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Perception of physical identical stimuli can differ over time depending on the brain

state. One marker of this brain state can be neuronal oscillations in the alpha band

(8–12 Hz). A previous study showed that the power of prestimulus alpha oscillations in

the contralateral somatosensory area negatively correlate with the ability to temporally

discriminate between two subsequent tactile suprathreshold stimuli. That is, with high

alpha power subjects were impaired in discriminating two stimuli and more frequently

reported to perceive only one stimulus. While this previous study found correlative

evidence for a role of alpha oscillations on tactile temporal discrimination, here, we

aimed to study the causal influence of alpha power on tactile temporal discrimination

by using transcranial alternating current stimulation (tACS). We hypothesized that tACS

in the alpha frequency should entrain alpha oscillations and thus modulate alpha power.

This modulated alpha power should alter temporal discrimination ability compared to

a control frequency or sham. To this end, 17 subjects received one or two electrical

stimuli to their left index finger with different stimulus onset asynchronies (SOAs). They

reported whether they perceived one or two stimuli. Subjects performed the paradigm

before (pre), during (peri), and 25 min after tACS (post). tACS was applied to the

contralateral somatosensory-parietal area with either 10, 5 Hz or sham on three different

days. We found no significant difference in discrimination abilities between 10 Hz tACS

and the control conditions, independent of SOAs. In addition to choosing all SOAs as

the independent variable, we chose individually different SOAs, for which we expected

the strongest effects of tACS. Again, we found no significant effects of 10 Hz tACS

on temporal discrimination abilities. We discuss potential reasons for the inability to

modulate tactile temporal discrimination abilities with tACS.

Keywords: transcranial alternate current stimulation, tactile discrimination, alpha oscillations,

somatosensory, supra-threshold

INTRODUCTION

Perception does not only depend on the incoming stimuli, but also on intrinsic neuronal activity
(or so called brain states). This intrinsic neuronal activity fluctuates over time and from trial
to trial. Recent studies have shown that such fluctuations of neuronal activity can substantially
influence perception. Specifically, fluctuations of neuronal oscillatory activity in the alpha band

Frontiers in Neuroscience | www.frontiersin.org 1 April 2019 | Volume 13 | Article 311



Wittenberg et al. 10 Hz tACS Does Not Modulate Tactile Discrimination

(∼8–12Hz) correlate with perception of physical identical stimuli
over time. For example, the ability to detect visual near-threshold
stimuli improved with lower posterior prestimulus alpha band
power (Hanslmayr et al., 2007; van Dijk et al., 2008). Similarly
in the somatosensory domain, lower prestimulus alpha band
power was related to better perception or discrimination of tactile
stimuli (Linkenkaer-Hansen et al., 2004; Haegens et al., 2011;
Lange et al., 2012; Baumgarten et al., 2016). Alpha oscillations are
therefore interpreted as reflecting the excitability of a brain area, a
decision bias or active inhibition of brain areas (Thut et al., 2006;
Klimesch et al., 2007; Jensen and Mazaheri, 2010; Lange et al.,
2013, 2014; Iemi et al., 2017; Limbach and Corballis, 2017). The
evidence for a role of prestimulus alpha power, however, is mostly
correlative. To provide causal evidence for an influence of alpha
power on perception it is required to modulate alpha power and
measure its impact on perception.

One potential method to modulate neuronal oscillations is
transcranial alternating current stimulation (tACS). tACS is a
method to non-invasively stimulate the brain with electrical
activity of a given frequency (Antal and Paulus, 2013). It has
been suggested that tACS with 10 Hz entrains the endogenous
alpha band power in the stimulated brain area during stimulation
(Helfrich et al., 2014b; Ruhnau et al., 2016). Alterations in alpha
power have also been shown to outlast tACS, such that alpha
power was increased after tACS (Zaehle et al., 2010; Neuling
et al., 2013; Kasten et al., 2016). However, these studies were
not conducted in the somatosensory domain. Recently, a study
in the somatosensory cortex showed a decrease in alpha power
after tACS (Gundlach et al., 2017). This opens the possibility to
study the causal influence of alpha oscillations on brain functions.
tACS over the sensory area areas has been used successfully to
elicit sensations in the respective sensory domains (Abd Hamid
et al., 2015). For example, Feurra et al. (2011b) used tACS to
stimulate the primary somatosensory cortex and could elicit
tactile sensations in the contralateral hand. Also, tACS has been
successfully used to modulate performance in motor (Pogosyan
et al., 2009; Feurra et al., 2011a; Joundi et al., 2012), perceptual
(Laczó et al., 2012; Neuling et al., 2012; Helfrich et al., 2014a;
Kar and Krekelberg, 2014), and higher cognitive function tasks
(Santarnecchi et al., 2013).

Here, we aimed to use tACS to study a putative causal
impact of alpha oscillations on tactile temporal perception.
A recent study has shown that prestimulus alpha band
(∼8–12 Hz) power significantly negatively correlated with
subjects’ ability to perceive two electro-tactile stimuli as two
separate stimuli (rather than one single stimulus; Baumgarten
et al., 2016). To this end, we stimulated the somatosensory
cortex with tACS at 10 Hz (i.e., in the alpha band) while
subjects performed a tactile temporal discrimination task
(Baumgarten et al., 2016). We hypothesized that 10 Hz tACS
entrains intrinsic alpha oscillations and thus modulates the
power of these alpha oscillations. Subsequently, discrimination
of two subsequent tactile supra-threshold stimuli is expected to
be altered with 10 Hz tACS compared to sham stimulation
and stimulation with a control frequency (5 Hz). We
tested this hypothesis during stimulation and 25 min after
stimulation had ended.

MATERIALS AND METHODS

Subjects
We measured 17 subjects (nine female; age: 25.4 ± 1.4 years;
mean ± SEM; range: 18 to 41 years). All subjects were
right-handed according to the Edinburgh Handedness Inventory
(87.0 ± 3.4; mean ± SEM; Oldfield, 1971).

Exclusion criteria were history or family history of
epilepsy, history of loss of consciousness, brain related
injury, or other neurological or psychiatric disorders, high
blood pressure, cardiac pacemaker or intracranial metal
implantation, tinnitus, intake of central nervous system-affective
medication, pregnancy, and impairments of the peripheral
nerves in the left arm.

The experiment was conducted in accordance with the
Declaration of Helsinki and approved by the local ethics
committee of the Heinrich-Heine-Universität Düsseldorf,
Germany (Study No. 4965R). Prior to the experiment, subjects
gave written informed consent.

Subjects were naïve with respect to the hypotheses and
stimulation conditions. Subjects received 50€ after completion of
the entire experiment.

Paradigm
The paradigm was modified after Baumgarten et al. (2016).
Subjects received one or two electrical stimuli with different
stimulus onset asynchronies (SOAs) on their left index finger.
Subjects were asked to respond whether they perceived
one or two stimuli.

Each trial began with a fixation dot which decreased in
luminance after 500 ms, indicating the upcoming application of
the stimuli (Figure 1B). After a jittered period of 500–700 ms,
subjects received one or two stimulations to the left index finger
(stimulation duration: 0.3 ms each) while viewing the fixation
dot. Amplitude of the stimuli was individually determined such
that subjects could clearly perceive the stimuli without being
painful (2.1 ± 0.2 mA; mean ± SEM). After another jittered
period of 300–800 ms showing the fixation dot, subjects were
asked by written instruction on the screen to respond with their
right hand by button press. In nine subjects, button press with
the right index finger related to perception of two stimuli and
button press with the right middle finger related to perception
of one stimulus. In the other subjects, button press pattern was
reversed such that a press with the right index finger related to
perception of one stimulus and button press with the right middle
finger related to perception to two stimuli.

We used the following SOAs: 0 (i.e., only one stimulus
applied), 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 130 ms. Trials
with SOAs 0, 110, and 130 ms were each presented in 10 trials
whereas each of the other SOAs was presented in 20 trials.
SOAs with only 10 trials were added so that subjects responded
to SOAs that clearly allowed for a perception of either 1 or 2
stimuli. The lower number of stimuli was chosen to keep the
duration of the experiment within the time limit for tACS safety
conditions (see below). The different SOAs were presented in
pseudo-random order.
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FIGURE 1 | Experimental procedure and paradigm. (A) The experiment started with a short training period. Next, participants conducted the task (pre, see B),

followed by a 10 min break. Next, participants conducted the task again, now with additional tACS (peri), followed by a 25 min break. Finally, participants conducted

the task for the third time, now again without tACS (post), followed by the questionnaire. Participants repeated the entire procedure on three different days. Each day

differed only in stimulation frequency of tACS (10, 5 Hz, or sham) during the peri section. Quest., questionnaire. (B) The task used in the pre, peri, and post session

(see A) started with a fixation point, which decreased in luminance after 500 ms. This darker fixation point was shown for a jittered period of 500–700 ms. The jittered

period was followed by electric stimulation of the left index finger with varying SOAs (0, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 130 ms). After another jittered

period of 300–800 ms showing the fixation point, participants were asked to respond whether they perceived one stimulus or two stimuli. Then the next trial started

with the brighter fixation point. (C) Electrode placement. S1 was determined by neuronavigation. M1 was determined by the strongest FDI response when TMS was

applied. Starting from M1, we applied TMS in steps of 0.5 cm moving to posterior (dashed line), until FDI response was no longer visible (“no FDI response”). At this

spot we placed the most anterior border of the stimulation electrode (red). The reference electrode (blue) was placed on the contralateral forehead.

Subjects were asked to perform the experiment on 3 days,
each separated by 1 week. On each day a different tACS
frequency was applied: 10, 5 Hz, or sham. The order
of tACS frequencies was randomized across subjects and
double-blinded. For the double blinding, a person naïve to
the experiment randomly selected the tACS frequency in
each session and operated the DC stimulator during the
experiment while the participants and the main experimenter
who performed and analyzed the tACS experiment and
communicated with the participants were unaware of the
tACS frequency. Main experimenter and participants learned

of the used tACS frequencies only after all three frequencies
had been applied.

During each day, subjects performed the paradigm three
times: pre (before tACS), peri (during tACS), and post (after
tACS). The peri session started 10 min after pre session
ended; the post-session started 25 min after the peri session
ended (Figure 1A). The pre session was included as baseline
performance of the paradigm. The post-session was included
because it was shown that tACS effects can outlast the end of
stimulation (Veniero et al., 2015). There is no consistent pattern,
however, regarding the latency and duration of post-stimulation
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tACS effects (Veniero et al., 2015). While some studies report
aftereffects a few minutes after the end of stimulation (e.g.,
Helfrich et al., 2014b), other studies report that aftereffects of
10 Hz tACS can last for 30 min (Neuling et al., 2013) or even
start only 30 min after stimulation (Wach et al., 2013; see Veniero
et al., 2015 for an overview). Most of these studies investigated
tACS in the visual domain. Here, we aimed to investigate whether
post-stimulation effects might be obtained in the somatosensory
domain. Previous studies in the sensorimotor domain reported
no effects of 10 Hz tACS directly after stimulation (Wach et al.,
2013; Gundlach et al., 2016) and that aftereffects were visible only
30 min after stimulation (Wach et al., 2013). Therefore, we chose
to study potential post-stimulation effects 25 min after tACS.

One session including all SOAs and repetitions lasted
∼8–10 min.

A training phase of 5 min was included at the beginning
of each day to let subjects familiarize with the paradigm. This
training phase included SOAs 0, 20, 40, 60, 80, 100, 130, 150 ms.
0 and 150 ms appeared three times as often as the other
SOAs to familiarize subjects with the clear perception of 1 or 2
stimuli, respectively.

The paradigm was presented with the Presentation software
(Neurobehavioral Systems, Albany, NY, United States). Electrical
stimuli at the left index finger were delivered by a stimulus
current generator (DeMeTec GmbH, Langgöns, Germany).

In summary, our study included three independent
variables: frequency (sham, 5, 10 Hz), session (pre, peri,
post), SOAs (0–130 ms).

The post-session of each day was followed by a short
questionnaire. In this questionnaire, subjects were interviewed
if they felt a sensation during the tACS. Also, they were asked
whether they thought stimulation or sham was applied and how
confident they were with their answer on a scale from 1 (“very
unsure”) to 10 (“very sure”). If they answered that stimulation
had happened, then subjects were asked on their subjective
impression of the stimulation frequency and their confidence
in their judgment on a scale from 1 (“very unsure”) to 10
(“very sure”).

Transcranial Alternating Current

Stimulation (tACS)
Transcranial alternating current stimulation was applied with
two saline-soaked sponge electrodes (7 cm × 5 cm) on the skin
surface (DC Stimulator Plus, NeuroConn, Ilmenau, Germany).
The electrodes were held in place with a rubber band covering
the whole electrode. One electrode was placed over the right
somatosensory cortex similar to the area found in Baumgarten
et al. (2016). The other electrode was placed over the left orbit.
tACS was applied at 10 or 5 Hz with a current of 1 mA
(peak-to-peak amplitude, sinusoidal waveform) for a maximum
of 10min leading to a current density of 28.57μA/cm2 and a total
charge of 0.017 C/cm2. Impedance was kept below 5 k�. These
settings are within the boundary conditions of established safety
protocols for transcranial direct current stimulation (Nitsche
et al., 2003). Sham stimulation consisted of only 30 s stimulation
with either 10 or 5 Hz. Each stimulation session included 10 s
fade-in and 10 s fade-out time. If subjects finished the paradigm

before 10 min, the stimulation was terminated, resulting in an
average stimulation time of 8.2 ± 0.13 min (mean ± SEM).

Localization of Right Primary Motor and

Somatosensory Cortex
Since Baumgarten et al. (2016) found a significant correlation
between alpha power and tactile temporal discrimination in
primary somatosensory cortex (S1) contralateral to stimulation,
we aimed to stimulate contralateral (i.e., right) S1 with tACS.

To this end, the right S1 was localized by using
neuronavigation (LOCALITE, Sankt Augustin, Germany)
based on a standard MRI brain (MNI coordinates x = 36 mm,
y = −36 mm, z = 48 mm; Bingel et al., 2004).

After locating S1 with neuronavigation, the tACS electrode can
be placed differently on the located spot (i.e., electrode centered
above spot or spot at the border of the electrode). We sought to
place the electrode to minimally overlap with motor cortex to
avoid stimulation of the finger muscle which might be misjudged
for a stimulus from the finger electrodes and thus interfere with
the task (Figure 1C). To this end, we localized the right primary
motor cortex (M1) with TMS.

Right M1 was localized by inducing muscle twitching in the
first dorsal interosseus (FDI) by means of TMS. TMS of the right
motor cortex was performed using a standard figure of eight
coil (MC-B70) connected to a MagPro stimulator (Medtronic,
Minneapolis, MN, United States). We located the right FDI
by placing the coil tangentially to the scalp with the handling
pointing backward. We began by placing the coil 45◦ away
from the head midline and vertical to the right periauricular
point. Moving the coil anterior, posterior, medial, and lateral in
∼0.5 cm steps led to the localization with the maximal FDI motor
response. This spot was determined as M1.

From M1 we applied TMS again posterior in ∼0.5 cm steps
until hand twitching stopped. This point we determined as
the posterior end of M1. Here, we placed the anterior border
of the electrode.

S1 localized by neuronavigation was 2.8 ± 0.2 cm
posterior to M1.

Data Analysis and Statistics
For data analysis we used custom MATLAB (The MathWorks,
Natick, MA, United States) scripts.

For each frequency (5, 10 Hz, sham), session (pre, peri, post),
SOA and subject, we determined mean responses across all
repetitions. Next, for each frequency, session and SOA, individual
mean responses were averaged across subjects.

In ourmain statistical analysis, we applied three-way repeated-
measures ANOVA (rmANOVA, Trujillo-Ortiz, 2006) with factors
Frequency, Session and SOAs, after testing for normality of
the data by means of Shapiro–Wilk tests (BenSaïda, 2009, all
p-values > 0.42). The main hypothesis was to test whether
subjects’ responses showed significant main effects of Frequency
and/or Session, or significant interaction effects.

Since our main analysis did not reveal any relevant significant
effects (see section “Results”), we performed additional statistical
tests. These tests were performed to exclude the possibility that

Frontiers in Neuroscience | www.frontiersin.org 4 April 2019 | Volume 13 | Article 311



Wittenberg et al. 10 Hz tACS Does Not Modulate Tactile Discrimination

the non-significant results of themain analysis were caused by too
low statistical power, by “noise” in the data due to the inclusion of
data points that are irrelevant with respect to the hypothesis, or
by too high intra- or inter-individual variability of responses.

The normalization was done in two different ways. In the first
additional analysis, we normalized the data to minimize intra-
individual variability.

The first normalization was based on the potential problem
that individual performance might differ between different
days in terms of absolute performance. We aimed to reduce
intra-individual differences across days by normalizing the
responses in the peri and post-sessions with respect to the pre
session according to the formula:

r_normFreq,Session(SOA) =

rFreq,Session(SOA) − rFreq,pre(SOA)

rFreq,pre(SOA)
(1)

with r_norm being the individual normalized mean response as
a function of SOA for a given tACS frequency Freq (10, 5 Hz,
Sham) and paradigm Session (pre, peri, post). r denotes the
non-normalized response as a function of SOA for a given Freq
and Session. This normalization results in a measure that can be
described as “responses relative to the pre session.”

In a second normalization, we sought to reduce
inter-individual differences by transforming individual
mean responses on a scale between 0 and 1 according to
the following formula

r_normFreq,Session(SOA) =

rFreq,Session(SOA) − r_minFreq,Session

r_maxFreq,Session − r_minFreq,Session
(2)

with r_norm being the individual normalized mean response
as a function of SOA for a given tACS frequency Freq (10,
5 Hz, Sham) and paradigm Session (pre, peri, post). r denotes
the non-normalized response as a function of SOA for a given
Freq and Session. r_min and r_max denote the non-normalized
minimum and maximum, respectively, responses across all
SOAs for a given Freq and Session. As mentioned above, this
normalization results in responses normalized between 0 and 1.

As for the main analysis, we applied three-way
repeated-measures ANOVA (rmANOVA, Trujillo-Ortiz,
2006) with factors Frequency, Session and SOAs on individual
and normalized mean responses, again after confirming
normality by means of Shapiro–Wilk tests (BenSaïda, 2009, all
p-values > 0.12).

In the third and final analysis, we focused on a priori
hypotheses for chosen SOAs for the statistical analysis. The
a priori chosen SOAs were based on results of one of our previous
studies (Baumgarten et al., 2016). This MEG study found an
influence of alpha power on perception for intermediate SOAs
at ∼25 ms. We speculated therefore that the effect of alpha
power on perception is specific for SOAs of ∼25 ms, while all
other SOAs are unaffected by changes in alpha power. To this
end, we selected from our study only those SOAs that are close
to 25 ms. That is, we chose the responses of the SOA at 20

and 30 ms, either separately or averaged across both SOAs. For
statistical analyses, we applied either planned t-tests or Wilcoxon
sign-ranked tests, depending on whether or not input data were
normally distributed (again tested by means of Shapiro–Wilk
tests; BenSaïda, 2009).

Alternatively, the effect of alpha power on response rates
might not be specific for SOAs of 25 ms per se, but rather
for individual intermediate SOAs (intermediate SOAs and
SOAs of ∼25 ms coincide in Baumgarten et al., 2016). In
the present study, the intermediate SOA was 54.1 ± 7.7 ms
(mean ± SEM). If the influence of alpha power is specific for
intermediate SOAs, we might expect an influence at ∼54 ms
(the intermediate SOA). In this analysis, we therefore chose to
analyze the effect of tACS on mean responses for the individual
intermediate SOA.

In line with the statistical analyses above, we applied either
planned t-tests or Wilcoxon sign-ranked tests, depending on
whether or not input data were normally distributed (again tested
by means of Shapiro–Wilk tests; BenSaïda, 2009).

For the statistical analysis of specific SOAs, we applied
left-tailed tests when comparing mean responses at peri 10 Hz
tACS against mean responses pre 10 Hz tACS, peri 5 Hz tACS, or
peri sham tACS, respectively.

We used two-tailed tests when comparing mean responses at
post 10 Hz tACS against mean responses pre 10 Hz tACS, post
5 Hz tACS, or post-sham tACS, respectively.

In addition, we used Bayesian statistics to test whether our
data is in favor of the null hypothesis that there is no difference
between 10Hz tACS and control conditions. For all Bayesian tests
we used the program JASP (JASP Team, 2018).

For non-normalized and normalized data, we calculated
Bayesian repeated measures ANOVAs with factors
Frequency, Session, and SOAs. For the interactions
Frequency × Session, Frequency × SOAs, Session × SOAs
and Frequency × Session × SOAs we calculated the Bayes
Inclusion Factor (BFInclusion) based on matched models in JASP.

For our hypotheses for specific SOAs, we calculated Bayesian
paired sample t-tests. As with our frequentist approach, we
calculated left-tailed tests for peri tACS at 10 Hz vs. control
conditions (i.e., mean responses at 10 Hz tACS smaller thanmean
responses at control conditions), and two-tailed tests for post-
tACS at 10 Hz vs. control conditions. All Bayesian statistics were
estimated based on a uniform prior distribution.

As an additional analysis we tested whether subjects that
reported a flicker during tACS at 10 Hz showed a behavioral
effect. To this end, we compared mean responses for peri tACS at
10 Hz vs. peri tACS at sham in line with above described analyses,
but now only for subjects that reported a flicker sensation.

Given that tACS can have after-effects due to neuro-plastic
changes (Veniero et al., 2015), we compared the first and the
second half of the trials for peri tACS at 10 Hz by means of
two-way repeated measures ANOVAs for non-normalized and
normalized data with factors SOAs and Half (i.e., first or second
half of the trials). Beforehand, we tested data for normality by
means of Shapiro–Wilk tests. All data were normally distributed
(all p > 0.10). Additionally, we calculated Bayesian repeated
measures ANOVAs with factors SOAs and Half.
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We also tested the first half against the second half of the
trials for peri tACS at 10 Hz for the aforementioned specific
SOAs. Depending on normality (tested by Shapiro–Wilk tests) we
applied either planned t-tests or planned Wilcoxon sign-ranked
tests. Additionally, we calculated Bayesian t-tests.

RESULTS

Questionnaire
All subjects tolerated tACS and TMS well. Four subjects felt
a tingling sensation under the electrodes at the start of the
stimulation. Four subjects reported a light burning under an
electrode at the beginning of the stimulation while one of them
felt the burning during the whole stimulation at 10 Hz. Two
subjects reported a warming under an electrode.

Five subjects had a flickering effect in their visual field at 10 Hz
tACS. Two subjects had the flickering only at the beginning of the
stimulation while three subjects during the whole stimulation.

When 10 Hz tACS was applied, two of the 17 subjects
correctly identified the 10 Hz frequency with a confidence rating
of 7.0 ± 0.3 (mean ± SEM), only one of them reporting the
flickering effect.

For the 5 Hz tACS frequency, five of the 17 subjects identified
correctly the 5 Hz frequency with a confidence rating of 3.2± 0.9.
For sham tACS, six of the 17 subjects identified correctly that
sham tACS was applied with a confidence rating of 5.8 ± 0.6.
Since all these values are below chance level, we evaluated the
blinding procedure as successful.

General Effects of 10 Hz tACS on Tactile

Perception
We measured perceptual responses in a temporal tactile
discrimination task where subjects had to decide whether they
perceived one or two electrical stimuli. We employed tACS at
three different stimulation conditions: 10, 5 Hz, and sham. For
each tACS frequency, subjects performed the paradigm three
times: pre-, peri-, and post-tACS. Mean responses are shown in
Figure 2. We tested the hypothesis that tACS at 10 Hz should
modulate subjects’ perception.

Three-way repeated measures ANOVA (rmANOVA) with
factors Frequency (sham, 5, 10 Hz), Session (pre, peri, post),
and SOAs (0–130 ms) revealed no significant main effects of
Frequency [F(2,32) = 0.78, p = 0.47], Session [F(2,32) = 1.67,
p = 0.20], nor interaction effects for Frequency × Session
F(4,64) = 0.64, p = 0.64], Frequency × SOAs [F(22,352) = 0.44,
p = 0.99], and Frequency × Session × SOAs [F(44,704) = 0.72,
p = 0.91]. There was a significant main effect of SOAs
[F(11,176) = 59.59, p < 0.01] which indicates that mean
responses increase with increasing SOAs (Figure 2). There was
also a significant interaction Session × SOAs [F(22,352) = 2.29,
p < 0.01] which indicates that the increase of mean responses
over SOAs differs between sessions independent of tACS
frequency. However, the aim of our study was to investigate an
effect of tACS frequency. Therefore, these two significant effects
are irrelevant with respect to the main goal and will thus not
further be discussed.

Bayesian repeated measures ANOVA with factors
Frequency, Session, and SOAs revealed Bayes factors in
favor of the null hypothesis that there is no difference in
mean responses for the relevant main factors Frequency
and Session and the interactions (Frequency: BF10 = 0.11,
Session: BF10 = 0.07, Frequency × Session: BFInclusion = 0.01,
Frequency × SOAs: BFInclusion = 6.37 × 10−6, Session × SOAs:
BFInclusion = 3.93 × 10−5, Frequency × Session × SOAs:
BFInclusion = 8.89 × 10−6). Only the factor SOAs revealed strong
evidence for the alternative hypothesis (BF10 = 6.50 × 10346),

indicating that the factor SOA is an explanatory factor for
the observed pattern of the data. Since this factor is of no
relevance for the hypothesis of our study, we will not further
discuss this finding.

Since the most relevant effects in the above analyses were
not significant, we conducted further analyses to exclude
several factors that might have hampered the main analyses.
Our approaches included normalization approaches (to reduce
intra- and inter-subjective variability) or using specific a priori
hypotheses based on previous results (Baumgarten et al., 2016;
see section “Materials and Methods”).

Normalized Response Rates
We normalized data in two ways: in a first approach, we
normalized individual mean responses relative to the pre session
for each tACS frequency. In the second approach, we normalized
individual mean responses relative to individual minimum and
maximum mean responses.

Similar to the main analysis of non-normalized response
rates, we only obtained significant results for the main factor
SOAs [relative to pre: F(11,176) = 2.83, p < 0.01; relative to
minimum-maximum: F(11,176) = 61.56, p < 0.01] and the
interaction factor Session× SOA [relative to pre: F(22,352) = 2.14,
p < 0.01; relative to minimum-maximum: F(22,352) = 1.67,
p = 0.03]. Again, because these results are not relevant for our
main goal, no post hoc analyses were carried out here.

We did not obtain significant results for main
factors Frequency and Session nor for the interactions
Frequency × Session, Frequency × SOAs, or
Frequency × Session × SOAs (relative to pre: all p > 0.08;
relative to minimum-maximum: all p > 0.15).

When data were normalized to the pre session, we obtained
large Bayes factors for Session (BF10 = 29913.82) and SOAs
(BF10 = 3.80). The large Bayes factor for the main factor
Session most likely indicates a trivial result. Due to the
normalization, all values in the pre session are set to “0”
whereas the values in the peri and post-session are non-zeros.
Bayesian analysis states that the model “Session” explains this
difference better than a randomized model between all values.
However, in this case this does not reveal a true difference
between sessions per se but rather this is a result of our
normalization procedure.

The main factor Frequency provides evidence for no
difference between tACS frequencies (BF10 = 0.02). Also, the
Bayes factors for the interactions provided strong evidence in
favor of no effects (Frequency × Session: BFInclusion = 0.06,
Frequency × SOAs: BFInclusion = 4.83 × 10−5, Session × SOAs:
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FIGURE 2 | Mean responses of perceived stimuli at different SOAs for (A) 10 Hz tACS, (B) 5 Hz tACS, and (C) sham tACS before (pre), during (peri), and 25 min

after (post) stimulation. Error bars represent SEM.

BFInclusion = 9.00 × 10−4, Frequency × Session × SOAs:
BFInclusion = 2.82 × 10−5).

When data was normalized relative to minimum-maximum,
Bayesian repeatedmeasures ANOVA revealed again Bayes factors
in favor of the null hypothesis that there is no difference in
mean responses for the relevant factors (Frequency: BF10 = 0.02,
Session: BF10 = 0.02, Frequency × Session: BFInclusion < 0.01,
Frequency × SOAs: BFInclusion = 1.75 × 10−5, Session × SOAs:
BFInclusion = 1.77 × 10−5, Frequency × Session × SOAs:
BFInclusion = 9.82 × 10−6). Only the factor SOAs provided
strong evidence for an effect (SOAs: BF10 = 1.31 × 10399),
indicating again that the factor SOAs is an explanatory factor
for the observed pattern of the data. Since this factor is of no
relevance for the hypothesis of our study, we will not further
discuss this finding.

Comparison Between the First and

Second Half of the Trials for 10 Hz tACS
To test whether tACS duration influences perception
(e.g., due to neuro-plastic changes), we compared the

first and the second half of the trials for the peri session
of tACS at 10 Hz.

A two-way repeated measures ANOVA revealed
neither a significant main effect for Half nor an
interaction effect for SOAs × Half (all p > 0.22
for normalized and non-normalized data and for
a priori chosen SOAs).

Bayesian statistics provided evidence for no difference
between halves (all BF10 < 0.20, for normalized and
non-normalized data). Results for the interaction
SOAs × Half provided evidence for no interaction effects
(all BFInclusion ≤ 0.23).

A priori Hypotheses for the Effect of

10 Hz tACS on Tactile Perception at

Intermediate SOAs
Here, we test the hypothesis that 10 Hz tACS might affect
specifically intermediate SOA (i.e., SOAs for which subjects had
mean responses of ∼1.5, i.e., no clear bias toward perception of
“1” or “2”).
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Mean responses at peri 10 Hz tACS did not differ significantly
from mean responses at pre 10 Hz tACS, peri Sham tACS or
peri 5 Hz tACS (all p > 0.54; Figure 3). Bayesian statistics
provided evidence for the null hypothesis of no effect of tACS (all
BF10 < 0.23).

Likewise, mean responses at post 10 Hz tACS did not
differ significantly from mean responses at pre 10 Hz tACS,
post-Sham tACS or post 10 Hz tACS (all p > 0.34; Figure 3).
Bayesian statistics provided either inconclusive results or
evidence for the null hypothesis of no effect of tACS (all BF10
between 0.25 and 0.44).

Hypotheses for the Effect of 10 Hz tACS

on Tactile Perception at SOAs 20 and

30 ms
A previous study reported a correlation of alpha power and
perception at SOAs of ∼25 ms (Baumgarten et al., 2016).
Therefore, we tested in this analysis that the causal effect of 10 Hz
oscillations on temporal tactile perception might not be related to
the intermediate SOA per se, but rather to an SOA of 20 to 30 ms.

Mean responses at peri 10 Hz tACS did not differ significantly
from pre 10 Hz tACS, peri Sham tACS or peri 5 Hz tACS at an
SOA of 20, 30 ms, or when responses of the SOAs at 20 and
30 ms where combined (all p> 0.38). Bayesian statistics provided
evidence in favor of the null hypothesis (all BF10 < 0.27).

Likewise, mean responses at post 10 Hz tACS did not differ
significantly from mean responses at pre 10 Hz tACS, post-Sham
tACS or post 10 Hz tACS (all p > 0.22). Bayesian statistics
provided either inconclusive results or evidence for the null
hypothesis of no effect of tACS (all BF10 between 0.26 and 0.48).

Additional Analyses Only for Subjects

That Reported a Flicker Sensation
When comparing mean responses for peri tACS at
10 Hz vs. peri tACS at sham only for subjects that

FIGURE 3 | Mean responses of perceived stimuli at the individual intermediate

SOA for 10 Hz tACS, 5 Hz tACS, and sham tACS before (pre), during (peri),

and 25 min after (post) stimulation. Error bars represent SEM.

reported a flicker sensation, there was no behavioral effect
(all p > 0.21).

DISCUSSION

We stimulated the somatosensory cortex with transcranial tACS
while subjects performed a tactile discrimination task. Based
on previous findings that reported a correlation between alpha
power and tactile discrimination abilities (Baumgarten et al.,
2016), we hypothesized that 10 Hz tACS would affect subjects’
tactile perception. This way, we would provide evidence for a
causal role of alpha power for tactile perception and add on the
numerous studies reporting a correlation between (prestimulus)
alpha power and perception. However, we found no significant
effects of 10 Hz tACS on perceptual performance, neither when
applied while subjects performed the task (i.e., peri tACS) nor did
we find any aftereffects of stimulation (post-tACS).

That is, we did not find evidence for a causal role of alpha
oscillations for tactile temporal discrimination. Bayesian statistics
revealed that there is moderate to strong evidence in favor of
the null hypothesis that mean responses with tACS at 10 Hz
do not differ from control conditions. That is, our results are
in favor that tACS at 10 Hz did not modulate tactile temporal
discrimination. However, we do not conclude that 10 Hz or alpha
power is not causally involved in tactile temporal discrimination.
For such a conclusion there are still many factors to be considered
as discussed below.

We will discuss in the following potential reasons and
implications of this null result.

One potential reason might be that tACS at 10 Hz did
not entrain neuronal oscillations. Since we did not measure
neuronal activity in our study, we cannot exclude this possibility.
Several previous studies, however, have shown that tACS in
the alpha-band modulates neuronal oscillations. These studies
have shown that alpha power is typically increased during
tACS (Helfrich et al., 2014b; Ruhnau et al., 2016) as well as
after tACS (Zaehle et al., 2010; Neuling et al., 2013; Kasten
et al., 2016). In contrast to our study, these studies were not
conducted in the somatosensory domain. In the somatosensory
domain, recently, a decrease of alpha power after tACS at alpha
frequencies was reported (Gundlach et al., 2017). One might
argue that the current density we used may have been too low
to entrain neuronal oscillations. Several studies, however, were
able to entrain brain oscillations using similar current densities
as we did (Moliadze et al., 2012; Neuling et al., 2015; Ruhnau
et al., 2016). Since these studies were conducted in the visual
domain, it might still be that in the somatosensory domain
stronger current densities are needed to induce behavioral
relevant entrainment. However, we refrained from using higher
current densities because Feurra et al. (2011b) showed that tACS
with a higher current density over S1 at alpha frequency elicited
tactile sensations in the contralateral hand. Therefore, we used
lower current density to minimize the possibility of inducing
tactile sensations interfering with the task.

Another potential problemmight be spatial inaccuracies in the
stimulation so that our tACS did not entrain neuronal oscillations
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in S1. To exclude such a problem, we located S1 with two
independent criteria (neuronavigation and no motor response
with TMS) and we applied a large stimulation electrode. It seems
thus unlikely that a putative entrainment did not affect S1.

In sum, although we have no direct measure of
entrainment, we are confident that we entrained neuronal
oscillations in the same area in which alpha power
correlated with tactile discrimination in our previous study
(Baumgarten et al., 2016).

Previous studies reported no unequivocal effects of tACS
on perception. On the one hand, studies reported that tACS
modulates perception (Neuling et al., 2012; Brignani et al.,
2013; Gundlach et al., 2016; Veniero et al., 2017). On the
other hand, several studies did not find an effect of tACS on
perception (Brignani et al., 2013; Gundlach et al., 2016; Veniero
et al., 2017; Sheldon and Mathewson, 2018). Specifically in
the somatosensory domain, results are not clear. For example,
Sliva et al. (2018) reported that tACS at alpha frequencies over
somatosensory cortex lead to a decrease of performance in a
tactile detection task of near-threshold stimuli. This decrease
was reported for baseline corrected detection rates, but not
for absolute detection rates. Thus, the putative effect of tACS
may at least partially be explained by differences in baseline
performances. In contrast, Gundlach et al. (2016) reported for
a similar task that tACS at alpha frequencies did not affect
mean detection rates. However, they reported that detection rates
varied in a phasic manner, i.e., depending on the phase of tACS.
Notably, these studies used detection tasks in which subjects
had to report whether a stimulus near perceptual threshold was
perceived. In our study, however, we used a discrimination task
in which stimulation was always above perceptual threshold
and subjects had to report whether they perceived one or two
stimuli. Detection and discrimination tasks might be influenced
by different processes. For example, our previous studies have
shown that tactile discrimination tasks are influenced by power
in the alpha frequencies, but the phase of beta frequencies
(Baumgarten et al., 2015, 2016). Therefore, we focused our
analysis on power modulations. In line with this hypothesis,
Brignani et al. (2013) reported an effect of tACS at alpha
frequencies in a visual detection task, while they could not
find an effect of 10 Hz tACS in a visual discrimination task.
Future studies might explore the differences between detection
and discrimination tasks and how tACS might affect these
tasks in more detail.

There is no clear consensus which frequency to use when
tACS with “alpha frequencies” is applied. Whereas some studies
used individual alpha frequencies, based on individual peak
frequencies of neuronal oscillations in the alpha band (Cecere
et al., 2015; Gundlach et al., 2016), others used a fixed frequency
for all subjects (Brignani et al., 2013; Kar and Krekelberg,
2014; Sheldon and Mathewson, 2018). In the present study,
we used a fixed frequency of tACS for all subjects. While
this approach is easier to perform, especially since we did not
measure neuronal oscillations, a fixed frequency might bear the
downside that tACS does not match the “optimal” frequency
in all subjects. According to the Arnold’s tongue principle, low
stimulation intensities only entrain the endogenous frequency in

a small frequency band, whereas higher stimulation intensities
can entrain a wider frequency band around the endogenous
frequency (Herrmann et al., 2016; Kurmann et al., 2018).
Therefore, it could be that we did not entrain alpha power in
those subjects whose endogenous peak alpha frequency differs
too much from 10 Hz to be entrained at the low stimulation
intensity. However, Baumgarten et al. (2017) showed that tactile
temporal discrimination does not correlate with individual alpha
frequency of neuronal oscillations. In addition, several studies
found an effect of tACS on detection using fixed frequencies
(e.g., Brignani et al., 2013; Kar and Krekelberg, 2014). Finally,
Baumgarten et al. (2016) reported an effect of alpha power
on discrimination performances for one frequency, averaged
across all subjects, rather than individual frequencies for each
subject. Therefore, it seemed feasible for us to expect an effect
of a fixed frequency for tACS. On the other hand, it could
be that the mechanisms underlying tactile discrimination are
not modulated by 10 Hz but other, neighboring frequencies
within the alpha band. Given our low stimulation intensity,
this potential alpha frequency might not be entrained due to
the Arnold’s tongue principle. As mentioned above, however,
we were restricted to 1 mA stimulation intensities, because
a higher stimulation intensity could have produced tactile
sensations (Feurra et al., 2011b), which might be misjudged
for a stimulus from the finger electrode and thus distort
behavioral results.

One might argue that the control frequency of 5 Hz
might affect alpha power similarly to 10 Hz stimulation (de
Graaf et al., 2013). Given that we found no effect of tACS
in our study at all, this limitation does not change the
conclusion of this study.

Given that tACS can produce after-effects due to neuro-plastic
changes (Veniero et al., 2015), we also investigated whether tACS
at 10 Hz might have an effect only at a later time segment during
the stimulation. To this end, we compared the first half of the
trials to the second half of the trials during peri tACS at 10 Hz.
We found no differences between the first and the second half
of the trials. This result suggests that longer stimulation duration
did not lead to stronger results.

In summary, in our study we were unable to modulate
tactile discrimination by applying tACS at alpha frequencies
contralateral to the tactile stimulation. Consequently, we
were unable to provide evidence for a causal role of
somatosensory alpha oscillations in tactile discrimination
tasks. tACS experiments comprise many degrees of freedom
(e.g., electrode placements, stimulation frequency, stimulation
current density, task and combinations of all factors). Another
problem is that tACS can have different effects on different
individuals due to anatomical differences such as the gyral
depth or the thickness of the skull (Nitsche et al., 2008;
Opitz et al., 2015). These factors result in a large search space
for optimal parameters for the tACS experiment, making it
difficult to decide for the optimal setup with regard to the
question investigated (Kar and Krekelberg, 2014). And even
with identical parameters, sometimes results of an tACS
experiment cannot be replicated, even within one study
(Veniero et al., 2017).
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We are, however, confident that we used a reasonable
parameter space for the stimulation parameters to expect a
modulation of discrimination abilities. Thus, we might conclude
that this specific combination of experimental factors is unable
to modulate tactile temporal discrimination, but that we cannot
conclude whether alpha power has a causal role on tactile
temporal discrimination. This null effect should thus offer new
insights and increase knowledge about an adequate setup of tACS
experiments and to further understand difficulties and sometimes
inconsistent results in tACS studies. Nevertheless, additional
studies are needed to investigate a potential causal role of
somatosensory alpha oscillations in tactile discrimination tasks.
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Poststimulus Gamma-band Power in Temporal

Tactile Perception in the Human
Somatosensory Cortex
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Abstract

■ Neuronal oscillations are a ubiquitous phenomenon in the

human nervous system. Alpha-band oscillations (8–12 Hz)

have been shown to correlate negatively with attention and

performance, whereas gamma-band oscillations (40–150 Hz)

correlate positively. Here, we studied the relation between

prestimulus alpha-band power and poststimulus gamma-

band power in a suprathreshold tactile discrimination task.

Participants received two electrical stimuli to their left index

finger with different SOAs (0 msec, 100 msec, intermediate

SOA, intermediate SOA ± 10 msec). The intermediate SOA

was individually determined so that stimulation was bistable,

and participants perceived one stimulus in half of the trials

and two stimuli in the other half. We measured neuronal activ-

ity with magnetoencephalography (MEG). In trials with inter-

mediate SOAs, behavioral performance correlated inversely

with prestimulus alpha-band power but did not correlate with

poststimulus gamma-band power. Poststimulus gamma-band

power was high in trials with low and high prestimulus alpha-

band power and low for intermediate prestimulus alpha-band

power (i.e., U-shaped). We suggest that prestimulus alpha

activity modulates poststimulus gamma activity and sub-

sequent perception: (1) low prestimulus alpha-band power

leads to high poststimulus gamma-band power, biasing per-

ception such that two stimuli were perceived; (2) intermediate

prestimulus alpha-band power leads to low gamma-band power

(interpreted as inefficient stimulus processing), consequently,

perception was not biased in either direction; and (3) high pre-

stimulus alpha-band power leads to high poststimulus gamma-

band power, biasing perception such that only one stimulus

was perceived. ■

INTRODUCTION

Even in the absence of external sensory input, the brain is

constantly active. Thus, neuronal activity is constantly

fluctuating (Buzsáki & Draguhn, 2004). Incoming stimuli

can therefore impinge on different levels of neuronal ac-

tivity (i.e., brain states) at different times. These brain

states can influence the processing of stimuli (Iemi,

Chaumon, Crouzet, & Busch, 2017; Lange, Keil, Schnitzler,

van Dijk, & Weisz, 2014; Weisz et al., 2014; Keil, Müller,

Ihssen, & Weisz, 2012; Jensen & Mazaheri, 2010).

One prominent marker of brain states is neuronal os-

cillation. Neuronal oscillations refer to rhythmic changes

in activity of neuronal populations (Buzsáki & Watson,

2012). Thus, fluctuations of brain states can be reflected

in fluctuations of these neuronal oscillations. Two promi-

nent frequency bands are the alpha (8–12 Hz) and gamma

band (40–150 Hz). It has been found that fluctuations in

prestimulus alpha-band power correlate with varying per-

ception despite physically identical stimulation (Lange,

Halacz, van Dijk, Kahlbrock, & Schnitzler, 2012; van Dijk,

Schoffelen, Oostenveld, & Jensen, 2008; Linkenkaer-

Hansen, Nikulin, Palva, Ilmoniemi, & Palva, 2004). For

example, lower parieto-occipital alpha-band power

increased participants’ ability to detect near-threshold

visual stimuli (van Dijk et al., 2008; Hanslmayr et al.,

2007). Similarly, prestimulus alpha-band power in contra-

lateral somatosensory-posterior areas was lower when

participants could discriminate veridically between two

subsequent tactile stimuli compared with trials where par-

ticipants perceived stimulation as one single stimulus

(Baumgarten, Schnitzler, & Lange, 2016). Given these

results, it was suggested that prestimulus alpha oscilla-

tions reflect the excitability of a brain area, which in turn

influences the neuronal processing and perception of am-

biguous stimuli (Lange et al., 2014; Lange, Oostenveld, &

Fries, 2013; Thut, Nietzel, Brandt, & Pascual-Leone, 2006).

In addition, alpha-band power has been related to active

inhibition of brain areas ( Jensen & Mazaheri, 2010;

Klimesch, Sauseng, & Hanslmayr, 2007). In line with the

inhibition hypothesis, prestimulus alpha-band power is

modulated by spatial attention, and such modulations ofHeinrich-Heine-University Düsseldorf
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alpha-band power have been shown to affect perception

(Thut et al., 2006; Worden, Foxe, Wang, & Simpson, 2000;

Foxe, Simpson, & Ahlfors, 1998). In addition to prestimu-

lus alpha-band power, the power of poststimulus gamma

oscillations is also modulated by attention. In visuo-

spatial attention tasks, poststimulus gamma-band power

increases in the visual area contralateral to the stimulus

(e.g., Händel, Haarmeier, & Jensen, 2011; Fries,Womelsdorf,

Oostenveld, &Desimone, 2008; Siegel, Donner,Oostenveld,

Fries, & Engel, 2008; Müller, Gruber, & Keil, 2000). Simi-

larly, poststimulus gamma power in tactile spatial attention

tasks increases in somatosensory areas contralateral to the

attended side and can affect perception (Haegens, Nácher,

Hernández, et al., 2011; Haegens, Osipova, Oostenveld, &

Jensen, 2010; Bauer, Oostenveld, Peeters, & Fries, 2006).

Finally, it was found that poststimulus gamma oscillations

and behavioral performance are linked. For example, high

gamma-band power in visual cortex relates to faster RTs

(Hoogenboom, Schoffelen, Oostenveld, & Fries, 2010;

Womelsdorf, Fries, Mitra, & Desimone, 2006). In the

somatosensory domain, higher poststimulus gamma-band

power in contralateral primary somatosensory cortex (S1)

relates to increased stimulus detection (Siegle, Pritchett, &

Moore, 2014; Meador, Ray, Echauz, Loring, & Vachtsevanos,

2002). Generally, gamma oscillations are discussed as the

neuronal underpinnings of cortical information processing

(Fries, 2005, 2009, 2015).

In summary, both prestimulus alpha and poststimulus

gamma oscillations are associated with attention, neuro-

nal processing, and behavioral performance. Prestimulus

alpha-band power typically decreases with higher atten-

tion, and low alpha-band power is associated with higher

behavioral performance. By contrast, poststimulus gamma-

band power typically increases with higher attention and

high gamma-band power is associated with higher behav-

ioral performance. Given these similar, but also diametrical

effects of prestimulus alpha-band power and poststimulus

gamma-band power, we speculated that prestimulus

alpha-band power and poststimulus gamma-band power

are directly (negatively) correlated.

To this end, we studied the relation of prestimulus

alpha-band power, poststimulus gamma-band power,

and tactile perception in a suprathreshold tactile discrim-

ination task. We hypothesized that poststimulus gamma-

band power in primary somatosensory cortex (S1) is

positively correlated with perception, whereas prestimu-

lus alpha-band power is negatively correlated with per-

ception. Consequently, when comparing alpha- and

gamma-band power directly, we hypothesized to find a

negative correlation between prestimulus alpha-band

power and poststimulus gamma-band power.

METHODS

We used data recorded by Baumgarten et al. (2016).

Here, we give a concise description. More details on

paradigm, participants and recordings can be found in

Baumgarten et al. (2016).

Participants

We included 12 of the 16 right-handed participants (four

men, mean = 26.0 years, SD = 5.3 years) measured by

Baumgarten et al. (2016; see below for reasons for ex-

cluding four participants). Participants gave written in-

formed consent in accordance with the Declaration of

Helsinki and the Ethical Committee of the Medical Faculty,

Heinrich-Heine-University Düsseldorf before participating

in the experiment.

Participants had no known neurological disorders, no

somatosensory deficits, and normal or corrected-to-

normal vision.

Paradigm

Each trial began with a fixation dot in the center of the

participant’s visual field projected on the backside of a

translucent screen (60 Hz refresh rate) positioned

60 cm in front of the participant. After 500 msec, this fix-

ation dot decreased in luminance, indicating that the

stimulation is about to be applied after a jittered period

(900–1100 msec). Then, participants received two electri-

cal stimuli (duration: 0.3 msec each) with different SOAs.

Electrical stimuli were applied by electrodes located be-

tween the two distal joints of the left index finger. The

amplitude of the pulses was individually determined so

that stimulation was clearly perceived, but without being

painful (stimulus amplitude: mean = 4.1, SD = 1.4 mA).

In a premeasurement, the individual SOA was deter-

mined for which a participant veridically perceived two

stimuli in ∼50% of the trials (intermediate SOA, mean =

24.6 msec, SD = 6.2 msec). During the task, partici-

pants received stimulation with five different SOAs:

0 msec, 100 msec, intermediate SOA, intermediate SOA

± 10 msec. After stimulation, the fixation dot remained

visible for another jittered period (500–1200 msec) to

minimize motor preparation effects. By written instruc-

tion on the screen, participants were asked to report

the number of perceived stimuli (either one or two)

within 3000 msec via button press with the right index

or middle finger. Again, to minimize motor preparation

effects, configuration of the response buttons was ran-

domized for each trial.

Each SOA was used in 50 trials. Only the intermediate

SOA was used in 200 trials, resulting in 400 trials in total.

Stimuli were presented in blocks. Each block consisted

of 80 trials: 40 trials with intermediate SOA and 10 trials

for each of the remaining SOAs. After each block, a

self-paced break (∼2 min) was included.

To familiarize participants with the task, a 5-min train-

ing phase with all five SOAs preceded the actual measure-

ment. Before the measurement, participants received
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information about the task, but not about the purpose of

the study or the different SOAs.

Presentation of the stimuli was done with Presentation

software (Neurobehavioral Systems, Albany, NY).

Magnetoencephalography Measurement

A 306-channel whole-head magnetoencephalography

(MEG; Neuromag Elekta Oy, Helsinki, Finland) was used

to record brain activity at a sampling rate of 1000 Hz

while participants performed the task. The MEG

consisted of 102 pairs of orthogonal gradiometers and

102 magnetometers. For the analysis, only the gradio-

meters were taken into account. EOGs were measured

to detect eye movements. EOG electrodes were placed

at the outer sides of both eyes and above and below the

left eye.

Data Preprocessing

Data were analyzed with custom-made scripts using

Fieldtrip (Oostenveld, Fries, Maris, & Schoffelen, 2011)

and Matlab (The MathWorks, Natick, MA).

Continuously recorded data were divided into trials. A

trial started with the appearance of the fixation dot and

ended with the press of the response button. The total

number of trials was 400 with an average trial length of

∼6 sec (4–8.6 sec). Power line noise at 50 Hz and its har-

monics at 100 and 150 Hz were removed by a band-stop

filter, and data were bandpass filtered between 2 and

250 Hz. For the filters, we used the default options imple-

mented in FieldTrip, that is, we used an infinite impulse

response zero-phase Butterworth filter of fourth order. A

mean of 5.1 (SEM = 0.5) noisy channels were removed

and reconstructed by interpolation of neighboring chan-

nels. Artifacts (muscle or eye movement, SQUID jumps)

were removed semiautomatically by means of a z-score-

based algorithm implemented in FieldTrip, followed by

an additional visual inspection to remove artifacts (e.g.,

extensively noisy channels or channels still containing

nondetected squid jumps, etc.). A mean of 104.1 (SEM =

9.1) trials were removed due to artifacts.

Other preprocessing steps were conducted according

the respective analyses (see below).

Overview of Analysis Steps

We aimed to analyze the relation between prestimulus

alpha-band power, poststimulus gamma-band power, and

perception. Details on the analyses will be provided below.

Here, we give a concise overview of the analysis steps

performed. First, for each single trial prestimulus alpha-

band power was determined by averaging power in a

priori defined sensors, time range, and frequency band

based on results of our previous study (Baumgarten

et al., 2016). Second, for each single trial poststimulus

gamma-band power was determined similarly by averag-

ing power across sensors, time, and frequency. Here,

sensors of interest were determined based on the topogra-

phy of the M50, and frequency ranges were determined

individually.

After performing these two steps, we could determine

per participant and for each single trial one value for

prestimulus alpha-band power, poststimulus gamma-

band power, and perception, respectively. This enabled

us to sort individual trials with respect to alpha-band

power or gamma-band power. Then, we combined trials

to bins, computed mean gamma-band power and/or

mean perception in these bins. Finally, we tested by

means of first- and second-order regression analyses a

putative relation between the two variables (i.e., alpha-

or gamma-band power, respectively, on the one side,

and gamma-band power or perception, respectively, on

the other side).

Time–Frequency Analysis

Time–frequency analysis (TFA) was performed for fre-

quencies in the alpha (8–12 Hz) and gamma band (40–

150 Hz) by means of discrete Fourier transformation on

sliding time windows. For the following analyses, we only

used trials with intermediate SOA. Before TFA, we re-

moved the mean of the respective time period and the

linear trend. We combined each pair of gradiometers

by summing the spectral power of orthogonal gradiome-

ters. The TFA was performed on 3000-msec data seg-

ments (−1000 to 2000 msec). If the data in a trial were

shorter than 3000 msec (e.g., due to removed artifacts),

the corresponding trial was zero-padded to 3000 msec.

The alpha-band (8–12 Hz) power was analyzed in steps

of 1 Hz with a time window Δt of seven cycles of the re-

spective frequency f (Δt = 7/f ), moved in steps of

50 msec (Baumgarten et al., 2016). We used a single

Hanning taper on each time window, resulting in spectral

smoothing of 1/Δt.

In our previous study, we found a significant effect of

prestimulus alpha-band power on perception in a specific

set of sensors and in the prestimulus time period (−0.9

to −0.25 sec, with 0 msec being the time point in which

the first electrical stimulus occurred; Baumgarten et al.,

2016). Here, we thus analyzed alpha-band power in the

same sensors and the same time period. As in Baumgarten

et al. (2016), we averaged alpha-band power from 8 to

12 Hz in this time window and in these sensors. These sen-

sors are as follows: MEG1042+1043, MEG1112+1113,

MEG1122+1123, MEG1312+1313, MEG0712+0713,

MEG0722+0723, MEG1142+1143, MEG1132+1133,

MEG1342+1343, MEG2212+2213, MEG2412+2413,

MEG2422+2423, MEG2642+2643, MEG1832+1833,

MEG2242+2243, MEG2232+2233, MEG2012+2013,

MEG2442+2443, MEG2432+2433, MEG2522+2523,

MEG2312+2313, MEG2322+2323, MEG2512+2513,

MEG2342+2343, MEG2022+2023, MEG2212+2213,

MEG2612+2613, MEG2222+2223.
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The gamma band (40–150 Hz) was analyzed in steps of

5 Hz with a time window of 100 msec, moved in steps of

20 msec. Here, we used three Slepian tapers on each time

window, resulting in spectral smoothing of ±20 Hz. We

focused our analysis of gamma-band power on the right

primary somatosensory cortex (S1 contralateral to stimu-

lation site) by identifying five sensors showing maximum

amplitude of the M50 (MEG1122+1123, MEG1132+1133,

MEG1312+1313, MEG1342+1343, MEG1332+1333; see

below for details on sensor selection). In the following

analyses, we averaged gamma-band power over these five

sensors. Furthermore, we only used trials with inter-

mediate SOAs.

For the analysis of gamma-band power, we first deter-

mined individual frequencies showing maximal power.

To this end, we calculated for each participant, for each

time point between 0 and 200 msec, and for each fre-

quency between 40 and 150 Hz the power relative to

an averaged prestimulus baseline (−600 to −200 msec)

by means of an independent t test.

Next, we averaged for each frequency the t values across

all poststimulus time points (0–200 msec; Baumgarten,

Schnitzler, & Lange, 2017; Cousijn et al., 2014). Individual

gamma-band peaks were identified using Matlab’s built-in

function findpeaks (Baumgarten et al., 2017). Gamma

ranges with maximum power were determined by taking

the width of the gamma-band peak at its half height

(as implemented in the function findpeaks; Figure 1A).

We used two inclusion criteria for a frequency to be

identified as a peak frequency: First, to ensure that

gamma-band activity was not just a broadband signal in

response to stimulation onset but a clear narrow-band

range, we defined a minimum peak height relative to

neighboring points (i.e., setting in findpeaks the Min-

PeakProminence to a t value of 0.5). By this criterion,

we had to exclude one participant because we could

not ensure that a seeming gamma range was actually a

broadband response across a wider range of frequencies,

including the beta band (20–40 Hz, Participant 8 ex-

cluded; see Figure 1A). Second, to ensure that gamma

ranges with highest power were sufficiently strong to

be not confused with noise fluctuations, we set an abso-

lute threshold of t = 1 (i.e., setting in findpeaks the Min-

PeakHeight to a t value of 1). By this criterion, we had to

exclude three participants from further analyses (Partici-

pants 5, 13, and 15; see Figure 1A).

Selection of Sensors of Interest (Event-related
Field Analysis)

We focused our analysis of gamma-band power on the

right primary somatosensory cortex (S1 contralateral to

stimulation site). To this end, we determined sensors

showing maximum amplitude of the M50 component of

the event-related field. The M50 component is known to

originate from S1 after tactile stimulation (Iguchi, Hoshi,

Tanosaki, Taira, & Hashimoto, 2005). To identify the

M50, we first averaged the time domain data for each gra-

diometer and each participant separately. Next, gradiom-

eter pairs were combined by adding the signal of all trials

to the two orthogonal sensors using Pythagoras’ rule.

The evoked responses were then averaged across partic-

ipants. We identified the M50 component by focusing on

the time window 0.025–0.120 sec after stimulation. Fi-

nally, we determined five sensor pairs showing maximum

amplitude of the M50 (MEG1122+1123, MEG1132

+1133, MEG1312+1313, MEG1342+1343, MEG1332

+1333).

Regression Analyses

For each participant, we sorted the trials with intermedi-

ate SOA from low to high power, either for the gamma

band or the alpha band. Then, we divided the trials in five

bins with equal number of trials in each bin. There were

30.0 ± 0.1 trials per bin. Note that the sum of trials in all

bins is not 200 due to trials being removed in the prepro-

cessing steps.

To determine a potential relation between oscillatory

power and perception, we determined for each bin the

mean responses per participant by averaging the number

of “1” and “2” responses.

For each bin, we normalized mean responses accord-

ing to the following procedure (Baumgarten et al., 2016;

Lange et al., 2012; Jones et al., 2010; Linkenkaer-Hansen

et al., 2004): We calculated the mean response for each

participant for (a) each single bin and (b) across all bins.

Then, for each single bin, we subtracted the mean re-

sponse across all bins from the mean response from a

single bin. The obtained result was then divided by the

mean response across all bins.

Finally, we calculated for each bin mean responses

(and SEM) across participants.

To reproduce the results of Baumgarten et al. (2016),

we performed linear regression analysis between alpha-

band power and perceptual responses. To determine a

potential relation between prestimulus alpha-band power

and poststimulus gamma-band power, we performed re-

gression analyses (Baumgarten et al., 2016; Lange et al.,

2012; Linkenkaer-Hansen et al., 2004). Because we a priori

expected a linear relationship, we first performed a linear

regression. In addition, we performed a post hoc quadratic

regression analysis.

To determine a potential relation between alpha-band

and gamma-band power, we determined for each alpha-

band power bin the average gamma-band power per

participant. Next, we normalized for each participant the

mean gamma-band power relative to the mean gamma-

band power across all bins. Finally, we calculated for each

alpha-band power bin mean gamma-band power (and

SEM) across participants.

To exclude the possibility that a correlation between

alpha-band power and gamma-band power was induced

by covarying noise levels in both frequency bands across
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Figure 1. Poststimulus gamma-band activity. (A) Individual spectra in the gamma-band range (40–150 Hz). Spectra were determined by computing

for each frequency (40–150 Hz) and time point (0–200 msec) t values (poststimulus vs. prestimulus activity) and then averaging t values across

0–200 msec. Peaks of each spectrum were determined using the Matlab function findpeaks. Dashed horizontal lines indicate the threshold (t= 1) for

a peak to be recognized. Instead of peak frequencies, our analysis relied on narrow-band frequency ranges. Frequency ranges were determined by

computing the width of the peak at its half height. Smaller gray lines indicate the relative height of the peak (Prominence in Matlab function

findpeaks) and the width (Width at half prominence in Matlab function findpeaks). Red vertical lines indicate the frequencies at the half height,

which determine the upper and lower limits of the gamma-band range used for subsequent analyses. Note that Participants 5, 13, and 15 had to be

excluded from further analyses because their gamma peaks were below the threshold. Participant 8 had to be excluded from further analyses,

because increased activity extended also to lower frequencies (not shown) so that we could not excluded that this activity was actually a broadband

response to stimulation. (B) Topographical representation of gamma-band activity averaged across participants. For each participant, t values in

the individual gamma-band ranges (see A) were averaged for each sensor. Next, the t values were averaged across participants. Black dots indicate the

sensors of interest for gamma-band analysis, which were determined beforehand.
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trials, we performed additional control analyses. To this

end, we repeated the abovementioned analysis, but

now with gamma-band power averaged across a different

time window (but with identical length), for which we

did not expect modulations of gamma-band power but

just noise fluctuations (−500 to −300 msec).

Second, we computed signal-to-noise ratios (SNRs) by

dividing for each participant and trial poststimulus

gamma-band power (i.e., between 0 and 200 msec) and

prestimulus gamma-band power (i.e., “noise” between

−500 and −300 msec). Then, we repeated the above-

mentioned analysis for the SNRs.

All regression analyses were carried out using the

Matlab built-in function regstats.

Statistical Analysis

We statistically compared perception across alpha- and

gamma-band power bins, respectively. Likewise, we statis-

tically compared gamma-band power across alpha-band

power bins. First, we applied a Kolmogorov–Smirnov test

to test for normality of the data for each bin. Kolmogorov–

Smirnov tests showed that data in all bins significantly

differed from a normal distribution (all ps < .05). To con-

firm and strengthen the significant linear or quadratic re-

gression, we additionally performed planned post hoc

Wilcoxon signed-ranked tests on the most extreme values,

respectively. That is, for the significant linear regression be-

tween alpha-band power and perception, we compared

Bins 1 and 5. For the significant quadratic regression

between alpha-band power and gamma-band power,

gamma-band power should be lower in alpha-band power

Bin 3 relative to Bins 1 and 5. To this end, we applied one-

sidedWilcoxon signed-ranked tests to compareBin 3 versus

Bin 1 and Bin 3 versus Bin 5.

RESULTS

To investigate the relationship between prestimulus

alpha-band power, poststimulus gamma-band power,

and perception, we measured MEG while participants

performed a tactile temporal discrimination task.

Behavioral Data

Participants received one or two stimuli with varying

SOAs and had to report the number of perceived stimuli.

When only one stimulus was presented, participants re-

ported one stimulus in 94.3 ± 0.4% of all trials. When

two stimuli were presented with an SOA of 100 msec,

participants reported two stimuli in 97.0 ± 0.3% of all tri-

als. In addition, we presented stimuli with a predeter-

mined individual SOA for which participants were

supposed to perceive half of the trials as one stimulus

and the other half as two stimuli (intermediate SOA,

mean = 24.6 msec, SD = 6.2 msec). As intended, partic-

ipants perceived trials with this intermediate SOA as two

stimuli in 59.9 ± 0.9% of the trials. Finally, stimuli with an

intermediate SOA+10 msec were perceived as two stim-

uli in 82.1 ± 1.3% and stimuli with an intermediate SOA-

10 msec were perceived as two stimuli in 27.2 ± 1.5%.

Individual Gamma Ranges with Highest Power

We analyzed for each participant’s gamma ranges with

highest power within 40–150 Hz. Twelve of the 16 partic-

ipants showed narrow-banded gamma-band activity with-

in the range of 40–150 Hz (Figure 1A). Four participants

showed two different gamma ranges with highest power.

Three participants had to be excluded because their

gamma-band activity never reached the threshold of

t = 1. One participant had to be excluded because of a

broadband response that extended into lower frequen-

cies. Thus, for this participant, we could not distinguish

a clear narrow-banded range of gamma-band activity.

Relation of Prestimulus Alpha and Poststimulus
Gamma-band Power to Perception

We divided all trials with the intermediate SOA in five

bins with respect to prestimulus alpha-band or poststim-

ulus gamma-band power, respectively, and computed

mean perception rates per bin. We found a significant

negative correlation between prestimulus alpha-band

power bins and perception, r(3) = 0.92, p = .03

(Figure 2A).

That is, with lower prestimulus alpha-band power, par-

ticipants more likely reported to perceive two stimuli.

Wilcoxon sign-ranked tests showed a significant differ-

ence in perception between alpha-band power Bin 1

and Bin 5 (z = 2.20, p = .03).

By contrast, we found no significant correlation be-

tween poststimulus gamma-band power and perception

for both linear, r(3) = 0.04, p = .95 (Figure 2B), and

quadratic, r(2) = 0.44, p = .80, regression analyses.

Relation of Prestimulus Alpha and Poststimulus
Gamma-band Power

We divided all trials with the intermediate SOA in five

bins with respect to prestimulus alpha-band power and

computed mean gamma-band power per bin. Regression

analysis did not demonstrate a significant linear relation-

ship between prestimulus alpha-band power and post-

stimulus gamma-band power, r(2) = 0.22, p = .72.

However, regression analysis demonstrated a significant

quadratic relationship between prestimulus alpha-band

power and poststimulus gamma-band power, r(2) =

0.98, p = .04 (Figure 3).

That is, trials with high and low prestimulus alpha-band

power showed thehighest poststimulus gamma-bandpower.

Trials with intermediate prestimulus alpha-band power

showed the lowest poststimulus gamma-band power.
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Wilcoxon signed-rank tests revealed a significant differ-

ence in gamma-band power between alpha-band power

Bins 1 and 3 (z = −2.00, p = .02), that is, bins with

low prestimulus alpha-band power showed significantly

higher poststimulus gamma-band power than trials with

intermediate prestimulus alpha-band power. Wilcoxon

sign-ranked tests also revealed a significant difference

of poststimulus gamma-band power between alpha-band

power Bins 3 and 5 (z = −1.84, p = .03), that is, bins

with high prestimulus alpha-band power showed signifi-

cantly higher poststimulus gamma power than trials with

intermediate prestimulus alpha-band power. Gamma-

band power in the intermediate alpha-band power bin

is therefore significantly lower than in the bin with high-

est or lowest alpha-band power, respectively.

Control analyses revealed that this result could not be

explained by common noise fluctuations in the alpha and

gamma bands (Figure A1).

Figure 4 combines and summarizes the results above;

with low prestimulus alpha and high poststimulus gamma-

band power, participants more often perceived two stimuli.

By contrast, with high poststimulus gamma-band power

but with high prestimulus, alpha-band power participants

more often perceived one stimulus. Finally, with inter-

mediate alpha-band power and low poststimulus gamma-

band power, participants had no clear preference for

either perception (Figure 4).

DISCUSSION

We analyzed data from a previous temporal tactile discrim-

ination task in which participants received one or two tac-

tile stimuli with varying SOAs (Baumgarten et al., 2016). We

analyzed neuronal activity recorded with MEG with respect

to the relation of prestimulus alpha-band power, poststim-

ulus gamma-band power, and tactile perception. We found

a significant linear relationship between prestimulus alpha-

band power and tactile perception. However, we did not

find a significant correlation between poststimulus gamma-

band power and tactile perception (Figure 2). Finally, we

found a significant U-shaped relation between prestimulus

alpha-band power and poststimulus gamma-band power

(Figure 3). That is, for both lowest and highest prestimulus

alpha-band power, we found the highest poststimulus

gamma-band power. For intermediate prestimulus alpha-

band power, we found the lowest poststimulus gamma-band

power.

As in our original study (with 16 participants; Baumgarten

et al., 2016), we also found a significant correlation between

prestimulus alpha-band power and perception for the 12

participants in our present study. Our results are also in line

with other studies reporting a linear relationship between

Figure 2. Regression analyses of oscillatory power and normalized temporal perceptual discrimination rate for (A) binned prestimulus

alpha-band power (8–12 Hz, Bin 1 vs. Bin 5, p = .03) and (B) binned poststimulus gamma range with highest power. Insets show results of

linear regression analyses (black lines). Higher number bins indicate higher spectral power. Error bars represent SEM.

Figure 3. Regression analysis of binned prestimulus alpha-band power

(8–12 Hz) and poststimulus gamma range with highest power. Inset

shows result of quadratic regression analysis (black line). Higher

number bins indicate higher spectral power. Error bars represent SEM.

Bin 3 vs. Bin 1, p = .02; Bin 3 vs. Bin 5, p = .03.
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prestimulus alpha-band power in somatosensory areas and

tactile perception (Lange et al., 2012; Jones et al., 2010).

Prestimulus alpha-band power and poststimulus

gamma-band power were analyzed in predefined sensors

of interest. Prestimulus alpha-band power was analyzed in

sensors showing a significant effect of prestimulus alpha

power on perception in our previous study (Baumgarten

et al., 2016). Poststimulus gamma-band power was ana-

lyzed in sensors defined by the M50 component of

evoked fields. Because we performed our analyses on

sensor level, we can only indirectly infer the underlying

cortical sources. In our previous study, we found that

the alpha effect on perception originates from somato-

sensory and parietal cortical regions (Baumgarten et al.,

2016). In addition, the M50 component is known to origi-

nate from primary somatosensory cortex (S1; Iguchi et al.,

2005). Because the poststimulus gamma response in our

task strongly overlapped with the sensors defined by the

M50 component (Figure 1B), it seems likely that the effect

of poststimulus gamma-band activity has the same origin as

the M50 event-related field component, namely, S1. This

interpretation is in line with previous studies showing that

poststimulus gamma-band activity in response to tactile

stimulation is typically found in (primary) somatosensory

areas or in sensors putatively overlying somatosensory areas

(Cheng et al., 2016; Siegle et al., 2014; Lange, Oostenveld,

& Fries, 2011; Gross, Schnitzler, Timmermann, & Ploner,

2007; Bauer et al., 2006). In summary, this suggests that

the cortical sources of prestimulus alpha-band power and

poststimulus gamma-band power might overlap but also

demonstrate differences.

We focused our analysis of poststimulus gamma-band

power on the time period of 0–200 msec. This time win-

dow temporally coincides with evoked activity. Such

evoked activity could induce broadband activity in the

frequency domain that might be misinterpreted as gamma-

band activity. However, except for one participant, our

analysis of the individual gamma-band ranges revealed

narrow-band poststimulus gamma-band power increases

that did not extend into lower frequencies (Figure 1A).

We are thus confident that our gamma-band activity is

not due to broadband evoked responses.

Three participants did not show a reliable range of

gamma-band activity and were thus excluded from the

analyses. We can only speculate about the reason for

the missing gamma-band activity. One reason might be

a SNR of gamma-band activity too low to be detected.

Moreover, these participants showed a decrease of gamma-

band power in almost all frequencies. Such a decrease is

highly unusual as it indicates increased prestimulus gamma-

band power relative to the poststimulus period in almost all

frequencies. Because of the unusual gamma-band activity

and missing gamma range with highest power (according

to our criteria, see above), we thus decided to exclude

these participants from further analyses.

Wehave analyzed gamma-band activity in the range of 40–

150 Hz. Many studies have used an upper limit lower than

150 Hz for gamma oscillations oscillations (Fries, Nikolić, &

Singer, 2007; Bauer et al., 2006; Hoogenboom, Schoffelen,

Oostenveld, Parkes, & Fries, 2006). However, several studies

have shown that gamma-band activity can extend up to

150 Hz (Lange et al., 2011; Ray, Niebur, Hsiao, Sinai, &

Crone, 2008; Tallon-Baudry, Bertrand, Hénaff, Isnard, &

Fischer, 2005). Therefore, we included gamma-band activity

up to 150 Hz to not miss potentially important effects in

the higher frequencies of the gamma band.

There has been an ongoing discussion about the na-

ture of gamma-band oscillations. Several studies report

increases of gamma-band power in narrow frequency

bands in response to sensory stimulation (Krebber,

Harwood, Spitzer, Keil, & Senkowski, 2015; Fries et al.,

2007; Gross et al., 2007; Hoogenboom et al., 2006), argu-

ing that gamma-band power reflects oscillatory activity.

Other studies reported increases of gamma-band power

in broadbands, spanning almost the entire gamma band

(40 up to 200 Hz; e.g., Hermes, Miller, Wandell, &

Winawer, 2015; Crone, Korzeniewska, & Franaszczuk,

2011). These studies often argue that the broadband re-

sponse is unlikely of oscillatory nature but rather reflects

asynchronous neuronal firing. In line with previous MEG/

EEG studies, we found in our study poststimulus gamma-

band responses in comparably narrow frequency bands.

It seems interesting that narrow band gamma responses

are often found in MEG and EEG studies, whereas broad-

band gamma responses are often reported in ECoG

studies (e.g., Hermes et al., 2015; Lachaux et al., 2005).

The nature of gamma-band power is thus far from con-

clusive, and thus, it is interesting and important to fur-

ther elucidate the nature of gamma-band activity.

Previous studies reported increased somatosensory

poststimulus gamma-band power in relation to improved

Figure 4. Combination and summary of results. Low prestimulus alpha-

band power (8–12 Hz) and high poststimulus gamma-band power lead

to increased perception of two stimuli. High prestimulus alpha-band

power and high poststimulus gamma-band power lead to increased

perception of one stimuli. Intermediate alpha-band power and low

gamma-band power lead to no clear preference for either perception.

Wittenberg et al. 559



tactile or nociceptive somatosensory perception (Siegle

et al., 2014; Gross et al., 2007; Meador et al., 2002).

Therefore, we hypothesized that poststimulus gamma-

band power might correlate with perception in our tactile

discrimination task. Contrary to our hypothesis, however,

we did not find a significant correlation between post-

stimulus gamma-band power and perception. The reason

for the apparent discrepancy between our study and pre-

vious studies might be found in the stimuli and tasks.

Stimulus detection tasks can be near-threshold or supra-

threshold. In near-threshold tasks, participants typically

report whether or not they perceive a stimulus near per-

ceptual threshold (e.g., Siegle et al., 2014; Weisz et al.,

2014; van Dijk et al., 2008; Linkenkaer-Hansen et al.,

2004). In suprathreshold tasks, stimuli are always above

perceptual threshold, and thus, participants always per-

ceive a stimulus but typically have to discriminate between

different stimuli or perceptual states (e.g., Baumgarten

et al., 2016; Peng, Hautus, Oey, & Silcock, 2016; Sato,

Nagai, Kuriki, & Nakauchi, 2016; Lange et al., 2012).

Notably, the studies reporting a positive relation be-

tween poststimulus gamma-band power and perception

used near-threshold stimuli and tasks. For example, de-

tection of tactile near-threshold stimuli improved when

participants exhibited higher poststimulus gamma-band

power in contralateral S1 (Meador et al., 2002). Also, per-

ceived pain around the pain threshold was accompanied

by higher gamma-band power in S1 compared with un-

perceived pain stimuli (Gross et al., 2007). Entraining

peristimulus neocortical gamma-band power optogeneti-

cally led to increased tactile stimulus detection in mice in

a near-threshold detection task (Siegle et al., 2014). By

contrast, we used a suprathreshold discrimination task.

That is, participants always perceived a stimulus but their

perception varied on a trial-by-trial basis between per-

ceiving one or two stimuli. It has been suggested that

neuronal oscillations in the gamma band are a fundamen-

tal process of neuronal communication and stimulus pro-

cessing (e.g., Fries, 2005, 2015). Gamma oscillations are

believed to be instrumental for efficient neuronal pro-

cessing. That is, neuronal synchronization in the gamma

band leads to efficient transmission of the sensory signal

in the neuronal network and hence to an efficient stimu-

lus processing (e.g., Womelsdorf & Fries, 2007). By con-

trast, lower gamma-band activity would then indicate that

the sensory signal is transmitted less efficiently across the

neuronal network and hence the signal is less efficiently

processed, leading potentially to a less clear and poten-

tially even ambiguous perception. In line with this hy-

pothesis, low gamma-band power in a near-threshold

detection task might indicate that the stimulus is insuffi-

ciently processed and thus not perceived. By contrast,

high gamma-band power indicates efficient stimulus

processing, leading to successful detection of the near-

threshold stimulus (Siegle et al., 2014; Gross et al.,

2007). In suprathreshold tasks, a stimulus is always strong

enough to be sufficiently processed to result in successful

perception. Therefore, a suprathreshold task should dis-

play high gamma-band power for all stimuli.

In our study, we used stimuli with identical physical

characteristics (two suprathreshold stimuli with interme-

diate SOA), which differed only in participants’ subjective

perception. Gamma-band power was present in all trials,

indicating efficient stimulus processing. However, the

lack of a significant difference in gamma-band power be-

tween perceiving one or two stimuli suggests that the

stimulus processing in S1 is largely independent of sub-

jective perception in suprathreshold tasks. Subjective

perception might be processed in other, higher cortical

areas. For example, studies using working memory tasks

in humans and monkeys found that vibrotactile stimula-

tion induced gamma-band power in somatosensory areas.

Somatosensory gamma-band power, however, did not

differ between correctly and incorrectly perceived trials.

Such differences between subjective perception and

gamma-band power were found in higher areas (Haegens,

Nácher, Hernández, et al., 2011; Haegens et al., 2010).

An alternative explanation for the lack of a significant

correlation between poststimulus gamma-band power

and perception might be that a potential correlation be-

tween gamma-band power and subjective perception

might be too small to be detected with our paradigm

or analysis approach. In addition, differences in gamma-

band power might occur at different frequencies than an-

alyzed in our study. However, we focused our analysis on

individual frequency bands showing gamma-band power

in response to stimulation, whereas other frequency

bands showed only negligible gamma-band power, at all.

In contrast to our study in the somatosensory domain,

studies in the visual domain reported that poststimulus

gamma-band power correlated with subjective per-

ception in suprathreshold tasks. These differences in

gamma-band power, however, were typically found in

higher visual areas, other than primary visual cortex.

For example, if participants receive one visual stimulus

accompanied by two tactile stimuli, they frequently per-

ceive a second illusory visual stimulus (Shams, Kamitani,

& Shimojo, 2000).

Studies have shown that, despite identical physical

stimulation, poststimulus gamma-band power in parieto-

occipital cortex correlated with participants’ subjective

perception of the illusion (Balz et al., 2016; Lange et al.,

2011; Bhattacharya, Shams, & Shimojo, 2002). Moreover,

poststimulus gamma-band power in somatosensory corti-

ces was larger for congruent compared with incongruent

visuotactile stimuli and correlated with shorter RTs

(Krebber et al., 2015). Future studies might thus further

investigate how gamma-band power correlates with

tactile perception in suprathreshold tasks by studying

other cortical areas or using methodological approaches

that allow a finer spatial resolution, such as intracranial

EEG or local field potential recording.

