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Abstract

T issues aremade up of a large number of cells that interact with each other and, through their

individual properties, generate emergent behavior on the tissue scale. Those interactions

are essential for the formation of embryos and the maintenance of adult organisms. However,

malignant cells can lead to unwanted effects that are beyond the control of the organism, for

example, the formation of tumors. Interference in those processes is necessary to treat and avoid

illnesses. Therefore, a mechanistic understanding of the complex interactions that drive tumor

progression is necessary. The formation of cancer is an inherently multi-scale problem since

changes on the cellular level enable uncontrolled growth on the tissue scale and experimental data

is available from themolecular to organism scale. Theoretical mechanistic models can connect

these scales and are great tools to find causal relationships. The transfer of physical models to

complex biological problems has proven successful andmechanical interactions between cells

have been found to influence the progression and development of tissues and tumors.

In this work, I focus on simulating tissue with the aim of modeling tissue onmultiple scales

and finding the underlying principles that govern tumor development.

I develop a computational model that can simulate single cells with their geometric three-

dimensional shape as well as millions of those cells interacting with each other in a tissue. The

tissue simulation model adapts the Potts model for the simulation of cells and is optimized to

be used onmodern supercomputers. The framework enables large-scale simulations of tissues

with high resolution. I demonstrate the ability of the model to simulate large-scale tissue and

emergent behavior from single-cell parametrization. Heterogeneous tumor growth is simulated

and the effect of different treatment schemes is compared in a qualitative model. The properties

of the explicitly modeled single cells generate emergent behavior on the tissue scale consisting of

millions of cells.

For quantitative observations, I focus on the mechanical and physical interactions of cells

and their influence on tumor growth. I use a two-type tumor model and observe the effects of

changes in tumor-associatedmechanical cellular properties. Cell adhesion, motility, and stiffness

are varied and the effects on the emergent tumor growth are observed. I demonstrate the effects of

cellular mechanical properties on the growing tumor and observe a dependency between growth

speed and tumor shape.

Cells within a growing tumor canmutate and alter their behavior, therefore tumors consist of

multiple cell types that compete over the available resources. Mutations, together with tumor

internal competition, lead to an evolutionary behavior that drives the tumor composition towards

cell typeswithoptimal properties. I introduce amodel of heterogeneous tumorgrowthandobserve

the development of the tumor composition with the influence of a dynamic nutrient surrounding.

The evolutionary speed shows dependency on the frequency of the fluctuations and the tumor is

driven towards a low-adhesion regime.

In this thesis, I show the development of a multi-scale model for computational tissuemod-

eling. The presentedmodels allow tissue modeling on high-performance computers and open

up possibilities for multi-scale tissue simulations. I implementmodels for the simulation of tu-

mor growth and find explicit dependencies of the emergent tumor properties on themechanical

single-cell properties and the tumor surroundings.
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Zusammenfassung

Z ellgewebe ist ein grundlegender Bausteinmultizellulären Lebens und besteht aus inter-

agierenden Zellen. Durch ihr Zusammenspiel definieren die Eigenschaften der einzelnen

Zellen das Verhalten auf der Gewebeebene. Diese Interaktionen sind essentiell für die Formge-

bung in Embryos sowie die Instandhaltung von ausgewachsenemGewebe. Ist jedoch das Verhal-

ten einzelner Zellen gestört, kann dies zu vom Körper nicht kontrollierbaren Verhaltensweisen

führen, wie demWachstum von Tumoren. Um Krankheiten vorzubeugen oder zu heilen wird

in dieses Verhalten von Zellen eingegriffen, dies setzt ein grundlegendes mechanistisches Ver-

ständniss der Vorgänge im Gewebe vorraus. Die Entwicklung von Tumoren im Körper ist ein

skalenübergreifendes Problem, da Veränderungen in einzelnen Zellen ein unkontrolliertesWach-

stum anstoßen, welches auf der Gewebe- und Zellebene reguliert wird. Experimentelle und

klinische Daten werden an beiden Enden dieser wechselwirkenden Skalen erhoben. Theoretische

Modelle können diese Skalen verbinden und kausale Zusammenhänge zwischen den Ebenen her-

stellen. Theoretische Konzepte der Physik werden erfolgreich auf biologische Problemstellungen

angewandt, so beeinflussenmechanische Eigenschaften undmechanisches Feedback einzelner

Zellen dasWachstum von Zellen und Tumoren.

Der Fokus dieser Arbeit liegt auf der Simulation von Gewebe, mit dem Ziel dasWachstum und

die Entwicklung von Tumoren unter Berückuchtigungmehrerer Skalen zumodellieren.

Ich entwickle ein Simulationsframework, welches die Dynamik der dreidimensionalen Struk-

tur von Zellen in einem Gewebe, sowie die Interaktion Millionen solcher Zellen simuliert. Das

Computermodel basiert auf dem Potts Modell und ist für die Verwendung auf modernen Super-

computern optimiert. Zunächst demonstriere ich die Fähigkeit desModells große Gewebeteile

und emergentes Verhalten aus der Einzelzellparametrisierung zu simulieren. Heterogenes Tu-

morwachstumwird simuliert und dieWirkung verschiedener Behandlungsschemata in einem

qualitativenModell verglichen.

Um das Verhalten quantitativ zu betrachten konzentriere ich mich auf mechanische und

physikalischeWechselwirkungen zwischen Zellen und Gewebe. Ein Zwei-Typ-Tumormodell wird

verwendet, um die Auswirkungen von tumorassoziierten Zelleigenschaften auf das Tumorwach-

stum zu untersuchen. Veränderungen von Zelladhäsion, Motilität und Kompressibilität und

ihre Auswirkungen auf dieWachstumsgeschwindigkeit, Form und Invasivität des entstehenden

Tumors werden beobachtet.

Zellen in einem Tumor können durchMutationen Eigenschaftsänderungen erfahren, Tumore

bestehen daher aus mehren Zelltypen, welche um die verfügbaren Resuoucen konkurrieren. Dies

führt zu einemevolutionärenVerhalten,welchesZelltypenmit optimalenEigenschaftenbevorzugt.

Ich stelle ein heterogenes Tumormodell vor und beobachte die Entwicklung der Tumorzusam-

mensetzung unter verschiedenen äußeren Einflüssen. Eine Abhänigkeit der Geschwindigkeit der

evolutionären Anpassung von der Frequenz von Nährstofffluktuationen, sowie ein evolutionärer

Druck zu Zellenmit niedriger Adhäsion wird beobachtet.

In dieser Arbeit zeige ich die Entwicklung und Anwendung einesMultiskalenmodells für die

rechnergestützte Gewebemodellierung. Die vorgestelltenModelle ermöglichen die Modellierung

von Gewebe auf Höchleistungsrechnern und eröffnenMöglichkeiten für großskalige Gewebesimu-

lationen. Ich implementiere mehrere Simulationsmodelle für Tumorwachstum und zeige, wie

emergente Tumoreigenschaften von denmechanischen Eigenschaften einzelner Zellen abhängen.
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1 Introduction

A sking the right questions is the key ingredient for scientific advances. Without a meaningful

problem, the results and findings are seldom groundbreaking and self-explanatory enough to propel

our knowledge. Asking good questions requires profound a priori knowledge about the subject and system,

posing a challenge for interdisciplinary research. The state of the art of all involved disciplines has to be

considered, which is increasingly difficult due to the high specialization of individual research directions. In

this chapter, I give an overview of tumor research and observe tumor growth fromamechanistic physics per-

spective. I introduce biological phenomena that are relevant to the modeling of tumor growth. I highlight

the complexity of tissue development and the interactions that are involved in different spatial levels from

single cells to tissues. I describe physical phenomena of tumor development and how physical models can

helpwith the understanding of biological questions. Different computational andmathematicalmodels are

portrayed and compared, based on their complexity and level of detail. Based on this summary of the bio-

logical and physical properties of tumor development, I motivate the questions asked throughout this thesis.

The scientific understanding of the world around us has tremendously increased over the past

centuries. From reaching the moon and harvesting nuclear power to the understanding of quanta

and relativity, we constantly expanded the horizon of our knowledge. Yet, the inner workings

of living organisms, and finally of humans remain understood incompletely. Historically, the

understanding and formulation of fundamental rules have advanced physics and lead to the

technological progress that we all take advantage of in our daily lives.

Biological discoveries and experimentalmethods have allowed an increasingly detailed picture

of the processes facilitating life. Many of the found theories are, from a physicist’s point of view,

unsettlingly specialized. More andmore physicists and chemists follow Feynman’s lead [1] and

focuson thedescriptionof life andbiologicalprocesses. The joint researchof researchers frommany

disciplines so far has led to advances in the field of life sciences by the application of theoretical

and experimental methods traditionally used in other disciplines. This trend can be observed in

the Nobel Prizes of recent years: Nobel Prize in physics for optical tweezers (2018), Nobel Prize

in chemistry for CRISPR-Cas9 (2020), and most remarkably the Nobel Prize in chemistry 2017

for Cryo-EMwere awarded to three physicists. Through interdisciplinary work and cooperation

between different fields, newdiscoveries can bemade. This is especially true for the field of biology

andmedicine, since nature and finally, our bodies are the result of a billion-year-long optimization

process and therefore staggeringly complex. This complexity makes the quantitative description

of biology very hard and several urging questions are not solved yet: Why do we age? How can we

cure and/or prevent cancer, HIV/AIDS, Alzheimer’s disease, and recently Covid-19?

Here, an interdisciplinary approach promises new insights and exciting research in the future.
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Cell-cell adhesion
Adhesion driven sorting

Cell division
Chemotaxis
Differentiation

Cell - ECM AdhesionGene expression
DNA replication

Tissue growth
Tumor development

Figure 1: From sub-cellular processes to tissue scale effects. Effects that affect tumor growt are highlighted.
Elements of cells and cellular interactions are depicted in a schematic representation, starting with the intra-
cellular elements such as the DNA and the cell membrane O(nm), with the level of detail decreasing to the right
from cell-Extra-cellular matrix (ECM) interactions over cell-cell interactions to tissue scale effects, such as tumor
growth O(mm-cm).

In this thesis, computational modeling techniques are used for the exploration of tumor devel-

opment, applying physical models to simulate the emergent behavior of single cells on the tissue

level. In this chapter, I zoom out from the inner workings of a cell to the interplay of millions of

cells that make up tissues, tumors, and entire organisms. For each scale, I focus on the biological

and physical effects that determine the behavior on that scale (cf. Fig. 1). Furthermore, I describe

the experimental methods and theoretical models that are applied on this scale.

Organisms found in nature are highly complex and diverse, with a much broader range of

effects and properties than can be covered in this thesis. Therefore, I focus on cells in vertebrates

and will disregard invertebrates, bacteria, plants, and fungi. Furthermore, I focus onmechanical

properties and behaviors that are relevant to tumor development. For each scale, I elaborate on a

selection of relevant effects for tumor growth and highlight important experimental methods and

theoretical models.

1.0.1 Single-cell Interactions

All life we know is built upon cells. Cells are highly variable in their properties and perform a

complexmultitude of tasks. Here, I highlight some structural and functional elements that are

relevant for tumor growth.

A lipid bilayer membrane encases the cell plasma (cytoplasm), which contains functional

proteins and RNA. Inside the cell, the nucleus contains the DNA, that hosts all genetic information

of the cell. Cells perform various tasks in different parts of the organism and distinct cell types are

responsible for those different tasks. All cell types are necessary for a functioning organism, e.g.,

red blood cells transport oxygen tomuscle cells that then can contract.

In most cases, cells have the fascinating ability to identically replicate themselves through cell

division (mitosis). Cell division is part of the cell cycle in which the cell performs a sequence of

operations to replicate its DNA and divide the cell into two new daughter cells. The cellular life

cycle is structured into distinct phases that are necessary for reproduction. Most generally, for
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animal cells, there are twomajor phases of the cell cycle that a cell needs to complete to divide.

The cell grows and duplicates its DNA during interphase, followed by themitotic phase in which

the chromosomes and cell constituents are sorted and the cell is divided into two daughter cells.

Two typical pathways can lead to the death of a cell. Apoptosis is programmed cell death that

is initiated by the cell itself and from external signal cues and leads to a planned disintegration

of the cell. Necrosis, on the other hand, is the unregulated death of a cell without control over

the process, e.g., through acute injury of the cell. In necrosis, themembrane ruptures and spills

out the contents of the cell into the Extra-cellular matrix (ECM), which can be toxic and lead to

inflammation of the surrounding cells.

The behavior of cells is determined by the activated (or expressed) genes at a certain time.

The starting point of transcription is defined by transcription factors binding to the promoter

DNA, defining the starting point of a gene. The sequence of nucleic acids of an expressed gene is

transcribed intomessenger RNA (mRNA) inside the nucleus by the enzyme RNA polymerase.

ThemRNA then leaves the nucleus andmoves into the cytoplasm. There, the mRNA can then

be translated by ribosomes into functional proteins, or perform functions on its own, such as

inhibiting or expressing other genes and even its original gene. Those interactions between ex-

pressed genes, themolecules that are produced, and the cell internal feedback between thousands

of genes with different pathways enable the adaptation of the cell to a broad range of external

stimuli.

Adhesion is a major interaction of cells with their surroundings. Adhesionmolecules populate

the exterior of the cell membrane and can bind to structures outside of the cell. Possible binding

partners are structures in the ECM, such as collagen fibers and the adhesionmolecules of other

cells. Themechanics of cell adhesion have been studied extensively and awide variety of adhesion

mechanisms have been identified, such as the maturation of focal adhesions (cell-ECM adhesion)

over time.

Cells can remodel their geometry through their cytoskeleton, which consists of a multitude

of protein filaments such as actin. Actin is a polymer whose polymerization and degradation

can be actively influenced by the cell. This active remodeling of the cytoskeleton enables cells to

expand and deformdepending on their internal state and external stimuli. Through a combination

of remodeling of the cell geometry and adhesion to the surroundings, cells can actively migrate

through space. Chemotaxis describes the ability of cells to follow gradients of an external stimulus,

such as signalingmolecules or nutrients.

Nutrients (such as glucose and oxygen) diffuse from blood vessels through the ECM and are

absorbed by cells, where they provide energy for cellular tasks. The cells use glucose and oxygen to

generate Adenosine Triphosphate (ATP), which is then used by the molecular machinery to drive

cell internal processes. When a cell receives fewer nutrients than are necessary for maintenance of

the cell, it can downregulate cell internal processes and stop the cell cycle. Cells can enter this

state, termed hypoxia, to sustain for a longer time. Hypoxic cells excrete signals to the surrounding

cells and hypoxic signaling can trigger the formation of new blood vessels.

The signaling networks and cellular repair mechanisms, together with the immune system,

keep tissues in a healthy state. Mutated or dysfunctional cells are generally discarded. If the

changes of a single cell lead to enhanced proliferation and remain undetected, tissue homeostasis
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can get off balance and a tumor can form. The bulk mass of a tumor typically displays larger

stiffness than the surrounding tissue. This property is widely used in cancer screening for various

tumors. While the tumormass expresses higher stiffness, the individual malignant cells in the

tumor have been shown to be significantly less stiff than the cells of the surrounding tissue [2, 3].

The increased bulk stiffness is introduced by an elevated remodeling of the ECM by tumor cells,

leading to a denser surrounding polymer network.

A loss of cell-cell adhesion has been found in tumor cells [4, 5]. A related property to cell-cell

adhesion is the ability of cells to migrate. Cells within a tumor display enhancedmotility, which

facilitates the dissemination of the tumor and the formation of metastases. In epithelial tumors,

the epithelial-to-mesenchymal transition is a step towards malignancy. Here, cells alter their

phenotype from adherent and stationary to low-adhesion andmigrating type [6].

Stem cells are special cells that are progenitor cells to more than one possible specialized cell

type. Their properties are not completely defined and depending on external cues, stem cells can

differentiate into different cell types. Especially in the formation of embryos, all cells start as

stem cells and subsequently differentiate intomore specialized cells based on external cues, as the

development progresses. Stem cells play an important role in tissue renewal, and their impact on

tumor growth has gained increasing importance recently [7].

Experimental Methods

For the measurement of the mechanical properties of single cells and cell adhesion, indenting and

pulling experiments with an Atomic Force Microscope (AFM) are used. The membrane stiffness of

a cell can be determinedby indenting the cellmembranewith the tip of a cantilever. By quantifying

the force needed for indenting to a certain depth, the deformability and cell internal response to

deformation can bemeasured. By attaching adhesionmolecules or even entire cells to the tip of

the cantilever, the adhesion strength can be measured by attaching the cantilever to a cell and

then pulling away. The deflection and time-dependent adhesion strength can bemeasured in this

way [8].

The elastic and viscous properties of single living cells can be determined by micro-pipette

experiments [9]. The surface of a cell is aspiratedwith a glassmicropipettewith a diameter smaller

than the cell. Through a pressure difference, forces can be applied to the cells with high precision

and in the range of pN. This allows themeasurement of the surface tension, viscosity, and elastic

modulus of a cell.

Microfluidic devices can deform cells and together with high-resolutionmicroscopy, mechan-

ical properties can be inferred from the flow conditions and the deformation of the cells [10].

Furthermore, microfluidic devices allow for the sorting of single cells in fluid samples, e.g. blood,

into cell-types, that can then be studied individually.

Cells from different individuals contain different DNA, leading to variability in the behavior

of the cells. However, DNA can change over the lifetime through mutations. The cells making

up tissue can vary by various mutations and lead to inhomogeneous behavior. Mutations are

driving causes of diseases, especially in cancer. Therefore, the characterization of the DNA and the

identification of mutations can help understand the behavior of tissue. Genetic analysis of the

DNA and RNA present in single cells can help reconstruct the developmental trajectory of a tumor
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and identify optimal treatment options [11, 12]. Even gene expression andmRNA can bemeasured

by single-cell transcriptomics [13, 14].

Theoretical Models

Models thatdescribe single cellsmostly focusoncell internal properties, especially geneexpression.

The field of systems biology is concerned with the description of cell internal gene networks, their

interaction, and the effects that external and internal stimuli have on the cell [15]. In systems

biology, the activation of genes is described by coupled differential equations and describes the

temporal and response to signals. This formalism helps to understand the regulation of cellular

pathways and the complex network dynamics in cells [15]. A convenientway to store and represent

a model of systems biology is the Systems BiologyMarkup Language (SBML) that is incorporated

inmany tissuemodels to determine the single-cell phenotype, behavior, and response.

The influence of cell size and internal checkpoints on the cell cycle was successfully modeled

in yeast, which represents an organism of relatively low complexity [16]. During cell division, the

repair mechanisms of the cells are active and damaged cells are hindered from cell division. Cell

internal mechanisms arrest cell division if DNA damage is detected and can induce apoptosis, a

main driver of this tumor suppressionmechanism is the gene p53 [17]. Mutations of p53 alter the

repair mechanisms and can disable the suppressive function. Single genes, such as p53, and their

expression can significantly influence the behavior of a cell, cancer systems biology studies the

influence and dependencies of genes and external stimuli [18].

Furthermore, models of individual cells have been focused on the mechanical properties of the

cell geometry and deformation. Models of red blood cells can characterize the shape and dynamic

behavior in flow conditions within capillaries and on surfaces [19, 20]. The cell membrane is ex-

plicitlymodeled by a dynamically triangulated surfacemodel that interacts with a hydrodynamics

model. The forces on the cell can bemodeled and different modes of rolling and shape regimes are

found.

1.0.2 Many Cell and Cell-ECM Interactions

Tissues aremade up of many cells that interact with each other and the ECM. In the human

body, there are many different tissues that perform very different tasks. The cells that make up

those tissues, as well as the interactions differ greatly. In healthy adult tissues, the rates of cell

division and cell death are in equilibrium to achieve a constant size of the tissue. If the tissue

is in this homeostatic condition, it remains in a constant size with regular self-renewal. The

disturbance of the homeostasis condition leads to a temporally nonstatic behavior and is a sign of

illnesses, but can also be necessary for tissue generation.

During tissue formation in developing organisms (embryogenesis), tissues expand and cells

that initially are stemcells continuously differentiate into specific cellular fates. Thedifferentiation

of the cells is determined by factors like tissue geometry and external signals. Signalingmolecules,

termed morphogens, can be emitted by some cells and induce fate acquisition in other cells.

Some cells, e.g., the cells at the rim of the expanding tissue, start to excrete a signalingmolecule
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(termed amorphogen) that is transported through the tissue, e.g. by diffusion. The cells within

the tissue react to the morphogen concentration by acquiring a cellular fate based on the local

morphogen concentration. Often one or more morphogens form gradients throughout the tissue

and depending on the local concentration of those compounds, the cellular fate is then decided.

In developing tissues, fate determination can also occur at random, leading to a salt and pepper

pattern [21]. A mechanism to separate two populations of mixed cells is adhesion-driven cell

sorting, which for example plays a crucial role in the development of the human embryo [22].

Through a higher surface affinity and stronger adhesions between one cell type over the other, the

cells dynamically sort into two regions.

Signaling also plays an important role in the developed organism. Here, phenotypic changes

and apoptosis can be triggered by external signaling. Collective cellular behavior, such as wound

healing and the immune response is orchestrated by cell-to-cell signaling.

Tissue growth through cell division and cell internal processes (e.g., muscle contraction) re-

quire an energy source. The energy in the form of glucose and oxygen is circulated through the

organism inside the blood that is confined to the blood vessels. The nutrients then diffuse from

the blood vessels into the tissue and deliver energy to the cells. An important mechanism that

sustains the growth of tissue is angiogenesis, the establishment of new blood vessels in regions

that are not sufficiently supplied with nutrients.

Experimental methods

In the last decade, new insights could be found through newmicroscopymethods in combination

with controlling genetic parameters in cells. Methods such as light-sheet and confocal microscopy

enable high resolution, spatiotemporally resolved imaging of living cells in vivo and in vitro [23, 24].

With 3D imaging technologies such as laser confocal microscopes, the spatial distribution of

proteins can be tracked with subcell resolution. With those methods, it is possible to observe

which pathways are expressed andwhere the processes around a protein are located within the

tissue and even a cell. Proteins can be selectively tagged with fluorescent dyes in living cells. The

fluorescent labeling of proteins can be introduced by genetic material (DNA or RNA) into the cell,

which codes for the protein of interest and is coupled to a fluorescent protein (such as GFP).

