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INTRODUCTION

1.1 SUMMARY

This thesis explores the mathematical implications of assuming that
resource allocation in unicellular organisms has been optimized by
natural selection for growth in fixed environments. In this idealized
scenario, regulatory evolution takes place in a constant environment
for long enough periods of time to result in “perfectly” adapted cells
that do not interact to each other. In reality, cells are subject to chang-
ing environments, including shifts to different nutrients [46, 51], and
are thus excepted to be under natural selection not only in steady-
state conditions, but more broadly on such changing environments.
Some unicellular organisms also show cooperative behaviour, and
in those cases the microbial community as a whole might better be
seen as an evolving unity [8]. Still, the basic theoretical framework
presented here is capable of predicting important aspects of cellular
resource allocation, in agreement with experimental data for E. coli.
The corresponding mathematical theory presents an important step
toward simulations of detailed, large-scale nonlinear cell models, sug-
gests a mechanistic origin for phenomenological bacterial “growth
laws” [56], and clarifies from first principles how the fitness costs and
benefits of cellular components are determined by their marginal ef-
fects on protein allocation. These costs and benefits, which govern
the cellular economy, are shown to relate directly to fundamental con-
cepts in Metabolic Control Analysis.

The structure of this thesis is as follows: Chapter 1 introduces the
problem of cellular resource allocation, presents a short review of the
most common methods for modeling and analysis of cellular growth,
states the aims of the thesis, and contains a overview of the main
results in the two manuscripts that form the main body of this thesis,
presented in Chapter 2. A final discussion is found in Chapter 3.

1.2 CELLULAR RESOURCE ALLOCATION

A fundamental problem in biology is what principles determine cel-
lular resource allocation. For unicellular organisms, optimization of
growth rate at steady state has been shown to explain diverse cellu-
lar properties [11], such as how metabolic networks produce biomass
[12]. Optimal states of a cell are often described in terms of the costs
and benefits of its components; for example, phenomenological pro-
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tein costs and benefits have been employed to explain the concentra-
tion of Lac proteins at different growth rates [18].

While the costs and benefits of the concentrations of proteins and
other molecule types are fundamental to our understanding of evolved
biological cells, it is still unclear what exactly determines these costs
and benefits. The cost of metabolic reactions is commonly equated
to the production cost of the catalyzing enzymes [7, 33, 48, 59], in-
cluding the required ribosomes, ATP, and carbon. Other studies indi-
cated the importance of the costs related to the limited dry weight ca-
pacity of cellular compartments, in particular for enzymes and other
macromolecules. Limiting the total protein concentration indeed im-
proves model predictions of maximal biomass production [9, 61] and
explains qualitatively the emergence of overflow metabolism [9, 44,
58].

It is commonly assumed that metabolic fluxes are predominantly
determined by the concentration of the catalyzing enzymes [7, 9, 12,
58]. In contrast, modelling studies [16, 48], together with metabolite
[10] and flux [52] measurements, as well as perturbation experiments
[21] indicate that metabolic fluxes are determined by both enzyme
and metabolite concentrations. Accordingly, while most authors con-
sider only the costs of enzymes [7, 9, 33, 44, 48, 58, 59], the essence
of cellular resource allocation can only be captured by accounting
for the costs and benefits of catalysts and reactants simultaneously.
The cost and benefit of reactants might then have the same origins
as for catalysts; previous studies indicate that the benefit of enzymes
and other proteins lies in their local effect on reaction kinetics, while
the cost comes from global requirements for the maintenance of their
concentrations [3, 18, 54, 57]. Thus, the cost of any cellular component
can only be completely understood by a detailed modeling of its con-
sumption of cellular resources, including all processes required for
its production.

Genome-scale metabolic models have in recent years been devel-
oped for many organisms, commonly in the framework of Flux Bal-
ance Analysis (FBA) [50] and its extensions [40]. The cell modeling
methods based on FBA share two common concepts: the stoichiomet-
ric matrix S used to express the mass balance of production and con-
sumption of cellular components, and an objective function that is
commonly set to the flux through a biomass reaction, which represents
the balanced production of the major cellular building blocks (includ-
ing nucleic acids, amino acids, and lipids) [50]. The biomass reaction
is an artificial construction that is useful but comes with some limita-
tions, which are discussed next.
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1.2.1 Biomass

The biomass reaction has been defined in metabolic models as an ar-
tificial reaction that consumes a set of “precursor metabolites” and in-
cludes the conversion of ATP to ADP to reflect growth-related energy
consumption [50]. In practice, the determination of which “precursor
metabolites” are consumed in the biomass reaction, and in which pro-
portions, is not a straightforward procedure and depends on ad hoc
assumptions [20]. The exact biomass composition (also known as the
“biomass equation” in FBA [41]) is mostly not entirely known from
experiments, and measurements from closely related organisms are
often used instead. It has been shown recently that this strategy is
problematic, as even closely related organisms may have very differ-
ent biomass compositions [38].

In principle, the biomass consists of all constituents of the cell in a
given cellular state. However, this “full” biomass definition would be
environment-dependent, as especially the concentrations of metabolic
intermediates and co-factors can change drastically with the cellular
state [23, 53]. For this reason, only a “consensus” of major cellular
building blocks is generally assigned to the biomass, and the produc-
tion rate of intermediate metabolites is enforced only to the extent to
which it is required to support the biomass production; this strategy
ignores the necessity to create a surplus of the production of interme-
diates to offset their dilution through cellular growth.

The difficult distinction between what should be in the biomass
reaction and what not is circumvented by self-replicating models of
balanced cellular growth, which demand that all components are pro-
duced in proportion to their concentrations [44]. The stoichiometric
matrix of such a self-replicator model contains explicit information
on how its components are produced and consumed, including the
production of catalysts, which is not explicitly modeled in FBA. The
assumption of balanced growth means that the rate of production
of all components can be determined exactly from their concentra-
tions. These concentrations are variables of the self-replicator prob-
lem. Thus, the fixed biomass reaction is replaced by the dilution of
all cellular components through growth, and growth rate predictions
do not depend on ad hoc assumptions on cellular composition.

Strikingly, important sectors of the protein part of biomass have
been observed to change with growth rate in a simple linear fash-
ion in E. coli [32, 56]. The corresponding empirical “growth laws” of
protein allocation are a central piece in the current understanding of
global resource allocation in bacteria [6].
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1.2.2  Growth laws

It has long been observed that for bacteria growing on media sup-
porting fast to moderately slow growth (e.g., 20 min to 2 hours per
doubling), ribosome content increases linearly with growth rate [43].
More recently, Scott et al. [56] have further shown that E. coli ribosome
content decreases linearly with growth rate when translation is inhib-
ited by sublethal doses of the antibiotic chloramphenicol, and have
collected these empirical correlations in a set of bacterial “growth
laws”. The ribosome proteome fraction ¢ at nutrient-limited growth
depend on growth rate u as

br = Pro +WrH (1)

where ¢ o is the offset at zero growth and wg relates to the ribosome
translational efficiency. These phenomenological laws were suggested
to play a practical role in theoretical biology comparable to that of
earlier phenomenological laws in physics; one example is Ohm’s law,
which facilitated the design of electrical circuits before a microscopi-
cal understanding of electricity [56].

Hui et al. [32] have shown that other protein sectors also behave
in a fashion similar to ribosomes, changing their overall concentra-
tion linearly with growth rate in response to different limitations
imposed on cellular growth: catabolic section limitation (C-lim) by
titrating the expression of lactose permease during growth on lactose;
anabolic section limitation (A-lim) by titrating the enzyme GOGAT in
the ammonia assimilation pathway; and ribosome limitation (R-lim)
by sublethal amounts of an antibiotic inhibiting translation, chloram-
phenicol. The direction (up or down) of the growth-rate dependence
of individual protein concentrations under each of the three limita-
tions allows their grouping into 6 different protein sectors, which
are related to different classes of cellular processes [32]. Analogous
to the growth laws defined for the ribosome, all proteome sectors
show a growth rate-independent offset, which is not explained by the
optimal proteome allocation scheme presented in Ref. [32]. For the R-
sector (composed by ribosomal and other translation proteins), it has
been suggested that the offset is due to a fraction of non-translating
ribosomes [56] or to the growth rate dependence of tRNA concentra-
tions [35]. For the other sectors, Hui et al. [32] suggest that offsets are
due to the biophysical difficulty to fully repress gene expression at
zero growth rate, and the possible advantage conferred by the ability
to adapt more quickly to changing environments [19, 34, 36].

Mori et al. [46] studied the possible advantage of the ribosomal off-
sets at famine-and-feast cycles. Based on a model for the transition
kinetics from poor to rich media validated with E. coli data, the ex-
pected benefit is shown to be a function of the feast duration. The
ribosome offset present in E. coli is predicted to be an optimal reserve
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for feasts around 2—3h, which coincides with the feast period in the
human gut microbiota [46].

The possible advantage of the over-expression of proteins in chang-
ing environments has also been explored by O’Brien et al. [51]. A frac-
tion of “under-utilized” proteins in E. coli is determined as the differ-
ence between the experimental core metabolism proteome abundance
[53] and the corresponding protein demand at different growth rates,
estimated by using the ME-model for E. coli [49] (see Section 1.3.2).
The benefit of under-utilized proteins on faster adaptation to im-
proved growth conditions is estimated using ME-model simulations
between the growth on galactose followed by a shift to growth on glu-
cose. The simulations show that there is increase in the growth rate
immediately after the shift, if under-utilized proteins were expressed
before on the galactose growth.

However, these dynamical considerations fail to justify why the
offset increases protein concentration above a simple proportional-
ity also at high growth rates, an observation that appears inconsis-
tent with the assumption that offsets serve as a preparation for better
growth conditions. Thus, the origin of the offsets is not yet fully un-
derstood.

1.3 MODELING AND ANALYSIS OF CELLULAR REACTION NET-
WORKS

Next, I present a review of FBA and related constraint-based meth-
ods, together with their limitations and the advantages of the more
general self-replicator models. Such self-replicator models will be the
focus of the first manuscript included in Chapter 2.

1.3.1 Flux Balance Analysis (FBA)

Flux Balance Analysis (FBA) is currently the most widely used method-
ology to simulate cellular metabolism on a genome scale. FBA relies
on the stoichiometry of reconstructed metabolic reactions, using lin-
ear programming to find the distribution of fluxes that maximizes a
linear function of fluxes. Commonly, the objective function is set to
the production rate of biomass per uptake rate (yield), which is often
considered a proxy for growth rate, despite the fact that in general
the maximization of molar yield is not favored by evolution [55].

In its standard application, FBA finds the maximal biomass produc-
tion rate vy, and its corresponding flux distribution v for a given sto-
ichiometric matrix S, biomass reaction consuming (and in some cases
producing) reactants with concentration r, and upper (u) and lower

5
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(1) bounds on fluxes. Formally, this defines the linear optimization
problem

maximize Vypig
v

subject to: 2)
Sv = VpioT
Il<v<u ,

where the inequalities are defined element-wise. The lower and upper
bounds on fluxes can be used to put a limit on maximal uptake rates
or minimal excretion rates, or to enforce reaction directions when
these are known. It is common to incorporate the biomass reaction as
a column of the stoichiometric matrix with entries equal to 1 scaled by
the cellular dry weight. Then vy, is an element of the vector v, and
mass balance is expressed as [50] Sv = 0. This thesis does not use that
convention in order to permit a more straightforward comparison
with methods in which r is not fixed.

The linear optimization defined by Eq. 2 is simple to solve, but the
computational ease is bought at the price of some conceptual limita-
tions. First, the maximization of vyi, is constrained predominantly
by the upper bound of the uptake reactions (e.g., the uptake rate of a
limiting carbon source), so — in the absence of a growth-independent
maintenance energy term — the solution corresponds to the maximal
yield (ratio between uptake flux and biomass production flux), not
necessarily the maximal growth rate. Furthermore, the explicit de-
pendence of biomass production on uptake fluxes means that opti-
mal biomass production can only be predicted if uptake fluxes are
known.

Second, for realistic large-scale models, S has more columns than
rows, which means there is no unique solution [50] for v. Thus, one
typically needs extra criteria to specify a unique prediction of the flux
distribution v. The most common method for this is parsimonious FBA
(pFBA) [30], which minimizes the sum of absolute fluxes at the maxi-
mal biomass production rate; this strategy approximately reflects the
expectation that the cell will minimize its resource investment into
enzymes.

1.3.2 Extensions of FBA

Beg et al. [9] introduced a generalization of FBA that accounts for
how the limitation on total macromolecular concentration limits en-
zyme concentration and hence metabolism, termed FBA with molec-
ular crowding (FBAwWMC). This method accounts for the (average)
dependence of the fluxes on enzyme concentrations and kinetics at
fixed metabolite concentrations. It assumes that the maximum mass
concentration of enzymes is limited by the cytoplasmic protein den-
sity, assumed to be constant. This results in an additional constraint
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for the extended FBA problem: the sum of fluxes weighted by an
average crowding coefficient corresponds to the sum of enzyme con-
centrations, which cannot exceed a maximal value; this coefficient is
determined by fitting growth rate predictions to experimental mea-
surements. The flux predictions obtained with FBAWMC and related
methods are closer to experimental values than those obtained from
simple FBA [1, 9, 61].

Adadi et al. [1] introduced a generalization of FBAWMC termed
MOMENT (MetabOlic Modeling with ENzyme kineTics), which ac-
counts for the kinetic limitation on each individual reaction as v; <
ejKcat,j, With ke j being the catalytic constant of reaction j. Account-
ing for gene-to-reaction mapping, MOMENT was shown to improve
FBAWMC flux predictions [1].

Goelzer et al. [25] have introduced a further generalization of FBA-
type models, named Resource Balance Analysis (RBA). This method

extends the cellular modelling to resource allocation outside metabolism,

by accounting for the concentration of i) the necessary translation ap-
paratus to produce proteins and ii) other macromolecules necessary
for growth, such as DNA and the lipid membrane (assumed to have
a constant “concentration” independent of growth rate). RBA also ex-
tends the constraint on the total concentration of macromolecules by
accounting individually for limitations imposed within different cel-
lular compartments, and extends the kinetic constraint by assuming a
growth-rate (1) dependent “apparent catalytic rate” k;(u) = aju + b;
for each enzyme j, where the corresponding flux is constrained by
v; = ejkj(u) and the parameters aj, b; are obtained by fitting pro-
teomics data to reaction fluxes. Based on this calibration, RBA has
been shown to be able to predict proteome allocation in B. subtilis
[26].

Lerman et al. [39] described an alternative way to model metabolism

while accounting for the gene expression machinery, termed metabolism

and macromolecular expression models (ME-Models). ME-Models
generate a feasibility problem which searches for the maximal growth
rate achievable with a flux distribution that requires the minimal
ribosome production. Conceptually, ME-Models claim to be able to
predict macromolecular composition (biomass) without requiring the
assumption of a fixed biomass composition as FBA. In practice, the
ME-Model for T. maritima presented by Lerman et al. [39] requires a
“structural reaction” that comes directly from the corresponding FBA
model for this organism. As in MOMENT, kinetics in ME-Models
provide only an upper bound for reaction fluxes based on the corre-
sponding kcat [39]-

Mori et al. [45] have introduced a variation of FBA that explic-
itly accounts for the growth rate dependence of proteome sectors,
named Constrained Allocation Flux Balance Analysis (CAFBA). This
method divides the proteome into 4 sectors: ribosome-affiliated (R-

7
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sector), biosynthetic enzymes (E-sector), carbon intake and transport
(C-sector), and core housekeeping sector, the concentration of which
is independent of the growth rate (Q-sector). The corresponding pro-
teome fractions ¢r, ¢pe, $c, ¢ sum up to one, and d¢, pg are
assumed to depend linearly on their fluxes vc,ve, based on exper-
imental evidence [32, 64] and mimicking the growth law Eq.(1) for
the ribosome sector [56]. With some additional assumptions, includ-
ing Michaelis-Menten dependence of the C-sector flux on the external
sugar concentration and again a linear dependence of each enzyme
protein fraction ¢; on its flux vj, a new constraint is included into the
FBA problem Eq.(2)

wcvce + ij |Vj| +WRH = dmax (3)
J

where wc is the C proteome fraction per unit of carbon influx (which
depends on the external sugar concentration), wj is the enzyme j pro-
teome fraction per unit of flux j (absolute flux value because it does
not depend on reaction direction), wg is set to an empirical value
~ 0.169 h [13], and ¢max = 1— g — dco — dE,0 — Pro is the pro-
teome fraction allocated to the growth rate dependent components of
the protein sectors, which is set to 0.484 based on a previous estima-
tion for E. coli [56]. The values w; can be set in two different ways: (i)
all are set equal to the same value we fitted to support the empirical
maximal growth rate, or (ii) random values for each w; are drawn
from a distribution with mean < w >. The average predictions of
acetate excretion and growth yield (gram of dry weight per gram of
glucose) using different values for wc to emulate carbon limitation
provide a good fit to experimental values for the strain MG1655 us-
ing <w >= 155 x 1073 gh/mmol and for the strains NCM3722 and
ML308 using < w >= 8.8 x 10~% gh/mmol.

All previously described methods assume the cell is in an opti-
mal state, identified in the model by solving a linear optimization
problem. However, due to the inherently non-linear nature of en-
zymatic rate laws, molecular biological systems are inherently non-
linear. Problems in genome-scale non-linear models, which comprise
hundreds or even thousands of variables [50], are difficult or even
impossible to solve numerically with current computational means.
For this reason, FBA-based methods make some conceptual compro-
mises in order to avoid formulating nonlinear optimization problems.
Reaction fluxes, for example, do not account for substrate concentra-
tions and by consequence are assumed to be a linear function of the
catalyzing protein concentrations only (v; = ejk;). The assumption
that the k; are constant across conditions, which is assumed in al-
most all models, may strongly affect the methods” predictive power,
as it misses the importance of changes in reactant concentrations for
enzyme efficiency. One alternative to the assumption of constant en-
zyme saturation is to use ad hoc rules to fit model predictions to
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experimental values [9, 25, 39]; however, this phenomenological ap-
proach defeats the purpose of understanding and predicting how cell
behaviour emerges from first principles.

1.3.3 Self-replicator models

The inherent non-linearity of biological systems can be treated ex-
actly in simplified cellular models with only a few reactions. In an
exponentially growing cell with growth rate p, each component with
concentration x needs to experience a net production rate dx/dt = px
in order to balance its dilution by cellular volume growth. This direct
connection between concentrations and growth rate makes it possi-
ble to formulate an optimization problem that directly maximizes
growth rate instead of just yield. Molenaar et al. [44] proposed an op-
timization framework for cellular growth that accounts for the most
important physicochemical constraints, assuming balanced exponen-
tial growth of a self-replicator model with up to 7 reactions.

