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	 I	

Abstract 

There	 are	 two	 forms	 of	 living	 cells	 on	 earth	 —	 prokaryotes	 and	 eukaryotes.	

Prokaryotic	 cells	 are	 very	 simple	 organisms	 while	 eukaryotes	 present	 more	

complex	cells	that	can	organize	into	multicellular	forms.	The	most	widely	accepted	

theory	of	eukaryote	evolution	is	the	endosymbiotic	theory,	depicting	eukaryotes	as	

descendants	of	archaea	through	the	acquisition	of	a	bacterial	endosymbiont	into	its	

archaeal	host.	There	has	been	more	than	one	endosymbiotic	event	during	eukaryote	

evolution	with	two	major	occurrences.	The	first	gave	rise	to	the	mitochondrion	from	

an	archaeon	 incorporating	a	proteobacterium,	generating	the	 first	eukaryote;	 the	

second	 resulted	 in	 the	 origin	 of	 the	 plant	 kingdom	 as	 a	 cyanobacterium	 was	

enveloped	by	an	existing	eukaryotic	host.	However,	the	mechanisms	of	how	these	

events	occurred	are	still	mostly	unknown	and	are	the	basis	of	many	debates	to	date.	

Phylogenomic	 analyses	have	become	 the	 standard	 tool	 to	 investigate	 these	 early	

evolutionary	 events.	 Many	 studies	 focus	 on	 only	 a	 few	 genomes	 to	 represent	 a	

diverse	spectrum	of	organisms	from	the	three	domains	of	life,	some	only	examine	a	

small	number	of	genes.	To	obtain	a	more	comprehensive	view	on	how	eukaryotes	

arose,	the	investigation	of	a	broad	spectrum	of	genomic	data	from	a	varied	sample	

of	 lineages	 is	 desirable.	 Moreover,	 genome	 sequencing	 has	 become	 faster	 and	

simpler	each	year,	enabling	analyses	containing	a	substantial	number	of	organisms	

and	genes.	However,	 this	 is	accompanied	by	extensively	 increased	computational	

demands	which	can	become	a	limiting	factor	that	has	to	be	addressed.	This	thesis	

reports	 the	 analysis	 of	 all	 protein	 coding	 genes	 from	5,655	prokaryotic	 and	150	

eukaryotic	genomes,	the	construction	of	their	corresponding	protein	families,	their	

alignments	and	phylogenetic	 trees	 in	order	 to	analyze	evolutionary	events	at	 the	

border	of	prokaryotic	and	eukaryotic	life.	
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Zusammenfassung 

Es	gibt	zwei	unterschiedliche	Formen	von	Leben	auf	der	Erde	—	Prokaryoten	und	

Eukaryoten.	 Prokaryotische	 Zellen	 sind	 sehr	 einfache	 Organismen	 während	

Eukaryoten	 komplexe	 Zellen	 darstellen,	 die	 sich	 in	 multizelluläre	 Formen	

organisieren	können.	Die	 am	weitesten	verbreitete	Hypothese	der	Evolution	von	

Eukaryoten	 ist	 die	 Endosymbiontentheorie:	 die	 Aufnahme	 eines	 bakteriellen	

Endosymbionten	in	seinen	archaeellen	Wirt.	Im	Laufe	der	Evolution	von	Eukaryoten	

gab	 es	 mehrere	 endosymbiontische	 Ereignisse	 —	 als	 erstes	 entstand	 das	

Mitochondrion	 durch	 Aufnahme	 eines	 Proteobakteriums	 in	 ein	 Archaeon	 und	

später	ist	das	Pflanzenreich	durch	den	Einschluss	eines	Cyanobakteriums	in	einen	

bestehenden	Eukaryoten	entstanden.	Allerdings	sind	die	Mechanismen,	welche	sich	

hinter	diesen	Vorgängen	befinden,	 immer	noch	unzureichend	untersucht	und	die	

Basis	fortlaufender	Debatten.	Mittlerweile	sind	phylogenomische	Analysen	eine	der	

Standardmethoden,	 um	 diese	 frühen	 Evolutionsvorgänge	 zu	 erforschen.	 Viele	

Untersuchungen	verwenden	nur	wenige	Genome,	um	die	drei	Domänen	des	Lebens	

zu	 repräsentieren,	 oder	 fokussieren	 sich	 auf	 eine	 geringe	 Anzahl	 an	 Genen.	 Um	

jedoch	 einen	 umfassenderen	 Überblick	 von	 der	 Entwicklung	 der	 Eukaryoten	 zu	

bekommen,	 sollte	 ein	 breites	 Spektrum	 von	 Sequenzdaten	 aus	 Genomen	 aller	

bekannten	 taxonomischen	Gruppen	herangezogen	werden.	Da	die	Sequenzierung	

von	 Genomen	 jedes	 Jahr	 einfacher	 und	 schneller	 wird,	 können	 nun	 auch	

Untersuchungen	 mit	 einer	 umfangreichen	 Anzahl	 an	 Organismen	 und	 Genen	

durchgeführt	 werden.	 Allerdings	 ist	 damit	 eine	 gesteigerte	 Nutzung	 von	

Rechenkapazitäten	verbunden,	welches	schnell	ein	limitierender	Faktor	wird,	der	

beachtet	 werden	 muss.	 Diese	 Arbeit	 stellt	 die	 Analyse	 aller	 proteinkodierenden	

Gene	aus	5,655	prokaryotischen	und	150	eukaryotischen	Genomen	dar.	Die	daraus	

rekonstruierten	 Proteinfamilien	 und	 phylogenetische	 Stammbäume	 wurden	 zur	

Untersuchung	von	evolutionären	Ereignissen	an	der	Grenze	von	prokaryotischem	

und	eukaryotischem	Leben	verwendet.	
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	 1	

1 Introduction 

It	is	human	nature	to	be	curious	and	wonder	where	we	came	from.	Following	this	

train	of	thought	for	any	living	organism	at	any	taxonomic	level	brings	forth	the	same	

question	 at	 every	 preceding	 generation	 of	 how	 each	 ancestor	 originated.	 The	

recursive	leads	backwards	in	time	and,	because	all	life	forms	share	the	same	genetic	

code	and	therefore	a	single	origin	[Koonin	and	Novozhilov	2009],	ultimately	arrives	

at	questions	about	early	evolution.	In	this	thesis,	early	evolution	refers	to	the	time	

span	from	the	origin	of	 life	that	took	place	about	4	billion	years	ago,	 to	the	great	

oxidation	event	facilitated	by	the	origin	of	oxygenic	photosynthesis	about	2.5	billion	

years	ago	[Fischer	et	al.	2016]	and	the	origin	of	eukaryotes	roughly	1.6	billion	years	

ago	[Betts	et	al.	2018].	Questions	about	the	nature	of	the	first	cells	can	be	addressed	

by	studying	 this	phase	of	evolutionary	history:	how	did	 the	 first	 cells	 live,	which	

environments	 did	 they	 colonize	 and	 what	 innovations	 were	 required	 for	 their	

adaptations?	 Such	 questions	 are	 central	 to	 understanding	 the	 course	 of	 early	

evolution	and	the	relationship	between	the	Earth’s	environment	and	life	[Arndt	and	

Nisbet	2012;	Nisbet	and	Sleep	2001;	Sleep	et	al.	2011;	Sleep	2018].		

The	 first	 organisms	 that	 inhabited	 the	 earth	 were	 prokaryotes,	

morphologically	 simple	 cells	 with	 vast	 biochemical	 diversity.	 Prokaryotes	 are	

ubiquitously	 distributed	 around	 the	 earth	—	 living	 in	 varying	 habitats	 of	 ocean	

floors,	open	ocean,	terrestrial	soil	and	terrestrial	subsurface.	They	are	estimated	to	

comprise	up	to	14%	of	the	global	biomass	[Bar-On	et	al.	2018;	Kallmeyer	et	al.	2012;	

Whitman	et	al.	1998].	The	first	prokaryotes	arose	more	than	3.8	billion	years	ago	

[Sleep	 2018],	 possibly	 at	 submarine	 hydrothermal	 vents,	 as	 genomic	

reconstructions	of	the	lifestyle	and	habitat	of	the	last	universal	common	ancestor	

(LUCA)	suggest	[Weiss	et	al.	2016].	Following	roughly	2	billion	years	of	biochemical	

diversification,	prokaryotes	gave	 rise	 to	eukaryotes	 roughly	1.6	billion	years	ago	

[Betts	 et	 al.	 2018].	 Eukaryotes	 are	 complex	 cells	 possessing	 a	 nucleus	 and	

mitochondria.	The	question	of	how	eukaryotes	arose	is	still	debated,	but	many	lines	
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of	evidence	indicate	that	eukaryote	origin	involved	the	endosymbiotic	acquisition	

of	a	proteobacterial	endosymbiont	[Martin	et	al.	2015]	into	an	archaeal	host	[Imachi	

et	al.	2020].		

There	are	several	main	approaches	currently	used	to	investigate	questions	

about	 prokaryotic	 evolution.	 Isotopes	 [Arndt	 and	Nisbet	 2012;	 Nisbet	 and	 Sleep	

2001;	Sleep	et	al.	2011;	Sleep	2018],	microfossils	[Javaux	2019],	molecular	clocks	

[Betts	et	al.	2018],	and	phylogenetic	trees	[Nelson-Sathi	et	al.	2012;	Woese	1987]	

are	 the	 most	 widely	 used	 data	 employed	 to	 investigate	 prokaryote	 and	 early	

evolution.	At	present,	phylogenetic	trees	are	the	most	frequently	used	resource	to	

study	prokaryote	evolution,	owing	to	the	vast	amounts	of	information	that	genome	

sequencing	technologies	have	generated.	Gene	and	protein	sequence	comparisons	

are	 the	 most	 common	 way	 to	 investigate	 evolutionary	 relationships	 among	

molecules	and	genomes	[Graur	2016].	Protein	structure	offers	a	more	sensitive	way	

to	detect	protein	homology	than	protein	sequences	alone	[Alva	et	al.	2015;	Lupas	

and	 Alva	 2017],	 but	methods	 that	 are	 able	 to	 quantify	 differences	 in	 the	 three-

dimensional	 structure	 in	 a	 way	 to	 scale	 evolutionary	 divergence	 are	 currently	

lacking.	Therefore,	structural	comparisons	are	not,	at	present,	a	generally	applicable	

tool	for	inference	of	phylogenetic	differences.	

	 Since	the	pioneering	work	of	Fitch	and	Margoliash	[1967],	protein	sequences	

have	 been	 used	 for	 reconstructing	 phylogenetic	 trees.	 Trees	 can	 be	 applied	 in	

different	 ways.	 Single	 gene	 trees	 or	 concatenation	 of	 proteins	 and	 subsequent	

reconstruction	 of	 concatenated	 gene	 trees	 are	 the	 traditional	 ways	 to	 analyze	

protein	phylogeny	[Adam	et	al.	2018].	With	the	ongoing	growth	of	whole	sequenced	

genomes	 and	 constant	 improvement	 of	 bioinformatics	 tools	 for	 phylogenetic	

research,	 it	 is	now	possible	 to	 investigate	 the	 information	encoded	 in	all	protein	

coding	genes	of	a	given	genome	set	[Coleman	et	al.	2020;	Ku	et	al.	2015;	Weiss	et	al.	

2016;	 Williams	 et	 al.	 2017].	 Yet,	 phylogenetic	 trees	 constructed	 for	 different	

proteins	 almost	 always	 conflict.	 This	 can	 be	 due	 to	 different	 proteins	 having	

fundamentally	different	evolutionary	histories	[Popa	and	Dagan	2011],	or	it	can	be	

due	 to	 phylogenetic	 differences	 generated	 by	 inaccuracies	 in	 the	 process	 of	

phylogenetic	 reconstruction	 [Semple	 and	 Steel	 2003].	 Though	 phylogenetic	

analyses	no	longer	require	that	all	phylogenetic	signals	readily	fit	on	one	single	tree	
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[Coleman	et	al.	2020;	Williams	et	al.	2017],	the	issue	of	how	to	extract	evolutionary	

insights	out	of	conflicting	phylogenetic	trees	is	still	a	topic	of	investigation.		

For	 that	 reason,	 investigating	 early	 evolution,	 prokaryotic	 evolution,	 or	

physiological	evolution	from	the	standpoint	of	gene	trees	alone	carries	caveats.	The	

biological	 implications	 of	 deep	 phylogenetic	 inference	 typically	 hinge	 upon	 one	

branch	in	a	phylogenetic	tree	[Martin	et	al.	1998;	Nelson-Sathi	et	al.	2012],	or	the	

specific	placement	of	a	root	among	a	set	of	short	internal	branches	[Nelson-Sathi	et	

al.	2015].	In	both	cases,	it	is	becoming	increasingly	evident	that	with	large	data	sets	

the	results	of	such	investigations	tend	to	depend	more	upon	specific	procedures	of	

phylogenetic	 inference	 than	 upon	 the	 data	 themselves	 [Fan	 et	 al.	 2020].	 Such	

circumstances	 lead	 to	 debates	 about	 phylogenetic	methodology	 [Da	 Cunha	 et	 al.	

2018],	which	are	useful,	but	do	not	alleviate	the	problem	that	sequence	data	have	

fundamental	limitations	for	the	study	of	early	evolution.	

	 The	 present	 work	was	 designed	 to	 process	 a	 large	 dataset	 of	 completely	

sequenced	 genomes	 from	 prokaryotic	 and	 eukaryotic	 organisms	 in	 order	 to	

reconstruct	and	 investigate	all	phylogenetic	 trees	that	can	be	reconstructed	from	

this	data.	For	this,	the	first	step	was	to	detect	sequence	homologs	—	genes	that	are	

similar	by	virtue	of	shared	ancestry	—	that	could	be	sorted	into	protein	families	of	

the	 various	 organisms	 for	 phylogenetic	 inference	 by	 using	 protein	 sequence	

clustering	methods	[Enright	et	al.	2002].	The	purpose	of	the	work	was	to	harness	all	

the	information	available	in	those	genomes	with	the	goal	of	analyzing	evolutionary	

events	 that	speak	 to	 the	nature	of	genetic	 interactions	between	organisms	at	 the	

threshold	of	eukaryote	origin.		
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1.1 Protein sequences, gene sequences and genome 

sequences for phylogenetics 

Historically,	 the	 first	 phylogenetic	 analyses	 were	 constructed	 on	 the	 basis	 of	

comparative	morphology	[Darwin	1859;	Haeckel	1866,	1874].	That	restricted	the	

investigation	 of	 evolution	 to	 organism	 groups	 that	 possessed	 sufficient	

morphological	 characters	 for	 comparison:	 plants,	 animals	 and	 fungi.	 Isolated	

attempts	were	made	 to	 reconstruct	 the	evolution	of	microbes	using	comparative	

physiology	 [Chatton	 1925;	 Lippmann	 1965;	 Martin	 and	 Kowallik	 1999;	

Mereschkowsky	1905],	but	there	was	no	way	to	objectively	test	any	phylogenetic	

scheme	for	microbes	that	was	constructed	from	physiological	data.	The	discovery	of	

the	 linear	 structure	 DNA	 and	 its	 ability	 to	 store	 the	 genetic	 information	 of	 an	

organism	 [Watson	 and	 Crick	 1953]	 and	 the	 development	 of	 protein	 sequencing	

technologies	[Edman	1950;	Sanger	1945;	Sanger	and	Thompson	1953]	gave	rise	to	

the	 analysis	 of	 evolutionary	 traits	 based	 on	 sequence	 homology	 and	 later	 the	

delineation	of	families	of	related	proteins.	Zuckerkandl	and	Pauling	[1965]	were	the	

first	 to	 suggests	 that	 gene	 sequences	might	 be	 used	 to	 analyze	 the	 relationships	

between	organisms.	By	investigating	the	most	suitable	molecules	as	a	basis	for	the	

reconstruction	 of	 phylogenetic	 trees,	 they	 pointed	 the	 way	 to	 exploration	 of	

molecular	similarities	and	differences	for	phylogenetic	inference.	Margaret	Dayhoff	

[Dayhoff	 and	 Eck	 1968]	 laid	 the	 groundwork	 for	 generating	 alignments	 of	

homologous	sequences	by	generating	matrices	that	scored	not	just	the	presence	of	

identical	amino	acids	at	homologous	sites	in	a	sequence,	but	also	similar	amino	acids	

based	on	their	physical	and	chemical	properties.	

The	development	of	DNA	sequencing	techniques	[Sanger	et	al.	1977]	and	its	

subsequent	 application	 to	whole	 genome	 sequencing	projects	 enabled	molecular	

phylogenetic	analyses	of	proteins	that	could	not	be	directly	sequenced	by	protein	

sequencing	methods	[Graur	and	Li	2000].	In	1977,	the	use	of	phylogenetic	trees	for	

the	 nucleotide	 sequence	 data	 from	 ribosomal	 RNA	 (rRNA)	 was	 employed	 to	

introduce	 the	 classification	 of	 prokaryotes	 into	 archaebacteria	 (archaea)	 and	

eubacteria	(bacteria)	in	addition	to	urkaryotes	(eukaryotes)	[Woese	and	Fox	1977].	
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Due	 to	 the	 similarity	 of	 the	 ribosome	 sequences,	 archaea	 were	 recognized	 as	

relatives	of	the	host	that	acquired	mitochondria,	and	later	plastids,	during	the	early	

evolution	 of	 eukaryotes.	 Using	 trees	 for	 rRNA	 sequences,	 Woese,	 Kandler	 and	

Wheelis	[1990]	introduced	the	‘three	domains	of	life’.	Following	this	proposal,	the	

reconstruction	of	phylogenetic	trees	according	to	the	rRNA	sequences	became	the	

standard	method	to	reconstruct	one	universal	tree	of	life.		

In	2006,	Ciccarelli	et	al.	developed	an	automated	procedure	to	reconstruct	

‘the’	tree	of	life,	which	identified	a	set	of	31	universally	present	proteins	from	191	

species	 that	 were	 included	 in	 their	 analysis.	 However,	 these	 31	 proteins	 were	

already	 in	wide	 use	 at	 that	 time	 [Charlebois	 and	Doolittle	 2004;	Hansmann	 and	

Martin	2000].	In	the	study	presented	by	Ciccarelli	et	al.,	lateral	gene	transfer	(LGT)	

events	 were	 detected	 and	 eliminated	 in	 order	 to	 reconstruct	 a	 highly	 resolved	

phylogenetic	tree	as	LGT	events	are	not	tree-like	and	confuse	phylogenetic	signals	

[Ciccarelli	et	al.	2006;	Hansmann	and	Martin	2000].	This	‘tree	of	life’	was	generated	

by	 concatenating	 the	 orthologs	 of	 the	 detected	 31	 genes	 from	 all	 191	 genomes	

employed	 in	 the	 study.	 Because	 an	 average	 prokaryotic	 genome	 encodes	 about	

3,000	 protein	 sequences	 and	 the	 mean	 genome	 size	 of	 eukaryotes	 across	 all	

supergroups	 is	 roughly	 23,000	protein	 coding	 genes,	 a	 tree	 of	 life	 reconstructed	

from	 31	 genes	 only	 represents	 about	 1%	 of	 all	 prokaryotic	 and	 about	 0.1%	 of	

eukaryotic	genes	in	an	average	genome	[Dagan	and	Martin	2006].	

	 The	detection	of	some	evolutionary	processes	such	as	lateral	gene	transfer	

or	gene	duplication	is	only	possible	with	a	sample	encompassing	a	large	number	of	

genes	 or	 genomes.	 Therefore,	 the	 reconstruction	 of	 a	 tree	 of	 life	 from	 31	 genes	

presents	a	very	narrow	view	of	the	evolution	of	organisms.	Contrasting	to	endeavors	

to	reconstruct	a	tree-like	structure	of	evolutionary	events,	Maria	Rivera	and	James	

Lake	 [2004]	 introduced	 the	ring	of	 life.	They	 figured	 that	an	acyclic	graph	better	

represents	 the	 evolutionary	 processes	 between	 eukaryotes	 and	 prokaryotes.	

Accounts	of	LGT	and	genome	fusion	are	represented	in	their	analyses	which	shows	

that	eukaryotes	may	be	a	sister	group	to	archaea	and	bacteria	simultaneously.	Thus,	

a	more	complete	picture	of	the	evolution	of	organisms	can	be	obtained	by	regarding	

all	 available	 information	 inherent	 in	 sequence	 data	 and	 reconstructing	 protein	

families	from	those	sequences.	
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1.2 Large-scale protein family reconstruction 

Automated	 sequencing	 techniques	 have	 advanced	 quickly	 and	 become	 more	

affordable	 each	 year	 [Zhao	 and	 Grant	 2011],	 which	 has	 enabled	 large-scale	

sequencing	 of	 whole	 genomes	 in	 a	 fast	 and	 dependable	 manner.	 The	 rapidly	

increasing	 number	 of	 sequenced	 genomes	 now	 widely	 accessible	 in	 databases,	

paired	 with	 the	 development	 of	 computerized	 calculations	 of	 alignments	 of	

thousands	of	homologous	sequences	simultaneously	[Adams	et	al.	1992],	initiated	

the	age	of	evolutionary	genome	analyses	or	phylogenomics.	This	permitted	one,	in	

principle,	to	group	organisms	according	to	the	sum	of	evolutionary	processes	that	

are	recorded	 in	 their	genomes	 [Tatusov	et	al.	1997],	as	opposed	 to	groupings	by	

morphological	and	biochemical	traits	[Darwin	1859;	Haeckel	1866,	1874].	But	the	

availability	of	genome	data	did	not	solve	the	problem	of	how	to	deal	with	conflicting	

signals	 from	 different	 genes.	 Part	 of	 this	 problem	 is	 rooted	 in	 the	 process	 of	

identifying	 sequence	 similarities	 and	 the	 subsequent	 decision	 of	 whether	 the	

sequence	similarity	is	based	in	random	processes,	gene	duplication	(paralogy),	gene	

transfer	(xenology)	or	vertical	evolution	(orthology)	[Fitch	1970;	Kristensen	et	al.	

2011;	Roth	et	al.	2008].		

1.2.1 The importance of detecting orthologous proteins 

During	speciation,	the	genetic	information	inherent	in	nucleotide	sequences	—	and	

consequently	 in	 the	 corresponding	 amino	 acid	 sequences	—	 diverge	 over	 time.	

Orthologous	genes	from	different	genomes	can	be	used	for	the	reconstruction	of	the	

phylogenies	of	those	organisms,	facilitating	the	classification	of	species	[Fitch	1970;	

Fitch	et	al.	1995].	The	first	step	in	reconstructing	protein	families	from	molecular	

sequences	 involves	 the	 detection	 of	 orthologous	 genes	 while	 ideally	 removing	

paralogous	sequences	 from	the	dataset	[Fitch	1970].	Paralogs	are	sequences	that	

are	derived	from	gene	duplication	events	in	the	same	genome	whereas	orthologs	

represent	speciation	events	[Fitch	1970].	For	the	purpose	of	constructing	reliable	

gene	trees	for	phylogenic	 inference,	orthologous	genes	represent	the	best	way	to	
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generate	clusters	of	homologous	sequences	that	can	be	applied	for	protein	function	

inference	 or	 annotation	 and	 phylogenetic	 analyses	 [Roth	 et	 al.	 2008].	 But	

investigating	gene	duplication	events	enables	the	analysis	of	different	evolutionary	

questions	such	as	the	transition	from	the	first	eukaryotic	common	ancestor	(FECA)	

to	the	last	eukaryotic	common	ancestor	(LECA)	[Tria	et	al.	2021]	as	gene	duplication	

is	one	of	the	major	forces	of	evolution	[Ohno	1970].	However,	in	prokaryotes,	gene	

duplication	is	much	less	common	than	in	eukaryotes	[Treangen	and	Rocha	2011].	

The	 question	 of	 gene	 orthology	 is	 extremely	 crucial	 for	 phylogenetic	

inference	studies	and	the	functional	annotation	of	genes,	therefore	several	research	

groups	formed	the	‘Quest	for	Orthologs’	consortium	in	2009	[Gabaldón	et	al.	2009]	

to	 define	 benchmark	 approaches	 for	 the	 existing	 and	 new	 algorithms	 for	 the	

detection	 of	 orthologous	 sequences	 and	 to	 determine	 standardized	 protein	 sets.	

These	 include	 methods	 that	 identify	 phylogenies	 by	 comparing	 gene	 trees	 with	

species	 trees,	 such	 as	 NOTUNG	 [Chen	 et	 al.	 2000],	 Orthostrapper	 [Storm	 and	

Sonnhammer	2002],	RIO	[Zmasek	and	Eddy	2002],	PhyOP	[Goodstadt	and	Ponting	

2006],	 PhiGs	 [Dehal	 and	 Boore	 2006]),	 LOFT	 [van	 der	 Heijden	 et	 al.	 2007],	 and	

Ensembl	 Compara	 [Hunt	 et	 al.	 2018;	 Vilella	 et	 al.	 2009]	 as	 well	 as	 graph-based	

methods,	in	which	the	first	step	is	the	identification	of	pairwise	sequence	alignments	

(BBH	[Mushegian	and	Koonin	1996],	COG	[Tatusov	et	al.	1997],	InParanoid	[Remm	

et	al.	2001],	Panther	[Thomas	et	al.	2003],	OrthoMCL	[Li	et	al.	2003],	OMA	[Dessimoz	

et	al.	2005],	eggNOG	[Jensen	et	al.	2008],	and	HomoloGene	[Wheeler	et	al.	2008]).	

Additionally,	there	are	ortholog	detection	methods	that	combine	multiple	orthology	

prediction	models	 by	 introducing	 a	 confidence	 score	 (MetaPhOrs	 [Pryszcz	 et	 al.	

2011]).	These	algorithms	can	be	either	manual	or	fully	automated	and	may	have	an	

optional	step	for	protein	family	reconstruction	and	annotation.	The	large	number	of	

methods	indicates	that	no	optimal	solution	has	been	found.	There	is	a	trade-off	for	

specificity	and	sensitivity	values	in	benchmarking	analyses	of	graph-based	methods	

compared	 to	 tree-based	models.	 Graph-based	 algorithms	mostly	 perform	well	 in	

sensitivity	but	have	low	specificity	(high	false	positive,	but	low	false	negative	rates	

in	 ortholog	 detection)	 which	 results	 in	 large	 and	 very	 inclusive	 (paralog-rich)	

protein	 clusters,	whereas	 tree-based	algorithms	generally	have	higher	 specificity	

scores	and	low	sensitivity	and	generate	smaller	clusters	[Chen	et	al.	2007;	Hulsen	et	
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al.	2006]	in	which	ancient	paralogs	fall	into	different	clusters.	These	trade-offs	need	

to	be	considered	before	setting	up	a	routine	that	culminates	in	clusters	destined	for	

multiple	alignments	and	phylogenetic	analysis.	

Graph-based	detection	models	can	be	separated	into	two	categories	based	on	

the	 inference	 of	 orthologous	 sequences	 by	 1)	 pairwise	 or	 2)	multi-species	 gene	

comparisons.	Algorithms	such	as	Roundup	[DeLuca	et	al.	2006;	DeLuca	et	al.	2012],	

InParanoid	[Remm	et	al.	2001;	Sonnhammer	and	Östlund	2015]	or	the	detection	of	

reciprocal	(bidirectional)	best	BLAST	(basic	local	alignment	search	tool)	hits	(rBBH)	

[Wolf	and	Koonin	2012]	fall	into	the	first	category	while	multi-species	comparisons	

are	 employed	by	methods	 like	OMA	 (orthologous	matrix)	 [Dessimoz	et	 al.	 2005;	

Zahn-Zabal	et	al.	2020],	COG	(clusters	of	orthologous	groups)	[Galperin	et	al.	2019;	

Tatusov	 et	 al.	 1997],	 eggNOG	 (evolutionary	 genealogy	 of	 genes:	 non-supervised	

orthologous	groups)	 [Huerta-Cepas	et	al.	2019;	 Jensen	et	al.	2008],	or	OrthoMCL	

[Fischer	et	al.	2011;	Li	et	al.	2003].	

BLAST	 is	 based	 on	 a	 heuristic	 approximation	 of	 the	 Smith-Waterman	

algorithm	[Smith	and	Waterman	1981]	to	expedite	the	generation	of	local	sequence	

alignments.	Consequently,	algorithms	based	on	the	calculation	of	all-vs-all	pairwise	

sequence	alignments	with	BLAST	[Altschul	et	al.	1990]	and	the	subsequent	filtering	

for	 rBBH	 are	 some	 of	 the	most	 straightforward	 and	 efficient	methods	 to	 detect	

orthologs	[Dalquen	and	Dessimoz	2013;	Wolf	and	Koonin	2012].	A	sequence	pair	is	

considered	 a	 reciprocal	 hit	 if	 there	 is	 an	 existing	 alignment	between	gene	1	 and	

gene	2	that	is	also	found	in	the	other	direction	(gene	2	and	gene	1).	As	orthologous	

sequences	are	related	by	species	divergence,	they	tend	to	be	each	other’s	nearest	

neighbors	 in	 reciprocal	 comparison	 of	 two	 genomes	 [Enright	 et	 al.	 2002].	 Thus,	

filtering	for	rBBH	results	in	a	list	of	sequence	pairs	related	through	local	sequence	

identities	that	are	most	likely	to	be	orthologs.		