The main focus of our study was to study a potential

relationship between prestimulus alpha and poststimulus
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gamma-band power. It has been shown that attention

correlates negatively with prestimulus alpha-band power

and positively with poststimulus gamma-band power in

somatosensory areas (Haegens, Luther, & Jensen, 2012;

Haegens, Nácher, Luna, Romo, & Jensen, 2011; Bauer

et al., 2006). In addition, higher behavioral performance is

associated with lower prestimulus alpha-band power and

higher poststimulus gamma-band power (e.g., Baumgarten

et al., 2016; Siegle et al., 2014). We thus hypothesized that

prestimulus alpha and poststimulus gamma-band power

negatively correlate on a trial-by-trial basis, a question that

to our knowledge has never been directly investigated. In

contrast to our hypothesis, we did not find a significant

linear relationship. Rather, we found that prestimulus

alpha and poststimulus gamma-band power show a qua-

dratic relationship. That is, low but also high prestimulus

alpha-band power was associated with high poststimulus

gamma-band power, whereas intermediate levels of pre-

stimulus alpha-band power were associated with low levels

of poststimulus gamma-band power. In addition, in trials

with low prestimulus alpha/high poststimulus gamma-band

power, participants more often perceived two stimuli,

whereas in trials with high prestimulus alpha/high post-

stimulus gamma-band power, participants perceived more

often one stimulus (Figure 4). Furthermore, in trials with

intermediate prestimulus alpha/low poststimulus gamma-

band power, participants showed no preference for either

perception.

Although this quadratic relation was shown to be sig-

nificant, the overall effect sizes seem rather small. We can

only speculate about the size of the effects. It might be

that only a small fraction of neurons that elicit gamma-

band activity are involved in the perception process

and are modulated by prestimulus alpha-band power.

This would lead to a comparably low SNR and thus small

effect sizes. Another potential reason might be found in

the overall lower SNR for higher frequencies. Such a low

SNR might reduce potential effects. The effect sizes in

our study are, however, comparable in size to effect sizes

of gamma-band effects in other MEG studies (Yuan, Li,

Liu, Yuan, & Huang, 2016; Krebber et al., 2015; Haegens

et al., 2010).

We propose that low prestimulus alpha-band power re-

flects states of high excitability (Iemi et al., 2017; Lange

et al., 2013; Thut et al., 2006). Therefore, stimuli will be

efficiently processed during states of low prestimulus

alpha-band power, resulting in the perception of two

stimuli (Baumgarten et al., 2016).

The lower prestimulus alpha-band power, the higher

was participants’ confidence in their decision. In other

words, stronger or more efficient processing of “two”

stimuli is accompanied by lower alpha-band power

(Baumgarten et al., 2016).

Such efficient stimulus processing should be reflected in

high poststimulus gamma-band power (Fries, 2005, 2009).

Hence, we propose that low prestimulus alpha-band

power will lead to high poststimulus gamma-band power,

resulting in the perception of two stimuli (Figure 4, upper

curve). On the other hand, high prestimulus alpha-band

power reflects lower excitability or pulsed inhibition

(Jensen & Mazaheri, 2010; Mathewson, Gratton, Fabiani,

Beck, & Ro, 2009), leading to the perception of only one

stimulus (Baumgarten et al., 2016).

The higher prestimulus alpha-band power, the higher

was participants’ confidence in their decision of “one”

stimulus. In other words, stronger or more efficient

processing of “one” stimuli was accompanied by higher

alpha-band power (Baumgarten et al., 2016). Again, such

efficient stimulus processing (despite leading to errone-

ous perception) should be reflected in high poststimulus

gamma-band power (Fries, 2005, 2009). Thus, we

propose that high prestimulus alpha-band power should

also lead to high poststimulus gamma-band power. This

way, however, high gamma-band power will result in

the perception of one stimulus (Figure 4, lower curve).

Finally, intermediate level of prestimulus alpha-band

power will not bias perception in either direction, leading

to lower or inefficient forwarding of the stimulus,

which will be reflected in lower levels of gamma-band

power.

This proposed model offers an alternative explanation

why we did not find a significant correlation between

gamma-band power and perception (Figure 2B). If

prestimulus alpha-band power determines whether high

poststimulus gamma-band power reflects the perception

of one or two stimuli, then averaging across all pre-

stimulus alpha states (as done in Figure 2B) will also

average across both perceptions. Thus, ignoring the

prestimulus alpha state and simply looking at poststimu-

lus gamma states might give the wrong impression of no

correlation between poststimulus gamma-band power

and perception.

In conclusion, we found that prestimulus alpha-band

and poststimulus gamma-band power show a quadratic

relationship with both low and high prestimulus alpha

power, leading to high poststimulus gamma-band power.

Notably, the two states of high poststimulus gamma-band

power are related to different states of perception. We

propose a model in which prestimulus alpha-band power

determines the computational and perceptual fate of a

stimulus. If prestimulus alpha-band power is low, stimuli

are efficiently processed, leading to more veridical per-

ception in suprathreshold temporal discrimination tasks

or near-threshold detection tasks. In such cases, post-

stimulus gamma-band power will be high, indicating effi-

cient stimulus processing. If prestimulus alpha-band

power is high, stimuli are inefficiently processed,

leading to more incorrect perceptions in suprathreshold

temporal discrimination tasks and no perception in

near-threshold detection tasks. In suprathreshold tempo-

ral discrimination tasks, stimuli will still be processed,

leading to high gamma-band power. In near-threshold

detection task, nonperceived stimuli will not be processed,

leading to no poststimulus gamma-band power.
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The sensory system constantly receives stimuli from the external world. To discriminate

two stimuli correctly as two temporally distinct events, the temporal distance or

stimulus onset asynchrony (SOA) between the two stimuli has to exceed a specific

threshold. If the SOA between two stimuli is shorter than this specific threshold, the

two stimuli will be perceptually fused and perceived as one single stimulus. Patients

with hepatic encephalopathy (HE) are known to show manifold perceptual impairments,

including slowed visual temporal discrimination abilities as measured by the critical

flicker frequency (CFF). Here, we hypothesized that HE patients are also impaired in

their tactile temporal discrimination abilities and, thus, require a longer SOA between

two tactile stimuli to perceive the stimuli as two temporally distinct events. To test this

hypothesis, patients with varying grades of HE and age-matched healthy individuals

performed a tactile temporal discrimination task. All participants received two tactile

stimuli with varying SOA applied to their left index finger and reported how many distinct

stimuli they perceived (“1” vs. “2”). HE patients needed a significantly longer SOA

(138.0 ± 11.3 ms) between two tactile stimuli to perceive the stimuli as two temporally

distinct events than healthy controls (78.6 ± 13.1 ms; p < 0.01). In addition, we found

that the temporal discrimination ability in the tactile modality correlated positively with the

temporal discrimination ability in the visual domain across all participants (i.e., negative

correlation between tactile SOA and visual CFF: r = −0.37, p = 0.033). Our findings

provide evidence that temporal tactile perception is substantially impaired in HE patients.

In addition, the results suggest that tactile and visual discrimination abilities are affected

in HE in parallel. This finding might argue for a common underlying pathophysiological

mechanism. We argue that the known global slowing of neuronal oscillations in HE might

represent such a common mechanism.

Keywords: behavioral, perception, somatosensory, liver cirrhosis, integration window

INTRODUCTION

The human brain constantly receives multiple signals from external sources through the senses.
Precise neuronal processing of these signals and their temporal relationships is crucial for
perception and behavior. If two signals arrive with sufficiently long temporal interval between both
stimuli (stimulus onset asynchrony, SOA), they are readily perceived as two temporally separate
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events. However, the temporal resolution necessary to
discriminate the two stimuli is limited and with decreasing
SOA, subjects will perceive two stimuli only as one single
stimulus with increasing probability. The threshold for which
two stimuli can be successfully discriminated is altered in several
diseases. For example, patients with motor impairments, such
as Parkinson’s disease or dystonia, need longer time intervals
to perceive two tactile stimuli as two separate events (Antelmi
et al., 2017; Lee et al., 2018). This alteration has been assigned
to impairments in the basal ganglia, which are believed to play
a role in temporal perception (Lacruz et al., 1991; Pastor et al.,
2004; Conte et al., 2016). Recent studies in healthy individuals
additionally highlighted the role of primary somatosensory
cortex (S1) for temporal perception of tactile stimuli (Hannula
et al., 2008; Conte et al., 2012; Rocchi et al., 2016). In addition,
Baumgarten et al. (2015, 2016) recently showed that neuronal
oscillations in S1 correlate with temporal perception of tactile
stimuli. Neuronal oscillations in the beta-band (∼15–20 Hz)
predicted whether subjects perceived one or two stimuli. These
studies suggested that neuronal oscillations in the beta-band of
S1 form the basis of temporal perception in the tactile domain
(Baumgarten et al., 2015, 2017a). In more detail, this model for
temporal perception proposes that cycles of neuronal oscillations
form temporal windows for neuronal integration of incoming
information (see VanRullen, 2016 for a review). If these two
stimuli fall into different cycles, they are processed separately and
hence perceived as two separate stimuli. Previous studies suggest
that in the somatosensory domain these integration windows
are reflected in cycles of neuronal oscillations in the beta-band
in S1 (Baumgarten et al., 2015, 2017a). Similarly, studies have
proposed that such integration windows also exist in the visual
modality and for audio-visual integration with cycles of the alpha
rhythm (∼8–12 Hz) forming the temporal integration windows
(e.g., VanRullen et al., 2006; Wutz et al., 2014; Cecere et al.,
2015; VanRullen, 2016). These models of temporal perception
state that temporal perception is mediated by the length of the
cycles of neuronal oscillations. Consequently, if subjects show
altered neuronal oscillations, these models would predict altered
temporal perception.

In the present study, we studied tactile temporal perception
in patients with hepatic encephalopathy (HE). HE patients are
known to have slowed oscillatory activity (e.g., Butz et al.,
2013) and thus are an ideal model to test the hypothesis that
temporal tactile perception is mediated by discrete perceptual
cycles in the beta-band. HE is a common complication in
patients with liver cirrhosis and can serve as a model for
slowed cortical oscillatory activity (Butz et al., 2013). In this
patient population, the presence of liver cirrhosis restricts the
detoxification function of the liver, which then leads to increased
ammonia levels in the blood. The rise in ammonia levels are
thought to lead to a low-grade cerebral edema, causing alterations
in signal transduction, neurotransmission, and synaptic plasticity
(Häussinger and Schliess, 2008; Prakash and Mullen, 2010;
Felipo, 2013). Moreover, a slowing of oscillatory activity in visual
and motor systems was observed (Timmermann et al., 2008;
Kahlbrock et al., 2012; Butz et al., 2013; Götz et al., 2013).
Likewise, slowed oscillatory activity was also reported for the

somatosensory cortex of patients with HE (May et al., 2014). In
the light of this works, it has been suggested that a global slowing
of oscillatory activity spanning across the different cortical
subsystems and across the different frequency bands forms a
keymechanism underlying altered behavior and neuropsychiatric
symptoms occurring in HE patients (Timmermann et al., 2008;
Butz et al., 2013). Consequently, HE comprises a great variety of
neuropsychiatric symptoms, including cognitive, vigilance, and
motor impairments (Häussinger and Sies, 2013). Also the visual
temporal perception is impaired in patients with HE, which
is represented in a decreased critical flicker frequency (CFF;
Kircheis et al., 2002). The CFF is defined as the specific frequency
at which a flickering light that is presented with a decreasing
frequency is first perceived as a discrete flicker. The CFF serves
as an objective clinical parameter to detect and monitor HE.
Moreover, decreases in CFF correlated with slowing of neuronal
oscillations in the visual cortex (Götz et al., 2013; Baumgarten
et al., 2018).

In summary, patients with HE show slowed oscillatory
activity and impaired visual temporal perception. Based on the
findings that demonstrated slowed oscillatory activity also in
somatosensory cortex, we hypothesized in the present study
that HE patients should also show impaired tactile temporal
perception. We used an established paradigm to test temporal
perception of tactile stimuli (Baumgarten et al., 2015, 2016,
2017a,b). Related to the slowed CFF in the visual system,
we proposed that HE patients demonstrate slowed temporal
perception in the tactile system and thus, need longer SOAs
compared to healthy subjects to detect two separate stimuli.

MATERIALS AND METHODS

Participants
Fifteen healthy controls (CON) and 16 patients (PAT) diagnosed
with varying grades of HE due to liver cirrhosis participated
in the experiment. Two PAT were excluded from analyses due
to exclusively “1” reports regardless of SOA (see below for
details). Three additional PAT were excluded from analyses due
to unreliable fits of the behavioral data (see below for details). For
details on the remaining 11 (14, respectively) PAT and 15 CON
see Table 1.

Patients were diagnosed with HE by means of clinical
assessment in combination with the CFF (see below) and
computer psychometry (Vienna test system, Dr. Schuhfried
GmbH, Mödling, Austria). Computer psychometry tested for an
age corrected skill set of cognitive, motoric, reaction time, and
attention competencies.

Patients were categorized in two groups: (1) Minimal HE
(labeled mHE), i.e., patients without overt clinical symptoms but
lowered CFF and/or deficits in psychometric testing (Kircheis
et al., 2002). (2) Manifest HE (labeled HE), i.e., patients with
clinically visible symptoms of HE (e.g., tiredness, reduced
attention, or flapping tremor), graded as HE1 (n = 7) or
HE2 (n = 2) according to the West-Haven-Criteria, which are
commonly used to classify patients with overt symptoms into
four stages (Ferenci et al., 2002).
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TABLE 1 | Characteristics of patient and control groups.

Controls mHE HE

N (f/m) 15 (5/10) 5 (2/3) 6 (1/5) [9 (2/7)]

Age (y; median (first, third quartile)) 65.0 (52.0, 69.8) 57.0 (46.0, 71.3) 64.5 (58.0, 75.0) [66.0 (60.8, 76)]]

CFF (Hz; median (first, third quartile)) 42.6 (40.5, 43.3) 39.5 (37.6, 40.3) 36.7 (34.7, 37.9) [37.1 (34.7, 37.9)]

Stimulation amplitude (mA, median (first, third quartile)) 3.2 (3.0, 4.2)) 2.3 (2.0, 3.3) 3.4 (2.8, 3.8) [3.3 (2.7, 3.9)]

Etiology of cirrhosis – 4 ALC, 1 overlap 4 ALC, 1NASH, 1 HCV, 1 CRYP, 1 NT, 1 AI

Data are presented for those participants that entered the main analyses (see Figures 2, 3) because their behavioral data could be successfully fitted (see Supplementary

Figure S2). The column HE shows additionally (in square brackets []) the data for all patients that successfully completed the task, e.g., including three patients that did not

enter the main analyses due to non-successful fits (see Supplementary Figures S1, S2C). mHE, minimal hepatic encephalopathy; HE, manifest hepatic encephalopathy;

CFF, critical flicker frequency; ALC, alcoholic; Overlap, overlap syndrome; NASH, non-alcoholic steatohepatitis; HCV, hepatitis C virus; CRYP, cryptogenic, NT, nutritive

toxic; AI, autoimmune hepatitis.

The CFF is typically used to detect patients with HE with a
cutoff frequency of 39.0 Hz (Kircheis et al., 2002). In our study,
threemHE patients showed a CFF> 39.0 Hz (39.5; 39.6; 42.2 Hz).
Despite a CFF > 39.0 Hz, mHE was diagnosed in these patients
by their deficits in the psychometric testing (Kircheis et al.,
2002). Liver cirrhosis in all patients was confirmed by biopsy or
Fibroscan/ARFI.

Exclusion criteria were psychiatric or neurological diseases
apart from HE or abuse of alcohol or psychoactive drugs within
the last 4 weeks. Also, patients withHE grade 3 or 4 were excluded
from the study. All participants reported normal or corrected-
to-normal vision and no tactile impairments. All patients were
recruited from the Department of Gastroenterology, Hepatology
and Infectious Diseases of the University Hospital Düsseldorf.
All participants gave their written informed consent prior to
the experiments. Healthy controls were financially reimbursed,
patients received no financial reimbursement. The study was
approved by the ethics committee of the University Hospital
Düsseldorf (study no. 5779).

Experimental Design and Paradigm
We adapted an established experimental task, which was designed
to study tactile temporal perceptual discrimination in healthy
humans (Baumgarten et al., 2015, 2016, 2017a,b). Participants
were comfortably seated in a dimmed and sound-attenuated
room. The start of every trial was signalized by a bright central
fixation dot, serving as start cue (duration 500 ms; Figure 1). The
following prestimulus period (duration randomized between 900
and 1100 ms) was indicated by a decreasing luminance of the
cue. Next, the participants received either 1 or 2 short (0.3 ms)
electrical pulses, applied by two ring electrodes placed at the
distal phalanx of the left index finger. Electrical current was
generated by a Stimulus Current Generator (DeMeTec GmbH,
Langgöns, Germany). The amplitude of the pulses was adjusted
individually to 150% of the subjective individual perception
threshold. Subjective reports confirmed that stimulation at this
level was clearly felt but below pain thresholds. The electrical
pulses were applied with different SOAs ranging from 0 ms (i.e.,
only one stimulus was applied) to 400 ms with 12 steps in-
between (15, 25, 35, 50, 100, 125, 150, 175, 200, 225, 250, and
300 ms). Next, the poststimulus period (duration randomized
between 500 and 1200 ms) followed, during which only the
fixation dot was visible. Durations of pre- and poststimulus epoch

FIGURE 1 | Experimental setup. Participants fixated a central gray dot.

A decrease in luminance indicated the start of the stimulation period. After a

jittered period of 900–1100 ms, participants received one or two electrical

stimuli with varying SOA (0–400 ms) on their left index finger via ring

electrodes. After another jittered period (500–1200 ms), visual response

instructions were presented and participants reported their subjective

perception (“1” vs. “2”) by button press with their right hand.

were randomized in every trial to reduce temporal expectation
effects in the prestimulus period and motor preparation effects in
the poststimulus period. The poststimulus period was followed
by a written instruction, which marked the start of the response
window (duration max. 3000 ms). Then, participants reported
whether they perceived the stimulation either as 1 single or
2 temporally separated sensations, giving feedback by button-
presses with their index or middle finger of the right hand.
Button configurations were randomized between participants
but kept constant within each individual. If no answer was
given after 3000 ms or if participants responded before the
instruction text was presented, a warning text appeared and the
respective trial was discarded from analysis and repeated at the
end of the block. After button press, the next trial started. The
experiment was subdivided in blocks. Each block consisted of
50 trials. Between blocks participants had the chance to take a
self-paced break of up to 2 min. All 14 SOAs were presented
in a pseudo-randomized order. This pseudo-randomized order
changed after each presentation of all 14 SOAs. Total duration
of the experiment was limited to 30 min. Due to differences in
reaction times and length of self-paced breaks this resulted in
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a varying total number of 350–450 trials (i.e., 7–9 blocks) per
participant. Five patients ended the experiment earlier due to
fatigue (duration of recorded data: ∼10–25 min, resulting in
100–300 trials). All controls finished the entire 30 min period.

Stimulus presentation was controlled using Presentation
software (Neurobehavioral Systems, Albany, NY, United States).
Each participant received instructions of the task but remained
naïve to the purpose of the experiment and the different SOAs
used. Standardized instructions on the task were given prior to
the start of the experiment in form of an information sheet and
verbal instructions, as well as in form of written instructions
presented on screen. After instructions were given and before
recording, every participant underwent a training phase of
∼5 min containing all possible SOAs to familiarize participants
with the paradigm. Except the aforementioned warning text no
further feedback was given during the actual test. Instructions
and visual stimuli were presented via a projector on the backside
of a translucent screen with a 60 Hz refresh rate positioned 60 cm
in front of the participants.

Simultaneously to the behavioral study, we recorded neuronal
activity with magnetoencephalography (MEG). The MEG data
will be analyzed in future studies, in the present study we solely
focus on the analysis of the behavioral data.

Psychometric Fitting Function
As a measure for evaluating the individual tactile temporal
discrimination abilities of each participant, we calculated the
criticalSOA. The criticalSOA defines the specific SOA for which
participants theoretically should exhibit a balanced response
distribution (i.e., an equal amount of responses indicating a
perception of one single stimulus and responses indicating two
separate stimuli; Cecere et al., 2015; Baumgarten et al., 2017b). To
account for potential lapse rates and response biases, we defined
the criticalSOA as the SOA for which response rates reached
the individual mean between the minimum and maximummean
response (Supplementary Figure S2).

To determine the criticalSOA of each participant, we fitted
a sigmoid function to the individual raw behavioral data
(Baumgarten et al., 2017b). Fitting procedure was conducted
using the Palamedes toolbox for Matlab (Prins and Kingdom,
2009). As the independent variable we chose the SOAs (0, 15,
25, 35, 50, 100, 125, 150, 175, 200, 225, 250, 300, and 400 ms),
whereas the average stimulus perception (averaged across trials,
ranging from 1 to 2) at each SOA was chosen as the dependent
variable. The fitting algorithm estimated four parameters of the
logistic function: threshold, slope, guess rate, and lapse rate. We
estimated the goodness of fit by computing the deviance and
corresponding p-values. Only p-values >0.05 were estimated as
a reliable fit of the experimental data and therefore included in
further analysis (Supplementary Figure S2; Baumgarten et al.,
2017b). For three PAT no reliable fit could be determined
(Supplementary Figure S2C).

Critical Flicker Frequency
The CFF is defined as the specific frequency at which a flickering
light that is presented with a decreasing frequency is first
perceived as a discrete flicker as opposed to a continuous light

(Kircheis et al., 2002). The CFF was shown to be decreased
in patients even with mild forms of HE, with a critical cut-off
frequency of 39 Hz separating patients with HE from healthy
controls (Kircheis et al., 2014; Barone et al., 2018).

Critical flicker frequency was assessed by an experienced
psychologist (NDF) using the HEPAtonormTM-Analyzer
(NEVOlab, Maierhöfen, Germany) on the day of the tactile
temporal perceptual discrimination task before experimental
testing took place. The CFF was determined by presenting a
flickering small red dot foveally with a starting frequency of
60 Hz. At this frequency, the flickering dot is always perceived as
a constant light. Next, the frequency was decreased and subjects
responded by button press as soon as they perceived the light
as flickering. After standardized verbal instruction and a short
training period, the CFF value was determined eight times per
participant and the average value was taken as the individual CFF
(see also Kircheis et al., 2002, 2014).

Correlation Analysis, Effect Sizes, and

Statistics
To test for significant differences in CFF, age, and electrical
stimulation amplitudes between the three groups (controls,
mHE, HE), we applied non-parametric Kruskal–Wallis tests.
For post hoc pairwise comparisons and to test whether the
criticalSOA differed across groups (CON and PAT; mHE, and
HE), non-parametricMann–WhitneyU-tests were applied. From
the resulting z-values effect sizes (r) were calculated:

r = abs(
z

√
N

)

with N denoting the sample size (Fritz et al., 2012).
To analyze a potential correlation between the criticalSOA and

the CFF, we computed the one-sided Pearson partial correlation
coefficient between criticalSOA and CFF, controlling for age
as a covariant, since the CFF is known to correlate with age
(Kircheis et al., 2014). Additionally, we computed Pearson
correlation coefficients within each group (controls and patients).
95% confidence intervals were estimated using bootstrapping
approach (1000 repetitions). Correlation analysis was conducted
in SPSS Statistics (IBM, Armonk, NY, United States).

All other statistical analyses were conducted in Matlab
(Mathworks, Natick, MA, United States).

RESULTS

The following statistical tests are performed on only those 15
controls and 11 patients (5 mHE and 6 HE) that finally were
included in the analyses (see section “Materials andMethods” and
below for details on exclusion criteria).

A Kruskal–Wallis test revealed highly significant differences
between groups (controls, mHE, HE, see Table 1) for the CFF
[χ2(2) = 14.83, p = 0.0006]. Post hoc Mann–Whitney U-tests
showed that the CFF significantly differed between controls and
mHE (z = 2.36, p = 0.009; effect size r = 0.53), between controls
and HE (z = 3.31, p = 0.0005; r = 0.51), and between mHE and
HE (z = 1.83, p = 0.03; r = 0.55).
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No significant differences between groups were found
for age [χ2(2) = 1.14, p = 0.57; pairwise comparisons: all
p > 0.37, r ≤ 0.25] and amplitude of the electrical stimulation
[χ2(2) = 2.94, p = 0.23; pairwise comparisons: all p > 0.08,
r ≤ 0.40].

Behavioral Results and Fitting Procedure
Participants received one or two short electrical pulses with
varying stimulus onset asynchronies (SOAs) to their left index
finger (Figure 1). In a two-alternative forced choice tactile
temporal discrimination task, they reported their subjective
perception of the stimulation (“1” vs. “2” stimuli).

On average, for both groups (PAT and CON) mean perception
rates increased with increasing SOA (Figure 2A). To quantify the
individual temporal discrimination abilities, we fitted a sigmoid
function to the individual behavioral data and estimated from
this curve the criticalSOA (see section “Materials and Methods”
and Supplementary Figures S2A,B for details). Three patients (2
HE1 and 1 HE2) had to be excluded from further analysis due
to unreliable fits (Supplementary Figure S2C). Supplementary

Figure S1 illustrates the corresponding behavioral data with
these three individuals excluded. Notably, these three patients
exhibited low overall perception rates not reaching mean
perception of 1.5 even for largest SOAs. In addition, two
additional patients had been excluded from all analyses because
they always responded “1,” regardless of SOA. Of these five
patients, four belonged to the HE-group and only one belonged
to the mHE-group.

Averaged across individuals, the median criticalSOA was
96.8 ms (first quartile; 31.4 ms, third quartile: 124.1 ms) for the
CON group and 154.4 ms (first quartile; 103.5 ms, third quartile:
169.3 ms) for the PAT group (Figure 2B). Statistical analysis
revealed a highly significant difference between both groups
(z = 2.60, p = 0.005, r = 0.51). Additionally, we split the PAT
group intomHE andHE patients and tested whether criticalSOAs
differed between these groups. No significant difference was
found between these groups (z = 0.46, p = 0.68, r = 0.14).

Correlation of CriticalSOA and CFF
Correlation analysis revealed a significant negative linear
relationship between CFF and criticalSOA, corrected for age
(r = −0.37, 95% confidence intervals: [−0.69, −0.05], N = 26,
p = 0.033, Figure 3). That is, decreasing CFF is associated with
increasing criticalSOA. This result indicates a positive correlation
between visual and tactile temporal discrimination abilities.

Additionally, we computed correlation coefficients between
CFF and criticalSOA, corrected for age, within each group
(controls and patients). We did not find significant correlations
for the group controls (r = 0.15, 95% CI: [−0.47, 0.64], N = 15,
p = 0.62) nor for the group patients (r = −0.08, CI: [−0.75, 0.66],
N = 11, p = 0.83].

DISCUSSION

In this study, we investigated the hypothesis that tactile temporal
discrimination is impaired in patients with HE. To this end, HE

patients and healthy controls received two subsequent electrical
stimuli to their index finger with varying SOAs and had to report
their subjective perception (“1” vs. “2” stimuli). We found that
the SOA for which participants perceived the two stimuli as
“2” in 50% of all trials and as “1” in the remaining 50% of all
trials (denoted “criticalSOA”) was significantly prolonged in HE
patients compared to healthy controls. The effect size of r = 0.51
indicates a strong effect (Fritz et al., 2012). In addition, we found
that across all participants the criticalSOA correlated negatively
with the CFF.

Patients with HE are known to reveal impairments in their
visual temporal discrimination abilities. In particular, the CFF
is slowed in HE patients compared to healthy participants and
the CFF decreases with increasing severity of HE (Romero-
Gómez et al., 2007; Torlot et al., 2013; Kircheis et al., 2014).
Our results demonstrate that this disease-related impairment
does also span the somatosensory modality, and particularly the
temporal discrimination of tactile stimuli. This finding tallies
with early work showing both sensory impairments on the
behavioral level in HE (Brenner et al., 2015) and slowing of
cortical oscillatory activity within the somatosensory system
in this patient population (May et al., 2014). Moreover, the
correlation of CFF and criticalSOA implies that the severity
of the impairment of tactile temporal perception parallels the
impairments of visual temporal perception. This implies a
progression according to the clinical severity of HE.

We did not find a significant difference between the mHE
group and the HE group. It should be noted, however, that
five patients had to be excluded from analyses: either due to
exclusive “1” reports or due to unreliable fits (with average
perception <1.5 for the highest SOA, see Supplementary Figure

S2C). Of these five patients, four belonged to the HE-group and
only one belonged to the mHE-group. Thus, the non-significant
result might partially be due to exclusion of the most severely
impaired participants. In addition, both patients with the most
severe HE (graded as HE2) were also strongly impaired in
their tactile temporal perception so that they just reached an
average perception of 1.0 (patient excluded from analysis) and
1.3 for the highest SOA. Despite the non-significant difference
of the criticalSOA between mHE and HE groups, these results
argue in favor of increased impairments in tactile temporal
discrimination with increasing disease severity. Moreover, these
results may reflect that the pathological mechanism underlying
impaired tactile temporal perception already occurs in initial
mild forms of HE. Other studies reported that mHE and HE
groups significantly differ in terms of CFF (e.g., Kircheis et al.,
2002; Oeltzschner et al., 2015). The most likely reason for the lack
of differencemight be the comparably small sample size especially
in the HE2 group. For future studies in addition to increasing
the number of severely impaired patients, we might also refine
the parameters to differentiate between patient groups, e.g., by
increasing duration of the SOAs further, so that also the most
strongly impaired patients might be included.

One possible concern might be that our paradigm cannot
differentiate whether the prolonged SOAs are caused by
impairments on the sensory, decisional, or cognitive level. That
is, patients’ prolonged SOAs might be due to impaired perceptual
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FIGURE 2 | Results of tactile temporal discrimination task. (A) Average number of stimuli perceived as a function of the SOA between the two electrical stimuli for

patient group (red, n = 11) and control group (black, n = 15). Shaded areas around dots indicate ±1 SEM. The dotted horizontal lines indicates mean perception rate

of 1.5. (B) CriticalSOAs were determined individually (see Supplementary Figure S2). Box plots of the criticalSOAs and the individual criticalSOAs are presented for

control participants (black box plot and black stars, n = 15) and for individual patients (red box plot and red circles, n = 11). Both groups differed significantly

(p = 0.005, Mann–Whitney U-test).

FIGURE 3 | Results of correlation analysis. Negative correlation (r = –0.37;

n = 26, p = 0.033) between individual criticalSOAs and individual CFF for

patients (red dots, n = 11) and controls (black dots, n = 15). The black line

represents the linear regression, the dotted lines the 95% confidence intervals

for the mean.

abilities, due to altered processes in the decision process (e.g.,
shifted decision criterions; see, e.g., Iemi et al., 2016; Limbach
and Corballis, 2016) or cognitive impairments (patients simply
did not understand the task). Notably, this concern would equally
hold for the CFF. For example, the result that some patients
predominantly reported “1” even for the largest SOA might be
due to the fact that their criticalSOA was larger than 400 ms,
or they had a strong bias toward reporting “1” or they did not
understand the task and simply always pressed the “1” button.
If patients did not understand the task, however, they might with
equal probability have pressed always the “2” button, especially as
the response buttons were counterbalanced across participants.
A response pattern of always “2,” however, was never reported,
speaking against impairment on a purely cognitive level. Also,

some patients verbally reported after the experiment that they
indeed simply always felt “1,” which might argue for a process
on sensory rather than decisional level. Future studies are needed
both in the visual and tactile modality to further elucidate the
level of the impairments.

The correlation between impairments in visual (CFF)
and tactile temporal discrimination (criticalSOA) suggests a
common underlying mechanism across modalities. Recent
studies proposed that temporal perception relies on discrete
“perceptual cycles” mediated by cycles of neuronal oscillations
(Baumgarten et al., 2015, 2017a; Cecere et al., 2015; VanRullen,
2016). These models postulate a cycle of a neuronal oscillation as
the basic unit of temporal stimulus processing and perception.
Two stimuli can only be perceptually distinguished if they fall
into two separate cycles of a neuronal oscillation, while they
will be perceptually fused to a single sensation if both stimuli
fall within one cycle. Several studies have demonstrated that
HE patients show slowed oscillatory activity in sensorimotor,
visual, and somatosensory areas (Kullmann et al., 2001; Olesen
et al., 2011; Butz et al., 2013; Götz et al., 2013; May et al.,
2014; Baumgarten et al., 2018). According to the model of
perceptual cycles, for slower oscillations, two stimuli are more
likely to fall into one cycle. Thus, these patients should need
longer SOAs to successfully discriminate two stimuli. Our results
confirm this prediction on a behavioral level. In addition,
studies found a correlation between parieto-occipital alpha
oscillations and visual discrimination abilities (Götz et al.,
2013; Baumgarten et al., 2018). To date, the direct mechanistic
link between slowed somatosensory neuronal oscillations and
impaired tactile temporal discrimination, however, is missing.
Thus, it remains unclear whether similar pathophysiological
processes underlie impaired visual and tactile discrimination.
We did not find, however, significant correlations between
CFF and criticalSOA within groups (patients and controls).
This might be due to the low number of subjects entering
the separate groups. On the other hand, for both groups, the
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correlation coefficient was close to zero, indicating that the
correlation across all participants is mainly mediated by the
groups. Similarly, Baumgarten et al. (2018) reported a significant
correlation between CFF and alpha frequencies in visual cortex.
This correlation was significant only across groups (HE patients
and controls), but not within groups. These results indicate
that correlations do not primarily rely on individual differences
in CFF and criticalSOA. The individual measures might be
too noisy or variable and reliable correlations can be detected
only when taking larger intervals of the CFF and criticalSOA
into account, i.e., by pooling controls and patients. Future
analysis of the MEG data might provide further insights whether
slowed neuronal oscillations represent the pathophysiological
mechanisms underlying impaired tactile temporal discrimination
in HE and linking it to visual impairments.

In addition to differences in prestimulus ongoing neuronal
oscillations, also peri- or poststimulus effects might account
for our results. For example, peri- or poststimulus phase resets
might reset temporal integration windows (Wutz et al., 2014;
Baumgarten et al., 2017a). In this view, stronger phase resets
in controls compared to patients might lead to more consistent
resets of integration windows and thus higher precision for
temporal perception of subsequent stimuli. Again, future analysis
of the MEG data might provide further insights in the neuronal
mechanisms.

An alternative explanation for the impaired tactile temporal
discrimination abilities might be found in the power of
somatosensory alpha oscillations. Previous studies in healthy
individuals reported that tactile temporal discrimination abilities
correlate with prestimulus power of alpha oscillation (∼8–
12 Hz) in somatosensory cortex, with higher alpha power leading
to more “1” reports (Jones et al., 2010; Lange et al., 2012;
Baumgarten et al., 2016; Craddock et al., 2017). Other studies
suggested that alpha powermodulates the decision criterion, with
high alpha power biasing decisions to “missing” stimuli (Iemi
et al., 2016; Limbach and Corballis, 2016). Increased power of
alpha oscillations in HE patients might thus lead to more “1”
reports. Indeed, some studies reported increased alpha power
in HE patients, either in resting state activity in visual cortex
(Götz et al., 2013) or in poststimulus activity in somatosensory
cortex (May et al., 2014). However, none of the studies has linked
somatosensory alpha power to tactile temporal perception in HE
patients so far. Again, future analysis of the MEG data might help
to disentangle the underlying pathophysiological mechanisms
which might consist of one of the previous or a combination of
both explanations.

Finally, it has been shown in numerous studies that attention
influences perception. It seems therefore likely that attention
also influences temporal perception. In fact, attention has
been shown to rhythmically modulate perception and behavior
(Landau and Fries, 2012; Song et al., 2014). In line with
the abovementioned connection between temporal perception
and oscillatory activity, several studies suggest that attention
modulates neuronal oscillations (e.g., Calderone et al., 2014;
Landau et al., 2015). However, in our present study, we did
not explicitly modulate attention. In addition, HE patients seem
to be specifically impaired in their visual and tactile temporal

perception. Other perceptual abilities that are also affected by
attention modulations seem less affected by HE. In sum, while we
cannot exclude an influence of attention on our results, it seems
unlikely to us that the impaired tactile temporal perception can
be explained by attention alone.

In summary, we found that HE patients are significantly
impaired in their tactile temporal discrimination abilities
compared to a healthy control group. HE patients required a
longer SOA between two tactile stimuli to veridically perceive
them as two temporally separate events. To the best of
our knowledge, this is the first study to extend findings of
impairments of temporal perception in HE patients to the
somatosensory domain. These behavioral results are in line with
a model of discrete tactile temporal perception (Baumgarten
et al., 2015, 2017a). Furthermore, we found that tactile temporal
perception correlated with visual temporal perception, arguing
for a global impairment in HE affecting the different sub-systems
in parallel. While the behavioral results confirm predictions
from previous models, further neuroscientific studies are needed
to unravel the pathophysiological mechanisms underlying the
impaired tactile temporal perception in patients with HE.
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FIGURE S1 | Same as Figure 2A, but including the patients for which the data

could not be fitted (see Supplementary Figure S2C; controls: n = 15; patients:

n = 14).

FIGURE S2 | Results of the fitting procedure. (A) Psychometric functions were

fitted to the individual mean responses as a function of SOA for the control group.

Black horizontal lines indicate the criticalSOA, black vertical lines the

corresponding SOA. (B) Same as panel (A), but now for the patient group. (C)

Individual mean responses for three individual patients for which the data could

not be reliably fitted. These subjects were excluded from analyses and

Figures 2, 3, but included in Supplementary Figure S1.
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A B S T R A C T

Recent studies have proposed a connection between the individual alpha band peak frequency and the temporal
resolution of visual perception in healthy human participants. This connection rests on animal studies describing
oscillations in the alpha band as a mode of phasic thalamocortical information transfer for low-level visual
stimuli, which critically relies on GABAergic interneurons.

Here, we investigated the interplay of these parameters by measuring occipital alpha band peak frequency by
means of magnetoencephalography, visual temporal resolution by means of behavioral testing, and occipital
GABA levels by means of magnetic resonance spectroscopy. Importantly, we investigated a sample of healthy
participants and patients with varying grades of hepatic encephalopathy, which are known to exhibit decreases
in the investigated parameters, thus providing an increased parameter space.

We found that occipital alpha band peak frequency and visual temporal resolution were positively correlated,
i.e., higher occipital alpha band peak frequencies were on average related to a higher temporal resolution.
Likewise, occipital alpha band peak frequency correlated positively with occipital GABA levels. However, cor-
relations were significant only when both healthy participants and patients were included in the analysis,
thereby indicating a connection of the measures on group level (instead of the individual level). These findings
provide new insights into neurophysiological and neurochemical underpinnings of visual perception.

1. Introduction

Neuronal oscillatory activity has received increasing attention
within the neuroscientific community during the last two decades
(Buzsáki and Draguhn, 2004). Neuronal oscillations presumably re-
present a dynamic functional link for neuronal communication. In this
role, neuronal oscillations are centered between the relatively invariant
dimension of anatomical connections on the one side and the highly

flexible dimension of behavioral output on the other side (Buzsáki and
Watson, 2012; Singer and Lazar, 2016). Historically, the brain was in-
terpreted as operating in a passive stimulus-driven mode substantially
focused on bottom-up serial processing of stimulus properties (e.g.,
Hubel and Wiesel, 1965; Thorpe et al., 1996). In contrast, current
theories emphasize the role of dynamic internal brain states which af-
fect stimulus processing in a largely stimulus-independent top-down
direction. In this context, neuronal oscillations are considered to be
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critical for the implementation of top-down processes (Engel et al.,
2001; Hipp et al., 2011).

The functional impact of neuronal oscillations is specifically well
documented for the alpha band (~7–14 Hz, Haegens et al., 2014).
Alpha band oscillations are most prominent in parieto-occipital cortex
areas (Hari et al., 1997) and are both predictive (Hanslmayr et al.,
2007; van Dijk et al., 2008) and causally relevant (Romei et al., 2010)
for neuronal processing and perception of visual stimuli. Mechan-
istically, the connection between cortical alpha band oscillations and
visual stimulus perception rests on the synchronization of alpha band
oscillations to periodic activity in thalamic relay neurons (Lőrincz et al.,
2009). Thus, alpha band oscillations likely reflect a mode of phasic
information transfer within a thalamocortical network (Bollimunta
et al., 2011; Vijayan and Kopell, 2012). This phasic pattern relies
heavily on pulsed inhibition mediated by GABAergic interneurons
(Lőrincz et al., 2009). Both the phasic patterns of information transfer
as well as the alpha cycle length predetermine alpha band activity to
shape the temporal structure of perception (Busch et al., 2009;
Mathewson et al., 2009).

This temporal dimension of perception is closely linked to the
concept of perceptual cycles (Varela et al., 1981; Vanrullen and Koch,
2003; Vanrullen, 2016; Baumgarten et al., 2015; Baumgarten et al.,
2017). Perceptual cycles constitute discrete temporal windows for
neuronal stimulus processing, which temporally sample incoming sti-
muli. While experimental evidence for this concept and its connection
to oscillatory alpha band activity has been first provided by a seminal
study of Varela et al. (1981), multiple attempts to replicate this finding
have remained unsuccessful (see Vanrullen and Koch, 2003; Vanrullen
et al., 2014). Nonetheless, recent findings demonstrate that perceptual
sampling of visual stimuli is primarily determined by the frequency of
individual alpha band activity (Dugué et al., 2011; Chakravarthi and
Vanrullen, 2012; Cecere et al., 2015; Samaha and Postle, 2015). Some
studies aimed to connect individual markers of alpha band activity to
individual perceptual performance levels. Such approaches targeting
individual oscillatory parameters mostly focus on the peak frequency of
a specific predetermined frequency band. Here, peak frequency is de-
fined as the specific frequency within a predefined band exhibiting the
highest spectral power (i.e., the power-dominant frequency). Recent
studies reported correlations between the individual alpha band peak
frequency and the speed of temporal sampling in the visual (Samaha
and Postle, 2015) and audio-visual domain (Cecere et al., 2015). The
theory of perceptual cycles and the abovementioned findings provide
the hypothesis of a positive linear correlation between alpha band peak
frequency and visual temporal resolution. Individuals with a low alpha
band peak frequency should exhibit a low visual temporal resolution.
However, testing this hypothesis is hindered because, in healthy sub-
jects, alpha band peak frequencies are distributed only across a limited
range (Haegens et al., 2014). Therefore, it can be beneficial to include
groups showing systematic shifts of alpha band activity, which conse-
quently increases alpha band frequency ranges measurable in the
overall study sample.

Such frequency shifts have been repeatedly reported in patients
with hepatic encephalopathy (HE). HE describes changes in neurolo-
gical function as a consequence of liver dysfunction (Häussinger and
Schliess, 2008). This patient group is known to exhibit a global slowing
of oscillatory activity (Kullmann et al., 2001; Timmermann et al., 2005;
Olesen et al., 2011; Butz et al., 2013), with especially prominent effects
found for the alpha band peak frequency (Kullmann et al., 2001;
Marchetti et al., 2011; Olesen et al., 2011; Götz et al., 2013). In addition
to alpha band peak frequency decreases, topographical changes of peak
frequency generators have been repeatedly shown in HE patient sam-
ples. Early electrophysiological studies mention topographical shifts in
peak frequency sources from the occipito-parietal to parieto-central
areas (Sagalés et al. (1990), Kullmann et al. (2001), Montagnese et al.
(2007), Olesen et al. (2011)). Although most of these results remain on
the descriptive level, this repeatedly published effect has been labeled

“anteriorization” of peak frequency activity. A recent MEG study like-
wise addressed this topic and reported a spatial blurring of oscillatory
sources in HE patients compared to healthy controls (Götz et al., 2013).

HE patients also demonstrate a variety of neuropsychological im-
pairments, including deficits in visual perception (Häussinger et al.,
2007; Götz et al., 2013). These visual perceptual impairments are re-
flected in a decreased critical flicker frequency (CFF). The CFF assesses
the temporal resolution of the visual sensory system by presenting a red
light with an initial frequency of 60 Hz, which is gradually and linearly
decreasing in frequency. While initially being perceived as a steady and
continuous light, subjects indicate the time point at which they perceive
the light as a discontinuous flicker (Kircheis et al., 2002). The CFF can
be used to differentiate subclinical disease stages from overt clinical HE
manifestation (Romero-Gómez et al., 2007; Sharma et al., 2007; Torlot
et al., 2013) and further correlates with the disease severity in HE pa-
tients (Kircheis et al., 2002).

Regarding neurotransmitter concentration levels, HE patients show
disease-related changes in γ-aminobutyric acid (GABA) levels.
However, so far results have been inconsistent. Whereas classical the-
ories advocated a generally increased GABAergic tone in HE patients
(Schafer and Jones, 1982), recent studies put forward a more complex
picture of regionally specific changes in GABA levels (e.g., Cauli et al.,
2009a; Cauli et al., 2009b; Llansola et al., 2015). Moreover, our group
reported a significant decrease in the occipital GABA-to-creatine ratio
(GABA+/Cr) for HE patients compared to healthy controls
(Oeltzschner et al., 2015). Although first investigations of healthy
subjects have not demonstrated a relationship between occipital alpha
band peak frequency and occipital GABA levels (Baumgarten et al.,
2016), connections remain unknown for HE patients. Given such a
connection, occipital GABA levels could represent a critical parameter
linking disease-related changes in oscillatory activity and disease-re-
lated sensory impairments in HE.

The present study investigated the relationship between individual
electrophysiological (occipital alpha band peak frequency), perceptual
(CFF), and neurochemical (occipital GABA+/Cr levels) parameters in
patients with varying grades of HE (minimal HE / manifest HE) and
healthy controls. With this approach, we aimed to assess if neuronal
oscillatory activity acts as a connecting factor between the perceptual
visual sampling rate and occipital GABA+/Cr levels. By specifically
including a patient sample for which perceptual impairments and re-
gionally specific decreases in GABA+/Cr levels were known, the pre-
sent investigation goes beyond previous studies, which examined only
healthy subjects and only single connections (i.e., only the connection
between alpha band peak frequency and CFF or GABA+/Cr levels).
This way, the hypothesized connections can be tested within an in-
creased parameter space of the investigated metrics, as compared to the
investigation of healthy subjects alone. In accordance with previous
findings (e.g., Kullmann et al., 2001; Olesen et al., 2011; Götz et al.,
2013), we hypothesized that HE subjects demonstrate decreased occi-
pital alpha band peak frequency and that this decrease worsens with
progressing disease state. Given the comparatively high spatial resolu-
tion provided by MEG measures of neural activity, we additionally in-
vestigated if the topographical distribution of alpha band peak fre-
quency differs between HE patients and healthy controls. Here, the
main aim was to specify effects of peak frequency anteriorization pre-
viously reported by electroencephalographic studies. Further, we hy-
pothesized a positive connection between occipital alpha band peak
frequency and temporal visual perception as measured by the CFF in
accordance with current models of perceptual cycles. Finally, we hy-
pothesized that occipital alpha band peak frequency is correlated po-
sitively with occipital GABA+/Cr ratios.
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2. Materials & methods

2.1. Participants

43 participants (16 females, age: 58.1 ± 9.5 years (mean ± SD))
were included in the present study after providing prior written in-
formed consent in accordance with the Declaration of Helsinki and the
Ethical Committee of the Medical Faculty, Heinrich Heine University
Düsseldorf (study number: 3644). The present sample was previously
described in Oeltzschner et al. (2015). Specifically, 28 patients with
hepatic encephalopathy (HE) and 15 healthy controls were included in
the study (see Table 1 for demographic details of the respective groups).
Patient inclusion criteria were a clinically confirmed liver cirrhosis and
the diagnosis of either a minimal HE (mHE) or a clinically relevant HE
(HE1; see below for the respective diagnosis criteria). The age-matched
healthy participants were recruited as a control group. Data from all
subjects (i.e., patients and healthy subjects) was used for the respective
correlation analyses. All participants had normal or corrected to normal
vision. Exclusion criteria for both patients and controls included severe
intestinal, neurological, or psychiatric diseases excluding the diagnosis
of HE for the patient group, the use of any medication acting on the
central nervous system, blood clotting dysfunction, pregnancy, and
diagnosed peripheral/retinal neuropathy. Further, patients had to
confirm alcohol abstinence for at least 4 weeks prior to measurement. In
addition, patients underwent a standard blood examination on the day
of the measurement, which included an assessment of current blood
alcohol levels.

Grading of HE disease severity consisted of a combination of the
West-Haven criteria (Ferenci et al., 2002), the critical flicker frequency
(CFF; Kircheis et al., 2002; Kircheis et al., 2014), a clinical assessment
of the mental state and consciousness by an experienced clinician, and
psychometric testing with the computer-based neuropsychological test
battery from the Vienna Test System (Dr. Schuhfried GmbH, Mödling,
Austria). Patients were classified as minimal HE when they did not
exhibit manifest HE-related clinical symptoms but showed test score
deviations of at least one standard deviation to the tests control cohort
in more than two psychometric tests. CFFs were measured with a mo-
bile measurement device, the HEPAtonorm™-Analyzer (nevoLAB,
Maierhöfen, Germany). To assess the individual CFF, a flickering light is
presented to the participants. The light starts to flicker with a frequency
of 60 Hz, which is perceived as a continuous light. Then, the frequency
by which the light flickers steadily decreases and participants are re-
quested to report when they first perceive the light as clearly flickering,
instead of a continuous light. Importantly, the CFF was shown to de-
crease depending on HE disease severity, with 39 Hz suggested as a cut-
off to detect manifest HE patients (Kircheis et al., 2002; Kircheis et al.,
2014). Individual CFFs were assessed on the day of the MEG/MRS
measurement.

2.2. MEG Data

Individual magnetoencephalography (MEG) data was assessed on
the same day as the respective individual CFF and magnetic resonance
spectroscopy (MRS) data, whereas MEG measurements were always
performed prior to MRS measurements to avoid contamination of the
magnetic brain signal.

2.2.1. Paradigm

Participants were seated in the MEG. All visual stimuli were pro-
jected on a translucent screen (60 Hz refresh rate) positioned 57 cm in
front of the participant. Neuromagnetic activity was recorded during
two sessions with a respective duration of 5min each. For the first
session, participants were instructed to focus a dimmed fixation dot
(0.5° diameter) presented in the center of the screen, subsequently la-
beled eyes-open condition (EO). In the second session, subjects were
visually and verbally instructed to close their eyes but remain awake.
This condition is labeled eyes-closed condition (EC). During both ses-
sions, participants were instructed to relax and refrain from any addi-
tional cognitive or motor activity. The intention for recording neuro-
magnetic activity for both the EO and EC condition was that oscillatory
alpha band power is known to be increased during eyes-closed condi-
tions (Adrian and Matthews, 1934; Ahveninen et al., 2007). Based on
this, we expected to be able to record alpha band peak frequency more
robustly in the EC condition. Stimulus presentation was controlled
using Presentation software (Neurobehavioral Systems, Albany, NY,
USA).

2.2.2. Data recording and preprocessing

Continuous spontaneous neuromagnetic brain activity was recorded
with a 306-channel whole head MEG system (Elekta Oy, Helsinki,
Finland) including 102 magnetometers and 204 planar gradiometers
(102 pairs of orthogonal gradiometers) at a sampling rate of 1 kHz.
Unless stated otherwise, data analysis was restricted to the planar
gradiometers. To account for an offline rejection of artifacts introduced
by eye movements, additional electro-oculograms (EOGs) were re-
corded. Electrodes were applied above and below the left eye as well as
on the outer canthi of each eye. In addition, an electro-cardiogram
(ECG) was recorded for offline artifact rejection of cardiac artifacts with
two electrodes placed on the left collarbone and the lowest left rib.
Individual head position during the MEG measurement was assessed
using four head position indication (HPI) coils placed at the subjects'
forehead and behind both ears. To obtain individual full-brain high-
resolution standard T1-weighted structural magnetic resonance images,
subjects were measured in a 3 T whole-body MRI scanner (Siemens
MAGNETOM Trio A TIM System, Siemens Healthcare AG, Erlangen,
Germany). Structural MRIs were aligned offline with the MEG co-
ordinate system based on the HPI coils and prominent anatomical
landmarks (nasion, left and right preauricular points).

Offline analysis of MEG data was performed using custom-made
Matlab scripts (The Mathworks Inc., Natick/MA, USA) and the Matlab-
based open source toolbox FieldTrip (http://www.fieldtriptoolbox.org/
; Oostenveld et al., 2011). Continuous MEG data were separated into EO
and EC epochs. To this end, each epoch was defined from 3 s after
beginning of the respective condition to 3 s before the end of the re-
spective condition. Subsequently, epochs were semi-automatically and
visually inspected for artifacts caused by SQUID jumps, muscle activity,
and eye movements. Corresponding artifacts were identified by means
of a z-score based algorithm implemented in FieldTrip. Linear trends
and the mean power of each epoch were removed from the respective
data set. Data sets were band-pass filtered at 1 Hz to 200 Hz and power
line noise components were removed by using a band-stop filter en-
compassing the 50 Hz, 100 Hz, and 150 Hz components. Data epochs
were segmented into trials of 1 s duration, which were defined with a
0.25 s overlap. Excessively noisy channels and trials were then removed
after visual inspection. Further removal of cardiac and eye-movement
related artifacts was achieved by means of an independent component
analysis (ICA). To this end, mutual information between the respective
ICA components and the EOG and ECG data was computed (Liu et al.,
2012; Abbasi et al., 2015). Components were sorted according to the
level of mutual information and visually examined regarding the to-
pography and time course. Those components that showed a high level
of mutual information as well as topographies and time courses char-
acteristic for eye-movement or cardiac activity were removed

Table 1

Demographic data for all participants separated by group. Data is presented as
mean ± SD.

Sex (male/female) Age (years) CFF (Hz)

Controls (n=15) 7/8 59.9 ± 9.0 41.8 ± 4.1
mHE (n= 14) 9/5 53.6 ± 10.8 38.7 ± 4.0
HE1 (n= 14) 11/3 60.7 ± 7.3 35.7 ± 1.9
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manually. Subsequently, ICA data was back-projected to the channel
level. Previously removed channels were reconstructed by an inter-
polation of neighboring channels. For the EO condition, 62.3 ± 8.6 s
(mean ± SEM; range: 30.5–116.8 s)/20.4 ± 2.6% of the total EO re-
cording (range: 10.0–38.3%) of data were removed due to artifact
contamination in the control group. In the mHE group, 52.6 ± 6.2 s
(21.2–90.8 s)/17.3 ± 2.0% (7.0–29.8%) were removed. In the HE1
group, 46.8 ± 4.8 s (12.7–86.4 s)/15.4 ± 1.6% (4.2–28.3%) were re-
moved. For the EC condition, 65.3 ± 9.3 s (29.0–135.2 s)/
22.1 ± 2.9% (9.8–45.8%) of data were removed in the control group.
In the mHE group, 46.0 ± 4.9 s (20.5–86.6 s)/15.6 ± 1.7%
(7.0–29.4%) were removed. In the HE1 group, 42.4 ± 4.4 s
(21.4–75.9 s)/14.4 ± 1.4% (7.3–25.2%) were removed. On average,
322.2 ± 29.3 (mean ± SD) trials in the EO condition and
313.9 ± 28.5 in the EC condition entered subsequent analyses, which
were performed separately for the EO and EC condition.

2.2.3. Peak frequency determination

Individual alpha band peak frequencies were determined by ap-
plying a frequency analysis on time series data. As we hypothesized that
HE patients exhibit a reduced peak frequency (i.e., the peak frequency
would be located in lower frequencies compared to healthy subjects),
we chose a frequency range for analysis that is substantially broader
than the classical alpha frequency band. Thus, we determined peak
frequencies between 4 and 14 Hz, whereas the alpha band typically is
defined between 7 and 14 Hz (e.g., Haegens et al., 2014). Single trials
were zero-padded to a length of 10 s in order to achieve a frequency
resolution of 0.1 Hz. Subsequently, a Fourier transformation with a
single Hanning taper was applied for the entire trial duration. For each
condition (i.e., EO, EC), spectral power was averaged over all trials for
each frequency separately, independently for each of the 204 gradi-
ometers. Subsequently, gradiometer pairs were combined by summing
spectral power across each pair of orthogonal gradiometers, resulting in
102 channel pairs. Since the present study specifically investigates oc-
cipital alpha band activity, ten medial channel pairs covering the oc-
cipital cortex were selected for further processing (van Dijk et al., 2010;
Fig. S1). Individual alpha-band peak frequencies were defined as those
frequencies with maximal power between 4 and 14 Hz and detected by
means of the Matlab function ‘findpeaks.m’. Additionally, the power
value of a potential peak frequency had to exhibit an amplitude in-
crease of at least 10% relative to neighboring peaks (i.e., the option
‘MinPeakProminence’ was set to 10% of the respective peak amplitude;
see also Baumgarten et al., 2017). By this, it was guaranteed that
spontaneous power fluctuations and the 1/f power distribution would
not be mistaken as frequency peaks and that selected peak frequencies
would show a sufficient peak size relative to neighboring frequencies.

2.2.4. Source analysis

To localize the main source of the respective individual alpha band
peak frequency, we calculated source-level power estimates using an
adaptive spatial filtering technique (DICS; Gross et al., 2001). There-
fore, a regular spaced 3D grid with 0.5 cm resolution was applied to the
Montreal Neurological Institute (MNI) template brain. Subject-wise
individual grids were computed by nonlinearly warping the subject-
specific structural MRI on the MNI template gird and then applying the
inverse of this warp to the MNI template grid. For each grid point, a
lead-field matrix was computed using a realistically shaped single-shell
volume conduction model (Nolte, 2003). The cross-spectral density
(CSD) matrix was computed between all MEG gradiometer pairs for the
respective individual sensor-level alpha band peak frequency by ap-
plying a Fourier transformation on the entire trial duration. For each
individual grid point, spatial filters were constructed by using the CSD
and lead-field matrix. CSD matrices of all single trials were then pro-
jected through these spatial filters and subsequently averaged across
trials, resulting in across-trial-averages of estimated source power for
the respective individual alpha band peak frequencies. To correct for

differing signal-to-noise ratios across grid points, grid-point-specific
source power estimates were divided by grid-point-specific noise esti-
mates. The resulting individual peak frequency source power distribu-
tions were statistically compared across groups by means of a non-
parametric randomization test (Maris and Oostenveld, 2007)
implemented within the FieldTrip toolbox. To this end, peak frequency
source power estimates were compared across groups with an in-
dependent samples F-test. F-values of spatially adjacent grid points
exceeding an a priori-defined threshold (p < 0.05) were combined to a
cluster and F-values within a cluster were summed up and entered in
the second-level cluster statistic. Subsequently, a reference distribution
was computed by randomly permuting the data, assuming no differ-
ences between groups and thus exchangeability of the data. Random
assignments were repeated 1000 times, resulting in a summed cluster F-
value for each repetition. The proportion of elements in the reference
distribution exceeding the observed maximum cluster-level test statistic
was used to derive a p-value for each cluster. Importantly, this ap-
proach effectively controls for the Type I error rate due to multiple
comparisons.

2.3. Magnetic resonance spectroscopy data

Magnetic resonance spectroscopy (MRS) measures were performed
on a clinical 3 T whole-body MRI scanner (Siemens MAGNETOM Trio A
TIM System, Siemens Healthcare AG, Erlangen, Germany) using a 12-
channel head matrix coil. For target volume localization and segmen-
tation purposes, high-resolution 3D anatomical transversal T1-weighted
magnetization prepared gradient echo (MP RAGE) scans were per-
formed (TR/TE=1950/4.6 ms, FoV 256 × 192mm, 256 × 192 matrix
within-slice, 176 slices, slice thickness 1mm, resulting in isotropic re-
solution of 1mm). MRS data analyzed in the present study were com-
puted for spectroscopic volumes placed in the central occipital lobe
(please see Fig. 3A in Oeltzschner et al., 2015 for an exemplary spec-
troscopic volume placement). Volumes were manually aligned to in-
clude as much of the visual area as possible with caudal boundaries
aligned along the cerebellar tentorium, while minimizing lipid con-
tamination of the spectra by including portions of the skull in the vo-
lume. Subsequent to T1-weighted planning sequences and the locali-
zation of the target volumes, MEGA PRESS (Mescher et al., 1998)
spectra were acquired (number of excitations= 192, TR=1500ms,
TE= 68ms, V= 3 × 3 × 3 cm3, bandwidth= 1200 Hz, 1024 data
points). Editing of the spectra was conducted by J-refocusing pulses
irradiated at 1.9 ppm (‘On’ resonance) and 7.5 ppm (‘Off’ resonance)
using Gaussian pulses with a bandwidth of 44 Hz. In total, 192 averages
(96 On spectra, 96 Off spectra) were acquired, resulting in a total
measurement time of 4.8 min per session.

The MATLAB-based tool GANNET 2.0 (Edden et al., 2014) was used
to process MRS spectral data. This postprocessing included individual
frequency and phase correction of the single acquisitions. Fitting of the
3 ppm GABA resonance was performed in the frequency domain with a
single Gaussian, whereas the 3 ppm creatine peak was modeled as a
single Lorentzian peak. For subsequent analyses, the GABA-to-creatine
ratio (GABA+/Cr) was used (see also Mullins et al., 2014; Oeltzschner
et al., 2015).

2.4. Data analysis & statistical evaluation

To assess group level differences of alpha band peak frequency, CFF,
and GABA+/Cr the following analysis steps were performed. Group
level differences were investigated by means of a one-factor-repeated-
measures ANOVA and post-hoc Tukey's range tests (i.e., a post-hoc t-
tests correcting for the family-wise error-rate). Prior to computing the
ANOVA, a Levene test was performed to ensure homoscedasticity. If no
homoscedasticity was given, the robust Brown-Forsythe test was per-
formed instead of an ANOVA. Furthermore, if a Shapiro-Wilk test in-
dicated a departure from normality for the respective parameter, a non-
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parametric Kruskal-Wallis test was computed instead of the one-factor-
repeated-measures ANOVA, and Dunn-Bonferroni post-hoc tests were
computed instead of post-hoc Tukey's range tests.

The present study aimed at elucidating connections between in-
dividual alpha band peak frequencies and different markers related to
HE disease severity. To this end, individual alpha band peak fre-
quencies of all participants (i.e., healthy controls and patients) were
linearly correlated (Pearson) with the individual CFF measure and oc-
cipital GABA+/Cr levels. In order to compare correlation coefficients
for the correlation between CFF and alpha band peak frequency in both
EO and EC condition, we applied the Meng Z-test (Meng et al., 1992).
However, certain parameters investigated in this study are known to be
influenced by different demographic or measurement-related factors.
For example, alpha band peak frequency is known to decrease with
older age (Lindsley, 1939; Aurlien et al., 2004) and MRS derived GABA
estimates vary depending on the amount of gray matter inclusion in the
MRS voxel (Simister et al., 2003). Therefore, we accordingly corrected
measures of correlation by computing partial correlations (Pearson)
between alpha band peak frequency and CFF corrected for age. Further,
the correlation between alpha band peak frequency and occipital
GABA+/Cr was corrected for age and gray matter volume within the
occipital MRS voxel. Previous analyses reported significant correlations
between CFF and occipital GABA+/Cr ratios in the present data set
(Oeltzschner et al., 2015). To determine if any potential correlation
present between alpha-band peak frequency and occipital GABA+/Cr
would be mediated only by the variance of the CFF values, we further
corrected the correlation between alpha-band peak frequency and oc-
cipital GABA+/Cr for age, gray matter volume, and CFF. Correction for
multiple comparisons was performed by means of the Benjamini-
Hochberg method in order to control the false discovery rate at
Q=0.05. Statistical comparison of group level differences as well as
correlation analyses were performed with SPSS Statistics 24.

3. Results

A summary of the measured target variables separated by group is
presented in Table 2.

3.1. Alpha band peak frequencies

Alpha band peak frequencies could be successfully determined in 38
of 43 participants in the eyes-open (EO) condition and in 42 of 43
participants in the eyes-closed (EC) condition. Distribution of alpha
band peak frequencies significantly deviated from normality only for
the control group in the EC condition (W(15)= 0.87, p < 0.05). Thus,
the group level comparison of mean alpha band peak frequencies in the
EC condition was performed by means of a non-parametric Kruskal-
Wallis test. For the EO condition, no significant deviations from
homoscedasticity (F(2,35)= 2.81, p= 0.07) were observed. Group
level average alpha band peak frequencies were significantly different
for the EO condition (F(2,35)= 9,37, p < 0.01), with significant post-
hoc differences between the control group and the mHE group
(p < 0.01) and between the control group and the HE1 group
(p < 0.01). Likewise, group level average alpha band peak frequencies
also differed significantly for the EC condition (χ2(2)= 15.4,
p < 0.01, with median peak frequencies of 9.8 (first quartile: 8.9 Hz,
third quartile: 10.5 Hz) for controls, 8.6 (first quartile: 7.55 Hz, third

quartile: 9.17 Hz) for mHE patients, and 8.2 (first quartile: 7.25 Hz,
third quartile: 8.55 Hz) for HE1 patients; Fig. 1A), with significant post-
hoc differences between the control group and the mHE group
(p < 0.05) and between the control group and the HE1 group
(p < 0.01).

3.2. Source level alpha band peak frequencies

Group-wise peak frequency source power distributions for the EO
and the EC condition (Fig. 2) were displayed on the MNI template
brain. Statistical comparison of peak frequency source power distribu-
tions across groups revealed no significant differences in source power
distribution for the EO and the EC condition (all p > 0.05).

3.3. CFF

Visual temporal resolution as measured with the CFF could be
successfully determined in all participants. For all groups, the dis-
tribution did not significantly deviate from normality (p > 0.2 for all
groups). However, the variable CFF significantly deviated from homo-
scedasticity (F= 4.41, p < 0.05). Group level CFF significantly dif-
fered between groups (F(2,32.3)= 11.12, p < 0.01; Fig. 1B). Post-hoc
tests showed significant differences between controls and HE1 patients
(p < 0.01), a trend between controls and mHE patients (p=0.06), and
a trend between mHE patients and HE1 patients (p=0.07).

3.4. GABA+/Cr levels

Occipital GABA+/Cr levels could be successfully determined in 40
of 43 participants. GABA+/Cr levels significantly differed from normal
distribution for the mHE group (W(12)= 0.8, p=0.01). Therefore,
group level comparisons of GABA+/Cr levels were performed by
means of a non-parametrical Kruskal-Wallis test. Group level GABA+/
Cr levels significantly differed between groups (χ2(2)= 15.1,
p < 0.01, with median GABA+/Cr levels of 0.108 for controls, 0.077
for mHE patients and 0.087 for HE1 patients; Fig. 1C). Post-hoc tests
showed significant differences between controls and mHE patients
(p < 0.01) as well as between controls and HE1 patients (p < 0.01).

3.5. Correlations

In order to investigate potential relations between occipital alpha
band peak frequency (EO and EC), CFF, and occipital GABA+/Cr le-
vels, we computed partial linear (Pearson) correlations. Correlations
between alpha band peak frequency and CFF were corrected for age,
whereas correlations between alpha band peak frequency and occipital
GABA+/Cr levels were corrected for age and gray matter fraction
within the occipital MRS voxel. Since a previous study found significant
correlations between CFF and occipital GABA+/Cr levels in the present
data set (Oeltzschner et al., 2015), we additionally corrected the cor-
relation between alpha band peak frequency and occipital GABA+/Cr
levels for CFF. Correction for multiple comparisons was performed by
means of the Benjamini-Hochberg method, with both unadjusted and
adjusted p-values provided subsequently.

A significant positive linear correlation between alpha band peak
frequency and CFF was found for the EO condition (r=0.33, p < 0.05,
adjusted p= 0.048) and for the EC condition (r=0.49, p < 0.01,

Table 2

Target variables separated by group. Data is presented as mean (median) ± SD.

Age (years) Alpha Band Peak Frequency – EO (Hz) Alpha Band Peak Frequency – EC (Hz) CFF (Hz) GABA+/Cr Levels (a.u.)

Controls 59.9 (59.0) ± 9.0 9.9 (9.9) ± 0.9 9.5 (9.8) ± 1.2 41.8 (41) ± 4.1 0.107 (0.108) ± 0.011
mHE 53.6 (56.0) ± 10.8 8.5 (8.4) ± 1.2 8.4 (8.6) ± 0.9 38.7 (38.9) ± 4.0 0.088 (0.077) ± 0.026
HE1 60.7 (61.0) ± 7.3 8.5 (8.5) ± 0.7 7.9 (8.2) ± 1.1 35.7 (35.5) ± 1.9 0.084 (0.087) ± 0.011
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adjusted p=0.003; Fig. 3A). No significant difference was found
comparing the correlation coefficients between CFF and alpha band
peak frequency in the EO and the EC condition (z= 1.25, p=0.1). For
correlations between alpha band peak frequency and occipital GABA+/
Cr levels, significant positive linear correlations were observed for the
EO condition (r=0.55, p < 0.01, adjusted p=0.003) and the EC
condition (r=0.44, p < 0.01, adjusted p=0.009; Fig. 3B). If CFF was
included as an additional control variable, correlations remained

significant for both the EO (r=0.5, p < 0.01, adjusted p=0.006) and
the EC condition (r=0.34, p < 0.05, adjusted p= 0.048).

4. Discussion

The present study investigated connections between occipital alpha
band peak frequencies, visual temporal resolution assessed by means of
the Critical Flicker Frequency (CFF), and occipital GABA-to-creatine

Fig. 1. Individual occipital alpha band peak frequencies in the eyes-closed (EC) condition (A), CFF (B) and occipital GABA+/Cr levels (C) separated by group. Each
data point represents data for a single subject.

Fig. 2. Group-level average alpha band peak frequency source power distributions for the eyes-closed (EC) condition displayed on the MNI template brain for healthy
controls (A), mHE patients (B), and HE1 patients (C). Source power estimates at each grid point are corrected for the noise estimate of the respective grid point
(please see the Materials and methods part for further details). Color bars depict arbitrary units (a.u.) and uniformly apply to all three images.

Fig. 3. Scatterplots for individual occipital alpha
band peak frequency for the eyes-closed (EC) con-
dition as a function of CFF (A) and occipital
GABA+/Cr levels (B). Correlations between occi-
pital alpha band peak frequency and CFF were cor-
rected for age. Correlations between occipital alpha
band peak frequency and occipital GABA+/Cr levels
were corrected for age and gray matter volume
within the occipital MRS voxel. Insets show the re-
gression line (straight line) and the 95% confidence
intervals for the mean (dotted lines).
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(GABA+/Cr) levels. In accordance with our hypothesis, patients with
manifest HE (i.e., HE1 patients) showed a significant reduction in alpha
band peak frequency (Fig. 1A), CFF (Fig. 1B), and occipital GABA+/Cr
levels (Fig. 1C) compared to healthy controls. For patients with minimal
HE (mHE), alpha band peak frequency and the occipital GABA+/Cr
concentration but not CFF were significantly different from healthy
controls. No significant changes between patient groups and healthy
controls were found regarding the topographical distribution of the
alpha band peak frequency sources. Further, we could determine po-
sitive linear correlations between alpha band peak frequency recorded
for the eyes-open condition (EO) and eyes-closed condition (EC), and
the CFF (Fig. 3A). Thus, subjects exhibiting a higher visual temporal
resolution, also on average exhibited a higher alpha band peak fre-
quency. Although correlation coefficients were higher for correlations
between CFF and alpha band peak frequency in the EC condition
compared to the EO condition, this difference was not significant.
Presumably, the higher correlation coefficient for the EC condition can
be explained by a higher signal-to-noise ratio for alpha band power
during closing of the eyes (Adrian and Matthews, 1934; Ahveninen
et al., 2007), which allows for a more robust peak frequency determi-
nation. Finally, significant positive linear correlations were also present
between alpha band peak frequency recorded for both experimental
conditions, and occipital GABA+/Cr levels (Fig. 3B). Here, individuals
with higher occipital alpha band peak frequencies also on average
possessed a higher occipital GABA+/Cr ratio.

Contrary to previous studies, no significant differences in CFF were
found between both healthy controls and mHE patients, as well as be-
tween mHE patients and HE1 patients. Although at first glance these
null findings might suggest a reduced sensitivity for the CFF parameter,
we would like to highlight that the CFF has been repeatedly shown to
be a sensitive and diagnostically valuable parameter to distinguish
healthy individuals from those with pre-clinical forms of HE (e.g.,
Sharma et al., 2007), as well as to distinguish between different HE
disease stages (Kircheis et al., 2002). Further support for this notion is
provided by the comparatively large sample sizes provided by these
studies (approx. 90–150 patients). Due to the extensive MEG and MRS
measurements presented here, the present study was not able to include
a patient sample of comparable size. Thus, we interpret the present null
findings rather as an effect of low statistical power resulting from a
limited sample size, instead of indicating low sensitivity of the CFF as
diagnostic tool. In line with this, the present paper does not aim to
promote peak frequency measurements in sensory cortices or local
GABA+/Cr concentrations as a diagnostic marker superior to CFF.
Despite the potential of peak frequency measurements and GABA+/Cr
concentrations as an additional predictor of disease state, practical
consideration in terms of measurement effort, time, and financial costs
necessary to acquire these parameters have to be taken into account.

Although GABA+/Cr levels differed significantly between healthy
controls and both patient groups, no significant difference could be
found between mHE and HE1 patient groups. This might partially be
due to the relatively high variance of GABA+/Cr levels in mHE pa-
tients. Presumably, the broad distribution of GABA+/Cr levels in mHE
patients is a result of the rather coarse mHE diagnosis criteria, which is
based on performance decreases in a specific number of different psy-
chometrical tests. In contrast, HE1 categorization is based on more
neuropsychiatric impairments (Ferenci et al., 2002). Since decreases in
test performance represent a behavioral output measure, it can be as-
sumed that such performance decreases can result from multiple dif-
ferent neuronal sources. Thus, GABA+/Cr levels might already be al-
tered in some mHE patients, whereas other in mHE patients GABA+/Cr
levels might be within the normal range, but test performance is im-
paired due to different factors. In addition, the present results are in
agreement with an earlier MRS study investigating a large mHE sample
(Singhal et al., 2010), which likewise reported substantially higher
standard deviations for occipital GABA+/Cr levels in mHE patients
compared to healthy controls.

Most studies assessing neurophysiological parameters in patient
groups aim to operationalize the respective parameters as disease-spe-
cific diagnostic biomarker. Although this has previously been per-
formed for peak frequencies in HE (e.g., Van der Rijt et al., 1984;
Kullmann et al., 2001; Marchetti et al., 2011; Olesen et al., 2011; Schiff
et al., 2016), this was not the primary intention of the present study.
Rather, we wanted to investigate the connections between three dif-
ferent parameters (i.e., electrophysiological, perceptual, and neuro-
chemical variables) connected by previous models of perceptual sam-
pling and experimental evidence derived from both human and animal
studies. By additionally including a patient group for which a general
decrease of oscillatory frequency and perceptual sampling is well
documented (see Butz et al., 2013 for a review on this topic), we were
able to test the predictions about the connection between peak fre-
quencies and visual perceptual sampling based on a broader distribu-
tion of the investigated parameters.

The present correlational results support a group-dependent effect.
Significant correlations between alpha band peak frequency and CFF, as
well as alpha band peak frequency and occipital GABA+/Cr levels were
present when all participants (i.e., healthy individuals and patients)
were analyzed. Additional analyses focusing solely on one specific
group (i.e., separate analyses for the control, mHE, and HE1 group)
yielded no significant results. Although the general consequence of a
smaller sample size should be mentioned here, it is unlikely that smaller
sample sizes are the only reason for the results. Rather, the results point
in the direction that the respective correlations do not primarily rest on
individual differences in the measured parameters, but more on dif-
ferences between the groups. This interpretation is further supported by
the distribution of the subsamples on the correlation plots (Fig. 3A, B).
Instead of the majority of single subjects clustering on the linear re-
gression line, rather the 3 different subsamples are located close to the
linear fit, with the in-group subjects following a more random dis-
tribution. Notably, this finding stands in contrast to previous studies
relating resting state peak frequency to CFF in HE patients (Götz et al.,
2013; May et al., 2014). However, the study of May and colleagues
assessed alpha band peak frequencies originated from the primary so-
matosensory cortex (May et al., 2014), thereby recording oscillatory
activity from cortical regions not primarily associated with visual sti-
mulus processing. Likewise, Götz and colleagues (Götz et al., 2013)
used a spatially unspecific peak frequency determination without any
spatial or sensor restrictions. Therefore, the analyzed peak frequencies
might have originated from other cortical areas than the occipital
cortex.

The finding of a correlation between occipital alpha band peak
frequency and CFF across groups (instead of within groups) does not
suggest that the individual occipital alpha band peak frequency pre-
cisely indicates the individual temporal visual resolution. In contrast,
recent studies reported a correlation of individual alpha band peak
frequency and temporal resolution of perception in healthy participants
(Cecere et al., 2015; Samaha and Postle, 2015). However, these studies
used a very different experimental approach along with substantially
younger participants. Samaha and Postle (2015) tasked their partici-
pants to discriminate two spatially overlapping, successively flashing
lights from a single flashing light, with the interstimulus interval be-
tween the two stimuli being determined by individual perceptual
thresholds. In contrast, the present study presented subjects with a
flickering light which steadily decreased in frequency, with subjects
asked to indicate at which frequency they perceived the light as flick-
ering (i.e., not as a continuously light). We point out that the paradigm
used by Samaha and Postle assesses visual temporal perception in a
more indirect way, i.e., by means of a comparison of flash durations.
The CFF on the other hand aims to determine the frequency for which
one perceives the light as flickering and non-continuous directly. Cecere
et al. (2015) implemented a multimodal audio-visual integration task,
with subjects performing the sound-induced double-flash illusion task.
Here, subjects had to report if they perceived either one single or two
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successive visual flashes, while a single flash was temporally paired
with two auditory beeps presented at a different time delay. Although
this paradigm likewise focusses on perceptual resolution, the approach
is generally multimodal and thus focuses on the temporal binding of
stimulation in different modalities. In addition, the samples of both
studies consisted entirely of healthy and young participants. Although
we corrected for the factor age by adding age as a covariate in the
partial correlation, general age-related differences between the re-
spective samples cannot be ruled out. For example, there are reports of
alpha band peak frequencies shifting to more frontal positions with
increasing age, whereas it is unknown if posterior alpha power is de-
creasing or frontal alpha power is increasing (Chiang et al., 2011). This
shift in weight could result in the measurement of different generators
of alpha power activity for samples of young and old age, which could
not be compensated by partial correlation.

