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 Preface 

This document was prepared according to the ‘Promotionsordnung der 

Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität 

Düsseldorf vom 15.06.2018‘. Three manuscripts are presented along with an 

introduction that puts them into the broader context of the current literature. 

Additionally, an explanation of the contributions and a short discussion of the 

content and potential future research directions is provided with each manuscript. 

Manuscript 1 describes GlobalFit, a novel bi-level optimization algorithm, and 

its application to genome-scale metabolic models to improve their predictive power. 

It was published as Hartleb D, Jarre F, Lercher MJ. Improved Metabolic Models for 

E. coli and Mycoplasma genitalium from GlobalFit, an Algorithm That 

Simultaneously Matches Growth and Non-Growth Data Sets. PLoS Comput Biol. 

2016 Aug 2;12(8). 

Manuscript 2 follows up on the algorithm introduced in Manuscript 1. A 

pipeline is introduced, which employs information from different metabolic sources, 

and can help to accelerate the reconstruction of high-quality genome-scale 

metabolic models. This pipeline was successfully applied to three different 

Streptococci strains. Manuscript 2 was submitted to PNAS as Hartleb D, Lercher 

MJ. Automated high-quality reconstruction of metabolic networks from high-

throughput data. It was rejected after peer review and is currently under preparation 

for resubmission. 

Manuscript 3 describes a novel approach to detect and remove energy 

generating cycles in metabolic models. These cycles can severely affect the results 

obtained by constraint-based methods; they are commonly found in automatically 

reconstructed metabolic networks. It was published as Fritzemeier CJ, Hartleb D, 

Szappanos B, Papp B, Lercher MJ. Erroneous energy-generating cycles in 

published genome scale metabolic networks: Identification and removal. PLoS 

Comput Biol. 2017 Apr 18;13(4). 
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 Summary 

Genome-scale metabolic models are reconstructed for many organisms. They are 

routinely used to predict metabolic behavior (O'Brien, Monk, and Palsson 2015), 

simulate evolutionary adaptation (Pal et al. 2006), and help to design organisms of 

bioengineering interest (Schirmer et al. 2010). However, the quality of metabolic 

models is highly variable. 

Typically, metabolic models are refined by comparing in silico predictions to 

in vivo experiments (e.g., viability of gene knock-outs or growth in different 

nutritional environments) (Thiele and Palsson 2010). Several different algorithms 

have been developed to resolve the resulting inconsistencies between prediction 

and experiment (Satish Kumar, Dasika, and Maranas 2007; Zomorrodi et al. 2012; 

Thiele, Vlassis, and Fleming 2014; Kumar and Maranas 2009). However, these 

tools can iteratively correct only one inconsistency at a time. Thus, the total number 

of network changes may not be globally optimal, a modification introduced earlier 

might prevent the resolution of other inconsistencies, or a potential solution might 

not be found because the combination of different types of network changes is not 

supported. 

In Manuscript 1, a novel bi-level optimization algorithm – GlobalFit – is 

introduced (Hartleb, Jarre, and Lercher 2016). GlobalFit is the first algorithm that 

can simultaneously solve multiple inconsistencies at a time and allows the 

combination of different network modifications. We applied the algorithm to the 

genome-scale metabolic model for Mycoplasma genitalium (Suthers et al. 2009), 

improving the overall accuracy for viability predictions from 87.3% to 97.3%.  

Interestingly, solving all inconsistencies at a time resulted in the same 

network changes as iteratively solving each erroneous prediction together with a 

corresponding counter-case, while the overall time for solving decreased 

dramatically. Applying this subset strategy to the much better curated 

genome-scale metabolic model for Escherichia coli (Orth et al. 2011), we could 

again substantially improve the accuracy, from 90.8% to 95.4%. 

Reconstructing metabolic models is still a laborious and time-consuming task. 

To accelerate this process, automatic reconstruction algorithms have been 
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developed. However, predictions by automatically reconstructed networks 

generally have low accuracy and still need to be refined manually. 

In Manuscript 2, a novel pipeline is introduced, which gathers information from 

metabolic networks from closely related organisms and metabolic databases (i.e., 

KBase (Knowledgebase 2016), TransportDB (Ren, Chen, and Paulsen 2007), 

KEGG (Kanehisa et al. 2016)). At each step, the metabolic information of each 

gene is replaced by newer information. Finally, the draft metabolic network is 

refined with GlobalFit based on genome-wide gene knock-out data.  

We demonstrate the applicability of this pipeline by reconstructing genome-

scale metabolic models for three different Streptococci genomes. The predictive 

power of the resulting metabolic models was of the same quality as for manually 

curated models (e.g., E. coli iJO1366 (Orth et al. 2011)).  

In addition to the low predictive power of automatically reconstructed 

metabolic models, they often contain internal energy generating cycles. These 

cycles can charge energy-rich metabolites such as ATP without the uptake of any 

nutrients. Thus, they can severely affect the energy metabolism of the model and 

can unrealistically inflate the maximal biomass production. However, no systematic 

method to eliminate those cycles had been developed previously.  