As	 another	 pairwise	 method,	 Roundup	 was	 designed	 to	 efficiently	 detect	

orthologous	 sequences	 in	 large	 datasets	 with	 relatively	 low	 resource	 demand	

[DeLuca	et	al.	2012].	The	reciprocal	smallest	distance	employed	by	the	algorithm	

combines	 rBBH	 with	 global	 alignments	 and	 maximum	 likelihood	 evolutionary	

distances	between	sequences.	This	method	may	represent	an	effective	algorithm	for	

large	sequence	datasets,	but	the	search	is	limited	to	the	genomes	from	the	UniProt	
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database,	which	is	included	in	the	Roundup	database	spanning	eukaryotes,	bacteria,	

archaea,	viruses,	and	viroids,	but	represents	only	a	fraction	of	available	sequence	

data.		

Processes	to	improve	upon	the	pairwise	method	exist.	The	National	Center	

for	 Biotechnology	 Information	 (NCBI)	 employs	 an	 algorithm	 that	 uses	 not	 only	

bidirectional	pairwise	gene	comparisons	to	detect	orthologs	for	the	reconstruction	

of	 their	COGs	but	detects	 triangles	of	best	BLAST	hits	after	 removing	paralogous	

sequences	 [Galperin	 et	 al.	 2019;	 Tatusov	 et	 al.	 2000],	 which	 represents	 a	 more	

stringent	approach	for	the	filtering	of	orthologous	sequences.	The	OMA	algorithm	

[Dessimoz	et	al.	2005]	employs	a	strategy	of	filtering	for	rBBH	as	an	initial	step	while	

removing	out-paralogs	and	leaving	in-paralogs	and	thus	generating	a	database	of	

pairwise	orthologs.	Subsequently,	hierarchical	orthologous	groups	(HOGs)	and	OMA	

groups	 (maximum	 weight	 cliques)	 are	 reconstructed	 by	 building	 a	 network	 of	

sequences	 connected	 by	 their	 pairwise	 identity	 and	 clustering	 the	 proteins	 into	

families	 [Zahn-Zabal	et	 al.	 2020].	 In	 contrast	 to	 other	 algorithms,	 the	 full	 Smith-

Waterman	algorithm	[Altenhoff	et	al.	2018;	Roth	et	al.	2008]	is	applied	generating	

more	accurate	rBBH	compared	to	alignments	based	on	BLAST	searches.	However,	

this	 requires	 considerably	more	 resources	which	makes	 it	 impractical	 for	 larger	

datasets.	

	 A	 number	 of	 tree-based	 orthology	 prediction	 algorithms	 use	 tree	

reconciliation	of	 the	gene	 trees	with	a	 species	 tree	and	are	 therefore	 considered	

more	 accurate	 in	 predicting	 paralogous	 sequences	 but	 also	 require	 more	

computational	resources	compared	to	graph-based	methods	[Lechner	et	al.	2014].	

However,	 phylogenetic	 inference	 has	 several	 practical	 issues	 such	 as	 LGT,	 false	

identification	 of	 homologous	 sequences,	 and	 variability	 of	 evolutionary	 rate	

[Brocchieri	2001]	which	 limit	 the	accuracy	of	 the	 species	 tree	employed	 for	 tree	

reconciliation.	 Examples	 of	 tree-based	 prediction	 algorithms	 that	 employ	 tree	

reconciliation	techniques	are	PhylomeDB	[Huerta-Cepas	et	al.	2008],	TreeFam	[Li	et	

al.	2006;	Schreiber	et	al.	2014],	and	Ensembl	Compara	[Vilella	et	al.	2009].		
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To	circumvent	the	issue	of	applying	species	trees	for	tree	reconciliation,	the	

algorithm	of	LOFT	(levels	of	orthology	from	trees)	[van	der	Heijden	et	al.	2007]	uses	

a	 species	 overlap	 rule	 allowing	 the	 detection	 of	 duplication	 events	 without	

information	about	the	evolutionary	history	of	the	involved	species.	This	method	also	

employs	a	species	tree	but	does	not	focus	on	the	tree	topology.	However,	tree-based	

orthology	prediction	algorithms	are	generally	not	suitable	 for	 large-scale	protein	

family	reconstruction	among	prokaryotic	genomes,	such	as	those	performed	in	the	

course	of	this	work,	as	there	are	currently	no	accepted	species	trees	available	that	

would	 serve	 as	 a	 standard	 for	 comparison	 for	 all	 of	 the	 thousands	 of	 genomes	

currently	available.	Generating	such	phylogenies	was	one	of	the	aims	of	this	thesis.	

Comparing	 the	 different	 algorithms	 for	 orthology	 inference,	 the	 standard	

bidirectional	 best	 BLAST	 hit	 approach	 is	 best	 suited	 for	 a	 large	 dataset	 such	 as	

applied	in	this	work.	The	filtering	for	rBBH	is	the	most	flexible	and	easily	adapted	

for	bigger	datasets.	Other	algorithms	are	either	higher	in	resource	demand	or	are	

limited	by	the	genomes	included	in	their	databases.	Furthermore,	the	filtering	for	

rBBH	 often	 outperforms	 or	 performs	 similarly	 as	 well	 as	 the	 more	 complex	

algorithms	 of	 orthology	 projects	 [Altenhoff	 and	 Dessimoz	 2009;	 Altenhoff	 et	 al.	

2016].	 The	 relatively	 low	 resource	 demand,	 easy	 and	 flexible	 application	 paired	

with	the	generally	good	results	in	benchmarking	studies	determined	the	decision	to	

employ	rBBHs	for	the	analyses	included	in	the	present	work.		

1.2.2 Influence of stringency on protein family properties 

One	 of	 the	 critical	 parameters	 of	 protein	 family	 reconstruction	 is	 the	 stringency	

threshold	of	the	pairwise	global	sequence	alignments.	The	stringency	is	expressed	

as	the	amino	acid	sequence	identity	of	the	employed	matrix.	Sequence	similarity	of	

a	high	stringency	such	as	50-60%	amino	acid	sequence	identity	gives	rise	to	small	

clusters	of	homologous	protein	sequences	(protein	families)	while	creating	a	larger	

number	of	orthologous	groups.	A	low	stringency,	for	example	in	the	range	of	20%	

up	to	30%,	generates	a	smaller	number	of	more	inclusive	clusters	[Ku	et	al.	2015].	

The	 present	 work	 was	 conducted	 with	 the	 purpose	 of	 examining	 aspects	 of	

prokaryotic	and	of	eukaryotic	genome	evolution,	especially	the	intersection	of	both.	
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Therefore,	 a	 low	 stringency	 threshold	 was	 to	 be	 chosen	 as	 evolutionary	 events	

between	eukaryotes	and	prokaryotes	date	back	as	far	as	1.6	billion	years	ago	[Betts	

et	al.	2018]	and	lower	stringency	during	protein	family	reconstruction	facilitates	the	

study	of	early	molecular	evolution	[Cantarel	et	al.	2006;	Landan	and	Graur	2009].		

A	 problem	 arises	 at	 low	 stringencies,	 however.	 In	 a	 sufficiently	 large	

database,	such	as	the	one	used	in	this	thesis,	even	unrelated	sequences	can	produce	

global	alignments	with	more	than	20%	amino	acid	identity	[Jaroszewski	et	al.	2002].	

Because	there	are	20	amino	acids,	one	might	think	that	random	sequence	similarity	

would	be	in	the	range	of	5%	sequence	identity,	but	this	is	only	the	case	if	all	amino	

acids	 are	 equally	 frequent	 in	 proteins,	 which	 is	 not	 the	 case	 [Athey	 et	 al.	 2017;	

Dayhoff	and	Eck	1968;	Dessimoz	et	al.	2006].	Due	to	the	unequal	distribution	of	the	

amino	acids,	unrelated	sequences	can	have	higher	amino	acid	identity	—	especially	

in	 large	 sequence	 databases.	 This	 is	why	 the	 range	 from	 20%	 to	 30%	 sequence	

identity	is	generally	named	the	twilight	zone	[Doolittle	1986;	Rost	1999;	Jeffroy	et	

al.	2006].	Studies	of	sequence	alignments	with	less	than	25%	amino	acid	identity	

show	that	only	a	fraction	exhibits	true	sequence	homology	[Rost	1999].		

In	light	of	this,	 it	 is	not	surprising	that	previous	studies	have	shown	that	a	

pairwise	sequence	 identity	below	25%	generates	very	 inaccurate	alignments	and	

therefore	phylogenetic	trees	reconstructed	from	these	alignments	yield	unreliable	

topologies	 [Landan	 and	Graur	2009;	Rost	 1999],	whereby	unreliable	means	 that	

alignments	and	trees	can	contain	random	or	misleading	information.	Previous	work	

has	also	shown	that	the	protein	families	with	25%	sequence	identity	tend	to	recover	

the	roughly	30	protein	families	that	are	generally	recognized	as	being	universal	to	

all	genomes	[Ku	et	al.	2015].	This	is	symptomatic	for	a	general	problem	encountered	

when	studying	early	evolution.	Lower	stringency	detects	deeper	similarities,	but	the	

clusters	become	very	large	and	some	proteins	that	are	related	at	the	level	of	three-

dimensional	structures	have	effectively	no	sequence	similarity.	There	are	limits	to	

what,	and	how	far	back	in	time,	sequence	similarity	can	probe.	The	present	work	

focused	on	the	level	of	sequence	similarity	that	is	suitable	for	constructing	trees	for	

the	 purpose	 of	 phylogeny	 which	 is	 equal	 or	 greater	 than	 25%.	 This	 threshold	

excludes	 some	 sequences	 from	 analysis	 but	 should	 produce	 results	 that	 are	

representative	for	the	data	as	a	whole,	unless	there	is	some	inherent	bias	such	that	
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sequences	sharing	≤25%	identity	evolve	in	a	fundamentally	different	manner	than	

those	with	≥25%	sequence	identity.	There	is	currently	no	evidence	to	suggest	such	

a	bias,	notwithstanding	the	well-known	poor	sequence	conservation	of	membrane	

spanning	domains	in	proteins	[Sojo	et	al.	2016].		

Another	 parameter	 used	 for	 the	 identification	 of	 reliable	 sequence	

alignments	is	the	expectation	(E)	value.	It	displays	a	means	to	identify	significant	

hits	in	a	dataset	of	nucleotide	or	protein	sequences.	The	lower	the	E	value,	the	less	

chance	 of	 incidental	 or	 random	 alignment	 hits.	 Calculation	 of	 the	 E	 value	 is	

dependent	on	the	length	of	the	sequences	that	are	compared	and	both	the	size	and	

the	 amino	 acid	 frequency	 distribution	 of	 the	 database	 that	 is	 used	 to	 obtain	 the	

pairwise	 sequence	 identities.	 This	 parameter	 needs	 to	 be	 prespecified	 before	

starting	the	pairwise	alignment	program.	In	clustering	practice,	an	E	value	threshold	

of	≤10-10	is	typically	used	for	the	reconstruction	of	protein	families	paired	with	the	

25%	 amino	 acid	 sequence	 identity	 threshold,	 though	 the	 25%	 criterion	 is	more	

stringent.	

1.2.3 Clustering of large protein sequence datasets 

At	 the	 onset	 of	 this	 investigation	 in	 2017,	 few	 groups	 in	 the	 world	 were	 using	

clustering	methods	to	generate	trees	for	all	genes	for	significant	genome	samples.	

The	majority	employed	only	a	few	organisms	for	their	studies	[Cotton	and	McInerny	

2010;	Esser	et	al.	2004;	Pisani	et	al.	2007;	Rochette	et	al.	2014;	Thiergart	et	al.	2012].	

With	 the	 conclusion	 of	 this	work,	 this	 approach	 is	 now	more	widespread	 in	 the	

evolutionary	genomics	community.	Examples	include	the	estimation	of	the	roots	of	

the	‘tree	of	life’	[Weiss	et	al.,	2016]	and	the	roots	within	its	archaeal	[Williams	et	al.	

2017]	 and	 bacterial	 [Coleman	 et	 al.	 2020]	 subtrees.	 With	 the	 number	 of	 fully	

sequenced	genomes	growing,	so	does	the	need	for	methods	to	extract	evolutionary	

information	from	the	increasing	data	using	phylogenomics,	as	well	as	methods	for	

clustering	 in	order	to	study	the	relationship	between	genes	among	all	sequenced	

genomes	as	the	trees	of	all	data	might	present	a	picture	that	differs	from	the	tree	

produced	by	the	ca.	30	genes	that	are	universally	distributed	across	genomes.	The	

present	work	is	intended	to	deliver	a	contribution	towards	that	goal.	
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As	mentioned	 in	 section	1.2.1,	protein	 sequence	clustering	 is	necessary	 to	

identify	homologous	genes	from	a	number	of	organisms,	so	that	the	phylogenetic	

relationship	between	the	genes	and	the	organisms	can	be	analyzed.	The	approach	

employed	for	the	present	work	was	developed	for	generating	all	possible	gene	trees	

for	 all	 curated	 prokaryotic	 organisms	 from	 the	 Reference	 Sequence	 database	

(RefSeq)	[O'Leary	et	al.	2016]	available	at	the	beginning	of	this	thesis	as	well	as	a	

large	 sample	 of	 curated	 eukaryotic	 genomes	 displaying	 a	 wide	 range	 of	

representatives	from	the	six	eukaryotic	supergroups	(GenBank	[Benson	et	al.	2014],	

JGI	[Nordberg	et	al.	2014],	Ensembl	Protists	[Kersey	et	al.	2018],	NCBI	[O'Leary	et	

al.	2016]).	This	selection	was	comprised	of	5,655	prokaryotic	organisms	—	5,443	

bacterial	 and	212	archaeal	 strains	—	with	 a	 total	 number	of	 19,050,992	protein	

sequences	 and	 150	 eukaryotic	 genomes	with	 3,420,731	 protein	 sequences.	 This	

data	was	used	to	generate	both	eukaryote	and	prokaryote	specific	protein	families	

and	 combined	 clusters	 containing	 both	 eukaryotic	 and	 prokaryotic	 genes.	 These	

clusters	 were	 then	 used	 for	 phylogenomic	 analyses	 to	 study	 the	 evolutionary	

transition	 from	 prokaryotic	 to	 eukaryotic	 cells.	 There	 are	 different	 methods	 for	

protein	family	reconstruction	that	can	be	applied,	and	different	applications	for	the	

resulting	 gene	 clusters	—	 for	 example	 functional	 characterization,	 phylogenetic	

inference,	 and	 structural	 annotation	 [Altenhoff	 and	 Dessimoz	 2009;	 Roth	 et	 al.	

2008].	Handling	the	extensive	amount	of	sequence	information	applied	in	this	work	

required,	 during	 the	 course	 of	 this	 investigation,	 the	 optimization	 of	 the	 applied	

algorithms	as	well	as	improving	running	time	and	memory	requirements	for	each	

step	during	the	reconstruction	of	protein	clusters.		

As	highlighted	in	section	1.2.1,	the	detection	of	orthologous	sequences	in	a	

dataset	of	this	extent	is	best	performed	by	calculating	all-vs-all	BLAST	searches	and	

subsequent	filtering	for	rBBH	according	to	the	stringency	thresholds	discussed	in	

section	 1.2.2.	 Although	 the	 BLAST	 algorithm	 uses	 an	 approximation	 method	 to	

expedite	 the	 calculation	 of	 local	 sequence	 alignments	 [Altschul	 et	 al.	 1990],	 it	 is	

generally	 sufficient	 for	 detecting	 homologous	 sequences.	 For	 the	 purpose	 of	

clustering	 however,	 the	 local	 pairwise	 alignments	 produced	 by	 BLAST	 are	 less	

reliable	than	generating	global	alignments	using	the	Needleman-Wunsch	algorithm	

[Needleman	and	Wunsch	1970].	Therefore,	the	Needleman-Wunsch	algorithm	was	
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applied	to	the	rBBH	of	the	initial	BLAST	search	in	order	to	calculate	global	amino	

acid	sequence	pairs	accordingly.	The	calculation	of	global	alignments	could	not	be	

performed	with	all	22	million	(19,050,992	prokaryotic	and	3,420,731	eukaryotic)	

protein	sequences	in	the	present	study,	as	the	Needleman-Wunsch	algorithm	would	

take	 considerably	 more	 time	 and	 computational	 resources.	 The	 resulting	 list	 of	

sequence	 pairs	 was	 thus	 filtered	 for	 global	 sequence	 identity	 of	 ≥25%	 and	

subsequently	 applied	 to	 the	Markov	 Clustering	 algorithm	 (MCL)	 to	 generate	 the	

protein	 families	 [Enright	 et	 al.	 2002;	 van	 Dongen	 2000],	 as	 has	 been	 done	 in	

previous	studies	involving	the	reconstruction	of	protein	families	on	a	larger	scale	

[Ku	et	al.	2015;	Ku	and	Martin	2016;	Nelson-Sathi	et	al.	2012;	Weiss	et	al.	2016].		

While	 the	protein	 clusters	 generated	by	MCL	are	useful	 for	phylogenomic	

analysis,	 they	 are	 imperfect.	 One	 of	 the	 sensitive	 parameters	 in	 clustering	 is	 the	

generation	of	 the	all-by-all	matrix	of	pairwise	alignments	 in	the	 first	BLAST	step.	

With	the	present	data,	this	involved	computing	5	́ 	1014	single	gene	comparisons	for	

the	19,050,992	prokaryotic	and	3,420,731	eukaryotic	protein	sequences,	a	serious	

computational	 challenge.	 Recently,	 a	 new	 sequence	 alignment	 program	 was	

developed	—	DIAMOND	[Buchfink	et	al.	2014]	—	which	is	significantly	faster	than	

BLAST.	Initially	the	algorithm	was	designed	for	the	processing	of	short	raw	reads	

from	 next	 generation	 sequence	 data,	 comparing	 DNA	 sequences	 to	 protein	

databases	 such	 as	 employed	 by	 BLASTX.	 Although	 the	 DIAMOND	 algorithm	

improves	upon	BLAST	in	terms	of	speed,	at	the	time	the	pairwise	sequence	identity	

matrix	 at	 the	 foundation	 of	 the	 present	 work	 was	 generated	 there	 was	 no	

functioning	 implementation	 to	 compare	 protein	 sequences	 to	 protein	 databases,	

hence	BLASTP	was	used.	However,	the	main	computational	limitation	in	clustering	

is	not	the	generation	of	the	pairwise	identity	matrix,	 it	 is	the	size	of	the	resulting	

matrix	that	has	to	be	filtered	and	ultimately	read	by	the	MCL	algorithm.		

The	 present	 work	 was	 substantially	 enabled	 by	 the	 central	 computing	

facilities	 at	 the	 University	 of	 Düsseldorf,	 the	 Zentrum	 für	 Informations-	 und	

Medientechnologie	(ZIM).	The	ZIM	provided	a	computing	environment	that	allowed	

the	initiation	of	algorithms	requiring	several	terabytes	of	random-access	memory	

(RAM)	at	a	time	on	a	single	high	performance	computing	cluster,	an	environment	

specifically	designed	for	the	kind	of	work	performed	in	this	thesis.	This	large	amount	
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of	 RAM	 greatly	 facilitated	 this	 work	 by	 enabling	 the	 calculation	 of	 large	 matrix	

analyses	for	and	in	the	clustering	procedure.	Specifically,	the	rBBH	step	mentioned	

above	involves	the	filtering	of	reciprocal	best	BLAST	hits	with	the	effect	of	reducing	

the	frequency	of	paralogs	among	clusters	[Wolf	and	Koonin	2012].	However,	 this	

simple	procedure	becomes	complicated	if	the	number	of	BLAST	hits	generates	a	file	

size	that	exceeds	the	available	RAM	because	for	the	filtering	of	the	best	reciprocal	

sequence	pairs	all	best	BLAST	hits	need	to	be	retained	in	internal	storage.	Without	

a	very	large	RAM	and	restructuring	the	previously	employed	filtering	algorithms,	

this	step	becomes	a	bottleneck	in	the	phylogenomic	and	clustering	pipeline.	This	is	

one	reason	why	comparatively	few	bioinformatic	groups	cluster	large	data	sets.	The	

local	computing	environment	was	important	for	the	success	of	the	present	work.		

After	filtering	for	significant	sequence	pairs,	the	next	step	in	phylogenomic	

inference	 involves	 the	 sorting	 of	 sequences	 from	 the	 different	 genomes	 into	

collections	of	homologous	genes	—	clustering	of	genes	into	protein	families.	These	

families	 will	 then	 be	 applied	 for	 the	 multiple	 sequence	 alignment	 in	 order	 to	

construct	 phylogenetic	 gene	 trees	 for	 evolutionary	 analyses.	 The	 clustering	 of	

sequences	 into	 protein	 families	 can	 be	 performed	with	 different	 algorithms	 that	

employ	 graph-based	 (MCL	 [Enright	 et	 al.	 2002;	 van	 Dongen	 2000],	 ProClust	

[Pipenbacher	et	al.	2002]),	sequence-based	(CD-HIT	[Fu	et	al.	2012],	UCLUST	[Edgar	

2010],	InParanoid	[Remm	et	al.	2001],	LinClust	[Steinegger	and	Söding	2018])	or	

tree-based	algorithms	(TreeCluster	[Balaban	et	al.	2019]).	These	algorithms	often	

use	prefiltering	algorithms	—	especially	those	that	are	mostly	automated.	This	 is	

necessary	to	reduce	the	computing	time	of	cluster	reconstruction	but	reduces	the	

accuracy	of	the	resulting	protein	clusters.	However,	the	pipeline	employed	in	this	

work	was	designed	to	retain	as	much	phylogenetic	information	as	possible	for	the	

generation	 of	 the	 protein	 families.	 The	MCL	 algorithm	 creates	 a	 network	 of	 the	

applied	 sequence-IDs	 (nodes)	 that	 are	 connected	 by	 edges	 that	 are	 weighted	

according	 to	 a	predetermined	value	—	 in	 this	 case	 the	global	pairwise	 sequence	

identity.	Flow	simulation	modeling	is	applied	in	order	to	remove	weak	connections	

and	 reinforce	 strong	 connections	 between	 the	 sequences	 resulting	 in	 clusters	 of	

sequences	 that	 represent	 the	 protein	 families.	 This	 is	 another	 step	 that	 involves	

significant	computational	resources.	
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In	 order	 to	 calculate	 phylogenetic	 trees	 using	 the	 maximum	 likelihood	

method,	the	sequences	need	to	be	aligned,	that	is,	the	homologous	positions	in	the	

protein	coding	genes	need	to	be	positioned	in	the	same	column	of	a	matrix.	There	

are	a	number	of	programs	available	 for	multiple	alignment	of	protein	sequences,	

none	 are	 optimal	 [Landan	 and	 Graur	 2007].	 In	 the	 present	 work,	 the	 MAFFT	

algorithm	was	used	[Katoh	2002],	which	takes	information	from	the	initial	pairwise	

sequence	alignments	into	account.		

1.2.4 Applications for protein clusters 

1.2.4.1 Available databases of protein clusters 

There	are	various	openly	accessible	databases	of	protein	clusters	for	phylogenetic	

purposes	 assembled	 on	 the	 internet.	 Some	 of	 the	 most	 frequently	 used	 cluster	

databases	for	the	functional	annotation	of	genes	and	for	comparative	genomics	are	

the	variations	of	the	clusters	of	orthologous	genes	(COGs)	from	the	NCBI	[Tatusov	

et	al.	1997].	As	mentioned	in	section	1.2.1,	COGs	are	orthologous	groups	generated	

by	 graph-based	 orthology	 prediction	 methods	 applying	 multi-species	 gene	

comparisons.	 The	 linking	 of	 sequences	 of	 best	 BLAST	 searches	 into	 triangular	

sequence	pairs	employed	by	the	algorithm	is	very	stringent	and	limits	the	detection	

of	many	protein	families.	However,	this	generates	highly	connected	clusters	for	the	

reliable	 functional	 annotation	 of	 sequences.	 Currently,	 the	 database	 includes	 26	

functional	 categories	 separated	 into	 4,877	 COGs	 that	 include	 3,213,025	 proteins	

from	1,309	prokaryotic	organisms	(1,187	bacteria	and	122	archaea)	[Galperin	et	al.	

2021].	Variations	of	the	COG	database	were	made	in	2003	by	introducing	eukaryotic	

genomes	to	form	eukaryotic	orthologous	groups	(KOGs)	[Tatusov	et	al.	2003]	and	

the	 distinction	 of	 archaeal	 COGs	 (arCOGs)	 in	 2014	 [Makarova	 et	 al.	 2015]	

simultaneously	including	a	new	level	of	classification	—	superclusters	that	connect	

two	or	more	arCOGs	to	better	portray	gene	family	evolution.	
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The	database	eggNOG	[Jensen	et	al.	2008]	presently	contains	4,445	bacterial	

and	168	archaeal	genomes,	477	eukaryotic	organisms	and	2,502	viral	proteomes	

[Huerta-Cepas	 et	 al.	 2019].	 The	 4.4	million	 orthologous	 groups	 contained	 in	 the	

database	are	reconstructed	by	a	similar	approach	employed	for	the	computation	of	

COGs/KOGs	and	can	be	applied	to	predict	functional	annotation	as	well	as	protein	

domains.	The	 eggNOG	database	 extends	 the	number	of	 orthologous	 groups	 from	

COG/KOG	including	a	more	varied	number	of	organisms	to	enhance	phylogenetic	

resolution.	

	 There	are	various	other	graph-based	databases	of	orthologous	groups.	Some	

of	 the	 more	 frequently	 employed	 are	 OrthoMCL	 [Li	 et	 al.	 2003],	 OrthoDB	

[Kriventseva	et	al.	2019],	InParanoid	[Remm	et	al.	2001],	and	OMA	[Dessimoz	et	al.	

2005].	The	Pfam	database	[Mistry	et	al.	2021]	employs	Hidden	Markov	models	to	

reconstruct	 a	 profile	 of	 the	 seed	 sequence	 that	 is	 used	 for	 a	 search	 against	 the	

integrated	sequence	database	of	protein	families.	This	procedure	is	applied	to	sort	

sequences	into	the	protein	families	included	in	the	database.	A	similar	approach	is	

applied	by	Prosite,	which	is	comprised	of	a	database	of	profiles	and	patterns	that	

are	 designed	 to	 detect	 specific	 protein	 families	 [Sigrist	 et	 al.	 2002].	 A	 different	

approach	to	infer	orthology	of	sequences	is	to	employ	phylogenetic	trees	as	a	guide.	

Algorithms	that	apply	guide	trees	to	reconstruct	protein	families	are	for	example	

TreeFam	[Schreiber	et	al.	2014],	Ensembl	Compara	[Vilella	et	al.	2009],	Panther	[Mi	

et	al.	2013],	PhylomeDB	[Huerta-Cepas	et	al.	2014],	PhyloFacts	[Datta	et	al.	2009]	

and	PhIGs	[Dehal	and	Boore	2006].		

The	 main	 differences	 between	 the	 aforementioned	 databases	 are	 the	

restriction	 to	 specific	 taxonomic	 groups	 (for	 example:	 vertebrates	 —	 Ensembl,	

animals	—	TreeFam,	fungi	and	metazoans	—	PhIGs,	eukaryotes	—	OrthoMCL)	or	

limiting	 the	 applied	 data	 to	 fully	 sequenced	 and/or	 manually	 curated	 genomes	

(COG/KOG,	TreeFam).	Manual	curation	of	the	reconstructed	protein	families	(Pfam,	

COG/KOG),	 the	 use	 of	 additional	 information	 such	 as	 existing	 phylogenetic	 trees	

(PhyloFacts)	 or	 protein	 domain	 information	 (Pfam,	 Prosite)	 and	 functional	 sites	

(Prosite)	 are	 additional	 distinctions	 between	 these	 databases.	 Furthermore,	 the	

tree-based	 algorithms	 can	 be	 distinguished	 by	 the	 kind	 of	 phylogenetic	 trees	

employed	 during	 the	 process	 of	 assigning	 proteins	 into	 families;	 automatic	 tree	
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reconstruction	(Panther,	PhylomeDB)	or	manual	curation	of	gene	trees	(TreeFam,	

Ensembl).	The	databases	are	mostly	used	 for	 functional	 annotation	of	 genes,	but	

some	 also	 contain	 expression	 information	 and	 can	 be	 applied	 for	 phylogenetic	

inference	or	the	characterization	of	biochemical	properties.	Due	to	the	possibility	to	

infer	gene	losses	or	duplications	in	orthologous	groups	reconstructed	by	tree-based	

methods,	they	can	be	more	informative	than	groups	reconstructed	by	graph-based	

pipelines	 [Schreiber	 et	 al.	 2014].	 However,	 graph-based	 algorithms	 for	 protein	

family	 reconstruction	 are	 generally	 computationally	 less	 demanding	 and	 can	 be	

more	readily	applied	to	very	large	datasets.	