The first main result that the correlation between alpha band peak
frequency and CFF were mainly driven by group differences merits
further discussion. Although it currently remains unclear how alpha
band peak frequency, visual perceptual sampling, and local GABAergic
activity are interlinked, we provide a short speculation on potentially
underlying mechanisms. The connection between visual temporal re-
solution and alpha band activity can be explained by current models of
perceptual cycles (Vanrullen and Koch, 2003; Baumgarten et al., 2015;
Vanrullen, 2016). Here, ongoing neuronal oscillations in sensory cor-
tices constitute an electrophysiological correlate of perceptual win-
dows. It is hypothesized that multiple temporally distinct stimuli that
fall within such a single window are fused and thus perceived as single
percept. In contrast, if multiple temporally distinct stimuli fall within
two distinct perceptual windows, they are perceived as two temporally
distinct percepts. Probabilities for multiple temporally distinct stimuli
to either fall within one or two cycles are determined by both the
temporal distance between the distinct stimuli and the cycle length of
the neuronal oscillation. The respective cycle length is directly related
to the frequency of the ongoing neuronal oscillation. Given the defini-
tion of peak frequency as the local power dominant frequency, peak
frequencies index the current cycle length of ongoing oscillatory ac-
tivity, by which the length of a perceptual window can be inferred.
Thus, a higher peak frequency indexes a shorter cycle length, which in
turn points towards a higher perceptual resolution and a denser per-
ceptual sampling. Since an exact individual mapping between peak
frequency and perceptual resolution was not found, the present results
indicate a rather coarse and stochastic connection between occipital
alpha peak frequency and visual temporal resolution. In addition, it has
to be taken into account that HE goes along with multiple other
symptoms which potentially impede CFF performance. Thus, although
CFF reliably indexes disease severity in HE patients, there presumably
are also other factors besides alpha band activity which contribute to
impairments in visual temporal resolution. For example, flexible de-
ployment of attention and underlying gamma band activity have been
reported to be impaired in HE patients. Importantly, these impairments
were likewise related to visual temporal resolution as measured by CFF
(Kahlbrock et al., 2012).

The second main finding of the present study is a significant positive
linear correlation between occipital alpha band peak frequencies and
occipital GABA+/Cr levels. Similar to the correlation between alpha
band peak frequency and CFF, connections seem to rely mostly on the
group level and not on the individual level. In general, the inhibitory
effects mediated by GABAergic interneurons are thought essential for
the rigid temporal coding necessary for the generation of oscillatory
neuronal activity (Lozano-Soldevilla et al., 2014). So far, individual
occipital GABA levels have been mostly related to frequencies within
the gamma band (Bartos et al., 2007). For example,
Muthukumaraswamy et al. (2009) reported a positive connection be-
tween occipital GABA+/Cr and occipital gamma peak frequency (but
see Cousijn et al., 2014 for a contradictory finding). Balz et al. (2016)
reported connections between GABA levels in the superior temporal

sulcus as measured by MRS and oscillatory gamma band power. Im-
portantly, GABA levels also correlated with the perceptual parameters
in an audiovisual perception task. In contrast, the connection between
oscillatory alpha band activity and occipital GABA+/Cr levels remains
speculative. Animal studies suggest that phasic GABAergic inhibition
temporally shapes the output of thalamocortical neurons, which in turn
is deemed crucial for discretely constraining the temporal neuronal
activity within occipital cortex areas and thus influences the processing
of low-level visual information (Lőrincz et al., 2009). In humans, a
reasonable number of studies show effects of pharmacological GA-
BAergic modulation on occipital oscillatory alpha band activity (e.g.,
Schreckenberger et al., 2004; Ahveninen et al., 2007). However, these
studies almost exclusively focus on oscillatory power (reviewed by
Lozano-Soldevilla, 2018), whereas modulations of peak frequency are
rarely reported (but see Liley et al., 2003). Mechanistic models of
thalamic generators driving the frequency of cortical alpha band ac-
tivity by means of GABA-mediated conductance changes at 10 Hz have
been recently put forward and related to visual stimulus processing
(Gips et al., 2016). Here, multiple cycles of gamma band activity locked
to alpha band phase are interpreted as a mechanism of temporal
structuring for visual stimulus information, which relates to the
abovementioned concept of perceptual cycles. Alpha band activity is
seen as a mechanism of pulsed physiological inhibition, which separates
incoming stimulus information in discrete sequential cycles. However,
the location of GABAergic inhibition in this model lies within the tha-
lamus, whereas the present study estimated GABA+/Cr levels in occi-
pital cortical areas. Given the evidence of changes within the thalamo-
cortical network connections due to GABAergic manipulation
(Schreckenberger et al., 2004), it can be assumed that disease-related
GABAergic concentration imbalances between these regions could cri-
tically affect the generation of alpha band oscillations, including shifts
in peak frequency. Nonetheless, to obtain a clearer picture of the GA-
BAergic influence on peak frequencies in sensory cortices, novel studies
focusing specifically on this topic are necessary. Here, either human
EEG/MEG studies investigating pharmacodynamical effects of GA-
BAergic modulators on peak frequency changes in sensory cortices or
animal studies directly investigating effects of GABAergic modulators
on the presumed thalamo-cortical connection would be specifically
valuable.

Nonetheless, it has to be kept in mind that GABA measurements by
means of MRS can be considered a relatively coarse estimate of neu-
rochemical concentrations. This owes to the relatively large voxel size,
as well as to the inability to differentiate between synaptic and extra-
synaptic GABA concentrations (Stagg, 2014). While the extracellular
synaptic GABA levels are the most relevant to neurotransmission, MRS
generally measures the total bulk tissue content of a metabolite, and
therefore rather reflects the general GABAergic tone (Rae, 2014). As a
quantitative measure of the local ability to exert and maintain in-
hibitory activity, GABA MRS levels are nevertheless of high functional
relevance, and have been associated with numerous indicators of be-
havior and brain function (see e.g., Puts and Edden, 2012 for an
overview).

The present findings of decreased alpha band peak frequencies in
HE patients can further be related to reported changes in resting state
functional connectivity within this patient group. A common result
emerging from this line of research is the decline in clustering of
functional nodes and an increased randomness in the topography of
functional networks, which progressively worsens with increasing dis-
ease level (Jao et al., 2015). Specific functional connectivity decreases
located in visual sensory areas for HE patients compared to healthy
controls were recently reported by Zhang and colleagues (Zhang et al.,
2017). Given that multiple theories presume functional integration
between different cortex areas by means of alpha band synchronization
(e.g., Jensen et al., 2012) and recent experimental evidence demon-
strates top-down mediated alpha band phase adjustment between
frontal and visual cortex areas (Solís-Vivanco et al., 2018), this suggests
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that disease-related alterations in alpha band activity could be closely
related to the broadly replicated changes of functional activity in HE.
However, a direct connection between decreases in local oscillatory
alpha band peak frequency and functional connectivity decreases in
visual sensory areas remains to be shown in HE patients.

The present study found no significant differences in the topo-
graphical distribution of the alpha band peak frequency sources.
Although multiple previous studies reported a general anteriorization of
alpha band peak frequencies in HE patient samples (Sagalés et al.
(1990), Kullmann et al. (2001), Montagnese et al. (2007), Olesen et al.
(2011)), most of these studies only provided descriptive evidence
without further statistical analysis. The present source distributions
suggest alpha peak frequency sources to be more focally centered in the
occipital cortex in healthy controls compared to both HE patient groups
(Fig. 2). This would be in accordance with a recent MEG study (Götz
et al., 2013), which similarly mentioned a spatial blurring of oscillatory
sources in HE patients compared to healthy controls.

The broad distribution of alpha band peak frequencies might be
considered a potential shortcoming of the present study, in the sense
that the question arises if we really assessed peak frequencies for the
alpha band in all participants. However, despite the significant differ-
ences in the mHE and HE1 samples, it can be safely assumed that our
analysis approach yielded a reliable assessment of alpha band peak
frequencies. First, the determined peak frequencies in the patient
sample consisted of clearly discernible occipital frequency peaks (Fig.
S2) present at rest (i.e., during the EO/EC condition), which supports
the view that these peaks resemble the classical alpha band peak, albeit
with decreased frequency. Further, alpha band peak frequency sig-
nificantly differed depending on experimental condition (i.e., EO vs.
EC, t(37)= 2.14, p < 0.05) and could be determined more reliably
and in more subjects in the EC condition, which also represents a
characteristic of the classical alpha rhythm (Berger, 1929; Götz et al.,
2013).

Taken together, the present study demonstrates a connection be-
tween occipital alpha band peak frequency and temporal visual re-
solution as measured with the CFF. This connection is determined on
group level (i.e., across subsamples) and not on the single subject level.
Consequently, occipital alpha band activity does not seem to indicate
the individual perceptual resolution, but rather seems to be decisively
altered across varying disease stages of HE. The same holds true for the
connection between occipital alpha band peak frequency and occipital
GABA+/Cr levels. Thus, the present study reveals functional connec-
tions between electrophysiological, perceptual and neurochemical
variables, with disease-related alterations in these variables declining in
parallel.
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Although perception appears smooth and continuous in our subjective experience, it has been discussed whether 
the nature of sensory information processing is intrinsically discrete. Within such a framework, incoming sensory 
information would be grouped in consecutive separated perceptual cycles or snapshots1–3. A snapshot or percep-
tual cycle, thus, forms the temporal unit of perceptual experience, leading to rhythmic or cyclic perception4. While 
the ongoing debate whether perception is continuous or discrete has been put forward at least a century ago5,6,  
the hypothesis of discrete perception has only recently regained new support from neuroimaging studies. These 
studies have shown that the periodic modulation of subjects’ perception was related to the phase of ongoing neu-
ronal oscillations in the alpha and beta band located in the parieto-occipital or primary somatosensory cortex 
(S1)7–9. Said neuronal oscillations might thus form the neurophysiological basis of periodic modulations of per-
ception, suggesting that neuronal oscillations in specific frequencies define perceptual cycles. However, current 
experimental evidence for discrete perception and its putative underlying neuronal mechanisms is mostly of cor-
relative nature, while causal evidence remains scarce10,11. Consequently, the theory of discrete perception remains 
controversially discussed12,13. To advance this discussion, it would be necessary to causally modulate the rhythmic 
patterns of perception (i.e., the perceptual cycles). Here, we use the term causal to define a process in which an 
independent variable (e.g., the onset of a putative perceptual cycle on behavioral level or the phase of neuronal 
oscillations on neurophysiological level) is experimentally and systematically modulated while measuring the cor-
responding changes on the dependent variable (i.e., rhythmic perception). This causal approach stands in contrast 
to the simultaneous measurement of both variables without systematic variation, which would result in correla-
tive evidence. The causal approach would allow for the possibility to gather experimental evidence for or against 
the theory of discrete perception and shed light on the patterns of perceptual cycles. We assessed this relationship 
by using an electrotactile temporal discrimination task which was preceded by a subliminal (i.e., below perceptual 
threshold) stimulus. Operationally, the use of subliminal stimuli is advantageous compared to the use of supra-
threshold stimuli. Because subliminal stimuli intensities are insufficient to initiate global network activity14,15  
and these stimuli are not consciously perceived, the risk of perceptually confusing preceding subliminal stimuli 



with the subsequent target stimuli of the temporal discrimination task or masking the target stimuli is minimized. 
In addition, suprathreshold stimuli might attract exogenous (i.e., task-independent) and conscious attention. 
Conscious attention has been utilized in previous studies to induce a reset event. These studies have shown that 
conscious attention can trigger rhythmical patterns of behavior and neuronal activity7,16,17, which might interfere 
with the proposed cycles of perception. While we cannot exclude that a subliminal stimulus also triggers (uncon-
scious) attentional mechanisms, the subliminal stimulus enables us to exclude conscious attention mechanisms 
and investigate how an unconsciously perceived event modulates perception. Despite not being consciously per-
ceived, subliminal stimuli trigger neuronal activity in early sensory areas15,18,19. Other studies report subliminal 
stimuli to elicit weak evoked responses in somatosensory areas19,20 and fMRI BOLD decreases related to func-
tional inhibition19,21. Albeit not being consciously perceived, subliminal stimuli have been shown to affect the per-
ception of subsequently presented stimuli22. This effect on perception is presumably mediated by the modulation 
of phase of ongoing neuronal oscillations in sensory areas (e.g., refs 23, 24). This process of phase resetting is well 
documented within and across sensory modalities for suprathreshold stimuli25–28, whereas reports on subthresh-
old stimuli remain scarce20. We hypothesized that by presenting the subliminal stimulus at systematically varying 
time points relative to the discrimination task, the phase of ongoing neuronal oscillations and consequently the 
starting point of a perceptual cycle would be modulated systematically (though indirectly; see ref. 24 for a similar 
paradigm in the visual domain). Accordingly, perception in the discrimination task should vary rhythmically. 
Such results would provide valuable evidence for discrete perception which would go beyond studies that report 
correlative evidence for perceptual cycles.

Subjects performed a temporal perceptual discrimination task (see Materials and Methods section for details) in 
which they received either zero, one or two suprathreshold electrotactile target stimuli separated by specific stim-
ulus onset asynchronies (SOAs; Fig. 1)9,29. Crucially, these target stimuli were preceded by a subliminal electrotac-
tile stimulus. The time lag between the subliminal stimulus and the first target stimulus was systematically varied 
(20–600 ms). After presentation of the target stimuli, subjects had to report the amount of perceived electrotactile 
stimuli (i.e., zero, one, or two stimuli).

When no target stimuli were presented, but only the subliminal stimulus (i.e., the control condition), subjects 
on average perceived 0.03 ±  0.03 stimuli [mean ±  SD] (Fig. 2A), demonstrating that the subliminal stimuli were 
not perceived as target stimuli. After presentation of one target stimulus, subjects perceived 1.04 ±  0.08 stimuli, 
averaged across all time lags between subliminal and target stimuli. When two target stimuli were presented, 
subjects’ responses increased monotonically with increasing SOA between the two stimuli (Fig. 2A; see Materials 
and Methods section for details). A repeated measures ANOVA revealed highly significantly different responses 
across conditions (F(5,95) =  666.5, p <  0.01). Post-hoc pairwise t-tests revealed highly significant differences 
between all SOAs (p <  0.01 for all comparisons).

Next, we investigated potential periodic relationships between subjects’ response rates and the time lag 
between subliminal stimulus and target stimuli by applying Fourier transformation on perceptual response rates 
(see Fig. 2B,C for exemplary single subject data, see Supplementary Figure 1 for an overview of all single sub-
ject data; see Fig. 2D for the group-level average data). The spectra showed a highly significant peak between 
13–18 Hz (p <  0.01) and a second peak between 1–2 Hz which, however, did not reach statistical significance 
(p =  0.11; Fig. 2D). To assess whether the rhythmic modulation of perception was phase-locked, i.e., whether the 

Figure 1. Experimental setup. Subjects fixated a central grey dot. After a jittered pre-stimulus period, they 
received one subliminal electrotactile stimulus (i.e., below perceptual threshold) on their left index finger, 
followed by a time lag (20–600 ms) in which only the fixation dot was present. Then subjects received two 
suprathreshold electrotactile stimuli with varying SOA. After another jittered time period (300–600 ms), written 
instructions prompted the subjects to report their perception.



subliminal stimulus induced a phase resetting, we computed the average phase angle across the entire interval 
between subliminal stimulus and the first target stimulus for each subject. For each subject, we selected the phase 
angle of the specific frequency within the beta-band (13–24 Hz) showing the highest amplitude. The selected 
phase angles (− 1.92 ±  1.03 radians [mean ±  SD]) significantly differed from a uniform distribution (Rayleigh 
test for non-uniformity across subjects; z =  4.485, p <  0.01). In addition, phase consistency computed for each 
frequency separately (i.e., without a-priori selection of the individual frequency) across subjects showed a peak 
of phase consistency between ~12–16 Hz, which however did not differ significantly from a uniform distribution.

We investigated if perception in an electrotactile temporal discrimination task is influenced by a preceding 
subliminal stimulus. Despite not being perceived consciously, the subliminal stimulus modulated perception 
rhythmically with a periodicity of 13–18 Hz. Furthermore, phase angles within the beta-band across subjects 
significantly differed from a uniform distribution, indicating consistent phase across subjects.

We propose an explanation of the results based on our recent findings in an MEG study9. Here, subjects 
received two electrotactile stimuli (similar to the present study, but without any subliminal stimuli). Subjects’ 
perception varied between one or two perceived stimuli from trial to trial. Perceptual variability depended on 
the phase of ongoing neuronal oscillations in the alpha and lower beta frequency band (8–20 Hz) in S1. We have 
proposed a model stating that if the two electrotactile stimuli fall within one cycle of the 8–20 Hz oscillations, 
they are perceived as a single stimulus, but if they fall within separate cycles, they are perceived as two distinct 
stimuli (Fig. 3). Accordingly, our model states that cycles of neuronal oscillations in the alpha-/beta-band define 
discrete perceptual cycles in the somatosensory domain. We propose that this model explains the present results: 
In ongoing neuronal oscillations, the phases - and thus the perceptual cycles - are randomly distributed with 
respect to the to-be-perceived target stimuli. Consequently, also subjects’ perception varies randomly from trial 
to trial (provided that the SOA is smaller than the cycle length). In the present study, the subliminal stimulus 
presumably resets the phase of ongoing neuronal oscillations20, which is supported by the finding of consistent 
phase across subjects within the beta-band. Depending on the time-lag between subliminal stimulus and the 
first target stimulus, this phase reset determines if the two target stimuli fall within one or two cycles, leading to 
the perception of one or two stimuli, respectively (Fig. 3). Accordingly, the frequency of the rhythmic variation 

Figure 2. Behavioral data. (a) Average number of perceived suprathreshold stimuli displayed separately 
for all conditions (i.e., different SOAs) averaged across all subjects and time lags between subliminal and 
suprathreshold stimuli. Data are presented as mean ±  SEM. (b) Exemplary single subject average number 
of perceived suprathreshold stimuli of the intermed-condition as a function of time lag between subliminal 
and suprathreshold stimuli. t =  0 denotes the onset of the subliminal stimulus. Time points indicate the time 
lag between subliminal stimulus and first suprathreshold target stimulus. (c) Spectral decomposition of the 
exemplary single subject data in (b). (d) Same as (c), but now averaged across all subjects. The shaded box 
highlights frequencies with significantly increased amplitudes (p =  0.002, corrected for multiple comparisons). 
The grey shading represents the SEM.



in perception is determined by the cycle length of those neuronal oscillations that define the discrete perceptual 
cycles. Based on the MEG data, we proposed that the perceptual cycles are defined by neuronal oscillations in 
the 8–20 Hz frequency band9. This proposition is confirmed by the 13–18 Hz fluctuation of perception induced 
by the subliminal stimulus (Fig. 2D). However, since the present effect is located at the lower end of the classical 
beta band and in between the “classical” centers of somatosensory alpha (~10 Hz) and beta (~20 Hz) oscilla-
tions (or mu-rhythm30,31), a clear distinction from the alpha frequency band remains difficult. Accordingly, in 
our previous MEG study, we found a significant phase difference between perceiving “2” and “1” stimuli in the 
frequency range 8–20 Hz, thus encompassing the classical alpha- as well as the lower beta-band (albeit more 
strongly pronounced in the beta-band9). Although the behavioral effects in our present study do not show a peak 
in the classical alpha-band (8–12 Hz), it still remains not fully clear which frequency band(s) the effect might 
be assigned to. Future MEG/EEG studies investigating the neurophysiological basis of a phase resetting, might 
clarify this question.

Most previous studies providing evidence for a causal influence of neuronal oscillations on perception mod-
ulated neuronal oscillations by inducing an external rhythm to the brain10,11,25. In contrast, we do not induce an 
external rhythm to the brain nor does our single subliminal stimulus contain a temporal structure. Thus, any 
rhythmicity in the data cannot be explained by an externally induced rhythm but is putatively due to reset of 
ongoing neuronal oscillations16.

Recent studies reported rhythmic modulations of behavioral performance following within-modality or 
crossmodal reset stimuli16,26. While these studies investigated visual perception, our results provide novel evi-
dence for rhythmic patterns of somatosensory perception. Furthermore, these studies often found low frequency 
rhythms in the delta to alpha range (<1 to 12 Hz) and assigned the rhythmic pattern to rhythmic fluctuations of 
visual attention16. In contrast, we find the significant rhythmic fluctuations in the beta-band in the somatosen-
sory domain. Most importantly, these studies did not address the question of whether perception is a continuous 
or discrete process. In addition to the few studies providing evidence for discrete perceptual cycles in the visual 
and somatosensory domain, our results critically extend these studies by demonstrating that perception can be 
systematically modulated as predicted by a model of perceptual cycles9.

Subliminal stimulation intensities were selected for the preceding stimulus in order to guarantee that perfor-
mance in the temporal discrimination task relied solely on the suprathreshold target stimuli (i.e., that the preced-
ing stimulus would not be perceptually confused with the target stimuli). One might expect that a suprathreshold 
preceding stimulus would likewise, or even more likely, elicit a phase reset and thus lead to similar results. A 
suprathreshold stimulus might, however, additionally trigger conscious attentional sampling mechanisms7,16,17. 
Such conscious attentional sampling mechanisms might interfere with our proposed perceptual cycles. While we 

Figure 3. Model for perceptual cycles. (a) Three illustrative trials with different time lags between subliminal 
stimulus and suprathreshold stimuli. Each subliminal stimulus resets neuronal oscillations (indicated by black 
circle, triangle and rectangle). Perceptual cycles in neuronal oscillations are represented by red and blue lines. 
Different time lags result in suprathreshold stimuli falling in either one (black circle and rectangle) or two (black 
triangle) perceptual cycles, which results in perception of either one stimulus (black circle and rectangle) or two 
separate stimuli (black triangle). (b) Schematic representation of periodic relation between number of perceived 
suprathreshold stimuli and the time lag between subliminal stimulus and suprathreshold stimuli as a result of 
the model in (a).



cannot exclude that the subliminal stimulus also triggers (unconscious) attentional mechanisms, we were able to 
study a phase reset that is unnoticed by subjects. In addition, a preceding suprathreshold stimulus could percep-
tually mask the subsequent target stimuli. This would affect the perception of the target stimuli and could even 
render the target stimuli near invisible for short intervals between preceding and target stimuli (see ref. 16 for a 
similar effect). Thus, by using a subliminal stimulus, the results are less likely confounded by other, unintentional 
processes. In addition, we believe that our results are even more intriguing due to the fact that subliminal stimu-
lation can modulate perception.

In line with studies demonstrating phase resets in response to suprathreshold stimuli (e.g., refs 26–28), there is 
evidence that subliminal tactile stimuli can induce oscillatory phase resets in the somatosensory cortex20 and the 
finding of consistent phase across subjects likewise suggests such a phase reset. Nonetheless, it should be noted 
that our behavioral approach provides no direct measure of oscillatory phase. Thus, although the theory of phase 
resets has been brought forward by other studies (e.g., refs 23, 24) and is compelling and offers an elegant expla-
nation for our results, future MEG/EEG studies should aim to confirm the present hypothesis of a phase reset of 
neuronal oscillations as the underlying process of our results. To conclude, our findings demonstrate a rhythmic 
modulation in the beta-band (13–18 Hz) of perception by subliminal, i.e., not consciously perceived stimuli. The 
findings support a model of perceptual cycles in the somatosensory domain9. The results provide novel causal 
evidence for discrete and cyclic perception.

Twenty-five healthy subjects participated in the study after providing written informed consent in 
accordance with the Declaration of Helsinki. The study and methods were approved by the Ethical Committee of 
the Medical Faculty, Heinrich-Heine-University Düsseldorf, and in line with the guidelines of the Declaration of 
Helsinki. All subjects had normal or corrected-to-normal vision and reported no sensory impairments, known 
history of neurological disorders or use of neuro-modulatory medication. Two subjects had to be excluded 
because they perceived the subliminal stimulation even at minimal stimulation amplitude. Three subjects (#4, #9, 
#22) were excluded from further analysis because they either perceived subliminal stimulation or because they 
showed a bottom or ceiling effects in their response distribution (see Analysis section for a detailed explanation 
of the exclusion criteria). Thus, twenty subjects (13 females, age: 27.6 ±  5.6 years [mean ±  SD]) remained for 
further analysis.

Subjects were seated in a dimmed and sound-attenuated room. Visual instruc-
tions were projected on a translucent screen (60 Hz refresh rate), which was centrally positioned 57 cm in front 
of the subjects. Each trial started with the presentation of a light grey dot in the middle of the screen for 500 ms 
(Fig. 1). Next, the light grey dot decreased in luminance, signaling the start of the stimulation period. After a 
jittered time period of 900–1100 ms in which only the fixation dot was present, subjects received electrotactile 
stimuli on their left index finger. First, subjects were stimulated with one subliminal stimulus (i.e., stimulation 
with subthreshold amplitude levels) followed by zero, one, or two suprathreshold target stimuli (see below for 
details on stimulation parameters). The subliminal stimulus was applied by means of an electrode pair located 
at the base of the left index finger. Current amplitudes of the subliminal stimulation (1.2 ±  0.3 mA [mean ±  SD]) 
were determined individually for each subject prior to the experiment and set to 85% of the individual perceptual 
threshold, so that subjects did not consciously perceive this stimulus. Target stimuli were applied by means of an 
electrode pair located at the tip of the left index finger. Target stimuli amplitudes (2.5 ±  0.5 mA) were individually 
set to a level where subjects could clearly perceive stimulation, but below pain threshold. The time lag between 
the subliminal stimulus and the first target stimulus were pseudo-randomly varied from 20 to 600 ms in steps of 
20 ms. All electrotactile stimuli were applied for 0.3 ms and generated by a Stimulus Current Generator (DeMeTec 
GmbH, Langgöns, Germany). After stimulation, the fixation dot was present for a jittered time period between 
300–600 ms before written instructions were presented. Subjects had to report their perception of the target stim-
uli, i.e., if they perceived either zero, one single or two temporally separate stimuli. If subjects did not respond 
within 2 seconds or responded before the presentation of the instructions, a warning was presented visually and 
the trial was repeated at the end of the block. Responses were given by button press with the index, middle and 
ring finger of the right hand. Button configurations for reporting one or two stimuli were randomized from trial 
to trial between the right index and middle finger. The perception of zero stimuli was always reported by a button 
press with the right ring finger. No further feedback was given.

Prior to each experiment, we presented to each subject suprathreshold target stimuli (without subliminal 
stimuli) with varying stimulus onset asynchronies (SOA). This way, we determined in a staircase procedure the 
individual SOA for which the respective subject perceived stimulation with two suprathreshold electrical stimuli 
as two separate stimuli in 50% of all trials and as one stimulus in the other 50% of trials (subsequently labeled 
intermediate SOA; 31.9 ±  15.7 ms; average difference 8.2 ±  15.1 ms (mean ±  SD) across blocks). In the following 
main experiment, subjects were stimulated with two target stimuli separated by this intermediate SOA in 300 
trials. In addition, subjects were stimulated with two target stimuli separated by an SOA with ±50% length of the 
intermediate SOA in 90 trials, respectively. Furthermore, trials with a predetermined SOA of 0 ms (i.e., only one 
stimulus was presented) and trials with long SOA (+ 120% intermediate SOA length) were presented in 60 trials, 
respectively. Finally, in on average 60 trials no target stimuli were presented. This condition served as a control 
condition (subsequently labeled subliminal control) to guarantee that the subjects did not perceive the subliminal 
stimulation. In summary, subjects received 660 trials presented in randomized order.

The experiment consisted of two identical blocks. Each block began with the staircase procedure in order to 
determine the individual intermediate SOA, followed by the main experiment containing 660 trials as described 
above. After 200 trials, subjects had the possibility to take self-paced breaks. In addition, subjects were offered a 
break between the two blocks. Each block had a duration of ~20 min.



Stimulus presentation was controlled by means of Presentation software (Neurobehavioral Systems, Albany, 
NY, USA). Before beginning the experiment, each subject received instructions of the experimental task but 
remained naïve to the purpose of the experiment.

Behavioral data were first analyzed with regard to perceptual response rates (i.e., perceived zero, 
one or two stimuli) for each condition (subliminal control, 0 ms SOA, intermediate SOA, ±  50% intermediate 
SOA, and 120% intermediate SOA), pooled across all time lags between subliminal and target stimuli. Perceptual 
response rates were averaged across both blocks and across subjects and compared across conditions by means 
of a repeated measures ANOVA and post-hoc paired t-tests. For the analysis of perceptual response rates as a 
function of the time lag between subliminal stimulation and the first target stimulus, only trials with intermediate 
SOA were analyzed. All other conditions (subliminal control, 0 ms SOA, ±50% intermediate SOA, and 120% 
intermediate SOA,) served only as control conditions and/or to mask the main condition in order to minimize 
learning effects or perceptual biases. Subliminal control trials (i.e., trials in which only the subliminal stimulus 
was presented, without target stimuli) were used as a control condition to guarantee that subjects did not perceive 
the subliminal stimulation. Blocks in which subjects reported to perceive > 10% of subliminal control trials were 
discarded from further analysis (6 blocks rejected). Blocks in which response rates showed bottom or ceiling 
effects (mean perception of either “1” or “2” in two or more adjacent time lags in trials with intermediate SOA) 
were discarded from analysis, because these bottom or ceiling effects would have affected the spectral decompo-
sition (6 blocks rejected).

For all trials with intermediate SOA, we computed for each block mean response rates for each subject as a 
function of time lag between subliminal and target stimuli. To this end, individual mean response rates were 
computed for each 20 ms shift of the subliminal stimulus relative to the target stimuli (i.e., subliminal stimulus 
presented 600 ms vs. 580 ms vs. 560 ms …  vs. 20 ms before the first target stimulus), resulting in a temporal resolu-
tion of 20 ms (i.e., 50 Hz, resulting in a Nyquist frequency of 25 Hz). To investigate potential periodic relationships 
between perceptual response rates and the time lag between subliminal stimulation and the first target stimulus, 
we computed a Fourier transformation on the perceptual response rates within each block. Perceptual reports 
were zero padded (1000 ms trial length) and multiplied with a single Hanning taper before Fourier transforma-
tion. Spectral analysis was performed for frequencies between 1 and 24 Hz (i.e., below the Nyquist frequency) in 
steps of 1 Hz. Subsequently, we averaged for each subject the results of the two Fourier transformations (one per 
block).

Statistical analysis of the spectral amplitudes was performed using a nonparametric randomization 
approach32. The null hypothesis states that perceptual reports are independent of the time lag between subliminal 
stimulation and target stimuli. Since regarding to the null hypothesis, there is no periodicity or other temporal 
structure in the perceptual performance, time points are exchangeable. Thus, we randomly exchanged time points 
1000 times to generate a randomization distribution against which observed data were compared16. These rand-
omizations were performed for each subject individually (i.e., for each subject and for each block separately). For 
each randomization, we performed the same analysis as for the observed data as described above. This procedure 
resulted in 1000 spectra for each subject and block, which constituted the null distribution per subject and block. 
Then, we combined per subject the null distributions of the two blocks to achieve one null distribution per sub-
ject for further analysis. Next, we statistically tested for each frequency independently the observed data against 
the null distribution across subjects by means of a nonparametric permutation approach16,32. First, we took the 
median of the null distribution and computed t-values between observed data and the median value by means 
of an independent t-test. This approach resulted in t-values (not corrected for multiple comparisons) for each 
frequency. Secondly, we applied a non-parametric cluster-based permutation approach to correct for multiple 
comparisons32. To this end, we thresholded the t-values at t =  1.96 (p <  0.05). This resulted in clusters of adjacent 
frequencies. Cluster-level test statistics were calculated by taking the sum of the t-values within a cluster. Next, we 
computed a cluster-level null distribution by re-computing the frequency t-maps after randomly permuting the 
data (under the null hypothesis of no difference, and thus exchangeability, between observed data and shuffled 
data). This process of random permutation was repeated 1000 times. For each repetition, we re-computed the 
cluster-level statistics as described above, which served as the cluster-level null distribution. The proportion of 
elements in the null distribution exceeding the observed cluster-level test statistic was used to estimate a p-value 
for each cluster. This statistical approach effectively controls for multiple comparisons across time points and 
channels (see ref. 32 for a detailed discussion on cluster-based nonparametric tests) and has been used for statis-
tical control of similar behavioral data (e.g., refs 16, 17). This analysis corresponds to a random effects analysis16.

Analysis of phase was based on the complex output of the Fourier transformation of the perceptual response 
rates per block. Fourier transformation parameters were equal to the spectral analysis (see above). For each block 
of each subject, phase angles were computed for each frequency (1–24 Hz), then normalized by their amplitude 
and averaged over blocks. For each subject, we determined the frequency showing the highest amplitude within 
the beta-band range (13–24 Hz) based on the across-block averaged Fourier transformations. Average phase 
angles for this individual frequency were selected for each subject, respectively, and statistically compared against 
a uniform distribution by means of a Rayleigh test.

We also computed phase consistency across subjects for all frequencies (i.e., without a-priori selection of the 
individual frequency). To this end, we computed the complex output of the fast Fourier transformation (FFT) of 
the perceptual response rates per block (see Material and Methods for parameters of the FFT above). For each 
block of each subject, phase angles were computed for each frequency (1–24 Hz), then normalized by their ampli-
tude and averaged over blocks. Finally, we averaged the phase angles per frequency across subjects.

All data analysis was performed using Matlab (Mathworks inc., Natick, MA, USA) and the FieldTrip toolbox33 
(www.fieldtriptoolbox.org). Circular data analysis was performed using the CircStat toolbox34.
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Beyond the Peak – Tactile Temporal
Discrimination Does Not Correlate
with Individual Peak Frequencies in
Somatosensory Cortex

Thomas J. Baumgarten, Alfons Schnitzler and Joachim Lange*

Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany

The human sensory systems constantly receive input from different stimuli. Whether

these stimuli are integrated into a coherent percept or segregated and perceived

as separate events, is critically determined by the temporal distance of the stimuli.

This temporal distance has prompted the concept of temporal integration windows

or perceptual cycles. Although this concept has gained considerable support, the

neuronal correlates are still discussed. Studies suggested that neuronal oscillations

might provide a neuronal basis for such perceptual cycles, i.e., the cycle lengths of

alpha oscillations in visual cortex and beta oscillations in somatosensory cortex might

determine the length of perceptual cycles. Specifically, recent studies reported that the

peak frequency (the frequency with the highest spectral power) of alpha oscillations

in visual cortex correlates with subjects’ ability to discriminate two visual stimuli. In

the present study, we investigated whether peak frequencies in somatosensory cortex

might serve as the correlate of perceptual cycles in tactile discrimination. Despite several

different approaches, we were unable to find a significant correlation between individual

peak frequencies in the alpha- and beta-band and individual discrimination abilities.

In addition, analysis of Bayes factor provided evidence that peak frequencies and

discrimination thresholds are unrelated. The results suggest that perceptual cycles in

the somatosensory domain are not necessarily to be found in the peak frequency, but in

other frequencies. We argue that studies based solely on analysis of peak frequencies

might thus miss relevant information.

Keywords: beta, alpha, MEG, oscillations, perceptual cycles, temporal integration

INTRODUCTION

The human sensory system is constantly excited by numerous stimuli originating from multiple
sources. These stimuli often impinge on the sensory system within short time delays. Depending
on the particular stimuli or situation, the sensory system needs to either integrate these stimuli into
a temporally coherent percept or segregate these stimuli and treat them as temporally separate
stimuli. Whether stimuli are perceived as temporally coherent or separated depends – among
other factors – to a great part on the temporal distance between the stimuli. The role of temporal
distance for perceptual integration has prompted the idea of ‘temporal integration windows,’
‘perceptual cycles,’ or ‘perceptual moments’ (von Baer, 1908; Harter, 1967; VanRullen and Koch,
2003; VanRullen et al., 2014; Baumgarten et al., 2015; Cecere et al., 2015; Wutz et al., 2016).
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The concept of temporal integration windows or perceptual
cycles states that the sensory system integrates input over a
certain time window or cycle. Hence, stimuli falling within
a certain time interval are perceptually integrated into one
coherent percept. Vice versa, stimuli falling in two temporal
windows are perceived as two distinct events. Although this
concept is intriguing, computationally beneficial (Busch et al.,
2009; Jensen et al., 2014) and has gained substantial evidence
from behavioral studies (e.g., Sugita and Suzuki, 2003; Van
Wassenhove et al., 2007), evidence for potential underlying
neuronal mechanisms has been sparse.

One potential mechanism that has been repeatedly suggested
as the neuronal concept of temporal integration windows are
neuronal oscillations (VanRullen et al., 2014; Cecere et al., 2015;
Landau et al., 2015). Several studies have shown that the phase
of neuronal oscillations is linked to perception and behavior
(Busch et al., 2009; Dugué et al., 2011; Landau et al., 2015;
Gundlach et al., 2016). Phases of neuronal oscillations repeat
periodically. Accordingly, several behavioral studies have shown
that perception and behavior follow periodical and rhythmic
patterns (Landau and Fries, 2012; Song et al., 2014; Huang et al.,
2015). In addition, recent studies using EEG/MEG in humans
have suggested that cycles of specific neuronal oscillations form
the potential mechanism for temporal integration/segregation
windows and correlate with perceptual reports. This could be
shown, for example, in the visual cortex employing the wagon
wheel illusion (VanRullen et al., 2006). In this paradigm, a wheel,
although constantly rotating in one direction, is sometimes
perceived as spontaneously reversing its direction of rotation.
VanRullen et al. (2006) could show that the wagon wheel
illusion correlates with cycles in the alpha (8–12 Hz) band
oscillation in occipital areas. Furthermore, a study combining
EEG and transcranial alternating current stimulation (tACS)
provided causal evidence for alpha oscillations acting as temporal
integration windows in an audio–visual illusion (Cecere et al.,
2015). The study used the so-called double-flash illusion,
where two auditory stimuli presented with one visual stimulus
repeatedly induce the percept of a second, illusory visual stimulus
if the three stimuli are presented with short temporal delays
(typically < 100 ms; Shams et al., 2000). Cecere et al. (2015)
showed that the individual temporal window for the audio–
visual illusion correlated with the individual’s peak frequency
of an alpha oscillation (i.e., those frequencies with the highest
spectral power within the alpha-band) in parieto-occipital areas.
More importantly, they showed that non-invasivelymanipulating
the peak frequency and thus the length of the individual
alpha cycles by means of tACS correlated with an increase or
decrease, respectively, of the behavioral temporal integration
windows.

In addition, a recent EEG study suggested that the peak
frequency of parieto-occipital alpha oscillations might also
represent a mechanism for temporal discrimination of visual
stimuli (Samaha and Postle, 2015). The authors presented two
visual stimuli separated by a blank gap or one visual stimulus
with an identical overall temporal length, with subjects asked
to report if they perceived stimulation as one single stimulus or
two temporally separate stimuli. The authors showed that the

individual length of the stimulus necessary for the respective
subject to segregate two stimuli from one stimulus correlated
with the subjects’ individual alpha peak frequency derived from
occipital sensors.

Although the majority of studies on perceptual cycles focus
on the visual domain, recent studies investigated mechanisms
of temporal discrimination in the somatosensory domain.
Baumgarten et al. (2015) used two electrotactile stimuli and
determined neuronal correlates of the time windows perceptually
separating the two presented stimuli. The study revealed that beta
(13–20Hz) and to a lesser degree also alpha (8–12Hz) oscillations
act as temporal integration windows (or perceptual cycles) in
the somatosensory domain. This finding is consistent with the
higher temporal resolution of touch compared to vision and the
prominent role of beta band oscillations in the somatosensory
domain (Jones et al., 2010; Haegens et al., 2011). In contrast to
previous studies focusing on the visual domain (Cecere et al.,
2015; Samaha and Postle, 2015), however, Baumgarten et al.
(2015) did not explicitly analyze peak frequencies but phase
differences between all frequencies from 5 to 40 Hz. Thus,
it remains unclear whether the peak frequency of neuronal
oscillations in the somatosensory domain also might act as a
correlate for perceptual cycles.

In summary, recent studies provided novel evidence for
the hypothesis that neuronal oscillations represent a putative
neuronal mechanism for perceptual cycles in the visual and
somatosensory domain. Studies on visual (Samaha and Postle,
2015) and audio–visual (Cecere et al., 2015) tasks suggest that
the peak frequency of alpha oscillations in parieto-occipital
areas represents the best estimate. However, it is unknown
whether similar mechanisms hold true for the somatosensory
domain, i.e., whether the peak frequency of the alpha- or
beta-band is the best representation of the perceptual cycles in
somatosensory regions. Similar to a study focusing on the visual
domain (Samaha and Postle, 2015), the present study aimed to
investigate this question by investigating whether somatosensory
peak frequencies correlate with perceptual discrimination
thresholds in a tactile temporal discrimination task. We
hypothesized to find a negative correlation between individual
discrimination thresholds and individual peak frequencies. That
is, shorter discrimination thresholds should correlate with higher
frequencies, i.e., shorter perceptual cycles/temporal integration
windows.

MATERIALS AND METHODS

The subjects, experimental paradigm and MEG data investigated
in the present study were previously reported in Baumgarten et al.
(2015, 2016b). Here, we present a concise overview.

Subjects
Sixteen right-handed volunteers [7 males, age: 26.1 ± 4.7 years
(mean ± SD)] participated in the experiment after providing
written informed consent in accordance with the Declaration
of Helsinki and the Ethical Committee of the Medical Faculty,
Heinrich Heine University Düsseldorf. Subjects reported normal
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FIGURE 1 | Experimental paradigm. The experiment started with a central fixation dot serving as start cue. A decrease in luminance after 500 ms signaled the

start of the prestimulus epoch (jittered period of 900–1100 ms). Subsequently, electrotactile stimulation was applied to the left index finger with varying SOAs (0 ms,

intermedSOA-10, intermedSOA, intermedSOA+10, 100 ms). Following a jittered poststimulus period (500–1200 ms), written instructions indicated the response

window and subjects had to report their perception of the stimulation (perceived one stimulus vs. two stimuli) by button-press.

or corrected-to-normal vision and no somatosensory and/or
neurological disorders.

Experimental Paradigm
The present experimental paradigm is illustrated in Figure 1

and described in Baumgarten et al. (2015, 2016b). Seated within
the MEG, subjects were presented with electrotactile stimulation
while visual instructions were projected on the backside of a
translucent screen centrally positioned in front of the subjects.
Trials began with a short precue period (500 ms; Figure 1),
followed by a jittered prestimulus period (900–1100 ms). After
the prestimulus period, either one or two electrical pulses
were applied to the left index finger. Pulse amplitude was
determined individually in a pre-measurement and set to a
level above subjective perceptual threshold, but below pain
threshold [4.1 ± 1.2 mA (mean ± SD)]. Pulses were separated
by a specific stimulus onset asynchrony (SOA), which varied
between 0 ms (i.e., only one pulse was presented) and 100 ms.
Importantly, in the main condition subjects received pulses
separated by an individually determined intermediate SOA
[labeled intermedSOA; 25.9 ± 1.9 ms (mean ± SEM)] for which
subjects reported a balanced perception of one stimulus or two
stimuli (i.e., 50% of the trials were perceived as one stimulus,
whereas the other 50% of the trials were perceived as two
stimuli). In addition, two SOAs encompassed the intermedSOA
by ± 10 ms (labeled intermedSOA-10 and intermedSOA+10,
respectively). Subsequent to stimulation, a jittered poststimulus
period (500–1200 ms) was presented, after which subjects were
indicated to report their respective perception (i.e., one or two
stimuli) with a button press of the right hand. No feedback
regarding the response was given.

Psychometric Fitting Function
The intermedSOA experimentally determined in the pre-
experiment yielded naturally not an exactly equal distribution of

perceived one and two stimuli in the main experiment, but some
deviations. To determine the theoretical individual thresholds for
which subjects achieve an equal distribution for the perception
of one vs. two stimuli (the theoretical intermedSOA), we fitted
psychometric functions to the experimental data of the main
experiment (Cecere et al., 2015; Samaha and Postle, 2015).
We fitted a sigmoid function to the data using the Palamedes
toolbox for Matlab (Prins and Kingdom, 2009). The different
experimental SOA lengths (i.e., 0 ms SOA, intermedSOA-10,
intermedSOA, intermedSOA+10, 100 ms) were chosen as
independent variable, whereas the individual proportion of
‘perceived two stimuli’ responses at each condition was chosen as
dependent variable. The fit estimated four parameters: threshold,
slope, guess rate, and lapse rate. Individual guess rates were set
to the proportion of two stimuli percepts when actually one
stimulus was presented (SOA 0 ms) and individual lapse rates
to the proportion of one stimuli percepts when actually two
stimuli with an SOA of 100 ms were presented. The goodness of
fit was estimated by computing the deviance and corresponding
p-values. p-values> 0.05 indicate a reliable fit of the experimental
data. Only for one subject we found high deviance (p < 0.05),
indicating that the data could not be reliably fitted (Figure 2,
subject 7). This subject was excluded from further analyses.
From the Palamedes toolbox, we determined thresholds at which
subjects showed an equal distribution of perceiving one and two
stimuli (Figure 2) and the corresponding error of the threshold.

MEG Data Recording and Analysis
During the task, electromagnetic brain activity was continuously
recorded by means of a 306-channel, whole-head MEG system
(Neuromag Elekta Oy, Helsinki, Finland). Data was recorded
with a sampling rate of 1 kHz. Only gradiometer data was
analyzed for the present study. Since gradiometers are ordered
in pairs of sensors measuring activity in mainly orthogonal
directions, we offline combined these pairs of sensors to one
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FIGURE 2 | Behavioral and fitting data. Psychometric functions (black solid lines) were fitted to the individual proportion of ‘perceived two stimuli’ responses

(black dots) as a function of the different SOAs. Black dotted lines indicate the SOA corresponding to a proportion of two stimuli reports of 0.5 (fitted intermedSOA).

Exact fitted intermedSOAs for each subject are specified at the top of the individual figures. Note that for subject 7 the fit was not reliable so that subject 7 was

excluded from further analyses.

sensor pair. This combination of orthogonal sensors resulted in
102 pairs of sensors. Offline analysis of the data was performed
with custom-made MATLAB (Mathworks, Natick, MA, USA)
scripts and the FieldTrip toolbox1 ( Oostenveld et al., 2010).

Continuously recorded MEG data were segmented into
trials, which started with the beginning of the precue period
and ended with the subject’s response. Trials were visually
and semi-automatically inspected for artifacts. Artifacts due
to muscle activity, eye movements or technical reasons were
removed semi-automatically by means of a z-score-based
algorithm implemented in FieldTrip. Excessively noisy or dead
channels were removed and reconstructed by an interpolation
of neighboring channels. Power line noise was removed by
applying a band-stop filter encompassing the 50, 100, and 150 Hz
components. Furthermore, the linear trend and mean of every
trial was removed from the data. Only trials with intermedSOA
entered the subsequent analysis, which resulted in an average
of 145 ± 19 trials with intermediate SOA (mean ± SD) after
preprocessing.

We were interested in how the individual prestimulus alpha-
(8–12 Hz) or beta- (14–30 Hz) band peak frequencies are related

1fieldtriptoolbox.org

to the individual tactile temporal resolution. Thus, subsequent
analyses focused on neuronal oscillations in sensorimotor areas
during the prestimulus epoch of the respective trials (i.e., before
any task- or response-related components). To analyze neuronal
oscillations, data epochs from −900 to 0 ms relative to the onset
of the first electrotactile stimuli were multiplied with a single
hanning window, zero padded to a length of 10000 ms and fast
Fourier transformed for frequencies from 5 to 40 Hz with a
frequency resolution of 0.1 Hz. Gradiometer pairs were combined
by summing spectral power across the two orthogonal channels,
resulting in 102 channels.

In order to focus the analysis on channels representing neural
activity of the somatosensory cortex, the sensors of interest (SOI)
were functionally determined by means of poststimulus event-
related fields (ERFs) in response to electrotactile stimulation.
ERFs were computed based on trials with intermedSOA.
Trials were baseline corrected by subtracting the mean of the
prestimulus period immediately preceding stimulus presentation
(−200 to 0 ms). To focus on channels representing different
components of activity from somatosensory cortex, we selected
those time windows known to be critical for the different
processing stages of somatosensory stimuli, i.e., the M50 of
the ERF (known to origin mainly from S1) and M100 (known
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to originate mainly from S2; Suk et al., 1991; Iguchi et al.,
2005). Therefore, amplitude values from 0.025 to 0.075 ms
(labeled M50), 0.075–0.125 ms (labeled M100), and 0.025–
0.125 (labeled M50+100) were averaged over all channels.
Subsequently, those channels which amplitude values surpassed
the respective average across all 102 channels by at least 1
SD were determined as the sensor-space for the respective
somatosensory component (Supplementary Figure S1). The
resulting channels included (MEG1122+23, MEG1132+33,
MEG1312+13, MEG1322+23, MEG1332+33, MEG1342+43,
MEG1442+43, MEG2022+23, MEG2222+23, MEG2232+33,
MEG2242+43, MEG2412+13) for the M50 component
(Figure 3A), (MEG0232+33, MEG1122+23, MEG1132+33,
MEG1142+43, MEG1222+23, MEG1232+33, MEG1312+13,
MEG1322+23 MEG1332+33, MEG1342+43, MEG1442+43,
EG2212+13) for the M100 component and (MEG0232+33,
MEG1122+23, MEG1132+33, MEG1142+43, MEG1222+23,
MEG1312+13, MEG1322+23, MEG1332+33, MEG1342+43,
MEG1442+43, EG2212+13) for the M50+100 component.

Similar to the approach Samaha and Postle (2015) chose for
the visual domain, we defined two approaches to determine the
individual peak frequencies. For the first approach, we selected
the single channel-pair within the previously predetermined
SOI showing on group level maximum prestimulus (−900 to
0 ms) alpha (8–12 Hz) or beta power (14–30 Hz), respectively.
The rationale of this approach was that the channel-pair
showing the maximum prestimulus power should provide the
best estimate of peak frequency. Since the predetermined SOI
slightly differed for the M50, M100, and M50+100 components,
channels showing maximum power likewise differed across
the respective components. The resulting maximum power
channels for the beta-band were MEG2222+23 for the M50
component (Figure 3A), MEG0232+33 for theM100 component
and MEG0232+33 for the M50+100 component. The resulting
maximum power channels for alpha-band were MEG2022+23
for theM50 component (Figure 3A), MEG0232+33 for theM100
component and MEG0232+33 for the M50+100 component.
Then we determined individual peak frequencies in these sensors
(see below).

For the second approach, we determined the individual peak
frequencies (see below) in the sensor showing on individual,
single-subject level maximum prestimulus alpha or beta band
power, again within the previously predetermined SOI. If no valid
peak frequency could be found, peak frequency was determined
in the sensor showing the second highest prestimulus power
levels, and so on.

In addition to Samaha and Postle (2015), we also determined
peak frequencies on source level by means of a “virtual sensor”
approach. Here, we will give a concise description of the
computation of virtual sensor data. For a detailed description
of the procedure see Baumgarten et al. (2015). The virtual
sensor was functionally determined by localizing the individual
sources of the M50 or M100 component. Source localization was
performed by means of an LCMV beamformer on individual 3D
grids with a resolution of 1 cm. The grid points with maximal
M50 or M100 activity were selected as the location of the virtual
sensor (Supplementary Figure S2). In addition, we anatomically

determined a virtual sensor for S1 based on the AFNI atlas
implemented in FieldTrip, resulting in four neighbouring grid
points (Supplementary Figure S2).

Next, we constructed spatial filters for the selected grid points.
We projected single trial MEG sensor time series data through
this spatial filter to obtain the time series data on source level.
These time series data were then used as input to the frequency
and peak detection analyses as described above. For the M50
and M100 defined virtual sensors, analysis was performed on
single grid points, respectively. For the four atlas-defined virtual
sensors, we performed spectral analysis separately for each sensor
and then averaged spectral activity across the four grid points.

Individual alpha and beta peak frequency (IAFs and IBFs)
were defined as the frequencies showing maximal power within
the respective frequency band (8–12 Hz or 14–30 Hz). Peak
frequencies were detected using theMatlab function findpeaks.m.
In addition, to represent a peak, the power value of a potential
peak frequency had to show an amplitude increase of at least
10% (i.e., MinPeakProminence was set to 10% of the amplitude
of the peak). This method prevented peak frequency selection to
be influenced by spontaneous power fluctuations and guaranteed
that only peaks of sufficient size were selected as peak frequency.

To obtain a measure of the reliability of the peak estimate, we
performed a bootstrapping approach and recomputed the peak
frequency 100 times. From this distribution of peak frequencies,
we computed the interquartile range (Figure 4).

We additionally determined for each subject the theoretically
expected frequency based on the models of perceptual cycles
(Baumgarten et al., 2015, 2017; Samaha and Postle, 2015).
According to these models, the cycle length of the theoretically
relevant frequency should be determined by the intermedSOA:

Freqtheoretical = 1000/(2∗ intermedSOA)

Finally, to test the hypothesis whether alpha- and beta-band
frequencies are related (e.g., beta-band peak frequencies might be
harmonics of the alpha-band peak frequencies), we investigated
whether peak frequencies in the alpha- and beta-band are
correlated by applying a Pearson correlation.

Correlation Analysis and Bayes Factor

Analysis
Correlations between IAFs and IBFs and individual theoretical
intermedSOA were assessed by means of a Pearson correlation.
The correlations were performed separately for each frequency
band, SOIs and approach to determine the individual frequencies
(group or single subject approach on sensor level or source level
approaches).

In our study, we asked whether subjects’ temporal
discrimination thresholds correlate with their individual
peak frequencies. Using conventional inference statistics,
however, it is only possible to provide evidence in favor of the
H1-Hypotheses (i.e., correlation) by rejecting the H0-Hypotheses
(no correlation). If the H0 cannot be rejected, this does not mean
that the H0 (no correlation) is true. To test our two hypotheses of
“no correlation” and “correlation” directly, we used Bayes factor
(BF) analysis (Dienes, 2014; Iemi et al., 2016). In a nutshell, BF
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FIGURE 3 | MEG data. (A) Sensor topography showing the sensors of interest (SOI) selection for the M50 ERF component (0.025–0.075 ms) as black dots. The

single channel-pair showing maximum prestimulus (–900 to 0 ms) power levels on group level are marked as red dot for the alpha-band and as blue dot for the

beta-band. (B) Spectral power representations for the alpha-band (red, left inset) and the beta-band (blue, right inset) for each subject. The respective peak

frequencies are marked by a filled dot and specified above the subject-specific insets.

analysis tests whether the experimental data provide stronger
evidence for the H0 or H1 hypothesis. A BF > 1 indicates more
evidence for the H1, while BF < 1 indicates more evidence for
H0. However, BF-values of 1/3–3 are regarded as inconclusive
and only BF-values > 3 or <1/3 are regarded as providing
sufficient evidence for H1 or H0. We computed the BF by
forwarding the data of the correlation analysis to the BF analysis
in the software JASP2.

RESULTS

Behavioral Data (Temporal Resolution

Thresholds)
In a pre-measurement, we determined the SOA for which
subjects perceived two electrotactile stimuli as one stimulus in
50% of the trials, whereas in the other 50% of the trials the
stimulation was perceived as two stimuli (labeled intermedSOA;
Figure 1). In addition, trials with 0 ms SOA, intermedSOA-10,

2https://jasp-stats.org, version 0.8.0.1

intermedSOA+10, 100 ms SOA were presented (see Materials
and Methods for details).

On average, subjects perceived stimulation as two stimuli
in 6.8 ± 1.5% (mean ± SEM) for trials with 0 ms SOA, in
25.8 ± 4.7% for trials with intermedSOA-10, in 58.0 ± 3.1%
for trials with intermedSOA, in 79.4 ± 4.5% for trials with
intermedSOA+10 and in 94.3± 2.4% for trials with 100 ms SOA.

Since in the main MEG experiment the intermedSOA did not
yield a perfect equal distribution of “one” and “two” percepts,
we fitted psychometric functions to the individual experimental
data and computed the time point for which subjects theoretically
perceived two successively presented stimuli as two stimuli in
50% of the trials and as one stimulus in 50% of the trials
(Figure 2). The fitting procedure provided reliable fits for 15 out
of the 16 subjects. The one subject showing a too high deviance
(p < 0.05) and thus an unreliable fit was excluded from further
analyses (subject 7, see Figure 2). The average intermedSOA
across the 15 remaining subjects determined by the fitting
procedure was 24.4 ± 2.2 ms (mean ± SEM; range 13–44 ms).
We used these individual theoretically determined intermedSOA
for the subsequent correlation analyses (see Correlations between
IntermedSOAs and Peak Frequency and Bayes Factor Analyses).
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FIGURE 4 | Correlation analysis between fitted intermedSOA lengths and peak frequencies. (A) Non-significant Pearson’s correlation between fitted

intermedSOA lengths and beta-band peak frequency determined for sensor-level individual M50 sensors (r = 0.04, p = 0.9). (B) Non-significant Pearson’s correlation

between fitted intermedSOA lengths and alpha-band peak frequency determined for sensor-level individual M50 sensors (r = 0.06, p = 0.82). (C) Non-significant

Pearson’s correlation between fitted intermedSOA lengths and beta-band peak frequency determined for source-level M50 grid point (r = 0.04, p = 0.9).

(D) Non-significant Pearson’s correlation between fitted intermedSOA lengths and alpha-band peak frequency determined for source-level individual M50 grid point

(r = 0.34, p = 0.5). Insets in (A–D) show results of the linear regression analyses (black lines). Vertical arrow bars indicate standard errors of the fitted intermedSOA,

horizontal error bars indicate the interquartile range for the bootstrap estimation of peak frequencies.

MEG Data (Peak Frequencies)
Individual alpha (8–12 Hz) and beta-band (14–30 Hz) peak
frequencies were determined on sensor and on source level. On
sensor level, we defined three functionally defined somatosensory
SOI: M50, M100, M50+100 (see Materials and Methods for
SOI definition and Figure 3A and Supplementary Figure S1
for illustration of the M50 SOI), in order to cover a wide
range of potentially relevant sensors. We employed two different
approaches for channel selection [i.e., group level analysis vs.
single subject analysis (Samaha and Postle, 2015); see Materials
and Methods for details].

For the single-subject analysis, valid beta-band peak
frequencies could be determined in 13 out of the remaining
15 subjects for the M50 SOI and in all subjects in the M100
and M50+100 SOI. The average beta-band peak frequency was
18.5 ± 0.7 Hz (mean ± SEM) for the M50 SOI (see Figure 3B

for individual spectra), 19.1 ± 0.8 Hz for the M100 channel
selection and 19.1 ±0.8 Hz for the M50+100 SOI. Valid alpha
peak frequencies could be determined in all subjects for the
M50, M100, and M50+100 SOI. The average alpha-band peak
frequency was 10.5 ± 0.3 Hz for the M50 SOI and 10.3 ± 0.2 Hz
for the M100 and M50+100 SOI.

Visual inspection of the spectra confirmed the results of the

automatic peak detection procedure for all reported peaks. In

one case [M50 SOI, single-subject analysis of the beta-band

(Figure 3B)], visual inspection might suggest an additional broad

peak in one subject which was not detected by the automatic

procedure. Including this subject based on peak definition by
visual inspection, however, had only a negligible quantitative
(absolute r-values became slightly smaller) and no qualitative
effect on the correlation analysis. We will report the correlation
analysis, however, only for the results of the objective peak
detection procedure, thus excluding this single subject/peak from
the respective correlation analysis.

For the group level analysis, valid beta-band peak frequencies
could be determined in 9 out of 15 subjects for the M50
SOI and in 9 out of 15 subjects in the M100 and M50+100
SOI. The average beta-band peak frequency was 18.2 ± 0.6 Hz
(mean ± SEM) for the M50 SOI and 18.6 ± 0.6 Hz for the
M100 and M50+100 SOI. Valid alpha peak frequencies could be
determined in all 15 subjects for the M50, M100, and M50+100
SOI. The average alpha-band peak frequency was 10.7 ± 0.2 Hz
for the M50 SOI and 10.3 ± 0.2 Hz for the M100 and M50+100
SOI.
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On source level, we defined regions of interest either based
on the source localization of the M50 and M100 components or
based on the AFNI atlas (see Materials and Methods for details).

Valid beta-band peak frequencies could be determined in 13
out of 15 subjects in the region defined by the M50 component,
in 14 out of 15 subjects in the region defined by the M100
component and in 13 out of 15 subjects in the atlas-defined
region. The average beta-band peak frequency was 18.9 ± 0.7 Hz
(mean ± SEM) for the M50-defined region, 19.2 ± 0.9 Hz for the
M100-defined region and 18.5 ± 0.7 for the atlas-defined region.

Valid alpha-band peak frequencies could be determined in 6
out of 15 subjects in each of the three regions. The average alpha-
band peak frequency was 10.3 ± 0.3 Hz (mean ± SEM) for the
M50-defined region, 10.9 ± 0.3 Hz for the M100-defined region
and 10.1 ± 0.05 Hz for the atlas-defined region.

To test whether alpha- and beta-band peak frequencies are
related (e.g., beta-peak frequencies being harmonics of the alpha-
band peak frequencies), we performed a correlation analysis.
None of the nine correlation analyses revealed a significant
correlation between alpha- and beta-band frequencies (r < 0.27;
p > 0.30).

Correlations between IntermedSOAs and

Peak Frequency and Bayes Factor

Analyses
To determine any potential relationship between the temporal
resolution of somatosensory perception and the alpha- or beta-
band peak frequencies, we performed a correlation analysis
between individual intermedSOAs from the fitting procedure [see
Behavioral Data (Temporal Resolution Thresholds) and Figure 2]
and the respective individual peak frequencies [MEG Data (Peak
Frequencies) and Figure 3B].

Figure 4 shows exemplary results for the correlation analyses.
For the single subject analysis, no significant correlations
were found on sensor level (M50 SOI) between intermedSOA
and neither beta-band nor alpha-band peak frequencies (beta:
r = 0.04, p = 0.90; alpha: r = 0.06, p = 0.82; Figures 4A,B). In
addition, no significant correlations between intermedSOA and
beta- or alpha-band peak frequencies were found on source level
(M50 defined grid point; beta: r = 0.04, p = 0.90; alpha: r = 0.34,
p = 0.5). The results of all correlation analyses are provided
in detail in Table 1. In summary, none of the correlations
revealed a significant correlation between intermedSOAs and
peak frequencies. r-values varied between −0.19 and 0.35
(p > 0.22) for the beta-band and between −0.14 and 0.34
(p > 0.5) for the alpha-band, with r-values for the correlations
on source level all being positive.

Table 1 also provides the results of BF analysis. In summary,
the BF analysis revealed that for all correlations BF-values were
<1, thus providing stronger evidence for the H0 hypothesis
(i.e., there is no correlation) than for the H1 (i.e., there is a
correlation). For the beta-band on sensor level, 2 out of 6 analyses
provided strong evidence in favor of the H0 (BF < 1/3), while on
source level, all three analyses provided strong evidence for the
H0 (BF < 1/3, i.e., no correlation). For the alpha-band on sensor-
level, 5 out of 6 analyses provided strong evidence for the H0,

while on source level for one analysis BF was<1/3 while the other
two BF-values were still ≤0.42 (note that on source level alpha
peaks could be detected only for a small number of subjects).

Finally, to test whether experimentally and theoretically
determined frequencies (see Materials and Methods and arrows
in Supplementary Figure S3) are related to each other, we
performed a correlation analysis. None of the correlations
revealed a significant correlation (r < 0.27; p > 0.31).

DISCUSSION

It has long been debated whether perception is organized as a
continuous process or in discrete perceptual cycles (or temporal
integration windows), where two stimuli falling within one cycle
are perceptually integrated to one stimulus and two stimuli falling
in two separate cycles are perceived as two separate stimuli (von
Baer, 1908; Harter, 1967; Allport, 1968; VanRullen and Koch,
2003). Recent studies have suggested that the peak frequency
(i.e., the frequency with the maximal power) of alpha-band
(8–12 Hz) oscillations in parieto-occipital areas serves as the
neuronal correlate of such perceptual cycles in the (audio-) visual
domain (Cecere et al., 2015; Samaha and Postle, 2015). Here, we
studied in a tactile temporal discrimination task whether peak
frequencies might likewise serve as a correlate for perceptual
cycles in the somatosensory domain. However, we were unable to
demonstrate a significant correlation between subjects’ individual
peak frequencies and their perceptual temporal discrimination
thresholds. This lack of correlation was true for the alpha-
(8–12 Hz) and the beta- (14–30 Hz) band over several regions of
interest in the somatosensory cortex on sensor level as well as on
source level. Since from a lack of significant correlation it does not
necessarily follow that the null hypothesis (i.e., there is actually no
correlation) is true, we additionally performed an analysis of BF.
The BF analysis revealed that for all tested correlations evidence
was stronger in favor of the H0 (no correlation) compared to the
H1 (correlation) as indicated in BF-values< 1. Importantly, most
of the BF provided strong evidence for the H0 (BF-values < 1/3),
especially those on source level.

We have performed our peak frequency detections on sensor
and on source level. The reason to perform the analysis on sensor
level was to keep the analyses as close as possible to previous
studies which have performed their analyses on sensor level as
well (Samaha and Postle, 2015; Cecere et al., 2015). This way,
we ought to ensure that methodological approaches are similar,
facilitating the comparability across studies. A disadvantage of
the analysis on sensor level is the problem of spatial smearing.
That is, sensors do not only measure activity from the region
directly below them, but easily can pick up activity from more
distant areas. For example, sensors over somatosensory areas
might not only measure somatosensory alpha activity but also
pick up alpha activity from parieto-occipital regions. Such activity
might potentially deteriorate the analysis. Our source level
analyses support this concern. While we found clear alpha peaks
for all subjects on sensor level, only a minority of subjects showed
alpha peaks on source level. These different results for sensor and
source level analyses suggest that sensor and source data contain
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TABLE 1 | Summary of the correlation analyses.

Frequency band

of interest

Analysis on sensor or

source level

Approach to define

sensors of interest

No. subjects showing

valid peak frequencies

r-value p-value Bayes-factor

Alpha Sensor Individual M50 15 0.06 0.82 0.27∗

Sensor Individual M100 15 0.08 0.77 0.26∗

Sensor Individual M150 15 0.08 0.77 0.26∗

Sensor Group M50 15 −0.14 0.61 0.49

Sensor Group M100 15 0.15 0.58 0.22∗

Sensor Group M150 15 0.15 0.58 0.22∗

Source M50 6 0.34 0.50 0.33∗

Source M100 6 0.33 0.52 0.34

Source Atlas 6 0.14 0.80 0.42

Beta Sensor Individual M50 13 0.04 0.90 0.31∗

Sensor Individual M100 15 −0.19 0.50 0.58

Sensor Individual M150 15 −0.19 0.50 0.58

Sensor Group M50 9 0.26 0.50 0.27∗

Sensor Group M100 9 0.02 0.96 0.39

Sensor Group M150 9 0.02 0.96 0.39

Source M50 13 0.04 0.90 0.31∗

Source M100 14 0.35 0.22 0.17∗

Source Atlas 12 0.19 0.55 0.24∗

Peak frequencies were determined separately for the alpha- and beta-band (column 1) on either source or sensor level (column 2). The regions of interest in which peak

frequencies were determined, were based on different approaches (column 3, see Materials and Methods for details). Column 4 shows for how many subjects peak

frequencies could be determined. Results of the correlation analysis (r- and p-values are presented in columns 5 and 6. Finally column 7 shows the result of the Bayes

factor analyses for each correlation. ∗ Indicates strong evidence in favour of the null hypothesis of no correlation (i.e., BF < 1/3).

different signals with sensor level analysis being more prone to
potential parieto-occipital alpha-band activity. Thus, we believe
that while sensor level analyses ensure better comparability
to previous studies, source level analyses are closer related
to the actual somatosensory neuronal activity. Importantly,
the correlation and BF analyses on source level demonstrated
stronger evidence in favor of the H0 of no correlation (BF < 0.31
for all beta-band analyses; BF < 0.42 for all data analyses, please
note the overall low number of subjects for alpha-band analyses),
while the sensor level provided evidence for H0 but BF values
were mostly in the “inconclusive” range (1/3 < BF < 3).

Importantly, it should be noted that this non-significant result
does not imply that in the somatosensory system perceptual
cycles do not exist. Rather, a previous study has shown that
the phase of neuronal oscillations in the primary somatosensory
cortex in the alpha-/beta- (8–20 Hz) band correlates with
subjects’ perception, in line with the idea of perceptual cycles
in the somatosensory domain (Baumgarten et al., 2015). Thus,
while there is evidence for perceptual cycles, the present results
state that the carrying frequency of the perceptual cycles in
somatosensory areas is not necessarily equivalent to the peak
frequency of a frequency band.

On the other hand, studies in the visual domain reported
a significant correlation between alpha peak frequencies and
perception or discrimination performance (Cecere et al.,
2015; Samaha and Postle, 2015). This raises the question
where these discrepancies between results in the visual and
somatosensory domain originate from? One reason might be
found in methodological differences between studies or in inapt
parameters for the analyses. For example, too low statistical
power due to a low number of subjects might account for a

non-significant result. Our hypothesis was to find a negative
correlation of individual perceptual thresholds and individual
peak frequencies. That is, shorter thresholds should result in
higher frequencies, i.e., shorter cycles. While we found a small,
but non-significant negative correlation in a few correlations,
it is unlikely that the correlation becomes significant with a
higher number of subjects. This is mainly due to the reason that
BF values provided stronger evidence for the null hypothesis
of no correlation. While for a few regions of interest in which
we analyzed spectral activity, BF-values are strictly speaking
inconclusive (1/3 < BF < 3), other regions of interest show
strong evidence in favor of the “no correlation” hypothesis.
This is mostly evident for the correlation analyses on source
level. As discussed above, we argue that source level analyses
of peak frequencies should be more reliable than sensor level
analyses. In addition, subjects showed a rather high variability
with no obvious and consistent relationship between perceptual
thresholds and individual peak frequencies. Also, we did not find
a significant correlation between the experimentally determined
peak frequencies and the relevant frequencies predicted by the
models of perceptual cycles (Baumgarten et al., 2015, 2017;
Samaha and Postle, 2015). Moreover, for most subjects, no clear
peak could be detected at frequencies predicted by the model.
This finding is difficult to explain by low statistical power alone.
Moreover, the number of subjects in our study is comparable to
the number of subjects in other studies that found a significant
correlation in visual areas for alpha peak frequencies (Samaha
and Postle, 2015). Secondly, we cannot exclude, of course, that
with different parameters or a more fine-grained analysis, the
hypothesized negative correlation can be found. However, we
specifically chose our parameters to cover different regions and
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frequency bands of interest and different approaches to analyze
peak frequencies (e.g., based on individual or group level).
Furthermore, we tried to keep our analyses as close as possible
to analyses of a previous study that reported to succeed in finding
a significant result (Samaha and Postle, 2015). There are some
differences, however, that might explain at least to some degree
differences in the results. While we analyzed subjects’ perception
of two short stimuli directly (i.e., if subjects perceived two stimuli
separated by a specific SOA as one single stimulus or two separate
stimuli), Samaha and Postle (2015) analyzed subjects’ ability to
discriminate two rather long stimuli separated by a temporal gap
from a single stimulus matching the duration of both stimuli
and the respective temporal gap. It might be that this paradigm
measures subjects’ ability to detect the gap between the two
stimuli to a certain degree. However, this is only indirectly related
to the perception of two discrete stimuli. Furthermore, the length
of the stimuli differs considerably between both studies (i.e., a
flash in the study from Samaha and Postle lasted 40 ms, whereas
an electrotactile pulse in the present study lasted 0.3 ms). The to-
be-expected differences in stimulus processing might therefore
further hamper a comparison of the results. In another study
that found a significant correlation between individual peak
frequencies and temporal integration windows, Cecere et al.
(2015) used a paradigm in which auditory and visual stimuli need
to be integrated to induce a visual illusion. Their paradigmmight
thus focus stronger on the integration of crossmodal stimuli
while our study focuses on the temporal segregation of unimodal
stimuli. Such integration processes across sensory modalities
might correlate more strongly with the peak frequencies in the
alpha-band. Finally, definition of regions of interest differed
slightly between studies. For example, while sensors were chosen
in regions expected to be most directly related to prestimulus
or stimulation effects in our study and by Cecere et al.
(2015), Samaha and Postle (2015) chose SOI in a wider spatial
range, potentially covering some sensors not directly related
to stimulus processing (e.g., potentially ipsilateral to processing
sites). However, while these methodological differences might
explain some differences of the results, they cannot fully explain
the lack of significant correlations in our study. This is mainly due
to the fact that the methodological differences also partly exist
between Cecere et al. (2015) and Samaha and Postle (2015), yet
both studies found significant correlations in the visual domain.

One simple argument to explain the differences might be
that neuronal oscillations in visual and somatosensory regions
have different characteristics. While alpha-band activity is mostly
characterized by one strong and more or less clearly defined
peak, beta-band activity is sometimes characterized by multiple,
weaker peaks (see Figure 3B) or even no clear peak, at all. In
line with these results, we did not find a significant correlation
between alpha and beta band peak frequencies. Thus, we feel
safe to exclude that beta-band peak frequencies might be simply
harmonics of the alpha-band activity (see also Haegens et al.,
2014). In addition, we found that some subjects did not show
a reliably detectable peak in the alpha band on source level,
although a peak in the beta-band could be reliably determined.
Thus, it might be that not the peak with the highest power
is the carrier frequency of perceptual cycles, but other peaks

with overall lower power. Additionally, it should be noted that
although several effects and/or functions seem to be reflected
in the peak frequency (Salmelin and Hari, 1994; Haegens et al.,
2011; Baumgarten et al., 2016a), functionally significant effects
do not need to be necessarily reflected in the peak frequency
(e.g., Pavlidou et al., 2014; Tucciarelli et al., 2015). Thus, it might
well be that the carrier frequency is not reflected in any peak,
e.g., potentially because the carrier frequency is characterized
more strongly by phase rather than power (Baumgarten et al.,
2015).

Despite the lack of a significant correlation between peak
frequencies and perceptual performances in our study in the
somatosensory domain and thus the discrepancy to other
recent studies in the visual domain (Cecere et al., 2015;
Samaha and Postle, 2015), there is increasing evidence for
neuronal oscillations as the correlate of discrete perceptual
cycles (VanRullen et al., 2014; Baumgarten et al., 2015). The
studies arguing in favor of perceptual cycles commonly agree
on the hypothesis that the length of a cycle of a neuronal
oscillation determines a perceptual cycle for integration or
segregation. The discrepancy seems to be which frequency
determines the relevant oscillation and how the frequency
can be determined. We suggest that the phase of a neuronal
oscillation is a critical measure that determines the perceptual
cycle (Baumgarten et al., 2015). The critical role of phase
is supported by recent studies which reported a correlation
between the phase of neuronal oscillations and perception or
behavior (Busch et al., 2009; Mathewson et al., 2009; Busch
and VanRullen, 2010; Dugué et al., 2011; Schyns et al., 2011;
VanRullen et al., 2011; Landau and Fries, 2012; Landau et al.,
2015). The phase might determine the beginning and end of
a perceptual cycle. The phase and the power of an oscillation
might carry different information and thus act independently
or in different frequencies (Schyns et al., 2011). Thus, effects
of phase might be independent of power and thus might be
found in frequencies that do not show the maximal power
(e.g., Baumgarten et al., 2015). On the other hand, phase and
power effects might be found in the same frequency, especially if
there is only one frequency active in a certain neuronal system
(e.g., presumably the alpha oscillations in the visual system).
We thus suggest that analyzing the power or peak frequency
is a relevant tool for determining perceptual cycles and their
carrier frequency. This approach might, however, sometimes
miss relevant information which is coded in the phase of an
oscillation. This might be an explanation why we found evidence
for perceptual cycles when analyzing the phase of beta oscillations
in the somatosensory domain (Baumgarten et al., 2015) but not
in the present study when analyzing the peak frequencies. We
thus suggest broadening analyses of spectral power to phases in
broader frequency bands rather than focusing purely on peak
frequencies.

Future studies might also use more strongly modulatory
techniques to establish a causal link between putative perceptual
cycles, oscillations and perception. tACS might be used
to non-invasively modulate the length of perceptual cycles
(Cecere et al., 2015). In addition, studies have demonstrated
that beta oscillations can be pharmacologically modulated
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(Hall et al., 2011; Muthukumaraswamy et al., 2013). Such
modulations might be used to modulate beta oscillations in
somatosensory cortex and measure the effect on putative
perceptual cycles and consequently perception.

CONCLUSION

There is cumulative evidence for perceptual cycles in visual and
somatosensory cortex resulting in discrete and cyclic perception.
While some studies on the visual domain argue that the peak
frequency acts as the neuronal correlate of perceptual cycles, we
were unable to demonstrate such a correlation between peak
frequencies and perception in the somatosensory domain in the
present study. We argue that this discrepancy does not speak
against perceptual cycles, at all, but for an analysis that goes
beyond analyses of power and peak frequencies, taking the phase
of neuronal oscillations into account.
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Abstract

Neuronal oscillatory activity in the beta band (15–30 Hz) is a prominent signal within the

human sensorimotor cortex. Computational modeling and pharmacological modulation

studies suggest an influence of GABAergic interneurons on the generation of beta band

oscillations. Accordingly, studies in humans have demonstrated a correlation between

GABA concentrations and power of beta band oscillations. It remains unclear, however, if

GABA concentrations also influence beta peak frequencies and whether this influence is

present in the sensorimotor cortex at rest and without pharmacological modulation. In the

present study, we investigated the relation between endogenous GABA concentration

(measured by magnetic resonance spectroscopy) and beta oscillations (measured by

magnetoencephalography) at rest in humans. GABA concentrations and beta band oscilla-

tions were measured for left and right sensorimotor and occipital cortex areas. A significant

positive linear correlation between GABA concentration and beta peak frequency was

found for the left sensorimotor cortex, whereas no significant correlations were found for the

right sensorimotor and the occipital cortex. The results show a novel connection between

endogenous GABA concentration and beta peak frequency at rest. This finding supports

previous results that demonstrated a connection between oscillatory beta activity and

pharmacologically modulated GABA concentration in the sensorimotor cortex. Furthermore,

the results demonstrate that for a predominantly right-handed sample, the correlation

between beta band oscillations and endogenous GABA concentrations is evident only in

the left sensorimotor cortex.
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Introduction

Oscillatory activity in the beta (15–30 Hz) frequency range is a prominent signal in the human

sensorimotor cortex, both at rest and during motor activity [1–4]. Beta band activity differs

across areas and depends on motor output (see [5] for a review). For example, beta band power

in sensorimotor cortex decreases during movement, whereas beta band power increases follow-

ing movement [6].