In Manuscript 3, a variant of FBA is described to identify energy generating 

cycles, and a modified version of GlobalFit is subsequently used to eliminate the 

detected cycles (Fritzemeier et al. 2017). We could identify energy generating 

cycles in 65% of metabolic networks from three different databases (BiGG 

(Schellenberger et al. 2010), MetaNetX (Ganter et al. 2013), and ModelSEED 

(Henry et al. 2010)). In the following step, GlobalFit could fully eliminate energy 

generating cycles in 94% of the affected metabolic models.  
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 Zusammenfassung 

Metabolische Stoffwechselmodelle, die das ganze Genom eines Organismus 

umfassen, wurden für viele Spezies erstellt. Sie werden regelmäßig benutzt um 

metabolische Eigenschaften vorherzusagen (O'Brien, Monk, and Palsson 2015), 

um evolutionäre Anpassung zu simulieren (Pal et al. 2006) und um Organismen 

mit besonderem biotechnologischen Eigenschaften zu entwerfen (Schirmer et al. 

2010). Jedoch schwankt die Qualität von metabolischen Modellen stark. 

Typischerweise werden metabolische Stoffwechselmodelle durch den 

Vergleich von in silico Vorhersagen und in vivo Experimenten verbessert (z.B.: 

Lebensfähigkeit nach Knockouts von Genen oder Wachstum auf verschiedenen 

Nährmedien) (Thiele and Palsson 2010). Es wurden verschiedene Algorithmen 

entwickelt um die bestehenden Unstimmigkeiten zwischen Vorhersage und 

Experiment zu beseitigen (Satish Kumar, Dasika, and Maranas 2007; Zomorrodi 

et al. 2012; Thiele, Vlassis, and Fleming 2014; Kumar and Maranas 2009). Jedoch 

können diese Methoden iterativ nur jeweils einen Widerspruch auflösen. Daher 

kann es sein, dass die absolute Anzahl an Netzwerkänderungen nicht global 

optimal ist. Darüber hinaus kann eine eingebaute Modifikation die Auflösung 

weiterer Unstimmigkeiten verhindern oder eine mögliche Lösung kann erst gar 

nicht gefunden werden, da die Kombination von verschiedenen 

Netzwerkänderungen nicht möglich ist. 

In Manuskript 1 wird ein neuartiger bi-level Optimierungsalgorithmus 

– GlobalFit – vorgestellt (Hartleb, Jarre, and Lercher 2016). GlobalFit ist der erste 

Algorithmus, der mehrere Unstimmigkeiten gleichzeitig auflösen kann und die 

Kombination von verschiedenen Netzwerkmodifikation erlaubt. Wir haben diesen 

Algorithmus auf das genomumfassende metabolische Netzwerk von 

Mycoplasma genitalium angewendet (Suthers et al. 2009) und konnten dabei die 

absolute Vorhersagegenauigkeit von 87,3% auf 97,3% verbessern. 

Interessanterweise führte das gleichzeitige Korrigieren aller Unstimmigkeiten 

zu den gleichen Netzwerkmodifikation wie das iterative Korrigieren jeder einzelnen 

Unstimmigkeit zusammen mit einem entsprechenden Gegenfall. Hierbei sank die 

absolut benötigte Rechenzeit jedoch drastisch. Durch Anwendung dieser 
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Teilgruppenstrategie auf das viel besser ausgearbeitete genomumfassende 

metabolische Netzwerk von Escherichia coli (Orth et al. 2011) konnten wir 

wiederum die Vorhersagegenauigkeit wesentlich verbessern, von 90,8% auf 

95,4%. 

Das Erstellen von metabolischen Netzwerken ist heutzutage immer noch eine 

aufwendige und zeitraubende Aufgabe. Um diesen Prozess zu beschleunigen, 

wurden Algorithmen zur automatischen Netzwerkerstellung entwickelt. Jedoch 

haben automatisch erstellte Netzwerke häufig eine nur geringe 

Vorhersagegenauigkeit und bedürfen weiterer manueller Nachbesserungen. 

In Manuskript 2 wird eine neue algorithmische Pipeline vorgestellt, die 

Informationen von metabolischen Netzwerken nah verwandter Organismen und 

von metabolischen Datenbanken (KBase (Knowledgebase 2016), TransportDB 

(Ren, Chen, and Paulsen 2007), KEGG (Kanehisa et al. 2016)) sammelt. In jedem 

Verarbeitungsschritt werden die metabolischen Informationen von jedem Gen mit 

neueren Informationen überschrieben. Abschließend wird die Rohfassung des 

metabolischen Netzwerks mit GlobalFit auf der Basis von genomumfassenden 

Gen-Knockout-Datensätzen verfeinert.  

Wir zeigen die Anwendbarkeit dieser Pipeline durch die Erstellung von 

genomumfassenden metabolischen Netzwerken für drei verschiedene 

Streptococci-Spezies. Die Vorhersagegenauigkeit der erstellten metabolischen 

Netzwerke ist vergleichbar mit manuell überarbeiteten metabolischen Netzwerken 

(z.B.: E. coli iJO1366 (Orth et al. 2011)).  

Zusätzlich zu der niedrigen Vorhersagekraft automatisch erstellter 

metabolischer Modelle enthalten diese häufig energiegenerierende Zyklen. Diese 

internen Zyklen können ohne jegliche Aufnahme von Nährstoffen 

Energiemetabolite aufladen. Daher können sie den modellierten 

Energiestoffwechsel des simulierten Organismus erheblich beeinflussen und die 

maximale Biomasseproduktion unrealistisch erhöhen. Jedoch existiert bisher keine 

systematische Methode um solche Zyklen zu entfernen. 

