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Preface

This document was prepared according to the ‘Promotionsordnung der
Mathematisch-Naturwissenschaftlichen Fakultat der Heinrich-Heine-Universitat
Dusseldorf vom 15.06.2018‘. Three manuscripts are presented along with an
introduction that puts them into the broader context of the current literature.
Additionally, an explanation of the contributions and a short discussion of the
content and potential future research directions is provided with each manuscript.

Manuscript 1 describes GlobalFit, a novel bi-level optimization algorithm, and
its application to genome-scale metabolic models to improve their predictive power.
It was published as Hartleb D, Jarre F, Lercher MdJ. Improved Metabolic Models for
E. coli and Mpycoplasma genitalium from GlobalFit, an Algorithm That
Simultaneously Matches Growth and Non-Growth Data Sets. PLoS Comput Biol.
2016 Aug 2;12(8).

Manuscript 2 follows up on the algorithm introduced in Manuscript 1. A
pipeline is introduced, which employs information from different metabolic sources,
and can help to accelerate the reconstruction of high-quality genome-scale
metabolic models. This pipeline was successfully applied to three different
Streptococci strains. Manuscript 2 was submitted to PNAS as Hartleb D, Lercher
MJ. Automated high-quality reconstruction of metabolic networks from high-
throughput data. It was rejected after peer review and is currently under preparation

for resubmission.

Manuscript 3 describes a novel approach to detect and remove energy
generating cycles in metabolic models. These cycles can severely affect the results
obtained by constraint-based methods; they are commonly found in automatically
reconstructed metabolic networks. It was published as Fritzemeier CJ, Hartleb D,
Szappanos B, Papp B, Lercher MJ. Erroneous energy-generating cycles in
published genome scale metabolic networks: Identification and removal. PLoS
Comput Biol. 2017 Apr 18;13(4).






Summary

Genome-scale metabolic models are reconstructed for many organisms. They are
routinely used to predict metabolic behavior (O'Brien, Monk, and Palsson 2015),
simulate evolutionary adaptation (Pal et al. 2006), and help to design organisms of
bioengineering interest (Schirmer et al. 2010). However, the quality of metabolic
models is highly variable.

Typically, metabolic models are refined by comparing in silico predictions to
in vivo experiments (e.g., viability of gene knock-outs or growth in different
nutritional environments) (Thiele and Palsson 2010). Several different algorithms
have been developed to resolve the resulting inconsistencies between prediction
and experiment (Satish Kumar, Dasika, and Maranas 2007; Zomorrodi et al. 2012;
Thiele, Vlassis, and Fleming 2014; Kumar and Maranas 2009). However, these
tools can iteratively correct only one inconsistency at a time. Thus, the total number
of network changes may not be globally optimal, a modification introduced earlier
might prevent the resolution of other inconsistencies, or a potential solution might
not be found because the combination of different types of network changes is not

supported.

In Manuscript 1, a novel bi-level optimization algorithm — GlobalFit — is
introduced (Hartleb, Jarre, and Lercher 2016). GlobalFit is the first algorithm that
can simultaneously solve multiple inconsistencies at a time and allows the
combination of different network modifications. We applied the algorithm to the
genome-scale metabolic model for Mycoplasma genitalium (Suthers et al. 2009),
improving the overall accuracy for viability predictions from 87.3% to 97.3%.

Interestingly, solving all inconsistencies at a time resulted in the same
network changes as iteratively solving each erroneous prediction together with a
corresponding counter-case, while the overall time for solving decreased
dramatically. Applying this subset strategy to the much better curated
genome-scale metabolic model for Escherichia coli (Orth et al. 2011), we could

again substantially improve the accuracy, from 90.8% to 95.4%.

Reconstructing metabolic models is still a laborious and time-consuming task.
To accelerate this process, automatic reconstruction algorithms have been

11



0 SUMMARY

developed. However, predictions by automatically reconstructed networks
generally have low accuracy and still need to be refined manually.

In Manuscript 2, a novel pipeline is introduced, which gathers information from
metabolic networks from closely related organisms and metabolic databases (i.e.,
KBase (Knowledgebase 2016), TransportDB (Ren, Chen, and Paulsen 2007),
KEGG (Kanehisa et al. 2016)). At each step, the metabolic information of each
gene is replaced by newer information. Finally, the draft metabolic network is
refined with GlobalFit based on genome-wide gene knock-out data.

We demonstrate the applicability of this pipeline by reconstructing genome-
scale metabolic models for three different Streptococci genomes. The predictive
power of the resulting metabolic models was of the same quality as for manually
curated models (e.g., E. coliiJO1366 (Orth et al. 2011)).

In addition to the low predictive power of automatically reconstructed
metabolic models, they often contain internal energy generating cycles. These
cycles can charge energy-rich metabolites such as ATP without the uptake of any
nutrients. Thus, they can severely affect the energy metabolism of the model and
can unrealistically inflate the maximal biomass production. However, no systematic

method to eliminate those cycles had been developed previously.

In Manuscript 3, a variant of FBA is described to identify energy generating
cycles, and a modified version of GlobalFit is subsequently used to eliminate the
detected cycles (Fritzemeier et al. 2017). We could identify energy generating
cycles in 65% of metabolic networks from three different databases (BiGG
(Schellenberger et al. 2010), MetaNetX (Ganter et al. 2013), and ModelSEED
(Henry et al. 2010)). In the following step, GlobalFit could fully eliminate energy
generating cycles in 94% of the affected metabolic models.

12
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Zusammenfassung

Metabolische Stoffwechselmodelle, die das ganze Genom eines Organismus
umfassen, wurden flr viele Spezies erstellt. Sie werden regelmé&Big benutzt um
metabolische Eigenschaften vorherzusagen (O'Brien, Monk, and Palsson 2015),
um evolutiondre Anpassung zu simulieren (Pal et al. 2006) und um Organismen
mit besonderem biotechnologischen Eigenschaften zu entwerfen (Schirmer et al.
2010). Jedoch schwankt die Qualitat von metabolischen Modellen stark.

Typischerweise werden metabolische Stoffwechselmodelle durch den
Vergleich von in silico Vorhersagen und in vivo Experimenten verbessert (z.B.:
Lebensfahigkeit nach Knockouts von Genen oder Wachstum auf verschiedenen
Nahrmedien) (Thiele and Palsson 2010). Es wurden verschiedene Algorithmen
entwickelt um die bestehenden Unstimmigkeiten zwischen Vorhersage und
Experiment zu beseitigen (Satish Kumar, Dasika, and Maranas 2007; Zomorrodi
et al. 2012; Thiele, Vlassis, and Fleming 2014; Kumar and Maranas 2009). Jedoch
kénnen diese Methoden iterativ nur jeweils einen Widerspruch auflésen. Daher
kann es sein, dass die absolute Anzahl an Netzwerkanderungen nicht global
optimal ist. DarGber hinaus kann eine eingebaute Modifikation die Auflésung
weiterer Unstimmigkeiten verhindern oder eine mégliche Lésung kann erst gar
nicht gefunden werden, da die Kombination von verschiedenen

Netzwerk&nderungen nicht méglich ist.

In Manuskript 1 wird ein neuartiger bi-level Optimierungsalgorithmus
— GlobalFit — vorgestellt (Hartleb, Jarre, and Lercher 2016). GlobalFit ist der erste
Algorithmus, der mehrere Unstimmigkeiten gleichzeitig auflésen kann und die
Kombination von verschiedenen Netzwerkmodifikation erlaubt. Wir haben diesen
Algorithmus auf das genomumfassende metabolische Netzwerk von
Mycoplasma genitalium angewendet (Suthers et al. 2009) und konnten dabei die
absolute Vorhersagegenauigkeit von 87,3% auf 97,3% verbessern.

Interessanterweise flhrte das gleichzeitige Korrigieren aller Unstimmigkeiten
zu den gleichen Netzwerkmodifikation wie das iterative Korrigieren jeder einzelnen
Unstimmigkeit zusammen mit einem entsprechenden Gegenfall. Hierbei sank die
absolut bendtigte Rechenzeit jedoch drastisch. Durch Anwendung dieser

15



0 ZUSAMMENFASSUNG

Teilgruppenstrategie auf das viel besser ausgearbeitete genomumfassende
metabolische Netzwerk von Escherichia coli (Orth et al. 2011) konnten wir
wiederum die Vorhersagegenauigkeit wesentlich verbessern, von 90,8% auf
95,4%.

Das Erstellen von metabolischen Netzwerken ist heutzutage immer noch eine
aufwendige und zeitraubende Aufgabe. Um diesen Prozess zu beschleunigen,
wurden Algorithmen zur automatischen Netzwerkerstellung entwickelt. Jedoch
haben automatisch erstellte Netzwerke haufig eine nur geringe
Vorhersagegenauigkeit und bedlrfen weiterer manueller Nachbesserungen.

In Manuskript 2 wird eine neue algorithmische Pipeline vorgestellt, die
Informationen von metabolischen Netzwerken nah verwandter Organismen und
von metabolischen Datenbanken (KBase (Knowledgebase 2016), TransportDB
(Ren, Chen, and Paulsen 2007), KEGG (Kanehisa et al. 2016)) sammelt. In jedem
Verarbeitungsschritt werden die metabolischen Informationen von jedem Gen mit
neueren Informationen Uberschrieben. AbschlieBend wird die Rohfassung des
metabolischen Netzwerks mit GlobalFit auf der Basis von genomumfassenden

Gen-Knockout-Datensatzen verfeinert.

Wir zeigen die Anwendbarkeit dieser Pipeline durch die Erstellung von
genomumfassenden metabolischen Netzwerken fir drei verschiedene
Streptococci-Spezies. Die Vorhersagegenauigkeit der erstellten metabolischen
Netzwerke ist vergleichbar mit manuell Gberarbeiteten metabolischen Netzwerken
(z.B.: E. coliiJO1366 (Orth et al. 2011)).

Zusétzlich zu der niedrigen Vorhersagekraft automatisch erstellter
metabolischer Modelle enthalten diese haufig energiegenerierende Zyklen. Diese
internen  Zyklen kdnnen ohne jegliche Aufnahme von Nahrstoffen
Energiemetabolite  aufladen. Daher kdnnen sie den  modellierten
Energiestoffwechsel des simulierten Organismus erheblich beeinflussen und die
maximale Biomasseproduktion unrealistisch erhdhen. Jedoch existiert bisher keine
systematische Methode um solche Zyklen zu entfernen.

In  Manuskript 3 wird eine Variante von FBA beschrieben um
energieerzeugende Zyklen zu identifizieren; eine modifizierte Version von

GlobalFit wird vorgestellt, die anschlieBend die gefundenen Zyklen entfernt
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(Fritzemeier et al. 2017). Wir konnten energieerzeugende Zyklen in 65% der
metabolischen Netzwerke aus drei verschiedenen Datenbanken (BiGG
(Schellenberger et al. 2010), MetaNetX (Ganter et al. 2013), und ModelSEED
(Henry et al. 2010)) finden. Im Anschluss konnte GlobalFit energieerzeugende
Zyklen in 94% der betroffenen metabolischen Netzwerke vollstandig entfernen.
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Introduction

5.1 Metabolic Models

Metabolism and its underlying biochemistry have been investigated for centuries,
and deep knowledge has been compiled. However, metabolic components were
mostly analyzed individually, which made it difficult to characterize cellular function
as a system. The development and availability of genome sequencing technologies
in recent years changed the focus of biological investigations from a gene-centred
view of a few very well studied genes and biological processes to a genome-scale
point of view. This allowed the identification of practically all enzyme encoding
genes involved in the conversion of metabolites. Combining all metabolic
knowledge about an organism with its genomic information led to the construction
of metabolic models (O'Brien, Monk, and Palsson 2015; Palsson 2009; Cazzaniga
et al. 2014).

While the first metabolic models simulated central carbon metabolism (Fell
and Small 1986; van Gulik and Heijnen 1995), the first genome scale metabolic
model was reconstructed for Haemophilus influenzae in 1999 (Edwards and
Palsson 1999). Through new methods and the availability of more experimental
data, metabolic models have become increasingly comprehensive and precise. By
now, genome scale metabolic models exist not only for bacteria and archaea (Feist
et al. 2006), but also for uni- and multicellular eukaryotes, including plants (de
Oliveira Dal'Molin et al. 2010), fungi (Liu et al. 2013), and even human (Thiele et
al. 2013). The number of included metabolites ranges from 274 for Mycoplasma
genitalium (Suthers et al. 2009) to 5063 in human (Thiele et al. 2013).

Metabolic models have been successfully applied to a wide scope of
biological investigations. For example, genome-scale metabolic models were used
to simulate the reductive evolution of the endosymbiont Buchnera aphidicola (Pal
et al. 2006), and organisms have been successfully engineered to overproduce
desired metabolites (strain optimization) (Thakker et al. 2012). In synthetic biology,
new enzymes and biosynthesis pathways to enable the production of a new
component have been identified through modeling and were subsequently
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0 INTRODUCTION

introduced experimentally (Schirmer et al. 2010). Metabolic models have been
used to predict the necessary gene knock-outs to overproduce a desired target
metabolite (Burgard, Pharkya, and Maranas 2003; Copeland et al. 2012). Potential
drug targets of the opportunistic pathogen Vibrio vulnificus were discovered by
employing metabolic networks (Kim et al. 2011; Chavali et al. 2012). Host-
pathogen interactions of human and Mycobacterium tuberculosis have been
studied with the help of constraint-based models (Bordbar et al. 2010). With the
expanding scope of synthetic biology, it is likely that metabolic models will become
increasingly important for the planning of complex genetic interventions.
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Mathematical Representation

5.2 Mathematical Representation

Metabolic networks are formally described by a mathematical model. A
stoichiometric matrix represents the metabolites (rows) and the biochemical
reactions (columns) that constitute the metabolism of the organism of interest.
Each metabolite is associated with a compartment, which defines its localization.
Every network contains at least two compartments, the cytosol and the
extracellular space (Martins Conde Pdo, Sauter, and Pfau 2016; Cazzaniga et al.
2014). The prevalent techniques to analyze metabolic models are constraint-based
methods, whereof flux balance analysis (FBA) (Orth, Thiele, and Palsson 2010) is
the most popular (Reed 2012). These methods employ constraints on the
metabolic model that are derived from simple physical laws.

The metabolic physiological state of an organism can be mathematically
described by reaction rates (fluxes) and metabolite concentrations. Reaction rates
are governed by complicated, non-linear mathematical functions including
metabolite concentrations and enzyme kinetics. It would be extremely challenging
to compute these for whole cell models; moreover, many of the required
parameters are still not known. Constraint-based models overcome this problem
by assuming a steady state condition (i.e., every internal metabolite that is
produced must also be consumed at the same rate) (Llaneras and Pico 2008;
Durot, Bourguignon, and Schachter 2009).

Each reaction is assigned an upper and lower bound, which limit the maximal
and minimal flux that can be carried by the reaction. These bounds can be related
to the turnover rate and abundance of the corresponding enzyme. In general, these

. l
bounds are unknown and are fixed to a large value (e.g., -1000 % for lower

mmol
gDW+h

bounds and 1000

for upper bounds). The lower bound of reactions that are

known to proceed in one direction only (irreversible reactions) are constrained to

zero (Kummel, Panke, and Heinemann 2006; Llaneras and Pico 2008).

To allow metabolites to be included or excluded from the outer environment,
exchange reactions are added to the metabolic network. These reactions simply
convert one metabolite to nothing or vice versa. Setting the lower bounds of
exchange reaction to lower than zero allows the uptake of the corresponding
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0 INTRODUCTION

metabolite, thereby simulating specific media compositions. Conversely,
metabolites of a metabolic network can be mathematically eliminated by secretion
(Durot, Bourguignon, and Schachter 2009).

It can be assumed that naturally occurring metabolic systems have been
optimized by natural selection to fulfill a specific function, such as the production of
all metabolites needed for cellular growth (biomass). The balanced production of
all cell components needed for growth (including DNA, RNA, amino acids, cell wall
components, lipids, sterols, essential cofactors, and secondary metabolites) can
be formulated as an additional, hypothetical “biomass reaction” (Dreyfuss et al.
2013; O'Brien, Monk, and Palsson 2015). Constraint-based methods maximize this
reaction. The maximal biomass production represents the maximal possible yield
of biomass production from all available nutrients (Feist and Palsson 2010).
Beyond the biomass reaction, other objective functions have been applied
successfully with FBA, such as maximizing metabolite production, and minimizing
nutrient uptake or ATP production (Llaneras and Pico 2008).

To more faithfully reflect biology, additional constraints can be imposed on
metabolic networks. Conventionally, a non-growth associated maintenance
reaction (NGAM) is added to the metabolic network, which reflects the ATP
consumption needed for maintaining homeostasis independent from growth
(e.g., turgor pressure (Feist et al. 2007), right ionic strength (Stouthamer and
Bettenhaussen 1973)). The lower bound of this reaction is constrained to a value
greater than zero, forcing the metabolic network to consume ATP regardless of
biomass production. Additionally, the ATP requirement for growth is included in the
biomass reaction (Durot, Bourguignon, and Schachter 2009).

To link genes with reactions, gene-protein-reaction associations (GPR) are
included in the metabolic network. For instance, these rules record if a gene
functions as an isoenzyme or in a multi-protein complex. GPRs are required to
perform in silico gene-deletion studies (Zomorrodi et al. 2012).

Many additional constraint-based methods that employ non-linear objective
functions have been introduced. For example, regulatory on/off minimization
(ROOM) (Shlomi, Berkman, and Ruppin 2005) minimizes the number of regulatory
changes, while minimization of metabolic adjustments (MOMA) (Segre, Vitkup, and
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Church 2002) minimizes the overall flux change between a wild-type and a mutant
strain. ROOM uses mixed-integer linear programming (MILP), while MOMA
employs quadratic programming (QP) (Zomorrodi et al. 2012; Copeland et al.
2012).

The simplicity of constraint-based methods allows fast in silico computation
of genome-scale metabolism, because all variables are linear and thus fast linear
programming (LP) optimization techniques can be applied. But this simplicity also
leads to a few drawbacks. In general, constraint-based methods ignore the
influence of regulation, transcription, metabolite concentration, and enzyme
kinetics, each of which can have a huge impact on the metabolism of an organism.
Furthermore, metabolic models in general contain more reactions than
metabolites. Thus, the mathematical equation system is underdetermined,
resulting in a multidimensional solution space of the optimization problem. While
the actual objective value in many cases reflects the metabolic capacities of the
organism, a single optimal flux distribution is far from unique, making its
interpretation difficult (Lewis, Nagarajan, and Palsson 2012; Simeonidis and Price
2015).

A number of different computational environments are available to run
constraint-based analyses on metabolic networks (e.g., COBRA (Schellenberger
et al. 2011; Ebrahim et al. 2013), SyBiL (Gelius-Dietrich et al. 2013)), which apply
commercial (e.g., CPLEX, GUROBI) and non-commercial (e.g., Open Source Gnu
Linear Programming Kit (GLPK)) mathematical solvers to find solutions for the
corresponding optimization problems.
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5.3 Reconstruction process of metabolic models

5.3.1 Stage one of reconstructing metabolic models

The reconstruction process can be divided into four stages. In the first stage, a
draft metabolic network is generated based on the genomic content of the target
organism. The genome is mapped against a database of known metabolic
functions (e.g., KEGG (Kanehisa et al. 2016), MetaCyc (Caspi et al. 2016), or BiGG
(Schellenberger et al. 2010)), or metabolic properties of the organism are obtained
by its gene annotation (e.g., enzyme commission (EC) numbers or gene ontology
classifications (GO) (Gene Ontology 2015)). This first draft network additionally
contains all GPR rules associated with genes that were used for generating the
metabolic model (Hamilton and Reed 2014; Thiele and Palsson 2010).

5.3.2 Stage two of reconstructing metabolic models

In the second stage, the consistency of the draft metabolic network is evaluated
and where necessary curated. Each reaction must be checked for correct mass
and charge balance. The GPR association of each reaction must be verified
(Hamilton and Reed 2014).

Another part of this stage is to add transport reactions, which allow the uptake
and secretion of metabolites and thus allow to simulate specific media
compositions on which the target organism is known to grow. Identifying the correct
transporters is difficult, because many transporters are highly homologous to each
other, and small differences in sequence can change specificity to individual
substrates (Cuevas et al. 2016; Marger and Saier 1993).

A crucial step in stage two of metabolic network reconstruction is to infer a
suitable biomass reaction. Biomass components and precursors are obtained from
the literature or examined experimentally and are quantified in their proportions
(Cazzaniga et al. 2014). Additionally, gene knock-out data and growth assays on
different growth media can be used to determine all biomass components which
are really needed for growth or proliferation (Feist et al. 2009). Finally, the flux

through the biomass reaction is scaled to the observed growth rate of the
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investigated organism (O'Brien, Monk, and Palsson 2015). Determining an
accurate biomass reaction is still a challenging task, because the organism might
not have evolved to be in an optimal state and the biomass objective function is
likely to be environment-dependent (Yurkovich and Palsson 2016; Feist and
Palsson 2010).

Furthermore, the growth and non-growth associated maintenance reactions
must be set (ATP is utilized at a non-zero rate even by non-growing cells). These
parameters are usually determined by fitting in silico growth yields to observed
experimental values (Durot, Bourguignon, and Schachter 2009; Reed, Famili, et al.
2006).

5.3.3 Stage three of reconstructing metabolic models

In stage three, the metabolic model is converted into a mathematical model, which
is used for further investigations. Systems biology tools for analyzing and
simulating metabolic models (e.g., COBRA (Schellenberger et al. 2011) or SybiL
(Gelius-Dietrich et al. 2013)) usually can import different metabolic model formats.
However, the most common format to store and distribute metabolic models is the
Systems Biology Markup language (SBML) (Hucka et al. 2003; Hamilton and Reed
2014).

