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ZUSAMMENFASSUNG

ZUSAMMENFASSUNG

Heutzutage sind Enzyme wegen ihrer vielfiltigen Anwendungen in der Lebensmittel-,
Waschmittel-, Medizin- oder Pharmaindustrie in unserem tdglichen Leben immer
allgegenwirtiger. Sie erfiillen jedoch nicht immer die erforderlichen Anforderungen
industrieller Anwendungen in ,rauen” Umgebungen, wie hohen Temperaturen oder der
Anwesenheit von Losungs- und Reinigungsmitteln. Um industrielle Anwendungen effizienter
zu gestalten, werden aullerdem Enzyme mit einem breiten Substratspektrum und hohen
Produktausbeuten bevorzugt. Die moderne Enzymtechnologie weist ein zunehmendes
Potenzial fiir eine Vielzahl interdisziplindrer Verfahren zur Entwicklung neuartiger
mafgeschneiderter Enzyme fiir menschliche Zwecke auf. Insbesondere das ,,Protein
Engineering™ hat sich als niitzliches Werkzeug fiir die Entwicklung neuartiger
maflgeschneiderter Enzyme mit verbesserten Eigenschaften herausgestellt. ~Am
gebrduchlichsten sind wissensbasierte Strategien, bei denen das ,,Wissen aus Informationen
tiber die Proteinstruktur und / oder -sequenz sowie Computertechniken mit Experimenten
kombiniert wird. Da es jedoch an umfassenden experimentellen Daten, die auf einheitliche
Weise gemessen wurden, mangelt, ist die Entwicklung und Validierung von Algorithmen fiir
wissensbasierte Strategien unbefriedigend. Im Vergleich zu fritheren Studien habe ich in
meiner Dissertation zum ersten Mal wissensbasierte Strategien angewendet, um den Einfluss
der Enzymflexibilitit und -rigiditdt auf die Protein-Thermostabilitdt und / oder -detergenzien-
Toleranz, -substratpromiskuitdt und -expression mit unserer internen Constraint Network
Analysis (CNA)-Software in grolem MalBstab fiir biotechnologisch hochrelevante bakterielle

lipolytische Enzyme zu untersuchen.

IX



ABSTRACT

ABSTRACT

Nowadays, enzymes are becoming ever more ubiquitous in our daily lives because of their
diverse applications such as in the food, detergent, and medical or pharmaceutical industries.
However, they do not always meet the required demands of industrial applications in terms of
harsh environments, such as high temperatures or the presence of solvents and detergents. In
addition, to make industrial applications more efficient, enzymes with a broad substrate
spectrum and high product yields are preferred. Modern enzyme technology offers an
increasing potential of a wide range of interdisciplinary processes for designing novel tailor-
made enzymes according to human purposes. Especially, protein engineering has emerged as
a useful tool for developing novel tailor-made enzymes with improved properties. Most
common are knowledge-driven strategies, where the “knowledge” from information about the
protein structure and / or sequence as well as computational techniques is combined with
experiments. However, as there is a lack of available experimental large-scale data measured
in a uniform way, the development and validation of algorithms for knowledge-driven
strategies has remained unsatisfactory. Here, compared to previous studies, for the first time, I
applied knowledge-driven strategies to rationalize the impact of enzyme flexibility and
rigidity on protein thermostability and / or detergent tolerance, substrate promiscuity, and
expression with our in-house Constraint Network Analysis (CNA) software at large-scale for

biotechnologically highly relevant bacterial lipolytic enzymes.
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1 INTRODUCTION

Enzymes are biomolecules, typically proteins made up by building blocks called amino acids
(AAs), which are essential for nearly all biochemical reactions within living cells such as
energy storage, cellular respiration, and signal transduction!=. However, enzymes do not only
play an important role within living cells. Already thousands of years ago, as nobody was
aware of the existence of enzymes, people have used microorganisms for the production as
well as preservation of food and feed, e.g., yeast dough, alcoholic beverages, vinegar, cheese,

and silage* (Figure 1).

—1
Production P P Preservation
of food & feed _' Origin of mankind I_ of food & feed

Discovery of a
catalytic force (catalysis)
Berzelius - 1835

Discovery of the
first enzyme (diastase)
Payen - 1833

Discovery of a vital
force within yeast (ferments)

Pasteur - 1858

Discovery of
trypsin (enzyme)
Kiihne - 1878

Discovery of cell-free Lock and key model
fermentation (zymase) Fischer - 1894
Buchner - 1897 1900

Induced fit model First high-resolution
Koshland - 1958 crystal structure of a protein
Kendrew et al. - 1960

First MD simulation
of a protein
McCammon et al. - 1977 Conformational selection

| 2000 | Foot & Milstein - 1994

N

Research areas of
modern enzyme technology

*  Microbiology

. Biochemistry

. Genetics

. Structural & system & synthetic biology
. Organic & analytic & technical chemistry
. Computer simulations

. Bioinformatics

Figure 1: History of enzyme technology. Since the beginning of mankind, microorganisms have been used for
the production and preservation of food and feed (top). In the 19 century, the first enzymes and their properties
were discovered (dark blue boxes). Later, three theories rationalizing how substrates bind to enzymes, i.e. the

1
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lock and key model, the induced fit model, and conformational selection, were postulated (light blue boxes). The
first and the latest Nobel Prizes in Chemistry with respect to enzyme technology are shown in yellow boxes.
Further milestones, i.e. the determination of the first high-resolution crystal structure of a protein® and the
implementation of the first molecular dynamics (MD)-simulation of a protein®, are shown in orange boxes.
Nowadays, a variety of research areas contribute to modern enzyme technology (red box).

In the early 19'" century, the discovery of enzymes and their properties began (Figure 1). The
first enzyme, the so-called diastase (from Greek: diastasis, "separation”), was discovered by
the French chemist Anselme Payen in 18337 ¥ In 1835, the Swedish chemist Jons Jakob
Berzelius proposed the existence of a catalytic force and introduced the term catalysis (from
Greek: kata and lyein, “down” and “loosen”)® * !° Later, in 1858, when studying the
fermentation of sugar to alcohol by yeast, the French chemist Louis Pasteur postulated that it
was catalyzed by a vital force contained within the yeast cells, so-called ferments (from Latin:
fermentum, “yeast”), which were thought to function only within living organisms!'' 2,
Finally, the term enzyme (from Greek: énzymon, "in yeast”) was first used by the German
physiologist Wilhelm Kiihne in 1878% 3. Around 20 years later the foundation of modern
enzymology was laid by the German chemist Eduard Buchner, who demonstrated that sugar

was fermented by zymase, a protein-containing substance in yeast, even without living cells®

13 In 1907, he received the Nobel Prize in Chemistry for his work (Figure 1).

The reason why nature has evolved a variety of enzymes is that the majority of the
abovementioned cellular processes would not take place spontaneously. Almost all enzymes
follow the same principle: The so-called active site of an enzyme binds a substrate, catalyzes
a reaction by which products are formed, and then allows the products to dissociate.
Meanwhile, the enzyme increases the reaction rate by lowering the activation energy (Ea) of
the reaction, the energy that is required to start the reaction. The lower Ea, the faster a reaction
happens. There are three theories proposing three distinct models of the mechanism of
enzyme-substrate binding: The lock and key model, the induced fit model, and the
conformational selection'*?*° (Figures 1 and 2). Already in 1894, the chemist Emil Fischer
postulated with the lock and key model that only substrates (the keys) with the correct shape
would fit into the active site (the key hole) of the enzyme (the lock)!* (Figures 1 and 2A).
Later, in 1958, Daniel Koshland’s induced fit model suggested that the shape of the active site
changed until the substrate is completely bound'> (Figures 1 and 2B). Finally, in 1994,
Jefferson Foot and Cesar Milstein proposed the conformational selection assuming that all
enzymes are inherently dynamic and sample a vast ensemble of conformations of which
substrates bind to the most favored one!®!® (Figures 1 and 2C). Hence, unlike the lock and

key model, the induced fit model and the conformational selection assume that enzymes are
2
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rather flexible structures. This finding is in agreement with today’s scientific knowledge.
Many evidences have been found that enzyme flexibility is linked to biomolecular structure,
(thermo-)stability, and function. One interesting example is that thermophilic enzymes are
generally less flexible than their mesophilic homologues®!> 2 (section 2.2.2.3.1). Hence, the
increased structural rigidity of thermophilic enzymes can explain how they can maintain their
functional integrity at high temperatures. Another example is that promiscuous human
cytochrome P450 (CYP) enzymes that are involved in drug metabolism have more flexible
active sites®*. Thus, the induced fit model and the conformational selection are generally

considered in such cases to be the more correct ones.

1l

‘ Lock and key model ‘ ‘ Induced fit model ‘ ‘ Conformational selection |
E E

Figure 2: The different models of enzyme-substrate binding. (A) The lock and key model proposes that only
substrates with the correct shape would fit into the active site of the enzyme. (B) The induced fit model suggests
that the shape of the active site changes until the substrate is completely bound. (C) Conformational selection
assumes that enzymes are inherently dynamic and sample a vast ensemble of conformations of which substrates
bind to the most favored one. The substrate (abbreviated as S) is shown as orange triangle, whereas the enzyme
with its active site (abbreviated as E) is shown as light blue circle. Figure was taken and adapted from Savir et
al®.

E

Nowadays, enzymes are becoming ever more ubiquitous in our daily lives because of their
diverse applications such as in the food, detergent, and medical or pharmaceutical industries*
(section 2.3.3). Indeed, the increasing demand of enzymes can be seen by the global
industrial enzyme market that has been forecast to reach US$ 7.0 billion by 2023 from US$

5.5 billion in 2018%°. Enzymes catalyzing a chemical reaction are so-called biocatalysts,
3
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whereas the usage of isolated biocatalysts or whole cells (bacteria, fungi, microalgae and
plants, among others) is referred to as biocatalysis’’. In the context of green chemistry, an
approach that aims at developing more sustainable chemical processes with less hazardous
substances, biocatalysis has shown many advantages compared to traditional chemical
synthesis* 2. With this respect, the most important advantages are: (I) Biocatalysts can
operate at mild conditions in aqueous media at close to room temperatures and low pressures,
(IT) biocatalysts are substrate specific, (III) biocatalysts remain unchanged by the catalyzed
reactions and can be reused, (IV) biocatalysts are generally highly chemo-, regio-, and
enantioselective, (V) the usage of whole cells as biocatalysts enables cofactor recycling® 2°3!,
However, despite all these advantages, natural enzymes do not always meet the required
demands of industrial applications in terms of harsh environments, such as high temperatures
or the presence of solvents and detergents®> ¥, In addition, to make industrial applications
more efficient, enzymes with a broad substrate spectrum and high product yields are often
preferred®® 3. Modern enzyme technology offers an increasing potential of a wide range of
interdisciplinary processes for designing novel tailor-made enzymes according to human
purposes® (Figure 1). Therefore, a broad variety of research areas contribute to modern
enzyme technology, e.g., microbiology, biochemistry, and bioinformatics. Especially, protein
engineering (section 2.1) has emerged as a useful tool in enzyme technology. The timeliness
of protein engineering can be seen by the award of the Nobel Prize in Chemistry to Frances H.
Arnold for pioneering the use of directed evolution (section 2.1.1) to engineer enzymes in
2018 (Figure 1). However, the most common approach of protein engineering is based on
knowledge-driven strategies (section 2.1.3), where the “knowledge” obtained from
information about the protein structure and / or sequence as well as from computational
predictions is combined with experiments*®®. Nevertheless, as there is a lack of available
experimental large-scale data measured in a uniform way the development and validation of

algorithms for data analysis in knowledge-driven strategies is often unsatisfactory**3,

Here, I applied knowledge-driven strategies to rationalize the impact of enzyme flexibility and
rigidity on protein stability against environmental influences, i.e. protein thermostability and /
or detergent tolerance (section 5, PUBLICATION II**), substrate promiscuity (section 6,
PUBLICATION III*), and expression (section 7, PUBLICATION IV*) using our in-
house Constraint Network Analysis (CNA) software*® (section 2.2.2). CNA is a graph theory-
based rigidity analysis approach for Ilinking a biomolecular structure, flexibility,
(thermo)stability and function. Until now, CNA has been successfully applied to small-scale

data sets of proteins to investigate protein thermostability (section 2.2.2.3). However, CNA
4
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has not been applied to a large-scale data set of protein variants to investigate either protein
thermostability or other protein properties. In this respect, in order to validate my knowledge-
driven strategies based on CNA predictions, I systematically investigated for the first time
large-scale data sets of biotechnologically highly relevant bacterial lipolytic enzymes (section

2.3).
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2 BACKGROUND

2.1 Protein engineering strategies
The following section was taken and adapted from PUBLICATION II*,

Natural enzymes are versatile biocatalysts catalyzing a wide variety of reactions. However,
they do not always meet the required demands of industrial applications in terms of harsh
environments, such as high temperatures or the presence of solvents and detergents®® 32,
Hence, protein engineering has emerged as a useful tool for developing novel tailor-made
enzymes. There are two major strategies for protein engineering: directed evolution and

rational design, both of which can be combined into knowledge-driven strategies (Figure 3)*.

/

Directed evolution

Information available?
Structure and / or sequence

Knowledge-driven Rational design

—— — ‘....3.-,:&.
— [ *;?

Gene shuffling

\

Random mutagenesis

= (Very) large library

Computational techniques
Site saturation mutagenesis

= Small number
of substitution sites

Computational techniques
Site directed mutagenesis

= Small number
of variants

T No /
A 2 No
High-throughput screening

Figure 3: Overview of protein engineering strategies. Selection of protein engineering strategies based on the
availability of protein structure and / or sequence as well as high-throughput screening (HTS) methods. Directed
evolution (left) improves protein functions through iterative cycles of mutagenesis and screening or selection.
Hence, (very) large protein libraries are generated by either random recombination of a set of related sequences,
such as gene shuffling, or random mutagenesis. Rational design (right) applies computational techniques to
predict the effect of specific substitutions, which are introduced by site directed mutagenesis (SDM). This results
in a small number of variants. As an example, a strategy by Rathi et al.*® is shown, where specific substitutions
of Bacillus subtilis lipase A (BsLipA) (section 2.3.4) are rationally predicted and experimentally validated with
respect to increased protein thermostability (section 2.2.2.3.2). By combining the advantages of directed

6
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evolution and rational design, knowledge-driven strategies (middle) lead to a small number of substitution sites.
In PUBLICATION II* I predicted beneficial substitution sites of BsLipA (PDB ID: 1ISP) (section 2.3.4) with
respect to increased protein thermostability and/or detergent tolerance, which are shown as red spheres. The
predicted substitution sites were validated against a complete experimental site saturation mutagenesis (SSM)
library. Figure adapted from Steiner et al.*’.

In the following I will provide an overview about the different protein engineering strategies
and emphasize the advantages of the knowledge-driven strategies, which I applied in

PUBLICATIONS II-IV3 4445,

2.1.1 Directed evolution

Following the principles of natural evolution, albeit on a reduced timescale, protein
engineering by directed evolution (Figure 3) has become an attractive strategy to improve
protein functions through iterative cycles of mutagenesis and screening or selection® 32 4951,
The main advantage of directed evolution is that no information about the protein sequence
and / or structure is needed. Common methods for library generation are based on either
random recombination of a set of related sequences, e.g., gene shuffling, or the introduction of
random mutations in single sequences, e.g., error-prone PCR (epPCR), Sequence Saturation
Mutagenesis (SeSaM), and Phage-Assisted Continuous Evolution (PACE)** . To
successfully investigate (very) large protein libraries, powerful automated techniques for rapid
high-throughput screenings (HTS) were established, such as fluorescence-activated cell
sorting (FACS) or automated liquid handling®> %% 3% 3436 However, the highly labor-intensive
methods can become technically challenging if beneficial mutations need to be accumulated
over generations of mutagenesis and screening or selection to reach a desired effect™. After
all, directed evolution is not good for problems that require multiple, simultaneous, low-
probability events®’. Many examples for the successful application of directed evolution are

d50, 58, 59

provided by Frances H. Arnol , who was honored with the Nobel Prize in Chemistry

for pioneering the use of directed evolution (Figure 3).

2.1.2 Rational design

Alternatively, protein functions can be modified by rational design (Figure 3) based upon the

ability to predict the effect of a specific substitution by numerous computational techniques*”

60. 61 'In contrast to directed evolution, information about the protein structure and / or

sequence is evaluated to propose specific substitutions, which are introduced by site directed

mutagenesis (SDM)%?

(I) Where to substitute?, (II) Which substitution should be introduced?, and (III) How to
7

. Using rational design, the following three questions must be answered:



BACKGROUND

evaluate the effect of the substitution? The main advantage of rational design over directed
evolution is an increased probability of beneficial protein variants and a significant reduction
of the protein library size®®. Thus, this strategy avoids the time- and cost-intensive generation
and screening of large protein libraries, especially, if no HTS is available. An example for the
successful application of rational design is given by a prospective study from Rathi et al.*,
where specific substitutions of BsLipA that lead to increased thermostability are rationally
predicted by the Constraint Network Analysis (CNA) approach (section 2.2.2.3.2). Finally,
the results were experimentally validated with respect to increased protein thermostability.
Despite successful applications in single cases the general reliability of rational design is still
unsatisfactory*® -9, One reason is that multiple attempts to identify key features in protein
sequences and/or structures associated with protein function have failed to paint a clear
picture, which makes it difficult to define rules of universal validity and general

32, 41

applicability . Another reason lies in the data used in the design and evaluation of

computational techniques. For example, the ProTherm database®” ¢ a collection of
thermodynamic data of proteins, contains on average ~12 single, ~12 double, and ~1 multiple
substitution for each of the ~1000 proteins stored®’. Thus, while overall exhaustive, the data
may not include a sufficient number of variants per protein to compensate for outliers and,
therefore, may not allow a stratification of the data to derive a generally applicable set of
rules. As such data, furthermore, originates from different experimental methods, it is not
surprising that different thermodynamic data have been found associated with the same

variant*. In addition, the data is strongly biased towards substitutions to alanine, whereas it is

very limited for some other substitutions®.

2.1.3 Knowledge-driven strategies

As an intermediate, third route recent developments have tended towards knowledge-driven
strategies (Figure 3), which combine the advantages of directed evolution and rational
design®® 47 The “knowledge” generally arises from information about the protein structure
and / or sequence as well as computational techniques*®~*. First, substitution sites with high
potential to yield beneficial protein variants are predicted; second, substitutions are
engineered by SSM or SDM*.. By such knowledge-driven strategies, the challenge of
accurately predicting the effect of a substitution on protein function is circumvented, and
substitution efforts are guided to a few, distinguished sequence positions, making subsequent
combinations feasible. This strategy usually leads to smaller “smart” libraries with a higher

probability of the desired improvement®® "°. However, even with HTS it is difficult to handle
8
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all variants based on combinations of the 20 proteinogenic AAs at more than six substitution
sites (i.e., more than 20° = 6.4 * 107 variants)*> 3% 471 In PUBLICATIONS II-IV3> 44 |
applied knowledge-driven strategies based on CNA (section 2.2.2) to rationalize the impact of

enzyme rigidity and flexibility on different protein properties.
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2.2 Rigidity theory for biomolecules

The following part was taken and adapted from PUBLICATION I’ in which we reviewed
fundamental concepts in rigidity theory, ways to represent biomolecules as constraint
networks, and methodological and algorithmic developments for analysing such networks and

linking the results to biomolecular function. These applications include investigating large

73-75

biomolecules such as the ribosome’?, understanding allostery’*’>, predicting thermodynamic

77, 18

properties’®, assessing the structural stability of complexes , identifying folding cores of

79, 80 81-84

proteins , sampling of biomolecular conformational spaces® ", finding putative binding

22, 86

sites®, and analyzing structural determinants of thermostability . To automate and

improve the efficiency of the analysis, several software packages have been developed®” 8,
including CNA*. In PUBLICATIONS II-IV3% # % we performed rigidity analyses of
proteins in various contexts based on CNA*®. Assuming that proteins follow the same laws of
physics as do mechanical structures, protein and mechanical rigidity are strongly interlinked.

Hence, the basis of rigidity theory will be the focus in the following.

2.2.1 Basic concepts of rigidity theory

2.2.1.1 Constraint counting: Maxwell’s rules for rigidity
Analyzing network rigidity was already of scientific interest in the 19" century when
Maxwell investigated the stability of mechanical structures, e.g., bridges, consisting of struts

(distance constraints) connected by joints (Figure 4)%°.

flexible

A

rigid
l{!1!

Figure 4: Network rigidity of mechanical structures. Schematic representation of a bridge consisting of struts
(distance constraints) connected by joints. (A) In 2D, the triangle is the smallest rigid unit. Hence, if all
constraints are in place, the bridge is isostatically or minimally rigid. (B) Removing one constraint divides the
bridge into two rigid clusters with a flexible region in between. Figure taken and adapted from PUBLICATION

12
Maxwell introduced constraint counting as mean field approach to assign the number of

independent internal degrees of freedom (abbreviated as DOF), called ‘floppy modes’
10
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(abbreviated as F). F determines possible movements of a structure in the d-dimensional
space without violating any of the constraints. For a network with N sites, lacking any

constraints, /' is given by Eq. 1. The latter term denotes the global DOF.
F=dN—-d(d+1)/2 Eq. 1

Maxwell assumed that in a system with independent constraints Nc each constraint removes
one F. This results in the number of F according to Maxwell (abbreviated as Fmxw) given by

Eq. 2.
Fypyw =dN — Ne —d(d +1)/2 Eq. 2

If not all constraints are independent, using Maxwell’s equation will lead to an
underestimation of F. This is corrected for by considering the number of redundant

constraints N;°°. The number of F is thus given by Eq. 3.
F=dN—(N,—N,) —d(d + 1)/2 Eq.3

Redundant constraints introduce stress in the network and do not add to the stability of the
network anymore’'. A network region with redundant constraints is overconstrained or
stressed. 1f the number of constraints and internal DOF is the same, the region is isostatically
or minimally rigid (Figure 4A)°>. A region with fewer constraints than internal DOF is
defined as underconstrained or flexible (Figure 4B). The principles to determine flexibility in

mechanical structures can further be used in proteins.

2.2.1.2 Constraint network representations for proteins

Applying a constraint network representation to proteins reduces its complexity to the
question of connectivity as no geometric details are considered. There are several types of
constraint networks in which atoms are transformed into nodes and (non)covalent bonds into
constraints in between®®. Due to the fact that CNA (section 2.2.2) models a protein as a body-
and-bar network?, in the following, the focus is on this type of constraint network
representation. Alternatively, proteins can be modeled as bond-bending network (also called

bar-and-joint network or molecular framework)’*°> and body-bar-hinge network®® %>

In body-and-bar networks® ¢, atoms are considered as rigid bodies having six DOF, which
are connected by bars. Two rigid bodies have in total 12 DOF. Disregarding the six global

DOF, six bars are needed to lock in the internal DOF and, hence, to model double and peptide
11
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bonds. A single bond is modeled with five constraints, leaving one DOF for the dihedral
rotation. Exemplarily the body-and-bar network representation of propene is shown (Figure

5).

A

—

Figure 5: Body-and-bar network representation of propene. (A) Ball-and-stick representation of propene with
carbon atoms shown in blue and hydrogen atoms shown in light gray. (B) In the body-and-bar network, atoms
are modeled as bodies with six DOF, a single bond as five constraints between two bodies, and a double bond as

six constraints between two bodies. Figure taken and adapted from PUBLICATION 12

Stronger noncovalent interactions, such as hydrogen bonds (including salt bridges) and
hydrophobic interactions, are essential for the stability of proteins and, thus, require accurate
modeling in the constraint network. In contrast, weaker interactions such as van der Waals or
electrostatic forces are not included in the constraint network. In all types of constraint
networks, modeling of different interaction strengths is possible by including a different
number of constraints/bars®® °’. In body-and bar networks, hydrogen bonds are modeled with
five bars, as are covalent bonds, and hydrophobic interactions with two bars*® °% % although

lower and higher numbers of bars have been used for hydrophobic interactions, too®s.

Deciding which noncovalent interactions to include in the network is decisive for an accurate
representation of the flexibility of the system’® . For this, the strength of hydrogen bonds is
evaluated according to Mayos’s hydrogen bond potential energy (Eus)'®. Only hydrogen
bonds with Eus > Ecut, where Ecut represents an energy cutoff (section 2.2.2.1), are included in

the constraint network®” 10!

. Hydrophobic interactions are often included in the constraint
network according to the criterion that the distance between carbon and/or sulfur atoms is less
than the sum of their van der Waals radii (C: 1.7 A, S: 1.8 A) plus a distance cutoff Deut =
0.25 A%, Alternatively, Fox et al’® introduced a parameter to describe the strength of
hydrophobic interactions based on pairwise van der Waals energies derived from the Lennard-
Jones potential of the AMBER parm99 force field!?% 19, Furthermore, it should be taken into

account that the results of the rigidity analyses can be affected by additional factors such as

78, 87, 104 85, 96

, ions'®® small-molecule ligands®> %, and other biomolecules’®. These

12
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methods to represent proteins as constrained networks can now be implemented into
algorithms to be used at a large scale. One common implementation is Laman’s theorem and

the pebble game algorithm.

2.2.1.3 Constraint Counting: Laman’s theorem and pebble game algorithm

For a given constraint network, Eq. 3 yields F in terms of a mean field approximation®. In
1970, Laman’s theorem®® had a major impact in that it allows to determine the DOF locally in
generic (i.e., lacking any special symmetries) 2D constraint networks by applying constraint
counting to all subgraphs within the network. Laman’s theorem reads as follows: A generic
2D network is minimally rigid if and only if the number of constraints is 2N — 3, and every
non-empty subgraph s induced by Ns > 2 sites spans at most 2Ns — 3 constraints. Based on
Laman’s theorem, Hendrickson’' suggested an algorithm that exactly counts the number of F
in a generic 2D network and, hence, is appropriate to decompose it into rigid regions and
flexible links in between. Further developments on this algorithm led to the efficient
combinatorial 2D pebble game algorithm implemented by Thorpe and Jacobs'%. However, its
generalization is not sufficient in higher dimensions, e.g., in the 3D double banana network
(Figure 6)'”. This network has overall 3N — 6 constraints, and none of the subgraphs has
more than 3Ns — 6 constraints connecting Ns sites. Applying the 3D analog of Laman’s
theorem would thus lead to the conclusion that this network is minimally rigid, which is

wrong as there is an implied-hinge joint between the two ‘banana’ subgraphs.

Figure 6: Double banana network. Constraint counting implies that the 3D double banana network is rigid
because it satisfies the 3N — 6 counting condition considering that the nodes have three DOF. However, internal
motion within this network is possible along the implied-hinge joint between the two ‘banana’ subgraphs
(dashed line). Figure taken and adapted from PUBLICATION 12

13
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With the molecular framework conjecture, Tay and Whiteley” proposed that the constraint
counting can be extended to a certain subtype of 3D networks with a molecule-like character,
the bond-bending networks (section 2.2.1.2). Based on this proposition, Jacobs constructed a
3D pebble game algorithm for these networks, the computational time complexity of which is,

92, 101 In

in a worst case scenario, O(N?); in practice, the algorithm runs in linear time
comparison, brute force numerical techniques can give the same result as the pebble game
algorithm, but are generally unfeasible for large systems due to a computational complexity of

O(N3)101.

The pebble game algorithm for bond-bending networks (section 2.2.1.2) has been
implemented in early versions of the Floppy Inclusion and Rigid Substructure Topography
(FIRST) software®”. CNA functions as a front- and back-end to FIRST*® (section 2.2.2). In
2004, Hespenheide et al.’® implemented a 3D pebble game algorithm using a 6N — 6 count
applied on body-and-bar representations of molecules (section 2.2.1.2). In 2008, Lee and
Streinu'% 1% described a family of pebble game algorithms, the (k,/)-pebble games, where £ is
the initial number of pebbles on each node and / is the acceptance condition, that is, the global
degrees of freedom of the system. The original 2D pebble game algorithm of Jacobs and
Hendrickson''® is a (2,3)-pebble game in this terminology'®®. A (6,6)-pebble game
implemented by Fox et al.®® for analyzing body-bar-hinge networks (section 2.2.1.2) is equal
to the 3D pebble game algorithm introduced by Hespenheide et al.*® for analyzing body-and-
bar networks (section 2.2.1.2). Notably, the family of (k,/)-pebble games were proven to be
correct by Katoh and Tanigawa in 2011'!!,

When applying a 3D pebble game algorithm using a 6N — 6 count on a body-and-bar network
(section 2.2.1.2), initially, each node in a network is assigned six pebbles corresponding to the
six DOF in 3D. In order to decompose the network into flexible and rigid regions, the pebble
game algorithm follows two rules'®:
L. Define a constraint between the nodes: If the nodes i and j have at least seven
pebbles in total, place a pebble on the constraint from i to j to define the constraint
in the direction of j (Figures 7A, B, E, F).
I1. Slide a pebble: If there is a defined constraint between i and j and there is a pebble
on j, reverse the direction of the constraint and move the pebble from j to i

(Figures 7C, D).

Exemplarily, a 3D pebble game algorithm using a 6N — 6 count on a body-and-bar network of

a biomolecule (section 2.2.1.2) is shown (Figure 7).
14
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Figure 7: The 3D pebble game algorithm. An exemplary biomolecule is modeled as a body-and-bar network
with four nodes connected by a total of 18 constraints. (A) Five pebbles are first placed on the constraints
between b and ¢ defining all five constraints in the same direction. (B) Then, five pebbles are placed on the
constraints from ¢ to d and from d to a. This leaves six pebbles on a and one pebble on b, ¢, and d, respectively.
(C, D) All single pebbles are now collected on b. (E) There are now six pebbles on a and three pebbles on b; ¢,
and d are empty. Finally, the last three constraints are defined by placing the three pebbles on the constraints
between b and a. (F) Now 18 pebbles are used, and all constraints are defined. The remaining six pebbles on a
represent the six global DOF, demonstrating that this graph is minimally rigid. Figure taken and adapted from

PUBLICATION 1'%,

2.2.2 Constraint Network Analysis

The Constraint Network Analysis (CNA) approach*® was first introduced by Radestock and
Gohlke??> and aims at linking information from rigidity analysis derived from the Floppy
Inclusion and Rigid Substructure Topography (FIRST) software!’ with biomolecular

1.8, was the first

structure, (thermo-)stability, and function. FIRST, developed by Jacobs ef a
implementation of a pebble game algorithm (section 2.2.1.3) together with code for
generating constraint networks for proteins (section 2.2.1.2). CNA functions as a front- and

back-end to FIRST*®,

Going beyond the mere identification of flexible and rigid regions in a biomolecule, CNA

allows for (I) performing constraint dilution simulations (Figure 8A) that consider a

112, 113

temperature dependence of hydrophobic tethers , in addition to that of hydrogen bonds

(section 2.2.2.1), (II) computing a comprehensive set of global and local indices for
15
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quantifying biomolecular stability!® (section 2.2.2.2) (Figure 8B-D), and (III) performing
rigidity analysis on ensembles of network topologies (ENT). For the latter, structural
ensembles obtained from molecular dynamics (MD) simulations and ensembles based on the
concept of fuzzy noncovalent constraints (ENTN)!'* can be used. In short, ENT™C performs
rigidity analyses of biomolecules on ENT generated from a single input structure. Here, the
ENT are based on fuzzy noncovalent constraints, which considers thermal fluctuations of
biomolecules without actually sampling conformations. That way, information on the

influence of a finite temperature on constraint network representations is implicitly included

114,115 104,116

without the need to derive system-specific parameters. As we and others observed,
performing rigidity analysis on ENT instead of single networks greatly improves the
robustness of the results. In PUBLICATIONS II-IV3> #: 45 constraint dilution simulations
(section 2.2.2.1) were performed by CNA either on ENT generated from MD simulations or

on ENTHNC,

0

A

Disorder

3
Ecuf
o
>
s
=
3 >
3 5
(e)]
W 2
v
Residue
=
i ; 3
v ) | B ) &
5 Pem
° .
7] i K
Q RPN
x
Residue

Figure 8: Results of a constraint dilution simulation of hen egg white lysozyme with CNA. (A) In the
constraint dilution simulation, a stepwise decrease in the cutoff energy (Ecu) removes hydrogen bonds from the
constraint network in the order of increasing strength. The colored surfaces represent the rigid clusters, and the
black lines represent the flexible regions of the protein. (B) Degree of disorder along a constraint dilution
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simulation as revealed form the cluster configuration entropy H. The disorder is low when a single rigid cluster
dominates and increases when the cluster falls apart into smaller subclusters of different sizes. (C) The rigidity
index r; characterizes the per-residue stability as it monitors when a residue i segregates from any rigid cluster
during a constraint dilution simulation. A lower 7; value indicates that the residue resides in a region of higher
stability. (D) The stability map rc; represents when a ‘rigid contact’ between two residues of the network (both
residues belong to the same rigid cluster) vanishes during the thermal unfolding simulation (upper triangle); the
neighbor stability map 7¢;j ueighnor considers only the rigid contacts between two residues that are at most 5 A apart
from each other, with values for all other residue pairs colored gray (lower triangle). Note that arrows at axes
labeled with E.y point in the direction of more negative values. A blue (white) color indicates that contacts

between residue pairs are more (less) rigid. Figure taken and adapted from PUBLICATION 12

In order to facilitate the processing of the highly information-rich results obtained from CNA,
the VisualCNA plugin for PyMOL!'!” and the CNA web server''® have been developed. Both
provide user-friendly interfaces around the CNA software for easily setting up CNA runs and

analyzing results.

The CNA software and VisualCNA are available under academic licenses from
https://cpclab.uni-duesseldorf.de/index.php/Software, and the CNA web server is accessible at
https://cpclab.uni-duesseldorf.de/cna/. In PUBLICATIONS II-IV® 4 % constraint dilution

trajectories (section 2.2.2.1) were visually inspected by Visual CNA.

2.2.2.1 Analyzing network states along constraint dilution trajectories

By gradually removing noncovalent constraints from an initial network representation of a
biomolecule, a succession of network states {c} is generated (constraint dilution trajectory).
Analyzing such a trajectory by rigidity analysis reveals a hierarchy of rigidity that reflects the
modular structure of biomolecules in terms of secondary, tertiary, and supertertiary
structure?!- 2% 7% 119120 Tp particular, constraint dilution allows simulating the loss of structural
stability of a biomolecule with increasing temperature'?!> 122, For this, hydrogen bonds are
removed from the constraint network if Eus > Ecuts, where 6 = (7)) is the state of the network
at temperature 7 and Ecutel > Ecuto2 for 71 < T2 (Figure 8A). Hydrophobic interactions are
generally not removed along the constraint dilution trajectory because they remain constant in
strength or become even stronger with increasing 7. Alternatively, a modified method for
accounting for the temperature dependence of hydrophobic interactions has been introduced
that adds more constraints to the network with increasing temperature by linearly increasing
the distance cutoff Dcu!!'?. The hierarchy of rigidity of biomolecules leads to a percolation
behavior that is often more complex than that of network glasses®, and multiple phase
transition points can be identified along the constraint dilution trajectory at which rigid
)0

clusters decompose (Figure 8B)™. The rigidity percolation threshold is then defined as the
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phase transition when the network changes from an overall rigid to an overall flexible state

and thus loses its ability to transmit stress?2.

Phase transitions can be related to the protein's (thermo)stability (section 2.2.2.3). Therefore,
the computed Ect values can be converted to a temperature 7 using the linear equation

introduced by Radestock et al.?* (Eq. 4).

. -20K
" kcal - mol1

Eoye + 300 K Eq. 4

In PUBLICATIONS II-IV3% # %5 we applied Eq. 4 to provide insights into a protein's

(thermo)stability during constraint dilution simulations.

2.2.2.2 Global and local indices for characterizing biomolecular stability
For having maximal advantage from rigidity analysis, the results need to be linked to
biologically relevant characteristics of a structure. For this, CNA computes a comprehensive

set of indices from the constraint dilution trajectory'® (section 2.2.2.1).

Global indices monitor the degree of flexibility and rigidity within constraint networks at the

123

macroscopic level. They include the rigidity order parameter P ~°, which monitors the decay

of the largest rigid cluster, the mean rigid cluster size S'?*, which monitors the decay of all but

the largest rigid cluster'23: 124

, and the cluster configuration entropy H, a Shannon-type
entropy'?® that is a morphological descriptor of the network heterogeneity'?® (Figure 8B)

(section 2.2.2.2.1).

Local indices characterize the network flexibility and rigidity down to the bond level. The
percolation index pi is a local analog to P» and is most suitable to monitor the percolation
behavior of a biomolecule locally'®. The rigidity index 7i is a generalization of pi as it
monitors when a residue segregates from any rigid cluster'® (Figure 8C). Another set of local
indices characterizes correlations of stability between pairs of residues'®. As such, stability
maps rcij are 2D generalizations of 7i*' (Figure 8D) (section 2.2.2.2.2). In addition, CNA
computes unfolding nuclei as structural features from which macroscopic (in)stability
originates?® (section 2.2.2.2.3). These can be used to predict structural weak spots for

improving protein’s stability.
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The following sections focus on the indices that are used in PUBLICATIONS II-IV3% 4445,

For further details about the other global and local indices see ref. '%.

2.2.2.2.1 Cluster configuration entropy
The following part was taken and adapted from PUBLICATION II*,

The cluster configuration entropy Hiype2 1s a global index, which has been introduced by
Radestock and Gohlke??. In PUBLICATIONS II** and III* Hiype2 is used to identify the
phase transition temperature 7p at which a biomolecule switches from a rigid to a floppy state
and the largest cluster stops to dominate the whole network. As long as the largest rigid
cluster dominates the whole protein network, Hiype2 1s low because of the limited number of
possible ways to configure a system with a very large cluster. When the largest rigid cluster
starts to decay or stops to dominate the protein network, Hiype2 jumps. There, the network is in
a partially flexible state with many ways to configure a system consisting of many small
clusters. The percolation behavior of protein networks is usually complex, and multiple phase
transitions can be observed. In order to identify 7}, a double sigmoid fit is applied to an Hiype2

21, 22,48, 112, 127

versus T(Ecut) curve as done previously , and Tp taken as that 7 value associated

with the largest slope of the fit.

2.2.2.2.2 Stability maps
The following part was taken and adapted from PUBLICATIONS II-1V3% 4445,

Since the percolation behavior of a protein network is complex due to the protein’s structural
hierarchy and composition of different modules, it is often challenging to assign a phase
transition with Hiype2. Thus, in PUBLICATIONS II-IV3% 445 in addition to using Hiype2, we
also characterized the hierarchy of rigid and flexible regions of wtBsLipA at a local level by

calculating stability maps.

The stability map rc; is a local index, which has been introduced by Radestock and Gohlke?!.
rcij represents the local stability within a protein structure for all residue pairs at which a rigid
contact ¢ between two residues i and j (represented by their Co atoms) is lost during the
constraint dilution. rc exists if i and j belong to the same rigid cluster ¢ of the set of rigid
clusters CEcut!% Thus, rc; contains information cumulated over all network states along the
constraint dilution trajectory as to which parts of the network are (locally) mechanically stable
at a given o, and which are not'?’. This stability information is not only available in a
qualitative manner but also quantitatively in that each rc; has been associated with Ecu at
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which the rigid contact is lost. The sum over all entries in rc; represents the chemical
potential energy due to noncovalent bonding, obtained from the coarse-grained, residue-wise
network representation of the underlying protein structure. To focus only on the stability of rc
between structurally close residues, rci; was filtered such that only rigid contacts between two
residues that are at most 5 A apart from each other were considered (neighbor stability map
FCijneighbor). As done previously'?’, to suppress the influence of extreme values in the double
summation on the outcome of the unfolding energy, the median neighbor stability map 7c;;,

neighbor can be computed as the median of rcjjneighbor averaged over the ensemble instead.

2.2.2.2.3 Unfolding nuclei
The following part was taken and adapted from PUBLICATION II*.

Unfolding nuclei are represented by residues that percolate from the largest rigid cluster at the
latest phase transition?. If such residues become flexible, it will have a detrimental effect on
protein stability. Fringe residues of the unfolding nuclei percolate from the largest rigid
cluster during earlier steps of the thermal unfolding. In PUBLICATION II*, we follow the
hypothesis that the more structurally stable the fringes of unfolding nuclei are, the more
structurally stable will those unfolding nuclei be. Therefore, if such fringe residues (termed
weak spots) are targeted by substitutions, the likelihood to stabilize the rigid core of a protein
should be high. If two unfolding nuclei were only separated by one residue, this residue was
also considered a weak spot. This procedure of identifying weak spots is in agreement with a

previous study by us®2.

2.2.2.3 Applications of CNA

As in previous studies, monitoring the decay of network rigidity along a constraint dilution
trajectory (section 2.2.2.1) generated by CNA was mainly used to provide insights into
protein’s thermostability. The following sections focus on these applications. Biomolecular
thermostability can have a thermodynamic or kinetic origin'?®. Thermodynamic stability is a
function of the change in free energy between the folded and unfolded state of a protein,
whereas kinetic stability is determined by the height of the free energy barrier on the pathway
of the time-dependent irreversible transition between folded and denatured state!?® !2°, In all
studies reported below, rigidity analysis was used to investigate only the effect of mutations
on the folded state. This was done because rigidity analysis cannot account for the time-

dependency of processes'™, and it is very challenging to generate realistic structural models
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of the unfolded state of a protein'*. Still, applying rigidity analysis that way provides a wide
range of applicability for studying thermostability because increased structural rigidity of the

folded state is in 60% of the cases responsible for increased thermostability*®.

Initially, CNA has been applied to small-scale data sets of pairs of homologous proteins from
psychrophilic to (hyper)thermophilic organisms (section 2.2.2.3.1). Subsequently, series of
protein variants were investigated (section 2.2.2.3.2). However, CNA has not been applied to
a large-scale data set of protein variants to investigate either protein thermostability or
multiple types of protein stability. This is why I rationalize the impact of enzyme rigidity and

flexibility on different protein properties with CNA at large-scale in PUBLICATIONS II-

Iv35, 44,45

2.2.2.3.1 Constraint dilution simulations to investigate protein thermostability

Radestock et al.?!* ?? analyzed protein thermostability of pairs of homologous proteins from
mesophilic and thermophilic organisms using CNA. The authors described the macroscopic
percolation behavior and predicted 7, by monitoring H and P (section 2.2.2.2) during
constraint dilution simulations (section 2.2.2.3.1). The comparison between predicted 7p
values and optimal growth temperatures of the corresponding organisms (7og) revealed that in
two-thirds of the pairs, a higher 7 was predicted for the thermophilic than for the mesophilic
homolog??. At the microscopic level, the authors identified structural features from which a
destabilization originates (abbreviated as weak spots), which is very helpful for guiding
mutation experiments when prospectively engineering thermostability (see below). From both
global and local stability characteristics the authors provided direct evidence for the ‘principle
of corresponding states,” according to which mesophilic/thermophilic homologs have similar
flexibility and rigidity characteristics at the respective Tog?"* ?2. In addition, by monitoring the
local distribution of flexible and rigid regions using rcij (section 2.2.2.2), adaptive mutations
in enzymes were shown to maintain the balance between global (structural) stability, in favor
of overall thermostability, and local flexibility, in favor of activity, at appropriate enzyme
working temperatures; this important information provides guidelines for what (not) to mutate

in prospective studies®.

Extending these study to series of protein variants, Rathi et al.''?

studied the relationship
between structural rigidity and thermostability of citrate synthase (CS) from five different
species with Tog ranging from 37°C to 100°C. CNA was applied to conformational ensembles

generated by MD simulations (section 2.2.2). The authors obtained a good correlation (R? =
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0.88) between predicted 7p and experimental Tog. This finding validates that CNA is able to
quantitatively discriminate between less and more thermostable proteins even within a series
of orthologs. Furthermore, from a local point of view, the study revealed that structural weak
spots predominantly occur at sequence positions with a high mutation ratio. Dick et al.'*!
applied CNA to study the thermal adaptation of 2-deoxy-D-ribose-5-phosphate aldolase
(DERA) originating from psychrophilic to hyperthermophilic organisms (7og = 8 — 100°C).
The comparison between predicted 7, and experimental 7og revealed a very good correlation
(R* = 0.97). Interestingly, the authors identified, and validated by experiment, that interface
stability contributes to thermostability in the dimeric DERA structures from
(hyper)thermophilic organisms. This may be exploited as a design principle when engineering

thermostability in multimeric proteins.

2.2.2.3.2 Prospective application to improve protein thermostability

With the aim to further develop CNA for prospective studies on improving thermostability,
Rathi et al.'?” analyzed the thermodynamic stability of a set of 16 variants of BsLipA. Three
results stood out from this analysis. First, (relative) thermodynamic stability was successfully
predicted for variants that differ by only 3—12 mutations from the wild type structure of
BsLipA (wtBsLipA). Second, a measure for the similarity/dissimilarity of constraint dilution
pathways of variants was introduced for explaining false thermostability predictions. Third,
7Cijneighbor Was introduced as a new local measure for predicting thermodynamic stability
(section 2.2.2.2.2). Additionally, the recently developed ENTNC approach!!'* (section 2.2.2)
was used for robust rigidity analysis, which makes it unnecessary to perform computationally

demanding MD simulations for each variant.

In a subsequent prospective study, Rathi et al*® described a strategy to predict AA
substitutions optimal for thermostability improvement; the predictions were experimentally
validated. The strategy combines a structural ensemble-based weak spot prediction of
wtBsLipA by CNA, filtering of weak spots according to sequence conservation,
computational SSM, assessment of variant structures with respect to their structural quality,
and screening of the variants for increased structural rigidity by ENT™NC-based CNA (section
2.2.2). The strategy was applied to predict single-point variants of BsLipA and yielded a
success rate of 25% (60% when mutations from small-to-large residues and those in the active

site were excluded) with respect to experimentally validated mutations that lead to increased
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thermostability. Notably, an increase in thermostability by 6.6 °C compared to wtBsLipA due

to a single mutation was found.

As the prospective studies from Rathi et al*® 127 show that BsLipA is suitable as model
enzyme with respect to improving protein’s thermostability based on CNA, I used BsLipA for

retrospective studies in PUBLICATIONS II** and TV
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2.3 Bacterial lipolytic enzymes as model enzymes

This section focuses on bacterial lipolytic enzymes that are used as model enzymes in
PUBLICATIONS II-IV?> 4 4 Based on their classification (section 2.3.1), structure
(section 2.3.2), and industrial applications (section 2.3.3) insights will be provided into why
they stand out in comparison to other enzymes. In particular, BsLipA (section 2.3.4), the

model enzyme used in PUBLICATIONS I1* and IV?®, will be described in more detail.

2.3.1 Classification of bacterial lipolytic enzymes

According to the Enzyme Commission (EC) bacterial lipolytic enzymes belong to
hydrolases (EC 3) (Figure 9A) that irreversibly catalyze the cleavage of chemical bonds by
addition of water under physiological conditions'*?. As the homeostasis of biomolecules,
e.g., polysaccharides, DNA, proteins, and lipids, is essential for every living organism,
hydrolases are ubiquitous in all three domains of life'*2. Bacterial lipolytic enzymes include
carboxylesterases (EC 3.1.1.1; abbreviated as esterases/ESTs) and triacylglycerol hydrolases
(EC 3.1.1.3; abbreviated as ‘true’ lipases/LIPs) (Figure 9A), both of which I studied
extensively in PUBLICATIONS II-IV3% % 45 ESTs hydrolyze solutions of water-soluble
short acyl chain esters with < 10 carbon atoms and are mostly inactive against water-insoluble
long chain triacylglycerols with > 10 carbon atoms, which, in turn, are specifically hydrolyzed
by LIPs (Figure 9B)'3*'37. Besides hydrolysis, other common reaction types are

(trans/inter)esterification, alcoholysis, acidolysis, and aminolysis'®.

A EC 3: Hydrolases

EC 3.1: Esterases

EC 3.1.1.1: Carboxylesterases (ESTs) Bacterial
. lipolytic
EC 3.1.1.3: Triacylglycerol hydrolases (LIPs) | cnzymes

B oo X
HQC_O 0 R1 HgC_OH HO o R1

S up | Py
HC—-O o R, + 3H,0 HC—-OH + HO o Rz
H2C_OAR3 HQC_OH HO)'\R:;

Figure 9: Classification of bacterial lipolytic enzymes according to the Enzyme Commission (EC) and
lipase-catalyzed hydrolysis and esterification of triacylglycerol. (A) Hydrolases (EC 3) include
carboxylesterases (EC 3.1.1.1; abbreviated as esterases/ESTs) and triacylglycerol hydrolases (EC 3.1.1.3;
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abbreviated as ‘true’ lipases/LIPs). Together they are called ‘bacterial lipolytic enzymes’. (B) LIPs hydrolyze
triacylglycerol to form glycerol and long-chain fatty acids. The reverse reaction can also be carried out by
esterification. The hydrocarbon chains are represented as R;-R;. Figure taken and adapted from Jaeger et al.'®’.

Originally, LIPs were distinguished from ESTs based on kinetic terms of the phenomenon of
interfacial activation at oil-water interfaces!*. This phenomenon describes the activation of
LIPs at high substrate concentrations beyond the critical micelle concentration (CMC). Hence,
in contrast to ESTs, as the catalytic reaction of LIPs is not taking place in a homogenous
phase, the classical Michaelis-Menten kinetic cannot be applied for LIPs'*% ' Instead,
reaction kinetics of some LIPs follow sigmoid curves'*’. By determining the first three-
dimensional structures of the fungal lipase from Rhizomucor miehi'*' and the human pancreas
lipase!*?, a flexible, amphipathic active site-covering a-helix, the so-called ‘lid’, was
discovered, and a molecular explanation for interfacial activation was found. In short, upon
interaction with the oil-water interface, the lid attains an ‘open’ conformation by structural
changes resulting in the displacement of the lid from the active site!*> 13% 43, Finally, the
hydrophobic surface area surrounding the active site increases and the substrate can freely
diffuse into the active site'3> '**. However, due to the discovery of LIPs that show no
correlation between their activity and neither interfacial activation nor the presence of a lid,
both criteria were not able to appropriately distinguish ESTs and LIPs'3% 145-148 Sych

exception is BsLipA, the model enzyme used in PUBLICATIONS II** and IV?, that does

not possess a lid, and, hence, shows no interfacial activation'*® 14 (section 2.3.4.2).

Due to the considerable increase of structural knowledge of bacterial lipolytic enzymes
through the elucidation of many gene sequences and the resolution of numerous crystal
structures (section 2.3.2), today’s most commonly used classification is based on
phylogenetic criteria, conserved sequence motifs, and biological functions!3? 139152 Initially,

0

Arpigny and Jaeger'>® classified 53 known bacterial lipolytic enzymes into eight families

(Festip), F1to Fvi. Later, numerous novel enzymes were added to these families and the

132, 151, 152" This classification

classification was extended by eleven families, Fix to Fxix
simplifies the assignment of newly discovered bacterial lipolytic enzymes to the respective
family'*. Furthermore, biochemical properties of some bacterial lipolytic enzymes were
correlated with the nature of the often extremophilic microorganism from which the
respective enzyme was isolated'*?. This allows the identification of Festiie with novel
biocatalysts for industrial applications (section 2.3.3). In addition, the classification enables
us to predict important structural features, e.g., the identification of active sites, and secretion

mechanism.
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The model enzyme BsLipA used in PUBLICATIONS II** and IV* was found in the largest
Festuip, Fi, combining ‘true lipases’ in eight subfamilies, F1.1 to Fi.8'3% 14152, BsLipA belongs
to F14, the subfamily representing the smallest triacylglycerol LIPs with molecular weights
(MW) of about 20 kDa'* 39, Especially in F14, several LIPs of the Gram-positive genus
Bacillus, e.g., B. licheniformis, B. subtilis, and B. pumilis, were identified'>2. In comparison to
the conserved pentapeptide sequence Gly-X-Ser-X-Gly, where X denotes any AA, LIPs of
F14 contain an Ala at the first position. Furthermore, these LIPs reach the maximum activity at

pH 10.0-11.5"3. BsLipA will be described later in more detail (section 2.3.4).