In Manuskript 3 wird eine Variante von FBA beschrieben um 

energieerzeugende Zyklen zu identifizieren; eine modifizierte Version von 

GlobalFit wird vorgestellt, die anschließend die gefundenen Zyklen entfernt 



  Literatur 

  17    

(Fritzemeier et al. 2017). Wir konnten energieerzeugende Zyklen in 65% der 

metabolischen Netzwerke aus drei verschiedenen Datenbanken (BiGG 

(Schellenberger et al. 2010), MetaNetX (Ganter et al. 2013), und ModelSEED 

(Henry et al. 2010)) finden. Im Anschluss konnte GlobalFit energieerzeugende 

Zyklen in 94% der betroffenen metabolischen Netzwerke vollständig entfernen. 
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 Introduction 

5.1  Metabolic Models 

Metabolic Models 

Metabolism and its underlying biochemistry have been investigated for centuries, 

and deep knowledge has been compiled. However, metabolic components were 

mostly analyzed individually, which made it difficult to characterize cellular function 

as a system. The development and availability of genome sequencing technologies 

in recent years changed the focus of biological investigations from a gene-centred 

view of a few very well studied genes and biological processes to a genome-scale 

point of view. This allowed the identification of practically all enzyme encoding 

genes involved in the conversion of metabolites. Combining all metabolic 

knowledge about an organism with its genomic information led to the construction 

of metabolic models (O'Brien, Monk, and Palsson 2015; Palsson 2009; Cazzaniga 

et al. 2014).  

While the first metabolic models simulated central carbon metabolism (Fell 

and Small 1986; van Gulik and Heijnen 1995), the first genome scale metabolic 

model was reconstructed for Haemophilus influenzae in 1999 (Edwards and 

Palsson 1999). Through new methods and the availability of more experimental 

data, metabolic models have become increasingly comprehensive and precise. By 

now, genome scale metabolic models exist not only for bacteria and archaea (Feist 

et al. 2006), but also for uni- and multicellular eukaryotes, including plants (de 

Oliveira Dal'Molin et al. 2010), fungi (Liu et al. 2013), and even human (Thiele et 

al. 2013). The number of included metabolites ranges from 274 for Mycoplasma 

genitalium (Suthers et al. 2009) to 5063 in human (Thiele et al. 2013).  

Metabolic models have been successfully applied to a wide scope of 

biological investigations. For example, genome-scale metabolic models were used 

to simulate the reductive evolution of the endosymbiont Buchnera aphidicola (Pal 

et al. 2006), and organisms have been successfully engineered to overproduce 

desired metabolites (strain optimization) (Thakker et al. 2012). In synthetic biology, 

new enzymes and biosynthesis pathways to enable the production of a new 

component have been identified through modeling and were subsequently 
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introduced experimentally (Schirmer et al. 2010). Metabolic models have been 

used to predict the necessary gene knock-outs to overproduce a desired target 

metabolite (Burgard, Pharkya, and Maranas 2003; Copeland et al. 2012). Potential 

drug targets of the opportunistic pathogen Vibrio vulnificus were discovered by 

employing metabolic networks (Kim et al. 2011; Chavali et al. 2012). Host-

pathogen interactions of human and Mycobacterium tuberculosis have been 

studied with the help of constraint-based models (Bordbar et al. 2010). With the 

expanding scope of synthetic biology, it is likely that metabolic models will become 

increasingly important for the planning of complex genetic interventions. 
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5.2  Mathematical Representation 

Mathematical Representation 

Metabolic networks are formally described by a mathematical model. A 

stoichiometric matrix represents the metabolites (rows) and the biochemical 

reactions (columns) that constitute the metabolism of the organism of interest. 

Each metabolite is associated with a compartment, which defines its localization. 

Every network contains at least two compartments, the cytosol and the 

extracellular space (Martins Conde Pdo, Sauter, and Pfau 2016; Cazzaniga et al. 

2014). The prevalent techniques to analyze metabolic models are constraint-based 

methods, whereof flux balance analysis (FBA) (Orth, Thiele, and Palsson 2010) is 

the most popular (Reed 2012). These methods employ constraints on the 

metabolic model that are derived from simple physical laws.  

The metabolic physiological state of an organism can be mathematically 

described by reaction rates (fluxes) and metabolite concentrations. Reaction rates 

are governed by complicated, non-linear mathematical functions including 

metabolite concentrations and enzyme kinetics. It would be extremely challenging 

to compute these for whole cell models; moreover, many of the required 

parameters are still not known. Constraint-based models overcome this problem 

by assuming a steady state condition (i.e., every internal metabolite that is 

produced must also be consumed at the same rate) (Llaneras and Pico 2008; 

Durot, Bourguignon, and Schachter 2009). 

Each reaction is assigned an upper and lower bound, which limit the maximal 

and minimal flux that can be carried by the reaction. These bounds can be related 

to the turnover rate and abundance of the corresponding enzyme. In general, these 

bounds are unknown and are fixed to a large value (e.g., -1000 
����

���∗�
 for lower 

bounds and 1000 
����

���∗�
 for upper bounds). The lower bound of reactions that are 

known to proceed in one direction only (irreversible reactions) are constrained to 

zero (Kummel, Panke, and Heinemann 2006; Llaneras and Pico 2008).  

To allow metabolites to be included or excluded from the outer environment, 

exchange reactions are added to the metabolic network. These reactions simply 

convert one metabolite to nothing or vice versa. Setting the lower bounds of 

exchange reaction to lower than zero allows the uptake of the corresponding 
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metabolite, thereby simulating specific media compositions. Conversely, 

metabolites of a metabolic network can be mathematically eliminated by secretion 

(Durot, Bourguignon, and Schachter 2009). 

