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Abstract

In the last three decades, the use of quantum physics in information-processing tasks, such as
cryptography or computing, paved the way for the theoretical design of advanced information
technologies. The practical implementation of them has been however hindered by the severe
fragility of quantum effects at a macroscopic level, due to phenomena such as quantum decoher-
ence. Many quantum features can be thus viewed, in quantum information theory, as precious
but limited resources, which one needs to study, quantify and detect.
This thesis investigates different aspects of quantum resources in systems with many degrees of
freedom. These systems are associated with a great amount of theoretically possible resources,
but also with complex mathematical structures and technological limitations.
In the context of cryptographic protocols of secure entity authentication, we study physical
unclonable functions (PUFs), including extensions to quantum protocols, so-called quantum
readout PUFs (QR-PUFs). A (QR-) PUF is a physical system that for a given input challenge
produces a unique response that is intended to be hard to simulate. We propose a system-
independent theoretical framework to quantitatively characterise the security of entity authen-
tication protocols with (QR-) PUFs in terms of two main properties, the robustness and the
unclonability. Our framework can be used to develop new authentication schemes and to com-
pare different physical implementations of both classical PUFs and QR-PUFs, exploring the
possible advantages of using quantum systems.
We then consider the problem of entanglement detection in unknown continuous-variable sys-
tems. We develop a scheme that employs random homodyne measurements and a semidefinite
program to construct an optimal entanglement witness. We test our method in several cases, in
particular with two-mode squeezed vacuum states and with general two-mode states. We show
that our scheme can detect entanglement, including bound entanglement, with fewer measure-
ments than in full tomography.
Afterwards, we analyse the connections between different resources in the framework of quan-
tum resource theories. Namely, we establish a hierarchy for non-uniformity, coherence, discord
and entanglement in continuous-variable systems, in particular Gaussian systems. We introduce
the concept of maximal coherence at fixed energy, which is attainable with energy-preserving
unitaries, and a resource theory of non-uniformity, in which the purity of a quantum state at
fixed energy is identified as a resource. We prove that, by requiring Gaussian states and oper-
ations, and by using quantifiers based on the relative entropy, the Gaussian non-uniformity is
equal to the maximal Gaussian coherence and can be analytically quantified. We finally show
that this quantity provides upper bounds on the discord and entanglement.
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Zusammenfassung

Die theoretischen Fortschritte der letzten drei Jahrzehnte, besonders Quantencomputer und
Quantenkrypotografie brachten die Möglichkeit, Quantentechnologien für moderne Informa-
tionstechnologien zu verwenden. Die praktische Umsetzung dieser Ideen verlangt jedoch sehr
präzise Operationen auf Quanten Zuständen, welche durch Dekohärenz meist sehr fragil sind.
Aus diesem Grund können Quanten Eigenschaften als eine wertvolle, aber begrenzte Ressource
angesehen werden, welche studiert, quantifiziert und nachgewiesen werden kann.
Diese Doktorarbeit untersucht verschiedene Aspekte von Quantenressourcen in Systemen mit
vielen Freiheitsgraden. Für diese Systeme gibt es viele theoretisch mögliche Ressourcen, häufig
mit komplexen mathematischen Strukturen und technologischen Beschränkungen.
Für Kryptografische Protokolle der Entität-Authentisierung, analysieren wir physisch unklon-
bare Funktionen (PUFs), sowie Erweiterungen als Quanten Protokolle, sogenannte Quanten
Auslesung PUFs (QR-PUFs). Eine (QR-) PUF ist ein physikalisches System, welches für ge-
gebene Eingabe (challenge) eine eindeutige Rückgabe (response) produziert, welche schwer zu
simulieren sein sollte. Wir schlagen ein Systemunabhängiges, theoretisches Konstrukt vor, um
die Sicherheit der Entität-Authentisierungsprotokolle mit (QR-) PUFs zu analysieren. Hierfür
verwenden wir die zwei Haupteigenschaften Robustheit und Unklonbarkeit. Unser Konstrukt
kann verwendet werden, um neue Authentisierungsverfahren zu entwickeln und um verschie-
dene physische Implementierungen von sowohl klassischen und QR PUFs zu vergleichen und
damit mögliche Vorteile von Quanten Systemen zu erforschen.
Des weiteren schauen wir uns das Problem des Detektierens von Verschränktheit in unbekann-
ten kontinuierlichen Systemen an. Wir entwickeln ein Verfahren, welches zufällige, homodyne
Messungen und semidefinite Optimierung verwendet, um ideale Verschränkheitszeugen zu fin-
den. Wir untersuchen unsere Methode für verschiedene Fälle, besonders mit zwei-Moden ge-
quetschten Vakuum Zuständen und generellen zwei-Moden Zuständen. Wir zeigen, dass unser
Verfahren Verschränktheit detektieren kann, sogar nicht-destillierbare Verschränktheit, und das
mit weniger Messungen als volle Tomografie.
Danach analysieren wir die Verbindungen zwischen verschiedenen Ressourcen innerhalb von
Quantenressourcentheorien. Genauer zeigen wir eine Hierarchie für nicht-Uniformität, Kohe-
renz, Quantenzwietracht und Verschränktheit in kontinuierlichen Systemen, besonders Gaußi-
sche Systemen. Wir führen das Konzept der maximalen Kohärenz bei konstanter Energie ein,
welches die maximal mögliche Kohärenz, optimiert über alle energieerhaltenden Unitären ist,
so wie eine Ressourcentheorie von nicht-Uniformität, bei der die Reinheit eines Zustandes bei
konstanter Energie als Ressource identifiziert wird. Wir beweisen, dass für Gaußische Zustände
und Operationen und auf relativer Entropie basierender Quantifikatoren, die Gaußische nicht-
Uniformität genau die maximale Gaußische Kohärenz ist und analytisch quantifiziert werden
kann. Ebenso können wir zeigen, dass diese Größe eine obere Schranke an die Zwietracht und
Verschränkheit liefert.
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1
Introduction

Quantum mechanics is the physical theory that describes the behaviour of matter and radiation
at the length and energy scales of atoms and subatomic particles. The emergence of quan-
tum mechanics, one century ago, sparked an intense scientific and philosophical debate, which
is still ongoing today. Quantum systems exhibit counter-intuitive properties which are often
improperly labelled as "paradoxes", such as the wave-particle duality [Boh28; Hei49] or the
entanglement [EPR35; Sch35].

A change of paradigm slowly started to take place in the seventies of the last century, with
a strong acceleration in the early nineties. Quantum physics has established a symbiotic rela-
tionship with information theory [Sha48], a field that studies the storage and communication of
information in a quantitative way. From an information-theoretic viewpoint, a quantum state is
only a mathematical function that encodes information about the possible outcomes of a mea-
surement [Per95]. This perspective contributes to clarifying the features of quantum theory that
were once considered paradoxical.

Analogously, information theory has benefitted greatly from quantum physics. The use of
quantum resources generally expands the perimeter of classical information-processing tasks
[NC10]. The theoretical and experimental research in quantum information science grew in
sophistication in the last decades and is starting to produce tangible technological applications
[BL19]. However, the practical implementation on a large scale of the theoretical predictions of
quantum information theory is technologically and financially challenging, since it requires the
complete control of quantum systems and the ability to use them at a macroscopic level. There
is thus the necessity of employing quantum resources mindfully, always comparing, in given
scenarios, the advantage that they may bring to the costs involved in using them. Moreover,
there is the need to develop techniques to efficiently detect and quantify the resources in given
quantum systems.

One of the most relevant branches of quantum information is quantum cryptography. In
1984, Charles H. Bennett and Gilles Brassard proposed a protocol (today named BB84) that
uses quantum states to securely distribute a secret key between two parties [BB84], who can
then use this key for the encryption and decryption of private messages. Because quantum
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2 1. Introduction

measurements introduce disturbances in a quantum system, an eavesdropper cannot learn the
key without being exposed by the legitimate parties. Other quantum key distribution (QKD)
protocols followed [Eke91; Bru98; Sca+09] and today QKD is perhaps the most celebrated
subfield of quantum information science. The interest in quantum cryptography beyond QKD
also grew in the last few years.

An important cryptographic task is entity authentication, which is the assurance that a given
entity can prove its identity and its involvement in the communication session to another entity
[Mar12]. Physical unclonable functions (PUFs) [Pap01; Pap+02] are a tool to achieve secure
entity authentication. They are physical systems, with a complex inner structure, that unpre-
dictably interact with external signals. In an authentication protocol with PUFs, a party sends a
determined input signal (called challenge) and the other party has to provide the corresponding
unique output signal (called response) to confirm her/his identity. An extension of PUFs to
quantum protocols was proposed by Boris Škorić in 2010, under the name of quantum read-
out PUFs (QR-PUFs) [Ško12]. QR-PUFs encode challenges and responses in quantum states
and are expected to be more secure than classical PUFs. At the time of completing this thesis
(July 2021), this possible advantage has not been rigorously quantified for specific experimental
implementations.

A significant problem in quantum information theory is to efficiently detect the presence
of quantum resources in an unknown quantum state. For instance, many criteria of entangle-
ment detection require the knowledge of the density matrix of the system under investigation
[Hor+09]. A completely unknown state can be fully reconstructed by quantum tomography
[DPS03; LR09], which is a very demanding experimental procedure, especially for quantum
states with many degrees of freedom. Alternatively, one can use practicable tests that detect
entanglement in only a subset of states. A prominent class of tests is that of entanglement
witnesses [HHH96; Ter00; HE06], which are functionals on the space of quantum states that
separate all separable states from some entangled states. Entanglement witnesses may only
need partial information about a state to efficiently detect entanglement in it.

The concept of quantum resource has been meticulously formalised by quantum resource
theories [CG19]. The set of quantum states is partitioned into two subsets, one of free states,
having no resource, and another of resource states. This partition induces an analogous division
in the set of quantum operations, where the free operations are defined as those which trans-
form any free state into a free state. The sets of free states and operations depend on the specific
resource theory. For instance, the states that are diagonal in a certain basis are the free states
of the resource theory of coherence [Åbe06; BCP14], while the maximally mixed state is the
only free state of the resource theory of purity [HHO03; Gou+15]. Quantum resource theo-
ries provide a way to quantify resources through the so-called resource monotones, which are
functions that do not increase under free operations. An important class of monotones is that of
distance-based monotones, where the amount of resource of a quantum state is quantified by its
distance with the set of free states. This class also includes some improper distance functions,
such as the relative entropy [CG19]. The same distance can be used in monotones for different
resource theories, thus allowing us to study the relations between different resource theories and
the possibility to convert a resource into another. In particular, we can investigate the existence
of hierarchies of resources [Str+18], i.e. structured relations between the quantities of different
resources in given states.

In this thesis, we present our research on quantum resources in systems with many degrees
of freedom, namely discrete-variable (QR-) PUFs and continuous-variable multimode systems.



3

The dissertation is organised as follows.
In Chap. 2, we review basic concepts of linear algebra that are necessary to understand the

remainder of the thesis.
In Chap. 3, we introduce the principles of discrete-variable quantum information theory that

are used in our work. This chapter includes a discussion of the postulates of quantum mechanics
from the viewpoint of quantum information theory.

Chap. 4 is devoted to continuous-variable quantum information theory. In particular, we
discuss the representations of continuous-variable quantum systems in the real phase space, and
the relevant subset of Gaussian states.

In Chap. 5, we describe the results of our publication [GKB20], where we proposed a theoret-
ical framework to formalise the security of entity authentication protocols with (QR-) PUFs in
a quantitative and implementation-independent way. Our results are given with an introduction
to the main concepts of entity authentication protocols, PUFs and QR-PUFs.

In Chap. 6, we introduce the results of our publication [Mih+20], where we proposed a
scheme to construct an optimal entanglement witness for an unknown continuous-variable state,
using a semidefinite program and random homodyne measurements. Together with our results,
we review the topic of continuous-variable entanglement and the methods that are used in our
publication.

In Chap. 7, we describe the results of our publication [GKB21], where we established a hier-
archy of continuous-variable resources. Our results are given with an introduction to quantum
resource theories and analogous hierarchies of discrete-variable resources [Str+18].

Finally, in Chap. 8 we conclude and give an outlook for possible future works. The full text
of our publications, together with publication details, are contained in the Appendix.



2
Fundamentals of Linear Algebra

Linear algebra is the mathematical backbone of quantum mechanics. This chapter summarises
the most important concepts of linear algebra that are used throughout the thesis, employing
the Dirac formalism. We include a section on the Hamming space, to formally describe the
concept of bit. The inexperienced reader may find it useful to carefully read this chapter, while
the experienced reader may choose to glance over it. The content is mostly inspired by [Ros11;
Sha12; MW20]. All theorems in this chapter are given without proof.

2.1 Vector and Hilbert Spaces
Definition 2.1. A vector space V is a collection of objects {|v〉 , |w〉 , . . . }, called vectors, for
which there exist two closed operations, an addition + : V×V → V and a scalar multiplication
· : V ×F→ V , where F is a field called the scalar field. The closure conditions are summarised
by requiring α |v〉+ β |w〉 ∈ V , for all |v〉 , |w〉 ∈ V and α, β ∈ F. The addition must satify the
following conditions.

1. Commutative law: |v〉+ |w〉 = |w〉+ |v〉, for all |v〉 , |w〉 ∈ V;

2. Associative law: |v〉+ (|w〉+ |z〉) = (|v〉+ |w〉) + |z〉, for all |v〉 , |w〉 , |z〉 ∈ V;

3. Existence of an additive identity: V contains a unique vector 0, called the null vector,
such that 0 + |v〉 = |v〉+ 0 for all |v〉 ∈ V;

4. Existence of additive inverses: for each |v〉 ∈ V , there exists a unique inverse vector,
denoted by − |v〉, such that |v〉+ (− |v〉) = 0.

The scalar multiplication must satisfy the following conditions:

1. Distributive law for vectors: α · (|v〉 + |w〉) = α · |v〉 + α · |w〉, for all |v〉 , |w〉 ∈ V and
α ∈ F;

4
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2. Distributive law for scalars: (α+β) · |v〉 = α · |v〉+β · |v〉, for all |v〉 ∈ V and α, β ∈ F;

3. Associative law: α · (β · |v〉) = (αβ) · |v〉, for all |v〉 ∈ V and α, β ∈ F;

4. Multiplication by 0 and 1: given the additive identity 0 and the multiplicative identity 1
of F, 0 · |v〉 = 0 and 1 · |v〉 = |v〉 for all |v〉 ∈ V .

In the following, we are going to omit the symbol · in the scalar multiplication, i.e. we will
write α |v〉 instead of α · |v〉.

There are different notations for the vector symbol. In Def. 2.1, we used the Dirac notation
[Dir39], that is pre-eminent in quantum mechanics. In this notation, vectors |v〉 are called
kets, for reasons that will be explained later in the chapter. We preferentially use this notation.
Alternatively, vectors can be denoted by bold letters, i.e v in place of |v〉. In Def. 2.1, we have
reserved this notation to the null vector 0, since the symbol |0〉 usually represents a different
vector in quantum mechanics. In the following, we are simply going to denote the null vector
by 0, since there is no risk of confusion. Moreover, we will use the bold notation in parallel
with the Dirac notation when we need to employ two different vector spaces at the same time.

Regarding the scalar field, we are always going to employ the complex field C, unless other-
wise specified (see Sec. 2.5).

Definition 2.2. A set of n vectors |ui〉 6= 0 in V is said to be linearly independent if there are
no scalar solutions {αi} (i = 1, . . . , n) for the equation

n∑

i=1

αi |ui〉 = 0, (2.1)

except for the trivial one, with all αi = 0. A vector space is called n-dimensional, if it admits
at most n linearly independent vectors.

The dimension of a vector space can be finite or infinite. We consider at the moment only
finite-dimensional spaces, with dimension n, and delay the extension to infinite dimensions
until Sec. 2.4.

Definition 2.3. An ordered set {|ui〉} := {|ui〉 , |u2〉 , . . . , |un〉} of n linearly independent vec-
tors in a n-dimensional vector space V is called a basis for V .

Theorem 2.4. Every vector |v〉 ∈ V can be written as a unique linear combination of the
elements of a basis {|ui〉}, i.e.

|v〉 =
n∑

i=1

vi |ui〉 , (2.2)

for some vi ∈ C, called the components of |v〉 in the basis {|ui〉}. For this reason, we say that
V is spanned by {|ui〉}.

Therefore, every vector |v〉 ∈ V can be represented by its components { v1, v2, . . . , vn } in a
basis {|ui〉 , |u2〉 , . . . , |un〉}. Mathematically, we say that any n-dimensional vector space V is
isomorphic to Cn since there exists an isomorphism that maps any vector |v〉 ∈ V to a column
vector in Cn:

|v〉 ⇔ v :=




v1
v2
...
vn


 , vj ∈ C. (2.3)
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In the following chapters, we are going to follow the convention of using the same symbol to
indicate abstract vectors and their column representation. Here, we use different symbols for
clarity.

2.1.1 Inner Products
Definition 2.5. An inner product in a vector space V is an operation that associates to any two
vectors |v〉 , |w〉 ∈ V a complex number 〈v|w〉 ∈ C and satisfies the following axioms:

1. 〈v|v〉 ≥ 0 for all |v〉 ∈ V , and 〈v|v〉 = 0 if and only if |v〉 = 0;

2. 〈v|w〉 = 〈w|v〉∗, for all |v〉 , |w〉 ∈ V;

3. If |u〉 = α |w〉+ β |z〉, then 〈v|u〉 = α 〈v|w〉+ β 〈v|z〉 and 〈u|v〉 = α∗ 〈w|v〉+ β∗ 〈z|v〉.

The inner product is also called scalar product but we avoid this naming to prevent confusion
with the scalar multiplication of Def. 2.1.

Definition 2.6. A finite-dimensional vector space equipped with an inner product is called a
Hilbert space and is denoted byH.

The proper definition of Hilbert space, valid for both finite and infinite dimensions, is more
involved (see Sec. 2.4). For the moment, we are going to use Def. 2.6.

Definition 2.7. The norm of a vector |v〉 ∈ H is the non-negative real number

‖v‖ :=
√
〈v|v〉. (2.4)

A vector |v〉 ∈ H is called a unit vector if ‖v‖ = 1.

Definition 2.8. A distance is a function d : H×H → R≥0 that associates to any pair of vectors
|v〉 , |w〉 ∈ H a non-negative real number, d(v, w), and satisfies the following requirements:

1. d(v, w) = d(w, v);

2. d(v, w) ≥ 0, and d(v, w) = 0 if and only if |v〉 = |w〉;

3. d(v, w) ≤ d(v, z) + d(w, z) (triangle inequality).

A vector space that admits a distance is said to be a metric space.

Theorem 2.9. For any pair of vectors |v〉 , |w〉 ∈ H, the norm of |v〉−|w〉, denoted by ‖v−w‖,
is a valid distance forH, i.e. it satisfies the requirements of Def. 2.8.

The distance induced by the inner product is not the only distance that we will use in this
thesis.

Definition 2.10. Two vectors |v〉 , |w〉 ∈ H are said orthogonal if

〈v|w〉 = 0, (2.5)

and orthonormal if
〈v|w〉 = 0, and ‖v‖ = ‖w‖ = 1. (2.6)
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Theorem 2.11. Orthogonal vectors are linearly independent. Thus, a set of n orthogonal (or-
thonormal) vectors {|ei〉} in a n-dimensional Hilbert space H automatically forms a basis,
called an orthogonal (orthonormal) basis.

The orthonormality condition reads:

〈ei|ej〉 = δij, (2.7)

where δij is the Kronecker delta:

δij :=

{
0 if i 6= j,

1 if i = j.
(2.8)

By using Eqs. (2.2) and (2.7) and Def. 2.5, we obtain a formula for the the inner product 〈v|w〉
in terms of the components of |v〉 and |w〉 in an orthonormal basis {|ei〉}:

〈v|w〉 =
∑

i

∑

j

v∗i wj 〈ei|ej〉 =
∑

i

v∗i wi. (2.9)

Thus, the norm of |v〉 is the positive square root of

‖v‖2 = 〈v|v〉 =
∑

i

|vi|2 . (2.10)

The inner product of |v〉 with the j-th element of a basis {|ei〉} is the j-th component of |v〉 in
the basis {|ei〉}:

〈ej|v〉 =
∑

i

vi 〈ej|ei〉 = vj. (2.11)

Theorem 2.12. The result of an inner product does not depend on the basis used to compute
it. Namely, for any two orthonormal bases {|ei〉} and {|fi〉} of H and for any two vectors
|v〉 , |w〉 ∈ H: ∑

i

v
(e) ∗
i w

(e)
i =

∑

i

v
(f) ∗
i w

(f)
i , (2.12)

where v(e)i and w(e)
i are the i-th components of |v〉 and |w〉 in the basis {|ei〉}, and v(f)i and w(f)

i

are the i-th components of |v〉 and |w〉 in the basis {|fi〉}.
This theorem is consistent with Def 2.5, where the inner product is defined as a unique func-

tion from two vectors to a number.

2.1.2 Dual Vectors
Definition 2.13. To each ket |v〉 ∈ H, we associate a linear function 〈·| : H → C, called dual
vector (or bra), such that

〈v| (|w〉) := 〈v|w〉 , ∀ |w〉 ∈ H. (2.13)

The space of all bras acting on H is called the dual space of H, and is denoted by H∗. The
isomorphism between H and H∗ is called the adjoint (or dagger) operation, denoted by †. It
acts as

(α |v〉+ β |w〉)† = α∗ 〈v|+ β∗ 〈w| . (2.14)
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We now understand why Dirac introduced the words "ket" and "bra": in Dirac notation, the
inner product ("bra-c-ket") can be thought of as a bra acting on a ket.

We represent a bra 〈v| in terms of the components of |v〉 by a row vector,

〈v| ⇔ v† =
(
v∗1 v∗2 . . . v∗n

)
, vj ∈ C. (2.15)

Thus, the adjoint performs a conjugate transposition,

v =




v1
v2
...
vn


 7→ v† =

(
v∗1 v∗2 . . . v∗n

)
, (2.16)

and the formula in Eq. (2.9) for the inner product in terms of the vector components becomes a
matrix multiplication:

〈v|w〉 = v†w =
(
v∗1 v∗2 . . . v∗n

)




w1

w2
...
wn


 =

n∑

i=1

v∗i wi. (2.17)

2.1.3 Subspaces and Direct Sum

Definition 2.14. A non-empty subset K of a Hilbert spaceH is said to be a subspace ofH, if it
is closed under the same addition and scalar multiplication ofH, i.e. if α |vk〉+ β |wk〉 ∈ K for
all |vk〉 , |wk〉 ∈ K and α, β ∈ C.

IfH is n-dimensional, then K is nK-dimensional, with nK ≤ n.

Definition 2.15. Two subspaces K,K ′ ⊆ H of a Hilbert spaceH are said to be orthogonal if

〈vk|vk′〉 = 0, (2.18)

for all |vk〉 ∈ K and |vk′〉 ∈ K ′. They are denoted by K ⊥ K ′.

Definition 2.16. Given two orthogonal subspaces K and K ′, we define their orthogonal direct
sum as:

K ⊕K ′ := {|vk〉+ |vk′〉 : |vk〉 ∈ K, |vk′〉 ∈ K ′}. (2.19)

We write |vk〉 ⊕ |vk′〉 instead of |vk〉 + |vk′〉 when we need to emphasise that |vk〉 ∈ K and
|vk′〉 ∈ K ′.

Definition 2.17. The orthogonal complement of a subspace K ⊆ H is the unique subspace K⊥,
orthogonal to K, such that K ⊕K⊥ = H.

Theorem 2.18. IfK ⊥ K ′, then the dimension ofK⊕K ′ is the sum of the dimensions ofK and
K ′.
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For instance, let us consider a 5-dimensional Hilbert space H5, spanned by an orthonor-
mal basis {|e1〉 , |e2〉 , |e3〉 , |e4〉 , |e5〉}. We can define a 2-dimensional subset K2, spanned by
{|e1〉 , |e2〉}, and a 3-dimensional subset K3, spanned by {|e3〉 , |e4〉 , |e5〉}. Each subset is the
orthogonal complement of the other. Given two vectors, |v〉 = v1 |e1〉 + v2 |e2〉 ∈ K2 and
|w〉 = w3 |e3〉 + w4 |e4〉 + w5 |e5〉 ∈ K3, we can write their direct sum in terms of the compo-
nents of |v〉 and |w〉 as:

(
v1
v2

)
⊕



w3

w4

w5


 :=




v1
v2
w3

w4

w5



. (2.20)

2.2 Linear Operators

Definition 2.19. A linear operator Â is a map Â : H → H that associates to any |v〉 ∈ H
another vector inH, denoted by Â |v〉, with the requirement that

Â(α |v〉+ β |w〉) = α Â |v〉+ βÂ |w〉 , (2.21)

for all |v〉 , |w〉 ∈ H and for all α, β ∈ C.

We denote by L(H) the set of linear operators Â : H → H on the Hilbert spaceH.
The most basic example is the identity operator Î , which leaves every vector unchanged:

Î |v〉 = |v〉 , ∀ |v〉 ∈ H. (2.22)

Another example is the null operator 0̂, which transforms every vector into the null vector:

0̂ |v〉 = 0, ∀ |v〉 ∈ H. (2.23)

Like for the null vector, in the following we will simply denote the null operator by 0.

Definition 2.20. The inverse of Â, denoted by Â−1, is the operator that satisfies

ÂÂ−1 = Â−1Â = Î . (2.24)

Â is said to be invertible if its inverse Â−1 exists.

Definition 2.21. If H = K ⊕ K ′, the direct sum of two linear operators, Â ∈ L(K) and
B̂ ∈ L(K ′), is the linear operator Â⊕ B̂ ∈ L(H) that acts on every |v〉 = |v1〉 ⊕ |v2〉 as:

(
Â⊕ B̂

)
|v〉 = Â |v1〉 ⊕ B̂ |v2〉 . (2.25)

2.2.1 Products and Functions of Operators
Definition 2.22. The product ÂB̂ of two operators Â, B̂ ∈ L(H) is the operator that corre-
sponds to a sequential action of B̂ and Â:

ÂB̂ |v〉 = Â(B̂ |v〉), ∀ |v〉 ∈ H. (2.26)
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Clearly, ÂÎ = ÎÂ = Â. However, the product of operators is not, in general, commutative.

Definition 2.23. The commutator of two operators Â, B̂ ∈ L(H) is defined as:

[Â, B̂] := ÂB̂ − B̂Â. (2.27)

When [Â, B̂] = 0, we say that Â and B̂ commute.

The following properties hold for the commutator of any three operators Â, B̂, Ĉ ∈ L(H):

• [Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ;

• [ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂;

• [Â, [B̂, Ĉ]] + [B̂, [Ĉ, Â]] + [Ĉ, [Â, B̂]] = 0 (Jacobi identity).

Definition 2.24. Let n ≥ 0. The n-th power of an operator Â is defined as:

Ân :=




ÂÂ . . . Â︸ ︷︷ ︸

(n times)

, n > 0;

Î , n = 0.

(2.28)

Definition 2.25. Let us consider a function f : C→ C. If f admits a series expansion

f(x) =
∞∑

n=0

anx
n, x ∈ C, (2.29)

we define a function of operators f : L(H)→ L(H) as:

f(Â) =
∞∑

n=0

anÂ
n, Â ∈ L(H). (2.30)

In general, f(Â) does not have the same properties of f(x). For instance, the exponential
function satisfies ex ey = ex+y for x, y ∈ C, whereas this is not true in the case of operators, i.e.
eÂ eB̂ 6= eÂ+B̂ for general Â, B̂ ∈ L(H).

Theorem 2.26. If [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0̂, then

eÂ eB̂ = eÂ+B̂ e
1
2 [Â,B̂]Î . (2.31)

This formula is called the Baker-Campbell-Hausdorff formula.

2.2.2 Adjoint Operators
We can define the action of linear operators on bras. For any 〈v| ∈ H∗, we define 〈v| Â as

the dual vector such that:
(
〈v| Â

)
|w〉 := 〈v|

(
Â |w〉

)
, ∀ |w〉 ∈ H. (2.32)
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We denote this braket by 〈v|Â|w〉, signifying that Â can act either on |w〉 or on 〈v|. The linearity
of Â also applies to bras:

(
〈v|α + 〈w| β

)
Â = α 〈v| Â+ β 〈w| Â. (2.33)

One may be tempted to assume that 〈v| Â is the dual vector of Â |v〉. However, by comparing
Eq. (2.33) with the fact that the dual vector of α |v〉+β |w〉 is 〈v|α∗+ 〈w| β∗, we conclude that
this is not the case.

Definition 2.27. The adjoint operator of Â is the operator Â† such that 〈v| Â† is the dual vector
of Â |v〉, for any |v〉 ∈ H. Alternatively, by employing the property 〈v|w〉 = 〈w|v〉∗, we define
A† as the operator that satisfies

〈v|Â†|w〉 = (〈w|Â|v〉)∗. (2.34)

The adjoint is an idempotent operation:
(
Â†
)†

= Â, ∀ Â ∈ L(H). (2.35)

Moreover, the adjoint is anti-linear and anti-distributive, i.e. for all Â, B̂ ∈ L(H) and α, β ∈ C,
(
αÂ+ βB̂

)†
= α∗Â† + β∗B̂†, (2.36)

(
ÂB̂
)†

= B̂†Â†. (2.37)

2.2.3 Outer Products and Projectors
Definition 2.28. The outer product of |v〉 , |w〉 ∈ H, denoted by |v〉 〈w|, is the linear operator
that acts on every |z〉 ∈ H as follows:

(|v〉 〈w|) |z〉 := 〈w|z〉 |v〉 . (2.38)

The adjoint of |v〉 〈w| is |w〉 〈v|. Let us now consider |ej〉 〈ej|, where |ej〉 is an element of an
orthonormal basis {|ei〉} inH. Its action on a vector |v〉 ∈ H reads:

|ej〉 〈ej| |v〉 = |ej〉 〈ej|
n∑

i=1

vi |ei〉 = vj |ej〉 . (2.39)

Therefore, it holds:

|v〉 =
n∑

i=1

vi |ei〉 =
n∑

i=1

〈ei|v〉 |ei〉 =

(
n∑

i=1

|ei〉 〈ei|
)
|v〉 . (2.40)

This implies the following completeness relation:
n∑

i=1

|ei〉 〈ei| = Î , (2.41)

where Î is the identity. The operator |ej〉 〈ej| projects a vector |v〉 ∈ H onto a 1-dimensional
subspace Kj ⊆ H, spanned by |ej〉. We say that |ej〉 〈ej| is an orthogonal projector.
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Definition 2.29. A projector is a linear operator Π̂K : H → K ⊆ H that is idempotent, i.e.

Π̂2
K = Π̂K. (2.42)

A projector is said to be orthogonal if Π̂K = Π̂†K.

The idempotence of Π̂K implies that Π̂K |vk〉 = |vk〉 for all |vk〉 ∈ K. Therefore, a projector
onto a subspace K coincides with the identity in the subspace K.

2.2.4 Matrix Representation of a Linear Operator
We have represented kets and bras in terms of their components as columns and rows, re-

spectively. Using the completeness relation in Eq. (2.41) for the projectors onto an orthonormal
basis {|ei〉}, every linear operator Â ∈ L(H) can be written as:

Â =
n∑

i=1

|ei〉 〈ei| Â
n∑

j=1

|ej〉 〈ej| =
n∑

i,j=1

〈ei|Â|ej〉 |ei〉 〈ej| . (2.43)

We define Aij := 〈ei|Â|ej〉 and represent Â in the basis {|ei〉} as a n× n matrix,

Â⇔ A =




〈e1|Â|e1〉 〈e1|Â|e2〉 . . . 〈e1|Â|en〉
〈e2|Â|e1〉 〈e2|Â|e2〉 . . . 〈e2|Â|en〉

...
... . . . ...

〈en|Â|e1〉 〈en|Â|e2〉 . . . 〈en|Â|en〉


 . (2.44)

The identity operator is represented by an identity matrix:

Î ⇔ I =




1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1


 . (2.45)

A product of operators ÂB̂ is represented by a product of matricesAB, with components:

(AB)ij = 〈i|ÂB̂|j〉 =
n∑

k=1

〈i|Â|k〉 〈k|B̂|j〉 =
n∑

k=1

AikBkj, (2.46)

and the adjoint operator is represented by a conjugate transpose:
(
A†
)
ij

= A∗ji. (2.47)

To represent an orthogonal direct sum, we introduce a block matrix representation. Let H =
K ⊕K ′, and Â ∈ L(K), B̂ ∈ L(K ′). Then,

A⊕B =

(
A 0
0 B

)
:=




A11 . . . A1n 0 . . . 0
... . . . ...

... . . . ...
A1n . . . Ann 0 . . . 0
0 . . . 0 B11 . . . B1n
... . . . ...

... . . . ...
0 . . . 0 B1n . . . Bnn



. (2.48)



2.2. Linear Operators 13

2.2.5 Normal Operators
Definition 2.30. An operator N̂ ∈ L(H) is said to be normal if

N̂ N̂ † = N̂ † N̂ . (2.49)

We introduce here two classes of normal operators that are central in quantum mechanics:
the Hermitian operators and the unitary operators.

Definition 2.31. A Hermitian operator Ĥ is an operator that is equal to its adjoint,

Ĥ = Ĥ†. (2.50)

Hermitian operators are normal, since ĤĤ† = Ĥ2 = Ĥ†Ĥ . We have already encounted an
example of Hermitian operator, the orthogonal projector (see Def. 2.29). Hermitian operators
are represented by Hermitian matrices,

Ĥ ⇔H =




H11 H12 . . . H1n

H∗12 H22 . . . H2n
...

... . . . ...
H∗1n H∗2n . . . Hnn


 . (2.51)

The Hermitian condition reads H = H†, or Hij = H∗ji. As a consequence, Hii ∈ R. When all
elements of H are real, the Hermitian condition becomes H = HT , and the matrix is called
symmetric.

Theorem 2.32. Any linear operator Â ∈ L(H) can be written as:

Â = ÂR + iÂI , (2.52)

where i is the imaginary unit, and ÂR and ÂI are Hermitian operators. It holds:

Â+ Â† = 2ÂR, (2.53)

Â− Â† = 2iÂI . (2.54)

Definition 2.33. A Hermitian operator Ĥ ∈ L(H) is said to be positive-definite if

〈v|Ĥ|v〉 > 0, ∀ |v〉 ∈ H\{0}; (2.55)

Ĥ is said to be positive-semidefinite if

〈v|Ĥ|v〉 ≥ 0, ∀ |v〉 ∈ H. (2.56)

The notions of negative-definite and negative-semidefinite operators are defined analogously.

If a matrix H represents a positive-definite (positive-semidefinite) operator Ĥ , we say that
H is a positive-definite (positive-semidefinite) matrix. Negative-definite (negative-semidefinite)
matrices are defined analogously.
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Theorem 2.34. A Hermitian operator Ĥ ∈ L(H) is positive-semidefinite if and only if there
exists an operator Â ∈ L(H) such that:

Ĥ = Â† Â. (2.57)

Ĥ is positive-definite if and only if this decomposition exists with Â invertible.

Definition 2.35. An invertible linear operator Û such that

Û−1 = Û †, (2.58)

is said to be a unitary operator. Equivalently, we define the unitary operators as those operators
satisfying

Û Û † = Û †Û = Î . (2.59)

Clearly, Eq. (2.59) implies that unitary operators are normal. Unitary operators satisfy a set
of useful properties.

Theorem 2.36. Unitary operators preserve the inner product between vectors they act on, i.e.
given |v′〉 = Û |v〉 and |w′〉 = Û |w〉,

〈v′|w′〉 = 〈v|Û † Û |w〉 = 〈v|w〉 . (2.60)

Hence, they preserve the norm ‖v‖ =
√
〈v|v〉.

Theorem 2.37. The product of two unitary operators is a unitary operator.

Since unitary operators preserve the inner product, if {|ei〉} is an orthonormal basis, then
{|fi〉}, with elements |fi〉 = Û |ei〉, is also an orthonormal basis. The matrix representation of
Û in the basis {|ej〉}, called a unitary matrix, reads

Û ⇔ U =




〈e1|Û |e1〉 〈e1|Û |e2〉 . . . 〈e1|Û |en〉
〈e2|Û |e1〉 〈e2|Û |e2〉 . . . 〈e2|Û |en〉

...
... . . . ...

〈en|Û |e1〉 〈en|Û |e2〉 . . . 〈en|Û |en〉


 =




〈e1|f1〉 〈e1|f2〉 . . . 〈e1|fn〉
〈e2|f1〉 〈e2|f2〉 . . . 〈e2|fn〉

...
... . . . ...

〈en|f1〉 〈en|f2〉 . . . 〈en|fn〉


 .

(2.61)
We note that 〈ei|fj〉 is the i-th component of |fj〉 in the basis {|ei〉}.

Theorem 2.38. The columns of an n × n unitary matrix are the components of orthonormal
vectors.

On a real Hilbert space, the unitary condition becomes UTU = UUT = I and the matrix is
said to be orthogonal.

Theorem 2.39. Every unitary operator Û can be written as:

Û = eiĤ :=
∞∑

j=1

(
iĤ
)j

j!
, (2.62)

where Ĥ is a Hermitian operator.
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2.2.6 Trace and Determinant
The components of a linear operator Â in two orthonormal bases {|ei〉} and {|fj〉} are differ-

ent. However, some properties of Â do not change with the chosen basis and are therefore said
invariants of Â. Here we present two important invariants, the trace and the determinant.

Definition 2.40. For any operator Â ∈ H, we define as trace the sum of its diagonal elements
in a certain basis |ei〉:

Tr(Â) :=
n∑

i=1

〈ei|Â|ei〉 . (2.63)

It holds that the trace is invariant under change of basis,

Tr(Â) =
n∑

i=1

〈ei|Â|ei〉 =
n∑

j=1

〈fj|Â|fj〉 . (2.64)

The trace is linear,
Tr(αÂ+ βB̂) = αTrÂ+ βTrB̂; (2.65)

Moreover, the trace of a product of operators is invariant under cyclic permutation of the oper-
ators, i.e.

Tr(ÂB̂Ĉ) = Tr(B̂ĈÂ) = Tr(ĈÂB̂), (2.66)

for any Â, B̂, Ĉ ∈ H. However, the trace is not, in general, invariant under non cyclic permuta-
tions:

Tr(ÂB̂Ĉ) 6= Tr(B̂ÂĈ). (2.67)

The cyclic property implies that:

Tr(Û † Â Û) = Tr(Û Û † Â) = Tr(Â), (2.68)

for any unitary operator Û .

Definition 2.41. For any linear operator Â ∈ L(H), we recursively define the determinant of
Â as the function:

det(Â) = detA :=
n∑

j=1

Aij det(A
(i,j)
n−1), (2.69)

whereA(i,j)
n−1 is the (n− 1)× (n− 1) submatrix obtained by removing the i-th row and the j-th

column ofA, and with the definition:

det

(
a b
c d

)
:= ad− bc, ∀ a, b, c, d ∈ C. (2.70)

It holds that the determinant is invariant under change of basis.

The determinant is not a linear function. IfH is a n-dimensional Hilbert space, it holds:

det(Â+ B̂) 6= det Â+ det B̂, for general Â, B̂ ∈ L(H); (2.71)

det(αÂ) = αn det Â, for all Â ∈ L(H) and α ∈ C. (2.72)

The determinant of a product of operators is equal to the product of the determinants:

det(ÂB̂) = det Â det B̂. (2.73)

This implies that:

det(Û † Â Û) = det Û † det Â det Û = det(Û † Û) det Â = det Â. (2.74)
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2.2.7 Eigenvalues and Eigenvectors
Definition 2.42. Let Â ∈ L(H) be a linear operator on a Hilbert space H. If λ ∈ C and
|λ〉 ∈ H\{0} satisfy

Â |λ〉 = λ |λ〉 , (2.75)

then we say that λ is an eigenvalue of Â and that |λ〉 is an eigenvector (or eigenket) of Â
belonging to the eigenvalue λ.

Clearly, if Â |λ〉 = λ |λ〉, then it holds Â(α |λ〉) = λ(α |λ〉), for any α ∈ C. We usually
remove this degree of freedom by normalising the norm of the eigenvectors to 1. If we consider
a function f(Â) (see Def. 2.25), it holds:

f(Â) |λ〉 = f(λ) |λ〉 . (2.76)

Theorem 2.43. The eigenvalues {λi} of an operator Â ∈ L(H) are the solutions of the charac-
teristic equation:

det
(
Â− λ Î

)
= 0. (2.77)

If the Hilbert spaceH is n-dimensional, the characteristic equation of Â has n solutions, which
are not necessarily distinct.

An eigenvalue is said to be degenerate if it is a multiple root of the characteristic equation.
From now on, we are going to only consider the nondegenerate case.

Theorem 2.44. If Â ∈ L(H) has n distinct eigenvalues {λi}, then to each λi belongs a single
eigenvector |λi〉, except for multiplicative constants. Moreover, if the Hilbert space H is n-
dimensional, a set of n eigenvectors {|λi〉} forms a basis forH.

Theorem 2.45 (Spectral Theorem). An operator N̂ ∈ L(H) is normal if and only if it admits
an orthonormal set of eigenvectors {|λi〉} that forms a basis for H. The matrix representation
of N̂ in this basis is diagonal, with components given by the eigenvalues of N̂ :

〈λi|N̂ |λj〉 = λi δij, (2.78)

where δij is the Kronecker’s delta. As a consequence, if N is the matrix representaton of N̂ in
any basis ofH, there exists a unitary matrix U that diagonalisesN , i.e.

U †NU = ND :=




λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λn


 . (2.79)

Every normal operator N̂ can be written in terms of its eigenvalues and eigenvectors (spectral
representation):

N̂ =
∑

i

λi |λi〉 〈λi| . (2.80)

The invariance of the trace and the determinant under change of basis implies that

TrÂ =
n∑

i=1

λi, det Â =
n∏

i=1

λi. (2.81)

We add some meaningful properties for the eigenvalues of normal operators.
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1. If for a normal operator N̂ ∈ L(H), N̂ |λi〉 = λi |λi〉, then N̂ † |λi〉 = λ∗i |λi〉;

2. All the eigenvalues of a Hermitian operator are real, λi ∈ R;

3. All the eigenvalues of a unitary operator are unimodular, |λi| = 1;

4. All the eigenvalues of a positive (negative)-definite matrix are positive (negative);

5. All the eigenvalues of a positive (negative)-semidefinite matrix are nonnegative (nonpos-
itive).

Moreover, by using Eqs. (2.59) and (2.74), we can prove that any linear operator Â has the
same eigenvalues of Û † Â Û , for any unitary operator Û , i.e.

det
(
Û † Â Û − λ Î

)
= det

(
Û † (Â− λ Î) Û

)
= det(Â− λ Î). (2.82)

Theorem 2.46. Two normal operators N̂ , M̂ ∈ L(H) commute if and only if they are simoulta-
neosly diagonalisable, i.e. there exists an orthonormal basis {|λi〉} such that both N̂ and M̂ are
diagonal with respect to it. Therefore, they have spectral representations N̂ =

∑
i ni |λi〉 〈λi|

and M̂ =
∑

i mi |λi〉 〈λi| for some ni,mi ∈ C.

2.3 Tensor Products
Definition 2.47. A tensor product of two Hilbert spacesHA andHB consists of a Hilbert space
HA ⊗HB and a function ⊗ : HA ×HB → HA ⊗HB such that:

1. (α |vA〉)⊗ |vB〉 = |vA〉 ⊗ (α |vB〉) = α(|vA〉 ⊗ |vB〉);

2. (|vA〉+ |wA〉)⊗ |vB〉 = |vA〉 ⊗ |vB〉+ |wA〉 ⊗ |vB〉;

3. |vA〉 ⊗ (|vB〉+ |wB〉) = |vA〉 ⊗ |vB〉+ |vA〉 ⊗ |wB〉,

for any |vA〉 , |wA〉 ∈ HA, |vB〉 , |wB〉 ∈ HB, and α ∈ C. The spaceHA ⊗HB is required to be
minimal, in the sense that every |vAB〉 ∈ HA ⊗HB must be a unique linear combination, i.e.

|vAB〉 =
n∑

i,j=1

vij |v(A)i 〉 ⊗ |v(B)
j 〉 , (2.83)

for |v(A)i 〉 ∈ HA, |v(B)
j 〉 ∈ HB and vij ∈ C.

Definition 2.48. Let |vAB〉 =
∑n

i,j=1 vij |v
(A)
i 〉 ⊗ |v(B)

j 〉 and |wAB〉 =
∑n

i,j=1 wij |w
(A)
i 〉 ⊗

|w(B)
j 〉 be two vectors inHA⊗HB, with vij, wij ∈ C, |v(A)i 〉 , |w(A)

i 〉 ∈ HA, |v(B)
j 〉 , |w(B)

j 〉 ∈ HB.
The inner product 〈vAB|wAB〉 inHA ⊗HB is defined as:

〈vAB|wAB〉 :=
n∑

i,i′,j,j′=1

v∗ij wi′j′ 〈v(A)i |w(A)
i′ 〉 〈v

(B)
j |w(B)

j′ 〉 . (2.84)
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Theorem 2.49. Let nA and nB be the dimensions of the Hilbert spaces HA and HB, respec-
tively. It holds that the Hilbert space HA ⊗ HB is (nAnB)-dimensional. Moreover, if {|ai〉}
(i = 1, 2, . . . , nA) and {|bj〉} (j = 1, 2, . . . , nB) are orthonormal bases of HA and HB, then
{|ai〉 ⊗ |bj〉} is an orthonormal basis ofHA ⊗HB.

Consider now two linear operators, Â ∈ L(HA) and B̂ ∈ L(HB). We define Â ⊗ B̂ on
HA ⊗HB as:

(Â⊗ B̂)(|vA〉 ⊗ |vB〉) := (Â |vA〉)⊗ (B̂ |vB〉), (2.85)

for all |vA〉 ∈ HA and |vB〉 ∈ HB.
Let A and B be the matrix representations of Â and B̂ in some basis of HA and HB. The

matrix representation of Â⊗ B̂ is given by the Kronecker product ofA andB,

Â⊗ B̂ ⇔ A⊗B :=




A11B A12B · · · A1nB
A12B A22B · · · A2nB

...
... . . . ...

An1B An2B · · · AnnB


 , (2.86)

where AijB is the matrix:

AijB =




AijB11 AijB12 · · · AijB1n

AijB21 AijB22 · · · AijB2n
...

... . . . ...
AijBn1 AijBn2 · · · AijBnn


 . (2.87)

If we consider a single column or row in Eq. (2.86), the Kronecker product provides a formula
for the components of |vA〉 ⊗ |vB〉 or 〈vA| ⊗ 〈vB|, respectively.

When we consider the tensor product of N Hilbert spacesHi, we use the notation:

N⊗

i=1

Hi := H1 ⊗H2 ⊗ · · · ⊗ HN . (2.88)

Analogously, we use the symbol
⊗N

i=1 to compactly write the tensor products of many vectors
|vi〉 and operators Âi.

In general, there are operators X̂AB ∈ L(HA⊗HB) that cannot be written as Â⊗ B̂, for any
Â ∈ L(HA) and B̂ ∈ L(HB). In this case, the partial trace provides a partial description of the
action of X̂AB over eitherHA orHB.

Definition 2.50. The partial trace overHB is the operation TrB : HA ⊗HB → HA defined on
any X̂AB ∈ L(HA ⊗HB) as follows:

TrB X̂AB :=
∑

i

〈bi|XAB |bi〉 , (2.89)

where {|bi〉} is any orthonormal basis forHB. The partial trace overHA is analogously defined.

In the jargon of quantum information theory, the action of taking the partial trace overHB is
usually referred to as "tracing outHB". The result of tracing outHB is an operator onHA, and
viceversa. In particular, for any operator in the form of Â⊗ B̂, it holds:

TrB

(
Â⊗ B̂

)
= Tr(B̂) Â, TrA

(
Â⊗ B̂

)
= Tr(Â) B̂. (2.90)
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The usual trace on HA ⊗ HB is the composition of the partial traces over HA and HB, in any
order, i.e.

Tr(X̂AB) = TrA(TrB(X̂AB)) = TrB(TrA(X̂AB)), (2.91)

for any X̂AB ∈ L(HA ⊗HB).

2.4 Infinite-dimensional Hilbert Spaces
We here extend some of the previously introduced concepts to infinite dimensions, without

claiming to be exhaustive. In particular, we choose to partially disregard the high formality
associated with infinite-dimensional linear algebra. We refer to specialised textbooks for a
more complete introduction to the topic.

We start our discussion by introducing definitions that hold for any dimension.

Definition 2.51. LetM be a metric space (see Def. 2.8) equipped with a distance d. A sequence
of vectors {|v1〉 , |v2〉 , . . . } is said to be a Cauchy sequence in (M,d) if for every ε > 0 there
exists a positive integer N ∈ N such that

d(vn, vm) < ε, ∀n,m > N. (2.92)

Definition 2.52. A metric spaceM with distance d is said to be complete with respect to d if
every Cauchy sequence in (M,d) converges to a vector inM for n→∞, i.e. if for any Cauchy
sequence {|v1〉 , |v2〉 , . . . } in (M, d), there exists some |v〉 ∈ M such that:

lim
n→∞

d(vn, v) = 0. (2.93)

Definition 2.53. A Hilbert spaceH is a vector space that is equipped with an inner product and
is complete with respect to the distance induced by the inner product (see Theorem 2.9).

