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Abbreviations 

DC: Dendritic cell 

NK: Natural killer cells 

ILC: Innate lymphoid cells 

BM: Bone marrow 

IFN-γ: Interferon gamma 

LPS: Lipopolysaccharide 

IL-4: Interleukin-4 

IL-13: Interleukin-13 

TNF-a: Tumor necrosis factor alpha 

IL-23: Interleukin-23 

iNOS: Inducible nitric oxide synthase 

ROS: Reactive oxygen species 

TGF- β1: Transforming growth factor- β1 

ECM: Extracellular matrix 

MMPs: Metalloproteinases 

CTLs: Cytotoxic T lymphocytes 

cDCs: Conventional dendritic cells 

pDCs: Plasmacytoid dendritic cells 

CDPs: Common dendritic cell precursors 

MHC-I: Major histocompatibility complex I 

ISGs: Interferon stimulated genes 

Th1: T helper cells 
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cNKs: Conventional NK cells 

ILC1: Innate lymphoid cell group 1 

ILC2: Innate lymphoid cell group 2 

ILC3: Innate lymphoid cell group 3 

LTi: Lymphoid tissue inducer cells 

MCMV: Murine cytomegalovirus 

LP: Lamina propria-resident 

MLN: Mesenteric lymph nodes 

HSCs: Hematopoietic stem cells 

BCR: B cell receptor 

TdT: Terminal deoxynucleotidyl transferase  

RAG1/2: Recombination activating 1/2 

MMPs: Multipotent progenitors  

LMPPs: Lymphoid-primed multipotent progenitors 

CCL21: Chemokine ligand 21 

DN: Double negative stage 

DP: Double positive stage 

SP: Single positive stage 

TCR: T cell receptor 

PRRs: Pattern recognition receptors 

PAMPs: Pathogen-associated molecular patterns 

TLRs: Toll-like receptors 

RLR: RIG-I-like receptors 
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RIG: Retinoic acid inducible gene I 

NLR: Nod-like receptors 

APC: Antigen-presenting cells 

cGAS: Cyclic GMP-AMP synthase 

MDA5: Melanoma Differentiation-associated protein 5 

dsDNA: Double-stranded DNA 

mtDNA: Mitochondrial DNA 

cGAMP: Cyclic guanosine monophosphate–adenosine monophosphate 

ITIM: Inhibitory receptors contain a tyrpsine-based inhibitory motif 

MHC-II: Major histocompatibility complex II 

TAP: Transporter associated with antigen processing 

CRT: Chaperone calreticulin 

PLC: Peptide loading complex 

ER: Endoplasmic reticulum 

ERAP: ER-anminopeptidase-1 

TGN: Trans-golgi network 

Li: Invariant chain 

CLIP: Class II-associated invariant chain peptides 

PKC: Protein kinase C 

DAG: Diacylglycerol 

PTK: Protein typsine kinase 

pMHC: Peptide-MHC complex 

IP3: Inositol trisphosphate 

PI3K: Phosphoinositide 3 kinase 
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Tregs: Regulatory T cells 

Tfh: Follicular T cells 

IPEX: X-linked syndrome 

EAE: Experimental autoimmune encephalomyelitis 

KLRG1: Killer cell lectin-like receptor G1 

LCMV: Lymphocytic choriomeningitis virus 

S1P: Subtilisin kexin isozyme 1/site 1 prptease 

GP: Glycoproteins 

NP: Nucleoprotein 

RNP: RNA polymerase to construct ribonucleoprotein 

α-DG: α-Dystroglycan 

ESCRT: Endosomal sorting complex required for transport 

ssRNA: single-stranded RNA 

IFN-I: Type I interferon 

ppp-ssRNA: 5’-triphosphate single-stranded RNA 

CARD: Caspase recruitment domain 

IFNAR: Interferon receptor 

PD-1: Programmed cell death-1 

IRF4: Interferon regulatory factor 4 

TCF1: T cell factor 1 

Tox: Thymocytes selection-associated high mobility group-boxprotein 

FcR: Fc receptor 

LGL: Large granular lymphocytes 

mNK cells: Mature NK 
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iNK cells: Immature NK  

NCR: Natural cytotoxic receptors 

KIRs: Killer cell immunoglobulin-like receptors 

NKG2D: Natural killer group 2 D calcium-dependent lectin-like family receptors 

MICA/B: MHC class I chain-related gene A/B 

GC: Germinal center 

TRAIL: Tumor necrosis factor-related apoptosis-inducing ligand 

NLRC5: NOD-like receptor caspase recruitment domain containing protein 5 

LrNKs: Liver-resident NK cells 

PGRN: Progranulin 

FTLD: Frontotemporal lobar degeneration 

ADAMTS-7: A disintegrin and metalloproteinase with thrombospondin motifs 

PR3: Proteinase 3 

TNFR: Tumor necrosis factor receptor 

EphA2: Ephrin receptor A2 

DSS: Dextran sulfate sodium 

DTR: Diphtheria toxin receptor 

DT: Diphtheria toxin 

SPF: Specific pathogen-free 

BMDM: Bone marrow derived macrophages 

P-TEFb: Positive transcription elongation factor b 

AST: Aspartate Aminotransferase 

ALT: Alanine Aminotransferase 

α-SMA: α-Smooth muscle actin 
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Summary 

NK cell-mediated regulation of antigen-specific T cells can contribute to and exacerbate 

chronic viral infection, but the protective mechanisms against NK cell-mediated attack on T cell 

immunity are poorly understood.  

Here, we show that progranulin (PGRN) can reduce NK cell cytotoxicity through reduction 

of NK cell expansion, granzyme B transcription, and NK cell-mediated lysis of target cells. 

Following infection with the lymphocytic choriomeningitis virus (LCMV), PGRN levels increased, 

a phenomenon dependent on the presence of macrophages and type I IFN signaling. Absence of 

PGRN in mice (Grn–/–) resulted in enhanced NK cell activity, increased NK cell-mediated killing 

of antiviral T cells, reduced antiviral T cell immunity, and increased viral burden, culminating in 

increased liver immunopathology. However, both naïve or LCMV infected Grn–/– mice showed 

the comparable NK development and NK cell expression of surface activating or inhibitory 

receptors to WT mice. In addition, PGRN may not have any effects on virus replication and also 

on T cell development and activation, suggesting the extrinsic role of PGRN to T cell. Depletion 

of NK cells restored antiviral immunity and alleviated pathology during infection in Grn–/– mice. 

In turn, PGRN treatment improved antiviral T cell immunity.  

Taken together, we identified PGRN as a critical factor capable of reducing NK cell–mediated 

attack of antiviral T cells. 
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1. Introduction 

1.1. Immune system 

The word “Immunity” was firstly described 2500 years ago during the Peloponnesian War by 

Thucydides, a well-off Athenian strategist and outstanding ancient Greek historian (1). He 

described a phenomenon of whom would not be suffered from infectious diseases again if they 

had been infected before in his work The Peloponnesian War. No one could give a scientific 

explanation of this phenomenon for more than 2000 years until Louis Pasteur was born. He firstly 

showed that pathogens derived from virus or bacterial caused infectious diseases. According to his 

findings, vaccine science met its opportunity to be improved and widely used. After that, many 

immune cell types have been identified, such as T/B cells were found in 1960s (2), dendritic cells 

(DCs) were firstly identified in 1973 (3), and natural killer cells (NK) were identified in 1975 (4). 

With the joint efforts of many generations of immunologist in the past century, immune systems 

are divided into two parts, innate immune system and adaptive immune system. 

1.1.1. Innate immune system 

Epithelial surfaces such as skin, respiratory airway, and gastrointestinal tract build the first line 

of barriers against invading pathogens. Most of the invading pathogens would be impermeable to 

these barriers. However, the infectious agents pass over this first line of the defense in case of the 

skin injuries or tissue damage. The hosts also developed another shield, called innate immunity, to 

fight against pathogens. The innate immune system is comprised of many types of white blood 

cells and inflammatory factors (5). The representative cell types of the innate immune cells are 

macrophages, monocytes, dendritic cells, and innate lymphoid cells (ILCs) (6, 7).  
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1.1.1.1. Myeloid cells 

Macrophages, monocytes, dendritic cells, and granulocytes all belong to the group of 

phagocytes (8-10). They are identified as the main executor of phagocytosis, which is known to 

protect the hosts by “eating” or recognizing the harmful external particles, bacterial or even the 

dying host cells (11-14). Macrophages, which were originally described by Metchnikoff in 1893, 

were found in both lymphoid organs and tissues with morphological and functional diversity. Van 

Furth and colleagues showed that macrophage and monocytes shared the same precursors in bone 

marrow (BM) and it is terminally differentiated from blood monocytes (15). With the classification 

of the macrophage phenotype, they were divided into M1 (classically activated macrophages) and 

M2 (alternatively activated macrophages) categories, which were defined by the response to the 

interferon-gamma (IFN-γ) and interleukin-4 (IL-4) (16), respectively. M1 activated macrophages 

display enhanced antibacterial and antitumoral activity by producing high levels of pro-

inflammatory cytokines such as IL-6, tumor necrosis factor alpha (TNF-α), and inducible NO 

synthase (iNOS), which can produce antibacterial chemicals called reactive oxygen species (ROS) 

and nitrogen radicals (17-19). M1 activation macrophages are associated with tissue injury, 

whereas M2 activated macrophages displayed wound healing phenotypes after the pathogens had 

been eliminated (20, 21). M2 activated macrophages in wounds secret transforming growth factor-

β1 (TGF-β1) to stimulate epithelial cells and fibroblasts differentiation (22). These epithelial cells 

and fibroblasts rebuild the first line defense systems by promoting the stability of extracellular 

matrix (ECM) through enhancing the expression of inhibitors of metalloproteinases (MMPs) (23-

25). 

Ralph M. Steinman and Zanvil A. Cohn identified dendritic cells in peripheral lymphoid organs 

of mice in 1973 (3). Michel Nussenzweig found that DCs are critical accessory cells for the 
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development of antigen specific cytotoxic T lymphocytes (CTLs) (26). With the contributions to 

identification and characterization of dendritic cells, Ralph M. Steinman was awarded the Nobel 

Prize in Physiology or Medicine in 2011. With the diversity of function, phenotype and 

development, distinct DC subpopulations are categorized into two main subsets, conventional DCs 

(cDCs) and plasmacytoid DCs (pDCs) (27). Both murine cDCs and pDCs are differentiated from 

common DC precursors (CDPs) in the bone marrows (28-30). cDCs also produce many types of 

cytokines including IL-12 and 23 in response to invading pathogens (31). cDCs were divided into 

two main subsets depending on their distinct functions, cDC1 and cDC2 (32, 33). cDC1 exhibits 

potent processing and cross-presentation of exogenous antigens on major histocompatibility 

complex I (MHC-I) to activate CD8+ T cells (32, 33), whereas cDC2 is a potent inducer of Th2/17 

cell differentiation (34, 35). Viral infection induced type I interferons, which induced many 

interferon stimulated genes (ISGs) to protect infected cells, are mainly produced by pDCs (36-39). 

pDCs also have the antigen presenting capacity for both CD4+ and CD8+ T cells (38, 40). With the 

viral infections or CpG stimulations, pDCs are able to produce IFN-α and IL-12, which induces 

Th1 differentiation (41, 42). 

1.1.1.2. Innate lymphoid cells (ILCs) 

In 2010, several articles described several new immune cell populations which were not T/B 

cell-like but NK-cell-like cells (43-46). Since then, scientists classified these new subpopulations 

as innate lymphoid cells (ILCs) (47, 48). ILCs have been divided into 5 subpopulations depending 

on their developmental pathways, conventional NK cells (cNKs), lymphoid tissue inducer cells 

(LTis), group 1 ILCs (ILC1s), group 2 ILCs (ILC2s) and group 3 ILCs (ILC3s) (49-52). The 

development and cytokines profile of ILCs is summarized in Graphical Figure 1. 
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ILC1s are potent IFN-γ-producing cells during their activation. IFN-γ is widely known for its 

role in the immune defense against intracellular pathogens (53). Christoph Klose and colleagues 

showed that ILC1s protect hosts against the infections of intracellular parasite T. gondii (54). 

ILC1s were also described to be the main source of IFN-γ in the early stage of viral infection (55) 

and therefore played a protective role in murine cytomegalovirus (MCMV) infection (55). In 

addition, ILC1s in lamina propria-resident (LP), epithelium, and mesenteric lymph nodes (MLN) 

were the major immune subsets who have the capacity to produce IFN-γ in intestinal pathogen 

infection (56). Apart from the developmental pathway difference between ILC1 and ILC2, it seems 

their responses against pathogens are also different. It has been demonstrated that IL-13-producing 

ILC2s played a protective role in the clearance and prevention of helminth infection (57-59). IL-

5/IL-13 co-producing ILC2s control the basal eosinophilopoiesis and tissue eosinophil 

accumulation, which could be tuned by nutrient intake and central circadian rhythms (60). ILC2s 

also have a regulatory role in Th2 responses. ILC2-derived IL-13 is a critical factor for the 

enrichment of CD40+ activated DCs to drain lymph-nodes and subsequently promotes adaptive 

allergen-induced Th2 immunity (61). ILC3s, like ILC1s, have a protective role for fungus and 

bacterial infections by being the major source of IL-22 (62-64). Besides their immune defense 

roles, ILC3s have also been shown to participate in the repair of viral infection- or radiation-

induced lymphoid tissue damage (65-67).  

The regulatory roles of ILCs in tumor microenvironment have also been implicated. However, 

the exact role of ILCs in tumor development remains controversial. ILCs have both suppressive 

and promotive roles in tumor growth, whereas the diversity of their function was dependent on the 

organs where they were located. Both ILC2s and ILC3s had been demonstrated to promote 

gastrointestinal cancer development (68-70) and other solid cancers (71-74), whereas they 
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displayed an anti-tumoral role in melanoma (75, 76) and lung cancer (77, 78). All in all, ILCs play 

regulatory roles to keep the balance between the immune responses and over-activated innate 

immunity. 

  

Graphical Figure 1. Figure is depicting the development of NK cells and ILCs. Adapted from 

Paola Vacca et al., (79). 

 

1.1.2. Adaptive immune system 

Adaptive immune system is also termed as acquired immune system, which is the direct and 

potent cleaner of external pathogens. The biggest difference to innate immune system is that the 

adaptive immune system gives rise to the specific response to a pathogen and subsequently creates 
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immunological memory. Adaptive immune cells are composed of B lymphocytes and T 

lymphocytes. The activation of the adaptive immune system is dependent on the innate immune 

system. 

1.1.2.1. B lymphocytes 

The pioneers in immunology identified that the circulating antitoxins were the main factors to 

protect hosts against diphtheria and tetanus in 1890s (80). After that, immunologists considered 

the immune cells could release some complementary factors by stimulating with invasions through 

the receptors on their surface. Until 1939, Arne Tiselius and colleagues firstly clarified these 

antitoxins were γ-globulins, which were subsequently called antibodies, by isolating from serum 

(81). However, there are still no any evidence to indicate that antibodies were produced by a 

cellular source until 1948. Astrid Fagraeus broke the barrier by indicating that the antibodies were 

secreted by plasma cells (82). The first antibody-based immunodeficiency disease was reported in 

1952, a young boy suffering from multiple infections because of the deficiency of γ-globulins (83). 

This young boy luckily received treatments by monthly injection of γ-globulins, and had suffered 

no attack from sepsis (83). This case demonstrated antibodies were the main protective factors to 

pathogens. In the meantime, immunologists also indicated that the absence of germinal center and 

plasma cells caused γ-globulin deficiency in humans (84). All these investigations suggested that 

antibodies were secreted by plasma cells, which represented the terminally differentiated B cells.  