It can be assumed that naturally occurring metabolic systems have been 

optimized by natural selection to fulfill a specific function, such as the production of 

all metabolites needed for cellular growth (biomass). The balanced production of 

all cell components needed for growth (including DNA, RNA, amino acids, cell wall 

components, lipids, sterols, essential cofactors, and secondary metabolites) can 

be formulated as an additional, hypothetical “biomass reaction” (Dreyfuss et al. 

2013; O'Brien, Monk, and Palsson 2015). Constraint-based methods maximize this 

reaction. The maximal biomass production represents the maximal possible yield 

of biomass production from all available nutrients (Feist and Palsson 2010). 

Beyond the biomass reaction, other objective functions have been applied 

successfully with FBA, such as maximizing metabolite production, and minimizing 

nutrient uptake or ATP production (Llaneras and Pico 2008). 

To more faithfully reflect biology, additional constraints can be imposed on 

metabolic networks. Conventionally, a non-growth associated maintenance 

reaction (NGAM) is added to the metabolic network, which reflects the ATP 

consumption needed for maintaining homeostasis independent from growth 

(e.g., turgor pressure (Feist et al. 2007), right ionic strength (Stouthamer and 

Bettenhaussen 1973)). The lower bound of this reaction is constrained to a value 

greater than zero, forcing the metabolic network to consume ATP regardless of 

biomass production. Additionally, the ATP requirement for growth is included in the 

biomass reaction (Durot, Bourguignon, and Schachter 2009).  

To link genes with reactions, gene-protein-reaction associations (GPR) are 

included in the metabolic network. For instance, these rules record if a gene 

functions as an isoenzyme or in a multi-protein complex. GPRs are required to 

perform in silico gene-deletion studies (Zomorrodi et al. 2012).  

Many additional constraint-based methods that employ non-linear objective 

functions have been introduced. For example, regulatory on/off minimization 

(ROOM) (Shlomi, Berkman, and Ruppin 2005) minimizes the number of regulatory 

changes, while minimization of metabolic adjustments (MOMA) (Segre, Vitkup, and 
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Church 2002) minimizes the overall flux change between a wild-type and a mutant 

strain. ROOM uses mixed-integer linear programming (MILP), while MOMA 

employs quadratic programming (QP) (Zomorrodi et al. 2012; Copeland et al. 

2012).  

The simplicity of constraint-based methods allows fast in silico computation 

of genome-scale metabolism, because all variables are linear and thus fast linear 

programming (LP) optimization techniques can be applied. But this simplicity also 

leads to a few drawbacks. In general, constraint-based methods ignore the 

influence of regulation, transcription, metabolite concentration, and enzyme 

kinetics, each of which can have a huge impact on the metabolism of an organism. 

Furthermore, metabolic models in general contain more reactions than 

metabolites. Thus, the mathematical equation system is underdetermined, 

resulting in a multidimensional solution space of the optimization problem. While 

the actual objective value in many cases reflects the metabolic capacities of the 

organism, a single optimal flux distribution is far from unique, making its 

interpretation difficult (Lewis, Nagarajan, and Palsson 2012; Simeonidis and Price 

2015). 

A number of different computational environments are available to run 

constraint-based analyses on metabolic networks (e.g., COBRA (Schellenberger 

et al. 2011; Ebrahim et al. 2013), SyBiL (Gelius-Dietrich et al. 2013)), which apply 

commercial (e.g., CPLEX, GUROBI) and non-commercial (e.g., Open Source Gnu 

Linear Programming Kit (GLPK)) mathematical solvers to find solutions for the 

corresponding optimization problems. 
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5.3  Reconstruction process of metabolic models  

Reconstruction process 

5.3.1  Stage one of reconstructing metabolic models 

The reconstruction process can be divided into four stages. In the first stage, a 

draft metabolic network is generated based on the genomic content of the target 

organism. The genome is mapped against a database of known metabolic 

functions (e.g., KEGG (Kanehisa et al. 2016), MetaCyc (Caspi et al. 2016), or BiGG 

(Schellenberger et al. 2010)), or metabolic properties of the organism are obtained 

by its gene annotation (e.g., enzyme commission (EC) numbers or gene ontology 

classifications (GO) (Gene Ontology 2015)). This first draft network additionally 

contains all GPR rules associated with genes that were used for generating the 

metabolic model (Hamilton and Reed 2014; Thiele and Palsson 2010).  

5.3.2  Stage two of reconstructing metabolic models 

In the second stage, the consistency of the draft metabolic network is evaluated 

and where necessary curated. Each reaction must be checked for correct mass 

and charge balance. The GPR association of each reaction must be verified 

(Hamilton and Reed 2014). 

Another part of this stage is to add transport reactions, which allow the uptake 

and secretion of metabolites and thus allow to simulate specific media 

compositions on which the target organism is known to grow. Identifying the correct 

transporters is difficult, because many transporters are highly homologous to each 

other, and small differences in sequence can change specificity to individual 

substrates (Cuevas et al. 2016; Marger and Saier 1993).  

A crucial step in stage two of metabolic network reconstruction is to infer a 

suitable biomass reaction. Biomass components and precursors are obtained from 

the literature or examined experimentally and are quantified in their proportions 

(Cazzaniga et al. 2014). Additionally, gene knock-out data and growth assays on 

different growth media can be used to determine all biomass components which 

are really needed for growth or proliferation (Feist et al. 2009). Finally, the flux 

through the biomass reaction is scaled to the observed growth rate of the 
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investigated organism (O'Brien, Monk, and Palsson 2015). Determining an 

accurate biomass reaction is still a challenging task, because the organism might 

not have evolved to be in an optimal state and the biomass objective function is 

likely to be environment-dependent (Yurkovich and Palsson 2016; Feist and 

Palsson 2010).  

