter from the election if, in turn, we add an unregistered can-

didate or voter, respectively. In Chapter 5 we devise a new model, in the context of multiwinner

elections, for electoral control by cloning, which is the act of adding candidates to an election that

are similar (i.e., clones) to an already participating candidate, and study the computational complexity

of this model for various multiwinner voting rules. In Chapter 6 we study shift bribery, which is a

special kind of bribery in which only the position of a special candidate can be improved or worsened.

For this type of bribery we study how resistant iterative voting rules, which elect the winner of an

election in multiple rounds, are against it. Lastly, in Chapter 7 we summarize the previous chapters

and provide starting points for future research.
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CHAPTER 2

BACKGROUND

In this chapter we will provide background information necessary for the following chapters including

definitions, notation, and some important prior work.

For a comprehensive overview of computational social choice see the recent book by Brandt et al. [23],

especially the book chapters therein by Conitzer and Walsh [37] and Faliszewski and Rothe [70]

concerning manipulation, electoral control, and bribery, and the book by Rothe [136]. A more concise

introduction to computational social choice is provided by the surveys of Chevaleyre [31], Faliszewski

and Procaccia [69], and Faliszewski, Hemaspaandra, and Hemaspaandra [64]. Additionally, see the

very recent survey by Lang [99] of elections with incomplete knowledge. For an introduction to

multiwinner elections see the book chapter by Kilgour [95] and the book chapter by Faliszewski

et al. [71] surveys recent research from the computational complexity perspective. The books by

Arora and Barak [1], Papadimitriou [126], and Rothe [135] deal with complexity theory (see Tovey’s

tutorial [151] for an introduction). For parameterized complexity theory see the books by Cygan et

al. [39], Downey and Fellows [47], Flum and Grohe [76], and Niedermeier [122].

2.1 Computational Complexity

Our main tools for analyzing elections and classifying voting rules originate in a research field called

computational complexity theory started by the seminal work of Hartmanis and Stearns [80] in 1965

who use the abstract computational model of Turing machines defined by Alan Turing [152]. Com-

putational complexity theory deals with the question of whether different computational tasks can be

solved “efficiently”. By efficiently we mean the amount of resources (usually the time it takes to

finish or the space that is used) required to complete the computation. Computational tasks are for-

malized as decision problems1 that consist of the problem’s name, given information (i.e., the input),

and a question about the input. For example, the important decision problem SAT [77] is defined as

follows.

SATISFIABILITY (SAT)

Input: A boolean formula φ with a set of (boolean) variables X and a set of clauses K over X .

Question: Is there a satisfying truth assignment to the variables of φ?

1Note that there are many different kinds of problems besides decision problems such as optimization problems, search

problems, sort problems or counting problems but in this thesis we will only deal with decision problems. Therefore,

when we speak of “problems” we always mean “decision problems”.
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Chapter 2 Background

A specific case of a decision problem is called an instance (i.e., for SAT an instance would be a

specific boolean formula). We call an instance I of a decision problem A a yes-instance if the answer

to the question of the problem for this instance is ”yes“ and a no-instance otherwise. Sometimes it is

useful to think of the decision problem as the set of all yes-instances of the problem so I ∈ A if and

only if I is a yes-instance of A (e.g., SAT = {φ | φ is a satisfiable boolean formula}).

Example 2.1 (Instances of decision problems). Consider the instance (X ,K) of SAT with X = {x1,x2}
and K = {K1,K2} with K1 = (x1 ∨ x2) and K2 = (x1 ∨ x2). Can we find a truth assignment to x1 (i.e.,

x1 is set to true or false) and x2 (i.e., x2 is set to true or false) such that both K1 and K2 evaluate

to true? Here, the answer is yes since we can set x1 to true and x2 to false to satisfy both clauses.

Therefore, (X ,K) is a yes-instance of SAT. If K would contain a third clause K3 = (x2), we would

have a no-instance since we cannot satisfy K1, K2, and K3 at the same time.

Note that the input to a decision problem can be of many forms. In addition to boolean formulas they

may have strings, integers, graphs, elections, etc. as inputs. To be able to do computations on different

kinds of input we assume—on a lower level—that inputs are encoded in some way, usually as strings

over {0,1} called the binary encoding.

A (deterministic) algorithm that solves a decision problem takes any input or instance to the problem

(in binary encoding), does some basic computational steps, and outputs the answer to the question of

the problem, therefore deciding if the instance belongs to the problem or not. Assuming the Church-

Turing Thesis [32, 152], that any real-world algorithm can be simulated by Turing machines, holds

true we use Turing machines as the computational model to represent algorithms (although, for the

sake of readability, we will use a more descriptive language to define algorithms in this thesis).

The type of algorithms defined above are deterministic meaning the steps the algorithm takes for an

input are singular and predetermined leading to a computation path in which every node is a state of

the algorithm. In contrast, a nondeterministic algorithm may choose from several possible steps on

how to proceed with the computation on the current state. In particular, the algorithm makes every

possible decision (i.e., which computational step to do next) simultaneously building a computation

tree instead of a path. Then, the nondeterministic algorithm accepts the input if there is at least

one path in its computation tree that accepts. Note that some paths on the computations tree of a

nondeterministic algorithm may be infinitely long in contrast to deterministic algorithms in which

every computation stops eventually. Therefore, nondeterministic algorithms can only accept decision

problems and never decide them like deterministic algorithms. Due to the fact that there are no

modern computers who can run nondeterministic algorithms (yet) they would have to be simulated

by deterministically running through every path in the computation tree if used in practice which is

very inefficient. For a deterministic algorithm we define its (worst-case) runtime as the maximum

number of steps the algorithm takes over all possible inputs. For a nondeterministic algorithm its

(worst-case) runtime is the maximum number of steps of the shortest accepting path over all inputs

that the algorithm accepts.2 Runtimes are given as functions depending on the size of the input that

describe the growth of the computational effort of the algorithm with increasing size of the input.

For those function we are only interested in the fastest growing factor, called the runtime bound,

as slower growing factors and constants become irrelevant for larger input sizes (e.g., the values

of the functions f (x) = 2x + 3 and g(x) = 3x for very large x are very similar but much smaller

in comparison to values of h(x) = 2x). That means we are interested in the asymptotic behavior,

2There are other complexity measures such as space that we will not discuss here.
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2.1 Computational Complexity

the asymptotic bounds, of algorithms when the size of the input increases. In this thesis, the most

important runtime functions are polynomial and exponential functions. A polynomial function p is

defined as p(x) = ckxk + ck−1xk−1 + · · ·+ c1x+ c0 for some constant k and k+1 constants c0, . . . ,ck,

and an exponential function f is defined as f (x) = 2p(x) for some polynomial function p. We say that

an algorithm has a polynomial-time runtime if its runtime functions is in O(p(x)) for some polynomial

function p and an exponential-time runtime if its runtime function is in O( f (x)) for some exponential

function f .3

Complexity Classes

Computational complexity theory aims to group similarly complex problems together into so-called

complexity classes. The most important complexity classes are P, containing problems that can be

solved in deterministic polynomial time, and NP, containing problems that can be solved in non-

deterministic polynomial time. In order to show that a decision problem belongs to P we need to

find a deterministic polynomial-time algorithm that solves the problem and for NP-membership the

algorithm only needs to be nondeterministic.

Example 2.2 (SAT is in NP). To show that SAT is in NP, a nondeterministic algorithm could (nonde-

terministically) guess a truth assignment for the variables of a given instance of SAT and then check

(in polynomial time) if it satisfies the given formula of the instance.

It is widely believed that P represents the class of problems that can be efficiently solved (problems

belonging to P are also sometimes called tractable) although a polynomial runtime with a large expo-

nent is still very slow for large inputs. But it turns out that many natural problems in P actually have

algorithms with polynomial runtime with only small exponents so this assumption seems reasonable.

Obviously, it holds that P ⊆ NP since every deterministic algorithm is also nondeterministic with a

computation tree that only consists of one path. We already mentioned that nondeterministic algo-

rithms can be simulated by deterministic algorithms with an exponential blow-up in the runtime. The

question of whether there exists a deterministic polynomial-time algorithm for every nondeterminis-

tic polynomial-time algorithm is formalized as the famous open P = NP problem [38]. It is widely

believed that P 6= NP, i.e., there exist problems in NP for which no deterministic polynomial-time

algorithm exists and we also require this assumption in this thesis. Another complexity class is coNP

which contains the complements of problems that are in NP (i.e., let A be a decision problem and I

be an instance of A, then I is in the complement of A if and only if I /∈ A). We mention in passing

that there are other complexity classes that contain problems who are (allegedly) even harder than

problems in P, NP or coNP. Together they form the so-called polynomial hierarchy introduced by

Meyer and Stockmeyer [115] and Stockmeyer [149] but we will not further discuss those complexity

classes here.

Showing that a decision problem belongs to a complexity class is in some sense showing an upper

bound of the complexity of that problem since then we can follow that the problem can be solved at

least as fast as the most difficult problems in that complexity class. In this thesis we aim to find upper

bounds of P or NP. In contrast, showing a lower bound of the complexity for a problem is much more

3We assume the reader to be familiar with the Big O notation. Roughly, for two functions f and g, f is in O(g) if there is

some input to f and g after which f does not grow faster than g (i.e., f is upper bounded by g barring constant factors

and finitely many exceptions).
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Chapter 2 Background

complicated as we would need to show that there does not exist an algorithm with a specific runtime

that solves the problem. The notion of reducibility which we will discuss in the following section

enables us to proof such lower bounds for decision problems.

Reducibility and Complexity Lower Bounds

We say that a decision problem A (polynomial-time many-one)4 reduces to another decision problem B

(formally, A ≤p
m B) if we can construct in polynomial time from each instance I of A an instance I′ of

B such that I is a yes-instance of A if and only if I′ is a yes-instance of B. Intuitively, if we can reduce

A to B, then A is at least as hard to solve as B. Then, a decision problem A is ≤p
m-hard for a complexity

class C (or simply C -hard) if B ≤p
m A for every B ∈ C . Furthermore, a decision problem A is ≤p

m-

complete for a complexity class C (or simply C -complete) if A is C -hard and A ∈ C . The notion

of hardness for a complexity class intuitively means that a decision problem is at least as hard to

solve as the hardest problems of that complexity class and completeness for a complexity class even

implies that the problem is one of the hardest problems in this class. Even still, in order to show

hardness with this basic definition we would need to reduce every one of (possibly) infinitely many

problems in the complexity class to the problem we want to show hardness for. Luckily, due to the

transitivity of ≤p
m (i.e., for three problems A,B, and C, it holds that if A ≤p

m B and B ≤p
m C, then

A ≤p
m C), if a decision problem B is C -hard for a complexity class C and B ≤p

m A for another decision

problem A, then A is C -hard as well. Thus, given a C -hard problem we can show C -hardness of

another problem by reducing from the C -hard problem to it. Cook [38] showed that SAT is NP-hard

opening up the possibility to show NP-hardness (and even NP-completeness) for many other problems

by reducing from it. Karp [93] then showed for several natural problems that they are NP-complete.