Furthermore, the large-scale data set used in PUBLICATION III*® contains ESTs that are
mainly assigned to Fiv, the hormone-sensitive lipase (HSL) family. Fiv consists of several
ESTs from distantly related prokaryotes including psychrophilic to thermophilic bacteria!®2,

Most ESTs of Fiv show a striking AA sequence similarity to the mammalian HSL!>*,

2.3.2 Structural insights into bacterial lipolytic enzymes

The importance of lipolytic enzymes can be seen by the collection of 4257 LIPs and 3121
ESTs in BRENDA (BRaunschweig ENzyme DAtabase)!>> 16, Considering that among them
only 350 LIPs and 273 ESTs are linked to primary literature shows that the majority of
lipolytic enzymes have not been experimentally studied yet'*?. The analysis of lipolytic
enzymes into taxonomic groups revealed that they are conserved among all three domains of

life and mostly originate from microorganism!*2,

Most of the bacterial lipolytic enzymes have a canonical o/B-hydrolase fold (Figure 10) with
the conserved pentapeptide sequence Gly-X-Ser-X-Gly, where X denotes any AA!3% 157,
Moreover, a second large structural family of bacterial lipolytic enzymes shows a canonical
o/P/a-hydrolase fold with a conserved active site motif Gly-Asp-Ser-Leu and only few
bacterial lipolytic enzymes with a B-lactamase-like fold were found'*? 3% 15 This section

focuses on the canonical o/B-hydrolase fold because most of the bacterial lipolytic enzymes in

PUBLICATIONS II-IV3* 445 have this fold.

The canonical o/p — hydrolase fold consists of a central B-sheet with eight B-strands (B1-p8),
flanked by six a-helixes (aA-oF)!*" 1% (Figure 10).
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Figure 10: Schematic drawing of the a/f-hydrolase fold. Secondary structure topology of bacterial lipolytic
enzymes showing an o/B-hydrolase fold with a-helices colored in dark blue (0A-oF) and B-strands (B1- B8)
colored in orange. Broken lines indicate loops with variable lengths. The catalytic triad of Ser, Asp/Glu and His
are shown as dots. Figure taken and adapted from Ollis et al.'"’.

The B-sheet shows a parallel orientation, with the exception of the antiparallel orientated [2-
strand. As the globular scaffold of this folding pattern is characterized by an extraordinary
plasticity structural elements and even domains, e.g., the lid or cap, can be inserted into the
loops connecting B-strands and o-helixes without disturbing the fold itself'3% 16!: 162 Besides
the folding pattern, the active site is conserved, formed by a catalytic triad consisting of His,
Ser and Asp/Glu'>” 193185 The nucleophilic Ser is located at the C-terminus of the B5-strand
and part of the conserved pentapeptide sequence Gly-X-Ser-X-Gly, where X denotes any AA.
This highly conserved pentapeptide forms a very sharp y-turn called the ‘nucleophilic
elbow’!%’. Therefore, the nucleophilic Ser adopts energetically unfavorable backbone dihedral
angles that lead to a surface-exposed position of the catalytic residue. The acidic residue
Asp/Glu and His are situated in loop regions after the B7- and p8-strand'>’. The catalytic
mechanism of lipolytic enzymes is essentially the same and comprises two steps based on the
catalytic triad'>” 1%, Although most of the bacterial lipolytic enzymes show a canonical a/p-
hydrolase fold, identifying the catalytic triad is not trivial. In PUBLICATION IV?3, we used
structural knowledge together with the abovementioned classification (section 2.3.1) to

unambiguously identify the active sites of the investigated bacterial lipolytic enzymes.

2.3.3 Industrial applications of bacterial lipolytic enzymes

Bacterial lipolytic enzymes constitute one of the most important and widely used classes of
biocatalysts in the global industrial enzymes market. They are well established in many
industrial applications for daily products, such as flavor development in the food industry,

pitch control in the paper and pulp industry, as detergent additives in the laundry industry, and
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for developing antibiotics as well as anti-inflammatory drugs in the pharmaceutical industry

135, 137, 166-169 (Figure 11)
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Figure 11: Industrial applications of bacterial lipolytic enzymes. Bacterial lipolytic enzymes are well
established in many industrial applications for daily products.

The increasing demand for bacterial lipolytic enzymes is due to the fact that they are widely
distributed in nature within microbial communities (at least one lipolytic enzyme is found in
each bacterial genome) 3% 3% 44.152.170.171 ‘They have been extensively examined with state-of-
the-art (meta)genomics techniques and investigated by functional screenings compared to
many other enzyme classes, and they exhibit high regio-, enantio-, and stereo-selectivity** *>
44, 152, 170. 171 T addition, most of the bacterial lipolytic enzymes do not require chaperons or
cofactors and possess outstanding properties in terms of stability, promiscuity, reactivity, and
scalability®* 3% 4% 152, 170. 171 "Tndeed, bacterial lipolytic enzymes are stable under harsh
conditions, e.g., high temperatures, broad pH ranges, and the presence of detergents or ionic
solvents** 172174 - Another reason for the increasing demand of bacterial lipolytic enzymes in
industrial applications is their substrate promiscuity. Their broad substrate spectra means that
the production of multiple enzymes, which are specific to only a subset of substrates, is
unneccessary>®. Indeed, the market is dominated by highly versatile commercially available
preparations such as the promiscuous Novozym 435 (N435), an immobilized preparation of

lipase B from Candida antarctica (CalB), supplied by Novozymes'’® 17>, As the scope of their
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catalyzed reactions in industrial applications is enormous, their heterologous and homologous
production in large-scale fermentation processes becomes more and more attractive® '7°.
Therefore, expression hosts with highly efficient secretion systems and high product yields
are required. One example is B. subtilis that produces and secretes proteins in amounts of up
to 25 g/l under optimal conditions®> 17 177 (section 2.3.4.1). To achieve even more efficient
secretion systems and high product yields for industrial applications, comprehensive
optimization strategies at different stages of protein production and secretion have been

developed®> 178179,

2.3.4 Bacillus subtilis lipase A as model enzyme

2.3.4.1 The expression host Bacillus subtilis

The Gram-positive, aerobic, and spore-forming soil bacterium B. subtilis is one of the most
important expression hosts for the production of homologous and heterologous proteins,
especially in large-scale fermentation processes®”. The characteristics of B. subtilis have been
intensely studied over many years and, as a consequence, it was established as ‘microbial cell
factory’!7¢!”8, This is due to its known genome sequence'® followed up by genome wide

gene function analysis studies'®!, its adaptability to continuously changing environments'®*

184 its consideration as generally recognized as safe (GRAS) organism by the Food and Drug
Administration (FDA), and its highly efficient secretion system with product yields of up to
25 g/1'7% 77 In contrast to the well-known Gram-negative bacterium Escherichia coli (E.
coli), B. subtilis lacks an outer cell membrane (OM), which contains lipopolysaccharides
(LPS) representing endotoxins and are pyrogenic in humans and other mammals'®’.
Additionally, E. coli is found in the human intestinal flora already in infants'3¢-13% Moreover,
in contrast to E. coli, B. subtilis secretes proteins directly into the extracellular medium'®’.
From this follows that secreted proteins are naturally separated from cell
components,simplifying downstream processing and enzyme production as well as preventing

the formation of inclusion bodies'® 19,

The majority of secretory proteins in B. subtilis are targeted to the Sec translocon and
translocated via the cotranslational Sec-SRP pathway!”!. Alternatively, proteins can be
secreted via the posttranslational Sec-SRP pathway, the twin-arginine translocation (Tat)
pathway!®> 1 and several ATP-binding cassette (ABC) pathways'®> 4. BsLipA used as
model enzyme in PUBLICATIONS II** and IV?® follows the cotranslational Sec-SRP
pathway>>.
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2.3.4.2 Structural insights into Bacillus subtilis lipase A

With a MW of 19.34 kDa and 181 AAs BsLipA, the model enzyme wused in
PUBLICATIONS II* and IV, is one of the smallest known ‘true’ LIPs'* (section 2.3.1).
The characteristic folding pattern of BsLipA is called minimal o/B-hydrolase fold'®. In
comparison to the common o/B-hydrolase fold (section 2.3.2) BsLipA has no B1- and B2-
strand and the aD-helix is replaced by a 310-helix (Figure 12). With the help of a multiple
sequence alignment of various microbial lipases, the residues of the catalytic triad were
identified as Ser77, Asp133 and His156'*. The first residue of the common lipase consensus
sequence Gly-X-Ser-X-Gly, where X denotes any AA, is replaced by Ala75'*% 5%, Backbone
amide groups of Ilel2 and Met78 form the oxyanion hole that stabilizes the negatively
charged transition state'®. Like several other ‘true’ LIPs, e.g. LIPs from Pseudomonas
aeruginosa'” and Pseudomonas glumae'®, the active site of BsLipA is not covered by a lid

and, therefore, BsLipA does not show interfacial activation at oil-water interfaces!*.

A Ser Asp Hi

s

N C

B4 oA B3 aB PB5 aC p6 oD PB7 aE B8 aF

Figure 12: Minimal a/B-hydrolase fold of BSLipA (PDB code: 1ISP). (A) Secondary structure topology and
(B) three-dimensional cartoon-representation of BsLipA with a-helices colored in dark blue, 31o-helices colored
in light blue, and fB-strands colored in orange. The catalytic triad of BsLipA consists of Ser77, Asp133, and
His156 shown as (A) dots and (B) stick representation. Figure taken and adapted from van Pouderoyen et al.'®.
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3 SCOPE OF THE THESIS

Nowadays, enzymes are becoming ever more ubiquitous in our daily lives because of their
diverse applications such as in the food, detergent, and medical or pharmaceutical industries®.
However, they do not always meet the required demands of industrial applications in terms of
harsh environments, such as high temperatures or the presence of solvents and detergents®? >,
In addition, to make industrial applications more efficient, enzymes with a broad substrate
spectrum and high product yields are preferred*” *>. Modern enzyme technology offers an
increasing potential of a wide range of interdisciplinary processes for designing novel tailor-
made enzymes according to human purposes®. Especially, protein engineering has emerged as
a useful tool for developing novel tailor-made enzymes with improved properties (section
2.1). However, most common are knowledge-driven strategies (section 2.1.3), where the
“knowledge” from information about the protein structure and / or sequence as well as
computational techniques is combined with experiments*®3°. However, as there is a lack of
available experimental large-scale data measured in a uniform way the development and

validation of algorithms for knowledge-driven strategies remain often unsatisfactory*®-*,

To address this issue, here, for the first time, I rationalized the impact of enzyme flexibility

and rigidity on

I. protein thermostability and / or detergent tolerance (section 5, PUBLICATION I1%),
Il. substrate promiscuity (section 6, PUBLICATION III*),
lll. and expression (section 7, PUBLICATION IV*)

using our in-house Constraint Network Analysis (CNA) software (section 2.2.2) at large-scale
for biotechnologically highly relevant bacterial lipolytic enzymes (section 2.3). This was done
with the aim to define the scope and limitations of biomolecular flexibility predictions in

knowledge-driven strategies for protein engineering.

The three tasks are related to increasing complexity in that, in the first, the solvent impact on
protein thermostability is investigated, in the second, the impact of molecular recognition in
the context of protein-substrate binding is scrutinized, and, in the third, the impact of protein

production and secretion in a cellular context is analyzed.
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4 PUBLICATIONI

Rigidity theory for biomolecules: concepts, software, and

applications

Hermans, S.M.A., Pfleger, C., Nutschel, C., Hanke, C.A., Gohlke, H.

WIREs Comput Mol Sci. 2017, 7, e1311.

Review, see pages 56-86 (Contribution: 20 %).

This publication was used to explain the basis of rigidity theory (section 2.2).
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S PUBLICATION 11

Systematically scrutinizing the impact of substitution sites on
thermostability and detergent tolerance for Bacillus subtilis

lipase A

Nutschel, C., Fulton, A., Zimmermann, O., Schwaneberg, U., Jaeger, K.-E., Gohlke, H.

J Chem Inf Model. 2020, 60, 3, 1568-1584.

Original publication, see pages 87-131 (Contribution: 60 %).

5.1 Background

Improving a protein’s (thermo-)stability?! 2% 48 112, 120, 127, 131, 196

or tolerance against

174, 197-203 173, 204, 205 has

solvents and detergents become of utmost importance in protein
engineering (section 2.1). There are three general approaches for protein engineering:
Rational design, directed evolution and knowledge-driven strategies (section 2.1.3). Recent
developments have tended towards knowledge-driven strategies, where available knowledge
about the protein is used to identify substitution sites with a high potential to yield protein
variants with improved stability and, subsequently, substitutions are engineered by

mutagenesis studies®® 4!

. However, the development and validation of algorithms for
knowledge-driven strategies has been hampered by the lack of availability of large-scale data
measured in a uniform way and being unbiased with respect to substitution types and

locations***,

Here, with the objective to implement new guidelines for time- and cost-efficient protein
engineering following a knowledge-driven strategy based on CNA* (section 2.2.2), we
scrutinized the impact of substitution sites on two types of protein stability for one protein at
very large-scale. To do so, I systematically analyzed a complete experimental SSM library of
the model enzyme BsLipA (section 2.3.4), which was evaluated as to thermostability (750)
and detergent tolerance (D). Considering the screening results of the SSM library is important
in view of the challenges of multi-dimensional property optimization of modern biocatalysts
(section 2.1). The measured 750 and D values provide valuable reference data for future

analyses because, in contrast to other data sources****, the different types of protein stability
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were measured under respectively uniform conditions, such that there is no bias towards any
particular substitution type or site. We set out to identify consistently defined /ot spot classes

for evaluating the performance of CNA.

5.2 Results and Discussion

The BsLipA SSM library contained 750 as well as D data towards four detergents for all 3439
theoretically possible single variants (181 substitution sites of BsLipA x 19 naturally
occurring AAs). Across the SSM library, the likelihoods to find variants with significantly
increased 750 (~12%) or D towards one detergent (~14%) are almost identical and small.

Exemplarily, the distribution of 750 changes in BsLipA variants is shown below (Figure 13).
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Figure 13: Distribution of BsLipA variants’ changes in 75. Distribution of BsLipA variants’ changes in Tso
(ATs0) compared to wtBsLipA (ATso = 0). Variants with ATso lower than the experimental uncertainty (standard
deviation o7 for the respective variant) were excluded from further analyses (grey). The insets show the numbers

of variants, which cause a significant in- or decrease in 7. Figure was taken and adapted from PUBLICATION
| 1 G

The finding that the overwhelming number of single AA substitutions introduced by random
mutagenesis causes a destabilizing effect is in agreement with previous studies*"> 2°6-2%, The
identified largest increases in 750 of 7.7 K and D of 2.4 demonstrate that considerable
improvements of protein stability can already be achieved by single AA substitutions. Hence,
beyond the single 750 and D data, due to the completeness of our library and the model
character of our protein, our results also constitute unbiased reference data as to what
efficiency can be expected for a protein system when optimizing thermostability or detergent

tolerance by random mutagenesis.

In the context of knowledge-driven protein engineering, I identified substitution sites for
which variants yield significantly increased 750 or / and D. At most, and without considering

the magnitude of the increase, only about one third or below of all BsLipA residues constitute
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such favorable substitution sites if 750 and D are considered separately, demonstrating that the
location of a residue within a protein structure matters with respect to a substitution effect. In
addition, I revealed for such substitution sites a significant and fair correlation between the
frequency of 750 or / and D-increasing substitutions and the magnitude of the maximum
effect. Together, these results show that addressing all substitution sites in an unbiased
manner by random mutagenesis results in a considerable experimental effort coupled to low
efficiency. In turn, identifying a priori substitution sites with a high likelihood for
significantly increased 750 or D will also be beneficial with respect to the magnitude of effects

that can be achieved there by substitutions.

This conclusion also holds if more than one type of protein stability is considered at a time.
As such, I showed that at eleven substitution sites a ~4.6-fold higher likelihood to find for
each detergent variants with significantly increased D compared to random mutagenesis is
found. Additionally, seven substitution sites yield a ~3.4-fold higher likelihood to find
significantly increased 750 and a ~4.7-fold higher likelihood to obtain for each detergent
variants with significantly increased D compared to random mutagenesis. Hence, approaches
that can identify substitution sites with a high likelihood for significantly increased 750 should
also be beneficial for identifying substitution sites with a high likelihood for significantly
increased D, or vice versa. This is an important finding for practical applications as many
more algorithms have been developed to preferably address thermostability rather than

detergent tolerance.

As another set of reference data, I defined hot spot classes from the previously identified
substitution sites to provide benchmark data for evaluating the performance of CNA (section
2.2.2). The first five classes follow the strict criterion that only the six substitution sites with
the respective highest maximum effects of 750 (abbreviated as ATs0; max) or D (abbreviated as
ADmax) are considered (Figure 14A). Accordingly, all combinations of the 20 proteinogenic
AAs at such sites could still be experimentally tested®? ***% 7!, The intersections between the
classes comprising the substitution sites with the broadest impact on ADmax, or AT50; max and
ADmax, are empty (Figure 14A). Thus, I defined two additional classes with the somewhat
relaxed criterion that the comprised substitution sites show significantly increased D towards
each detergent, or significantly increased 750 and D towards each detergent, regardless of the

magnitude of the single effect (Figure 14B).

35



PUBLICATION II

Figure 14: Overview of hot spot classes. (A) Five hot spot classes follow the strict criterion that only the six
substitution sites with the respective highest maximum effects of 75y (abbreviated as AT’so, max) Oor D (abbreviated
as ADnay) are considered (shaded areas). The intersections comprising the substitution sites with the broadest
impact on ADmax, o AT50, max and ADmax, are empty (areas with crosses). (B) Two hot spot classes with
substitution sites showing significantly increased D towards each detergent (orange area numbered as I), or
significantly increased 750 and D towards each detergent (orange area numbered as II), regardless of the
magnitude of the single effect.

I used the complete, unbiased, and uniformly generated 750 and D data to probe if universal
rules for protein engineering can be established. I thereby focused on using “one-
dimensional” descriptors in terms of location in secondary structure elements, degree of
burial, physicochemical properties, and conservation degree of substituted AA. Notably,
considering my descriptors, many (up to 98 substitution sites) predicted hot spots result,
which would require considerable experimental efforts particularly if beneficial substitutions
need to be accumulated to reach a desired effect. This finding demonstrates on a single
protein level that, with the use of these descriptors, no universal and sufficiently
discriminating rule(s) can be identified, a finding that is mirrored in other studies across

210.211 and with respect to low successes in assessing thermostabilities?!2. Still,

protein families
if a higher number of predicted kot spots is acceptable, partially solvent-exposed residues are
good hot spot candidates, whereas loop positions show mostly destabilizing effects. In
addition, hot spots were preferentially found at both non-conserved and semi-conserved
position. This finding may help refining future consensus concepts where multiple sequence

alignments are used to preferentially substitute non-consensus residues by consensus ones.

Finally, I made use of the reference data to unequivocally benchmark CNA with respect to
predicting hot spots as structural weak spots of the protein. With this respect, a constraint
dilution simulation of wtBsLipA was carried out with CNA on ENT generated from MD
simulations (section 2.2.2) to predict major phase transitions at which the network switches

from overall rigid to flexible states (Figure 15).
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Figure 15: Prediction of the constraint dilution pathway of wtBsLipA. Constraint dilution pathway of
wtBsLipA (PDB ID: 1ISP) showing the early (T1 — T2) and late (T3 — T5) phase transitions. CNA was carried
out on ENT of wtBsLipA generated by MD simulations. Rigid clusters are represented as uniformly colored
blue, green, magenta, and cyan bodies in the descending order of their sizes. Figure was taken and adapted from
PUBLICATION II*,

From the constraint dilution pathway of wtBsLipA, five major phase transitions, T1 — T5,
were predicted based on the global index Hiype2 (section 2.2.2.2.1) (Figure 15). In addition to
using Hiype2, we also characterized the hierarchy of rigid and flexible regions of wtBsLipA at a
local level by computing rcijneighvor (s€ction 2.2.2.2.2). rcijneighbor demonstrates that the rigid
contacts between neighboring residues are stronger at the N-terminus than at the C-terminus
along the contraint dilution simulation, i.e., the C-terminus of wtBsLipA starts to unfold first.
We confirmed the unfolding pathway of wtBsLipA predicted by CNA with the independent
Markov Chain Monte Carlo (MCMC)-based Protein Folding and Aggregation Simulator
(ProFASi) approach?!: 214,

Finally, from a practical point of view, it is relevant that CNA predicted only ten weak spots

(Figure 16), allowing to focus subsequent substitution efforts on only ~6% of the protein
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residues. Furthermore, the gain in precision over random classification is between ~3 and ~9,
depending on the hot spot class. These results indicate that applying CNA-based weak spot
predictions before attempting experimental engineering is beneficial, in particular if the

number of substitution sites that can be dealt with in experiment is low.

Figure 16: Localization of CNA-predicted weak spots of wtBsLipA. Ten weak spots were predicted by CNA
on ENT of wtBsLipA (PDB ID: 1ISP) generated from MD simulations (red spheres). Figure was taken and
adapted from PUBLICATION II*,

5.3 Conclusion and Significance

In this study, for the first time, we performed a systematic large-scale analysis of a complete
experimental SSM library of BsLipA to scrutinize the impact of substitution sites on two

types of protein stability with CNA.
The principle results of this study are:

e The SSM library provides systematic and unbiased reference data at unprecedented
scale for engineering BsLipA towards improved 750 or / and D.

e The identification of consistently defined Aot spot types enables the evaluation of the
performance of knowledge-driven strategies.

e CNA yields hot spot predictions with an up to 9-fold gain in precision over random

classification.

The results suggest that knowledge-driven strategies based on CNA could be used prior to

experiments when seeking to optimize enzymes’ thermostability and detergent tolerance.
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6 PUBLICATION III

Promiscuous esterases counterintuitively are less flexible than

specific ones

Nutschel, C., Coscolin, C., Mulnaes, D., David, B., Ferrer, M., Jaeger K.-E., Gohlke, H.

J Chem Inf Model. 2020, DOI: 10.1021/acs.jcim.1c00152.

Original publication, see pages 132-200 (Contribution: 60 %).

6.1 Background

The universe of promiscuous activities available in nature has been suggested to be
enormous?!> 216, Understanding mechanisms of promiscuity thus has become increasingly
important both from a fundamental and an application point of view?'” 2!¥. As to enzyme
structural dynamics, more promiscuous enzymes generally have been recognized to also be

more flexible!?323-25. 219

. However, examples for the opposite have received much less
attention, although conformational changes may have been selected in evolution for their

ability to enhance recognition specificity®’.

In this study, we exploit previously described comprehensive experimental information on the
substrate promiscuity (PestLie) of 147 ESTs/LIPs tested against a customized library of
dissimilar esters®*. Here, PestLip means that an EST/LIP carries out its typical catalytic
function on non-canonical substrates, in that experimental conditions had been kept constant
for the assessment of the different enzyme/ester combinations. I used computationally
efficient rigidity analyses based on CNA (section 2.2.2) to understand the structural origin of

and to predict Pest/Lip.

6.2 Results and Discussion

The present study builds on one of the still few experimental large-scale datasets on enzyme
promiscuity generated by Ferrer et al.3*. The authors experimentally investigated PestLip of
147 ESTs/LIPs (termed experimental data set) against 96 esters. Additionally, they ranked
(classified) PestLie of 96 ESTs/LIPs (termed volume data set) based on a newly introduced

structural parameter, the active site effective volume (Voletr), which will be used here as a
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reference to compare the power of PestLip predictions based on CNA (section 2.2.2). As our
computational approach involves extensive MD simulations for generating large
conformational ensembles, I selected 35 ESTs/LIPs from the volume data set (termed
flexibility data set) based on the following criteria (Figure 17): 1.) The data set contains
ESTs/LIPs with known and unknown crystal structures. That way, we probe to what extent
the source of structural information influences the outcome of our results. II.) The chosen
ESTs/LIPs of the data set show high diversities as to PestLip and association to ESTs/LIPs
families (FestLip, as defined by Arpigny and Jaeger'*"), similar to those found for the volume
data set. 1I1) Only ESTs/LIPs with AA sequence identities > 25% in comparison to any
existing crystal structure were considered in order to ensure a sufficient quality of generated
comparative models. Finally, in order to uniformly depict the results across the present study,
six EHs were selected as representatives of the flexibility data set based on Pgest/Lip (termed
representative data set): ESTs/LIPs with the lowest (EST/LIP115) or highest PgstLip
(EST/LIP001) and known crystal structures, ESTs/LIPs with the lowest (EST/LIP127) or the
highest PestLir (EST/LIP00S) and unknown crystal structures, and commercial ESTs/LIPs
with the lowest (CalA) or highest PestLip (CalB).
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Figure 17: Comparative modeling of ESTs/LIPs. Based on sequence data provided by a large-scale study
from Ferrer et al’*, comparative models were generated for 35 ESTs/LIPs with known (left, 11 ESTs/LIPs) and
unknown (right, 24 ESTs/LIPs) crystal structures using TopModel??°, These ESTs/LIPs constitute the flexibility
data set. The ESTs/LIPs vary in Pestup (left ordinate, bars) and global TopScores?! (right ordinate, diamonds).
Six ESTs/LIPs were selected as representatives of the flexibility data set (termed representative data set) as
indicated by magenta arrows. Figure was taken and adapted from PUBLICATION III*,

Comparative models of the flexibility data set were generated using our in-house structure
prediction meta-tool TopModel??°. TopModel uses multiple state-of-the-art threading and

sequence/structure alignment tools to generate a large ensemble of models from different
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pairwise and multiple alignments of the top five highest ranked template structures. The
quality of the comparative models of the flexibility data set was assessed with TopScore??!, a
meta Model Quality Assessment Program (meta-MQAP). TopScore uses deep neural
networks (DNN) to combine scores from 15 different primary MQAP to predict accurate
residue-wise and whole-protein error estimates. The models showed both an overall and
residue-wise good structural quality. Additionally, we validated that catalytically active

residues (CARs) in all models are accessible for substrates according to CAVER results

Previous studies indicated that enzyme flexibility influences the substrate promiscuity of
enzymes>>2> 21 In order to investigate if the global flexibility of the EHs influences PestiLip,
I applied CNA to the flexibility data set and predicted Tp, the phase transition temperature
previously applied as a measure of structural stability of a protein (section 2.2.2.3). A good
and significant correlation between 7, and PestiLie was found for the flexibility data set (R* =
0.60, p = 5.4*10°®) (Figure 18). These findings demonstrate that promiscuous ESTs/LIPs are
globally less flexible.

365
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p=54*10%
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Lo _ Known cryst, str. selected
E. >< = for representative data set
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Figure 18: Correlation of 7, versus Pestiie. (A) Correlation between predicted 7, based on the global index
Hiyper and Py for the flexibility data set. Data points colored grey (black) represent comparative models of
ESTs/LIPs with (un)known crystal structures. The representative data set is indicated by magenta crosses. Error
bars show the SEM over five independent MD simulations of 1 ps length each. Figure was taken and adapted
from PUBLICATION III*,

The good correlation of Pestir and 7p encouraged us to investigate if local flexibility

characteristics of CARs will provide an even better predictor of Pestiie. With this respect, 1
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thus computed a parameter called Flexcar for the flexibility data set. This parameter
quantifies the stability of rigid contacts between CARs and other residues that are at most 5 A
apart from each other, based on the local index rcijneighbor (section 2.2.2.2.2). A good and
significant correlation between Flexcar and PestiLip was found for the flexibility data set (R* =
0.51, p = 1.7*10°°). Hence, promiscuous ESTs/LIPs tend to have less flexible CARs. Mobility
characteristics computed directly from MD trajectories show the same trends, although the
correlation with PestLip s insignificant. Throughout our study, we probed for the consistency
of our analyses between subsets of ESTs/LIPs for which either crystal structures are known or
not; we only found quantitative differences, but no qualitative ones. One of the reasons is
likely that CNA was carried out on ENT generated by multiple and ps-long MD simulations,

which markedly increases the robustness of the results (section 2.2.2).

Previous studies indicated that thermodynamically more thermostable proteins frequently
have a higher structural stability. We used experimental melting temperatures of ESTs/LIPs
determined by CD spectroscopy as indicators for enzyme flexibility. This experimental data
led to the same conclusion with respect to Pestiie as the one drawn from the computed
flexibility predictions, i.e., promiscuous ESTs/LIPs are not only globally less flexible but also
more thermostable. Overall, these consistent and robust findings indicate that when applying
this workflow to novel ESTs/LIPs, it should be possible to discover enzymes with ‘sufficient’
substrate promiscuity to serve as a starting point for further exploration in biotechnology and
synthetic organic chemistry. In that respect, the flexibility characteristics of ESTs/LIPs

analyzed here have a notably stronger predictive power than Volefr introduced earlier.

The finding that promiscuous ESTs/LIPs are significantly globally less flexible and have less
flexible CARss than specific ESTs/LIPs is in stark contrast to the general view of the role of

23-25, 219

structural flexibility for promiscuity . It has been recognized that conformational

changes may not always be necessary for promiscuity if a variety of substrates can be bound

218 However, these cases do not

by partial recognition or the presence of multiple binding sites
seem to be relevant reasons for PestLip because partial recognition often is associated with
catalytic inefficiency®??, which is contrary to our observation that promiscuous ESTs/LIPs
have a significantly increased specific activity. In addition, the presence of multiple binding
sites for Pest/Lip is controverted by the finding that promiscuous ESTs/LIPs have large Voletr,
i.e., large pockets with few subpockets. Inversely, our findings of rigid promiscuous

ESTs/LIPs may be consistent with the idea that multiple ligands can be accommodated in a

single site by exploiting diverse interacting residues.
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Our results as to specific but flexible ESTs/LIPs may be reconciled with a model according to
which conformational changes may have been selected in EST/LIP evolution for their ability
to enhance specificity in recognition, resulting in what has been termed conformational
proofreading®. In the case of specific ESTs/LIPs, flexibility may help to overcome a
structural mismatch between the enzyme and its substrate existing when both are in their
ground states, that way enhancing recognition specificity. This view is corroborated by our
finding that specific ESTs/LIPs prefer to hydrolyze large and flexible substrates: Larger
substrates can form more interactions with the enzyme, that way helping to overcome the
deformation energy required by the enzyme to optimizing the correct binding probability over
the incorrect one; flexible substrates can tolerate higher strains and thus can be expected to

participate in more binding events??® 224,

A Ester B Ester
with many TA with few TA
Specific Promiscuous Specific Promiscuous
ESTs/LI P; ESTs/LIPs ESTs/LIPs ESTs/LIPs
X X X/ X

: : l |

\ A \ A X v

Figure 19: Mechanistic model of EST/LIP flexibility, ligand size and conformational dynamics affecting
Pen. Impact of esters with (A) many or (B) few TA on specific, and hence more flexible (left), and promiscuous,
and hence more rigid (right) LIPs. Ligand parts connected by TA are represented as blue circles. Specific
ESTs/LIPs and large ligands with many TA can mutually adapt (panel A, left), and promiscuous EST/LIP can
bind large ligands (panel A, right) and small ligands (panel B, right) exploiting different interaction partners.
Small (and/or rigid) ligands are not able to lead to a structural adaptation of specific ESTs/LIPs (panel B, left),
though, resulting in conformational proofreading. The red bars indicate the flexibility of the ESTs/LIPs. A green
tick (red cross) indicates that ester cleavage is (not) catalyzed. Figure was taken and adapted from
PUBLICATION III*,

6.3 Conclusion and Significance

In this study, we exploit previously described comprehensive experimental information on
Pestie of 147 ESTs/LIPs tested against 96 esters together with computationally efficient
rigidity analyses based on CNA to understand the structural origin of and predict Pest/Lip.
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The principle results of this study are:

e Promiscuous ESTs/LIPs are significantly globally less flexible, have less flexible
CARs than specific ones, are significantly more thermostable, and have a significantly
increased specific activity.

e Specific ESTs/LIPs prefer to hydrolyze large and flexible esters.

These results may be reconciled with a model according to which multiple ligands can be
accommodated in a single site of promiscuous ESTs/LIPs by exploiting diverse interacting
residues, whereas structural flexibility in the case of specific ESTs/LIPs serves for
conformational proofreading. Our results furthermore signify that EST/LIP sequence space,
charted, e.g., by (meta)genomics studies, can be screened by rigidity analyses based on CNA
for promiscuous ESTs/LIPs that may serve as starting points for further exploration in

biotechnology and synthetic chemistry.
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7 PUBLICATION 1V

Contribution of single amino acid and codon substitutions to the

production and secretion of a lipase by Bacillus subtilis

Skoczinski, P., Volkenborn, K., Fulton, A., Bhadauriya, A., Nutschel, C., Gohlke, H.,
Knapp, A., Jaeger, K.-E.

Microb Cell Fact. 2017, 16, 160.

Original publication, see page 201-230 (Contribution: 10 %).

7.1 Background

Due to the fact that B. subtilis produces and secretes proteins in amounts of up to 20 g/l under
optimal conditions, it has been intensively studied and optimized as a protein production host,
establishing it as a microbial cell factory'’®'’% 185 (section 2.3.4.1). However, protein
production can be challenging if transcription and cotranslational secretion are negatively
affected, or the target protein is degraded by extracellular proteases'’® ??°. Here, we aim to
elucidate the influence of a target protein on its own extracellular activity and amount by a
systematic analysis of the homologous model enzyme BsLipA (section 2.3.4). Therefore, a
nearly complete SSM library of BsLipA was generated and about 30000 clones were
qualitatively as well as quantitatively screened with respect to extracellular activity and
amount. Variants with beneficial effects were sequenced and analyzed with respect to B.
subtilis growth behavior, extracellular activity and amount as well as /ipA4 transcription. In
order to determine to what extent an increase in (thermo)stability could contribute to an
increased extracellular amount, I predicted differences in the thermodynamic thermostability
of variants with respect to wtBsLipA by constraint dilution simulations using CNA*® (section

2.2.2).

7.2 Results and Discussion

In total, 155 AA residues of BsLipA with a conservation < 95% were used to generate a
nearly complete SSM library resulting in about 30,000 clones (Figure 20A). To identify
variants with increased extracellular activity or amount, a two-step screening procedure was

applied to the SSM library (Figure 20A). In the first step, the about 30,000 clones were
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analyzed towards increased extracellular activity by a lipase activity assay in the culture
supernatants. 175 clones were sequenced and 80 variants showed an increase in extracellular
activity from 1.2- to 3.4-fold in comparison to wtBsLipA (Figure 20B). In the second step,
the culture supernatants of these variants were analyzed as nine biological replicates.
Extracellular activity was determined by a lipase activity assay and extracellular amount was
quantified by an enzyme-linked immunosorbent assay (ELISA). 38 variants showed an
increased or similar extracellular activity and an increased extracellular amount compared to
wtBsLipA. Their extracellular amount ranged from 1.3-fold to 3.8-fold higher than that of
wtBsLipA (Figure 20C).
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Figure 20: Identification of BsLipA variants with increased extracellular activity or amount. (A)
Schematic representation of the two-step screening procedure. In the first step, 29199 clones were analyzed for
increased extracellular activity by a lipase activity assay in the culture supernatant. 175 clones were sequenced
and 80 variants identified with increased extracellular activity. In a second step, culture supernatants of these
variants were analyzed as nine biological replicates. Extracellular activity was determined by a lipase activity
assay and extracellular amount was quantified by an enzyme-linked immunosorbent assay (ELISA). (B) 80
variants with increased extracellular activity. The relative extracellular activity of the variants is plotted against
the substituted AA position. (C) 34 variants with increased extracellular amount. The relative extracellular
amount is plotted against the substituted AA position. Each black dot represents one variant, and the grey bars
mark the highly conserved AA positions (> 95%). Values for wtBsLipA, which were (B) 0.57 + 0.12 U/ml and
(C) 3.7 £ 0.6 ug/ml, respectively, were set to 1 and the grey horizontal dotted lines mark the standard deviation
(o). Figure taken and adapted from PUBLICATION 1V,
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Next, we produced these variants by cultivating B. subtilis clones in a microfermentation
system linked to online biomass measurement and analyzed their extracellular activity and
amount as well as /lip4A transcription. Furthermore, online biomass measurements were
performed to exclude differences in growth of variant-producing B. subtilis clones, which

was, however, not observed.

We identified six variants with an up to 2.4-fold increase in extracellular activity (Figure
21A) and 21 variants with an up to 2.3-fold increase in extracellular amount in comparison to
wtBsLipA (Figure 21B). In addition to single AA substitutions increasing extracellular
activity and amount, several codon-related effects were observed. For example, the variants
I12LctG, 112Verg, and G13Tacc showed an increase in extracellular activity, whereas
identical AA substitutions encoded by different codons either showed no effect on
extracellular activity and amount (I12Ltrg and 112Vgrce) or resulted in increased extracellular
amount (G13acc) (Figure 21A). Another example is that variant 1871 with a silent mutation
showed a 2.4-fold increase in extracellular activity but also a 3.6-fold significant change in

lipA transcript level (Figure 21A).
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Figure 21: BsLipA variants showing increased extracellular activity or amount. (A) Six variants with
increased extracellular activity and (B) 21 variants with increased extracellular amount. Variants were produced
by cultivating B. subtilis clones in a microfermentation system linked to online biomass measurement. (A)
Extracellular activity was determined by a lipase activity assay. The relative extracellular amount is plotted
against the respective variant. (B) Extracellular amount was quantified by an enzyme-linked immunosorbent
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assay (ELISA). The relative extracellular amount is plotted against the respective variant. Respective wtBsLipA
values were set to 1 (thick black line). Figure taken and adapted from PUBLICATION IV,

Seven variants with increased extracellular amount have AA substitutions located either in the
aB-helix (N50D, P53D, P53E, P53V, R57Tacc, R57Tacc), or carry a substitution to
glutamine at position 134 (M134Q) (Figure 21C). Position 134 is known to contribute to

226

thermostability™®, and the aB-helix also plays an important role in tolerance towards

173 and ionic liquids'’*. Therefore, it is possible that the increased extracellular

detergents
amount of these variants is not due to a more efficient secretion, but due to an increased

stability in the culture supernatant.

In order to determine to what extent an increase in (thermo)stability could contribute to an
increased extracellular amount I predicted thermodynamic thermostabilities of the six variants
N50D, P53D, P53E, P53V, R57T, and M134Q by constraint dilution simulations using
CNA* (section 2.2.2). Here, as done previously for BsLipA!?’, the thermodynamic
thermostabilities of the variants were compared to wtBsLipA in terms of a local index, the
median neighbor stability map 7Cj, neighbor (section 2.2.2.2.2). 7Cjj, neighbor has been shown to be
related to the experimental melting temperature (7m) and to be robust if variants follow
different constraint dilution pathways'?’ (section 2.2.2.3.1). While for three variants, i.e.,
P53D, P53E, P53V, marginal changes in the predicted thermostability compared to wtBsLipA
were found, a pronounced decrease in the thermostability was predicted for the other three
variants, i.e., N50D, R57T, M134Q (Table 1). The magnitude of this decrease is in the same
ballpark as the magnitude of the median increase in the 7m found for 93 cases of engineered
proteins, most of which contain more than one substitution?”’. Thus, the results of the CNA
analyses do not support the hypothesis that increased thermodynamic thermostability of the
six variants led to an increased extracellular amount in the culture supernatant. However, it
should be noted that CNA does not consider time-dependency of processes; hence, our
analyses do not rule out an increase in kinetic thermostability as a cause for higher

extracellular amount.

Table 1: Predicted thermodynamic thermostabilities of wtBsLipA and BsLipA variants
using CNA.

BSLipA variants 'f‘va neighbor [K][a] Aﬁz] neighbor [K] [b]
wtBsLipA 316.1 /

N50D 312.1 -4.0

P53D 316.2 0.1

P53E 315.8 -0.3

P53V 315.8 -0.3
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R57T 314.9 -1.2
M134Q 314.7 -14

(2] The 7Ty, neignvor values were converted to a temperature scale according to Eq. 4 (section 2.2.2.1).
I Difference of 7¢;;, neighvor values of BsLipA variants and wtBsLipA, respectively.

Finally, in order to answer the question whether a synergistic effect can be achieved by
combining single AA substitutions that themselves have led to increased extracellular activity
or amount, we chose single AA substitutions with beneficial effects. Combination of
beneficial single AA substitutions revealed an additive effect solely at the level of
extracellular amount of BsLipA. Similar additive effects were already described for AA
substitutions improving thermostability, where 12 amino acid substitutions were introduced
by several rounds of in vitro evolution resulting in an increase of the LipA temperature

oc228

optimum by ~ 30 . However, extracellular activity and amount of BsLipA could not be

increased simultaneously.

7.3 Conclusion and Significance

In this study, for the first time, we performed a systematic large-scale analysis of a nearly
complete experimental SSM library of BsLipA towards the contribution of single AA and

codon substitutions to the production and secretion with CNA.
The principle results of this study are:

e Out of ~30,000 clones 26 variants were identified showing an up to twofold increase in
either extracellular activity or amount of BsLipA.

e Single AA and codon substitutions did not substantially affect B. subtilis growth.

e Single AA and codon substitutions affect extracellular activity and amount of BsLipA as
well as /ipA transcription.

e The CNA analyses did not support the hypothesis that increased thermodynamic
thermostability led to an increased extracellular amount of BsLipA.

e Combination of beneficial single AA substitutions revealed an additive effect solely at the
level of extracellular amount of BsLipA. However, extracellular activity and amount of

BsLipA could not be increased simultaneously.

The results signify that the optimization of the expression system is not sufficient for efficient
protein production in B. subtilis. The sequence of the target protein should also be considered

as an optimization target for successful protein production. Our results further suggest that
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variants with improved properties might be identified much faster and easier if mutagenesis is

prioritized towards elements that contribute to enzymatic activity or structural integrity.
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8 SUMMARY AND PERSPECTIVES

In the present work, I rationalized the impact of enzyme flexibility and rigidity on protein
thermostability and / or detergent tolerance (PUBLICATION II)*, substrate promiscuity
(PUBLICATION III)*, and expression (PUBLICATION 1V)*® using our in-house
Constraint Network Analysis (CNA) software*® 7? at large-scale for biotechnologically highly
relevant bacterial lipolytic enzymes (esterases/ESTs and lipases/LIPs). This was done with the
aim to define the scope and limitations of biomolecular flexibility predictions in knowledge-

driven strategies for protein engineering.

In PUBLICATION II** T performed a systematic large-scale analysis of a complete
experimental site saturation mutagenesis (SSM) library of the model enzyme Bacillus subtilis
lipase A (BsLipA) to scrutinize the impact of substitution sites on two types of protein
stability, thermostability (750) and detergent tolerance (D), with CNA. The results provide
systematic and unbiased reference data at unprecedented scale for BsLipA, identify
consistently defined kot spot types for evaluating the performance of CNA, and show that
CNA-based hot spot predictions yield an up to 9-fold gain in precision over random
classification. Hence, CNA can be used prior to experiments when seeking to optimize
enzymes’ thermostability and detergent tolerance. In future studies, the study should be
extended to other types of protein stability, such as tolerance against ionic liquids.
Experimental data at large scale that can provide the basis for such investigations has been

published recently!”,

In PUBLICATION III*® I exploit comprehensive experimental information on the substrate
promiscuity (Pestiir) of 147 ESTs/LIPs tested against a customized library of dissimilar
esters®*. 1 used CNA to understand the structural origin of and to predict PestwLip.
Unexpectedly, our data reveal that promiscuous ESTs/LIPs, in contrast to specific ones, are
significantly globally less flexible and have less flexible catalytically active residues, are
significantly more thermostable, and have a significantly increased specific activity.
Furthermore, specific ESTs/LIPs prefer to hydrolyze large and flexible esters. These results
may be reconciled with a model according to which multiple ligands can be accommodated in
a single site of promiscuous ESTs/LIPs by exploiting diverse interacting residues, whereas
structural flexibility in the case of specific ESTs/LIPs serves for conformational proofreading.
Our results furthermore signify that EST/LIP sequence space, charted, e.g., by

(meta)genomics studies, can be screened by rigidity analyses based on CNA for promiscuous
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ESTs/LIPs that may serve as starting points for further exploration in biotechnology and
synthetic chemistry. This knowledge can now be used to characterize prospectively further
ESTs/LIPs of industrial/commercial relevance with respect to Pestwiip. Furthermore, the
unexpected relationship of flexibility and Pest/Lip warrants further experimental validation by

methods that are capable to resolve structural dynamics, such as NMR or FRET experiments.

In PUBLICATION IV* [ analyzed parts of a nearly complete experimental SSM library of
BsLipA towards the contribution of single AA and codon substitutions to the production and
secretion with CNA. The results suggest that single AA and codon substitutions affect
extracellular activity and amount of BsLipA as well as lipA transcription. Combination of
beneficial single AA substitutions revealed an additive effect solely at the level of
extracellular amount of BsLipA. The CNA analyses did not support the hypothesis that
increased thermodynamic thermostability led to an increased extracellular amount of BsLipA.
In future studies it would be very interesting to investigate the relation between biomolecular

flexibility and secretion of BsLipA with CNA.

To sum up, nowadays computational techniques used for knowledge-driven strategies
emerged as useful tools in protein engineering with respect to save resources, e.g. working

effort, time, and costs.
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Advanced Review

Rigidity theory for biomolecules:
concepts, software, and

applications

Susanne M.A. Hermans,' Christopher Pfleger,’ Christina Nutschel, Christian A. Hanke

and Holger Gohlke™

The mechanical heterogeneity of biomolecular structures is intimately linked to
their diverse biological functions. Applying rigidity theory to biomolecules iden-
tifies this heterogeneous composition of flexible and rigid regions, which can aid
in the understanding of biomolecular stability and long-ranged information
transfer through biomolecules, and yield valuable information for rational drug
design and protein engineering. We review fundamental concepts in rigidity the-
ory, ways to represent biomolecules as constraint networks, and methodological
and algorithmic developments for analyzing such networks and linking the
results to biomolecular function. Software packages for performing rigidity ana-
lyses on biomolecules in an efficient, automated way are described, as are rigid-
ity analyses on biomolecules including the ribosome, viruses, or transmembrane
proteins. The analyses address questions of allosteric mechanisms, mutation
effects on (thermo-)stability, protein (un-)folding, and coarse-graining of biomo-
lecules. We advocate that the application of rigidity theory to biomolecules has
matured in such a way that it could be broadly applied as a computational bio-
physical method to scrutinize biomolecular function from a structure-based point
of view and to complement approaches focused on biomolecular dynamics. We
discuss possibilities to improve constraint network representations and to per-
form large-scale and prospective studies, © 2017 John Wiley & Sons, Ltd

How to cite this article:
WIREs Comput Mol Sci 2017, €1311. doi: 10.1002/wcms. 1311

INTRODUCTION

Bi()molecules are generally marginally stable! and
are heterogeneously composed of flexible and
rigid regions.? Here, flexibility and rigidity denote
the possibility, or impossibility, of internal motions
in an object under force without giving information
about directions and magnitudes of movements. The
importance of the mechanical heterogeneity, which is
usually highly conserved within homologs,® for bio-
molecular function cannot be overstated. For
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enzymes, a dual character of active sites in terms of
high and low structural stability has been described,*
reflecting optimization for ligand access,” binding
affinity,® and catalytic efficiency.” Regulatory sites of
biomolecules need to display a sufficiently low struc-
tural stability such that bound effector molecules can
modify their flexibility and rigidity in order to initiate
signaling.® As to thermal stability, proteins from ther-
mophilic organisms are generally less flexible than
their mesophilic homologs.” Therefore, understand-
ing biomolecular flexibility and rigidity, and how
they change due to binding of another molecule,
mutations, temperature, or solvent, is instrumental
both for a fundamental understanding of biomolecu-
lar function'®'" and with respect to protein engineer-
ing and ligand design.>'271%

From an experimental point of view, flexibility
and rigidity characteristics of biomolecules have been
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investigated using X-ray crystallography,'® nuclear
magnetic resonance (NMR) spectroscopy,'” or fluo-
rescence spectroscopy.'® The main sources of infor-
mation from these techniques reflecting flexibility
characteristics are crystallographic B-factors, NMR
order parameters and residual dipolar couplings, and
relaxation times."”™" These sources report on atomic
mobility, however, from which flexibility and rigidity
characteristics then have to be derived.’®?? In con-
trast, atomic force microscopy (AFM) allows for
measuring the mechanical rigidity of biomolecules
directly on a single molecule level.”?

From a computational point of view, molecular
dynamics (MD) simulations,”* coarse-grained (CG)
simulations,”’ or normal mode analysis ((INMA)?® and
related analyses?” are widely used to investigate bio-
molecular flexibility and rigidity. Again, the primary
information these approaches yield is about atomic
mobility, from which flexibility and rigidity character-
istics then have to be derived.”™*® Alternative
approaches rely on a representation of the 3D struc-
ture of a biomolecule in terms of a connectiviry net-
work, where atoms or residues are represented as
nodes and the interactions between them as
Cdgcs.jogﬁu II]. SLlCh a ﬂetW()fk, the actual lengths ﬂﬂd
angles of bonds are irrelevant for subsequent analysis.
A structural hierarchy is then deduced, with atoms or
residues within a subgraph having a high connectiv-
ity, thus indicating a region of higher structural stabil-
ity. In contrast, atoms or residues connecting two
subgraphs are less tightly connected, thus forming the
flexible regions.*”~*

Biomolecules can also be modeled as constraint
networks, where the edges represent constraints due
to covalent and noncovalent interactions that fix the
distance between the nodes, thereby restricting inter-
nal motions.* In contrast to MD and CG simulations
or NMA, where interactions between atoms are mod-
eled by forces of varying strengths, in constraint net-
works a constraint is either present or not, but does
not vary in strength with respect to the atoms’ geome-
try. The constraint network can be efficiently decom-
posed into rigid clusters and flexible regions
according to the number and spatial distribution of
the remaining degrees of freedom (DOF), as described
in detail below.*” The study of network rigidity and
how a network transitions from a flexible to a rigid
state is known as rigidity percolation or rigidity
theory,**° The essential property common to all
percolation type problems is that of a connected path-
way; in rigidity percolation, the path consists of sites
that are mutually rigid.”® In comparison to the con-
nectivity percolation studied in the above connectivity
networks, there are two important differences.”! First,
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in connectivity percolation, the propagation of a sca-
lar property is monitored (e.g., conductivity}, while in
rigidity percolation the propagation of a vector
(e.g., stress) is, in general, considered.”? Second, there
is an inherent long-range aspect to rigidity percola-
tion, that is, whether a region is flexible or rigid gener-
ally depends on structural details that are far
away. 505253

The study of network rigidity originated from the
field of structural engineering more than 150 years ago,
where it was first applied to mechanical systems
(Figure 1; Box 1).°*** Later, it was extended to the
fields of solid state physics, for addressing network
glasses™” and zeolithes,”® and biophysics for investi-
gating biomolecules.** % Since the underlying idea is
simple vet not trivial, computationally highly efficient,
and gives insights into flexibility and rigidity character-
istics of biomolecules at an atomistic level, the approach
has gained much attention recently. In the following,
we will describe the theory underlying this approach,
current methods for modeling and analyzing constraint
networks, as well as applications to biomolecules link-
ing flexibility and function.®® These applications
include investigating large biomolecules such as the
ribosome,** understanding allostery,**®*  predicting
assessing the structural
identifying folding cores of

thermodynamic properties,®®
67,68

stability of complexes,

(a)

(b) ’ Flexible

FIGURE 1 | Schematic representation of a structural engineering
construction {bridge) consisting of struts (distance constraints)
connected by joints. {a) In 2D, the triangle is the smallest rigid unit.
Hence, if all constraints are in place, the bridge is isostatic or
minimally rigid. (b) Removing one constraint divides the bridge into
two rigid clusters with a flexible region in between.

© 2017 John Wiley & Sons, Ltd
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proteins,®>? sampling of biomolecular conformational

spaces,” " finding putative binding sites,'* and analyz-
ing structural determinants of thermostability.”"®

BOX 1

CONSTRAINT COUNTING

The first mathematical formulation of rigidity
analysis dates back to the 19th century, where
James Clerk Maxwell investigated the condi-
tions under which mechanical structures, made
of joints and connecting struts, are stable or
instable (Figure 1).>* For this, Maxwell used con-
straint counting as a mean field approach,
which circumvented any detailed local calcula-
tions, to assign the number of independent
internal degrees of freedom (DOF), also called
‘floppy modes’ (F). F determines possible move-
ments of a structure in the d-dimensional space
without violating any of the censtraints. For a
network with N sites, lacking any constraints,
F is given by Eqg. (1), where the latter term
denotes the global degrees of freedom.

F=dN-d(d+1)/2 (1)

In a system with N, constraints, assumed by
Maxwell to be independent, each constraint
removes one floppy mode, resulting in the
number of floppy modes according to Maxwell
(Frmxwe EQ. (2)).

Froxw=dN-N.—d{d+1)/2 (2)

If not all constraints are independent, using
Maxwell's equation will lead to an underesti-
maticen of F. This is corrected for by considering
the number of redundant constraints N,
(Eq. (3)).%

F=dN-(N.-N,)-d(d+1)/2 (3)

Redundant constraints introduce stress in the
network and do not add to the stability of the
network anymore.*® A network region with
redundant constraints is overconstrained or
stressed. If a region has fewer constraints than
internal DCF, it is underconstrained or flexible.
If a region has as many constraints as internal
DOF, the region is Jjsostatically (or minimally)
rigid.”’