In their mathematical description of balanced growth, Molenaar et
al. [44] considered the maximization of growth rate p under the major
physicochemical constraints on cellular growth:

1. the mass balance of reactants, as in FBA; note, however, that
here no particular biomass composition has to be assumed, as
all reactants need to be produced in proportion to their modeled
concentrations;

2. the production and mass balance of total protein used by the
cell; there is a “ribosome” reaction that produces proteins at the
same rate as proteins are diluted by growth;

3. the kinetics of all biochemical reactions, each of which depends
on the concentrations of both the catalyst (ribosome, enzyme,
or transporter) and of the reactants involved, described by non-
linear kinetic rate laws;

4. an upper bound P on the total (molar) protein concentration,
reflecting finite cellular capacity [1, 9, 25, 39];

5. an upper bound on the total transporter protein density on the
cellular membranes, which stems from the necessity to have a
minimal density of lipids to retain membrane structure [65].

The resulting optimization problem aims to find the concentrations
of reactants r and proteins p (and the fluxes v resulting from the
concentrations according to the kinetic rate laws k(r)) that maximize

9
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growth rate p, for a given set of external reactant concentrations and
a given limit on total protein concentration P,

maximize

rp
subject to:
Sv=ur
vgR = uP
Vi v = pik;(r) (4)

2 pi<P
j
D pesm
t

pr=0 ;

here, t indexes transport proteins and 1 indexes lipids in the cellular
membrane. For clarity of presentation, the optimization is formulated
here in a slightly modified (but mathematically equivalent) manner
compared to the original formulation by Molenaar et al. [44].

It is important to note two important differences between the op-
timization scheme (4) and the previously discussed constraint-based
optimization schemes based on FBA: (i) the reactant concentrations
T are not fixed, but are optimized for a given growth condition; (ii)
concentrations are constrained to be non-negative, but there are no ex-
plicit lower and upper bounds on fluxes; limits on fluxes (including
flux directions) instead arise from constraints on the concentrations
of the molecules involved and from reaction kinetics, which in princi-
ple account for thermodynamics and regulation (e.g. allosteric). The
first difference is particularly important: the full biomass composi-
tion varies across growth conditions and can be seen as an evolved
environmental response of the cell; through changes in the reactant
concentrations, it strongly influences environment-dependent kinet-
ics.

Because this framework integrates all necessary parts of cellular
physiology for self-replication (not just metabolism), it is in principle
capable of predicting behaviour that emerges from the function of
the cell as a whole [44]. There are, however, two main limitations of
this approach: first, the optimization is assumed to be solved with
numerical methods, which are capable of managing only a limited
number of reactions (e.g., up to 7 reactions in Ref. [44]). Second, this
approach requires quantitative knowledge of all kinetic parameters.
Kinetic parameters are mostly unknown even for the best studied
species; e.g., only about 10% of catalytic constants kcq¢ are known
in E. coli [17]). Moreover, it is not clear how to best choose kinetic
parameters in coarse-grained models, and so these are typically set to
arbitrary values [44] or fitted to data [18, 24].
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1.4 AIMS OF THIS THESIS

This thesis aims primarily to develop an analytical theory for the bal-
anced growth of self-replicator models. Such a theory not only repre-
sents an important step toward the application of the self-replicator
scheme to cellular models of any size, it also provides a deeper un-
derstanding of cell biology, by relating cellular concentrations, fluxes,
and the growth rate at optimal growth through fundamental quan-
titative principles. Approximations to these principles will provide a
rigorous basis for quantitative descriptions of optimal cellular growth
in the general case of arbitrarily large systems for which kinetic pa-
rameters are not fully known.

1.5 NOTE ON THE CONTRIBUTION OF COLLABORATORS

The two manuscripts included in this thesis are the results of scientific
collaborations. For the first manuscript, “An analytical theory of bal-
anced cellular growth”, I developed the GBA framework, performed
all data analyses, and derived all formal results except Theorems 1-4.
This manuscript has been invited for re-submission after peer review
at Nature Communications. For the second manuscript, “Optimal cata-
lyst and substrate concentrations in cells”, I derived all formal results
except Eqs.(536-37). Together with Martin Lercher, I conceived both
studies, interpreted the results, and wrote the manuscript. Xiao-Pan
Hu provided the model for protein translation. Terry Hwa suggested
the link to the proteome offsets in the bacterial growth laws, gave
advice on data processing, and, together with Matteo Mori, helped
interpret the results of the second study. Matteo Mori also helped
with data processing for the second study.

Below, I use the pronoun “we” to refer to my work presented in
these manuscripts.

1.6 OVERVIEW OF THE MAIN RESULTS

The first manuscript in this thesis develops an analytical basis for a
general theory of cellular growth, which we termed Growth Balance
Analysis (GBA). The analytical approach permits to study and pre-
dict general features of resource allocation in cell models of any size,
unlike previous methods that rely on numerical optimization and are
hence confined to small, coarse-grained models [44]. In the form pre-
sented in this thesis, GBA considers the simplest structural model of
a complete biological cell containing a unique compartment in steady
state, accounting for the concentrations of all growth-related cellular
components, assumed to be constant over time. The latter assump-
tion means that the cell increases its volume at the same rate as it
produces dry weight, by increasing its water content at the same rate.

11
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The theory incorporates a general limit on total cell dry weight, irre-
spective of a possible compartmentalization of cellular components.
The limitation of total dry weight at fixed external osmolarity is a
real, experimentally observed phenomenon [4, 14, 15].

Following the framework presented by Molenaar et al. [44], we
assume that a cell is composed of two fundamental types of com-
ponents: proteins that are the catalysts of reactions (ribosome, en-
zymes, and transporters), and reactants (metabolites, possibly RNA
and DNA, and any additional component other than protein that
is produced or consumed by reactions). Reactants are transported
through the membrane by transporters and/or converted into other
reactants by enzymes or into protein by the “ribosome” reaction. (Spon-
taneous reactions can be modeled by proteins with extremely high
catalytic constants and extremely low Michaelis constants). This sim-
ple structural model provides a reasonable approximation to prokary-
otic cells, while for eukaryotic cells an explicit consideration of cellu-
lar compartments will likely be more important.

We modify the mathematical optimization introduced in Ref. [44]
by incorporating the reactants into the capacity constraint in addition
to proteins. As a consequence, the total protein mass concentration P
is not fixed but becomes a variable over which we optimize.

The analytical theory assumes knowledge of which reactions are ac-
tive, i.e., have non-zero fluxes. Based on previous results [47, 63], we
demonstrate that for any fixed set of concentrations, the correspond-
ing set of active fluxes at maximal growth rate is an Elementary Flux
Mode (EFM) of a corresponding linear problem, and by consequence
the corresponding active stoichiometric matrix indeed has full col-
umn rank [22] (see theorems 1-4 in manuscript 1).

For a given active matrix A, kinetic functions k (accounting for
external fixed concentrations), and cell dry weight density p, the gen-
eral optimization problem considered in this thesis can then be for-
mulated as:

maximize

ap
Av =1 P
a

subject to:
V]‘ V; = p,-k]-(a)
P=) pj
j
[0

where ay are the corresponding active reactants, i.e. reactants with
non-zero concentration. The mass balance of total protein and reac-
tants is considered together, constrained by the growth rate p and the

(5)
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active matrix A (which we define such that the first row of A corre-
sponds to the protein production by a single “ribosome” reaction, so
that the resulting balance equation is simply vg = uP).

This problem is reformulated in a way such that the objective func-
tion p and the constraints become explicit functions of the concentra-

tion vector [a, P]T of total protein and the reactants
maximize = P
P, a H_ZIjPP-{-ZB Iiﬁbﬁ
]. kj(a)
subject to: (6)

P+Za(x:p
[0

Yy ¢y =DypP+ > Dygbg ;
B

here,

* b are the reactant concentrations corresponding to the linearly
independent rows of A;

* c are reactant concentrations corresponding to the linearly de-
pendent rows of A;

¢ the matrix I is the inverse of the submatrix B of linearly inde-
pendent rows of A;

¢ the matrix D is defined as D = CI, where C is the submatrix of
A that corresponds to the linearly dependent rows.

Figure 1 shows an example of a simple balanced growth model and
its mathematical description in the GBA framework.
This reformulation facilitates three different theoretical results:

1. an explicit expression for fitness costs and benefits of cellular
components;

2. the analytical necessary conditions for optimal growth (using
the method of Lagrange multipliers);

3. an extension of metabolic control analysis (MCA) for balanced
growth models, termed Growth Control Analysis.

These three theoretical results are closely related; the framework pre-
sented here clarifies the precise mathematical connection and facili-
tates the integration of these different areas of theoretical cell biology.

In principle, one could simplify this problem even further by in-
corporating the linear constraints in Eq. (6) into the equation for
i, thereby formulating a maximization problem without constraints,
which depends only on b and p. This will not be done here, as it

13
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Figure 1: Example of a simple balanced growth model. Mass conservation
requires that the mass flux transported into the cell is the same as
that partitioned into the dilution by growth of each cellular compo-
nent. The active matrix A in this case is a square matrix (as in any
model with a linear reaction network), so there are no dependent
reactants, and B = A. The mathematical description of the model
is completely parametrized by the active matrix A, kinetic func-
tions k (accounting for external reactant concentrations), and dry
weight density p. The cellular state is then uniquely determined
by the concentrations of total protein P and independent reactants
b=a

is biologically relevant to evaluate the individual importance of the
constraints themselves; the formulation in Eq.(6) presents a more di-
rect way to do that by using the envelope theorem [2]. In particular,
we will use this formulation to quantify the influence of the capacity
constraint on the maximally achievable growth rate.

The optimization problem presented in Eq.(6) can be solved analyti-
cally with the method of Lagrange multipliers. This is not true for the
original problem in Eq.(5) with a general non-square matrix A; in this
case, the linearly dependent rows of A imply linearly dependent gra-
dients of the corresponding constraints (each row of A results in one
constraint), and therefore the method of Lagrange multipliers cannot
be applied directly.

We define the marginal net benefit of reactants and total protein as
the relative change in growth rate caused by a small change in their
concentration, ignoring the capacity constraint. We show that optimal
growth requires the equality between these marginal net benefits and
the marginal benefit of the capacity constraint itself, defined as the
relative change in maximal growth rate due to a small increase in the
cell dry mass capacity; we term these relationships balance equations.

The application of GBA depends on a full model parameterization
of the kinetic functions; however, kinetic parameters (in particular
turnover numbers k.qt) are in most cases not available in the lit-
erature [17]. To overcome this limitation, in practice one might ex-
plore an approximation ignoring production costs, as developed in
manuscript 2.

Manuscript 2 considers the simpler optimization of dry weight den-
sity use constrained by kinetics. The corresponding first order neces-
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sary conditions are identical to the balance equations with the produc-
tion costs set to zero. For irreversible Michaelis-Menten kinetics, the
balance equation for each reactant « equates its mass concentration
with the mass concentration of unbound enzymes using « as a sub-
strate. Strikingly, there is no dependency on the reaction fluxes v nor
on the catalytic constants of reactions K¢q¢, but only on the concen-
trations p, a, and the Michaelis constants Ky,,. The predicted optimal
metabolite concentrations agree well with experimental values from
E. coli [23, 53].

The optimal balance of catalyst and substrate concentrations also
implies a unique relationship between the reaction flux and the opti-
mal protein concentration. At higher reaction fluxes — i.e., when the
flux is much higher than the predicted optimal flux at half saturation,
Vv > KcatKm) — the enzyme is almost saturated with its product, and
the protein concentration p is approximately equal to a linear term
in v, as expected from the empirical growth laws [56]. At lower re-
action fluxes (i.e., when the flux is much lower than the predicted
optimal flux at half saturation v < k¢qtKm), p depends mainly on a
square root term in v. We thus hypothesize that the combination of
these two terms might explain from first principles the long observed
relationship of ribosome [32, 43, 56, 57] and other catalyst concen-
trations [32, 56, 57] with growth rate, more recently understood in
terms of the microbial growth laws [56]. In the cases where the de-
pendence of the reaction flux on growth rate is known, there is a
direct prediction for catalyst concentrations as a function of growth
rate. This is the case for the ribosome and metE, the most abundant
metabolic enzyme in E. coli growing on minimal media [53], as both
fluxes must satisfy the known demand arising from growth-related
protein production. The predictions for both cases assuming simple
irreversible Michaelis-Menten kinetics [27, 35] are in good agreement
with experimental values [53]. While the ribosome prediction results
in an apparent offset, the predicted metE offset is indistinguishable
from zero.
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ABSTRACT

The biological fitness of unicellular organisms is largely determined by their balanced growth rate, i.e.,
by the rate with which they replicate their biomass composition. Natural selection on this growth rate
occurred under a set of physicochemical constraints, including mass conservation, reaction kinetics,
and limits on dry mass per volume; mathematical models that maximize the balanced growth rate while
accounting explicitly for these constraints are inevitably nonlinear and have been restricted to small,
non-realistic systems. Here, we lay down a general theory of balanced growth states, providing explicit
expressions for protein concentrations, fluxes, and the growth rate. These variables are functions of
the concentrations of cellular components, for which we calculate marginal fithess costs and benefits
that can be related to metabolic control coefficients. At maximal growth rate, the net benefits of all
concentrations are equal. Based solely on physicochemical constraints, the growth balance analysis
(GBA) framework introduced here unveils fundamental quantitative principles of cellular growth and

leads to experimentally testable predictions.
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Introduction

The defining feature of life is self-replication. For non-interacting unicellular organisms in constant
environments, the rate of this self-replication is equivalent to their evolutionary fitness!: fast-growing
cells outcompete those growing more slowly. Accordingly, we expect that natural selection favoring fast
growth in specific environments has played an important role in shaping the physiology of many microbial
organisms>>.

Conceptually, we can envision a bacterial cell as a volume enclosed by a membrane, filled with a
solution of metabolites and of the proteins and nucleic acids that catalyze their conversion into biomass. A
state of the cell is characterized by the molecular concentrations, which in turn determine the fluxes of the
biochemical reactions. The boundary conditions limiting the concentrations and fluxes are provided by
the environment and by physicochemical constraints. Cellular growth has to be balanced over the cell
cycle, i.e., all cellular components must be reproduced in proportion to their abundances*. Casting these
constraints into a mathematical model and characterizing states of optimal growth may provide a detailed
understanding of central aspects of bacterial physiology>>~8.

Currently, the most popular method to model the physiology of whole cells is flux balance analysis
(FBA)*- 19, FBA maximizes the production rate of a constant biomass concentration vector while balancing
the fluxes producing and consuming internal metabolites to account for mass conservation. All constraints
in FBA are linear (Fig. 1). The resulting computational efficiency comes at the price of ignoring reactant
concentrations, and hence FBA cannot account for reaction kinetics and the resulting demand for catalytic
proteins from first principles. Instead, extensions of FBA that consider enzyme concentrations rely
on phenomenological kinetic functions that are assumed to be either constant (FBA with molecular
crowding!!, metabolism and expression models!?) or linear functions of the growth rate (resource balance
analysis'?).

Molenaar et al.> proposed a small, coarse-grained model of balanced growth with explicit non-linear
reaction kinetics. Numerical growth rate optimization predicted qualitatively the growth-rate dependencies
of cellular ribosome content, cell size, and the emergence of overflow metabolism. No extensions of this

approach to models accounting for more than seven cellular reactions have been proposed, likely because

of its inherent nonlinearity. Instead, “toy models” of 1-3 reactions were solved analytically to gain further

3,6-8,14 3,7

qualitative understanding of systems-level effects , including optimal gene regulation strategies

We term this general modeling scheme Growth Balance Analysis (GBA); below, we develop an
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analytical theory for GBA of arbitrarily complex cellular systems. FBA and its extensions can be viewed
as linearizations of the GBA scheme!>. Fig. 1 shows a schematic comparison of FBA and GBA. While
FBA predicts a linear dependence of maximal growth rate on nutrient uptake fluxes, GBA leads to a

non-linear (Monod-type) dependence on nutrient concentrations.

Results

Modeling balanced exponential growth

Our model assumes that the cell increases exponentially in size, while the concentrations of all cellular
components (including the number of membrane constituents per cell volume) remain constant®. We do
not explicitly model cell division; thus, our model can also be interpreted as describing the growth of

a population of cells’. In balanced growth, the net production rate of each molecular constituent must

FBA

Transport - Mass - Biomass
G BA Mass
balance

+

External ‘ Reaction ‘
Concentrations kinetics
+

Cell \ ,
capacity ' - Nutrient concentration

- -

Biomass

Biomass production

Transport flux

Growth rate

Figure 1. A schematic comparison of flux balance analysis (FBA, top) and growth balance
analysis (GBA, bottom) for a simple toy model. A nutrient G is taken up through a transporter ¢ at rate
v; and is then converted by an enzyme e with rate v, into a precursor for protein synthesis, AA. In FBA,
AA is equated with the biomass, the production of which is maximized while enforcing the stationarity of
internal concentrations (blue); this leads to a linear dependence of growth rate on uptake flux. In GBA, AA
is converted further into total protein P by a ribosome R, where P represents the sum of the three proteins
t,e,R. GBA maximizes the balanced reproduction of the cellular composition with growth (blue),
constrained by non-linear reaction kinetics (red) and cellular capacity (dry mass per volume, grey); this

leads to a non-linear dependence of growth rate on nutrient concentrations.
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balance its dilution by growth, % = ux, where x denotes the concentration of a given component and u is
the cellular growth rate>”.

The mass conservation in chemical reaction networks is commonly described through a stoichiometric
matrix N, where rows correspond to metabolites and each column describes the mass balance of one
reaction'®. Here, we focus on matrices A of active reactions, i.e., A is a sub-matrix of N that contains all
columns j for reactions with flux v; # 0 and all rows for reactants i involved in these reactions. A also
includes a “ribosome” reaction to produce catalytic proteins, encompassing enzymes, transporters, and
the ribosome itself. We express concentrations as mass concentrations (mass per volume); accordingly,
the entries of A are not stoichiometric coefficients but are mass fractions. The mass conservation of each

component can then be stated as

P
Av=p ; (1)
a

where v is the flux vector (in units of [mass]/[volume]/[time]), a is the vector of reactant mass concentra-

tions aq, and P is the sum of the mass concentrations p; of all proteins j € {1, ... ,n},
J

The first row of A describes the net production of total protein P, which is then distributed among the
individual proteins j. The remaining rows describe the net production of the reactants «.
Each reaction rate v; is the product of the concentration of its catalyzing protein p; and a kinetic

function k;(a) that depends on the reactant concentrations a,
ijpjkj(a) . (3)

We assume that the functional form and kinetic parameters of k;(a) are known. k;(a) may depend on the
mass concentrations of substrates, products, and other molecules a,, acting as inhibitors or activators, and
accounts for the system’s thermodynamics. The activity of all reactions j (v; # 0) implies p; > 0 and
kj(a) # 0.