5.3.4 Stage four of reconstructing metabolic models

In the final stage, the reconstructed metabolic model is validated against
experimental datasets to confirm its correct biological behavior and predictive
capabilities; e.g., if all experimentally observed products can be secreted by the
metabolic model in silico, if predicted and observed viability of gene knock-outs
agree, and if all biomass precursor can be produced (Cazzaniga et al. 2014).

Furthermore, additional analyses can be performed, such as identifying
metabolic dead ends, blocked reactions and gaps in metabolic pathways. The
results can point to incomplete parts of the investigated metabolic network
(Hamilton and Reed 2014).

Comparing experimental observations and in silico predictions generally
leads to four cases:
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(i) true positive prediction (TPp), i.e., the observation and the prediction
both agree that a strain is viable in the tested condition;

(i) true negative prediction (TNp), i.e., metabolic network and experiment
both predict non-growth;

(i)  false positive prediction (FPp), i.e., the metabolic network erroneously
predicts viability while the experiment revealed lethality;

(iv)  false negative prediction (FNp), i.e., the metabolic network falsely
predicts lethality while in the experiment a viable organism was
observed.

Stages two to four of the model reconstruction should be repeated until the
predictions of the metabolic network reconstruction is in line with experimental

observations (Hamilton and Reed 2014; Joyce and Palsson 2008).

5.3.4.1 Measurements of accuracy

The predictive power of a metabolic network for strain viability is usually measured
in terms of its accuracy. Accuracy is assessed by dividing the sum of true positive
and true negative predictions by the number of all considered predictions.

Alternatively, the Matthews correlation coefficient is a more balanced method
to measure accuracy of binary classifications (Matthews 1975); mathematically, it
is equivalent to calculating the Pearson’s correlation coefficient between two binary
vectors. For example, the metabolic network iPS189 (Suthers et al. 2009) of
Mycoplasma genitalium consists almost only of essential genes. The reported
accuracy of this model is 87.3%. Using a trivial model that predicts non-growth for
all gene knock-outs would result in a better accuracy of 90.5%; however, the
Matthews correlation coefficient would at the same time decrease from 0.56 to

zZero.

5.3.4.2 Reasons for inaccuracies of in silico predictions for in vivo behavior

There are many different reasons for inconsistencies between in silico predictions
and in vivo observations. They range from incorrect metabolic models over

experimental errors to algorithmic shortcomings:

28



Reconstruction process

1)

Reactions are also needed for the degradation or recycling of metabolites.
Removing one of these reactions does not affect the production of biomass,
but violates the steady state condition required by FBA. The rise of
concentration of these metabolites in vivo may not affect growth, or they
are further metabolized or transported out of the cell by different
mechanisms (Orth et al. 2011).

Isoenzymes or alternative pathways that can carry out the same function
are missing, or the reversibility of reactions is not correctly modeled (Orth
et al. 2011). Furthermore, it has been shown that enzymes can have
unknown low-level side activities. This underground metabolism can
contribute to the metabolic capacity of an organism, but is often not
sufficiently included in metabolic networks (Notebaart et al. 2014).
Additionally, many reactions in a metabolic network miss a gene
association. These so-called orphan reactions are needed to allow growth,
but the catalyzing enzyme is unknown (Orth and Palsson 2010). 30% to
40% of all known enzymatic functions are estimated to be processed by
orphan reactions (Lespinet and Labedan 2006; Orth and Palsson 2012).
Metabolites are erroneously included in the biomass reaction. All genes that
encode for reactions that are needed to produce or consume a metabolite
that is erroneously included in the biomass reaction will then erroneously
be deemed essential.

Isoenzymes or alternative pathways contained in the model exist in vivo,
but do not carry sufficient flux in vivo (e.g., isoenzymes are not expressed,
enzymes are inefficient) (Orth et al. 2011).

Reactions are erroneously assumed to be reversible. Directionality of a
reaction depends on thermodynamics. In many cases the required
parameters (in particular the concentrations of substrate and product) are
not known or were measured under different conditions. Thus, many
effectively irreversible reactions are labeled as bidirectional because of
missing knowledge (Reed 2012).

Biomass components that are catalyzed by FPp are not included in the
biomass reaction. Genes that encode for reactions that are needed to utilize
these components are not essential. The reactions can even be
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unconnected to the metabolic network and therefore be unable to carry any
flux (blocked) (Tervo and Reed 2013).

Genes encode enzymes involved in degrading toxic metabolites. For S.
aureus and B. subtilis, it has been shown that early acting genes of teichoic
acid biosynthesis are non-essential, while knock-outs of genes that encode
enzymes of later steps in this pathway are lethal. The reason for this
counter-intuitive behavior is that deleting a late acting downstream gene
will lead to the accumulation of a toxic metabolite further upstream of the
pathway. If an early acting gene is removed, the metabolite cannot be
produced. Consequently, a double gene knock-out of a downstream and
an upstream gene is not lethal (D'Elia, Millar, et al. 2006; D'Elia, Pereira, et
al. 2006).

Mutants did not have enough time to compensate for the gene deletion.
Regulatory changes can restore the organism’s capacity to produce
sufficient biomass (Herring et al. 2006). For E. coli, it has been shown that
after changing the growth media it took over 700 generations to achieve the
growth yield that was predicted in silico (Ibarra, Edwards, and Palsson
2002). Accordingly, some genes which were deemed to be essential based
on experiments are in fact unessential after regulatory compensation
(O'Brien, Monk, and Palsson 2015).

Many microbial organisms are optimized for maximal growth rate. Faster
growth can be achieved with faster, but less efficient pathways (Teusink,
Bachmann, and Molenaar 2011). FBA calculates the maximum yield per
input and not per time. Thus, flux predictions by FBA always use the most
efficient pathways (those with the highest biomass yield per limiting
nutrient), while the pathways used in vivo may have lower yield but allow
faster growth (Schilling et al. 1999). For example, L. plantarum usually
secretes lactate, but is also capable of mixed acid fermentation, which
would produce more ATP per glucose. However, this pathway is only used
under limited substrate availability. FBA predictions of the genome scale
metabolic model for L. plantarum utilized the mixed acid fermentation in all
circumstances instead of the observed lactate secretion (Teusink et al.
2006).
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10) Erroneous classification of genes as essential by the experiments can also
complicate the analysis or even make it impossible to reconcile in silico
predictions with the data (D'Elia, Pereira, and Brown 2009). TN-seq
methods (van Opijnen, Bodi, and Camilli 2009) do not only produce mutants
that were truly unable to grow in the specified environment, but also
mutated organisms that have a fithess disadvantage. Because the mutants
are selected en masse in a competitive environment (Khatiwara et al.
2012), the less fit mutants (e.g., those with lower yield) can be
underrepresented or completely disappear in the results (Le Breton et al.
2015).

11) On the other hand, genes can also be falsely identified as non-essential
due to partial gene inactivation. This phenomenon frequently occurs in
transposon mediated gene knock-out studies. Genes may not entirely lose
their function after an insertion of a transposon, and hence the experiment
does not truly represent a full knock-out (Ge and Xu 2012).

12) FBA neglects regulation. Reactions that are used by FBA can be not
expressed due to regulation, or a metabolite-enzyme interaction inhibits the
functioning of the enzyme (O'Brien, Monk, and Palsson 2015; Durot,
Bourguignon, and Schachter 2009).

13) Furthermore, FBA does not consider dilution of metabolites. For example,
in S. cerevisiae quinones must in vivo not only be recycled, but must also
be replenished to compensate dilution; in contrast, in silico quinones are
only recycled. This leads to FPp of the genes involved in quinone
biosynthesis (Dreyfuss et al. 2013).

14) Constraint-based models do not consider kinetic parameters, which can
significantly influence the rate of conversion of metabolites (Durot,
Bourguignon, and Schachter 2009).

5.3.4.3 Algorithms for improving in silico predictions

Many of the above-mentioned inaccuracies between in silico predictions and
in vivo observations can only be resolved through manual curation. In particular,

erroneous experimental results can only be revealed by expert knowledge.
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Nevertheless, algorithms have been developed which try to reconcile

in vivo / in silico inconsistencies.

Several algorithms exist that reconcile FNp. These methods are generally
based on gap-filling approaches. Gap-filling algorithms (e.g., Gap-Fill/Gap-Find
(Satish Kumar, Dasika, and Maranas 2007), SMILEY (Reed, Patel, et al. 2006))
add reactions from a database of potential reactions (e.g., KEGG (Kanehisa et al.
2016), MetaCyc (Caspi et al. 2016), BiGG (Schellenberger et al. 2010)) or make
existing non-reversible reactions reversible to ensure the viability of the metabolic
network (i.e., a positive flux through the biomass reaction). Because these
algorithms try to find the minimal number of reactions that needs to be added, the
underlying mathematical problem is a mixed integer linear optimization problem,
which is challenging to solve computationally (Zomorrodi et al. 2012). A second
approach to reconcile false negative predictions is to remove metabolites from the
biomass reactions (BioMog (Tervo and Reed 2013)), thereby making the genes
non-essential that encode the enzymes needed for generating these metabolites.

Additionally, methods for resolving FPp have been developed. The first such
approach is to remove reactions from the metabolic model. While this seems
superficially similar to gap-filling, the underlying mathematical problem must be
stated as a bi-level optimization problem, which has to be reformulated as a single-
level optimization problem to be solved efficiently. This reformulation results again
in a MILP, but is usually harder to solve than gap-filling methods, because more
linear and non-linear binary variables are introduced. So far only one bi-level
algorithm has been introduced (i.e., GrowMatch (Kumar and Maranas 2009)), with
a few further methods derived from this algorithm (Zomorrodi and Maranas 2010;
Henry et al. 2009). Moreover, bi-level optimization algorithms have been
successfully applied to predict gene knock-outs in a target organism for
overproduction of a desired metabolite (e.g., OptKnock (Burgard, Pharkya, and
Maranas 2003), OptForce (Ranganathan, Suthers, and Maranas 2010)).

Similar to reconciling false negative predictions, modifying the biomass
reaction can also resolve false positive predictions. In these cases, additional
metabolites have to be added to the biomass reactions, thereby making the genes

essential that encode the enzymes responsible for metabolizing these additional
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metabolites. This approach has been successfully applied (Kumar and Maranas
2009; Tervo and Reed 2013).

5.3.5 Contribution of Manuscript 1 to the refinement of metabolic models

Manuscript 1 presents GlobalFit, a novel bi-level optimization algorithm for refining
metabolic models. While the algorithms mentioned in section 5.3.4. are greedy
algorithms that only consider one erroneous case at a time, GlobalFit is capable of
improving several cases simultaneously. It is thus capable of ensuring the
identification of globally optimal solutions in terms of model fit to experimental data,
which inspired its name. Simultaneously considering all (or a relevant subset of)
growth and non-growth cases simultaneously avoids pitfalls of greedy algorithms.
E.g., reconciling false positive predictions may lead to the removal of essential
reactions, as removing one of these reactions would trivially lead to a non-growing
metabolic network; and by reconciling false negative predictions, a true negative
prediction can become a false positive prediction.

For each special type of inconsistency, a different algorithm was previously
needed. GlobalFit is the first algorithm that combines several refinement strategies:
removals or reversibility changes of existing reactions; additions of reactions to the
model; and removals from and additions to the biomass reaction. Thus, GlobalFit
allows to identify network modifications that a consecutive application of different
refinement algorithms might not find.

We successfully applied GlobalFit to several manually curated metabolic
networks. GlobalFit improved the overall accuracy and the Matthews correlation
coefficient of the iPS189 (Suthers et al. 2009) metabolic model for Mycoplasma
genitalium from 87.3% (MCC=0.56) to 97.9% (MCC=0.86). The small size of the
metabolic network model allowed us to solve all inconsistencies simultaneously.
However, a subset strategy where we solved one inconsistency simultaneously
with a contrasting wild-type case resulted in the same network modifications, while

requiring much less computing time.

Using this subset strategy on the much larger iJO1366 (Orth et al. 2011)
metabolic model for E. coli, which is manually curated and represents “the”
reference genome-scale metabolic network in systems biology, GlobalFit
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enhanced the predictive capability of the iJO1366 metabolic model from 90.8%
(MCC=0.67) to 95.4% (MCC=0.84).
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5.4 Automated reconstruction

Reconstructing high-quality metabolic models is a laborious and time-consuming
task. Automatic reconstruction tools, which execute the four stages described
above, have been developed to accelerate the process of generating metabolic
models (e.g., ModelSEED/KBase (Henry et al. 2010) (Knowledgebase 2016),
RAVEN Toolbox (Agren et al. 2013), Pathway Tools (Karp et al. 2016), PyFBA
(Cuevas et al. 2016), or Scrumpy (Poolman 2006)). The resulting metabolic
networks generally include more genes and consist of more reactions and
metabolites than manually reconstructed models. Partly as a consequence of this,
automatically generated models often contain blocked reactions (i.e., reactions that
cannot carry any flux) and dead-end metabolites (i.e., metabolites that cannot be
produced or consumed). Automated reconstruction methods provide only draft
networks, which cannot perform all metabolic capacities of the target organism.
Hence, they need further manual refinement. However, with the availability of more
manually curated networks and genome sequences that can serve as templates,
automated reconstruction tools can generate more accurate metabolic networks
and substantially reduce the amount of time needed for a high-quality metabolic
model (Brandl and Andersen 2015; Notebaart et al. 2006).

5.4.1 Contribution of Manuscript 2 to automatically generate more accurate
metabolic networks

One of the main limitations of automated reconstruction tools is that they only use
gap-filling methods to ensure the viability of the investigated metabolic network.
This crucial gap-filling step often adds reactions without supporting evidence
(Cuevas et al. 2016). Furthermore, these tools do not allow to automatically employ
datasets derived from high-throughput methods (e.g., gene knock-outs, growth
data on different media), which are typically utilized during manual model
reconstruction. These limitations lead to less accurate genome-scale metabolic
models, which require substantial manual curation to reach the prediction

capabilities of careful manual reconstructions.

To accelerate the reconstruction of genome-scale metabolic models, we
developed a pipeline that employs metabolic data from closely related organisms

35



0 INTRODUCTION

and adds information from different metabolic databases (i.e., KBase
(Knowledgebase 2016), TransportDB (Ren, Chen, and Paulsen 2007), and KEGG
(Kanehisa et al. 2016)). At each step, information on the metabolic function of each
gene from the previous step is superseded by newer information (which is deemed
more accurate and/or reliable). In the final step, the draft metabolic network is
refined with the GlobalFit algorithm introduced in Manuscript 1 by employing
genome-wide gene knock-out and nutritional environment data. Using this pipeline,
we reconstructed metabolic networks for three different Streptococci strains. The
resulting genome-scale metabolic models are of a quality comparable to that of
manually curated models. Furthermore, the reconstructed models successfully
predict amino acid auxotrophy, growth on different nutritional environments, and

potential drug targets.

5.4.2 Energy generating cycles in metabolic network reconstructions

The solution space of constraint-based methods (e.g., FBA) can contain type-ll
“extreme pathways” or “elementary flux modes” (Sridharan et al. 2015; Wiback and
Palsson 2002). These pathways are also called futile cycles and consume energy
to drive cycles which consist only of internal metabolites (i.e., no external nutrient
is exchanged with the outer environment, while energy is drained from an internal
reservoir). Futile cycles are not caused by erroneous constraint-based methods,
but have been shown to exist in vivo (e.g., organisms that live in an energy rich

environment need to dissipate energy (Reidy and Weber 2002; Russell 2007)).

Energy generating cycles (EGCs) can be considered as futile cycles running
in reverse. Instead of consuming energy, they are capable of generating energy
without the uptake of any external metabolite. Obviously, these cycles are
thermodynamically impossible and can massively distort the energy metabolism of
the affected metabolic model if they occur in simulations.

5.4.2.1 Contribution of Manuscript 3 to detect and automatically remove
energy generating cycles

So far, no systematic method existed to identify and eliminate EGCs. In
Manuscript 3, we introduce a variant of FBA to detect such cycles. Subsequently,
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we systematically investigate genome-scale metabolic models from three different
databases, BiGG (Schellenberger et al. 2010), MetaNetX (Ganter et al. 2013), and
ModelSEED (Henry et al. 2010), for the occurrence of EGCs.

Our approach reveals that EGCs are often found in automatically
reconstructed models, while only few manually curated networks suffered from
EGCs. In many of the identified EGCs, the combination of several transport
reactions leads to the build-up of a metabolite gradient (e.g., of H* ions), which can
be further utilized for the generation of energy-rich metabolites (e.g., by ATP-
synthase).

A modified version of the GlobalFit algorithm introduced in Manuscript 1 was
successfully applied to remove EGCs. This version solves a wild-type growth case
with the biomass reaction as the objective function simultaneously with a non-

growth case with the flux through EGCs as the objective function.

In many cases, GlobalFit first suggested to remove the ATP-synthase. While
this network modification successfully removed all EGCs, it also blocked the ability
to produce ATP by respiration. In a second run, we did not allow the removal of the
ATP-Synthase. Now, typically up to five reactions needed to be removed to
eliminate all EGCs. Removing such cycles led to a decreased overall biomass
production, typically by about 25%. This observation is not surprising, as EGCs can
produce energy without the uptake of any nutrient, thus massively distorting the

energy metabolism and erroneously inflating biomass production.
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5.5 Outlook

In future applications, GlobalFit cannot only be used to improve metabolic
models, but it could be employed to engineer organisms that produce a desired
product. GlobalFit can suggest the removal of reactions in a metabolic model that
lead to a desired phenotype; these could subsequently be realized by knocking out
the corresponding genes in the genome of the organism of interest.

Furthermore, integrating the pipeline for the reconstruction of high-quality
metabolic models described in Manuscript 2 — in particular the utilization of high-
throughput gene knock-out or of biolog (Shea et al. 2012) data by GlobalFit —, and
the procedures for EGC detection and removal described in Manuscript 3 into
automatic reconstructing tools (Henry et al. 2010; Overbeek et al. 2005;
Latendresse et al. 2012; Cuevas et al. 2016) would have the potential not only to
drastically accelerate the reconstruction process without extensive manual
curation, but also might help to generate more reliable genome-scale metabolic
models in the future.
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5.6 Theses

Previous algorithms for improving the predictive power of genome-
scale metabolic networks only considered one case at a time, and for
each kind of modification (i.e., addition, removal, reversibility changes
of reactions; modification of the biomass reaction) a different algorithm
had to be used. These limitations can lead to network changes that are
not globally minimal, or the network modifications of a case solved
earlier might prohibit the solution of a subsequently considered case.
Solving only one case where the metabolic network should not grow
requires the exclusion of the removal of essential reactions. This
restricts possible network refinement steps that combine the removal
of an essential reaction with the addition of a reaction to the metabolic

network.

Reconstructing genome-scale metabolic networks is still a major
bottleneck of constraint-based modeling. Automatic reconstructing
tools have been developed to accelerate this process. However,
automatically reconstructed metabolic models often have a low
predictive power. One limitation of these tools is that they only consider
gap-filling methods and hence only growth cases. By employing
growth and non-growth data, more accurate and reliable genome-
scale metabolic models can be reconstructed automatically.

Energy generating cycles can charge energy containing metabolites
without the uptake of any nutrients. Thus, EGCs can have a huge
effect on the in silico metabolism of metabolic models, and the
elimination of EGCs is crucial for the proper functioning of the modeled

energy metabolism.
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Abstract

Constraint-based metabolic modeling methods such as Flux Balance Analysis (FBA) are
routinely used to predict the effects of genetic changes and to design strains with desired
metabolic properties. The major bottleneck in modeling genome-scale metabolic systems is
the establishment and manual curation of reliable stoichiometric models. Initial reconstruc-
tions are typically refined through comparisons to experimental growth data from gene
knockouts or nutrient environments. Existing methods iteratively correct one erroneous
model prediction at a time, resulting in accumulating network changes that are often not
globally optimal. We present GLoeaLFiT, a bi-level optimization method that finds a globally
optimal network, by identifying the minimal set of network changes needed to correctly pre-
dict all experimentally observed growth and non-growth cases simultaneously. When
applied to the genome-scale metabolic model of Mycoplasma genitalium, GLosaLFir
decreases unexplained gene knockout phenotypes by 79%, increasing accuracy from
87.3% (accordingto the current state-of-the-art) to 97.3%. While currently available comput-
ers do not allow a global optimization of the much larger metabolic network of E. coli, the
main strengths of GLosaLFiT are already played out when considering only one growth and
one non-growth case simultaneously. Application of a corresponding strategy halves the
number of unexplained cases for the already highly curated E. coli model, increasing accu-
racy from 90.8% to 95.4%.

Author Summary

Mathematical models that aim to describe the complete metabolism of a cell help us
understand cellular metabolic capabilities and evolution, and aid the biotechnological
design of microbial strains with desired properties. Draft models are frequently improved
through adjustments that increase the agreement of growth/non-growth predictions with
observations from gene knockout experiments. Automated methods for this task typically
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correct one erroneous prediction after the other. We present GLosaLFIT, a novel method
that can consider all experiments and all possible changes simultaneously to identify
model modifications that are globally optimal (i.e., that correct the largest possible number
of wrong predictions while introducing sets of changes that are most compatible with
existing knowledge). This becomes computationally very hard when considering large
metabolic models; however, a reduced application of GLosaLFrr that only looks at small
subsets of experiments simultaneously works very well in practice. Allowing only changes
that are conservative (e.g., introducing new reactions only if supported by significant geno-
mic evidence), GLoeaLFrr halves the number of wrong growth/non-growth predictions for
the state-of-the-art metabolic models of E. coli and Mycoplasma genitalium, increasing
prediction accuracy to 95.4% and 93.0%, respectively. By additionally allowing less conser-
vative changes, we are able to improve accuracy further to 97.3% for the M. genitalium
model.