Since P contains the decision problem that can be solved in polynomial time, showing NP-hardness

and assuming P 6= NP implies that the problem is not solvable efficiently or that it is intractable.

This makes the P 6= NP question central to computational complexity theory as important natural

problems (e.g., the problem of creating mathematical proofs) are NP-hard and a collapsing of both

complexity classes would mean that they are efficiently solvable. Interestingly, showing for only one

NP-complete problem that it is in P would immediately show P-membership of all other NP-complete

problems as well and, thus, showing P = NP. Note that NP-hardness of a problem does not mean that

specific instances of the problem are hard to solve as the size of a specific instance is predetermined

and, therefore, can be solved in constant time. Rather, the NP-hardness of a problem means that,

unless P = NP, as instances of the problem increase in size the time to solve those instances grows

exponentially.

We can also use reducibility to show upper bounds. Since P, NP, and coNP are closed under ≤p
m-

reducibility, for a complexity class C ∈ {P,NP,coNP} and two decision problems, A and B, with

A ≤p
m B and B ∈ C it follows that A ∈ C .

Parameterized Complexity Theory

Showing NP-hardness is not the end of research but merely the beginning. There are several ap-

proaches on how to deal with the NP-hardness of a decision problem and gain more insight into what

4There are many other notions of reducibility but in this thesis we will only use polynomial-time many-one reducibility so

we will simply call it “reducibility”.
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makes the problem hard to solve. Apart from average-case analysis, finding approximate solutions,

or using heuristics, studying the parameterized complexity of a problem has seen much attention re-

cently.

The general idea of parameterized complexity theory is to choose some part of the input to an NP-hard

decision problem as the parameter and then design an algorithm that runs in polynomial time if the

parameter is small or even a constant (it can only run in exponential time in general as the problem

is NP-hard, unless P = NP) or proof that such an algorithm probably does not exist. To this end, we

turn a decision problem into a parameterized decision problem by taking some part of the input as

the parameter. An instance of such a parameterized decision problem is a pair (I, p) with I being an

instance of the “not-parameterized” problem and p being some part of I.

Example 2.3 (Parameterization of VERTEX COVER). Consider the following decision problem.

VERTEX COVER

Input: An undirected graph G = (V,E) with n vertices and m edges and an integer k.

Question: Does there exist a set V ′ ⊆ V of at most k vertices of G such that V ′ covers the edges of G

(i.e., for each {v1,v2} ∈ E, v1 ∈V ′ or v2 ∈V ′)?

The obvious parameters of VERTEX COVER are the integer k, the number of vertices n, or the number

of edges m. We can also combine parameters by adding them, e.g., we could choose the parameter

k+n. We may also study parameters that are given by the structure of the instance. For problems that

deal with graphs, like VERTEX COVER, it is common to choose the maximum degree of the graph or

the treewidth of the graph as parameters.

A parameterized decision problem is in FPT (i.e., it is fixed-parameter tractable) if there exists an

algorithm that solves it in O( f (p) · |I|O(1)) time for some computable function f . If p is small or a

constant, then |I|O(1) is the fastest growing factor of the runtime of an FPT-algorithm which turns the

runtime polynomial. The complexity class XP consists of problems that can be solved in O( f (p) ·
|I|g(p)) time for some computable functions f and g. Notice that if the parameter is a constant, then

the problem can be solved in polynomial time. Therefore, problems in this complexity class are often

called slice-wise polynomial-time solvable as instances (I, p) of a parameterized problem for some

fixed p can be seen as a slice of the problem. In practice XP-algorithms often times do not perform

very well as the constant parameter might be relatively large which results in a high degree polynomial

as the runtime. In contrast, the degree of the polynomial in the runtime of an FPT-algorithm must be

independent of the parameter.

Example 2.4 (VERTEX COVER parameterized by k is in FPT). Since VERTEX COVER is NP-com-

plete (see, e.g., Garey and Johnson [77]) we expect that there is no polynomial-time algorithm that

solves the problem. The trivial brute-force algorithm that iterates through all
(

n
k

)

possible sets of

vertices of size k and checks whether it is a vertex cover obviously needs exponential time in the

worst case (O(nk) time to be precise) to solve the problem. Notice that if k is a constant, the algorithm

runs in polynomial time. Therefore, VERTEX COVER parameterized by k is in XP. On the other hand,

the algorithm above does not satisfy the requirements to be a FPT-algorithm. But, we can improve

the trivial algorithm in the following way. Firstly, we can remove any vertex from the graph that has

no neighbor since we cannot cover any edges with such a vertex. Afterwards, notice that, given an
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instance (G,k) of VERTEX COVER, if a vertex v of G has at least k+ 1 neighbors, this vertex needs

to be in a vertex cover for otherwise the cover would have to include all at least k+ 1 neighbors of

v to cover all of v’s incident edges. Therefore, we can immediately remove such a vertex (including

its incident edges) from the graph and decrease k by one. So, after those two reduction steps all

remaining vertices have at most k neighbors but at least one and we can reject the instance if there

are more than k2 edges since every vertex can cover at most k edges. Otherwise, it follows that there

are at most 2k2 vertices that were not removed in the reduction step and we can brute-force over all

(at most)
(

2k2

k

)

sets of vertices of size k to check whether all edges are covered. This algorithm has a

worst case runtime of O(2kk2k ·m+nm) and, therefore, runs in FPT-time if k is the parameter.

The technique shown in Example 2.4 to first reduce the size of an instance which can then be solved in

FPT-time is also called kernelization. Another technique to show FPT-membership uses integer linear

programs. An integer linear program (ILP) consists of p variables and a set of m linear inequalities

over the variables. Then, the goal of the ILP is to choose values for the variables such that the

inequalities are satisfied. Formally, we define the INTEGER LINEAR PROGRAMMING FEASIBILITY

problem as follows. We are given a constraint matrix A∈Z
m×p and a bias vector b∈Z

m. The question

is whether there exists a variable vector x ∈ Z
p such that Ax ≤ b. INTEGER LINEAR PROGRAMMING

FEASIBILITY is known to be NP-complete but the following theorem was proven by Lenstra [101].

Theorem 2.1 (Lenstra’s theorem [101]). An INTEGER LINEAR PROGRAMMING FEASIBILITY in-

stance of size L with p variables can be solved in time O(p2.5p+o(p) ·L).

It follows that INTEGER LINEAR PROGRAMMING FEASIBILITY is in FPT if parameterized by p,

i.e., the number of variables. Therefore, if we manage to express a parameterized problem as an

ILP in which the number of variables is only bounded by the parameter, we can solve this ILP (and

subsequently the problem) in FPT-time by using Lenstra’s theorem. We illustrate the technique by the

following example.

Example 2.5 (An ILP for VERTEX COVER). Given an instance (G,k) of VERTEX COVER, the ILP

has a boolean variable xi for every vi ∈ V (i.e., xi ∈ {0,1} for 1 ≤ i ≤ n). If a variable xi is set to 1,

this corresponds to vertex vi being in the vertex cover. Furthermore, the ILP consists of the following

constraints.

xi ≥ 0 for every vi ∈V (2.1)

xi + x j ≥ 1 for every {vi,v j} ∈ E (2.2)
n

∑
i=1

xi ≤ k (2.3)

Constraint (2.2) ensures that every edge of the graph is covered and constraint (2.3) ensures that the

vertex cover contains at most k vertices. Due to Theorem 2.1 and the fact that we have n variables, we

can solve the ILP in FPT-time if n is the parameter and, therefore, have shown that VERTEX COVER

is in FPT for this parameter. Note that parameterizing VERTEX COVER by n is not all that useful since

the size of the instance is directly related to n (i.e., k ≤ n and m ≤ n(n−1)
2 ). Intuitively, that means if

we assume n to be small, then instances are small as well and the result that those instances are fast to

solve is unsurprising.
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The ILP technique described above was successfully used in computational social choice to show FPT-

membership of problems dealing with winner determination [9], bribery [24, 29, 45], control [66],

possible winner [15, 26], and lobbying [25]. We will also use this technique in Chapter 5 to show

FPT-membership.

Similarly to NP-hardness we can define a notion of hardness for parameterized problems as well

showing (under a separation assumption similar to P 6= NP) that there is no FPT-algorithm for a

parameterized problem. First, we need another set of parameterized complexity classes, the so-called

W hierarchy. We omit the details of defining it formally as it is out of scope of this thesis (see the

book by Downey and Fellows [47] for the formal definitions). The most important fact is that for

every t ≥ 1 there is a parameterized complexity class W[t] and it holds that FPT ⊆ W[1] ⊆ W[2] ⊆
·· · ⊆ XP. Showing that a parameterized problem is W[t]-hard for some t ≥ 1 and assuming that

FPT 6= W[1] then prevents the problem from being in FPT. For showing W[t]-hardness we need

to extend the notion of reducibility to parameterized problems. We say a parameterized decision

problem A, with parameter p, reduces to another parameterized decision problem B, with parameter r,

if we can construct for each instance (I, p) of A in O( f (p) · |I|O(1)) time, for some computable function

f , an instance (I′, p′) with p′ ≤ g(p) for some computable function g such that (I, p) is a yes-instance

of A if and only if (I′, p′) is a yes-instance of B. The main difference to “not-parameterized” reductions

is that we need the constructed parameter for the instance of the target problem to be exclusively

bounded by some function of the parameter of the original instance. With this notion of reducibility we

can reduce some W[t]-hard problem to some other parameterized problem to show the W[t]-hardness

of the latter problem. Although the formal definition of the W hierarchy is quite technical involving

combinatorial circuits, for W[1] and W[2], there are natural problems with natural parameterizations

that are hard for one of those classes and from which we can reduce to show hardness for other

parameterized problems. For W[1]-hardness the following problem can be used.

MULTICOLORED CLIQUE

Input: Given an undirected graph G = (V,E), an integer f , and a partition of V into f sets

W1, . . . ,Wf .

Question: Does there exist a clique X ⊆V (i.e., the induced subgraph of G restricted to X is complete)

that contains exactly one vertex of every set Wi with 1 ≤ i ≤ f ?

MULTICOLORED CLIQUE is W[1]-hard if parameterized by f [46]. For W[2]-hardness a central

problem is SET COVER which is defined as follows.

SET COVER

Input: Given a set X = {x1, ...,xm}, a family S = {S1, . . . ,Sn} of subsets of X , and an integer k.

Question: Does there exist a cover of X of size at most k, i.e., a subfamily S ′ ⊆ S with |S ′| ≤ k

such that
⋃

S j∈S ′ S j = X?