For a given concentration vector x = [P,a]”, we define a balanced growth state (BGS) as a cellular
state (characterized by its flux vector v) that satisfies constraints (1), (2), and (3). The set of all such states
forms the solution space of balanced growth. On the following pages, we first develop a framework for
GBA by characterizing BGSs at a known concentration vector x. Formal definitions and theorems are

detailed in SI text A.; Table S2 lists the symbols used.

4/45



22 MANUSCRIPTS

Cellular state defined by the concentration variables
We define an elementary growth state (EGS) as a BGS v that also represents an elementary flux mode'” of
a linearized problem (SI text A., Def. 3). We can express any BGS as a weighted average of EGSs at the
same concentration vector x = [P,a]” (Theorem 3). Moreover, any optimal BGS under a single capacity
constraint (see below) is also an EGS (Theorem 9; see also Ref.lg). Thus, without loss of generality, we
focus on EGSs from here on.

If A is the active stoichiometric matrix of an EGS, it has full column rank (Theorem 4; see also Ref.!?).
A may have more rows than columns, in which case some reactant concentrations are linearly dependent
on other concentrations'®. These dependent concentrations are not free variables, and hence they can be
put aside and dealt with separately. For clarity of presentation, we here present only the case without
dependent reactants; the generalization can be treated similarly and is detailed in SI text A.. Without
dependent reactants, A is a square matrix with a unique inverse / = A~'. Multiplying both sides of the

mass balance constraint (1) by /, we obtain (Theorem 5)

P
v=ul . 4)

a
The right hand side of the mass balance constraint (1) quantifies how much of each component needs
to be produced to offset the dilution that would otherwise occur through the exponential volume increase.
I;; quantifies the proportion of flux v; invested into offsetting the dilution of component i, and we thus
name / the investment (or dilution) matrix; see Fig. S1 for examples. In contrast to the stoichiometric
matrix A, which describes local mass balances, I describes the structural allocation of reaction fluxes into

offsetting the dilution of all downstream cellular components, carrying global, systems-level information.

From the kinetic equations (3), p; = v;/k;j(a), and inserting v; from the investment equation (4) gives

= ‘uI.iPP T Yaljuda
P kj(a) ’

where Y, sums over the set of all reactants (denoted by {o }; Theorem 6). Substituting these expressions

®)

into the total protein sum (Eq. (2)) and solving for u results in the growth equation (Theorem 7)
P
LipP+Y o ljaao
j kj(a)

Thus, for any EGS and concentration vector x, there are unique and explicit mathematical solutions for v,

u(P.a) = (6)

p, and u. If u and all individual protein concentrations p; in Eq. (5) are positive, the cellular state is a

BGS; otherwise, no balanced growth is possible at these concentrations.
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Marginal fitness contributions of cellular concentrations

We now use these relationships to calculate the costs and benefits of concentration changes, which are
naturally expressed in terms of relative fitness effects. If fitness is determined predominantly by growth
rate! (SI text B.), we can we define the marginal net benefit M; of concentration x; (i € {P,a}) as the

relative change in growth rate?® due to a small change in x; (Def. 4),
_1du

= o (7)

i
To aid in the interpretation of 1); below, we define the marginal production cost incurred by the system

via protein j as a consequence of increasing concentration x; at fixed growth rate y and kinetics &,

l P axi U,k j=const. ij

where the second equality arises from the growth equation (6). qu quantifies the proportional increase

of p; to help offset the increased dilution of component i. Thus, qu is related to the protein control
coefficient from metabolic control analysis (MCA); SI text F. summarizes the relationship between GBA

and MCA2!'-23, From the growth equation (6), it further follows that
1 .
_ L j
ne = P ;q P
Na = Z(”é‘ - qé)
J

with

d=-l(Z)  _pld
P\ day yj—const. P kjdag

(Theorem 8). ué is the marginal kinetic benefit of reactant ¢ to reaction j and quantifies the proportion of
protein p; “saved” due to the change in Kinetics associated with an increase in ag®*. Tt relates directly to
the elasticity coefficients from MCA (SI text F.). The kinetic benefit is nonzero only for reactants that
directly affect the kinetics of reaction j, making it a purely local effect. Because fluxes are proportional to
the concentrations of the catalyzing proteins, the marginal kinetic benefit of total protein is simply P!
Overall, the net benefit of component i via reaction j is the reduction of the protein fraction ¢; = p;/P at
constant u facilitated by the increase in x;,

n,-:—Z_@f’f) : ®)

J L/ u=const.

This result provides a formal justification for the notion that cellular costs lie predominantly in protein

pl’OdUCtiOIl3’ 5-8,12-14,24-27
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Optimal growth and the balance of marginal net benefits

Up to this point, we kept x = [P,a]” fixed. We will now characterize optimal growth states, i.e., BGSs
with maximal growth rate across all allowed concentration vectors. To make this problem well defined, we
need to consider an additional constraint that reflects the cellular requirement for a minimal amount of
free water to facilitate diffusion®®2°. We implement this constraint by assuming that cellular dry weight
per volume is limited to a maximal density p, where p is determined by external osmolarity>>-3° but is

otherwise constant across growth conditions’!,

p>P+Yaq . ©)

A BGS is a capacity-constrained balanced growth state (cBGS) if it additionally satisfies constraint (9).
At maximal growth rate, the cellular components will utilize the full cellular capacity to saturate enzymes
with their substrates, and thus the inequality in Eq. (9) becomes an equality.

The maximal obtainable balanced growth rate u* will be a function of p. In analogy to the marginal
net benefits of cellular components, we define the marginal benefit of the cellular capacity as the fitness
increase facilitated by a small increase in p,

Using the method of Lagrange multipliers with the growth equation (6) as the objective function, we

derive necessary conditions at optimal growth, which we term balance equations:

Vietpay Mi="Mp (10)

(Theorem 10). The optimal state is perfectly balanced: the marginal net benefits of all cellular concen-
trations x; are identical. If the dry weight density p could increase by a small amount (such as 1 mg/l),
then the marginal fitness gain that could be achieved by increasing protein concentration by this amount
is identical to that achieved by increasing the concentration of any reactant o by the same amount. This
should not be surprising: if the marginal net benefit of concentration x; was higher than that of x;, growth
could be accelerated by increasing x; at the expense of x;.

Eq. (10) together with Eq. (9) describes a system of n+ 1 equations for n+ 1 unknowns. In realistic
cellular systems, this set of equations has a finite number of discrete solutions. Thus, growth rate
optimization can be replaced by searching for the solution of the balance equations. If the optimization

problem is convex, the conditions given by Eq. (10) are necessary and sufficient, and the solution is unique.
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Figure 2. The GBA prediction of the active ribosomal protein fraction in E. coli agrees with
experimental values. Comparison of GBA predictions (red line, no free parameters) and data across 20
different growth conditions>>33 (grey dots) results in a Pearson correlation coefficient

R>=0.96 (P < 10713,

Quantitative predictions
If a substrate i is consumed only by a single reaction that produces i, the non-local dilution terms in
the balance equation 1; = 1y cancel, and we are left with a local problem for which only the kinetic
benefits of x; and x; must be considered. This is the case for protein production in simplified models
where the ribosome (R) produces proteins from a single substrate, a generic ternary complex (7). In
such models, we can calculate the optimal protein fraction of actively translating ribosomes, g = pr/P
from the balance equation 77 = 1p (SI text C.), which agrees quantitatively with experimental values?33
(Fig. 2).

An approximation that ignores the dilution of intermediates and hence production costs (qu ~ 0) results
in less accurate predictions especially at high growth rates (Fig. S4). In growth on minimal media (¢ < 1),
the dilution of intermediates fLa, becomes less important. This explains why the relationship between
the concentrations of a substrate and its catalysts is well approximated in this regime through minimizing
their joint utilization of cellular capacity*.

To obtain a rough quantitative estimate of the marginal net benefits 7);, we here consider the simplest

model of a complete cell, consisting of only a transport protein and the ribosome>® (Fig. S2). Based on
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the experimentally observed protein fraction of total dry weight in E. coli, P/p = 0.54,%° we estimate
pdu
udp
0.69% decrease in growth rate, emphasizing the biological significance of the capacity constraint.

= p Np = 0.69 (SI text D.). Thus, a decrease in cellular dry weight density p of 1% would lead to a

The cellular capacity p changes when external osmolarity is modified®®. p Np = 31125

is the slope
of the log-scale plot of i vs. p at different external osmolarities. While increases in p may have strong
effects on diffusion and thus on enzyme kinetics, reductions in p due to decreased external osmolarity are
within the scope of our model. The very limited available experimental data (three data points from Ref.3>,

Fig. S3) suggests p 1, ~ 0.66, close to our rough estimate from the minimal cell model.

Discussion

Our derivations are based on the insight that for any EGS, the inverse / of the active stoichiometric matrix
quantifies how individual fluxes offset the dilution of downstream cellular components by growth. These
non-local, structural constraints arising from mass balance lead to an explicit dependence of reaction
fluxes on the cellular concentrations (Eq. (4), Theorem 5). Independently of this, fluxes also depend
on concentrations through reaction kinetics (constraint (3)). Combining these two relationships leads to
explicit expressions for the individual protein concentrations p; and for the growth rate u as functions of
arbitrary concentrations [P,b]”. As any BGS can be expressed as a weighted average of EGSs (Theorem
3), these results allow a general characterization of the solution space of balanced growth. Further, the
growth rate equation (6) can be employed to calculate marginal fitness benefits of concentrations and to
derive balance equations for marginal benefits at optimal growth.

Previous work has emphasized the central role of proteins in the cellular economy?>-8-12-14.24-27,
and this is confirmed by Eq. (8). However, whereas total protein mass concentration in real biological
systems is indeed much higher than the mass concentration of any other cellular constituent ay, the balance
equations show that at optimal growth, their marginal net benefits are in fact equal.

To make the presentation concise, our development of GBA assumes (i) that all proteins contribute to
growth by acting as catalysts or transporters; (ii) that there is a 1-to-1 correspondence between proteins and
reactions; (iii) that proteins are not used as reactants; (iv) that all catalysts are proteins; and (v) that cells
are optimized for growth. As outlined in SI text E., it is straight-forward to remove these simplifications.

In principle, exploitation of the balance equations (Eq. (10)) may allow the numerical optimization of
cellular systems of realistic size, encompassing hundreds of protein and reactant species. One remaining

obstacle to the accurate formulation of such models is the current incompleteness of the kinetic constants
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needed to parameterize the functions kj(a). Until methods for the high-throughput ascertainment of kinetic
parameters>° are fully developed, artificial intelligence may provide reasonable approximations®’ for the
required parameters. As an alternative to genome-scale models, the balanced growth theory developed
here could be applied to coarse-grained cellular models of increasing complexity, parameterized from

experimental data®’-38.

Our work extends previous ad-hoc optimizations of toy models>-8

into a theory of balanced growth.
We show that the balanced growth framework allows general, quantitative insights into cellular resource
allocation and physiology, as exemplified by the growth and balance equations. Application and further
development of this theory may foster an enhanced theoretical understanding of how physicochemical
constraints determine the fitness costs and benefits of cellular organization. Moreover, the explicit
expressions for the (marginal) costs and benefits of cellular concentrations in terms of fitness provide
a rigorous framework for analyzing the cellular economy. We anticipate that this approach will prove

fruitful in the interpretation of natural and laboratory evolution, and in optimizing the design of synthetic

biological systems.
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Supplementary Information

A. Growth balance analysis

In this section, we provide a formal description of growth balance analysis (GBA), detailing the formal
definitions, theorems, and proofs that form the basis of the main text. For simplicity of notation, we use
the following conventions: {a} is the set of all reactants in the active stoichiometric matrix A, and ),
indicates that we sum over all € {a}. We use corresponding notations for the sets of basis reactants

{B}, with concentrations bg, and dependent reactants {y}, with concentrations cy (see below).

Characterization of balanced growth states
First, we introduce the fundamental definitions that characterize the solution space of balanced cellular
growth. We define balanced growth states and generalize the concept of elementary flux modes from linear
constraint-based models to elementary growth states (defined as flux vectors). We then introduce several
theorems on the characterization and decomposition of balanced growth states.

In the formulation presented here, we assume that proteins do only act as catalysts and not as substrates

of reactions. Hence, neither total protein nor individual proteins are considered “reactants”.

Definition 1 (Balanced growth states (BGSs)). Let V' € R" be the vector of fluxes through the biochemical
reactions that occur in a cell, in units of [mass/volume/time]. Let v € R’;O, n <n', be the subvector of vV/
that contains all active fluxes of V' (i.e., all entries vfc #£0). Letx=[P,a]” € R’gar] be a corresponding
vector of total protein concentration P and individual reactant concentrations ag, o € {1,...,m}., where
each aq is consumed or produced by at least one of the fluxes v;; x; is in units of [mass/volume]. Let
A € RV be the corresponding active stoichiometric matrix in mass fraction units, i.e., column j of A
describes reaction j with flux v, row i of A corresponds to the cellular component x;, and each column
is mass balanced. Thus, the sum of negative entries in each column is S_ = —1 and the sum of positive
entries of each column is S+ = +1; for reactions that involve an external substrate not represented by a
row of A, —1 < S_ <0, while for reactions that involve an external product, 0 < S, < 1.

Let p € RY; be the vector of individual protein concentrations (in units of [mass/volume]), where
protein j catalyzes reaction j; for simplicity, we assume that “ribosome” catalyzing protein production is
also itself a protein. Let k(a) be a vector of kinetic functions, k : R, — R, where k;(a) is in units of

[1/time].
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Then v is a balanced growth state (BGS) at growth rate W if and only if it fulfills the following three

constraints:
P
Av=p (SD)
a
vj=pjkj(a) (S2)

Constraint (S1) implements mass balance, constraint (S2) implements concentration-dependent reaction
kinetics, while constraint (S3) implements a constraint on the total proteome concentration.
A BGS v at growth rate |l is a capacity-constrained balanced growth state (¢cBGS) if it additionally

fulfills the constraint on cellular capacity

p>P+)Y aq . (S4)
o

The kinetic constraint (S2) assumes that the flux through each reaction is linear in the concentration of
the catalyzing enzyme, while the dependence on the reactant concentrations a, will typically be non-linear.
For simplicity of notation, we will sometimes make the dependence of kinetics on a implicit, i.e., we will
use kj = kj(a).

In the above definitions, we define BGSs (or cBGSs) as a function of the set of active reactions
(corresponding to the columns of A) and the concentration vector. The set of all such states at all
concentrations x = [P,a]’ € R'goﬂ defines the solution space of balanced growth (or capacity-constrained
balanced growth) for a given active stoichiometric matrix A.

If we consider the concentration vector x = [P,a]” as a descriptor of a constant biomass composition,
Eq. (1) is mathematically identical to the flux balance equation at the heart of FBA (see., e.g., Ref.??).

Based on biophysical considerations, we might replace Eq. (S4) with separate capacity constraints

28

on the total volume concentration inside each cellular compartment® and on the total area occupied by

non-lipid membrane components per membrane area>“?. An even simpler capacity constraint imposed in

3,5-8,12-14

most previous models is to fix total protein concentration P to a constant value. However, it has

been shown that P decreases with increasing growth rate3’>#!. Thus, while a constant P allows to simplify

17/45



2.1 AN ANALYTICAL THEORY OF BALANCED CELLULAR GROWTH 35

the presentation, Eq. (9) provides a more meaningful constraint; moreover, Eq. (9) allows us to determine
the costs and benefits of varying the total protein concentration.

De Groot et al. have defined balanced growth states for a similar problem!3. In their formulation,
the dimensions of the concentration vector x include not only total protein P, but all individual protein
concentrations p ;. This more general problem formulation comes at the cost of more involved decomposi-
tion rules'® compared to Theorem 2, and does not lend itself to the derivation of explicit expressions for
growth rate (Theorem 7), fitness costs of concentrations (Theorem 8), or necessary conditions of maximal
balanced growth (Theorem 10).

We now provide the basis for linking BGSs to elementary flux modes, which are defined for FBA-type

linear constraint-based problems'” and which have been extended to proteome-constrained models*?43.

Definition 2 (Elementary flux modes (EFM)). Let v € R", x = [Pa]” € R%rl, and A € RU"HDX1 po gg

in Def. 1. Let ke e R’;O be a vector of effective kinetic constants. Then we call v a feasible flux vector

at biomass production rate vy, if and only if it fulfills the following constraints:

P
AV = Vpjo (S5)
a
(eff)
vj < pjk; (56)
P=Yp; . (S7)

J
A feasible flux vector v is a representative of an elementary flux mode if and only if it is non-
decomposable, i.e., it fulfills the following additional constraint'”: There exists no couple of feasible flux
vectors V',V such that v = LV + V" with A1, A, > 0 and where both v' and v"" have at least the same

number of zeroes as v, while at least one of them contains more zeroes than v.

Constraint (S5) is equivalent to the standard steady state constraint of flux balance analysis problems,
formulated with an equation analogous to Eq. (S1) for a fixed biomass vector instead of including an
artificial “biomass reaction” in A (see, for example, Eq. (2) in Ref.?).

Note that in the definition of EFMs, both the biomass composition x = [P,a]” and the effective kinetics

k) are assumed to be constant; thus, the constraints (S5)-(S7) that define the space of feasible flux
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vectors are fully linear. In contrast, constraint (S2) in Def. 1 defines reaction kinetics as a function of the

reactant concentrations a.

Definition 3 (Elementary growth state (EGS)). A BGS v is an elementary growth state (EGS) if and only
if it is a representative of a corresponding EFM, i.e., v represents an EFM of the corresponding linear

problem with constant biomass x = [P,a]” and effective kinetic constants ke — k(a).

We emphasize that v is an EFM of the corresponding linearized (FBA-like) problem (see Def. 2), not
of the balanced growth problem from Def. 1 from which it is derived. EFMs are defined as equivalence
classes of minimal feasible steady-state flux distributions, whose members can be converted into each
other by multiplication with a positive scalar!’. This definition cannot be generalized to balanced growth
models, as multiples of an admissible flux vector generally do not satisfy constraint (S1). For this reason,
de Groot et al. have generalized the concept of EFMs to equivalence classes of minimal sets of active

reactions in balanced growth states, termed elementary growth modes (EGMs)'8.

Theorem 1 (Existence of solutions). Let x = [P,a]” be a concentration vector, and 11 > 0 be a growth rate.
For any flux vector V' that satisfies the mass balance constraint (S1), there exists a unique BGS v = AV’
with A > 0 if all fluxes run in the direction compatible with the reaction kinetics (i.e., ¥ k;jv; > 0), and no

such BGS otherwise.