Introduction

Metabolism is the best understood large cellular system. Genome-scale metabolic models that
largely rely on constraints for mass balance (i.e,, all internal metabolites that are produced
must also be consumed) are routinely applied to predict a wide range of metabolic phenomena
[1]. The most widely-used of these constraint-based methods, Flux Balance Analysis (FBA),
has been successfully applied to predict a range of biological phenomena such as gene knockout
effects [1] and the evolutionary adaptation of microbial strains [2-4], and has been employed
to predict drug targets [5] and to design microbial strains for bioengineering [6].

Network models are reconstructed by supplementing genomic annotation with information
from biochemical characterizations and the organism-specific literature [7]. The resulting draft
reconstructions often contain gaps: the modeled organism or its gene knockout strain can
grow in vivo, while the model is unable to produce biomass in silico in the same metabolic envi-
ronment (false-negative predictions, FNp). Gap filling methods have been introduced to
resolve individual FNp through a minimal number of network changes, making irreversible
reactions reversible or adding reactions from a database [8-11].

A second type of inconsistencies is the erroneous prediction of growth where the experi-
ment shows no growth (false-positive predictions, FPp). Such cases can be rectified by deleting
reactions, making reversible reactions unidirectional, or adding metabolites to the biomass (all
reactions necessary for the production of a given metabolite become essential once this metab-
olite is added to the biomass). GrowMatch [12], the current state-of-the-art in automatic net-
work refinement, uses bi-level optimization to identify reactions that must be deleted or
modified for each FPp. GrowMatch also allows to add to the biomass products and/or sub-
strates of reactions that are experimentally essential but are blocked in the model [12].

All currently available methods for network refinement based on growth data are greedy
algorithms, solving one inconsistency between model and experiment at a time [8-15]. While
each individual set of network changes is minimal, the union of these sets can become larger
than a minimal set of changes that solves all inconsistencies simultaneously. Reactions consid-
ered essential or model changes introduced early may make the reconciliation of FNp or FPp
considered later impossible (for an example, see our application to Mycoplasma genitalium
below). Furthermore, experimental errors that happen to be consistent with the initial model
can severely bias the results. Moreover, previous methods only alter the biomass equation
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independently of other network modifications [12, 16] and may miss solutions that combine
biomass and network changes.

Results

An algorithm to find global rather than local optima when resolving
inconsistencies

We present GLoeaLFir, a novel bi-level optimization method capable of comparing flux-balance
analysis (FBA) [17] model predictions to measured growth across all tested environments and
gene knockouts (or subsets thereof) simultaneously. Allowed model changes are (i) removals
or (ii) reversibility changes of existing reactions; (iii) additions of reactions to the model from a
database of potential reactions; (iv) removals of metabolites from the biomass; and (v) addi-
tions of metabolites to the biomass. GLosaLFiT does not change gene-protein-reaction associa-
tions (GPRs), and thus isoenzymes should be identified and induded in the model as a
preprocessing step.

The algorithm is first formulated as a bi-level linear problem, where each condition is repre-
sented by separate metabolites and fluxes (see the detailed method description in Methods). To
ensure in silico growth for conditions with experimentally demonstrated growth, the biomass
production for these conditions must be greater than a predefined threshold. For non-growth
phenotypes, the inner optimization problem maximizes the biomass production to check
whether it stays below a non-growth threshold. The outer optimization problem jointly mini-
mizes the number of model changes and the number of experiments that are incorrectly pre-
dicted by the final model.

The penalties for individual network changes can be set independently. This allows, for
example, to prefer reversibility changes over reaction additions, to preferentially remove reac-
tions not associated with a gene, or to preferentially indude additional reactions from meta-
bolic network reconstructions of dose relatives (see some suggestions for setting these
penalties in the S1 Table). The bi-level problem can be re-formulated as a single-level optimiza-
tion problem [18]; a corresponding implementation of GLosALFiT, integrated with the sybil
toolbox for constraint-based analyses [19], is freely available from CRAN (httpy//cran.r-
project.org/web/packages/GrosaLFrr/).

While GrosaLFir is designed to find globally optimal network modifications by considering
all experimental data simultaneously, the corresponding MILP problem rapidly becomes pro-
hibitively large when considering high-throughput gene knockout data. For example, simulta-
neously considering all possible 1366 E. coli knockouts [20] with 4000 allowed network
modifications would result in a matrix with 13 million columns by 37 million rows, a problem
size not addressable with current computing infrastructures.

However, when searching for model changes that rectify a FPp, trivial but unhelpful solu-
tions such as the deletion of essential reactions are already avoided by simultaneously requiring
growth in one or more specified true positive cases. When searching for model changes that
rectify a FNp, overly generous changes (such as the removal of metabolites from the biomass)
are avoided by simultaneously requiring non-growth in one or more specified true negative
cases. Thus, while aglobally optimal solution is only guaranteed when simultaneously consid-
ering all experimental growth data, a good approximation may be found by solving subsets of
inconsistencies. We explore this “subset strategy” below in ourapplication to the E. coli
genome-scale model. We suggest contrasting each individual FPp with a wild-type growth case
(or, if growth was assayed on different media, with a small set of wild-type growth cases). FNp
may first be solved alone. However, if a suggested solution for a FNp or a FPp converts other
previously correct predictions to false predictions (TPp to FNp or TNp to FPp), the originally
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considered case should be solved again, this time contrasting it with the complete set of these
conflicting cases. This last step must be repeated until no more additional false predictions
occur (or until no solution is found).

The runtime of MILP solvers depends crucially on the number of binary variables. Impor-
tantly, this number depends only on the number of allowed changes (plus a single binary vari-
able for the inclusion/exclusion of each growth/non-growth case). Thus, a MILP strategy that
considers n possible model changes for a single growth/non-growth case solves a problem with
n binary variables. In comparison, the number of binary variables in a GLogaLFir run that con-
siders n possible model changes and contrasts m growth and non-growth cases is n+m. The
number of binary variables can be further reduced by a set of preprocessing steps (Methods).

When recondiling a metabolic network with experimental data, the most parsimonious
network modifications are not always those that best describe the true metabolic system. Gro-
sALFIT can also provide a specified number of alternative optimal or sub-optimal solutions
(using the integer cut method). Thus, users can choose the solution(s) that best agree with
available evidence, or design additional experiments that distinguish between competing net-
work modifications. In cases where all suggested alternatives appear excessive or unrealistic,
users may also consider modifying individual GPR rules. The runtime for n alternative solu-
tions is approximately n times the runtime for a single optimum. In the test cases reported
below, we only examined a small range of alternative solutions and did not consider manual
modifications.

Test case 1: Improving the iPS189 metabolic model for Mycoplasma
genitalium

Wefirst applied GLosaLFir to the genome-scale metabolic network of Mycoplasma genitalium
[21], using the same gene knockout essentiality data [22] as the initial reconstruction with
GrowMatch (reported by [21] to have a global accuracy of 87.3%, corresponding toa Mat-
thew’s correlation coefficient, a more balanced measure of classification quality [23], of

MCC = 0.56; Table 1). The growth medium used for the knockout experiments was chemically
undefined [22]. When applying GrosaLFir, we thus allowed the uptake of all nutrients for
which transport reactions are induded in the model. All other FBA parameters were set to the
values used in [21]. The initial network obtained from [21] was not able to produce biomass; to
rectify this problem, we had to convert three irreversible reactions (ZN2t4,INSK,LYSt3) to
reversible reactions. With these modifications, the original model [21] has an accuracy of 85%
and a Matthews’ correlation coefficient MCC = 0.44. False predictions mainly occurred in the
form of FPp, i.e., by incorrectly establishing growth in silico where a lethal phenotype was
observed in vivo (Table 1).

To construct a database of potential additional reactions, we started from all reactions con-
tained in metabolic networks provided by the BiGG database [24]. We removed globally
blocked reactions, i.e., those reactions of the database that were not able to carry any fluxina
supernetwork containing all reactions. Reversible reactions were represented as two indepen-
dent irreversible reactions, corresponding to forward and backward directions. The database is
provided as S2 Database of the supplementary material.

In our first analysis, we used a very restrictive, conservative set of potential network changes:
(i) addition of reactions from other network reconstructions that are catalyzed by enzymes
with significant sequence similarity to the M. genitalium genome (BLAST e-value < 107, (i)
conversion of irreversible to reversible reactions for reactions that are at least classified as
reversible with uncertainty in the E. coli model [25]; (iii) removal of reactions (separately for
individual reaction directions for reversible reactions); (iv) removal of biomass components;
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Table 1. Comparison of experimental and predicted viability for 187 M. genitalium gene knockouts.

Experiment
Predictions growth non-growth Accuracy MCC
GrowMatch (reported in [21])"
growth 16 22 87.3% 0.56
no growth 2 149
Unoptimized modef
growth 12 24 85.0% 0.44
no growth 4 147
GuoeaL Fir, conservative
__growth 14 10 93.6% 0.68
no growth 2 161
GeoeaL Fir, non-conservative
growth 14 2 97.9% 0.86
no growth 2 169

! These numbers include the two genes wrongly associated with the FBA model (MG260, MG124) removed in our calculations.
2 The initial network obtained from [21] was not able to produce biomass in any environment; 1o rectify this problem, we converted three irreversible reactions
(ZN2t4, INSK, LYSt3) to reversible reactions. We further allowed uptake of all metabolites for which transport reactions are included (see Methods).

60¢10.1371/joumal pcbi. 10050364001

and (v) addition of biomass components that occur in the biomass of other network recon-
structions [16, 20, 24]. In this application, we assigned the same penalty (1.0) for all changes.
However, as the growth medium used in the knockout experiments was undefined, we assigned
a lower penalty (0.1) for the removal of exchange reactions. Thus, removal of a metabolite
from the representation of the undefined medium (corresponding to the removal of an
exchange reaction) was preferred to the removal of the corresponding transporter.

Solving false positive predictions (FPp). 14 out of 24 FPp could be transformed to true
negatives (Tables 1 and 2), resulting in a spedificity of 93.6%. Of the ten reactions that were
suggested for removal, four were exchange reactions (for uracil, fructose, glycerol, and dATP),
indicating the absence of these substrates from the undefined growth medium [22]; this alone
solved a total of eight FPp. In each case, an alternative (though less parsimonious) solution
would be the removal of the corresponding transport reaction (note, however, that the trans-
port reactions for uracil and dATP have no associated gene).

Four of the remaining six reactions indicated for removal (NDPK1, NDPK8, NDPK9,
PGAMT) were not assodated with a gene; i.e., they had an empty gene-protein-reaction associa-
tion (GPR). A fifth reaction, G3PD4, is associated with the gene MG260; however, this assoda-
tion islikely erroneous. G3PDM is catalyzed by a glycerol-3-phosphate dehydrogenase (1.1.5.3),
whereas MG260 is a lipoprotein without significant sequence similarity to any proteins with
known catalytic functions. Thus, GLoALFIT suggests the removal of only one reaction (URIK 1)
that is reliably associated with a gene.

GroeaLFrr finds no network modification that predicts the lethality of MG124 knockouts.
The gene MG124 encodes a thioreductase (THDPO) that is presumably used by Mycoplasma
to protect itself from the consequences of self-generated oxidative challenges [26]. Its metabolic
function is thus to regulate metabolite concentrations and cannot be captured in FBA models.

The remaining three solved FPp cases were corrected by simultaneously adding one reaction
(ACGAMPM) and removing another (PGAMT). Without PGAMT, ACGAMPM is the only
reaction produding N-Acetyl-D-glucosamine 1-phosphate, a precursor of the biomass metabo-
lites teichuronic acid and minor teichoic acid (Fig 1). ACGAMPM is assodated with three

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005036 August2,2016

56

5/22



Manuscript 1: Improved Metabolic...

COMPUTATIONAL

@PLOS BIOLOGY

GlobalFit: Simultaneous Network Refinement

Table 2. Modifications of the M. genitalium network suggested by GlobalFit based on 187 gene knockout experiments (bold font indicates conser-

vative changes).
Type | Gene Associated Removed reactions | Added reactions Added biomass metabolite
reactions
FPp | MGO30 UPPRT NDPK1'*, NDPKF>,
URIK1'™
MGO52| CYTD,DCYTD | URAtZ*or EX_ura(e)
MGO053 PMANM PGAMT™*or ACGAMPM®™"
G1PACT*"
MG107 | DGK1, GK1, GK2 NDPK8'™
MG11 G6PI,PGI FRUpts®" or EX_fru
(e)™
MG187 GLYC3Pabc GLYCP>*or EX_glyc
(e):-a:
MG188 GLYC3Pabc GLYCP>*or EX_glyc
(e)ncn
MG189 GLYC3Pabc GLYCP>*or EX_glyc
(e)hdt
MG215 PFK FRUpts®" or EX_fru
(s)n-a
MG273 PDH DATPt'™ or EX_datp
(o)tnc(
MG274 PDH DATPt'™ or EX_datp
(e)
MG275 NADHS5 G3PD4*"
MG299| PBUTT,PTAZ2r, PGAMT™>*or ACGAMPM®™*
PTAr G1PACT®"
MG357 ACKr, PPAK PGAMT™*or ACGAMPM®™"
G1PACT®"
MG038 GLYK Glycerol
MG050 DRPAr 2-Deoxy-D-ribose 5-phosphate
MG137 UDPGALM UDP-D-galacto-1,4-furanose
MG259 GLNMT S-Adenosyl-L-homocysteine
MG356 CHOLK EX_chol(e), Choline phosphate
CHLabc™
MG372 THZPSN 4-Hydroxy-benzyl alcohol and 4 -Methyl-5-(2-phosphoethyl)-thiazole
and 1-deoxy-D-xylulose 5-phosphate
MG396 RPI D-Ribulose 5-phosphate
MG448 METSR-R1, L methionine R oxide
METSR-R2
FNp | MG410 Plabc GLYK™@*
MG4t1 Plabc GLYK™™*

dot 10.1371/jounal pcbi. 1005036 1002

isoenzymes in the M. tuberculosis model [27], one of which shows strong sequence similarity
to the M. genitalium genome. Notably, PGAMT is an essential reaction in the original network
reconstruction [21], and would thus not be removed by previous algorithms that consider reac-
tion additions and removals independently [12]. An alternative to the removal of PGAMT

is the deletion of G1PACT; both reactions are not associated with any genes. GIPACT and
PGAMT provide an alternative pathway to metabolize actetyl-CoA. Knocking out one of these
genes, PTAr (MG299) and ACKr (MG357) become the only enzymes capable of metabolizing
acetyl-CoA and thus become essential. Removing only G1PACT or PGAMT would seem to
resolve the FPp for MG299 and MG357, but would result in a metabolic network unable to

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005036 August2,2016
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Fig 1. An example for the utility of simultaneously adding and removing reactions. Ellipses indicate metabolites, rectangles indicate reactions;
abbreviations are taken from iPS 189 [21]. (A) N-Acetyl-D-glucosamine 1-phosphate (acgam1p) is produced by G 1PACT; MG053, MG299, and MG357 are
falsely predicted to be non-essential (FPp). (B) The simultaneous removal of PGAMT (or, alternatively, G 1PACT) and addition of ACGAMP M makes the
genes MG053, MG299, and MG 357 essential. Blue arrows mark essential pathways, while red arrows indicate blocked pathways. Note that removing either
one of PGAMT or G1PACT blocks the other reaction, and that both reactions are not associated with any genes.

dot 10.1371/jounal pcbi. 1005036 .g001

produce the essential biomass precursor N-A cetyl-D-glucosamine 1-phosphate and would
thus be unviable.

Our second application of GLosaLFir to the M. genitalium model followed [21] by allowing
changes to all reactions and biomass metabolites. The resulting model changes form a superset
of those proposed by the conservative analysis. We rectified FPp for 8 further cases, resulting in
a specificity of 98.3%. All eight were resolved by adding metabolites to the biomass (Table 2);
in one case, a further addition of two reactions was required (EX_chol(e), CHLabcfor; Table 2).
Note that these biomass changes are not conservative; while they resolve inaccurades in silico,
they should be confirmed through further experiments. Previous studies [10, 12, 16] have also
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shown that modifying the biomass equation can improve the fit of model predictions to experi-
mental growth data. However, estimating the correct biomass composition still remains a chal-
lenging task [7].

The two remaining unexplained FPp correspond to knocked-out genes associated with the
same reaction as another gene whose knockout was a true positive prediction; thus, these pre-
dictions cannot be rectified without changing the gene-reaction assodations.

The GrosaLFrr calculations for simultaneously solving all 11 feasible FPp cases (the number
of unique enzyme complexes with FPp, Table 2) against the only FNp (two genes with FNp
associated with the same reaction, Table 2) required 3h on a standard desktop computer (2
cores of an AMD Phenom 9600B 2.3GHz with 8GB RAM). However, as outlined above, the
main advantage of GLosaLFir is already played out when contrasting pairs of growth cases,
which are much faster to solve. In the application to M. genitalium, we alternatively tested the
subset strategy of first solving each FPp case separately against a wild-type control and each
FNp alone; if the suggested solution turned the predictions for any other cases from true to
false, we iteratively contrasted each case with the complete set of these negatively affected pre-
dictions. For the M. genitalium network, this approximate subset strategy resulted in the same
proposed changes as the global analysis, while reducing the total computation time to below
one minute. This result indicates that the application of GLosaLFir is feasible even for very
large growth datasets when employed in subset mode.

Solving false negative predictions (FNp). FNp can be due to missing isoenzymes. Thus,
an important pre-processing step to the application of GLosALFIT is to identify homologous
genes within the genome and to make corresponding changes to the GPRs. A blast e-value
threshold of 107" has been used successfully before for isoenzyme identification in E. coli K12
[12]; however, we could not find any dose homologs for the remaining two FNp mutants at
this threshold.

For FNp, the results of the conservative and non-conservative application of GLosaLFr
were identical. Two FNp cases (Table 2), which together act as phosphate importers, could be
resolved by allowing the reversibility of the phosphorylation of glycerol. This reaction is pre-
dicted to be reversible without uncertainty in E. coli [25]; furthermore, the glycerol kinase of
M. genitalium shows strong sequence similarity (BLAST e-value 10™'*°) to the glycerol kinase
of Trypanosoma brucei, which is known to indeed catalyze the reverse reaction [28, 29]. This
single reversibility change increased sensitivity from 76.5% to 88.2%.

All modifications suggested by GrosaLFir in the resolution of FPp and FNp cases were fully
consistent with each other. In the highly conservative application of GLosaLFr, we achieved an
accuracy of 93.6% (MCC = 0.68; Table 1). If we follow previous work [21] by allowing all possi-
ble changes, GLosaLFir obtains a global accuracy of 97.8%, and a Matthews correlation coeffi-
cient MCC = 0.86 (Table 1). The corresponding models differ only in their biomass reaction,
and are supplied as S| Model in SMBL format (non-conservative model: biomass reaction
“Biomass”; conservative model: biomass reaction “Biomass_conservative”).

Test case 2: Improving the iJO 1366 metabolic model for E. coli

To test the applicability of GLosaLFit’s subset strategy to larger models, we next applied it to
the most recent genome-scale metabolic reconstruction for E. coli, §01366 [20]. Again, we
employed the same gene knockout essentiality data [30, 31] as used in the initial reconstruc-
tion. For all FBA simulations, we used the same parameters as described in [20]. The maximal
influx of all nutrients in the defined growth media was set to 10 mmol gDW 'h'". The lower
bound of the non-growth associated maintenance reaction (ATPM) was set to 3.15 mmol
gDW'h™. Gene essentiality was then calculated by FBA, considering any flux larger than 5%
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Table 3. Comparison of experimental and predicted viability for 1366 E. coli gene knockouts on two different minimal media.

E ment
Predictions growth non-growth Accuracy MCC
Unoptimized model (iJO 1366) grown on glucose
growth 1079 80 91.3% 0.69
no growth 39 168
Unoptimized model (JO 1366) grown on glycerol
growth 1073 87 90.3% 0.66
no growth 45 161
Optimized model grown on glucose
__growth 1104 45 95.7% 0.85
no growth 14 203
Optimized model grown on glycerol
growth 1096 44 95.2% 0.83
no growth 2 204
dok 10.1371/joumnal pcbi. 10050361003

of the optimal biomass core reaction as growth. For the published §O01366 model, we obtained

the same accurades as reported originally [20]: a combined global accuracy of 90.8% calculated
across knockout experiments on glucose and on glycerol media, corresponding toa Matthew’s

correlation coefficient MCC = 0.67 (Table 3).

In the application of GLosaLFIT to the iJO1366 model, we only allowed conservative network
modifications (as defined for the M. genitalium model). However, as the growth medium used
in the E. coli experiments was chemically defined, we did not allow the removal of exchange
reactions. We constructed a database of potential new reactions as for M. genitalium (S2
Database).

The knockout data for E. coliincludes growth data on two different media that contained
either glucose or glycerol as carbon sources [30, 31]. Accordingly, we solved all FPp against
two wild-type growth cases, one on glucose and one on glycerol. While this increases the num-
ber of continuous variables compared to using only a single wild-type growth case, the number
of binary variables is still the same as in algorithms that only consider a single non-growth case
ata time [12] (note that we don’t allow the exclusion of any growth/non-growth case in this
application). We tested if the order in which false growth/non-growth predictions are consid-
ered in GroeaLFrr’s subset strategy affects the final result; this was not the case.