As	 detailed,	 the	 aforementioned	 databases	 have	 in	 common	 that	 they	

encompass	only	a	 small	 fraction	of	 the	available	 sequenced	genomes	or	are	very	

stringent	during	 the	assignment	of	 sequences	 into	protein	 families,	 thus	creating	

only	 very	 few	 protein	 families.	 Therefore,	 they	 only	 represent	 a	 very	 limited	

overview	of	the	whole	data.	In	general,	the	better	curated	and	the	more	reliable	a	

given	sequence	database	is,	the	smaller	the	number	of	genomes	it	encompasses	and	

the	 more	 slowly	 it	 can	 be	 updated.	 Increasing	 the	 number	 of	 genomes	 in	 the	

databases	is	difficult	due	to	simple	resource	demand.	Focusing	on	only	a	subset	of	

organisms	 can	be	necessary	 for	 certain	 analyses	but	 studying	 early	phylogenetic	

events	between	prokaryotes	and	eukaryotes	should	encompass	as	much	available	

data	as	possible.	As	of	March	2021,	the	number	of	complete	sequenced	genomes	in	

RefSeq	 increased	 to	1,120	archaea	and	210,095	bacteria.	Adding	eukaryotes	 and	

virus	genomes,	the	number	increases	to	223,187	genomes	in	total.	This	is	a	more	

than	five-fold	increase	in	archaeal	genomes	and	almost	40-fold	increase	in	bacterial	

genomes	 compared	 to	 the	 2016	 dataset	 employed	 in	 this	 work.	 This	 extensive	

biological	diversity	of	 eukaryotes	 and	prokaryotes	might	 give	 additional	 insights	

into	their	deeper	phylogenies.	Therefore,	existing	algorithms	need	to	be	adapted	in	

order	 to	 process	 the	 fast-progressing	 amount	 of	 genomic	 data,	 if	 one	 wants	 to	

reconstruct	all	gene	trees	from	the	available	data.	The	methods	developed	during	

the	course	of	this	work	represent	a	step	towards	this	goal.	
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1.2.4.2 Eukaryote-prokaryote clusters 

As	 stated	 previously,	 there	 are	 various	 resources	 available	 for	 the	 functional	

annotation	of	proteins,	 structural	prediction,	and	phylogenetic	 inference	 that	are	

based	 on	 protein	 clusters.	 These	 clusters	 have	 their	 function	 and	 warranty.	

However,	protein	 families	available	 in	 the	public	databases	have	 in	common	that	

they	 are	 specific	 for	 a	 certain	 group	 of	 organisms	 that	 span	 either	 eukaryotic	or	

prokaryotic	 species	 and	 often	 only	 a	 subset	 of	 either.	 When	 studying	 the	

evolutionary	 history	 of	 how	 eukaryotes	 arose	 from	 bacteria	 and	 archaea,	 it	 is	

mandatory	to	use	protein	families	that	include	homologs	from	all	three	domains	of	

life	[Brueckner	and	Martin	2020;	Ku	et	al.	2015;	Ku	and	Martin	2016;	Nagies	et	al.	

2020].	As	of	the	time	of	writing,	no	other	reports	of	all	phylogenetic	trees	for	protein	

coding	 genes	 that	 can	 be	 detected	 in	 a	 large	 sample	 of	 both	 eukaryotes	 and	

prokaryotes,	 such	as	presented	 in	 this	work,	 could	be	 identified	 in	 the	 literature	

databases.	However,	phylogenetic	analyses	of	the	early	evolution	of	eukaryotes	are	

dependent	 on	 eukaryote-prokaryote	 protein	 families	 as	 they	 represent	 the	most	

information-rich	resource	to	gain	insights	into	eukaryote	origin.	

	 Phylogenetic	 trees	 generated	 to	 study	 the	 transition	 from	 prokaryotes	 to	

eukaryotes	 generally	 focus	 on	 a	 small	 sample	 of	 eukaryotes	 [Pisani	 et	 al.	 2007;	

Rochette	et	al.	2014;	Thiergart	et	al.	2012]	or	only	one	eukaryotic	genome	[Cotton	

and	McInerny	2010;	Esser	et	al.	2004],	because	assigning	prokaryotic	sequences	to	

their	eukaryotic	homolog	is	extremely	complicated	with	a	big	dataset	of	organisms.	

Proteins	 of	 eukaryotes	 are	 generally	 much	 longer	 than	 their	 prokaryotic	

counterparts	 [Brocchieri	 and	 Karlin	 2005;	 Liang	 and	 Riley	 2001;	 Zhang	 2000],	

which	might	 be	 in	 part	 due	 to	 their	 different	 gene	 structure	 influenced	 by	 gene	

fusion	events	[Brocchieri	and	Karlin	2005],	ecological	habitats	[Tekaia	et	al.	2002]	

as	well	 as	 enhanced	 energy	 availability	 due	 to	 the	 increased	 ATP	 production	 in	

eukaryotes	by	mitochondria	[Martin	2017].	Therefore,	global	alignments	between	

eukaryotic	 and	 prokaryotic	 organisms	 result	 in	 very	 unspecific	 sequence	

alignments	and	the	approach	to	generate	protein	families	outlined	previously	could	

not	be	maintained.	Stated	another	way,	eukaryotic	proteins	often	combine	protein	

domains	 in	 ways	 not	 observed	 in	 prokaryotes,	 this	 tends	 to	 connect	 eukaryotic	
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protein	 families	 to	 prokaryotic	 sequences	 that,	 in	 the	 absence	 of	 eukaryotic	

homologs,	 would	 tend	 to	 fall	 into	 separate,	 unrelated	 clusters.	 This	 impairs	 the	

clustering	procedure	and	compromises	the	quality	of	the	resulting	clusters.		

The	 eukaryote-prokaryote	 clustering	 method	 employed	 in	 this	 work	 was	

developed	by	Ku	et	al.	[2015]	and	was	adapted	here	to	manage	the	larger	dataset.	

The	procedure	is	simple.	In	a	first	step,	the	sequences	from	genomes	of	eukaryotes,	

archaea,	 and	 bacteria	 are	 clustered	 separately	 to	 reconstruct	 protein	 clusters	

originating	from	only	one	domain	each	following	the	approach	outlined	in	section	

1.2.4	with	stringency	thresholds	dependent	on	the	evolutionary	question	analyzed.	

In	a	second	step,	 the	protein	 families	 for	each	domain	were	combined	with	 their	

homologs	from	the	other	domains	according	to	local	pairwise	sequence	identities	

between	 the	 eukaryotic	 and	 prokaryotic	 protein	 sequences.	 Each	 prokaryotic	

domain	 was	 first	 combined	 with	 its	 eukaryotic	 homolog,	 to	 generate	 either	

eukaryote-archaea	or	eukaryote-bacteria	clusters.	Then	the	eukaryote-archaea	or	

eukaryote-bacteria	 cluster	pairs	were	 combined	 into	protein	 families	of	 all	 three	

domains,	 if	 both	 had	 the	 same	 corresponding	 eukaryote	 homolog.	 In	 this	 way,	

eukaryotic	and	prokaryotic	sequences	could	be	assigned	to	a	shared	protein	family	

and	 later	 annotated,	 although	 the	 sequence	 divergence	 between	 eukaryotes	 and	

prokaryotes	is	often	relatively	high.	This	procedure	delivers	clusters	in	which	the	

eukaryotic	 sequences	 are	 grouped	with	 their	 best	homologs	 among	prokaryotes,	

and	in	which	all	clusters	have	unique	membership,	that	is,	no	sequence	occurs	in	

more	than	one	cluster.	 
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1.3 Applying protein clusters to evolutionary questions 

The	clusters	 in	the	present	work	were	generated	to	address	specific	questions	 in	

genome	history.	The	goal	was	to	distill	insights	into	early	evolution	by	querying	all	

genes,	rather	than	querying	one,	a	few	or	30	genes	as	a	substitute	for	the	insights	

that	the	whole	genome	can	deliver.	In	the	following,	the	three	main	questions	in	the	

foreground	of	the	present	work	are	introduced.		

As	the	first	of	these	investigations,	it	was	the	goal	to	analyze	the	evolutionary	

origin	of	eukaryotic	protein	coding	genes,	by	assigning	the	proteins	of	eukaryotic	

genomes	 to	 archaeal	 or	 bacterial	 origins.	 For	 that,	 the	 proportion	 of	 eukaryotic	

clusters	among	150	genomes	that	 trace	exclusively	 to	bacteria	or	 to	archaea	was	

determined	in	order	to	provide	genome-wide	estimates	for	the	evolutionary	origin	

of	 eukaryotic	 genes	 that	 are	 shared	with	prokaryotes.	 Although	 it	 is	 known	 that	

eukaryotes	 invented	 many	 novel	 proteins	 that	 are	 not	 present	 in	 prokaryotic	

organisms	[Aravind	et	al.	2006],	the	basic	starting	material	from	which	the	origin	of	

eukaryote	specific	genes	arose	was,	in	the	simplest	hypothesis,	contributed	by	an	

archaeal	host	and	a	bacterial	symbiont	[Martin	and	Müller	1998;	Imachi	et	al.	2020].	

The	 relative	 contribution	 of	 prokaryotic	 genes	 to	 the	 eukaryotic	 partners	 was	

estimated	by	presence-absence	criteria	within	the	clusters	using	a	down-sampling	

procedure	 to	 correct	 for	 the	 unequal	 bacterial	 and	 archaeal	 sample	 sizes	 in	 the	

present	data.	The	result	of	 those	 investigations	 is	summarized	 in	section	3.1,	 the	

manuscript	Brueckner	and	Martin	[2020].	

For	the	second	analysis,	the	data	in	the	present	work	was	applied	in	order	to	

better	 characterize	 the	 effects	 of	 LGT	 during	 prokaryote	 and	 eukaryote	 genome	

evolution.	For	over	50	years,	microbiologists	have	known	that	prokaryotes	transfer	

genes	 across	 the	 species	 boundary	 [Lederberg	 and	 Tatum	 1946].	 The	 first	 clear	

evidence	 for	 this	 emerged	 in	 hospitals	 in	 the	 form	 of	 bacterial	 pathogens	 with	

multiple	antibiotic	resistance	genes	[Aminov	2010;	Rollo	et	al.	1952].	It	was	found	

that	resistance	to	one	antibiotic	spread	as	a	 function	of	antibiotic	usage,	not	as	a	

function	of	the	evolutionary	relationships	of	the	strains	that	became	resistant	and	

that	antibiotic	resistance	genes	were	spread	on	plasmids	through	a	process	called	

conjugation	[Davies	and	Davies	2010;	Nakaya	et	al.	1960;	Popa	and	Dagan	2011].	It	
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was	 later	discovered	that	two	other	mechanisms	of	gene	transfer	exist	 in	natural	

prokaryote	 populations:	 transfer	 via	 phage	 (transduction),	 and	DNA	 transfer	 via	

uptake	 of	 environmental	 DNA	 (transformation)	 [Ochman	 et	 al.	 2000;	 Popa	 and	

Dagan	 2011].	 As	 genome	 sequence	 data	 became	 available	 for	 a	 large	 number	 of	

prokaryotes,	 it	 became	 apparent	 that	 only	 very	 few	 genes	 were	 universal	

[Charlebois	and	Doolittle	2004;	Hansmann	and	Martin	2000]	and	that	most	genes	

were	 distributed	 across	 genomes	 in	 a	 highly	 uneven	manner	 [Dagan	 and	Martin	

2007].	This	provided	clear	hints	that	LGT	had	contributed	to	a	substantial	extent	to	

the	overall	composition	of	prokaryotic	genomes.	One	of	the	most	common	ways	to	

identify	LGT	events	was	a	comparison	of	phylogenetic	trees	[Ochman	et	al.	2000].	If	

different	 genes	 gave	 different	 trees	 for	 the	 same	 set	 of	 species	 this	 was	 widely	

interpreted	as	evidence	for	LGT	—	at	least	in	the	early	days	of	genomics.	A	problem	

arises	however	if	one	wants	to	estimate	the	amount	of	LGT	that	has	occurred	in	the	

evolution	of	a	particular	lineage	or	a	particular	gene,	if	large	genome	samples	are	

available.	 This	 is	 because	 the	 number	 of	 possible	 trees	 grows	 faster	 than	

exponentially	with	each	additional	 leave	 (sequence)	 [Cavalli-Sforza	and	Edwards	

1967;	Graur	2016]	in	the	tree.	For	example:	if	n	=	2	there	is	one	possible	rooted	tree,	

but	 with	 10	 leaves	 (n	 =	 10)	 the	 number	 already	 increases	 to	 34,459,425.	 As	 a	

consequence,	 the	 comparison	 of	 trees	 with	 many	 leaves	 will	 always	 generate	

discordant	 phylogenies	 but	 it	 becomes	 very	 difficult	 to	 determine	 whether	 the	

differences	are	observed	due	to	LGT	or	phylogenetic	artifacts.		

	 For	 the	 present	 work,	 a	 method	 was	 required	 that	 would	 permit	 the	

estimation	of	LGT	frequency	from	trees	with	thousands	of	leaves	but	avoided	their	

most	serious	problem	—	namely	that	the	deeper	branches	in	trees	with	more	than	

500	leaves	are	not	better	than	random	[Semple	and	Steel	2009].	The	approach	that	

was	taken	for	this	work	focused	solely	on	the	most	terminal	tips	of	the	trees	which	

is	 the	 region	 where	 phylogeny	 works	 best.	 For	 example,	 the	 neighbor-joining	

methods	start	by	inferring	the	topology	at	the	tips	of	the	tree	and	works	towards	the	

deeper	 branches	 of	 the	 tree	 from	 there	 [Saitou	 and	 Nei	 1987],	 and	 all	 modern	

maximum-likelihood	methods	for	phylogenetic	tree	reconstruction	start	from	such	

a	 neighbor-joining	 topology	 [Chor	 and	 Tuller	 2005].	 Rather	 than	 asking	 which	

branches	 from	two	trees	are	discordant,	 the	work	 in	this	 thesis	asked	how	many	
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prokaryotic	 phyla	 in	 a	 given	 tree	 are	monophyletic.	 This	 procedure	 provided	 an	

estimate	for	the	verticality	of	phyla	in	a	given	tree	and	summed	across	all	trees	and	

all	phyla	provided	estimates	 for	 the	relative	amount	of	 recent	LGT	 that	occurred	

among	phyla	and	across	trees.	This	was	designated	as	verticality	(V)	and	comprises	

the	main	topic	of	section	3.2,	the	manuscript	by	Nagies	et	al.	[2020].		

The	 third	question	required	the	extraction	of	more	 information	 from	each	

tree	as	 it	concerned	the	role	of	gene	duplication,	primarily	 in	eukaryotic	genome	

evolution.	Gene	duplications	[Ohno	1970]	were	among	the	earliest	discoveries	of	

molecular	phylogenetic	investigation	because	they	represent	the	underlying	theme	

of	globin	gene	evolution.	Globins	were	one	of	 the	 first	protein	 families	 for	which	

extensive	sequence	information	existed	for	many	species.	The	evolution	of	globins	

was	 investigated	 long	 before	 the	 advent	 of	 genome	 sequencing	 technologies.	

Already	during	the	1960’s,	many	globin	sequences	were	determined	using	protein	

sequencing	 methods,	 as	 the	 globins	 were	 easy	 to	 isolate	 from	 red	 blood	 cells	

(hemoglobins)	and	muscles	 (myoglobins)	 [Goodman	et	al.	 1987].	They	helped	 to	

form	 the	 paradigm	 for	 eukaryote	 gene	 evolution	 that	 novelty	 (novel	 sequences)	

arises	 through	 gene	 duplications	 [Ohno	 1970],	 a	 paradigm	 that	 was	 further	

extended	 during	 the	 last	 20	 years	 with	 the	 recognition	 that	 whole	 genome	

duplications	are	very	common	in	eukaryote	genome	evolution	[Crow	and	Wagner	

2006].	In	whole	genome	duplication,	all	genes	in	the	genome	undergo	duplications	

—	making	the	quantification	of	genome	duplications	challenging	for	large	datasets.	

The	 approach	 to	 this	 problem	 employed	 in	 the	 present	 work	 harnessed	 the	

properties	of	the	minimum	ancestor	deviation	method	(MAD)	[Tria	et	al.	2017]	to	

identify	duplication	events.	The	results	of	that	work	are	summarized	in	section	3.3,	

the	manuscript	by	Tria	et	al.	[2021].	
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2 Aim of this thesis 

There	are	several	hypotheses	regarding	the	events	that	led	to	the	development	of	

eukaryotic	cells.	Most	studies	focus	on	a	very	limited	number	of	organisms	to	infer	

early	evolutionary	events.	This	approach	has	its	merits	in	specific	cases,	but	in	order	

to	get	a	more	comprehensive	picture	of	the	mechanisms	regarding	the	transition	of	

prokaryotic	to	eukaryotic	life	all	available	data	should	be	assessed.	The	primary	goal	

of	the	present	work	was	to	reconstruct	protein	families	for	5,655	prokaryotic	and	

150	eukaryotic	organisms	that	contain	orthologous	genes	of	both	eukaryotes	and	

prokaryotes.	These	eukaryote-prokaryote	clusters	and	the	subsequently	generated	

phylogenetic	trees	could	then	be	linked	to	phylogenetic	and	functional	properties	in	

order	to	elucidate	questions	regarding	early	evolutionary	events.	

To	better	understand	the	transition	period	from	simple	unicellular	life	forms	

to	 eukaryote	 complexity,	 the	 work	 in	 this	 dissertation	 aims	 to	 illuminate	

mechanisms	 regarding	 the	 gene	 acquisition	 from	 prokaryotes	 to	 the	 eukaryotic	

genome.	Specific	goals	of	the	present	thesis	and	the	included	publications	were:	

(a) Investigate	 the	 proportion	 of	 archaeal	 and	 bacterial	 genes	 regarding	

eukaryotic	homologs.	

(b) Characterize	the	effects	of	LGT	during	prokaryote	and	eukaryote	genome	

evolution.	

(c) Analyze	the	role	of	gene	duplications	in	eukaryotic	genome	evolution.	
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Abstract

Eukaryotesare typicallydepictedasdescendantsofarchaea,but theirgenomesareevolutionarychimeraswithgenesstemmingfrom
archaea and bacteria. Which prokaryotic heritage predominates? Here, we have clustered 19,050,992 protein sequences from
5,443 bacteria and 212 archaea with 3,420,731 protein sequences from 150 eukaryotes spanning six eukaryotic supergroups. By
downsampling, we obtain estimates for the bacterial and archaeal proportions. Eukaryotic genomes possess a bacterial majority of
genes. On average, the majority of bacterial genes is 56% overall, 53% in eukaryotes that never possessed plastids, and 61% in
photosynthetic eukaryotic lineages, where the cyanobacterial ancestor of plastids contributed additional genes to the eukaryotic
lineage. Intracellularparasites,whichundergoreductiveevolution inadaptation to thenutrient richenvironmentof thecells that they
infect, relinquish bacterial genes for metabolic processes. Such adaptive gene loss is most pronounced in the human parasite
Encephalitozoon intestinalis with 86% archaeal and 14% bacterial derived genes. The most bacterial eukaryote genome sampled
is rice, with 67% bacterial and 33% archaeal genes. The functional dichotomy, initially described for yeast, of archaeal genes being
involved in genetic information processing and bacterial genes being involved in metabolic processes is conserved across all eukary-
otic supergroups.

Key words: eukaryote origin, endosymbiosis, archaeal host, last eukaryote common ancestor, symbiogenesis, classification.

Introduction

Biologists recognize three kinds of cells in nature: Bacteria,
archaea, and eukaryotes. The bacteria and archaea are pro-
karyotic in organization, having generally small cells on the
order of 0.5–5mm in size and ribosomes that translate nascent
mRNA molecules as they are synthesized on DNA (cotranscrip-
tional translation) (Whitman 2009). Eukaryotic cells are gen-
erally much larger in size, more complex in organization, and
have larger genomes possessing introns that are removed
(spliced) from the mRNA on spliceosomes (Collins and
Penny 2005). Eukaryotic cells always harbor a system of inter-
nal membranes (Gould et al. 2016; Barlow et al. 2018) that
form the endoplasmic reticulum and the cell nucleus, where
splicing takes place (Vosseberg and Snel 2017). Furthermore,
eukaryotes typically possess double membrane bounded bio-
energetic organelles, mitochondria, which were present in the
eukaryote common ancestor (LECA) (Embley and Martin

2006; Roger et al. 2017), but have undergone severe reduc-
tion in some lineages (van der Giezen 2009; Shiflett and
Johnson 2010). In terms of timing during Earth history, it is
generally agreed that the first forms of life on Earth were
prokaryotes, with isotopic evidence for the existence of bac-
terial and archaeal metabolic processes tracing back to rocks
3.5 Gy of age (Ueno et al. 2006; Arndt and Nisbet 2012) or
older (Tashiro et al. 2017). The microfossil record indicates
that eukaryotes arose later, !1.4–1.6 Ga (Javaux and Lepot
2018), hence that eukaryotes arose from prokaryotes.
Though eukaryotes are younger than prokaryotes, the nature
of their phylogenetic relationship(s) to bacteria and archaea
remains debated because of differing views about the evolu-
tionary origin of eukaryotic cells.

In the traditional three domain tree of life, eukaryotes are
seen as a sister group to archaea (Woese et al. 1990; Da
Cunha et al. 2017, 2018) (fig. 1a). In newer two-domain
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trees, eukaryotes are viewed as branching from within the
archaea (Cox et al. 2008; Williams et al. 2013) (fig. 1b). In
both the two domain and the three domain hypotheses, this
is often seen as evidence for “an archaeal origin” of eukar-
yotes (Cox et al. 2008; Williams et al. 2013) (fig. 1a, b).
Germane to an archaeal origin is the view that eukaryotes
are archaea that became more complex by gradualist evolu-
tionary processes, such as point mutation and gene duplica-
tion (Field et al. 2011; Schlacht et al. 2014). Countering that
view are two sets of observations relating to symbiogenesis
(origin through symbiosis) for eukaryotes (fig. 1c, d). First, the
archaea that branch closest to eukaryotes in the most recent
phylogenies are very small in size (0.5mm), they lack any sem-
blance of eukaryote-like cellular complexity, and they live in
obligate association with bacteria (Imachi et al. 2020), clearly
implicating symbiosis (Imachi et al. 2020) rather than point
mutation as the driving force at the origin of the eukaryotic
clade (fig. 1c). Second, and with a longer history in the liter-
ature, are the findings that mitochondria trace to the LECA
(Embley and Hirt 1998; van der Giezen 2009; McInerney et al.
2014) and that many genes in eukaryote genomes trace to

gene transfers from endosymbiotic organelles (Martin and
Herrmann 1998; Timmis et al. 2004; Ku et al. 2015). A sym-
biogenic origin of eukaryotes would run counter to one of the
key goals of phylogenetics, namely to place eukaryotes in a
natural system of phylogenetic classification where all groups
are named according to their position in a bifurcating tree. If
eukaryotes arose via symbiosis of an archaeon (the host) and a
bacterium (the mitochondrion), then eukaryotes would reside
simultaneously on both the archaeal and the bacterial
branches in phylogenetic schemes (Brunk and Martin 2019;
Newman et al. 2019), whereby plants and algae that stem
from secondary symbioses (Gould et al. 2008) would reside
on recurrently anastomosing branches as in figure 1d.

Even though it is uncontested that symbiotic mergers lie at
the root of modern eukaryotic groups via the single origin of
mitochondria, plants via the single origin of plastids, and at
least three groups of algae with complex plastids via second-
ary symbiosis (Archibald 2015), anastomosing structures such
as those depicted in figure 1c and d do not mesh well with
established principles of phylogenetic classification, because
the classification of groups that arise by symbiosis is not

FIG. 1.—Differing views on the relationships of eukaryotes to prokaryotes. (a) The three domain tree. (b) The two-domain tree with an archaeal origin of

eukaryotes. (c) Symbiogenesis at the origin of eukaryotes. (d) Symbiogenesis at the origin of eukaryotes plus plastids at the origin of the plant kingdom and

secondary symbiotic events among algae (see Embley and Martin 2006; Gould et al. 2008; McInerney et al. 2014; Martin 2017).
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unique. One could rightly argue that plants are descended
from cyanobacteria, which is in part true because many genes
in plants were acquired from the cyanobacterial antecedent
of plastids (Martin et al. 2002). Or one could save phyloge-
netic classification of eukaryotes from symbiogenic corruption
by a democratic argument that eukaryotes are, by majority,
archaeal based on the assumption that their genomes contain
a majority of archaeal genes, making them archaea in the
classificatory sense.

But what if eukaryotes are actually bacteria in terms of their
genomic majority? The trees that molecular phylogeneticists
use to classify eukaryotes are based on rRNA or proteins as-
sociated with ribosomes—cytosolic ribosomes in the case of
eukaryotes. Ribosomes make up!40% of a prokaryotic cell’s
substance by dry weight, so they certainly are important for
the object of classification. No one would doubt that eukar-
yotes have archaeal ribosomes in their cytosol. Archaeal ribo-
somes in the cytosol could, however, equally be the result of a
gradualist origin of eukaryotes from archaea (Martijn and
Ettema 2013; Booth and Doolittle 2015) or symbiogenesis
involving an archaeal host for the origin of mitochondria
(Martin et al. 2017; Martin 2017; Imachi et al. 2020).
Ribosomes only comprise !50 proteins and three RNAs,
whereas the proteins used for phylogenetic classification are
only!30 in number, or roughly 1% of an average prokaryotic
genome (Dagan and Martin 2006). The other 99% of the
genome are more difficult to analyze, bringing us back to
the question: At the level of whole genomes, are eukaryotes
fundamentally archaeal?

Because the availability of complete genome sequences,
there have been investigations to determine the proportion
of archaeal-related and bacterial-related genes in eukaryotic
genomes. Such an undertaking is straightforward for an indi-
vidual eukaryotic genome, and previous investigations have
focused on yeast (Esser et al. 2004; Cotton and McInerney
2010). These indicated that yeast harbors an excess of bacte-
rial genes relative to archaeal genes, conclusions that we
borne out in a subsequent, sequence similarity-based investi-
gation for a larger genome sample (Alvarez-Ponce et al.
2013). Genome-wide phylogenetic analyses including plants,
animals, and fungi (Pisani et al. 2007; Thiergart et al. 2012),
two eukaryotic groups (Rochette et al. 2014), or six eukaryotic
supergroups (Ku et al. 2015) reported trees for genes present
in eukaryotes and prokaryotes, but fell short of reporting
estimates for the proportion of genes in eukaryotic genomes
that stem from bacteria and archaea, respectively, whereby all
previous estimates have been limited by the small archaeal
sample of sequenced genomes for comparison. Here, we
have clustered genes from sequenced genomes of 150 eukar-
yotes, 5,443 bacteria, and 212 archaea. By normalizing for
the large bacterial sample through downsampling, we obtain
estimates for the proportion of genes in each eukaryote ge-
nome that identify prokaryotic homologs, but that only occur
in archaea or bacteria, respectively.

Materials and Methods

Sequence Clustering

A total of 19,050,992 protein sequences from 5,655 com-
plete prokaryotic genomes were downloaded from the NCBI
RefSeq genomes database Release 78, September 2016
(O’Leary et al. 2016), encompassing 5,443 bacteria and 212
archaea (supplementary table 1a and b, Supplementary
Material online). For eukaryotes 3,420,731 protein sequences
from 150 sequenced genomes covering a phylogenetically
diverse sample were downloaded from NCBI RefSeq
(O’Leary et al. 2016), Ensembl Protists (Kersey et al. 2018),
JGI (Nordberg et al. 2014), and GenBank (Benson et al. 2015)
(supplementary table 1a and c, Supplementary Material on-
line) as appropriate. Protein sequences from the three
domains were each clustered separately and homologous
clusters were combined as described previously (Carlton
et al. 2007; Nelson-Sathi et al. 2015). The reciprocal best
BLAST hits (rBBH) (Tatusov et al. 1997) of an all-versus-all
BLAST (v. 2.5.0) (Altschul et al. 1997) were calculated for
each domain (cut-off: expectation (E) value" 1e-10).
Pairwise global sequence identities were then generated for
each sequence pair with the Needleman–Wunsch algorithm
using the program “needle” of the EMBOSS package v.
6.6.0.0 (Rice et al. 2000) with a global identity cut-off# 25%
for bacterial and archaeal sequence pairs and #40% global
identity for eukaryotic sequence pairs. Protein families were
reconstructed applying the domain-specific rBBH to the
Markov Chain clustering algorithm (MCL) v. 12-068 (Enright
et al. 2002) on the basis of the global pairwise sequence
identities, respectively. Due to the large bacterial data set,
pruning parameters of MCL were adjusted until no relevant
split/join distance between consecutive clusterings was calcu-
lated by the “clm dist” application of the MCL program family
(-P 180,000 -S 19,800 -R 25,200). MCL default settings were
applied for the archaeal and eukaryotic protein clustering. This
yielded 16,875 archaeal protein families (422,054 sequences)
and 214,519 bacterial protein families (17,384,437 sequen-
ces) with at least five sequences each and 239,813 eukaryotic
protein families (1,545,316 sequences) with sequences pre-
sent in at least two species (supplementary table 6,
Supplementary Material online). To combine eukaryotic clus-
ters with bacterial or archaeal clusters, the reciprocal best
cluster approach (Ku et al. 2015) was applied with 50%
best-hit correspondence and 30% BLAST local pairwise se-
quence identity of the interdomain hits between eukaryote
and prokaryote sequences. Eukaryotic clusters having homo-
logs in both bacterial and archaeal clusters were merged with
their prokaryotic homologs as described (Ku et al. 2015). The
cluster merging procedure left 752 eukaryotic clusters that
had ambiguous (multiple) prokaryote cluster assignment,
these were excluded from further analysis and 236,474 eu-
karyote clusters connected to no homologous prokaryotic
cluster (eukaryote-specific, ESC, supplementary table 2,
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Supplementary Material online) at the cut-offs employed
here.