Proof. From constraint (S2), it is clear that if k;v; <0, no BGS with p; > 0 exists. For k; # 0, the
concentration of protein j is uniquely defined by p; = v;/k; (constraint (S2)). Let P’ =}, j v’j /k; be the
total protein concentration associated with v/. Then setting A = P/P’ results in the only flux vector that

fulfills all constraints of Def. (1). ]
Next, we use this result to show that any weighted average of BGSs is itself a BGS.

Theorem 2 (A weighted average of BGSs is a BGS). Let (v\1),...,v(X) be an ordered set of BGSs for
the concentration vector x = [P,a)” with growth rates (u), ..., u®)), but with potentially different active
stoichiometric matrices A). Let A be the stoichiometric matrix that combines all reactions represented in
(AW, .., AW), i, the columns of A consist of all unique columns of (A1), ..., A®). Ler (V1) ... v')) be
a representation of the individual BGSs v in the flux space defined by A, i.e., v;-(l) = 0 for all columns
(reactions) of A not represented in AV). Then any weighted average v =Y, wv'() of these extended flux
vectors (with weights w; > 0 and Y ;w; = 1) is itself a BGS for x, with a growth rate that is the weighted

average of the individual growth rates, L =Y ;w; ,u(l).
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Proof. The mass balance constraint (S1) is linear in the fluxes and growth rates, and is hence also
fulfilled for the weighted averages. The protein concentrations of each BGS v/ () are p;.(l) = v/j(l) /k;.
To satisfy the reaction kinetics constraint (S2), the protein concentrations of the weighted average
are pj =v;/kj =Y, wlv,j(l)/kj =Y, wlp;.(l). As each BGS (/) fulfilled the proteome constraint (S3),

ijj:ZjZIWlp;(l) =) ;wP =P, and thus v is a BGS. O

We can now use Theorems 1 and 2 together with results on elementary flux modes to show that any

BGS can be decomposed into a weighted average of EGSs.

Theorem 3 (BGSs are weighted averages of EGSs). Any BGS v for the concentration vector x = [P,a]”

can be decomposed into a weighted average of EGSs at x.

Proof. v is a feasible flux vector for the linearized problem defined by constraints (S5)-(S7) at constant

ff . . . )
) — k j(a), 1.e., all reactions are irreversible.

biomass x. The direction of reaction j is fixed by the sign of kﬁe
Under these conditions, it has been shown that v is a convex combination of elementary flux modes v/ D of
the linear problem'”, i.e., v = ¥, w/v'() with w) > 0. From Theorem 1, we know that for each of these
EFMs, there exists a unique BGS v = 0 () with A > 0; according to Def. 3, this is an EGS. Thus, we
can write v = Y, w;v\!) as a linear combination of EGSs, with weights w; = wi /A

To prove that v is a weighted average of the v(!), it remains to be shown that W = Y, w; = 1. According

to Theorem 2, a weighted average v/ = Y % v = %v will also be a BGS. However, Theorem 1 states
that there exists only one BGS in the direction of v, and thus W = 1. O]

Growth equations

In this section, we assume that the concentrations of total protein and of individual reactants, x = [P, a] are
known. Mass conservation (constraint (S1)) and reaction kinetics (constraint (S2)) relate reaction fluxes to
the concentration vector in two fundamentally different ways. We will now exploit this fact to eliminate
the flux variables and to derive explicit expressions for v, p, and .

Note that because the concentrations x are used as input parameters in these analyses, no explicit
consideration of constraints on cellular capacity, such as constraint (S4) is necessary. The given concentra-
tions x may obey constraint (S1) or alternative capacity constraints, such as independent constraints on the
capacity of cellular compartments, but these will not be used here. They will only become important when

we vary X to find states of maximal growth rate in Section A..
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An important requirement for the analyses below is that the active stoichiometric matrix A has full

column rank, motivating the next theorem.

(m+1)xn po the active

Theorem 4 (The active reactions of an EGS are linearly independent). Let A € R
stoichiometric matrix of an EGS. Then A has full column rank n, i.e., the columns of A are linearly

independent.

Proof. According to the definition of EGSs (Def.3), A is also the active matrix of the corresponding
linearized (flux balance type) problem. It has previously been shown that the active stoichiometric matrix
A of an EFM of a linear flux-balance problem has full column rank if A is formulated without an explicit

“biomass” reaction (as in Def. 2)**. ]

According to this theorem, the following theorems - which assume that A has full column rank - can in
particular be applied to EGSs (and, as we will see below in Theorem 9, thus also to cBGSs with maximal

growth rate).

(m+1)

Theorem 5 (Investment equation). Let A € R * be an active stoichiometric matrix of a flux vector

v that fulfills the mass balance constraint (S1) with concentration vector x = [P,a)’, where A has full

column rank n. Then we can split A into two submatrices B € R"*" and C € Rmt1-n)xn

A= ,
C

such that B is a non-singular (invertible) square matrix and each row of C is a linear combination of rows
of B. Let = B™!. Let b be the subvector of reactant concentrations a that correspond to the rows of B,

and let ¢ be the subvector of the remaining reactant concentrations. Then v is given by

P
v=ul
b

The dependent reactant concentrations c are linear combinations of the independent concentrations [P,b]”,

c=D , (S8)
b

with the dependence matrix D = CI.
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Proof. A may have more rows than columns (m+ 1 > n). In this case, the rows for exactly n metabolites
are linearly independent, as row and column rank must equal. As a consequence, the remaining m+1—n
metabolite concentrations are linearly dependent on the concentrations of the n independent metabolites.
These dependent concentrations are not free variables, and hence they can be put aside and dealt with
separately.

We decompose the linear system of equations represented by constraint (S1) into two parts, rearranging
the rows of A into matrices B,C such that B contains the rows for the independent reactants. As A
has full column rank, choosing linearly independent rows results in a square matrix B of full rank
(#rows(B) = rank(B) = rank(A)). Let b be the subvector of reactant concentrations a that correspond to
the rows of B, and let ¢ be the subvector of the remaining reactant concentrations corresponding to the

rows of C. We can then split the mass balance constraint (S1) into two separate equations:

P
b

Bv=u

Cv=uc |,

B is a square matrix of full rank, so there is always a unique inverse I = B~'. Multiplying both sides of the
first equation by / from the left, we obtain the desired equation for v. Inserting this result into the second

equation results in the desired equation for c. [

Thus, if A has full rank, then any flux vector v respecting the flux balance constraint (S1) is uniquely
defined and is a linear combination of the total protein concentration P and the independent metabolite
concentrations b. Each entry of the inverse matrix /;; quantifies the proportion of flux j invested into the
dilution of component i, and we thus name I the investment (or dilution) matrix (see Fig. S1 for examples).
In contrast to the stoichiometric matrix A, which describes local mass balances (constraint (S1)), I describes
the structural allocation of reaction fluxes into the production of cellular components diluted by growth,
and thus carries global, systems-level information.

B corresponds to the reduced stoichiometric matrix in Ref.!”. D describes the linear dependence of
the dependent concentrations ¢ on P and b; it is identical to the link matrix in Ref.!. The relationship
between A and B, C can be understood in terms of matroid theory, where the rows of B form a basis for the
matroid spanned by the rows of A, and the set of rows of C is the closure for the set of rows of B. If the
choice for the partitioning of A into B and C is not unique, some partitionings may be pathological and

should be avoided (SI text G.).
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When A is not square, B includes a proper subset of the rows in A, and thus B on its own is not mass
balanced. The “missing” mass fluxes are balancing ¢, and hence the flux investment into c¢ is already
accounted for by by the investment equation in Theorem 5.

We are now in a position to express the individual protein concentrations and the growth rate of a BGS

as explicit functions of the concentrations x = [P,a]” .

Theorem 6 (Individual protein concentrations as a function of the independent concentrations). Let
A € RS be an active stoichiometric matrix with full column rank n, and let x = [P.a]” be a
concentration vector. Let v be a corresponding BGS. Let B and D be the basis and dependency matrices,
respectively, as defined in Theorem 5, and let I = B~'. Then the concentration of the protein catalyzing
reaction j is

_ LipP+Ygligbg
Pi=# kj(a)

Proof. As A is an active matrix, all fluxes v; = p;k;(a) (constraint (S2)) are non-zero. We can thus

express the individual protein concentrations as p; = v;/k;(a). Inserting v; from the investment equation

(Theorem 5) directly leads to the above equation. ]

We now insert the equations for the individual proteins into the total protein constraint (S3) to obtain

an explicit expression for the growth rate.

Theorem 7 (Growth equation). Let A € RDX e an active stoichiometric matrix with full column
rank n, and let x = [P,a)” be a concentration vector. Let v be a corresponding BGS. Let B and D be the

basis and dependency matrices, respectively, as defined in Theorem S, and let I = B~'. Then the growth

rate is
P
Ly 7 v
J k(@)

pj _ LipP+¥plip
a

if for all reactions m ka) i > 0, and no balanced growth is possible otherwise.
J

LipP+Yp1;pbp :
W. The flux VJ

catalyzed by protein j must be active, and thus p; has to be positive for all j. Substituting the expressions

Proof. According to Theorem 6, the individual protein concentrations are p; = [

for p; into the proteome constraint (S3), we obtain

p_ NZIjPP+ZﬁIjﬁbB
J kj(a)
The sum on the r.h.s. is positive, and dividing by it results in the growth equation. [
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Thus, if the active matrix A of a BGS is full rank, there are unique and explicit mathematical solutions
for p, v, and u. In particular, this is the case for optimal growth states, as well as for all other EGSs. In
this section, we did not impose any capacity constraints (such as constraint (S4)), and thus Theorems 1-7
remain valid under arbitrary capacity constraints (as long as the capacity constraints are respected by the

concentration vector x = [P,a]T).

Marginal fitness benefits and costs

In this section, we first define marginal fitness benefits and costs of concentrations. As in the previous
section, the definitions make no use of the capacity constraint (S4), and thus remain valid under alternative
capacity constraints. After introducing the definitions, we explore the marginal fitness benefits of cellular

concentrations at optimal growth; at this point, the capacity constraint becomes central to our analysis.

Definition 4 (Marginal costs and benefits). Let v be a BGS with growth rate |. Let i € {P, 3} be an index
of the concentration vector x = [P,b]”.

Then the direct marginal net benefit of concentration x; is defined as the relative change in growth

rate due to a small change in xizo,
o_lou
Yooy

The marginal production cost of x; is defined as

ulj
Pk;

q/

The marginal kinetic benefit of x; is defined as

ny=Yu (S9)

24/45



42 MANUSCRIPTS

The (total) marginal net benefit of x; is then defined as the relative change in growth rate due to a

small change in x;, accounting for the resulting changes in the concentration of dependent metabolites c,
1[0 du dc
u\ dx; > dcy dx;

= 7710+ZD7!777(/ )
Y

(S10)

where the second equality follows from Eq. (S8), Theorem 7, and the previous definitions.

A change 8x; of x; (i € {P,B}) causes a correlated change of each dependent concentration dcy =
Dy;i6x; (Eq. (S8)). Thus, a change by Ox; results in a total change of the utilization of cellular capacity by
K;0x;, with the capacity factor defined as

K=1+ ZDW
Y

The definition of TI,Q accounts for the production costs of dependent reactants cy, as these costs are
embedded in / (B is not balanced if there are dependent reactants). However, 77,~0 ignores the kinetic
benefits of the dependent reactants; this is why the definition of 1); includes a separate term for their kinetic
benefits but not their costs.

If 1;; and k; are both positive, then the production cost qu is also positive, i.e., it decreases fitness. The
production costs are global, systems-level effects, quantified through the investment matrix /. In contrast,

the kinetic benefit ué is a local effect, as it is non-zero only for reactants 8 directly involved in reaction j.

”;3 will generally be positive if B is a substrate of reaction j.
The marginal net benefits can be expressed as the difference between marginal benefits and costs.

Theorem 8 (Direct marginal net benefits). The direct marginal net benefits of the total protein concentra-

tion P and of independent reactant concentrations bg ( B €{l1,...,m}), respectively, are

1 .
0
nP:I_)_;q;J

Proof. Taking the corresponding derivatives (see Def. (4)) of the growth equation (Theorem 7) directly

leads to these equations. [

So far, we have considered BGS for a given set of active reactions (corresponding to the columns of

A) and given concentrations x = [P, a]T. Below, we will examine capacity-constrainted BGSs (cBGSs)
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with maximal growth rate given the set of active reactions, optimized over all concentration vectors
x=[P, a]T € ]R’garl that respect the capacity constraint (S4). As a preparation for these analyses, we first

show that cBGSs at optimal growth are EGSs.

Theorem 9 (cBGSs with maximal growth rate are EGSs). Let N be a stoichiometric matrix of a general
balanced growth model. Let v* be a cBGS that maximizes the growth rate of the general problem. Then v*

is an EGS.

Proof. Without loss of generality, we restrict v* to its active dimensions (v} = 0), with active stoichiometric
matrix A. Then this reduced v* is the optimal solution for the following non-linear optimization problem

over all concentration vectors x = [P,a]” € R”/:

maximize U
P

subject to:

Av = ux

S11
Vj vj=pjkj(x) (11

P:ij
J
PZP+Zaa
o

Let x* = [P*,a*]” be the concentrations and u* the growth rate of the optimal solution v*. Now let us
consider a linearized version of this optimization problem, where me maximize the production rate vy;, at

constant biomass composition x* and effective kinetic constants kﬁ.eff) =kj(a*) (see Def. 2):
maxixmize Vbio
subject to:
AV = vpipx” (S12)
v vy =pk"

j
P*>Y p;
J

We relaxed the constraint (S3) on total protein into an inequality constraint, so that Eq. (S12) describes
a protein-constrained FBA problem for the active stoichiometric matrix. This is precisely the type
of constrained flux balance problem analyzed in Refs.*>%3, which prove that the solutions v°P! to the

optimization problem defined by Eq. (S12) are elementary flux modes (EFMs).
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In the optimal solution to the problem defined by Eq. (S12), the protein concentration constraint will
be active, that is, P* =} ; p;; if not, the biomass production rate vy, could be increased by multiplying
the vector of protein concentrations p with a constant > 1 (asv; = p jk}k- for all j). Thus, the optimization
problem described by Eq. (S12) is the same as that described by Eq. (S11), except for a reduction in
the dimension of the search space due to the fixed concentrations x* (Note that the cellular capacity
constraint (S4) is trivially respected in Eq. (S12) and can be ignored). Accordingly, the flux distribution v*
that maximizes the balanced growth rate u in Eq. (S11) also maximizes the biomass production rate vy;,
of the protein-constrained FBA problem in Eq. (S12); it is hence a representative of an EFM of the active

stoichiometric matrix A with biomass x*,*%43 and thus v* is an EGS according to Def. 3. L]

In parallel work to that presented here, de Groot ef al. have shown that optimal solutions to balanced
growth problems are elementary growth modes as defined in Ref.!8, and that the active stoichiometric
matrix of elementary growth modes has full rank'8.

If instead of a single constraint on cellular capacity, multiple capacity constraints are imposed simul-
taneously (e.g., to describe separate constraints on different cellular compartments), then the solutions

18.45 " and the treatment below

may in some cases correspond to positive linear combinations of EGSs
would have to be generalized. Multiple capacity constraints may play a role in the emergence of overflow
metabolism in E. coli*0, although overflow metabolism can also arise in balanced growth models with a
single capacity constraint®.

In a cBGS with maximal growth rate for a given active stoichiometric matrix A, the cellular components
will utilize the full cellular capacity p to saturate enzymes with their substrates. Thus, the constraint (S4)
will be active, turning the inequality into an equality. The maximal balanced growth rate u* will thus be a
function of the cellular capacity p. As a reference value for the total marginal net benefits of individual

concentrations x;, we now define the marginal benefit of the cellular capacity p (constraint (S4)). This is

the first definition that makes use of the capacity constraint.

Definition 5 (Marginal benefit of the cellular capacity). In analogy to the marginal net benefits of cellular
components, we define the marginal benefit of the cellular capacity as the fitness increase facilitated by a

small increase in p,
_ 1dy”
Np = o dp

We can now relate 7, to the total marginal net benefits of all concentrations. To do this, we derive

necessary conditions for any optimal balanced growth state at constant cellular capacity p, using the
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method of Lagrange multipliers. The Lagrange multipliers quantify the importance of the capacity
constraint, Eq. (S4), and of the constraints for the dependent reactants, Eq. (S8), for the maximization of

the objective function. The Lagrangian .Z is a function of P, a, and p.

Theorem 10 (Balance equation). In a cBGS with maximal growth rate, the total marginal net benefit of
each independent concentration x; € {P, bB} equals the marginal benefit of the cellular capacity p scaled

by the capacity factor ;,

Vietppy Mi=KiMp - (S13)

Proof. We use the method of Lagrange multipliers to derive necessary conditions for any optimal cBGS
at constant cellular capacity p. Our objective function is given by Theorem 7, which expresses the growth
rate {4 as an explicit function of the concentrations x = [P,a]”. The capacity constraint (S4) will be active
at maximal growth rate, i.e., it becomes an equality. The capacity constraint can then be expressed as a

function g, that depends on p and on the concentrations,

gp(P,a) EP—}—Zaa—p =0
o

Finally, the constraints on each dependent reactant y also only depend on P,a, with the entries Dyp
determining the composition of each ¥ in terms of P, and Dyg determining the composition of ¥ in terms

Ofblg,
B

We now define a Lagrangian as the sum of the objective function u and the constraints g scaled
by Lagrange multipliers 4,, accounting for the capacity constraint (S4), and A,, accounting for the

dependence of the dependent reactants y € {y}, Eq. (S8):
L=+ Apgp+ ) Mgy
Y

The first order necessary conditions for a constrained local maximum are that all partial derivatives of
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& with respect to the variables P, bg, cy and to the Lagrange multipliers A,, Ay are zero,

07
Vieppy 0= 3
07
VY Oza—cy ,
0.7
Vy Oza—ly ,
0.7
O—m

For the partial derivative with respect to an independent concentration x; (i € {P, }), we have

¢ du

8_x,~ :a—Xi—i-lp—F;lyDyi:O

With Theorem (8), this results in
Y

For the partial derivative relative to a dependent reactant cy, we have

0L _ oM

With Eq. (§9), we obtain
Ay =1y +2p
Substituting A, from the last equation into Eq. (S14) gives (fori € {P,})
pnd+2, +; (un§+lp>Dy,~ =0

Rearranging results in

0=pn+2, (1 —l—ZDyi) +uZDW-n§
v Y

S15
=uni+AK (515)

=UNi—HUMNpK

where we used 1, = —A, /1, which follows directly from the envelope theorem*’. With p > 0, we thus

obtain the balance equation. [
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The optimal state is perfectly balanced: the total marginal net benefit of each independent cellular
concentration x; equals the marginal benefit of the cellular capacity, scaled by k; to account for its total
utilization of cellular capacity. If i does not have any dependent reactants (Vy Dy; = 0), then the balance
equation simplifies to n; = le = np (Eq. (10)).