If SET COVER is parameterized by k, it is W[2]-hard [46]. We note in passing that hardness for

some class of the W hierarchy does not, in general, imply NP-hardness since a parameterized reduc-

tion allows the construction to be done in FPT-time with respect to the parameter which might be

exponential-time with respect to the size of the input.

11
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Lastly, we will discuss the parameterized complexity class para-NP which sits above XP (unless

P = NP). A parameterized decision problem is para-NP-hard if it is NP-hard for some constant value

of the parameter. Intuitively, if some slice of a parameterized problem is intractable, then it cannot

belong to XP (unless P=NP) since this would imply that all slices are tractable. Interestingly, para-NP

bridges the gap between parameterized complexity and classical complexity as it can be shown that

FPT = para-NP if and only if P = NP [76].

2.2 Voting

An election is defined as a pair (C,V ) with C being a finite set of candidates and V being a multiset

of the voters’ preferences over C, sometimes referred to as the preference profile. Typically, voters

express their preference (i.e., the vote or the ballot they cast) as a linear order ≻ over the candidates

in C with the following three properties.

1. Completeness: For every pair of candidates c,d ∈C, we have c ≻ d or d ≻ c;

2. Transitivity: For every triplet of candidates c,d,e ∈C, if c ≻ d and d ≻ e, it follows that c ≻ e;

3. Antisymmetry: For every pair of candidates c,d ∈C, if c ≻ d, then d ≻ c does not hold.

For example, given a set of candidates C = {a,b,c,d} a voter that prefers b to a, a to d, and d to c

would have the preference b ≻ a ≻ d ≻ c (sometimes we omit the ≻ symbols and write the preference

as a string b a d c). Note that the first and third property imply that the voter is sure for every

pair of candidate which one the voter prefers over the other, i.e., the preferences are strict. In the

(computational) social choice literature it is sometimes allowed that the voter may be indifferent of

candidates (i.e., we drop the completeness property) but in this thesis we will always assume strict

preferences. Apart from those ordinal preferences voters’ preferences may be cardinal which means

that each voter assigns each candidate a number of points. A special type of cardinal preferences

are approval-based preferences in which a voter can only assign the values 0 or 1 to a candidate

corresponding to the voter, respectively, disapproving or approving the candidate. Then, the vote is

simply given as the subset of approved candidates. In some cases voters may even have preferences

that are a mixture of both cardinal and ordinal preferences. In the following, we will assume that

voters’ preferences are ordinal and explicitly mention it in the few cases where it is not the case.

The outcome of an election is determined by a voting rule5 that is a mapping which assigns every

possible election a subset of the set of candidates which form the winners of the election. For some

voting rule E and an election (C,V ) we call a candidate that is part of the set of winners of the election

under E an E -winner of (C,V ). A resolute voting rule, in which always only a single candidate can

be a winner, is also known as a social choice function. If we are looking for a complete linear order

over the candidates as an outcome of an election, we speak of social welfare functions.

We will now define the studied voting rules.

5In the literature, voting rules are often referred to as social choice correspondences, voting protocols, or voting systems.
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Positional Scoring Rules

An important class of voting rules are (positional) scoring rules. Let m be the number of candidates.

Then, scoring rules use a so-called scoring vector (α1,α2, . . . ,αm) with each αi, 1 ≤ i ≤ m, being

a positive integer called a score value and α1 ≥ α2 ≥ ·· · ≥ αm (i.e., the monotonicity of the score

values) to determine the score of each candidate (i.e., the candidate in position i in a vote gains

αi points and the points are summed up over all votes) and the candidate(s) with the highest score

win(s). Therefore, each scoring rule is defined by a series of scoring vectors; one scoring vector for

each possible number of candidates. To represent this infinite series of vectors succinctly Betzler and

Dorn [14] defined the class of pure scoring rules in which we can obtain the scoring vector of size

m by inserting an additional score value somewhere into the scoring vector of size m−1 maintaining

the monotonicity of the scoring vector as described above. As Hemaspaandra, Hemaspaandra, and

Schnoor [89] observe we can also assume that αm = 0 and that there is no integer which divides all

score values which restricts the class of pure scoring rules only slightly.

We focus on the following (pure) scoring rules.

k-approval: The first k score values are 1 and all others are 0. 1-approval is also known as plurality.

k-veto: The last k score values are 0 and all others are 1. 1-veto is simply called veto.

Borda (Count): Let m be the number of candidates. Then, we have for each i, 1 ≤ i ≤ m, that

αi = m− i.

We can also define iterative variants of scoring rules in which the winner(s) are determined in several

rounds.

Hare: Uses plurality scores to eliminate, in each round, the candidates with the lowest score until all

remaining candidates have the same score which are proclaimed winners of the election. This

voting rule is often known as single transferable voting (STV) but we will use the name STV

for the multiwinner variant below.

Coombs: Works the same as Hare but uses veto scores.

Baldwin: Works the same as Hare but uses Borda scores.

Nanson: Uses Borda scores but eliminates all candidates that have less then the average Borda score

which is defined as (m−1)n
2 with m being the number of candidates and n the number of voters.

Plurality/Veto with runoff: We always have only two rounds. In the first round only the candidates

with the highest plurality/veto score proceed to the second round, except when there is a unique

winner in which case the candidates with the highest and second highest plurality/veto score

proceed to the next round. In the second round plurality/veto scores are used to determine the

winner(s).

Iterated plurality/veto: All candidates are eliminated that do not have the highest plurality/veto

score.
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Notice that in all iterative voting rules we eliminate all candidates if there is a tie in some round.

Sometimes a tie-breaking rule (e.g., a linear order over the candidates deciding which candidate is

eliminated first if a tie occurs) is used to break ties instead. Then, only one candidate is eliminated in

each round.

Lastly, we define the fallback voting rule which is a hybrid between positional scoring rules and

approval-based voting rules.

Fallback: Instead of linear orders we assume that voters’ preferences are given as a set of approved

candidates and disapproved candidates while the former set is ordered linearly as well. For

example, given a set of candidates {a,b,c,d,e} a voter might have the set {a,b,c} as approved

candidates, the set {d,e} as disapproved candidates, and orders the former set as b ≻ c ≻ a.

Then this voter’s vote would be written as b ≻ c ≻ a | {d,e}. We call a vote a level-i approval

for some candidate c if c is in the first i positions of the voter’s approved set of candidates.

Furthermore, we call a candidate a level-i winner if the candidate is in the first i positions of

approved sets of candidates in at least half of the voters’ preferences. Then, the fallback winners

are those candidates that are level-i winners for the smallest i and have the highest number of

level-i approvals. If there are no such candidates, then fallback chooses the candidates with the

most (overall) approvals as the winners.

Condorcet Extensions

The following voting rules rely on pairwise comparisons of the candidates. For an election (C,V ) and

two candidates c,d ∈C, let N(C,V )(c,d) be the number of voters whose preferences rank c in front of d.

Condorcet is one of the oldest and most prominent voting rules but has the downside that there may

not be a winner at all. Therefore, Copeland and maximin try to imitate Condorcet by always choosing

a Condorcet winner if there is one and provide a nonempty set of winners otherwise.

Condorcet: The Condorcet-winner is a candidate c who beats all other candidates in direct compar-

ison (i.e., N(C,V )(c,d)> N(C,V )(d,c) for all candidates d ∈C \{c}).

Copeland: The Copelandα score with 0 ≤ α ≤ 1 and for a candidate c ∈C is defined as

|{d ∈C \{c} | N(C,V )(c,d)> N(C,V )(d,c)}|+ α|{d ∈C \{c} | N(C,V )(c,d) = N(C,V )(d,c)}|.

Intuitively, c gains a point for each candidate that c beats in direct comparison and α points for

each tie. Then, the Copelandα winners are the candidates with the highest Copelandα score.

Copelandα with α = 1
2 is referred to as Copeland.

Maximin: The maximin score of a candidate c is defined as mind∈C\{c}N(C,V )(c,d). Then, the candi-

dates with the highest maximin score are the winners.

Range Voting

For the last two voting rules we assume cardinal preferences. That means a voter’s preference is a

point vector v ∈ {0,1, . . . ,k}m of size m and describes the amount of points a voter assigns to every

candidate. (We assume here that the candidates are ordered lexicographically such that the i-th com-

ponent of the vector corresponds to the i-th candidate according to this ordering.) The number k is the
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maximum number of points a voter can give to a single candidate. For an election (C,V ), if k is fixed

and every voters gives at most k points to a candidate we call (C,V ) a k-range election. Note that in a

k-range election it is not required that all voters give 0 or k points to some candidate which in reality is

very unlikely as voters tend to maximize the points given to their favorite candidate and minimize the

points given to their most despised candidate. We will later see how votes are normalized to display

this behavior.

Range Voting: Given a k-range election, we simply sum up the points each candidate is given by

the voters and the candidates with the highest score are k-range voting winners. 1-range voting

is commonly known as approval voting.

Normalized Range Voting: Given a k-range election, we first normalize each voter’s point vector

as follows. For a candidate c ∈ C and a voter v ∈ V , let s be the points the candidate is given

by this voter and let smin and smax be the minimal and maximal points given to any candidate

by this voter. Then, the normalized score that c is given by voter v is
k(s−smin)
smax−smin

. We can assume

that smin and smax are not equal for otherwise the voter would be indifferent of every candidate.

Similarly to range voting, we will then sum up the normalized points for each candidate and the

candidates with the highest normalized score win.

For all of the voting rules above the outcome of an election can be computed in polynomial time.

Voting rules for which winner determination6 is NP-hard (e.g., Kemeny [94] and Dodgson [44]) will

not be discussed here but some of them will be defined later in the context of multiwinner elections.

Manipulating Elections

We will now explore how different actors in an election may be able to influence its outcome. We start

with insincere voters which is often known as strategic voting. Consider the following example.

Example 2.6 (Manipulation). Let C = {a,b,c,d} and consider the following four voters in V .

v1 : c ≻ d ≻ b ≻ a

v2 : a ≻ d ≻ c ≻ b

v3 : d ≻ c ≻ b ≻ a

v4 : a ≻ d ≻ c ≻ b

The Borda scores of the candidates in (C,V ) are as follows. Candidate a has 6 points, b has 2 points,

c has 7 points, and d has 9 points. So, d is the unique Borda-winner of the election. Now consider the

first voter v1 and assume that before she casts her vote she finds out how the other voters vote and that

together with her (honest) vote her favorite candidate c does not win. Then, she might be tempted to

change her vote to c ≻ b ≻ a ≻ d which would lead to c being tied for the win together with a and d.

6The problem E -WINNER DETERMINATION for a singlewinner voting rule E is defined by the input that consists of an

election (C,V ) and candidate c ∈C and the question of whether c is an E -winner of (C,V ). On page 28 we will define

the problem for multiwinner voting rules as well, which is slightly different than this variant for singlewinner voting

rules.
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Strategic voting with only one manipulating voter is formalized as the E -MANIPULATION problem

for some voting rule E which was first defined by Bartholdi, Tovey, and Trick [8] who studied the

complexity of this problem for various voting rules.

