The role of the lysine-specific demethylase 1 during oligodendrocyte differentiation and its novel function in nuclear redox signaling

Inaugural-Dissertation

zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Thomas Hildebrandt

aus Göttingen

Düsseldorf, September 2020

Aus der Klinik für Neurologie der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Berichterstatter:
1. Univ.-Prof. Dr. Orhan Aktas
(Klinik für Neurologie der Heinrich-Heine-Universität Düsseldorf)
2. Univ.-Prof. Dr. Andreas Reichert
(Institut für Biochemie und Molekularbiologie I der Heinrich-Heine-Universität Düsseldorf)

Tag der mündlichen Prüfung: 31.03.2021

I I	DECL	ARATION	V
П	ACKN	IOWLEDGEMENT	VI
Ш	ABST	RACT	VIII
IV/	71154	MMENEASSUNG	IX
IV	ZUSA		·····IA
V	LIST (OF ABBREVIATIONS	X
VI	LIST (OF FIGURES	XIII
VII	LIST (OF TABLES	XVI
1	INTR	ODUCTION	1
1.	1 Olig	ODENDROCYTE DEVELOPMENT	1
	1.1.1	Experimental models	2
	1.1.2	Oligodendrocyte differentiation	3
	1.1.3	Oligodendrocyte differentiation in the forebrain	4
	1.1.4	Oligodendrocyte differentiation in the spinal cord	5
	1.1.5	Epigenetics of oligodendrocyte development	7
	1.1.6	Lysine-specific demethylase 1	
1.	2 Redo	DX SIGNALING	13
	1.2.1	LSD1 and its potential role in redox signaling	
1.	3 Aims	S OF STUDY	17
2	МАТ		18
2			IO
۷.	2 1 IVIAI	Chemicals	10 10
	2.1.1	Vite and accave	
	2.1.2	Coll culture and experimental erganisms	
	2.1.5	Cell culture and experimental organisms	22 21
	2.1.4	Antibadias	24 25
	2.1.5	Equipment and consumables	25
	2.1.0	Euglipment and consumables	
	2.1.7	Oligonucloatidos	
	2.1.0	Software	
2	2.1.9 2 Meti	30/twore	
۷.	2 101211	7ohrafish imaging	
	2.2.1	Morpholino injections	
	222	FAD-1	32
	2.2.5	Immunochemistry	
	2.2.4	1 Whole mount staining	
	2.2.4	.2 Paraffin sections	
	2.2.4	.3 Cryosection sections	
	2.2.4	.4 OSCs and cell culture	
	2.2.5	HCL treatment and coating of cover-slips	
	2.2.6	A2B5 cell culture	
	2.2.7	Cell line culture and inhibitor treatments	
	2.2.8	Cerebellar organotypic slice cultures	
	2.2.9	CellTiter-Blue® cell viability assay	
	2.2.10	RNA isolation and qRT-PCR	
	2.2.11	Mouse genotyping	
	2.2.12	Electroporation	
	2.2.13	Immunoblot analysis	

	2.2.14 Silver gel staining	
	2.2.15 Co-Immunoprecipitiation	
	2.2.16 Antibody crosslinking	
	2.2.16.1 Co-IP in A2B5+ mouse OPCs	
	2.2.16.2 Redox co-IP	
	2.2.16.3 MS-coupled BIAM switch assay	
	2.2.17 Cy-5 Maleimide labeling	41
	2.2.18 In situ labeling of sulfenic acids	
	2.2.19 Crosslinking and H_2O_2 incubation	
	2.2.20 Bioinformatics	
	2.2.20.1 Subcellular localization	41
	2.2.20.2 Molceular function	
	2.2.20.3 Complex enrichment analysis	
	2.2.20.4 Protein-protein interaction	
3	3 RESULTS	
	3.1 LSD1 in Oligodendrocyte development	
	3.1.1 Zebrafish	
	3.1.1.1 Establishment of the zebrafish model	
	3.1.1.2 Establishment of a formaldehyde sensor <i>in vivo</i>	
	3.1.1.3 LSD1 is essential for OL lineage commitment in the spinal cord	
	3.1.1.4 LSD1 regulates final differentiation of OLs in the spinal cord	
	3.1.1.5 LSD1 is not essential for neurogenesis in the zebrafish spinal cor	[.] d52
	3.1.2 Mouse	
	3.1.2.1 LSD1 regulates the transcriptional program in mouse-derived O	PCs57
	3.1.2.2 Establishment of OSC to study myelination <i>ex vivo</i>	64
	3.1.2.3 LSD1 activity is necessary for OL differentiation in OSCs	
	3.1.2.4 The zinc finger protein ZFP516 recruits LSD1 during differentiation	on67
	3.2 LSD1 AND ITS POTENTIAL ROLE IN REDOX SIGNALING	70
	3.2.1 Pharmacological inhibition with bizine stabilizes the COREST/HE	AC complex 70
	3.2.2 LSD1 oxidizes itself and presumably forms an activity dependent	oligomer73
	3.2.3 LSD1 elicited global changes in the cellular redoxome	76
	3.2.4 LSD1 regulates the redox state of numerous nuclear proteins	
	3.2.5 The majority of the redox targets are physically associated	
	3.2.6 Numerous redox targets interact with LSD1	
	3.2.7 The protein levels of several targets are directly or indirectly requ	lated by LSD1 88
	3.2.8 Investigation of a PRX2 redox relay for LSD1-derived H ₂ O ₂	
4	4 DISCUSSION	
Ī		93
	4.1.1 ISD1 in Oligodendrocyte development - Outlook	90
	4.2 ISD1 AND ITS POTENTIAL ROLE IN REDOX SIGNALING	99 99
	4.2.1 LSD1 and its potential role in redox signaling – Outlook	
5	5 REFERENCES	106
с С		
O	о агрепиіл	

I Declaration

Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne unzulässige fremde Hilfe unter Beachtung der "Grundsätze zur Sicherung guter wissenschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf" erstellt worden ist. Darüber hinaus versichere ich, dass diese Dissertation noch keiner anderen Fakultät zur Prüfung vorgelegen hat.

Düsseldorf

(Thomas Hildebrandt)

II Acknowledgement

Der größte Dank gebührt meiner Familie, die mir meine Ausbildung ermöglicht hat, mich unterstützt hat und ohne die es nicht möglich gewesen wäre, diese Doktorarbeit abzuschließen.

I would like to thank Prof. Dr. Orhan Aktas for giving me the opportunity to do a doctoral thesis in his research group. Furthermore, I would like to thank him for the suggestion to change the focus from neurogenesis to OPCs development. I thank Prof. Andreas Reichert for his help and for accepting the task as a second supervisor. I thank PD Dr. Carsten Berndt for showing complete confidence in my work and for giving me the opportunity to take advantage of collaborations that were essential to develop a PhD project. In addition, I would like to thank all members of the AG Aktas. In particular, Klaudia for her support and motivation! Jan Schmitz for his help with the redox-blots and belgian beers, and finally, Tim for his selfless help, his responsibility and scientific exchange.

I am very grateful to Ben for giving me the opportunity to pursue experiments in his lab over a long period of time. During the time in Bonn I felt very warmly welcomed and always had the feeling of being part of the group. Except for the long journey, I was always very happy to come to Bonn. Many thanks to Tobi, Felix, Bhuvi, Enrico, Funda and Öznur. Without your help the experiments in Bonn would not have been possible.

I would like to thank Lars Bräutigam for the opportunity to spend 2 very nice weeks in Stockholm. It is a pity that the EMBO application did not work out. Many thanks also to Linda Pudelko for the experiments in the glioblastoma cells and all the best for your future career.

I am extremely appreciative for Gereon Poschmann, who supported me throughout my doctoral thesis with the numerous mass spectrometric measurements that were essential for the development of both parts of my work.

In the last third of my doctoral thesis I had the luck to be a guest in Ilka Wittig's lab 2 times. I would like to thank Ilka, Juliana and Jana Meisterknecht. Your advices to perform a co-IP and a redoxome analysis were essential to develop the LSD1/oxidase project. Your willingness to help was incredible. In particular, Jule

and Jana for their help in the lab and Ilka for the evaluation of all measurements. Beyond that I was impressed by your hospitality and responsibility!

I thank Qu Jiang for her help with the LSD1 mice and wish her all the best for the future.

Finally, I would like to thank Elena Vasyutina, who tragically passed away this year. I am very grateful for your responsibility and for your selfless help you offered, although we barely knew each other.

III Abstract

The lysine-specific demethylase 1 (LSD1) is a flavin-dependent histone demethylase that is implicated in transcriptional activation and repression. Beside its role as a unifying transcriptional regulator during development and cancer progression, it produces the second messenger hydrogen peroxide (H₂O₂) as a by-product, whose fate and function is largely unexplored.

The present study suggests LSD1 as an essential epigenetic regulator during oligodendrocyte development in mouse-derived oligodendrocyte progenitor cells, cerebellar slice cultures and *in vivo* in the zebrafish spinal cord. It could be shown that LSD1 is recruited by ZFP516 during initiation of differentiation to convey its function as a transcriptional regulator in mouse-derived OPC. Furthermore, an untargeted and targeted approach revealed that LSD1 regulates its own redox state, possibly leading to an oligomeric arrangement via disulfide bond formation. Furthermore, hundreds of proteins involved in transcriptional regulation and RNA processing were identified as less oxidized upon knockout or inhibition of LSD1 activity. Therefore, beyond its role as a transcriptional regulator, LSD1 could serve as a key player in nuclear redox signaling, broadening its regulatory function to a yet unknown extent. These results do not only provide a first link between epigenetics and redox signaling, but also introduce the first oxidase to the field of redox signaling.

IV Zusammenfassung

Die Lysin-spezifische Demethylase 1 (LSD1) ist eine Flavin-abhängige Histon-Demethylase, die Geneexpression sowohl aktiviert als auch abschaltet. LSD1 spielt in vielen Abschnitten der Entwicklung und der Krebsentstehung eine wichtige Rolle. Während der Demethylierungsreaktion entsteht Wasserstoffperoxid (H₂O₂) als Nebenprodukt, dessen Funktion bisher allerdings ungeklärt ist. In dieser Arbeit konnte gezeigt werden, dass LSD1 eine Schlüsselrolle in der primären Oligodendrozytendifferenzierung Sowohl einnimmt. in Oligodendrozytenvorläuferzellen der Maus, Schnittkulturen des Kleinhirns, als auch in vivo im Rückenmark des Zebrafisches ließ sich zeigen, dass die Differenzierung nach Inhibierung der Enzymaktivität oder dem Knockdown signifikant eingeschränkt war. Unmittelbar nach Beginn der Differenzierung wird LSD1 von dem Zinkfingerprotein ZFP516 rekrutiert. Das deutet darauf hin, dass diese entscheidende Rolle während Interaktion eine der Entwicklung von Oligodendrozytenvorläuferzellen spielt.

Darüber hinaus wurden klare Hinweise für eine neue Funktion von LSD1 als Oxidase in der redox-vermittelte Signaltransduktion erbracht. Zunächst konnte gezeigt werden, dass LSD1 durch Eigenoxidation seinen eigenen Redoxstatus reguliert, möglicherweise unter Oligomerenbildung. Darüber hinaus führten der Knockout und die Inhibierung zu einer Anreicherung von weniger oxidierten Proteinen im Zellkern. Der Großteil der differenziell oxidierten Proteine, die hier gefunden wurden, ist an der Transkriptionsregulation und der RNA-Verarbeitung beteiligt. Die hier gewonnenen Daten bringen LSD1 erstmals mit der Redox-Signaltransduktion im Zellkern in Verbindung und erweitern so das Funktionsspektrum dieser Flavin-abhängigen Demethylase. Diese Erkenntnisse verbinden Redoxregulation mit Epigenetik und führen zudem zur Identifikation einer der ersten Oxidasen im Bereich der Redox-Signaltransduktion.

V List of abbreviations

AEP	Anterior entopeduncular area
aOPC	Adult oligodendrocyte progenitor cell
ATP	Adenosine triphosphate
BAF	Brg1/Brm associated factor
BIAM	Biotinylated iodoacetamide
C491	Cysteine 491
CHD7	Chromodomain helicase DNA-binding protein 7
CLDK	Claudin k
CNPase	2', 3'-cyclic nucleotide-3'-phosphodiesterase
CNS	Central nervous system
co-IP	Co-immunoprecipitation
CTBP1	C-terminal-binding protein 1
CTRL MO	Control morpholino
DNA	Deoxyribonucleic acid
DOX	Doxycycline
dpf	Day postfertilization
DRGN	Dorsal root ganglion neuron
DTT	Dithiothreitol
EGFP	Enhanced green fluorescent protein
EGFR	Epidermal growth factor receptor
ESC	Embryonic stem cell
FAD	Flavin adenine dinucleotide
FGF	Fibroblast growth factor
GAPDH	Glycerinaldehyde 3-phosphat dehydrogenase
GATAD2A	GATA zinc finger domain containing 2A
GFAP	Glial fibrillary acidic protein
GFP	Green fluorescent protein
GO	Gene Ontology
H2O2	Hydrogen peroxide

H3K4	Lysine 4 of histone 3
H3K9	Lysine 9 of histone 3
H3K9me2	Dimethylated lysine 9 of histone 3
HDAC	Histone deacetylase
hpf	Hour postfertilization
ICC	Immunocytochemistry
IgG	Immunoglobulin G
JmjC	Jumonji C
LSD1	Lysine-specific demethylase 1
MAO	Monoamine oxygenase
MBP	Myelin basic protein
MGE	Medial ganglionic eminence
MN	Motor neuron
МО	Morpholino
mRNA	Messenger ribonucleic acid
MTA2	Metastasis-associated protein 2
MYT1	Myelin transcription factor 1
NCC	Neural crest cell
NCL	Nucleolin
NEM	N-ethylmaleimide
NG2	Neural/glial antigen 2
NGN1	Neurogenin 1
NGN2	Neurogenin-2
NOX	Nicotinamide adenine dinucleotide phosphate oxidase
NSC	Neural stem cell
NuRD	Nucleosome remodeling and deacetylase complex
0-2A	Oligodendrocyte type 2 astrocyte
OL	Oligodendrocyte
OLIG2	Oligodendrocyte transcription factor 2
OPC	Oligodendrocyte progenitor cell
OSC	Organotypic slice culture

PDGF	Platelet-derived growth factor
preOL	Premature oligodendrocyte
PRX 2	Peroxiredoxin 2
PTEN	Phosphatase and tensin homolog
qRT-PCR	Quantitative real-time polymerase chain reaction
RBBP7	Retinoblastoma binding protein 7
RCOR1	REST corepressor 1
SDF1	Stromal cell-derived factor 1
SDS PAGE	Sodium dodecyl sulfate polyacrylamide gel
SHH	Sonic hedgehog
shRNA	Short hairpin ribonucleic acid
siRNA	Small interfering RNA
SMARCA4	ATP-dependent chromatin remodeler SMARCA4
SOX10	Transcription factor SOX-10
SV2	Synaptic vesicle glycoprotein 2
SWI/SNF	Switch/sucrose non-fermentable
ТСА	Trichloroacetic acid
TCEP	Tris (2-carboxyethyl) phosphin
TRX1	Thioredoxin 1
UI	Uninjected
VZ	Ventricular zone
ZFP516	Zinc finger protein 516
gt	Goat
ms	Mouse
rb	Rabbit
gp	Guinea pig
do	Donkey
LGE	Lateral ganglionic eminence
MGE	Medial ganglionic eminence
div	Day in vitro

VIList of figures

Figure 1	OPC specification and differentiation 4
Figure 2	OPC development in the telencephalon
Figure 3	OPC differentiation in the zebrafish spinal cord 6
Figure 4	Epigenetic regulation of DNA accessibility and metabolic interplay
Figure 5	Mechanisms of chromatin remodeling
Figure 6	Redox regulation through H₂O₂-modified cysteine residues 14
Figure 7	LSD1 knockdown larvae developed a pericardial edema and an initial delay in length growth but no vascular defects44
Figure 8	No abnormal apoptosis was observed by anti-cleaved caspase 3 staining
Figure 9	<i>In vivo</i> detection of endogenous formaldehyde by FAP-147
Figure 10	LSD1 knockdown reduced the number of dorsal OLs in the zebrafish spinal cord
Figure 11	Pharmacological inhibition of LSD1 reduced the number of dorsal OLs in the zebrafish spinal cord
Figure 12	LSD1 knockdown impaired OL differentiation and myelination in the zebrafish spinal cord
Figure 13	LSD1 knockdown delayed spinal MN development
Figure 14	Anti-PCNA staining suggested an increased proportion of proliferating cells in the spinal cord of 3 dpf LSD1 morphants54
Figure 15	SV2 and acylated tubulin whole mount stainings suggested no servere defects in neurogenesis in the zebrafish spinal cord upon LSD1 knockdown
Figure 16	LSD1 knockdown in zebrafish impaired the development of DRGN
Figure 17	LSD1 is expressed in PDGFR+ OPCs in vivo
Figure 18	Conditional LSD1 knockdown in vitro
Figure 19	Immunoblot analysis of MBP and GFAP protein levels in differentiated A2B5+ OPCs with induced kdm1a-specific shRNA
Figure 20	Decreased LSD1 transcript levels reduced the relative number of OLs in differentiated A2B5+ OPCs60

Figure 21	ICC stainings against preOL-specific O4 and astrocyte-specific GFAP in differentiated A2B5+ OPCs with induced <i>kdm1a</i> -specific shRNA
Figure 22	Small molecule inhibitors targeting LSD1 were well tolerated in high doses in A2B5+ OPCs
Figure 23	Pharmacological inhibition with bizine reduced the myelin- specific transcript and protein levels
Figure 24	LSD1 inhibition reduced the relative number of OLs in differentiated A2B5+ OPCs
Figure 25	Establishment of serum-free culturing conditions for cerebellar OSCs
Figure 26	Bizine showed no toxicity in cerebellar slice cultures
Figure 27	Pharmalogical inhibition of LSD1 impaired OL differentiation in OSCs
Figure 28	LSD1 is recruited by ZFP516 in A2B5+ OPCs upon initiation of differentiation
Figure 29	LSD1 changed its interactome in an activity-dependent manner
Figure 30	Mass spectrometry analysis identified oxidized LSD1 peptides and a disulfide linkage in SN4741 cells74
Figure 31	Immunoblot analysis of LSD1 immunoprecipitated after chemical cross-linking and H ₂ O ₂ incubation75
Figure 32	LSD1 was efficiently knocked out in MCF-7 cells76
Figure 33	Knockout or inhibition of LSD1 reduced the level of oxidized cysteines
Figure 34	Knockout or inhibition of LSD1 reduced the global sulfenic acid levels
Figure 35	Glutathionylation levels were not affected upon knockout or inhibition of LSD1 in MCF-7 cells
Figure 36	BIAM switch assay coupled to mass spectometry80
Figure 37	Mass spectrometry-coupled BIAM switch assay identified numerous potential LSD1 redox targets
Figure 38	GO:MF term clustering of potential nuclear redox targets83
Figure 39	Complex enrichment analysis of potential nuclear redox targets

Figure 40	Protein interactions of potential nuclear redox targets	~ -
	identified upon LSD1 knockout	.85
Figure 41	Numerous potential redox targets were identified as interaction	ng
	partners	.87
Figure 42	Protein interactions of potential nuclear redox targets identified upon LSD1 knockout normalized to the full proteom	е
	analysis	.89
Figure 43	Indications for the existence of PRX2 disufilde exchange	
	intermediates	.91

VII List of tables

Table 1: Chemicals	18
Table 2: Kits and assays	22
Table 3: Cell culture reagents and supplements	22
Table 4: Cell lines	23
Table 5: Zebrafish strains	24
Table 6: Mouse strains	24
Table 7: Antibodies	25
Table 8: Equipment	26
Table 9: Plastic and glasware	28
Table 10: Buffers/Solutions/Media	28
Table 11: Oligonucleotides	30
Table 12: Software	31
Table 13: LSD1 co-IP in proliferating A2B5+ OPCs – all identified proteins normalized to IgG	116
Table 14: LSD1 co-IP in A2B5+ OPCs after 24 h of differentiation – all identition proteins normalized to IgG	fied 118
Table 15: LSD1 co-IP in A2B5+ cells – difference proliferating A2B5+ OPCs t A2B5+ OPCs after 24 h differentiation normalized to IgG and LSD	:o 1 125
Table 16: LSD1 redox co-IP in SN4741 cells – CTRL normalized to IgG	127
Table 17: LSD1 redox co-IP in SN4741 cells – Bizine normalized to IgG	128
Table 18: LSD1 redox co-IP in SN4741 cells – Difference bizine to CTRL normalized to IGG and LSD1	129
Table 19: BIAM switch assay coupled to mass spectometry – differentially oxidized proteins upon LSD1 knockout	130
Table 20: BIAM switch assay coupled to mass spectometry – differentially oxidized proteins upon bizine treatment	137
Table 21: BIAM switch assay coupled to mass spectometry – differentially oxidized proteins upon SP2509 treatment	143
Table 22: Proteome analysis – changed protein levels upon LSD1 knockout.	151

1 Introduction

1.1 Oligodendrocyte development

Neuronal function in mammals and most vertebrates is characterized by a rapid impulse propagation compared to invertebrates. This is facilitated by the insulation of axons with myelin and endows higher organisms with the capacity to carry out complex motoric, sensory and cognitive functions. Oligodendrocytes (OLs) are differentiated glial cells responsible for the production of myelin in the central nervous system (CNS) and are generated from oligodendrocyte progenitor cells (OPCs) at late embryonic stage after the neurogenic phase (Lu et al., 2002; Jackson et al., 2006; Kessaris et al., 2006). Myelin is the multilayered plasma membrane extension of OLs and consists of myelin specific lipids and proteins. Historically, myelin has been appreciated solely as an insulator and myelination as a static process which is completed during postnatal development. However, myelination is a selective process and exhibits a high degree of plasticity (Fields, 2015). Not every axon is myelinated to the same extent or myelinated at all. By selectively controlling myelin homeostasis, OLs orchestrate neural function and cognitive regulation throughout life. Intriguingly, not all OPCs differentiate during development. A subpopulation of OPCs become evenly dispersed all over the adult CNS and persists as adult OPCs (aOPCs) (Nishiyama et al., 2009; Dimou and Gallo, 2015). Those aOPCs continuously sense their environment for perturbations of the myelin homeostasis. If necessary, they extensively proliferate and give rise to myelinating OLs to reestablish the myelin sheath, prevent neuronal death and restore their function. This is of particular importance during demyelinating diseases such as multiple sclerosis as its devastating pathology is attributed to inflammatory demyelinated lesion areas and neuronal death (Bradl and Lassmann, 2010). Differentiation of aOPC in response to demyelinating injuries recapitulates many aspects of developmental OL differentiation (Fancy et al., 2004). It is therefore of vital importance to understand the biology of OL development, as OPCs are considered as the endogenous source of cells responsible for regeneration.

1.1.1 Experimental models

In the past decade, a variety of experimental models has been established to study the process of OPC differentiation on different levels. In this study, a combination of different experimental models has been selected to investigate the multifaceted aspects of OL development and myelination.

The zebrafish is a vertebrate model for embryonic development and frequently used to study myelination *in vivo* (Preston and Macklin, 2015). The zebrafish shares a high degree of homology with mammals and has characteristics that provide exceptional advantages over other *in vivo* models (Lieschke and Currie, 2007). One of the unique advantages is that embryogenesis occurs externally and is comparable fast. First OPCs appear after 1 day postfertilization (dpf) and formation of myelin becomes visible by day 4 dpf. Its transparent nature and the availability of transgenic reporter lines allow non-invasive investigations. Genetic manipulation induced by morpholinos and global administration of small chemical compounds affects protein level and function in all cell types. Therefore, it should be considered that effects on myelination are not only attributed to developmental changes in OPCs and OLs but also other neural and non-neural cells.

Organotypic slice cultures (OSCs) of the cerebellum offer an *ex vivo* approach to carry out investigations in a rodent model (Gähwiler et al., 1997). The system is still complex and secondary effects exerted by manipulation of other cell types cannot be excluded, but the time point of preparation provide full control over the developmental stage. When isolated at postnatal day 3, neurogenesis is completed and the cerebellum is invaded by OPCs prone to differentiate into OLs. When isolated at later time points, myelination is completed and mechanisms of de- and remyelination can be investigated.

Primary OPCs enriched from cortical cell preparations by magnetic cell sorting against specific epitopes provide a valuable tool to carry out mechanistic investigations specifically in progenitor cells. A2B5 is a marker for oligodendrocyte type 2 astrocyte (O-2A) progenitor cells which are considered as the ancestors of neural/glial antigen 2 (NG2) expressing OPCs (Baracskay et al., 2007; Strathmann et al., 2007). Thus, A2B5 is suitable to identify and obtain an early oligodendroglial committed cell population *in vitro*. Although the resulting cell culture mainly

consists of bipolar OPCs, it may also contain small subpopulations of more advanced, pre-myelinating cells and, to a small extent, also astrocyte fated cells. Differentiation can be induced by mitogen removal, the addition of retinoic acid and thyroids hormones. The simplicity of the system, e.g. absence of neurons and morphogen attraction, should be considered when it comes to the interpretation of the results.

1.1.2 Oligodendrocyte differentiation

The OL developmental program begins with specification of OPCs that derived from self-renewing neural stem cells (NSCs) during late embryonic gestation. In the developing brain and spinal cord, NSCs reside in the epithelial surface lining the lateral ventricle, the ventricular zone (VZ) (Lee and Jessell, 1999). Upon delamination from the VZ, OPCs proliferate and migrate throughout the developing CNS by following morphogen gradients (Kessaris et al., 2006). Migratory OPCs can be identified by the expression of the platelet-derived growth factor receptor (PDGFr) (Pringle and Richardson, 1993). During migration, OPCs establish contacts with the endothelial surface of the vasculature. The interaction is established and maintained by WNT pathway activation in OPC (Tsai et al., 2016). WNT is a receptor/ligand induced signaling pathway important for cell differentiation and organogenesis in general. WNT is believed to inhibit OL differentiation and thereby allowing OPCs to migrate and proliferate. Activation of WNT in OPCs leads to the expression of the chemokine receptor CXCR4. CXCR4 recognizes its ligand, the stromal cell-derived factor 1 (SDF1), which is expressed by the endothelium. Blood vessels thereby provide a physicochemical scaffold for migration and prevent differentiation during this stage in a WNT-dependent manner. Downregulation of WNT signaling triggers the release from the endothelium and OPCs develop into oligodendrocyte marker 04 (04) expressing pre-myelinating oligodendrocytes (preOLs). Once they reach their final destination, preOLs differentiate into myelinating OLs (Figure 1).

Figure 1 | OPC specification and differentiation

OPC specification occurs during delamination of NSC from the VZ. Shortly after specification, OPCs express stage specific A2B5 and PDGFr and associate with the abluminal endothelial surface to migrate along the blood vessels in the direction of morphogen gradients. Physical contact with the endothelial promotes migration and prevents OPCs to exit the cell cycle in a WNT dependent manner. Soon before terminal differentiation, OPCs enter a post-mitotic premyelinating stage characterized by the expression of O4. Terminal differentiated OLs can be identified by the expression of myelin-specific genes MBP, PLP and CNPase (Figure adapted from van Tilborg et al. 2018).

1.1.3 Oligodendrocyte differentiation in the forebrain

In the past decades, it became evident that the generation of OPCs occurs in sequentially emerging waves that arise in distinct regions of the VZ (**Figure 2**) (Kessaris et al., 2006). The temporal regulation of these waves varies between species and regions. In the developing forebrain of mice, the first wave emerges around embryonic day 12.5 (E12.5) from the anterior entopeduncular area (AEP) and the medial ganglionic eminence (MGE) (Pringle and Richardson, 1993; Tekki-Kessaris et al., 2001). OPCso originating from this most ventral niche arise in dependency of the diffusible glycoprotein sonic hedgehog (SHH). This observed in the ventral spinal cord as well as discussed in the following chapter in more detail. OPCs induced by the morphogen SHH can be identified by the expression of NKX2.1. Upon release, they migrate into all directions and invade the entire telencephalon and the cerebral cortex. A second wave arises from the VZ of the lateral ganglionic eminence (LGE) at E15.5 (Kessaris et al., 2006). OPC residing in the LGE are characterized by the expression of SHH cues. Shortly after birth, EMX1 expressing OPCs in

the dorsal VZ expand and initiate the third stream that evades the neocortex. While OPCs derived from the SHH-dependent `NKX2.1 domain' entirely differentiate to OLs, OPCs originating from the LGE and the dorsal EMX1 domain give either rise to OLs or persist as adult OPCs (aOPCs) throughout life.

OPCs emerge in 3 consecutive waves from the neuroepithelial zones of the developing brain depicted in different colors. Each wave of OPCs can be identified by the expression of niche-specific transcriptional regulators. The population of OPC that emerge from the 1. wave entirely differentiate into OLs, while OPCs that emerge from the 2. and 3. wave only partially differentiate into OLs. A subset persists as adult OPCs throughout life (Figure adapted from van Tilborg et al. 2018).

Intriguingly, although every progenitor population can be characterized by a specific transcriptional profile and respond to distinct signaling cues, they give rise to OLs that appear to be functionally equivalent (Clarke et al., 2012). Abolishing one of the niches in mice revealed that the remaining OPCs sources can take over as those mice develop normally, form myelin and exhibit no behavioral defects (Kessaris et al., 2006). Therefore, different OPC pools compete for the supply of the brain with OLs rather than providing unique niche-specific subtypes with different functional properties. Although compensatory mechanisms exist during development, the heterogeneity of OPCs is undisputed and subject of ongoing research (Spitzer et al., 2019).

1.1.4 Oligodendrocyte differentiation in the spinal cord

The process of OL development in the spinal is largely conserved in mammals and remarkably similar to that in vertebrates (Jeserich et al., 2008; Howe et al., 2013). The majority of spinal cord OLs originate from OPCs that reside in the ventral motor neuron progenitor domain (pMN), exemplarily shown for the zebrafish spinal cord

in **Figure 3** (Cai et al., 2005; Park et al., 2007). OPC specification within the pMN domain is completed by 30 hours postfertilization (hpf) in zebrafish, E12.5-14 in rodents and E45 in humans (Pringle and Richardson, 1993; Timsit et al., 1995; Hajihosseini et al., 1996). The specification of functional distinct regions within the ventricular zone of the spinal cord, e.g. the ventral OPC containing pMN domain, is orchestrated by a gradient of SHH. SHH is secreted by ventral residing neuroeptithel-derived floor plate cells. It binds to its receptor expressed by cells residing in the ventricular zone and initiates intracellular signaling pathways with either activating or repressing function depending on the extent of activation. Thus, the establishment of a SHH gradient along the dorsoventral axis facilitates the establishment of distinct zones with sharp boundaries and unique transcriptional profiles (Lupo et al., 2006). The pMN domain is established by high levels of SHH and therefore, located adjacent to the SHH secreting floor plate cells. SHH is opposed by bone morphogenetic proteins (BMPs), which are secreted by cells that reside in the ventral roofplate.

OPC commitment becomes evident by the expression of transcription factor SOX-10 (SOX10) and OLIG2 (Lu et al., 2000; Britsch et al., 2001). The expression of both markers persists in premature and mature OLs.

Figure 3 OPC differentiation in the zebrafish spinal cord SHH signaling cues secreted from ventral floor plate (depicted in grey colour) regulate specification and positioning of OPCs in the pMN domain (green hatched area). Ventral SHH signaling is antagonized by BMP morphogens secreted from the roof plate to initiate dorsal migration of OPCs.

OLIG2⁺ OPCs in the spinal cord give rise to motor neurons (MNs) first, before they become gliogenic and produce OLs starting from 48 hpf in zebrafish and E16.5 in mice (Blader et al., 2003; Masahira et al., 2006). The fact that pMN-derived OPCs

exhibit an early neurogenic potential indicate a high degree of functional plasticity during this stage. OLIG2 is expressed in OPCs, MNs and in OLs. Therefore, OLIG2 exhibits a bifunctional pro-neurogenic and pro-oligogenic role that is rather unusual among the bHLH transcription factor family, as they are known to unequivocally regulate cell identity. On the molecular level, this could be explained by a serine phosphorylation site in the helix-loop-helix domain that is decisive whether OLIG2 forms a heterodimer with the pro-neuronal neurogenin-2 (NGN2) or a pro-oligogenic homodimer (Lee et al., 2005c).

1.1.5 Epigenetics of oligodendrocyte development

OL fate acquisition is a stepwise process in which OPCs pass through a series of distinct stages which can be defined by stage-specific transcriptional regulators (Wegner, 2008; Emery and Lu, 2015). It is suggested that these consecutive cell fates and their inherent transcriptional signatures are established and stabilized by epigenetic factors. On the mechanistic level, epigenetic regulation comprises covalent modifications of deoxyribonucleic acid (DNA) and histone proteins, as well as adenosine triphosphate (ATP)-dependent remodeling of DNA-nucleosome contacts. While some regulators might act individually, it is generally assumed that epigenetic regulation occurs in concerted and intertwining manner and essentially determines the accessibility of genes and their regulatory elements to the transcriptional machinery. Most epigenetic enzymes require metabolic co-factors to carry out their function. This regulatory link provides an attractive explanation how metabolic activity and extrinsic stimuli impact on cellular identity and function (**Figure 4**).

Figure 4 | Epigenetic regulation of DNA accessibility and metabolic interplay

The transition of repressive chromatin (left) via a permissive intermediate state (middle) results in chromatin opening and active gene transcription (right). The process is driven by transferases and erasers. Transferases (top) deploy their substrates derived from metabolic processes on the histone tails and DNA. Erasing of histone marks and methylated DNA require metabolic co-factors and yield by-products that could potentially be fed back into metabolic circuits. Many types of modifications have been described so far. For simplification only methylation and acetylation are shown here. Lysine methylation is implicated in both, transcriptional activation and repression, depending on the specific lysine residue. Acetylated lysines are exclusively found near transcriptional active genes. Schematic illustration created with VMD. (Abbreviations: α -KG- α -ketoglutarate, A- acetyl, DNMT- DNA methyltransferase, HAT- histone acetylase, KMTlysine methyltransferase, M- methyl, TET- ten-eleven translocation methylcytosine dioxygenase and TFtranscription factor.

N-terminal histone tails can be modified in many different ways comprising acetylation, methylation, phosphorylation, citrullination or simply said: most known posttranslational modifications have been identified on histone tails as well. Only a minority could be put in a functional context so far. It is suggested that histone modifications alter the electrostatic and hydrophobic properties of the histone tail leading to repulsive or attractive interaction towards the negatively charged DNA backbone (Clark and Kimura, 1990). Some modifications serve as anchors for adaptor proteins that recruit regulatory complexes, indicating that the overall modification code determines complex composition and its repressive or activating function.

The epigenetic regulation of oligodendrocyte development and myelination has been investigated in more detail in the past decades. Multiple lines of evidence suggest that histone deacetylase 1 (HDAC1) and HDAC2 are required for OL development (Marin-Husstege et al., 2002; Ye et al., 2009). HDACs remove acetyl groups from specific lysine residues of histone tails leading to chromatin compaction and repressed gene expression. Pharmacological inhibition with pan-HDAC inhibitors and genetic ablation revealed that HDAC activity is required during early differentiation of OPCs *in vitro* and *in vivo*. Several studies indicate that HDAC1 and HDAC2 (HDAC1/2) co-occupy regulatory elements of genes important for OL differentiation. In this regard, HDAC1/2-dependent decommissioning of the WNT/TCF7L/ β -catenin complex appears to be the driving force (Ye et al., 2009). However, multiple other putative targets and interacting proteins have been suggested, indicating that HDACs initiate OL lineage progression in multiple ways (Swiss et al., 2011).

A general observation in developing OLs is that the overall chromatin structure is extensively reorganized (Nielsen et al., 2002; Marie et al., 2018). This is, in part, attributed to the activity of ATP-dependent chromatin remodeling enzymes (Yu et al., 2013). Mammalian switch/sucrose non-fermentable (SWI/SNF) complexes, also called Brg1/Brm associated factor (BAF) complexes constitute multisubunit machineries that assemble on nucleosomes guided by stage-specific transcriptional regulators (Jenuwein and Allis, 2001; Becker and Hörz, 2002). In such complexes, ATP is hydrolyzed to remove DNA histone contacts leading to the formation of transient DNA loops that are propagated out of the nucleosome and finally dissolve. In the resulting situation, the nucleosome is repositioned, repressive DNA-histone contacts dissolved and re-established respectively. In addition to repositioning movements, SWI/SNF complexes can exchange histone variants or eject whole nucleosomes leading to the exposure of larger DNA segments (**Figure 5**).

Figure 5 | Mechanisms of chromatin remodeling

ATP-dependent chromatin remodeling mediated by SWI/SNF complexes comprise ejection of histone core proteins leading to exposure of large DNA fragments (top). Exchange of histone units confers novel structural and functional properties to the nucleosome (middle). Sliding of nucleosomes unwraps and/or wrap regulatory elements, respectively (bottom; CO-REG- co-regulator and TF- transcription factor).

ATP-dependent chromatin remodeler SMARCA4/BRG1 (SMARCA4) with its intrinsic ATPase activity is a core subunit of the mammalian SWI/SNF complex. It has been shown that SMARCA4 co-occupies OL-specific enhancers together with OLIG2 to promote OL fate commitment (Yu et al., 2013). During final stage, when preOLs become mature OLs, the ATP-dependent chromodomain helicase DNA-binding protein 7 (CHD7) cooperates with SOX10 to initiate myelinogenic program (He et al., 2016). Therefore, chromatin remodeling is necessary in all steps of OL

development. A dynamic change of the histone methylation pattern during OPC lineage progression has been recognized as well and strongly suggests that methyltransferases and demethylases must be involved (Liu et al., 2015). However, no particular demethylase has been described in this context so far.

1.1.6 Lysine-specific demethylase 1

It has long been assumed that histone methylation is irreversible until the discovery of the first histone demethylase, the lysine specific demethylase1 (LSD1) (Shi et al., 2004).

Later, several other de-metylases have been discovered. All of them belong to the jumonji C (JmjC) domain-containing family that comprises more than 20 members. The reaction mechanism of the JmjC demethylases is compatible with mono-, di-, and the trimethylated substrates. It consumes oxygen as well, but uses α -ketoglutarate and bivalent iron to produce the demethylated lysyl residue, formaldehyde, succinate and carbon dioxide (Culhane and Cole, 2007). LSD1 and also LSD2 are flavin adenine dinucleotide (FAD)-dependent demethylase and closely related to the monooxygenase family. LSD1-dependent demethylate mono- and dimethyl but not trimethyl lysines (Forneris et al., 2006). The unique FAD-dependent reaction consumes molecular oxygen and leads to the formation of hydrogen peroxide (H₂O₂), formaldehyde and water as by-products.

Initial studies on the regulatory function of LSD1 have shown that LSD1 engages with the HDAC1/2 and REST corepressor 1 (RCOR1 or COREST) containing corepressor complex to permanently repress pro-neural genes in non-neural cells (Andrés et al., 1999; Lee et al., 2005a). Its repressive function is achieved through the removal of mono- and dimethyl marks (me1 and me2) from lysine 4 of histone 3 (H3K4). Beside its function as a long-term repressor in fully differentiated cells, LSD1 also functions as a transient repressor to stabilize cell fates in a spatiotemporal manner. In embryonic and hematopoietic stem cells, LSD1 shuts down the self-renewal program and facilitates lineage restriction (Sprüssel et al., 2012; Whyte et al., 2012; Kerenyi et al., 2013). In NSCs, LSD1 associates with the TLX receptor to maintain NSCs in their proliferative state by repressing cell cycle inhibitors P21 and the phosphatase and tensin homolog (PTEN) (Yokoyama et al., 2008). Knockdown of LSD1 leads to premature neural differentiation indicating that LSD1 is important for NSCs maintenance. These are only a few examples of the multifaceted function of LSD1 during development. Like other histone modifying enzymes, LSD1 demethylates non-histone substrates to regulate their function and stability e.g. P53 and DNMT1 (Huang et al., 2007; Wang et al., 2009a; Wu et al., 2017). This adds yet another level of complexity to its regulatory potential.

LSD1 is overexpressed in several cancer types comprising e.g. leukemia, neuroblastoma, prostate and breast cancer where it essentially contributes to disease progression. Soon after the discovery of LSD1, its function as a transcriptional activator has been described in the context of prostate cancer (Metzger et al., 2005). Here, LSD1 engages with the androgen receptor to remove the repressive H3K9me1 and H3K9me2 mark. Once more, this indicates how adaptor proteins convey substrate specificity to epigenetic modulators. In contrast to oncogenic mutations in genes, aberrant transcriptional regulation caused by epigenetic enzymes can in theory be "corrected" by small chemical compounds targeting their activity or complex assembly. Due to the high degree of similarity of the catalytic domain of LSD1 to monoamine oxygenases (MAOs), most of the compounds targeting MAO activity inhibit the reaction of LSD1 as well (Schmidt and McCafferty, 2007). Thus, MAO inhibitors comprising e.g. phenelzine and tranylcypromine serve as a starting point to develop LSD1 specific inhibitors. These comprise e.g. ORY-1001, a tranylcypromine derivate that is currently in phase IIa clinical trial for safety and tolerability assessment in patients with acute myeloid leukemia and small lung cancer, respectively (Clinical Trials Register EudraCT 2018-000482-36 and 2018-000469-35) (Maes et al., 2018). Unbiased approaches based on screenings of small molecule libraries have led to the identification of e.g. SP2509 (Fiskus et al., 2014). Molecular docking studies suggest that SP2509 interacts with LSD1 by hydrogen bonding near the active site.

Although a plethora of LSD1 inhibitors with strong effects on proliferation of cancer cells have been developed to date, only a few entered clinical trials (Niwa and Umehara, 2017). An obvious assumption is that progress in this field is hampered by the lack of specificity. This might be in part true but it seems also reasonable to assume that (unknown) inhibitor specific off-target effects could also contribute to the beneficial outcome. Thus, unwanted and beneficial off-target effects need to be

defined for existing inhibitors and considered in the development of new derivatives. This could either help to increase specificity to the designated target or to the refinement of the off-target effect. One example is the MAO B inhibitor selegiline (L-deprenyl). Long after its approval for treatment in Parkinson's disease, it became evident that it exerts its neuroprotective effect independent of its designated function to inhibit MAO B (Tatton and Chalmers-Redman, 1996; Suuronen et al., 2000). It is suggested that selegiline directly binds to GAPDH and prevents its nitrosylation (Kragten et al., 1998). Thereby it interferes with a novel pro-apoptotic pathway involving the nuclear translocation of nitrosylated GAPDH (Hara et al., 2005). This finding has the lead to the development of omigapil (TCH346), a derivate which lacks MAO B affinity, but has a refined ability to bind to GAPDH and prevent its translocation (Tatton and Chalmers-Redman, 1996).

1.2 Redox signaling

Functional sites of proteins are often decorated with cysteines as they are highly reactive under physiological pH. The reactivity is attributed to the thiol side chain that acts as a strong nucleophile. Cysteines can be directly involved in the enzymatic reaction by performing a nucleophilic attack on the substrate or coordinate metal containing co-factors. Due to their reactivity some thiols, in particular those that exists as a thiolate anion, are subjected to a series of redox-mediated modifications (Poole et al., 2004). Redox-sensitivity is defined by the local microenvironment that favors the fully deprotonated state. In particular, positively charged amino acids can stabilize the negatively charged thiolate anion in its redox-sensitive state. The oxidation of the thiolate anion is initiated by the reaction with the second messenger H₂O₂ and leads to the formation of a sulfenic acid (**Figure 6**).

Figure 6 | Redox regulation through H₂O₂-modified cysteine residues

 H_2O_2 reacts with the cysteine thiolate to the reactive sulfenic acid (-SOH). Sulfenic acids are transient intermediates that immediately react with other thiols or thiol containing low molecular weight molecules to form mixed-, intra- or inter-disulfide bonds. The reaction of sulfenic acids with thiols is an autocatalytic reaction solely driven by the high reactivity of the sulfenic acid. The reversal reaction needs the specific activity of oxidoreductases of the thioredoxin superfamily, which leads to the formation of the thiolate anion. Vice versa, some oxidoreductases can directly oxidize the thiolate anion to form disulfides. Upon prolonged exposure to H_2O_2 sulfenic acids may also further react to sulfinic (-SO₂H) and sulfonic acids (-SO₃H). Sulfinic and sulfonic acids are overoxidized and cannot be reduced by the DTT. Whereas sulfonic acids are irreversible oxidized, sulfinic acids may be reduced by ATP-dependent sulfiredoxins (SRX).