The completeness ofH ensures that the norm ‖v‖ of every vector |v〉 ∈ H is finite. It can be
proved that every finite-dimensional vector space equipped with an inner product is a Hilbert
space, thus justifying our use of Def. 2.6. We now focus on infinite-dimensional spaces.

Definition 2.54. Let H be an infinite-dimensional Hilbert space. A set of orthonormal vectors
{|ei〉 ∈ H} (〈ei|ej〉 = δij , ‖ei‖ = 1 for all i, j) is said to be a complete orthonormal system for
H if the following equivalent conditions hold:

1. For any |v〉 ∈ H,

|v〉 =
∞∑

i=1

〈ei|v〉 |ei〉 ; (2.94)

2. If a vector |v〉 ∈ H satifies 〈ei|v〉 = 0 for all the vectors |ei〉 of the system, then |v〉 = 0.

Complete systems are the natural counterpart to the orthonormal bases in finite-dimensional
spaces. Note that Eq. (2.94) implies the completeness relation

∑
i |ei〉 〈ei| = Î , where Î is the

identity operator onH.
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Theorem 2.55. A complete system {|ei〉} of a Hilbert space H defines an isometry between H
and the space L2(R) of square-integrable functions, i.e. the space of functions f : R → C
such that

∫
R |f(x)|2 < ∞. Namely, for any two vectors |f〉 , |g〉 ∈ H there exist functions

f, g ∈ L2(R) such that

〈f |g〉 =

∫

R
f ∗(x)g(x)dx, ‖f‖2 =

∫

R
|f(x)|2dx. (2.95)

So far we have analysed complete systems composed of an infinite, but discrete, number of
elements. In quantum mechanics, one may also consider complete systems with continuous ele-
ments. Let us define a complete system {|x〉}, with x ∈ R. The completeness and orthogonality
conditions read in this case:

∫

R
|x〉 〈x| = Î , 〈x|x′〉 = δ(x− x′), (2.96)

where δ(x− x′) is the Dirac delta function, which is a functional such that:
∫

R
f(x) δ(x− x′) dx = f(x′), ∀ f ∈ L2(R). (2.97)

The Dirac delta is not a function in L2(R) and thus the states |x〉 are not properly normalised
states in H. However, since the dawn of quantum mechanics [Dir30; Neu32], the space L2(R)
has been enlarged to comprehend the Dirac delta and those functions that are "normalised" to
the Dirac delta.

Definition 2.56 (Position operator). The position operator x̂ (also denoted by q̂) is the operator
that transforms every vector |g〉 ∈ H into a vector |xg〉 ∈ H such that, in the basis {|x〉}, it
holds:

〈f |xg〉 = 〈f |x̂|g〉 :=

∫

R
f ∗(x)xg(x)dx, (2.98)

for every |g〉 ∈ H.

The operator x̂ is straightforwardly Hermitian (x̂ = x̂†), since 〈f |xg〉 = 〈xf |g〉.

Theorem 2.57. The eigenvalues of x̂ are the real numbers x ∈ R and the corresponding eigen-
vectors are the elements of the complete system {|x〉}. The components of x̂ in the basis of its
eigenvectors {|x〉} reads

〈x′|x̂|x〉 = xδ(x′ − x). (2.99)

Definition 2.58 (Momentum operator). The momentum operator p̂ is the operator that trans-
forms every vector |g〉 ∈ H into a vector −i |dg/dx〉 ∈ H such that, in the basis {|x〉}, it
holds:

− i 〈f |dg/dx〉 = 〈f |p̂|g〉 :=

∫

R
f ∗(x)(−i)

dg(x)

dx
dx, (2.100)

for every |f〉 ∈ H.

The components of p̂ in the |x〉 basis read:

〈x′|p̂|x〉 = −iδ(x′ − x)
d

dx
. (2.101)
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By performing an integration by parts and using the property limx→±∞ f(x) = 0, which holds
for any f ∈ L2(R), we prove that the momentum operator is Hermitian:

〈f |
(
p̂ |g〉

)
=

∫

R
f ∗(x)

(
−i
dg(x)

dx

)
dx = −i[f ∗(x)g(x)|∞−∞ + i

∫

R

df ∗(x)

dx
g(x) dx

=

∫

R

(
−i
df(x)

dx

)∗
g(x) dx =

(
p̂ |f〉

)†
|g〉 .

(2.102)

Theorem 2.59. The eigenvalues of p̂ are the real numbers p ∈ R and the corresponding nor-
malised eigenvectors |p〉, with

〈x|p〉 =
1√
2π

ei kx, (2.103)

form a complete orthonormal system over H (〈p′|p〉 = δ(p′ − p) and
∫
R |p〉 〈p| dp = Î). The

components of p̂ in the basis of its eigenvectors {|p〉} are 〈p′|p̂|p〉 = p δ(p′ − p).

One can also compute the components of x̂ and p̂ in each other spectral basis, i.e.

〈p′|x̂|p〉 = i δ(p′ − p), 〈x′|p̂|x〉 = iδ(x′ − x). (2.104)

Operators that are related as in Eq. 2.104 are said to be conjugate to each other. In particular,
the operators x̂ and p̂ are called the canonical conjugate operators.

Theorem 2.60. The canonical conjugate operators x̂ and p̂ satisfy the canonical commutation
relation (CCR):

[x̂, p̂] = iÎ . (2.105)

2.5 Hamming Space
So far, we have always considered vector spaces over the scalar field C. Here we introduce

the Galois field of order 2.

Definition 2.61. The Galois field of order 2, denoted by F2, is a set of two elements { 0, 1 },
together with two binary operations:

1. +2 : F2 × F2 → F2, called the addition modulus two, such that:

0 +2 0 = 0, 0 +2 1 = 1, 1 +2 0 = 1, 1 +2 1 = 0; (2.106)

2. · : F2 × F2 → F2, called the multiplication modulus two (which in this set is equal to the
standard multiplication), such that:

0 · 0 = 0, 0 · 1 = 0, 1 · 0 = 0, 1 · 1 = 1. (2.107)

Therefore, the two elements 0 and 1 are the additive and multiplicative identity of the field,
respectively. Moreover, for any x ∈ F2:

x+2 x = 0, x2 = x. (2.108)
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In information theory, the elements of F2 are called bits, short for binary digits.

Definition 2.62. The space Fn2 := F2 × F2 × · · · × F2 (n times) is a vector space over the field
F2 and is called Hamming space. The vector addition is defined as:

u+ v := (u1 +2 v1, u2 +2 v2, . . . , un +2 vn), (2.109)

and the scalar multiplication as:

αv := (αv1, αv2, . . . , αvn). (2.110)

The vectors in Fn2 are called (digital) strings. The cardinality of Fn2 , i.e. the number of strings
in Fn2 , is 2n. In information theory, the set Fn2 can be also improperly referred to as {0, 1}n.

There is no proper inner product in Fn2 , but a norm and a distance can be still defined.

Definition 2.63. The Hamming weight of a string v ∈ Fn2 is the function h : Fn2 → N0 that
counts the number of ones in v. The Hamming distance d of two string u,v ∈ Fn2 is defined as
the Hamming weigth of u+ v, i.e.

d(u,v) = h(u+ v). (2.111)

Consider the Hamming space of a single bit, F2, with elements x. We can define only two
operators on this space

1. The identity Î ,
Îx = x; (2.112)

2. The bit flip X̂ ,
X̂x = x+2 1. (2.113)

For n bits, all operators are in the form Â1⊕ Â2⊕· · ·⊕ Ân, where Âi are single-bit operators
(i.e. Âi = Î , X̂).

Definition 2.64. The concatenation of two strings, u = (u1, u2, . . . , un) ∈ Fn2 and v =
(v1, v2, . . . , vm) ∈ Fm2 , is the operation ‖ : Fn2 × Fm2 → Fn+m2 that generates:

u‖v = (u1, u2, . . . , un, v1, v2, . . . , vm). (2.114)



3
Quantum Information

with Discrete Variables

In this chapter, we introduce quantum mechanics from the point of view of quantum information
theory, which is the theory that uses quantum mechanics to study, transmit and process infor-
mation. Here we focus to finite-dimensional (also called discrete-variable) systems, postponing
the discussion about infinite-dimensional (continuous-variable) systems to later chapters. The
postulates of quantum mechanics are introduced for closed quantum systems, with emphasis on
the two-dimensional ones (qubits). Then we broaden our view, considering open quantum sys-
tems and studying their dynamics in terms of density operators and quantum channels. Finally,
we introduce specific elements of quantum information theory that are used in the remainder of
this thesis. The content of this chapter is mostly inspired from [NC10; MW20; KLM07].

3.1 Quantum Mechanics of Closed Systems

3.1.1 State Space
Postulate 1. Any isolated quantum system is associated with a complex Hilbert spaceH, known
as the space state. Quantum states of the system are completely described by unit vectors
|ψ〉 ∈ H, with the assumption that |ψ〉 and eiθ |ψ〉 describe the same state, for any θ ∈ R.

Formally speaking, we should say that the state space is a projective Hilbert space, defined
as the set of all projective rays in a Hilbert spaceH, i.e. all classes of |ψ〉 ∈ H, |ψ〉 6= 0, for the
relation:

|ψ〉 ∼ |ψ′〉 if and only if |ψ〉 = α |ψ′〉 , with α ∈ C\{0}. (3.1)

However, operational definitions of the state space and vector, such as that in Postulate 1, are
generally more preferred by physicists than the formal definition.

We illustrate the effects of this postulate with one of the simplest, and yet most important,
quantum systems: the qubit (short for quantum bit).

23
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A qubit is a quantum state |ψ〉 in a two-dimensional complex Hilbert space H2. It is the
quantum state that represents two-level quantum properties, such as the electron spin (spin up
and spin down) or the photon polarisation (right and left or horizontal and vertical).

Qubits are the quantum counterpart to the classical bits (see Sec. 2.5). For this reason, we
label as {|0〉 , |1〉} the standard basis ofH2, called the computational basis, with

|0〉 :=

(
1
0

)
, |1〉 :=

(
0
1

)
. (3.2)

The main difference between bits and qubits is that a bit state can be either 0 or 1, whereas a
qubit state |ψ〉 can be any superposition of |0〉 and |1〉, i.e.

|ψ〉 = α |0〉+ β |1〉 , (3.3)

where α, β ∈ C, with the normalisation condition |a|2 + |b|2 = 1 (it follows from 〈ψ|ψ〉 =
1). Quantum states that differs by a global phase factor are physically equivalent, so we can
consider an alternative parameterisation for Eq. (3.3):

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 , (3.4)

where θ ∈ [0, π], φ ∈ [0, 2π]. The angles (θ, φ) describe points on the surface of a three-
dimensional sphere of unit radius, called the Bloch sphere.

3.1.2 Quantum Measurements

Postulate 2. Quantum measurements are described by a set {M̂m} of measurement operators
on the state space H, with m labelling a possible outcome of the measurement. The measure-
ment operators must satisfy the completeness relation

∑

m

M̂ †
m M̂m = Î , (3.5)

where Î is the identity operator on H. If |ψ〉 is the state of the system immediately prior to the
measurement, then the probability of obtaining the outcome m is given by:

p|ψ〉(m) = 〈ψ|M̂ †
m M̂m|ψ〉 , (3.6)

and the measurement transforms |ψ〉 into:

|ψ〉 7→ 1√
p|ψ〉(m)

M̂m |ψ〉 . (3.7)

The measurement process is therefore a random process: the measurement outcomes m form
a classical random variable, i.e. a variable taking values over a setM = {m}, according to the
probability distribution p|ψ〉(m) = p|ψ〉(M = m) given by Eq. (3.6).
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Projective measurements

A projective measurement is described by a Hermitian operator M̂ on the state space H,
called an observable. The spectral decomposition of M̂ (see Eq. (2.80)) reads:

M̂ =
∑

m

m Π̂m, (3.8)

where m ∈ R and Π̂m is the orthogonal projector onto the eigenspace of M̂ belonging to the
eigenvalue m.

If the eigenvalues of M̂ are non-degenerate, the corresponding measurement is also called a
von Neumann measurement. In this case Π̂m = |m〉 〈m|, where |m〉 is the eigenstate belonging
to the eigenvaluem. The outcome of a von Neumann measurement on a quantum state |ψ〉 ∈ H
is given by the eigenvalues m of the observable Â, with probability

pψ(m) = 〈ψ|Π̂m|ψ〉 = | 〈ψ|m〉 |2. (3.9)

As a consequence of the measurement, the state of the system changes to:

|ψ〉 7→ Π̂m |ψ〉√
p|ψ〉(m)

=
〈ψ|m〉
| 〈ψ|m〉 | |m〉 ∼ |m〉 . (3.10)

Hence, |ψ〉 is projected onto the eigenspace of Â that corresponds to the measurement out-
come m. In quantum information jargon, one can "measure in a basis {|m〉}" or "measure
M̂". Both sentences mean to make a projective measurement on a quantum state |ψ〉 using the
operator M̂ =

∑
m m |m〉 〈m|.

Projective measurements are particularly useful to compute the expectation value of the mea-
surement, E|ψ〉(M̂), since:

E|ψ〉(M̂) =
∑

m

mp|ψ〉(m) =
∑

m

m 〈ψ|Π̂m|ψ〉 = 〈ψ|M̂ |ψ〉 . (3.11)

We denote E|ψ〉(M̂) by 〈M̂〉 := 〈ψ|M̂ |ψ〉, and say that 〈M̂〉 is the average value of the observ-
able M̂ . It follows that the variance associated with the measurement of M̂ is

[
∆(M̂)

]2
= 〈M̂2〉 − 〈M̂〉2 . (3.12)

This leads to one of the most important results of quantum mechanics, which states the impossi-
bility of precisely measuring two non-commuting observable with absolute precision. A proof
of the following theorem is given in [NC10].

Theorem 3.1 (Heisenberg uncertainty principle). For any two observable Â, B̂ over a state
spaceH, it holds:

∆(Â)∆(B̂) ≥ | 〈ψ|[Â, B̂]|ψ〉 |
2

, (3.13)

where |ψ〉 ∈ H is the state of the system, [Â, B̂] is the commutator between Â and B̂ (see
Def. 2.23) and ∆(Â),∆(B̂) are the standard deviations–the square roots of the variances, as
calculated by Eq. (3.12)–of Â and B̂, respectively.
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Let us now consider a projective measurement of a qubit in a state |ψ〉 = cos(θ/2) |0〉 +
eiφ sin(θ/2) |1〉. Let Ẑ = |0〉 〈0| − |1〉 〈1| be an observable whose eigenstates are the elements
of the computational basis. The eigenvalues of Ẑ are±1, and they are measured with probability

p|ψ〉(1) = | 〈ψ|0〉 |2 = cos2
(
θ

2

)
, p|ψ〉(−1) = | 〈ψ|1〉 |2 = sin2

(
θ

2

)
. (3.14)

We simplify the notation for the outcomes of this projective measurement:

+ 1→ 0, −1→ 1. (3.15)

Hence, a measurement of Ẑ on a qubit produces a bit. More precisely, the outcome is a proba-
bilistic bit, i.e. a random variable over the set of bits F2 (see Sec. 2.5).

Positive Operator-Valued Measure (POVM)

We now introduce a second class of mesurements, which is particularly useful when the
state after the measurement does not matter and only the measurement statistics is relevant. By
considering general measurement operators {M̂m} over a Hilbert spaceH, we define:

Êm := M̂ †
mM̂m. (3.16)

Each Êm is a positive-semidefinite operator (see Theorem 2.34) and {Êm} satisfies
∑

m Êm =

Î . The probability of obtaining the outcome m upon measurement on a quantum state |ψ〉 ∈ H
becomes:

p|ψ〉(m) = 〈ψ|Êm|ψ〉 . (3.17)

The set {Êm} is called a positive operator-valued measure (POVM) and the operators Êm are
called the POVM elements associated with the measurement.

If we set Êm = M̂m = Π̂m, we obtain a projective measurement, which can be therefore seen
as a particular case of POVM.

3.1.3 State Evolution
Postulate 3. The state change of an isolated quantum system is described by means of unitary
operators. Namely, if |ψ(t1)〉 ∈ H is the state of a system at time t1, and |ψ(t2)〉 is the state of
the system at time t2, then

|ψ(t2)〉 = Û |ψ(t1)〉 , (3.18)

where Û is a unitary operator overH, i.e. it satisfies Û Û † = Û †Û = Î , with Î being the identity
operator onH. Moreover,

Û = e−i
(t2−t1)

~ Ĥ , (3.19)

where ~ is the reduced Planck constant and Ĥ is the Hamiltonian operator, i.e. the observable
associated with projective measurements of the system’s energy.

A unitary operator Û corresponds to a deterministic and reversible evolution, with the reverse
evolution given by Û †.

Consider now the time evolution of the expectation value 〈Â〉 of an observable Â. It holds:

〈Â〉 (t2) = 〈ψ(t2)|Â|ψ(t2)〉 = 〈ψ(t1)|Û †ÂÛ |ψ(t1)〉 . (3.20)
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Then the same measurement statistics 〈Â〉 (t2) is obtained by two equivalent representations of
the system’s dynamics: a representation in which the state |ψ〉 evolves according to Eq. (3.18)
and the operator Â remains unchanged, or a representation in which |ψ〉 remains unchanged and
Â evolves as:

Â→ Û †ÂÛ . (3.21)

The former representation is called the Scrödinger picture, while the latter one is called the
Heisenberg picture.

Considering again qubits, we introduce the Pauli operators, defined as:

X̂ := |0〉 〈1|+ |1〉 〈0| , Ŷ := −i |0〉 〈1|+ i |1〉 〈0| , Ẑ := |0〉 〈0| − |1〉 〈1| . (3.22)

They are unitary and Hermitian operators, and act on a generic qubit state |ψ〉 = α |0〉 + β |1〉,
α, β ∈ C as:

X̂ |ψ〉 = (α |1〉+ β |0〉); (3.23)

Ŷ |ψ〉 = i(α |1〉 − β |0〉); (3.24)

Ẑ |ψ〉 = (α |0〉 − β |0〉). (3.25)

We have already encountered the operator Ẑ (also called the quantum phase flip) in Sec.
3.1.2, as the Hermitian operator whose eigenstates are the elements of the computational basis
{|0〉 , |1〉}. We also notice that the operator X̂ is the quantum counterpart to the classical bit flip
(see Sec. 2.5), and is therefore called the quantum bit flip. The eigenstates of X̂ , which form a
commonly used basis in quantum information theory, read:

|+〉 :=
1√
2

(|0〉+ |1〉), |−〉 :=
1√
2

(|0〉 − |1〉). (3.26)

The operator Ŷ is redundant in the description of a qubit’s dynamics, since it holds:

Ŷ =
1

2i
[Ẑ, X̂]. (3.27)

3.1.4 Composed Systems

Postulate 4. A composite quantum system is related to its subsystems by means of tensor
products. Namely, if Hi (i = 1, 2, . . . , n) is the state space of the i-th subsystem, H =
H1 ⊗H2 ⊗ · · · ⊗ Hn is the state space of the composite system. Morever, if |ψi〉 is the state of
the i-th subsystem, |ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉 is the state of the composite system.

It naturally follows that if each state |ψi〉 (i = 1, 2, . . . , n) evolves under a unitary operator
Ûi, then the composite state |ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉 evolves under the unitary operator
Û = Û1 ⊗ Û2 ⊗ · · · ⊗ Ûn. In the following, we will omit the symbol ⊗ in the product states of
states, i.e. we write |ψ1〉 |ψ2〉 instead of |ψ1〉 ⊗ |ψ2〉. However, we will always use the symbol
⊗ for the tensor product of operators and Hilbert spaces.

Postulate 4 allows us to introduce the concept of entanglement, which in this chapter is pre-
sented only for bipartite quantum systems.
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Definition 3.2. Let HAB := HA ⊗ HB be the Hilbert space of a bipartite system. A state
|ΨAB〉 ∈ HAB is called factorable if there exist |ψA〉 ∈ HA and |ψB〉 ∈ HB such that |ΨAB〉 =
|ψA〉 |ψB〉. Conversely, states that are not factorable are called entangled.

Entangled systems possess definite quantum states only when they are considered as a single
global system. They cannot be precisely described in terms of their subsystems.

Theorem 3.3 (Schmidt decomposition). Let |ψAB〉 be a state on a bipartite Hilbert space
HAB := HA ⊗ HB, where HA is dA-dimensional and HB is dB-dimensional. Then there
exist an orthonormal basis |iA〉 forHA, and an orthonormal basis |iB〉 forHB such that

|ψAB〉 =
d∑

i=1

√
λi |iA〉 |iB〉 , (3.28)

where d = min{dA, dB} and the coefficients λi, called the Schmidt coefficients, satisfy λi ≥ 0
and

∑
i λi = 1.

A proof of the theorem is contained in [MW20]. The number of non-zero Schmidt coeffi-
cients is called the Schmidt rank of |ψAB〉. Factorable states |ψA〉 |ψB〉 are already in the form of
Eq. (3.28) with Schmidt rank equal to one. Hence, a state is entangled if and only if its Schmidt
rank is strictly bigger than one. Clearly, the maximum Schmidt rank is d = min{dA, dB}.

Definition 3.4. A maximally entangled state is a composite state |ΨAB〉 that possess maximum
Schmidt rank and equal Schmidt coefficients, i.e. a state whose Schmidt decomposition reads:

|ΨAB〉 =
1√
d

d∑

i=1

|iA〉 |iB〉 , (3.29)

where d = min{dA, dB}.

An example for two qubits is given by the Bell states:

|Φ±〉 :=
1√
2

(|0〉 |0〉 ± |1〉 |1〉), (3.30)

|Ψ±〉 :=
1√
2

(|0〉 |1〉 ± |1〉 |0〉). (3.31)

3.2 Quantum Mechanics of Open Systems

3.2.1 Density Operators

The postulates given in Sec. 3.1 describe situations in which the state of a system is perfectly
determined by a state vector |ψ〉, called a pure state. This is not always the case. In many
scenarios, such as open quantum systems that interact with a noisy environment, the state is
only known with a certain probability. Hence, we need a more generic description than pure
states.
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Definition 3.5. A quantum system is said to be in a statistical ensemble {pi, |ψi〉} if the state
of the system is one of the pure states in {|ψi〉} according to the probability distribution {pi},
where pi corresponds to the state |ψi〉. Then, the state of the system is said to be a mixed state
and is described by the following operator, called the density operator:

ρ :=
∑

i

pi |ψi〉 〈ψi| . (3.32)

Density operators are always denoted by greek lowercase letters without a circumflex, i.e. we
write ρ instead of ρ̂. Pure states arise from Eq. (3.32) as the particular case in which a system is
in a state |ψi〉 with certainty (pi = 1). Hence, a pure state |ψi〉 can be represented by a density
operator ρ = |ψi〉 〈ψi|.

The set of all density operators on a Hilbert space H is denoted by S(H). From Eq. (3.32),
it follows that S(H) is generated by convex combination of all pure density operators |ψi〉 〈ψi|.
Moreover, a convex combination of any density operators, ρ =

∑
i piρi, is also a density oper-

ator and represents a statistical ensemble {pi, ρi}, where ρi may be pure or mixed.

Theorem 3.6. An operator ρ is a density operator for some ensemble {pi, ρi} if and only if

ρ ≥ 0, and Tr(ρ) = 1. (3.33)

The proof of this theorem is given in [NC10]. Since ρ ∈ S(H) is positive-semidefinite, it has
a spectral decomposition (see Eq. (2.80)):

ρ =
d∑

i=1

λj |λj〉 〈λj| , (3.34)

where d is the dimension of H, {|λj〉} is an orthonormal set of eigenvectors of ρ and {λj} is a
set of real, non-negative eigenvalues that satisfy

∑
i λi = 1. Pure states are the particular case

in which the rank of ρ is 1. If the rank of ρ is d, and all eigenvalues are equal, i.e.

ρ =
1

d

d∑

i=1

|λj〉 〈λj| =
1

d
Î, (3.35)

where Î is the identity onH, then ρ is said the maximally mixed state of S(H).

Definition 3.7. The purity of a quantum state ρ ∈ S(H) is the quantity Tr[ρ2]. From Eq. (3.34),
it follows that:

1

d
≤ Tr[ρ2] ≤ 1, (3.36)

where d is the dimension of H. In particular, Tr[ρ2] = 1 is achieved only for pure states, and
Tr[ρ2] = 1/d is achieved only for the maximally mixed state on S(H).

3.2.2 Postulates of Quantum Mechanics for Density Operators
Revised Postulate 1. Any quantum system is associated with a complex Hilbert spaceH, known
as the space state. Quantum states of the system are completely described by density operators
ρ ∈ S(H), i.e. positive operators of trace one on the Hilbert space H. If a quantum system is
in a statistical ensemble {pi, ρi}, the density operator for the system reads:

ρ =
∑

i

pi ρi. (3.37)
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The density operator of a generic qubit can be written as a combination of the identity Î on
H, and the Pauli operators X̂, Ŷ and Ẑ [Pau27]:

ρ =
1

2
(Î + rxX̂ + ryŶ + rzẐ), (3.38)

where rx, ry, rz are real coefficients such that r2x + r2y + r2z ≤ 1. We saw in Eq. (3.4) that pure
states are represented by points on the Bloch sphere, which is a three-dimensional sphere of
unit radius. From Eq. (3.38), we now see that mixed states are represented by points inside the
Bloch sphere, with coordinates (rx, ry, rz). In particular, the maximally mixed state ρ = Î

2
is

represented by the center of the sphere (0, 0, 0).

Revised Postulate 2. Quantum measurements are described by a set {M̂m} of measurement
operators on the state space H, with m labelling a possible outcome of the measurement. The
measurement operators satisfy the completeness relation

∑
m M̂ †

m M̂m = Î , where Î is the
identity operator on H. If ρ is the state of the system immediately prior to the measurement,
then the probability of obtaining the outcome m is given by:

pρ(m) = Tr(M̂m ρ M̂
†
m), (3.39)

and the measurement transforms ρ into:

ρ 7→ 1√
pρ(m)

M̂mρ M̂
†
m. (3.40)

If we consider a von Neumann measurements on an observable M̂ =
∑

m m |m〉 〈m|, it
follows:

pρ(m) = 〈m|ρ|m〉 , (3.41)

〈M̂〉 := Tr (M̂ρ). (3.42)

Revised Postulate 3. A deterministic state change of a quantum system is described by means
of unitary operators. Namely, if ρ(t1) is the state of a system at time t1, and ρ(t2) is the state of
the system at time t2, then

ρ(t2) = Ûρ(t1)Û
†, (3.43)

where Û is a unitary operator on H, i.e. it satisfies Û Û † = Û †Û = Î , with Î being the identity
operator onH.

It is easy to see the emergence of Revised Postulate (3) from Postulate (3). If every state in
an ensemble {pi, |ψi〉} evolves as |ψi〉 → Û |ψi〉, then

ρ =
∑

i

pi |ψi〉 〈ψi| 7→
∑

i

pi Û |ψi〉 〈ψi| Û † = ÛρÛ †. (3.44)

If we now consider the time evolution of the expectation value of an observable Â, it holds:

〈Â〉 (t2) = Tr[ρ(t2)Â] = Tr[Ûρ(t1)Û
†Â] = Tr[ρ(t1)Û

†ÂÛ ] = Tr[ρ(t1)Â(t2)], (3.45)

with Â(t2) = Û †ÂÛ . Therefore we extend to density operators both the Schrödinger and
Heisenberg picture (see Sec.3.1.2).
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Revised Postulate 4. A composite quantum system is related to its subsystems by means of
tensor products. Namely, if Hi (i = 1, 2, . . . , n) is the state space of the i-th subsystem, H =
H1 ⊗H2 ⊗ · · · ⊗ Hn is the state space of the composite system.

There is a major difference with the case of pure states. If ρi is the state of the i-th subsystem,
we cannot say that ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn is the state of the composite system. We will see in Sec.
3.2.3 that the composite state may be a pure entangled state.

The definition of entanglement for bipartite mixed states becomes the following:

Definition 3.8. A separable state is a density operator ρAB on HAB := HA ⊗ HB that can be
written as convex combination of states ρkA onHA and ρkB onHB, i.e.

ρAB =
∑

k

pk ρ
k
A ⊗ ρkB. (3.46)

Conversely, all states that are not separable are called entangled.

Factorable states, |ψA〉 ⊗ |ψB〉 or ρA ⊗ ρB, are a particular case of separable states. It is
difficult to determine whether a mixed state is entangled since the Schmidt decomposition does
not hold for mixed states. We are going to expand on this topic in Chaps. 6 and 7.

3.2.3 Reduced Density Operator and Purification
The formalism of density operators allows us to describe the state of a subsystem knowing

the state of the composite system. We consider again a bipartite system AB and, without loss
of generality, we focus only on the subsystem A.

Definition 3.9. Let ρAB be the state of a bipartite system AB with Hilbert spaceHAB = HA ⊗
HB. Then the state of the subsystem A is described by the corresponding reduced density
operator, which is defined as:

ρA = TrB(ρAB), (3.47)

where TrB is the partial trace overHB (see Def. 2.50).

If ρAB = ρA ⊗ ρB, it immediately follows that TrBρAB = (TrρB) ρA = ρA. Analogously,
TrB(|ψA〉 〈ψA| ⊗ |ψB〉 〈ψB|) = |ψA〉 〈ψA|. For a generic bipartite state ρAB, it is less evident
why the partial trace is the correct way to obtain a state for the subsystem A.

Theorem 3.10. Let ρAB be the state of a bipartite system AB with Hilbert space HAB =
HA ⊗HB. Then, the reduced density operator ρA = TrB(ρAB) is the unique density operator
that provides the correct measurement statistics for any observable M̂A on the subsystem A, i.e.

Tr
(
M̂AρA

)
= Tr

(
(M̂A ⊗ ÎB)ρAB

)
, (3.48)

where ÎB is the identity operator overHB.

A proof of the theorem is contained in [NC10].
Let us now consider a pure state |ψAB〉 on a bipartite Hilbert space HAB := HA ⊗ HB.

For simplicity, let the dimensions of HA and HB be equal to d. The Schmidt decomposition
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(see Theorem 3.3) of |ψAB〉 is |ψAB〉 =
∑d

i=1

√
λi |iA〉 |iB〉, where {|iA〉} and {|iB〉} are

orthonormal bases forHA andHB, respectively. The reduced density operator of A, ρA, reads

ρA = TrB (|ψAB〉 〈ψAB|) =
d∑

i=1

λi |iA〉 〈iA| . (3.49)

A pure state is entangled if and only if there are at least two non-zero coefficients, λi, λj 6= 0.
When this happens, the reduced state ρA in Eq. (3.49) is mixed. Therefore, an entangled
bipartite system that possesses a precisely determined state (pure state) always has statistically
uncertain states (mixed state) for its subsystems. In particular, the reduced density operator ρA
of a maximally entangled state (see Eq. (3.29)) |ΨAB〉 is the maximally mixed state (see Eq.
(3.35)) forHA:

ρA = TrB (|ΨAB〉 〈ΨAB|) =
1

d

d∑

i=1

|iA〉 〈iA| =
ÎA
d
. (3.50)

Remarkably, every mixed state can be considered as the reduced state of a pure entangled
state in a larger system. This process is called the purification of the system.

Theorem 3.11 (Purification). For any mixed state ρA on a system A, we can introduce a system
R, called a reference system, and define a pure state |ψAR〉 on the joint system AR such that

ρA = TrR(|ψAR〉 〈ψAR|). (3.51)

Proof. Let {|iA〉} be the basis of HA that diagonalises ρA, i.e. ρA =
∑dA

i=1 λi |iA〉 〈iA|, where
dA is the dimension ofHA. If {|iR〉} is a basis of a Hilbert spaceHR with dimension dR = dA,
we can define a pure state |ψAR〉 ∈ HA⊗HR whose Schmidt decomposition (see Theorem 3.3)
reads:

|ψAR〉 :=

dA∑

i=1

√
λi |iA〉 |iR〉 . (3.52)

We conclude the proof by noting that

TrR (|ψAR〉 〈ψAR|) =

dA∑

i=1

λi |iA〉 〈iA| = ρA. (3.53)

3.2.4 Quantum Channels
So far, we have considered deterministic and reversible state changes, described by unitary

operators. We now introduce quantum channels, which are a tool used to characterise the
generic evolution of a system, including irreversible and probabilistic state changes that are
caused by the interaction of a system with a noisy environment.

Definition 3.12. Let S(H) denote the set of density operators on a Hilbert spaceH. A quantum
channel (or quantum operation) is a map Λ : S(HA) → S(HB) that transforms a density
operator ρ ∈ S(HA) on a Hilbert space HA into another density operator Λ[ρ] ∈ S(HA),
possibly defined on a different Hilbert spaceHB.
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From now on, we consider for simplicity HA = HB. A quantum channel needs to satisfy
a certain set of properties, in order to ensure that Λ[ρ] is a valid density operator for any input
density ρ. First of all, it must hold

Λ[ρ] ≥ 0, and Tr [Λ[ρ]] = 1 = Tr[ρ]. (3.54)

Therefore Λ needs to be positive and trace preserving. However, positivity is not enough: we
have to require the complete positivity of Λ, i.e.

(Λ⊗ idR) [ρAR] ≥ 0, (3.55)

for any density operator ρAR ∈ S(HAR) with HAR = HA ⊗HR, where HR is a Hilbert space
of arbitrary dimension and idR is the identity map of S(HR). This requirement ensures that a
quantum channel produces a valid density operator also when acting on a subsystem of a larger,
possibly entangled, system.

Finally, a quantum channel needs to be convex over the set of density operators, i.e.

Λ

[∑

i

piρi

]
=
∑

i

piΛ[ρi], (3.56)

for a set of probabilities { pi }. This is a consequence of Revised Postulate 1: if a system is in
an ensemble { pi, ρi }, then the state of the system is ρ =

∑
i pi ρi. Eq. (3.56) ensures that the

evolution of ρ is consistent with the evolutions of the individual ρi.
For all these conditions, a quantum channel is also called a completely positive trace preserv-

ing (CPTP) map.

Theorem 3.13 (Kraus theorem). Let S(H) be the set of density operators on H. A linear map
Λ : S(H) → S(H) is completely positive and trace preserving if and only if there exist some
linear operators {K̂k}, satisfying ∑

k

K̂†k K̂k = Î , (3.57)

such that for any ρ ∈ S(H) it holds:

Λ[ρ] =
∑

k

K̂k ρ K̂
†
k. (3.58)

The operators K̂k are called Kraus operators and define the Kraus decomposition of the chan-
nel Λ. It also holds that the number of Kraus operators is no larger than d2, where d is the
dimension ofH.

A proof of the theorem is given in [NC10], where it also showed that the Kraus decomposition
is not unique. The Kraus theorem gives us an analytical expression for the action of a generic
quantum channel.

An alternative meaningful representation is given by the Stinespring’s dilation, whose proof
is also given in [NC10].

Theorem 3.14 (Stinespring’s dilation). For any quantum channel ΛS on a Hilbert space HS ,
there exists a Hilbert spaceHE and a unitary operator ÛSE onHS ⊗HE such that

ΛS[ρS] = TrE

[
ÛSE(ρS ⊗ ρE)Û †SE

]
, (3.59)

for all ρS ∈ S(HS) and some ρE ∈ S(HE).



34 3. Quantum Information with Discrete Variables

This representation interprets quantum channels as interactions between an open system S
and an environment E. The composite system SE is closed and evolves unitarily.

Notice that ρE ∈ HE in Eq. (3.59) can always be chosen pure, i.e. ρE = |ψE〉 〈ψE|. We do
not have to fix the dimension of HE , so if ρE ∈ S(HE) is mixed, we can always purify ρE in a
larger environmental spaceHE ⊗HR. Then we write:

ΛS[ρS] = TrE

[
ÛSE(ρS ⊗ |ψE〉 〈ψE|)Û †SE

]
=
∑

k

〈eK | ÛSE (ρS ⊗ |ψE〉 〈ψE|) Û †SE |ek〉 ,

(3.60)
for some basis {|ek〉} of HE . This allows us to connect the Stinespring’s dilation in Eq. (3.59)
with the Kraus decomposition in Eq. (3.57), by choosing:

K̂k := 〈ek|ÛSE|ψE〉 . (3.61)

3.3 Elements of Quantum Information Theory

3.3.1 Entropies
Claude Shannon, the father of information theory, defined the concept of information in re-

lation to the concept of uncertainty [Sha48]. A measurement of a system can produce an in-
formation gain only if the state of the system before the measurement was uncertain and this
uncertainty is reduced by the measurement.

Thus, a key quantity in information theory is the entropy, which is a measure of uncertainty.
In this subsection, we review the main entropic measures that are used in the remainder of this
thesis.

Definition 3.15 (Shannon entropy [Sha48]). Let X be a discrete set of cardinality d and X be
a random variable taking values x ∈ X with probability p(x). The Shannon entropy of X is
given by

H(X) = −
d∑

x=1

p(x) log2 p(x), (3.62)

with the convention 0 log2 0 = 0. The Shannon entropy of X can be also indicated as H(p),
where p = (p(1), p(2), . . . , p(d)).

In the remainder of this thesis, we will always denote by log the logarithm in base 2 and by ln
the natural logarithm in base e. The base 2 in the logarithm implies that the entropy is expressed
in bits, which can be seen as the basic units of information.

The Shannon entropy of X quantifies the average uncertainty on the values of X before a
measurement. In Chap. 5, we are going to also use another classical entropy, which quantifies
the uncertainty on the values of X in terms of the probability to randomly guess one of them.

Definition 3.16 (min-entropy [Rén+61]). Let X be a discrete set and X be a random variable
taking values x ∈ X with probability p(x). The min-entropy of X is defined as:

H∞(X) := − log

(
max
x∈X

p(X = x)

)
. (3.63)

We now consider quantum entropies.
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Definition 3.17 (von Neumann entropy [NC10]). The von Neumann entropy of a density oper-
ator ρ ∈ S(H) is defined as:

S(ρ) := −Tr(ρ log ρ), (3.64)

with the assumption 0 log 0 = 0.

The von Neumann entropy is the quantum counterpart to the Shannon entropy. In particular,
let us consider the spectral representation of ρ ∈ S(H), ρ =

∑d
i=1 λi |λi〉 〈λi|, where d is the

dimension ofH, and λi and |λi〉 are the egenvalues and eigenvectors of ρ, respectively. Since ρ
is positive-semidefinite and Trρ = 1, it follows that λi ≥ 0 and

∑
i λi = 1. Then,

S(ρ) = −
∑

i

λi log λi = H(λ), (3.65)

where λ = (λ0, λ1, . . . , λd−1). From Eqs. (3.64) and (3.65), the following properties of ρ
follow:

1. S(ρ) ≥ 0 for every ρ and S(ρ) = 0 if and only if ρ is pure.

2. S(ρ) is invariant under unitary operations, i.e. S(U ρU †) = S(ρ). This follows from the
fact that the eigenvalues of ρ are invariant under unitary transformations (see Eq. (2.82)).

3. 0 ≤ S(ρ) ≤ log d, for every ρ on a d-dimensional Hilbert space H. In particular S(ρ) =
log d if and only if ρ is the maximally mixed state Î/d.

An additional entropy, which will play a major role in Chap. 7, is the quantum relative entropy.

Definition 3.18 (Quantum relative entropy [NC10]). For any two density operators ρ, σ ∈ S(H)
the quantum relative entropy is defined as

S(ρ‖σ) := Tr(ρ(log ρ− log σ)). (3.66)

By convention, S(ρ‖σ) =∞ if the support of ρ, i.e. the vector space spanned by the eigenvec-
tors of ρ belonging to non-zero eigenvalues, is not contained in the support of σ.

Theorem 3.19 (Klein’s inequality). For any ρ, σ ∈ S(H), the quantum relative entropy S(ρ‖σ)
is non-negative,

S(ρ‖σ) ≥ 0, (3.67)

and S(ρ‖σ) = 0 if and only if ρ = σ.

A proof of this theorem is given in [NC10]. Because of Klein’s inquequality, the quantum
relative entropy is used as a pseudo-distance on the set S(H) of density operators on H. The
relative entropy is not a true distance because it is not symmetric, S(ρ‖σ) 6= S(σ‖ρ), and does
not satisfy the triangle inequality, S(ρ‖σ) � S(ρ‖τ) + S(σ‖τ).

Consider now a state ρAB on a bipartite Hilbert spaceHAB = HA ⊗HB. Let ρA = TrB ρAB
and ρB = TrA ρAB. We denote the von Neumann entropy (see Eq. (3.64)) of ρA and ρB by
S(A) := S(ρA) = −Tr(ρA log ρA) and S(B) := S(ρB) = −Tr(ρB log ρB), respectively. We
additionally introduce:
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• The quantum joint entropy of ρAB,

S(A,B) := S(ρAB) = −Tr (ρAB log ρAB) , (3.68)

which is the von Neumann entropy of the composite system;

• The quantum conditional entropy of A with respect to B,

S(A|B) = S(A,B)− S(B), (3.69)

which quantifies the uncertainty about the system A after gaining full information about
the system B;

• The quantum mutual information between A and B,

I(A : B) := S(A) + S(B)− S(A,B) ≡ S(A)− S(A|B), (3.70)

which quantifies the information gain onA after gaining full information about the system
B.

3.3.2 Fidelity and Trace Distance
Definition 3.20 (Fidelity [NC10]). The fidelity between two density operators ρ, σ ∈ S(H) is
defined as

F (ρ, σ) := Tr
√
ρ1/2σρ1/2. (3.71)

The fidelity satisfies the following properties, which are proven in [NC10]:

1. F (ρ, σ) = F (σ, ρ) for any ρ, σ ∈ S(H);

2. 0 ≤ F (ρ, σ) ≤ 1 for any ρ, σ ∈ S(H) and F (ρ, σ) = 1 if and only if ρ = σ;

3. F (Û ρ Û †, Û σ Û †) = F (ρ, σ) for any ρ, σ ∈ S(H) and unitary operator Û ;

4. F (
∑

i piρi, σ) ≥∑i pi F (ρi, σ) and F (ρ,
∑

i piσi) ≥
∑

i pi F (ρ, σi);

5. F (|ψ〉 〈ψ| , σ) =
√
〈ψ|σ|ψ〉 for any pure state |ψ〉 ∈ H and density σ ∈ S(H). In

particular, if σ = |φ〉 〈φ|, then F (|ψ〉 〈ψ| , |φ〉 〈φ|) = | 〈ψ|φ〉 |.
Although it is not a proper distance, the fidelity is frequently used in quantum information to
quantify the "closeness" of two quantum states.

Definition 3.21 (Trace distance [NC10]). The trace distance between two density operators
ρ, σ ∈ S(H) is defined as:

D(ρ, σ) :=
1

2
‖ρ− σ‖1, (3.72)

where ‖ · ‖1 is the trace norm of S(H), defined as:

‖τ‖1 := Tr
[√

τ † τ
]
, τ ∈ S(H). (3.73)

The trace distance is a proper distance for the set S(H) of density operators, i.e. it satisfies
the following requirements (see Def. 2.8) for any ρ, σ, τ ∈ S(H):
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1. D(ρ, σ) = D(σ, ρ);

2. 0 ≤ D(ρ, σ) ≤ 1 for all ρ, σ ∈ S(H), and D(ρ, σ) = 0 if and only if ρ = σ;

3. D(ρ, σ) ≤ D(ρ, τ) +D(τ, σ).

These properties are proven in [NC10] together with the following additional ones:

1. D(Û ρ Û †, Û σ Û †) = D(ρ, σ) for any ρ, σ ∈ S(H) and unitary operator Û ;

2. D(Λ[ρ],Λ[σ]) ≤ D(ρ, σ) for any ρ, σ ∈ S(H) and quantum channel Λ. We say that the
trace distance is a contractive distance;

3. D(
∑

i piρi, σ) ≤∑i piD(ρi, σ) and D(ρ,
∑

i piσi) ≤
∑

i piD(ρ, σi);

4. 1 − F (ρ, σ) ≤ D(ρ, σ) ≤
√

1− F (ρ, σ) for any ρ, σ ∈ S(H), where F (ρ, σ) is the
fidelity between ρ and σ. The upper-bound inequality is saturated when ρ and σ are pure
states.

3.3.3 Unclonable and Indistinguishable States
In this section, we introduce two important results of quantum information theory, which are

useful in the remainder of the thesis, especially in Chap. 5.

Theorem 3.22 (No-cloning Theorem [WZ82; Die82]). It is impossible to perfectly copy an
unknown pure quantum state |ψ〉, i.e. there does not exist a universal cloning operator Û :
H⊗H → H⊗H such that

Û |ψ〉 |α〉 = |ψ〉 |ψ〉 , (3.74)

for every |ψ〉 ∈ H and for some ancillary state |α〉 ∈ H.

Proof. The proof follows by contradiction. Suppose there exists the universal cloning operator
of Eq. (3.74). Then, for two pure states |ψ〉 and |φ〉, it holds:

Û(|ψ〉 ⊗ |α〉) = |ψ〉 ⊗ |ψ〉 , (3.75)

Û(|φ〉 ⊗ |α〉) = |φ〉 ⊗ |φ〉 . (3.76)

We consider the inner product of the elements at the left-hand side of Eqs. (3.75) and (3.76),
and equate it to the inner product of the elements at the right-hand side, i.e.

(〈α| ⊗ 〈ψ|) Û †Û (|φ〉 ⊗ |α〉) = 〈ψ|φ〉 〈ψ|φ〉 ;
〈α|α〉 〈ψ|φ〉 =(〈ψ|φ〉)2;

〈ψ|φ〉 =(〈ψ|φ〉)2.
(3.77)

The only solutions for this equation are 〈ψ|φ〉 = 0, 1, so either |ψ〉 = |φ〉 or |ψ〉 and |φ〉 are
orthogonal. Therefore a general quantum cloning device, that works for all quantum states, is
impossible.

We emphasise that the no-cloning theorem forbid perfect cloning of an unknown quantum
state. Imperfect cloning is always possible, and in certain cases, the cloned states achieve a
high fidelity with the original ones [BH96].
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Theorem 3.23 (Indistinguishability of non-orthogonal states [NC10]). Any attempt to distin-
guish between two non-orthogonal states |ψ〉 and |φ〉 introduces disturbance to at least one of
them.

Proof. Let us consider a generic quantum channel Λ, acting on two non-orthogonal states |ψ〉
and |φ〉. By using the Stinespring’s dilation of Λ (see Theorem 3.14), we write:

Û(|ψ〉 ⊗ |e〉) = |ψ′〉 ⊗ |vψ〉 , (3.78)

Û(|φ〉 ⊗ |e〉) = |φ′〉 ⊗ |vφ〉 , (3.79)

where Û is a unitary operator acting on a larger Hilbert space and |e〉 is an environmental ancilla
state.

To perfectly distinguish |ψ〉 and |φ〉, Û would have to satify |ψ′〉 = |ψ〉, |φ′〉 = |φ〉 and
|vψ〉 6= |vφ〉.

However, by considering the inner product of the elements at the left-hand side of Eqs. (3.78)
and (3.79), and equating it to the inner product of the elements at the right-hand side, we obtain
the equation:

(〈e| ⊗ 〈ψ|) Û †Û (|φ〉 ⊗ |e〉) = 〈ψ′|φ′〉 〈vψ|vφ〉 ;
〈ψ|φ〉 = 〈ψ′|φ′〉 〈vψ|vφ〉 .

(3.80)

Therefore we can distinguish between |ψ〉 and |φ〉 (|vψ〉 6= |vφ〉) if and only if we introduce
disturbance to at least one of the states (|ψ′〉 6= |ψ〉 or |φ′〉 6= |φ〉).
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Quantum Information

with Continuous Variables

Continuous-variable (CV) systems are characterised by degrees of freedom with a continuous
spectrum, such as the position and momentum of a particle (canonical conjugated coordinates).
They are frequently encountered in quantum optics, which is the branch of quantum physics
devoted to the study of light photons, and in continuous-variable quantum information theory,
where the continuous-variable quantum optical states are used to encode and transmit informa-
tion. Quantum states of CV systems are described by density operators in infinite-dimensional
Hilbert spaces but admit alternative representations in the real phase spaces of their conjugate
coordinates. The most important family of CV quantum states is that of Gaussian states, which
are represented in the phase space by Gaussian functions.

In this chapter, we introduce the main concepts of CV quantum information theory. We start
by introducing the quantum states of the electromagnetic field and the phase space represen-
tations (characteristic functions and quasi-probability distributions). After that, we focus on
Gaussian states and study their dynamics in terms of Gaussian operations. We do not discuss
here the topic of continuous-variable entanglement, since it will be treated in Chap. 6. The
content of this chapter is mostly inspired from [WM07; Oli12; Wee+12; ARL14; Ser17], and
we refer to these works for more technical details.

4.1 Quantum Light
This section is devoted to introduce the second quantisation of the electromagnetic field and

review the different representations for the quantum states of light.