Through traction force microscopy, mechanical forces exerted by single cells or tissue onto the

surroundingmatrix can be observed in vitro. This is achieved by distributing fluorescently labeled

particles, often in the form of polymer spheres, in the matrix material (e.g., agar or collagen).

Those spheres are then imaged by a 3D imaging method, such as confocal microscopy, at the

same time as the tissue develops. The displacement of the spheres over time is correlated to the

local force, which can be determined using the elastic properties of the matrix material. This

allows for an accurate spatial description of the pulling and pushing forces of a cell or tissue on its

surroundings [25].

Developing embryos (e.g., of zebrafish andDrosophila) are excellentmodels for the observation

of developing tissue. During embryogenesis, numerous processes such as tissue growth, expan-

sion, and differentiation occur at the same time. Through the small scale and accessibility of those

models as well as their flexibility, many processes such as patterning, wound healing, and tissue

expansion can be observed and studied. Additionally, embryogenic systems, especially zebrafish,
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are transparent during a long time of development. This transparency allows for capturing the

entire organismwith light-sheet microscopy and thereby allowing access to the spatio-temporal

trajectories of the cells [26].

Theoretical Models

Theoretical models for the description of the patterning of embryonic tissue were developed early,

due to the accessibility of single-cell observations in developing embryos, e.g., Drosophila.

An early theory for the emergence of separated segments of tissuewas the differential adhesion

hypothesis [27]. Thedifferential adhesionhypothesis assumes that similarly tonon-mixing liquids,

the interfacial energy is minimized, leading to a clustering of cells with equal adhesive strength.

Leading to the sortingof cells, cellswith lower adhesive strength envelop cellswithhigher adhesive

strength [28]. Simulationmodels were used to simulate this mechanism in early computational

studies [29].

Wolpert described tissue patterning in his French flag analogy, to be dependent on a single

morphogen, that is produced in some producing cells [30]. From the cluster of producing cells,

the morphogen diffuses into the surrounding tissue, creating a decaying gradient. The cells in the

recipient tissue then decide which cell fate to accept based on the local morphogen concentration.

In the French flagmodel, two thresholds determine two boundaries in the tissue and therefore

a three-stripe pattern. The length scale of the patterning is determined by the diffusion length

of the pattern defining morphogen. Fluctuations in the absolute size of the developing tissue

can lead to asymmetries of the pattern and lacking scaling of the subdivisions. More stable

patterning is achieved, with a dependency of the fate definition onmore than one morphogen.

For example, opposingmorphogen gradients in the Drosophila neural tube patterning leads to a

scalable behavior [31].

A more complex mechanism was described by Turing in his reaction-diffusion model [32].

Here, all cells are the source of twomorphogens, morphogen A is self-amplifying and B suppresses

the formation of A. This interaction leads to the formation of periodic structures, such as stripes,

that initially form due to random initial fluctuations.

1.0.3 Tumor Growth

A cancerous tumor is a collection of cells that grows and expands beyond the control mecha-

nisms of the organism. Thereby, the tumor tissue expands and causes harm to the host’s body.

Tumors can originate in very different parts of the body (among others breast, lung, skin, prostate,

and colon) and therefore grow in very different surroundings and can have drastically different

properties, lethalities, as well as treatment options. However, some fundamental properties are

shared by all tumors andwere brought together by Hanahan andWeinberg in the six hallmarks

of cancer [33, 34]. The hallmarks are: maintenance of proliferative signaling, evasion of growth

suppressing signaling, resisting apoptosis, enabling unlimited replicative potential, angiogenesis,

and activating invasion and metastasis. Those six processes together enable the growth and

invasion of a tumor that is then causing harm to the host.

Tumors are initiated bymutations in single cells. Mutations occur frequently in cell division
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and inmost cases mutations can be repaired, do not change cell properties, or lead to the death

of the cell. In some cases, a mutation alters the properties of the cell. If the changed properties

provide an advantage of the cell against its surroundings, it can start to grow into a cell mass.

However, a single beneficial mutation towards growth is highly unlikely to form cancer, since all

six hallmarks of cancer are necessary. Cancer develops over a long timewith the accumulation

of mutations in cells. Even if a tumor forms, growth often quickly ceases, and a stable dormant

tumor forms.

Tumors live in constant competition with the host tissue and the immune system, and the

mutation rate of cells in a tumor is elevated. With this elevatedmutation rate, tumors mostly do

not consist of a single ’tumor cell type’, but of many cell types that make up the tumor. Tumors

consisting of many cell types are termed heterogeneous tumors. The cell types inside a heteroge-

neous tumor not only compete for nutrients and space with the surrounding tissue but also with

each other. This competition, together with the elevatedmutation rate inside the tumor leads to

an evolutionary selection of the fittest cell types. The evolutionary process allows for a gradual

optimization of tumor properties over time and can drive the development of dormant to growing

and malignant tumors. Yet, not all cellular properties can be optimized at the same time and

beneficial properties can comewith trade-offs. Trade-offs in cellular properties and tumor evo-

lutionare topics that recently gainmore attention in theunderstandingof tumordevelopment [35].

Tumor Invasion

In recent years the mechanical properties of tumor cells in comparison to ’normal’ cells have been

discussed frequently. Many studies observe a link betweenmechanical properties such as stiffness

and fluidity with tumor invasion. Invasive tumor cells are found to be softer than non-cancerous

cells [2].

Furthermore, the so-called jamming transition can differentiate between different modes

of collective behavior of cells. In a jammed tissue, cells retain their nearest neighbors, whereas

tissues in other states can act as an active fluid or gas-like [36, 37]. Those properties of the tissue

are determined by the tissue density, the stiffness of the surrounding, as well as the adhesion

strength. Depending on the tumor and surrounding properties, different modes of invasion into

the surrounding tissue can be observed.

TumorMicroenvironment (TME)

Additionally to the properties of the tumor cells, the environment around the growing tumor

largely influences the progression of the tumor. Depending on the tumor site in the organism, the

geometry and surroundings differ. For example, in breast cancer, ductal carcinoma form in the

milk ducts that consist of epithelial cells and constrain the tumor to the inside of the duct in the

initial stages. Whereas glioblastoma, an invasive brain tumor, forms in themore homogeneous

brainmass. Different external factors largely influence tumor development. ECM stiffness and

the directionality of fibers influence and facilitate the transition to cell types of higher motility

and invasiveness.

Through interactions with the immune system, immune cells are accumulated at the tumor

site. Stromal cells that accumulate in and around the tumor can help suppress immune responses
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to the tumor. Tumors can even induce phenotype changes in fibroblasts to tumor-associated

fibroblasts that together with other cells create a pro-tumorigenic environment.

While the individual cells of malignant tumors are usually softer than the surrounding tissue,

the tumormass is usually stiffer than the surrounding. This stiffening of tumors allows formanual

haptic detection of some tumors. The stiffening can be associated with an elevated excretion of

extracellular matrix proteins by stromal cells (e.g., fibroblasts).

Expanding tumors quickly exceed the size that can be sustained by diffusing nutrients from

adjacent blood vessels. Cells in the tumor center can enter a hypoxic state and cease dividing due

to a lack of nutrients. With further expansion of the tumor, cells in the center can not sustain,

and a necrotic core forms. An escapemechanism of tumors that avoids hypoxia and necrosis is

the induction of angiogenesis. Angiogenesis is the formation of new blood vessels and can be

triggered by hypoxic signaling pathways. With the formation of new blood vessels and capil-

laries inhypoxic areas, the tumor can continue to growand is not limited in size bydiffusion length.

Experimental Methods

Traditionally the cultivation of cells was performed on Petri-dishes and was limited to a two-

dimensional extent. With the development of tumor spheroids, spherical and three-dimensional

structures of cells can be grown and cultured (e.g., in hanging drops) [38]. Spheroids can better

capture the cellular structure of a tumor and are used for a large variety of experiments up to

testing treatments (e.g. glioblastoma spheroids inside amatrix show invasive behavior [39]).

Pre-clinical testing of treatments, as well as basic research about tumor growth, is conducted

largely in themousemodel. Besides experimental data, a growing abundance of patient data exists,

since all patients treated for cancer are thoroughly examined. Imaging methods such as Magnetic

Resonance Imaging (MRI), Computed Tomography (CT) and Positron Emission Tomography (PET)

are used to observe the spatial development of tumors.

Tissue samples of tumor suspects are taken from patients as a routine procedure to identify

malignant tumors. Methods for the pathological examination of those tissue samples have evolved

into powerful tools. Patient-derived explants sustain the tumor heterogeneity of a patient and

can be used to test treatments and develop biomarkers [40]. Furthermore, techniques such as

Multiplexed Ion Beam Imaging (MIBI), Multiplexed Error-Robust Fluorescence In Situ Hybridiza-

tion (MERFISH) and imagingmass cytometry allow for the characterization of gene expression

and phenotypes of single cells in pathology samples [41–43]. Working with tissue samples from

patients preserves the tumormicroenvironment as well as the heterogeneity of the tumor, which

is often not the case in other experimental tumormodels.

Theoretical Models

Tumor invasion describes themovement of tumor cells into the surrounding tissue and can be

influenced by collective cell migration. Collective cell migration is a driving force in many cellular

rearrangements andhasbeenextensively studied. Similar tomaterial science, a jamming transition

of cells has been proposed, as the cell density and cell-cell adhesion increase, cells become trapped

between neighboring cells retain their nearest neighbors, and cell movement ceases [44]. As the

density decreases, parts of the tissue become unjammed, and parts of the tissue that are still close
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to the jamming transition start to collectively migrate. Multiple modes of tumor invasion have

been identified for different tumor types and surroundings. Two phase diagrams have recently

been developed for cancer invasion, here cell density and cell-cell adhesion define four states,

jammed, active fluid, active nematics, and gas-like behavior [36, 45].

Models that describe tumor growth on the scale of the tumor population, such as the tumor

volume or size, are conceptually simple means of describing the dynamics of a growing tumor. An

ordinary differential equation (ODE), describes the change of the tumor volume V (t), depending

on the current volume as well as external influences. The simplest case describing unconstrained

growth is the ODE for exponential growth

d

dt
V (t) = a · V (t) (1)

V (t) = V0 · eat. (2)

Here, the increase in tumor volume is directly proportional to the current volume, leading to an

exponential increase in tumor volume (see also 2, blue). This model can correctly describe the

initial growth phase of a tumor when the growth is unrestricted. For longer times, the tumor is

always restricted in size by constraints of the host (e.g., blood and energy supply and space) and

growth is mostly driven on the tumor surface.

Amore realistic description of tumor dynamics is achieved by assuming an upper bound on

tumor size, termed the carrying capacityK. The carrying capacity determines the tumor size

which is approached for large t, lim
t→∞

V (t) = K. An implementation of an upper bound can lead

to logistic growth with the following ODE, here the growth rate linearly decreases with tumor

volume, reads

d

dt
V (t) = a · V (t)

(
1− V (t)

K

)
, (3)

V (t) =
K

1 +
(

K−V0

V0

)
· e−at

. (4)

Logistic growth is characterized by a symmetric function, with an initial exponential increase

which decreases and asymptotically approachesK.

Gompertzian growth is often used to describe the dynamics of tumor growth, as well as the

size of entire organisms. The growth rate of the tumor logarithmically decreases with increasing

tumor volume

d

dt
V (t) = aV (t) · ln

(
K

V (t)

)
, (5)

V (t) = Ke
−ln

(
K
V0

)
·e−at

. (6)

The nonlinear dependency of growth rate and tumor volume leads to an asymmetric graph with a

fast increase and a slower approach toK (c.f. Fig. 2, green).
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Figure 2: Graphs of three tumor growth models Exponential, logistic and gompertzian growth are depicted.
With a = 1 and K = 10.

Thosemodels represent the tumor size at the population scale and have been used (among

others) to describe tumor growth and the effects of treatment [46]. Chemotherapy can bemodeled

in the simplest case by assuming a decrease of tumor volume with the drug concentration c(t).

Therefore, the term−c(t) · V (t) has to be added to the ODEs. In other cases, radiation treatment

wasmodeled by adapting the carrying capacityK of the tumor. Simple models like this have been

successful in predicting the treatment trajectory and classifying the regime of treatment outcome

with clinical data [47].

1.1 Physics-based Models of Cancer

The physical description of tumors and tumor growth aims at understanding the basics of

tumor growth and to find basic principles beyond the hallmarks of cancer. By the theoretical

description of tumors, causal insights can be gained and tested in experiments and contribute

to the development of new treatments, tumormarkers, and diagnostics. One way of classifying

themathematical description of tumors distinguishes between two different categories, concep-

tual and descriptive models [48]. Conceptual models integrate a small set of interactions and

assumptions into a set of equations, as exemplarily described above. Those equations can then be

solved for different parameter values and initial conditions. Conceptual models, therefore provide

quantitative results that depend on the assumptions and parameters. Quantitative results are

major drivers of experiments and provide new insights. However, conceptual models struggle to

capture the high complexity and strong interdependence between processes in tissue develop-

ment and especially tumor growth, and stochastic events and single-cell effects are difficult to

incorporate. Incorporating many different processes into a conceptual model is often not possible

or not solvable. To describe tumor growth and especially its interaction with the immune system

and tumor treatment, a large number of effects are necessary.

Descriptivemodels can incorporate many different effects andmechanisms by numerically

deriving outcomes from the initial condition with parametrized effects. Through the continuous

growth of computational power, as well as the ability to collect growing amounts of data during

recent years, data and computation-heavymodels aredevelopedmore andmore. Machine learning

has enabled the automated analysis of large-scale data sets and is even able to identify treatments
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and tumormarkers [49]. Supercomputers with continuously growing computational capabilities

are able to compute increasingly complexmodels.

Descriptive models typically have a large parameter space due to the complexity of the rep-

resented mechanisms, sometimes even with correlated parameters. Here, the challenge is to

control the model and to derive meaningful results from parameter variation. Quantitative results

are possible by statistically sampling parameter ranges but are often computationally expensive.

Qualitative insight, on the other hand, can be obtainedmore easily and findingsmay rely on the

back-and-forth between experimental data and simulations. However, descriptive models can

handle the complexity andmultiscale processes that are present in tissues. Together with growing

data resources and data-drivenmodel building, descriptive models provide increasingly accurate

results and the chance to complement experiments andmedicine.

1.1.1 Computational Tissue Models

Cellular Potts

Vertex

Continuous and
explicit shape

Agent Based

ODEs / Macroscopic

t

s(t)

Cellular Automaton

Figure 3: Computational tissue models of different resolutions. Models span in resolution from the
continuous description of one or few cells (left), over the simulation of multiple cells interacting in a tissue in
off- and on-grid models to descriptions of the tumor size on the population scale (right).

Computational modeling plays an important role in a multitude of disciplines and proves

especially useful in cases where experiments are complicated and insights are limited to one or a

few variables at a time. For example, in molecular dynamics, simulations allow the generation of

trajectories that are impossible to observe in real life.

The development of tumors and their progression in the human body is an extremely complex

process consisting of many puzzle pieces. Each hallmark or cancer in itself provides a great

challenge due to the high complexity of the human body. Understanding the interaction and

escape from the immune system alone requires knowledge about the interaction and complex

interplay of many cell types within and outside the tumor.

Our understanding of the interactions of each of the hallmarks is steadily rising. However,

incorporating all interactions together in one biological model is experimentally extremely chal-

lenging due to the high dimensionality and experimental complexity to measure and control

single parameters. Experiments are costly, time-intensive, and often highly specific to one ques-
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tion or problem. Here, computational models are convenient for the analysis of the effects of

single parameters. One is not limited by the experimental feasibility and duration of experiments,

and computational models enable sensitivity analysis for each effect. Due to full control over all

parameters and initial assumptions, the impact of eachmodel parameter can be quantified.

The objective of this manuscript is to demonstrate the construction and analysis of large-scale

tumormodels that are enabled by the development of a high-performance infrastructure for tissue

simulations [50].

A large arsenal of approaches, tools, and frameworks has been developed to describe the

development of tissues. Here we focus on models with spatial components. Different model

complexities can be found, ranging from one-dimensional differential equations to complex

multidimensional behavior (cf. Fig. 3). Generally, models that describe tissue consisting of

individual cells can be classified into two categories, namely on-grid and off-grid models.

Off-gridmodelsdescribe thepositionsof individual cells or cell components asparticlesmoving

in a continuous space. Examples for these kinds of models are agent-based models describing

each cell as one or two particles that interact via potentials, these models have been implemented

into [51] and form the base of the PhysiCell framework [52]. An additional form of off-lattice

models are vertex models, in which cells are described by an area or volume spanned between

vertex points that canmove through space. Such amodel with underlying fluid dynamics can be

found in [53].

In on-grid models, on the other side, the position or geometry of cells is described as discrete

points on a lattice. Those implementations are computationally less complex since the interactions

and distances are discretized. Themost straightforward implementation of such amodel is a cellu-

lar automaton, inwhich each latticepoint represents one cell, e.g., used in [54]. Amorefine-grained

model of cells is the cellular Potts model. Here, the cells are described as coherent regions of the

gridwith the same integer spin and the interaction between the cells is described by aHamiltonian

energy function. Thismodel is implemented in frameworks like CompuCell3D [55],Morpheus [56]

and the framework recently introduced and described in Chapter 2, called CellsInSilico [50].

Manyof the computational frameworks implement additional functionalities, such as diffusion

of compounds through the tissue, system-based approaches for single-cell behavior (e.g., SBML

solver), and even interchangeable underlying tissue models [57].

Some discrete models describe the tissue as a continuum and do not differentiate single cells,

but cell types (e.g., cancerous and non-cancerous tissues using a phase-field model in [58]),

allowing the simulation of larger tissue regions.

All computational models comewith advantages and drawbacks [59]. Center-basedmodels

enable the direct implementation of forces and physical time, while the spatial shape of cells is not

explicitly included and the simulation size is limited. Cellular automatonmodels enable large cell

numbers but are coarse-grained and rule-based with implicit physical parameters and jump-type

processes for cellular movements. Cellular Potts models allow a higher resolution of individual

cells in 2D and 3D and are easily adaptable, but the model is energy-based and driven by aMonte

Carlo simulation, leading to complications, adapting time steps, and physical parameters. Vertex

models represent the cellular shape and can easily incorporate mechanical stresses, however, the

computational costs are high andonly a limitednumber of cells canbemodeled. Themathematical
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details of the models are listed below.

For the simulations in Chapters 3 to 5 a simulation framework based on the cellular Potts

model is used. The development of the framework is documented in Chapter 2. A Cellular Potts

model (CPM) was chosen due to the explicit representation of the cellular geometry, which plays

a crucial role in morphogenic developments such as embryogenesis and tumor development.

Off-gridModels

Agent-basedModels Agent-basedmodels (abm) describe single cells as one or multiple par-

ticles that are allowed to propagate continuously in space. The interactions of individual cells

or agents are defined by a set of interaction potentials between the cells. The position of cells is

described by the cell center and cells do not have a spatial extent. Therefore, a volume exclusion

term can introduce repulsion for distances shorter than the spatial extent of the cell. Additional

terms can introduce a preferential movement direction for motility or chemotaxis and attractive

terms between cells to model adhesion. The system propagation is performed by evaluating the

equation of motion for each agent andmoving the agents along the resulting velocities.

In [51], each cell is represented by two points with a repulsive force between the two points.

Cell division is induced as soon as the two cells exceed a set distance, and themagnitude of the

repulsive force is a determining factor in tissue growth and competition. In abms, the spatial

structure of the cells is only implicitly introduced by the interaction potentials.

VertexModels In vertexmodels, the cells aremodeled by 2D surfaces or 3D volumes that are

spanned between the vertices. The vertices structure the space and define the cellular shape.

Different from an abm, here the equations of motion are calculated for each vertex. Due to the

explicit spatial representation of each cell, the volume and surface of a cell can be defined by an

energy function, leading to an inherent volume exclusion of cells.

Vertex models can be ideally used for the simulation of tissues that are exclusively made up of

cells with little extracellular matter (e.g., epithelial tissue).

On-gridModels

SimpleModel on Irregular Grid In a recent publication [60], we investigated tissue patterning

in a quickly expanding tissue. Through a combination of 2D single-cell simulation and in vivo ex-

periments, we observe the effects of differentmodes of transport on a pattern definingmorphogen.

We find that direct cell-to-cell transport via cell extrusions termed cytonemes [61] facilitates a

faster pattern establishment and therefore a faster andmore stable patterning compared to diffu-

sive transport. Themodel is based on an irregular two-dimensional grid of random cell positions.

Those positions can be occupied by cells. Cell movement is modeled by the displacement of the

cells to different locations on the irregular grid. Cell division and tissue growth by intercalation of

overlying cell layers aremodeled by introducing new cellswithin the tissue. Tomake space for new
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cells, the cells are moved in a path to the nearest empty grid space. Cell motility is implemented

by a random position switch of nearest neighbors.

A rapidly expanding tissue models the cellular movement during epiboly in zebrafish em-

bryogenesis. During this expansion, the neural plate patterns into three regions, fore, mid, and

hindbrain. This patterning is facilitated byWnt-βcatenin signaling. Themorphogen is produced

by a set of cells at the leading edge of the tissue and distributed over the length of the expanding

tissue. The neural plate progenitor cells receive their cell fate based on the concentration of the

receivedmorphogen.

Using the 2D computational model, we compare two transport mechanisms, free diffusion of

the morphogen from the producing cells and directed transport via specialized filopodia from the

producing to the receiving cells.

We found that the directed transport provides a faster pattern establishment than diffusive

transport. Since the patterning in the zebrafish neural plate is a fast process that occurs within

two to three hours, a fast establishment of the pattern is important for a stable and size invariant

tissue formation.

Without any sorting mechanism, the model produced fuzzy boundaries andmixing between

the pattern regions. In a back and forth process between simulations and experiments, we were

able to show thatWnt activity contributes to the sorting of cells with similar Wnt activity and

therefore stabilizes the pattern.

Cellular Automaton Cellular automatonmodels are defined on a regular grid (e.g., triangular,

rectangular, or hexagonal). Each grid point represents one cell or other media such as ECM or

liquid. The system propagation is performed by updating each grid point based on its state and

the neighborhood. Volume exclusion can be introduced by limiting the possible number of cells

per grid point. For example, cells can divide by introducing new cells into empty neighboring

grid points. Cells canmove to other points by introducingmotility. In [54] a cellular automaton

simulation is used to describe the development of tumor heterogeneity and tumor regrowth

after treatment. Movements and actions in the model are typically introduced byMonte Carlo

simulation steps that evaluate the local energy difference of a change and update based on an

acceptance criterion (e.g. Metropolis). Models, termed lattice-gas cellular automata, allow for

more than one cell per lattice point, allowing the simulation of large cell numbers.