By applying the network modifications suggested by GrosaLFir, we could strongly increase
the quality of predictions for growth on both glycerol and glucose (Table 3); for the experi-
ments on glucose and on glycerol combined, accuracy increased from 90.8% to 95.4%, while
Matthew’s correlation coefficient increased from 0.67 to 0.84. The detailed model changes are
outlined below.

Solving FNp: Isoenzymes. One simple explanation for FNp is the existence of un-anno-
tated isoenzymes. To detect such cases, we identified all FNp where the knocked-out gene has a
significant bi-directional blast hit with another gene in the genome (i.e., BLAST e-value < 107"
for the other gene when using either of the two as query). Such highly conserved homologs are
likely to be functionally very similar to the knocked-out gene [12], and we updated the GPR
accordingly. We only performed this analysis for those genes that were reported to be non-
essential on both glucose and glycerol. In this way, we could convert six FNp to TPp (Table 4).
In two cases (b0888 and b1702), the requirement for the indusion of isoenzymes was not previ-
ously recognized, as the §01366 model wrongly included an alternative pathway; solving a
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Table 4. Isoenzymes that resolved FNp.

Gene Associated reactions Isoenzyme e-value — e-value —
b0888 TRDR b0606 2x10°° 8x10°7
b0928 ASPTA b4054 101 2x10"?
b1415 GCALDD, LCADi b1385 7x10%° 1x1077
b1702 PPS b2383 2x10%2 2x10%2
b3176 PGAMT b2048 3x10'® 1x10°'®
b3359 SDPTA b1748 1x107'%° 1x10°'%°

dot 10.1371/jounal pcbi. 1005036 1004

FPp related to the alternative pathway converted the TPp into a FNp that was then rescued by
the inclusion of the newly identified isoenzymes.

Solving FNp: Removing biomass components. Removing metabolites from the biomass
reaction can convert FNp to TPp, as all genes involved in the production (or, if the metabolite
was a product of the biomass reaction, consumption) of a metabolite become unessential. Gro-
BALFIT suggested the removal of six metabolites from the biomass reaction, thereby resolving 19
FNp (Table 5). For example, removing Bis-molybdopterin guanine dinucleotide from the bio-
mass reaction converted eight genes involved in the synthesis of this metabolite from essential
to non-essential genes. By removing Bis-molybdopterin guanine dinudeotide and Thiamine
diphosphate, two TNp become FPp (b0417 and b2530); however, because these two changes
also correct 16 FNp, the overall accuracy was strongly increased.

GrosaLFrr further indicated the removal of calcium and copper from the biomass, which
was also suggested by the BioMog algorithm based on E. coli growth data on different media
[16]. Calcium is essential for proper functioning of E. coli chemotaxis [32]. However,

Table 5. Removal of biomass components from the E. cof model suggested by GlobalFit to remove

FNp.

Gene Associated reactions Removed biomass metabolite

b0009 MPTAT Bis-molybdopterin guanine dinucleotide

b0423 THZPSN3 Thiamine diphosphate

b0781 CPMPS Bis-molybdopterin guanine dinucletide

b0783 CPMPS Bis-molybdopterin guanine dinucletide

b0784 MOADSUx, MPTS Bis-molybdopterin guanine dinucletide

b0785 MPTS Bis-molybdopterin guanine dinucletide

b0826 MPTSS Bis-molybdopterin guanine dinucletide

b0827 BMOCOS, BWCOS, MOCOS, WCOS Bis-molybdopterin guanine dinucletide

b2103 PMPK Thiamine diphosphate

b3040 CD2tpp, CU2tpp, FE2ipp, MN2tpp, ZN2tpp Copper

b3196 CAtépp Calcium

b3807 | 12FE2SS, I2FE2SS2, S2FE2SS, S2FE2SS2 [4Fe-4S] iron-sulfur cluster and [2Fe-2S] iron-

sulfur cluster

b3857 BMOGDS1, BMOGDS2, BWCOGDS1, Bis-molybdopterin guanine dinucletide
BWCOGDS2, MOGDS

b3990 THZPSN3 Thiamine diphosphate

b3991 TYRL Thiamine diphosphate

b3992 THZPSN3 Thiamine diphosphate

b3993 TMPPP Thiamine diphosphate

b3994 AMPMS2 Thiamine diphosphate

b4407 THZPSN3 Thiamine diphosphate

doi:10. 1371 foumnal pebi. 1005036 1005
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Table 6. Reversal ofreactions of the E. col network suggested by GlobalFit to remove FNp.
Gene Associated reactions Reversed reactions
b0159 5DOAN, AHCYSNS, MTAN HCYSMT, CPPPGO2
b2103 PMPK 2MAHMP
b2687 RHCCE HCYSMT
b3040 CD2tpp, CU2tpp, FE2tpp, MN2tpp, ZN2tpp CU2abcpp
b3196 CAt6pp CA2t3pp

doi:10. 1371foumnal pebi. 1005036 1006

compromised chemotaxis will not be detected in the knockout experiments. Thus, we suggest
toretain calcium in the biomass reaction when modeling E. coli in its natural habitat, but to
remove calcium from the biomass reaction when modeling E. coli in cell culture.

Solving FNp: Reversing reactions. Five FNp could be resolved by reversing existing reac-
tions in the metabolic network (Table 6). Interestingly, an alternative solution for two genes
was to remove calcium or copper from the biomass reaction. For calcium, the above arguments
indicate that its removal from the biomass reaction may be preferable.

Solving FNp: Adding new reactions to the network. GlobalFit could not improve the
accuracy of knockout predictions by adding new reactions to the metabolic network. This may
have several reasons. First, the reconstruction of the E. coli metabolic network iJ01366
involved extensive literature and database searches to ensure a maximal indusion of metabolic
reactions. Second, we used the BiGG database as the source for potential additional reactions.
Many networks in this database are based on the E. coli network reconstruction; this makes it
unlikely that they provide new features relevant for E. coli. Third, the cut-off value for the simi-
larity of enzymes to the E. coli genome used in the construction of the additional reaction data-
base might have been too strict (10713,

Solving FPp: Adding metabolites to the biomass reaction. 22 FPp could be resolved by
adding metabolites as substrate or product to the biomass reaction (Table 7). 17 of these corre-
sponded to (previously blocked) tRNA charging reactions; these were resolved by adding
charged and uncharged tRNA metabolites to the two sides of the biomass reaction, respectively,
similar to previous suggestions for the older iAF1260 E. coli model [12]. GrowMatch only con-
siders additions to the biomass if a gene with a FPp catalyzes a blocked reaction; it then tests
the addition of the metabolites consumed or produced by this reaction [12]. However, none of
the genes for the remaining five FPp resolved by GrosaLFir through biomass additions cata-
lyzed blocked reactions. When allowing the addition of biomass components not induded in
other BiGG biomass reactions or suggested by BioMog, GLosaLFrr was able to resolve 4 addi-
tional FPp (for b2533, b2925, b3623, b3650); however, as these suggested modifications did not
meet our strict criteria, we did not consider them further.

Solving FPp: Removing reactions. 25 FPp could be resolved by removing a total of 18
reactions from the metabolic network (Table 8). At the same time, four TPp were converted to
FNp; however, two of these newly introduced FNp could subsequently be corrected through
additional network modifications.

One example is the ATP synthase reaction ATPS4rpp, which is catalyzed by an enzyme
complex encoded by eight genes. When E. coli was grown on glycerol, six of these genes were
essential, while on glucose only three genes were found to be essential. Thus, overall accuracy
is optimized if ATPS4rpp is essential for growth on glycerol, but non-essential for growth on
glucose. We used GrosaLFrr to simultaneously solve a non-growth case of the ATPS4rpp
knockout on glycerol, a wild-type growth case on glycerol, and a growth case of the ATPS4rpp
knockout on glucose. GLogaLFit found two alternative solutions that make the Phosphoglycer-
ate kinase reaction irreversible (removing the backward direction of PGK) and also make the
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Table 7. Metabolite additions to the E. coli biomass reaction suggested by GlobalFit to resolve FPp.

Gene Associated reactions Added as biomass substrate Added as
biomass product
b0194 PROTRS L-ProlytRNA(Pro) TRNA(Pro)
b0242 GLUSK L-Glutamate 5-phosphate
b0526 CYSTRS L-Cysteinyl-tRNA(Cys) TRNA(Cys)
b0529 MTHFC, MTHFD 5-Fomyltetrahydrofolate
b0642 LEUTRS L-Leucyl-tRNA(Leu) TRNA(Leu)
b0680 GLNTRS L-GlutaminyRNA(GIn) TRNA(GIn)
b0893 SERTRS, SERTRS2 L-Seryl-tRNA(Ser) TRNA(Ser)
b0930 ASNTRS L-Asparaginyl-tRNA(Asn) TRNA(Asn)
b1637 TYRTRS L-Tyrosyl-tRNA(Tyr) TRNA(Tyn
b1713 PHETRS L-PhenylalanyHRNA(Phe) TRNA(Phe)
b1714 PHETRS L-PhenylalanyHRNA(Phe) TRNA(Phe)
b1719 THRTRS L-Threonyl-tRNA(Thr) TRNA(Thr)
b1866 ASPTRS L-AspartyHRNA(Asp) TRNA(ASP)
b1876 ARGTRS L-ArginyHRNA(Arg) TRNA(ARG)
b1912 PGSA120, PGSA140, PGSA141, Phosphatidyliglycerophosphate (didodecanoyl, n-C12:0) or
PGSA160, PGSA161, PGSA180, Phosphatidyiglycerophosphate (ditetradecanoyl, n-C14:0) or
PGSA181 Phosphatidyliglycerophosphate (ditetradec-7-enoyl, n-C14:1) or
Phosphatidyiglycerophosphate (dihexadecanoyl, n-C16:0) or
Phosphatidyliglycerophosphate (dihexadec-9-enoyl, n-C16:1) or
Phosphatidyiglycerophosphate (dioctadecanoyl, n<C18:0) or
Phosphatidyiglycerophosphate (dioctadec-11-enoyl, n-C18:1)
b2114 METTRS TRNA(Met)
b2514 HISTRS L-Histidyl-tRNA (His) TRNA(His)
b2551 GHMT2r, THFAT 5-Fomyltetrahydrofolate
b2913 PGCD 3-Phosphohydroxypyruvate
b3288 FMETTRS N-Formylmethionyl-tRNA
b3384 TRPTRS L-Tryptophany HRNA(Trp) TRNA(Tmp)
b4258 VALTRS L-Valyl-tRNA(Val) TRNA(Val)

dot 10.1371/jounal pcbi. 1005036 1007

Fructose 6-phosphate aldolase reaction (F6PA™%) or the Glucase 6-phosphate dehydroge-
nase (G6PDH2r'"™) irreversible. By applying either of these two modifications, the two TPp of
ATP synthase subunits for glycerol were converted to FNp.

For two of the 25 solved FPp (b0242 and b2913), alternative solutions are provided by add-
ing metabolites to the biomass reaction (Table 7). For example, the FPp of b2913 (encoding
Phosphoglycerate dehydrogenase) could be resolved by making the Glycine hydroxymethyl-
transferase reaction (GHMT?2r) irreversible. An alternative solution is the addition of 3-Phos-
phohydroxypyruvate (3php) to the biomass reaction, which was also suggested by BioMog
[16]. However, only the removal of GHMT2r simultaneously resolved the FPp ofb4388 (Phos-
phoserine phosphatase (L-serine)).

Solving FPp: Other. On glucose, 19 of the remaining 45 FPp corresponded to isoenzymes;
on glycerol, 21 of the 33 remaining FPp corresponded to isoenzymes. FBA models do not
account for gene regulation, and thus the corresponding reactions are assumed to remain active
even when knocking out one of the isoenzymes. Thus, these FPp are due either to erroneous
GPRs or to the isoenzymes not being expressed. GLosaLFiT does not allow changes to GPRs or
inclusion of regulatory rules, and, consequently, could not find any solution for these genes.

The resulting modified model of E. coli metabolism is provided as S2 Model in SBML format.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005036 August2,2016
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Table 8. Removal ofreactions of the E. cof network suggested by GlobalFit to correct FPp.

Gene Associated reactions Removed reactions
b0032 CBPS (CBMKr®" and ALLTAMH®") or (CBMKr®” and
ALLTN®") or (CBMKr** and OXAMTC®") or (CBMKr**
and URDGLYCD*) or (CBMKr'™ and URIC*")
b0033 CBPS (CBMKr** and ALLTAMH®") or (CBMKr** and
ALLTN®") or (CBMKr** and OXAMTC®") or (CBMKr*"
and URDGLYCD*) or (CBMKr'™ and URIC*")
b0242 GLUSK NACODA®"
b0243 G5SD NACODA®"
b0474 |  ADK1,ADK3, ADK4, ADNK1, DADK NDPK1*" or PRPPS™* or R1PK*™" or PPM®** or
R15BPK®"
b0945 DHORD2, DHORDS DHORDfum®”
b0954 T2DECAI (CTECOAI6™* and CTRCOAI7T™™) or
(CTECOAI6™* and AACPS4*)
b1207 PRPPS R1PK®™" or PPM®>* or R15BPK*™
b1638 PDX5POi, PYAMSPO PDX5P02*"
b1779 GAPD TPI™
b2234 RNDR1, RNDR2, RNDR3, RNDR4 (GRXR'™ and RNTR3c2'™) or (GTHOr™ and
RNTR3c2*") or (GRXR®™" and RNTR1c2*") or
(GTHOr™ and RNTR1c2'™)
b2235 RNDR1, RNDR2, RNDR3, RNDR4 (GRXR'™ and RNTR3c2'™) or (GTHOr™ and
RNTR3c2*") or (GRXR®" and RNTR1c2*") or
(GTHOr™ and RNTR1c2'™)
b2508 IMPD HXAND or XPPT
b2913 PGCD GHMT2r>*
b2926 PGK TP
b3731 ATPS4rpp (FBPA™* and PGK™™) or (GEPDH2r™ and
PGK™™)
b3733 ATPS4rpp (FBPA™* and PGK™™) or (GBPDH2r™ and
PGK™™)
b3734 ATPS4rpp (F6PA™* and PGK™™) or (G6PDH2r™ and
PGK™™)
b3735 ATPS4rpp (F6PA™* and PGK™™) or (G6PDH2r"* and
PGK™™)
b3736 ATPS4rpp (F6PA™*and PGK™™) or (G6PDH2r"* and
PGK™™)
b3738 ATPS4rpp (FBPA™* and PGK™™) or (GBPDH2r™ and
PGK™™)
b3835 OPHHX OPHHX3'"™
b3956 PPC FUM®" or MALS'™
b4041 G3PAT120, G3PAT 140, G3PAT141, ACPPAT160™" or AG3PAT 161" or AG3PAT160"™
G3PAT160, G3PAT161, G3PAT 180,
G3PAT181
b4388 PSP_L GHMT2r>®*

doi:10.1371foumal pebi. 1005036 1008

Discussion

In this work, we describe and implement a novel algorithm to automatically modify metabolic
network models based on growth/non-growth data. The algorithm can utilize data from differ-
ent growth environments and/or different gene knockouts. In contrast to previous approaches,
the “global” mode of GrLosaLFrr does not reconcile the network model with inconsistent experi-
ments iteratively, but finds a globally minimal set of network changes that resolves all inconsis-
tendes simultaneously (in so far as the inconsistencies are resolvable with the allowed model

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005036 August2,2016
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modifications). To make GLosaLFir applicable to large metabolic network reconstructions, we
also explored a subset strategy, where individual false predictions are solved simultaneously
with small subsets of growth/non-growth cases.

We demonstrate the utility of these approaches through applications to the previously pub-
lished network models of M. genitalium [21] (optimizing model predictions for gene knockout
data from Ref. [22]) and E. coli [20] (utilizing gene knockout data from Ref. [30, 31]). Allowing
only highly conservative network changes (e.g., only adding reactions catalyzed by enzymes
that are homologous to genes of the species studied), we were able to halve the number of false
growth predictions in each case. Overall, GLosaLFrr improved the accuracy of growth/non-
growth predictions for M. genitalium from 87.3% to 93.6% (MCC from 0.56 to 0.68) and for E.
coli from 90.8% to 95.4% (MCC from 0.67 to 0.84). If we allow a much wider range of possible
network modifications—which is routinely done in alternative approaches [12, 21]-even
higher accurades can be achieved. Importantly, GLopaLFiT can enumerate alternative optimal
or sub-optimal solutions, such that expert knowledge or additional experiments can help select
the biologically most realistic modifications.

For some inconsistendes, we found solutions that improved accuracy on one medium while
decreasing accuracy on the other. For example, adding selenium to the biomass reaction of E.
coli would resolve three FPp on glycerol, while converting four TPp to FNp on glucose. Thus,
the accuracy achievable for one growth medium could be further improved by sacrificing the
accuracy for the other medium, albeit at a likely loss of biological correctness. This observation
emphasizes the utility of combining gene knockout data across different nutritional environ-
ments to avoid problems of overfitting.

In other cases, several genes whose products act together in a protein complex had contra-
dictory experimental results: in the same medium, some were found to be essential, while the
rest was declared non-essential. Such contradictions may be caused either by experimental
errors, by erroneous assignment of genes to reactions (incorrect GPRs), or by a residual func-
tion of the enzyme complex even with some of its components missing. GLosALFIT may suggest
a solution in this case, but this will simultaneously distort one or more true predictions. For
example, the FPp for the E. coli gene b3560 (the a-subunit of glycine tRNA synthetase) could
be resolved by adding the charged and uncharged glycine tRNA to the biomass reaction as sub-
strate and product, respectively. This modification would at the same time transform the TPp
of b3559 (the B-subunit) to a FNp, and would thus not improve accuracy.

In the applications of GLosaLFit, we adopted the in silico growth cutoffs used in the original
model publications, i.e., one third of the mean growth rate for M. genitalium [21] and 5% of
the optimal biomass core reaction for E. coli [20]. A more general way to resolve FPp would be
to treat the cutoff that distinguishes in silico growth from non-growth as an additional variable
in the optimizations. For example, the knockout of E. coli ATPS4rpp reduced the biomass yield
in glycerol below 10% of the wild-type yield. Such a substantial reduction in growth rate may
explain why 6 out of 8 knockouts for the genes involved in the corresponding enzyme complex
were labeled as essential in the experiment; however, following [20] in considering 5% biomass
production as growth, we regarded these knockouts as FPp in this study. An adjustable growth
threshold might have rectified these FPp cases without any model changes. It is not clear a pri-
oriwhich in silico cutoff corresponds best to a given set of experimental data. Thus identifying
the cutoff value that minimizes the necessary model changes seems most appropriate.

In this paper, we have explored the application of GLosaLFiT to the improvement of existing
metabolic network reconstructions and showed that it can substantially reduce the number of
false growth predictions even when restricted to conservative network changes. It is conceiv-
able that GosaLFrr can also be employed for other tasks related to metabolic model refine-
ment. One possible such application is the initial reconstruction of a metabolic network model
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starting from a computer-generated template that is based on genome annotation (such as pro-
vided, e.g., by the SEED algorithm [33]). GLosaLFrr might also be used to remove thermody-
namically impossible energy-creating cydes, which sometimes plague initial network
reconstructions. While we only score growth and non-growth, GLosaLFrr could also be applied
using yield data by choosing appropriate thresholds. Finally, we envisage future usage of Globa-
Fit for strain optimization in metabolic engineering applications that combine gene knockouts
[34] with gene additions.

Methods
Formal problem definition

GroeaLFrr compares flux-balance analysis (FBA) [17] model predictions to measured growth
across all tested environments and gene knockouts simultaneously. Allowed model changes are
(i) removals or (ii) reversibility changes of existing reactions; (iii) additions of reactions to the
model from a database of potential reactions; (iv) removals of metabolites from the biomass;
and (v) additions of metabolites to the biomass.

We thus solve the following bi-level problem:

: SRF SRB 4 SAS S
mlnz(Z”_M(Oy +O) xwh Y Sxw+ Y xw Zmo' x w
- o x Wit + zk‘séfs x WP + Zn_”&:’ x Wi 4+ Z,m‘;f X w;:

kCAp
+ 2wt X M) (1)
subject to:
VeecS X v, =0 (2)
VoS X ¥, =0 (3)
View, gean Yy X (1= 8)%) < £ < v x (1-5}) (4)
vx«‘l,‘q'(R.N — 1000 x ‘si < V: (5)
Ven gan0< vF <1000 x 524 (6)

< % .
vy'u. "'(I,NZ h‘l_((l - 6?) X c'kS =+ Z,.—AS‘))AS X C’AS —’.- Z"“"'(l o= 0:’) X C:

+ Zh'ApélA’P X "J’:P (7)
Vieo (Ve + 1000 x 8, > T,) (8)
Yyen (P, — 1000 x 35 < T,) )
with:
Inner Problem : Vi : = maxuv),, (10)

subject to: Eqs (3)-(7) and to the definitions following below.
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Table 9. Definitions of the sets used in the system of equations thatdescribes the GlobalFit
algorithm.

M | The reactions included in the original (input) network reconstruction

I | Allimeversible reactions that can be reversed

D | All reactions that can be added to the network (here, we consider bidirectional reactions as two
separate reactions correspondng to forward and backward directions (with fluxes >0)).

Bs | All substrates that can be removed from the biomass reaction

¢ | The stoichiometric coefficients of all biomass substrates

Be | All products that can be removed from the biomass reaction

¢8| The stoichiometric coefficients of all biomass products

Ag | All substrates that can be added to the biomass reaction

c*% | The stoichiometric coefficients of all additional biomass substrates
Ap | All products that can be added to the biomass reaction

c** | The stoichiometric coefficients of all additional biomass products
G | All experiments with observed growth

N | All experiments with observed non-growth

doi:10. 1371 foumal pebi. 1005036 1009

Line (7) defines the flux through the biomass reaction, v{,,, for condition g The sets used in
this system of equations are listed in Table 9, while the parameters are defined in Table 10. For
binary variables, 1 corresponds to TRUE (i.e., a model change is executed), while 0 corresponds
to FALSE (no change compared to the initial network).