E -MANIPULATION

Input: An election (C,V ), an additional voter v (the strategic voter), and a distinguished candi-

date c.
Question: Is there a vote that v can cast such that c is an E -winner of the election (C,V ∪{v})?

Note that in contrast to Example 2.6 the honest vote of the strategic voter is not given in the input

and we simply ask if there is any vote v can cast so that c wins which might as well be her honest

vote. Example 2.6 illustrates that a voter can actually benefit from casting a strategic vote instead of

an honest one.

For most voting rules it seems that MANIPULATION with only a single manipulator is easy since

Bartholdi, Tovey, and Trick [8] provided a simple greedy algorithm that solves MANIPULATION for

many common voting rules. Surprisingly, they also found a natural voting rule for which MANIP-

ULATION is NP-hard, namely second-level Copeland which is the Copeland voting rule with a tie-

breaking mechanism. Later on, the NP-hardness of MANIPULATION was also shown for Hare with

single-candidate elimination by Bartholdi and Orlin [7] and for a voting rule called Ranked Pairs by

Xia et al. [158].

If there is more than one strategic voter and they work together, this is called coalitional manipu-

lation and was formalized by Conitzer, Sandholm, and Lang [36] for so-called weighted elections.

In a weighted election (C,V,w) in addition to the set of candidates C and the multiset of the voters’

preferences V we are given a weight function w : V → N that assigns every voter a positive integer.

Although elections with weighted votes are violating the democratic principle that all votes should

be weighted equal in many settings this is not the case. For example, the countries in the European

Union are weighted and in decision processes within a company the shareholders’ votes are weighted

depending on how many shares each shareholder holds. Up until now we have always assumed that

the manipulating actor has a favorite candidate that she wants to make a winner of the election but she

may also have a despised candidate which she wants to prevent from winning. Conitzer, Sandholm,

and Lang [36] described those two notions as constructive manipulation and destructive manipulation

letting them define the following decision problems as their central problems to study.

E -CONSTRUCTIVE-COALITIONAL-WEIGHTED-MANIPULATION (E -CCWM)

Input: A weighted election (C,V,w), a coalition of manipulators V ′ with weights w′, and a distin-

guished candidate c.

Question: Are there votes the manipulators in V ′ can cast such that c is an E -winner of the weighted

election (C,V ∪V ′,w∪w′)?

The destructive variant (E -DCWM) has the same input and asks whether there are votes the manipu-

lators of V ′ can cast such that c is not an E -winner of the weighted election (C,V ∪V ′,w∪w′). Those

two problems were studied for a variety of voting rules by Conitzer, Sandholm, and Lang [36] espe-

cially under the aspect of how many manipulators are needed until coalitional manipulation becomes

intractable for a voting rule. Continuing this line of research, Hemaspaandra and Hemaspaandra [82]
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settled the complexity of weighted manipulation for the class of all scoring rules by showing that

weighted manipulation is intractable for a scoring rule if and only if it satisfies the “diversity of dis-

like” property (i.e., the score value of the second best and worst candidate in a vote are different).

In contrast, much less is known of the unweighted variant (i.e., each weight is 1) of these problems:

Faliszewski, Hemaspaandra, and Schnoor [68] showed that coalitional manipulation is intractable

for Copeland voting while it is tractable with only one manipulator; Davies et al. [41] and Betzler,

Niedermeier, and Woeginger [16] independently showed that coalitional manipulation is intractable

for Borda; and other results were shown by Xia et al. [157, 158] and Narodytska and Walsh [116].

Electoral Control

Besides manipulation, Bartholdi, Tovey, and Trick initiated the study of electoral control in 1992 [10].

Instead of manipulation attempts by voters electoral control deals with election tampering attempts

by the election chair that organizes the election. The chair can influence the structural parts of the

election which is the set of candidates or the voters that participate in the election and might even be

able to influence the election process by holding subelections.

Example 2.7 (Electoral control). Consider the election of Example 2.6 again evaluated with Borda.

An election chair who would like c to win might choose to remove the candidate d from the election

which would change the original election as follows.

Original election ({a,b,c,d},V )

v1 : c ≻ d ≻ b ≻ a

v2 : a ≻ d ≻ c ≻ b

v3 : d ≻ c ≻ b ≻ a

v4 : a ≻ d ≻ c ≻ b

Controlled election ({a,b,c},V )

v1 : c ≻ b ≻ a

v2 : a ≻ c ≻ b

v3 : c ≻ b ≻ a

v4 : a ≻ c ≻ b

In the controlled election, a has 4 points, b has 2 points, and c has 6 points turning c into the unique

winner of the election while d won the original election uniquely.

Bartholdi, Tovey, and Trick [10] defined eleven different decision problems dealing with various kinds

of election tampering by the chair which were doubled to 22 problems by Hemaspaandra, Hemaspaan-

dra, and Rothe [83] who defined the destructive variants of the original electoral control problems. The

problems concerned with altering the set of candidates and the multiset of voters’ preferences can be

conveniently combined to the following problem called multimode control problem which was first

defined by Faliszewski, Hemaspaandra, and Hemaspaandra [65].
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E -CONSTRUCTIVE-MULTIMODE-CONTROL

Input: An election (C∪D,V ∪W ) with C and D being disjoint sets of, respectively, registered and

unregistered candidates and V and W being disjoint multisets of, respectively, preferences

of registered and unregistered voters, four nonnegative integers ℓDC, ℓAC, ℓDV , and ℓAV , and

a distinguished candidate c ∈C.

Question: Are there subsets C′ ⊆ C \ {c},D′ ⊆ D,V ′ ⊆ V , and W ′ ⊆ W with |C′| ≤ ℓDC, |D
′| ≤

ℓAC, |V
′| ≤ ℓDV , and |W ′| ≤ ℓAV such that c is an E -winner of the election ((C\C′)∪D′,(V \

V ′)∪W ′)?

Then, we obtain the special cases

E -Constructive-Control-by-Adding-Candidates (E -CCAC) by setting ℓDC = ℓAV = ℓDV = 0 and

W = /0;

E -Constructive-Control-by-Adding-an-Unlimited-Number-of-Candidates (E -CCAUC) by

setting ℓDC = ℓAV = ℓDV = 0, ℓAC = |D|, and W = /0;

E -Constructive-Control-by-Deleting-Candidates (E -CCDC) by setting ℓAC = ℓAV = ℓDV = 0

and D =W = /0;

E -Constructive-Control-by-Adding-Voters (E -CCAV) by setting ℓAC = ℓDC = ℓDV = 0 and D =
/0; and

E -Constructive-Control-by-Deleting-Voters (E -CCDV) by setting ℓAC = ℓDC = ℓAV = 0 and

D =W = /0.

We will study those problems for various voting rules in Chapter 4.

The second set of problems deals with partitioning the set of candidates or multiset of voters’ pref-

erences. Then, one or two subelections are run before the overall winners are decided by a final

election with a reduced set of candidates. Note that in an election with a reduced set of candidates the

votes are always masked down to the participating candidates (see Example 2.8 below). Bartholdi,

Tovey, and Trick [10] also considered two notions of tie-breaking in the subelections. The first one

is called ties-promote (TP) in which all tied candidates proceed to the final and the second one is

called ties-eliminate (TE) in which only a unique winner of a subelection proceeds to final and all

candidates are eliminated if there is a tie for the win. We can now define the decision problems. Given

an election (C,V ) and a distinguished candidate c ∈C, E -CONSTRUCTIVE-CONTROL-BY-RUNOFF-

PARTITION-OF-CANDIDATES (E -CCRPC) asks whether we can partition C into two disjoint sub-

sets C1 and C2 such that c is an E -winner of the two stage election in which the winners of the first

stage (sub)elections (C1,V ) and (C2,V ) (with either ties-eliminate or ties-promote tie-breaking) pro-

ceed to a second and final runoff election in which the overall winners are determined. Then, we

can define the following variants that have the same input as E -CCRPC but ask slightly different

questions.

• For E -CONSTRUCTIVE-CONTROL-BY-PARTITION-OF-CANDIDATES (E -CCPC) we ask the

same question as for E -CCRPC except we only run one subelection in the first stage, (C1,V ),
and the candidates from C2 get a bye to the final election, and
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• E -CONSTRUCTIVE-CONTROL-BY-PARTITION-OF-VOTERS (E -CCPV) asks the question of

whether there is a partition of V into two disjoint subsets, V1 and V2, such that c is an E -winner

of the two stage election in which the winners of the first stage (sub)elections (C,V1) and (C,V2)
(with either ties-eliminate or ties-promote tie-breaking) proceed to a second and final runoff

election with all voters in V in which the overall winners are determined.

Again, we obtain the destructive versions of the above problems by asking if we can make sure that c

is not a winner of the election and replacing “Constructive” with “Destructive” in the problem names.

To indicate which tie-breaking mechanism is used, we append “TE” for ties-eliminate tie-breaking

or “TP” for ties-promote ties-breaking to the problem names. We illustrate how electoral control by

partitioning the set of candidates works with the following example.

Example 2.8 (Control by runoff partition of candidates). We will use ties-eliminate tie-breaking in

this example. Consider the election of Example 2.6 which d wins uniquely if the election is evaluated

by Borda. If we want do prevent d from winning (i.e., destructive control), we might choose to parti-

tion the candidate set C into C1 = {a,d} and C2 = {b,c}. Then the first stage contains the following

subelections with the votes being masked down to the respective reduced sets of candidates.

First subelection ({a,d},V )

v1 : d ≻ a

v2 : a ≻ d

v3 : d ≻ a

v4 : a ≻ d

Second subelection ({b,c},V )

v1 : c ≻ b

v2 : c ≻ b

v3 : c ≻ b

v4 : c ≻ b

If we again use Borda to evaluate the subelections, a and d tie for the win in the first subelection and

are eliminated due to ties-eliminate tie-breaking. Therefore, we have achieved our goal to prevent d

from winning. For completeness, c beats b in the second subelection and proceeds to the final election

which is won by c as well since she is the only candidate still standing.

In contrast to manipulation we might not be able to influence the election outcome by some type of

electoral control using some voting rule. For example, assume we try to make some candidate a winner

of an election evaluated with Condorcet by adding additional candidates. Then, either the candidate is

already a winner of the election or she is beaten by some candidate in pairwise comparison which we

cannot change by adding additional candidates to the election. In this case we would call the voting

rule immune against this type of electoral control. Otherwise we call the voting rule susceptible to

this type of electoral control and further investigate the computational complexity of the associated

decision problem. If we can show that the decision problem is solvable in polynomial time, we call

the voting rule vulnerable to this type of electoral control or if we can show that the decision problem

is NP-hard, we call the voting rule resistant against this type of electoral control.