© 2017 John Wiley & Sons, Ltd
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MODELING AND ANALYZING
BIOMOLECULES AS CONSTRAINT
NETWORKS

Constraint Network Representations for
Proteins

Biomolecules are represented as constraint networks by
transforming atoms into nodes, and covalent and nonco-
valent bonds into constraints in between. There are sev-
eral types of constraint networks (Figure 2(a)~{d)).>® In
bond-bending networks, nodes are considered joints hav-
ing three DOF, and constraints connect nearest-neighbor
nodes to fix the distance between them. Next-nearest-
neighbors are also connected to fix the angles (Figure 2
(b)). This representation is also called a molecular graph
or molecular framework, as it intuitively represents mole-
cules with their strong bond and angle forces.®®! For
propene {Figure 2(a)), with one double and one single
bond between the carbon atoms, free rotation about the
single bond is possible, resulting in one independent inter-
nal degree of freedom (also termed floppy mode)
(Figure 2(b) and (e} top left). The molecule can be decom-
posed into two rigid clusters, one consisting of five atoms
a, b, ¢, d, and e, and one of four atoms f, g, h, and i -
(Figure 2(b}). In these networks, a double bond is mod-
eled by placing an additional distance constraint between
third-nearest-neighbors, for example, b and f (Figure 2
(b) and (e) middle left), preventing dihedral rotation.”%*
Alternatively, molecular structures are represented as
body-and-bar networks (Figure 2(c))®"*! and body-bar-
hinge networks (Figure 2(d)),”"! where atoms are con-
sidered as rigid bodies having six DOF, which are con-
nected by bars. Two rigid bodies have in total 12 DOF.
Disregarding the six global DOF, six bars are needed to
lock in the internal DOF and, hence, to model double
and peptide bonds (Figure 2(e) middle right). A single
bond is modeled with five constraints, leaving one DOF
for the dihedral rotation (Figure 2(e) top right).

Stronger noncovalent interactions, such as
hydrogen bonds (including salt bridges) and hydro-
phobic interactions, are essential for the stability of
biomolecules and, thus, require accurate modeling in
the constraint network. In contrast, weaker interac-
tions such as van der Waals or electrostatic forces are
not imcluded in the network, In all network types,
modeling of different interaction strengths is possible
by including a differential number of constraints/
bars.?"™® In bond-bending networks, hydrogen
bonds have been modeled using three distance con-
straints, removing three DOF as does a covalent
bond (Figure 2(e) top left), that way representing the
geometric restriction due to hydrogen bonds.®
Hydrophobic interactions have been modeled in
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(a)

© 1" S N

FIGURE 2 | Constraint network representations. (a) Ball-and-stick reprasentation of propene, the carbon atoms are shown in blue and the
hydrogen atoms in light gray. (b, ¢, d) Propene is represented in terms of 3D constraint networks.” (b) In the bond-bending network {(also called
bar-and-joint netwark or mofecular framework) covalent bonds are modeled as distance constraints between nearest-neighbor atoms (thick lines)
and angle constraints between next-nearest-neighbor atoms {dashed lines). For the double bond {c,d), there is an additicnal constraint {red dotted
line) between third-nearest-neighbor nodes (b,f), removing the bond-rotational DOF between the two s;p2 carbons. The network represented here
has a total of nine nodes, connected by eight distance constraints, eleven next-nearest-neighbor constraints, and one third-nearest-neighbor
constraint. In this network, a node {atom) has three DOF, leading to a 3N — 6 count (Eq. (1) in Box 1). With N = 9 nodes and a total of

20 nonredundant censtraints, this network has one DOF, the rotation around the single bond. (c} In the body-and-bar representation, atoms are
madeled as bodies with six DOF, a covalent single bond as five constraints between two bodies, and a double bond as six constraints. (d) In the
body-bar-hinge model, all covalent bonds are replaced by hinge regions, located at the connection of two colored shapes, connected in such a
way that one DOF is left. For the double hond, an additional bar {red dotted line) is added to the hinge region to lock the remaining DOF.”

(e) The modeling of bond types is compared between the bond-bending network (left column) and the body-and-bar network (right column): The
covalent bond with five constraints (top), the double bond with six constraints (middle), and the hydrophobic interaction modeled with ghost
atoms in the bond-bending network (bottom left) and with two bhars in the body-and-bar network (bottom right). Figure 2(e) adapted from Ref 61.

terms of three pseudoatoms and the associated con-
straints (Figure 2(e) bottom left), essentially removing
two DOF, that way representing that hydrophobic

: : . s e 59,83
mteractions are lESS geometrlcally restrictive.” " =

(@) O 5
Asp
'\.N
H . Tr
%o p
NH, HN v
HN )YLO
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Arg HN HN
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In body-and-bar networks, hydrogen bonds are mod-
eled with five bars, as are covalent bonds (Figure 2
(e) top right),*! and hydrophobic interactions with
two bars (Figure 2(e) bottom right)61‘84’85 although

(b) 5o o
p

o o5

FIGURE 3 | Modeling of covalent and noncovalent interactions. For both (a) interactions within a protein and (b) RNA, the rigid clusters
(green} and overconstrained regions (blue) are shown. For rigidity analysis, covalent interactions (black lines), hydrogen honds {yellow squared
dots) and salt bridges (yellow hatched lines), and hydrophohic interactions {cyan squared dots) are modeled as constraints. For RNA also hase-
stacking interactions (cyan hatched lines) are modeled as hydrophobic interactions.®?
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lower and higher numbers of bars have been used for
hydrophobic interactions, too.5%3

Deciding which noncovalent interactions to
include in the network is decisive for getting an accu-
rate representation of the flexibility of the system
(Figure 3).°**” For this, the strength of hydrogen
bonds is evaluated, for example, according to Mayo’s
hydrogen bond potential energy (Eg, Eq. (4)).5*

EHB=DO{5(%) 12-6(%> 10}1((‘9»42.»40): (4)

where Ry is the equilibrium distance (2.8 Ayand R is
the hydrogen bond distance between donor and
acceptor. Dy is the well-depth of the interaction. The
angle term f varies depending on the hybridization
state of the donor and acceptor atoms; # is the angle
of the triplet (donor, hydrogen, acceptor}; ¢ is the
angle of the triplet (hydrogen, acceptor, base atom
bonded to the acceptor); @ is the torsion angle
between the normals of two planes defined by two
sp” centers. In the case of sp® hybridization, ¢ is not
considered. Only hydrogen bonds with an energy
Eig € E.p are included in the constraint net-
work.%®%?  Hydrophobic interactions are often
included in the constraint network according to the
criterion that the distance between carbon and/or sul-
fur atoms is less than the sum of their van der
Waals radii (C: 1.7 A, S: 1.8 A) plus a distance cutoff
Dw = 025 A Alternatively, Fox et al.** intro-
duced a parameter to describe the strength of hydro-
phobic interactions based on the pairwise van der
Waals energy derived from the Lennard-Jones poten-
tial of the AMBER parm99 force field.3%°

Results from rigidity analyses on biomolecules
can be affected by additional factors such as water
molecules, ions, small-molecule ligands, or other bio-
molecules. It was shown that the inclusion of struc-
tural waters in the constraint network had only a
negligible effect on the protein’s flexibility.®®? In
contrast, waters that bridge protein-ligand interac-
tions can rigidify the complex structure.®’ Bridging
interactions mediated by water molecules were mod-
eled by hydrogen bonds,®" while interactions with
structural ions were modeled as covalent bonds.>
Effects of small-molecule ligands'***" and biomolecu-
lar binding partners®® are described below.

Modification of the Constraint Network
Representation for RNA Structures

In comparison to proteins, RNA structures are less
globular, more elongated, and less densely packed.”

© 2017 John Wiley & Sons, Ltd
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While the structure of proteins is predominantly
determined by hydrophobic interactions of amino
acid side-chains in the protein core, the stability of
RNA strongly depends on hydrogen bonds and
base-stacking interactions.” Not surprisingly, the
constraint network representation initially developed
for proteins (see above) turned out to be not appro-
priate for RNA systems.®* Fulle et al. modified the
network representation for RNA structures by
adapting the criteria for the inclusion of hydropho-
bic interactions, including a limit for the number of
constraints considered between neighboring bases
(Figure 3).°> The modifications were verified by
comparing predictions from rigidity analysis to
mobility information derived from crystallographic
B-factors of a tRNA™Y structure.®> Furthermore,
atomic fluctuations calculated for a structural
ensemble of HIV-1 TAR RNA generated by the con-
strained geometric  simulations tool FRODA
(Framework Rigidity Optimized Dynamic Algo-
rithm; see Generation of Effective Constraint Net-
works) were compared to the conformational
variability derived from an NMR ensemble.” The
new RNA parameterization proved more successful
than the protein parameterization and another
parameterization by Wang et al.”* for the prediction
of conformational variabilities of NMR ensembles
of 12 RNA structures.®? Future improvements of
the RNA parameterization may consider the repul-
sion of negatively charged phosphate groups and
sequence-dependent base-stacking. Note that the
proposed parameterization may not be ideally suited
for DNA molecules, due the different flexibility
characteristics of RNA and DNA, for example with
respect to the sugar ring and the deformability of
the molecules.®?

Constraint Counting: The Pebble Game
Algorithms

For a given constraint network, Eq. (3) (see Box 1)
yields F in terms of a mean field approximation.™ In
1970, Laman’s theorem™ had a major impact in that
it allows to determine the DOF locally in generic
(ie., lacking any special symmetries) 2D constraint
networks by applying constraint counting to all sub-
graphs within the network. As such, a generic 2D
network is minimally rigid if and only if the
number of constraints is 2N - 3, and every non-
empty subgraph s induced by N; = 2 sites spans at
most 2N, — 3 constraints. Based on Laman’s theo-
rem, Hendrickson suggested an algorithm that
exactly counts the number of floppy modes in a
generic 2D network and, hence, is appropriate to
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FIGURE 4 | Double banana network. Constraint counting implies
that the 3D double banana netwark is rigid because it satisfies the
3N — 6 counting condition considering that the nodes have three
DOF. However, internal motion within this netwark is possible along
the implied-hinge joint between the two ‘banana’ subgraphs (dashed
line). Figure adapted from Ref 77.

decompose it into rigid regions and flexible links in
between.*® Further developments on this algorithm
led to the efficient combinatorial 2D pebble game
algorithm implemented by Thorpe and Jacobs.*”
However, this type of algorithm can fail if
applied to a general 3D network such as the ‘double
banana’ network (Figure 4).°° This network has
overall 3N - 6 constraints, and none of the sub-
graphs has more than 3N, - 6 constraints connecting
N sites. Applying the 3D analog of Laman’s theorem
would thus lead to the conclusion that this network
is minimally rigid, which is wrong as there is an
implied-hinge joint between the two ‘banana’ sub-
graphs. With the molecular framework conjecture,”
Tay and Whiteley proposed that the constraint
counting can be extended to a certain subtype of 3D
networks with a molecule-like character, the bond-
bending networks (see Modeling and Analyzing Bio-
molecules as Constraint Networks). Based on this
proposition, Jacobs constructed a 3D pebble game
algorithm for these nerworks,”” the compurational
time complexity of which is, in a worst case scenario,
O(N?); in practice, the algorithm runs in linear
time.* In comparison, brute force numerical techni-
ques can give the same result as the pebble game
algorithm, but are generally unfeasible for large sys-
tems due to a computational complexity of O{N*).**
The pebble game algorithm for bond-bending
networks has been implemented in early versions of
the Floppy Inclusion and Rigid Substructure Topog-
raphy (FIRST) software (see FIRST/ProFlex).®® In
2004, Hespenheide et al. implemented an adapted
3D pebble game algorithm using a 6N - 6 count”’
applied on the body-and-bar representation of mole-
cules® (see Modeling and Analyzing Biomolecules as
Constraint Networks). In 2008, Lee and Streinu
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described a family of pebble game algorithms, the
(k,[}-pebble games, where k is the initial number of
pebbles on each node and I is the acceptance condi-
tion, that is, the global degrees of freedom of the sys-
tem (see Box 2; Figure 5).”%"7 The original 2D
pebble game algorithm of Jacobs and Hendrickson™
is a (2,3)-pebble game in this terminology.”® A
(6,6)-pebble game implemented by Fox et al.”® for
analyzing body-bar-hinge networks is equal to the
3D pebble game algorithm introduced by Hespen-
heide et al. for analyzing body-and-bar networks.®'
Notably, the family of (k/)-pebble games were
proven to be correct by Katoh and Tanigawa in

BOX 2

THE PEBBLE GAME ALGORITHM

For explaining the (6,6)-pebble game (with the
6N — 6 counting condition), an exemplary bio-
molecule is modeled as a body-and-bar network
with four nodes connected by a total of 18 con-
straints (Figure 5). Initially, six pebbles are
placed on each node in the network, represent-
ing the six DOF in 3D (see Modeling and Ana-
lyzing Biomolecules as Constraint Networks).

For the decomposition into rigid and flexible

regions, the pebble game considers two rules

for two connected nodes i and j°”:

* Define a constraint between the nodes: if i
and j have at least seven pebbles in total,
place a pebble on the constraint from / to j
to define the constraint in the direction of j.

+ Slide a pebble: if there is a defined constraint
between i/ and j and there is a pebble on j,
reverse the direction of the constraint and
move the pebble from j to /.

Accordingly, five pebbles are first placed on the

constraints between b and c defining all five

constraints in the same direction (1). Then, five
pebbles are placed on the constraints from ¢ to

d and from d to a {2). This leaves six pebbles on

a and one pebble on b, ¢, and d, respectively.

All single pebbles are now collected on b (3, 4).

There are now six pebbles on a and three peb-

bles on b; ¢, and d are empty. Finally, the last

three constraints are defined by placing the
three pebbles on the constraints between

b and a (5). Now 18 pebbles are used, and all

constraints are defined (6). The remaining six

pebbles on a represent the six global DOF,
demonstrating that this graph is minimally
rigid.%?

© 2017 John Wiley & Sons, Ltd
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1y

FIGURE 5 | The 3D pebble game algorithm; see Box 2 for details. Figure adapted from Ref 95.

2011,”® almost 150 vears after Maxwell’s introduc-
tion of constraint counting as a mean field
approach.>* For further details on pebble game algo-
rithms see Refs 50,78,97.

Analyzing Network States along Constraint
Dilution Trajectories

By gradually removing noncovalent constraints from
an initial network representation of a biomolecule, a
succession of network states {o} is generated that is
hereafter termed ‘constraint dilution trajectory’. Ana-
lyzing such a trajectory by rigidity analysis reveals a
hierarchy of rigidity that reflects the modular struc-
ture of biomolecules in terms of secondary, tertiary,
and supertertiary structure.'*%%7583%% In particular,
constraint dilution allows simulating the loss of
structural stability of a biomolecule with increasing
temperature. For this, hydrogen bonds are removed
from the constraint network if Epp > E ., where
o = fiT) is the state of the network at temperature T
(Figure 6(a)) and Eure, > Eaes for Ti < e
Hydrophobic interactions are generally not removed
along the constraint dilution trajectory because they
remain constant in strength or become even stronger
with increasing temperature.'"™'"" Alternatively, a
modified method for accounting for the temperature
dependence of hydrophobic interactions has been
introduced that adds more constraints to the network

© 2017 John Wiley & Sons, Ltd
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with increasing temperature by linearly increasing the
distance cutoff D_,;.'"

The hierarchy of rigidity of biomolecules leads
to a percolation behavior that is often more complex
than that of network glasses,”® and multiple phase
transition points can be identified along the con-
straint dilution trajectory at which rigid clusters
decompose (Figure 6(b)).3* The rigidity percolation
threshold is then defined as the phase transition when
the network changes from an overall rigid to an over-
all flexible state and thus loses its ability to transmit
stress.””

Global and Local Indices for Characterizing
Biomolecular Stability

For having maximal advantage from rigidity analysis,
the results need to be linked to biologically relevant
characteristics of a structure. At the macroscopic
level, this is, for example, the phase transition point
where a biomolecule switches from a structurally sta-
ble (largely rigid) to an unfolded (largely flexible)
state; at the microscopic level, the localization and
distribution of structurally weak parts may be a char-
acteristic of interest. As links, several global and local
indices were reported in the literature to depict these
characteristics (see Table S1 in Ref 92 for a compre-
hensive overview). These indices are computed, to a
varying extent, by the software packages described in
section: Software Packages for Rigidiry Analysis.
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FIGURE 6 | Results of a constraint dilution simulation of hen egg white lysozyme with CNA. (a) In the constraint dilution simulation, a
stepwise decrease in the cutoff energy (E...) remaves hydrogen bonds from the constraint network in the order of increasing strength. The colored
surfaces represent the rigid clusters, and the black lines represent the flexible regions of the protein. (b) Degree of disorder along a canstraint
dilution simulation as revealed form the cluster configuration entropy H.5% The disorder is low when a single rigid cluster dominates and increases
when the cluster falls apart into smaller subclusters of different sizes. (c) The rigidity index r; characterizes the per-residue stability as it monitors
when a residue i segregates from any rigid cluster during a constraint dilution simulation. A lower r; value indicates that the residue resides in a
region of higher stability. (d) Stability maps {upper triangle) and neighbor stability maps {lower triangle) represent when a ‘rigid contact’ between
two residues of the network {both residues belong to the same rigid cluster) vanishes during the constraint dilution simulation. Gray areas in the
neighbor stability map indicate that no native contact exists for that residue pair. Figure adapted from Ref 84. Note that arrows at axes labeled

with £, point in the direction of more negative values.

Global flexibility indices monitor the degree of
flexibility and rigidity within constraint networks at
the macroscopic level. The density of internal DOF
[ = F/ (6N - 6) for a body-and-bar network] is a
direct measure for the intrinsic flexibility of a con-
straint network.”” Further indices have been derived
from percolation theory and characterize the micro-
structure of a network, that is, properties of the set
of rigid clusters generated along a constraint dilution

8 of 30

trajectory (see Analyzing Network States along Con-
straint Dilution Trajectories).'"® They include the
rigidity order parameter (P..),'™ which monitors the
decay of the largest rigid cluster, the mean rigid clus-
ter size (8),!°* which monitors the decay of all but
the largest rigid cluster,'®'"* and the cluster config-
uration entropy (H), a Shannon-type entropy'® that
is a morphological descriptor of the network hetero-
gene{ty‘m(’ P., S, and H show a mnoncontinuous

© 2017 John Wiley & Sons, Ltd
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behavior when monitored along a constraint dilution
trajectory, revealing transitions in the network rigid-
ity when the largest rigid cluster starts to decay, stops
dominating the network, and finally collapses
(Figure 6(b)). That way, H was successfully applied
to analyze unfolding transitions in biomolecules that
are related to thermostability (see Constraint Dilu-
tion Simulations to Investigate Protein
Thermostability),t*73:29:102.107

Local indices characterize the network flexibil-
ity and rigidity down to the bond level. Accordingly,
indices are derived for each covalent bond in the net-
work by monitoring the cutoff energy E.,, along a
constraint dilution trajectory when the bond changes
from rigid to flexible. By summarizing indices for sev-
eral bonds, one can describe structural stability on a
per-residue basis.”? The percolation index p; is a local
analog to the rigidity order parameter P, and is most
suitable to monitor the percolation behavior of a bio-
molecule locally. The rigidity index r; is a generaliza-
tion of the percolation index p,”* as it monitors when
a residue segregates from any rigid cluster. In a
showcase example on a-lactalbumin, it has been
shown that both local indices p; and #; are sensitive
en()ugh to detect l()ng-mngc aspects of altered stabil-
ity upon even small perturbations (i.e., the removal
of a calcium ion) of the network topology.”” Further-
more, this study showed that the information derived
from p; and r; is complementary in that p; indicates
regions of the biomolecule that segregate as a whole
from the largest percolating cluster and so become
mobile as rigid bodies, while #; exposes hinge regions
that encompass the rigid bodies.

Another set of local indices characterizes corre-
lations of stability between pairs of residues.”” As
such, stability maps (r¢;) are 2D generalizations of
the rigidity index #; (Figure 6(c) and (d)).'* To derive
a stability map, ‘rigid contacts’ between residue pairs
are identified. A rigid contact exists if two residues
belong to the same rigid cluster. Along the constraint
dilution trajectory, stability maps are then con-
structed by monitoring E_,; at which a rigid conract
between two residues is lost. A contact’s stability
thus relates to the microscopic stability in the net-
work and, taken together, the microscopic stabilities
of all residue-residue contacts result in a stability
map. The map reveals that losses of rigid contacts do
not only occur between isolated pairs of residues but
also in a cooperative manner. That is, parts of the
biomolecule break away from the rigid cluster as a
whole. The sum over all rigid contacts yields a meas-
ure for the chemical potential energy due to noncova-
lent bonding in the system, which has been used
recently as a proxy for the melting enthalpy of a
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protein and correlates with a protein’s melting tem-
perature.!”® The difference in the chemical potential
energy between a ground and a perturbed state of a
system was used in a one-step free energy perturba-
tion approach'®"Y to compure an approximation
of the free energy associated with the change in
biomolecular stability due to the removal of a ligand
or the introduction of a mutation (C. Pfleger,
H. Gohlke, unpublished results). The results agreed
with free energies of destabilization from chemical
denaturation experiments for single and double
mutations in eglin c.

In some cases, similar index definitions have
been introduced by different groups.”® For example,
the Distance Constraint Model (DCM) approach {see
Distance Constraint Model)'"' computes a global
index @ as the average of F over the DCM ensemble,
which is related to &; a local index Py as the proba-
bility whether backbone dihedral angles are rotatable
over the ensemble,”® which is related to r; and a
cooperativity correlation plot that quantifies the cor-
related stability of pairs of residues in terms of rotat-
able dihedral backbone angles,’®"® which is related
to rc;. Thus, it is recommended to use the index
notations summarized in reference” and displayed
here in future studies to make these differences clear.

SOFI'WARE PACKAGES FOR RIGIDITY
ANALYSIS

Rigidity analysis can be applied to different types of
biomolecules such as proteins and nucleic acids, and
the investigated systems range from small proteins
and RNAs to complex biomolecular assemblies such
as the ribosome or viruses (see Single-point Rigidity
Amnalysis on RNA and Nucleic Acid-Protein Com-
plexes). To automate and improve the efficiency of
the analysis, several software packages have been
developed (Figure 7).

FIRST/ProFlex

The FIRST program, developed by Jacobs et al.,*®
was the first implementation of a pebble game algo-
rithm together with code for generating constraint
networks for proteins. For a given input structure,
the number of floppy modes, a decomposition of the
network into rigid clusters, and the location of over-
constrained regions is provided. In its initial version,
the 3D pebble game algorithm for bond-bending net-
works has been implemented (see Constraint Count-
ing: The Pebble Game Algorithms). This FIRST
version, extended by a hydrogen bond dilution pro-
cedure®™® (see Amalyzing Network States along
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Software

Bond-bending 3D-pebble game

FIRST/Proflex

networks algorithm (3,6)
DCM

Body-and-bar FIRST CNA

networks

3D-pebble game
Bodv-bor-hi algorithm (6,6)
ody-bar-hinge
networks KINARI

FIGURE 7 | Overview of the constraint network types, algorithms, and software packages discussed in this review.

Constraint Dilution Trajectories) and maintained in
the Kuhn lab, is now available as MSU ProFlex from
https/fwww.kuhnlab.bmb.msu.edu/software/proflex.
FIRST was further developed in the Thorpe lab; this
version is now based on a body-and-bar network
representation and the (6,6)-pebble game algo-
rithm.*” Furthermore, the constraint network param-
eterization for RNA developed by Fulle er al.?* has
been included, and it has been extended by the con-
strained geometric simulation approach FRODA (see
Modification of the Constraint Network Representa-
tion for RNA Structures).

Distance Constraint Model

The DCM developed by Jacobs and coworkers
extends the concepts implemented in FIRST/ProFlex
in that it analyses network rigidity at finite tempera-
ture applying statistical mechanics.”™'""™""* For this,
constraints in the bond-bending network are charac-
terized by local microscopic free energy functions,
and topological rearrangements of thermally fluctuat-
ing constraints are permitted.!!>!* As noncovalent
constraints, DCM models only hydrogen bonds and
salt bridges, represented by three bars each, while
hydrophobic contacts are neglected.!!? As a result, a
partition function for the investigated system is
obtained from an ensemble of constraint networks
by combining microscopic free energies of individual
constraints using network rigidity as an underlying
long-range mechanical interaction.'' In doing so,
DCM considers that enthalpy is additive, whereas
entropy is not. The nonadditivity of component
entropies derives from not knowing a priori which
constraints in the system are independent or redun-
dant (see Box 1). In DCM, this problem is solved by
recursively adding one constraint at a time to build a
network, each time analyzing rigidity properties with
the pebble game and determining whether a
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constraint is independent or redundant.!’® Since
DCM works directly with free energies, it is possible
to simulate the effects of temperature or pH fluctua-
tions, as applied for c-type lysozyme''®'” and
homologous meso- and thermophilic RNAse H struc-
tures’® (see Single-Point Rigidity Amalysis on RNA
and Nueleic Acid—Protein Complexes).!!' Generally,
the DCM requires an accurate protein-specific
parameterization based on a priori knowledge of
experimentally determined heat capacity curves
(CI})”("l 18, if these were not available, C, curves fit-
ted to the peak of experimental melting temperatures
(T, were used.®”!''" For DCM a minimum of three
free parameters needs to be fic.!!1112

Constraint Network Analysis

The Constraint Network Analysis (CNA) approach™
was first introduced by Radestock and Gohlke” and
aims at linking information from rigidity analysis
derived from FIRST (see FIRST/ProFlex) with bio-
molecular structure, (thermo-)stability, and function.
CNA functions as a front- and back-end to FIRST.*°
Owing to the Ci+-based CNA interface module
pyFIRST, CNA has direct access to FIRST’s data
structure such that the computational efficiency of
FIRST is preserved in CNA-driven computations,
resulting in computing times of seconds for the rigid-
ity analysis of a single conformation of an average-
sized {250 residues) protein.®® Going beyond the
mere identification of flexible and rigid regions in a
biomolecule, CNA allows for (a) performing con-
straint dilution simulations that consider a tempera-
ture dependence of hydrophobic tethers,"®>''¥ in
addition to that of hydrogen bonds (see Analyzing
Nenwork States along Constraint Dilution Trajec-
tories), (b) computing a comprehensive set of global
and local indices for quantifying biomolecular stabil-
ity (see Global and Local Indices for Characterizing
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Biomolecular Stability), and (c) performing rigidity
analysis on ensembles of network topologies (ENT).
For the latter, structural ensembles and ensembles
based on the concept of fuzzy noncovalent con-
straints (ENT™9'7 can be used (see ENT from
Fuzzy Noncovalent Constraints). That way, informa-
tion on the influence of finite temperature on con-
straint network representations is implicitly included
without the need to derive system-specific para-
meters. As wel®” 120 and others”12t observed, pet-
forming rigidity analysis on ENT instead of single
networks greatly improves the robustness of the
results. Furthermore, CNA can consider small-
molecule ligands bound to biomolecules when con-
structing constraint networks.®* In order to facilitate
the processing of the highly information-rich results
obtained from CNA, the VisualCNA plugin'®® for
PyMOL and the CNA web server'”? have been devel-
oped. Both provide user-friendly interfaces around
the CNA software for easily setting up CNA runs
and analyzing results. The CNA software and
VisualCNA are available under academic licenses
from http://cpelab.uni-duesseldorf.de/software, and
the CNA web server is accessible at http://cpclab.uni-
duesseldorf.de/cna.

KINARI

KINARI is a software package for rigidity analysis
of biomolecules developed by Streinu and cowor-
kers.” The goal of the software is to provide a
workflow for rigidity analysis that is validated, ver-
satile, and able to analyze different biomolecules in
an automated and user-friendly way.” KINARI was
first released as a web-based front end (KINARI-
Web)”? building upon the ideas of FIRST/ProFlex,®°
where the bond-bending network has been replaced
by the body-bar-hinge network (see Modeling and
Analyzing Biomolecules as Constraint Nefworks,
Figure 2{d)) and the (6,6)-pebble game algorithm is
applied to analyze these networks. Single and dou-
ble bonds, amide bonds, and disulfide bonds are
identified by KINARI using the identities and coor-
dinates of the atoms, while hydrogen bonds are
determined by the HBPLUS software package.'”* A
user can remove constraints associated with a bond
within a certain energy range or below/above a cer-
tain energy cutoff value.”” In 2011, KINARI was
extended to KINARI-Mutagen to analyze protein
rigidity changes due to the mutation of a residue to
glycine (see Constraint Dilution Simulations to
Investigate  Protein  (Un-)folding)."> 'To further
extend the scope of the analysis, Fox et al. intro-
duced the option of studying protein—nucleic acid
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complexes in KINARI-Web.* However, here the
authors used the original protein-based parameters
for finding and modeling hydrophobic interactions
in RNA, which may lead to overly rigid RNA struc-
tures.S>%8¢ In 2015, KINARI-2Z was released to
improve the curation of the biomolecular structures
for analysis, with the aim to have KINARI-2 suc-
ceed on a very high percentage of the data available
in the PDB, on structural ensembles as well as
bioassemblies with a high degree of symmetry, and
to include hydrogen bond dilution simularions.®®
KINARI-Web is accessible at htep:/kinari.cs.
umass.edu.

ENSEMBLE-BASED APPROACHES

Initially, studies using FIRST and KINARI were per-
formed on constraint networks derived from single
input structures. However, computing flexibility and
rigidity characteristics from a single structure can be
challenging because rigidity analysis of biomolecules
is in general sensitive to the structural information
used as input.®®71107121 Thig js because biomole-
cules have a soft matter-like character where nonco-
valent interactions frequently break and (re-}form.'*
Furthermore, they are generally marginally stable,
that is, their network state is close to the rigidity per-
colation threshold.! Accordingly, a few constraints
more or less can result in a network either being rigid
or flexible. This sensitivity problem can be overcome
by analyzing an ENT rather than a single-structure
network, where the ENT can be based on a struc-
tural ensemble obtained from experimental sources,
for example, crystal structure analysis'”’ and
NMR,"?! or molecular simulations.®®%? This way,
however, the experimental or computational burden
compromises the efficiency of the rigidity analysis.
Therefore, computationally more efficient alternatives
have been introduced that generate ENT from a sin-
gle input structure,'®”""? essentially modeling the
‘flickering’ of noncovalent constraints®®!%” rather
than the motions of atoms.

ENT from Fuzzy Noncovalent Constraints

The ENT™ approach, available within CNA,** per-
forms rigidity analysis on ENT generated from a sin-
gle input structure.'” The ENT is based on
definitions of fuzzy noncovalent constraints (FNC)
derived from persistency data of noncovalent interac-
tions from MD simulations. Therefore, the approach
considers thermal fluctuations of a biomolecule with-
out actually sampling conformations. The FNC
model consists of two parts related to the modeling
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of hydrogen bonds and hydrophobic tethers in bio-
molecules. To account for the thermal fluctuations of
hydrogen bonds (a) probabilities, specific for the
hybridization state of donor and acceptor atoms and
the secondary structure they are located in, determine
the persistence of a hydrogen bond across the ENT,
and (b) a Gaussian white-noise component is added
to each Epp in order to modulate the order with
which hydrogen bonds are removed during a con-
straint dilution simulaton. Hydrophobic tethers are
modeled by a distance-dependent, Gaussian-based
probability by which tethers between closer atoms
are included with a higher probability in a network
than those between atoms further apart. Gaussian
distributions have previously been applied for model-
ing the strength of pairwise interactions between
hydrophobic atoms.>712® For the training system
hen egg white lysozyme, a good agreement between
local flexibility and rigidity characteristics from
ENT™¢ and MD simulations-generated ensembles
was found.'”” Regarding global characteristics, con-
vincing results were obtained when relative thermo-
stabilities of citrate synthase and lipase A proteins
were computed, both retrospectively'’”>'"® and pro-
spectively.1?? Compared to an ENT based on MD
simulations-generated conformations, the ENT/™¢
approach is ~300 times more efficient for a system
with ~13,000 atoms. However, as a downside, it can
only mimic the flickering of noncovalent bonds start-
ing from a single conformational state of the biomo-
lecule  such  that  influences due to  gross
conformational changes will be missed. Thus, the
ENT™¢ approach should be most suitable for com-
paring biomolecular systems where major conforma-
tional changes are not expected.

ENT using Mean Field Landau Theory

Jacobs introduced DCM (see Constraint Counting:
The Pebble Game Algorithms), which is similar in
spirit to the ENT™C approach.!? In DCM, thermal
fluctuations in constraint networks are modeled by
fluctuating constraints at finite temperature without
having to generate atomic coordinates for each con-
formation. To this end, mean field probabilities of
bond and torsion constraints are used to calculate
the mean field Landau free energy over an ensemble
of constraint networks generated from Monte Carlo
sampling. Covalent interactions are treated as
quenched distance constraints because they never
break under physiological conditions and thus do not
contribute to thermal fluctuations. In contrast, non-
covalent interactions frequently break and (re-)form.
Each fluctuating constraint in DCM is assigned an
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enthalpy and entropy contribution in order to repro-
duce heat capacity curves of biomolecules from
experiments.''" The sequence of how fluctuating
constraints are placed is based on the assignment of
entropy from strongest to weakest."'” Constraints
are recursively added one by one to the constraint
network until the structure is rigid. The DCM ensem-
ble generation procedure was about a billion times
faster than MD simulations, when it was introduced
in 2005.%¢ However, similar to ENTTYC, it can only
mimic the flickering of noncovalent bonds such that
influences due to gross conformational changes will
be missed.

Generation of Effective Constraint
Networks

The virtual pebble game (VPG) is another ensemble-
based rigidity analysis approach, similar to ENT™
and DCM."° It uses a single input structure for
which an effective constraint network is calculated
from a Monte Carlo-derived ENT, that is, the possi-
ble number of constraints that can form between a
pair of nodes over the ENT is replaced by the aver-
age number. The effective network is thus considered
having weighted edges, where the weight of an edge
quantifies its capacity to absorb DOF. The VPG is
then interpreted as a flow problem on this effective
network.'”® Application of the VPG on a set of
272 nonredundant protein structures vields rigidity
characteristics that are comparable with ensemble-
averaged results obtained with the regular pebble
game.” However, the VPG suppresses fluctuations
of network rigidity and, hence, tends to be less accu-
rate at the rigidity percolation threshold where most
of these fluctuations occur.'®! This may be a draw-
back when analyzing biomolecules that are margin-
ally stable,! as their network states are close to the
rigidity percolation threshold.

A distantly related approach was presented by
Mamonova et al.,” where an effective network is
generated based on the time-dependent behavior of
noncovalent bonds in the course of short (8 nanose-
conds long) MD simulations. Subsequently, a single
constraint network is constructed as input for rigidity
analysis, considering only the most frequent nonco-
valent interactions.”’ Alternatively, the lifetime of
noncovalent interactions can be derived from H/D
exchange data as shown by Sljoka et al.'*' Depend-
ing on their strength and lifetime from the NMR
measurements, hydrogen bonds are modeled with a
different number of bars ranging from 1 to 3 to
improve the input information for creating the con-
straint network in FIRST."*! The drawback of the
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last two methods is that they either require ensemble
information from either a computationally expensive
MD simulation or H/D exchange NMR experiments.

APPLICATIONS

Since FIRST was released, numerous studies on the
flexibility and rigidity of biomolecules have been per-
formed. Initially, these studies were primarily done
for validation; subsequently, the different approaches
described above were broadly used to foster our
understanding of biomolecular structural stability
and function.

Single-point Rigidity Analysis on
Biomolecules

In the most direct way, constraint network represen-
tations of biomolecules can be analyzed as ‘single-
points’, that is, the constraint network is derived
from a single input structure, and no constraint dilu-
tion simulation is performed. The single-point studies
can be used to investigate biomolecular function or
changes in biomolecular flexibility and rigidity due to
ligand binding or mutations.

The accuracy of single-point analysis strongly
depends on the placement of noncovalent constraints
in the network representation. In particular, the accu-
rate placement of hydrogens, which are generally not
available from X-ray diffraction experiments, is
important for evaluating the inclusion of hydrogen
bonds in the constraint network.®” To this end,
Thorpe et al.** compared hydrogen positions and
resulting hydrogen bonds of five different trypsin
structures from neutron diffraction experiments with
those resulting from hydrogens placed by the pro-
gram Whatlf."** At a cutoff E_,, = -0.6 kcal mol™',
which corresponds to a network state at room tem-
perature, only 6% of the hydrogen bonds were
assigned differently in both methods. Alternatively,
methods such as REDUCEY™? or the H++ web
server'** have been used to prepare biomolecules for
rigidity analyses.””8-1"*

Jacobs et al. applied single-point rigidity analy-
sis by FIRST to datasets of ligand-bound HIV prote-
ase, dihydrofolate reductase, and adenylate kinase
structures.®® The computed flexibility and rigidity
characteristics captured much of the functionally
important conformational flexibility observed experi-
mentally.*” In an extensive study, Tan and Rader
applied FIRST to analyze the rigidity of a dataset of
22 HIV-1 gpl20 structures,'” By studying altered
flexibility and rigidity characteristics due to strain
variation, stabilizing mutations, and binding events,
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the authors identified stable regions in gp120 that
could serve as targets for vaccine design and drug
discovery.'® Along these lines, Metz et al. showed
that the single-point analysis on the protein—protein
interface of interleukin-2 correctly identifies regions
as flexible that are required for opening a transient
pocket.'** Recently, Raschka et al. used rigidity anal-
ysis to measure the relative interfacial rigidity of
docking poses from small-molecule ligands in a set of
19 diverse protein structures.'*® The authors stressed
the importance of interfacial rigidification of the
native binding mode in protein-ligand complexes,
which, when used as scoring method for discriminat-
ing near-native poses from decoy poses in docking
experiments, performs competitively to commonly
used scoring functions. Information from a static
single-point analysis has also been used by Thorpe
et al. to study the dvnamics of HIV-1 protease by
unbiased Monte Carlo sampling on flexible
regions.”™ Based on this result, several sampling
methods emerged for exploring a biomolecule’s con-
formational space; these are reviewed in section:
Rigidity Analysis to Coarse-grain Biomolecules Prior
to Conformational Sampling.

The overall performance of rigidity analysis by
FIRST has been demonstrated by Hespenheide
et al.,®! where the structural rigidity of the penta-
meric and hexameric substructures of the cowpea
chlorotic mottle virus (CCMV) protein capsid was
analyzed. The considerable size of the viral capsid
(~280 A diameter) and the symmetrical, repetitive
structure required a novel network representation,
the body-and-bar network, together with a more effi-
cient 3D pebble game algorithm (see Constraint
Counting: The Pebble Game Algorithms).®! The rigid
cluster decomposition showed that the pentameric
substructure forms a large central rigid cluster, able
to form a sturdy capsid to protect the CCMV. When
another subunit is added, the hexamer loses its rigid-
ity, and capsid formation is inhibited.*'

Single-point rigidity analysis performed on sin-
gle input structures may be misleading because even
subtle conformational changes between input struc-
tures can have pronounced effects on the results.®”
This sensitivity problem can be overcome by single-
point rigidity analyses on structural ensembles. Along
these lines, Gohlke et al. generated conformational
ensembles from MD trajectories of Ras, Raf, and
Ras/Raf.°® Averaging the results from rigidity analy-
sis over the structural ensembles, the authors showed
that stabilization upon Ras/Raf complex formation is
not locally restricted but rather extends to regions
that do not make any direct interactions with the
respective binding partner. This finding manifested
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the long-range aspect of rigidity percolation in bio-
molecules, which is also important for investigating
allosteric signaling (see Analysis of Allosteric Cou-
pling). In an alternative approach, Mamoenova et al.
computed an average constraint network, based on
the persistence of noncovalent interactions along MD
trajectories.”’ In the case of barnase, the predicted
stability characteristics compared well with NMR
experiments but showed limitations when the system
underwent a conformational change, for example,
upon ligand binding, as demonstrated for GluR2.”'
As a further alternative, an average constraint net-
work can be directly generated from NMR ensem-
bles.’?! Slioka and Wilson showed that results
obtained from a rigid cluster decomposition on such
a network are in good agreement with experimental
H/D exchange data.!??

The DCM allows for sampling ensembles of
constraint networks at finite temperature starting
from a single input structure (see Distance Constraint
Model).""" DCM has been applied to study the corre-
lated flexibility within the active site of class A,
B,1%% and C% families of p-lactamases. For all three
classes the authors could show that the backbone
flexibility is highly conserved across the families,
while the cooperativity correlation, which indicates a
residue’s pairwise mechanical coupling within the
structure, is, at least partially, conserved in the active
site across members of the C class family.'*® Follow-
ing the idea of using structural ensembles from MD
simulations as input,®® DCM has been applied to
characterize the effect of stabilizing mutations within
an antibody single chain Fv (scFv) fragment of the
anti-L'TBR antibody.'*” 'The study demonstrated that
local mutational perturbation often leads to distant
altered stability characteristics.

In order to study biomolecular thermostability,
Livesay and Jacobs used DCM (see Distance Con-
straint Model) to introduce the notion of quantitative
stability/flexibility relationships (QSFR} and study
enthalpy-entropy  compensation in homologous
meso- and thermophilic RNAse H structures.”® The
authors found that the thermophilic protein is more
stable than its mesophilic counterpart at any given
temperature. However, the local stability profiles are
markedly similar for the homologs at appropriately
shifted temperatures, which is in agreement with H/D
exchange experiments and the ‘principle of corre-
sponding states’. Verma et al. then used DCM to
analyze melting points of human c-type lysozyme
and 14 variants."'” The DCM results showed that
changes in human c-type lysozyme flexibility upon
mutation are frequent, large, and long-ranged. With
this retrospective study, it was demonstrated that
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DCM can be a viable predictor for the relative stabil-
ity of protein variants. In another retrospective study,
Li et al. analyzed the thermodynamic stability and
flexibility characteristics of a dataset consisting of the
variable domain (VL), the scFv fragments, and the
fragment antigen-binding (Fab) fragments with
DCM.'® In this work, DCM was extended to ana-
lyze incomplete thermodynamic data. This develop-
ment allowed high throughput QSFR studies in a
large data set of antibody fragments and complexes.

Single-point Rigidity Analysis on RNA and
Nucleic Acid-Protein Complexes

While most rigidity analyses are performed on pro-
teins, the approach can also be used to study RNA
structures and nucleic acid—protein complexes. Wang
et al. applied rigidity analysis to the ribosome to
investigate the flexibility in the ribosomal subunits.™
To do so, the constraint definition for proteins was
only slightly modified (see Modification of the Con-
straint Network Representation for RNA Structures).
The authors compared FIRST and CG-based elastic
network models (ENM), and observed that both
methods successfully predicted the flexibility of func-
tional key areas of the ribosome subunits. A study by
Fulle et al. focused on the exit tunnel within the large
ribosomal subunit, for which FIRST with an adapted
RNA parameterization (see Modification of the Con-
straint Network Representation for RNA Structures)
was applied.®* The results revealed a sophisticated
interplay between the static properties of the riboso-
mal exit tunnel and its functional role in cotransla-
tional processes. The authors showed that
considering flexibility characteristics of the antibiotics
binding sites within the tunnel is required for
explaining the observed binding selectivity of antibio-
tics. '™ Further applications of rigidity analysis on
RNA relate to the natural coarse-graining of the
structure, which is used for setting up simulations to
generate conformational ensembles (see Rigidity
Analysis to Coarse-grain Biomolecules Prior to Con-
formational Sampling). Prominent examples dealt
with the creation of molecular-replacement search
models for nucleic acids,'*' and conformational sam-
pling of the SAM-I riboswitch aptamer domain'*
and the HIV-1 TAR RNA.”

Rigidity Analysis to Coarse-Grain
Biomolecules Prior to Conformational
Sampling

The extent of conformational changes in biomole-
cules ranges from fast atomic fluctuations on the
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pico- to nanosecond timescale to domain movements
on the micro- to millisecond timescale.'** Despite
recent major improvements, modeling large confor-
mational transitions in biomolecules by MD simula-
tions is still computationally costly. As a more
efficient alternative, CG simulation methods have
emerged, which work on systems with a reduced
number of DOF. Frequently, the coarse-graining is
based on a per-residue or per-secondary structure
level; coarse-graining based on molecular shape is
another possibility."**'" Alternatively, rigid regions
identified by rigidity analysis within a biomolecule
provide a very natural way of coarse-graining.'*
The constrained geometric simulation method
FRODA™ and its predecessor ROCK (Rigidity Opti-
mized Conformational Kinetics)'*” explore the geo-
metrically accessible conformational space of a CG
biomolecule through diffusive motions. ROCK gen-
erates new biomolecular conformations by random
movements within flexible regions and satisfying ring
closure equations, whereas FRODA makes use of a
more efficient algorithm where rigid regions within
the biomolecule are replaced by ‘ghost templates.’
Overall, both approaches result in random walks on
energy landscapes that are flat where bond and angle
constraints are fulfilled, and infinitely high elsewhere.
FRODA has been used for studying complex move-
ments of membrane ion channels'**** and corre-
lated motions between functionally relevant elements
in a pigment—protein complex,*? monitoring the
intrinsic flexibility of myosin in the actin-attached
and actin-detached state,”! protein—protein docking
involving multiple conformational changes,"** identi-
fying the opening of transient pockets in protein—
protein interfaces,'®® investigating the essential
dynamics of unbound and bound HIV-1 TAR RNA
structures, > and fitting of X-ray structures to cryo-
EM maps of GroEL.">? A downside of FRODA is
that generated conformational ensembles are not
sampled from a thermodynamic ensemble. Accord-
ingly, FRODA was combined with MD simulations
to search for and refine native-like topologies of
small globular «-, p-, and wp-proteins.”>?
CONCOORD,"”” and its successor
tCONCOORD,"®  are other geometry-based
approaches that generate new conformations by sat-
isfying distance constraints derived from experimen-
tal structures of biomolecules. However, they do not
apply a CG biomolecule representation, and thus,
are not further discussed here.

As the FRODA approach lacks any directional
guidance for sampling the biologically relevant con-
formational space, reaching a certain distance # * d
with steps of a given length d requires #” such steps,
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which limits the sampling particularly in those cases
where biomolecules are very flexible. Information
about directions of biomolecular motions can be
derived from NMA,"” which has been used to
study large-amplicude motions in biomolecules for
decades.”™>"*%"*?  Combining directional guidance
from harmonic analysis and atomistic simulations
led to MD/NMA hybrid methods,'“*~'* where col-
lective motions are amplified along normal mode
directions. ENM have emerged as efficient alterna-
tives to NMA; here, simplified force-fields'®® and
CG biomolecular representations are used.”"'¢+170
Integrating all these ideas led to the normal mode-
based geometric simulation approach NMSim,
which is a three-step protocol for multiscale model-
ing of protein conformational changes.'”' Initially,
static properties of the protein are determined by
decomposing the molecule into rigid clusters and
flexible regions using FIRST.* In a second step,
dynamical properties of the molecule are revealed
using an ENM representation of the coarse-grained
protein (RCNMA approach).”"'”? In the final step,
the idea of constrained geometric simulations of dif-
fusive motions in proteins”® is extended in that new
protein conformations are generated by biasing
backbone motions toward directions that lie in the
subspace spanned by low-frequency normal modes.
The generated structures are then iteratively cor-
rected regarding steric clashes and violations of con-
straints for covalent and noncovalent bonds. In
total, when applied repetitively over all three steps,
the procedure efficiently generates a series of stereo-
chemically correct conformations that lie preferen-
tially in the subspace spanned by low-frequency
normal modes.!”! Recently, NMSim has been used
to sample the large-scale domain motions during
phosphate group transfer in the pyruvate phosphate
dikinase (PPDK}. From this, an unknown intermedi-
ate state of PPDK has been identified, which was
confirmed by X-ray crystallography.'” In connec-
tion with guantitative FRET studies and integrative
structure modeling, NMSim has been used for unbi-
ased and FRET-guided generation of structural
ensembles.'™ NMSim is accessible via a web server
at http://cpclab.uni-duesseldorf.de/nmsim.'” In a
very similar approach subsequently introduced,
FRODA simulations were guided by low-frequency
modes derived from NMA.'”® The approach was

successfully applied in studying protein folding'””
and conformational transitions in
biomolecules.! 7580

Another limitation of the original FRODA
approach is the fixed constraint topology, that is,
noncovalent constraints cannot break or (re-)form
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during simulations, which limits the extent of confor-
mational transitions that can be sampled. FRODAN,
a recent re-implementation and extension of
FRODA, models noncovalent interactions as
maximum-distance constraints that become breaka-
ble if they exceed a certain amount of strain, which
has been successfully used in targeted simulations
between two known conformational states.”

Similar in spirit to the FRODA method are
approaches that combine constrained geometric
simulations with concepts from robotics motion
planning'®' or tensegrity principles.'® The kino-
geometric conformation sampler (KGS) is a robotic-
inspired, Jacobian-based method for the deformation
of interdependent kinematic cycles.!®* Kinematic
cycles are connected circular components in biomole-
cules spanned by (non)covalent interactions. The
KGS has been used for sampling the activation path-
way of G alone and in complex with a GPCR.'®* A
variant for RNAs (KGSgna) correctly reproduced the
conformational landscape of noncoding RNA mole-
cules in agreement with NMR experiments.'®>1%6 Tn
addition, KGSpna was used to identify transient,
exited states of the HIV trans-activation response ele-
ment.'®® The EASAL (Efficient Aclasing, Analysis,
and Search of Molecular Assembly Landscapes)
approach is an example where conformations are
sampled based on tensegrity principles. Here, struc-
tural systems are established where a set of discontin-
uous compressive components interacts with a set of
continuous tensile components to define a stable vol-
ume in space.’® EASAL has been developed for
exploring and analyzing high dimensional configura-
tion spaces of biomolecular assemblies and was
applied for studying intermonomer interactions of
viral capsid assembly'®® and sampling the assembly
landscape of two transmembrane helices.'®

Rigidity Analyses on Perturbed Constraint
Networks

The above rigidity analyses were performed on con-
straint networks in the ‘ground state,” that is, as gen-
erated from a given biomolecule conformation.
Comparing perturbed networks to a ‘ground state’
network yields additional information in terms of the
effect of the perturbation on the rigidity characteris-
tics. Perturbations can affect the constraint network
directly, for example, due to removing constraints,
inserting a mutation, binding of a ligand, or indi-
rectly, for example, in terms of modeling the influ-
ence of temperature on the presence or absence of
noncovalent interactions.
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Constraint Dilution Simulations to
Investigate Protein (Un-)Folding

Information on the heterogeneity of biomolecular sta-
bility is obtained by monitoring the decay of network
rigidity along a constraint dilution trajectory (see
Analyzing Network States along Constraint Dilution
Trajectories). The gradual removal of noncovalent
interactions to generate such a trajectory can be con-
sidered a repetitive network perturbation. In 2002,
Rader et al. used FIRST and such a perturbation
scheme to describe the rigid-to-flexible transition
upon the (simulated) unfolding of 26 structurally and
functionally ~ different  proteins.> The authors
observed that the phase transitions of all proteins
from an overall rigid to a flexible state occur at a simi-
lar mean coordination of the atoms and are further-
more analogous to phase transitions found in
network glasses.®® This indicates that, despite their
diverse architectures, proteins and network glasses
reveal a universal percolation behavior. In two other
studies, constraint dilution trajectories generated by
FIRST were used to identify folding cores in protein
datasets.®™"" A folding core was defined as the most
stable region along the constraint dilution trajectory
involving at least two secondary structures.®” The
identified folding cores from both studies were com-
pared with experimentally identified folding cores
from H/D exchange experiments, which yielded a
very good agreement®” and an enhancement over ran-
dom correlation.” Subsequently, Rader et al. used
FIRST for analyzing folding cores in rhodopsin
(Table 1).""" For this transmembrane protein, the
constraint network definition originally introduced
for soluble proteins was used. The authors showed
that the stable core of the protein contains residues
that cause misfolding upon mutation.