Prolonged exposure to H_2O_2 leads to the formation of the hyperoxidzed sulfinic and sulfonic acids. Whereas the latter is irreversible oxidized and considered as a dead end-product, sulfinic acids can be reduced by sulfiredoxins under consumption of ATP (Biteau et al., 2003). Noteworthy, both hyperoxidized species are not reducible by common chemical reducing agents e.g. dithiothreitol (DTT), tris (2-carboxyethyl) phosphin (TCEP) or β -mercaptoethanol. The reversible oxidized sulfenic acid is a highly reactive and unstable intermediate that reacts with other thiols to form more stable products comprising intra- and intermolecular disulfide bonds and mixed disulfides with glutathione. In either case, the reaction can have profound consequences for protein function and structure. Intriguingly, the reverse reaction is driven by the specific activity of enzymes. Small oxidoreductases of the thioredoxin superfamily are able to restore the reduced state of a redox-sensitive

thiol and its associated function (Arnér and Holmgren, 2000). Hence, thiol redox states are subjected to specific regulation conveyed by the chemistry of the target site on the one hand, and specific enzymatic reduction on the other. This observation has greatly advanced the concept of redox signaling.

1.2.1 LSD1 and its potential role in redox signaling

A variety of physiologically relevant thiol switches has been discovered in recent years and the observation that numerous redox-sensitive cysteines exist throughout the proteome, suggests a yet unappreciated number of biological processes that could be redox regulated (van der Reest et al., 2018). The oxidation of redoxsensitive thiols by H₂O₂ is an autocatalytic process. To ensure productive thiol oxidation, a reasonable amount of redox equivalents needs to reach the target site. How specificity is achieved during this process is currently under debate. Sources of H₂O₂ are known and comprise e.g. cellular respiration, activity of enzymes e.g. nicotinamide adenine dinucleotide phosphate oxidases (NOXs), and neutrophil phagocytosis. Peroxiredoxins are highly abundant proteins and exhibit a remarkable affinity to H₂O₂. They out-compete the reactivity of every known redoxsensitive thiol towards H₂O₂. (Cox et al., 2009; Manta et al., 2009) Inevitably, this leads to two possible yet not mutually exclusive mechanisms of thiol oxidation. First, peroxiredoxins not only detoxify H₂O₂ via the thioredoxin system but are also directly involved in redox signaling by conveying oxidation equivalents to other targets. This scenario would provide a satisfying explanation as it introduces enzymatic specificity and could explain how compartmentalized sources of reactive oxygen species are connected to more distant targets. Indeed, oxidation of signal transducer and activator of transcription 3 (STAT3) which leads to the formation of transcriptional inactive oligomeric form is mediated by peroxiredoxin 2 (PRX2) (Sobotta et al., 2015; Stöcker et al., 2018). Second, a H₂O₂ producing enzyme could come in close proximity to its putative target protein. In this scenario, specificity would be conveyed by the microenvironment created by the oxidase, its target protein and possible interacting partners. Thus, large protein complexes that sterically exclude peroxiredoxins and create a redox insensitive microarchitecture could provide ideal conditions. In contrast to the peroxiredoxin model, the diffusion model provides a straightforward explanation for the oxidation of active site

cysteines that are often deeply buried in protein cavities and might not be accessible for peroxiredoxins. However, direct protein oxidation could not be demonstrated so far.

LSD1 produces the second messenger H₂O₂ and formaldehyde as by-products during its catalytic cycle and is known to interact with proteins that are subjected to redox modifications e.g. P53, HDAC1/2 and SIRT1 (Forneris et al., 2006; Velu et al., 2007; Doyle and Fitzpatrick, 2010; Bräutigam et al., 2013). It seems reasonable to speculate about a direct oxidation of target proteins by LSD1 for several reasons. First, it resides in large protein complexes. Although complete crystal structures are not available it seems to be very likely that the entire surface of LSD1 is occupied by interacting partners and the H₂O₂ is released to their surfaces. Second, the presence of peroxiredoxins in such complexes could not be shown so far. Third, LSD1mediated demethylation exerts a considerable high evolutional pressure as H₂O₂ and formaldehyde are potentially harmful and produced in close proximity to the DNA. It is very likely that nature has evolved physiological relevant routes for detoxification in addition to the peroxiredoxin system. In estrogen responsive breast cancer cell lines, LSD1 associates with the estrogen receptor to demethylate H3K9 and positively controls the expression of estrogen responsive genes (Perillo et al., 2008). Intriguingly, demethylation leads to localized DNA oxidation. The DNA repair machinery modulates the chromatin DNA topology for excision of oxidized nucleotides and thereby facilitates the attachment of DNA polymerase. Thus, perhaps due to short distances to the redox target, the peroxiredoxin system is not sufficient to prevent oxidation and instead, a redox based mechanism has evolved that promotes cell growth. Taken together, it is reasonable to assume, that LSD1 mediates oxidation of many other targets. Thus, LSD1 could link epigenetic regulation with nuclear redox signaling.

1.3 Aims of study

The transition of proliferating OPCs to myelinating OLs is probably one of the most impressive differentiation processes with regard to the extent of the morphological and functional changes. It is not surprising that this process is accompanied by an substantial rearrangement of the chromatin architecture, driven by histone modifications and ATP-dependent remodeling. Although the methylation pattern of histones is dynamically regulated during the development of OLs, no particular demethylase has been investigated in this context so far. LSD1 is an important regulator of neural stem cell proliferation and neuronal differentiation. The role of LSD1 in OL differentiation, however, remains to be defined. Therefore, the study aims:

- (I) to investigate the role of LSD1 during the development of the zebrafish CNS *in vivo*, and specifically, in OL differentiation and myelination,
- (II) to dissect the cellular effects of LSD1-dependent demethylation during differentiation *in vitro*, and
- (III) to identify stage-specific LSD1-containing complexes in OPC and preOLs.

Moreover, reversible thiol modifications induced by H_2O_2 are considered as essential cell-signaling events. While the reduction of oxidized cysteines is regulated by enzymes and well-described, it is largely unknown how oxidation of thiols is achieved in a specific manner. LSD1 produces the second messenger H_2O_2 as a byproduct and could potentially adopt a key role in nuclear redox signaling. Thus, an additional aim of this study is:

(IV) to investigate the potential role of LSD1 in nuclear redox signaling.

2 Materials and methods

2.1 Materials

2.1.1 Chemicals

Table 1: Chemicals

Name	Provider	Catalog number
5,5-Dimethyl-1,3- cyclohexanedione	Merck	38490
Acetic acid	VWR International	1.00056.2500
Acetonitrile	Merck	45983
Agarose	Merck	A9539
Agarose, low gelling temperature	Merck	A4018
Albumin bovine serum (BSA)	Merck	A4737
Albumin Fraktion V, ≥98 %, biotinfrei	Carl roth	0163.3
Ampuwa®	Fresenius	B23067A
Any kD™ Mini-PROTEAN® TGX™ Precast Protein Gels, 15-well	Bio-Rad Laboratories	4569036
BC Assay Protein Quantitation Kit (BCA)	Interchim	UP40840A
Bio-Gel P-6 Gel	Bio-Rad Laboratories	1504134
Bizine	Axon Medchem	Axon2306
Bovine Serum Albumin, cell culture tested	Merck	A9418
cDNA Reverse Transcription Kit	Applied Biosystems	4368813
CellTiter-Blue® Cell Viability Assay	Promega	G8081

cOmplete™, Mini, EDTA- free Protease Inhibitor Cocktail	Merck	4693159001
CutSmart® Buffer	New England Biolabs	B7204S
Cy5 Maleimide	GE Healthcare	PA25031
DEPC-Treated Water	Thermo Fisher Scientific	AM9906
Dimedone	Merck	D153303
Dimethyl pimelimidate dihydrochloride	Merck	D8388
Dimethyl sulfoxide	Merck	D5879
Disuccinimidyl suberate (DSS)	Merck	21655
DL-Dithiothreitol (DTT)	Merck	D0632
Dynabeads™ Protein G	Thermo Fisher Scientific	10003D
EDTA UltraPure™ 0.5M	Thermo Fisher Scientific	15575020
Ethanol absolut	supelco	107017
Ethidium bromide~95% (HPLC)	Merck	E8751
Ethyl 3-aminobenzoate methane sulfonate C10H15NO5S (MS222)	Fluka	A5040
Ethylene glycol bis (succinimidyl succinate) (EGS)	Merck	21565
Ethylenediaminetetraacetic acid (EDTA)	Merck	E9884
FAP-1	Chang lab, Berkeley	(Brewer and Chang, 2015)
Formaldehyde	Merck	F8775
GeneJET RNA Purification Kit	Thermo Fisher Scientific	K0731
Glycerin≥99,7 %	Carl Roth	6962

GoTaq® DNA Polymerase	Promega	M3001
Guanidine hydrochloride	Merck	G3272
Hematoxylin Solution, Mayer's	Merck	MHS32
Hydrochloric acid (37%)	Merck	1003175000
Hydrogen peroxide	Merck	H3410-500ML
Immu-Mount™	Fisher Scientific	9990412
Iodoacetamide	Merck	I1149
Isofluran Piramal	Piramal Critical Care	30372.00.00
Kynurenic acid ≥98%	Merck	K3375
LS Columns	Miltenyi Biotec	130-042-401
Methanol ≥99.8%	VWR International	20847.320
Methylene blue C ₁₆ H ₁₈ ClN ₃ S	Merck	6040
Mini-PROTEAN TGX precast gels	Bio-Rad Laboratories	4569036
N-Ethylmaleimide	Merck	E3876
Neural Tissue Dissociation Kit (P)	Miltenyi Biotec	130-092-628
Normal Goat Serum (NGS)	Thermo Fisher Scientific	PCN5000
N-Phenylthiourea C6H5NHCSNH2 (PTU)	Merck	P7629
Phenol red solution (0.5 %)	Merck	P0290
PhosSTOP™	Merck	4906845001
Pierce™ Streptavidin Agarose Resin	Thermo Fisher Scientific	20347
Power SYBR™ Green PCR Master Mix	Applied Biosystems	4368702
Propidium iodide (PI)	Merck	P4170
Protein Sample Loading Buffer (4x)	LI-COR Bioscience	928-40004
---------------------------------------	--------------------------	-------------
Protein-Marker V ('Prestained')	VWR International	27-2210
RIPA Lysis and Extraction Buffer	Thermo Fisher Scientific	89900
Roti®-Histofix (4 %) (PFA)	Carl Roth	P087
SDS ultra-pure ≥99 %	Carl Roth	2326
Silver nitrate	Merck	209139
Sodium acetate	Merck	S2889
Sodium carbonate	Merck	1613757
Sodium chloride ≥99.0%	Merck	S9888
Sodium citrate	Merck	1613859
Sodium thiosulfate	Merck	72049
SP2509	Cayman Chemicals	15487
Sucrose	Merck	SX1075
Taqman Master Mix	Applied Biosystems	4369510
TERGITOL [™] solution	Merck	NP40S
Tissue-Tek® 0.C.T.™	Sakura Finetek	4583
Trans-Blot® Turbo™ Mini PVDF	Bio-Rad Laboratories	1704156
Trichloric acid	Merck	T6399
Triethanolamine ≥99.0%	Merck	90279
Tris hydrochloride	Merck	10812846001
Tris/Glycine/SDS (10x)	Bio-Rad Laboratories	1610772
TRISPUFFERAN® ≥99,9 %	Carl Roth	4855
Triton X-100	Merck	T9284
UltraPure™ TBE Buffer, 10X	Invitrogen™	15581028

2.1.2 Kits and assays

Table 2: Kits and assays

Name	Provider	Catalog number
Anti-A2B5 MicroBeads, human, mouse, rat	Miltenyi Biotec	130-093-388
cDNA Reverse Transcription Kit	Applied Biosystems	4368813
CellTiter-Blue® Cell Viability Assay	Promega	G8081
GeneJET RNA Purification Kit	Thermo Fisher Scientific	K0731
Neural Tissue Dissociation Kit (P)	Miltenyi Biotec	130-092-628

2.1.3 Cell culture and experimental organisms

Name	Provider	Catalog number
3,3′,5-Triiodo-L- thyronine sodium salt≥95% (T3)	Merck	T2752
B-27™ Supplement (50X), minus vitamin A (B27-)	Thermo Fisher Scientific	12587001
B-27™ Supplement (50X), serum free (B27+)	Thermo Fisher Scientific	17504-044
D-(+)-Glucose solution (45%)	Merck	G8769
Doxycycline hyclate	Merck	D9891
DPBS w/o Ca+ & Mg+ (1x)	Thermo Fisher Scientific	14190250
Dulbecco's Modified Eagle F-12, no glutamine (DMEM/ F-12	Thermo Fisher Scientific	21331020

Table 3: Cell culture reagents and supplements

Dulbecco's Modified Eagle Medium, high glucose, pyruvate (DMEM/HG)	Thermo Fisher Scientific	41966-029
Fetal bovine serum, Gibco™	Thermo Fisher Scientific	10500064
GlutaMAX™ supplement	Thermo Fisher Scientific	35050061
HBSS Ca+Mg+ (1x)	Thermo Fisher Scientific	24020083
HEPES (1 M)	Thermo Fisher Scientific	15630080
Horse serum	Thermo Fisher Scientific	26050088
L-Thyroxine≥98% (HPLC) (T4)	Merck	T2376
Minimum Essential Medium	Thermo Fisher Scientific	11090081
Minimum Essential Medium Eagle (MEM)	Merck	M2279
Neurobasal [™] -A medium	Thermo Fisher Scientific	10888022
Non-essential amino acids (NEAA)	Millipore	K0293
Penicillin-streptomycin (P/S) (10,000 U/mL)	Thermo Fisher Scientific	15140122
rm FGF-b (FGF)	ImmunoTools	1234362
rm PDGF-AA (PDGF)	ImmunoTools	12343687
StemPro™ Accutase™	Thermo Fisher Scientific	A1110501
Trypsin-EDTA (0.05%)	Thermo Fisher Scientific	25300054

Table 4: Cell lines

Name	Provider	Reference
MCF-7	SIGMA	(Soule et al., 1973)
SN4741		(Son et al., 1999)

Table 5: Zebrafish strains

Strain	Provider	Reference
AB wildtype fishline	EZRC, KIT	n/a
Brass wildtype fishline	EZRC, KIT	n/a
Tg(-8.4neurog1:GFP)	EZRC, KIT	(Blader et al., 2003)
Tg(cldnk:EGFP)	Becker lab, Edinburgh	(Münzel et al., 2012)
<i>Tg(cldnk:</i> TDTOMATO- caax)		
Tg(kdrl:EGFP)		(Jin et al., 2005)
Tg(mbp:GFP)	Lyons lab, Edinburgh	(Almeida et al., 2011)
Tg(mnx2b:GFP)	Kawakami lab, Mishima	(Asakawa et al., 2012)
Tg(olig2:GFP)	Becker lab, Edinburgh	(Shin et al., 2003)
TL wildtype fishline	EZRC, KIT	n/a
TU wildtype fishline	EZRC, KIT	n/a

2.1.4 Mouse

Mice were bred in the animal facility of the Heinrich-Heine-University of Düsseldorf (Zentrale Einrichtung für Tierversuche und Tierschutzaufgaben; ZETT) under pathogen-free conditions on, 12 h light/dark cycle with access to pelletized dry food and germ-free water.

Table 6: Mouse strains

Strain	Provider	Reference
C57BL/6	Jackson Laboratory	n/a
Tg(plp:GFP)	Göbels lab, Düsseldorf	(Sobottka et al., 2011)
Tg(tetO-shRNA:kdm1a)	Schüle lab, Freiburg	(Zhu et al., 2014)

2.1.5 Antibodies

Table 7: Antibodies

Torrat options	llest	I	Dilution		Ducyudau	Catalog
Target antigen	HOSI	WB	ICC	IHC	Provider	number
Alexa Fluor 594 mouse IgG	gt			1:100 0	Thermo Fisher Scientific	R37121
BRG-1	ms	1:1000			Santa Cruz	SC-17796
Cleaved Caspase- 3	rb			1:200	Cell Signaling	9662
CNPase	ms		1:100 0		Merck	C5922
CoREST1	rb	1:3000			Abcam	ab32631
Dimedone	rb			1:500	Custom-made	
GFAP	gp	1:2000			Synaptic Systems	173 004
Glutathione	ms				ViroGen	101-A
Guinea pig IgG 800CW	do	1:2000 0			LI-COR	926- 32411
Guinea pig IgG- Cy5	do		1:500		Merck	AP193S
HDAC1	ms	1:1000			Santa Cruz	sc-81598
LSD1	rb	1:1000		1:100 0	Abcam	ab17721
LSD1	rb	1:1000			Cell Signaling	2139
MBP		1:1000	1:500	1:500	Merck	MAB386
Mouse IgG 680RD	gt	1:2000 0			LI-COR	926- 68070
Mouse IgG 800CW	do	1:2000 0			LI-COR	926- 32212

2. Materials and methods

NF200	ms			1:100 0	Merck	N0142
NG2	rb		1:100 0		Millipore	AB5320
Normal rabbit IgG	rb				Merck	12-370
04			1:500		R & D Systems	MAB1326
Olig2	rb			1:500	Merck	AB9610
PCNA	ms			1:100 0	Merck	P8825
PDGFRα	ms			1:200	Merck	CBL1366
Dabbit IgC (00DD		1:2000				926-
Rabbit IgG 660RD	gt	0			LI-COR	68071
Rabbit IgG 800CW	gt do	0 1:2000 0			LI-COR LI-COR	68071 926- 32213
Rabbit IgG 880RD 800CW Rat IgG 680RD	gt do gt	0 1:2000 0 1:2000 0			LI-COR LI-COR LI-COR	68071 926- 32213 926- 68076
Rabbit IgG 880RD Rat IgG 680RD SV2	gt do gt ms	0 1:2000 0 1:2000 0		1:250	LI-COR LI-COR LI-COR Hybridoma Bank - DSHB	68071 926- 32213 926- 68076 Buckley, K.M.
Rabbit IgG 880RD Rat IgG 680RD SV2 Sv2 Tubulin, acetylated	gt do gt ms ms	0 1:2000 0 1:2000 0		1:250 1:250	LI-COR LI-COR LI-COR Hybridoma Bank - DSHB Merck	68071 926- 32213 926- 68076 Buckley, K.M. T6793

2.1.6 Equipment and consumables

Table 8: Equipment		
Device	Provider	Identification number
7500 Pro Real-Time PCR Systems	Applied Biosystems	4357362
Bandelin Sonopuls UW 2070	BANDELIN electronic	
Biometra TGradient Thermocycler	Analytik Jena AG	Biometra 050-801

BTX Gemini SC2	BTX Molecular Delivery Systems	452043
Confocal Laser Scanning Microscope	Leica	DMi8
Cryostat	Leica	CM 1900 CV
DynaMag [™] -2 Magnet	Thermo Fisher Scientific	12321D
EnSight™ multimode plate reader	Perkin Elmer	HH34000000
Fluorescence microscope 1	Nikon	AZ100
Fluorescence microscope 2	Olympus	BX51
HulaMixer™ Sample Mixer	Thermo Fisher Scientific	15920D
Mcilwain tissue chopper	Campden Instruments	Model TC752
Nanodrop 2000 Spectrophotometer	Thermo Fisher Scientific	ND-2000
Odyssey Infrared Imaging System	LI-COR	
Shaking incubator, Thriller	VWR International	
Standard Power Pack Biometra P25	Analytik Jena	846-040-800
Standard Power Pack P25T	Analytik Jena	846-040-850
Tecan Genios Pro	Tecan Group	
Trans-Blot® Turbo™ Transfer System	Bio-Rad Laboratories	1704150
Two-photon light sheet microscope	Custom-built	Manuscript in preparation
Two-photon point scanning microscope	LaVision	Trimscope II
Typhoon™ Imager	GE Healthcare	9400

Table 9: Plastic and glasware

Name	Provider	Catalog number	
13 mm Ø cover glasses	Paul Marienfeld	0111530	
15 μ-Slide 2 well co- culture	ibidi	81806	
50 ml, 15mL CELLSTAR® polypropylene tube	Greiner Bio One	227261, 188261	
Cell culture dish (uncoated), 100 x 20 mm	Greiner Bio-One	664160	
Cell culture dish, 100 x 20 mm	Sarstedt	83.3902	
Electroporation cuvettes	VWR International	732-1137	
Eppendorf safe-lock tubes, (2 mL, 1.5 mL, 0.5 mL)	Eppendorf	003012- 0094, -0086, - 1023	
Frosted slides (glass slides)	Engelbrecht	11102	
Millicell cell culture insert	Merck	PICM03050	
Poly-l-lysine hydrobromide	Merck	P9155	
Protein LoBind tubes	Eppendorf	0030122356	
VWR® PCR 8-well tubes	VWR International	53509-304	

2.1.7 Buffers/Solutions/Media

Table 10: Buffers/So	lutions/Media
----------------------	---------------

Buffers / Solutions / Media	Formulation
BIAM-DAB buffer	8 M Urea, 5 mM EDTA, 0.5% SDS, 50 mM Tris/HCL, pH 8.5, 50x molar excess BIAM
BIAM-IP buffer	5 mM EDTA, 50 mM Tris/HCL, 1% Triton-X-100, 1% SDS, pH 8.5

BIAM-IP elution buffer	6M GdmCl, 50 mM Tris/HCl, pH 8.5
Danieau (3x)	2.9M NaCl, 60mM Ca(NO ₃) 2 × 4 H ₂ O 40 mM, MgSO ₄ , 70mM KCl, 0,5M Hepes
DTT-DAB buffer	8 M Urea, 5 mM EDTA, 0.5% SDS, 50 mM Tris/HCL, pH 8.5, 3 mM DTT
Electroporation buffer	21 mM Hepes, 137 mM NaCl, 5 mM KCl, 0.7 mM Na2HPO4, 6 mM D-Glucose, pH 7.15
Elution buffer (4x)	30 % Glycerin, 12 % SDS, 150 mM Tris Base, 0.5 % bromphenol blue, pH 7.0 (RT)
ICC/IHC blocking buffer	5 % NGS and 0.5 % Triton-X-100 in PBS
MCF-7 medium	MEM (Merck), 10 % FCS, 2 mM GlutaMAX™, 1x NEAA, 100 U/mL P/S
Native lysis buffer	50 mM Tris/HCL,150 mM NaCl, 0,5 mM EDTA, 1 % NP-40, 1 Tablette complete mini (Roche) w/o EDTA/10ml and PhosSTOP™
NEM-DAB buffer	8 M Urea, 5 mM EDTA, 0.5% SDS, 100 μM Neocuproine, 50 mM Tris/HCL, and 50x molar excess NEM, pH 8.5
OPC differentiation medium	DMEM/F12, 1x B27+, 2mM GlutaMAX™, 100 U/mL P/S, 8 mM Hepes; 400 ng/mL T3, 400 ng/mL T4
OPC proliferation medium	DMEM/F12, 1x B27-, 2mM GlutaMAX™, 100 U/mL P/S, 8 mM Hepes; 20 ng/mL PDGF, 10 ng/mL FGF
OSC dissection medium	1 x HBSS Ca2+Mg2+, 100 U/mL P/S, 1mM kynurenic acid, 0.5 % Glucose, pH 7.2-7.4 (4°C)
	Neurobasal-A™, 2mM GlutaMAX, 25 %
OSC medium with horse serum	Heat inactivated horse serum, 100 U/mL P/S
OSC medium without horse serum	Neurobasal-A™, B-27™ Supplement, 2mM GlutaMAX™, 0.5% glucose, 100 U/mL P/S

OSC washing medium	0.5 x HBSS Ca2+Mg2+, 0.5 x Minimal essential medium, 100 U/mL P/S, 25 mM HEPES
PLL-coating solution	1mg/ mL PLL ,100 U/mL P/S, PBS
Resolubilization buffer	10% SDS, 150 mM NaCl, 50 mM HEPES pH 7.8
SG buffer A	50 % (v/v) ethanol, 10 % acetic acid (v/v)
SG buffer B	30 % (v/v) ethanol, 500 mM sodium acetate, 8 mM sodium thiosulfate in destilled water
SN medium	DMEM HG, 10 % FCS, 100 U/mL P/S, 2 mM glutamine
Tail lysis buffer	100 mM Tris/HCl pH 7.5, 5 mM EDTA, 2% SDS (w/v), 200 mM NaCl
Tris-buffered saline (10x)	1.5 M NaCl, KCl 30 mM, 250 mM

2.1.8 Oligonucleotides

Target gene	Sequence 5'-3'
спр	Fw: TGCTGCACTGTACAACCAAATTC RV: GAGAGCAGAGATGGACAGTTTGAA
gapdh	Fw: CTCAACTACATGGTCTACATGTTCCA RV: CCATTCTCGGCCTTCACTAT Probe: (Fam)TGACTCCACTCACGGCAAATTCAACGT(TAMRA)
<i>hkdm1a</i> siRNA	FW: CCACGAGUCAAACCUUUAUTT RV: AUAAAGGUUUGACUCGUGGTT
hscrambled CTRL siRNA	FW: UUCUCCGAACGUGUCACGUTT RV: ACGUGACACGUUCGGAGAATT
LSD_TetO insert	FW: CCATGGAATTCGAACGCTGACGTC RV: TATGGGCTATGAACTAATGACCC

Table 11: Oligonucleotides

LSD_WT	FW: AGCATGCTCTTTTCCAGCAT RV: CTCAGGCTGGCCTAAAACTG
mbp	Fw: CACAGAGACACGGGCATCCT RV: TCTGCTTTAGCCAGGGTACCTT
plp	Fw: GTATAGGCAGTCTCTGCGCTGA RV: AAGTGGCAGCAATCATGAAGG
zfkdm1a M0	CTGACTTCTTATTGGACAACATCAC

2.1.9 Software

Table 12: Software		
Name	Provider	
Adobe Illustrator CS6	Adobe Systems	
Citavi 6 (6.0.02)	Swiss Academic Software	
ClusterONE plugin	(Nepusz et al., 2012)	
Cytoscape	(Shannon et al., 2003)	
Fiji Is Just ImageJ	(Schindelin et al., 2012)	
GraphPad Prism 5	GraphPad Software	
Image Studio™ Lite Software	LI-COR Bioscience	
Leica Application Suite X (LAS X)	Leica	
Magellan™ Data Analysis	Tecan Group	
Office 2010	Microsoft Corporation	
Sequence detection software 1.5.1	Applied Biosystems	
Visual Molecular Dynamics (VMD 1.9.3)	(Humphrey et al., 1996)	

2.2 Methods

2.2.1 Zebrafish imaging

Embryos were anaesthetized in 0.3 x Danieau + PTU containing 1:1000 MS222 and mounted in 1.25 % low melting agarose (0.3 x Danieau + PTU). For the Tg(olig2:GFP), a custom-built two-photon light sheet microscope was used (manuscript in preparation). For this purpose, zebrafish larvae were mounted inside of fluorinated ethylene propylene (FEP) tube with an inner diameter of 1mm and an outer diameter of 1.6 mm. The *Tg(cldnk:TDTOMATO-caax)*, *Tg(cldnk:EGFP)* and *Tg(mbp:GFP*) and the whole mounted larvae were imaged with a two-photon point scanning microscope. For this purpose, zebrafish larvae were mounted on a 100 x 20 uncoated cell culture dish. The *Tg(-8.4neurog1:GFP)* and *Tg(mnx2b:GFP)* were mounted on a 15 µ-Slide 2 Well Co-Culture slide for confocal images. Brightfield images were used to crop the image to 4 spinal segments above the egg yolk extension. Maximum intensity projected images were blinded and cells of interest were counted using the Fiji Cell counter plugin (Kurt De Vos, University of Sheffield). For quantification of dorsal migrated cells, positive cells above and not touching the pMN domain were considered. For high-throughput images, the EnSightTM multimode plate reader was used. Anaesthetized embryos were placed in 96-well clear bottom plate with one larva positioned in the centre of each well. The overall length growth was recorded with a novel coded algorithm embedded in the Kaleido© Software (unpublished data). Time-lapse measurements were performed with the help of Enrico Mingardo and Felix Häberlein (University Bonn).

2.2.2 Morpholino injections

The translational blocking *kdm1a* anti-sense MO was dissolved to 3 mM in Ampuwa®. The working solution contained 75 μ M LSD1 MO and 0.5x CutSmart® Buffer in Ampuwa® with Phenol red. The drop size was adjusted to 150 μ m in mineral oil corresponding to ~1.8 μ L injection volume containing 1.1 ng LSD1 MO.

2.2.3 FAP-1

Small droplets of FAP-1 (5mM) were injected intracranial in 3 dpf larvae. After 2 h, injected larvae were washed 3 times with Danieau and imaged using the

fluorescence microscope 1. For incubation, 3 dpf embryos were incubated with 12.5 or 25 μ M FAP-1 for 20 h in Danieau. They were then washed 3 times and mounted in low gelling agarose for confocal imaging.

2.2.4 Immunochemistry

2.2.4.1 Whole mount staining

Anesthetized 3 dpf larvae were washed in PBS and fixed in 4 % paraformaldehyde (PFA) overnight. Larvae were washed 3 times in PBS for 10 min and dehydrated through a series of 25 %, 50 %, 75 % and 100 % methanol for 10 min each. Embryos were stored in 100 % methanol and rehydrated in a series of 100 %, 75 %, 50%, 25 % methanol diluted in PBS containing 0.005% Tween (PBS-T) for 10 min each. Larvae were then washed in PBS-T (3 x 5 min) and subsequently 3 times in 150 mM Tris-HCL (pH 9) for 5 min each step. Embryos were then equilibrated in the same buffer for 15 min at 70 °C and washed 2 times for 5 min in PBS-T. They were then permeabilized using 5 µg/mL ProteinaseK in PBS for 50 min, fixed again using 4 % PFA for 20 min and washed in PBS-T (2 x for 5 min). Fixed embryos were blocked in 10 % normal goat serum (NGS) and 2 % bovine serum albumin (BSA) in PBS-T at 4 °C for 4 hours. Larvae were then incubated in 2 % NGS and 2% BSA in PBST with either 1:250 anti-synaptic vesicle protein 2 (SV2) antibody or 1:500 anti-acetylated tubulin antibody for 72 h at 4 °C. Stained embryos were then washed 4 x in PBS-T for 1 h followed by 2 washing steps for 30 min in PBS-T at RT. They were then subjected to secondary antibody stainings for 48 h at 4 °C using goat anti-mouse IgG (H+L) Alexa Fluor 594 (1:1000). Stained larvae were first washed 6 x for 15 min in PBS-T and then washed 5 x for 5 min at RT. Finally, stained larvae were mounted in agarose and images obtained from a two-photon point scanning microscope.

2.2.4.2 Paraffin sections

Zebrafish larvae were fixed as described above and embedded in paraffin. Stainings were done by Dr. Anna Japp (University of Bonn, Institute of Neuropathology). In brief, paraffin sections were stained with either 1:1000 PCNA or 1:200 cleaved caspase 3 and counterstained with haematoxylin.

2.2.4.3 Cryosection sections

Mice were anaesthetized using isoflurane and perfused with PBS. Dissected brains were postfixed with 4 % PFA for 16 h, followed by dehydration in a 25–30 % (v/v) sucrose solution. Tissue samples were cryopreserved in TissueTek at –80 °C. Brains were cut in 20 μ m slices were using a cryostat, permeabilized with 0.5 % (v/v) Triton X-100. After blocking in 5 % (v/v) horse serum and 1 % (v/v) bovine serum albumin in PBS for 2 h, slices were subjected to the same staining protocol as described for OSCs.

2.2.4.4 OSCs and cell culture

OSCs and cells were fixed in Roti®-Histofix (4 %) for 30 min and 10 min respectively, and wash twice with PBS. After incubated in ICC/IHC blocking buffer for 2h at RT, primary antibody was added in 0.5 x ICC/IHC blocking buffer in PBS at 4 °C overnight. After 3 washing steps in PBS 0.5 % Triton-X-100, OSCs and cells were incubated with the secondary antibody in 0.5 x ICC/IHC blocking buffer in PBS for 1 h at RT. For immunocytochemistry experiments, nuclei were stained with a 1:20000 Hoechst followed by 3 washing steps. Stained OSCs and cells on cover slips were mounted on glass slides using Immu-MountTM. Images were acquired from the confocal laser scanning microscope or the fluorescence microscope 2 on the next day. OSCs were exposed to the indicated concentrations of bizine for 8 days. OSCs were then incubated with 3 μ M propidium iodide for 10 min and washed in PBS (3 x for 10min). Mean fluorescence intensity was measured over the whole slice based on fluorescence images obtained from the fluorescence microscope 2.

2.2.5 HCL treatment and coating of cover-slips

Coverslips were cooked in 80 % EtOH +HCL for 15 min. Afterwards, coverslips were wash twice in 80 % EtOH followed by a washing step in 99 % EtOH. Dried coverslips were separated and placed in the centre of a 24 well plate. After at least 2 h incubation in PLL-coating solution at 37 °C, each well was washed 4 times with PBS. In each washing step, cover slips were lifted with a 10 μ L pipette tip.

2.2.6 A2B5 cell culture

Single cell suspensions were obtained from cerebellar and cortical brain structures of P1-P3 C57BL/6 wildtype and *Tg(tet0-shRNA:kdm1a)* mice using the neuronal tissue dissociation kit. Mice were decapitated, meninges were removed, brain tissues dissected and further processed as suggested by the manufacturer's protocol. A2B5+ cells were isolated from single cell suspensions using the anti-A2B5 MicroBeads and LS MACS columns. For the *Tg(tetO-shRNA:kdm1a)* derived cultures, isolation were done separately for each pup as crossing of heterozygous Tg(tetO*shRNA:kdm1a*) and C57BL/6 yielded a mixed population of Tg(-/-) and Tg(+/-)individuals whose identity was not known by the time of isolation. Genotyping has been done subsequently as described. A2B5+ cells were cultivated in differentiation medium. Medium was exchanged to 2/3 every second day. Experiments were done within passage 0 to passage 1. Cells were passaged using 25 µL Accutase per cm². For differentiation experiments, cells were plated at 25.000 cells per cm² on PLL coated petri dishes and PLL coated HCL-treated cover-slips respectively. After at least 2 days of cultivation in proliferation medium, differentiation was induced by the addition of differentiation medium for the indicated time. Differentiation medium was exchanged every 2 days. For inhibitor treatments, A2B5+ cells were exposed to 10 µM bizine and 1 µM SP2509 respectively prior to induction of differentiation. The endogenous kdm1a shRNA was induced by the addition of 1µg/mL doxycycline 3 days before induction of differentiation.

2.2.7 Cell line culture and inhibitor treatments

MCF-7 and SN4741were cultivated in media as indicated at 37 °C and 5 % CO₂. Media were changed every 2 to 3 days. For splitting, cells were washed once with PBS and incubated with trypsin at 25 μ L per cm² for 1-2 min. The reaction was stopped by adding an excess of medium containing 10 %FCS. MCF-7 cells were split to a ratio of 1 to 10 and SN4741 of 1 to 20.

2.2.8 Cerebellar organotypic slice cultures

Slice cultures were obtain from 3 to 4 days old pups derived from C57BL/6 or Tg(plp:GFP) strains. Cerebella with attached hindbrain were dissected and cut into

350 μ m sagittal sections using a Mcilwain tissue chopper. Slices were dissociated in dissecting medium (4 °C) and transferred to washing medium for at least 15 min at 4 °C. Up to 4 slices were transferred a Millicell Cell Culture Insert and cultivated for 3 days in OSC medium with or without horse serum for 3 days at 37 °C and 5 % CO₂. Afterwards, temperature was reduced to 33°C until the end of the experiment. Medium was changed every second day. For inhibitor treatments, 2 consecutive slices were separated and subjected to 10 μ M bizine and DMSO treatment respectively. A 100 mM bizine stock solution was prepared in DMSO. OSCs were established in cooperation with Dr. Klaudia Lepka.

2.2.9 CellTiter-Blue[®] cell viability assay

A2B5+ OPCs were plated at 25.000 cells per cm² and treated with the indicated inhibitor concentrations for 24 h or the corresponding volume of DMSO. The amount of DMSO was adjusted to the highest inhibitor concentration. The assay was performed according to the manufacturer's instruction with the exception that new medium was added along with the substrate. Fluorescence was measured at 590 nm after excitation at 560 nm using the Tecan Genios Pro.

2.2.10 RNA isolation and qRT-PCR

RNA was isolated using the GeneJET RNA Purification Kit according to manufacturer's protocol. RNA content and purity were analyzed using a Nanodrop 2000 spectrophotometer. The cDNA was synthesized using the cDNA Reverse Transcription by following the manufacturer's instructions using the Biometra TGradient Thermocycler (10 min at 25 °C, 45 min at 48 °C and 5 min at 95 °C). For the qRT-PCR reaction, Power SYBR™ Green PCR master mix or Taqman Master Mix was used with the corresponding primer pairs. The qRT-PCR program was set up as follows: 2 min at 50 °C, 10 min at 95 °C, 40 cycles of 15 sec at 95 °C and 1 min at 60 °C. For reactions with power SYBRGeen, a dissociation curve was implemented at the end of the program ranging from 65 °C to 95 °C. Fold induction values were calculated in triplicates, based on the Δ CT validation procedure and normalized to GAPDH levels as internal control.

2.2.11 Mouse genotyping

Tail biopsies were incubated in 500 μ L tail lysis buffer supplemented with 10 μ L ProteinaseK overnight at 56 °C. Reaction mix was centrifuged at 18.000 g for 10 min and 1 μ L subjected to the PCR reaction. Using the GoTaq® DNA Polymerase according to the manufactures protocol. The PCR program was set up as follows: 3 min at 95 °C followed by 40 cycles of 30 sec at 95 °C, 30 sec at 65 °C and 45 sec at 72 °C. PCR reaction was loaded on a 1.2 % agarose Tris-borate-EDTA gel containing ethidium bromide.

The Tg(+/-) yielded a 381 bp fragment and wildtype specific 700 bp fragment. Tg(-/-) were identified by the absence of the 381 bp fragment.

2.2.12 Electroporation

MCF-7 cells were harvested by trypsinization, washed once with PBS and 3.5×10^6 cells resuspended in 600 µL electroporation buffer containing 15 µg siRNA. Cells were immediately transferred to a electroporation cuvette and electroporated at 190 V, 500 Ω and 1000 µF and immediately resuspended in 600 µM FCS and cultivated in 1:5 conditioned medium. Conditions for electroporation were optimized using a pCMV- LifeAct-mCherry.

2.2.13 Immunoblot analysis

Cells pellets were lysed in RIPA Lysis and Extraction Buffer supplemented with PhosSTOP[™] and cOmplete[™], Mini, EDTA-free Protease Inhibitor Cocktail for 10 min at RT. All following steps were performed at 4 °C. Lysates were sonicated with 3 pulses using a Bandelin Sonopuls UW 2070 set to 6 cycles and 10 % power. Sonicated lysates were clarified at 18,000 g for 20 min. For quantification of the protein concentration, the bicinchoninic acid assay (BCA assay) was used according to the manufacturer's protocol using the Tecan Genios Pro. Samples were prepared with Protein Sample Loading Buffer (4x), boiled for 5 min and if not stated otherwise, supplemented with 100 mM DTT. Samples containing up to 10 µg protein were loaded on a 15-well Any kD[™] Mini-PROTEAN® TGX[™] Precast Protein gel and separated by SDS-PAGE. Using the Trans-Blot® Turbo[™] Transfer System and the default mixed-KD blotting program (1.3 A, 25 V, 7 min), proteins were blotted onto

Trans-Blot® Turbo^m Mini PVDF. Membranes were blocked with 5 % BSA in PBS containing PBS-T for 2 h at RT. Blocked membranes were incubated overnight at 4°C with the primary antibody diluted in blocking buffer as depicted in table. After 3 washing steps (10 mL PBS-T, 10 min), the membranes were incubated with the IRD conjugated secondary antibody. Membranes were washed 3 times and stained bands detected with Odyssey Infrared Imaging System. Optical band densities were determined using the Image Studio^m Lite software. Band intensities were normalized to β -actin.

2.2.14 Silver gel staining

Samples were separated by SDS page. Gel was fixated for at least 15 min in SG buffer A and transferred to SG buffer B for 30 min. The gel was rehydrated by washing 3 times for 10 min in distilled water and subsequently stained with 6 mM silver nitrate in distilled water for up to 30 min. Stained gel was briefly washed with water and then with 236 mM sodium carbonate in water. The gel was subjected to the developer solution containing 236 mM sodium carbonate and 0.01 % (v/v) formaldehyde for 1 to 7 min. The reaction was finally quenched with 50 mM EDTA for 20 min followed by a washing step in water.

2.2.15 Co-Immunoprecipitiation

2.2.16 Antibody crosslinking

Dynabeads were wash 3 time in PBS and incubated with 2.5 μ L LSD1 antibody or normal rabbit IgG per 25 μ L Dynabeads per co-IP in PBS-T (0.02 %) for 30 min at RT under rotary agitation using the HulaMixer^M. Beads were washed 3 times with PBS and 2 times with 0.2 M triethanolamine and subsequently crosslinked with 20 mM dimethyl pimelimidate dihydrochloride in 0.2 M TEA overnight at 4°C. Crosslinking reaction was quenched with 50 mM Tris (pH 7.5) at RT for 15 min. Afterwards, beads were washed 2 times with 0.1 % BSA in PBS-T. Non-crosslinked antibody were eluted in 2 washing steps with 0.1 citrate pH 2-3 followed by 2 washing steps with 0.1 % BSA in PBS-T. Labeled beads were transferred in PBS to new protein LoBind tubes.

2.2.16.1 Co-IP in A2B5+ mouse OPCs

Adherent cells were scraped in 500 µL PBS and centrifuged for 5 min at 350 g. Cell pellets were resuspended in 6 packed cell volumes (PCV) of native lysis buffer $(\sim 100 \ \mu L)$ and incubated for 30 min at RT under rotary agitation. Samples were carefully resuspended every 10 min using a 200 µL pipette tip set to 80 µL. After 30 min supernatants containing cytosolic and a first portion soluble nuclear proteins were removed and stored on ice. The remaining pellet mainly containing the histone fraction, associated proteins and soluble were resuspended in 100 µL native lysis buffer and placed on ice for 10 min. The lysates were left on ice for 10 min and sonified again under the same conditions. Lysates were centrifuged for 5 min at 18.000 g 4°C and pooled with the first fraction. For quantification of the protein concentration, the bicinchoninic acid assay (BCA assay) was used according to the manufacturer's protocol using the Tecan Genios Pro. Different amounts of protein were subjected to the antibody crosslinked Dynabeads[™] Protein G (IgG 1 mg, Proliferation 1 mg and Differentiation 0.75 mg with 5 replicates each). Lysates were incubated with the Dynabeads overnight and after 3 washing steps in PBS transferred to a new 1.5 mL Eppendorf Safe-Lock tube. Bound proteins were eluted with 1x elution buffer for 10 min at 37 °C at 600 rpm using the shaking incubator.

2.2.16.2 Redox co-IP

Adherent SN4741 cells treated with 15 μ M bizine or DMSO for 24 h were washed briefly with PBS containing 10 mM NEM and subsequently scraped in PBS containing 100 mM NEM. Pellets were lysed in 6x PCV of native lysis buffer supplemented with 100 mM NEM and incubated on ice for 30 min. Lysates were resuspended every 10 min and subsequently sonified with 5 pulses using a Bandelin Sonopuls UW 2070 set to 6 cycles and 15 % power. Excessive NEM was removed by size exclusion chromatography using the P6 matrix. Protein amount in the purified lysates was estimated by bicinchoninic acid assay (BCA assay) according to the manufacturer's protocol using the Tecan Genios Pro and 1 mg total protein added to the antibody crosslinked DynabeadsTM Protein G (n=5). Elution was carried out as described in Co-IP in A2B5+ mouse OPCs.

Immunoprecipitated proteins were stacked in by SDS-PAGE (approximately 5 mm running distance). After silver gel staining, the protein containing bands were cut

out of the gel and protein reduced with 10 mM DTT in 50 mM ammonium acetate aqueous solution for 45 min at 56°C. Thiols were then alkylated with 55 mM iodoacetaminde in 50 mM ammonium acetate for 30 min at RT.