Electoral control has since been studied extensively for a variety of voting rules [56, 59, 66, 108,

109, 114, 127]. Currently, the voting rules with the most resistances against electoral control types

are fallback (see the work of Erdélyi et al. [56]) and normalized range voting (see the work of Men-

ton [114]) who are only vulnerable to two of the 22 types. Although Hemaspaandra, Hemaspaandra,

and Rothe [84] constructed a hybrid voting rule that is resistant against all types while still being
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computationally easy to compute there is still no “natural” voting rule that is resistant to all 22 types.

In Section 3 we will continue the study of classical types of electoral control for the Borda Count.

Another type of electoral control that was not part of the set of classical control types but related to

control by adding candidates is control by cloning of candidates. The notion of cloning candidates in

elections was first studied by Tideman [150] as the so-called independence of clones property of voting

rules and was later formalized as a decision problem by Elkind, Faliszewski, and Slinko [53]. They

defined the action of cloning candidates as a size-m vector of nonnegative integers (k1, . . . ,km) with

m being the number of candidates and some arbitrary (e.g., lexicographic) ordering of the candidates.

Each entry ki, 1 ≤ i ≤ m, in the vector with ki > 0 means that the i-th candidate of the election is

replaced by ki clones c
(1)
i , . . . ,c

(ki)
i . If ki = 0 for some i with 1 ≤ i ≤ m, then ci stays in the election

and no clone for this candidate is added. Notice that this definition of cloning candidates is slightly

different than in the work of Elkind, Faliszewski, and Slinko [53] in that we allow candidates to

not be cloned (Elkind, Faliszewski, and Slinko [53] replace every candidate by at least one clone)

which seems more natural and does not restrict the model. Given an election E = (C,V ) with C =
{c1, . . . ,cm} and a vector K = (k1, . . . ,km) of nonnegative integers, a cloned election E∗ = (C∗,V ∗)
via K is derived from E by the set of candidates

C∗ =

(

C \
⋃

ki∈K,ki>0

{ci}

)

∪

(

⋃

ki∈K,ki>0

{c
(1)
i , . . . ,c

(ki)
i }

)

and for every vote v j ∈V there is a vote v∗j ∈V ∗ which is a (complete) linear order over C∗ such that

for every pair of candidates ci,c j ∈C it holds for v j that ci ≻ c j if and only if c′i ≻ c′j in v∗j with c′i = ci if

ki = 0 or for every c′i ∈ {c
(1)
i , . . . ,c

(ki)
i } otherwise, and c′j = c j if k j = 0 or for every c′j ∈ {c

(1)
j , . . . ,c

(k j)
j }

otherwise. We illustrate the notion of cloned elections with the following example.

Example 2.9 (Cloned elections). Let E = (C,V ) be an election with C = {c1,c2,c3} and V consisting

of two voters with preferences v1 : c1 ≻ c2 ≻ c3 and v2 : c2 ≻ c1 ≻ c3. Consider the vector K = (0,2,0)

which means that c1 and c3 remain in the election but c2 is replaced by two clones c
(1)
2 and c

(2)
2 yielding

C∗ = {c1,c
(1)
2 ,c

(2)
2 ,c3}. Regarding the voters, v1 might be extended to v

(1)
1 : c1 ≻ c

(1)
2 ≻ c

(2)
2 ≻ c3 or

v
(2)
1 : c1 ≻ c

(2)
2 ≻ c

(1)
2 ≻ c3 and v2 to v

(1)
2 : c

(1)
2 ≻ c

(2)
2 ≻ c1 ≻ c3 or v

(2)
2 : c

(2)
2 ≻ c

(1)
2 ≻ c1 ≻ c3. Thus, there

are four possible cloned elections of E via K (i.e., (C∗,{v
(1)
1 ,v

(1)
2 }), (C∗,{v

(1)
1 ,v

(2)
2 }), (C∗,{v

(2)
1 ,v

(1)
2 }),

and (C∗,{v
(2)
1 ,v

(2)
2 }) ).

Notice that there are several possible cloned elections depending on how the clones of a single can-

didate are ordered against each other. Therefore, the following decision problem is defined for some

q ∈ {0+}∪ (0,1] that describes the probability of success that we need to reach. That means that q is

the fraction of all possible cloned elections in which the distinguished candidate needs to be a winner.

The special case q = 0+ means that we need only one cloned election in which the distinguished can-

didate is a winner in order to be successful. To decide to what degree we can clone candidates we are

given a cost function ρ : [m]× [t]→ N∪{+∞} for some integer t > 1. Then, ρ(i, j) defines the cost

of adding the jth clone of the ith candidate to the election. Since adding the first clone of a candidate

only replaces the original candidate we require ρ(i,1) = 0 for every i,1 ≤ i ≤ m.
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E -q-CLONING

Input: An election (C,V ), a distinguished candidate c ∈C, a positive integer t > 1, a cost function

ρ : [m]× [t]→ N∪{+∞}, and a budget B.

Question: Is there a vector of nonnegative integers K = (k1, . . . ,km) with ∑
ki∈K

ki

∑
j=2

ρ(i, j)≤B such that c

(or some clone of c) is an E -winner of a cloned election of (C,V ) via K with probability q?

Elkind, Faliszewski, and Slinko [53] also considered two special cases with the cost functions that

have ρ(i, j) = 0 for all i, 1 ≤ i ≤ m, and j ∈ N which is called ZERO COST (ZC) and ρ(i, j) = 1 for

all i, 1 ≤ i ≤ m and j ≥ 2 which is called UNIT COST (UC).

Bribery

In contrast to manipulation and electoral control, the notion of bribery was introduced to computa-

tional social choice only much later by Faliszewski, Hemaspaandra, and Hemaspaandra [63]. Bribery

assumes that there is an outside agent that tries to influence an election by bribing the voters to change

their vote to the outside agent’s preference.

Example 2.10 (Bribery). Again, consider the election of Example 2.6 evaluated with Borda. If we

want the candidate c to be the winner, we can bribe the second voter to change her vote to c≻ a≻ d ≻ b

which would lead to c scoring 9 points while d scores 8 points, a scores 5 points, and b scores 3 points.

Similarly to the previous section we will define a very general bribery problem (see the book chapter

by Faliszewski and Rothe [70]) that captures the different flavors of bribery by Faliszewski, Hemas-

paandra, and Hemaspaandra [63] and by Elkind, Faliszewski, and Slinko [52].

E -CONSTRUCTIVE-PRICED-BRIBERY

Input: An election (C,V ) with m candidates and n voters, a list of price functions (ρ1, . . . ,ρn) such

that for each i, 1 ≤ i ≤ n, and each possible linear order υ over C, ρi(υ) is the price to pay

so that voter i changes her vote to υ , a distinguished candidate c, and a positive integer B.

Question: Can we bribe the voters in V with a budget of B such that c becomes an E -winner of the

resulting election?

Then, we can define the other bribery problems by restricting the range of price functions the voters

may have. The problems E -CONSTRUCTIVE-BRIBERY and E -CONSTRUCTIVE-$BRIBERY defined

by Faliszewski, Hemaspaandra, and Hemaspaandra [63] have so-called discrete and $discrete price

functions, respectively. We call a price function ρi discrete if ρi(υi) = 0 with υi being the preference

order of voter i and ρi(υ) = 1 for every preference order υ 6= υi (intuitively, the briber pays nothing

for not bribing and can freely change the preference of a voter for unit cost). A $discrete price

function ρi is defined similarly except that we have ρi(υ) = ci for every preference order υ 6= υi with

ci being some constant (i.e., the price of voter i to be bribed which may vary for different voters).

The third type of price functions are swap-bribery price functions which were first introduced by
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Faliszewski et al. [66] for irrational voters7 and later studied by Elkind, Faliszewski, and Slinko [52]

for voters with linear preference orders. Formally, a swap-bribery price function ρi is defined by a

constant c
{x,y}
i for each pair of candidates x,y ∈ C such that for each preference order υ , ρi(υ) is

the sum of all constants c
{x,y}
i for which the candidates x,y ∈ C are in opposite order in υ and υi,

the preference order of voter i (intuitively, the briber pays a voter to swap two candidates in her

preference order). SWAP-BRIBERY turned out to be NP-hard for most of the voting rules considered

by Elkind, Faliszewski, and Slinko [52] so they also studied a natural special case called shift bribery.

For E -SHIFT-BRIBERY swap-bribery price functions are used with the restriction that for each pair of

candidates x,y ∈C \{c}, with c being the distinguished candidate, we have c
{x,y}
i = B+1 (intuitively,

the briber can only shift the distinguished candidate forwards or backwards in the voters’ preference

orders). Swap bribery and shift bribery have natural applications in practice as they model campaign

management. A campaign manager for a specific candidate might try to improve her candidate’s

chances of winning by running ads that target specific groups of voters and make them change their

opinion of the ordering of candidates. Shift bribery models a more ethical approach to campaign

management as only the position of the distinguished candidate (i.e., the candidate for which the

campaign is managed) may be altered by campaign management actions such as ads. Due to this

very natural application, shift bribery has been thoroughly studied since its introduction. Schlotter,

Faliszewski, and Elkind [143] studied shift bribery for approval-like voting rules; Bredereck et al. [24]

studied shift bribery for several classes of price functions; Kaczmarczyk and Faliszewski [92] studied

destructive shift bribery; Bredereck et al. [29] studied shift bribery in the context of multiwinner

elections; and Bredereck et al. [28] studied a combinatorial variant of shift bribery in which one bribe

action causes changes to the preferences of multiple voters. In Section 6 we will extend the study of

shift bribery to the iterative voting rules defined above.

Each of the above bribery problems can also be defined for (a) weighted elections which will be

denoted by adding “Weighted” to the problem names and (b) with a destructive goal which will be

denoted by replacing “Constructive” with “Destructive” in the problem names. Destructive bribery is

especially interesting as it can measure the robustness of an election result (see the work of Xia [104]

for a more detailed discussion): If the winner of an election can be dethroned by only a few changes

to the election, the current winner might be wrong due to vote counting errors or even raise the

suspicion of election manipulation. The robustness of election results (in the context of multiwinner

elections) was also studied by Bredereck et al. [27] although their method of investigating robustness

is not directly related to bribery. Furthermore, Dey, Misra, and Narahari [125] studied frugal bribery

in which a voter can only be bribed if the change to her vote improves the election result for this

voter with respect to her preference; Faliszewski [62] studied so-called nonuniform bribery which is

a model of bribery for (k,b)-elections which is a special type of elections in which voters submit their

preferences by allocating k points to the candidates while never giving a candidate more than b points;

and Erdélyi, Hemaspaandra, and Hemaspaandra [57] studied bribery under the assumption that the

voting rule used to evaluate the election is not fixed, i.e., there is uncertainty about which voting rule

is used.