Cellular automaton simulations provide a simple description of the spatial organization of

tissue. Through the on-grid nature and short to medium range interactions, the model scales for

large simulations withmany cells. However, the spatial structure of the single cells is neglected

and the choice of the lattice geometry and neighborhoodmay introduce spatial dependencies.

Cellular Potts Model The Ising model, which is a well-known model in solid-state physics,

describes the interactions of spins in a solid crystal. Each grid point can either inhabit a spin-up

or spin-down state and a nearest neighbor potential coupling the nearest neighbors. The Ising

model can be used tomodel themagnetism inmaterials and depending on the interaction con-

stant can reproduce ferromagnetic and anti-ferromagnetic behavior. A generalization of the Ising

model, from binary spin states to integer spin states is called the Potts model. The Potts model is
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well studied in solid-state physics and can be modeled by Monte Carlo simulations, which are

computationally simple due to the nearest neighbor interactions.

In 1992, Glazier and Graner used a formulation of the Potts model to simulate the interaction

of biological cells on a 2D grid [29]. They introduced global volume and surface constraints for

each integer spin state, representing one biological cell. This model is called the CPM and can

be implemented in two and three dimensions. Temporal dynamics of the system are defined by

a Hamiltonian energy functionHCPM that consists of multiple energy contributions, which are

added tomake up the global energy

HCPM =
∑
i

Ei = EV + ES + EA + .... (7)

The Hamiltonian consists, in a basic case, of three energy terms. One term constraining the

volume and surface of each cell and one term that adds an attractive interaction at the cell surface,

representing adhesion. The calculations are performed on a gridΩ, which is filled with indices,

called cell-ids. Each cell-id is linked to a cell type that specifies the global parameters of the cell.

The definition of the individual energy terms is usually realized as a quadratic potential of the

surface and volume in three dimensions or the surface and perimeter in two dimensions. Here,

the three-dimensional definitions are shown:

EV =
∑
c∈cells

λV (τc)(V (c)− V0(τc))
2
. (8)

The energy termEV defines a goal Volume for each cell, τc represents the cell type of the cell c. V0 is

the goal volume of the cell and V (c) represents the current volume of the cell. The coupling factor

λV sets themagnitude of the volume energy term and influences the volume compressibility of

the cells.

The volume energy term determines the elastic properties of the cell. The for homogeneous

isotropic elastic cells, the coupling factor λV can be linked to the Youngmodulus E

λV =
E

3(1− 2ν)
. (9)

With the Poisson ratio ν, usually≈ 0.5 [59]. Nonelastic, solid cells can therefore not move in the

CPM formalism due to the volume energy term together with the locality of the grid update.
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While the volume of the cell is usually determined by counting the occupied voxels of a cell,

different surface metrics can be applied to extract the cell surfaces from the grid structure, such as

theManhattanmetric or the marching cube algorithm. The surface energy is similarly defined

ES =
∑
c∈cells

λS (τc)(S(c)− S0(τc))
2
. (10)

For the surface energy,ES , S0 is the goal surface of the cell and S(c) represents the current cell

surface. The coupling factor λS determines the surface compressibility of the cells

EA =
∑
i∈Ω

∑
j∈N(i)

Aτiτj (1− δi,j). (11)

For the adhesion energy calculation, the energy of the entire gridΩ is calculated by a sum over

each grid point and its cell-id i. The adhesion energy is added for all neighbors j ∈ N(i) of the

current point i. The δ function limits the adhesion to grid pointswith different cell-ids i.e., different

biological cells, since cells usually do not adhere to themselves. A set of special cell-ids is reserved

for noninteracting surroundings, such as liquid and solids.

The grid is propagated by a so-calledMonte Carlo Sweep (MCS), performingmultiple Monte

Carlo steps at different positions in the grid. In aMonte Carlo step, the cell-id of a point on the

grid can be changed to the cell-id of a nearest neighbor grid point. The energy difference∆E of

this change is calculated using the Hamiltonian energy function. Based on this energy difference,

the step is either accepted or rejected, with the probability (paccept)

paccept =

1, if∆E < 0,

exp(−∆E/T ), otherwise.
(12)

This acceptance criterion depends on the temperature T and is called the Metropolis criterion.

Steps with a negative energy difference are accepted. Steps with a positive energy difference have

an exponentially decaying acceptance probability depending on the absolute value of the energy

difference and the temperature. For higher temperatures, the probability of accepting energetically

higher states rises.

The formalism only depends on the Hamiltonian energy function and theMetropolis tempera-

ture, whichmakes the extension of themodel flexible and provides a length scale. However, the

model does not inherently map the physical properties of the simulated cells, such as forces or a

timescale. Those properties have to be extracted from the simulated data. The system propagation

with local nearest-neighbor changes constitutes aMarkov-chain process. The grid is statistically

uniformly sampled, this allows for the definition of a time step which is usually defined as one

Monte-Carlo sweep. However, this does not lead to a physical timestep, the correlation between

theMonte-Carlo time base and the physical time has to be inferred from cellular properties and

can be challenging [62, 63].

Physical forces can be inferred from the energy function and cellular shapes and generate

simulations that are directly comparable to traction force microscopy [64].
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1.1.2 Parallel Computing

While the increase of computational speed in computers was initially driven by a rising clock

speed, today the majority of the increase of computational power originates from the parallel use

of many compute cores. The speed increase is achieved by partitioning the problem into a set of

subproblems that are solved as processes on individual compute cores. Communication between

the different cores working on one problem ensures consistency across all processes.

In supercomputers,many compute cores (either CPUs or GPUs) are connected on one computer

board and sharememory in a so-called node. Many of those nodes are connected by a fast network

that allows communication between them, parallel software can use compute cores from one or

multiple nodes.

For CPUs there are twomain approaches of parallelization. Many CPUs read and write on the

same physical memory (e.g., with libraries such as OpenMP). Here, the number of available cores

is limited by the core number on a physical computer board (called a node) that also hosts the

memory. Another parallelization strategy is based on communication between the processes with

amessagepassing interface (mpi). Here, eachprocesshas its ownmemory and the synchronization

between processes is performed solely by communication. Parallelization byMPI is not limited to

a single node and can therefore scale to a large number of cores but requires more communication

between the processes.

Evenhigher parallelism is employedusingGPUs, here thousands of threadswith low individual

computing power are started and the problem is compartmentalized finely. This approach was

initially mainly used for image processing but is used increasingly in general-purpose tasks. The

top speed supercomputers of today harness most of their computing power fromGPUs.

Thedevelopment of software that harnesses the full potential of parallel infrastructure presents

many challenges. To parallelize software, the problem has to be split into a set of ideally indepen-

dent subproblems. All dependencies between the subproblems have to be communicated between

the respective processes.

For example, particle-based simulationswith long-range interactions do not allow for a spatial

decomposition, since it would be impossible to calculate long-range interactions from subsets of

the space. While grid-based simulations with low range interactions can be parallelized by spatial

decomposition and a halo exchange between the sub-grids.

1.2 Challenges and Outlook

The complementing use of modeling and experimental methods has been successfully ad-

vanced our understanding of bacterial growth [65]. Unfortunately, experimental access to tumor

growth is difficult due to the complex interactions with themicroenvironment, immune system,

and intra-tumoral heterogeneity. However, mathematical modeling of tumor growth has been

successfully used in research and treatment. Theoretical observations of tumor growth and re-

sponse to treatment have inspired predictions of chemotherapy scheduling that were tested and

confirmed in clinical trials [66].
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Clinical and experimental methods to observe and analyze tumor growth are continuously

advancing, andmethods such as patient-derived organoids and single-cell imaging and profiling

techniques allowmore detailed insights into tumor development. Most recently, spatially resolved

transcriptomics has been announced as the method of the year [67]. This growing amount of

clinical and experimental data requires an automated analysis, here machine learningmethods

have shown successes [68]. This large amount of data can be incorporated viamodel optimization

as well as machine learning techniques [47]. Computational models provide the opportunity to

link theory, experimental and clinical data, get cross-validation, and influence all fields. Executable

tumormodels have been proposed for personalizedmedicine and could incorporate all available

data, guide decisions, and optimize therapy [69].

However, several challenges remain to be addressed in the computational modeling of tissue.

The use of parallelized software andmultiscalemodeling approaches are still in their infancy. Scal-

able computational models are necessary to incorporate large amounts of data on various scales

and levels of detail. Large scale simulations can be reached by optimizingmodels for scalability

and supercomputing support for systematic parameter scans. Multi-scale models can reproduce

physical and biological properties while enabling causal links between small-scale properties and

large-scale effects. Currently, there are no established standards for the reporting of experimental

and simulated data as well as computational models. This lack of standardization complicates the

comparison of models against each other or even the incorporation of data from different sources.

Furthermore, there are no benchmarking datasets to validate and quantify the performance of

computational tissue models [70, 71].

In this thesis, I show the development, verification, and application of a physics-basedmodel

of large-scale tissue growth and focus on tumor development. First, I present the development of a

multiscale tissuemodel that facilitates large-scale simulations of tissuewith single-cell resolution

in Chapter 2. Models that spanmultiple sizes are necessary to account for the variety of observed

effects in tumor growth. Themodel is based on the cellular Pottsmodel and enables the simulation

of millions of interacting cells by optimization for supercomputers. The parallelization is realized

by a domain decomposition with a halo exchange between the subdomains. The high scalability

of the model allows for the simulation of large numbers of cells that are individually spatially

resolved. Scalability is necessary to incorporate various spatial scales into the in silico experiments

and reach sizes that are comparable to the experimental scales of tissue experiments.

Next, in a proof-of-concept approach, a model of tumor growth in amicroenvironment and

vasculature is developed in Chapter 3. I demonstrate its ability to reproduce experimentally

observed behavior, as well as emergent behavior from single cells to large-scale heterogeneous

tumors. This model paves the way for further investigation towards balancing model complexity

and validating with data. I ask the question: Can the biologically observed behavior be reproduced on

a similar scale O(mm) by parametrizing single cells O(µm) and observing the emergent behavior with

our computational model?

Following this qualitativemodel of tumor growth, I focus on the description of different tumor

internal effects, especially the influenceof themechanical propertiesof tumor cells. Reducedmodel
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complexity is necessary to find causal relations between single-cell properties andmacroscopic

tumor behavior and the characterization of the model. In Chapter 4, I implement a model to

observe the effects of three cellular properties that are associated withmalignant tumor growth.

Cellular motility, stiffness, and adhesion are varied in a set of simulations and the effects on the

emergent tumor are compared. The interactions of the growing tumor with surrounding tissue

are studied and tumor growth speed and invasiveness are quantified depending on the three

parameters. Here, I ask the question: What are the effects of tumor-associated mechanical cellular

properties on the forming tumor?

In the subsequent Chapter 5, themodel complexity is increased and tumor heterogeneity is

introduced by enabling phenotype changingmutations in cells. A nutrient-dependent cell cycle,

together with spatial constraints leads to a competition of cellular subpopulations over space and

nutrients. The evolutionary behavior along two parameters, adhesion, andmotility with division-

rate trade-off is observed and the effect of a temporally variant nutrient supply is studied. I ask

the question: How does the nutrient environment influence the evolutionary behavior of the single-cell

property optima of adhesion and motility?

The discussion of the results can be found in the respective chapters. Chapter 6, at the end of

the thesis, summarizes the results and provides an outlook on future work.
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2 Publication 1: Cells in Silico, a high-

performance framework for tissue simula-

tions

T he publication ’Cells in Silico – introducing a high-performance framework for large-scale tissue

modeling’ w as published on October 6th 2020 in BMC Bioinformatics. Marco Berghoff and I are the

first authors of this paper. The complete paper can be found in Appendix 1 of this thesis.

2.1 Summary

Here, I describe the development of a parallel implementation of the CPM, by domain decom-

position. I demonstrate that the energy calculation of the Hamiltonian energy function can be

performed using only nearest-neighbor lattice points. This property of a local energy calculation,

together with the nearest-neighbor interactions of the CPM facilitate the parallel execution of

subdomains. The parallelization is realized by a domain decomposition of the regular grid into

blocks. Each block is then propagated using oneCPU core. Around each block, a halo of values from

the neighboring blocks is established and updated after each time step. Cell metadata, such as

the volume, surface, and signal values of the cells are incrementally updated by data exchange be-

tween neighboring blocks. By limiting the communication to nearest-neighbor communications

of blocks and avoiding all-to-all communications, high scalability is achieved. The framework is

realized using C++withMPI for the communication between cores. Here, the implementation of

the parallel version of the CPM is described in detail and the necessary assumptions are introduced.

The parallel simulation model is validated with a non-parallel version of the code. The scaling

behavior of the code for up to 45 thousand CPU cores is shown on amodern supercomputer. The

usage and user interface of the developed framework is introduced and documented. Finally, I

demonstrate its ability to solve biological and physical questions by performing large simulations

of tissue dynamics.

The framework is available under an open-source license at https://gitlab.com/nastja/

nastja. The full publication is available in the appendix of this thesis (Appendix 1).

2.2 Contribution

The development and implementation of the model and the documentation in the article was

made in close collaboration betweenMarco Berghoff andmyself, with equal contributions.

https://gitlab.com/nastja/nastja
https://gitlab.com/nastja/nastja
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3 A generalized model of tumor growth

shows emergent behavior from single-cell

events

I n this chapter, I introduce a generalized computational model of tumor growth. Proliferative cells with

a nutrient-dependent cell cycle are simulated in surrounding tissue and vasculature. The tumor cells

proliferate and form a three-dimensional tumor, allowing the observation of emergent behavior from

single-cell properties. Tumor heterogeneity is introduced by mutations of single cells and the effect of

diffusible treatment compounds (chemotherapy) and global interference (radiation therapy) on tumor

development is modeled.

The tumors form complex three-dimensional shapes in dependency of the vasculature and the influence

of varying treatment schemes on tumor heterogeneity is observed. By parametrizing the properties and

behavior of single cells, the emergent behavior on a large scale is demonstrated by the simulation of 106

interacting cells.

Tumor progression is based onmany complex effects acting concurrently to facilitate the uncon-

trolled growth of some cells. Cell-internal processes, e.g., mutations upregulating cell division or

chemotherapeutic resistance, have a significant impact on the size, shape, and heterogeneity of the

final tumor and strongly affect the treatment response [1] and drug resistance [2]. Unfortunately,

while microscopic properties are of high importance, they are clinically poorly accessible. Hence,

the treatment protocol and prognosis are inferred based on accessiblemacroscopic properties such

as patient condition, tumor size as visible in MRI scans, and biopsies. Bridging the scales between

experimental single-cell findings and clinical data can improve the understanding of cancer as an

emerging property of its cellular composition [3]. This linkwould allow optimization of treatment.

Ideally, personalized treatment strategies could be optimized bymodeling the outcomeof different

treatment regimes.

One option for predicting tumor growth is leveraging the exponentially increasing comput-

ing capabilities of modern supercomputers. A crucial ingredient is the simulation parametriza-

tion, which is fueled by newmicroscopy techniques and genomic tools that havemade immense

progress in the observation of cells, tissue, and the temporal evolution of those [4–6] as well

as gene expression and mutations [7]. This already has driven the modeling of tissue develop-

ment and dynamics in the related fields of embryogenesis [8, 9], morphogenesis, tissue dynamics,

homeostasis [10–17], and tumor growth [18–23] simulations. These and other tissue modeling

approaches paint an increasingly detailed picture, enabling predictive simulations that can be

verified by experiments and vice versa for a large variety of biological phenomena [24, 25]. Still, the

scope of cancer simulations is either the detailed description of individual cells or large numbers

of cells as point-like agents or a coarse-grained description of tissue [26]. Nevertheless, both ends

of the resolution range are necessary to map the complexity of tumor development, since both the

individual cells and themacroscopic environment play a crucial role.
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Figure 4: High-resolution Tumor Simulation: a) 1mm3 tissue simulation with 1µm resolution of single cells.
Blood vessels (dark red) distribute nutrients (blue, white, and red on the sheet in the background representing
low, medium, and high concentrations) that facilitate cell divisions and tumor expansion. Heterogeneous tumor
growth (colors represent different cell types) results in emergent behavior of nutrient dependant cell-division,
-death, and mutations. The inlays show growth of cell types over time (left), a zoom-in on the tumor surface
highlights the µm resolution. b) The color-coding of the majorly contributing cell types, each color indicates
one cell type with its individual parameter-set, colors are used for the remainder of the figures (for all cell-types
see Appendix 3:Figure 20).
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Here, we demonstrate the ability of a parallel model with a single-cell resolution to generate

emergent large-scale behavior on the tissue scale (O(mm)) from single-cell effects. We simulate

the growth of a tumor in vascularized homogeneous tissue. Our cancer simulation considers com-

peting single-cell effects leading to emerging tissue scale behavior. We introduce a computational

microscope that enables access to time-resolved trajectories of all included cellular properties,

going beyond what is accessible in wet-lab experiments. We see that highly proliferative cells in a

surrounding tissue form tumors of distinct shapes. The introduction of a nutrition-dependent

cell cycle leads to hypoxic and necrotic regions but also requires subcellular resolution to treat

nutrient flow and other surface-based cell-to-cell interactions realistically. Tumor heterogeneity

is incorporated by the mutation of cells into predefined cell types reflecting driver mutations. The

effect of growth-inhibiting diffusible substances (representing a chemotherapy drug) and global

damage of tumor cells (representing radiotherapy) is introduced. The impact of different dosing

schemes on tumor growth and heterogeneity is compared. We show simulations of tissues up to a

clinically relevant size of mm3 composed of over a million individual geometry-resolved cells over

time scales up to a year at a temporal resolution of a minute.

3.1 Methods

Naturally, one has to balancemodel abstraction with its complexity, parameter availability,

and computational cost. Here, we choose to focus to explicitly model the cell geometry of both

cancerous and regular tissue, mutations and cancer heterogeneity, nutrient availability from

blood vessels (but no angiogenesis), and treatment and resistance development to both chemo-

and radiotherapy in the context of the host environment. More specifically, our spatiotemporal

multiscale model describes the collective behavior of O(1 Mio) individual cells to simulate a

macroscopic tissue ofO(1mm3)(= 1 0003 voxel, cf. Figure 4). Themodel consists of three layers

and is implemented in the CellsInSilico framework [27]. Figure 5 depicts an overview of the layers

andmodel parts that are acting on them.
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Figure 5: Simulation model. The schematic shows an overview of the simulation layers and actions of the
agent-based model used in Cells in Silico.

Each layer represents a different length scale. Our model is based on a cellular Potts model

acting on themicroscopic layer, see Section 3.1.1. The diffusion of signals such as nutrients and

drugs through the simulated area is modeled on the mesoscopic layer, which is described in

Section 3.1.2. An agent-basedmodel controls cellular events such as cell division and cell death;

this macroscopic layer is explained in Section 3.1.3.

The parallel version of our model is implemented using the NAStJA framework [28]. Besides,

synchronization steps ensure a consistent state of the entire domain; these are the halo exchange

and the local exchange of global cell properties is described in Refs. [27, 29]. Most simulations in

this study use a cubic box with an edge length of 320µm,with selected simulations using a box

edge length of 1 000µm. The computational framework, Cells In Silico, handles the distribution

of computing load resulting in superlinear speedup on large CPU-core numbers (O(105)) on

supercomputers.

For detailed model parameters Appendix 3. The published open-source package of Cells In Silico in

the NASTjA framework can be found at https://gitlab.com/nastja/nastja.

3.1.1 Microscale: Cellular Potts Model and Hamiltonian

The lowest layer is a 3D Cellular Potts model (CPM) layer whichmodels the cells on a grid [13,

30–32]. The CPM is based on a Hamiltonianwith local interactions. Modeling of cell-cell adhesion

proportional to the cell interfacial surface, nutrient transport, and cell-to-cell signaling properties

are explicitly dependent on the shape and surface of each cell, with each cell occupying around

103 voxel corresponding to 1 000µm3.

The CPM defines the mechanical properties of the cells: compressibility, volume constraints, and

adhesive forces. TheHamiltonian energy is defined as in the Introduction, 1.1.1. Three energy terms

are introduced, namely surface, volume, and adhesion energy, that make up the Hamiltonian

https://gitlab.com/nastja/nastja
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and represent a basic CPM implementation without additional energy terms. Periodic boundary

conditions reflect the behavior of an extendedmacroscopic tissue.

3.1.2 Mesoscale: Signal and Nutrient Transport

In the intermediate layer, the diffusion of signaling compounds, nutrition, and chemothera-

peutic drugs is realized by flux through the cell membrane to the adjoining neighbors of a cell. The

simulation considers the transmission and propagation of multiple substances, such as nutrients

and drugs. We define a class of signaling, e.g., nutrient contents, of each cell σ
(%)
i , denoting the

concentration of signal % in cell i. Those represent either oxygen and glucose as nutrients for the

cell, cell-to-cell signaling compounds, or drugs. The diffusion of nutrients can be approximated

by flow through the surfaces of the cells. Actions, such as cell division, -death, and -mutations,

may depend on these signals and nutrient contents.

Diffusion Diffusion of signals between the cells occurs through the surface of these cells. We

determine the shared surface Si,j for each pair of cells i, j with i 6= j. The diffusion depends on

the type of cells, so we define for each combination of types a diffusion constantDτ(i),τ(j), τ(i)

denoting the cell type of cell i. The flux J
(%)
i,j for a signal % is defined by

J
(%)
i,j =

(
Si,j

Si
+

Si,j

Sj

)
Dτ(i),τ(j)(σ

(%)
j − σ

(%)
i ),

whereSi is the surface fromcell i andσi is the signal value in cell i andSj ,σj fromcell j, respectively.

The first bracket is the arithmetic mean of the two surface fractions with respect to the common

surface. The flux Ji,j is subtracted from the signal of one cell and added to the other. Here, we

distinguish between cells andfixed signal suppliers, such as blood vessels. For fixed signal supplies,

the signal content is kept constant, i.e., the flux is neither subtracted nor added to those cells.

Decay Metabolic processes occur inside the cells. We used a simple model in which the signals

are changed relative to their values,

σ
(%)
i

∣∣∣
t+1

= d
(%)
τ(i) · σ

(%)
i

∣∣∣
t
.