The majority of studies on beta band activity investigated the role of power (e.g., [7, 8]). In

addition to power, there is increasing evidence that beta peak frequency (i.e., the frequency

within the beta band with the highest power) is an important and functionally relevant param-

eter of oscillatory activity [9]. Beta peak frequency differs across distinct recording sites within

the sensorimotor cortex [1]. Furthermore, beta peak frequency differs during movement and

stimulation of lower and upper limbs, thereby distinguishing between different somatotopic

representations [10]. Finally, beta peak frequency seems to be an important factor for the com-

munication between cortical areas and muscles during movement. For example, neuronal

activity in the motor cortex and electromyographic activity during movement is coherently

coupled at ~20 Hz [11]. This 20 Hz motor cortical activity is thought to optimize motor output

by maximal recruitment of motor neurons at a minimum discharge in the pyramidal tract [11].

Animal and modeling studies provide evidence for an essential role of GABAergic interneu-

ronal activity for the generation of beta oscillations in the sensorimotor cortex [12–14]. For

example, a study using modeled neuronal networks found increases in the power of beta band

oscillations to result from an increase in the synaptic conductance of GABAA-mediated inhibi-

tion [12]. Further, studies demonstrated increases in human beta power [7, 8, 12, 15, 16] as

well as decreases in beta peak frequency [12] (but see [16, 17]) as a result of pharmacological

GABAergic modulation. Such modulations of beta power were evident at rest [7, 12] as well as

after motor output [8, 15, 17].

While the abovementioned studies demonstrated a causal link between GABA administra-

tion and changes in beta band power and peak frequencies, the concentration of GABA and its

direct modulation in the sensorimotor cortex was not measured. Thus, the quantitative relation

remains unclear. Magnetic resonance spectroscopy (MRS) offers a non-invasive method for in

vivo quantification of endogenous neurotransmitter concentrations in spatially restricted corti-

cal regions [18]. While this approach has initially been applied to estimate GABA concentra-

tions especially in occipital cortical areas (e.g., [19, 20]), recent studies also focused on the

sensorimotor cortex (e.g., [16, 21, 22]). These studies demonstrated a linear relationship

between sensorimotor GABA concentration and post-movement oscillatory beta power. In

contrast, no relationship could be demonstrated between sensorimotor GABA concentration

and post-movement oscillatory beta peak frequency [16]. Taken together, there are consistent

results supporting a general relationship between GABA concentration and beta power in sen-

sorimotor cortex areas. Contrarily, the results concerning beta peak frequency are less consis-

tent. Therefore, the question remains whether beta peak frequency is related to GABA

concentrations and if such a potential relation is present at rest (i.e., without movement) and

for endogenous (i.e., non-modulated) GABA concentrations.

Here, we investigated whether the peak frequency of ongoing beta band oscillations is corre-

lated to endogenous GABA concentration in the sensorimotor cortex at rest. Beta peak fre-

quencies were determined by magnetoencephalography (MEG) and individual GABA

concentrations were measured by means of MRS. Peak frequencies were determined for the left

and right sensorimotor cortex, as well as for a control region in the occipital cortex. For these

three regions of interest (ROIs), we linearly related peak frequencies to GABA concentrations

estimated for analogue cortical areas.
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Materials and Methods

Subjects

15 subjects (7 male, age: 59.9 ± 9 years (mean ± SD)) participated after providing written

informed consent in accordance with the Declaration of Helsinki and the Ethical Committee of

the Medical Faculty, Heinrich-Heine-University Düsseldorf. All participants had normal or

corrected to normal vision and reported no sensory impairments, known history of neurologi-

cal disorders or use of neuro-modulatory medication. The subjects were selected from the

healthy controls of a sample that was previously reported in [23].

Behavioral data

Individual handedness was assessed by comparing bi-manual performance (hand dominance

test (HDT), [24]). Categorization based on the performance measure resulted in 12 clearly

right-handed subjects (HDT score: 29.8 ± 8.1 (mean ± SD)) and 3 subjects with no clear hand

preference (HDT score: -6.8 ± 9.7).

Magnetic resonance spectroscopy (MRS) data

MRS data were recorded using a 3T whole-body MRI scanner (Siemens MAGNETOM Trio A

TIM System, Siemens Healthcare AG, Erlangen, Germany) in connection with a 12-channel

head matrix coil. Subjects were instructed to lie in the scanner, relax and refrain from any fur-

ther activity. For the determination of neurotransmitter concentrations, MRS voxels (3x3x3

cm3) were placed in left and right sensorimotor cortices and occipital cortex (Fig 1A). For both

sensorimotor cortices, voxels were centered on the respective ‘hand knob’ within the Gyrus

praecentralis [25], thus covering both motor and somatosensory cortex. The occipital MRS

voxel was medially centered on the occipital lobe with the inferior boundary of the voxel

aligned with the Tentorium cerebelli. For all subjects, voxel placement was performed with the

focus to include a maximum portion of cortical volume, as well as a minimal volume of non-

cerebral tissues to avoid any additional lipid contamination of the spectra. MRS voxels will be

addressed as MRS ROIs (in contrast to MEG ROIs) subsequently.

After the localization of target volumes by means of T1-weighted planning sequences,

MEGA-PRESS spectra [26] were acquired (TR = 1500 ms, TE = 68 ms, V = 3x3x3 cm3, spectral

width = 1200 Hz, 1024 data points). Spectral editing was performed by frequency selective

Gaussian refocusing pulses with a bandwidth of 44 Hz. These pulses were irradiated at 1.9 ppm

(‘On’ resonance) and 7.5 ppm (‘OFF’ resonance) in alternating fashion. 96 ON and 96 OFF

Fig 1. Localization of MRS ROIs and average GABA+/Cr concentrations across MRS ROIs. A) Placement of the occipital voxel in the sagittal plane
(1), placement of the left sensorimotor voxel, centered on the hand knob, in the axial (2) and sagittal (3) planes. B) Average GABA+/Cr concentrations for
the left and right sensorimotor and occipital MRS ROIs. Error bars represent standard deviations. *: p = 0.047.

doi:10.1371/journal.pone.0156829.g001
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spectra were acquired to give a total of 192 averages (total measurement time: 4.8 minutes per

acquisition). Postprocessing and fitting of MEGA-PRESS data was performed with the

MATLAB-based tool GANNET 2.0 [27], a software package specifically designed for the analy-

sis of GABA-edited spectra. Postprocessing steps included individual frequency and phase cor-

rection of the single acquisitions [28] to reduce potential effects of thermal scanner frequency

drift such as linebroadening and subtraction artefacts [29]. Fitting was performed in the fre-

quency domain, with the 3 ppm GABA resonance being modelled as a single Gaussian, and the

3 ppm creatine peak as a single Lorentzian peak. For subsequent analyses, the GABA-to-crea-

tine ratio (GABA+/Cr) was used [30].

GABA+/Cr estimates were not available for every MRS ROI in each subject (see results sec-

tion for further details). To assess potential differences in GABA+/Cr concentrations across

MRS ROIs, GABA+/Cr concentrations were compared across the left, right and occipital MRS

ROIs by means of a one-factor repeated-measures ANOVA and post-hoc t-tests. To account for

the effect of age and handedness, individual values for age and HDT handedness scores were

added as covariates to the one-factor repeated-measures ANOVA. In order to ensure that any

potential effects would not result from differences in individual cortical grey matter volume

across the respective MRS ROIs, we calculated correlations between the individual grey matter

volume and the GABA+/Cr concentrations for each MRS ROI, respectively. The rationale of this

approach was that, since individual grey matter volume presumably differs across MRS ROIs, it

is not feasible to include individual grey matter volume as a covariate in the one-factor repeated-

measures ANOVA comparing GABA+/Cr concentrations across MRS ROIs. Although the pres-

ent approach represents only an indirect control of the influence of individual grey matter vol-

ume on GABA+/Cr concentrations, an influence of individual grey matter volume on GABA

+/Cr concentration can be deemed implausible if there is no significant correlation between indi-

vidual grey matter volume and GABA+/Cr concentration in the respective MRS ROI.

MEG data

Experimental design. Subjects were seated in the MEG with all visual stimuli projected on

the backside of a translucent screen (60 Hz refresh rate) positioned 57 cm in front of the sub-

jects. Resting-state neuromagnetic activity was recorded during two sessions with a respective

duration of 5 minutes, with subjects being instructed to relax and refrain from any additional

activity. In the first session, subjects had to focus a dimmed fixation dot (diameter: 0.5 degree)

presented in the middle of the translucent screen (eyes open condition (EO)). After completing

the first session, subjects were verbally informed regarding the beginning and the instructions

of the second session. In the second session, subjects had to close their eyes (eyes closed condi-

tion (EC)) but remain awake during the measurement. Stimulus presentation was controlled

using Presentation software (Neurobehavioral Systems, Albany, NY, USA).

Data recording and preprocessing. Continuous neuromagnetic brain activity was

recorded at a sampling rate of 1000 Hz using a 306-channel whole head MEG system (Neuro-

mag Elekta Oy, Helsinki, Finland), including 204 planar gradiometers (102 pairs of orthogonal

gradiometers) and 102 magnetometers. Data analysis in the present study was restricted to the

planar gradiometers. Electro-oculograms (EOGs) were recorded for offline artifact rejection by

applying electrodes above and below the left eye as well as on the outer sides of each eye. Fur-

ther, an electro-cardiogram (ECG) was recorded for offline artifact rejection by means of two

electrodes placed on the left collarbone and the lowest left rib.

Data were offline analyzed using custom-made Matlab (The Mathworks Inc., Natick/MA,

USA) scripts and the Matlab-based open source toolbox FieldTrip (http://fieldtriptoolbox.org;

[31]). Continuously recorded data were divided into two epochs according to the respective
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session (EO and EC), starting 3 s after beginning and ending 3 seconds before the end of the

respective task. Data were band-pass filtered at 1 Hz to 200 Hz and power line noise was

removed by using a band-stop filter encompassing the 50, 100, and 150 Hz components. Data

were detrended and the mean of every epoch was subtracted. Continuous data were segmented

into trials of 1 s duration with a 0.25 s overlap. Subsequently, trials were semi-automatically

and visually inspected for artifacts. Artifacts caused by muscle activity, eye movements or

SQUID jumps were removed semi-automatically using a z-score based algorithm implemented

in FieldTrip. Excessively noisy channels were removed. To further eliminate cardiac and ocular

artifacts, an independent component analysis was computed. Mutual information was calcu-

lated between the resulting components and the EOG and ECG channels [32, 33]. Components

were sorted according to their level of mutual information and subsequently visually examined

regarding their topography and time course. Those components showing high mutual informa-

tion with EOG and ECG channels as well as topographies and time courses typical for cardiac

and ocular artifacts were rejected. Afterwards, removed channels were reconstructed by an

interpolation of neighboring channels. After artifact rejection, 292 ± 34.5 (mean ± SD) trials in

the EC condition and 304 ± 35.4 trials in the EC condition remained for further analysis. Sub-

sequent analyses were performed separately for the EO and EC condition as well as for a com-

bined data set created by appending the EO and EC condition (EC+EO).

Frequency analysis and peak frequency determination. To determine individual peak

frequencies, we performed a frequency analysis encompassing all frequencies of the beta band

(15 to 30 Hz; [6, 34]) by applying a Fourier transformation over the entire trial duration. Trials

were tapered with a single Hanning taper, resulting in a spectral resolution of 1 Hz. Within

each condition, spectral power was averaged over all trials for each frequency separately. Power

was estimated independently for each of the 204 gradiometers. Subsequently, gradiometer

pairs were combined by summing spectral power across the two orthogonal channels, resulting

in 102 pairs of gradiometers.

Since GABA-concentrations were assessed for three different MRS ROIs (left and right sen-

sorimotor cortex, occipital cortex; see Fig 1A and methods section (Magnetic resonance spec-

troscopy (MRS) data) for details), we determined corresponding MEG ROIs by selecting 6

sensor pairs in the left and 6 sensor pairs in the right hemisphere covering the respective senso-

rimotor cortices (Fig 2A). The selection of sensors was based on previous studies [35, 36]. In

addition, we selected 6 posterior sensor pairs covering the occipital cortex [37].

Individual beta peak frequencies were determined semi-automatically within each MEG

ROI separately for each subject. For each subject, the frequency showing the maximum power

within the predefined beta band (15–30 Hz) was algorithmically selected as the individual peak

frequency. Beta peak frequencies were statistically compared between the three MEG ROIs and

the three conditions by means of a two-factor repeated-measures ANOVA (main factors: MEG

ROI (left sensorimotor, right sensorimotor, occipital) and condition (EO, EC, EC+EO)). Simi-

lar to the comparison of GABA+/Cr concentrations, age and HDT handedness scores were

included in the analysis as covariates. In case of violations of sphericity, Greenhouse-Geisser

corrected values were reported.

To ensure that the peak frequencies determined for the respective sensor selections originate

from cortex areas corresponding to the respective MRS ROIs, we additionally computed the

respective cortical sources (see S1 Text materials & methods section for details). Subsequently,

source level power distributions (S1 and S2 Figs) were visually compared with the location of

the MRS ROIs (Fig 1A).

In addition to beta peak frequencies, we performed a control analysis for peak frequencies

in the alpha band (8–12 Hz; see S1 Text and S3 and S4 Figs for details on the alpha peak fre-

quency analysis and the corresponding results).
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Correlation of MRS and MEG data

In order to examine the relationship between GABA+/Cr concentrations and resting-state neu-

romagnetic brain activity, we linearly correlated individual GABA+/Cr concentrations within

the respective MRS ROIs with the beta band peak frequencies determined for the correspond-

ing MEG ROIs. We computed correlations (Pearson) within each ROI (e.g., between left senso-

rimotor MRS ROI and left sensorimotor MEG ROI), thus resulting in 3 correlations for each

condition (EO, EC, EC+EO). In addition, we corrected the respective correlations for age, the

HDT handedness scores and the individual cortical grey matter volume within the respective

MRS ROI by means of partial correlation (Pearson).

Results

GABA+/Cr concentrations

GABA+/Cr values were determined in left sensorimotor, right sensorimotor and occipital MRS

ROIs (Fig 1). Due to cancellation of the measurements or distorted spectra, GABA+/Cr con-

centrations could not be estimated for the left sensorimotor, right sensorimotor and occipital

MRS ROI in 4, 2, and 1 subjects, respectively (see Table 1 for a summary of GABA+/Cr esti-

mates). For the remaining subjects, a one-factor repeated-measures ANOVA including age and

Fig 2. Sensor selection for respective MEG ROIs, individual beta peak frequencies and average beta peak frequencies across MEGROIs. A)
Sensors for left sensorimotor MEG ROI (orange triangles), right sensorimotor MEG ROI (blue dots) and occipital MEG ROI (black diamonds). B)
Individual beta peak frequencies for all 15 subjects (EC+EO condition) for left sensorimotor MEG ROI (orange lines), right sensorimotor MEG ROI (blue
lines) and occipital MEG ROI (black lines). Individual beta peak frequencies are highlighted by asterisks. C) Average beta peak frequencies separately for
all conditions (EO, EC, EC+EO) and all MEG ROIs. Error bars represent standard deviations.

doi:10.1371/journal.pone.0156829.g002
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individual HDT handedness scores as covariates yielded a significant difference between

GABA+/Cr concentrations in the 3 MRS ROIs (F(2,12) = 4.024, p = 0.046, 95% CI [left sensori-

motor: 0.084, 0.101; right sensorimotor: 0.09, 0.108; occipital: 0.093, 0.112]). Post-hoc t-tests

revealed significant differences in GABA+/Cr concentration between left sensorimotor and

occipital MRS ROIs (t(9) = -2.29, p = 0.047, 95% CI [-0.019, 0.0001]; Fig 1B). To ensure that

any differences between GABA+/Cr concentrations across MRS ROIs did not result from dif-

ferences in individual cortical grey matter volume, correlations between the individual grey

matter volume and the GABA+/Cr concentrations were computed for each MRS ROI. For all

three MRS ROIs, no significant correlation between individual grey matter volume and GABA

+/Cr concentration could be found (left sensorimotor: r = -0.225, p = 0.532; right sensorimotor:

r = -0.112, p = 0.729; occipital: r = 0.123, p = 0.69).

MEG data

Beta peak frequencies could be determined in all subjects (Fig 2B; Table 2). A two-factor

repeated measures ANOVA comparing beta peak frequencies for the factors MEG ROI (left

sensorimotor, right sensorimotor, occipital) and condition (EO, EC, EC+EO), with age and

individual HDT handedness score included as covariates, yielded no significant main effects

for MEG ROI (F(2,24) = 0.979, p = 0.39, 95% CI [left sensorimotor: 17.591, 20.187, right senso-

rimotor: 17.473, 20.794, occipital: 15.626, 17.663]) or condition (F(2,24) = 1.462, p = 0.252,

95% CI [EO: 17.142, 18.813, EC: 17.066, 19.334, EC+EO: 17.365, 19.613]). Likewise, there was

no significant interaction between the factors ROI and condition (F(1.905, 22.86) = 0.63,

p = 0.534; Fig 2C). Since no significant results could be found for the factor condition, we chose

the combined condition EC+EO for visualization purposes in Fig 2B.

Source-level analyses of the power distributions for the peak frequencies determined for the

left and right sensorimotor MEG ROIs confirmed that the center of activity was centered near

the ‘hand knob’ within the Gyrus praecentralis, which was selected as the center of the sensori-

motor MRS ROIs (see S1 and S2 Figs).

Table 1. GABA+/Cr values per MRS ROI.

Subject GABA+/Cr
Left Sensori-motor Right Sensori-motor Occipital

1 0.1097 0.1083 0.1054

2 0.0798 0.0713 0.1197

3 0.1035 0.1087

4 0.0995 0.1011 0.1056

5 0.0844 0.0886 0.0940

6 0.0914 0.1213

7 0.0730 0.1134

8 0.1004 0.1166

9 0.1110

10 0.0948 0.1045 0.1073

11 0.0920 0.1187 0.1083

12 0.1078 0.0962

13 0.1085 0.1014 0.1034

14 0.0781 0.0908 0.0783

15 0.0862 0.1079 0.1000

Mean 0.0949 0.0964 0.1066

SD 0.0117 0.0135 0.0110

doi:10.1371/journal.pone.0156829.t001
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Correlation of MRS and MEG data

We computed linear correlations between GABA+/Cr concentrations determined in MRS

ROIs and beta peak frequencies determined in MEG ROIs, separately for each of the three

ROIs (left sensorimotor cortex, right sensorimotor cortex, occipital cortex). Correlation analy-

ses revealed significant linear correlations in the left sensorimotor ROI (EO: r = 0.616,

p = 0.043, EC: r = 0.621, p = 0.0414, EC+EO: r = 0.735, p = 0.01; Fig 3A). No significant correla-

tions were found in the right sensorimotor ROI (EO: r = -0.139, p = 0.65, EC: r = -0.067,

p = 0.827, EC+EO: r = -0.134, p = 0.662; Fig 3B). Similarly, no significant correlations were

found in the occipital ROI (EO: r = 0.235, p = 0.418, EC: r = 0.086, p = 0.771, EC+EO:

Table 2. Beta peak frequencies per MEG ROI and condition.

Beta peak frequency (Hz)

Subject Left Sensorimotor Right Sensorimotor Occipital

EO EC ECEO EO EC ECEO EO EC ECEO

1 19 19 19 19 19 19 19 19 19

2 17 17 17 18 16 17 17 17 17

3 24 18 24 24 18 24 15 17 16

4 19 16 19 19 19 19 16 15 15

5 18 18 18 18 30 30 15 15 15

6 18 18 18 18 18 18 17 19 19

7 19 19 19 19 19 19 15 15 15

8 18 19 20 18 17 17 16 15 16

9 17 18 18 17 20 17 17 17 17

10 19 19 19 19 19 19 15 15 15

11 17 17 17 15 17 17 16 16 16

12 25 25 25 25 25 25 15 22 22

13 18 21 21 18 15 15 20 20 20

14 16 15 16 17 15 16 15 17 15

15 19 19 19 19 20 19 15 15 15

Mean 18.87 18.53 19.27 18.87 19.13 19.4 16.2 16.93 16.8

SD 2.47 2.29 2.46 2.53 3.87 3.98 1.57 2.17 2.21

doi:10.1371/journal.pone.0156829.t002

Fig 3. Correlation of beta peak frequencies and GABA+/Cr concentration. (A) Beta peak frequencies calculated for the left sensorimotor MEG ROI
and the EC+EO condition correlated with GABA+/Cr estimates from the left sensorimotor MRS ROI. (B) Same as (A), but now for right sensorimotor MEG
and MRSROI. (C) Same as (A), but now for occipital MEG and MRS ROI.

doi:10.1371/journal.pone.0156829.g003
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r = 0.345, p = 0.228; Fig 3C). For all correlations, we additionally partialized out the effect of

age, HDT handedness score and respective individual cortical grey matter volume. In line with

the uncorrected analyses, corrected correlation analyses revealed significant linear correlations

in the left sensorimotor ROI for the EC and the EC+EO condition (EC: r = 0.758, p = 0.048, EC

+EO: r = 0.816, p = 0.025). For the EO condition, a strong trend could be demonstrated

(r = 0.724, p = 0.066). No significant correlations were found for the right sensorimotor (EO: r

= -0.139, p = 0.721, EC: r = -0.084, p = 0.829, EC+EO: r = -0.108, p = 0.783) and occipital cortex

(EO: r = 0.125, p = 0.731, EC: r = -0.08, p = 0.826, EC+EO: r = 0.296, p = 0.407).

Since, within each ROI, correlations were highly similar across conditions, we selected the

combined condition EC+EO for visualization purposes in Fig 3. Further, correlations within

the respective ROIs statistically remained highly similar when correlations were restricted to

those subjects for whom valid MRS spectra could be determined for all 3 MRS ROIs (see sec-

tion MRS data above).

Discussion

Using magnetoencephalography (MEG) and magnetic resonance spectroscopy (MRS) in

healthy human subjects, we investigated the relationship between beta peak frequencies at rest

and endogenous (i.e., non-modulated) GABA+/Cr concentrations in the left and right sensori-

motor and occipital cortex. The results show significant positive linear correlations between

peak frequencies in the beta band (15–30 Hz) and GABA+/Cr concentrations for the left senso-

rimotor cortex (i.e., higher beta peak frequency was related to a higher GABA+/Cr

concentration).

The connection of neuronal oscillatory activity in the beta band and in vivo GABA concen-

trations has been the topic of various scientific publications. Previous studies that have

addressed the general question if sensorimotor beta activity is related to the GABAergic system,

applied pharmacological GABAergic modulators [7, 8, 12, 15, 17] and/or investigated move-

ment-related sensorimotor beta activity [8, 15–17]. To our knowledge, the present work is the

first study to investigate the connection between beta peak frequency at rest (i.e., without

movement or a movement-related task) and non-modulated GABA+/Cr values in the sensori-

motor cortex. By focusing exclusively on non-modulated parameters (i.e., no movement-

related and pharmaco-induced manipulation), the present study was able to show a correlation

between GABA+/Cr concentrations and beta peak frequency at rest.

The analysis of neuromagnetic activity did not demonstrate significant differences in beta

peak frequencies across MEG ROIs or conditions. While left and right sensorimotor cortices

showed clear peaks in the beta band in all subjects (Fig 2B), beta peaks were less prominent in

the occipital cortex, with six subjects showing no clear peak. This is in agreement with the spe-

cific role of beta band activity for the sensorimotor cortex [1, 4], while beta band activity in

occipital regions is less common. Although the analysis of beta peak frequencies in occipital

areas proves to be difficult, we included the occipital MEG ROI as a control condition in order

to demonstrate that potential correlations between beta band peak frequency and GABA+/Cr

concentrations are not ubiquitously present throughout the cortex, but spatially restricted to

sensorimotor cortex areas. Less clear peaks in the beta band for the occipital ROI might be a

reason why correlations between GABA+/Cr concentrations and beta peak frequencies were

only found for the sensorimotor cortex. This interpretation, however, cannot account for the

lack of a significant correlation in right sensorimotor areas, since we found clear peaks in the

right sensorimotor cortex for all subjects.

Although the analysis of GABA+/Cr concentrations encompassing all MRS ROIs yielded a

significant result, this effect was driven by differences between the left sensorimotor and the
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occipital MRS ROIs. Since the post-hoc tests showed no significant differences between both

sensorimotor MRS ROIs, it is unlikely that hemispherical differences between GABA+/Cr con-

centrations are responsible for the significant correlation between beta peak frequency and

GABA+/Cr concentrations only in the left sensorimotor cortex. Because 12 of 15 subjects in

the present study were classified as right-handed, handedness might be an explanation for the

unilateral correlation. However, correlations largely remained significant even after correcting

for handedness. This finding suggests that handedness alone is unlikely to account for the dif-

ferences between left and right sensorimotor cortices. Handedness, however, is known to lead

to asymmetries with respect to hand representations in the sensorimotor cortex [38–40]. Such

asymmetries might lead to regional differences in GABA+/Cr concentration and/or generators

of beta frequencies in left and right sensorimotor areas. The results of the correlation analysis

further remained virtually unchanged after correcting for age and individual cortical grey mat-

ter volume. This excludes the possibility that the unilateral correlation arises as an epiphenom-

enon due to demographic or neuroanatomical variables. The rather large size of the MRS ROIs

poses an additional challenge, since for such voxel sizes it is not possible to separately measure

GABA+/Cr concentrations for motor and somatosensory cortex. Although smaller voxel sizes

are possible [21], they result in extended measurement time for a comparable signal to noise

ratio. Thus, although GABA+/Cr concentrations did not significantly differ between left and

right sensorimotor MRS ROIs, our method might have measured more GABA+/Cr concentra-

tions that are unrelated to beta frequency generations in right sensorimotor cortex (i.e., more

“noise”). More fined-grained analyses might resolve this problem and shed further light on the

relation between GABA concentration and beta peak frequencies. In addition, the sample size

of the present study has to be taken into account. Although 15 subjects is a considerable sample

size for an MEG/MRS study (i.e., see [12, 16, 19]), an increased sample size would have been

preferable. In line with this, it would be interesting to assess both left and right-handed popula-

tions of sufficient sample size in future studies to further elucidate the effect of handedness on

GABAergic concentrations in sensorimotor cortices.

A general limitation of GABA measurements via MRS is that this method in unable to dif-

ferentiate between synaptic and extra-synaptic GABA concentrations [22]. Nonetheless,

GABA concentrations measured by MRS might primarily reflect extra-cellular GABA concen-

trations, i.e., the general GABAergic tone [41]. Contrary to intra-cellular GABA concentra-

tions, extra-cellular GABA concentrations would include synaptic concentrations. Beta band

oscillations would be primarily related to synaptic GABA concentrations, since this represents

the synaptically active neurotransmitter pool [15]. Thus, our results represent correlations with

the overall GABA+/Cr concentration of a given voxel, not exclusively for the synaptically active

GABA concentration. Despite all potential limitations, we were able to demonstrate a signifi-

cant positive correlation between GABA+/Cr concentration and beta peak frequency. In addi-

tion, various studies using parameters similar to the present study proved that GABAMRS in

sensorimotor and occipital cortices yields feasible results (reviewed in [22]). The general feasi-

bility of GABAMRS is further supported by studies that link MRS-derived neurotransmitter

concentrations to functional and behavioral measurements [21].

Neuronal oscillations are thought to depend on the balance between excitatory (i.e., gluta-

matergic synaptic input) and inhibitory (i.e., GABAergic synaptic input) network components

[12, 42, 43]. For beta band activity in the sensorimotor cortex, a connection between GABAer-

gic tone and beta band oscillations is supported by studies reporting increases in somatosen-

sory beta band power as an effect of GABAergic modulation by means of positive allosteric

GABAergic modulators (e.g., benzodiazepine) [7, 12, 15, 17]. The relation between GABAergic

modulation and beta peak frequencies, however, is less clear. While, Jensen and colleagues [12]

reported a small decrease (~1.6 Hz) in resting-state beta peak frequency in bilateral
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sensorimotor cortices after the administration of benzodiazepine, Baker and Baker [17] found

no modulation of beta peak frequency after the administration of benzodiazepine. Benzodiaze-

pine is considered to enhance the synaptic GABAergic drive [12]. Simplified, an enhanced

GABAergic drive could be related to an increased GABAergic concentration, which would con-

tradict the positive correlation between beta peak frequency and GABA+/Cr levels in the left

sensorimotor cortex observed in the present study. Yet, various differences between the studies

have to be taken into account. First, Jensen et al. [12] and Baker and Baker [17] measured the

influence of pharmacological GABA modulations on beta peak frequencies on the within-sub-

ject level. The present study measured non-modulated GABA concentrations and investigated

correlations on a between-subject level. Further, while we report a correlation for the left senso-

rimotor cortex, Jensen and colleagues [12] averaged beta peak frequency over bilateral sensori-

motor cortices (thereby not investigating lateral differences). Finally, we measured mostly

right-handed subjects, so that an influence of handedness cannot be excluded. The abovemen-

tioned studies do not report handedness of their subjects, making a direct comparison difficult.

Gaetz and colleagues [16] found no correlation between beta peak frequency during post-

movement beta-rebound and endogenous GABA concentrations for the left motor cortex.

Post-movement beta-rebound, however, is intrinsically different from resting state beta activ-

ity, as measured in our study. Any differences found between our study and Gaetz et al. [16]

might thus be related to different tasks. Taken together, the few existing studies focusing on the

connection between beta peak frequency and GABA concentrations in sensorimotor cortex

areas strongly vary in experimental setting and assessed parameters, thereby complicating a

comparison to our results.

For future studies, it would be interesting to determine how sensorimotor beta peak fre-

quency and GABA concentration both relate on a behavioral level. There is evidence that

higher sensorimotor GABA concentrations correlate with slower reaction times in a motor

sequence learning task [44]. Here, slower reaction has been interpreted as a result of higher lev-

els of inhibition. Furthermore, higher concentrations of sensorimotor GABA have been related

to lower discrimination thresholds in a tactile frequency discrimination task [21]. The authors

associated higher GABA concentrations with a potentially higher temporal resolution of tactile

perception, which would enable neurons to more closely tune their responses to the stimulus

cycles. Such an adjustment of neuronal response to stimulus frequency is considered as the

underlying mechanism of the connection between sensorimotor GABA levels and frequency

discrimination and to result in lower frequency discrimination thresholds. The influence of

oscillatory beta activity on behavioral parameters is less clear. Studies relating individual beta

peak frequencies to measures of functional performance apart from motor-related tasks are

scarce. Differences in the phase of ongoing beta band oscillations in the somatosensory cortex

have been shown to predict the temporal perception of subsequently presented tactile stimuli

[45]. Here, the specific beta band frequency showing the biggest phase differences predicted

the temporal resolution of tactile perception. Perfetti and colleagues [46] found beta power var-

iations to successfully predict mean reaction time in a visually guided motor task, with a

decrease of beta power in left sensory-motor areas corresponding to faster reaction times. In

line with this, lower beta-power levels during the time of stimulus presentation were related to

a faster reaction towards this stimulus [47]. Taken together, these results suggest an involve-

ment of GABA concentrations and beta band activity within the sensorimotor cortex in the

temporal dimension of tactile perception. Thus, further research should investigate if GABA

concentration and beta band activity show similar connections to behavioral parameters

assessed in parallel.

In conclusion, the present study shows a significant linear correlation between beta peak fre-

quency at rest and non-modulated endogenous GABA concentration measured by spectrally
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edited MRS. Significant correlations were restricted to the left sensorimotor cortex. While pre-

vious studies revealed connections between GABA concentrations and beta band power, our

results provide a novel connection between GABA concentrations and peak frequencies in the

beta band. In line with previous results from studies using pharmacological modulation of

GABA concentrations, these results support a specific role of GABAergic inhibition in the gen-

eration of oscillatory beta band activity within the sensorimotor system.

Supporting Information

S1 Fig. Source reconstruction of the average power distribution for individual beta peak

frequencies determined for the left sensorimotor MEG ROI. A) Source power projected on

the surface of the MNI template brain. The striped square approximates the size and position

of the left sensorimotor MRS ROI. B) Source power projected on the sagittal plane of the MNI

template brain. Source plots are masked to highlight power maxima.

(TIF)

S2 Fig. Source reconstruction of the average power distribution for individual beta peak

frequencies determined for the right sensorimotor MEG ROI. A) Source power projected on

the surface of the MNI template brain. The striped square approximates the size and position

of the left sensorimotor MRS ROI. B) Source power projected on the sagittal plane of the MNI

template brain. Source plots are masked to highlight power maxima.

(TIF)

S3 Fig. Sensor selection for respective MEG ROIs, individual alpha peak frequencies and

average alpha peak frequencies across MEG ROIs. A) Sensors for left sensorimotor MEG

ROI (orange triangles), right sensorimotor MEG ROI (blue dots) and occipital MEG ROI

(black diamonds). B) Individual alpha peak frequencies for all 15 subjects (EC+EO condition)

for left sensorimotor MEG ROI (orange lines), right sensorimotor MEG ROI (blue lines) and

occipital MEG ROI (black lines). Individual alpha peak frequencies are highlighted by asterisks.

C) Average alpha peak frequencies separately for all conditions (EO, EC, EC+EO) and all MEG

ROIs. Error bars represent standard deviations.

(TIF)

S4 Fig. Correlation of alpha peak frequencies and GABA+/Cr concentration. (A) Alpha

peak frequencies calculated for the left sensorimotor MEG ROI and the EC+EO condition cor-

related with GABA+/Cr estimates from the left sensorimotor MRS ROI. (B) Same as (A), but

now for right sensorimotor MEG and MRS ROI. (C) Same as (A), but now for occipital MEG

and MRS ROI.

(TIF)

S1 Text. Supporting information materials & methods and results.
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Abstract

Recent studies have demonstrated that prestimulus alpha-band activity substantially influences perception of near-threshold

stimuli. Here, we studied the influence of prestimulus alpha power fluctuations on temporal perceptual discrimination of

suprathreshold tactile stimuli and subjects’ confidence regarding their perceptual decisions. We investigated how prestimulus

alpha-band power influences poststimulus decision-making variables. We presented electrical stimuli with different stimulus

onset asynchronies (SOAs) to human subjects, and determined the SOA forwhich temporal perceptual discrimination varied on

a trial-by-trial basis betweenperceiving 1 or 2 stimuli, prior to recording brain activitywithmagnetoencephalography.We found

that low prestimulus alpha power in contralateral somatosensory and occipital areas predicts the veridical temporal perceptual

discrimination of 2 stimuli. Additionally, prestimulus alpha power was negatively correlated with confidence ratings in

correctly perceived trials, but positively correlated for incorrectly perceived trials. Finally, poststimulus event-related fields

(ERFs) were modulated by prestimulus alpha power and reflect the result of a decisional process rather than physical stimulus

parameters around ∼150 ms. These findings provide new insights into the link between spontaneous prestimulus alpha power

fluctuations, temporal perceptual discrimination, decision making, and decisional confidence. The results suggest that

prestimulus alpha power modulates perception and decisions on a continuous scale, as reflected in confidence ratings.

Key words: alpha oscillations, MEG, perceptual decision making, prestimulus fluctuations, tactile stimulation

Introduction

Decision making can be understood as a process in which sen-

sory evidence is accumulated in a decision variable. If sensory

evidence is sufficiently strong and available for a sufficiently

long time, the decision variable accumulates until a decision

bound for either decision is reached (see Gold and Shadlen 2007

for a review). In some situations, however, sensory evidence is

ambiguous, providing equal sensory evidence for each decisional

option. In other situations, sensory evidence isweakor presented

insufficiently long for the decision variable to reach a decision

bound. Consequently, decisions have to be made based on in-

complete or equivocal sensory evidence, frequently causing

incorrect decisions and low confidence in the decision. In add-

ition, decisionmaking is not only determined by sensory evidence,

but also by trial-to-trial fluctuations of neuronal activity, usually

interpreted as internal noise (Ratcliff and McKoon 2007; O’Con-

nell et al. 2012).

Recent studies, however, demonstrated that fluctuations of

neuronal activity can have a functional role for the perception

of weak and ambiguous stimuli. Specifically neuronal oscillatory

activity in the alpha band (∼8–12 Hz) has drawn much attention.

Prestimulus alpha power is modulated by attention (e.g., Foxe

et al. 1998; Worden et al. 2000) and prestimulus power and

phase in early sensory areas are correlated with perception

(Linkenkaer-Hansen et al. 2004; van Dijk et al. 2008; Mazaheri

et al. 2009; Wyart and Tallon-Baudry 2009; Jensen and Mazaheri

2010; Romei et al. 2010; Keil et al. 2014). Furthermore, it has

been shown that prestimulus oscillatory activity can influence
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poststimulus evoked responses (Başar et al. 1984; Brandt and

Jansen 1991; Mazaheri and Jensen 2008; Jones et al. 2009, 2010;

Anderson andDing 2011; Lange et al. 2012). The influence of pres-

timulus oscillatory activity on decision variables remains largely

unknown. In addition, the influence of prestimulus oscillatory

activity on subjective confidence in perceptual decisions is un-

known. Subjective confidence represents ameasure of the degree

to which a decision maker believes in the correctness of his deci-

sions and thus provides an insight into decisional processes on a

fine-grained scale (Kiani and Shadlen 2009). Moreover, it remains

unexplained how the brain forms decisions when sensory evi-

dence is insufficient to reach a decision bound, for example,

due to sensory ambiguity.

To test how prestimulus alpha-band power biases perceptual

decisions and the underlying neuronal decision variable in hu-

mans, we presented electrical stimuli with different stimulus

onset asynchronies (SOAs) and compared 2 subjectively ambigu-

ous experimental conditions in which physically identical tactile

stimuli were perceived differently on a trial-by-trial basis. We

used magnetoencephalography (MEG) and a forced-choice tem-

poral perceptual discrimination task to investigate whether fluc-

tuations of prestimulus neuronal oscillatory activity are related

to the trial-to-trial variability of decisions and how prestimulus

oscillatory activity influences the decision variable. We hypothe-

sized that prestimulus alpha power correlates with temporal per-

ceptual discrimination rate, with lower alpha power levels

related to increased veridical temporal perceptual discrimin-

ation. Further, we expected that characteristics of the decision-

making process would be evident in neural activity in the form

of poststimulus event-related fields (ERFs). This should result in

differences of neuronal activity for trialswith different decisional

outcomes, despite identical physical stimulation. Additionally,

we hypothesized that prestimulus alpha power would influence

this decision-related neuronal activity.

Materials and Methods

Subjects

Sixteen, right-handed subjects (7 males, age: 26.1 ± 4.7 years

[mean ± SD]) participated in the study after providing written in-

formed consent in accordance with the Declaration of Helsinki.

All participants had normal or corrected-to-normal vision and

reported no somatosensory deficits or known history of neuro-

logical disorders.

Experimental Design and Paradigm

The experimental task was designed to compare 2 conditions

with identical physical stimuli, differing only in the participant’s

perception. Each trial started with the presentation of a start cue

(500 ms; Fig. 1). Next, the cue decreased in luminance, indicating

the prestimulus period (900–1100 ms), after which the subjects

received either 1 or 2 short (0.3 ms) electrical pulses, applied by

2 electrodes placed between the 2 distal joints of the left index

finger. The amplitude of the pulses was determined individually

to a level clearly above subjective perception threshold, but below

pain threshold (4.1 ± 1.2 mA [mean ± SD]). Note that all compari-

sons of conditions were performed at the within-subject level.

Therefore, only conditionswith identical stimulation parameters

were compared (for details, see MEG Data Acquisition and Ana-

lysis). The electrical pulses were applied with varying SOAs:

short (0 ms, i.e., only one stimulus was applied), long (100 ms),

and 3 SOAs individually determined in a premeasurement.

These 3 individual SOAs included a SOA for which subjects re-

ported to perceive one electrical pulse in ∼50% of the trials,

whereas in the other ∼50% of the trials 2 pulses were perceived

(SOA: 25.9 ± 1.9 ms (mean ± standard error of the mean [SEM])).

Subsequently, this condition will be labeled the intermediate

SOA. The remaining 2 SOAs encompassed the intermediate

SOA by ±10 ms and were included to minimize learning effects

and response biases. A training phase of ∼5 min containing all

possible SOAs preceded the experiment to familiarize subjects

with the paradigm. The electrical stimulation was followed by a

jittered poststimulus period of 500–1200 ms to minimize motor

preparation effects, during which the fixation dot remained vis-

ible. Next, a written instruction indicated the start of the first re-

sponse window. Subjects first reported whether they perceived

the stimulation as 1 single or 2 temporally separate sensations.

Responseswere given by button-presseswith the index ormiddle

finger of the right hand, while button configurations were rando-

mized from trial to trial to minimize motor preparation effects.

Subjects were instructed to report within 3000 ms after presenta-

tion of response instructions. Due to the jittered poststimulus

epoch (500–1200 ms) which determined the beginning of the sub-

sequent response window, response speed was not taken into

Figure 1. Experimental task. Sequence of events: A central fixation dot serves as start cue, after 500 ms a decrease in luminance signals the start of the prestimulus epoch,

consisting of a jittered period of 900–1100 ms. Tactile stimulation is applied to the left index finger with varying SOAs (0 ms, intermediate – 10 ms, intermediate,

intermediate + 10 ms, 100 ms). After a jittered poststimulus period (500–1200 ms), written instructions indicate the first response window and subjects report their

perception of the stimulation by button-press. Subsequently, written instructions indicate the second response window and subjects report their decisional

confidence by button-press.
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account. If no responsewas given after 3000 ms or the subject re-

sponded before the presentation of the instructions, a warning

was presented visually. The respective trial was discarded from

analysis and repeated at the end of the block. After reporting

their subjective perception, written instructions indicated a se-

cond responsewindow. Here, subjects rated their subjective con-

fidence level regarding their first response. The confidence level

was assessed via a 4-point rating scale, ranging from “very

sure” to “very unsure.” Once both responses were given, the

next trial started. With the exception of the aforementioned

warning signal, no further feedback was given. All visual stimuli

were projected on the backside of a translucent screen (60 Hz re-

fresh rate) positioned 60 cm in front of the subjects.

Each SOA was presented in 50 trials. To increase statistical

power, the intermediate SOA was presented 4 times as often as

the other SOAs (i.e., 200 trials). 80 trials constituted one block

with each block containing 10 repetitions (40 for the intermediate

condition) of each SOA presented in pseudorandom order. Blocks

were repeated 5 times, interrupted by self-paced breaks of

∼2 min, resulting in an overall 400 trials. The approximate total

duration of the MEG measurement was ∼45–50 min (400 trials

with a trial length of ∼6 s on average [4–8.6 s], interrupted by up

to 4 self-paced breaks of ∼2 min).

Stimulus presentation was controlled using Presentation

software (Neurobehavioral Systems, Albany, NY, USA). Before

MEG recording, each subject received instructions of the task

but remained naïve to the purpose of the experiment and the dif-

ferent SOAs used.

Behavioral Data Analysis

Behavioral data were analyzed with regard to correct responses

and compared across conditions by means of a paired sample

t-test. Prior to this, a Kolgomorov–Smirnov test was applied to en-

sure that the respective distributions did not differ from a Gauss-

ian distribution. Further, we investigated learning/fatigue trends

in the perceptual responses and confidence ratings by dividing

experimental trials in 12 bins and computing the average tem-

poral perceptual discrimination rate (i.e., perceived 2 stimuli or

1 stimulus) as well as the average confidence rating over subjects

for each bin. Subsequently, we fitted a linear regression to the

data in order to determine a linear trend.

MEG Data Acquisition and Analysis

Data Recording and Preprocessing

Ongoing neuromagnetic brain activity was continuously recorded

at a sampling rate of 1000 Hzusing a 306-channelwhole headMEG

system (Neuromag ElektaOy, Helsinki, Finland), including 204 pla-

nar gradiometers (102 pairs of orthogonal gradiometers) and 102

magnetometers. Data analysis in the present study was restricted

to the planar gradiometers. Additionally, electro-oculogramswere

recorded for offline artifact rejection by applying electrodes above

and below the left eye as well as on the outer sides of each eye.

Subjects’ head position within the MEG helmet was registered

bya head position indication system (HPI) built up of 4 coils placed

at subjects’ foreheadandbehindboth ears. A 3-TMRI scanner (Sie-

mens, Erlangen,Germany)wasused to obtain individual full-brain

high-resolution standard T1-weighted structural magnetic reson-

ance images (MRIs). The MRIs were offline aligned with the MEG

coordinate system using the HPI coils and anatomical landmarks

(nasion, left and right preauricular points).

Data were offline analyzed using custom-made Matlab (The

Mathworks, Natick, MA, USA) scripts, the Matlab-based open

source toolbox FieldTrip (http://fieldtrip.fcdonders.nl; Oostenveld

et al. 2011), and SPM8 (Litvak et al. 2011). Continuously recorded

data were segmented into trials, starting with the appearance of

the first fixation dot and ending with the second response of the

subject. All trials were semiautomatically and visually inspected

for artifacts,whereas artifacts caused bymuscle activity, eyemove-

ments, or SQUID jumps were removed semiautomatically using a

z-score-based algorithm implemented in FieldTrip. Excessively

noisy channels were removed as well and reconstructed by an in-

terpolation of neighboring channels. In addition, power line noise

was removed from the segmented data by using a band-stop filter

encompassing the50, 100, and150 Hzcomponents. Further prepro-

cessing steps were applied according to the respective analyses.

Time–Frequency Analysis

For exploratory reasons, we first performed a time–frequency

analysis on all frequencies between 2 and 40 Hz for all time

points (−900 to 500 ms, Fig. 2A). We focused our analysis on the

effects of alpha power (8–12 Hz) in the prestimulus epoch (−900

to 0 ms) on perceptual decisions, that is, the responses to the

Figure 2. Results of the statistical comparison of correctly (perceived 2 stimuli) versus incorrectly (perceived 1 stimulus) perceived trials with intermediate SOA. (A) Time–

frequency representation on sensor level averaged over all sensors. t = 0 indicates onset of sensory stimulation. (B) Time series of topographical representations on sensor

level averaged over the alpha band (8–12 Hz). Significant sensors (P < 0.05) are marked by white circles. The lower right inset illustrates alpha power differences averaged

across the whole time window (−900 to −250 ms; white dots represent channels of the anterior/somatosensory sensor-cluster; black crosses represent channels of the

parieto-occipital sensor-cluster used for following analyses. See text for details on the separation of the clusters). (C) Source reconstruction projected on the MNI

template brain for the significant effect in the alpha band (see B) viewed from the top (top row) and the right (bottom row). Source plots are masked to highlight

significant clusters (P < 0.05). P-values in B and C are cluster corrected to account for multiple comparison corrections. The left color bar applies to A, the right color

bar applies to B and C. For both color bars, blue colors indicate lower spectral power in correctly perceived trials compared with incorrectly perceived trials.
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temporal perceptual discrimination task. First, the linear trend

and mean of every epoch were removed from each trial. Time–

frequency representations for each trial were computed byapply-

ing a Fourier transformation on adaptive sliding time windows

containing 7 full cycles of the respective frequency f (Δt = 7/f ),

moved in steps of 50 ms and 2 Hz (van Dijk et al. 2008; Mazaheri

et al. 2009; Lange et al. 2012). Data segments were tapered with a

single Hanning taper, resulting in a spectral smoothing of 1/Δt.

Spectral power was averaged over the alpha band separately for

each trial. Alpha power was estimated independently for each

of the 204 gradiometers. Subsequently, gradiometer pairs were

combined by summing spectral power across the 2 orthogonal

channels, resulting in 102 pairs of gradiometers. We sorted the

trials with respect to the SOA for each subject separately. For all

trials with intermediate SOA, we separated and compared trials

with reports of 1 perceived stimulus to trials with 2 perceived

stimuli.With this approach, wewere able to compare 2 sets of de-

cisional outcomes, which differed only in the subjects’ temporal

perceptual discrimination of the stimuli, though not regarding

their physical properties. Due to the fact that, only for the inter-

mediate condition, a sufficiently high number of trials for both

decisional outcomes (perceived 1 stimulus or 2 stimuli) were

available, only trials with intermediate SOA entered the analysis.

In the following, trials in which stimulation was perceived as 2

temporally separate stimuli will be labeled correctly perceived

trials, whereas trials in which stimulationwas perceived as 1 sin-

gle stimuluswill be labeled incorrectly perceived trials. To test for

statistically significant power differences between sets, weused a

cluster-based nonparametric randomization approach (Maris

and Oostenveld 2007). In a first step, we compared averaged

alpha power between both sets of decisional outcomes (correct

and incorrect, i.e., perceived 2 stimuli or 1 stimulus) for each sub-

ject independently in all channels and all time points in the pres-

timulus time window (−900 to 0 ms). Comparison between sets

was performed by subtracting the power of both sets and dividing

the difference by the variance (equivalent to an independent

sample t-test). This step serves as a normalization of interindivi-

dual differences (Hoogenboomet al. 2010; Lange et al. 2011, 2013).

The comparison was done independently for each time sample

and channel, resulting in a time-channelmap of pseudo-t-values

foreachsubject. For group-level statistics,weanalyzed the consist-

ency of pseudo-t-values over subjects by means of a nonparamet-

ric randomization test identifying clusters in time-channel space

showing the same effect. Neighboring channels were defined on

the basis of spatial adjacency, with spatial clusters requiring a

minimum amount of 2 neighboring channels. Spatially and tem-

porally adjacent pseudo-t-values exceeding an a priori-defined

threshold (P < 0.05) were combined to a cluster. t-values within a

cluster were summed up and used as input for the second-level

cluster statistic. Next, we computed a reference distribution by

randomly permuting the data, assuming no differences between

statistical conditions and exchangeability of the data. This process

of random assignment was repeated 1000 times, resulting in a

summed cluster t-value for each repetition. The proportion of ele-

ments in the reference distribution exceeding the observed max-

imum cluster-level test statistic was used to estimate a P-value

for each cluster. This statistical approach effectively controls for

the Type I error rate due to multiple comparisons across time

points and channels (Maris and Oostenveld 2007).

Source Reconstruction

To identify the cortical sources of the statistically significant ef-

fects displayed on sensor level, we calculated source-level

power estimates by means of an adaptive spatial filtering tech-

nique (DICS, Gross et al. 2001). To this end, a regular 3D grid

with 1 cm resolution was applied to the Montreal Neurological

Institute (MNI) template brain. Individual grids for each subject

were computed by linearly warping the structural MRI of each

subject onto the MNI template brain and applying the inverse

of the warp to the MNI template grid. For one subject, no individ-

ual structural MRI was available; hence, we used the MNI tem-

plate brain instead. A lead-field matrix was computed for each

grid point employing a realistically shaped single-shell volume

conduction model (Nolte 2003). Subsequently, the cross-spectral

density (CSD) matrix between all MEG gradiometer sensor pairs

was computed for the alpha band by applying a Fourier trans-

formation on timewindows of interest. Timewindows of interest

were based on the significant clusters of the group analysis on

sensor level (Fig. 2B). Using the CSD and lead-field matrix, com-

mon spatial filters were constructed for each individual grid

point. To this end, we pooled trials with intermediate SOA over

both sets of decisional outcomes and computed a common spa-

tial filter for each subject. CSD matrices of single trials were pro-

jected through those filters, resulting in single-trial estimates of

source power (Hoogenboom et al. 2010; Lange et al. 2012), and fur-

ther sorted according to decisional outcome. In linewith the ana-

lysis on sensor level, power was contrasted between both sets of

decisional outcomes. Similarly to the sensor-level analysis, the

resulting individual source parameters were statistically com-

pared across subjects by means of a nonparametric randomiza-

tion test (Maris and Oostenveld 2007) which effectively controls

for the Type I error rate. Group results were displayed on the

MNI template brain in form of t-values. Finally, cortical sources

were identified using the AFNI atlas (http://afni.nimh.nih.gov/

afni), integrated into FieldTrip.

Since the time–frequency analysis and the source reconstruc-

tion demonstrated 2 spatiotemporally different activation clus-

ters (see Results and Fig. 2B,C), we performed the subsequent

analyses on 2 different sensor sets. First, we based the analyses

on all channels showing a significant alpha power difference be-

tween correctly (perceived 2 stimuli) versus incorrectly (per-

ceived 1 stimulus) perceived trials with intermediate SOA (as

shown in Fig. 2B). Second, we based the analyses on 2 spatio-

temporally separated sensor-clusters (see inset in Fig. 2B), 1 an-

terior/somatosensory sensor-cluster (MEG-sensors: MEG0712 + 13,

MEG0722 + 23, MEG1042 + 43, MEG1112 + 13, MEG1122 + 23, MEG

1132 + 33, MEG1142 + 43, MEG1312 + 13, MEG1342 + 43, MEG1832 +

33, MEG2012 + 13, MEG2022 + 23, MEG2212 + 13, MEG2222 + 23,

MEG2232 + 33, MEG2242 + 43, MEG2412 + 13, MEG2422 + 23, MEG

2612 + 13, MEG2642 + 43), and 1 parieto-occipital sensor-cluster

(MEG-sensors: MEG2312 + 13, MEG2322 + 23, MEG2342 + 43, MEG

2432 + 33, MEG2442 + 43, MEG2512 + 13, MEG2522 + 23).

Correlation of Prestimulus Power, Perceptual Decisions,
and Confidence Ratings

To examine the relationship between prestimulus power and

perceptual decisions, we averaged spectral power over time, fre-

quency, and sensors and correlated averaged power values with

perceptual decisions. To this end, we selected the sensors and

time points showing a significant difference between decisional

outcomes (see above, Fig. 2B). Note that this approach resembles

a post hoc statistical analysis in the sense that sensor selection

was based on those sensors showing a significant difference in

the alpha band (see above, Fig. 2B). Averaging was done separate-

ly for each subject and trial, using a fixed time–frequency-sensor

triplet resulting from the significant time-channel clusters
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derived from group-level statistics and the predetermined alpha

frequency (8–12 Hz). Trials of each subject were sorted from low

to high alpha power and divided into 5 bins (Linkenkaer-Hansen

et al. 2004; Jones et al. 2010; Lange et al. 2012, 2013). For each bin

and subject, we calculated the average temporal perceptual dis-

crimination rate and normalized the resulting value for each

bin to the individual average temporal perceptual discrimination

rate across all bins by first subtracting and then dividing by the

individual averaged temporal perceptual discrimination rate

across all trials. This resulted in a percentage change relative to

the normalized mean across all bins for each subject (Linken-

kaer-Hansen et al. 2004; Lange et al. 2012, 2013). For each bin,

average power and SEM were computed over all subjects. Linear

and quadratic functions were fitted to the data to determine

the best fit (Linkenkaer-Hansen et al. 2004; van Dijk et al. 2008;

Jones et al. 2010; Lange et al. 2012, 2013). Average temporal per-

ceptual discrimination rates in the respective bins were statistic-

ally compared by applying a one-way repeated-measures ANOVA

and post hoc t-tests.

Additionally, we investigated the correlation of prestimulus

power and confidence ratings. The analysis was conducted as

stated above, with the following exceptions. To separately deter-

mine the relation between prestimulus power and confidence

rating for correctly and incorrectly perceived trials, we divided

the trials with intermediate SOA regarding their decisional out-

come, that is, correctly and incorrectly perceived trials were ana-

lyzed separately. For each bin, we calculated the average

confidence rating and normalized the result in each bin to the

average confidence rating across all trials with the respective de-

cisional outcome. Finally, the average confidence ratings were

averaged over subjects. Likewise, linear and quadratic functions

were fitted to the data.

Further, we separated the significant channels in 2 clusters

(anterior/somatosensory vs. parieto-occipital; see above and

inset of Fig. 2B) based on their spatiotemporal characteristics

and performed the correlation analysis with power values aver-

aged over the channels of these separated sensor-clusters.

Relation Between Decision Variable, Prestimulus Power,
and Poststimulus ERFs

To examine the neural dynamics of perceptual decision making

under conditions with suboptimal evidence accumulation and

ambiguous stimulus perception, we studied the relation of post-

stimulus ERFs, prestimulus alpha power and decisional outcome.

Perceptual decisions can be conceptualized as a process inwhich

sensory evidence for a decision accumulates over time in a deci-

sion variable until a decision bound is reached, followed by a par-

ticular response selection (Gold and Shadlen 2007; Ratcliff and

McKoon 2007; Kiani and Shadlen 2009). Recent works in human

electrophysiology suggest that such decision variables are re-

flected in poststimulus event-related potentials (e.g., VanRullen

and Thorpe 2001; Philiastides and Sajda 2006; Philiastides et al.

2006; O’Connell et al. 2012). Since event-related potentials/fields

resemble a population-based measure of neuronal activity (Hari

and Kaukoranta 1985), this is further supported by studies that

identify signals from multiple neurons as basis of behavioral de-

cisions (Britten et al. 1996). We hypothesized that, in trials with

intermediate SOA, the total accumulation of sensory evidence

would remain below any decisional bound due to insufficient

sensory information in favor of any decision, therefore requiring

forced-choice decisions. We aimed to assess these decision vari-

ables in poststimulus ERFs. Additionally, confidence levels

should be a function of the distance of the decision variable to

the decision bounds, with closer proximity of the decision vari-

able to the respective decision bound resulting in higher confi-

dence. Moreover, we hypothesized that prestimulus alpha

power modulates the distance of the decision variable to the re-

spective decision bounds.

To compute ERFs, preprocessed data were filtered between

2 and 40 Hz, the mean of each epoch was removed from each

trial, and these datawere averaged across trials. For each subject,

ERFs were computed for all sensors that showed a significant dif-

ference between decisional outcomes (as shown in Fig. 2B). Add-

itionally, we separated the significant channels in 2 spatial

clusters (anterior/somatosensory vs. parieto-occipital, see inset

of Fig. 2B) based on their spatiotemporal characteristics and cal-

culated ERFs for all sensors of the respective sensor-cluster sep-

arately. To avoid cancelation effects when averaging across

sensors and subjects, the signals of the 2 orthogonal sensors of

each gradiometer pair were combined by taking the root mean

square of the signals in the time domain (e.g., van Dijk et al.

2008; Lange et al. 2012), resulting in 102 gradiometer pairs. Post-

stimulus ERFswere baseline corrected by subtracting themean of

the prestimulus period (−900 to 0 ms). First, we determined po-

tential poststimulus decision boundaries in the poststimulus

ERFs. To this end, we computed ERFs for the 2 conditions with

0 and 100 ms SOA as they provided the most unambiguous per-

ception of 1 and 2 stimuli. Only trials with correct responses

(i.e., perceived 1 stimulus for trials with SOA 0 ms and perceived

2 stimuli for trials with SOA 100 ms) were included in this ana-

lysis, with conditions subsequently labeled as 0ms-1 and

100ms-2. We statistically compared the ERFs in the poststimulus

period (0–300 ms) to identify time periods that maximally discri-

minated between these 2 reference conditions with 0 and 100 ms

SOA. We used a nonparametric statistical test which effectively

controls for the Type I error rate due to multiple comparisons

across time points in line with the procedure described above

(for details, see Time–Frequency Analysis). In brief, we calculated

the difference between both ERFs for each subject, followed by a

group-level statistic testing the consistency of the differences

across subjects against a reference null distribution based on

1000 random sets of permutations regarding the 2 experimental

conditions.

Next, we examined whether the ERFs reflect a decision vari-

able that is independent of sensory input, but differing according

to subject’s decisional outcome. To this end, we sorted trials with

intermediate SOA in trials with correct and incorrect responses.

We hypothesized that due to their ambiguity and insufficient ac-

cumulation of sensory evidence, the decision bounds (i.e., ERFs of

conditions 0ms-1 and 100ms-2) will not be reached in trials with

intermediate SOA. Nonetheless, because of the implemented

forced-choice task, subjects are forced to make the decision

with a particular level of uncertainty. We hypothesized that con-

fidence levels should be a function of the distance of the decision

variable to the decision bounds, with closer proximity of the

decision variable to the respective decision bound resulting in

higher confidence. Moreover, we hypothesized that prestimulus

alpha power has a distinguishable effect on the decision variable.

Since prestimulus alpha power significantly influenced temporal

perceptual discrimination and confidence ratings (Fig. 3A,B), an

effect of prestimulus alpha power should be visible in the poststi-

mulus decision variable. We hypothesized that prestimulus

alpha power modulates the distance of the decision variable to

the respective decision bounds (Fig. 4B). To this end, we averaged

prestimulus alpha power across those time points and sensors

that showed a significant difference between decisional outcomes

(see above, Fig. 2B) and grouped the trials with intermediate SOA
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into correct and incorrect trials with either high and low presti-

mulus alpha power. This resulted in 4 different conditions: low

prestimulus alpha power and perceived 2 stimuli (subsequently

labeled low α-2), high prestimulus alpha power and perceived 2

stimuli (high α-2), low prestimulus alpha power and perceived 1

stimulus (low α-1), high prestimulus alpha power and perceived

1 stimulus (high α-1). We then computed poststimulus ERFs for

each of these conditions.

To quantify the relation between these conditions, we chose 2

parallel approaches to determine a time window of interest. In

the first approach, we averaged ERF amplitudes for each condi-

tion over those time points showing a significant difference be-

tween the conditions 0ms-1 and 100ms-2 (i.e., 145–171 ms; see

above and Fig. 4A; see Supplementary Fig. 1 for the complete

ERF time courses of all conditions). In the second approach, we

determined the time point ofmaximumamplitude difference be-

tween the conditions 0ms-1 and 100ms-2 within those time

points showing a significant difference between the conditions

(150 ms). Please see the Discussion section for a further discus-

sion on the selection criteria for the time window of interest.

We averaged ERF amplitudes for each condition over the 10 ms

that precede this time point of maximal difference (i.e., 140–

150 ms). The rationale of this approach was that decision vari-

ables are thought to increase until a decision bound is reached

and decline again afterwards to baseline (Kiani and Shadlen

2009; O’Connell et al. 2012). Thus, the time point of maximal dif-

ference between the reference conditions and the preceding time

window should be the best predictor of the decision process (see

model in Fig. 4B).

For the additional analyses based on separated sensor-clus-

ters, significant differences between the conditions 0ms-1 and

100ms-2 could be demonstrated from 139 to 172 ms (see Fig. 4D)

and the point of maximum amplitude difference was located at

151 ms for the anterior/somatosensory sensor-cluster. For the

parieto-occipital cluster, no significant differences between the

conditions 0ms-1 and 100ms-2 could be demonstrated (see

Fig. 4F). To ensure that the absence of significant differences for

the parieto-occipital cluster did not result from low statistical

power due to a lower number of channels in this cluster (parie-

to-occipital cluster: 7 channel pairs, anterior/somatosensory

sensor-cluster: 20 channel pairs), we further compared the condi-

tions 0ms-1 and 100ms-2 for a random selection of 7 channel

pairs from the anterior/somatosensory sensor-cluster. The re-

sults of this analysis reproduced the significant differences be-

tween the conditions 0ms-1 and 100ms-2 (139–169 ms; data not

shown) as well as a significant negative linear correlation for

the ordered averaged ERFs (i.e., 100ms-2, low α-2, high α-2, low

α-1, high α-1, 0ms-1; r = −0.96, P < 0.01 for time window 139–

169 ms; r =−0.87, P < 0.05 for time window 139–149 ms; data not

shown). Based on these results, we conclude that the absent sig-

nificant difference between the conditions 0ms-1 and 100ms-2

for the parieto-occipital cluster cannot be generally explained

by the smaller number of channels in this cluster, but instead

must be mainly attributed to the absence of decision-related

ERF components in the parieto-occipital sensor-cluster.

For both sensor sets (all significant sensors and the anterior/

somatosensory sensor-cluster), we subsequently ordered the

conditions regarding the expected averaged ERF amplitudes

(100ms-2, low α-2, high α-2, low α-1, high α-1, 0ms-1) and fitted

a linear regression to the data to determine a linear trend

(Fig. 5). Due to the a priori difference of the conditions 100ms-2

and 0ms-1, we performed an additional analysis in which we ex-

cluded these conditions from the regression analysis. Hence, the

regression analysis was additionally calculated for the ordered

intermediate conditions (low α-2, high α-2, low α-1, high α-1)

only. Averaged ERF amplitudeswere statistically comparedbyap-

plying a one-way repeated-measures ANOVA. Because no time

window showing a significant difference between the conditions

0ms-1 and 100ms-2 was found for the parieto-occipital sensor-

cluster, we refrained from performing this analysis for the parie-

to-occipital sensor-cluster.

Finally, we calculated the average confidence ratings per sub-

ject for each condition and averaged the mean confidence levels

per condition over all subjects. Since confidence levels should be

a function of the distance of the decision variable to the respect-

ive decision bounds (i.e., low α-2 and high α-2 to 100ms-2; low α-1

and high α-1 to 0ms-1, see Fig. 4B), we calculated themean power

difference of each intermediate condition (i.e., low α-2, high α-2,

low α-1, high α-1) from the respective decision bounds averaged

over the time window showing a significant difference between

the conditions 0ms-1 and 100ms-2 (i.e., 145–171 ms) and the

timewindow preceding the point of maximum amplitude differ-

ence between the conditions 0ms-1 and 100ms-2 (i.e., 140–

150 ms, Fig. 5C). We plotted the distance of the decision variables

to the respective decision bounds and related it to the mean con-

fidence levels per condition over all subjects. Subsequently, we

fitted a linear regression to the data to determine a linear trend.

Additionally, we performed this analysis with amplitude values

calculated for the time windows based on the anterior/somato-

sensory sensor-cluster (i.e., 139–172 ms; 141–151 ms, Fig. 5F).

Due to the fact that, for the parieto-occipital sensor-cluster, no

Figure 3. Results of the post hoc correlation analyses of averaged prestimulus

alpha power (8–12 Hz) for significant sensors (as shown in Fig. 2B) and (A)

normalized average temporal perceptual discrimination rate or (B) normalized

confidence ratings, separated for correctly and incorrectly perceived trials.

Insets show results of the linear regression analyses (black and gray lines).

Higher number bins indicate higher spectral power. Error bars represent SEM.

**P < 0.01, *P < 0.05.
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timewindow showing a significant difference between the condi-

tions 0ms-1 and 100ms-2 was found, we refrained from perform-

ing this analysis for the parieto-occipital sensor-cluster.

Results

Behavioral Results

Subjects performed a forced-choice temporal perceptual dis-

crimination task (Fig. 1) and had to report how many electrical

stimulations applied to their left index finger they perceived.

For SOAs of 0 and 100 ms, subjects made only negligible errors

(SOA 0ms: 92.3 ± 1.8% [mean ±SD] correct reports; SOA of 100 ms:

93.8 ± 2.7% correct reports). For intermediate SOAs, subjects cor-

rectly perceived stimulation in approximately half of the trials

(56.7 ± 3.2% correct reports). The response distribution of each

condition did not significantly differ from aGaussian distribution

(P > 0.05). Statistical testing revealed highly significant differ-

ences regarding temporal perceptual discrimination rates be-

tween the intermediate condition and the 0 ms (t(15) = 10.086,

P < 0.0001) aswell as the 100 ms condition (t(15) = 11.811, P < 0.0001).

Overall, the absolute influence of learning/fatigue is negligible.

No significant linear trends indicating learning or fatigue effects

couldbedetermined foraverage temporalperceptualdiscrimination

rate (r = 0.49, P > 0.05, Supplementary Fig. 2A) or confidence rat-

ings (r = 0.55, P > 0.05, Supplementary Fig. 2B).

Time–Frequency Analysis

We studied the role of prestimulus alpha-band oscillations (8–

12 Hz) on temporal perceptual discrimination. We focused on

trials with intermediate SOA and compared alpha power in the

prestimulus period (−900 to 0 ms) between correctly and incor-

rectly perceived trials. The exploratory time–frequency analysis

confirmed a prominent alpha effect in the prestimulus period

(Fig. 2A). Prestimulus alpha power was found to be statistically

significantly decreased if subjects correctly perceived the stimu-

lation as 2 stimuli comparedwith incorrectly perceived trials (P <

0.05, Fig. 2B). Significant differences were most evident for anter-

ior/somatosensory and parieto-occipital sensors contralateral to

stimulation site between −900 and −250 ms. Particularly, the

topographical location of the effect shifted over time, with sig-

nificant decreases in both contralateral anterior/somatosensory

and parieto-occipital sensors at the beginning of the prestimulus

epoch (−900 to −500 ms), compared with a decrease of power in

more posterior sensors in the later prestimulus epoch (−400 to

−250 ms). Note that, although both sensor-clusters show a

Figure 4. Results of the analysis of poststimulus ERFs. (A) Statistical comparison of poststimulus ERF amplitudes (averaged over all significant sensors, as shown in Fig. 2B)

of correctly perceived trials with 0 ms (0ms-1) and 100 ms (100ms-2) SOA. Significant differences are indicated by shaded area (145–171 ms). The dashed line represents

the point ofmaximumamplitudedifference between the reference conditions 0ms-1 and 100ms-2 (150 ms). The blue arrowhighlights the timepoint of stimulation for the

0ms-1 condition, while the red arrows highlight the time points of stimulation for the 100ms-2 condition. (B) Predicted poststimulus ERFs. Decision model illustrating

the hypothesized order of poststimulus ERFs. Conditions 0ms-1 and 100ms-2 reflect the decision bounds for perceiving 1 and 2 stimuli, respectively. The other

conditions are predicted to be between these bounds in the presented order. Distance to the bound is hypothesized to reflect confidence in the decision (indicated by

gray-shaded background). The dashed line represents the point of maximum amplitude difference between the reference conditions 0ms-1 and 100ms-2. Beyond

this point, the decision variables are thought to decline again to baseline. (C) MEG data of poststimulus ERFs. Close-up on the time window of significant difference

(145–171 ms; shaded area) between poststimulus ERF amplitudes of 0ms-1 and 100ms-2 (averaged over all significant sensors, as shown in Fig. 2B). Shaded area and

dashed line as in A. Color scheme as in B. (D) Same as A, but now for amplitude values averaged over the anterior/somatosensory sensor-cluster (as shown in Fig. 2B;

time window: 139–172 ms; time point of maximum amplitude difference: 151 ms). Blue and red arrows as in A. (E) Same as C, but now for amplitude values averaged

over the anterior/somatosensory sensor-cluster (as shown in Fig. 2B; time window: 139–172 ms; time point of maximum amplitude difference: 151 ms). Shaded area

and dashed line as in D. (F) Same as A, but now for amplitude values averaged over the parieto-occipital sensor-cluster (as shown in Fig. 2B). Blue and red arrows as in

A. No statistically significant differencewas found. Significance values in A–F are cluster corrected to account for multiple comparison corrections. t = 0 indicates onset of

sensory stimulation, that is, the first stimulus of every stimulation.
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significant alpha power decrease in the prestimulus epoch, the

decision-related effects of alpha power visible in the poststimu-

lus ERFs could only be demonstrated for the anterior/somatosen-

sory sensor-cluster (see Relation between Decision Variable,

Prestimulus Power, and Poststimulus ERFs and Fig. 4).

Source Reconstruction

To identify the underlying cortical sources of the aforementioned

significant effect, we applied a beamforming approach. We iden-

tified one source mainly located in contralateral postcentral

gyrus (Brodmann area 3, Fig. 2C). A second cluster was found in

the contralateral middle occipital region, encompassing Brod-

mann areas 19, 21, and 39.

Correlation of Prestimulus Power, Perceptual Decisions,
and Confidence Ratings

To determine more precisely the relation of prestimulus alpha

power and subjective perception, we performed a correlation

analysis. We computed single-trial power averaged over alpha

frequencies and significant sensor-time points (time window:

−900 to −250 ms, see Fig. 2B). Trials were sorted from low to

high power and divided into 5 bins. Response probabilities for

each bin were calculated as the percentage change in temporal

perceptual discrimination rate from the mean, normalized per

subject to the individual mean temporal perceptual discrimin-

ation rate over all bins.

We found a significant negative linear relationship between

prestimulus alpha power averaged over all sensors showing a sig-

nificant alpha power difference between correctly (perceived 2

stimuli) versus incorrectly (perceived 1 stimulus) perceived trials

with intermediate SOA and subjects’ perceptual decisions (r =

−0.94, P < 0.05, Fig. 3A). In other words, probability of correctly

perceiving the stimulation as 2 temporally separate stimuli was

greater during trials with lower prestimulus alpha power. A

one-way repeated-measures ANOVA revealed a significant main

effect (P < 0.05). Post hoc t-tests revealed significant differences

between bin1 versus bin4 (t(15) = 3.049, P < 0.01), bin1 versus bin5

(t(15) = 3.096, P < 0.01), bin2 versus bin4 (t(15) = 2.545, P < 0.05), and

bin3 versus bin4 (t(15) = 2.142, P < 0.05). No significant quadratic re-

lationship between prestimulus alpha power and subject’s per-

ceptual decisions was found (r = 0.94, P = 0.11). In addition, we

performed the same analysis with power values averaged over

the sensors of the spatiotemporally separated sensor-clusters

(anterior/somatosensory vs. parieto-occipital). For the anterior/

somatosensory sensor-cluster, both linear (r = −0.97, P < 0.01)

and quadratic (r = 0.99, P < 0.05) fits for the relationship between

prestimulus alpha power and subjects’ perceptual decisions

were significant. A one-way repeated-measures ANOVA revealed

an effect on trend level (P = 0.1). Post hoc t-tests revealed signifi-

cant differences between bin1 versus bin4 (t(15) = 2.74, P < 0.05),

bin1 versus bin5 (t(15) = 2.14, P < 0.05), and bin2 versus bin4 (t(15) =

2.32, P < 0.05). Similarly for the parieto-occipital sensor-cluster,

both linear (r = −0.96, P < 0.05) and quadratic (r = 0.99, P < 0.05)

fits for the relationship between prestimulus alpha power and

Figure 5.Averaged amplitude values and confidence ratings of poststimulus ERFs. (A) Amplitude values (based on all significant sensors, as shown in Fig. 2B) averaged over

the timewindow showing a significant difference between poststimulus ERF amplitudes of 0ms-1 and 100ms-2 (145–171 ms, see Fig. 4A,C). (B) Amplitude values (based on

all significant sensors, as shown in Fig. 2B) averaged over the time window preceding the point of maximal amplitude difference (150 ms) between poststimulus ERF

amplitudes of 0ms-1 and 100ms-2 (140–150 ms, see Fig. 4A,C). (C) Average confidence ratings per condition in relation to mean power difference to the respective

decision bound (based on all significant sensors, as shown in Fig. 2B) for the time window 140 to 150 ms (see Fig. 4A,C). (D) Same as A, but now for amplitude values

based on the anterior/somatosensory sensor-cluster (as shown in Fig. 2B; time window: 139–172 ms, Fig. 4D,E). (E) Same as B, but now for amplitude values based on

the anterior/somatosensory sensor-cluster (as shown in Fig. 2B; time window: 141–151 ms, see Fig. 4D,E). (F) Same as C, but now for mean power difference based on

the anterior/somatosensory sensor-cluster (as shown in Fig. 2B; time window 141–151 ms, Fig. 4D,E). In A, B, D, and E conditions are ordered according to the

hypothesized decision model (Fig. 4B). Insets in A, B, D, and E show results of the linear regression analyses (black lines) based on all 6 conditions (i.e., 100ms-2, low α-

2, high α-2, low α-1, high α-1, 0ms-1). Note that the additional regression analyses excluding the 100ms-2 and 0ms-1 conditions similarly demonstrate a significant

negative linear correlation (P < 0.05; regression lines not shown) for the ordered intermediate ERFs (i.e., low α-2, high α-2, low α-1, high α-1) for all 4 time windows

(145–171, 140–150, 139–172, 141–151 ms). Insets in C and F show results of the linear regression analyses (black lines).
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subjects’ perceptual decisions were significant. No significant ef-

fect was found by a one-way repeated-measures ANOVA (P =

0.15). Post hoc t-tests revealed significant differences between

bin1 versus bin4 (t(15) = 2.47, P < 0.05).

In a similar analysis, we investigated the correlation between

prestimulus alpha power and subjects’ level of confidence re-

garding their perceptual decisions. We found a significant nega-

tive linear relationship between prestimulus alpha power

averaged over all sensors showing a significant alpha power dif-

ference between correctly (perceived 1 stimuli) versus incorrectly

(perceived 1 stimulus) perceived trials with intermediate SOA

and confidence ratings for correctly perceived trials (r =−0.88, P <

0.05, Fig. 3B) and a strong trend toward a significant positive lin-

ear correlation for incorrectly perceived trials (r = 0.81, P = 0.095).

No significant quadratic relationship between prestimulus

alpha power and subjects’ confidence ratings was found (correct

trials: r = 0.95, P = 0.1; incorrect trials: r = 0.94, P = 0.11). For the

anterior/somatosensory sensor-cluster, a significant negative

linear relationship between prestimulus alpha power and confi-

dence ratings for correctly perceived trials (r = −0.92, P < 0.05)

could be demonstrated, while no significant effect was found

for incorrect trials (r = 0.6, P = 0.28). For quadratic relationships be-

tween prestimulus alpha power and subjects’ confidence ratings,

no significant fit was found (correct trials: r = 0.92, P = 0.14; incor-

rect trials: r = 0.8, P = 0.35). Finally, no significant linear or quadrat-

ic relationship between prestimulus alpha power and confidence

ratings could be demonstrated for the parieto-occipital cluster,

neither for correct (linear: r = −0.49, P = 0.41; quadratic: r = 0.59,

P = 0.65) or incorrect trials (linear: r = 0.73, P = 0.17; quadratic:

r = 0.94, P = 0.11).

Relation Between Decision Variable, Prestimulus Power,
and Poststimulus ERFs

We investigated if poststimulus ERFs show characteristics of a

decision variable and the influence of prestimulus alpha power

on these variables. We analyzed poststimulus ERFs by applying

a boundary-crossing decision-making model (Philiastides et al.

2006; O’Connell et al. 2012). To this end, we estimated decision

bounds for the unambiguous perception of 1 and 2 stimuli by cal-

culating poststimulus ERFs from all correct trials of the 0 and

100 ms SOA conditions, subsequently labeled 0ms-1 and

100ms-2. Statistical comparison revealed a significant difference

between both ERF amplitudes between 145 and 171 ms (P < 0.05),

indicating that the 2 signals significantly diverge during this time

window (Fig. 4A). The spatial distribution of the stimuli-evoked

ERFs for those time points showing a significant difference be-

tween the conditions 0ms-1 and 100ms-2 (i.e., 145–171 ms) re-

vealed highly similar patterns of activity over conditions

(Supplementary Fig. 3).