Notice that in all decision problems that we have defined above the goal is to make the distinguished

candidate a winner of the election which means that the distinguished candidate does not need to beat

every candidate but at least tie them. This is called the nonunique-winner model. In contrast, we can

ask for the distinguished candidate to be the unique winner which is then called the unique-winner

7In contrast to (rational) voters having linear preference orders, an irrational voters may have cycles in her preference

order. For example, given a set of three candidates {a,b,c} an irrational voter may prefer a to b, b to c, and c to a.
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model. The former is more common in the computational social choice literature which is why we use

this winner model as well. We will later see that the choice of the winner model is not only a matter

of taste but there might even be a change in complexity for some decision problems when the winner

model is changed.

Possible and Necessary Winners

Up until now we required the voters to have complete preferences over the candidates. In practice, this

is very rarely the case: The ballots of voters are kept secret until the election is over and some voting

rules, such as plurality, do not require complete preferences. Moreover, complete preferences might

not even be desirable: Does a voter really know who she prefers of every pair of candidates or are most

of them simply ordered randomly or, even worse, lexicographically? Regarding “unrealistic” complete

preferences, one could argue that if some type of election tampering is hard with full information, it

is at least as hard with only partial information. Still, it makes sense to study elections with partial

information.

We can define partial preferences from complete preferences by dropping the completeness property

(i.e., a partial preference is a linear order over the candidates that is transitive and antisymmetric).

Usually, a partial preference is defined by a set of pairwise comparisons of the form ci ≻ c j. Then, a

partial preference profile is a multiset of the voters’ partial preferences. A complete preference v′ over

a set of candidates C extends a partial preference v over C if for all ci,c j ∈C it holds that if ci ≻ c j in v,

then ci ≻ c j in v′. We call a multiset of complete preferences {v′1, . . . ,v
′
n} an extension of a multiset of

partial preferences {v1, . . . ,vn} if for every i, 1 ≤ i ≤ n, v′i extends vi.

We can now define the E -POSSIBLE-WINNER and E -NECESSARY-WINNER problems introduced by

Konczak and Lang [97].

E -POSSIBLE-WINNER

Input: An election (C,V ) with a set of candidates C and a partial preference profile V and a distin-

guished candidate c.

Question: Is there an extension V ′ of V to complete preferences such that c is an E -winner of the

election (C,V ′)?

E -NECESSARY-WINNER is defined similarly but we ask whether c is an E -winner of the elec-

tion (C,V ′) for all extensions V ′ of V .

Both problems were further studied by Xia and Conitzer [156], Walsh [153], Pini et al. [130], Bet-

zler, Hemmann, and Niedermeier [15], Betzler and Dorn [14], and Baumeister and Rothe [12]. In-

terestingly, E -Possible-Winner generalizes the E -CONSTRUCTIVE-COALITIONAL-MANIPULATION

problem [97] and is itself a special case of E -SWAP-BRIBERY [52].

Electoral Control in Sequential Elections

Another partial information model was introduced and studied by Hemaspaandra, Hemaspaandra, and

Rothe [85, 86, 87, 88] in a series of papers concerning different kinds of election tampering attempts in

sequential elections. We will define the so-called online models for electoral control [86, 87] in detail
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and refer to the corresponding papers for the online models for manipulation [85] and bribery [88].

Later in Section 3 we will study the online models for electoral control for the Borda Count.

Online candidate control [86] models voting scenarios in which the candidates are added to the

election (and evaluated against the already participating candidates by the voters) one after the other

and the election chair may decide, only at the moment a candidate appears and never after that, to

exert a control action (such as adding or deleting) on this candidate. The corresponding online control

problems online constructive control by deleting candidates for a voting rule E (online-E -CCDC),

online constructive control by adding candidates for a voting rule E (online-E -CCAC) and their

destructive variants online-E -DCDC and online-E -DCAC capture such a moment of decision for the

election chair. For online-E -CCDC we are given the set of candidates C, the set of voters V (note

that only in this section the voters’ preferences are given separately later as they are not complete over

the set of candidates), the election chair’s ideal ranking σ over the candidates, the election chair’s

distinguished candidate d ∈C, an order of the candidates describing in which order they appear in the

election with a flag for each candidate saying who the current candidate is and which of the already

revealed candidates were deleted, the voters’ preferences over the still standing (i.e., already revealed

but not deleted) candidates including the current candidate, and the number of deletions k that the

election chair has left to use. Then we ask whether the election chair can make a decision about the

current candidate (whether to delete her if possible or not) so that the chair has a forced win by which

we mean that no matter what happens in the future (i.e., how not yet revealed candidates appear in the

voters’ preferences) the chair can make decisions on later revealed candidates with the information

available at the time such that the distinguished candidate d or some candidate ranked higher than

d according to the chair’s ranking σ is an E -winner of the election in which only the not-deleted

candidates participate.

The following example illustrates how a moment of decision and a forced win work for online-E -

CCDC.

Example 2.11 (Online control by deleting candidates). In this example we will use plurality as the

voting rule. Consider the following instance of online-E -CCDC.

• Let C = {a,c,d,e} and V = {v1,v2}.

• The chair’s ranking is d ≻ a ≻ b ≻ c.

• The distinguished candidate is d (i.e., the chair succeeds only if d wins).

• The candidates’ order of appearance is d a b c.

• No candidate has been deleted as of yet and the current candidate is a (i.e., d and a are already

revealed).

• The voters preferences are v1 : d ≻ a and v2 : a ≻ d (note that b and c have not shown up yet

and are therefore not included in the preferences).

• Finally, k = 2.

Now the chair has to decide whether the current candidate a must be removed or not in order to have a

forced win (i.e., no matter how the not yet revealed candidates b and c appear in the voters’ preferences

there exist decisions about b and c such that d wins). Notice that if the chair decides to remove a,

then there is only one removal left so either b or c must remain in the election. In the worst case the
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candidate that cannot be deleted will be ranked above d in both preferences and therefore beats d. So,

by removing a the chair does not have a forced win. If the chair decides to leave a in the election,

both b and c can be removed from the election later so no matter how they actually appear in the

preferences at future moments of decision they will not appear in the preferences after all candidates

have been revealed. Since d wins the election ({a,d},V ), the chair has a forced win by not deleting a.

For online-E -CCAC the input changes slightly: We now have a set of registered candidates that are

certainly part of the election and a disjoint set of unregistered candidates that may be added to the

election only at the moment of decision when such a candidate is revealed. The order of appearance

of candidates is over the union of both sets and the rest stays the same (the flag for a candidate now

indicates whether an already revealed, unregistered candidate has been added to the election by the

election chair and the deletion limit k is now an addition limit).

For the destructive variants, online-E -DCDC and online-E -DCAC, the chair’s goal is to make sure

none of the candidates d or worse in their ideal ranking win after all decisions have been made.

Regarding online-E -DCDC the election chair might try to delete all candidates d or worse to win

trivially so Hemaspaandra, Hemaspaandra, and Rothe [86] proposed two approaches to prevent this

behavior. The first one is called the non-hand-tied chair model and lets the chair delete some but

never all candidates d or worse. In contrast the hand-tied chair model prevents the election chair from

deleting any candidates d or worse.

The online voter control model [87] assumes that the set of candidates that are part of the election

is fixed but now the voters are revealed sequentially (with preferences over the full set of candidates)

and susceptible to control actions by the election chair, again, only at the moment they are revealed.

Before we define the control problems that were introduced by Hemaspaandra, Hemaspaandra, and

Rothe [87] we define the general information that all of them have in common namely an online voter

control setting (OVCS) given by (C,u,V,σ ,d) which contains the candidate set C, the current voter u,

an election snapshot V = (V<u,u,Vu<) with V<u being the set of voters that were revealed before u

and Vu< being the set of not-yet-revealed voters, the election chair’s ideal ranking σ of the candidates,

and a distinguished candidate d. Note that V<u and u have already cast their votes so their preference

orders are known but V<u only specifies the order in which the not-yet-revealed voters cast their votes.

Then, the question is whether the election chair can make a decision about the current voter (whether

to exert the control action at hand if possible or not) to have a forced win (i.e., the election chair

can reach their—constructive or destructive—goal by making future decisions about not-yet-revealed

candidates with the—up to each point of decision—revealed information). As before, the constructive

goal of the chair is to make the candidate d or some candidate that is ranked higher than d in their

ideal ranking a winner of the election after all voters have shown up and all decisions about the voters

have been made, and the destructive goal aims to prevent all candidates d or worse in the chair’s ideal

ranking from winning.

For online control by deleting voters (i.e., the problems online-E-CCDV and online-E-DCDV) in

addition to an OVCS we are given a nonnegative integer k (the number of deletions the election chair

has left to use) and for each voter of V<u a flag that says whether the voter was deleted or not. The

election after the voting process includes all voters that were not deleted by the election chair.

For online control by adding voters (i.e., the problems online-E-CCAV and online-E-DCAV) the

OVCS is, again, augmented by a nonnegative integer k which is the limit of additions the election

chair may use and for each voter there is a flag that indicates whether the voter is unregistered (i.e.,
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the chair can choose to add her or not) or registered (i.e., the voter is definitely in the election) and

for each voter in V<u there is another flag indicating whether this voter was added to the election. The

election after all voters have shown up then includes the registered voters and all unregistered voters

that have been added by the election chair.

Lastly, for online control by partition of voters (i.e., the decision problems online-E-CCPV and

online-E-DCPV) the chair partitions the set of voters by assigning each voter to the left or the right

part of the partition after they are revealed. Then, after all voters have been revealed the election

proceeds in two stages in which the winners of two subelections with each part of the partition deter-

mine the overall winners in a final runoff election with all voters. So, in addition to an OVCS we are

given a flag for every voter in V<u that indicates whether a voter was assigned to the left part or the

right part of the partition. Similarly to the classical control by partition problems we adopt either the

ties-promote model or the ties-eliminate model to decide whether, respectively, all candidates or none

of the candidates that are tied for the win in a subelection proceed.

Multiwinner Voting

Another branch of the computational social choice landscape is concerned with elections that have

a fixed-sized set of candidates—a committee—as the election outcome. This type of elections are

known as multiwinner elections (in the literature they are also sometimes called committee elections).

The notion of multiwinner elections and committees was implicitly introduced by Fishburn [75] in

the context of so-called choice functions although the committee size was not fixed then. Debord [43]

and Felsenthal and Maoz [74] later introduced k-choice functions which always output a size-k com-

mittee.

In comparison to singlewinner elections, in which the most popular candidate should be the winner,

for multiwinner elections there are several approaches of which committee might be considered the

“best” winning committee for a given election. Depending on the specific application of multiwinner

elections the properties a winning committee should have change fundamentally. Elkind et al. [51]

distinguish between three kinds of multiwinner elections:

Excellence-Based Elections: (Used for short-listing candidates for awards or job positions.) The

winning committee should contain the most popular or highest-rated candidates.

Selecting a Diverse Committee: (Used for choosing items to display on a storefront or offer to

a group of people.) The chosen candidates should be as diverse as possible.