Plasma-cell-mediated humoral immunity is an important part against external pathogens. In the 

beginning of 1970s, John Owen and colleagues firstly created a protocol to induce antibody 

producing cells from fetal liver cells, and they showed that the immunoglobulin expressing cells 

derived from fetal liver cells were originally immunoglobulin negative (85). In 1974, the other two 

groups then confirmed that the plasma cells could also derive from small lymphocytes of adult 
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mouse bone marrow, which express neither surface immunoglobulins nor lymphocyte 

differentiation antigens (86, 87). Based on these striking findings, hybridoma technology to 

produce monoclonal antibodies, a revolutionary technique, was firstly created by fusing malignant 

plasma cells with normal antibody-producing B cells (88). These hybridoma cells can continuously 

secret antibodies. With the creative efforts by immunologists in the following decades, it is widely 

accepted that bone marrow resident HSCs guide all stages of B cell development, from earliest 

pluripotent HSCs to mature B lymphocytes. The molecules expressed on cell surfaces has been 

widely used for phenotypical characterization of B cell progenitors. Common lymphoid 

progenitors (CLPs) were firstly identified in the late 1990s, multiple articles showed that a bone 

marrow subset, that expressing IL-7R, Sca-1, and c-Kit, contains the capacity to differentiate into 

B cells, T cells and NK cells and subsequently this population was then called Common Lymphoid 

Progenitors (CLPs) (89-91). Following the CLPs stage, B cell linage was restricted to the 

expression of B220 and CD19 (89, 91, 92) and was called pre-Pro-B cells and Pro-B cells (92). 

Pro-B cells become Pre-B cells when the immunoglobulin rearrangement happened, that 

accompanied by the expression of membrane μ chains, which was considered to be the first step 

of BCR assembly (93-95). Terminal deoxynucleotidyl transferase (TdT) and recombination 

activating 1/2 (RAG-1 and RAG-2) were involved in the D-J/V-DJ joining and VDJ rearrangement 

(96-101). Once the light chain was successfully expressed with μ chain on cell surface, immature 

B cells were formed (102, 103). The development of B cells is summarized in Graphical Figure 2.  
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Graphical Figure 2. Figure is depicting the development of B cells. Adapted from Takashi 

Nagasawa (104). 

Following the binding with the antigens, immature B cells will face three different fates: (1) 

cells will be removed if they are nonresponsive to antigens; (2) cells could be deleted if they 

display over-active responses to self-antigens; (3) cells will migrate to peripheral lymphoid organs 

from bone marrow to be mature B cells if they could bind to external antigens (105-111).  

1.1.2.2. T lymphocytes 

By the 1950s, it was believed that thymus was a redundant organ during evolution (112). In 

order to protect the breathing from enlarged thymus-induced extrusion of the respiratory tract 

during surgery, doctors even prescribed irradiation to reduce its size (112, 113). Little was known 

on the exact role of the thymus until 1961, Jacques Miller firstly showed that the thymus had an 

immunological function and the thymus was essential to life (114, 115). After that, the thymus had 

been shown to rebuild the immune system (116, 117) and to regulate the antibody formation (118). 

By transferring the cells from thymus to the recipients, immunologists demonstrated that thymus-

derived cells (later known as T cells) can’t become plasma cells (later known as B cells) but were 
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required for helping plasma cells to producing antibodies (2, 119, 120). After that, it was widely 

accepted that T cells are derived from the thymus.  

Reconstitution of irradiated recipients with thymocytes could short-term but not long-term 

restore the immune system (121), whereas bone marrow cell transfer could restore both long-lived 

thymocytes and also peripheral T lymphocytes (122, 123). This indicates that thymocytes may be 

derived from the progenitors in the bone marrow. These progenitors induce several different stages 

such as HSCs (124-127), multipotent progenitors (MPPs) (128), lymphoid-primed multipotent 

progenitors (LMPPs) (129, 130), and common lymphoid progenitors (CLPs) (131-133). These 

progenitors then migrated from the bone marrow into the peripheral circulation system and CLPs 

finally mobilized into the thymus (134-138). It is known that Notch1 signals control the thymic 

entry of T cell progenitors (CLPs) (134, 139). Some cell adhesion molecules, like CD44 and 

CD62L, had also been implicated to regulate the thymic entry of these progenitors. CD44 is widely 

expressed on HSCs and early T cell progenitors, LMPPs and CLPs (140). The role of CD44 in 

thymic entry of T cell progenitors was well investigated three decades ago (141). Blocking the 

progenitors by CD44 antibody prevents the T cell differentiation by intravenous injection but not 

intra-thymic injection, indicating the regulatory role of CD44 in CLPs thymic entry (142, 143). L-

selectin (CD62L) seems to play an indirect role to the thymic migration of T cell progenitors (144). 

P-selectin glycoprotein ligand-1 (PSGL-1) is highly expressed on multiple progenitors in the bone 

marrow (145). P-selectin (CD62p), which was highly expressed on thymic endothelial cells, may 

contract T cell progenitors to the thymus by interaction with PSGL-1 (145, 146). Chemokines also 

have the capacity to mobilize T cell progenitors to the thymus (147). Chemokines, including 

stromal-derived factor-1alpha (SDF-1a), Chemokine (CC motif) ligand 21 (CCL21) and CCL25, 

produced by thymic stromal cells participate the recruitment of progenitors to thymus (148-150).  
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Before the mature T cells migrate to peripheral organs then undergo 3 stages based on their cell 

surface CD4/CD8 expression, with starting of CD4- and CD8- double negative stage (DN), then 

becoming CD4+CD8+ double positive stage (DP) and finally differentiated into CD4+ or CD8+ 

single positive stage (SP) (151-153). The DN stage is subdivided into 4 substages by cell surface 

CD25 and CD44 expression (DN1, CD44+CD25−; DN2, CD44+CD25+; DN3, CD44−CD25+; and 

DN4, CD44−CD25−) (154). DN1 population is the most potent progenitors to generate T cells, 

although they just compose 0.01% of total T cells in thymus (154, 155). TCRβ and TCRγδ gene 

rearrangement happens at DN2 stage, and this progress will finish at the late DN3 stage (156, 157). 

IL-7 plays a vital role in TCR rearrangement by recruiting of histone acetylases to the TCRγ locus 

though IL-7-induced STAT5 signals (158, 159). Therefore, IL-7Rαhigh DN2 cells were considered 

to differentiate to γδ T cells, whereas IL-7Rαlow cells differentiated to αβ T cells (160). As the 

same role in BCR rearrangement, RAG1 displays high levels in DN2 stage cells, which resulted in 

the surface expression of TCRβ (161). The functional TCRβ or TCRγ chains will be expressed on 

the DN3 thymocytes (162). Notch1 and CXCR4 signals were reported to induce the correct TCRβ 

rearrangement (163, 164). Then these cells become CD25- DN4 thymocytes and finally mature to 

DP stage thymocytes (165). Several transcription factors had been reported to contribute the whole 

DN to DP stage transition, including Runx1 (166), Runx3 (167, 168), Bcl11a/b (169, 170), Gata-3 

(171, 172), NFAT (173), and also E2A (174, 175). Mature TCR expressing DP thymocytes undergo 

the positive and negative selection, whereas non-mature or no TCR expressing cells will be 

sacrificed (176). Positive selection means only the MHC-restricted TCRα/β pair-expressing 

thymocytes can trigger termination (177, 178). This restriction will induce approximately 90% of 

DP thymocytes to die (179). The TCR complex will transduce a survival and differentiation signal 

when they engage a peptide–MHC ligand with low affinity (180, 181). Recognition of a peptide-
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MHC I complex selects DP thymocytes to CD8+ SP differentiation, whereas engagements of 

peptide-MHC II ligand result in CD4+ SP differentiation (182-185). However, there are still lots 

of thymocytes whose TCR could also bind to self-peptide-MHC ligands. If these cells are 

terminally differentiated, these SP cells would attack host cells as well. With this issue, the immune 

system developed a negative selection program, resulting in leading the SP cells apoptosis if they 

displayed high TCR/peptide-MHC binding affinity (181, 186-188). Functional SP thymocytes will 

migrate to the circulating system for the terminal differentiation. The development and polarization 

of T cells are summarized in Graphical Figure 3. 

 

 

Graphical Figure 3. Figure is depicting the development and polarization of T cells. Adapted 

from Divya Shah et al., (189). 

1.1.3. Crosstalk between innate immunity and adaptive immunity 

Different types of immune cells from both innate and adaptive immune systems cooperate to 

maintain the balance between self-tolerance and elimination of invading pathogens or tumorous 

cells. The innate immune system, including DCs, macrophages and myeloid cells, is programmed 



20 

 

to detect invading pathogens. These innate immune cells are equipped with the so-called pattern 

recognition receptors (PRRs) to recognize the “nonself” microbial components, which were widely 

termed as pathogen-associated molecular patterns (PAMPs) (190). The activation of adaptive 

immunity depends on the signals from the activated innate immunity. Adaptive immune cells 

always are equipped with a diverse repertoire of BCRs and TCRs, allowing for protection against 

the constantly evolving pathogens (191). The adequately and suitably crosstalk of innate and 

adaptive immunity give rise to a balance between the antigen elimination and self-tolerance. 

1.1.3.1. The recognition of non-self or stress signals by innate immune system 

Several families of pattern recognition receptors (PRRs), including Toll-like receptors (TLRs) 

(192, 193), C-type lectin receptors (194, 195), RIG-I-like receptors (RLRs) (196, 197), and Nod-

like receptors (NLRs) (198), are widely expressed on innate immune cells. PRRs recognized not 

only the nonself signals from the microbes but also the danger signals from the tumor cells or 

apoptotic cells (199-201). TLRs are the type I transmembrane receptors whose extracellular 

domains could bind to PAMPs (202). TLRs can be divided into 2 groups based on their cellular 

localization: cell surface TLRs such as TLR1,2,4,5,6 and endosomal TLRs such as TLR3,7,8,9 

(193). The cytosolic viral nucleic acids will be detected by cytosolic sensors like RIG-I/MDA5 in 

infected cells as well (203-205). Double-stranded DNA (dsDNA) from intracellular bacteria or 

virus (206, 207), tumor cells (208-210) and also mitochondrial DNA (mtDNA) (211) would be 

detected by cGAS and then transduces the activation signals to endoplasmic reticulum membrane-

resident adaptor STING through the production of cyclic guanosine monophosphate–adenosine 

monophosphate (cGAMP) (209). Besides pattern recognition, missing-self recognition model is 

another important strategy for recognizing the nonself features such as the infected or stressed 

cells, which would be detected by natural killer (NK) cells (212). This strategy is dependent on the 
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activating and inhibitory receptors on NK cells (213). These receptors may contain a tyrosine-

based inhibitory motif (ITIM), which could bind to major histocompatibility complex class I 

(MHC-I) molecules on healthy and uninfected cells to avoid dysfunction by NK cells (214, 215). 

Therefore, stressed and viral infected cells would be subjected to NK cell mediated lysis by 

reducing the cell surface MHC-I expression (216, 217). With these different recognition patterns, 

innate immunity is activated and ready for priming adaptive immunity.  

1.1.3.2. Antigen presentation by antigen presenting cells (APCs) 

Antigen presentation is a vital immune process for triggering adaptive immunity. T cell 

recognition of antigens depends on peptides/MHC complex. CD8+ T cells recognize 

peptides/MHC-I complex, whereas CD4+ T cells recognize peptides/MHC-II complex (218). 

Processing of exogenous materials, which was called phagocytosis, is the first step for antigen 

presentation (219). After the invading pathogens were captured by antigen presenting cells (APCs), 

the pathogens would be degraded in lysosomes or proteasomes. The maturation of phagosomes is 

controlled by TLR/MyD88 signals (220, 221). With the degradation by the lysosomes and 

proteasomes, the external pathogens derived peptides are formed. In general, the peptides 

generated by proteasomal proteolysis will bind to MHC-I, whereas lysosomal proteolysis produced 

peptides will bind to MHC-II (222-224).  

Peptides binding to MHC-I generally translocate from the phagosomes into the endoplasmic 

reticulum (ER) through the transporter associated with antigen processing (TAP) (225). The TAP 

heterodimer, TAP1 and TAP2, associates with several other proteins, such as Tapsin, ERp57 and 

chaperone calreticulin (CRT) to form the peptide loading complex (PLC) in the ER membranes 

(226, 227). Cells that lack of TAP1 or TAP2 reduce the peptide/MHC-I complex level (228). 

Tapasin was used for recruiting MHC-I-β2m dimers and chaperone calreticulin (CRT) to PLC 
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(229). TAP normally can translocate peptides of more than 40 amino acids length into ERs (230). 

However, MHC-I can generally capture the peptides 8-11 amino acids in length (231). To yield 

the peptides of the appropriate length for MHC-I binding, ER aminopeptidase-1 (ERAP1) and 

ERAP2 are involved to cleave the long peptides to the appropriate length (232). Finally, the mature 

peptides/MHC-I complex will be transported to the cell membrane.  

Different to MHC-I-peptide complex, assembly of peptides-MHC-II complex are taken place 

in trans-Golgi network (TGN) or late endosomes. MHC-II molecules are constitutively expressed 

on professional APCs and thymic epithelia. Following synthesis of MHC-II in the ER, invariant 

chain (Li) protein is expressed and bound to the nascent MHC-II molecules (233, 234). Then the 

MHC-II-Li complex translocate into the TGN or endosomes, where the invariant chain will be 

cleaved by cathepsins into class II-associated invariant chain peptides (CLIP) (235, 236). The 

CLIPs will then be exchanged by the external materials derived peptides from the MHC-II groove 

with the assistance of MHC-II peptide exchange factor HLA-DM (human) or H2-M (mouse) (237). 

The MHC-II-peptide complex translocate to the cell membrane for priming CD4+ T cells. 

1.1.3.3. T cell activation  

In the early 1980s, Mark M. Davis and Tak W. Mak identified and characterized the antigen 

receptor of T cells (238, 239). With the efforts of the immunologists in the following decades, a 

complicated cell surface complex, including CD3γ/δ/ɛ and the TCRα/β, is shown to be the initiator 

of T cell activation (240). Until middle 1980s, the activation signals of T cells remained unclear. 

With the observation that a mutant human T cell line, lacking of TCR, could be activated by the 

stimulation of phorbol esters and Ca2+ ionophores, immunologists speculated that the engagement 

of TCR/CD3 complex might transduce the same signals to activate T cells (241). This was 

confirmed by the observations that the intracellular free Ca2+ increased following the CD3 



23 

 

antibody or TCR stimulation in T cells (242). It is known that Ca2+ increase in T cells is because 

of the activation of inositol trisphosphate (IP3) (242). Phorbol esters is the activator of protein 

kinase C (PKC), whereas PKC is regulated by diacylglycerol (DAG) (243). Additionally, both 

DAG and IP3 could be regulated by phospholipase C (PLC) (244), suggesting the engagement of 

TCR may transduce the activation signals to PLC. Protein tyrosine kinase (PTK) family members, 

Lck and Fyn, had also been reported not only to activate PLC activity by TCR or CD4/CD8 T cell 

coreceptors (245, 246) but also to be the key regulator to T cell activation (247). Richard D. 

Klausner’s paper showed that TCR engagement also induced the phosphorylation of ζ chain of the 

CD3 complex (240). Based on this finding, Arthur Weiss showed that a phosphorylated 70 kd 

protein-tyrosine kinase, pZAP-70, was recruited to the CD3ζ chain in 1992 (248). In summary, 

with the stimulation of TCR by peptides-MHC complex (pMHC), the Lck kinase is phosphorylated 

by the signals transduced from the binding of pMHC and CD4 or CD8 coreceptors. Phosphorylated 

Lck will subsequently phosphorylate CD3ζ and therefore recruit ZAP-70 to the CD3ζ intracellular 

domain. After the phosphorylation of ZAP-70 occurred, PLC was activated and finally 

transformed activation signals to IP3 and DAG.  

However, if the T cells only get the signals from pMHC, these T cells result in anergy state, 

which displays functionally inactivated but remains alive for the following hyperactive state to 

their targets (249). It is suggested that other signals are necessary for functional T cell activation, 

including costimulatory signals and cytokines which contain also the regulatory roles on T cell 

activation (250-252). Costimulatory factors may promote or suppress T cell proliferation, 

cytokines production, and also cell survival (253). The first T cell costimulatory receptor CD28 

was identified to enhance TCR stimulation of naïve T cells in 1980s (253). Following binding of 

CD28 by its ligands CD80/CD86 on antigen presenting cells (APCs), phosphoinositide 3-kinase 
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(PI3K) will be recruited to the cytoplasmic domain of CD28 and then converts PIP2 to PIP3 (254). 