Where σ
(%)
i

∣∣∣
t
is the signal % in cell i at time t and d

(%)
τ(i) is the relative change of the signal %depending

on the type of cell i.

3.1.3 Macroscale: Agent-based Model

The top layer is an agent-based model that handles cell phenotype parametrization, cell in-

ternal signal processing, cell division, cell death, andmutation of cells. The surrounding tissue

is initialized as a nondividing and nondying population. Cell division and cell death depend on

cell age, nutrient availability, cytostatic drug concentration, as well as division and death rates.

On themacroscale, cell attributes such as cell age, signal level, cell type, etc. are used to generate
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actions based on these values. The parameters can be linked to cell biological experiments and

simulations (cf. Appendix 3:Table 3).

Cell types A cell type is assigned to each cell, which determines the parametrization and phe-

notype of that cell. The cell type defines the characteristics of the individual cells, i.e., the target

volumeV0, the target surfaceS0, and the thresholds TRSVol,TRSAge. In thatway, not each cell has to

be individually parameterized. Cells that divide usually generate two new cells of the previous cell

type. Cell types allow the classification of each cell in the simulation and the tracking of cell type

subpopulations. Through the definition of a predefined set of cell types andmutations between

those types, the parameter space is controlled, and the accumulation of purely favorable traits in a

single cell type is prevented. Each cell type only has a single variation with respect to the initial

tumor cells. It is possible to define an arbitrary number of cell types for different use cases. Here

we define a set of 27 cell types for heterogeneous tumor growth (see Appendix 3:Figure 20)

Blood vessels and solid We introduced a subset of cells that are not participating in the spatio-

temporal propagation via the cellular Potts model. Those cells are solid structures, which can

model blood vessels or the extracellularmatrix. They are able to participate in cell-to-cell signaling

andmay act as sources for signals.

Cell division In each time step, each cell is checked for cell division. Whether a cell divides

depends on several internal and external factors. Division conditions are:

• Volume above a threshold V > VDiv = 0.9 · V0

• Nutrition above a thresholdCDivMin

• Age above a certain threshold AgeDivMin

• Comparing random number ∈ [0, 1]with the division rateRDiv

• Chemotherapy content below a threshold TRSCh

If all conditions aremet, a randomplane through the cell center is chosen and the cell is split along

that plane. After cell division, the cellular age is set to zero. Post division, both cells expand due to

pressure by the volume and the surface energy term. Specific cell types can also be excluded from

cell division, such as the surrounding tissue in our simulations.

Cell death Cell death conditions are:

• Nutrition below a thresholdCDeath

• Age above a certain threshold AgeDeathMin

• Comparing random number ∈ [0, 1]with death RateRDeath

• If all above conditions are not met comparing random ∈ [0, 1] with default death Rate

RDeath/1000 to account for natural cell death
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Figure 6: Growth of a tumor in surrounding tissue without external influences is used to define the
timestep. Multiple simulation runs with different seeds are shown, and the time constant of the growth is fitted.

Cell death is induced by changing the cell type of the cell to a dedicated cell type that describes

dying cells. For this cell type, the goal volume in the Hamiltonian is changed over time V0Apop(t) =

V0 − χ · age, effectively lowering the volume of the cell to zero voxels. Once the cell reaches V = 0,

the cell is deleted.

Mutation Mutations are possible events accompanying cell division, assigning a newphenotype

tooneof thedaughter cells. After cell division, the twodaughter cells are reinitialized. If amutation

event occurs (mutation rateRMut), one of the daughter cells is initialized with a randomly chosen

cell type. The range of cell types that can be chosen is predefined. The transitionmatrix between

all cell types can be defined so that the transition probabilities between cell types vary. Here, we

use a constant transition probability.

Treatments Chemotherapy is implemented as a diffusive drug that suppresses cell division and

is distributed via blood vessels. Radiotherapy introduces immediate cell death of a fraction of cells

and globally reduces division rates proportionally to accumulated radiation exposure. The model

parameters are largely based on experimental measurements (cf. Appendix 3:Tables 3,4).

3.1.4 Time-step

The simulated time of the in silico tumor growth is not explicitly defined by the simulation

parameters. To correlate the simulated timewith real-time, the growth curves of the simulated

tumor were compared with tumor growth curves in animal models. Assuming the growth to be of

similar speed, the simulated time inMonte Carlo Sweep (MCS) can be linked to real-time in hours.

We observe an initial exponential growth of the in silico tumor whenmodeling the free growth of

a tumor in an environment with sufficient nutrients andwithout treatment. We find that a size

doubling time of T = 8552MonteCarloSweeps(MCS) in our model corresponds to an untreated

tumorwith an experimentally determined doubling time of 150h (see Figure 6). Comparisonwith

the growth observed in vivo (cf. Appendix 3:Table 3) we assume exponential growth of the tumor

volume VTumor(t) = exp(ln(2) · t/T ) + c and derive T = 150h from the experimental data for a

non-treated tumor. Therefore, 1MCS equals 1.05min and 1 kMCS = 0.73days.
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Figure 7: Buildup of the Model: a) 2D slices of tumor simulation with a rectangular blood vessel grid.
Left to right: Coloring by cell types (Types see Figure 4), coloring by averaged cell velocities (black line
indicates tumor outline), coloring by nutrient availability b) Cellular velocity dependent on the distance to the
tumor front, negative values are inside the tumor. c) Dependence of the tumor growth rates on metabolism
parameters. Parameter variations in the decay of nutrients and diffusion constant in the tissue and tumor change
the growth rates of the tumors. The shaded area indicates the volume of dying cells. d) Tumor heterogeneity
through mutation after cell division. A variation of the mutation rate results in different tumor compositions.
The simulation on the left has a medium, in the center a high mutation rate. On the right, the blood vessel
configuration was changed for medium mutation rates. Coloring as in Figure 4.

3.2 Results

3.2.1 Homogeneous Tumor Growth

Simulations of a tumor, consisting of a single-non mutating cell type are performed in a

simulation box with an edge length of 320µm. 35 cells of a proliferative cell type are placed in a

simulation box filled with non-proliferative and nondying ’surrounding’ cells. The development

of the forming tumor is observed over a simulated time of one year with a one-minute time step.

Over this period, one can observe homogeneous tumor growth (i.e., composed of a single cell type)

into the surrounding tissue. Blood vessels are represented by rigid structures in the simulation,

that are symmetrically placed as four straight structures along each axis (cf. Figure 7 a)). Nutrients
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distributed by those blood vessels represent a growth-limiting factor for the growing tissue. In the

simulations, nutrients diffuse from blood vessels through the tissue, with each cell degrading the

local nutrition concentration (cf. Figure 7 a) right). A gradient of nutrient concentration develops

originating from the blood vessels.

As time progresses, the tumor grows in the surrounding tissue. The tumor reaches a finite

size once the simulated volume is entirely filled by cells. Due to the volume constraints of cell

division and the constant number of surrounding cells, the absolute number of cells and thereby

the tumor size is limited. Once themaximal number of cells is reached, cell death and proliferation

of the tumor cells are in equilibrium. An upregulatedmetabolism in tumor cells (represented by

a higher depletion of nutrients in the cells) leads to a significantly decreased growth rate, while

a downregulated metabolism leads to faster growth of the tumor (cf. Figure 7 c)). Tumor cells

deplete nutrients at a higher rate leading to the formation of experimentally known intermediate

states such as invasive fingers and hypoxic or even necrotic areas in the center of the tumor. Our

analysis of cell velocities and cell displacement shows highly mobile or dynamic tumor cells at the

boundary of the tumor. In contrast, the cell movements within the tumor and in the surrounding

tissue are much lower (cf. Figure 7 b)). Cell density and velocity have been associated with tumor

invasion, jamming, and unjamming transitions within a tumor [33].

3.2.2 Heterogeneity

Primary tumors develop over long periods of time, and tumor internal heterogeneity arises

frommutations in cells. The limited inflow of nutrients leads to a competition of the cell pheno-

types, and the partition into subpopulations indicates the fitness of the individual cell types.

This mutation process continues during the whole lifetime of the tumor. Hence, a tumor does

not consist of just one cancerous cell type, but a variety of cellular phenotypes that compete over

resources and complicate tumor treatment since the effect of therapies may differ between the

types. Therefore, tumor heterogeneity is a crucial factor in planning cancer treatment [34].

We implemented themutation of cells into our model by introducing the possibility of a change of

cell type of one of the daughter cells after division. These mutations are reflecting one or multiple

somatic mutations that affect the behavior of the cell and lead to altered behavior. Each of the

predefined cell types represents one cellular phenotype and has exactly one parameter up-or

down-regulated with respect to the tumor type introduced in 3.2.1. The transition rates are con-

stant from and to every cell type. Cell-to-cell adhesion, cell division age and nutrient thresholds,

cell death age and thresholds as well as nutrient uptake, and division and death rates were altered.

We run a set of simulations with different mutation rates and equal transition rates between

the predefined tumor cell phenotypes. As visible in Figure 7 d), the final heterogeneity of a tumor

strongly depends on themutation rate. At low (every 200th division) andmedium (every 20th

division) mutation rates around day 70, the initial tumor cells dominate the tumor mass but

get outcompeted with time as the total size of the tumor is stunted by the lack of compressible

surrounding tissue. At low mutation rates, cell types with a higher division rate and delayed

cell death begin to dominate the tumor after day 70. Mediummutation rates lead to similar yet
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Figure 8: Treatment Response: a) Tissue size and composition response to different treatment regimes of
constant accumulated doses of chemo- and radiotherapy. Colouring as in Figure 4. The treatment protocol of
chemo- (blue) and radiotherapy (red) are depicted below the growth curve. b) Integrated tumor size (bubble
size) post-treatment and tumor heterogeneity (bubble color). c) The final tumor size of different treatment
schemes (y-) and different simulation runs (x-axis) shows the stability of the simulation outcome. Coloring by
tumor size at t = 325days.

accelerated qualitative behavior. To observe the influence of the local environment, we increase

the blood vessel density in the simulation, leading to amore rapid preeminence of fast-dividing

cells.

3.2.3 Probing Treatment Regimes

Models to optimize chemotherapy dosage have been implemented and convincingly used as

early as the 70s [35, 36]. Figure 8 a) depicts the response of simulated heterogeneous tumors to

different treatment schemes. We assume detection and onset of treatment of the tumor from

day 110 until day 220. The drop in the total tumor size post-treatment until the final size at day

330 strongly depends on the treatment protocol. For all different treatment protocols, the total

dose of a therapeutic agent stays constant. It is redistributed into shorter peaks with higher

concentrations and within the same time frame between days 110 to 220.

Shorter pulses of chemotherapy show a greater effect than a uniform application, whereas a

single strong radiotherapy pulse reduces the tumor size more drastically thanmultiple weaker

pulses. Multiple pulses of radiation and chemotherapy shift the tumor composition towards a

more homogeneous tumor by a cumulative adaptation through advantageous cell types surviving.

This coincides with studies, which identify tumor heterogeneity as a driving force in treatment

resistance [34]. Surprisingly, cell types with increased resistance to chemo- or radiotherapy are

less favored than fast-dividing cells in relapse post-treatment. Combinations of therapies using

chemo and radiotherapy show amore significant effect on the tumor as one of the methods alone

since the growth-inhibiting effect is two-fold. As clearly visible in Figure 8 b), treatment effectivity

increases when going from one to four pulses of chemotherapy but then drastically decreases for

eight pulses. For radiotherapy, the effect on the tumor also increases when dividing the dose into

smaller pulses.

Thus, we can probe the treatment regimes for a given tumor. We can systematically probe the

treatment effects of different treatment regimes and combinations and judge the effectivity based

on tumor properties.
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3.2.4 Stability

To provide predictions for the temporal development of tissue in vitro and in silico for clini-

cal applications, knowledge about the statistics and robustness of the system development is

essential. Variability in the simulation outcome is visible when running the same simulation with

different random seeds. This reveals the impact of random and rare events onmacroscopic tumor

development. The deviation in tumor size and heterogeneity in Figure 8 b) is neglectable, where

the treatment weakly impacts the tumor size. Whereas for treatment schemes that drastically

reduce the tumor size, the local surrounding and rare events have amore significant impact and

lead to greater variability in the subsequent development. Figure8 c) depicts the stochasticity

of the final tumor volume after different treatment protocols and shows increased variability in

treatment schemes. In some cases, rare events can toggle between the disappearance or relapse of

the tumor post-treatment.

3.2.5 Scaling up

To take full advantage of the supercomputing architecture and parallelization, the simulation

of heterogeneous tumor growth described in the previous sections is scaled up from 320µm to

1000µm size of the simulation box. The increase in the system size leads to an absolute number of

cells of≈ 1.1 million. We introduce an irregular vasculature system (cf. Fig. 4), that distributes

nutrients. Due to the large system size and irregular symmetry, complex spatial structures arise as

the tumor expands. Vicinity to blood vessels enables faster growth of the tumor, which leads to

preferential growth of the tumor along blood vessels.
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3.3 Discussion

Here, we highlight the possibility of simulating emergingmacroscopic tumor development

resulting frommicroscopically explicit shape-represented single cells. The high computing and

data handling complexity can be mitigated via current-day supercomputing capabilities. The

model makes it possible to test arbitrary ’what-if’ scenarios, unrestricted by experimental con-

straints, with direct control over all parameters of each individual cell. In our virtual tumors, we

observe nutrition-dependent heterogeneous tumor growth. We find emergent behavior of the

tumor growth on themm scale, that arises from the collective interactions of a large number of

individual cellswith a spatial extent of≈ 10µmeach. The properties and behavior of the individual

cells alone enable the behavior that can be observed on amuch larger scale.

Wecan showthatdifferent treatmentplans strongly influence thefinal tumor cell type composi-

tion. Wemodel cancer therapeutic agents in our system and show agreement with experimentally

measured behaviors, reflecting growth curves [37] cf. Appendix 3:Table 4. Each simulation results

in a fully spatiotemporally resolved trajectory, which allows tracing even single-cell events. We ob-

serve that the tumor growth is mostly driven close to the surface of the tumor and can investigate

the changing tumor composition over time. In some simulation regimes, rare events influence not

only details of the individual simulation but can influence the macroscopic behavior, such as the

resurgence of tumors post-treatment. This improved theoretical accessibility of cancer growth as

emerging behavior opens new research avenues. One could envision the application in improving

early-stage cancer detection by characterizing detectible early growth pathways. Once parameter

sets for specific cancer types have been developed, such simulations could revolutionize clinical

treatment via optimized, personalizedmedicine regimes in silico.
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4 A computational two-type tumor model,

bench-marking physical tumor properties

M echanical properties of tumor cells impact the behavior of developing tumors and influence

their emergent properties. In this chapter, I introduce a computational model of tumor growth

that consists of two competing cell types. The invasion of the tumor cell type into the surrounding tissue is

modeled and the effects of tumor-associated mechanical cell properties are observed. Three properties of

the expanding cell type are altered: cell motility, stiffness, and cell-cell adhesion. The effects of the three

properties on the tumor growth rate, tumor shape, and invasiveness are observed. Low adhesion leads to

an elevated growth rate, while lower growth rates increase the mixing of the cell types.

Growing tumor tissue expands into and against the surrounding tissue. For this expansion, the

tumor competes with the surrounding healthy tissue over the available resources such as space

and nutrients. The interactions of a tumor with its microenvironment largely influence tumor

development [1]. Tissue vascularization, interactions with the immune system, Extra-cellular

matrix (ECM) and external signaling strongly influence the development of a tumor and add

largely to the complexity and variability of tumor treatment. Beyond the interactions with the

tumor environment, the properties of the individual cells that make up the tumor play a large role

in the tumor development and define its growth. Through their properties, the individual cells

define the emergent behavior of the macroscopic tumor.

Mechanical properties of the expanding tissue increasingly gain attention for their effect on tumor

growth. Cell-cell adhesion, mechanical confinement, and cell density can drive phase transitions

from jammed and active to gas-like states [2]. Motility forces can influence the geometry of inter-

faces [3] and cell-cell adhesion and growth force influence tumor heterogeneity and evolution [4].

The cellular properties of cells in malignant tumors were characterized by several mechanical

properties. Loss of adhesion, high motility and low cellular stiffness have been attributed to tumor

cells [5–7].

Here, we focus on the mechanical effects of each of those three single-cell parameters and how

they influence the emergent behavior on the tumor level.

The properties may be linked to other cellular parameters through signaling pathways (e.g., β

catenin regulates both cell division and cell-cell adhesion by e-cadherin [8]) and those parameters

might be also influencing tumor growth. Here we independently vary the three parameters, while

keeping all other parameters constant, to be able to isolate their respective effects.

We use Cells in Silico (CiS), a recently published framework for simulating tissue with the

Cellular Potts model (CPM) on supercomputers [9]. Wemodel the competition of two cell types

in a simulation box. We vary three parameters, namely adhesion, motility, and stiffness to see

the effect of eachmechanism on tumor growth. For each parameter, 5 different values are chosen

which results in a phase space of 5× 5× 5 = 125 simulations.

We observe the emergent behavior of each tumor. The size development is observed and differ-

ent models for the growth curves are fitted. We compare the time constants of fitting Gompertz,

logistic, and exponential growth. Furthermore, we exploit the access to all cellular parameters and
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observe the velocity correlation of tumor cells, the shape and geometry of the tumor, and quantify

the invasiveness.

Hypothesis: The three single-cell properties, adhesion, stiffness, andmotility are major driving

forces of tumor growth. All three are important to drive tumor expansion and invasion. Here we

explore the isolated and combined effects of each parameter on tumor growth.

4.1 Methods

In this manuscript, we focus on a computational model of tumor growth. Two cell types

compete over space, with one having an increased proliferative potential. This tumor cell type is

placed in a solid tissue consisting of the healthy cell type. In the simulations, the tumor tissue

expands and takes over the available space. The in silicomodeling of this two-type system gives

us the possibility to screen and scan the impact of different cell-cell and cell-tumor interactions.

We incorporate three properties into the model that are often associated with tumor cells by

changing the adhesive properties, cell stiffness, and cell motility. These parameters are varied in

the tumor cells and the effects on the emergent tumor are observed. The simulation is performed

in a simulation box of 200times200× 200 voxels with each cell occupying≈500 voxels. The box is
filled with cells, leading to≈24 000 interacting cells in one simulation.

Adhesion: Loss of adhesion or downregulation of cell-cell adhesion is often linked to tumor

spreading and expansion [5]. Cell-adhesions are mediated by adhesion molecules on the cell

membrane (e.g. cadherins). Thosemolecules can bind to each other and therebymechanically

link cells to other cells and the surroundings. In the computational model, adhesion is accounted

for by the binding energy between cell surfaces. The coupling of different cells of the same cell

type j is determined by a factor Jjj , that couples the shared surface to energy. The factor between

different cell types i and j, is determined by the smaller internal coupling Jij = min(Jjj , Jii),

since we assume a limited number of adhesionmolecules on the surface, that limit the adhesion

strength. The adhesion of the surrounding healthy tissue Jhh = 25, h− healthy cells, while the

tumor adhesion values are changed from Jtt = 0− 80, t− tumor cells.

Stiffness: Malignancy of tumors is often associated with soft tumor cells [6]. The stiffness

references in this case the deformability of the individual tumor cells. While the tumor mass

typically is harder than the surrounding tissue, this is due to the stiffening of the ECM that is often

initiated by tumors [10]. In ourmodel, the varied parameter to determine the influence of stiffness

on tumor growth is the prefactor of the surface energy λS . High values of λS lead to low surface

deformability and therefore to stiffer cells. The parameter is varied from λS,tumor = 1..10.25 for

tumor cells, while in the surrounding tissue cells λS,tissue = 5.325

Motility: Motility describes the ability of cells to activelymove in space. Motility can be directed

(e.g., chemotaxis) and nondirected (e.g., randomwalk). Here, we focus on a randommovement

of the cells. Randommotility is implemented as the coupling of each cell to a potential along a
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randomly chosen 3D unit vector. The direction of the vector is randomly reassigned each 100MCS.

The coupling of each cell to that potential is called λM and will be referred to as the amount of

motility for a cell.

Cell Division andDeath: Division of a cell is possible once the cell exceeds 0.9 of its goal volume

V0 and exceeds an age of 2000MCS. If those conditions are met, the cell divides with a probability

of 0.03 for tumor cells and 0.005 for surrounding cells in each time step. Cells die similarly with a

probability of 0.001 after the age of 8000MCS for tumor cells and a probability of 0.0005 after

4000MCS for surrounding cells. Since the simulation box is filled by cells, the number of cells is

limited by the space and the volume constraint of cell division.

Growth Models: Three different growth models with a time constant τ are evaluated in the

analysis of the growth curves of the in-silico tumors. The functions are:

Logistic growth

φ(t) =
a

1 + e−τ ·(t−c)
(13)

Gompertzian growth

φ(t) = a · e−b·e−τ·t
(14)

Exponential growth

φ(t) = a · e−τ ·(t−c) (15)
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Table 1: Cell parameters used in the simulations.

Parameter Symbol Value / Range

Tumor

Volume compressibility λV 7.5

Surface compressibility (=stiffness) λS 1.0, 3.3125, 5.625, 7.9375, 10.25

Motility λM 0, 25, 50, 75, 100

Cell-cell adhesion J 0, 20, 40, 60, 80

Division condition
( volume≥ 0.9 · V0 )
& ( age> 2000 )
& ( rnd()≤ 0.03 )

Death condition
( age> 4000 )

& ( rnd()≤ 0.001 )

Surrounding

Volume compressibility λV 7.5

Surface compressibility (=stiffness) λS 5.625

Motility λM 0

Cell-cell adhesion J 25

Division condition
( volume≥ 0.9 · V0 )
& ( age> 4000 )
& ( rnd()≤ 0.005 )

Death condition
( age> 8000 )

& ( rnd()≤ 0.0005 )

General

Temperature 50

Simulation box 200 voxels3

Cell volume V0 500

Cell surface (marching cubes) S0 400
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Figure 9: Overview over the observed phase space, tumor topologies, and temporal trajectory. a 2D
slices through the simulations at the minimum and maximum of all three varied parameters. Colors indicate the
different cell types, green is the surrounding cells, yellow is tumor cells and purple is dying cells. The images
are taken as soon as the tumor exceeds 2000 cells. b The growth curve of the tumor with all minimal values
(0,0,0). Different growth models are fitted to the curve and the parameters are indicated.