Theorem 10 states that if the dry weight density p would be allowed to increase by a small amount,
such as 1 mg/l, then the marginal fitness gain that could be achieved by increasing protein concentration
(plus dependent concentrations) by this amount is identical to that achieved by increasing the concentration
of any reactant f (plus its dependent concentrations) by the same amount.

Instead of using Lagrange multipliers in the proof, one could express the total protein concentration P =
P — Yo ao (constraint (S4)) and the dependent reactant concentrations ¢y = DypP + Y3 Dypbp (Eq. (S8))
in terms of p and of the independent reactant concentrations b. Substituting the resulting expressions into
the growth equation (Theorem 7) would result in an objective function that depends only on p and b, and
that is constrained only by the requirement of positive concentrations. While this would lead to the same
balance equations as derived in the Lagrange multiplier framework, this formulation misses important

insights that can be derived from the Lagrange multipliers themselves.

B. Definition of relative fithess

In a situation where competition among cells is solely through differential intrinsic growth rates, absolute
fitness is equal to growth rate: In a population of cells growing exponentially with growth rate u, the
selection coefficient for a variant with growth rate y + §u is simply u.! Population genetics models
almost always employ relative fitness*®, which we here define as a relative growth rate:

HEOK _ oK

T=" i

Thus, to quantify the effect on relative fitness of a small change of some parameter x by d.x, we use

5 _ 1w
Sx u 8x

Note that population genetics models are frequently defined in terms of discrete generations. With

generation time Tyen = In2 /1, the selection coefficient of the variant per generation is then*’

st=(f—1)In2= 57‘uln2
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C. Optimal ribosome protein fraction

Here we assume a very simple model for translation?®. It accounts only for the elongation phase, where
one catalyst (the ribosome plus bound mRNA, with concentration R) converts one substrate (the ternary

complex, with concentration ar) into protein, following irreversible Michaelis-Menten kinetics:

a
kr = kr(ar) = kea (ﬁ) (S16)

with constant maximal ribosome activity kcy (in units of [time] 1) and Michaelis constant Ky, (in units of
[mass][volume] ™).

As further simplifications, we assume that the model has no dependent reactants (A = B) and that the
ternary complex is not used in any other reaction. In this case, the same canceling of production costs as
in the model depicted in Fig.S1A happens, and the balance of net benefits of ternary complex and total

protein, N7 = Np (Eq. (10)), simplifies to

Substituting the partial derivative of irreversible Michaelis-Menten kinetics (Eq. (S16)), we obtain

R u
=1-= S17
ar(1+ar/Kn) kr 517

Rearranging Eq. (S16), we also see that the kinetics determine the concentration ar uniquely in terms of

VR, R, Ky, and the ribosome’s turnover number k4,

K
aT o kcatR _ 1
Vr

Substituting this into Eq. (S17) gives

()

(S18)

From the ribosome kinetics and mass conservation of proteins, we have

RkR:vR:[.LP .

31/45



2.1 AN ANALYTICAL THEORY OF BALANCED CELLULAR GROWTH 49

Thus, substituting i /kg = R/P and vg = uP in Eq. (S18), we obtain

kcatR

R_(, R\Kn uP
P P P (M—l)z

upP

This is equivalent to a quadratic equation in R/P,

R\’ U [ Kn R u g kcatKm .
B2 (50 () ()

Its two solutions are

Km 4P [ kea
155 <i\/1+K—m(7—l> —1)]

To see which of the two solutions is relevant, we rewrite this as

K 4P [ ken
1+§<i\/1+K—m<7—1>—1>] . (S20)

Because kcyR > R kg = vg = WP, the term in square brackets ([-]) in Eq. (S20) must be > 1. Only the

R_#
5=

kcat

kcatR - ‘LLP

positive root is compatible with this condition. Thus, the ratio R/P is uniquely determined by

Km 4P kcat
122 1 — (21 ) —1
()

To estimate the actual ribosome protein fraction of total protein ¢g, we need to scale the previous expression

R_®
5=

kC at

by the fraction rp of ribosome which is protein, resulting in the final equation

Kin 4P [ kent
1+§<\/1+K—m(7—1)—1>] . (S21)

The same procedure can be used to find an equation for @g that ignores the production costs. Starting

_ Hrp

kC at

Pr(L)

from Eq. (S18) without the production cost term u /kg, we obtain

kC'dtR

R_Kn| i
P

J i
upP

which results in a quadratic equation similar to Eq. (S19),

(’3)2_2i’3+ (L)Z (1_’%) -0
P keat P keat upP

)
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Solving for R/P gives
R keatk,
St (g [fealtm) (S22)
P keat up

Again because Rk¢o; > P, the term in parentheses (-) in Eq. (S22) must be > 1, and again only the positive
root is compatible with this condition. Thus, the ribosome protein fraction is uniquely determined in this

approximation by

urp keatKm
~ 1+ : (S23)
Or keat < up )

We compared the predictions of the ribosome fraction of total protein, g = R/P, to quantitative
proteomics data obtained by Schmidt et al.?? (scaled by a factor of 0.67, as suggested by the authors, to
account for a systematic error in the cell size measurementsSO). To obtain molar ribosome concentration,
we calculated the median over all reported concentrations of ribosomal proteins. The concentration
of ternary complexes was assumed to be identical to the concentration of their protein component, the
elongation factor Tu. Molar concentrations of the ribosome and (total) ternary complexes were converted
to mass concentrations by multiplying with molar masses derived from the amino acid sequences (for the
protein parts) and nucleotide sequences (for the RNA parts). For this, we assumed that each ribosome
contained one copy of each of its constituents, with the exception of four copies of RplL>!. To calculate
the mass fraction of total protein occupied by ribosomes, we multiplied ribosome mass concentrations
with the mass fraction of ribosomes that is protein (rp = 0.5832), and divided the result by the total protein
mass concentration P = 127.4 g/l in E. coli, assumed to be constant across growth conditions>?.

The concentration of actively translating ribosomes was determined based on total ribosome concen-
tration and the fraction of active ribosome at different growth rates. The latter was estimated by fitting a
smooth saturation function s(it) = p /(i +z) over the fractions of active ribosomes estimated in Ref.3?,
with the best-fitting parameter z = 0.124 /h.

We set the Michaelis constant of the ribosome to K, = 3 x 10~ mol/l, based on the diffusion limit

£.26. We set the ribosome’s turnover number to key = 22 AA/s, the

for ternary complexes calculated in Re
highest elongation rate observed experimentally in Ref.’2. As we do not distinguish between different
ternary complexes and the ribosome only accepts one of the 40 different ternary complex types at any
given time, K, was multiplied by 40.2° For consistency of the units with the mass concentration units used

throughout our paper, the kinetic parameters had to be converted from molar to mass concentrations. The
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mean weight (£ SD) of amino acids across all conditions assayed in Ref.3? was 132.60 4 0.09 Da; the
ribosome molecular weight is 2,306,967 Da; and the mean weight of ternary complexes is 69,167+ 1,351
g/mol. With these numbers, we obtain k., = 22 AA/s X (132.60 Da/AA)/(2,306,967 Da) x3,600s/1h =
4.55/h, and Ky = 40 x 3 x 10~°mol/l x69,167 g/mol = 8.30 g/1.

D. Minimal whole-cell model and the dependence of maximal growth rate
on cellular water content

Cayley et al.?®>3> showed that the internal water content of E. coli cells increases when these are grown in
environments with reduced osmolarity. This effect corresponds to a decrease of cellular dry weight per
volume, p, by p. np quantifies the associated reduction in relative fitness, § f = ou*/u* = n,0p, with

u* the maximal growth rate (Def. 5). The relative change in the maximal growth rate per relative change

in p is then
dlny*  p du*
_F — 24
dnp " dp P (S24)

From Eq. (S13), we know that np = Kp1); if there are no dependent reactants for P (i.e., Vyy Dyp = 0),

this simplifies to

1 .
Mo=Np=75-2a - (S25)
J
and thus
vy~ m=e(7-Xab)
P =p(L Yl (526)

The mass fraction of total protein in cell dry weight P/p = 0.54 has been shown to be approximately
constant across growth conditions supporting intermediate to high growth rates>®. To estimate the total
protein production cost ) ; q{,, we consider the simplest possible whole-cell model, comprising only a
transport reaction and the ribosome reaction (Fig. S2).

The active stoichiometric matrix A of this model and its inverse I = A~ are, written here with row and

column labels,

t R a P
a 1 -1 t 1 1

A = , I =
P 0 1 R 0 1
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The capacity is determined only by its two components,

p=P+a ,
where

P=pi+pr
From the inverse / and Eq. (4), we obtain

= u(P+a)=pp (527)

and

VR =UP . (S28)
From the inverse / and Eq. (3), we get

pri-p(te8) -5 (et

kr P\ v VR

Combining this with Eq. (S27) and (S28) and with ¢g = pg/P and ¢ = p;/P = 1 — g, we obtain

i L (up um)
—= +_
z,:qp (up upP
_(I—9r) , o9&
= + 2

Combining this equation with Eq. (S26), we obtain

P P P
=2 19— Lo (529)
_ (P
= (1—)—1)(1—%)

From Eq. (S21), we estimate the mass fraction of ribosomal proteins in total protein ¢z at 4 = 1.0/h
(growth rate in the reference growth condition of osmolarity Osm = 0.28 in Ref.®) as ¢z = 0.19.
Substituting this value into Eq. (S29) together with P/p = 0.54, we estimate the relative change in the

maximal growth rate per relative change in p as

P Np =0.69
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Cayley et al.® report cell growth at reduced osmolarities, summarized in Table S1. The cell free water
content V free In Table S1 is calculated from the total cell water V e11 minus the observed constant bound
water Vj, = 0.40 4+ 0.04 ml/gCDW.?? Errors are estimated standard deviations based on error propagation
among normally distributed random variables.

Fig. S3 plots the natural logarithms of t and p. Linear regression over the three available data points

results in an estimated slope of 0.66, close close to our estimate of [ZIIHT‘;) =p np =0.69.

E. An outline of possible extensions of GBA

In our development of GBA, we make several simplifying assumptions. Here, we outline some possible
generalizations.
All proteins contribute to growth by acting as catalysts or transporters. This assumption can

25.27 with concentration Q to the r.h.s.

simply be removed by adding a sector of non-growth related proteins
of Eq. (2).

Proteins are not used as reactants. To use protein j as a reactant in reaction j', it will need an extra
row in A, and its concentration p; has to enter the concentration vector x = [P, p;,a]” and the kinetic
function kj/(p;,a). This does not affect Eq. (4). However, if p; appears on the right hand side of Eq. (5),
this equation will have to be solved for p; before it is possible to proceed to a generalization of the growth
equation.

All catalysts are proteins. We can add different catalytic RNA species as cellular components.
Additionally, we may introduce reactions that combine proteins and RNA into molecular machines such
as the ribosome.

A 1-to-1 correspondence between proteins and reactions. Spontaneous reactions that proceed
without a catalyst have to be included in the active stoichiometric matrix A (so that / accounts for their
dilution). They will need a kinetic function that relates their flux to the substrate concentrations (e.g.,
through mass action kinetics). However, they will not contribute to the protein sum (Eq. (2)) and hence
will not directly contribute to the growth equation (6). Because in this case the flux cannot be adjusted by
varying the concentration of a catalyst, only concentration vectors are feasible for which the flux through
this reaction is identical when calculated based on mass conservation (through /) and on kinetics. This
will reduce the dimensionality of the solution space.

In the case of isoenzymes, where both protein j and protein j' catalyze the same reaction, the optimal

solution will always use the one with the more favourable kinetics at the given concentrations (e.g., protein
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jifkj(a) > kj(a) > 0).

For protein complexes, where proteins j and j' have to bind to each other before they can act as
a catalyst, we can either ignore the individual proteins and include the protein complex as a cellular
component in the model, or add a reaction that describes the complex formation.

Finally, if one protein (or protein complex) catalyzes reactions j and j, the substrates (and possibly
products) of reaction j/ will enter the kinetic function k;(a). The fluxes through both reactions are
proportional to the protein concentration p. Hence, p =v;/k;(a) = v /kj(a), providing an additional
constraint for the fluxes v;,v. As the fluxes are unique given the concentration vector x = [P, a)’, again
not all concentration vectors x will be compatible with this condition, reducing the dimensions of the
solution space of balanced growth.

Optimizing only growth. An extension of GBA can be formulated for non-growing cells (or cellular
subsystems) that are instead optimized for the production of specific molecules, as is the case for many cell
types in multicellular organisms. The dilution term px in Eq. (1) would be replaced by a vector d(x) that
quantifies the degradation of proteins and other molecules (with entries d; = z;x; and constant degradation

rate z;); an additional “output vector” o would represent the desired cellular production, with rate v,:
Av=v,0+d(x) . (S30)

The kinetics are still a function of x, and we can proceed with the analysis following the same steps as for

Eq. (1) to calculate v, p, and v,,.

F. Growth Control Analysis (GCA)

Here, we briefly explore the connection between GBA and some central concepts of metabolic control
analysis (MCA)'®. The results below that involve elasticity and control coefficients largely restate previous

22.23 in the framework of GBA. First, we rephrase the balance equation in terms of control theory.

insights

We define the (scaled) growth control coefficients (GCC) as the total relative change in the growth
rate due to a small change in the concentration x;, accounting for the capacity constraint. The growth rate
change is caused by two effects: the net fitness benefit of increasing x; without considering the capacity

constraint, captured by the marginal net benefits 1);; and the fitness cost of reducing the cellular capacity p

available for all other concentrations, captured by —k;7,. The GCC is then simply the sum of these two,
I =ni—xnp (S31)
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From the balance equation, we have FIH = 0 at optimal growth, so in real systems Fl‘.‘ might provide
an objective measure of how "non-optimal" concentration x; is. A related definition of growth control
coefficient have been introduced before in the context of noise propagation in a model of gene expression
and cellular growth?!.

We now examine the the relationship of the variables defined in GBA to the coefficients considered in
MCA. The elasticity coefficient eé in MCA is defined as the change in the reaction rate j when varying
the the substrate concentration a,, while keeping the enzyme (catalyzing protein) concentration fixed'®.

The (scaled) elasticity coefficient is thus directly related to the marginal kinetic benefit u{;t,

1 ( an ) 1 8kj 1 8kj I/t]
Vi aaa pj=const. ijj aaa kj 8aa q)j

€y

Control coefficients have been defined in MCA as the change in a response variable y due to a change
in a state variable x, where each y = y(x, r) is a function of the state variables x and the system parameters
x'%. In the GBA framework, the growth rate u, the fluxes v, the protein concentrations p, and the
dependent concentrations ¢ are all functions of the concentrations x = (P,b), the active matrix A, and the
kinetic parameters in k, Thus, i, v, p, and ¢ can be seen as response variables, while the concentrations in
x are state variables. In contrast to MCA, the GBA framework provides explicit functions for all response
variables, and thus control coefficients can be calculated easily. The control of u by the concentrations x;
is given by the growth control coefficient Ffl in Eq. (S31), while the control of dependent concentrations
cy 1s directly determined by the dependence matrix D.

We next examine the control of fluxes v; and protein concentrations p;. The (scaled) flux control
coefficient (FCC) F;j is the relative change in v; due to a small change in x; (at fixed concentrations x; for
i #1),

= l%
! Vi 8x,-

From Eq.(4), we can calculate dv;/dx;, giving

. lduv;, wu lou pu
= S D=4 T
! Vj 8x,~ u v It H 8xl- +Vj It

j
=i
9,
At optimal growth, Fl‘-‘ =0, so
j
=1
i (Pj
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Thus, at optimal growth, the flux control coefficient is simply the marginal production cost incurred via
reaction j, divided by the protein fraction of the catalyzing protein.
The (scaled) protein control coefficient (PCC) Ff 7 is the change in the protein fraction of protein j,

Pj /P, due to a small change in the concentration x; (at fixed concentrations x for i’ # i),

From the kinetic constraint (S2),

19 (v 1 {1dv; v;ok; vj dk;
pj _ Ji) _ j_VjOKj Vj Ok
= pan (z)w(zxwa*z’%px)

1 ] ] 1 j 1 Y j Y
1 dvj ;
= 5 g~ - LD
! Y

Again calculating dv;/dx; from Eq. (4), we obtain

1 fauv . . o A
F;DJ — —ij (a—xiﬁj—f—ulﬁ) —u{ —ZDW'M{,: (])jrfft+q{ —u'i’ —ZDW'M'{,
Y Y

where we defined ni' = —qu + ulj + ZyDyiu{, as the contribution of reaction (or protein) j to the marginal

net benefit 1;. Summing over j, we obtain

Pj FzH J
LU =5 pi— L
J J

(S832)
=TI} —n;—Kmp
Without a capacity constraint, 1, = 0, and
Yri’=o . (S33)

J

Equations (S32) and (S33) can be seen as summation theorems that relate the GCC Fly with the control

coefficients of MCA, in a similar fashion as in?!.

At optimal growth,
pj '
L, =-n/
and

Yy =—n

J
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Typically, reactants participate in only a small fraction of reactions, so for most combinations i, j ul] =0

and Dyiu{, = 0; the PCC at optimal growth is then just the marginal production cost,

Pj j
rij:‘ll{

G. Choice of basis and relationship between capacity and dependence
constraints

Not every reactant can be considered dependent: a reactant for which the corresponding row in the active
matrix A is linearly independent of all other rows will always be in the basis (equivalently, a reactant that
has zero entries in all vectors in a basis for the left null space of A cannot be a dependent reactant).

It is possible for some models that there is one or more choices of basis such that its corresponding

dependence matrix has for some i € {P,3}

Y Dyi=-1
Y

In these cases, any marginal change in the mass concentration of component i will cause the exact opposite
change in the total mass concentration of its dependent reactants Y. When this is combined with the
capacity constraint as defined in Eq. (9), these changes in concentrations result in a perfect cancellation
in the capacity utilized by i and its dependent reactants, and thus a zero net change in capacity for any
change in the concentration i (i.e., k; = 0, Def. 4). For this reason, the marginal net benefit of i is simply
ni =0 (Eq. (10)).