4.1.1 Second Quantisation of the Electromagnetic Field
Let A(x, t) be the classical vector potential, with x and t being the position vector and the

time, respectively. In absence of charges and currents, and by requiring the Coulumb gauge

39
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∇ ·A(r, t) = 0,A obeys the wave equation,

∇2A(x, t) =
1

c2
∂2A

∂t2
, (4.1)

where c is the speed of light. The solution of this equation in a finite volume V reads [WM07]:

A(x, t) =
∑

k

(
~

2ωk ε0

)1/2 [
ak uk(x) e−iωk t − a∗k u∗k(x) eiωk t

]
, (4.2)

where ~ is the reduced Planck’s constant, ε0 is the vacuum electric permittivity, ak ∈ C, ωk ∈ R,
and the vector functions {uk(x)} satisfy

∫

V

u∗k(x) · uk′(x) dx = δkk′ . (4.3)

The explicit form of uk(x) depends on the boundary conditions used in the solution of Eq.
(4.1). If we consider a cubical volume of side L, with periodic boundary conditions, uk(x)
reads:

uk(x) = L−3/2 eik·x eλ, (4.4)

where k = (2π n1/L, 2π n2/L, 2πn3/L) is the propagation vector (n1, n2, n3 = 0,±1, . . . )
and eλ is the unit polarisation vector (λ = 1, 2), with k · eλ = 0. Hence, the index k describes
the four indices n1, n2, n3, λ.

The decomposition in Eq. (4.2) is called the normal mode decomposition of the electromag-
netic field, and the elements of the sum are called the normal modes of the electromagnetic
field. Morever, the functions {u∗k(x)} are called the normal mode functions and the constant ωk
are the mode frequencies.

Using the mode decomposition of A(x, t), the electromagnetic energy E can be written as
[GAF10]:

E =
ε0
2

∫ (∣∣∣∣
∂A

∂t

∣∣∣∣
2

+ c2 |∇ ×A|2
)
dx

=
∑

k

~
2

(a∗k ak + ak a
∗
k).

(4.5)

Theorem 4.1 (Second Quantisation of the electromagnetic field [WM07; GAF10]). The elec-
tromagnetic field is quantised by replacing the complex numbers ak, a∗k with mutually adjoint
operators âk, â

†
k that satisfy the bosonic commutation relations

[
âk, âk′

]
=
[
â†k, â

†
k′

]
= 0,

[
âk, â

†
k′

]
= δkk′ . (4.6)

The energy of the electromagnetic field (see Eq. (4.5)) becomes the Hamiltonian operator

Ĥ =
∑

k

~ωk
(
â†kâk +

1

2

)
. (4.7)

This Hamiltonian is formally identical to the Hamiltonian of an ensemble of independent quan-
tum harmonic oscillators [Sha12], each one with frequency ωk.
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Definition 4.2. Let {âk, â†k} be a set of mode operators. For each mode k, we define the corre-
sponding quadrature operators, q̂k and p̂k, as:

q̂k :=
âk + â†k√

2
, p̂k :=

âk − â†k
i
√

2
. (4.8)

They obey the following commutation relations, which are a consequence of the CCRs of Eq.
(4.6):

[q̂j, q̂k] = [p̂j, p̂k] = 0, [q̂j, p̂k] = i δjk. (4.9)

The commutation relations of Eq. (4.9) are formally identical to the canonical commutation
relations (see Eq. (2.105)) for the position and momentum operators. Hence, the quadrature
operators satisfy all the mathematical properties of the canonical conjugate operators.

Each mode is associated with an infinite-dimensional Hilbert space Hk and the total system
is described by a tensor product of single-mode Hilbert spaces,

H =
⊗

k

Hk. (4.10)

Although in teory the number of modes cannot be bounded, in practice the experimental acces-
sible modes are finite. We thus consider, in the following, a finite number of modes, indicated
by M . We then group the quadrature operators in a vector r̂ := (q̂1, p̂1, q̂2, p̂2, . . . , q̂M , p̂M)T .
This allows us to rewrite the commutation relations of Eq. 4.9 as

[r̂j, r̂k] = i Ωjk, (j, k = 1, . . . , 2M), (4.11)

where Ωjk are the elements of the matrix Ω:

Ω =
M⊕

i=1

(
0 1
−1 0

)
, (4.12)

which is called the symplectic form.
We have seen that the parameterisation of the modes is determined by the boundary condi-

tions in Eq. (4.1), i.e. by the physical conditions of the system (for instance the presence of
mirrors or waveguides). We have mentioned that, for a cubical volume with period boundary
conditions (see Eq. (4.4)), the index k parameterises four indices, n1, n2, n3 and λ. One could
choose a different parameterisation, like one with two indeces n and λ. In that case, we need to
substitute the mode operators âk and â†k with ân;λ and â†n;λ, and the commutation relation of Eq.
(4.6) with

[
ân;λ, âm;λ′

]
=
[
â†n;λ, â

†
m;λ′

]
= 0,

[
ân;λ, â

†
m;λ′

]
= δnmδλλ′ . (4.13)

In the following, unless otherwise specified (see Sec. 7.4), we consider only a single index.

4.1.2 Fock Basis
Let us first consider a single mode, with mode operators â and â†, and define N̂ := â†â. The

mode operators are not Hermitian (â 6= â†) because of the CCRs (see Eq. (4.6)). However,
the operator N̂ is Hermitian and positive semidefinite, being the product of an operator with its
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adjoint (see Theorem 2.34). Therefore, it admits an orthogonal set of eigenstates belonging to
non-negative eigenvalues. Moreover, for any eigenstate |n〉 with eigenvalue n, we see that â |n〉
and â† |n〉 are also eigenstates of N̂ with eigenvalues n− 1 and n+ 1, respectively:

â†â (â |n〉) =
(
ââ† − 1

)
â |n〉 = (n− 1)â |n〉 . (4.14)

â†â
(
â† |n〉

)
= â†

(
ââ† + 1

)
|n〉 = (n+ 1)â† |n〉 . (4.15)

The eigenvalues of N̂ cannot be negative, therefore it must exists a state |0〉, referred ad vacuum
or ground state, such that â |0〉 = 0.

Definition 4.3 (Fock states). The eigenstates of N̂ = â†â are called the Fock (number) states
and are denoted by {|n〉}. The Fock states are obtained by repeatedly applying â† to the vacuum
state |0〉 (see Eq. (4.15)), i.e.

|n〉 :=
(a†)n√
n!
|0〉 . (4.16)

Therefore the eigenvalues of N̂ are the natural number n ∈ N0.

The operators â and â† act on the Fock states as

â |n〉 =
√
n |n− 1〉 , and â† |n〉 =

√
n+ 1 |n+ 1〉 . (4.17)

Let us now consider a multimode system. By using the rules for the commutator of prod-
ucts of functions (see Def. 2.23), we can prove that any two operators N̂j and N̂k commute.
Hence, N̂k also commutes with the M -mode Hamiltonian Ĥ =

∑M
k=1 ~ω (N̂k + 1/2). The

eigenstates of Ĥ are therefore tensor products of the Fock states |nk〉 over all the M modes, i.e.
|n1, n2, . . . , nM〉 := |n1〉 |n2〉 . . . |nM〉, and the eigenvalues read:

Ĥ |n1, n2, . . . , nM〉 =
∑

k

(
nk +

1

2

)
~ωk |n1, n2, . . . , nM〉 . (4.18)

The ground state of the Hamiltonian, |0〉 = |01, 02, . . . , 0M〉 is associated with the minimal
vacuum energy EV =

∑M
k=1

1
2
~ωk. The energy of a Fock state |n1, n2, . . . , nM〉 thus reads:

En1,n2,...,nM = EV +
∑

k

nk ~ωk. (4.19)

Therefore, for each mode k the state |nk〉 describe a system of nk particles, called photons, each
of energy ~ωk. The ground state is called vacuum because it contains no particles. The operator
âk acts on |nk〉 by removing a photon, and is thus called the annihilation operator for the mode
k. Analogously, â†k is called the creation operator for the mode k because it adds a photon.
Finally, the operator N̂k is the observable associated with the occupation number in mode k and
N̂ =

∑
k N̂k is associated with the total number of photons.

4.1.3 Coherent Basis
Definition 4.4. Let H be a single-mode Hilbert space, with mode operators â and â†. The
displacement, or Weyl, operator D̂(α) is the operator onH defined as

D̂(α) := exp[α â† − α∗ â], (4.20)
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for α ∈ C. The displacement operator is unitary and satifies:

D̂−1(α) = D̂†(α) = D̂(−α). (4.21)

By using the Hadamard’s lemma [WM07],

eÂ B̂ e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] + . . . (4.22)

we can write

D̂†(α) â D̂(α) = â+ α, and D̂†(α) â† D̂(α) = â† + α∗. (4.23)

As a consequence of Eqs. (4.21) and (4.23), one finds that the state |α〉 := D̂(α) |0〉 is an
eigenstate of the annihilation operator â belonging to the the eigenvalue α ∈ C:

âD̂(α) |0〉 = D̂(α)D̂†(α) âD̂(α) |0〉 = D̂(α)(â+ α) |0〉 = αD̂(α) |0〉 . (4.24)

The states |α〉 := D̂(α) |0〉 for α ∈ C are called coherent states. Their expansion in terms of
the number states |n〉 reads:

|α〉 = e−|α|
2/2
∑

n

αn√
n!
|n〉 , (4.25)

A proof of Eq. (4.25) is given in [Ser17]. The number of photons in a coherent state is therefore
not fixed. The photon number distribution in a coherent state |α〉, denoted by pα(n) is a Poisson
distribution,

pα(n) = | 〈n|α〉 |2 =
|α|2n e−|α|2

n!
, (4.26)

with mean photon number
n̄ := 〈α|â†â|α〉 = |α|2. (4.27)

From the Baker-Campbell-Hausdorff formula (see Eq. (2.31)), it follows that the coherent states
are not orthogonal:

〈β|α〉 = 〈0|D̂†(β)D̂(α)|0〉 = exp

[
−1

2
(|α|2 + |β|2) + αβ∗

]
, (4.28)

This result, together with Eq. (4.25), implies that the coherent states form a overcomplete
system, i.e. a system that is complete and remains complete after removal of any one element
[GAF10]:

1

π

∫

R2

d2α |α〉 〈α| =
∑

n

|n〉 〈n| = Î , (4.29)

with d2α = dRe[α] d Im[α]. A remarkable property of coherent states is that they are minimum
uncertainty states. The Heisenberg uncertainty relation (see Theorem 3.1) for the quadratures
operators q̂ and p̂ reads:

∆(q̂) ∆(p̂) ≥ |Tr(ρ [q̂, p̂])|
2

=
1

2
, (4.30)
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where ∆(q̂) and ∆(p̂) are the standard deviations (see Eq. (3.12)) of q̂ and p̂, respectively. For
a coherent state α, it holds [WM07]:

∆α(q̂) =

√
1

2
, and ∆α(p̂) =

√
1

2
. (4.31)

Hence, ∆α(q̂) ∆α(p̂) = 1/2, with ∆α(q̂) = ∆α(p̂).
Let q and p denote the eigenvalues of q̂ and p̂, respectively. The relation between â, q̂ and p̂,

â = (q̂ + ip̂)/
√

2 (see Eq. (4.8)) translates into an analougous relation for their eigenvalues:

α =
q + i p√

2
. (4.32)

Defining the vector of eigenvalues of q̂ and p̂, r := (q, p)T (not to be confused with the vector
of operators r̂ = (q̂, p̂)T ), the displacement operator (see Eq. (4.20)) can be rewritten as:

D̂(α) = D̂(r) = e−i(qp̂−pq̂) = e−ir
T Ωr̂, (4.33)

where Ω is the symplectic form (see Eq. (4.12)). The form in Eq. (4.33) is sometimes referred
to as the real displacement operator, in contrast to the complex displacement operator of Eq.
(4.20).

We conclude this subsection by considering the multimode case. The composite Hilbert space
is a tensor product of single-mode Hilbert spaces (see Eq. (4.10)), and the mode operators for
different modes j and k, commute (see Eq. (4.6)). Hence, the M -mode displacement operator
is defined as a tensor product of single-mode displacement operators, i.e.

D̂(α1, . . . αM) := exp

[
M∑

j=1

(αj â
†
j − α∗j âj)

]
=

M⊗

k=1

D̂k(αk) , (4.34)

and the M -mode coherent states are defined as tensor products of single-mode coherent states,
i.e.

|α1, . . . , αM〉 := |α1〉 |α2〉 . . . |αM〉 . (4.35)

The real displacement operator is still defined as in Eq. (4.33), by writing r and r̂ as vec-
tors of the 2M eigenvalues and operators, i.e. r := (q1, p1, q2, p2, . . . , qM , pM)T and r̂ :=
(q̂1, p̂1, q̂2, p̂2, . . . , q̂M , p̂M)T .

4.1.4 Phase Space Representations
The study of infinite-dimensional Hilbert spaces can be highly difficult. We shall see, in

this subsection, that an M -mode quantum system admits simpler representations in the 2M -
dimensional phase space, which is the real space of the eigenvalues ri of the quadrature opera-
tors r̂i (i = 1, 2, . . . 2M ).

Theorem 4.5 (Fourier-Weyl transform). Let D̂(α) and D̂(r), with α = (α1, α2, . . . , αM)T and
r = (q1, p1, q2, p2 . . . , qM , pM)T , be the complex and real displacement operators (see Eqs.
(4.20) and (4.33)) on a Hilbert space H =

⊗M
k=1 Hk, respectively. Any operator Â on H can

be expanded as:

Â =
1

πM

∫

R2M

d2αTr
[
D̂(α)Â

]
D̂(−α) =

1

(2π)M

∫

R2M

drTr
[
D̂(r)Â

]
D̂(−r), (4.36)
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where d2α = d2α1d
2α2 . . . d

2αM and dr = d q1, d p1, d q2, d p2, . . . , d qM , d pM . This expansion
is refered to as the Fourier-Weyl transform of Â.

A proof of this theorem is given in [Ser17].

Definition 4.6 (Characteristic function). Let D̂(α) and D̂(r), with α = (α1, α2, . . . , αM)T

and r = (q1, p1, q2, p2 . . . , qM , pM)T , be the complex and real displacement operators (see Eqs.
(4.20) and (4.33)) on a Hilbert space H =

⊗M
k=1 Hk, respectively. The characteristic function

of a density operator ρ is a function χ(α) = χ(r) that is defined as:

χ(α) := Tr[D̂(α) ρ] = Tr[D̂(r) ρ] =: χ(r), (4.37)

where D̂(α) and D̂(r) are the complex and real displacement operators (see Eqs. (4.20) and
(4.33)), respectively.

Therefore, the Fourier-Weyl transform (see Theorem 4.5) of ρ reads:

ρ =
1

πM

∫

R2M

d2αχ(α)D̂(−α) =
1

(2π)M

∫

R2M

dr χ(r)D̂(−r). (4.38)

Hence, both χ(α) and χ(r) provide full information about the state ρ. The conditions Tr[ρ] = 1
and ρ = ρ† translate into [Ser17]:

χ(0) = 1, and χ(α) = χ∗(−α) = χ(−r) = χ(r). (4.39)

Definition 4.7 (s-ordered characteristic function). Let s ∈ {−1, 0, 1}. The s-ordered charac-
teristic function of a quantum state ρ is defined from the characteristic function by:

χs(α) := Tr[D̂(α) ρ] e
s
2
‖α‖2 . (4.40)

The functions χ1(α) and χ−1(α) are called normally and anti-normally ordered character-
istic functions, respectively. The function χ0(α), which is nothing but χ(α), may be referred
to as the symmetrically ordered characteristic function, but it is usually simply called the char-
acteristic function. These names are a consequence of the following theorem, whose proof is
given in [Ser17].

Theorem 4.8. Let 〈â†mj ânk〉±1 denote the expectation values of the product of m â†j and n âk,
where all the creation operators are on the left and all the annihilation operators are on the
right (normal ordering) or vice versa (anti-normal ordering). Let 〈â†mj ânk〉0 denote a sum of all
symmetric products ofm â†j and n âk in all possible orders (symmetric ordering). Then it holds:

〈â†mj ânk〉s =

(
∂

∂αj

)m (
− ∂

∂α∗k

)n
χs(α)

∣∣
α=0

. (4.41)

Definition 4.9 (s-ordered quasi-probability distributions). The s-ordered quasi-probability dis-
tribution of ρ is defined as the Fourier transform of the corresponding s-ordered characteristic
function (see Def.4.7):

Ws(α) =
1

π2M

∫

R2M

d2β χs(β) eα
T ·β∗−α† β. (4.42)
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They are called quasi-probability distributions because they are normalised to 1:
∫

R2M

d2αWs(α) = χs(0) = Trρ = 1, (4.43)

but they are not generally positive. Eq. 4.41 can be expressed in terms of the quasi-probabilities
as [Ser17]:

〈â†mj ânk〉s =

∫

R2M

d2αWs(α)α∗mj αnk . (4.44)

Let us now individually examine Ws(α) for s = 1, 0,−1. They were historically introduced
in different times for different purposes. Therefore, each one of them has its own name and
symbol.

Glauber-Sudarshan P function [Gla63; Sud63]: The normally ordered quasi-probability dis-
tribution is called the Glauber-Sudarshan P function and is indicated with P (α). It co-
incides with the expansion of ρ over the complete set of coherent states, i.e.

ρ =

∫

R2M

d2αP (α) |α1, α2, . . . , αM〉 〈α1, α2, . . . , αM | . (4.45)

This function can be negative and also highly singular. The non-positivity of the P func-
tion has been historically considered as a marker of non-classicality [Dod02].

Wigner function [Wig32]: The symmetrically ordered quasi-probability distribution is called
the Wigner function and is simply denoted by W (α). It can be negative, but it is always
regular. By substituting αk with (qk + i pk)/

√
2 in Eq. (4.42), we obtain W (r) = W (α),

which satisfies [Ser17]:

W (r) =

(
2

π

)M ∫

RM
dz e2ip

T ·z 〈q + z|ρ|q − z〉 , (4.46)

where |q ± z〉 = |q1 ± z1〉 |q2 ± z2〉 . . . |qM ± zM〉 and |qk ± zk〉 is the eigenstate of q̂k
with eigenvalue qk ± zk ∈ R. Moreover, the Wigner functions allows us to calculate the
probability of measuring one of the quadratures [Ser17]:

1

22M−1

∫

R2M−1

dr1 . . . drk−1drk+1 . . . drM W (r) = 〈rk|ρ|rk〉 , (4.47)

where |rk〉 is the eigenstate of r̂k (which represents either q̂k or p̂k depending from k) with
the eigenvalue being the k-th component of r.

Husimi Q function [Hus40]: The anti-normally ordered quasi-probability distribution is called
Husimi Q function and is denoted by Q(α). It can be written as

Q(α) =
1

πM
〈α1, α2, . . . , αM |ρ|α1, α2, . . . , αM〉 . (4.48)

Differently from the other two distributions, theQ function is always positive and regular.
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4.2 Gaussian States

Definition 4.10 (Gaussian states [Ser17]). A Gaussian state ρG is a quantum state whose char-
acteristic function χG(r) is Gaussian, i.e.

χG(r) = exp

[
−1

4
rT ΩT V Ω r + i dT Ωr

]
. (4.49)

Here, d is the real vector of first moments of r in the state ρG and is called the displacement
vector of ρG. The k-th component of d, denoted by dk, reads:

dk := 〈r̂k〉 = Tr [r̂k ρ], (4.50)

The matrix V is the real, symmetric and positive-definite matrix of second moments of of r in
the state ρG and is called the covariance matrix of ρG. The (j, k)-th entry of V , denoted by Vjk,
reads:

Vjk := 〈r̂j r̂k + r̂k r̂j〉 − 2 dj dk. (4.51)

The displacement vector and covariance matrix are defined for all CV quantum states and
are always obtainable from the characteristic function by using Eq. (4.41) and writing âk =
(q̂k + ip̂k)/

√
2. We are going to see, in the following, that there are notable properties that only

depend on these two moments for all CV quantum states. However Gaussian states are the only
states to be fully characterised by their displacement vector and covariance matrix. From Eqs.
(4.49) and (4.42), it follows that the Wigner’s function of a Gaussian state ρG reads [ARL14]:

WG(r) =

(
2

π

)M
1√

detV
e−(r−d)

T V −1 (r−d). (4.52)

Pure Gaussian states are the only pure states with positive Wigner function [Hud74; LB95].

Theorem 4.11 (Robertson-Schrödinger uncertainty relation [SMD94]). The covariance matrix
(see Eq. (4.51)) V of any CV quantum state ρ must satisfy

V + iΩ ≥ 0, (4.53)

where Ω is the symplectic form (see Eq. (4.12)). For Gaussian states, this condition is also
sufficient [SMD94]. Namely, for any 2M × 2M real, symmetric and positive definite matrix V
that satisfies Eq. (4.53), there exist M -mode Gaussian states whose covariance matrix is V .

In phase space. the tensor products are replaced by direct sums.

Theorem 4.12 (Composition of Gaussian states). Let ρA and ρB be Gaussian states with dis-
placement vectors (covariance matrices) dA and dB (VA and VB), respectively. Then the dis-
placement vector dAB and covariance matrix VAB of the bipartite state ρAB = ρA ⊗ ρB read:

dAB = dA ⊕ dB =

(
dA
dB

)
, VAB = VA ⊕ VB =

(
VA 0
0 VB

)
. (4.54)
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Theorem 4.13 (Partial trace of Gaussian states). Let

dAB =

(
dA
dB

)
, VAB =

(
VA ∆AB

∆T
AB VB

)
, (4.55)

be the displacement vector and covariance matrix of a bipartite quantum state ρAB, respec-
tively. Here dAB and VAB are given in block form, with dA,dB being 2-dimensional vectors,
and VA,VB,∆AB being 2×2 real matrices such that VAB is symmetric and satisfies Eq. (4.53).
Then, dA and VA are the displacement vector and covariance matrix of ρA = TrB[ρAB], re-
spectively. Analogously, dB and VB are the displacement vector and covariance matrix of
ρB = TrB[ρAB], respectively.

Theorems 4.12 and 4.13 are proven in [Ser17], and follows from the definition of Gaussian
characteristic functions (see Eq. (4.49)) and the Fourier-Weyl transform (see Eq. (4.36)). The
theorems also hold for any number of modes. An M mode quantum state is a tensor product
of single-mode states, therefore we can write the 2M -dimensional displacement vector and the
2M × 2M covariance matrix of any M -mode Gaussian state as:

d =




d1

d2
...
dM


 , V =




V1 ∆12 . . . ∆1M

∆T
12 V2 . . . ∆2M
...

... . . . ...
∆T

1M ∆T
2M . . . VM


 , (4.56)

where dm are 2-dimensional vectors, andVm and ∆mm′ are 2×2 real matrices. In particular, dm
(Vm) corresponds to the displacement vector (the covariance matrix) of the reduced state ρm =
Trm\m [ ρ ] after tracing out all modes but the m-th, while ∆mm′ is related to the correlations
between the modesm andm′. Using Eq. (4.56), we can derive a formula for the average photon
number in an M -mode Gaussian state,

〈N̂〉 =
n∑

k=1

〈N̂k〉 =
M∑

k=1

1

4
(Tr[Vk] + 2|dk|2 − 2), (4.57)

where 〈N̂k〉 is the average occupation number of the k-th mode. This expression can be obtained
by writing Tr[Vk] in terms of Eq. (4.51) and the mode operators âk and â†k,

Tr[Vk] = 2 〈q̂2k〉+ 2 〈p̂2k〉 − 2 〈q̂k〉2 − 2 〈p̂k〉2 = 〈(âk + â†k)
2〉 − 〈(âk − â†k)2〉 − 2|dk|2

= 2 + 4 〈â†kâk〉 − 2|dk|2,
(4.58)

and then setting 〈N̂〉 =
∑M

k=1 〈â†kâk〉. Note that this formula holds regardless of the presence
of off-diagonal terms in the covariance matrix. Moreover, Eq. (4.57) remains valid for non-
Gaussian states but in this case Vk and dk are not a reduced covariance matrix and displacement
vector.

Theorem 4.14 (Williamson’s theorem [Wil36]). Any covariance matrix V (see Eq. (4.51))
admits a decomposition:

V = ST DS, (4.59)

where S is a symplectic matrix, i.e. a real matrix that satisfies

ST ΩS = Ω, (4.60)
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with Ω being the symplectic form (see Eq. (4.12)), andD being a diagonal matrix,

D = diag [ν1, ν1, . . . , νM , νM ] . (4.61)

which is called the normal form of V . The variables νk ≥ 1 are called the symplectic eigenval-
ues of V .

There are notable properties that, for Gaussian states, only depend on the symplectic eigen-
values.

Theorem 4.15 (Uncertainty of a Gaussian state [Wee+12]). For an M -mode Gaussian state ρG
with covariance matrix V and symplectic eigenvalues {νk} (k = 1, 2, . . . ,M ), the Robertson-
Schrödinger uncertainty relation (see Eq. (4.53)) can be restated as the following two condi-
tions:

V ≥ 0, and νk ≥ 1 ∀ k. (4.62)

Theorem 4.16 (Purity of a Gaussian state [Ser17]). The purity (see Def. 3.7) Tr[ρ2G] of an
M -mode Gaussian state ρG with covariance matrix V and symplectic eigenvalues {νk} (k =
1, 2, . . . ,M ) reads:

Tr[ρ2G] =
1√

det V
=

1

ν1 ν2 . . . νM
. (4.63)

Pure states satisfy Tr[ρ2G] = 1, i.e. det V = 1 and νk = 1 for all k. Hence, pure Gaussian
states saturate the Robertson-Schrödinger uncertainty relation (4.62).

Theorem 4.17 (Entropy of a Gaussian state [HSH99]). The von Neumann entropy (see Def.
3.17) of an M -mode Gaussian state ρG with symplectic eigenvalues {νk} (k = 1, 2, . . . ,M )
reads:

S(ρG) =
M∑

k=1

(
νk + 1

2
log

νk + 1

2
− νk − 1

2
log

νk − 1

2

)
. (4.64)

A feature of Gaussian states is that they attain the maximum von-Neumann entropy among
all CV states having the same displacement vector and covariance matrix [HSH99].

4.2.1 Notable Gaussian States
Gaussian states are of paramount importance in quantum optics and continuous-variable

quantum information. In this subsection, we review some relevant families of Gaussian states
and one family of non-Gaussian states.

Fock States

We denote by W|n〉(q, p) the Wigner function of a generic single-mode Fock state |n〉 (see
Sec. 4.1.2), which reads [Gro46]:

W|n〉(q, p) = (−1)n
2

π
e−(q

2+p2) Ln
(
2(q2 + p2)

)
, (4.65)

where Ln(·) denotes the n-th Laguerre polynomial:

Ln(x) :=
1

n!

(
d

dx
− 1

)n
xn. (4.66)
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For n > 0 the Laguerre polynomials are not Gaussian, therefore almost all Fock states |n〉 are
not Gaussian. However, for n = 0, L0(x) = 1 and the Wigner function becomes:

W|0〉(q, p) =
2

π
e−q

2−p2 . (4.67)

Hence, the vacuum state is Gaussian. Its displacement vector and covariance matrix can be
easily calculated by using Eqs. (4.50) and (4.51), respectively:

d|0〉 = 0, V|0〉 = I, (4.68)

where I is the 2 × 2 identity matrix. The displacement vector and covariance matrix of the
M -mode vacuum state, |01, 02, . . . , 0M〉, then result by direct summing (see Theorem 4.12) the
single-mode displacement vector and covariance matrix of Eq. (4.68).

Coherent States

We denote by W|α0〉(q, p) the Wigner function of a generic single-mode coherent state |α0〉,
with α0 = (q0 + ip0)/

√
2 (see Sec. 4.1.3). This function reads [WM07]:

W|α0〉(q, p) =
2

π
exp

[
−(q − q0)2 − (p− p0)2

]
. (4.69)

Hence, coherent states are Gaussian. The displacement vector and covariance matrix of a co-
herent state |α0〉 can be calculated by using Eqs. (4.50) and (4.51), respectively:

d|α0〉 =

(√
2 Reα0√
2 Imα0

)
, V|α0〉 = I. (4.70)

We have seen in Sec. 4.1.3 that the coherent states are minimum uncertainty states with equal
standard deviation (thus variance) between the quadratures. The covariance matrix of all coher-
ent states being equal to the identity is a restatement of that.

For an M -mode coherent state |α1, α2, . . . , αM〉, the displacement vector and covariance
matrix result by direct summing (see Theorem 4.12) the single-mode displacement vectors and
covariance matrices of Eq. (4.70).

Squeezed States

Definition 4.18 (Single-mode squeezing operator). Let ξ = r e2iφ, with r, φ ∈ R. The single-
mode squeezing operator is defined as:

Ẑ(ξ) = exp

[
1

2
(ξ∗â2 − ξâ†2)

]
, (4.71)

where â and â† are the mode operators of the system. The parameter r = |ξ| is called the
squeezing parameter (or squeezing factor).

For simplicity of notation, in the following φ = 0 and thus ξ = r. The squeezing operator is
unitary and satifies:

Ẑ†(r) = Ẑ−1(r) = Ẑ(−r). (4.72)
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Using the Hadamard’s lemma (see Eq. (4.22)), it follows that the action of a squeezing operator
on the mode operators â and â† reads

Ẑ†(r)âẐ(r) = â cosh r − â† sinh r, Ẑ†(r)â†Ẑ(r) = â† cosh r − â sinh r. (4.73)

The squeezing operator acting on the vacuum state generates a squeezed (vacuum) state:

|r〉 := Ẑ(r) |0〉 . (4.74)

A squeezed vacuum state |r〉 is Gaussian because its Wigner function [WM07] is a Gaussian
function:

W|r〉(q, p) =
2

π
exp

[
−(q e−r)2 − (p er)2

]
, (4.75)

Its displacement vector and covariance matrix can be calculated by using Eqs. (4.50) and (4.51),
respectively:

d|r〉 = 0, V|r〉 =

(
e2r 0
0 e−2r

)
. (4.76)

We see that e2re−2r = 1, i.e. the squeezed vacuum states are minimum uncertainty states
with different variances for q̂ and p̂.

Definition 4.19 (Two-mode squeezing operator). Let ξ = r e2iφ, with r, φ ∈ R. The two-mode
squeezing operator is defined as

ẐAB(ξ) = exp

[
1

2
(ξ∗âAâB − ξâ†Aâ

†
B)

]
, (4.77)

where âA, â
†
A and âB, â

†
B are the mode operators for the first and second mode, labelled by A

and B, respectively.

Again, let ξ = r. When applied to the two-mode vacuum state, the operator ẐAB(r) generates
the two-mode squeezed vacuum state (TMSVS):

|rAB〉 = ẐAB(r) |0A〉 |0B〉 , (4.78)

with Gaussian Wigner function [BL05]:

W|rAB〉(r) =
4

π2
exp

(
−e
−2r

2
[(qA + qB)2 + (pA − pB)2]− e2r

2
[(qA − qB)2 + (pA + pB)2]

)
,

(4.79)
with r = (qA, pA, qB, pB)T . Its displacement vector and covariance matrix can be calculated by
using Eqs. (4.50) and (4.51), respectively:

d|rAB〉 = 0, V|rAB〉 =




cosh(2r) 0 sinh(2r) 0
0 cosh(2r) 0 − sinh(2r)

sinh(2r) 0 cosh(2r) 0
0 − sinh(2r) 0 cosh(2r)


 . (4.80)

We shall see in Chap. 6 that the two-mode squeezed vacuum state is the Gaussian counterpart
to the finite dimensional maximally entangled state (see Def. 3.4).
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Thermal states

Theorem 4.20 (Thermal equilibrium [Bin+19]). A quantum system with Hamiltonian Ĥ at
thermal equilibrium at the temperature T is described by a quantum state τβ(Ĥ) in the form:

τβ(Ĥ) =
e−βĤ

Tr
[
e−βĤ

] , (4.81)

where β = 1/κT , with κ being the Boltzmann constant. The state τβ(Ĥ) is called the thermal
(Gibbs) state of the system and maximise the von Neumann entropy (see Def. 3.17) S(ρ) under
the constraint of fixed average energy E = Tr[ρĤ].

Let us consider a single-mode CV state with Hamiltonian Ĥ = ~ω(â†â+ 1/2). This Hamil-
tonian admits a spectral decomposition (see Eq. (2.80)) on the Fock basis, which is the basis of
eigenstates of Ĥ i.e. Ĥ = ~ω

∑
n (n+ 1/2) |n〉 〈n|. Hence, Eq. (4.81) reads for this system:

τβ(Ĥ) =
e−β~ω

∑
n (n+1/2)|n〉〈n|

Tr
[
e−β~ω

∑
n (n+1/2)|n〉〈n|] =

∑

n

1

(1 + n̄)

(
n̄

1 + n̄

)n
|n〉 〈n| , (4.82)

where
n̄ =

1

exp
( ~ω
κT

)
− 1

, (4.83)

is the average photon number for the Bose-Einstein statistics [Bos24]. The Gibbs state in Eq.
(4.82), which we denote from now on by τ(n̄), is Gaussian since its Wigner function reads:
[BL05]:

Wτ (q, p) =
2

π(2n̄+ 1)
exp

[
−(q2 + p2)

2n̄+ 1

]
, (4.84)

and is therefore called the Gaussian thermal state. The displacement vector and covariance
matrix of a Gaussian thermal state τ(n̄) read:

dτ = 0, Vτ = (2n̄+ 1)I. (4.85)

We note that the covariance matrix of τ(n̄) is in Williamson’s normal form (see Theorem 4.14),
with the symplectic eigenvalue being ν = (2n̄ + 1). From Eq. (4.64), we obtain that the von
Neumann entropy of τ(n̄) is

S(ρ) = (n̄+ 1) log(n̄+ 1)− n̄ log n̄. (4.86)

Because of Theorem 4.20, this is the maximum entropy that a Gaussian state ρ can have under
the constraint of fixed average energy E = ~ωn̄+ 1/2.

An M -mode thermal state is a tensor product of single-mode thermal states, i.e.

τM(n̄) :=
M⊗

k=1

τ(n̄k), (4.87)

where n̄ = (n̄1, n̄2, . . . , n̄M). This is a consequence of the M -mode Hamiltonian being a sum
of single-mode Hamiltonians (see Eq. (4.7)).
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4.3 Gaussian Unitaries
Let Û be a unitary operator generated by a Hamiltonian Ĥ (see Postulate 3). In the following,

for simplicity of notation, we set (t2−t1)
~ = 1 in Eq. (3.19) and write Û = exp(−iĤ).

Theorem 4.21 (Gaussian unitaries [Sch86]). Gaussian unitaries are unitary operators that pre-
serve the Gaussianity of any Gaussian state. They are generated by Hamiltonians (see Postulate
3) that are at most quadratic in the mode operators, i.e. ÛG = exp(−iĤQ) with

ĤQ :=
M∑

k=1

(
fkâ

†
k + f ∗k âk

)
+

M∑

k≥l=1

(
gklâ

†
kâl + g∗klâkâ

†
l

)
+

M∑

k,l=1

(
hklâ

†
kâ
†
l + h∗klâkâl

)
,

(4.88)

where fk, gk, hk ∈ C and M is the number of modes in the system. The zero-th order terms is
an unmeasurable global phase factor.

In the following, we are going, to individually analyse the terms in Eq. (4.88). Before
doing so, we consider that, in the Heisenberg picture (see Eq. (3.21)), a Gaussian unitary ÛG
transforms the Hamiltonian of an M -mode system (see Eq. (4.7)) as:

Ĥ → Û †G ĤÛG =
M∑

k=1

~ωk
[
(Û †G âkÛG)† (Û †G âkÛG) +

1

2

]
. (4.89)

Theorem 4.22 (Bogoliubov transformations [Bog58; Val58]). A Gaussian unitary ÛG, gener-
ated by a Hamiltonian ĤQ in the form of Eq. (4.88), transforms the mode operators in the
following way:

âk → b̂k := Û †G âk ÛG =
∑

j

(
ukj âj + vkj â

†
j

)
+ wk, (4.90)

where the coefficients ukj, vkj, wk ∈ C are called the Bogoliubov coefficients of the transfor-
mation ÛG and satify:

∑

j

(ukj vk′j − uk′j vkj) = 0,
∑

j

(
ukj u

∗
k′j − vkjv∗k′j

)
= δkk′ . (4.91)

A proof of the theorem is given in [ARL14]. Eq. (4.90) follows from the Hadamard lemma
(see Eq. (4.22)) and Eq. (4.91) follows from requiring the new mode operators b̂k and b̂†k to
satisfy the bosonic commutation relations (see Eq. (4.6)).

By writing âk = (q̂k + i p̂k)/
√

2, the Bogoliubov transformations of Eq. (4.90) induce an
affine transformation on the vector of quadrature operators r̂ = (q̂1, p̂1, q̂2, p̂2, . . . , q̂M , p̂M)T :

r̂ → Sr̂ + d̄, (4.92)

where d̄ ∈ R2M and S is a 2M × 2M real matrix. The conditions in Eq. (4.91) are equivalent
to require the matrix S to be symplectic (see Eq. (4.60)).

By using Eqs. (4.50) and (4.51), Eq. (4.92) is translated into an analogous equation for the
displacement vector and the covariance matrix:

d→ S d+ d̄;

V → ST V S.
(4.93)
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We now see the physical meaning of the Williamson’s theorem 4.14. According to Eq. (4.93),
anyM -mode Gaussian state ρG with displacement vector d and covariance matrixV is unitarily
equivalent to an M -mode thermal state τM (see Sec. 4.2.1) with zero displacement vector and
covariance matrix equal to D =

⊕M
k=1 νkI2, where I2 is the two-dimensional identity and νk

is the k-th symplectic eigenvalue. The unitary that transforms ρG into τM is associated with
d̄ = −d and S being the symplectic matrix that diagonalises V . Moreover, the symplectic
eigenvalues can be written as νk = 2n̄

(th)
k + 1, where n̄(th)

k is the number of thermal photons
given by Eq. (4.83).

4.3.1 Linear Displacements

Let us now consider the linear term ĤL :=
∑M

k=1

(
fkâ

†
k + f ∗k âk

)
in the Hamiltonian of

Eq. (4.7). If we define αk := −i fk and α := (α1, α2, . . . , αM)T , it is immediate to see that
D̂(α) := exp[−iĤL] is the multimode displacement operator defined in Eqs. (4.34) and (4.20).
Comparing Eqs. (4.23) and (4.90), we see that the Bogoliubov coefficients associated with
D̂(α) read:

ukj = 1 and vkj = 0, ∀k, j;
wk = αk.

(4.94)

Hence, D̂(α) transforms the quadrature operators (see (4.92)) according to the affine transfo-
mation (d̄LD,SLD), with

d̄LD =
√

2




Re(α1)
Im(α1)

...
Re(αM)
Im(αM)



, S = I2M , (4.95)

where I2M is the 2M × 2M identity matrix. Note that this result is consistent with the formula
for the displacement vector and covariance matrix of a coherent state |αk〉 = D̂k(αk) |0k〉 (see
Eq. (4.70)).

4.3.2 Phase Shifters and Beam Splitters

Let us now consider the first quadratic term ĤQ1 :=
∑M

k≥l=1

(
gklâ

†
kâl + g∗klâkâ

†
l

)
in the

Hamiltonian of Eq. (4.7). Depending on whether k = l or k > l, this term describe the action
of two distinct devices, of great importance in quantum optics: the phase shifter and the beam
splitter.

With k = l, the Hamiltonian generates the unitary operator

exp

[
−i

M∑

k=1

gkk â
†
kâk + g∗kl (â

†
kâk + 1)

]
=

M⊗

k=1

exp
(
−iθkâ

†
kâk

)
, (4.96)

where θk = 2Re[gkk] ∈ R and we eliminated the unsmeasurable phase factor e−i g∗kl . The unitary
R̂k(θk) := exp

(
−iθkâ

†
kâk

)
acts on the k-th mode operator operator as:

R̂†k(θk) âk R̂k(θk) = e−iθk âk, (4.97)
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and thus represents the action of a phase shifter. The Bogoliubov coefficients associated with
R̂k(θk) read:

ukj = e−iθkδkj;

vkj = wk = 0, ∀k, j. (4.98)

Hence, Ûk(θk) transforms the quadrature operators (see (4.92)) according to the affine transfo-
mation (d̄PS,SPS) with

d̄PS = 0, SPS =

(
cos θk sin θk
− sin θk cos θk

)
. (4.99)

The multimode case follows by direct summing the single-mode symplectic matrices SPS .
Let us now consider the case k > l. For simplicity, we restrict our attention to a system with

two modes, labelled by A and B. The Hamiltonian ĤQ1 generates the unitary operator

B̂AB(ε) := exp
[
εâ†AâB − ε∗âAâ†B

]
, (4.100)

where ε := −i gAB ∈ C. By defining ε = φ eiθ, the action of B̂AB(ε) on the mode operators âA
and âB reads:

B̂AB(ε)† âA B̂AB(ε) = cosφ âA + eiθ sinφ âB;

B̂AB(ε)† âB B̂AB(ε) = cosφ âB − e−iθ sinφ âA.
(4.101)

This unitary operator represents the evolution operator associated with the beam splitter. In
particular, when φ = π/4 and θ = 0, B̂AB(π/4) is said to be a balanced beam splitter, or 50:50
beam splitter.

Labelling by an index k the outputs modes and by j the input modes, the Bogoliubov coeffi-
cients associated with B̂AB(ε) read:

ukj = cosφδkj ± (eiθ sinφ)(1− δkj),
vkj = wk = 0, ∀k, j. (4.102)

Therefore, B̂AB(ε) transforms the quadrature operators (see (4.92)) according to the affine trans-
fomation (d̄BS,SBS), with

d̄BS = 0, SBS =

(
cosφI2 sinφSPS(θ)

− sinφSPS(θ) cosφI2

)
, (4.103)

where I2 is the 2 × 2 identity matrix and SPS(θ) is the symplectic matrix associated with a
phase shifter of angle θ (see Eq. (4.99)).

4.3.3 Squeezing Operators
We now focus on the second quadratic term of Eq. (4.7), i.e. ĤQ2 :=

∑M
k,l=1 (hklâ

†
kâ
†
l +

h∗klâkâl). This term also describes to two distinct processes, depending on whether k = l or
k 6= l.
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For k = l, the Hamiltonian generates the unitary operator

exp

[
−i

M∑

k=1

hkkâ
† 2
k + h∗kkâ

2
k

]
=

M⊗

k=1

Ẑk(ξk), (4.104)

which is the single-mode squeezing operator Ẑ(ξk) (see Eq. (4.71)), with ξk = −2ihkk. By
comparing Eqs. (4.73) and (4.90), and again considering ξk = rk ∈ R, we see that the Bogoli-
ubov coefficients associated with Ẑk(r) read:

ukj = cosh rk δkj; vkj = − sinh rk δkj;

wk = 0, ∀ k. (4.105)

Therefore, Ẑk(rk) acts on the quadrature operators q̂k, p̂k (see (4.92)) as an affine transformation
(d̄SMS,SSMS) with

d̄SMS = 0, SSMS =

(
er 0
0 e−r

)
. (4.106)

Let us now consider the case k > l. For simplicity, we restrict our attention to a system with
two modes, labelled by A and B. We can immediately see that Hamiltonian ĤQ2 generates a
two-mode squeezing operator (see Eq. (4.77)) ẐAB(ξ), with ξ = 2ihAB ∈ C.

By considering again ξ = r ∈ R, we can derive the action of ẐAB(r) on the quadrature
operators (see (4.92)) as an affine transformation ( ¯dTMS,STMS), with

d̄TMS = 0, STMS =




cosh r 0 sinh r 0
0 cosh r 0 − sinh r

sinh r 0 cosh r 0
0 − sinh r 0 cosh r


 . (4.107)

4.3.4 Passive and Active Gaussian Unitaries
We have seen that the most generalM -mode Gaussian unitary ÛG is associated with an affine

transformation (d̄,S) (see (4.93)). We write d̄ =
√

2(Re(α1), Im(α1), . . . ,Re(αM), Im(αM))T

for some αk ∈ C (k = 1, 2, . . . ,M ). Then, by considering Eq. (4.95), ÛG can be decomposed
as:

ÛG = D̂(α) ÛS, (4.108)

where D̂(α) is an M -mode displacement operator (see Eq. (4.20)), α = (α1, α2, . . . , αM) and
ÛS is a Gaussian unitary associated with (d̄ = 0,S).

For what we have seen in the previous subsections, we understand that ÛS is a combination
of phase shifters, beam splitters and squeezing operators. This intuition is formalised by the
following theorem.

Theorem 4.23 (Bloch-Messiah theorem [DMS+95]). Any 2M × 2M symplectic matrix can be
decomposed as:

S = O1

[
M⊕

k=1

SSMS(rk)

]
O2, (4.109)

where the 2M × 2M matricesO1 andO2 are symplectic and orthogonal, and the 2× 2 matrix
Z(rk) is a single-mode squeezing operator (see Eq. (4.71)) with real rk.
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We have seen that phase shifters and beam splitters are associated with symplectic orthogonal
matrices (see Eqs. (4.99) and (4.103), respectively). Any combination of them realises the
matricesO1 andO2, since the product of orthogonal matrices is orthogonal.

Definition 4.24. A passive unitary [Wee+12; Oli12] is a Gaussian unitary ÛO that is represented
in the phase space (Eq. (4.93)) by (d̄ = 0,O), where O is a symplectic orthogonal matrix.
Conversely, any Gaussian unitary that is not passive, is called active.

Passive Gaussian unitaries preserve the total average photon number (see Eq. (4.57)):

〈N̂〉 =
1

4
(Tr[OV OT ] + 2|Od|2 − 2M) =

1

4
(Tr[V ] + 2|d|2 − 2M), (4.110)

and thus the average energy E = 〈Ĥ〉, since Ĥ commutes with N̂ (see Eq. (4.7)). Passive
Gaussian unitaries are the only energy-preserving Gaussian unitaries [ARL14; Ser17].

Passive Gaussian unitaries induce a linear transformation of the mode operators (see Eqs.
(4.97) and (4.101)). For this reason, the experimental implementations of them are called linear
optical components in quantum optics [WM07]. They are quite commonly used devices in
quantum optics laboratories since they are inexpensively available and yet very useful in many
applications [GAF10]. In particular, they are used to create correlations between modes with
the same frequency [FT20].

We conclude this section by noting that, by combining the most general symplectic matrix
(Eq. (4.109)) with the Williamson’s theorem 4.14, the most general covariance matrix V can
be expressed as:

V = OT
2

[
M⊕

k=1

SSMS(rk)

]
OT

1

[
M⊕

k=1

νkI2

]
O1

[
M⊕

k=1

SSMS(rk)

]
O2. (4.111)

This expression holds regardless of whether V is the covariance matrix of a Gaussian state or
not. This follows from the Williamson’s theorem being valid for generic covariance matrices.

4.4 Gaussian Channels
We here extend to CV systems the notion of quantum channels (see Def. 3.12). In particular,

an M -mode Gaussian channel is defined as a completely positive trace-preserving (CPTP) map
ΛG that transforms an M -mode Gaussian state ρG into another M -mode Gaussian state ΛG[ρG]
[Wee+12]. The action of a Gaussian channel on a Gaussian state ρG is completely characterised
by a transformation on the first and second moments of ρG [HW01].

Theorem 4.25. An M -mode Gaussian channel ΛG transforms the displacement vector d and
covariance matrix V of a generic Gaussian state ρG in the following way:

d→ T d+ d̄,

V → T T V T +N ,
(4.112)

where d̄ is a 2M -dimensional vector, while T andN = NT are 2M × 2M real matrices, such
that

N − i (Ω− T T ΩT ) ≥ 0 . (4.113)

Conversely, any matrices T and N = NT that satisfy Eq. (4.113) correspond to a Gaussian
channel.
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The Gaussian unitaries are a particular case of Gaussian channels, with T being symplectic
andN = 0 (see Eq. (4.93)).

Let us consider the Stinespring’s dilation (see Theorem 3.14),

ΦG(ρ) = TrE

[
ÛM+ME

(ρ⊗ ρE) Û †M+ME

]
, (4.114)

where ρE is an environmental state of ME modes and ÛM+ME
is an (M +ME)-mode Gaussian

unitary acting on the system and the environment. ΛG is a Gaussian channel, because compos-
ing and partial tracing Gaussian states are Gaussian operations (see Theorems 4.12 and 4.13,
respectively). Remarkably, the converse statement holds (see [Ser17] for the proof): for any
M -mode quantum channel ΛG in the form of Theorem 4.25, a Stinespring’s dilation in the form
of Eq. (4.114) can be defined. Moreover, we can always choose ρE = |0E〉 〈0E| and ME ≤ 2M
[Car+08; Car+11].

4.5 Gaussian Measurements
Consider quantum measurements, as defined in Sec. 3.1.2. For CV systems, the measurement

outcomes usually form a continuous set, therefore the probability of observing an outcome m
(see Eq. (3.39)), pρ(m), becomes a probability density for m ∈ R. In this context, Gaussian
measurements are defined as such measurement operators that transform Gaussian states into
Gaussian states [ARL14]. They are associated with a Gaussian probability density pρG(m) for
any Gaussian state ρG [Wee+12].

Here we introduce the two most commonly used Gaussian measurements: the homodyne and
heterodyne detection. For simplicity, we will consider single-mode systems and measurements.

4.5.1 Homodyne Detection
Definition 4.26 (Homodyne detection). A homodyne detection is a projective measurement (see
Eq. (3.8)) onto the generalised quadrature operator:

x̂φ = cosφq̂ + sinφp̂, φ ∈ [0, π], (4.115)

which satisfies [x̂φ, x̂φ+π
2
] = 1 for all φ.

Denoting by |xφ〉 the improper eigenstates of x̂φ, the probability of measuring |xφ〉 (see Eq.
(3.9)) reads:

pρG(xφ) = 〈xφ|ρ|xφ〉 , (4.116)

where ρG is the state of the system. By comparing Eq. (4.116) with Eq. (4.47), we see that for
a fixed phase φ the measurement of x̂φ corresponds to the integral of the Wigner function of ρG,
i.e.