According to our hypothesis, these ERFs should reflect the

lower and upper boundaries for decisions toward 1 and 2 stimuli,

respectively. ERFs of trials with intermediate SOA should be lo-

cated in between these boundaries and the distance toward the

respective boundary should reflect the perceptual decision as

well as the confidence in the decision (Fig. 4B). The results dem-

onstrate that, despite physically identical stimulation, the ERFs

of trials with intermediate SOA differ with respect to subjects’

perception and prestimulus alpha power (Fig. 4C). In line with

our hypothesis, we found a significant negative linear correlation

for the ordered averaged ERFs (i.e., 100ms-2, low α-2, high α-2,

low α-1, high α-1, 0ms-1), indicating a monotonic decrease

in amplitude from the 100ms-2 condition to the 0ms-1 condition

(r =−0.93, P < 0.01 for time window 145–171 ms, Fig. 5A; r =−0.96,

P < 0.01 for time window 140–150 ms, Fig. 5B). An additional re-

gression analysis which excluded the 100ms-2 and 0ms-1 condi-

tions also revealed a significant negative linear correlation for the

ordered averaged intermediate ERFs (i.e., low α-2, high α-2, low

α-1, high α-1), indicating a monotonic decrease in amplitude

from the low α-2 condition to the high α-1 condition (r = −0.97,

P < 0.05 for time window 145–171 ms, see also captions Fig. 5;

r =−0.98, P < 0.05 for time window 140–150 ms, see also captions

Fig. 5). A one-way repeated-measures ANOVA revealed a strong

trend toward a significant main effect (P = 0.065) for the analysis

of the time window 145–171 ms. No significant effect was found

for the time window 140–150 ms.

For the additional regression analysis performed on the an-

terior/somatosensory sensor-cluster (Fig. 4D,E), a significant

negative linear correlation for the ordered averaged ERFs (i.e.,

100ms-2, low α-2, high α-2, low α-1, high α-1, 0ms-1) could be de-

monstrated (r = −0.99, P < 0.001 for time window 139–172 ms,

Fig. 5D; r = −0.97, P < 0.01 for time window 141–151 ms, Fig. 5E).

The negative linear correlations remained significant under ex-

clusion of the 100ms-2 and 0ms-1 conditions (r =−0.99, P < 0.001

for time window 139–172 ms, see also captions Fig. 5; r = −0.97,

P < 0.05 for time window 141–151 ms, see also captions Fig. 5).

A one-way repeated-measures ANOVA revealed a significant

main effect for both time windows (P < 0.05 for time window

139–172 ms; P < 0.05 for time window 141–151 ms). Because no

timewindow showing a significant difference between the condi-

tions 0ms-1 and 100ms-2 was found for the parieto-occipital

sensor-cluster (see Fig. 4F), we refrained from performing the re-

gression analysis for the parieto-occipital sensor-cluster.

We further related the average confidence ratings per condi-

tion to the distance of the decision variables to the respective de-

cision bounds. According to our hypothesis, the average

confidence ratings per condition should increase with closer

proximity of the decision variables to the respective decision

bounds (see Fig. 4B). While for the time window from 145 to

171 ms, no significant linear relation between confidence ratings

and distance of the decision variables to the respective decision

bounds could be demonstrated (r = 0.43, P = 0.57), a strong trend

toward a significant negative linear relation (r =−0.95, P = 0.053)

was evident for the time window from 140 to 150 ms (Fig. 5C).

For the critical time windows based on the anterior/somatosen-

sory sensor-cluster, a significant negative linear relation could

only be demonstrated for the time window from 141 to 151 ms

(r = −0.96, P < 0.05, Fig. 5F). For the time window from 139 to

172 ms, no significant linear fit was found (r = −0.24, P = 0.84).

Regarding the time windows before the point of maximum

amplitude difference (140–150 ms for all significant sensors,

141–151 ms for the anterior/somatosensory sensor-cluster), in

agreement with our hypothesis a closer distance to the reference

conditions resulted in higher confidence ratings. Because no time

window showing a significant difference between the conditions

0ms-1 and 100ms-2 was found for the parieto-occipital sensor-

cluster, we refrained from performing this analysis for the parieto-

occipital sensor-cluster.

Discussion

We investigated the influence of prestimulus alpha activity on

the temporal perceptual discrimination of suprathreshold tactile

stimuli, the confidence in perceptual decisions and the under-

lying neuronal decision variable. Subjects received 1 or 2 tactile

stimuli with different SOAs. In a forced-choice task, subjects re-

ported their perceptual decision and their confidence in this

decision.
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Subjects frequently misperceived stimulation as 1 stimulus

for trials with intermediate SOA, indicating perceptual ambiguity

despite physically identical stimulation. For these trials with

intermediate SOA, correct perception of 2 separate stimuli was

correlated with a decrease of alpha power (8–12 Hz) relative to in-

correctly perceived trials. This effect was evident before onset of

stimulation (−900 to −250 ms) mainly in the contralateral post-

central gyrus (presumably primary somatosensory cortex) and

the contralateral middle occipital region. Additionally, prestimu-

lus alpha power correlated with subjects’ confidence ratings. For

correctly perceived trials, high confidence ratings correlated with

low prestimulus alpha power. Contrarily, for incorrectly per-

ceived trials, high confidence ratings correlated with high presti-

mulus alpha power. Finally, poststimulus ERFs at ∼150 ms

revealed characteristics of a decision variable. In summary, we

found: 1) Poststimulus ERFs at ∼150 ms reflect perceptual deci-

sions and subjects’ confidence in their decisions rather than

pure sensory evidence. 2) ERFs for all conditions were in line

with an accumulation-to-bound model in which sensory evi-

dence is accumulated in a decision variable (Gold and Shadlen

2007). In trials with ambiguous, intermediate SOA, ERFs of cor-

rectly perceived trials were closer to the putative categorical de-

cision bound for perceiving 2 stimuli while incorrectly perceived

trials were closer to the categorical decision bound for perceiving

1 stimulus. 3) Due to their perceptual ambiguity, stimuli with

intermediate SOA provided only incomplete sensory evidence,

resulting in incomplete evidence accumulation and hence ERFs

did not cross the decision bound. 4) Incomplete evidence accu-

mulation resulted in lower confidence as reflected in the ERFs.

5) The variability of ERFs, decisions, and confidence ratings is

biased by fluctuations of prestimulus alpha power. 6) Finally,

the above-mentioned results could be replicated only for the an-

terior/somatosensory sensor-cluster after separating the sensors

of interest. Therefore, it appears that mainly the somatosensory

cortex areas account for the decision-related components visible

at ∼150 ms.

We estimated the poststimulus categorical decision boundar-

ies by calculating significant differences between ERFs of the ref-

erence conditions 0ms-1 and 100ms-2. One might argue that

these conditions differ not only by subjects’ decisions but also

by sensory evidence (1 stimulus vs. 2 stimuli), and thus, our puta-

tive decision variable might reflect sensory input rather than de-

cisional processes. However, we demonstrate that ERFs around

∼150 ms for trials with intermediate SOA, that is, with constant

stimulation, correlate with perceptual decisions rather than sen-

sory input.

Several studies have reported an inverted U-shaped relation-

ship between prestimulus alpha power and perceptual perform-

ance, with intermediate alpha levels resulting in best

performance levels (Linkenkaer-Hansen et al. 2004; Zhang and

Ding 2009; Lange et al. 2012). On the contrary, other studies em-

phasize a linear relationship, with lower power levels being re-

lated to better performance (Thut et al. 2006; Hanslmayr et al.

2007; Schubert et al. 2008; van Dijk et al. 2008; Mathewson et al.

2009; Jones et al. 2010). In the present study, linear as well as

quadratic fits were applied to the data. For most analyses, both

linear and quadratic fits were significant for the correlation of

prestimulus alpha power and perceptual decisions for the anter-

ior/somatosensory and the parieto-occipital sensor-cluster. This

demonstration of both linear and quadratic dependencies hin-

ders a final conclusion on this matter. It remains to be seen if fu-

ture studies can clarify the relevant factors in terms of

neuroanatomical region or experimental conditions favoring

one dependency over the other.

Notably, themajority of previous studies used near-threshold

stimuli and relied on conditions where stimuli are either per-

ceived or not perceived. Thus, subjects had to report whether or

not stimulation is perceived, irrespective of its content. Here, we

contrasted 2 different perceptual qualities with suprathreshold

intensities, since subjects had to report whether they perceived

1 stimulus or 2 stimuli. Our paradigm therefore focuses on tem-

poral discrimination and employs temporal ambiguity, with

identical suprathreshold stimulation resulting in varying percep-

tual decisions. Hence, the present study provides critical exten-

sions to the aforementioned studies.

Our results are in line with several studies reporting a correl-

ation of prestimulus alpha power and detection or discrimination

of near-threshold stimuli (e.g., Linkenkaer-Hansen et al. 2004;

Zhang and Ding 2009; Jones et al. 2010). We critically extend

these studies by demonstrating that alpha power influences

also the temporal resolution of perception. Although formerly in-

terpreted as correlate of cortical idling (Pfurtscheller et al. 1996),

alpha activity has recently been suggested to gate neuronal pro-

cessing by functional inhibition of task-irrelevant areas (Jensen

and Mazaheri 2010; Jensen et al. 2012) and/or by modulating cor-

tical excitability (Thut et al. 2006; Romei, Brodbeck et al. 2008;

Romei, Rihs et al. 2008; Lange et al. 2013), resulting in more effi-

cient neuronal stimulus processing in task-related neuronal

groups. By using 2 clearly suprathreshold stimuli, we demon-

strate that prestimulus alpha power extends the role of a simple

binary switch between inhibition and processing. Rather, it mod-

ulates the quantity (1 stimulus or 2 stimuli, e.g., Lange et al. 2013;

Keil et al. 2014) and the subjective quality (i.e., confidence) of per-

ception continuously. This continuousmodulation is reflected in

confidence ratings, providing amore fine-grained scale of the de-

cision process.

Prestimulus alpha power can bemodulated by attention or ex-

pectation (Foxe et al. 1998; Worden et al. 2000; Jones et al. 2010;

Anderson and Ding 2011; Haegens et al. 2012). In line with

these results, recent studies demonstrated that prestimulus

alpha power is predictive of perceptual performance in atten-

tion-based tasks (Kelly et al. 2009; O’Connell et al. 2009). While

we did not explicitly modulate attention in our study, we suggest

that spontaneous fluctuations of attention or arousal modulate

prestimulus alpha power and thus influence perception and con-

fidence. Further, it seems that such fluctuations are distinguish-

able from general training effects, sincewe did not find significant

learning/fatigue trends for either perception or confidence.

We found alpha power to differ significantly in the prestimu-

lus period in the contralateral postcentral gyrus and contralateral

middle occipital region. Differential alpha-band activity in the

postcentral gyrus (presumably primary somatosensory areas)

has been found for other tactile tasks (e.g., Zhang and Ding

2009; Jones et al. 2010; Lange et al. 2012). Here, we extend the

role of the postcentral gyrus to temporal perceptual discrimin-

ation of 2 subsequently presented stimuli. Since we applied

only tactile stimuli and a tactile decision task, the significant

alpha-band effect in visual areas might seem surprising. How-

ever, our results are in line with findings from a tactile spatial at-

tention task, showing that in the absence of visual stimulation,

attention to tactile stimulation resulted in suppression of

alpha-band power in occipital areas (Bauer et al. 2006). Similarly,

a recent study indicates that task-relevant spatial attention in

one sensory domain affects oscillatory activity in other domains

(Bauer et al. 2012). In accordance to these findings, a recent study

demonstrated that parieto-occipital activation in the alpha band

is linked to spatial attention across modalities (Banerjee et al.

2011).
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In linewith these results, the power differences in the contra-

lateralmiddle occipital region can also be interpreted as correlate

of global attention, thus not restricted to the somatosensory do-

main. This is supported by classical findings which localize the

central generator of alpha rhythms in parieto-occipital areas

(e.g., Salmelin and Hari 1994; Manshanden et al. 2002), independ-

ent of task requirements. The explanation is further strength-

ened by our findings that the decision-related ERF components

could only be found for the anterior/somatosensory sensor-

cluster, but not in the parieto-occipital cluster. This indicates

that the parieto-occipital sensor-cluster, although showing sig-

nificant power differences between perceptual conditions, is

not central for decision-related processes. The influence of pres-

timulus alpha on decision variables is also in line with a recent

EEG study (Lou et al. 2014). In this study, the influence of presti-

mulus activity is seen as top-down attention-based modulation,

indicating that the sensory evidence is comprised of stimulus in-

formation and attentional state.

We demonstrate that prestimulus alpha power does not only

correlate with perceptual decisions, but also with the subjective

quality of such decisions. If alpha power was low, subjects were

more confident with their decisions, but notably only for correct-

ly perceived stimuli. Contrarily, if stimulation was perceived in-

correctly, low alpha power correlated with low confidence. This

seemingly contradictory result can be explained by a decision

model. It has been proposed that sensory evidence is accumu-

lated over time in a decision variable until a decision bound is

reached (e.g., Shadlen and Newsome 2001). Here, we used such

a decision-to-bound model to examine poststimulus decision

variables. We hypothesized that due to the ambiguity of sensory

evidence the decision variable does not cross a decision bound.

Further, fluctuations of prestimulus alpha power should influ-

ence the decision variable and the confidence in perceptual deci-

sions, if sensory evidence was insufficient to reach a decision

bound. We identified this proposed pattern of a decision variable

in poststimulus ERFs at ∼150 ms. Despite identical stimulation,

poststimulus ERFs of trials with intermediate SOA differed ac-

cording to the decisional outcome. While neither condition

reached the categorical decision bound, the distance of the deci-

sion variable to the respective decision bounds determined the

decisional outcome.

We identified perceptual decision-related components in

the somatosensory domain, that is, differences in ERF amp-

litudes for conditions with physically similar stimulation para-

meters that discriminated between perceptual reports, as early

as ∼150 ms. Other recent studies addressing perceptual deci-

sion making in the visual domain report decision-related

neural activity at later time points (∼300 ms) and relate earlier

components to low-level stimulus processing mechanisms

(Philiastides et al. 2006; Lou et al. 2014). Such stimulus process-

ing mechanisms can hardly fully explain our results, since our

stimulation parameters remained constant for trials with inter-

mediate SOA. An early decision-related component is further

supported by studies where early components around ∼75–

80 ms were shown to discriminate between high-level proper-

ties such as semantic category and components around

∼150 ms discriminate between target and nontarget conditions

(and hence task-specific decision-related demands), independ-

ent of visual category (VanRullen and Thorpe 2001). In line with

these results, the present components around ∼150 ms can be

interpreted as a correlate of the subjects’ perceptual recognition

and subsequent decision, not merely as stimulus-related bot-

tom-up processing. However, it is important to keep in mind

that somatosensory processing presumably does not end after

the aforementioned component, but it appears that at this

time point sufficient information for a perceptual decision is

accumulated.

Kiani and Shadlen (2009) recorded neuronal activity in mon-

key lateral intraparietal cortex during a decision-making task. If

the monkey chose to opt out, that is, at low confidence levels,

neural activity was at an intermediate level between decision

bounds. We used a more detailed confidence rating and found

that subjects’ confidence correlated with the distance to a deci-

sion bound. This suggests that categorical decision making and

confidence estimation can be a simple and fast inherent property

of the same process (e.g., Kepecs et al. 2008; Kiani and Shadlen

2009), rather than a serial process requiring additional steps or

higher (meta) cognitive functions (e.g., Grinband et al. 2006;

Yeung and Summerfield 2012).

Additionally, we found poststimulus ERFs to interact with

prestimulus alpha levels. Low prestimulus alpha levels shifted

the decision variable towards the decision bound for 2 perceived

stimuli, independent of decisional outcome. For correctly per-

ceived intermediate SOA trials, low prestimulus alpha power in-

creased confidence, because the distance between the decision

variable and the decision bound for 2 perceived stimuli de-

creased. Contrarily, for incorrectly perceived intermediate SOA

trials, low prestimulus alpha power decreased confidence, be-

cause the distance between the decision variable and the deci-

sion boundary for 1 perceived stimulus increased. The influence

of prestimulus alpha power on poststimulus ERFs is in line with

recent studies (Jones et al. 2009, 2010; Anderson and Ding 2011;

Lange et al. 2012). The influence of prestimulus activity on deci-

sions and the underlying decision variable is also in line with a

recent study demonstrating that prestimulus firing rates bias

decisions (Carnevale et al. 2012). While this study considers

prestimulus activity as noise fluctuations, we argue that presti-

mulus alpha power is a functionally relevant marker of cortical

excitability that can fluctuate over time or that can be endogen-

ously or exogenously modulated by, for example, attention,

arousal, or expectation (e.g., Foxe et al. 1998; Worden et al.

2000; Thut et al. 2006; Jones et al. 2010; Anderson and Ding

2011; de Lange et al. 2011).

In line with a recent study (de Lange et al. 2013), we suggest

that prestimulus alpha power biases the starting point of the de-

cision variable. Thus, the decision variable is the combination of

the internal brain state (prestimulus activity) and the sensory

evidence provided by the stimulus. If sensory evidence is weak

or ambiguous, prestimulus activity can effectively bias deci-

sions and confidence ratings by shifting the decision variable

closer to either decision bound. The fact that prestimulus activ-

ity influences the decisional process implies that the decision-

making process starts before stimulus presentation (Carnevale

et al. 2012; de Lange et al. 2013). Such prestimulus fluctuations

can also explain why decisions, confidence ratings, or response

times can vary despite physically identical stimulation.

In conclusion, our results demonstrate that the brain state,

characterized by alpha power, substantially modulates temporal

perceptual discrimination of tactile stimuli despite identical

physical stimulation, as well as confidence in perceptual deci-

sions. Moreover, these fluctuations in prestimulus alpha power

are visible in poststimulus ERFs mainly determined by somato-

sensory areas, reflecting the physiological correlate of evidence

accumulation in a decision variable for perceptual decisions

based on insufficient and suboptimal evidence. We conclude

that alpha-band activity continuously modulates the quality of

processing underlying perceptual decisions, resulting in differ-

ences in temporal perceptual discrimination.
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Whether seeing a movie, listening to a song, or feeling a breeze on

the skin, we coherently experience these stimuli as continuous,

seamless percepts. However, there are rare perceptual phenomena

that argue against continuous perception but, instead, suggest

discrete processing of sensory input. Empirical evidence supporting

such a discrete mechanism, however, remains scarce and comes

entirely from the visual domain. Here, we demonstrate compelling

evidence for discrete perceptual sampling in the somatosensory

domain. Using magnetoencephalography (MEG) and a tactile tem-

poral discrimination task in humans, we find that oscillatory alpha-

and low beta-band (8–20 Hz) cycles in primary somatosensory cortex

represent neurophysiological correlates of discrete perceptual cycles.

Our results agree with several theoretical concepts of discrete per-

ceptual sampling and empirical evidence of perceptual cycles in the

visual domain. Critically, these results show that discrete perceptual

cycles are not domain-specific, and thus restricted to the visual do-

main, but extend to the somatosensory domain.

somatosensory perception | beta oscillations | MEG | oscillatory phase

The sensory system continuously receives and processes nu-
merous stimuli. Subjective experience implies that conscious

perception, and thus cortical processing, of this stimulation is
also continuous. This view of continuous cortical processing, how-
ever, has been challenged by several studies proposing that the brain
operates discontinuously within a framework of discretely sampled
“perceptual cycles” (1–4). This process of perceptual cycles is
thought to create a temporally defined window, with discrete stimuli
falling inside this window being consciously perceived as a single
event (4). Discrete sampling of sensory information allows for the
possibility of transforming perceptual input into temporal code (5,
6), metabolic efficiency (7), and the efficient organization of in-
formation, thereby preventing information overload (6). Over the
past decades, however, there has been an ongoing discussion about
the nature of perception. Several studies have argued against the
theory of discontinuous perceptual cycles (8, 9). In recent years, the
hypothesis of a discontinuous cyclic perception received new support
by electroencephalography (EEG) and magnetoencephalography
(MEG) studies investigating neuronal oscillations. This novel
support is attributable to the theory that serial perceptual sam-
pling is thought to depend on the temporal relationship between
external stimuli and some ongoing internal neurophysiological
process (4) providing a temporal reference frame (5), with neu-
ronal oscillations representing a probable candidate measure for
this underlying process.
There is growing evidence that oscillatory power and phase

influence cortical processing (10, 11) and perception (3, 12–14).
Most of these studies investigated perception of single near-
threshold stimuli. Although these studies demonstrate that
neuronal oscillations play a critical role in defining neuronal
states, which, in turn, influence perception and neuronal pro-
cessing (5, 15, 16), these studies do not provide direct evidence
for or against the theory of perceptual cycles. Recent studies,
however, argued that parietooccipital alpha oscillations (∼8–12 Hz)
might define cycles of perception (6, 15, 17–19). However, they only
provide evidence for discrete perceptual sampling in the visual
domain. To claim that discrete perception is not domain-specific, it

is critical to demonstrate discrete and cyclic perception also for
other sensory modalities and whether different modalities work via
the same mechanism (e.g., whether alpha cycles generally define
critical perceptual cycles for all modalities). Because sensory
modalities work on different time scales, there is some indication
that the mechanisms might differ.
We investigated whether discrete perceptual cycles exist in the

somatosensory domain. Contrary to most studies in the visual do-
main, we used discrete rather than continuous stimuli, which dif-
fered only in perceptual impact, yet not in physical stimulation
parameters. By this method, we could study whether two succes-
sively presented stimuli are perceived as either one single or two
separate sensory events, depending on their temporal relationship
to discrete perceptual cycles defined by the ongoing neuronal os-
cillatory phase. This setup allowed us to test the theory of discrete
perceptual sampling critically in the somatosensory domain, and
thus whether cycles of perception represent a mechanism of con-
scious perception that exists beyond the visual domain.

Results

Behavioral Results. Subjects received one or two electrical pulses
separated by a specific stimulus onset asynchrony (SOA; no-
menclature is provided in Materials and Methods) and had to
perform a forced-choice temporal perceptual discrimination task
(Fig. 1), wherein they had to report whether they perceived one
or two stimuli. Subjects made negligible errors for the conditions
0 ms and 100 ms [SOA 0 ms: 97.7 ± 0.4% (mean ± SEM) reports
of correctly perceiving one stimulus, SOA 100 ms: 94.6 ± 2.3%
reports of correctly perceiving two stimuli]. Individually de-
termined, intermediate SOAs yielded correct perception of two
stimuli in ∼50% of the trials (58.0 ± 3.1% reports). For the
condition intermediate − 10 ms, subjects perceived two stimuli in
25.6 ± 4.7% reports, and for intermediate + 10 ms, subjects
perceived two stimuli in 79.1 ± 4.7% reports. A one-way repeated

Significance

Our sensory system constantly receives multiple inputs, which are

usually perceived as a seamless stream. Thus, perception is com-

monly regarded as a continuous process. Alternatively, a few

phenomena and recent studies suggest that perception might

work in a discrete and periodic sampling mode. In a human mag-

netoencephalography study, we challenged the common view of

continuous perception. We demonstrate that neuronal oscillations

in the alpha band and low beta band determine discrete percep-

tual sampling windows in primary somatosensory cortex. The

current results elucidate how ongoing neuronal oscillations shape

discrete perceptual cycles, which constitute the basis for a discon-

tinuous and periodic nature of somatosensory perception.
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measures ANOVA comparing average hit rates between conditions
demonstrated a highly significant difference [F(4,60) = 141.25, P <

0.001]. Post hoc t tests revealed significant differences between the
condition 0 ms vs. intermediate − 10 ms [t(15) = 5.14, P < 0.01], 0 ms
vs. intermediate [t(15) = 18.34, P < 0.001], 0 ms vs. intermediate +

10 ms [t(15) = 15.79, P < 0.001], 0 ms vs. 100 ms [t(15) = −37.15, P <

0.001], intermediate − 10 ms vs. intermediate [t(15) = 7.36, P <

0.001], intermediate− 10 ms vs. intermediate + 10 ms [t(15) = −7.15,
P < 0.001], intermediate − 10 ms vs. 100 ms [t(15) = −13.1, P <

0.001], intermediate vs. intermediate + 10 ms [t(15) = −5.35, P <

0.001], intermediate vs. 100 ms [t(15) = −12.54, P < 0.001], and
intermediate + 10 ms vs. 100 ms [t(15) = −3.79, P < 0.01].

Phase Angle Contrast. To study the influence of oscillatory
phase angles on perception, we sorted trials with intermediate
SOA according to perceptual response (perceived one or two
stimuli), resulting in two perceptual conditions (intermediate1 vs.
intermediate2). We computed phase angles for each condition in
source space by means of a virtual channel in the primary so-
matosensory cortex (S1) (Fig. 2A) and contrasted the phases of
intermediate2 with intermediate1 (Fig. S1). The analysis revealed
a significant positive cluster (P < 0.05; Fig. 2B) in the prestimulus
epoch (−0.53 to −0.09 s) for frequencies in the alpha band and

lower beta band (8–20 Hz). Notably, the effect was more
prominent and temporally extended in the beta band (14–20 Hz,
−0.53 to −0.09 s) compared with the alpha band (8–12 Hz, −0.39
to −0.24 s). That is, the phase difference between perceptual
conditions differed significantly more in this time-frequency range
compared with randomly distributed phases. For frequencies in
the lower beta band, phase difference fluctuated around maximum
(i.e., π) in the prestimulus period (Fig. 2C). To exclude any bias
due to power differences, we analyzed power differences between
perceptual conditions for those time-frequency elements exhibit-
ing significant phase differences (analysis parameters are provided
in ref. 14). The results did not reveal any significant power dif-
ferences (P > 0.05, uncorrected). Regarding phase angle differ-
ences, we found an additional significant negative cluster (P <

0.05; Fig. 2B) between 2 and 28 Hz and between −0.1 and 0.24 s.
Here, phase differences were significantly smaller compared with
randomly distributed phases. This effect presumably resembles the
phase resetting after stimulus presentation (18, 20).

Phase Angles and Perception. To analyze the extent by which
perception was influenced by phase, we computed for each
subject the momentary phase for each single trial for both per-
ceptual conditions at the time point showing the largest statis-
tical phase difference effect (Materials and Methods). Trials were
placed in one of six different phase bins and aligned for each
subject so that the highest probability for perceiving two stimuli
corresponded to a zero phase angle. For each subject, we cal-
culated the normalized perceptual response rate per bin, and we
then averaged normalized response rates across subjects (Fig.
2D). Although this analysis resembles a post hoc test (because it
is based on the time-frequency points of maximal phase differ-
ence determined in the previous analysis), it quantifies the
magnitude by which phase influences perception, as well as the
grade by which performance varies over different phase bins.
A one-way repeated measures ANOVA comparing normalized
perceptual response rates between bins demonstrated a highly
significant difference [F(4,60) = 6.53, P < 0.001]. Post hoc t tests
revealed significant differences between bin 1 vs. bin 3 [t(5) =

−4.17, P < 0.01], bin 1 vs. bin 5 [t(5) = −4.21, P < 0.01], bin 1 vs.
bin 6 [t(5) = −4.13, P < 0.01], bin 2 vs. bin 3 [t(5) = −2.77, P <

0.05], and bin 2 vs. bin 5 [t(5) = −3.16, P < 0.01]. The results
indicate a monotonic decrease of mean response rate from zero
phase angle to π, with the response rates differing by 13% points
between the lowest (−π, 38%) and highest (1/3 π, 51%) phase
bins (with exclusion of the zero phase bin).

Beta-Band Cycles Determine Perceptual Cycles. Fig. 3 illustrates a
model derived from the analysis of phase angle contrasts and the
theory of temporal framing (3, 19, 21). The model proposes that

Fig. 1. Experimental paradigm. The sequence of events begins with pre-

sentation of a central fixation dot (500 ms). Luminance decrease signals start at

the prestimulus epoch (900–1,100 ms), after which tactile stimulation is applied to

the left index finger with varying SOAs (0ms, intermediate− 10ms, intermediate,

intermediate + 10 ms, 100 ms). Stimulation is followed by a jittered poststimulus

period (500–1,200 ms), after which written instructions signal subjects to report

their respective perception of the stimulation by pressing a button.

Fig. 2. Virtual sensor location and phase angle differences. (A) Virtual sensor location based on the voxel of maximum activity of the contrast M50 vs. prestimulus

baseline. The voxel is highlighted on a slice plot of the Montreal Neurological Institute (MNI) template brain (MNI coordinates: 50 −10 50). (B) Time-frequency plot

showing the results of the statistical analysis of phase angle differences between intermediate2 vs. intermediate1. Significant clusters (P < 0.05, corrected) are

highlighted. Red colors indicate higher phase differences compared with randomly distributed phases. t = 0 indicates onset of the first stimulus. (C) Phase angle

difference (black solid line) between intermediate2 (Intermed2) and intermediate1 (Intermed1) for an exemplary 14-Hz band. The upper dashed line indicates the

maximum phase angle difference (π). (Insets) Phase angles for intermediate2 (blue lines) and intermediate1 (red lines) for exemplary time points (Left, t = −420 ms;

Right, t = −50 ms) (D) Relationship between the momentary phase (Materials and Methods) and the normalized perceptual response rate. The probability of

perceiving two stimuli significantly depends on the phase angle and differs maximally between opposite phase angles (ANOVA, P < 0.001).
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the temporal resolution of perception is defined by one cycle of a
specific frequency. If presented within one cycle, the two stimuli
are merged into one perceptual event and perceived as one
single stimulus (Fig. 3A, white rectangles). If presented within
two separate cycles, they will be perceived as two temporally
separate perceptual events (Fig. 3A, black rectangles). Although
the neural representation of the first stimulus can arrive at any
point in the oscillatory cycle (21) for ongoing oscillations, the
arrival of the second stimulus is determined by the SOA. For a
cycle length twice as long as the respective SOA, a stimulus ar-
riving in the first half of the cycle determines the arrival of the
second stimulus in the same cycle (one perceived stimulus). Vice
versa, a stimulus arriving in the second half of the cycle de-
termines the arrival of the second stimulus in a subsequent cycle
(two perceived stimuli). From the results of the phase angle
contrast analysis, we derive that this critical frequency band lies
in the alpha band and, particularly, the lower beta band between
8 and 20 Hz (Fig. 2B). Given these model preconditions, we can
make two predictions. First, if the SOA between two stimuli
equals half the length of the cycle of the critical frequency (e.g.,
25 ms for a 20-Hz oscillation), mean phases for the perception of
one stimulus (range: 0 to π for the example in Fig. 3A) and two
stimuli (range: π to 2π) should differ maximally (∼π). More
precisely, perception rates should critically depend on the phase
at which the first stimulus arrives (Fig. 3 B–D). That is, if the
stimulus arrives at a given phase φ, perception rates should differ
significantly from φ + π. Second, if the critical frequency is
known, we can predict behavioral response rates for different
SOAs. The first prediction is confirmed by the analysis of phase
angle contrast (Fig. 2 B and C). Based on these results, the post
hoc phase binning analysis shows a monotonic decrease in per-
ception over bins, and, thus, the dependence of perception rates
on phase (Fig. 2D). The second prediction will be tested and
presented below.

Prediction of Perception. Based on the model (Fig. 3), we pre-
dicted response rates for the different SOAs and computed lin-
ear regressions between predicted and behaviorally measured
response rates. We computed predictions based on (i) group-
level effect frequencies determined from MEG experimental
data (8–20 Hz; Fig. 2B), (ii) based on single subject-level
individual frequencies determined from MEG experimental
data (Fig. S2 and Table S1), and (iii) based on frequencies
determined from behavioral experimental data (i.e., the in-
termediate SOAs):

i) Based on group-level effect frequencies (8–20 Hz; Fig. 2B),
the linear regression analysis for behavioral response rates
and predicted response rates (Fig. 4) resulted in a highly
significant correlation coefficient (r = 0.93, P < 0.01). The
resulting slope estimate (0.83 ± 0.1) did not differ signifi-
cantly from 1 [t(4) = −1.8, P > 0.05].

ii) Linear regression analysis of the individual behavioral and
predicted individual response rates resulted in a significant
correlation coefficient in all 16 subjects (r ranging from 0.69
to 0.96, P < 0.05). For 12 of 16 subjects, the resulting slope
estimate did not differ significantly from 1 [t(4) ranging from
−2.6 to 2.4, P > 0.05; Fig. S2 and Table S1]. We additionally
predicted group-level response rates by averaging the indi-
vidual response rates over subjects. The resulting predictions
were virtually similar to the predictions based on the aver-
aging over group-level effect frequencies (i) (Fig. 4). The
resulting slope estimate (0.78 ± 0.1) did not differ signifi-
cantly from 1 [t(4) = −2.23, P > 0.05].

iii) Predictions based on frequencies determined from behavior-
al experimental data yielded results highly similar to those
results determined from MEG experimental data (details are
provided in SI Results).

Discussion

We investigated the neuronal mechanisms of varying conscious
perception in the somatosensory domain. The results argue against
a continuous perceptual mechanism and provide evidence that
somatosensory perception operates in a discrete mode, with sen-
sory input being sampled by discrete perceptual cycles in the alpha
band and, in particular, the lower beta band (8–20 Hz).

Beta-Band Cycles Determine Discrete Perceptual Sampling. We found
that phase angles in S1 in the alpha band and lower beta band (8–
20 Hz) before stimulus onset predicted whether subjects perceived
two constant electrical stimuli with an SOA of ∼25 ms as one or two
stimuli (Fig. 2B). Notably, this effect was most prominent in the
lower beta band (14–18 Hz). We put forward a model proposing
that somatosensory stimulation is discretely sampled and that the
underlying perceptual cycles are determined by ongoing oscillatory
alpha and beta cycles (Fig. 3). If multiple discrete stimuli fall within
one perceptual cycle, the temporally fine-grained information is lost
and the distinct stimuli are fused to a single percept, a phenomenon
that has been labeled perceptual or temporal framing in the visual
domain (3, 19, 21). The model was confirmed by two theoretical
predictions. First, beta oscillations were found to be antiphasic
(phase difference of π) for perception of one vs. two stimuli for
intermediate SOAs (∼25 ms; Fig. 2 B–D). Based on these results,
response rates were shown to depend on the specific phase at which
the first stimulus arrives (Fig. 2D). Second, the model predicts be-
havioral performance on group (Fig. 4) and single-subject (Fig.
S2) levels.
Based on behavioral response rates, the model predicted a the-

oretical critical sampling frequency of ∼23 Hz. The experimentally
observed frequency range based on statistical analysis of phase
angles revealed a significant effect between 8 and 20 Hz. Whereas
the upper end of the experimental frequency range is close to the
theoretically assumed frequency, the experimental frequency band
also includes lower frequencies. A potential reason for this un-
derestimation of the critical sampling frequency might be a de-
creased signal-to-noise ratio for higher frequencies. Noninvasive
measurement (e.g., via EEG/MEG) of phase has been assumed to
be especially susceptible to various interferences (e.g., delays in
synaptic transmission) at higher frequencies (5). Likewise, phase
differences in lower frequency bands could also resemble processes
different than perceptual sampling (e.g., attentional processes) (22).
This idea is in line with the different temporal distributions of phase
angle differences for alpha- and beta-band frequencies. Finally, the
presented model does not claim to cover all portions of the decision
process determining the final response but, instead, focuses on early
perceptual components. For example, the present data are derived

Fig. 3. Model for perceptual cycles. (A) Red and blue lines illustrate two per-

ceptual cycles. Two stimuli can occur within one (white rectangles, one stimulus

perceived) or two (black rectangles, two separate stimuli perceived) perceptual

cycles. (B) Same as in A, but for stimulus pairs with a longer SOA. The blue

background illustrates the time frame in which the occurrence of the first

stimulus results in one perceived stimulus (○), and the gray background illus-

trates the time frame in which the occurrence of the first stimulus results in two

perceived stimuli (●). (C) Same as in B, but for stimuli with a shorter SOA. Note

different lengths of blue and gray time frames. (D) Same as in B, but for ex-

amples of three different SOAs. Intermediate SOAs (rectangles) result in time

frames for one (blue arrows) or two (gray arrows) perceived stimuli of approx-

imately equal length. For longer SOAs (●), the time frame for two perceived

stimuli (gray arrows) is bigger than for one perceived stimulus (blue arrows). For

shorter SOAs (♦), the time frame for two perceived stimuli (gray arrows) is

smaller than for one perceived stimulus (blue arrows).
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from S1, thus not taking into account other cortical areas involved
in the decisional process.

Discrete Perceptual Sampling Is Not a Domain-Specific Mechanism.
The theory of discrete perceptual cycles was introduced decades
ago (1, 2). However, it has been controversially discussed (8, 9).
Recently, the discussion on discrete perceptual cycles has gained
new momentum by studies using EEG, which allows one to study
potential neuronal mechanisms of discrete perceptual cycles
noninvasively (5, 17, 22). Nonetheless, empirical evidence to
support the theory of discrete perceptual cycles remains scarce
and focuses mainly on the visual domain (3, 17), whereas evi-
dence for discrete cycles in other domains is largely missing (19).
The present study is thus, to our knowledge, the first to dem-
onstrate the existence of perceptual cycles in the somatosensory
domain, indicating that the cyclic characteristic of perception is
not a domain-specific visual mechanism (19).

Modality-Specific Differences. For the visual domain, EEG studies
propose discrete cycles in perception and attentional updating
defined by the alpha cycle (3, 17, 22). Our model agrees with
these studies, albeit we propose perceptual cycles to be defined
by alpha-band and, decisively, beta-band frequencies in the so-
matosensory domain. Although the significant group-level phase
angle differences cover a rather broad band between 8 and 20 Hz,
the major effect can be found in a narrower band between 14
and 18 Hz (Fig. 2B). Because subjects exhibit different individual
intermediate SOAs, different individual frequencies for the dis-
crete perceptual cycles are also to be expected (thereby blurring
the group-level effect). In fact, the analyses based on individually
determined frequencies confirmed that the individual narrow-
band frequencies represent an appropriate predictor for indi-
vidual response rates (Fig. S2). These domain-specific differ-
ences agree with a more prominent role of alpha oscillations in
the visual domain for perception and neuronal processing (23,
24), whereas there is experimental evidence for a specific role of
beta oscillations in the somatosensory domain (10, 13, 25–27).
The present findings are in line with studies investigating steady-
state somatosensory evoked potentials (SSSEPs). These studies
found that the largest SSSEP amplitudes can be achieved by a
stimulation frequency of ∼18–26 Hz (i.e., in the beta band) (27–
29). Stimulation at this frequency would place every stimulus in
a separate beta cycle, therefore enhancing SSSEPs and, conse-
quently, facilitating perceptual detection (26). Finally, the pro-
portion perceiving two stimuli differed by 13% between the
lowest (−π) and the highest (1/3 π) phase bins (with exclusion of
the zero phase bin). This difference agrees with ranges reported
for visual stimuli (5, 15). Thus, both visual and somatosensory

perception seems to be influenced by phase with a comparable
magnitude.

What About Absolute Phase Angles? Varela et al. (3) reported that
the phase of occipital alpha oscillations determines whether
subjects perceive two sequential visual stimuli as one or two
stimuli. The respective phase for perceiving one vs. two stimuli
was anticyclic (i.e., the phase difference was π). Although later
studies failed to replicate this result (19, 30), our results support
the finding by Varela et al. (3), because we find a phase differ-
ence of π between phases for perceiving one vs. two tactile
stimuli. In contrast to Varela et al. (3), however, we do not claim
that the specific phase (the peak or trough) is important for
perception but, rather, whether two stimuli fall within a single cycle
or separate cycles. The majority of studies investigating the influence
of oscillatory phase on perception analyzed absolute phase angles
within an oscillatory cycle at a specific moment, which are either
favorable or unfavorable for subsequent perception (5, 11, 12, 15,
31). Thus, a potential concern might be that our results could be
explained by favorable or unfavorable phases within one cycle. In
such a framework, one stimulus might be presented at a favorable
phase and the other stimulus might be presented at an unfavorable
phase, thus leading to the erroneous perception of only one stimulus.
The above-mentioned studies, however, used near-threshold stimuli.
We presented stimuli with clearly suprathreshold intensities that are
presumably perceived independent of the specific phase. Although a
hypothesis proposing an influence of (un)favorable phases would
predict that ∼50% of the stimuli with SOA 0 ms would be missed,
subjects correctly perceived almost all stimuli. Similarly, such a
framework would predict a higher percentage of trials with SOA
100 ms to be perceived as one stimulus than found in our behavioral
data. Therefore, the present results cannot be explained by favor-
able or unfavorable phases within one oscillatory cycle.

Differentiating Effects of Phase and Power. Recent studies dem-
onstrated an influence of oscillatory power for perception of
single (near-threshold) tactile stimuli, as well as for the tem-
poral discrimination of two tactile stimuli (10, 25). The majority
of these studies [including a previous study by our group on the
dataset presented in this study (14)] found prestimulus power
differences in the alpha band (8–12 Hz), whereas the present
phase angles differed mostly in the lower beta band (14–18 Hz).
Further, we found no significant power differences in those
time-frequency elements showing significant phase angle dif-
ferences between perceptual conditions. It is thus unlikely that
the presented phase effect was biased by power differences.
Indeed, there is experimental evidence for an influence of both
oscillatory power (10) and phase (12, 31) for neuronal pro-
cessing and perception, and recent studies could demonstrate
that these measures act largely independently (5, 22). This
differentiation is further supported by results showing that
phase is able to transport more units of information per time than
power changes (32) or spike counts (33), and represents a suitable
candidate measure to encode fast-changing stimulus features (21).

Contradicting Subjective Experience. There is accumulating evi-
dence that our brain processes incoming stimulus information in
a phasic mode (3, 17). However, personal experience does not
intuitively match with a discrete sequencing approach but, rather,
resembles a seamlessly updated percept. This divergence might
explain why relatively few studies address this topic, although the
concept of discrete perceptual sampling has been put forward at
least since the middle of the 20th century (1, 2). It remains an
open question how the brain transforms discretely sampled
sensory information into a subjectively seamless impression. Al-
though the mechanisms for such perceptual “smoothing” are
unknown, there are, at least for the visual domain, several re-
ports where the mechanisms fail to work (34). For example, in
akinetopsia, subjects report perceiving a sequence of snapshots
rather than a continuous motion (35, 36). Similarly, the ingestion of
lysergic acid diethylamide often results in a perceptual disturbance

Fig. 4. Model prediction of response rates. Proportion of “perceived two

stimuli” reports for conditions with different SOAs for model predictions

based on averaged individual response rates (gray bars), significant group-

level frequencies (8–20 Hz, white bars), and behavioral data (black bars).

Predicted responses based on frequencies were calculated per frequency bin

and then averaged over all respective frequencies. Hit rates are presented as

mean ± SEM.
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wherein visual motion is perceived as a sequence of discrete sta-
tionary images (37, 38).

Conclusions

The present study demonstrates an influence of oscillatory phase
on the temporal perception of two stimuli. We propose the ex-
istence of discrete perceptual cycles for the conscious perception
of subsequently presented tactile stimuli. The perceptual cycles
are determined particularly by frequencies in the beta band
acting as the specific physiological correlate for perceptual cycles
for the somatosensory modality. In combination with previous
studies investigating similar paradigms in the visual domain (3,
30), the present results support the theory of temporal framing
(1–3, 19, 21) and indicate that perceptual cycles are no domain-
specific visual phenomenon, albeit modality-specific frequencies
that define perceptual cycles seem to be present.

Materials and Methods
Subjects. The subjects, stimuli, paradigm, and MEG recording of the present

study were previously reported in detail (14). Here, we present a comprehensive

overview. Sixteen right-handed volunteers [seven males, age: 26.1 ± 4.7 y

(mean ± SD)] participated in the study. Subjects provided written informed

consent before the experiment in accordance with the Declaration of Helsinki

and approved by the Ethical Committee of the Medical Faculty, Heinrich-Heine-

University Düsseldorf.

Experimental Paradigm. Details on the paradigm can be found in the study by

Baumgarten et al. (14). A comprehensive overview is provided in Fig. 1 and SI

Materials and Methods.

MEG Data Recording and Preprocessing. Electromagnetic brain activity was

continuously recorded using a 306-channel, whole-head MEG system (Neu-

romag Elekta Oy). Analysis was restricted to the gradiometers. Individual

structural MRI scans were acquired using a 3-T MRI scanner (Siemens). Offline

analysis of the data was carried out using custom-made MATLAB (Math-

Works) scripts and the MATLAB-based open-source toolboxes FieldTrip

(fieldtriptoolbox.org) (39), CircStat (40), and SPM8 (41). Continuously

recorded data were segmented into trials. All trials were semiautomatically

and visually inspected for artifacts, whereas artifacts caused by muscle ac-

tivity, eye movements, or technical artifacts were removed semiautomatically

using a z-score–based algorithm implemented in FieldTrip.

Virtual Channel Construction. To focus on S1,we analyzed oscillatory activity in a

predefined region of interest in source space (“virtual sensor”). Details regarding

the construction of the virtual sensor are provided in SI Materials and Methods.

Phase Angle Contrast. Oscillatory phase was calculated for the virtual sensor.

We sorted trials with respect to the SOA for each subject separately, resulting

in five different conditions defined by the length of the SOA (0ms, intermediate−

10 ms, intermediate, intermediate + 10 ms, and 100 ms). Subsequently, we

separated intermediate trials by perceptual response (perceived one vs. two

stimuli, subsequently labeled intermediate1 vs. intermediate2). Because

trial numbers are known to influence phase measures crucially (42), trial

numbers were equated across conditions in each analysis by determining the

condition with the lowest number of trials per subject and randomly

selecting the same number of trials from the remaining conditions. To ex-

clude potential effects due to a specific trial selection, we performed trial

selection by means of random subsampling 100 times, and subsequently

computed the median of the resulting phase parameters over these 100

repetitions (because F values were not normally distributed). The time point

t = 0 was defined as the onset of the first stimulus. The oscillatory phase was

calculated for each time-frequency element (−650 to 240 ms, 2–40 Hz) of

each single trial by applying a discrete Fourier transform (DFT) on fixed

sliding time windows with a length of 500 ms, moved in steps of 10 ms. Data

segments were tapered with a single Hanning taper, resulting in a spectral

smoothing of 2 Hz. For each subject s, trial r, frequency f, and time point t,

we normalized the complex outcome Fs,r,f,t of the DFT by dividing it by its

absolute (abs) value, thus normalizing the signal by its amplitude:

Fnorms,r,f ,t =
Fs,r,f ,t

abs
�
Fs,r,f ,t

� [1]

From these normalized values, we computed for each subject s, trial r, fre-

quency f, and time point t, the normalized phase:

Φnorm
s,r,f ,t = atan

0
@Im

�
Fnorms,r,f ,t

�

Re
�
Fnorm
s,r,f ,t

�
1
A [2]

where Im and Re are the imaginary part and real part, respectively, of

the DFT.

To analyze statistically whether phase angles differed between perceptual

conditions, we compared phase angles between the intermediate1 and in-

termediate2 conditions for each time-frequency element at the within-

subject level by means of the Watson–Williams multisample test for equal

means [CircStat toolbox (40)]. This test for circular data is equivalent to a

two-sample t test for equal angular means. For each randomized trial se-

lection, we compared phase angles for each subject independently for each

time-frequency element, resulting in 100 F values for each time-frequency

element. We took for each time-frequency element the median of all 100 F

values, resulting in a time-channel map of F values for each subject, which

constitutes the test distribution. To assess the consistency of phase angle

differences over subjects, we performed a nonparametric randomization

test identifying clusters in time-frequency space demonstrating a similarly

directed phase angle difference relative to a null distribution (43). We

computed this null distribution under the null hypothesis that phases are

randomly and uniformly distributed, showing no difference between con-

ditions. That is, for each subject, we assigned to each condition random

phases (equaling the number of trials for each subject) and then repeated

the above-mentioned statistical analysis. We compared (random) phase

angles between both conditions for each time-frequency element at the

within-subject level by applying the Watson–Williams test. This procedure

was repeated 100 times (each time with new, randomly chosen phases),

resulting in 100 F values for each time-frequency element. Subsequently, we

took the median of all 100 F values for each time-frequency element,

resulting in a time-channel map of F values for each subject, which consti-

tutes the null distribution. We then statistically compared the F values of the

test distribution with the F values of the null distribution for each time-

frequency element by means of a dependent-samples t test, resulting in a

time-frequency map of t values. Positive t values for a specific time-fre-

quency element demonstrate a larger phase angle difference compared

with randomly distributed phase angles, and vice versa for negative t values

(44). To investigate whether the phase angle differences between percep-

tual conditions were significantly different from randomly distributed pha-

ses, we applied a cluster-based randomization approach (14). This statistical

approach effectively controls for the type I error rate due to multiple com-

parisons across time points and channels (43).

To ensure that phase angle differences are not biased by power, we analyzed

power differences between perceptual conditions for those time-frequency

elements exhibiting significant phase differences. The respective analysis pa-

rameters are discussed in ref. 14. To visualize phase angle differences on the

group level, we computed phase angle differences for each time-frequency

element. We computed the circular distance between the over-trial averages of

the intermediate2 and intermediate1 conditions for each subsampling run, and

subsequently averaged circular distances over all subsampling runs on the sin-

gle-subject level and over subjects (Fig. 2C).

Phase Angles and Perception. To determine towhat extent perception of one or

two stimuli is associatedwith different phase angles,we selected for each subject

the time-frequency point showing the largest statistical phase angle effect

(maximum Watson–Williams test F value) within the time-frequency range of

the aforementioned phase contrast effect (8–20 Hz, −0.53 to −0.09 s; Fig. 2B).

This analysis resembles a post hoc test based on previous results. For each

subject, the momentary phase for the respective time-frequency point was

computed for each single trial for both perceptual conditions. Subsequently,

the trial was placed in one of six different, equally spaced phase bins (bin

width = 1/3 π), ranging from −π to +π. For each subject, we calculated the

normalized perceptual response rate per bin. We adjusted phase distributions

for each subject so that the bin showing maximum perception of two distinct

stimuli was aligned to a phase angle of zero (a similar procedure is described in

refs. 5 and 11). This process was repeated for each of the 100 specific ran-

domized trial selections. Subsequently, we computed the median of the nor-

malized perceptual response rates for each bin across the 100 repetitions for

random trial selection and averaged response rates over subjects (Fig. 2D). To

assess an effect of phase angle on perceptual response rates, a one-way re-

peated measures ANOVA and post hoc paired sample t tests were conducted.

Due to the realignment, we excluded the bin centered on zero from the

statistical analyses.
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Prediction of Perception. Based on the model (Fig. 3), we predicted response

rates for the different SOAs and computed linear regressions between

predicted and behaviorally measured response rates. We used different

approaches to predict response rates, with each approach based on a slightly

different method to determine the critical frequency: (i) based on group-

level effect frequencies determined from MEG experimental data (Fig. 2B),

(ii) based on single-subject individual frequencies determined from MEG

experimental data (Fig. S2 and Table S1), and (iii) based on frequencies

determined from behavioral experimental data (i.e., the intermediate SOAs).

The approaches are described in detail in SI Materials and Methods.
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The cortical network for action observation includes areas of the visual cortex and

non-visual areas, including areas of the motoric system. Parts of this network are known

for their contralateral organization during motion execution, i.e., they predominantly

control and respond to movements of the contralateral body side. We were interested

whether this lateralized organization was also present during action observation. Human

participants viewed point-light displays of human actors, where the actor was facing

and moving either to the right or to the left, while participants’ neuromagnetic activity

was recorded using magnetoencephalography (MEG). We found that right and left facing

movements elicited different activity in left and right motoric areas. This lateralization effect

was found in two distinct spatio-temporal-spectral clusters: An early lateralization effect in

medial sensors at 12–16Hz and∼276–675ms after stimulus onset, and a second cluster

in more lateral sensors at 22–28Hz and ∼1275–1775ms. Our results demonstrate that

in addition to the known somatotopic organization of parts of the human motoric system,

these areas also show a lateralization effect during action observation. Thus, our results

indicate that the hemispheric organization of one’s own body map known for motion

execution extends to the visual observation of others’ bodily actions and movements.

Keywords: mirror-neuron system, somatotopy, inferior frontal gyrus, premotor cortex, point-light displays

Introduction

The recognition of human movements is an important aspect of social interaction. Observing
other individuals provides rich information about their actions, intentions, moods, etc. (see
Blake and Shiffrar, 2007 for an overview). The recognition of human movements also shows
remarkable characteristics which differentiate the recognition process of human movements from
recognition processes of other, non-living objects. For example, human movements and their
intrinsic characteristics can be quickly and accurately recognized even if the human body is
depicted by only a handful of so-called point-lights attached on the otherwise invisible body
(Johansson, 1973).

Imaging studies have revealed a widespread cortical network involved in the perception of
human movements. This network includes visual areas, but also higher level cortical areas
extending beyond the classical low level visual areas (e.g., Grossman et al., 2000; Saygin et al., 2004;
Gilaie-Dotan et al., 2013; Pavlidou et al., 2014b,c). Among these areas is a network known as the
mirror neuron system (MNS). The MNS has been first observed in monkeys and is known as a
system of neurons which are activated during action execution but also during observation of the
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action in the absence of active execution (see Rizzolatti and
Craighero, 2004 for a review). Most prominent areas of the
MNS are the premotor cortex, inferior frontal gyrus and inferior
parietal lobule (Rizzolatti and Craighero, 2004). It is still debated
whether a MNS analogous to the monkey MNS exists in humans.

An analogous system in the human brain has been supported
by single cell recordings in humans (Mukamel et al., 2010)
and indirectly by neurophysiological and neuroimaging studies,
including EEG and MEG. Several EEG studies reported a
suppression of alpha/mu-activity (∼8–13Hz) in sensors over
central and motoric areas during action observation (e.g.,
Muthukumaraswamy et al., 2004; Ulloa and Pineda, 2007; Perry
and Bentin, 2009; Frenkel-Toledo et al., 2013).

In addition, MEG studies have demonstrated that action
observation leads to a desynchronization of activity in the beta-
band (∼14–30Hz). It has been shown that execution, observation
and imagination of a movement suppress alpha/beta-band
activity, but at different degrees. For example, the suppression
of beta-band activity has been shown to be less strong for
observation and imagination compared to motion execution
(e.g., Schnitzler et al., 1997; Hari et al., 1998; Babiloni et al., 2002).
Furthermore, recent studies have demonstrated that beta-band
power in sensorimotor areas correlates with the plausibility of the
observed action (Pavlidou et al., 2014c).

In addition to the core parts of theMNS observed in monkeys,
also other areas in the human brain are relevant for action
observation. While these areas may not contain mirror neurons
per se, they are connected anatomically and/or functionally to
the core MNS. In addition, they often show desynchronization of
alpha/beta activity in response to action observation, similar to
the areas of the MNS. This has led to the notion of an “extended
MNS” including, among others, the superior temporal sulcus and
sensorimotor areas (Pineda, 2008).

Parts of this extended MNS- mainly the sensorimotor areas—
are known for their somatotopic organization. That is, each
part of the body is represented in a corresponding area in the
sensorimotor cortex. In addition, the somatotopic representation
is mainly contralateral, so that sensorimotor area resembles the
human body of the contralateral side (Rizzolatti and Luppino,
2001).

While the knowledge of somatotopic organization and
hemispheric lateralization is mainly derived from studies on
motor execution, studies have shown that the somatotopic
representation is also present during action observation. For
example, an fMRI study revealed that observation of hand, foot
or mouth movements activated different areas in the premotor
cortex in accordance with the known somatotopic organization
(Buccino et al., 2001).

A largely unresolved experimental question, however, is
whether the hemispheric lateralization of sensorimotor areas is
also present during action observation. Evidence for a lateralized
organization during action observation comes mainly from
studies investigating hand movements. For example, EEG and
MEG studies reported that observation or imagination of hand
movements induces lateralized alpha/beta-band suppression
over frontal and central sites (de Lange et al., 2008; Frenkel-
Toledo et al., 2013), In the present study, we aimed to

investigate whether such lateralized activation is also present
during action observation involving the whole body. That is,
we studied whether the activation of motoric areas by action
observation depends on the observed body side of the actor.
We hypothesized that this lateralization would be reflected in
differential neuronal oscillatory power, especially in the beta-
band. To this end, we employed different human actions depicted
as point-light displays and recorded neuromagnetic brain activity
while subjects viewed these actions either with the actor facing
left or right.

Methods

The present study uses data from a previously reported study
(Pavlidou et al., 2014b,c). While subjects, stimuli and paradigm
are thus identical to the previously reported studies, the present
study, however, focuses on a different experimental questions and
thus data analysis differs from our previous studies.

Subjects
Twelve subjects (6 male, age: 27.6 ± 2.9 y [mean ± SD])
with normal or corrected-to-normal vision participated in this
study after giving written informed consent in accordance to the
declaration of Helsinki and the Ethical Committee of the Medical
Faculty, Heinrich Heine-University Düsseldorf.

Stimuli and Paradigm
Stimuli and paradigm of the present study were previously
reported in detail (Pavlidou et al., 2014b,c). Here we report a
concise overview.

Subjects fixated a central red cross for a jittered period (800–
1300ms). Then, additionally, a movie of point-light display
(PLD) was presented centrally for 5 cycles (3600–5000ms).
After the PLD presentation, a black screen was presented for a
jittered period (0–1000ms). Finally, response instructions were
presented for 2000ms and subjects were asked to rate the PLD
within this period. After the response or after 2000ms the
response text disappeared and the next trial started.

PLDs depicted either a natural action of a human figure
or a modified, unnatural (implausible or scrambled) version of
the action and subjects were asked to rate the plausibility of
the action. All stimuli were presented in random order. Since
in the present study data analysis will focus only on a subset
of the natural actions, we will describe only natural actions in
detail here. For a detailed description of the unnatural actions see
Pavlidou et al. (2014b,c).

PLDs were generated by recording the movements of human
actors with 13 sensors attached to their main joints (head,
shoulders, elbows, wrists, hips, knees, and feet) using a motion
tracking system [MotionStar; Ascension Technology, Burlington,
VT; (Lange and Lappe, 2007)]. Movements consisted of natural
actions (e.g., walking, skipping, throwing) viewed either from the
left, right or frontal view. All translatory motion was subtracted
offline so that the PLDswere walking in place. Since in the present
study we were interested in the putative lateralization of neuronal
activity in response to left and right movements, we used only the

Frontiers in Integrative Neuroscience | www.frontiersin.org 2 June 2015 | Volume 9 | Article 43
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FIGURE 1 | Illustration of stimuli and sensors of interest. (A) Illustration

of a single frame of a point-light display (PLD) facing and walking to the left.

PLDs are represented by 13 black dots, dashed lines are only for illustration

and not present in the movies. (B) Same as (A), but now a PLD walking and

facing to the right. (C) Illustration of sensors of interest for time-frequency

analysis and subsequent analysis of lateralization effect. Red circles

represent 8 sensors in the left hemisphere, black triangles 8 sensors in the

right hemisphere, covering bilateral (pre)motor areas.

stimuli facing left or right (see Figures 1A,B and Movies 1, 2 for
examples).

MEG Recordings and Data Analysis
While subjects viewed the stimuli, we recorded neuromagnetic
activity with a 306-channel whole head MEG system (Elekta
Neuromag Oy, Helsinki, Fnland) with a sampling rate of
1000Hz. Vertical and horizontal electrooculograms were
recorded simultaneously for offline artifact rejection.

Data were offline analyzed using custom-made Matlab (The
Mathworks, Natick, Massachusetts, USA) scripts and the Matlab-
based open source toolboxes FieldTrip (Oostenveld et al., 2011)
(http://fieldtrip.fcdonders.nl).

Continuously recorded MEG data were offline epoched in
trials starting with the onset of the fixation cross and ending
with the presentation of the response instructions. All trials were
semi-automatically and visually inspected for artifacts. Artifacts
caused by muscle activity, eye movements or SQUID jumps were
removed semi-automatically using a z-score based algorithm
implemented in FieldTrip. In a nutshell, data was filtered in
a frequency band known to be sensitive for muscular (110–
140Hz) or ocular (1–14Hz) artifact. Next, z-values for each
channel were computed for each time point, resulting in a time
course representing standardized deviations from the mean of
all channels. Artifacts were identified and removed by applying
a threshold and cutting out segments exceeding this threshold.
The threshold was individually set for each subject and manually
chosen, depending on individual noise levels and data quality
(Lange et al., 2013). Excessively noisy channels were removed
and reconstructed by an interpolation of neighboring channels.
Additionally, power line noise was removed from the segmented
data by using a band-stop filter encompassing the 50, 100, and
150Hz components.

Spectral power for the frequency band 4–40Hz was computed
for each sensor separately by applying a discrete Fourier
Transformation on sliding time windows of 500ms length,
moved in steps of 20ms. Data segments were first multiplied with

Hanning window, resulting in an effective smoothing of ±2Hz.
The two orthogonal channels of each gradiometer pair were
combined by summing the power of the two channels.

For each subject, spectral power was averaged separately
over trials depicting a PLD facing to the left or to the right,
respectively. Next, we chose two sets of a priori defined
sensors covering left and right (pre)motor areas (Figure 1C;
eight left sensors: “MEG0212+0213,” “MEG0222+0223,”
“MEG0232+0233,” “MEG0242+0243,” “MEG0412+0413.”
“MEG0422+0423,” “MEG0432+0433,” “MEG0442+0443”;
eight right sensors: “MEG1112+1113,” “MEG1122+1123,”
“MEG1132+133,” “MEG1142+MEG1143,” “MEG1312+1313,”
“MEG1322+1323,” “MEG1332+1333,” “MEG1342+1343”).
In each sensor set, we pooled for each time-frequency pixel
spectral power for right and left facing PLDs across all sensors
of interest and then computed a lateralization index (LI) for each
time-frequency pixel in each sensor set (right or left sensors).
The LI was defined as the differences of spectral power between
right and left PLDs divided by their variance (i.e., equivalent to
an independent sample t-test). This approach provided for each
subject and each sensor set (right or left) a time-frequency map
of LI.

To evaluate whether right and left hemispheres showed a
differential activation by PLD, we finally statistically compared
the LI for right and left sensor sets across subjects using a non-
parametric randomization test (Maris and Oostenveld, 2007).

To this end, we compared the LI for right and left sensor
sets by a time-frequency-wise dependent samples t-test. This
approach led to a time-frequency map of t-values. To correct for
multiple comparisons, we applied a cluster-based randomization
approach (Maris and Oostenveld, 2007). To this end, t-values
were thresholded at a value of t = 1.96 (i.e., p = 0.05),
and neighboring time-frequency-points exceeding this threshold
were clustered. Values within a cluster were summed, giving
our cluster-level test statistic. We generated a randomization
distribution by randomly exchanging the t-maps of a random
subset of subjects. The cluster-statistics were recomputed for
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these new group-level pooled t-maps. By repeating this step 1000
times, a randomization distribution of cluster-level test-statistics
was computed and the test statistics of the observed clusters
were compared with this randomization distribution (for details
see Lange et al., 2011, 2013). This non-parametric approach
avoids assumptions about underlying distributions, implements
a random effect analysis, and corrects for multiple comparisons
across time and frequency (Maris and Oostenveld, 2007).

In summary, our approach results in a multiple-comparison
corrected time-frequency map of values that indicate how
strongly activation in response to left and right PLD differs
between hemispheres.

In addition, we performed post-hoc ANOVAs and t-tests on
the significant clusters found in the above mentioned analysis.
To this end, we averaged spectral power over significant time-
frequency pixels (as defined in Figure 2) separately for each
condition (left or right PLD) and sensor set (left or right
hemisphere). Averaged power values were log-transformed and
then forwarded to a 2×2 ANOVAwith the factors PLD direction
(left/right) and hemisphere (left/right).

To test an influence of body posture on lateralization of
spectral power, we extracted for each action sequences of
maximally and minimally informative body postures. Maximally
informative postures were defined as postures which show the
largest difference between a rightward oriented posture and its
mirrored leftward counterpart. Hence, minimally informative
postures show the smallest difference. The respective body
postures were determined by subtracting for each point the
horizontal positions of left and right postures and then summing
up the differences of individual points. We averaged spectral
power at the time point ofmaximal/minimal difference± 100ms.
Averaged power values were log-transformed and then forwarded
to a 2× 2× 2 ANOVA with the factors PLD direction (left/right),
hemisphere (left/right), and body posture (maximal/minimal).

Results

We found a significant negative cluster between 275 and 675ms
and 12–16Hz (p = 0.045) and second negative cluster between

1225 and 1775ms and 22–28Hz (p = 0.004), i.e., the difference
between left and right facing point-light displays (PLD) showed
the strongest lateralization effect in the beta-band (Figure 2).

To further elucidate the lateralization effect, we performed
a post-hoc analysis on these significant time-frequency clusters.
To this end, we performed a 2 × 2 ANOVA with the factors
direction (left/right) and hemisphere (left/right). For the early
cluster (275–675ms), the ANOVA revealed no significant main
effects (factor direction: F = 0.03, p = 0.87, factor hemisphere:
F = 0.01, p = 0.93) but a highly significant interaction effect
(F = 8.6, p = 0.008). For the late cluster (1225–1775ms), the
ANOVA revealed no significant main effects (factor direction:
F = 2.31, p > 0.14, factor hemisphere: F = 0.37, p > 0.55)
but a highly significant interaction effect (F = 16.1, p ≤ 0.001).

For the early cluster, post-hoc t-tests revealed a strong trend
toward significance (p = 0.08) for the comparison in the left
hemisphere and a significant difference for the comparison in
right sensors (p = 0.03). That is, in right sensors, PLD facing
to the left elicited stronger power in the beta-band compared to
PLD facing to the right and in left sensors, PLD facing to the right
elicited stronger power in the beta-band compared to PLD facing
to the left (Figure 3A).

For the late cluster, t-tests revealed a very strong trend toward
significance (p = 0.05) in left sensors and a highly significant
(p < 0.001) difference in right sensors, i.e., in left sensors
PLD facing to the right elicited stronger power in the beta-
band compared to PLD facing to the left while in right sensors
the opposite pattern was found: PLD facing to the left elicited
stronger power in the beta-band than PLD facing to the right
(Figure 3B).

To test whether the lateralization effect depended on body
postures, we performed an additional 2 × 2 × 2 ANOVA with
the factors direction (left/right), hemisphere (left/right), and
body posture (maximal/minimal) (see Methods for details). The
ANOVA revealed a significant main effect of the factors direction
(F = 8.1, p = 0.02) and hemisphere (F = 15.2, p = 0.002).
In addition, we found a significant interaction for direction ×

hemisphere (F = 5.1, p = 0.04) and a highly significant
effect for the Three-Way interaction direction × hemisphere ×
body posture (F = 30.1, p < 0.001). Post-hoc t-tests revealed

FIGURE 2 | Spectral profile of stimulus induced activity and results of

the contrast of left vs. right sensors. (A) Time-frequency representation

of the activity in response to action observation. Spectral activity was

averaged across left and right sensors. Activity is presented as relative

change to baseline (−500 to −100ms). Red colors indicate increased activity

relative to baseline, blue colors decrease of activity. (B) Time-frequency

representation of the statistical comparison of the lateralization index (right

vs. left facing actions) in right vs. left sensors of interest. t = 0 denotes the

onset of stimulation. Red colors indicate greater lateralization index in right

sensors compared to left sensors, blue colors indicate a smaller lateralization

index. Results are masked to highlight significant clusters. Colorbar applies

to the significant (non-masked) pixels.
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FIGURE 3 | Spectral power in response to left and right facing

actions for left and right sensors as shown in Figure 1C. (A)

Log-transformed spectral power averaged across time-frequency points of

the early significant cluster shown in Figure 2 (275–675ms, 12–16Hz).

(B) Same as (A), but now for the late cluster (1225–1775ms, 22–28Hz).

p-values indicate results of post-hoc t-tests (lower row) and interaction

effect of the 2× 2 ANOVA (upper row, see Methods and Results for

details).

FIGURE 4 | Spectral power in response to left and right facing actions

at specific body postures. Fully colored bars show power in response to

body postures which maximally differentiate between left and right facing

bodies. White bars with colored outline show power in response to body

postures which minimally differentiate. P-values indicate results of post-hoc

t-tests between maximally and minimally differentiating postures.

a significant difference between maximal and minimal body
postures for all four pairwise comparisons (p < 0.02, Figure 4).

In accordance with the results shown in Figures 2, 3, the
topographical representation of the lateralization effect showed
a positive LI in the left hemisphere and a negative LI in the
right hemisphere (Figure 5). Visual inspection indicated that
both, early and late effects were mostly pronounced in motoric
areas, with the early significant effect being more pronounced to
medial sites (Figure 5A) compared to the late significant effect
(Figure 5B). To test this observation, we repeated the analysis
of Figure 2, but now separately for the eight lateral and the
eight medial sensors. In medial sensors, only the early cluster
reached significance (p = 0.044), while in lateral sensors, only
the late cluster reached significance (p = 0.001; Figure 5C). This
analysis, thus, confirmed that the early significant effect was more
pronounced to medial sites while the late significant effect was
more pronounced in lateral sites.

Discussion

Suppression of neuronal activity, especially in the alpha- and
beta-band, in motoric systems during action observation has
been interpreted as an involvement of the respective areas in the
process of action observation (e.g., Babiloni et al., 2002; Pineda,
2008; Kilner et al., 2009; Frenkel-Toledo et al., 2013). Here, we

found that human actions with the actor facing either to the
right or to the left elicited lateralized activity in motoric areas:
Right and left areas of the motoric system showed significantly
different activation in response to right and left facing actions.
This lateralization effect was found at two distinct time periods
and spectral clusters: An early significant cluster between 275 and
675ms and 12–16Hz (p < 0.05) and second cluster between
1225 and 1775ms and 22–28Hz (p < 0.01). The topographical
representation of both effects showed a spatial overlap covering
presumably frontal, premotor and motor areas, with the early
effect showing a stronger focus toward medial sites and the late
effect a more lateralized location.

It is known from studies on action execution that suppression
of beta-band power is mainly found in sensorimotor areas
contralateral to the movement (Gross et al., 2005). Thus, one
also might expect stronger suppression of beta band power in
areas contralateral to the body side the actor displays toward
the observer. In other words, viewing the actor facing to the
right and thus mainly observing the right body side would be
expected to elicit stronger suppression of beta-band power in
the left hemisphere and vice versa. Post-hoc analysis of our
data revealed, however, that beta-band power in left sensors
was lowest for left facing actions and in right sensors for right
facing actions. A potential reason for this effect might be that
our point-light actors always displayed both body sides. That
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FIGURE 5 | Topographical representation of the lateralization index

and statistical comparison of lateralization index for distinct sensor

sets. (A) Illustration for the early significant cluster shown in Figure 2

(275–675ms, 12–16Hz) and Figure 3A. (B) Same as (A), but now for the late

cluster (1225–1775ms, 22–28Hz; Figures 2, 3B). Red colors indicate greater

power for right facing actions compared to left facing actions (positive

lateralization index), blue colors indicate smaller power for right vs. left facing

actions. Colorbars apply to both plots. (C) Left panel: Same analysis and

representation as in Figure 2B, but now separately for the more medial

sensors (upper row) and for the more lateral sensors (lower row). t = 0 denotes

the onset of stimulation. Red colors indicate greater lateralization index in right

sensors compared to left sensors, blue colors indicate a smaller lateralization

index. Results are masked to highlight significant clusters. Colorbar applies to

the significant (non-masked) pixels. Right panel: Red circles indicate four

sensors in the left hemisphere and black triangles indicate four sensors in the

right hemisphere used for statistical analysis shown in the left panel.

is, although for each action there was always one body side
directed to the observer, there was no occlusion of remote point-
lights when they moved behind the body. In addition, there was
no specific task regarding the body side. Since action direction
and body side was irrelevant for the task, remote body sides
might be included in the recognition process to produce a
“whole-body” representation of the action. This might lead to
overcompensation effects when the observer tried to embody the
remote, ipsilateral body side or imagine the movement of the
remote body side.

In a study by Kilner et al. (2009) subjects viewed whole body
movements of human actors while EEG activity was recorded.
The actor always faced toward the observer while performing an
action either with the right or left arm. Similar to the results of
our study, Kilner et al. reported that beta band suppression in
sensorimotor areas was strongest in sensors ipsilateral to the arm

performing the action, i.e., movements of the left arm induced
strongest suppression in the left hemisphere and vice versa for
right arms. The authors argued that the observed pattern was
driven mainly by the side of the screen on which the observed
movement occurred and not by the hand that was observed
moving. An influence of the side of the screen, however, cannot
explain our results since actions were always presented centrally.
Our results therefore argue that while the hemifield in which the
action is presented certainly plays a role for the strength of the
beta-band suppression, there is an additional effect of body side.

de Lange et al. (2008) studied beta-band suppression in
sensorimotor areas during motor imagery of hand movements.
The authors reported that the duration of beta-band suppression
was correlated with the difficulty of the imagery task: The more
complex a task or process, the longer beta-band suppression lasts.
Observing actions might thus initially induce similar beta-band
suppression in both hemispheres independent of the body side
viewed. The duration of the beta-band suppression, however,
might depend on the body side processed, leading to shorter beta-
band suppression in left sensors if the right body side is viewed in
comparison to viewing the right body side and vice versa for right
sensors. The different duration of beta-band suppression might
thus explain the results reported in our study (Figure 3).

In a recent study, Pavlidou at al. (2014b) analyzed the
beta-band activity in response to normal (plausible) and
biomechanically implausible human actions (using the same
dataset as in the present study). The authors reported that
beta band suppression was significantly stronger for implausible
than plausible actions. The authors argued that the stronger
suppression might result from stronger matching of incoming
visual information to stored representations of the actions in
(pre)motor areas. Thus, rather than reflecting an activation of the
MNS per se, beta-band suppression might reflect the complexity
of a task (Pavlidou et al., 2014a).

We found that the contrast between left and right facing actors
was stronger in right than in left hemispheres. This finding is in
line with results from studies on action observation and motor
imagery. For example, Kilner et al. (2009) reported that the
difference of beta-band power between observing left and right
arm movements was stronger in right than in left hemispheres.
In addition, de Lange et al. (2008) studied imagery of left and
right hand movements. The authors reported for the contrast left
vs. right hand a stronger suppression of beta-band power in right
than in left hemispheres. Similarly, previous studies reported that
the left parietal and premotor cortices are equally involved in
imagined movements of left and right hands, while the right
parietal and premotor cortices are preferentially involved in
imaginedmovements of the contralateral left hand (Parsons et al.,
1998; De Lange et al., 2006; Stinear et al., 2006).

In addition, we found that the contrast between left and
right facing actors was stronger at the later time cluster.
The timing of this later effect is in line with other studies
investigating modulations of beta-band power in response to
action observation and imagery. For example, Kilner et al. (2009)
reported significant differences in beta-band power between
observing left and right hand movements to peak at 1670ms.
Pavlidou et al. (2014b) studied the contrast between plausible
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and implausible actions and reported that the difference in
sensorimotor beta-band power was found at 2400–2650ms. In
addition, de Lange et al. (2008) reported differences in beta-band
power between imagery of left and right handmovements around
1500ms.

Early and late cluster differ also with regard of the frequency
for which the lateralization effect was found. The early cluster
was found to be significant between 12 and 16Hz. Typically,
this frequency band might be assigned to the beta-band
(13–30Hz). While the frequency bands between 6 and 10Hz
and 16–30Hz show a suppression of activity in response to
action observation, the frequency band between 12 and 16Hz
shows an increase of activity (Figure 2A). The spectral profile
of the activation pattern in response to action observation,
thus, argues for a separate frequency band between ∼12
and 16Hz (Figure 2A). There is evidence for a functional
distinction of the alpha-frequency band in a lower and and an
upper alpha-band (Klimesch et al., 1997; Klimesch, 1999). In
sensorimotor areas, the lower band (8–10Hz) has been suggested
to be somatotopically non-specific while a somatotopically
specific oscillation is characteristically found in the upper alpha
(10–13Hz) frequency band (Pfurtscheller et al., 2000). The
distinct profile of the 12–16Hz band underlying the early
cluster argues thus that the early cluster might be functionally
separate from the late cluster which is clearly located in
the beta-band. The early cluster might be related to the
somatotopically specific upper alpha band (Pfurtscheller et al.,
2000).

In addition to their temporal and spectral profile, the early
and the late cluster seem to differ also with regard to their
cortical origin. While both clusters spatially overlap, the late
cluster clearly extends to more lateral sides than the early
cluster (Figure 5). We can only speculate about the cortical
sources. The early, more medial cluster might reflect activity in
sensorimotor or (pre)motor areas. These areas are known to be
somatotopically organized (Buccino et al., 2001). Therefore, the
potential spectral overlap with the upper alpha-band, which is

thought to reflect somatotopically specific activity (Pfurtscheller
et al., 2000), provides further evidence for the sensorimotor

areas. The late cluster might origin from inferior frontal areas
(Nishitani and Hari, 2000) or premotoric areas. Sensorimotor
and premotor areas and inferior frontal gyrus are known to
be involved in the process of action observation (Nishitani and
Hari, 2000; Rizzolatti and Craighero, 2004; Molenberghs et al.,
2012). Our results imply that in addition to their somatoptopical
organization, these areas show a lateralized organization with
right and left hemispheres being differently activated by left or
right facing actions.

In conclusion, we demonstrate that parts of the human
motoric system show a lateralization effect with regard to action
observation. That is, left and right hemispheres are activated
differently by actions for which the actor was facing to the
right or to the left. These effects are found for two sensor
arrays, presumably covering sensorimotor areas, (pre)motor
areas and/or inferior frontal areas. The lateralization effects
are found in the beta-band, with the lateralization effect being
more strongly pronounced at ∼1500ms after stimulus onset
in putative inferior frontal areas. These results demonstrate
that during action observation parts of the human MNS
show in addition to the known somatotopic organization a
lateralization.
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a b s t r a c t

The neural correlates of action recognition have been widely studied in visual and

sensorimotor areas of the human brain. However, the role of neuronal oscillations involved

during the process of action recognition remains unclear. Here, we were interested in how

the plausibility of an action modulates neuronal oscillations in visual and sensorimotor

areas. Subjects viewed point-light displays (PLDs) of biomechanically plausible and

implausible versions of the same actions. Using magnetoencephalography (MEG), we

examined dynamic changes of oscillatory activity during these action recognition pro-

cesses. While both actions elicited oscillatory activity in visual and sensorimotor areas in

several frequency bands, a significant difference was confined to the beta-band (w20 Hz).