Assignment of Bacterial or Archaeal Origin

Because the number of prokaryotic sequences clustered was
large, the 2,368 EPCs that were assigned one bacterial or one
archaeal cluster exclusively were rechecked for homologs
from the remaining prokaryotic domain at the E val-
ue! 1e"10, global identity# 25% threshold. The 266 cases
so detected were excluded from bacterial–archaeal origin as-
signment, yielding 2,102 EPCs (supplementary table 2,
Supplementary Material online, indicated by asterisks). The
clusters generated from rBBH (E value! 1e"10, global iden-
tity# 25%) of all-versus-all BLAST of the 19,050,992 prokary-
otic protein sequences are provided as supplementary
material (supplementary table 6, Supplementary Material on-
line). Downsampling to adjust for the overrepresentation of
bacterial strains in the prokaryotic data set compared with the
number of archaeal organisms was performed by generating
1,000 data sets with 212 bacterial taxa selected randomly
according to the distribution of genera in the whole data
set (supplementary table 7, Supplementary Material online).
The sequences of the examined 212 archaeal and bacterial
taxa were located in the 2,102 EPCs and each eukaryotic
organism in the identified clusters was assigned to
“bacterial,” or “archaeal” depending on the domain of the
prokaryotic cluster in the EPC. Each eukaryotic genome was
only counted once per EPC and assigned the respective pro-
karyotic label to prevent overrepresentation of duplication rich
organisms. This procedure was performed for all 1,000 down-
sized bacterial data sets for each EPC, the mean of 1,000
samples was scored (supplementary table 3, Supplementary
Material online).

Cluster Annotation

Protein annotation information according to the BRITE
(Biomolecular Reaction pathways for Information Transfer
and Expression) hierarchy was downloaded from the Kyoto
Encyclopedia of Genes and Genomes (KEGG v. September
2017) website (Kanehisa et al. 2016), including protein
sequences and their assigned function according to the KO
numbers (Suppl. Material 8a, b). The sequences of each pro-
tein family from the 2,587 EPCs were locally aligned with
“blastp” to the KEGG database to identify the annotation
for each protein. In order to assign each protein to a KEGG
function, only the best BLAST hit of the given protein with an
E value! 1e"10 and alignment coverage of 80% was se-
lected. After assigning a function based on the KO numbers
of KEGG for each protein in the EPCs, the majority rule was
applied to identify the function for each cluster. The occur-
rence of the function of each protein was added and the most
prevalent function was assigned for each cluster (supplemen-
tary table 4, Supplementary Material online). Poorly

characterized sequences or sequences with no assigned func-
tion were ignored, resulting in 1,836 clusters with
annotations.

Presence and Absence of EPCs across Genomes

Presence of absence of genes in a cluster for each genome
were plotted as a 2,587 $ 5,805 binary matrix, rows were
sorted taxonomically, columns were sorted in ascending order
left to right according to density of distribution within eukary-
otic groups. Hacrobia and SAR were treated as a eukaryotic
group for clusters they shared with Archaeplastida only; these
clusters reflect secondary symbioses (41).

Results

Using the MCL algorithm, we generated clusters for
19,050,992 protein sequences from 5,443 bacteria and 212
archaea with 3,420,731 protein sequences from 150 eukar-
yotes (see Materials and Methods) (supplementary table 1a–c,
Supplementary Material online) spanning six eukaryotic super-
groups (fig. 2a). This yielded 239,813 clusters containing eu-
karyotic sequences: 236,474 eukaryote-specific clusters and
2,587 clusters (1% of all eukaryote clusters) that contained
prokaryotic homologs at the stringency levels employed here,
as well as 752 eukaryotic clusters that were excluded from the
analysis as they were assigned multiple prokaryote clusters. Of
the 2,587 eukaryote–prokaryote clusters (EPCs), 1,853 con-
tained only eukaryotes and bacteria, 515 of which contained
only eukaryotes and archaea. Among the 2,587 EPC clusters,
8% (219) contained sequences from at least two eukaryotes
and at least five prokaryotes spanning bacteria and archaea
(see supplementary table 2, Supplementary Material online),
which were not considered further for our estimates because
here we sought estimates where the decision regarding bac-
terial or archaeal origin was independent of phylogenetic in-
ference, which is possible for 92% of eukaryotic clusters that
contain prokaryotic sequences. All sequences had unique
cluster assignments, no sequences occurred in more than
one cluster. That 1,853 clusters contained only eukaryotes
and bacteria whereas 515 contained only eukaryotes and ar-
chaea appears to suggest a 3.6-fold excess of bacterial genes
in eukaryotes, but bacterial genes are 25-fold more abundant
in the data. For those genes that each eukaryote shares with
prokaryotes, we estimated the proportion and number of
genes having homologs only in archaea and only in bacteria,
respectively, by downsampling the 25-fold excess of bacterial
genomes in the sample in 1,000 subsamples of 212 bacteria
and 212 archaea.

The proportion of bacterial and archaeal genes for each
eukaryote is shown in figure 2b. Overall, 44% of eukaryotic
sequences are archaeal in origin and 56% are bacterial.
Across 150 genomes, eukaryotes possess 12% more bacterial
genes than archaeal genes. There are evident group specific
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5Giardia lamblia ATCC 50803
Trichomonas vaginalis G3
Trypanosoma brucei brucei TREU927
Trypanosoma brucei gambiense DAL972
Leishmania donovani
Leishmania infantum JPCM5
Leishmania panamensis
Naegleria gruberi
Acanthamoeba castellanii str. Neff
Dictyosteliumdiscoideum
Polysphondyliumpallidum PN500
Entamoeba histolytica HM-1:IMSS
Encephalitozoon cuniculi GB-M1
Encephalitozoon romaleae SJ-2008
Encephalitozoon hellemATCC 50504
Encephalitozoon intestinalis ATCC50506
Piromyces sp. E2
Orpinomyces sp. C1A
Gonapodya prolifera JEL478
Spizellomyces punctatus DAOMBR117 v1
Homoloaphlyctis polyrhiza JEL142 v1
Batrachochytriumdendrobatidis JAM81
Conidiobolus coronatus NRRL 28638
Basidiobolus meristosporus CBS 931.73
Piptocephalis cylindrospora RSA 2659
Ramicandelaber brevisporus CBS 109374
Coemansia reversa NRRL 1564
Linderina pennispora ATCC 12442
Martensiomyces pterosporus CBS 209.56
Mortierella verticillata NRRL 6337
Umbelopsis ramanniana NRRL 5844
Lichtheimia corymbifera FSU 9682
Hesseltinella vesiculosa NRRL 3301
Saksenaea vasiformis B4078
Rhizopus delemar RA 99-880
Backusella circina FSU941
Ustilago maydis 521
Cryptococcus neoformans var. grubii H99
Cryptococcus gattii WM276
Cryptococcus neoformans var. neoformans B-3501A
Cryptococcus neoformans var. neoformans JEC21
Schizosaccharomyces pombe
Saccharomyces cerevisiae S288C
Zymoseptoria tritici IPO323
Aspergillus fumigatus Af293
Thermothelomyces thermophila ATCC 42464
Pochonia chlamydosporia 170
Fusarium graminearum PH-1
Magnaporthe oryzae 70-15
Neurospora crassa OR74A
Capsaspora owczarzaki ATCC 30864
Monosiga brevicollis MX1
Amphimedon queenslandica
Trichoplax adhaerens
Ciona intestinalis
Schistosoma mansoni
Crassostrea virginica
Caenorhabditis elegans
Caenorhabditis briggsae
Nasonia vitripennis
Apis mellifera
Bombus terrestris
Tribolium castaneum
Aedes aegypti
Anopheles gambiae str. PEST
Drosophila busckii
Drosophila yakuba
Drosophila simulans
Drosophila melanogaster
Drosophila pseudoobscura pseudoobscura
Drosophila miranda
Lepisosteus oculatus
Ictalurus punctatus
Cyprinus carpio
Salmo salar
Esox lucius
Cynoglossus semilaevis
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FIG. 2.—Bacterial and archaeal genes in eukaryotic genomes. Protein sequences from 150 eukaryotic genomes and 5,655 prokaryotic genomes (5,433

bacteria and 212 archaea) were clustered into eukaryote–prokaryote clusters (EPC) using the MCL algorithm (Enright et al. 2002) as described (Ku et al.

2015). To account for overrepresentation of bacterial sequences in the clusters, bacterial genomes were downsampled in 1,000 data sets of 212 randomly

selected bacterial organisms, the means were plotted. The eukaryotic sequences in the EPCs that cluster exclusively with bacterial or archaeal homologs were

labeled bacterial (blue) or archaeal (red) accordingly. (a) Eukaryotic lineages and genomes were grouped by taxonomy. Numbers next to the species name on

the left side indicate the ten most bacterial (blue) and archaeal (red) genomes, respectively. (b) The avg. relative proportion of bacterial and archaeal genes per

genome. (c) The number of eukaryotic clusters with bacterial or archaeal homologs is shown. (d) The proteome size for the genome. (e) The sum of all
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differences (fig. 2b). If we look only at organisms that never
harbored a plastid, the excess of bacteria genes drops from
56% to 53%. If we look only at groups that possess plastids
the proportions of bacterial homologs increases to 61% ver-
sus 39% archaeal (table 1, supplementary table 3,
Supplementary Material online). Note that our estimates are
based on the number of clusters, meaning that gene duplica-
tions do not figure into the estimates. A bacterial derived
gene that was amplified by duplication to 100 copies in
each land plant genome is counted as one bacterial derived
gene. This is seen in figure 2 for Trichomonas, where a large
number on gene families have expanded in the Trichomonas
lineage (Carlton et al. 2007), reflected in a conspicuously large
proteome size (fig. 2d), but a similar number of clusters
(fig. 2e) as neighboring taxa.

The proportions for different eukaryotic groups are shown
in table 1. Land plants have the highest proportion of bacterial
derived genes at 67%, or a 2:1 ratio of bacterial genes relative
to archaeal. The eukaryote with the highest proportion of
bacterial genes in our sample is rice, with 67.1% bacterial
and 32.9% archaeal genes. The higher proportion of bacterial
genes in plastid containing eukaryotes relative to other groups
corresponds with the origin of the plastid and gene transfers
to the nucleus (Ku et al. 2015). The eukaryote with the high-
est proportion of archaeal genes in our sample are the human
parasite Encephalitozoon intestinalis and the rabbit parasite
Encephalitozoon cuniculi, with 86% archaeal and 14%

bacterial derived genes. Parasitic eukaryotes have the largest
proportions of archaeal genes, but not by novel acquisitions,
rather by having lost large numbers of bacterial genes as a
result of reductive evolution in adaptation to nutrient rich
environments. This is evident in figure 2c, where the numbers
of archaeal and bacterial genes per genome are shown.
Parasites, with their reduced genomes, such as Giardia lam-
blia, Trichomonas vaginalis, or Encephalitozoon species, ap-
pear more archaeal. The number of archaeal, or bacterial
genes in an organism does not correlate with genome size
(supplementary fig. 1, Supplementary Material online,
Pearson correlation coefficient: archaeal r2¼ 0.38, bacterial
r2¼ 0.33).

Opisthokonts generally have a more even distribution of
bacterial and archaeal homologs in their genomes but are still
slightly more bacterial (54%, table 1 and supplementary table
3, Supplementary Material online). The black and gray dots in
figure 2a indicate organisms that possess reduced forms of
mitochondria, hydrogenosomes (black) or mitosomes (gray)
(van der Giezen et al. 2005). The ten most archaeal or bacte-
rial organisms are indicated by a red or blue rectangle, respec-
tively. The most archaeal eukaryotes are all parasites
(highlighted in red) and have undergone reductive evolution,
also with respect to their mitochondria, which are often re-
duced to mitosomes (fig. 2a). Nine of the ten most bacterial
organisms in the sample are plants (highlighted in green) with
the fifth most bacterial organism being one of the only two
Hacrobia in the data set.

The functional distinction that eukaryotic genes involved in
the eukaryotic genetic apparatus and information processing
tend to reflect an archaeal origin whereas genes involved in
eukaryotic biochemical and metabolic processes tend to re-
flect bacterial origins (Martin and Müller 1998; Rivera et al.
1998) has been borne out for yeast (Esser et al. 2004; Cotton
and McInerney 2010) and small genome samples (Thiergart
et al. 2012; Alvarez-Ponce et al. 2013; Rochette et al. 2014).
The distributions of eukaryotic genes per genome that have
archaeal or bacterial homologs across the respective KEGG
function category at the first level (metabolism, genetic
information processing, environmental information
processing, cellular processes, and organismal systems) are
shown in figure 3. The category human diseases is not
shown, as only very few proteins in the EPCs were so
annotated. The categories genetic information processing
(information) and metabolism account for 90% of all
annotated eukaryotic sequences in the EPCs (supplementary
table 4, Supplementary Material online). In the category
metabolism, 67.6% of eukaryotic genes are bacterial

FIG. 2.—Continued

eukaryotic sequences in the eukaryote–prokaryote clusters. (f) Taxonomic groups are labeled on the far right panel (Arc.—Archaeplastida, Exc.—Excavata,

Hac.—Hacrobia, Myc.—Mycetozoa, Opi.—Opisthokonts). Highlighted in green is the branch with the taxa of plants and green algae, parasites are

highlighted in red. The black dots indicate organisms with hydrogenosomes, the gray dot indicates organisms with mitosomes.

Table 1

Proportion of Bacterial and Archaeal Derived Genes in Eukaryotic
Genomes

Group Archaeal Bacterial

All eukaryotes 0.44 0.56

All without plastidsa 0.47 0.53

All with plastidsb 0.39 0.61

Land plants 0.33 0.67

Opisthokonts 0.46 0.54

Hacrobia 0.38 0.62

SAR 0.50 0.50

Archaeplastida 0.36 0.64

Mycetozoa 0.50 0.50

Excavata 0.58 0.42

Parasitesc 0.62 0.38

aAll except members of SAR, Hacrobia, and Archaeplastida as designated in
supplementary table 3, Supplementary Material online.

bAll members of SAR, Archaeplastida, and Hacrobia as designated in supple-
mentary table 3, Supplementary Material online.

cEukaryotes scored as parasites are designated in figure 2. Among 239,813
clusters containing eukaryote sequences 2,587 clusters (1%) contained prokaryotic
homologs at the stringency levels employed here.
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FIG. 3.—Functional categories. Protein sequences from 150 eukaryotic genomes and 5,655 prokaryotic genomes were clustered into 2,587 eukaryote–

prokaryote clusters (EPC) (Ku et al. 2015). Sorted according to a reference tree for eukaryotic lineages generated from the literature and taxonomic groups

are labeled. The red bars indicate eukaryotic gene families that are archaeal in origin, blue indicates a bacterial origin of the gene family. Functional

annotations according to the KEGG BRITE hierarchy on the level A was assigned for each EPC, identifying the function for each sequence in the protein
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whereas 76.9% of EPCs involved in information are archaeal.
The distinction between informational and metabolic genes
first described for yeast appears to be valid across all
eukaryotic genomes.

The distribution of the genes in the 2,587 EPCs across
genomes for six supergroups is depicted in figure 4. The order
of eukaryotic and prokaryotic organisms (rows) can be found
in supplementary table 5, Supplementary Material online.
Block A represents only Archaeplastida, block B depicts genes
found in Archaeplastida and SAR, block C encompasses all

genes that are distributed across the three taxa that contain
plastids; Archaeplastida, SAR, and Hacrobia. The lower part of
the figure shows the prokaryotic homologous genes.
Cyanobacterial genes are especially densely distributed across
blocks A–C. Genes that are predominantly mitochondrion- or
host-related are indicated in blocks D and E. Eukaryotic genes
that are universally distributed across the six supergroups are
mainly archaeal in origin (block D). Especially organisms with
reduced genomes, such as parasites (marked with asterisks on
the right), have lost genes associated with metabolism,
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FIG. 4.—Gene sharing matrix. Each black tick represents the presence of a gene in the respective taxon. First, the 2,587 EPCs (x axis) were sorted

according to their distribution across the six eukaryotic supergroups with the photosynthetic lineages on the left (block A–C). Host- or mitochondrion-related

genes distributed across the six supergroups are depicted in block E. Clusters with mostly archaeal homologs are indicated in block D (Chl.—Chloroplastida,
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leaving them mainly archaeal (fig. 4). In the wake of symbio-
genic mergers, which are very rare in evolution, gene loss sets
in, whereby gene loss is very common in eukaryote genome
evolution, one of its main underlying themes (Ku et al. 2015;
Deutekom et al. 2019).

The estimates we obtain are based on a sample of genes
that meet the clustering thresholds employed here. Many eu-
karyotic genes are inventions of the eukaryotic lineage in terms
of domain structure and sequence identity. Those genes either
arose in eukaryotes de novo from noncoding DNA, or they
arose through sequence divergence, recombination, and du-
plication involving preexisting coding sequences, the bacterial
and archaeal components of which should reflect that demon-
strable in the conserved fraction of genes analyzed here. It is
possible that archaeal genes and domains are more prone to
recombination and rapid sequence divergence than bacterial
domains are, but the converse could also be true and there is
no a priori evidence to indicate that either assumption applies
across eukaryotic supergroups. Hence with some caution, our
estimates, which are based on the conserved fraction of
sequences only, should in principle apply for the archaeal
and bacterial components of the genome as a whole.

Discussion

Guided by endosymbiotic theory, evidence for genomic chi-
maerism in eukaryotes emerged in the days before there were
sequenced genomes to analyze (Martin and Cerff 1986;
Brinkmann et al. 1987; Zillig et al. 1989; Martin et al. 1993;
Golding and Gupta 1995; Martin and Schnarrenberger 1997).
The excess of bacterial genes in eukaryotic genomes we ob-
serve here has been observed before, but with smaller sam-
ples and with different values. In a sample of 15 archaeal and
45 bacterial genomes using sequence comparisons, Esser et
al. (2004) found that !75% of yeast genes that have pro-
karyotic homologs are bacterial in origin. Cotton and
McInerney (2010) used 22 archaea and 197 bacteria to inves-
tigate the yeast genome and also found an excess of bacterial
genes. Using 14 eukaryotic genomes, 52 bacteria and 52 ar-
chaea, Alvarez-Ponce et al. (2013) found a 3:1 excess of bac-
terial to archaeal genes in many eukaryotes, similar to the
result of Esser et al. (2004), but they also observed an archaeal
majority of genes in intracellular parasitic protists including
Giardia and Entamoeba, as we observe here. It was, however,
unknown if the genes studied by Alvarez-Ponce et al. (2013)
traced to the LECA, hence it was unknown whether the ar-
chaeal excess in parasites was due to loss (as opposed to gain
in nonparasitic lineages), and phylogenetic trends of gain or
loss could not be observed.

Rivera and Lake (2004) constructed trees from two eukar-
yotes, three archaea, and three bacteria with homologs
detected by searches with a bacterial and an archaeal query
(“conditioning”) genome, they detected trees indicating a
bacterial origin and trees indicating an archaeal origin for

the eukaryotic gene; the conflicting signals were combined
into a ring. Thiergart et al. (2012) generated alignments and
trees for homologs from 27 eukaryotes and 994 prokaryotes,
they found an excess of bacterial genes and 571 eukaryotic
genes with prokaryotic homologs that trace to the LECA
based on monophyly. Rochette et al. (2014) generated trees
and alignments for homologs from 64 eukaryotes, 62 ar-
chaea, and 820 bacteria, they found 434 eukaryote genes
with prokaryote homologs that trace to the LECA. Ku et al.
(2015) generated alignments and trees for genes shared
among 55 eukaryotes, 134 archaea, and 1,847 bacteria using
similar clustering methods and clustering thresholds as used
here, they found that !90% of 2,585 genes shared by pro-
karyotes and eukaryotes indicate monophyly, hence a single
acquisition corresponding to the origin of mitochondria
(eukaryotes) or the cyanobacterial origin of plastids. That ob-
servation, together with the phylogenetic pattern of lineage-
specific distributions observed here (figs. 2 and figs. 3), indi-
cates that gene gains at eukaryote origin and at the origin of
primary and secondary plastids were followed by lineage-spe-
cific differential loss, which was also noted by Ku et al. (2015),
but for a smaller genome sample than that investigated here.
That we observe a smaller excess of bacterial genes than that
reported by Esser et al. (2004) or Alvarez-Ponce et al. (2013) is
probably due to our larger archaeal sample and the use of
downsampling to reduce bacterial bias.

Using a sample of 5,655 prokaryotic and 150 eukaryotic
genomes and downsampling procedures to correct for the
overabundance of bacterial genomes versus archaeal
genomes for comparisons, we have obtained estimates for
the proportion of archaeal and bacterial genes per genome
in eukaryotes based on gene distributions. We found that the
members of six eukaryotic supergroups possess a majority of
bacterial genes over archaeal genes. If eukaryotes were to be
classified by genome-based democratic principle, they would
be have to be grouped with bacteria, not archaea. The excess
of bacterial genes disappears in the genomes of intracellular
parasites with highly reduced genomes, because the bacterial
genes in eukaryotes underpin metabolic functions that can be
replaced by metabolites present in the nutrient rich cytosol of
the eukaryotic cells that parasites infect. The functions of the
ribosome and genetic information processing cannot be
replaced by nutrients, hence reductive genome evolution in
parasites leads to preferential loss of bacterial genes and
leaves archaeal genes remaining. In photosynthetic eukaryote
lineages, the genetic contribution of plastids to the collection
of nuclear genomes is evident in our analyses, both in lineages
with primary plastids descended directly from cyanobacteria
and in lineages with plastids of secondary symbiotic origin.
The available sample of archaeal genomes is still limiting for
comparisons of the kind presented here.

As improved culturing and sequencing of complete ar-
chaeal genomes progresses, new lineages are being char-
acterized at the level of scanning electron microscopy that
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branch, in ribosomal trees, as sisters to the host lineage at
eukaryote origin (Imachi et al. 2020). These archaea are,
however, not complex like eukaryotes, rather they are pro-
karyotic in size and shape and unmistakably prokaryotic in
organization (Imachi et al. 2020). That is, the closer micro-
biologists hone in on the host lineage for the origin of mi-
tochondria, the steeper the evolutionary grade between
prokaryotes and eukaryotes becomes, in agreement with
the predictions of symbiotic theory (Imachi et al. 2020)
(fig. 5) and in contrast to the expectations of gradualist
theories for eukaryote origin (Martin 2017). At the same
time, the analyses presented here uncover a bacterial ma-
jority of genes in eukaryotic genomes, a majority that
traces to the LECA (Ku et al. 2015), which is also in line
with the predictions of symbiotic theory. The most likely
biological source of the bacterial majority of genes in the
LECA is the mitochondrial endosymbiont (Ku et al. 2015).
Genomes record their own history. Eukaryotic genomes
testify to the role of endosymbiosis in evolution.

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online.
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Abstract

Lateral gene transfer (LGT) has impacted prokaryotic genome evolution, yet the extent to

which LGT compromises vertical evolution across individual genes and individual phyla is

unknown, as are the factors that govern LGT frequency across genes. Estimating LGT fre-

quency from tree comparisons is problematic when thousands of genomes are compared,

because LGT becomes difficult to distinguish from phylogenetic artefacts. Here we report

quantitative estimates for verticality across all genes and genomes, leveraging a well-known

property of phylogenetic inference: phylogeny works best at the tips of trees. From terminal

(tip) phylum level relationships, we calculate the verticality for 19,050,992 genes from

101,422 clusters in 5,655 prokaryotic genomes and rank them by their verticality. Among

functional classes, translation, followed by nucleotide and cofactor biosynthesis, and DNA

replication and repair are the most vertical. The most vertically evolving lineages are those

rich in ecological specialists such as Acidithiobacilli, Chlamydiae, Chlorobi and Methanococ-

cales. Lineages most affected by LGT are the α-, β-, γ-, and δ- classes of Proteobacteria

and the Firmicutes. The 2,587 eukaryotic clusters in our sample having prokaryotic homo-

logues fail to reject eukaryotic monophyly using the likelihood ratio test. The low verticality of

α-proteobacterial and cyanobacterial genomes requires only three partners—an archaeal

host, a mitochondrial symbiont, and a plastid ancestor—each with mosaic chromosomes, to

directly account for the prokaryotic origin of eukaryotic genes. In terms of phylogeny, the

100 most vertically evolving prokaryotic genes are neither representative nor predictive for

the remaining 97% of an average genome. In search of factors that govern LGT frequency,

we find a simple but natural principle: Verticality correlates strongly with gene distribution

density, LGT being least likely for intruding genes that must replace a preexisting homo-

logue in recipient chromosomes. LGT is most likely for novel genetic material, intruding

genes that encounter no competing copy.

Author summary

Because multicellular life is a latecomer in Earth history, most of evolutionary history is
microbial evolution. Scientists investigate microbial evolution by studying the evolution
of genes. One of the main surprises of the genomic era is the amount of lateral gene trans-
fer that has gone on in prokaryote genome evolution. Gene transfer clouds evolutionary
history, but by how much: How lateral and how vertical is the microbial evolutionary
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process across genes, genomes and lineages? We introduce measures of verticality in
genome evolution that permit a ranking of genes and lineages according to their degree of
verticality. We show that genes already present in genomes are less likely to be replaced by
a newly introduced copy than genes that offer new evolutionary opportunities for the
recipient, providing a simple and natural mechanism that limits and promotes lateral
gene transfer frequency. Only a very small minority of prokaryotic genes evolve vertically.
While the 100 genes that are most widely used to describe the phylogenetic relationships
of microbes are indeed the most vertical, they are not at all representative for the evolution
of other genes. These findings have broad implications for how we understand the evolu-
tionary process as inferred from gene trees.

Introduction

Prokaryotes undergo recombination that is facilitated by the mechanisms of lateral gene trans-
fer (LGT) [1,2]—transformation, conjugation, transduction, and gene transfer agents [3].
These mechanisms introduce DNA into the cell for recombination and do not obey taxonomic
boundaries, species or otherwise. Over time they generate pangenomes [4,5] that are superim-
posed upon vertical evolution of a conserved core. About 30 genes are present in all genomes
[6–9], a few more are nearly universal [10], many are found only in strains of one species [5],
but the vast majority of genes are distributed between those extremes according to a power law
[11]. Previous work has shown that LGT is subject to natural barriers [12,13], that LGT affects
core metabolism less than it affects peripheral metabolism [14] and that LGT is affected by reg-
ulatory interaction networks [15]. LGT generates collections of genes in each genome that are
of different evolutionary age [16], transferred genes are non-randomly associated [17,18], and
major events of gene flux have occurred during evolution [9,19]. In principle, each gene should
be transferable, because the mechanisms that introduce DNA into the cell are not selective
with regard to the nature of sequences introduced, notwithstanding the CRISPR activity asso-
ciated with phage defense [20]. If all genes are transferrable, what determines verticality?

At the level of strains or species, gene distributions within rapidly evolving pangenomes
have been well-studied [21–25]. Less well understood are the factors that govern the distribu-
tion of genes across prokaryotic genomes at higher taxonomic levels. These reflect processes
that occurred in deep evolutionary time and, in some cases, underpin the physiological iden-
tity of major prokaryotic clades. Though LGT impacts prokaryotic evolution, it does not
obscure lineage identity, because despite the abundance of LGT, biologists 100 years ago were
able to recognize the identity of many higher level taxa, for example Cyanobacteria and Spiro-
chaetes [26], that we still recognize today. Hence there must exist a spectrum of verticality in
prokaryote lineage evolution. It follows that a natural spectrum of verticality across prokary-
otic genes should exist as well. Here we rank 101,422 gene families from 5,655 prokaryotic
genomes according to conservative estimates of verticality and report how this attribute affects
phylogenetic inference in microbial evolution in general and as it impacts inference of eukary-
ote origin in particular.

Results

The verticality of genes

The two main parameters influencing reconstruction of gene evolution across prokaryotes are
sequence conservation and phylogenetic distribution, both of which are easy to estimate from
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clustering methods based on pairwise sequence comparisons. The degree of congruence
among trees for overlapping leaf sets is, by contrast, determined by two unknowns: the accu-
racy of phylogenetic inference relative to the true gene trees, and the relative amount of LGT
that has, or has not, occurred in the evolution of each gene (verticality V). There are many
methods of tree comparison, but not for measures of gene verticality. If a gene occurs in many
lineages, one invariably observes discordance between the branching pattern generated by the
gene and that generated by some standard such as rRNA, yet whether such discordance is due
to LGT or to technical issues involving alignment and phylogeny [27] is virtually impossible to
determine, because knowledge of the amino acid substitution process underlying sequence
divergence in real alignments is irretrievable from real data [28]. That problem is exacerbated
in trees having thousands of leaves, where random phylogenetic differences are inevitable. For
example, there are 3 � 1080 possible topologies for a tree with 52 leaves, and there are about
1080 protons in the universe [29]. A comparison of two trees, each with 52 (or 520, or 5,200)
leaves for an alignment of 400 amino acid sites, evaluates many branches that are not better
than random.