〈xφ|ρ|xφ〉 =
1

2

∫

R
dxφ+π

2
W (q, p). (4.117)

For q̂ (φ = 0) and p̂ (φ = π/2), Eq. (4.117) becomes:

pρG(q) =
1

2

∫

R
dpW (q, p), P (p) =

1

2

∫

R
dqW (q, p). (4.118)
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The word "homodyne" derives from the Greek roots homo- ("same"), and dyn- ("power"). In
quantum optics, a homodyne detection scheme is realised [BL05] by mixing in a beam splitter
the state of the system ρG with an ancillary signal, called the local oscillator, at same frequency
of ρG. The local oscillator is a coherent state |αLO〉, with αLO = |αLO| eiφ and |αLO| >> 1.
Because of its large photon number, |αLO〉 can be associated with a classical complex amplitude
αLO, rather than a mode operator âLO. Denoting by â the mode operator associated with ρG,
a balanced beam splitter mixes â and αLO, and generates two new mode operators (see Eq.
(4.103)):

â1 = (αLO + â)/
√

2, â2 = (αLO − â)/
√

2. (4.119)

The two mode operators are measured with two photodetectors, which are experimental de-
vices that convert the photons into an electric current (photocurrent), denoted by i. It can be
assumed [Pau95] that the photocurrent is proportional to the number of photons measured by
the photodetector, i.e. i = câ†â. Then the two modes of Eq. (4.119) generate the photocurrents:

i1 =
c

2
(α∗LO + â†)(αLO + â) =

c

2
(|αLO|2 + â†â+ α∗LOâ+ αLOâ

†);

i2 =
c

2
(α∗LO − â†)(αLO − â) =

c

2
(|αLO|2 + â†â− α∗LOâ− αLOâ†).

(4.120)

Therefore, the difference photocurrent δi := i1 − i2 reads:

δi = c(α∗LOâ+ αLOâ
†) = c|αLO| (e−iφâ+ eiφâ†) = c|αLO| x̂φ. (4.121)

Hence, by measuring the difference photocurrent one can measure the quadrature. A more
sophisticated and formal analysis of the homodyne detection scheme is given in [Ser17].

4.5.2 Heterodyne Detection
Definition 4.27 (Heterodyne detection). A heterodyne detection is a positive operator-valued
measure (POVM, see Eq. (3.16)) with POVM elements Êα := |α〉 〈α| /π. The operators Êα
satify: ∫

R2

d2α Êα =
1

π

∫

R2

d2α |α〉 〈α| . (4.122)

The probability of measuring Êα (see Eq. (3.17)) simply reads:

pρG(α) =
〈α|ρG|α〉

π
= QρG(α), (4.123)

where ρG is the state of the system and QρG(α) is the Husimi Q function of ρG (see Eq. (4.48)).
The word "heterodyne" derives from the Greek roots hetero- ("different"), and dyn- ("power").

A heterodyne detection scheme is traditionally realised [Jac62; Wee+12] as a homodyne scheme
but with the frequency of the local oscillator being different from that of the input signal. A suit-
able photodetector then converts photons at different frequencies into a single photocurrent.

An alternative method to realise heterodyne detection is with a double homodyne scheme:
the state of the system ρG is first mixed with an ancillary vacuum state by a balanced beam
splitter (see Eq. (4.101)). Then the quadrature operators q̂ and p̂ of the outcome modes are
homodyned to obtain α = (q + i p)/

√
2. A proof of the equivalence of this method to the

heterodyne detection defined in Def. 4.27 is given in [Ser17].



5
Secure Entity Authentication

with (QR-) PUFs

Entity authentication is a cryptographic procedure by which one entity establishes the identity
and active participation in a conversation of a second entity. Its objective is to prevent malicious
intruders to exploit secure protocols against legitimate users. Physical unclonable functions
(PUFs) [Pap01; Pap+02] are a precious tool for entity authentication. They are physical objects
that, because of a complex inner structure, produce a unique response when probed with a
challenge. An extension of such systems to quantum protocols is called quantum readout of
PUFs (QR-PUFs) [Ško12].

This chapter is an introduction to our publication [GKB20], which is contained in full in
Appendix A. In this article, we developed a generally valid theoretical model of both classical
and QR- PUFs and provided a system-independent formalisation of their properties.

This chapter is structured as follows. In Sec. 5.1, we introduce elements of cryptography
and the main concepts behind entity authentication protocols. PUFs are presented in Sec. 5.2,
and QR-PUFs are introduced in 5.3. Finally in Sec. 5.4, we summarise [GKB20], and discuss
possible research outlooks. Besides [GKB20], the content of this chapter is mostly inspired
from [SP18; Mar12; McG+19; MV10; Arm+11].

5.1 Elements of Cryptography

The objective of cryptography is to allow two parties, commonly named Alice and Bob, to
securely communicate in presence of an adversary, usually named Eve (from eavesdropping).
There are several features associated with information security, such as data confidentiality,
authentication and so on. A specific cryptographic protocol, whose elements are called crypto-
graphic primitives, can address either a single feature or more than one.

The concept of security is formalised in terms of three different aspects [SP18]: an attack
model, an adversarial goal, and a security level.
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The attack model specifies what kind of information is available to the adversary and what
must be kept secret. The adversary is always assumed to know the protocol being used (Ker-
ckhoffs’ Principle) and is generally allowed to observe all the information being transmitted
between Alice and Bob.

The adversarial goal exactly specifies what is the purpose of Eve in attacking the protocol.
Hence, it determines what does "successful attack" mean.

The security level quantifies the security of a protocol in terms of the effort required for a
successful attack. The usual security levels are the following:

Computational security: a protocol is computationally secure if there does not exist an al-
gorithm that efficiently performs a successful attack. The efficiency of an algorithm is
quantified in terms of the amount of time required by the algorithm. Computationally
secure protocols may become vulnerable due to developments in technology;

Provable security: a protocol is provably secure if a successful attack depends on the solution
of a difficult mathematical problem. The difficulty of a problem is formalised by the com-
putational complexity theory [SP18]. Provably secure protocols may become vulnerable
if an efficient way to solve the underlying mathematical problems is found. Specifically,
the emergence of quantum computing poses the biggest security threat to many problems
in this class [Sho94; NC10];

Unconditional security: a protocol is unconditionally secure if there does not exist a success-
ful attack, even with unlimited computational resources. Unconditional secure proto-
cols base their security on information-theoretic arguments: an adversary does not have
enough information to carry out a successful attack. Unconditional secure protocols may
still be vulnerable to side-channel attacks, i.e. attacks against practical implementations
of the protocols.

5.1.1 Entity Authentication
Entity authentication is usually needed in several cryptographic protocols to prevent a man-

in-the-middle-attack [SP18], where an adversary Eve impersonates one of the legitimate parties
(or both). This is a powerful side-channel attack, which Eve could use to accomplish her goal
even in the presence of unconditional secure protocols.

As an example, let us consider quantum key distribution (QKD) [Sca+09]. This is an uncon-
ditional secure protocol that allows two parties, Alice and Bob, to establish a secret key among
them, and use it to encrypt and decrypt their conversation. A man-in-the-middle attack may
lead to the establishment of two secret keys, one between Eve and Alice, and the other between
Eve and Bob. Thus, Eve would become able to read every message exchanged between Alice
and Bob, despite the security of QKD.

An entity authentication protocol is said to be unilateral when there is only one party (the
verifier) who needs to verify the identity of the other party (the claimant). Otherwise, the
authentication is said to be mutual. Unilateral entity authentication is particularly used when
the verifier is an institution that provides a service and the claimant is a user who wants to
access that service. For instance, a client of a bank who wants to withdraw money at an ATM
is authenticated by the bank via a unilateral protocol.

There are three main authentication factors that are used to verify the identity of the claimant.
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1. Knowledge factor: the claimant knows an authentication key (e.g. a password), and
proves this knowledge to the verifier. This factor is very practical in the case of remote
online authentication. However, it requires the establishment of a shared key that must
be continuously kept secret. Moreover, an adversary could learn the authentication key
without being noticed by the legitimate parties;

2. Ownership factor: the claimant has an authentication token (e.g. an ID card), and show
it to the verifier. While this factor requires the distribution of a physical object, it has
the advantage to not need secret knowledge from the claimant. This may be a desirable
feature when the verifier is an institution and the claimant an untrusted user. The token
must be protected from physical theft, which is generally easier to notice than information
theft.

3. Inherence factor: the claimant is something, i.e the authentication is based on some bio-
metric characteristics of the claimant (e.g. a fingerprint). This factor has several practical
advantages, such as not requiring secrecy or the distribution of a token. However, it is
also controversial for privacy reasons.

The authentication protocol is said to be single-factor or multi-factor, depending on the number
of used factors. An example of multi-factor authentication is the use of a debit card (ownership
factor) with a PIN (knowledge factor). Another example is the use of a picture (inherence factor)
on identity documents (ownership factor).

An important family of protocols is that of challenge-response authentication, in which a
party presents a question (challenge), based on the authentication factor(s), and another party
must provide a valid answer (response) to be authenticated. This type of protocol allows estab-
lishing in real-time, whenever needed, the identity of the claimant in terms of the authentication
factor(s). The attack model does not generally allow the adversary to know the responses for
given challenges. In many protocols, the verifier Alice may be required to choose a challenge
at random from a given set and to discard it after using it once. In these protocols, a source of
randomness is required [SP18].

5.2 Physical Unclonable Functions
In Sec. 5.1, we have discussed the ownership factor in entity authentication protocols. In

many applications, an authentication token is associated with an identity: for instance, a pass-
port is made by using sophisticate anti-counterfeiting technologies. However, these technolo-
gies only serve to distinguish between a valid document and a forgery. The identity of the
password is ultimately provided by its serial number and the information contained in it.

The main concept behind Physical Unclonable Functions (PUFs) is to directly identify an
authentication token in terms of its physical properties, probed by a challenge-response pro-
tocol. To have secure authentication, the internal structure of a PUF is required to be hard to
counterfeit. Moreover, an adversary should not be able to predict a response from a given chal-
lenge. We shall see in Sec. 5.2.2 that postprocessing techniques can be used to enhance the
unpredictability of a challenge-response behaviour.

Normally, entity authentication protocols based on PUFs are divided in two phases [ŠTO05]:
the enrollment stage and the verification stage (see fig. 5.1).
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Figure 5.1: A schematic description of the two stages of an authentication protocol with PUFs.
Top: Enrollment stage. The Certifier (C, orange) studies the PUF’s properties and generates the
Challenge-Response Table (CRT). Then the CRT is given to Alice (A, blue) and the PUF is given
to Bob (B, green).
Bottom: Verification stage. In the honest case, Bob lets Alice interact with his PUF through
a terminal and she remotely verifies his identity with the CRT, thus authenticating him. In the
dishonest case, an adversary Eve (E, red) claims to be Bob, letting Alice interact with a clone of
the PUF, and the protocol should lead to an abortion.
The figure is adapted from our publication [GKB20].

In the enrollment stage, which happens during, or shortly after, the manufacturing of the PUF,
a trusted entity, called the PUF Certifier, selects a certain number of challenges and records
the corresponding responses. The obtained Challenge-Response Pairs (CRPs) are stored as a
Challenge-Response Table (CRT). The Certifier is also allowed to study the PUF’s properties
and evaluate the parameters needed for an entity authentication protocol. At the end of this
stage, the Certifier gives the CRT to the verifier Alice and the PUF to the claimant Bob.

In the verification stage, the verifier checks the identity of the claimant by randomly selecting
a challenge from the CRT and sending it to the claimant’s PUF. If the response produced by the
PUF matches with the one in the CRT, the authentication is successful. This stage can be
repeated every time Alice needs to authenticate Bob. The used challenge-response pair needs to
be eliminated from the CRT and cannot be used again. Therefore, a PUF can be used a limited
number of times.

We mention here that the use of PUFs in cryptography is not limited to entity authentication
protocols [Rüh10; RD13; Brz+11] but this topic goes further from the scope of our thesis.

5.2.1 Types of PUFs

Here, we give an overview of some relevant types of PUFs. Extensive discussion can be
found in [MV10; McG+19].
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Optical PUFs

Optical PUFs were introduced by Pappu [Pap01; Pap+02] as physical one-way functions
(POWF). This was the first formalisation of the concept of PUF, although the use of complex
physical systems for authentication purposes was already established [Bau83; Sim84; Sim91;
Tol92; Nat+93; IM94; NF93].

An optical PUF is a transparent medium that is filled, in random positions, with microscopic
light-scattering particles. An incident laser that interacts with the PUF is transformed into a
unique speckle pattern, which is highly dependent on the position of the scatterers and the
orientation of the laser. Hence, a laser orientation is used as a challenge and the resulting
speckle as the corresponding response.

Pappu showed that any little change in the distribution of the scatterers would produce a
drastic change in the challenge-response behaviour. The same effect would be produced in case
of any invasive attack on the physical structure (this property has been referred to as tamper
evidence). Hence, it is very difficult to create a clone for an optical PUF.

Optical PUFs were studied, from an information-theoretic point of view, in [Tuy+04; ŠTO05;
Tuy+05; Ign+06]. Since the output speckles are highly sensitive to the input laser orientation,
a small error in the implementation of the challenge may produce a high amount of noise.
Therefore, a post-processing scheme has to be necessarily used (see Sec. 5.2.2).

Magnetic PUFs

Magnetic PUFs [IM94] are also based on the random distribution of microscopic particles
in a homogeneous medium. In this case, a magnetic medium, such as a magnetic swipe card,
is filled in an arbitrary position with microscopic ferromagnetic particles of different sizes and
shapes. This creates a complex and unique structure. A magnetic reader checks the exact
magnetic field intensity in certain positions along the strip: the positions serve as challenges
and the corresponding intensities as responses.

Arbiter PUFs

Arbiter PUFs [Lee+04; Lim+05] belong to a family of PUFs embedded on silicon integrated
circuits [Del17]. On a chip, two reconfigurable circuits with the same starting point are de-
signed to have the same travel time for an input current. However, the practical manufacture
is not perfect, and small random variations are produced. At the end of the circuits, an arbiter
component (usually a latch) compares the output signals of the two circuits and generates a bit:
the two possible values are associated with the two signals, and the generated bit is that corre-
sponding to the first signal reaching the arbiter. In the initial design, the two circuits are realised
by switch blocks: they are electric components with two inputs and two outputs, and, based on
a parametric bit, they can keep the signals on their original circuit line, or switch them. Thus,
the parametric bits on the switch cells is identified as a challenge, while the output bit of the
arbiter is the corresponding response. The number of challenge and response bits increase by
employing more than one input current, and the number of possible challenges is exponential
in the number of switch blocks used.

As soon as they were introduced, arbiter PUFs were found insecure under model-building
attacks [Lee+04; Gas+04; Lim+05], i.e. attacks in which the observation of some challenge-
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response pairs leads to the creation (by machine-learning techniques) of an accurate mathemat-
ical model of the PUF, able to predict the responses to unseen challenges.

Attempts to solve this issue by modifying the PUF’s design [MKP09; Lim+05; ÖHS08] were
met by more sophisticated machine-learning attacks [MKP08; RSS09; DV14].

Static Random Access Memory (SRAM) PUF

Static random access memory (SRAM) PUFs [Lay+04; Gua+07a; HBF07] are digital mem-
ories composed by memory cells, called SRAM cells. A SRAM cell is realised by inverters and
transistors and possesses two stable states. When an input electrical power is applied, each cell
is stabilised into either state and can be read as a memory storing one bit. The precise state is
determined by both the input current and manufacturing variations in the cell, which lead to dif-
ferent states for different cells. Thus, a collection of SRAM cells form a PUF, whose challenge
is the "address" of specific cells and the response is the string formed by the bits stored in the
cells.

SRAM PUFs were studied, from an information-theoretic point of view, in [Gua+07b] and
[Del17]. They were found to be very noisy, thus requiring post-processing.

5.2.2 Fuzzy Extractors
It is not generally reliable or secure to directly use a PUF’s output as a response [Del+14;

Puc+15]. Because of noise in the physical process, or errors in the practical implementation
of the protocol, a single challenge may produce different responses. Therefore an error cor-
rection scheme is required. Another issue is the existence of correlations between different
responses, which could be used by an adversary to simulate the PUF’s challenge-response be-
haviour [Rüh+10; Mer+11; Hel+13; Rüh+13].

A fuzzy extractor [DRS04; Dod+08] is frequently used to solve or mitigate both issues
[MV10; Arm+11; Del17]. In the following, we assume that PUFs’ outputs, including their
noisy versions, admit a mathematical representation in terms of a random variable Y on a met-
ric space Y with distance d. This is a common assumption [Del17], usually with Y being a
subset of the space of n-bits strings Fn2 and d being the the Hamming distance (see Sec. 2.5).
The min-entropy (see Def. 3.16) of Y is then used as a quantifier for the uncertainty on the
values of Y since it is related to the probability to randomly guess an outcome. To introduce the
concept of fuzzy extractors, we first need some additional mathematical definitions [DRS04].

Definition 5.1 (Kleene star closure). Let F2 be the Hamming field of bits, and Fn2 the vector
space of n-bits strings (see Sec. 2.5). The Kleene star closure of F2, denoted by F?2, is the set
of strings of arbitrary length, i.e.

F?2 =
⋃

n>0

Fn2 , (5.1)

where
⋃

denotes the union of sets.

Definition 5.2 (Statistical Distance). Let A,B be discrete random variables over the same set
Y . Let p(A) and p(B) be probability distributions associated to A and B, respectively. We
define the statistical distance between pA and pB, denoted by DS(pA, pB), as:

DS(pA, pB) :=
1

2

∑

y∈Y
|Pr(A = y)− Pr(B = y)| . (5.2)
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Definition 5.3 (Fuzzy Extractor [DRS04; Dod+08]). Let Y be a metric space with distance
function d. A (Y , s,m, t, ε)-fuzzy extractor is a pair of random functions, the generation func-
tion G and the reproduction function R, with the following properties:

• G : Y → Fm2 ×F?2 on input yi ∈ Y outputs an extracted string ri ∈ R ⊆ Fm2 and a helper
data hi ∈ H ⊆ F?2. While ri has to be kept secret, hi can be made public;

• R : Y × H → Fm2 takes an element y′i ∈ Y and a helper string hi ∈ H as inputs. The
correctness property of a fuzzy extractor guarantees that if d(yi,y

′
i) ≤ t and (ri,hi) =

G(yi), then R(y′i) = ri;

• The security property guarantees that for any random variable Y on Y with min-entropy
(see Def. 3.16) s = H∞(Y ), the string ri is nearly uniform even for those who observe
hi: i.e. if (ri,hi) = G(yi), then

DS(pRH , pUH) ≤ ε, (5.3)

where pRH (pUH) is a joint probability distribution for ri ∈ R (for a uniformly distributed
variable on m-bit binary strings) and hi ∈ H.

A fuzzy extractor is said to be efficient if G and R are implemented by an algorithm that runs in
an amount of time polynomially dependent on the size of the input.

The generation function G of a fuzzy extractor is used, in the enrollment stage of an entity
authentication protocol with PUFs, to transform a PUF’s output yi into a uniformly distributed
string ri, which is then used as a response. Afterwards, the reproduction function R is used, in
the verification stage of the protocol, on a noisy version of yi to reproduce the response ri.

As already mentioned, protocols with PUFs generally use fuzzy extractors with Y being a
subset of the n-bits Hamming space Fn2 (see Sec. 2.5). For instance, the code-offset construction
[DRS04; Dod+08] has been developed as a method to transform generic error-correcting codes
on the Hamming space into fuzzy extractors. In many applications, it is useful to have reusable
fuzzy extractors [Boy04], i.e. fuzzy extractors that remain secure even when the generation
function G of a fuzzy extractor is applied multiple times to noisy versions of the same set Y ,
producing multiple helper data. For instance, the output of a standard arbiter PUF is a single
bit, thus different devices share the same set Y = F2. An example of reusable fuzzy extractor
is the construction by Canetti et al. [Can+16], which is able to correct up to t = (l ln l/m) bits,
where l is the length of the input strings yi and m the length of the output strings ri.

5.2.3 PUF Formalisation Attempts
Since there is a large variety of PUF implementations, it is difficult to formalise the intuitive

ideas of PUF, agreeing on theoretical assumptions and definitions. However, a common theo-
retical framework is useful to compare different PUF implementations in terms of security and
reliability. In this subsection, we review some attempts to establish this framework.

We have already mentioned that the optical PUFs [Pap01; Pap+02] were introduced as Phys-
ical One-Way Functions (POWFs). They were characterised as deterministic physical devices
with the following properties:

1. POWFs are easy to evaluate, i.e. they are evaluable in constant time;
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2. POWFs are hard to invert (one-way), i.e. a probabilistic polynomial algorithm (an al-
gorithm whose running time is polynomially dependent on its input size) can find the
challenge that originates a given response only with negligible probability;

3. POWFs are hard to simulate, i.e. a probabilistic polynomial algorithm can predict the
response for a given challenge only with negligible probability;

4. POWFs are hard to clone, i.e. physically cloning them should be financially and techno-
logically unfeasible.

The main problem of this definition is that it considers noiseless PUFs, which is not the case
in reality. Another problem is that the one-wayness assumption does not hold for several PUF
implementations with a small space of outputs (such as arbiter or SRAM PUFs). Moreover,
Rührmair et al. [RSS09] argued that the one-wayness is not a necessary assumption for security.

Gassend et al. [Gas+02; Gas03] proposed the definition of physical random functions (PRFs),
as deterministic physical devices that contain a mathematical function with the following prop-
erties:

1. The function is easy to evaluate, i.e. it is evaluable in constant time;

2. The function is hard to predict, i.e. a probabilistic polynomial algorithm can simulate the
function from a small given set of challenge-response pairs only with negligible proba-
bility.

Although this definition continues to consider noiseless PUFs, the unpredictability is a more
inclusive assumption than the one-wayness. However, machine-learning attacks reduce the
range of validity of this assumption [Lee+04; Rüh+10].

The first definition that accounts for noise was made by Guajardo et al. [Gua+07a]. They
described PUFs as physically unclonable systems with a challenge-response behaviour. The
unclonability of PUFs was defined as an inherent property caused by their complex inner struc-
ture. In [Gua+07a], the following assumptions were made:

1. Different responses are independent of each other;

2. Unknown responses are hard to predict;

3. PUFs are tamper-evident, i.e. the challenge-response behaviour of a PUF is substantially
changed by any tampering of the PUF.

It was argued [Arm+11] that some of these assumptions, in particular the tamper-evidence,
are too restrictive since they do not hold for several PUF implementations.

Other schemes followed [RSS09; Arm+10; MV10]. A relevant proposal was made by
Armknecht et al. [Arm+11]. In their formalism, a Physical Function (PF) is defined as the
combination of a physical component and a probabilistic algorithm. The physical component
interacts with a challenge signal and produces a response signal. The algorithm, which is called
the evaluation procedure, transforms a digital representation of the challenge signal into a dig-
ital representation of the response signal. A Physical Function System (PFS) is then defined as
the composition of a PF with a fuzzy extractor (see Sec. 5.2.2).

The main merit of [Arm+11] is to explicitly consider fuzzy extractors in the formalisation of
PUFs. Another remarkable feature is to separately take into account the digital representation of
challenges and responses, and the actual physical interaction. The authors defined the following
security properties.
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1. Robustness: the probability that a PFS outputs the same response when the input is the
same challenge. This is quantified by a sample mean over repeated applications to the
PUF of the same challenge (challenge robustness) or the same set of challenges (average
robustness);

2. Selective Physical Clonability: the probability that a physical clone of a PFS is realised.
This is quantified in a specific security experiment,i.e. it is quantified by theoretically
modelling an attack in which an adversary tries to realise a physical clone of a PFS;

3. Existential Physical Clonability: the probability that two PFSs are produced, where one
is the clone of the other. This is quantified in a specific security experiment. This property
is useful if one takes into account the creation process of a physical function system;

4. Predictability: the probability that an adversary predicts the response to an unseen chal-
lenge after observing a set of challenge-response pairs. This is also quantified in a specific
security experiment.

5.3 Quantum Readout of Physical Unclonable Functions
To enhance the security of Physical Unclonable Functions, Škorić [Ško12] proposed an ex-

tension of PUFs to quantum protocols, namely the quantum readout of physical unclonable
functions (QR-PUFs). They are classical PUFs in which challenges and responses are encoded
by non-orthogonal quantum states. An adversary would not be able to clone (see Theorem 3.22)
or distinguish (see Theorem 3.23) them without introducing noticeable disturbances.

At the moment, only optical PUFs have been extended to QR-PUFs. In this extension, the
challenges represent quantum states associated with some inner degrees of freedom of the laser.
In the original article, [Ško12], the challenges are associated with single-qubit states. In the
enrollment stage, a Certifier sends a certain number of non-orthogonal challenge states |xi〉
to the QR-PUF and characterises the corresponding responses |yi〉. To do this, he is free to
repeatedly apply the same challenge and perform any measurement. Moreover, he studies the
noise level of the system. In the verification stage, the verifier Alice prepares a challenge state
consisting of n qubits. She sends each qubit to the QR-PUF belonging to the claimant Bob,
and, if the qubit is reflected, performs a measurement onto the expected response state |yi〉. If
the fraction of returned states and correct responses is consistent with the expected noise level,
Alice authenticates Bob.

Škorić examined different protocols, with different assumptions on the ability of Alice of
preparing and measuring quantum states. He claimed, without giving formal proof, that the
protocols would remain secure even with a public Challenge-Response Table. Moreover, he
studied the security of the protocols against specific attacks, such as the random preparation of
response states by an adversary Eve.

While having the merit of introducing QR-PUFs, [Ško12] leaves many questions open. Nei-
ther the security of QR-PUFs nor their advantage over their classical counterparts are formally
proven. Moreover, this formalisation considers noiseless quantum states and assumes the per-
fect implementation of all quantum operations.

The security of QR-PUFs against other specific attacks was studied in [ŠMP13; Ško16;
Yao+16b]. QR-PUFs based on continuous variables were also introduced [ND17; Nik18].
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An experimental realisation of QR-PUFs was discussed in [Goo+14]. The challenge states
are realised by phase-shaping incoming plane wavefronts via a spatial light modulator. In
the enrollment stage, a certain number of challenges is sent to the QR-PUF, and the reflected
speckles are recorded in a phase-sensitive way. In the verification stage, a challenge state is
prepared and sent to the QR-PUF. A second spatial light modulator adds to the reflected beam
the conjugate phase pattern of the expected response wavefront. If the pattern is the expected
one, the beam of light is transformed into a plane wave, which then is focused by a lens into
a single point on an analyser plane. If the speckles are different from the expected ones, this
process produces another speckle pattern. Thus, a successful authentication is determined by
the distribution of light on the analyser plane.

5.4 Formalisation of (QR)-PUFs

In this section, we introduce the result of our publication [GKB20], in which we proposed
a theoretical framework for the quantitative characterisation of both PUFs and QR-PUFs. The
original publication, with publication details, can be found in Appendix A.

5.4.1 Results

In [GKB20], we first designed a general, system-independent, authentication scheme, which
is applicable to different physical implementations of both classical and QR- PUFs. Then, we
characterised as the main security properties of (QR-) PUFs the robustness [Arm+11] and the
unclonability.

Authentication Scheme

We distinguished, in our study of (QR)-PUFs, between two different theoretical levels (lay-
ers): a physical layer, where the actual physical interaction between the (QR-) PUF and an
input signal is described, and a mathematical layer, where the challenge-response behaviour is
represented by digital strings in the Hamming space (see Sec. 2.5). For the sake of clarity, we
called response only the post-processed uniform key, while we used the term outcome for the
intermediate raw output of a (QR-) PUF. Moreover, we called challenges (outcomes, responses)
the strings in the mathematical layer, and challenge states (outcome states) the implementations
in the physical layer.

Here, we use the vector notation in bold letters to denote the digital strings in the mathe-
matical layer (e.g. xi for the i-th challenge), and the Dirac notation to denote the (classical or
quantum) states in the physical layer (e.g. |xi〉 for the i-th challenge state). This notation is
slightly different from the notation in [GKB20], but we use it for consistency with the other
parts of the thesis.

Let us first consider classical PUFs. In the enrollment stage, the PUF Certifier selects a certain
number N ≤ 2n of different challenges xi ∈ X of length n, where X ⊆ Fn2 denotes the set of
all chosen challenges. Each challenge xi ∈ X represents the information on how to implement
a challenge state |xi〉. The Certifier studies X to ensure the lack of correlations (uniformity)
betweeen the challenges in X , possibly discarding some of them. Then, each challenge state
|xi〉 interacts with the PUF P̂ , and produces an outcome state |yi〉 = P̂ |xi〉.
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Inspired by the detection scheme in [Goo+14] (described in Sec. 5.3), we introduced the
concept of shifter. A shifter is a state-dependent operation Ω̂i which maps a specific outcome
state |yi〉 into a reference state, denoted by |0〉. For N outcome states |yi〉, the Certifier designs
N shifters Ω̂i, to have the same reference state for every outcome state. The shifters were
introduced to simplify the measurements on the outcome states, with particular regard to the
quantum case.

We define |oi〉 := Ω̂i P̂ |xi〉. In the enrollment stage, or in a noiseless verification stage,
|oi〉 is equal to the reference state |0〉 by definition, whereas in a realistic verification stage |oi〉
contains errors. This error is represented by the Hamming weight of a classical string oi ∈ Flo2
in the mathematical layer, i.e. oi = (0, 0, . . . , 0) if and only if |oi〉 = |0〉. The string has a
length lo, which depends on the experimental implementation of the shifter.

Moreover, the information on how to implement a shifter Ω̂i is parameterised by a string
wi ∈ Flw2 in the mathematical layer. The length lw depends on the entropy of the shifters and,
consequently, on the outcome states (as they are designed for them).

The string oi conveys information about the error in the PUF evaluation, whereaswi conveys
information about the uniformity of the outcome states. We defined as outcome the combination
of oi and wi, i.e. the outcome is string yi of length l = lw + lo, such that yi = wi ‖oi, where
‖ is the concatenation of strings (see Def. 2.64). The outcomes are post-processed by a fuzzy
extractor (see Sec. 5.2.2), selected by the Certifier according to the min-entropy of Y . The
generation function G of a fuzzy extractor is used to transform the outcome yi ∈ Y into the
uniformly distributed response ri ∈ R ⊆ Fm2 . It also generates helper data hi ∈ H ⊆ F?2.

Challenges and responses are stored into the Challenge-Response Table (CRT) together with
the strings wi, the helper data and the parameters of the fuzzy extractor. The Challenge-
Response Table is given to Alice and the PUF to Bob, concluding the enrollment stage. The
entire process is visualised in Fig. 5.2.

Figure 5.2: A scheme of the described authentication scheme with PUFs. There is a physical
layer in which the PUF physically acts and a mathematical layer in which the cryptographic pro-
tocol takes place. In the physical layer a challenge state is prepared according to the information
of the challenge (mathematical layer) and then the PUF transforms it into an outcome state. The
state-dependent shifter maps the outcome state to a reference state. The outcome in the math-
ematical layer contains the information about the implementation of the shifter and the error in
the reference state and is post-processed by the fuzzy extractor to give the response. Challenges
and responses are stored into (enrollment stage) or taken from (verification stage) the Challenge-
Response Table (CRT). QR-PUFs follows from considering quantum states and operations in the
physical layer. The picture is taken from our publication [GKB20].

In the verification stage, Bob declares his identity and allows Alice to interact with his PUF.
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Alice picks up a randomly selected challenge xj ∈ X , for which she knows the response
rj ∈ R. She prepares the challenge state |xj〉 and sends it to the PUF, which generates the
outcome state P̂ |xj〉. At this point, Alice tunes the shifter Ω̂j , according to the CRT and
evaluates |oj〉 := Ω̂j P̂ |xj〉.

She then post-processes the outcome yj with the reproduction function R of the fuzzy ex-
tractor that was used in the enrollment stage, using the helper data hj . She obtain a string zj
that is compared with the response rj in the CRT: if zj = rj , Bob is authenticated.

For QR-PUFs the process is analogous. The main difference is that the physical layer employs
quantum states and operations. We represented the interactions in an idealised way, as unitary
operations acting on pure states. We took into account noise and errors via the string oi, in
the transition from the outcome state to the outcome string. In our publication, we considered
challenge states formed by λ qubits and single-qubits operations individually acting on the
qubits.

Security Properties

We formalised the (QR-) PUFs in terms of two main properties, the robustness (connected
to false rejection) and the unclonability (connected to false acceptance). We took the definition
of robustness from [Arm+11], adapting it to our framework. In the following, we denote a
(QR-) PUF by F := (FE, FV ), where FE, FV : X → R represent the map from challenges to
responses in the enrollment and verification stage, respectively.

Definition 5.4 (Robustness). A (QR-) PUF F is %-robust with respect to a set of challenges X
if % ∈ [0, 1] is the greatest number for which:

1

N

∑

xi∈X
Pr{FV (xi) = FE(xi)} ≥ % . (5.4)

% is called the robustness of the (QR-) PUF with respect to X .

The robustness quantifies the (QR-) PUF’s ability to avoid false rejections and depends on
many factors, such as the average noise of the specific implementation and the parameters of
the fuzzy extractor.

We then introduced the physical and mathematical unclonability. A physical clone is an
experimental reproduction of the (QR-) PUF, with the same physical properties as the original
one. A mathematical clone, instead, is an object that simulates the challenge-response behaviour
of a (QR-) PUF.

Definition 5.5 (Physical Unclonability). A (QR-) PUF is physically unclonable if a physical
clone is technologically or financially unfeasible at the current state of technology.

Definition 5.6 (Mathematical Clone). Let us suppose that an adversary Eve observes q legit-
imate authentications of a (QR-) PUF F . With the information she can extract, she prepares
a function Eq, with the intent of simulating the PUF. Eq is said to be a (γ, q)-(mathematical)
clone of F if γ ∈ [0, 1] is the greatest number for which:

1

N

∑

xi∈X
Pr(Eq(xi) = FE(xi)) ≥ γ . (5.5)
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Definition 5.7 (Mathematical Unclonability). A (QR-) PUF F is (γ, q)- mathematical clonable
if γ ∈ [0, 1] is the smallest number for which it is not possible to generate a (γ̄, q) clone of the
(QR-) PUF for any γ̄ > γ. Conversely, a (QR-) PUF F is (δ, q)- mathematical unclonable if it
is (1− δ, q)-clonable.

The unclonability of a (QR-) PUF is therefore related to the average probability of false
acceptance. We could expect that an increase of the number of legitimate uses q produces
(1− δ, q)-clones with a lower δ. Therefore, fixing the maximum number of uses q = q∗ we fix
the minimum δ = δ∗.

Definition 5.8. A (%, δ∗, q∗)-secure (QR-) PUF F is %-robust, physically unclonable and at least
(δ∗, q)-mathematically unclonable up to q∗ uses.

In [GKB20], we compared classical and QR- PUFs, considering examples. QR-PUFs are
expected to have a higher mathematical unclonability than classical PUFs because the quantum
challenge and outcome states cannot be copied. Moreover, by choosing non-orthogonal states,
we prevent the adversary Eve to distinguish them without introducing detectable errors. There-
fore, the amount of information that Eve can extract after observing q interactions is higher for
classical PUFs than QR-PUFs.

However, we noticed that the robustness of a QR-PUF could be comparable to or worse
than the robustness of a classical PUF. Quantum states are fragile and fuzzy extractors for QR-
PUFs need to have a low correctable error threshold, as the noise can originate from a possible
interaction of an adversary. In particular, we showed an example in which the correctable error
threshold depends on the orthogonality of the challenge states. In this example, the use of
highly non-orthogonal states, compared to lowly ones, increases the unclonability of the QR-
PUF but also reduces its robustness. Therefore there is a trade-off between the advantages and
disadvantages of QR-PUFs, which has to be studied for specific implementations.



6
Entanglement Detection for

Unknown Continuous-variable States

Quantum entanglement is a key ingredient for many tasks in quantum information theory, such
as quantum cryptography [Sca+09; Pir+20] and quantum communication [Ben+93; Loo02].
Therefore, it is of paramount importance to find efficient criteria for entanglement detection,
in particular in unknown quantum states. Entanglement witnesses [HHH96; Ter00; HE06] are
experimentally accessible entanglement tests that are based on sufficient conditions for the en-
tanglement. They are quite effective in situations where only partial knowledge about a system
is available.

This chapter is an introduction to our publication [Mih+20], which is contained in full in Ap-
pendix B. In this article, we developed a scheme for the detection of entanglement in unknown
continuous-variable systems. We used random homodyne measurements to gather partial in-
formation about the states and semidefinite optimisation for constructing optimal entanglement
witnesses. This idea was inspired by an analogous method for discrete-variable entanglement
detection [SKB15].

This chapter is structured as follows. In Sec. 6.1, we discuss the topic of continuous-
variable entanglement. In Sec. 6.2 we introduce the entanglement witnesses, in particular
for continuous-variable systems. In Sec. 6.3 we present the methods that are used in our publi-
cation, namely semidefinite programs, and a quantum tomography scheme based on homodyne
measurements. Finally in Sec. 6.4, we summarise [Mih+20]. Besides [Mih+20], the content of
this chapter is mostly inspired from [HE06; Hor+09; AI07].

6.1 Continuous-variable Entanglement
In Chap. 3, we have introduced the notion of separable and entangled states for bipartite

systems AB (see Def. 3.8). We now introduce some basic definitions and properties associated
with the general multipartite case.

73
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Definition 6.1 (Full separability [Hor+09]). Let ρA1 A2 ... AM be a state over theM -partite Hilbert
spaceHA1 A2 ... AM = HA1⊗HA2⊗· · ·⊗HAM . The state ρA1 A2 ... AM is said to be fullyM -partite
separable if and only if it can be written as convex combination of tensor product states over
HAi , i.e.

ρA1 A2 ... AM =
∑

i

pi ρ
i
A1
⊗ ρiA2

⊗ · · · ⊗ ρiAM . (6.1)

Conversely, ρA1 A2 ... AM is entangled if it is not fully separable.

Fully separable states are the natural extension of the bipartite separable states to the multi-
partite case. However, we can also introduce a notion of partial separability.

Definition 6.2 (Partial separability [Hor+09]). Let ρA1 A2 ... AM be a state over the M -partite
Hilbert spaceHA1 A2 ... AM = HA1⊗HA2⊗· · ·⊗HAM . Let {I1, . . . , Ik} be a partition of the set
of indeces I = {1, . . . ,M}, with ∪ki=1 Ii = I and Ii ∩ Ij = ∅ for i 6= j. The state ρA1 A2 ... AM is
separable with respect to the partition {I1, . . . , Ik} if and only if it can be written as

ρA1 A2 ... AM =
∑

j

pj ρ
j
I1
⊗ ρjI2 ⊗ · · · ⊗ ρ

j
Ik
, (6.2)

where ρjIi is a (possibly composite) quantum state on the subsystems identified by Ii.

Therefore, states that are separable with respect to a partition may be entangled with respect
to another one.

For continuous-variable systems, we can characterise the separability of a quantum state in
terms of its moments.

Theorem 6.3 (Separable covariance matrices [WW01]). Let VA1 A2 ... AM be the covariance ma-
trix of a separable continuous-variable quantum state ρA1 A2 ... AM . Then there exist covariance
matrices VA1 ,VA2 , . . . ,VAM on the subsystems {Ai} such that

VA1 A2 ... AM ≥ VA1 ⊕ VA2 ⊕ · · · ⊕ VAM . (6.3)

When ρA1 A2 ... AM is Gaussian, this condition is also sufficient.

We have not mentioned displacement vectors in Theorem 6.3. We saw in Sec. 4.3.1 that a
2M -dimensional displacement vector can be arbitrarily modified by an M -mode displacement
operator D̂(α) (see Eq. (4.34)), which is a tensor product of local unitary operations, i.e.
D̂(α) =

⊗M
k=1 D̂k(αk). Hence, no property related to quantum entanglement can depend on

the displacement vector, which in the following is always set to zero.
In quantum information jargon, a covariance matrix that satisfies (does not satisfy) Eq. (6.3)

is called a separable (entangled) covariance matrix. A state that possesses an entangled co-
variance matrix is always entangled, regardless of whether it is Gaussian or not. On the other
hand, a separable covariance matrix is a sufficient condition for entanglement only for Gaussian
states.

Theorem 6.3 is not a practical criterion, since it is in general hard to find reduced covariance
matrices for a separable state or to prove their nonexistence for an entangled state [Hor+09].
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6.1.1 Bipartite Entanglement
We temporarily go back to the bipartite case to introduce an important criterion for entangle-

ment detection and expand the topic of continuous-variable entanglement.

Theorem 6.4 (Positive Partial Transpose (PPT) criterion [Per96; HHH96]). Let ρAB ∈ S(HAB)
be a density operator on a bipartite system AB. Let ρTAAB denote the partial transpose of ρAB
with respect to A, i.e.

ρTAAB := (TA ⊗ idB)[ρAB], (6.4)

where TA is the transposition on S(HA) and idB is the identity map on S(HB). The state ρAB
is separable only if its partial transpose is positive-semidefinite, i.e. ρTAAB ≥ 0.

The PPT criterion is a necessary but not sufficient criterion. If ρTAAB � 0, then ρAB is certainly
entangled. On the other hand, there exist entangled states, called bound entangled states, for
which ρTAAB ≥ 0. However, the PPT criterion has been proven necessary and sufficient for all
1×M Gaussian states [Sim00; WW01].

Theorem 6.5. Let WρAB(rAB) be the Wigner function (see Eq. (4.46)) of a bipartite CV state
ρAB, where rAB = (qA, pA, qB, pB), and A and B are systems of MA and MB modes, respec-
tively. The partial transpose over A of ρAB can be expressed in terms of WρAB as:

TA[WρAB(rAB)] := W
ρ
TA
AB

(rAB) = WρAB((TA ⊕ IB)rAB), (6.5)

where IB is the MB-mode identity matrix, and

TA :=

(
1 0
0 −1

)
⊕
(

1 0
0 −1

)
⊕ . . .

(
1 0
0 −1

)

︸ ︷︷ ︸
(MA times)

. (6.6)

Proof. Consider an M -mode state ρ with Wigner function Wρ(r). By using Eq. (4.46), we
write the Wigner function of ρT as:

T [Wρ(r)] = WρT (r) =

(
2

π

)M ∫

RM
dz e2ip

T ·z 〈q − z|ρ|q + z〉

=

(
2

π

)M ∫

RM
dz′ e−2ip

T ·z′ 〈q + z′|ρ|q − z′〉 ,
(6.7)

where z′ = −z. Therefore, the transposition is equal to changing pi → −pi in the components
of r, i.e.

r =
M⊕

i=1

(
qi
pi

)
→

M⊕

i=1

(
qi
−pi

)
=

M⊕

i=1

(
1 0
0 −1

)(
qi
pi

)
, (6.8)

The proof is concluded by considering the definition of partial transpose (see Eq. (6.4)), TA ⊗
idB, and identifying the matrix

⊕M
i=1

(
1 0
0 −1

)
in Eq. (6.8) as the matrix TA of Eq. (6.6).

For Gaussian states, with Wigner function given by Eq. (4.52), Eq. (6.5) becomes an equation
for the covariance matrix VAB:

TA[VAB] = (TA ⊕ IB)VAB (TA ⊕ IB). (6.9)
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The condition of positivity for the partial transpose is equivalent to require that TA[VAB] satisfies
the Robertson-Schrödinger uncertainty principle (see Theorems 4.11 and 4.15), i.e. one of the
two equivalent conditions,

TA[VAB] + i Ω ≥ 0, or ν̃− ≥ 1, (6.10)

where Ω is the symplectic form (see Eq. (4.12)) and ν̃− is the smallest symplectic eigenvalue
of TA[VAB].

Definition 6.6 (Logarithmic negativity [VW02]). The logarithmic negativity of a bipartite quan-
tum state ρAB is the non-negative real number

EN(ρAB) = log ‖ρTAAB‖1, (6.11)

where ‖ρTAAB‖1 is the trace norm (see Eq. (3.73)) of ρTAAB.

This is an example of entanglement measure, i.e. a function that quantifies the amount of
entanglement in a quantum state. We are going to expand on this concept in Chap. 7. If
ρTAAB ≥ 0, then

log Tr

[√
(ρTAAB)† (ρTAAB)

]
= log Tr

[
ρTAAB

]
= log 1 = 0. (6.12)

Therefore, EN(ρAB) > 0 always certifies the presence of entanglement, while EN(ρAB) = 0
certifies its absence only when the PPT criterion is necessary and sufficient.

By using Eq. (6.9), the logarithmic negativity of an (MA + MB)-mode Gaussian state ρGAB
can be expressed as [Ser17]:

EN
(
ρGAB

)
=

MA+MB∑

i=1

max{0,− log ν̃i}, (6.13)

where ν̃i is the i-th symplectic eigenvalues of TA[VAB].
Consider now the two-mode squeezed vacuum state (see Eq. (4.78)), |rAB〉 = exp[ r

2
(âAâB −

â†Aâ
†
B)] |0〉 |0〉, with r ∈ R≥0. The logarithmic negativity of |rAB〉, calculated by partial trans-

posing the covariance matrix of Eq. (4.80) and then using Eq. (6.13), is linearly dependent on
the squeezing parameter r [Ser17]:

EN (|rAB〉 〈rAB|) = 2r log e, (6.14)

where e is the Euler constant. Hence, this state is always entangled for r > 0.
For r → ∞, EN (|rAB〉 〈rAB|) → ∞. In the same limit, the Wigner function WAB(rAB)

in Eq. (4.79) becomes proportional to δ(qA − qB)δ(pA + pB). This unphysical state, which
is associated with infinite energy, was originally introduced by Einstein, Podolski and Rosen
in [EPR35]. The authors used it to argue against the completeness of the quantum theory.
However, the EPR state was later identified as the prototype of entangled state [Sch35; Bel64]
and an ideal continuous-variable maximally entangled state [BW99].

The two-mode squeezed vacuum state for r > 0, which is an approximation at finite energy
of the EPR state, is also the state that maximises the entanglement at finite energy [MZB06].
Hence, we can consider it a continuous-variable maximally entangled state at finite energy.
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6.2 Entanglement Witnesses
Definition 6.7 (Entanglement witnesses [HHH96; Ter00]). An entanglement witness is a non-
negative Hermitian operator Ŵ such that

Tr(Ŵ ρSA1 A2 ... AM
) ≥ 0, for all (fully) separable states ρSA1 A2 ... AM

; (6.15)

Tr(Ŵ ρA1 A2 ... AM ) < 0, for some entangled states ρA1 A2 ... AM . (6.16)

For every entangled state ρA1 A2 ... AM , there exists at least one entanglement witness Ŵ such
that Tr(Ŵ ρA1 A2 ... AM ) < 0. This is a corollary of the Hahn-Banach theorem [Roc15], which
states the existence of a separating hyperplane between the convex set of separable density
matrices onHA1 A2 ... AM and an entangled density matrix ρA1 A2 ... AM (see Fig. 6.1).

Definition 6.8. An entanglement witness Ŵ1 is said finer [Lew+00; Lew+01] than another
entanglement witness Ŵ2 if the entanglement detected by Ŵ2 is also detected by Ŵ1, i.e.

Tr(Ŵ2 ρA1 A2 ... AM ) < 0 ⇒ Tr(Ŵ1 ρA1 A2 ... AM ) < 0. (6.17)

An entanglement witness Ŵ is called optimal if there does not exist a witness finer than it. A
minimal witness for an entangled state ρA1 A2 ... AM is the least fine witness that is able to detect
entanglement in ρA1 A2 ... AM .

Figure 6.1: A visual representation of the entanglement witnesses (see Def. 6.7) as a separating
hyperplane between the set of separable states and an entangled state ρ. The optimal witness (see
Def. 6.8) Ŵopt detects the entangled states in the regions I and II , while the minimal witness
Ŵmin detects entanglement only in the region II . Entanglement witnesses that are less fine than
the minimal witness Ŵmin cannot detect entanglement in ρ.

Entanglement witnesses detect entanglement in both discrete- and continuous-variable sys-
tems [HHH96]. For continuous-variable systems, we can consider witnesses that are based on
the covariance matrix of the system.

Definition 6.9 (Entanglement witness based on second moments [HE06]). An entanglement
witness based on second moments is a real symmetric matrix Z ≥ 0 such that

Tr[Z Vs] ≥ 1, for all (fully) separable covariance matrices Vs; (6.18)
Tr[Z V ] < 1, for some entangled covariance matrices V . (6.19)
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As a consequence of Theorem 6.3, a separable state always has a separable covariance matrix,
but the vice-versa only holds for Gaussian states. Therefore, the condition Tr[Z V ] < 1 for
some witness Z always implies that V is entangled. The non-existence of such a witness
implies the separability of V only when V is Gaussian.

In the cases in which the PPT criterion of separability is necessary and sufficient, entan-
glement witnesses provide a lower bound for the logarithmic negativity [And06]. Namely, let
w = Tr[ZV ], for a covariance matrix V and an entanglement witness Z. If w ∈ (0, 1), then
the logarithmic negativity of V obeys:

EN (V ) ≥ log
1

w
. (6.20)

In particular, the inequality is saturated for two-mode covariance matrices when one uses the
minimal entanglement witness Zmin, giving the smallest possible value wmin [And06].