An increase of power for plausible actions was observed in left temporal, parieto-occipital

and sensorimotor areas of the brain, in the beta-band in successive order between 1650 and

2650 msec. These distinct spatio-temporal beta-band profiles suggest that the action

recognition process is modulated by the degree of biomechanical plausibility of the action,

and that spectral power in the beta-band may provide a functional interaction between

visual and sensorimotor areas in humans.

ª 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recognizing others’ actions is essential to communicate

effectively with the people around us. The proposed mecha-

nism of how the brain mediates recognition of actions is the

combination of both visual and motor processes (Craighero,

Metta, Sandini, & Fadiga, 2007; Jeannerod, 2001; Rizzolatti &

Craighero, 2004). The underlying cortical sources of this pro-

cess have been studied by single-cell recordings in macaque

monkeys (Di, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992;

Fadiga, Fogassi, Pavesi, & Rizzolatti, 1995; Oram & Perrett,

1994) and extensively in humans using haemodynamic and

electrophysiological techniques (Buccino, Binkofski, & Riggio,

2004; Grossman et al., 2000; Kessler et al., 2006; Michels,

Kleiser, de Lussanet, Seitz, & Lappe, 2009; Michels, Lappe, &
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Vaina, 2005; Nishitani & Hari, 2000; Pavlova, Lutzenberger,

Sokolov, & Birbaumer, 2004; Saygin, Wilson, Hagler, Bates, &

Sereno, 2004; Schippers & Keysers, 2011). In summary, these

studies have identified two main areas to be involved in the

observation/recognition of actions known as the superior

temporal sulcus (STS) and premotor cortex (PMC). It has been

suggested that patterns of neural activity in both STS and PMC

are reflective of the existence of a dynamic network known as

the mirror neuron system (MNS) similar to that observed in

monkeys (Rizzolatti & Craighero, 2004; Schippers & Keysers,

2011).

Electrophysiological studies have demonstrated changes

of neuronal oscillatory activity in visual and sensorimotor

areas, during the observation of actions in the alpha (9e13 Hz)

and the beta range (13e30 Hz) (Babiloni et al., 1999; Caetano,

Jousmaki, & Hari, 2007; Cochin, Barthelemy, Roux, &

Martineau, 1999; Hari et al., 1998; Kessler et al., 2006; de

Lange, Jensen, Bauer, & Toni, 2008; Muthukumaraswamy,

Johnson, Gaetz, & Cheyne, 2004, 2006; Muthukumaraswamy,

Johnson, & Mcnair, 2004; Rossi et al., 2002). Such changes in

oscillatory activity and in particular across the beta range

have been associated with two processes: asynchrony or

decrease of beta power occurs during the preparation and

execution of movements, while synchrony or increase of beta

power reflects active inhibition of the motor system

(Pfurtscheller & Lopes da Silva, 1999; Pfurtscheller, Neuper,

Brunner, & da Silva, 2005; Salmelin, Hamalainen, Kajola, &

Hari, 1995).

While beta activity in sensorimotor areas is abundant, little

is known, however, how oscillatory activity in sensorimotor

areas is modulated by the plausibility or naturalness of an

observed action, and how sensorimotor areas interact with

visual areas during the processing of such actions.

In a previous study, we examined how oscillatory activity

in visual and sensorimotor areas ismodulated by the presence

or absence of a biological action (Pavlidou, Schnitzler, & Lange,

2014). Actions were represented by point-light displays (PLDs),

a visual presentation method in which the human body is

portrayed by just a handful of moving dots (Grossman et al.,

2000; Johansson, 1973; Saygin et al., 2004). Subjects were

asked to differentiate between plausible (e.g. walking) and

scrambled (random assortment of dots) versions of different

PLD action representations. We observed changes in gamma

(w80 Hz), beta (w25 Hz) and alpha (w10 Hz) oscillatory activity

between .5 and 1.3 sec in a widespread network of cortical

areas, including STS and PMC. Further research however, is

needed to determine whether sensorimotor areas are

involved in higher form processing such as distinguishing

between natural and unnatural forms of action movements

when the degree of plausibility of an action is manipulated.

In the current study, we compare plausible human PLD

actions to implausible human PLD actions. An implausible

PLD action leaves the overall movement of the dots un-

changed. In contrast to scrambled PLD however, overall visual

information and human figure are only minimally altered to

illustrate a somewhat biomechanically implausible or un-

natural action. Subjects were asked to differentiate between

plausible and implausible PLD actions. We were interested

whether visual and motor areas will be engaged differently

when we manipulate the biomechanical plausibility or natu-

ralness of a human PLD action. More specifically, we were

interested whether beta-band activity was sensitive to the

Fig. 1 e Experimental setup. Examples of stimuli used plausible (I), implausible (II), scrambled (III). Connecting lines were

not present in the actual experiment. Participants first fixated on a red cross. PLD stimuli appeared at time point 0. After a

black screen, response instructions visually appeared. See Subjects, experimental procedure and stimuli for details.
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degree of plausibility of the observed action within and be-

tween visual and sensorimotor areas.

2. Methods

Datawere collected in the same experiment with data from an

earlier study (Pavlidou et al., 2014). Accordingly, the details of

the stimuli and experimental procedures as well as the

methods of data acquisition and data analysis have been

described in great detail elsewhere (Pavlidou et al., 2014). Here,

we provide a concise overview of the experimental procedure

and analysis. All data were acquired in one session for each of

our subjects. Data analysis in the present study, however,

focuses on different experimental questions and uses

different subsets of the data (the comparison between plau-

sible and implausible PLD actions) than that fromour previous

study.

2.1. Subjects, experimental procedure and stimuli

Twelve right handed subjects with normal or corrected to

normal vision [six males, mean age (� standard deviation e

SD) 27.6 � 2.87 years] participated in the study. Each trial

started with a presentation of a red fixation cross (visual

angle .23�). After a jittered period (800e1300 msec), a

PLD (visual angle 4.81� � 1.95�) appeared for a period of

3600e5000 msec (five cycles of one action). After another

randomized period (0e1000 msec), where only a black screen

was visible, instructions were visually presented for a dura-

tion of 2000 msec. Subjects were asked to rate the PLD as

either 1 - plausible, 2,3 - implausible and 4 - scrambled

(Fig. 1). The total number of PLD stimuli employed during the

experimental task was 31; 12 of which were plausible and 12

were implausible (and seven scrambled; see Movie 1 and 2 for

example stimuli). All trials that were rated within the

2000 msec response window were included in the analysis.

Stimuli were presented with a projector (PT-DW700E; Pana-

sonic) with a refresh rate of 60 Hz. Stimulus presentation was

controlled using Presentation Software (Neurobehavioral

Systems, Albany, USA).

Supplementary video related to this article can be found at

http://dx.doi.org/10.1016/j.cortex.2014.02.007.

2.2. Data acquisition and analysis

Neuronal activity was recorded with a 306-channel whole

head magnetoencephalography (MEG) system (Neuromag

Elekta Oy, Helsinki, Finland). Such a system contains 204

planar gradiometers and 102 magnetometers. Analysis in the

present study was carried out only for the planar gradiome-

ters. In addition, vertical and horizontal electrooculograms

(EOGs) were recorded for offline artefact rejection. The sub-

jects’ head position relative to the sensor array was deter-

mined before the MEG recording. For source reconstruction,

we obtained structural magnetic resonance images (MRI) from

each subject using a 3 T MRI scanner (Siemens, Erlangen,

Germany) and then co-registered the MRIs with the MEG data.

TheMEG datawere analysed offline using the Fieldtrip toolbox

Table 1 e Sensor selection based on stimulation effects
observed during PLD visual stimulation pooled over all
conditions. Sustained effects (0e4.5 sec) observed in our
four regions of interest (parieto-occipital, sensorimotor,
and bilateral temporal) in alpha (7e13 Hz), beta (13e23 Hz)
and gamma (55e100 Hz).

Regions of interest Frequency range

Parieto-occipital

Gamma (55e100 Hz)

Beta (13e23 Hz)

Alpha (7e13 Hz)

Sensorimotor

Beta (15e23 Hz)

High alpha (11e13 Hz)

Low alpha (7e11 Hz)

Left temporal

Beta (13e23 Hz)

High alpha (11e13 Hz)

Low alpha (7e11 Hz)

Right temporal

Gamma (90e100 Hz)a

Gamma (50e80 Hz)

Beta (13e23 Hz)

High alpha (11e13 Hz)

Low alpha (7e11 Hz)

a Gamma increase observed between 0 and 1.5 sec in right

temporal.

c o r t e x 5 4 ( 2 0 1 4 ) 1 0 6e1 1 6108



[http://www.ru.nl/donders/fieldtrip (Oostenveld, Fries, Maris,

& Schoffelen, 2011)]. Epochs with artifacts were discarded

and power line noise was removed as previously described

(Pavlidou et al., 2014).

2.3. Timeefrequency analysis

Timeefrequency representations (TFRs) of power were

calculated using windows of 500 msec moved in steps of

50 msec for frequencies between 4 and 40 Hz. Time windows

were tapered with a Hanning window with a spectral

smoothing of �2.0 Hz. For frequencies between 40 and 100 Hz,

we used windows of 400 msec moved in steps of 50 msec.

Timewindowsweremultiplied with seven tapers, resulting in

a spectral smoothing of �10 Hz. Regions of interest were first

determined on sensor level by pooling all conditions together

irrespective of PLD movement and comparing it to a baseline

(�400 to �250 msec). Sensors revealing the strongest pertur-

bations in oscillatory activity were then selected for further

analysis. Strong changes in alpha (7e13 Hz), beta (13e35 Hz)

and gamma (55e100 Hz) oscillatory power were bilaterally

observed in sensors over parieto-occipital, temporal, and

sensorimotor areas, but varied within each area (for details of

sensor selection see Table 1 and Pavlidou et al., 2014). These

variations in alpha, beta and gamma power between the

above-mentioned areas (parieto-occipital, sensorimotor, and

bilateral temporal), suggest that each area processes the vi-

sual presentation of our PLD actions differently. To assess the

different roles of the four regions of interest in action recog-

nition, we measured differences in oscillatory activity be-

tween plausible and implausible PLD actions as described

below.

2.4. Condition contrast

Differences in spectral power between plausible and implau-

sible PLDs were assessed for parieto-occipital, temporal and

sensorimotor areas. Per subject, we performed an indepen-

dent samples t-test between power values of the plausible and

implausible conditions averaged across sensors for each of the

four regions of interest. This resulted in a timeefrequency t-

map for each subject. The consistency of t-values across

subjects was analysed in a second step using a nonparametric

randomization test. This statistical test effectively corrects for

multiple comparisons (Maris & Oostenveld, 2007), and

thresholds the individual timeefrequency maps of t-values at

a value of�1.96 (alpha¼ .05). Neighbouring t-values exceeding

the threshold were combined to timeefrequency clusters. For

each timeefrequency cluster the sum of the t-values was used

in the second-level cluster-level test statistics (Maris &

Oostenveld, 2007). The p-value of the cluster in the second-

level test statistics was then estimated using the Monte

Carlo approach by comparing cluster test statistic with a

randomization null distribution. The null distribution was

computed by randomly permuting the data 1000 times and

calculating the maximum cluster test statistic (Lange,

Oostenveld, & Fries, 2011). Statistical analysis was done for

the first 3 sec following visual presentation of our PLD actions

to minimize influence of motor preparation.

2.5. Temporal evolution of alpha/beta power

Based on the significant clusters found on sensor level (con-

dition contrast analysis), we assessed changes in beta power

separately for our plausible and implausible PLD conditions

for left temporal (9e21 Hz), parieto-occipital (5e21 Hz) and

sensorimotor areas (15e21 Hz). Since the clusters in parieto-

occipital and left temporal areas were found in a broader

frequency band, covering alpha- and beta-frequencies

(5e21 Hz, 9e21 Hz, respectively), temporal evolution was

effectively collapsed over alpha- and beta-frequency bands for

these areas. We additionally computed temporal analysis

separately for the alpha (8/9e12 Hz) and beta (13e21 Hz)

bands. Since the results were highly similar in space and time

for both frequency bands (please refer to Fig. S1), we will

report only the results of the collapsed frequency band. Since

no significant clusters were found for right temporal areas we

did not assess changes in alpha/beta power in this area. Per

subject, we averaged power across sensors for each of the

three areas (parieto-occipital, left temporal and sensorimotor)

and their respective significant frequency clusters, across all

trials for each of our two conditions. This resulted in a tem-

poral evolution of alpha/beta power change for each subject.

Finally, we averaged the results across subjects.

2.6. Source analysis

Based on the significant clusters on sensor level, we deter-

mined neuronal sources by applying Dynamic Imaging of

Coherent Sources (DICS), an adaptive spatial filtering tech-

nique (Gross et al., 2001). This takes into account the forward

model at the location of interest (the leadfield matrix) and the

crossspectral density (CSD) between all MEG sensor pairs for

the frequency of interest determined by the significant time-

clusters on sensor level. The leadfield matrix was calculated

based on a realistically shaped single-shell volume conduction

model (Nolte, 2003), derived from each individual subject’s

structuralMRI. The headmodel was reduced to a regular three-

dimensional grid (1 cmresolution) andspatial filtersw(r,f)were

constructed for each grid point using the following formula:

w r; fð Þ ¼ L
0

rð ÞC fð Þ þ l� I
� ��1

L
0

rð Þ�1L
0

rð Þ C fð Þ þ l� Ið Þ
�1
;

where L0(r) is the inverse of the leadfield matrix (forward

model) at location of interest r, C(f) is the CSD matrix between

all MEG sensor pairs at frequency f, l is the regularization

parameter, and I is the identity matrix (Gross et al., 2001; de

Lange et al., 2008). Plausible and implausible conditions were

pooled to compute common filters. Next, CSD matrices of

single trials were projected through those filters, providing

single trial estimates of source power (p) using the following

formula (Bauer, Oostenveld, Peeters, & Fries, 2006)

p r; fð Þ ¼ w r; fð ÞC fð Þ
0

w� r; fð Þ:

In line with the analysis on sensor level, a between-

condition t-value for condition contrasts was computed for

each subject and overlaid to the corresponding anatomical

MRI. Anatomical and functional data were then spatially

normalized using SPM8 (Statistical Parametric Mapping;

http://www.fil.ion.ucl.ac.uk/spm) to the Montreal
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Neurological Institute (MNI) template. Statistical testing on

group level for condition contrastswas carried out in the same

way as on sensor level (see above). For visual illustration of the

significance effects found on sensor level (see above) results

on group level (p< .05 uncorrected) were displayed on theMNI

template brain and neuronal sourceswere identified using the

AFNI atlas (http://afni.nimh.nih.gov/afni), integrated into

Fieldtrip.

2.7. Power correlations

We calculated power correlations between our areas of in-

terest (Figs. 2 and 3A) to assess interactions between visual

and sensorimotor areas during the processing of plausible and

implausible actions. To this end, we averaged spectral power

in each area of interest over time and frequency for each trial.

Time and frequency were determined by the significant

clusters found in the condition contrast (Fig. 3A). We

computed power correlations between areas on a trial-by-trial

basis for each subject by computing the Pearson correlation

coefficient. Correlation coefficients were transformed to z-

values (Choi, 1977). Finally, we used a two-sided t-test to sta-

tistically test correlation coefficients across subjects against

the null hypothesis of no correlation, i.e., r ¼ 0. To investigate

whether the correlations were time-based specific, data win-

dows were shifted �100 msec and correlations were recom-

puted in the same way as described above.

3. Results

3.1. Behavioural data

Subjects could easily distinguish between plausible and

implausible PLDs with an average rating of 1.5 (�.19) and 2.3

Fig. 2 e Temporal evolution of alpha/beta power change for plausible (dotted line) and implausible (black line) for left

temporal (A), parieto-occipital (B), and sensorimotor (C) sensors (D). Pattern area denotes the significant time points, i.e.,

highest differences between plausible and implausible. Power is represented on a log scale.
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(�.34) respectively. Statistical testing revealed highly signifi-

cant differences between the two conditions (p < .001).

3.2. Stimulation effects

Visual stimulation (pooling all conditions) of PLD showed clear

perturbations of spectral activity in the low alpha (7e11 Hz),

high alpha (11e13 Hz), beta (13e23 Hz) and gamma

(55e100 Hz) frequency bands in four areas (parieto-occipital,

bilateral temporal and sensorimotor) (see Table 1 and Pavlidou

et al., 2014).

3.3. Temporal evolution of power

The temporal evolution of alpha/beta power change was

assessed separately for plausible and implausible conditions

in left temporal (Fig. 2A), parieto-occipital (Fig. 2B), and

sensorimotor areas (Fig. 2C). For both conditions, we observed

an initial strong decrease of power in all areas directly after

stimulation onset. Stronger alpha/beta-suppression of power

was observed for implausible versus plausible across left

temporal, parieto-occipital and sensorimotor areas. Signifi-

cant time point differences (where the difference between

plausible and implausible conditions was greater; p < .05)

were observed for left temporal (Fig. 2A), parieto-occipital

(Fig. 2B) and sensorimotor areas (Fig. 2C). No significant ef-

fects were observed for right temporal areas.

3.4. Condition contrast

We assessed differences between plausible and implausible

PLD actions in the four regions of interest on sensor level

(sensors over parieto-occipital, left and right temporal, and

sensorimotor areas; see Table 1 for details on sensor

selection).

We found a significant increase in alpha/low beta (9e21 Hz,

p ¼ .012) power at 1650e2050 msec post-stimulus onset in

sensors over left temporal areas. In addition, we found a sig-

nificant increase in alpha (5e11 Hz, p ¼ .007) and low beta

(13e21 Hz, p ¼ .010) power, between 1950 and 2350 msec in

sensors over parieto-occipital areas, and a significant increase

in low beta (15e21 Hz, p ¼ .044) power at 2400e2650 msec in

sensors over sensorimotor areas (Fig. 3A). No significant

clusters were found in sensors over right temporal cortex. The

observed increase of alpha/beta power in left temporal,

parieto-occipital and sensorimotor areas indicates higher

power for plausible than implausible PLD actions (see also

Fig. 2).

Next, we identified the cortical sources of these significant

clusters. For the increase in high alpha/low beta power

Fig. 3 e Condition contrasts: plausible vs implausible actions. (A) Representations of significant clusters (p < .05) found on

sensor level for (chi) parieto-occipital, (cross) left temporal, and (star) sensorimotor areas. Red denotes positive clusters, i.e.,

higher power for plausible stimuli. Bracket and r-value represent a significant trial-by-trial correlation between left

temporal and sensorimotor beta power for our plausible condition. (B) Source reconstruction of the significant clusters found

on sensor level. The precentral (green), central (blue), and postcentral (red) sulci are displayed for reference. Colour maps

illustrate t-values for the source reconstruction.
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(9e21 Hz) between 1650 and 2050 msec, the sources were

identified in the STS and middle temporal area (MT) (Fig. 3B,

top panel).

The sources of the significant effects between 5 and 21 Hz

and 1950 and 2350 msec were located in bilateral parieto-

occipital regions of the brain and more specifically visual

areas (V2, V3) and left posterior parietal cortex (PPC) (Fig. 3B,

centre panel).

Finally, the sources of the significant cluster between 15

and 21 Hz and 2400 and 2650 msec were localized in bilateral

primary motor cortex (M1) as well as left PMC (Fig. 3B, lower

panel).

3.5. Power correlations

We assessed interactions between visual and motor areas by

calculating trial-by-trial cross-frequency correlations be-

tween the significant timeefrequency clusters reported

above. We observed a significant positive trial-by-trial corre-

lation for plausible conditions between sensorimotor beta

(2400e2650 msec) and left temporal beta (1650e2050 msec)

power (r ¼ .1098, p ¼ .035). This significant positive trial-by-

trial correlation was still visible when the data windows for

sensorimotor and left temporal were shifted by �100 msec

(2300e2550 msec and 1550e1950 msec respectively; r ¼ .1596,

p ¼ .032). No significant trial-by-trial correlations were

observed for other time windows nor for plausible or

implausible conditions between sensorimotor and parieto-

occipital or parieto-occipital and left temporal areas.

4. Discussion

We investigated the modulations of neuronal oscillatory ac-

tivity elicited by two seemingly similar PLD actions (plausible

vs implausible). Plausible and implausible PLD actions are

highly similar in low-level visual information and both actions

are clearly recognized as a human figure. The subtle modifi-

cation, however, had an effective influence on the configural

recognition so that subjects perceived the actions as biome-

chanically plausible or implausible action.

We found that PLD (pooled over all conditions) elicited

power changes in alpha (7e13 Hz), beta (13e23 Hz) and gamma

(55e100 Hz) bands in several cortical areas in visual and

sensorimotor areas including STS and PMC. Activation of STS

and PMC during the visual processing of PLD action repre-

sentations is consistent with earlier studies of action obser-

vation (Buccino, Lui, et al., 2004; Calvo-Merino, Glaser, Grezes,

Passingham, & Haggard, 2005; Dinstein, Hasson, Rubin, &

Heeger, 2007; Gallese, Fadiga, Fogassi, & Rizzolatti, 1996;

Grossman et al., 2000; Pelphrey, Viola, & McCarthy, 2004;

Saygin et al., 2004).

Our main finding is that subtle changes in the configura-

tion of the human PLD elicited modulations of beta-band

power in distinct spatio-temporal profiles within the above-

mentioned network of action recognition. Normal, plausible

actions showed a significant increase of beta-band power

relative to implausible actions in left temporal sensors be-

tween 1650 and 2050msec, followed by an increase in parieto-

occipital sensors between 1950 and 2350 msec, and finally in

sensorimotor sensors between 2400 and 2650 msec post-

stimulus onset. We identified the left STS, and middle tem-

poral area (V5/MTþ), as the cortical sources of the effects

found in left temporal sensors. As cortical sources of the ef-

fects in parieto-occipital sensors, we identified bilateral visual

areas (V2, V3), and left PPC. Finally, the effects in sensorimotor

sensors were localized to PMC, and primary motor area (M1).

These positive beta-clusters reflect a stronger suppressionof

power for implausible than plausible actions (Fig. 2). Stronger

suppressionofbeta-bandpower insensorimotor areashasbeen

found for incorrect relative to correct buttonpresses (Koelewijn,

van Schie, Bekkering, Oostenveld, & Jensen, 2008). Implausible

actionsmight therefore beprocessed similar to incorrect button

presses. Another potential explanation for the stronger sup-

pression of power for the implausible PLD might be increased

internal motor imagery when differentiating between two very

similar stimuli.Motor imageryhas been found to suppress beta-

band power in sensorimotor areas (Kessler et al., 2006; de Lange

et al., 2008; Schnitzler, Salenius, Salmelin, Jousmaki, & Hari,

1997). The complexity of the imagery task correlates with the

duration of the beta-suppression (de Lange et al., 2008). Recog-

nition of an implausible action might therefore require more

mental imagery, reflected in prolonged beta-suppression in

sensorimotor areas. A previous study found suppression of

alpha/beta power to correlate with the observation of actions

belonging to the observer’smotor repertoire (e.g., ballet dancing

observedbyprofessional balletdancers) butnot if ballet dancing

was observed by non-professional dancers (Orgs, Dombrowski,

Heil, & Jansen-Osmann, 2008). Orgs et al. (2008) reported their

effects in the alpha (7.5e13 Hz) and low beta (13e18 Hz). Inter-

estingly, our observed significant difference between plausible

and implausible inparieto-occipital and left temporal areaswas

also found in the alpha- and beta-band (5e21 Hz and 9e21 Hz).

The high similarity between both frequency bands in the tem-

poral evolution (Fig. S1) suggests that both frequency bands

have a similar role during the processing of plausible versus

implausible and familiar versusunfamiliar actions respectively,

in parieto-occipital areas. In addition to the study by Orgs et al.

(2008), our results demonstrate that alpha/beta-band power is

not only involved in the recognition of familiar actions (plau-

sible) but also in the recognition of unfamiliar actions (implau-

sible). Notably, our significant effects in sensorimotor and left

temporal areas were more strongly confined to the beta-band.

Previous haemodynamic (Allison, Puce, & McCarthy, 2000;

Grossman & Blake, 2002; Hirai, Fukushima, & Hiraki, 2003;

Michels et al., 2009, 2005; Pelphrey, Morris, & McCarthy,

2004; Pelphrey, Viola, et al., 2004) and electrophysiological

(Pavlova et al., 2004; Singh, Barnes, Hillebrand, Forde, &

Williams, 2002) studies reported right-temporal activity in

response to PLD. Activity in the right hemisphere reflects the

processing of the global form of the PLD (Lamb & Robertson,

1988). In their global form both plausible and implausible

PLDs appear very similar. The differences of the two PLDs

exist in the spatial position of only a few of the overall number

of dots that makes up the human form (four of 13 dots). This

subtle manipulation of the human PLD form requires the

process of the PLD local details, which is generally thought to

be involved in the left hemisphere (Bonda, Petrides, Ostry, &

Evans, 1996; Lamb & Robertson, 1988). The observed left

temporal activity in our study when differentiating between
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plausible and implausible stimuli might thus reflect the

extraction of the local details of the PLD, when differentiating

between two seemingly similar PLD forms.

Although alpha/beta responses in posterior regions are

often regarded within the framework of attention (Kaminski,

Brzezicka, Gola, & Wrobel, 2012; Thut, Nietzel, Brandt, &

Pascual-Leone, 2006; Worden, Foxe, Wang, & Simpson, 2000;

Wrobel, 2000;Wrobel, Ghazaryan, Bekisz, Bogdan,&Kaminski,

2007), it is highly unlikely that our observed effects are simply

related to different attentional efforts between conditions.

First, the PLD stimuli in our study were randomized so that

subjects could not predict the upcoming stimulus. Thus they

could not direct attention to one stimulusmore than the other

before stimulus onset. Second, during the experimental task,

our participants were asked to rate each stimulus as it

appeared on the screen. Therefore, all stimuli irrespective of

movement type required the same attention. Third, if the ef-

fects were simply due to attentional differences between

conditions then wewould expect similar attentional effects in

the contrast plausible versus scrambled actions (albeit maybe

shifted in time).However, since these effectsdiffered (Pavlidou

et al., 2014), we are confident that the effects reveal different

cortical processes rather than simply differences in attention.

Finally,wedidnot observeany typical attention-relatedeffects

of oscillatory activity neither a differential decreases of pres-

timulus alpha (e.g. Thut et al., 2006; Worden et al., 2000) nor

early poststimulus gamma increases in posterior regions (e.g.

Fries, 2009; Kahlbrock, Butz, May, & Schnitzler, 2012; Pavlova,

Birbaumer, & Sokolov, 2006). This implies that our stimuli

required the same attention irrespective of movement.

Earlier studies found activity in visual cortices as early as

w200 msec after stimulus onset when observing a PLD walker

relative to scrambled displays (Pavlova et al., 2004). Similarly,

in our previous study, we observed first differences in gamma-

band (55e90 Hz) power in parieto-occipital areas between 500

and 800 msec post-stimulus onset. This gamma difference

suggests that plausible and scrambled stimuli are first

distinguished on an early visual basis (Pavlidou et al., 2014). In

the present study, we did not find early gamma-band differ-

ences between plausible and implausible movements. The

reason might be that due to their highly similar low-level vi-

sual information, both plausible and implausible PLDs appear

to be very similar, and thus there is no visual distinction be-

tween the two PLD actions. This lack of visual distinction is

reflected in the absence of any significant differences in

gamma-band activity, as observed e.g., for plausible versus

scrambled PLD (Pavlidou et al., 2014; Pavlova et al., 2006, 2004).

In our previous study, we found significant differences

between plausible and scrambled movements between 500

and 2000 msec. In contrast, the present study reveals signifi-

cant differences between plausible and implausible at later

time windows (1650e2650 msec). This suggests that the pro-

cess of distinguishing between similar movements takes

longer than distinguishing between movements and random

dot patterns.

We found beta-band power to decrease in left temporal,

parieto-occipital and sensorimotor areas for both, plausible and

implausible actions. Notably, we found differences in beta

power between both conditions which followed a distinct

spatio-temporal profile across left temporal, parieto-occipital

and sensorimotor areas. These beta effects reveal that both

plausible and biomechanically implausible human actions

activate the visual and sensorimotor areas but do so at different

spatio-temporal scales. Additionally, we found trial-by-trial

power correlations in the beta-band between sensorimotor

and left temporal areas for plausible actions. These findings

provide supporting evidence that during action recognition the

beta-band couples visual and sensorimotor areas into a func-

tional network. This finding is in line with other studies

emphasizing the role of beta-oscillations for long-range

communication between spatially distinct areas (Bibbig,

Traub, & Whittington, 2002; Engel & Fries, 2010; Gross et al.,

2004; Kopell, Ermentrout, Whittington, & Traub, 2000;

Schnitzler & Gross, 2005). In our earlier study, we observed sig-

nificant positive trial-by-trial correlations between sensori-

motor betapowerandparieto-occipital gammapoweraswell as

left temporal alpha power during the visual perception of

plausible PLD actions that were specific to the significant time-

efrequency cluster (at w500e1300 msec, Pavlidou et al., 2014).

The power correlations in the beta-band in our present study

reveal additional interactions between visual and sensorimotor

areas acting at later time windows (between 1550 and

2650 msec). These interactions seem to be more specifically

related to thedifferentiation betweenplausible and implausible

actions. Similarly, studies of apparent motion also imply that

possible and impossible human actions are analysed by pro-

cesses that operate over large spatio-temporal scales, taking

into account the biomechanics of the human figure (Shiffrar &

Freyd, 1990, 1993).

Whencontrasting plausible and scrambledmovements,we

have found significant differences in sensorimotor beta-band

activity between 700 and 1200 msec post-stimulus onset

(Pavlidou et al., 2014). In the present study, the significant dif-

ferences in sensorimotor areas in the beta-band were found

between 2400 and 2650msec. This suggests that sensorimotor

areas are involved in differentiating betweendifferent kinds of

movements. However, depending on the similarity between

movements the differentiation process takes longer as re-

flected in the differential activation of sensorimotor cortex.

The time window of significant differences between plausible

and implausible movements (2400e2650 msec) is in line with

studies that have used correct versus incorrect actions

(Koelewijn et al., 2008). This suggests that sensorimotor areas

are involved in higher form processes that include an evalua-

tive component for the observed action operating at a slower

rate. The involvement of the sensorimotor areas therefore,

suggests that visual areas categorize the observedmovements

and work together with motor areas to further cultivate the

observed movements (Borroni, Montagna, Cerri, & Baldissera,

2005; Craighero et al., 2007; Fadiga et al., 2006). Previously, we

found for plausible versus scrambled actions differences in

sensorimotor beta-band power between 700 and 1200 msec

(Pavlidou et al., 2014). The process to distinguish two seem-

ingly similar actions, however, requires more time to activate

visual and sensorimotor areas and thus more time is required

to interpret the observed action than a simple plausible versus

scrambled action discrimination. An open question remains

whether the beta-band effects in visual and sensorimotor

areas are related specifically to unnatural plausible actions or

whether similar results would be found for unusual, but still
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plausible actions. For instance, due to their higher similarity to

natural plausible actions, unnatural plausible actions might

require a temporally longer processing window in sensori-

motor areas than plausible actions, but shorter than that

required for implausible movements. Future studies will shed

light on such distinctions between implausible and unnatural

but still plausible actions.

Another possible explanation to the present results is a

reflection of motor imagery. Motor imagery is a process in

which an internal formation of a movement plan takes place.

de Lange et al. (2008) observed activity in visual and sensori-

motor areas during motor imagery of hand movements. This

observation of visual and sensorimotor activity suggests a

similar network involvement to that observed during action

recognition. Future research can produce a carefully designed

paradigm inwhich both action recognition andmotor imagery

processes can be extracted independently, to further under-

stand the MNS role in the recognition as well as the prediction

of actions. MEG can be used to determine the time course and

dynamic modulations involved in the frequency domain

(e.g. beta power) of both processes.

In summary, we found distinct spatio-temporal profiles in

the beta-band when subjects had to distinguish plausible and

implausible actions. The beta-clusters revealed a sequential

order suggesting a directed flow of information. Notably, the

significant effects were mainly found in the beta-band, sug-

gesting that the beta-bandmight provide a functional network

of long-range communication between visual and sensori-

motor areas in the differentiation of plausible and implausible

action movements. The later activation of the sensorimotor

areas in comparison to visual areas suggests their involve-

ment in higher form processes when interpreting the plausi-

bility of the observed actions, which further suggests that

sensorimotor areas act more like an active interpreter than a

submissive observer when recognizing an action.
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Abstract: Several studies have shown activation of the mirror neuron system (MNS), comprising the
temporal, posterior parietal, and sensorimotor areas when observing plausible actions, but far less is
known on how these cortical areas interact during the recognition of a plausible action. Here, we
recorded neural activity with magnetoencephalography while subjects viewed point-light displays of
biologically plausible and scrambled versions of actions. We were interested in modulations of oscilla-
tory activity and, specifically, in coupling of oscillatory activity between visual and motor areas. Both
plausible and scrambled actions elicited modulations of y (5–7 Hz), a (7–13 Hz), b (13–35 Hz), and c

(55–100 Hz) power within visual and motor areas. When comparing between the two actions, we
observed sequential and spatially distinct increases of c (�65 Hz), b (�25 Hz), and a (�11 Hz) power
between 0.5 and 1.3 s in parieto-occipital, sensorimotor, and left temporal areas. In addition, significant
clusters of c (�65 Hz) and a/b (�15 Hz) power decrease were observed in right temporal and parieto-
occipital areas between 1.3 and 2.0 s. We found b-power in sensorimotor areas to be positively corre-
lated on a trial-by-trial basis with parieto-occipital c and left temporal a-power for the plausible but
not for the scrambled condition. These results provide new insights in the neuronal oscillatory activity
of the areas involved in the recognition of plausible action movements and their interaction. The
power correlations between specific areas underscore the importance of interactions between visual
and motor areas of the MNS during the recognition of a plausible action. Hum Brain Mapp 35:581–592,
2014. VC 2012 Wiley Periodicals, Inc.

Keywords: MEG; mirror neurons; oscillatory activity; power correlations; point-light displays
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INTRODUCTION

Action recognition plays an important role for effective
communication and interaction with other people [Blake-
more and Frith, 2005; Kokal et al., 2009; Schippers and
Keysers, 2011]. Action recognition occurs at different levels
and over distinctive time scales. On a lower level and a
shorter time period, sensory information will be processed
[Blake and Shiffrar, 2007; Grossman et al., 2000; Michels
et al., 2009; Pavlova and Sokolov, 2003]. This incorporates
the ability to integrate form and motion but it can also
rely on the ability to distinguish form from motion [Lange
et al., 2006; Michels et al., 2005; Oram and Perrett, 1994].
Several recent studies have argued that action recognition
also relies on higher, nonsensory areas of the mirror
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neuron system (MNS) [Schippers and Keysers, 2011;
Urgesi et al., 2010]. Mirror neurons were first discovered
in area F5 of the macaque monkey premotor cortex (PMC)
[Di Pellegrino et al., 1992]. They are a particular class of
neurons that fire when a monkey performs a goal-oriented
action but also when it passively observes that same action
[Gallese et al., 1996; Rizzolatti et al., 1996]. Areas fre-
quently considered as being part of the MNS in humans
are the PMC, supplementary motor area, somatosensory
areas, the inferior parietal lobe, inferior frontal gyrus, and
indirectly the superior temporal sulcus (STS), a visual area
known to respond to biological actions without being a
standard part of the MNS [Bonda et al., 1996; Buccino,
2004; Dinstein et al., 2007; Filimon et al., 2007; Gazzola
et al., 2007; Pelphrey et al., 2005; Rizzolatti and Craighero,
2004; Schippers and Keysers, 2011].

The proposed mechanism of how mirror neurons medi-
ate recognition of actions is to compare visual information
of an action to one’s own motor repertoire [Rizzolatti and
Craighero, 2004]. In other words, when one observes an
action performed by another person, neurons that represent
that action in the observer’s repertoire of possible actions
are triggered in the PMC [Buccino et al., 2004a; Rizzolatti
et al., 2001]. Actions belonging to the movement repertoire
of the observer are mapped in their PMC. Actions that do
not belong to this repertoire are recognized predominantly
on a visual basis. In line with this model, studies have
shown that the observers’ ability to perform an observed
action modulates activation in mirror neuron areas (e.g.,
Calvo-Merino et al., 2005; Orgs et al., 2008).

An effective and frequently used method for studying
action recognition is the point-light display (PLD) method
[Johansson, 1973]. Although PLD represents a human
body and its action with only a handful of dots, observers
can easily recognize the actions of these PLD (e.g., Gross-
man et al., 2000; Johansson, 1973). As PLDs are easy to
present and manipulate, they are a useful tool in neuroi-
maging to study the cortical areas involved in action rec-
ognition. By changing the spatial configuration of the dots,
while keeping the motion trajectories intact, the configural
and holistic impression of the action can be destroyed
while keeping low-level information such as motion sig-
nals, stimulus size, and number of point-light dots con-
stant. Such ‘‘scrambled’’ PLDs are often used as control
stimuli to unravel action recognition from basic low-level
visual perception [Grossman et al., 2000; Michels et al.,
2005; Pavlova et al., 2004]. Neuroimaging studies in
human and nonhuman primates have identified the visual
areas to be primarily involved in the process of PLD
actions compared to scrambled PLD [Grossman et al.,
2000; Michels et al., 2005; Oram and Perrett, 1994; Pavlova
et al., 2004]. More recently, studies have also identified the
PMC to be involved in the recognition of PLD actions
compared to scrambled PLD [Candidi et al., 2008; Keme-
nade et al., 2012; Saygin et al., 2004]. These findings have
led to the interpretation that visual as well as motor areas
contribute to the recognition of actions. Most of these stud-

ies have been performed using functional magnetic reso-
nance imaging (fMRI). Little is known, however, about the
role of neuromagnetic oscillatory activity and how these
cortical areas dynamically interact during the process of
action recognition.

To investigate the dynamic modulations and interactions
between visual and motor areas during the process of
action recognition, we used the PLD method similar to the
above-mentioned fMRI studies and magnetoencephalogra-
phy (MEG). We created different PLD action representa-
tions and scrambled versions of these PLD actions. MEG’s
high temporal and good spatial resolution enabled us to
examine the dynamics in the frequency domain within-
and between-sensory and motor areas during the process
of action recognition.

METHODS

Subjects

Twelve right-handed subjects with normal or corrected
to normal vision (six males, mean age � SD ¼ 27.6 � 2.87)
and with no known neurological disorders participated in
this study. All subjects gave informed consent in accord-
ance to the declaration of Helsinki and the local Ethics
Committee.

Stimuli

Point-light biological motion animations were generated
by recording the movements of human actors with sensors
attached to their main joints (head, shoulders, elbows,
wrists, hips, knees, and feet) using a motion tracking sys-
tem (MotionStar; Ascension Technology, Burlington, VT;
[Lange and Lappe, 2007]). The main joints were repre-
sented by 14 small white dots (5 � 5 pixels) against a
black background.

Stimuli were offline manipulated using MATLAB (Math-
Works, Natick, MA). First, actions were cut into segments
representing one cycle of the action, lasting between 0.6
and 1.0 s. Next, cycles of each action were repeated five
times. To compute a seemingly continuous movement of
each action, transitions between cycles were smoothed
[Lange et al., 2006]. We manipulated the different stimuli
to create three different stimulus conditions with different
degrees of action representation, whereas leaving low-level
visual information as constant as possible (Fig. 1).

Originally 20 animations depicting a human action were
recorded. In a pretest, we presented plausible, implausible,
and scrambled versions of the animations and asked sub-
jects to rate the stimuli as plausible, implausible, or
scrambled. Eight animations, which were clearly distin-
guished based on the three-scale rating, were selected and
used in the MEG experiment. The selected animations
depicted eight actions: walking (viewed from the front,
walking toward the screen), walking (viewed from the
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side walking either toward the left or toward the right),
running, throwing, boxing, skipping (on one leg), skipping
(side to side), and a high kick into the air.

Plausible condition (I): Each animation in its original form
as recorded. In the pretest, subjects reported to perceive
the stimuli as normal, biomechanically probable biological
motion.

Scrambled condition (II): Scrambled versions of each ani-
mation were created by randomizing the spatial positions
of all dots within the field of the original figure [Grossman
et al., 2000; Pavlova and Sokolov, 2003; Saygin et al., 2004].
Again, the net movement of the dots is unchanged,
whereas the spatial configuration of a human figure is
completely destroyed. In the pretest, subjects rated these
stimuli as meaningless movements of dots.

Implausible condition (III): Implausible versions of each
animation were created by randomizing the starting posi-
tions of two dots from the upper body and two from the
lower body, whereas leaving their motion paths
unchanged. This manipulation leaves the overall move-
ment of all dots unchanged and alters the configural struc-
ture only minimally. In the pretest, subjects reported to
perceive the stimuli as ‘‘somehow human’’ but the actions
as biomechanically implausible.

Experimental Procedure

Subjects were seated comfortably with their head placed
inside the MEG helmet. Visual stimuli were projected on
the backside of a translucent screen positioned 100 cm in

front of the subjects using a projector (PT-DW700E; Pana-
sonic) with a refresh rate of 60 Hz placed outside the
shielded room. Each trial started with the presentation of
a central red cross (0.4 � 0.4 cm; visual angle. 0.23�). After
a randomized period of 800–1,300 ms, in which only the
red fixation cross was visible, the point-light animation
(8.4 � 3.4 cm; visual angle, 4.81� � 1.95�) appeared for a
period of 3,600–5,000 ms (five cycles). The red fixation
cross was centrally present throughout the duration of the
stimuli to minimize eye movements. After another random
period of 0–1,000 ms, in which only a black screen was
visible, response instructions were visually presented on
the screen. Subjects were asked to rate the animation using
a 1–4 rating scale as either plausible (1), implausible (2–3),
or scrambled (4) by button presses. Once a response was
given, a new trial started. The assignment of the four-fin-
gers to the four configurations of the rating scale was
randomized for each trial and response hands were bal-
anced across subjects (Fig. 1). If no response was given
within 2,000 ms, or if a response was given too quickly
(before the response instructions appeared), the trial was
discarded from analysis and repeated at the end of the
block. No feedback was given. The estimated duration of a
trial was 4,400–7,300 ms, followed by the individual
response period (maximum of 2,000 ms). Stimuli were pre-
sented in pseudo-random order within a block. One block
consisted of 31 trials, so that each block had an estimated
duration of 136.4–226.3 s, respectively, without individual
response times (max. 2,000 ms) taken into account (no. of
trials � duration). If response times are taken into account,

Figure 1.

Experimental setup. Examples of stimuli used (I) Plausible, (II) Scrambled, (III) Implausible.

Connecting lines were not present in the actual experiment. For details, see Experimental

Procedures section. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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each block had an estimate duration of �5 min. Overall,
five blocks were presented, with self-timed breaks of �2
min in between blocks. On the whole, the experiment
lasted �25–30 min. Subjects performed a training session
of �5 min before the start of the MEG experiment. Stimu-
lus presentation was controlled using Presentation Soft-
ware (Neurobehavioral Systems, Albany, NY).

Data Acquisition and Analysis

While subjects performed the task, neuromagnetic activ-
ity was recorded continuously at a sampling rate of 1,000
Hz with a 306-channel whole head MEG system (Neuro-
mag Elekta Oy, Helsinki, Finland). This system includes
204 planar gradiometers and 102 magnetometers arranged
in a helmet configuration. In the present study, data analy-
sis was carried out only with the planar gradiometers. In
addition, vertical and horizontal electrooculograms were
recorded simultaneously for offline artifact rejection. Sub-
jects’ head position within the MEG helmet was registered
by four coils placed at subjects’ forehead and behind the
left and right ear. A 3T MRI scanner (Siemens, Erlangen,
Germany) was used to obtain individual full brain high-re-
solution standard T1-weigthed structural magnetic reso-
nance images (MRIs). MRIs were offline aligned with the
MEG coordinate system using the coils and anatomical
landmarks (nasion, left, and right preauricular points).

Data were analyzed offline with the open source toolbox
FieldTrip for Matlab (http://www.ru.nl/donders/field-
trip) [Oostenveld et al., 2011]. Continuously recorded data
were cut into epochs as defined by the trials. All epochs
were first semi-automatically and then visually inspected
for artifacts. Artifacts caused by eye movements or muscle
activity were removed. Power line noise was removed by
applying a Fourier transformation of 10-s long signal peri-
ods and subtracting the 50, 100, and 150 Hz components.

Time–Frequency Analysis

Time–frequency representations were computed sepa-
rately for two frequency windows: For frequencies ranging
from 4 to 40 Hz (in steps of 2 Hz), we applied a Fourier
transformation on 500-ms windows moved in steps of 50
ms. Data segments were tapered with a single Hanning
taper, resulting in a spectral smoothing of �2.0 Hz. For
the frequencies from 40 to 100 Hz (in steps of 5 Hz), a
Fourier transformation was applied on 400-ms windows
moved in steps of 50 ms, using the multitaper approach
[Walden et al., 1995]. Data segments were tapered with
seven tapers, resulting in a spectral smoothing of �10.0
Hz around each center frequency.

As we were interested in the development of power
over time and power correlations across frequencies (for
details, see correlation analysis), we used a Fourier trans-
formation on constant time window and tapering for all
frequencies within a frequency band. This approach

ensures that the same data set and same tapers are used
within a frequency band. Any changes observed are thus
attributed to the frequency components, rather than
changes in time windows and/or tapers. We used differ-
ent time windows and tapering for low and high frequen-
cies because low-frequency bands are relatively narrow
and closely spaced. We therefore aimed at a high spectral
resolution in the low frequency range of roughly �2 Hz
(i.e., 1/500 ms). In the higher frequency range, frequency
bands are broader and spaced more far apart so that we
applied a spectral smoothing of �10.0 Hz. This approach
provided an acceptable trade-off between capture of physi-
ological frequency bands and comparability within- and
between-frequencies. Previous studies have identified pari-
eto-occipital, left and right temporal, and sensorimotor
areas as crucial areas in the recognition of PLD actions
[Grossman et al., 2000; Michels et al., 2009; Saygin et al.,
2004; Schippers and Keysers, 2011]. To identify these
regions of interest in sensor space in our study, we
applied a combined data driven and a priori approach.
First, we pooled all trials together irrespective of stimulus
conditions (plausible, implausible, and scrambled) and
determined which sensors showed clear perturbations of
oscillatory activity in response to PLD relative to baseline
(�400 to �250 ms). Six sensors in the right hemisphere
showing a sustained decrease in a (7–13 Hz) and b (13-23
Hz) power as well as a selective sustained increase in c

(55–95 Hz) power where selected over parieto-occipital
areas (Fig. 2A). In addition, 10 sensors, five in the left
hemisphere and symmetrically five in the right hemi-
sphere, showing a sustained decrease in low a (7–11 Hz)
and a selective increase in high a (11–13 Hz) power as
well as a sustained decrease in b (15–23 Hz) power where
selected over the sensorimotor cortex (Fig. 2B). Finally,
owing to the vast reports on the importance of STS and
temporal areas in action recognition (e.g., Dinstein et al.,
2007; Grossman and Blake, 2001, 2002; Grossman et al.,
2000; Pavlova et al., 2004; Pelphrey et al., 2004), eight sen-
sors in the left and symmetrically eight sensors in the right
hemisphere were selected over the temporal cortices.
Although temporal cortices showed similar effects in the
lower range frequencies (4–40 Hz) as observed in parieto-
occipital areas, the difference in the c-band effects between
the two suggests that both process action representations
differently. To asses the different roles of the parieto-occi-
pital, temporal, and sensorimotor areas in action recogni-
tion, we next investigated the contrasts between the
conditions.

Condition Contrasts

We assessed differences in spectral power between
stimulus conditions in the four above-mentioned regions
of interest (parieto-occipital, left and right temporal, senso-
rimotor). To this end, we averaged spectral power over
the sensors of interest for each stimulus condition
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separately. Next, we compared stimulus conditions for
each subject by subtracting power of both conditions and
dividing the difference by the variance (equivalent to an
independent-sample t-test). This step serves as a normal-
ization of interindividual differences [Hoogenboom et al.,
2010; Lange et al., 2011]. This comparison was carried out
for each time–frequency sample independently, resulting
in a time–frequency map of pseudo-t-values for each sub-
ject. To minimize influences of motor activity owing to
response preparation, statistical analyses were restricted to
the first 3 s. Next, we analyzed the consistency of pseudo-
t-values over subjects by means of a nonparametric ran-
domization test. This statistical test effectively corrects for
multiple comparisons [Maris and Oostenveld, 2007]. To
this end, time–frequency pseudo-t-values exceeding a
threshold (P < 0.05) were identified and neighboring sig-
nificant time–frequency pseudo-t-values were combined to
a cluster. For each cluster, the sum of the t-values was
used in the second-level cluster-level test statistics. We
used the Monte Carlo approach to estimate the permuta-
tion P-value of the cluster by comparing the cluster-level
test statistic with a randomization null distribution. The
null distribution was computed by randomly assigning
data to different conditions, under the null hypothesis of
no difference between conditions and thus exchangeability
of the data. The random reassignment of the data to condi-
tions was performed 1,000 times. For each of these 1,000

repetitions, a group t-value was calculated. Finally, a P-
value was estimated for each cluster as the proportion of
the elements in the randomization null distribution
exceeding the observed maximum cluster-level test statis-
tic (for details, see Lange et al., 2011). This group level sta-
tistics results in time–frequency clusters which reveal
differences between conditions that were significant at the
random effects level after correcting for multiple compari-
sons along both the time and the frequency dimension
[Maris and Oostenveld, 2007].

In the present study, we were interested in how process-
ing of plausible actions differs from processing of nonactions.
As discussed in the Introduction section, most fMRI studies,
to date, on PLD action recognition have dealt with a similar
question by comparing actions to scrambled versions of these
actions. Based on our main research question and for the
sake of comparability, we will focus in our present study on
the main contrast of plausible (actions) versus scrambled
(nonactions) conditions. The comparison between plausible
and implausible actions engages different research questions
and thus presumably different cortical networks and mecha-
nisms which lie beyond the scope of the present study.

Source Analysis

To determine the neuronal sources, we applied dynamic
imaging of coherent sources (DICS), an adaptive spatial

Figure 2.

Stimulation effects of PLDs. Top row shows our sensors of in-

terest for (A) parieto-occipital (x), (B) sensorimotor (*), (C)

left-temporal (þ), and (D) right-temporal (þ) areas, respectively.

Color maps illustrate changes in power relative to baseline

(�400 to �250 ms), which were calculated separately for low

(4–40 Hz) and high frequencies (40–100 Hz) by pooling all trials

together irrespective of conditions.
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filtering beamforming technique [Gross et al., 2001]. To
this end, a regular three-dimensional 1-cm grid in the
Montreal Neurological Institute (MNI) template brain was
created and the structural MRI of each subject was linearly
warped onto this template brain. The inverse of this warp
was applied to the template grid, resulting in individual
grids. This approach allowed us to average source param-
eters over subjects by simply averaging over grid points.
For each grid point then, a forward model based on a real-
istic single shell volume conductor based on the individual
MRI was used to calculate the lead-field matrix [Nolte,
2003]. We next applied a Fourier transformation on time–
windows of interest and computed the cross-spectral den-
sity (CSD) matrix between all MEG sensor pairs for the
frequency bands of interest, which were determined by
the significant time clusters on sensor level. Spatial filters
were constructed for each individual grid point using the
CSD and lead field matrix. These filters pass activity from
the location of interest, whereas suppressing activity from
all other locations. Spatial filters w(r,f) were computed
from the following formula:

wðr; fÞ ¼ ðL0ðrÞCðf Þ þ k x IÞ�1L0ðrÞ�1L0ðrÞCðf Þ þ k x IÞ�1
;

where L0(r) is the inverse of lead-field matrix (forward
model) at location of interest r, C(f) is the CSD matrix
between all MEG signals at frequency f, k is the regulari-
zation parameter, and I is the identity matrix [de Lange
et al., 2008; Gross et al., 2001].

First, we pooled all conditions (pre- and post-stimulus
period for stimulation effects; plausible and scrambled
conditions for condition contrast) and computed common
filters. Next, CSD matrices of single trials were projected
through those filters, providing single trial estimates of
source power [Hoogenboom et al., 2010; Lange et al.,
2011]. In line with the analysis on sensor level, we com-
puted a relative change to baseline for stimulation con-
trasts and a between-condition t-value for condition
contrasts for each subject. Statistical testing on group level
for time–frequency representations of stimulation effects
(P < 0.05, cluster corrected) and condition contrasts (P <

0.05, uncorrected) was carried out in the same way as on
sensor level (see above). Results were displayed on the
MNI template brain and neuronal sources were identified
using the AFNI atlas (http://afni.nimh.nih.gov/afni), inte-
grated into FieldTrip.

Cross-frequency Correlations

To investigate the interaction between visual and motor
areas during the recognition of plausible actions, we calcu-
lated the crossfrequency coupling over the specific time
course of our significant clusters. Cross-frequency coupling
refers to the coupling of the neuronal signal between dis-
tinct frequency bands in the same or different cortical
regions [Jensen and Colgin, 2007]. Here, we investigated
the power correlation between the significant time–fre-

quency clusters of the above-mentioned time–frequency
analysis. For each trial, we averaged spectral power across
the time and frequency bins defined by the significant
clusters on group level (Fig. 4A). Next, we computed cor-
relations between sensorimotor b-power on the one hand
and parieto-occipital c and temporal a-power on the other
hand. Power correlations were determined per subject on
a trial-by-trial basis by computing Pearson correlation
coefficient. Individual correlation coefficients were con-
verted to z-values using the Pearson’s r-to-z transform to
attain a normally distributed variable [Choi, 1977]. The
distribution of correlation coefficients across subjects was
statistically tested against the null hypothesis of no corre-
lation, that is, r ¼ 0 by using a two-sided t-test. To test for
a temporal specificity of the correlations, frequency bands
of interest were shifted in steps of �100 ms and correla-
tions were recomputed as described above.

RESULTS

Behavioral Data

The subjects rating of the PLD motion as plausible or
scrambled indicated that they could easily distinguish
both stimuli with an average rating of 1.5 (�0.19) for all
plausible, and 3.8 (�0.14) for all scrambled. Statistical test-
ing revealed highly significant differences between both
conditions (P < 0.001).

Stimulation Effects

We first determined the effects of stimulation by pooling
all trials irrespective of condition (plausible, implausible,
and scrambled) and computing time–frequency representa-
tions of neural oscillatory activity in response to the PLD
relative to baseline (�400 to �250 ms). We focused on four
main areas, which showed clear perturbations of spectral
activity in response to visual stimulation:

Parieto-occipital areas: PLD elicited an increase of power in
the y-band (5–7 Hz) immediately after stimulus onset (0–0.3
s). In addition, we observed a sustained decrease in the a

(7–13 Hz) and b (13–21 Hz) band power after stimulus
onset (0.2–4.5 s), as well as a sustained increase in c-power
(70–95 Hz) between 0.1 and 4.5 s poststimulus onset. All
stimulation effects showed a clear bilateral distribution in
parieto-occipital areas, with the c-band effect more strongly
pronounced to the right hemisphere (Fig. 2A).

Sensorimotor areas: PLD elicited a weak increase in y-band
(5–7 Hz) power after stimulus onset (0.0–0.3 s), which, how-
ever, is most likely owing to spatial smearing from the pari-
eto-occipital areas. In addition, we observed a distinct and
sustained increase in high a (11–13 Hz) power between 0.4
and 4.0 s and a sustained decrease in low a (7–11 Hz) and
b (15–23 Hz) power between 0.5 and 4.5 s poststimulus
onset in bilateral sensorimotor areas (Fig. 2B).

Temporal areas: PLD elicited a bilateral increase in y-band
(5–7 Hz) power after stimulus onset (0.0–0.3 s). In addi-
tion, we observed a sustained bilateral decrease in low a
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(7–11 Hz) and b-power (13–23 Hz) between 0.5 and 4.5 s,
as well as a bilateral increase in high a (11–13 Hz) between
0.3 and 0.6 s (Fig. 2C,D). These effects are highly similar to
the effects found in sensors over parieto-occipital and sen-
sorimotor areas (see above) but with lower amplitude. In
contrast to the results from parieto-occipital sensory, we
observed a robust early increase (90–100 Hz) between 0
and 1.5 s and a sustained decrease in oscillatory c-power
(50–80 Hz) between 0 and 4.5 s poststimulus onset in right
temporal cortex (Fig. 2D).

Next, we identified the cortical sources of the sustained
effects, found in the time–frequency representations on
sensor level. To this end, we performed source localization
using a beamformer on four distinct frequency bands,
based on the results on sensor level (i.e., for low a [7–11
Hz], high a [11–13 Hz], b [13–25 Hz], and c [50–100 Hz]
band). Strongest cortical sources were identified in visual
as well as sensorimotor areas (for details, see Fig. 3).

Condition Contrast

We assessed differences between plausible versus
scrambled stimuli in the four regions of interest (parieto-
occipital, left, and right temporal, and sensorimotor areas).
We found a significant increase in c (55–90 Hz) power at
500–800 ms poststimulus onset in parieto-occipital areas (P

< 0.05), followed by a significant increase in b (20–35 Hz)
power at 700–1,200 ms poststimulus onset in sensorimotor
areas as well as a significant increase in high a (9–13 Hz)
power at 900–1,300 ms in left temporal areas (Fig. 4A). In
addition, we found a significant decrease in c (50–80 Hz)
and a/low b (10–22 Hz) power, between 1,300 and 2,000
ms in right temporal and parieto-occipital (Fig. 4A) areas
(P < 0.05), respectively.

Next, we identified the cortical sources of these signifi-
cant clusters. For the increase in c-power (55–90 Hz)
between 500 and 800 ms, the sources were identified in
the primary visual cortex (V1). Additional sources were
identified in the right medial and inferior temporal gyrus,
as well as right dorsolateral prefrontal cortex (DLPFC)
(Fig. 4B).

The sources of the significant effects between 20–35 Hz
and 700–1,200 ms were located in the bilateral sensorimo-
tor areas of the brain and more specifically the PMC and
right primary motor cortex (M1) (Fig. 4D).

The sources for the significant effects between 9–13 Hz
and 900–1,300 ms were located in the left temporal areas of
the brain and more specifically the STS. Additional sources
were identified in the left somatosensory areas (Fig. 4F).

The sources for the significant effects between 50–80 Hz
and 1,300–1,600 ms were located in the right temporal
areas of the brain and more specifically the right medial

Figure 3.

Stimulation effects on source level. Cortical sources of relative change for low a (7–11 Hz), high a

(11–13 Hz), b (13–25 Hz), and c (70–100 Hz) power, respectively. Color maps illustrate changes in

power relative to baseline. Only significant sources (P < 0.05; cluster corrected) are shown.
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and inferior temporal cortex. Additional sources were
identified in the right DLPFC (Fig. 4C).

Finally, the sources of the significant cluster between
10–22 Hz and 1,600–2,000 ms were localized in bilateral
parieto-occipital areas and more specifically visual areas
V1 and V2 as well as right parietal posterior (Fig. 4E).

Cross-frequency Correlations

To assess the interactions between visual and sensorimo-
tor areas during the recognition of actions, we calculated

the trial-by-trial cross-frequency correlation between the
significant time–frequency clusters (Fig. 4A). A significant
positive correlation was observed between sensorimotor b

(averaged between 20–35 Hz and 700–1,200 ms) and pari-
eto-occipital c (averaged between 55–75 Hz and 500–800
ms) power (r ¼ 0.09; P < 0.05) as well as between sensori-
motor b and left temporal a (9–13 Hz and 900–1,300 ms)
power (r ¼ 0.20; P < 0.05) for the plausible action
condition, but not for the scrambled one. No significant
correlation was observed when the time windows of the
significant clusters were moved in steps of �100 ms. In

Figure 4.

Condition contrasts for plausible versus scrambled PLD: (A)

Representations of significant clusters (P < 0.05) found on sen-

sor level for (x) parieto-occipital, (*) sensorimotor cortex, and

(þ) left-temporal, and (þ) right-temporal. Red denotes higher

power for plausible, whereas blue denotes higher power for

scrambled. Source reconstruction of the significant clusters

found on sensor level for (B) parieto-occipital c increase, (C)

right temporal c decrease, (D) sensorimotor b-increase, (E)

parieto-occipital b-decrease and, (F) left temporal a increase.

Color map represents t-values for source reconstruction. Red

denotes higher power for plausible, whereas blue denotes higher

power for scrambled. Arrows and r-values represent significant

(P < 0.05) positive trial-by-trial correlations for the plausible

condition between sensorimotor b and (I) parieto-occipital c-

power as well as (II) left temporal a-power.
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addition, a significant positive trial-by-trial correlation
was observed between parieto-occipital b (10–22 Hz and
1,600–2,000 ms) and right temporal c (50–80 Hz and 1,300–
1,600 ms) power (r ¼ 0.16; P < 0.05) for the scrambled
condition. A significant positive trial-by-trial correlation
was still visible when the time windows of the significant
clusters were simultaneously moved in steps of �100 ms
(r ¼ 0.19; P < 0.05), but not for other time shifts. Finally, a
significant negative trial-by-trial correlation was observed
between sensorimotor b (20–35 Hz and 700–1,200 ms) and
parieto-occipital b (10–22 Hz and 1,600–2,000 ms) power (r
¼ 0.08; P < 0.05) for the scrambled condition that was not
present when the time windows were moved in steps of
�100 ms.

DISCUSSION

The present study aimed at determining the dynamic
modulations of neuronal oscillatory activity in the cortical
networks involved in the recognition of plausible actions.
PLDs elicited sustained effects in y (5–7 Hz), a (7–13 Hz),
b (15–25 Hz), and c (50–100 Hz) power within cortical
areas of the MNS. We were particularly interested how
these dynamic modulations as well as the interactions
between areas of MNS changed when we compared plau-
sible and scrambled actions. We will first discuss the
observed stimulation-induced effects with respect to ear-
lier hemodynamic and electrophysiological reports. The
main focus of this article is the comparison of our two
conditions and their interactions between cortical areas of
the MNS, which will then be applied to current theories of
the action recognition process.

Presentation of PLD (pooled over all conditions)
induced a sustained decrease of spectral power in the a-
and b-band in parieto-occipital regions. The decrease
started at �200 ms poststimulus onset and was sustained
throughout the trial. The decrease as well as its timing is
in line with the previous reports on visual stimulation
(e.g., de Lange et al., 2008; Hoogenboom et al., 2006; Koe-
lewijn et al., 2008; Singh et al., 2002). The decrease of a/b-
power was also found in sensorimotor areas, starting at
around �500 ms poststimulus and lasting until the end of
the trial, in agreement with the earlier reports of a/b sup-
pression during action preparation, action execution, and
motor imagery tasks (de Lange et al., 2008; Hari and Sal-
melin, 1997; Koelewijn et al., 2008; Oberman et al., 2005;
Orgs et al., 2008; Schnitzler et al., 1997; Ulloa and Pineda,
2007). Moreover, somatosensory areas have been sug-
gested to play a role in the internal simulation of the sen-
sory consequences of observed actions or embodiment
[Caetano et al., 2007; de Lussanet et al., 2008]. In contrast
to the suppression of low a band-power, sensorimotor
areas revealed an increase of high a (11–13 Hz) band
power between 400 and 4,000 ms poststimulus. While a
decrease of a/b-band power has been linked to engage-
ment of sensorimotor areas, an increase has been sug-

gested to reflect inhibition or disengagement of the
sensorimotor system [Hummel et al., 2002; Jensen et al.,
2002; Nachev et al., 2008; Neuper and Pfurtscheller, 2001].
The early observed increase in high a-band power might
thus reflect subjects’ active inhibition of finger and/or eye
movements during stimulus presentation or suppression
of task-irrelevant areas during initial stimulus presenta-
tion. Finally, we observed a sustained increase of high c-
band power in a wide range of areas including frontal and
posterior regions of the brain (for details, see Fig. 3). This
increase of c-power is visible between 100 and 4,500 ms,
that is it starts slightly earlier than the other sustained
effects, similar to the previous reports involving visuomo-
tor tasks [Aoki et al., 1999; de Lange et al., 2008; Pavlova
et al., 2004, 2006; Pfurtscheller and Neuper, 1992].

When comparing plausible to scrambled condition, we
observed an early increase of c (55–75 Hz) band power
between 500 and 800 ms in right V1 and temporal cortex.
Other electrophysiological studies report an increase in c-
power as early as 80–170 ms when subjects passively
viewed point-light walkers [Pavlova et al., 2004, 2006]. One
reason for the differences in timing might be owing to the
different definition of c-band activity: Although we
observed c-band effects between 55 and 75 Hz, Pavlova
et al. found effects in the lower c-band between 25 and 40
Hz. In addition, differences might be owing to the different
experimental designs between Pavlova et al. (passive view-
ing of normal, scrambled, inverted PLD) and our study
(active evaluation of normal, implausible, and scrambled
PLD). This increase of c-band, however, is in line with
increased hemodynamic responses in parieto-occipital and
temporal areas for plausible versus scrambled PLD (e.g.
Grossman and Blake, 2002; Grossman et al., 2000; Michels
et al., 2005, 2009; Pelphrey et al., 2004, 2005). Neuronal ac-
tivity, especially c-band activity, in right temporal areas
reflects the processing of the global form of the PLD, which
is only recognizable in the plausible condition [Michels
et al., 2005, 2009; Pavlova et al., 2004]. As the c-band effect
was the earliest significant cluster, the result suggests that
discrimination between plausible and scrambled PLD starts
at early, low-, and high-level visual stages of the action rec-
ognition process (e.g. Pavlova et al., 2004).

The increase of c-band power was followed by an
increase of power in the b (20–35 Hz) band between 700
and 1,200 ms in bilateral sensorimotor areas (PMC and M1).
Similar to the timing of the sensorimotor b-effect, previous
electrophysiological studies reported sensorimotor a/b
decreases to differentiate during action observation or
motor imagery in the time period of �450–1,500 ms poststi-
mulus onset [de Lange et al., 2008; Orgs et al., 2008; Schnit-
zler et al., 1997]. Previous fMRI studies demonstrated that
sensorimotor areas and more specifically the PMC,
responded to both human (plausible) and nonhuman
(scrambled) actions, but much stronger for human actions
belonging to the observer’s own motor repertoire [Buccino
et al., 2004b; Saygin et al., 2004]. In addition, Calvo-Merino
et al. (2005) observed a stronger hemodynamic response in
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STG, premotor, and parietal areas when capoeira and classi-
cal ballet dancers observed movements from their own rep-
ertoire. The observed positive b-cluster in sensorimotor
areas reflects a stronger suppression of power for
scrambled than plausible actions. In contrast to this obser-
vation, one previous study revealed a stronger suppression
of sensorimotor b-power when subjects viewed actions
within their own repertoire compared to other plausible,
but clearly distinguishable movements [Orgs et al., 2008].
Interestingly however, stronger suppression of sensorimo-
tor b-band power has been reported for the observation of
incorrect versus correct button presses [Koelewijn et al.,
2008]. Although subjects in the study by Koelewijn et al.
had to distinguish between correct and incorrect button
presses, subjects in our study had to distinguish between
normal and scrambled actions. Despite these notable differ-
ences in the experimental setup, we observed a similar pat-
tern of b-decrease as reported by Koelewijn et al. We
therefore speculate that stronger b-band suppression in our
study might thus be related to the recognition of the
scrambled action movements as incorrect. Future studies,
however, are needed to support this speculation.

The sensorimotor b-increase was followed by an a (9–13
Hz) band increase between 900 and 1,300 ms in left S1 and
STS. An increase in a power might reflect suppression of
task-irrelevant areas during initial stimulus presentation,
as well as active inhibition or disengagement of the corti-
cal areas involved (e.g. Jensen and Mazaheri, 2010; Jensen
et al., 2002). The observed a-power increase over left STS
and somatosensory areas, two areas known to be involved
in the processing [Allison et al., 2000] and internal simula-
tion [de Lussanet et al., 2008] of biological actions, might
thus reflect active inhibition of these areas. Previous elec-
trophysiological studies reported a activity of temporal
areas peaking at around �750 ms during a visual attention
task [Pantazis et al., 2009]. The observed left hemisphere
activity might reflect visual attention of the local details of
the PLD when differentiating between plausible and
scrambled conditions [Bonda et al., 1996; Fink et al., 1997;
Lamb and Robertson, 1988].

Interestingly, we observed a significant positive trial-by-
trial correlation between sensorimotor b-power and pari-
eto-occipital c-power as well as left temporal a-power.
This correlation was observed only for plausible PLD but
not for scrambled PLD, and the correlation was observed
only at specific time points, namely at time points where
we found the significant power increase for plausible PLD.
This finding illustrates a crossfrequency coupling between
visual and motor areas during recognition of plausible
actions operating at large spatio-temporal scales. The tem-
poral profiles of the power changes suggest a functional
interaction proceeding from visual areas to sensorimotor
areas and back projecting to STS.

At a later time point, we observed an additional negative
cluster in the b-band in parieto-occipital areas, reflecting a
stronger b-band power for the scrambled than the plausible
condition. This finding is in line with fMRI studies which

suggest that parieto-occipital areas are more sensitive to
image scrambling (for review, see Grill-Spector and Malach,
2004). Trial-by-trial correlations between this late parieto-
occipital b-band power and early sensorimotor power
revealed a negative correlation for the scrambled PLD, but
no significant correlation for the plausible PLD. This finding
reveals crossfrequency coupling between sensorimotor and
visual areas over several hundred milliseconds. We suggest
that this effect reflects feedback projections from sensorimo-
tor areas to visual areas, possibly updating visual processing
[Schippers and Keysers, 2011]. Interestingly, all correlations
have been observed between sensorimotor b-power and
other frequencies in other areas. Oscillations in the b-band
have been widely observed in sensorimotor areas in relation
to motor behavior [Haegens et al., 2011; Salenius and Hari,
2003] and have been proposed as a mechanism for synchro-
nization over long transmission delays and long ranges [Bib-
big et al., 2002; Gross et al., 2004; Kopell et al., 2000;
Schnitzler and Gross, 2005]. We suggest that b-oscillations
supply a mechanism that combines visual and motor areas
into a functional network [Brovelli et al., 2004].

The power correlations, although low in absolute value,
are statistically significant and consistent across all subjects.
Studies investigating working memory with intracranial EEG
(iEEG) have reported correlation with absolute values >0.3
(e.g. Axmacher et al., 2010). This difference might be owing
to a higher signal-to-noise ratio for iEEG when compared to
MEG. The absolute values of the correlation values (0.07–
0.20) of our study, however, are in line with the previous
MEG studies, reporting power correlations in the range of
0.01–0.07 (e.g., Hipp et al., 2012; Hoogenboom et al., 2010).

Interestingly, we also observed a much stronger c-power
for scrambled PLD in right DLPFC. DLPFC activity has
been linked to the process of evaluating other people’s
behavior (e.g. Saygin, 2007; Saygin et al., 2004). It has been,
therefore, suggested that DLPFC is an important contribu-
tor to cognitive control in a social domain, as its role is to
maintain intentions of our actions in working memory, and
subsequently using feedback to evaluate whether our
actions match those intentions [Weissman et al., 2008]. The
stronger suppression of c-power for plausible than
scrambled actions might thus reflect DLPFC efforts in try-
ing to evaluate the intentions of the scrambled actions that
do not match the intentions stored in working memory.

In summary, our results reveal a widespread cortical
network involved in the recognition of plausible actions,
including areas of the MNS operating at different fre-
quency bands, extending previous fMRI and MEG studies.
We demonstrate interactions between these areas by
revealing power correlations between visual and motor
areas during the recognition of plausible and scrambled
actions at specific spatial-temporal scales. We propose that
these results reveal a functional coupling of visual and
motor areas, predominantly coupled to the sensorimotor
b-frequency, in support to current models of motor control
that propose the presence of internal models (inverse and
forward) involving visual and motor interactions.
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Dynamic communication between functionally specialized, but spatially distributed areas of the brain is

essential for effective brain functioning. A candidate mechanism for effective neuronal communication is os-

cillatory neuronal synchronization. Here, we used magnetoencephalography (MEG) to study the role of oscil-

latory neuronal synchronization in audio–visual speech perception. Subjects viewed congruent audio–visual

stimuli of a speaker articulating the vowels /a/ or /o/. In addition, we presented modified, incongruent ver-

sions in which visual and auditory signals mismatched. We identified a left hemispheric network for process-

ing congruent audio–visual speech as well as network interaction between areas: low frequency (4–12 Hz)

power was suppressed for congruent stimuli at auditory onset around auditory cortex, while power in the

high gamma (120–140 Hz)-band was enhanced in the Broca's area around auditory offset. In addition,

beta-power (20–30 Hz) was suppressed in supramarginal gyrus for incongruent stimuli. Interestingly, coher-

ence analysis revealed a functional coupling between auditory cortex and Broca's area for congruent stimuli

demonstrated by an increase of coherence. In contrast, coherence decreased for incongruent stimuli,

suggesting a decoupling of auditory cortex and Broca's area. In addition, the increase of coherence was pos-

itively correlated with the increase of high gamma-power. The results demonstrate that oscillatory power

in several frequency bands correlates with the processing of matching audio-visual speech on a large

spatio-temporal scale. The findings provide evidence that coupling of neuronal groups can be mediated by

coherence in the theta/alpha band and that low frequency coherence and high frequency power modulations

are correlated in audio–visual speech perception.

© 2013 Elsevier Inc. All rights reserved.

Introduction

The human brain is organized in functionally and spatially distrib-

uted areas, e.g. specialized in sensory processing or motor output. Ef-

fective interaction and integration of these distributed areas to a

functional network are fundamental to perception, cognition, and ac-

tion. Such effective interaction requires that the functional coupling

of neurons in distributed areas to coherent neuronal groups is dy-

namically modulated depending on sensory information, task re-

quirements or internal brain states. It has been proposed that

communication and interaction between areas of the distributed net-

work is shaped and coordinated by neuronal oscillatory synchroniza-

tion (Fries, 2005; Fries, 2009; Gregoriou et al., 2009; Gross et al.,

2004; Jensen and Mazaheri, 2010; Womelsdorf et al., 2007).

Here,we studied neuronal processes underlying audio–visual speech

perception. Audio–visual speech perception provides an intriguing

model to study cortical network interaction in multisensory integration

and perception. It is well established that speech perception comprises a

network of several, spatially distributed functional areas showing a

hierarchical organization that progresses from sensory processing in

early sensory areas to more abstract linguistic and decision processes

in e.g. the inferior frontal gyrus (IFG) or sensorimotor areas (Hickok

and Poeppel, 2007; Nishitani and Hari, 2002; Pulvermuller, 2005;

Sohoglu et al., 2012). It has been found that neuronal oscillations play

a crucial role for the integration of audio–visual speech perception

(Arnal et al., 2011; Chandrasekaran and Ghazanfar, 2009; Ghazanfar et

al., 2008; Giraud and Poeppel, 2012; Schroeder et al., 2008). While sev-

eral studies have demonstrated the functional role of neuronal oscilla-

tions in local nodes of the network (Chandrasekaran and Ghazanfar,

2009; Kaiser et al., 2005; Luo and Poeppel, 2007; Palva et al., 2002),

few studies were able to provide evidence that neuronal oscillations

are involved in the interaction and coupling of cortical areas during

speech perception (Arnal et al., 2011; Canolty et al., 2007; Ghazanfar

et al., 2008).

In the present study, we aimed to study the role of neuronal oscil-

lations for coupling of cortical areas and formation of dynamic

networks during perception of matching audio–visual speech. To

this end, we presented audio–visual stimuli with either congruent,

matching (e.g. audio: /a/; visual: /a/) or incongruent, non-matching
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(e.g. audio: /a/; visual: /o/) audio–visual information. Using magne-

toencephalography (MEG), we studied neuronal oscillations in

local neuronal groups and the interaction of specific cortical areas

in terms of coherence. Our main hypothesis was that relevant neuro-

nal groups should be coupled during congruent, but not during in-

congruent stimuli and that neuronal oscillations should reflect the

dynamic coupling between neuronal groups of the speech process-

ing network. Furthermore, several studies demonstrated a functional

coupling of spatially distributed areas by coherence (e.g. Gross et al.,

2004; Hirschmann et al., 2011; Keil et al., 2012; Womelsdorf et al.,

2007). In the present study, we were therefore additionally interest-

ed, whether coherence provides a mechanism for defining cortical

networks during audio–visual perception. If coherence provides a

functional mechanism, the strength of intra- or inter-areal coher-

ence should increase for congruent relative to incongruent audio–

visual stimuli in or between relevant cortical areas.

Methods

Subjects

Eleven subjects (mean age 24.6 years, range 22–27 years, 6 males)

participated in the study after givingwritten informed consent in accor-

dance with the Declaration of Helsinki. All subjects were right-handed,

had normal or corrected-to-normal vision and normal hearing and none

of the subjects had a known history of neurological disorders.

Stimuli

Video sequences of a female speaking vowels /a/ and /o/ in German

were recorded using a digital camera (Canon, MV500i, Canon Inc.,

Japan). Video sequences were taken in frontal view showing the face

in front of a gray background (16 × 14 cm, mouth region 2 × 1 cm).

Video sequences included a variable baseline (760, 840, 920, or

1000 ms) before the start of the lip movement to minimize expectancy

effects. After 526 (/a/) or 543 ms (/o/) the auditory signal started

and lasted for 705 (/a/) or 661 ms (/o/), respectively. Lip movements

finished 1600 (/a/) or 1640 ms (/o/) after the onset of the lipmovement

(Fig. 1).

Video sequencesweremodifiedusingVideo Studio 12 (Corel Corpora-

tion, Ottawa, Canada) to obtain four stimulus categories. AVC: natural,

unmodified video sequences showing congruent combinations of visual

and auditory signals. AVI: video sequences were modified to incongruent

combinations of visual and auditory signals (visual: /a/ and auditory: /o/

and vice versa). Onset of the auditory signal was matched to the onset

of the expected congruent auditory signal. A: visual information was re-

placed by a static picture taken from the period prior to the lipmovement

period (i.e. without any visual information about the vowel) so that infor-

mation about the vowel was provided by the auditory signal only. V:

auditory information was replaced by the residual background noise so

that information about the vowel was provided by the visual signal only.

The time scale of all video sequences was realigned, so that t = 0

denotes the onset of the auditory signal (in condition V this is the

time point of expected onset of auditory signal).