GlobalFit's logic

What is the purpose of each of the lines in the above system of equations? The network must
be in a steady state (i.e., no concentration changes to internal metabolites) in all conditions
g€ GEq(2) and h € N Eq (3) that are to be solved simultaneously.

Lines (4)-(6) convert the binary variables for the removal or reversibility change of existing
reactions, and for the addition of new reactions from the database, into constraints for the
respective fluxes. In Eq (4), ifé:' = 0 (i.e, no change), then the lower limit for reaction y in all
conditions g (#%) remains at the predefined limit v, setting 5:’ = 1 instead sets the lower flux
limit to 0, i.e., removes the backwards reaction. Similarly, setting 5:‘ = 0 keeps the upper flux
limit for reaction y at the predefined limit v, while setting 5:‘ = 1 sets the upper flux limit to
0, i.e., removes the forward reaction.

Line (5) sets the lower flux limit to -1000 for reaction y in all conditions gif 3, = 1, ie., it
makes an irreversible reaction (with flux ¢ > 0) reversible in this case. Line (6) allows non-
zero (positive) flux for reactions that are not part of the original (input) model if 8‘“ = 1. Note
that in the database of additional potential reactions, we consider bidirectional reactions as two
separate reactions corresponding to forward and backward directions (both with fluxes >0).

Metabolites can be removed from both sides of the biomass reaction (flux v£, ), and addi-
tional metabolites can be added Eq (7) with pre-spedified stoichiometric coefficients c.

To ensure in silico growth for conditions with experimentally demonstrated growth, the bio-
mass flux for these conditions must be greater than a predefined threshold T}, in all conditions
g € GEq (8). Conversely, to ensure in silico non-growth for conditions with experimentally
demonstrated non-growth, the biomass flux for these condition must be less than a predefined
threshold T}, in all conditions h € N Eq (9). The thresholds T, and T}, can be set separately for
each phenotype, e.g, to account for estimates of experimental errors. For non-growth pheno-
types, a simple condition that forces the biomass production to be lower than a threshold is not
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Table 10. The parameters of the system of equations describing the GlobalFit algorithm.

5. 5% ¢ {0.1} | Binary variables thatindicate the removal of forward and backward reactiony,
respectively

wi>0 Penalty for the removal of forward or backward reaction (which can be set to adifferent
value for each reactiony)

3 e {0,1} Binary variables that indicate the addition of a backward reaction for reaction x

wi >0 Corresponding penalties

o e {0,1} Binary variables thatindicate the addition of reaction z

w5 Comesponding penalties

6‘.” € {0,1} Binary variables that indicate the addition of substrate j to the biomass reaction

w >0 Coresponding penalties

e {01} Binary variables that indicate the addition of product k to the biomass reaction

w¥ >0 Comesponding penalties

e (0,1} Binary variables thatindicate the removal of substrate / from the biomass reaction

wis >0 Cormesponding penalties

% e {0,1} Binary variables thatindicate the removal of product m from the biomass reaction

w¥ >0 Corresponding penalties

5;’ € {0,1} Binary variables that indicate the exclusion of growth experimentg

wg>0 Cormesponding penalties

5 e {01} Binary variables that indicate the exclusion of non-growth experimenth

wh >0 Corresponding penalties

Vae Flux through the (potentially modified) biomass reaction (see line (7))

V&o Optimal value for vg, estimated in the inner problem

<o Minimal flux allowed through reaction y (note that we do not allow minimal fluxes >0 for
non-growth cases)

y=>0 Maximal flux allowed through reaction y (note that we do not allow maximal fluxes <0 for
non-growth cases)

T, >0 Viability threshold of growth experiment g

T,>0 Viability threshold of non-growth experiment h

i The vector of all 5defined above

v The vector of all fluxes v* for experiment h

doi:10. 1371foumal pebi. 1005036 010

sufficient, though, as a trivial solution with #* = () would satisfy this condition. To overcome

this problem, the inner optimization problem maximizes the biomass production of non-

growth cases Eq (9), and this maximum is compared against the non-growth threshold.

Line (1) describes the outer optimization problem. GLosaLFrr aims to find a solution that is
able to correctly predict all growth and non-growth cases with a minimal number of network
changes (indicated by values 1 for the binary variables):

6:’, 6:‘, 3, 6%, 5'“, 5 88,58, 6‘6, P

The penalties for each type of network change, and even for each individual change, can be
set independently. This allows, for example, to prefer reversibility changes over reaction addi-
tions, or to preferentially include new reactions with stronger genomic evidence, or reactions
from metabolic network reconstructions of dose relatives. Users should choose appropriate
penalties based on the details of the network reconstruction and the proposed changes. Asa
starting point, we indude a list of suggested penalty values in S1 Table).
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To guarantee a feasible solution, even if inconsistent growth cases are used, we implemented
additional binary variables that allow the exclusion of individual growth (¢5f Eq (8)) and non-

growth cases (5, Eq(9)) from the growth threshold conditions. In our application to the M.
genitalium network, we penalize these condition exclusions with very high values w{ and w}’;
thus, any network modification that explains additional cases is preferred over the excusion of
conditions, regardless of the number of required changes. Instead, the penalties can be set to
smaller values, so that the exdusion of potentially erroneous experiments is preferred over
excessive network changes.

Metabolic network reconciliation with large-scale experimental data usually incorporates a
manual curation stage, where experts for the physiology and biochemistry of the organism
under study review network changes suggested by automated methods. To support this pro-
cess, GLoaLFIT can put out not just one best solution, but, e.g., the five best solutions that can
then be reviewed to identify the changes most compatible with existing knowledge. To speed
up the calculations, network changes can also be limited to a maximal number.

Re-formulation of the bi-level as a single level optimization problem

No efficient software tools for general bi-level optimization problems are available. Solving the
inner problem for each possible combination of network changes would be computationally
too slow. We adapt the “Reduction Ansatz” of Section 4.3.4 in [18] to eliminate the inner prob-
lem in line (9). In this approach, the optimality conditions of the inner optimization problem
are expressed as equality and inequality conditions using additional “dual” variables. For fixed
& and h, the inner problem is simply a linear program; thus, the assumptions in [18] are trivi-
ally satisfied.

Because of the use of binary variables, algorithms to solve this type of optimization problem
are termed mixed integer linear programming (MILP). MILP is NP hard [35]; while no known
algorithms can guarantee to find a solution efficiently, algorithms that work well for many
practical problems exist in software solvers. We used the solver of IBM ILOG CPLEX 12.5; to
avoid trickle flow, we implemented indicator constraints. Alternatively, our implementation of
GrosacFrr also allows using the GUROBI solver. Academic users can obtain both CPLEX and
GUROBI free of charge.

Preprocessing

The search for a globally minimal set of network changes is a computationally very intensive
task. To speed up this process, it is advisable to restrict the examined conditions to a maximal
consistent (“feasible”) set, i.e., a maximal set of conditions that can all be correctly predicted
with the same modified metabolic network (regardless of the type and number of modifica-
tions). To identify such feasible condition sets, GLosaLFir provides a simple mode, which only
minimizes the number of erroneous predictions of growth regardless of the number of network
changes. To speed up the calculation of a feasible condition set, it is possible to first solve indi-
vidual wrong predictions against a “control” condition, thereby identifying conditions that
cannot be recondled with the network with the allowed modifications. We applied this strategy
for the pre-processing of the M. genitalium data (see Results).

Furthermore, the number of binary variables can be reduced by a set of additional prepro-
cessing steps. First, binary variables for changes to the network not allowed (such as reversibil-
ity changes to reactions strictly considered irreversible) should be constrained to zero. Second,
we can consider a “supermodel” that encompasses the input model with all allowed reactions
converted to reversible reactions and all reactions from the database of potential additional
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reactions. We can then reduce the number of binary variables further by (i) excluding all reac-
tions that are blocked in this supermodel, (ii) constraining to zero the binary variables for the
removal of reactions that are essential in this supermodel.

Enumeration of altemative solutions

GrosarFrr can optionally calculate a user-defined number n of alternative optimal or subopti-
mal solutions. The search for alternative solutions is executed using the integer cuts method.
Thus, the complexity for each additional alternative solution is only increased through a single
linear constraint. Consequently, the runtime for n alternative optimal or suboptimal solutions
is approximately n times the runtime for a single optimum.

Implementation and availability

We provide an implementation of GLosaLFir, integrated with the sybil toolbox for constraint-
based analyses [19], which runs in the R environment for statistical computing [36]. The source
code and documentation is available free of charge from CRAN (http://cran.r-project.org/web/
packages/GrosarFrr/). The optimized models for E. coliand M. genitalium are provided as
SBML files that can be read, e.g., by sybil [19] and the COBRA toolbox [37].

Supporting Information

S1 Table. Users of GlobalFit should choose appropriate penalties for proposed model
changes based on the details of the network reconstruction and the proposed changes. Asa
starting point, this table list some suggested penalty values.

(PDF)

S1 Database. To construct a database of potential additional reactions for the conservative
application of GlobalFit to M. genitalium, we started from all reactions contained in meta-
bolic networks provided by the BiGG database [24]. We then restricted this dataset to reac-
tions that are catalyzed by enzymes with significant sequence similarity to the M. genitalium
genome (BLAST e-value <10™"%). We removed globally blocked reactions, i.e., those reactions
of the database that were not able to carry any flux in a supernetwork containing all reactions.
Reversible reactions were represented as two independent irreversible reactions, corresponding
to forward and backward directions. The database is provided as a tab-delimited text file with
three columns: reaction ID; stoichiometric equation; gene-protein-reaction association (GPR).
(TSV)

S2 Database. To construct a database of potential additional reactions for the conservative
application of GlobalFit to E. coli, we started from all reactions contained in metabolic net-
works provided by the BiGG database [24]. We then restricted this dataset to reactions that
are catalyzed by enzymes with significant sequence similarity to the E. coli genome (BLAST e-
value <10™"*). We removed globally blocked reactions, i.e., those reactions of the database that
were not able to carry any flux in a supernetwork containing all reactions. Reversible reactions
were represented as two independent irreversible reactions, corresponding to forward and
backward directions. The database is provided as a tab-delimited text file with three columns:
reaction ID; stoichiometric equation; gene-protein-reaction association (GPR).

(TSV)

S1 Model. The M. genitalium iPS189 models as modified by GlobalFit are supplied as an
SMBL file, which can be read, e.g., by the sybil toolbox for R [19] or the COBRA
toolbox for Matlab [37]. The two models differ only by their biomass reactions: “Biomass” for
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the non-conservative model; “Biomass_conservative” for the conservative model.
(XML)

$2 Modd. TheE. coli iJ01366 model as modified by GlobalFit is supplied as an SMBL file,
which can be read, e.g., by the sybil toolbox for R [19] or the COBRA toolbox for Matlab

[37].
(XML)
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Abstract

While new genomes are sequenced at ever increasing rates, their phenotypic analysis
remains a major bottleneck of biomedical research. The generation of genome-scale
metabolic models capable of accurate phenotypic predictions is a labor-intensive endeavor;
accordingly, such models are available for only a small percentage of sequenced species.
The standard metabolic reconstruction process starts from a (semi-)automatically generated
draft model, which is then refined through extensive manual curation. Here, we present a
novel strategy suitable for full automation, which exploits high-throughput gene knockout or
nutritional growth data. We test this strategy by reconstructing accurate genome-scale
metabolic models for three strains of Streptococcus, a major human pathogen. The resulting
models contain a lower proportion of reactions unsupported by genomic evidence than the
most widely used E. coli model, but reach the same accuracy in terms of knockout prediction.
We confirm the models’ predictive power by analyzing experimental data for auxotrophy,
additional nutritional environments, and double gene knockouts, and we generate a list of
potential drug targets. Our results demonstrate the feasibility of reconstructing high-quality
genome-scale metabolic models from high-throughput data, a strategy that promises to

massively accelerate the exploration of metabolic phenotypes.

Significance statement

Reading bacterial genomes has become a cheap, standard laboratory procedure. A genome
by itself, however, is of little information value — we need a way to translate its abstract letter
sequence into a model that describes the capabilities of its carrier. Until now, this endeavor
required months of manual work by experts. Here, we show how this process can be
automated by utilizing high-throughput experimental data. We use our novel strategy to
generate highly accurate metabolic models for three strains of Streptococcus, a major threat

to human health.
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Introduction

Genome-scale metabolic models have been reconstructed for a wide range of organisms (1);
they have been used successfully to predict metabolic phenotypes of prokaryotic and
eukaryotic cells, in applications ranging from evolutionary studies (2-4) to bioengineering
designs (5). An initial draft reconstruction is typically created by mapping each gene of the
organism of interest to a closely related, well-annotated relative or to a database of known
metabolic functions (6), a task that can easily be automated. These draft models are often
unable to produce biomass. Gap-filling methods are applied to ensure functionality of the

networks, adding reactions without genomic evidence (7).

The currently most widely applied methodology to generate a reliable genome-scale
metabolic network can be considered a hybrid strategy: it starts from an automatically
generated draft model based on sequence similarities, followed by manual refinement of
reaction content and gene-reaction mapping (6). This mode of metabolic network
reconstruction is still time-consuming and laborious. To accelerate the development of
metabolic models, automatic and semi-automatic algorithms have been developed (8-10).
However, the resulting metabolic networks are typically unreliable and require extensive
manual curation (6). For example, reactions may be missing or were added without evidence
to facilitate biomass formation. Furthermore, reactions may eroneously be assumed
reversible or may have been assigned to the wrong compartment, gene-reaction
associations may be incorrect, or biomass components may be missing (11). Accordingly,
growth/non-growth predictions for gene knockout strains from automated reconstructions
typically show Matthews correlation coefficients Ry<0.5, while extensively manually curated
models often agree much better with experimental data (e.g., Ry=0.67 for the iJO1366 E. coli

model (12), where Ry;=1 would correspond to a perfect prediction).

Automatic reconstructions suffer from being based on only one or a few nutritional
environments in which the organism is supposed to grow. They lack the capability to utilize —

equally important — information about environments in which the investigated organism

3
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cannot grow. Moreover, automatic reconstruction tools possess no mechanism to
automatically incorporate genome-wide knock-out data, although such datasets are usually

highly informative and thus might lead to more accurate automatic reconstructions.

Here, we develop a pipeline for the automated reconstruction of high-quality genome-scale
metabolic networks. We submit an automatically generated draft network to a bi-level
optimization algorithm that minimizes the deviation between model predictions and
experimental growth/non-growth data from sets of gene knockout strains and/or nutritional
environments. We apply our method to three species of Streptococcus, gram-positive
bacteria that pose a sever risk to human health. Streptococcus pyogenes is a Lancefield
group A streptococcus (GAS) (13), and is one of the two clinically most important human
pathogens (14). S. pyogenes are responsible for at least 616 million cases of throat infection
(pharyngitis, tonsillitis) worldwide per year, and 111 million cases of skin infection (primarily
non-bullous impetigo) in children of less developed countries (15). Streptococcus sanguinis
(formerly known as S. sanguis) is categorized as Lancefield group H (16). These oral
bacteria can enter the bloodstream and may cause severe endocarditis (17, 18). Finally,
Streptococcus agalactiae is a Lancefield group B bacterium, and is one of the major causes

of pneumonia and meningitis in neonates (19, 20).

Results

Automated high-quality metabolic reconstruction strategy

Analogous to the hybrid strategy for metabolic network reconstruction currently widely
employed, we start with the automated construction of a draft model based on sequence
similarity. We do this by successively submitting the gene sequences of the organism under
study to different annotation sources that associate them with metabolic functions (Figure 1):
(i) KBase (which implements the functionality of Model SEED (8)); (ii) the existing metabolic
model of Lactococcus lactis (21), a close relative of Streptococci; (jii) TransportDB (22); and

(iv) KEGG/KAAS (23). We ordered these information sources by increasing reliability;

4
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accordingly, at each step, information on metabolic gene functions from previous steps is

superseded by newer information.

In contrast to the standard hybrid automatic/manual strategy, we continue with an automated
refinement of the resulting draft model, informed through comparisons to viability data for
gene knockouts and/or nutritional environments (Figure 1). For the application to
Streptococcus, we only used gene knockout data. We identified false viability predictions of
the draft model for individual gene knockouts using flux balance analysis (FBA) (24) with the
biomass reaction provided by the L. /actis metabolic model. FPp (false positive predictions)
are cases where the in silico gene knockout simulation predicted growth, while the in vivo
experiment showed no growth. FNp (false negative predictions) are cases where the in silico
analysis predicted no growth, while the corresponding knockout strain was viable in the

experiment.

The automated refinement was carried out using the GrLosaLFIT algorithm, which was
originally developed for the further reconciliation of high-quality metabolic network
reconstructions with experimental viability data (12). GLoBALFIT is a bi-level optimization
program that identifies smallest sets of network modifications in order to minimize the
number of FNp and FPp cases; allowed network modifications are (i) removals or (ii)
reversibility changes of existing reactions; (iii) additions of reactions to the model from a
database of potential reactions; (iv) removals of metabolites from the biomass; and (v)

additions of metabolites to the biomass.

The strength of GLoBALFIT in comparison to previous approaches is its ability to consider
several growth and/or non-growth cases simultaneously. In particular, when considering FPp,
it is important to simultaneously consider a true growth case to avoid trivial solutions such as

the removal of an essential reaction (12).

Generation of high-quality metabolic models for streptococci
To build the Streptococcus metabolic reconstructions, we initially solved each FPp

simultaneously with a wild type growth case and each FNp simultaneously with a non-growth
5
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case. If the network changes suggested by GLOBALFIT introduced new errors by converting
true positive predictions (TPp) to FNp, or true negative predictions (TNp) to FPp, we solved

the examined case again, this time simultaneously with all distorted cases.

To create a conservative set of potential additional enzymatic reactions, we first inferred
homologs between each Streptococcus genome and the genes included in metabolic
reconstructions in the BiGG database (25). Genes were considered homologous if bi-
directional BLAST searches associated the genes with e-values <10 we only allowed the
addition of a reaction to the Streptococcus model if homologs to genes sufficient to catalyse

the reaction in one of the BiGG models were present in the Streptococcus genome.

We allowed the potential reversal of irreversible reactions only for those reactions that were
classified at least as “reversible with uncertainty” in the E. coli metabolic network (26).
Biomass reaction changes (addition or removal of biomass components) were only
introduced if no other model changes could rescue the FNp or FPp. The quantitative
contribution of each biomass component to the total biomass will have to be manually
adjusted to allow quantitative predictions of biomass yield, especially for biomass

components added during the network refinement with GLOBALFIT.

The resulting metabolic network for S. pyogenes contains 653 metabolites and 661
reactions, accounting for 455 genes. The predicted network for S. sanguinis is substantially
larger, containing 805 metabolites and 840 reactions, corresponding to 597 genes. The S.
agalactiae model encompasses 653 metabolites and 661 reactions, accounting for 455
genes. Because streptococci are gram positive bacteria, each genome-scale metabolic

network contains only two compartments: extracellular and cytosolic.

The largest set of FPp in all networks is due to the experimentally observed essentiality of
the F-ATPase complex, which is encoded by 8 genes and is part of the respiratory chain of
many organisms. S. sanguinis, S. pyogenes, and S. agalactiae lack a respiratory chain, and
do not use this enzyme to produce ATP; instead, the F-ATPase consumes ATP to pump

protons out of the cell to maintain an internal pH that is more basic than the exterior (27).
6
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Thus, the F-ATPase does not have any metabolic function that can be accounted for in FBA
models, explaining why even a perfect FBA representation of Streptococcus metabolism

cannot predict the essentiality of the corresponding genes.

The networks predict viability of gene knockouts with high accuracy (Table 1). On average,
we obtain an accuracy (percentage of true predictions) of 94.8%. Matthew's correlation
coefficient (28), a more balanced measure of prediction quality, is on average Ry=0.85.
When discounting the genes involved in the F-ATPase complex (which cannot be predicted

correctly in any FBA model), average accuracy increases to 96.2%, with Ry=0.89.

Accuracy of the automatically generated Streptococcus models

To further investigate the metabolic capabilities of the three strains, we used GLOBALFIT to
predict a minimal medium. The minimal medium for S. sanguinis contains nine nutrients,
while S. pyogenes and S. agalactiae require a minimum of 22 metabolites, mainly because
the latter two species require a larger number of externally supplied amino acids. To explore
this issue further, we used GLoOBALFIT to predict all amino acids that cannot be produced
from a minimal medium from which all amino acids were removed; for S. pyogenes and S.
sanguinis, this reduced minimal medium consisted of the eight nutrients glucose, phosphor,
sulphur, iron, pyridoxal, niacin, riboflavin, and pantothenate. S. agalactiae additionally
required thiamine. Our simulations on these reduced minimal media showed that S.
sanguinis is only auxotrophic for Cysteine, while S. pyogenes and S. agalactiae are
auxotrophic for 12 and 11 amino acids, respectively; in addition, both species require at least
two out of four further amino acids (See Supplementary Table S1). In comparison, L. /actis is
auxotrophic for Leucine, Histidine, and Methionine (21). These observations are consistent
with previous experimental studies (29-31), confirming the reliability of the reconstructed

metabolic networks.