Furthermore, the growth and non-growth associated maintenance reactions 

must be set (ATP is utilized at a non-zero rate even by non-growing cells). These 

parameters are usually determined by fitting in silico growth yields to observed 

experimental values (Durot, Bourguignon, and Schachter 2009; Reed, Famili, et al. 

2006). 

5.3.3  Stage three of reconstructing metabolic models 

In stage three, the metabolic model is converted into a mathematical model, which 

is used for further investigations. Systems biology tools for analyzing and 

simulating metabolic models (e.g., COBRA (Schellenberger et al. 2011) or SybiL 

(Gelius-Dietrich et al. 2013)) usually can import different metabolic model formats. 

However, the most common format to store and distribute metabolic models is the 

Systems Biology Markup language (SBML) (Hucka et al. 2003; Hamilton and Reed 

2014). 

5.3.4  Stage four of reconstructing metabolic models 

In the final stage, the reconstructed metabolic model is validated against 

experimental datasets to confirm its correct biological behavior and predictive 

capabilities; e.g., if all experimentally observed products can be secreted by the 

metabolic model in silico, if predicted and observed viability of gene knock-outs 

agree, and if all biomass precursor can be produced (Cazzaniga et al. 2014). 

Furthermore, additional analyses can be performed, such as identifying 

metabolic dead ends, blocked reactions and gaps in metabolic pathways. The 

results can point to incomplete parts of the investigated metabolic network 

(Hamilton and Reed 2014). 

Comparing experimental observations and in silico predictions generally 

leads to four cases:  
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(i) true positive prediction (TPp), i.e., the observation and the prediction 

both agree that a strain is viable in the tested condition;  

(ii) true negative prediction (TNp), i.e., metabolic network and experiment 

both predict non-growth;  

(iii) false positive prediction (FPp), i.e., the metabolic network erroneously 

predicts viability while the experiment revealed lethality; 

(iv) false negative prediction (FNp), i.e., the metabolic network falsely 

predicts lethality while in the experiment a viable organism was 

observed. 

Stages two to four of the model reconstruction should be repeated until the 

predictions of the metabolic network reconstruction is in line with experimental 

observations (Hamilton and Reed 2014; Joyce and Palsson 2008). 

5.3.4.1 Measurements of accuracy 

The predictive power of a metabolic network for strain viability is usually measured 

in terms of its accuracy. Accuracy is assessed by dividing the sum of true positive 

and true negative predictions by the number of all considered predictions.  

Alternatively, the Matthews correlation coefficient is a more balanced method 

to measure accuracy of binary classifications (Matthews 1975); mathematically, it 

is equivalent to calculating the Pearson’s correlation coefficient between two binary 

vectors. For example, the metabolic network iPS189 (Suthers et al. 2009) of 

Mycoplasma genitalium consists almost only of essential genes. The reported 

accuracy of this model is 87.3%. Using a trivial model that predicts non-growth for 

all gene knock-outs would result in a better accuracy of 90.5%; however, the 

Matthews correlation coefficient would at the same time decrease from 0.56 to 

zero.  

5.3.4.2 Reasons for inaccuracies of in silico predictions for in vivo behavior 

There are many different reasons for inconsistencies between in silico predictions 

and in vivo observations. They range from incorrect metabolic models over 

experimental errors to algorithmic shortcomings: 



  Reconstruction process 

  29    

1) Reactions are also needed for the degradation or recycling of metabolites. 

Removing one of these reactions does not affect the production of biomass, 

but violates the steady state condition required by FBA. The rise of 

concentration of these metabolites in vivo may not affect growth, or they 

are further metabolized or transported out of the cell by different 

mechanisms (Orth et al. 2011).  

2) Isoenzymes or alternative pathways that can carry out the same function 

are missing, or the reversibility of reactions is not correctly modeled (Orth 

et al. 2011). Furthermore, it has been shown that enzymes can have 

unknown low-level side activities. This underground metabolism can 

contribute to the metabolic capacity of an organism, but is often not 

sufficiently included in metabolic networks (Notebaart et al. 2014). 

Additionally, many reactions in a metabolic network miss a gene 

association. These so-called orphan reactions are needed to allow growth, 

but the catalyzing enzyme is unknown (Orth and Palsson 2010). 30% to 

40% of all known enzymatic functions are estimated to be processed by 

orphan reactions (Lespinet and Labedan 2006; Orth and Palsson 2012). 

3) Metabolites are erroneously included in the biomass reaction. All genes that 

encode for reactions that are needed to produce or consume a metabolite 

that is erroneously included in the biomass reaction will then erroneously 

be deemed essential. 

4) Isoenzymes or alternative pathways contained in the model exist in vivo, 

but do not carry sufficient flux in vivo (e.g., isoenzymes are not expressed, 

enzymes are inefficient) (Orth et al. 2011). 

5) Reactions are erroneously assumed to be reversible. Directionality of a 

reaction depends on thermodynamics. In many cases the required 

parameters (in particular the concentrations of substrate and product) are 

not known or were measured under different conditions. Thus, many 

effectively irreversible reactions are labeled as bidirectional because of 

missing knowledge (Reed 2012). 