Constraint Dilution Simulations to

Investigate Protein Thermostability

Monitoring the decay of network rigidity along a
constraint dilution trajectory (see Analyzing Network
States along Counstraint Dilution Trajectories) helps
to improve the understanding of the relationship
between biomolecular structure, activity, and ther-
mostability, which has become important for rational
protein  engineering."”*'"*  Biomolecular thermo-
stability can have a thermodynamic or kinetic ori-
gin.'”* In all studies reported below, rigidity analysis
was used to investigate only the effect of mutations
on the folded state. This was done because rigidity
analysis cannot account for the time-dependency of

processes,”’ and it is very challenging to generate

© 2017 John Wiley & Sons, Ltd
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TABLE 1 | Selected Applications of Rigidity Analysis to Biomalecules

Rigidity theary for biomelecules

Author Data Set/Protein Application

Experimental Data

Computational Data

Single-point rigidity analysis on proteins

Jacobs et al.®° HIV-1 protease, adenylate Analyze the flexibility of
kinase, and proteins
dihydrofolate reductase

Hespenheide CCMV protein capsid

et al.'
Gohlke et al %

Study rigidity of capsid
proteins

Determine changes in
flexibility upon protein—
protein complex
formation

H-Ras and C-Raft, apo
states and protein-
protein complex

Mamonova et al.>! Bamase and GIluR2 Compare stability
characteristics with NMR

data

Sljoka and Acylphosphatase Compare stability
Wilson'?’ characteristics with H/D
exchange data
Li et al."'8 One VL, three scFv and  Analyze thermodynamic
five Fab antibody stability and flexibility of
fragments antibody fragment
complexes
Vermaetal."®  Wild type human c-type  Predict the stability of a

lysozymes, 14 variants series of variants

with point mutations

Thermal mobility (B-factor)
from X-ray
crystallography

X-ray crystal structure

X-ray crystal structures

X-ray crystal structures and
NMR ensemble data

NMR structures and H/D
exchange data

Heat capacity curves

Experimental heat capacity
curves £,

FIRST, flexibility index f;

FIRST, rigid cluster
decompasition

FIRST, rigid cluster
decomposition using MD-
based ensembles

FIRST, rigid cluster
decomposition from
average constraint
network based on MD
ensembles

FIRST, rigid cluster
decompasition and H/D
exchange profile

DCM, cooperativity
correlation CC

DCM, total conformational
entropy Seons backbone
flexibility index F,
cooperativity correlation
cC

Single-point rigidity analysis on RNA and nucleic acid—protein complexes
Wang et al > Ribosomal subunits Investigate flexibility and

function of the ribosome,

compare FIRST and ANM

Fulle and Gohlke® Ribosomal exit tunnel Study functional role in

cotranslational processes

X-ray crystal structures

X-ray crystal structures

FIRST, rigid cluster
decomposition and
anisotropic network
model (ANM)

FIRST, rigid cluster
decomposition using
RNA parameterization

Rigidity analyses on perturbed constraint networks
Rader et al.5 26 proteins with different Loss of structural stability
CATH architecture’ in biomolecules

Rader et al."® Rhadopsin Analyze folding cores in

biomolecules

Unfolding behavior of
network glasses upon
melting

Folding cores predicted by
H/D exchange NMR
experiments

FIRST, floppy mode density
¢

FIRST, rigidity order
parameter £, FIRST
dilution plots

© 2017 John Wiley & Sons, Ltd
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Author

Data Set/Protein

Application

Experimental Data

Computational Data

Investigating protein thermostability
Radestock and
Gohlke™

Rader®

Radestock and
Gohlke'

Rathi et al.'®?

Dick et al."™!

20 pairs of homologous
proteins from
mesophilic and (hyper-)
thermophilic organisms

Rubredoxin structures
from the
hyperthermephile
P. furiosus and
mesophile
C. pasteurianum

20 pairs of homologous
proteins from
mesophilic and (hyper-)
thermophilic organisms

Five citrate synthase
(CS) structures over a
temperature range from
37°Cto 100°C

Orthologs from
psychrophilic,
mesophilic and
hyperthermophilic 2-
desoxy-o-ribose-5-
phosphate aldolase
(DERA)

Analyze the shift in
thermostahility of pairs
of orthologous proteins
and identify weak spots
in biomolecules

Analyze thermostability and
folding cores, which are
responsible for
hiomolecular stability
under extreme
environmental
conditions.

Analyze flexibility
conservation of
substrate-binding pockets
in enzymes

Study thermostability
within a series of
orthologous CS structures
and compare predicted
weak-spots

Analyze influence of dimer
interface on
thermastability and
flexibility on substrate
access

Optimal growth
temperatures of the
organism or
experimentally
determined melting
temperatures

Folding cores from H/D
exchange NMR studies,
mutation experiments

Same dataset as in
Radestock and Gohlke
2008, but using only
one pair of structures for
each protein family

Optimal growth
temperatures of the
organism or
experimentally
determined melting
temperatures

First crystal structuras of
psychropilic DERASs,
mutation experiments,
generating monomeric
DERAs, activity assays

CNA, rigidity order
parameter P, cluster
configuration entropy
Heype2

FIRST, rigidity order
parameter P, cluster
configuration entropy
Hyyper, FIRST dilution
plots, largest rigid cluster
propensity Py,

CNA, stability maps r¢;

CNA, rigidity order
parameter P, cluster
configuration entropy
Heypez

CNA, cluster configuration
entropy Hypez

Prospective application to improve protein thermostability
Rathi et al.'%®

Rathi et al.'?®

16 variants of lipase A
from B. subtilis

Twelve variants of lipase A
from B. subtilis

Validate thermostability
prediction for highly
similar variants

Identify weak spots and
predict mutations
increasing thermostability

Experimentally determined
melting temperatures

Experimentally determined
melting temperatures

CNA, percolation index p;
cluster configuration
entropy Hypez median
stability of rigid contacts
FC jneighbor Clustering of
unfolding pathways

CNA, percolation index p;
cluster configuration
entropy Hypez

Analysis of aflosteric coupling

Mottonen et a

IES

Protein CheY

Explore allosteric effect
across protein families

X-ray crystal structures and
melting temperatures

which are used for fitting

parameters in DCM due
to missing heat capacity
curves for CheY

DCM, 4F! (flexibility index)
and 4CC (cooperativity
correlation)

Verma et al.'"’ Wild type human c-type  Investigate changes in Mass spectrometry, H/D DCM, backbene flexibility
lysozymes, 14 variants protein flexibility upon exchange NMR index Fi, cooperativity
with point mutations single point mutations experiments, mutation correlation CC, B-factor
{conitinued overleaf )
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TABLE 1 | Continued

Rigidity theary for biomelecules

Author Data Set/Protein Application

Experimental Data Computational Data

Hanke and Gohlke Aptamer domain of the
(unpublished) guanine-sensing
riboswitch

function and the

Investigate aptamer

allosteric pathway

studies, differential
scanning calorimetry

X-ray crystal structure,
NMR data on hydrogen
bonds

FIRST, rigid cluster
decompaosition

through the riboswitch

" CATH architecture: alpha, beta, and mixed alpha and bera.

realistic structural models of the unfolded state of a
protein.'”® Still, applying rigidity analysis that way
provides a wide range of applicability for studying
thermostability because increased structural rigidity
is in 60% of the cases responsible for increased
thermostability. '’

Radestock et a analyzed protein thermo-
stability of pairs of homologous proteins from meso-
philic and thermophilic organisms (Table 1) using
CNA. The authors described the macroscopic perco-
lation behavior and predicted phase transition tem-
peratures (T},) by monitoring the cluster configuration
entropy (H) and the rigidity order parameter (P} (see
Global and Local Indices for Characterizing Biomole-
cutlar Stability) during constraint dilution simulations.
The comparison between predicted T, values and
optimal growth temperatures of the corresponding
organisms (T,,) revealed that in two-thirds of the
pairs, a higher T, was predicted for the thermophilic
than for the mesophilic homolog.” At the micro-
scopic level, the authors identified structural features
from which a destabilization originates (‘weak spots’),
which is very helpful for guiding mutation experi-
ments when prospectively engineering thermostability
(see below). From both global and local stability char-
acteristics the authors provided direct evidence for the
‘principle of corresponding states,” according to
which mesophilic/thermophilic homologs have similar
flexibility and rigidity characteristics at the respective
Toe--"" In addition, by monitoring the local distribu-
tion of flexible and rigid regions using stability maps
rey; (see Global and Local Indices for Characterizing
Biomolecular  Stability), adaptive mutations in
enzymes were shown to maintain the balance between
global (structural) stability, in favor of overall ther-
mostability, and local flexibility, in favor of activity,
at appropriate enzyme working temperatures; this
important information provides guidelines for what
(not) to mutate in prospective studies.'* Later,
Rader” applied FIRST in a similar manner to analyze
structural mechanisms behind thermostability differ-
ences in two homologous structures of rubredoxin
(Table 1).*° The obtained results supported the

] 14,75
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‘principle of corresponding states’ in biomolecular
thermostability. On a local level, the study depicted
differences in structural stability of the homologs,
which agreed with protection factors from H/D
exchange experiments.”

Extending these studies to series of protein var-
iants, Rathi et al. studied the relationship between
structural rigidity and thermostability of citrate synth-
ase from five different species with T, ranging from
37°C to 100°C (Table 1).'"%* CNA was applied to con-
formational ensembles generated by MD simulations,
The authors obtained a good correlation (R* = 0.88)
between predicted T, and experimental T,,,. This find-
ing validates that CNA is able to quantitatively
discriminate between less and more thermostable pro-
teins even within a series of orthologs. Furthermore,
from a local point of view, the study revealed that
structural weak spots predominantly occur at sequence
positions with a high mutation ratio. Dick et al.
applied CNA to study the thermal adapration of
2-deoxy-p-ribose-5-phosphate aldolase (DERA) origi-
nating from psychrophilic to hyperthermophilic organ-
isms (Ty, =8 - 100°C).""" The comparison between
predicted T, and experimental T, revealed a very
good correlation (R? = 0.97). Interestingly, the authors
identified, and validated by experiment, that interface
stability contributes to thermostability in the dimeric
DERA structures from (hyper)thermophilic organisms.
This may be exploited as a design principle when
engineering thermostability in multimeric proteins.

Rigidity Analysis on Structurally Perturbed
Constraint Networks

So far, perturbations were performed directly on the
network by gradually removing constraints associated
with noncovalent interactions. Extending the pertur-
bation idea to structural effects, for example, due to a
mutation or ligand binding, allows for testing the
influence due to adding/removing constraints to/from
the network without actually changing the conforma-
tion of the ‘ground state’ structure. This provides an
excellent means for investigating alteration in
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biomolecular stability upon mutations or binding
events in a computationally efficient manner.

Mutation Influences on Unfolding Free
Energies

In 2011, KINARI was extended with KINARI-
Mutagen (see KINARI), allowing for excision muta-
tion studies, essentially mutating (perturbing) a residue
of choice to glycine.'® Here, all noncovalent interac-
tions belonging to the side-chain of the mutated residue
are removed from the constraint network. In a first
case study, the authors showed that KINARI-Mutagen
was able to identify functionally critical residues in
crambin based on altered stability characteristics, even
though the residues are partally exposed to the solvent
accessible surface. In a second case study, predicted
changes in stability characteristics upon mutating resi-
dues in T4 lysozyme correlate with experimental free
energies (AAG) of unfolding. Recently, an ensemble-
based approach has been implemented in CNA to pre-
dict changes in the free energy of biomolecular stability
(C. Pfleger, H. Gohlke, unpublished results). The
approach combines constraine dilution simulations
with structural perturbations due to in silico alanine
mutations. For a set of 13 single and double mutation
variants of eglin ¢, the predicted free energy changes
yield a very good correlation with those from chemical
denaturation experiments. Remarkably, almost all
mutations involved changes from valine to alanine,
demonstrating that it is possible to detect mutation
effects in a position-dependent manner even if the type
of mutations are similar or identical.

Prospective Application to Improve Protein
Thermostability

With the aim to further develop CNA for prospective
studies on  improving  thermostability,  Rathi
et al. analyzed the thermodynamic stability of a set of
16 variants of lipase A from Bacillus subtilis.""® Eight
variants were generated from the wild type structure of
lipase A by solely altering the mutated residues while the
orientation of neighboring residues was kept unchanged.
Three results stood out from this analysis. First, (relative)
thermodynamic stability was successfully predicted for
variants that differ by only 3-12 mutations from the
wild tvpe. Second, a measure for the similarity/dissimilar-
ity of unfolding pathways of variants was introduced for
explaining false thermostability predictions (Figure 8).
Third, the median stability of rigid contacts 7z, ueighbor
was introduced as a new local measure for predicting
thermodynamic stability. 7¢; ueienbor represents the
chemical potential energy due to noncovalent bond-
ing, obtained from the CG, residue-wise network rep-
resentation of the underlying protein structure.
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Additionally, the recently developed ENT™N¢
approach'® (sece ENT from Fuzzy Noncovalent Con-
straints) was used for robust rigidity analysis, which
makes it unnecessary to perform computationally
demanding MD simulations for each variant. In a
subsequent prospective study, Rathi et al. described a
strategy to predict amino acid substitutions optimal
for thermostability improvement; the predictions were
experimentally validated (Table 1).'2 The strategy
combines a structural ensemble-based weak spot pre-
diction of the wild type protein by CNA, filtering of
weak spots according to sequence conservation, com-
putational site saturation mutagenesis, assessment of
variant structures with respect to their structural qual-
ity, and screening of the variants for increased struc-
tural rigidicy by ENTfN“based CNA. The strategy
was applied to predict single-point variants of lipase
A from Bacillus subtilis and yielded a success rate of
25% (60% when mutations from small-to-large resi-
dues and those in the active site were excluded) with
respect to experimentally validated mutations that
lead to increased thermostability. Notably, an
increase in thermostability by 6.6°C compared to wild
type due to a single mutation was found.

Analysis of Allosteric Coupling

Allostery is the process by which biomolecules transmit
the effect of binding at one site to another, often distal,
functional site.2% Conventionally, models that explain
allostery involve a conformational change upon binding
of an allosteric effector molecule.”'” Over the last
decades, the view of allostery has been extended to cover
the role of entropy, which can occur in the absence of
conformational changes. > Owing to the nonlocal char-
acter of rigidity percolation, adding constraints to one
site of the network, that is, by binding of an allosteric
effector, can affect the stability of sites all across the net-
work." Such an effect has first been demonstrated in the
context of rigidity analysis on biomolecules for the
protein—protein complex Ras/Raf,*® where the stabiliza-
tion of the binding partners also affected regions that do
not make any direct interactions with the protein—
protein interface. Inspired by this observation, a compu-
tationally highly efficient approximation of changes in
the vibrational entropy {(4S,) upon binding to biomole-
cules has been introduced recently, based on rigidity the-
ory."*? Here, AS,, is estimated from changes in the
variation of the number of F with respect to variations in
the constraint networks’ coordination number. Com-
pared to AS,;, computed by NMA as a gold standard,
this approach vields significant and good to fair correla-
tions for datasets of protein—protein and protein—small-
molecule complexes as well as in alanine scanning. This
approach may thus serve as a valuable alternative to

© 2017 John Wiley & Sons, Ltd
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FIGURE 8 | Application of rigidity theory to investigate protein thermostability. (a) Correlation between 7c ; neighson @ local measure for
predicting thermodynamic stability, and experimental thermostabilities (T,,) for the six wild type crystal structures (empty squares) and thirteen
variants of the Bacillus subtilis lipase A. For the six wild type crystal structures, the resulting mean € ; neighsor IS shown as a horizontal bar.
Experimental values were taken from Refs 197-199. Error bars depict the standard error in the mean. (b) Stability map of the variant 6B, T, of
which is 6.6 K higher than that of the wild type. A red/blue color shows that a rigid contact in the variant is more/less stable than in the wild type
(see color scale). The upper triangle shows differences in stability values for all residue pairs, and the lower triangle shows differences in stability
values only for residue pairs that are within 5 A of each other. Secondary structure elements are indicated on hoth abscissa and ordinate and are
labeled: «-helix {red rectangle), B-strand (green rectangle), loop (black line}. Arrows represent the mutation positions with respect to the wild type
sequence. (¢, d) Structures of the variants 6B (c) and 1-14F5 (d); T, of 1-14F5 is 2.1 K higher than that of the wild type. Common mutations in
6B and 1-14F5 are shown in magenta, unique mutations in 6B are shown in green. The differences in the stability of rigid contacts for residue
neighbors is displayed by sticks connecting C,, atoms of residue pairs colored according to the scale shown in panel (b); only those contacts that
are stabilized by > 4 K or destabilized by > 3 K are shown for clarity. Figure adapted from Ref 108.

NMA-based A4S,
calculations.

In an extensive study, DCM ({see Distance Con-
straint Model) was applied on three bacterial chemotaxis
protein Y (CheY) proteins to explore the allosteric
response across protein families.”” A mechanical pertur-
bation method (MPM) was introduced to simulate the

computation in free energy
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binding of ligands by adding extra constraints to a cer-
tain site in the constraint network. The authors con-
cluded that perturbed residues with large changes in
stability characteristics are likely involved in allosteric
signaling. From this, important residues for allosteric sig-
naling were identified, with > 50% of them only occur-
ring in a single ortholog. This finding demonstrates the
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complex nature of allostery and might indicate that the
conservation of allosteric mechanism exists only across
short evolutionary distances. In a second study, the
MPM was applied to identify putative allosteric sites in a
set of six single chain-Fv fragments of the anti-lympho-
toxinp receptor antibody.”™ The findings from this
study on monoclonal antibodies indicate that the allo-
steric response is sensitive to mutations through changes
in the hydrogen bonding network, and results from
rigidity analysis support what is found in practice when
redesigning monoclonal antibodies either for function
and/or thermodynamic stability.

Recently, an ensemble-based perturbation
approach has been introduced for gaining a deeper
structure-based understanding of the relationship
berween changes in static properties and allosteric sig-
nal transmission in  biomolecules (C. Pfleger,
H. Gohlke, unpublished results). Applying a free
energy perturbation approach to results of rigidity
analysis (see Mutation Influences on Unfolding Free
Energies), free energies of cooperativity and pathways
of allosteric signaling are computed. Notably, confor-
mational changes of the biomolecule are excluded in
this approach by definition in that apo conformations
are generated by removing all constraints associated
with ligands from the network of the holo structures
(perturbation). The approach was successfully applied
to two systems, lymphocyte function-associated anti-
gen 1 (LFA-1)2%* and protein tyrosine phosphatase 1B
(PTP1B),2°® showing ligand-based K- and V-type allos-
tery, respectively. Upon perturbation, altered rigidity
characteristics revealed long-range effects in both sys-
tems. Remarkably, clusters of residues were identified
in both systems that form continuous pathways spread-
ing from the allosteric site to the orthosteric site and to
regions known to be important for protein function
(Figure 9(a)). Finally, predicted free energies of coop-
erativity for binding of the allosteric and orthosteric
ligands to LFA-1 revealed a nonadditive stabilization in
agreement with the experimentally confirmed mechan-
isms of negative and positive cooperativity 2°72%8

As to nucleic acid systems, Fulle et al. proposed an
allosteric signal transmission pathway within the large
ribosomal subunit from the exit tunnel region to the pep-
tidyl transferase center based on a hierarchy of regions
of varying stabilities (Figure 10).** That is, signals are
transmitted through structurally stable regions by indu-
cing a conformational change in a domino-like manner.
Two independent experimental studies later confirmed
the mechanical coupling in the ribosomal tunnel
region.”” " In another study, Hanke et al. used FIRST
with the RNA parameterization”™ (see Modification of
the Constraint Network Representation for RNA Strue-
tures) to investigate the interplay between the ligand
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FIGURE 9 | Long-range coupling effects in RNA and protein.

(a) Schematic representation of long-range allosteric coupling in the
protein tyrosine phosphatase 1B {PTP1B). Upon perturbing the network
at the allosteric site by adding constraints mimicking the binding of an
allosteric modulator {red), altered stability characteristics are observed
for the functionally important WPD loop (orange) and for residues in
the orthosteric site {green). (b} Schematic representation of the long-
range cooperative stabilization of the P1 region in the aptamer domain
of the guanine-sensing riboswitch. Interactions within the tertiary loop-
loop region (red) and of the ligand with the binding site {red) together
are required to stabilize the terminal P1 region (green) {C.A. Hanke,

H. Gohlke, unpublished results).

binding site, tertiary loop-loop interactions, and the
switching sequence in the aptamer domain of the
guanine-sensing riboswitch (C.A. Hanke, H. Gohlke,
unpublished results). Starting from a structural ensemble
of the apo aptamer domain, the stabilizing effect of the
ligand was modeled by adding constraints in the net-
work topologies at the ligand binding site, similar to the
study on the CheY proteins.®® The results suggest that
the presence of the ligand has a stabilizing effect on the
switching sequence (Figure 9b) and that this stabilizing
effect is stronger for the wild type than for a variant in
which tertiary interactions ~30 A away from the ligand
binding site had been perturbed. These findings suggest
that the distant tertiary interactions and the ligand bind-
ing cooperatively stabilize the P1 region, and in this way
influence the regulation of genes.

CONCLUSION/OUTLOOK

Studying static properties of biomolecules has come a
long way, from Maxwell’s mean field approach on
constraint counting, the development of constraint net-
work representations for biomolecules, methodological
and algorithmic developments for analyzing such net-
works / characterizing biomolecular stability / linking
these results to biomolecular function, and the intro-
duction of software packages for performing rigidity
analysis, to applications on biomolecules as complex
as the ribosome, viruses, or transmembrane proteins.
Key methodological steps along this way were: the
realization of the influence of redundant constraints on

© 2017 John Wiley & Sons, Ltd
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EXIT peptide

FIGURE 10 | Allosteric pathways in the ribosomal exit tunnel.

(a) Rigid cluster decomposition of the allosteric pathway to the peptidyl
transferase center (PTC) (red) as predicted by Fulle et al.®* Different
shades of blue correspond to different rigid clusters. Residues in orange
were identified to be important for ribosome stalling in experiments 2%
Figure adapted from Ref 64. (b) Allosteric pathways for PTC silencing
(R1, R2, R3) when the tryptophanase C (TnaC) peptide (green) is in the
exit tunnel?'%; the grey loops marked L4 and 122 indicate ribosomal
proteins. Residues that agree with the prediction of the rigidity analyses
from (a) are colored accordingly and circled in red. Ribosomal
components not identified in the rigidity analysis are colored in grey.
Orange residues as in (a). Figure adapted from Ref 210.

constraint counting results and network properties, the
development of rules to determine whether noncova-
lent interactions in biomolecules are strong enough to
be included as a constraint, the development of effi-
cient algorithms for determining the DOF in a con-
straint network locally, concepts to analyze network
states along constraint dilution trajectories as well as
to compare perturbed to ‘ground state’ networks, and
the introduction of informative indices for linking
results from rigidity analysis to biologically relevant
characteristics of a structure. As to the applicability,
several software packages with, in part, overlapping
and, in part, unique features have been made available,
and/or web servers have been developed. These soft-
ware packages allow for generating constraint net-
works from given biomolecular structures, can
consider ligands, ions, or structural water as part of
the network, and enable single-point or ensemble-
based rigidity analyses. Importantly, ensemble
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Rigidity theary for biomclecules

approaches were developed that model the “flickering’
of noncovalent constraints without the need to gener-
ate a structural ensemble. The ensemble approaches
yield robust results and estimates of uncertainty for
rigidity analyses on biomolecules but do not compro-
mise the computational efficiency of such analyses.
About 15 years after the first application of rigidity
theory to biomolecules, in these authors’ view, the field
has thus reached a first level of maturity, and we
encourage considering rigidity analyses more broadly
as a computational biophysical method to scrutinize
biomolecular function from a structure-based point of
view and to complement approaches focused on bio-
molecular dynamics. In particular, its computational
speed and the inherent long-range aspect to rigidity
percolation make this method attractive to investigate
signal transduction through biomolecules and distant
influences on biomolecular stability.

While the constraint counting itself in terms of
the family of (k,/)-pebble games was proven to be
correct, modeling constraint networks from given
biomolecular structures remains both art and sci-
ence, similar to force field development in the area of
molecular mechanics.>'! Particularly, a biomolecule
system-independent parameterization for when to
consider a constraint is required for making rigidity
analyses broadly applicable. Along these lines, the
current parameterizations available in the software
packages FIRST/ProFlex, DCM, CNA, and KINART
could be further improved by considering the struc-
tural context (e.g., secondary structure, cooperativity
between noncovalent interactions, and/or surface
accessibility) when evaluating hydrogen bonds and
hydrophobic interactions. From an application point
of view, parameterizations that reflect different
molecular environments will be helpful to evaluate
structural stability in different solvents or of
membrane-associated and transmembrane systems.
Finally, current application studies predominantly
focused on investigating a small number of systems,
and almost all studies were performed in a retrospec-
tive manner. However, both large-scale and prospec-
tive studies are required to further evaluate the scope
and limitations of rigidity analyses on biomolecules,
as pursued in other areas of computational biophys-
ics and structural biology.' 71313
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ABSTRACT: Improving an enzyme’s (thermo-)stability or tolerance against Hot spots for
solvents and detergents is highly relevant in protein engineering and thermostability and detergent tolerance

biotechnology. Recent developments have tended toward data-driven A
approaches, where available knowledge about the protein is used to identify € :
substitution sites with high potential to yield protein variants with improved
stability, and subsequently, substitutions are engineered by site-directed or
site-saturation (SSM) mutagenesis. However, the development and
validation of algorithms for data-driven approaches have been hampered
by the lack of availability of large-scale data measured in a uniform way and compuialional Experi?nemm
being unbiased with respect to substitution types and locations. Here, we prediction validation
extend our knowledge on guidelines for protein engineering following a data-

driven approach by scrutinizing the impact of substitution sites on thermostability or/and detergent tolerance for Bacillus subtilis
lipase A (BsLipA) at very large scale. We systematically analyze a complete experimental SSM library of BsLipA containing all 3439
possible single variants, which was evaluated as to thermostability and tolerances against four detergents under respectively uniform
conditions. Our results provide systematic and unbiased reference data at unprecedented scale for a biotechnologically important
protein, identify consistently defined hot spot types for evaluating the performance of data-driven protein-engineering approaches,
and show that the rigidity theory and ensemble-based approach Constraint Network Analysis yields hot spot predictions with an up
to ninefold gain in precision over random classification.

1. INTRODUCTION and ~1 multiple substitutions for each of the ~1000 proteins
stored.”® Thus, while overall exhaustive, the data may not
include a sufficient number of variants per protein to
compensate for outliers and, therefore, may not allow a
stratification of the data to derive a generally applicable set of
rules. As such data, furthermore, originate from different
experimental methods, it is not surprising that different changes

Improving a protein’s (thermo-)stability' ~* or tolerance against
9216 17-19

solvents and detergents has become of utmost

importance in protein engineering: Considerin§ that enzymes

are predominantly used as detergent additives” and that the

global industrial enzyme market has been forecast to reach $7.0

billion by 2023 from $5.5 billion in 2018 makes it clear that an
v in protein stability have been found associated with the same

increasing demand exists for enzymes that are adapted to harsh P e - ,
temperature, solvent, and detergent conditions. 202 variant.”” In addition, the data are strongly biased toward

Modifying grotein stability based on rational approaches has a subst%tut%ons 1;(7) alanine, whereas it is very limited for some other
long history, 324 .nd a number of, usually, structure-based substlFutlons. Recel’ltly, c0n‘1prehen51\'re mutagg@sm daFa ona
algorithms have been developed that estimate the effect of a domain l_evel associated with protein stabilities against a
substitution on the stability of a protein.”>™>* However, despite denatu.ratlmgl ager}l); have been reported as a means to overcome
successful applications in single cases (e.g., see Table 2 in ref 20), these 11m1.tat1ons.' o , ]

the general reliability of these approaches is still unsatis- Follompg the prlnc1plt?s of l:natur.al EVOIqu“’ albeit on a
factory.”>***” One reason is that multiple attempts to identify reduced time scale, protein engineering by clllrected evolutln':m
key features in protein sequences and/or structures associated has emerged as an attractive strategy to improve stability
with protein stability have failed to paint a clear picture, which
makes it difficult to define rules of universal validity and general Received: October 12, 2019
applicability.””* Another reason lies in the data used in the Published: January 6, 2020
design and evaluation of rational design algorithms. The

ProTherm database,”*** which has been most frequently used
for such endeavors, contains on average ~12 single, ~12 double,

© 2020 American Chemical Society https://dx.doi.org/10.1021/acs jcim.9b00954
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through iterative cycles of mutagenesis and screening or
selection.””” However, the highly labor-intensive method can
become technically challenging if beneficial mutations need to
be accumulated over generations of mutagenesis and screening
or selection to reach a desired effect.’” After all, evolution is not
good for problems that require multiple, simultaneous, low-
probability events.”! To successfully investigate the then
necessary large protein libraries, powerful automated techniques
for rapid high-throughput screenings were established.””*”

As an intermediate, third route recent developments have
tended toward data-driven approaches,* where available
knowledge about the protein is used to first identify a
substitution site with high potential to yield protein variants
with improved stability, and second, substitutions are
engineered by site-directed (SDM) or site-saturation (SSM)
mutagenesis.”~ The “knowledge” can arise from sequence
information,"*** structure information,*~*¢ or computational
techniques.”*”*"% By such data-driven approaches, the
challenge of accurately predicting the effect of a substitution
on protein stability is circumvented, and substitution efforts are
guided to a few, distinguished sequence positions, making
subsequent combinations feasible. However, even with high-
throughput screening techniques, it is difficult to handle all
variants based on combinations of the 20 proteinogenic AAs at
more than six substitution sites (i.e., more than 20° = 6.4 X 10’
variants) 20949:50

Here, to extend our knowledge on guidelines for time- and
cost-efficient protein engineering following a data-driven
approach, we scrutinize the impact of substitution sites on
thermostability or/and detergent tolerance for one protein at
very large scale. To do so, we systematically analyze a complete
experimental SSM library of BsLipA produced by us,'™''"”
which contains all 3439 theoretically possible single variants
(181 substitution sites of BsLipA X 19 naturally occurring AAs)
and was evaluated as to different protein stabilities under
respectively uniform conditions. Previously, the SSM library has
been characterized regarding solvent and detergent tolerance
(D) data."™'®" Here, we characterize the SSM library for the
first time regarding thermostability (T,) as well as combined
Tso and D data. BsLipA is a particularly interesting protein for
such analysis because a high-resolution X-ray crystal structure
(PDB ID: 1ISP, 1.3 A) is known,”" which provides valuable
insights in atomic details. Furthermore, the protein has
considerable biotechnological importance,*”** possesses an a/
S-hydrolase fold** such that the impact of substitution sites at a-
helices, f-strands, and other secondary structure elements can
be tested, and has been used frequently as a model system in
related experimental and computational small-scale studies.””

Our systematic large-scale analysis focuses on the following
five aspects: (I) We determined the likelihoods to find
substitution sites showing significantly increased T, or D and
investigated the frequencies and magnitudes of effects caused by
single AA substitutions. (II) We analyzed at which substitution
sites variants result with increased Ty, or/and D across the
protein and compared the findings to random mutagenesis. (11I)
From these results, we defined hot spot classes, ie., classes of
substitution sites particularly promising to increase T', or/and
D. (IV) We probed to what extent hot spots can be predicted
based on structure or sequence characteristics. (V) We tested
the predictive power of the rigidity theory-based approach
Constraint Network Analysis (CNA) previously applied in
related scenarios,”*™® ie., how accurately hot spots can be

1569

&9

predicted as structural weak spots identified in a thermal
unfolding simulation of the protein.

The main outcomes from our analyses are that we provide
systematic and unbiased reference data at large scale for
thermostability measured as Ty, values and detergent tolerance
measured as D for a biotechnologically important protein, we
identify and consistently define hot spot types for evaluating the
performance of data-driven protein-engineering approaches,
and we show that CNA-based hot spot prediction can yield a
gain in precision over random classification up to ninefold.

2. MATERIALS AND METHODS

2.1. Generation and Screening of the BsLipA SSM
Library toward Changes in Tgq or D. The BsLipA library was
constructed by site-saturation mutagenesis (SSM) and site-
directed mutagenesis (SDM) as described by Frauenkron-
Machedjou et al.'*'® and Fulton et al.'” In the present study, we
defined all 3439 single variants (181 substitution sites of BsLipA
X 19 naturally occurring AAs) generated with SSM and SDM as
the “SSM library”.

Previously, the SSM library has been screened toward its
tolerance against four different classes of detergents: anionic
(sodium dodecyl sulfate, SDS), cationic (cetyltrimethylammo-
nium bromide, CTAB), zwitterionic (3-[hexadecyl(dimethyl)-
azaniumyl Jpropane-1-sulfonate, $B3-16), and nenionic (poly-
oxyethylenesorbitan monooleate, Tween 80) by Fulton et al.'”
Residual activities of the variants after incubation in the presence
of the respective detergent (D) were obtained as described in ref
19.

As to the screening procedure regarding thermostability, the
screening cultures were incubated as described in ref 19. The
culture supernatant was collected by centrifugation (1500 g, 40
min) and diluted 2.5-fold with Serensen buffer (42.5 mL of
Na,HPO, (8.9 g 1™'), 2.5 mL of KH,PO, (6.8 g I™')) before
screening. The protein-containing supernatant was incubated in
a 02 mL PCR microtiter plate (MTP) in a programmable
thermal cycler (Eppendorf Mastercycler Thermal Cycler PCR).
The supernatant samples were incubated at temperatures
between 40 and 60 °C for 20 min. A dry block incubator
(MRK 23 Cooling-ThermoMixer, DITABIS) was equipped
with a “15 and 50 mL falcon tube adaptor” (BT 03, DITABIS).
Three falcon tubes with 19.8 mL of para-nitrophenyl palmitate
(pNPP) solution A (19.8 mL of Serensen buffer, 45.54 mg of
sodium deoxycholate, 22 mg of gum arabic) were inserted into
the falcon tube incubator. All dry block incubators were set to 40
°C, 30 min prior to the beginning of the experiment. Twenty
seconds before the end of the incubation, 2.2 mL of pNPP
solution B (48 mg of pNPP in 8 mL of 2-propanol) was added
into prewarmed pNPP solution A and briefly mixed. The
substrate mixture was applied to the wells of the MTPs in 50 uL
aliquots to start the measurement of thermostability and
measured in 2 MTP reader (Molecular Devices Spectramax).
The enzymatic activity in each sample was measured by the rate
of increase in absorption at O.D. 410 nm. The residual activity in
each sample was calculated from the slope of the change in
absorption at O.D. 410 nm relative to the slope of the sample
heated to 40 °C during a measurement time of 3 min. From that,
T, was obtained from the inflection point of a sigmoid curve fit.
Control experiments with just pNPP, or pNPP in the presence of
BsLipA at temperatures up to 60.6 °C, that way leading to
denaturation of BsLipA, show no change in the para-nitro-
phenolate (pNP) absorption over time, demonstrating that pNP
is only produced in the presence of a functional enzyme (Figure

https://dx.doi.arg/10.1021/acs.jcim.9b00954
J. Chem. Inf. Model. 2020, 60, 1568—1584
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S1). The Tg, values are provided as an Excel sheet in the
Supporting Information.

2.2. Global Characterization of BsLipA Variants’
Changes in T5, or D. For analyzing the changes in T, (eq
1) or D (eq 2) of BsLipA variants, the values of wtBsLipA were
used as references; i.e., the differences between the values of the
variants and those of wtBsLipA were calculated. Positive
(negative) A-values indicate variants with increased (decreased)
T'sy or D.

ATy, = Tyo(variant) — Tio(wtBsLipA) (1)

AD = D(variant) — D(wtBsLipA) (2)

For the large-scale analysis, only AT, of variants higher
(lower) than the experimental uncertainty, taken as the standard
deviation oy for the respective variant determined from three
screenings of Ty, were considered significantly increased
(decreased) in Ty, compared to wtBsLipA. Furthermore, only
AD of variants higher (lower) than two times the experimental
standard deviation (26;,) of wtBsLipA determined from
screenings of 2997 wtBsLipA replicates’” toward the respective
detergent were considered significantly increased (decreased) in
D compared to wtBsLipA. Here, o}, of wtBsLipA was used as
significance criterion, as the experimental standard deviation for
each variant was not available. 26, was chosen because it
corresponds to a p-value below 0.05.

2.3. Definitions of Classes of BsLipA Substitution Sites.
The different classes of substitution sites regarding significantly
increased Ty or/and D were defined based on the set theory.
Therefore, the following binary operations on sets were applied:

The union of the sets A and B is the set of elements which are
in A, in B, or in both A and B (eq 3).>

(AUB)={x:x€AV xeB} (3)

The intersection of the sets A and B is the set of elements which
are in A and B (eq 4).”

(ANB) ={x:xeAAxeB] (4)

Finally, the Jaccard index (J) was used to compare the
similarity of two sets A and B, i.e., the cardinal number of the
respective intersection divided by the cardinal number of the
respective union (eq 5).*°7 The range of J is [0, 1], with 1
indicating identical sets A and B.

|A N B
|A U B|

A, B) =
J(A, B) ®)

Based on the different classes of substitution sites, we defined
hot spots, which are substitution sites particularly promising to
yield significantly increased T, or/and D.

2.4, Structural Determinants of BsLipA Hot Spots. Hot
spots were assigned to groups according to their location in
secondary structure elements (yielding 20 subgroups), solvent-
accessible surface areas (SASAs) (yielding five subgroups), and
physicochemical properties (yielding five subgroups). The
secondary structure elements of the wtBsLipA crystal structure
(PDB ID: 1ISP with highest resolution of 1.3 A") were
identified with the DSSP program.*® Additionally, the SASAs of
the wtBsLipA were analyzed with the DSSP program."g The
fractional solvent-accessible surface areas (fSASAs) were
calculated with respect to the maximum solvent-accessible
surface area of each hot spot (maxSASA) (eq 6).*”
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SASA

fSASA = 100-———
maxSASA

(6)

As the screening studies were performed at pH 8,'” hot spots
were subgrouped by their physicochemical properties as follows:
aliphatic (Ile, Ala, Val, Leu, Gly), aromatic (Phe, Tyr, Trp),
neutral (Cys, Pro, Met, Ser, Thr, Asn, Gln), positively charged
(His, Lys, Arg), and negatively charged (Asp, Glu).

2.5. Conservation of wtBsLipA Residues within
Bacterial Lipases. Apart from the catalytic triad (S77, D133,
and H156), also variants at conserved sequence positions were
considered because the SSM library revealed significantly
increased Ty, or/and D at such positions. The conservation of
wtBsLipA residues within the bacterial lipases was calculated
using the available sequences from the Pfam database® for the
lipase class 2 (PF01674). The sequences were limited to the
bacterial sources, which contain 1138 sequences from 603
bacterial species. All sequences were aligned using Clustal
Omega.”"* For the alignment, the fulllength sequence of
wtBsLipA (UniProt ID: P37957) was used.”® The conservation
was calculated using AACon Calculations®* through Jalview.*’
The conservation range is [0, 10] with 0 (10) showing no (high)
conservation.

2.6. Constraint Network Analysis. The Constraint
Network Analysis (CNA) aims at linking structural rigidity
and flexibility to the biomolecule’s structure, (thermo)stability,
and function.*®~®® The CNA software acts as front- and back-
end to the graph theory-based rigidity analysis software qugpy
Inclusions and Rigid Substructure Topography (FIRST).”” In
CNA, proteins are modeled as constraint networks in a body-
and-bar representation, which has been described in detail by
Hesphenheide et al.”” Based on the modeled constraint network
of the protein structure, a pebble gante algorithm decomposes the
network into flexible and rigid subparts.”"””* In order to monitor
the decay of network rigidity and to identify the rigidity
percolation threshold, CNA performs thermal unfolding simu-
lations by consecutively removing noncovalent constraints
(hydrogen bonds, including salt bridges) from a network in
increasing order of their strength.”” For this, a hydrogen bond
energy Eyp is computed by a modified version of the potential by
Mayo et al.”? During the thermal unfolding simulations, phase
transitions can be identified where the network switches from
overall rigid to flexible states. For a given network state 6 = f(T),
hydrogen bonds with an energy Eyy > E,,(6) are removed from
the network at temperature T. In this study, the thermal
unfolding simulation was carried out by decreasing E,, from
—0.1 to —6.0 kcal mol™" with a step size of 0.1 kcal mol™. E,
can be converted to a temperature T using the linear equation
introduced by Radestock et al. (eq 7).”* The range of E., is
equivalent to increasing the temperature from 302 to 420 K with
a step size of 2 K. Because hydrophobic interactions remain
constant or become even stronger as the temperature
increases,”””® the number of hydrophobic tethers was kept
unchanged during the thermal unfolding simulation, as done
previously.”*

= 20K L300k

1~ cut

(7)

" keal-mol”

The CNA software is available under academic licenses from
http://cpclab.uni-duesseldorf.de/index.php/Software, and the
CNA web server is accessible at http://cpclab.uni-duesseldorf.
de/cna/.

https://dx.doi.arg/10.1021/acs.jcim.9b00954
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2.7. Generation of a Structural Ensemble of wtBsLipA.
MD simulations of wtBsLipA et carried out with the GPU-
accelerated version of PMEMD™® of the AMBERI14 suite of
programs’’ together with the ff14SB force field.”® As a starting
structure, the X- -1y crystal structure of wtBsLipA (PDB ID:
1ISP) was used.”’ Hydrogens were added, and side-chain
orientations (“flips”) of Asn, Gln, and His were optimized by the
REDUCE program’ based on suitable hydrogen-bonding
geometries and avoiding potential steric clashes. This was
done to take into account that O versus N or N versus C is
difficult to distinguish in X-ray crystallography experiments.””
For neutralization of the system, sodium counterions were
added. Subsequently, the system was solvated by a truncated
octahedral box of TIP3P water™ such that a layer of water
molecules of at least 11 A widths covers the protein surface. The
particle mesh Ewald method®' was used with a direct-space
nonbonded cutoff of 8 A. Bond lengths involving hydrogen
atoms were constrained using the SHAKE algorithm,* and the
time step for the simulation was 2 fs. As done before,® a
trajectory of 100 ns length was generated after thermalization
and adjustment of the pressure, simulating in the canonical
(NVT) ensemble at T = 300 K, with conformations extracted
every 40 ps from the last 80 ns, resulting in a structural ensemble
0f 2000 conformations. We assessed the statistical independence
of the extracted conformations by calculating the autocorrela-
tion function of the cluster configuration entropy Hy,.,, the
measure used to identify phase transitions in the constraint
networks (see section 2.9 below) (Figure S2). Because
fluctuations of Hyy,., decorrelate already within the first two
snapshots, the snapshots used for CNA, which were extracted at
time intervals of 40 ps, are considered independent.

2.8. Thermal Unfolding Simulation of wtBsLipA. For
analyzing the rigid cluster decomposition of wtBsLipA, a thermal
unfolding simulation was performed by CNA on an ensemble of
network topologies (ENTMP) generated from a molecular
dynamics (MD) trajectory. The ensemble-based CNA was
pursued to increase the robustness of the rigidity analy-
ses.”**Subsequently, the unfoldmg trajectory was visually
inspected by VisualCNA® for identifying secondary structure
elements that segregate from the largest rigid cluster at each
major phase transition. VisualCNA is an easy-to-use PyMOL
plug-in that allows setting up CNA runs and analyzing CNA
results ]mkmg data plots with molecular graphics representa-
tions.** Visual CNA is available under an academic license from
https://cpclab.uni-duesseldorf.de/index.php/Software.

2.9. Local and Global Indices for Analyzing Structural
Rigidity of wtBsLipA. From the thermal unfolding simulation,
CNA computes a comprehensive set of indices to quantify
biologically relevant characteristics of the biomolecule’s
stability.”® Global indices are used for determining the flexibility
and rigidity at a macroscopic level. Local indices determine the
flexibility and rigidity at a microscopic level of bonds.

The cluster configuration entropy Hyy,, is a global index,
which has been introduced by Radestock and Gohlke.” Hyper is
used to identify the phase transition temperature T}, at which a
biomolecule switches from a rigid to a floppy state and the
largest rigid cluster stops to dominate the whole protein
network. As long as the largest rigid cluster dominates the whole
protein network, Hy,., is low because of the limited number of
possible ways to configure a system with a very large cluster.
When the largest rigid cluster starts to decay or stops to
dominate the network, Hy,., jumps. There, the network is in a
partially flexible state with many ways to configure a system

1571

91

consisting of many small clusters. The percolation behavior of
protein networks is usually complex, and multiple phase
transitions can be observed.”"**”* In order to identify T
double sigmoid fit was applled to an H,y,,, versus T(E,) curve
as done previously,”*"* and T, taken as that T value associated
with the largest slope of the ﬁt

The stability map rc; is a local index, which has been
introduced by Radestock and Gohlke." rc; represents the local
stability within a protein structure for all residue pairs at which a
rigid contact rc between two residues i and j (represented by
their C,, atoms) is lost during the thermal unfolding. rc exists if i
and j belong to the same rigid cluster ¢ of the set of rigid clusters
CE«™ Thus, rc, contains information cumulated over all
network states along the unfolding trajectory as to which parts
of the network are (locally) mechanically stable at a given & and
which are not.” This stability information is not only available in
a qualitative manner but also quantitatively in that each rc; has
been associated with E_; at which the rigid contact is lost. The
sum over all entries in rc; represents the chemical potential
energy due to noncovalent bonding, obtained from the coarse-
grained, residue-wise network representation of the underlying
protein structure. To focus only on the stability of rc between
structurally close residues, rc; was filtered such that only rigid
contacts between two residues that are at most § A apart from
each other were considered (neighbor stability map rcumghbor)

Finally, CNA predicts unfolding nuclei as structural features
from which macroscopic (in)stability originates.” Unfolding
nuclei are represented by residues that percolate from the largest
rigid cluster at the latest phase transition. If such residues
become flexible, it will have a detrimental effect on protein
stability. Fringe residues of the unfolding nuclei percolate from
the largest rigid cluster during earlier steps of the thermal
unfolding. We follow the hypothesis that the more structurally
stable the fringes of unfolding nuclei are, the more structurally
stable will be those unfolding nuclei.” Therefore, if such fringe
residues (termed weak spofs) are targeted by substitutions, the
likelihood to stabilize the rigid core of a protein should be high.
If two unfolding nuclei were only separated by one residue, this
residue was also considered a weak spot. This procedure of
identifying weak spots is in agreement with a previous study by
us.

2.10. Statistical Evaluation of CNA as a Binary
Classifier. The performance of CNA was investigated as a
binary classifier with the following possible outcomes: true
positives (TP) are predicted weak spots that are hot spots,
whereas false positives (FP) are predicted weak spots that are
non-hot spots. In turn, true negatives (TN) are predicted non-
weak spots that are non-hot spots, whereas false negatives (FN)
are predicted non-weak spots that are hot spots. Different
metrics were then applied to evaluate CNA.

The recall (r) answers the question how many hot spots were
predicted as weak spots (eq 8).%

_ TP
TP + FN
_ No. of predicted weak spots that are hot spots

No. of hot spots (8)

The precision (p) evaluates how many predicted weak spots
are actually hot spots (eq 9).*°

https://dx.doi.arg/10.1021/acs.jcim.9b00954
J. Chem. Inf. Model. 2020, 60, 1568—1584
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Figure 1. Distribution of BsLipA variants’ changes in T, or D toward one detergent. Distribution of BsLipA variants’ changes in (A) Ty, (ATs,) or D
(AD) with respect to (B) SDS, (C) CTAB, (D) SB3-16, and (E) Tween 80 at the indicated concentrations compared to wtBsLipA (ATs/AD = 0).
(A) Variants with AT, lower than the experimental uncertainty (standard deviation o for the respective variant) were excluded from further analyses
(gray). (B—E) Variants within 207, of AD of wtBsLipA determined from screenings of 2997 wtBsLipA replicates toward the respective detergent were
excluded from further analyses (gray). The insets show the numbers of variants which cause a significant increase or decrease in T, or D toward one
detergent. A red (blue) color indicates a significantly increased (decreased) Ty, or D toward one detergent.

TP

"~ TP + FP
No. of predicted weak spots that are hot spots

No. of weak spots

)

The precision in random classification (pupdom) indicates how
many of the 181 BsLipA residues are actually hot spots (eq
10).5¢
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TP + EN

TP + FP + TN + EN
No. of hot spots

181 residues of BsLipaA

prandom

(10)

The gain in precision over random classification (gip)
represents how many predicted weak spots are actually hot

spots in comparison to random classification (eq 11).% The gip

https://dx.doi.org/10.1021/acs.jcim.9b00954
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Table 1. Identified Classes of Substitution Sites

class” definition

no. of substitution sites  no. of weak spots” ¢

&ip

1 {substitution site, | 1 < x < 181, Ty, (x) is significantly increased} 69 nd” nd
I {substitution site, | 1 < x < 181, Dgps(x) is significantly increased} 74 nd nd“
11 {substitution site, | 1 < x < 181, Deypyp(x) is significantly increased} 42 nd? nd?
v {substitution site, | 1 < x < 181, Dggy 14(x) is significantly increased} 46 nd” nd”
v {substitution site, | 1 < x < 181, Dy ouso(%) is significantly increased} 34 nd“ nd
VI NUIIUIVUV 109 nd” nd”
Vil 1UVI 124 nd” nd*
VI nMNIINIvVNnv 11 2 3.30
X In VI 7 2 5.17
X {substitution site, | 1 < x < 181, six highest effects in significantly increased T5y(x)} 6 1 3.02
X1 {substitution site, | 1 < x < 181, six highest effects in significantly increased Dgpg(x)} 6 1 3.02
X1 {substitution site, | 1 < x < 181, six highest effects in significantly increased Depap(x)} 6 3 9.05
X1 {substitution site, | 1 < x < 181, six highest effects in significantly increased Dgps 15(%) } 6 2 6.03
X {substitution site, | 1 < x < 181, six highest effects in significantly increased Dy enso(%)} 6 0 —

XV XI U XII U XIIT U XIV 20 nd” nd”
XVI XUXV 24 nd” nd?
XVII XI n XII N X111 N XIV 0 nd” nd”
XVIII XN XVI 0 nd* nd”

“Class of substitution sites; underlined classes represent hot spots. “Numbers of hot spots that are predicted as weak spots. “Gain in precision over

random classification (eq 11). “Not determined.

range is [0, 00 ], with values <1 indicating a lower precision than
obtained by random classification.

r

gip =
(11)

The F,-score (F,) is a measure of the test’s accuracy. It
represents the harmonic mean of p and r; ie, if there is an
uneven class distribution, it is used to seek a balance between p
and r (eq 12).¥" The F, range is [0, 1], with 1 indicating perfect r
and p.

random

pr
ptr

E=2
(12)
2.11. Markov Chain Monte Carlo-Based Unfolding
Simulations of wtBsLipA. As an independent method to
assess the order of unfolding of wtBsLipA, we used a Markov
Chain Monte Carlo (MCMC) simulation with an all-atom
model restricted to dihedral degrees of freedom.®® This method
has been successfully used for protein-folding simulations®” and
has been shown to reproduce the order of melting temperatures
for a set of protein variants.”® In this MCMC model,
implemented in the open source tool ProFASi (Protein Folding
and Aggregation Simulator), the protein conformation is
modified by changing one or few dihedral angles in each step.
A step is accepted according to the Metropolis criterion, i.e., with
a probability that depends on the absolute temperature and the
resulting change of energy of the system. In ProFASi, the energy
is calculated by an all-atom implicit solvent force field.”””' While
MCMC simulations allow arbitrarily large changes to the
molecule, the unfolding simulations for this study have been
restricted to side chain dihedral updates and small, locally
correlated updates of main chain dihedral angles.”” To ensure
adequate sampling, 96 MCMC simulations at 330 K were
performed with a total of 3.05 x 10'° elementary updates.

3. RESULTS

3.1. About One-Tenth of All Variants in the Complete
SSM Library Show Significantly Increased Ty, or D
toward at Least One Detergent, and Such Variants
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Were Found at Two-Thirds of All Substitution Sites. The
BsLipA SSM library contained T, as well as D data toward the
four detergents SDS, CTAB, SB3-16, and Tween 80 for all 3439
single variants (181 substitution sites of BsLipA X 19 naturally
occurring AAs), including also inactive variants (see section
2.1). Initially, the results of both experimental screening studies
of the SSM library with respect to changes in Ty, (ATs,) or D
toward one detergent (AD) were assessed in terms of the
variance of the data and its significance (see section 2.2).

As to the T, data, only variants with AT higher (lower) than
the experimental uncertainty, taken as the standard deviation &y
for the respective variant determined from three screenings of
T, were considered significantly increased (decreased) in T,
compared to wtBsLipA (AT, = 0 K) (eq 1). The average o is
0.44 K. In total, 1856 variants with significantly increased Ty,
were obtained, of which 214 (~12%) show an increase and 1642
(~88%) a decrease (Figure 1A, Table S1). This proportion
represents what one would obtain in the case of random
mutagenesis. The distribution of AT, is left-skewed, with
extreme ATy, values of —8.3 and +7.7 K, with the most frequent
ATj, range being —2 to —1.5 K (~12% out of 1856 variants),
followed by AT, between —1.5 and —1 K (~10% out of 1856
variants) (Figure 1A). In turn, for each of 69 substitution sites
(~38% out of 181 substitution sites) at least one variant with
significantly increased Ty, was found. These substitution sites
are summarized in class I (I = {Substitution site, | 1 < x < 181,
Tso(x) is significantly increased}) (Tables 1 and S2).