We further tested the S. sanguinis model by comparing its predictions to growth experiments
on different defined media. The metabolic model constructed by GLoBALFIT successfully
predicted growth on B 48 (32) as well as on SY and M3 media (33). The study of Rogers also

7
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provided growth information on a set of SY and M3 media lacking one metabolite (either
riboflavin, pantheonate, thiamine, nicotinic acid, pyridoxal, folic acid, aminobenzoic acid, or
biotin). We successfully predicted the essentiality and non-essentiality of these metabolites,
except for the essentiality of pyridoxal and riboflavin. We added these components to the
biomass objective function; if the growth environments had been included in the original
GLoBALFIT run, this addition would have occurred automatically. Pyridoxal and riboflavin
were also part of the biomass reaction of the alternative network reconstructed by KBase

(see below).

In a previous study, knockout mutants for three S. sanguinis metabolic enzymes were
unexpectedly found to be viable (34). For each of these genes, Xu et al. identified isozymes
or paralogs in the S. sanguinis genome. The corresponding double-gene knockouts were
unviable for two of the three reactions, but were unexpectedly viable for one enzyme
(NAD(P)H-dependent glycerol-3-phosphate dehydrogenase). While we did not include these
double knockouts in the training set used to derive the S. sanguinis network, all three double

knockouts were correctly predicted by our model.

To benchmark the predictive power of our reconstructed metabolic models, we compared
them to the network automatically reconstructed from the genome sequence by KBase. The
KBase model for S. agalactiae was not able to grow anaerobically and was incapable of
producing NADP; thus, we allowed the influx of oxygen and NADP for the corresponding
simulations. All three networks were substantially less accurate in predicting gene knock-outs
(accuracy <79%, Ry <0.42 for metabolic reactions; Table 1 and Supplementary Table S2).

The F-ATP-synthase complex was not included in any metabolic network by KBase.

Could the superior performance of the GLosALFIT models be due to overfitting to the gene
knockout data? To test this, we also compared amino acid auxotrophy (31-33, 35), which
was not used by either network reconstruction approach. While GLosALFIT predictions were
fully consistent with the experimental results, the KBase model required more amino acids

than experimentally observed (Supplementary Table S3). For example, KBase predicted S.

8
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sanguinis to be auxotrophic for asparagine, cysteine, and threonine, while only the

requirement for cysteine was experimentally observed.

Prediction of potential metabolic drug targets

Streptococci have acquired resistance to major antibiotics which can make a successful
treatment difficult (36, 37). Thus, new antibiotics are needed. As a starting point and to
accelerate the discovery of new drugs metabolite essentiality analysis can be used (38). This
approach removes in-silico each metabolite from the metabolic model. If the removal of the
metabolites prevents the formation of biomass, it is deemed essential. Because this leads to
a large list of metabolites with many unlikely candidates (e.g., currency metabolites such as

ATP), subsequent filtering steps are needed.

To minimize potential side effects, we first removed all metabolites that also occur in the
human metabolic model (39). In addition, we BLASTed the genes of all reactions that are
associated with one of the essential metabolites against the human genome; if a distant
homolog (e-value < 0.01) for at least one gene was found, the according metabolite was also

discarded from further analysis.

We applied this approach to the three reconstructed Streptococcus metabolic networks,
identifying 10 different essential metabolites likely not involved in human metabolism
(Supplementary Table S4). These drug target candidates are processed in three different
pathways. The reliability of our analysis is demonstrated by the prediction of PABA (4-
Aminobenzoate) as a potential drug target: this substance is already targeted by many
sulfonamide antibiotics, which inhibit the dihydropteroate synthase. This enzyme is essential

in bacteria for producing folate, while human acquire folate as part of their nutrition.

Conclusions

At >95% (Table 1), the accuracy of gene knockout predictions from our Streptococcus
models exceeds that of the most intensely curated other bacterial metabolic network, the

iJO1366 model for E. coli (90.8%) (40). Despite this high accuracy, our model
9
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reconstructions are more conservative than those of many manually curated or automatic
metabolic models: at most 4% of enzymatic reactions are not associated with a gene product
(Supplementary Table 5), while the corresponding number is 6% for the iJO1366 E. coli
model and >7% for the KBase Streptococcus models. Less than 2% of enzymatic reactions
in our models lacked an Enzyme Commission (EC) number, whereas this is the case for >7%
of reactions in the KBase models and for more than one third of enzymatic reactions in the
iJO1366 model (note that the KBase models did not contain any EC numbers; we obtained
these values by mapping the KBase reactions to the ModelSEED Database (8)). We
conclude that the general approach demonstrated here opens up the prospect to fully
automate the reconstruction of high-quality genome-scale metabolic models. The
reconstruction quality could be increased even further if multiple sets of growth data are

employed, e.g., by including high-throughput phenotyping data (41).

10
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Methods

We devised a pipeline for metabolic network reconstruction suitable for full automation. This
algorithm examines different sources of information in ascending order of reliability; at each

step, information from the previous step is refined and overwritten.

Base model reconstruction

We started by uploading the three genome sequences of S. pyogenes NZ131 (42), S.
sanguinis SK36 (43), and S. agalactiae (44) to KBase (45). KBase outputs a first draft
metabolic model based on sequence similarities of the genes to its database, containing
reaction IDs and associated Boolean gene-protein-reaction associations (GPR rules). We
removed reactions if their GPR was invalid, i.e., if the reaction required at least one unknown
gene to be active. The remaining reactions were carried over to the next step only if the

KBase reaction abbreviation was identical to a reaction ID in the BiGG database (25).

We updated this first draft with information from the existing metabolic model of Lactococcus
lactis (21), a close relative of Streptococci, which uses the metabolite and reaction
nomenclature of the BiGG database. For each gene in the L. /actis genome (46), we
identified homologs in the Streptococcus genomes by identifying reciprocal BLAST hits with
e-values <10"®. In some cases, this strategy resulted in the mapping of several paralogous
genes to one gene annotated in the L. /actis genome (see below). Overall, we found L. /actis

homologs for 62% of S. pyogenes, 55% of S. sanguinis, and 61% of S. agalactiae genes.

We added or updated reactions of the initial KBase model with L. /actis reactions if the
corresponding GPR could be fulfilled with Streptococcus genes that had a reciprocal BLAST
hit with e-value <10°"* between the two genomes. If a reaction in the L. /actis model was not
associated with any gene, the corresponding (empty) GPR was also considered valid. We
also included the biomass reaction of L. /actis into the base models. We adapted the relative

abundance of the nucleotides to the G+C content observed in the Streptococcus genomes

i
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(L. lactis: G+C=35.8%, S. sanguinis: G+C=43.4%, S. pyogenes: G+C=38.5%, S. agalactiae:

G+C=35.6%).

Obtaining transport reactions from TransportDB

We replaced GPRs for transport reactions and added transport reactions with predictions
from TransportDB (22). Transport reactions with empty GPRs that could not be filled through
TransportDB were retained. Note that predicting transporters is still challenging and is an

important source of inaccuracies in metabolic network reconstructions (6).

Initial model curation using KAAS

For some reactions, the homolog prediction through bidirectional blast hits resulted in GPRs
with unrealistically large paralogous gene sets. Furthermore, some reactions in the L. /actis
template metabolic network or in the KBase predictions may have erroneous GPR
associations. To reduce these two sources of error, we refined each reaction in the extended
base model by comparing the GPR with the corresponding gene function predictions made
by the KEGG automated annotation server (KAAS) (23). We first re-annotated all genes in
the Streptococci genomes using KAAS, which associated metabolic genes recognized by
KAAS with EC numbers and KEGG reaction identifiers. Using KEGG (47), we additionally
associated each reaction in the extended base model with an EC number and a KEGG
reaction identifier. We added genes to the GPR of all reactions with the same EC number as
that assigned by KAAS to the gene, and we removed genes from GPRs if the gene’s EC
number according to KAAS differed from that of the reaction. If KEGG contained information
on protein complexes, we introduced that information into the corresponding GPRs. We

dropped reactions that lost a valid GPR association in this process.

For example, the L. /actis metabolic network reconstruction contains a coproporphyrinogen
oxidase (CPPPGO, EC: 1.3.3.3), which requires oxygen and is associated with the L. /actis
gene iNF518 (HemN). The KAAS annotation revealed that this gene instead encodes an
oxygen-independent coproporphyrinogen-lll oxidase (CPPPGO2, EC: 1.3.99.22) (48). The
oxygen dependent coproporphyrinogen oxidase erroneously included in the L. /actis model is

12
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catalyzed by HemF, which is present neither in the genome of anaerobically living

Streptococcei nor in L. /actis.

ATP maintenance reactions

The non-growth associated maintenance reaction (NGAM) accounts for ATP requirements
not directly related to cell growth (e.g., maintenance of turgor pressure); conversely, the
growth associated maintenance reaction (GAM) accounts for energy requirements directly
related to cell replication (e.g., synthesis of proteins, DNA, and RNA) and is part of the
biomass reaction. Appropriate rates for these ATP maintenance reactions are usually
determined by growth experiments (6). Because such experiments were not available for S.
sanguinis, S. pyogenes, or S. agalactiae, we set the lower bounds of the according reactions

to the values appropriate for L. /actis (GAM: 39 mM/gow/h; NGAM: 0.92 mM/gpw/h) (21).

Simulated environments

The resulting draft models for S. sanguinis and S. pyogenes were used as the basis for
further refinement through high-throughput gene knockout data. All analyzed gene knockout
studies were performed anaerobically on undefined rich media (brain heart infusion for S.
sanguinis (34), Todd-Hewitt Yeast medium for S. pyogenes (49), and TS media for S.
agalactiae (50)). We thus allowed the uptake of all nutrients for which a transport reaction
was included in the curated base model except for oxygen, constraining the lower bound of
the oxygen exchange reaction to zero and the lower bound of all other exchange reactions to

-5 mM/gow/h.

Identification of FPp and FNp

Using this set of parameters, we performed flux balance analysis (FBA) (24) with the
biomass reaction provided by the L. /actis metabolic model. We identified FPp (false positive
predictions) as those cases where our in-silico gene knockout simulation predicted growth
(Vbiomass>0), While the in vivo experiment showed no growth. Correspondingly, we identified
FNp (false negative predictions) as those cases where the in silico gene-knockout analysis

predicted no growth, while the knockout was viable in the experiment. Because no lower
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threshold for growth was used in the gene knockout experiments, we also interpreted any

flux through the biomass reaction >10? as in silico growth.

Automated network refinement with GLOBALFIT

The draft networks were refined with gene knockout libraries using the previously published
GLoBALFIT algorithm (12). GLOBALFIT is a bi-level optimization program that identifies
smallest sets of network modifications in order to minimize the number of FNp and FPp
cases; allowed network modifications are (i) removals or (i) reversibility changes of existing
reactions; (iii) additions of reactions to the model from a database of potential reactions; (iv)

removals of metabolites from the biomass; and (v) additions of metabolites to the biomass.

The strength of GLoBALFIT is its ability to consider several growth or non-growth cases
simultaneously. In particular, when considering FPp, it is important to simultaneously
consider a true growth case to avoid trivial solutions such as the removal of an essential
reaction(12). We initially solved each FPp simultaneously with a wild type growth case and
each FNp simultaneously with a non-growth case. If the network changes suggested by
GLoBALFIT introduced new errors by converting true positive predictions (TPp) to FNp, or true
negative predictions (TNp) to FPp, we solved the examined case again, this time

simultaneously with all cases converted to false predictions by the original modification.

Allowed model changes

For each network, we created a conservative set of potential additional reactions by blasting
the corresponding genome against all genes annotated in networks contained in the BiGG
database (25). As before, we identified homologous genes as bidirectional blast hits with e-
values <10™". All reactions with a valid GPR of homologous genes was added to the set of
potential additional reactions. Streptococci are gram positive bacteria; we thus removed all
reactions that do not occur in the cytosol or the extracellular space of their original metabolic
model. We allowed the potential reversal of irreversible reactions only for those reactions that

were classified at least as “reversible with uncertainty” in the E. coli metabolic network (26).

14
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Biomass reaction changes (addition or removal of biomass components) suggested by
GLoBALFIT were manually compared to the literature and the biomass reaction generated by
KBase; a fully automated approach could instead use a preformed database of potential
biomass components. If a potential additional biomass component was part of the biomass
reaction of the KBase model, the stoichiometric coefficient was carried over; otherwise, it
was arbitrarily set to 10°. No growth experiments for Streptococci were available to refine the
coefficients. However, the exact coefficient of each biomass component is less important
than its presence for gene knockout analyses (6), and corresponding inaccuracies should not
significantly bias our results. However, to allow quantitative predictions of biomass
production rates, the biomass stoichiometry of the final networks will require additional

curation.

Removal of exchange reactions

GLoBALFIT suggested the removal of several exchange reactions. This may indicate the
absence of the corresponding transporters from the Streptococcus genome. However, most
of these removals may simply indicate that the corresponding nutrient was missing from the
undefined growth medium (12). Supplementary Table S6 lists the exchange reactions

removed for each Streptococcus strain.

Growth on chemically defined media for S. sanguinis

The metabolic network of S. sanguinis was further refined by using the gene knockout library
performed on a chemically defined medium (34). In contrast to the knockout experiments on
undefined media, the corresponding publication lists knockout growth rates rather than
simply stating growth or non-growth. For both experiment and simulations, we considered
growth rates >80% of the wildtype as growth cases, and growth rates <10% of the wildtype
as non-growth cases. The metabolic network of S. sanguinis was then further refined using

the same strategy as described above.

We could successfully predict growth of the S. sanguinis metabolic network on B 48 (32), SY
and M3 media (33). The study of Rogers also provided growth information in media lacking
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one specific metabolite (riboflavin, pantheonate, thiamine, nicotinic acid, pyridoxal, folic acid,
aminobenzoic acid and biotin). The S. sanguinis network successfully predicted the
essentiality and non-essentiality of these metabolites, except the essentiality of pyridoxal and
riboflavin. Therefore, we added these components to the biomass objective function. These
metabolites were also part of the biomass reaction of the network reconstructed by the

KBase.

The genome of S. sanguinis contains a gene cluster that allows the organism to produce
cobalamin (vitamin B12) anaerobically; this region was presumably acquired via horizontal
gene transfer (43). 10 reactions from this pathway are missing from the draft genome
reconstruction. However, as cobalamin is not part of the biomass reaction and all enzymes
involved in cobalamin production are non-essential, GLosaLFIT did not attempt to complete
the pathway. We used GLoBALFIT to identify a minimal set of missing reactions for cobalamin
production by using a growth case with a cobalamin-consuming reaction as the objective
function and allowing the addition of all reactions in the BiGG database. The predicted
complete pathway was identical to the one in the metabolic network of Clostridium ljungdahiii
(51) and Geobacter metallireducens (52). This manual refinement did not affect the knock-

out predictions.
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Figure 1. Automated workflow used for the reconstruction of the Streptococcus metabolic

models. Information added at each step supersedes information from previous steps.
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Table 1. Comparison of experimental and predicted viability for Streptococci gene knockouts

Experiment GroeaLFir KBase
Predictions growth non-growth | Accuracy’ Ry ? | Accuracy’ Ry“
S. sanguinis growth 479 17 95.3% 0.83 78.6% 0.33
no growth 12 89 (96.6%) (0.88)
S. pyogenes growth 283 15 95.4% 0.88 78.1% 0.42
no growth 3 90 (96.6%) (0.91)
S. agalactiae growth 304 17 93.8% 0.84 776% 0.39
no growth 10 103 (95.3%) (0.88)

L percentage of correct viability predictions. Values in parentheses are calculated excluding the F-ATPase

complex.
2 Matthew’s correlation coefficient (28). Values in parentheses are calculated excluding the F-ATPase complex.

5 percentage of correct viability predictions (excluding genes associated with non-metabolic generic reactions, i.e.,

protein biosynthesis, DNA replication, and RNA transcription).

* Matthew’s correlation coefficient (28) (excluding genes associated with non-metabolic generic reactions, ie.,

protein biosynthesis, DNA replication, and RNA transcription).
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Supplementary Tables

Supplementary Table S1. Essential amino acids

S. sanguinis S. pyogenes S. agalactiae
Cysteine Arginine Arginine
Cysteine Cysteine
Histidine Histidine
Isoleucine Isoleucine
Leucine Leucine
Lysine Lysine
Methionine Methionine
Phenylalanine Phenylalanine
Threonine Tryptophan
Tryptophan Tyrosine
Tyrosine Valine
Valine
Glutamine or Glutamate
Glutamine or Glutamate Glycine or Serine

Glycine or Serine

Supplementary Table S2. Comparison of experimental and predicted viability for
Streptococci gene knockouts with metabolic models reconstructed by KBase.

Experiment
Predictions growth non-growth Accuracy' Ru (®)
S. sanguinis growth 390 46 78.6% 0.33
no growth 98 110 (77.6%) (0.46)
S. pyogenes growth 233 44 78.1% 042
no growth 44 89 (78.5%) (0.51)
S. agalactiae’ growth 335 63 77.6% 0.39
no growth 52 69 (78.7%) (0.50)

! percentage of correct viability predictions. Values in parentheses are calculated including genes associated with
non-metabolic generic reactions (i.e., protein biosynthesis, DNA replication, and RNA transcription).

2 Matthew’s correlation coefficient (28). Values in parentheses are calculated including genes associated with
non-metabolic generic reactions (i.e., protein biosynthesis, DNA replication, and RNA transcription).

3s: agalactiae could not grow anaerobically, thus we allowed the influx of oxygen
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Supplementary Table S3.

Essential amino acids for KBase models’

S. sanguinis S. pyogenes S. agalactiae

Glycine-Asparagine Alanine-Glutamine or Alanine- | Alanine-Glutamine or Alanine-
Aspartate or Alanine-Glutamate | Aspartate or Alanine-
or Alanylglycine or Alanine- | Glutamate or Alanylglycine or
Leucine or Alanine-Histidine or | Alanine-Leucine or Alanine-
Alanine-Threonin Histidine or Alanine-Threonin

Cysteine or Cysteine- | Arginine Arginine

Glycine or Glycine-

Cysteine

Glycine-Tyrosine

Cysteine or Glycine-Cysteine or
Cysteine-Glycine

Cysteine or Glycine-Cysteine
or Cysteine-Glycine

Alanine-Histidine

Alanine-Histidine

Isoleucine Isoleucine
Leucine or Glycine-Leucine Leucine or Glycine-Leucine
Lysine Lysine

Methionine or Methionine-
Alanine or Glycine-Methionine

Methionine or Methionine-
Alanine or Glycine-Methionine

Glycine-Phenylalanine

Glycine-Phenylalanine

Alanine-Threonine Tryptophan
Tryptophan Glycine-Tyrosine
Glycine-Tyrosine Valine
Valine
Glutamine or Glycine-
Glutamine or Glycine-

Glutamate

Glycine-Asparagine or Glycine-
Aspartate

Glutamine or Glycine-Glutamine
or Glycine-Glutamate

1

Note that for several amino acids, the networks automatically reconstructed by KBase possessed only

exchange reactions for di-peptides. For example, the observed auxotrophy of glycine or serine for S. pyogenes
could not be tested, because glycine was already imported as glycine-tyrosine.
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Supplementary Table S4 Essential metabolites of the three Stroptococci

Organism’' |Metabolite Reaction Pathway E.C.
Number
SSA, SAK  [2-Amino-4-hydroxy-|2-amino-4-hydroxy-6- Folate 2763
6-hydroxymethyl- |hydroxymethyldihydropteridine  [biosynthesis
7,8- diphosphokinase
dihydropteridine
dihydroneopterin aldolase Folate 41225
biosynthesis
SSA, SAK  [4-Aminobenzoate |aminodeoxychonsmate lyase Folate 41338
biosynthesis
Dihydroperoate synthase Folate 251.15
biosynthesis
SSA,  SAK,|D-glutamate glutamate racemase D-Glutamine 5143
SPY and D-glutamate|
metabolism
UDP-N-acetylmuramoyl-L- Peptidoglycan 16.3.2.9
alanine-—-D-glutamate ligase biosynthesis
SPY Undecaprenyl- UDP-N-acetylglucosamine-N- Peptidoglycan |2.4.1.227
diphospho-N- acetylmuramyl- biosynthesis
acetylmuramoyl-L- |(pentapeptide)pyrophosphoryl-
alanyl-D-glutamyl- |undecaprenol N-
L-lysyl-D-alanyl-D- |acetylglucosamine transferase
alanine
SSA, SAK |UDP-N-acetyl-3-O- |UDP-N- Peptidoglycan |1.3.1.98
SPY (1-carboxyvinyl)-D- |acetylenolpyruvoylglucosamine biosynthesis
glucosamine reductase
SPY UDP-N- phospho-N-acetylmuramoyl- Peptidoglycan |2.7.8.13
acetylmuramoyl-L- |pentapeptide-transferase (alpha-| biosynthesis
alanyl-D-glutamyl- |glutamate)
L-lysyl-D-alanyl-D-
alanine
SSA,  SAK,|UDP-N- UDP-N-acetylmuramoyl-L-alanyl- | Peptidoglycan |6.3.2.10
SPY acetylmuramoyl-L- |D-glutamyl-L-lysyl-D-alanyl-D- biosynthesis
alanyl-D-glutamyl- |alanine  synthetase  (alpha-
L-lysyl-D-alanyl-D- |glutamate)
alanine synthetase
(alpha-glutamate)
SSA,  SAK,|UDP-N- UDP-N-acetylmuramoyl-L-alanyl- | Peptidoglycan |6.3.2.9
SPY acetylmuramoyl-L- |D-glutamate synthetase biosynthesis
alanine
SSA,  SAK,|UDP-N- UDP-N-acetylmuramoyl-L-alanyl- [Peptidoglycan [6.3.2.13
SPY acetylmuramoyl-L- |D-glutamate:meso-2,6- biosynthesis
alanyl-D-glutamate |diaminoheptanedioate ligase
UDP-N-acetylmuramoyl-L-alanyl- [Peptidoglycan [6.3.2.7
D-glutamate—L-lysine ligase biosynthesis
SSA,  SAK,|UDP-N- UDP-N-acetylmuramoyl-L-alanine |Peptidoglycan  |6.3.2.8
SPY acetylmuramate synthetase biosynthesis

' SSA=Streptococcus sanguinis, SAK=Streptococcus agalactiae, SPY=Streptococcus pyogenes
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Supplementary Table S$5. Non-transport reactions associated with genes and EC number

Reactions associated Reactions
with genes with EC Number
S. sanguinis 95.9% 98.4%
S. pyogenes 97.1% 98.0%
S. agalactiae 97.8% 98.2%
S. sanguinis KBase Model 93.0% 92.8%
S. pyogenes KBase Model 87.7% 91.5%
S. agalactiae KBase Model 90.0% 92.3%

Supplementary Table S6. Removal of nutrients from the growth medium suggested by

GLOBALFIT
S. sanguinis S. pyogenes S. agalactiae
N-Acetyl-D-Glucosamine Citrate Acetaldehyde
Fructose Malate N-Acetyl-D-mannosamine
Asparagine’ Pyruvate N-Acetyl-D-Glucosamine
Aspartate’ Serine Dihydroxyacetone
Cysteine' Glycerol Deoxyribose
Glycine' Fructose Fructose
Threonine' Mannose Glycerol 3-phosphate
N-Acetyl-D-mannosamine Glycerol
N-Acetyl-D-Glucosamine Inosine
Mannose
Malate
Thymidine
Hypoxanthine
Xanthine
Coenzyme A

" GLOBALFIT suggested to constrain the corresponding influx to -0.1
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Abstract

Energy metabolismis central to cellular biology. Thus, genome-scale models of heterotro-
phic unicellular species must account appropriately for the utilization of extemnal nutrients to
synthesize energy metabolites such as ATP. However, metabolic models designed for flux-
balance analysis (FBA) may contain thermodynamically impossible energy-generating
cycles: without nutrient consumption, these models are still capable of charging energy
metabolites (such as ADP—ATP or NADP*—NADPH). Here, we show that energy-generat-
ing cycles occur in over 85% of metabolic models without extensive manual curation, such
as those contained in the ModelSEED and MetaNetX databases; in contrast, such cycles
are rare in the manually curated models of the BiGG database. Energy generating cycles
may represent model errors, e.g., erroneous assumptions on reaction reversibilties. Alter-
natively, part of the cycle may be thermodynamically feasible in one environment, while the
remainder is thermodynamically feasible in another environment; as standard FBA does not
account for thermodynamics, combining these into an FBA model allows erroneous energy
generation. The presence of energy-generating cycles typically inflates maximal biomass
production rates by 25%, and may lead to biases in evolutionary simulations. We present
efficient computational methods (i) to identify energy generating cycles, using FBA, and (i)
to identify minimal sets of model changes that eliminate them, using a variant of the GLogat-
Fir algorithm.