Proportional Representation: (Used for parliamentary elections.) We seek to choose candidates

such that the different views of the voters are represented proportionally in the committee.

Under those aspects we must choose a (multiwinner) voting rule that delivers an appropriate com-

mittee for a given application. Categorizing and analyzing multiwinner voting rules under those as-

pects to be able to choose the right voting rule for the right task has been given much attention (see,

e.g., the work of Elkind et al. [51], Aziz et al. [3], Kilgour, Brams, and Sanver [96], Faliszewski et

al. [72], Skowron, Faliszewski, and Lang [146], and Skowron, Faliszewski, and Slinko [147]). Inter-

estingly, an impossibility theorem similar to that of Gibbard and Satterthwaite for singlewinner voting

rules [78, 142] can be formulated for multiwinner voting rules as well: Peters [129] showed that
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no multiwinner voting rule can simultaneously satisfy a weak proportionality property8 and a weak

form of strategy-proofness. Multiwinner voting rules usually fall into one of three categories: Com-

mittee Scoring Rules [147], in which voters’ preferences are given as linear orders, Approval-Based

Counting Rules [95], in which voters submit a subset of approved candidates, and Condorcet-Inspired

Rules [4, 144]. We focus on multiwinner voting rules of the first category and refer to the correspond-

ing literature for definitions of the other two.

Formally, a multiwinner election (C,V,k) is defined by a (singlewinner) election (C,V ) with the set

of m candidates C and the preference profile V of n voters augmented with a nonnegative integer k

which is the size of the committee that we seek to elect. Given the committee size k, a multiwinner

voting rule E is a function mapping each multiwinner election (C,V,k) to a nonempty family of size-k

subsets of C, the winning committees of (C,V,k) under E . We will now define the multiwinner voting

rules that we focus on.

Single transferable vote (STV): Given the quota q = ⌊ n
k+1⌋+1, we choose candidates for a win-

ning committee iteratively as follows. We compute plurality scores and if some candidate

reaches the quota, we add her to the committee and remove q voters that vote for her. If no

candidate reaches the quota, we remove the candidate with the lowest plurality score from the

election (i.e., we remove her from all preference orders in the preference profile and the vot-

ers voting for this candidate now transfer their vote to the second highest candidate in their

preference order).

An important issue is how ties are handled especially since we might need to break ties between

voters in cases when a candidate has more than q voters voting for him but only q of them

are removed. Conitzer, Rognlie, and Xia [34] devised a very fair tie-breaking scheme called

parallel-universes tiebreaking (PUT) for which a committee is winning under STV if there

exists a series of choices, breaking ties, such that the candidates of the committee are chosen

by using STV. Sadly, using this tie-breaking method makes determining whether a committee

is winning (see the corresponding decision problem below) intractable [34].

Single nontransferable vote (SNTV): Choose k candidates with highest 1-approval score.

Bloc: Choose k candidates with highest k-approval score.

k-Borda: Choose k candidates with highest Borda score.

E -Chamberlin–Courant (E -CC): Given a scoring rule E , each committee is assigned a score by

each voter that is the score under scoring rule E that the highest-ranked member of the com-

mittee in the voter’s preference order would receive from the voter. The committee(s) with the

highest overall score, summed up over all voters, are winning. We focus on k-approval-CC

and Borda-CC which use k-approval and Borda scores, respectively.

For all E -CC rules, the winner determination problem (defined below) is intractable [103, 132]

but it is in FPT if parameterized by the number of candidates or voters [17].

Regarding computational considerations a central problem is the winner determination problem which

was studied for various multiwinner voting rules by Aziz et al. [5], Procaccia, Rosenschein, and

Zohar [131] and Baumeister, Dennisen, and Rey [40].

8Proportionality for multiwinner voting rules roughly means that a produced winning committee must represent the voters’

preferences proportionally.

27



Chapter 2 Background

E -WINNER DETERMINATION

Input: A multiwinner election (C,V,k) and a size-k committee C′ ⊆C.

Question: Is C′ a winning committee of (C,V,k) under E ?

The study of election tampering attempts in multiwinner elections was initiated by Meir et al. [113]

focusing on strategic voting and proceeded by Aziz et al. [5], Obraztsova, Zick, and Elkind [123],

and Baumeister, Dennisen, and Rey [40]. Bredereck et al. [27, 29] and Faliszewski et al. [73] studied

bribery in multiwinner elections. In Section 5 we will extend the model of electoral control by cloning

candidates for singlewinner elections that was introduced above to the multiwinner setting and study

it for the multiwinner voting rules above.

28



CHAPTER 3

CONTROL COMPLEXITY IN BORDA

ELECTIONS: SOLVING ALL OPEN CASES OF

OFFLINE CONTROL AND SOME CASES OF

ONLINE CONTROL

3.1 Summary

The Borda Count is one of the most important voting rules which finds applications not only in voting

settings but also can be used for the allocation of indivisible goods [21] (for a thorough introduction to

the field of fair division see, e.g., the book chapter by Lang and Rothe [100]) and hedonic games [138]

(an introduction to hedonic games can be found in, e.g., the book chapter by Elkind and Rothe [54]).

We first survey recent research in all three fields relating to Borda.

Then, we study electoral control for Borda. Especially the electoral control problems involving par-

titioning the set of candidates or voters were largely unexplored for Borda: Out of the twelve cases

only one case (namely, Borda-DCPV-TE) was solved by Russel [140]. In particular, we solve all open

cases of classical electoral control introduced by Bartholdi, Tovey, and Trick [10] and Hemaspaandra,

Hemaspaandra, and Rothe [83] for Borda showing that Borda is resistant to all cases of constructive

control and vulnerable to all but three cases of destructive control. We obtain our results for both win-

ner models and also found two of the rare cases, namely destructive control by partition and by run-off

partition of candidates with ties-promote tie-breaking, for which the complexity changes depending

on which winner model is assumed.

Lastly, we study the model of online control, which was introduced by Hemaspaandra, Hemaspaan-

dra, and Rothe [86, 87], showing that Borda is vulnerable against constructive and destructive online

control by adding or deleting candidates and resistant against all types of online voter control (to be

precise, we show coNP-hardness results for all cases).

3.2 Publication – Neveling and Rothe [120]

M. Neveling and J. Rothe. Control complexity in Borda elections: Solving all open cases of offline

control and some cases of online control. Artificial Intelligence, 298:103508, 2021.

Preliminary versions of this paper were published in the proceedings of the 31st and the 33rd AAAI

Conference on Artificial Intelligence (AAAI’17 and AAAI’19, see [118, 137]) and of the 18th Italian

Conference on Theoretical Computer Science (ICTCS’17, see [117]).
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3.3 Personal Contribution

The writing was done jointly with Jörg Rothe. All technical results are my contribution. Parts of this

work already appeared in my Bachelor’s and Master’s Thesis. Specifically, Theorem 1 was part of my

Bachelor’s Thesis and Theorem 3,10 and 13 were in my Master’s Thesis.
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CHAPTER 4

TOWARDS COMPLETING THE PUZZLE:

COMPLEXITY OF CONTROL BY REPLACING,

ADDING, AND DELETING CANDIDATES OR

VOTERS

4.1 Summary

In this chapter we study various open problems regarding electoral control, therefore taking a step

towards completing the puzzle of the complexity of electoral control problems for the most important

voting rules. In particular, we initiate and complete the study of the standard control cases for plurality

with runoff and veto with runoff.

We also study another special case of E -CONSTRUCTIVE-MULTIMODE-CONTROL which models

electoral control by replacing candidates or voters that was introduced by Loreggia et al. [102]. For

replacement control the election chair may alter the set of candidates or set of voters while keeping

the size of both sets the same as in the original election. For example, if a candidate is removed

from the election, one candidate from the set of unregistered candidates must be added subsequently,

thus replacing the removed candidate with the added candidate. To obtain the corresponding control

problems we restrict E -CONSTRUCTIVE-MULTIMODE-CONTROL as follows.

• For E -CONSTRUCTIVE-CONTROL-BY-REPLACING-VOTERS we set ℓAV = ℓDV , ℓAC = ℓDC = 0,

and D = /0; and require in the question that |V ′|= |W ′|.

• For E -CONSTRUCTIVE-CONTROL-BY-REPLACING-CANDIDATES we set ℓAC = ℓDC, ℓAV =
ℓDV = 0, and W = /0; and require in the question that |C′|= |D′|.

The complexity of replacement control problems are studied for Copelandα , maximin, k-veto, plural-

ity/veto with runoff, Condorcet, fallback, and (normalized) range voting. We find that the complexity

of replacement control always matches the complexity of the corresponding control by adding or delet-

ing problem with the highest complexity. For example, plurality with runoff is in P for constructive

control by adding candidates, constructive control by deleting candidates, and constructive control by

replacing candidates. If for a voting rule the complexity of control by adding and control by deleting

candidates or voters differs, then the complexity of control by replacing candidates or voters matches

the higher complexity as is the case of maximin and constructive candidate control. It was shown by

Loreggia et al. [102] that this is not necessarily the case. Interestingly, Condorcet and range voting are

both immune against (constructive and destructive) control by adding candidates but in combination

with control by deleting candidates they become susceptible to control.
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4.2 Publication – Erdélyi, Neveling, Reger, Rothe, Yang and

Zorn [58]

G. Erdélyi, M. Neveling, C. Reger, J. Rothe, Y. Yang, and R. Zorn. Towards completing the puzzle:

Complexity of control by replacing, adding, and deleting candidates or voters. Journal of Autonomous

Agents and Multi-Agent Systems. Submitted.

Preliminary versions of this paper were published in the proceedings of the 18th International Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS’19, see [60]) and of the 15th Inter-

national Computer Science Symposium in Russia (CSR’20, see [121]).

4.3 Personal Contribution

The writing was done jointly with my coauthors. Theorems 7,8, and 20, and Theorems 22−25 are to

be attributed to my contribution. Theorem 19 was done jointly with my coauthors.
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CHAPTER 5

THE COMPLEXITY OF CLONING CANDIDATES

IN MULTIWINNER ELECTIONS

5.1 Summary

We study how multiwinner elections can be tampered with by cloning candidates. For that we adapt

the model for cloning candidates introduced by Elkind, Faliszewski, and Slinko [53] to multiwinner

elections and define the following decision problems for a multiwinner voting rule R.

R-POSSIBLE-CLONING-GC

Input: A multiwinner election E = (C,V,k), a cost function ρi : N→ N for every ci ∈C, a distin-

guished candidate p ∈C, and a budget B.

Question: Is there a cloning vector K = (K1, . . . ,Km) with ∑ci∈C ρi(Ki)≤ B such that p (or one of her

clones) is in a winning committee under R in at least one cloned multiwinner election EK

resulting from E via K?

R-NECESSARY-CLONING-GC is defined analogously but we require that the cloning vector makes p

(or one of her clones) part of a winning committee in all (instead of “at least one”) cloned multiwinner

elections resulting from E via the cloning vector.