Proteins were further processed and analyzed by mass spectrometry as previously described (Poschmann et al., 2014).

2.2.16.3 MS-coupled BIAM switch assay

Trichloric acid (TCA) was directly added to the adherent cells to precipitate proteins and preserve their redox state. Pellets were washed in 10 % and 5 % TCA and resuspended in NEM-DAB buffer for 1 h at RT and 850 rpm using the shaking incubator. Proteins were precipitated in ice-cold acetone, collected by centrifugation, washed with acetone and resolubilizated in DTT-DAB buffer for 5 minutes at RT in the dark followed by the addition of BIAM-DAB. After 1 h incubation at RT and 850 rpm, proteins were precipitated with ice-cold acetone overnight at -20 °C. The pellet was washed and resuspended in BIAM-IP buffer and 900 µg of proteins affinity purified using agarose streptavidin beads overnight at 4°C using the HulaMixer[™] Sample Mixer according to the manufacturer's instructions for the spin-down method. Bound proteins were eluted in BIAM-IP elution buffer at 95°C for 5 min. Sample were diluted with 25 mM Tris/HCl, pH 8.5, 10 % acetonitrile to obtain a final GdmCl concentration of 0.6 M. Proteins were processed and analyzed by mass spectrometry as previously described by Dr. Ilka Wittig (Functional Proteomics, Faculty of Medicine, Goethe University Frankfurt) (Löwe et al., 2019). In brief, proteins were digested with 1 μ g trypsin (sequencing grade) overnight at 37°C under gentle agitation. Digestion was stopped by adding 0.5 % TCA. Solubilized peptides were subjected to liquid chromatography / mass spectrometry (LC/MS) on Thermo Scientific[™] Q Exactive Plus equipped with an ultra-high-performance liquid chromatography unit (Thermo Scientific Dionex Ultimate 3000) and a Nanospray Flex Ion-Source (Thermo Scientific). These experiments have been done together with Dr. Ilka Wittig, Dr. Juliana Heidler and Jana Meisterknecht in Frankfurt (Goethe-Universität Fachbereich MedizinFunktionelle Proteomics)

2.2.17 Cy-5 Maleimide labeling

TCA precipitated pellets were resuspended in NEM-DAB buffer for 1 h at 850 rpm using the shaking incubator to block free thiols. Alkylated lysates were precipitated and pellet washed 3 times in ice-cold acetone. Pellets were resuspended in resolubilization buffer, reduced with 500 µM DTT and boiled at 95 °C for 5 min. Reduced thiols were labeled with Cy5 maleimide for 1 h in the dark. After adding elution buffer, 1µg protein was loaded onto a SDS-gel and in-gel fluorescence scanned with the Typhoon[™] Imager.

2.2.18 *In situ* labeling of sulfenic acids

Living cells were exposed to 5 mM dimedone for 30 min briefly washed with 100 mM NEM in PBS and immediately precipitated with TCA. Pellets were washed 3 times in ice-cold acetone and resuspended in resolubilization buffer containing 100 mM NEM. Protein concentration was determined by the BCA assay according to the manufacturer's protocol using the Tecan Genios Pro and 30 µg subjected to SDS-page. Dimedone was labeled with a custom-made polyclonal dimedone antibody.

2.2.19 Crosslinking and H₂O₂ incubation

Cells were scraped in PBS and pelleted at 350 g for 5 min. For H_2O_2 incubation, they were resuspended in PBS containing the indicated concentrations of H_2O_2 . Cell pellet was lysed in 6 PCV native lysis buffer containing 100 mM NEM and processed as previously described in the redox co-IP.

For crosslinking experiments, cells were resuspended in PBS containing either 2.5 mM EGS or DSS and incubated for 30 min at RT. The reaction was quenched by adding 50 mM Tris-HCL for 15 min. Cell pellet was lysed in 6 PCV native lysis buffer containing 100 mM NEM and processed as previously described in the redox co-IP.

2.2.20 Bioinformatics

2.2.20.1 Subcellular localization

All proteins that were significantly less oxidized upon LSD1 knockout or inhibition were clustered to their subcellular localization using the `SubCell BarCode´ database

and the implemented `multi protein localization' tool set to MCF-7 cell line (Orre et al., 2019).The ribosomal/nucleosol fraction (N1) was only clustered to the nucleus, when clustered as nuclear according to UniProt terms (UniProt: a worldwide hub of protein knowledge, 2019).

2.2.20.2 Molceular function

All nuclear targets were clustered to their Gene Ontology term `molecular function' (GO:MF) using the ShinyGO v0.61 Gene Onotology enrichment tool with a 0.5 p-value cutoff (Ge et al., 2018). Considered were the ten most significant terms

2.2.20.3 Complex enrichment analysis

The Corum database includes 4274 mammalian protein complexes that were experimentally verified (Giurgiu et al., 2019). The `g:Profiler' was used to perform enrichment analysis in the Corum database (Raudvere et al., 2019).

2.2.20.4 Protein-protein interaction

Only the nuclear targets found in the redoxome analysis upon knockout were searched in the STRING database using their UniProt identifier (Szklarczyk et al., 2015). Only results based on experimental evidence and databases with high confidence (≥ 0.07) were considered. The data was visualized using Cytoscape (Shannon et al., 2003). The interactome was then clustered to their molecular function with the ClusterONE plugin (Nepusz et al., 2012).

3 Results

3.1 LSD1 in oligodendrocyte development

Although the histone methylation pattern during OL development is subjected to extensive changes, no particular histone demethylase has been described in this context so far. LSD1 is expressed in OPCs and could potentially regulate different steps of differentiation.

3.1.1 Zebrafish

3.1.1.1 Establishment of the zebrafish model

Knockout of LSD1 in mice causes early embryonic lethality around embryonic day 7.5 corresponding to 10 hpf in zebrafish development (Zhu et al., 2014). Therefore, general development needs to be critical reviewed in the zebrafish embryonic model in order to specifically study the development of OLs. To begin the investigation in zebrafish, 1-cell staged eggs were injected with a translation blocking antisense morpholino (MO) targeting *kdm1a* messenger ribonucleic acid (mRNA). LSD1 knockdown did not cause increased mortality compared to a control mismatch morpholino (CTRL MO) or the uninjected (UI) control group. On the first glance, LSD1 morphants exhibited no obvious developmental abnormalities, except for a pericardial edema and a reduction in the number of circulating blood cells (**Figure 7** A).

(A) Bright field images of 3 dpf larvae with control MO (left) vs. LSD1 MO (right). Pericardial edemata developed upon LSD1 knockdown are depicted with red arrows. Scale bars represent 1 mm. (B) Representative confocal images of maximum intensity z-projections show lateral views of Tg(kdrl:EGFP). No differences in the development of the vasculature were observed at 2 dpf in 2 independent experiments with 2 fish each. Scale bars represent 50 µm. (C) Time-lapse measurement of the length growth. Bright-field images for length measurement were acquired from anesthetized fish every hour using the EnSightTM multimode plate reader. Data was obtained from a single injection with 25-26 larvae per condition shown as mean ±SEM. Black arrow depicts the earliest time point of subsequent investigations on OL development (3 dpf).

A pericardial edema typically manifests as consequence of cardiac and/or vascular defects. The development of the vasculature however, is a prerequisite for OPC migration and differentiation as it serves as a physicochemical scaffold (Tsai et al., 2016). Fortunately, the vasculature developed properly upon LSD1 knockdown as

suggested by the *Tg(kdrl:EGFP)*, a transgenic zebrafish line with a EGFP expressed under the regulatory elements of the vasculature-specific *kdrl* gene (**Figure 7** B).

For quantitative analysis of OL differentiation, OLs within 4 hemisegments of the spinal cord were counted. Differences in the overall length of the fish could lead to misinterpretation of absolute cell numbers. Therefore, the fish length was measured over time. An early delay in length growth persisting until 2.5 dpf was observed (**Figure 7** C). As quantitative analyses were carried out at 3 dpf and 5 dpf respectively, it could be excluded that difference in spinal cord length might influence the determination of absolute cell numbers.

A general issue of the MO technique are off-target effects causing phenotypes not related to the function of LSD1. A well-known effect is the non-specific activation of tumor suppressor P53 and subsequent induction of apoptosis (Gerety and Wilkinson, 2011). To address this issue, paraffin section of 3 dpf zebrafish were prepared. Sections were immunostained against cleaved caspase 3 and counterstained with haematoxylin. Under the experimental conditions used in this study, no abnormal induction of apoptosis was suggested by this preliminary staining (**Figure 8**, n=1).

Sagittal paraffin sections of 3 dpf larvae. Shown are LSD1 morphants (bottom) and larvae injected with a control mismatch MO (top). Arrows indicate cells labeled with anti-cleaved caspase 3. No difference could be observed based on the present experiment (n=1). Nuclei were counterstained with haematoxylin. Scale bars represent 200 μ m. Immunostainings were done by Dr. Anna Japp (University Bonn).

Taken together, a so far unpublished LSD1 MO has been established. A previously described phenotype on the hematopoietic system was confirmed (Takeuchi et al., 2015). Furthermore, a developmental delay in length growth has been identified that was not expected to interfere with the analysis carried out in the following.

3.1.1.2 Establishment of a formaldehyde sensor in vivo

It has long been appreciated that repressive or activating function of LSD1 are conveyed by its enzymatic activity. In fact, non-enzymatic functions of LSD1 seem to exist and are subject of ongoing research (Maiques-Diaz et al., 2018). Therefore, LSD1 activity should be considered as an independent parameter beyond protein and transcript levels. In cell lysates, demethylase activity can be quantified by e.g. a reaction of fluorogens with the demethylation by-products. Recently, much effort has been devoted to develop fluorescent sensors applicable in living cells. To monitor demethylase activity even in a whole organism, is highly desirable and has not been achieved so far. FAP-1 is a formaldehyde-specific sensor designed to monitor formaldehyde in living cells (kindly provided by Thomas F. Brewer and Christopher J. Chang, UC Berkeley, Dept. of Chemistry, USA) (Brewer and Chang, 2015). FAP-1 exhibits a 2-aza-cope reactivity and is weakly fluorescent in its unreacted state. Upon reaction with formaldehyde, a 2-aza cope rearrangement renders the molecule about 8-fold more fluorescent (λ_{ex} = 645 nm, λ_{em} 655 and 750 nm). To get a first impression of the FAP-1 turn-on response *in vivo*, small droplets of FAP-1 (5 mM stock) were injected intracranial in 3 dpf larvae. At 2 h after injections, a fluorescence signal could be detected around the site of injection (Figure 9, top).

Figure 9 | In vivo detection of endogenous formaldehyde by FAP-1

Microinjection and incubation of 3 dpf zebrafish larvae with FAP-1 revealed a qualitative difference in the turn-on response of FAP-1 in control MO larvae (left) vs. LSD1 MO larvae (right). (Top) Intracranial injection of wildtype larvae with FAP-1. Shown are representative images acquired from a fluorescence microscope 2 h after injection (6-7 fish in total). Scale bars represent 500 μ m. (Bottom) *Tg(olig2:GFP)* larvae were incubated for 20 h with 12.5 μ M FAP-1. Maximum intensity z-projections of representative images obtained from a confocal microscope (5 fish in total). Scale bars represent 250 μ m and arrows depict sites of FAP-1 turn-on responses.

Intriguingly, a qualitative difference in the signal between the LSD1 MO group (7 fish) and CTRL MO group (6 fish) was observed. Delivery of the probe via intracranial injection is an invasive approach and reproducibility in respect to the distribution of the probe and the final concentration, hampered by the injection procedure. The zebrafish is known to efficiently absorb low molecular weight compounds over the skin from the surrounding water. Therefore, zebrafish larvae were incubated with different concentrations of FAP-1 for 3 and 20 hours, respectively (**Figure 9**, bottom). It appeared that FAP-1 was not absorbed over the skin but rather accumulated in the eye. Again, a turn-on response could be observed in CTRL MO that was drastically reduced in larvae with decreased LSD1 level (5 larvae per condition). In addition, the probe did not cause any toxicity as assessed by the fish survival indicating its applicability *in vivo*.

Here, for the first time, the production of endogenous formaldehyde was visualized *in vivo* using a first-generation fluorescence-based sensor originally designed for cell

culture experiments. LSD1 appears to be the major source of formaldehyde as the MO-based knockdown decreased the signal in all labeled structures. The integration of FAP-1 in the following studies would require a uniform distribution in the CNS. However, uptake kinetics or conditions need to be improved for this purpose. Nevertheless, with this new technique, decreased LSD1 activity upon MO injection was confirmed.

3.1.1.3 LSD1 is essential for OL lineage commitment in the spinal cord

The *Tg(olig2:GFP)* fish drives the expression of cytosolic green fluorescent protein (GFP) under the *olig2* promotor and marks OPCs, OLs, descendent motor neurons and interneurons in the developing spinal cord (Shin et al., 2003). OPC specification is completed at 24 hpf and becomes visible in a bright GFP signal throughout the pMN domain. No obvious difference could be observed during this stage (**Figure 10** B).

Figure 10 | LSD1 knockdown reduced the number of dorsal OLs in the zebrafish spinal cord

(A) Quantification of dorsal migrated GFP+ cells within 4 spinal hemisegments of the *Tg(olig2:GFP)*. GFP+ cells no longer associated with the ventral pMN domain were considered as dorsal migrating cells (above the white dashed shown line shown in B). Each dot represents 1 fish, shown with mean and ±SEM. Summary of 3 independent experiments. Mann-Whitney U-test: **p<0.01 (B) Representative lateral views of maximum intensity z-projections acquired from a two-photon light sheet microscope; CTRL MO (top) vs. LSD1 MO (bottom) at 5 dpf. Overlay of fluorescence and bright field images of a 3 dpf UI larvae acquired from a fluorescence microscope (middle). Scale bars represent 50 µm.

At 2.5 dpf OPCs give rise to OLs that still express OLIG2 but can be distinguish from OPCs as they migrate dorsally, away from the pMN domain. By counting the total cell number of dorsal positioned GFP positive (GFP+) cells in the living zebrafish, the extent of OL differentiation can be quantified. Knockdown of LSD1 reduced the number of dorsal migrated OLs by 70 % at 3 dpf and 75 % at 5 dpf (Figure 10 A). This indicates that LSD1 is necessary for the differentiation of OPCs to OLs. Next, the small molecule inhibitor SP2509 was employed to substantiate the observed effects (Fiskus et al., 2014). Prolonged exposure to 2.5 µM SP2509 was well tolerated as assessed by the survival rate. In contrast to the MO treatment, no change in the length growth was observed (Figure 11 A). Here, a novel automated algorithm for counting dorsal migrated GFP+ cells in the *Tg(olig2:GFP)* was used. Images were continuously acquired with an EnSight[™] multimode plate reader over a time course of 25 h, starting from 50 hpf until 75 hpf. (Figure 11 B). This approach allows a timeresolved high-throughput screen of OL differentiation in the spinal cord of anesthetized zebrafish. Although not as pronounced, zebrafish larvae that were continuously exposed to SP2509 had less OLs in the spinal cord at every time point analyzed (Figure 11 B). To validate the applicability of the algorithm, LSD1 morphants were subjected to the high-throughput screen as a positive control. The result obtained from manual analysis using images derived from the two-photon light sheet microscope (Figure 10 A) could be confirmed with the automated algorithm (**Figure 11** B).

Figure 11 Pharmacological inhibition of LSD1 reduced the number of dorsal OLs in the zebrafish spinal cord

High-throughput analysis of dorsal migrated GFP+ cells in the Tg(olig2:GFP) line through an automated counting algorithm using the EnSightTM multimode plate reader. (A) Overall lengths of anesthetized larvae were measured every hour based on brightfield images acquired from the EnSightTM multimode plate reader. Mean values of 25-26 fish obtained from a single injection shown as mean ±SEM. (B) Time-lapse of dorsal migrated GFP+ cells. Each dot shows the mean value of 25-26 fish obtained from a single injection or incubation experiment, respectively. The automated algorithm distinguishes between dorsal positioned GFP+ cells from ventral residing GFP+ cells. (C) 2.5 μ M SP2509 was added to the fish water right after eggs were laid. After 8 h the embryos were de-chorinated and further incubated with SP2509. Right before the start of the time-lapse, the larvae were anesthetized and each fish positioned in a well of a 96-well plate containing 100 μ L Danieau (1x) supplemented with anaesthetic and 2.5 μ M SP2509 or DMSO. Dorsal GFP+ cells in the whole spinal cord were automatically counted every hour.

3.1.1.4 LSD1 regulates final differentiation of OLs in the spinal cord

Given that less premature OLs arrived in the dorsal spinal cord, it was expected that less OLs mature to myelinating OLs and subsequently myelination defects become visible. To verify this assumption, LSD1 was knocked down in the *Tg(cldnk:EGFP)* line. The *cldnk* gene encodes for claudin k (CLDK), a zebrafish-specific myelin protein suitable for identifying mature OLs (Ye et al., 2009; Münzel et al., 2012). Indeed, a significant reduction in the number of mature OLs was observed along the dorso-ventral axis (**Figure 12** A - dorsal; B - ventral). The relative number of dorsal and ventral CLDK-positive OLs was reduced by 65 % and 20 %, respectively. This

demonstrates the considerable biological significance of LSD1-mediated demethylation during OL differentiation in the zebrafish spinal cord.

Figure 12 | LSD1 knockdown impaired OL differentiation and myelination in the zebrafish spinal cord

Number of GFP+ cells within 4 spinal hemisegments in Tg(cldnk:GFP) and Tg(mbp:GFP) 5 dpf larvae in (A) the dorsal spinal cord (depicted in blue) and (B) ventral pMN domain (depicted in orange). Live-cell images acquired from a two-photon point scanning microscope. Each dot represents 1 fish, shown with mean and ±SEM. Summary of 4 independent experiments. Mann-Whitney U-test: *p<0.05; **p<0.01; ***p<0.001. (C) Representative lateral views of maximum intensity z-projections of Tg(cldnk:GFP) and Tg(cldnk:tdttoma-to-caax). GFP+ cells no longer associated with the ventral pMN domain were considered as dorsal migrating cells (above the white dashed line). CTRL MO (top) vs. LSD1 MO (bottom) larvae at 5 dpf. Scale bars: 500 μ m.

To confirm these findings, the *Tg(mbp:EGFP)* line was used. The *Tg(mbp:EGFP)* line expresses enhanced green fluorescent protein (EGFP) under the regulatory elements of the myelin basic protein (MBP), which is an integral component of the myelin sheath and a well-accepted marker for mature OLs in both, zebrafish and

rodents (Almeida et al., 2011). Again, the number of dorsal OLs was significantly reduced, as 55 % fewer cells were positive for EGFP. The pool of ventral residing OLs however, was constant. Only a tendency to a reduction became apparent. To address the question whether the observed effects on differentiation impacts on functional myelination as well, a transgenic *cldnk* reporter line was used that expresses a membrane bound tdTomato (Tg(cldnk:tdTomato-CAAX)). At first glance, the myelin sheath was severely affected throughout the spinal cord in both, the ventral and dorsal domains (**Figure 12** C).

3.1.1.5 LSD1 is not essential for neurogenesis in the zebrafish spinal cord

The fact that OLs differentiation is literally abolished in the LSD1 MO group raises the question whether OPC differentiate at all. OPCs give first rise to motor neurons before they produce OLs. On the molecular level, MN specification becomes evident by a specific expression profile of motor neuron homeodomain containing transcription factors (Tanabe et al., 1998). Here, a transgenic enhancer trap line with a trapping construct inserted near the coding region of the *mnx2b* gene was used (Asakawa et al., 2012). The *mnx2b* gene encodes for the motor neuron and pancreas homeobox 2b (MNR2B) protein which is expressed in spinal and abducens MNs. The *Tg(mnx2b:GFP)* line shows a GFP signal in the somata of MNs and their axonal projections (**Figure 13** A).

Figure 13 | LSD1 knockdown delayed spinal MN development

(A) Representative lateral views of maximum intensity z-projections of 4 spinal segments in Tg(mnx2b:GFP). CTRL MO (left) vs. LSD1 MO (right) at 2 dpf (top) and 5 dpf (bottom). Live-cell images were acquired from a confocal microscope (Scale bars: 50 µm). (B) Quantification of MN cell bodies in the spinal cord within 4 segments. Each dot represents 1 fish. Mann-Whitney U-test (**p<0.001), shown with mean and ±SEM. Summary of 4 independent experiments.

The somata are evenly distributed throughout the pMN domain while their axons descend in bundles towards the peripheral muscle fibers. MNs were quantified by counting their cell bodies within 4 hemisgemts. At 2 and 3 dpf the number of *mnx2b* expressing neurons was significantly reduced by 21 %, while the difference could no longer be recognized by 5 dpf (**Figure 13** B). This observation suggested that the knockdown rather delayed the development of MN than impacted on the general decision whether OPCs become MNs.

To investigate whether OPCs fail to exit the cell cycle and persist as proliferating progenitors, an anti-PCNA staining was performed in paraffin sections of 3 dpf larvae. According to this preliminary investigation (n=1, 3 fish), the proportion of PCNA+ cells in the spinal cord is increased (**Figure 14**). Additional replicates are

needed to further support the notion that LSD1 knockdown leads to increased proliferation in the spinal cord.

Figure 14 | Anti-PCNA staining suggested an increased proportion of proliferating cells in the spinal cord of 3 dpf LSD1 morphants

Images show saggital paraffin sections of 3 dpf larvae immunostained against PCNA. Nuclei were counterstained with haematoxylin. Shown are spinal sections from 3 fish obtained from a single injection. Scale bars represent 500 µm. Stainings were done in cooperation with Dr. Anna Japp (University Bonn).

The establishment of a functional neuronal network is a prerequisite for oligodendrogliosis, not only because neurons are the actual structures to be myelinated. Neurons provide a plethora of extrinsic cues that attract premyelinating OLs and orchestrate their terminal differentiation (He et al., 1996; Stevens et al., 2002). As already shown, the knockdown of LSD1 influenced the development of MNs but not to the same extent as shown for OLs. This observation suggested the need for further investigations. To provide a global overview of the neuronal network, antibodies against acetylated α -tubulin and the synaptic vesicle glycoprotein 2 (SV2) were used for whole mount stainings in 3 dpf larvae. Assuming that there is a causative relationship between the defect in oligodendrocyte differentiation and neurogenesis, it seemed reasonable to consider only those fishes for staining that obviously had fewer oligodendrocytes in the spinal cord. Whole

mount stainings were therefore done in the the Tg(olig2:EGFP) line. No obvious differences could be observed according to 8 whole mount stainings from 2 independent experiments (**Figure 15**).

Figure 15 | SV2 and acylated tubulin whole mount stainings suggested no servere defects in neurogenesis in the zebrafish spinal cord upon LSD1 knockdown

Representative lateral views of 3 dpf Tg(olig2:GFP) spinal cord sections stained for acetylated tubulin (top) and SV2 (bottom). Shown are images of CTRL MO larvae (left) versus LSD1 MO larvae (right) obtained from a two-photon point scanning microscope. No obvious difference could be observed in 8 whole mount stainings obtained from 2 independent experiments. Scale bars represent 50 μ m.

Although Schwann cells rather than OLs are responsible for myelination of neurons of the peripheral nervous system (PNS), development of the PNS was investigated as well.

Here, the production of neurogenin 1 (NGN1) positive dorsal root ganglion neurons (DRGNs) was followed. DRGNs are neurons of the PNS that convey sensory stimuli into the CNS. The analysis of DRGN development was rather randomly chosen to investigate the development of a representative neuronal cell type of the PNS. DRGNs arise from neural crest cells (NCC), a multipotent non-epithelial cell

population that appears in the periphery of the dorsal neural tube. NCCs give rise to neuronal and glial fated cells of the PNS, as well as multiple non-neural cells. The number of DRGNs anterior to the NCC stream was reduced by 30 % as evinced from the *Tg(neurog1:EGFP)* reporter line (**Figure 16**) (Blader et al., 2003).

Figure 16 LSD1 knockdown in zebrafish impaired the development of DRGNs (A) Representative lateral views of maximum intensity z-projections of the Tg(ngn1:GFP) line. Shown are confocal images at 5 dpf. Scale bars represent 50 µm. (B) The number of GFP+ cells within 4 spinal hemisegments in Tg(ngn1:GFP) LSD1 was estimated at 3 dpf and 5 dpf. Each dot represents 1 fish. Statistical significance was determined by the Mann-Whitney U-test (**p<0.01; ***p<0.001), shown with mean and ±SEM. Summary of 3 independent experiments.

To confirm that this observation was not just due to a developmental delay similar to MN differentiation, DRGs were again examined at 5 dpf. The number of DRGNs was still reduced by 33 % compared to the CTRL MO group indicating that LSD1 specifically drives the specification of DRGNs.

These data revealed that LSD1 controls the generation of some neuronal subtypes. However, in conclusion, fundamental developmental defects, comparable to those observed during OL development and myelination, did not occur during neurogenesis upon LSD1 knockdown.

3.1.2 Mouse

LSD1 is expressed in OPCs *in vivo*, as shown by anti-LSD1 and -PDGFR α immunostainings in coronal brain sections of postnatal day 10 C57BL/6J mice (**Figure 17**).

3.1.2.1 LSD1 regulates the transcriptional program in mouse-derived OPCs

To investigate if LSD1 specifically drives the intrinsic transcriptional program of OPCs, glial restricted progenitor cells were isolated from the brain of postnatal day 3-4 young mice. Using immunolabeled magnetic beads, targeting the OPC-specific ganglioside A2B5, a glial restricted progenitor pool was isolated from the mouse telencephalon and cerebellum. In the presence of the mitogens fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF), A2B5+ OPCs proliferate and retain their characteristic bipolar to multipolar morphology. The A2B5+ OPC pool was isolated from a transgenic mouse harboring a tetracycline-controlled `tet-on' short hairpin ribonucleic acid (shRNA) expression construct. The tet repressor (tetR) constitutively blocks the expression of the *kdm1a* shRNA until it is eliminated from the promoter by the addition of doxycycline (DOX) (**Figure 18** A) (Zhu et al., 2014; Sprüssel et al., 2012).

(A) Schematic drawing of the TET-ON system used to induce the kdm1a-specific shRNA *in vivo* (Sprüssel et al 2012). The tetR repressor blocks the expression of the kdm1a-specific shRNA until it is eliminated from the promotor in the presence of doxycycline (DOX). A2B5+ OPCs were isolated from heterozygous pups harboring the endogenous kdm1a shRNA expression construct (Tg(+/-)) or wildtype pups (wt) at postnatal day 3. (B) qPCR analysis of the remaining kdm1a mRNA level in DOX-induced proliferating A2B5+ OPCs isolated from Tg(-/+). OPCs were treated with 1 µg/mL DOX and normalized to the untreated Tg(-/+) (CTRL). The CTRL was set to 100 % depicted with a dashed line. (C) Immunoblot analysis of the LSD1 protein level after 5 days of differentiation. OPCs were treated with DOX for 3 days under proliferating conditions and subsequently differentiated in the presence of DOX for 5 days. Optical band densities were normalized to actin and the normalized LSD1 levels in untreated cells. Each dot represents an independent isolation obtained from a single pup (3 breedings in total).

The knockdown of LSD1 can be induced by the addition of DOX to the cell culture medium as previously described (Sprüssel et al., 2012). The induction of the endogenous shRNA in proliferating OPCs induced a mild knockdown over 3 days as evinced by qPCR analysis (**Figure 18** B). The remaining *kdm1a* transcript levels in 2 biological replicates were reduced at day 3 to 43 % and 65 %, respectively. Next, A2B5+ OPCs were again exposed to DOX for 3 days and then differentiated for 5 days in the presence of DOX. After 5 days, the LSD1 protein levels were quantified by immunoblot analysis (**Figure 18** C). Surprisingly, in wildtype OPCs, the LSD1 protein levels tend to be increased when compared to uninduced wildtype control. This

indicates that DOX per se could exert unwanted side-effects that lead to direct or indirect induction of LSD1. Only tendencies to a reduction of the LSD1 protein levels became evident in DOX-induced cultures of OPCs harbouring the shRNA expression construct (Tg(-/+)) when compared to the uninduced Tg(-/+).

To analyze the effect of the shRNA induction by DOX on lineage specific protein expression, MBP and GFAP protein levels were quantified by immunoblot analysis. While lysates of induced Tg(-/+) cells showed a reduction of MBP levels by 75 %, the GFAP protein levels, considered as a marker for astrocytes, were not affected (**Figure 19**).

To corroborate whether the decreased MBP levels resulted from a relative reduction in the number of OLs, immunocytochemistry (ICC) stainings against MBP and the OL specific 2', 3'-cyclic nucleotide-3'-phosphodiesterase (CNPase) were performed. Indeed, the relative number of mature OLs was reduced by about 60 % upon induction with DOX (**Figure 20**).

Figure 20 | Decreased LSD1 transcript levels reduced the relative number of OLs in differentiated A2B5+ OPCs

ICC stainings against myelin- and progenitor-specific marker proteins. A2B5+ OPCs harboring an endogenous *kdm1a* shRNA expression construct (Tg(-/+)) or wildtype (wt) OPCs were treated with DOX (+DOX) or vehicle (-DOX) for 3 days before induction of differentiation. Differentiation was stopped after 5 days. (A) Representative images of anti-MBP, anti-NG2 and nuclei counterstaining with Hoechst. Scale bars represent 15 μ m. (B) Quantification of NG2, -MBP, -CNPase positive cells. Positive cells were normalized to the total cell number (Hoechst). Each dot represents an independent isolation obtained from a single pup and is connected to its corresponding control with a straight line (Mean ± SEM; Mann-Whitney U-test: *p<0.05 and ***p<0.0001; n=7, 3 breedings in total).

Importantly, it could be shown that differentiation of OPCs was arrested in premyelinating stage, as suggested by an increased proportion of cells, positive for the progenitor specific NG2. To further characterize the immature phenotype, the population of O4+ cells was quantified by ICC (**Figure 21** A).

Figure 21 | ICC stainings against preOL-specific O4 and astrocyte-specific GFAP in differentiated A2B5+ OPCs with induced *kdm1a*-specific shRNA

A2B5+ OPCs harboring an endogenous kdm1a shRNA expression construct (Tg(-/+)) were treated with DOX (+DOX) or vehicle (-DOX) for 3 days before induction of differentiation. Differentiation was stopped after 5 days. (A) The relative number of O4+ preOL with an O4 like phenotype and GFAP+ cells. Each dot represents an independent isolation of cells obtained from a single pup and is connected to its corresponding control with a straight line (Mann-Whitney U-test:**p<0.01; n=5 shown with mean ± SEM; 3 breedings in total). (B) Two representative images depicting the premyelinating O4+ phenotype (white arrows) considered for quantification. The GFAP+/O4+ population (red arrows) was considered as GFAP fraction. Cells positive for O4, but with no premyelinating phenotype (orange arrows) were not considered for quantification. Scale bars represent 10 μ M.

It is suggested that 04 immunoreactivity identifies a pre-myelinating stage that is more advanced compared to NG2+ progenitor cells (Reynolds and Hardy, 1997). Intriguingly, staining revealed a mixed population with dissimilar morphologies. A subpopulation with a premyelinating phenotype could be clearly identified and was considered for quantification (**Figure 21** B, white arrows). The remaining proportion of 04+ cells was highly heterogeneous and could be roughly divided into rounded cells (**Figure 21** B, orange arrows) and cells with astrocyte-like phenotypes (**Figure 21** B, red arrows). The 04+ cells that were considered for quantification were increased upon induction of the shRNA by about 40 %. The 04+ cells that exhibit an astrocyte-like shape showed in fact a weak immunoreactivity against GFAP as well (GFAP+/04+). Noteworthy, a GFAP+/04- population could not be identified as all GFAP+ cells were also positive for 04. No difference in the amount of GFAP+/04+ was observed when LSD1 transcript levels were reduced prior to the induction of differentiation. It should be noted in conclusion, that due to the heterogeneity of the putative 04+ pool, the true identity remains to be defined. Due to the uncertainty regarding the knockdown efficiency, pharmacological inhibitors were employed to inhibit the catalytic activity of LSD1. LSD1 resides in multifunctional protein complexes harboring a variety of other chromatin and DNA modifying factors. Thus, this approach further allowed distinguishing between a putative role of LSD1 as a scaffolding protein and its demethylase activity.

To test the applicability of different LSD1 inhibitors, the phenelzine and tranylcypromine derivates, bizine and ORY-1001 were tested for possible cytotoxicity in primary cells. Additionally, SP2509 that had been used in the zebrafish experiments before was tested as well. None of these compounds exerted any cytotoxic effects, even in concentrations way beyond working concentrations commonly applied in cancer cell lines e.g. around 10 μ M for bizine and nanomolar concentrations for SP2509 and ORY-1001 (**Figure 22**) (Fiskus et al., 2014; Prusevich et al., 2014; Maes et al., 2018).

Figure 22 | Small molecule inhibitors targeting LSD1 were well tolerated in high doses in A2B5+ OPCs

A2B5+ OPCs were treated with indicated concentrations of bizine, SP2509 and ORY-1001 for 24 h under proliferating conditions. Resazurin turnover was measured using the `Cell Titer-Blue* Cell Viability Assay'. Effects of bizine treatment shown with mean \pm SEM (n=4-5). Each dot represents an independent isolation and breeding.

For further studies, bizine in a working concentration of 10 μ M was chosen. This inhibitor is suggested for application in neurodegenerative diseases and has particular low toxicity in other neural cell cultures (Prusevich et al., 2014). In addition, SP2509 with working concentration of 1 μ M, as this small molecule inhibitor functions distinct from MAO derivates as revealed by a molecular docking simulation (Sorna et al., 2013). Moreover, SP2509 phenocopied the knockdown of LSD1 in zebrafish without causing noticeable side effects.

Upon inhibition with bizine, clear tendencies to reduced MBP protein levels and myelin-specific transcript levels could be shown by immunoblot analysis (**Figure 23** A) and quantitative real-time polymerase chain reaction (qRT-PCR) (**Figure 23** B).

Figure 23 | Pharmacological inhibition with bizine reduced myelin-specific trancript and protein levels

A2B5+ OPCs were exposed to 10 μ M bizine for 24 h under proliferating conditions, before induction of differentiation in the presence of bizine. (A) Densitometric analysis of immunoblots against MBP in lysates 5 days after induction of differentiation. Values are normalized to actin. Dots connected with a straight line indicate linked values within one experiment. (B) qRT-PCR analysis of myelin-specific transcript levels after 3 days of differentiation. Values are normalized to GAPDH and to the control (CTRL). Each dot represents an independent isolation. Values shown with mean ± SEM.

In addition, bizine reduced the relative number of mature OLs by about 50 % while a clear tendency to an increase in the relative number of NG2+ progenitors became evident (**Figure 24**).

A clear tendency to a reduced number of OLs could be confirmed using SP2509, but more replicate would have been necessary for final confirmation. Thus, by employing two different pharmacological inhibitors, the observed effects from the experiments of the shRNA induction could be corroborated.

3.1.2.2 Establishment of OSC to study myelination ex vivo

Cerebellar OSCs offer a powerful tool to study differentiation of OPCs in an environment closer to the *in vivo* situation. When isolated from postnatal staged mice, neurons e.g. purkinje cells are fully developed and the cerebellum is invaded by OPCs that are about to differentiate. Differentiation and myelination take place with high spatial and temporal precision *in vivo. Ex vivo*, in OSCs, the timing can be different and needs to be defined for the given cultivation conditions. Horse serum is frequently used in OSC experiments within the first 3 days as it provides a cocktail of grow factors beneficial for cell survival. However, its composition is not well defined and adds an unpredictable factor to the experiment. To establish ideal cultivation conditions and to define the timeframe of analysis, OSCs were prepared from a Tg(plp:EGFP) reporter mice (Sobottka et al., 2011). The Tg(plp:EGFP) reporter mouse allows real-time analysis of myelination and circumvents the problem of postfixation analysis. No difference in the kinetics and extent of myelination could be observed when OSCs were kept in serum containing medium compared to a previously described serum-free formulation for postnatal

hippocampal slice cultures (Neurobasal-A[™], B-27[™] Supplement, 2mM GlutaMAX[™], 0.5% glucose; **Figure 25**) (Liu et al., 2017).

Figure 25 | **Establishment of serum-free culturing conditions for cerebellar OSCs** Slices were obtained from postnatal day 4 Tg(plp:GFP) mice. For comparison, two adjacent slices were either maintained under serum free (-HS) or serum containing (+HS) conditions. (A, left) Representative images of myelinating slices. Squares with dashed lines, exemplarily shown for 10 div, mark the area considered for quantification. (A, right) Mean fluorescence intensity was quantified with `Fiji Is Just ImageJ' and normalized to the mean fluorescence intensity of 3 div slices. Each dot represents a separate slice obtained from 3 independent breedings. Scale bar represents 1 mm. (B) Schematic illustration of the cerebellum. Cultures were prepared from 350 μ M sagittal slices.

By day 7 *in vitro* (div) a considerable EGFP signal has been observed. Prolonged cultivation leads to excessive production of mature OLs which renders quantification in a 3-dimensional system difficult and error prone. Since bizine reflected the phenotype of the shRNA in the cell culture experiments, it was again used as a tool to modulate LSD1 activity in OSCs. When applied in the same concentration that has been used in cell culture experiments, bizine did not exert any toxicity as suggested by propidium iodide (PI) stainings (**Figure 26**).

Figure 26 | Bizine showed no toxicity in cerebellar slice cultures

Two adjacent slices obtained from postnatal day 4 wildtype mice were treated with the indicated bizine concentrations or DMSO, respectively. (Left) Representative images of OSCs kept for 8 div in the presence of bizine or DMSO. Scale bar represents 1 mm. (Right) Quantification of mean fluorescence intensity trigge-red by PI/DNA intercalation in OSCs 8 div. Fluorescence intensity was quantified with `Fiji Is Just ImageJ' and normalized to slices treated with DMSO. Each dot represents a separate slice obtained from 3 independent breedings.

3.1.2.3 LSD1 activity is necessary for OL differentiation in OSCs

After having established the OSC model to study OPC differentiation *ex vivo*, 2 adjacent slices were treated with bizine and DMSO, respectively. Immunoblot analysis of a pooled fraction of 6 slices already suggested that the development of OLs was impaired upon treatment with bizine within a single experiment (**Figure 27** C). Next, the number of differentiated OLs was determined by counting MBP+/OLIG2+ cells within 4 fields of views and normalized to the number of OLIG2+ cells (**Figure 27** B & D, OLs). To determine the absolute number of undifferentiated OPCs, OLIG2+/MBP- cells were counted (**Figure 27** D, OPCs). The experiments in OSCs confirmed the previous observations: the relative number of OLs was reduced by 45 % while clear tendencies to an enriched OPC pool were obvious.

Figure 27 | **Pharmalogical inhibition of LSD1 impaired OL differentiation in OSCs** For each experiment 2 adjacent slices of postnatal day 3 mice were separated, treated either with 10 μ M bizine or DMSO for 7 div. (A) Representative confocal images of maximum intensity z-projections. Scale bars represent 100 μ m. Red arrows (left) depict myelinated axons, indicating that functional myelination proceeds *ex vivo* in OSCs. (B) Positive cells were counted within 4 fields of view. MBP+/ OLIG2+ cells were considered as OLs and OLIG2+/MBP- cells as OPCs. (C) Immunoblot of MBP with 2 different concentrations of bizine (n=1). (D) Quantification of positive cells. Each dot represents a separate slice obtained from an individual pup out of 4 independent breedings shown with mean and ±SEM (Mann-Whitney U-test: **p<0.01; n=11-14)

3.1.2.4 The zinc finger protein ZFP516 recruits LSD1 during differentiation

LSD1 itself cannot bind to DNA. Thus, it depends on co-regulators that guide LSD1 to its targets genes. In order to identify and define regulatory complexes in proliferating OPCs and after initiation of differentiation, a co-immunoprecipitation (co-IP) of endogenous LSD1 with subsequent mass spectrometry analysis was performed. Toward this goal, LSD1 complexes were enriched from proliferating OPCs and OPCs subjected to differentiating stimuli for 24 h. A multitude of proteins were significantly enriched over the immunoglobulin G (IgG) control in both conditions (**Appendix**, Table 13-15). Proteins that are directly or indirectly involved in transcriptional regulation according their Gene Ontology term (GO-term) are shown here (**Figure 28** A, dark grey and red dots). From co-IP experiments it is not possible distinguish between direct or indirect interaction.

Furthermore, individual complexes cannot be distinguished from each other. Thus, it seemed reasonable to consider only those interacting partners for further discussion that have been previously identified by thorough biochemical characterization in neural and non-neural cells (**Figure 28** A, red dots). Although these information stem from other tissues and cells, it provides a rational basis to speculate about the particular compositions of LSD1 complexes here.

Figure 28 | LSD1 is recruited by ZFP516 in A2B5+ OPCs upon initiation of differentiation

LSD1 containing complexes were enriched by co-IP from endogenous LSD1 in proliferating A2B5+ OPCs or A2B5+ OPCs subjected differentiation stimuli for 24 h. (A) Mass spectometry analysis of enriched proteins under proliferating (top, left) or differentiating conditions (top, right; n=5). Shown are interacting proteins involved in transcriptional regulation according to GO term molecular function clustering. LSD1 interacting factors that have been previously described with experimental evidence are shown in red with protein name. Differentially bound proteins are shown (bottom, left). (B) Schematic illustration of factors that are specifically enriched under proliferating or differentiating conditions. The most highly enriched protein (ZFP516) is highlighted in green (PDB entry: 2H94)

The spectrum of interacting proteins under proliferating and differentiating conditions was similar at first glance. RCOR3, the molecular chaperon HSP90 and the myelin transcription factor 1 (MYT1) were identified solely upon induction of differentiation.

The overall aim was to identify differences in the binding of proteins. However, differences were not obvious here. A reasonably workaround strategy was to calculate the differences of enrichment between both conditions (**Figure 28** A - red dots; bottom). This approach unraveled whether components were recruited or were about to dissociate from LSD1 upon induction of differentiation. In this regard, a considerable enrichment of the zinc finger protein 516 (ZFP516) became evident. This observation led to the assumption that ZFP516 is an essential co-regulator for LSD1 during OL lineage commitment. Two independent studies point to the functional relevance of LSD1/ZFP516 interaction. During brown adipogenesis, ZFP516 is recruited together with LSD1to the promoter of the uncoupling protein 1 to erase the repressive H3K9 mark and promote development of brown fat cells *in vitro* and *in vivo* (Sambeat et al., 2016). In human breast cancer, ZFP516 recruits the repressive C-terminal-binding protein 1 (CTBP1)/LSD1 complex to the promotor of the epidermal growth factor receptor (EGFR), to erase the activating H3K4 mark (Li et al., 2017). Of note, CTBP1 was found to be differentially enriched as well.

To summarize the findings, the global knockdown of LSD1 in the developing zebrafish impaired OL differentiation. In primary cells and OSC experiments, it could be shown that OLs fail to differentiate and OPCs are arrested in the progenitor state. The analysis of the LSD1 interactome revealed that LSD1 exerts at least in part its function as a transcriptional regulator by engaging with the co-regulators CTBP1 and ZFP516.

3.2 LSD1 and its potential role in redox signaling

LSD1 produces H_2O_2 as a by-product of the demethylation reaction. The fate of H_2O_2 is largely unexplored and could potentially serve as a second messenger in redox signaling.

3.2.1 Pharmacological inhibition with bizine stabilizes the COREST/HDAC complex

As outlined in the introduction part (chapter 1.2.1), there are two ways how LSD1 could oxidize a target protein. Either directly or by a peroxiredoxin-dependent redox relay. In both cases, it can be assumed that transient or stable interaction with the redox target is necessary. The oxidized target can in theory either remain in contact with LSD1 or becomes released upon oxidation in the following termed as `oxidation and release' mechanism. Thus, binding patterns or the redox state of binding partners are expected to change upon inhibition. To address this hypothesis, an enrichment of LSD1 interacting proteins in dependence of its activity appeared to be a reasonable approach. To provide information about the redox state of the interacting proteins an alkylation step would be necessary to irreversibly block reduced thiols and prevent unwanted oxidation upon cell lysis. As this step may cause detrimental effects during immunoaffinity purification, a redox-sensitive co-IP was established here. In brief, native lysates were prepared in the presence of Nethylmaleimide (NEM) to block all reduced thiols. Purified lysates were subjected to co-IPs with two different commercially available antibodies. The co-IP efficiency was assessed by silver gel staining and revealed that NEM reduces the efficiency of the co-IP but still allows enrichment to a considerable extent (Figure 29 B).