Earlier surveys of lateral gene transfer across 116 prokaryotic genomes using nucleotide fre-
quency comparisons were reported over a decade ago [30]. In the era of computers that can
calculate all trees for all genes, we sought a measure of verticality that is based on phylogenetic
principles but independent of the problems inherent to topological comparisons of large trees.
To obtain such an estimate, we leveraged two simple but robust assumptions. First, we assume
that the higher order taxa of prokaryotes (referred to here as phyla) that microbiologists have
traditionally recognized based on morphological, physiological and rRNA sequence criteria
are real and constitute monophyletic groups. On that premise, the null hypothesis for phyloge-
netic behavior of a given gene in a given prokaryotic phylum is vertical evolution (phylum
monophyly). Our second assumption for estimating verticality is that molecular phylogeny
works most reliably at the tips of trees, the terminal branches. This assumption is the basis of
Neighbor Joining [31], almost all alignment programs [32], and maximum likelihood meth-
ods, which typically start the topology search from an NJ tree [33]. By reading the trees only at
the tips, we disregard phyletic patterns in deeper branches, where pairwise sequence similarity
fades and the processes underlying sequence differences, alignments, and branching pattern
differences become more numerous, more poorly constrained and more prone to inference
errors.

To estimate V, we read the information contained in each tree solely with regard to the
branching patterns of phyla by posing the following recursive set of questions: 1) For each phy-
lum that exists in our data, do sequences from the phylum occur in the tree? 2) If so, do they
form a monophyletic group (a clade) or are they singletons? 3) How many clades do they form
in that tree? 4) For each clade for tree i and phylum j, what is the phylogenetic composition of
the sister group? That set of questions is repeated for all phyla in tree i, the results are tabulated,
and the procedure repeated for the next tree. The resulting data contains information both
about the verticality of all genes (how often phyla appeared monophyletic for each gene) and
about the verticality of genome evolution in all phyla (how often phyla were monophyletic
across all genes in the phylum). In a world without LGT and perfect data that reconstructs the
true tree from the alignment, all phyla would be monophyletic, all genes from the same phy-
lum would have the same sister phylum and each gene would appear to be inherited vertically.
In real data, LGT exists and the data are not perfect, but by looking only at the tips we can esti-
mate verticality without random effects among deeper branches. Note that the true branching
order of phyla relative to one another has no bearing upon our estimate of V, nor does the rela-
tive branching of lower order taxa within each phylum. For a given gene, we calculate V as fol-
lows. For each tree, phyla that are not monophyletic are given a score of zero, the number of
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genomes present in the tree for each monophyletic phylum is divided by the number of
genomes from that phylum among the 5,655 genomes in the data; that proportion is summed
across all monophyletic phyla in the tree, that sum is V for that tree or cluster. For n phyla, V
obtains a value between 0 and n.

This measure scores the verticality of a gene across all phyla in which it occurs and gives a
higher rank to genes that recover phylum monophyly in a tree sampling many phyla than to
those with a more narrow distribution, where the opportunity to observe LGT in tree tips is
reduced. Note that an accurate taxonomic assignment for each gene is important for estimat-
ing V, for which reason we do not include metagenomic data, where binning can lead to
assemblies of genes from different lineages. Clustering all 19,050,992 genes yielded 448,821
clusters with genes spanning at least two sequenced genomes, with 261,058 clusters spanning
at least three genomes for tree reconstruction with an average of 66.4 genomes and 68.7
sequences each. Removing trees that contained sequences from only one phylum left 101,422
trees containing on average 138.8 genomes and 146.7 sequences (median 18 for both).

The first question we asked was whether gene duplications are frequent, as they might emu-
late LGT and thus mask verticality. For smaller data sets it is known that gene duplications in
prokaryotes are generally rare as compared to eukaryotes [34] and that genome sizes constrain
the number of duplicates (or transfers) that a genome can accommodate [11]. Estimating
ancient duplications for this data set is not possible as duplications and transfers would be
indistinguishable, but recent duplications can be quantified. We found 32,277 cases in which
the sister of a terminal leaf (gene) occurred within the same prokaryotic genome. For 5,655
prokaryotic genomes this yields 5.7 genome specific duplications per genome. For compari-
son, 150 eukaryote genomes [35] harbor 109,056 genome specific duplications corresponding
to 727 genome specific duplications per genome. Thus, based upon the values for recent dupli-
cations in the present sample, gene duplications per genome are 134-fold less frequent in pro-
karyotes than in eukaryotes. We also plotted the fraction of terminal duplicates normalized for
genome size and compared the distribution in eukaryotes versus prokaryotes using all
genomes. The cumulative distribution function (S1A Fig) shows that a eukaryotic genome
has, on average, 4% recent duplications while prokaryotes have 0.2%. This is not an effect of
unequal sample size, because the average 20:1 ratio is robust for 100 random samples of 150
prokaryotic genomes (S1B Fig). That duplications are 20–134 fold less frequent in prokaryotes
than in eukaryotes in this sample of 5,655 genomes corresponds well with the earlier estimate
from six groups of closely related bacteria that ~98% of gene families in prokaryotes result
from LGT, not duplication [34]. It suggests that in prokaryotic genomes, duplication (paral-
ogy) does not impact estimates of V in prokaryotic genomes to an appreciable extent, a caveat
for methods that allow and infer roughly equal probabilities of LGT and duplication, both for
prokaryotes and for eukaryotes [36].

The values of V obtained for all genes allows us to rank them by their relative degree of ver-
ticality or LGT, as one prefers. What governs LGT? Few factors have been suggested to govern
the rate of LGT that genes undergo. It has been suggested that LGT is limited by the number of
intermolecular interactions in which a molecule in involved [37]. Although many genes with
high values of V encode ribosomal proteins, which have many interactions, many ribosomal
proteins have modest values of V. We found that the majority of highly vertical genes are solu-
ble proteins as opposed to being components of macromolecular complexes, and that vertical-
ity V strongly correlates with the gene’s distribution frequency across genomes, as shown in
Fig 1, where the value of V estimated for each gene is plotted against the number of genomes
in which it occurs. Fig 1A shows the verticality and distribution of all 101,422 clusters that gen-
erate trees. Fig 1B displays the verticality the 8,547 clusters that contain more conserved
sequences, that is, those that have an average branch length 0.1 substitutions per site. The
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Fig 1. Comparison of estimated verticality and number of genomes in a protein cluster for a. all clusters (n = 101,422) and b. all conserved clusters (average
branch length� 0.1; n = 8,547). Unrooted trees were analyzed if at least two taxonomic groups were present. Verticality was calculated as the sum of
monophyletic taxonomic groups in a cluster adjusted by the fraction of a taxonomic group represented in the cluster. The procedure for determining verticality
on the basis of an example is shown in S3 Fig. This value correlates with the number of genomes, an approximation of universality, which is even more
apparent when clusters of high evolutionary rate were filtered out (a.: p< 10−300, Pearson´s R2 = 0.726; b.: p< 10−300, R2 = 0.829). In both plots clusters of
special interest were marked: The eukaryotic-prokaryotic clusters (EPCs) are highlighted in red and the clusters that correspond to a gene from the
mitochondrial genome of Reclinomonas americana [45] are displayed in blue triangles along the abscissa of the plot and in the graph. For the latter, the gene
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spike of sequences at the left of Fig 1A represents sequences that tend to be vertically inherited
within closely related lineages but whose clusters span only a few genomes because they are
not well conserved, for which reason the spike, which encompasses 836 clusters (0.8%; see S1
Table), is not present in Fig 1B.

The value of V as calculated has desirable properties because it takes distribution into
account. In order to see whether verticality is correlated with distribution, we also calculated
values of verticality that are independent of distribution, using the number of monophyletic
phyla per tree multiplied by the average root-to-tip distance [38] (weighted verticality, Vw; S10
Table) instead of dividing by the number of phyla in which the gene is present. The correlation
between gene distribution frequency and weighted verticality Vw as inferred independent of
distribution frequency was significant at p< 10−300 (S2 Fig, S2 Table). From that one obtains
a very general observation about verticality and gene distribution: The most densely distrib-
uted genes tend to have the highest verticality, that is, the lowest frequency of recent LGT as
determined by phylogenetic criteria.

Why should the most densely distributed genes tend to be most resistant to LGT? We suggest
that the reason is simple: If a well-regulated, codon-bias adapted [2] resident copy of a gene already
exists in the genome, it would have to be displaced by the intruding copy. Selection in prokaryotes
can be intense, as evidenced by codon bias itself: synonymous substitutions that impair codon bias
for highly expressed genes are tenaciously counter selected in nature [2]. The existence of a preex-
isting copy of a gene in the genome reduces the probability of LGT in a highly significant manner
(R2 = 0.726; Fig 1B). This is all the more noteworthy because the genes that most frequently enter
a recipient cell via LGT in nature will be those that are themselves the most widespread genes in
nature—that is, the most common genes will be introduced into recipients with the highest fre-
quency. Prokaryotic genes thus have a home field advantage relative to intruders.

The mechanisms of LGT (transduction, transformation, conjugation, gene transfer agents)
operate constantly across all prokaryotic genomes in the wild. All things being equal, new cod-
ing sequences enter the prokaryotic genome as a random sample of genes available in the envi-
ronment [39,24], producing natural variation in gene content upon which selection and drift
[40] can act to prolong or curtail the gene’s lifespan, or residence time, in the descendant
clonal lineage. Genes that interfere with the workings of the cell [13] are eliminated quickly
from the accessory genome and therefore have a short residence time. Neutral genes that
merely constitute functionless ballast can persist in the pangenome longer before loss, while
genes that are of value under circumstances encountered by the recipient can become fixed
[23,24], in which case they start to shift from the accessory genome to the core genome,
thereby defining new genomic lineages of vertical core descent.

The gene families that we observe to be the most vertical (Fig 1, S1 Fig) are those that are
most widely distributed among genomes and hence the most prevalent in nature. This would
be puzzling were it not for an inhibitory effect that presence of a preexisting copy exerts on the
success rate of LGT. Transposases constitute a special case. They are likely the most common
genes in nature [41], but there are different classes of transposases [41], hence they do not fall
into one cluster. The fate of transposases is not governed by selection and drift, as they self-
amplify within genomes, increasing their copy number by virtue of their ability to do so [42],
not by virtue of selection and drift.

The verticality of genes has practical importance for prokaryotic phylogeny, because mod-
ern approaches to prokaryotic systematics typically aim to increase the amount of information

identifier was noted above each plot. Ribosomal proteins are indicated by the black diamond on the right of each plot and in the graph [6]. Notably, the
ribosomal protein clusters show a steep gradient of verticality among conserved clusters with similarly wide distribution.

https://doi.org/10.1371/journal.pgen.1009200.g001
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per lineage beyond that provided by ribosomal RNA. Since 1997, phylogenetic studies of pro-
karyotic genomes have typically concatenated dozens of sequences into longer alignments
[6,43,44]. However, it is not enough to just combine sequences into longer alignments, the
sequences ideally need to share the same evolutionary history. V provides a measure for how
vertically a gene tends to evolve over evolutionary time spans. Ranking all genes by their verti-
cality (Fig 1; S1 Table) provides criteria for inclusion of genes for phylogenetic studies. For
orientation, in Fig 1 we have labelled along the ordinate the genes in current use for phyloge-
netic studies of archaeal lineages and their relationship to the host that acquired the mitochon-
drion at eukaryote origin [45]. They differ in their degree of verticality. A number of
sequences that are not widely used for phylogeny exhibit higher verticality; these are shown in
Fig 2 and listed in S6 Table. Similarly, genes encoded in mitochondrial DNA are typically
used to investigate the relationship of mitochondria to bacterial lineages [46]. Those genes are
a subset of the genes found in Reclinomonas americana mitochondrial DNA [47], which are
indicated along the abscissa in Fig 1.

From the standpoint of phylogenetics, the main message of Fig 1 is twofold. First, the genes
most commonly used as markers in broad scale prokaryotic phylogenetic studies are, in terms
of their distribution and their verticality, not representative for the genome as a whole. Worse,
without the comparative information from Fig 1 they could even be positively misleading,
because without measures to compare verticality across genes, one might assume that the ten-
dency of the most widely distributed genes to be vertically inherited is representative for the
phylogenetic behavior of all genes. But that is not the case. Widely distributed genes tend to be
vertically inherited but they are not a representative sample for the phylogenetic behavior of
the genome as a whole. The vast majority of prokaryotic genes are not inherited vertically,
hence the small vertically inherited sample is not a good proxy for the phylogenetic behavior
of prokaryotic genes. Vertically inherited genes in prokaryotes are not a random sample, they
are a biased sample. This is also known as the tree of 1% [9] and is most clearly seen in Fig 1B,
where the more conservatively evolving, hence phylogenetically more useful genes are shown.
The vast majority of genes that occur in two or more phyla in prokaryotes fail to recover phy-
lum monophyly to any appreciable extent, also for estimates of V that are independent of dis-
tribution (S2 Fig), and most of them are present in only very few phyla to begin with. The
mean and median values of V in Fig 1A are 0.27 and 0.04, in Fig 1B 0.70 and 0.06, respectively.
The second main message of Fig 1 concerns the relationship of eukaryotic clusters to prokary-
otic clusters. We mapped these prokaryotic clusters to eukaryotic clusters (see Methods) as
indicated by red circles in Fig 1. Their significance will be discussed in a later section.

The most vertical and lateral genes and categories

Table 1 lists the 20 most vertically and 20 least vertically inherited genes in sequenced prokary-
otic genomes, both for the complete sample and for the conserved fraction of genes. Among
the most vertical are the ribosomal proteins, ribosomal protein S10 currently being the most
vertical protein in genomes, followed by other proteins involved in information processing.
The least vertically inherited genes by our conservative tip-based approach, comprise various
categories (Table 1), the complete lists of genes ranked by verticality is given in S1 Table.

Although we have no estimate of V for rRNA, as its sequence in part defines phyla, the ten-
dency we see for widely distributed protein coding genes to resist LGT would also explain why
rRNA is itself so refractory to transfer [13,48], the rRNA genes that are present in a recipient
genome are difficult to improve upon or match in functional efficiency, and the rRNA gene
product can comprise up to 20% of the cell’s dry weight [49]. Genes for rRNA thereby carry
great inertia against LGT and are therefore difficult to displace by intruding copies. The rank
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Fig 2. Comparison of estimated verticality and number of genomes [%] for the 100 most vertical clusters. Identity and Annotation of
clusters can be found in S6 Table. This is a representation of some of the clusters shown in the blue rectangle of Fig 1A.

https://doi.org/10.1371/journal.pgen.1009200.g002
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Table 1. Maximum likelihood trees from 19,050,992 protein sequences from 5,433 bacterial and 212 archaeal species were calculated for clusters obtained by MCL,
yielding 101,422 trees with at least four sequences and two taxonomic groups present. Each of the 101,422 trees were assigned a protein label according to the NCBI
sequence header that was represented the most. On the left panel all trees were annotated and sorted according to their verticality score for the genes (Vg). The
number of organisms in the respective cluster is stated as Nspec. On the right panel the same values are stated only for conserved protein families–determined by average
branch length 0.1.

All 101,422 protein families The 8,547 most conserved protein families

Vg Protein family Nspec V Protein family Nspec

Most vertical

24.00 30S ribosomal protein S10 5,646 24.00 30S ribosomal protein S10 5,646

23.00 30S ribosomal protein S11 5,652 23.00 30S ribosomal protein S11 5,652

22.30 Asp/glu–tRNA amidotransferase subunit B 4,269 22.30 Asp/glu–tRNA amidotransferase subunit B 4,269

22.00 50S ribosomal protein L1 5,650 22.00 50S ribosomal protein L1 5,650

21.89 Alanine–tRNA ligase 5,598 21.89 Alanine–tRNA ligase 5,598

21.57 50S ribosomal protein L2 5,616 21.57 50S ribosomal protein L2 5,616

20.93 Sec family type I SRPa protein 5,571 20.93 Sec family type I SRPa protein 5,571

20.88 30S ribosomal protein S5 5,653 20.88 30S ribosomal protein S5 5,653

19.82 Translation elongation factor G 5,624 19.82 Translation elongation factor G 5,624

19.55 DNA-directed RNA polymerase subunit beta 5,300 19.55 DNA-directed RNA polymerase subunit beta 5,300

19.32 tRNA methylthiotransferase MiaB 4,764 18.86 Translation initiation factor IF-2 5,379

18.94 Signal recognition particle-docking protein FtsY 5,525 18.80 Histidine–tRNA ligase 5,627

18.86 Translation initiation factor IF-2 5,379 18.76 DNA gyrase subunit A 5,467

18.80 Histidine–tRNA ligase 5,627 18.00 50S ribosomal protein L14 5,655

18.76 DNA gyrase subunit A 5,467 18.00 Methionine–tRNA ligase 5,587

18.03 tRNA pseudouridine synthase B 5,434 17.98 Excinuclease ABC subunit B 5,411

18.00 50S ribosomal protein L14 5,655 17.96 DNA-directed RNA polymerase subunit alpha 5,431

18.00 Methionine–tRNA ligase 5,587 17.93 CTP synthetase 5,433

17.98 Excinuclease ABC subunit B 5,411 17.88 30S ribosomal protein S8 5,653

17.96 DNA-directed RNA polymerase subunit alpha 5,431 17.85 Preprotein translocase subunit SecA 5,395

Most lateral

0 Heavy metal-responsive transcriptional regulator 2,392 0 SDH cyt b556 large subunit 2,344

0 SDH cyt b556 large subunit 2,344 0 RnfH family protein 2,004

0 Anaerobic ribo.-triPb reductase activating protein 2,078 0 Hypothetical protein 1,964

0 Thiol:disulfide interchange protein DsbC 1,952 0 Amino acid ABC transporter permease 1,666

0 RnfH family protein 2,004 0 Succinate dehydrogenase, HMc anchor protein 1,800

0 Disulfide bond formation protein B 1 1,808 0 LysR family transcriptional regulator 1,267

0 Hypothetical protein 1,964 0 Hypothetical protein 1,688

0 Amino acid ABC transporter permease 1,666 0 Maleylacetoacetate isomerase 1,430

0 LysR family transcriptional regulator 1,431 0 Sigma-E factor regulatory protein RseB 1,599

0 Succinate dehydrogenase, HMc anchor protein 1,800 0 tRNA synthase TrmP 1,567

0 LysR family transcriptional regulator 1,267 0 tRNA 5-methoxyuridine(34) synthase CmoB 1,525

0 Hypothetical protein 1,688 0 Chemotaxis phosphatase CheZ family protein 1,483

0 Maleylacetoacetate isomerase 1,430 0 Hypothetical protein 1,505

0 Sigma-E factor regulatory protein RseB 1,599 0 Hypothetical protein 1,345

0 tRNA synthase TrmP 1,567 0 Outer membrane protein assembly protein 1,301

0 tRNA 5-methoxyuridine(34) synthase CmoB 1,525 0 Deoxyribonuclease I 1,269

0 Chemotaxis phosphatase CheZ family protein 1,483 0 Formate dehydrogenase accessory protein FdhE 1,241

0 Hypothetical protein 1,505 0 Flagellar export protein FliJ 1,208

0 Hypothetical protein 1,345 0 Hypothetical protein 1,200

(Continued)
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of functional categories (Table 2) with respect to verticality reveals that the clusters function-
ally associated with translation rank highest, followed by nucleotide metabolism (many pro-
teins without intermolecular interactions), replication, folding and vitamin synthesis. Genes
for vitamin synthesis are not highly expressed but are widely distributed and are highly verti-
cal. The least vertical categories comprise drug resistance and community interactions. Cogno-
scenti might surmise that there are no real surprises in the ranking of functional categories

Table 1. (Continued)

All 101,422 protein families The 8,547 most conserved protein families

Vg Protein family Nspec V Protein family Nspec

0 Hypothetical protein 1,325 0 Hypothetical protein 1,179

Notes
a SRP protein–general secretory pathway protein signal recognition particle protein
b ribo.-triP–ribonucleoside-triphosphate
c HM–hydrophobic membrane

https://doi.org/10.1371/journal.pgen.1009200.t001

Table 2. Assignment of KEGG level B functional annotations. On the left panel all prokaryotic maximum likelihood trees were annotated and sorted according to their
average verticality score (Vavg). The number of clusters employed for this analysis are indicated (Nclust). The same procedure was performed on the right panel only for con-
served protein families–determined by average branch length 0.1.

All 101,422 protein families The 8,547 most conserved protein families

Function Vavg Nclust Function Vavg Nclust

Translation 5.31 2,428 Translation 14.82 284

Metabolism of cofactors and vitamins 4.86 2,443 Nucleotide metabolism 10.21 160

Nucleotide metabolism 4.28 1,419 Metabolism of cofactors and vitamins 7.95 199

Amino acid metabolism 3.83 3,777 Carbohydrate metabolism 7.23 534

Carbohydrate metabolism 3.63 4,836 Replication and repair 7.11 187

Biosynthesis of other secondary metabolites 3.62 507 Energy metabolism 7.07 208

Glycan biosynthesis and metabolism 3.42 3,349 Amino acid metabolism 7.06 438

Metabolism 3.31 4,260 Folding, sorting and degradation 6.77 118

Energy metabolism 3.28 2,705 Metabolism of other amino acids 5.87 81

Xenobiotics biodegradation and metabolism 3.26 1,606 Metabolism 5.67 337

Replication and repair 3.14 3,502 Enzyme families 5.53 164

Transport and catabolism 3.02 2,843 Biosynthesis of other secondary metabolites 5.50 25

Metabolism of terpenoids and polyketides 2.97 1,473 Xenobiotics biodegradation and metabolism 5.36 103

Metabolism of other amino acids 2.95 745 Glycan biosynthesis and metabolism 5.33 158

Transcription 2.84 7,245 Signal transduction 5.10 240

Folding, sorting and degradation 2.79 1,873 Membrane transport 4.69 1,431

Lipid metabolism 2.65 2,864 Cell motility 4.37 124

Enzyme families 2.59 3,735 Metabolism of terpenoids and polyketides 4.31 85

Cellular processes and signaling 2.49 3,905 Transport and catabolism 4.31 143

Signal transduction 2.48 6,712 Lipid metabolism 4.20 215

Membrane transport 2.46 19,992 Transcription 4.12 409

Genetic information processing 2.31 4,838 Cellular processes and signaling 3.75 257

Cellular community prokaryotes 2.21 3,986 Cellular community prokaryotes 3.55 172

Drug resistance 2.15 1,754 Genetic information processing 3.23 269

Cell motility 1.94 3,620 Drug resistance 3.10 88

Poorly characterized 1.41 178,665 Poorly characterized 1.68 2,970

https://doi.org/10.1371/journal.pgen.1009200.t002
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with respect to V, an indication that our measure of V is recovering meaningful information
about gene evolution.

The verticality of phyla

By averaging the verticality of all genes that occur in a given phylum, we can also estimate the
verticality of phyla and rank them accordingly. This is shown in Table 3, for bacteria and
archaea separately, where Pmono indicates the proportion of trees in which the given phylum
was monophyletic. No phyla were always monophyletic, with values of Pmono topping out at
about 0.8, meaning that the phylum was monophyletic in 80% of the trees in which its
sequences occurred. At the level of phyla, for all genes and for the conserved genes, Acidithio-
bacilli emerge as the most vertically evolving bacteria, while the Thermococcales and Metha-
nococcales emerge as the most vertically evolving archaea. The most laterally evolving bacteria
are the Erysipelotrichia, a group of firmicutes related to Clostridia, and the Clostridia them-
selves for all genes, while for the conserved genes, the Gammaproteobacteria finish last when it
comes to avoiding LGT. The archaea most riddled by LGT are the halophiles, which are
methanogens that acquired their respiratory chain and aerobic lifestyle from bacteria [19].
Though not strict, there is a clear tendency for bacteria with a specialist lifestyle to resist LGT,
and a tendency for generalists like the divisions of the proteobacteria to harbor less vertically
evolving chromosomes, that, is to undergo LGT.

The Gammaproteobacteria were the worst offenders when it came to LGT among the 8,547
conserved gene trees, showing gammaproteobacterial monophyly in less than 20% of trees that
contained the phylum. Of course, it is possible that verticality is violated by recurrent
exchanges among specific pairs of taxa or by phylogenetic artefact involving true neighbors,
which for Gammaproteobacteria would be the Betaproteobacteria in traditional schemes. In
order to check for such effects, each time we scored a tip-resident clade in our trees, we also
scored the phylogenetic membership within its sister group. A sister group can either itself be
monophyletic, containing sequences from only one phylum, or it can be mixed, containing
sequences from two or more different phyla. The summary is shown in Fig 3, where the fre-
quencies of phyla in the sister group are shown. Note that a phylum can appear as its own sister
group when its monophyletic clade is broken by recent LGT to a member of a different phy-
lum: the gene tree does not change, but the taxon label of the donated gene does, leaving
sequences of the donor phylum that branch below the recent export in the sister group. This is
illustrated in S3d Fig. While methanogens and halophilic archaea tend to interleave, as do
archaea as a whole, the dominant signal in the sister group plot is that Gammaproteobacteria
tend to be the sister of virtually every phylum, meaning that they are the recipient of genes
from all phyla in our sample. The tendency to undergo recent LGT—recent because we are
only scoring terminal branches—is also clearly manifest in Bacilli, Betaproteobacteria, Alpha-
proteobacteria and Actinobacteria, all of which harbor lineages with large genomes, large pan-
genomes, and diverse generalist lifestyles.

The verticality of individual genomes

Averaging the value of verticality across all genes in a genome gives an estimate for the vertical-
ity of the genome, Vg. The verticality of all genomes investigated here is given in S4 Table. The
most vertical genomes are those with the highest proportion of genes involved in translation.
This is because the process of reductive genome evolution [50] always hones in on the ribo-
some, translation and information processing, as these functions are prerequisite to gene
expression. The widely distributed genes involved in information processing are the most ver-
tical (Table 1), such that the gammaproteobacterial endosymbiont Carsonella ruddii [51]
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Table 3. Verticality of prokaryotic taxa across protein families with at least two taxonomic groups. The list of bacterial (top) and archaeal (bottom) taxa occurring in
all trees (right) and only trees that were filtered for conservation (average branch length in the tree 0.1) (left). Archaeal and bacterial phyla with less than 5 representative
species in the dataset were excluded. Pmono refers the proportion of monophyletic trees. Nmono indicates the number of trees in which this taxon is monophyletic whereas
Ntrees shows the number of occurrences of the phyla in the respective dataset.

All trees– 101,423 Conserved trees– 8,547

Taxon Pmono Nmono Ntrees Pmono Nmono Ntrees

Bacteria

Acidithiobacillia 0.81 1,677 2,067 0.91 629 688

Chlamydiae 0.74 1,378 1,867 0.75 482 642

Tenericutes 0.68 2,770 4,076 0.50 391 776

Actinobacteria 0.60 30,050 49,958 0.37 1,214 3,293

Bacilli 0.59 24,365 41,526 0.25 1,017 3,997

Chlorobi 0.59 1,728 2,946 0.80 494 619

Thermotogae 0.57 2,252 3,937 0.65 495 764

Cyanobacteria 0.56 8,655 15,446 0.64 843 1,319

Deinococcus-Thermus 0.54 3,156 5,858 0.63 705 1,113

Synergistetes 0.53 1,001 1,872 0.70 484 692

Epsilonproteobacteria 0.52 3,815 7,270 0.37 513 1,397

Fusobacteria 0.51 1,805 3,516 0.60 717 1,194

Spirochaetes 0.50 5,063 10,130 0.44 683 1,564

Bacteroidetes 0.49 11,677 23,755 0.40 759 1,879

Gammaproteobacteria 0.48 29,439 61,803 0.18 1,078 5,874

Negativicutes 0.45 1,892 4,170 0.59 804 1,371

Nitrospirae 0.43 1,377 3,180 0.47 359 762

Alphaproteobacteria 0.43 18,086 41,953 0.35 1,312 3,735

Aquificae 0.43 1,210 2,826 0.43 290 672

Planctomycetes 0.40 1,755 4,399 0.55 533 961

Chloroflexi 0.39 2,349 6,003 0.46 521 1,141

Acidobacteria 0.38 1,789 4,666 0.58 625 1,077

Betaproteobacteria 0.38 14,203 37,225 0.34 1,601 4,775

Deltaproteobacteria 0.37 8,512 23,013 0.38 1,005 2,618

Verrucomicrobia 0.36 1,146 3,152 0.56 601 1,067

Clostridia 0.32 7,481 23,638 0.34 1,084 3,196

Erysipelotrichia 0.17 344 2,001 0.43 451 1,058

Archaea

Thermococcales 0.73 2,482 3,380 0.79 271 341

Methanococcales 0.73 1,612 2,220 0.83 236 283

Methanobacteriales 0.68 1,949 2,857 0.79 282 356

Sulfolobales 0.66 2,223 3,387 0.75 280 374

Archaeoglobales 0.62 1,415 2,286 0.79 252 318

Methanomicrobiales 0.60 1,616 2,693 0.74 301 406

Methanosarcinales 0.60 3,392 5,654 0.63 318 503

Thermoproteales 0.55 1,537 2,775 0.61 257 420

Thermoplasmatales 0.49 662 1,364 0.58 212 366

Desulfurococcales 0.41 852 2,072 0.44 130 298

Natrialbales 0.32 1,459 4,503 0.42 246 588

Haloferacales 0.27 980 3,593 0.40 205 513

Halobacteriales 0.20 1,024 5,057 0.30 178 591

https://doi.org/10.1371/journal.pgen.1009200.t003
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which possesses only 166 protein coding genes, is the most vertical genome in our sample with
Vg = 9.44. Conversely, the least vertical genomes are the largest, with the actinobacterium
Amycolatopsis mediterranei (Vg = 0.84) having a genome over 10 Mb coming in last. Among
the archaea, the most vertical genomes were those of H2 dependent autotrophs (S4 Table).
The most vertical genome was that of the highly reduced free living archaeon, Ignicoccus hospi-
talis [52] (Vg = 4.10) an extreme specialist that grows only on H2 + S0, followed by nine H2

dependent methanogens, starting with the thermophilic methanogen Methanothermus fervi-
dus (Vg = 4.09), with a genome of 1.2 Mb [53]. The most lateral archaeal genome was that of
the halophile Haloterrigena turkmenica (Vg = 1.66).