To determine the on- and offset of the auditory signals, waveforms

of the auditory signals were first rectified and each time sample was

then smoothed using a 10 ms Gaussian kernel. Auditory signal were

defined as time points were the rectified and smoothed signal

exceeded the baseline (averaged signal between 400-500 ms after

video onset, i.e. before onset of auditory signal and lip movements)

by three standard deviations. Onset of auditory signal was defined

as the first time point, offset as the last time point exceeding the

threshold. Onset of articulatory lip movements was defined by visual

inspection of the video frames.

Experimental paradigm

Stimulus presentation was controlled using Presentation

(Neurobehavioral Systems, Albany). Visual stimuli were presented via

a projector located outside the magnetically shielded room and back-

projected via a mirror-system onto a translucent screen 100 cm in

front of the subjects. Auditory stimuli were presented via earphones

(TIP-300 Tubal Insert Phone, Nicolet Biomedical, Inc., Fitchburg,

Wisconsin) inserted into the subjects' ear. The volume was adjusted

individually.

Each trial began with the presentation of a black screen for 600 ms

followed by presentation of a fixation cross. The fixation cross was

presented for 1000 ms at the position where the mouth will be

presented in the following video sequence (center of the speaker's

mouth). The fixation cross was presented to minimize eye movements

and disappearedwith the onset of the video sequence (Fig. 1). Next, one

of the four video sequences was presented.

After the end of the stimulus, a black screen appeared for a random

period between 0 and 1000 ms, followed by the response period

(Fig. 1). Subjects were asked to report whether the video showed a con-

gruent audio–visual sequence (condition AVC) or incongruent sequence

(conditions AVI, A, or V). Subjects were explicitly instructed to rate con-

ditions A and V as incongruent as audio and visual informationwere not

Fig. 1. Illustration of the experimental paradigm. Upper row: subjects fixated a cross centered at the position of the mouth position during following stimulus presentation. After a

jittered time period, subjects were asked to report the (in)congruency of the stimulus. Lower row: detailed illustration of the stimulus period. Video sequences started with a base-

line where the face was visible. After a random period, lip movements started, followed by onset of auditory signal. Auditory signal lasted for 705 ms followed by closing of lips

369 ms later. All time periods are for the condition /a/, slightly different values were presented for condition /o/ (see Methods for details). All trials were aligned to onset of auditory

stimulation (t = 0).
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matching. Responses were given through button press: 5 subjects

responded with the index and middle fingers of left hand, and 6 with

the right hand. The allocation of finger and response was randomly

changed each trial and the response configuration was presented at

the beginning of the response period to minimize preparatory move-

ment signals.

Subjects were instructed to respond within 3000 ms after presen-

tation of response instructions and were informed that response

speed was not taken into account. If no response was given after

3000 ms or subjects responded before the presentation of the in-

structions, a warning was visually presented. The respective trial

was discarded from analysis and repeated at the end of the block. Ex-

cept the warning signal, no feedback was given.

Each stimulus type (e.g. visual: /a/ and auditory: /o/) was repeated

48 times resulting in overall 384 trials (4 categories [AVC, AVI, A,

V] × 2 stimulus types per category [e.g. visual: /a/ and auditory: /o/

and vice versa] × 48 repetitions) and all stimuli were presented in

pseudorandom order. The experiment lasted ~30 min and subjects

were allowed to have a break of ~2 min after half of the trials. Sub-

jects performed a training session of ~5 min before the start of the

MEG experiment.

Data acquisition

Neuromagnetic brain activity was continuously recorded using a

306-channel whole head MEG system (Neuromag Elekta Oy, Helsinki,

Finland). For offline artifact rejection, we simultaneously recorded

the vertical and horizontal electrooculargram (EOG). All data were

recorded with a sampling frequency of 1000 Hz.

Subjects' head position within the MEG helmet was registered by

4 coils placed at subjects' forehead and behind both ears. Head posi-

tion was recorded at the beginning of the recording session using

four head position indicator (HPI) coils. A 3D digitizer (Fastrak

Polhemus) was used to record the positions the HPI coils, three ana-

tomical fiducial points (the nasion and left and right pre-auricular

points) and ~12 additional points evenly distributed over the scalp.

Individual full-brain high-resolution standard T1-weigthed structural

magnetic resonance images (MRIs) were obtained from a 3-T MRI

scanner (Siemens, Erlangen, Germany) and offline aligned with the

MEG coordinate system using the HPI coils, anatomical landmarks

(nasion, left and right preauricular points) and additional points.

Data analysis

Data were offline analyzed using FieldTrip (Oostenveld et al.,

2011), Matlab 7.13 (MathWorks, Natick, MA) and SPM8 (Litvak

et al., 2011). For data analysis, only the 204 planar gradiometers

(i.e. 102 pairs of orthogonal gradiometers) were taken into account.

First, preprocessing was applied to all data (see below). Preprocessed

data were then analyzed in independent processing steps (analysis

of event related fields, spectral power, source analysis, coherence

analysis) as described below.

Preprocessing

The power line artifact was removed from the MEG data using

the following procedure: for each time epoch of interest (and each

recording channel), we first took a 10 s epoch out of the continuous

signal with the epoch of interest in the middle. Next, we calculated

the discrete Fourier transform (DFT) of the 10 s epoch at 50, 100,

and 150 Hz without any tapering. Because the power line is of a per-

fectly constant frequency, the 10 s epoch contains integer cycles of

the artifact frequencies and nearly all the artifact energy is contained

in those DFTs.

We then constructed 50, 100, and 150 Hz sine waves with the am-

plitudes and phases as estimated by the respective DFTs and subtracted

those sine waves from the 10 s epoch. The epoch of interest was then

cut out of the cleaned 10 s epoch. Power spectra of the cleaned 10 s

epochs demonstrated that all artifact energy was eliminated, leaving a

notch of a bin width of 0.1 Hz (i.e. 1/10 s). The actual spectral analysis

used the (multi)taper method, with a spectral smoothing ≥ 2.5 Hz

(see below), so that the notch became invisible.

Next, continuous data were segmented into trials starting with the

onset of video sequence and ending with the presentation of the re-

sponse instructions. Muscle and ocular artifacts were removed using a

semi-automatic routine implemented in FieldTrip. In a nutshell, a

copy of the data was created and this copy of the data was filtered in

a frequency band known to be sensitive for muscular (110–140 Hz) or

ocular (1–14 Hz) artifact. Next, z-values for each channel were comput-

ed for each time point, resulting in a time course representing standard-

ized deviations from the mean of all channels. Artifacts were identified

and removed by applying a threshold and cutting out segments exceed-

ing this threshold from the original, unfiltered data. Note that the filters

were only applied to the copy of the data but do not affect the original

data. Finally, the linear trend was removed from each trial.

Analysis of event-related fields (ERF) and definition of sensors of interest

First, we determined regions of interest in sensor space. Since we

were interested in modulations of activity in regions involved in audi-

tory processing, we pooled all conditions containing auditory signals

(AVC, AVI, A) and computed event-related fields (ERF) in response

to auditory stimulation. For each subject, ERF were computed by ap-

plying a bandpass filter between 0.4 and 30 Hz on the preprocessed

data and averaging trials separately on each of the 204 gradiometers.

Next, we averaged the signal over trials for each pair of orthogonal

sensors separately. To avoid cancelation effects when averaging over

subjects due to spatial smearing or differences in head size and/or posi-

tion, the two orthogonal channels of each sensor pairs were combined

by computing the root-mean-square, resulting in 102 sensors. Next,

ERF were averaged over subjects and represented relative to a baseline

(−300 to −100 ms). The grand average ERF over all sensors revealed

two clear peaks at 130 and 200 ms. To define sensors of interest

which cover these activation peaks, we averaged for each subject ERF

over time. We chose a time window defined by the group peak laten-

cies ± 30 ms (i.e. 100–230 ms) to cover the full width of the evoked

components. We statistically compared the averaged ERF to the aver-

aged ERF in the baseline (−300 to −100 ms) by means of the

cluster-based randomization approach (Maris and Oostenveld, 2007;

see below). In brief, in a first step this approach statistically tests for

each sensor the consistency of the differences (peak vs. baseline) across

subjects. In a second step, neighboring sensors exceeding a pre-defined

threshold (p b .05) were combined to a cluster and tested in a second-

level cluster-statistics. This resulted in a significant cluster (p b .05) of

four sensors in the left and a significant cluster (p b .05) of three sen-

sors in the right hemisphere defining bilateral sensors of interest

(Fig. 2).

To statistically compare ERF for conditions AVC and AVI, we first

averaged ERF across sensors of interest (see above). The averaging

was done separately for each condition and each hemisphere. Note

that ERF were used directly, without subtracting a baseline. ERF for

AVC and AVI were then statistically compared within each subject

by computing the difference and normalizing the difference by the

variance across trials (equivalent to an independent samples t-test).

The comparison was done for each hemisphere separately. To statisti-

cally test the consistency of the difference across subjects, we applied

a nonparametric permutation approach (Maris and Oostenveld,

2007). In brief, the difference values were pooled across subjects.

Neighboring time-points exceeding a predefined threshold (p b .05)

were combined to a cluster and the summed cluster values were

used as the test statistic. Next, a randomization approach, which

randomly exchanged trials between conditions, was applied and the

statistics were re-computed for the new distribution. This way, a ran-

domization distribution was computed and the test statistics was
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compared to the randomization distribution. This approach effective-

ly corrects for multiple comparisons (Maris and Oostenveld, 2007)

(see Lange et al., 2012 for details).

Spectral analysis

We computed time–frequency-representations (TFR) of the pre-

processed MEG data. For each gradiometer and each trial separately,

we applied fast Fourier Transformations (FFT) on short time win-

dows. To compute the temporal evolution of spectral power, time

windows were moved in steps of 25 ms across each trial.

We computed TFRs on two frequency ranges: 4–40 Hz and 40–

150 Hz. For the low frequencies (4–40 Hz), we used a time window

of 400 ms length. To minimize spectral leakage caused by using fi-

nite data segments, data segments were multiplied with a single

Hanning window before applying the FFT, resulting in a smoothing

of ~±2.5 Hz (i.e. 1/0.4 s). For the high frequencies (40–150 Hz),

we used a window of 200 ms length, multiplied with 3 Slepian ta-

pers (Mitra and Pesaran, 1999), resulting in a spectral smoothing

of ±10 Hz. The choice of different time windows and smoothing

for the low and high frequency ranges was motivated by two facts:

low frequencies are relatively narrow and closely spaced. To separate

physiological frequencybands, a small spectral resolution is needed.We

chose a spectral smoothing of±2.5 Hz, which requireswindow lengths

of 400 ms. For the high frequency ranges, physiological frequency

bands are typically much broader, allowing more spectral smoothing.

We chose a spectral smoothing for the high frequencies of±10 Hz. Sec-

ondly, the different timewindows reflect the fact that the timewindow

for a fixed number of cycles becomes smaller for higher frequencies. To

capture also short lasting effects at high frequencies, we chose a shorter

time window for the high frequencies. An even smaller window length

would have been problematic because it might create problems in the

group analysis when different subjects have short spectral perturba-

tions at slightly different times.

The sensor system of the Neuromag MEG system contains 102

pairs of orthogonal gradiometers. Spectral power was first estimated

for each trial and for each of the 204 gradiometers separately. For

each trial, power of each gradiometer pair was then combined by

summing power of the two orthogonal sensors of each pair, resulting

in 102 sensors.

Statistical analysis between conditionsAVC andAVIwasdone similar

to the approach described for statistics on ERF. First, power was aver-

aged for each condition across the sensors of interest (see above) and

compared between conditions within each subject. We compared

power directly, without subtracting a baseline. Then the second-level

cluster-statistics was applied. Clusters were now defined by neighbor-

ing pixels in the time and frequency (see Lange et al., 2012 for details).

The abovementioned statistical analysis was applied to statistically

test differences between conditions AVC and AVI. The resulting significant

clusters of this analysis reflect significant differences between conditions

(Fig. 3). These clusters do not allow an interpretation as towhether differ-

ences are due to power increase or decreases of a condition. To interpret

these clusters in terms of power changes of each condition,we performed

an additional analysis (Fig. 4). To this end, we averaged spectral power

across the four sensors of interest and additionally averaged power across

time and frequency. Time and frequency were defined by the significant

clusters (see Fig. 4 for respective time–frequency windows used for aver-

aging power). Averaged powerwas then calculated as relative change to a

baseline (−500 to−100 ms). To further characterize power changes, we

repeated the abovementioned procedure of power averaging for the

unimodal conditions. Please note that this analysis is not orthogonal to

but biased by the abovementioned cluster analysis and the analysis serves

mainly to further characterize the data. An ANOVA was applied to statis-

tically test differences of relative change between conditions. Post-hoc

pairwise tests were performed by means of a paired t-test. Additionally,

the relative change of power was statistically tested against zero (i.e. no

change relative to baseline) by means of a one-sample t-test.

Source analysis

To determine the cortical sources of the significant effects found in

sensor space, we applied an adaptive spatial filtering technique in the

frequency domain (DICS Gross et al., 2001). To estimate sources, spa-

tial filters were constructed for a grid of discrete locations. To con-

struct the grid for an individual subject, first a regular grid with a

resolution of 1 cm was created in the Montreal Neurological Institute

(MNI) template brain. Each subject's structural MRI was linearly

warped into this template MRI and the inverse was applied to the

template grid, resulting in individual grids. For each grid position,

we constructed spatial filters based on leadfield and cross spectral

density (CSD) matrices. Leadfield matrices were constructed for the

individual grid locations using a realistic single-shell volume conduc-

tion model based on the individual MRIs (Nolte, 2003). CSD matrices

were computed between all MEG gradiometer sensor pairs from

the Fourier transforms of the tapered data epochs at the frequency

of interest for each subject separately. The data epoch and the

frequency of interest (theta [Fig. 3D]: 6 ± 3 Hz; beta [Fig. 3C]:

25 ± 4 Hz; gamma [Fig. 3B]: 130 ± 12 Hz) were based on the

Fig. 2. Event related fields (ERF) for all conditions and definition of sensors of interest. A) Temporal profiles of ERF for conditions AVC (thick blue line), and AVI (thick red line), A

(thin, dashed black line), and V (thin, solid black line) relative to an averaged baseline (−300 to −100 ms). ERFs are averaged across four sensors in the left hemisphere (see B).

The shaded box indicates the area of statistically significant differences between the main conditions AVC and AVI. No significant differences were found for sensors in the right

hemisphere. B) Topographical representation of the ERF of the first two peaks (i.e. ERF averaged between 100 and 230 ms relative to baseline of −300 to −100 ms; see A), aver-

aged across all conditions containing auditory stimulation (AVC, AVI, A). Two significant clusters showing significant increases of ERF were identified: Four sensors in the left and

three sensors in the right hemisphere (black dots). Significant clusters were determined by cluster-based randomization approach (see Methods for details). The sensors of these

significant clusters were chosen for subsequent analysis.
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significant time–frequency clusters of the above mentioned group

analysis on sensor level. Source parameters estimated in this way

per subject were combined across subjects per grid position.

To statistically test the differences between conditions AVC and

AVI, we first pooled trials of both conditions and computed a common

spatial filter for each subject. For each subject, the CSD matrices of

Fig. 3. Statistical comparison between AVC and AVI in the time–frequency domain and on source level. A) Time–frequency-representations of AVC and AVI were statistically com-

pared by averaging spectral power across the four sensors in the left hemisphere (see Fig. 2) and comparing the averaged spectral power between AVC and AVI by means of a

cluster-based randomization test. Red colors indicate higher spectral power for AVC, blue colors higher power for AVI. Non-significant values are masked to highlight significant

time–frequency clusters. No statistically significant effects were found in sensors over right hemisphere. B) Source reconstruction for the significant cluster in the high-gamma

band (130 + 12 Hz) (see A). Non-significant voxels are masked to highlight significant areas. C) Source reconstruction for the cluster in the beta-band (25 + 4 Hz). D) Source re-

construction for the cluster in the theta/alpha-band (6 ± 3 Hz). The color bar represents t-values and applies to all plots.

Fig. 4. Spectral power modulations for the four conditions (AVC, AVI, A, V) relative to baseline. Spectral power is averaged across sensors of interest in the left hemisphere (see Fig. 2)

and time–frequency bands (as shown by significant clusters in Fig. 3 and defined as indicated on top of each subfigure) and compared relative to baseline (−500 to −100 ms),

separately for each condition. Power modulations are shown for the A) gamma-, B) theta, and C) beta-band. Significance was tested against zero (indicated by * and ** inside

each bar) and between conditions (indicated by * and ** on top of bars). *: p b 0.05; **: p b 0.01.
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single trials were then projected through those individual filters, pro-

viding single trial estimates of source power for each grid point

(Hoogenboom et al., 2010; Lange et al., 2011). Single trials were

then sorted for conditions again and statistical testing on source

level was performed in line with testing on sensor level (see above).

Clusters were defined based on neighboring voxels in source space.

Results were displayed on the MNI template brain and significant

cortical sources were identified using the AFNI atlas (http://afni.nimh.

nih.gov/afni), integrated into FieldTrip.

Coherence analysis

Coherence was computed on source level using DICS (Gross et al.,

2001). Coherence measures the consistency of the phase and ampli-

tude between two signals for a given frequency band across trials

and was computed according to the formula:

Cohx;y ¼
b Sx;y >
���

���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b Sx;x > �b Sy;y >

q

with

Sx;y ¼ Fx fð Þ � Fy fð Þ
�

where Fx(f) denotes the Fourier Transform of a signal at location x for a

specific frequency f, ⁎ the complex conjugate and b> the mean across

trials (Schoffelen et al., 2011).Since coherence is non-uniformly distrib-

uted and biased by the number of trials, corrected z-Coherence-values

were computed according to the formula:

zCoh ¼ arctanh Cohð Þ−
1

2N−2

and normalized differences between conditions were computed

following:

ΔzCoh ¼
zCoh

V1−zCoh2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2N1−2 þ
1

2N2−2

q

with Cohx and Nx denoting Coherence and number of trials for condi-

tion x (Schoffelen et al., 2011).

For each condition, Coherence was computed relative to a reference

point in auditory cortex, which revealed the highest power differences

for source localization of power differences. Statistical comparison for

all voxels between conditions was performed on ΔzCoh-values as de-

scribed above.

We computed coherence relative to a voxel in left auditory cortex

(MNI coordinates: [−50, −30, 0]), which revealed the highest t-value

during source localization of the early significant negative cluster found

on source level. Similar to the computation of spectral power, coherence

was computed by first cutting out data epochs in the time domain and

then computing the Fourier Transformation. Fourier Transformation and

thus coherence were computed on time window of 375 ms length. A co-

herence value at time point t in Fig. 5 reflects thus coherence computed

on time windows from t − 187 to t + 187 ms. The data epochs were

multiplied with three Slepian tapers before coherence computation,

resulting in an effective frequency band of ~8 ± 5 Hz (i.e. very close to

the frequency band 4–12 Hz for which we found significant effects in

spectral power). For the temporal evolution of coherence (Fig. 5B), we

computed coherence for sliding windows in steps of 50 ms.

Results

Eleven subjects were presented with video sequences of a speaker

articulating vowels /a/ and /o/. We presented four versions of the

video sequence: videos could be presented in either in the original

version, i.e. with congruent audio–visual information (AVC), or in

three modified versions. The threemodified version consisted of incon-

gruent audio–visual information (AVI), auditory information combined

with uninformative static pictures (A), or visual information combined

with uninformative auditory signals (V). Subjects were asked to rate

whether auditory and visual information was congruent, i.e. portraying

the same vowel, or incongruent. Crucially, pooled overall conditions,

congruent and incongruent stimuli differed only in terms of congruency

while net audio and visual informationwere identical. Themain focus of

our study was to investigate neuronal mechanisms and networks un-

derlying neuronal processing of matching auditory and visual signals.

Behavioral data

Subjects recognized video sequences with high accuracy as con-

gruent (AVC: 96.13 ± 0.02%; Mean ± SEM) and incongruent (AVI:

97.01 ± 0.01%; A: 98.90 ± 0.01%; V: 97.56 ± 0.02%). For the subse-

quent analyses, only valid trials were taken into account.

Analysis of event related fields (ERF)

Incongruent audio–visual stimulation (AVI) elicited a significantly

stronger N1 component than congruent stimulation (AVC) in sensors

of interest in the left hemisphere between 117 and 146 ms after audi-

tory onset (p b .01; Fig. 2A). No significant differences were found in

sensors of the right hemisphere.

Time–frequency analysis and source reconstruction

For sensors in the left hemisphere, we found three significant clusters

in the time frequency representation revealing significant power differ-

ences between conditions: i) a negative cluster (p b .01) between −50

and 400 ms in the 4–12 Hz band revealing stronger spectral power for

incongruent (AVI) than congruent (AVC) audio–visual stimulation, ii) a

positive cluster (p b .05) between 425 and 750 ms in the 20–30 Hz

band, and iii) a positive cluster (p b .05) between 675 and 875 ms in

the high gamma band (120–140 Hz) indicating higher spectral power

in condition AVC compared to AVI (Fig. 3A). Additional analyses revealed

a sustained increase for gamma power in condition AVC with two peaks

around 100 and 700 ms (i.e. around on- and offset of auditory stimula-

tion, Fig. S1A). For condition AVI, we did not find an initial increase, but

instead a decrease around offset of auditory stimulation (Figs. 1B and

4A). No statistically significant effects were found in sensors over right

hemisphere.

To further study themodulatory effect of congruent and incongruent

audio–visual signals, we additionally analyzed power changes relative

to baseline (−500 to−100 ms before auditory onset) for all conditions,

separately for the three significant time–frequency clusters. Note that

these analyses are based on the results of the initial TFR contrast AVC

vs. AVI (Fig. 3A) and thus not independent of these results. These analy-

ses serve mainly to further characterize the results in terms of power

increases and decreases and relate them to the unimodal conditions

(A and V).

For the cluster in the theta-band (4–12 Hz, 0–250 ms; Fig. 4B), we

found a significant main effect (F(3,43) = 25.55, p b 0.001). Post hoc

analysis revealed that congruent stimulus condition AVC elicited signif-

icantly less power than incongruent AVI (t(10) = −2.49; p = 0.032,

paired t-test) and unimodal A (t(10) = −5.77; p b 0.001), but more

power than unimodal V (t(10) = 4.17; p = 0.002). Condition AVI elicit-

ed significantly less power than A (t(10) = −3.08; p = 0.012) and

more power than V (t(10) = 6.59; p b 0.001). Finally, unimodal condi-

tion A elicited significantly more theta-power than unimodal condition

V (t(10) = 5.84; p b 0.001). Comparison of power against zero revealed

a significant increase for AVC (t(10) = 3.88; p = 0.003; t-test against

zero), AVI (t(10) = 5.88; p b 0.001), and A (t(10) = 6.45; p b 0.001).

No significant changes were found for condition V (p > .59).
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For the beta-cluster (20–30 Hz, 425–750 ms; Fig. 4C), we found a

significant main effect (F(3,43) = 3.1, p b 0.05). Post hoc analysis re-

vealed that power in condition AVI was significantly lower than in AVC

(t(10) = −3.13; p b 0.01) and than in V (t(10) = −2.36; p = 0.04).

None of the other comparisons revealed a significant effect (p > .13).

Only condition AVI was significantly different from 0 (t(10) = −2.74;

p = 0.021), revealing a decrease in beta-power.

For the gamma-cluster (120–140 Hz, 775–850 ms; Fig. 4A), we

found a significant main effect (F(3,43) = 4.31, p b 0.01). Post hoc anal-

ysis revealed that power changes were significantly higher for AVC vs

AVI (t(10) = 4.38, p = 0.001) and lower for AVI than for unimodal A

(t(10) = −2.91, p = 0.016). None of the other comparisons revealed a

significant effect (p > 0.11). Additionally, power increase for AVC was

significantly higher than 0 (t(10) = 2.28; p = 0.045), while power

for AVI revealed a significant decrease (t(10) = −3.38, p = 0.007).

Unimodal conditions elicited no significant power changes (p > 0.51).

We used a beamforming approach (DICS Gross et al., 2001) to identi-

fy the cortical sources of the three clusters identified on sensor level.

Source reconstruction revealed that the three clusters originated from

different sources in the left hemisphere: i) the negative cluster in the

low frequencies (4–12 Hz) was localized mainly to auditory cortex and

the middle and superior temporal gyri (Brodmann areas 21, 22, 41, 42)

(Fig. 3D; frequency for source localization: 6 ± 3 Hz), ii) the positive

cluster in the beta-band (20–30 Hz) originated from the supramarginal

gyrus (Brodmann area 40) (Fig. 3C; frequency for source localization:

25 + 4 Hz), iii) the positive cluster in the gamma-band (120–140 Hz)

originated from the inferior frontal gyrus (Broca's area, Brodmann area

44) (Fig. 3B; frequency for source localization: 130 + 12 Hz).

Coherence analysis

Coherence is a measure of phase and amplitude consistency between

neuronal groups across trials. Coherence is commonly interpreted as a

measure of interaction or communication between neuronal groups.

We were interested which cortical areas interact via coherence when

processing congruent audio–visual information. To this end, we chose a

voxel in left auditory cortex (MNI coordinates: [−50;−30; 0]) as the ref-

erence voxel and computed coherence in the 8 ± 5 Hz frequency band

relative to all other voxels using DICS for conditions AVC and AVI. The ref-

erence voxel was chosen since it showed the maximum t-value during

source localization of the early significant negative cluster (Fig. 3D).

We found coherence to be significantly enhanced for condition

AVI relative to AVC directly after auditory onset in the middle and in-

ferior temporal gyri (Fig. 5A). In addition, we found a second, spatially

distinct significant cluster located in inferior frontal gyrus (Broca's

area, Brodmann area 44) and dorsal premotor cortex (Brodmann

area 6) (Fig. 5A). To investigate the temporal evolution of coherence

between auditory cortex and Broca's area, we computed coherence

in sliding time windows and averaged coherence-values across the

voxels in Broca's area showing significant interaction in the above

mentioned analysis. Coherence increased between on- and offset of

congruent audio–visual stimuli, indicated by a significant linear re-

gression (AVC: r = .82, p b .001; slope: 0.12; Fig. 5B) before it

returned to baseline. Conversely, we found for incongruent audio–vi-

sual stimulation a decrease of coherence over time, indicated by a sig-

nificant linear regression (AVI: r = .49, p b .05; slope: − .06; Fig. 5B)

before it returned to baseline after offset of auditory stimulation. Con-

sequently, the difference between AVC and AVI increased between on-

and offset (linear regression: r = .78, p b .001; slope: 0.19; data not

shown). Control analyses for unimodal conditions A and V showed a

weak linear increase, which, however, did not reach statistical signif-

icance (A: r = .38, p > .05; slope: 0.03; V: r = .42, p > .05; slope:

.05; data not shown). Source reconstruction of the difference between

AVC and AVI at auditory offset revealed that coherence was confined

to inferior frontal gyrus (Broca's area, Brodmann area 44) (Fig. 5C).

Interestingly, themain difference of coherence between AVC andAVI

was found in the same area (i.e. Broca's area, Brodmann Area 44) as the

significant cluster for gamma power (Fig. 3B, see time–frequency and

source analysis above). To study a potential relation between theta/

alpha-coherence and gamma-power, we correlated the difference of co-

herence between AVC and AVI and the difference in gamma-power be-

tween AVC and AVI during auditory stimulus presentation. We found

gamma-power and theta/alpha-coherence to be positively correlated

(r = .77, p b .001), with early time points around auditory onset re-

vealing the lowest values and late time points shortly before auditory

offset revealing the highest values (Fig. 6).

Discussion

We studied the role of oscillatory neuronal synchronization in an

audio–visual match/mismatch task using magnetoencephalography

(MEG). To this end, we present audio–visual stimuli that differed in

their congruency of auditory and visual information. We found differ-

ences in spectral power and coherence in a distinct spatio-temporal

cortical network. Interestingly, we found that the coherence in the

theta-band was correlated to high gamma-power over time.

Normal, congruent audio–visual stimuli (AVC) revealed a suppres-

sion of the event related field (ERF) relative to incongruent stimuli

Fig. 5. Results of the coherence analysis for conditions AVC and AVI. A) Differences between coherence for AVC and AVI. Coherence was computed for all voxels of each condition

relative to a reference voxel in auditory cortex (indicated by the black dot) at the onset of auditory stimulation and then statistically tested for coherence differences between AVC

and AVI. The colorbar indicates differences in coherence. Red denotes higher coherence to auditory cortex for AVC, and blue higher coherence for AVI. Non-significant voxels are

masked to highlight significant effects. B) Analysis of the temporal evolution of coherence. Coherence was averaged across significant voxels of Broca's area (see A) and computed

relative to a baseline (−500 to−100 ms). Solid lines represent smoothed time courses (Gaussian kernel with FWHM of 100 ms) of coherence for AVC (red) and AVI (black). Dashed

lines represent linear fits for AVC and AVI for all time points between on- and offset of auditory stimulation. C) Same as A), but now at offset of auditory stimulation.
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(AVI) for the first auditory peak (M100). Suppression of the M100 has

been interpreted as an index of audio–visual interaction (Besle et al.,

2004). The early decrease of evoked activity suggests that auditory

cortex is modulated by preceding visual information and auditory

stimulation interacts with prior modulation (Arnal et al., 2011;

Besle et al., 2004; Sohoglu et al., 2012; van Wassenhove et al.,

2005). Previous studies reported a reduction of the M100 for audio–

visual stimuli compared to unimodal auditory stimuli, independent

of audio–visual congruency (Arnal et al., 2009; van Wassenhove et

al., 2005). The lack of M100 suppression for AVI might suggest that vi-

sual information is simply ignored and rendering AVI effectively sim-

ilar to unimodal condition A. However, peak amplitudes of second

peak are modulated qualitatively differently by congruency than the

M100, revealing a clear distinction between conditions AVI and A

following the relation AVI b AVC b A. This relation is in line with pre-

vious studies showing the strongest suppression of the second peak

by incongruent audio–visual signals (Stekelenburg and Vroomen,

2007).

In addition, AVC showed a significant suppression of low frequency

(4–12 Hz) spectral power relative to AVI around auditory onset in

early auditory cortex. Moreover, theta-band power after onset of audi-

tory stimulation (~200 ms) shows the relation AVC b AVI b A, again

strongly suggesting that incongruent visual information is not simply

ignored, but selectively modulates theta-band power. Given the

spatio-temporal profiles, it is likely that this effect in low frequency os-

cillations corresponds to the differences found for components in the

ERF. Low frequency oscillations have been suggested to play a role as

an integration window as well as for cortical gating of information or

sensory selection (Fries, 2005; Mizuseki et al., 2009; Schroeder and

Lakatos, 2009; Schroeder et al., 2008). We found neuronal oscillations

in the theta/alpha-band to be coherent between auditory cortex and

Broca's area. Coherence was stronger for AVI than AVC directly after

auditory onset, but decreased thereafter for AVI, while coherence in-

creased for AVC until auditory offset. We propose that the coherence

in the theta/alpha-band provides amechanism for efficient gating of in-

formation from early to higher stages of speech processing. During con-

gruent audio–visual stimulation (AVC), auditory cortex and Broca's area

are coupled and coupling increases over time as evidenced by an in-

crease of coherence. In contrast, during incongruent audio–visual stim-

ulation (AVI), the two areas are continuously decoupled. Potential

reasons for the initial high coherence for condition AVI might be atten-

tional effects due to unexpected bimodal stimulation or an initial

forwarding of the task-relevant bimodal information for a cognitive

evaluation. Future studies, however, are needed to shed more light on

this initial effect. One might wonder why we did not find increasing

coherence for unimodal conditions A and V. Both conditions also pro-

vide information that might be processed to higher stages for cognitive

evaluation. One potential reasonmight be that the lack of bimodal infor-

mation renders cognitive evaluation of this stimulus in higher cortical

areas unnecessary. Missing lip movements and missing auditory infor-

mation might already provide sufficient information to evaluate the

stimuli as incongruent. Future studies forcing subjects to cognitively

evaluate such unimodal stimuli might find similar coherence effects as

we found for congruent audio–visual stimuli.

In addition, we found a sustained increase of high-gamma band

power in Broca's area with two peaks around on- and offset of audito-

ry stimulation for AVC. In contrast, there was no gamma power in-

crease for incongruent stimuli at auditory onset, but even a decrease

around offset. The difference between congruent and incongruent

stimuli in gamma power became significant around auditory offset.

Most interestingly, this difference in gamma power was positively

correlated to the difference in coherence over time. We suggest that

information flow from auditory cortex to Broca's area is provided by

coherence in the low frequencies. Broca's area evaluates audio–visual

congruency (Noppeney et al., 2010), reflected in an increase or de-

crease of gamma power. Gamma power for congruent stimuli peaked

particularly around on- and offset of auditory stimulation. We pro-

pose that these peaks are caused by the fact that our stimuli show

the strongest modulations at on- and offset of auditory stimulation.

Modulation of the input might provoke a re-evaluation of the

audio–visual signal leading to modulations of gamma band activity.

In line with absent coherence for unimodal conditions A and V, we

did not find any modulations of gamma-band activity for these

unimodal conditions in Broca's area, further suggesting that the ob-

served gamma-band increase reflects evaluation of matching audio–

visual information.

Coherence in the theta-band has also been reported in a word pro-

cessing study using intracranial EEG (Canolty et al., 2007). The au-

thors reported increased phase-locking of sensors specifically in the

theta-band over several centimeters, however, without reporting

whether phase-locking was specific for electrode pairs. Theta-band

phase in auditory cortex was also found in an MEG study to code in-

telligible speech (Luo and Poeppel, 2007). Coherence in the low fre-

quencies has been found to be modulated in deep layers of the

cortex, while gamma-coherence has been found in superficial layers

(Buffalo et al., 2011). Deep layers are thought to play a role in

cortico-cortical feedback connections and receive input from subcor-

tical areas, while superficial areas are thought to mediate feedforward

processes (Buffalo et al., 2011; Lakatos et al., 2007). Coherence in the

theta/alpha-band might therefore reflect feedback processing be-

tween early and higher stages of cortical processing and thus shaping

and establishing the functional interaction of these areas in the case

of congruent stimuli and, conversely, continuously disjointing the

cortical interaction for incongruent stimuli. In contrast, the increase

in gamma band power in higher areas might reflect integration of ac-

cumulated information and effective feedforward processing of infor-

mation (Fries, 2005; Jensen and Mazaheri, 2010).

Coherence is potentially confounded by power. Since the early de-

crease of coherence in auditory cortex is paralleled in time, frequency,

and space by a power decrease, we cannot fully exclude that the

negative coherence in middle and inferior temporal gyri is confounded

by power modulations. It should be noted, however, that power modu-

lations were also found in auditory cortex, while the coherence dif-

ference was not. This lack of local coherence argues against the

possibility that coherence differences can be fully explained by power

differences. For three reasons it is unlikely that the coherence differ-

ences measured in Broca's area are confounded by power. First, no

power differences in the theta band were observed in Broca's area and

the gap between the two significant clusters inmiddle and inferior tem-

poral gyri and in Broca's area (Fig. 5A)makes it unlikely that the cluster

in Broca's area is confounded by spatially smeared power differences

Fig. 6. Correlation of coherence and power differences between AVC and AVI. Differ-

ences in coherence between AVC and AVI (see Fig. 5B) were correlated with differences

in high-gamma-power between AVC and AVI (see Fig. 3A). Solid line represents the

best linear fit. Time points relative to auditory onset are color coded with red colors in-

dicating early time points and blue colors late time points.
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around auditory cortex. Secondly, we observe a temporal evolution of

coherence that is not paralleled by power differences neither in auditory

cortex nor Broca's area. Finally, the difference in coherence reverses in

sign between on- and offset of auditory stimulation. Again, this effect

is not accompanied by power changes and cannot be explained by spa-

tial or temporal smearing of coherence or power effects.

In addition, we found decreased beta-band power for incongru-

ent audio–visual signal around offset of auditory stimulation in

supramarginal gyrus, while it was not significantly modulated by con-

gruent audio–visual or unimodal stimuli. Together with inferior frontal

gyrus and (pre)motor areas, supramarginal gyrus has been suggested to

be part of a dorsal stream of audio–visual speech perception, dominant

to the left hemisphere (Hickok and Poeppel, 2007). Supramarginal

gyrus was not linked to auditory cortex by coherence in the low fre-

quencies. It remains speculative whether coupling of supramarginal

area to the other areas might be mediated in other frequency bands,

e.g. coherence in the beta-band (Arnal et al., 2011) or whether this

area is coupled to other areas via feedback connections. While auditory

cortex and Broca's area were significantly activated by congruent stim-

uli (AVC), supramarginal gyrus showed responses (i.e. decrease of

beta-power) only for incongruent stimuli (AVI). This finding suggests

a different role for supramarginal gyrus in our match/mismatch task.

One possible role might be error monitoring of incongruent, non-

matching stimuli. This interpretation is in line with previous studies

showing activity in supramarginal gyrus for deviant or mismatching

stimuli (Celsis et al., 1999; Guenther, 2006; Xu et al., 2001). Future

studies have to shed light on the role of supramarginal gyrus and its

connections to the network of congruent speech integration.

In summary, our results might also be interpreted in the context of

predictive coding. In predictive coding it is assumed that higher cog-

nitive areas modulate activity in lower sensory areas by conveying

top-down predictions about upcoming sensory events (e.g. Bastos et

al., 2012). Due to the top-down signal, activity in response to predict-

ed stimuli is suppressed in early cortical areas. Violating expectations

causes enhanced responses in lower levels due to an inability to pre-

dict and suppress cortical activity.

Since visual information predicts a congruent auditory signal, the

enhanced early evoked/theta-band activity in early sensory areas to

incongruent stimuli might be interpreted as a violation of predictions

leading to an enhanced response, a prediction error. In predictive

coding, prediction errors are forwarded to higher areas to update

higher-level representations. This might be reflected by the observed

initial increase of theta-band coherence between auditory cortex and

Broca's area. After the initial increase, predictions might be updated

to suppress the incongruent auditory information. We also found

high gamma-band activity in Broca's area around stimulus on- and

offset. Gamma-band activity is assumed to reflect feedforward pro-

cessing to higher areas. The differences in gamma-band power

around auditory offset might thus reflect different feedforward sig-

nals for congruent and incongruent stimuli. The temporal coincidence

with differences in beta-band activity in supramarginal gyrus sug-

gests a correlation of both signals. But since connectivity and correla-

tion analyzes for gamma-band power were beyond the scope of the

present study, we can only speculate about the direction of the

feedforward process.

While we found significant differences between conditions AVC

and AVI in auditory ROI, no significant effects were found in visual

ROI (data not shown). In contrast, other studies have reported modu-

lations of visual responses by congruent audio–visual information in

visual or multisensory areas, e.g. in STS (Arnal et al., 2011; Dahl et

al., 2010; Ghazanfar et al., 2008). One potential reason for the lack

of significant differences in visual areas in our study might be that

overall visual signals as well as their modulations by auditory signals

might be too small to be detected by our design, e.g. due to the

pre-selection of ROI. Additionally, choice of task and method (single

cell recordings or MEG) might strongly influence the sensitivity to

detect congruency effects in STS or other areas. More detailed focus

on STS or other areas, which are typically considered as visual areas,

e.g. by a different definition of ROI, might reveal additional effects.

However, this was beyond the scope of the present study and might

be investigated in future studies.

In summary, we have demonstrated that processing of congruent

and incongruent audio-visual speech differs in a widespread network

that is characterized by neuronal oscillatory activity in several fre-

quency bands. Parts of this network are functionally coupled by co-

herence in the low frequencies. Moreover, low frequency coherence

and high-gamma power are coupled in higher areas of the speech

perception network. We propose that low frequency coherence con-

stitutes functional coupling between primary sensory and higher

order cortical areas. Recent studies suggest that such coupling might

be mediated by feedback connections (Buffalo et al., 2011). Finally,

we provide evidence that coupling of low-frequency coherence and

high frequency power reflects a functional mechanism for dynamic

integration of neuronal networks.

Supplementary data to this article can be found online at http://

dx.doi.org/10.1016/j.neuroimage.2013.04.064.
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Reduced Occipital Alpha Power Indexes Enhanced
Excitability Rather than Improved Visual Perception
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Several studies have demonstrated that prestimulus occipital alpha-band activity substantially influences subjective perception and

discrimination of near-threshold or masked visual stimuli. Here, we studied the role of prestimulus power fluctuations in two visual

phenomena called double-flash illusion (DFI) and fusion effect (FE), both consisting of suprathreshold stimuli. In both phenomena,

human subjects’ perception varies on a trial-by-trial basis between perceiving one or two visual stimuli, despite constant stimulation. In

the FE, two stimuli correspond to veridical perception. In the DFI, two stimuli correspond to an illusory perception. This provides for a

critical test of whether reduced alpha power indeed promotes veridical perception in general. We find that in both, DFI and FE, reduced

prestimulus occipital alpha predicts the perception of two stimuli, regardless of whether this is veridical (FE) or illusory (DFI). Our results

suggest that reduced alpha-band power does not always predict improved visual processing, but rather enhanced excitability. In addition,

for the DFI, enhanced prestimulus occipital gamma-band power predicted the perception of two visual stimuli. These findings provide

new insights into the role of prestimulus rhythmic activity for visual processing.

Introduction
Despite physically constant sensory stimulation, subjective per-
ception can vary substantially across subjects. Subjective percep-
tion can also vary within individual subjects on a trial-by-trial
basis or over time, for example in ambiguous, bistable visual
stimuli. It has been shown that peristimulus fluctuations of
rhythmic neuronal activity are related to changes of subjective
perception (Rodriguez et al., 1999; Parkkonen et al., 2008). In
recent years, there has been cumulative evidence that also mod-
ulations of ongoing rhythmic neuronal activity before sensory
stimulation can influence perception of the subsequent stimulus
(van Dijk et al., 2008; Hipp et al., 2011; Keil et al., 2012). Espe-
cially ongoing rhythmic activity in the alpha-band (�10 Hz) has
drawn much attention recently. Some studies have found the
power of prestimulus alpha-band activity in parieto-occipital ar-
eas to correlate negatively with the subjective perception in visual
detection and discrimination tasks (Worden et al., 2000;
Hanslmayr et al., 2007; van Dijk et al., 2008; Wyart and Tallon-
Baudry, 2009; Romei et al., 2010). Other studies have found pre-

stimulus alpha-power in the visual and somatosensory domain to
correlate to perception and poststimulus evoked responses as an
inverted-U function: intermediate levels of alpha-power enhance
perception and evoked responses while low and high levels have a
negative effect (Linkenkaer-Hansen et al., 2004; Zhang and Ding,
2010; Rajagovindan and Ding, 2011; Lange et al., 2012). In addi-
tion, prestimulus gamma-band power has been shown to influ-
ence perception (Wyart and Tallon-Baudry, 2009).

Alpha-band power is modulated by attention (Worden et al.,
2000; Thut et al., 2006; Haegens et al., 2011; Rajagovindan and
Ding, 2011; van Ede et al., 2011) and has been linked to inhibition
of task irrelevant areas (Händel et al., 2011; Jensen and Mazaheri,
2010). Similarly, gamma-band power is modulated by attention
(Fries et al., 2001b, 2008; Bauer et al., 2006; Buffalo et al., 2011;
Kahlbrock et al., 2012). Both processes are believed to gate neu-
ronal processing and thus increase neuronal stimulus processing
in task related neuronal groups (Fries, 2005; Fries et al., 2007;
Romei et al., 2008a; Schroeder and Lakatos, 2009; Jensen and
Mazaheri, 2010). Specifically, decreased prestimulus alpha-band
power has been interpreted by some studies to improve visual
perception in the sense that it leads to better detection perfor-
mance of near threshold stimuli or more veridical perception in
visual discrimination tasks (Hanslmayr et al., 2007; van Dijk et
al., 2008; Mathewson et al., 2009; Wyart and Tallon-Baudry,
2009; Romei et al., 2010).

Here, we study prestimulus rhythmic neuronal activity in two
phenomena called double-flash illusion (DFI) and fusion effect
(FE). In the visuotactile DFI, subjects receive one visual stimulus
accompanied by two tactile stimuli, and this stimulation is mis-
perceived as two visual stimuli (Violentyev et al., 2005; Lange et
al., 2011). By contrast, the FE occurs when two visual stimuli are
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Germany. E-mail: Joachim.lange@med.uni-duesseldorf.de.

DOI:10.1523/JNEUROSCI.3755-12.2013

Copyright © 2013 the authors 0270-6474/13/333212-09$15.00/0

3212 • The Journal of Neuroscience, February 13, 2013 • 33(7):3212–3220



presented with no or one tactile stimulus, and this stimulation is
misperceived as a single visual stimulus (McCormick and
Mamassian, 2008). In both the FE and the DFI, varying percep-
tion occurs in the face of constant physical stimulation. The com-
parison of the DFI and the FE provides for a critical test: If
reduced prestimulus alpha-band activity indeed promotes verid-
ical perception in general, it should reduce illusory mispercep-
tion in both the DFI and the FE. Here, we test this prediction
using MEG recordings in 33 subjects.

Materials and Methods
Subjects
Thirty-three right-handed volunteers [15 male, mean age (� SD) 22.2 � 2.8
years] participated in this study. All participants had normal or corrected-
to-normal vision and no known history of neurological disorders. The ex-
periment was approved by the local ethics committee, and each subject gave
written informed consent before the experiment, according to the Declara-
tion of Helsinki.

Paradigm and stimuli
Paradigm and stimuli were reported in detail previously (Lange et al.,
2011). Here, we will present a comprehensive overview; for details, see
the study Lange et al. (2011).

Subjects were lying in supine position with their head placed inside the
MEG helmet while they received visuotactile stimulation. Visual stimuli
were presented via a projector (60 Hz refresh rate) placed outside the mag-
netic shielded room and backprojected via a mirror system on a translucent
screen. The visual stimulus consisted of a gray disc (2.5° diameter) presented
17° left of the center of the screen. The luminance of the disc was adjusted
individually (average across subjects 2.3 cd/m2) to obtain balanced re-
sponses during illusion trials (see below). Visual stimuli were presented for
one monitor frame (16 ms). Tactile stimuli were presented via a piezo-
electric stimulation device (Metec) that was taped to the subjects’ left index
finger. The device consisted of 4 � 2 pins that were raised simultaneously for
30 ms. To mask clicking sounds produced by the stimulator, subjects’ hands
and the stimulator were covered by sound attenuating foam and subjects
received white noise via headphones.

Each trial began with the presentation of a central gray fixation dot
(Gaussian of diameter 0.5°, luminance 7 cd/m 2). A decrease of lumi-

nance served as a warning cue and after 800 ms
visuotactile stimulation began (Fig. 1 A). Stim-
ulation consisted of 0, 1, or 2 visual stimuli,
accompanied by 0, 1, or 2 tactile stimuli. We
will address the different conditions as “vxty”
for a condition with x visual and y tactile stim-
uli, e.g., conditions potentially showing the
DFI effect are labeled v1t2. We applied all nine
combinations of visuotactile stimulations in
random order. In the critical condition v2t0
the onset of both visual stimuli was separated
by 60 ms (Fig. 1 B). In the bimodal conditions
v1t2 and v2t1, stimuli were presented in the
order t-v-t (v-t-v, respectively), with the onset
of the two tactile (visual) separated by 60 ms
and the visual (tactile) stimulus presented in
between. We used only the stimulation order
t-v-t for v1t2 trials (Fig. 1 B). This choice was
motivated by a previous study on the auditory–
visual DFI (Shams et al., 2002). This study had
shown that perception of the DFI occurs if the
visual stimulus is presented in between the two
auditory stimuli (or simultaneous to one audi-
tory stimulus) and that the gap of the onsets of
visual and auditory stimuli needs to be within
�70 ms.

After stimulation, only the fixation dot was
visible for 1000 ms before its luminance in-
creased, indicating the start of the response pe-
riod (Fig. 1 A). Subjects were asked to report

how many visual stimuli they perceived while ignoring tactile stimula-
tion. Responses were given by button presses with the thumb, index, and
middle finger of right hand. After button press or maximally 3000 ms, the
next trial started.

Overall, each condition was presented in 100 trials. To increase statis-
tical power, the condition v1t2 was presented 200 times. The trials were
presented in 10 blocks with each block containing all nine conditions
(v1t2 twice) in pseudorandom order. After 10 blocks, subjects were al-
lowed to take a short self-paced break.

The experiment was controlled using the software “Presentation”
(Neurobehavioral Systems).

MEG and MRI recordings
Electromagnetic brain activity was recorded using a 151-channel MEG
system for 22 subjects and a 275-channel MEG system for the other 11
subjects (both CTF Systems). Data from the 275-channel system were
interpolated to a common 151-channel template using a procedure that
was also used to compensate for differences in subjects’ head position
(for details, see Preprocessing, below) (Lange et al., 2011).

Subjects were measured in supine position. An electro-oculogram
(EOG) was recorded for offline detection of eye-movements. MEG/EOG
data were low-pass filtered at 300 Hz and sampled continuously at a rate
of 1200 Hz. Subjects’ head position relative to the sensor array was de-
termined before and after the recording session by measuring the posi-
tion of reference coils placed at the subjects’ nasion and at the left and
right ear canals.

Structural MR images were acquired using standard T1-weighted se-
quences on a 1.5 T or 3 T whole-body scanner (Siemens). MRI and MEG
data were aligned according to reference coils at nasion and at the left and
right ear canals.

Data analysis
Preprocessing. Data were analyzed using FieldTrip (Oostenveld et al.,
2011), Matlab (MathWorks), and SPM8 (Litvak et al., 2011).

To average the data from the 275-channel and the 151-channel system,
the individual subjects’ MEG data were interpolated to a common 151-
channel-template position for the MEG sensors with respect to the head
(for details, see Lange et al., 2011). Power line noise was removed using a
Fourier transformation of 10-s-long signal periods and subtracting the

Figure 1. Illustration of the paradigm. A, Each trial started with the presentation of a central fixation. The luminance of the dot

decreased and 800 ms later, visuotactile stimulation followed. The visual stimulus was a white disc (2.5° diameter) that appeared

at 17° eccentricity in the left hemifield. Tactile stimulation was applied to the left index finger. After stimulation, only the fixation

dot was visible for another 1000 ms before subjects were allowed to respond with their right hand. B, Illustration of stimulation

sequences for the critical conditions v2t0, v2t1, and v1t2. Visual stimuli (white rectangles) were presented for 16 ms, tactile stimuli

(gray rectangles) for 30 ms.
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50, 100, and 150 Hz components. Artifacts caused by eye-movements,
muscle activity, or sensor jumps were removed using a semiautomatic
procedure. Trials shorter than 800 ms were completely rejected. Trials in
which subjects gave no response or the response was given too early (i.e.,
within the 1000 ms poststimulus period) were also rejected.

Time-frequency analysis. We analyzed spectral power in two distinct
frequency ranges. For the low-frequency range (4 – 40 Hz), we applied a
discrete Fourier transformation on sliding temporal windows with a
length of 400 ms, shifted in steps of 20 ms. Data segments were tapered
with a single Hanning window resulting in a spectral smoothing of
��2.5 Hz. For the high-frequency range (40 –150 Hz), we used time
windows of 200 ms length, shifted in steps of 20 ms. We applied a mul-
titaper approach to the respective analysis windows to optimize spectral
concentration over the frequency of interest (Mitra and Pesaran, 1999).
We applied 11 Slepian tapers resulting in a spectral smoothing of � 30
Hz. Spectral power was first estimated per trial and taper and then aver-
aged across trials and tapers.

The focus of the present study was on the effect of prestimulus rhyth-
mic neuronal activity on visual perception. We defined regions of interest
(ROIs) in sensor space for the visual domain as defined in our previous
study (Lange et al., 2011): The ROI for visual processing was defined by
taking the 10 occipital MEG sensors overlying visual cortex centrally and
contralaterally to stimulus presentation that revealed the strongest post-
stimulus effects in the alpha-, beta-, and gamma-band in response to
visual stimulation (sensors RO21, RO22, RO31, RO32, RO33, RO41,
RO42, ZO01, LO31, LO32).

Additionally, we studied effects in the somatosensory domain. We
defined sensors of interest as defined in our previous study (Lange et al.,
2011), i.e. by taking the 10 sensors over somatosensory areas contralat-
eral to tactile stimulation showing the strongest poststimulus effects in
response to tactile stimulation (sensors RC13, RC14, RC15, RC21, RC22,
RC23, RC24, RC31, RC32, RP34).

Statistical analysis of spectral power. Subjects frequently misperceived
trials of the condition v1t2 as two visual stimuli (DFI trials). In addition,
subjects frequently reported only one visual stimulus in the conditions
v2t0 and v2t1 (FE trials, Fig. 2).

We performed two statistical analyses. First, we sorted all trials of the
condition v1t2 into DFI (2 stimuli perceived) and non-DFI (1 perceived)
trials. Second, we pooled trials of the conditions v2t0 and v2t1 and sorted
the trials into fusion (1 perceived) and nonfusion (2 perceived) trials.
Pooling the two conditions was motivated by the fact that they showed
very similar proportions of perceptual fusions (Fig. 2) and very similar
effects in the time-frequency analyses. Statistical comparison was per-
formed by first pooling spectral power over sensors of interest for each

subject individually. This was done separately for DFI, non-DFI, FE, and
non-FE trials. Next, we compared DFI to non-DFI and non-FE to FE
trials, i.e., we always compared conditions with two perceived stimuli to
conditions with one perceived stimulus. Within each subject, we com-
puted a time-frequency-wise independent samples t test between the
conditions compared in a given contrast, leading to a time-frequency
t-map. For the actual statistical inference, these t-maps were forwarded
to a group-level statistics where the consistency of the effect across sub-
jects was tested by using a nonparametric randomization test (Maris and
Oostenveld, 2007). The t-maps were pooled across subjects. Pooled val-
ues were thresholded at a value of t � 1.96, and neighboring time-
frequency-points exceeding this threshold were clustered. Values within
a cluster were summed, giving our cluster-level test statistic. Under the
null hypothesis, the conditions compared in the t-maps can be randomly
exchanged. Therefore, we generated a randomization distribution by
inverting the t-map sign of a random subset of subjects before pooling.
The cluster-statistics were recomputed for these new group-level pooled
t-maps. By repeating this step 1000 times, a randomization distribution
of cluster-level test-statistics was computed and the test statistics of the
observed clusters were compared with this randomization distribution
(for details, see Lange et al., 2011). This nonparametric approach avoids
assumptions about underlying distributions, implements a random ef-
fect analysis, and corrects for multiple comparisons across time and fre-
quency (Maris and Oostenveld, 2007).

For significant time-frequency clusters, we further studied the relation
of prestimulus rhythmic activity to subjective perception. For each sub-
ject separately, we averaged prestimulus power over the sensor-ROI, and
over the significant time-frequency bins. Based on these averages and
separately per subject, we sorted the trials and divided into quartiles.
Averaged perception rates were calculated for each quartile and normal-
ized per subject by subtracting the mean perception rate across all trials
[similar to the studies by van Dijk et al., 2008; Lange et al., 2012]. To study
linear trends, a linear regression was fitted to the data. Detection rates in
quartiles were statistically compared by repeated-measures ANOVA and
post hoc t tests. The comparison was performed separately for the condi-
tion v1t2 and the combined conditions v2t0 and v2t1.

Source reconstruction. To determine the cortical sources of the signifi-
cant time-frequency clusters identified on sensor level, we applied a
beamforming approach in the frequency domain (Gross et al., 2001).

To this end, the brain was discretized into a three-dimensional grid.
Leadfield matrices were computed for each grid location using a realistic
single-shell volume conduction model based on the individual MRIs
(Nolte, 2003). The grid locations were determined for individual subjects
by the following procedure: First, a regular grid with a resolution of 1 cm

Figure 2. Behavioral results. A, Relative proportion of subjective reports for all nine conditions, averaged across all 33 subjects. B, Subjective reports for conditions v2t0 (white bars), v2t1 (gray

bars), and pooled across both conditions (fusion trials, black bars), averaged across all 17 subjects showing a reliable fusion effect.
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was created in the Montreal Neurological Institute (MNI) template
brain. Individual subject’s structural MRIs were linearly warped into this
template MRI and the inverse was applied to the template grid, resulting
in individual grids. The advantage of this approach is that group level
results can be computed by averaging results per grid point. Spatial filters
were constructed for each grid location based on leadfield and cross
spectral density (CSD) matrices. CSD matrices were computed between
all MEG pairs for the time period and frequency of interest. Time-
frequency bands of interest were determined by the significant clusters of
the abovementioned time-frequency analysis on sensor level. For each
contrast (DFI vs non-DFI and nonfusion vs fusion), we first pooled all
trials of the respective condition (v1t2 or v2t0 and v2t1) and computed a
common filter per subject and condition. Next, the single trials of each
condition were projected through the respective filter and sorted accord-
ing to subjective perception. Statistical comparison was performed in
line with the statistical comparison on the sensor level except that clusters
were now based on spatiotemporal proximity rather than on time-
frequency proximity. Source parameters estimated this way per subject
were statistically tested across subjects (see above) and group results were
plotted on the MNI template brain.

Inter-trial coherence. To study the role of phase entrainment, we com-
puted intertrial coherence (ITC). ITC is a measure of phase consistency
across trials. We measured ITC in the prestimulus period separately for
trials in which subjects perceived two stimuli and for trials in which
subjects perceived one stimulus. At each time t and frequency f, the we
computed ITC following the formula (Busch et al., 2009):

ITCt,f �

1

k �
n�1

k

e�i�k�t,f �,

with k the number of trials. The number of trials was stratified between
conditions. ITC was computed in two ways: averaged across the whole
prestimulus period or in sliding time windows of 300 ms length in steps
of 20 ms. Differences of ITC between conditions (two vs one stimulus
perceived) were statistically tested using the randomization approach
described above.

Interaction metrics: coherence and power correlation. To quantify inter-
actions between visual and somatosensory channels, we calculated two
metrics: coherence and power correlation.

Coherence quantifies the consistency of phase differences between two
signals and across multiple trials (Siegel et al., 2008; Schoffelen et al.,

2011). If phase differences are random, coherence tends toward zero. If
all trials have the same phase difference, coherence can reach one. Power
correlation is the Pearson correlation coefficient between the trial-by-
trial fluctuations in the power (at the same frequency) of two signals
(Nieuwenhuis et al., 2012).

Results
Behavioral data
Subjects made only negligible errors when reporting the number
of visual stimuli in six of the nine conditions (Fig. 2A). However,
in trials with one visual stimulus paired with two tactile stimuli
(v1t2), subjects perceived a second, illusionary visual stimulus in
43.0 � 3.3% (mean � SEM) of the trials, which constitutes the
double flash illusion (DFI). By contrast, in trials with two visual
stimuli paired with no (v2t0) or one tactile stimulus (v2t1), sub-
jects missed one visual stimulus (the fusion trials) in 29.3 � 5.8%
and 30.8 � 4.5%, respectively, which constitutes the FE. Closer
inspection of the behavioral data revealed that 16 out of 33 sub-
jects did not experience an FE, i.e., they reliably perceived two
visual stimuli in the majority of trials (	90%). For the remaining
17 subjects who experienced a reliable FE, the fusion occurred on
44.3 � 6.2% (v2t0) and 46.2 � 5.4% (v2t1) of the trials. Since the
stimulation conditions v2t0 and v2t1 revealed highly similar
FEs, we pooled both conditions to a common “fusion” condi-
tion (Fig. 2 B).

DFI contrast
To study the effect of prestimulus rhythmic activity on the
perception of the DFI, we sorted trials of the condition v1t2
according to the subjective perception. We contrasted trials in
which subjects reported two visual stimuli versus trials in
which subjects reported one visual stimulus, despite physically
constant stimulation.

In the time-frequency analysis of power in occipital MEG
sensors (see Materials and Methods for details), we found a sig-
nificant negative cluster between 8 –15 Hz and �220 to �60 ms
(p 
 0.05), i.e., alpha-power was significantly decreased in the
prestimulus period if subjects perceived the DFI after the subse-

Figure 3. Results of the DFI contrast in visual sensors. A, Time-frequency representations on sensor level. t � 0 indicates the onset of the first stimulation. B, Source reconstruction projected on

the MNI template brain for the significant effect in the alpha-band (�10 Hz in A) viewed from the back (top row) and right (bottom row). C, Same as in B but now for the significant effect in the

gamma-band (�60 Hz in A). Time-frequency representations and source plots are masked to highlight significant clusters. Red colors indicate greater spectral power in trials when subjects

perceived two visual stimuli (i.e., the DFI) compared with trials in which they perceived one stimulus. Color bars apply to the significant (nonmasked) pixels/voxels.
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quent stimulation (Fig. 3A). The cortical
sources of this effect were localized to bi-
lateral visual areas (Brodmann areas 17,
18, 19), extending on the right hemi-
sphere (contralateral to stimulus presen-
tation) to more ventrolateral sites
(Fig. 3B).

In addition, we found prestimulus
gamma-band (50 – 80 Hz) power to be
significantly enhanced for DFI trials com-
pared with non-DFI-trials between �180
and 0 ms (Fig. 3A). Source localization of
this effect revealed a widespread network
of cortical areas, covering bilateral occip-
itoparietal areas, right inferior temporal
gyrus, as well as parts of middle and su-
perior temporal gyrus, and finally right
primary and secondary somatosensory
cortex (Fig. 3C).

Prestimulus alpha-power (averaged be-
tween �200 and �80 ms and 8–12 Hz, sen-
sor level) was negatively correlated with
subjective perception rates (r � 0.98, p 

0.05), i.e., lower prestimulus alpha power
predicted a higher probability to perceive
the DFI (see Fig. 5C). An ANOVA revealed a
significant difference between power bins
(p 
 0.05). Post hoc analysis revealed that
perception rates were significantly larger in
the first bin than in the third and fourth bin
(both p 
 0.05). In addition, prestimulus
gamma-power (averaged between �180
and 0 ms and 50–70 Hz) showed a strong
trend toward a positive correlation with
subjective perception rates (r � 0.94, p �
0.055), i.e., higher prestimulus gamma-
power tended to predict a higher probability
to perceive the DFI. An ANOVA revealed a
significant difference between power bins
(p 
 0.05). Post hoc analysis revealed that
perception rates were significantly larger in
the fourth bin than in the second (p 
 0.05)
and an almost significant trend between
the fourth and first bin ( p � 0.055) (see
Fig. 5A).

Because the interval between warning
signal and stimulus was fixed (800 ms), it
was conceivable that some kind of phase en-
trainment may occur, which in turn might
impact stimulus processing. Therefore, we
quantified phase entrainment by comput-
ing intertrial coherence (Busch et al., 2009).
No significant differences were found.

Time-frequency analysis in the somato-
sensory sensors (see Materials and Methods for sensor selection de-
tails) did not reveal any significant DFI effect (see Fig. 6A).

We also analyzed two different metrics of interaction between
visual and somatosensory channels: coherence and power-power
correlation. First, we calculated the average coherence between all
possible pairs of visual and somatosensory channels in the same
time-frequency range for which we had analyzed power. This did
not reveal any significant DFI effect. Next, we calculated the aver-
age correlation between power fluctuations in all possible pairs of

visual and somatosensory channels. This was again for the same
time-frequency range and always considering somatosensory and
visual sensor power of the same frequency. This analysis revealed a
significant DFI effect: When subjects perceived two as compared to
one flash, there was enhanced power correlation �180 and 0 ms
before stimulation and ranging from �14–26 Hz (see Fig. 7A).

FE contrast
To study the effect of prestimulus rhythmic activity on the per-
ception of the FE, we pooled trials of the conditions v2t0 and v2t1

Figure 4. Results of the fusion contrast in visual sensors. A, Same as in Figure 2 A but now for the contrast two versus one

stimulus perceived in the pooled fusion trials conditions (v2t0 and v2t1). B, Source reconstruction of the significant effect in the

alpha-band (�10 Hz in A). All formats as in Figure 2.

Figure 5. Results of the correlation analysis of spectral power and normalized subjective perception. Power was averaged for

DFI trials in the gamma- (A) and alpha-band (C) or for the fusion trials in the gamma- (B) and alpha-band (D). *p 
 0.05; (* )p �

0.055; n.s., not significant ( p 	 0.05). Insets show results of the regression analysis. Higher bin numbers indicate higher spectral

power.
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and sorted all trials according to the subjective perception. We
contrasted trials in which subjects reported two visual stimuli
versus trials in which subjects reported one visual stimulus. Anal-
ysis was restricted to the 17 subjects that showed a reliable fusion
effect.

The time-frequency analysis of power in the same occipital
MEG sensors as used for the DFI analysis revealed a significant
negative cluster between �180 and 0 ms and 7–12 Hz (p 
 0.05),
i.e., alpha-power was significantly decreased in the prestimulus
period if subjects perceived no fusion effect after the subsequent
stimulation (Fig. 4A). The cortical sources of this effect were
localized to bilateral visual areas (Brodmann areas 17, 18, 19),
with the effect slightly lateralized to the right hemisphere (Fig.
4B). No significant effect was found for the high frequencies.

Prestimulus alpha-power (averaged between �180 and 0 ms
and 8 –12 Hz, sensor level) was negatively correlated with percep-
tion rates (r � 0.97, p 
 0.05), i.e., lower prestimulus alpha power
correlated with higher probability to perceive no FE (Fig. 5D). An
ANOVA revealed a significant difference between power bins
(p 
 0.05). Post hoc analysis revealed that perception rates were
significantly larger in the first and second bin than in the fourth
bin (both p 
 0.05). Gamma-band power (averaged between
�180 and 0 ms and 50 –70 Hz, see above analysis for DFI trials)
showed no significant correlation to perception rates in the FE
(Fig. 5B).

As for the DFI contrast, we tested for potential differences in
intertrial coherence, but found no significant difference also for
the FE contrast.

In somatosensory channels, a time-frequency analysis for the
fusion effect revealed a significant positive cluster between �240
and �50 ms and 70 –150 Hz, i.e., gamma-power was significantly
increased in the prestimulus period if subjects perceived no fu-
sion effect after the subsequent stimulation (Fig. 6B). The source
reconstruction revealed that this effect was not specific to the
somatosensory domain, but spread over a large right hemispheric
network covering temporal, visual, and parietal areas (Fig. 6C).

Additionally, we analyzed average coherence and power cor-
relation between all possible pairs of visual and somatosensory
channels. This did not reveal any significant difference in the FE
contrast (Fig. 7B).

Finally, we compared prestimulus alpha-power (averaged be-
tween �180 and 0 ms and 8 –12 Hz) between the 17 subjects with
FE and the 16 subjects without reliable FE. Prestimulus alpha-
power was lower in subjects without FE than with FE (p 
 0.05).
This difference held when non-FE subjects were compared with
FE subjects in trials with (p 
 0.01) or without FE (p 
 0.05)
occurring (Fig. 8).

Discussion
We studied the influence of prestimulus rhythmic activity on
subjective perception in two perceptual phenomena called DFI
and FE. In both phenomena, subjective perception can vary on a
trial-by-trial basis despite constant physical stimulation. In DFI
trials, one visual stimulus was paired with two tactile stimuli, but
subjects frequently perceived two visual stimuli. In FE trials, two
visual stimuli were paired with zero or one tactile stimulus, but
subjects frequently “fused” the two physical stimuli to one per-
ceived stimulus. For both phenomena, we found that prestimulus
power in visual areas in the alpha-band directly before the stim-
ulation (��200 – 0 ms) correlated with subjective perception,
i.e., decreased alpha-power increased the likelihood to perceive
two visual stimuli during constant physical stimulation. Interest-
ingly, while in DFI trials, a power decrease predicted an illusory
perception, in FE trials, a power decrease predicted a veridical
perception. In addition, prestimulus (�200 – 0 ms) gamma-band
power correlated positively with perception in DFI trials.

Several studies have reported an inverted-U relationship be-
tween on the one hand prestimulus alpha power and on the other
hand stimulus evoked responses and/or behavioral performance,
with intermediate alpha levels leading to largest responses and
best performance (Linkenkaer-Hansen et al., 2004; Zhang and
Ding, 2010; Rajagovindan and Ding, 2011; Lange et al., 2012).

Figure 6. Results of the DFI and FE contrast in somatosensory sensors. A, Time-frequency representations for the DFI contrast on sensor level. t � 0 indicates the onset of the first stimulation. B,

Time-frequency representations for the FE contrast on sensor level. C, Source reconstruction projected on the MNI template brain for the significant effect in the gamma-band (70 –150 Hz in B)

viewed from the back (top row) and right (bottom row). All formats as in Figure 3.
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Other studies have found that an en-
hanced detection performance for single
visual stimuli is monotonically related to
occipital prestimulus alpha-band power,
with lower alpha levels leading to better
performance (Thut et al., 2006;
Hanslmayr et al., 2007; van Dijk et al.,
2008; Mathewson et al., 2009). The precise
reason for the discrepancy between these
results is not yet known and requires fu-
ture research. Our results from the FE
analysis are in line with the studies report-
ing a monotonic relationship by demon-
strating that trial-by-trial fluctuations of
occipital prestimulus alpha-band power
predict the temporal resolution of visual
perception. Low temporal resolution (i.e.,
the fusion effect) was predicted by high
alpha-power, while high temporal resolu-
tion (i.e., perception of two visual stimuli)
was predicted by low alpha-power. This
effect was visible both when we compared
in individual subjects the trials with and
without FE, and also when we compared
subjects with FE to subjects not experienc-
ing the FE: For a subgroup of subjects,
which did not perceive FEs, we found ab-
solute levels of alpha-power to be signifi-
cantly decreased relative to subjects
frequently experiencing the fusion effect.
These findings are in line with previous
studies arguing that reduced prestimulus
alpha-power improves visual perception
(van Dijk et al., 2008; Mathewson et al., 2009; Wyart and Tallon-
Baudry, 2009; Jensen and Mazaheri, 2010; Jensen et al., 2012).

Our analysis of the DFI effect revealed that reduced prestimu-
lus alpha-band activity is not always related to improved percep-
tual performance in the sense of a more veridical perception.
Rather, in trials with one visual stimulus paired with two tactile
stimuli (v1t2, DFI trials), decreased occipital alpha-power pro-
motes the perception of a visual illusion. We propose that re-
duced alpha-band power in general indexes enhanced excitability
of visual cortex rather than improved visual perception per se.
This hypothesis is in line with recent TMS-studies showing that a
larger number of TMS-induced phosphenes are perceived when
pre-TMS alpha-band power is reduced (Romei et al., 2008a,b,
2012). We suggest that enhanced excitability might render visual
cortex in general more susceptible to input, including hetero-
modal input, e.g., from somatosensory cortex. If somatosensory
activity induced by two tactile stimuli merges with low alpha-
power in visual cortex, it is more likely to induce two visual
sensations during the DFI, showing that increased excitability is
not always related to more veridical visual perception.

Our analyses revealed also two effects in the gamma-
frequency band. The time-frequency analyses of occipital sensors
revealed that the perception of two flashes during DFI trials was
predicted by enhanced prestimulus power in the gamma-
band. The corresponding analysis of somatosensory sensors
revealed that the perception of two flashes as compared with one
in the fusion contrast was predicted by enhanced gamma-band
power. The precise temporal and spectral extensions of these
effects differed and the spatial extensions overlapped only partly.
Yet, in both cases, prestimulus gamma power predicted the per-

ception of two flashes. This is in line with previous studies linking
prestimulus gamma-band activity to attention, enhanced excit-
ability, and reduced neuronal and behavioral response times
(Engel et al., 2001; Fries et al., 2001a,b; Gonzalez Andino et al.,
2005). Prestimulus occipital gamma-band power is also posi-

Figure 7. Results of the power correlation analyses. A, Averaged difference in power correlation for the DFI contrast on the

sensor level. Power correlation was computed between all predefined somatosensory and visual sensors (see Materials and

Methods for sensor selection). t � 0 indicates the onset of the first stimulus. B, Averaged difference in power correlation for the FE

contrast. Time-frequency representation plots are masked to highlight significant clusters. Red colors indicate greater power

correlation in trials in which subjects perceived two visual stimuli (i.e., the DFI) compared with trials in which they perceived one

stimulus. Color bars apply to the significant (nonmasked) pixels.

Figure 8. Absolute power levels in the alpha-band for subjects (n � 17) showing a reliable

fusion effect (left and middle bar) and subjects (n � 16) showing no fusion effect. The fusion

group was split into perceived 1 (left bar) and perceived 2 stimuli (middle bar). All bars are

significantly different from each other ( p 
 0.05).
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tively related to detection performance in a unimodal visual task
(Wyart and Tallon-Baudry, 2008, 2009). The prestimulus gamma
increase reported in these studies was highly similar in time and
frequency to our observed gamma-band increase in the DFI
contrast.

Our analysis of correlations between power fluctuations in
somatosensory and visual regions revealed that the perception of
two flashes in DFI trials was predicted by higher interareal power
correlations in the beta-frequency band. This supports the hy-
pothesis that the perception of the DFI is mediated by an inter-
action between visual and somatosensory cortex.

In summary, our results complement recent studies demon-
strating that fluctuations of prestimulus rhythmic activity and
interareal interactions are more than mere background noise, but
substantially influence subjective perception despite constant
physical stimulation. Our study critically extends previous stud-
ies in three aspects. First, we demonstrate within and across sub-
jects that prestimulus alpha-power in visual cortex predicts the
temporal resolution of visual perception: The lower the pre-
stimulus alpha-power the more likely subjects perceive the verid-
ical two stimuli. Second, we demonstrate that low prestimulus
alpha-power is not always correlated to more veridical percep-
tion. During DFI trials, low prestimulus alpha-power correlated
with an illusory perception of a second stimulus. We propose that
prestimulus alpha power indexes excitability of visual cortex
rather than improved perception per se. Low alpha-power ren-
ders visual cortex more susceptible to unimodal, but also hetero-
modal input, leading to improved perception in most cases, but
to illusory perception in the case of DFI. In addition, we report
fluctuations of prestimulus gamma-band power in a widespread
network. Gamma-band power correlates with the perception of
two flashes in both, the DFI and the FE contrast. Finally, we show
that the DFI is preceded by enhanced beta-power correlation
between visual and somatosensory regions. Taking these results
together, we conclude that prestimulus fluctuations in power and
power correlations play a functional role in unimodal and het-
eromodal perception.
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Oscillatory activity is modulated by sensory stimulation but can also

fluctuate in the absence of sensory input. Recent studies have

demonstrated that such fluctuations of oscillatory activity can have

substantial influence on the perception of subsequent stimuli. In the

present study, we employed a simultaneity task in the somatosen-

sory domain to study the role of prestimulus oscillatory activity on

the temporal perception of 2 events. Subjects received electrical

stimulations of the left and right index finger with varying stimulus

onset asynchronies (SOAs) and reported their subjective perception

of simultaneity, while brain activity was recorded with magneto-

encephalography. With intermediate SOAs (30 and 45 ms), subjects

frequently misperceived the stimulation as simultaneously. We

compared neuronal oscillatory power in these conditions and found

that power in the high beta band (~20 to 40 Hz) in primary and

secondary somatosensory cortex prior to the electrical stimulation

predicted subjects’ reports of simultaneity. Additionally, prestimu-

lus alpha-band power influenced perception in the condition SOA

45 ms. Our results indicate that fluctuations of ongoing oscillatory

activity in the beta and alpha bands shape subjective perception of

physically identical stimulation.

Keywords: alpha, beta, MEG, oscillation, somatosensory

Introduction

Depending on the surrounding or internal brain states,

physically identical sensory stimulation can be perceived quite

differently. For example, subjective perception of ambiguous

and bistable stimuli fluctuates over time despite identical and

constant sensory input to the brain. Moreover, absolute

detection thresholds for sensory perception can vary over

time or over stimulus presentations. Several studies have shown

that fluctuations of oscillatory neuronal activity can predict at

least some of the perceptual variability. The state of oscillatory

activity just prior to the onset of a stimulus influences whether

the subsequent stimulation will be perceived, especially when

stimuli are weak and near perceptual threshold. Among all

frequency bands, alpha-band (~8 to 12 Hz) activity has gained

much attention in recent years. It has been shown that

prestimulus alpha-band power and phase in human parietooc-

cipital areas are correlated with conscious perception of visual

stimuli (Thut et al. 2006; Hanslmayr et al. 2007; van Dijk et al.

2008; Mathewson et al. 2009; Mazaheri et al. 2009; Wyart and

Tallon-Baudry 2009; Romei et al. 2010). Similarly in human

somatosensory cortex, it has been shown that attentional or

spontaneous fluctuations of prestimulus alpha-band activity

influences perception of tactile stimuli. Linkenkaer-Hansen

et al. (2004) showed that prestimulus amplitude of ongoing

alpha and beta oscillations in human somatosensory cortex

correlates with subjects’ ability to detect a subsequent weak

tactile stimulus, with intermediate levels of amplitudes

showing the highest detection rates. Moreover, it has been

shown that the phase of alpha oscillations before stimulus

onset influences subsequent perception (Palva et al. 2005).

Recent studies have demonstrated that cued attention to

somatosensory stimuli modulates prestimulus alpha- and beta-

band activity in human somatosensory cortex in a spatially

(Jones et al. 2010; van Ede et al. 2010, 2011; Anderson and Ding

2011) and temporally specific way (van Ede et al. 2011). In

addition, prestimulus alpha- and beta-band amplitudes modu-

late the amplitude of the early stimulus-evoked M50 compo-

nent of the event-related field (ERF) (Jones et al. 2009;

Anderson and Ding 2011) and are correlated to behavioral

detection rates of subsequent stimuli (Linkenkaer-Hansen et al.

2004; Jones et al. 2010), similar to findings in human visual

cortex for alpha-band amplitudes (van Dijk et al. 2008). In

summary, these results are in line with the hypothesis that

ongoing fluctuations of oscillatory neuronal synchronization in

the prestimulus period modulates the gain of neuronal assem-

blies and thus facilitates subsequent processing of sensory

stimulation (Fries 2005, 2009; van Dijk et al. 2008).

Similar to the perception of a single stimulus, simultaneous

perception of 2 tactile stimuli shows a considerable variation.

Perception of simultaneity is a powerful cue for determining

whether 2 events define a single or multiple objects. Perception

of the relative timing of 2 events tolerates a moderate degree of

temporal delays between sensory stimulations. However, this

tolerance of temporal delays introduces a substantial degree of

variability. For example, when 2 tactile stimuli are presented

with a stimulus onset asynchrony (SOA) of ~30 to 70 ms,

subjects show a considerable variation in their trial-by-trial

responses when asked to judge whether the 2 stimulations were

simultaneous or not, that is, asynchronously nonsimultaneously

presented stimuli are frequently misperceived as simultaneous

(Geffen et al. 2000; Kopinska and Harris 2004; Harrar and Harris

2005, 2008). The neurophysiological basis of this variability is

not well understood.