±NEM

(A) Mass spectometry analysis of co-immunoprecipitated LSD1 interacting proteins in SN4741 (n=5). SN4741 cells were treated with 15 μ M bizine (bizine) or DMSO (CTRL) for 24 h. Cells were washed with 100 mM NEM in PBS and lysed in native lysis buffer containing 100 mM NEM. Lysates were purified by size-exclusion chromatography to remove excessive NEM and subsequently subjected to co-IP overnight. Heat map (left) shows significant enrichment over IgG control samples. Volcano plot (right) shows differentiatly enriched proteins normalized to LSD1 (unpaired Student's t-test; *p<0.05). Red asterisks depict LSD1 interacting partners that potentially reside within one complex. (B) Silver gel analysis of co-IPs with two different commercial antibodies (ab 1: Cell Signaling; ab 2: Abcam) against endogenous LSD1 in the presence or absence of 100 mM N-ethylmaleimide (±NEM). Ab 2 was used for the main experiment. (C) Immunoblot analysis of co-immunoprecipitated proteins from SN4741 and MCF-7 cells treated with 15 μ M bizine and 1 μ M SP2509 for 24 h, respectively.

For the main experiment, a substantia nigra derived mouse neuronal progenitor cell line (SN4741) was treated with or without 10 μ M bizine for 24 h. SN4741 cells

acquired early characteristics of dopaminergic neurons and are immortalized by SV40 large T antigen insertion (Son et al., 1999). To distinguish between oxidized and reduced thiols during mass spectrometry analysis, co-IP eluates were reduced with DTT and subsequently alkylated with iodacetamide leading to carbamidomethylation of previously oxidized thiols. Due to their characteristic mass shift, both alkylation agents (NEM and iodacetamid) can be easily distinguished by mass spectrometry.

The co-IP revealed that LSD1 associates with SMARCA4, SMARCC2 and ARID1a. These are components of SWI/SNF chromatin remodeler complexes, whose interaction has not been described so far (Figure 29 A, Appendix Table 18). Treatment with bizine attenuated these interactions and favored the engagement with components of the COREST repressor complex, which includes HDAC1, PHF21a, HMGB20b and RCOR1. This observation indicates that the complex assembly and disassembly is driven by the LSD1 activity. Immunoblot analysis of the co-IP eluate could not conclusively corroborate the finding that bizinedependent inhibition stabilizes the interaction with RCOR1, as it was not obviously more enriched in the elution fraction (Figure 29 C). Treatment with SP2509 did not corroborate the effect as well. In addition, the interaction of LSD1 with SMARCA4 could not be validated by immunoblot analysis at all. Usually overexpression of tagged protein variants is employed to efficiently enrich proteins for the identification of novel interaction partners. To circumvent artificial overexpression, the co-IP was again performed in a breast cancer cell line that endogenously overexpresses LSD1. In MCF-7 cells, SMARCA4 was slightly enriched in the SP2509 treated samples and in the IgG control but surprisingly not in the untreated, nor in the bizine treated cells. Although it could not be clearly shown by immunoblot analysis, inhibition of LSD1 undisputable resulted in a change of the interactome. Higher doses of bizine could help to demonstrate the stabilization of the COREST complex upon inhibition more clearly. To test if any protein bound to LSD1, is differentially oxidized, the interactome in both treated and untreated samples was screened for redox modifications. No NEM-labeled or iodacetamide-labeled peptides were enriched to a considerable amount as such quantification by mass spectometry would have been possible. This suggests that co-IPs from endogenous proteins are not a suitable approach to investigate this hypothesis.

3.2.2 LSD1 oxidizes itself and presumably forms an activity dependent oligomer

Probably because the enrichment of LSD1 was most prominent, several cysteines with oxidative modifications could reliable be identified with a considerable intensity on LSD1 itself. It could be shown that cysteine 491 (C491), C600, C618, C623 and C665 were oxidized in the untreated samples (**Figure 30** A & C). Treatment with bizine significantly reduced the oxidation of these cysteines indicating that LSD1 acts as a redox sensor probably controlled by its own activity. Indeed, it has been previously suggested that C600 can form an oxidation dependent intramolecular disulfide bridge with C618 (Ricq et al., 2016). The formation of the C600-C618 disulfide bridge reversibly inhibits the demethylase activity.

Figure 30 | Mass spectrometry analysis identified oxidized LSD1 peptides and a disulfide linkage in SN4741 cells

Endogenous LSD1 was enriched from NEM-alkylated SN4741 lysates by immunoprecipitation and subjected to mass spectometry analysis (CTRL vs. bizine). (A) Crystal structures depicting oxidized thiols, disulfide linkages, the flavin (FAD) and the hypothesized LSD1 homodimer. (B) Intensity ratios of the detected disulfide peptide (indicated above) and the NEM-alkylated VVLC(665)FDR peptide (reduced). Statistical significance was not calculated as only 4 replicates could be considered for quantification. (C) Log 2 of ratios of peak intensities of carbamidomethylated thiols (oxidized; ox) to NEM-alkylated thiols (reduced; red). Identified peptides indicated above. Each dot represents an independent biological and technical replicate (n=5). Statistical significance was determined by an unpaired t-test, shown with mean \pm SEM (*p<0.05).

Mass spectrometry analysis proposed that C665-C491 form a disulfide bridge (**Figure 30** B). The formation of an intramolecular C665-C491 bridge appears to be highly unlikely due to the long distance. Inevitably, this leads to the assumption that LSD1 could form a dimer or oligomer, stabilized at least in part via an intermolecular C665-C491 disulfide bridge (**Figure 30** A).

Attempts to confirm the dimeric form by immunoblot analysis failed even with the addition of exogenous H_2O_2 in both, SN4741 and MCF-7 cells (**Figure 31**, left).

Figure 31 | Immunoblot analysis of LSD1 immunoprecipitated after chemical cross-linking and H₂O₂ incubation

SN4741 cells were incubated with indicated concentrations of H_2O_2 prior to LSD1 immunoprecipitation. Eluates were separated by SDS-PAGE and analyzed by immunoblot (left, n=1). Untreated MCF-7 and SN4741 cells were subjected to chemical crosslinking with EGS and DSS. Subsequently, LSD1 was immunoprecipitated and analyzed by immunoblot (right, n=1).

Disuccinimidyl suberate (DSS) and ethylene glycol bis(succinimidyl succinate) (EGS) are amine-reactive cell permeable crosslinker used to stabilized labile and transient protein interactions in living cells. To stabilize a putative LSD1 homodimer or any oligomeric form, MCF-7 and SN4741 cells were crosslinked with EGS and DSS. Crosslinked lysates were purified and LSD1 subsequently enriched by immunoaffinity purification. Again, no evidence for the existence of a dimer could be provided (**Figure 31**, right). Thus, vigorous attempts to proof the existence of a LSD1 dimer or an oligomeric structure failed with the experimental approach chosen here (e.g. denaturing conditions). In summary, inhibition with bizine changes the pattern of interacting proteins. This observation is accompanied with oxidative modifications of LSD1 which in part have been described to inhibit its own activity and might lead to structural changes as suggested by the data provided here (Ricq et al., 2016). Whether LSD1 regulates the redox state of its binding partners remains elusive from the co-IP.

Based to the present analysis, LSD1 mainly persists in its oxidized form in SN4741. This raises issues regarding the activity level of LSD1 in this particular cell line, as oxidation of C600 and C618 abolishes LSD1 activity. Due to this uncertainty, further studies were carried out only in the human estrogen responsive MCF-7 breast cancer cell line. In MCF-7 cells, LSD1 activity and H₂O₂ production is necessary to drive the expression of estrogen responsive genes (Perillo et al., 2008). Furthermore, LSD1 is overexpressed in breast cancer cells which could in theory increase the probability to detect redox targets.

3.2.3 LSD1 elicited global changes in the cellular redoxome

Considering the findings obtained from the co-IP, it seemed reasonable to choose an unbiased experimental approach that is independent of LSD1 interaction. This allowed also employing a knockout strategy for the following investigation. To knockout LSD1, MCF-7 cells were electroporated with a *kdm1a* specific small interfering RNA (siRNA). Knockout efficiency was confirmed by immunoblot analysis and appeared to be sufficient by day 3 (**Figure 32**).

Figure 32 | LSD1 was efficiently knocked out in MCF-7 cells

The electroporation of MCF-7 was optimized and seemed to be most efficient at 190 V, 500 Ω and 1000 μ F. Immunoblot analysis of LSD1 protein level over a period of 4 days (n=1). Remaining LSD1 protein level are estimated by densitometric analysis, normalized to actin and to the CTRL siRNA.

Bizine and SP2509 treatments were chosen as additional conditions for several reasons. The application of pharmacological inhibitors allows for the detection of early time points. Due to their high affinity, inhibition of LSD1 activity by small chemical compounds starts abruptly and mainly depends on their specific uptake kinetics. In case of bizine, robust inhibition is achieved after 6 h (Prusevich et al., 2014). The knockout on the other hand, only continuously lowers LSD1 protein level. Since LSD1 is overexpressed in MCF-7 cells, it could potentially elicit global changes in the redoxome. To follow this hypothesis, thiols were irreversibly alkylated with NEM followed by the treatment with DTT to reduce oxidized cysteine side chains. Previously oxidized cysteines were then labeled with the thiol reactive Cyanin-5-maleimid (CY5-M) and the lysates subsequently subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE). The intensity of the in-gel fluorescence emitted by CY5-M is proportional to the extent of protein oxidation. Treatment with bizine and SP2509 reduce the fluorescence signal after 5 h, 24 h and 48 h treatment indicating massive effects on the redoxome (**Figure 33**).

Figure 33 [Knockout or inhibition of LSD1 reduced the level of oxidized cysteines MCF-7 cells were treated with 15 μ M bizine or 1 μ M SP2509 for the indicated time or subjected to a LSD1 knockout. Lysates were alkylated with NEM and reduced by DTT. Previously oxidized cysteines were then labeled with Cy5-maleimide (CY5-M). (A) Image of in-gel fluorescence produced by the thiol-reactive CY5-M (n=1). (B) Oxidative cysteine modifications detected by this method are indicated with red asterisks.

With the knockout of LSD1, a reduction of the signal became evident not before day 3. These observations indicated a causative relation between decreased LSD1 protein level or activity and cysteine oxidation.

To further investigate the type of cysteine oxidation, MCF-7 cells were incubated with dimedone. Dimedone is a cell-permeable probe that specifically binds to sulfenic acids *in situ* (Poole et al., 2005). This is of particular interest as sulfenic acids are transient intermediates that appear to be the origin for many redox modifications, e.g. disulfide bond formation. Due to their remarkable reactivity *in situ* labeling is necessary. Intriguingly, the detection of sulfenylated thiols by a dimedone-specific antibody revealed a global reduction starting from 24 h after addition of inhibitors and not before day 3 in the knockout samples (**Figure 34**).

SO₂H

SO,H

SNOH

SG

Figure 34 | Knockout or inhibition of LSD1 reduced the global sulfenic acid levels

MCF-7 cells were treated with 15 μ M bizine or 1 μ M SP2509 for the indicated time or subjected to a LSD1 knockout. Dimedone was added to the cell culture medium to label sulfenic acids in living cells.(A) Immunoblot analysis of dimedone levels (n=1). (B) Oxidative cysteine modification detected by this method is indicated with a red asterisk.

Sulfenic acids are prone to further react with free thiols. Glutathione is highly abundant and contains a free thiol that can readily form a mixed disulfide with sulfenic acids (gluathionylation). Although knockout and inhibition elicited obvious changes on sulfenic acid levels, the glutathionylation pattern of the proteome appear not to be changed to the similar extent as evinced by immunoblot analysis using an antibody against glutathionylated proteins (Figure 35).

Figure 35 | Glutathionylation levels were not affected upon knockout or inhibition of LSD1 in MCF-7 cells

MCF-7 cells were treated with 15 μ M bizine or 1 μ M SP2509 for the indicated time or subjected to a LSD1 knockout. All thiols were alkylated with NEM prior to SDS-PAGE. (A) Immunoblot analysis of glutathio-nylated proteins (n=1). (B) Cysteine redox state detected by this method is indicated with a red asterisk.

3.2.4 LSD1 regulates the redox state of numerous nuclear

proteins

As LSD1 knockout and inhibition had widespread effects on the redox state of many proteins, it was reasonable to further elucidate the underlying details. The biotinylated iodoacetamide (BIAM) switch assay coupled to mass spectrometry is a straightforward technique to identify differentially oxidized proteins (Löwe et al., 2019). Compared to co-IPs it offers an untargeted approach to analyse the redoxome over the full cellular proteome. The BIAM switch assay is based on 2 consecutive alkylation steps, followed by immunoaffinity enrichment and subsequent analysis via mass spectrometry (**Figure 36**).

Figure 36 | BIAM switch assay coupled to mass spectometry

Workflow of the biotinylated iodoacetamide - (BIAM) switch assay coupled to mass spectrometry. MCF-7 cells are lysed and proteins precipitated using TCA (Cell lysis). Resolubilization in the presence of NEM blocks all reduced thiols and is followed by acetone precipitation to remove the excess of NEM (Thiol blocking). Subsequently, sulfenic acids, disulfides and nitrosylated thiols are reduced by DTT. These cysteines, formerly oxidized, are then labeled with BIAM (Labeling). Sulfinic and sulfonic acids are not reducible by DTT and will therefore not be labeled with BIAM. All formerly oxidized proteins that were labeled with BIAM can be enriched by affinity purification (Enrichment). After trypsin digestion of the enriched proteins, differentially oxidized targets are identified after mass spectometry analysis based on differences in the intensities (Analysis). Figure adapted from (Löwe et al., 2019).

In brief, proteins are precipitated directly from living cells by trichloroacetic acid (TCA) to preserve their redox signature. Reduced cysteines are then irreversible alkylated by NEM, followed by the complete reduction of the oxidized cysteine pool. All previously oxidized cysteines are now accessible for labeling with BIAM and can be enriched by streptavidin-coupled beads prior to mass spectometry analysis. The degree of enrichment of a target protein is proportional to the extent of oxidation of its cysteine residues. Of note, overoxidized sulfinic and sulfonic acids cannot be reduced by DTT and thus, will not be labeled by BIAM. This has to be considered and will again be addressed in the discussion part. The analyzed datasets contain proteins from all organelles (**Appendix**, Table 19-21). With LSD1 being a nuclear protein, it is feasible to assume that potential redox targets are located in the

nucleus. Still LSD1-derived redox equivalents could in theory be shuttled to the cytosol via peroxiredoxins to achieve inter-organelle target oxidation. However as this can be considered as a rather rare event, it was reasonable to reduce the dataset to the nuclear compartment comprising potential targets with high confidence. Subcellular location of proteins is usually determined based GO-terms and UniProt annotations. These databases, however, do not distinguish between cell types. Thus, the subcellular localization was clustered based on a MCF-7 specific database (Orre et al., 2019). As this database does not further distinguish between ribosomal and nucleoplasm located proteins, all ribosomal proteins were therefore only classified as nuclear when annotated according to UniProt (UniProt: a worldwide hub of protein knowledge, 2019). For all following investigation, only nuclear proteins that were significantly less oxidized were considered. It should still be considered that LSD1 is essential for many cellular functions. Therefore, the list of differently oxidized proteins contains firstly possible LSD1 redox targets and secondly, proteins that change their redox status due to secondary effects. Secondary effects could affect proteins of every compartment and may change the redox state in either direction (more oxidized and less oxidized). Direct oxidation would be expected to occur mainly in the nucleus. Two observations foster the notion that LSD1 indeed oxidizes numerous proteins. First, with 40 % (knockout), 47 % (bizine) and 50 % (SP2509), the majority of proteins that were identified as less oxidized were allocated to the nucleus (Figure 37 A - red dots; right half of the volcano plots).

Figure 37 | Mass spectometry-coupled BIAM switch assay identified numerous potential LSD1 redox targets

MCF-7 were treated with 15 μ M bizine, 1 μ M SP2509 for 24 hours or electroporated with *kdm1a* specific siRNA 3 days before analysis. Whole cell protein was subjected to the BIAM-switch assay and analyzed by mass spectometry. (A) Volcano plots of differentially oxidized proteins. Significant changed proteins are represented as dark grey dots, as red dots when localized in the nucleus and non-significant changed proteins as light grey dots (p-value < 0.05, n=6). Nuclear localization was determined according to uniprot terms and `www.subcellularbarcode.de´ (Orre et al. 2019). (B) Schematic representation of cysteine redox states. Proteins enrichment is proportional to the particular oxidation states marked with red asterisks.

Second, the majority of all proteins that significantly changed their redox state (either more or less oxidized), was less oxidized upon knockout or inhibition (knockout: 86 %; bizine: 70 %; SP2509: 61 %). The comparison of the targets found in all 3 analyses revealed that only 7 % of the SP2509 dependent targets and 13 % of the bizine dependent targets overlap with the knockout.

Clustering of the potential targets to their molecular function using ShineyGO v0.61 Ontology Enrichment Analysis tool revealed that the majority is involved in RNA processing and metabolism, transcriptional regulation and chromatin remodeling (**Figure 38**) (Ge et al., 2018).

GO Molecular Function

This indicates that LSD1 indeed oxidizes its local surrounding and may adopt novel functions in RNA processing by oxidation.

3.2.5 The majority of the redox targets are physically associated

As learnt from the redox co-IP in SN4741, inhibition of LSD1 activity enriches the HDAC1/COREST complex. This indicates that whole complexes could be subjected to LSD1-dependent redox regulation leading to a functional change or disassembly thereof.

To follow this idea, all LSD1 targets were analyzed for their enrichment in complexes. The CORUM database is a manually curated repository of experimentally identified complexes (Giurgiu et al., 2019). Using g:Profiler, the CORUM database was searched for significant enrichment in known protein complexes (Raudvere et al., 2019). Intriguingly, many targets clustered in experimentally verified complexes. Thus, LSD1 could indeed be responsible for regulating complex integrity and function through the oxidation of several complex components (**Figure 39**).

Protein complexes (CORUM database)

To provide a global view of interaction, targets obtained after knockout were queried from the STRING protein database using high confidence (0.7) settings, experimental evidence and databases (Szklarczyk et al., 2015).

The retrieved interactome was visualized using Cytoscape and again clustered according to their go terms using the ClusterONE add-on 1.0 (Shannon et al., 2003; Nepusz et al., 2012). The global perspective provided here, illustrates that the majority of targets are functionally and physically connected (**Figure 40**).

В

Õ UBL4A \circ VAPA

PCNP 1

TARDBP

Figure 40 | Protein interactions of potential nuclear redox targets identified upon LSD1 knockout

(A) Nuclear targets enriched after LSD1 knockout were considered for analysis. The network was generated using the STRING database version 11 based on experimental evidence and databases with high confidence interaction score (≥ 0.7) (Szklarczyk et al. 2015). The network was visualized with Cytoscape 3.7.2 using the ClusterONE add-on version 1.0 (Shannon et al. 2003; Nepusz et al. 2012). The majority of potential redox targets are involved in transcription (yellow dots), RNA processing (red dots) and signalosome (green dots) according to molecular function GO terms. Proteins not clustered in these functional groups are shown as grey dots (others). (B) Nuclear targets with no evidence for interaction are shown (bottom left, 'no direct interaction'). Proteins identified in BIAM switch assays upon pharmacological inhibition are marked as overlapping targets with blue asterisks (bizine) or purple asterisks (SP2509). The majority of the targets are predicted to act in a functionally connected network.

Consistently with the previously used clustering algorithm (ShineyGO v0.61), the majority of targets clustered to RNA processing and transcription regulation. The transcriptional repressor, transcription factor 25 (TCF25), was the only target identified in all analysis. Although an unbiased approach was chosen here, with metastasis-associated protein 2 (MTA2), GATA zinc finger domain containing 2A

(GATAD2A) and retinoblastoma binding protein 7 (RBBP7) 3 core components of the nucleosome remodeling and deacetylase complex (NuRD) complex, were found as possible targets. This complex is filed as `HDAC2 associated core complex' in the CORUM database (**Figure 39** A, siRNA). The NuRD complex is a multifunctional machinery that links nucleosome remodeling to histone deacetylase and demethylation activities and functions during both, development and tumorigenesis (Fujita et al., 2003; Kim et al., 2008). LSD1 is an integral component of the NuRD complex as it has been shown in breast cancer *in vitro* and *in vivo* (Wang et al., 2009b). The components MTA2, GATAD2A and RBBP7 found here are the core components and function to maintain complex integrity. Additionally, they recruit factors that convey remodeling, deacetylation and demethylation activities.

3.2.6 Numerous redox targets interact with LSD1

Given that known interacting partners are among the redox targets, it seemed reasonable to again perform a co-IP with inhibited and non-inhibited LSD1 activity in order to test the hypothesis of an `oxidation and release' mechanism (Figure 41 B). This time, the alkylation reagent NEM was omitted in the Co-IP, since the sole purpose of this preliminary experiment (n=1) was to obtain indications for interaction and activity dependent changes. Many targets were found to interact LSD1 (Figure 41 A). Nucleolin (NCL), heterogeneous with nuclear ribonucleoprotein K (HNRNPK) and heat shock protein HSP 90-alpha (HSP90AA1) were more than twofold enriched upon inhibiton of LSD1 activity. This observation indicates that these candidates might interact with LSD1 and become released upon oxidation. In addition, all interacting proteins identified in the previously performed co-IP in proliferating A2B5+ OPCs were compared with the redoxome analysis. Only a few proteins, mainly involved in RNA processing, were found to change their redox state.in MCF-7 cells and interact in A2B5+ OPCs.

Figure 41 Numerous potential redox targets were identified as interacting partners

List of proteins identified as both, `less oxidized' in BIAM switch assays upon LSD1 knockout or inhibition (bizine or SP2509) and identified here as interacting partners by co-IP coupled to mass spectrometry analysis. Potential redox targets identified in more than one condition for the BIAM switch assay are depicted in bold letters (overlapping targets). Proteins involved in transcription are shown as yellow dots and as red dots when involved in RNA processing according to molecular function GO terms. Proteins not clustered in these functional groups are shown as grey dots (others). (A, left) MCF-7 cells were incubated with 15 μ M bizine for 24 h and subjected to co-IP coupled to mass spectometry (n=1). Blue asterisks mark targets that were more than two fold enriched as interacting partners upon 24 h treatment with 15 μ M bizine in MCF-7 (n=1). (A, right) The same comparison with all identified interacting partners in proliferating A2B5+ primary mouse OPCs (n=5, no bizine treatment). (B) Illustrated is the hypothesized `interaction and release' mechanism. According to this hypothesis, a target protein interacts with LSD1 and is released in an activity-dependent manner. This hypothesis has been examined here by co-IP combined with pharmacological inhibition of LSD1 activity. (LSD1 PDB entry: 2H94).

As previously described, LSD1 interacts with the NuRD complex as RBBP7 could be identified in the co-IP in MCF-7 cells. Of note, in this preliminary experiment RBBP7 enrichment did not change upon inhibition indicating that oxidation of the NuRD complex could rather have consequences for recruitment stabilization of additional factors than triggering complex disassembly. Under the assumption of an `oxidation and release' mechanism, nucleolin (NCL) seems to be a promising candidate. The preliminary co-IP indicated that LSD1 may interact with NCL. Interaction was strongly enhanced when LSD1 was inhibited (~3 fold enriched). NCL is involved in RNA processing and harbours only a single cysteine in one of its RNA binding domains (C543).

3.2.7 The protein levels of several targets are directly or indirectly regulated by LSD1

LSD1 is a transcriptional regulator and modulation of its protein level or activity results in a change of the proteome triggering a change in many cellular functions. All targets enriched here harbor a redox-sensitive cysteine, otherwise they would not have been enriched (**Figure 36**). However, changes in the level of enriched proteins due to transcriptional regulation directly or indirectly mediated by LSD1, could lead to false readouts. Although oxidation of regulated proteins is still possible, their detection and quantification are challenging. To provide insights into the regulation of the protein levels, the full proteome in the same samples have been analyzed by mass spectrometry upon knockout. The proteome analysis identified ~2000 proteins (**Appendix**, Table 22). Of the 127 redox targets, 86 could be identified in the proteome analysis. Of these 86 targets, 28 were significantly downregulated, with CHMP4B only one protein upregulated and 56 not changed (**Figure 42**).

В

no direct interaction CDKN2AIPNL O ABCF1 ADI1 CHMP4B METAP1 ATXN2 C6ORF89 🖲 NACA 🔴 G3BP1 Ó DAG1 PHB2 🖲 ILF3 ONAJB12 PPM1A 🔴 KARS SND1↓ HYOU1 🍎 PARK7 \circ 🖲 торі Ō IPO4 Ó PIN4 OSBPL8 \bigcirc SMARCE1 TRIM28 🚖 ● RACGAP1 \bigcirc TARDBP SELENBP1 \bigcirc NUCKS1 DDX17 1 \bigcirc TCF25 🚖 🚖 Ó \bigcirc UBE2T UBL4A VAPA \bigcirc PCNP $\sqrt{2}$

Figure 42 | Protein interactions of potential nuclear redox targets identified upon LSD1 knockout normalized to the full proteome analysis

(A) Nuclear targets enriched after LSD1 knockout were considered for analysis. The network was generated using the STRING database version 11 based on experimental evidence and databases with high confidence interaction score (≥ 0.7) (Szklarczyk et al. 2015). All targets that are reduced on the protein level according to the full proteom analysis are indicated in red letters and in green when upregulated (p-value < 0.05). All target proteins not found in the proteom analysis are shown with reduced opacity. The network was visualized with Cytoscape 3.7.2 using the ClusterONE add-on version 1.0 (Shannon et al. 2003; Nepusz et al. 2012). The majority of potential redox targets are involved in transcription (yellow dots), RNA processing (red dots) and signalosome (green dots) according to molecular function GO terms. Proteins not clustered in these functional groups are shown as grey dots (others). (B) Nuclear targets with no evidence for interaction are shown (bottom left, 'no direct interaction'). Proteins identified in BIAM switch assays upon pharmacological inhibition are marked as overlapping targets with blue asterisks (bizine) or purple asterisks (SP2509).

Thus, based on the present proteome data, 56 nuclear redox targets can be considered for validation.

In conclusion, an untargeted approach to enrich differentially oxidized proteins lead to the identification of numerous proteins that may represent novel redox targets.

3.2.8 Investigation of a PRX2 redox relay for LSD1-derived H₂O₂

The NuRD complex has been thoroughly biochemically characterized, but the presence of a peroxiredoxin could not be shown so far. Therefore, one could assume that in this particular case LSD1 directly oxidizes its core-components due to the short distances to other complex components. Yet, a peroxiredoxin-mediated redox relay cannot be excluded in this case or in general. All peroxiredoxins were found in the present redoxome analysis, but only PRX2 and PRX3 were found to be significantly less oxidized upon knockout. This indicates that LSD1-derived H₂O₂ is conveyed via the peroxiredoxin system, possibly to redox targets found in the present redoxome analysis. Both peroxiredoxins were not clustered as nuclear proteins according to the clustering procedure performed in the study. Whereas PRX3 is well described as a mitochondrial peroxiredoxin, the subcellular localization of PRX2 is ambiguous. In fact, it has been described as a nuclear protein in several cancer cell lines and to function in a redox relay with the transcriptional regulator STAT3 (Shiota et al., 2011; Sobotta et al., 2015). PRX2 usually forms a dimer and each dimer possesses 2 cysteines that serve as redox sensors (Figure 43 B, "PRXred").

Figure 43 Indications for the existence of PRX2 disufilde exchange intermediates MCF-7 cells subjected to a LSD1 knockout for up to 3 days. The organelle fraction was separated from the cytosolic fraction. (A) Representative immunoblot staining against PRX2 in fractionated MCF-7 lysates (n=4). Purity of the cytosolic fraction was assessed by anti-GAPDH staining and the nuclear fraction by anti-histone 3 (H3) staining. The knockout was confirmed by anti-LSD1 staining. Whole cell lysate of the `day 1 CTRL siRNA' sample was reduced with TCEP as a control. The PRX2 dimer is labeled as PRX2 (2) and the putative monomer as PRX2 (1). Red dashed lines highlight possible PRX2/Target mixed disulfide as part of a putative LSD1-induced PRX2 redox relay. (B) Possible mechanism of the hypothesized LSD1/PR-X2/Target redox relay. The peroxidatic cysteine reacts with the LSD1 derived H2O2 to form a sulfenic acid (PRX20x). Instead of forming an interdimeric disulfide with the opposing monomer (not shown here), it forms a mixed disulfide with the target protein (PRX2/Target mixed disulfide; red dashed line). Upon disulfide exchange, the target protein is released and possibly forms a intramolecular disulfide bond (exemplarily shown here; Targetox) or a intermolecular or mixed disulfide bond (LSD1, PRX2 PDB entry: 2H94, 5IJT). The experiment was conducted by Jan Schmitz and supervised by Thomas Hildebrandt.

The peroxidatic cysteine accepts the redox equivalent and immediately forms an intersubunit disulfide with the resolving cysteine of the opposing monomer. The disulfide is reduced by e.g. thioredoxin resulting in an efficient detoxification of H₂O₂. If the redox equivalent is transferred to a redox target, it forms a disulfide with the respective protein and not with the opposing monomer (**Figure 43** B, "PRX2/Target mixed disulfide"). Subsequently, the oxidized target is released, resulting in a disulfide exchange. In the resulting situation, the redox equivalent is transferred to the redox target and not fed into the thioredoxin system. Toward the goal of providing evidence for a LSD1/PRX2 redox relay, the cytosolic fraction was separated from the organelle fraction and subjected to a non-reducing SDS-PAGE (**Figure 43** A). A digitonin-based fractionation protocol was set up leading to

efficient separation of the organelle fraction in the presence of NEM to prevent artificial oxidation during lysis. There were only minor cytosolic impurities as suggested by immunoblot analysis of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein level. First it could be shown that the PRX2 dimer is not present in the nucleus but in the cytosol (Figure 43 A, "PRX2 (2)"). This challenges its ability to accept LSD1-derived redox equivalents from the nucleus. Noteworthy, the PRX2 monomer was not detectable with this antibody under the present experimental conditions. Even after addition of the reducing agent TCEP, which disrupted the dimer as expected, no monomeric PRX2 could be detected (Figure 43 A, see lane "Lysate + TCEP"). However, higher molecular weight bands around 60 kDa were detected in the nuclear fraction and could be interpreted as mixed disulfides between oxidized PRX2 dimers and a redox target (Figure 43 A, "red dashed rectangle"). This is supported by the following: first, the band intensity is directly proportional to the LSD1 protein level and second, not detectable under reducing conditions. In conclusion, the immunoblot analysis neither proved nor disproved that PRX2 conveys LSD1-derived redox equivalents to a target protein. Instead, arguments for both scenarios were provided. The cytosolic localization of the dimer suggested that PRX2 is not present in the nucleus. However, the monomeric form of PRX2 was not detectable. Still the starting point of the redox relay could be the monomeric form that is upon oxidation either translocated or forms a mixed disulfide with the target as suggested here by the higher molecular weight bands.

To summarize these findings, LSD1 regulates the redox state of numerous proteins. The majority could be allocated to the nucleus and several known LSD1 interactors could be identified. This strongly indicates that LSD1 links epigenetics to nuclear redox signaling and thereby broadening its regulatory function to a yet unknown extent.
4 Discussion

The overall aims of this study were, first, to investigate the role of LSD1during OPC differentiation and second, to unravel a potential function of LSD1 in redox signaling.

Key findings of this present study are that the extent of OL differentiation and subsequent myelination in zebrafish are severely diminished upon global knockdown using an antisense MO. Consistently, in primary murine cell cultures and OSCs, it became evident that LSD1 specifically regulates the intrinsic transcriptional program during the transition of OPCs to OLs. During this stage, LSD1 and CTBP1 are recruited by ZFP516 indicating a crucial function of these components during induction of differentiation.

The second key finding of this study is that the H₂O₂ produced along with the demethylation reaction has a highly significant role in regulating the nuclear redoxome. LSD1 is auto-oxidized in an activity-dependent manner at several cysteines, while two of them seem to form a long-range disulfide bond, indicating significant changes in the structural parameters induced by its own activity. Moreover, knockout or inhibition with two different pharmacological inhibitors changes the redox state of numerous nuclear proteins. Indications were provided, that LSD1 oxidizes its targets by direct oxidation and via a PRX2-mediated thiol switch.

4.1 LSD1 in oligodendrocyte development

Although LSD1 is highly conserved between vertebrates and mammals, the translation between rodents and zebrafish is not always guaranteed (Shi et al., 2004). Indeed, the germline knockout of LSD1 in zebrafish does not result in embryonic lethality as observed in mice. LSD1 null mutants survive up to 10 dpf, which is far beyond the embryonic stage. This observation could be due to the maternal expression of *kdm1a* mRNA in zebrafish (Takeuchi et al., 2015). Differences exist also in the process of myelination, although the zebrafish is a well-accepted model and the majority of genes involved in myelination are conserved between lower vertebrates and mammals. CLDK is a zebrafish specific component of the myelin sheet and does not exist in mammalian species. Vice versa, PDGFRα is

not expressed in zebrafish OPCs (Park et al., 2002). In the present study, no early lethality could be observed although the MO used in this study also targets maternal transcripts. Most probably this due to the mild knockdown typically induced MOs. Even though LSD1 morphants survive, it remains elusive whether stem cells properly develop into progenitor and differentiated cell types when LSD1 is knocked down in the whole organism. OPCs are descendants form ESC and NSCs in which demethylation mediated by LSD1 is a significant event in rodents and human cells (Wang et al., 2014; Yokoyama et al., 2008; Whyte et al., 2012; Han et al., 2014). Thus, one of the key questions ultimately arising from the experimental approach chosen here is whether the extent of OPC specification is diminished due to developmental defects already occurring in ESCs or during the specification of NSCs and OPCs. A reduction in the number of OPCs alone could be causative for a reduced number of OLs and would impede the intended investigation of the role of LSD1 during the transition of OPCs to OLs. OPCs reside in the ventral pMN domain, while they migrate dorsally once committed to the OL lineage. At first glance, no obvious difference became evident from the GFP signal in the *Tg(olig2:GFP)* line in the pMN domain. Nevertheless, drawing the conclusion that the OPC pool is not affected remains somewhat speculative here. For quantification of ventral residing OPCs, it would be necessary to clearly identify single GFP+ cells. However, the high density of progenitor cells in the pMN domain render it practically impossible to count single cells. Apart from those technical issues, quantification of OLIG2+ OPCs would be only possible in a very narrow time window. MNs and OLs express OLIG2 as well and arise about 4 h after OPCs are specified around 28 hpf (Ravanelli and Appel, 2015). The cell bodies of OLIG2+ MN co-reside in the pMN domain and cannot be distinguished from OLIG2+ OPCs. Additionally, within the above-mentioned time window LSD1 morphants exhibit a developmental delay as suggested by a shorter body length and an initially reduced number of MNs. This makes it difficult, if not impossible, to compare the extent of OPCs specification during this stage based on the expression of the common marker OLIG2. As already mentioned, PDGFR α is absent in zebrafish OPCs and NG2 expression is not detectable before 5 dpf (Ravanelli et al., 2018). Thus, due to technical limitations and the lack of suitable markers, the extent of OPCs specification could not be conclusively assessed.

Given that LSD1 could be responsible to repress genes involved in final maturation e.g. *mbp* and *plp*, its knockdown would lead to precocious differentiation before premature OLs could migrate to their designated location. Most likely this would increase the proportion of apoptotic cells, which however was not observed here. To further investigate whether OPCs prematurely develop, the *Tg(nkx2.2a:GFP)* line would allow for the identification of early OLs as NKX2A is expressed immediately upon initial commitment.

Of note, the PCNA stainings in the zebrafish spinal cord suggested that OPCs fail to exit the cell cycle and differentiate into OLs. This indicates that LSD1 functions first of all as a repressor for progenitor specific genes as it has been previously described in hematopoietic stem cells (Kerenyi et al., 2013). Still the true identity of PCNA+ cells identified in the paraffin sections is ambiguous and should be confirmed by cell specific analysis, e.g. by employing the bromodeoxyuridine (BrdU) incorporation technique in the *Tg(olig2:GFP)* line.

As mentioned before, several studies in mice have shown that LSD1-dependent transcriptional regulation is necessary for NCS maintenance, development of neurons as well as maintenance of cell functions in adult neurons. Since the neuronal network is the actual substrate for OLs, it is of vital importance to investigate if and how LSD1 knockdown impacts on neurogenesis. Surprisingly, even in morphants with a strong reduction in the number of dorsal migrating OLIG2+ cells, the neuronal network developed properly as suggested by the whole mount stainings. Although delayed in development, MNs were fully established at 5 dpf. The delay in MN development indicates that back-up mechanisms could exist that compensate for the loss of LSD1, if LSD1 is involved in MN differentiation at all. This provides further ground to assume that LSD1 is not essential for CNS neurogenesis in the zebrafish spinal cord, but for the development of OLs. Still some neuronal subtypes might be affected as suggested by the reduced number of DRGNs. The NCC-derived DRGNs are part of the PNS. NCCs are generated when epithelial cells delaminate from the dorsal neural tube. The process when cells lose their epithelial characteristics and acquire the ability to migrate is termed epithelial-mesenchymal transition (EMT). EMT is an important process during many steps of embryogenesis and regeneration and mirrors in part during metastasis of epithelial cancer types. Two possible explanations for the reduced number of DRGNs arise from studies in mice and breast

cancer models. First, LSD1 occupies the *neurog1* promotor in mouse ESCs upon initiation of neural differentiation (Han et al., 2014). This suggests that LSD1 could be directly involved in establishing NGN1 dependent DRGN identity. Second, from epithelial cancers it is known that LSD1 initiates the EMT specific transcriptional program to promote metastasis (Boulding et al., 2018). The LSD1 knockdown could therefore prevent EMT-driven delamination of NCCs during development, leading to a reduced number of DRGNs. It was beyond scope of this study to dissect the role of LSD1 during DRGN development. However, the observation exemplifies the presumptive complexity how LSD1 directly or indirectly regulates cell differentiation *in vivo*.

In summary, it could be shown that neurogenesis in the CNS spinal cord does not necessarily require LSD1. More transgenic lines would be necessary to investigate neurogenesis in the spinal cord in detail.

Apart from cell fates, LSD1 regulates many cellular functions of differentiated cells (Christopher et al., 2017; Wang et al., 2014; Sakamoto et al., 2015). This is of particular importance during OL development *in vivo* as dorsal migration is not only orchestrated by OPC intrinsic transcriptional regulation. Extrinsic signals such as BMP and WNT signals secreted from the roof plate and SHH signals secreted from the ventral notch cord are essentially involved in the spatiotemporal regulation of OL generation. It is still unclear at this point if the observed effect is due to OPC intrinsic regulation or due to functional changes in cells that establish the extrinsic signaling pattern. To pursue this approach in further depth, pharmacological inhibitors could be employed that interfere with e.g. SHH and NOTCH morphogen production. However, the objective of this study was to investigate cell intrinsic mechanisms. Thus, it would be highly desirable to apply a photo-inducible MO. A photo-inducible MO is a MO that is bound to an inhibitory light-sensitive fragment. Upon illumination at 365 nm, the fragments is cleaved and the MO activated (Tomasini et al., 2009). This mechanism provides full spatiotemporal control over the knockdown. A more practicable approach could involve the application of a splice blocking MO which only targets newly synthesized mRNA and not maternal inherited transcripts. Maternal transcripts could help to overcome the preceding phases of development before OL differentiation starts. This approach would

require more detailed investigation on the distribution of maternal transcripts upon application of a splice blocking morpholino.

To learn if LSD1 regulates the OPC intrinsic program, further investigations were carried out in murine A2B5+ OPCs enriched from postnatal mouse brains. The pool of A2B5+ glial restricted progenitor cells isolated here are prone to differentiate into astrocytes or OLs. Upon induction of differentiation, cells neither differentiated to astrocytes nor to OLs. This raises the question about the cellular fate of OPCs with reduced LSD1 activity or decreased transcript levels *in vitro*. The relative number of NG2+ OPCs was significantly higher than in the wildtype culture indicating that the induction of the endogenous shRNA with DOX stabilizes the progenitor specific transcriptional program. In theory, OPCs that do not differentiate would undergo apoptosis as the intrinsic program prevents differentiation but at the same time cells are forced to differentiate by exposure to pro-differentiating stimuli. This question has not been addressed so far.

Nevertheless, doubts remain about the effects observed upon induction with the endogenous shRNA. The observed reduction of the transcript level corresponds approximately to those observed *in vivo* upon administration of DOX to the drinking water (Sprüssel et al., 2012). On the protein level however, LSD1 seems not to be significantly downregulated in every biological replicate in postmitotic OLs. Nevertheless, each experiment uniformly showed a reduced number of mature OLs. One explanation for this could be that quantitative analysis from immunoblots is not suitable for detecting the rather mild knockdown. Massive secondary effects are also imaginable, which, however, would question the applicability of this system in general. In brief, the overexpression of a shRNA requires further downstream processing events involving the specific activity of e.g. the endoribonuclease dicer and the ribonuclease drosha. The processing machinery could reach its capacity limit and other endogenous regulatory microRNAs might be inadequately processed. To exclude such side effects, a transgenic mouse with an inducible nontargeting shRNA would be necessary. Still the observed effects could be corroborated with the pharmacological inhibitor bizine in OSCs and thus, not only in cell culture but also in a different model. Although the experiments involving pharmacological inhibitors have not finally eliminated all remaining uncertainties,

it strongly supports the hypothesis that LSD1 is essential for the differentiation of OPC.

It was not scope of this study to investigate the potential application of LSD1 inhibitors for treatment of neurodegenerative disease. However, LSD1 is suggested as a target for treatment of neurodegenerative diseases as such it is worth commenting on possible direct neurobiological effects triggered by LSD1 inhibition based on the present findings. The dual LSD1/MAO-B inhibitor ORY-2001 (vafidemstat) has entered phase II clinical trial for treatment of MS and Alzheimer's disease (Clinical Trials Register EudraCT 2017-002838-23EU) due to its beneficial outcome in an animal model of MS, experimental autoimmune encephalomyelitis (EAE) model (ACTRIMS 2018 - Posters, 2018). This is attributed to the immunomodulatory effects as suggested by reduced lymphocyte egress and infiltration. Based on the data provided here, it is strongly suggested to consider neurobiological effects as well. OPCs respond to demyelinating insults by extensive proliferation and expansion to give rise to a reasonable amount of premyelinating OLs (Levine and Reynolds, 1999). According to the present data, inhibition of LSD1 activity could lead to an increased enrichment of the endogenous OPC pool during this stage. Given the inhibitory breaks on OPC differentiation would be released in appropriate time, transient inhibition of LSD1 could paradoxically enhance remyelination and prevent neuronal loss due to an OPCs intrinsic mechanism in addition to the reported immunomodulatory effects.

To begin the investigation on the molecular function of LSD1, a co-IP analysis was performed. It remains a technical challenge to enrich LSD1 complexes using an endogenous approach in primary cells due to the cellular heterogeneity and the limited number of cells. In return, this approach provides a more realistic view of the composition of LSD1 complexes than obtained from overexpressed and tagged LSD1 variants in cell lines. The differentially enriched proteins, ZFP516, CTBP1 and RCOR3 were significantly recruited to LSD1 24 h after induction of differentiation.

The function of ZFP516 as a recruiter of LSD1 containing complexes has been demonstrated before. In breast cancer cells, ZFP516 is responsible for guiding the LSD1/CTBP1/COREST complex to the promotor of the epidermal growth factor receptor (EGFR) to repress its transcription by H3K4 demethylation (Li et al., 2017). In murine brown adipose tissue (BAT), it has been shown that ZFP516 recruits LSD1

to the promotor of genes involved in BAT development and homeostasis (Sambeat et al., 2016). In the latter case, ZFP516 acts as a transcriptional activator as it enables LSD1 to convey its function as a H3K9 demethylase. Given that ZFP516 and CTBP1 are both recruited to LSD1 upon induction of differentiation, the complex could be crucial for OL development. In view of these studies, it is unclear whether ZFP516/CTBP1/LSD1 acts as a transcriptional repressor of e.g. cell cycle inhibitors or as an activator of genes involved in OL maturation.