Theorem 6.10 ([And06; HE06]). Let V be the covariance matrix of a k-partite system with∑k
j=1 Mj = M modes. Then V is entangled with respect to this partition if and only if

Tr[ZV ] < 1 (6.21)

for some real, symmetric 2M × 2M matrix Z, satisfying

Z ≥ 0,
k∑

j=1

str[Zj] ≥
1

2
, (6.22)

where Zj is the block matrix of the diagonal of Z acting on the subsystem j and str[Zj] is the
symplectic trace of Zj , i.e. the sum of its symplectic eigenvalues:

str[Zj] :=

Mj∑

m=1

νm. (6.23)

6.3 Methods
We here introduce two fundamental tools that we used in [Mih+20]: the semidefinite pro-

grams and a scheme for the reconstruction of unknown continuous-variable states via random
homodyne measurements.

6.3.1 Semidefinite Programming
Definition 6.11 (Semidefinite programs [VB96; Hel02; BV04]). A semidefinite program (SDP),
or semidefinite problem, is an optimisation problem in which one minimises a linear function
subject to a semidefinite constraint, i.e.

minimise
x

cT · x,

subject to F (0) +
n∑

j=1

xj F
(j) ≥ 0,

(6.24)

where x, c ∈ Rn for a given n, and F (0) and F (j) (j = 1, 2, . . . , n) are m × m Hermitian
matrices, for a given m.
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Once a problem is formulated as an SDP, there are several efficient algorithms to numerically
solve it [Löf04], such as the interior points-methods [BV04].

Definition 6.12 (Primal and Dual problem). A semidefinite program in the form of Eq. (6.24)
is referred to as a primal problem and define a corresponding dual problem:

maximise
Z

− Tr[F (0)Z],

subject to Z ≥ 0,

Tr[F (j)Z] = cj,

(6.25)

where Z is a m×m Hermitian matrix.

The weak duality theorem [BV04] states that the value of the primal problem is lower-
bounded by the value of the dual problem, i.e.

cT x+ Tr[F (0)Z] ≥ 0. (6.26)

6.3.2 Quantum Tomography via Homodyne Measurements
D’Auria et al. [DAu+05; DAu+09] introduced a method to reconstruct the covariance matrix

of a two-mode quantum state using a single homodyne detection (see Def. 4.26).
Consider a two-mode system, with mode operators â1 and â2 and corresponding quadrature

operators q̂i =
√

2 Re âi and p̂i =
√

2 Im âi. The covariance matrix of a state ρ with zero
displacement vector is a 4× 4 symmetric matrix that reads (see Eq. (4.51)):

V =




2 〈q̂21〉 〈q̂1 p̂1 + p̂1 q̂1〉 〈q̂1 q̂2 + q̂2 q̂1〉 〈q̂1 p̂2 + p̂2 q̂1〉
〈q̂1 p̂1 + p̂1 q̂1〉 2 〈p̂21〉 〈p̂1 q̂2 + q̂2 p̂1〉 〈p̂1 p̂2 + p̂2 p̂1〉
〈q̂1 q̂2 + q̂2 q̂1〉 〈p̂1 q̂2 + q̂2 p̂1〉 2 〈q̂22〉 〈q̂2 p̂2 + p̂2 q̂2〉
〈q̂1 p̂2 + p̂2 q̂1〉 〈p̂1 p̂2 + p̂2 p̂1〉 〈q̂2 p̂2 + p̂2 q̂2〉 2 〈p̂22〉


 . (6.27)

Since V is symmetric, it admits at most 10 different entries. Introducing

â3 :=
â1 + â2√

2
, â4 :=

â1 − â2√
2

, â5 :=
iâ1 + â2√

2
, â6 :=

iâ1 − â2√
2

, (6.28)

the off-diagonal elements of V become (with Vij = Vji):

V12 = 〈ẑ21〉 − 〈t̂21〉 , V13 = 〈q̂23〉 − 〈q̂24〉 , V14 = 〈p̂25〉 − 〈p̂26〉 ,
V23 = 〈q̂26〉 − 〈q̂25〉 , V24 = 〈p̂23〉 − 〈p̂24〉 , V34 = 〈ẑ22〉 − 〈t̂22〉 ,

(6.29)

where q̂i =
√

2 Re âi, p̂i =
√

2 Im âi, ẑi =
√

2 Re (e−iπ/4 âi) and t̂i =
√

2 Re (eiπ/4 âi).
One can notice that 〈q̂26〉 = 〈q̂22〉 + 〈p̂21〉 − 〈q̂25〉 and 〈p̂26〉 = 〈q̂21〉 + 〈p̂22〉 − 〈p̂25〉. Therefore, q̂6

and p̂6 are not necessary to reconstruct V , and one needs to measure 10 quadrature operators,
q̂j and p̂j (j = 1, 2, 3, 4, 5).

The homodyne detection is realised by measuring the generalised quadrature

x̂θ =
e−iθ k̂ + eiθ k̂†√

2
, (6.30)
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where θ is the phase of the local oscillator, and k̂ is a mixture of â1 and â2,

k̂ = cosφ â1 + exp(iψ) sinφ â2 = B̂12(φ e
iψ)† â1 B̂12(φ e

iψ), (6.31)

obtained by a beam splitter B̂12(φ e
iψ) (see Eq. (4.101)), selecting only the first of the two

output modes. With repeated measurements of x̂θ for a set of identical states, the variance of x̂θ
is given by:

[∆x̂θ]
2 := 〈x̂2θ〉 − 〈x̂θ〉2 = Tr[P V ], (6.32)

where P is the matrix for the measurement of the quadrature variance of the mode k̂, i.e.

P := u · uT

u :=




cosφ cos(θ − ψ)
cosφ sin(θ − ψ)

sinφ cos θ
sinφ sin θ



. (6.33)

The setting is visualised in Fig. 6.2. By properly choosing the angles ψ, φ, θ, it is possible to
measure any quadrature. Note that the publication [DAu+05] used a fixed set of angles, since it
made assumptions on the polarisation of the modes. Instead, we did not make assumptions in
[Mih+20] and thus we used random angles.

Figure 6.2: A visual depiction of the scheme described in Sec. 6.3.2. The mode operators â1
and â2 are mixed by a beam splitter B̂12(φ e

iψ) (see Eq. (4.101)). Only one of the outcomes of
the beam splitter, denoted by k̂, is selected and undergoes a homodyne detection (see Def. 4.26)
with a local oscillator of phase θ. The scheme measures the generalised quadrature 〈x̂θ(φ, ψ)〉
(see Eq. (6.30)).

This detection procedure can be extended to M -mode continuous-variable states by applying
the same two-mode beam splitter M − 1 times among the M modes. An M -mode covariance
matrix has M(M − 1) parameters.
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6.4 Detecting Entanglement of Unknown CV States

In this section, we introduce the results of our publication [Mih+20], in which we proposed
a detection scheme for entanglement in unknown continuous-variable states. The original pub-
lication, with publication details, can be found in Appendix B.

6.4.1 Results

The idea of [Mih+20] is to find an entanglement witness for a given covariance matrix by
using a semidefinite program. The conditions in Theorem 6.10 are not semidefinite constraints,
because the symplectic trace is not a linear function. In [Mih+20], we proved the following
theorem.

Theorem 6.13. Theorem 6.10 is satisfied by an entanglement witnessZ on a k-partiteM -mode
system, with

∑k
j=1 Mj = M , if Z fulfills the following conditions:

Z ≥ 0, (6.34)

Zj + i
xj
Mj

ΩMj
≥ 0, xj ∈ R, j = 1, . . . , k − 1, (6.35)

Zk +
i

Mk

(
1

2
−

k−1∑

j=1

xj

)
ΩMk

≥ 0, (6.36)

where Zj is the block matrix of the diagonal of Z acting on the subsystem j and ΩMk
=

⊕Mk

j=1

(
0 1
−1 0

)
is the symplectic form for Mk modes.

These constraints are semidefinite, however they are sufficient but not necessary conditions.
Therefore some entanglement witness does not satisfy them.

We then introduced a SDP based on the measurement scheme of Sec. 6.3.2. For simplicity,
we describe it for two modes. We have seen in Sec. 6.3.2 that a full reconstruction of the a two-
mode covariance matrix V is achieved by 10 measurements. For the generic l-th measurement,
the first step is to sample uniformly:

0 ≤ θl ≤ π, (6.37)
0 ≤ φl ≤ π, (6.38)
0 ≤ ψl ≤ 2π, (6.39)

and then measure the variance:
ml = Tr[PlV ], (6.40)

where Pl is given by Eq. (6.33). The problem of finding a witness Z for V reduces to finding
coefficients cj such that

Tr[ZV ] =
l∑

j=1

cjmj ⇒ Z =
l∑

j=1

cj Pj. (6.41)
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Hence, we proposed the following semidefinite program:

minimise
x

l∑

j=1

cxjmj,

subject to Z =
l∑

j=1

cxj Pj,

Z =

(
Z1 Zc

ZT
c Z2

)
≥ 0,

Z1 + ixΩ ≥ 0,

Z2 + i

(
1

2
− x
)

Ω ≥ 0.

(6.42)

Here, we relabelled the coefficients cj by cxj to emphasise their dependence on the parameter
x. If Tr[ZminV ] =

∑
j c

xmin
j mj < 1, then V is unambiguously entangled. Otherwise one

needs to add another measurement and repeat the process. Therefore, the number of required
measurements represents a figure of merit for the validity of our method. Since the conditions of
Eq. (6.34) are only sufficient, there is a small probability of needing more than 10 measurements
to detect the entanglement.
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Figure 6.3: 5×105 runs of the algorithm on the two-mode squeezed vacuum states with squeez-
ing parameter r ∈ [0, 2]. By successively adding measurements, the witness is evaluated at every
round until the presence of entanglement is certified. The data are normalised such that they sum
up to one for every value of entanglement. The probability that our method requires more than 10
measurements, in this case, is 0.0094%. The picture is taken from our publication [Mih+20].

We first applied our method to the two-mode squeezed vacuum state, whose logarithmic
negativity is proportional to the squeezing parameter r (see Eq. (6.14)). In figure 6.3, we
show the fraction of entanglement detection of TMSVSs with squeezing parameter r ∈ [0, 2]
for 5 × 105 runs of the algorithm, as a function of the logarithmic negativity and the number
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of measurements. A remarkable result is that lowly entangled states require on average fewer
measurements than highly entangled ones. This is due to experimental difficulties [Vah+16]
and to the geometry of the squeezed quadrature variances in phase space (see [Mih+20]). The
probability that our method needs more than 10 measurements (full tomography) is very low
(0.0094%).

We then tested our method for a random two-mode covariance matrix V (see Eq. (4.111)):

V = OT
2 [SSMS(r1)⊕ SSMS(r2)] O

T
1 [ν1I ⊕ ν2I] O1 [SSMS(r1)⊕ SSMS(r2)] O2, (6.43)

where ν1, ν2 ≥ 1 are symplectic eigenvalues, SSMS(r1),SSMS(r2) are single-mode squeezers
with parameter rj , andO1,O2 are orthogonal symplectic matrices. Therefore, we first generated
νj and rj by sampling from uniform distributions in finite real intervals,

νj ∈ [1, t] and rj ∈ [0, s], (6.44)

for t > 1 and s > 0. Then, we sampled O1 and O2 from the set of orthogonal symplectic
matrices [DMS+95]. In figure 6.4, we show the fraction of entanglement detection of a two-
mode random covariance matrix V for 5 × 105 runs of the algorithm, as a function of the
logarithmic negativity (calculated by Eq. (6.20)) and the number of measurements. In this
case, there is an improvement in the efficiency of entanglement detection for highly entangled
states compared to lowly entangled states. The probability that our method needs more than 10
measurements (full tomography) is again very low (0.05%).
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Figure 6.4: 5 × 105 runs of the algorithm on random two-mode CMs for νi ∈ [1, 5] and
ri ∈ [0, 2]. By successively adding measurements, the EW is evaluated at every round until
the presence of entanglement is certified. The data are normalised such that they sum up to one
for every value of entanglement. The probability that our method requires more than 10 measure-
ments, in this case, is 0.05%. The picture is taken from our publication [Mih+20].

Our scheme is applicable also to M -mode covariance matrices, with M > 2. We considered
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the four-mode covariance matrix

VBE =




2 0 0 0 1 0 0 0
0 1 0 0 0 0 0 −1
0 0 2 0 0 0 −1 0
0 0 0 1 0 −1 0 0
1 0 0 0 2 0 0 0
0 0 0 −1 0 4 0 0
0 0 −1 0 0 0 2 0
0 −1 0 0 0 0 0 4




, (6.45)

which is bound entangled [WW01], i.e. entangled with positive partial transpose. In figure
6.5, we show the fraction of entanglement detection of VBE for 104 runs of the algorithm, as a
function of the number of measurements. A full tomography corresponds to 36 measurements
(M [2M + 1] with M = 4) and our method needs on average 33 random measurements.

0 5 10 15 20 25 30 35 40

No. of Measurements

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

D
e
te

c
te

d
 F

ra
c
ti
o
n

Figure 6.5: 104 runs of the algorithm on the four-mode bipartite bound entangled CM in Eq.
(6.45). The data are normalised such that they sum up to one. The picture is taken from our
publication [Mih+20].

We concluded our analysis by performing statistical analysis, to take into account the statis-
tical fluctuations that are encountered in real experiments. Although our method also detects
entanglement in non-Gaussian states, we only considered Gaussian states, for which we can as-
sume that the outcomes of ni repeated homodyne measurements for a fixed direction θi follow
a Gaussian distribution. The sample variance P̄i, which estimates the variance mi = ∆(x̂θi)

2,
is given by:

P̄i =
1

ni − 1

ni∑

j=1

(
Xij − X̄i

)2
, (6.46)

where Xij = 〈x̂θi〉j (j = 1, . . . , Ni) and X̄i is the sample mean,

X̄i =
1

ni

ni∑

j=1

Xij. (6.47)
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The estimated value of Tr[zV ], denoted by Z̄, is given by:

Z̄ =
∑

i

ci P̄i, (6.48)

where i labels a measuring setting and ci is the coefficient that we get from solving the SDP of
Eq. (6.42). Since the data follows a Gaussian distribution, the sample variance for nI repetitions
of the measurement follows the χ2

ni−1 distribution [Kni00] for ni − 1 degrees of freedom, i.e.

ni − 1

mi

P̄i ∼ χ2
ni−1. (6.49)

By considering that number of measurement repetitions equal for every measurement direction,
i.e. ni = n for every i, and using the error propagation formula we showed that the uncertainty
of Z̄ reads:

∆(Z̄) =

√
2

n

√∑

i

c2im
2
i . (6.50)

In figure 6.6, we consider the single detection of an entangled CMV , with Tr[ZminV ] = 0.852,
and plot the 3σ confidence of Tr[ZV ] as a function of the number n of measurement repetitions.
A certification of Tr[ZV ] < 1 with 99.7%-confidence is possible for 6 measurements requir-
ing a high number of repetitions of the measurements. This number significantly decreases
with additional measuring settings, thus confirming the validity of our method also in realistic
scenarios.

Figure 6.6: The value of the witness with 95%-confidence for Gaussian states, as obtained by the
statistical estimate according to Eq. (6.50). The picture is taken from our publication [Mih+20].



7
Hierarchy of Quantum Resource Theories

Quantum resource theories (QRTs) [CG19] provide a framework for quantitatively studying
different quantum phenomena. The set of quantum states is partitioned into two groups, the
free states and resource states. Consequently, quantum operations are called free when they
transform any free state into a free state. The set of free states and operations are identified
by given theoretical or practical constraints, for which only some operations can be (easily)
implemented or only some states can be (easily) prepared. Quantum resource theories provide
meaningful ways to quantify given physical resources, through resource monotones.

This chapter is an introduction to our publication [GKB21], which is contained in full in Ap-
pendix C. In this article, we established a hierarchy of continuous-variable resources, namely
purity, coherence, discord and entanglement. Our results represent the continuous-variable
counterpart to an analogous hierarchy of discrete-variable resources [Str+18].

This chapter is structured as follows. In Sec. 7.1, the general formalism associated with
quantum resource theories is introduced. The discrete-variable resource theories of coherence,
purity, entanglement and discord are discussed in Sec. 7.2, while their extensions to continuous
variables are addressed in Sec. 7.3. Finally, in Sec. 7.4, we summarise [GKB21], and discuss
possible research outlooks. Besides [GKB21], the content of this chapter is mostly inspired
from [CG19; Str+18; SAP17; Gou+15].

7.1 Resource Theories
In this section, we introduce basic definitions and properties of general quantum resource

theories. In the following, the set of density operators over a Hilbert space H is denoted by
S(H) and the set of quantum operations (channels) from S(H) to itself is denoted by Q(H).

Definition 7.1 (Quantum resource theory [CG19]). Let O(H) ⊂ Q(H) and F(H) ⊂ S(H) be
non-empty subsets of the sets of quantum channels Q(H) and densities S(H), respectively. A
quantum resource theory (QRT) is a tuple (O(H),F(H)) that satisfies the following conditions:

1. O(H) contains the identity map idH over S(H);

86
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2. The composition of channels in O(H) is closed in O(H), i.e. Φ ◦ Λ ∈ O(H) for any
Φ,Λ ∈ O(H);

3. Channels in O(H) map F(H) to itself, i.e. Λ[ρ] ∈ F(H) for any Λ ∈ O(H) and ρ ∈
F(H).

F(H) and O(H) are called the sets of free states and free operations, respectively. Conversely,
any σ ∈ S(H)\F(H) is called a resource state.

The conditions in Def. 7.1 formalise intuitive ideas of what "free" and "resourceful" mean for
quantum states and operations. The identity map has always to be free in every resource theory,
as it represents the action of doing nothing. The second condition guarantees that different free
operations can be freely applied multiple times and in any possible combination. The third
condition finally ensures that resource states cannot be created "for free", i.e. by applying free
operations on free states. The set of free states F(H) has to be strictly included in S(H), i.e.
F(H) 6= S(H), otherwise the resource theory would be trivial. Analogously, O(H) 6= Q(H).

Def. 7.1 provides a minimal set of requirements for defining a quantum resource theory.
Depending on the theory, more assumptions may be needed. We here present some of the most
relevant ones [CG19].

Definition 7.2. A QRT (O(H),F(H)) admits a tensor-product structure if the following con-
ditions are met:

• The free operations are completely free, i.e. for any free operation ΛA ∈ O(HA), ΛA ⊗
idB ∈ O(HA ⊗ HB), where idB is the identity map for density operators acting on an
arbitrary Hilbert spaceHB;

• The tensor product of free states is a free state, i.e. ρA ⊗ σB ∈ F(HA ⊗ HB) for any
ρA ∈ F(HA) and σB ∈ F(HB), and for anyHA,HB;

• The trace and partial trace are free operations. Consequently, ρA = TrB[ρAB] ∈ F(HA)
for any ρAB ∈ F(HA ⊗HB).

Definition 7.3. A QRT (O(H),F(H)) is a convex resource theory if the sets O(H) and F(H)
are convex, i.e. for a probability distribution {pi}, with pi ≥ 0 and

∑
i pi = 1, it holds:

∑

i

piΛi ∈ O(H), ∀ Λi ∈ O(H), (7.1)

∑

i

piρi ∈ F(H), ∀ ρi ∈ F(H). (7.2)

Usually, the sets of free states and operations are not selected simultaneously. In many re-
source theories (e.g coherence, see Sec. 7.2.1), a set of free states F(H) ⊂ S(H) is identified
by properties related to the resource. Afterwards, the operations that transform any free state
into a free state are defined as free operations.

Definition 7.4. Let F(H) ⊂ S(H) be a set of free free states. A set Omax(H) ⊂ Q(H)
of quantum operations is said to be the set of maximally free operation if it contains all the
operations Λ such that

Λ[ρ] ∈ F(H), ∀ ρ ∈ F(H). (7.3)

The set Omax(H) is convex if and only if F(H) is convex [CG19].
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7.1.1 Quantifying Resources
Definition 7.5. Let (O(H),F(H)) be a quantum resource theory (see Def. 7.1). A function
f : F(H)→ R≥0 is called a resource monotone if:

ρ ∈ F(H)⇒ f(ρ) = 0; (7.4)
f (Λ[ρ]) ≤ f(ρ), ∀ Λ ∈ O(H). (7.5)

Resource monotones are used to quantify the amount of resource in a quantum states. De-
pending on the specific resource theory, resource measures are defined as resource monotones
with additional properties, which may be:

(Sub) additivity. A resource monotone f is subadditive if, for all ρ, σ ∈ S(H),

f(ρ⊗ σ) ≤ f(ρ) + f(σ). (7.6)

When the equality holds in Eq. (7.6) for all states, the function is additive.

Convexity. A resource monotone f is convex if:

f

(∑

i

piρi

)
≤
∑

i

pi f(ρi), (7.7)

for any collection of states ρi ∈ S(H) and probability distribution {pi}, with pi ≥ 0 and∑
i pi = 1.

A relevant class of resource monotone are based on contractive distances, i.e. distances d :
S(H)× S(H)→ R≥0 such that:

d (Λ[ρ],Λ[σ]) ≤ d(ρ, σ), (7.8)

for any ρ, σ ∈ S(H) and Λ ∈ Q(H).

Theorem 7.6. Let F(H) be a set of free states and d be a contractive distance (see Eq. (7.8)).
Then,

Rd(ρ) = inf
σ∈F(H)

d(ρ, σ). (7.9)

is a resource monotone for the quantum resource theory (Omax(H),F(H)), whereOmax(H) is
the set of maximally free operations (see Def. 7.4) for F(H).

It is immediate to verify that Rd(ρ) = 0 for any ρ ∈ F(H). The monotonicity follows from
the contractivity of d and from the fact that Λ[σ] ∈ F(H) for all σ ∈ F(H) and Λ ∈ Omax(H):

Rd (ρ) = inf
σ∈F(H)

d(ρ, σ) ≥ inf
σ∈F(H)

d (Λ[ρ], λ[σ]) = inf
τ∈F(H)

d (Λ[ρ], τ) = Rd (Λ[ρ]) . (7.10)

Note that the monotonocity under Omax(H) implies the monotonicity under any set of free
operations O(H) ⊆ Omax(H).

It is possible to include in this family resources measures based on entropic pseudo-distances,
such as the relative entropy (see Def. 3.18).

Definition 7.7. For a quantum resouce theory (O(H),F(H)), the relative entropy of resource
is the quantity

Rrel(ρ) = inf
σ∈F(H)

S(ρ‖σ), (7.11)

where S(ρ‖σ) := −S(ρ) + Tr[ρ log σ] is the quantum relative entropy of ρ and σ.
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7.2 Discrete-variable Resource Theories
We here introduce a selection of resource theories that are relevant to this thesis. Namely,

we address the resource theories of coherence (see Sec. 7.2.1), athermality and purity (see Sec.
7.2.2), entanglement (see Sec. 7.2.3) and discord (see Sec. 7.2.4). We conclude this section by
showing their connection in Sec. 7.2.5.

7.2.1 Resource Theory of Coherence

When we introduced qubits (see Sec. 3.1.1), we discussed that their main advantage with
respect to classical bits is the possibility of having superpositions of the basis states |0〉 and
|1〉. This property is quantified by the resource theory of quantum coherence [Åbe06; BCP14;
LM14; WY16].

Definition 7.8 (Incoherent states [SAP17]). Let {|i〉} be an orthonormal basis for a d-dimen-
sional Hilbert space H. A state ρI ∈ S(H) is said to be incoherent in the basis {|i〉} if it is
diagonal in such basis, i.e.

ρI =
d−1∑

i=0

pi |i〉 〈i| , (7.12)

where {pi} is a probability distribution, with pi ≥ 0 and
∑

i pi = 1.

The set of incoherent states, denoted by I, is the set of free states for the resouce theory
of coherence. From Def. 7.8, we see that I is a convex set, therefore the resource theory of
coherence is convex.

Definition 7.9 (Dephasing operator [SAP17]). Let {|i〉} be an orthonormal basis for a Hilbert
space H of dimension d and I ⊂ S(H) be the set of incoherent states in the basis {|i〉}. The
dephasing operator is the channel ∆ : S(H)→ I that is defined as:

∆[ρ] :=
d−1∑

i=0

|i〉 〈i| ρ |i〉 〈i| . (7.13)

Any quantum state ρ =
∑

j,k pjk |j〉 〈k| ∈ S(H) is mapped by ∆ to an incoherent state:

∆[ρ] =
d−1∑

i=0

|i〉 〈i| ρ |i〉 〈i| =
d−1∑

i=0

|i〉 〈i|
(

d−1∑

j,k=0

pjk |j〉 〈k|
)
|i〉 〈i| =

d−1∑

i=0

pii |i〉 〈i| . (7.14)

For an incoherent state ρI , pjk = pjδjk. By inserting this condition in Eq. (7.14), we see that

∆[ρI ] = ρI ⇔ ρI ∈ I. (7.15)

The maximal set of free operations (see Def. 7.4) in the resource theory of coherence is
called the set of maximally incoherent operations (MIO) [Åbe06]. It contains all channels
ΛMIO ∈ Q(H) such that:

ΛMIO[ρI ] ∈ I, ∀ ρI ∈ I. (7.16)
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A smaller subset of free states is the set of incoherent operations (IO) [BCP14], which is
formed by those operations ΛIO that admit a Kraus decomposition (see Theorem 3.13) in terms
of incoherent Kraus operators. Namely, ΛIO[ρ] =

∑
i K̂iρK̂

†
i , with

K̂i ρI K̂
†
i

Tr[K̂i ρI K̂
†
i ]
∈ I, ∀ ρI ∈ I. (7.17)

This definition ensures that IOs cannot generate coherence probabilistically. It holds that IO is
a strict subset of MIO [WY16; CG16a; CG16b],

IO ⊂MIO. (7.18)

We refer to [SAP17] for a detailed review of other relevant subsets of free operations.

Definition 7.10. A coherence measure (see Sec. 7.1.1) is a function C that is required to satisfy
the following axioms [Åbe06; BCP14].

(C1) Non-negativity: C(ρ) ≥ 0 for any density operator ρ ∈ S(H) and C(ρ) = 0 if and only if
ρ ∈ I;

(C2) Monotonicity under a given sets of free operations, e.g. MIO: C(ρ) ≥ C(ΛMIO[ρ]) for
any ΛMIO ∈MIO;

(C3) Convexity:
∑

i pi C(ρi) ≥ C (
∑

i pi ρi) for any set of probabilities {pi}.
The condition (C2) is often replaced by the following stronger condition.

(C2’) Strong monotonicity: C does not increase on average under selective incoherent opera-
tions, i.e. ∑

i

qi C(σi) ≤ C(ρ), (7.19)

where qi = Tr(K̂iρK̂
†
i ), σi = K̂iρK̂

†
i /pi and {K̂i} is a set of incoherent Kraus operators

(see Eq. (7.17)).

Indeed, the conditions (C2’) and (C3) together imply (C2) for the set IO [BCP14].
Among distance-based coherence measures (see Theorem 7.6), the relative entropy of coher-

ence (see Eq. (7.11)),
Crel(ρ) := min

σ∈I
S(ρ‖σ), (7.20)

is particularly relevant, because it admits a simple closed expression [Åbe06; BCP14]:

Crel(ρ) = S(∆[ρ])− S(ρ), (7.21)

where ∆ is the dephasing operator (see Def. 7.9).
Since coherence is a basis-dependent concept, unitary operations are not, in general, free

operations.

Definition 7.11 (Maximally coherent mixed state [Sin+15; Yao+16a]). A state ρmax ∈ S(H) is
a maximally coherent mixed state (MCMS) with respect to a coherence monotone C (see Def.
7.10) if ρmax maximises, via unitary operations, the coherence of a given ρ ∈ S(H) with respect
to a coherence measure C, i.e.

C(ρmax) = Cmax(ρ) := sup
Û

C(Ûρ Û †). (7.22)
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Relevant results for the MCMS were found in [Str+18].

Theorem 7.12. Let {|n+〉} be a mutually unbiased basis with respect to the incoherent basis
{|i〉}, i.e. a basis such that for any |n+〉 and |i〉 it holds:

| 〈i|n+〉 |2 =
1

d
, (7.23)

where d is the dimension of the Hilbert space. Among all the states ρ with a fixed spectrum
{ pn }, the state

ρmax =
d∑

n=1

pn |n+〉 〈n+| (7.24)

is the maximally coherent mixed state with respect to any MIO monotone.

Theorem 7.13. Let Cd be the coherence monotone based on a contractive distance d (see The-
orem 7.6). The maximal coherence of a state ρ with respect to Cd is given by:

Cd;max(ρ) = Cd(ρmax) = d(ρ, Î/d), (7.25)

where Î/d is the maximally mixed state for the dimension d.

We conclude this section by noting that, for a composite M -partite system, the incoherent
states are in the form [BCA15; Str+15]:

ρI =
∑

i1,...,iM

pi1,...,iM |i1〉 〈i1| ⊗ · · · ⊗ |iM〉 〈iM | , (7.26)

where {pi1,...,iM} is a M -partite probability distribution, and {|ij〉 〈ij|} is a local orthonormal
basis for the j-th system. The results of this section straightforwardly extend to multipartite
systems, considering {|i〉} := {|i1〉 ⊗ · · · ⊗ |iM〉} as the incoherent basis.

7.2.2 Resource Theories of Athermality and Purity (Non-uniformity)
The formalism of quantum resource theories has been recognised as an important tool for

quantum thermodynamics [Bra+13; Bra+15; MO17; NW18; Los19]. For instance, the resource
theory of athermality has been formulated to study the interactions between a system and a
thermal bath at temperature T under the condition of global energy conservation.

The free states of this resource theory are those in thermal equilibrium with the bath, i.e
Gibbs states (see Theorem 4.20) τβ(Ĥ) = e−βĤ/Tr

[
e−βĤ

]
, where Ĥ is the Hamiltonian of the

system and β = 1/κT , with κ being the Boltzmann’s constant.

Definition 7.14 (Gibbs-preserving operations [NW18]). The maximal set of free operations (see
Def. 7.4) in the resource theory of athermality is called the set of Gibbs-preserving operations
(GP), i.e. the set of all operation ΛGP such that:

ΛGP [τβ(Ĥ)] = τβ(Ĥ), (7.27)

where τβ(Ĥ) is the Gibbs state for the Hamiltonian Ĥ and the inverse temperature β of the
system.



92 7. Hierarchy of Quantum Resource Theories

Definition 7.15 (Thermal operations [Jan+00; Bra+13; NW18]). Let S be a system with Hamil-
tonian ĤS . A quantum channel ΛTO is called a β-thermal operation (TO) if and only if admits
a Stinespring dilation (see Theorem 3.14) in the form:

ΛTO[ρ] = TrE

[
ÛSE

(
ρ⊗ τβ(ĤE)

)
Û †SE

]
, (7.28)

where τβ(ĤE) is the Gibbs state for an environmental system E with Hamiltonian ĤE and ÛSE
is an energy-preserving unitary operation on the composite system SE, i.e. [ÛSE, Ĥtot] = 0,
with Ĥtot := ĤS ⊗ ÎE + ÎS ⊗ ĤE .

Thermal operations are a more physically relevant set of free operations since they have a
clear physical interpretation in terms of energy exchanges between the system S and an envi-
ronment E.

A special case of this resource theory, which is relevant in quantum information theory,
emerges when the Hamiltonian of the system has a fully degenerate spectrum, i.e. the Hamil-
tonian is in the form Ĥ = EÎd, where Îd is the d-dimensional identity operator and E ∈ R.
We can easily see that the Gibbs state for this system at any temperature is the d-dimensional
maximally mixed state:

e−β EÎd

Tr
[
e−β EÎd

] =
e−β E Îd

e−β ETr
[
Îd

] =
Îd
d
, (7.29)

and any unitary operator commutes with the Hamiltonian. Therefore the system cannot ex-
change energy with the environment, but only entropy.

This resource theory has been called resource theory of purity or of non-uniformity [Gou+15].
The latter term is preferred when there is the need to stress the dimensional dependence in the
theory since pure states with different dimensions generally have a different resource content.

The Gibbs-preserving channels are replaced by the unital operations [MW09], i.e. the oper-
ations ΛU that preserve the maximally mixed state:

ΛU

[
Î

d

]
=
Î

d
, (7.30)

and the thermal operations are replaced by the noisy operations (NO) [HHO03; Hor+03], i.e.
the operations that admit a Stinespring dilation (see Theorem 3.14) in the form:

ΛNO[ρ] = TrE

[
ÛSE

(
ρ⊗ ÎdE

dE

)
Û †SE

]
, (7.31)

where ÎdE/dE is the maximally mixed state for an environmental dE-dimensional system E and
ÛSE is a unitary operation on the composite system SE.

Definition 7.16. A purity measure (see Sec. 7.1.1) is a function P that satisfies the following
requirements [Gou+15; Str+18].

(P1) Non-negativity: P(ρ) ≥ 0 for any density operator ρ ∈ S(H) and P(ρ) = 0 if and only if
ρ = Îd/d;

(P2) Monotonicity under unital operations: P(ρ) ≥ P(ΛU [ρ]) for any unital operation ΛU ;
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(P3) Additivity: P(ρ⊗ σ) = P(ρ) + P(σ) for any two states ρ and σ;

(P4) Maximal value for pure states: P(|ψ〉 〈ψ|) = log d for any pure state |ψ〉 on a system of
dimension d.

7.2.3 Resource Theory of Entanglement
We have already seen, in the previous chapters, that quantum entanglement is one of the most

important phenomena in quantum information theory. Not surprisingly, the resource theory of
entanglement is one of the oldest and most developed resource theories [PV07; Hor+09].

For simplicity of notation, we only consider bipartite entanglement in this subsection. The
set of free states S is then the convex set of bipartite separable states (see Def. 3.8) ρAB =∑

k pk ρ
k
A ⊗ ρkB, where pi ≥ 0 and

∑
i pi = 1. The extension to the multipartite case is

achieved by letting S be the set of fully separable multipartite states (see Def. 6.1).

Definition 7.17 (Separable operations [Ved+97; Rai01]). The maximal set of free operations
(see Def. 7.4) associated to the set S of bipartite separable states of a system AB is called
the set of separable operations. It contains all channels Λsep ∈ Q(HAB) that admit a Kraus
decomposition (see Theorem 3.13) in terms of tensor product Kraus operators:

Λsep[ρ] =
∑

k

(
Âk ⊗ B̂k

)
ρ
(
Âk ⊗ B̂k

)†
, (7.32)

where Âk and B̂k act on the subsystems A and B, respectively.

An important subset of free operations is the set of local operations and classical communica-
tions (LOCC) [Ben+96a; Ben+96b; Ved+97]. This set describes the realistic physical scenarios
in which two distant parties, Alice and Bob, are freely allowed to exchange classical informa-
tion and perform arbitrary local quantum operations on their individual subsystems. The parties
are not allowed to transfer quantum information or perform non-product operations on the com-
posite system. Despite its adherence to the experimental reality, this set is characterised by a
very complex mathematical structure [Gru+08; Hor+09; Chi+14].

There are several types of entanglement measures [Hor+09], with different properties. Any
measure E has to be an entanglement monotone (see Def. 7.5), i.e. E needs to satisfy the
following requirements.

(E1) Non-negativity: E(ρ) ≥ 0 for any ρ ∈ S(H) and E(ρS) = 0 for any ρS ∈ S;

(E2) Monotonicity under separable operations Λsep or smaller subsets of free operations, i.e.
E(ρ) ≥ E(Λsep(ρ)) for any separable operation Λsep.

We have seen an example of entanglement measure, the logarithmic negativity (see Def.
6.6), which was shown to be a monotone under LOCC [VW02]]. Distance-based entanglement
measures (see Theorem 7.6), such as the relative entropy of entanglement,

Erel(ρ) := inf
σ∈S

S(ρ‖σ), (7.33)

were introduced in [Ved+97; VP98].
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7.2.4 Resource Theory of Discord
Two systems A and B are correlated if together they contain more information than taken

separately. The correlations between A and B may be classical or quantum, and are quantified
by the quantum mutual information (see Eq. (3.70)) I(A : B) = S(A)− S(A|B).

Definition 7.18 (Quantum Discord [Zur00; HV01; OZ01]). The quantum discord D(B|A) of a
bipartite state ρAB is defined as the difference between total correlations and classical correla-
tions. Mathematically,

D(B|A) = I(A : B)−max
{M̂a}

I(B|A′), (7.34)

where I(A : B) is the mutual information between A and B (see Eq. (3.70)), the maximisation
is performed over all measurements (see Eq. (3.16)) {M̂a} on the system A, and I(B|A′)
denote the mutual information calculated in the state ρ′AB, which is the state produced by the
measurement M̂a on ρAB, i.e.

ρ′AB :=
∑

a

(M̂a ⊗ ÎB) ρAB (M̂ †
a ⊗ ÎB)

Tr
[
(M̂a ⊗ ÎB) ρAB (M̂ †

a ⊗ ÎB)
] , (7.35)

where ÎB is the identity over the system B.

Quantum discord has the following properties [Mod+12].

1. Asymmetry: D(B|A) 6= D(A|B) in general;

2. Non-negativity: D(B|A) ≥ 0 for all states ρAB and D(B|A) = 0 if and only if ρAB is a
classical-quantum state [OZ01; Dat08]:

ρAB =
∑

i

pi Π̂
A
i ⊗ ρBi , (7.36)

where Π̂A
i :=

∣∣eAi
〉 〈
eAi
∣∣ is a projector onto the i-th element of any basis of A;

3. Upper-boundness [LL11]: D(B|A) ≤ S(A);

4. Invariance under under local-unitary transformations: D(B|A) is the same for ρAB and
(ÛA ⊗ ÛB)ρAB(ÛA ⊗ ÛB)†.

A resource theory of quantum discord is designed by considering the set Z of classical-
quantum states (see Eq. (7.36)) as the set of free states. Note that this set is not convex, so this
is an example of non-convex resource theory. Distance-based discord monotones (see Theorem
7.6), such as the relative entropy of discord,

Drel(ρ) := inf
σ∈Z

S(ρ‖σ), (7.37)

are established in the literature [Mod+10].
A related measure of quantum correlations is the symmetric discord [PHH08; WPM09;

GPA11], which removes the asymmetry between the systems A and B in Def. 7.18.
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Definition 7.19 (Symmetric Discord). The symmetric discord DS(A,B) of a bipartite state ρAB
is defined as

D(A,B) = I(A : B)− max
{M̂a⊗M̂b}

I(A′ : B′), (7.38)

where I(A : B) is the mutual information between A and B (see Eq. (3.70)), the maximisation
is performed over all measurements {M̂a} on the system A and {M̂b} on the system B, and
I(A′ : B′) = I(ρ′AB) with

ρ′AB :=
∑

a,b

(M̂a ⊗ M̂b) ρAB (M̂ †
a ⊗ M̂ †

b )

Tr
[
(M̂a ⊗ M̂b) ρAB (M̂ †

a ⊗ M̂ †
b )
] . (7.39)

The symmetric discord satisfies DS(A,B) = DS(B,A). Moreover, DS(A,B) = 0 if and
only if ρAB is a classical state [Opp+02; PHH08]:

ρAB =
∑

a,b

pab Π̂a ⊗ Π̂b, (7.40)

where Π̂a and Π̂b are projectors onto any basis of A and B, respectively. The set of classical
states, denoted by ZS , is a subset of that of classical-quantum states (see Eq. (7.36)), Z . A
resource theory of symmetric discord is established by using ZS as the set of free states.

Both asymmetric and symmetric discord can be extended to the multipartite case [Mod+12].
In the following, we will only consider multipartite symmetric discord, which is naturally de-
fined from Eq. (7.38) by considering a tensor product of more than two elements.

7.2.5 Relations between the Resource Theories
The general framework of quantum resource theories allows us to explore the relations be-

tween different resources.
Let us consider a multipartite system A1A2 . . .AM of total dimension dtot =

∑
i di, with di

being the dimension of the subsystem Ai. In this scenario, we consider the following resource
monotones based on the same contractive distance d (see Theorem 7.6):

Cd(ρ) := inf
σ∈I

d(ρ, σ), Pd(ρ) := d(ρ, Î/dtot),

Ed(ρ) := inf
σ∈S

d(ρ, σ), Dd(ρ) := inf
σ∈ZS

d(ρ, σ),
(7.41)

where

• Cd is a distance-based coherence measure and I is the set of incoherent states (see Def.
7.8) in some product basis {|i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iM〉};

• Pd is a distance-based purity measure and Î/d is the dtot-dimensional maximally mixed
state, which is the only free state in the resource theory of purity;

• Ed is a distance-based entanglement measure and S is the set of fully separable states (see
Def. 6.1);

• Dd is a distance-based symmetric discord measure and ZS is the set of multipartite clas-
sical states (see Eq. 7.40).
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Streltsov et al. [Str+18] derived the following result.

Theorem 7.20. There exist a hierarchy of purity, coherence, symmetric discord and entangle-
ment, i.e. for any Cd, Pd, Ed and Dd given by Eq. (7.41) for the same contractive distance d, it
holds:

P(ρ) ≥ C(ρ) ≥ D(ρ) ≥ E(ρ), (7.42)

for any ρ ∈ S(H). In particular, introducing

Cmax(ρ) := sup
Û

C(ÛρÛ †), Dmax(ρ) := sup
Û

D(ÛρÛ †), Emax(ρ) := sup
Û

E(ÛρÛ †),

(7.43)
it holds:

P(ρ) = Cmax(ρ) ≥ Dmax(ρ) ≥ Emax(ρ). (7.44)

Therefore any amount of purity can be converted into coherence through unitary operations.
Moreover, any purity measure on a quantum state ρ upper-bounds the amount of coherence,
symmetric discord and entanglement in ρ. We shall see in the following how we extended in
[GKB21] this relation to continuous-variable systems.

7.3 Continuous-variable Resource Theories
The extension of the resource theories of Sec. 7.2 to continuous variables is not trivial, be-

cause of mathematical properties associated with infinite-dimensional Hilbert spaces. Consider
for instance the relative entropy S(ρ‖σ) := Tr(ρ(log ρ − log σ)). For finite-dimensional sys-
tems, the following theorem holds [Weh78].

Theorem 7.21. Let S(H) denote the set of density operators on a Hilbert space H, and ‖ · ‖1
denote the trace norm (see Eq. (3.73)) of S(H). If H is finite-dimensional, then the relative
entropy S : S(H) × S(H) → R≥0 is trace norm continuous. Namely, if a sequence of density
operators {σn} ⊆ S(H) satisfies

lim
n→∞

‖σn − σ‖1 = 0, (7.45)

for a given state σ, then
lim
n→∞

S(σn‖σ) = 0. (7.46)

This theorem does not hold for infinite-dimensional Hilbert spaces, and this prevents the use
of the relative entropy as a resource monotone (see Def. 7.7) for general continuous-variable
states. However, the relative entropy becomes trace-norm continuous if one considers a sub-
set of states with finite mean energy [Weh78]. More precisely, one needs to require that the
Hamiltonian Ĥ of the system satisfies

Tr[e−βĤ ] <∞, (7.47)

for all β > 0. This condition ensures that a Gibbs state (see Eq. (4.81)) exists and that the mean
energy, which is given by the formula [Bin+19]

〈Ĥ〉 = − ∂

∂β
Tr[e−βĤ ], (7.48)
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is finite.
In the context of the resource theory of entanglement, Eisert et al. [ESP02] proved that the

relative entropy of entanglement (see Eq. (7.33)) and other entanglement measures are trace-
norm continuous when Eq. (7.47) is satisfied. Since then, the assumption of finite mean energy
has been used also in other continuous-variable resource theories, such as that of coherence
[Zha+16].

In the following, we are going to introduce the resource theories of continuous-variable co-
herence and discord. Continuous-variable entanglement was already treated in Sec. 6.1, while
the resource theory of continuous-variable non-uniformity will be introduced in Sec. 7.4.

7.3.1 Resource Theory of (Gaussian) Coherence

Zhang et al. [Zha+16] introduced a resource theory of coherence for continuous-variable
systems, where the set I of incoherent states is formed by states that are diagonal in the infinite-
dimensional Fock basis (see Sec. 4.1.2). In this theory, a coherence monotone C has to satisfy
the same conditions of Def. 7.10 and, in addition,

(C4) Finite coherence for systems with finite mean energy: C(ρ) < ∞ for all ρ ∈ S(H) such
that Tr[ρĤ] <∞.

The authors proved that the relative entropy of coherence Crel(·) := minτ∈I S(·‖τ) satisfies the
condition (C4), thus being a valid measure of coherence also in the infinite-dimensional case.

The difficulties associated with infinite-dimensional Hilbert spaces prevented a detailed study
of coherence for general continuous-variable states. However, some relevant results were found
by focusing on the relevant Gaussian subclass, in which all states and operations are Gaussian.

Theorem 7.22 (Incoherent Gaussian states [Xu16]). An M -mode Gaussian state is incoherent
in the product Fock basis |n1〉 |n2〉 . . . |nM〉 if and only if it is a Gaussian thermal state (see Eq.
(4.82)).

We denote the subset of all incoherent Gaussian states by IG. The free operations of the
resource theory of Gaussian coherence are the incoherent Gaussian operations (IG) [Xu16],
which are defined as all quantum channels that map thermal states into thermal states. The math-
ematical expression of IG is given in [Xu16] and, in an alternative formulation, in [GKB21].

Gaussian coherence measures are defined as coherence measures with respect to IG as free
states and IG as free operations. They quantify the Gaussian coherence, which is an upper-
bound of the proper coherence, since IG ⊂ I. Xu [Xu16] derived the following formula for the
relative entropy of Gaussian coherence of a generic M -mode Gaussian state ρ:

CGrel(ρ) := S(ρ‖τM(n̄ρ)) = −S(ρ) +
M∑

m=1

[(n̄m + 1) log(n̄m + 1)− n̄m log n̄m] , (7.49)

where n̄m is the average occupation number of the m-th mode of ρ (see Eq. (4.57)), τM(n̄ρ)
represents the thermal state with the same n̄m of ρ and the von-Neumann entropy S(ρ) is given
by Eq. (4.64).
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7.3.2 Resource Theory of (Gaussian) Discord
Many concepts from the finite-dimensional resource theory of discord can be extended to

continuous-variable systems [Tat+12; BLA19]. The definitions of asymmetric and symmetric
discord are still given by Defs. 7.18 and 7.19, respectively. Analogously, classical-quantum
states are defined by Eq.(7.36) and classical states are defined by Eq. (7.40). To our knowledge,
an extensive study of discord in non-Gaussian continuous-variable systems has not been carried
out so far.

For Gaussian states ρAB, quantum discord is defined as in Def. 7.18,

D(B|A) = I(A : B)− max
{M̂G

a }
I(B|A′), (7.50)

where the maximisation can be limited to the Gaussian measurements {M̂G
a } [Pir+14].

Gaussian discord was studied in [AD10; GP10] for the asymmetric case and in [Miš+11] for
the symmetric case. The extension to the multipartite case was considered in [BLA19], both in
the asymmetric and symmetric cases.

A remarkable result found in [AD10] and [Miš+11] is that all non-product Gaussian states
have non-zero (asymmetric or symmetric) discord. This means that Gaussian states are either
not correlated at all or possess both classical and quantum correlations. A resource theory of
Gaussian discord is then established by considering the set of Gaussian product states,

ZG = {ρ s.t. ρ = ρA ⊗ ρB, ρA, ρB Gaussian }, (7.51)

as the set of free states.

7.4 Hierarchy of Quantum Resource Theories in CV Systems
In this section, we introduce the results of our publication [GKB21], in which we established

a hierarchy of quantum resources for non-uniformity, coherence, discord and entanglement in
continuous-variable systems. The original publication, with publication details, can be found in
Appendix C.

7.4.1 Results
In [GKB21], we considered a system with a finite number M of discrete spectral and spatial

modes, which refer to the frequency and location of the mode, respectively. The different
frequencies were labeled by an index ω = ω1, ω2, . . . , ωMf

and the spatial degrees of freedom
were labelled by an index j = 1, 2, . . . ,Ms. We cataloged our modes first in term of frequency
and then in terms of their spatial label (see Fig. 7.1).

Maximal Coherence at Fixed Energy

We defined a maximally coherent mixed state (MCMS) at fixed energy with respect to a
coherence monotone C (see Def. 7.10) as a state ρmax that satisfies

C(ρmax) = Cmax(ρ) := sup
ÛEP

C(ÛEP ρ Û †EP ), (7.52)
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Figure 7.1: Graphical depiction of the labeling of the spectral and spatial modes. The modes are
cataloged first in terms of their frequency ω = ω1, ω2, . . . , ωMf

(represented by a distinct colour)
and then in terms of their spatial label j = 1, 2, . . . ,Ms. The picture is taken from our publication
[GKB21].

where ÛEP are energy-preserving unitaries. When Gaussian states and operations are consid-
ered in Eq. (7.22), we called ρmax the maximally coherent mixed Gaussian state (MCMGS)
at fixed energy with respect to C. We considered the behiavour at fixed energy because the co-
herence depends on the energy of the system and can in principle be increased indefinitely by
energy non-preserving unitaries.