Likewise, only variants with AD higher (lower) than two
times the experimental standard deviation (26p) of wtBsLipA
determined from screenings of 2997 wtBsLipA replicatesw
toward the respective detergent were considered significantly
increased (decreased) in D compared to wtBsLipA (AD =0) (eq
2). The screening revealed the highest o, in the presence of SB3-
16, followed by Tween 80, CTAB, and SDS (Table S1)."” This
may be related to the fact that SB3-16 and Tween 80 were tested
above the critical micelle concentration (¢cmc), while CTAB and
SDS were tested below it.'””® The respective detergent
concentration had been chosen based on the inactivation of
purified wtBsLipA (Table S1)."” On average, 900 variants with

https://dx.doi.arg/10.1021/acs.jcim.9b00954
J. Chem. Inf. Model. 2020, 60, 1568—1584
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Figure 2. Localization of BsLipA variants as to the frequency of substitution occurrences and highest effects regarding significantly increased Ts; or D
toward one detergent. (A) The maximum number of substitutions that cause significantly increased (A) Ts (N, ipa,7) of I (1= {Substitution site, | 1 <
x < 181, Tso(w) is significantly increased}) or (B) D (Npgipa,n) of =V (II—=V = {Substitution site, | 1 < & < 181, Dsps/cran/sps-i6/Tween so(*) i
significantly increased}) are mapped onto wtBsLipA (PDB ID: 1ISP). C, atoms of the catalytic triad $77/D133/H156 are shown as green spheres. A
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significantly increased D were obtained, of which 126 (~14%)
show an increase and 774 (~86%) a decrease, on average across
each detergents (Figures 1B—E, Table S1). This proportion
represents what one would obtain in the case of random
mutagenesis. The distribution of AD is left-skewed. The
magnitude of the increase (decrease) in AD is between 1.6-
fold and 2.4-fold (0.6-fold and 2.9-fold) of the residual activity of
wtBsLipA. Furthermore, variants tested against SDS and SB3-16
showed an up to two times higher AD than against CTAB and
Tween 80 (Figures I1B—E). This may be related to the different
classes of the detergents.lg’% In turn, for each of 74, 42, 46, or 34
substitution sites at least one variant with significantly increased
D toward SDS, CTAB, SB3-16, or Tween 80 (~41, 23, 25, or
19% out of 181 substitution sites) was found. These substitution
sites are summarized in classes [I-V (II—V = {Substitution site,
I'1 £ x < 181, Dspg/eran/sps-is/Tween sol®) s significantly
increased}) (Tables 1 and 52). The union of II-V contains 109
substitution sites (~60% out of 181 substitution sites) and is
represented by class VI (VI=11U III U IV U V) (Tables 1 and
$2, eq 3). For each of these substitution sites at least one variant
shows significantly increased D toward at least one detergent.
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Finally, 124 substitution sites are summarized in the union of I
and VI (~69% out of 181 substitution sites) (VII = I U VI)
(Tables 1 and S2, eq 3). Thus, only for two-thirds of all
substitution sites at least one variant with significantly increased
Ty, or D toward at least one detergent was obtained.

To conclude, for the first time, we performed a systematic
large-scale analysis of a complete experimental SSM library
toward two types of stabilities of one protein containing all single
variants. The likelihoods to generate variants with significantly
increased Ty (~12%) or D toward one detergent (~14% on
average across all detergents) by random mutagenesis (I-V) are
similar. Variants with significantly increased T, or D toward at
least one detergent were obtained at only two-thirds of all
substitution sites (VII), and this value falls to about one-third or
below if Ty, and D toward one detergent are considered
separately (I-V). Hence, such substitution sites are not
uniformly distributed across the protein. For the following
analyses, only substitution sites with at least one variant yielding
significantly increased Ty, or D toward at least one detergent
were considered.

3.2. The Higher the Frequency of Substitution
Occurrences That Lead to Significantly Increased T, or

https://dx.doi.arg/10.1021/acs.jcim.9b00954
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D toward One Detergent, the More Pronounced the
Highest Effect, and Vice Versa. Next, we investigated the
BsLipA SSM library regarding the respective frequency of
substitution occurrences at substitution sites that lead to
significantly increased Tso (Npgipar) o D (Npgipa,n) toward
one detergent. Additionally, we analyzed the respective highest
effects in significantly increased Tgy (ATsg,ma) or D (AD,,,)
toward one detergent at substitution sites. Finally, we address
the question if the frequency of substitution occurrences and the
highest effects per substitution site are related to each other.

The highest N 0,7 of I was 12 (F17) (Figure 2A), whereas
the highest Ny j0,p of II-V were 14 (E65), 6 (1135 and D144),
11 (G46), and 5 (V99) (Figure 2B, Table S14), respectively,
indicating that up to ~60% and more of the variants for some
substitution sites yield significantly increased T, or D toward
one detergent. Correlations between Npjnr of T and Ny joain
of II-V'yielded, on average, R*=0.03; p > 0.1 (Figure 2C, Table
§3). The highest correlation was found between Ny ;4.1 of 1
and Npgipap of I (R* = 0.07, p < 0.001). With respect to
Nypipap of 1=V, overall very weak to weak but mostly
significant correlations were obtained (on average: R*=0.11,p <
0.01) (Figure 2C, Table S3). The highest correlation was
observed between Ny ;,p,p of Il and IV (R*=0.26,p < 0.001).
The highest ATy, of T was 7.7 K (M137), whereas the
highest AD,,, of II-V were 1.49 (M137), 1.63 (T110), 2.41
(G46), and 2.29 (8127), respectively (Table $9), indicating that
specific single AA substitutions have a great impact on the
magnitudes of the effects. Correlations between ATsq ., of 1
and AD,,,, of II-V shown, on average, R* = 0.06; p > 0.1 (Figure
2D, Table S4). The highest correlation was observed between
ATgyny of Land AD, of IV (R* = 0.13, p < 0.1). With respect
to AD,,. of II-V, overall very weak to weak and mostly
insignificant correlations were obtained (on average: R* = 0.08, p
> 0.1) (Figure 2D, Table S4). The highest correlations were
observed between AD, ,, of Il and V (R* = 0.24, p < 0.05) as well
as AD,,, of IIT and IV (R? = 0.13, p < 0.1).

Finally, mostly good to fair and significant correlations
between Ny ja,rand AT, of Tas well as N ipa.p and AD,,,,
of II-V were found (on average forincrease: R*=0.27, p < 0.01)
(Figure 2E, Table S5).

To conclude, these findings indicate that the relation “the
higher the frequency of substitution occurrences that lead to
significantly increased T or D towards one detergent, the more
pronounced the highest effect, and vice versa” holds for
substitution sites at which at least one variant shows significantly
increased T, or D toward one detergent (I-V). Together with
the results from the previous chapter, this result suggests that
identifying a priori substitution sites with a high likelihood for
significantly increased T, or D toward one detergent will also be
beneficial with respect to the magnitude of effects that can be
achieved there by substitutions.

3.3. Eleven Substitution Sites Yield a ~4.6-fold Higher
Likelihood To Find for Each Detergent Variants with
Significantly Increased D than Random Mutagenesis.
Next, we focused on pairwise intersections of II-V to investigate
if there are substitution sites at which for two detergents at least
one variant shows significantly increased D, regardless of the
magnitude of the single effect (see section 2.3). We compared
the pairwise similarities between II—V by calculating the Jaccard
index (J), i.e., the cardinal number of the respective intersection
divided by the cardinal number of the respective union (Table
S6, eq 5).°""7 The highest similarity was found between TIT and
IV with J(III, IV) = 0.47, whereas the lowest similarity was
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observed between II and V with J(II, V) = 0.23. This may be
related to the different classes of the detergents'*”*

Encouraged by the findings of overlapping II-V, we also
looked at the overall intersection of I-V (VI =IIN T NIV N
V), i.e., substitution sites at which for each detergent at least one
variant shows significantly increased D, regardless of the
magnitude of the single effect (Tables 1 and S2, eq 4). VIII
contains the 11 substitution sites E2, G13, D43, T4S, Y49, NS1,
V54, E65, N98, M134, and M137 (~6% out of 181 substitution
sites) (Tables 1, S2, and S14). These substitution sites are
associated with 50 variants causing a significant change in D, of
which 32 (~64%) show a significant increase, on average across
all detergents (Table $7). Thus, this likelihood is ~4.6-fold
higher in comparison to random mutagenesis. The most
promising substitution sites of VIII are M134, N51, and T45
with variants showing increased AD,,, of 2.25, 2.10, and 1.90,
respectively.

To conclude, a dramatically reduced number of 11
substitution sites (VIII) yield a ~4.6-fold higher likelihood to
find for each detergent variants with significantly increased D
compared to random mutagenesis. These findings indicate that
if a protein-engineering study aims at identifying variants
showing significantly increased D toward each detergent, such
substitution sites (VIII) should be identified prior to SDM.

3.4. Seven Substitution Sites Yield a ~3.4-fold Higher
Likelihood To Find Variants with Significantly Increased
Tso and a ~4.7-fold Higher Likelihood To Find for Each
Detergent Variants with Significantly Increased D than
Random Mutagenesis. The same analyses were repeated for
intersections of I and II-V, respectively, regarding substitution
sites at which at least one variant shows significantly increased
Tjo and for one detergent significantly increased D, regardless of
the magnitude of the single effect (see section 2.3). We
compared the pairwise similarities between I and II-V,
respectively, by calculating ] (Table S6, eq 5). The highest
similarity was found between I and II with J(I, II) = 0.42,
whereas the lowest similarity was observed between I and V with
J(I, V) = 0.16.

Encouraged by the findings of overlapping T and I-V,
respectively, we also looked at the overall intersection of I and
I1-V (IX =1 N VIII), i.e., substitution sites at which at least one
variant shows significantly increased T, and for each detergent
significantly increased D, regardless of the magnitude of the
single effect (Tables 1 and S2, eq 4). IX contains the seven
substitution sites, E2, G13, T45, Y49, V54, M134, and M137
(~49% out of 181 substitution sites) (Tables 1, S2, and S14).
Associated with these are 86 variants causing a significant change
in T, of which 35 (~41%) show a significant increase (Table
S8). Thus, this likelihood is ~3.4-fold higher in comparison to
random mutagenesis. The most promising substitution sites of
IX are M137, M134, and Y49 with variants showing increased
ATs0max of 7.7, 5.6, and 1.6 K, respectively. Furthermore,
associated with substitution sites of IX are 29 variants causing a
significant change in D, of which 19 (~66%) show a significant
increase, on average across all detergents (Table S8). Thus, this
likelihood is ~4.7-fold higher in comparison to random
mutagenesis. The most promising substitution sites of IX are
M134, T4S, and M137 with variants showing increased AD,,, of
2.25, 1.90, and 1.67, respectively.

To conclude, a dramatically reduced number of seven
substitution sites (IX) yield a ~3.4-fold higher likelihood to
find variants with significantly increased Ty and a ~4.7-fold
higher likelihood to find for each detergent variants with

https://dx.doi.arg/10.1021/acs.jcim.9b00954
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significantly increased D compared to random mutagenesis.
These findings indicate that if a protein-engineering study aims
at identifying variants showing significantly increased T, and D
toward each detergent, such substitution sites (IX) should be
identified prior to SDM.

3.5. Six Substitution Sites with Highest AT, ..
(AD,,.,) Yield a ~5.3-fold (~4.5-fold) Higher Likelihood
To Find Variants with Significantly Increased T, (D) than
Random Mutagenesis. The above analyses focused on
substitution sites at which significantly increased Ty, or D
toward one detergent (I-V), significantly increased D toward
each detergent (VIII), as well as significantly increased T, and
D toward each detergent (IX) were observed, regardless of the
magnitude of the effect. Now, we identified those six substitution
sites for which the respective highest effects (AT, 0 AD,,,)
were found., The number of 6 is motivated by the current
technical limitation to screen more than 20° variants.***%*%*

The six substitution sites M137, M134, G155, F17, 1157, and
Y139 yield variants with the highest AT, ., of 7.7, 5.6, 4.5, 3.8,
3.6, and 3.2 K, respectively, and constitute class X (X
{Substitution sites, | 1 < x < 181, six highest effects in
significantly increased Tso(x)}) (Tables 1, S2, and S9). The
substitution sites of X are associated with 68 variants causing a
significant change in Ty, of which 43 (~63%) vyield a
significantly increased Ty, (Table $10). Thus, this likelihood is
~5.3-fold higher in comparison to random mutagenesis.

The most promising substitution sites exhibiting variants with
the highest AD,,, toward one detergent (XI-XIV =
{Substitution sites, | 1 < x < 181, six highest effects in
significantly increased Dgps/cras/sps-16/Tween s0(%)}) are M137
(X1), T110 (XII), G46 (XIII), and S127 (XIV) with variants
showing highest AD_, of 1.49, 1.63, 2.41, and 2.29, respectively
(Tables 1, S2, and S9). With these substitution sites, 43 variants
are associated causing a significant change in D, of which 27
(~63%) cause significantly increased D, on average across all
detergents (Table S10). Thus, this likelihood is ~4.5-fold higher
in comparison to random mutagenesis.

Furthermore, we determined the union of XI—XIV, the set of
20 substitution sites (~11% out of 181 substitution sites) that
yield variants showing the respective highest AD, . toward at
least one detergent (XV = XI U XII U XIII U XIV) (Tables 1 and
S2, eq 3). Additionally, the union of X and XV was defined as the
set of 24 substitution sites (~13% out of 181 substitution sites),
which exhibit variants showing the respective highest ATs ., or
AD,,. toward at least one detergent (XVI =X UXV) (Tables 1
and S2, eq 3).

The intersection between XI—XIV (XVII = XI N XII N XIII N
XIV) is empty; ie., there are no common substitution sites
among those six at which for each detergent variants with highest
AD,,., were found (Tables 1 and S2, eq 4). The intersection
between X and XVII (XVIII = X N XVII) is necessarily empty,
too; i.e., there are no common substitution sites among those six
at which variants with highest ATy, and AD,, for each
detergent were found (Tables 1 and S2, eq 4). Thus, XVII and
XVIII were not considered for the following analyses.

Additionally, we compared the pairwise similarities between
X—XIV by calculating J (eq 5). Regarding the highest AD,,,,
only XII and XIII overlap to some extent (J(XIL, XIII) = 0.2)
(Table S6). Regarding the highest ATy, and AD,, ., only X
and XI, XTI, or XIII, respectively, slightly overlap (J(X, XI) =~
J(X, XII) = J(X, XIII) = 0.1) (Table S6).

To conclude, a highest ATy ., of 7.7 K and a highest AD,,,,,
of 2.41 were found. The six substitution sites with highest
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AT max yield a ~5.3-fold higher likelihood to find variants with
significantly increased Ty, (X); the six substitution sites with
highest AD,_, yield a ~4.5-fold higher likelihood to find variants
with significantly increased D (XI—XIV). There are no common
substitution sites among those six at which for each detergent
variants with highest AD,,,, were found (XVII). Neither are
there common substitution sites among those six at which
variants with highest ATy, and AD,,, for each detergent
were found (XVIII).

3.6. Definition of Hot Spots. Based on these results, we
defined seven types of hot spots, ie., substitution sites
particularly promising to cause a significant increase in Ty, or/
and D. First, the respective six substitution sites of X—XIV are
considered hot spots because variants yield the respective
highest AT, or AD,,. toward one detergent for these
substitution sites (Tables 1, S2, and S9). Furthermore, we
showed that there is a correlation between the magnitude of an
effect found at a substitution site and the frequency of
substitution occurrences that lead to significantly increased
Ts or D toward one detergent (see section 3.2). Finally,
generating and evaluating variants based on combinations of all
20 AAs at six substitution sites is still manageable with current
protein-engineering techniques.m’sg"w’w

As shown above, XVII and XVIII, which would constitute the
substitution sites with the broadest impact on AD,,, or
ATso. mee and AD_, are empty (see section 3.5). Hence, we
resorted to defining, second, the 11 substitution sites of VIII
showing significantly increased D toward each detergent,
regardless of the magnitude of the single effect (see section
3.3) and, third, the seven substitution sites of IX showing
significantly increased Ty, and D toward each detergent,
regardless of the magnitude of the single effect (see section
3.4) as hot spots (Tables 1 and $2). With 11 and 7 substitution
sites, these classes are also the smallest besides X—XIV.

3.7. Hot Spots Are Diverse in Terms of Localization in
Secondary Structure Elements, Degree of Burial, and
Sequence-Based Characteristics of the Substituted AAs.
Ideally, one would identify such hot spots based on structural or
sequence characteristics of the protein (see sections 2.4 and 2.5)
prior to performing experiments. Suitable structure-based
characteristics are localization in secondary structure elements
(Table $11)"*%*~and the de%ree of burial as measured by
fSASAs (Table S12, eq 6).'7%7

As to localization in secondary structure elements (Table
S11), hot spots are rarely found in 3,y-helices and f-strands.
Exceptions are hot spots of class XIV, which are enriched in
strand 7. With respect to a-helices, at least one and at most four
hot spot(s) of each class is (are) found in that secondary
structure class, mainly in helices aB and aE. However, without
further information, one would not know which particular
secondary structure element to choose for hot spot prediction.
Hence, if all sites of a certain secondary structure class were
chosen as hot spots, in the best case, a gain in precision (gip, eq
11) over random classification of 4,71 is found for f-strands,
albeit at the expense of predicting 32 substitution sites (~18% of
181 AAs), far more than the 6 sought. As to bridges, turns, loops,
and bends defined by DSSP,>® no hot spot is found in the first
secondary structure type. At most three hot spots are found in
any of the other three types, but only for hot spots of class XIand
VIII These cases are related to a maximal gip of 1.93, albeit at
the expense of predicting 47 substitution sites (~26% of 181
AAs). Thus, in our study, identifying hot spots based on this
secondary structure type results in a low precision.

https://dx.doi.arg/10.1021/acs.jcim.9b00954
J. Chem. Inf. Model. 2020, 60, 1568—1584
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Figure 3. Prediction of the thermal unfolding pathway of wtBsLipA. (A) Thermal unfolding pathway of wtBsLipA (PDB ID: 11SP) showing the early
(T1-T2) and late (T3—TS5) phase transitions. Rigid clusters are represented as uniformly colored blue, green, magenta, and cyan bodies in the
descending order of their sizes. (B) For wtBsLipA the stability map rc; including E,,,, values at which a rigid contact between two residues is lost for all
residue pairs during the thermal unfolding simulation (upper triangle); the neighbor stability map r¢;,eighbor considering only the rigid contacts
between two residues that are at most § A apart from each other, with values for all other residue pairs colored gray (lower triangle). The E_,, values are
calculated with CNA based on a structural ensemble (ENT™"). A red (blue) color indicates that contacts between residue pairs are more (less) rigid.
(C) The aforementioned ¥Cj neighbor (lower triangle) was compared with a contact map simulated by ProFASi (upper triangle). A red (blue) color
indicates contacts between residue pairs that have a longer (shorter) lifetime (in MC sweeps) than the contacts of the residue pairs of the initial protein
structure. 3;5-helices are represented as G-helices.

As to the degree of burial (Table $12), the least hot spots are semiconserved positions (conservation in the range of 0—6)
associated with substitution sites that are mostly solvent- (Table S14). The highest conservations were found for 1128
exposed (0.8 < fSASA < 1.0). By contrast, the most hot spots are (conservation = 6) and V99, T126, and 1128 (conservation = §).
associated with substitution sites that are partially solvent- To conclude, while predicting hot spots based on structural
exposed (0.6 < fSASA < 0.8), although this statement does not characteristics can lead to marked gip values, usually many
hold for hot spots of class XIV. This case is related to a maximal predicted hot spots result, which would require considerable
gip of 6.70, albeit at the expense of predicting 18 substitution experimental efforts. Still, if a higher number of predicted hot
sites (~10% of 181 AAs). spots is acceptable, partially solvent-exposed residues are good

Suitable sequence-based characteristics are physicochemical hot spot candidates. Applying sequence-based characteristics,
properties of the substituted AAs (Table $13)'*%°~'%" and the substituting aliphatic and neutral residues should more likely
degree of AA conservation (Table S14).'%'%'%* A5 to the improve T5 or/and D. Additionally, nonconserved and
physicochemical properties of the substituted AAs (Table $13), semiconserved regions preferentially contain hot spots.
the distribution of hot spots over the classes is generally broad. 3.8. Rigidity Theory-Based (CNA) and Markov Chain
Exceptions are hot spots of classes XIII and XTIV (in both cases Monte Carlo Simulation-Based (ProFASi) Approaches
preferentially found at aliphatic and neutral AAs (Table S15)) Predict Similar Thermal Unfolding Pathways of wtBsLi-
and class X (preferentially found at aliphatic, aromatic, and PA. We intend to test if hot spots can be predicted as structural
neutral AAs (Table S15)). Therefore, gip values are generally weak spots by our rigidity theory-based approach CNA®*~%
low, with the largest one being 4.02 for the case of hot spots of (see section 2.6). As a prerequisite, information on the hierarchy
class X at aromatic AAs, albeit at the expense of predicting 15 of rigid and flexible regions in a protein structure is required.
substitution sites (~8% of 181 AAs). As to the degree of AA Therefore, a thermal unfolding simulation of wtBsLipA was
conservation, hot spots are located at nonconserved and carried out with CNA as done previously”® to predict major
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phase transitions at which the network switches from overall
rigid to flexible states (see sections 2.7, 2.8, and 2.9).

From the thermal unfolding pathway of wtBsLipA, five major
phase transitions, T1—TS$, were predicted based on the global
index Hyy,, (Figure 3A). Depending on the energy cutoff E,,
the phase transitions were characterized as either early (T1-T2;
with —0.8 kcal mol ' > E_, > —0.9 kcal mol ") or late (T3—T5;
with —1.7 keal mol™ > E ., > —1.9 kcal mol™). E_, can be
converted to a temperature T using a linear equation (eq 7),1
according to which the ranges of E, in this study are equivalent
to316 K< T <318Kfor T1-T2,and 334 K < T < 338 K for
T3—TS. During the early phase transitions aA, 3,0-1, oF, and
3,0-5 segregate from the largest rigid cluster. aD, aE, aB, aC,
and fI-strands segregate from the largest rigid cluster during the
late phase transitions. Afterward, the f-sheet becomes
sequentially flexible, beginning with f4 and f#8, followed by
/33, 7, 5, and f36. For the analysis, ~3 h of computational time
on a single GPU is required to generate a 100 ns long MD
trajectory as well as ~4 h of computational time on a single core
for the thermal unfolding simulation.

Since the percolation behavior of a protein network is
complex due to the protein’s structural hierarchy and
composition of different modules, it is often challenging to
assign a phase transition with H, -2 Thus, in addition to using
Hiypeay we also characterized the hierarchy of rigid and flexible
regions of wtBsLipA at a local level by computing rc; eighbor
(lower triangle in Figure 3B) based on rc; (upper triangle in
Figure 3B). TCyneighbor showed that residue pairs at the N-
terminus revealed higher E_ values than residue pairs at the C-
terminus. Thus, rc; gy, demonstrates that the rigid contacts
between neighboring residues are stronger at the N-terminus
than at the C-terminus along the thermal unfolding simulation,
i.e, the C-terminus of wtBsLipA starts to unfold first.

As an independent approach to assess the order of unfolding
of wtBsLipA, we used the Markov Chain Monte Carlo (MCMC)
simulation software ProFASi (Protein Folding and Aggregation
Simulator) (see section 2.11).*® The results of the simulation
were represented in a contact map (upper triangle in Figure 3Q).
They reveal that the contacts between the residue pairs of the N-
terminus have a longer lifetime (in terms of MC sweeps) than
the contacts of the residue pairs of the C-terminus compared to
the initial structure. Thus, although methodologically different,
ProFASi predicts a very similar unfolding pathway of wtBsLipA
with respect to CNA.

To conclude, five major phase transitions, T1-T5, were
predicted by thermal unfolding simulations using CNA at which
first the different helices and, finally, the f-strands segregate
from the largest rigid cluster during thermal unfolding
simulations of wtBsLipA by CNA. Structural rigidity is initially
lost at the C-terminus, which is uniformly revealed by the global
index Hy,e, and the local index rcy,eighpor Finally, the two
independent approaches CNA and ProFASi predict very similar
unfolding pathways of wtBsLipA. The results suggest that the
loss of rigidity predicted by CNA along the thermal unfolding
simulation closely mimics the temperature-induced unfolding of
wtBsLipA.

3.9. Unfolding Nuclei and Major Phase Transitions Are
Predictive Markers of Structural Weak Spots. We next
probed to what extent structural weak spots predicted by CNA
agree with the above-defined hot spots. Following previous
work,” weak spots are fringe residues of unfolding nuclei that
percolate from the largest rigid cluster during earlier steps of the
thermal unfolding (see section 2.9). In total, we predicted 10
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weak spots (~6% out of 181 substitution sites), i.e., 112, G13,
G46, G52, P53, T66, M134, 1135, V136, and H152 (Figure 4A,
Tables 1, 2, and S2). Three weak spots each segregate from the
largest rigid cluster at T1 or T2, and four from the largest rigid
cluster at T4 (Table 2).

Hot s%a{s 1X

Hot s,l%fs i

Figure 4. Localization of CNA-predicted weak spots and experimental
hot spots of BsLipA. (A) Weak spots and (B) hot spots of X, (C) XI, (D)
XII, (E) XIII, (F) XIV, (G) VIII, and (H) IV are mapped onto
wtBsLipA (PDB ID: 1ISP). (A) Ten weak spots, ie., [12, G13, G46,
G52, P53, T66, M134, 1135, V136, and H152, were predicted by CNA
(red spheres). (B—F) The respective six substitution sites of X—XIV are
considered hot spots as variants yield the respective six highest ATy,
or AD,,,, toward one detergent for these substitution sites. (G) The 11
substitution sites of VIII showing significantly increased D toward each
detergent, regardless of the magnitude of the single effect, and (H) the
seven substitution sites of IX showing significantly increased Ts, and D
toward each detergent, regardless of the magnitude of the single effect,
are considered hot spots. A green sphere represents a hot spot, and an
orange sphere indicates a hot spot that was correctly predicted as a weak
spot.

The performance of predicting hot spots as weak spots by
CNA was evaluated in terms of a binary classification,
considering predicted weak spots at hot spots true positives
(TP) and predicted weak spots at not-hot spots false positives
(FP) (see section 2.10). In particular, the gain in precision over
random classification (gip) (eq 11) and the Fj-score (F,) (eq
12), a measure of a classifier’s accuracy, were used as
performance measures. Over all seven classes of hot spots,
between one and three of the predicted weak spots are hot spots
(except for XIV, where no weak spot was met), resulting in gip

https://dx.doi.arg/10.1021/acs.jcim.9b00954
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Table 2. CNA-Predicted Weak Spots of BsLipA

weak spot location at secondary structure elements phase transition
112 turn T1
G13 turn T1
G46 toop T4
G52 ab T4
P53 aB T4
Te66 aB T4
M134 bend T2
1135 bend T2
V136 bend T2
H152 bend T1

values between 3.02 and 9.05 (Tables 1 and S2). Note that these
results are associated with only 10 predicted weak spots, about
half as many predictions than in the case of identifying hot spots
as partially solvent-exposed residues (Table S12). As the
numbers of hot spots in VIII-XIV are of a very similar
magnitude, the CNA predictions are also associated with similar
recall (r) (eq 8) and precision (p) values (eq 9) in each case
(Table S2), indicating a well-balanced classifier. In the case of
X1I, the CNA predictions yield an F,-score of 0.38, higher than
any F,-score associated with hot spot predictions based on
structure or sequence characteristics (Tables S2, S11, S12, §13,
and S14), and the F,-score for IX is 0.24, generally higher than
F|-scores associated with structure- or sequence-based pre-
dictions for this class and on par with the result obtained for
identifying these hot spots as partially solvent-exposed residues
(Tables S2, S11, S12, S13, and S14).

To conclude, predicting hot spots as weak spots by CNA
results in several cases in very good to good gip values and good
to fair accuracies and is associated with a very low number of
predicted weak spots, such that also only few experimental
efforts are required later. Considering the low computing time
required to perform a CNA analysis, these results indicate that
applying CNA-based weak spot prediction before experimental
engineering is beneficial, in particular if the number of
substitution sites that can be dealt with in experiment is low.

4. DISCUSSION

In this study, for the first time, we performed a systematic large-
scale analysis of a complete experimental SSM librar)sr of a
biotechnologically highly relevant protein, BsLipA,*>*® with
respect to two types of protein stability. The library covers all
181 residues of BsLipA and results in 3439 variants, each with a
single AA substitution as confirmed by DNA sequencing.
Considering the screening results of the library toward
thermostability and detergent tolerance together is unique
compared to related studies™*~*'"~'? and important in view of
the challenges of multidimensional property optimization of
modern biocatalysts.'™*~'° The measured Ty, and D values
provide valuable reference data for future analyses because, in
contrast to other data sources,”* "’ the different protein
stabilities were measured under respectively uniform conditions,
and there is no bias toward any particular substitution type or
site. Note, though, that other factors than protein stability may
influence Tq, or D values measured here,” including that
substitutions can directly impact BsLipA function, e.g.,, when
occurring in the vicinity of the active site.® Moreover, the
measured Ty and D values may be influenced by thermody-
namic or kinetic factors.”* Therefore, in our analysis, we focused
on scrutinizing the impact of substitution sites on thermo-
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stability or/and detergent tolerance to gain generally applicable
rules for data-driven protein engineering. The following results
stand out:

First, across the library, the likelihoods to find variants with
significantly increased Ty, (~12%) or D toward one detergent
(~14%) are almost identical and small. The finding that the
overwhelming number of single AA substitutions introduced by
random mutagenesis causes a destabilizing effect is in agreement
with previous studies.”*'%”~'*° This finding becomes even more
statistically relevant if multiple mutations need to be
accumulated over generations to reach a desired effect because
frequently a single, yet rather likely, destabilizing mutation is
sufficient to annihilate the effect of several stabilizing ones.*
The proportions of variants with increased T, or D found here
are in line with the composition of databases such as
ProTherm™ but markedly larger than the success rate of ~2%
used as a reference to evaluate the performance of FoldX.'"!
Hence, beyond the single Ty, and D data, due to the
completeness of our library and the model character of our
protein, our results also constitute unbiased reference data as to
what efficiency can be expected for a protein system when
optimizing thermostability or detergent tolerance by random
mutagenesis, In turn, largest increases in Ty, of 7.7 K and D of
2.4 found demonstrate that considerable improvements of
protein stability can already be achieved by single AA
substitutions. In that respect, previous studies on BsLipA
applying either directed evolution™" or rational design”" already
yielded close-to-optimal results in terms of increased thermo-
stability.

Second, in the context of data-driven protein engineering, we
identified substitution sites for which variants yield significantly
increased Ty, or/and D. Not considering the magnitude of the
increase, only about one-third or below of all BsLipA residues
constitute such favorable substitution sites if T5, and D are
considered separately, demonstrating that the location of a
residue within a protein structure matters with respect to a
substitution effect. This result corroborates previous studies.™””*
In addition, our complete SSM library allowed us to reveal for
such substitution sites a significant and fair correlation between
the frequency of T, or/and D-increasing substitutions and the
magnitude of the maximum effect. Together, these results show
that addressing all substitution sites in an unbiased manner by
random mutagenesis results in a considerable experimental
effort coupled to low efficiency. In turn, approaches that can
identify substitution sites with a high likelihood for significantly
increased T'sy or D prior to doing experiments will be of great
value in protein engineering studies.

Third, notably, the conclusions from the last paragraph also
hold if more than one protein property is considered at a time.
As such, we showed that at 11 substitution sites a ~4.6-fold
higher likelihood to find for each detergent variants with
significantly increased D compared to random mutagenesis is
found. Additionally, seven substitution sites yield a ~3.4-fold
higher likelihood to find significantly increased T, and a ~4.7-
fold higher likelihood to find for each detergent variants with
significantly increased D compared to random mutagenesis. The
latter finding suggests that approaches that can identify
substitution sites with a high likelihood for significantly
increased Ts, should also be beneficial for identifying
substitution sites with a high likelihood for significantly
increased D, or vice versa. This is an important finding for
practical applications as many more algorithms have been
devised that address thermostability than detergent tolerance.

https://dx.doi.arg/10.1021/acs.jcim.9b00954
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Fourth, as another set of reference data, we defined hot spot
types together with the associated substitution sites to provide
benchmark data for evaluating the performance of data-driven
approaches. The first five classes follow the strict criterion that
only the six substitution sites with the respective highest
ATgmex or AD,,, are considered, according to that all
combinations of the 20 proteinogenic AAs at such sites could
still be experimentally investigated.””*”*>*” The intersections
comprising the substitution sites with the broadest impact on
AD,,, or ATy, . and AD,_ ., are empty. Thus, we resorted to
defining two further classes with the somewhat relaxed criterion
that the comprised substitution sites show significantly
increased D toward each detergent, or significantly increased
Tsp and D toward each detergent, regardless of the magnitude of
the single effect.

Fifth, we used the complete, unbiased, and uniformly
generated Ts, and D data to probe if universal rules for
modulating thermostability or detergent tolerance can be
identified. We thereby focused on “one-dimensional” descrip-
tors in terms of location in secondary structure elements, degree
of burial, and physicochemical properties and conservation
degree of substituted AA. Such descriptors have been widely
analyzed before''™'"* and play a role in data-driven consensus
approaches.''*'"® Analyzing “two- or higher dimensional”
descriptors in terms of residue—residue interactions, entropic
contributions or other collective phenomena, or cross-
correlations of “one-dimensional” descriptors™ remains for
future work. Notably, considering our descriptors, many (up to
98 substitution sites) predicted hot spots result, which would
require considerable experimental efforts particularly if
beneficial substitutions need to be accumulated to reach a
desired effect. This finding demonstrates on a single protein
level that, with these descriptors, no universal and sufficiently
discriminating rule(s) can be identified, a finding that is
mirrored in studies across protein families''®""” and with
respect to low successes in assessing thermostabilities.''* Still, if
a higher number of predicted hot spots is acceptable, partially
solvent-exposed residues are good hot spot candidates. This
result differs from previous experimental studies showing that
especially surface remodelin% emerged as an effective strategy to
improve protein stability.''™""” Furthermore, loop positions,
which have elsewhere been identified to preferentially carry
favorable substitution sites,'*”'*" show muostly destabilizing
effects. Finally, and likely surprisingly, hot spots were
preferentially found at nonconserved and semiconserved
position, a finding that may help refine future consensus
concepts where multiple sequence alignments are used to
substitute nonconsensus residues by consensus ones.*'**

Sixth, we made use of the reference data to unequivocally
benchmark our ensemble- and rigidity theory-based CNA
approach with respect to predicting hot spots as structural weak
spots of the protein. In contrast to previous studies on much
smaller data sets,”*>® the present work allows to systematically
assess the quality of our predictions. To do so, and in contrast to
other assessments of protein stability predictors,”” we apply
recall and precision as basic statistical measures, rather than
sensitivity and specificity, because we are interested in the
accuracy of predicting hot spots and not not-hot spots, the latter
of which furthermore clearly dominate the data set in terms of
occurrence frequency. Methodologically, CNA differs from
other state-of-the art methods that do not consider ensemble
representations of the protein,''>'**~'*” Burthermore, CNA
does not require system-specific weighting or fitting parame-
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ters.! '35 128129 Thic should make the results obtained here

with CNA transferable to other protein systems. Weak spot
prediction by CNA relies on a realistic modeling of the thermal
unfolding of a protein.*"®" The predicted major phase
transitions and the order of the segregating secondary structure
elements are in agreement with previous computational studies
and experimental observations on other proteins with an a/f
hydrolase fold."*”"*' Furthermore, we confirmed the unfolding
pathway of wtBsLipA predicted by CNA with the independent
MCMC-based ProFASi approach. From a practical point of
view, it is relevant that CNA predicted only 10 weak spots,
allowing to focus subsequent substitution efforts on only ~6% of
the protein residues. Furthermore, the gain in precision over
random classification is between ~3 and ~9, depending on the
hot spot class. Considering the properties of the majority of
predicted weak spots, i.e., alocation in a loop, turn, orbend and a
neutral or aliphatic amino acid type (Table 2), the notion may
arise that these two properties, when correlated, characterize hot
spots. The gain in precision over random classification is only
between ~0.7 and ~2.1, however, depending on the hot spot
class (Table S16), and, hence, more than fourfold lower than
when hot spots are predicted as weak spots by CNA (Table 1).
Together with the low computational demand on the order of
hours only, these results lead to the strong recommendation to
apply CNA-based weak spot prediction for data-driven protein
engineering toward increased T, or/and D.

In summary, we provide systematic and unbiased reference
data at large scale for thermostability measured as T, values and
detergent tolerance measured as D for a biotechnologically
important protein, identified consistently defined hot spot types
for evaluating the performance of data-driven protein-engineer-
ing approaches, and showed that CNA-based hot spot
prediction can yield a gain in precision over random
classification up to ninefold.
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Supplemental Tables

Table S1: Variants with significantly changed 750 or D towards one detergent by random
mutagenesis.

Type of  No. of variants  No. of variants  Total no.

protein  with ATso>0K withATsy<0K  of C"‘i;lel‘\‘;]rf‘b]“"“ v
stability or AD > 01l or AD <01l variants
Ts 214 (11.5) 1642 (88.5) 1856 / /
Dsps 261 (14.6) 1532 (85.4) 1793 0.35 0.08
DctaB 87 (10.3) 760 (89.7) 847 0.27 0.09
DsB3-16 103 (22.2) 361 (77.8) 464 0.77 0.32
Drween 80 52(10.5) 443 (89.5) 495 0.08 0.14
Mean (D) 126 (14.4) 774 (85.6) 900 / /

[al Number of variants; values in brackets represent the likelihood [%] to find variants with
significantly changed 750 or D in relation to the total number of variants, respectively.

bl Used detergent concentration; CMC values according to published data: SDS (7 mM);
CTAB (1 mM); SB3-16 (0.01 mM); Tween 80 (0.012 mM)".

] Standard deviations of 2997 wtBsLipA replicates for each concentration 2.
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Table S3: Correlations between the frequency of substitution occurrences per substitution site
of classes I — V, where variants yield significantly increased 750 (NssLipa; 7) or D (NasLipA: D)
towards one detergent.

Class of substitution sitel®!
| I 111 v A%
I / <0.001 <0.05 > 0.1 <0.1
Class of II 0.066 / <0.001 <0.05 <0.05
substitution I 0.033 0.176 / <0.001 <0.001
sitel?! v 0.004 0.036 0.263 / <0.001
\" 0.015 0.031 0.105 0.059 /

[al Upper values are p-values; lower values are R’-values.
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S8

Table S4: Correlations between the highest effects per substitution site of classes I — V,
considering variants with significantly increased 750 (A750; max) or D (ADmax) towards one

detergent.
Class of substitution sitel?!

| 1I 111 v \%
I / <0.1 >0.1 <0.1 >0.1
Class of I 0.089 / >0.1 > 0.1 <0.05
substitution I 0.002 0.041 / <0.1 >0.1
sitel?! v 0.132 0.064 0.128 / >0.1

\% 40107 0.235 0.007 0.029 /

[al Upper values are p-values; lower values are R>-values.
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Table S5: Correlations between NasLipa; 7 and AT50; max as well as NasLipa; p and ADmax of
substitution sites of classes I - V.

Class of substitution sites R%-value p-value
| 0.449 <0.001
11 0.382 <0.001
III 0.054 >0.1
v 0.464 <0.001
\% 0.008 >0.1
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Table S6: Jaccard indices (J) for substitution sites of classes I - V or X — XIV.

Class of substitution sitel®!
I/X I/ XI HI/XIIm IV/XIIl V/XIV
I/X / 0.091 0.091 0.091 0
Class of I/ XI 0.416 / 0 0 0
substitution | III/XII 0.291 0.333 / 0.200 0
sitell IV / XIII 0.264 0.250 0.467 / 0
VvV /XIV 0.157 0.227 0.310 0.250 /

[ Lower values are J of substitution sites for which variants yield significantly increased 5o
and D towards one detergent as well as significantly increased D towards two detergents (I —
V); upper values are the J of the six substitution sites for which variants yield the respective
highest effects regarding significantly increased 750 and D towards one detergent as well as

significantly increased D towards two detergents (X — XIV).
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Table S7: Variants with significantly changed D at substitution sites of class VIII.

Type of protein No. of variants with  No. of variants with Total no. of
stability AD > 0l AD < 0l?] variants
Dsps 63 (54.8) 52 (45.2) 115
Dcras 19 (76.0) 6 (24.0) 25
DsB3-16 31(79.5) 8(20.5) 39
Drween 80 16 (84.2) 3 (15.8) 19
Mean (D) 32 (64.0) 17 (36.0) 50

[al Number of variants; values in brackets represent the likelihood [%] to find variants with

significantly changed D in relation to the total number of variants, respectively.
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Table S8: Variants with significantly changed 750 or D at substitution sites of class IX.

Type of protein No. of variants with  No. of variants with Total no. of

stability ATso>0or AD > 0l21  ATs) <0 or AD < 0@ variants
Ts0 35 (40.7) 51(59.3) 86
Dsps 39 (56.5) 30 (43.5) 69
Dcras 10 (79.9) 3(23.1) 13
DsB3-16 18 (78.3) 5(21.7) 23
Drween 80 10 (83.3) 2 (16.7) 12
Mean (D) 19 (65.5) 10 (34.5) 29

[al Number of variants; values in brackets represent the likelihood [%] to find variants with

significantly changed 750 or D in relation to the total number of variants, respectively.
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Table S9: Substitution sites of class X — XIV with the respective six highest effects in
significantly increased 750 or D towards each detergent.

Class of
substitution Substitution site!?! ATs0; max [K] Nstipa; 7 o Location!"!
site or ADmax NBsLipA; D
M137 7.7 10 Loop
M134 5.6 9 Bend
X G155 4.5 4 Loop
F17 3.8 12 Gl
1157 3.6 1 G5
Y139 3.2 7 oE
M137 1.49 6 Loop
R142 1.45 7 Loop
X1 T47 1.29 8 Loop
E65 1.10 14 oB
G13 1.03 6 Turn
Y49 0.94 9 oB
T110 1.63 1 Loop
K44 1.04 4 Turn
1135 1.01 6 Bend
Xl G13 0.72 1 Turn
M134 0.58 4 Bend
N51 0.55 1 oB
G46 2.41 11 Loop
K44 2.26 3 Turn
M134 2.25 1 Bend
X N51 2.10 7 oB
T45 1.90 4 Turn
V99 1.87 5 B6
S127 2.29 3 B7
1128 2.00 1 pB7
T126 1.98 1 B7
X1V L123 1.89 1 B7
Q150 1.07 2 B8
A20 0.86 1 oA

lal Substitution sites highlighted in bold are predicted as weak spots by CNA.

b1 ocation of the substitution site in terms of secondary structure elements.
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Table S10: Variants with significantly changed 750 or D at substitution sites of classes X —
XIV.

Type of protein No. of variants with  No. of variants with Total no. of

stability ATso> 0 or AD > 018l ATso< 0 or AD <0l variants
Ts0 43 (63.2) 25 (36.8) 68
Dsps 50(70.4) 21 (29.6) 71
DctaB 17 (53.1) 15 (46.9) 32
Dsg3-16 31(79.5) 8 (20.5) 39
Drween 80 9(32.1) 19 (67.9) 28
Mean (D) 27 (62.8) 16 (37.2) 43

[al Number of variants; values in brackets represent the likelihood [%] to find variants with

significantly increased 750 or D in relation to the total number of variants, respectively.
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Impact of substitution sites on thermostability and detergent tolerance S18

Table S14: Conservation of wtBsLipA residues within bacterial lipases.

NBasLipa; D NBsLipA; D NBsLipa; D NBsLipa; D

. [a] . e
Residue Conservation  Npsiipa: 7 (SDS)  (CTAB)  (SB3-16) (Tween 80)

Al 2
E2
H3
N4
P5
V6
V7
MS$
V9
H10
Gl1
112
G13
Gl4
Al5
S16
F17
N18
F19
A20
G21
122
K23
S24
Y25
126
V27
$28
Q29
G30 1
W3l

32

R33

D34

K35

L36

Y37

A38
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D40

F41
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D43

K44
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G46
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N48

Y49
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NS1

G52
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Impact of substitution sites on thermostability and detergent tolerance S19

Table S14 continued.

NBsLipa; D NBsLipa; D NBsLipa; NpsLipa; D
(SDS)  (CTAB)  (SB3-16) (Tween 80)
0 0

Residue! Conservation  Npstipa; T

P53
Vi4
L55
$56
R57
F58
V59
Q60
K61
V62
L63
D64
E65
T66
G67
A68
K69
K70
V71
D72
173
V74
A75
H76
77
M78
G79 1
G80

A81

N2

T83

L84

Y85

Y86

187

K88

N89

L90

D91

G92

G93

N94

K95

V96

A97

N98

V99

V100

T101

L102

G103

G104
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Impact of substitution sites on thermostability and detergent tolerance S20

Table S14 continued.

NBsLipa; NBpsLipa; D NpsLipa; D NpsLipa; D
(SDS)  (CTAB)  (SB3-16) (Tween 80)
0 0 1

Residue! Conservation  Npstipa; 7

A105 0
N106
R107
L108
T109
1110
Gll1
K112
Al13
L114
P115
G116
T117
D118
P119
N120
Q121
K122
Li23
L124
Y125
Ti26
S127
128

Y129
S130
S131

A132
D133
M134
1135
V136
MI137
N138
Y139
L140
S141

Ri142
L143
D144
G145
A146
R147
N148
V149
Q150
1151

H152
G153
V154
G155
H156
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Impact of substitution sites on thermostability and detergent tolerance S21

Table S14 continued.

NBsLipa; D NBsLipA; D NBsLipa; D NBsLipa; D
(SDS)  (CTAB)  (SB3-16) (Tween 80)
0 1 0 0

Residue! Conservation  NpsLipa; T

1157

G158
L159
L160
Y161
S162
S163
Q164
V165
N166
S167
L168
1169

K170
E171
G172
L173
N174
G175
G176
G177
Q178
N179
T180
N181

SO DO OO O, OO, OO — OOV OoODOoOoDOoOO
SO OO OO VIO, O—L OO0 WLWLWODO N IO —
— O O WO OODODDODDODDDOoOODoooOoOoO— OO OO
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[=NeleoNelols e ol e oo oo E=R=Nell e N oo X=]

[l Underlined substitution sites are identified as kot spots; substitution sites highlighted in

bold are predicted as weak spots by CNA
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Impact of substitution sites on thermostability and detergent tolerance S22

Table S15: Amino acid types that lead to maximum changes in thermostability or detergent
tolerance.
AA type  ATs0; max [K] ADmax;sps  ADmax; cTAB ADmax; $B3-16  ADmax; Tween80

I 3.59 0.86 1.01 1.01 2.00
A 2.79 0.58 0.45 0.97 0.86
\Y% 1.19 0.79 0.44 1.87 0.70
L 1.51 0.67 0.22 0.76 0.45
G 4.51 1.03 0.72 241 0.48
F 3.78 0.68 -0.19 1.07 0.39
Y 4.22 -1.37 0.35 1.44 0.51
W 1.68 -0.20 -0.19 0.67 -0.38
C nal® nal® nal® nal® nal®
P 0.54 0.35 -0.19 0.90 0.30
M 7.67 1.49 0.58 2.25 0.45
S 2.55 0.68 -0.19 0.74 2.29
T 0.94 1.29 1.63 1.90 1.98
N 2.65 0.76 0.55 2.10 0.51
Q 0.66 0.68 0.34 0.87 1.07
H 0.84 0.17 0.25 -0.67 0.31
K 1.87 0.80 1.04 2.26 -0.29
R 2.79 1.45 0.51 1.76 0.67
D 1.92 0.74 0.32 1.10 0.33
E 1.00 1.10 0.23 1.27 0.55

2l Not available.
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Impact of substitution sites on thermostability and detergent tolerance S24

Supplemental Figures

pNP Absorbance vs. Time (s) Incubation Temperature [4C)
Sample . 40
Blank WT . 40.2
15 o 2413
o | %43
.| w454
4| »a8

pNP Absarbance

‘SRR
09 ashse

Figure S1: Control experiments regarding pNP absorption. The pNP absorption over time
was measured at different temperatures between 40 and 60.6°C. On the left, the results of the
control experiments, i.e., just pNPP in solution, are shown for temperatures up until 60.6°C.
On the right, the results of pNP absorption in the presence of BsLipA are shown. At
temperatures above 48°C, the protein denatures; no increase in pNP absorption over time is
observed then.
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Impact of substitution sites on thermostability and detergent tolerance 825

<
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Figure S2: Autocorrelation function of the cluster configuration entropy Hiype2. The
snapshots were extracted at time intervals of 40 ps, and the lag time is in multiples of 40 ns.
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Abstract

Understanding mechanisms of promiscuity is increasingly important from a fundamental and
application point of view. As to enzyme structural dynamics, more promiscuous enzymes
generally have been recognized to also be more flexible. However, examples for the opposite
received much less attention. Here, we exploit comprehensive experimental information on
the substrate promiscuity of 147 esterases tested against 96 esters together with
computationally efficient rigidity analyses to understand the molecular origin of the observed
promiscuity range. Unexpectedly, our data reveal that promiscuous esterases are significantly
less flexible than specific ones, are significantly more thermostable, and have a significantly
increased specific activity. These results may be reconciled with a model according to which
structural flexibility in the case of specific esterases serves for conformational proofreading.
Our results signify that esterase sequence space can be screened by rigidity analyses for
promiscuous esterases as starting points for further exploration in biotechnology and synthetic

chemistry.
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1. Introduction

Enzymes involved in primary metabolism typically exquisitely discriminate against other
metabolites. Yet, evolution of specificity is only pushed by nature to the point at which
‘unauthorized’ reactions do not impair the fitness of the organism (1). As a result, the universe
of promiscuous activities available in nature has been suggested to be enormous (2, 3).
Understanding mechanisms of promiscuity has thus become increasingly important for the
fundamental understanding of molecular recognition and how enzyme function has evolved
over time(4) but also to optimize enzyme engineering applications (5). A particular challenge
in the latter case is the ability to discover a suitable enzyme with ‘sufficient’ promiscuous

activity to serve as a starting point for further exploration (1).

Enzyme structural dynamics, besides its role in catalysis (6, 7) and allosteric regulation (8-
11), has been recognized as likely the single most important mechanism by which promiscuity
can be achieved (5). Prominent examples are human cytochrome P450 (CYP) enzymes, for
which crystallographic studies and molecular simulations demonstrated that more
promiscuous CYPs show larger structural plasticity and mobility (12-14), or TEM-1 B-
lactamase and a resurrected progenitor, for which molecular simulations show that the pocket
of the ancestral, and more promiscuous, enzyme fluctuates to a greater extent (15). However,
examples for the opposite, i.e., conformational changes selected in evolution such that they
enhance specificity in molecular recognition (16), have received much less attention in the

context of enzyme promiscuity.

A clear limitation for scrutinizing the link between enzyme structural dynamics and substrate
promiscuity is the general lack of large-scale data on one enzyme (super)family tested against
a multitude of ligands (17) (cf. ref. (1) for notable exceptions). Likewise, acquiring
information on enzyme dynamics at the atomistic level by experimental techniques or
classical molecular dynamics (MD) simulations is burdensome. Here, we exploit
comprehensive experimental information on the substrate promiscuity (18) of esterases
(abbreviated EHs, for “Ester Hydrolases™) (19) together with computationally efficient
rigidity analyses (20-23) of comparative models of EHs to understand the molecular origin of
the observed promiscuity range. Enzyme rigidity, or its opposite flexibility, are static
properties that denote the impossibility, or possibility, of motions in an enzyme under force,
without giving information about directions and magnitudes of movements (23). Enzyme
flexibility, thus, should not be confused with enzyme mobility, which describes actual

motions in an enzyme. Rigidity analysis results do not rely on the correct description of the
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4

time-dependency of processes (23), which makes them valuable in cases where timescales
over multiple orders of magnitude may govern such processes, like in enzyme dynamics (6,

7).