Here, it could be shown for the first time that OPC differentiation and myelination require LSD1-mediated transcriptional regulation.

4.1.1 LSD1 in Oligodendrocyte development - Outlook

Primary cells are known to be difficult to transfect. Attempts to transfect the A2B5+ OPCs by using lipid-based delivery systems were not successful. It is essential to confirm the observed effects with another knockdown experiment, by using e.g. a lentivirus-based approach. If the effect can be confirmed, there would be sufficient justification to continue the investigation in a murine model *in vivo*. Only an OPC/OL-specific knockdown for LSD1 would be a reasonable approach. In particular, a conditional knockdown can be achieved by breeding a mutant mouse harboring a floxed *kdm1a* with a *cspg4* specific or *Pdgfr* specific cre recombinase strain (Wang et al., 2007; Roesch et al., 2008; Minocha et al., 2015). Furthermore, it would be desirable to further develop the project based on the obtained co-IP data. In particular, to test the significance of the interaction, it would be feasible to knock down ZFP516 and CTBP1 together with LSD1 or alone in differentiating OPCs. Costainings of these components in postnatal brain slices would help to indicate the biological significance of the interaction.

The identification of the transcriptional targets of LSD1 would require a chromatinimmunoprecipitation with subsequent DNA sequencing (CHIP-seq) against LSD1 and preferentially ZFP516 and CTBP as well.

4.2 LSD1 and its potential role in redox signaling

The function of LSD1-derived H_2O_2 is currently unclear. There is every reason to believe that H_2O_2 is functionally relevant. Otherwise it is hard to understand why

the flavo-dependent H₂O₂ producing LSD1 still exists although elaborate detoxification is required in contrast to the jumonji-C (JmjC) domain-containing demethylases. In fact, the JmjC demethylases are able to demethylate all methylation states. Thus, in theory, they have been able to replace the function of LSD1. In the present study an untargeted and targeted approach was chosen to provide indications for LSD1-dependent protein oxidation and its possible consequences. From both perspectives, strong indications for LSD1-mediated redox signaling events could be provided. By co-IP it could be shown that LSD1 is oxidized at multiple cysteines in an activity-dependent manner. LSD1 could serve as a redox sensor as some of these cysteines are relevant for its demethylase activity (Ricq et al., 2016). Although evidence for the existence of a LSD1 oligomeric structure was provided by mass spectrometry, the validation by non-reducing SDS-PAGE was not successful. Assuming that an oligomeric form of LSD1 indeed exists, one has to consider that an antibody-based detection of a LSD1 oligomer under denaturing conditions is technically not possible. Thus, native conditions provided by either native gel electrophoresis or size-exclusion chromatography could circumvent possible detrimental effects of denaturing agents. At this stage it would be, first of all, reasonable to provide a biochemical proof for the existence of an oligomer. This could be achieved by taking a simplified approach using recombinant LSD1 and exogenous H₂O₂. Although it could not conclusively be shown that LSD1 adopts an oligomeric structure, it is clear that self-oxidation changes its structural parameters and activity.

In addition to these findings, inhibition of LSD1 activity with bizine resulted in a reproducible enrichment of the LSD1/COREST complex. Non-inhibited LSD1 rather associates with other factors e.g. SWI/SNF chromatin remodelers. Assuming that this observation was not due to a bizine-specific effect but indeed related to the LSD1 activity, one could conclude that the demethylation reaction serves as a release signal for the complex at the same time. A release mechanism for the LSD1/COREST complex induced by an intrinsic signal arising from the actual demethylation reaction would provide an elegant and direct mechanism for complex disassembly which is in general believed to be driven indirectly by posttranslational modifications (Han et al., 2014; Peng et al., 2017). The observed cysteine oxidation in LSD1 could be causative for the disassembly. They would

change the physiochemical properties of LSD1 and ultimately its specific binding affinities to interacting partners. Thus, it fosters LSD1 to engage with other components that favor the oxidized state e.g. SWI/SNF chromatin remodelers. This mechanism would set a molecular threshold for immediate reassembly of the LSD1/COREST complex that favors the reduced LSD1 variant according to the present data. This threshold would need to be overcome by the specific activity of a reductase. Intriguingly, using an intermediate trapping approach for the disulfide reductase thioredoxin 1 (TRX1), LSD1 could be identified as a substrate for TRX1 in HELA cells (unpublished data from our group). This provides additional evidence that LSD1 is subjected to reversible and physiological relevant redox modifications. At this stage, it was unclear whether only LSD1 was oxidized or interacting partners as well, because the co-IP was not suitable to obtain information about the redox state of interacting partners. Binding of a target in its oxidized and reduced state in an adequate amount would be a prerequisite to identify differentially oxidized interactors. Based on the observations here, an `oxidation and release' mechanism seems to be likely. Thus, even if a target protein in its reduced state would be sufficiently enriched as such reliable identification of peptides with oxidized cysteines would have been possible, information about the redox state of the unbound target protein is lost. A reversal IP of the unbound fraction against the protein of interest could in principle solve this question. But considering that the `oxidation and release' mechanism could also occur based on a transient `touch and go' interaction, it was necessary to continue with an untargeted approach.

Oxidative modifications of epigenetic factors and transcriptional regulators have been previously shown. These comprise HDACs, p53, NF-κB, SP1 and many more (Meyer et al., 1993; Morel and Barouki, 1999). In case of HDAC2, a redox-dependent release from the chromatin was observed indicating, that histone-bound complexes could indeed disassemble due to oxidation (Nott et al., 2008). As already suggested by immunoblot analysis, proteins are less decorated with sulfenic acids upon knockout and inhibition with 2 different pharmacological inhibitors. Thus, it was not surprising to see that a huge proportion of proteins were differentially oxidized according to the BIAM switch analysis. Almost half of the differentially oxidized proteins could be clustered as nuclear proteins although the complete cellular redoxome was analyzed. This strongly suggested that LSD1 changes the local redox environment of the nucleus. Indications could be provided that whole LSD1containing complexes are oxidized by LSD1. This could be shown e.g. for core components of the NURD complex (GATAD2A, RBBP7 and MTA2) and give every reason to assume that other LSD1-containing complexes are subjected to oxidative modification as well e.g. the COREST complex in SN4741. Intriguingly, also GATAD2A, RBBP7 and MTA2 were identified as TRX1 substrates using theTRX1trapping mutant in HELA cells. Many other targets, e.g. the previously mentioned SP1 and NCL, were found as substrates for TRX1 in HELA cells as well.

A set of proteins were detected as seemingly more oxidized in the BIAM switch assay, which contradicts the hypothesis. The observation may not necessarily be wrong considering that substantial secondary effects could interfere with the investigation of direct effects. It is equally likely that the BIAM switch assay leads to a false-positive detection of more oxidized proteins. In brief, a major drawback of the BIAM switch technique is that reduction by DTT is necessary to enable BIAM labeling and subsequent enrichment (Figure 35). The degree of enrichment is proportional to the degree of oxidation and differentially oxidized proteins are identified based on significant differences. Overoxidized variants comprising sulfinic and sulfonic acids cannot be reduced by DTT and are not enriched although being oxidized. These states are therefore not distinguishably from thiols that become alkylated in the first step to avoid enrichment. Now assuming the scenario that LSD1 is responsible for the overoxidation of a protein, the LSD1 knockout or inhibition would lower the oxidation state of the cysteine, but not necessarily to the fully reduced thiol. Residual LSD1 activity could still facilitate `normal' (DTT reducible) oxidation. In this particular situation, the target protein becomes misleadingly enriched upon LSD1 knockout or inhibition and not in the control. Therefore, it should always be considered that those proteins that were detected as more oxidized could in theory be targets for LSD1-dependent overoxidation.

Scaffolding functions of LSD1 are subject of ongoing research (Lan et al., 2019). Using the full knockout, LSD1 containing complexes might disassemble and as a consequence thereof, components are exposed to a new microenvironment with different physicochemical properties which per se could change the redox state of a particular protein. To address this issue, pharmacological inhibitors were employed. In this context it should be considered that binding of small molecules do

not guarantee complex integrity (Fiskus et al., 2014). Instead of using pharmacological inhibitors, the application of an inducible system driving the expression of a previously published inactive LSD1 mutant variant would be a highly desirable tool for future investigations (Lee et al., 2005). As evidenced by immunoblot analysis of *in situ* labeled sulfenic acids, obvious differences arose 10 h after addition of the inhibitors. The knockout exerts global effects 3 days postelectroporation, soon after LSD1 protein levels were significantly decreased. The comparison between inhibitor treatments and knockout when considering a single time point for analysis are limited to the different kinetics of H₂O₂ reduction. Out of all potential nuclear redox targets found in the analysis upon inhibition with bizine and SP2509, 13 % and 7 % respectively, overlap with the knockout targets. The degree of overlaps appeared to be relatively small. However, the spectrum and degree of overlap most likely change in dependency of the concentration, and more importantly, incubation time. Therefore, the rather low number of common targets at the time of analysis does not necessarily mean that these inhibitors do not properly target LSD1 activity. Again, it was not purpose of this study to investigate the function of LSD1 inhibitors. However, additional information revealed by the present study are so far unrecognized redox-dependent off-target effects of inhibitors. It would be a possible scenario that low molecular weight compounds indirectly or directly change the functionality of other proteins in a redoxdependent manner, non-related to LSD1-dependent oxidation. This could also affect proteins in organelles in which LSD1 is not present. Considering the ongoing discussion about specificity and off-target effects of small molecules, this would introduce a new aspect to this issue and propose a concrete approach for analysis. It remained open whether LSD1 needs the specificity and reactivity of PRX2 to deploy its redox equivalents to target proteins. Indications for the existence of LSD1-

dependent PRX2-linked mixed disulfides were provided by immunoblot analysis. In addition, the redoxome analysis demonstrated that PRX2 is significantly less oxidized upon LSD1 knockout. Thus, more detailed investigations in this direction would be desirable. In particular, the overall aim at this stage is to provide a mechanistic proof that PRX2 forms a mixed disulfide with targets found in the redoxome analysis. This could be achieved by addition of exogenous H_2O_2 and subsequent analysis of the mixed conjugates by mass spectrometry. The involvement of PRX2 in this process would be a desirable scenario concerning the technical realization of further studies. The redox cascade (LSD1/PRX2/Target) could be easily disrupted by a knockout of PRX2, while the LSD1 protein level, its complex integrity and function as a transcriptional regulator remain unchanged. In the scenario of direct oxidation mediated by LSD1, it will be difficult to provide definitive evidence. LSD1 activity would need to be modulated in order to study target oxidation. The major challenge when modulating LSD1 activity would be to decouple the function of LSD1 as a redox regulator from its function as a transcriptional regulator. While LSD1 oxidizes a target protein, it changes the transcriptional program of the cell by histone demethylation at the same time. This became not only evident in the proteome analysis carried out here, but was also extensively investigated specifically in breast cancer models elsewhere (Boulding et al., 2018). It will lead to a variety of functional changes, the cause of which is difficult to attribute to either oxidation or transcriptional regulation. The intervention in the histone code, as achieved by the knockout of LSD1, triggers not only changes in the cellular functions, but also affects the overall DNA/histone structure. With LSD1 functioning as a transcriptional repressor and activator, specific regulatory elements of the DNA change their accessibility. This fact is of particular importance, when redox regulated DNA binding proteins, e.g. the transcription factor SP1, are considered for functional validation. DNA binding analysis would be an obvious approach to further investigate the functional consequences of SP1 oxidation as it has been previously shown that oxidative modification changes its DNA binding abilities (Ammendola et al., 1994). However, these investigations would be biased as the knockout potentially changes the amount of accessible SP1 consensus motifs. Changes in the availability of SP1 binding sites will per se impact on the pattern and degree of SP1 binding that does not reflect oxidation-driven processes but is rather forced by a change in the availability of SP1 attracting DNA motifs. This is comparable to an enzyme activity assay performed with different amounts of substrate.

Intriguingly, SP1 becomes increasingly methylated when LSD1 levels are decreased, indicating that it could serve as a novel non-histone substrate for LSD1 (Chuang et al., 2011). This observation is accompanied with a decrease in the DNA binding ability. The particular case of SP1, shows how complex intertwining regulatory

mechanisms can create a situation in which an oxidation-based mechanism can hardly be assigned to a function.

So far LSD1 has been recognized as transcriptional regulator acting on the histone level. In addition, numerous non-histone substrates were identified indicating its role in regulating non-histone protein function and stability as well. The present study has brought light to a completely new and innovative aspect of LSD1-dependent regulation, involving the by-product H₂O₂.

4.2.1 LSD1 and its potential role in redox signaling – Outlook

At present, numerous potential LSD1 targets are subjected to validation.

Obviously Considering the difficulties described above, no general guideline for validation can be provided. Obviously, validation has to be adapted to the particular target. In case of SP1, this might involve a recombinant protein-based assay.

Toward the goal of identifying the complete thiol switch, trapping experiments in MCF-7 cells and SN4741 should be performed. These experiments do not only provide evidence that the targets considered here are indeed reversibly redox regulated. In addition, they support the present observation as the trapping experiments rely on a different principle of enrichment.

Still the main challenge in the future will be to demonstrate the biological significance of LSD1-dependent target oxidation. In this regard, it will be of vital importance to decouple LSD1-dependent demethylation and transcriptional regulation from oxidation. In theory, a fusion construct of LSD1 with catalase could enable H₂O₂ detoxification, while transcriptional regulation is still active. However, this would most likely affect the interaction with many targets per se.

5 References

(2018). ACTRIMS 2018 - Posters. Multiple sclerosis (Houndmills, Basingstoke, England) *24*, 11-117.

Almeida, R.G., Czopka, T., ffrench-Constant, C., and Lyons, D.A. (2011). Individual axons regulate the myelinating potential of single oligodendrocytes in vivo. Development *138*, 4443-4450.

Ammendola, R., Mesuraca, M., Russo, T., and Cimino, F. (1994). The DNA-binding efficiency of Sp1 is affected by redox changes. European Journal of Biochemistry *225*, 483-489.

Andrés, M.E., Burger, C., Peral-Rubio, M.J., Battaglioli, E., Anderson, M.E., Grimes, J., Dallman, J., Ballas, N., and Mandel, G. (1999). CoREST: A functional corepressor required for regulation of neural-specific gene expression. PNAS *96*, 9873-9878.

Arnér, E.S.J., and Holmgren, A. (2000). Physiological functions of thioredoxin and thioredoxin reductase. European Journal of Biochemistry *267*, 6102-6109.

Asakawa, K., Higashijima, S.-i., and Kawakami, K. (2012). An mnr2b/hlxb9lb enhancer trap line that labels spinal and abducens motor neurons in zebrafish. Developmental Dynamics *241*, 327-332.

Baracskay, K.L., Kidd, G.J., Miller, R.H., and Trapp, B.D. (2007). NG2-positive cells generate A2B5-positive oligodendrocyte precursor cells. Glia *55*, 1001-1010.

Becker, P.B., and Hörz, W. (2002). ATP-dependent nucleosome remodeling. Annual review of biochemistry *71*, 247-273.

Biteau, B., Labarre, J., and Toledano, M.B. (2003). ATP-dependent reduction of cysteine–sulphinic acid by S. cerevisiae sulphiredoxin. Nature *425*, 980-984.

Blader, P., Plessy, C., and Strähle, U. (2003). Multiple regulatory elements with spatially and temporally distinct activities control neurogenin1 expression in primary neurons of the zebrafish embryo. Mechanisms of Development *120*, 211-218.

Boulding, T., McCuaig, R.D., Tan, A., Hardy, K., Wu, F., Dunn, J., Kalimutho, M., Sutton, C.R., Forwood, J.K., and Bert, A.G., et al. (2018) LSD1 activation promotes inducible EMT programs and modulates the tumour microenvironment in breast cancer. Sci Rep *8*, 1-18.

Bradl, M., and Lassmann, H. (2010). Oligodendrocytes: biology and pathology. Acta Neuropathol *119*, 37-53.

Bräutigam, L., Jensen, L.D.E., Poschmann, G., Nyström, S., Bannenberg, S., Dreij, K., Lepka, K., Prozorovski, T., Montano, S.J., and Aktas, O., et al. (2013). Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1. Proceedings of the National Academy of Sciences of the United States of America *110*, 20057-20062.

Brewer, T.F., and Chang, C.J. (2015). An Aza-Cope Reactivity-Based Fluorescent Probe for Imaging Formaldehyde in Living Cells. Journal of the American Chemical Society *137*, 10886-10889.

Britsch, S., Goerich, D.E., Riethmacher, D., Peirano, R.I., Rossner, M., Nave, K.-A., Birchmeier, C., and Wegner, M. (2001). The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. *15*, 66-78.

Cai, J., Qi, Y., Hu, X., Tan, M., Liu, Z., Zhang, J., Li, Q., Sander, M., and Qiu, M. (2005). Generation of Oligodendrocyte Precursor Cells from Mouse Dorsal Spinal Cord Independent of Nkx6 Regulation and Shh Signaling. Neuron *45*, 41-53.

Christopher, M.A., Myrick, D.A., Barwick, B.G., Engstrom, A.K., Porter-Stransky, K.A., Boss, J.M., Weinshenker, D., Levey, A.I., and Katz, D.J. (2017) LSD1 protects against hippocampal and cortical neurodegeneration. Nat Commun *8*, 1-13.

Chuang, J.-Y., Chang, W.-C., and Hung, J.-J. (2011). Hydrogen peroxide induces Sp1 methylation and thereby suppresses cyclin B1 via recruitment of Suv39H1 and HDAC1 in cancer cells. Free Radical Biology and Medicine *51*, 2309-2318.

Clark, D.J., and Kimura, T. (1990). Electrostatic mechanism of chromatin folding. Journal of Molecular Biology *211*, 883-896.

Clarke, L.E., Young, K.M., Hamilton, N.B., Li, H., Richardson, W.D., and Attwell, D. (2012). Properties and Fate of Oligodendrocyte Progenitor Cells in the Corpus Callosum, Motor Cortex, and Piriform Cortex of the Mouse. J. Neurosci. *32*, 8173-8185.

Cox, A.G., Peskin, A.V., Paton, L.N., Winterbourn, C.C., and Hampton, M.B. (2009). Redox potential and peroxide reactivity of human peroxiredoxin 3. Biochemistry *48*, 6495-6501.

Culhane, J.C., and Cole, P.A. (2007). LSD1 and The Chemistry of Histone Demethylation. Current opinion in chemical biology *11*, 561-568.

Dimou, L., and Gallo, V. (2015). NG2-glia and their functions in the central nervous system. Glia *63*, 1429-1451.

Doyle, K., and Fitzpatrick, F.A. (2010). Redox signaling, alkylation (carbonylation) of conserved cysteines inactivates class I histone deacetylases 1, 2, and 3 and antagonizes their transcriptional repressor function. The Journal of biological chemistry *285*, 17417-17424.

Emery, B., and Lu, Q.R. (2015). Transcriptional and Epigenetic Regulation of Oligodendrocyte Development and Myelination in the Central Nervous System. Cold Spring Harbor Perspectives in Biology *7*.

Fancy, S.P.J., Zhao, C., and Franklin, R.J.M. (2004). Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Molecular and cellular neurosciences *27*, 247-254.

Fields, R.D. (2015). A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci *16*, 756-767.

Fiskus, W., Sharma, S., Shah, B., Portier, B.P., Devaraj, S.G.T., Liu, K., Iyer, S.P., Bearss, D., and Bhalla, K.N. (2014). Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells. Leukemia *28*, 2155-2164.

Forneris, F., Binda, C., Dall'Aglio, A., Fraaije, M.W., Battaglioli, E., and Mattevi, A. (2006). A Highly Specific Mechanism of Histone H3-K4 Recognition by Histone Demethylase LSD1. J. Biol. Chem. *281*, 35289-35295.

Fujita, N., Jaye, D.L., Kajita, M., Geigerman, C., Moreno, C.S., and Wade, P.A. (2003). MTA3, a Mi-2/NuRD Complex Subunit, Regulates an Invasive Growth Pathway in Breast Cancer. Cell *113*, 207-219.

Gähwiler, B.H., Capogna, M., Debanne, D., McKinney, R.A., and Thompson, S.M. (1997). Organotypic slice cultures: a technique has come of age. Trends in Neurosciences *20*, 471-477.

Ge, S.X., Jung, D., and Yao, R. (2018). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics.

Gerety, S.S., and Wilkinson, D.G. (2011). Morpholino artifacts provide pitfalls and reveal a novel role for pro-apoptotic genes in hindbrain boundary development. Developmental Biology *350*, 279-289.

Giurgiu, M., Reinhard, J., Brauner, B., Dunger-Kaltenbach, I., Fobo, G., Frishman, G., Montrone, C., and Ruepp, A. (2019). CORUM: the comprehensive resource of mammalian protein complexes—2019. Nucleic Acids Res *47*, D559-D563.

Hajihosseini, M., Tham, T.N., and Dubois-Dalcq, M. (1996). Origin of Oligodendrocytes within the Human Spinal Cord. J. Neurosci. *16*, 7981-7994.

Han, X., Gui, B., Xiong, C., Zhao, L., Liang, J., Sun, L., Yang, X., Yu, W., Si, W., and Yan, R., et al. (2014). Destabilizing LSD1 by Jade-2 Promotes Neurogenesis: An Antibraking System in Neural Development. Molecular Cell *55*, 482-494.

Hara, M.R., Agrawal, N., Kim, S.F., Cascio, M.B., Fujimuro, M., Ozeki, Y., Takahashi, M., Cheah, J.H., Tankou, S.K., and Hester, L.D., et al. (2005). S -nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol *7*, 665-674.

He, D., Marie, C., Zhao, C., Kim, B., Wang, J., Deng, Y., Clavairoly, A., Frah, M., Wang, H., and He, X., et al. (2016). Chd7 cooperates with Sox10 and regulates the onset of CNS myelination and remyelination. Nat Neurosci *19*, 678-689.

He, M., Howe, D.G., and McCarthy, K.D. (1996). Oligodendroglial Signal Transduction Systems Are Regulated by Neuronal Contact. Journal of Neurochemistry *67*, 1491-1499.

Heide, H., Bleier, L., Steger, M., Ackermann, J., Dröse, S., Schwamb, B., Zörnig, M., Reichert, A.S., Koch, I., and Wittig, I., et al. (2012). Complexome Profiling Identifies TMEM126B as a Component of the Mitochondrial Complex I Assembly Complex. Cell Metabolism *16*, 538-549.

Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., and Matthews, L., et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature *496*, 498-503.

Huang, J., Sengupta, R., Espejo, A.B., Lee, M.G., Dorsey, J.A., Richter, M., Opravil, S., Shiekhattar, R., Bedford, M.T., and Jenuwein, T., et al. (2007). p53 is regulated by the lysine demethylase LSD1. Nature *449*, 105-108.

Jackson, E.L., Garcia-Verdugo, J.M., Gil-Perotin, S., Roy, M., Quinones-Hinojosa, A., VandenBerg, S., and Alvarez-Buylla, A. (2006). PDGFR α -Positive B Cells Are Neural Stem Cells in the Adult SVZ that Form Glioma-like Growths in Response to Increased PDGF Signaling. Neuron *51*, 187-199.

Jenuwein, T., and Allis, C.D. (2001). Translating the Histone Code. Science *293*, 1074-1080.

Jeserich, G., Klempahn, K., and Pfeiffer, M. (2008). Features and Functions of Oligodendrocytes and Myelin Proteins of Lower Vertebrate Species. J Mol Neurosci *35*, 117-126.

Kerenyi, M.A., Shao, Z., Hsu, Y.-J., Guo, G., Luc, S., O'Brien, K., Fujiwara, Y., Peng, C., Nguyen, M., and Orkin, S.H. (2013). Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation. eLife *2*, e00633.

Kessaris, N., Fogarty, M., Iannarelli, P., Grist, M., Wegner, M., and Richardson, W.D. (2006). Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci *9*, 173-179.

Kim, J., Chu, J., Shen, X., Wang, J., and Orkin, S.H. (2008). An extended transcriptional network for pluripotency of embryonic stem cells. Cell *132*.

Kragten, E., Lalande, I., Zimmermann, K., Roggo, S., Schindler, P., Muller, D., van Oostrum, J., Waldmeier, P., and Furst, P. (1998). Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the antiapoptotic compounds CGP 3466 and R-(-)-deprenyl. The Journal of biological chemistry *273*, 5821-5828.

Lan, H., Tan, M., Zhang, Q., Yang, F., Wang, S., Li, H., Xiong, X., and Sun, Y. (2019). LSD1 destabilizes FBXW7 and abrogates FBXW7 functions independent of its demethylase activity. Proceedings of the National Academy of Sciences of the United States of America *116*, 12311-12320.

Lee, K.J., and Jessell, T.M. (1999). The specification of dorsal cell fates in the vertebrate central nervous system. Annual review of neuroscience *22*, 261-294.

Lee, M.G., Wynder, C., Cooch, N., and Shiekhattar, R. (2005a). An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature *437*, 432-435.

Lee, M.G., Wynder, C., Cooch, N., and Shiekhattar, R. (2005b). An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature *437*, 432-435.

Lee, S.-K., Lee, B., Ruiz, E.C., and Pfaff, S.L. (2005c). Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. Genes & Development *19*, 282-294.

Levine, J.M., and Reynolds, R. (1999). Activation and Proliferation of Endogenous Oligodendrocyte Precursor Cells during Ethidium Bromide-Induced Demyelination. Experimental Neurology *160*, 333-347.

Li, L., Liu, X., He, L., Yang, J., Pei, F., Li, W., Liu, S., Chen, Z., Xie, G., and Xu, B., et al. (2017) ZNF516 suppresses EGFR by targeting the CtBP/LSD1/CoREST complex to chromatin. Nat Commun *8*, 1-17.

Lieschke, G.J., and Currie, P.D. (2007). Animal models of human disease: zebrafish swim into view. Nat Rev Genet *8*, 353-367.

Liu, J., Magri, L., Zhang, F., Marsh, N.O., Albrecht, S., Huynh, J.L., Kaur, J., Kuhlmann, T., Zhang, W., and Slesinger, P.A., et al. (2015). Chromatin Landscape Defined by Repressive Histone Methylation during Oligodendrocyte Differentiation. J. Neurosci. *35*, 352-365.

Liu, J., Saponjian, Y., Mahoney, M.M., Staley, K.J., and Berdichevsky, Y. (2017). Epileptogenesis in organotypic hippocampal cultures has limited dependence on culture medium composition. PloS one *12*, e0172677.

Löwe, O., Rezende, F., Heidler, J., Wittig, I., Helfinger, V., Brandes, R.P., and Schröder, K. (2019). BIAM switch assay coupled to mass spectrometry identifies novel redox targets of NADPH oxidase 4. Redox Biology *21*, 101125.

Lu, Q.R., Sun, T., Zhu, Z., Ma, N., Garcia, M., Stiles, C.D., and Rowitch, D.H. (2002). Common Developmental Requirement for Olig Function Indicates a Motor Neuron/Oligodendrocyte Connection. Cell *109*, 75-86.

Lu, Q.R., Yuk, D.-i., Alberta, J.A., Zhu, Z., Pawlitzky, I., Chan, J., McMahon, A.P., Stiles, C.D., and Rowitch, D.H. (2000). Sonic Hedgehog–Regulated Oligodendrocyte Lineage Genes Encoding bHLH Proteins in the Mammalian Central Nervous System. Neuron *25*, 317-329.

Lupo, G., Harris, W.A., and Lewis, K.E. (2006). Mechanisms of ventral patterning in the vertebrate nervous system. Nat Rev Neurosci *7*, 103-114.

Maes, T., Mascaró, C., Tirapu, I., Estiarte, A., Ciceri, F., Lunardi, S., Guibourt, N., Perdones, A., Lufino, M.M.P., and Somervaille, T.C.P., et al. (2018). ORY-1001, a Potent and Selective Covalent KDM1A Inhibitor, for the Treatment of Acute Leukemia. Cancer cell *33*, 495-511.e12.

Maiques-Diaz, A., Spencer, G.J., Lynch, J.T., Ciceri, F., Williams, E.L., Amaral, F.M.R., Wiseman, D.H., Harris, W.J., Li, Y., and Sahoo, S., et al. (2018). Enhancer Activation by Pharmacologic Displacement of LSD1 from GFI1 Induces Differentiation in Acute Myeloid Leukemia. Cell Reports *22*, 3641-3659.

Manta, B., Hugo, M., Ortiz, C., Ferrer-Sueta, G., Trujillo, M., and Denicola, A. (2009). The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Archives of Biochemistry and Biophysics *484*, 146-154.

Marie, C., Clavairoly, A., Frah, M., Hmidan, H., Yan, J., Zhao, C., van Steenwinckel, J., Daveau, R., Zalc, B., and Hassan, B., et al. (2018). Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8. PNAS *115*, E8246-E8255.

Marin-Husstege, M., Muggironi, M., Liu, A., and Casaccia-Bonnefil, P. (2002). Histone Deacetylase Activity Is Necessary for Oligodendrocyte Lineage Progression. J. Neurosci. *22*, 10333-10345.

Masahira, N., Takebayashi, H., Ono, K., Watanabe, K., Ding, L., Furusho, M., Ogawa, Y., Nabeshima, Y.-i., Alvarez-Buylla, A., and Shimizu, K., et al. (2006). Olig2-positive progenitors in the embryonic spinal cord give rise not only to motoneurons and oligodendrocytes, but also to a subset of astrocytes and ependymal cells. Developmental Biology *293*, 358-369.

Metzger, E., Wissmann, M., Yin, N., Müller, J.M., Schneider, R., Peters, Antoine H. F. M., Günther, T., Buettner, R., and Schüle, R. (2005). LSD1 demethylates repressive

histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436-439.

Meyer, M., Schreck, R., and Baeuerle, P.A. (1993). H2O2 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. The EMBO Journal *12*, 2005-2015.

Minocha, S., Valloton, D., Brunet, I., Eichmann, A., Hornung, J.-P., and Lebrand, C. (2015). NG2 glia are required for vessel network formation during embryonic development. eLife *4*.

Morel, Y., and Barouki, R. (1999). Repression of gene expression by oxidative stress. Biochemical Journal *342*, 481-496.

Münzel, E.J., Schaefer, K., Obirei, B., Kremmer, E., Burton, E.A., Kuscha, V., Becker, C.G., Brösamle, C., Williams, A., and Becker, T. (2012). Claudin k is specifically expressed in cells that form myelin during development of the nervous system and regeneration of the optic nerve in adult zebrafish. Glia *60*, 253-270.

Nepusz, T., Yu, H., and Paccanaro, A. (2012). Detecting overlapping protein complexes in protein-protein interaction networks. Nat Methods *9*, 471-472.

Nielsen, J.A., Hudson, L.D., and Armstrong, R.C. (2002). Nuclear organization in differentiating oligodendrocytes. Journal of Cell Science *115*, 4071-4079.

Nishiyama, A., Komitova, M., Suzuki, R., and Zhu, X. (2009). Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci *10*, 9-22.

Niwa, H., and Umehara, T. (2017). Structural insight into inhibitors of flavin adenine dinucleotide-dependent lysine demethylases. Epigenetics *12*, 340-352.

Nott, A., Watson, P.M., Robinson, J.D., Crepaldi, L., and Riccio, A. (2008). S - nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature *455*, 411-415.

Orre, L.M., Vesterlund, M., Pan, Y., Arslan, T., Zhu, Y., Fernandez Woodbridge, A., Frings, O., Fredlund, E., and Lehtiö, J. (2019). SubCellBarCode: Proteome-wide Mapping of Protein Localization and Relocalization. Molecular Cell *73*, 166-182.e7.

Park, H.-C., Mehta, A., Richardson, J.S., and Appel, B. (2002). olig2 Is Required for Zebrafish Primary Motor Neuron and Oligodendrocyte Development. Developmental Biology *248*, 356-368.

Park, H.-C., Shin, J., Roberts, R.K., and Appel, B. (2007). An olig2 reporter gene marks oligodendrocyte precursors in the postembryonic spinal cord of zebrafish. Developmental Dynamics *236*, 3402-3407.

Peng, B., Shi, R., Jiang, W., Ding, Y.-H., Dong, M.-Q., Zhu, W.-G., and Xu, X. (2017). Phosphorylation of LSD1 by PLK1 promotes its chromatin release during mitosis. Cell Biosci *7*, 1-7.

Perillo, B., Ombra, M.N., Bertoni, A., Cuozzo, C., Sacchetti, S., Sasso, A., Chiariotti, L., Malorni, A., Abbondanza, C., and Avvedimento, E.V. (2008). DNA Oxidation as Triggered by H3K9me2 Demethylation Drives Estrogen-Induced Gene Expression. Science *319*, 202-206.

Poole, L.B., Karplus, P.A., and Claiborne, A. (2004). Protein sulfenic acids in redox signaling. Annual review of pharmacology and toxicology *44*, 325-347.

Poole, L.B., Zeng, B.-B., Knaggs, S.A., Yakubu, M., and King, S.B. (2005). Synthesis of chemical probes to map sulfenic acid modifications on proteins. Bioconjugate chemistry *16*, 1624-1628.

Poschmann, G., Seyfarth, K., Besong Agbo, D., Klafki, H.-W., Rozman, J., Wurst, W., Wiltfang, J., Meyer, H.E., Klingenspor, M., and Stühler, K. (2014). High-fat diet induced isoform changes of the Parkinson's disease protein DJ-1. Journal of proteome research *13*, 2339-2351.

Preston, M.A., and Macklin, W.B. (2015). Zebrafish as a Model to Investigate CNS Myelination. Glia *63*, 177-193.

Pringle, N.P., and Richardson, W.D. (1993). A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development *117*, 525-533.

Prusevich, P., Kalin, J.H., Ming, S.A., Basso, M., Givens, J., Li, X., Hu, J., Taylor, M.S., Cieniewicz, A.M., and Hsiao, P.-Y., et al. (2014). A selective phenelzine analogue inhibitor of histone demethylase LSD1. ACS chemical biology *9*, 1284-1293.

Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., and Vilo, J. (2019). g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res *47*, W191-W198.

Ravanelli, A.M., and Appel, B. (2015). Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment. Genes Dev. *29*, 2504-2515.

Ravanelli, A.M., Kearns, C.A., Powers, R.K., Wang, Y., Hines, J.H., Donaldson, M.J., and Appel, B. (2018). Sequential specification of oligodendrocyte lineage cells by distinct levels of Hedgehog and Notch signaling. Developmental Biology *444*, 93-106.

Reynolds, R., and Hardy, R. (1997). Oligodendroglial progenitors labeled with the O4 antibody persist in the adult rat cerebral cortex in vivo. Journal of Neuroscience Research *47*, 455-470.

Ricq, E.L., Hooker, J.M., and Haggarty, S.J. (2016). Activity-dependent Regulation of Histone Lysine Demethylase KDM1A by a Putative Thiol/Disulfide Switch*. The Journal of biological chemistry *291*, 24756-24767.

Roesch, K., Jadhav, A.P., Trimarchi, J.M., Stadler, M.B., Roska, B., Sun, B.B., and Cepko, C.L. (2008). The transcriptome of retinal Müller glial cells. Journal of Comparative Neurology *509*, 225-238.

Sakamoto, A., Hino, S., Nagaoka, K., Anan, K., Takase, R., Matsumori, H., Ojima, H., Kanai, Y., Arita, K., and Nakao, M. (2015). Lysine Demethylase LSD1 Coordinates Glycolytic and Mitochondrial Metabolism in Hepatocellular Carcinoma Cells. Cancer Res *75*, 1445-1456.

Sambeat, A., Gulyaeva, O., Dempersmier, J., Tharp, K.M., Stahl, A., Paul, S.M., and Sul, H.S. (2016). LSD1 Interacts with Zfp516 to Promote UCP1 Transcription and Brown Fat Program. Cell Reports *15*, 2536-2549.

Schmidt, D.M.Z., and McCafferty, D.G. (2007). trans-2-Phenylcyclopropylamine is a mechanism-based inactivator of the histone demethylase LSD1. Biochemistry *46*, 4408-4416.

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. *13*, 2498-2504.

Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A., Casero, R.A., and Shi, Y. (2004). Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1. Cell *119*, 941-953.

Shin, J., Park, H.-C., Topczewska, J.M., Mawdsley, D.J., and Appel, B. (2003). Neural cell fate analysis in zebrafish using olig2 BAC transgenics. Methods Cell Sci *25*, 7-14.

Sobottka, B., Ziegler, U., Kaech, A., Becher, B., and Goebels, N. (2011). CNS live imaging reveals a new mechanism of myelination: The liquid croissant model. Glia *59*, 1841-1849.

Son, J.H., Chun, H.S., Joh, T.H., Cho, S., Conti, B., and Lee, J.W. (1999). Neuroprotection and Neuronal Differentiation Studies Using Substantia Nigra Dopaminergic Cells Derived from Transgenic Mouse Embryos. J. Neurosci. *19*, 10-20.

Sorna, V., Theisen, E.R., Stephens, B., Warner, S.L., Bearss, D.J., Vankayalapati, H., and Sharma, S. (2013). High-throughput virtual screening identifies novel N'-(1-phenylethylidene)-benzohydrazides as potent, specific, and reversible LSD1 inhibitors. Journal of medicinal chemistry *56*, 9496-9508.

Spitzer, S.O., Sitnikov, S., Kamen, Y., Evans, K.A., Kronenberg-Versteeg, D., Dietmann, S., Faria, O. de, Agathou, S., and Káradóttir, R.T. (2019). Oligodendrocyte Progenitor Cells Become Regionally Diverse and Heterogeneous with Age. Neuron *101*, 459-471.e5.

Sprüssel, A., Schulte, J.H., Weber, S., Necke, M., Händschke, K., Thor, T., Pajtler, K.W., Schramm, A., König, K., and Diehl, L., et al. (2012). Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation. Leukemia *26*, 2039-2051.

Stevens, B., Porta, S., Haak, L.L., Gallo, V., and Fields, R.D. (2002). Adenosine: A Neuron-Glial Transmitter Promoting Myelination in the CNS in Response to Action Potentials. Neuron *36*, 855-868.

Stöcker, S., Maurer, M., Ruppert, T., and Dick, T.P. (2018). A role for 2-Cys peroxiredoxins in facilitating cytosolic protein thiol oxidation. Nature chemical biology *14*, 148-155.

Strathmann, F.G., Wang, X., and Mayer-Pröschel, M. (2007). Identification of two novel glial-restricted cell populations in the embryonic telencephalon arising from unique origins. BMC developmental biology *7*, 33.

Suuronen, T., Kolehmainen, P., and Salminen, A. (2000). Protective effect of l-Deprenyl against apoptosis induced by okadaic acid in cultured neuronal cells. Biochemical Pharmacology *59*, 1589-1595.

Swiss, V.A., Nguyen, T., Dugas, J., Ibrahim, A., Barres, B., Androulakis, I.P., and Casaccia, P. (2011). Identification of a Gene Regulatory Network Necessary for the Initiation of Oligodendrocyte Differentiation. PLOS ONE *6*, e18088.

Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., and Tsafou, K.P., et al. (2015). STRING v10:

protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res *43*, D447-D452.

Takeuchi, M., Fuse, Y., Watanabe, M., Andrea, C.-S., Takeuchi, M., Nakajima, H., Ohashi, K., Kaneko, H., Kobayashi-Osaki, M., and Yamamoto, M., et al. (2015). LSD1/KDM1A promotes hematopoietic commitment of hemangioblasts through downregulation of Etv2. PNAS *112*, 13922-13927.

Tanabe, Y., William, C., and Jessell, T.M. (1998). Specification of Motor Neuron Identity by the MNR2 Homeodomain Protein. Cell *95*, 67-80.

Tatton, W.G., and Chalmers-Redman, R.M. (1996). Modulation of gene expression rather than monoamine oxidase inhibition: (-)-deprenyl-related compounds in controlling neurodegeneration. Neurology *47*, S171-83.

Tekki-Kessaris, N., Woodruff, R., Hall, A.C., Gaffield, W., Kimura, S., Stiles, C.D., Rowitch, D.H., and Richardson, W.D. (2001). Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development *128*, 2545-2554.

Timsit, S., Martinez, S., Allinquant, B., Peyron, F., Puelles, L., and Zalc, B. (1995). Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J. Neurosci. *15*, 1012-1024.

Tsai, H.-H., Niu, J., Munji, R., Davalos, D., Chang, J., Zhang, H., Tien, A.-C., Kuo, C.J., Chan, J.R., and Daneman, R., et al. (2016). Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science *351*, 379-384.

(2019). UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47, D506-D515.

van der Reest, J., Lilla, S., Zheng, L., Zanivan, S., and Gottlieb, E. (2018). Proteomewide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress. Nat Commun *9*, 1-16.

van Tilborg, E., Theije, Caroline G. M. de, van Hal, M., Wagenaar, N., Vries, L.S.d., Benders, M.J., Rowitch, D.H., and Nijboer, C.H. (2018). Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury. Glia *66*, 221-238.

Velu, C.S., Niture, S.K., Doneanu, C.E., Pattabiraman, N., and Srivenugopal, K.S. (2007). Human p53 is Inhibited by Glutathionylation of Cysteines Present in the Proximal DNA-Binding Domain During Oxidative Stress[†]. Biochemistry *46*, 7765-7780.

Wang, J., Scully, K., Zhu, X., Cai, L., Zhang, J., Prefontaine, G.G., Krones, A., Ohgi, K.A., Zhu, P., and Garcia-Bassets, I., et al. (2007). Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature *446*, 882-887.

Wang, Y., Wu, Q., Yang, P., Wang, C., Liu, J., Ding, W., Liu, W., Bai, Y., Yang, Y., and Wang, H., et al. (2016) LSD1 co-repressor Rcor2 orchestrates neurogenesis in the developing mouse brain. Nat Commun *7*, 1-14.

Wang, Y., Zhang, H., Chen, Y., Sun, Y., Yang, F., Yu, W., Liang, J., Sun, L., Yang, X., and Shi, L., et al. (2009). LSD1 Is a Subunit of the NuRD Complex and Targets the Metastasis Programs in Breast Cancer. Cell *138*, 660-672.

Wegner, M. (2008). A Matter of Identity: Transcriptional Control in Oligodendrocytes. J Mol Neurosci *35*, 3-12.

Whyte, W.A., Bilodeau, S., Orlando, D.A., Hoke, H.A., Frampton, G.M., Foster, C.T., Cowley, S.M., and Young, R.A. (2012). Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature *482*, 221-225.

Wu, Z., Connolly, J., and Biggar, K.K. (2017). Beyond histones - the expanding roles of protein lysine methylation. The FEBS journal *284*, 2732-2744.

Ye, F., Chen, Y., Hoang, T., Montgomery, R.L., Zhao, X.-h., Bu, H., Hu, T., Taketo, M.M., van Es, J.H., and Clevers, H., et al. (2009). HDAC1 and HDAC2 Regulate Oligodendrocyte Differentiation By Disrupting β -Catenin-TCF Interaction. Nature neuroscience *12*, 829-838.

Yokoyama, A., Takezawa, S., Schüle, R., Kitagawa, H., and Kato, S. (2008). Transrepressive Function of TLX Requires the Histone Demethylase LSD1. Molecular and Cellular Biology *28*, 3995-4003.

Yu, Y., Chen, Y., Kim, B., Wang, H., Zhao, C., He, X., Liu, L., Liu, W., Wu, L.M.N., and Mao, M., et al. (2013). Olig2 Targets Chromatin Remodelers to Enhancers to Initiate Oligodendrocyte Differentiation. Cell *152*, 248-261.

Zhu, D., Hölz, S., Metzger, E., Pavlovic, M., Jandausch, A., Jilg, C., Galgoczy, P., Herz, C., Moser, M., and Metzger, D., et al. (2014) Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells. Nat Commun *5*, 1-14.