4.2 Results

The simulations are initialized with a cluster of 32 cells of tumor type and 14 000 cells of

surrounding type. Subsequently, the tumor spreads by the elevated division rate of the tumor

cells, compared to the surrounding cells. The tumor grows at first with an exponential increase

in cell numbers. The fast growth slows down as soon as the size of the tumor approaches the

size of the simulation box and continues to decrease until the surrounding tissue is completely

displaced by tumor cells, cf Fig. 9 b. The growth curve resembles logistic or Gompertzian growth.

125 parameter combinations were simulated, five values each of the three parameters adhesion,

motility, and stiffness were implemented. Therefore, the simulations span a 5× 5× 5 cube in the

parameter space, representing all parameter value combinations. Examining 2D slices of the 3D

simulation for equal numbers of tumor cells, but different parameter combinations show different

topologies of the tumor shape (cf. Fig. 9 a). The tumor shapes range from cohesive outlines to a

rugged appearance with a further spread.

To quantitatively describe the above-mentioned properties, several tumor properties are fitted

to the data and projected on the 5× 5× 5matrix in the parameter space.

Growth speed:

First, different tumor growthmodels are fitted to the growth curve of the tumor. Gompertzian,

logistic and exponential growth are fitted (cf. Fig. 9 b for a single simulation). The time constant

of logistic growth is shown in Fig. 10 a, projected on the parameter space. A higher time constant

indicates faster growth of the tumor. We find:

With decreasing adhesion, the tumor grows systematically faster. A low adhesion allows for a

faster dissociation of the tumor cells from each other, leading to lower friction inside the tumor

and therefore a faster propagation of low pressure following cell death.
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Figure 10: Logistic growth constants projected on the parameter space. Parameter projections on the
125 simulations on a 5x5x5 cube. Left image shows a cut through the 4,4,4 plane. The other images depict the
mean value of the cube along each axis. a Time constant of logistic growth.

Motility only has a small influence on the growth rate, with slightly faster growth for low

motility values. We see a counter-intuitive behavior since cell motility is often associated with

faster tumor spreading.

Stiffness changes lead to a lowering and a subsequent rise in growth speed. The influence of

cell stiffness is less expressed than the influence of cell adhesion, but it shows a nonlinear behavior.

As the cell stiffness increases from 1 to 10, the growth speed first decreases and then increases for

values larger than 3.

Roughness:

In Fig. 11 the fraction of the 3D surface and volume is plotted for all simulations. The fraction

(here called roughness) increases with risingmotility and rising adhesion and shows an inverse

dependency on growth speed (cf. Fig. 10 a) The dependency on stiffness shows the same but

inverse behavior as observed for the growth speed, namely an initial increase, followed by a

decrease.

To quantify the observed dependency between roughness and growth speed, the properties

are plotted against each other in Fig. 11 c. Non-linear dependency can be observed. The roughness

drops steeply for low values of the growth speed. Once the growth speed exceeds 0.028, the

steepness decreases drastically and the roughness decrease is slower.

Extent:

The spatial extent of the tumor is measured for each simulation once the number of tumor cells

exceeds 2000. The extent is determined along the threemain axes and themean of the three values

is shown. Qualitatively, a similar behavior to the tumor surface roughness can be observed (cf

Fig. 11 d). When comparing the extent with the tumor roughness in Fig. 11 d, a positive nonlinear

dependency can be observed.
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Figure 11: Tumor roughness and the dependence on tumor growth rate. a Ratio of tumor surface to
tumor volume, projected on a cube. The roughness is measured as soon as the tumor exceeds 2000 cells. b
Mean spatial tumor extent, projected on a cube. The extent is measured as soon as the tumor exceeds 2000
cells. c The roughness is plotted against the time constant of fitted logistic growth (plotted in 10). d The mean
spatial extent of the tumor is plotted against the time constant of fitted logistic growth e The roughness is plotted
against the mean spatial extent of the tumor.
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4.3 Discussion

Tumor roughness and shape are strongly influenced by growth speed. High adhesion, high

motility, and very soft or very stiff cells produce a fast-growing tumor that is spherical and smooth.

While low adhesion, lowmotility, medium stiffness cells lead to a slower-growing tumor with a

rough surface.

We define tumor invasiveness by the penetration of tumor cells into the surrounding tissue,

since a larger roughness of the tumor leads to an increasedmixing of the tumor and surrounding

cells. While a smooth tumor surface represents a low invasion, high surface roughness and a

nonspherical irregular shape characterize amore invasive growth. Bothmeasured parameters,

spatial extent, and surface roughness contribute to the invasiveness of a tumor. We find higher

invasiveness in tumors that are mechanically driven to a lower growth speed. Both invasiveness

andgrowth speedprovide advantages for the tumor. Wefinda trade-off betweengrowth speedand

invasiveness that results from themechanical properties and is independent of external signaling

and division rates (nonlinear, as seen in Fig. 11 c and d). We find a negative correlation between

growth speed and adhesion strength and apositive correlation between adhesion and invasiveness.

We find a nonlinear behavior of the tumor properties depending on the cell stiffness. Motility

and invasiveness are positively correlated, while the growth speed is only minorly influenced by

motility.

The mechanical properties of single cells define the emergent behavior of growing tumors and

have a large impact on growth speed and invasiveness, independent of their division rates.
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5 Mechanical influences on in silico tumor

evolution

C ells in a growing tumor compete over the available resources, which are space and nutrients.

Through mutations, cells change their behavior and properties during tumor growth. Competition

over space and nutrients, together with changes in cell properties leads to an evolutionary behavior of the

tumor composition towards the fittest cell types. What cell properties are selected for in this survival of the

fittest? A 3D spheroid tumor model is developed and its evolutionary behavior is observed. Mechanical

properties alone are able to drive the tumor towards low adhesion which is associated with tumor invasion.

A dynamically changing nutrient surrounding representing the fluctuating blood supply through blood

vessel collapse and angiogenesis is introduced. I highlight a dependency of the evolutionary speed on

the frequency of the fluctuations and identify a frequency domain in which the evolutionary speed is

significantly increased over a tumor with a constant nutrient supply. The findings suggest that the

mechanically induced fluctuations can accelerate tumor evolution.

Note: This chapter is prepared to be submitted to a peer-reviewed journal, with the authors:

Jakob Rosenbauer, Marco Berghoff, James A. Glazier, and Alexander Schug. I am the first author

and designed the model, performed the simulations and analysis, wrote the manuscript, and

assembled the figures.

The emergence and development of tumors in humans still presents a significant challenge to

medicine and is one of the leading causes of death. Knowledge about the development of tumors

is continuously expanding. Especially, the large variety of tumor types, differences between

patients and tumors consisting ofmany types of tumor cells (termed tumor heterogeneity) present

challenges. Here, a tumor in surrounding solid tissue and the development of tumor properties is

observed over time in a computational model. The development of a tumor can be described as

an evolutionary system in which cell types present species competing over resources [1, 2]. The

evolution of a tumor is driven bymutations. These mutations change the properties (e.g., motility

or cell-cell adhesion) of cells, which then can provide advantages or disadvantages for further

growth. Competition over resources and space leads to the selection of themost advantageous

tumor cell types, whose subpopulation will overtake the rest. However, cells can not optimize all

parameters at the same time, several trade-offs in cellular properties in cancer have been described

and studied [3, 4]. We assume a limited energy budget for each cell and introduce a trade-off of

proliferation against motility for cell types.

While the properties and parameters of a cell are accessible in experiments, the fitness of a cell

is very hard to determine experimentally. The fitness determines the ability of a cell to reproduce

in its surroundings and multiply, therefore cells with high fitness are selected for in evolution.

To determine the fitness of cells experimentally, the lineage of cells has to be tracked over time,

making it necessary to track each individual cell over a long time, which is currently not possible

in in vivo tumors. Models of the fitness landscape based on genetic changes and driver mutations

have been introduced [5], yet phenotypic changes in cells can also drive mutation [6, 7]. Naturally,
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an ensemble of cells with different cell types evolves towards the cell type of highest fitness. The

fitness is not an intrinsic property of the cell but results from the interplay of cells with their

surroundings. Finding the fitness of cell types depending on their parameters and surroundings

allows for directed interventions to change the course of evolution. Taking control of the evolution

of a tumor could serve as a tool to stop the spreading and further growth of a tumor and aid

treatment.

Themechanical interactions of the tumor with its environment and between the tumor cells

influence the trajectory of the tumor [8]. Cells with low cell–cell adhesionmechanically sort to

the outside of tumors, providing a higher nutrient supply and therefore evolutionary advantages.

The nutrition levels on the surface of tumors are higher than in the center of the tumor, leading to

an induced advantage of low adhesion cells. Therefore, we will test this prediction and observe

whether those cells have an evolutionary advantage in an evolving heterogeneous tumor. Cell

motility describes the active movement of cells, we predict that random cellular movements

should provide no significant evolutionary advantage in a constant surrounding. Phenotypical

changes towards higher motility cells and the epithelial to mesenchymal transition are associated

with tumor invasion [9–11]. In a dynamically changing nutrient environment, cells with higher

motility can dynamically occupy themost advantageous positions. Enhancedmotility is known

to be a driver of the formation of metastases [12], therefore a dynamic nutrient field could induce

metastases.

In this work, we focus on two variables in cellular properties, namely cell–cell adhesion and

motility. Increasedmotility is a landmark for the development of metastases [12]. We hypothesize

that mechanical and geometric constraints alone are sufficient to drive the evolution of a tumor

towards highmotility.

The computational modeling of tumor development and heterogeneity has evolved andwas

successfully applied, e.g., a cellular automatonmodel was used to observe the influence of cell

dispersal and turnover on tumor heterogeneity [13]. The use of computational models in clinical

applications and personalized treatment plans are gainingmomentum [14, 15]. Work on tumor

internal evolution has been recently done by Büscher et al. [16] where they compared adhesion

and ‘growth strength’ in an evolving tumor and found that in some cases amixture of different cell

types emerges as a stable state. The importance of cell–cell adhesion for tumor invasion has been

recently highlighted by Ilina et al. [17]. In Ref. [18] the authors showedwith amathematical model

using the evolutionary game theory that tumor heterogeneity and the optimal cell phenotype

depends on themicroenvironment and position within the tumor. The ‘go-or-grow’ hypothesis

describes reversible phenotype changes betweenmotile and proliferative phenotypes in cancer.

This hypothesis was proposed and tested with positive [19] and negative correlations [20] for

different cancer cell lines. Trade-offs between two ormore cell properties have been studied by

Gallaher et al. [4]. Here, we are not focusing explicitly on the ‘go-or-grow’ hypothesis, since we

assume each cell to retain its phenotype throughout its lifetime and changes of cell properties can

only occur at mutation events during cell division.

Cell adhesion and cellularmotility have been recently shown to strongly influence the invasion

behavior of breast cancer and to differentiate between solid-like, fluid-like, and gas-like behav-

ior [17]. Confinement by the extracellular matrix and cellular motility were recently investigated
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systematically and a phase space of tumor invasionmodes was proposed [21].

The intricate surrounding around a developing tumor is important and strongly influences

its progression together with the intrinsic properties of the tumor cells. An invading tumor is

expanding in volume and requires nutrients that can only diffuse through a finite length of tissue.

Angiogenesis, the growth of new blood vessels, is initiated for a better nutrient supply. This leads

to a quick volume increase of the tumor, which builds up pressure and solid stresses within the

tumor that can collapse blood vessels [22]. This interplay of formation and collapse of blood

vessels can lead to a fluctuating availability of nutrients for the cells in the tumor.

During the development of tumors, single-cell effects are of major importance, with muta-

tions initially occurring in a single cell. Stochasticity and rare events are non-negligible during

tissue development. As we showed in [23], single-cell effects are important for the patterning

of tissue. Cell migration is facilitated bymany concurrent processes and represents amultiscale

process, therefore requiringmultiscale modeling [24]. To capture the complexity of tumor growth,

computational models with single-cell resolution enable the incorporation of single-cell behavior

that would be difficult to capture using continuous ODEmodels. Since evolution is a stochastic

process requiring many iterations to find a stochastically meaningful result and the requirement

of large-scale tissues makes the use of high-performance computing necessary.

The recently developed framework CellsInSilico [25] is used for the simulations, it is based

on the cellular Potts model (cpm) [26] that has been established for the simulation of tumor

growth [27]. Through its parallelization and optimization for supercomputers, the framework

enables large-scale three-dimensional simulations and high numbers of simulations, which is

necessary to generate sufficient statistics to study the proposed problems.

We implement a discrete evolution of two independent parameters, namely cell-cell adhesion and

cell motility. Cells can alter and change their parameters stepwise, with a small probability at each

division. Parameters are changed incrementally, which implies a continuous evolution and ne-

glects possible mutations with larger effects. For cell motility, we introduce a trade-off on division

rates since we assume cells have a limited energy contingent. We simulate a spheroid tumor in an

external gradient of nutrients. The tumor is surrounded by a population of non-mutating host

tissue. We observe the evolution of the tumor composition along both free parameters. Different

mechanisms that couple cell division rates to nutrient availability are compared. We compare the

effect of temporally changing nutrient availability.
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Table 2: Parameters varied during simulations

Parameter Range Dependency

Cell–cell adhesion [0…2T] (no repulsion) Independent

Motility [0…2T]
Trade-off motility
vs. division rate

Division rate
R = −k(Motility− 130)
k ∈ [1e-4...1e-6]

Metropolis Temperature T 55 (Constant)
Motility recalculation Time tmotility 100MCS (50,200,400)

System size 50,100,400 µm3 ≈ voxels
3

Coupling to central potential -70

5.1 Methods

Division
Migration

A
d
h
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io
n Mutations

Motility

Division Rate

0 110 = 2T

k

Figure 12: Cell type parametrization. Cell types span a 12 × 12-matrix. Linear trade-off model between
division rate and motility.

Energy functions are:

• Volume

• Surface

• Adhesion

• Randommotility

• Central potential

Adhesion

The cell–cell adhesion is proportional to the contact area between cells and independent of the

duration of the adhesion. The strength is not limited or quantized by focal adhesion but only

determined by the adhesion parameter between the cell types and the shared area.
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Nutrient

The nutrient availability of a cell is determined by its location in 3D space. The position of a cell is

defined as the center of mass of its spatial extent. The function is a radially linear decay within a

sphere, in the center of the simulation box. The center of the nutrient well can be temporally con-

stant or moving, to represent constant or dynamic tumor environments. The nutrient represents a

growth-limiting factor for the cells.

Central Potential

To avoid all cells accumulating in the outer regions with constant high nutrient availability, a

potential is introduced. Thispotential leads toall tumor cells experiencinga constant force towards

the center point of the simulation. This point is also the center of the nutrientwell, with the lowest

availability. The potential leads to an increase in pressure at the center of the tumor.

Randommotility

Motility is implemented by assigning a preferential direction of movement to each cell. This

direction is defined by a potential along a vector. The three-dimensional direction of this vector is

randomly reassigned in a regular interval of 100Monte Carlo sweeps. The cells are coupled to this

potential by a constant force that is determined by the coupling of the energy term to the potential.

This coupling constant varies for different cell types and is referred to as themotility strength in

this manuscript.

Cell division and death

To divide, cells need to exceed the age of 2 kMCS and their volumes have to exceed 90% of their

goal volume. Similarly, cells can divide once they exceed the age of 4 kMCS.

There are three different cases for dependency of cell division anddeath onnutrient availability:

1. No dependence: Constant division probability of division () and death ()

2. Thresholds:

• Division: Constant rate (≈ 0.005) if nutrient exceeds 15, otherwise no divisions

• Death: If nutrient is below 25 higher rate (0.01) otherwise lower rate (0.00001)

3. Linear dependence:

• Division: Rate linearly increases from 0 to≈ 0.005with increasing nutrient availability

• Death: Rate linearly decreases from 0.001 to 0 with increasing nutrient availability

Division rates vary from cell-type to cell-type since they are determined by the division rate -

motility trade-off.

The tissue that surrounds the tumor does not participate in cell death or division. The cells

that make up the surroundings, therefore participate in the entire simulation and act as amedium

that the tumor cells at the tumor edge can interact with and redistribute forces and pressure.

Evolution speed and spread: The speed of evolution is calculated by tracking the center ofmass

of the distribution of cell types in the phenotype space. The spread is measured by the extent of

the distribution.
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Figure 13: Geometry of tumor simulations. a Spatial organization of the cell types, 2D slice through the
center of the 3D simulation. The color map indicates the different cell types, that are linearly numbered. b
coloring by nutrient availability. Nutrient availability in arbitrary units (AI).

5.2 Results

5.2.1 Constant Environment

First, we investigate the dynamics of the systemwithout the dependency of cell division and

death on nutrient availability. Division and death are determined by the respective rates and

age and volume constraints. A spheroid tumor develops from an initial tumor seed, consisting of

≈ 3700 tumor cells (cf. Fig. 13) in a surrounding of nondividing and nondying cells. The tumor

grows until the space provided by the 3D simulation box is used up by the surrounding tissue and

the tumor. Cell division is limited to cells above a threshold volume (VTHRS = 0.9 · V0) and cells are

only compressible to a finite extent, therefore the absolute number of tumor cells is limited and

the cells compete over the available space. In the emerging steady state, the tumor size remains

constantwith cells dying and dividing at equal rates. The cell division rate is higher than the death

rate (cf. Fig. 14 a-c) and the absolute number of cells is geometrically constrained, thereby the

effective division rate is limited by the death rate.

Observing the statistical occurrence of cell events in relation to the radial distance to the tumor

center, we find that cell deaths are located in the tumor center while cell divisions are located

at the tumor margin (see Fig. 14 a). This leads to an inward movement of cells (as seen by the

stripes in Fig. 13). There is a buildup of pressure inside the tumor, this is facilitated by the inwards

movement of the cells and the central potential. This behavior is well studied in experiments and

computational models [28].

The simulation is started with a single cell type in the center of the phenotype space. Through

mutations during tumor growth, more cell types are introduced which leads to a distribution in

the phenotype space around the initial cell type. With the progressing simulation, the distribution

moves in the phase space towards an evolutionary favorable position. The center of mass, spread,
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Figure 14: Spheroid tumor growth for different nutrient dependency mechanisms. In a-c, on the left,
the radially averaged location of the events with respect to the center of the spheroid on the left. The number
of events is normalized with 1/r2, the non-normalized plots can be found in Appendix 4 Simulation size is
200 voxel

3
. The center plots show the trajectories of the centroid of the phase space occupation. The points on

trajectories indicate temporally equidistant points. The shading shows the average distribution in the phenotype
space at the endpoint at t = 1500 kMCS of 15 simulations. The right plots depict the spatial dependency of
the division and death rates for a cell and the dependence on nutrient availability, depending on the distance
from the tumor center. The red shading indicates areas of overlap of dividing and dying cells, here evolutionary
pressure is most effective. a without the dependency of cell division and death on nutrient surrounding, b
division and death regulated by thresholds on the constant nutrient surroundings and c linear dependence of
the rates on the nutrient. d Macroscopic tumor properties for the respective nutrient availability cases of a, b
and c. The black lines describe the standard deviation and the bars the mean values of 15 simulations.
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andmovement speed of this distribution are analyzed and compared. With the model introduced

so far, we find that the tumor evolves towards the low adhesion regime. The individual trajecto-

ries start with a high directionality towards low adhesion, the trajectories then develop without

directional preference along themotility axis (see Fig. 14 a-c).

Nutrient Dependency

We investigate hownutrient dependency of cell division anddeath influences the tumor properties

in our model. By introducing a dependency of cell division and death on nutrient availability,

cells compete over space and nutrients. Nutrients are introduced as a growth-limiting factor (see

Methods), representing, e.g., oxygenor glucose. In an in vivo tumor, nutrients diffuse into the tissue

and are internally degraded and used up. Here, we simplify his dynamic nutrient surrounding

and it is implemented by introducing nutrient availability solely dependent on the position of

the cell. The nutrient availability of cells is linearly increasing from the tumor center up to a

maximal value and stays constant for further distances, as pictured in Fig. 13 b. We introduce two

different dependencies of the cell division rate and death rate on the nutrient availability, as seen in

Fig. 14 a-c, right (see also Methods). Firstly, a threshold-based dependency (TBD) that introduces

a constant division probability if a cell exceeds a certain nutrient value, and a step decrease in

death rate above another threshold. Secondly, we introduce a linear rate dependency (LRD). Here,

cells linearly adapt the division and death rates depending on the local nutrient concentration.

Macroscopically, the introduction of a nutrient dependency affects the evolution speed of the

tumor (see Fig. 14 d). TBDdecreases the evolutionary speedof the systemwhile LRDaccelerates the

evolution. Enhanced directionality is visible in the different sizes of the spread in the phenotype

space. A smaller spread is achieved through amore pronounced directionality of evolution. TBD

increases the spread while LRD lowers it. This increase in the evolutionary speed of LRD over

TBD can be explained by the larger regions, in which cell divisions and cell deaths occur. In

these critical regions (tagged red in Fig. 14 a-c, right), the competition between different cell

types is most pronounced since cells that can stay in this area or escape outside will survive,

while cells that are pushed to the inside will die. Despite the different evolutionary speeds and

spreads, the evolution is highly directional towards low adhesion for bothmechanisms and no

nutrientdependency. Thecompositioncenterofmass in thephenotype space is only insignificantly

changed by the introduction of nutrient dependencies of cell death and division on the migration

axis. Interestingly, the introduction of nutrient dependency in a constant environment does not

introduce significant evolutionary queues towards higher motility or higher division rate for the

parameters chosen here. The nutrient dependency of cell death and division leads to a shift of cell

deaths towards the inside of the tumor. TBD introduces a drop in pressure at the center of the

tumor (see Fig. 14 b).

The mechanism of nutrient dependency with LRD shows a larger selective pressure on the

tumor and therefore leads to a higher speed of evolution. Furthermore, a linear dependency is

biologically more reasonable, since cells do not binarily up- or down-regulate cell division in

most cases, but adapt continuously [29]. Hence, LRD is used in the subsequent manuscript if not

explicitly stated otherwise.
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Figure 15: Macroscopic tumor prop-
erties for linear dependency of divi-
sion rates to nutrients. a (top) Evolu-
tion speed in conformation space. Values
are averaged between 1500−3000 kMCS.
In the first group (left), the simulations
are performed with constant nutrient avail-
ability and a varying radius of the dip in
nutrient availability (rdip). In the follow-
ing groups, the nutrient availability is dy-
namic, and the dip moves on a circle or a
line in the x,y-plane with radius A and pe-
riod T . In the dynamic cases is rdip = 90.
The green dashed line indicates the value
of the reference simulation with constant
surroundings. b The average center of
mass in the conformation space on the
`motility--1/division-rate' axis. Cases are
distinguished and data is collected as in
a).