Akt protein is phosphorylated by PDK1 (3-phosphoinositide-dependent protein kinase 1), which 

is recruited by PIP3 (255). Akt can phosphorylate numerous proteins including NF-κB, nuclear 

factor of activated T cells (NFAT) and GSK-3 (glycogen-synthase kinase 3). NF-κB has positive 

effects on expression of proteins which could promote T cell survival, such as Bcl-xl (253). 

However, the costimulatory role of CD28 is not always seen in all T cells. Arda Shahinian and 

colleagues showed in 1993 that CD28-deficient mice displayed reduced T helper cells but normal 

cytotoxic T cell activity during viral infection (256).  

1.1.3.4. CD4+ T cell polarization 

Different from the cytotoxic activity of CD8+ T cells, CD4+ T cells mainly play regulatory 

roles in the immune system. They maintain cytotoxic T cell responses to external antigens but stay 

in tolerance to self-antigens and contribute to B cell immunity. In the 1980s, two distinctive CD4+ 

T cell populations were identified based on different cytokines profiles: Th1 cells were 

characterized with IL2 and IFN-γ production, whereas Th2 cells were characterized with IL-4, IL-

5 and IL-13 production (257, 258). Many other CD4+ T cell subpopulations were characterized, 

such as regulatory T cells (Tregs), Th17 cells and follicular T helper cells (Tfh). Th17, which 

predominately produce IL-17 and IL-21, were identified in 2003 and well characterized in 2005 

(259, 260). In the meantime, Tregs were induced in vitro from the naïve CD4+ T cells by tumor 

growth factor beta (TGF-β) (261, 262). The recognition of Tfh cells followed the characterization 

of CXCR5, a chemokine receptor expressed by activated CD4+ T cells but not naïve CD4+ T cells 

(263). After stimulation with antigens, 50% CD4+ T cells are CXCR5-epxressing cells (264, 265). 

These CXCR5+ CD4+ T cells from human tonsils displayed a promotive role to facilitate 

differentiation of naïve B cells into plasma cells (266, 267).  



25 

 

The polarization of T helper cells is determined mainly by the cytokine environment and the 

transcription factor profile. IL-4-producing Th2 cell differentiation was performed by treating 

naïve CD4+ T cells with the IL-2 and IL-4 during pMHC stimulation (268). IL-12 remains the 

central role on the differentiation of IFN-γ-producing Th1 cells (269). Interestingly, IFN-γ itself 

also worked as an important cytokine for Th1 cell induction with the observation that 

neutralization of IFN-γ could diminish Th1 cell polarization (270). The combination of TGF-β and 

IL-6 has been reported to be the most efficient way for Th17 induction in vitro (271, 272). The 

induction of Tregs from naïve CD4+ T cells also depends on TGF-β in the presence of IL-2 (273). 

There are many transcription factors that might contribute to the T helper cell development. Gata3, 

a transcription factor which is critical for CD4+ T cell development, is upregulated when naïve 

CD4+ T cells differentiate into Th2 cells and downregulated in Th1 differentiation (274, 275). Th2 

differentiation is completely diminished in Gata3-deficient mice (276). However, overexpressing 

T-bet in differentiated Th2 cells resulted in enhanced IFN-γ but reduced IL-4 production, 

suggesting that T-bet might be the major IFN-γ-inducing factor (277). This also has been 

confirmed in T-bet deficient mice with the observation that T-bet-deficient mice displayed 

diminished IFN-γ response, but increased IL-4 and IL-5 production during infection of Leishmania 

major (278). T-bet promotes IFN-γ expression by remodeling the IFNG gene and IL-12 receptor 

expression (279, 280). Immunodeficiency, polyendocrinopathy, and enteropathy, X-linked 

syndrome (IPEX) patients have mutations in the Foxp3 loci, which resulted in undetectable Tregs 

(281, 282). Foxp3 expression is important for the suppressive activity of Tregs, whereas limitation 

of Foxp3 expression results in Th2-like cell differentiation (283, 284). RORγT is induced in naïve 

CD4+ T cells with the stimulation of TCR in association with TGF-β and IL-6, suggesting its 

promotive role for Th17 development (285). RORγT deficient mice are partly resistant to 
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experimental autoimmune encephalomyelitis (EAE) (285). Bcl-6 is a transcriptional factor that 

can efficiently induce the Tfh marker CXCR5 and promote Tfh cell differentiation (286-288). The 

cytokine and transcription network for T helper cell polarization are summarized in Graphical 

Figure 3. 

1.1.3.5. T cell memory 

The T cell response to external antigens can be characterized by three different stages: antigen-

specific T cell clonal expansion, effective T cell stage and memory T cell formation. After clonal 

proliferation of antigen-specific T cells, CD4+ T cells differentiate into Th1 or Tfh cells to 

coordinate CTL-mediated antiviral immunity and initiate B cell immunity to generate high-affinity 

neutralizing antibodies. Cytotoxic CTLs that directly destroy virally infected cells by secreting 

cytotoxic molecules such as granzymes and perforin (289). After the clearance of viral pathogens, 

~90% of effector CTLs undergo apoptosis, the other 10% CTLs survive and finally differentiate 

into memory CD8+ T cells (290). With the viral infection models, the cells that express high IL-

7R, CD27 and BCL-2 levels and low killer cell lectin-like receptor G1 (KLRG1) levels have the 

high potential to differentiated into memory CD8+ T cells (291, 292). However, long-lived 

KLRG1highIL-7Rhigh cells can also be detectable in the secondary infections (293-295). Multiple 

cytokines are also involved in the effector-to-memory transition such as IL-12 and IL-7. Besides 

the promotive roles for naïve to activated T cell differentiation, IL-12 (p35) also works as a 

negative regulator in T cell effector-memory transformation (296). At the molecular level, recent 

studies reveal multiple transcription factors, T-bet, Bcl6, Id3 and Blimp1, have the capacity to 

regulate the formation of memory T cells. Effector T cells with high levels of T-bet and Blimp1 

tend to effector differentiation (297-299), whereas Bcl6 or Id3 expressing effector cells favor 

terminally differentiated into memory cells (300, 301).  
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1.2. Lymphocytic Choriomeningitis Virus (LCMV) 

In the past decades, mouse models with the infection of Lymphocytic Choriomeningitis Virus 

(LCMV) have provided many groundbreaking insights into our understanding of infectious 

diseases. Sickness to LCMV infections is not from the virus itself but from the viral infection 

induced immune responses. With LCMV infection mouse models, there was a series of great 

findings that clarified our understanding of defense against pathogens such as the MHC restriction, 

T cell exhaustion and NK cell mediated antiviral T cell lysis.  

1.2.1. LCMV virology 

1.2.1.1. LCMV history 

LCMV was firstly isolated by Charles Armstrong and his colleagues in their study of samples 

from a St. Louis encephalitis epidemic in 1934 (302). In the beginning, they thought the epidemic 

was caused by LCMV, which was finally uncovered that the epidemic was the infection of 

Flavivirus St. Louis encephalitis virus (303). Although Charles Armstrong was credited with 

LCMV discovery, the first series of studies of the relationship between LCMV and host immunity 

were investigated by Erich Traub in 1936 (304, 305). It was accepted that virally infected hosts 

either finally succumbed or survived in a very short period of time. However, newborn mice 

neither succumbed to LCMV infection nor eliminated the virus (304). It was proposed that the 

immune system in newborn mice regarded the pathogens from the LCMV as self-antigens. This 

hypothesis was soon confirmed by the observations that antibodies against LCMV could not be 

detected in these newborn infected mice (306). This was being argued based on the findings from 

Michael Oldstone that low levels of antiviral antibodies were detectable only in the glomeruli (307). 

To date, more than 30 LCMV strains have been identified since the first strain LCMV-Armstrong 

was isolated (308). Only six of these strains are widely used in laboratory investigation: Armstrong, 
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Clone-13, Traub, WE, Aggressive and Docile (309). The Clone-13 strain originated from 

Armstrong strain with only 5 nucleotides difference (310, 311). The WE strain was also isolated 

from the samples from the epidemic and known as LCMV-UBC in 1940 (312). The other two 

strains, Aggressive and Docile were also isolated from the LCMV-UBC strain (313). 

1.2.1.2. LCMV Genome 

The LCMV virions are enveloped with bilayer lipids and the surface is covered with 

glycoproteins (Graphical Figure 4). The genome of LCMV virus is composed of two single-

stranded RNA fragments, a 3.5 kb S segment and a 7.2 kb L segment (Graphical Figure 4). The 

shorter S segment encodes a nucleoprotein (NP) and a glycoprotein precursor which can be cleaved 

into two glycoproteins GP1 and GP2. The RNA polymerase (L protein) and the Z protein (ZP) is 

encoded by the longer L segment. NP is associated with these two viral RNAs to form the 

nucleocapsid, which would work together with the viral RNA polymerase to construct the 

ribonucleoprotein (RNP), which is important for the transcription of other viral proteins and the 

replication of the viral genome (314). GPs are post-transcriptionally cleaved from the glycoprotein 

precursor by the protein convertase subtilisin kexin isozyme 1/site 1 protease (S1P) into GP1 and 

GP2 (315, 316). GP1 coveres the virions and also interacts with the LCMV receptor α-

Dystroglycan (DG) (317), whereas GP2 is involved in the fusion of viral envelope with their target 

cell membrane (318, 319). The function of Z protein remains unclear. It seems that the Z protein 

inhibits the LCMV mini-genome transcription (320-322). It can also work as a regulatory protein 

that contribute to virion budding (323, 324). The N-terminal region of ZP contains a conserved 

RING-finger domain, which is necessary for ZP biological functions (325).  
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Graphical Figure 4. Figure is depicting the structure and replication of LCMV virus. Adapted 

from Sebastien Emonet et al., (326). 

 

1.2.1.3. LCMV life cycle 

The entry of LCMV into cells is initiated by GP1 binding to its cellular receptor α-

Dystroglycan (DG), a widely expressed and conserved cell surface molecule which interacts with 

the extracellular matrix (327). Under the GP1 and α-DG interaction, the virions are taken into a 

bilayer lipid vesicle and then delivered to the endosomes (328). The late endosomes with an acidic 

environment promote the exposure of GP2 and therefore initiates the fusion of virions and cell 

membrane (329, 330). The detailed mechanism of LCMV entry is still not so clear. It is known 

that the membrane cholesterol is vital for the interaction and entry of LCMV virions and host cell 

membrane (331). The members of endosomal sorting complex required for transport (ESCRT), 
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including Hrs, Tsg101 and Vps22, are required for the entry of LCMV virion into the cell 

membrane (332).  

After the fusion of the virion bilayer lipid to endosomal membrane, the virus genome (RNP) 

is released into the cytoplasm of the host cells. The replication cycle is initiated by the recognition 

of the highly conserved 3’-terminal of the S segment by the virus L polymerase (333). Since NP 

is necessary for the genome transcription and replication, the L polymerase transcripts the NP 

mRNA first. Then the L polymerase continuously moves along the IGR fragment to synthesize the 

full-length antisense genome S RNA (334, 335). This antisense RNA acts as the template for the 

amplification of genomic S RNA and the template for the synthesis the mRNA for GPC and the Z 

protein (325, 336). The replication of the LCMV genome is also summarized in Graphical figure 

4. 

The assembly and release of LCMV virions occurs at the cell membranes or the early exosome 

membranes that are enriched with mature viral GPs. The myristoylation modification of proline-

rich domains makes the Z protein to be the central role in the budding process during the virus 

assembly (337, 338). Then the Z protein will be recruited to the cell membrane by Tsg101 (332). 

Recent studies showed that the NEDD4 family ubiquitin ligases are also necessary for the virus 

budding process in a Z protein ubiquitination independent way (339, 340). The interaction of GPs, 

that had been correctly cleaved into GP1 and GP2 by S1P, with Z protein promotes the 

incorporation of GPs to virus particles (315, 341, 342).    

1.2.2. Immune response to LCMV infection 

Three strains in the six commonly used strains, including LCMV-Arm, LCMV-WE, LCMV-

Aggressive, induced an acute infection in adult mice which is usually eliminated within twenty 

days, whereas mice infected with the other three strains, LCMV-Traub, LCMV-Docile and 
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LCMV-Clone 13, resulted in a chronic infection that the virus persists. The immune response to 

different strains governs the hosts either to eliminate or persistence of LCMV infection.  

1.2.2.1. Innate immune responses during LCMV infection 

As mentioned in the last section, the viral pathogens are recognized by pathogen recognition 

receptors (PRRs), including Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs) that are 

widely expressed on/in antigen presenting cells (APCs) (343, 344). Since both endosomes and the 

cytosol participate in the LCMV life cycle (331), LCMV can be recognized by endosomal TLRs 

and RLRs in cytosol (345, 346). During the entry of LCMV into endosomes, TLR7 and TLR8 are 

responsible to viral single-stranded RNA (ssRNA). However, cell surface TLR2 on glial cells in 

the central nervous systems (CNS), a type of macrophages, had also been reported to be 

responsible to LCMV infections (347).  

After the entry of LCMV virions into the host cells, the replication cycle is initiated. It will 

generate 5’-triphosphate single stranded RNA (ppp-ssRNA) and also double stranded RNA 

(dsRNA), which will be recognized by MDA-5 and RIG-I (346). The interaction of dsRNA/ssRNA 

with RIG-I/MDA-5 initiates their ATPase/helicase activity resulting in the exposure of their 

caspase recruitment domain (CARD) to bind to mitochondrial antiviral signalling protein (MAVS) 

(348, 349). This signal will be transduced to TBK1 and IRF3/7 and finally induce and amplify the 

IFN-I expression (350).  

The critical role of IFN-I in controlling LCMV infection has been described. Absence of IFN-

I signaling by IFN receptor (IFNR) deletion results in LCMV virus persistence and also the 

reduced anti-viral T cell responses (351, 352). Patients with a mutation in the IFNAR gene are 

subjected to either highly susceptible virus replication or succumbed to lethal encephalitis 

following viral infection (353). In addition, LCMV stays in the central nervous system with 
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intracranial LCMV-Arm injection in WT mice, whereas the virus spreads to all other organs in 

IFNAR-deficient mice with the same intracranial LCMV infection (354-356). Interestingly, the 

IFNAR signal has been implicated in facilitating viral persistence with the observation that 

IFNAR1 blockade initially enhances LCMV-Clone 13 titers at the early timepoint but promotes 

the clearance of virus at day 30 (357, 358). In addition, following IFNAR1 blockade, mice 

displayed enhanced anti-viral CD8+ T cells responses and accumulated viral clearance (357, 358).  

Secreted IFN-I then promotes the antiviral immunity by inducing the expression of interferon-

stimulated genes (ISGs) and therefore amplify the secondary IFN-I secretion. However, induced 

ISGs may not always have a positive role to viral clearance. For example, the absence of 

ligoadenylate synthetase-like 1(OASL1), one of ISGs, enhances IFN-I production and therefore 

promotes the elimination of LCMV-Clone 13 by the enhanced anti-viral T cell responses (359-

361). In addition to inducing the expression of ISGs, I-IFNs initiate the activation of other innate 

immune cells which could play a regulatory role in antiviral innate immune responses such as NK 

cells (362). RM. Welsh firstly showed that NK cells from LCMV infected C3H/St mice contained 

high levels of cytotoxicity to L929 cells in 1978 (363). Their function during LCMV infection was 

subsequently identified as activated NK cells play a regulatory role to anti-viral T cells. In the 

early stage of LMCV infection, activated NK cells attack anti-viral T cells to inhibit T-cell-

mediated pathology though natural cytotoxicity triggering receptor 1 (NCR1) (364). IFNs not only 

activate NK cells but also repress numerous ligands of NCR1 on T cell to protect T cells against 

NK cell attack (365).  