6 Appendix

Table 13: LSD1 co-IP in proliferating A2B5+ OPCs – all identified proteins normalized to IgG

Uniprot ID	Gene name	Coverage [%]	Unique peptides	-log p-value Diff_Proli
Q9CYL5	Glipr2	31.2	3	7.78013
P97351	Rps3a	58	16	6.36593
P84104	Srsf3; Gm12355	21.3	3	6.05733
Q9R0H0	Acox1	13.3	5	5.41038
Q8CBY8	Dctn4	11.6	4	5.15012
Q61655	Ddx19a; Ddx19b	10.5	2	5.06314
E9Q9B7	Kidins220	3.2	4	5.04387
P23116	Eif3a	2.5	2	4.9951
Q9DB20	Atp5o	62	12	4.8999
Q68FG2	Sptbn2	4.4	4	4.828
Q8C2Q3	Rbm14	25.1	10	4.79263
P50149	Gnai1	32.8	3	4.72357
Q9WVJ2	Psmd13	6.9	2	4.64636
Q7TSH3	Znf516	15.3	13	4.63534
P25206	Мст3	4.1	2	4.52073
Q9CXS4	Cenpv	24.6	3	4.50578
Q80Z24	Negr1	14.9	3	4.44797
Q03265	Atp5a1	54.6	32	4.44538
Q9DCT2	Ndufs3	9.9	2	4.44344
Q9Z0N1	Eif2s3x	10.2	3	4.43218
Q9CX86	Hnrnpa0	23.3	4	4.42995
P26516	Psmd7	8.7	2	4.38573
P07901	Hsp90aa1	14.1	3	4.36129
P30999	Ctnnd1	6.9	3	4.32739
Q8VDN2	Atp1a1	14.5	5	4.32
P15116	Cdh2	5.2	2	4.31348
P63038	Hspd1	42.2	17	4.27735
Q8BHC4	Dcakd	24.2	4	4.09952
Q8BG95	Ppp1r12b	5.9	3	4.05773
P05480	Src	10.8	3	4.03938
Q9CPQ3	Tomm22	32.4	2	4.00025
Q8VHM5	Hnrnpr	9.7	2	3.99648
P47738	Aldh2	13.5	2	3.92566
054931	Pakap; Akap2	3.5	2	3.87238
Q9CZ13	Uqcrc1	6.9	2	3.81675
Q8BU30	Iars	4	3	3.76797
Q8BFR5	Tufm	14.4	4	3.76576
Q8C845	Efhd2	58.3	13	3.76261
P61027	Rab10	11.5	2	3.74554

			-	
Q6PIE5	Atp1a2; Atp1a3	19.5	8	3.68273
Q8CGB3	Uaca	1.9	2	3.67429
Q7TPR4	Actn1	15.1	3	3.65041
Q8JZK9	Hmgcs1	13.5	4	3.64291
Q80U35	Arhgef17	5.7	6	3.62574
Q99JR1	Sfxn1	22.4	4	3.61014
Q8HW98	Iglon5	5.7	2	3.57693
P63325	Rps10	29.1	4	3.54949
P61164	Actr1a; Actr1b	19.7	4	3.5483
Q6P4T2	Snrnp200	2.3	4	3.52015
Q9D1I6	Mrpl14	20	2	3.49981
Q68FL6	Mars	6.7	3	3.39494
P38647	Hspa9	31.7	20	3.38426
Q8R0X7	Sgpl1	8.8	3	3.38341
Q3UDD3	Poldip3	23.1	6	3.33588
Q920L1	Fads1	22.3	2	3.30667
	H3f3a;			
P84228	Hist1h3b;	36.3	9	3.22105
P63037	Dnaia1	17.4	4	3.18994
P45591	Cfl2	33.7	2	3.15004
08CDN6	Txnl1	10	2	3 13495
0311309	Gse1	6	5	3,062
OSVEM8	Slc25a3	18.2	4	3.05316
P54071	Idh2	18.7	2	3.03508
088712	Cthn1	17.5	6	2 934.07
06P6M7	Sansacs	36	2	2.79867
	Ekhn15	12 7	10	2.75557
	rkbp15	7.4	10	2.73334
Q9EF69	Eucld	10	4	2.73230
Q05175	EIIUII Unfi	19 F	10	2.71465
Q9EP00	Upj1 Exh4115	0 1	4	2.09277
Q8BGS1	Ep04115	8.1	3	2.66987
088685	Psmc3	10.8	2	2.64394
Q6AXB7	Fmr1	13.8	5	2.64236
Q9JKF1	lqgap1	4.9	5	2.62552
Q641P0	Actr3b	23.9	3	2.55861
Q8CFE3	Rcor1	40.8	9	2.33888
Q9JJW6	Alyref; Alyref2	31.4	6	2.30229
Q6PGA0	Rcor3	13.1	3	2.21627
Q99KI0	Aco2	7.3	3	2.17192
P62320	Snrpd3	12.7	2	2.15499
P43277	Hist1h1d	27.1	2	2.09296
Q91VA7	Idh3b	12.8	3	2.09262
Q61666	Hira	3.3	2	1.97934
Q6ZPK0	Phf21a	38.1	17	1.94008
Q8BJA3	Hmbox1	11.3	3	1.67826
Q9CU65	Zmym2	5.9	6	1.6223

P70288	Hdac2	21.3	4	1.43029
P08775	Polr2a	4.5	6	1.29116
Q76KF0	Sema6d	10.5	7	1.27677
Q569Z6	Thrap3	13.7	11	1.0584
Q9Z275	Rlbp1	12	2	1.05442
Q8CFI7	Polr2b	6	5	0.963159

Table 14: LSD1 co-IP in A2B5+ OPCs after 24 h of differentiation – all identified proteins normalized to IgG

Uniprot ID	Gene name	Coverage [%]	Unique peptides	- log p value Diff_IGG
Q6ZPK0	Phf21a	38.1	17	9.01432
P14115	Rpl27a	23.6	4	8.37572
G3X9J0	Sipa1l3	19.3	22	8.35782
Q9JHU4	Dync1h1	11.3	36	8.30565
Q7TSH3	Znf516	15.3	13	8.27184
Q9QXS1	Plec	12.1	37	8.23296
Q8BVU0	Lrch3	31.8	18	7.84446
P70429	Enah	19	10	7.82601
088712	Ctbp1	17.5	6	7.47703
P70248	Myo1e	10.2	9	7.43433
Q80X90	Flnb	11.5	16	7.27117
Q9JJ28	Flii	23.1	21	7.23692
Q8CFE3	Rcor1	40.8	9	7.16694
Q5SXA5	Tom1l2	42.2	13	6.97918
P19096	Fasn	14.7	23	6.97691
Q6P9Q6	Fkbp15	13.7	10	6.96969
Q8C796	Rcor2	27.9	10	6.94158
P63038	Hspd1	42.2	17	6.78761
Q5PR69	C530008M17Ri k; Kiaa1211	20.2	18	6.74445
Q9WTI7	Myo1c	21.1	17	6.69979
P68040	Gnb2l1	37.9	8	6.64447
Q6ZQ88	Kdm1a	52.2	38	6.5805
Q9Z1G4	Atp6v0a1	12.9	8	6.57419
Q60930	Vdac2	59.3	15	6.5071
P39447	Tjp1	20.8	28	6.47151
P62852	Rps25	32.3	4	6.45493
Q8BGH2	Samm50	24.7	11	6.37239
Q04447	Ckb	31	11	6.37066
P51880	Fabp7	72	9	6.36976
Q9JHJ0	Tmod3	31.5	9	6.32843
Q2KN98	Specc11	7.2	6	6.22074
Q9D8E6	Rpl4	40.1	19	6.17204

Q91Z25	Arpc1b	41.8	11	6.12598
Q3UDC3	Tom1	36.2	12	6.05074
P61161	Actr2	39.8	19	6.04101
Q6PGA0	Rcor3	13.1	3	6.03815
Q569Z6	Thrap3	13.7	11	6.02504
Q91YR1	Twf1	38.9	12	5.95928
P62264	Rps14	41.7	9	5.86669
P60710	Actb	89.1	4	5.8566
Q80TE4	Sipa1l2	14.3	14	5.81126
Q9JM76	Arpc3	52.2	9	5.7744
Q9D898	Arpc5l	54.9	6	5.76617
Q02053	Uba1	21.4	13	5.73738
Q9JMH9	Myo18a	36	65	5.73222
Q6P6M7	Sepsecs	3.6	2	5.69652
Q62261	Sptbn1	14.9	24	5.61929
Q6DFV3	Arhgap21	11.5	13	5.58603
Q9WTM5	Ruvbl2	16.8	6	5.57483
P62702	Rps4x; Gm15013	43.3	11	5.55441
Q8BG81	Poldip3	23.1	6	5.53889
Q61584	Fxr1	14.1	5	5.52196
Q76KF0	Sema6d	10.5	7	5.35536
P13595	Ncam1	34.8	15	5.32705
Q8BTM8	Flna	12.5	19	5.2928
Q9CU65	Zmym2	5.9	6	5.28575
Q3UH68	Limch1	24.9	23	5.25702
Q9DBR7	Ppp1r12a	28.3	23	5.23027
P55096	Abcd3	25.5	12	5.22755
Q5SVJ1	Camk2b	22.1	6	5.17843
Q61553	Fscn1	43.8	16	5.16811
Q9JL26	Fmnl2	22.4	22	5.12167
P17426	Ap2a1	17.7	8	5.11124
Q8CAQ8	Immt	50.2	30	5.10027
Q6ZWY3	Rps27l; Rps27	25.6	2	5.04251
Q8CH77	Nav1	20.4	30	5.01868
Q921L6	Cttn	25.1	10	4.98846
Q80UE4	Epb4.1l2; Epb41l2	13.1	6	4.98717
Q9D0R8	Lsm12	15.4	2	4.9367
088990		32.2	1	4.90789
Q8VEM8	Slc25a3	18.2	4	4.87294
P60867	Rps20	41.2	6	4.85518
P21107	Трт3	30.8	2	4.84549
P80315	Cct4	36.4	14	4.82912
B9EJ86	Osbpl8	11.6	7	4.77717
P45591	Cfl2	33.7	2	4.77262
Q8C845	Efhd2	58.3	13	4.7241

P59999	Arpc4	64.9	16	4.70153
P70288	Hdac2	21.3	4	4.66056
P23242	Gja1	29.3	9	4.60044
Q7TQD7	Myo1b	46.6	50	4.58614
E9Q447	Sptan1	20.6	41	4.56414
P63276	Rps17	46.7	5	4.5609
P47757	Capzb	80.9	7	4.52656
Q9CZU6	Cs; Csl	9.5	4	4.48775
P68033	Actc1; Actg2; Acta1; Acta2	55.4	5	4.48734
P14131	Rps16	51.4	10	4.48588
P47738	Aldh2	13.5	2	4.4852
P58252	Eef2	29.3	17	4.47594
F2Z471	Vdac1	70.5	2	4.46569
P08775	Polr2a	4.5	6	4.40603
Q9Z0U1	Tjp2	17.9	12	4.38221
P62880	Gnb2	63.8	7	4.36177
P47754	Capza2	76.9	15	4.35068
P11499	Hsp90ab1	37	16	4.26217
P38647	Hspa9	31.7	20	4.26035
P14869	Rplp0	43.8	12	4.25115
P62245	Rps15a	55.4	8	4.245
Q9CRB9	Chchd3	37.4	7	4.22493
Q99KP6	Prpf19	22.4	7	4.21782
P52480	Pkm	19.8	6	4.20974
P80314	Cct2	23	8	4.20043
Q3U0I3	Cct3	10.5	5	4.1995
Q9R0Q6	Arpc1a	53	14	4.10363
Q8BH44	Coro2b	56.5	29	4.08267
P62631	Eef1a1	49.4	27	4.07733
Q02248	Ctnnb1	20.2	11	4.07638
Q60790	Rasa3	29	17	4.07302
Q8BP43	Tpm1	31.9	6	4.05216
008638	Myh11	12.7	3	4.04676
Q8BJA3	Hmbox1	11.3	3	4.03354
Q6R891	Ppp1r9b	37.3	24	3.99409
088569	Hnrnpa2b1	32.9	8	3.92488
Q8C2Q3	Rbm14	25.1	10	3.92032
Q5SXY1	Specc1	32	28	3.84772
P60766	Cdc42	32.5	4	3.83469
P51150	Rab7a	30	5	3.82775
P12960	Cntn1	41.9	31	3.79274
Q99JY9	Actr3	66.5	23	3.79065
Q6PFF0	Scaf4	3.9	3	3.77051
Q6PIE5	Atp1a2; Atp1a3	19.5	8	3.71613
Q9Z329	Itpr2	8.2	15	3.7132
P53026	Rpl10a	29.5	6	3.62827

Q8BP67	Rpl24	22.3	5	3.615
Q8VDR9	Dock7	40.8	74	3.60347
Q8K019	Bclaf1	5.3	3	3.58567
P86048	Rpl10; Rpl10l	37.8	6	3.57052
P54071	Idh2	18.7	2	3.53114
Q9DB20	Atp5o	62	12	3.52344
Q68FD5	Cltc	30.6	45	3.51461
P97351	Rps3a	58	16	3.49202
Q99104	Myo5a	51.5	102	3.49179
08VD75	Hip1	9.8	7	3.46559
09DAY9	Npm1	13.6	3	3.46355
O4VBF8	Sipa1l1	10.2	10	3.44826
09CZ13	Uacrc1	6.9	2	3.41658
O3UMG5	Lrch2	17.6	14	3.37704
P84099	Rnl19	22.2	5	3.36055
P43277	Hist1h1d	27.1	2	3 35887
P63087	Pnn1cc	61.9	1	3 32657
P62830	Rnl23	47.1	8	3 3224
P62281	Rps11	66.5	11	3 31311
09DCL9	Paics	17.2	6	3 30422
060605	Myl6	67.1	6	3 29592
Q00003	Tmod2	385	14	3 28892
P25206	Mcm3	4 1	2	3 23103
080005	Muh9	77 2	185	3.23103
QUVDD5	Arnc?	55 7	105	3.2277
Q9CVD0	Tubb4b	76.0	2	3.20301
P62974	Cnh1	70.9	0	3.17000
002265	Atn5a1	54.6	22	2 1/2/7
Q03203	Atp3u1	54.0 66.7	7	2 1225
0000000	Pp1tu Dpl11	45 5	0	2 11120
Q9CXW4	Kpill Mut1	43.5	9	2 00405
Q0CFC2	Myt1 Dpl19g	0 41 E	7	2 07475
	Corola	41.5	10	2 04647
Q9W0M4	Cotta	47.9	0	2 02070
Q8CGP4	Hist1h2aa; H2afj; Hist3h2a; Hist1h2ah; Hist1h2ak; Hist1h2af; Hist2h2aa1; Hist2h2ac	37.3	5	3.02791
P47753	Capza1	61.5	10	3.01816
Q9QXS6	Dbn1	42.8	1	3.01372
09CYL5	Glipr2	31.2	3	3.01307
Q9D4I1	Efhd1	37.9	8	3.01233
09CP03	Tomm22	32.4	2	3.0087
P17742	Ppia	36.6	5	2.9868
E9Q175	Муоб	65.7	1	2.98096

Q80Z24	Negr1	14.9	3	2.96198
Q8CDN6	Txnl1	10	2	2.94664
Q6P5H2	Nes	9.7	12	2.92602
Q61879	Myh10	75.7	169	2.90802
Q8VDN2	Atp1a1	14.5	5	2.89408
Q3THE2	Myl12b	50	1	2.87166
P80316	Cct5	11.5	5	2.83553
Q8BMS1	Hadha	25.4	14	2.82875
Q8K4L2	Svil	34.9	52	2.80864
P62082	Rps7	34.5	7	2.80517
Q8CBY8	Dctn4	11.6	4	2.80065
P60843	Eif4a1; Eif4a2	30	7	2.78114
Q9JIK5	Ddx21	25.1	14	2.76467
009106	Hdac1	18.3	3	2.76003
Q9Z2X1	Hnrnpf	26.3	7	2.75876
P51863	Atp6v0d1	20.5	6	2.72813
Q8CFI7	Polr2b	6	5	2.72692
P62908	Rps3	69.5	17	2.72391
Q920L1	Fads1	22.3	2	2.68792
Q8HW98	Iglon5	5.7	2	2.67632
Q91VA7	Idh3b	12.8	3	2.66209
Q9JJW6	Alyref; Alyref2	31.4	6	2.65942
Q9CZM2	Rpl15	11.3	3	2.65158
P62141	Ppp1cb	55.7	6	2.64839
Q3TLP8	Rac1; Rac3	38.9	8	2.63077
Q5SWZ5	Mprip	19.5	3	2.61709
Q921R2	Rps13	45.7	8	2.61179
P62806	Hist1h4a	65	12	2.59742
P08113	Hsp90b1	12.5	6	2.59481
P42932	Cct8	17.2	7	2.59424
Q9DC51	Gnai3	37.3	7	2.54967
F6Q2E3	Psmc3	10.8	2	2.54283
Q61655	Ddx19a; Ddx19b	10.5	2	2.53898
P41105	Rpl28	56.9	10	2.52921
P80313	Cct7	20	6	2.51414
Q9ERG0	Lima1	47.7	38	2.51069
P11983	Tcp1	15.3	7	2.48333
Q99KI0	Aco2	7.3	3	2.48204
Q9CQM8	Rpl21	27.5	3	2.47424
P61164	Actr1a; Actr1b	19.7	4	2.46596
P62889	Rpl30	43.5	5	2.46179
P18760	Cfl1	62	7	2.41684
Q6AXB7	Fmr1	13.8	5	2.41561
Q7TPR4	Actn1	15.1	3	2.39535
P05214	Tuba1a; Tuba3a	63.9	1	2.39031

P61358	Rpl27	41.9	5	2.38389
Q61666	Hira	3.3	2	2.37119
Q3U3C9	Gse1	6	5	2.36429
P99024	Tubb5	78.8	6	2.36071
070503	Hsd17b12	31.7	6	2.35901
Q922Q8	Lrrc59	27.7	6	2.3577
P63037	Dnaja1	17.4	4	2.34519
P08752	Gnai2	61.1	14	2.30564
P84104	Srsf3; Gm12355	21.3	3	2.26593
Q8BH59	Slc25a12	23	8	2.26392
Q8CGB3	Uaca	1.9	2	2.26113
Q641P0	Actr3b	23.9	3	2.25874
P14206	Rpsa	37.3	7	2.24817
P62267	Rps23	41.3	6	2.19857
P14148	Rpl7	35.2	11	2.19572
Q9CPQ1	Сохбс	26.3	2	2.16321
Q8BQ30	Ppp1r18	23.9	9	2.16275
Q50HX3	Rab14	33.5	5	2.16231
Q6P4T2	Snrnp200	2.3	4	2.15937
P27659	Rpl3	29.3	11	2.15631
Q9R0P5	Dstn	20.6	2	2.15607
Q791V5	Mtch2	34.7	8	2.13279
Q3TF41	Nap1l1	15.5	3	2.1312
P18872	Gnao1	39.3	11	2.12932
Q9DBG3	Ap2b1	9.5	7	2.11604
Q9EP89	Lactb	7.4	4	2.11288
Q7TPV4	Mybbp1a	17.2	14	2.10808
Q8C5G6	Tollip	37.7	5	2.0771
Q8BHC4	Dcakd	24.2	4	2.0693
Q8BU30	Iars	4	3	2.0411
Q9EPU0	Upf1	5	4	2.01867
P05480	Src	10.8	3	2.00958
Q8VHM5	Hnrnpr	9.7	2	2.00211
P39688	Fyn	25.7	8	1.98935
Q99JY8	Ppap2b	26.3	7	1.96312
Q6ZWN5	Rps9	30.4	9	1.95487
P62242	Rps8	60.1	10	1.93895
Q8BGN3	Enpp6	27.3	11	1.93671
A2AI08	Tprn	13	6	1.92524
P62918	Rpl8	33.9	10	1.91957
P62320	Snrpd3	12.7	2	1.90891
P12970	Rpl7a	29.3	8	1.89338
Q9DAS9	Gng12	63.1	5	1.88679
P26516	Psmd7	8.7	2	1.86352
P19253	Rpl13a	42.4	9	1.84866
Q5EBP8	Hnrnpa1	22	8	1.84247

P63094	Gnas	31	9	1.82993
Q8BTI8	Srrm2	2.9	5	1.78558
P62814	Atp6v1b2	13.5	5	1.77645
P20152	Vim	82.2	50	1.76909
P84244	H3f3a; Hist1h3b; Hist1h3a; H3f3c	36.3	9	1.76408
Q6URW6	Myh14	43.1	66	1.75635
P14685	Psmd3	12.5	6	1.74443
Q91V55	Rps5	53.4	10	1.71456
054931	Pakap; Akap2	3.5	2	1.68349
P35979	Rpl12	38.8	6	1.66599
P62900	Rpl31	33.6	4	1.65426
Q60931	Vdac3	65	15	1.64956
Q8BG95	Ppp1r12b	5.9	3	1.60958
Q64331	Муоб	65.9	1	1.59807
055142	Rpl35a	22.7	3	1.59202
P30999	Ctnnd1	6.9	3	1.56592
Q9R0H0	Acox1	13.3	5	1.55724
P60335	Pcbp1	26.7	4	1.53854
E9Q9B7	Kidins220	3.2	4	1.53624
Q9D1I6	Mrpl14	20	2	1.53349
P23116	Eif3a	2.5	2	1.53201
Q76MZ3	Ppp2r1a; Ppp2r1b	16.8	6	1.53197
P25444	Rps2	51.5	18	1.52805
P35279	Rab6a; Rab6b; Rab39a	17.8	4	1.52471
Q9QZQ8	H2afy	16.7	3	1.51254
Q9JKF1	lqgap1	4.9	5	1.50333
Q9DCT2	Ndufs3	9.9	2	1.46249
P60122	Ruvbl1	13.2	4	1.4599
Q68FG2	Sptbn2	4.4	4	1.44478
P62754	Rps6	31.3	7	1.43061
P50516	Atp6v1a	26.9	10	1.42925
Q8R0X7	Sgpl1	8.8	3	1.42627
Q8CBB6	Hist1h2bf; Hist1h2br; Hist1h2bp; Hist1h2ba; Hist3h2ba; Hist3h2bb	77.8	0	1.42506
P70168	Kpnb1	3.4	2	1.42081
Q68FL6	Mars	6.7	3	1.40168
Q9CXS4	Cenpv	24.6	3	1.39897
Q8BG33	Ntm	20.3	5	1.3952
P19783	Cox4i1	31.4	4	1.39114
Q9Z275	Rlbp1	12	2	1.3776

P32883	Kras; Hras; Nras	36	6	1.37203
Q8BGJ5	Ptbp1	27.8	9	1.37119
P63260	Actg1	89.1	3	1.36868
Q9CR57	Rpl14	30.9	7	1.32014
P62983	Rps27a; Gm8797; Uba52; Kxd1; Ubc; Ubb	50.6	10	1.31679
P00405	Mtco2	23.3	4	1.31661
P62492	Rab11b; Rab11a	30.9	5	1.30227
Q60932	Vdac1	74.7	5	1.28711
P47911	Rpl6	39.9	13	1.28113
Q9CWF2	Tubb2b	78.7	2	1.27206
Q9CX86	Hnrnpa0	23.3	4	1.2619
Q8JZK9	Hmgcs1	13.5	4	1.22225
Q99JR1	Sfxn1	22.4	4	1.20391
P15116	Cdh2	5.2	2	1.1962
P61027	Rab10	11.5	2	1.18886
Q6ZWV7	Rpl35	22	3	1.17932
Q8BFR5	Tufm	14.4	4	1.15116
Q9WVJ2	Psmd13	6.9	2	1.15082
Q61820	Ran; 1700009N14Rik	27.3	5	1.14852
Q8BGS1	Epb41l5	8.1	3	1.14598
Q80U35	Arhgef17	5.7	6	1.14314
P35980	Rpl18	43.4	9	1.13722
Q9CPP0	Npm3	17.7	2	1.13045
P07901	Hsp90aa1	14.1	3	1.13035
Q61753	Phgdh	31.1	12	1.1065
Q3TYE5	Lsamp	37.6	11	1.09902
H3BJD6	Ppp1r9a	25.1	3	1.08866
Q9Z0N1	Eif2s3x	10.2	3	1.08038
Q61382	Traf4	15.7	5	1.06564
P20612	Gnai1	32.8	3	1.05496
P62259	Ywhae	24.3	4	1.01919
P63325	Rps10	29.1	4	1.00781

Table 15: LSD1 co-IP in A2B5+ cells – difference proliferating A2B5+ OPCs toA2B5+ OPCs after 24 h differentiation normalized to IgG and LSD1

Uniprot ID	Gene name	Coverage [%]	Unique peptides	-log p value
Q6ZPK0	Phf21a	38.1	17	6.73516
Q8C796	Rcor2	27.9	10	6.19772

6. Appendix

Q8CFE3	Rcor1	40.8	9	6.18532
Q6ZQ88	Kdm1a	52.2	38	5.36124
Q7TSH3	Znf516	15.3	13	5.17896
Q3U3C9	Gse1	6	5	5.14754
Q03173	Enah	19	10	4.79652
Q76KF0	Sema6d	10.5	7	4.2376
088712	Ctbp1	17.5	6	4.135
Q8VIJ6	Sfpq	29.8	15	4.10584
Q6P9Q6	Fkbp15	13.7	10	3.75897
Q99K48	Nono	22.6	7	3.54016
P70288	Hdac2	21.3	4	3.50008
P97820	Map4k4	6.2	4	3.39847
Q99PL5	Rrbp1	6.5	6	3.0182
Q9CZX8	Rps19	31	5	2.82185
Q61584	Fxr1	14.1	5	2.67945
P84104	Srsf3; Gm12355	21.3	3	2.65472
Q9CU65	Zmym2	5.9	6	2.58945
Q8C845	Efhd2	58.3	13	2.45429
P35922	Fmr1	13.8	5	2.43247
P97351	Rps3a	58	16	2.36496
Q9CYL5	Glipr2	31.2	3	2.29731
Q91ZU6	Dst	1.7	8	2.09614
Q8BJA3	Hmbox1	11.3	3	2.03575
P30999	Ctnnd1	6.9	3	1.96587
Q99JI6	Rap1b; Rap1a	34.2	4	1.96434
P08775	Polr2a	4.5	6	1.95111
P52293	Kpna2	10	3	1.85418
Q80Z24	Negr1	14.9	3	1.8225
Q8BG05	Hnrnpa3; Gm6793	17.3	3	1.73004
P62046	Lrch1	11.3	4	1.70848
Q9CX86	Hnrnpa0	23.3	4	1.68613
Q9CPW4	Arpc5	41.7	4	1.63847
009106	Hdac1	18.3	3	1.60907
Q7TMM9	Tubb2a	69.9	1	1.55459
F8WI35	H3f3a; Hist1h3b; Hist1h3a; H3f3c	36.3	9	1.47781

Uniprot ID	Gene name	Coverage [%]	Unique peptides	-log p value
Q542G9	Anxa2	33	9	2.60063
E9QAQ7	Arid1a	2.5	3	2.81506
Q925I1	Atad3; Atad3a	9.1	4	1.9837
070305	Atxn2	8.6	8	3.02446
Q3TGG2	Atxn2l	8	6	1.95953
Q9CQC6	Bzw1	14.9	5	3.32151
Q8CH18	Ccar1	7.8	7	2.20816
Q9D8B3	Chmp4b	11.2	2	2.33456
Q9DCN2	Cyb5r3	26.5	6	2.36531
Q9DCE6	Dab2	7.9	5	5.01332
Q61103	Dpf2	13.6	4	3.20783
E9Q557	Dsp	2.6	6	3.40534
Q8BL66	Eea1	8.8	9	2.95842
Q8JZQ9	Eif3b	38.2	23	2.17735
Q7TPD1	Fbxo11	15.3	1	5.21395
Q3U3C9	Gse1	28.2	23	3.74523
Q58E49	Hdac1; Gm10093	17.6	2	2.90546
P70288	Hdac2	32.6	6	2.93117
P43274	Hist1h1e	22.4	2	2.63115
Q05DT2	Hmg20b	32.1	6	2.00376
P38647	Hspa9	25.2	12	1.85448
P63038	Hspd1	22.7	7	2.54685
Q02257	Jup	7.9	4	4.91298
Q6ZQ88	Kdm1a	60.4	43	4.52756
Q8BYR2	Lats1	8.9	8	5.02365
P14873	Map1b; Map1a	1.1	2	2.55685
Q91W39	Ncoa5	10.7	5	4.02693
Q3V449	Nmnat1	22.8	6	5.60503
E9Q7G0	Numa1	3.9	6	2.26325
Q60597	Ogdh	2.6	2	1.89789
P29341	Pabpc1; Pabpc6	28	12	2.95551
Q6ZPK0	Phf21a	26	13	3.57964
Q8CFE3	Rcor1	56.5	14	8.1675
Q6PGA0	Rcor3	37.7	12	4.62766
Q91YQ5	Rpn1	27.8	12	2.78752
Q6PFF0	Scaf4; Scaf8	2.3	2	4.37761
Q3UXS0	Scamp3	28.6	5	6.21613
Q3TKT4	Smarca4	7.6	9	3.84923
Q3UID0	Smarcc2	4	2	3.68369
Q9CSN1	Snw1	13.4	5	4.36044

 Table 16: LSD1 redox co-IP in SN4741 cells – CTRL normalized to IgG

6. Appendix

Q62261	Sptbn1	46.7	94	2.01238
Q8BTI8	Srrm2	11.9	24	1.92727
055201	Supt5h	14.3	11	3.74333
Q7TMK9	Syncrip	19	5	1.89925
Q9Z1A1	Tfg	43.6	14	4.19223
Q9JHJ0	Tmod3	23.3	5	2.01298

Table 17: LSD1 redox co-IP in SN4741 cells – Bizine normalized to IgG

Uniprot ID	Gene name	Coverage [%]	Unique peptides	-log p value
Q3ULT2	Actn4	23.9	8	2.89176
Q5FWB7	Aldoa; Aldoart1	60.4	15	2.47764
Q542G9	Anxa2	33	9	2.50839
E9QAQ7	Arid1a	2.5	3	3.29174
E9QM77	Atxn2	8.6	8	3.45866
Q9CQC6	Bzw1	14.9	5	2.1593
Q8CH18	Ccar1	7.8	7	2.25643
F6YFR7	Соре	30.8	3	2.22934
E9QL31	Dab2	7.9	5	4.23772
Q3U1J4	Ddb1	17.6	17	2.2137
Q8BMF4	Dlat	8.7	4	2.6956
Q61103	Dpf2	13.6	4	3.53017
E9Q557	Dsp	2.6	6	4.89137
Q8BL66	Eea1	8.8	9	2.56682
P58252	Eef2	58.5	42	2.9231
P70372	Elavl1	26.1	7	2.18483
Q7TPD1	Fbxo11	15.3	1	3.43631
Q4FJZ6	Gclm	13.1	3	2.43781
Q3U3C9	Gse1	28.2	23	4.2386
Q58E49	Hdac1; Gm10093	17.6	2	3.66061
P70288	Hdac2	32.6	6	3.64243
Q8C3I8	Hgh1	12.5	3	2.4721
P43274	Hist1h1e	22.4	2	2.17411
Q05DT2	Hmg20b	32.1	6	3.18528
Q80Y52	Hsp90aa1	44.6	17	2.36122
Q3UAD6	Hsp90b1	15.6	6	2.43163
Q02257	Jup	7.9	4	2.24099
Q6ZQ88	Kdm1a	60.4	43	4.70341
Q8BYR2	Lats1	8.9	8	4.80025
P08249	Mdh2	24.9	6	2.37134
P54276	Msh6	5	5	2.34346
Q922D8	Mthfd1	18.8	13	2.34275
P09405	Ncl	27.4	19	2.31487
Q91W39	Ncoa5	10.7	5	4.59819
Q3V449	Nmnat1	22.8	6	6.09664
--------	-------------------	------	----	---------
Q6PIP5	Nudcd1	34.5	14	2.30995
Q60597	Ogdh	2.6	2	2.11941
P09103	P4hb	14.3	5	2.72855
P29341	Pabpc1; Pabpc6	28	12	3.21521
Q6ZPK0	Phf21a	26	13	4.38673
Q8CFE3	Rcor1	56.5	14	9.35263
Q6PGA0	Rcor3	37.7	12	5.41407
Q5BLK0	Rpl12	35.8	4	2.60297
Q6PFF0	Scaf4; Scaf8	2.3	2	4.13218
Q3UXS0	Scamp3	28.6	5	6.21765
Q8K2B3	Sdha	7.1	4	2.11997
Q3TKT4	Smarca4	7.6	9	2.95616
Q3UID0	Smarcc2	4	2	3.42769
Q9CSN1	Snw1	13.4	5	4.3022
055201	Supt5h	14.3	11	3.97236
Q9Z1A1	Tfg	43.6	14	4.16549
E9Q5E2	Thoc2	5.1	7	3.61128
Q14C24	U2af1; U2af1l4	14.6	4	2.39416
Q02053	Uba1	30.8	21	3.46335
P63101	Ywhaz	33.1	3	2.4295

Table 18: LSD1 redox co-IP in SN4741 cells – Difference bizine to CTRL normalized to IGG and LSD1

Uniprot ID	Gene name	t-test Difference bizine_CTRL
Q8CFE3	Rcor1	1.01
Q6ZPK0	Phf21a	0.88
Q05DT2	Hmg20b	0.87
Q58E49	Hdac1; Gm10093	0.73
Q8CH18	Ccar1	-0.47
Q3UXS0	Scamp3	-0.70
Q6PDG5	Smarcc2	-0.74
E9QAQ7	Arid1a	-0.74
P98078	Dab2	-0.74
Q8BL66	Eea1	-0.74
Q3TKT4	Smarca4	-0.89
Q9JHJ0	Tmod3	-1.03
Q62261	Sptbn1	-1.09
F6ZQA3	Numa1	-1.16
Q9D8B3	Chmp4b	-1.43

UniProt ID	Gene name	Coverage [%]	Unique peptides	Fold oxidized siRNA_CTRL	-log p value
P60981	Dstn	25.2	2	-20.79	2.933
Q13228	Selenbp1	10.8	4	-18.75	6.112
Q8NF37	Lpcat1	6.4	1	-16.62	2.205
P13995	Mthfd2	5	1	-15.46	5.795
075063	Fam20b	2.4	1	-14.07	3.413
Q6PK18	Ogfod3	4.4	1	-12.48	3.347
P53582	Metap1	2.8	1	-11.4	4.175
Q15738	Nsdhl	5.9	1	-10.98	2.676
014656	Tor1a	3.9	2	-10.32	1.504
Q9NXW2	Dnajb12	18.5	4	-9.92	3.513
000217	Ndufs8	10.9	1	-8.59	3.072
Q15008	Psmd6	19.4	2	-8.5	1.445
P32322	Pycr1	6.2	1	-8.2	3.269
P82650	Mrps22	7.3	1	-8.15	1.654
Q15435	Ppp1r7	6.6	1	-7.79	5.899
P46778	Rpl21	11.2	1	-7.1	1.739
Q9UNS2	Cops3	6.4	2	-6.55	3.061
Q9UJU6	Dbnl	15.6	1	-6.49	3.784
Q9Y237	Pin4	15.4	1	-6.43	1.567
Q9UGT4	Susd2	7.2	3	-6.27	1.946
Q9BQE4	Vimp	7.2	1	-5.91	3.75
Q8NE71	Abcf1	1.8	1	-5.83	3.059
P61165	Tmem258	16.3	1	-5.61	1.461
Q96D46	Nmd3	9.6	3	-5.51	1.848
Q15393	Sf3b3	1.2	1	-5.21	2.151
P08047	Sp1	9.3	1	-5.2	2.761
Q13617	Cul2	2.2	1	-5.14	4.741
P34932	Hspa4	3.7	2	-5.09	1.595
Q13283	G3bp1	8.8	2	-4.74	1.868
Q13445	Tmed1	14.6	1	-4.66	2.385
Q9Y266	Nudc	7.6	2	-4.6	1.359
Q15056	Eif4h	16.9	2	-4.55	2.311
Q9H4M9	Ehd1	4.9	1	-4.45	2.071
Q9Y5X3	Snx5	51.6	1	-4.43	2.064
Q9H832	Ube2z	4.2	1	-4.36	1.731
P00918	Ca2	15.8	4	-4.19	4.787
Q08945	Ssrp1	2	1	-4.14	1.538
P51148	Rab5c	6.5	1	-4.13	1.903
Q96NB2	Sfxn2	20.9	1	-4.08	2.372

Table 19: BIAM switch assay coupled to mass spectometry – differentially oxidized proteins upon LSD1 knockout

Q969G3	Smarce1	15.3	2	-3.82	1.892
P55795	Hnrnph2	18.7	2	-3.8	1.525
Q712K3	Ube2r2	7.6	2	-3.75	1.49
P23434	Gcsh	20	1	-3.73	1.81
Q8TEX9	Ipo4	18.8	1	-3.67	2.164
Q6P587	Fahd1	7.1	1	-3.55	2.729
Q7Z4W1	Dcxr	21.5	4	-3.5	1.347
Q15363	Tmed2	43.1	2	-3.5	2.348
Q96RQ3	Mccc1	8.5	4	-3.46	3.331
Q6UXD5	Sez6l2	5.3	1	-3.44	5.181
Q15046	Kars	8.5	5	-3.43	2.82
P11387	Top1	3.4	2	-3.39	1.417
P53041	Ppp5c	6.5	2	-3.33	3.505
P34059	Galns	5.9	1	-3.31	1.657
A4D1S0	Klrg2	2.7	1	-3.28	1.605
Q99497	Park7	39.2	5	-3.19	2.195
Q07812	Bax	24	3	-3.16	1.967
P33991	Mcm4	3.2	2	-3.13	1.351
015042	U2surp	16.8	1	-3.11	3.359
Q9HD45	Tm9sf3	10.3	1	-3.02	1.419
Q16576	Rbbp7	9.6	3	-3	4.382
Q6UWU4	C6orf89	8.9	2	-2.97	1.497
P07919	Uqcrh; Uqcrhl	74.7	7	-2.93	4.855
Q96NT5	Slc46a1	2.6	1	-2.85	1.889
096005	Clptm1	2.4	2	-2.77	2.74
P39023	Rpl3	13.1	4	-2.76	2.039
Q9BZF1	Osbpl8	23.7	1	-2.75	1.798
Q9NPD8	Ube2t	8.6	1	-2.7	1.565
P17568	Ndufb7	24.1	3	-2.68	1.987
P50395	Gdi2	19.6	3	-2.66	4.57
Q13148	Tardbp	6.5	1	-2.65	1.389
P12277	Ckb	8.6	1	-2.65	2.435
P35659	Dek	8.3	1	-2.64	1.995
Q96HQ2	Cdkn2aipnl	15.5	1	-2.64	3.634
P30876	Polr2b	1.2	1	-2.62	2.037
Q9BT78	Cops4	7.3	1	-2.59	2.522
P06865	Неха	7.1	4	-2.57	1.742
Q13740	Alcam	18.2	8	-2.56	3.573
Q92616	Gcn1l1	0.4	1	-2.53	1.741
Q13435	Sf3b2	8.5	3	-2.53	1.492
094776	Mta2	1.5	1	-2.52	2.765
P49711	Ctcf	3	2	-2.51	2.689
Q16775	Hagh	64.1	3	-2.47	3.709
Q02790	Fkbp4	38.6	14	-2.41	4.122
P55789	Gfer	33.9	2	-2.39	3.511
P21926	Cd9	15.1	3	-2.37	5.585

Q13641	Tpbg	6.9	3	-2.34	2.001
Q96A59	Marveld3	5	1	-2.33	2.109
E9PKU7	Ganab	19.5	1	-2.28	1.324
P21912	Sdhb	17.1	2	-2.27	1.358
P09960	Lta4h	2.1	1	-2.27	1.608
P62277	Rps13	10.3	1	-2.26	3.17
P49588	Aars	11.6	7	-2.24	2.91
Q8WXF1	Pspc1	16.6	8	-2.23	5.04
Q9H0H5	Racgap1	10.9	2	-2.2	3.008
Q9P0I2	Emc3	7.3	1	-2.18	1.57
Q14118	Dag1	9.5	6	-2.17	1.925
Q9NRF9	Pole3	10.9	1	-2.16	2.199
Q5JU69	Tor2a	5	1	-2.16	1.761
Q15149	Plec	2.1	7	-2.15	2.711
Q96CN7	Isoc1	15.4	2	-2.12	3.118
P34897	Shmt2	19	8	-2.11	3.495
09Y5S9	Rbm8a	17.2	2	-2.11	2.553
043670	Znf207	3.8	1	-2.1	2.405
P35813	Ppm1a	8.6	2	-2.08	1.704
09Y3A6	Tmed5	5.2	1	-2.06	1.701
014247	Cttn	23.1	8	-2.05	2.814
09NY27	Ppp4r2	7	1	-2.03	1.512
09P2E9	Rrbp1	4.9	2	-2.03	1.967
P06280	Gla	19.1	6	-1.98	4.418
09UMS4	Prpf19	31.1	1	-1.96	4.053
09H1E3	Nucks1	7.4	- 1	-1.96	2.02
P18031	Ptpn1	10.1	3	-1.95	1.684
08WWM7	Atxn2l	2.9	2	-1.94	2.874
P14866	Hnrnpl	28.5	7	-1.94	1.305
09H444	Chmp4b	21.4	4	-1.93	2.022
P36957	Dist	5.7	2	-1.93	3.239
P61604	Hspe1	55.9	5	-1.92	1.88
P17050	Naga	2.7	1	-1.92	3 161
09Y230	Ruvhl2	23.5	8	-1 91	1 682
043615	Timm44	9.5	1	-1 91	2.271
P62873	Gnh1	16.8	2	-1.89	1 71
09BV57	Adi1	7.8	1	-1.89	4 252
013438	059	14.7	7	-1.88	2 16
P20700	Lmnh1	39.9	, 18	-1.88	3 4 9 9
P06493	Cdc2· Cdk1	17.2	4	-1.82	2.82
P54578	Ucn1A	11.2	т Л.	-1.02	1 728
015427	Sf3hA	10.8	3	-1.01	3 281
01/610	Ccs	20.4	1	-1.01	1 1/2
D30004	Echel	27.4	7	-1.0	1,443
042175	Dhadh	150.2	6	-1.70	2 1 4 0
0431/3	r nyun Conc ¹	15.9	0	-1./4	3.109
Q210/0	Copgi	/	4	-1./4	1.401

P31930	Uqcrc1	9.4	3	-1.73	2.466
Q07955	Srsf1	21.3	4	-1.72	1.631
P61006	Rab8a	21.7	3	-1.72	1.402
Q15904	Atp6ap1	16.4	3	-1.72	1.941
P62140	Ppp1cb	32	2	-1.72	1.528
Q92896	Glg1	9.4	9	-1.71	2.577
P35606	Copb2	3.5	2	-1.68	1.778
015305	Pmm2	12.3	1	-1.67	1.658
Q6NUK1	Slc25a24	7.3	3	-1.67	2.783
P31947	Sfn	49.6	8	-1.67	1.426
P20645	M6pr	28.5	7	-1.66	2.878
Q86YP4	Gatad2a; Gatad2b	3.6	2	-1.65	2.585
P51991	Hnrnpa3	37.8	13	-1.65	1.897
Q16740	Clpp	25.8	2	-1.65	1.308
P39748	Fen1	10.3	3	-1.65	2.282
Q99623	Phb2	13.8	4	-1.64	1.565
P09669	Сох6с	25.3	2	-1.63	2.011
075477	Erlin1	16.5	5	-1.63	1.593
Q13263	Trim28	18.7	9	-1.63	2.511
Q9BQ70	Tcf25	17.1	2	-1.62	2.052
P05198	Eif2s1	23.2	5	-1.62	2.925
Q8NBJ5	Colgalt1	2.4	1	-1.62	1.417
Q9H0L4	Cstf2t	5.7	1	-1.61	4.102
P28838	Lap3	11.9	4	-1.61	1.803
Q9P0L0	Vapa	32.1	6	-1.6	2.426
P62258	Ywhae	43.1	13	-1.6	2.26
P31943	Hnrnph1	30.3	5	-1.6	2.943
060568	Plod3	14.9	9	-1.6	1.984
043390	Hnrnpr	4.1	1	-1.6	1.518
P13498	Cyba	15.9	1	-1.59	2.06
P50990	Cct8	23.7	11	-1.58	2.162
P47985	Uqcrfs1; Uqcrfs1p1	34.7	10	-1.58	1.784
Q99832	Cct7	23.8	10	-1.58	1.817
Q99714	Hsd17b10	23	4	-1.58	2.12
Q02818	Nucb1	9.8	4	-1.57	1.742
Q9NT62	Atg3	16.2	6	-1.57	1.823
Q3LXA3	Dak; Tkfc	10.1	4	-1.57	2.039
075533	Sf3b1	2	2	-1.56	1.48
P52272	Hnrnpm	30.3	17	-1.56	1.896
Q9NXG6	P4htm	6.2	2	-1.56	2.046
P28072	Psmb6	8.8	2	-1.56	1.74
Q14103	Hnrnpd	14.4	2	-1.56	1.493
P47756	Capzb	11.9	3	-1.56	2.532
P19338	Ncl	23.1	16	-1.56	2.874
Q00839	Hnrnpu	21.8	13	-1.56	1.33