Gradient steepness

Next, we observe how the gradient steepness which is linear to the gradient extent influences

evolution. Evolutionary speed increases with decreasing steepness of the nutrient gradient(see

Fig. 15 a, left). The speed is increased because the extent of the critical area, in which cells both

die and divide expands together with the size of the gradient. Therefore, a shallower gradient

leads to a larger volumewith high selective pressure, which accelerates the evolution. The spread

of the phenotype ensemble decreases with shallower gradients. With small nutrient dips, the

number of cells inside the gradient is smaller, leading to a larger portion of cells that are outside

the gradient. Cells outside the gradient find optimal conditions for growth and therefore do not

experience evolutionary pressure. This leads to a loss of directionality of evolution and therefore to

an expansion in all directions. A shallower gradient introduces a higher variability in the evolution

of themotility/division axis. Themedian value is not significantly changed. For all subsequent

simulations, a rdip = 90 is used, and this simulation is indicated by the dashed line in Fig. 15 and 16.
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5.2.2 Dynamic Environment

To examine the effects of a dynamic surrounding, a temporal dependency on nutrient availabil-

ity was introduced. The center of the negative source was shifted in a periodical manner in one or

two dimensions and different extents. All other parameters of the simulation remain the same.

Three different possibilities are compared. One, the center of the dipmoves on a straight line along

the x-axis, following a sine function with amplitudeA = 50 and period T . Two, the center follows

a circle in the XY-plane with an amplitude A and period T, here two different amplitudesA = 50

andA = 100 are compared.

Global tumor effects

Evolution speed: For small values of the movement period (1 kMCS ≤ T ≤ 50 kMCS) the

speed is significantly decreased, compared to the constant surrounding case (see Fig. 15 a). By

further increasing the period, an increase in evolution speed can be observed for periods between

T = 75 kMCS and T = 200 kMCS. For further increasing values, the evolution speed remains

high and decreases for a high amplitude circle case. This increase in evolution speed can be seen

independently of the amplitude andmotion type of the dynamics at the same frequencies.

Composition center: The period T of the dynamics does not seem to significantly affect the

location of the evolutionary optimum. For the circular dynamics with a high amplitude (circle,

A = 100), the variability of the optimum is reduced, visible through a smaller standard deviation

of the result. The change on themotility axis when introducing a dynamic surrounding is small

and can not be conclusively confirmed by only observing the center of mass in the phenotype

space (see Fig. 15 b).

Spread: For small amplitudes (A = 50) the spread is increased over the constant surrounding

case. The changing condition at each position presents temporally changing nutrient availability

and therefore different evolutionary optima. This leads to a broadening in the phenotype space.

For simulations in which the amplitude of the circle is larger than the nutrient dip (A =

100, rdip = 90), the spread is elevated significantly more (see Appendix 4 Fig. 28, right). Here, the

spread of the distribution in the phenotype space is doubled, compared to the constant case for

small values of the movement period (1 kMCS ≤ T ≤ 50 kMCS). For larger values of T the spread

decreases (cf. Appendix 4 Fig. 28). The tumor center is never affected by the nutrient drop, and

therefore always provides optimal conditions. This ‘save spot’ in the tumor center is responsible

for the increased spread since the evolutionary direction is lost in there.

Local cell effects

In Fig. 16 the dynamics and temporal behavior of individual cells are observed. Tumor cells

statistically move from the spheroid boundary inwards towards the tumor center during their

lifetime (cf. Appendix 4 Fig. 33 a). In the constant case, the cells move inwards quicker and die

earlier than in the dynamic case. Comparing the nutrient availability of individual cells over their
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Figure 16: Single-cell properties in dynamic surrounding. aNormalized distribution of the locations of cell
division, deaths and pressure for dynamic surrounding (line, A = 50, T = 100 kMCS). b Nutrient availability of
the cells in relation to the cells age (time after cell division), for constant surrounding and dynamic surrounding
( line, A = 50, T = 100 kMCS).

lifetime, a static decline proportional to the distance is visible for the constant case (cf. Fig. 16 b).

This is reasonable since the nutrient availability is directly coupled to the position. Looking at

the dynamic case, the nutrient availability first decreases, but then increases. This is due to the

fact that cells divide in a region in which other cells die, cell death is introduced by a shortage

of nutrients. After division, cells move inward towards the tumor center and the nutrient drop

continues tomove. Here, preferably cells survive that quickly exit the nutrient drop, or divide at

the ‘rising edge’ of the moving gradient. We hypothesize that this is the main driver of the change

in evolutionary optimum on themotility scale since fast-moving cells have a statistical advantage

in this case.

We define the lifetime of a cell as the time between the last division and cell death. Themean

lifetime and the extent of the lifetime distribution significantly increase with the introduction of a

dynamic surrounding that enables a ‘save spot’ (cf. Appendix 4 Fig. 34 a). Here, the nutrient dip

moves around the tumor in a circle that is larger than the tumor. The nutrient availability in the

tumor center is therefore always optimal, providing zero evolutionary pressure and therefore a

‘natural reserve’ on the population scale. We observe the development of the mean lifetime of the

tumor cells over time, see Appendix 4 Fig. 28 e. Overall, an increase in the mean lifetime is visible

for both dynamic and constant nutrient surroundings. This increase in lifetime can be linked to

the adaptation of the cellular properties to the surroundings and is a result of the evolution of the

system.

Fitness evolution

We measure the fitness of each cell by tracing the lineage for the following eight generations

and counting the descendants. The acquired numbers are then projected on the cell types and

then on the parameter space spanned by the adhesion and motility parameters. Like this, the

fitness optimum can be tracked over time. The behavior on the adhesion axis has been identified

clearly, all tumors developed towards the low adhesion regime. Themotility parameter was less

conclusive by observing the center of mass of the cell type ensemble (cf. Fig. 15).

The fitness of the cell types is averaged along the adhesion axis. The resulting distribution
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Figure 17: Fitness evolution The number of descendants in the next 8 generations, is defined as the fitness
of a cell. a The fitness of all cells is determined at different times and projected on the cell types and their
parameters. A Gaussian function is fitted to the resulting distribution and the central value is determined to find
the fitness optimum on the parameter axis. Here, the fitness optimum of the motility parameter with division
rate trade-off is plotted over time. An average of 15 simulations is pictured. Two simulations are compared, top:
constant surrounding, bottom: dynamic on a line, A = 50, T = 1 kMCS. b The slope of the fitness development
is plotted for each simulation. A positive slope leads to a development towards high motility, whereas a negative
slope leads to a development towards low motility and high division rates.

shows the fitness in relation to themotility and division rate. This distribution has a clear max-

imum that is determined by fitting a Gaussian distribution to the data. The top value of this

distribution is then plotted over time for different simulations in Fig. 17 a. We assumed to find a

clear trend towards highmotility cells in a dynamic surrounding, however, the behavior can not

be decisively found andmay be lost in fluctuations c.f. Fig. 17 b. A trend is visible when comparing

the dynamic case of a circular motion with a radius of 100 to the dynamic case that shifts the

fitness optimum towards moremotile cells at the cost of a lower division rate.
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5.3 Discussion

We present a computational model of a spheroid tumor in surrounding tissue. Mutation of

cells is enabled by a change of phenotype at cell divisions. Two parameters can be changed during

amutation, cell–cell adhesion and themotility of the cell. We introduce a division rate trade-off for

motility. The system is allowed to evolve freely and the tumor composition is tracked in parameter

space over time.

We find that themechanical and geometrical properties of the system are sufficient to drive

the ensemble towards low-adhesion cell types. Thismechanical effect in tissue evolution has been

described in [16]. Mechanical properties alone drive proliferation at the tumor edge and cell death

in the center.

We introduce a dependency of cell divisions and deaths on nutrient availability, which is

linearly decreasing towards the tumor center. Using a linear dependence on nutrient availability

for proliferation and inverse linear dependence for cell death leads to a higher evolutionary speed

than a threshold-based dependency.

In in vivo tumors, solid stresses through tissue displacement are built up that are able to

compress and block blood vessels [22]. This can lead to fluctuating and nutrient availability in

tumors. We investigate how fluctuating nutrient availability influences tumor evolution.

We find that a temporally variable nutrient surrounding introduces a larger life span for cells.

Especially a ‘save spot’ enables much longer lifetimes and a broader evolutionary spread

We find a significant dependency of dynamic nutrient surroundings on the evolutionary speed

in phenotype space. The speed shows a frequency dependency, with a lower evolutionary speed

for fast fluctuations followed by an increase over the constant case for lower frequencies. A critical

time scale exists for thefluctuationof nutrient availability that provides adistinct peak in evolution

speed, which we find to be between T = 100 kMCS and T = 200 kMCS.

The fitness of cells can be determined by lineage tracing and the fitness is linked to the cell

types and their parameters. With this, the effect of parameter values of a cell on its fitness can be

determined. While a clear preference in fitness is visible for low adhesion cells, no clear change in

the preferential direction of evolution can be identified along themotility axis. A trend towards

highermotility is visible for large radii of nutrientfluctuations. Wepredicted thatdynamicnutrient

availability influences the fitness optimum of tumor evolution, this could not be conclusively

be answered and has to be explored further by extending the range of possible motility and

introducing different trade-offs.

Experimental work on spheroid tumors could provide verification of the results found here.

The single-cell motility of cells grown in different spheroid cultures could bemeasured and com-

pared [30]. Thenutrient surroundingof the growing spheroid culture canbe varied froma constant

availability to a periodically changing nutrient concentration in the surroundingmedia. We expect

to find cells with higher motility in the latter setup.
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6 Conclusions and Outlook

D espite spectacular successes in the understanding and treatment of cancer, tumors still

present a leading cause of death. A large arsenal of mechanisms operates in unison to

prevent illnesses in the human body. Intra and inter-cellular signaling detects dysfunctions and

malignancies and activates cellular pathways that try to inhibit the disturbance. Tissues are in

homeostasis, a state of constant self-renewal, that repairs defects and in case of disturbances,

drives the tissue back towards homeostasis. The immune system actively scans the body for

intruders and removes unknownandunwantedmatter and cells. The defensemechanisms against

external disturbances have been optimized as long as life exists and therefore display an immense

intricacy. Thedisease agents, however, evolve alongside anddisplay equally elaboratemechanisms

to avoid the control of the body. Tumor development is, unlike viruses or bacteria, a condition that

can arise within an organismwithout external influences. Growing tumors bypass the control

mechanisms and cancer cells feign to be healthy. This requires the tumor cells to outwit the

cell’s internal control mechanisms, to grow against the surrounding tissue, to restructure the

surroundings for sustained growth, and to evade the immune system. Thosemechanisms act on

different scales, from the sub-single cell to the tissue and organism scale. Each of those evaded

control mechanisms constitutes a possible means of intervention for tumor treatments.

Tumor growth is a multi-scale problemwith causes and effects in a range of length and time-

scales fromO(s, µm) to O(years,cm). The scales depend on each other and together facilitate the

growth and spread of tumors. Treatment and diagnosis focus on one scale at a time, leading to

experimental and clinical data aswell as behavioralmodels on each scale. The connection between

the scales, however, is difficult to assess experimentally. Here, theoretical and computational

modeling can help to understand the interplay between the different aspects. Computational

modeling can connect these scales and improve our understanding of the relevant interactions.

Models are always only an incomplete representation of the real-life situation and have been de-

scribed as “All models are wrong, but some are useful.”. Reflecting thatmodels can help gain intuition,

guide insights, and causal relationships by simplifying the view, as recently discussed by Ender-

ling andWolkenhauer [1]. Model building requires us to define and reevaluate the assumptions

wemake about the system and reflect a minimal set of assumptions that generate the behavior.

A multi-scale model enables the detection of dependencies between single-cell properties and

macroscopic tissue behavior.

In this thesis, I work towards the development and application of a physics-basedmulti-scale

model of tissue development to drive our understanding of tumor growth.

A variety of different computational models is available, all with drawbacks and advantages.

Here, I show the implementation of a cellular Potts model that incorporates the 3D cellular shape

andmakes use of supercomputing architectures. Short-range interactions facilitate paralleliza-

tion of themodel by a decomposition of the grid into communicating sub-grids. Cellular Potts

models tend to generate grid based artifacts, this drawback is solved here by introducing an al-

ternative surface metric employing theMarching Cube algorithm. I demonstrate the scalability

on a supercomputer up to 50,000 cores and simulations of millions of individually resolved cells.
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Next, the ability of the previously developedmodel to reproduce biologically observed behavior

is validated by simulating 1.5 · 106 individually resolved interacting cells. A generalized model
of tumor growth is introduced and the growth of heterogeneous tumors in surrounding healthy

tissue and vasculature is modeled. By incorporating simple treatmentmodels, the effects of global

interventions on tumor size and heterogeneity are observed. The single-cell properties generate

emergent behavior on the tissue scale (O(mm)) from single-cell parameters (O(µm)).

Down-regulated adhesion, increased motility, and lowered cellular stiffness are single-cell

properties that have been associated withmalignant tumors [2–5]. I ask how tumor-associated

mechanical properties of single cells affect the dynamics of a forming tumor. Adhesion, motility,

and stiffness are systematically scanned in a two-type model. In the simulations, a tumor cell

population displaces a healthy cell population and the emergent tumor properties are observed

for different cellular properties. Single-cell mechanical properties influence the invasiveness of a

tumor and low-adhesion cells are most beneficial for tumor growth speed, while low growth rates

facilitate themixing of the cell types. Those properties are similarly found inmalignant clinical

tumors.

The adaption of a tumor to its surrounding and the optimization of cellular properties in a

growing tumor depends on a large variety cell internal and surrounding of factors, next I ask: How

does tumor growth select for themost advantageous cellular traits? Themutation rate of intra-

tumoral cells is elevated, leading to heterogeneity in cellular properties within a tumor. Limited

space and nutrients introduce competition between the cell types, leading to an evolutionary

behavior of the cellular phenotypes. These evolutionary dynamics select for the fittest cell types in

the current surrounding, fitness is a combined property of the tumor cells, their surroundings, and

nutrient supply. In fast-growing tumors, the nutrient availability is unstable and irregular due to

the pressure-induced collapse of blood vessels and reestablishment of new blood vessels through

angiogenesis. Mutations that alter cell properties are introduced into a computational model,

leading to the development of heterogeneous tumors. Through competition over space and nutri-

ents, an evolutionary behavior between different cell types is observed in the tumor. I observe an

evolutionary pressure towards low adhesion cells. A dynamically changing nutrient surrounding

influences the evolutionary speed with a frequency-dependent increase. The temporal behavior

of nutrient availability plays an important role in tumor evolution, and I determine a frequency

regime inwhich a dynamic nutrient environment accelerates the evolutionary trajectory. Irregular

availability of nutrients could therefore lead to accelerated tumor invasion. Through full access to

the time-resolved trajectories of all model parameters, many different properties can be analyzed

at the same time and be compared to experiments. The fitness of individual cells can be measured

by lineage tracing, allowing access to parameters that are inaccessible experimentally.

Despite the recent successes in tissue modeling, challenges remain. Most prominently, there

is a need for the incorporation of the large amount of heterogeneous data that is available from

different sources. Here, comparability metrics and model optimization strategies need to be

developed. Moreover, the physical characterization of tumor growth, invasion, and the formation

of metastases in dependency of the cellular properties can help to identify means of intervention.

Overall, the modeling of tissue is still a small area of research. However, the recent increase in

available experimental data and computing power promises a bright future by bringing together
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different aspects and scales of cancer research.

Many experimental and clinical measurements are taken on a single scale (e.g. tissue scale)

and hard to transfer to other scales (e.g. cell or organism) which complicates the finding of causal

dependencies. Computational models enable the analysis of causality by incorporating amulti-

scale approach. As seen in recent works, simulations can help to extend the parameter space

that is accessible in experiments, fill in missing regions, and even find new regimes [6, 7]. Agent-

based modeling was used to identify critical parameters for the growth trajectories of treated

tumors [8]. Computational models allow hypothesis testing with in silico experiments and fill the

gap between different clinical and experimental methods. Mechanistic models can investigate the

causality of correlative findings by deriving trajectories from a set of well-controlled assumptions.

Together with the recent advances in spatial omics techniques, immune therapeutics, and genetic

engineering capabilities, computational modeling of tissue will change our view on cancer. As we

understandmore andmore about tumor development in its entirety. By combining the strengths

of clinicians, experimentalists, andmodelers, our understanding of tumor growth will be pushed

further. Theoretical models as the one presented in this thesis enable a more mechanistic view on

tumor growth and can connect different theories and experimental findings, thereby presenting

tools to unite the different approaches to cancer research.
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Abstract
Background: Discoveries in cellular dynamics and tissue development constantly
reshape our understanding of fundamental biological processes such as
embryogenesis, wound-healing, and tumorigenesis. High-quality microscopy data and
ever-improving understanding of single-cell effects rapidly accelerate new discoveries.
Still, many computational models either describe few cells highly detailed or larger cell
ensembles and tissues more coarsely. Here, we connect these two scales in a joint
theoretical model.
Results: We developed a highly parallel version of the cellular Potts model that can be
flexibly applied and provides an agent-based model driving cellular events. The model
can be modular extended to a multi-model simulation on both scales. Based on the
NAStJA framework, a scaling implementation running efficiently on high-performance
computing systems was realized. We demonstrate independence of bias in our
approach as well as excellent scaling behavior.
Conclusions: Our model scales approximately linear beyond 10,000 cores and thus
enables the simulation of large-scale three-dimensional tissues only confined by
available computational resources. The strict modular design allows arbitrary models to
be configured flexibly and enables applications in a wide range of research questions.
Cells in Silico (CiS) can be easily molded to different model assumptions and help push
computational scientists to expand their simulations to a new area in tissue
simulations. As an example we highlight a 10003 voxel-sized cancerous tissue
simulation at sub-cellular resolution.

Keywords: Tissue growth, Massively parallel, Cellular Potts model

Background
The mathematical description of organisms dates back to the beginning of the 20th cen-
tury [1]. Since then, the theoretical understanding of biology has grown steadily, showing
a more and more complex picture. With the emergence of computational models in
physics, biophysicists started to adapt those models to describe biological processes [2].
An early development describing tissue development and cell–cell interactions was the
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so-called cellular Potts model (CPM) by Graner and Glazier ’92 [3]. This model derives
from the Potts model and describes cells as connected areas on a grid. They were able
to replicate known biological phenomena, such as adhesion driven cell sorting or tissue-
growth. From then on, experimental insight into tissue on the cellular level as well as
the power of computers has grown steadily, while the size and extent of cell-based tis-
sue simulation have not proportionally evolved. Here, we present a modular framework
for supercomputers to accommodate large-scale simulations of tissue with sub-single cell
resolution.

Related work

There are several attempts to parallelize the CPM. Scianna and Preziosi [4] give an
overview over advantages and disadvantages. Different methods were applied; for exam-
ple, shared memory approaches set a lock to the memory that is accessed from parallel
processes. Tomeu et al. [5] introduce a lock-free approach: the stencils compute concur-
rently, the write-back is only allowed if there are no other changes on the specific data,
else an unroll is done. Some authors replace the random sampling of the field in theMonte
Carlo, with a random walker that is simpler to parallelize. Gusatto et al. [6] used a mutex
for sharedmemory andCercato et al. [7] used a distributedmemory version. Those imple-
mentations provide a maximum speedup of 5.4 for 12 cores and a decreasing speedup for
increasing core numbers.
Another method that works for shared and distributed memory is a checkerboard

method introduced by Chen et al. [8, 9] Here, the distributed sub-domains are split into
2 × 2 × 2 parts, and only one part is active so that there is no overlap with other pro-
cesses. For this model, a trade-off between accuracy and speed has been observed. If
the sub-domain part is changed with a high frequency, a lot of communication is done
compared to the runtime. On the other side, if it changes with a low frequency, cell
movements stick to sub-domain boundaries. Tapia and D’Souza [10, 11] use this method
to implement a single Graphics Processing Unit (GPU) version. Yu and Yang [12] use
OpenCL to execute their model on GPUs and multi-core Compute Processing Units
(CPUs).
He et al. [13] present a hybrid parallel version, where the CPM is calculated in shared

memory, while additional partial differential equations use distributed memory methods.

Implementation
Cells in Silico (CiS), was implemented into the NAStJA (Neoteric Autonomous Sten-
cil code for Jolly Algorithms) framework [14, 15]. Implementing the parallel CPM into
the framework imposed several challenges, such as quasi global cell-state information
and isotropic sampling of the field. To incorporate all necessary prerequisites, the frame-
work was vastly extended to provide all the required infrastructure for large scale tissue
simulations with the CPM.

NAStJA framework

The NAStJA framework is a modular, flexible framework for massively parallel stencil
code applications. It uses the Message Passing Interface (MPI) to communicate between
processes. The entire simulation domain is decomposed into small blocks, and these
blocks are distributed to the different MPI ranks, see Fig. 1.
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Fig. 1 The domain is decomposed and distributed to MPI ranks. So each rank holds one block. Each block
contains a field with the cellID and additional cell data. A field is a three-dimensional array on which the
compute actions are performed

Blocks represent a skeleton of the geometry, i.e., the size and position of the parallel
entity in the global domain. Stencil codes act on regular grids, called fields. The blocks can
hold one or more fields. The data inside the fields are located in voxels. Each voxel con-
tains a data value. For the calculation, a stencil containing the calculation rules is applied
to the voxels of the field. The calculation rule determines the data access pattern of the
stencil. For n dimensions withm neighbor accesses, the stencil is denoted DnCm. In three
dimensions, usual access patterns are the D3C7, i.e., the central voxel plus the first six
neighboring voxels, or the D3C27 with 26 neighboring voxels, i.e., the full 3 × 3 × 3 sur-
rounding of a voxel. The neighbors are accessed read-only. Writing is always done at the
central voxel of the stencil. For a consistent parallel calculation, the field in each block is
enlarged by a halo layer, which overlaps with the neighboring blocks’ fields. In order to
keep the data in the halo up-to-date, each time-step is proceeded by a halo exchange.
After an initialization phase, NAStJA continuously runs the calculation loop. On a time-

step base, a sequence of actions is executed independently on each MPI rank. Figure 2
provides an overview of the actions used in CiS. Details to the actions will be given in later
sections.