1.2.2.2. LCMV infection induced T cell exhaustion 

Although innate immunity initiates the host immune response to virus, the adaptive immunity 

plays the most straightforward way to eliminate the virus by the cytotoxic responses from antiviral 
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T cells. Infections of adult mice with LCMV strains that develop acute infection, induces cytotoxic 

T lymphocyte responses (CTL), whereas prenatally transmitted LCMV or infections of newborn 

mice result in virus persistence without immune system activation (366, 367). The antiviral T cells 

can be detected within 7 days, accompanied by the T-cell-mediated pathology at the infection sites 

(368, 369). Neutralizing antibodies cannot be detected before day 60 after infections, suggesting 

its suboptimal role in acute infection (370-372). With the infections of LCMV-Docile, LCMV-

Clone13 and also LCMV-Traub in adult mice, the virus still can be detected after 100 days. The 

kinetics of acute and chronic infection induced adaptive immunity are summarized in Graphical 

Figure 5. 

 

Graphical Figure 5. Figure is depicting the kinetics of immune responses during acute and 

chronic LCMV infections. Adapted from Lars Hangartner et al,. (373). 

 

Although the reason of virus persistence in mice is still not so clear, the viral infection induced 

T cell exhaustion acts as one of the most important factors. The concept of “exhaustion” of effector 

T cells was introduced by Rolf Zinkernagel in 1993 with the observation of that antiviral CD8+ 

cytotoxic T cells disappeared within a few days resulted in neither eliminating LCMV virus nor 

causing lethal immunopathology (374). The exhausted antiviral CD8+ T cells are highly activated 

but accompanied with enhanced inhibitory molecule expression which resulted in their defective 
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cytotoxic functions to infected cells (375, 376). Programmed cell death-1 (PD-1) is the most well 

investigated exhaustion-associated inhibitory receptor, which is transiently highly expressed on 

the early stage of T cell activation (377, 378). However, PD-1 expression on antiviral CD8+ T cells 

remains high level during chronic infection (375, 379-381). Therefore, PD-1 blockade restored the 

exhausted antiviral T cell response with the enhanced proliferation activity, increased cytotoxic 

potential, and virus elimination (382-384). In addition to expression of exhausted markers on cell 

surface, the cytokine profile is disrupted as well, such as reduced expression of IFN-γ and TNF-α, 

which contribute to T cell effector function (385, 386). Exhausted T cells also lose their capacity 

of producing inflammatory cytokines and their memory differentiation (387).  

Besides the genomic difference between chronic and acute LCMV strains, there are many 

other factors that govern T cell exhaustion during chronic infection, including the duration of high 

levels of antigen, the status of other immune cells, the cytokines environment, and the 

transcriptional profile of T cells. It is widely accepted that T cell exhaustion is caused by 

continuous stimulation with high levels of antigen. Rafi Ahmed’s group constructed a bone marrow 

(BM) chimeric mice, in which WT and MHC-I-deficient hosts were reconstituted with WT BM 

(388). Interestingly, with the chronic LCMV infection both the numbers and the cytotoxicity of 

virus-specific CD8+ T cells were increased in this MHC-I-deficient groups, whereas the virus still 

persisted in control mice. Dietmar Zehn also showed that high antigen levels induce an T cell 

exhaustion in chronic infection by the data in showing that antiviral CD8+ T cells didn’t display 

an exhausted phenotype in mice infected with mutated LCMV-Clone13 virus that lack the gp33 

epitope (389). Different doses of LCMV infections also result in different exhaustion status of T 

cells. Higher viral loads lead to more severe exhaustion and CD8+ T cells exhibits lower cytotoxic 

activity to virally infected cells (379, 390, 391).  
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CD4+ T cells play a vital role in initiating the immune responses during both chronic and acute 

viral infections. The absence of CD4+ T cells result in severe CD8+ T cell exhaustion, suggesting 

that they are required to sustain the antiviral T cell immunity (392-394). This had also been 

confirmed by the data showing that CD4+ T cell transfer enhanced the antiviral cytotoxic T cells 

function during chronic LCMV infection (395). Similar to antiviral CD8+ T cells, CD4+ T cells 

were also subjected to exhaustion during chronic LCMV infection (396-398). Exhausted CD4+ T 

cells also display the same characteristics: upregulated inhibitory receptors, lack of functional 

cytokines expression, and failed to differentiate into memory T cells (396, 397). Distinct from 

other subsets, CD4+ T cells in chronic infection display a Tfh-like phenotype with the enhanced 

expression of Bcl6 and CXCR5 (399), suggesting their role in assistance of the B cell response 

that further eliminate LCMV virus. Regulatory T cells (Tregs) had also been implicated to play a 

role in the development of chronic LCMV infections by producing immunosuppressive cytokines 

such as IL-10 and TGF-β (400-402). 

The pro-inflammatory cytokine levels not only initiate the innate antiviral immune responses 

but also contribute to the regulation of T cell exhaustion. As mentioned in the last section, IFN-Is 

are the major innate antiviral factor for controlling the replication of the virus by inducing ISGs. 

Blockade of IFN-α altered viral spreading to other organs but failed to eliminate virus, whereas 

IFN-β blockade promoted the antiviral CD8+ T cell immunity and virus clearance (403), 

suggesting their distinct roles in LCMV virus persistence. IL-6 is also transiently upregulated at 

the very early stage of chronic infection and increased again at around 25 days after chronic 

infection (404). IL-6 had been shown in supporting Tfh cell responses against infections and also 

in supporting CD4+ T cell IL-21 expression (405). CD4+ T cells are the main source of IL-21 and 

IL-21 signaling deficiency impeded the LCMV virus control by inducing severe T cell exhaustion 
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in mice (406-408). In contrast, recombinant IL-21 treatment improved the antiviral T cell 

responses (407). Tumor necrosis factor (TNF) is another proinflammatory cytokine associated to 

T cell exhaustion during chronic infection. Blockade of TNF, as well as TNF receptor deficiency, 

rescued antiviral T cell numbers and their cytotoxic functions (409).  

Many T cell intrinsic molecules are also involved in the progress of T cell exhaustion. Several 

new transcription factors have been reported to be associated with the T cell exhaustion in chronic 

LCMV infections. Interferon Regulatory Factor 4 (IRF4) is a transcription factor, which was 

shown to be highly expressed in exhausted antiviral CD8 T cells (375). IRF4 promoted expression 

of inhibitory receptors by directly binding to their promoters with other two transcription factors 

BATF and NFAT, which has also been shown in controlling T cell exhaustion during chronic viral 

infection (410, 411). The T-box transcription factors family members T-bet and Eomes not only 

play a regulatory role in T cell and innate immune cell (ILC) development (412, 413), but also a 

crucial role in T cell exhaustion during chronic infection (293, 299, 414, 415). T-bet worked as a 

repressor of PD-1 expression by directly binding to its promoter and therefore suppressed the T 

cells differentiation into an exhausted phenotype (416). Another transcription factor Blimp1 may 

indirectly suppress PD-1 expression through inhibiting the transcription factor NFAT1, which 

could bind to the PD-1 promoter as well (417). T cell factor 1 (TCF1) impedes T cell exhaustion 

by augmenting Eomes expression and regulating Bcl2 levels to maintain exhausted T cell survival 

(418-420). Similar to the role of other transcription factors in exhausted cells, the thymocyte 

selection-associated high mobility group-box protein (Tox) also promotes the T cell function in 

chronic infections (421-424). All in all, the combination of T cell extrinsic and intrinsic factors 

depict the progress of T cell exhaustion during LCMV chronic infection.  
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1.3. The role of NK cells in LCMV infection 

Natural killer (NK) cell plays a crucial role in both innate and adaptive immunity by 

mediating spontaneous and MHC-I non-restricted cytotoxicity to pathogen-infected cells, 

malignantly transformed cells, and over-activated immune cells through their cytolytic machinery 

including the cell surface receptors and secretory molecules such as granzymes and perforin (425-

429). In this chapter, NK cells are described in the following sections: their discovery, 

development, receptors and their regulatory role in viral infections. 

1.3.1. NK cell biology 

1.3.1.1. NK cell history 

With the findings from Ralf Zinkernagel and Peter Doherty in 1974, it is well accepted that 

cytotoxic T lymphocytes (CTLs) recognize antigens on virally infected cells or tumor cells in a 

MHC restricted way (430). Interestingly, studies of human lymphocytes mediated cytotoxicity in 

1970s revealed that allogeneic tumor cells could also be lysed in a non-MHC-restricted way, 

suggesting the existence of some immune cell subsets containing a natural cytotoxic activity (431-

435). The same finding in mouse models was also reported at the meantime by observations that 

spontaneous cytotoxicity of naïve mouse splenocytes attacking leukemia cells was caused by a 

small undefined lymphocyte population which were termed as natural killer (NK) cells (4). NK 

cells were defined by lacking of T/B lymphocyte markers but highly expressing Fc receptor (FcR) 

since the technical limitation in 1970s (436-441). The concept of NK cells was not widely accepted 

by all immunologists since the lack of unique markers until the first evidence that NK cell 

cytotoxicity was highly associated with a unique lymphocyte population called large granular 

lymphocytes (LGLs) (442, 443). After this milestone NK cells were then purified from the PBMC 

culture by the presence of IL-2 (444). With the efforts from the immunologists in the following 
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decades, more and more NK cell specific markers have been identified on both human and mouse 

NK cells. Human NK cells are identified by CD56+CD3-TCR- and CD56+ NK cells can be further 

divided into CD56bright and CD56dim subpopulations (445, 446). CD56dim NK cells produce less 

cytokines but contain higher cytotoxic activity to target cells than CD56bright NK cells (446). Mouse 

NK cells are characterized as CD49b+NK1.1+CD3e- and can be delineated into four subpopulations 

based on the CD27 and CD11b expression during NK cell activation (447).  

1.3.1.2. NK cell homeostasis 

Although NK cells are mainly developed in the bone marrow, recent studies revealed that NK 

cells can also differentiate from peripheral lymphoid organs including lymph nodes (LNs) (448), 

spleen (449), liver (450), thymus (451), and tonsils (452). Since we are using a mouse model in 

our study, we will mainly discuss about the development of murine NK cells. The self-renewing 

hematopoietic stem cells (HSCs) firstly give rise to the common lymphoid progenitors (CLPs), 

which can also differentiate into T and B lymphocytes. CLPs then give rise to CD122-expressing 

NK progenitors (NKP) (453). Interleukin (IL)-7 and IL-15 that are produced by mesenchymal 

stromal cells (MSCs) and fibroblastic reticular cells promote an important role in programming 

CLPs into NKPs (454). In addition, IL-21-producing MSCs facilitate the expansion of NKPs (455). 

The maturation of iNK cells was associated by reticular cell-producing CXCL12 through its 

binding to NKP cell surface CXCR4 (456). Mature NK cells (mNK) then migrate to peripheral 

lymphoid organs in a non-activated state. Functional NK cell maturation can be divided into three 

subpopulations: CD27+CD11b-, CD27+CD11b+, CD27-CD11b+ (447). CD11b single positive stage 

(CD27-CD11b+) is considered to be the terminally matured NK cells (457, 458), whereas the 

CD27+CD11b+ double positive stage exhibits the most effective cytotoxic activity to their targets 

(447).  
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In the past decades, several NK-lineage specific transcription factors in NK cell development 

have been identified, including leucine zipper protein Nfil3 (also known as E4BP4) (459, 460), E 

protein antagonist Id2 (461, 462), high mobility group box protein Tcf1 (463, 464), thymocyte 

selection associated high mobility group box (Tox) (465, 466), and Ets family protein Ets1 (467). 

Unlike other transcription factors, the absence of E4BP4 resulted in only severe NK cell lineage 

reduction but not T lymphocytes and B lymphocytes (459, 460), suggesting its specific role to NK 

cell homeostasis. The development of NK cells is also summarized in Graphical Figure 1. 

1.3.1.3. NK cell receptors 

NK cells are important innate effector cells for protecting the hosts against infected cells, 

malignantly transformed cells, the stressed host cells, and also cells from other hosts through 

granules mediated exocytosis or death receptor pathways induced apoptosis (468). Early studies 

showed that the activation of NK cells was induced by the target cells that lack of expression of 

MHC class I (469), suggesting NK cells were activated by non-self signals (it was called the 

missing-self hypothesis). Cells that express the host MHC class I molecules are resistant to NK 

cells, whereas cells expressing without or non-self MHC class I molecules are subjected to the NK 

cell mediated lysis (426). The recognition of “non-self” cells is mediated by many types of 

inhibitory or activating receptors on the NK cell surface, including natural cytotoxic receptors 

(NCR), natural killer group 2 calcium-dependent lectin-like family receptors (NKG2), and killer 

cell immunoglobulin-like receptors (KIRs) (470, 471).  

Natural cytotoxic receptor (NCR) represents a group of activation receptors including NKp30, 

NKp44, and NKp46 (NCR1). NKp46 is specifically expressed on NK cells, whereas NKp30 and 

NKp40 had also been revealed to be expressed on T cells (472). NCRs are immunoglobulin-like 

type I transmembrane glycoproteins that contain a positively charged amino acid in their 



40 

 

intracellular domains, which can assist the signal transduction to their signaling partners (473, 474). 

NKp46 and NKp30 are commonly thought to associate with FcRγ chain, whereas NKp44 

transduces signals to DAP12 (475). Normally, an immunoreceptor-based activation motif (ITAM) 

locates in the cytoplasmic tail of the signaling partner (476).  

NKG2 family receptors work as the ligands that bind to nonclassical MHC class I molecules 

on the surface of potential target cells (477). NKG2D is one of the best studied NKG2 family 

receptors and is expressed on all NK cells. Mouse NKG2D can transduce signals to two signal 

partners DAP10 and DAP12, whereas human NKG2D associates DAP10 (478-480). Many 

NKG2D ligands had been identified, including MHC class I chain-related genes (MICA, MICB) 

and UL-16 binding proteins (ULBP) in human cells (481-484), Rae-1, H60 and MILTI-1 in mouse 

cells (485). These NKG2D ligands remain a basal level in healthy tissues, but are highly expressed 

on the virally infected or malignantly transformed cells (486, 487). The expression of these ligands 

on stressed or infected cells initiates the NK cell cytotoxicity. On the other hand, NK cells usually 

express lower NKG2D in cancer patients, which is mediated by immuno-suppressive cytokines 

such as IL-10 and TGF-beta which is produced by suppressive immune cells or tumor cells in the 

tumor microenvironment (488). Other NKG2 family members share the same models for NK 

activation or suppression, such as NKG2A contains a ITIM domain which leads to the inhibition 

of NK cell activity, whereas NKG2C/E/H associates DAP12 and results in the antiviral or 

antitumoral activity of NK cells (477). 

1.3.2. The role of NK cells in LCMV infection 

LCMV infections induce strong cytokine-driven NK cell activation that limits the response 

of antiviral T cells. The observation that adaptive immune cell could be the target of NK cells has 

long been known for decades (489-491). Immature thymocytes are resistant to NK cells since NK 
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cells remain in an inactivated state in normal physiological conditions. After LCMV infection NK 

cells will be activated and will attack both the infected cells and activated immune cells. 

Fortunately, viral infections induce type I IFNs, which increases the MHC class I molecule 

expression on thymocytes and protects antiviral T cells against NK cell cytotoxicity (492, 493). In 

addition, naïve mature T cells remain resistant to NK cell. LCMV induced IFN-I suppress many 

types of ligands to NK cell activating receptors (494, 495). Antiviral T cell that lack IFN receptor 

cannot escape NK cell mediated lysis in vivo during LCMV infection due to increased NCR1 

ligand expression (364, 365, 496). Depletion of NK cell during LCMV infections results in 

enhanced antiviral T cell responses. Thereby virus elimination and immune pathology during 

LCMV infection is imposed (497-499). In addition to antiviral T cells, NK cells also contain 

profound immune effects on germinal center (GC) B cells with the observations that NK cell 

deficiency results the enhanced Tfh cell responses, that promote GC B cell responses and therefore 

induce more antiviral antibody secretion (500). A recent study reveals that most of T cell subsets 

are sensitive to NK cell mediated lysis (501). 