In recent years, EHs have obtained much attention in basic research and industrial
applications (24). EHs are widely distributed in nature within microbial communities (at least
one EH is found in each bacterial genome), they have been extensively examined with state-
of-the-art (meta)genomics techniques and investigated by functional screenings compared to
many other classes of enzymes. They also possess outstanding properties in terms of stability,
reactivity, and scalability that make them appropriate biocatalysts to improve
competitiveness, innovation capacity, and sustainability in a modern circular bio-economy
(25). Recently, a large-scale study on substrate promiscuity (Pen, which denotes the number
of esters hydrolyzed by an EH) of 147 phylogenetically, environmentally, and structurally
diverse microbial EHs was described by Ferrer ef al. (19), in which all EHs were functionally
assessed against a customized library of 96 esters. As to mechanistic understanding, the
authors related Pen to a structural parameter, the active site effective volume. However, the

impact of enzyme flexibility on Pen was not assessed.

In our study, we thus ask the following questions: 1) What is the relation between Prn and EH
flexibility? II) Does this relation hold if experimentally determined EH thermostabilities are
used as proxies for enzyme flexibility? III) What is the relation between Pen and EHs’
specific activities? IV) Is there a preference of promiscuous or specific EHs for a particular

type of esters. V) Can this preference be understood with respect to EHs flexibilities?
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2. Materials and Methods

2.1. Definition of data sets

The present study builds on the study from Ferrer e¢f «l. (19). In order to assess Pru. the
authors experimentally investigated 147 phylogenetically, environmentally, and structurally
diverse microbial EHs (termed experimental data set) against a customized library of 96
different esters. Two commercial lipases, which have found wide biotechnological
applications, CalA and CalB from Pseudozyma aphidis (formerly Candida antarctica), were
included for comparison. For details on determining and classifying Prn, see Supplemental

Materials and Methods.

As our computational approach involves extensive molecular dynamics (MD} simulations for
generating conformational ensembles (see section 2.3), we selected 35 EHs from the volume
data set (termed flexibility data sel) for comparative modeling (see section 2.2). The criteria

for choosing EHs of the flexibility data set are explained in section 3.1.

2.2. Comparative modelling and validations of the flexibility data set

Comparative models of the flexibility data set (see section 2.1) were generated using our in-
house structure prediction meta-tool TopModel (26) that has been successfully applied in
previous studies (27-30). TopModel uses multiple state-of-the-art threading and
sequence/structure alignment tools to generate a large ensemble of models from different
pairwise and multiple alignments of the top five highest ranked template structures. The

TopModel software is available at https://cpclab.uni-duesseldorf.de/index. php/Software.

The quality of the homology models was assessed by our meta Model Quality Assessment
Program (meta-MQAP) TopScore (31). TopScore uses deep neural networks (DNN) to
combine scores from 15 different primary MQAP to predict accurate residue-wise and whole-
protein error estimates. For details on model quality assessment by TopScore and validation,

see Supplemental Materials and Methods.

To test whether CARs of the homology models are accessible for substrates, we applied the
CAVER 3.0.3 PyMOL Plugin (32). Starting points for the computations were defined based
on the Cartesian coordinates of the CARs’ center of mass (COM). Default values were used

for the probe radius (0.9 A), shell radius (3.0 A), and shell depth (4.0 A).
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2.3. Generation of structural ensembles

Structural ensembles of EHs were generated by all-atom MD simulations of in total 5 ps
simulation time per EH. For details on starting structure preparation, parametrization, and

equilibration see Supplemental Materials and Methods.

All minimization, equilibration, and production simulations were performed with the
pmemd.cuda module (33) of Amber19 (34). During production simulations, we set the time
step for the integration of Newton’s equation of motion to 4 fs following the hydrogen mass
repartitioning strategy (35). Coordinates were stored into a trajectory file every 200 ps. This
resulted in 5000 configurations for each production run that were considered for subsequent

analyses.

2.4. Constraint Network Analysis

The flexibility analyses were performed with the Constraint Network Analysis (CNA)
software package (version 3.0) (20-23). CNA functions as front- and back-end to the graph
theory-based software Floppy Inclusions and Rigid Substructure Topography (FIRST) (36).
Applying CNA to biomolecules aims at identifying their composition of rigid clusters and
flexible regions, which can aid in the understanding of biomolecular structure, stability, and
function (21-23). As the mechanical heterogeneity of biomolecular structures is intimately
linked to their diverse biological functions, biomolecules generally show a hierarchy of
rigidity and flexibility (20). In CNA, biomolecules are modeled as constraint networks in a
body-and-bar representation, which has been described in detail by Hesphenheide et al. (37).
A fast combinatorial algorithm, the pebble game, counts the bond rotational degrees of
freedom and floppy modes (internal, independent degrees of freedom) in the constraint
network (38). In order to monitor the hierarchy of rigidity and flexibility of biomolecules,
CNA performs thermal unfolding simulations by consecutively removing non-covalent
constraints (hydrogen bonds, including salt bridges) from a network in increasing order of
their strength (39-41). For details on thermal unfolding simulations, see Supplemental
Materials and Methods. To improve the robustness and investigate the statistical
uncertainty, we carried out CNA on ensembles of network topologies (ENTMP) generated

from MD trajectories (see section 2.3) (42).
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The CNA software is available under academic license at https:/cpclab.uni-

duesseldorf.de/index.php/Software and the CNA web server is accessible at htips://cpclab.uni-

duesseldorf.de/cna.

2.5. Local and global indices

From the thermal unfolding simulations, CNA computes a comprehensive set of indices to
quantify biologically relevant characteristics of the protein’s stability. Global indices are used
for determining the rigidity and flexibility at a macroscopic level; local indices determine the
rigidity and flexibility at a microscopic level of bonds (43). The cluster configuration entropy
Hupez 1s a global index that has been introduced by Radestock and Gohlke (20). As done
previously, we applied Hiype2 as a measure for global structural stability of proteins (20, 41,
44-48). The stability map rcy is a local index that has been introduced by Radestock and
Gohlke (20). We applied rcjy as a measure for local structural stability of proteins in previous

studies (45, 47, 48). For details on both indices, see Supplemental Materials and Methods.

2.6. Root mean square fluctuations

The per-residue root-mean-square fluctuations were calculated for each EH (RMSFen) and for
its CARS (RMSFcar) based on the MD trajectories (see section 2.3). Prior to the calculations,
the structures of each trajectory were superimposed onto the average structure using the 90%

least mobile residues of the respective EHs (49).

2.7.  Torsion angles

For each of the 96 esters, the number of freely rotatable bonds (torsion angles, TA) was

calculated based on the SMILES codes provided by Ferrer et ol (19).

To compare how many esters with a specific TA are hydrolyzed by each EH, we calculated
the normalized proportion of ester hydrolysis with a specific TA (Normesier(TA)) as the
number of hydrolyzed esters with a specific TA (Esfertydrolvsed (TA)) divided by the total
number of esters in the data set with this specific TA (Esteribar(TA)) (Eq. 1).
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ESterhydrolyzed (TA)
Es terlibrary (TA)

Normeger (TA) [%] = * 100% Eq. 1

2.8. Circular dichroism spectroscopy

Prior to analyses, soluble His-tagged proteins were produced and purified after binding to a
Ni-NTA His-Bind resin as described by Ferrer er al. (19). Circular dichroism (CD) spectra
were acquired between 190 and 270 nm with a Jasco J-720 spectropolarimeter equipped with
a Peltier temperature controller, employing a 0.1 mm cell at 25°C. Spectra were analyzed, and
denaturation temperatures were determined at 220 nm between 10 and 85°C at a rate of 30°C
per hour, in 40 mM (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, pH
7.0. A protein concentration of 1.0 mg ml' was used. Denaturation temperatures were
calculated by fitting the ellipticity (mdeg) at 220 nm at each of the different temperatures

using a 5-parameters sigmoid fit with Sigma Plot 13.0.
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3. Results

3.1. Definition of data sets

To understand the structural origin of and develop a method to predict Pen, the present study
builds on large-scale data from Ferrer ef al. (19). The authors experimentally investigated Pen
of 147 EHs (termed experimental data set) (see section 2.1). Additionally, they ranked
(classified) Pen of 96 EHs (termed volume data set) based on the active site effective volume
(see section 2.1) (Eq. S1), which will be used here as a reference to compare the power of

Prn predictions.

As our computational approach involves extensive MD simulations for generating
conformational ensembles (see section 2.3), we selected 35 EHs from the volume data set
based on the following criteria; they constitute the flexibility data set. I) The data set contains
eleven EHs with known crystal structures (including the commercial EHs CalA and CalB)
(Figure 1A, Table S1) and 24 EHs for which no experimental structure is available but for
which comparative models can be generated (see section 3.2) (Figure 1A, Table S2). That
way, we can probe to what extent the source of structural information influences the outcome
of our results. II) The chosen EHs of the data set show high diversities as to Pen and
association to esterase families (FEn, as defined by Arpigny and Jaeger (50)), similar to those
found for the volume data set (Figures S1 and S2, Tables S3 and S4). This resulted in Pen
ranging from 4 to 72 (Figure 1A, Tables S1 and S2). In the following, we consider Pen as
low if the EH hydrolyzes < 9 esters (11% of the data set), as moderate if the EH hydrolyzes
between 10 and 29 esters (49%), and as high if the EH hydrolyzes > 30 esters (40%) (Figure
S1, Table S3). The data set covers eleven Fen of which Fiv (44% of the data set) and Fv
(21%) are the best represented ones (Figure S2, Table S4). This reflects the proportion of
their presence in the volume data set. 11I) Only EHs with amino acid sequence identities >
25% in comparison to an existing crystal structure were considered (see section 2.1) in order

to ensure a sufficient quality of generated comparative models.

Finally, in order to uniformly depict the results across the present study, six EHs were
selected as representatives of the flexibility data set based on Pen (termed representative data
set): EHs with the lowest (EH115) or highest Pen (EH001) and known crystal structures, EHs
with the lowest (EH127) or the highest Pen (EH005) and unknown crystal structures, and
commercial EHs with the lowest (CalA) or highest Pen (CalB) (Figure 1A-D, Tables S1 and
S2).
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3.2. Comparative models of EHs generated by TopModel show an overall and

residue-wise good quality

To generate structural models of EHs as starting points for our investigations, we performed
template-based modeling of the flexibility data set using TopModel (26) (see section 2.2). In
doing so, we also generated comparative models of the eleven EHs for which crystal
structures are available. These structural models will be used to judge the quality of the

comparative modeling.

The quality of the comparative models of the flexibility data set were assessed with TopScore
(31), a meta Model Quality Assessment Program (meta-MQAP) (see section 2.2). For the
eleven Es with known crystal structure, the global TopScores range from 0.074 to 0.305
(Figure 1A, Table S1). As the global TopScore describes whole-protein error estimates, this
shows that the structures contain between 7.4 and 30.5% error. Notably, the global TopScores
well and significantly correlate (R’ = 0.61, p = 0.004) with values of 1 — IDDT computed from
comparisons of the comparative models of EHs with known crystal structure against these
experimental reference structures, indicating that global TopScores are well suited to assess
the model quality of EHs (Figure S3, Table S5). The global TopScore values of the
comparative models of the other 24 EHs range from 0.087 to 0.269 (Figure 1A, Table S2),
indicating that these models are of equal quality than the ones for EHs with known crystal
structure. The TopScore values of the representative data set lie in a comparable range
(Figure 1A, Tables S1 and S2). Moreover, the comparative models of the flexibility data set
show low residue-wise TopScore values (31), indicating that all parts of a model are of good
quality. We illustrate this for the residue-wise TopScore of the comparative models of the
representative data set (Figures 1B-D). This also applies to structural regions around CARs
(Figures 1B-D). That way, it was possible to confirm CARs in models of EHs with known
crystal structures and to unambiguously identify CARs in models of EHs with unknown

crystal structures (Figures 1B-D, Tables S1 and S2).

Additionally, we validated that CARs in all models are accessible for substrates according to
CAVER results (32) (see section 2.2), i.e., that all models are in an open conformation: CARs
are either located on the protein surface or are buried and connected with the surface by
tunnels. We illustrate this for the comparative models of the representative data set (Figure

S4).
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To conclude, comparative models were generated for 35 EHs of the flexibility data set using
TopModel. The models showed both an overall and residue-wise good structural quality.

Additionally, we validated that CARs in all models are accessible for substrates.

3.3.  Promiscuous EHs are globally less flexible

Previous studies indicated that enzyme flexibility influences the substrate promiscuity of
enzymes (12-14). For gaining insights into how the flexibility of EHs is linked to Pen, we
applied CNA (21, 23), a rigidity theory-based approach to analyze biomolecular statics (21-
23), to the flexibility data set (see sections 2.4). To improve the robustness and investigate the
statistical uncertainty, for each of the comparative models we carried out CNA on ensembles
of network topologies (ENTMP) generated from five MD trajectories of 1 us length each (44)
(see sections 2.3 and 2.4). In order to investigate if the global flexibility of the EHs
influences Pen, we predicted 7p, the phase transition temperature previously applied as a
measure of structural stability of a protein (20, 41, 44-48), for each EH (see section 2.5). 7}
was averaged over five ensembles (see sections 2.3 and 2.4), resulting in all but one case in

SEM < 1.87 K (Figure 2A, Tables S1 and S2).

Ty and Pen of the flexibility data set are well and significantly correlated (R*> = 0.60, p =
5.4%10%) (Figure 2A). To validate the consistency of our approach, we considered EHs with
known or unknown crystal structures separately. In both cases, good and significant
correlations between 7, and Pen were revealed (known crystal structures: R*> = 0.48,
p = 0.019; unknown crystal structures: R> = 0.73, p = 1.1*¥107), lending support to the quality
of comparative models predicted with TopModel and indicating that future predictions on
EHs with unknown experimental structures should be promising. Notably, EHs with high Pen
have a high 7} and vice versa, i.e., promiscuous EHs are globally less flexible. Exemplarily,
this is depicted for EHs of the representative dataset with known crystal structures and lowest
(EH115) or highest Pen (EHOO1), which showed 7}, of 322.3 K and 357.2 K, with unknown
crystal structures and lowest (EH127) or highest Pen (EHO00S), which showed 7} of 318.6 K
and 351.1 K, and CalA and CalB, which showed 7, of 346.2 K and 351.6 K (Figure 2A,
Tables S1 and S2). The differences in global structural stability of these EHs are illustrated
by the rigid cluster decomposition at 332 K during the thermal unfolding simulations (Figure
2B-D): promiscuous EHs are globally more structurally stable at the elevated temperature as

indicated by fewer, but larger, rigid clusters.

143



ORIGINAL PUBLICATION III

12
The EH flexibility analyzed so far is a static property and describes the potential of motions in
a biomolecule (23). Yet, direct information on mobility within EHs is available from the
ensembles generated by MD simulations. We thus computed exemplarily RMSFEH, a measure
for protein mobility (see section 2.6), across the ensembles of EHs from the representative
data set. RMSFen, averaged over all residues and all five MD trajectories, and Pen do not
yield a significant correlation (p = 0.13) (Figure S5A, Table S6), in contrast to 7p and Pen
(R*=0.93, p = 1.8*%107%) (Figure S5B, Table S6). Still, as promiscuous EHs are globally less

mobile, the same trend is obtained as in the case of the flexibility analysis.

To conclude, a good and significant correlation between 7p and Pen was found for the
flexibility data set (R> = 0.60, p = 5.4*10®). These findings demonstrate that promiscuous
EHs are globally less flexible. RMSFen is less predictive for Pen, although again promiscuous

EHs are characterized by a lower global mobility, mutually confirming either result.

3.4. Promiscuous EHs are more thermostable

Previous studies indicated that thermodynamically more thermostable proteins frequently
have a higher structural stability (45, 48). In order to investigate if promiscuous EHs, which
were predicted to be less flexible (see section 3.3), are also more thermostable, CD
spectroscopy was applied to determine the melting temperature 74 of the EHs (see section
2.8). Note that only if the unfolding of a protein is reversible, CD spectroscopy provides true
thermodynamic properties (51). However, even if the unfolding is irreversible, because the
protein aggregates at high temperatures, the method can still give information about relative
stabilities (51). Hence, to reduce the potential impact of different aggregation kinetics of
structurally different proteins, we applied CD spectroscopy to one Fen family only. In

particular, we used F1v because it is the largest Feu (Table S7).

Exemplarily, a CD spectrum for 74 determination is shown for EHOO1 (Figure 3A); for each
EH, T4 determination was performed in triplicates with STD < 0.62 K. 74 and Pen yield a fair
and significant correlation (R* = 0.40, p = 0.027) (Figure 3B).

To conclude, promiscuous EHs are not only globally less flexible but also more thermostable.
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3.5. Promiscuous EHs have less flexible catalytically active residues

The good correlation of Pen and 7p encouraged us to investigate if local flexibility
characteristics of CARs will provide an even better predictor of EH promiscuity. We thus
computed Flexcar for the flexibility data set, i.e., the stability of rigid contacts between CARs
and other residues that are at most 5 A apart from each other, based on the local index
rcineighbor (See section 2.5). For each EH, Flexcar was averaged over five ensembles (see

sections 2.3 and 2.4), resulting in SEM < 0.06 kcal mol™' (Figure S6A, Tables 1 and 2).

Flexcar and Pen of the flexibility data set yield a good and significant correlation (R = 0.51,
p=1.7%¥10°) (Figure S6A). To validate again the consistency of our approach, we considered
EHs with known and unknown crystal structures separately. In both cases, good and
significant correlations between Flexcar and Pen were found (known crystal structures: R> =
0.63, p = 3.7*107%; unknown crystal structures: R* = 0.47, p = 2.2*10™*), again lending support
to the quality of comparative models predicted with TopModel. Hence, EHs with high Pen
have low Flexcar and vice versa, i.e., promiscuous EHs have less flexible CARs.
Exemplarily, this is detailed for EHs of the representative dataset with known crystal
structures and lowest (EH115) or highest Pen (EH001), which showed Flexcar of -0.74 kcal
mol ! and -1.91 kcal mol!, with unknown crystal structures and lowest (EH127) or highest
Pen (EH005), which showed Flexcar of -1.10 kcal mol ™! and -1.86 kcal mol ™!, and CalA and
CalB, which showed Flexcar of -1.31 kcal mol™! and -1.95 kcal mol™ (Figure S6A, Tables
S1 and S2). The differences in local structural stability of these EHs are illustrated by rigid
contacts between CARs and other residues that are at most 5 A apart from each other (Figure
S6B-D): promiscuous EHs are locally more structurally stable as indicated by more stable

rigid contacts.

Finally, we exemplarily computed RMSFcar, a measure for the mobility of a protein’s CARs
(see section 2.6), across the ensembles of EHs from the representative data set. Averaged
RMSFcar and Pen correlate worse (R* = 0.74, p = 0.029) (Figure S7A, Table S6) than
Flexcar and Pen (R* = 0.92, p = 2.4*107) (Figure S7B, Table S6), paralleling the above
results for the global measures. Still, again, as promiscuous EHs have less mobile CARs, the

same trend is obtained as in the case of the flexibility analysis.

To conclude, a good and significant correlation between Flexcar and Pen was found for the

flexibility data set (R> = 0.51, p = 1.7%10°). Hence, promiscuous EHs have less flexible
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CARs. RMSFcar is less predictive for Puu, although again promiscuous EHs are characterized

by less mobile CARs, mutually confirming either result.

3.6. Promiscuous EHs have an increased specific activity

In the study by Ferrer ef al. (19), the experimental data set was screened against 96 esters in a
kinetic pH indicator assay (see section 2.1). Besides the average specific activity Actaverage
given in U / (g wet cells), also the average maximum specific activity 4c/max Was determined.
Motivated by the reactivity-selectivity principle (RSP) initially introduced for organic
chemistry reactions (52), which states that a more reactive chemical compound is less
selective in chemical reactions, we intended to probe if Pu is related to Actmax. For this, we
established an approximate linear free-energy relationship (LFER) (53) by relating log(Actmax)
and log(Pen) (Figure S8, Table S8). In this analysis, the CalA and CalB preparations were

excluded because Acfmax was given in U / (g total protein) there.

Log(Actmax) and log(Prn) of the experimental data set yield a good and significant correlation
(R* = 0.50, p = 4.6%10%) (Figure S8A). Likewise, log(Actma) and log(Prr) of the flexibility
data set yield a fair and significant correlation (R*> = 0.22, p = 0.6*10%) (Figure S8B). To
validate whether the same trend emerges for EHs with known and unknown crystal structures,
we considered both types of EHs separately. In both cases, fair and significant correlations
between log(A4cimax) and log(Pr11) were found (known crystal structures: R? = 0.34, p = 0.099;
unknown crystal structures: R* = 0.23, p=0.019).

To conclude, good to fair and significant correlations between log(Actmax) and log(Pen) of the
experimental data set (R* = 0.50, p = 4.6*107) and the flexibility data set (R> = 0.22, p =

0.6%107?) were found. Hence, promiscuous EHs have higher maximum specific activities.

3.7.  Specific EHs prefer to hydrolyze large and flexible esters

Next, we investigated, which of the 96 esters was preferentially hydrolyzed by EHs with
different Pen. As a criterion, we chose the number of freely rotatable bonds of an ester, TA
(see section 2.7). We did so because TA is a combined measure for an ester’s size and
conformational dynamics (54). To account for the uneven distribution of esters in our data set

with respect to TA, we calculated Normesier(TA), i.e.. the number of hydrolyzed esters with a
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specific TA (Esternydrolysed (TA)) divided by the total number of esters in the data set with this
specific TA (Esteriibrary(TA)) (see section 2.7) (Eq. 1).

According to TA, the esters were classified into 17 groups that ranged from small esters with
no rotatable bond to large esters with 56 rotatable bonds (Figure 4, Table S9). Esters with
three (24% of the ester library) and four (16% of the ester library) rotatable bonds are most
frequent. The analysis of the experimental data set revealed that promiscuous EHs have high
Normester values irrespective of TA, i.e., promiscuous EHs accept a large variety of esters with
different sizes and degrees of conformational dynamics (Figure 4A, Table S9). In contrast,
specific EHs only have high Normeser values regarding esters with high TA, i.e., specific EHs
preferentially hydrolyze (very) large and flexible esters (Figure 4A, Table S9). The same
tendency was observed for the flexibility data set (Figure 4B, Table S9).

To conclude, promiscuous EHs accept a large variety of esters with different sizes and
degrees of conformational dynamics whereas specific EHs preferentially hydrolyze (very)

large and flexible esters.
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4. Discussion

The main outcomes of our analyses are 1) that promiscuous EHs are significantly globally less
flexible and have less flexible catalytically active residues than specific ones, II) that
promiscuous EHs are significantly more thermostable, III) that promiscuous EHs have a
significantly increased specific activity, and IV) that specific EHs prefer to hydrolyze large

and flexible esters.

We established these relations using one of the still few experimental large-scale datasets
where a diverse set of EHs was functionally assessed against a customized library of
dissimilar esters (19). Functional promiscuity may arise from several conditions, including the
environment of the enzyme or the concentration of a substrate, which may complicate the
analysis of the molecular mechanism underlying promiscuity (5). Still, functional promiscuity
ultimately is a result of recognition promiscuity (5); here, we therefore focused on substrate
promiscuity (18), i.e., an enzyme carries out its typical catalytic function using non-canonical
substrates, in that experimental conditions had been kept constant for the assessment of the
different esterase/ester combinations (19). Almost all of the EHs were unambiguously
assigned to one of the Fen of the Arpigny and Jaeger classification, which is based mainly on
a comparison of amino acid sequences (50). Except for classes with a few members only
(cyclase-like EHs and the yeast family), all other classes cover at least two of the three Pen
ranges such that Pen cannot be assigned based on the EH’s class affiliation (Figure S9, Table
S10) and, hence, amino acid sequence information. Even family Fiv, which contains a higher

proportion of substrate-promiscuous EHs, also contains EHs with a small substrate range.

For scrutinizing the mechanism underlying esterase promiscuity at the atomistic level, we
needed to apply comparative models of EHs, since only for ~7% of the experimentally
assessed EHs crystal structures were available. Restricting the generation of esterase models
to sequence identifies > 25% with respect to available targets yielded generally good
structural models both globally and locally, as also validated against cases where crystal
structures are known. Throughout our study, we probed for the consistency of our analyses
between subsets of EHs for which either crystal structures are known or not; we only found
quantitative differences, but no qualitative ones. One of the reasons is likely that rigidity
analyses were based on structural ensembles generated by multiple and ps-long MD
simulations, which markedly increases the robustness of the results (42). We furthermore
showed that results are consistent irrespective of whether EH flexibility characteristics were

assessed globally or only for CARs, and that mobility characteristics computed directly from
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MD trajectories show the same trend, although the correlation with Pen is insignificant.
Finally, we used experimental melting temperatures of EHs as indicators for enzyme
flexibility (45, 48), which yielded the same relation with Pen as computed flexibility
characteristics. Overall, these consistent and robust findings indicate that when applying this
workflow to novel EHs, it should be possible to discover enzymes with ‘sufficient’ substrate
promiscuity to serve as a starting point for further exploration in biotechnology and synthetic
organic chemistry. In that respect, the flexibility characteristics of EHs analyzed here have a
notably stronger predictive power than the active site effective volume introduced earlier (19)

(Figure S10, Tables S11 and S12).

The finding that promiscuous EHs are significantly globally /less flexible and have less
flexible catalytically active residues than specific EHs is in stark contrast to the general view
of the role of structural flexibility for promiscuity (4, 5): Besides the examples of CYP and f3-
lactamase mentioned above, the possibility of dynamically restructuring active sites has also
been recognized for other systems as underlying their promiscuity (55-58). Finally,
interactions between antibodies and antigens are likely the quintessential example of the
canonical relationship between flexibility and binding promiscuity: As antibodies mature to

become more specific, their flexibility is decreased (5).

It has been recognized that conformational changes may not always be necessary for
promiscuity if a variety of substrates can be bound by partial recognition or the presence of
multiple binding sites (5). However, these cases do not seem to be relevant reasons for EH
promiscuity because partial recognition often is associated with catalytic inefficiency (1),
which is contrary to our observation that Pen correlates with EH activity, and the presence of
multiple binding sites that could give rise to promiscuity is controverted by the finding that
promiscuous EHs have large active site effective volumes (19), i.e., large pockets with few
subpockets. Inversely, our findings of rigid promiscuous EHs may be consistent with the idea
that multiple ligands can be accommodated in a single site by exploiting diverse interacting

residues (Figure 5).

Our results as to specific but flexible EHs may be reconciled with a model according to which
conformational changes may have been selected in EH evolution for their ability to enhance
specificity in recognition (Figure 5), resulting in what has been termed conformational
proofreading (16). In the case of specific EHs, flexibility may help to overcome a structural
mismatch between the enzyme and its substrate existing when both are in their ground states,

that way enhancing recognition specificity. This view is corroborated by our finding that
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specific EHs prefer to hydrolyze large and flexible substrates: Larger substrates can form
more interactions with the enzyme, that way helping to overcome the deformation energy
required by the enzyme to optimizing the correct binding probability over the incorrect one;

flexible substrates can tolerate higher strains and thus can be expected to participate in more

binding events (59, 60) (Figure 5).

In summary, the combined large-scale analysis of experimental EH promiscuity and
computed EH flexibility reveals that promiscuous EHs are significantly less flexible than
specific ones. This result is counterintuitive at first but may be reconciled with a model
according to which multiple ligands can be accommodated in a single site of promiscuous
EHs by exploiting diverse interacting residues, whereas structural flexibility in the case of
specific EHs serves for conformational proofreading. Our results furthermore signify that EH
sequence space, charted, e.g., by (meta)genomics studies, can be screened by rigidity analyses
for promiscuous EHs that may serve as starting points for further exploration in biotechnology

and synthetic organic chemistry.
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Figure 1: Comparative modeling of EHs. (A) Based on sequence data provided by a large-
scale study from Ferrer et @l (19), comparative models were generated for 35 EHs with
known (left, 11 EHs) and unknown (right, 24 EHs) crystal structures using TopModel (26).
These EHs constitute the flexibility data set. The EHs vary in Pen (left ordinate, bars) and
global TopScores (right ordinate, diamonds). Six EHs were selected as representatives of the
HAexibility data set (termed representative data sef) as indicated by magenta arrows. The
quality of the comparative models of (B) EHs with known crystal structures and lowest
(EH115) or highest Pen (EHOO01), (C) EHs with unknown crystal structures and lowest
(EH127) or highest Pen (EH005), and (D) commercial EHs with highest (CalA) or lowest Pen
(CalB) was evaluated by TopScore (31). For each comparative model the residue-wise
TopScore is shown: A good (bad) homology model shows a low (high) residue-wise
TopScore (see color scale at the bottom). Insets depict CARs (spheres) within an EH. For
clarity the position of CARs is indicated by magenta stars.
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Figure 2: Correlation of T, versus Prn. (A) Correlation between predicted 7, based on the
global index Hiype2 and Peu for the flexibility data set. Data points colored grey (black)
represent comparative models of EHs with (un)known crystal structures. The representative
data set is indicated by magenta crosses. Error bars show the SEM over five independent MD
simulations of 1 us length each. Rigid cluster decomposition at 332 K during the thermal
unfolding simulation of (B) EHs with known crystal structures and lowest (EH115) or highest
Pen (EHO01), (C) EHs with unknown crystal structures and lowest (EH127) or highest Pen
(EHO003), and (D) commercial EHs with lowest (CalA) or highest Prii (CalB). Rigid clusters
are represented as uniformly colored blue, green, pink, cyan, and magenta bodies in the
descending order of their sizes.
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Figure 3: Determination of Ty via CD spectroscopy. (A) Exemplary CD spectrum of
EHOO01. The ellipticity changes in mdeg at 220 nm was plotted against the temperature,
resulting in a sigmoidal curve. The inflection point was used to obtain the 74 value (dotted
line). (B) Correlation between 73 and Puu for 12 EHs of Fiv.
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Figure 4: Relation between the number of esters’ TA and P Relation between Esternorm,
i.e., the relative proportion of the number of hydrolyzed esters with a specific TA, and Pen of
(A) the experimental data set and (B) the flexibility data set containing EHs with known
crystal structures (left), EHs with unknown crystal structures (right), and EHs constituting the
representative dala set (indicated by magenta arrows). TA was calculated based on SMILES
codes of 96 esters provided by Ferrer ef al. (19). A blue (red) color indicates that the EH
hydrolyzes many (few) esters with a specific TA relative to the total number of esters in the
data set with this specific TA (see color scale on the right); the total number of esters with a
specific TA is given in brackets on the y-axis. Pen is defined as low if the EH hydrolyzes <9
esters, as moderate 1f the EH hydrolyzes between 10 and 29 esters, and as high if the EH
hydrolyzes > 30 esters.
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Figure 5: Mechanistic model of EH flexibility, ligand size and conformational dynamics
affecting Pgn. Impact of esters with (A) many or (B) few TA on specific, and hence more
flexible (left), and promiscuous, and hence more rigid (right), EHs. Ligand parts connected by
TA are represented as blue circles. Specific EHs and large ligands with many TA can
mutually adapt (panel A, left). and promiscuous EH can bind large ligands (panel A, right)
and small ligands (panel B, right) exploiting different interaction partners. Small (and/or
rigid) ligands are not able to lead to a structural adaptation of specific EHs (panel B, left),
though, resulting in conformational proofreading. The red bars indicate the flexibility of the
EHs. A green tick (red cross) indicates that ester cleavage is (not) catalyzed.

156



ORIGINAL PUBLICATION III

25

9. References

1. S. D. Copley, Shining a light on enzyme promiscuity. Curr. Opin. Struct. Biol. 47,
167-175 (2017).

2. R. Chen et al., Molecular insights into the enzyme promiscuity of an aromatic
prenyltransferase. Nat. Chem. Biol. 13, 226-234 (2017).

3. H. Huang et al., Panoramic view of a superfamily of phosphatases through substrate
profiling. Proc. Natl. Acad. Sci. U.S.A. 112, E1974-E1983 (2015).

4. O. Khersonsky, D. S. Tawfik, Enzyme promiscuity: a mechanistic and evolutionary
perspective. Annu. Rev. Biochem. 79, 471-505 (2010).

5. I. Nobeli, A. D. Favia, J. M. Thornton, Protein promiscuity and its implications for

biotechnology. Nat. Biotechnol. 27, 157-167 (2009).

6. E. Z. Eisenmesser, D. A. Bosco, M. Akke, D. Kern, Enzyme dynamics during
catalysis. Science 295, 1520-1523 (2002).

7. K. A. Henzler-Wildman ef al., A hierarchy of timescales in protein dynamics is linked
to enzyme catalysis. Nature 450, 913-916 (2007).

8. M. J. Holliday, C. Camilloni, G. S. Armstrong, M. Vendruscolo, E. Z. Eisenmesser,
Networks of dynamic allostery regulate enzyme function. Structure 25, 276-286
(2017).

9. N. M. Goodey, S. J. Benkovic, Allosteric regulation and catalysis emerge via a
common route. Nat. Chem. Biol. 4, 474-482 (2008).

10. H. G. Saavedra, J. O. Wrabl, J. A. Anderson, J. Li, V. J. Hilser, Dynamic allostery can
drive cold adaptation in enzymes. Nature 558, 324-328 (2018).

11. S. R. Tzeng, C. G. Kalodimos, Protein dynamics and allostery: an NMR view. Curr.
Opin. Struct. Biol. 21, 62-67 (2011).

12.  J. Skopalik, P. Anzenbacher, M. Otyepka, Flexibility of human cytochromes P450:
molecular dynamics reveals differences between CYPs 3A4, 2C9, and 2A6, which
correlate with their substrate preferences. J. Phys. Chem. B. 112, 8165-8173 (2008).

13.  T. Hendrychova et al., Flexibility of human cytochrome P450 enzymes: molecular
dynamics and spectroscopy reveal important function-related variations. Biochim.
Biophys. Acta. 1814, 58-68 (2011).

14. M. Ekroos, T. Sjogren, Structural basis for ligand promiscuity in cytochrome P450
3A4. Proc. Natl. Acad. Sci. U.S.A. 103, 13682-13687 (2006).

15. T. Zou, V. A. Risso, J. A. Gavira, J. M. Sanchez-Ruiz, S. B. Ozkan, Evolution of
conformational dynamics determines the conversion of a promiscuous generalist into a
specialist enzyme. Mol. Biol. Evol. 32, 132-143 (2015).

16. Y. Savir, T. Tlusty, Conformational proofreading: the impact of conformational
changes on the specificity of molecular recognition. PloS One 2, €468 (2007).

17. M. Ferrer et al., Estimating the success of enzyme bioprospecting through
metagenomics: current status and future trends. Microb. Biotechnol. 9, 22-34 (2016).

18. K. Hult, P. Berglund, Enzyme promiscuity: mechanism and applications. Trends.
Biotechnol. 25, 231-238 (2007).

19. M. Martinez-Martinez et al., Determinants and prediction of esterase substrate

promiscuity patterns. ACS Chem. Biol. 13, 225-234 (2017).
20. S. Radestock, H. Gohlke, Exploiting the link between protein rigidity and
thermostability for data-driven protein engineering. Eng. Life Sci. 8, 507-522 (2008).
21. C. Pfleger, P. C. Rathi, D. L. Klein, S. Radestock, H. Gohlke, Constraint Network
Analysis (CNA): a Python software package for efficiently linking biomacromolecular
structure, flexibility,(thermo-) stability, and function. J. Chem. Inf. Model. 53, 1007-
1015 (2013).

157



ORIGINAL PUBLICATION III

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

26

D. M. Kriiger, P. C. Rathi, C. Pfleger, H. Gohlke, CNA web server: rigidity theory-
based thermal unfolding simulations of proteins for linking structure,(thermo-)
stability, and function. Nucleic Acids Res. 41, W340-W348 (2013).

S. M. Hermans, C. Pfleger, C. Nutschel, C. A. Hanke, H. Gohlke, Rigidity theory for
biomolecules: concepts, software, and applications. Comput. Mol. Sci. 7, el1311
(2017).

K. de Godoy Daiha, R. Angeli, S. D. de Oliveira, R. V. Almeida, Are lipases still
important biocatalysts? A study of scientific publications and patents for technological
forecasting. PloS One 10, 0131624 (2015).

M. Ferrer et al., Biodiversity for biocatalysis: a review of the a/B-hydrolase fold
superfamily of esterases-lipases discovered in metagenomes. Biocatal. Biotranfor. 33,
235-249 (2015).

D. Mulnaes et al., TopModel: Template-based protein structure prediction at low
sequence identity using top-down consensus and deep neural networks. J. Chem.
Theory. Comput. 16, 1953-1967 (2020).

H. Gohlke et al., Binding region of alanopine dehydrogenase predicted by unbiased
molecular dynamics simulations of ligand diffusion. J. Chem. Inf. Model. 53, 2493-
2498 (2013).

N. Widderich ef al, Molecular dynamics simulations and structure-guided
mutagenesis provide insight into the architecture of the catalytic core of the ectoine
hydroxylase. J. Mol. Biol. 426, 586-600 (2014).

7. Zhang et al., Determinants of FIV and HIV Vif sensitivity of feline APOBEC3
restriction factors. Retrovirology 13, 46 (2016).

D. Mili¢ et al., Recognition motif and mechanism of ripening inhibitory peptides in
plant hormone receptor ETR1. Sci. Rep. 8, 3890 (2018).

D. Mulnaes, H. Gohlke, TopScore: Using Deep Neural Networks and Large Diverse
Data Sets for Accurate Protein Model Quality Assessment. J. Chem. Theory Comput.
14, 6117-6126 (2018).

E. Chovancova ef al., CAVER 3.0: a tool for the analysis of transport pathways in
dynamic protein structures. PLoS Comput. Biol. 8, €1002708 (2012).

R. Salomon-Ferrer, A. W. Go6tz, D. Poole, S. Le Grand, R. C. Walker, Routine
microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit
solvent particle mesh Ewald. J. Chem. Theory Comput. 9, 3878-3888 (2013).

D. A. Case et al. (2019) AMBER 2019. (University of California, San Francisco).

C. W. Hopkins, S. Le Grand, R. C. Walker, A. E. Roitberg, Long-time-step molecular
dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 11, 1864-
1874 (2015).

D. J. Jacobs, A. J. Rader, L. A. Kuhn, M. F. Thorpe, Protein flexibility predictions
using graph theory. Proteins 44, 150-165 (2001).

B. Hespenheide, D. Jacobs, M. Thorpe, Structural rigidity in the capsid assembly of
cowpea chlorotic mottle virus. J. Condens. Matter Phys. 16, S5055 (2004).

D. J. Jacobs, M. F. Thorpe, Generic rigidity percolation: the pebble game. Phys. Rev.
Lett. 75, 4051 (1995).

A. J. Rader, B. M. Hespenheide, L. A. Kuhn, M. F. Thorpe, Protein unfolding: rigidity
lost. Proc. Natl. Acad. Sci. U.S.A. 99, 3540-3545 (2002).

D. R. Livesay, D. J. Jacobs, Conserved quantitative stability/flexibility relationships
(QSFR) in an orthologous RNase H pair. Proteins 62, 130-143 (2006).

S. Radestock, H. Gohlke, Protein rigidity and thermophilic adaptation. Proteins 79,
1089-1108 (2011).

158



ORIGINAL PUBLICATION III

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

27

C. Pfleger, H. Gohlke, Efficient and robust analysis of biomacromolecular flexibility
using ensembles of network topologies based on fuzzy noncovalent constraints.
Structure 21, 1725-1734 (2013).

C. Pfleger, S. Radestock, E. Schmidt, H. Gohlke, Global and local indices for
characterizing biomolecular flexibility and rigidity. J. Comput. Chem. 34, 220-233
(2013).

P. C. Rathi, S. Radestock, H. Gohlke, Thermostabilizing mutations preferentially
occur at structural weak spots with a high mutation ratio. J. Biotechnol. 159, 135-144
(2012).

P. C. Rathi, K.-E. Jaeger, H. Gohlke, Structural rigidity and protein thermostability in
variants of lipase A from Bacillus subtilis. P/oS One 10, 0130289 (2015).

M. Dick et al., Trading off stability against activity in extremophilic aldolases. Sci.
Rep. 6, 17908 (2016).

P. C. Rathi, A. Fulton, K.-E. Jaeger, H. Gohlke, Application of rigidity theory to the
thermostabilization of lipase A from Bacillus subtilis. PLoS Comput. Biol. 12,
€1004754 (2016).

C. Nutschel ef al., Systematically scrutinizing the impact of substitution sites on
thermostability and detergent tolerance for Bacillus subtilis lipase A. J. Chem. Inf.
Model. 60, 1568-1584 (2020).

H. Gohlke, L. A. Kuhn, D. A. Case, Change in protein flexibility upon complex
formation: analysis of Ras-Raf using molecular dynamics and a molecular framework
approach. Proteins 56, 322-337 (2004).

J. L. Arpigny, K.-E. Jaeger, Bacterial lipolytic enzymes: classification and properties.
Biochem. J. 343, 177-183 (1999).

N. J. Greenfield, Using circular dichroism collected as a function of temperature to
determine the thermodynamics of protein unfolding and binding interactions. Nat.
Protoc. 1,2527-2535 (2006).

H. Mayr, A. R. Ofial, The reactivity—selectivity principle: an imperishable myth in
organic chemistry. Angew. Chem. Int. Ed. Engl. 45, 1844-1854 (2006).

P. R. Wells, Linear Free Energy Relationships. Chem. Rev. 63, 171-219 (1963).

H.-J. Bohm, The development of a simple empirical scoring function to estimate the
binding constant for a protein-ligand complex of known three-dimensional structure.
J. Comput. Aided Mol. Des. 8, 243-256 (1994).

C. M. Seibert, F. M. Raushel, Structural and -catalytic diversity within the
amidohydrolase superfamily. Biochemistry 44, 6383-6391 (2005).

U. Oppermann et al., Short-chain dehydrogenases/reductases (SDR): the 2002 update.
Chem. Biol. Interact. 143-144, 247-253 (2003).

S. Fushinobu, H. Nishimasu, D. Hattori, H.-J. Song, T. Wakagi, Structural basis for
the bifunctionality of fructose-1, 6-bisphosphate aldolase/phosphatase. Nature 478,
538-541 (2011).

J. Du, R. F. Say, W. Lu, G. Fuchs, O. Einsle, Active-site remodelling in the
bifunctional fructose-1, 6-bisphosphate aldolase/phosphatase. Nature 478, 534-537
(2011).

G. R. Stockwell, J. M. Thornton, Conformational diversity of ligands bound to
proteins. J. Mol. Biol. 356, 928-944 (2006).

E. Perola, P. S. Charifson, Conformational analysis of drug-like molecules bound to
proteins: an extensive study of ligand reorganization upon binding. J. Med. Chem. 47,
2499-2510 (2004).

D. Krause, JUWELS: Modular Tier-0/1 Supercomputer at the Jilich Supercomputing
Centre. JLSRF'S, A135 (2019).

159



ORIGINAL PUBLICATION III-SUPPORTING INFORMATION

ORIGINAL PUBLICATION III-SUPPORTING
INFORMATION

Promiscuous esterases counterintuitively are less flexible

than specific ones

Nutschel, C., Coscolin, C., Mulnaes, D., David, B., Ferrer, M.,
Jaeger K.-E., Gohlke, H.

J Chem Inf Model. 2020, DOI: 10.1021/acs.jcim.1c00152.

160



ORIGINAL PUBLICATION III-SUPPORTING INFORMATION

Supporting Information

Promiscuous esterases counterintuitively are less flexible than

specific ones

Christina Nutschel', Daniel Mulnaes®, Cristina Coscolin®, Manuel Ferrer®, Karl-Erich

.laeger“j, Holger Gohlke!'%*

! John von Neumann Institute for Computing (NIC), Jiilich Supercomputing Centre (JSC) and
Institute of Biological Information Processing (IBI-7: Structural Biochemistry),
Forschungszentrum Jiilich GmbH, 52425 Jiilich, Germany

2 Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University
Disseldorf, 40225 Diisseldorf, Germany

3 Institute of Catalysis, Consejo Superior de Investigaciones Cientificas , 28049 Madrid, Spain
4 Institute of Molecular Enzyme Technology, Heinrich Heine University Diisseldorf, 52425
Jilich, Germany

* Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jiilich GmbH,

52425 lJiilich, Germany

*Corresponding author:

John von Neumann Institute for Computing (NIC), Jiilich Supercomputing Centre (JSC), and
Institute of Biological Information Processing (IBI-7: Structural Biochemistry)
Forschungszentrum Jiilich GmbH

Wilhelm-Johnen-Strafie

52425 Jiilich

Germany

Email: gohlke@uni-duesseldorf.de or h.gohlke(@fz-juelich.de

161



ORIGINAL PUBLICATION III-SUPPORTING INFORMATION

Flexibility and promiscuity of esterases

Table of Contents

Supplemental Materials and Methods

Supplemental Tables
Table S1: Information about EHs of the flexibility data set with known crystal
structures.

Table S2: Information about EHs of the flexibility data set with unknown
crystal structures.

Table S3: Comparison between the volume data set and the flexibility data set
regarding PEH.

Table S4: Comparison between the volume data set and the flexibility data set
regarding FEH.

Table S5: TopScore performance on comparative models of EHs of the
Alexibility data set with known crystal structures.

Table S6: RMSFen and RMSFcar of the representative data set.

Table S7: Melting temperatures of EHs determined by CD spectroscopy.
Table S8: Pen, log(Pen), Actmax, and log(Actmax) of EHs.

Table S9: Ester library classified according to TA.

Table S10: Distribution of Pen in FEn of the experimental data set.

Table S11: Pen and Volesr of comparative models of EHs of the flexibility data
set with known crystal structures.

Table S12: Pen and Voler of comparative models of EHs of the flexibility data
set without known crystal structures.

Supplemental Figures
Figure S1: Comparison between the volume data set and the flexibility data set
regarding PEH.

Figure S2: Comparison between the volume data set and the flexibility data set
regarding FEH.

Figure S3: TopScore performance on comparative models of EHs of the

162

8-9

10

11

12

13

14

15-19

19-21

22-25

26

27

28-38
28

29

30



ORIGINAL PUBLICATION III-SUPPORTING INFORMATION

Flexibility and promiscuity of esterases

Alexibility data set with known crystal structures.
Figure S4: Substrate-accessibility of EHs of the representative data set.

Figure S5: Correlation of RMSFen or Tp versus Pen of the representative data
set.

Figure S6: Correlation of Flexcar versus PEH.

Figure S7: Correlation of RMSFcar or Flexcar versus Pen of the representative
data set.

Figure S8: Correlation of log(A4cfmax) versus log(Pen).
Figure S9: Distribution of Pen in Fen of the experimental data set.

Figure S10: Correlation of Voletr versus Pen.

Supplemental References

163

31

32

33-34

35

36
37

38

39-40



ORIGINAL PUBLICATION III-SUPPORTING INFORMATION

Flexibility and promiscuity of esterases 4

Supplemental Materials and Methods

Determining and classifying Peu

Ferrer et al. (1) examined Pen of all esterases (EHs) with a kinetic pH indicator assay (2-4),
which unambiguously allows quantifying specific activities (4cf) at pH 8.0 and 30 °C, using a
substrate concentration above 0.5 mM. The specific activities were given in units (U) / (g wet
cells); for CalA and CalB preparations, the specific activities were given in U / (g total
protein). The assays were performed as triplicates, with the average specific activity
(Actaverage) given and standard deviation (STD) < 1% in all cases. Additionally, the average
maximum specific activity (Acfmax) was determined for each EH.

In order to rank (classify) Pen, the authors introduced a structural parameter, the active
site effective volume (Volefr). Voletr represents the topology of the active site in terms of the
active site cavity volume (Volcav) computed by Fpocket (5) divided by the relative solvent-
accessible surface area (SASAre1) using GetArea Web server (6) (Eq. S1).

Volcqy [A%] Eq. S1

VOleff[A3] = SASArel

Volest was computed for 96 EHs (termed volume data set) for which the following four

criteria were satisfied:

L. Eleven EHs with known crystal structures were included.

1L Homology models of 85 EHs with unknown crystal structures were generated using
the Prime software from Schrédinger (7) (known crystal structures from EHs in [ were
used as templates).

I11. EHs in II showed sequence identities > 25% (in comparison to known crystal
structures from EHs in I).

IV.  Catalytically active residues (CARs) were unambiguously identified.

Model quality assessment by TopScore and validation
TopScore (8) predicts 1 — IDDT, with IDDT being the local Distance Difference Test (9), a
measure for structural similarity that does not require superimpositioning of two structures.
Therefore, the range of TopScore is [0, 1], with 0 (1) indicating low (high) estimated errors of
the residues and models.

For validation, 1 - IDDT was also computed for EHs with known crystal structure and

the respective comparative model, using the IDDT web server from Swiss-Model (9). Note
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that in this case, the comparative model was generated by TopModel excluding the known

crystal structure.

Starting structure preparation, parametrization, and equilibration

The EH structures were preprocessed with the Protein Preparation Wizard of Schrodinger’s
Maestro Suite (7). Of a crystal structure, we used only chain A and removed structurally
resolved water molecules and ligands. Non-resolved termini were connected to acetyl (ACE)
and N-methyl amide (NME) groups to avoid artificially charged termini. In order to match the
experimental conditions of pH 8.0 (see section 2.1), we used Epik (10) to calculate the pKa of
relevant functional groups. All hydrogen atoms were then added according to the Amber
ff14SB library (11). The prepared EH structures were solvated with OPC water (12), leaving
at least 12 A between the EH structure and the edges of the solvent box, by using LeaP of
Amber19 (13). We also added sodium counter ions to ensure the neutrality of the system.

We used the Amber {f14SB force field (11) to parametrize the protein. lon parameters
were taken from Joung and Cheatham (14). The detailed minimization, thermalization, and
equilibration protocol has been reported in ref. (15). In short, the system was initially
subjected to three rounds of energy minimization to get rid of any bad contacts. The system
was heated to 300 K and the pressure was adapted such that a density of 1 g cm™ was
obtained. During thermalization and density adaptation, we kept the solute fixed by positional
restraints of 1 kcal mol! A, which were gradually removed. Subsequently, the system was
subjected to five independent NPT production simulations of 1 us length each using unbiased
MD simulations. Therefore, the initial velocities were randomly assigned during the first step

of the production simulations.

Thermal unfolding simulations

Therefore, a hydrogen bond energy Eus is computed by a modified version of the potential by
Mayo et al. (16). For a given network state ¢ = f{7), hydrogen bonds with an energy Fus >
Ecu(o) are removed from the network at temperature 7. In the present study, thermal
unfolding simulations were carried out by decreasing Ecut from -0.1 kcal mol™ to -6.0 kcal
mol ! with a step size of 0.1 kcal mol™!. As Ecu can be converted to a temperature 7 using the
linear equation introduced by Radestock er al. (17, 18) (Eq. S2), the range of FEcut is
equivalent to increasing the temperature from 302 K to 420 K with a step size of 2 K. Along
the thermal unfolding simulations, hydrophobic interactions were not removed because they

remain constant in strength or become even stronger with increasing temperature (19).
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B —20K
" kcal - mol-1

E.e + 300K Eq. S2
Cluster configuration entropy and stability map

The cluster configuration entropy Huypez was used to identify the phase transition temperature
Tp of the EHs constituting the flexibility data set during the thermal unfolding simulation. At
Tp, the protein switches from a rigid (structurally stable) to a floppy (unfolded) state.
However, the percolation behavior of protein networks is usually more complex, and multiple
phase transitions can be observed (17, 18, 20-24). Initially, the protein network is dominated
by a giant rigid cluster, and Htype2 is low because of the limited number of possible ways to
configure a system with this cluster. When the giant rigid cluster starts to decay or stops to
dominate the network, Hiypex jumps. There, the network is in a partially flexible state with
many ways to configure a system consisting of many small clusters. In order to determine 7},
a double sigmoid fit was applied to an Huypez versus T(Few) curve as done previously (17, 18,
20-24), and T} taken as that 7 value associated with the largest slope of the fit. The rigid
cluster decomposition of the EHs was visually inspected by VisualCNA (25), an easy-to-use
PyMOL plug-in that allows setting up CNA runs and analyzing CNA results linking data plots
with molecular graphics representations. VisualCNA is available under an academic license

from https://cpelab.uni-duesseldorf.de/index.php/Sofiware.

During a thermal unfolding simulation, the stability map rcy indicates for all residue pairs
the Ecut value at which a rigid contact rc¢ between the two residues 7 and j (represented by their
C. atoms) is lost; rc exists as long as 7 and j belong to the same rigid cluster ¢ of the set of
rigid clusters CEeut (26). Thus, rcy contains information about the rigid cluster decomposition
cumulated over all network states o during the thermal unfolding simulation. The sum over all
entries in rey yields the chemical potential energy due to non-covalent bonding, obtained from
the coarse-grained, residue-wise network representation of the underlying protein structure
(21). In the present study, we applied the neighbor stability map rcjjncighoor of each EH to
investigate short-range rigid contacts. For this, as done previously (21, 24), rcy was filtered
such that only rigid contacts between two residues that are at most 5 A apart from each other
were considered. Here, in particular, we focused on rigid contacts between CARs and other
residues at most 5 A apart and calculated the average over all such entries in rcjneighbor

(termed Flexcar).
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Table S3: Comparison between the volume data set and the flexibility data set regarding

Pgh.