Fig 3. Relative occurrence of a taxonomic group as the sister group of each clade in the unrooted trees. For each taxonomic group in a cluster the sister was
determined and counted. Multiple occurrences of different groups in the sister were accounted for by their relative occurrence. If the taxonomic group was
paraphyletic, each monophyletic subgroup was determined and the sister of these were noted. The values of these subgroups were added up by multiplying the
individual values of the sister by the fraction of the subgroup of the whole taxonomic group. To compare, the final values of each taxonomic group were normalized by
dividing by the highest count a possible sister has gotten. It is apparent that Gammaproteobacteria are always overrepresented. It is not clear if the observed effects are
due to overrepresentation of certain taxa in the data set or due to relative abundance of LGT.

https://doi.org/10.1371/journal.pgen.1009200.g003
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Eukaryotes

In an ideal world of vertically inherited genes and infallible phylogeny, all genes would pro-
duce the same tree and all eukaryotic genes would trace to the same alphaproteobacterium
(the mitochondrion) and the same are archaeon (host), plus the same cyanobacterium in the
case of eukaryotes with plastids. But the real data from real genomes reveals that only a small
minority of prokaryotic genes, much less than 1%, tend to be inherited vertically. How does
the non-verticality of prokaryotic genes, genomes, and phyla impact our ability to infer the ori-
gin of eukaryotic genes? For all 3,420,731 protein coding genes from 150 eukaryotic genomes,
we constructed clusters, merged them with their cognate prokaryotic clusters to generate
eukaryote-prokaryote clusters (EPCs), constructed alignments and ML trees (see Methods).
The red circles in Fig 1 mark the prokaryotic clusters that were merged with their unique cog-
nate eukaryotic clusters. The first question concerned eukaryote monophyly. There are many
claims in the literature for LGT from prokaryotes to eukaryotes, but few are supported by pro-
karyotic reference samples that reflect the availability of genome data and fewer still, if any, are
supported by systematic tests for eukaryote monophyly. Therefore, we looked closely at the
possibility of LGT vs. eukaryote monophyly in our sample.

Among the 2,575 maximum-likelihood (ML) trees reconstructed from the merged eukary-
ote-prokaryote clusters, only 475 of the best trees found (18.4%) failed to recover eukaryotes as
monophyletic. Does that finding represent evidence for LGT to eukaryotes in 18% of these
trees, that is, is the best tree identified significantly better than the case of eukaryote mono-
phyly? To test whether the lack of eukaryote monophyly in those 475 trees is due to recon-
struction errors or due to prokaryote-eukaryote LGT, we compared the ML trees against trees
with constrained eukaryote monophyly using likelihood tests. We employed the Kishino-
Hasegawa test (KH), the approximately-unbiased test (AU) and the Shimodaira-Hasegawa test
(SH) (see Methods for details). At the 5% significance level (p-value 0.05), the KH test
rejected eukaryote monophyly for 6% of the trees (30 out of 475), that is, the null hypothesis
(eukaryote monophyly) was rejected at a rate very close to that expected by chance. The AU
test rejected eukaryote monophyly for 3 trees while the SH test did not reject eukaryote mono-
phyly for any tree at the p-value of 0.05 (S4 Fig and S5 Table). Thus, the absence of a pure
eukaryotic clade in some of the best trees found by ML trees results from challenges in distin-
guishing alternative trees that are statistically identical to the true tree, or to trees recovering
eukaryote monophyly, in terms of their likelihood values, a problem that becomes more acute
for phylogenetic inference using large samples because the tree space for the ML method to
search grows exponentially. In terms of traits, eukaryotes are the strongest monophylum in
nature, a status corroborated by the lack of any evidence that would support a case for the
non-monophyly (LGT) of eukaryotic genes.

What do trees say about the origin of eukaryotic genes? In the following, to avoid the effects
of trees for poorly conserved genes (Fig 1A), we consider only those 685 trees in which the
eukaryotic cluster mapped to one of the conserved prokaryotic clusters in Fig 1B. For each
tree, we determined the prokaryotic sister group to the eukaryotic clade, and scored whether it
was a pure sister containing sequences from only one prokaryotic phylum or a mixed sister
group containing a mixed sister group from two or more phyla. The results are summarized in
Fig 4B.

By the measure of phylogenetic inference, every prokaryotic phylum sampled in our study
appears as a donor of genes to the eukaryote common ancestor, either by presence in a mixed
sister group or as a pure sister (Fig 4B). This is true not only for bacteria, which would be
expected to trace mitochondrial ancestry, but also for archaea, which since their discovery
have been linked to the origin of the host. Can we naïvely interpret such observations at face
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Fig 4. Identification of the prokaryotic sister group to the eukaryotes in 2,575 eukaryotic-prokaryotic unrooted gene
trees (EPC). a. shows the average clade sizes for eukaryotes, the sister group to eukaryotes and the outgroup in the analyzed
trees for (right) the 229 trees with only plastid derived lineages and (left) for the 456 EPCs containing all taxa except
photosynthetic lineages. b. details the list of bacterial (top) and archaeal (bottom) phyla occurring in the trees with only plant
lineages (right) and all other trees (left) that were filtered for conservation (average branch length of the tree 0.1). Archaeal
and bacterial phyla with less than 5 representative species in the dataset were collapsed into ‘other archaea’ and ‘other
bacteria’ groups. Pmono refers to the proportion of trees with a branch (split) separating the species of the respective phylum
from all the others in the tree; Snon refers to the number of occurrence of the phylum only in the outgroup clade; Smix refers
to the number of occurrences of the phylum as a mixed sister (more than one phylum in the clade); Spure refers to the number
of occurrences of the phylum as pure sister (as the single phylum); Sp,avg shows the average size of the sister clade when the
phylum occurs as a pure sister clade. Ntrees show the number of occurrences of the phyla across the trees and Ngen indicates
the number of species in each taxon included in the complete dataset.

https://doi.org/10.1371/journal.pgen.1009200.g004
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value? Is it reasonable to believe that every phylum sampled here donated a gene, or several, to
eukaryotes at their origin? If we break the data down to families, genera, or species, the num-
ber of donors grows accordingly (all prokaryotic organisms employed in this study were in the
sister group to eukaryotes at least once), such that each gene in eukaryotes would correspond
to an individual donation, as some would argue [54]. But that logic leads straight to the errone-
ous conclusion that ancestral plastid and mitochondrial genomes were assembled by acquisition
one gene at a time [55] the converse of what they are in plain sight, namely reduced genomes of
single bacterial endosymbionts [50] that underwent reductive evolution by transferring genes to
the nucleus. Worse yet, the same problem ensues at the origin of plastids (Fig 4B, right column),
because for photosynthetic eukaryotes again all phyla, including the archaea, appear as donors.
Many genes that are germane to photosynthesis in eukaryotes trace to the plant common ances-
tor (plants being monophyletic) but only a minority of them trace specifically to Cyanobacteria,
and those that do, do not trace to the same cyanobacterium [56,57].

If we only consider pure sister groups to eukaryotes, the most common apparent gene
donor was Gammaproteobacteria, followed by Alphaproteobacteria, Actinobacteria and
Bacilli. There is at least one theory in the literature invoking the participation of those groups
at eukaryote origin [58]. However, a similar pattern recurs for plastids, which have the stron-
gest pure sister signal from Cyanobacteria followed again by Gammaproteobacteria (for which
there is no plastid origin theory) and Alphaproteobacteria. The problem of inferring symbi-
onts from gene trees becomes more evident when we consider apparent archaeal contributions
to the origins of plastids (Fig 4B), because there are no archaea that synthesize chlorophyll.
We are confronted with a conflict. Blind inference of symbionts from trees cannot account for
the origin of organelle genomes, the strongest form of evidence for the origin of organelles in
the first place. The ‘one tree one donor’ logic carries a weighty premise that is never spelled out
by its proponents, namely that the donated genes never underwent LGT among free living pro-
karyotes in the 1.5 billion years since organelle origin. If we approach the problem from the
standpoint of theory testing in the presence of prior knowledge about the underlying process,
namely one symbiont 1.5 billion years ago (as evidenced by the single origin of plastids and
mitochondria respectively), what would look like many donors if we were to assume that pro-
karyotic gene evolution is vertical, is clearly the result of LGT among free-living prokaryotes,
where, in real data, gene evolution is lateral.

For example, were the gammaproteobacterial signal in heterotrophic eukaryotes a result of
gene acquisitions from donors with gammaproteobacterial rRNA, then that same signal would
reflect a gammaproteobacterial origin of plastids (Fig 4B), which seems unlikely and is not
covered by any theory. If on the other hand it were due to the low verticality of Gammaproteo-
bacteria as a phylum, then Gammaproteobacteria should appear as the sister to many different
groups of prokaryotes, which is precisely the observation (Fig 3). We asked whether there is a
non-random signal across all genes that singles out Cyanobacteria (plastids) and Alphaproteo-
bacteria (mitochondria) specifically as donors. This is shown in Fig 5, where we have plotted
the distribution of trees that identify Alphaproteobacteria, Cyanobacteria or Gammaproteo-
bacteria as pure sisters to (donors of) eukaryotic genes. Though Gammaproteobacteria appear
as the pure sister in many trees (Fig 4B), the genes that do so are primarily of low verticality.
Only the Alphaproteobacteria have a significant enrichment of vertical genes as sisters relative
to the sample (Fig 5A), but the significance is marginal (p< 0.01). The Cyanobacteria are not
significantly enriched in high verticality sisters, because of a large number of low verticality
cases (Fig 5C and 5D). The majority of the gammaproteobacterial sister cases are low vertical-
ity genes (Fig 5E and 5F).

Throughout this discussion, we recall that the ancestor of mitochondria was not a phylum
of proteobacteria, it was a single proteobacterium that engaged in a singular symbiosis. The
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Fig 5. Mapping of EPCs to prokaryotic clusters. The EPCs were separated according to the pure sister group of
eukaryotes in the unrooted trees: a. and b. Alphaproteobacteria, c. and d. Cyanobacteria, e. and f.
Gammaproteobacteria. The left panel shows EPCs that may include all eukaryotic supergroups but no groups that
include only photosynthetic lineages, the right panel shows only EPCs that only include photosynthetic eukaryotes
(lineages from SAR, Hacrobia and Archaeplastida). Meaning the latter are indicative of plastid endosymbiosis. Plots
for all taxa see S5 Fig.

https://doi.org/10.1371/journal.pgen.1009200.g005
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same is true for plastids, whose origin was not the result of a symbiosis with the cyanobacterial
phylum, it was a symbiosis with a single cyanobacterium. The genes that trace to those organ-
elle origin events are, however, like almost all prokaryotic genes, of low verticality within
prokaryotes.

A critic might ask whether eukaryotes, if their genes are of monophyletic origin relative to
prokaryotes, score higher than all prokaryotes in terms of a comparable measure of verticality
(supergroups instead of phyla). The problem there is a different one, namely paralogy. The
underlying theme of eukaryotic genome evolution is recurrent gene and genome duplication
[59,60], massive paralogy impairs eukaryote gene monophyly although gene duplications carry
phylogenetic information in their own right [35]. The genes that have remained in plastid and
mitochondrial genomes encode proteins involved in the electron transport chain of the bioe-
nergetic membrane supporting photosynthesis and respiration, respectively, and the ribosomal
proteins [61] involved in synthesizing those proteins in the organelle [62]. Why do those ribo-
somal proteins reflect an alphaproteobacterial [46] and cyanobacterial [56] origin of the organ-
elle more clearly than non-ribosomal genes? It is not because non-ribosomal genes were
acquired from different biological donors. Rather, it is because the prokaryotic reference set of
ribosomal proteins is inherited in a vertical manner among free living prokaryotes; all other
prokaryotic genes are inherited more laterally (Fig 1), evoking the illusion of many different
donors to eukaryotes in phylogenetic analyses (Fig 4B). Yet that illusion rests upon the tacit
assumption that prokaryotes inherit their genes vertically, which is however untrue
[2,34,63,64,65].

Discussion

Even though gene evolution in prokaryotes has substantial lateral components, rRNA-based
investigations and some protein phylogenetic studies tend to recover groups that microbiolo-
gists recognized long before molecular systematics. Hence the groups are in some cases real
and there must be a vertical component to prokaryote evolution. The vertical component has,
however, been difficult to quantify across lineages. Equally elusive have been estimates for ver-
ticality itself, yet suitable methods to quantify that component have been obscure, as have
means to quantify verticality across prokaryotic genes. Quantification of discordance in tree
comparisons represents one approach [66] to estimate LGT or lack thereof, but its utility is
limited when large genome samples are involved, because the number of possible trees exceeds
the number that a computer can examine by hundreds of orders of magnitude for trees con-
taining 60 leaves or more. By exploiting the common wisdom that phylogeny works better at
the tips of trees than at their deeper branches, we have obtained robust estimates of verticality.

Though many genes that are currently used in molecular systematic studies based on their
widespread occurrence have low verticality, across all genes V does increase with distribution
density. We suggest that this is so because the displacement of a well-regulated preexisting
copy is less likely than the transient and rarely permanent, in some cases lineage founding
[67], acquisition of novel traits. That most genes in prokaryotes have both restricted distribu-
tion and low verticality underscores the need to identify genes that are inherited vertically
across large data sets for the purpose of higher-level broad scale phylogenetic analyses. We
found no genes among the 101,422 total clusters and 8,547 conserved clusters that recovered
monophyly of all 40 phyla. At the same time all phyla were disguised as gene donors to eukary-
otes both at the origin of mitochondria and at the origin of plastids because of LGT among the
prokaryotic reference set.

The spectrum of verticality across genes observed here precludes the need to propose, based
on trees that implicate non-alphaproteobacterial or non-cyanobacterial gene donors, genetic
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contributors at the origin of eukaryotes beyond the host, the mitochondrion and, later, the cya-
nobacterial antecedent of plastids, because LGT among prokaryotes can account for the same
gene-tree based observations, more directly and with fewer corollary assumptions, while
simultaneously accounting for a larger set of observations among the prokaryotic reference
set. The criterion of verticality can furthermore be of practical use in the selection of genes for
molecular systematic studies.

Methods

Prokaryotic dataset

Protein sequences for 5,655 prokaryotic genomes were downloaded from NCBI [68] (version
September 2016; see S3 Table for detailed species composition). We performed all-vs-all
BLAST [69] searches (BlastP version 2.5.0 with default parameters) and selected all reciprocal
best hits with e-value 10−10. The protein pairs were aligned with the Needleman-Wunsch
algorithm [70] (EMBOSS needle) and the pairs with global identity values< 25% were dis-
carded. The retained global identity pairs were used for clustering using Markov clustering
algorithm [71] (MCL) version 12–068, changing default parameters for pruning (-P 180000, -S
19800, -R 25200). Clusters distributed in at least 4 genomes spanning 2 prokaryotic phyla were
retained, resulting in 101,422 used clusters in total. Sequence alignments for each cluster were
generated using MAFFT [72], with the iterative refinement method that incorporates local
pairwise alignment information (L-INS-i; version 7.130). The resulting alignments were used
to reconstruct maximum-likelihood trees with RAxML version 8.2.8 [73] (parameters: -m
PROTCATWAG -p 12345) (S9 Table). The trees were rooted with the Minimal Ancestor
Deviation method (MAD) [74].

Eukaryotic dataset

Protein sequences for 150 eukaryotic genomes were downloaded from NCBI, Ensembl Protists
and JGI (see S7 Table for detailed species composition). To construct gene families, we per-
formed an all-vs-all BLAST [66] of the eukaryotic proteins (BlastP version 2.5.0 with default
parameters) and selected the reciprocal best BLAST hits with e-value 10−10. The protein
pairs were aligned with the Needleman-Wunsch algorithm (EMBOSS needle) [70] and the
pairs with global identity values < 25% were discarded. The retained global identity pairs were
used to construct gene families with the MCL algorithm [71] (version 12–068) with default
parameters. We considered only the gene families with multiple gene copies in at least two
eukaryotic genomes. Protein-sequence alignments for the multi-copy gene families were gen-
erated using MAFFT [72], with the iterative refinement method that incorporates local pair-
wise alignment information (L-INS-i, version 7.130). The alignments were used to reconstruct
maximum likelihood trees with IQ-tree [75], applying the parameters ‘-bb 1000’ and ‘-alrt
1000’ (version 1.6.5), with subsequent rooting with MAD [74].

Eukaryotic-prokaryotic dataset

To assemble a dataset of conserved genes for phylogenies linking prokaryotes and eukaryotes,
eukaryotic, archaeal and bacterial protein sequences were first clustered separately before
homologous clusters between eukaryotes and prokaryotes were identified. Eukaryotic protein
sequences from 150 genomes (S7 Table) were clustered with MCL [71] using global identities
from best reciprocal BLAST hits for protein pairs with e-value 10−10 and global identity�
40%. The clusters with genes distributed in at least two eukaryotic genomes were retained.
Similarly, prokaryotic protein sequences from 5,655 genomes were clustered using the best
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reciprocal BLAST for protein pairs with e-value 10−10 and global identity� 25% (for
archaea and bacteria, separately). The resulting clusters with gene copies in at least 5 prokary-
otic genomes were retained. Eukaryotic and prokaryotic clusters were merged using the recip-
rocal best cluster procedure [57]. We merged a eukaryotic cluster with a prokaryotic cluster
if� 50% of the eukaryotic sequences in the cluster have their best reciprocal BLAST hit in the
same prokaryotic cluster and vice-versa (cut-offs: e-value 10−10 and local identity� 30%)
yielding 2,587 eukaryotic-prokaryotic clusters (EPCs). EPCs with ambiguous cluster assign-
ment were discarded. Protein-sequence alignments for 2,575 EPCs were generated using
MAFFT (L-INS-i, version 7.130); for twelve clusters, the alignment did not compute as
sequence quality was low. The alignments were used to reconstruct maximum-likelihood trees
with IQ-tree (version 1.6.5) employing the parameters ‘-bb 1000’ and ‘-alrt 1000’ (S5 Table).

Verticality

The verticality measure for each gene was defined as the sum of monophyly scores for all
monophyletic taxa present in the unrooted trees. Only for the calculation of the average root-
to-tip measurements (S2 Fig) rooted trees were necessary. This supplementary analysis was
then performed with MAD rooted trees. Our species set contains 42 taxa corresponding
mostly to phyla level, except for Proteobacteria, Firmicutes and Achaea (see S8 Table). For a
given tree, the monophyly score Sa for taxon a was defined as:

Sa à na=Na
; if a is monophyletic in tree

Sa à 0; otherwise

where na is the number of species in the tree affiliated to a and Na is the total number of species
from a among the 5,655 genomes in our set. The verticality measure Vg for a gene was then
defined as:

Vg à
P

Sa; for all taxa a present in tree

The analyses were conducted with custom scripts using NewickUtilities [76] and ETE [77].
Taxon and genome verticality were defined as the average gene verticality across all gene trees
where the taxon (or genome) were present. In addition, weighted taxon verticality for each
taxon was defined as the weighted average across all gene trees where the phylum appears,
weighted meaning here that values of monophyletic clusters were summed up while values of
paraphyletic clusters were subtracted.

Functional annotation

Two annotation strategies were performed for each protein cluster. First, protein annotation
information according to the BRITE (Biomolecular Reaction pathways for Information Trans-
fer and Expression) hierarchy was downloaded from the Kyoto Encyclopedia of Genes and
Genomes (KEGG v. September 2017) website [78], including protein sequences and their
assigned function according to the KO numbers. The protein sequences of the 5,655 organisms
were mapped to the KEGG database using local alignments with ‘blastp’. Only the best BLAST
hit of the given protein with an e-value 10−10 and alignment coverage of 80% was selected.
After assigning a function based on the KO numbers of KEGG for each protein in the clusters,
the majority rule was applied to identify the function for each cluster. The occurrence of the
function of each protein in the cluster was added and the most prevalent function was assigned
for each cluster.
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The second annotation used the NCBI headers. For this, the appearance of a word among
all sequence headers of a cluster was counted. Then, each header was given a score based on
the sum of how often its words appeared among all headers. The header with the highest score
was then chosen as the cluster annotation.

Tests for eukaryote monophyly

For 475 gene trees where eukaryotes were not recovered as monophyletic, we conducted the
Kishino-Hasegawa (KH) test [79], the Shimodaira-Hasegawa (SH) test [80] and the approxi-
mately-unbiased (AU) test [81] to assess whether the observed non-monophyly was statisti-
cally significant. We reconstructed trees constraining eukaryotic sequences to be
monophyletic, but not imposing any other topological constraint, using FastTree [82] (version
2.1.10 SSE3) and recording all trees explored during the tree search with the ‘-log’ parameter.
The sample of monophyletic trees were used as input in IQ-tree (version 2.0.3; parameter: ‘-zb
100000 -au’) to perform the KH, SH and AU tests against the unconstrained tree (non-mono-
phyletic). If the best constrained tree did not show significant difference relative to the uncon-
strained tree (p-value 0.05), then we considered that eukaryotic monophyly cannot be
rejected.

Sister analyses

Prokaryotes. The sister for each prokaryotic taxon was defined as the clade with the small-
est branch to the query clade. Two cases had to be differentiated: Mono- or paraphyletic taxo-
nomic groups in a tree. Monophyly was tested as described above with NewickUtilities. For
these taxonomic groups, the sister groups could also be directly obtained by using NewickUti-
lities (nw_clade -s). Finally, all different taxonomic groups in the sister groups were given a
score equal to their proportion in the sister group. For paraphyly of a taxonomic group (main
group), the monophyletic subgroups were determined with the python package ETE 3 [77].
Each of these subgroups was handled as an individual group in the cluster and the sister clades
were determined. Again, if several taxonomic groups were present in a sister group, then these
were given a score equal to their proportion in the sister. To get from the scores of each sub-
group to the total score of the main group, each subgroup´s scores was multiplied by the pro-
portion of genomes the subgroup has of the main group. Subsequently, the score of a potential
sister group to the main group was calculated by summing up its adjusted score over all sub-
groups. For each taxonomic group, sister scores were normalized by dividing each score
through the highest sister score and then plotted as a heatmap.

Eukaryotes. To infer the prokaryotic sisters to eukaryotes we used 2,575 EPC trees. The
majority of the EPC trees (2,100) support eukaryotic monophyly. For 475 trees for which
eukaryotes did not branch together we recalculated trees constraining eukaryotic monophyly
because the Shimodaira-Hasegawa tests failed to reject eukaryotic monophyly for all the 475
trees (see Methods section ‘tests for eukaryote monophyly’ and main text). Note that in
unrooted trees for which eukaryotes are monophyletic, the prokaryotic side of the tree is
bisected by one internal node into two prokaryotic subclades, each subclade being the poten-
tial sister to eukaryotes (Fig 4A). We considered the prokaryotic subclade with the smallest
number of leaves for our inferences of sister-relations.

Terminal gene duplications

Terminal gene duplications were inferred using the rooted gene trees as pairs of genes sampled
from the same genome that appeared as reciprocal sisters in the tree. Gene trees with ambigu-
ous MAD roots were discarded.
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Statistical tests

To test the correlations of variables, the Pearson´s correlation test was used [83]. The test
results of various combinations for example Number of genomes and number of phyla, that
are not mentioned in the text are given in S2 Table.

Supporting information

S1 Table. All relevant information about all 101,422 clusters employed in this study.
(XLSX)

S2 Table. Calculated correlations for Fig 1 and S1 Fig.
(TIF)

S3 Table. List of all prokaryotic organisms.
(TXT)

S4 Table. Average verticality per genome and per taxonomic group (phylum).
(XLSX)

S5 Table. List of all 2,575 EPC trees with information if likelihood ratio test was per-
formed.
(XLSX)

S6 Table. Identity and Annotation of the 100 most vertical clusters.
(XLSX)

S7 Table. List of all eukaryotic organisms.
(TXT)

S8 Table. List of all 42 taxonomic groups with labels.
(TXT)

S9 Table. List of all 101,422 RAxML-MAD rooted prokaryote-only trees employed in this
analysis.
(DOCX)

S10 Table. Underlying data for S2 Fig.
(XLSX)

S1 Fig. Cumulative distribution function of the fraction of terminal duplicates normalized
for genome size compared to the distributions in eukaryotes versus prokaryotes using all
genes. a. Shows the cumulative frequency of the proportion of duplications of all 5,655 pro-
karyotic organisms (red) compared to the 150 eukaryotes (blue) in our dataset. b. Shows the
cumulative frequency of 100 random sample sets of 150 prokaryotic organisms each (red) ver-
sus the 150 eukaryotic organisms (blue) in the dataset.
(TIF)

S2 Fig. Relationship of Verticality, calculated from average root-leave distance in MAD
rooted trees, and number of genomes in cluster. Comparison of verticality, normalized by
multiplying raw monophyly count by their average root to leave distance of each tree, and
number of genomes in a protein cluster for a. all clusters (n = 101,422) and b. all conserved
clusters (average branch length� 0.1; n = 8,547). The plot is created analogous to Fig 1 in the
main text and this alternative verticality calculation also correlates to number of genomes (A:
p< 10–300, Pearson´s R2 = 0.571; B: p< 10–300, R2 = 0.686). The correlation is more consis-
tent when comparing verticality to number of phyla represented in a cluster (a: p< 10–300,
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Pearson´s R2 = 0.754; b: p< 10–300, R2 = 0.767, see S2 Table for more details). The eukary-
otic-prokaryotic clusters (EPCs) are highlighted in red and the clusters that correspond to a
gene from the mitochondrial genome of Reclinomonas americana [45] are displayed in blue
triangles along the abscissa of the plot and in the graph. For the latter, the gene identifier was
noted above each plot. Ribosomal proteins are indicated by the black diamond on the right of
each plot and in the graph [6]. Notably, these clusters show a steep decline in clusters with
lower verticality among the conserved clusters.
(TIF)

S3 Fig. Schematic representation of the calculation for the verticality of a gene (Vg) on the
base of one tree with 30 genomes spanning four phyla. Each phylum is indicated by one
color as depicted in the legend of the table. If the phylum is monophyletic in the tree, the num-
ber of genomes in the tree are divided by the number of genomes of this phylum present in the
dataset of 5,655 organisms–phyla e and f in the panels a. and b. of the figure. If the phylum is
paraphyletic, the verticality is set to ’0’–phyla g and h in panels c. and d. of the figure. This
number represents the verticality for each phylum. The sum of all verticality scores for the
phyla in the tree is then the verticality for the tree and conversely, for the gene.
(TIF)

S4 Fig. Likelihood tests of eukaryote monophyly. The Kishino-Hasegawa (KH) test, Shimo-
daira-Hasegawa (SH) test and the Approximately-Unbiased (AU) test were performed for 475
prokaryote-eukaryote genes for which eukaryotes were not recovered monophyletic in the ML
trees. The histogram shows the distribution of p-values (horizontal axis) for the tests of the
unconstrained ML trees against ML trees with constrained eukaryote monophyly. A test was
considered significant (eukaryote monophyly was rejected) if p-value 0.05.
(TIF)

S5 Fig. EPCs with pure sister taxon mapped to conserved clusters. Mapping of EPCs to pro-
karyotic clusters. The EPCs were separated according to the pure sister group of eukaryotes in
the trees and plotted in the same way as in Fig 4 of the main text. The left panel shows EPCs
that may include all eukaryotic supergroups, the right panel shows only EPCs that include
archaeplastidal eukaryotes. Meaning the latter are indicative of plastid endosymbiosis. For a
better overview a headline is included in each plot that lists the taxonomic group represented,
if it shows EPCs linked to the mitochondrial (‘P and O’, left panel) or to the plastidal endosym-
biosis event (‘Plant only’, right panel), and the number of EPCs that are shown as red dots.
(GZ)
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la biologie et la phylogénie des protozoaires. Ann Sci Nat Zool 1925; 8:5–85.

27. Creevey CJ, Fitzpatrick DA, Philip GK, Kinsella RJ, O’Connell MJ, Pentony MM, et al. Does a tree-like
phylogeny only exist at the tips in the prokaryotes? Proc Biol Sci 2004; 271(1557):2551–2558. https://
doi.org/10.1098/rspb.2004.2864 PMID: 15615680

28. Semple C, Steel MA. Phylogenetics. Reprinted. Oxford: Oxford Univ. Press; 2009. (Oxford lecture
series in mathematics and its applications; vol 24).

29. McPherson RA. The Numbers Universe: An outline of the dirac/eddington numbers as scaling factors
for fractal, black hole universes. Electronic Journal of Theoretical Physics 2008; 5(18).