Many other molecules have been shown to regulate NK-cell-mediated T cell lysis during viral 

infections. Most of them may directly regulate NK cell activity. The absence of tumor necrosis 

factor-related apoptosis-inducing ligand (TRAIL) leads to improved antiviral CD8+ T cell 

responses, resulting in faster LCMV clearance and reduced liver pathology (502). Similarly, FcRγ 

stabilizes the expression of NKp46 (NCR1) expression on NK cells to regulate NK cell mediated 

T cell lysis during LCMV infection (503). CD47 acts as a cell-intrinsic regulator of NK cell 

function in response to a LCMV infection (504). Blockade of CD47 with an antibody leads to 

increased antiviral CD8+ T cell responses (505), suggesting its regulatory role of the crosstalk 

between NK cells and T cells. On the other hand, there are also studies showing the molecules 
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which could regulate MHC-I expression on T cells and therefore protect T cells against NK cell 

cytotoxicity. NOD-like receptor caspase recruitment domain containing protein 5 (NLRC5) 

deficiency suppresses T cell MHC-I expression, resulting in enhanced NK-cell-mediated T cell 

lysis (506).  

Which NK cell subpopulations are responsible to T cell lysis has not been investigated yet. 

The study from Jing Zhou and colleagues revealed that liver-resident NK cells (LrNKs), marked 

as CD49a, but not CD49b conventional NK cells (cNKs) retained the main activity to attack 

antiviral T cells in mice during LCMV infections (507).  
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1.4. Progranulin 

Progranulin (PGRN) is also named as pro-epithelin, granulin-epthelin precursor, PC-cell-

derived growth factor, and acrogranin (508). PGRN has been shown to be associated with diverse 

pathological conditions and physiological processes. With the studies of PGRN in the past decades, 

numerous therapeutic strategies targeting PGRN have been generated. 

1.4.1. PGRN biology 

Studies of PGRN in the past decades highlight that PGRN may have different roles in various 

kinds of diseases, including neurological diseases, inflammatory disease, cancer, wound healing, 

and rare lysosomal storage diseases (509).  

PGRN was firstly described in the 1990s with its role in tumor growth, nerves cell growth, 

and wound healing (510-512). The links between mutations in GRN (encodes PGRN) and 

frontotemporal lobar degeneration (FTLD) was shown in 2006 (513, 514). PGRN is a cysteine-

rich secreted protein that contains 7.5 repeats of granulin peptide motifs (Graphical Figure 6) (515-

517). Secreted PGRN could undergo cleavage in the extracellular space by proteases including 

elastase, a disintegrin and metalloproteinase with thrombospondin motifs 7 (ADAMTS-7), 

proteinase 3 (PR3), and matrix metalloproteinases (MMPs), whereas the PGRN cleavage can be 

suppressed by secretory leukocytes protease inhibitor (SLPI) (518). Interestingly, PGRN cleavage 

products with different cutting sites may have opposing effects on cell growth (519). It can also be 

cleavaged in the late lysosomes by cathepsin family proteases (520, 521).  
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Graphical Figure 6. Figure is depicting the structure of Progranulin protein. Adapted from 

Sharon Demorrow (522). 

 

PGRN is widely expressed in both hematopoietic cells and non-hematopoietic cells (523). 

The MAPK and Akt signalling pathway were activated in mouse embryo fibroblasts (MEFs) by 

the stimulation with recombinant PGRN, suggesting there might be some cell surface PGRN 

receptors (524). Several surface molecules have been implicated to be the functional receptors to 

PGRN, including Sortilin, TNF receptor 1, and EphA2. The absence of Sortilin reduced PGRN 

binding to microglial cells, resulting in increased soluble PGRN in the brain and serum with 

sortilin assisted lysosomal endocytosis of PGRN as a mechanism (525). PGRN has also been 

reported to directly competitively bind to TNF receptors to disturb the TNFα-TNFR interaction in 

rheumatoid arthritis (526). However, Xi Chen and colleagues showed that PGRN cannot bind to 

TNF receptors and also was not the direct regulator of TNF signaling in both immune and neuronal 

cells (527). To provide perspective to this controversy, Etemadi et al. tested the ability of 

recombinant PGRN from different commercial sources to inhibit TNF signaling. Unfortunately, 

no inhibitory activities of TNF signaling could be observed by PGRN in this case (528). However, 
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the inhibition of TNF signaling has been confirmed by Atsttrin, an engineered protein composed 

of three PGRN fragments, by several studies (529-531), suggesting PGRN may not directly 

interact with TNF receptors. Furthermore, Ephrin receptor A2 (EphA2) shows high affinity to 

recombinant PGRN, resulting in activation of MAPK and Akt signaling pathways (532).  

1.4.2. The role of PGRN in disease 

1.4.2.1. PGRN in cancers 

Various cancers express higher levels of PGRN than non-tumor tissues, including cancers in 

liver (533), breast (534), ovary (535, 536), prostate (537), kidney (538), and also in brain (539), 

implying it could be used for the diagnosis and prognosis of cancer. PGRN may promote tumor 

growth in many ways such as promoting cancer cell proliferation (511, 540), invasion (533, 541), 

and resistance to cytotoxic cells (542). PGRN rendered liver cancer cells resistant to NK cell 

cytotoxicity by modulating the expression of MICA, which is the ligand of NK cell activating 

receptor NKG2D (542). A PGRN monoclonal antibody was also generated to suppress 

hepatocellular carcinoma development (543), indicating PGRN is a functional target for 

hepatocellular carcinoma.  

PGRN not only directly promotes cancer cell growth but also modulates the angiogenesis 

during wound healing by inducing human microvascular endothelial cell proliferation and the 

tube-like structure formation (544). In addition, tumor PGRN levels are correlated to the VEGF 

levels, an endothelial growth factor that induce angiogenesis (545). The stimulation of 

recombinant PGRN promotes cancer cell VEGF expression, whereas knockdown or deletion of 

PGRN results in downregulation of angiogenic factors in colorectal carcinoma cells (545).  

Numerous PGRN targeting strategies for tumor therapy had been developed in the past 

decades by inhibiting PGRN expression with siRNA, anti-sense cDNA, or specific neutralizing 
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antibodies. The tumorigenicity was significantly disturbed by transducing the tumor cells with the 

anti-sense PGRN cDNA in vivo (546-548). Similarly, knockdown of PGRN by siRNA leads to 

slow tumor growth (549). Furthermore, treatment with PGRN specific neutralizing antibodies 

results in inhibition of hepatocellular carcinoma development and breast cancer cell growth (543, 

550, 551). Macrophage-secreted PGRN may play an important role in pancreatic cancer liver 

metastasis by inducing liver fibrosis (552). All these findings suggest that PGRN could be used as 

a potential tumor therapy target. 

1.4.2.2. PGRN in autoimmunity 

It has long been reported that PGRN plays a role in autoimmunity, including rheumatoid 

arthritis, osteoarthritis, inflammatory bowel disease, psoriasis, diabetes mellitus, systemic 

erythematosus, and multiple sclerosis (553). The absence of PGRN in mice results in a higher 

incidence and more severe clinical features of arthritis, whereas the disease progression can be 

rescued by the treatment of recombinant PGRN (526). PGRN deficiency in TNF-transgenic mice 

leads to accelerated inflammatory arthritis (526). Furthermore, rheumatoid arthritis serum shows 

a higher PGRN protein level, as compared to healthy controls (554-556). The ratio of PGRN to 

TNF has been reported to correlate with the rheumatoid arthritis stage (556). The suppressive role 

of PGRN is thought to promote the activity of Tregs (526, 557). A similar phenotype was also 

observed in osteoarthritis, that PGRN-deficient mice exhibited a severe osteoarthritis and both 

recombinant PGRN and Atsttrin (Granulins) protected mice against osteoarthritis (558, 559).  

The elevated levels of PGRN have been shown in serum of human inflammatory bowel 

disease and mouse colitis models induced by dextran sulfate sodium (DSS) (560). PGRN may have 

a protective role in inflammatory bowel disease, evidenced by the observations that PGRN 

deficient mice are highly susceptible to DSS-induced inflammatory bowel disease and treatments 
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with recombinant PGRN result in reduced disease severity by the mechanism of modulating the 

balance between Tregs and Th17 cells (560).  

1.4.2.3. PGRN in infectious diseases 

PGRN is also highly expressed in neutrophils, that are critical for host defense in bacterial 

infections (561). Neutrophil-derived elastase converts PGRN to Granulins, which may recruit 

neutrophils to the infection sites by inducing the expression of IL-8 from the epithelial cells (561). 

PGRN deficient mice failed to efficiently eliminate bacteria by inhibiting the recruitment of 

monocytes (562). Gastric epithelial cells can secrete PGRN during direct contact between bacteria 

and cells (549, 563), suggesting the existence of sensors that can bind to PGRN. Boyoun Park and 

colleagues revealed that granulins were an essential secreted cofactor that assisted the recruitment 

of nucleotides to TLR9 and therefore modulating the anti-bacterial innate immunity (564). 

PGRN also binds to the cysteine-rich domain of HIV transactivator Tat protein (565), 

implying that PGRN contains a regulatory role to HIV replication and transcription. Cyclin T1 is 

an important constituent of transcription elongation factor P, which directly interacts with Tat 

protein (566). PGRN interacts with Cyclin T1 to suppress HIV transcription and replication in 

vitro (567, 568). Taken together, PGRN plays an important role in innate immunity. 
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2. Aim and hypothesis of this thesis 

Millions of human die every year since the viral infection diseases. It is urgent to clearly 

understand the mechanisms of viral infection induced death. LCMV is a widely used virus in 

mouse models for investigating the relationship between host immune responses and viral 

infections.  

Progranulin is widely known by its role in central nervous system disease, GRN mutations 

resulted into a variety of clinical features, causing mostly behavioral frontotemporal dementia and 

progressive non-fluent aphasia. Progranulin had also been identified as the upregulated molecule 

during LCMV infection in mouse in our preliminary investigations, suggesting that it might play 

functional roles during viral infections.  

By LCMV infection models, we notified that virus in Grn-/- mice cannot be cleared as fast as 

that in WT control mice, suggesting the protective role of progranulin during viral infection. 

However, the mechanism of this phenotype remains unclear. There are three possibilities of why 

progranulin deficiency results in slower viral clearance: 1. Progranulin protein directly suppresses 

virus propagation; 2. Progranulin promotes innate immunity to enhance host innate antiviral 

immunity such as promoting more type I interferons, etc; 3. Progranulin directly promotes adaptive 

antiviral immunity such as cytotoxic T cell activity. With our experimental evidence we notified 

that progranulin has no effects on virus propagation, slight impact on cytokines production and no 

promotive role on cytotoxic T cell activity.  

NK cell is also known as an important regulator to adaptive T cell response during LCMV 

infection through direct T cell lysis. In our study, progranulin showed potent suppressive role on 

NK cell expansion and activation. Therefore, the hypothesis of this study is that viral infections 
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induced progranulin directly suppresses NK cell activation and subsequently promotes enhanced 

antiviral cytotoxic T cell immunity and finally accelerates virus clearance.  
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3. Materials and methods 

3.1. Animals 

Grn–/– (B6[Cg]-Grntm1.1Aidi/J) mice, which were previously described (The Jackson 

Laboratories, stock no. 01375) (562), were used and compared with C57BL/6J mice. Rag1-/-, 

Ifnar1–/–, CD169-DTR, CD11c-DTR, and CD45.1+P14 mice were maintained under specific 

pathogen-free (SPF) conditions. For chimera experiments, WT mice were irradiated with 10.5 Gy. 

One day later, mice were reconstituted with BM cells from indicated donors. Six- to 8-week-old 

age-matched and sex-matched mice were used for all experiments. All mice used in this study were 

maintained in a standard barrier facility at Heinrich-Heine-University Düsseldorf. 

3.2. Virus 

LCMV strain WE was originally obtained from F. Lahmann-Grube (Heinrich Pette Institute, 

Hamburg, Germany). LCMV-WE was propagated in L929 cells as previously described (569). 

Virus titers were determined using a plaque-forming assay as previously described (570). 

3.3. Reagents 

Mouse-specific antibody to CD3ε (145-2C11, 11-0031-85), CD3e (17A2, 47-0032-82), 

NKp46 (29A1.4, 11-3351-82), CD11b (M1/70, 47-0112-82), IL-7R (A7R34, 11-1271-85), 2B4 

(ebio244F4, 25-2441-82), CD5 (53-7.3, 47-0051-82), CD8 (53-6.7, 47-0081-82), CD19 (eBio1D3, 

47-0193-82), Ly6G (RB6-8C5, 47-5931-82), TCR-β (H57-597, 47-5961-82), FcεR1 (MAR-1, 47-

5898-82), Emoes (Dan11mag, 61-4875-82), CD4 (GK1.5, 48-0041-82), and GATA3 (TWAJ, 50-

9966-42) from eBioscience were used. Mouse-specific antibody to NK1.1 (PK136, 25-5941-82), 

CD49b (DX5, 17-5971-81), granzyme B (NGZB, 12-8898-82), perforin (eBioOMAK-D, 11-9392-

82), IFN-γ (XMG1.2, 17-7311-82), Tim3 (RMT3-23, 12-5870-82), CD16/32 (93, 11-0161-82), 
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NKG2D (CX5, 25-5882-82), Ly49F/C/I/H (14B11, 12-5991-81), and Ter119 (TER119, 47-5921-

82) were from Invitrogen. Mouse-specific antibody to CD27 (LG.3A10, 563365), CD44 (IM7, 

563736), CD69 (H1.2F3, 561238), KLRG1 (2F1, 740553), CD62L (MEL-14, 563117), PD-1 (J43, 

562523), CXCR5 (2G8, 563981), Lag3 (C9B7W, 563179), NKG2A/C/E (20d5, 740153), and 

RORγT (Q31-378, 562607) were from BD Biosciences. Human-specific antibody to CD56 

(NCAM, 318328) was from BioLegend; IFN-γ (4S.B3, 11-7319-82), CD3e (OKT3, 45-0037-42), 

CD14 (61D3, 45-0149-42), CD19 (SJ25C1, 45-0198-42), and CD16 (eBioCB16, 47-0168-42) 

were from eBioscience; and CD107a (H4A3, 561348) was from BD Biosciences. Inhibitor (SNS-

032) against cyclin T1/CDK9 was purchased from Selleck Chemicals (S1145). Mouse PGRN 

ELISA kit (EMGRN) and granzyme B (catalog 88-8022-22) were purchased from Invitrogen. 

Foxp3 mouse Treg Staining Buffer Set (eBioscience, 00-5523-00) was used. NK cell isolation kits 

(catalog 130-052-501) were from Miltenyi Biotec. Cell Proliferation Dye eFluor 450 (Invitrogen, 

65-0842-85) was used for NK cell, Rma, and RMA/S cell labeling. Apoptotic cells or dead cells 

were stained with 7-AAD (Invitrogen, 00-6993-50) and Annexin V (BD Biosciences, 550474) in 

Annexin V staining buffer (BD Pharmingen, 51-66121E). Complete protease inhibitor cocktail 

(MilliporeSigma, 329-98-6) was used to lysate NK cells. RNeasy Mini Kits (250) (QIAGEN, 

74106) were used for RNA extraction. Elastase was used for PGRN digestion to granulin 

(MilliporeSigma, E8140). CDK9 (Cell Signaling Technology, 2316S), cyclin T1 (Abcam, 

ab184703), phosphor-Ser2-RNA polymerase II (pSer2-R II, Abcam, ab193468) and α-SMA 

(Abcam, ab32575) antibodies were used. Anti–Rat IgG (Jackson ImmunoResearch, 112-116-072) 

were used for LCMV-NP staining; Cy3-conjugated goat anti–rabbit IgG (Jackson 

ImmunoResearch, 111-165-144) was used for cyclin T1 and phosphor-RNA polymerase II (pSer2-

R II) flow cytometry staining. Horseradish peroxidase–conjugated (HRP-conjugated) goat anti–
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rat IgG (Jackson ImmunoResearch, 112-035-003) was used for plaque assasys. IRDye 800CW 

goat anti–rabbit IgG secondary antibody (LI-COR, 926-32211) was used for Western blotting (see 

complete unedited blots in the supplemental material). HRP-conjugated rabbit anti–β-actin 

antibody was used for Western blotting (Cell Signaling Technology, 5125S). PageRuler Prestained 

Protein Ladder (Thermo Fisher Scientific, 26617) was used. Recombinant mouse IL-2 (Miltenyi 

Biotec, 130-12-333); mouse IL-12 (BioLegend, 577002), mouse IL-15 (Peprotech, 210-15), and 

mouse IL-18 (BioLegend, 767002) were used. PMA (MilliporeSigma, P8139) and ionomycin 

calcium salt (MilliporeSigma, I0634) were used for T cell activation. 