Pyl #EHs of the volume data sef®  #EHs of the flexibility data set!
Low 19 (19.79) 4(11.43)
Moderate 51 (53.13) 17 (48.57)
High 26 (27.08) 14 (40.00)
#EHs 96 35

[l Experimentally measured substrate promiscuity level of EHs provided by Ferrer ef al. (1)
(see section 2.1). Pen is defined as low if the EH hydrolyzes < 9 esters, as moderate if the EH
hydrolyzes between 10 and 29 esters, and as high if the EH hydrolyzes > 30 esters.

[ Values in brackets represent the relative proportions of EHs in the volume data set in %.

[ Values in brackets represent the relative proportions of EHs in the flexibility data set in %.
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Table S4: Comparison between the volume data set and the flexibility data set regarding
Fen.

Fen® #EHs of the volume data set® #EHs of the flexibility data set”!
FI 6 (6.52) 1(2.94)
FII 7 (7.61) 1(2.94)
FIV 32 (34.78) 15 (44.12)
FV 23 (25.00) 7 (20.59)
FVI 5(5.43) 3(8.82)
FVII 4 (4.35) 1(2.94)
CE 3 (3.26) 1(2.94)
C-C MCPh 9(9.78) 2 (5.88)
Cyclase-like 1(1.09) 1(2.94)
Yeast class 2(2.17) 2 (5.88)
Unclassified 4 (4.35) 1(2.94)
#EHs 96 35

[al EH families based on the Arpigny and Jaeger classification (27) (see section 2.1).
[l Values in brackets represent the relative proportions of EHs in the volume data set in %.

[ Values in brackets represent the relative proportions of EHs in the flexibility data set in %.
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Table S5: TopScore performance on comparative models of EHs of the flexibility data set

with known crystal structures.

EH PDB ID!2I Global TopScore!! 1 -IDDT scorel®!
001 5JD4 A 0.1501 0.2019
CalB 4K6G_A 0.0958 0.0998
CalA 3GUU_A 0.2219 0.1139
023 4Q30 A 0.2578 0.1976
037 5JD5 A 0.2291 0.2622
060 413F A 0.1644 0.195
096 4FBM_A 0.1997 0.146
102 5JD3 A 0.0954 0.1376
105 SIBZ A 0.3519 0.6241
107 4Q3L A 0.1798 0.2249
115 4Q3K A 0.1788 0.2128

[al PDB IDs that were used as references to calculate the 1 — IDDT (local Distance Difference
Test) scores.

[l Whole-protein error estimates predicted by TopScore (8) (see section 2.2).

[l Local Distance Difference Test computed by the Swiss-Model web server (9) (see section

2.2).
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Table S6: RMSFgn and RMSFcar of the representative data set.

EH RMSFgy [A]l RMSFcar [A]™
115 1.27+0.03 1.60 + 0.22
001 0.91 £0.01 0.60 + 0.03
127 1.54 +0.04 1.03 + 0.06
005 1.13+0.02 0.70 + 0.04
CalA 1.76 + 0.04 1.03 + 0.07
CalB 0.90 + 0.02 0.62 + 0.02

lal Average per-residue root-mean-square fluctuations for EHs (see section 2.6).

[l Average per-residue root-mean-square fluctuations for catalytically active residues of EHs

(see section 2.6).
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Table S7: Melting temperatures of EHs determined by CD spectroscopy.

EH Py Ta [°C]”°I

000 75 55.70 £ 0.23
001 72 42.10+0.20
002 71 47.45 +0.31
003 69 45.90+0.43
004 67 44.63 +£0.19
006 66 58.57+0.24
008 63 38.31+0.44
009 61 36.10 £0.73
016 42 35.92 +0.69
021 36 35.31+£0.62
037 28 35.99+0.20
043 27 3998 +£0.74

[l Experimentally measured substrate promiscuity level of EHs provided by Ferrer ef al. (1)
(see section 2.1).

bl Melting temperatures of EHs + STD (n = 3) determined by CD spectroscopy (see section
2.8).
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Table S8: Pgn, log(Pen), Actmax, and log(Actmax) of EHs.

Actmax log(Actmax
EH" Pen™ log(Pen) [U/ (g wet cells)]'d  [log(U /g((g wet c)ells))]
001 72 1.86 1326.63 3.12
002 71 1.85 113.26 2.05
003 69 1.84 106.35 2.03
69105.06
CalB 68 1.83 U/ (g total protein)] n.d.ldl
004 67 1.83 262.23 2.42
005 67 1.83 23.52 1.37
006 66 1.82 338.55 2.53
007 64 1.81 77.72 1.89
008 63 1.80 2239.16 3.35
009 61 1.79 168.40 2.23
010 58 1.76 77.55 1.89
011 53 1.72 120.02 2.08
012 51 1.71 137.81 2.14
013 49 1.69 278.08 2.44
014 48 1.68 138.13 2.14
015 42 1.62 93.93 1.97
016 42 1.62 991.93 3.00
017 39 1.59 7787.23 3.89
018 38 1.58 304.25 2.48
019 37 1.57 5038.96 3.70
020 37 1.57 35.12 1.55
021 36 1.56 963.46 2.98
25224.17
CalA 36 1.56 [U / (g total protein)] n.d.l4
022 35 1.54 1366.25 3.14
023 34 1.53 6005.66 3.78
024 34 1.53 123.42 2.09
025 33 1.52 1441.93 3.16
026 32 1.51 50.93 1.71
027 32 1.51 90.19 1.96
028 31 1.49 667.07 2.82
029 31 1.49 7660.87 3.88
030 30 1.48 752.11 2.88
031 29 1.46 398.62 2.60
032 29 1.46 242.56 2.38
033 29 1.46 376.69 2.58
034 29 1.46 1207.80 3.08
035 29 1.46 32.65 1.51
036 28 1.45 311.41 2.49
037 28 1.45 746.72 2.87
038 28 1.45 193.26 2.29
039 28 1.45 39.50 1.60
040 27 1.43 81.25 1.91
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041 27 1.43 1198.35 3.08
042 27 1.43 139.81 2.15
043 27 1.43 571.48 2.76
044 25 1.40 101.91 2.01
045 24 1.38 143.52 2.16
046 23 1.36 20.79 1.32
047 23 1.36 274.96 2.44
048 23 1.36 148.60 2.17
049 23 1.36 9.92 1.00
050 22 1.34 661.50 2.82
051 22 1.34 278.89 2.45
052 21 1.32 252.19 2.40
053 21 1.32 90.48 1.96
054 21 1.32 2665.38 3.43
055 21 1.32 20.54 1.31
056 21 1.32 19.52 1.29
057 21 1.32 440.22 2.64
058 21 1.32 348.91 2.54
059 21 1.32 17.96 1.25
060 21 1.32 240.62 2.38
061 20 1.30 621.61 2.79
062 20 1.30 243.06 2.39
063 20 1.30 197.90 2.30
064 20 1.30 34.38 1.54
065 20 1.30 18.26 1.26
066 19 1.28 101.69 2.01
067 18 1.26 124.41 2.09
068 18 1.26 49.73 1.70
069 18 1.26 114.76 2.06
070 18 1.26 22.16 1.35
071 18 1.26 89.21 1.95
072 18 1.26 189.15 2.28
073 17 1.23 677.95 2.83
074 17 1.23 25.25 1.40
075 16 1.20 93.59 1.97
076 16 1.20 131.29 2.12
077 16 1.20 349.92 2.54
078 15 1.18 195.57 2.29
079 14 1.15 16.12 1.21
080 14 1.15 120.56 2.08
081 14 1.15 40.62 1.61
082 14 1.15 8978.87 3.95
083 14 1.15 155.38 2.19
084 13 1.11 273.06 2.44
085 13 1.11 69.15 1.84
086 13 1.11 25.46 1.41
087 13 1.11 11.45 1.06
088 13 1.11 4646.55 3.67
089 13 1.11 62.73 1.80
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090 13 1.11 15.24 1.18
091 13 1.11 243.86 2.39
092 12 1.08 41.08 1.61
093 12 1.08 466.48 2.67
094 12 1.08 41.73 1.62
095 11 1.04 98.26 1.99
096 11 1.04 5.65 0.75
097 11 1.04 191.44 2.28
098 11 1.04 24.79 1.39
099 11 1.04 498.13 2.70
100 11 1.04 241.38 2.38
101 11 1.04 17.89 1.25
102 10 1.00 3328.23 3.52
103 10 1.00 91.17 1.96
104 10 1.00 56.63 1.75
105 10 1.00 45.59 1.66
106 9 0.95 11.56 1.06
107 9 0.95 16.33 1.21
108 9 0.95 159.45 2.20
109 9 0.95 17.65 1.25
110 8 0.90 332.72 2.52
111 8 0.90 13.97 1.15
112 8 0.90 312.09 2.49
113 8 0.90 11.00 1.04
114 8 0.90 13.15 1.12
115 8 0.90 148.37 2.17
116 7 0.85 19.84 1.30
117 6 0.78 422 0.63
118 6 0.78 29.01 1.46
119 6 0.78 25.83 1.41
120 5 0.70 9.15 0.96
121 5 0.70 131.87 2.12
122 5 0.70 3.35 0.53
123 4 0.60 8.15 0.91
124 4 0.60 21.63 1.34
125 4 0.60 6.31 0.80
126 4 0.60 4.65 0.67
127 4 0.60 4.59 0.66
128 4 0.60 11.63 1.07
129 3 0.48 7.32 0.86
130 2 0.30 23.86 1.38
131 2 0.30 4.16 0.62
132 2 0.30 4.86 0.69
133 2 0.30 3.67 0.56
134 2 0.30 1.73 0.24
135 2 0.30 3.94 0.60
136 2 0.30 3.29 0.52
137 2 0.30 3.32 0.52
138 2 0.30 2.83 0.45
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139 2 0.30 4.16 0.62
140 1 0.00 1.73 0.24
141 1 0.00 2.55 0.41
142 1 0.00 0.25 -0.59
143 1 0.00 1.31 0.12
144 1 0.00 1.80 0.25
145 1 0.00 2.48 0.39

[al EHs highlighted in bold constitute the flexibility data set; for underlined EHs, no crystal
structure is known.

bl Experimentally determined substrate promiscuity level of EHs provided by Ferrer ef al. (1)
(see section 2.1).

[l Experimentally determined average maximum specific activities of EHs provided by Ferrer
et al. (1) (see section 2.1).

4 Not determined.
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Table S9: Ester library classified according to TA.

-
>

Ester

Y-Valerolactone

D-Pantolactone

L-Pantolactone

1-Napthyl acetate

Ethyl acetate

Methyl 3-hydroxybenzoate
Methyl 2-hydroxybenzoate
Methyl benzoate

Vinyl acetate

Methyl glycolate

(+)-Methyl D-Lactate

(-)-Methyl L-Lactate

Pheny]l acetate

Glyceryl trilaurate

Ethyl propionate

Ethyl benzoate

(1R)-(-)-Menthy]l acetate
(15)-(+)-Menthyl acetate

Methyl (R)-(-)-mandelate

Methyl (S)-(+)-mandelate
(+)-Ethyl D-Lactate

(—)-Ethyl L-lactate

(+)-Methyl (S)-3-hydroxybutyrate
(-)-Methyl (R)-3-hydroxybutyrate
(1R)-(+)-Neomenthyl acetate
(1S)-(+)-Neomenthyl acetate
Methyl butyrate

Methyl 2,5-dihydroxycinnamate
Methyl cinnamate

Vinyl propionate

Vinyl benzoate

Vinyl crotonate

Vinyl acrylate

Ethyl 2-chlorobenzoate
2,4-Dichlorophenyl 2,4-dichlorobenzoate [DCPDCB]
Propyl acetate

Phenyl propionate

1-Naphthyl butyrate

Ethyl butyrate

Propylparaben

(—)-Methyl (R)-3-hydroxyvalerate
(+)-Methyl (S)-3-hydroxyvalerate

A A B P D W WL WL WW W W W W W WW WW WW WLWWLWWNPD NN oo
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Benzylparaben

Propyl propionate

Methyl ferulate

Vinyl butyrate

3-Methyl-3-buten-1-yl acetate

Ethyl 2-methylacetoacetate

Ethyl acetoacetate

Cyclohexyl butyrate

2,4-Dichlorobenzyl 2,4-dichlorobenzoate [DCBDCB]
Butyl acetate

N-Benzyl-L-proline ethyl ester

N-Benzyl-D-proline ethyl ester

Ethyl (R)-(+)-4-chloro-3-hydroxybutyrate [E(R)CHB]
Ethyl (S)-(—)-4-chloro-3-hydroxybutyrate [E(S)CHB]
Benzoic acid 4-formyl-phenylmethyl ester [BFPME]
Butylparaben

Methyl hexanoate

Propyl butyrate

Isobutyl cinnamate

Ethyl 2-ethylacetoacetate

Ethyl propionylacetate

Hexyl acetate

Ethyl hexanoate

Phthalic acid diethyl ester

Benzyl (R)-(+)-2-hydroxy-3-phenylpropionate [BHPP]
Phenylethyl cinnamate

Geranyl acetate

Ethyl 3-oxohexanoate

n-Pentyl benzoate

Methy! octanoate

Propyl hexanoate

Diethyl-2,6-dimethyl 4-phenyl-1.,4-dihydro pyridine-3,5-dicarboxylate
[DDPDPDC]

Glyceryl triacetate

Octyl acetate

Ethyl octanoate

Methyl decanoate

(1R)-(-)-dimenthyl succinate

NolENoRN- R R RN I e Wie) Wife ) lie e ) Wie)Nie)We NNV, BV, BV, BRV, BNV, RV, BV, BV, BV, U, IV, R S G N L S T S T S~ SN SN

Ethyl decanoate 10
Glyceryl tripropionate 11
Methyl dodecanoate 11
Dodecanoyl acetate 12
Ethyl dodecanoate 12
Vinyl laurate 12
Methyl myristate 13
Glyceryl tributyrate 14
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Ethyl myristate 14
Vinyl myristate 14
Pentadecyl acetate 15
Glucose pentaacetate 15
Methyl oleate 16
Vinyl palmitate 16
Vinyl oleate 17
Glyceryl trioctanoate 26
Triolein 54
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Table S10: Distribution of Py in Feu of the experimental data set.

EH Fen [a] Prn [b]
026 32
040 27
041 27
046 23
071 18
072 18
075 16
077 16
090 13
097 11
101 F 11
108 9
110 8
113 8
115 8
118 6
131 2
132 2
142 1
145 1
051 22
073 17
088 13
098 11
102 Flu 10
116 7
136 2
138 2
140 1
001 72
002 71
003 69
004 67
005 67
006 66
008 63
009 61
010 58
011 Frv 53
012 51
013 49
014 48
015 42
016 4
018 38
021 36
022 35
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023 34
025 33
029 31
035 29
037 28
039 28
042 27
043 27
048 23
052 21
054 21
067 18
079 14
086 13
087 13
091 13
099 11
119 6
028 31
031 29
032 29
045 24
047 23
049 23
053 21
055 21
056 21
057 21
058 21
065 20
066 19
068 18
074 17
076 16
081 v 14
082 14
083 14
092 12
094 12
096 11
010 11
103 10
104 10
107 9
109 9
111 8
114 8
120 5
123 4
127 4
128 4
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030 30
034 29
059 FVI 21
061 20
085 13
020 37
064 20
084 13
093 Fu 12
112 8
139 2
007 64
024 34
027 32
069 18
078 15
089 FVIII (serine beta-lactamase like) 13
095 11
124 4
133 2
141 1
129 3
044 25
070 18
5461 CE (carbohydrate esterase like) 3
135 2
137 2
017 39
019 37
033 29
036 28
038 C-C MCPh 28
050 22
060 21
062 20
063 20
105 Cyclase-like esterase 10
(Cizﬁ Yeast class 22
080 14
106 9
117 6
121 5
122 Unclassified 5
125 4
130 2
144 1
143 1
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[al EH families based on the Arpigny and Jaeger classification(27) (see section 2.1).

bl Experimentally measured substrate promiscuity level of EHs provided by Ferrer ef al. (1)

(see section 2.1).
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Table S11: Pru and Voler of comparative models of EHs of the flexibility data set with

known crystal structures.

EH Pyyl? Voles [A3]1P!
001 72 166.667
CalB 68 200.000
CalA 36 1000.000
023 34 90.909
037 28 166.667
060 21 250.000
096 11 34.483
102 10 38.462
105 10 n.d.l9
107 9 28.571
115 8 71.429

[al Experimentally determined substrate promiscuity level of EHs provided by Ferrer et al. (1)

(see section 2.1).

bl Computed active site effective volumes of EHs provided by Ferrer ef al. (1) (see section
2.1).

[c] Not determined.
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Table S12: Pgu and Volesr of comparative models of EHs of the flexibility data set without

known crystal structures.

EH Pyl Vol [A3]P)
005 67 200.000
010 58 200.000
011 53 83.333
012 51 333.333
013 49 333.333
014 48 200.000
015 42 166.667
016 42 333.333
029 31 500.000
030 30 66.667
033 29 166.667
034 29 32.258
042 27 200.000
043 27 66.667
048 23 111.111
061 20 111.111
070 18 43.478
074 17 58.824
083 14 58.824
092 12 41.667
093 12 37.037
094 12 45.455
125 4 19.231
127 4 55.556

[al Experimentally determined substrate promiscuity level of EHs provided by Ferrer ef al. (1)
(see section 2.1).

[l Computed active site effective volumes of EHs provided by Ferrer et al. (1) (see section
2.1).

[l Not determined.
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Supplemental Figures
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Figure S1: Comparison between the velume data set and the flexibility data set regarding
Pin. Relative proportions of EHs constituting the volume daia sef (red line) and the flexibility
data set (blue line) regarding Pen determined with a kinetic pH indicator assay (2-4) by Ferrer
et al. (1). Prn is defined as low if the EH hydrolyzes < 9 esters, as moderate if the EH
hydrolyzes between 10 and 29 esters, and as high if the EH hydrolyzes = 30 esters.
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Figure S2: Comparison between the volume data set and the flexibility data sef regarding
Fen. Relative proportions of EHs constituting the volume data set (red line) and the flexibility
data set (blue line) regarding Fen based on the Arpigny and Jaeger classification (27).
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0-65 R%=0.61

06| p=4.0"10°
0.55
0.5
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0.4

0.35 EHs of flexibility data set

O 3 = Known cryst. sfr,

¢ = Known cryst. sir. selected
for representative data set

0.25
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1-IDDT score

0
0.05 01 015 0.2 025 03 035 04
Global TopScore

Figure S3: TopScore performance on comparative models of EHs of the flexibility data
set with known crystal structures. Correlation between 1 - IDDT scores and global
TopScores for comparative models of EHs of the flexibility data sef with known crystal
structures. The comparative models were generated by TopModel (28) (excluding the known
crystal structures as templates) and evaluated by TopScore (8). The IDDT scores were
computed by the IDDT web server from Swiss-Model (9) from comparisons of the
comparative models of these EHs against the known crystal structures as experimental
references. The EHs belonging to the representative data set are indicated by magenta

Crosscs.
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Figure S4: Substrate-accessibility of EHs of the representative data set. CAVER results
(29) of comparative models of (A) EHs with known crystal structures and lowest (EH115) or
highest P (EH001), (B) EHs with unknown crystal structures and lowest (EH127) or highest
Pri (EHO05), and (C) commercial EHs with lowest (CalA) or highest Prn (CalB)., CARs
(magenta spheres) are either located on the protein surface or are buried and connected with

the surface by tunnels (blue, green, and red spheres).
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Figure S5: Correlation of RMSFrn or T, versus Peu of the representative data set. (A)
Correlation between RMSFeu based on the MD trajectories and Pen of the representative data
set. (B) Correlation between I based on the global index Hupez {17) computed by CNA and
Pen of the representative data set. Data points colored grey (black) and indicated by magenta
crosses represent comparative models of EHs with (un)known crystal structures. Error bars

show the SEM over five independent MD simulations of 1 us length each.
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Figure S6: Correlation of Flexcar versus Pen. (A) Correlation between predicted Flexcar
based on the local index rcijneighbor and Prn for the flexibility data sel. Data points colored grey

(black) represent homology models of EHs with (un)known crystal structures. The
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representative data set is indicated by magenta crosses. Error bars show the SEM over five
independent MD simulations of 1 us length each.. rcijneighbor of CARs of (B) EHs with known
crystal structures and lowest (EH115) or highest Pen (EH001), (C) EHs with unknown crystal
structures and lowest (EH127) or highest Pen (EHO00S5), and (D) commercial EHs with lowest
(CalA) or highest Pen (CalB). A red (blue) color indicates that a rigid contact between CARs
and other residues within 5 A distance is more (less) stable (see color scale at the bottom).
The rigid contacts for all other residue pairs are colored grey. Black arrow heads indicate

positions of CARs.
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Figure S7: Correlation of RMSFcar or Flexcar versus Pen of the representative data set.
(A) Correlation between RMSFcar based on the MD trajectories and Pen of the representative
data sel. (B) Correlation between Flexcar based on CNA and Pun of the representative data
set. Data points colored grey (black) and indicated by magenta crosses represent comparative
models of EHs with (un)known crystal structures. Error bars show the SEM over five

independent MD simulations of 1 ps length each.
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Figure S8: Correlation of log(Actmax) versus log(Pen). Correlation between log(Ac/max) and
log(Prn) for (A) the experimental data set and (B) the flexibility data set containing EHs with
known crystal structures (grey data points), EHs with unknown crystal structures (black data
points), and EHs constituting the representative dala set (magenta crosses). The EHs were
screened against 96 different esters in a kinetic pH indicator assay (2-4) that provided Acfmax
given in U (g wet cells)'. CalA and CalB preparations were excluded because Ac/max Was

given in U (g total protein)!. The assays were performed as triplicates with STD < 1%.
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Figure S89: Distribution of Pgu in Feu of the experimental data set. Distribution of Pri
determined with a kinetic pH indicator assay (2-4) by Ferrer et al. (1) in Frn based on the
Arpigny and Jaeger classification (27) of the experimental data set. Pru is defined as low if
the EH hydrolyzes < 9 esters, as moderate if the EH hydrolyzes between 10 and 29 esters, and
as high if the EH hydrolyzes > 30 esters.
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Figure 810: Correlation of Voleur versus Ppn. Correlation between Volur and Pen of the
Hexibility data set. Voler represents the topology of the catalytic environment in terms of the
active site cavity volume (Folav) computed by Fpocket (5) per relative solvent-accessible
surface area (SAS4r) computed by GetArea webserver (6). Data points colored grey (black)
represent comparative models of EHs with (un)known crystal structures. The representative

data set is indicated by magenta crosses.
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Abstract

Background: Bacillus subtilis produces and secretes proteins in amounts of up to 20 g/l under optimal conditions.
However, protein production can be challenging if transcription and cotranslational secretion are negatively affected,
or the target protein is degraded by extracellular proteases. This study aims at elucidating the influence of a target
protein on its own production by a systematic mutational analysis of the homologous B. subtilis madel protein lipase
A {LipA). We have covered the full natural diversity of single amino acid substitutions at 155 positicns of LipA by

site saturation mutagenesis excluding only highly conserved residues and qualitatively and quantitatively screened
about 30,000 clones for extracellular LipA production. Identified variants with beneficial effects on production were
sequenced and analyzed regarding B. subtilis growth behavior, extracellular lipase activity and amount as well as
changes in lipase transcript levels.

Results: In total, 26 LipA variants were identified showing an up to twofold increase in either amount or activity of
extracellular lipase. These variants harbor single amine acid or cedon substitutions that did not substantially affect 8.
subtifis growth. Subsequent exemplary combination of beneficial single amino acid substitutions revealed an additive
effect solely at the level of extracellular lipase amount; however, lipase amount and activity could not be increased
simultaneously.

Conclusions: Single aminc acid and coden substitutions can affect LipA secretion and production by B. subtilis.
Several codon-related effects were observed that either enhance /ipA transcription or promote a more efficient fold-
ing of LipA. Single amino acid substitutions could improve LipA production by increasing its secretion or stability in
the culture supernatant. Our findings indicate that optimization of the expression system is not sufficient for efficient
protein production in 8. subtilis. The sequence of the target protein should also be considered as an optimization
target for successful protein production. Qur results further suggest that variants with improved properties might be
identified much faster and easier if mutagenesis is prioritized towards elements that contribute to enzymatic activity
or structural integrity.

Keywords: Bacillus subtilis, Lipase, Protein production, Secretion, Optimization

Background

The Gram-positive soil bacterium Bacillus subtilis
secretes up to 20 g/l of produced proteins directly into
the culture supernatant [1, 2]. Therefore, it has become
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more and more important in industrial applications for
the production of homologous and heterologous proteins
in large-scale fermentation processes [1]. Due to this fact,
B. subtilis has been intensively studied and optimized as a
protein production host in the last decades, establishing
it as a ‘microbial cell factory’ [3, 4].

Optimization strategies have targeted several bottle-
necks for heterologous protein production in B. subtilis.
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publicdomain/zero/1.04) applics to the data made avallakle in this article, unless otherwise stated.
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Examples include optimization of transcription efficiency
by using strong promoters such as the constitutive pro-
moter P_, . or an arabinose-inducible promoter [3]. Fine-
tuning of translation [5] can be achieved by either using
optimized ribosome binding sites to improve ribosome
binding of the mRNA [3] or by introducing translational
pauses using ‘slow-translating’ codons, as previously
shown for heterologous protein production in E. coli [5,
6].

The majority of secretory proteins in B, subtilis are
targeted to the Sec translocon and translocated via the
cotranslational Sec-SRP pathway [7-10]. To optimize the
protein secretion step as a prospective bottleneck, sev-
eral studies assayed for the optimal signal peptide nec-
essary for secretion. Screening a set of 173 Sec-specific
signal peptides of B, subtiflis [11] or the additional screen-
ing of heterologous signal peptides from B. licheniformis
[12] successfully identified signal peptides for improved
secretion of the Fusarium solani pisii cutinase [11] and
the B. amyloliquefaciens subtilisin BPN’ [13] in B. subtilis.
Maturation and folding of secreted proteins are increased
by the overexpression of regulatory factors, e.g. the lipo-
protein PrsA, which resulted in increased secretion rates
of a-amylase of B. stearothermophilus by B. subtilis [14].
Furthermore, strains lacking the majority of the major
extracellular proteases have been constructed, e.g. the B.
subtilis strain WB800 lacking all eight extracellular pro-
teases (AprE, NprE, NprB, Vpr, Bpr, Mpr, Epr, WprA),
resulting in strongly decreased degradation of extracellu-
lar target proteins [2]. A few studies with Gram-negative
bacteria indicated that the target protein itself can also
influence its production and secretion, e.g. by interac-
tions with the translocation machinery [15, 16]. However,
no systematic study has yet been reported on the role of
each amino acid of a secreted protein for its production
and secretion. Here, we have systematically analyzed sin-
gle amino acids and their respective codons of B. subtilis
lipase A (LipA) to understand beneficial and detrimental

Table 1 Bacterial strains and plasmids
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effects of amino acid and codon substitutions on LipA
production and secretion.

The extracellular lipase LipA is one of the smallest
known lipases showing a minimal o/B-hydrolase fold
consisting of six -sheets and six a-helices [17]. Com-
pared to the classical o/B-hydrolase fold, two B-sheets are
missing, the aD-helix is substituted by a small 3 ;-helix,
and the aE-helix contains only four amino acids [17].
LipA features a surface-exposed active site consisting
of amino acids 577, D133 and H156, which is accessible
for the substrate without conformational change; the
oxyanion hole is formed by 112 and M78 [17, 18]. LipA
is secreted cotranslationally via the Sec-SRP pathway.
The N-terminal signal peptide is cleaved oft by a signal
peptidase resulting in the mature enzyme with 181 amino
acids and a molecular weight of 19.34 kDa [8, 19].

LipA was subjected to a nearly complete site saturation
mutagenesis targeting 155 of 181 residues with a conser-
vation < 95% within the Firpicutes phylum. The resulting
library was screened for extracellular lipase production
both qualitatively and quantitatively. Qur results indicate
that both single amino acid and codon substitutions sig-
nificantly affect production and secretion of the target
protein and suggest that optimization studies should aim
primarily at structural elements that contribute to enzy-
matic activity or structural integrity.

Methods

Bacterial strains and plasmids

Bacterial strains and plasmids used in this study are listed
in Table 1. E. coli DH50 was used for cloning and plasmid
amplification. B. subtilis TEB1030 was used as the secre-
tory expression host.

Growth of B. subtilis

Escherichia coli and B. subtilis were grown in LB
medium (10 g/1 tryptone, 10 g/1 NaCl, 5 g/l yeast extract}
with 100 pg/ml ampicillin or 50 pg/ml kanamycin,

Bacterial strains Genotype References
and plasmids
Bacterial strains
£ coli DHSa supE4d AlacZYA-argF) U196 (phi80AIacZM15) hsdRT7 recAT endAT gyrA%6 ihi-1 relAl [20]
B. subtilis TEB1030 U2 Bis norE aprE bpl ispllinA linB [19]
Plasmids
pBSMul1 E. coli-B. subtilis shuttle vector, ribosome binding site, Py, secretion (sslipA) and purification [21]
{C-terminal &x-His-tag); ColE1 repB K" Armp!
pET22lipA pET22b (Novagen, USA) containing a 557 bp FcoRV/Sacl fragment of B subrifis ipA gene [18]
fused to pelB signal peptide sequence, Py,
pBSlipA RBSMUlT containing a 568 bp LcoRI/Hindlll fragment of B. subtilis linA gene; additionally This study

deleted EcoRl restriction site
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respectively, at 37 °C. Culture volumes, agitation speed
and preparation of supernatants at different cultivation
conditions are described below.

96-well microtiter plate cultivation

For the two-step screening procedure, B. subtilis was
pre-cultivated in 150 ul LB medium in 96-well microtiter
plates (Greiner Bio-one, Germany) at 37 °C, 900 rpm for
6 h (TiMix 5, Edmund Biihler GmbH, Germany). These
pre-cultures were used to inoculate expression cultures
in 150 pl fresh LB medium in 96-well microtiter plates
(Greiner Bio-one, Germany) to an O.D.zg,,,, of 0.05 with
a TECAN® robotic system freedom evo (Tecan Group
Ltd., Germany). Expression cultures were cultivated at
25 °C, 900 rpm for 16 h (TiMix 5, Edmund Biithler GmbH,
Germany). The cells were harvested by centrifugation
(4 °C, 5000 x g, 30 min} and the culture supernatant was
immediately used for analysis.

Microfermentation in 48-well FlowerPlate® and online
biomass measurement

Bacillus subtilis clones were pre-cultivated in 1100 pl LB
medium in 48-well Flowerplates (FlowerPlate® 48 well
MTP without optodes, m2p-labs, Germany) at 37 °C,
1100 rpm for 16 h (TiMix 5, Edmund Biithler GmbH,
Germany). Expression cultures were inoculated to an
O.D.500m of 0.05 in 1100 pl LB medium in 48-well Flow-
erplates and cultivated at 37 °C, 1100 rpm for 6 h. For
cell harvest, 50 ul of each culture were transferred inte a
96-well microtiter plate (Greiner Bio-one, Germany) and
centrifuged as described above.

Transformation of E. coli and B. subtilis

Electrocompetent E. coli DH5a cells were prepared as
previously described [22]. E. coli DH5a was transformed
by electroporation in a MicroPulser (BioRad, Germany).
B. subtilis TEB1030 cells were transformed by protoplast
formation as previously described [23].

Construction of the lipA expression vector pBSlipA, site
saturation mutagenesis and library construction

The [lipA gene (KEGG Accession Number BSU02700)
without its native signal sequence was amplified from
the E. coli expression vector pET22lipA [18] using the
oligonucleotides EcoRI fw (5 cgcggaattcgetgaacac 3')
and HindIll rev (5 agtgecggeegeaagettgtegacgtaatgtteat-
taattcgtatt 3’). The resulting 568 bp EcoRI/HindlIIl frag-
ment was cloned in frame with the native lipA signal
sequence (sslipA) under the control of the strong con-
stitutive promoter Py, in the E coli-B. subtilis shut-
tle vector pBSMull [21] previously used for analysis of
secretory protein production [11, 13]. The additional six
base pair linker of the EcoRI restriction site between the
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sslipA and the lipA gene was subsequently deleted by
QuikChange® PCR [24] using the primer pair AEcoRI_fw
(5" agcaaaagccegetgaacacaate 3') and AEcoRI_rev (5 gatt-
gtgttcageggettttget 37), The generated expression vector
pBSlipA harbors a native full-length /ipA gene and was
used for lipA expression and mutagenesis.

Oligonucleotide design and site saturation PCR
were performed as previously described [25]. In
short, the vector was amplified with degenerated
‘NNS’ oligonucleotides (Additional file 1: Table S1) by
QuikChange® PCR [24]. The remaining template vector
DNA in the PCR product was hydrolyzed using Dpwnl,
and the site saturation PCR product was desalted and
concentrated by PCR Purification Kit (Analytik Jena,
Germany). First, £. coli DH5a was transformed by elec-
troporation, and the mutagenesis vectors were isolated
from 2000 to 4000 E. coli clones. Subsequently, the
secretory protein production strain B. subtilis TEB1030
was transformed with 20 ng of vector DNA by proto-
plast formation.

To achieve a library coverage of about 99.9%, 192
clones are necessary for each position, i.e. six-times the
number of codons (32 via NNS§’) as described in [26].
Thus, a library for the site saturation mutagenesis of a
certain position was distributed to two 96-well plates.
However, we reduced the clone number to 184 B. subtilis
TEB1030 transformants allowing to add 8 wild-types and
negative controls. Taking into account that mutagenesis
could also re-introduce the wild-type codon, a set of 184
transformants per residue leads to a full coverage prob-
ability of 93.87% calculated with TopLib (http://stat.haifa.
ac.il/~yuval/toplib/} [27] and a supposed mutagenesis
yield of 90%.

Double mutants were constructed by site directed PCR
following the procedure described above for site satura-
tion PCR. Oligonucleotides for site directed mutagenesis
are listed in Additional file 1: Table S2.

Lipase activity assay with B. subtilis culture supernatant

Extracellular lipase activity was determined in 96-well
microtiter plates (Greiner Bio-one, Germany). The B.
subtilis culture supernatant obtained by centrifuga-
tion was mixed with parg-nitrophenyl palmitate (yNPP}
substrate solution as previously described [11], and
hydrolysis of pNPP was measured spectrophotometri-
cally (\,;, = 410 nm) at 37 °C for 15 min using the plate
reader SpectraMax 250 {Molecular Devices, Germany).
Lipolytic volume activity was calculated using a molar
extinction coefficient of 15,000 M~! em ™!, Specific lipase
activity (U/mg) was calculated by the volume activity
(U/ml) per protein amount (mg/ml). The LipA protein
amount was quantified as described in the next para-
graph. Unless stated otherwise, a two-tailed t-test was
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performed with a significance level of p < 0.05 to deter-
mine significant activity changes.

Enzyme-linked immunosorbent assay with B. subtilis
culture supernatant

For quantitative detection of extracellular LipA protein,
an enzyme-linked immunosorbent assay (ELISA) using
a specific polyclonal LipA antibody (Eurogentec, Ger-
many) was performed. 15.6 pl twofold prediluted B. sub-
tilis culture supernatant obtained by centrifugation was
diluted in 100 pl bicarbonate buffer (100 mM; pH 9.6}
and transferred into Polysorp® 96-well microtiter plates
(Nunc-Immuno™ MicroWell™ 96-Well Plate) using the
TECAN® robot system. After coating of proteins onto the
plastic surface at 4 °C, 100 rpm for 22 h and three times
washing with PBS (10 mM phosphate-buffered saline; pH
7.4}, blocking with 1% (w/v) bovine serum albumin (BSA)
diluted in PBS was performed at 22 °C, 150 rpm for
2.5 h. Plates were washed two-times with PBS and poly-
clonal rabbit anti-LipA antibody diluted 1:5000 in PBS
was added and incubated at 22 °C, 150 rpm for 2 h, fol-
lowed by four times washing with PBS. After another 3 h
incubation with the goat anti-rabbit horseradish peroxi-
dase antibody (diluted 1:5000 in PBS; BioRad, Germany),
Polysorp® 96-well microtiter plates (Nunc-Immuno™
MicroWell™ 96-Well Plate) were finally washed four
times with PBS.

LipA was quantified by determination of horserad-
ish peroxidase activity measured using the 1-step TMB
ELISA substrate (3,3',5,5-tetramentylbenzidine; Thermo
Fisher Scientific, Germany} at 25 °C for 15 min in the
SpectraMax 250-plate reader (Molecular Devices, Ger-
many). The amount of extracellular LipA was calculated
using a standard curve determined with purified LipA. A
two-tailed t-test was performed with a significance level
of p < 0.05 to determine significant changes in LipA pro-
tein amount.

Real-time quantitative PCR for determination of lipA
transcripts

Cell cultures were harvested after 6 h of growth, and
RNA was prepared using the NucleoSpin® RNA Kit
(Macherey—Nagel, Germany). cDNA synthesis of 1 pg
RNA was performed with the Maxima First Strand cDNA
Synthesis Kit for RT-qPCR Kit (Thermo Fisher Scien-
tific, Germany). 50 ng ¢cDNA and 50 ng of RNA (NoRT
controls) were applied for RT-qPCR using the Maxima
SYBR/ROX qPCR Master Mix (Thermo Fisher Scientific,
Germany) and the primer pairs lipA_fw: 5'gcttccgggaaca-
gatccaa 3’ and lipA_rev: 5 acagaaggccgatgtgteca 3. The
sigA gene was used as a reference and amplified using the
primers sigA_fw: 5 atcgectgtetgatecacca 3/ and sigA_rev:
5' ggtatgtcggacgeggtatg 3'. Gene expression analysis was
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performed with the REST 2009 software (Qiagen, Ger-
many) using the 27247 method with an assumed PCR
efficiency of 100% [28, 29]. Here, expression of [ipA in
three biological replicates (each analyzed three-times
by RT-gPCR) is first normalized to the expression level
of the reference gene sigA in the same culture, which
encodes for the major sigma factor in B. subtilis and is
equally expressed in all cells with less than 5% deviation
in all analyzed samples. In a second step, the resulting
value is compared to the corresponding value derived
from a control culture, here B. subtilis expressing the
wild-type lipA gene, resulting in an x-fold change in
expression level.

To obtain information about the reliability and repro-
ducibility of the RT-qPCR data, the relative change of
normalized /ipA transcript amount among all wtlipA
expressions was determined using the REST 2009 soft-
ware (Qiagen, Germany). 33 replicates were analyzed
twice and revealed a standard error for the wtlipA tran-
script amount of 0.6 or 1.2 (lower and upper standard
error, respectively). Therefore, only changes of transcript
amounts lower than 0.4 or higher than 22 with a p
value < 0.05 (calculated by REST 2009) were defined as
significantly changed.

Sequence analysis

Protein sequences were obtained from the Pfam data-
base of protein families [30] to determine the degree of
amino acid conservation with respect to B. subtilis LipA.
64 lipase (Class 2) sequences out of 41 species from the
Firmicutes phylum were aligned using Clustal Omega
[31]. 'The number of amino acids in this alignment iden-
tical to the amino acid in the B. subtilis LipA sequence
was counted for each position. This position-dependent
conservation of each B. subtilis LipA amino acid within
the Firmicutes phylum in percent is shown in Additional
file 1: Table §3. The hydropathy index of Kyte and Doolit-
tle was used as hydrophaobicity scale [32] and changes » 1
were assumed to be significant.

Constraint network analysis

The X-ray crystal structure (PDB ID: 1ISP) with the high-
est resolution (1.3 A) of B, subtilis LipA was used as the
wtLipA structure, as well as a template to generate struc-
tures for LipA variants. All buffer ions and crystallization
solvents were removed from the crystal structure. The
models of the single variant structures were generated by
the SCWRL4 program [33]. With the help of a rotamer
library, SCWRL4 constructs variant models by predicting
backbone-dependent side-chain conformations, while
coordinates of backbone atoms stay unchanged. For ena-
bling a local structural relaxation around the mutated
residue, conformations of side chains of all residues
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within 8 A of the mutated residue were re-predicted.
Hydrogen atoms were added, and side chains of Asn, GIn
and His were flipped by the REDUCE program [34] for all
variant structures. All structures were minimized by 100
steps of steepest descent followed by 5000 steps of conju-
gate gradient minimization or until the root mean-square
gradient of the energy was < 1.0 * 107* kcal mol™ AL,
The energy minimization was carried out with Amber14
using the fF99SB force field [35] and the GBO®® General-
ized Born model [36].

Thermal unfolding simulations by constraint network
analysis {CNA) were performed as described previously
[37-39]. In order to improve the robustness of CNA but
without comprising CNA’s high computational efficiency,
CNA was carried out on an ensemble of network topolo-
gies generated from a single input structure by using
fuzzy non-covalent constraints [40]. Here, the number
and distribution of non-covalent constraints are modu-
lated by random components within the ranges described
in the Additional file 2: Methods, thus simulating ther-
mal fluctuations of a biomacromolecule without actually
moving atoms. An ensemble of 1000 network configu-
rations was generated for wtLipA and all LipA variants.
For the thermal unfolding simulations, the hydrogen
bond energy cutoff E , was varied between —0.1 to
—6.0 kcal mol™! with a step size of 0.1 kcal mol™!, equiv-
alent to increasing the temperature from 302 to 380 K
in steps of 2 K [41]. The number of hydrophobic con-
straints was kept constant during the thermal unfolding
simulations.

A neighbor stability map [42] averaged over all 1000
conformations was computed from the thermal unfold-
ing trajectories, and its median (rCjj, yejgnnor) Was used to
compare the thermostabilities of wtLipA and LipA vari-
ants, as done previously [43]. See Additional file 2: Meth-
ods for more information.

Results

Construction of the lipA site saturation mutagenesis library
The expression vector pBSlipA (see “Methods” section)
encoding the native LipA of B. subtilis was used for site
saturation mutagenesis (Fig. 1). In total, 155 amino acid
residues of LipA with a conservation < 95% within the
Firmicutes phylum (Pfam database entry: PF01674) [30]
were used to generate the screened 29,199 clones as
described in the “Methods” section.

Two-step screening of the lipA site saturation mutagenesis
library

The LipA clones were cultivated in 96-well microtiter
plates and analyzed with a two-step screening procedure
including determination of extracellular volume activity
and amount of LipA (Fig. 2a).
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Fig. 1 Schematic strategy to construct the fipA site saturation
mutagenesis library. The expression vector pBSlipA, where the native
lipA gene is under control of the canstitutive Py ... promater, was
used for constructian of the lipA library by site saturation mutagen-
esis (SSM). The gene encodes the secretion signal (ssLipA) and the
mature lipase (LipA). Each codon encoding an amino acid of the
rature LipA with a conservation < 95% within the Firmicites was
considered for $5M using QuikChange® PCR with a degenerated
"NNS*codon to randomly intreduce every possible amino acid.
Amino acids with a conservation = 95% (|) were not considered for
substitution and screening. In total, 155 out of 181 residues were
substituted and the resulting variants subjected to screening

In the first step, extracellular lipase activity was deter-
mined with pNPP as the substrate. In total, 5444 clones
(19%) were inactive with the majority located at amino
acid positions 26, 35, 41, 49, 101, 102, 104, 156, 160 and
181. To calculate a mean wtLipA lipase activity, 384
wtLipA clones were analyzed allowing to separate clones
with significantly increased or decreased extracellular
lipase activity from those with wtLipA activities. The vol-
ume activity and the corresponding standard deviation
(0) of wtLipA were 0.57 £ 0.12 U/ml. Compared to this,
4230 clones (14%) showed a significant decrease in extra-
cellular lipase activity with amino acid substitutions at
positions 19, 22, and 40. Furthermore, 66% (19,350) of all
29,199 screened clones showed activities similar to that
of wtLipA and were therefore discarded.

Cnly 175 clones (1%) produced LipA variants with
volume activities that were larger than wtLipA volume
activity with its standard deviation (LipA variant U/
ml > wtLipA U/ml + o). Sequencing of the respective
inserts revealed 26 clones as false-positive harboring the
lipA wild-type sequence, 65 clones as duplicates with
the identical codon exchange, and four LipA clones with
multiple amino acid substitutions. The resulting 80 LipA
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Fig. 2 Identification of LipA variants with enhanced extracellular activity or amount of protein. a Schematic representation of the two-step screen-
ing procedure. Instep 1, 29,199 LipA clones were analyzed for increased extracellular lipase activity in the culture supernatant of B subtifis TEB1030,
175 clones were sequenced and 80 LipA varlants identified with increased extracellular lipase activity (see panel b). In a second step, culture super-
natants of these variants were analyzed as nine biological replicates for increased extracellular lipase activity and protein amount. b 80 LipA clones
with increased extracellular lipase activity. The relative extracellular lipase activity of the LipA clones is plotted against the substituted aminc acid
position. ¢ LipA variants with increased extracellular lipase amount. The extracellular lipase amount is plotted against the substituted amino acid
position. In panels b and €, each black dot represents one LipA variant, and the grey bars mark the highly conserved amino acid positions (= 95%).
Wild-type values, which were 0.57 & 0,12 L/mland 3.7 & 0.6 ug/ml, respectively, were set to 1 (wtlipA) and the grey horizontal dotted lines mark
the wtLipA standard deviation (o)

variants (Fig. 2b) showed single amino acid substitutions Beneficial substitutions mainly accumulated between
distributed over 38 amino acid positions and an increase  N-terminal amino acid positions 11-18, in the middle
in extracellular lipase activity from 1.2- to 3.4-fold in  part of LipA between positions 46—59, and in the C-ter-
comparison to wtLipA. minal part between positions 129-143 and 151-169, but
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a clear pattern regarding amino acid position or property
was not obvious.

In a second step, the 80 LipA variants from step 1
(Fig. 2) exhibiting increased extracellular lipase activity
were analyzed as nine biological replicates in a 96-well
microtiter plate. Extracellular lipase activity was deter-
mined and extracellular lipase amount was quantified
with an enzyme-linked immunosorbent assay (Fig. 2c). 31
variants turned out to be false-positives in this verifica-
tion step and did not show improved activity or amount
compared to wtLipA. Additional eleven variants exhib-
ited increased lipase activity but not protein amount.
The remaining 38 variants showed an increased lipase
amount with increased or similar activity compared to
wtLipA. These 38 variants included 34 different amino
acid substitutions and four variants with a substitution
caused by a synonymous codon. Their extracellular pro-
tein amount ranged from 1.3-fold (a substitution at the
C-terminal amino acid position 134) to 3.8-fold (N-ter-
minal position 13) higher than that of wtLipA, which is
produced at 3.7 &+ 0.6 pg/ml {Fig. 2c).
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The extracellular activity and amount of the 38 LipA
variants could be affected at different stages including
transcription, translation, and secretion (which are cou-
pled for LipA), and/or improved maturation, folding, and
activity. We produced these LipA variants by cultivating
B. subtilis TEB1030 in a microfermentation system linked
to online biomass measurement and analyzed transcrip-
tion, activity, and protein amount after 6 h when produc-
tion and secretion of wiLipA had reached their optimum
(Additional file 3: Figure S1). Furthermore, online bio-
mass measurements were performed for 24 h to exclude
differences in growth of variant-producing B. subtilis
clones, which was, however, not observed (Additicnal
file 3: Figure S2).

Twelve LipA variants did not show increased extracel-
lular enzyme activity or protein amount and were there-
fore discarded as false positives {Additional file 1: Table
$4). Six LipA variants were identified as more active with
an up to 24-fold increase in specific lipolytic activity in
comparison to wtLipA with 64 4+ 13 U/mg (Fig. 3a; Addi-
tional file 1: Table S4}. In total, 21 variants (including

1 (thick black line)

a 3 b 3
-
=
E |
8 5
v g .[ ]
(72}
1 1 T 11 1.
E‘ 2 o 2 1
- [72]
(%] 1]
= -3
& £
8 8
w =
- —
S o [
E g | -
3 1 £ 1 e wtlLip.
E [
4*1 -—
a g
o
1™
GIIIIIIUI cllllélllllullzllélalLl;l
L v oun = L owogaaws L] Z¥o g > w
o~ - oS ~N O Q g [+)] <
38 588 % LR PRCEEREEEEES
T S8°19 T 0= B T <SsS8&>335
- o o -4
LipA variants LipA variants

Fig. 3 LipA variants showing increased extracellular lipase activity (@) or increased extracellular lipase amount (b). B subxilis TEB1030 producing the
different LipA variants were cultivated for 6 hin a 48 well Flowerplate®, and the relative extracellular specific lipase activity (U/mg) in the culture
supernatant was calculated by normalizing the volume activity (U/ml) to the determined protein amount (mg/ml). The extracellular lipase activity
was measured using pNPP as a substrate, and the extracellular protein amount was determined by ELISA using a specific polyclonal LipA antibody.
LipA variants with significant (o < 0.05) increase in extracellular specific lipase activity (1 = 9) are shown relative to wilipA, wilipA values were set to
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one that also showed increased activity) showed an up to
2.3-fold increase in extracellular lipase amount (Fig. 3b;
Additional file 1: Table $4).

Interestingly, the increase in extracellular LipA amount
and/or activity of these 26 variants is unrelated to a
change in hydrophobicity of the respective amino acid:
11 LipA variants carry a substitution to a significantly
less hydrophobic amino acid, amino acid substitutions
of 12 LipA variants do not or only slightly change hydro-
phobicity, and 3 LipA variants carry substitutions to
more hydrophobic amino acids (see “Methods” section).

LipA variants with improved extracellular specific activity

Three out of the six variants with increased specific
activity carry a substitution at amino acid 112 to pheny-
lalanine, leucine, or valine, leading to a twofold increase
in extracellular specific activity (Fig. 3a; Additional
file 1: Table S4). LipA variants 112Lc ¢, 112V, and
G13T 5 were identified as more active, whereas identi-
cal amino acid substitutions encoded by different codons
either showed no effect on LipA specific activity or LipA
amount (I112L..;, 112V, see Additional file 1: Table
$4) or resulted in an increased LipA amount (G13T ¢,
see Fig. 3b and Additional file 1: Table S4). Variant 1871
with a silent mutation showed a twofold increase in
extracellular specific activity but also a 3.6-fold signifi-
cant change in lipA transcript level (Additional file 1:
Table S4). This indicates, in all four cases, a codon- and
not an amino acid-specific effect on LipA specific activity.

LipA variants with increased extracellular lipase amount

21 LipA variants showed a 1.3- to 2.3-fold increase in
extracellular LipA protein amount at predominantly sim-
ilar or decreased levels of extracellular specific activity
compared to wtLipA (Fig. 3b; Additional file 1: Table S4}
with the exception of variant 112F, which also showed a
significant twofold increase in extracellular specific lipase
activity (Fig. 3a; Additional file 1: Table S$4). Only the
mutations G13T ;. and 1871 showed a significant 2.7- or
3.6-fold change in lipA transcript amount, respectively,
while the transcript amount of all other 19 LipA variants
was not significantly changed compared to wtlipA tran-
script (Additional file 1: Table $4).

We identified two LipA variants with the identical
amino acid substitution R57T, which were encoded by
the codons ACC and ACG (Fig. 3b; Additional file 1:
Table S4). Both variants showed a similar increase in the
extracellular LipA amount of ca. 1.4-fold compared to
wtLipA level, indicating that this effect is caused by the
introduced amino acid and not by the codon.

Seven LipA wvariants (N50D, P53D, P53E, P53 V,
R57T s v RE7T s and M134Q) with increased extracel-
lular LipA amount have amino acid substitutions located
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either in the aB-helix of LipA or carry a substitution to
glutamine at position 134 (M134Q) (Fig. 3b; Additional
file 1: Table S4). Since position M134 is known to con-
tribute to thermostability [44] and the aB-helix also plays
a role in tolerance towards detergents and ionic liquids
(25, 45], (thermo)stability simulations were performed to
probe for changes on LipA’s (thermo)stability.