6) Biomass components that are catalyzed by FPp are not included in the 

biomass reaction. Genes that encode for reactions that are needed to utilize 

these components are not essential. The reactions can even be 
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unconnected to the metabolic network and therefore be unable to carry any 

flux (blocked) (Tervo and Reed 2013). 

7) Genes encode enzymes involved in degrading toxic metabolites. For S. 

aureus and B. subtilis, it has been shown that early acting genes of teichoic 

acid biosynthesis are non-essential, while knock-outs of genes that encode 

enzymes of later steps in this pathway are lethal. The reason for this 

counter-intuitive behavior is that deleting a late acting downstream gene 

will lead to the accumulation of a toxic metabolite further upstream of the 

pathway. If an early acting gene is removed, the metabolite cannot be 

produced. Consequently, a double gene knock-out of a downstream and 

an upstream gene is not lethal (D'Elia, Millar, et al. 2006; D'Elia, Pereira, et 

al. 2006). 

8) Mutants did not have enough time to compensate for the gene deletion. 

Regulatory changes can restore the organism’s capacity to produce 

sufficient biomass (Herring et al. 2006). For E. coli, it has been shown that 

after changing the growth media it took over 700 generations to achieve the 

growth yield that was predicted in silico (Ibarra, Edwards, and Palsson 

2002). Accordingly, some genes which were deemed to be essential based 

on experiments are in fact unessential after regulatory compensation 

(O'Brien, Monk, and Palsson 2015). 

9) Many microbial organisms are optimized for maximal growth rate. Faster 

growth can be achieved with faster, but less efficient pathways (Teusink, 

Bachmann, and Molenaar 2011). FBA calculates the maximum yield per 

input and not per time. Thus, flux predictions by FBA always use the most 

efficient pathways (those with the highest biomass yield per limiting 

nutrient), while the pathways used in vivo may have lower yield but allow 

faster growth (Schilling et al. 1999). For example, L. plantarum usually 

secretes lactate, but is also capable of mixed acid fermentation, which 

would produce more ATP per glucose. However, this pathway is only used 

under limited substrate availability. FBA predictions of the genome scale 

metabolic model for L. plantarum utilized the mixed acid fermentation in all 

circumstances instead of the observed lactate secretion (Teusink et al. 

2006). 
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10) Erroneous classification of genes as essential by the experiments can also 

complicate the analysis or even make it impossible to reconcile in silico 

predictions with the data (D'Elia, Pereira, and Brown 2009). TN-seq 

methods (van Opijnen, Bodi, and Camilli 2009) do not only produce mutants 

that were truly unable to grow in the specified environment, but also 

mutated organisms that have a fitness disadvantage. Because the mutants 

are selected en masse in a competitive environment (Khatiwara et al. 

2012), the less fit mutants (e.g., those with lower yield) can be 

underrepresented or completely disappear in the results (Le Breton et al. 

2015).  

11) On the other hand, genes can also be falsely identified as non-essential 

due to partial gene inactivation. This phenomenon frequently occurs in 

transposon mediated gene knock-out studies. Genes may not entirely lose 

their function after an insertion of a transposon, and hence the experiment 

does not truly represent a full knock-out (Ge and Xu 2012).  

12) FBA neglects regulation. Reactions that are used by FBA can be not 

expressed due to regulation, or a metabolite-enzyme interaction inhibits the 

functioning of the enzyme (O'Brien, Monk, and Palsson 2015; Durot, 

Bourguignon, and Schachter 2009). 

13) Furthermore, FBA does not consider dilution of metabolites. For example, 

in S. cerevisiae quinones must in vivo not only be recycled, but must also 

be replenished to compensate dilution; in contrast, in silico quinones are 

only recycled. This leads to FPp of the genes involved in quinone 

biosynthesis (Dreyfuss et al. 2013). 

14) Constraint-based models do not consider kinetic parameters, which can 

significantly influence the rate of conversion of metabolites (Durot, 

Bourguignon, and Schachter 2009). 

5.3.4.3 Algorithms for improving in silico predictions 

Many of the above-mentioned inaccuracies between in silico predictions and 

in vivo observations can only be resolved through manual curation. In particular, 

erroneous experimental results can only be revealed by expert knowledge. 
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Nevertheless, algorithms have been developed which try to reconcile 

in vivo / in silico inconsistencies.  

Several algorithms exist that reconcile FNp. These methods are generally 

based on gap-filling approaches. Gap-filling algorithms (e.g., Gap-Fill/Gap-Find 

(Satish Kumar, Dasika, and Maranas 2007), SMILEY (Reed, Patel, et al. 2006)) 

add reactions from a database of potential reactions (e.g., KEGG (Kanehisa et al. 

2016), MetaCyc (Caspi et al. 2016), BiGG (Schellenberger et al. 2010)) or make 

existing non-reversible reactions reversible to ensure the viability of the metabolic 

network (i.e., a positive flux through the biomass reaction). Because these 

algorithms try to find the minimal number of reactions that needs to be added, the 

underlying mathematical problem is a mixed integer linear optimization problem, 

which is challenging to solve computationally (Zomorrodi et al. 2012). A second 

approach to reconcile false negative predictions is to remove metabolites from the 

biomass reactions (BioMog (Tervo and Reed 2013)), thereby making the genes 

non-essential that encode the enzymes needed for generating these metabolites. 