3.4. Enzyme-linked immunosorbent assay (ELISA) 

The serum from infected mice were collected for examining the PGRN levels at day 1 after 

infection (LCMV-WE). Granzyme B levels in the supernatant of NK cell cultures were measured 

by granzyme B ELISA kit. All experiments were performed according to the manufacturers’ 

instructions. 

3.5. Recombinant PGRN purification 

Stable PGRN-expressing HEK-293T cells were used. The supernatants from these cells had 

been collected and HiTrap TALON (GE Healthcare) crude columns, and AktaPrime were used for 

PGRN purification according to the manufacturers’ instructions. 

3.6. Cell isolation and culture 

Single-cell suspended splenocytes were enriched following the manufacturer’s instructions 

with the DX5 MACS kit (Miltenyi Biotec). Isolated NK cells were expanded by 1,000 IU/ml IL-

2 with or without indicated concentration of PGRN in RPMI-1640 (containing 10% FBS, 2 mM 

L-glutamin, and 100 U/ml penicillin-streptomycin) for 4 days in a humidified cell culture incubator 

at 37°C with 5% CO2. Vero, N2a neuroblastoma, and L929 cells were cultured in Eagle’s 
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Minimum Essential Medium (Hyclone) supplemented with 10% FBS and 100 U/ml penicillin-

streptomycin (Thermo Fisher Scientific) in a humidified cell culture incubator at 37°C with 5% 

CO2. 

3.7. Flow cytometry 

Tetramer and intracellular cytokine staining were performed as described previously (569). 

For intracellular staining, Foxp3 mouse Treg staining buffer sets were used according to the 

manufacturer’s protocol. ILC and NK cell stainings were performed as previously described (571). 

Experiments were performed using a FACS Fortessa (BD Bioscience) and analyzed with FlowJo 

software (Treestar). 

3.8. NK cell cytotoxicity assays 

Freshly insolated NK cells were expanded by IL-2 for 4 days. Susceptible RMA/S and RMA 

cells were labeled by 10 μM Cell Proliferation Dye eFluor 450 (eF450+) and exposed to NK cells 

at indicated effectors/targets ratios. 18 hours later, 7-AAD was added, and the percentage of 7-

AAD+ cells among eF450+ target cells was determined by flow cytometry. Control and Grn-/- mice 

were infected with LCMV-WE strain (2 × 106 pfu) for 24 hours. Splenocytes were collected and 

mixed with RMA/S cells at indicated effector/target ratio for 18 hours. 7-AAD was added, and the 

percentage of 7-AAD+ cells among eF450+ target cells was determined by flow cytometry. 

3.9. Cell depletion 

NK cells were depleted with i.v. injections of anti-NK1.1 (clone PK136) as previously 

described (572). For depletion of macrophages, mice were treated with Clodronate liposomes (200 

μl), and control mice were treated with empty control liposomes (200 μl) as previously described 

(573). For CD11c+ and CD169+ cell depletion, CD11c-DTR and CD169-DTR mice were injected 

with 0.01 mg/kg body weight diphtheria toxin (DT) for 24 hours. 
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3.10. Immunofluorescence 

Histological analysis of snap-frozen tissue was performed as previously described by using 

anti-α-SMA and self-made anti-LCMV-NP monoclonal antibody (clone VL4) (571). NK cell 

cyclin T1 was stained using the Foxp3 staining kit, and these cells were cytospun onto slides. Cells 

were visualized with the Zeiss fluorescence microscope after staining with 4,6-diamidino-2-

phenylindole. 

3.11. Quantitative PCR 

RNA purification was performed according to the manufacturer’s instructions (QIAGEN). 

Gene expression analysis of Cdk9, Ccnt 1, Gzmb, Grn, and Prf1 were performed using kits from 

Applied Biosystems. All primers are listed in Table 1. For analysis, the expression levels of all 

genes were normalized to GAPDH or Actin. Then, gene expression values were calculated based 

on the ΔΔCt method relative to controls. 

Table 1. Primers used in this study. 

Genes Forward ((5'-3') Reverse ((5'-3') 

CDK9 GTACGACTCGGTGGAATGCC GATGGGGAACCCCTCCTTCT 

Ccnt1 ATGCCTGATCGTACCGAGAAG GTCGTTGGCGTAAATGAGCTG 

Gzmb CCACTCTCGACCCTACATGG GGCCCCCAAAGTGACATTTATT 

Prf1 AGCACAAGTTCGTGCCAGG GCGTCTCTCATTAGGGAGTTTTT 

Grn GTGTTGTGAGGATCACATTC CTATGACCTTCTTCATCCAG 

Gapdh TGCACCACCAACTGCTTAG GGATGCAGGGATGATGTTC 

Actin GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT 

 

3.12. Immunoblotting 

NK cells were lysed with lysis buffer (20 mM Tris-HCL, pH 7.5; 0.5% Nonidet P-40; 10 mM 

NaCl; and 3 mM EDTA) containing complete protease inhibitor cocktail for 30 minutes on ice. 
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Cell lysates were separated by SDS-PAGE and analyzed with immunoblotting. Immunoblots were 

probed with primary antibody: cyclin T1, PGRN, CDK9, and β-actin, followed by secondary 

antibody or enhanced chemiluminescence detection of fluorescence secondary antibody, and 

detected by LI-COR imager (Odyssey Fc, LI-COR Biosciences). 

3.13. Bone marrow derived macrophages (BMDM) culture 

BM cells were collected and cultured in DMEM supplemented with 10% FBS and 20% L929 

cell culture supernatant. At day 7, differentiated BMDMs were treated with LCMV-WE (MOI=1.0) 

for 48 hours. The levels of PGRN in these supernatants were measured by ELISA. 

3.14. Statistics 

Data are expressed as mean ± s.e.m. For analysis of statistical significance between 2 groups, 

a Student’s t test (2-tailed) was used. For the analysis of human NK cell data, paired Student’s t 

test (2-tailed) was used. For the analysis of multiple time point experiments, 2-way ANOVA was 

used; a P value less than 0.05 was considered significant. Statistical analysis was performed using 

GraphPad Prism. 

3.15. Study approval 

Cryopreserved PBMCs from 15 healthy donors were used in this study. Informed consent 

was obtained from each donor, and the study protocol was approved by the local ethics committee 

of the University Hospital Dusseldorf (Ethical number is NR: 2018-131-KFogU). Animal 

experiments were performed under the authorization of Landesamt für Natur, Umwelt, und 

Verbraucherschutz Nordrhein-Westfalen (LANUV) in accordance with German law for animal 

protection. 
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4. Results  

4.1. Recombinant PGRN suppresses NK cell expansion 

Although PGRN has long been investigated in central nervous system diseases, its role on 

immune cells remains unclear. In order to test whether PGRN had direct effects on NK cells, we 

exposed murine NK cells to different doses of recombinant human PGRN. Interestingly, the 

presence of PGRN reduced the IL-2-mediated expansion of NK cells in a dose-dependent manner 

(Figure 1A and B).  

To understand how PGRN suppresses NK cells expansion, the apoptosis of these NK cells 

was measured. Flow cytometry analysis revealed that PGRN treated NK cells displayed 

comparable level of cell apoptosis to untreated groups (Figure 1C), suggesting PGRN may not 

suppress NK cell expansion by inducing cell apoptosis. However, the cell cycles were disturbed 

by PGRN treatment by the observation that PGRN treatment increased the presence of NK cell in 

G0/G1 stage and reduced proportion of NK cells in S and G2/M phases (Figure 1D). The 

expression of many NK cell surface markers, including NKG2D, CD69, CD11b, CD27, CD44, 

and NKG2A/C/E, were also measured during NK cell expression with or without PGRN treatment. 

Flow cytometry analysis indicated that PGRN had no effects on the expression of NK cell surface 

molecules during NK cell expansion (Figure 1E).  

In summary, recombinant PGRN suppresses NK cell expansion but did not affect the 

expression of NK cell surface markers.  
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Figure 1. Recombinant PGRN suppresses murine NK cell expression in vitro.  

(A) NK cells isolated from mouse spleens were labeled by cell dye and then cultured with 1000 IU 

IL-2 and indicated doses of PGRN for 4 days. Flow cytometry analysis were performed in 

indicated time points; 

(B) The same experiment setting to (A), the NK cell numbers were counted at indicated time points 

(n=3); 
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(C) The same experiment setting to (A); the apoptosis of NK cells was measured at indicated time 

points by flow cytometry analysis (n=3); 

(D) The same experiment setting to (A); the cell cycle of NK cells was measured at indicated time 

points by flow cytometry analysis (n=3); 

(E) The same experiment setting to (A); the levels of NK cell surface molecules were measured at 

indicated time points by flow cytometry analysis (n=3). 

Data show mean ± s.e.m *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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4.2. PGRN limits NK-cell-mediated cytotoxicity 

To investigate the effects of PGRN on NK cell function, NK-cell-based cytotoxicity assays 

were performed (Figure 2A), suggesting that PGRN treated NK cells remain lower cytotoxic 

activity against target RMA/s cells, a MHC-class-I-deficient cell line which is widely used for NK 

cell killing assays. Indeed, the transcription levels of NK cell Granzyme B and Perforin were 

reduced after PGRN treatment (Figure 2B). As expected, both the intracellular and secreted 

Granzyme B protein levels were suppressed by PGRN incubation (Figure 2C and 2D). In addition, 

we also observed reduced Granzyme B protein levels in expanded NK cells following PGRN 

treatments (Figure 2E).  

On the basis of our in vitro observations, we stimulated NK cells harvested from splenocytes 

with the following cytokines: IL-2, IL-12, IL-15, and/or IL-18. Consistently, both the Granzyme 

B and IFN-γ levels were suppressed by treatments of recombinant PGRN (Figure 2F-2H). 

Proteolytic cleavage of PGRN by a neutrophil-derived elastase gives rise to smaller peptide 

fragments, termed as Granulins (561). We wondered whether Granulin would have similar effects 

on NK cells. Interestingly, the suppressive effects on NK cell Granzyme B expression disappeared 

following the treatments with elastase-digested PGRN (Figure 2I and 2J), suggesting that PGRN 

but not Granulins contains the suppressive effects on NK cell cytotoxicity.  

Taken together, we conclude PGRN suppresses both NK cell expansion and NK cell cytotoxic 

activity.  
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Figure 2. Recombinant PGRN suppresses murine NK cell cytotoxicity in vitro.  

(A) NK cells isolated from mouse spleens were cultured with 1000 IU IL-2 and100 μg/ml PGRN for 4 

days. These NK cells were then mixed with RMA/s cell at the indicated effector-to-target ratios for 

18 hours. The cell viability of RMA/s cells was measured by flow cytometry with 7-AAD staining 

(n=5); 

(B) Granzyme B and perforin mRNAs in PGRN treated NK cells were measured by q-PCR (n=6); 

(C) The Granzyme B protein levels in supernatant from the PGRN treated NK cells were measured by 

ELISA (n=12); 

(D) The intracellular Granzyme B protein levels in PGRN treated NK cells were measured by flow 

cytometry analysis (n=16); 

(E) NK cells were firstly expanded by IL-2 for 4 days. Then these NK cells were subjected to PGRN 

treatment for 24 hours, the intracellular Granzyme B protein levels were measured by flow 

cytometry (n=12). 

(F) NK cells from mouse splenocytes were activated with IL-2 and IL-15 with or without 25 μg/ml 

PGRN overnight. These cells were then subjected to flow cytometry analysis for Granzyme B 

expression in NK cells (n=5); 

(G) NK cells from mouse splenocytes were incubated with IL-2, 12, 18 with or without 25 μg/ml PGRN 

for 6 hours. Flow cytometry analysis were performed for Granzyme B measurement (n=10); 

(H) NK cells from mouse splenocytes were incubated with IL-2, 12, 18 with or without 25 μg/ml PGRN 

for 6 hours. Flow cytometry analysis were performed for IFN-γ measurement (n=10); 

(I) Recombinant PGRN was digested with elastase. The efficiency of elastase disgestion was 

confirmed by western blot; 

(J) NK cells from mouse splenocytes were activated with PGRN or the products from elastase treated 

PGRN. Flow cytometry analysis were performed for Granzyme B and IFN-γ measurement (n=4); 

Data show mean ± s.e.m *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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4.3. Recombinant PGRN limits human NK cell cytotoxicity 

In order to extensively confirm the results that we obtained from the murine NK cell, we 

measured the effects of PGRN on human NK cells as well.  

As expected, we observed a significant reduction in degranulation of total and CD56dim NK 

cells response to HLA-devoid cells K562 and 721.221 in the presence of PGRN (Figure 3A and 

3B). Additionally, IFN-γ levels in human NK cells were also reduced following exposure to PGRN 

in response to K562 and 721.221 cells (Figure 3C and 3D).  

In summary, these results indicate that recombinant PGRN suppresses human NK cell 

cytotoxic activity by limiting the expression of effector molecules as well.  
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Figure 3. Recombinant PGRN suppresses human NK cell cytotoxic activity.  

PBMCs from healthy donors were pretreated with 100 μg/ml overnight and then stimulated 

with K562 or 721.221 cell for 5 hours at an effector-to-target ratio at 1:10. 

(A) CD107a levels in total CD56+ NK cells were measured by flow cytometry analysis (n=15); 

(B) CD107a levels in CD56dim NK cells were measured by flow cytometry analysis (n=15); 

(C) IFN-γ levels in total CD56+ NK were measured by flow cytometry analysis (n=15); 

(D) IFN-γ levels in CD56dim NK cells were measured by flow cytometry analysis (n=15); 

Data show mean ± s.e.m *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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4.4. Perforin and TNF receptors are dispensable for PGRN-mediated NK cell 

suppression 

Next, we explored the mechanism by which PGRN might limit NK cell cytotoxicity. NK cells 

can be self-regulated through cytotoxicity-mediated fratricide, which itself is triggered by the 

critical effector molecules perforin (561, 574).  

Therefore, NK cells from Prf1-/- mice were used for in vitro expansion with different doses of 

PGRN. Interestingly, Prf1-/- NK cell expansion was still repressed by PGRN (Figure 4 A), 

suggesting that cytotoxicity-mediated fratricide was not the reason why NK cells were repressed 

by PGRN.  

TNF receptors had been reported to be the receptors of PGRN (526). However, Granzyme B 

levels in NK cells from Tnfrsf1a-/- and Tnfrsf1b-/- mice were suppressed by PGRN during IL-2-

induced NK cell activation (Figure 4B).  

Taken together, these results indicate that NK cell fratricide and TNF receptors are 

dispensable for PGRN-mediated NK cell suppression.  
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Figure 4. Perforin and TNF receptors are dispensable to PGRN-mediated NK cell 

suppression.  

(A) Freshly isolated NK cells from WT and Prf1-/- mice were treated with IL-2 and different doses of 

PGRN for 4 days (n=3). The NK cell numbers were measured at the end timepoint, Graphs 

illustrate a normalized value: (NK cell number in presence of PGRN) / (NK cell number in 

absence of PGRN); 

(B) Splenocytes from Tnfrsf1a-/- and Tnfrsf1b-/- mice were activated with IL-2 and 25μg/ml PGRN for 

6 hours. The levels of Granzyme B in NK cells were measured by flow cytometry analysis (n=5); 

Data show mean ± s.e.m *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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4.5. PGRN decreases Cyclin T1 and CDK9 expression in NK cells 

We therefore wondered whether transcription factors regulating Granzyme B expression 

could be affected following PGRN treatment. It had been previously shown that PGRN could bind 

to the positive transcription elongation factor b (P-TEFb), which consists of Cyclin T1 and CDK9 

(566). Knockdown of CDK9 and cyclin T1 results in the inhibition of T cell effector function 

attributable to the reduced expression of Perforin and Granzyme B (566). We wondered whether 

the same connection linking PGRN and CDK9/Cylclin T1 in T cells would also be applicable to 

NK cells. 