Thermal unfolding simulations of LipA variants

In order to determine to what extent an increase in LipA
(thermo)stability could contribute to an increased extra-
cellular LipA amount, the five variants N50D, P53D,
P53E, P53V, and R57T with amino acid substitutions in
the aB-helix and variant M134Q were subjected to ther-
mal unfolding simulations by constraint network analy-
sis [38]. CNA is a rigidity theory-based approach that
models proteins as networks of constraints, where the
constraints are defined from covalent and non-covalent
(hydrogen bonds and hydrophoebic interactions) bonds
in the protein. Thermal unfolding of the protein is then
simulated by removing hydrogen bond constraints in
a step-wise manner in the order of increasing strength
[41], and the influence on protein structural stability is
monitored by global and local rigidity indices [42]. Here,
as done previously for LipA [39, 46], the thermodynamic
thermostability of LipA variants is compared to wtLipA
in terms of a local index, the median of the neighbor sta-
bility map 7¢j;, ueigihor This 7Cij, peighiior Nas been shown to
be related to the experimental melting temperature (T}
and to be robust if variants follow different unfolding
pathways [16]. Compared to the wtLipA rcij, ueignpor value
of 316.1 K, the variants N50D, P53E, P53V, R57T and
M134Q show a decrease in thermodynamic thermosta-
bility by about 1.5 K on average (Table 2).

Combination of single amino acid substitutions
Single beneficial amino acid substitutions with different
effects were combined to analyze putative synergistic

Table 2 Constraint network analysis (CNA) of wtLipA
and LipA variants

LipA variants Féij, neighbor (K AJ:“--ij, neighbor (K)b

wiLipA 316.1 -
N50D 3121 —4.0
P53D 316.2 01
P53k 3158 —03
P53V 3158 —0.3
R57T 3149 —1.2
M134Q 3147 —14

2 The fé‘—j,ng,-gh;m, values were converted to a temperature scale according to
equation 4 in Ref. [46]

® Difference of r‘c'i],f,gighbo, values of LipA variants minus wtLipA, respectively
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effects on extracellular lipase activity and amount, or
additive effects at the level of extracellular lipase amount.
To do so, single amino acid substitutions with an increas-
ing effect on either activity (G13S) or amount (A105N
and Y139T) were chosen (Fig. 3; Additional file 1: Table
$4), and double mutants were generated by site-directed
mutagenesis. The corresponding single variants and the
wild-type were produced and analyzed again as con-
trols in this experiment confirming the beneficial effects
of these substitutions with only slight differences in the
absolute numbers.

No synergistic effect was observed when combining
G13S with either A105N or Y139T (Additional file 1:
Table S$4). When G13S was combined with AIQ5N,
the extracellular specific lipase activity of the double
mutant G135/A105N was significantly increased by 2.9-
fold compared to wtLipA with 42.7 £ 9.1 U/mg (Fig. 4a;
Additional file 1: Table S4), reaching similar levels as the
G13S variant. However, the extracellular lipase amount
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of this double mutant was only slightly increased com-
pared to wtLipA but reduced compared to the A105N
variant. The [ipA transcript amount of the double mutant
is not significantly changed compared to wtLipA (Addi-
tional file 1: Table S4). This indicates that the G13S sub-
stitution, affecting the extracellular lipase activity, largely
abolishes the influence of the A105N substitution on pro-
tein amount.

The second double mutant G13S/Y139T was unaf-
fected on the level of extracellular specific lipase activ-
ity (Fig. 4a; Additional file 1: Table S4) compared to
wtLipA and 2.5-fold reduced compared to the G13S sin-
gle variant. The extracellular lipase amount was 1.4-fold
increased compared to wtLipA at similar levels of lipA
transcript amount, but reduced compared to the single
A105N variant (Fig. 4a; Additional file 1: Table S4). Here,
both beneficial single amino acid substitutions compen-
sate each other, thus preventing a synergistic beneficial
effect when being combined.
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Fig. 4 Combination of beneficial single aminc acid mutations in LipA and effects on (a) extracellular lipase activity and amount, and (b} additive
effect of two amino acid substitutions on amaount of extracellular lipase, 8. suftilis TEB1030 harboring LipA variants were cultivated for 6 hina 48
well Flowerplate®, and the relative extracellular spedific lipase activity (U/ma) in the culture supernatant was calculated by normalizing the volume
activity (U/ml) to the protein amount (mag/ml). The extracellular lipase activity was measured using phNPP as a substrate, and the extracellular protein
amount was determined by ELISA using a specific palyclonal LipA antibody. The relative extracellular lipase amount {dark grey bars) and relative
extracellular specific lipase activity (light grey bars) are given relative to wiLipA, Respective wilipA values were set to 1 (thick black line). Significant
changes tp < 0.05) compared to wilipA are marked with a *, significant changes compared to the single varfants (p < 0.05) are marked with **
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However, we also observed an additive effect of two
beneficial single mutations in LipA. Variants A105N
and Y139T showed a significant increase in extracellu-
lar LipA amount of up to 2.4-fold compared to wtLipA
with 3.5 & 0.8 pg/ml at similar levels of extracellular spe-
cific lipase activity and similar levels of lipA transcript
amount (Fig. 4b; Additional file 1: Table $4). The corre-
sponding double mutant LipA A105N/Y139T showed a
significant 3.6-fold increase in extracellular LipA amount
compared to wtLipA as well as a significant increase of
1.2-fold when compared to the LipA single variants
(Fig. 4b; Additional file 1: Table S4).

Discussion

In this study, we have interrogated the role of single
amino acid substitutions of the extracellular lipase LipA
from B. subtilis with respect to increasing the activity
and amount of secreted enzyme. LipA consists of 181
amino acids of which 26 were identified as strictly con-
served in 64 lipase sequences within the Firmicutes phy-
lum. The remaining 155 amino acids, which are less than
95% conserved, were subjected to a complete site satu-
ration mutagenesis resulting in a library of about 30,000
clones. This library was analyzed to identify clones pro-
ducing LipA with an increased extracellular activity or an
increased amount of lipase protein. The plasmid-based
lipA expression system increased the extracellular lipase
activity from about 0.02 Ufml for the wild-type strain
B. subtilis 168 [47] to ca. 0.6 U/ml with LipA yields at a
mg/l-scale. This is below the g/l-yields obtained under
optimized production conditions reported in literature
[1, 2], however, it allows measurements also of small
effects caused by beneficial substitutions.

Codon-specific effects
Several LipA variants seem to be affected by the changed
codon, but not by the changed amino acid, namely
2L 112Vgpe GL3T 43¢, and 1871. A codon substi-
tution can obviously result in a changed amino acid, but
can also alter the amount of mRNA, change the tran-
scription rate or the transcript stability as well as the
co-translational folding of a protein. We have performed
RT-qPCRs to determine the amount of /ipA transcripts.
A mean transcript level of 33 biological and two system-
atic replicates of wtLipA were calculated resulting in
a standard error ranging from 0.4 to 2.2 with the mean
value arbitrarily set to 1. Only variants with a changed
transcript level below or above this standard error range
were assumed to be significantly changed and are dis-
cussed here.

An increased amount of transcript may result in an
increased protein amount in the supernatant as observed
for variant G13T zr¢ (Fig. 3b; Additional file 1: Table
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S4) whereas the specific activity remained unaffected.
However, the synonymous amino acid substitution
in G13T ¢ interestingly did not affect the transcript
amount but increased the specific activity. Since the same
amino acid is introduced, the effect must be caused by
the substituted T, codon, which is less frequent than
the wtLipA codon and the above mentioned T ¢ codon
(Additional file 1: Table S4). Rare codons can decelerate
the translation velocity, that way enabling a more effi-
cient folding of the protein [48], which may explain the
increased specific activity of G13T (. Contrarily, variant
1871 also showed an increased specific activity although it
contains a more frequent codon (Fig. 3a; Additional file 1:
Table $4). The impact of the introduced codon is also
illustrated by different 112 variants (Fig. 3a; Additional
file 1: Table S4}.

Amino acid substitutions within and near the oxyanion
hole can increase specific lipase activity

Five out of the six identified amino acid substitutions
increasing extracellular specific lipase activity are located
at position 12, forming part of the oxyanion hole [17],
or nearby at position 13 (Fig. 3a; Additional file 1: Table
$4). This supports former suggestions [49] that optimi-
zation approaches should focus on mutations near the
substrate-binding site. Substitution of isoleucine by the
larger aromatic phenylalanine in variant 112F could lead
to a local conformational change, thereby shifting the NH
group of the residue at position 12, which could improve
the stabilization of the transition state and cause the
observed twofold increase in specific activity. Surpris-
ingly, we did not identify substitutions at position M78,
the other amino acid forming part of the oxyanion hole
[17]. In contrast to 112 and G13, which are located in a
flexible turn of LipA, M78 is located in the aC-helix [17].
It is thus possible that substitutions in the aC-helix do
not have an effect on LipA activity because conforma-
tional changes are sterically hindered. The substitution
of glycine with serine in the G13S variant could also lead
to a local structural change of LipA in the oxyanion hole
region and/or stabilize this region by potential hydrogen
bond interactions between the side chains of S13 and
R44, that way positively affecting the stabilization of the
transition state, which could explain the 1.4-fold increase
in specific activity (Fig. 3a; Additional file 1: Table S4).

Amino acid substitutions improving LipA secretion

and stability

In total, 21 LipA variants were identified with amino acid
substitutions increasing extracellular LipA amount up to
twofold. Six of these variants carry substitutions within
the aB-helix of LipA (N50D, P53D, P53E, P53V, R57T ,
and R57T , ¢ Fig. 3b; Additional file I: Table $4). Amino
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acid positions in this helix are known to contribute to
detergent tolerance, when substituted to amino acids
with charges opposite to the tested detergent [25], and to
ionic liquid resistance, when charged and/or polar resi-
dues are introduced [45]. Therefore, it is possible that the
higher extracellular LipA amount of these variants is not
due to a more efficient secretion, but due to an increased
stability in the culture supernatant of B, subtilis. This
stability issue could also underlie the twofold higher
extracellular LipA amount of variant M134Q (Fig. 3b;
Additional file 1: Table S4). To probe this hypothesis,
differences in the thermodynamic thermostability of the
LipA variants with respect to wtLipA were predicted by
thermal unfolding simulations using CNA; this approach
has been previously applied successfully to retro- and
prospectively analyze the thermodynamic thermosta-
bility of LipA variants [39, 43]. While for three variants
(P53D, P53E, P53V) marginal changes in the predicted
thermostability compared to wtLipA were found, a pro-
nounced decrease in the thermostability was predicted
for the other three variants (N50D, R57T, M134Q}. The
magnitude of this decrease is in the same ballpark as the
magnitude of the median increase in the melting tem-
perature found for 93 cases of engineered proteins, most
of which contain more than one mutation [50]. Thus, the
results of the CNA analyses do not support the hypoth-
esis that increased thermodynamic thermostability of the
six variants led to a higher LipA amount in the culture
supernatant of B. subtilis. However, it should be noted
that CNA does not consider time-dependency of pro-
cesses; hence, our analyses do not rule out an increase in
kinetic thermostability as a cause for higher extracellular
LipA amount.

For the 13 LipA variants [12F, F17E, N48Q, I87V,
K88K, AI05N, M134K, M134P, Y139G, Y139T, L140A,
L140Y, and V154E (Fig. 3b; Additional file 1: Table $4} no
stabilizing effects have been described in literature so far.
Noteworthy exceptions are amino acid positions N48 and
A105, which have been previously identified during ther-
mal unfolding simulations by CNA as structural ‘weak
spots, where mutations could particularly enhance LipA’s
thermostability [39].

The identified amino acid positions affecting extracel-
lular protein amount are located in the N- (12, 17, 48),
the middle (87, 88, 105), and the C- (134, 139, 140, 154)
terminal part of LipA and show no preference regard-
ing the charge of the introduced amino acid. Such ran-
domly distributed mutations within the mature part of an
enzyme can affect its secretion as shown for a lipase from
Pseudomonas aeruginosa [15]. Furthermore, it was dem-
onstrated that N-terminally located amino acids of the
mature LamB protein are required for efficient transport
in E. coli [51]. This could also explain the effect of the

Page 11 0f 13

three substitutions [12F, F17E, and N48Q} in the N-ter-
minal part of LipA. The substitutions identified within
the middle (I87V, K88K, A105N) and the C-terminal part
of LipA (M134K, M134P, Y139G, Y139T, L140A, L140Y,
and V154E) may confer a higher affinity to or allow for a
better interaction with components of the translocation
machinery such as Sec ATPase or SecYEG translocon
[7-10].

Rational combination of LipA substitutions

In order to answer the question whether a synergistic
effect can be achieved by combining single amino acid
substitutions that themselves have led to increased spe-
cific activity or protein amount, we chose a single amino
acid substitution beneficial for extracellular specific
lipase activity (G13S; Fig. 3a; Additional file 1: Table S4)
and two single amino acid substitutions increasing the
extracellular lipase amount (A105N and Y139T; Fig. 3b;
Additional file 1; Table S4). The combination of substitu-
tions G135/A105N and G13S/Y139T (Fig. 4a; Additional
file 1: Table S4) resulted in either improved activity,
or the effects of the single mutations were abrogated
resulting in wild-type level specific activity and protein
amount. Apparently, a beneficial mutation can affect
e.g. RNA or protein structure or stability. Such effects
may thus reinforce or neutralize each other when com-
bined in a double mutant. However, the combination of
amino acid substitutions A105N and Y139T, which both
individually increased the extracellular protein amount
1.4-fold, resulted in a further increase to 3.6-fold in
extracellular protein as compared to the single variants
(Fig. 4b; Additional file 1: Table S$4), demonstrating in
this case an additive effect. Similar additive effects were
already described for amino acid substitutions improving
thermostability, where 12 amino acid substitutions were
introduced by several rounds of in vitro evolution result-
ing in an increase of the LipA temperature optimum by
~ 30 °C [52]. It should be mentioned that many of such
combination experiments need to be carried out before a
general conclusion can be drawn.

Conclusions

In this study, we have systematically analyzed the role
of single amino acid and codon substitutions for the
secretory production of the model protein LipA in B.
subtilis. In addition to single amino acid substitutions
increasing LipA specific activity and protein amount,
we also observed multiple codon-related effects on [ipA
transcription which apparently also influence LipA spe-
cific activity. We have identified six LipA variants with
increased extracellular specific lipase activity (I12F,
112Lepe 112V e G13S, G13T secr and 1871), of which
one also showed an increased extracellular lipase amount
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(112F), and a double mutant (A105N/Y139T) which
showed an additive effect of the single mutations on the
level of extracellular protein amount. The fact that silent
mutations can alter the LipA translation rate and thus
promote more or less efficient LipA folding is expected
to contribute to discussions on the importance of codon
bias and abundance in B. subtilis, as previously remarked
[53]. In summary, we have identified 26 in about 30,000
LipA variants that showed an increase in either amount
or specific activity of extracellular lipase. The low suc-
cess rate and the fact that the most pronounced increases
were about twofold only indicate that nature has already
optimized production and secretion very well for this
lipase in B, subtilis. Nevertheless, our results also sug-
gest that optimization campaigns aiming at increased
enzyme production may also consider the target protein
itself. Variant generation with improved properties might
be particularly successful if prioritized towards ‘sensi-
tive’ structural elements, as we find that mutations in the
vicinity of the active site on the aB-helix, or at structural
‘weak spots’ showed a higher propensity for improved
protein amount and/or activity.
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Additional Tables

Table $1 Oligonucleotide sequences for generation of LipA site saturation mutagenesis library

The forward and reverse oligonuclectide sequence is shown for each mutated codon positions. Codon positions
highlighted in light grey coding for amino acids with a conservation =2 95 % {among the Firmicutes} and were

not considered for mutagenesis.

position forward primer reverse primer
1 GACTGGATTGTGTTCSNNGGCTTTTGCTGACGG CCGTCAGCAAAAGCCNNSGAACACAATCCAGTC
2 AACGACTGGATTGTGSNNAGCGGCTTTTGCTGA TCAGCAAAAGCCGCTNNSCACAATCCAGTCGTT
3 CATAACGACTGGATTSNNTTCAGCGGCTTTTGC GCAAAAGCCGCTGAANNSAATCCAGTCGTTATG
4 AACCATAACGACTGGSNNGTGTTCAGCGGCTTT AAAGCCGCTGAACACNNSCCAGTCGTTATGGTT
5 -
[+ -
7 AATACCGTGAACCATSNNGACTGGATTGTGTTC GAACACAATCCAGTCNNSATGGTTCACGGTATT
g TCCAATACCGTGAACSNNAACGACTGGATTGTG CACAATCCAGTCGTTNNSGTTCACGGTATTGGA
9 -
10 - -
11 -
12 GAATGATGCCCCTCCSNNACCGTGAACCATAAC GTTATGGTTCACGGTNNSGGAGGGGCATCATTC
13 ATTGAATGATGCCCCSNNAATACCGTGAACCATAAC GTTATGGTTCACGGTATTNNSGGGGCATCATTCAAT
14 AAAATTGAATGATGCSNNTCCAATACCGTGAAC GTTCACGGTATTGGANNSGCATCATTCAATTTT
15 CGCAAAATTGAATGASNNCCCTCCAATACCGTG CACGGTATTGGAGGGNNSTCATTCAATTTTGCG
16 TCCCGCAAAATTGAASNNTGCCCCTCCAATACC GGTATTGGAGGGGCANNSTTCAATTTTGCGGGA
17 AATTCCCGCAAAATTSNNTGATGCCCCTCCAATAC GTATTGGAGGGGCATCANNSAATTTTGCGGGAATT
18 CTTAATTCCCGCAAASNNGAATGATGCCCCTCC GGAGGGGCATCATTCNNSTTTGCGGGAATTAAG
19 GCTCTTAATTCCCGCSNNATTGAATGATGCCCC GGGGCATCATTCAATNNSGCGGGAATTAAGAGC
20 GCTCTTAATTCCSNNAAAATTGAATGATGC GCATCATTCAATTTTNNSGGAATTAAGAGC
21 ATAGCTCTTAATSNNCGCAAAATTGAATGATGC GCATCATTCAATTTTGCGNNSATTAAGAGCTAT
22 -
23 AGATACGAGATAGCTSNNAATTCCCGCAAAATTG CAATTTTGCGGGAATTNNSAGCTATCTCGTATCT
24 CTGAGATACGAGATASNNCTTAATTCCCGC GCGGGAATTAAGNNSTATCTCGTATCTCAG
25 GCCCTGAGATACGAGSNNGCTCTTAATTCCCGC GCGGGAATTAAGAGCNNSCTCGTATCTCAGGGC
26 CCAGCCCTGAGATACSNNATAGCTCTTAATTCC GGAATTAAGAGCTATNNSGTATCTCAGGGCTGG
27 CGACCAGCCCTGAGASNNGAGATAGCTCTTAATTC GAATTAAGAGCTATCTCNNSTCTCAGGGCTGGTCG
28 CCGCGACCAGCCCTGSNNTACGAGATAGCTC GAGCTATCTCGTANNSCAGGGCTGGTCGCGG
29 GTCCCGCGACCAGCCSNNAGATACGAGATAGCT AGCTATCTCGTATCTNNSGGCTGGTCGCGGGAC
30 CTTGTCCCTCGACCASNNCTGAGATACGAGATAG CTATCTCGTATCTCAGNNSTGGTCGAGGGACAAG
31 CAGCTTGTCCCGCGASNNGCCCTGAGATACGAG CTCGTATCTCAGGGUNNSTCGCGGGACAAGCTG
32 ATACAGCTTGTCCCGSNNCCAGCCCTGAGATAC GTATCTCAGGGCTGGNNSCGGGACAAGCTGTAT
33 TGCATACAGCTTGTCSNNCGACCAGCCCTGAG CTCAGGGCTGGTCGNNSGACAAGCTGTATGCA
34 AACTGCATACAGCTTSNNCCGCGACCAGCCCTG CAGGGCTGGTCGCGGNNSAAGCTGTATGCAGTT
35 ATCAACTGCATACAGSNNGTCCCGCGACCAGCC GGCTGGTCGCGGGACNNSCTGTATGCAGTTGAT
36 AAAATCAACTGCATASNNCTTGTCCCGCGACCAG CTGGTCGCGGGACAAGNNSTATGCAGTTGATTTT
37 CCAAAAATCAACTGCSNNCAGCTTGTCCCGCGAC GTCGCGGGACAAGCTGNNSGCAGTTGATTTTTGG
38 -
39 CTTGTCCCAAAAATCSNNTGCATACAGCTTGTC GACAAGCTGTATGCANNSGATTTTTGGGACAAG
40 TGTCTTGTCCCAAAASNNAACTGCATACAGCTT AAGCTGTATGCAGTTNNSTTTTGGGACAAGACA
41 GCCTGTCTTGTCCCSNNATCAACTGCATACAG CTGTATGCAGTTGATNNSGGGACAAGACAGGC
42 TGTGCCTGTCTTGTCSNNAAAATCAACTGCATA TATGCAGTTGATTTTNNSGACAAGACAGGCACA
43 ATTTGTGCCTGTCTTSNNCCAAAAATCAACTGC GCAGTTGATTTTTGGNNSAAGACAGGCACAAAT
44 ATAATTTGTGCCTGTSNNGTCCCAAAAATCAAC GTTGATTTTTGGGACNNSACAGGCACAAATTAT
45 GTTATAATTTGTGCCSNNCTTGTCCCAAAAATC GATTTTTGGGACAAGNNSGGCACAAATTATAAC
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46 - -

47 TCCATTGTTATAATTSNNGCCTGTCTTGTCCCAAAAATC | GATTTTTGGGACAAGACAGGCNNSAATTATAACAATGGA
48 CGGTCCATTGTTATASNNTGTGCCTGTCTTGTC GACAAGACAGGCACANNSTATAACAATGGACCG
49 TACCGGTCCATTGTTSNNATTTTGTGCCTGTCTT AAGACAGGCACAAAATNNSAACAATGGACCGGTA
50 TAATACCGGTCCATTSNNATAATTTGTGCCTGT ACAGGCACAAATTATNNSAATGGACCGGTATTA
51 TGATAATACCGGTCCSNNGTTATAATTTGTGCC GGCACAAATTATAACNNSGGACCGGTATTATCA
52 TCGTGATAATACCGGSNNATTGTTATAATTTIGTG CACAAATTATAACAATNNSCCGGTATTATCACGA
53 AAATCGTGATAATACSNNTCCATTGTTATAATT AATTATAACAATGGANNSGTATTATCACGATTT
54 CACAAATCGTGATAASNNCGGTCCATTGTTATA TATAACAATGGACCGNNSTTATCACGATTTGTG
55 TTGCACAAATCGTGASNNTACCGGTCCATTG CAATGGACCGGTANNSTCACGATTTGTGCAA

56 CTTTTGCACAAATCGSNNTAATACCGGTCCATTG CAATGGACCGGTATTANNSCGATTTGTGCAAAAG
57 AACCTTTTGCACAAASNNTGATAATACCGGTCC GGACCGGTATTATCANNSTTTGTGCAAAAGGTT
58 TAAAACCTTTTGCACSNNTCGTGATAATACCGG CCGGTATTATCACGANNSGTGCAAAAGGTTTTA
59 ATCTAAAACCTTTTGSNNAAATCGTGATAATAC GTATTATCACGATTTNNSCAAAAGGTTTTAGAT
60 TTCATCTAAAACCTTSNNCACAAATCGATAA TTATCGATTTGTGNNSAAGGTTTTAGATGAA

61 CGTTCCATCTAAAACSNNTTGCACAAATCGTG CACGATTTGTGCAANNSGTTTTAGATGGAACG
62 - -

63 CGCACCCGTTTCATCSNNAACCTTTTGCACAAATC GATTTGTGCAAAAGGTTNNSGATGAAACGGGTGCG
64 TTTCGCACCCGTTTCSNNTAAAACCTTTTGCAC GTGCAAAAGGTTTTANNSGAAACGGGTGCGAAA
65 TTTTTTCGCACCCGTSNNATCTAAAACCTTTTG CAAAAGGTTTTAGATNNSACGGGTGCGAAAAAA
66 - -

67 - -

68 AATATCCACTTTTTTSNNACCCGTTTCATCTAAAAC GTTTTAGATGAAACGGGTNNSAAAAAAGTGGATATT
69 GACAATATCCACTTTSNNCGCACCCGTTTCATC GATGAAACGGGTGCGNNSAAAGTGGATATTGTC
70 - -

71 - -

72 GCTGTGAGCGACAATSNNCACTTTTTTCGCACC GGTGCGAAAAAAGTGNNSATTGTCGCTCACAGC
73 - -

74 CCCCATGCTGTGAGCSNNAATATCCACTTTTTTC GAAAAAAGTGGATATTNNSGCTCACAGCATGGGG
75 - -

76 - -

77 - -

78 TGTGTTCGCGCCCCCSNNGCTGTGAGCGACAATATC GATATTGTCGCTCACAGCNNSGGGGGCGCGAACACA
79 - -

80 GTAAAGTGTGTTCGCSNNCCCCATGCTGTGAGC GCTCACAGCATGGGGNNSGCGAACACACTTTAC
81 GTAGTAAAGTGTGTTSNNGCCCCCCATGCTGTG CACAGCATGGGGGGCNNSAACACACTTTACTAC
82 TATGTAGTAAAGTGTSNNCGCGCCCCCCATGCTG CAGCATGGGGGGCGCGNNSACACTTTACTACATA
83 TTTTATGTAGTAAAGSNNGTTCGCGCCCCCCATG CATGGGGGGCGCGAACNNSCTTTACTACATAAAA
84 ATTTTTTATGTAGTASNNTATGTTCGCGCCCCC GGGGGCGCGAACATANNSTACTACATAAAAAAT
85 CAGATTTTTTATGTASNNAAGTGTGTTCGCGCC GGCGCGAACACACTTNNSTACATAAAAAATCTG
86 - -

87 GCCGTCCAGATTTTTSNNGTAGTAAAGTGTGTTC GAACACACTTTACTACNNSAAAAATCTGGACGGC
88 TCCGCCGTCCAGATTSNNTATGTAGTAAAGTGTG CACACTTTACTACATANNSAATCTGGACGGCGGA
89 ATTTCCGCCGTCCAGSNNTTTTATGTAGTAAAG CTTTACTACATAAAANNSCTGGACGGCGGAAAT
90 TTTATTTCCGCCGTCSNNATTTTTTATGTAGTAAAG CTTTACTACATAAAAAATNNSGACGGCGGAAATAAA
91 AACTTTATTTCCGCCSNNCAGATTTTTTATGTAG CTACATAAAAAATCTGNNSGGCGGAAATAAAGTT
92 TGCAACTTTATTTCCSNNGTCCAGATTTTTTATG CATAAAAAATCTGGACNNSGGAAATAAAGTTGCA
93 GTTTGCAACTTTATTSNNGCCGTCCAGATTTTITATG CATAAAAAATCTGGACGGCNNSAATAAAGTTGCAAAC
94 GACGTTTGCAACTTTSNNTCCGCCGTCCAGATTTTTTATG CATAAMARTCTGGACGE C((E:GANNSAAAG-ITG CAAACGT
95 CACGACGTTTGCAACSNNATTTCCGCCGTCCAG CTGGACGGCGGAAATNNSGTTGCAAACGTCGTG
96 CGTCACGACGTTTGCSNNTTTATTTCCGCCGTC GACGGCGGAAATAAANNSGCAAACGTCGTGACG
97 AAGCGTCACGACGTTSNNAACTTTATTCCTGCC GGCAGGAATAAAGTTNNSAACGTCGTGACGCTT
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98 GCCAAGCGTCACGACSNNTGCAACTTTATTTCC GGAAATAAAGTTGCANNSGTCGTGACGCTTGGC

99 GCCGCCAAGCGTCACSNNGTTTGCAACTTTATTTC GAAATAAAGTTGCAAACNNSGTGACGCTTGGCGGC
100 CGCGCCGCCAAGCGTSNNGACGTTTGCAAC GTTGCAAACGTCNNSACGCTTGGCGGLGCG
101 GTTCGCGCCGCCAAGSNNCACGACGTTTGCAAC GTTGCAAACGTCGTGNNSCTTGGCGGCGCGAAC
102 ACGGTTCGCGCCGCCSNNCGTCACGACGTTTGC GCAAACGTCGTGACGNNSGGCGGCGCGAACCGT
103 -
104 CGTTAAACGGTTCGCSNNGCCAAGCGTCACGAC GTCGTGACGCTTGGCNNSGCGAACCGTTTAACG
105 TGTCGTTAAACGGTTSNNGCCGCCAAGCGTCAC GTGACGCTTGGCGGCNNSAACCGTTTAACGACA
106 -

107 CTTGCCTGTCGTCAASNNGTTCGCGCCGCCAGG CCTGGCGGCGCGAACNNSTTGACGACAGGCAAG
108 CGCCTTGCCTGTCGTSNNACGGTTCGCGCCGCC GGCGGCGCGAACCGTNNSACGACAGGCAAGGCG
109 AAGCGCCTTGCCTGTSNNCAAACGGTTCGCGCC GGCGCGAACCGTTTGNNSACAGGCAAGGCGCTT
110 CCGAAGCGCCTTGCCSNNCGTCAAACGGTTCGC GCGAACCGTTTGACGNNSGGCAAGGCGCTTCGG
111 CCCGGAAGCGCCTTSNNTGTCGTCAAACGGTTC GAACCGTTTGACGACANNSAAGGCGCTTCCGGG
112 TGTTCCCCGAAGCGCSNNGCCTGTCGTCAAACG CGTTTGACGACAGGCNNSGCGCTTCGGGGAACA
113 ATCTGTTCCCGGAAGSNNCTTGCCTGTCGTTAAAC GTTTAACGACAGGCAAGNNSCTTCCGGGAACAGAT
114 TGGATCTGTTCCCGGSNNCGCCTTGCCTGTCG CGACAGGCAAGGCGNNSCCGGGAACAGATCCA
115 ATTTGGATCTGTTCCSNNAAGCGCCTTGCCTGTC GACAGGCAAGGCGCTTNNSGGAACAGATCCAAAT
116 TTGATTTGGATCTGTSNNCGGAAGCGCCTTGCC GGCAAGGCGCTTCCGNNSACAGATCCAAATCAA
117 CTTTTGATTTGGATCSNNTCCCGGAAGCGCCTTG CAAGGCGCTTCCGGGANNSGATCCAAATCAAAAG
118 AATCTTTTGATTTGGSNNTGTTCCCGGAAGCGC GCGCTTCCGGGAACANNSCCAAATCAAAAGATT
119 TAAAATCTTTTGATTSNNATCTGTTCCCGGAAG CTTCCGGGAACAGATNNSAATCAAAAGATTTTA
120 GTATAAAATCTTTTGSNNTGGATCTGTTCCCGG CCGGGAACAGATCCANNSCAAAAGATTTTATAC
121 TGTGTATAAAATCTTSNNATTTGGATCTGTTCC GGAACAGATCCAAATNNSAAGATTTTATACACA
122 GGATGTGTATAAAATSNNTTGATTTGGATCTG CAGATCCAAATCAANNSATTTTATACACATCC
123 AATGGATGTGTATAASNNCTTTTGATTTGGATC GATCCAAATCAAAAGNNSTTATACACATCCATT
124 GTAAATGGATGTGTASNNATTCTTTTGATTTGG CCAAATCAAAAGAATNNSTACACATCCATTTAC
125 GCTGTAAATGGATGTSNNTAAAATCTTTTGATTTG CAAATCAAAAGATTTTANNSACATCCATTTACAGC
126 ACTGCTGTAAATGGASNNGTATAAAATCTTTTG CAAAAGATTTTATACNNSTCCATTTACAGCAGT
127 GGCACTGCTGTAAATSNNTGTGTATAAAATCTT AAGATTTTATACACANNSATTTACAGCAGTGCC
128 ATCGGCACTGCTGTASNNGGATGTGTATAAAATC GATTTTATACACATCCNNSTACAGCAGTGCCGAT
129 -

130 AATCATATCGGCACTSNNGTAAATGGATGTG CACATCCATTTACNNSAGTGCCGATATGATT
131 GACAATCATATCGGCSNNGCTGTAAATGGATG CATCCATTTACAGCNNSGCCGATATGATTGTC
132 CATGACAATCATATCSNNACTGCTGTAAATGG CCATTTACAGCAGTNNSGATATGATTGTCATG
133 ATTCATGACAATCATSNNGGCACTGCTGTAAATG CATTTACAGCAGTGCCNNSATGATTGTCATGAAT
134 GTAATTCATGACAATSNNATCGGCACTGCTGTAAATG CATTTACAGCAGTGCCGATNNSATTGTCATGAATTAC
135 TAAGTAATTCATGACSNNCATATCGGCACTGCTG CAGCAGTGCCGATATGNNSGTCATGAATTACTTA
136 TGATAAGTAATTCATSNNAATCATATCGGCACTG CAGTGCCGATATGATTNNSATGAATTACTTATCA
137 TCTTGATAAGTAATTSNNGACAATCATATCGGC GCCGATATGATTGTCNNSAATTACTTATCAAGA
138 TAATCTTGATAAGTASNNCATGACAATCATATC GATATGATTGTCATGNNSTACTTATCAAGATTA
139 ATCTAATCTTGATAASNNATTCATGACAATCATATCGGC | GCCGATATGATTGTCATGAATNNSTTATCAAGATTAGAT
140 ACCATCTAATCTTGASNNGTAATTCATGACAATC GATTGTCATGAATTACNNSTCAAGATTAGATGGT
141 -
142 TCTAGCACCATCTAASNNTGATAAGTAATTCATG CATGAATTACTTATCANNSTTAGATGGTGCTAGA
143 GTTTCTAGCACCATCSNNTCTTGATAAGTAATTC GAATTACTTATCAAGANNSGATGGTGCTAGAAAC
144 AACGTTTCTAGCACCSNNTAATCTTGATAAGTAATT AATTACTTATCAAGATTANNSGGTGCTAGAAACGTT
145 -
146 GATTTGAACGTTTCTSNNACCATCTAATCTTG CAAGATTAGATGGTNNSAGAAACGTTCAAATC
147 ATGGATTTGAACGTTSNNAGCACCATCTAATCTTG CAAGATTAGATGGTGCTNNSAACGTTCAAATCCAT
148 GCCATGGATTTGAACSNNTCTAGCACCATCTAATC GATTAGATGGTGCTAGANNSGTTCAAATCCATGGC
149 AACGCCATCGATTTGSNNGTTTCTAGCACCATC GATGGTGCTAGAAACNNSCAAATCGATGGCGTT
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150 TCCAACGCCATGGATSNNAACGTTTCTAGCACC GGTGCTAGAAACGTTNNSATCCATGGCGTTGGA
151 GTGTCCAACGCCATGSNNTTGAACGTTTCTAGC GCTAGAAACGTTCAANNSCATGGCGTTGGACAC
152 GATGTGTCCAACGCCSNNGATTTGAACGTTTCTAG CTAGAAACGTTCAAATCNNSGGCGTTGGACACATC
153 -

154 AAGGCCGATGTGTCCSNNGCCATGGATTTGAAC GTTCAAATCCATGGCNNSGGACACATCGGCCTT
155 CAGAAGGCCGATGTGSNNAACGCCATGGATTTG CAAATCCATGGCGTTNNSCACATCGGCCTTCTG
156 GTACAGAAGGCCGATSNNTCCAACGCCATGGATTTG CAAATCCATGGCGTTGGANNSATCGGCCTTCTGTAC
157 GCTGTACAGAAGGCCSNNGTGTCCAACGCCATG CATGGCGTTGGACACNNSGGCCTTCTGTACAGC
158 GCTGCTGTACAGAAGSNNGATGTGTCCAACGCC GGCGTTGGACACATCNNSCTTCTGTACAGCAGC
159 TTGGCTGCTGTACAGSNNGCCGATGTGTCCAAC GTTGGACACATCGGCNNSCTGTACAGCAGCCAA
160 GACTTGGCTGCTGTASNNAAGGCCGATGTGTCC GGACACATCGGCCTTNNSTACAGCAGCCAAGTC
161 GTTGACTTGGCTGCTSNNCAGAAGGCCGATGTG CACATCGGCCTTCTGNNSAGCAGCCAAGTCAAC
162 GCTGTTGACTTGGCTSNNGTACAGAAGGCCGATG CATCGGCCTTCTGTACNNSAGCCAAGTCAACAGC
163 CAGGCTGTTGACTTGSNNGCTGTACAGAAGGCC GGCCTTCTGTACAGCNNSCAAGTCAACAGCCTG
164 AATCAGGCTGTTGACSNNGCTGCTGTACAGAAG CTTCTGTACAGCAGCNNSGTCAACAGCCTGATT
165 -

166 TTCTTTAATCAGGCTSNNGACTTGGCTGCTGTAC GTACAGCAGCCAAGTCNNSAGCCTGATTAAAGAA
167 CCCTCCTTTAATCAGSNNGTTGACTTGGCTGCTG CAGCAGCCAAGTCAACNNSCTGATTAAAGGAGGG
168 CAGCCCTTCTTTAATSNNGCTGTTGACTTGGCTGCTG CAGCAGCCAAGTCAACAGCNNSATTAAAGAAGGGCTG
169 GTTCAGCCCTTCTTTSNNCAGGCTGTTGACTTG CAAGTCAACAGCCTGNNSAAAGAAGGGCTGAAC
170 GCCGTTCAGCCCTTCSNNAATCAGGCTGTTGAC GTCAACAGCCTGATTNNSGAAGGGCTGAACGGC
171 CCCGCCGTTCAGCCCSNNTTTAATCAGGCTGTT AACAGCCTGATTAAANNSGGGCTGAACGGCGGG
172 GCCCCCGCCGTTCAGSNNTTCTTTAATCAGGCT AGC CTG ATT AAA GAANNS CTG AAC GGC GGG GGC
173 CTGGCCCCCGCCGTTSNNCCCTTCTTTAATCAG CTG ATT AAA GAA GGG NNS AAC GGC GGG GGC CAG
174 TTCTGGCCCCCGCCSNNCAGCCCTTCTTTAATC GATTAAAGAAGGGCTGNNSGGCGGGGGCCAGAA
175 CGTATTCTGGCCCCCSNNGTTCAGCCCTTCTTT AAA GAA GGG CTG AAC NNS GGG GGC CAG AAT ACG
176 ATTCGTATTCTGGCCSNNGCCGTTCAGCCCTTC GAA GGG CTG AAC GGC NNS GGC CAG AAT ACG AAT
177 TTAATTCGTATTCTGSNNCCCGCCGTTCAGCCC GGG CTG AAC GGC GGG NNS CAG AAT ACG AAT TAA
178 GCTTGTCGACGGAGCTCTCATTAATTCGTATTSNNGCC | GGCNNSAATACGAATTAATGAGAGCTCCGTCGACAAGC
179 GCTTGTCGACGGAGCTCTCATTAATTCGTSNNCTC GAGNNSACGAATTAATGAGAGCTCCGTCGACAAGC
180 GCTTGTCGACGGAGCTCTCATTAATTSNNATT AATNNSAATTAATGAGAGCTCCGTCGACAAGC
181 GCTTGTCGACGGAGCTCTCATTASNNCGT ACGNNSTAATGAGAGCTCCGTCGACAAGC

Table 52 Oligonucleotide sequences for generation of lipA site directed single and double mutants
The forward and reverse oligonucleotide sequence is shown for each variant. Modification sites are underlined.

variant forward primer reverse primer

G13$ ATGGTTCACGGTATTICGGGGGCATCATTCAAT ATTGAATGATGCCCCCGAAATACCGTGAACCAT
AL05N GTGACGCTTGGCGGCAACAACCGTTTGACGACA TGTCGTCAAACGGTTGITGCCGCCAAGCGTCAC
Y139T ATGATTGTCATGAATACCTTATCAAGATTAGAT ATCTAATCTTGATAAGGTATTCATGACAATCAT
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Table $3 LipA amino acid sequence conservation

A: UniProtKB accession numbers and original organisms for the 64 lipase sequences out of 41 species from the
Firmicutes phylum used for the alignment. B: The number of identical amino acids in this alignment like in B.
subtilis LipA was counted and calculated in percentage frequency for each position to determine the
censervation of this amino acid within the Firmicutes phylum. The amino acid position (position), the amino
acid (aa} and the percentaged conservation are shown.

A
Lipase Species Lipase Species Lipase Species Lipase Species
Pa4444 Bacilfus sp. | Q8VU78 | Bacillus sp. | HOFRI5 Bacilius EOUOYOD Bacillus  subtilis
BP-6 B26 amyloliquefaciens spizizenii  ATCC
IT-45 23059
Q79F14 Bacillus HBU4T6 | Bacillus sp. | H2ABY2 Bacillus GANTQ6 Bacillus  subtilis
subtilis 168 enrichment amyloliquefaciens spizizenii TU-B-10
culture clone subsp. plantarum
S6 CAU B946
B8YLYO Bacillus B2L2K1 Bacillus H3XE51 Bacilflus ESWOL6 Bacillus sp.
subtilis licheniformis amyloliquefaciens BT1B_CT2
subsp. plantarum
YAU B9601-Y2
Q8RIP5 Bacillus A1E152 Bacillus FAE233 Bacillus Q65HR4 Bacillus
megaterium pumilus amyloliquefaciens licheniformis
TA208 ATCC 14580
ESVECO Bacillus A8FGA4 | Bacillus GOIK64 Bacillus I0UHQ4 Bacillus
subtilis SC-8 pumilus amyloliquefaciens licheniformis \WX-
SAFR-032 XH7 02
GAEYR4 Bacillus Q9K5F4 | Baocillus E3DTQ6 Bacillus B3F2Y4 Bacillus sp. RN2
subtilis SC-8 licheniformis atrophoeus 1942
G4P2C8 Bacillus Q6RSNO | Bacillus ASHLW9 Bacillus subtilis HG6NI24 Paenibacillus
subtilis RO- pumilus mucilaginosus
NN-1 3016
D5N1Z7 Bacilfus B1PN85 Bacillus G4PA03 Baciflus  subtilis | 10BL71 Paenibacillus
subtilis pumilus RO-NN-1 mucilaginosus
subsp. K02
spizizenii
ATCC 6633
EOTW96 | Bacillus B4ANV6 | Bacillus B1PN84 Bacillus subtilis F8FBS6 Paenibacillus
subtilis pumilus ATCC mucilaginosus
ATCC 23059 7061 KNP414
G4ANRF1 Bacillus Q2LAN2 | Bacillus D4G4R9 Bacillus subtilis | Q5WDNO Bacillus clausii
subtilis TU- pumifus subsp. natto KSM-K16
B-10 BEST195
D4G6J3 Bacillus B7VF67 Bacillus E8VKS5 Baciflus  subtilis | Q8RC83 Caldanaerobacter
subtilis pumilus BSn5 subterraneus
subsp. subsp.
natto tengcongensis
BEST195 DSM 15242
BOLW76 | Bacillus sp. | B8Y3H3 Bacillus G4FOD0 Bacillus  subtilis | QeWUB2 Caldanaerobacter
NK13 pumilus SC-8 subterraneus
subsp.
tengcongensis
D5E2WS8 | Bacifius B2CX98 | Bacillus B7UDC5 Bacilius subtilis F1ZT35 Thermoanaeroba
megaterium pumilus cter ethanolicus
ATCC 12872 JW 200
D3WK98 | Bacillus Q21991 Baciilus 10F008 Bacillus sp. IS G2MS56 Thermoanaeroba
pumifus pumilus cter wiegelii
Rt8.B1
E2CYQ9 Bacilfus D7URUS | Bocillus  sp. | Q83ZY1 Bacillus subtilis D3FQU1 Bacillus
pumilus HH-01 pseudofirmus
OF4
A4GUJ6 Bacillus A7Z124 Bacillus D5N2V3 Baciflus  subtilis | P37957 Bacillus  subtilis
pumilus velezensis subsp.  spizizenii 168
DSM 23117 ATCC 6633
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Additional Methods

B. subtilis wtLipA production analysis

B. subtilis TEB1030 with the plasmid pBSlipA encoding for wtLipA was cultivated as described
for the 48-well FlowerPlate® cultivation in the manuscript’s method section. 1 ml cells were
harvested after 2, 4, 6, 8, 10, and 24 h by centrifugation (room temperature, 21,000 g, 5
min). The culture supernatant and the cells, resuspended in 50 mM Tris-HCI pH 8, were used
for a lipase activity assay as described in the manuscript’s method section. For online
biomass measurement by scattered light (O.D.s0oonm), replicates were prepared in 48-well
Flowerplates and cultivated in the Biolector® (m2p-labs, Germany) under identical
conditions (37 °C, 1,100 rpm) for 24 h.

Protein TCA-NaDoc precipitation

A sample volume of 1 ml was mixed with 100 pl cold 10 % (w/v) NaDoc (sodium
desoxycholate) and incubated on ice for 10 min. After addition of 100 ul cold 40 % (v/v) TCA
and incubation on ice for 20 min, the sample was centrifuged at 4 °C, 21,000 g for 30 min.
The supernatant was discarded and the pellet containing the proteins was washed with 500
ul 80 % (v/v) acetone. After discarding the supernatant, the pellet was dried for 5 min. The
pellet was resuspended in 50 mM Tris-HCI pH 8 and 2x SDS sample buffer (50 mM Tris-HCI
pH 6.8, 4 % (w/v) SDS, 10 % (v/v) glycerol, 2 % (v/v) B-mercaptoethanol, 0.03 % (w/v)
Bromophenol blue) to a concentration corresponding to a cell density of O.D.sgonm = 15 and
boiled for 10 min.

Protein separation by SDS-PAGE

Boiled samples were loaded onto a 5 % stacking gel (2.8 ml A. dest., 0.83 ml 37 % (v/v)
acrylamide, 1.3 ml Tris-HCI pH 6.8 (0.5 M), 50 pl 10 % (w/v) SDS, 50 pl 10 % (w/v) APS, 5 ul
TEMED) on top of a 16 % separation gel (2.1 ml A. dest., 5.3 ml 37 % (v/v) acrylamide, 2.5 ml
Tris-HCI pH 8.8 (0.5 M), 100 ul 10 % (w/v) SDS, 100 ul 10 % (w/v) APS, 10 ul TEMED).
Discontinuous SDS-gel electrophoresis was carried out at 100 V for 15 min and at 200 V for
40 min using the gadget ,Mini Protean Il Dual Slap Cell“ (BioRad Laboratories GmbH,
Germany) and SDS running buffer (0.025 M Tris, 0.2 M glycine, 0.003 M SDS).

Immunodetection of proteins via Western blotting

Proteins from SDS gels were electrophoretically transferred at 150 mA for 15 min, and at 300
mA for 60 min onto a polyvinylidene difluoride (PVDF) membrane in a Mini-Protean 3 Cell
(BioRad Laboratories GmbH, Germany) in 1 x Dunn carbonate buffer (0.003 M Na,COs, 0.01
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M NaHCOs3) with 20 % (v/v) methanol. The PYDF membranes were washed in methanol and
A. dest. for 1 min before protein transfer. The membrane was blocked with 3 % (w/v) bovine
serum albumin dissolved in TBST {(0.025 M Tris, 0.15 M NacCl, 0.0015 M KCl, 0.02 % (v/v)
Tween 20) at 4 °C for 16 h. The membranes were incubated with a specific polyclonal LipA
antibody (Eurogentec, Germany; produced in rabbits immunized with B. subtilis LipA
overproduced in E. coli BL21(DE3)} in dilution of 1:20,000 in TBST and a second antibody
goat-anti-rabbit HRP conjugate (BioRad Laboratories GmbH, Germany) in dilution 1:5,000 in
TBST for 1h. After each antibody incubation step, the membranes were washed in TBST at
room temperature for 30 min and 3 x 10 min. All incubation steps were accomplished on an
orbital mixer. Signals were detected using freshly prepared ECL solution and the Stella 3200
Imaging System (Raytest, Germany). The ECL solution was prepared by mixing 1 ml of 4 °C
cold solution A {0.025 % (w/v) luminol, 0.1 M Tris-HCl pH 8.6) with 100 ul solution B (0.1 %
(w/v} p-hydroxy coumarate in 100 % DMSQ) and 0.3 pl sclution C (30 % H203).

Constraint Network Analysis (CNA)

For CNA, a protein is represented as a constraint network, where atoms are nodes and covalent and
non-covalent interactions form constraints connecting the nodes [1]. The constraints in the network
are modeled with different numbers of bars depending on the type and strength of the interaction.
Taking into account that the network nodes are considered bodies with six degrees of freedom,
covalent single bonds are modeled as five bars (leaving the rotational degree of freedom unlocked),
double and peptide bonds as six bars (freezing any relative motion between twe bodies), non-
covalent hydrogen bonds (including salt bridges) are modeled as five bars, and hydrophobic
interactions as two bars. The hydrogen bond energy (Eus) for all hydrogen bonds is computed
according to a potential by Dahiyat et al. [2]. For thermal unfolding simulations [3, 4], hydrogen
bonds are removed from the network in increasing order of their strength: A hydrogen bond is
discarded from the network if Eug > Ec. In the present study, E..: was varied from -0.1 kcal mol™ to -
0.4 kcal mol? {according to 302 K to 380 K [4]) with a step size of 0.1 kcal mol? (2 K}, as done
previously for investigation of the thermostability of LipA [S]. For each network state generated that
way, rigid and flexible regions are determined by the program FIRST [6], and from this the local index
T'Cijneightor |7, 8. TCineightor, @ NEighbor stability map, characterizes the local rigidity of a protein. For
improving the rocbustness of the analyses [9], CNA was performed on ensembles of network
topologies (ENT) generated by the ENT™C approach, as done previously [5, 10]. The parameter Fi;
neighbor Was then computed as the median of rejpegreer averaged over the respective 5,000

conformations. FEj, newnser 15 related to the thermodynamic thermostability of a protein [8].

1. Pfleger C, Rathi PC, Klein DL, Radestock S, Gohlke H. Constraint Network Analysis {CNA): A python software package for
efficiently linking biomacromolecular structure, flexibility, (thermo-)stability, and function. J Chem Inf Model.
2013;53:1007-15. http://dx.doi.org/10.1021/ci400044m.

2. Dahiyat Bl, Benjamin Gordon D, Mayo SL. Automated design of the surface positions of protein helices. Protein Sci.
1997;6:1333-7. http://dx.doi.org/10.1002/pro.5560060622.

3. Radestock S, Gohlke H. Exploiting the link between protein rigidity and thermostability for data-driven protein
engineering. Eng Life Sci. 2008;8:507-22. http://dx.doi.org/10.1002/elsc.200800043.
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subtilis. PLoS Comput Biol. 2016;12:e1004754. http://dx.doi.org/10.1371/journal.pcbi.1004754.

6. Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF. Protein flexibility predictions using graph theory. Proteins Struct Funct Genet.
2001;44:150-65. http://dx.doi.org/10.1002/prot.1081.

7. Pfleger C, Radestock S, Schmidt E, Gohlke H. Global and local indices for characterizing biomolecular flexibility and
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Additional Figures
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Figure $S1 Microfermentation of B. subtilis TEB1030 producing wtLipA

A Wild-type LipA production analysis in B. subtilis TEB1030. B. subtilis TEB1030 producing wtLipA was
cultivated for 24 h in a microfermentation system using a 48 well Flowerplate® and online biomass
measurement was performed in the BioLector®. The cultivation time (h) is plotted against the optical density at
600 nm on the left handed y-axis and against the volume activity normalized to the optical density ({U/ml)/0.D.
soanm)- The grey line with error bars show B. subtilis TEB1030 growth producing wiLipA (O.D.soanm). After 2, 4, 6,
8, 10 and 24 h of cultivation samples were taken to determine the lipase activity in the B. subtilis culture
supernatant {bars in dark grey) and the B. subtilis whole cells {bars in light grey) that was normalized to the B.
subtilis growth at the corresponding sampling time point. B Western Blot analysis of B. subtilis whole cells and
culture supernatant after 6 h of wtLipA production. The culture supernatants of B. subtilis TEB103C harboring
the empty vector pBSMull (ev) and the lipA expression vector pBSlipA (LipA) were precipitated with
trichloroacetic acid. The precipitated culture supernatant (S} and the whole cells (WC) were resuspended in 50
mM Tris-HC| pH 8 to an 0.D.ssonm of 15. 10 pl of each sample were applied on a 16 % discontinuous SDS-PAGE
together with a molecular weight standard (M). Immunodetection was performed using a specific polyclonal
LipA antibody.
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Figure S2 Microfermentation of B. subtilis TEB1030 producing the 38 different LipA variants

A 24 h online biomass measurement. B. subtilis TEB1030 harboring the 38 different LipA variants were
cultivated in a microfermentation system using 48 well FlowerPlates®. Online biomass measurement was
performed for 24 h in the BiolLector®. The cultivation time (h) is plotted against the optical density at 600 nm
(O.D. 6oonm)- The blue line indicates wtLipA optical density with corresponding error bars in black. The sampling
point after 6 h of LipA production is marked. B Oxygen saturation during microfermentation. The cultivation
time (h) of B. subtilis TEB1030 harboring the 38 different LipA variants is plotted against the percentaged
oxygen saturation {%). The blue line indicates wtLipA oxygen saturation with corresponding error bars in black.
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