Just like Elkind, Faliszewski, and Slinko [53] we study three cost models ZERO-COST, UNIT-COST,

and GENERAL-COST. The corresponding problems with ZERO-COST and UNIT-COST are denoted

by replacing “GC” with “ZC” and “UC”, respectively, in the problem names. Our model is more

focused than the singlewinner variant of Elkind, Faliszewski, and Slinko [53] in that we do not take

on a probabilistic viewpoint in regards to when we view a cloning action as successful and only

capture the extreme points by viewing a cloning action as successful if the distinguished candidate

(or one of her clones) is in a winning committee in at least one or in all cloned multiwinner elections

resulting from a cloning action.

We study the complexity of R-POSSIBLE-CLONING-{GC,UC,ZC} and R-NECESSARY-CLONING-

{GC,UC,ZC} for the multiwinner voting rules defined in Chapter 2. In order to have polynomial-

time winner determination for STV we use lexicographic tie-breaking for ties between candidates

and arbitrary tie-breaking for ties between voters. Even with those simple tie-breaking rules both

decision problems are intractable for STV: Possible cloning is NP-hard for STV in all cost models

and coNP-hard for necessary cloning in all cost models. SNTV is easy for possible cloning and trivial

for necessary cloning. Surprisingly, possible cloning with ZERO-COST and UNIT-COST is easy for

k-Borda while it is NP-hard for Bloc. All other cases for Bloc and k-Borda are NP-hard. The reduction

that is used to show NP-hardness of k-Borda-NECESSARY-CLONING-ZC also holds for k = 1 (i.e.,
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the singlewinner variant of k-Borda) and therefore solves a problem left open by Elkind, Faliszewski,

and Slinko [53].

The Chamberlin–Courant voting rules that we study have NP-hard winner determination meaning the

decision problems defined above are trivially NP-hard for all cost models as well so we investigate the

parameterized complexity of the problems with the number of candidates and the number of voters as

parameters.

5.2 Publication – Neveling and Rothe [119]

M. Neveling and J. Rothe. The complexity of cloning candidates in multiwinner elections. In

Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems,

pages 922–930. IFAAMAS, 2020.

5.3 Personal Contribution

The writing was done jointly with Jörg Rothe. Modeling and technical parts are to be attributed to my

contribution.
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CHAPTER 6

COMPLEXITY OF SHIFT BRIBERY FOR

ITERATIVE VOTING RULES

6.1 Summary

We extend the study of shift bribery, introduced by Faliszewski et al. [66] and formally defined and

studied by Elkind, Faliszewski, and Slinko [52], to iterative voting rules that elect the winner(s) of an

election in multiple rounds.

For this chapter we will give an alternative but equivalent definition of shift bribery as it was defined

in Chapter 2 that is more convenient to handle.

E -CONSTRUCTIVE-SHIFT-BRIBERY

Input: An election (C,V ) with n voters, a designated candidate p ∈ C, a budget B, and a list of

price functions ρ = (ρ1, . . . ,ρn).

Question: Is it possible to make p the unique E -winner of the election by shifting p in the votes such

that the total price does not exceed B?

For the destructive variant we are trying to prevent p from being the unique E -winner. The price

functions ρ = (ρ1, . . . ,ρn) with ρi : N→N describe how much it costs the briber to move p in a voter’s

vote forward (in the constructive case) or backward (in the destructive case). In particular, ρi(k) is

the cost of moving p in the ith voter’s vote k positions forwards or backwards (for the constructive

or destructive variant, respectively). To capture this behavior we require, for the constructive variant,

that ρi is nondecreasing (i.e., ρi(ℓ)≤ ρi(ℓ+1)), ρi(0) = 0, and ρi(ℓ) = ρi(ℓ−1) for each ℓ≥ r with r

being the position of p in the (not-bribed) vote of voter i. Analogously, for the destructive variant we

require that ρi is nonincreasing, ρi(0) = 0, and ρi(ℓ) = ρi(ℓ−1) for each ℓ≥ |C|− r+1 with r being

the position of p in the (not-bribed) vote of voter i. For both variants the last condition is a technical

requirement so that we cannot move p beyond the first or last position in a vote.

For all iterated variants of scoring rules defined in Chapter 2 we found that they are NP-hard for

constructive and destructive shift bribery in both winner models. Furthermore, the price function as

defined above only allows moving the designated candidate forwards in the constructive case (respec-

tively, backwards in the destructive case) which makes sense for voting rules for which a candidate’s

final result in an election can only be improved if she is moved forward in the preferences of the

voters. This so-called monotonicity property holds for scoring rules but does not hold for the iterative

version except for iterated plurality and iterated veto. Therefore, we investigate whether the com-

plexity changes if we drop the requirement that the designated candidate can only be shifted in one

direction and give two examples of iterative scoring rules for which the problem still remains NP-hard.
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We conjecture that the complexity also remains the same for all of our other nonmonotonic iterative

scoring rules.

6.2 Publication – Maushagen, Neveling, Rothe, and Selker [106]

C. Maushagen, M. Neveling, J. Rothe, and A.-K. Selker. Complexity of shift bribery for iterative

voting rules. Journal of Autonomous Agents and Multi-Agent Systems. Submitted.

A preliminary version of this paper was published in the proceedings of the 17th International Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS’18, see [107]).

6.3 Personal Contribution

The writing was done jointly with my co-authors. Theorems 2,5,6,7,8,13, and 14 are to be attributed

to my contribution.
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CHAPTER 7

CONCLUSIONS

We have studied how efficiently elections can be tampered with depending on which voting rule we

choose to evaluate the election.

In Section 3 we have studied electoral control for the Borda Count and solved all open cases of

standard electoral control and some cases of online electoral control. Borda turns out to be very

resistant to constructive electoral control being resistant to all (standard) constructive types and in

contrast vulnerable to most types of destructive electoral control. For future work we propose to

solve the open problems of online candidate control, in particular involving partitioning the set of

candidates. Furthermore, for the NP-hard cases parameterized complexity can be studied with, e.g.,

the number of candidates or voters as the parameter and for the vulnerable cases, the complexity of the

more general cases with weighted elections can be studied. Lastly, the study of structured domains1

(i.e., single-peaked and single-crossing elections) has been given attention lately [17, 22, 67, 159] and

we propose to study whether the complexity of control for Borda changes if elections are structured.

In Section 4 we have studied electoral control focusing on control by replacing candidates or voters for

various voting rules thus taking a step to complete the picture of complexity results regarding electoral

control. One important case is still open which is constructive control by replacing candidates for 2-

approval. The problem is seemingly related to the corresponding problem with 3-veto which is shown

to be in P but the same approach cannot be used here. Since the problems for constructive control by

adding candidates and by deleting candidates are in P for 2-approval, constructive control by replacing

candidates is likely to be in P for 2-approval as well. On the contrary, showing that the problem is

NP-hard would be interesting as we found that the complexity of replacement control usually follows

the complexity of the corresponding problems of control by addition and deletion. Next, the problems

for control by partitioning of candidates or voters are still open for plurality/veto with run-off. Lastly,

showing dichotomy results for pure scoring rules similar to Hemaspaandra and Schnoor [90] is a

challenging and interesting task.

In Section 5 we have devised a model for studying electoral control by cloning candidates in the setting

of multiwinner elections and found a wide range of complexity results from easy cases like SNTV over

cases that are easy in some ways but hard in others like k-Borda to cases like STV for which cloning

is generally hard. We propose to solve the open cases regarding k-approval-CC and Borda-CC and

extend our study to other multiwinner voting rules. In particular, Bredereck et al. [29] considered

approximative versions of k-approval-CC and Borda-CC that only compute an approximated solution

but run in polynomial time. Furthermore, it is interesting to study other classes of prize functions such

1Structured domains are motivated by the fact that, in practice, the voters’ preferences are rarely purely random but

structured in some way. For example, in political elections all candidates can be ordered on a left-right scale and voters

tend to vote according to this scale. That is, a voter belonging to the left spectrum obviously prefers candidates on the

left to candidates on the right.
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as all-or-nothing prices. Lastly, our model could be extended to take on a probabilistic perspective

similar to the model of cloning in singlewinner elections by Elkind, Faliszewski, and Slinko [53].

In Section 6 we have studied shift bribery for iterative scoring rule. We found that iterative scor-

ing rules seem to be very resistant to shift bribery by showing NP-hardness of shift bribery for all

iterative scoring rules that we have studied. In contrast, the standard non-iterative scoring rules are

sometimes vulnerable to shift bribery as is the case for k-approval [52]. We have also investigated

how nonmonotonicity affects the complexity of shift bribery by allowing the distinguished candidate

to be shifted backwards in the constructive case and forwards in the destructive case and found no

change in complexity. We propose to continue this study by proving or disproving our conjecture that

using the nonmonotonicity of iterative scoring rules does not change the complexity of shift bribery

for them. Since we have found exclusively NP-hardness results studying parameterized complexity

for our problems with common parameters—the number of candidates, the number of voters, or the

budget—seems natural. Recently, Zhou and Guo [160] started research in this direction by studying

the parameterized complexity of shift bribery for four of our iterative voting rules finding a wide range

of results including FPT and W[1]-hard cases. We propose to solve the cases that they left open and

extend their study to other iterative voting rules. Moreover, we have studied iterative versions of the

scoring rules plurality, veto, and Borda but there are many more scoring rules for which the iterative

versions could be studied. It would be interesting to know if shift bribery is NP-hard for all of them

which seems likely.

The study of the computational complexity of election tampering attempts (in particular, electoral

control and bribery) has been a thriving research direction in computational social choice. In this

thesis we have only covered worst-case complexity which admittedly is not the last word of wisdom.

Rothe and Schend [139] argue that often times although some voting rule is resistant (i.e., NP-hard)

against some form of election tampering on average the corresponding problem can be solved ef-

ficiently. Therefore, finding hardness in the average-case in addition to hardness in the worst-case

is an interesting and important challenge for future work. Recently, Spielman, and Teng [148] pro-

posed smoothed complexity theory which investigates the running time of algorithms when the input

is randomly perturbed. In essence, smoothed complexity tries to answer the question of how robust or

fragile worst-case instances of hard problems are. Therefore, smoothed complexity theory stands be-

tween worst-case and average-case analysis. Baumeister, Hogrebe, and Rothe [11] proposed to apply

smoothed complexity to computational social choice. Furthermore, finding connections or interac-

tions between the different subfields of computational social choice often yields interesting results as

was done by Rey and Rothe [133] who, inspired by electoral control, have studied structural control

in weighted voting games or Rothe, Schadrack, and Schend [138] who have used the Borda Count

for FEN-hedonic games. Lastly, over the many years of research in computational social choice we

have gained substantial insights into voting rules but applications of our insights besides for elections

are sparse, so as a long term goal we propose to find new applications beyond computational social

choice where our knowledge of voting rules becomes valuable.
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