Author summary

Genome-scale metabolic models are routinely used to simulate the growth of unicellular
organisms, and are likely to become an important tool in the medical sciences. The most
popular method employed for this task is flux balance analysis (FBA), a simplified mathe-
matical description able to describe the simultaneous activity of hundreds of biochemical
reactions. Cellular functions are often dependent on the availability of sufficient energy,
and thus a correct representation of energy metabolism appears crucial to metabolic

PLOS Computational Biology | https://doi.or/10.1371/journal.pcbi. 1005494 April 18,2017 1/14
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modeling. However, we found that the majority of FBA models generated directly from
genome sequences, as well as a minority of carefully curated models, are capable of gener-
ating energy out of thin air. These models charge energy metabolites such as ATP without
any nutrient uptake. We named the corresponding sets of reactions “erroneous energy
generating cycles” (EGCs) and developed a high-throughput algorithm for their identifi-
cation. We found EGCs in 238 (68%) of 350 metabolic models from three different data-
bases. We developed a second, fully automated method for EGC removal. Simulations on
the corrected models typically showed growth rates that were 25% slower than in the orig-
inal models, demonstrating the importance of checking metabolic model reconstructions
for EGCs.

Introduction

Constraint-based analysis, in particular flux-balance analysis (FBA), is the current state of the
art in genome-scale metabolic modeling [1]. Constraint-based modeling assumes a steady
state (i.e., every internal metabolite that is produced must be consumed at the same rate) and
imposes lower and upper bounds on metabolic fluxes. However, constraint-based analyses typ-
ically do not explicitly consider thermodynamics. As a result, the mathematical solution of
constraint-based problems is often thermodynamically infeasible [2, 3]. Spedifically, internal
cycles (sometimes called type-I11 pathways [4]), which consist only of internal reactions and
do not exchange metabolites with the environment, violate the second law of thermodynamics.
The thermodynamic driving forces around a biochemical reaction cyde must add up to zero;
hence, there cannot be a flux in a closed cycle [5-7].

These thermodynamically infeasible type-IIT pathways [4] have to be distinguished from
futile cycles (type-1I pathways Fig 1), which additionally consume cofactors to generate a driv-
ing force around the cycle [8, 9]. Futile cydes are not an artifact of metabolic modeling, but
have been experimentally observed [10]; e.g., some prokaryotes that live in very energy-rich
environments need to dissipate energy by converting ATP to ADP [11].

Energy generating
Futile cycle cycle (EGC)

Fig 1. Afutile cycle that consumes energy drawn from a cofactor pool (left) and an energy generating
cycle (EGC) (right), which is thermodynamically impossible but occurs in some metabolic network
models (figure extended from [12]). We can convert the type-ll pathways to type-1ll pathways by closing the
cycles in the cofactor pools (dashed arrows).

hitps//doi.orn/10.137 1/joumal. pchi.1005494. 9001
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A futile cycle running in reverse would charge energy metabolites such as ATP without an
external source of energy (Fig 1). Accordingly, we dassify type-II pathways [12] into two sub-
groups by taking the directionality of cofactor utilization into account: (a) futile cycles, which
consume energy and are thus thermodynamically feasible, and (b) energy generating cycles
(EGC), which charge energy metabolites without a source of energy.

While such EGCs are thermodynamically impossible, they can—and, as we show below, do
—ocaur in constraint-based models. Futile cycles will rarely occur in FBA solutions, as they
dissipate energy and hence divert metabolic investment away from biomass production.
EGCs, in contrast, can have a substantial effect on the predictions of constraint-based analyses,
as they generate energy out of nothing that then supports in silico growth. A simple example
illustrating a (hypothetical) EGC is shown in Fig 2.

Eliminating EGCs is crucial for the correct modeling of energy metabolism, as has been rec-
ognized earlier (see, e.g,, [13-15]). While thermodynamically infeasible type-I1I pathways
(internal cycles) can be easily removed through a simple post-processing step [5, 16], the same
strategy cannot be used to suppress EGCs. In principle, EGCs could be excluded from the solu-
tion space by systematically assigning suffidently detailed thermodynamic constraints. Ther-
modynamics-Based Metabolic Flux Analysis (TMFA) [17], for example, searches for a set of
feasible metabolite concentrations such that all reactions proceed in the direction of negative
free energy change (AG<0) or, equivalently, a ratio of product to substrate concentrations
below the reaction’s equilibrium constant, K.,. However, it can be shown mathematically that
for any flux distribution without type-IIT pathways, there exists a distribution of metabolite
concentrations such that the flux distribution is thermodynamically feasible, i.e., all fluxes pro-
ceed in the direction of negative free energy change (see the theorem in [16]). This theoretical
result respects the fact that metabolite concentrations must have a single value for all reactions
they participate in; Supplementary S1 Text shows a small example network that illustrates the
inability of lI-COBRA and TMFA to reliably exclude EGCs.

The simplest EGC could be established through an ATP energy dissipation reaction (ATP +
H,0 — ADP + Pi + H) that isallowed to proceed in the backwards direction. An energy-gen-
erating backward flux can be achieved as long asthe concentration ratio ([ATP][H,0]) /
([ADP][Pi][H"]) is smaller than the corresponding equilibrium constant K, = 2x10°M " If
we treat the concentration of H,O (55M) as constant, this cannot occur within the physiologi-
cal concentration bounds assumed by Henry et al. [17], 10"°M and 0.02M, showing that
TMFA’s metabolite concentration bounds avoid the utilization of at least some EGCs. Note,
however, that reactions central to an EGC may have equilibrium constants compatible with

Metabolite H+

intracellular

extracellular

;T_u%r;dm

Metabolite H+

Fig 2. A simple (hypothetical) example of an energy generating cycle (EGC). A symporter that exportsa
metabolite and a proton acts togetherwith a transporter that takes the same metabolite up without a proton. A
combination of both reactions builds up a proton gradient that can then be utilized to generate energy (e.g., via

an ATP synthase).
hitpsJ/doi.or/10.137 1/joumal. pcbi. 1005494. 9002
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the concentration bounds, especially if the total free energy change is spread over several indi-
vidual reactions. Moreover, the TMFA strategy relies on the availability of equilibrium con-
stants for all reactions central to the EGC.

In contrast to TMFA, several alternative thermodynamically informed constraint-based
methods only consider chemical potentials, which do not incorporate information on reac-
tion specifics such as the equilibrium constant K, [7, 12, 18, 19]. For every flux distribution
free of type-III pathways, it is possible to find a distribution of chemical potentials such that
all fluxes proceed in the direction of chemical potential reduction [16]. This means that
potentials capable of driving energy dissipation reactions towards the high-energy metabolite
can always be found. Thus, constrained -based methods designed to ensure thermodynamic
feasibility based on freely variable chemical potentials do not guarantee the elimination of
EGCs.

The detection and removal of EGCs is currently not part of established metabolic network
reconstruction pipelines [2]. In particular, automatic reconstructions algorithms [20, 21] cur-
rently do not test for EGCs. Sometimes, EGCs are identified in the manual reconstruction
process, and parts of the cycles are constrained to zero flux as a makeshift correction [13].
Accordingly, as we demonstrate below, the problem of erroneous free energy generation
occurs in a majority of automated and a subset of manual network reconstructions.

Results and discussions

Erroneous energy-producing cycles occur in many published
reconstructions

EGCs can be identified through a variant of FBA [14]. To efficiently identify the existence of
diverse EGCs, we first add a dissipation reaction to the metabolic network for each metabolite
used to transmit cellular energy; e.g., for ATP, the irreversible reaction ATP + H,O — ADP +
P + H" is added. These dissipation reactions close any existing energy-generating cycles,
thereby converting them to type-11I pathways. Fluxes through any of the dissipation reactions
at steady state indicate the generation of energy through the metabolic network. Second, all
uptake reactions are constrained to zero. The sum of the fluxes through the energy dissipation
reactions is now maximized using FBA. For a model without EGCs, these reactions cannot
carry any flux without the uptake of nutrients.

We used this approach to identify the presence of EGCs for 14 different energy metabo-
lites (ATP, CTP, GTP, UTP, ITP, NADH, NADPH, Flavin adenine dinucleotide, Flavin
mononucleotide, Ubiquinol-8, Ubiquinol-8, 2-Demethylmenaquinol 8, Acetyl-CoA, L-Glu-
tamate) and for proton exchange between periplasm and cytosol (for simplicity counted as a
15" “energy metabolite” below); see Suppl. S1 Table for the corresponding dissipation reac-
tions. We did not require the energy dissipation reactions to be charge-balanced; e.g,, in the
reaction NADH — NAD" + H”, we omitted the molecule that acts as the acceptor of the two
electrons. Adding the electron acceptor to the dissipation reaction would not dissipate the
energy stored in NADH, as this energy could then potentially be re-used by internal cofactor
regeneration reactions; in this case, the dissipation reaction could be active even in the
absence of EGCs. FBA models do not keep track of metabolite charges, and thus the general
problem posed by charge unbalanced reactions is not that they affect constraint-based simu-
lations directly; instead, they are a sign of incorrect reaction stoichiometry, which is espe-
cially severe in the case of electron imbalances. It is important that models are mass and
electron balanced [2] before conducting the EGC analysis. While EGCs induced by mass or
electron unbalanced reactions may be detected by our method, they cannot be removed
properly without fixing the reaction stoichiometries.
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Fig 3. The majority of metabolic network reconstructions in two of the examined databases
(ModeISEED and MetaNetX) contain erroneous internal EGCs that generate energy. In contrast, most
modelsin BiGG do not contain EGCs. Total bar size reflects the number of models contained in each
database. Green: models without EGCs; purple: models with EGCs that could be corrected through
GroeacFim; orange: models with EGCs that cannot be comected through reaction removals.
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We analyzed all models in three large databases of constraint-based metabolic networks:
BiGG [22], ModelSeed [23], and MetanetX [24]. Overall, we found that over two thirds (689%)
of tested models supported anon-zero flux through at least one of the 15 energy dissipation
reactions, although this percentage differed drastically between databases (Fig 3).

The BiGG database contains high-quality manual [2] and, in the case of 54 E. coli strains,
semi-automated [25] genome scale metabolic reconstructions. We found EGCs in only 3 out
of the 79 BiGG models (3.8%; Suppl. S2 Table). The ModelSEED database is connected to a
service for high-throughput reconstruction and analysis of metabolic networks. A special fea-
ture is the fully automated reconstruction of genome-scale networks from genome sequences.
Due to the fully automated reconstruction, models created by this service should be considered
as draft models, and manual steps for model improvement are recommended [23]. Consistent
with this recommendation, we identified EGCs in 95% of ModelSEED models (185 out of 195;
Suppl. S2 Table). Finally, MetaNetX is a Meta-Database for metabolic network models, gather-
ing metabolic networks from different databases (including The ModelSEED and the BiGG
database) and mapping them to one common namespace. This allows easy meta-analysis,
manipulation, and comparison of those models [24]. Our FBA strategy found EGCs in 66% of
MetaNetX models (50 out of 76; Suppl. S2 Table).

GrosaLFiT can eliminate >90% of EGCs by removing reactions

For each network with EGCs, we then used a slightly modified version of GLosaLFir [26] to
suggest a minimal number of reaction removals that eliminate all EGCs, allowing independent
removals of forward and backward directions for reversible reactions. GLosaLFrr was originally
designed to recondle inconsistencies between FBA model predictions and measured growth/
non-growth data, e.g., from gene knockouts. GLosaLFiT uses a bi-level optimization method to
identify the minimal set of network changes needed to correctly predict all experimentally
observed growth and non-growth cases (or a subset thereof) simultaneously. We slightly
altered the original algorithm, now simultaneously contrasting one growth case (the network
with the biomass reaction as the objective function, ensuring that the suggested modifications

PLOS Computational Biology | https:/doi.or/10.1371/ournal.pcbi. 1005494 April 18,2017 5/14
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do not interfere with biomass production), and one non-growth case (the network with the
sum of energy dissipation reactions as the objective function, ensuring that the modified net-
work contains no EGCs for details see Materials and methods). It can be argued that some
types of reactions should be preferentially removed; e.g,, reactions only weakly supported by
genomic evidence may be removed first, and it may be more likely that one direction of a reac-
tion labeled as reversible represents a network error than that an irreversible reaction is erro-
neous. While the modified GLosaLFrr algorithm allows such differential weighing of different
reaction types, we considered all reaction removals as equally likely in the application detailed
below. Moreover, reactions could be preferentially removed depending on the estimated equi-
librium constant (or standard Gibb's free energy change AGy).

For 94% of metabolic models with EGCs (223 out of 238), GrosaLFit found a set of reaction
removals that eliminated all EGCs while maintaining the ability to produce biomass. In many
cases, GrLosaLFrr suggested the removal of the ATP synthase reaction. While this will indeed
remove most ATP-producing cycles, it will also abolish the model’s natural ability to produce
ATP through respiration. To avoid this undesired side effect, we performed a second search
for reaction removals that eliminated all EGCs, this time forcing the algorithm to retain the
ATP synthase reaction. This step could be adapted to the physiology of the studied organism
by selecting a different reaction set to be retained. In each case, we could identify an alternative
set of reaction removals; below, we only consider these alternative sets of suggested network
changes. Note that GLosaLFiT does not actually remove the offending reactions, but constrains
their fluxes to zero. This allows their reactivation in conditions where they are deemed
thermodynamically feasible, although alternative measures must then be taken to avoid EGCs.

Most erroneous models can be corrected by making up to five originally reversible reactions
irreversible (Fig 4). The removal of irreversible reactions was only rarely suggested by the algo-
rithm (Fig 4), while the complete removal of reversible reactions was never observed. In the
remaining unsolved models, EGCs could in prindple be eliminated by adding reactions to the
metabolic networks. The addition of reactions not directly connected to an EGC may be
needed to restore biomass production in case no solution exists that preserves viability after
EGC removal. While the modified version of GLosaLFir is capable of suggesting such

200-[] €= reaction removal:
- of irreversible reactions
- of one direction of a reversible reaction

0 2 4 6 8 10 12 14 16 18 >20

4
number of removed reactions
Fig 4. Most erroneous models can be corrected by making up to 5 originally reversible reactions

irreversible. Purple: histogram of the number of imeversible reactions removed in each model to eliminate
EGCs. Orange: histogram of the number of reversible reactions made irreversible to eliminate EGCs.

hitps//doi.orm/10.137 1/joumal. pchi. 1005494. 9004
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additions, the application of this strategy would require manual revision, as it might incor-
rectly add new metabolic capabilities.

While bi-level mixed integer optimization algorithms such as the one used by GLosaLFir
typically require long computation times, GLoALF 1T resolved most solvable EGCs in under
10s, and all but one EGC within one minute (Supplementary S1 Fig). The only calculation that
required over one minute was for the yeastnet 7.6 model [27], for which the CPLEX solver
did not find an optimal solution within the set limit of 60 hours on 16 CPUs. The best set of
changes found for this yeast model eliminated all EGCs by removing 76 reactions (or reaction
directions). According to CPLEX, there is no alternative elimination of EGCs with fewer than
33 reactions; thus, this model contains at least 33 EGCs. As many EGCs include transport reac-
tions across cellular membranes, the large number of EGCs found in this eukaryotic model
(and the resulting increased computation time) may be caused by the existence of several intra-
cellular compartments and the associated transport processes.

Freely available energy may boost biomass production. Accordingly, the elimination of
EGCs through the reaction removals suggested by GLosaLFir resulted in biomass reductions in
92% of cases (206 out of 223), typically by more than 25% (Fig 5). This indicates that the in-sil-
ico biomass yield may be unrealistically high in a majority of automatically generated models.

Examples for network corrections suggested by GLoeaLFiT

One of the simplest EGCs we identified is displayed in Fig 6(A). This cycle is contained in only
two metabolic models from The ModelSEED database, Klebsiella pneumoniae MGH 78578
(Seed272620.3) and Flavobacterium johnsonia johnsoniae UW101 (Seed376686.6). In this
EGC, a malate symporter (rxn10153) transports malate together with two protons out of the
cell. The exported malate molecule is then re-imported together with a sodium ion via the
malate/Na+ symporter (rxn05207). The sodium is in turn exported by a Na+/Proton antipor-
ter (rxn05209) in exchange for the import of only one of the protons of the first reaction. Thus,
the second exported proton from the first reaction is free to drive an ATP-synthase reaction,
generating ATP from ADP without access to an external energy source. To eliminate this
EGC, the cost of either malate or sodium transport in terms of translocated protons must be
corrected. This option was not given to GLosaLFiT, which instead suggests to remove the
export direction of the malate symporter (rxnl10153).

30~

02 04 0.6 0.8 1.0
Relative biomass production rate after EGC removal

Fig 5. Removal of EGCs led to substantially reduced maximal biomass yield in most models.
Histogram of the ratio between maximal biomass production rate before and after EGC removal.

https://doi.or/10.137 1/joumal. pcbi.1005494.9005
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Fig 6. Examples of EGCs found in published genome-scale models. Green/red: metabolites; blue:
reactions, linking substrates and products; orange: direction of the energy gradient utilized by the energy
dissipation reaction. (A) The simplest identified cycle, which links a Na+/proton antiporter (exporting Na+ in
exchange for a single proton) and a Malate/proton symporter (importing Malate together with two protons) via
a Malate/Na+ symporter. (B) A cycle involving two antiporters and one symporter, driven by a transporter that
translocates tartrate from the periplasm to the cytosol. (C) A NADH:menaguinone oxidoreductase, which
translocates protons in the process of transferring electrons from NADH to Menaquinone 8, driven by a chain
of four enzymes. (D) nn00379 creates Adenosine 5™-phosphosulfate from ATP and sulfate. The equivalent
sulfate adenyltransferase nin09240 catalyzes the backward reaction, but charges a GTP in addition to the
ATP.

hitps//doi.orm/10.137 1/joumal. pchi 1005494

In the manually curated model iJO1366, six reactions (SPODM, SPODMpp, SUCASPtpp,
SUCFUMtpp, SUCMA Ltpp, and SUCTARTtpp) were inactivated in the published model to
avoid unrealistic energy generating loops by constraining their flux to zero [13]. We could
identify two distinct EGCs (Fig 6B and 6C) by reactivating these reactions in the iJO 1366
model and in the 54 other E. coli models derived from this reconstruction [25]. One of these
EGCs is the rather smple cycle (Fig 6B) based on tartrate facilitated transport (TARTRtpp),
found in 45 of the 55 E. coli strain reconstructions in Ref. [25]. This reaction spontaneously
imports tartrate from the periplasm into the cell, while the tartrate/succinate antiporter
(TARTRt7pp) exports tartrate, but smultaneously imports succinate. The cycle continues with
the succinate/aspartate antiporter and then the aspartate/proton symporter, so that eventually
a proton gradient between periplasm and cytosol is established. GLosaLFrr suggests to remove
the utilized direction of the tartrate/succinate antiporter.