30. Nakamura Y, Itoh T, Matsuda H, Gojobori T. Biased biological functions of horizontally transferred
genes in prokaryotic genomes. Nat Genet 2004; 36(7):760–766. https://doi.org/10.1038/ng1381 PMID:
15208628

31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol
Biol Evol 1987; 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 PMID: 3447015

32. Landan G, Graur D. Heads or tails: a simple reliability check for multiple sequence alignments. Mol Biol
Evol 2007; 24(6):1380–1383. https://doi.org/10.1093/molbev/msm060 PMID: 17387100

33. Criscuolo A. morePhyML: improving the phylogenetic tree space exploration with PhyML 3. Mol Phylo-
genet Evol 2011; 61(3):944–948. https://doi.org/10.1016/j.ympev.2011.08.029 PMID: 21925283

34. Treangen TJ, Rocha EPC. Horizontal transfer, not duplication, drives the expansion of protein families
in prokaryotes. PLoS Genet 2011; 7(1):e1001284. https://doi.org/10.1371/journal.pgen.1001284 PMID:
21298028

35. Tria FDK, Brückner J, Skejo J, Xavier JC, Zimorski V, Gould SB, et al. Gene duplications trace mito-
chondria to the onset of eukaryote complexity; 2019. (vol 176) bioRxiv. https://doi.org/10.1101/781211
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Abstract

The last eukaryote common ancestor (LECA) possessed mitochondria andall key traits that make eukaryotic cells more complex than
their prokaryotic ancestors, yet the timing of mitochondrial acquisition and the role of mitochondria in the origin of eukaryote
complexity remain debated. Here, we report evidence from gene duplications in LECA indicating an early origin of mitochondria.
Among 163,545 duplications in 24,571 gene trees spanning 150 sequenced eukaryotic genomes, we identify 713 gene duplication
events that occurred in LECA. LECA’s bacterial-derived genes include numerous mitochondrial functions and were duplicated
significantly more often than archaeal-derived and eukaryote-specific genes. The surplus of bacterial-derived duplications in
LECA most likely reflects the serial copying of genes from the mitochondrial endosymbiont to the archaeal host’s chromosomes.
Clustering, phylogenies and likelihood ratio tests for 22.4 million genes from 5,655 prokaryotic and 150 eukaryotic genomes reveal
no evidence for lineage-specific gene acquisitions in eukaryotes, except from the plastid in the plant lineage. That finding, and the
functions of bacterial genes duplicated in LECA, suggests that the bacterial genes in eukaryotes are acquisitions from the mitochon-
drion, followed by vertical gene evolution and differential loss across eukaryotic lineages, flanked by concomitant lateral gene
transfer among prokaryotes. Overall, the data indicate that recurrent gene transfer via the copying of genes from a resident
mitochondrial endosymbiont to archaeal host chromosomes preceded the onset of eukaryotic cellular complexity, favoring
mitochondria-early over mitochondria-late hypotheses for eukaryote origin.

Key words: evolution, paralogy, gene transfer, endosymbiosis, gene duplication, eukaryote origin.

Significance

The origin of eukaryotes is one of evolution’s classic unresolved issues. At the center of debate is the relative timing of
two canonical eukaryotic traits: cellular complexity and mitochondria. Gene duplications fostered the evolution of
novel eukaryotic traits and serve as a rich phylogenetic resource to address the question. By investigating gene
duplications that trace to the last eukaryotic common ancestor we found evidence for mitochondria preceding cellular
complexity in eukaryote evolution. Our results demonstrate that gene duplications were already rampant in the last
eukaryote common ancestor, and we propose that the vast majority of duplications resulted from cumulative rounds
of gene transfers from the mitochondrial ancestor to the genome of the archaeal host cell.

! The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
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Introduction

The last eukaryote common ancestor (LECA) lived about
1.6 Ba (Betts et al. 2018; Javaux and Lepot 2018). It possessed
bacterial lipids, nuclei, sex, an endomembrane system, mito-
chondria, and all other key traits that make eukaryotic cells
more complex than their prokaryotic ancestors (Speijer et al.
2015; Gould et al. 2016; Zachar and Szathm!ary 2017; Barlow
et al. 2018; Betts et al. 2018). The closest known relatives of
the host lineage that acquired the mitochondrion are, how-
ever, small obligately symbiotic archaea from enrichment cul-
tures that lack any semblance of eukaryotic cell complexity
(Imachi et al. 2020). This steep evolutionary grade separating
prokaryotes from eukaryotes increasingly implicates mito-
chondrial symbiosis at eukaryote origin (Gould et al. 2016;
Imachi et al. 2020). Yet despite the availability of thousands
of genome sequences, and five decades to ponder Margulis
(Margulis et al. 2006) resurrection of endosymbiotic theory
(Mereschkowsky 1910; Wallin 1925), the timing, and evolu-
tionary significance of mitochondrial origin remains a polar-
ized debate. Gradualist theories contend that eukaryotes
arose from archaea by slow accumulation of eukaryotic traits
(Cavalier-Smith 2002; Booth and Doolittle 2015; Hampl et al.
2019) with mitochondria arriving late (Pittis and Gabald!on
2016), whereas symbiotic theories have it that mitochondria
initiated the onset of eukaryote complexity in a nonnucleated
archaeal host (Imachi et al. 2020) by gene transfers from the
organelle (Martin and Müller 1998; Lane and Martin 2010;
Gould et al. 2016; Martin et al. 2017).

Information from gene duplications can help to resolve this
debate. Gene and genome duplications are a genomic proxy
for biological complexity and are the hallmark of eukaryotic
genome evolution (Ohno 1970). Gene families that were du-
plicated during the transition from the first eukaryote com-
mon ancestor (FECA) to LECA could potentially shed light on
the relative timing of mitochondrial acquisition and eukaryote
complexity if they could be inferred in a quantitative rather
than piecemeal manner. Duplications of individual gene fam-
ilies (Hittinger and Carroll 2007) and whole genomes
(Scannell et al. 2006; Van De Peer et al. 2009) have occurred
throughout eukaryote evolution. This is in stark contrast to the
situation in prokaryotes, where gene duplications are rare at
best (Treangen and Rocha 2011) and whole-genome dupli-
cations of the kind found in eukaryotes are altogether un-
known. In an earlier study, Makarova et al. (2005) used a
liberal criterion and attributed any gene present in two major
eukaryotic lineages as present in LECA. Their approach over-
looks eukaryotic lineage phylogeny, leading to the inference
of 4,137 families that might have been duplicated in LECA.
More recently, Vosseberg et al. (2021) examined nodes in
trees derived from protein domains that could be scored as
duplications among the 7,447–21,840 genes that they esti-
mated to have been present in LECA and used branch lengths
to estimate the timing of duplication events. However, they

did not report integer numbers for duplications because of
their approach based on the analyses of very large protein-
domain trees instead of discrete protein-coding gene trees.
Here, we addressed the problem of which, what kind of, and
how many genes were duplicated in LECA and discuss the
implications of our findings for the mitochondria-early versus
mitochondria-late debate.

Results and Discussion

To ascertain when the process of gene duplication in eukary-
ote genome evolution commenced and whether mitochon-
dria might have been involved in that process, we inferred all
gene duplications among the 1,848,936 protein-coding
genes present in 150 sequenced eukaryotic genomes. For
this, we first clustered all eukaryotic proteins using a low strin-
gency clustering threshold of 25% global amino acid identity
(see Materials and Methods) in order to recover the full spec-
trum of eukaryotic gene duplications in both highly conserved
and poorly conserved gene families. We emphasize that we
employed a clustering threshold of 25% amino acid identity
because our procedure was designed to allow for the con-
struction of alignments and phylogenetic trees for each clus-
ter. The 25% threshold keeps the alignments and trees out of
the “twilight zone” of sequence identity (Jeffroy et al. 2006),
where alignment and phylogeny artifacts based on compar-
isons of nonhomologous amino acid positions arise.

We then identified all genes that were duplicated across
150 sequenced eukaryotic genomes. In principle, genes pre-
sent only in one copy in any genome could have also under-
gone duplication, with losses leading to single-copy status.
Quantifying duplications in such cases are extremely
topology-dependent. We therefore focused our attention
on genes for which topology-independent evidence for dupli-
cations existed, that is, genes that were present in more than
one copy in at least one genome. Eukaryotic gene duplica-
tions were found in all six supergroups: Archaeplastida,
Opisthokonta, Mycetozoa, Hacrobia, SAR, and Excavata
(Adl et al. 2012), whereby 941,268 of all eukaryotic
protein-coding genes, or nearly half the total, exist as multiple
copies in at least one genome. These are distributed across
239,012 gene families, which we designate as multicopy
gene families. However, 89.7% of these gene families harbor
only recent gene duplications, restricted to a single eukaryotic
genome (inparalogs). The remaining 24,571 families (10.3%)
harbor multiple copies in at least two eukaryotic genomes,
with variable distribution across the supergroups (fig. 1).
Opisthokonts (animals and fungi) together harbor a total of
22,410 multicopy gene families present in at least two
genomes. The animal lineage harbors 19,530 multicopy
gene families, the largest number of any lineage sampled,
followed by the plant lineage (Archaeplastida) with 6,495
multicopy gene families. Of particular importance for the pre-
sent study, among the 24,571 multicopy gene families, we
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identified 1,823 that are present as multiple copies in at least

one genome from all six supergroups and are thus potential

candidates of gene duplications tracing to LECA. In order to

distinguish between the possibility of 1) duplications within

supergroups after diversification from LECA and 2) duplica-

tions giving rise to multiple copies in the genome of LECA, we

used phylogenetic trees.
To infer the relative phylogenetic timing of eukaryotic gene

duplication events, we focused our attention on the individual

protein alignments and maximum-likelihood trees for all

24,571 gene families with paralogs in at least two eukaryotic

genomes. We then assigned gene duplications in each tree to

the most recent internal node possible, allowing for multiple

gene duplication events and losses as needed (see Materials

and Methods) and permitting any branching order of super-

groups. This approach minimized the number of inferred du-

plication events and identified a total of 163,545 gene

duplications, 160,676 of which generated paralogs within a

single supergroup (inparalogs at the supergroup-level). An

additional 2,869 gene duplication events trace to the com-

mon ancestor of at least two supergroups (fig. 2a and sup-

plementary table 1). The most notable result however was the

identification of 713 gene duplication events distributed in

475 gene trees that generated paralogs in the genome of

LECA before eukaryotic supergroups diverged. For these

475 gene trees, the resulting LECA paralogs are retained in

at least one genome from all six supergroups, as indicated in

red in figure 2a. The sample of 475 genes provides a conser-
vative estimate of genes that duplicated in LECA. Among the
1,823 gene families having multiple copies in members of all
six supergroups, note that only in 475 families (26%) do the
duplications actually trace to LECA in the trees. These results
indicate that most duplications in eukaryotes are lineage spe-
cific (figs. 1 and 2), and furthermore raise caveats regarding
earlier estimates of duplications in LECA (Makarova et al.
2005; Vosseberg et al. 2021) based on more permissive
criteria.

LECA’s Duplications Constrain the Position of the
Eukaryotic Root

The six supergroups plus LECA at the root represent a seven-
taxon tree with the terminal edges bearing 97% of gene du-
plication events (fig. 2). Gene duplications that map to inter-
nal branches of the rooted supergroup tree can result from
duplications in LECA followed by vertical inheritance and dif-
ferential loss in some supergroups, or they result from more
recent duplications following the divergence from LECA.
Branches that explain the most duplications are likely to reflect
the natural supergroup phylogeny, because support for con-
flicting branches is generated by random nonphylogenetic
patterns of independent gene losses (Van De Peer et al.
2009). There is a strong phylogenetic signal contained within
the eukaryotic gene duplication data (fig. 2). Among all pos-
sible internal branches, those supported by the most frequent

FIG. 1.—Distribution of multicopy genes across 150 eukaryotic genomes. All eukaryotic protein-coding genes were clustered, aligned, and used for

phylogenetic inferences. The resulting gene families present as multiple copies in more than one genome are plotted (see Materials and Methods). The figure

displays the 24,571 multicopy gene families (horizontal axis) and the colored scale indicates the number of gene copies in each eukaryotic genome (vertical

axis). The genomes were sorted according to a reference species tree (supplementary data 7) and taxonomic classifications were taken from NCBI. Animals

and fungi together form the opisthokont supergroup.
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duplications are compatible with the tree in figure 2b, which

places the eukaryotic root on the branch separating Excavates

from other supergroups, as implicated in previous studies of

concatenated protein sequences (Hampl et al. 2009; He et al.

2014). However, massive gene loss in specific supergroups (in

excavates, e.g., see fig. 1) could impair identification of the

eukaryotic root (Zmasek and Godzik 2011; Ku et al. 2015;

Albalat and Ca~nestro 2016). Indeed, the high frequency of

duplications that trace to LECA readily explains why resolution

of deep eukaryotic phylogeny or the position of the eukaryotic

root with traditional phylogenomic approaches (Ren et al.

2016) is so difficult (see also supplementary table 2): LECA

was replete with duplications and paralogy. Paralogy imposes

conflicting signals onto phylogenetic systematics, but gene

duplications harbor novel phylogenetic information in their

own right (fig. 2), as shared gene duplications discriminate

between alternative eukaryote supergroup relationships.

Eukaryotic Duplications Are Not Transferred across
Supergroups

Like the nucleus, mitochondria, and other eukaryotic traits

(Speijer et al. 2015; Gould et al. 2016; Zachar and

Szathm!ary 2017; Barlow et al. 2018; Betts et al. 2018;

Imachi et al. 2020), the lineage-specific accrual of gene and

genome duplications distinguish eukaryotes from prokaryotes

(Ohno 1917; Scannell 2006; Hittinger and Carroll 2007; Van

De Peer et al. 2009; Treangen and Rocha 2011). Nonetheless,

one might argue that the distribution of duplications observed

here does not reflect lineage-dependent processes at all, but

lateral gene transfers (LGTs) among eukaryotes instead

FIG. 2.—Distribution of paralogs descending from gene duplications

across six eukaryotic supergroups. (a) The figure shows the distribution of

paralogs resulting from gene duplications in eukaryotic-specific genes

(E-O) and eukaryotic genes with prokaryotic homologs (E-P) (see

Materials and Methods for details). Duplicated genes refer to the numbers

of gene trees with at least one duplication event with descendant paralogs

across the supergroups (filled circles in the center). Number of duplication

events refers to the total number of gene duplications. The red row circles

indicate gene duplications with descendant paralogs in species from all six

supergroups and, thus, tracing to LECA regardless of the eukaryotic phy-

logeny. An early study assigned 4,137 duplicated gene families to LECA

but attributed all copies present in any two major eukaryotic groups to

LECA (Makarova et al. 2005). In the present sample, we find 2,869 gene

duplication events that trace to the common ancestor of at least two

supergroups. Our stringent criterion requiring paralog presence in all six

supergroups leaves 713 duplications in 475 gene families in LECA. (b)

Rooted phylogeny of eukaryotic supergroups that maximizes compatibility

with gene duplications. Gene duplications mapping to five edges are

shown (b1, b2, . . . , b5). The tree represents almost exactly all edges con-

taining the most duplications, the exception is the branch joining Hacrobia

and SAR because the alternative branch joining SAR and Opisthokonta is

better supported. However, the resulting subtree ((Opisthokonta,

SAR),(Archaeplastida, Hacrobia)) accounts for 249 duplications, fewer

than the (Opisthokonta,(Archaeplastida,(SAR, Hacrobia))) subtree shown

(262 duplications). The position of the root identifies additional gene

duplications tracing to LECA (table 1 and supplementary table 4).
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(Andersson et al. 2003; Keeling and Palmer 2008; Leger et al.
2018). That is, a duplication could, in theory, originate in one
supergroup and one or more gene copies could subsequently
be distributed among other supergroups via eukaryote-to-
eukaryote LGT. However, were that theoretical possibility
true then neither duplications, nor any trait, nor any gene
could be traced to LECA because all traits and genes in eukar-
yotes could, in the extreme, simply reflect 1.6 Byr of lineage-
specific invention within one supergroup followed by lateral
gene traffic among eukaryotes rather than descent with mod-
ification (Andersson et al. 2003; Keeling and Palmer 2008;
Leger et al. 2018).

However, the present data themselves exclude the deeply
improbable eukaryote-to-eukaryote lateral duplication trans-
fer theory in a subtle but strikingly clear manner. How so?
Figures 1 and 2a show that 30,439 gene lineages bearing
duplications (93% of the total) are restricted in their distribu-
tion to “only one supergroup,” whereas only 2,245 (7% of
the total) are shared among two to five supergroups. That is,
only 7% of the duplications are shared across supergroups,
hence they are the only possible candidates for LGT among
supergroups. For the sake of argument, let us entertain the
extreme assumption that all 2,245 patterns of shared but
nonuniversal duplications involved intersupergroup LGT,
recalling that there is no intersupergroup LGT in 93% of
the genes (fig. 2 and supplementary table 1). With that gen-
erous assumption, the intersupergroup LGT frequency would
be maximally 7%. That is an extreme upper bound, though,
because the observed 93% frequency for duplicates that are
supergroup specific and thus have absolutely no observable
intersupergroup LGT should apply equally to the 7% of dupli-
cations shared across supergroups. Thus, the more realistic
maximum estimate is that 0.49% of duplications (7% of
7%) might have been generated by intersupergroup LGT.
This estimate is based solely upon the distribution of the dupli-
cates and the premise that eukaryote supergroups are mono-
phyletic. As it concerns the 475 genes with duplications that
trace to LECA (fig. 2 and supplementary table 1), this means
that 0.49% out of 475, or about 2.3 genes in our data might
have been caused by intersupergroup LGT. That is a very low
frequency and is consistent with independent genome-wide
phylogenetic tests presented previously (Ku et al. 2015) for
the paucity of eukaryote-to-eukaryote LGT. If we count du-
plication events (fig. 2a, right panel) rather than gene lineages
(fig. 2a, left panel), the picture is even more vertical, because
98% of the events are supergroup-specific, hence lacking any
patterns that could reflect LGT, meaning that maximally
0.04% (2% of 2%) or 0.19 duplications among 475 (which
rounds to zero genes) could be the result of lateral transfer.
The supergroup-specific distributions of duplications them-
selves thus provide very strong evidence that the distribution
of duplicated genes in eukaryotes is not the result of
eukaryote-to-eukaryote LGT phenomena (Andersson et al.
2003; Keeling and Palmer 2008; Leger et al. 2018) but the

result of vertical evolution within supergroups accompanied
by gene birth, death (Nei et al. 1997), and differential gene
loss (Ku et al. 2015).

LECA’s Duplications Support an Early Mitochondrion

Arguably, the timing of mitochondrial origin is the central so
far unresolved issue at the heart of eukaryote origin. Several
alternative theories for eukaryogenesis have been proposed
(reviewed in Martin et al. 2001; Embley and Martin 2006;
Poole and Gribaldo 2014; L!opez-Garc!ıa and Moreira 2015;
Eme 2017). Symbiogenic theories posit a causal role for mi-
tochondrial endosymbiosis at the origin of cellular eukaryotic
complexity (Lane and Martin 2010) with the host being a
garden variety archaeon (Martin and Müller 1998).
Gradualist theories posit an autogenous origin of eukaryote
cell complexity with little or no contribution of the mitochon-
drion to eukaryogenesis (Cavalier-Smith 2002; Gray 2014).
Intermediate theories posit the existence of endosymbioses
prior to the origin of mitochondria. These include an endo-
symbiotic origin of the nucleus (Lake and Rivera 1994), an
endosymbiotic origin of peroxisomes (de Duve 2007), an en-
dosymbiotic origin of flagella (Margulis et al. 2000), the lateral
acquisition of the cytoskeleton (Doolittle 1998) or, more lib-
erally, additional symbioses preceding the mitochondrion in
unconstrained numbers, as long as each symbiosis “explains
the origin of any eukaryotic innovation as a response to an
endosymbiotic interaction” (Gabald!on 2018). Most current
theories posit an origin of the host from archaea (Martin
et al. 2015; Spang et al. 2015; Zaremba-Niedzwiedzka et al.
2017; Imachi 2020), though theories for eukaryote origins
from actinobacteria (Cavalier-Smith 2002), and planctomy-
cetes (Cavalier-Smith and Chao 2020) are discussed.
Notwithstanding such diversity of views, the main divide
among theories for eukaryote origin remains the relative tim-
ing of mitochondrial origin, that is did the mitochondrion ini-
tiate or culminate eukaryote origin (Martin et al. 2001; Embley
and Martin 2006; Poole and Gribaldo 2014; L!opez-Garc!ıa and
Moreira 2015; Eme et al. 2017)? Alternative theories for eu-
karyote origin generate distinct predictions about the nature
of gene duplications in LECA.

Gradualist theories entailing an archaeal host (Cavalier-
Smith 2002; Booth and Doolittle 2015; Pittis and Gabald!on
2016; Hampl et al. 2019) predict genes of archaeal origin and
eukaryote-specific genes to have undergone numerous dupli-
cations during the origin of eukaryote complexity, prior to the
acquisition of the mitochondrion. In that case, the mitochon-
drion arose late, hence bacterial-derived genes would have
accumulated fewer duplications in LECA than archaeal-
derived or eukaryote-specific genes (fig. 3a). Models invoking
gradual lateral gene transfers (LGT) from ingested (phagocy-
tosed) food prokaryotes prior to the origin of mitochondria
(Doolittle 1998) also predict more duplications in archaeal-
derived and eukaryote-specific genes to underpin the origin
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of phagocytotic feeding, but do not predict duplications spe-
cifically among acquired genes (whether from bacterial or
archaeal food) because each ingestion contributes genes
only once.

By contrast, transfers from the endosymbiotic ancestors of
organelles continuously generated gene duplications in the
host’s chromosomes (Timmis et al. 2004; Allen 2015), a pro-
cess that continues to the present day in eukaryotic genomes

(Timmis et al. 2004; Portugez et al. 2018). Symbiogenic the-
ories posit that the host that acquired the mitochondrion was
an archaeon of normal prokaryotic complexity (Martin and
Müller 1998; Lane and Martin 2010; Gould et al. 2016;
Martin et al. 2017; Imachi et al. 2020) and hence lacked
duplications underpinning eukaryote complexity. There are
examples known in which bacteria grow in intimate associa-
tion with archaea (Imachi et al. 2020) and in which

FIG. 3.—Alternative models for eukaryote origin generate different predictions with respect to duplications. In each panel, gene duplications during the

FECA to LECA transition (boxed in upper portion) are enlarged in the lower portion of the panel. (a) Cellular complexity and genome expansion in an archaeal

host predate the origin of mitochondria. (b) Mitochondria enter the eukaryotic lineage early, duplications in mitochondrial-derived, host-derived, and

eukaryotic-specific genes occur, genome expansion affects all genes equally. (c) Gene transfers from a resident endosymbiont generate duplications in

genes of bacterial origin in an archaeal host. (d) Observed frequencies from gene duplications that trace to LECA (see supplementary table 1). BE refers to

eukaryotic genes with bacterial homologs only; AE refers to eukaryotic genes with archaeal homologs only; and Euk refers to eukaryotic genes without

prokaryotic homologs. (e) Schematic representation of serial gene transfers from the mitochondrion (white arrows) to the host’s chromosomes.
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prokaryotes become endosymbionts within other prokaryotic
cells (Martin et al. 2017). However, there are two different
ways in which mitochondria could promote the accumulation
of duplications. If energetic constraints (Lane and Martin
2010) were the sole factor permitting genome expansion,
duplications would accrue in all genes regardless of their or-
igin, such that gene duplications in the wake of mitochondrial
origin should be equally common in genes of bacterial, ar-
chaeal, or eukaryote-specific origin, respectively (fig. 3b). If,
on the other hand, the role of mitochondria in gene duplica-
tions was mechanistic rather than purely energetic, genes of
mitochondrial origin should preferentially undergo duplica-
tion. This is because the mechanism of gene transfers from
resident organelles involve endosymbiont lysis and the
“copying” (Allen 2015) of organelle genomes to the host’s
chromosomes followed by recombination and mutation
(Portugez et al. 2018). Gene transfers from resident endo-
symbionts specifically generate duplications of endosymbiont
genes because new copies of the same genes are recurrently
transferred (Timmis et al. 2004; Allen 2015) (fig. 3c).

The duplications in LECA reveal a vast excess of duplica-
tions in LECA’s bacterial-derived genes relative to archaeal-
derived and eukaryote-specific genes (fig. 3d). Of all gene
families tracing to LECA, 26% experienced at least one dupli-
cation event during the transition to LECA from FECA.
Notably, the excess proportion of duplicates among genes
of bacterial origin is significant as judged by the two-tailed
binomial test (P¼1.3"10#10; proportion of duplicates at 95%
CI=[35–44%]; df¼1). On the other hand, genes of archaeal
origin show significantly fewer duplicates (P¼8.4"10#7; pro-
portion of duplicates 95% CI=[8–17%]; df¼1) with the pro-
portion of duplicates being similar to eukaryote-specific genes
(fig. 3d).

Do Bacterial Genes in LECA Stem from the
Mitochondrion?

If bacterial genes in LECA stem from the mitochondrion, as
opposed to 1) eukaryote-to-eukaryote gene transfers, which
were already excluded for >99% of the families with dupli-
cations in this data on the basis of their distributions alone, or
2) multiple lineage-specific acquisitions from bacteria via LGT,
then the bacterial genes should trace to the eukaryote com-
mon ancestor. That is, the eukaryotes should form a mono-
phyletic clade in gene trees that connect prokaryotic and
eukaryotic genes. To test this, we generated clusters, align-
ments, and trees for genes shared by prokaryotes and eukar-
yotes from 22,471,723 million genes from 5,655 genomes
and including 150 eukaryotes (see Materials and Methods).
The results from the 2,575 trees that contained at least five
prokaryotic and at least two eukaryotic sequences are sum-
marized in figure 4. As with the duplications themselves, eu-
karyote gene evolution is again vertical. Out of the 2,575 trees
only 475 did not recover eukaryotes as monophyletic.

However, none of these 475 trees rejected eukaryote mono-
phyly using the Shimodaira–Hasegawa (SH) test (see Materials
and Methods) and only 25 trees (1% of the total) rejected
eukaryote monophyly using the Kishino–Hasegawa (KH) test.
Applying the approximately unbiased (AU) test, only three
trees out of 475 rejected eukaryote monophyly. This traces
gene origin of $1,649 out of the 2,575 genes shared by
prokaryotes and eukaryotes to LECA, and the origin of
%926 genes to the archaeplastidal ancestor because the latter
trees contain only photosynthetic eukaryotic lineages (fig. 4a).

The 1,649 trees that trace prokaryotic gene origins to LECA
fall into two classes with regard to the sister group of the
eukaryotic gene: 966 in which the prokaryotic sister group
to eukaryotes contained members of only one phylum (a
“pure” sister, Spure in fig. 4, 59% of the trees) and those in
which the sister to the eukaryotes contained members of
more than one phylum (a “mixed” sister, 41% of the trees).
The only way to obtain a mixed sister topology of prokaryotic
sequences for a eukaryotic gene is via LGT among prokaryotes
(Ku and Martin 2016). If we exclude the reality of LGT among
prokaryotes, and interpret mixed sister topologies at face
value, they would suggest that eukaryotes arose before the
diversification of the diverse prokaryotic phyla present in our
sample, which would be incompatible with accounts of eu-
karyote age (Parfrey et al. 2011; Betts et al. 2018), and would
furthermore have LECA arising at different times, depending
on the membership in the sister group. LGT among the pro-
karyotic reference sequences in the mixed sister cases (Ku and
Martin 2016; Nagies et al. 2020) is clearly the simpler expla-
nation. The pure sister was bacterial in 49% of the trees and
archaeal in only 9.5% of the trees. Only in 115 trees (7.0%)
was the bacterial pure sister clade alphaproteobacterial. These
115 trees are readily explained because they stem from the
mitochondrion, even though the alphaproteobacterial-
derived genes in eukaryotes do not all reside in the “same”
alphaproteobacterial genome as previously observed (Ku et al.
2015; Nagies et al. 2020), requiring LGT among alphaproteo-
bacteria, at least, to account for the topology. Yet, the crucial
and previously underinvestigated issue concerns the remain-
ing 695 pure sister bacterial origin cases (86%) that trace to
LECA but reside in a genome that does not carry an alphap-
roteobacterial taxon label (fig. 4), as recently set forth in a
study that examined the phylogeny of only the more con-
served fraction of genes shared by prokaryotes and eukar-
yotes (Nagies et al. 2020).