Additionally, methods for resolving FPp have been developed. The first such 

approach is to remove reactions from the metabolic model. While this seems 

superficially similar to gap-filling, the underlying mathematical problem must be 

stated as a bi-level optimization problem, which has to be reformulated as a single-

level optimization problem to be solved efficiently. This reformulation results again 

in a MILP, but is usually harder to solve than gap-filling methods, because more 

linear and non-linear binary variables are introduced. So far only one bi-level 

algorithm has been introduced (i.e., GrowMatch (Kumar and Maranas 2009)), with 

a few further methods derived from this algorithm (Zomorrodi and Maranas 2010; 

Henry et al. 2009). Moreover, bi-level optimization algorithms have been 

successfully applied to predict gene knock-outs in a target organism for 

overproduction of a desired metabolite (e.g., OptKnock (Burgard, Pharkya, and 

Maranas 2003), OptForce (Ranganathan, Suthers, and Maranas 2010)).  

Similar to reconciling false negative predictions, modifying the biomass 

reaction can also resolve false positive predictions. In these cases, additional 

metabolites have to be added to the biomass reactions, thereby making the genes 

essential that encode the enzymes responsible for metabolizing these additional 
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metabolites. This approach has been successfully applied (Kumar and Maranas 

2009; Tervo and Reed 2013). 

5.3.5  Contribution of Manuscript 1 to the refinement of metabolic models 

Manuscript 1 presents GlobalFit, a novel bi-level optimization algorithm for refining 

metabolic models. While the algorithms mentioned in section 5.3.4. are greedy 

algorithms that only consider one erroneous case at a time, GlobalFit is capable of 

improving several cases simultaneously. It is thus capable of ensuring the 

identification of globally optimal solutions in terms of model fit to experimental data, 

which inspired its name. Simultaneously considering all (or a relevant subset of) 

growth and non-growth cases simultaneously avoids pitfalls of greedy algorithms. 

E.g., reconciling false positive predictions may lead to the removal of essential 

reactions, as removing one of these reactions would trivially lead to a non-growing 

metabolic network; and by reconciling false negative predictions, a true negative 

prediction can become a false positive prediction.  

 For each special type of inconsistency, a different algorithm was previously 

needed. GlobalFit is the first algorithm that combines several refinement strategies: 

removals or reversibility changes of existing reactions; additions of reactions to the 

model; and removals from and additions to the biomass reaction. Thus, GlobalFit 

allows to identify network modifications that a consecutive application of different 

refinement algorithms might not find. 

We successfully applied GlobalFit to several manually curated metabolic 

networks. GlobalFit improved the overall accuracy and the Matthews correlation 

coefficient of the iPS189 (Suthers et al. 2009) metabolic model for Mycoplasma 

genitalium from 87.3% (MCC=0.56) to 97.9% (MCC=0.86). The small size of the 

metabolic network model allowed us to solve all inconsistencies simultaneously. 

However, a subset strategy where we solved one inconsistency simultaneously 

with a contrasting wild-type case resulted in the same network modifications, while 

requiring much less computing time. 

Using this subset strategy on the much larger iJO1366 (Orth et al. 2011) 

metabolic model for E. coli, which is manually curated and represents “the” 

reference genome-scale metabolic network in systems biology, GlobalFit 
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enhanced the predictive capability of the iJO1366 metabolic model from 90.8% 

(MCC=0.67) to 95.4% (MCC=0.84). 
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5.4  Automated reconstruction 

Automated reconstruction 

Reconstructing high-quality metabolic models is a laborious and time-consuming 

task. Automatic reconstruction tools, which execute the four stages described 

above, have been developed to accelerate the process of generating metabolic 

models (e.g., ModelSEED/KBase (Henry et al. 2010) (Knowledgebase 2016), 

RAVEN Toolbox (Agren et al. 2013), Pathway Tools (Karp et al. 2016), PyFBA 

(Cuevas et al. 2016), or Scrumpy (Poolman 2006)). The resulting metabolic 

networks generally include more genes and consist of more reactions and 

metabolites than manually reconstructed models. Partly as a consequence of this, 

automatically generated models often contain blocked reactions (i.e., reactions that 

cannot carry any flux) and dead-end metabolites (i.e., metabolites that cannot be 

produced or consumed). Automated reconstruction methods provide only draft 

networks, which cannot perform all metabolic capacities of the target organism. 

Hence, they need further manual refinement. However, with the availability of more 

manually curated networks and genome sequences that can serve as templates, 

automated reconstruction tools can generate more accurate metabolic networks 

and substantially reduce the amount of time needed for a high-quality metabolic 

model (Brandl and Andersen 2015; Notebaart et al. 2006). 

5.4.1  Contribution of Manuscript 2 to automatically generate more accurate 

metabolic networks 

One of the main limitations of automated reconstruction tools is that they only use 

gap-filling methods to ensure the viability of the investigated metabolic network. 

This crucial gap-filling step often adds reactions without supporting evidence 

(Cuevas et al. 2016). Furthermore, these tools do not allow to automatically employ 

datasets derived from high-throughput methods (e.g., gene knock-outs, growth 

data on different media), which are typically utilized during manual model 

reconstruction. These limitations lead to less accurate genome-scale metabolic 

models, which require substantial manual curation to reach the prediction 

capabilities of careful manual reconstructions.  