The other EGC found in the unconstrained E. coli models is a more complicated cyde (Fig
6C) that occurs in 46 of the 55 E. coli reconstructions [25], induding the manually curated
iJO1366 model [13]. A proton gradient across the periplasmic membrane is established by a
NADH:menaquinone oxidoreductase (NADH17pp), which trandocates protons in the process
of transferring electrons from NADH to Menaquinone 8, driven by a chain of four enzymes,
induding superoxide dismutase (SPODM). In order to deactivate the cycle, GLosaLFrr
removes the backward direction of the Malate oxidase (MOX) or the forward reaction of the
Superoxide dismutase (SPODM). In this case, removal of the Malate oxidase would also be
suggested by an analysis of standard free energy changes, at it is highly energetically
unfavourable.

The EGC shown in Fig 6D was found in 99 out of 195 metabolic models from the Model-
SEED database [20]. rxn00379 creates Adenosine 5'-phosphosulfate from ATP and sulfate.
The sulfate adenyltransferase rxn09240 catalyses the backward reaction (and has the same
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EC-number assigned), but charges not only an ATP, but additionally a GTP in the process. To
eliminate this EGC, GrosaLFir suggests removing either one of the participating reactions.

Conclusions

EGCs are a major issue in FBA modeling—they are able to produce energy out of thin air,
thereby severely affecting the appropriate representation of energy metabolism and of biomass
yield. EGCs not only affect the accurate representation of existing metabolic systems. They will
be particularly problematic in evolutionary simulations that involve the incorporation of for-
eign metabolic reactions from other spedies [28-30]. Such mixing of reactions from disparate
model reconstructions may easily introduce EGCs, and may thus lead to erroneous phenotype
predictions. We have recently suggested a protocol for evolutionary simulations that avoids
this problem [31]. Here, we present an improved computational method for the high-through-
put identification of EGCs.

EGC identification is currently not arecognized step in model reconstruction, although
some authors have eliminated EGCs from their manually curated models before publication.
While constraint-based methods may avoid the utilization of EGCs based on thermodynamic
considerations [17], such methods are computationally expensive and require careful analysis
of the EGCs and the bounds on metabolite concentrations to guarantee the absence of EGCs
from the resulting flux distributions. Instead, we propose to correct the metabolic model itself,
and present a modified version of the previously published GLosaLFitalgorithm to eliminate
EGCs through the removal of minimal reaction sets. The resulting model can then be used
with the full suite of standard constraint- based methods.

We found EGCs in the majority of automatically generated models and in a small subset of
manually curated networks. Many of the identified EGCs—in particular those that occurred
most frequently—involved the erroneous maintenance of proton gradients across cellular
membranes. The simplest EGCs would consist of two reversible reactions that catalyze the
same biochemical conversion using different amounts of energy metabolites (Figs 2 and 6D).
Such trivial EGCs are easily recognizable and are consequently rarely included in published
metabolic networks; most EGCs in published models are more complex, and not easily identi-
fied by eye. We note that automatically reconstructed models often contain other types of
errors as well [2]. For example, charge and mass imbalanced reactions appear to be common
in automatic reconstructions and can lead to erroneous FBA predictions. Such reactions can
potentially introduce EGCs, and we thus suggest to correct them as a preprocessing step.

The inclusion of reaction sets that are capable of forming an EGC into a metabolic network
reconstruction is not necessarily erroneous. It is conceivable that one part of the cyde is
thermodynamically feasible in one condition, whereas the other part is thermodynamically
feasible in another condition, while both are not thermodynamically feasible smultaneously.
Accordingly, modeling algorithms that respect thermodynamic constraints do not utilize
potential EGCs [3, 6, 7, 17, 32-34]. FBA, however, does not consider thermodynamics; instead,
optimization of its objective function (e.g., biomass production rate) will usually lead to the
exploitation of EGCs. One possible solution would be to constrain the fluxes through thermo-
dynamically impossible sections of EGCs to zero in each simulated environment; this, how-
ever, would require a detailed understanding of environment-specific thermodynamics (or,
alternatively, environment-specific gene regulation).

Our algorithms are suitable to guide a manual curation of draft networks, and should be
induded in the standard toolbox used for metabolic network reconstruction. GLosaLFrr can
enumerate alternative solutions to eliminate EGCs, which can then be used as a basis for expert
curation. In the context of automated network reconstruction pipelines such as ModelSEED
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or kBase, our methods could be applied without human interaction, albeit at the risk of remov-
ing reactions that might be thermodynamically feasible in particular environments.

Materials and methods
Dataset and EGC detection

We started from 350 genome-scale metabolic networks (GSMs) that were downloaded from
three databases: BiGG [22]-mostly manually created GSMs (accessed July 2015); ModelSeed
[23]-GSMs created automatically from genome sequences (accessed July 2015); and MetaNetX
[24] -a meta-database containing metabolic models from various sources (accessed January
2016). We removed networks that were unable to produce biomass in a maximally rich envi-
ronment. We checked the correct direction of exchange reactions, and set the lower bound of
the ATP maintenance reaction (ATPM) to zero, i.e., we did not require a non-growth-related
production of ATP.

To each GSM, we added 15 energy dissipation reactions (Supplementary S1 Table), where
the namespace for metabolite names had to match the source of the network, i.e., BiGG, Mod-
elSEED, or MetaNetX. Because not every metabolic network covers the full range of metabo-
lites used in the energy dissipation reactions (EDR), we checked the integration of the
reactions in the network, defined as the fraction of the reaction’s metabolites also present in
the remainder of the model (i.e., a reaction with an integration of 1 is completely integrated,
whereas reactions with an integration < 1 cannot carry any flux). Because EGCstend to run
with maximal fluxes, all network reactions except the newly added ones (those in energy dissi-
pation reactions) are restricted to fluxes in the range [-1, 1] for reversible and [0, 1] for irre-
versible reactions.

To establish the presence of EGCs for different energy metabolites, we maximized one
energy dissipation reaction flux v;at a time while prohibiting all influx into the model:

max (v,)

subject to:
Sv=0
VigE: V™ <y <v™
VieEE: v,=0

Here, Sis the stoichiometric matrix, v the vector of fluxes, d the index of one of the energy
dissipation reactions, ¥™" and v"** the vector of lower and upper reaction bounds, respec-
tively, and E is the set of indices of all exchange reactions.

An optimal value v for this optimization with v; > 0 indicates the presence of at least one
cycle that is able to generate a specific type of energy metabolite (corresponding to the index d)
in the network. Because 0 < |v;| < 1 for all reactions other than dissipation reactions, the value
of v} is a lower bound for the number of non-overlapping EGCs for the tested energy metabo-
lite in the network.

The modified GLosaLFiT algorithm

Once a GSM was identified to contain at least one EGC, GLosaLFir was used to eliminate all
EGCs from the network. GLosaLFrr was developed to find globally minimal sets of model
changes that simultaneously reconcile sets of experimental growth and non-growth observa-
tions with model predictions; a detailed description of the original GLosaLFrr algorithm can be
found in [26]. We modified GrosaLFit for the effident removal of EGCs as outlined below.
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In this modified version, the only allowed type of model change is the removal of unidirec-
tional reactions, where reversible reactions are treated as two independent unidirectional reac-
tions. We contrast a single growth with a single non-growth case. The non-growth case reflects
the removal of all EGCs: with no nutrient uptake allowed, the maximal sum of fluxes through
the energy dissipation reactions must be zero, max(X v, ) = 0. To ensure that reaction remov-
als do not abolish biomass production by eliminating EGCs, we set up a growth case with a
minimal biomass production rate in a rich medium that allows uptake of all nutrients.

Formally, we solve the following bi-level optimization problem, which is a variation of the
original GLosaLFrr problem [26] (Variable definitions are listed in Table 1):

ming (3 _,, (67" +47")) (1)

subject to:
S X ¥=10 (2)

VeuV=x (1-8") < ¥ < v™=x (1-5}) (3)
Vie 2 T, (4)

S, x v =0 (s)

Vieu ™ x (1= 38") < V¥ < V™ x (1-6)") (6)

min(c' x ¥¥) =0 ?)

5;” and 6:’ are binary variables. Setting one of these variables to 1 will constrain the corre-
sponding flux of the growth—Eq (3)—and non-growth case—Eq (6)-to zero. The total num-
ber of reaction removals is minimized, where the removal of forward and backward reaction is
treated separately in Eq (1)-i.e., 5:‘ and 6:’ are independent. Both the growth and the non-
growth case must be in steady state, Eqs (2) and (5). The biomass production of the growth
case has to be greater than a predefined threshold T,, Eq (4). All entries in " are 0, except for
the positions of the energy dissipation reactions, which are 1. The maximal summed flux

Table 1. Definitions of the variables used in the system of equations that describes the modified GLo-
eaFiT algorithm.

The set of reactions included in the original (input) network reconstruction

Stoichiometric matrix of the original (input) network reconstruction

Flux vector

Growth case

Non-growth case

Lower bound of reaction y

Upper bound of reaction y

Biomass reaction of the growth case

Growth threshold of the growth case

Vector containing ones and zeros. All entries are zero, except for the positions of the energy
dissipation reactions

hitps://doi.ory/10.137 1/joumal. pcbi.1005494.1001

LR SRREISCIR

PLOS Computational Biology | https:/doi.org/10.1371/journal.pcbi. 1005494 April 18,2017 11714

111



0 MANUSCRIPTS

B'PLOS

COMPUTATIONAL

BIOLOGY Energy-generating cycles
through all energy dissipation reactions must be zero, Eq (7). We convert this bi-level optimi-
zation problem into a single level optimization problem as described in [26].

All calculations were run in GNU R with the SyBiL library [35] and a modified GLosaLFrr
library [26] under linux. We used IBM ILOG CPLEX as the solver for the mixed integer linear
optimizations. Each calculation was run on 8 CPU cores and 50GB main memory.
Supporting information
S1 Fig. Computation time. Distribution of computation (wall-dock) times for the application
of GrosaLFir to the metabolic models containing EGCs. While almost all computations fin-
ished in under a minute on a PC (8 CPUs, 50Gb RAM), the search for model corrections
requires considerably more time for the yeast 7 metabolic network (data points off scale; the
“simple” calculations were stopped after 61.27 hours and the “synthase” run needed 25.03
minutes). The red line (“simple”) is for runs allowing all reaction removals; the blue line
(“synthase”) is for runs not allowing removal of the ATP synthase reaction.

(TIFF)
S1 Table. Energy dissipation reactions. Energy dissipation reactions (EDRs) for each of the
15 different types of energy metabolites in the cell.
(XLSX)
$2 Table. EGC occurrences in models. For each model, this table shows whether biomass pro-
duction was possible at all (hasGrowth), whether energy generating cydes are present
(hasEGCs), the identified types of EGCs (e.g., generates.ATP), and the reactions (or reaction
directions) removed by GLogaLFir for the “simple” run (all removals allowed) and with
removal of the ATP synthase forbidden (“synthase”).
(XLSX)
S1 Text. Toy model. A small example network that illustrates the inability oflI-COBRA and
TMFA toreliably exclude EGCs.
(PDF)
Acknowledgments
Weare grateful for computational support through the Zentrum fiir Informations- und Med-
ientechnologie (ZIM) at Heinrich Heine University Diisseldorf.
Author Contributions
Conceptualization: CJF DH BS BP MJL.
Formal analysis: CJF DH BS.
Funding acquisition: MJL.
Investigation: CJF DH BS.
Methodology: CJF DH BS.
Software: CJF DH.
Supervision: BP M]JL.
Validation: CJF DH.
Visualization: CJF DH.
PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1005494  April 18,2017 12/14

112



Manuscript 3: Erroneous...

GPLOS |sisemoms

Energy-generating cycles

Writing - original draft: CJF DH ML.

Writing - review & editing: CJF DH BS BP MJL.

References

1.

2.

7.

10.

1.

12

13.

14.

15.

16.

17.

18.

19.

21.

O'Brien EJ, Monk JM, Palsson BO. Using Genome-scale Models to Predict Biological Capabilities. Cell.
2015; 161(5):971-87. https://doi.org/10.1016/.cell.2015.05.019 PMID: 26000478

Thiele |, Palsson BO. A protocol for generating a high-quality genome-scale metabolic reconstruction.
Nat Protoc. 2010; 5(1):93-121. https://doi.org/10.1038/nprot.2009.203 PMID: 20057383

Price ND, Thiele |, Palsson BO. Candidate states of Helicobacter pylori's genome-scale metabolic net-
work upon application of *loop law* thermodynamic constraints. Biophys J. 2006; 90(11):3919-28.
https://doi.org/10.1529/biophysj.105.072645 PMID: 16533855

Schilling CH, Schuster S, Palsson BO, Heinrich R. Metabolic pathway analysis: basic concepts and sci-
entific applications in the post-genomic era. Biotechnol Prog. 1999; 15(3):296-303. https ://doi.org/10.
1021/bp390048k PMID: 10356246

Muller AC, Bockmayr A. Fast thermodynamically constrained flux variability analysis. Bioinformatics.
2013; 29(7):903-9. https://doi.org/10.1093/bicinformatics/btt059 PMID: 23390138

Schellenberger J, Lewis NE, Palsson BO. Elimination of thermodynamically infeasible loops in steady-
state metabolic models. Biophys J. 2011; 100(3):544-53. https://doi.org/10.1016/1.bpj.2010.12.3707
PMID: 21281568

Beard DA, Liang SD, Qian H. Energy balance for analysis of complex metabolic networks. BiophysJ.
2002; 83(1):79-86. https://doi.org/10.1016/! -3495(02)75150-3 PMID: 12080101

Wiback SJ, Palsson BO. Extreme pathway analysis of human red blood cell metabolism. Biophys J.
2002; 83(2):808-18. https://doi.org/10.1016/ -349! 75210-7 PMID: 12124266

Sridharan GV, Ullah E, Hassoun S, Lee K. Discovery of substrate cycles in large scale metabolic net-
works using hierarchical modularity. BMC Syst Biol. 2015; 9:5. https://doi.org/10.1186/512918-015-
0146-2 PMID: 25884368

Reidy SP, Weber JM. Accelerated substrate cycling: a new energy-wasting role for leptin in vivo. AmJ
Physiol Endocrinol Metab. 2002; 282(2):E312-7. https //doi.org/10.11 j ‘ 7.2001 PMID:
11788362

Russell JB. The energy spilling reactions of bacteria and other organisms. J Mol Microbiol Biotechnol.
2007; 13(1-3):1-11. https://doi.org/10.1159/000103591 PMID: 17693707

Price ND, Familil, Beard DA, Palsson BO. Extreme pathways and Kirchhoff's second law. Biophys J.
2002; 83(5):2879-82. https://doi.org/10.101 95(02)75297-1 PMID: 12425318

Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, et al. A comprehensive genome-scale recon-
struction of Escherichia coli metabolism—2011. Mol Syst Biol. 2011; 7:535. https://doi.org/10.1038/
msb.2011.65 PMID: 21988831

Quek LE, Dietmair S, Hanscho M, Martinez VS, Borth N, Nielsen LK. Reducing Recon 2 for steady-
state fluxanalysis of HEK cell culture. J Biotechnol. 2014; 184:172-8. https://doi.org/10.1016/.jbiotec.
2014.05021 PMID: 24907410

Swainston N, Smallbone K, HefziH, Dobson PD, BrewerJ, Hanscho M, et al. Recon 2.2: from recon-
struction to model of human metabolism. Metabolomics. 2016; 12:109. https //doi.org/10.1007/s11
016-1051-4 PMID: 27358602

Desouki AA, Jarre F, Gelius-Dietrich G, Lercher MJ. CydeFreeFlux: efficient removal of

cally infeasible loops from flux distributions. Bioinformatics. 2015; 31(13):2159-65. https //dai.org/10.
1093/bioinform atics/btv096 PMID: 25701569

Henry CS, Broadbelt LJ, Hatzimanikatis V. Therm odynamics-based metabolic flux analysis. Biophysical
Journal. 2007; 92(5):1792-805. https ://doi.org/10.1 } j.106.093138 PMID: 17172310

Beard DA, Babson E, Curtis E, Qian H. Thermodynamic constraints for biochemical networks. J Theor
Biol. 2004; 228(3):327-33. https://doi.org/10.1016/1.itbi.2004.01.008 PMID: 15135031

Nigam R, Liang S. Second Law of Thermodynamics Applied to Metabolic Networks. 2003.

Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, etal. The SEED and the Rapid Annota-
tion of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014; 42(Data-
base issue):D206-14. https://doi.org/10.1093/nar/gkt1226 PMID: 24293654

Devoid S, Overbeek R, DeJongh M, Vonstein V, Best AA, Henry C. Automated genome annotation and
metabolic model reconstruction in the SEED and Model SEED. Methods Mol Biol. 2013; 985:17-45.
https://doi.org/10.1007/978-1-62703-299-5 2 PMID: 23417797

PLOS Computational Biology | https:/doi.or/10.1371/ournal.pcbi. 1005494 April 18,2017 13/14

113



0 MANUSCRIPTS

©PLOS

COMPUTATIONAL

BIOLOGY

Energy-generating cycles

24.

31.

Schellenberger J, Park JO, Conrad TM, Palsson BO. BiGG: a Biochemical Genetic and Genomic
knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics. 2010; 11:213. https:/
doi.org/10.1186/1471- 2105 11-213 PMID: 20426874

Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL. High-throughput generation,
optimization and analysis of genome-scale metabolic models. Nat Biotechnol. 2010; 28(9):977-82.
https://doi.org/10.1038/nbt. 1672 PMID: 20802497

Ganter M, Bemard T, Moretti S, Stelling J, Pagni M. MetaNetX.org: a website and repository foraccess-
ing, analysing and manipulating metabolic networks. Bioinformatics. 2013; 29(6):815-6. https:/doi.org/
10.1093bioinform atics/btt036 PMID: 23357920

Monk JM, Charusanti P, Aziz RK, Lerman JA, Premyodhin N, Orth JD, et al. Genome-scale metabolic
reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional
environments. Proc Natl Acad Sci U SA. 2013; 110(50):20338-43. https://doi.org/10.1073/} "
1307797110 PMID: 24277855

Hartleb D, Jarre F, Lercher MJ. Improved Metabolic Models for E. coliand Mycoplasma genitalium from

GlobalFit, an Algorithm That Simultaneously Matches Growth and Non-Growth Data Sets. PLoS Com-

put Biol. 2016; 12(8):e1005036. https://doi.org/10.137 1/journal.pcbi. 1005036 PMID: 27482704

Aung HW, Henry SA, Walker LP. Revising the Representation of Fatty Acid, Glycerolipid, and Glycero-
d Metabolism in the Consensus Model of Yeast Metabolism. Ind Biotechnol (New Rochelle

NY).2013;9(4):215-28.

Matias Rodrigues JF, Wagner A. Evolutionary plasticity and innovations in complex metabolic reaction

networks. PLoS Comput Biol. 2009; 5(12):e1000613. https://doi.org/10.1371/journal.pcbi. 1000613

PMID: 20019795

Barve A, Wagner A. A latent capacity for evolutionary innovation through exaptation in metabolic sys-

tems. Nature. 2013; 500(7461):203-+. https: //doi.org/10.1038/nature 12301 PMID: 23851393

Hosseini SR, Martin OC, Wagner A. Phenotypic innovation through recombination in genome-scale

metabolic networks. Proc Biol Sci. 2016; 283(1839).

Szappanos B, FritzemeierJ, Csorgo B, Lazar V, Lu XW, Fekete G, et al. Adaptive evolution of complex

innovations through stepwise metabolic niche expansion. Nat Commun. 2016; 7.

Kummel A, Panke S, Heinemann M. Systematic assignment of thermodynamic constraints in metabolic

network models. BMC Bioinformatics. 2006; 7:512. https://doi.org/10.1186/1471-2105-7-512 PMID:

17123434

De Martino D, Capuani F, Mori M, De Martino A, Marinari E. Counting and comecting themnodynamically

infeasible fluxcydes in genome-scale metabolic networks. Metabolites. 2013; 3(4):946-66. https://doi.

0rg/10.3390/metabo3040946 PMID: 24958259

Hoppe A, Hoffmann S, Holzhutter HG. Including metabolite concentrations into flux balance analysis:

Thermodynamic realizability as a constraint on flux distributions in metabolic networks. Bmc Systems

Biology. 2007; 1.

Gelius-Dietrich G, Desouki AA, Fritzemeier CJ, Lercher MJ. Sybil—efficient constraint-based modelling

in R. BMC Syst Biol. 2013; 7:125. https:/doi.org/10.1186/1752-0509-7-125 PMID: 24224957

PLOS Computational Biology | https://doi.ora/10.1371/ournal.pchi. 1005494 April 18,2017 14/14

114



Acknowledgement

Firstly, | would like to express my sincere gratitude to my advisor Prof. Martin
Lercher for giving me the opportunity to obtain my Ph.D. degree in his working
group. Besides that, | would also like to thank him for his continuous support, fruitful
discussions, great ideas, and at least 1000 cups of coffee.

Also, | would like to thank Prof. Oliver Ebenhéh for being my second referee.

Furthermore, | thank Prof. Florian Jarre for explaining the exciting world of

mathematical optimization.

I would also thank all members of the bioinformatics working group for a great
time, particularly Dr. Jonathan Fritzemeier for fruitful collaborations.

| would like to thank Prof. Shin-Han Shiu and the whole Shiu lab for hosting
my research stay at the MSU in East Lansing.

| would also thank Al Bay for being a great host during my stay in the United
States.

| am grateful for funding through the German Research Foundation and the
International Graduate School iGRAD-Plant.

Last but not least, | want to thank Ina, my friends and family.

115