Such a perfect cancellation is highly unlikely if we use a more realistic description of the capacity
constraint, where different cellular components i have different specific capacity utilizations o;; e.g., if
we assume that the capacity constraint limits the total volume occupied by cellular components, then o;
gives the volume per mass of component i. In this case, the capacity constraint Eq. (9) is replaced by a

constraint on the volume of cellular dry mass per volume of cell water, v:
V=0pP+) Caaq ,
o

where op is the specific capacity of proteins (almost constant for different proteins®>) and 6, is the specific

capacity of reactant ¢, which depends on its chemical properties such as hydrophobicity and charge*.
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Figure S1. Examples of balanced growth models and their mathematical description, derived from the

active matrix A and the kinetic functions k;(a): basis matrix B, investment matrix / = B!, closure matrix

C, dependence matrix D = CI, marginal net benefits 7;, and capacity factors k;. (A) A model with a

simple linear network of irreversible reactions, connecting a single transporter to the final production of

proteins; linear networks never have dependent reactants, as the number of reactions equals the number of

components (n = m+ 1). Colors indicate the fraction of flux that is eventually diverted into the dilution of

each downstream component. (B) A more elaborate, nonlinear model of irreversible reactions that

includes cofactors and a dependent reactant (ADP).
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ua uP

Figure S2. Minimal whole-cell model, comprising a transport reaction (with rate v,) and the ribosome

reaction (with rate vg).
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Figure S3. Dependence of the growth rate (In ) on dry weight per free water volume (Inp) in E. coli
grown at different external osmolarities>. The square (a) indicates the normal environmental conditions,
which correspond to the maximal growth rate; dots (@) indicate growth at lower osmolarities. The dotted
line indicates the linear regression with slope = 0.66. The red line indicates the predicted slope = 0.69,
drawn through the center of gravity of the 3 data points. Error bars are based on the reported experimental

standard deviations.
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Figure S4. An approximation (dashed grey line, no free parameters; Eq. (S23)) that ignores the dilution
of intermediates and hence production costs (q{ ~ 0) results in good predictions of experimentally

32,33

observed E. coli active ribosome protein fraction at low to intermediate growth rates (see also Ref.>*).

For comparison, we also show the full GBA prediction (red line, identical to Fig. 2).
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Supplementary Tables

Osmolarity (Osm) | V ¢, (ml/gCDW) | p (gCDW/ml) i (1/h)

0.03 2.56+0.10 0.39+0.02 0.84 £0.07
0.10 2.124+0.08 0.47+0.02 0.91+0.04
0.28 2.05+£0.11 0.49+0.03 1.00+0.10

1.3, including cellular free water content Vf,ee and growth

Table S1. Experimental data from Cayley et a
rate i across different external osmolarities, together with the respective cellular dry weight per cellular

free water volume, calculated as p =1/ \% free-
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Symbol Definition (units)

A Active matrix [mass fraction]

B Basis matrix [mass fraction]

C Closure matrix [mass fraction]

D Dependence matrix

1 Investment matrix

V Reaction rate [mass][volume] ! [time] !

u Growth rate [time] !

P Total protein concentration [mass][volume]~!

a Reactant concentration [mass][volume] !

b Basis reactant concentration [mass][volume] !

c Dependent reactant concentration [mass] [volume] !

o Reactant index

B Basis reactant index

Y Dependent reactant index

J Reaction index

i Protein and active reactant index ({P, B })

k Kinetic function (in units of kcat)
keat Turnover number [time] !
K Michaelis constant [mass][volume] !

p Cellular dry weight per volume [mass][volume] !

f Fitness

nio Direct marginal net benefit of i [volume] [mass] ™!

ni Marginal net benefit of i [volume] [mass] !

Np Marginal benefit of of the cellular capacity [volume] [mass] !
nf, Marginal net benefit of y [volume] [mass] !

q{ Marginal production cost of i relative to j [volume][mass] !
u;; Marginal kinetic benefit of 3 relative to j [volume] [mass] !
u{, Marginal kinetic benefit of 7y relative to j [volume] [mass] !
K Capacity factor

<z Lagrangian

Ao Lagrange multiplier of the capacity constraint

Table S2. Symbols and definitions. For simplicity of notation, we also use P as an index for total protein,

and p as an index for cellular dry weight per volume.
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ABSTRACT

Cells adjust their proteome for growth and survival in accordance to their environments. For exponentially
growing bacterial cells, simple empirical relations have been established between the growth rate and
the allocation of proteome to catabolism and biosynthesis'-2. These relations, arising from global
constraints on protein synthesis and flux balance, have led to simple models of proteome allocation
that quantitatively predict the growth and proteome composition of E. coli under a variety of nutrient
conditions, drug treatments, and genetic perturbations’. The success of the proteome allocation theory
is surprising, given that in its drive for simplicity, it completely neglected the metabolites which drive
individual reactions in growing cells. Here, we identify the existence of an underlying global relationship
between the concentrations of metabolites and enzymes in living cells, emerging from a constraint on the
concentration of cellular dry mass that limits the abundance of metabolite pools. Under this constraint,
maximal reaction fluxes are predicted to be achieved when the mass abundance of a metabolite equals
the combined mass of the unbound enzymes consuming it. The predicted optimal scaling of enzyme
saturation accounts quantitatively for the large “proteome offsets” that are observed experimentally and
assumed in the existing proteome allocation models. The predictions capture the general patterns of
enzyme® and metabolite* level dependencies on the growth rate found in recent studies; they agree
quantitatively with observations for several specific enzymatic systems for which detailed comparisons
can be made, including the ribosome. The enzyme offsets collectively account for almost half of the
entire proteome, comprising the bulk of the “proteome reserve” limiting the cellular growth capacity*-5.
Our analysis indicates that this substantial proteome investment reflects a compromise between the

accumulation of enzymes and metabolites, balanced to optimally drive biochemical fluxes.
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Early studies of bacterial physiology revealed that the ribosome content of a cell followed a linear rela-
tion with the growth rate when growth is varied by changing nutrient quality®—. More recent quantitative
studies of E. coli found this to be the case also for many biosynthetic proteins'-®. One way to express such
relations is in terms of the mass fraction ¢; of a protein j, as

0= 910+ ()
where U is the growth rate and ¢; o, k; are protein-specific constants (solid red line, Fig. 1a). In contrast to
the cellular resources allocated to biosynthesis, the proteome fraction allocated to many other proteins
— such as those involved in cellular structures and nutrient transport — is expected to remain constant or
even diminish with increasing growth rate!-°. Here, we focus exclusively on proteins whose abundance
increases with growth rate (i.e., have kx; > 0); these make up about 80% of protein mass for E. coli cells
grown in glucose minimal medium, at growth rate 0.7/h (Fig. 1a)3. ¢ ;.0 in equation (1), being a constant
offset from a proportionality between protein abundance and growth rate, describes the abundance of
proteins apparently maintained by the cell regardless of growth conditions. This offset is substantial: for
a typical protein, ¢; ¢ is around 60% of its average protein fraction ¢; across different minimal media
(Fig. 1b). The sum of offsets for all biosynthetic proteins amounts to 40% of the total proteome in
Ref.3 and 50% in earlier studies on other E. coli strains!>3, presenting a significant load on the growth
capacity of the cell. In an idealized case where all nutrients are provided and cells only need ribosomes to
synthesize the cellular proteins, the maximal growth rate attainable would be Uy = KRR max), Where kg
is the translational activity of the ribosomes and Qg ;uax = 1 — ¢ is the maximal fraction of the proteome
allocable to the ribosomes given the total proteome offset ¢>. Thus, a protein offset of ¢g = 50% would
reduce the maximal ribosomal fraction and hence the maximal growth rate by half.

What physiological functions might the apparent offsets ¢; o serve to justify such a high cost to steady-
state growth? One often-mentioned function is their role as “proteome reserves”, reducing the lag time
for physiological adaptation when nutrient availability changes abruptly. Indeed, adaptation to nutrient
upshift was suggested early on to rationalize the significant offset observed for the ribosomal proteins
(Pr0 ~ 5%)'%-11 The beneficial effect of this reserve in fluctuating environments was experimentally

demonstrated recently for ribosomal and catabolic proteins'? '3

. Similar proteome reserves may be
advantageous for biosynthetic proteins during nutrient downshifts, e.g., from rich medium to minimal
medium, where the demand for biosynthesis abruptly rises. However, the benefit of reserves for nutrient

upshifts can in principle be realized by maintaining a finite level at slow growth only, without affecting
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the abundances at fast growth; see the dashed blue line in Fig. 1a. There are also reasons to doubt the
suggested role of the offsets of biosynthetic proteins as reserves for nutrient downshifts. One of the most
costly biosynthetic proteins is the cobalamine-independent methionine synthase (MetE); It comprises

3,14

5.7% of the proteome during growth in glucose minimal medium’ '*, yet exhibits an almost perfect

proportionality with the growth rate in minimal medium, with an offset close to zero (see below). MetE

is hardly expressed in rich medium? !4

, and its accumulation is the dominant cause of growth delay for
nutrient downshift from medium replete with amino acids to minimal medium. Thus, reduced transition
times are likely not the primary reason these proteome offsets evolved.

We next examine the role of the offsets ¢; o in equation (1) in light of basic enzymatic kinetics. For a
large number of cellular reactions, the flux through a reaction can be taken as proportional to the growth

312 and hence

rate!, i.e., v j o< u. Total protein concentration is roughly constant across growth conditions
the proteome fraction is approximately proportional to the enzyme concentration, ¢; o< [E|. For simplicity,
let us consider irreversible Michaelis-Menten kinetics for reaction j. In general, the reaction flux can be

written as
Vi= k]([E]] - [Ej,free]) ) 2)

where k; is the specific reaction rate (turnover number) and [E; 7] is the concentration of the unsaturated

or “free” enzymes. For a reaction with a single substrate of concentration [S], we have
[£)]
L+ [8]/Km,j

where K, ; is the enzyme-substrate dissociation (Michaelis) constant. Comparison of equations (1) and

[Ej,free] = (3)

(2) yields xj o< kj and @; o o< [E; ¢ree], suggesting the possibility that the offset ¢; o might be viewed as
an enzyme inefficiency caused by the unsaturated enzymes [E; fr..]. A proportional relation between ¢,
and the growth rate u is only obtained when the substrate concentration much exceeds K, ;, such that
[Ej free] — 0 and all enzymes are saturated. To examine the status of enzyme saturation more quantitatively,
we note that typical K, ; values for cellular reactions are in the range of 10uM — 1mM (blue colored bars,
Fig. 2a)!%. Metabolomic measurements in glucose minimal medium found the concentrations of the most
abundant metabolites to be of this order (red colored bars, Fig. 2a)4, with most concentrations declining in
poorer nutrient conditions (Fig. 2b). Thus, substrate availability is an important factor limiting reaction
rates, as has also been observed in genetic perturbation experiments'”. The worsening of this problem for
poorer conditions (Fig. 2b) is consistent with the increasing dominance of the offset ¢; o at slow growth

rates according to equation (1).
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Why can’t the cell simply increase the metabolite concentrations to levels much exceeding K, ;? Aside
from specific biochemical reasons such as cross-reactivity and toxicity, a physiological reason can be
appreciated from a simple quantitative estimate: If metabolites are kept at concentrations of 1 mM, then
the set of 1000 common metabolite species would collectively amount to 10° molecules/cell. This would
be comparable to the total number of amino acids contained in cellular proteins, which comprise over 50%
of the cellular dry weight'8.

Intuitively, keeping a significant portion of the biomass in the form of metabolites instead of enzymes
may be another form of inefficiency, even if the extra metabolites can keep the enzymes all saturated and
work at maximal efficiency. To explore the consequence of partitioning cellular resource (biomass in this
case) between the enzymes and the metabolites, we note that the cell density p is approximately invariant
across different growth conditions, and thus the total cellular dry mass M is proportional to the cellular

t19

water content ~, V. This leads to a global constraint relating the concentrations of the enzymes [E;] and

the metabolic substrates [S;]:
Yo, [E]+ Yms, 1S]=p . @)
j i

where mg; and mg, are the molecular weights of enzyme [E;] and substrate [S;], respectively, and p is the
combined cytosolic mass density of proteins and metabolites. To appreciate the effect of the biomass
constraint (4) on the enzyme-metabolite partitioning, let us examine a simplified case of a single enzyme E
that catalyzes the conversion of a substrate S following irreversible Michaelis-Menten kinetics. As derived
mathematically in SI text 1, the maximal reaction rate according to equations (2, 3) at a given combined
mass concentration of the molecules involved, mg; - [E;] +ms, - [Si] = p, is achieved when

[E]*

" K ”

mg[S)" = mg[Efree]” =

Equation (5) describes a relation between the metabolite and enzyme concentrations at the optimal
flux condition, with the only parameters being the enzyme’s Michaelis constant K, and the ratio of
molecular masses between the enzyme and metabolite. In Fig. 3, we tested the predicted relation between
enzyme and metabolite concentrations using the absolute abundance data generated in Refs.>* for E. coli
growing in different nutrient conditions. The prediction is seen to quantitatively capture the available
data (enzyme/metabolite pairs with known Kj,;) without any adjustable parameters, suggesting that the
endogeneous system may indeed be operating at the optimal flux condition across the range of nutrient

conditions tested.
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Of course, cellular metabolism involves many reactions that require more than one substrate, and
conversely, many metabolites are consumed by more than one enzyme. To obtain a generalization of
equation (5), we need to account for all metabolite and enzyme concentrations simultaneously. Towards
this end, we make the simplifying assumption that cellular reactions are effectively irreversible. The
generalized equation relates the mass devoted to a substrate S in the reference condition with the sum of

free enzyme masses over all enzymes j consuming this substrate (SI Text 1.1),
ZmEj : [Ej,free] = mS[S] . (6)
J

Inserting the substrate concentration given in Eq.(6) into the Michaelis-Menten equation, we find that

optimal protein concentration has a linear-plus-square root relationship to the reaction flux,

.V mg v*
El" = — +/Kp—
[ ] kcat ’ mg kcat

(7)

While the linear term gives a lower bound on the total enzyme concentration achievable at full
saturation, the square root term describes the effect of incomplete saturation and is responsible for the
apparent offset from the linear relation. To illustrate the predictive power of the optimality relation
(7) for enzyme offsets, we consider three exemplary cases in E. coli. First, the enzyme agmatinase
(SpeB) carries out the second step in putrescine biosynthesis; its dissociation constant for agmantine,
Ko spep = 1150uM ,20-21 i5 the largest known for any substrate consumed by a single enzyme. We may
thus expect SpeB to be especially affected by incomplete saturation. Accordingly, a linear fit of observed
SpeB abundance vs. growth rate’ (Fig.4a) shows an offset of [ESpeB] =0.62uM (95% Confidence Interval
[0.23,1.00]). Expanding Equation (7) linearly around growth on glucose as a “reference condition” and
assuming that SpeB is half saturated with agmantine in this condition (SI text 2), we predict an offset
[Espes,o] = 0.95 UM (@spen,0 = 0.60%0), within the range derived from the proteome data.

Second, we mentioned that MetE has an enzyme offset indistinguishable from zero (Fig. 4b), despite
being the most abundant metabolic enzyme in E. coli at fast growth in minimal media®. MetE catalyzes the
last step in methionine biosynthesis. In steady state, the flux through MetE must be given by the demand
of methionine in protein synthesis, i.e., the concentration of methionine stored in cellular proteins times
the growth rate . As we thus know the exact relationship between flux and growth rate, and as kinetic
parameters for MetE are available in the literature>?, Equation (7) makes quantitative predictions for the
optimal MetE concentration as a function of growth rate. These predictions (red line in Fig. 4b) agree

accurately with experimental observations.
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Finally, the catalyst responsible for the highest proteome fraction in fast-growing E. coli cells is the
ribosome. The ribosome can be viewed as an enzyme that converts its substrate, a specific ternary complex,
into elongating peptide chains. The rate of this process can be approximated by Michaelis-Menten

10.23 and must equal the total protein dilution rate, i.e., the total protein mass concentration’

kinetics
(=~ 127.4 g/L) times the growth rate u. Thus, as for MetE, Equation (7) quantitatively predicts optimal
ribosome abundance as a function of the growth rate. For intermediate to high growth rates (u>0.3), the
predictions agree accurately with experimental observations (red line in Fig. 5a). At lower growth rates
(1<0.3), observed total ribosome concentrations exceed those predicted, consistent with the existence of a
reserve of de-activated ribosomes in this regime!?.

When viewed as a relationship between flux and substrate concentration, optimal resource allocation
predicts that optimal substrate concentrations [S*] are proportional to the square root of the reaction fluxes,
vj.‘l/ 2 (Eq.(S13)) . Under the expected scaling v* o< u for biosynthetic proteins, we thus expect [S*] o< /.Ll/ 2,
a prediction consistent with the observed scaling of metabolite concentrations* with growth rate (Fig.
7). We can further test this relationship quantitatively for the substrate of ribosomal elongation, the
ternary complexes comprising a charged tRNA and elongation factor Tu. Comparison to experimentally
determined Tu abundances® quantitatively confirms the predictions (red line in Fig. 5b).

In sum, the observed scaling of the abundance of enzymes and the ribosome with growth rate is
highly consistent with an optimal resource distribution between catalysts and their substrates, resulting in
lower saturation levels and thus increasing enzyme inefficiencies at progressively lower reaction fluxes
v*. If the concentrations of ribosome and enzymes (representing the R- and A-sectors, respectively, of
coarse-grained allocation theories!*>) were indeed always optimal in this sense, we would expect them to
drop sharply to zero at very low growth rates, deviating from the near-linear behavior generally observed.
Available data provides little evidence of this expected curvature. Moreover, the optimal growth-rate
dependence Eq.(7) is different for each individual reaction, and fully optimal regulation would thus require
very detailed — and accordingly costly — regulatory systems. Thus, it is conceivable that natural selection
only favored an approximate regulatory implementation of the predicted growth rate dependence for all but
the most costly catalysts, such as the ribosome and MetE: ribosome and enzyme concentrations may scale

424 such as ppGpp!3, while

in proportion to i, mediated through a small number of regulatory molecules
an additional level of constitutive expression (a constant offset ¢; o) ensures that fluxes do not become too
low across commonly encountered non-rich growth media. Such an approximate implementation would

also be consistent with the scatter around the optimal relationships observed when considering enzymes as
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a whole (Fig. 3). Regardless of the regulatory details, we can conclude that the overexpression of enzymes
over a simple proportionality to growth rate, as represented by protein offsets in the existing growth

1,25

models™ >, is rooted in the fact that internal metabolite concentrations cannot be raised to arbitrarily high

levels.

Methods

E. coli data

We obtained protein concentrations of Escherichia coli strain BW25113 for 18 exponential growth condi-
tions on minimal media3. For 7 of these conditions, we additionally obtained metabolite concentrations®
for the same strain.

Metabolite concentrations in umol/gCDW were converted to cytosolic molar concentrations based
on the same conversion factor between cytosol volume and cell dry weight (2.3 ml/gCDW) used by
the original authors*. Individual protein mass concentrations, total protein mass concentration, amino
acid composition of proteins, and growth rates at exponential growth conditions were obtained from
Schmidt et al. based on mass/cell and cell volumes reported by the authors at different growth rates.
Protein concentrations were corrected by a factor of 0.67 in cell volume as suggested by Schmidt et
al. based on their recently corrected measurements of cell volume (Supplementary note 3 in Ref.%).
The molar concentration of enzymes was determined as the minimal molar concentration among its
subunits, weighted by stoichiometry; to convert this to enzyme mass concentration, we multiplied by
the stoichiometry-weighted sum of molecular subunit masses. Protein subunit stoichiometries for each
enzyme were obtained from Ref.?®, and assumed to equal 1 for enzymes not listed there.