Consider an arbitrary Gaussian state ρ with mean occupation number

N =

ωMf∑

ω=ω1

Nω, Nω =
∑

j

n̄ω;j, (7.53)

where n̄ω;j = 〈â†ω;j âω;j〉ρ is the single mode occupation number (see Eq. (4.57)) for the mode
with frequency ω and spatial label j. We derived that the maximal relative entropy of Gaussian
coherence (see (7.49)) at fixed energy CGrel;max(ρ) of ρ can be expressed as:

CGrel;max(ρ) =

ωMf∑

ω=ω1

S

(
ρω

∥∥∥ τMs

(
Nω

Ms

, . . . ,
Nω

Ms

))
, (7.54)

where τMs(Nω/Ms, . . . , Nω/Ms) is an Ms-mode thermal state (see Eq. (4.82)) at frequency ω
with equal single-mode occupation numbers, i.e. n̄ω;j = Nω/Ms for all j = 1, 2, . . .Ms. This
result was the main step that allowed us to establish the hierarchy of resources.

Resource theory of (Gaussian) non-uniformity

We introduced a continuous-variable resource theory of non-uniformity by considering purity
at given energy as a resource. For an M -mode system with Mf frequencies and Ms spatial
labels, we found that the following Gaussian thermal state (see Eq. (4.82)), which we named
uniform state, is the CV counterpart at finite energy to the DV maximally mixed state:

τM(δ) =

ωMf⊗

ω=ω1

τMs(δω), τMs(δω) := τ(δω)⊗ τ(δω)⊗ · · · ⊗ τ(δω)︸ ︷︷ ︸
(Ms times)

, (7.55)
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where δω = (δω, δω, . . . , δω) is a collection of equal elements δω := Nω/Ms, and Nω is the total
occupation number for all spatial modes with frequency ω. The covariance matrix of τM(δ)
reads:

V [τM(δ)] =

ωMf⊕

ω=ω1

(2δω + 1) I2Ms . (7.56)

Both the general and Gaussian version of this resource theory have the same set of free
states. We introduced the set of uniformity-preserving operations (UP) as the set of all maps
that preserve the uniform state τM(δ) (see Eq. (7.55)), i.e.

ΛUP [τM(δ)] = τM(δ). (7.57)

The Gaussian channels in UP form the subset of uniformity-preserving Gaussian operations
(UPG). Among Gaussian channels in UPG, we defined the Gaussian noisy operations (GN) as
those Gaussian channels ΛGN that admit the following decomposition:

ΛGN [ρ] = TrME

[
Û

(M+ME)
O (ρ⊗ τME

(δ)) Û
(M+ME) †
O

]
, (7.58)

where τME
(δ) is the uniform state (see Eq. (7.55)) for ME environmental modes and with

the same δ of the system, and Û (M+ME)
PG is an (M + ME)-mode energy-preserving Gaussian

unitary, i.e. a passive Gaussian unitary (see Def. 4.24). We do not know whether the inclusions
GN ⊆ UPG ⊆ UP are strict or not.

We introduced the relative entropy of non-uniformity,

Prel(ρ) := S (ρ‖τM(δ)) , (7.59)

and proved it to be a valid non-uniformity measure. Restricting ourselves to Gaussian states
and operations, we found that the relative entropy of Gaussian non-uniformity PGrel(ρ) (that is
the relative entropy of non-uniformity for Gaussian states) of a Gaussian state ρ is equal to its
maximal coherence at fixed energy (see Eq. (7.54)):

PGrel(ρ) = CGrel;max(ρ). (7.60)

Hierarchy

Using quantifiers based on the relative entropy (see Def. 7.7), we extended the ordering of
resources for discrete variables (see Theorem 7.20) to continuous-variable systems.

Theorem 7.23. There exist a hierarchy for the relative entropy of non-uniformity Prel (see Eq.
(7.59)), coherence Crel (see Eq. (7.49)), symmetric discord Drel (see Eqs. (7.37) and (7.40))
and entanglement Erel (see Eq. (7.33)), i.e. it holds:

Prel(ρ) ≥ Crel(ρ) ≥ Drel(ρ) ≥ Erel(ρ), (7.61)

for any ρ ∈ S(H). In particular, considering Gaussian states and operations and introducing

CGrel;max(ρ) := sup
ÛPG

CG(ÛPGρÛ
†
PG), DGrel;max(ρ) := sup

ÛPG

DG(ÛPGρÛ
†
PG),

EGrel;max(ρ) := sup
ÛPG

EG(ÛPGρÛ
†
PG),

(7.62)

where ÛPG are passive Gaussian unitaries (see Def. 4.24), it holds:

PGrel(ρ) = CGrel;max(ρ) ≥ DGrel;max(ρ) ≥ EGrel;max(ρ). (7.63)

Eqs. (7.61) and (7.63) are visualised in Figs. 7.2 and 7.3, respectively.
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Figure 7.2: Graphical depiction of the relative entropy of non-uniformity Prel (black line),
coherence Crel (red line), symmetric quantum discord Drel (green line) and entanglement Erel
(blue line) for a quantum state ρ. The uniform state τM (δ) is an element of the incoherent set I,
which is a convex subset of the zero-discord set Z , which in turn is a non-convex subset of the
separable set S . The picture is taken from our publication [GKB21].

Figure 7.3: Graphical depiction of Eq. (7.63). The dotted circle represents all the states that can
be obtained from ρ via passive unitaries ÛO. The red line, connecting the uniform state τM (δ)
to the MCMGS, is the maximal Gaussian coherence CGrel;max(ρ) = PGrel(ρ). The green and blue
lines are the maximal Gaussian discord DGrel;max and entanglement EGrel;max, respectively. The
uniform state τM (δ) is an element of the Gaussian incoherent set IG, which is a convex subset of
the Gaussian zero-discord set ZG, which in turn is a non-convex subset of the Gaussian separable
set SG. The picture is taken from our publication [GKB21].



8
Conclusions and Outlook

In this thesis, we presented results on three projects related to the use of quantum resources in
systems with many degrees of freedom.

In [GKB20], we presented a theoretical model for the formalisation and comparison of clas-
sical and quantum readout (QR-) physical unclonable functions (PUFs). We introduced an au-
thentication protocol that is valid for both typologies and independent from the specific (QR-)
PUF implementation. We then quantitatively characterised the security of (QR-) PUFs in terms
of two properties, the robustness and the unclonability. The former property is connected to
the probability that a legitimate user is not authenticated, due to noise or disturbances by an
adversary, while the latter one is connected to the probability that an adversary successfully
impersonates a legitimate user, by cloning or simulating the (QR-) PUF.

Our work could be the starting point of theoretical and experimental research on (QR-) PUFs
since it allows the comparison of different implementations and the development of new au-
thentication protocols. In particular, future research could verify the supposed supremacy of
QR-PUFs over classical PUFs and examine, in given scenarios, whether the technological chal-
lenges and financial costs connected to the use of quantum resources are compensated by the
possible security gain. Moreover, our framework could be used to explore the security of using
(QR-) PUFs in other classical or quantum cryptographic protocols. For instance, a (QR-) PUF
could be employed in quantum key distribution to generate an authentication key and reduce the
number of preshared key bits. This application would require the development of (QR)-PUFs
with a very high security level.

In [Mih+20], we introduced a scheme for entanglement detection in unknown continuous-
variable states. We derived semidefinite constraints for the entanglement witnesses based on
the second moments and used them as a sufficient condition for a state to be entangled. We
implemented the constraints by using a semidefinite program and partial information about the
state, which we obtained through random homodyne measurements. We tested our method and
showed that it requires, with high probability, fewer measurements than a full tomography. For
two-mode squeezed vacuum states (TMSVSs), we showed good performance of our scheme
for states with a low amount of entanglement. The performance declines for highly entangled
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states, due to the geometric shape in the phase space of the variance of the TMSVSs. We found
that our method is more convenient than full tomography also for randomly generated two-mode
states. In this case, highly entangled states require fewer measurements on average. We also
tested our method on a four-mode bound entangled state, again finding an efficient detection.
We finally verified that our scheme has good robustness to statistical errors.

Our method is easily implementable in a laboratory since it only requires linear optical com-
ponents and homodyne detectors. It can be adapted to many experimental situations, in which
there is little or no information about quantum states. The ability to detect entanglement af-
fordably also paves the way to a more practical use of this resource in large-scale technological
applications.

In [GKB21], we established a hierarchy of continuous-variable quantum resources, under
the condition of fixed energy. First, we defined the maximal coherence at fixed energy, as the
coherence that is obtainable by energy-preserving unitaries. Then, we introduced a resource
theory of non-uniformity for continuous-variable systems, in which the purity at fixed energy
is the resource. By using quantifiers based on the relative entropy, we proved that the non-
uniformity of a quantum state always upper-bounds its coherence, discord and entanglement.
In particular, when we consider Gaussian states and operations, the Gaussian non-uniformity is
exactly equal to the maximal Gaussian coherence, and we derived an analytical formula for this
quantity. Our results extend to continuous variable an analogous hierarchy for discrete-variable
resources [Str+18].

Future works may investigate whether the same hierarchy holds by considering the action of
energy non-preserving unitaries, under the constraint of finite maximum energy. Another open
question is whether the non-uniformity is equal to the maximal coherence also for non-Gaussian
states and operations.

In conclusion, the achievement of a high level of control and understanding of quantum re-
sources is a necessary precondition to concretely implement quantum technologies in industrial
scenarios. We hope that our doctoral research has supported this process and will stimulate
further new scientific studies.
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We propose a theoretical framework to quantitatively describe physical unclonable functions (PUFs),
including extensions to quantum protocols, so-called quantum readout PUFs (QR-PUFs). (QR-) PUFs are
physical systems with challenge-response behavior intended to be hard to clone or simulate. Their use has
been proposed in several cryptographic protocols, with particular emphasis on authentication. Here, we provide
theoretical assumptions and definitions behind the intuitive ideas of (QR-) PUFs. This allows us to quantitatively
characterize the security of such devices in cryptographic protocols. First, by generalizing previous ideas,
we design a general authentication scheme which is applicable to different physical implementations of both
classical PUFs and (QR-) PUFs. Then, we define the robustness and the unclonability, which allows us to
derive security thresholds for (QR-) PUF authentication and paves the way to develop further new authentication
protocols.
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I. INTRODUCTION

Authentication is a major task of both classical and quan-
tum cryptography. To achieve secure communication between
two parties Alice and Bob, it is necessary to ensure that no
intruder may participate in the communication, pretending to
be one of the legitimate parties, e.g., by a so-called man-in-
the-middle attack [1]. Authentication is ultimately classical,
even in quantum protocols like quantum key distribution
(QKD) [2].

The main ingredient of an authentication protocol is a
shared secret between the legitimate parties: during any au-
thenticated communication Alice and Bob must prove the
possession of this secret to confirm their identity. One has to
distinguish two types of authentication [1]. Message authen-
tication is the assurance that a given entity was the original
source of the received data. This type of authentication can
be achieved by unconditionally secure protocols [3]. Entity
authentication is the assurance that a given entity can prove
its identity and its involvement in the communication session
to another entity.

Entity authentication is particularly important if there is an
asymmetry between the parties, e.g., when one party, namely,
Alice, is a trusted institution and the other one, namely, Bob,
is an untrusted user. The communication between Alice and
Bob may happen on an authenticated channel owned by Alice,
where Bob interacts through a remote terminal. In that case, a
one-way entity authentication protocol will be used by Alice
to authenticate Bob and to allow him to use her channel.
Such protocols are usually based on a challenge-response
authentication, a type of authentication where Alice presents
a challenge and Bob provides a valid response, based on
the common secret, to be authenticated. For instance, Alice
can ask for a password (challenge) and Bob will provide the
correct one (response).

*giulio.gianfelici@uni-duesseldorf.de

In the case of asymmetric communication, it is useful
to design authentication protocols based on something the
parties possess. The trusted Alice can still be required to have
secret knowledge since she is able to conceal information
from an adversary, but Bob is required only to protect a given
token from theft. A crucial condition of this approach is that
the object has to be unique and an adversary, namely, Eve,
should not be able to copy it easily.

A physical unclonable function (PUF) [4] is a physical
system which can interact in a very complex way with an
external signal (which can serve as a challenge) to give an
unpredictable output (which can serve as a response). Its in-
ternal disorder is exploited to make it unique, hard to clone, or
simulate. PUFs are particularly suited for entity authentication
because their internal structure plays the role of the shared
secret. They can also be used in other protocols, like oblivious
transfer [5], bit commitment [6], or classical key distribution
[7]. There is a large variety of PUFs, such as the optical PUF
[8], the arbiter PUF [9], the SRAM PUF [10], the coating PUF
[11], the magnetic PUF [12], the ring oscillator PUF [13],
and so on. A more detailed description of the whole family of
PUFs is given in [14] and in [15].

To ensure reliability and security it is required to post-
process the PUFs’ outputs [16,17]. The most common way
to do it is by using the so-called fuzzy extractor [18], a tool
which combines error correction and privacy amplification.
Error correction is necessary because the PUF’s output can be
different each time the PUF interacts with the same challenge,
even when the authentication involves the real Bob with the
original PUF. This can be due to an erroneous implementation
of the challenge or to noise in the physical process. Privacy
amplification is important since the outcomes of a PUF are
generally nonuniform, i.e., there exist correlations between
different responses that can be used by an adversary to un-
dermine the PUF’s security. Furthermore, the response, once
it is mapped into a uniform key, can, in principle, be used in
different protocols other than entity authentication.

2469-9926/2020/101(4)/042337(12) 042337-1 ©2020 American Physical Society
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However, even when dealing with noise and nonunifor-
mity, there are some issues with PUFs because it has been
shown that many of them can be actually cloned or simulated
[19–21], compromising their use in secure authentication
schemes.

To solve these problems, an extension of PUFs to quan-
tum protocols was suggested, the so-called quantum readout
PUFs (QR-PUFs) [22]. Such PUFs encode challenges and
responses in quantum states, and thus they are expected to
be more secure and reliable than classical PUFs, as they add
a layer of complexity given by the unclonability of the in-
volved quantum states [23]. Moreover, if such quantum states
are nonorthogonal, an adversary cannot perfectly distinguish
them, and an attempt to do it would introduce disturbances,
thus exposing the presence of an intruder to the legitimate
parties.

It is desirable to establish a theoretical framework in which
one can perform a rigorous, quantitative analysis of the secu-
rity properties of (QR-) PUFs. Several efforts have been made
to formalize the intuitive ideas of PUF [24–28], and they all
capture some aspects of them, but a well-defined agreement
about theoretical assumptions and definitions is still lacking.
Moreover, the previous approaches are devoted to classical
PUFs only.

In this article we propose a common theoretical framework
by quantitatively characterizing the (QR-) PUF properties,
particularly the robustness [25] against noise and the un-
clonability. This is done by generalizing ideas from previous
approaches (in particular from [25]) to encompass both classi-
cal and QR-PUFs. Moreover, we introduce a generic scheme
for authentication protocols with (QR-) PUFs, for which
security thresholds can be calculated once an experimental
implementation is specified. This scheme provides an abstract
formalization of existing protocols, together with ideas such
as the difference between a physical layer and a mathematical
layer (see Sec. II) or the concept of the shifter (see Secs. IV A
and V A). This framework is designed to be independent of the
specific experimental implementation such that a comparison
of different types of PUFs and QR-PUFs becomes possible.
In particular, all implementations use a fuzzy extractor for
postprocessing. We expect that this analysis supports both
theoretical and experimental research on (QR-) PUFs by
promoting the implementation of such devices in existing and
new secure authentication schemes.

The paper is organized as follows. In Sec. II we give an
introduction on entity authentication protocols with (QR-)
PUFs. Section III contains the notation we will use in the pa-
per, in Sec. IV we describe a protocol with a generic classical
PUF, and in Sec. V we generalize this to a generic QR-PUF.
The shared formalization of the theoretical properties of (QR-)
PUFs is stated in Sec. VI and the formalism is applied in some
examples in Sec. VII. Some final remarks and the outlook of
the work are given in the Conclusion.

II. AUTHENTICATION PROTOCOLS

In the following, we will always call Alice the party
that has to authenticate Bob. Mutual authentication can be
achieved by repeating the protocol swapping the roles of Alice
and Bob. Moreover, we stated in the Introduction that the raw

FIG. 1. A schematic description of the authentication scheme.
Top: Enrollment stage. The certifier (C, orange) studies the (QR-)
PUF’s properties and generates the challenge-response table (CRT).
Then the CRT is given to Alice (A, blue) and the (QR-) PUF is given
to Bob (B, green). Bottom: Verification stage. In the honest case,
Bob lets Alice interact with his (QR-) PUF through a terminal and
she remotely verifies his identity with the CRT, thus authenticating
him. In the dishonest case, an adversary Eve (E, red) claims to be
Bob, letting Alice interact with a clone of the (QR-) PUF, and the
protocol should lead to an abortion.

output of a (QR-) PUF has to be postprocessed to be used
in secure cryptographic protocols. Therefore, for the sake of
clarity, we call outcome the raw output while we mean with
response only the postprocessed uniform key.

Entity authentication protocols with (QR-) PUFs consist of
two phases [29], the enrollment stage and the verification stage
(see Fig. 1).

The enrollment stage is a part of the protocol which
happens only once at the beginning, after the manufacture
of the (QR-) PUF and before any communications between
Alice and Bob. An entity or group of entities called the (QR-)
PUF certifier [which may be the (QR-) PUF manufacturer,
Alice itself, a third trusted party, or a combination of all of
them] studies the (QR-) PUF’s properties and evaluates the
parameters needed for the implementation and postprocess-
ing. In particular, the certifier selects a certain number N of
challenges and records the corresponding responses. Chal-
lenges and responses form the so-called challenge-response
pairs (CRPs) and they are stored as a challenge-response table
(CRT), together with additional information needed in the
remaining part of the protocol. After the end of this stage, the
certifier gives the CRT to Alice (which then knows the secret)
and the (QR-) PUF to Bob (which then has the secret).

The verification stage is the part of the protocol where
communication between Alice and Bob is necessary. In this
stage, Bob declares his identity to Alice with his (QR-)
PUF, remotely interacting with her through her terminal. To
authenticate Bob, Alice sends randomly one challenge from
the CRT to the (QR-) PUF and collects the outcome, which is
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FIG. 2. A scheme of the two layers, the mathematical one (where the cryptographic protocol takes place) and the physical one (where the
(QR-) PUF acts). In the physical layer a challenge state is prepared according to the information of the challenge (mathematical layer) and then
the (QR-) PUF transforms it into an outcome state. The state-dependent shifter (see Secs. IV A and V A) maps the outcome state to a reference
state. The outcome in the mathematical layer contains information about the implementation of the shifter and the error in the reference state
and is postprocessed by the fuzzy extractor to give the response. Challenges and responses are stored into (enrollment stage) or taken from
(verification stage) the challenge-response table (CRT). See Secs. IV and V for a more detailed description.

then postprocessed. The calculated response is compared with
the one in the CRT, i.e., the one obtained in the enrollment
stage. If they match, Alice authenticates Bob. This stage can
be repeated every time Alice needs to authenticate Bob. After
every round, however, the used challenge-response pair has to
be eliminated from the CRT and cannot be used again.1

Depending on the different types of (QR-) PUFs, the
challenges could be different types of physical quantities. For
instance, optical PUFs are transparent materials filled with
light scattering particles: a laser that interacts with one of them
is turned into a unique speckle pattern. For a classical optical
PUF, the challenge is the laser orientation and the outcome
is the intensity of some points in the speckle pattern [8].
For a QR-PUF, the challenges and the outcomes are quantum
states [22]. In both cases, however, challenges, outcomes, and
responses are stored in the CRT as digital binary strings, and
the responses are used as authentication keys.

There are two different layers involved in this protocol:
a physical one, where the actual (QR-) PUF acts as a phys-
ical evolution from input systems to output systems, and a
mathematical one, where a binary challenge string (which
should represent the information on how to implement the
input system) is mapped into an outcome string which is
postprocessed into a response string.

To deal with the two different layers, we denote as chal-
lenges (outcomes, responses) the strings in the mathematical
layer and as challenge states2 (outcome states, response states)
the implementations in the physical layer.

This configuration is schematized in Fig. 2.

1It was argued [22] that in the QR-PUF case, challenge-response
pairs could be used again because an adversary is not able to gain full
information about their state. Such claims need to be quantitatively
proven; here we continue as if any reused CRP is insecure.

2This term clearly comes from quantum physics, where it is used
to describe a vector in a Hilbert space. We will use the term classical
state in this article, meaning a classical physical quantity, either
scalar or vectorial.

III. NOTATION

In the article we will use the following conventions:
(i) Digital strings, like the challenges and the responses, are

denoted by lowercase bold letters, for instance, xi and rj for
the ith challenge and the jth response, respectively;

(ii) Sets of digital strings are denoted by the calligraphic
uppercase letters, e.g., X and R for the set of challenges and
responses, respectively;

(iii) Random variables which take values from given sets
are denoted by uppercase italic letters, e.g., X and R for
challenges and responses, respectively;

(iv) The physical classical states are denoted by the vector
symbol (right arrow), for instance, �xi and �r j for the ith
challenge state and the jth response state, respectively;

(v) The physical quantum states are denoted by the usual
ket notation, for instance, |xi〉 and |r j〉, for the ith challenge
state and the jth response state, respectively;

(vi) Maps are denoted by uppercase letters with a circum-
flex accent, e.g., P̂ or �̂. In particular, the Latin letters are
used for maps between strings and the Greek ones for maps
between states.

IV. CLASSICAL PUF

The realization of a challenge state may involve several
different steps, each of them with different experimental com-
plexity. Each step involves devices with a limited, even though
possibly large, number of different configurations, and such
configurations can be used to parametrize the experimental
system, resulting in our ability to formalize the challenges
through discrete variables. A challenge is therefore defined as
the binary string xi of length n representing the configuration
which realizes a given challenge state �xi.

A. Enrollment

At the start of the enrollment stage, the PUF certifier
selects N � 2n different challenges xi ∈ X ⊆ {0, 1}n, where
X ⊆ {0, 1}n is the set of all chosen challenges and |X | = N .
In fact, if a challenge consists of n bits, the total possible

042337-3



GIANFELICI, KAMPERMANN, AND BRUß PHYSICAL REVIEW A 101, 042337 (2020)

number of challenges is 2n. However, in practice, certain
challenges could represent states which are impossible or hard
to implement or they do not lead to a set of distinguishable
responses.

For security purposes, the set of challenges X has to be
uniform, i.e., Ŝ(X ) = |X |, where X is the random variable
defined on the set X and Ŝ(X ) is the Shannon entropy of
X . An adversary should not be able to characterize the set of
challenges by studying some of them. The certifier is free to
discard some challenges from X if he finds correlations in
them. This affects the number N of challenges and has to be
quantified for given experimental implementations.

Each xi ∈ X represents a challenge state �xi which can be
experimentally realized and sent to the PUF, which acts as a
deterministic function �̂. Due to its complex structure, any
attempt to give a full description of it should be unfeasible,
even for the certifier itself. For a given challenge state �xi,
�̂(�xi ) = �yi, where �yi is denoted as an outcome state.

The certifier needs to map the outcome state into an out-
come string, taking into account both the distribution of the
outcome states and any error which may have occurred due to
noise or wrong implementation of the experimental system.
To do this, we introduce the notion of a shifter.

For each outcome state �yi, let �̂i be a state-dependent
operation which maps �yi into a reference state, denoted by
�0, equal for all outcome states. For N outcome states �yi

we obtain a set of N shifters �̂i. The importance of using
the shifters will be more clear when we discuss QR-PUFs.
The shifters simplify the error verification process, as each
expected outcome is identical.

Some devices ascribable to shifters have been used in some
PUF implementations: consider, for instance, the optical PUF
[8], where a laser beam (challenge state) is transformed into
a complex speckle pattern (outcome state). In this scenario,
it has been proposed [30] to use spatial light modulators to
transform every speckle pattern into a plane wave, which then
is focused into a single point (the reference state). Only if the
pattern is the expected one does this happen; otherwise, the
outcome state is mapped into another speckle pattern. Shifters
can be designed also for other PUFs, depending on which
physical quantities are implied in the outcome states. If the
outcome state is already a binary value (like in the SRAM
PUF [10]) the reference state can be the bit 0 and the shifters
can be realized by a gate implementing either the identity or
a bit-flip operation, depending on the expected outcome state.
Whenever an outcome is determined by the frequency of a
signal (like in a ring oscillator PUF [13]), the shifters can be
passband filters.

The certifier can implement the corresponding shifter for
every outcome state, since he can characterize �̂(�xi ), possibly
repeating the PUF evaluation for the same challenge state �xi,
to find a �̂i such that �̂i[�̂(�xi )] = �0.

We define �oi := �̂i[�̂(�xi )]. While in the enrollment stage,
or in a noiseless verification stage, �oi = �0 by definition, in
reality �oi will contain errors. This error is mapped into the
Hamming weight, i.e., the number of bits that are different
from 0, of a classical string oi, i.e., oi = 0lo = 00 . . . 0 if
and only if �oi = �0. The string has a length lo, dependent
on the experimental implementation of the shifter. In the
aforementioned example of an optical PUF, the plane wave

is focused onto an analyzer plane with a pinhole. If �oi = �0
the light passes through this pinhole and a detector will click.
Therefore the intensity of the light on the analyzer plane
outside the pinhole can be used to find oi, and the resolution
of the analyzer plane determines the length lo.

The shifters convey information about the distribution of
the outcome states (as they are designed on them) and there-
fore indirectly about the PUF. We can represent this informa-
tion in terms of binary strings in the mathematical layer, just as
we did for challenge states. The shifters are implemented by
an experimental device (or a collection of them) with a limited
number of configurations, each one of them implementing a
different �̂i. Parametrizing such configurations, we map each
shifter �̂i in a string wi ∈ W ⊆ {0, 1}lw . This string is exact,
because it represents only the correct implementation of the
shifter, without taking into account any noise. The length
lw depends on the entropy of the shifters and, consequently,
on the outcome states (for some implementations, methods
to analyze such an entropy have been derived [31,32]). The
entropy of W has to be studied also to verify the presence of
nonuniformity, i.e., correlations between different outcomes
or between challenges and corresponding outcomes. This
entropy affects the unclonability of the PUF (see Sec. VI).

The two strings oi and wi convey two different aspects of
the outcome state. In fact, oi gives information about the error
only, without distinguishing different outcomes. Instead, wi
gives information about the distribution of the outcome states
but not about errors (even a single bit-flip of wi changes it into
wj�=i).

We combine oi and wi by defining as outcome a string yi of
length l = lw + lo, such that

yi = wi ‖ oi, (1)

where ‖ is the concatenation of strings. We designate Y ⊆
{0, 1}l as the set of all outcomes, including all possible noisy
versions. Explicitly,

Y = {yi = wi ‖ oi, wi ∈ W, oi ∈ {0, 1}lo}, (2)

and |Y| = 2lo N (see Fig. 3 for a graphic representation of
the set Y). Moreover, we define a function P̂ : X → Y , asso-
ciating each challenge with the corresponding outcome, i.e.,
P̂(xi) = yi.

The outcome string, being noisy and not uniformly dis-
tributed, cannot be used directly as a response. The most
common way to postprocess it is through a fuzzy extractor
[18], which is a combined error correction and privacy ampli-
fication scheme.

Definition IV.1. Let {0, 1}� be the star closure of {0, 1}, i.e.,
the set of strings of arbitrary length:

{0, 1}� =
⋃
i�0

{0, 1}i, (3)

where {0, 1}0 = ∅ is the empty set. Let Ĥ (yi, y′
i) be the Ham-

ming distance between yi and y′
i, i.e., the Hamming weight

of yi + y′
i, and s := − log2 (maxk pk ) be the min-entropy of

a probability distribution p = { pk }. Furthermore, given two
probability distributions pA, pB, associated to discrete random
variables A, B with the same domain C, let D̂S (pA, pB) be the
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FIG. 3. Graphic representation of the set Y , according to Eq. (2).
The centers of the circles represent the noiseless outcomes yi =
wi‖0lo for different wi ∈ W , while every point in the correspond-
ing outer circles, of radius lo, represents a noisy version of them.
Between different outcomes, including the noisy versions, there is
no overlap, because wi �= wj for i �= j. A fuzzy extractor can correct
t < lo bit errors, i.e., the outcomes inside the inner circles.

statistical distance between pA and pB, i.e.,

D̂S (pA, pB) := 1

2

∑
c∈C

|P(A = c) − P(B = c)|. (4)

A (Y, s, m, t, ε) fuzzy extractor is a pair of random func-
tions, the generation function Ĝ, and the reproduction function
R̂, with the following properties:

(i) Ĝ : Y → {0, 1}m × {0, 1}� on input yi ∈ Y outputs an
extracted string ri ∈ R ⊆ {0, 1}m and a helper data hi ∈ H ⊆
{0, 1}�. While ri has to be kept secret, hi can be made public
(it can even be physically attached to the PUF);

(ii) R̂ : Y × H → {0, 1}m takes an element y′
i ∈ Y and a

helper string hi ∈ H as inputs. The correctness property of a
fuzzy extractor guarantees that if Ĥ (yi, y′

i) � t and (ri, hi) =
Ĝ(yi), then R̂(y′

i) = ri;
(iii) The security property guarantees that for any proba-

bility distribution on Y of min-entropy s, the string ri is nearly
uniform even for those who observe hi: i.e., if (ri, hi) = Ĝ(yi),
then

D̂S (pRH , pUH ) � ε, (5)

where pRH (pUH ) is a joint probability distribution for ri ∈ R
(for a uniformly distributed variable on m-bit binary strings)
and hi ∈ H.

The generation function of a fuzzy extractor is used, in
the enrollment stage, to transform the outcome yj into the
uniformly distributed ri, that is the final response. We will see
later that, in the verification stage, the reproduction function
is used on a noisy version of the outcome to generate the same
response.

The certifier selects a fuzzy extractor by knowing Y and its
min-entropy s, and choosing t such that the fuzzy extractor
uniquely maps a given outcome into a response, without
collisions: due to noise or an erroneous experimental setup,
a challenge state �xi can be implemented as a state which is
closer to �x j for i �= j. The error o( j)

i associated to �̂i[�̂(�x j )]

FIG. 4. Graphic representation of the choice of t for N = 2
challenge-response pairs. The circle represents both o1 and o2, in-
dependently from w1 and w2. The center of the circle represent the
noiseless cases o1 = o2 = 0lo , and all the noisy cases lie in a circle
of radius lo. The errors o(2)

1 and o(1)
2 define two rings, and t is chosen

smaller than the radius of the smaller one (in our case o(1)
2 ).

for i �= j must be uncorrectable; the certifier has to choose
a maximum allowed error t < lo smaller than the minimum
Hamming weight of o( j)

i , over all i �= j (see Fig. 4).
There is a tradeoff between t and the entropy of the shifters:

a high entropy, associated to a longer length lw of wi, is
equivalent to similar states with a small error in case of
a wrong implementation, and t has to be chosen low. The
certifier may decide to delete challenge-response pairs from
the challenge-response table in order to choose a higher t and
increase the resistance of the PUF against the noise.

For practical purposes we define two functions ĜR and ĜH

such that

Ĝ(·) = (ĜR(·), ĜH (·)), (6)

and therefore ri = ĜR(yi) and hi = ĜH (yi) for yi ∈ Y . More-
over, we define the function F̂E to be the function mapping
each challenge to the respective response in the enrollment
stage, i.e.,

F̂E (·) := ĜR(P̂(·)), (7)

for xi ∈ X and therefore ri = F̂E (xi).
Summarizing, during the enrollment stage the certifier

creates a set of N challenges X ∈ {0, 1}n and a set of N
responses R ⊆ {0, 1}m:

R = { ri ∈ {0, 1}m | ri = F̂E (xi); xi ∈ X }. (8)

They are stored into the CRT together with
(i) the set of N strings wi representing how to set the

shifter operator to get the correct outcome;
(ii) the parameters of the fuzzy extractor;
(iii) the (possibly public) set of helper data H ⊆ {0, 1}�,

i.e.,

H = { hi ∈ {0, 1}� | hi = ĜH [P̂(xi)]; xi ∈ X }. (9)

The CRT is given to Alice and the PUF to Bob, concluding
the enrollment stage.

042337-5



GIANFELICI, KAMPERMANN, AND BRUß PHYSICAL REVIEW A 101, 042337 (2020)

B. Verification

In the verification stage, Bob declares his identity and
allows Alice to (remotely) interact with his PUF. Alice,
equipped with the CRT, retraces the steps made by the certifier
in the enrollment stage.

She picks up a randomly selected challenge xj ∈ X [for
which she knows the response rj = F̂E (xj)] and prepares the
challenge state �x j . The PUF transforms �x j into the outcome
state �̂(�x j ). At this point, Alice tunes the shifter �̂ j , according
to the CRT and evaluates �̂ j[�̂(�x j )].

After the use of the PUF and the shifter, she may obtain a
noisy version of �y j because of noise or a wrong preparation
of the challenge state. Moreover, the noise could come from
the PUF not being the original one if an adversary Eve is
impersonating Bob.

We call this noisy version �y′
j = �̂(e)(�x j ). In that case

�̂ j ( �y′
j ) �= �0, which leads to o′

j �= 0lo such that y′
j = wj ‖ o′

j =
P̂(e)(xj) is different from the yj obtained by the certifier in the
enrollment stage.

The outcome is then postprocessed by the reproduction
function of the fuzzy extractor that was used in the enrollment
stage, so Alice collects zj := F̂V (xj), where the function F̂V

represents the map between the challenges and the corre-
sponding responses in the verification stage, i.e.,

F̂V := R̂[P̂(e)(·), ĜH (P̂(·))], (10)

for xj ∈ X .
The claimed response zj is compared with the one in the

CRT: if zj = rj, Bob is authenticated, otherwise the protocol
fails.

V. QR-PUF

The authentication scheme for quantum readout PUFs fol-
lows the structure of the classical scheme (see Sec. IV) and
still uses classical challenges, responses, and fuzzy extractors
in the mathematical layer. However, the implementation of the
challenge states and outcome states in the physical layer is
done via quantum states. At the moment, the only classical
PUF which was extended to a QR-PUF is an optical PUF
[22,30], for which there are some studies on side-channel
attacks [33–35].

In this work we study discrete qubit states, but our ap-
proach could also be generalized to continuous-variable (QR-)
PUFs [36,37]. Let us assume to work with λ qubits, so
challenge states are elements of the Hilbert space C2λ

. We also
assume that each qubit can be in a finite number of states. Like
in the classical case, we can parametrize the configurations of
the experimental system that implements the challenge states
to obtain a set X of classical challenges. Let us denote the
length of such strings by n to match the case of classical PUFs.

Here the challenge states are quantum; therefore challenge
states will be represented by |xi〉. Our QR-PUF will be de-
scribed in an idealized way, as a unitary operation acting on a
pure state to produce another pure state. In reality, this process
will introduce noise: in our framework, this will be taken
into account in the transition from the outcome state to the
outcome string.

A. Enrollment

Since not all states are implementable, or they do not
lead to distinguishable responses, the certifier selects N � 2n

challenges xi ∈ X ⊆ {0, 1}n, where X is implemented by a set
of nonorthogonal states { |x1〉, . . . , |xN 〉 } ∈ C2λ

.
The nonorthogonality is expected to be a crucial condition,

since, as a consequence of the no-cloning theorem [23], there
does not exist a measurement which perfectly distinguishes
nonorthogonal states. We expect that this enhances the se-
curity of QR-PUFs compared to classical PUFs, since an
adversary could gain only a limited amount of information
about the challenge and the outcome states.

In this work we consider separable challenge states |xi〉,
so |xi〉 = ⊗λ

k=1 |xik〉 and we can deal with single-qubit states
|xik〉. The procedure can be generalized to other challenge
states. The qubit states can be written in terms of some
complete orthonormal basis, which we denote as { |0〉, |1〉 }

|xik〉 = cos θik |0〉 + eiϕik sin θik |1〉 , (11)

where θik ∈ [0, π ] and ϕik ∈ [0, 2π ].
The certifier sends all states to the QR-PUF, collecting the

outcome states. The QR-PUF is formalized as a λ-fold tensor
product of single-qubit unitary gates 
̂ = ⊗λ

k=1 
̂k . Despite
its form being unknown, it can be parametrized by [38]


̂k (ωk, ψk, χk ) =
(

eiψk cos ωk eiχk sin ωk

−e−iχk sin ωk e−iψk cos ωk

)
, (12)

with random parameters ψk, χk ∈ [0, 2π ] and ωk ∈ [0, π
2 ].

The outcome state is then |yi〉 = ⊗λ
k=1 |yik〉, where

|yik〉 = 
̂k |xik〉

=
(

eiψk cos ωk cos θik + ei(χk+ϕik ) sin ωk sin θik

−e−iχk sin ωk cos θik + ei(ϕik−ψk ) cos ωk sin θik

)
.

(13)

Like in the classical case, the certifier can design a state-
dependent shifter that performs a tensor product of unitary
transformations, �̂i = ⊗λ

k=1 �̂ik , each one of them mapping
a specific qubit state to the reference state |0〉 = (1, 0)T . This
operation is indeed unitary, because for |yik〉 = cos αik|0〉 +
eiβik sin αik |1〉, it holds that �̂ik |yik〉 = |0〉 for

�̂ik =
(

cos αik e−iβik sin αik

eiβik sin αik − cos αik

)
, (14)

which verifies �̂ik �̂
†
ik = �̂

†
ik �̂ik = I, where I is the iden-

tity operator. The certifier can implement �̂i for each 
̂|xi〉
because he can repeat the experiment and characterize each
outcome state by performing quantum state tomography or, as
we work with pure states, compressed sensing [39].

Instead of having to change the single-qubit measurement
basis for each qubit and each challenge, by applying the
suitable shifter it is now possible to use the basis { |0〉, |1〉 }
for all qubits of all challenges.

By definition of �̂ik , if there is no error, we will measure for
every qubit the state |0〉, and the results of the measurement
form a string of length λ made by all zeros, oi = 0 = 00 . . . 0.
If there is some error, which in the quantum case is introduced
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by either the environment or an adversary, the Hamming
weight of oi will give us an estimate of it.

Like in the classical case, we can parametrize the ex-
perimental system that implements the shifters in terms of
the (discrete) configuration it must assume to implement a
specific �̂i. Therefore, a given �̂i is represented by a classical
string wi ∈ W of length lw.

We again define as outcome a classical string yi of length
l = lw + λ, given by

yi = wi ‖ oi, (15)

where ‖ is the concatenation of strings.
We also define a set Y like in Eq. (2) and a function

P̂ : X → Y mapping every challenge to the corresponding
outcome. At this point, like for classical PUFs, the certifier
fixes the correctable amount of noise t < lo and selects a fuzzy
extractor (Ĝ, R̂), able to correct t errors and to generate a
uniformly distributed response, according to the distribution
of the outcome states and the entropy of the set of outcomes.
The nonorthogonality of the challenge states affects t : when a
wrong challenge state is implemented, its fidelity with the cor-
rect one is preserved by the QR-PUF and the shifter, since they
are unitary maps, and influences the results of the measure-
ment. The maximum correctable error t has to be chosen lower
than the error produced by wrong implementations, which
becomes small for highly nonorthogonal challenges. The cer-
tifier may decide to delete challenge-response pairs from the
challenge-response table in order to choose a higher t and
increase the resistance of the QR-PUF against the noise. How-
ever, this reduces the overall nonorthogonality of the quantum
states, thus improving Eve’s ability to distinguish them. Such
a tradeoff will be discussed again in the following sections.

The generation function of a fuzzy extractor generates a
uniformly distributed response ri ∈ R, together with a public
helper data hi ∈ H. Again, we have

Ĝ(·) = (ĜR(·), ĜH (·)), (16)

and

ri = ĜR(yi), ∀ yi ∈ Y . (17)

We define a function F̂E (·) := ĜR(P̂(·)) : X → R, map-
ping each challenge to the corresponding response, represent-
ing the action of the QR-PUF in the enrollment stage. Like for
classical PUFs, challenges, responses, and other information
are stored in the challenge-response table, which is given to
Alice, while the QR-PUF is given to Bob.

B. Verification

In the verification stage Bob allows Alice to (remotely)
interact with his QR-PUF. She selects randomly a challenge
xj ∈ X and prepares |x j〉.

Using the QR-PUF with the challenge state |x j〉, Alice may
obtain |y′

j〉, different from the expected |y j〉, because of noise
or an erroneous implementation of the system or the action
of a malicious intruder. Then Alice applies �̂ j and measures
each qubit state in the basis { |0〉, |1〉 }, obtaining o′

j and hence
the outcome y′

j = wj ‖ o′
j. While in the ideal noiseless case

o′
j = 0lo , here we may measure some state |1〉 for some qubits;

therefore y′
j could be different from the yj obtained by the

certifier in the enrollment stage.

The outcome is then postprocessed by the reproduction
function of the fuzzy extractor that was used in the en-
rollment stage, so Alice collects zj := F̂V (xj), where the
function F̂V is defined like in the classical case, F̂V (·) :=
R̂[P̂(e)(·), ĜH (P̂(·))]. Authentication succeeds if FE (xj) =
FV (xj). The verification stage is schematized in Fig. 5.

VI. PROPERTIES AND FORMALIZATION

In this section, we will analyze the properties of (QR-)
PUFs. As we have seen, both PUFs and QR-PUFs can be
represented by a classical pair of functions F̂ = (F̂E , F̂V ) that
describe the map between challenges and responses in the
enrollment [F̂E , see Eq. (7)] or verification [F̂V , see Eq. (10)]
stage. We will keep the same formalism for both PUFs and
QR-PUFs to allow our framework to compare them, but we
will also specify the practical differences.

We have seen that the noise can be a problem which
can lead to false rejection in the protocols. Therefore it is
important to characterize and quantify the amount of noise
of a (QR-) PUF which is connected to the robustness of a
(QR-) PUF. We take the definition of this concept from [25],
adapting it to our framework and our formalism.

Definition VI.1. Let us consider a (QR-) PUF F̂ with a set
of challenges X , where |X | = N . F̂ is ρ-robust with respect
to X if ρ ∈ [0, 1] is the greatest number for which

1

N

N∑
i=1

P{F̂V (xi) = F̂E (xi)} � ρ, (18)

where ρ is called the robustness of the (QR-) PUF with respect
to X .

The robustness represents the average probability that the
(QR-) PUF in the verification stage outputs the correct re-
sponse such that the authentication succeeds. So it represents
the (QR-) PUF’s ability to avoid false rejections and depends
on many factors, e.g., on the average noise of the specific
implementation and the parameters of the fuzzy extractor.

Regarding the robustness, we do not expect a significant
advantage of QR-PUFs compared to classical PUFs. Actually,
there is the possibility to have a disadvantage, because of
the fragility of quantum states and of the necessity of having
a low error threshold t , as the noise can originate from a
possible interaction of an adversary. Any implementation with
QR-PUFs has to pay special care to this issue.

Now we will discuss unclonability, which is the main
parameter involved in attacks from an adversary Eve. This
concept is also mildly inspired by [25] but with marked
differences, mainly caused by the need of taking into account
QR-PUFs. In the context of entity authentication with (QR-)
PUF, the purpose of an adversary Eve is to create a clone of
a (QR-) PUF such that Alice can verify with it a challenge-
response pair, falsely authenticating her as Bob.

When we say clone, we need to specify whether we are
talking of a physical or a mathematical one. A physical clone
is an experimental reproduction of the (QR-) PUF. It will
have the same physical properties as the original one, even
in contexts not involved with the authentication protocol. The
requirement of physical unclonability means that a physical
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FIG. 5. A scheme for the verification stage for QR-PUFs, as described in Sec. V B. Bob provides the QR-PUF (
̂, here enclosed in a green
box), and Alice uses quantities stored in the challenge-response table (here enclosed in blue boxes) to evaluate a response zj for a challenge
xj. Authentication succeeds if zj = rj, where rj is the response stored in the CRT. The verification stage for classical PUFs (as described in
Sec. IV B) can be obtained by substituting in the physical layer (the inner box) quantum states and operators with classical states and operators,
and by leaving the mathematical layer (outer box) unchanged.

clone is technologically or financially unfeasible at the current
state of technology.

A mathematical clone, instead, is an object that simulates
the challenge-response behavior of a (QR-) PUF. In this case,
we cannot just state that a mathematical clone is unfeasible,
because if there are some correlations between the outcome
states, in principle they can be exploited to predict new
challenge-response pairs. As mentioned in the Introduction,
several PUFs have been successfully mathematically cloned.
We need to formalize this notion in order to quantify it for
different (QR-) PUFs.

We assume that Eve cannot directly access the internal
structure of the (QR-) PUF [24,40] but only interact with the
challenge and the outcome states. An attack consists of two
phases, both carried out during the verification stage of the
protocol. We require that the enrollment stage is inaccessible
to Eve, since this part is performed in the certifier’s laboratory
and it involves the study of the inner structure of the (QR-)
PUF. During the passive phase, Eve observes a certain number
of successful authentications with the real (QR-) PUF, collect-
ing as much information as she can. Then, during the active
phase she designs a clone and gives it to Alice, claiming to be
Bob. The attack succeeds if she is authenticated as Bob.

Each interaction affects one challenge-response pair. In this
context, there is a crucial difference between PUFs and QR-
PUFs. Classical states can be measured without introducing
disturbances and can be copied perfectly. Therefore for q � N
interactions, we can assume that Eve would know exactly q
challenge and outcome states, possibly using this information
to create a mathematical clone of the PUF.

Instead, a quantum state cannot be copied. Moreover, a
quantum measurement cannot perfectly distinguish the states
(since they are nonorthogonal), and any measurement can in
principle introduce errors, thus potentially making a passive
eavesdrop a detectable action. After q interactions, Eve would
know less than q challenge and outcome states. This is the
main reason for which QR-PUFs have been introduced: we
expect that, concerning unclonability, they can be superior,
even far superior, than classical PUFs.3

3As we mentioned in Sec. V A, highly nonorthogonal challenge
states require a fuzzy extractor with a low correctable error, under-

Definition VI.2. Let F̂ be a (QR-) PUF with a set of chal-
lenges X , where |X | = N . Let us suppose that an adversary
Eve has q interactions with a (QR-) PUF in the passive stage
of an attack, by observing an authentication protocol between
Alice and Bob. With the information she can extract, she
prepares a clone Êq, defined as [see Eq. (10) for a comparison]

Êq(·) := R̂[P̂E (·), ĜH (P̂(·))] , (19)

and gives it to Alice, who selects a challenge xi ∈ X and
evaluates Êq(xi).

Then Êq is a (γ , q)-(mathematical) clone of F̂ if γ ∈ [0, 1]
is the greatest number for which

1

N

N∑
i=1

P[Êq(xi) = F̂E (xi)] � γ . (20)

Definition VI.3. A (QR-) PUF F̂ is called (γ , q)-
(mathematical) clonable if γ ∈ [0, 1] is the smallest number
for which it is not possible to generate a (γ̄ , q) clone of the
(QR-) PUF for any γ̄ > γ . Conversely, a (QR-) PUF F̂ is
denoted as (δ, q)-(mathematical) unclonable if it is (1 − δ, q)
clonable.

The unclonability of a (QR-) PUF is therefore related to
the average probability of false acceptance. We could expect
to find a relation between the number of interactions q and
the unclonability; with a higher knowledge of CRP, it could
be expected that Eve will be able to build a more and more
sophisticated reproduction of the (QR-) PUF. Increasing q
increases the know-how for making (1 − δ, q) clones with
a lower δ. Therefore, fixing the maximum number of uses
q = q∗ we fix the minimum δ = δ∗. So we ensure that for
q < q∗, the (QR-) PUF is at least (δ∗, q) unclonable.

Definition VI.4. A (ρ, δ∗, q∗)-secure (QR-) PUF F̂
is ρ-robust, physically unclonable, and at least (δ∗, q)-
mathematically unclonable up to q∗ uses.

When manufacturing (QR-) PUFs, several properties, that
are typically implementation dependent, are important [15].
We believe that the above theoretical definitions of robustness

mining the robustness of the QR-PUF. Therefore this feature of QR-
PUFs must be used carefully, balancing robustness and unclonability.

042337-8



THEORETICAL FRAMEWORK FOR PHYSICAL UNCLONABLE … PHYSICAL REVIEW A 101, 042337 (2020)

and unclonability are, from a theoretical point of view, the
main and most general properties involved in a (QR-) PUF.
They are directly related to the probabilities of false rejection
and false acceptance, hence describing the efficiency and
the security of the entity authentication protocol. They also
describe all (QR-) PUFs independently from their implemen-
tation.

VII. EXAMPLES

Explicit calculation of the robustness and the unclonability
for particular (QR-) PUFs strongly depends on its implemen-
tation. In this section, we illustrate the analysis for simplified
examples, starting from idealized, extreme cases.

(i) Consider a physically unclonable device implementing
a true random number generator. An example of that is a
QR-PUF based on the shot noise of an integrated circuit.
This device is extremely difficult to simulate (Eve has to
try a random guess), but also not robust at all (since it will
not generate the same number in the enrollment and the
verification). For this device, it holds that

1

N

N∑
i=1

P{F̂V (xi) = F̂E (xi)} = 1

N
;

1

N

N∑
i=1

P{Êq∗ (xi) = F̂E (xi)} = 1

N
.

(21)

Therefore it is a (1/N, 1 − 1/N, q∗) (QR-) PUF for any q∗.
(ii) Consider a physically unclonable device that outputs

a fixed signal (�0 for classical PUFs or |0〉 for QR-PUFs) for
any input. An example is an optical QR-PUF, based on the
polarization of light for which a fixed polarizer is used as a
shifter: for all outcome states only light waves of a specific
polarization would pass though. This device is perfectly ro-
bust, but also clonable. It holds that

1

N

N∑
i=1

P{F̂V (xi) = F̂E (xi)} = 1 ;

1

N

N∑
i=1

P{Êq∗ (xi) = F̂E (xi)} = 1.