Fig. 2 The actions in one time loop are structures in modules. Additional modules can be added depending
on the simulated system
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Actions that iterate a stencil over the field are called sweeps. After all sweeps and
actions, synchronization steps such as the halo exchange as well as output actions are exe-
cuted. All sweeps and actions are implemented in a modular fashion, thereby enabling a
quick alteration of the code structure by exchanging the modules or changing their order.
Additionally, NAStJA offers an interface for reading in configurations to parametrize

simulations. Get-functions are implemented that read the data for a certain config-
key from a JSON config file. This allows users to easily parametrize the simulation by
changing the config file without modifying and recompiling the code.

Parallel cellular Potts model

In the last section, we reviewed the framework, the basic structure with blocks and fields,
and the flexibility of the actions. This section first describes our implementation of the
CPM and then its parallelization.
Each voxel in the field holds an integer value that denotes a cell identifier (cellID). Voxels

that contain the same cellID belong to an individual biological cell. In addition to this
spatial cell description, each cell has a set of Additional Cell Data (ACD), e.g., the cell
volume V, the cell surface S, the cell age θ , and the cell type τ (cf. Table 1).

Cell types

A cell type is assigned to each cell, determining the parametrization and phenotype of
that cell. The cell type defines the characteristics of the individual cells, i.e., the target
volume V0 and the target surface S0 (cf. Table 2). This allows a parametrization of a set
of cells instead of specifying the parameters individually. We introduced a subset of cell
types that are not participating in the spatio-temporal propagation via the CPM. Those
cells are fixed structures that can model blood vessels or the extracellular matrix, termed
solid in our framework. The particular cell type liquid denotes the surroundings of the
cells. It acts as a place holder for the growth of cells and describes the medium into which
the cells grow.

Hamiltonian

The CPM was introduced by Glazier and Graner [3] in 1992 to simulate adhesion driven
cell sorting. It is based on a Potts model that describes integer spin states on a regular

Table 1 Cell Properties (dynamically change during simulation)

Global variables (kept up to date in all blocks)

cellID The Value in the field that identify the cell

Volumes The cell Volume

Surface The cell surface (side counting or marching cubes)

Birth Time of initialization of the cell

Type The cell type

Center of mass Center of mass of the cell.

Signal vector Signal content of each signal within the cell

Temporary variables (block internal)

Cell neighbor surfaces Shared surfaces with neighboring cells

�Volume Volume change during a MCS

�Surface Surface change during a MCS

�Signal Signal changes during a MCS
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Table 2 Cell type properties (set by config file)

Parameter Description

V0 Target volume

S0 Target surface

λV Volume coupling factor

λS Surface coupling factor

Ai,j Adhesion coupling matrix

Size change constant rate of change of V0 and S0
Diffusion matrix Diffusion constant matrix

Signal decay Signal decay per time-step (relative and absolute)

Constant signal Has constant signal

Start signal Cells of this type are initiated with the signal content

Division

Rate Division rate

Age Minimum division age

Signal thresholds Minimum and maximum signal value

Mutation matrix Probability to mutate to another type

Cell death

Apoptotic cell type Cell type of the apoptotic cells

Rate Cell death rate

Age Minimum cell age

Signal thresholds Minimum and maximum signal value

lattice, in both two and three dimensions. The temporal propagation of the system is per-
formed by Monte Carlo Sweeps (MCSs) over the field. Nearest neighbor interactions are
evaluated by energy functions and are accepted with theMetropolis criterion. A Hamilto-
nian energy function defines the system energy, denoted as a sum of energy contributions
Ei, weighted with λi. It reads,

HCPM =
∑

i
λiEi

= λv
∑

ς∈C
(v(ς) − V (τ (ς)))2

Cell volumes

+ λs
∑

ς∈C
(s(ς) − S(τ (ς)))2

Cell surfaces

+
∑

i∈�

∑

j∈N(i)
Aτ(ςi),τ(ςj)

(
1 − δ

(
ςi, ςj

))

Cell-to-cell adhesion

+ . . . ,

where C is the set of all cells, � is the whole domain, and N(i) are the neighbors of
voxel i. Further, ςi is the corresponding cell at voxel i, and ςj is the corresponding cell at
the neighboring voxel. Cell-to-cell adhesion is modeled by an energy contribution that is
proportional to the shared surface of different cells. A is the adhesion coefficient matrix
giving the adhesion between two cells of types τ(ςi), τ(ςj), δ is the Kronecker delta. v(ς)

is the volume of cell ς , V (τ (ς)) is the target volume of the cell type, λv is a coupling term
regulating the strength of the volume constraint. s(ςi) is the surface of cell ς , S(τ (ςi)) is
the target surface of the cell type, λs is a coupling term adjusting the strength of the sur-
face constraint. The ellipsis indicates that the energy can be extended with various energy
contributions.
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The system propagation in the CPM is based on nearest-neighbor interactions. The
cellID of a voxel can be changed to the cellID of a randomly chosen nearest neighbor
voxel. Then, the energy difference �E of this local confirmation change is calculated via
the change of the Hamiltonian energy function. Changes with negative energy differences
are accepted, and positive energy differences have an exponentially decaying acceptance
probability

paccept =
{
1, if �E < 0,
exp(−�E/T), otherwise.

This is the Metropolis acceptance criterion with temperature T.

Energy calculations

The modularity of CiS allows adding various energy functions to the Hamiltonian. Each
energy function gets the stencil and the direction of the neighbor as input parameters
and returns the energy difference �E and local change of the surface and volume (�S
and �V ). In the function, the magnitude of the energy is determined by the internal cell
states, as well as the corresponding coupling terms λ.

Surface Calculation The calculation of the surface of objects on a cubic grid is not
unique. Depending on the chosen surface metric, dependencies may occur that prefer
some spatial directions, leading to anisotropies in the emerging structures. Traditionally,
a Manhattan metric is used to calculate the surface in the CPM. With this metric, the
distance d between two points a, b is defined by the sum of the absolute differences of
their coordinates, d(a, b) = ∑

i | ai − bi |. In two dimensions, this corresponds to count-
ing edges of pixels and in the three-dimensional to counting surfaces of voxels. With this
metric, a unit circle has the same surface as a unit square. Likewise, in three dimensions,
an ideal sphere of diameter a corresponds to a cube of edge length a after minimizing the
surface. Particularly in the three-dimensional case, cell clusters tend to assume a cubic
shape, when using theManhattan distance for the surface calculations, introducing a non-
isotropic grid dependence in the model. In order to ensure a more isotropic sampling of
the field and to diminish grid artifacts, we use the marching cubes algorithm [16, 17].
The centers of eight adjacent voxels form the edges for the cube of the marching cube
algorithm. Then, we distinguish between all edges that have the cellID that surface is cal-
culated and all other cellIDs. Technically, we calculate the iso-surface for 0.5 by set the
corners of the calculated cellID to 1 and all others to 0. The surfaces of both algorithms
are presented in Fig. 3.

Volume Calculation The volume calculation is either done by counting the voxel or
using the marching cube algorithm to approximate the volume.

Adhesion Calculation The adhesion energy difference is calculated by using the differ-
ent surface metrics (side counting or marching cubes) to determine the change in shared
surfaces between cells. The energy difference is determined by weighting the surface
difference with the adhesion coupling matrix A.
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Fig. 3 Manhattan surface calculation (left) and a two-dimensional representation of the marching cube
surface calculation (middle). With a surface of the red cell 8 using side counting (6.24, marching cubes), blue
and green cells 6 (5.12). The marching cubes are shifted at denoted by the black rectangle, i.e., each voxel
contributes to four marching cubes in 2D and eight in 3D space. The right side shows a detailed version of
one marching cube, determined the surface for the red cell. The edges get the value 1 when it lies inside the
red cell, 0 otherwise. The surface then is the 0.5 iso-line

Parallelism

While being propagated in parallel, the entire field has to be consistent. A stencil is needed
for the calculation, which writes at the central position while reading from the neighbor-
ing voxels. For neighboring voxels located outside of the current block, a copy of the data
from neighboring blocks is available due to the halo exchange. The halo data is constant
during aMonte Carlo Sweep (MCS), consisting of a certain amount of Monte Carlo steps.
To keep the halo data consistent with the neighbor block’s data, the neighbor must not
change the values read by the stencil. Therefore, it must be ensured that the neighbor-
ing voxels that are read have not been changed. This strategy is essential for all voxels in
the halo. Since each voxel requires a uniform chance of sampling, we extend this condi-
tion to the entire field. Consequently, all read values within anMCS are from the previous
time-step. Hence, the field data read within an MCS is independent of the access order.
To ensure the separation of read and written data, we introduce voxel-wise disjoint sub-

sets similar to the black and white squares on a checkerboard. These subsets are regularly
distributed over the entire domain, and only one subset is set active, i.e., only these voxels
can be changed during system propagation. Note, the stencil can read all other voxels for
the calculations. On the one hand, this ensures a uniform access pattern by not handling
the boundary separately. On the other hand, it ensures that a stencil with a white center
only reads from black fields. This satisfies the prerequisites described above.
During one MCS, the cell properties, such as surface and volume, stay constant. All

changes in those properties are accumulated to delta storages, e.g., �S and �V . After one
MCS, a synchronization step exchanges the halo and the deltas. The subsequent MCS
acts on another active subset.

Checkerboards

The stencil size determines the number of necessary disjoint subsets. Figure 4 (left) shows
a two-dimensional representation of the checkerboard for the D3C7-stencil.
Here, we need two subsets since the stencil only accesses the six nearest neighbors. To

stay in the analogy, we denote each subset as a color of the checkerboard. For a given
voxel, e.g., the red dot on the white voxel, the direct neighbor voxels are read but are not
allowed to change. Diagonal neighbor voxels and the next-nearest neighbor voxels can
change, so here a stencil calculation can be performed. In three dimensions, the layer in
the front and the back are shifted by color.
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Fig. 4 A two-dimension representation of the D3C7- or a D3C27-stencil (A 3D stencil with 7 or 27 active
voxels, respectively) with the two-colored (left) and eight-colored (right) checkerboard. The white subset is
active and hence read and write accessible, while the other colors are read-only. The red dot represents the
actual stencil position, and the red surrounding marks the input voxels. The red crosses mark the next
possible stencil position in x- and y-directions

Figure 4 (right) presents the eight-colored checkerboard for the D3C27-stencil. The
diagonals are used by the stencil itself so that the next stencil can only act on the voxel’s
next-nearest neighbors. In three dimensions, the layer in the front and the back use four
different colors.
To achieve a uniform probability across the whole field, two or eight MCSs are required

for the two- or eight-colored checkerboard, respectively.

Quality of pseudo-randomnumbers

Pseudo-random number generators in parallel applications can produce unintentional
patterns [18]. This happens when the sequences overlap in different ranks, and the par-
allel entities use the same numbers. We use a standard generator based on the Mersenne
Twister algorithm. Per MPI rank, one generator is used and initialized based on the MPI
rank, so each generator starts on a different position in the random number sequence.
We use the generator for all random numbers, e.g., random access and energy acceptance.
Depending on the local domain data, a varying amount of random numbers is generated
per Monte Carlo step. Therefore blocks with overlapping random number sequences,
which is statistically extremely unlikely, do not correlate since the random numbers are
used for various purposes.

Visitor pattern

We introduce a linear random access pattern. Therefore, the field on the active color is
accessed in a linear walk. Since the volumes and surfaces are only updated after a complete
MCS, large changes in volume or surface in one sweep produce unwanted behavior since
the stored value strongly differs from the actual value. To restrict this discrepancy only
a subset of all possible positions is sampled to avoid overshooting the changed parame-
ters. Instead of randomly sample the whole field, we go linearly through the field while
skipping a random amount of voxels until the end of the field is reached. By using this
linear access pattern cached data can be reused and cache misses can be avoided. We
use preliminary virtual voxels to ensure that the first voxel in the sweep is also selected
uniformly.
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Fig. 5 (a) Valid and (b) invalid distribution of an cell (blue) over blocks (dashed rectangles). The invalid object
distribution overlaps three blocks in x-dimension. The size of the cell is larger than the size of one box

Localize global information

The halo exchange ensures the consistency of the field data. Additionally, it must also be
ensured that the ACD is updated after each MCS. Each block containing a part of a cell
must have up-to-date ACD for that cell. A global exchange using collective MPI functions
does not scale very well. However, introducing minor prerequisites allows an exchange
of the ACD to all requiring blocks with local communications. If we limit the exchange
to the first 26 neighbors, one cell may only stretch beyond the block boundaries on one
side per dimension. Consequently, the cell size must be smaller than the block size per
dimension, as shown in Fig. 5a. This can be guaranteed if the size of the cells is limited or
the block size is large enough.
If a cell is illegitimate large and overlaps three blocks, as shown in Fig. 5b, a ACD

exchange will not update consistently in all blocks. The changes in the left blocks do not
reach the right blocks and vice versa.
The exchange is performed after each MCS as shown in Fig. 6.
A message is created that stores the ACD and additional exchanged information. For

example, for each cell in a block the values of volume and surface as well as the delta
volume and delta surface are stored this message package. Then, the package is sent to
all 26 neighbors, received and unpacked. As soon as the data has been received from all
neighbors, it can be processed. The sent deltas are accumulated to calculate the absolute
values. Since cells move, they can newly enter into blocks. So, in addition to the changes of
volume and surface, their absolute values must be transferred, such that the newly entered
blocks can calculate the current volume and surface from the changes. The amount of
transferred data depends on the number of different cells and the number of different

Fig. 6 Local neighbor exchange in two dimensions. The center block (blue) (a) sends to eight neighboring
blocks and (b) receives from the same eight neighbors



Berghoff et al. BMC Bioinformatics          (2020) 21:436 Page 10 of 21

types of values. Details of this exchange can be found in Ref. [19]. Each block holds the
ACD for all cells, which are inside the block or in the halo. ACD for cells that are no longer
in the block or halo is removed.

Cell events

Single-cell events have to be processed simultaneously on all blocks that hold a part of
the specific cell. Therefore, single-cell events are split into two steps. The first step is the
determination step, where events are detected and determined. This only happens in one
block, namely the block containing the center ofmass of the cell. The event is not executed
immediately. The instruction is propagated to all adjacent blocks via the ACD exchange.
In the following time-step, the execution step is processed in all blocks containing the cell.
Here, the single-cell event is then executed consistently across all involved blocks.

Sanity action

As described above, the efficient parallel calculation requires a restriction of the cell size.
Since we cannot have absolute control over every cell via the stochastic process, some sin-
gle voxels may detach from a cell. Some references prevent this non-biological behavior
directly in the energy calculation [20]. Here, we detect single voxels of a cellID without
direct contact and replace them with liquid. In the rare event that several connected vox-
els detach, the identification of a segment is complex and cannot be calculated locally. In
this case, we have two options, (i) we delete all voxels outside a predefined radius around
the cell center, or (ii) we ignore the voxel detachment as long as it does not violate the
requirements. I.e., if the cell and the voxel segment are moving away from each other, the
condition that a cell can only go beyond one block boundary per dimension can be vio-
lated, which in turn leads to inconsistencies. This is detected within the ACD exchange,
and the premature death of the cell will be inaugurated. If an ACD exchange receives ACD
for one cell from opposite sides, then a so-called Message of Death (MoD) will be gen-
erated. This MoD is sent for two time-steps to all 26 neighbors, stored and forwarded to
the neighbors of the neighbors. And finally, the cell is deleted simultaneously from all 125
neighbor and next-nearest neighbor blocks. This ensures that the cell is deleted from all
blocks in which it can occur, and resolve the inconsistencies.

Agent-based cell actions

In addition to the system propagation described by the CPM, CIS provides several mod-
ules that allow multi-model simulation of more complex systems. These modules are
using NAStJA’s action system and are implemented as actions acting on the cell objects
directly. Cell attributes such as the cell age, the signal level, cell type, etc. are append to
the ACD. Actions act depending on these values.

Signal and nutrient transport

The simulation considers the transmission and propagation of multiple substances, such
as nutrients and drugs. We define a class of signaling, e.g., nutrient contents, of each cell
σ

(
)
i , denoting the concentration of signal 
 in cell i. Those represent nutrients for the

cell (e.g., oxygen, glucose, or an effective nutrient concentration), cell-to-cell signaling
compounds, or arbitrary drugs. Diffusion is approximated by a flow through the cells’
surfaces.
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Diffusion The diffusion of signals between the cells occurs through the surface of these
cells. We determine the shared surface Si,j for each pair of cells i, j with i �= j. The shared
surfaces of cells are determined in a sweep over the field that locally saves the neighbors
as well as the respective shared surface of each cell. The diffusion depends on the type
of cells, so we define for each combination of types a diffusion constant Dτ(i),τ(j), τ(i)
denoting the cell type of cell i. The flux J(
)

i,j for a signal 
 is defined by

J(
)
i,j =

(Si,j
Si

+ Si,j
Sj

)
Dτ(i),τ(j)

(
σ

(
)
j − σ

(
)
i

)
,

where Si is the surface from cell i and σi is the signal value in cell i and Sj, σj from cell j,
respectively. This is the arithmetic mean of the two surface fractions with respect to the
common surface. The flux Ji,j is subtracted from the delta signal of one cell and added
to the other. Here, we distinguish between cells and fixed signal suppliers, such as blood
vessels. For fixed signal suppliers, the signal content is kept constant, i.e., the flux is nei-
ther subtracted nor added for those cells. In order to keep the signal contents of all cells
up to date, the delta signals are communicated with the ACD exchange to all neighboring
blocks.

Decay Metabolic processes take place inside the cells, those as well as other signal deplet-
ing processes are described by the signal decay. In our model, the signals are changed
relative to their value,

σ
(
)
i

∣∣∣
t+1

= d(
)

τ (i) · σ
(
)
i

∣∣∣
t
,

where σ
(
)
i

∣∣∣
t
is the signal 
 in cell i at time t and d(
)

τ (i) is the relative change of the signal 

depending on the type of cell i.

Division andmutation

Cell division is a fundamental property of tissue development. During a cell division, one
mother cell splits into two daughter cells. Those daughter cells usually inherit the proper-
ties of themother cell, but in special cases such as asymmetric cell division andmutations,
the properties can differ.
In each time-step, each cell is checked for cell-division. Whether a cell divides depends

on several internal and external factors. Division happen with the division rate RDiv when
the following conditions are fulfilled:

• Volume above a threshold V > VDiv = 0.9 · V0.
• Nutrition above a threshold CDivMin.
• Age above a certain threshold AgeDivMin.

Then, a random plane through the cell center as well as a new cell type (see “§Mutation”
section) is chosen. To ensure synchronous execution, this decision is then communicated
to all neighboring blocks as described in “§Cell events” section. In the next time-step, the
cell is split along the previously determined plane. The cell is split, and the two arising
cells are reinitialized while measuring surface and volume. One keeps the cellID of the
mother cell while the other receives a new cellID. After a cell division, the cellular age is
set to zero for both daughter cells. Post division, both cells expand enforced by the volume
and the surface energy term. Specific cell types can also be excluded from cell-division.
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Mutation Mutation can occur with a rate of RMut, which is defined per cell type. If a
mutation is accepted, one of the daughter cells is assigned a randomly selected cell type. A
transition matrix between all cell types can be defined so that the transition probabilities
between cell types vary. If nomutation occurs, the new cell inherits the type of themother
cell.

Cell death

The cell death is implemented with a death rate of RDeath, when the following conditions
are fulfilled:

• Nutrition below a threshold CDeath.
• Age above a certain threshold AgeDeathMin.

Furthermore, cells dying with a reduced death rate RDeath/1000 to account for natural
cell death. To ensure simultaneous execution of a cell death across all blocks, the death
decision is communicated to all neighboring blocks as described in “§Cell events” section.
Cell death is induced by changing the cell type to a dedicated cell type that describes
dying cells. For this cell type the target volume in the Hamiltonian is changed over time
V0Apop(t) = V0 − χ · age, effectively lowering the volume of the cell to zero voxels with
a linear temporal dependence on the factor χ , that can be set for each cell type. Once the
cell reaches V = 0, the cell and its ACD are deleted.

Output

NAStJA provides several input and output methods. In the following, we present the
relevant writers for CIS. A writer is an action that can prepare, collect, and write out sim-
ulation data. The time resolution of the output can be chosen so that every n MCS an
output frame is created.

CellInfo

The CellInfo writer outputs the ACD data of all cells to a comma-separated values (CSV)
file per frame. The first line is a header that describes the parameter in each column. Each
other row contains the data of one cell, e.g., cell type, age, volume, surface, center of mass,
signals. Technically, each worker process creates the output of all cells that center of mass
is inside its blocks. A master process collects this and writes it to a file.

Parallel VTK

The field data containing the cellIDs is written to a file in parallel usingMPI-IO. Resulting
in a single binary VTK image (VTI) file per frame. The file contains the whole simulation
domain stored in a regular grid similar to a three-dimensional (3D) image. Each value is
represented by a 32 bit or a 64 bit integer value, depending on the expected number of
total cells. While CSV is a simple text file format, it can be easily read and processed.
The VTI files can be read with the Visualization Toolkit (VTK) that provides a python
binding and is supported by visualization software like ParaView. These file formats (.csv
and .vti) together provide maximum interchangeability with other tools. Furthermore, we
developed the NAStJA viewer. A fast and lightweight, quasi 3D visualization software that
natively supports the combination of VTI and CSV files, as demonstrated in Fig. 7. It is
freely available under https://gitlab.com/nastja/viewer.
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Fig. 7 The NAStJA viewer visualizes a slice of the domain. Black outlines mark cells, and the color represents a
post-processing value denoting the neighboring to specific cell types

Results and discussion
In this section, we first show that the changes to the traditional model necessary for
parallelization do not change the behavior of the model. Then we show the parallel
performance and usage.