Q96PK6	Rbm14	4.6	3	-1.56	1.813
014657	Tor1b	7.1	3	-1.55	3.165
Q9UHL4	Dpp7	12.8	5	-1.55	1.517
Q15233	Nono	38.2	13	-1.54	1.957
015394	Ncam2	8.3	5	-1.53	2.623
Q7KZF4	Snd1	4.8	3	-1.53	1.615
Q9NR28	Diablo	7.5	1	-1.53	3.199
Q9GZM5	Yipf3	14.5	2	-1.53	1.635
P40227	Cct6a	28.1	11	-1.52	2.085
Q12906	Ilf3	19.4	12	-1.51	1.62
P27824	Canx	17.1	9	-1.5	1.621
09BV40	Vamp8	38	3	-1.5	1.64
P15311	Ezr	18.1	8	-1.5	1.857
09UG63	Abcf2	5	1	-1.5	1.393
008123	Nsun2	8.1	4	-1 49	1 372
Q00J20	Itfa3	24.5	2	-1 49	1.572
P45974	Ilsn5	6.8	4	-1 49	1.515
P09622	03p5	19.8	6	-1 49	1.323
	Hsnath, Hsnata	29.9	7	-1 48	1.824
D17087	Tcp1	31.8	,	-1.40	1.524
	Solli	10.4	10	-1.47	1.301
Q90DV2	Ddy17	10.4	1	-1.47	1.320
075152	Dux17	14	4	-1.47	1.70
075152		4.3	1	-1.47	1.719
P23588	ElJ4D	9.4	3	-1.47	1.918
P07910	Hnrnpc	34.7	9	-1.47	1.803
P23246	Sfpq	15.6	6	-1.47	2.337
Q13098	Gps1	24.1	1	-1.46	2.879
P31948	Stip1	43.3	19	-1.45	1.603
P60842	Eif4a1	26.1	6	-1.45	1.386
Q9NRP2	Cmc2	21.8	2	-1.44	1.652
P12956	Хгссб	25.8	11	-1.44	1.977
P62879	Gnb2; Gnb4	11.8	2	-1.44	1.516
P30048	Prdx3	9.8	2	-1.44	1.79
P00367	Glud1	29.4	11	-1.44	1.879
P32119	Prdx2	38.9	11	-1.44	1.666
P25205	Мст3	9.3	5	-1.43	1.73
Q8WW12	Pcnp	10.1	1	-1.43	2.058
P12830	Cdh1	14.4	10	-1.42	1.598
094905	Erlin2	24.2	6	-1.42	1.44
Q9HCN8	Sdf2l1	43.9	4	-1.42	2.71
Q9H910	Hn1l	51.7	6	-1.4	4.135
P11441	Ubl4a	10	2	-1.39	2.329
Q9Y4L1	Hyou1	11	6	-1.38	1.443
P00374	Dhfr	8.6	1	-1.38	3.518
Q12792	Twf1	4	2	-1.37	2.793
Q9HC38	Glod4	8.8	2	-1.37	1.68

Q9GZZ9	Uba5	30.2	6	-1.37	1.349
Q15365	Pcbp1	43.3	6	-1.37	1.326
P55072	Vcp	36.7	25	-1.36	1.57
P07900	Hsp90aa1	37.6	17	-1.36	1.517
P26599	Ptbp1	9	4	-1.36	1.419
Q9UQ80	Pa2g4	26.6	10	-1.35	1.303
Q13765	Naca	35.3	4	-1.34	1.352
075874	Idh1	26.3	7	-1.34	2.053
P22695	Uqcrc2	7.3	2	-1.32	1.577
Q9UBS4	Dnajb11	27.4	11	-1.31	1.579
P49368	Cct3	34.2	13	-1.31	1.51
P15559	Nqo1	15.8	3	-1.31	1.302
000567	Nop56	5.4	2	-1.31	1.6
000148	Ddx39a; Ddx39b	13.1	1	-1.31	2.052
P07996	Thbs1	3.9	1	-1.3	1.666
P05388	Rplp0; Rplp0p6	17	4	-1.3	1.634
000170	Aip	8.8	2	-1.3	1.848
P07108	Dbi	37.9	3	-1.26	1.737
075347	Тbca	69	6	-1.25	1.761
095994	Agr2	48.6	7	-1.22	1.56
P55081	Mfap1	4.6	1	-1.2	1.568
P84103	Srsf3	40	2	-1.2	1.901
Q9NUQ9	Fam49b	10.8	3	1.27	1.598
Q96BM9	Arl8a	7.5	1	1.33	1.407
P11413	G6pd	27	14	1.38	1.401
Q00688	Fkbp3	9.4	2	1.38	1.381
P04792	Hspb1	61	11	1.41	3.457
P60866	Rps20	25.2	2	1.42	1.369
P04632	Capns1	18	4	1.45	1.946
Q9NR12	Pdlim7	2.4	1	1.46	1.845
P30511	Hla-F	9.9	1	1.47	1.496
P37802	Tagln2	57.3	10	1.49	2.245
P60903	S100a10	14.4	2	1.52	1.561
Q6ZVM7	Tom1l2	11.8	3	1.57	1.399
P10321	Hla-C	22.8	0	1.58	1.425
P63173	Rpl38	37.5	2	1.63	1.733
Q96HE7	Ero1l	26.5	10	1.63	2.892
P35080	Pfn2	17.6	2	1.63	2.689
Q8N129	Cnpy4	50.8	5	1.66	1.392
P04439	Hla-A	42.8	4	1.66	2.708
P12429	Anxa3	26	8	1.68	2.533
P25325	Mpst	21.9	4	1.71	2.49
P62942	Fkbp12-Exin; Fkbp1a	35.1	1	1.72	3.092
Q96G23	Cers2	17.2	2	1.73	2.199
Q5UCC4	Emc10	7.3	2	1.74	1.311
P63313	Tmsb10	68.2	3	1.76	2.022

P31949	S100a11	38.1	4	1.84	2.406
Q9H061	Tmem126a	10.5	2	1.84	1.5
043278	Spint1	10	2	1.86	1.458
P25815	S100p	17.9	2	1.87	3.712
Q9Y6N5	Sqrdl	24.4	8	1.87	2.994
Q969W9	Pmepa1	5.8	1	1.88	2.078
Q14126	Dsg2	5.4	4	1.88	1.648
Q9BTY2	Fuca2	4.5	2	1.91	1.572
000469	Plod2	3.7	2	1.92	3.267
Q9NYP7	Elovl5	5	1	1.97	1.706
043291	Spint2	12.9	2	1.98	2.194
P12532	Ckmt1b; Ckmt1a	20.2	1	2.02	1.398
Q15942	Zyx	6.5	2	2.09	3.205
000391	Qsox1	11.5	6	2.11	2.192
Q9UK76	Hn1	16.1	1	2.17	2.75
P49903	Sephs1	3.8	1	2.18	1.502
P60983	Gmfb	42.7	5	2.41	2.429
P14550	Akr1a1	6.8	1	2.41	1.659
P62495	Etf1	15.8	1	2.55	2.351
P08648	Itga5	2.8	2	2.6	2.797
P68133	Acta1; Actc1; Actg2; Acta2	32.9	4	2.61	3.142
Q13586	Stim1	4	1	2.73	1.529
Q16698	Decr1	3.3	1	2.87	2.935
P09496	Clta	7.7	2	2.9	2.488
P21291	Csrp1	50.8	6	2.94	1.91
Q31612	Hla-B	16	0	2.98	1.61
F6VZ39	Rbm38	8.9	1	3	2.628
P35237	Serpinb6	22.6	6	3.08	2.997
P19174	Plcg1	1.4	1	3.55	1.872
Q96NY8	Pvrl4	5.7	2	3.62	1.355
P04083	Anxa1	7.8	1	3.71	2.022
043760	Syngr2	15.4	1	3.9	1.891
Q9NQ88	Tigar	6.3	1	3.99	2.609
P48960	Cd97; Adgre2; Emr2	2.9	2	4.05	1.483
Q9NX62	Impad1	31.7	1	4.37	4.602
Q10589	Bst2	5.6	1	4.4	2.211
Q9Y653	Adgrg1; Gpr56	15.2	2	4.56	2.22
P49458	Srp9	16.7	1	4.65	2.446
043761	Syngr3	6.6	1	4.78	2.196
Q99439	Cnn2	33.5	5	4.93	3.677
Q8N6H7	Arfgap2	4	1	5.92	1.567
Q9Y240	Clec11a	3.4	1	6.13	2.11
P61769	B2m	11.3	1	6.26	2.713
Q8WTV0	Scarb1	2.5	1	6.31	2.349
075083	Wdr1	9	2	6.32	2.577

P12109	Col6a1	2.7	2	6.99	1.864
Q9Y3C8	Ufc1	16.2	3	7	1.912
Q01581	Hmgcs1	5.8	1	7.11	2.327
P05976; P08590	Myl1; Myl3	8.2	1	8.82	1.867
P09497	Cltb	15.7	4	9.14	2.299
P62316	Snrpd2	12.8	1	10.15	3.437
Q92876	Klk6	13.1	2	15.26	4.904
P07711	Ctsl	8.4	2	19.66	6.512
Q86XT9	Tmem219	5.6	1	20.55	1.726

Table 20: BIAM switch assay coupled to mass spectometry – differentially oxidized proteins upon bizine treatment

UniProt ID	Gene name	Coverage [%]	Unique peptides	Fold oxidized bizine_CTRL	-log p value
P27338	Маоb	3.3	1	-103.79	6.007
P35030	Prss3	7.3	1	-11.13	1.953
Q04941	Plp2	8.6	1	-8.43	1.368
Q9Y4G6	Tln2	1	1	-8.27	2.15
000505	Крпа3	4	2	-7.41	3.663
Q9NYB9	Abi2	14.2	4	-5.86	1.887
P61956	Sumo2	27.4	2	-5.31	1.539
Q9UFW8	Cggbp1	16.8	3	-4.97	2.49
Q13595	Tra2a	14.5	4	-4.72	1.839
P33908	Man1a1	3.1	1	-3.94	1.533
Q96L92	Snx27	6.3	2	-3.86	1.601
H0Y5N9	Col12a1	1.5	1	-3.8	1.342
014929	Hat1	7.4	2	-3.68	1.459
Q9UMY1	Nol7	7.4	1	-3.51	2.164
H3BU16	Hn1l	73.7	11	-3.45	1.61
Q96KC8	Dnajc1	4.3	2	-3.31	1.405
Q14534	Sqle	2.4	1	-3.03	1.939
Q8N766	Emc1	3.2	2	-2.91	1.617
Q6PL18	Atad2	3	2	-2.69	2.157
Q86U44	Mettl3	10.1	2	-2.35	1.87
Q8IUD2	Erc1	3.6	2	-2.26	1.751
Q92747	Arpc1a	2.7	1	-2.02	1.677
P48147	Prep	3.8	2	-2	1.433
P04818	Tyms	4.2	1	-1.95	1.855
Q969S3	Znf622	7.1	2	-1.89	1.371
Q9Y3L5	Rap2c	10.3	1	-1.8	1.849
P62888	Rpl30	48.2	4	-1.76	1.957
P61421	Atp6v0d1	16.8	3	-1.72	1.622
Q96T88	Uhrf1	6.9	4	-1.72	2.999
P41743	Prkci	8.6	3	-1.71	1.375

Q9NP58	Abcb6	6.7	2	-1.69	2.084
P52735	Vav2	4.8	4	-1.69	1.753
Q9NV56	Mrgbp	12.3	3	-1.66	2.54
Q00534	Cdk6	7.1	2	-1.64	4.292
Q96RQ3	Mccc1	20.2	8	-1.62	2.584
Q8NHS0	Dnajb6	9.2	2	-1.6	1.332
B1AK87	Capzb	65	16	-1.54	2.097
Q9UGU5	Hmgxb4	6	1	-1.53	1.593
P46977	Stt3a	5.7	3	-1.51	1.71
043324	Eef1e1	7.3	1	-1.51	1.539
Q712K3	Ube2r2	2.9	1	-1.51	2.09
P35580	Myh10	5.4	9	-1.49	1.774
015514	Polr2d	25	2	-1.48	2.22
Q86TU7	Setd3	5.9	2	-1.48	1.797
P61225	Rap2b	7.7	2	-1.48	2.179
043776	Nars	17.7	6	-1.48	1.509
095470	Sgpl1	11.4	4	-1.46	1.699
Q96G23	Cers2	7	1	-1.45	1.935
Q9UNL2	Ssr3	8	1	-1.45	2.166
P49711	Ctcf	8.5	5	-1.44	2.053
Q86UP2	Ktn1	8.5	9	-1.43	2.897
P42285	Skiv212	2.7	2	-1.43	1.321
Q9UMR2	Ddx19a	15.2	6	-1.43	2.242
P68366	Tuba4a	50.9	21	-1.43	1.744
P62241	Rps8	36.7	10	-1.41	1.678
P45880	Vdac2	31.6	6	-1.41	1.391
Q9UMS0	Nfu1	15	2	-1.4	1.427
Q969H8	Mydgf	48.8	4	-1.39	1.553
Q9NWV4	C1orf123	36.9	4	-1.39	1.567
Q9BZE4	Gtpbp4	6.8	3	-1.39	1.397
Q08945	Ssrp1	10.3	5	-1.37	1.822
Q8TAQ2	Smarcc2	5.9	5	-1.37	1.504
Q15286	Rab35	6.5	1	-1.37	1.473
Q13523	Prpf4b	8.4	7	-1.37	2.271
Q14C86	Gapvd1	1.8	2	-1.37	1.359
Q9Y606	Pus1	11.8	4	-1.36	1.648
Q8TCU6	Prex1	11.5	13	-1.36	2.297
P11279	Lamp1	6.2	3	-1.36	1.409
P13693	Tpt1	52.9	11	-1.35	2.249
Q5SXM8	Dnlz	27.5	2	-1.35	2.885
014681	Ei24	92.9	2	-1.35	3.138
Q99543	Dnajc2	12.4	6	-1.34	1.735
P36873	Ppp1cc	28	8	-1.34	1.361
Q96N66	Mboat7	9.5	3	-1.34	1.417
Q9BXY0	Mak16	6	1	-1.34	1.812
P15941	Muc1	15.8	3	-1.33	2.007

P55011	Slc12a2	9.3	6	-1.33	3.944
Q12972	Ppp1r8	9.1	2	-1.33	2.072
Q99757	Txn2	73.4	2	-1.33	1.38
Q9HB71	Cacybp	45.2	11	-1.33	3.028
Q8IZP0	Abi1	12.2	3	-1.33	1.659
Q9H147	Dnttip1	23.4	5	-1.33	1.67
P24593	Igfbp5	16.9	7	-1.32	1.536
Q9NQX5	Npdc1	8.9	3	-1.32	1.432
P25205	Мст3	14.6	11	-1.32	2.284
000193	C11orf58	29.3	2	-1.32	1.48
P63272	Supt4h1	23.8	1	-1.32	1.331
H7BZJ3	Pdia3	58.5	11	-1.32	1.725
P46060	Rangap1	15.5	6	-1.32	1.337
Q3YEC7	Rabl6	5.6	2	-1.31	1.574
Q9H2H8	Ppil3	35.7	3	-1.31	1.35
Q9Y2U8	Lemd3	7.8	5	-1.3	1.355
Q6ZVM7	Tom1l2	32.7	9	-1.3	2.82
P10909	Clu	21.2	7	-1.3	1.302
P63208	Skp1	57.7	6	-1.3	1.36
075223	Ggct	28.7	7	-1.29	2.09
P51571	Ssr4	27.2	5	-1.29	2.097
094905	Erlin2	29.2	9	-1.29	1.539
Q9BZF1	Osbpl8	23.7	1	-1.29	1.526
P09972	Aldoc	22.8	10	-1.28	1.372
P18583	Son	2.3	3	-1.28	1.426
Q6P1J9	Cdc73	4	2	-1.28	1.502
Q92990	Glmn	1.9	1	-1.28	1.767
Q8N6H7	Arfgap2	47.5	13	-1.28	1.927
Q8WW12	Pcnp	29.8	5	-1.28	1.611
Q9BV36	Mlph	21.5	12	-1.28	2.501
Q15004	Kiaa0101	21.7	2	-1.28	1.489
P51572	Bcap31	38.2	15	-1.28	1.849
Q13740	Alcam	33.8	17	-1.27	2.527
000762	Ube2c	24	4	-1.27	1.388
09BW06	Yipf2	15.6	1	-1.27	1.393
099961	Sh3al1	24.2	8	-1.27	1.821
09UN81	L1re1	40.8	11	-1.27	1.877
P51149	Rab7a	35.3	8	-1.27	1.46
01L5Z9	Lonrf2	2.4	1	-1.27	1.49
014696	Mesdc2	26.5	6	-1.26	1.766
P49755	Tmed10	50.7	22	-1.26	1.922
015005	Spcs2	38.2	5	-1.26	1.658
09UKL0	Rcor1	10.1	4	-1.26	1,539
014828	Scamn3	22.2	6	-1.26	1.695
P35659	Dek	18.1	6	-1.25	1 5 4 5
075534	Csde1	14.9	11	-1.25	1 338
0,0001	00001	± 117	**	1.20	1.000

Q08379	Golga2	8.3	7	-1.25	1.49
P05023	Atp1a1	34.8	34	-1.25	2.095
A0A0B4J22 0	C11orf98	34.1	4	-1.25	1.436
043852	Calu	49.8	10	-1.25	1.64
Q13347	Eif3i	36.9	11	-1.24	1.453
Q92805	Golga1	7.8	4	-1.23	1.933
000148	Ddx39a	32.6	9	-1.23	1.746
Q3KQU3	Map7d1	2	1	-1.23	2.532
P33316	Dut	56.9	7	-1.22	1.364
P20700	Lmnb1	70.3	54	-1.22	2.034
Q9P2E9	Rrbp1	24.8	27	-1.22	1.435
Q14974	Kpnb1	12.6	11	-1.21	1.666
Q13242	Srsf9	38	11	-1.21	1.478
000487	Psmd14	32.9	5	-1.21	1.644
Q969G3	Smarce1	17.3	6	-1.21	1.553
Q9GZZ1	Naa50	53.1	3	-1.2	1.47
Q14444	Caprin1	19.9	12	-1.2	2.26
P09874	Parp1	16.4	14	-1.2	1.441
Q8N335	Gpd1l	25.4	8	-1.2	1.547
Q9BQ70	Tcf25	12.9	6	-1.2	1.449
Q14258	Trim25	21	10	-1.2	1.385
Q13409	Dync1i2	12.4	4	-1.2	1.586
P61106	Rab14	42.3	6	-1.19	1.36
Q14165	Mlec	11.5	2	-1.19	1.352
Q9UPT8	Zc3h4	8.4	4	-1.18	1.42
Q15691	Mapre1	53	10	-1.18	1.715
P35998	Psmc2	53.8	21	-1.18	2.578
Q00839	Hnrnpu	37.7	31	-1.18	2.15
Q6P996	Pdxdc1	21.3	12	-1.18	2.216
P13798	Apeh	25	4	-1.17	1.306
P04843	Rpn1	43.7	24	-1.17	1.733
Q8WVV4	Pof1b	28	11	-1.16	1.417
Q8IY81	Ftsj3	14.8	9	-1.16	1.564
Q9BY42	Rtfdc1	21.4	8	-1.16	1.88
Q9NY33	Dpp3	23.7	11	-1.15	1.44
P05198	Eif2s1	56.8	17	-1.15	1.988
015355	Ppm1g	39.2	13	-1.15	1.634
043670	Znf207	5.5	3	-1.14	1.84
P19338	Ncl	45.2	41	-1.13	1.351
Q07065	Ckap4	65.8	37	-1.13	2.865
Q14980	Numa1	19.9	31	-1.13	1.307
Q16543	Cdc37	47.9	19	-1.13	1.977
P00918	Ca2	66.9	20	-1.12	1.399
P49591	Sars	30	19	-1.1	1.335
P02545	Lmna	78.6	75	-1.1	2.32
Q13263	Trim28	50.7	30	-1.09	1.318

Q14320	Fam50a	20.4	7	-1.08	1.834
P20933	Aga	22.8	6	1.1	1.381
Q99848	Ebna1bp2	26	8	1.11	1.428
P36578	Rpl4	47.8	25	1.13	1.659
Q15181	Ppa1	63.3	12	1.13	1.467
P15586	Gns	17.7	7	1.13	1.488
P23284	Ppib	56	16	1.14	1.608
P21333	Flna	56.8	127	1.14	1.686
P09429	Hmgb1	60.9	19	1.15	1.482
P51688	Sgsh	12	5	1.15	1.478
Q15365	Pcbp1	80.1	19	1.16	1.612
P19388	Polr2e	31.3	4	1.17	1.615
096000	Ndufb10	47.7	11	1.17	1.651
015231	Znf185	43.7	21	1.19	2.066
Q7Z6Z7	Huwe1	2.7	6	1.19	1.346
P47224	Rabif	22	2	1.19	1.504
P54578	Usp14	48.8	16	1.19	1.48
Q9UMY4	Snx12	68	10	1.19	1.577
043252	Papss1	18.8	8	1.19	1.415
043837	Idh3b	34.5	5	1.2	1.868
P04080	Cstb	79.6	6	1.2	1.552
P48047	Atp5o	64.3	14	1.2	1.553
P10619	Ctsa	8.9	4	1.2	1.328
Q53HV7	Smug1	7.5	1	1.21	1.304
Q8NFV4	Abhd11	64.8	15	1.21	1.839
P53004	Blvra	16.9	4	1.21	1.897
Q9HCU4	Celsr2	12.3	21	1.22	1.319
P11908	Prps2; Prps1	18.6	4	1.22	1.41
Q6NUK1	Slc25a24	32.5	14	1.22	1.582
000264	Pgrmc1	24.1	7	1.22	2.077
043447	Ppih	40.1	5	1.23	1.364
060869	Edf1	32.4	5	1.23	1.339
Q7Z4H3	Hddc2	42.6	6	1.24	1.379
P25787	Psma2	53.4	11	1.24	1.76
P62937	Ppia	86.1	17	1.24	1.7
Q9BV57	Adi1	50.8	7	1.24	1.575
P28331	Ndufs1	28.6	11	1.24	1.727
P30086	Pebp1	81.3	16	1.25	1.414
P53801	Pttg1ip	7.5	1	1.25	1.311
Q9HCH5	Sytl2	10.9	19	1.26	1.43
P34897	Shmt2	55.2	23	1.27	1.419
Q9BS40	Lxn	21.2	4	1.28	2.566
Q5BKX5	C19orf54	2.8	1	1.28	1.577
Q00577	Pura	14.6	3	1.28	1.691
Q9Y508	Rnf114	15.4	3	1.28	2.263
043681	Asna1	22.1	7	1.28	1.372

Q13867	Blmh	12.3	2	1.29	1.44
Q5TFE4	Nt5dc1	26.4	7	1.29	1.591
Q92597	Ndrg1	15	5	1.29	1.493
Q9NZL9	Mat2b	14.7	4	1.29	1.382
P23771	Gata3	14.2	5	1.3	1.53
P18669	Pgam1; Pgam4	76.8	22	1.3	1.459
Q96SZ5	Ado	9.6	3	1.3	2.106
B1ANS9	Wdr64	1.8	2	1.3	1.81
Q15942	Zyx	32	14	1.31	1.694
P04632	Capns1	49.4	17	1.31	3.857
P82650	Mrps22	7.8	2	1.32	1.304
Q96GE9	Tmem261	32.8	1	1.32	1.92
P09382	Lgals1	65.9	6	1.32	1.998
Q495W5	Fut11	2	1	1.32	1.436
Q9BUH6	C9orf142	32.8	7	1.33	1.886
Q8WVM8	Scfd1	16.2	7	1.33	1.386
Q8IWL3	Hscb	12.6	2	1.35	2.735
P32322	Pycr1	23.5	7	1.36	1.744
Q9NR12	Pdlim7	26.7	8	1.36	1.402
P31937	Hibadh	47.6	11	1.36	1.632
Q99439	Cnn2	40.9	9	1.37	3.042
Q9H501	Esf1	1.6	1	1.37	1.687
Q9Y6M9	Ndufb9	34.5	5	1.37	2.423
P28676	Gca	13	2	1.39	2.735
P18564	Itgb6	1.3	1	1.4	2.649
Q8IYT4	Katnal2	9.4	1	1.4	1.986
P78406	Rae1	31	8	1.41	1.812
P30046	Ddt; Ddtl	44.1	4	1.41	1.975
Q13084	Mrpl28	21.9	4	1.42	2.59
Q9H8W5	Trim45	6.3	2	1.42	1.385
P08579	Snrpb2	16.9	3	1.44	2.04
Q8IWY4	Scube2; Scube1; Scube3	3	2	1.44	1.837
Q01995	Tagln	65.7	10	1.45	2.53
Q9Y3D2	Msrb2	11.5	2	1.45	1.682
Q9Y6H1	Chchd2; Chchd2p9	18.5	1	1.46	1.769
Q9ULF5	Slc39a10	14.3	2	1.46	2.857
P53634	Ctsc	4.9	1	1.47	1.809
075828	Cbr3	25.6	7	1.47	3.132
Q8N2F6	Armc10	10.8	3	1.48	1.764
Q13011	Ech1	32.9	9	1.48	4.325
P51452	Dusp3	18.9	2	1.5	2.04
Q969T9	Wbp2	20.5	2	1.52	1.482
P61769	B2m	47.9	5	1.53	1.653
P62837	Ube2d2	42.9	4	1.63	2.407
P17900	Gm2a	16.1	3	1.67	3.323

000410	Ipo5	35.1	2	1.73	1.982
Q9BVS5	Trmt61b	3.8	1	1.74	2.2
P18084	Itgb5	27.3	2	1.76	2.247
P05386	Rplp1	84.2	4	1.76	1.397
P12074	Cox6a1	26.6	1	1.8	2.23
Q9UL45	Bloc1s6	33.3	1	2.11	2.462
P28290	Ssfa2	1.2	1	2.51	1.475
P16219	Acads	3.2	1	2.53	1.607
M0QY43	Myh14	18.4	14	2.57	1.521
Q9Y6Y8	Sec23ip	3.3	1	2.95	1.459
Q96GS4	C17orf59	16.5	3	3.16	1.58
P08670	Vim; Prph	8.1	4	3.29	3.498
P63172	Dynlt1	23.9	1	3.48	2.473
Q8NFJ5	Gprc5a	13.7	2	3.5	1.896
P35754	Glrx	39.6	3	8.46	3.396
Q969Q0	Rpl36a; Rpl36al; Rpl36a-Hnrnph2	14.1	3	38.94	8.797

Table 21: BIAM switch assay coupled to mass spectometry – differentially oxidized proteins upon SP2509 treatment

UniProt ID	Gene name	Coverage [%]	Unique peptides	fold oxidized SP2509_CTRL	- log p value
Q15388	Tomm20	34.5	4	-16.32	3.04
P49721	Psmb2	26.9	3	-10.95	2.68
Q9P2B2	Ptgfrn	5.7	5	-10.81	5.83
Q13442	Pdap1	17.1	2	-8.36	3.78
Q08209	Ррр3са; Ррр3сb	9.4	4	-6.92	3.09
P07741	Aprt	42.8	7	-6.50	2.83
P62308	Snrpg; Snrpgp15	20.3	2	-5.32	1.44
Q9GZZ1	Naa50	49.4	3	-5.27	1.51
P56537	Eif6	36.7	5	-5.01	1.76
Q99873	Prmt1	10.8	3	-4.69	1.92
Q15257	PPP2R4; Dkfzp781m1716 5	19.6	4	-4.48	2.01
Q8N983	Mrpl43	19.6	3	-4.19	4.56
P0DPB6	Polr1d	26.3	4	-4.03	2.83
Q8WXX5	Dnajc9	49.6	14	-4.00	2.22
Q01658	Dr1	23.9	4	-3.88	2.19
P12532	Ckmt1a; Ckmt1b	39.8	10	-3.85	2.34
P15941	Muc1	7.4	1	-3.80	1.71
P60866	Rps20	35.3	7	-3.69	2.09
P47813	Eif1ax; Eif1ay	41	6	-3.64	2.04
000423	Eml1	30.6	2	-3.50	2.24
P02144	Mb	38.3	5	-3.49	1.45

P60953	Cdc42	41.4	8	-3.46	2.30
P53597	Suclg1	7.2	2	-3.43	1.68
P51149	Rab7a	61.8	13	-3.30	2.01
095202	Letm1	13.7	9	-3.30	2.31
075531	Banf1	59.6	6	-3.17	1.43
P49773	Hint1	70.6	7	-3.15	1.90
Q9NQX5	Npdc1	6.9	2	-3.11	1.38
P43487	Ranbp1	53.2	9	-2.96	1.76
Q15008	Psmd6	29.2	4	-2.89	1.33
Q9HAV7	Grpel1	62.7	11	-2.84	1.93
000204	Sult2b1	11	3	-2.84	1.94
Q9H773	Dctpp1	42.9	5	-2.84	2.05
P36551	Срох	9.7	1	-2.81	1.72
Q9UKD2	Mrto4	14.2	4	-2.72	1.47
060763	Uso1	6.3	3	-2.68	1.80
Q9UHQ4	Bcap29	13.7	2	-2.66	2.34
015305	Pmm2	30.1	8	-2.64	2.16
P63000	Rac1; Rac2; Rac3	22.9	4	-2.60	1.48
Q6EMK4	Vasn	6.7	3	-2.56	2.48
Q9Y3L3	Sh3bp1	4.1	2	-2.56	1.60
Q96EY8	Mmab	23.6	6	-2.54	1.33
Q9NXG6	P4htm	13.1	4	-2.49	3.54
Q15005	Spcs2	23.6	3	-2.48	1.68
P63208	Skp1	73	8	-2.46	2.18
Q16625	Ocln	9.4	3	-2.42	2.13
P13693	Tpt1	41.3	12	-2.38	2.10
Q9NUQ9	Fam49b	14.8	4	-2.38	2.57
Q9P289	Stk26; Stk25	16.6	3	-2.34	2.15
P62263	Rps14	41.7	9	-2.32	1.59
P16152	Cbr1	27.8	4	-2.31	2.74
P37108	Srp14	47	6	-2.31	1.61
P51572	Bcap31	39	22	-2.24	1.83
P55209	Nap1l1	41.8	4	-2.23	1.59
Q12765	Scrn1	13.3	5	-2.21	1.80
P15374	Uchl3	30.4	5	-2.19	1.75
P21912	Sdhb	15.7	4	-2.19	1.78
P28331	Ndufs1	8.8	4	-2.19	1.44
Q71DI3	Hist2h3a	47.8	1	-2.17	2.08
P09497	Cltb	30.1	9	-2.17	1.31
Q9NRF9	Pole3	20.4	2	-2.16	1.30
P08134	Rhoc	15.4	3	-2.16	1.99
P62241	Rps8	36.7	9	-2.15	1.53
Q9UN81	L1re1	20.1	7	-2.15	1.91
P62826	Ran	17.6	4	-2.13	2.18
P04632	Capns1	35.7	11	-2.10	2.59
P31949	S100a11	86.7	11	-2.10	1.90

P55317	Foxa1	3.6	1	-2.07	1.60
P63173	Rpl38	54.3	5	-2.06	1.53
Q9Y383	Luc7l2	32.7	12	-2.05	1.59
P25398	Rps12	59.8	9	-2.03	1.85
P10606	Cox5b	20.9	4	-2.03	1.86
P05455	Ssb	34.8	15	-2.02	1.50
Q9UN37	Vps4a	12.4	4	-2.02	1.98
Q9HB07	C12orf10	11.3	2	-2.01	1.35
015347	Hmgb3	36.7	9	-1.99	1.89
P53990	Ist1	44.7	7	-1.98	2.76
P23193	Tcea1	39.5	9	-1.97	1.89
P0DMV9	Hspa1b; Hspa1a	60.7	19	-1.97	1.59
Q99848	Ebna1bp2	16.6	5	-1.93	1.59
P61247	Rps3a	62.1	23	-1.93	1.42
Q9HB71	Cacybp	50	13	-1.93	1.81
P31946	Ywhab	76.4	16	-1.92	1.86
P01034	Cst3	30.8	4	-1.92	3.21
O5TEC6	Hist2h3ps2	24.3	2	-1.92	1.70
09H1E3	Nucks1	18.5	2	-1.91	2.48
000231	Psmd11	29.4	12	-1.90	1.72
P08243	Asns	3.6	2	-1.90	1.57
099615	Dnaic7	13.4	5	-1.89	1.57
Q96IH7	Vcnin1	37	2	-1.88	1 43
P50502	St13; St13p5; St13p4	20.3	10	-1.85	1.45
Q96CN7	Isoc1	28.5	5	-1.85	1.43
Q96KP4	Cndp2	25.5	9	-1.84	2.16
P22061	Pcmt1	39.9	9	-1.83	2.44
P62136	Ppp1ca	26.1	3	-1.81	2.68
P07195	Ldhb	21.9	3	-1.79	1.60
P33316	Dut	42.6	5	-1.78	1.36
Q13641	Tpbg	9.3	4	-1.78	2.03
P02794	Fth1	21.6	3	-1.76	1.85
014828	Scamp3	19.9	5	-1.76	1.85
P23528	Cfl1	92.8	16	-1.75	1.38
P52292	Kpna2	15.7	6	-1.74	2.02
P61981	Ywhag	67.2	14	-1.74	1.64
Q16698	Decr1	20.6	7	-1.74	1.38
015758	Slc1a5	12.9	7	-1.74	1.78
P05388	Rplp0: Rplp0p6	22.1	6	-1.74	2.11
P20290	Btf3	20.4	2	-1.73	1.79
P18206	Vcl	22.2	20	-1.72	2.18
P30084	Echs1	43.4	11	-1.71	1.59
P61289	Psme3	27.9	4	-1.70	1.61
060701	Ugdh	44.5	16	-1.70	1.75
015006	Emc2	29.6	5	-1.69	2.73
P39019	Rps19	41.4	8	-1.69	2.58
10/01/					

000264	Pgrmc1	15.9	5	-1.67	1.48
P19404	Ndufv2	21.4	4	-1.67	2.92
Q16651	Prss8	6.1	2	-1.67	2.20
075223	Ggct	22.9	7	-1.65	1.85
P26583	Hmgb2	32.5	10	-1.65	1.50
P39748	Fen1	24.7	7	-1.64	1.63
Q13838	Ddx39b	32.5	5	-1.64	2.29
Q16543	Cdc37	47.9	19	-1.64	2.00
Q99613	Eif3c; Eif3cl	10.8	7	-1.64	3.12
Q13630	Tsta3	15.3	5	-1.63	1.49
015355	Ppm1g	35.2	13	-1.63	1.44
P09429	Hmgb1	44.2	15	-1.62	1.76
Q8N335	Gpd1l	13.4	2	-1.62	1.41
P50395	Gdi2	34.8	10	-1.57	1.85
Q71UI9	H2afv; H2afz	47.5	4	-1.57	2.39
095456	Psmg1	31.7	1	-1.57	1.41
075844	Zmpste24	7.4	2	-1.55	1.47
P03372	Esr1	5.8	1	-1.54	1.56
P25786	Psma1	39.2	9	-1.53	2.58
P62913	Rpl11	29.8	6	-1.52	1.64
Q9Y4L1	Hyou1	28.1	16	-1.51	1.63
P52815	Mrpl12	7.5	3	-1.50	1.82
000299	Clic1	46.5	9	-1.50	1.57
Q15904	Atp6ap1	16.4	3	-1.50	1.89
043291	Spint2	28.2	5	-1.49	1.56
Q9BQ70	Tcf25	17.1	2	-1.48	2.35
P50213	Idh3a	26.3	8	-1.48	1.66
P49368	Cct3	52.2	21	-1.48	1.99
P09467	Fbp1	53.8	15	-1.48	1.68
P24534	Eef1b2	44	7	-1.48	2.34
P05556	ltgb1	15	10	-1.48	1.34
P35270	Spr	29.1	5	-1.46	3.45
Q02818	Nucb1	22.3	9	-1.46	1.41
P23396	Rps3	52.3	12	-1.46	1.58
000193	C11orf58; SMAP	25.6	2	-1.44	1.74
Q99879	Hist1h2bm	72.2	1	-1.44	2.73
Q14974	Kpnb1	12.4	10	-1.43	1.55
P00918	Ca2	31.9	8	-1.42	1.47
P09496	Clta	11.5	5	-1.42	2.29
Q92598	Hsph1	24.9	18	-1.41	2.46
Q13404	Ube2v1; Tmem189- Ube2v1	45.6	2	-1.40	2.49
Q86VP6	Cand1	8.1	6	-1.39	1.35
P17844	Ddx5	27	14	-1.38	2.35
P05387	Rplp2	64.3	6	-1.36	1.36
Q01130	Srsf2	38.5	5	-1.35	2.94

P26196	Ddx6	13.5	3	-1.34	1.73
Q9Y4Z0	Lsm4	15.2	3	-1.33	1.34
Q9UHX1	Puf60	20.6	7	-1.32	2.35
P49023	Pxn	7.2	3	-1.29	1.48
P28066	Psma5	32.8	6	1.29	3.08
Q13347	Eif3i	26.8	7	1.34	1.32
043399	Tpd5212	23.9	7	1.35	1.42
Q15056	Eif4h	35.5	7	1.36	1.85
Q9NX40	Ociad1	33.5	6	1.37	2.13
P62906	Rpl10a	27.2	6	1.38	3.72
P67809	Ybx1	51.2	13	1.39	1.58
P46783	Rps10	38.8	7	1.39	2.26
043768	Ensa	19.3	3	1.40	1.72
P35637	Fus	20.2	6	1.41	1.41
Q92841	Ddx17	20.9	8	1.41	2.14
P80303	Nucb2; Hel-S- 109: Nuch2	36.4	13	1.41	1.47
P80723	Basp1	33.9	5	1.41	1.45
P17931	Laals3	17.2	4	1.41	1.60
P01111	Nras: Hras	48.7	3	1.41	1.76
P35998	Psmc2	27.5	13	1.42	2.30
09Y3B9	Rrn15	4.6	1	1.43	1.33
015637	Sf1	14.2	7	1.43	1.85
P09012	Snrna	14.2	2	1 47	1.53
001105	Set: Setsin	27.4	5	1 49	1.32
P11142	Hsna8	52.8	18	1 49	1 42
P42126	Eci1: Dci	13.6	4	1.19	1.12
P16403	Hist1h1c;	31	3	1.50	1.32
P61978	Hnrnnk	57	8	1 50	1 40
P62191	Psmc1	36.4	18	1.50	1.10
P30044	Prdx5	491	10	1.52	1.39
P62333	Psmc6	27.5	10	1 54	2 74
09UNS2	Cons3	173	5	1.57	2.09
P37837	Taldo1	169	5	1.57	1.88
029RF7	Pds5a	39	3	1.57	1.00
P62805	Hist1h4a	64.1	10	1.50	2.45
P02545	Imna	39.2	0	1.59	1 32
001813	Pfkn	52	4	1.59	1.32
015365	Pchn1	50.8	ч 8	1.59	1.33
Q15505	Psmc3	J0:0	11.	1.57	1.50
P21333	Flng	33.3	2	1.00	1.57
D22001	McmA	9	6	1.02	1.71
00V310	Ptch	25.5	10	1.03	1.40
Q71310	DCTN1;	4.2	10	1.05	1.71
Q14203	Dkfzp686e0752	4.2	4	1.03	1.35
P35579	Myh9	29.5	44	1.64	1.63

P09651	Hnrnpa1; Hnrnpa1l2	48.2	18	1.65	1.35
Q8IZR5	Cmtm4	10	2	1.65	1.42
Q9BUF5	Tubb6	18.2	2	1.66	1.84
000567	Nop56	6.6	4	1.67	2.06
E9PQ80	Chmp4a	4.7	1	1.67	1.38
Q07157	Tjp1	3.3	3	1.68	2.08
P22314	Uba1	33	26	1.68	1.72
Q96NB2	Sfxn2	8.1	2	1.69	1.40
Q15942	Zyx	20.5	9	1.69	1.47
P14618	Pkm	66.1	36	1.69	2.40
P52272	Hnrnpm	39.3	26	1.69	1.44
P00558	Pgk1	71.9	26	1.70	1.71
P33176	Kif5b	12.7	8	1.70	1.90
075369	Flnb	9	14	1.72	2.91
Q15019	Septin9	26.2	5	1.73	2.00
Q93084	Atp2a3	5.7	2	1.73	2.01
P00367	Glud1; Glud2	24.9	11	1.74	1.34
P51991	Hnrnpa3	38.1	16	1.74	1.80
P08195	Slc3a2	20	11	1.74	1.56
Q9UM54	Муоб	4.5	4	1.75	2.40
Q8WWM7	Atxn2l	5.3	5	1.77	2.38
P18754	Rcc1	24.7	5	1.80	1.49
014579	Соре	22.1	5	1.81	1.47
P30101	Pdia3	66.3	33	1.82	1.91
P38646	Hspa9	38.3	22	1.84	3.02
P22626	Hnrnpa2b1	47.6	22	1.87	1.62
P28074	Psmb5	9.9	2	1.87	2.74
P50454	Serpinh1	19.9	5	1.91	1.71
Q9ULV4	Coro1c	29.1	4	1.91	2.25
P07686	Hexb	41.1	14	1.93	1.39
Q32MZ4	Lrrfip1	5.6	4	1.94	2.19
Q9H3N1	Tmx1	19.6	5	1.96	1.94
Q92625	Anks1a	2.3	2	1.97	1.69
P61006	Rab8a	21.7	3	1.97	1.88
P06576	Atp5b	74.7	25	1.98	1.68
Q9Y230	Ruvbl2	21.4	8	1.99	1.48
P25705	Atp5a1	35.4	16	2.01	1.72
P09622	Dld	20.6	7	2.02	4.29
P12830	Cdh1	21	12	2.04	1.34
P40939	Hadha	14.9	8	2.11	1.54
Q96EY1	Dnaja3	15	5	2.11	1.51
Q8WW12	Pcnp	18.5	3	2.13	1.40
P14625	Hsp90b1	21.7	14	2.13	2.33
Q96HE7	Ero1l	32.7	7	2.15	1.97
060506	Syncrip	15.1	6	2.17	1.58
P27695	Apex1	23.1	5	2.17	2.51

P04439	Hla-A	27.4	3	2.20	1.73
P23588	Eif4b	16.6	6	2.26	1.64
P68036	Ube2l3	69.5	14	2.27	1.42
P49755	Tmed10	45.7	13	2.28	1.73
Q01650	Slc7a5	6.7	3	2.28	1.82
P18124	Rpl7	28.6	8	2.28	2.11
P30085	Cmpk1	31.6	5	2.29	1.56
P00338	Ldha	31	8	2.31	3.75
P50552	Vasp	18.9	5	2.34	3.38
P62280	Rps11	21.2	3	2.39	1.72
043670	Znf207	4.1	2	2.39	1.43
P84098	Rpl19	38.3	9	2.41	1.70
P61026	Rab10	17	2	2.41	1.41
Q14847	Lasp1	33	8	2.54	2.14
060568	Plod3	18.4	11	2.58	1.76
P07237	P4hb	72.4	48	2.59	2.92
P54819	Ak2	66.9	16	2.61	1.80
Q9NRP2	Cmc2	21.8	2	2.68	2.69
09НСС0	Мссс2	6.2	3	2.69	2.20
P27816	Map4	6.4	7	2.70	1.55
P38606	Atp6v1a	7.1	4	2.74	1.52
P26373	Rpl13	19.9	6	2.88	1.30
Q9BS26	Erp44	45.6	18	2.88	1.68
P09874	Parp1	9.8	8	2.90	3.24
094905	Erlin2	20.9	5	3.05	1.58
002809	Plod1	3.6	2	3.31	1.37
P61106	Rab14	20.9	3	3.35	2.09
014618	Ccs	39.7	3	3.58	1.37
Q86X29	Lsr	14.5	7	3.74	1.66
P20700	Lmnb1	54.9	27	3.77	2.42
09NT62	Atg3	18.8	6	3.84	2.41
07Z7H5	Tmed4	18.9	3	3.88	1.48
P46013	Mki67	1.3	2	4.08	2.48
Q5RI15	Cox20	21.2	3	4.20	1.32
P30041	Prdx6	67.9	17	4.23	1.36
043242	Psmd3	16.5	6	4.30	2.12
015738	Nsdhl	11.4	2	4.37	2.47
P07814	Eprs	5.2	7	4.64	1.37
094766	B3gat3	6.9	2	4.80	2.58
015233	Nono	47.3	22	4.81	1.39
P35241	Rdx	23.8	8	4.83	2.17
Q15459	Sf3a1	3.9	4	5.01	2.06
P61254	, Rpl26; Rpl26l1	33.8	2	7.02	1.45
P11387	Top1	7.2	5	7.86	1.89
P04843	Rpn1	21.7	10	8.53	2.23
Q15084	Pdia6	51.1	23	2.18	2.18
~					