(22)

Therefore the (QR-) PUF is a (1, 0, q∗) (QR-) PUF, for any
q∗.

These examples are extreme cases, while all (QR-) PUFs
will be somewhere in between. We now focus on an example
of QR-PUF to point out some features of QR-PUFs and some
open points.

Let F̂ be a QR-PUF implemented by a unitary transforma-
tion 
̂, acting on λ qubits, parametrized according to Eq. (12),
with ψk = χk = 0, i.e.,


̂ =
λ⊗

k=1


̂k =
λ⊗

k=1

(
cos ωk sin ωk

− sin ωk cos ωk

)
. (23)

Consider a scenario in which each challenge state is a sepa-
rable state of λ qubits, |xi〉 = ⊗λ

k=1 |xik〉, and each qubit is in

one of four possible states:

|xik〉 = ∣∣x(�)
ik

〉
:= cos

(
φ(�)

2

)
|0〉 + sin

(
φ(�)

2

)
|1〉, (24)

where

φ(1) = φ, φ(2) = −φ,

φ(3) = φ − π, φ(4) = π − φ,
(25)

for a fixed angle φ. Such challenge states can be parametrized
by challenge strings of length n = 2λ; for each qubit, the four
possibilities are represented by two bits.

For simplicity of notation, from now on, we drop the
indices i and k, e.g., we write |x(�)〉 := |x(�)

ik 〉. The pairs
{|x(1)〉, |x(3)〉} and {|x(2)〉, |x(4)〉} are orthogonal, but the overall
set is nonorthogonal.

We assume that the noise can be parametrized as a depolar-
izing channel, associated to a probability of error p̃ and equal
for all qubits. The noisy challenge state reads

ρ̃x := (1 − p̃)|x〉〈x| + p̃
Î

2

=
[

(1 − p̃) cos2

(
φ(�)

2

)
+ p̃

2

]
|0〉〈0|

+
[

(1 − p̃) sin

(
φ(�)

2

)
cos

(
φ(�)

2

)]
(|0〉〈1| + |1〉〈0|)

+
[

(1 − p̃) sin2

(
φ(�)

2

)
+ p̃

2

]
|1〉〈1|. (26)

The shifter needs to map the noiseless outcome state to
|0〉 . . . |0〉. According to Eq. (14) it can be chosen to be a
λ-fold tensor product of single-qubit gates,

�̂ = cos

(
φ(�)

2
− ω

)
|0〉〈0| + sin

(
φ(�)

2
− ω

)
|0〉〈1|

+ sin

(
φ(�)

2
− ω

)
|1〉〈0| − cos

(
φ(�)

2
− ω

)
|1〉〈1|,

(27)

and it follows that

ρ̃o := �̂ ρ̃y �̂† =
(

1 − p̃

2

)
|0〉〈0| +

(
p̃

2

)
|1〉〈1|. (28)

For a single qubit, therefore, the probability of measuring |1〉
is p̃/2. For a challenge state of λ qubits, the average Hamming
weight of the string oi is λ p̃/2.

Any fuzzy extractor is defined in terms of the maximum
number of errors t it can correct. With our error model, we
can choose to correct the average error of the system, i.e.,
t = �λ p̃/2�, where �λ p̃/2� is the least integer greater than or
equal to λ p̃/2. However, t and the number N of challenge-
response pairs are related since the fuzzy extractor has to
uniquely map a given outcome into a unique response, without
collisions.

Consider |x(�)〉 and |x(�′ )〉 (�, �′ ∈ {1, 2, 3, 4} and � �= �′)
and estimate the error if |x(�)〉 is implemented as the state
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TABLE I. Error induced by implementing the wrong challenge
state. The entry in row � and column �′ of the table is the probability
of error when applying shifter � to state �′. The parameter φ is defined
in Eq. (25).

|x(1)〉 |x(2)〉 |x(3)〉 |x(4)〉
|x(1)〉 0 sin2 φ 1 cos2 φ

|x(2)〉 sin2 φ 0 cos2 φ 1
|x(3)〉 1 cos2 φ 0 sin2 φ

|x(4)〉 cos2 φ 1 sin2 φ 0

|x(�′ )〉, by evaluating �̂� 
̂|x(�′ )〉. From

|x(�)〉 = cos

(
φ(�)

2

)
|0〉 + sin

(
φ(�)

2

)
|1〉,

|x(�′ )〉 = cos

(
φ(�′ )

2

)
|0〉 + sin

(
φ(�′ )

2

)
|1〉, (29)

it follows that

�̂� 
̂|x(�′ )〉

= cos

(
φ(�) − φ(�′ )

2

)
|0〉 + sin

(
φ(�) − φ(�′ )

2

)
|1〉. (30)

Therefore, for this case the probability of measuring |1〉 is
sin2 [(φ(�) − φ(�′ ) )/2].

In Table I, the explicit values for all the combinations
of the four-qubit states are listed. In case of wrong im-
plementation, challenges with a large overlap lead to small
error weights, while orthogonal challenges lead to big ones.
Thus there is a tradeoff between the robustness of the QR-
PUF and the quantum advantage of using indistinguishable
nonorthogonal states. For any pair of possible challenge
states |xi〉 = ⊗λ

k=1 |xik〉 and |x j〉 = ⊗λ
k=1 |x jk〉, the average

Hamming weight of the error string oi, obtained by the
aforementioned process, is

erri, j := (n12 + n34) sin2 φ + (n13 + n24)

+ (n14 + n23) cos2 φ, (31)

where nab counts how many times |xik〉 = |x(�)〉 when |x jk〉 =
|x(�′ )〉 (or vice versa).

If erri, j < �λ p̃/2�, then the certifier should discard one of
the two challenges, either xi or xj, thus reducing the number
N of possible challenge-response pairs. After this selection is
repeated for all pairs of challenges, the certifier studies the
entropy of the set of shifters, determining the strings wi and
the outcomes yi = wi ‖ oi.

The Canetti’s reusable fuzzy extractor [41] is able to
correct up to t = (l ln l/m) bits, where l is the length of the
outcomes and m the length of the responses. As l = λ + lw
is fixed, m has to be adapted to the noise level �λ p̃/2�. The
correctness property of this fuzzy extractor guarantees that an
error smaller than t is corrected with probability 1 − �̃, where

�̃ =
[

1 −
(

1 − t

l

)m]ξ1

+ ξ1ξ2, (32)

with ξ1 and ξ2 being computational parameters of the fuzzy
extractor (in [41], to which we refer for a precise explanation,
they are called � and γ , respectively). Then the robustness of
this QR-PUF is 1 − �̃.

Concerning the unclonability, one should relate the amount
of information Eve obtains from the (possibly correlated)
challenge-response pairs to her ability to create a mathemat-
ical clone of the QR-PUF. Unfortunately, there is no general
method known to provide this relation. We expect that, for
some QR-PUFs, quantum unitary gate discrimination meth-
ods [42] could be used, but this line of research goes beyond
the purposes of our work. Here, we can show that QR-PUFs
prevent Eve to gain too much information about challenges
and responses, thus strongly hindering her ability to learn the
challenge-response table.

As the optimal global attack on the challenge states is
unknown, unless knowing all challenge states, here we con-
sider an attack that acts individually on qubits. In particular,
we consider the case for which, on each qubit, Eve can
apply a 1 → 2 cloning operator, i.e., she can intercept each
qubit of a challenge state during an authentication round
to produce two (imperfect) copies, one of which is given
back to the legitimate parties and the other is kept for
herself.

For such a set of states, the optimal cloning transformation,
i.e., the transformation who keeps the highest possible fidelity
between the copies and the original states, has been derived
[43] and for any challenge state |xi〉 and its optimal copy ρE

i
holds:

F
(|xi〉〈xi|, �E

i

)
:=

λ∏
k=1

〈xik | �E
ik | xik〉

=
[

1

2

(
1 +

√
sin4 φ + cos4 φ

)]λ

. (33)

For fixed λ, the minimum value of the fidelity is reached for
φ = π/4, for which, considering a single qubit, F = (0.85).
Already for 10 qubits the fidelity drops to F = (0.20), and for
20 qubits, F = (0.04).

Thus, Eve is not able to successfully simulate the
challenge-response behavior, as she cannot even reconstruct
the challenge and outcome states. Moreover, as the fidelity
is preserved by unitary matrices, this result holds also for the
expected outcome state |yi〉 and the actual outcome state Alice
obtains after challenging the QR-PUF with her (unwittingly
altered by the cloning process) challenge state. The noise is
too high to be corrected by the fuzzy extractor, thus aborting
the authentication protocol and exposing the presence of an
intruder.

For classical PUFs, instead, Eve could perfectly read the
challenge and outcome states, without being noticed. This
provides an advantage of QR-PUFs compared to classi-
cal PUFs in terms of unclonability. However, we also no-
ticed that a high nonorthogonality of the challenges can,
in principle, undermine the robustness. The tradeoff be-
tween the advantages and disadvantages of QR-PUFs (see
Table II) has to be studied in order to find secure applications
of them.
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TABLE II. Advantages and disadvantages of QR-PUFs compared to classical PUFs.

Advantages of QR-PUFs Disadvantages of QR-PUFs

An adversary cannot copy or distinguish nonorthogonal states. Highly nonorthogonal states reduce the robustness.
Adversarial measurements on the states introduce detectable disturbances. Quantum states are more fragile than classical states.

VIII. CONCLUSION

In this article we proposed a theoretical framework for
the quantitative characterization of both PUFs and QR-PUFs.
After developing an authentication protocol common to both
typologies, with the same error correction and privacy ampli-
fication scheme, we formalized the (QR-) PUFs in term of two
main properties, the robustness (connected to false rejection)
and the unclonability (connected to false acceptance). Finally,
we studied some examples, motivating the possible advan-
tages and disadvantages of QR-PUFs compared to classical
PUFs.

Our framework is useful to study and to compare dif-
ferent implementations of (QR-) PUFs and to develop new
authentication schemes. An important application would be
to strictly prove the superiority of QR-PUFs over classical
PUFs. The next step towards that goal would be the de-
velopment of new methods to estimate the unclonability of

(QR-) PUFs for different implementations. This could open
an interesting line of theoretical and experimental research
about (QR-) PUFs. Furthermore, our framework can be em-
ployed to determine the level of security of using (QR-)
PUFs in other cryptographic protocols, like QKD, where a
quantitatively secure (QR-) PUF can be used as authenti-
cation and reduces the number of necessary preshared key
bits.

Note added. Recently we became aware of a preprint on a
related topic [44].

ACKNOWLEDGMENTS

The authors thank U. Rührmair for helpful discussions.
This project has received funding from the German Federal
Ministry of Education and Research (BMBF) within the
Hardware-Based Quantum Security (HQS) project.

[1] K. M. Martin, Everyday Cryptography: Fundamental Principles
and Applications (Oxford University Press, Oxford, England,
2012).

[2] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek,
N. Lütkenhaus, and M. Peev, The security of practical quantum
key distribution, Rev. Mod. Phys. 81, 1301 (2009).

[3] M. N. Wegman and J. L. Carter, New hash functions and their
use in authentication and set equality, J. Comput. Syst. Sci. 22,
265 (1981).

[4] R. Pappu, Physical one-way functions, Ph.D. thesis, Mas-
sachusetts Institute of Technology, 2001.

[5] U. Rührmair, Oblivious transfer based on physical unclonable
functions, in International Conference on Trust and Trustworthy
Computing (Springer, New York, 2010), pp. 430–440.

[6] U. Rührmair and M. van Dijk, On the practical use of physical
unclonable functions in oblivious transfer and bit commitment
protocols, J. Cryptogr. Eng. 3, 17 (2013).

[7] C. Brzuska, M. Fischlin, H. Schröder, and S. Katzenbeisser,
Physically uncloneable functions in the universal composition
framework, in Annual Cryptology Conference (Springer, New
York, 2011), pp. 51–70.

[8] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, Physical one-
way functions, Science 297, 2026 (2002).

[9] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. Van Dijk, and
S. Devadas, A technique to build a secret key in integrated
circuits for identification and authentication applications, in
2004 Symposium on VLSI Circuits, Digest of Technical Pa-
pers (IEEE Cat. No. 04CH37525) (IEEE, New York, 2004),
pp. 176–179.

[10] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, FPGA
intrinsic PUFs and their use for IP protection, in International
Workshop on Cryptographic Hardware and Embedded Systems
(Springer, New York, 2007), pp. 63–80.

[11] P. Tuyls, G.-J. Schrijen, B. Škorić, J. Van Geloven, N. Verhaegh,
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[33] B. Škorić, A. P. Mosk, and P. W. Pinkse, Security of quantum-
readout PUFs against quadrature-based challenge-estimation
attacks, Int. J. Quantum Inf. 11, 1350041 (2013).

[34] B. Škoric, Security analysis of quantum-readout PUFs in the
case of challenge-estimation attacks, Quantum Inf. Comput. 16,
50 (2016).

[35] Y. Yao, M. Gao, M. Li, and J. Zhang, Quantum cloning attacks
against PUF-based quantum authentication systems, Quantum
Inf. Process. 15, 3311 (2016).

[36] G. M. Nikolopoulos and E. Diamanti, Continuous-variable
quantum authentication of physical unclonable keys, Sci. Rep.
7, 46047 (2017).

[37] G. M. Nikolopoulos, Continuous-variable quantum authentica-
tion of physical unclonable keys: Security against an emulation
attack, Phys. Rev. A 97, 012324 (2018).

[38] K. Zyczkowski and M. Kus, Random unitary matrices, J. Phys.
A: Math. Gen. 27, 4235 (1994).

[39] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert,
Quantum State Tomography Via Compressed Sensing, Phys.
Rev. Lett. 105, 150401 (2010).

[40] U. Rührmair, H. Busch, and S. Katzenbeisser, Strong
PUFs: Models, constructions, and security proofs, in To-
wards Hardware-Intrinsic Security (Springer, New York, 2010),
pp. 79–96.

[41] R. Canetti, B. Fuller, O. Paneth, L. Reyzin, and A. Smith,
Reusable fuzzy extractors for low-entropy distributions, in An-
nual International Conference on the Theory and Applica-
tions of Cryptographic Techniques (Springer, New York, 2016),
pp. 117–146.

[42] C. W. Helstrom, Quantum detection and estimation theory,
J. Stat. Phys. 1, 231 (1969).

[43] D. Bruß and C. Macchiavello, Optimal cloning for two pairs of
orthogonal states, J. Phys. A: Math. Gen. 34, 6815 (2001).

[44] M. Arapinis, M. Delavar, M. Doosti, and E. Kashefi, Quantum
physical unclonable functions: Possibilities and impossibilities,
arXiv:1910.02126v1.

042337-12



B
Detecting entanglement of unknown

continuous variable states with
random measurements

Title: Detecting entanglement of unknown continuous variable states
with random measurements,

Authors: Tatiana Mihaescu, Hermann Kampermann, Giulio Gianfelici,
Aurelian Isar and Dagmar Bruß

Journal: New Journal of Physics
Impact factor: 3.729 (2020)

Date of submission: 1 July 2020
Publication status: Published

Contribution by GG: Third author (input approx. 7%)

This publication corresponds to the reference [Mih+20]. A summary of the results is presented
in Chap. 6. The research objectives were identified by my coauthors before I was involved in
the project. I regularly discussed the article with my coauthors, in particular TM. I helped to
physically motivate the results related to the detection of entanglement in two-mode squeezed
vacuum states. Furthermore, I assisted TM in developing the statistical analysis presented in
Sec. 6 of the article. Finally, I helped to proofread and improve the entire manuscript.

128



           

PAPER • OPEN ACCESS

Detecting entanglement of unknown continuous variable states with
random measurements
To cite this article: Tatiana Mihaescu et al 2020 New J. Phys. 22 123041

 

View the article online for updates and enhancements.

This content was downloaded from IP address 134.99.174.150 on 22/04/2021 at 12:13



New J. Phys. 22 (2020) 123041 https://doi.org/10.1088/1367-2630/abd1ad

OPEN ACCESS

RECEIVED

1 July 2020

REVISED

24 November 2020

ACCEPTED FOR PUBLICATION

8 December 2020

PUBLISHED

23 December 2020

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Detecting entanglement of unknown continuous variable states
with random measurements

Tatiana Mihaescu1,2,∗ , Hermann Kampermann1, Giulio Gianfelici1, Aurelian Isar2,3

and Dagmar Bruß1

1 Institut für Theoretische Physik III, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
2 Department of Theoretical Physics, National Institute of Physics and Nuclear Engineering, RO-077125 Bucharest-Magurele,

Romania
3 Faculty of Physics, University of Bucharest, RO-077125 Bucharest-Magurele, Romania
∗ Author to whom any correspondence should be addressed.

E-mail: mihaescu.tatiana@theory.nipne.ro

Keywords: quantum entanglement, continuous variable systems, entanglement witnesses, covariance matrices

Abstract
We develop a scheme for the detection of entanglement in any continuous variable system, by
constructing an optimal entanglement witness from random homodyne measurements. To this
end, we introduce a set of linear constraints that guarantee the necessary properties of a witness
and allow for its optimisation via a semidefinite program. We test our method on the class of
squeezed vacuum states and study the efficiency of entanglement detection in general unknown
covariance matrices. The results show that we can detect entanglement, including bound
entanglement, in arbitrary continuous variable states with fewer measurements than in full
tomography. The statistical analysis of our method shows a good robustness to statistical errors in
experiments.

1. Introduction

The most valuable characteristics of quantum systems are quantum correlations such as entanglement,
which represents a useful resource for applications unattainable in the framework of classical theory, such as
quantum teleportation, quantum cryptography and dense coding [1, 2]. In the last two decades, the use of
continuous variable (CV) systems became a very powerful approach to quantum information processing
and communication [3–5], opening the way to various protocols and tasks, like quantum cryptography [6],
quantum teleportation [7], quantum dense coding [8]. CV quantum systems provide the quantum
description of the propagating electromagnetic field, and therefore manifest particular relevance for
quantum communication and quantum techniques like detection, imaging and sensing [9].

A significant problem in quantum information theory and any application is to efficiently reveal the
properties of an unknown quantum state, in particular to certify the presence of entanglement in a given
unknown state. Usual entanglement criteria for CV systems consist in certain operations on the second
moments, or uncertainties, of quantum states, such as the positive partial transpose (PPT) criterion
[10, 11]. Therefore, first a full tomography is required for completely unknown states, in order to
reconstruct the entire covariance matrix (CM). However, this method may be a very resource-consuming
and demanding experimental procedure, especially for quantum states with a high number of modes. In
addition, the full information about the second moments of the state can be excessive for the
characterisation of entanglement present in the state. Instead, one can choose to measure certain fixed
combinations of second moments, giving rise to a specific test, which detects entanglement in some states
and does not detect it in others [12–14].

Entanglement witnesses (EWs) represent another commonly used entanglement test, being directly
accessible in experiments through measurable observables [15]. A Hermitian observable W is an EW if for
all separable states ρs, Tr[Wρs] � 0 holds, while for some entangled state ρ we have that Tr[Wρ] < 0 [15].
For CV systems a special instance of EWs can be defined, which embodies the entanglement criterion in

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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terms of the variances of the canonical observables of the state [16–19]. This is possible because all the
relevant information on the quantum entanglement of a CV system is encoded in its CM, specifically in its
symplectic spectrum [20]. Typically, EWs are employed when certain knowledge about the state is available.

Given an unknown quantum state, however, the complexity of the state and the absence of any
information about it deprive us of a specific experimental strategy in tackling the problem of efficient
entanglement detection. Therefore, the best strategy in this case would be to perform random
measurements, serving as building blocks for the construction of an EW by means of a semidefinite
optimization algorithm. In this context, one has the opportunity to represent the performance of
entanglement detection in terms of the number of measurements required for this task.

We introduce new linear constraints for EWs and use them to build a semidefinite program (SDP). Our
method based on EWs is applicable to arbitrary unknown CV states, and can be easily adjusted to detect
any type of entanglement encoded in the second moments, including bound entanglement. Important is
that we find a high probability of success in detecting entanglement with fewer measurements than in a
tomographically complete set. Our method presents a clear advantage over entanglement criteria subjected
to specific measurement directions on the CM, or to full information about the CM [11, 12]. As this is of
high interest for experimental applications, we also provide a statistical analysis showing the robustness of
this method to statistical errors. This idea is inspired by an analogous method for the discrete-variable case,
which was developed in [21].

The paper is organized as follows. In section 2 we present the theoretical framework of CV states, mainly
based on the second moments description of the state. In section 3 we introduce the EWs based on the CM
of the state, as presented in references [16, 17], and propose a set of stronger linear semidefinite constraints
in order to characterize the EWs. Then, we simulate random homodyne measurements for two-mode CMs
in section 4 and formulate a SDP optimizing the witness constructible from given experimental data. We
present the results of the efficiency of entanglement detection for random two-mode CMs and, in
particular, for the class of squeezed vacuum states in section 5, and illustrate an example of bipartite bound
EW. A statistical analysis of our method is provided in section 6, and a summary and conclusions are
presented in section 7.

2. Continuous variable systems

A CV system of N canonical bosonic modes, like the quantized electromagnetic field with a Hamiltonian of

a system of N harmonic oscillators (modes), is defined in a Hilbert space H =
N
⊕

k=1
Hk, each one with an

infinite-dimensional space Hk = L2(R) and two canonical observables x̂k and p̂k, with the corresponding
phase space variables of position xk and momentum pk [3–5]. One can define a vector of quadrature
operators R̂T ≡ (R̂1, . . . , R̂2N ) = (x̂1, p̂1, . . . , x̂N , p̂N ) satisfying the bosonic commutation relations

[R̂i, R̂j] = iΩiĵI, i, j = 1, . . . , 2N, (1)

where Î is the identity matrix, and Ωij are the elements of the fundamental symplectic matrix (we assume
� = 1)

ΩN =
N
⊕
1

(
0 1

−1 0

)
. (2)

The primary role in this study is played by the statistical moments of the quadrature operators, that
characterize the state with density operator ρ [3, 4], up to the second order: the displacement vector, which
is the real vector d of first order moments di = 〈R̂i〉ρ = Tr[R̂iρ], and the CM, which is the real, symmetric
matrix γ whose entries are the second order moments in symmetrized form (the variances) of the
quadrature operators, defined as [5, 22]:

γij = 〈{R̂i − 〈R̂i〉, R̂j − 〈R̂j〉}+〉ρ, (3)

where {,}+ represents the anticommutator. The Robertson–Schrödinger uncertainty relation in terms of
the CM reads

γ + iΩN � 0, (4)

assuring that it is a CM of a physical quantum state. Gaussian states represent the class of CV states which
are completely characterized by their first and second moments. The entanglement criteria discussed in this
paper can also detect entanglement of non-Gaussian states.

A quantum state of a bipartite system is entangled if it cannot be prepared by means of operations
acting locally on the subsystems. In the case of separable states correlations are attributed to possible

2
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classical communication between subsystems, and hence are of classical origin. This reasoning carries over
to CV systems, where a separability criterion can be defined in terms of CMs. If a CM γ of a state of N
modes is fully separable, then there exist CMs γi, i = 1, . . . , N, corresponding to N subsystems, such that
[23]

γ �
N
⊕

i=1
γi. (5)

Conversely, if this holds, then Gaussian states with CM γ are separable. Therefore, if this criterion is
violated, then the corresponding state is entangled, irrespective of whether it is Gaussian or not. If it is not
violated, then a Gaussian state is separable, while a non-Gaussian state might be entangled.

In the following, we will refer to the situation of a k-partition of an N-mode system as the splitting or
distribution of an N-mode system into k subsystems, where every subsystem j (j = 1, . . . , k) is composed of
Nj modes, such that

∑k
j=1 Nj = N.

2.1. Symplectic transformations
Unitary operators acting on the quantum state space are equivalent to symplectic transformations which
preserve the commutation relations of canonical variables. The real symplectic group is defined by [24]:

Sp(2N, R) = {S ∈ M(2N, R) : SΩN ST = ΩN}, (6)

where S is a symplectic transformation acting in phase space as R̂ → R̂′ = SR̂, and M(2N, R) denotes the
set of 2N × 2N real matrices. Symplectic transformations act by congruence on CMs: γ ′ = SγST.

Every symplectic transformation can be decomposed using the Euler decomposition, which represents
the singular value decomposition for real symplectic matrices [24]:

S = K

[
N
⊕

i=1
S(ri)

]
L, (7)

where K, L are symplectic and orthogonal matrices, while

S(ri) =

(
e−ri 0

0 eri

)
(8)

are one-mode squeezing matrices (symplectic and nonorthogonal) with ri the squeezing parameter. The
symplectic and orthogonal matrices form the maximal compact subgroup K(N) within the noncompact
group Sp(2N, R) [24]. The group K(N) is isomorphic to the group U(N) of N × N complex unitary
matrices:

K(N) = {S(X, Y)|X − iY ∈ U(N)}, (9)

where the corresponding symplectic matrices are of the following form:

S(X, Y) =

(
X Y

−Y X

)
∈ Sp(2N, R). (10)

Such transformations describe multiport interferometers and are called passive canonical unitaries, which
preserve the photon number [4]. The active canonical unitaries correspond to nonorthogonal symplectic
transformations, such as one-mode squeezers.

In the following we will use the theorem by Williamson [20], according to which every matrix
M ∈ M(2N, R), M � 0 can be brought to a diagonal form through symplectic transformations:

SMST = diag(s1, s1, . . . , sN , sN ), (11)

where s1, . . . , sN � 0 are called symplectic eigenvalues of M. By

str[M] :=
N∑

i=1

si (12)

we will denote the symplectic trace of M.

3. Entanglement witnesses for covariance matrices

An EW based on CMs is characterised by a real symmetric matrix Z � 0 such that [17]

Tr[Zγs] � 1, for all separable CMs γs, (13a)

3
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Tr[Zγ] < 1, for some entangled CM γ. (13b)

The EWs based on second moments defined in equations (13a) and (13b) represent hyperplanes in the
space of CMs that separate some entangled states from the set of separable CMs. If there exists Z which
fulfills conditions (13b), then the state with CM γ is entangled, irrespective of whether it is Gaussian or not,
while if this test does not detect entanglement in a given non-Gaussian state, then the result is inconclusive.
The following theorem fully characterises the EWs for multimode CV states defined in equations (13a) and
(13b) for different entanglement classes.

Theorem . (Taken from [16, 17]) A CM γ of a k-partite system with
∑k

j=1 Nj = N modes is entangled with
respect to this partition iff there exists Z such that

Tr[Zγ] < 1, (14)

where Z is a real, symmetric 2N × 2N matrix satisfying

Z � 0,
k∑

j=1

str[Zj] � 1

2
, (15)

where Zj is the block matrix on the diagonal of Z acting on the subsystem j. Matrices Z are called EWs based on
second moments.

Due to the convexity of the set of separable CMs there always exists an EW Z giving the result of
equation (14) for an entangled CM γ. In reference [17] the authors formulated the above theorem in a
slightly different way: in addition to equation (15) it is stated that such an EW has to satisfy also str[Z] < 1

2 ,
instead of condition Tr[Zγ] < 1. Note that there is no contradiction between the conditions (15) and
str[Z] < 1

2 that an EW has to satisfy, since the relation str[Z] �
∑N

i=1 str[Zi] holds [16].
Nevertheless, the two formulations of the theorem above are equivalent. In order to show this we will

use the results from reference [16] where it is proven that Tr[Zγ] � 1 for all separable CMs γ if and only if
Z � 0 and

∑k
j=1 str[Zj] � 1

2 . In addition, it is shown that Tr[Zγ] � 1 for all CMs γ if and only if Z � 0 and

str[Z] � 1
2 . As Z � 0 would contradict Tr[Zγ] � 1 for all separable CMs γ, it follows that if Tr[Zγ] < 1 for

some CM γ then str[Z] < 1
2 . Conversely, if str[Z] < 1

2 then there exists some CM γ such that Tr[Zγ] < 1.
The problem of finding an EW that most robustly detects entanglement in a given CM arises as a SDP

(see reference [17] where the authors provide also numerical routines performing this task). Here we
consider the situation when no information about the state is available, and we aim at constructing the EWs
from given random measurements. For this purpose, the description of EWs given in the theorem above
can serve as constraints in our optimization program.

However, the inequality (15) cannot be used in this form as a semidefinite constraint in an SDP, because
its left-hand side cannot be regarded as a linear function since the symplectic eigenvalues of a matrix M � 0
are given by the eigenvalues of the matrix M

1
2 (iΩN )M

1
2 [5]. In the following, we propose a set of linear

semidefinite constraints for EWs, which are stronger than conditions (15).

Proposition . For the EW Z of a k-partite entangled N-mode CM with
∑k

j=1 Nj = N, the inequalities (15) are
satisfied if the following conditions are fulfilled:

Z � 0,

Zj + i
xj

Nj
ΩNj � 0, xj ∈ R, j = 1, . . . , k − 1,

Zk + i
1

Nk

⎛
⎝1

2
−

k−1∑

j=1

xj

⎞
⎠ΩNk

� 0. (16)

Proof

(a) In the first part we prove the proposition for k = N. First, we prove this for N = 2, i.e. for a two-mode
witness with the following block form:

Z =

(
Z1 Zc

ZT
c Z2

)
, (17)

4
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where Z1, Z2 and Zc are 2 × 2 matrices. Since Z is a positive semidefinite matrix, also the principal
submatrices Z1 and Z2 are positive semidefinite. Let us assume the following inequality:

Z1 + ixΩ1 � 0, where Ω1 =

(
0 1

−1 0

)
, x ∈ R. (18)

By symplectic transformation S the positive matrix above can be brought to the Williamson normal
form as follows4:

S(Z1 + ixΩ1)ST = Zw
1 + ixΩ1 =

(
z1 xi

−xi z1

)
, (19)

where Zw
1 = diag(z1, z1), with z1 the positive symplectic eigenvalue of Z1. The eigenvalues α of matrix

(19) are determined from the equation:

(z1 − α)2 − x2 = (z1 − α − x)(z1 − α + x) = 0, (20)

and hence
z1 ± x = α � 0. (21)

Thus, the symplectic eigenvalue z1 fulfills the inequality z1 � ±x, or z1 � |x|. A similar inequality can
be formulated for the block matrix Z2:

Z2 + i(
1

2
− x)Ω1 � 0, (22)

from which we obtain the following condition for the symplectic eigenvalue z2:

z2 �
∣∣∣∣
1

2
− x

∣∣∣∣ . (23)

Now, the sum of symplectic eigenvalues gives:

z1 + z2 � |x| +

∣∣∣∣
1

2
− x

∣∣∣∣ �
∣∣∣∣x +

1

2
− x

∣∣∣∣ =
1

2
. (24)

The above inequality assures that the condition (15) is always fulfilled. The generalization to more
modes is straightforward. For instance, consider a three-mode CM and we want an EW detecting
three-partite entanglement. Then, according to the proposition, we need to impose constraints on the
three block diagonal matrices of the witness, which amount to the following inequalities for the
corresponding symplectic eigenvalues:

z1 � |x1|, x1 ∈ R,

z2 � |x2|, x2 ∈ R,

z3 �
∣∣∣∣
1

2
− x1 − x2

∣∣∣∣ . (25)

These inequalities imply the constraint (15).

(b) In the second part, we present the generalization of the proof for k-partite entanglement of N-mode
CMs, with k < N. Consider, for simplicity, a three-mode state and the bipartition between the first and
the other two modes. The witness Z is a 6 × 6 matrix where Z1 is the 2 × 2 block diagonal matrix of Z
acting on the first mode, and we denote by Z′ the 4 × 4 block matrix acting on the other two modes.
Then the corresponding constraints on the witness are:

Z � 0,

Z1 + ixΩ1 � 0, x ∈ R,

Z′ + i
1

2

(
1

2
− x

)
Ω2 � 0. (26)

If we denote by z1 the symplectic eigenvalue of Z1, and by z′
1, z′

2 the two symplectic eigenvalues of Z′,
then the conditions above are equivalent to:

z1 � |x|, x ∈ R,

4 Any symplectic transformation preserves the symplectic eigenvalues, and since we know that Tr[M] � 2 str[M] holds for any positive
matrix M [25], then we may say that symplectic transformations preserve also the positivity.
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z′
1 � 1

2

∣∣∣∣
1

2
− x

∣∣∣∣ ,

z′
2 � 1

2

∣∣∣∣
1

2
− x

∣∣∣∣ , (27)

which satisfy the condition (15). Since this is a bipartite state, the lower bounds for the three symplectic
eigenvalues depend on a single parameter x, while, according to the proposition, the detection of
three-partite entanglement in a three-mode state would require two optimization parameters, x1 and x2

(see equation (25)). The generalization of the proof to N modes and k parties is straightforward. Note
that the conditions in the proposition are stronger for k-partite entanglement (with k < N) than for
genuine multipartite entanglement (i.e. k = N), where the optimization for every symplectic eigenvalue
is done independently.

�

While the semidefinite inequalities proposed in the previous proposition present the advantage of being
linear, the drawback of these constraints is that they are stronger than those required by the theorem
characterizing the EWs based on second moments, and therefore some EWs will not satisfy conditions (16).

4. Entanglement witnesses from random measurements

Here we will shortly present the physical set-up of the homodyne detection, that encodes the experimental
settings measuring the variances of the state. Homodyne measurements are phase sensitive measurements
which allow the detection of the moments of quadratures up to the second order [3, 4]. We denote by k̂ and
k̂† the mode operators of our state. A simple scheme for balanced homodyne measurements is composed of
a balanced beam splitter superposing the signal mode to be measured k̂ with a strong local oscillator field
αLO = |αLO|eiθ with phase θ, and two photon detectors, converting the electromagnetic modes into two
output photon currents, i1 and i2. The actual quantity to be measured is the difference in the photon
currents, given by:

δi = i1 − i2 = q|αLO| 〈x̂θ〉, (28)

with q being a constant, and x̂θ is the generalized quadrature operator of mode k̂ defined as:

x̂θ =
exp(−iθ)k̂ + exp(iθ)k̂†

√
2

, (29)

which covers the whole continuum of quadratures for θ ∈ [0, π]. It was shown in reference [26] that in the
strong local oscillator limit the homodyne detection performs projective measurements corresponding to
the positive operator valued measure {|xθ〉〈xθ|}, where |xθ〉 is the eigenstate of the quadrature phase
operator x̂θ.

In two-mode homodyne detection, we rely on the detection scheme proposed in reference [27], where
the two-mode states are characterized by a single homodyne detector. By denoting with â and b̂ the initial
modes to be detected, the mode k̂ arriving at the detector can be expressed as [27]

k̂ = exp(iϕ) cos φ â + sin φ b̂, (30)

which corresponds to applying a phase shift of angle ϕ between the horizontal and vertical polarization
components, a polarization rotator of angle φ, and a polarizing beam splitter (PBS) reflecting the vertically
polarized component of the beam toward the detector [27]. Using repeated measurements of the
quadratures for a set of identical states, the homodyne data are collected for which a probability
distribution can be assigned with the variance given by:

〈x̂2
θ〉 − 〈x̂θ〉2 = Tr[Pγ], (31)

where P is the matrix for the measurement of the quadrature variance of the mode k̂:

P = uuT, uT =
(
cos φ cos(θ − ϕ), cos φ sin(θ − ϕ), sin φ cos θ, sin φ sin θ

)
. (32)

As P is a symmetric, real 4 × 4 matrix we can see that for 10 different combinations of angles θ, φ and ϕ the
entire two-mode CM can be reconstructed (the number of unknown independent parameters in an
N-mode CM is N(2N + 1)).
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The extension of detection to N-mode CV states by a single homodyne detector can be achieved by
applying the same two-mode combination scheme N − 1 times. For example, for the initial modes â, b̂ and
ĉ, the generalized mode arriving at the detector is:

k̂ = exp(iϕ1) cos φ â + exp(iϕ2) sin φ cos ψ b̂ + sin φ sin ψ ĉ, (33)

from where we can see that for ψ = 0 and ϕ2 = 0 the two-mode case in equation (30) is obtained. We
denote by Pj the matrix of the jth measurement.

4.1. Constructing witnesses
Random measurement directions in the case of two modes are given by random angles θ, φ, ϕ that are
drawn from a uniform distribution in an interval:

0 �θ � π, (34)

0 �φ � π, (35)

0 �ϕ < 2π. (36)

The problem of finding a witness operator Z, given the repeated independent measurements Pj on the
CM, reduces to finding the coefficients cj such that Z =

∑
j cjPj. Therefore, we apply the proposition in

order to find the best witness for two-mode CMs, and propose the following SDP:

minimize
x

c · m

subject to Z =
∑

j

cjPj

Z =

(
Z1 Zc

ZT
c Z2

)
� 0

Z1 + ixΩ1 � 0

Z2 + i(
1

2
− x)Ω1 � 0,

(37)

where m = Tr(Pγ), with P being the vector of measurement matrices Pj. This SDP finds the matrix Z,
given the experimentally obtained data, such that

c · m = Tr[Zγ] (38)

takes its minimal value, while being an EW as defined in theorem above. If the obtained value in
equation (38) is smaller than one, then the CV state with CM γ can be unambiguously identified as being
entangled.

This SDP also allows for the identification of the minimal number of measurements that are required
for entanglement assessment in arbitrary states. The number of measurements in a tomographically
complete setting is given by N(2N + 1), where N is the number of modes. This is the maximal number of
measurement settings required to detect entanglement. However, the set of EWs described in the
proposition is more restrictive than the set of all EWs. The consequences will be discussed later.

5. Detection of non-PPT entanglement and bound entanglement

The proposed SDP has the immediate advantage that it does not require any information about the state,
except the number of modes N. We will now test the performance of this method by simulating its
implementation on random two-mode entangled CV states, and on four-mode bipartite bound entangled
states.

The entanglement of two-mode CMs with block structure given by:

γ =

(
γ1 ε1,2

εT
1,2 γ2

)
(39)

is quantified by means of the logarithmic negativity [28]:

E = max

{
0, −1

2
log2 f

}
, (40)
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where
f =

1

2
(det γ1 + det γ2) − det ε1,2

−
([

1

2
(det γ1 + det γ2) − det ε1,2

]2

− det γ

)1/2

. (41)

An EW provides a lower bound for the logarithmic negativity measure when the PPT criterion of
separability is necessary and sufficient [16]:

E � log2

1

w
, (42)

where w ∈ (0, 1) is the outcome of measuring an EW on CM γ: Tr[Zγ] = w. For two-mode CMs the
logarithmic negativity corresponds to the minimal5 EW Zmin giving the smallest possible value wmin.

In the following we investigate the efficiency of our method for detecting entanglement of arbitrary CV
states, with respect to the minimal number of measurements required to accomplish this task. Thus, given
an arbitrary unknown CM our algorithm first computes the variances of the generalized quadrature (31) for
one random measurement direction in phase space and then carries out the SDP optimization to check if
the state is entangled. If entanglement is not detected, additional random measurements are successively
simulated and the optimization algorithm is executed each time until the entanglement is detected. At least
two measurement settings are required in order to detect entanglement.

5.1. Detecting entanglement in squeezed vacuum states
The CMs of squeezed vacuum states have the form:

γ =

⎛
⎜⎜⎝

cosh 2r 0 sinh 2r 0
0 cosh 2r 0 − sinh 2r

sinh 2r 0 cosh 2r 0
0 − sinh 2r 0 cosh 2r

⎞
⎟⎟⎠ , (43)

where r is the squeezing parameter. For such states the logarithmic negativity can be calculated using (40),
obtaining a linear dependence on the squeezing parameter:

E = 2r log2 e, (44)

where e is the Euler constant. Squeezed vacuum states are Gaussian states, which are naturally accessible in
many experimental situations where spontaneous down conversion is involved, being also useful in many
quantum optics applications [3, 4].6

In figure 1 we show the fraction of entanglement detection of squeezed vacuum states, using random
EWs. Contrary to intuition, states with less entanglement are more easily detected, i.e. they require on
average fewer measurements than states with higher entanglement. This is due to the fact that in this case
the amount of entanglement is linked to the strength of quadrature squeezing. It is well known that it is
difficult to measure high squeezing in CV states [29] (see also the explanation given in figure 2). The full
tomography for two-mode CMs is reached by 10 independent measurements. The CM (43) of the squeezed
vacuum state has some zero elements, and with this knowledge about the state one would need only 6
measurements to reconstruct the CM entirely. However, our method may require more than 6
measurements to assess entanglement since we assumed no information about the states, except the
dimension of the CM. As a consequence of the stronger constraints imposed on the EWs in equation (16)
our method requires, with very low probability (0.0094% in our example), more than 10 measurements,
which correspond to full tomography.

In figure 2 we show the variance of the generalized quadrature Tr[Pγ], see (31), for θ = 0, as a function
of ϕ ∈ [−π, π] and φ ∈ [−π, π], for different values of the squeezing parameter, r = 0.2 (left) and r = 1
(right), of the squeezed vacuum state. The outcomes of the random measurements are represented by the
points on this surface. The horizontal plane is given by Tr[Pγ] = 1, which holds for a separable vacuum
state with r = 0. The areas below this plane, where Tr[Pγ] < 1, correspond to the region of parameters ϕ

and φ for which entanglement is detected. We observe that the areas of the regions of entanglement
detection are decreasing with increasing the squeezing. This corresponds to the fact that highly squeezed

5 Compared to the optimal EW in state space, the minimal EW based on second moments gives the best estimate of the degree of
entanglement the considered state has, but it is not necessarily the finest witness [16].

6 Recent experiments report the achievement in measuring 15 dB of squeezed light [29], which corresponds to r ≈ 1.73 according to
the formula [30]: #dB = 10 log 10e2r.
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Figure 1. Fraction of entanglement detection of squeezed vacuum states: 5 × 105 runs of the algorithm on the two-mode
squeezed vacuum states (43) with squeezing parameter r ∈ [0, 2]. The logarithmic negativity is given by E = 2r log 2e (see
equation (44)). By successively adding measurement directions, the EW is evaluated at every round until the presence of
entanglement is certified. The data are normalized such that they sum up to 1 for every value of entanglement.

Figure 2. The variance of the generalized quadrature Tr[Pγ], see equation (31), of the squeezed vacuum CM, as a function of
ϕ ∈ [−π, π] and φ ∈ [−π, π], for θ = 0 and squeezing parameter r = 0.2 (left) and r = 1 (right). The horizontal plane
represents Tr[Pγ] = 1, which is the case of the squeezed vacuum states with r = 0 (separable states). In the regions below this
plane entanglement is detected.

states occupy a smaller region in phase space in terms of the angles φ, ϕ. Thus, more random measurements
are needed to detect the entanglement.

5.2. Detecting entanglement in random covariance matrices
Random CMs are produced as follows. Starting with a CM in diagonal form, with symplectic eigenvalues
ν i � 1 (i = 1, . . . , N) randomly generated from a uniform distribution in a finite real interval [1, t], t > 1:

γth =
N
⊕

i=1

(
νi 0
0 νi

)
, (45)

the general random CMs γ are created by applying random symplectic transformations S ∈ Sp(2N, R), as
follows [5]:

γ = SγthST. (46)

The matrix (45) is the CM of thermal states, with the symplectic eigenvalue of every mode i related to the
thermal photon number ni as follows: ν i = 2ni + 1 [5]. Random symplectic matrices are generated using
the Euler decomposition (7). First, unitary matrices X and Y in equation (9) are generated from the Haar
distribution [24], and the symplectic orthogonal matrices K and L are formed as in equation (10). The
one-mode squeezers defined in equation (8) are created by randomly choosing parameters ri via a uniform
distribution in a finite interval. For this purpose we implemented the Matlab code presented in reference
[31].
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Figure 3. Fraction of entanglement detection for random two-mode states: 5 × 105 runs of the algorithm on random two-mode
CMs for ν i ∈ [0, 5] and ri ∈ [0, 2]. By successively adding measurement directions, the EW is evaluated at every round until the
presence of entanglement is certified. The data are normalized such that they sum up to 1 for every value of entanglement.

In figure 3 we illustrate the efficiency of entanglement detection for general random two-mode CMs,
created from thermal state CMs (45) with random symplectic eigenvalues ν i ∈ [0, 5], by random symplectic
transformations (7) with squeezing parameters ri ∈ [0, 2]. Our method shows a slight improvement in the
efficiency of entanglement detection for highly entangled states compared to less entangled states, and most
of the time it does not require full tomography. However, because of the strength of our proposed linear
constraints, we may need, with very low probability, more measurements than in the full tomography in
order to detect entanglement in random two-mode states. The probability that entanglement is detected by
11–12 measurements in this case, is 0.05%.

The evident difference in the efficiency of entanglement detection in random CMs compared to
squeezed vacuum states may reside in the fact that highly squeezed states look classical in random
measurement directions, which does not have to be the case for random states. In addition, squeezed
vacuum states are a special class of states for which the logarithmic negativity has a linear dependence on
the squeezing parameter alone (see equation (44)), while for a general two-mode CM the logarithmic
negativity depends also on thermal photon number of the modes, and the simulation of entanglement
detection shows a different behaviour.

In general, it is unlikely to draw randomly an entangled state with high logarithmic negativity, especially
for states with a high number of modes. However, for the two-mode CMs, with the range of entanglement
considered in figure 3, a substantial fraction of randomly generated CMs is entangled, which allowed us to
perform the simulation.

5.3. Detecting bipartite bound entanglement
Since the proposed SDP algorithm can be easily generalized to multi-mode CV states, we provide an
example of a four-mode CM with 12 independent parameters, mentioned in reference [32], which has
bipartite bound entanglement:

γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 1 0 0 0
0 1 0 0 0 0 0 −1
0 0 2 0 0 0 −1 0
0 0 0 1 0 −1 0 0
1 0 0 0 2 0 0 0
0 0 0 −1 0 4 0 0
0 0 −1 0 0 0 2 0
0 −1 0 0 0 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (47)

The detection of bound entanglement by our method proves that the EWs defined in the theorem above,
goes beyond the criteria which detect entanglement only in states with non-PPT. A general N-mode CM has
N(2N + 1) independent variables, and for the four-mode CM in equation (47) by performing 36
measurements our algorithm provides the best estimate of entanglement, Tr[Zminγ] = 0.8966, which is in
agreement with the results of reference [17]. In figure 4 we depict the frequency of entanglement detection
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Figure 4. Fraction of entanglement detection for 4-mode bipartite bound entangled state, see equation (47): 104 runs of the
algorithm. The data are normalized such that they sum up to 1.

as a function of the number of random measurements composing the witness. The CM in equation (47) is
of a rather simple form, however, the construction of the EW detecting bound entanglement requires 33
random measurements on average, since our SDP considers the number of modes of the state as the only
available information.

6. Statistical analysis

Until now we have considered only ideal measurements, where we used the exact variances
mi = Tr[Piγ] = (Δx̂θi )

2 (see section 4) in order to construct the EW. In real experiments the accessible data
are subject to statistical fluctuations. In the following we perform the statistical analysis for the case of
Gaussian states, that is, we assume that the data obtained in homodyning, which represent the collection of
outcomes Xij = 〈x̂θi〉j, (j = 1, . . . , ni), from ni repetitions of the measurement with the measurement
direction given by θi, are governed by the normal probability distribution Ni(μi, mi) with the mean μi, and
variance mi = (Δx̂θi )

2. Given the homodyne data from ni measurements for a fixed measurement direction
θi, the sample variance denoted as P̄i, which estimates the variance mi, is given by7:

P̄i =
1

ni − 1

ni∑

j=1

(Xij − X̄i)
2, (48)

where X̄i is the sample mean:

X̄i =
1

n

ni∑

j=1

Xij. (49)

In this case, the estimated value of our witness Tr[Zγ], denoted as Z̄, is given by:

Z̄ =
∑

i

ciP̄i, (50)

where the index i is used to denote different measurement settings, and the coefficients ci were introduced
in equation (37). In the case when the data comes from a Gaussian probability distribution, the distribution
of the sample variance follows the χ2

ni−1 distribution [33]:

ni − 1

mi
P̄i ∼ χ2

ni−1, (51)

where χ2
ni−1 is the chi-square distribution with ni − 1 degrees of freedom, which by definition represents the

distribution of sum of squares of ni − 1 independent, standard normal random variables. The statistical

7 Using ni − 1 instead of ni corrects the bias in the estimation of the population variance, and is called Bessel’s correction [34]. This
method is necessary when the population mean μi is unknown, but is estimated by the sample mean X̄i.
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Figure 5. The maximum of the 3σ confidence interval for the witness Z of a Gaussian CM γ, as obtained by the statistical
estimate according to equation (54). The horizontal dashed line indicates the minimal value of the witness for the considered CM
Tr[Zminγ] = 0.852. The vertical dashed lines indicate the number of measurement repetitions required to detect entanglement
with 6 (blue), 7 (orange) and 8 (green) measurement settings.

error carried by χ2
ni−1 is given by:

Δχ2
ni−1 =

√
Var(χ2

ni−1) =
√

2(ni − 1), (52)

where Var(χ2
ni−1) = 2(ni − 1) is the variance of the chi-square distribution [33]. Using the error

propagation formula the uncertainty of P̄i satisfies:

ΔP̄i =
dP̄i

dχ2
ni−1

Δχ2
ni−1 =

mi

ni − 1
Δχ2

ni−1 = mi

√
2

ni − 1
. (53)

Using again standard error propagation and considering that the number of measurement repetitions is
equal for every measurement direction, i.e., n = ni for every i, we obtain that the resulting error of Z̄
defined in equation (50) has the following expression:

ΔZ̄ =

√√√√∑

i

(
dZ̄

dP̄i

)2

(ΔP̄i)2 =

√
2

n − 1

√∑

i

c2
i m2

i . (54)

We stress the fact that, although by our method we can also detect entanglement in non-Gaussian states,
this formula for the error of the value of the witness is valid only for Gaussian states. If the Xij are not
normally distributed, then the statistical analysis of EWs based on second moments will require also higher
moments of the distribution.