To accelerate the reconstruction of genome-scale metabolic models, we 

developed a pipeline that employs metabolic data from closely related organisms 
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and adds information from different metabolic databases (i.e., KBase 

(Knowledgebase 2016), TransportDB (Ren, Chen, and Paulsen 2007), and KEGG 

(Kanehisa et al. 2016)). At each step, information on the metabolic function of each 

gene from the previous step is superseded by newer information (which is deemed 

more accurate and/or reliable). In the final step, the draft metabolic network is 

refined with the GlobalFit algorithm introduced in Manuscript 1 by employing 

genome-wide gene knock-out and nutritional environment data. Using this pipeline, 

we reconstructed metabolic networks for three different Streptococci strains. The 

resulting genome-scale metabolic models are of a quality comparable to that of 

manually curated models. Furthermore, the reconstructed models successfully 

predict amino acid auxotrophy, growth on different nutritional environments, and 

potential drug targets. 

5.4.2  Energy generating cycles in metabolic network reconstructions 

The solution space of constraint-based methods (e.g., FBA) can contain type-II 

“extreme pathways” or “elementary flux modes” (Sridharan et al. 2015; Wiback and 

Palsson 2002). These pathways are also called futile cycles and consume energy 

to drive cycles which consist only of internal metabolites (i.e., no external nutrient 

is exchanged with the outer environment, while energy is drained from an internal 

reservoir). Futile cycles are not caused by erroneous constraint-based methods, 

but have been shown to exist in vivo (e.g., organisms that live in an energy rich 

environment need to dissipate energy (Reidy and Weber 2002; Russell 2007)).  

Energy generating cycles (EGCs) can be considered as futile cycles running 

in reverse. Instead of consuming energy, they are capable of generating energy 

without the uptake of any external metabolite. Obviously, these cycles are 

thermodynamically impossible and can massively distort the energy metabolism of 

the affected metabolic model if they occur in simulations.  

5.4.2.1 Contribution of Manuscript 3 to detect and automatically remove 

energy generating cycles 

So far, no systematic method existed to identify and eliminate EGCs. In 

Manuscript 3, we introduce a variant of FBA to detect such cycles. Subsequently, 
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we systematically investigate genome-scale metabolic models from three different 

databases, BiGG (Schellenberger et al. 2010), MetaNetX (Ganter et al. 2013), and 

ModelSEED (Henry et al. 2010), for the occurrence of EGCs. 

Our approach reveals that EGCs are often found in automatically 

reconstructed models, while only few manually curated networks suffered from 

EGCs. In many of the identified EGCs, the combination of several transport 

reactions leads to the build-up of a metabolite gradient (e.g., of H+ ions), which can 

be further utilized for the generation of energy-rich metabolites (e.g., by ATP-

synthase). 

A modified version of the GlobalFit algorithm introduced in Manuscript 1 was 

successfully applied to remove EGCs. This version solves a wild-type growth case 

with the biomass reaction as the objective function simultaneously with a non-

growth case with the flux through EGCs as the objective function.  

In many cases, GlobalFit first suggested to remove the ATP-synthase. While 

this network modification successfully removed all EGCs, it also blocked the ability 

to produce ATP by respiration. In a second run, we did not allow the removal of the 

ATP-Synthase. Now, typically up to five reactions needed to be removed to 

eliminate all EGCs. Removing such cycles led to a decreased overall biomass 

production, typically by about 25%. This observation is not surprising, as EGCs can 

produce energy without the uptake of any nutrient, thus massively distorting the 

energy metabolism and erroneously inflating biomass production. 
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5.5  Outlook 

Outlook 

In future applications, GlobalFit cannot only be used to improve metabolic 

models, but it could be employed to engineer organisms that produce a desired 

product. GlobalFit can suggest the removal of reactions in a metabolic model that 

lead to a desired phenotype; these could subsequently be realized by knocking out 

the corresponding genes in the genome of the organism of interest. 

Furthermore, integrating the pipeline for the reconstruction of high-quality 

metabolic models described in Manuscript 2 – in particular the utilization of high-

throughput gene knock-out or of biolog (Shea et al. 2012) data by GlobalFit – , and 

the procedures for EGC detection and removal described in Manuscript 3 into 

automatic reconstructing tools (Henry et al. 2010; Overbeek et al. 2005; 

Latendresse et al. 2012; Cuevas et al. 2016) would have the potential not only to 

drastically accelerate the reconstruction process without extensive manual 

curation, but also might help to generate more reliable genome-scale metabolic 

models in the future. 
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5.6  Theses 

Theses 

• Previous algorithms for improving the predictive power of genome-

scale metabolic networks only considered one case at a time, and for 

each kind of modification (i.e., addition, removal, reversibility changes 

of reactions; modification of the biomass reaction) a different algorithm 

had to be used. These limitations can lead to network changes that are 

not globally minimal, or the network modifications of a case solved 

earlier might prohibit the solution of a subsequently considered case. 

Solving only one case where the metabolic network should not grow 

requires the exclusion of the removal of essential reactions. This 

restricts possible network refinement steps that combine the removal 

of an essential reaction with the addition of a reaction to the metabolic 

network.  

 

• Reconstructing genome-scale metabolic networks is still a major 

bottleneck of constraint-based modeling. Automatic reconstructing 

tools have been developed to accelerate this process. However, 

automatically reconstructed metabolic models often have a low 

predictive power. One limitation of these tools is that they only consider 

gap-filling methods and hence only growth cases. By employing 

growth and non-growth data, more accurate and reliable genome-

scale metabolic models can be reconstructed automatically.  

 

• Energy generating cycles can charge energy containing metabolites 

without the uptake of any nutrients. Thus, EGCs can have a huge 

effect on the in silico metabolism of metabolic models, and the 

elimination of EGCs is crucial for the proper functioning of the modeled 

energy metabolism.  
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