P51858	Hdgf	30.4	5	1.46	1.46
Q9HDC9	Артар	31.7	8	1.81	1.81
P04181	Oat	6.2	2	1.95	1.95
P17568	Ndufb7	24.1	3	1.46	1.46
Q9UBS4	Dnajb11	30.7	12	1.89	1.89
P63279	Ube2i	21.9	3	3.23	3.23
Q9HCN8	Sdf2l1	53.4	6	1.51	1.51
P15311	Ezr	30.9	14	1.89	1.89
P13667	Pdia4	45.7	29	2.79	2.79
Q9UHD8	Septin9	21.2	10	1.62	1.62
014696	Mesdc2	12.4	3	1.82	1.82
P10599	Txn	31.4	5	1.89	1.89
076021	Rsl1d1	11.2	3	3.63	3.63
043390	Hnrnpr	14.2	4	1.63	1.63
P61088	Ube2n	71.7	9	2.08	2.08
076024	Wfs1	8.1	6	2.17	2.17
000515	Lad1	9.4	3	2.83	2.83
09UPT8	Zc3h4	6.6	3	2.40	2.40
P61086	Ube2k	36	7	1.91	1.91
09BVK6	Tmed9	31.1	9	1.99	1.99
015363	Tmed2	31.9	4	1.57	1.57
P26885	Fkbp2	33.8	4	2.25	2.25
P02786	Tfrc	12.5	7	3.40	3.40
014697	Ganab	30.6	4	1.94	1.94
060749	Snx2	9.6	4	1.51	1.51
002878	Rpl6	13.5	5	1.92	1.92
013162	Prdx4	40.2	8	2.04	2.04
P27824	Canx	28.9	16	1.54	1.54
014247	Cttn	30.9	11	2.10	2.10
P19338	Ncl	30.6	22	1.41	1.41
P31146	Coro1a	6.1	2	1.30	1.30
Q92544	Tm9sf4	6.4	4	1.34	1.34
Q9Y697	Nfs1	16	4	1.86	1.86
Q969H8	Mydgf	38.1	3	1.83	1.83
P27797	Calr	60.2	15	2.16	2.16
P49257	Lman1	10.2	5	1.33	1.33
Q9Y6N5	Sqrdl	11.1	5	1.41	1.41
P35222	Ctnnb1	3.8	2	1.80	1.80
P20340	Rab6a	22.1	4	1.33	1.33
P13674	P4ha1	34.5	14	3.48	3.48
Q13438	Os9	18.6	9	2.52	2.52
015460	P4ha2	9.7	4	1.84	1.84
Q07020	Rpl18	20	2	1.39	1.39
Q99470	Sdf2	18	2	2.40	2.40
Q03252	Lmnb2	9.4	3	1.50	1.50
Q96S66	Clcc1	12.7	4	2.58	2.58

6. Appendix

P31350	Rrm2	6.1	3	1.62	1.62
060361	Nme2p1	40.1	1	2.60	2.60
P08621	Snrnp70	11.7	5	1.67	1.67
P63010	Ap2b1; Ap1b1	2.7	2	1.38	1.38
P54578	Usp14	8.1	3	2.74	2.74
075477	Erlin1	19.4	5	1.75	1.75
P38159	Rbmx; Rbmxl1	42.5	17	2.83	2.83
P39060	Col18a1	3.1	3	3.73	3.73
P50914	Rpl14	25	3	2.12	2.12
Q13509	Tubb3	33.6	3	3.12	3.12
Q92597	Ndrg1	10.9	3	4.56	4.56

Table 22: Proteome analysis – changed protein levels upon LSD1 knockout

UniProt ID	Gene name	Coverage [%]	Unique peptides	Fold changed siRNA_CTRL	-log p value
Q15465	Shh	13	3	-17.75	3.48
Q9BVK6	Tmed9	15.7	2	-15.93	5.50
015551	Cldn3	6.4	1	-14.69	3.95
P52815	Mrpl12	2.5	1	-13.40	2.28
A0A1W2PQ C2	Hadh	33.9	2	-10.28	3.08
P81274	Gpsm2	2.2	1	-8.99	5.88
Q9Y4P3	Tbl2	3.2	1	-7.13	1.65
P48431	Sox2	6.3	1	-6.66	2.40
060341	Kdm1a	6.7	4	-6.23	2.31
Q96BT3	Cenpt	14	1	-5.14	2.03
Q7Z2W4	Zc3hav1	1.3	1	-4.81	1.32
P56385	Atp5i	34.8	2	-4.64	1.37
Q9GZN1	Actr6	5.1	1	-4.57	1.60
Q96RE7	Nacc1	8	3	-4.39	1.63
Q6N021	Tet2	1.9	1	-4.37	1.43
Q6ZSJ8	C1orf122	12.7	1	-4.23	1.49
Q9BQ75	Cmss1	3.6	1	-4.05	1.33
060281	Znf292	0.8	1	-3.54	1.53
Q5T9B7	Ak1	27.5	1	-3.45	3.17
P48059	Lims1	5.7	1	-3.39	1.61
P56159	Gfra1	18.1	5	-3.26	2.60
Q3KR16	Plekhg6	3.4	1	-3.23	2.40
015240	Vgf	14.3	6	-3.22	4.82
Q9H3P2	Nelfa	6.6	3	-3.19	1.33
Q14254	Flot2	18.9	7	-3.18	3.05
Q9H2F5	Epc1	2.9	1	-3.17	2.13
Q7L4I2	Rsrc2	5.1	2	-3.02	3.55
Q08J23	Nsun2	5.2	2	-3.01	1.87
Q5T8P6	Rbm26	3.7	2	-2.99	1.77

Q13526	Pin1	38.9	2	-2.94	2.59
Q9UKL0	Rcor1	26.8	6	-2.85	6.35
Q9BQ04	Rbm4b; Rbm4	27.3	1	-2.75	2.55
Q13207	Tbx2	7.9	5	-2.74	1.56
P28331	Ndufs1	7.4	2	-2.71	1.53
P34947	Grk6; Grk5	2.9	1	-2.70	1.64
Q8TD43	Trpm4	1.8	1	-2.70	1.97
Q9BRJ7	Nudt16l1	10.1	2	-2.68	1.90
Q6P1L8	Mrpl14	6.9	1	-2.62	1.73
Q9Y6X9	Morc2	12	1	-2.62	1.41
P78347	Gtf2i	41.5	33	-2.48	6.02
015392	Birc5	9.9	1	-2.46	2.71
075525	Khdrbs3	9.2	2	-2.45	1.53
Q9UN76	Slc6a14	2.2	1	-2.43	1.54
Q69YI7	Naif1	4	1	-2.42	1.85
060306	Aqr	2.9	3	-2.41	1.36
075955	Flot1	31.1	9	-2.41	3.01
Q16625	Ocln	16.3	5	-2.41	4.64
P26196	Ddx6	13.5	3	-2.41	2.17
Q9BYN8	Mrps26	8.8	1	-2.39	3.28
043684	Bub3	15.8	3	-2.39	1.54
Q13111	Chaf1a	13.4	6	-2.37	3.71
Q9HC84	Muc5b	4.4	5	-2.37	3.71
Q9BW71	Hirip3	4.5	2	-2.36	3.54
Q9HCY8	S100a14	65.4	5	-2.35	3.39
P16455	Mgmt	11.6	2	-2.34	1.90
Q15599	Slc9a3r2	34.1	10	-2.33	8.56
P00338	Ldha	4.8	1	-2.29	3.03
Q6IAA8	Lamtor1	16.5	1	-2.26	2.07
Q9BXS6	Nusap1	5.4	2	-2.23	1.43
A0A1B0GW 37		3.9	1	-2.21	3.78
P13984	Gtf2f2	20.5	4	-2.20	1.80
Q68DK7	Msl1	20.2	5	-2.18	2.82
Q96D46	Nmd3	7.2	2	-2.18	1.91
095994	Agr2	65.1	10	-2.16	2.30
Q15366	Pcbp2; Pcbp3	31.6	4	-2.15	2.44
Q9NZI7	Ubp1	11.1	4	-2.14	2.66
P62873	Gnb1	12.1	2	-2.14	3.60
095239	Kif4a	18.4	16	-2.12	5.18
P61165	Tmem258	16.3	1	-2.10	1.56
Q99583	Mnt	30.3	1	-2.08	1.39
Q6SPF0	Samd1	18.3	5	-2.08	4.95
Q02241	Kif23	22.2	16	-2.06	5.02
Q15147	Plcb4	2.1	2	-2.06	2.35
Q8WYB5	Kat6b	4.3	6	-2.06	3.17
Q01105	Set; Setsip	18	4	-2.05	1.74

Q15545	Taf7	11.5	3	-2.01	2.18
043524	Foxo3	1.8	1	-2.01	1.74
Q13459	Myo9b	0.8	1	-2.00	2.15
Q14807	Kif22	4.7	2	-1.98	1.31
P29372	Мрд	28.2	5	-1.98	4.45
Q8IY57	Yaf2	15	1	-1.97	1.55
Q9BQ61	C19orf43	23.9	4	-1.95	5.09
Q9BU76	Mmtag2	15.2	3	-1.95	3.71
Q15911	Zfhx3	2.5	6	-1.94	1.31
Q01130	Srsf2	36.9	4	-1.93	3.02
P05204	Hmgn2	43.3	5	-1.92	2.56
095347	Smc2	10.3	11	-1.91	3.35
Q14697	Ganab	7.4	5	-1.91	4.53
Q9NZ63	C9orf78	15.9	3	-1.91	2.96
P40199	Ceacam6	6.1	1	-1.87	1.94
P35269	Gtf2f1	18.8	6	-1.87	2.26
Q9Y237	Pin4	41.2	3	-1.86	1.74
Q9UNL4	Ing4	46.8	1	-1.86	1.59
Q96GY3	Lin37	12.6	2	-1.85	1.98
Q01664	Tfap4	26.9	6	-1.85	2.99
Q86UK7	Znf598	4.1	3	-1.84	2.37
Q9UIU6	Six4	5.9	1	-1.83	1.60
015054	Kdm6b	15.1	20	-1.81	2.38
P51531	Smarca2	11.4	8	-1.80	1.83
Q9P2P1	Nynrin	0.9	1	-1.79	1.39
Q96DF8	Dgcr14	14.3	3	-1.79	4.57
Q8NDX6	Znf740	6.7	1	-1.79	2.88
P39748	Fen1	38.4	9	-1.79	2.82
Q9Y6X8	Zhx2	8.4	5	-1.78	2.37
F5H3C5	Sod2	37.8	3	-1.78	1.59
P36508	Znf143; Znf76	6.1	2	-1.78	3.56
Q01970	Plcb3	5.9	5	-1.78	2.83
Q9UHF7	Trps1	21.5	19	-1.78	4.56
Q8WUT1	Poldip3	21.4	1	-1.77	2.71
Q8WYH8	Ing5	40.1	3	-1.77	2.63
Q9Y3L3	Sh3bp1	5	2	-1.76	1.60
014578	Cit	7.2	7	-1.76	2.50
P01861	Ighg1; Ighg3; Ighg2; Ighg4	5.1	2	-1.76	5.65
P15941	Muc1	23.2	4	-1.75	4.25
P23511	Nfya	12.1	2	-1.74	4.06
Q9NP97	Dynlrb2; Dynlrb1	22.5	1	-1.74	1.90
P12081	Hars	20.5	5	-1.73	5.26
Q86VE0	Мурор	5.8	1	-1.72	3.19
P13995	Mthfd2	10.4	2	-1.71	1.65
P53803	Polr2k	31	2	-1.71	2.75

Q9BWN1	Prr14	6.7	3	-1.71	2.75
P13631	Rarg	4.4	1	-1.70	1.82
Q8TBE0	Bahd1	2.1	1	-1.70	2.54
095251	Kat7	12.4	6	-1.69	3.18
Q96KM6	Znf512b	19.1	11	-1.69	3.10
Q8IY18	Smc5	5.5	5	-1.68	2.83
Q5SZX6	Cct3	11.4	3	-1.68	1.64
Q5T7W0	Znf618	4.6	2	-1.68	2.12
P52701	Msh6	5.5	5	-1.67	2.13
P26583	Hmgb2	34.9	13	-1.67	3.71
P55347	Pknox1	4.7	1	-1.66	2.85
Q9Y2T7	Ybx2	16.5	2	-1.65	2.53
P11388	Тор2а	22.8	22	-1.65	2.67
Q9UGY1	Nol12	10.7	2	-1.64	1.37
Q9NV56	Mrgbp	43.6	4	-1.64	2.49
Q9BRJ6	C7orf50	42.2	6	-1.63	3.26
Q01658	Dr1	42.6	4	-1.63	1.45
Q96T88	Uhrf1	27.5	18	-1.63	4.27
Q5T0W9	Fam83b	9	6	-1.63	1.88
Q4KMQ1	Tprn	23.8	13	-1.62	3.38
P53999	Sub1	42.5	8	-1.62	3.07
Q9H1E3	Nucks1	30.5	10	-1.62	3.79
015347	Hmgb3	40.5	11	-1.62	2.27
Q71DI3	Hist2h3a	49.3	2	-1.62	1.67
Q49A26	Glyr1	14.5	5	-1.61	2.02
Q86UV5	Usp48	4.4	1	-1.61	1.54
Q8TA86	Rp9	6.8	1	-1.61	1.48
P62306	Snrpf	15.1	1	-1.61	3.86
Q9UFW8	Cggbp1	18	3	-1.60	4.81
Q96T60	Pnkp	10.7	4	-1.60	1.54
Q6PL18	Atad2	24.9	27	-1.60	5.03
09H0H5	Racgap1	24.7	9	-1.60	5.11
09NS69	Tomm22	14.8	1	-1.60	2.42
P61244	Мах	31.9	4	-1.60	3.77
P30405	Ppif	19.3	2	-1.59	2.98
060216	Rad21	24.7	15	-1.59	2.11
015269	Pwp2	8.7	4	-1.59	1.40
043809	Nudt21	15.9	4	-1.59	3.45
003164	Kmt2a	1.6	5	-1.59	1.68
066K89	E4f1	7.2	1	-1.59	2.56
O6UXN9	Wdr82	6.4	1	-1.58	1.78
092665	Mrns31	6.8	2	-1.58	1.84
09Y2S6	Tma7	18.8	2	-1.58	2.78
06KC79	Niphl	8.8	17	-1.57	2.38
092945	Khsrn	41.2	24	-1.57	5.36
09NVII7	Sdad1	5.5	3	-1.57	2.79
<u></u>			-		

Q9NUQ3	TxIng	7.6	3	-1.57	1.54
P12004	Pcna	29.1	5	-1.57	3.46
Q9BSC4	Nol10	8	4	-1.56	1.90
P46013	Mki67	49.4	142	-1.56	2.92
P30040	Erp29	22.2	4	-1.56	3.04
Q92769	Hdac2	8.8	1	-1.55	1.46
Q5QNZ2	Atp5f1	4.6	2	-1.55	4.34
Q92917	Gpkow	14.1	4	-1.55	1.45
Q9P275	Usp36	9.7	6	-1.55	2.05
Q15004	Kiaa0101	44	2	-1.55	1.43
Q9BY77	Poldip3	36.1	8	-1.55	4.07
Q9NZM1	Myof	8.3	13	-1.54	3.76
P41208	Cetn2	71.5	9	-1.54	3.36
Q9NPF5	Dmap1	24.2	9	-1.54	1.66
P20042	Eif2s2	39.3	16	-1.53	1.83
09Y446	Pkp3	21.1	11	-1.53	3.24
P23588	Eif4b	15.1	7	-1.53	3.28
05TZA2	Crocc	1.8	3	-1.53	2.72
09H0E9	Brd8	16.1	8	-1.52	2.70
000159	Mvo1c	12.7	10	-1 52	3.38
015542	Taf5	69	3	-1 52	2.77
012792	Twf1	15.4	3	-1.52	4 2.0
015391	Yv2	65	2	-1 52	3.41
09HBM6	Taf9h· Taf9	11.2	3	-1 51	2.06
092879	Colf1	29.4	9	-1 51	1 94
Q92079	Nsmce2	35.3	5	-1 51	2.48
09BR76	Corolh	21.7	7	-1 51	3.76
Q754.90	Vu1	20.5	5	-1.51	3.70
P45973	lyı Chy5	67.5	10	-1.51	3.64
00NWR6	Arabu1	50	2	-1.50	2.20
	Inconn	1/2	10	-1.50	2.20
075040	Smnda1	20.2	10	-1.50	3.09 1.07
073940	Silliuuti Miaalli	50.2	0	-1.30	1.97
QOINSPO	Micuili Champi	/	1	-1.49	1.40
Q96JM3	Chan	32.8	6	-1.49	2.15
Q96FF9		32.6	6	-1.49	3.12
0/54/5		41.5	20	-1.49	3.29
Q15388	Tomm20	22.8	2	-1.48	2.30
P52434	Poir2n	12.8	2	-1.48	2.28
Q9UQB8	Balap2	8.7	4	-1.48	2.58
Q8NC51	Serbp1	26.7	10	-1.48	2.23
Q8TAD8	Snip1	3.3	1	-1.48	1.49
Q96NB3	Znf830	22.8	4	-1.48	1.63
P09429	Hmgb1	49.8	12	-1.48	1.96
P23193	Tcea1	51.2	12	-1.47	2.67
Q9NX63	Chchd3	28	7	-1.47	1.56
P35659	Dek	34.4	14	-1.47	3.99

Q6IQ32	Adnp2	2.8	2	-1.46	1.66
Q15365	Pcbp1	52	8	-1.46	2.55
P54727	Rad23b	26.7	9	-1.46	2.67
P50990	Cct8	6	3	-1.46	3.35
060869	Edf1	41.2	9	-1.46	4.94
Q9UKF6	Cpsf3	7.7	3	-1.46	2.68
Q12788	Tbl3	14.2	5	-1.45	2.75
Q9NYH9	Utp6	9.7	6	-1.45	2.79
Q96E11	Mrrf	35.9	6	-1.45	1.48
Q96ES7	Ccdc101	14.3	2	-1.45	1.63
060828	Pqbp1	36.2	5	-1.45	2.11
Q8TEM1	Nup210	8.2	11	-1.45	2.21
Q9NPA8	Eny2	36.6	3	-1.44	2.24
Q8NEJ9	Ngdn	27.9	7	-1.44	2.30
P31948	Stip1	14.9	8	-1.44	1.48
P18887	Xrcc1	6.5	3	-1.44	2.13
P26358	Dnmt1	11.4	15	-1.44	4.22
Q8IYB3	Srrm1	8.9	5	-1.44	2.77
P26641	Eef1g	19.2	8	-1.44	1.72
Q9P0T4	Znf581	6.1	1	-1.43	1.87
Q86XP3	Ddx42	17.8	9	-1.43	1.77
P39880	Cux1	34.1	19	-1.43	2.62
Q8WW12	Pcnp	23.6	4	-1.43	2.45
P62277	Rps13	24.5	5	-1.43	2.19
Q08378	Golga3	7.7	7	-1.43	1.74
Q00059	Tfam	42.3	14	-1.43	2.50
Q9BTC0	Dido1	13	19	-1.43	3.75
P22415	Usf1	18.4	4	-1.43	2.04
Q6ZRS2	Srcap	4.5	10	-1.43	1.95
P62854	Rps26; Rps26p11	20.9	2	-1.43	1.47
Q8WXX5	Dnajc9	46.2	12	-1.42	3.30
P60866	Rps20	47.9	6	-1.42	3.07
075937	Dnajc8	50.2	11	-1.42	2.58
Q13151	, Hnrnpa0	38.7	10	-1.42	2.50
P25208	Nfyb	31.4	5	-1.42	1.89
Q9UMN6	Kmt2b	1.7	3	-1.42	1.43
000148	Ddx39a	32.3	5	-1.42	2.23
P61088	Ube2n; Ube2nl	17.1	2	-1.42	1.48
E9PKP7	Ubtf	38.7	1	-1.41	3.28
Q8ND56	Lsm14a	10	1	-1.41	1.97
Q96I24	Fubp3	56.8	23	-1.41	3.94
Q13243	Srsf5	25	5	-1.41	2.58
P17931	Lgals3	17.2	4	-1.41	2.46
Q5EBL8	Pdzd11	35.7	2	-1.41	2.03
Q15056	Eif4h	39.1	9	-1.40	1.33
Q7KZF4	Snd1	39.9	26	-1.40	2.53
-					

H0Y2W2	Atad3a	15	0	-1.40	1.91
075128	Cobl	3.2	2	-1.40	2.00
Q92925	Smarcd2	14.5	6	-1.40	2.25
P15311	Ezr	29.9	13	-1.40	1.78
P51858	Hdgf	47.9	12	-1.39	1.89
Q9H875	Prkrip1	15.2	2	-1.39	2.72
P23771	Gata3	17.8	6	-1.39	3.15
Q5TBP9	Lsm14b	21.4	3	-1.39	1.99
Q8WXF1	Pspc1	41.5	20	-1.39	3.29
Q15723	Elf2	15.9	2	-1.39	1.94
Q9HAF1	Meaf6	33.5	6	-1.39	2.89
P62847	Rps24	35.1	4	-1.38	1.98
Q15906	Vps72	19.8	5	-1.38	1.92
P28290	Ssfa2	10.7	9	-1.38	1.38
Q13442	Pdap1	42	13	-1.38	3.37
Q9NQG5	Rprd1b	28.5	7	-1.38	1.87
Q8NCN4	Rnf169	5.4	2	-1.38	1.31
075151	Phf2	11	8	-1.38	2.47
Q08945	Ssrp1	23.8	18	-1.38	3.17
P55145	Manf	35.1	6	-1.38	1.78
Q15428	Sf3a2	17	6	-1.37	2.57
Q16629	Srsf7	30.7	3	-1.37	1.72
P13987	Cd59	11.1	1	-1.37	1.48
P52272	Hnrnpm	48.2	20	-1.36	3.13
F5H608	Atp5h	23	2	-1.36	2.16
P40429	Rpl13a; Rpl13a	29.6	7	-1.36	2.39
Q13416	Orc2	18	6	-1.36	1.47
Q8N6H7	Arfgap2	27.7	5	-1.36	1.36
A8MXP9	Matr3	40	1	-1.36	2.44
P62805	Hist1h4a	68.9	14	-1.36	2.61
Q8WVK2	Snrnp27	36.1	4	-1.36	1.94
Q15691	Mapre1	29.5	6	-1.36	1.33
Q9NS91	Rad18	2.6	1	-1.35	1.68
D6R9P3	Hnrnpab	38.6	4	-1.35	1.95
P68104	Eef1a1; Eef1a1p5	48.9	6	-1.35	1.50
Q9GZU8	Fam192a	15.6	1	-1.35	1.38
P19387	Polr2c	7.6	2	-1.35	1.64
Q13045	Flii	6.9	5	-1.35	1.33
Q9NPD3	Exosc4	9.8	3	-1.35	1.65
P62851	Rps25	24	3	-1.35	1.71
P26599	Ptbp1	53.4	18	-1.34	1.71
Q9P258	Rcc2	10.3	5	-1.34	2.07
Q9UIS9	Mbd1	15.7	6	-1.34	1.45
Q16630	Cpsf6	23.2	7	-1.34	1.94
Q8N684	Cpsf7	23.4	9	-1.34	2.14
095926	Syf2	41.2	7	-1.34	2.07

P42166	Ттро	57.2	20	-1.34	3.69
P78371	Cct2	18.3	6	-1.34	1.45
Q15427	Sf3b4	21.5	6	-1.34	1.58
Q02880	Top2b	30.4	32	-1.34	3.09
Q01085	Tial1	36	6	-1.34	1.36
Q9NUP9	Lin7c	31.5	5	-1.34	3.40
Q13247	Srsf6	25.3	7	-1.33	2.18
075486	Supt3h	15.5	3	-1.33	1.42
095696	Brd1	9.5	6	-1.33	2.00
043583	Denr	52.5	9	-1.33	1.94
Q96AY3	Fkbp10	5	2	-1.33	1.57
Q9H0L4	Cstf2t	33.4	7	-1.33	2.46
P08670	Vim	53.8	20	-1.33	3.34
Q8IWZ8	Sugp1	11.2	5	-1.33	1.42
P26368	U2af2	43.4	12	-1.33	1.83
Q92785	Dpf2	25.7	7	-1.32	1.50
Q1KMD3	Hnrnpul2; Hnrnpul2-Bscl2	52.1	32	-1.32	2.33
Q13185	Cbx3	56.3	9	-1.32	1.90
Q92979	Emg1	14.8	3	-1.32	1.64
P62701	Rps4x	38.8	11	-1.32	1.67
P52435	Polr2j; Polr2j3; Polr2j2	50.4	4	-1.32	1.45
Q9UNP9	Ppie	41.2	9	-1.32	2.36
P84098	Rpl19	19.2	6	-1.32	2.45
Q29RF7	Pds5a	8	7	-1.32	2.30
Q9Y3C6	Ppil1	27.1	3	-1.32	1.88
Q9NTI5	Pds5b	8.9	6	-1.32	1.95
P04843	Rpn1	25.7	11	-1.32	2.61
P30101	Pdia3	24	8	-1.32	1.65
Q5SRQ3	Csnk2b-Ly6g5b- 1181; Csnk2b; Csnk2b-Ly6g5b 991	18.4	3	-1.31	1.45
015460	P4ha2	5.6	2	-1.31	1.35
P62081	Rps7	53.6	11	-1.31	1.58
P08579	Snrpb2	25.3	4	-1.31	3.19
P23396	Rps3	41.2	8	-1.31	1.66
Q99549	Mphosph8	23.3	13	-1.31	2.18
Q15637	Sf1	21	14	-1.31	1.83
Q86V81	Alyref	52.1	2	-1.31	1.83
014979	Hnrnpdl	39.7	17	-1.31	1.90
Q9NSI2	Fam207a	30.4	5	-1.31	3.09
Q9Y4Y9	Lsm5	85.7	3	-1.31	2.75
Q8WWQ0	Phip	9.2	14	-1.31	2.06
Q7L014	Ddx46	25.9	1	-1.30	2.38
015514	Polr2d	69	10	-1.30	1.59
Q9UIG0	Baz1b	19.4	24	-1.30	1.44

Q9NV31	Imp3	15.2	2	-1.30	1.46
P49848	Taf6	6.7	4	-1.30	1.82
P83916	Cbx1	58.4	9	-1.30	3.36
P16403	Hist1h1c	33.3	3	-1.30	2.31
095758	Ptbp3	22.6	10	-1.30	2.92
Q7Z4V5	Hdgfrp2	11.2	8	-1.30	1.48
P62304	Snrpe	78.8	3	-1.30	1.65
095400	Cd2bp2	51.3	12	-1.30	2.86
075962	Trio	2	1	-1.30	1.92
P84103	Srsf3	37.8	6	-1.30	1.58
Q13838	Ddx39b	40.2	9	-1.30	1.76
P51398	Dap3	5	1	-1.30	2.05
Q15287	Rnps1	35.1	7	-1.30	1.34
P16401	Hist1h1b	33.2	14	-1.30	2.22
Q14103	Hnrnpd	34.1	11	-1.30	2.21
Q8IXM2	C17orf49; BAP18; RNASEK- C17orf49	40.8	5	-1.30	1.40
Q96A72	Magohb	60	1	-1.30	1.66
Q8WYP5	Ahctf1	13.1	18	-1.29	2.10
Q96T23	Rsf1	28.8	34	-1.29	3.35
Q14498	Rbm39	29.6	10	-1.29	2.72
Q9UHX1	Puf60	32.7	13	-1.29	2.43
Q9UPN4	Cep131	4.5	3	-1.29	1.54
P61978	Hnrnpk	63.3	6	-1.29	2.26
P98175	Rbm10	26.5	17	-1.29	2.50
Q15717	Elavl1	40.2	12	-1.29	2.68
P27695	Apex1	47.5	12	-1.28	1.79
P49916	Lig3	15.6	10	-1.28	2.29
P20700	Lmnb1	72.4	58	-1.28	3.11
Q12830	Bptf	9.3	19	-1.28	3.45
Q14839	Chd4	28.8	38	-1.27	1.38
Q96DI7	Snrnp40	12.3	2	-1.27	1.85
043823	Akap8	26.6	13	-1.27	2.15
Q03188	Cenpc	16.1	10	-1.27	2.49
043390	Hnrnpr	47.7	23	-1.27	3.02
P50402	Emd	37.8	9	-1.27	2.30
Q16778	Hist2h2be; Hist1h2bj; Hist1h2bb; Hist1h2bo	65.9	0	-1.27	1.44
Q07955	Srsf1	55.7	20	-1.27	2.20
P23284	Ppib	58.3	17	-1.27	3.50
P10412	Hist1h1e	32.9	3	-1.27	2.56
P38646	Hspa9	36.7	17	-1.26	2.13
H0YAE9	Rnaset2	5.4	1	-1.26	1.78
P38919	Eif4a3	45.3	14	-1.26	1.34
Q9Y5B6	Paxbp1	2	1	-1.26	1.54

Q13427	Ppig	15.5	12	-1.26	2.57
P35232	Phb	31.3	5	-1.26	1.46
Q96SB8	Smc6	11.6	9	-1.26	1.95
P62316	Snrpd2	65.3	13	-1.26	2.71
Q9BUQ8	Ddx23	35.9	30	-1.26	2.57
Q9UIF9	Baz2a	5.9	9	-1.26	1.86
P31942	Hnrnph3	47.7	13	-1.25	2.70
P09012	Snrpa	19.1	3	-1.25	1.71
P25705	Atp5a1	38.9	15	-1.25	2.71
P0DN76	U2af1	37.5	6	-1.25	1.81
Q08211	Dhx9	30.1	33	-1.25	1.40
Q96C57	C12orf43	34.8	4	-1.25	1.61
Q9H2K8	Taok3	25.3	18	-1.24	2.12
Q8TAT6	Nploc4	13.4	1	-1.24	1.45
P05114	Hmgn1	53	9	-1.24	3.09
Q9H0A0	Nat10	23.5	16	-1.24	1.36
Q13573	Snw1	48.3	26	-1.24	1.46
Q99986	Vrk1	38.4	10	-1.24	2.24
Q96HS1	Pgam5	12.5	3	-1.23	2.13
P35637	Fus	24.9	11	-1.23	2.18
Q14676	Mdc1	14.6	14	-1.23	1.39
Q9UN81	L1re1	33.7	12	-1.23	1.93
Q9NW64	Rbm22	35.5	10	-1.23	1.85
Q9H307	Pnn	36.1	31	-1.23	2.63
P41091	Eif2s3; Eif2s3l	34.1	10	-1.23	1.39
Q92797	Sympk	14.8	11	-1.23	1.50
Q9BVL2	Nupl1	9.3	4	-1.23	1.50
P22087	Fbl	25.9	10	-1.23	1.62
Q03252	Lmnb2	58.2	43	-1.22	2.67
095777	Lsm8	71.9	5	-1.22	1.75
Q9Y2K7	Kdm2a	8.4	7	-1.22	2.84
Q9BZF9	Uaca	27.9	32	-1.22	1.67
Q8WZ42	Ttn	0.3	9	-1.22	1.32
Q5UIP0	Rif1	11.9	17	-1.22	1.67
000541	Pes1	13.6	4	-1.22	1.41
Q9UQE7	Smc3	41.4	49	-1.22	2.58
014686	Kmt2d	0.8	4	-1.22	1.67
Q15424	Safb	31.4	21	-1.21	2.24
Q9UKV3	Acin1	37.6	35	-1.21	2.34
Q9Y5S9	Rbm8a	58	10	-1.21	1.96
Q13435	Sf3b2	43.5	25	-1.21	2.17
Q96EU6	Rrp36	36.3	7	-1.21	1.65
P06400	Rb1	2.7	2	-1.21	1.58
Q9Y5B9	Supt16h	22.6	22	-1.21	2.60
P67809	Ybx1	44.1	6	-1.21	2.15
P22626	Hnrnpa2b1	76.8	37	-1.21	1.78
	-				

Q9NYB0	Terf2ip	29.8	5	-1.21	1.96
Q9BRD0	Bud13	3.7	2	-1.21	1.95
043143	Dhx15	11.8	11	-1.21	1.45
060506	Syncrip	58.9	34	-1.21	1.70
A0A0C4DG 89	Ddx46	26	1	-1.21	2.67
Q99879	Hist1h2bm	65.9	1	-1.21	2.06
Q969G3	Smarce1	35.1	12	-1.20	1.82
Q02878	Rpl6	23.3	7	-1.20	1.79
P42167	Ттро	52	2	-1.20	1.50
095232	Luc7l3	24.5	11	-1.20	2.09
P27816	Map4	18.8	26	-1.20	1.41
P09874	Parp1	50.4	47	-1.20	1.80
014776	Tcerg1	28.6	34	-1.20	1.94
P49458	Srp9	34.9	3	-1.19	1.40
P84090	Erh	55.8	7	-1.19	1.92
P16402	Hist1h1d	32.6	3	-1.19	1.36
Q9NYF8	Bclaf1	25.9	4	-1.19	1.78
Q07020	Rpl18	20.1	3	-1.19	1.33
P33240	Cstf2	40.6	10	-1.19	1.50
P43243	Matr3	39.4	1	-1.19	1.40
P50914	Rpl14	33.1	4	-1.19	2.02
Q14683	Smc1a	46.2	56	-1.18	2.20
095785	Wiz	24.2	13	-1.18	1.60
P14859	Pou2f1	19.8	9	-1.18	1.48
Q9BWJ5	Sf3b5	64	4	-1.18	1.44
Q9Y3U8	Rpl36	26.7	6	-1.18	1.36
060264	Smarca5	27.8	27	-1.17	2.50
P63162	Snrpn; Snrpb	27.8	5	-1.17	2.01
094906	Prpf6	36.5	29	-1.17	1.48
P08621	Snrnp70	47.1	17	-1.16	2.17
Q13242	Srsf9	41.6	16	-1.16	1.48
P49756	Rbm25	29.2	22	-1.15	1.79
Q96JP5	Zfp91-Cntf; Zfp91	4.2	1	-1.15	1.60
P31943	Hnrnph1	57	15	-1.15	2.68
Q9Y383	Luc7l2	38.8	8	-1.15	1.70
Q96MU7	Ythdc1	8.7	6	-1.14	1.66
Q9BWF3	Rbm4	34.6	2	-1.14	2.89
Q6ISB3	Grhl2	42.9	18	-1.14	1.70
G3V4W0	Hnrnpc	71	4	-1.13	1.47
P38432	Coil	15.6	9	-1.13	1.46
095478	Nsa2	21.2	5	-1.11	1.61
P62979	Rps27a; Ubb; Ubc; Uba52	59	10	-1.10	1.92
P17844	Ddx5	45.3	19	1.12	1.47
P46087	Nop2	25	18	1.12	1.57

095425	Svil	9	14	1.13	1.32
Q9BPX5	Arpc5l	38.6	4	1.21	2.57
A0A0A0MR M8	Муоб	33.8	1	1.21	2.53
Q9H501	Esf1	12.8	13	1.21	1.61
043719	Htatsf1	8.6	4	1.21	1.54
Q27J81	Inf2	18.3	7	1.22	1.33
014974	Ppp1r12a	28.4	30	1.23	1.41
Q6PJG2	Elmsan1	22.6	17	1.23	1.61
D6R904	Трт3	67.4	0	1.24	4.18
Q9P2M7	Cgn	49.3	53	1.27	2.37
Q2TB10	Znf800	7	1	1.27	2.34
Q5VZF2	Mbll; Mbnl2; Mbnl1	11	1	1.27	3.38
Q5T7V8	Gorab	9.4	2	1.27	1.79
P19105	Myl12a; Myl12b; Myl9	60.5	9	1.28	1.58
P60953	Cdc42	27.2	5	1.29	1.39
Q7Z7K6	Cenpv	9.8	2	1.30	1.32
Q5HYB6	Dkfzp686j1372	70.7	0	1.31	3.19
Q6NZY4	Zcchc8	15.1	6	1.32	1.47
Q9BUP0	Efhd1	55.2	15	1.33	3.51
Q92614	Myo18a	20.5	30	1.33	1.85
Q9Y657	Spin1	37.8	6	1.33	1.96
Q7Z406	Myh14	44.2	71	1.33	1.52
Q9P0M6	H2afy2	27.7	5	1.35	1.85
Q99733	Nap1l4	19.4	3	1.36	1.42
075362	Znf217	23.2	17	1.38	2.54
Q1ED39	Knop1	36.9	12	1.38	1.58
Q9BV36	Mlph	32.2	9	1.39	2.48
P08238	Hsp90ab1	23.2	8	1.40	2.11
Q6NUQ4	Tmem214	5.1	3	1.40	1.41
Q9H0U9	Tspyl1	14.6	4	1.40	3.77
H7BYY1	Tpm1	81	0	1.40	2.81
P63261	Actg1	78.1	2	1.41	2.96
P63010	Ap2b1	2.8	1	1.45	3.37
M0QY43	Myh14	32.4	2	1.46	1.35
P05976	Myl1; Myl3	8.2	2	1.47	2.08
Q14966	Znf638	22.5	28	1.48	1.41
A8CG34	Pom121c	8.1	2	1.48	1.73
Q9C0C2	Tnks1bp1	4.7	4	1.49	1.42
Q9UL16	Cfap45	2.3	1	1.50	1.46
Q14247	Cttn	46.2	26	1.50	4.35
P63313	Tmsb10	63.6	3	1.51	1.58
P37802	Tagln2	42.8	7	1.53	1.59
P61158	Actr3	36.8	8	1.53	2.44
Q5T0I0	Gsn	41.5	2	1.54	2.17

Q8N884	Mb21d1	10	3	1.54	3.21
043707	Actn4	68.6	44	1.55	3.49
P07951	Tpm2	32.4	0	1.57	3.11
P61218	Polr2f	26.5	1	1.58	1.42
Q14677	Clint1	10.9	4	1.58	2.56
075369	Flnb	56.7	89	1.59	2.99
P17980	Psmc3	10.9	2	1.60	1.33
015143	Arpc1b	21	6	1.61	3.86
Q96IZ0	Pawr	47.4	11	1.63	1.94
Q9H8G2	Caap1	6.6	2	1.64	1.52
Q9Y2X9	Znf281	2	1	1.64	1.58
P08195	Slc3a2	6.3	2	1.64	1.78
Q9H3U1	Unc45a	18.4	14	1.65	4.85
Q6ZVM7	Tom1l2	38.9	15	1.66	2.56
Q15758	Slc1a5	9.9	2	1.67	1.71
P17676	Cebpb	27.8	6	1.67	1.62
095817	Bag3	32.2	11	1.67	2.16
075190	Dnajb6	20.2	5	1.68	2.07
A0AV96	Rbm47	54.2	2	1.68	2.23
Q14651	Pls1	3.3	1	1.69	1.58
E7EX73	Eif4g1	7	7	1.70	2.09
Q01082	Sptbn1	53.7	108	1.70	5.26
Q13813	Sptan1	68.1	1	1.71	5.35
H0YL52	Tpm1	70.2	2	1.72	5.20
Q9UHG0	Dcdc2	12.2	3	1.73	1.87
Q8N8S7	Enah	13	4	1.74	1.86
Q9UQN3	Chmp2b	10.4	2	1.75	1.45
Q9Y3L5	Rap2c	10.3	1	1.75	2.68
Q9H444	Chmp4b	17.9	3	1.76	1.54
015049	N4bp3	3.9	2	1.76	1.97
Q9H6W3	No66	22.9	10	1.78	2.51
P67936	Tpm4	76.6	16	1.78	7.04
Q9UHB6	Lima1	45.7	28	1.79	5.92
000515	Lad1	42.4	21	1.81	3.49
P09496	Clta	10.9	4	1.82	2.70
P61160	Actr2	26.6	7	1.84	3.11
Q53SF7	Cobll1	4.5	3	1.85	1.48
Q8N594	Mpnd	13.2	1	1.87	1.53
Q5M775	Specc1	22.3	16	1.89	4.74
015020	Sptbn2	31.8	48	1.90	3.74
P22314	Uba1	7	4	1.90	2.62
P31949	S100a11	36.2	3	1.91	2.51
P62328	Tmsb4x	86.4	5	1.92	4.45
Q8IVI9	Nostrin	14.7	1	1.94	3.00
P35998	Psmc2	6	2	1.99	1.45
P15408	Fosl2	29.7	5	2.00	5.05

Q9ULV4	Coro1c	25.7	6	2.02	3.26
Q7Z6I8	C5orf24	22.3	3	2.02	2.63
Q92610	Znf592	6.2	3	2.03	1.43
P12814	Actn1	51.1	22	2.03	4.31
015145	Arpc3	20.8	3	2.04	3.05
Q60FE5	Flna	59.2	2	2.04	4.35
060437	Ppl	27.4	38	2.06	4.07
Q3KQU3	Map7d1	1.9	1	2.10	2.14
P53814	Smtn	7.1	5	2.12	2.03
Q99996	Akap9	1.3	2	2.13	1.49
Q7Z3J3	Rgpd3; Rgpd4; Rgpd8; Rgpd5	4.5	2	2.15	2.14
P04792	Hspb1	68.3	11	2.16	6.81
P21333	Flna	59.4	3	2.18	5.26
Q9UNX3	Rpl26l1	27.6	1	2.19	1.51
P54652	Hspa2	13.3	1	2.24	2.76
P21291	Csrp1	37.9	3	2.27	3.10
094832	Myo1d	7.8	7	2.28	1.80
Q8TBL5	Larp4	10.4	1	2.31	1.91
P17275	Junb	27.1	5	2.31	1.61
Q86UP2	Ktn1	4	2	2.52	2.35
Q8NEU8	Appl2	6	1	2.66	4.60
Q9UHR4	Baiap2l1	10	3	2.70	2.29
P61026	Rab10	11.5	2	2.72	1.34
P05783	Krt18	88.8	33	2.79	2.17
000151	Pdlim1	19.8	3	2.84	4.28
E9PMS6	Lmo7	31.5	0	2.85	5.63
P09493; H0YKP3	Tpm1	62.3	0	2.88	1.41
Q9P0K7	Rai14	11.8	9	2.91	3.10
P06756	Itgav	1.3	1	3.09	3.00
Q96CF2	Chmp4c	11.6	1	3.33	2.75
Q9NWM3	Cuedc1	17.9	2	3.34	1.78
Q96PY6	Nek1	1.3	1	3.46	4.06
Q15654	Trip6	10.7	1	3.50	2.44
A0A075B7 30	Eppk1	51.5	5	3.70	1.76
F8W8M4	Ablim1	17.5	8	3.84	4.77
Q5SZC9	Abracl	23.9	1	3.85	1.44
Q8IWY7		2.1	1	3.86	1.95
Q8TEQ6	Gemin5	0.9	1	4.01	1.70
Q4G0J3	Larp7	7.9	3	5.67	1.90
Q8N3V7	Synpo	3.4	2	5.78	2.53
Q9UMR2	Ddx19a; Ddx19b	16.5	1	7.32	2.01
Q9UM54	Муоб	32.1	1	8.16	1.55
Q9BRP0	Ovol2	6.5	1	8.39	3.49
Q7Z3Z5	Tnrc11; Med12	2.1	3	8.70	2.00
6. Appendix

Q8TED0	Utp15	8.8	3	9.74	2.03
Q05682	Cald1	5.3	4	13.81	5.82
Q9UNF0	Pacsin2	5.5	2	14.25	1.51
Q15008	Psmd6	19.4	2	15.67	3.09
Q5H8X8	Uts2	5.8	1	15.98	2.11
Q9UJY1	Hspb8	41.3	5	21.97	5.32