In our method the coefficients ci are derived from the variances mi (see equation (37)), while
equation (54) neglects the fact that they are not independent. To solve this difficulty one has to divide the
homodyne data into two sets. First, one of them is used to derive the coefficients ci, and then this witness is
evaluated using the variances obtained from the other set of data [35]. In this way, the coefficients can be
regarded as independent from the errors in the variances of the second set of data. With the quantity in
equation (54) it is possible to decide whether it is better to perform additional repetitions of the
measurements, or to add new measurements to detect entanglement. For example, consider the single
detection of a low entanglement CM with Tr[Zminγ] = 0.852. In figure 5 the 3σ-confidence of Tr[Zγ] is
plotted as a function of the number n of measurement repetitions. It shows that a certification of
Tr[Zγ] < 1 with 99.7%-confidence is possible for 6 measurements, which requires a high number of
repetitions of the measurements. However, this number significantly decreases when adding another
measurement setting.

7. Summary and conclusions

We have proposed a method to detect entanglement of unknown CV states, given only the dimension of
their covariance matrices, using random homodyne measurements. Our method provides an alternative for
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performing full tomography. We characterize the EWs based on second moments using stronger
semidefinite constraints than those presented in reference [17], and which account for obtaining a valid
witness at all times. Therefore, a quantum state can be clearly considered entangled if it is detected by this
criterion. As these constraints are linear, they can be implemented in an SDP. We studied the feasibility of
this method in experimental situations, where the figure of merit is considered the number of
measurements required to detect entanglement.

First, we tested the proposed algorithm for two-mode squeezed vacuum states, for which the logarithmic
negativity linearly depends on the squeezing. We showed that the number of necessary random
measurements is very likely to be smaller than for full tomography. We observed an increasing number of
measurements required to detect highly entangled states, which is explained by the well-known difficulties
in detecting high squeezing.

Our primary objective was to simulate the performance of this method for uniformly drawn random
two-mode covariance matrices. Without adding any information about the states, we still found a reduction
in the number of measurements needed to certify the presence of entanglement. The phenomenology of
entanglement detection in random CV states is very similar to the case of decomposable witnesses for
discrete systems [21]. Hence, a higher entanglement is easier to detect, but in our case this improvement is
not as significant as in the discrete case. Only with very low probability our method needs more than a
tomographically complete set of measurements in order to detect entanglement in random two-mode
states.

Bound entangled CV states can also efficiently be detected by a random EW. Similarly to the previous
cases entanglement is detected with less than a tomographically complete set of measurements.

As we provide a method of efficient entanglement detection in CV systems which does not require
specific measurements, nor necessarily the full information about the CM, it is of high relevance for any
experimental application which relies on the valuable resource of entanglement. The experimental scheme
implementing our method for two-mode CV states consists of a phase shift in polarization basis, a rotator
of polarization, a PBS and a homodyne detector, as e.g. presented in reference [27]. We also extended this
scheme to multimode CV states. Our semidefinite optimisation program can easily be adapted to different
experimental situations, like making specific measurements or including some additional information about
the CM to be measured. Likewise, our method is also applicable to any experimental scheme measuring the
quadrature variances, by directly inserting the results of the experiment into the optimisation program we
provided. We investigated the statistical robustness of the method, and showed that it has a good robustness
to statistical errors.
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Abstract

Connections between the resource theories of coherence and purity (or non-uniformity)
are well known for discrete-variable, finite-dimensional, quantum systems. We establish
analogous results for continuous-variable systems, in particular Gaussian systems. To this
end, we define the concept of maximal coherence at fixed energy, which is achievable with
energy-preserving unitaries. We show that the maximal Gaussian coherence (where states
and operations are required to be Gaussian) can be quantified analytically by the relative
entropy. We then propose a resource theory of non-uniformity, by considering the purity of
a quantum state at fixed energy as resource, and by defining non-uniformity monotones.
In the Gaussian case, we prove the equality of Gaussian non-uniformity and maximal
Gaussian coherence. Finally, we show a hierarchy for non-uniformity, coherence, discord
and entanglement in continuous-variable systems.

Keywords : continuous-variable systems, resource theories, quantum coherence, purity

1 Introduction
Quantum resource theories [1] describe the resources of quantum states in a quantitative way.
The set of states is divided into free states (having no resource) and resource states. Quantum
operations are called free when they transform any free state into a free state, i.e. free operations
cannot increase the resources.

Different resource theories have different sets of free states and operations. For instance, the
resource theory of coherence [2–7] identifies states that are diagonal in a certain basis as free,
while the resource theory of purity [8–10] considers the maximally mixed state as the only free
state. The resourcefulness of a quantum state can be quantified by a resource monotone, which
is a function that is non-increasing under free operations. In particular, relevant monotones for
several resource theories are based on the relative entropy [2, 9, 11, 12].

For discrete-variable (DV) systems, an important connection between coherence, purity,
entanglement and discord was found in [10]. Here, it was shown that the purity of a quantum
state is— for an appropriate resource monotone—equal to the maximal coherence that can be
obtained by applying unitary operations to the state. This quantity then upper-bounds the
maximal quantum discord and entanglement of the state.
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This result cannot be straightforwardly extended to continuous-variable (CV) systems.
Infinite-dimensional Hilbert spaces are structurally different from their finite-dimensional coun-
terpart [13–16], and this difference influences the mathematical definition of the physical quan-
tities themselves and their resource theories [17]. In particular, infinite-dimensional Hilbert
spaces allow the generation of infinite resources via unitary operations [18, 19].

A common strategy to replicate DV results is to introduce valid physically and experimen-
tally motivated constraints. The first restriction is to consider finite energy [18, 20, 21] and
to explore the use of energy-preserving unitaries, as those operations are easily available in
laboratories. The second restriction is to focus on Gaussian states and operations, as most of
the relevant phenomena in quantum information and quantum optics can be described by at
most quadratic Hamiltonians.

Equipped with these assumptions, we investigate the resource theories of CV coherence
[6, 7]. We discuss both general and Gaussian coherence, the latter by restricting the set of
quantum states and operations to be Gaussian. We define the concept of maximal coherence
of a quantum state at fixed energy, as the coherence that can be obtained via applying energy-
preserving unitaries. In the case of Gaussian coherence, we find the structure of the states
with maximal coherence and discuss the form of the maximizing unitary in some specific cases.
We derive an analytical expression for the relative entropy of the maximal Gaussian coherence.
We then propose a resource theory of non-uniformity, to describe purity at fixed energy as
resource, considering states that maximise the entropy at fixed energy as free. However, our
resource theory studies the interactions of a quantum system with a noisy thermal environment,
therefore it is connected to the resource theories of a-thermality [22, 23], where states out of
thermal equilibrium are identified as resources. Our theory emphasises the entropic exchanges
between the system and the environment, rather than the energetic ones.

Finally, we establish a connection between non-uniformity, coherence, quantum discord and
entanglement, by identifying a hierarchy between them. In particular, the maximal Gaussian
coherence is bounded by the Gaussian non-uniformity and both upper-bound the maximal
discord and the entanglement. Our results represent an extension to infinite dimensions of the
hierarchy found in [10].

We begin our work by introducing our setting together with the basic notions of CV quantum
information in Sec. 2. We review coherence and Gaussian coherence in Sec. 3. In Sec. 4, we
define the maximally coherent mixed state at fixed energy and derive its properties for the
Gaussian case. We assemble the resource theory of non-uniformity in Sec. 5 and illustrate the
connections between non-uniformity, coherence, discord and entanglement in Sec. 6. Finally,
we summarise our results in Sec. 7.

2 Notation and preliminaries
In the following, we will indicate vectors and matrices as bold lowercase and uppercase letters,
respectively. We shall consider systems with a finite number of discrete spectral and spatial
modes, which refer to the frequency and location of the mode, respectively. We label the mode
operators of a mode with two indices: an index ω for the spectral degrees of freedom and an
index j for the spatial degrees of freedom.

We sort our mode operators by gathering all mode operators with the same frequency, i.e.

{ âω1 , âω2 , . . . âωMf } , (1)
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where Mf is the number of different frequencies, and for each frequency ω

âω = (âω;1, âω;2, . . . , âω;Ms)
T , (2)

with âω;j being the annihilation operator for a mode with spectral label ω and spatial label j,
and Ms being the total number of spatial labels. Without loss of generality, we assume that
Ms is the same for all frequencies. A graphical depiction of our mode labeling is drawn in Fig.
1.

Figure 1: Graphical depiction of the labeling of the spectral and spatial modes. The modes are
cataloged first in terms of their frequency ω = ω1, ω2, . . . ωMf

(represented by a distinct colour)
and then in terms of their spatial label j = 1, 2, . . .Ms.

The operators satify the usual bosonic commutation relations
[
âω;j, âω′;j′

]
=
[
â†ω;j, â

†
ω′;j′

]
= 0, (3)

[
âω;j, â

†
ω′;j′

]
= δωω′δjj′ . (4)

Using the notation of Eqs. (1) and (2), the free Hamiltonian of the system reads

Ĥ =

ωMf∑

ω=ω1

~ω

[
Ms∑

j=1

(
â†ω;j âω;j +

1

2

)]
. (5)

In the following, we will always assume that the system has finite mean energy, i.e. that the
Hamiltonian satisfies 〈Ĥ〉 <∞. This is a natural and physically reasonable assumption, and a
mathematically necessary precondition for the trace-norm continuity of many functionals [18,
20, 21].

The total number of modes isM = MfMs. We shall label the modes with the indexm ≡ ω; j
whenever there is no need to distinguish between spectral and spatial modes. We use the order
m = (ω1; 1), (ω1; 2), . . . , (ω1;Ms), (ω2; 1), . . . , (ωMf

;Ms).
We now recall basic concepts of Gaussian quantum information, inspired from [13–16] and

written according to our notation.
For each mode m, we define the canonical conjugate operators q̂m := (âm + â†m)/

√
2 and

p̂m := (âm − â†m)/(i
√

2). We group them in a vector r̂ := (q̂1, p̂1, q̂2, p̂2, . . . , q̂M , p̂M)T .
The first and second moment of a state ρ is the displacement vector d and the covariance

matrix V , respectively. Their components dm and Vmm′ read in terms of components r̂m of r̂
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as [15]:

dm := 〈r̂m〉 = Tr [r̂m ρ], (6)
Vmm′ := 〈r̂m r̂m′ + r̂m′ r̂m〉 − 2 dm dm′ . (7)

Both moments are real, and V is symmetric and positive definite. Gaussian states are
represented by a Gaussian quasi-probability distribution in the phase space and are fully char-
acterised by the first and second moments. The 2M -dimensional displacement vector and the
2M × 2M covariance matrix of any Gaussian state can be written in the following block form:

d =




d1

d2
...
dM


 , V =




V1 ∆12 . . . ∆1M

∆T
12 V2 . . . ∆2M
...

... . . . ...
∆T

1M ∆T
2M . . . VM


 , (8)

where dm are 2-dimensional vectors, and Vm and ∆mm′ are 2× 2 real matrices. In particular,
dm (Vm) corresponds to the displacement vector (the covariance matrix) of the reduced state
ρm = Trm\m [ ρ ] after partial trace of all modes but the m-th, while ∆mm′ is related to the
correlations between the modes m and m′ [13].

The total average occupation number can be derived as

〈N̂〉 =
M∑

m=1

n̄m =
M∑

m=1

1

4
(Tr[Vm] + 2|dm|2 − 2), (9)

where n̄m is the average occupation number of the m-th mode. This expression can be obtained
by writing Tr[Vm] in terms of Eq. (7) and the mode operators âm and â†m

Tr[Vm] = 2 〈q̂2
m〉+ 2 〈p̂2

m〉 − 2 〈q̂m〉2 − 2 〈p̂m〉2 = 〈(âm + â†m)2〉 − 〈(âm − â†m)2〉 − 2|dm|2

= 2 + 4 〈â†mâm〉 − 2|dm|2.
(10)

Eq. (9) follows by setting 〈N̂〉 =
∑M

m=1 〈â†mâm〉. Notice that this formula holds regardless
of the presence of correlations between different modes, for both Gaussian and non-Gaussian
states.

By Williamson’s theorem [24], any covariance matrix V can be brought into a diagonal
form:

V = SDST , (11)

where D is a diagonal matrix

D = diag [ν1, ν1, . . . , νM , νM ] , (12)

and S is a symplectic matrix, i.e. a real matrix that satisfies

SΩST = Ω, Ω =
M⊕

m=1

(
0 1
−1 0

)
. (13)

The variables νm ≥ 1 are called symplectic eigenvalues and obey the Bose-Einstein statistics:

νm = νω;j =
1

2

[
exp

(
~ω
κTω;j

)
− 1

]−1

− 1

2
, (14)
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where κ is the Boltzmann constant and Tω;j is the temperature of the m-th mode, with m =
(ω; j). The symplectic eigenvalues are used to express several properties of Gaussian states.
For instance, the von-Neumann entropy of a Gaussian state reads [25]:

S(ρ) =
M∑

m=1

(
νm + 1

2
log

νm + 1

2
− νm − 1

2
log

νm − 1

2

)
. (15)

Any unitary that preserves the Gaussianity of quantum states is called Gaussian unitary.
In terms of the moments, a Gaussian unitary acts as [16]

d→ S · d+ v,

V → S · V · ST , (16)

where v is a 2M -dimensional vector and S is a 2M × 2M symplectic matrix.

Theorem 2.1 (Bloch-Messiah decomposition [26]). Any 2M × 2M symplectic matrix can be
decomposed as

S = O1

[
M⊕

m=1

Z(rm)

]
O2, (17)

where the 2M × 2M matrices O1 and O2 are symplectic and orthogonal (we generally denote
symplectic orthogonal matrices as O), and the 2 × 2 matrix Z(rm) is a single-mode squeezer
with squeezing parameter rm, that is

Z(rm) :=

(
e−rm 0

0 erm

)
. (18)

For rm = 0 (absence of squeezing), Z(rm) becomes the identity I. Therefore, in Eq. (17),
S = O1O2 is orthogonal, being the product of two orthogonal matrices.

Definition 2.2. A passive unitary [13, 14] is a Gaussian unitary ÛO that is represented in the
phase space (Eq. (16)) by v = 0 and a symplectic orthogonal matrix O in the form of

O =

ωMf⊕

ω=ω1

Oω, (19)

where Oω are 2Ms × 2Ms symplectic orthogonal matrices acting on the subset of modes with
frequency ω. Conversely, any Gaussian unitary that is not passive, is called active.

Active unitaries are associated with linear displacements and squeezing. Passive unitaries
are realised by linear-optics circuits, that is any multiport interferometer made of beam splitters
and phase shifters. They preserve the total average occupation number (see Eq. (9)):

〈N̂〉 =
1

4
(Tr[OV OT ] + 2|Od|2 − 2M) =

1

4
(Tr[V ] + 2|d|2 − 2M). (20)

Since N̂ commutes with the Hamiltonian Ĥ of the system, passive Gaussian unitaries preserve
the average energy, too. Passive Gaussian unitaries are the only energy-preserving Gaussian
unitaries [15, 16]. They create correlations between spatial modes with the same frequency ω.
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They do not allow interactions between modes with different frequencies (see Eq. (19), and
[27]).

Gaussian unitaries are not the only operations that preserve the Gaussianity of a quantum
state. A Gaussian channel is a completely positive trace-preserving (CPTP) operation that
maps Gaussian states into Gaussian states. In terms of the moments, a Gaussian channel acts
as [28]

d→ T · d+ v,

V → T · V · T T +N ,
(21)

where T , N are 2M × 2M real matrices, N ≥ 0, and v is a 2M -dimensional vector.

3 Resource theory of (Gaussian) coherence
A state ρ of M bosonic modes is said to be incoherent if it is diagonal in the M-mode Fock
basis [6], i.e.

ρ =
∞∑

n1...nM=0

pn1...nM |n1〉 〈n1| ⊗ · · · ⊗ |nM〉 〈nM | , (22)

for an arbitrary set of non-negative probabilities { pn1...nM }.
We denote the set of all incoherent states by I. The resource theory of coherence admits

different sets of free operations. The maximal set of free operations for I are called maximally
incoherent operations (MIO) [2]. These are all maps that cannot create coherence, i.e.,

ΛMIO(ρ) ∈ I, ∀ ρ ∈ I. (23)

An extensive study of MIO in infinite-dimensional Hilbert spaces has not been carried out
so far. We shall not investigate this here, referring to [5] for a general review of coherence and
to [6] for the CV case.

Definition 3.1. For continuous-variable systems, a function C(ρ) is a suitable measure of
coherence with respect to a chosen set of free operations, e.g. MIO (see Eq.(23)), if it satisfies
the following properties [3, 6, 7]:

(C1) Positivity: C(ρ) ≥ 0 for any density operator ρ and C(ρ) = 0 iff ρ ∈ I;

(C2) Monotonicity under the chosen set of free operations, e.g. for MIO:

C(ρ) ≥ C(ΛMIO(ρ)); (24)

(C3) Convexity:
∑

n

pn C(ρn) ≥ C
(∑

n

pn ρn

)
; (25)

(C4) Finite coherence for systems with finite energy:

〈Ĥ〉 <∞⇒ C(ρ) <∞. (26)
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The condition (C4) is specific for CV systems. Denoting with S(ρ‖τ) the quantum relative
entropy between ρ and τ ,

S(ρ‖τ) := Tr[ρ log ρ]− Tr[ρ log τ ], (27)

the relative entropy of coherence is defined as:

Crel(ρ) := min
τ∈I

S(ρ‖τ). (28)

This measure satisfies all conditions of Def. 3.1 [6].
The generic CV coherence has not been deeply studied, mainly because of theoretical and

experimental difficulties associated with general bosonic Hilbert spaces. We shall therefore
address now the relevant Gaussian subclass, in which all states and operations are Gaussian 1.

In the realm of Gaussian states, a state is diagonal in the Fock basis if and only if it is a
thermal state [7], defined as

τM(n̄) :=
M⊗

m=1

τ(n̄m);

τ(n̄m) :=
∞∑

nm=0

n̄nmm
(n̄m + 1)nm+1

|nm〉 〈nm| ,
(29)

where n̄ = (n̄1, . . . , n̄M) and n̄m is the average occupation number of the m-th mode (see Eq.
(9)). The subscript M in τM denotes the number of modes of τM , and is omitted for single-
mode thermal states. Thermal states have a zero displacement vector and a diagonal covariance
matrix

V [τM(n̄)] =
M⊕

m=1

(2n̄m + 1)I. (30)

We denote the subset of all incoherent Gaussian states by IG. Xu [7] introduced incoherent
Gaussian operations (IG).

Definition 3.2. Incoherent Gaussian operations (IG) are defined as all Gaussian channels ΛIG

that map thermal states (Eq. (29)) into thermal states, i.e. the maximal set of free operations
in this scenario. A generic IG can be written in the form of Eq. (21), where

• vIG = 0;

• NIG is diagonal,
NIG = diag {w1 I2, . . . , wM I2}, (31)

with ωm ≥ 0;

• TIG is composed of Mf submatrices Tω that act on single frequency sectors, namely:

TIG =

ωMf⊕

ω=ω1

Tω, (32)

and each Tω can be generated as follows:
1In principle, one could consider mixed scenarios, e.g. with Gaussian states and general operations, or vice

versa. This goes beyond the scope of our work.
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1. Take Ms real coefficients tω;j ∈ R;
2. Take Ms 2× 2 orthogonal matrices Oω;j, which do not need to be symplectic;

3. Tω is given by a permutation of the columns of
⊕Ms

j=1 tω;jOω;j.

Definition 3.3. A function CG(ρ) is a suitable measure of Gaussian coherence with respect to
IG (IG) as free operations (free states), if it satisfies the properties (C1)-(C4) of Def. 3.1. Here,
IG are defined in Def. 3.2 and states in IG are defined by Eq. (29). This function quantifies
the Gaussian coherence, which is, in general, an upper bound for the general coherence (since
IG ⊂ I).

In particular, the relative entropy of Gaussian coherence CGrel(ρ) can be defined as the relative
entropy of coherence (see Eq. (28)) by performing the minimization over IG. For M -mode
Gaussian systems, it reads [7]:

CGrel(ρ) := S(ρ‖τM(n̄ρ)) = −S(ρ) +
M∑

m=1

[(n̄m + 1) log(n̄m + 1)− n̄m log n̄m] , (33)

where n̄m is the reduced average occupation number of ρ (see Eq. (9)), τM(n̄ρ) represents the
thermal state with the same n̄m of ρ and the von-Neumann entropy S(ρ) is given by Eq. (15).

4 Maximally coherent mixed states at fixed energy
Coherence is a basis-dependent quantity, therefore it is affected by unitary operations. For a
given DV state ρ, the maximally coherent mixed state (MCMS) [29, 30] is defined as ρmax =
V ρ V †, where V is the unitary that maximises the coherence of ρ.

For CV systems, this definition is not applicable, since the coherence depends on the energy
of the system. This can be seen, for instance, in Eq. (33) for the relative entropy of Gaussian
coherence. Therefore, energy non-preserving unitaries can in principle increase the coherence
indefinitely.

From an experimental point of view, energy-preserving unitaries are easier to realise and do
not require interaction with an external source of energy.

This is the motivation to define a family of maximally coherent mixed states at fixed energy :

Definition 4.1. A state ρmax is a maximally coherent mixed state (MCMS) at fixed energy
with respect to a coherence monotone C (see Def. 3.1) if

C(ρmax) = Cmax(ρ) := sup
ÛEP

C(ÛEP ρ Û †EP ), (34)

where ÛEP are energy-preserving unitaries. If we consider Gaussian states and operations in
Eq. (34), then ρmax is the maximally coherent mixed Gaussian state (MCMGS) at fixed energy
with respect to C.

Let us now focus on the Gaussian case. Passive Gaussian unitaries ÛO (see Def. 2.2)
are the only energy-preserving Gaussian unitaries, i.e. they preserve Nω =

∑
j n̄ω;j, and thus

N =
∑

ω Nω. However, the interaction between modes with the same frequency ω results in a
redistribution of n̄ω;j.
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Let us consider a generic Gaussian state ρ and call ρω = Trω\ω (ρ) the state obtained by
tracing out all modes with any frequency but ω. From its definition in Eq. (28), the relative
entropy of Gaussian coherence of ρ can be written as the sum of the relative entropies for all
ρω:

CGrel(ρ) =

ωMf∑

ω=ω1

CGrel(ρω). (35)

Therefore, the maximal Gaussian coherence can be obtained by maximizing the Gaussian co-
herence for each ρω.

Theorem 4.2. Among all Gaussian states ρω with a given symplectic spectrum { ν1, . . . , νMs }
and a given average occupation number Nω =

∑
j n̄ω;j, the states with equidistributed reduced

average occupation numbers, i.e. n̄ω;j = Nω/Ms, ∀ j, are the maximally coherent mixed Gaus-
sian states with respect to the relative entropy of Gaussian coherence CGrel(ρω) (see Eq. (33)).

The proof is given in Appendix A, using Lagrange multipliers. Combining this result with
Eq. (33), it follows that the maximal relative entropy of Gaussian coherence of a Gaussian
state ρ reads

CGrel;max(ρ) :=S(ρmax‖τM(n̄ρmax))

=− S(ρ) +

ωMf∑

ω=ω1

[
(Nω +Ms) log

(
Nω +Ms

Ms

)
−Nω log

(
Nω

Ms

)]
,

(36)

where τM(n̄ρmax) is the M -mode thermal state with occupation numbers n̄ρmax (see Eq. (29)).
In Appendix B, we provide an alternative analytical expression for CGrel;max (see Theorem 4.3),
that will play a pivotal role in the next sections.

Theorem 4.3. The maximal relative entropy of Gaussian coherence CGrel;max(ρ) of any Gaussian
state ρ can be expressed as:

CGrel;max(ρ) =

ωMf∑

ω=ω1

S

(
ρω

∥∥∥ τMs

(
Nω

Ms

, . . . ,
Nω

Ms

))
, (37)

where τMs(Nω/Ms, . . . , Nω/Ms) is the thermal state (see Eq. (29)) with n̄ω;j = Nω/Ms for all
j = 1, 2, . . .Ms.

Finally, in Appendix C, we provide examples of passive unitaries that maximise the Gaussian
coherence for two generic classes of Gaussian states.

5 Resource theory of (Gaussian) non-uniformity
The resource theory of purity (or non-uniformity) [9] belongs to a family of resource theories
of quantum thermodynamics in which states out of some form of equilibrium are considered as
resources [31–34]. Usually, this equilibrium is given by assuming the environment at a certain
background temperature T : the free states are thermal states at the same temperature and the
free operations are those which are generated by an energy-preserving unitary acting on the
system and the environment.
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For DV systems, the resource theory of purity arises when the Hamiltonian is fully degen-
erate at any temperature. Then all unitaries become energy preserving (hence free operations)
and the exchanges between the system and the environment are purely entropic [9]. The state
representing informational equilibrium becomes the maximally mixed state (MMS) I/d, where
d is the dimension of the system. The MMS is the only free state, as every other state possesses
some non-uniformity.

The DV theory cannot be straightforwardly extended to Gaussian systems, because a proper
MMS is nonphysical, as it is associated with infinite energy in infinite-dimensional Hilbert spaces
[16].

While several resource theories of Gaussian states out of thermal equilibrium exist [22, 23,
35], we choose a different approach, that emphasises the informational aspects of the interactions
between the system and the environment over the energetic ones. We consider purity at given
energy as a resource and we refer to this resource theory as non-uniformity : with a similar
argument as given by Gour et al [9], we use this term in place of "purity" because we shall
consider pure states at different energy as states with different resource content.

Consider an M -mode state ρ, with Mf frequencies and Ms spatial labels (see Sec. 2).
Consider also a Hamiltonian Ĥ in the form of Eq. (5). In terms of the frequencies its mean
energy can be written as

〈Ĥ〉 =

ωMf∑

ω=ω1

Eω, (38)

where Eω = ~ωNω (see Eq.(5)) and any other contribution is set to zero by a suitable choice
for the zero-point energy. In the DV resource theory of purity, a dimension d for the set of all
states was fixed. In our resource theory, we fix a set of frequencies ω = ω1, ω2, . . . , ωMf

and the
energy in each frequency mode Eω, thus fixing 〈Ĥ〉 as in Eq. (38). The states and modes can
have any temperature that is compatible with Eω, i.e. the thermal component of the energy
cannot be higher than Eω for any frequency sector.

For a single frequency ω, the state that maximises the entropy is the natural CV counterpart
of the maximally mixed state in the DV case. We call it the uniform state at frequency ω. In
our setting, with Mf different frequencies, we consider as free state the tensor product of all
uniform states at frequency ω over all frequencies. We call it the uniform state.

From Eq. (9), we see that the average energy Eω = ~ωNω is a function of the first and
second moments of ρ, for both Gaussian and non-Gaussian states. It is well known that
Gaussian states attain the maximum von-Neumann entropy among all states having the same
displacement vector and covariance matrix [25]. Therefore, even if we consider the set of all
CV states, we can search for the uniform state in the subset of Gaussian states.

For single-mode Gaussian systems at a fixed energy Eω = ~ωNω, the von-Neumann entropy
is maximised by Gaussian thermal states with average occupation number Nω [36]. For Ms

spatial modes, we prove in Appendix D the following result:

Theorem 5.1. For a quantum system of Ms spatial modes, the uniform state at frequency ω,
i.e. the state that maximises the entropy, is the Gaussian thermal state (see Eq. (29)) with
equal single-mode occupation numbers, i.e.

τMs(δω) := τ(δω)⊗ τ(δω)⊗ · · · ⊗ τ(δω), (39)

where δω = (δω, δω, . . . , δω), δω := Nω/Ms, and Nω is the total occupation number for all spatial
modes with frequency ω. Considering both spatial and frequency modes, the uniform state
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becomes

τM(δ) =

ωMf⊗

ω=ω1

τMs(δω), (40)

where Mf is the total number of frequencies. The covariance matrix of τM(δ) reads

V [τM(δ)] =

ωMf⊕

ω=ω1

(2δω + 1) I2Ms . (41)

This result has an intuitive explanation. The von-Neumann entropy of a Gaussian state (see
Eq. (15)) depends solely on the symplectic eigenvalues, and the m-th eigenvalue is a function
of the m-th mode’s temperature (see Eq. (14)). To maximise the entropy, we need to consider
thermal states. Among thermal states, the uniform state is defined as the state with the most
homogeneous distribution of single-mode energies.

Both the general and the Gaussian version of this resource theory have the same set of free
states. We could, in principle, distinguish them via the set of free operations.

Definition 5.2. The uniformity-preserving operations (UP) are all maps that preserve the
uniform state τM(δ) (see Theorem 5.1), i.e.

ΛUP (τM(δ)) = τM(δ). (42)

We call the Gaussian channels in UP the uniformity-preserving Gaussian operations (UPG).

Clearly UPG ⊆ UP , but we do not know whether this inclusion is strict. Concerning
Gaussian operations, a more practical set of free operations is that of Gaussian noisy operations
(GN), i.e. Gaussian channels ΛGN that admit the following decomposition:

ΛGN [ρ] = TrME

[
Û

(M+ME)
O (ρ⊗ τME

(δ)) Û
(M+ME) †
O

]
, (43)

where τME
(δ) is the uniform state (see Theorem 5.1) for ME environmental modes and with

the same δ of the system (see Eq.(40)), and Û (M+ME)
O is an (M +ME)-mode passive Gaussian

unitary.
Gaussian noisy operations preserve the equilibrium state. This can be seen in phase space

representation, since, for every frequency sector, the covariance matrix of τM(δ) ⊗ τME
(δ) is

proportional to the identity (see Eq. (41)), and the symplectic matrix of Û (M+ME)
O is orthogonal.

Clearly, GN ⊆ UPG, but also here we do not know whether this inclusion is strict.
We introduce a quantifier for the resource of non-uniformity as follows:

Definition 5.3. A function P , mapping density operators to real numbers, is a non-uniformity
monotone if

(P1) P is non-negative and vanishes for the uniform state (see Theorem 5.1).

(P2) P does not increase under the chosen set of free operations, for instance UP (see Def.
5.2), i.e.

P(ΛUP (ρ)) ≤ P(ρ) ∀ ΛUP . (44)

11



We define Gaussian non-uniformity monotones as those functions PG satisfying (P1) and (P2)
for uniformity-preserving Gaussian operations (see Def. 5.2).

In analogy with coherence, we introduce the relative entropy of non-uniformity :

Prel(ρ) := S (ρ‖τM(δ)) . (45)

This function clearly satisfies (P1). The property (P2) follows from the contractivity of the
relative entropy,

Prel(ρ) = S (ρ ‖ τM(δ)) ≥ S(ΛUP [ρ] ‖ΛUP [τM(δ)]) = S(ΛUP [ρ] ‖ τM(δ)) = Prel(ΛUP [ρ]). (46)

Restricting ourselves to Gaussian states and operations, we find results for the relative
entropy of Gaussian non-uniformity PGrel(ρ) (that is the relative entropy of non-uniformity for
Gaussian states).

Theorem 5.4. The relative entropy of Gaussian non-uniformity (see Eq. (45)) of a Gaussian
state ρ is equal to its maximal coherence (see Eq. (36)):

PGrel(ρ) = CGrel;max(ρ). (47)

This result follows from Theorem 4.3:

CGrel;max(ρ) =

ωMf∑

ω=ω1

S

(
ρω

∥∥∥ τMs

(
Nω

Ms

, . . . ,
Nω

Ms

))
= S (ρ‖τM(δ)) = Prel(ρ), (48)

and establishes a strong connection between coherence and non-uniformity for Gaussian sys-
tems, in analogy to DV systems [10].

We conclude this section by noticing two additional properties of the relative entropy of
Gaussian non-uniformity, which can be found by employing Theorem 5.4:

• Pure Gaussian states |ψG〉 〈ψG| maximise the relative entropy of Gaussian non-uniformity
among the states with given average occupation number Nω and total number of spatial
modes Ms:

PGrel(|ψG〉 〈ψG|) = S(|ψG〉 〈ψG| ‖ τM(δ))

=

ωMf∑

ω=ω1

[
(Nω +Ms) log

(
Nω

Ms

+ 1

)
−Nω log

Nω

Ms

]
,

(49)

which follows from Eq. (33).

• The relative entropy of Gaussian non-uniformity is invariant under passive Gaussian uni-
taries, i.e.

PGrel(ρ) = PGrel(ÛO ρ Û
†
O) (50)

This property follows by noticing that the maximal Gaussian coherence cannot be in-
creased via passive Gaussian unitaries (see Eq. (34)).
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6 Hierarchy of quantum resources in CV systems
The relative entropy also quantifies, for CV systems, multipartite entanglement [18] and sym-
metric quantum discord [37, 38]:

Drel(ρ) = inf
σ∈Z

S(ρ‖σ), (51)

Erel(ρ) = inf
σ∈S

S(ρ‖σ), (52)

where Z and S denote the sets of zero-discord and separable states, respectively. The former
contains all mixtures of pure, locally orthonormal projectors [37, 39], while the latter contains
all convex combinations of arbitrary product states [36], i.e.

Z 3 ρ =
∑

m

pm |ψm1〉 〈ψm1| ⊗ |ψm2〉 〈ψm2 | ⊗ · · · ⊗ |ψmM 〉 〈ψmM | , (53)

S 3 ρ =
∑

m

pm ρm1 ⊗ ρm2 ⊗ · · · ⊗ ρmM , (54)

where 〈ψmk |ψlk〉 = δml for all k = 1, . . . ,M , m := m1m2 . . .mM , pm ≥ 0 and
∑

m pm1m2...mM =
1. Note that Z is non-convex, since the convex combination of two sets of orthonormal projec-
tors is not, in general, orthonormal.

Using the relative entropy, we can extend the ordering of resources for discrete-variable to
continuous-variable systems:

Prel(ρ) ≥ Crel(ρ) ≥ Drel(ρ) ≥ Erel(ρ). (55)

This relation directly follows by noting that τM(δ) ∈ I ⊂ Z ⊂ S, and holds for all quantum
states ρ (see Fig. 2).

Figure 2: Graphical depiction of the relative entropy of non-uniformity Prel (black line), coher-
ence Crel (red line), symmetric quantum discord Drel (green line) and entanglement Erel (blue
line) for a quantum state ρ. The uniform state τM(δ) is an element of the incoherent set I,
which is a convex subset of the zero-discord set Z, which in turn is a non-convex subset of the
separable set S.
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Let us now consider the Gaussian case. Let DGrel and EGrel be the relative entropies of
Gaussian discord and entanglement, respectively. They are obtained with Eq. (51) and (52) by
performing the minimization over the Gaussian subsets ZG and SG of Z and S, respectively.
While SG is defined analogously to Eq. (54), by taking Gaussian states, ZG is formed by
product Gaussian states [38, 40], i.e.

ZG 3 ρ = ρm1 ⊗ ρm2 ⊗ · · · ⊗ ρmM , (56)

SG 3 ρ =
∑

m

pm ρm1 ⊗ ρm2 ⊗ · · · ⊗ ρmM , (57)

where ρm1 , ρm2 . . . , ρmM and ρ are Gaussian states, and with m := m1m2 . . .mM , pm ≥ 0 and∑
m pm = 1 in Eq. (57). Since τM(δ) ∈ IG ⊂ ZG ⊂ SG, Eq. (55) holds also in this case.
We have discussed in Sec. 4 how passive unitaries can generate coherence. It is well

established that they can also generate entanglement [41] and discord [42].
Let us introduce

DGrel;max(ρ) := sup
ÛO

DGrel(ÛO ρ Û
†
O), (58)

EGrel;max(ρ) := sup
ÛO

EGrel(ÛO ρ Û
†
O). (59)

Figure 3: Graphical depiction of Eq. (60). The dotted circle represents all the states that can
be obtained from ρ via passive unitaries ÛO. The red line, connecting the uniform state τM(δ)
to the MCMGS, is the maximal Gaussian coherence CGrel;max(ρ) = PGrel(ρ). The green and blue
lines are the maximal Gaussian discord DGrel;max and entanglement EGrel;max, respectively. The
uniform state τM(δ) is an element of the Gaussian incoherent set IG, which is a convex subset
of the Gaussian zero-discord set ZG, which in turn is a non-convex subset of the Gaussian
separable set SG.

We prove in Appendix E the following hierarchy between the mentioned CV resources (see
Fig. 3):
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Theorem 6.1. The relative entropy of Gaussian non-uniformity PGrel (Eq. (45)) of any Gaus-
sian state ρ is equal to the maximal relative entropy of Gaussian coherence CGrel;max (Eq. (36)),
and this quantity upperbounds the maximal relative entropies of Gaussian symmetric discord
DGrel;max (Eq. (58)) and Gaussian entanglement EGrel;max (Eq. (59)):

PGrel(ρ) = CGrel;max(ρ) ≥ DGrel;max(ρ) ≥ EGrel;max(ρ). (60)

Here we discussed the action of energy-preserving unitaries, in particular passive Gaussian
unitaries. An energy non-preserving unitary can, in principle, increase the energy indefinetely
and create infinite resources. However, for a fixed finite energy, the ordering of Eq. (55) is
preserved, because the ordering of the sets remains. In the Gaussian scenario, we conjecture
that active unitaries exist that keep the hierarchic ordering in Eq. (60). The verification of this
claim is an interesting open question.

7 Conclusions
In this manuscript, we extended a hierarchy of dicrete-variable quantum resources to continuous-
variable systems, under the condition of fixed energy. Considering Gaussian states and oper-
ations and using quantifiers based on the relative entropy, we found that the Gaussian non-
uniformity is equal to the maximal Gaussian coherence, and we provided an analytical expres-
sion for this quantity. This means that, if we quantify the resources with the relative entropy,
any amount of Gaussian non-uniformity can be converted into Gaussian coherence by means
of a suitable energy-preserving Gaussian unitary. To quantify the non-uniformity, we designed
a resource theory by identifying purity at fixed energy as resource. We also considered generic
(non-Gaussian) states and found that the non-uniformity always upper-bounds the coherence.
Finally, we showed that, for Gaussian states the non-uniformity and the maximal coherence
provide upper bounds on the maximal symmetric quantum discord and the maximal entan-
glement. Our results advance the field of continuous-variable resource theories and establish a
further connection between quantum thermodynamics and quantum information theory.

Our work leaves some interesting questions open. A possible next step could be to study
the hierarchy of resources in the presence of energy-nonpreserving Gaussian unitaries, up to a
finite maximum energy. In addition, one should investigate whether the equality of maximal
coherence and non-uniformity also holds in the general non-Gaussian case. In order to achieve
this a deeper understanding of non-Gaussian resource theories is required.
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A Proof of Theorem 4.2
For simplicity of notation, we shall drop in the proof the subscript ω in n̄ω;j, ρω and Nω.
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The theorem can be proven with a constrained optimization. Let n = { n̄1, . . . , n̄Ms } and
L(n, λ) be the Lagrangian function

L(n, λ) :=CGrel(ρ;n)− λ
(
N −

Ms∑

j=1

n̄j

)

=S(ρ) +
M̃s∑

j=1

[(n̄j + 1) log(n̄j + 1)− n̄j log n̄j] + λ
M̃s∑

j=1

n̄j − λN,
(61)

where M̃s is the number of modes for which n̄j 6= 0. Since S(ρ) depends only on the symplectic
spectrum (see Eq. 15), it holds

∂L(n, λ)

∂n̄j
=

{
log
(
n̄j+1

n̄j

)
+ λ for n̄j 6= 0

0 for n̄j = 0
(62)

The condition ∂L/∂n̄j = 0 for n̄j 6= 0 is equivalent to

λ = − log

(
n̄j + 1

n̄j

)
, ∀j (63)

The above relations are satisfied by any state ρ∗ with M̃s reduced occupation numbers
n̄j = N/M̃s ∀ j = 1, . . . M̃s and the others equal to zero. Clearly 1 ≤ M̃s ≤Ms.

The Gaussian coherence of any ρ∗ reads:

CGrel(ρ∗) = −S(ρ∗) + (N + M̃s) log

(
N + M̃s

M̃s

)
−N log

(
N

M̃s

)
. (64)

Taking the derivative of this expression with respect to M̃s, i.e.

dCGrel(ρ∗)
dM̃s

= log

(
N + M̃s

M̃s

)
> 0, (65)

one can verify that this function is monotonically increasing with M̃s.
The minimum is therefore obtained for M̃s = 1, i.e. when N is contained in a single reduced

spatial mode, and the maximum is obtained for M̃s = Ms, i.e. when N is equally distributed.

B Proof of Theorem 4.3
Let ÛC =

⊗ωMf
ω=ω1 ÛCω be the passive unitary that maximises the relative entropy of Gaussian

coherence for ρ, i.e.

ρmax = ÛC ρ Û
†
C =

ωMf⊗

ω=ω1

ÛCω ρω Û
†
Cω. (66)

Let τM(n̄ρmax) be the thermal state with the same n̄ω;j as ρmax. Using Theorem 4.2, τM(n̄ρmax)
reads

τM(n̄ρmax) :=

ωMf⊗

ω=ω1

τMs(n̄
ω
ρmax), n̄ωρmax :=

(
Nω

Ms

,
Nω

Ms

, . . . ,
Nω

Ms

)
. (67)
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Using Eq. (33) we get

CGrel(ρmax) =S (ρmax ‖ τM(n̄ρmax)) = −S(ρmax) + Tr [ρmax log τM(n̄ρmax)] =

=− S(ρ) +

ωMf∑

ω=ω1

Tr
[
ÛCω ρω Û

†
Cω log τMs(n̄

ω
ρmax)

]

=− S(ρ) +

ωMf∑

ω=ω1

Tr
[
ρω log

(
Û †Cω τMs(n̄

ω
ρmax) ÛCω

)]
.

(68)

Here, we have used the invariance of entropy under unitary operation and the diagonality
of τ(n̄ωρmax) in the Fock basis. We then notice that

Û †Cω τMs

(
n̄ωρmax

)
ÛCω = τMs

(
n̄ωρmax

)
. (69)

This can be proven by using the phase space representation, since the covariance matrix of
τMs(n̄

ω
ρmax) is proportional to the identity (consider equal n̄m in Eq. (30)), and passive Gaussian

unitaries are associated to symplectic orthogonal matrices, by Def. 2.2. It follows that

CGrel(ρmax) =− S(ρ) +

ωMf∑

ω=ω1

Tr
(
ρω log τMs(n̄

ω
ρmax)

)

=−
ωMf∑

ω=ω1

S(ρω) +

ωMf∑

ω=ω1

Tr
(
ρω log τMs(n̄

ω
ρmax)

)

=

ωMf∑

ω=ω1

S

(
ρω

∥∥∥ τMs

(
Nω

Ms

, . . . ,
Nω

Ms

))
.

(70)

C Maximal Gaussian coherence for specific states
In this section, we will consider modes with the same frequency and drop the subscript ω. By
Theorem 4.2, we can search for a passive unitary that equally distributes the average occupation
number N of a Gaussian state ρ among its modes: this unitary maximises the relative entropy
of coherence of ρ.

As a first case, let us consider a generic two-mode Gaussian state ρ, with mode operators
â1 and â2. We now apply a 50 : 50 beam splitter of phase φ (to be specified later):

â1 7→ b̂1 =
1√
2
â1 +

eiφ

√
2
â2

â2 7→ b̂2 =
1√
2
â2 −

e−iφ

√
2
â1

(71)

Then we have
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〈b̂†1b̂1〉 =
1

2
〈â†1â1〉+

1

2
〈â†2â2〉+

eiφ

2
〈â†1â2〉+

e−iφ

2
〈â1â

†
2〉

=
N

2
+ Re

(
e−iφ 〈â1â

†
2〉
)

〈b̂†2b̂2〉 =
1

2
〈â†2â2〉+

1

2
〈â†1â1〉 −

e−iφ

2
〈â†2â1〉 −

eiφ

2
〈â2â

†
1〉

=
N

2
− Re

(
e−iφ 〈â1â

†
2〉
)
.

(72)

With 〈â1â
†
2〉 = | 〈â1â

†
2〉 |eiθ12 , we can choose φ = π

2
− θ12, leading to 〈b̂†1b̂1〉 = 〈b̂†2b̂2〉 = N/Ms (in

this case Ms = 2), thus maximising the coherence.
Let us now consider a generic Ms-mode product state ρ = %1 ⊗ · · · ⊗ %Ms with d = 0. We

prove that the quantum Fourier transform (QFT)

âj 7→ b̂j :=
Ms∑

k=1

Ujk âjk =
1√
Ms

Ms∑

k=1

e
2π i
Ms

(j−1)(k−1) âj (73)

is the passive Gaussian unitary that maximises the coherence. After the action of the QFT,
the occupation number for the mode j reads

〈b̂†j b̂j〉 =
1

Ms

Ms∑

k,k′=1

e
2π i
Ms

(j−1)(k′−k) 〈â†k âk′〉 . (74)

We separate the sum into two parts, with k = k′ and k 6= k′:

〈b̂†j b̂j〉 =
1

Ms

Ms∑

k=1

〈â†k âk〉+
1

Ms

∑

k 6=k′
e

2π i
Ms

(j−1)(k′−k) 〈â†k âk′〉

=
N

Ms

+
1

Ms

∑

k 6=k′
e

2π i
Ms

(j−1)(k′−k) 〈â†k âk′〉 .
(75)

Since ρ is a product state and d = 0, we conclude the proof by noticing

〈â†k âk′〉 = 〈â†k〉 〈âk′〉 = 0. (76)

Remarkably, this transformation is an extension of the DV unitary to CV. The unitary that
maximises the coherence of an arbitrary DV state ρ for any MIO monotone reads [10]

ÛDV
max =

1√
d

d∑

n=1

d∑

k=1

e
2π i
Ms

(n−1)(k−1) |k〉 〈ρn| , (77)

where d is the dimension of ρ, |ρn〉 are the eigenstates of ρ, and |k〉 are the elements of the
incoherent basis. Notice, however, that the CV result only holds for product states with d = 0.
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D Proof of Theorem 5.1
This proof is similar to that of Theorem 4.2, and also here we drop the subscript ω in n̄ω;j and
Nω.

The covariance matrix of a Gaussian thermal state (see Eq. (30)) is diagonal and coincides
with the diagonal matrix D in Williamson’s theorem (see Eq. (11)). From Eq. (15), it follows
that the von-Neumann entropy of τMs(n̄) reads

S (τMs(n̄)) =
M̃s∑

j=1

[(n̄j + 1) log(n̄j + 1)− n̄j log n̄j] , (78)

where n = (n̄1, . . . , n̄Ms) and M̃s is the number of modes for which n̄j 6= 0. Let L(n, λ) be the
Lagrangian function

L(n, λ) :=S (τMs(n̄))− λ


N −

M̃s∑

j=1

n̄j




=
M̃s∑

j=1

[(n̄j + 1) log(n̄j + 1)− n̄j log n̄j] + λ
M̃s∑

j=1

n̄j − λN,

(79)

It holds
∂L(n, λ)

∂n̄j
=

{
log
(
n̄j+1

n̄j

)
+ λ for n̄j 6= 0

0 for n̄j = 0
(80)

The condition ∂L/∂n̄j = 0 for n̄j 6= 0 is equivalent to

λ = − log

(
n̄j + 1

n̄j

)
, ∀ j. (81)

The above relations are satisfied by any state τMs(n̄
∗) with M̃s reduced occupation numbers

n̄j = N/M̃s ∀ j = 1, . . . M̃s and the others equal to zero. Clearly 1 ≤ M̃s ≤Ms.
The entropy of any τMs(n̄

∗) reads:

S (τMs(n̄
∗)) = (N + M̃s) log

(
N + M̃s

M̃s

)
−N log

(
N

M̃s

)
. (82)

Taking the derivative of this expression with respect to M̃s

dS (τMs(n̄
∗))

dM̃s

= log

(
N + M̃s

M̃s

)
> 0, (83)

one can verify that this function is monotonically increasing with M̃s.
The minimum is therefore obtained for M̃s = 1, i.e. when N is contained in a single reduced

spatial mode, and the maximum is obtained for M̃s = Ms, i.e. when N is equally distributed.
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E Proof of Eq. (60)

Let ÛE be the passive Gaussian unitary that achieves EGrel;max(ρ) in Eq. (59). Then we have

EGrel;max(ρ) = EGrel
(
ÛE ρ Û

†
E

)
≤ DGrel

(
ÛE ρ Û

†
E

)

≤ sup
ÛO

DGrel
(
ÛO ρ Û

†
O

)
= DGrel;max(ρ).

(84)

Similarly, let ÛD be the Gaussian unitary that achieves DGrel;max(ρ) in Eq. (58). Then

DGrel;max(ρ) = DGrel
(
ÛD ρ Û

†
D

)
≤ CGrel

(
ÛD ρ Û

†
D

)

≤ sup
ÛO

CGrel
(
ÛO ρ Û

†
O

)
= CGrel;max(ρ).

(85)

Finally, using CGrel(ρmax) = PGrel(ρ) from Theorem 5.4, we obtain the desired result.
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