Firstly, we treated NK cell cultures with SNS-032, a cyclin T1/CDK9 inhibitor, and found 

that Granzyme B expression in NK cell cultures was blocked (Figure 5A). We wondered whether 

PGRN was taken up by the NK cells. This was confirmed by using immunoblot analysis of lysates 

from PGRN treated NK cells (Figure 5B). Furthermore, in the presence of PGRN, there was a 

significant reduction of Cdk9 mRNA levels in NK cells compared with the control conditions 

(Figure 5C), which was corroborated on a protein level using immunoblot analysis (Figure 5D). 

CDK9 cooperates with cyclin T1 to induce transcription (575), and we also found reduced protein 

levels of Cyclin T1 following treatment of NK cells with PGRN (Figure 3D). The reduction of 

cyclin T1 protein levels following incubation with PGRN was further confirmed by flow cytometry 

(Figure 5E) and immunofluorescence analyses (Figure 5F).  

It has been previously reported that IL-2 promotes RNA polymerase II recruitment to the 

promoter of IL-2-induced genes (576). A histidine-rich domain in Cyclin T1 promotes 

phosphorylation of the C-terminal domain of RNA polymerase II (566, 577), which can be 

prevented by PGRN. Reduced phosphorylation (pSer2) of RNA polymerase II was indeed detected 

in NK cells during PGRN treatment (Figure 5G).  
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These above data indicate that PGRN limits the expression of key transcription factors CDK9 

and cyclin T1, which are, in turn, critical for the transcription of NK cell effector molecules. 

 

Figure 5. PGRN decreases Cyclin T1 and CDK9 expression to modulate NK cell cytotoxicity.  

(A) Splenocytes were treated with 1000 U/ml IL-2 and the Cyclin T1/CDK9 inhibitor SNS-032 for 6 

hours (concentration as indicated). Granzyme B levels were measured by flow cytometry (n=4). 

The left panel represents the frequency of Granzyme B in NK cells, and the right panel represents 

the Granzyme B MFI in NK cells; 

(B) The uptake of PGRN in NK cells were measured by western blot (n=4), the right panel represents 

the quantification of western blot data; 
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(C) Cyclin T1 and CDK9 mRNA levels were examined by q-PCR (n=6); 

(D) Cyclin T1 and CDK9 protein levels were measured by western blotting (n=7), the middle and 

right panel represent Cyclin T1 and CDK9 quantification data; 

(E) Cyclin T1 protein levels were measured by flow cytometry at day 3 after treatment with IL-2 and 

PGRN (n=6); the right panel represents the quantification of Cyclin T1 MFI; 

(F) Cyclin T1 protein levels were examined by immunofluorescence (n=3), the right panel represents 

the quantification of Cyclin T1 by the ratio of Cyclin T1 to DAPI, Scale bars: 20µm; 

(G) The phosphor-Ser2 RNA polymerase II frequency (pSer2-RII, upper panel) and MFI (lower panel) 

were measured by flow cytometry analysis at indicated time points after treatments with IL-2 and 

PGRN; 

Data show mean ± s.e.m *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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4.6. IFN-I triggers mouse PGRN expression during LCMV infection 

PGRN can be produced by macrophages, microglia, and endothelial cells in response to 

inflammatory stimuli and/or tissue damage (523). We wondered about the effects of PGRN during 

viral infection. To address this, we used the murine LCMV infection model, which is commonly 

used to study T cell-mediated immunity.  

Firstly, PGRN mRNA levels were significantly induced by LCMV infections (Figure 6A). 

As expected, serum PGRN protein levels were elevated as well when compared with uninfected 

controls (Figure 6B). To investigate which cell types might be a source of PGRN, we analyzed 

serum PGRN levels in mice deficient for different immune subsets after LCMV infection. We did 

not find a reduction of PGRN levels in the absence of B cells and T cells (Rag1–/– mice), CD11c+ 

(CD11c-DTR), and CD169+ cells (CD169 diphtheria toxin receptor mice; CD169-DTR) after 

LCMV infection (Figure 6C-6E). However, serum PGRN levels were decreased following 

treatment with the phagocyte-depleting compound clodronate during LCMV infection (Figure 6F). 

As the reduction of PGRN was not complete compared to its basal levels, this indicates that cell 

types other than macrophages also contribute to PGRN secretion. Consistently, we observed 

comparable PGRN levels in lethally irradiated WT mice reconstituted with either control or Grn-

/– bone marrow (BM) cells following LCMV infection (Figure 6G). This result indicates that cell 

subsets other than immune cells can also produce PGRN during LCMV infection. 

Next, we wondered how PGRN secretion was triggered following infection. Early antiviral 

defense highly depends on the level of IFN-Is (356). Therefore, we speculated that innate IFN-I 

might trigger PGRN secretion. When BM-derived macrophages (BMDMs) were infected with 

LCMV in vitro, we observed increased secretion of PGRN in the supernatants (Figure 6H). As 

expected, in IFN-I binding receptor-deficient (Ifnar1–/–) BMDMs, PGRN secretion was not 
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elevated and supernatant PGRN levels were similar to the naive conditions (Figure 4H). When 

Ifnar1–/– mice were infected with LCMV, we observed a reduction of Grn mRNA levels in spleen 

tissues when compared with WT control groups (Figure 6I). Furthermore, we observed no serum 

PGRN increase in Ifnar1–/– mice following infection of LCMV (Figure 6J), suggesting a key role 

of IFN-I in PGRN production.  

Taken together, these data demonstrate a striking increase in PGRN secretion during LCMV 

infection, which was dependent on IFN-I signaling. 
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Figure 6. IFN-I triggers PGRN expression during viral infection.  

WT mice were infected with 2.0*10^6 pfu LCMV-WE. 

(A) Grn mRNA levels in spleens were measured by q-PCR (n=6); 

(B) Serum PGRN levels were measured by ELISA in naïve or virus infected (day 1) mice (n=6); 
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(C) WT and Rag1-/- mice were infected with 2*10^6 LCMV-WE. Serum PGRN levels were measured 

by ELISA at day 1 post infection (n=3); 

(D) WT and CD169-DTR mice were injected with Diphtheria toxin (DT, 100 ng/mice) at day -2 and 

then these animals were subjected to LCMV-WE infection. Serum PGRN levels were measured 

by ELISA at day 1 post infection (n=3); 

(E) WT and CD11c-DTR mice were injected with Diphtheria toxin (DT, 100 ng/mice) at day -2 and 

then these animals were subjected to LCMV-WE infection. Serum PGRN levels were measured 

by ELISA at day 1 post infection (n=3); 

(F) Clodronate treated mice (day -1 injection) were infected with LCMV-WE. Serum PGRN levels 

were measured by ELISA at day 1 post infection (n=7); 

(G) WT and Ifnar1-/- mice were infected with LCMV-WE. Serum PGRN levels were examined by 

ELISA at day 1 post infection (n=6); 

(H) Grn mRNA levels in LCMV-WE infected WT and Ifnar1-/- spleens were examined by q-PCR (n=3);  

(I) Serum PGRN levels in LCMV-WE infected WT and Ifnar1-/- mice were measured by ELISA (n=6); 

Data show mean ± s.e.m *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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4.7. PGRN is dispensable for T cell development 

It has been reported that PGRN may promote regulatory T cell development (578-580). This 

promoted us to ask whether PGRN governed the fate of other T cell subsets.  

To address this question, the development of T cells in peripheral lymphoid organs was 

determined by flow cytometry. However, PGRN-deficient mice (Grn-/-) displayed comparable 

CD8+ and CD4+ T cell differentiation when compared to PGRN competent mice (Figure 7A and 

7B).  

These results demonstrate that PGRN may not directly modulate T cell development.  
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Figure 7. Naïve Grn-/- mice exhibit no gross T cell development phenotype.  

(A) CD4+ T cell number (upper panel) and CD8+ T cell number (lower panel) were measured by 

flow cytometry analysis in indicated tissues from WT or Grn-/- mice were (n=7); 

(B) The frequency of CD4+ T cells (upper panel) and CD8+ T cells (lower panel) were measured in 

indicated tissues from WT or Grn-/- mice (n=7); 

Data show mean ± s.e.m *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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4.8. T cell immunity is blunted by PGRN deficiency during LCMV infection 

To address whether PGRN regulate T cell function during viral infections, antiviral T cell 

responses were determined in WT and Grn-/- mice following LCMV-WE infection. 

Strikingly, Grn-/- mice showed a reduced presence of antiviral CD8+ T cells when compared 

with corresponding control animals (Figure 8A). Consistently, we observed increased expression 

of PD-1 on antiviral (gp33-H2-Db-tetramer+) T cells from Grn-/- mice, which is associated with T 

cell exhaustion (Figure 8B). Furthermore, when we restimulated splenocytes with LCMV gp33 

peptides, we observed reduced IFN-γ+CD8+ T cells from Grn-/- mice compared with controls 

(Figure 8C). Control and clearance of LCMV depends on antiviral CD8+ T cell immunity, and as 

expected, increased LCMV titers were detected in Grn-/- mice (Figure 8D), suggesting the 

dysfunction of antiviral immunity in Grn-/- mice.  

In addition, the levels of LCMV nuclear protein-positive (LCMV-NP+) cells in sections of 

snap-frozen liver tissue harvested from Grn-/- mice were increased when compared with control 

animals (Figure 8E). Hepatic replication of LCMV can result in T cell-mediated liver damage 

(581). The enzyme alanine aminotransferase (ALT) activity in the serum of LCMV-infected Grn-

/- animals was markedly increased compared with control animals, suggesting that liver pathology 

was increased in absence of PGRN (Figure 8F). In addition, when we treated WT mice with 

recombinant PGRN throughout LCMV infection, we observed enhanced antiviral CD8+ T cell 

immunity (Figure 8G–8I).  

Taken together, we conclude that PGRN deficiency represses anti-viral CD8+ T cell immunity, 

resulting in virus persistence in Grn-/- mice. 
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Figure 8. LCMV virus persists in Grn-/- mice by impaired anti-viral CD8+ T cell immunity. 

WT and Grn–/– mice were infected with 2*10^6 pfu LCMV-WE. 

(A) Absolute numbers of antiviral CD8+ T cells in the blood were determined by flow cytometry 

analysis at the indicated time points during LCMV-WE infection (n=7-10); 

(B) T cell exhaustion levels on antiviral CD8+ T cells were measured by flow cytometry; 

(C) At the end time point, the splenocytes were re-stimulated with LCMV-gp33 peptides for 6 hours, 

IFN-γ+ CD8+ T cells were determined by flow cytometry (n=7-10), n.c. indicates no gp33 

stimulation group; 

(D) Plaque assays were performed for measuring LCMV-WE virus titer in indicated organs at day 

12 post infection (n=7-10); 

(E) Sections of snap-frozen liver tissues from WT and Grn-/- mice were analyzed for LCMV-NP 

levels (n=6), the right panel represents the quantification of LCMV-NP+ signals, scale bars: 

50µm; 

(F) The activity of ALT in WT and Grn-/- serum was measured at the indicated time points after 

infection (n=6); 

(G) The schedule of the administration of recombinant PGRN in WT mice and the blood anti-viral 

CD8+ T cell responses in indicated time points are determined (n=7-10); 

(H) The absolute numbers of antiviral CD8+ T cells in spleen tissues is shown (n=7-10); 

(I) IFN-γ+ CD8+ T cells were determined by flow cytometry at day 8 post infection (n=7-10), n.c. 

indicates no adding of peptides;  

Data show mean ± s.e.m *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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4.9. LCMV replication remains intact in presence of PGRN 

Since the virus persists in mice, we speculated that PGRN might exert direct antiviral effects.  

The replications of LCMV virus were performed with or without PGRN in different cell lines. 

However, when N2a neuroblastoma, Vero, or L929 cells were exposed to different dose of PGRN, 

we did not observe any correlations between PGRN and LCMV replication (Figure 9A-9C).  

These results indicated that PGRN may have no impacts on LCMV replication in vitro.  
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Figure 9. LCMV virus persists in Grn-/- mice by impairing anti-viral CD8+ T cell immunity. 

(A) N2a neuroblastoma cells were cultured with indicated dose of PGRN and infected with indicated 

dose of LCMV-WE. The virus titer in the supernatants was determined by plaque assays (n=3); 

(B) Vero cells were cultured with indicated dose of PGRN and infected with the indicated dose of 

LCMV-WE. The virus titer in the supernatants were determined by plaque assays (n=3); 

(C) L929 cells were cultured with an indicated dose of PGRN and infected with a indicated dose of 

LCMV-WE. The virus titer in the supernatants was determined by plaque assays (n=3); 

Data show mean ± s.e.m *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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4.10. PGRN extrinsically regulates anti-viral T cell immunity 

Next, we examined whether the observed defective T cell immunity following LCMV 

infection in Grn–/– mice was caused by T cell intrinsic effects. We adoptively transferred negatively 

sorted CD8+ T cells, from a mouse carrying a TCR recognizing the LCMV antigen gp33 (P14 cells) 

(582), to Grn–/– and control mice. We found reduced expansion of P14 cells in Grn–/– hosts 

following LCMV infection when compared with control hosts (Figure 10A). Moreover, LCMV 

virus still persists in Grn–/– hosts even after P14 cells were transferred, whereas virus in WT hosts 

was eliminated (Figure 10B).  

ALT and aspartate aminotransferase (AST) activities keep in higher levels in Grn–/– hosts 

than control hosts (Figure 10C). Furthermore, upregulation of α-SMA, a liver fibrosis marker, in 

Grn–/– liver tissue sections were observed, when compared with control mice (Figure 10D).  

These results demonstrated that PGRN deficiency might extrinsically suppress antiviral CD8+ 

T cell responses that result in the persistence of LCMV. 
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Figure 10. PGRN extrinsically regulates antiviral CD8+ T cell immunity in LCMV infection. 

3000 negatively sorted P14 cells (TCR transgenic T cell recognizing LCMV-gp33 epitope) were 

transferred into WT and Grn-/- mice and then following LCMV-WE infection of the mice. 

(A) The absolute numbers of P14+ cells in blood was measured at the indicated time points after 

infection (n=6); 

(B) Plaque assays were performed for testing the virus titer in indicated organs (n=6); 

(C) Serum ALT and AST activities were examined at the indicated time points after infection (n=6), 

the right panel represents AST activity, the left panel represents ALT activity; 

(D) Sections of snap-frozen liver tissues (day 12 post infection) were stained with α-SMA antibodies 

(n=3), right panel indicates quantification of fluorescence intensity, scale bars: 100 µm; 

Data show mean ± s.e.m *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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4.11. PGRN is dispensable for T cell activation in vitro 

Next, we wondered whether PGRN affected T cell activation. Stimulation of WT CD8+ T 

cells with anti-CD3/anti-CD28 antibodies or PMA/ionomycin in the presence or absence of PGRN 

did not affect proliferation or activation of CD8+ T cells (Figure 11A and 11B). To further 

investigate the effects of PGRN on T cells, purified CD8+ T cells were activated with anti-

CD3/anti-CD28 antibodies and recombinant PGRN for 24 hours. Flow cytometry analysis showed 

that PGRN had no effects on apoptosis of CD8+ T cells (Figure 11C). Additionally, PGRN also 

had no effects on IFN-γ expression of CD8+ T cells in the absence or presence of PGRN, when 

splenocytes from LCMV-infected mice were rechallenged with gp33 peptides (Figure 11D).  

These results indicate that PGRN may not directly regulate T cell expansion and activation. 
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Figure 11. PGRN has no effects on T cell activation and proliferation. 