Ribosome concentration was determined by calculating the geometric mean over the molar concen-
trations of all ribosomal proteins measured in Ref.3. The turnover number for translation was set to
the maximal elongation rate inferred from experimental data in Ref.'8, k., = 22 AA/s. The ribosome’s
dissociation constant for its substrates, the ternary complexes, was set to an estimation based on the
diffusion limit for ternary complexes'?, K, =3 uM. As in Ref.!?, we multiplied K,, by the number of
ternary complexes (n,=40); this is equivalent to dividing the ternary complex concentration [S;.| in equation
(3) by ny, as the ribosome only sees one of the n; ternary complexes at a time.

Molecular weights of the ribosome and ternary complexes were calculated from their sequences.

The stoichiometry of ribosomal proteins and RNAs in the ribosome was obtained from the EcoCyc

7118
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database®’; the stoichiometry of all components is 1 except for RplL, for which it is 4. We con-
verted the units of the kinetic parameters from molar concentrations to mass concentrations as follows:
kear =22AA/sx (132.60Da/AA)/(2,306,967Da) x 3,600s/h=4.55/h (where 132.60 £ 0.09 Da is the mean
amino acid molecular weight in proteins for all conditions measured in® and 2,306,967 Da is the ribosome
molecular weight); and K, = 120uM x 69,167 g/mol = 8.30 g/L. (where 69,167 + 1351 g/mol is the
mean+SD of ternary complex molecular weights). The ribosomal fraction of total protein was calcu-
lated using the mass fraction of proteins in the ribosome? (=0.58) and total protein mass concentration?
P=127.4g/L . The predicted protein fraction of elongation factor Tu was calculated using the mass fraction
of Tu in the ternary complex® (= 43238/69167 = 0.63) and total protein concentration P.

For Figs. 2a and 3b, we used the growth in a glucose minimal medium as the reference state to define
the experimentally measured “typical” substrate concentration* [, 7] and “typical” growth rate’ L, 1

For Fig. 3, we collected a non-redundant set of Michaelis constants (K},;) of wild-type enzymes from
EcoCyc?’, BRENDA?®, and UniProt?°. All experimental values are from E. coli, with the exception
of four metabolite-enzyme pairs where only data from other organisms are available: D-ribulose 5-
phosphate-ribose-5-phosphate isomerase A (Ru5P-rpiA), 1,3-bisphospho-D-glycerate—phosphoglycerate
kinase (13DGP-pgk), ADP—phosphoglycerate kinase (ADP-pgk), and glycerone phosphate—fructose
bisphosphate aldolase (DHAP-fbaA); we did not consider K, values of the extremophile Sulfolobus
solfataricus, as these were obtained from measurements at 70°C. If more than one K,,, was listed across
the databases, we first checked if these values were mostly within the same order of magnitude (i.e., if the
geometric standard deviation was < 10); in this case, we used the geometric mean of all available values.
Otherwise, we considered the available data for Km to be too unreliable to be included. For Figures 2a
and 3b, we obtained Kj,, values from the dataset in Ref.16, filtered for the organism E. coli and restricted
to values for reaction substrates rather than products. Metabolite molecular weights were obtained from
EcoCyc?’. For SpeB’s dissociation constant for agmatinase, we used the mean value from Carvajal et al.>°

(K= 1.1 mM) and Satishchandran et al.2! (K, = 1.2 mM).

Identification of dominant enzymes in E. coli

If the unsaturated mass concentration mg [E; fy..|* of enzyme j accounts for more than half of the total
protein mass utilizing a given substrate i, equation (5) approximately describes the relationship between
the concentrations of the substrate and this enzyme also in the general case (SI text equation (S25)). In

this case, we call j the “dominant” enzyme for i. For an automated identification of dominant enzymes,
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we used the sybil and sybilSBML3? packages in R, with the EcoCyc metabolic model for E. coli exported
as an SBML file using Pathway Tools 19.53!. For each metabolite measured in Ref.*, we first identified all
reactions using it as a substrate according to the metabolic model. The gene-reaction associations given in
the EcoCyc model through b-numbers were used to map the reactions to the proteins measured in Ref.>.
For each substrate assayed in Ref.*, we determined a dominance score (hereafter referred to simply as
“dominance”) for each enzyme consuming it and assayed in Ref.3. The dominance of an enzyme was
defined as the fraction it contributes to the total mass concentration of all assayed enzymes using the
substrate. An enzyme was considered “dominant” for the substrate if its dominance was >0.5, i.e., its
molecules constituted more than half of the total protein mass consuming the substrate. We only attempted
to assess dominance if more than half of the enzymes consuming a given substrate were assayed in Ref.3.
We excluded membrane-bound and periplasmic enzymes based on Gene Ontology annotations>2 (GO
categories 0016020 (membrane), 0005886 (plasma membrane), 0005887 (integral component of plasma
membrane), 0042597 (periplasmic space), 0009279 (cell outer membrane), 0019867 (outer membrane)),
as in these cases the estimated enzyme concentrations will not correspond to cytosolic concentrations.
If the reaction catalysed by the dominant enzyme was reversible according to the EcoCyc model, this
substrate-enzyme pair was only considered further if the flux through the reaction was measured in the
corresponding direction in Ref.*. Cyclic AMP (cAMP) was not included in the analysis, as the major role
of cAMP is not metabolic: cAMP regulates transcription through varying concentrations of cAMP-CPR;
accordingly, the only enzyme using it as a substrate (cCAMP phosphodiesterase) is unlikely to have a major

impact on cAMP concentrations in steady-state growth.

Figures
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Figure 1. Protein offsets ¢; o make up a substantial fraction of the proteome at low growth rates. (a)
Comparison of the proportionality between ¢; o and u expected from the assumption that biosynthetic
fluxes v* scale in proportion to growth rate u (dotted grey line), a protein reserve only at low growth rates
(dashed blue line),and the observed constant offset across growth rates (solid red line). The points give the
combined protein fraction of all proteins whose abundance increases with growth rate?, with a combined
offset ¢ = 0.38. (b) The distribution of the ratio between the offset ¢; o observed for an individual protein
and its average proteome fraction ¢; o across exponential growth conditions on minimal media® shows a

median of 0.6.
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Figure 2. Substrate concentrations [S;] in a glucose reference condition are typically of the same order of
magnitude as dissociation (Michaelis) constants K, ; and decrease in poorer nutrient conditions. (a)
Log-scale histograms of observed metabolite concentrations [S;] (red)* and mean Ko i (blue)'® per
substrate. See Fig. 6 for the distribution of ratios [S]/K ;. (b) Log-scale histogram for the ratio of
substrate concentrations between E. coli grown on glucose (i = 0.65 1~ !) and on galactose (1 = 0.18
h~1)*, showing that metabolite concentrations in the poorer growth condition are typically about half of

those in glucose.
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Figure 3. Experimentally observed enzyme and metabolite concentrations recover the predicted optimal
scaling. (a) If a single enzyme j dominates the total enzyme mass consuming substrate S (SI text 1.1), we
can use equation (5), rewritten for scaled enzyme concentration, e} = [E;|* /K, X mg,; /ms, (y-axis), and
scaled substrate concentration, s* = [S]*/K,, (x-axis): this results in the dimensionless prediction

;= s*(14s*) (solid line). The (geometric) mean fold-error of enzyme concentration predictions from
observed substrate concentrations is GMFE = 1.66, Pearson correlation is R? = 0.81. The dashed line
corresponds to identical mass concentrations of total enzyme and substrate (e}f =s5"). (b) Same data as in
(a), but plotted as predicted versus measured metabolite concentrations, with colors indicating
metabolite-enzyme pairs: asn-asnRS: L-asparagine - asparagine-tRNA ligase; GDP-ndk:
guanosine-5’-diphosphate - nucleoside diphosphate kinase, RuSP-rpiA: D-ribulose 5-phosphate -
ribose-5-phosphate isomerase A, FUM-fumA: Fumarate - fumarase A, GAL1P-galT: alpha-D-galactose
1-phosphate - galactose-1-phosphate uridylyltransferase, FBP-fbaA: fructose 1,6-biphosphate - fructose
bisphosphate aldolase class 1I, F1P-fruK: beta-D-fructofuranose 1-phosphate - 1-phosphofructokinase,
phe-pheRS: L-phenylalanine - phenylalanine-tRNA ligase, 13DPG-pgk: 1,3-bisphospho-D-glycerate -
phosphoglycerate kinase, G6P-pgi: beta-D-glucose 6-phosphate - phosphoglucose isomerase, ADP-pgk:
adenosine-diphosphate - phosphoglycerate kinase, GMP-guaC: guanosine-5’-monophosphate - GMP

reductase, DHAP-fbaA: glycerone phosphate - fructose bisphosphate aldolase class II.
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Figure 4. Observed enzyme offsets® for two exemplary enzymes agree with predictions from optimal
resource allocation. (a) SpeB shows a large enzyme offset compared to its abundance in the glucose
reference condition (blue dot) , with ¢s.50 = 0.00039 (95% Confidence Interval [0.00015,0.00063])
from linear regression (dashed line). The concentrations of SpeB’s substrate, agmantine, are unknown;
assuming that SpeB is half saturated in the reference condition ([S,, f]* = Kin,spep) results in an offset
prediction of [Eq spep] = 0.95uM (or @spep0 = 0.00060), within the range derived from the proteome
data. (b) metE concentration at different growth rates. A linear fit (dashed black line) results in the
empirical offset ¢prere,0 = —0.0049 (95% confidence interval: [—0.015,+4-0.0049]). The red line is the
theoretical prediction from equation (7), using experimentally determined kinetic parameters (SI Text 3).

The predictions are highly accurate, GMFE = 1.29 and R*> = 0.74.
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Figure 5. Optimal ribosome and Tu concentrations agree quantitatively with experimental data. (a)
Protein fraction ¢ allocated to ribosomes at different growth rates®. A linear fit results in the empirical
offset ¢r o = 0.047 (95% confidence interval: [0.034,0.060]). The theoretical prediction from equation
(7) (solid red line; SI text 4) is highly accurate, GMFE = 1.13 and R? = 0.88. The dashed line shows
predictions based on fitted K;,, (see panel b). (b) Ternary complex concentrations predicted from equations
(S14,S42) for the ribosome, compared to experimentally observed proteome fractions of elongation factor
Tu3. The solid red line (GMFE = 1.24, R* = 0.64) is calculated based on the diffusion limit for ternary
complexes, which provides a lower bound for K,,; the dashed line (GMFE = 1.10, R? = 0.64) shows

predictions based on a K, value that is 43% larger and results from a fit to the data in this panel.
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Figure 6. The ratio between absolute metabolite concentration® in the glucose reference condition and
the geometric mean across all known E. coli Ky, ; values for this substrate is distributed around 1 (median:

2.27; N=32, as for 10 of the 42 metabolites assayed in Ref.* no Kn,; values are available).
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Figure 7. Substrate concentrations increase approximately with the square root of the growth rate, as
predicted from optimal resource allocation. The histogram shows the distribution of slopes b in linear fits
of log([S]) vs. log(ut) (power law fits corresponding to [S] = au?), demonstrating a peak around the

expected value of 0.5; data from Ref.*.
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SI text

1. Detailed derivation of equations 1-7

Let us first consider the simple case of a substrate used by a single irreversible reaction. The
rate v of an irreversible enzymatic reaction that converts a single substrate into a product
according to a general kinetic function k = k([S], K, kcq:) of the substrate concentration

and respective kinetic constants,

v= [E]k, (S1)
with enzyme molar concentration [E] and substrate molar concentration [S]. For irreversible

Michaelis-Menten kinetics,

[S]
k = kcat m , (52)

where k.,; is the turnover number and K, is the dissociation (Michaelis) constant. The
enzyme and substrate concentrations of this reaction together account for a total mass
concentration ¢, measured per volume of the corresponding cellular compartment, e.g., the
cytosol; c is a linear function of the molar concentrations [E] and [S], each multiplied with the

respective molecular weights (me and ms, respectively):
c = mglE] + mg[S]. (S3)

We assume that the cell is in a steady state that demands a fixed reaction rate v > 0.

Rearranging Eq. (S1), we can express [E] as a function of v and the kinetic function

k([S]' Kml kcat)l
[E]= 7 (s4)

we assume v > 0 and thus [S] > 0 and k > 0 throughout our derivations. Substituting Eq.



2.2 OPTIMAL CATALYST AND SUBSTRATE CONCENTRATIONS IN CELLS 83

(S4) into Eqg. (S3), we can express the reaction’s total mass concentration, ¢, as a function of

the substrate concentration [S] and the constants v, K, K¢q¢:
c=mE£+m5[S]. (S5)

If ¢ is minimal, a necessary condition is that the derivative of Eq. (S4) with respect to [S]

must be zero (at constant v):
— =0. (S6)

We thus have

_dc _ v dk(S]
0= s = mg 7 als] +mg. (S7)

We can simplify the further derivation if we divide all terms in Eq. (57) by mg and consider the
ratio a == mg/mg:

V' dk(S"])

W aisT L (58)
Substituting the flux v using Eq.(S1):
[E] dk([S"]) _
s 1. (S9)

For irreversible Michaelis-Menten kinetics (Eq.(S2)), Eq. (S8) and (S9) result, respectively, in:

[s™1?

vt = kcatw ’ (S10)
alE'] =[] (1 + %) . (511)

We note that Eq.(S11) doesn’t depend on k.,:. Combining Eq.(S11) with Eq.(3) of the main
text results in the equality between the mass concentration of substrate and free enzyme,
mg[S*] = mg [E;ree] . (512)

Both equations (S10) and (S11) can further be solved for [S] to give, respectively:
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[$7] = /a,'fi’: (513)
(5] = "Tm( 14 Bl 1) (s14)

Substituting Eq.(S13) in Eq.(S12) and Eq.(S14) in Eq.(S11), we have, respectively:

.  _ IS1AE e Kn)
v :kcat([E]_[ HELe ) (515)

V" ,Kmv*
[E ] B kcat + akcat ’ (516)

where [S*]([E™]; a, K},) is given by Eq.(S14). In both equations, we note that the second term

on the right hand side is a consequence of the incomplete enzyme saturation by the

metabolite.

1.1 Optimality at the systems level

Enzymatic reactions in biological cells are not isolated: the same substrate is often consumed
by multiple enzymes, and the same enzyme may utilize multiple substrates. We thus need to
generalize the above derivation to the systems level, considering all metabolic reactions

within one cellular compartment (e.g., the cytosol) simultaneously. The relevant variables can
be expressed as vectors and matrices: ¥, the vector of reaction rates vj; E, the vector of
enzyme concentrations [E|] for these reactions; Ecat, the corresponding vector of turnover
numbers kcatj; §, the vector of metabolite concentrations [S;]; and K, the matrix of Michaelis
constants Kmi,- for metabolite i as substrate in reaction j (with Kmij = 0 if metabolite i is not

a substrate of reaction j).

A non-zero rate v; of reaction j can then be described using any reaction kinetics as
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v; = [Ejlk; , (517)
where the effective rate kj = kj (§, K) is a function of the metabolite concentrations S and a
set K of kinetic parameters. We assume that the cell is in a given metabolic state, /. e., all
reactions have a fixed rate v; (U=const). Below, we are only concerned with active reactions
(v; > 0), and we thus drop metabolites and enzymes involved only in non-active reactions
from further consideration (i.e., we assume S; > 0 and E; > 0 for all i and j without loss of

generality).

In this metabolic state, the metabolism of a given cellular compartment accounts for a
total mass concentration c:or; this can be calculated as the sum of all enzyme and metabolite

molar concentrations, each term multiplied by the corresponding molecular weight:
Ctot = Zj Mg, [E;] + Zimsi[si] . (518)

The derivation proceeds largely as above. We can rearrange Eq. (517) to express each

enzyme concentration [E|] as a function of v; and the vector of effective rates (which itself is

a function of metabolite concentrations §), as

It follows that for any vector of reaction rates ¥ and any vector of non-zero metabolite

- -
concentrations S, there always exists a matching vector of enzyme concentrations E.

Substituting Eq. (S19) into Eq. (S18), we obtain
v
Ctot = Xj mEj#'*‘ xims,[Si] (520)

which is now only a function of S and the constants 7, K, Mg, My
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If this metabolic state has the lowest possible mass concentration (i.e., Ctor is minimal

with respect to §), then all partial derivatives must vanish:

_Octot _ v v;  0k;([Si])
0= oSk 2. Mg, (k;)z ISkl

mg, (S21)

for all metabolites k. Dividing all terms in Eq. (S21) by mg, and rearranging, we obtain

ar;jvj 0k;([Sk])

; — =1, S22

Loy ot (s22)
]

where a;; = mEj/ka is the ratio of the molecular weights of enzyme j and its substrate k.

Using Eq. (S17) to re-substitute the reaction rates v; into Eq. (522) leads to

@i lEf] 9k (ISkD) _
2 6 ol T L (S23)

If all reactions j follow generalized irreversible Michaelis-Menten kinetics of the form

convenience kinetics [33]

kj = kcatj [L: <L> ’ (524)

[Si]+Kmi]'
where the kinetic parameters K consist of turnover numbers kcatj and Michaelis constants

Kmij, then Eq.(S23) results in

a;[E;]
[S)]

[S’:]<1+Kmk‘)
j

which only depends on the concentration and Michaelis constants of a single substrate S,

Y =1, (S25)

and is independent of turnover numbers kcatj. Thus, the contribution of each individual

metabolite to the total cellular cost in a maximally efficient metabolic system can be
considered in isolation. Also considering generalized irreversible Michaelis-Menten kinetics,

Eq.(S22) results in
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ki Ky, j9kj

j = [Sz]%, (S26)

kcatj

where
. Kinyj
Orj = iz <_[51*] + 1) ,

is the contribution of the other metabolites [ # k used as substrates in reaction j. Combining
Eq.(S26) with Eq.(3) directly generalizes Eq.(S11) as the Eq.(6) in the main text.
This equation applies to a complete metabolic system of effectively irreversible reactions
following generalized Michaelis-Menten kinetics: the optimally cost-efficient concentration
of each metabolite [Sk] in a given metabolic state (i.e., at given reaction rates ¥) depends only
on the concentrations of the enzymes consuming it, their affinities Kmkj for the metabolite,
and the enzyme/metabolite molecular weight ratios ay;, but is independent of turnover

numbers and reaction rates.