There are two general ways to explain the 86% of non-
alphaproteobacterial genes that trace to LECA. The first is to
take one specific aspect of the trees—namely, the taxon label
of the sister group—at face value and interpret the data as
evidence for independent individual contributions to eukar-
yotes (via LGT or via multiple resident symbionts) by all of the
bacterial phyla in the sample. At the level of the taxa listed in
figure 4, that would mean 26 different bacterial donors to
LECA in addition to the alphaproteobacterial contribution,
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FIG. 4.—Identification of prokaryotic sisters in 2,575 eukaryotic–prokaryotic gene trees. (a) The individual trees were rooted on the branch leading to the

largest prokaryotic clade deriving the sister group to eukaryotes. The average number of sequences in the eukaryotic clade, sister group, and outgroup are

indicated. (b) The list of bacterial (top) and archaeal (bottom) phyla occurring in the trees exclusive to plant lineages (right) and all other trees (left). Archaeal

and bacterial phyla with less than five representative species in the data set were collapsed into “other archaea” and “other bacterial” groups. Pmono refers

the proportion of trees with a branch (split) separating the species of the phylum from the others; Snon refers to the number of occurrence of the phylum only

in the outgroup clade; Smix refers to the number of occurrences of the phylum as a mixed sister (more than one phylum in the clade); Spure refers to the

number of occurrences of the phylum as pure sister (as the single phylum); Sp.avg shows the average size of the sister group when the phylum occurs as a pure

sister clade. Ntrees show the number of occurrences of the phyla across all trees. IDgen refers to the total number of species in each phylum.
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and donations from 13 different archaeal host taxa. With 39
donor phyla, LECA already looks like a grab bag of genes. At
the level of genus, the taxon labels of the trees would mean
794 different bacterial donors to LECA under permissive mod-
els (Gabald!on 2018), followed by a particularly ad hoc sudden
stop of gene influx to eukaryotes after the FECA to LECA
transition, because the eukaryotes are monophyletic in these
trees. The suggestion of symbiont acquisition and gene trans-
fers without constraints (Gabald!on 2018) carries a hidden and
seldom spelled out corollary (Martin 1999). Namely, it entails
the strict condition that all of the nonalphaproteobacterial
bacterial genes in question not only resided in the genome
of members of the 27 different phylum level bacterial taxa at
the time of donation to LECA (fig. 4) but furthermore, and
crucially, that those genes evolved “vertically” within the
chromosomal confines of those respective phyla during the
1.6 Byr since eukaryotes arose. Such unrestricted donor the-
ories (Gabald!on 2018) assume that the present-day phylum
taxon label on the gene accurately identifies the donor

phylum at the time of transfer. But that is true “if and only
if” the gene has been vertically inherited within that phylum
(no interphylum LGT) since its donation to LECA (Martin
1999; Esser et al. 2007).

Such theories of unrestricted LGT to eukaryotes with strictly
vertical gene evolution among prokaryotes are unlikely and
resoundingly rejected by the data. If we look beyond the mere
taxon label of the sister group (fig. 4), we see that the putative
27 bacterial donor lineages themselves do not evolve in a
vertical manner. The average level of monophyly for bacterial
phyla in the 1,649 trees that trace to LUCA is 47% (Pmono in
fig. 4). Alphaprotebacteria were monophyletic in only 27% of
the trees in which they occurred, as were generalists with
large genomes such as betaproteobacteria (27%) and actino-
bacteria (33%). Specialists like chlorobi or chlamydia with
more restricted pangenomes were more monophyletic
(80% and 72%, respectively). Halophilic archaea, which are
known to have acquired many genes from bacteria (Nelson-
Sathi et al. 2012), are the least monophyletic prokaryotes

Table 1

Functional Categories of Genes Duplicated in LECAa

Categoryb (n) Bacterial Archaeal Universal Eukaryotic

Metabolism (141) 64 2 58 17

Protein modification, folding, degradation (89) 30 8 30 21

Ubiquitination 3 1 — 9

Proteases 9 1 7 1

Kinase/phosphatase/modification 12 6 19 9

Folding 6 — 4 2

Novel eukaryotic traits (61) 8 4 12 37

Cell cycle 1 1 2 5

Cytoskeleton 4 — 1 19

Endomembrane (ER; Golgi; vesicles) 2 2 8 10

mRNA splicing 1 1 1 3

Mitochondrion (47) 29 — 9 9

Carbon metabolism (37) 26 — 11 —

Glycolysis 10 — 5 —

Reserve polysaccharides, other 16 — 6 —

Cytosolic translation (36) 15 7 10 4

Nucleic acids (55) 13 7 15 20

Histones — — 2 8

RNA 8 3 6 4

DNA 5 4 7 8

Membranes (excluding endomembrane) (46) 18 1 12 15

Transporters, plasma associated 8 1 9 14

Lipid synthesis 10 — 3 1

Redox (15) 11 — 4 —

Hypothetical (229) 81 9 61 78

Total 295 38 222 201

NOTE.—n, number of duplicated genes in the corresponding category.
aAbout 475 genes duplicated in LECA and present in all six supergroups plus 281 genes with duplications tracing to the common ancestors of excavates and other

supergroups. The annotation, source (bacterial, archaeal, present in bacteria and archaea, eukaryote specific), and the numbers of duplications for each cluster are given in
supplementary tables 3 and 4. All categories listed had representatives on both the 475 and the 281 list except mRNA splicing, present in the 475 list only.

bThe categories do not strictly adhere to KEGG or gene ontology classifications, instead they were chosen to reflect the processes that took place during the FECA to LECA
transition. The largest number of duplications in LECA for any individual gene was 12, a dynein chain known from previous studies to have undergone duplications in the common
ancestor of plants animals and fungi (Kollmar 2016).
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sampled (halobacteriales, 16%, fig. 4). For the 926 genes
that, based on their distribution, trace to the archaeplastidal
common ancestor (fig. 4, right panel), the bacterial phyla have
a higher proportion of monophyly (P¼0.006, V¼ 67, using
two-tailed Wilcoxon signed-rank test) than for those genes
that trace to LECA. Plastids are younger than mitochondria,
hence the genes from the ancestral plastid genome have had
less time to migrate across prokaryotic genomes than genes
from the ancestral mitochondrial genome. For the prokaryotic
genes and phyla in question, evolution is not a vertical pro-
cess. The bacterial reference system against which to infer the
origin of eukaryotic genes that stem from the mitochondrion
(or the plastid) is a system of mosaic (Martin 1999) or fluid
(Esser et al. 2007) chromosomes. These findings are fully con-
sistent with a recent larger scale investigation of gene verti-
cality across genomes (Nagies et al. 2020).

If we accept the evidence that LGT in prokaryotes is real
and if we accept the evidence that mitochondria were once
endosymbiotic bacteria, then the expectation for the phylog-
eny of a gene that was acquired from the mitochondrion is
that it traces to a single origin in LECA, which the genes in this
study do, but “not” that it traces to alphaproteobacteria. This
is because LGT among prokaryotes preceding and subsequent
to the origin of mitochondria generates the illusion of many
donors by shuffling the taxon labels attached to genes in
mosaic bacterial chromosomes (Martin 1999). Most current
studies still equate mitochondrial origin with an alphaproteo-
bacterial sister group relationship (Vosseberg et al. 2021), but
if we look at all the data, it is clear that such an interpretation
is too strict. For example, Vosseberg et al. (2021) found that
about 7% of the eukaryotic protein-domains that they exam-
ined branched with alphaproteobacterial homologs. But look-
ing beyond the eukaryotic branch, Nagies et al. (2020) found
that only about 35% of alphaproteobacterial genes recover
alphaproteobacteria monophyly to begin with, and only 16%
of the 220 trees in which alphaproteobacteria appeared as
the sole sister of all eukaryotes recovered aphaproteobacteria
as monophyletic among prokaryotes. To investigate mito-
chondrial origin from the standpoint of genes, it is not enough
to identify the relationship of eukaryote genes to prokaryotic
homologs. One has also to investigate the relationship of pro-
karyotic homologs to each other, because they are the refer-
ence system for comparison.

It is because of LGT among prokaryotes that many different
groups are implicated as donors of genes to LECA (fig. 4; see
also Nagies et al. 2020). There is no evidence independent of
gene phylogenies to suggest or support theories for the par-
ticipation of spirochaetes (Margulis et al. 2006), actinobacte-
ria (Cavalier-Smith 2002), cyanobacteria (Cavalier-Smith
1975), deltaproteobacteria (L!opez-Garc!ıa and Moreira
1999), planctomycetes (Cavalier-Smith and Chao 2020), or
multiple donor lineages (Gabald!on 2018) at eukaryote origin
(Embley and Martin 2006). One could of course argue that
those conflicting theories for contributions from many

different prokaryotic lineages are all simultaneously true, but
then theories for eukaryogenesis would no longer be con-
strained by observations in data, and any assertion about eu-
karyote origin would be permissible as a line of evidence, an
untenable state of affairs. The same sets of considerations
apply to the cyanobacterial origin of plastids (fig. 4).

If we let go of the belief that sister group relationships
between eukaryotic genes and prokaryotic homologs (fig. 4)
identify the prokaryotic lineages that donated genes (Martin
1999; Nagies et al. 2020), and take into account the functions
encoded by nuclear genes of bacterial origin that were dupli-
cated in LECA (figs. 2 and 4; table 1), the simplest interpre-
tation of the data in our view is that the bacterial duplicates in
LECA were donated by the mitochondrion. Other more com-
plicated interpretations are imaginable, but these interpreta-
tions do not simultaneously account for the phylogenetic
behavior of the bacterial reference phylogeny set, which we
have done here and elsewhere (Nagies et al. 2020). Our data
furthermore show that eukaryotic genes are of monophyletic
origin. With large genomic samples spanning thousands of
reference prokaryotic genomes, eukaryotic gene evolution is
clearly vertical, both in terms of lineage-specific distribution of
gene duplications (fig. 1) and in terms of likelihood ratio tests
(Nagies et al. 2020).

Can Positive Selection Explain Excess Bacterial
Duplications?

The vast excess of bacterial duplications (fig. 3) and the phy-
logenies of 2,575 genes that would address the question of
gene origin (fig. 4) speak in favor of bacterial acquisition in
LECA from a single-resident endosymbiont, the mitochon-
drion, prior to the origin of eukaryote complexity. Yet one
could still imagine numerous individual gene acquisitions in
LECA from different donors with a blanket ad hoc hypothesis
of “positive selection” increasing the copy number of
bacterial-related functions to account for the excess of
bacterial-derived duplications (table 1). However, the selection
proposal would not explain the excess of bacterial over ar-
chaeal or eukaryote-specific genes with the same functional
category, as is widely observed in table 1. That is, selection
would have to be invoked as a special plea on a bacterial-
gene-for-bacterial-gene basis, requiring yet one additional
corollary of positive selection for each duplication. Because
we observe over 900,000 duplications in the present data,
the selection theory to account for duplications carries a bur-
den of too many corollary assumptions.

On the other hand, it is possible that duplications are fun-
damentally mechanistic in origin, via chromosome mispairing,
translocations, genome duplications, or via duplicative trans-
fers from a resident endosymbiont as we argue in this paper.
In a context of mosaic, fluid bacterial genomes (Martin 1999;
Esser et al. 2007) permitting LGT among prokaryotes (fig. 4)
(Nagies et al. 2020), we would require no corollary
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assumptions of ad hoc selection. The mechanism of transfer
from the endosymbiont generates the excess of bacterial
duplications and does so across all functional categories
(table 1).

The Functions of Bacterial Duplicates Polarize Events at
LECA’s Origin

Gene duplications speak to more than phylogeny. Gene dupli-
cations are a standard proxy for the evolution of complexity,
as diversification of function and form is canonically under-
pinned by gene family expansion (Ohno 1970). Accordingly,
we observe that the morphologically most complex multicel-
lular eukaryotes—plants, animals, and fungi—harbor the larg-
est numbers of duplications (fig. 1). As outlined above, the
simplest interpretation of the present data is that complexity
started with the mitochondrion. That is not only true for the
present data on duplications, is also true from a purely phys-
iological standpoint (Martin et al. 2017) and a bioenergetic
standpoint (Lane and Martin 2010).

The functions of genes that were duplicated in LECA help
to polarize events in LECA’s evolution. For example, LECA had
a mitochondrion. LECA’s gene duplications in 47 genes with
mitochondrial functions include pyruvate dehydrogenase
complex, enzymes of the citric acid cycle, components in-
volved in electron transport, a presequence cleavage prote-
ase, the ATP–ADP carrier, and seven members of the
eukaryote-specific mitochondrial carrier family that facilitates
metabolite exchange between the mitochondrion and the
cytosol (table 1 and supplementary tables 3 and 4). A recent
study estimated that some genes for mitochondrial function
were probably duplicated in LECA, but interpreted the data as
evidence for mitochondria-intermediate hypothesis
(Vosseberg et al. 2021). The methodology used in
Vosseberg et al. has major limitations because: 1) the timing
of gene duplications was inferred using an approach that
equates branch-lengths from phylogenetic trees to time,
which is expected to be valid “only if” the evolutionary rate
is constant across genes (substitutions and gene loss, for ex-
ample); 2) prokaryotic sequences were arbitrarily removed
from gene trees, inflating the estimates of duplications in
genes of archaeal origin; 3) the use of trees for which the
same gene sequence can be represented simultaneously in
multiple trees, biasing the estimates of duplications and their
origin; and 4) the use of too liberal thresholds for gene clus-
tering which result in aberrantly large gene families (see sup-
plementary fig. 5, Supplementary Material online), a potential
source of tree reconstruction errors. By contrast, we do not
infer time from branch lengths, we did not remove sequences
that did not fit our expectations, and gene membership in our
gene families is always unique.

Our findings clearly indicate that canonical energy meta-
bolic functions of mitochondria were established in LECA,
underscored by additional functions performed by

mitochondria in diverse eukaryotic lineages: ten genes for
enzymes of the lipid biosynthetic pathway (typically mitochon-
drial in eukaryotes; Gould et al. 2016), the entire glycolytic
pathway (mitochondrial among marine algae; R!ıo B!artulos
et al. 2018), and 11 genes involved in redox balance are found
among bacterial duplicates. The largest category of duplica-
tions with annotated functions concerns metabolism and bio-
synthesis (table 1).

Many products of bacterial-derived genes operate in the
eukaryotic cytosol (Martin et al. 1993; Esser et al. 2004). This is
because at the outset of gene transfer from the endosymbi-
ont, there was no mitochondrial protein import machinery
(Martin and Müller 1998; Dolezal et al. 2006), and no nucleus,
such that the products of genes transferred from the endo-
symbiont were active in the compartment where the genes
were cotranscriptionally translated (French et al. 2007). Gene
transfers in large, genome sized fragments from the endo-
symbiont, as they occur today (Timmis et al. 2004; Portugez
2018), furthermore, permitted entire pathways to be trans-
ferred, because the unit of biochemical selection is the path-
way and its product, not the individual enzyme (Martin 2010).
In the absence of upstream and downstream intermediates
and activities in a pathway, the product of a lone transferred
gene is generally useless for the cell, expression of the gene
becomes a burden, and the transferred gene cannot be fixed
(Martin 2010).

Bacterial-derived duplications are present in functions that
underpinned the origin of cell compartmentation in LECA
(table 1). LECA possessed an endomembrane system consist-
ing of bacterial lipids, as symbiogenic models predict (Gould
et al. 2016). Bacterial duplicates, not archaeal duplicates,
dominate lipid synthesis and membrane biogenesis (table 1).
Functions of bacterial duplicates are also involved in mRNA
splicing, a selective force at the origin of the nucleus (Garg
and Martin 2016; Eme et al. 2017). The origin of protein
import into mitochondria was essential to mitochondrial ori-
gin (Dolezal et al. 2006) and encompasses many bacteria-
derived duplicates (table 1). LECA’s duplicates of bacterial or-
igin are also involved in the origin of eukaryotic-specific traits,
including the cell cycle, the cytoskeleton, endomembrane sys-
tem, and mRNA splicing (table 1). Eukaryote complexity re-
quired intracellular molecular movement in the cytosol, which
is realized by motor proteins. The protein with the most dupli-
cations found in LECA is a light chain dynein with 12 dupli-
cations (supplementary table 3), in agreement with previous
studies of dynein evolution that document massive dynein
gene duplications early in eukaryote evolution (Kollmar 2016).

Notably, ten of the 20 genes encoding cytoskeletal func-
tions that were duplicated in LECA (supplementary tables 3
and 4) encode dynein or kinesin motor proteins (see also
Tromer et al. 2019). The bacterial duplicate contribution vastly
outnumbers the archaeal contribution to these categories,
which are dominated by eukaryote-specific genes, indicating
that eukaryotes not only acquired genes, but they also
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invented new ones as well (Lane and Martin 2010).

Duplications in LECA depict bacterial carbon and energy me-

tabolism in an archaeal host supported by genes that were

recurrently donated by a resident symbiont, in line with the

predictions of symbiotic theories for the nature of the first

eukaryote (Martin and Müller 1998; Martin et al. 2017;

Imachi et al. 2020). The functions of duplications are consis-

tent with the predictions of symbiogenic theories but contrast

with gradualist theories positing eukaryote origin from an ar-

chaeal lineage that attained eukaryote-like complexity in the

absence of the mitochondrial endosymbiont (Cavalier-Smith

2002; Booth and Doolittle 2015; Pittis and Gabald!on 2016;

Hampl et al. 2019).

What Does This Say about the Biology of LECA?

Gene transfers from the mitochondrion can generate dupli-

cations of bacterial-derived genes. What mechanisms pro-

moted genome-wide gene duplication at the prokaryote–

eukaryote transition? Population genetic parameters such as

variation in population size (Zachar and Szathm!ary 2017) ap-

ply to prokaryotes and eukaryotes equally, hence they would

not affect gene duplications specifically in eukaryotes, but

recombination processes (Garg and Martin 2016) in a nucle-

ated cell could. Because LECA possessed meiotic recombina-

tion (Speijer et al. 2015), it was able to fuse nuclei

(karyogamy). Karyogamy in a multinucleate LECA would pro-

mote the accumulation of duplications in all gene classes and

promote genome expansion to its energetically permissible

limits (Lane and Martin 2010) because unequal crossing be-

tween imprecisely paired homologous chromosomes follow-

ing karyogamy generates duplications (Ohno 1970; Scannell

et al. 2006; Hittinger and Carroll 2007; Van De Peer 2009). At

the origin of meiotic recombination, chromosome pairing and

segregation cannot have been perfect from the start; the ini-

tial state was likely error-prone, generating nuclei with aber-

rant gene copies, aberrant chromosomes, and even aberrant

chromosome numbers. In cells with a single nucleus, such

variants would have been lethal; in multinucleate (syncytial

or coenocytic) organisms, defective nuclei can complement

each other through mRNA in the cytosol (Garg and Martin

2016). Multinucleate forms are present throughout eukary-

otic lineages (fig. 5), and ancestral reconstruction of nuclear

organization clearly indicates that LECA itself was multinu-

cleate (fig. 5 and supplementary fig. 1, Supplementary

Material online). The multinucleate state enables the accumu-

lation of duplications in the incipient eukaryotic lineage in a

mechanistically nonadaptive manner, whereby duplications

are implicated in the evolution of complexity (Ohno 1970;

Scannell et al. 2006; Hittinger and Carroll 2007; Van De

Peer 2009), as observed in the animal lineage (fig. 1). The

syncytial state presents a viable intermediate state in the tran-

sition from prokaryote to eukaryote genetics.

Conclusion

Serial transfers of mitochondrial DNA to the chromosomes of
the host are not only a mechanism of gene duplication, they
are a form of endosymbiont genome duplication in which an
original copy is retained in the organelle and remains func-
tional. Gene duplications in LECA support an early origin of
mitochondria and record the onset of the eukaryotic gene
duplication process, a hallmark of genome evolution in mitos-
ing cells (Ohno 1970; Scannell et al. 2006; Hittinger and
Carroll 2007; Van De Peer 2009; Treangen and Rocha 2011).

Materials and Methods

Protein Clustering and Tree Reconstruction for Gene
Duplication Inferences

Protein sequences for 150 eukaryotic genomes were down-
loaded from NCBI, Ensembl Protists, and JGI (see supplemen-
tary data 1 for detailed species composition). To construct
gene families, we performed an all-vs-all BLAST (Altschul
et al. 1997) of the eukaryotic proteins and selected the recip-
rocal best BLAST hits with e-value !10"10. The protein pairs
were aligned with the Needleman–Wunsch algorithm (Rice
et al. 2000) and the pairs with global identity values <25%
were discarded. The retained global identity pairs were used
to construct gene families with the Markov clustering algo-
rithm (Enright et al. 2002) (version 12-068) with default
parameters. Because in this study we were interested in
gene duplications, we considered only the gene families
with multiple gene copies in at least two eukaryotic genomes.
Our criteria retained a total of 24,571 multicopy gene families.

Protein-sequence alignments for the individual eukaryotic
multicopy gene families were generated using MAFFT (Katoh
2002), with the iterative refinement method that incorporates
local pairwise alignment information (L-INS-i, version 7.130).
The alignments were used to reconstruct maximum likelihood
trees with IQ-tree (Nguyen et al. 2015), using default settings
(version 1.6.5), and the trees were rooted with MAD (Tria
et al. 2017) (supplementary data 2).

Inference of Gene Duplication

Gene duplications were inferred from gene trees by assigning
duplication events to internal nodes in the rooted topologies.
Given a rooted gene tree with n leaves, let S be the set of
species labels for the leaves. For the case of paralogous gene
trees, there is at least one leaf pair, a and b, such that sa¼sb.
Assigning a gene duplication to the last common ancestor of
the pair a and b corresponds to the evolutionary scenario that
minimizes paralog losses in the gene tree. For each rooted
gene tree, we performed pairwise comparisons of all leaf pairs
with identical species labels to infer all the internal nodes
corresponding to gene duplications using the minimal loss
criterion for each leaf pair. Note that, this approach considers
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the possibility of multiple gene duplications per gene tree

(supplementary fig. 2, Supplementary Material online). We

summarized the gene duplication inferences from all gene

trees by evaluating the distribution of descendant paralogs

across the eukaryotic supergroups for each gene duplication

event (fig. 2).
The inferences of gene duplications in the present work are

based on trees that were rooted with MAD (Tria et al. 2017).

A recent comparison of MAD with other methods showed

that MAD performs better than other rooting methods cur-

rently in use (Wade et al. 2020).

Inference for the Origin of Eukaryotic Duplicates

For identification of homologs in prokaryotes, we used all

protein-coding genes from 5,656 prokaryotic genomes

downloaded from RefSeq (Pruitt et al. 2007) (see supplemen-

tary data 3) and compared them against eukaryotic protein-

coding genes using Diamond (Buchfink et al. 2015) to

perform sequence searches with the “more-sensitive” param-
eter. A eukaryotic gene family was considered to have homo-
logs in prokaryotes if at least one gene of the eukaryotic
family had a significant hit against a prokaryotic gene (e-value
<10!10 and local identity "25%). Gene families with homo-
logs only in archaeal genomes were considered as genes of
archaeal origin and similarly for bacteria. Gene families with
significant hits in both archaea and bacteria (universal) could
have originated from either archaea or bacteria.

We purposefully avoided using trees to inferring the origin
of eukaryotic genes because of low levels of sequence con-
servation entailing a large number of prokaryotic homologs.
Note, however, that we reconstructed trees for the subset of
eukaryote–prokaryote genes with sufficient sequence conser-
vation (see below). We found that the presence–absence of
homologs across prokaryotic taxa remarkably recapitulates
the distribution of prokaryotic sisters derived from phyloge-
netic trees serving, thus, as a validation of our approach (sup-
plementary table 5).

FIG. 5.—Ancestral state reconstruction for nuclear organization in eukaryotes. Presence and absence of the multinucleate state in members of the

respective group are indicated. Resolution of the branches (polytomy vs. dichotomy) does not alter the outcome of the ancestral state reconstruction, nor

does position of the root on the branches leading to Amoebozoa, Excavata, or Opisthokonta. LECA was a multinucleate, syncytial cell, not uninucleate (see

supplementary fig. 1, Supplementary Material online). Together with mitochondrion and sex, the multinucleate state is ancestral to eukaryotes and fostered

accumulation of duplications (see text).
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Prokaryote–Eukaryote Protein Clustering and Tree
Reconstruction

To assemble a data set of conserved genes for phylogenies
linking prokaryotes and eukaryotes, eukaryotic, archaeal, and
bacterial protein sequences were first clustered separately be-
fore homologous clusters between eukaryotes and prokar-
yotes were identified as described (Ku et al. 2015).
Eukaryotic sequences for the 150 genomes (supplementary
data 1) were clustered with MCL (Enright et al. 2002) using
global identities from best reciprocal BLAST (Altschul et al.
1997) hits for protein pairs with e-value !10"10 and global
identity #40%. The clusters with genes distributed in more
than one eukaryotic genome were retained. Similarly, pro-
karyotic protein sequences from 5,655 genomes (see supple-
mentary data 3, except for MK-D1 for which the genome was
unavailable by the time the data were compiled) were clus-
tered using the best reciprocal BLAST for protein pairs with e-
value !10"10 and global identity #25%, for archaea and
bacteria separately. The resulting clusters with gene copies
in at least five prokaryotic genomes were retained. The
most universally distributed clusters comprise 20–40 proteins,
the majority of which are involved in translation (supplemen-
tary fig. 4, Supplementary Material online). Eukaryotic and
prokaryotic clusters were merged using the reciprocal best
cluster procedure. We merged a eukaryotic cluster with a
prokaryotic cluster if #50% of the eukaryotic sequences in
the cluster have their best reciprocal BLAST hit in the same
prokaryotic cluster and vice versa (cut-offs: e-value !10"10

and local identity #30%). We refer to the merged cluster as
eukaryotic–prokaryotic cluster (EPC).

Protein-sequence alignments for 2,575 EPCs were gener-
ated using MAFFT (Katoh 2002) (L-INS-i, version 7.130). The
alignments were used to reconstructed maximum-likelihood
trees with IQ-tree (Nguyen et al. 2015) (version 1.6.5) employ-
ing default settings (supplementary data 4).

Tests for Eukaryote Monophyly

For 475 gene trees where eukaryotes were not recovered as
monophyletic, we conducted the Shimodaira–Hasegawa
(Shimodaira and Hasegawa 1999) (SH), Kishino–Hasegawa
(Kishino and Hasegawa 1989) (KH), and approximately unbi-
ased (AU) test (Shimodaira 2002) to determine whether the
observed nonmonophyly was statistically significant. We
reconstructed trees constraining eukaryotic sequences to be
monophyletic, but not imposing any other topological con-
straint, using FastTree (Price et al. 2010) (version 2.1.10 SSE3)
and recording all trees explored during the tree search with
the “-log” parameter (supplementary data 5). The sample of
monophyletic trees was used as input in IQ-tree (Nguyen et al.
2015) (version 2.0.3; parameter: “-zb 100000 –au”) to per-
form the SH, KH, and AU tests against the unconstrained tree
(nonmonophyletic). If the best-constrained tree did not show
significant difference relative to the unconstrained tree (P

<0.05), then we considered that eukaryotic monophyly can-
not be rejected.

Inference of Prokaryotic Sisters

To infer prokaryotes sisters to eukaryotes in the gene trees we
used the unconstrained tree if eukaryotes were recovered as
monophyletic and the constrained tree if eukaryotes were not
recovered as monophyletic, since the SH test did not reject
eukaryote monophyly for any gene tree (see main text). Note
that in unrooted trees for which eukaryotes are monophyletic,
the prokaryotic side of the tree is bisected by one internal
node into two prokaryotic subclades, each subclade being
the potential sister to eukaryotes (see fig. 4a). We considered
the prokaryotic subclade with the smallest number of leaves
for our inferences of sister-relations and the prokaryotic phyla
present in the sister clade and outgroup clade was recorded
for each tree. The sister clades were scored as a “pure” sister
when only a single prokaryotic phylum was present in the
clade or as “mixed” sister when more than one phylum
was present.

Ancestral Reconstruction of Eukaryotic Nuclear
Organization

Ancestral state reconstructions were performed on the basis
of a morphological character matrix, using maximum parsi-
mony as implemented in Mesquite 3.6 (https://www.mesqui-
teproject.org/, accessed June 2019). The reference eukaryotic
phylogeny includes 106 taxa (ranging from genus to phylum
level) to reflect the relations within the eukaryotes and reduce
taxonomic redundancy. The phylogeny includes members of
six supergroups: Amoebozoa (Mycetozoa), Archaeplastida,
Excavata, Hacrobia, Opisthokonta, and SAR, and was con-
structed by combining branches from previous studies (Burki
et al. 2010; Yoon et al. 2010; Adl et al. 2012; Powell and
Letcher 2014; Burki et al. 2016; Cavalier-Smith et al. 2016;
Derelle et al. 2016; Spatafora et al. 2016; Yang et al. 2016;
Archibald et al. 2017; Krabberød et al. 2017; McCarthy and
Fitzpatrick 2017; Roger et al. 2017; Spatafora et al. 2017;
Bass et al. 2018; Cavalier-Smith et al. 2018; Tedersoo et al.
2018; Irwin et al. 2019). The nuclear organization for each
taxon was coded as 0 for nonmultinucleate, 1 for multinu-
cleate or 0/1 if ambiguous according to the literature (Byers
1979; Willumsen et al. 1987; Barthel and Detmer 1990;
Daniels and Pappas 1994; Walker et al. 2006; Steiner 2010;
Yoon et al. 2010; Adl et al. 2012; Niklas et al. 2013; Maciver
2016; Spatafora et al. 2016; Archibald et al. 2017; Bloomfield
et al. 2019) (supplementary data 6). In order to account for
uncertainties of lineage relations among eukaryotes, we used
a set of phylogenies with alternative root positions (Vossbrinck
et al. 1987; Stechmann and Cavalier-Smith 2002; Katz and
Grant 2015) (altogether a total of 15 different roots) as well as
the consideration of polytomies for debated branches (sup-
plementary data 6). All ancestral state reconstruction
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rendered LECA as multinucleated, with no ambiguity.
Ambiguous reconstructions, however, were observed within
supergroups in some topologies but did not pose ambiguity to
the reconstructed state in LECA.

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online.
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