(A) Purified CD8+ T cells were labeled with CFSE and then stimulated with anti-CD3/CD28 in the 

presence of indicated doses of PGRN in vitro. Flow cytometry was performed at the indicated time 

points (n=3); 

(B) Splenocytes from WT mice were stimulated with PMA/Ionomycin for 6 hours. IFN-γ+ cells were 

determined by flow cytometry (n=5);  

(C) Naïve CD8+ T cells were activated with anti-CD3/CD28 antibodies for 24 hours with PGRN. The 

cell apoptosis was determined by flow cytometry (n=6); 

(D) Splenocytes from LCMV infected WT mice were restimulated with gp-33 peptides and PGRN for 

6 hours, the IFN-γ+ CD8+ cells were determined by flow cytometry (n=6); 

Data show mean ± s.e.m *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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4.12. PGRN is dispensable for NK cell development 

While PGRN had a direct NK cell inhibitory activity in vitro, absence of PGRN in vivo 

resulted in reducing T cell activity following infection. We therefore speculated that NK cells in 

Grn–/– mice limited antiviral T cells during LCMV infection, which could contribute to 

establishment of a persistent viral infection (497-499).  

We first examined the development of NK cell and innate lymphoid cells (ILCs) in naive 

animals. Grn–/– mice had the same amount of the NK cell precursors as control mice (Figure 12A). 

Absolute numbers of both NK cell and ILC subsets were comparable between naive control and 

naïve Grn–/– mice (Figure 12B and 12C). The surface receptor expression on NK cells from 

different organs was also similar in both groups before infection (Figure 12D).  

Taken together, the development of NK cells may not be affected in Grn–/– mice. 
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Figure 12. PGRN is dispensable for NK cell differentiation. 

(A) Absolute numbers of NK cell progenitor preNKP (Lin-2B4+CD27+CD127+CD122-Flt3-) and 

rNKP (Lin-2B4+CD27+CD127+CD122+Flt3-) were measured by flow cytometry in bone marrow 

(BM) samples from control and Grn-/- mice (n=3); 

(B) CD3e-NK1.1+ cells in indicated organs were examined in Grn-/- and control mice (n=6); 

(C) ILC1 (Lin-NK1.1+RORγT-Eomes-), ILC2 (Lin-NK1.1-RORγT-CD11b-GATA-3+), ILC3 (Lin-

RORγT+CD4-) and LTi (Lin-RORγT+CD4+) subsets were measured by flow cytometry in organs 

harvested from naive control and Grn-/- mice as indicated. Gating strategy excluded dead and Lin 

(CD3, CD5, CD8, CD19, Ly-6G, TCR, and FcγR1) cells (n=6); 

(D) Inhibitory and activating receptors of CD3e-NK1.1+ cells in the blood and peripheral lymphoid 

organs as indicated were examined in naive control and Grn-/- mice (n=6); 

Data show mean ± s.e.m *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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4.13. PGRN is dispensable for NK cell surface receptors expression 

In addition, NK cell numbers and surface NK cell receptor expression changed in a similar 

way in control and Grn–/– mice following LCMV infection (Figure 13A and 13B). NK cells from 

Grn–/– and control splenocytes showed comparable Granzyme B and IFN-γ production following 

NK cell stimulation during cytokine-induced activation (Figure 13C and 13D). These data suggest 

that NK cell development was not dependent on PGRN.  

As PGRN can be produced in vitro by macrophages following LCMV infection, we mixed 

naive WT NK cells with LCMV-infected BMDMs from control and Grn–/– mice. CD27+CD11b+ 

NK cells have been shown to exhibit highly cytotoxic effects to RMA/s cells, whereas CD27–

CD11b+ NK cells only displayed background levels of cytotoxicity in this setting (447). Following 

exposure of LCMV-infected Grn–/– BMDMs, we observed an increased presence of 

CD27+CD11b+ NK cells compared with control BMDMs (Figure 13E). 
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Figure 13. PGRN is dispensable for NK cell functional receptors expression during LCMV 

infection. 

(A) Control and Grn-/- mice were infected with LCMV-WE. Absolute numbers of NK cells in indicated 

organs were determined by flow cytometry (n=4); 

(B) NK cell surface receptors were measured by flow cytometry (n=4); 

(C) Grn-/- splenocytes were activated with different cytokines for 6 hours. Granzyme B+ NK cells were 

measured by flow cytometry (n=4); 

(D) Grn-/- splenocytes were activated with different cytokines for 6 hours. IFN-γ+ NK cells were 

measured by flow cytometry (n=4); 

(E) BMDM cells were infected with LCMV for 24 hours and isolated naïve purified WT NK cells were 

added to the cultures for another 24 hours. The maturation of these NK cell was measured by flow 

cytometry (n=6);  

Data show mean ± s.e.m *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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4.14. PGRN deficiency results in excessive NK cell-mediated regulation of 

antiviral T cell responses 

Although the surface receptors expression on NK cells in Grn–/– mice is comparable to WT 

NK cells, the cytotoxic activity of these NK cells remains unknown. To address this question, we 

next measured the cytotoxic activity of NK cells during LCMV infection. 

Interestingly, re-challenge of LCMV-infected splenic NK cells with RMA/s cells induced 

more IFN-γ+ NK cells in the Grn-/- group (Figure 14A). Notably, NK cell-mediated killing was 

enhanced as well in ex vivo assays using splenocytes harvested from LCMV-infected Grn–/– mice 

compared with controls (Figure 14B). Consistently, NK cell mediated in vivo anti-viral T cell lysis 

was enhanced in Grn-/- mice concluded by the more severe apoptotic phenotype of P14+ cells in 

Grn-/- mice at day 1 after infection than that in WT hosts (Figure 14C).  

As expected, antiviral CD8+ T cell immunity in Grn–/– mice was restored when we depleted 

NK cells prior to LCMV infection (Figure 14D). Consequently, NK cell-depleted Grn–/– mice had 

more splenic CD8+ IFN-γ+ T cells following gp33 re-stimulation than that in WT mice (Figure 

14E). In addition, virus was eliminated at day 12 after infection following NK cell depletion in 

Grn–/– mice, in sharp contrast with NK cell-competent Grn–/– mice, which showed high LCMV 

titers (Figure 14F). Furthermore, when we analyzed LCMV-NP expression in liver tissue, we 

found enhanced LCMV-NP expression in Grn–/– mice but reduced expression in NK cell-depleted 

Grn–/– mice (Figure 7G). At this time point, liver enzymes (AST/ALT; Figure 14H), as well as α-

SMA expression (Figure 14I), was markedly reduced in the absence of NK cells in Grn–/– animals.  

Taken together, we conclude that PGRN reduces cytotoxic NK cell activity and, as a 

consequence, increases antiviral T cell immunity, resulting in clearance of LCMV. 
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Figure 14. NK cell depletion restores defective T cell immunity in Grn-/- mice. 

(A) WT and Grn-/- mice were infected with LCMV-WE. Splenocytes were mixed with RMA/s cells for 

16 hours. IFN-γ+ NK cells were measured by flow cytometry (n=8-15); 

(B) Splenic NK cell mediated killing to RMA/s cells was determined by mixing LCMV infected 

splenocytes with RMA/s cells at indicated effector-to-target ratio for 18 hours (n=12-14); 

(C) WT and Grn-/- mice were transferred with 10^6 P14+ cells, following LCMV infection. The 

frequency (left) and absolute cell numbers of apoptotic P14+ cells were determined at day 2 after 

infection (n=5-6); 

(D) WT and Grn-/- mice were treated with anti-NK1.1 antibody at day -1 followed by LCMV infection. 

Antiviral CD8+ T cells in the blood were measured by flow cytometry at indicated time points 

(n=5-8, * represents the statistical analysis between WT and Grn-/- groups); 

(E) Splenic IFN-γ+CD8+ T cells were determined by incubation of gp33 peptides for 6 hours (n=8-9), 

n.c. represents no adding of gp33; 

(F) Virus titers were measured in indicated organs by plaque assay (n=8-9); 

(G) Sections of snap-frozen liver organs were analyzed for LCMV-NP levels (n=6-8), right panel 

indicates quantification of fluorescence intensity. Scale bars: 50µm; 

(H) Serum AST (left) and ALT (right) activities were determined at day 8 after LCMV infection (n=4-

5); 

(I) Sections of snap-frozen liver organs were analyzed for alpha-SMA levels (n=6-8), right panel 

indicates quantification of fluorescence intensity. Scale bars: 50µm; 

Data show mean ± s.e.m *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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5. Discussion 

In this study, we showed that PGRN limited NK cell cytotoxicity through suppressing cyclin 

T1 and CDK9 expression in NK cells. Grn–/– mice exhibited increased NK cell-mediated 

regulation of antiviral T cells during LCMV infection, which was associated with prolonged 

LCMV infection. In turn, NK cell depletion rescued defective T cell immunity and prevented viral 

persistence in Grn–/– mice during infection with LCMV, suggesting its protective role for antiviral 

immunity. 

PGRN is widely expressed in mammalian cells, including immune cells and non-immune 

cells (583, 584). It is also highly expressed in several disease conditions, such as cancers (510, 

585), and bacterial infections (586, 587). In our study, we found that viral infections also lead to 

increased levels of serum PGRN in the early stages after infections, suggesting that PGRN may 

have roles in defence againist viral infection. Furthermore, when we transferred the bone marrow 

cells isolated from Grn-/- mice to the WT irradiated hosts, serum PGRN still showed very high 

levels after LCMV infection, suggesting non-immune cells might also be a big source of PGRN 

during viral infections. Consistently, the gastric epithelial cells alone could express PGRN during 

direct contact to bacteria (549, 563), suggesting epithelial cell-intrinsic pathways are also involved 

in PGRN production.  

Many types of cell surface molecules act as inducers of PGRN in mammalian cells. A series 

of TLRs had been reported to be the determinant of PGRN production during cecal ligation 

puncture (CLP)-induced sepsis, whereas IFNAR deficient mice displayed comparable levels of 

PGRN to control mice (587). In our study, PGRN levels were blocked in Ifnar1-/- mice during viral 

infection, suggesting IFN-I might be the determinant of PGRN induction in viral infection models. 

Tissue-resident macrophages were the main immune cell source of PGRN during cancer and 
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bacterial infections (552, 588). Consistently, depletion of macrophages with clodronate eliminated 

PGRN production during LCMV infection, whereas the deletion of dendritic cells or CD169+ cells 

revealed comparable PGRN levels to their controls, suggesting macrophages might be the main 

source to PGRN in viral infection models.  

Many membrane-expressing molecules were identified to be the receptors of PGRN in both 

immune cells and non-immune cells. Granulins, but not PGRN, act as a soluble cofactor for TLR9 

signals by directly interacting with CpG (564). We also observed reduced IFN-I production in Grn-

/- mice after both LCMV and VSV infection (data not shown here). It may suggest that PGRN or 

Granulins act as a co-sensor or co-receptor to viral RNA.  

Sortilin was also identified to be the surface receptors for PGRN with the observations that 

sortilin deficiency resulted in reduced PGRN binding in neurons (525). In addition, sortilin had 

also been reported to modulate the trafficking of IFN-γ and Granzymes in NK cells, with the 

observations that sortilin deficiency resulted in enhanced NK cell cytotoxic activity (589). These 

findings prompted us to suspect that sortilin might be the functional receptor of PGRN on NK cells. 

However, sortilin-/- NK cells expansion and Granzyme B expression were still suppressed by 

PGRN in vitro (data not shown here), indicating that sortilin may not be the only functional PGRN 

receptor on NK cells.  

Furthermore, EphA2 has also been reported to be another receptor of PGRN (532). 

Interestingly, EphA2 had also been reported to modulate the NK cell phenotype in patients, with 

the observations that treatments of solid tumor patients with EphA2 antibodies resulted in inducing 

activated NK cells in a dose-dependent manner (590). These studies may highly suggest that 

EphA2 may act as the functional receptor of PGRN on NK cells.  
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Furthermore, PGRN can competently bind to TNFRs and therefore resolves TNF signals to 

protect arthritis (526). However, two other papers showed that PGRN didn’t inhibit TNF signalling 

through TNF receptors (527, 528), suggesting that PGRN may indirectly interact with TNFRs. In 

this study, TNFR deficient NK cells still can be suppressed by PGRN with the lower Granzyme B 

levels in our case, suggesting that TNFRs may not be the direct receptors of PGRN on NK cells. 

The functional receptors of PGRN on NK cells remain unclear in this study. 

As discussed above, PGRN is highly expressed in many types of cancers. Numerous 

biological processes for tumor development were affected by PGRN, including promoting cancer 

cell growth (524), invasion (591), and avoiding cell lysis from NK cells (542, 592). Consistently, 

incubation with PGRN in cell cultures resulted in suppressed NK expansion by impairing the NK 

cell cycles. After the binding or uptake of PGRN to cells, the intracellular signals were activated. 

PGRN biological responses trigger phosphorylation of Akt, Erk1/2, and MAPK pathways (593, 

594). However, the activation of Akt or MAPK signalling pathways result into enhanced NK cell 

activity (595), which is opposite to our phenotype that NK cells were suppressed by PGRN 

treatment, suggesting the Akt and MAPK signalling pathway may not be involved in PGRN 

induced NK cell suppression. Once PGRN was secreted into the extracellular space, the PGRN 

can either be cleavaged into granulins by extracellular proteases (561, 596) or taken up into cells 

via co-factors or transmembrane receptors (597). Intracellular PGRN or granulins had been 

reported to interact with the Cyclin T1 (567, 568). CDK9 and Cyclin T1 are the main components 

of the global transcription elongation factor which termed as the positive transcription elongation 

factor b (P-TEFb) (598). It will phosphorylate the C terminal domain of RNA polymerase II 

(RNAPII) and promote the effective elongation of target gene transcription (599, 600). In this 

study, both Cyclin T1 and CDK9 protein levels were reduced in NK cells following PGRN 



96 

 

incubation, suggesting PGRN had a suppressive role to P-TEFb levels in NK cells. Consequently, 

the phosphorylation of RNA polymerase II was repressed in NK cells during PGRN treatments, 

which results in reduced Granzyme B and IFN-γ expression. Consistently, Cyclin T1 and CDK9 

promote CD8+ T cell function, since knockdown of Cyclin T1 or CDK9 suppresses T cell 

Granzyme B and Perforin expression (601). It is known that enhanced IL-2R signalling, leading  

to induced perforin expression by T cells, is correlated with dramatic recruitment of RNA 

polymerase II (576), which may give an explanation to the question why just cytotoxic molecules 

were suppressed but the cell surface receptors showed comparable levels to the PGRN untreated 

group during IL-2-mediated NK cell expansion in this study.  

Since its initial discovery, PGRN has been implicated to be a pro-inflammatory secreted 

molecule in a variety of diseases including autoimmunity (602), inflammation and infectious 

diseases (553). Serum PGRN levels were always increased in these disease conditions, whereas 

PGRN deficient mice exhibited a more severe disease phenotype than WT controls (602). 

Consistently, PGRN deficiency leads to LCMV virus persistance by reducing the antiviral T cell 

immunity. These results prompted us to ask whether PGRN has a direct impact on antiviral T cells. 

It is known that PGRN promotes differentiation of regulatory T cells (526, 578) and Th17 cells 

(603). In this study, we notified both CD4+ and CD8+ T cells showed comparable levels in Grn-/- 

mice to their controls in all peripheral lymphoid organs, suggesting that PGRN may not directly 

influence CD8+ T cell development. In addition, enhanced NK cell activity was also observed by 

the results that Grn-/- NK cells displayed higher cytotoxic activity and higher IFN-γ levels to 

RMA/s cells than NK cells from WT mice after LCMV infection. NK cells act as an important 

regulatory cell type to adaptive immunity by directly regulating T cells during viral infections (499, 

507). These previous findings prompted us to suspect that the reduced antiviral T cell immunity 
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was mediated by NK cell in Grn-/- mice. As expected, the reduced antiviral T cell responses were 

rescued by NK cells depletion in Grn-/- mice, leading to faster pathogen elimination. Type I 

interferons could induce a variety of inhibitory NK cell ligands and also MHC-I molecules on 

antiviral T cells to protect them against cytotoxicity (364, 365). In this study, we didn’t observe 

any MHC-I difference on antiviral CD8+ T cells between WT and Grn-/- mice after LCMV 

infection, suggesting PGRN may not modulate T cell MHC-I expression to avoid NK cell 

cytotoxicity.  

In summary, we demonstrated that macrophage-derived PGRN played a suppressive role to 

NK cell-mediated antiviral T cell lysis.  
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