If one of the summands in Eq. (6) is close to 1, it will dominate this expression and we
approximately recover Eqg. (5S11). The dominant term will usually correspond to the enzyme

with the highest ayiEj; this is what is shown in Fig. 3 of the main text.

2. Enzyme offsets

Let us again assume that all reactions j consuming substrate i follow irreversible Michaelis-
Menten kinetics in the form [33] given by Eq.(526); we further assume that all Michaelis

constants for substrate i are approximately the same, Kmi,- ~ Ky,- This assumption is
consistent with experimental observations: approximating a given Michaelis constant Kmij by
the geometric mean of Km”, values for all other reactions j” using the same substrate results

in a mean fold-error of 4.68, i.e., predictions tend to be well within the right order of
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magnitude. With these approximating assumptions, Eq.(S25) and Eq.(S26) result, respectively,

in

%jayl51 = 1571(1+£1), (527)

(S28)

where

£ Koy
@7; = Iz (m + 1) ,

*
l

is the contribution of the other metabolites [ # i used as substrates in reaction j. Substituting

[S;] given by Eq.(S28) into Eq.(S27), we obtain

_ v %jvjoi
= Zj— +

catj

X aiEj (S29)

Let us now further assume that the cell is (approximately) in the same flux mode in all

conditions considered, i.e., all fluxes vj scale linearly with the growth rate u:

v; = Bip (S30)

with constant f; . Let us also assume that the ¢;; are approximately constant across the
conditions considered. With these approximations, Eq.(S30) multiplied by the molecular
weight of the substrate i describes the summed mass concentration of all enzymes consuming

the substrate,
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mg. v1<p” mE ms. szvJ(pu

=Xi——— 1 [%

k k
cat; catj

= xu + Jximg Kyt - (S31)

meg. ,8]([)”

where x; == Z] is constant. Expanding ELT around a typical growth rate p.. to first

catj

order, we obtain

dET
E' ~ E (.uref)'l'_(ﬂ ,uref)

Y PSR (S LR PR
Xi xim Xi -
iHref iMs; Bm;Href i 2 ximsiKmiHref H = Hrer

1 1 ximSiKmi
=3 /ximSiKmi.uref +u (xl- + > W) . (S32)

Setting u = 0, we find the apparent offset for the summed enzyme concentration consuming

the metabolite considered,

Si[si,re]
Efy = > JXims Kuyhtrey = ——"L (533)

with [S;-.r] the metabolite concentration at the typical growth rate p,..¢; the last equality

results from inserting Eq. (528). Under the assumption that the enzyme is half saturated,

ET. — ms;Km,i
i,O - 2
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3. MetE concentration and methionine production

MetE catalyzes the only reaction consuming 5-methyltetrahydropteroyl-tri-L-glutamate, and

thus Eq. (529) simplifies to

* _ V*(PZ Kmv*(P;l
[Emete] =7+ | T (S34)

where a is the ratio between molecular weight of enzyme and substrate, and

Fi= Ty
O = T

is the contribution of homocysteine, the other metabolite used as substrate in the reaction.

At balanced growth with no protein degradation, each amino acid i built into the proteome

is produced at the same rate v; as it is diluted by growth:
v; = un;P, (535)

where p is the growth rate, n; is the fraction of amino acid i in the proteome, and P is the
total protein concentration, which is approximately constant across conditions [1,3]. The
reaction rate catalysed by MetE, which produces methionine, should thus equal the rate at
which methionine is diluted in proteins (plus negligible terms for the dilution of methionine
itself and for offsetting protein degradation). Substituting Eq.(S35) into Eq.(S34) gives the

following expression for the concentration of MetE as a function of growth rate:

[Ernerp](u) = Moy o |rmetZinny, (536)
cat cat
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For Fig. 4b, we assume half saturation, ¢, = 2. n,,,; = 0.0256 + 0.0003 is practically
constant over all conditions explored in Schmidt et al. (2016). According to equation (S33),

the protein offset predicted for MetE is (with Cper = NerP):

* K
[EmetE,O] = \/2 km MuneteUrefCmet - (S37)
cat
For comparison, the optimal value at the reference condition is

. 2 Cye 2 crmetKm
[EmetE,ref] = ﬁUref + aﬂllccit Uref - (538)

4. Translation elongation as an enzymatic reaction

We can apply the same reasoning as before to estimate the optimal balance of enzyme and
substrates for the elongation phase of translation. In a simple model of elongation [10], the
mRNA-bound (“active”) ribosome, R, acts as the enzyme, while the set of ternary complexes
of charged tRNAs forms the substrate; in this simple biochemical model, the kinetic constants
are identical for all codons and all amino acids [10]. The following derivations will be simplified

“" ”
~

by using mass units, indicated by the use of tilde .

Eq.(S16), re-written for mass concentrations instead of for molar concentrations, then

predicts the optimal concentration of ribosomes as

R = =+ [

kcat kcat

, (S39)
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where [ﬁ*] is the optimal mass concentration of the active ribosomes occupied with adding
amino acids to the growing peptide, ¥ is the corresponding elongation mass flux per volume;
k.4 and K, are turnover number and Michaelis constant of the elongation reaction in mass
units [10] (see Methods). At balanced growth with no protein degradation, each amino acid

built into the proteome is produced at the same rate as it is diluted by growth:

(S40)

QN

Il
=

0

where P is the total protein mass concentration, which is approximately constant across

conditions [1,3]. Substituting Eq.(2) into Eq.(1) gives

51(y) = —— P K
[R ](,Ll) - kcatﬂ + %

u (S41)

cat

or, in terms of the protein mass fraction of ribosomal proteins (which make up Py :=

1340000

306967 — 0.58 of total ribosome mass [3], ¢ = Pz[R*]/P):

P Km
Pr(W) =—u+Pg |57—p (542)

kcat cat

A linear expansion of [R*] (1) around a typical growth rate H,os BiVEs

[ﬁ*] (.u) ~ [ﬁ*](ﬂref) + [ﬁ*],(:uref)(ﬂ - .uref) ’ (543)

which can be rearranged as

[R*] () = Ry + [R*] (et (S44)
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where R, = [ﬁ*](yref) - [ﬁ*]’(yref)yref is the offset of active ribosome concentration at

\' . In terms of proteome fraction, the

= P 1 K
zero growth, and [R*]’(uref) =—| 14+-—=
Keat 2 PR tres
ECl:!.f
. PRrRg
ribosome offset can be expressed as ¢p o = 5
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rate law and thermodynamic constraints. 7heor Biol Med Model 3:41.






DISCUSSION

This thesis presents the biological and mathematical foundations for
an analytical theory of the balanced growth of self-replicator mod-
els, termed Growth Balance Analysis. In its strive for simplicity and
generality, it intends to be as simple as possible in its assumptions,
while retaining the power to predict central aspects of cellular phys-
iology. The analytical approach permits to study and predict the re-
source allocation in cell models of any size, unlike previous methods
that rely on numerical optimization and are hence confined to small,
coarse-grained models. The necessary analytical conditions for opti-
mal cellular growth can be understood as consequences of the main
constraints on the maximal balanced growth rate [44]: (i) mass conser-
vation, (ii) reaction kinetics, and (iii) the limited capacity for cellular
dry weight, here including also small molecules. The resulting opti-
mization scheme can be understood from the following rationale: (i)
the cell growth rate equals the dry weight production rate (e.g., in
units of g/h) per dry weight (e.g., in g); (ii) at growth with constant
dry weight density (e.g., in units of g/L) maintained by a correspond-
ing increase in water content, the growth rate also equals the dry
weight density production (in g/L/h) per dry weight density; (iii)
cell growth is constrained by reaction kinetics, which depend on the
concentrations (e.g., in units of g/L) of catalysts and reactants; and
(iv) the total concentration of catalysts and reactants is constrained
by the dry weight density.

The constraint on total cell dry weight capacity considered here is
however not the only capacity constraint on cell growth. Other con-
straints on the concentration of molecules depend on their size (e.g.,
the macromolecular crowding of proteins, RNA, and DNA |9, 15, 35,
61] and the solvent capacity for small molecules [3, 54, 62]), their lo-
calization in the cell (e.g., due to the limited membrane real estate [60,
65]), and the total number of solved molecules (for the maintenance
of osmotic pressure). However, considering only the total dry weight
capacity has advantages, which are discussed next.

3.1 THE CONSTRAINT ON TOTAL CELL DRY WEIGHT DENSITY

de Groot et al. [28] have recently demonstrated that more than one
capacity constraint may result in a combination of Elementary Flux
Modes (EFMs) at maximal metabolic rates. However, in most physio-
logical situations only one capacity constraint will be active; a single
constraint and hence a unique EFM greatly simplifies the analytical
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treatment, and hence this is what is considered in the mathematical
formulation of GBA presented in this thesis.

Using the dry weight capacity constraint has two main benefits:
(i) it represents a coarse-grained “compromise” over all possible con-
straints, simplifying the formalism, and (ii) it depends on all cellular
components, which is essential to connect their costs and benefits.

Metabolites are commonly assumed to be too small to contribute
significantly to cell dry weight [9, 44, 48]. This appears inconsistent
with experimental measurements, which show total metabolite con-
centration in E. coli to be around 300 mM [10]. Assuming an average
metabolite molecular weight of ~ 100 g/mol, this results in a mass
density of ~ 30 g/L; with a total protein mass density [32] of around
135 g/L, this value corresponds to 30/135 ~ 22% of total E. coli pro-
tein concentration. Thus, our theoretical treatment accounts for the
contribution of all cellular components directly involved in growth to
cellular dry weight, including small molecules.

3.2 THE INFLUENCE OF PRODUCTION COSTS ON OPTIMAL GROWTH

The different constraints on growth have different quantitative effects
on the final optimal cellular state. The mass balance and dilution of
every component by growth, for example, enforces the necessary net
production of each cellular component, resulting in the respective pro-
duction costs. To estimate typical values for these production costs,
let us consider first the balance of marginal benefits of reactants o
and total protein (N« = np) in the simple scenario without dependent
reactants, which results in

Piok oy ML
]ij aaoc*1 ]ij (IJP IJ(X) ’ (7)

with the summation on the right hand side being the contribution
of production costs (Eq.(10) in Manuscript 1). This contribution is
negligible when its magnitude is much less than 1, in which case the
previous equation can be approximated as

pj 0kj
: K 0an 1. )]
The production cost contribution depends directly on the ratio u/k;.
To estimate a typical value for this ratio in vivo, let us assume that
k; values are approximately equal to the average [5] kcat ~ 10 s—T,
with an average enzyme molecular weight of 100 kDa and average
substrate molecular weight of 100 Da. The average k; in mass units
is then ~ 10/s x3600 s/h x100 Da /100000 Da = 36 h~'. For usual
growth rates of about p = 1 h~!, the estimated ratio u/k;j is then
less than 0.03. This means that if the terms (ij — I]-(X) are not too
large, the production cost contribution is much less than one. These
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considerations indicate that Eq.(8) is a reasonable approximation for
Eq.(7) in most cases. For a ribosome reaction using only one substrate,
a charged tRNA “T”, which is not consumed by other reactions, Eq.(7)
results in

PR OKR 1k

EabT_ —E ’ (9)

where only the protein production cost by the ribosome does not
cancel out. Considering the mass balance of protein production and
consumption (vg = prkr = HP), the production cost contribution
is in this case just the fraction of ribosome protein itself (u/kr =
Pr/P = ¢r), which can be estimated experimentally. Typical values
for the ribosomal protein fraction are [53] ¢pr = 0.28 at p = 1.9 h™!,
growing on LB; ¢r = 0.14 at p = 0.58 h~! on glucose in batch culture;
and ¢pg = 0.04 at u = 0.12 ™' on glucose in a chemostat (see Fig.2
in Manuscript 1 for the values in 20 different growth conditions). In
these cases, the influence of the production costs becomes negligible
at intermediate to low growth rates.

The previous considerations about the influence of production costs
on optimal cellular resource allocation indicate that in general, these
costs can be seen as a second order effect; this effect “fine-tunes” the
concentrations that result from optimizing the utilization of the cellu-
lar capacity especially at high growth rates, and can be neglected at
slow to intermediate growth. We quantified the central importance of
the capacity constraint for the maximal growth rate in the GBA frame-
work, estimating a relative change in growth rate of about 0.7 times
the relative change in cellular capacity for E. coli. A very similar value
is also suggested by the limited available data on experimental reduc-
tions in the cellular dry weight density [14]. Thus, we expect that for
any given vector of reaction fluxes, the set of in vivo concentrations of
reactants and proteins is, at least approximately, the one resulting in
the optimal use of dry weight density constrained by kinetics. In this
case, optimal use means two things: (i) the cell is using its full dry
weight capacity p in order to achieve the maximal growth rate possi-
ble; and (ii) this value p is the minimal sum over the concentrations
P, a that results in the given flux vector, since any other combination
of concentrations resulting in these fluxes but larger total dry weight
density would violate the capacity limit.

3.3 THE CONSTRAINTS ON CELLULAR GROWTH AND ITS OPTI-
MALITY

The GBA framework is formulated for the analysis of self-replicator
models where each protein catalyzes exactly one reaction. This in-
cludes, for example, models accounting for transcription through RNA
polymerase (enzyme) and DNA/mRNA (reactants). In this case, the
network structure and kinetics of the gene expression apparatus ex-
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plicitly constrain cell growth through the corresponding kinetic func-
tions k and entries in the matrix A, so the gene expression cost is
included in the production costs as defined here. Translation could
be modeled in a more detailed process than a single “ribosome” re-
action (as explored in this thesis), resulting again in potentially more
realistic predictions of optimal resource allocation due to more realis-
tic costs and benefits of cellular components.

It is important to note that regulation of reactions at any level
(transcriptional, post-transcriptional, translational, post-translational,
allosteric, competitive) can be accounted for in the GBA framework
through appropriate biochemical reactions and corresponding kinetic
functions [42]. In this way, also the costs and benefits of regulation
will become intrinsic to the costs and benefits of cellular components.
More generally, the input in the optimization described in Eq.(5) is a
model defined by a triple (A, k, p), and by consequence its output is
expected to become more realistic as A and k get more realistic, i.e.,
as the description of how growth is constrained by network structure
and reaction kinetics becomes more detailed, given that these details
are sufficiently backed up by experimental data.

It is also important to note that other constraints not included in
the GBA paradigm are expected to influence cellular states, and “opti-
mality” is primarily a theoretical tool. The assumption of a fixed envi-
ronment, for example, also excludes the possibility of interaction with
other organisms in the growth media, such as in cooperative growth
of microbial communities [8]. This scenario configures a more com-
plex optimization that goes beyond the single cell models examined
here. Even with the hypothetical knowledge of all constraints (includ-
ing a realistic representation of environmental fluctuations and of the
costs of cellular regulation), the theoretically optimal state is not nec-
essarily the exact state of cells found in nature. However, the con-
straints accounted for here strongly influence cell growth and cannot
easily be violated by living systems. Thus, there is reason to believe
that the quantitative principles presented in this thesis have the po-
tential to capture the general trends governing cellular resource al-
location. In fact, the above estimates based on average values of the
growth rate and of catalytic constants [5] indicate that one of the con-
straints accounted for here, the mass conservation, has in general a
minor impact on cellular resource allocation: production costs are in
general low compared to other costs and benefits. This is confirmed
by experimental data from E. coli; concentrations of ribosome [53]
(Fig.2 in Manuscript 1), enzymes [53], and metabolites [23] (Figure 3
in Manuscript 2) are well explained based only on the optimal use
of dry weight capacity constrained by kinetics. This approximate ap-
proach has the benefit of relying much less on the knowledge of the
(frequently unknown [17]) kinetic parameters.
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3.4 GROWTH LAWS, PROTEIN OFFSETS, AND UNDER-UTILIZED
PROTEINS

The growth laws of proteome allocation are an important phenomeno-
logical tool utilized to understand cellular resource allocation [6], but
their mechanistic origins have not yet been completely clarified [6,
32, 46]. This thesis shows that the linear growth rate dependence of
protein concentrations, and in particular their “offsets”, may emerge
from the simple steady-state optimization of cellular capacity utiliza-
tion by catalysts and their substrates, constrained by reaction kinet-
ics. The quantitative predictions for irreversible reactions are in good
agreement with experimental values of proteins for which the growth
rate dependence of flux is known quantitatively. However, many re-
actions have a significant backward flux and violate the irreversibility
assumption; in those cases, a higher enzyme expression and conse-
quently a larger offset is expected to compensate for the enzyme “in-
efficiency”.

The predicted optimal protein concentrations at different growth
rates also help to explain the existence of “under-utilized” proteins
[51] as a consequence of (optimal) under-saturation. On the other
hand, the condition-dependent expression of “un-utilized” proteins
with no growth-related function in E. coli indicates that this organ-
ism is evolutionary adapted to changing environments, not simply to
steady-state conditions [51]. Accordingly, experimental studies show
that E. coli is capable of increasing its growth rate when it adapts to
a stable environment over many generations [31].

3.5 OUTLOOK

Some important problems mentioned in this thesis remain to be ex-
plored in future work. First, the shortage of kinetic parameters greatly
limits the direct application of GBA to genome-scale models, even for
the simplified optimization of capacity utilization constrained by ki-
netics. This problem might be approached in different ways: (i) by
estimating kinetic parameters in silico, using, for example, machine
learning techniques [29]; (ii) by developing systematic methods for
coarse-graining existing models to smaller networks, in a way that the
necessary kinetic parameters can be systematically estimated from
the incomplete set of known parameters of reactions in the original
model and/or from comparison to physiological data. Small cellular
models have been shown to still capture some important information
about cellular behaviour, for example in terms of its proteome sectors
[7, 32].

Second, the balance equations are necessary but not sufficient con-
ditions for optimal growth. A full analytical solution of the optimiza-
tion problem demands the study of second order necessary condi-
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tions or of the possible convexity of the optimization problem in
Eq.(6). In the case of strict convexity, the balance equation would have
only one solution, and would thus be necessary and sufficient to de-
termine the optimal growth state.

Third, the framework of GBA as presented here requires the previ-
ous knowledge of the active reaction network (i.e., the reactions carry-
ing flux in the EFM used at maximal growth rate). The determination
of this reaction set is trivial in small models with only one EFM, but
becomes a major limitation for the analysis of genome-scale models.
In the study of this more general problem, instead of using the La-
grange multiplier method, one needs to use the Karush-Kuhn-Tucker
(KKT) conditions [37], which account for constraints on concentra-
tions that can be active or inactive; concentrations need to be non-
negative, but some may be zero, defining the “inactive” portion of
the network. Alternatively, one might use an approximation that con-
siders a limited set of EFMs, derived, e.g., from parsimonious FBA
[30] in combination with manually added constraints (e.g., to enforce
overflow metabolism). Finally, the generalization of GBA to multiple
capacity constraints also requires the use of KKT conditions, as some
of these constraints may not be active in a given optimal state.
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