Statistical analysis

We verified that the execution in our parallelized framework does not distort the model
behavior and does not depend on the chosen subdivision.We run 60 simulations with two
cells distributed to 2 × 2 × 2 blocks. We use cubic blocks, such that a block size of 100
refers to a cubic block with an edge length of 100 voxels without the halo. In the following,
we write for cubic blocks shortly 100 �. The one cell is set to the center of one block
and the other cell is set to the edge of all blocks, i.e., to the center of the whole domain.
The cells have V0 = 1 000 and S0 = 1 400. The marching cube algorithm is used for the
surface calculations. Figure 8a shows the average over all simulations of the fluctuation in
volume and surface over 250 000 MCSs, on the left side, the center cell and on the right
the edge cell.
The behavior does not differ depending on the position within the subdivided field,

i.e., a cell overlapping two blocks does not experience any directional bias. The tempo-
ral variation in surface and volume is statistically around 3%, this is due to the thermal
fluctuations introduced by the metropolis criterion as well as a minor contribution of the
delayed update of volumes and surfaces. Figure 8b shows the average position of cell cen-
ter. Note, the cell centers are represented by an integer value denoting a specific voxel.
The center of the cell statistically moves around the original position to a very small extent
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Fig. 8 (a) Ratio of the surface and volume to the goal values (V0 and S0) respectively (averaged over 60
simulations, shaded area indicates standard deviation). In the left plots the cell lies in the center of a block, on
the right, the cell overlaps all eight blocks. (b) Movement of the cell center in the absence of an external
potential. Averaged over 60 simulations

(0.4 voxels) in comparison to the extent of the cell (10 voxels). The movement of the cells
also does not depend on the position within the subdivided field. These results confirm
the strategy of the parallelization is valid.

Performance and scaling

We use a single node (kasper) and the high-performance computing systems ForHLR II
at the Karlsruhe Institute of Technology (fh2) and JUWELS at the Jülich Supercomputing
Centre to perform the performance and scaling tests. The single node has two quad-core
Intel Xeon processors E5-2623 v3 with Haswell architecture running at a base frequency
of 3 GHz, and have 4 × 256 KB of level 2 cache, and 10 MB of shared level 3 cache. The
node has 54 GB main memory.
The ForHLR II has 1152 20-way Intel Xeon compute nodes [21]. Each of these nodes

contains two deca-core Intel Xeon processors E5-2660 v3 with Haswell architecture run-
ning at a base frequency of 2.6 GHz, and have 10 × 256 KB of level 2 cache, and 25 MB of
shared level 3 cache. Each node has 64 GB main memory, and an FDR adapter to connect
to the InfiniBand 4X EDR interconnect. In total, 256 nodes can be used, which are con-
nected by a quasi fat-tree topology, with a bandwidth ratio of 10:11 between the switches
and leaf switches. The leaf switches connect 23 nodes. The implementation of Open MPI
in version 3.1 is used.
JUWELS has 2271 48-way Intel Xeon compute nodes [22]. Each of these nodes con-

tains two 24-core Intel Xeon Platinum 8168 with Skylake architecture running at a base
frequency of 2.7 GHz, and have 24 × 1 MB of level 2 cache, and 24 × 1.375 MB of level
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3 cache. Each node has 96 GB main memory, and an InfiniBand 4X EDR interconnect.
ParaStation MPI in version 5.4 is used.

Node-level We run single-core CPM simulations including boundary condition (halo
exchange) and the ACD exchange with sending and receiving on the same core. Since
the cores in one processor have a shared level 3 cache and we want to avoid the related
effects, we run a single-core application on each core simultaneously. Two different access
patterns are used, a random access to the active checkerboard color and our linear access
using a random jump width. Both methods use a mean voxel step width of 40. We vary
the block size and compare the performance of the code in Fig. 9.
As a metric we use the number of million Monte Carlo step attempts per second

(MMCs/s). The pureMCS (execution time of CPM-sweep) performance reaches themax-
imum of 37.8 MMCs/s for 20 � blocks with a voxel step width of 40 (yellow line) It
decreases until 100 � and stays more or less constant for larger block sizes. The peak is
clearly defined by the level 2 cache that has a maximum capacity of an equivalent 32 �

block, but is not exclusively usable by this data. Even if the whole block does not fit into
the cache, we can profit from the property of the stencil to access only three layers of the
field, the three layers are cached by the level 3 cache, and the data can be reused. The level
3 cache has a capacity of an equivalent of a 68 � block, so that until this size no access to
the main memory is needed. This describes the slope change in the curve at a block size
of 60 �. The random access pattern can not benefit so much from caching the field and
reaches only a peak performance of 4.6 MMCs/s.
The total time-step including exchange and cleaning stages, reaches a peak-

performance of 11.4 MMCs/s at a block size of 40 � for the linear access pattern, and
3.5 MMCs/s for the random access pattern, respectively. Here, we see that the overlap of
the calculation and a nearly constant management overhead shifts the peak to a larger
block size.

Scaling For testing the parallel scaling and efficiency, we use weak scaling. The sim-
ulation is initialized as a densely filled area of cells with a volume of 512 voxels each.
The MCS used a mean step-width of five, with the eight-colored checkerboard. Signal
diffusion is enabled. For each core we use one block, the size is varied from 20 � to

Fig. 9 Cache usage and performance of the pure MCS and the total time-step for a linear access pattern with
random step width (linear) and a pure random access pattern (rnd)
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100 �. Each simulation runs three-times on 1 to 256 nodes on fh2 and 1024 nodes on
JUWELS. The largest simulations are containing approximately 100 million individual
cells. Figure 10 shows the scaling performance and efficiency for up to 49 152 cores on
JUWELS.
The efficiency η = T1/Tn, where T1 is the reference time for one node and Tn is the

time for n nodes. On JUWELS (10b) two ranges can be recognized. First the small blocks
(20 �–40 �) which show a high performance in the beginning and slow down with many
cores, 128 nodes for 20� or 256 nodes for 30� and 40�. The large blocks (60�–100�)
do not reach the maximum performance, but do not drop down much and reach an effi-
ciency of 60% on 49k cores. Up to 128 nodes (6 144 cores), a parallel efficiency of over 85%
is reached for the small blocks. For more nodes, the communication overhead becomes
significant compared to the calculation time for the small blocks. The gap between the
small and large blocks reflects the influence of the cache examined in the previous section.
Note that the block size 50 � benefits from the cache for one node, but not for two and
more nodes. The efficiency based on two nodes would show a scaling similar to the larger
blocks.

Fig. 10 Weak-scaling performance per core on fh2 (a) and JUWELS (b) in MLUP/s, i.e., scaled by the number
of voxels per block. Efficiency of the scaling on fh2 (c) and JUWELS (d) of the CPM simulations, for the entire
time-step, including halo- and ACD-exchange. The error bars denote the slowest and fastest run
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On the fh2, the performance per core lies between the small and large blocks on
JUWELS. Compared to all blocks, only the 20 � shows a slightly better performance. The
efficiency on 256 nodes (5 120 cores) is 80% – 90%.

User interface

The model parameters can be flexibly specified through a JSON config file. Multiple field
initialization functions allow the placement of cells in the field. The placement of single
cells at defined positions, as well as sets of cells in predefined shapes (cubes and spheres),
are possible. Figure 11 list a example config file. The result is presented in Fig. 7.

Fig. 11 Minimal example of a config for a cell simulation
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Since the actions, sweeps, and energy functions are modularly designed, it is possible to
add specialized and additional code to the system by simply adding a function in a C++
file. Each function is documented in the code and input and output specifications are
specified in the doxygen documentation of the code.
Currently, CiS is under heavy development to introduce new Features to discover new

effects. Since NAStJA already provides a GPU infrastructure, we plan to provide a multi
GPU implementation.
Without bias on the subdivision and grid, the model enables larger simulated volumes

than other implementation of the CPM. These large scales allow us to study, among many
other applications, emergent behavior of single-cell shapes to macroscopic tissues as well
as tissue scale effects. Figure 12 shows a simple tumor model [23], in which a tumor seed
grows through cell divisions into a large tumor.
Cells can acquire new types at cell division, corresponding to mutations in cells that

yield new phenotypes. Cell division and cell death, depending on the availability of
nutrients, which are distributed from a set of stationary blood vessels. Through the
parametrization of a set of phenotypes, tumor development and the emergence and evo-
lution of heterogeneity can be observed and tracked. The simulation yields a trajectory
of each individual cell through time, giving access to all properties. Here, the effect of
single-cell properties can be observed at a tissue scale. Tissue scale effects, such as fin-
gering growth and a necrotic core, are also observable. Simulations are performed on a
field consisting of 1 000 × 1 000 × 1 000 voxels and including 106 cells with 1 000 voxels

Fig. 12 Evolution of a tumor using CiS. Starting from a few tumor cells, the cancer grows along the
nutrient-supplying blood vessels. For a clearer view, the surrounding healthy cells are not visible
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each. The calculation was distributed to 1 000 CPU-cores and simulated for 24 h on the
high-performance computing (HPC) system JUWELS [22]. The reached simulated time
is around nine months in real-time.

Conclusions
We introduce a parallel implementation of the cellular Potts model (CPM) and demon-
strate that the parallelization is bias-free. Around the CPM we developed the extendable
parallel simulation framework Cells in Silico (CiS) for the simulation of tissue growth.
CiS provides a user-friendly environment to implement new models. It provides an excel-
lent scalability on supercomputers with a parallel efficiency of up to 90% on a small
machine (fh2) with 5 120 cores. Larger simulations show an efficiency of up to over 60%
for 49 152 cores, the lower efficiency is explained by an additional layer of switches,
which is required for large simulations. The demonstrated performance per core for a
full time-step is between 1 and 3.5 MLUP/s depending on the block size and the num-
ber of cores. With this scaling behavior, CiS enables large-scale tissue simulations up to
some mm’s and millions of interacting cells, while providing a geometric shape resolution
of individual cells. Additionally to the geometry resolved cell simulations, we provide an
agent-based model running in parallel performing single-cell events such as cell divisions,
mutations, and cell death. Signal and nutrient transport through the tissue are enabled
by a diffusion and signaling module that interacts with the cell geometries as well as the
agent-based model to determine cell events and behavior. The model setup is designed to
be user friendly by setting up simulations through a single configuration file that specifies
model behavior and initialization. The simulation output is formatted in transferable easy
to access data formats for broad compatibility and the use of standard tools. The entire
framework is designed to have a fundamentally modular structure for easy model assem-
bly and quick extension. The model is freely available to everyone under an open-source
license.
It enables the use of the framework in a wide range of scientific applications opening up

new areas for computational research by connecting the scales between single-cell data
and tissue data in a single model. This model can be applied in simulations of tumor evo-
lution and heterogeneity simulations, developmental biology, such as tissue patterning.
The large scale of the simulations will enable new simulation of epithelial tissue, such as
wound healing. In the future, the model can complement wet-lab experiments and test-
ing through enabling large-scale simulations comparable to experimental and medical
imaging methods.
With this contribution, we enable a new scale of tissue simulations that connect single-

cell data with tissue scale measurements.We lift the barriers for large-scale simulations to
a point where the upper bound is determined not by themodel but by the parametrization
and our imagination. This paves the way to bridge the scales between microbiological
findings and medical images.

Availability and requirements
• Project name: NAStJA – Cells in Silico
• Project repository: https://gitlab.com/nastja/nastja
• Project home page: https://nastja.gitlab.io
• Operating systems: Linux, Mac OS
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8 Appendix 2: Supporting Information, Gen-

eralized Model

8.1 Simulations

General simulation parameter can be found in Table 3.

8.1.1 Initial Simulations

Treatment of one cell type: Homogeneous tumor growth in a non-dividing surrounding

tissue. Simulations are conducted in a box with an edge size of 320µm. Variation of treatment

resistivity and resulting tumor response of a two-pulse treatment with radio- and chemotherapy,

respectively.

Figure 18: Tumor size response of a single cell type tumor of varying resistivities. From left to right: No
Treatment, low, medium and high resistance against treatment. Chemotherapy schemes on the top row and
radiation therapy schemes on the bottom row.

Treatment of resistivity heterogeneous cell type: Heterogeneous tumor growth in a

surrounding tissue with a box edge size of 320µm. Variation of treatment resistivity and resulting

tumor response of a two-pulse treatment with radio- and chemotherapy, respectively.

Figure 19: Treatment response to a heterogeneous tumor. The cell types are a different subset of cells than
used for heterogeneity simulations in the main text, cell types only differ in treatment resistivity. Chemotherapy
schemes on the top row and radiation therapy schemes on the bottom row.
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Figure 20: Colour coding of all cell types. The inner circle holds cell types with down-regulated parameters,
while the outer circle holds up-regulated parameters.

8.1.2 Heterogeneity

Wemeasure heterogeneity as:

h := 1− #T

2(#T − 1)

∑
t∈T

∣∣∣∣#At

#C
− 1

#T

∣∣∣∣ ,
withAt = {c ∈ C | σ(c) = t}

(16)

T are all cell typesC are all cellsAt are number of cells of type t, # denotes number.

8.1.3 Up-scaling

An interesting question is how the tumor development and treatment response depend on the

tumor age and size. We take advantage of the scalability of our simulation framework and scale

up the simulations by a factor of 27 so that the simulation covers 1mm3 of tissue. The

surrounding tissue is initialized to be densely vascularized.

In the tumor growth we see due to the bigger size of the tumors, more complex structures arising.

The tumor grows into the direction of the closest blood vessels and even divides up into smaller

compartments. Holes in the tumor emerge, and apoptotic regions are repopulated with the

surrounding tissue.

8.1.4 Tumor Stem Cells

Similarly, tumor stem cells (TSC) are implemented as cells with a slow cell cycle. Bothmutations

and TSC lead to tumor heterogeneity and affect treatment response and tumor progression and
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rejuvenation.

Tumor stem cells (TSC) are specialized cells within a tumor which through asymmetric cell

divisions and a slower cell cycle, produce cancerous cells [1] and contribute to tumor rejuvenation

as well as treatment resistance [2].

In our model, TSCs do not significantly change tumor size, growth rates, and final composition on

unrestricted growth (see Figure 21 e)). The subpopulation of TSCs grows at a longer time scale

due to a slower cell cycle (see Figure 21 e)) and are localized in small clusters but evenly

distributed around the tumor (see Figure 21 d)).

The immediate treatment response is seemingly unchanged. Where subsequent chemotherapy in

the heterogeneous tumor was able to suppress regrowth, TSCs can facilitate a subpopulation of

cells to remain as a reservoir and trigger regrowth. TSCs lead to an increase in heterogeneity and

boost the sub-populations of cell types that were suppressed. Figure 4 a) shows that TSCs can

impact the final treatment outcome negatively by increasing tumor size as well as heterogeneity,

especially in cases where treatment was successful in tumors without TSCs, see Figure 3 b).

In the heatmap in Figure 21 c), the type of a cell is compared to the types of its nearest neighbors.

Diagonal elements are the major contributions, representing coherent clusters of cells of the same

type. We find that TSCs lead to smaller cell clusters and a stronger mixing of cell types throughout

the tumor, visible by increased off-diagonal elements. This is consistent with biologically

observed behavior since tumors can regrow from a small number of remaining cells that are below

the detection limit. [6]

Tumor stem cells introduce a source of treatment resistivity and are capable of facilitating a

relapse of the tumor after seemingly successful treatment. Fundamental differences in the

treatment response between tumors with andwithout TSCs were highlighted in this work, such

as elevated intra-tumor heterogeneity andmixing. The stemness of a tumor has been

experimentally associated with enhanced heterogeneity and treatment resistance [11, 12].
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Figure 21: Tumor Stem Cells: a) Effect on final tumor size after treatment and tumor heterogeneity, errors as
in Figure 8. b) The final tumor size of different treatment schemes (y-) and different simulation runs (x-axis) shows
the stability of the simulation outcome. Coloring by tumor size at t = 325days. c) Heatmap of the frequency of
local neighborhood of cell types without (left) and with (right) TSCs. d) Localization of the tumor stem (in green)
cells at t = 73days (left) and t = 292days (right), integrated over the entire volume. e) Response to different
treatment schemes of chemo- and radiotherapy (Note regrowth bottom right). Colouring as in Figure 4.
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Table 3: Model parameters that were used in the simulations.
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Table 4: Fitted tumor growth time constants from various in vivo experiments, mostly on mouse models. Time
constants T (in hours) were fitted for tumors without and with treatment (chemotherapy and/or radiotherapy).
Through manual literature mining, experimental parameters of growth rates of tumors were extracted. Exponen-
tial growth was fitted to control tumor growth and to treated tumor growth.
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Figure 22: Parameter projections on the 125 simulations on a 5x5x5 cube. Left image shows a cut through the
1,1,1 plane. The other images depict the mean value of the cube along each axis. Speed directional correlation
of tumor cells.

An additional tumor property we observe it the directional correlation of the movement of the

tumor cells. While adhesion does not affect the correlation, motility and adhesion do have a

strong effect. Low stiffness increases the directional correlation of the cells inside the tumor. A

continuous rise of correlation is visible with decreasing stiffness. A positive dependency of

directional correlation and cell motility is visible.
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10.1 Transition Rates

In order to be able to observe biases in the evolutionary development in the phenotype space, it is

necessary to know the dynamics of the unbiased system. Here, we performed simulations on a 1D

/ 2D array. The content of the array represents the abundance of a phenotype. Tomodel the

process in the simulation, the occupancy of each phenotype doubles at every time step, spreading

to the nearest neighbor phenotypes with the rate of the central phenotype. The system is

propagated by increasing the value of the 2/4 nearest neighbors by the rate times the content of

the current phenotype and the phenotype by (1-numNeihbors*rate)*value

Using a constant rate to populate each nearest neighbor across the phase space, leads to a

symmetric spread, with a tendency of the center of mass to center in the field. For reduced rim

rates border effects of pileup create not desirable offsets to the extreme values.

A constant rate enables the detection of an evolutionary bias, if the center of mass in the

phenotype space deviates from the center. A constant rate as indicated in e) is used in the

simulations.

for all nearest neighbors:

vNei+ = vCur ∗ rate(cur)

for current value:

vCur+ = (1− numNeighbors ∗ rate(cur)) ∗ vCur

At the borders only a smaller number of nearest neighbors is used.
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Figure 23: Rate distributions and their influence on the ensemble development. a)-c) 1D Simulations, with a
edge reduced, quadratic and constant rate distribution. d) 2D Simulation of an ensemble development with
reduced edge rates. e) 2D simulation with constant rates
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Figure 24: Scan of mutation rate, 0.4 , 1 , 5 , 10 , 25 percent probability of mutation, Potential coupling = 70
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Figure 25: Tradeoff function parameter k, 1 · 10−6, 5 · 10−6 did produce no tumor. Displayed are the
compositions for k= 1 · 10−5,5 · 10−5,1 · 10−4,5 · 10−4,1 · 10−3
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Figure 26: Potential coupling of 0, 20, 60, 100, constant mutation range (4%)
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Figure 27: a) Spread in conformation space of all simulations, representing the extent of the phenotypic
composition of a tumor. Four different cases are distinguished and the simulations are sorted to each: threshold
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cases, constant or dynamic nutrient surroundings. b) The average center of mass in the conformation space on
the x (division-rate / migration) axis, at the end of the simulations (t=2200kMCS). Cases are distinguished as in
a). Black lines indicate the standard deviation.
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Figure 28: a) Evolution speed in conformation space. Values are averaged between 1500-3000kMCS. Black
lines indicate the standard deviation. b) The average center of mass in the conformation space on the 'motility
, 1/division-rate' axis. Cases are distinguished and data is collected in a). c) Spread in conformation space of
all simulations, representing the extent of the phenotypic composition of a tumor. Cases are distinguished and
data is collected in a). c) Spread in conformation space visualized in a box plot. e) Mean lifetime.
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Figure 29: Quantification of evolution speed and direction (on the motility axis). Mean of 15 Simulations and
indicating standard deviation. Labels explained below. Times are t = 1000kMCS and t = 2500kMCS

In order to determine the speed of the evolution of the tumor, the centroid (i.e. the center of mass)

of the distribution as seen in Fig. 31. That centroid is then tracked over time and the speed

through the phenotype space is determined. This speed reflects the speed of the development of

the ensemble of tumor types within the tumor. Since all tumor develop into the direction of low

adhesion, the evolution speed is plotted against the position of the centroid in the

motility-division rate axis. To study the effects, the individual parameters have on the ensemble

development, the parameters were up and down regulated in individual sets of simulations. The

altered parameters in those runs are:

000: 3 %mutation rate

001: ’Standard Simulation’ with 1%mutation rate and 200 system size

002: Lowmutation rate

003: 10 %mutation rate

004: 400 voxel system size

005: 100 voxel system size

006: Recalculation time 50

007: Recalculation time 200

008: Recalculation time 400

009: Division independent of nutrient

Without nutrient dependency of cell division and death the evolutionary speed is elevated,

similarly to an increasedmutation rate of 10 %. All other simulations fall in a similar regime of

evolutionary speed and final value of motility.
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Figure 30: Non-renormalized plots of Fig. 2
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Figure 31: Scaling simulation size of a simulation with threshold dependency on nutrients. a) System size
100voxel

3
and ≈ 500 tumor cells b) System size 400voxel

3
and ≈ 28 000 tumor cells

By scaling the system size, the statistics in the tumor evolution change, since all phenotypic

changes are introduced by discrete single cell events. The system size was reduced and enlarged

by a factor of two. The evolution seems to not be significantly changed by the alterations of the

system size. We follow that the simulations are in a regime of sufficient division andmutation

events to allow sampling of the phase space.
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Figure 32: Distribution of x-positions of different simulations. Left, constant surrounding and right dynamic
surrounding (line, A=50, T=100kMCS)

a

b

Figure 33: Single cell properties in dynamic surrounding. a Radial distance of the cells to the spheroid
center in relation to the cells age, for constant surrounding (left) and dynamic surrounding (right, line, A = 50,
T=100kMCS) b Nutrient availability of the cells in relation to the cells age, for constant surrounding (left) and
dynamic surrounding (right, line, A = 50, T=100kMCS). Dots indicate single cell states, the red line describes
the mean position and nutrient availability
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Figure 34: Single cell properties in dynamic surrounding. a Mean time between the last cell division and
the death of cells, averaged between 150-300kMCS d Mean time between the last cell division and the death of
all tumor cells is depicted in relation to the simulation time. The constant nutrient surrounding (orange) and the
dynamic surrounding (blue, line, A = 50, T=100kMCS) are shown. The fluctuations of the dynamic surrounding
lead to a periodic behavior of the mean cell lifetime.
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