In the present study,we usedmagnetoencephalography (MEG)

to investigate the role of oscillatory neuronal activity for subjec-

tive perception of simultaneity and its variability. We employed a

simultaneity task to study the role of prestimulus oscillatory

activity for subjective perception. We focused on the somatosen-

sory domain and compared conditions in which identical stimuli

can lead to variable subjective perceptions on a trial-by-trial basis.

These conditions offer an intriguing possibility to study the role of

oscillatory neuronal synchronization under constant conditions of

sensory stimulation (Rodriguez et al. 1999; Leopold et al. 2002).
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Materials and Methods

Subjects

Twenty subjects participated in this study (24.9 ± 3.8 years [mean ±

standard deviation], 7 males). None of the subjects had a known history

of neurological disorders, and subjects gave written informed consent

in accordance with the Declaration of Helsinki.

Paradigm and Stimuli

Subjects were seated comfortably with their head placed inside an MEG

helmet and fixated a central gray dot on a screen positioned 60 cm in

front of them. Each trial started with a decrease of luminance of the

fixation dot, which served as the start cue (Fig. 1). After a randomized

period of 800--1000 ms, subjects received short (0.3 ms) electrical

pulses between the 2 distal joints of the left and right index finger to

stimulate the cutaneous end branches of the digital nerves. The

amplitude of the electric pulses was set to 60% of the individually

determined subjective (mild) pain threshold level as measured prior to

the recordings (mean amplitude 5.5 ± 0.7 mA). Notably, subsequent

analyses were performed on within-subject levels, that is, we always

compared conditions of identical stimulation amplitudes (for details,

see Data Analysis). Stimulation of the fingers was applied with varying

SOAs of ±200, ±45, ±30, or 0 ms with negative SOA indicating that

stimulation was first on the left finger. The condition of 0 ms was

presented twice as often as the other SOA. SOA were chosen based on

behavioral pilot experiments to ensure a balanced distribution of

difficulty levels. After another random period of 800--1200 ms, in which

only the fixation dot was visible, the fixation dot increased luminance

indicating the start of the response window. Subjects were asked to

report whether they had perceived the stimulation as simultaneous or

nonsimultaneous by button presses. Button configurations were

balanced within and between subjects: Half of the subjects responded

with the middle fingers of both hands and half of the subjects

responded with the index and middle finger of one hand (5 with the

right hand and 5 with the left hand). For each subject, the button

configuration was switched blockwise, that is, allocation of response

finger and subjective report was balanced within and across subjects.

Subjects were instructed to respond within 2000 ms after presentation

of response instructions and that response speed was not taken into

account. If no response was given after 2000 ms or subjects responded

before the presentation of the instructions, a warning was visually

presented. The respective trial was discarded from analyses and

repeated at the end of the block. Except the warning signal, no

feedback was given, and subjects were naı̈ve to the different SOA used.

Five repetitions of each SOA (i.e., 40 trials) constituted one block with

stimuli within one block presented in pseudorandom order. Each block

was repeated 10 times with self-paced breaks of ~2 min in between.

Response instructions for each block were visually presented on the

screen before the start of each block. The experimental run was

controlled using Presentation software (Neurobehavioral Systems,

Albany, NY). Subjects performed a training session of ~5 min before

the start of the MEG experiment.

Data Acquisition and Analysis

Data Recording and Preprocessing

Neuromagnetic brain activity was continuously recorded using a 306-

channel whole head MEG system (Neuromag Elekta Oy, Helsinki,

Finland). Simultaneously, electrooculargram were recorded by placing

electrodes above and below the left eye and on the outer sides of each

eye. The data were recorded at a rate of 1000 Hz. Subjects’ head

position within the MEG helmet was registered by 4 coils placed at

subjects’ forehead and behind both ears. Individual full-brain high-

resolution standard T1-weigthed structural magnetic resonance images

(MRIs) were obtained from a 3-T MRI scanner (Siemens, Erlangen,

Germany) and offline aligned with the MEG coordinate system using

the coils and anatomical landmarks (nasion, left and right preauricular

points).

MEG data were offline analyzed using FieldTrip (http://www.ru.nl/

donders/fieldtrip), an open source matlab toolbox for neurophysiolog-

ical data analysis (Oostenveld et al. 2011). Power line noise was

removed from the continuous data using a discrete Fourier trans-

formation of 10-s long signal periods to estimate the amplitudes and the

phases of the 50, 100, and 150 Hz components. These components

were subtracted from the continuous data as described earlier

(Hoogenboom et al. 2006; van Ede et al. 2010, 2011; Lange et al.

2011). This was done separately for all 10-s periods around all periods

of interest. Continuous data were segmented into trials, starting with

the first appearance of the fixation dot and ending with appearance of

instruction text. Artifacts caused by eye movements or muscle activity

were removed using a semiautomatical algorithm, and the linear trend

was removed from each trial.

Time--Frequency Analysis

Time--frequency representations (TFRs) were computed applying

a Fourier transformation on adaptive sliding time windows containing

5 full cycles of the respective frequency f (Dt = 5/f), moved in steps of

25 ms (similar to Mazaheri et al. 2009; van Dijk et al. 2010; Haegens

et al. 2011). Data segments were tapered with a single Hanning taper,

resulting in a spectral smoothing of 1/Dt.

Next, we determined regions of interest in sensor space. We chose

4 sensors in the left and 4 sensors in the right hemisphere covering

bilateral primary somatosensory cortex (SI) and 4 sensors in the left

and 4 sensors in the right hemisphere covering secondary somato-

sensory cortex (SII) (Fig. 3). The choice of sensors was based on

previous studies (Bauer et al. 2006; Haegens et al. 2010; Hagiwara et al.

2010; van Ede et al. 2010, 2011). This set of sensors defined the

somatosensory region of interest for subsequent analyses for all

subjects. The set of sensors in the left and in the right hemisphere

Figure 1. Schematic illustration of the paradigm. Subjects fixated a central gray dot throughout the entire trial. After 800--1000 ms, tactile stimulation was given to one index
finger (right or left), followed by stimulation of the other finger after a randomized SOA (0, 30, 45, or 200 ms). After a jittered period (800--1200 ms), the luminance of the fixation
dot increased, and subjects reported their subjective perception of simultaneity by pressing a button, upon which the next trial began (indicated by a luminance decrease of the
fixation dot).
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were symmetrically distributed with respect to the midline of the

sensor array (Fig. 3B,E,H,K).

For each subject separately, we sorted trials with respect to the SOA.

Within each SOA-bin, we compared trials with reports of subjective

simultaneity to trials in which the stimulation was perceived as

nonsimultaneous. Thus, we compared 2 conditions with identical

physical stimulation that only differed with respect to the subjective

perception. To this end, we averaged spectral power over the sensors

of interest (see above) for each perceptual condition and compared

both conditions by independent samples t-tests. This comparison was

done independently for each time--frequency sample and thus resulted

in a time--frequency t-map for each subject. Note that this comparison

is not an actual statistical test but serves as a normalization of

interindividual differences. This comparison was done separately for

sensors in the left and right SI and SII. Only conditions with SOA of

30 and 45 ms were included in the analysis as only these conditions

revealed a reasonably high number of trials for both perceptual

conditions (simultaneous and nonsimultaneous). Behavioral and neuro-

magnetic data revealed highly symmetrical patterns for positive and

negative SOA (e.g., Fig. 2 for behavioral data), that is, no statistically

significant differences were found when restricting the analyses to

contra- or ipsilateral sites with respect to the site of the first

stimulation. To increase statistical power, we pooled data regarding

the site of the stimulation, that is, we report data in terms of contra- and

ipsilateral to the site of the first stimulation. All t values of the time--

frequency t-map were transformed to z values using SPM2 resulting in

time--frequency z-maps (e.g., van Dijk et al. 2008; Mazaheri et al. 2009).

For group-level statistics, we used the z-maps obtained for single

subjects as inputs and determined their consistency across subjects. We

used a nonparametric permutation approach that identifies clusters in

time--frequency with significant changes. This effectively corrects for

multiple comparisons (Maris and Oostenveld 2007; for details, see

Lange et al. 2011). For statistical testing, the entire time window (–500

to 800 ms) was used. To generate topographical representations of

statistically significant effects, we repeated the above-mentioned

statistical comparison, but this time for each sensor independently,

resulting in time--frequency z-maps for each sensor separately (instead

of averaging over sensors). For each sensor, we averaged the z values

over all individual time--frequency samples that correspond to the

statistically significant time--frequency clusters in the above-mentioned

analysis (as can be seen in, e.g., Fig. 3A,B). Finally, we plotted the

averaged z values in a topographical representation (Fig. 3B,E,H,K).

Correlation of Prestimulus Power and Detection Rates

Next, we aimed to further investigate the correlation of prestimulus

power to perception of simultaneity. First, we averaged spectral power

over time, frequency, and sensors. Sensors of interest were defined as

mentioned above (left and right SI and SII). Time--frequency bands of

interest were determined by the significant time--frequency clusters in

the above-mentioned cluster-based statistical analysis on group level

(Fig. 3A,D,G,J), resulting in 4 different time--frequency bands in the beta

band. Since the significant clusters slightly differed in time and

frequency for the different sensors of interest, time--frequency bands

used to compute prestimulus power for the correlation analysis

differed for each set of sensors of interest. The exact time--frequency

bands for each analysis can be found in Figure 4.

Due to the relevance of prestimulus alpha-band power in somato-

sensory perception (Linkenkaer-Hansen et al. 2004; Jones et al. 2009,

2010; Anderson and Ding 2011; van Ede et al. 2011), we also included

the alpha band into the analyses. The exact time--frequency bands used

for each correlation analysis can be found in Figure 4. The averaging

was done for each subject separately (with a common and fixed time--

frequency--sensor triplet for all subjects, based on the group-level

statistics). Subsequently, we sorted the single trials of each subject

according to averaged power and divided all trials into 6 bins with equal

number of trials. For each bin, we calculated the mean number of

simultaneity reports and normalized the result for each subject. Finally,

we computed the mean and standard error of the mean (SEM) over

subjects and fitted linear and quadratic functions to the data to

determine the best fit (Linkenkaer-Hansen et al. 2004; van Dijk et al.

2008; Jones et al. 2010).

Correlation of Prestimulus Power and ERFs

To study a potential relation between prestimulus alpha- and beta-band

power and poststimulus ERFs (Jones et al. 2009, 2010; Anderson and

Ding 2011), we correlated prestimulus power and ERFs in line with the

above-mentioned analysis of prestimulus power and detection rates. To

this end, we averaged power over time, frequency, and sensors. Sensors

were chosen as defined above. Time--frequency bands were based on

the significant clusters found in Figure 3A,D,G,J. Since the significant

clusters slightly differed in time and frequency for the different sensors

of interest, time--frequency bands used to compute prestimulus power

differed for each set of sensors of interest. The exact time--frequency

bands for each analysis can be found in Figure 5. Time--frequency bands

were defined on group level, and the same time--frequency band was

used for all subjects. Subsequently, we divided trials in 2 bins (low and

high prestimulus alpha/beta power) and then computed the ERFs in

the poststimulus period over the same sensors used for the power

analyses (Jones et al. 2009, 2010). ERFs were computed by first applying

a low-pass filter of 30 Hz, rectifying the signals by taking the root mean

square of the signal in the time domain (e.g., Bauer et al. 2006; van Dijk

et al. 2008; Mazaheri et al. 2009) and then averaging ERFs over trials

and subjects. Statistical analysis was performed by applying dependent

sample t-test between low and high power conditions for each time

point.

Source Reconstruction

To determine the cortical sources of the significant effects on sensor

level, we applied an adaptive spatial filtering technique in the

frequency domain (Gross et al. 2001).

The leadfield matrix was computed for grid points in a realistically

shaped single-shell volume conduction model, derived from the

individual subject’s structural MRI (Nolte 2003). To this end, a regular

3D 1-cm grid in the Montreal Neurological Institute template brain was

created, and each subject’s structural MRI was linearly warped onto this

template. The inverse of this warp was applied to the template grid,

resulting in individual grids based on individual subject’s volume

conduction model. The individual source parameters estimated in this

way were combined across subjects per grid position. We aimed to

determine the sources for the statistically significant effects revealed on

sensor level (Fig. 3). To this end, we computed cross-spectral density

(CSD) matrices between all MEG sensor pairs from the Fourier

transforms of the tapered data epochs at the frequency of interest for

each subject separately. The data epoch and the frequency of interest

were based on the significant time--frequency clusters of the above-

mentioned group analysis on sensor level (Fig. 3A,D,G,J). Since the

significant clusters differed in time and frequency for the different

sensors of interest, time--frequency bands used for source reconstruc-

tion differed for each condition. The exact time--frequency bands for

Figure 2. Behavioral results presented as proportion of simultaneity reports
depending on SOA of left and right index finger stimulations. Negative SOA indicate
that stimulation was applied first to the left index finger. Data are presented as mean
± 1 SEM.
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each analysis can be found in Figure 6. Common spatial filters for each

subject were computed using the CSD between all MEG sensor pairs,

averaged over all trials of a given condition for the respective subject

(pooled over subjective perceptions). For each subject, the CSD

matrices of single trials were then projected through those individual

filters, providing single trial estimates of source power (Hoogenboom

et al. 2010). Statistical testing on source level was performed in line

with testing on sensor level (see above). Results were displayed on the

Figure 3. Results of the statistical comparison of trials with subjective simultaneity versus nonsimultaneity for conditions SOA 30 ms (A--F) and SOA 45 ms (G--L) for different
sensor groups: (A) TFR for the 4 sensors over the left (ipsilateral) primary somatosensory cortex (SI) as indicated by the larger black circles in B. z values in nonsignificant pixels
are lowered by 60% in order to highlight significant clusters. Color bars represent z values. Positive z values indicate higher power if subsequent stimulation was misperceived as
simultaneously. (B) Topographical representation of the significant cluster as highlighted in A. Only time--frequency samples that correspond to the statistically significant time--
frequency clusters in A were averaged to generate the topographical representation (for details, see Materials and Methods). (C) TFR for the 4 sensors over the right
(contralateral) SI (as indicated by larger black squares). No significant clusters were found. (D) Same representation as in A but for 4 sensors over left (ipsilateral) secondary
somatosensory cortex (SII). (E) Topographical representation for the significant cluster as highlighted in D. (F) TFR for the 4 sensors over the right (contralateral) SII (as indicated
by larger black squares). (G--L) Same representation as in A--F but now for condition SOA of 45 ms.
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template brain, and cortical sources were identified using the AFNI atlas

(http://afni.nimh.nih.gov/afni), integrated into FieldTrip.

Results

Behavioral Results

Subjects were asked to report their subjective percept of

simultaneity for electrical stimuli delivered to their left and

right index finger with different SOAs. They made negligible

errors for SOA of 0 and 200 ms (Fig. 2). However, intermediate

SOA were perceived as simultaneous in some trials and as not

simultaneous in other trials (SOA of –30 ms: 51.8 ± 5.5% (mean

± SEM) simultaneity reports; SOA of +30 ms: 54.9 ± 5.2%; SOA of

–45 ms: 30.2 ± 4.8%; and SOA of +45 ms: 33.6 ± 4.8%).

Condition Contrasts

Next, we studied the role of oscillatory activity for the

perception of simultaneity. Within each SOA we sorted trials

with respect to subjects’ perceptual reports. We compared

spectral power between reports of simultaneity and reports of

nonsimultaneity in sensors over sensorimotor areas.

For SOA of 30 ms, we found spectral power in sensors over

ipsilateral primary somatosensory cortex (SI) to be statistically

significantly enhanced in the frequency band 27.5--40 Hz if

subjects perceived the stimulation erroneously as simulta-

neous. Notably, this effect occurred between –225 and –125 ms,

that is, the effect appeared already before any electrical

stimulation was delivered, and the effect was only present in

ipsilateral sensors (Fig. 3A). In line with these findings, the

Figure 4. Regression analyses of the dependence of subjective perception on prestimulus oscillatory activity for the 4 significant clusters in the beta band (as shown in Fig. 3)
and for the alpha band. The exact time--frequency bands to determine averaged prestimulus power bins are based on significant clusters in Figure 3 and are presented at the top
of each figure. (A) Results for the significant cluster in the beta band for condition SOA 30 ms in sensors over ipsilateral SI (as highlighted in Fig. 3A). (B) Same analysis as in A but
for the significant cluster in sensors over SII (as highlighted in Fig. 3D). (C--D) Same analysis as in A,B but for the significant clusters in the beta band for condition SOA 45 ms (as
highlighted in Fig. 3G,J). For all regression analyses, a significant linear relationship was found (P\ 0.01). (E) Same analysis for the alpha band for condition SOA 45 ms in
sensors over ipsilateral SI. A significant quadratic relationship was found. (F) Same analyses as in E but for sensors over SII. No significant relationship was found.
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topographical representation of this effect revealed a focus on

sensors over ipsilateral SI (Fig. 3B). In sensors over secondary

somatosensory cortex (SII), power was statistically significantly

enhanced in the frequency band 17.5--40 Hz between –475 and

–275 ms (Fig. 3D). The topographical representation revealed

a focus over ipsilateral SII (Fig. 3E). No significant differences

were observed in contralateral sensors (Fig. 3C,F).

For SOA of 45 ms, a similar finding was observed. In sensors

over ipsilateral SI, oscillatory activity between 15--35 Hz and

–150 to 50 ms was enhanced if subjects perceived the following

stimulation erroneously as simultaneous (Fig. 3G,H). In sensors

over ipsilateral SII, oscillatory activity between 25--40 Hz and

–350 to –200 ms was significantly enhanced (Fig. 3J,K).

Contralateral sensors did not show any significant differences

(Fig. 3I,L).

Correlation of Prestimulus Power and Detection Rates

We found spectral power in alpha- and beta-frequency bands to

be enhanced before and around the onset of stimulation, when

subjects incorrectly perceived the 2 subsequent stimuli as

simultaneous. To study the relation between subjective

perception of stimuli and prestimulus oscillatory activity, we

performed a correlation analysis. To this end, in each trial

spectral power was averaged over sensors, time, and

Figure 5. Dependence of poststimulus ERF amplitudes on prestimulus power for the 4 significant clusters in the beta band (as shown in Fig. 3) and for the alpha band. The exact
time--frequency bands to determine averaged prestimulus power bins are based on significant clusters in Figure 3 and are presented at the top of each figure. (A) Results for the
significant cluster in the beta band for condition SOA 30 ms in sensors over ipsilateral SI (as highlighted in Fig. 3A). (B) Same analysis as in A, but for the significant cluster in
sensors over SII (as highlighted in Fig. 3D). (C--D) Same analysis as in A,B but for the significant clusters in the beta band for condition SOA 45 ms (as highlighted in Fig. 3G,J).
(E) Same analysis for the alpha band for condition SOA 45 ms in sensors over ipsilateral SI. Significant differences (*P\ 0.05, **P\ 0.01) are indicated by gray shaded areas.
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frequencies. Next, trials were sorted for spectral power and

divided into 6 bins (Linkenkaer-Hansen et al. 2004; van Dijk

et al. 2008; Jones et al. 2010). The perceptual reports were

normalized per subject and then averaged over subjects. For

the 4 cluster in the beta range in ipsilateral SI and SII (see Fig.

3A,D,G,J), we found a significant linear relationship between

prestimulus power and subjects’ perceptual reports in ipsilat-

eral sensors for all conditions (SOA of 30 ms: SI: r2 = 0.90, P <

0.01; SII: r2 = 0.87, P < 0.01; SOA of 45 ms: SI: r2 = 0.86, P < 0.01;

SII: r2 = 0.91, P < 0.01; Fig. 4A--D), that is, high prestimulus

power was correlated with a high number of erroneous

simultaneity reports. In contrast, we did not find a significant

correlation in contralateral sensors (Supplementary Fig. S1).

Additionally, we performed the same analysis for the alpha band

in the condition SOA of 45 ms. We observed a quadratic

relationship between subjective perception and prestimulus

oscillatory activity in SI, with intermediate power bins showing

the lowest probability of simultaneity reports (r2 = 0.89, P <

0.05; Fig. 4E). In other words, intermediate alpha amplitudes

were associated with a more veridical perception of non-

simultaneity. No significant correlation was found in contra-

lateral sensors (Supplementary Fig. S1).

Correlation of Prestimulus Power and ERFs

We additionally analyzed the correlation between prestimulus

alpha-/beta-band activity and poststimulus ERFs (Jones et al.

2009, 2010; Anderson and Ding 2011).

First, we sorted trials in the condition SOA of 30 ms for

power in ipsilateral sensors over SI in the time--frequency band

between 27.5--40 Hz and –225 to –125 ms (i.e., the significant

cluster in Fig. 3A). Trials with low prestimulus beta-band power

revealed a significant increase of the ERFs between 150--168

and 216--232 ms (Fig. 5A). Trials with high prestimulus beta-

band power in sensors over SII revealed increased ERFs

between 93 and 148 ms (Fig. 5B).

For the condition SOA of 45 ms, we found no significant

effects of prestimulus beta-band power on ERFs for sensors

over SI (Fig. 5C). Sensors over SII revealed increased ERFs

for trials with high beta-band power between 107 and 162 ms

(Fig. 5D). Additionally, we sorted trials for prestimulus power

in the alpha band. Sensors over SI revealed increased ERFs for

trials with high prestimulus power between 64 and 75 ms.

Furthermore, trials with low prestimulus power revealed

increased ERFs between 250 and 278 ms (Fig. 5E).

Source Localization

To identify the cortical sources of the significant effects found

in TFRs on sensor level (Fig. 3), we applied a beamforming

approach. For both conditions (SOA of 30 and 45 ms), the

comparatively late (~–200 to 0 ms) significant components

(Fig. 3A,G) revealed a significant source in ipsilateral sensori-

motor areas with the peak located in ipsilateral SI (SOA of

30 ms: P < 0.05; SOA of 45 ms: P < 0.05, Fig. 6A,C). For both

conditions, the earlier component (~–450 to --250 ms) was

Figure 6. Source analysis of significant clusters as found in Figure 3. The exact time--frequency bands used for source reconstruction are based on significant clusters in Figure 3
and are presented at the top of each figure. (A) Results for the significant cluster in the beta band for condition SOA 30 ms (as highlighted in Fig. 3A). z values in nonsignificant
regions are lowered by 60% in order to highlight significant clusters. Additionally, significant clusters are highlighted by ovals. (B) Same as in A but for beta-band effect as
highlighted in Figure 3D. Left column: view of the left hemisphere, right column: view of the right hemisphere. (C, D) Same as in A and B but for beta-band effect in SOA 45 ms
(as highlighted in Fig. 3G,J). The color bar applies to all figures.
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located in ipsilateral SII (SOA of 30 ms: P < 0.05; SOA of 45 ms:

P < 0.05, Fig. 6B,D).

Discussion

We studied the contribution of oscillatory neuronal activity

to subjective perception of brief electrical stimuli applied

bilaterally to the index fingers with varying SOAs. We were

interested whether fluctuations of spectral power predict

subjective perception. Crucially, the paradigm enabled us to

study the role of neuronal oscillatory under conditions of

constant physical stimulation while only the subjective

perception was changed intrinsically.

When SOA was 30 or 45 ms, subjects frequently misper-

ceived the stimulation as simultaneous. Erroneous perception

of simultaneity was associated in both conditions (SOA 30 and

45 ms) with an increase of power in the beta band (~20 to

30 Hz) in sensors over primary (SI) and secondary (SII)

somatosensory cortex. The increase was evident in the cortical

hemisphere ipsilateral to the site of the first stimulation but not

in contralateral sites. Notably, this increase was visible before

the onset of stimulation and the significant differences

appeared earlier in sensors over SII than in sensors over SI.

Source reconstruction confirmed a priori sensor selection by

revealing significant cortical sources of the earlier effects

(found in sensors presumably over SII at ~–450 to –250 ms) in

ipsilateral SII. The relatively later effects (~–200 to 0 ms,

observed in sensors presumably over SI) were located in

ipsilateral sensorimotor areas with the peak located in SI. It

should be noted that the source reconstruction was performed

on prestimulus data, that is, in the absence of any stimulation.

Without stimulation, absolute power levels have a smaller signal-

to-noise ratio than power values in response to stimulation.

Low signal-to-noise ratios naturally limit beamforming results

by making also the sources noisier and thus spatially smeared.

Furthermore, the observed significant effects are relatively

short lived which also limits beamforming techniques. Despite

these limitations and although the significant sources appear

spatially smeared, their origins can be clearly assigned to SI and

SII and are in good agreement in terms of location and quality

with other findings of prestimulus power changes (Haegens

et al. 2010, 2011; van Ede et al. 2011). In addition, the

topographical representations imply weak activations in other

cortical areas, presumably frontal and parietal areas (Fig. 3).

However, none of these areas was found to be significantly

activated in the source analysis. Reasons for the lack of

significance might be that the effects in these areas were less

strong than in the somatosensory areas or less consistent over

subjects. Further studies need to unravel the contribution of

nonsensory areas to the perception of simultaneity.

Notably, all reported effects were observed prior to onset of

stimulation. We found prestimulus power in the beta (~20 to

30 Hz) band in both ipsilateral SI and SII to be linearly

correlated to perceptions of nonsimultaneity, that is, veridical

perception was highest for low prestimulus amplitudes. In

addition, alpha-band power in ipsilateral SI revealed a qua-

dratic relation to perception of simultaneity for condition SOA

of 45 ms, that is, veridical perception was highest for

intermediate states of prestimulus alpha power.

One potential concern in the interpretation of the results

might be that the effects are caused by motor preparation. It is

well known that alpha- and beta-band power in sensorimotor

cortex can be modulated by motor preparation and execution

(e.g., Hari and Salmelin 1997). For several reasons, however, it is

unlikely that our reported effects are related to motor

preparation:

To minimize the influence of premovement power changes,

we had included a jittered interval of 800--1200 ms after

stimulus presentation before occurrence of the response cue.

Subjects responded on average 539 ± 36 ms after the response

cue. Thus, while subjects responded on average ~1500 ms after

stimulus presentation, significant differences in oscillatory

activity were found ~0 to 400 ms before stimulus presentation.

In contrast, no significant differences were found in the

poststimulus period prior to button presses. Consequently,

we did not find any correlation between prestimulus power

and reaction times (data not shown). Furthermore, response

configurations were balanced across and within subjects so

that the response hand and the site of the first stimulation were

unrelated. Taken together, due to the setup and the timing of

the significant effects, it is highly unlikely that the observed

effects are due to motor preparation.

Recent studies investigated the influence of attention on

prestimulus alpha- and beta-band power and their impact on

tactile detection (Linkenkaer-Hansen et al. 2004; Jones et al.

2009, 2010; van Ede et al. 2010, 2011; Anderson and Ding

2011). These studies reported prestimulus effects to be

lateralized contralaterally to the side of the stimulation. While

in these studies, stimulation was applied unilaterally, and the

side of stimulation was cued, we applied stimulation bilaterally,

and the site of the first stimulation was unknown (i.e.,

randomized from trial to trial). Therefore, we did not expect

attention to be lateralized. In line with this, we found presti-

mulus power modulations bilaterally rather than lateralized. In

addition, fluctuations of prestimulus power modulations do

significantly affect perception of subsequent stimuli and that

these effects are lateralized with respect to the site of the first

stimulation. While there are also poststimulus modulations of

oscillatory activity in both hemispheres in response to bilateral

stimulation, Figure 3 reveals that these modulations do not

differ for the 2 subjective reports. In other words, poststimulus

modulations of spectral power do not correlate with subjective

perception of simultaneity.

In line with our findings, Jones et al. (2010) reported a linear

relationship for veridical perception of tactile stimuli and

prestimulus alpha-/beta-band power. While Jones et al. explic-

itly studied the effects in SI, we observed the effects in both,

SI and SII. While we and Jones et al. found a linear relationship,

Linkenkaer-Hansen et al. (2004) reported a quadratic relation-

ship between prestimulus beta-band activity in sensorimotor

areas and subjects’ performance in a tactile detection task.

A possible reason for these different findings of Linkenkaer-

Hansen et al. might be that they used much broader time and

frequency bands for their analyses.

In addition, studies reported that intermediate amplitudes of

prestimulus alpha-band oscillations in sensorimotor areas were

optimal for perception of weak tactile stimuli (Linkenkaer-

Hansen et al. 2004; Zhang and Ding 2010). In line with these

studies, we found a quadratic relationship between prestimulus

alpha-band activity and simultaneity reports in sensors over SI,

that is, veridical perception of simultaneity was highest for

intermediate states of prestimulus alpha-band activity. In

contrast, a linear relationship between prestimulus alpha-band

activity and detection probabilities of tactile stimuli has been
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reported by Jones et al. (2010). Differences might be attribut-

able to different tasks: While Jones et al. employed a cued

attention task, subjects in our study were asked to report

subjective simultaneity.

Several studies reported a correlation of prestimulus power

and poststimulus ERFs (Jones et al. 2009, 2010; Zhang and Ding

2010; Anderson and Ding 2011). In line with previous studies

(Jones et al. 2009, 2010; Anderson and Ding 2011), we found

that trials with a high prestimulus power in the alpha band

revealed increased ERFs between 64 and 75 ms in ipsilateral

SI, which is likely to represent the early evoked M20/M50

component to electrical or mechanical stimulation. Note that

the time scale is always presented relative to the presentation

of the first stimulus, while the reported effects are always in the

hemisphere contralateral to the site of the second stimulation.

Due to this shift in stimulation parameters, we expect ERFs to

be shifted by 30 or 45 ms, respectively. In their computational

study, Jones et al. (2009) suggested that an increased M50

component might be caused by greater levels of recruited

inhibition, subsequently decreasing the effect of excitatory

cells. Notably, we found an increased early ERF component

only in ipsilateral SI and only for the condition SOA of 45 ms,

suggesting that the proposed inhibition processes induced by

prestimulus alpha-band power influence only the (interhemi-

spheric) processing of stimuli spaced 45 ms but not stimuli

spaced 30 ms. We suggest that with higher prestimulus power,

that is, with early inhibiting poststimulus processes, the second

stimulus might be processed less efficiently, leading to a lower

temporal precision and thus more incorrect reports in the

perception of simultaneity.

In addition, we found that trials with low prestimulus beta-

band power revealed a lower M100 peak (at ~130 ms for SOA of

30 ms and at ~145 ms for SOA of 45 ms, for discussion of the

temporal shift of the M100 component, see above). Studies in

human and nonhuman primates have demonstrated subsequent

attenuation of ipsilateral somatosensory responses after con-

tralateral tactile stimulation (Simões and Hari 1999; Simões

et al. 2001; Hlushchuk and Hari 2006; Tommerdahl et al. 2006;

Reed et al. 2011; Wühle et al. 2011) with the maximum

attenuation for peaks at ~100 ms (Simões et al. 2001; Wühle

et al. 2011). Our results suggest that the attenuation is medi-

tated by prestimulus states of the beta band. The correlation of

beta-band power and ERFs was only found in sensors over

ipsilateral SII but not in SI. Since SII receives input from both

body sides and bilateral SI, it is a likely candidate for integration

of bilateral sensory input. One potential explanation might be

that the stronger attenuation of the M100 component reflects

stronger interhemispheric interaction, which in turn is modu-

lated by prestimulus states in the beta band.

The above-mentioned studies (Linkenkaer-Hansen et al.

2004; Jones et al. 2010) have argued that prestimulus alpha-

and beta-band activity influences the perception and detection

of tactile stimuli. In line with this hypothesis, we suggest that

subjective perception of simultaneity strongly depends on the

veridical perception of the second stimulus. If prestimulus

alpha- and beta-band activity is at optimal states, the likelihood

to detect the second stimulus is high. This in turn promotes

veridical perception of the 2 stimuli as temporally separate. We

report beta-band effects in SI and SII, while most previous

studies reported prestimulus effects mainly in SI (Linkenkaer-

Hansen et al. 2004; Jones et al. 2009, 2010; van Ede et al. 2010,

2011; Zhang and Ding 2010; Anderson and Ding 2011). One

crucial difference is that we used bilateral stimulation, while

the above-mentioned studies always used unilateral stimulation.

Prestimulus activity in SII might therefore be relevant for

bilateral integration of tactile stimuli or gating of information

but less crucial for unilateral perception. However, it should be

mentioned that prestimulus effects in the beta band have been

reported also in SII before (Linkenkaer-Hansen et al. 2004).

Another crucial difference is that previous studies explicitly or

implicitly incorporated a spatial attention task where subjects

had to direct attention to one body side. It might be possible

that spatial attention is more strongly confined to SI, while

bilateral interaction is more strongly relying on SI and SII.

Our main finding was that for both conditions (SOA of 30

and 45 ms) prestimulus beta-band activity was increased in SI

and SII when stimulation was erroneously perceived as

simultaneously. Several studies have reported involvement of

beta-band oscillations in top-down modulations of attention or

the perception of bistable stimuli (von Stein et al. 2000; Engel

et al. 2001; Gross et al. 2004; Buschman and Miller 2007;

Kranczioch et al. 2007; Pesaran et al. 2008; van Elswijk et al.

2010). In their computational study, Jones et al. (2010)

suggested that prestimulus alpha-band activity modulates

feedforward bottom-up processing, while beta-band activity

reflects both feedforward and feedback modulations of cortical

processes. Similarly, Engel and Fries (2010) suggested that beta-

band activity plays a role in endogenous top-down modulation

of cognitive processes. According to this hypothesis, low

amplitudes of beta-band oscillations should promote bottom-up

stimulus-driven processing, while high amplitudes should

increase the threshold for the responses to novel unexpected

stimuli. In line with this hypothesis, we suggest that fluctua-

tions of prestimulus beta oscillations determine the threshold

for detecting stimuli. An increase of beta activity impairs

bottom-up processing, therefore renders distinct temporal

detection of the first and the second stimulus more unlikely

and thus biases (incorrect) simultaneous reports. Several

studies also found interareal coherence mainly in the beta

band (Gross et al. 2004; Kranczioch et al. 2007; Hipp et al.

2011). A recent study found increased prestimulus beta-band

activity in superior temporal gyrus associated with the

(incorrect) perception of the bistable McGurk illusion (Keil

et al. 2011). We suggest that the perception of bistable stimuli

(such as McGurk effect, attentional blink or our paradigm of

simultaneity perception) is strongly influenced by ongoing

network fluctuations in the beta band.

Similar to the attentional blink paradigm, in our paradigm the

second of 2 subsequent stimuli is frequently misperceived.

Both paradigms require thus a high temporal resolution of

sensory perception. We propose that low states of beta

oscillations prior to the sensory stimulation promote a process-

ing of stimuli, while states of high beta amplitudes increase the

threshold for sensory processing and make perception less

accurate, especially for weak near-threshold stimuli (Engel and

Fries 2010). In our case, less accurate (temporal) perception

might bias simultaneity reports.

Prolonged SOA will lead to more veridical reports, that

is, prolonged SOA will decrease the degree of ambiguity or

bistability (Fig. 2). Subjective perception for prolonged SOA

thus might be less influenced by small fluctuations of ongoing

fluctuations of oscillatory activity. Additional components

might thus be necessary to further increase perceptual

threshold. One component might be inhibited bottom-up

Prestimulus Oscillations Predict Perception d Lange et al.2572

 at U
niversitaetsbibliothekD

uesseldorf on January 26, 2015
http://cercor.oxfordjournals.org/

D
ow

nloaded from
 



processing of sensory input in SI by alpha-band activity (Jones

et al. 2009). In line with this hypothesis, we additionally found

increased prestimulus alpha power for subjective perception of

simultaneity in condition with SOA of 45 ms.

In summary, we found that prestimulus activity in the alpha

and high beta band predicts the subjective perception of

electrical simultaneity. We propose that states of prestimulus

alpha- and beta-band activity determine perceptual detection

thresholds for tactile and electrical stimuli (Engel and Fries

2010). Modulations in the beta band were found in SI and SII,

while alpha-band modulations were found in SI. We suggest

that these regions communicate in the respective frequency

bands and thus control bottom-up and top-down information

flow. The results mount on recent evidence and extend

findings emphasizing the role of prestimulus oscillatory activity

for perception.

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/
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Fig. S1: Same analyses as in Fig. 4 but for contralateral sensors. No significant correlations 

were found.  
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A single brief visual stimulus accompanied by two brief tactile stimuli is frequently perceived incorrectly as

two flashes, a phenomenon called double-flash illusion (DFI). We investigated whether the DFI is

accompanied by changes in rhythmic neuronal activity, using magnetoencephalography in human subjects.

Twenty-two subjects received visuo-tactile stimulation and reported the number of perceived visual stimuli.

We sorted trials with identical physical stimulation according to the reported subjective percept and assessed

differences in spectral power in somatosensory and occipital sensors. In DFI trials, occipital sensors displayed

a contralateral enhancement of gamma-band (80–140 Hz) activity in response to stimulation. In

somatosensory sensors, the DFI was associated with an increase of spectral power for low frequencies

(5–17.5 Hz) around stimulation and a decrease of spectral power in the 22.5–30 Hz range between 450 and

750 ms post-stimulation. In summary, several components of rhythmic activity predicted variable subjective

experience for constant physical stimulation. Notably, the enhanced occipital gamma-band activity during DFI

was similar in time and frequency extent to the somatosensory gamma-band response to tactile stimulation.

We speculate that the DFI might therefore occur when the somatosensory gamma-response is transmitted to

visual cortex. This transmission might be supported by the observed modulations in low-frequency activity.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Rhythmic neuronal activity has been proposed as a crucial factor for

communication among neuronal groups (Canolty et al., 2006; Fries,

2005; Lachaux et al., 2005; Salinas and Sejnowski, 2001; Tallon-Baudry

et al., 2004, 2005; Womelsdorf et al., 2007). Putative specific roles of

coherent rhythmic activity include top-downmodulation (Engel et al.,

2001) or the effective long-range communication of neuronal groups

(Gross et al., 2004; Lachaux et al., 2005; Varela et al., 2001).

Synchronization of rhythmic activity has been found in cortico-cortical

(Gross et al., 2004) and cortico-spinal networks (Schoffelen et al.,

2005).

Several studies argue that long-range communication through

rhythmic neuronal activity might provide a mechanism also for cross-

modal interaction. Multisensory stimuli evoke stronger rhythmic

activity in the gamma-band than unisensory stimuli (Sakowitz et al.,

2001; Senkowski et al., 2007). A recent intracranial study in monkeys

revealed that somatosensory input in auditory cortex resets thephase of

ongoing auditory cortical oscillations which leads to enhanced proces-

sing capabilities of audio-tactile stimuli (Lakatos et al., 2007). Evidence

for a role of rhythmic neuronal activity for cross-sensory interaction has

also been found in a cross-modal illusion (Bhattacharya et al., 2002;

Mishra et al., 2007). The authors presented a briefly flashed visual

stimulus accompanied by two brief auditory stimuli. This stimulation

triggers, in a subset of trials, the illusory perception of a second visual

stimulus, i.e. the double-flash illusion (DFI) (Shams et al., 2000).

Recently, it has been demonstrated that the perception of a visual

stimulus can also be altered by tactile stimulation in a similar way

(Violentyev et al., 2005). Both, the auditory induced and the tactile

induced DFI, do not merely shift unimodal perception quantitatively

(e.g. to a higher perceived luminance), but rather alter the phenome-

nological quality of the percept. Such illusions in which identical

stimulation can lead to categorically different visual perception are rare

but offer an intriguing opportunity to study cross-modal interactions

and perception in general (Haynes et al., 2005; Leopold et al., 2002;

Wilke et al., 2006).

The neurophysiological basis of the DFI has been investigated for

the audio-visual DFI. These EEG studies found among other results

that gamma band activity in occipital areas was enhanced for trials in

which subjects perceived the illusion (Bhattacharya et al., 2002;

Mishra et al., 2007). The neurophysiological basis of the touch-

induced visual DFI has so far not been investigated. Since rhythmic

neuronal activity has been proposed as a general mechanism for
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cross-modal integration, the objective of the present study was to

investigate its putative role for the dynamic interaction of somato-

sensory and visual areas in the visuo-tactile DFI.

Methods

Subjects

Twenty-two right-handed volunteers (12 female, mean age (± SD)

22.3±2.7 years) without any known history of neurological disorders

participated in this study. All participants had normal or corrected-to-

normal vision. The experiment was approved by the local ethics

committee, and each subject gavewritten informed consent prior to the

experiment, according to the Declaration of Helsinki.

Stimuli, tasks, and procedure

Subjects were lying comfortably in supine position with their head

placed in the horizontally positionedMEG helmet. Visual stimuli were

presented using an LCD projector located outside the magnetically

shielded room and back-projected onto a translucent screen via a

mirror-system. The vertical refresh rate of the LCD projector was

60 Hz. The screen was positioned 70 cm in front of the subjects so that

they could comfortably view the visual stimuli.

The experimental paradigm and the stimuli are illustrated in Fig. 1.

Each trial startedwith the presentation of a fixation point (Gaussian of

diameter 0.5°, luminance 7 cd/m2) in the middle of the screen.

Subjects maintained fixation on this dot throughout the entire trial.

After 700 ms, a stimulation period of 90 ms started in which subjects

received visual and/or tactile stimulation. Visual stimulation consisted

of uniform gray discs (2.5° diameter, average luminance over subjects

2.3 cd/m2, see below for details about the luminance of the visual

stimuli) presented for 16 ms, 17° left of the fixation dot. Visual stimuli

were presented eccentrically because this increased the likelihood to

experience the visual illusion (Shams et al., 2000).

Tactile stimulation was given through a piezoelectrical Braille

stimulator (Metec, Stuttgart, Germany) (Bauer et al., 2006) that was

taped to the subjects' left index finger. The Braille stimulator consisted

of a 2×4 matrix of pins and was driven using custom-built electronic

circuitry. For the tactile stimulation, all eight pins were lifted

simultaneously by 2 mm, stayed elevated for 30 ms, and were then

lowered again.

Thenumber of visual and/or tactile stimuli could be zero, one, or two.

All ninepossible visuo-tactile combinationswere used (Fig. 1B).Wewill

address the different conditions as “vxty” for a condition with x visual

and y tactile stimuli. Thus, stimuli could be either single unimodal (v1t0,

v0t1), double unimodal (v2t0, v0t2) with onsets of both stimuli

separated by 60 ms, or bimodal combinations of tactile and visual

stimuli. Bimodal visuo-tactile stimuli could either appear synchronously

(v1t1, v2t2). In the latter condition (v2t2) the onsets of both pairs of

visuo-tactile stimuli were separated by 60 ms. Or one tactile stimulus

was presented between two visual stimuli (v2t1) or vice versa (v1t2).

Finally, one condition did not contain any stimulation at all (v0t0).

The stimulation period was followed by a post-stimulus period of

1000 ms in which only the fixation dot was visible. Then, the contrast

of the fixation dot was increased by 40% indicating the response

period. Subjects were asked to report the number of perceived visual

stimuli and to ignore the tactile stimulations. Responses were given

by pressing one of three buttons with fingers of the right hand

(Fig. 1A) on an optical button box (Lumitouch, Photon Control Inc.,

Burnaby, Canada). Button presses were counterbalanced for the

critical responses (i.e. one or two stimuli). For half of the subjects the

button configuration was: thumb press: zero stimuli; index finger:

one stimulus; middle finger: two stimuli; for the other half of the

subjects the button configuration was: thumb press: zero stimuli;

middle finger: one stimulus; index finger: two stimuli. Additionally,

subjects reported their confidence by pressing the respective button

once (confident) or twice (not confident). The fraction of not-

confident trials was below 5%. Thus, confident and not-confident

trials were collapsed for the analysis. Since confidence ratings were

high for each subject, we conclude that the results express subjects'

subjective perception rather than indecisiveness in a two-alternative

choice task, in agreement with a recent direct investigation of this

issue (McCormick and Mamassian, 2008).

After the subject's response, or maximally 3000 ms after the

increase in fixation dot luminance, the next trial started. Only

A B

Fig. 1. Schematic illustration of the experimental paradigm and setup. A, schematic overview of the setup. Subjects fixated a central dot while they received tactile stimulation on

their left index finger and/or visual stimulation. Visual stimuli consisted of a gray disc presented at 17° eccentricity in the left visual hemifield, on the horizontal meridian. Subjects

responded by pressing one of three buttons with their right hand. B, illustration of a single trial and of the different experimental conditions. All nine conditions were presented in

random order within a block. The entire experiment consisted of 100 blocks.
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responses given during the response period were analyzed. Trials in

which the response was given before the response period were

discarded from analysis.

Both, the prestimulus and the post-stimulus intervals were

constant for the following reasons:

1) The study focuses on spectral power. Since power is a rectified

quantity, anticipatory perturbations would be visible in the average

with both, a constant and a varying stimulus/response timing.

2) Byvarying the timeof stimulus onset,wewouldhave created a time-

varying hazard rate and corresponding expectation and thereby had

created more variance of neuronal activity at stimulus onset.

3) Themain focus of our studywas on illusion effects, i.e. on perceptual

contrasts between conditions of identical physical stimulation. A

fixed time interval minimizes variance due to anticipation.

For the analysis of the effects of sensory stimulation per se, a post-

stimulus period is compared to a pre-stimulus baseline. This

comparison is not immune to anticipatory signals. However, the

stimulation contrasts are not central to the study. They are only used

to constrain the sensors (regions of interest) for the subsequent

investigation of the illusion contrasts. Furthermore, the stimulation

contrasts basically confirm existing findings and are thus very unlikely

caused purely by expectation.

Previous studies reported a high inter-subject variability of illusory

trials despite identical stimulations for all subjects (Mishra et al., 2007;

Shams et al., 2000; Violentyev et al., 2005). To ensure a balanced ratio of

illusory and non-illusory trials within each subject, we adapted the

luminance of the visual stimuli for each subject individually prior to the

experiment by a staircase method. These pre-tests also served as

training trials for the subjects and lasted about 5 min. The resulting

luminance of the visual stimuli was 2.3±0.2 cd/m2 (mean±SEM).

To increase statistical power for the investigation of the illusory

effect, the condition v1t2 was presented twice as often as the other

conditions. One pseudorandom sequence of all conditions (including

two times v1t2) constituted one block. After ten blocks, subjects were

allowed to take a short break. Overall, the experiment consisted of 100

blocks, resulting in 100 trials for each condition (200 trials for

condition v1t2) and a recording session of ~1 h. Subjects were

instructed to blink only during the response period or during the

breaks and to press the buttons only during the response periods.

The sound generated by the Braille cells was strongly attenuated

by encapsulating them into foam. Additionally, a very weak residual

sound was masked by presenting subjects with auditory white noise

via pneumatic earphones. Behavioral tests preceding the experiment

confirmed that subjects did not hear the clicking of the Braille cells.

Stimuli were controlled using the software “Presentation” (Neu-

robehavioral Systems, Albany).

Data acquisition

MEG recordings

Electromagnetic brain activity was recorded using a whole head

151-channel or 275-channel MEG system (CTF systems Inc., Port

Coquitlam, Canada). Data from the 275-channel system were

interpolated to a common 151-channel template using a procedure

that was also used to compensate for differences in subjects' head

position (see paragraph 2.4.1 on Preprocessing for details). The

system was moved to a horizontal position and subjects were

recorded in supine position. We recorded vertical and horizontal

eye movements simultaneously, by measuring the electroocculogram

(EOG) through electrodes placed below and above the left eye and on

the outer sides of each eye. MEG/EOG data were low-pass filtered at

300 Hz and sampled continuously at a rate of 1200 Hz. Subjects' head

position relative to the gradiometer array was determined before and

after the recording session by measuring the position of reference

coils placed at the subjects' nasion and at the left and right ear canals.

Structural MRI

For each subject, a full-brain high-resolution anatomical MR image

was acquired on a 1.5T or 3T whole-body scanner (Siemens, Erlangen,

Germany) using a volume head coil for radio frequency transmission

and signal reception. We applied standard T1-weighted sequences.

MRI reference markers were placed at the subjects' nasion and at the

left and right ear canals for alignment of the MEG and MRI coordinate

systems.

Data analysis

Preprocessing

Data were analyzed using the FieldTrip software (http://fieldtrip.

fcdonders.nl), an open source Matlab toolbox for neurophysiological

data analysis developed at the Donders Institute for Brain, Cognition

and Behaviour, Nijmegen.

Power line noise was removed from the continuous data using a

Fourier transformation of 10-s long signal periods and subtracting the

50, 100 and 150 Hz components. This was done separately for all 10-s

periods around all periods of interest.

Using a semi-automatical routine, segments contaminated by eye

movements or blinks, artifacts caused by muscle activity, and jump

artifacts in the MEG signal caused by the SQUID electronics were

removed. If the length of a trial was smaller than 800 ms, the entire

trial was removed. All trials in which subjects responded too early (i.e.

during the 1000 ms post-stimulus period after stimulus presentation,

see Fig. 1), or trials in which no response was given, were discarded.

Differences in subjects' head positions with respect to the MEG

sensors may cause smearing of activity when constructing the grand-

average topography over subjects. To compensate for this and to

interpolate the data from the 275-channel and the 151-channel

system, the individual subjects' MEG data were interpolated to a

common 151-channel-template position for the MEG sensors with

respect to the head. Each subjects' head shape was reconstructed from

theMRI and a superficial layer of dipoles was placed 1 cm beneath the

inner skull surface, approximately in the sulcal gray matter. This

dipole layer consisted of 642 evenly spaced nodes covering the whole

surface, with a regional source (i.e. free orientation) at every node.

The leadfield matrix for all combined sources was computed using an

individual forward model for every subject (Nolte, 2003). The

strength of each of the 3×642 dipole components was estimated

using a minimum norm estimate (MNE). TheMNEwas done using the

More-Penrose pseudoinverse of the leadfieldmatrix by computing the

singular value decomposition and regularized by truncating the

singular values of the leadfield matrix at 1/1000 of the maximal

singular value. The estimated strength of these dipoles in the gray

matter was subsequently used to compute the field distribution at the

location of each sensor in the template gradiometer array, again using

the individual forward model. The placement of the dipole layer in

grey matter ensures that the forward computed field distribution

resembles the actual distribution of the field of the true underlying

sources. This method is robust and yields accurate results, regardless

of the position of the field generator (Knösche, 2002). Subsequently,

planar gradients for a given sensor were estimated from the axial field

distribution and computed separately in vertical and horizontal

direction by comparing the field at that sensor with its neighbors

(Bastiaansen and Knösche, 2000). An advantage of the planar gradient

transformation over axial gradient data is that the signal amplitude is

largest directly above a source. This is particularly advantageouswhen

interpreting distributions of spectral power at the sensor level.

Spectral analysis

We analyzed the data in the frequency domain. Power spectra

were computed by using a short time discrete Fourier transform on

temporal windows sliding in 25-ms steps. Two frequency ranges were

analyzed separately: A low-frequency band (5–40 Hz) was analyzed
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with analysis windows of 400 ms length, tapered with a single

Hanning window resulting in a spectral smoothing of roughly

±2.5 Hz. A high-frequency band (40–150 Hz) was analyzed with

analysis windows of 200 ms length. For the high-frequency band, we

applied a multi-taper approach to the respective analysis windows to

optimize spectral concentration over the frequency of interest (Mitra

and Pesaran, 1999). We applied eleven Slepian tapers resulting in a

spectral smoothing of ±30 Hz. Spectral power was first estimated per

trial and taper and then averaged across trials and tapers.

The long window for the low-frequency band was chosen, because

known, physiological low-frequency bands are relatively narrow and

closely spaced.We therefore aimed at a spectral resolution in the low-

frequency range of roughly ±2.5 Hz. A spectral resolution of 2.5 Hz

requires analysis windows of at least the inverse of 2.5 Hz, i.e. 0.4 s.

In the higher frequency range, frequency bands of physiological

rhythms are broader and spaced more far apart. We could therefore

afford to use a window that was half the size used for the low

frequencies, i.e. 0.2 s. A further reduction in window length would have

been problematic. (1) It would have rendered thewindows of temporal

support for low and high frequencies evenmore disparate. (2) It would

have createdproblems in thegroupanalysiswhendifferent subjects had

slightly different times of spectral perturbations.

We defined regions of interest (ROIs) in sensor space, in which we

analyzed the spectral power. The choice of ROIs was motivated by our

focus on sensory representations. We therefore defined the ROIs as

the region showing the most consistent spectral perturbations of

rhythmic activity in response to tactile/visual stimulation. First, all

trials with purely tactile stimulation (v0t1 and v0t2) were pooled.

These trials showed clear spectral components in the low-, mid- and

high-frequency bands (Fig. 3A). For each time–frequency band, we

determined the topographical distribution (Fig. 3B). We normalized

and rectified the amplitudes of the three resulting patterns (i.e.

response amplitudes were normalized to values between 0 and 1),

averaged these patterns, and determined the 10 sensors which

captured the maxima of the averaged pattern. The spectral patterns

overlapped in 10MEG sensors in the right central region, contralateral

to tactile stimulation (RC13, RC14, RC15, RC21, RC22, RC23, RC24,

RC31, RC32, RP34). This set of sensors defined the somatosensory

region of interest.

Secondly, all trials with purely visual stimulation (v1t0 and v2t0)

were pooled. These trials showed four clear spectral components in

the low-, mid- and high-frequency bands (Fig. 4A). In line with the

analysis of the somatosensory ROI, we averaged the normalized and

rectified the four resulting topographical representations and deter-

mined the 10 sensors which captured the maxima of the averaged

pattern (Fig. 4B). The spectral patterns overlapped in 10 MEG sensors

in the right and central occipital region, contralateral to visual

stimulation (RO21, RO22, RO31, RO32, RO33, RO41, RO42, ZO01, LO31,

LO32). This set of sensors defined the occipital region of interest.

Statistical analysis

We tested for effects of sensory stimulation and for effects of

subjective perception.

To test for the overall effect of tactile and visual stimulation, all

trials with purely tactile stimulation (v0t1 and v0t2) were pooled into

a new tactile-only condition, and all trials with purely visual

stimulation (v1t0 and v2t0) were pooled into a new visual-only

condition. The response to sensory stimulation was assessed by

comparing, within those unimodal stimulation conditions, the post-

stimulus period to the pre-stimulus baseline period (−300 ms to

−100 ms before stimulus onset, collapsed across time). To test for an

effect of the DFI, we sorted the v1t2 trials into trials with DFI and

without DFI.

For each subject separately, we averaged the spectral power over

the sensors of interest (see Spectral analysis). We visually inspected

the power spectra and defined broad time–frequency regions of

interest that captured visible perturbations, but restricted the time–

frequency range over which multiple comparison correction was

performed later. Those broad time–frequency regions correspond to

the time–frequency ranges shown in the figures. The two conditions

were compared with an independent samples t-test (i.e. “post-

stimulus versus baseline,” or “DFI versus non-DFI”). This was done for

each subject and each time–frequency pixel and therefore resulted in

time–frequency t-maps. The subsequent group level statistic deter-

mined whether inside those regions of interest, there were time–

frequency clusters with effects that were significant at the random

effects level after correcting for multiple comparisons along both the

time and the frequency dimension.

The group level statistic used those t-maps as inputs and

determined their consistency across subjects. The null hypothesis

was that the data from the two conditionswere not different and could

therefore be exchanged. We therefore tested exchangeability using a

non-parametric permutation approach (Maris and Oostenveld, 2007).

We choose this approach for several reasons: First, it is free of

assumptions about the underlying distributions. Second, it is not

affected by the fact that therewas partial dependence (due to overlap)

between neighboring time–frequency pixels. Third, it offers an elegant

way to correct for multiple comparisons. The procedure was as

follows:

1) We defined the test-statistic to be the t-value pooled across

subjects, i.e. the sum of the individual subjects' t-values divided by

the square root of the number of subjects. This test-statistic was

determined per time–frequency pixel.

2) The pooled t-map was thresholded with a non-multiple compar-

ison corrected a priori t-value threshold of 1.96, corresponding to a

parametric two-sided paired t-test with 5% false positives.

3) This resulted in clusters of adjacent time–frequency pixels for

which we determined the sum of the test statistic. This sum was

defined to be our cluster-level test statistic.

4) We performed 5000 randomizations. In each randomization, we

selected a random subset of subjects. For those subjects, the t-values

were inverted, i.e. all time–frequency t-values were multiplied with

minus one. This is equivalent to an exchange of the two conditions

and therefore implements a new dataset under the null-hypothesis

of exchangeability (Maris and Oostenveld, 2007).

5) For each of the 5000 randomization, steps (1) through (3) were

repeated.

6) For each randomization, only the maximal and the minimal

cluster-level test statistic across all clusters were retained and

placed into two histograms, which we address as maximum (or

minimum, respectively) cluster-level test statistic histograms.

7) After all 5000 randomizations, we determined, for each cluster

from the observed data, the fraction of the maximum (minimum)

cluster-level test statistic histogram that was greater (smaller)

than the cluster-level test statistic from the observed cluster. The

smaller of the two fractions was retained and divided by 5000,

giving the multiple comparisons corrected significance thresholds

for a two-sided test.

Please note that this procedure implements a random effect

analysis, because the randomization (condition exchange, i.e. t-value

inversion) was done at the level of subjects. Had we simply

thresholded the pooled t-values, this had implemented a fixed effect

analysis, but rather we used those pooled t-values only as a well

normalized input to the group level random effect analysis.

To analyze the contribution of time-locked (evoked) components,

we sorted the v1t2 trials into DFI and non-DFI trials and averaged the

trials in the time-domain. To optimize the analysis of time-locked

data, averaging was performed before computation of planar fields.

Additionally, we computed the spectral power of these time-locked

data. Statistical testing was performed separately in the time and

frequency domain.
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Correlation analysis

The main, early post-stimulus DFI effects were found to be

enhancements of somatosensory low-frequency and visual gamma-

band activity. For those effects, we tested whether the somatosensory

and visual effects were correlated across trials. For each of the effects,

those time–frequency points were selected that showed significant

DFI effects on the group level. Subsequently, for each subject and trial,

the power in those time–frequency regions was expressed as percent

change relative to baseline. Within each subject, we then determined

the Spearman rank correlation between visual gamma and somato-

sensory low-frequency across trials. The resulting correlation coeffi-

cients were tested against a null hypothesis of no correlation, using a

one-sample t-test across subjects.

Eye movements

Although trials contaminated by eye movements have been

discarded during preprocessing, we tested for residual eye move-

ments. To analyze directly whether eye-movements differed

between DFI trials and non-illusory trials, we applied the procedure

described in the section Statistical analysis for MEG-channels to the

EOG-channels in the time domain. To this end, we first computed

eye movements in horizontal and vertical direction and then

combined them to assess overall eye movements. For the combi-

nation, we used an Euclidian measure (EOGcomb=√(EOG2
vert+

EOG2
hor), with EOGcomb denoting combined EOG channels and

EOGvert and EOGhor the vertical and horizontal channels, respec-

tively. Statistical analysis was performed separately for horizontal,

vertical and overall eye movements.

Results

Behavioral results

Subjects made negligible errors when judging the number of

presented visual stimuli in six out of nine conditions (Fig. 2). These

were the conditions without visual stimulation, the conditions in

which the number of visual and tactile stimuli was the same and

the condition in which only one visual stimulus was presented.

However, trials with one visual and two tactile stimuli (v1t2

condition), were perceived as two visual stimuli in 45.8±0.4%

(mean±SEM). Statistical analysis revealed that the presence of a

second tactile stimulus in condition v1t2 significantly increased the

proportion of incorrect responses (i.e. perception of illusory second

flashes) compared to condition v1t1 (t(21)=11.9, pb .0001), i.e.

confirming previous results that subjects experienced the double flash

illusion (DFI) (Mishra et al., 2007; Shams et al., 2000; Violentyev et al.,

2005). To confirm that the DFI is caused by perceptual processes, we

performed an additional analysis based on signal detection theory. For

this analysis, we denoted correctly perceived double flashes as “hits”,

correctly perceived single flashes as “correct rejections.” Trials with a

single flash that were erroneously perceived as two flashes were

denoted as “false alarms,” and trials with two flashes that were

erroneously reported as a single flash as “misses” (McCormick and

Mamassian, 2008; Violentyev et al., 2005; Watkins et al., 2006). The

presence of two tactile stimuli significantly decreased sensitivity

(d'=1.78±0.16; mean±SEM) by 19.8% compared to the presence of

one tactile stimulus (d'=2.19±0.20, t(21)=2.24, p=0.036). This

confirms previous results showing that the DFI is a perceptual effect

and not caused by a simple shift of criterion bias (McCormick and

Mamassian, 2008; Violentyev et al., 2005; Watkins et al., 2006).

Stimulation contrast

To study the effect of tactile stimulation per se, all trials with

purely tactile stimulation (v0t1 and v0t2)were pooled.We focused on

the effects of stimulation, thus, we averaged over all (artifact free)

trials irrespective of perceptual report, and we contrasted to the pre-

stimulation baseline. The same procedure was applied to the purely

visual stimuli (v1t0 and v2t0). Fig. 3A shows the time–frequency

analysis for tactile stimulation averaged over the somatosensory

sensors (see (Spectral analysis) for details). We found that tactile

stimulation induced a highly significant reduction (pb0.001) of

Fig. 2. Behavioral data of the experimental conditions. Bar plots show the relative fractions of behavioral responses indicating whether subjects perceived 0, 1, or 2 visual stimuli. The

different panels show the results for the different stimulation conditions, comprising 0, 1, or 2 visual and/or tactile stimuli. Data are presented as mean±1 SEM.
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rhythmic activity in a time–frequency cluster that had three major

lobes: One between 200 and 550 ms after stimulation and in a

frequency band of 15–40 Hz, a second between 300 and 700 ms and in

a frequency band of 7.5–15 Hz, and a third, although less prominent

lobe between 800 and 950 ms and in a frequency band of 25–40 Hz

(Fig. 3A).

Significant increases of rhythmic activity were found in two time–

frequency clusters: one cluster (pb0.05) ranging from 75 to 500 ms

and from 5 to 12.5 Hz and a second cluster (pb0.05), from 100 to

300 ms and ranging from 80 to 120 Hz, i.e. in the gamma-frequency

band. The upper panel of Fig. 3A also shows a strong reduction in

rhythmic activity from 200 to 600 ms and for the frequencies from 40

to 70 Hz. This cluster corresponds most likely to the negative cluster

observed for the low frequencies (7.5–40 Hz) and becomes visible in

the high-frequency analysis because of the spectral smoothing.

Therefore, we will not further discuss this effect.

We averaged the t-values of all time–frequency pixels inside

significant clusters to compile topographic plots. The topographies of

the significant clusters reveal that the effects peak over somatosen-

sory areas contralateral to stimulus presentation. The stimulation

effect is most spatially focused for the gamma-band. The remaining

two clusters reveal in addition weak ipsilateral responses.

Fig. 4 shows the effects of visual stimulation. There was a

significant enhancement of rhythmic activity (pb0.05) with two

prominent lobes: one between 200 and 400 ms and from 5 to 15 Hz,

and a second lobe between 400 and 700 ms in the frequency band

12.5–40 Hz. There is a significant decrease of rhythmic activity

(pb0.05) between 400 and 900 ms and from 65 to 150 Hz. There is

also a significant increase of activity between 400 and 600 ms in the

frequency band 40–60 Hz. Similar to the tactile condition, this cluster

corresponds most likely to the cluster observed for the low

frequencies and becomes visible in the high-frequency analysis

because of the spectral smoothing. Therefore, we will not further

discuss this effect.

The topographies of the significant clusters reveal that the increase

in the low frequencies is spatially restricted to the occipital sensors

and peaks over the contralateral side. The decrease of activity in the

high frequencies has a widespread topography.

The double flash illusion (DFI) effect

Next, we investigated the role of rhythmic activity for the

perception of a second (illusory) flash. All trials with one visual and

two tactile stimuli (condition v1t2) were sorted according to the

perceptual report of the subjects. We compared the spectral power

in the somatosensory and occipital regions for trials in which

subjects reported to perceive two flashes (on average 76 trials per

subject) vs. trials in which one flash was reported (on average 88

trials). Power estimates were used for further analyses directly,

without subtracting a baseline. We will address results of this

comparison as DFI effects. If not mentioned otherwise, statistical

tests were performed over the entire time–frequency range. For

sensors overlying somatosensory areas, we found significant DFI

effects in two time–frequency clusters (Fig. 5A): One cluster

A B

Fig. 3. The effect of tactile stimulation of the left index finger. A, TFRs for the sensors indicated in B (black dots). t-Values were calculated separately for low and high frequencies by

pooling all trials of purely tactile conditions (v0t1 and v0t2). Positive t-values indicate greater power after stimulation as compared to the pre-stimulus baseline. The negative cluster

in the high frequency analysis corresponds to the negative cluster in the frequency analysis. B, separate topographies for the three clusters as highlighted in A (see Spectral analysis

for details on choice of time-frequency clusters in (A) and sensors in (B)).
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(pb0.05) of increased rhythmic activity extending from −50 to

400 ms and between 5 and 17.5 Hz, and a second cluster (pb0.05) of

reduced rhythmic activity between 450–750 ms and 22.5-30 Hz.

Topographical plots of both effects revealed clear spatial foci over

contralateral somatosensory sensors (Fig. 5B). We tested whether

these effects were attributable to stimulus-locked components. To

this end, we first averaged the signals in the time domain and then

performed the spectral and statistical analysis in the time- and the

spectral domain as before. This did not reveal any significant DFI

effects for the stimulus-locked components (Figs. S3 and S4, see

Methods (section 2.4.3.)). No significant DFI effect was observed in

somatosensory sensors for higher frequencies.

By contrast, in sensors over visual cortex, the main DFI effect was

an increase of rhythmic activity between 75 and 300 ms and in the

frequency range 80–140 Hz, i.e. in the high gamma-band (Fig. 6A).

Visual inspection of the power spectra revealed that high-frequencies

were dominated by a strong decrease in the range 40–70 Hz and that

high gamma-band effects were only visible in the post-stimulus

period (Fig. S1). Therefore, the statistical analysis of the high-

frequency effects in the visual cortex was restricted to 0–900 ms

after stimulation and to the frequency band 70–150 Hz. The

topography of this effect revealed a focus over contralateral visual

cortex, with additional peaks over parietal and left frontal areas

(Fig. 6B). As in the analysis over somatosensory areas, there was no

significant DFI effect for the stimulus-locked components (Figs. S3 and

S5, see Statistical analysis).

Visual inspection of the increase of gamma-band activity for DFI-

trials (Fig. 6) and the stimulus-driven gamma-band activity (Fig. 4)

revealed that the DFI-effect occurred slightly earlier in time, in a

slightly higher frequency-band, and also topographically more central

than the stimulus-driven gamma effect in response to unimodal visual

stimulation.

In conditions v2t0 and v2t1 subjects frequently missed one visual

stimulus, i.e. they reported seeing only one flash (Fig. 2). Similar to the

analyses of the DFI effect, we sorted the trials in conditions v2t0 and

v2t1 sorted according to the perceptual report of the subjects and

compared the spectral power in the somatosensory and occipital

regions for trials in which subjects reported to perceive two flashes vs.

trials in which one flash was reported. We did not find any significant

differences between both perceptual reports.

The main early DFI effects were enhancements of somatosensory

low-frequency and visual gamma-band activity. To test for a potential

relation between those processes, we calculated the correlation across

trial-by-trial variations in those effects (see Methods for details). We

found the power enhancements in somatosensory low-frequency and

visual gamma-band activity to be positively correlated (positive

Spearman rank correlation in 21 of 22 subjects (t-test across subjects:

t(21)=8.4, pb0.001).

Additional analyses compared DFI and non-DFI trials in the EOG-

signals but did not show any significant differences in either

horizontal, vertical or overall eye-movements (Fig. S2; see Eye

movement for details).
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Fig. 4. The effect of visual stimulation. Same format as Fig. 3, but comparing visual stimulation to baseline. A, TFRs for sensors indicated in B. B, separate topographies for clusters as

highlighted in A.
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Discussion

We studied rhythmic neuronal activity in humans during visual

and/or tactile stimulation and in relation to the induced visual

percept. Isolated tactile stimulation induced enhanced low-frequency

and high-gamma frequency activity, as well as reduced alpha- and

beta-band activity over somatosensory cortex contralateral to

stimulation and very similar to previous reports (Bauer et al., 2006;

Trenner et al., 2008). The relatively weak and peripheral visual

stimulus induced an earlier enhanced activity in low frequencies, a

weak enhanced gamma-band activity, and a later reduced high-

gamma band activity. When one visual stimulus was paired with two

tactile stimuli, subjects often experienced the double-flash illusion

(DFI). In trials with the DFI, occipital sensors showed enhanced

gamma-band activity. Also, during the DFI, somatosensory sensors

showed enhanced low-frequency activity and a reduced beta-

rebound. The DFI-related enhancements in visual gamma- and

somatosensory low-frequency activity were correlated across trials.

Recently, Mishra et al. (2010) have shown that directing attention

to the visual stimulus increases the likelihood of perceiving the DFI.

Based on this study one might speculate that also spontaneous

fluctuations of ongoing attentional processes might influence the

perception of the DFI-effect. Our results are in line with this

hypothesis: attention has been found to (1) reduce the beta rebound

in somatosensory cortex (Bauer et al., 2006; Trenner et al., 2008) and

(2) enhance gamma-band activity in visual cortex (e.g. Fries et al.,

2008). This interpretation proposes spontaneous fluctuations of

attention as the underlying cause of both somatosensory and visual

effects. In support of this, we found the DFI-related enhancements in

somatosensory low-frequency and visual gamma-band activity to be

correlated across trials. Notably, states of putatively enhanced

attention were not always related to more veridical perception, in

agreement with previous studies (Yeshurun and Carrasco, 1998).

We find DFI effects and effects to purely visual stimulation in

occipital sensors at rather high frequencies. Previous studies using

MEG have reported initial high gamma response to visual stimula-

tion before the response settles to a lower and sustained frequency

band (Hoogenboom et al., 2006). Since our stimuli were presented

for a short duration (16 ms), the observed effects at high frequencies

might reflect the previously reported initial high gamma response

before the responses settles to lower frequencies. Given the rather

long latency of the somatosensory DFI effect in the beta-band, it

seems unlikely that it is purely driven by bottom-up stimulus

processing. Rather, it might be related to stimulus replay or other

top-down mechanisms. For four reasons, however, it is unlikely that

this effect is related to motor responses or response preparation:

First, the effect is observed contralateral to stimulus presentation but

ipsilateral to the response hand. An effect related to response

preparation should have a spatial maximum contralateral to the

response hand. By contrast, the observed maximum contralateral to

stimulation suggests an effect at the sensory stage. Second, a control

analysis of rhythmic activity contralateral to the response hand

(mirroring the somatosensory ROI across the midline), did not reveal

any significant effects (data not shown). Third, if the DFI effect had

been due to response preparation then it should also have been

visible in the analysis of the other conditions for which subjects

sometimes reported one and sometimes two stimuli (i.e. conditions

v2t0 and v2t1), because the response patterns (i.e. button presses)

 Time relative to stimulation onset [s]

t-values
(v1t2p2 vs v1t2p1)

A B

Fig. 5. The double flash illusion effect in somatosensory sensors. The stimulation condition was v1t2. Positive t-values indicate greater power in trials in which subjects perceived an

illusory second flash as compared to trials in which they perceived the veridical single flash. Time–frequency regions that are revealed by the semitransparent white mask were

significant after multiple comparison correction. Otherwise, the format is as in Fig. 3. A, TFRs for sensors indicated in B. B, separate topographies for both significant clusters as

highlighted in A. The colorbar applies to both topographies.
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for these conditions and DFI trials were similar. However, the

analysis of these conditions did not reveal any significant effects over

somatosensory cortex. Finally, the response buttons relevant for the

DFI contrast (one and two stimuli) were counterbalanced across

subjects. Therefore, it is unlikely that the effects were due to

different preparatory signals to different fingers.

One potential concern in the interpretation of neuronal correlates

of the DFI is that the DFI might be based on an ambiguity that might in

principle as well be related to perception as to decision. Signal

detection theory provides a measure (d') of the difference in subjects'

perceptual representations between two conditions, independent of

the subjects' response bias. In agreement with previous studies on

both the audio-visual and visuo-tactile DFI, our d'-analysis revealed

that the DFI cannot be explained solely as a consequence of shift in

response bias (McCormick and Mamassian, 2008; Mishra et al., 2007;

Violentyev et al., 2005; Watkins et al., 2006). In addition, the

perceptual nature of the phenomenon is clearly favored by the

phenomenological experience during the illusion. This is supported by

the confidence ratings of our subjects, which were very high

throughout, in agreement with a recent study addressing this issue

in detail (McCormick and Mamassian, 2008).

Several previous studies have investigated the role of rhythmic

neuronal activity in cross-modal integration, and to the best of our

knowledge, they all investigated the integration of a visual stimulus

with an auditory one. Some of those studies compared unimodal

visual stimulation with bimodal stimulation and reported supra-

additive responses in the bimodal condition (Sakowitz et al., 2001;

Senkowski et al., 2007). Two EEG studies used the audio-visual DFI

and found that the illusion is related to an enhanced activity in a lower

gamma-band between 30 and 50 Hz in occipital electrodes (Bhatta-

charya et al., 2002;Mishra et al., 2007). The timing of these effects was

very similar to the high-gamma DFI effect described here. By contrast,

the frequency range was lower and this could be due to differences

between EEG and MEG, between the analyses, and/or between the

paradigms. Any of these differences might also explain why these

previous studies did not report two of our central findings: (1) The

similarity between the DFI effect and the tactile stimulation effect in

the high gamma-frequency range; (2) DFI effects on rhythmic activity

over somatosensory areas, or more generally the non-visual areas

involved in the induction of the illusion.

Although Mishra et al. (2007) did not report any changes in

rhythmic activity over non-visual (i.e. auditory) areas, they found an

enhanced evoked component in the ERPs in sensors over auditory

cortex ranging from 92 to 124 ms if subjects perceive the illusion. For

DFI trials, we found a significant enhancement of low-frequencies

over somatosensory areas. While the timing suggests that this effect

might be related to the effect described by Mishra et al. for the audio-

visual DFI, we did not find any significant contribution of stimulus-

locked effects.

Our results suggest that the DFI occurred during states of enhanced

attention and previous studies would suggest that in this case, the DFI

should also have been associated with enhanced somatosensory

gamma-band activity (Bauer et al., 2006). While somatosensory

gamma-band activity was indeed enhanced at a similar time range as

described by Bauer et al., this did not reach statistical significance

(Fig. 5A), probably due to insufficient signal-to-noise-ratio or

statistical power. However, we did find that the DFI is related to

significantly enhanced gamma-band activity over visual areas. This

DFI related gamma-band activity over visual areas had a strong

similarity to the tactile stimulation induced gamma-band activity over
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somatosensory areas and it occurred ~100-200 ms earlier in time and

topographically more central than the gamma-band increase in

response to isolated visual stimulation. We therefore propose that

the DFI is related to a somatosensory-to-visual transmission of

gamma-band activity, which occurs more likely during spontaneously

enhanced attention. The consequently enhanced gamma-band activ-

ity in visual cortex during DFI will most likely enhance the impact of

visual cortex on other brain areas.

It should be noted that in this hypothesis somatosensory gamma-

band activity does not need to be enhanced. Rather, we speculate the

DFI occurs when a given amount of somatosensory gamma-band

activity is more effectively transmitted to visual cortex. While the

interpretation of a transmission of gamma-band activity from

somatosensory to visual cortex remains speculative, there are several

studies that might propose a framework for this hypothesis. A

functional interaction of somatosensory and visual cortex has been

reported previously. For example, studies using transcranial magnetic

stimulation provided evidence for a functional role of visual cortex for

tactile discrimination tasks (Merabet et al., 2004; Zangaladze et al.,

1999). Macaluso et al. (2002) reported an increased BOLD response in

visual cortex if visual stimuli are accompanied by spatially congruent

tactile stimuli. Also, ERP studies reported a functional modulation of

visual cortex by attention to tactile stimuli (Eimer and Driver, 2000;

Eimer and Van Velzen, 2002). Recently, it has been shown that

selective spatial attention to tactile stimuli modulates rhythmic

activity in low frequencies in occipital areas (Bauer et al., 2006).

We can only speculate about the anatomical framework that might

underlie the transmission of rhythmic activity from somatosensory

areas to visual areas. While there is evidence for direct connections

between early visual cortex and auditory cortex (Bizley et al., 2007;

Falchier et al., 2002; Rockland and Ojima, 2003) and studies indicate

the possibility of direct connections of auditory and somatosensory

cortices (Fu et al., 2003; Hackett et al., 2007), there is to our

knowledge no evidence for similar connections from somatosensory

cortex to visual cortex. Alternatively, the transmission might be

relayed by higher-level multimodal areas (e.g. the superior temporal

sulcus, STS) which control information transfer between sensory

cortices. Such a mechanism has been suggested in fMRI studies on

visuo-tactile attention tasks (Macaluso et al., 2000) as well as on

audio-visual integration (Noesselt et al., 2007). In line with this

hypothesis, a recent study found interactions of neurons in the STS

and auditory cortex for face-voice integration (Ghazanfar et al., 2008).

A third possible mechanism might be an information transfer via

subcortical areas. Several studies found multimodal thalamo-cortical

projections in rats (e.g. Barth et al., 1995; Nicolelis et al., 1997) and

recent studies on monkeys have suggested a role of the thalamic

system in audio-tactile integration by rhythmic neural activity

(Lakatos et al., 2007).

Lakatos and colleagues found in their study that somatosensory

inputs modulated auditory responses by changing the phase of

ongoing auditory cortical oscillations. Low frequent rhythmic activity

was phase reset by somatosensory stimulation which subsequently

enhanced auditory induced responses when auditory inputs fell on

peaks of low-frequency activity and vice versa. A similar mechanism

might account for the findings in our study. However, due to the

technical limitations of our method, this remains speculative.

In summary, our results elucidate some of the mechanisms behind

the double flash illusion. They add to the growing evidence for a

functional role of rhythmic neuronal synchronization in cognition.We

hypothesize that the double flash illusion occurs when tactile induced

gamma-band activity is transmitted to visual cortex. During ongoing

fluctuations in attention, this transmission is more likely during

patterns of rhythmic activity associated with states of enhanced

attention. Further studies will be needed to confirm this hypothesis.

Supplementarymaterials related to this article can be found online

at doi:10.1016/j.neuroimage.2010.09.031.
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