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Abstract

In this thesis, we present a comprehensive theoretical study of effective colloidal inter-
actions and related thermodynamic, structural, and dynamic properties of suspensions of
charged, spherical colloidal particles suspended in an aqueous electrolyte solution. Two
important classes of charge-stabilized particulate systems in the fluid phase state are investi-
gated. Firstly, impermeable rigid colloidal particles constituting a generic model for aqueous
suspensions of synthetic (e.g., polystyrene and silica) micro-spheres, and secondly ion- and
solvent-permeable soft particles used as a model for suspensions of ionic microgels having a
state-dependent size.

For both classes of suspensions, effective interaction potentials for pairs of microion-
dressed colloids are derived using mean-field methods based, respectively, on Poisson-Boltz-
mann density functional theory, linear response theory and a multi-ion-species Ornstein-
Zernike integral equation scheme. In averaging out the microionic degrees of freedom, a
so-called volume energy contribution to the osmotic suspension pressure is obtained, and
shown to be important at lower ionic strengths. Different thermodynamic routes for calcu-
lating the suspension pressure and osmotic compressibility are explored and compared, for
suspensions in Donnan osmotic equilibrium with an electrolyte solution reservoir. On basis
of a generalized virial equation, we analyze how the pressure is affected by the concentration
dependence of the effective pair potential.

Using the derived effective pair potentials in conjunction with the thermodynamically
self-consistent Rogers-Young integral equation method, static properties are calculated in-
cluding the colloidal structure factor and radial distribution function. For strongly charged
colloids where counterion condensation takes place, renormalized values are used for the col-
loid charge and electrostatic screening parameter entering the effective pair potential. We
thoroughly analyze, and partially extend, the most commonly used renormalization meth-
ods and assess their respective performance in a broad range of suspension parameters. We
demonstrate that good agreement with structural and pressure data from elaborate multi-
component Monte-Carlo simulations is achieved when charge renormalization effects are
properly accounted for. While counterion condensation always results in a renormalized col-
loid charge smaller than the bare one, we show that and explain why, for large concentration
and small value of the bare charge, an effective charge larger than the bare one is observed.
This peculiar effect can play a role in concentrated solutions of globular proteins.

The renormalized effective pair potentials and associated pair distribution functions are
additionally employed in our semi-analytic calculations of dynamic properties where the
solvent-mediated colloidal hydrodynamic interactions are accounted for. The studied prop-
erties include the hydrodynamic function, quantifying the influence of hydrodynamic in-
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teractions on short-time diffusion over different length scales, and the high-frequency and
zero-frequency suspension viscosities.

Regarding our model for ionic microgels, two mean-field methods of calculating the
crowding-dependent microgel radius are investigated, and their pros and cons assessed. We
show that the counterion-induced deswelling of non-overlapping microgels enhances diffu-
sion and the osmotic pressure, lowers the suspension viscosity, and significantly shifts the
suspension crystallization point to larger concentrations.

The thesis provides a versatile toolbox of state-of-the-art, bottom-up methods for ef-
ficiently computing thermodynamic, structural and dynamic properties of suspensions of
permeable and impermeable charged colloidal particles, using the single-particle character-
istics.



Zusammenfassung

Die vorliegende Dissertation beinhaltet eine umfassende theoretische Untersuchung von
effektiven kolloidalen Wechselwirkungen und den daraus hervorgehenden thermodynamischen,
strukturellen und dynamischen Eigenschaften von Suspensionen geladener kolloidaler Teil-
chen suspendiert in einer wässrigen Elektrolytlösung. Dazu untersuchen wir zwei wichtige
Gruppen von ladungsstabilisierten kolloidalen Partikelsystemen im fluiden Phasenzustand.
Zum einen sind dies harte, impermeable sphärische Teilchen, welche als generisches Modell
für wässrige Suspensionen von synthetischen Mikroteilchen dienen, realisiert u.a. in Form
von Polystyrol- und Silicapartikeln. Zum anderen untersuchen wir ionen-und lösungsmittel-
permeable weiche Teilchen als ein Modellsystem für ionische Mikrogelteilchen, welche einen
variablen, zustandsabhängigen Durchmesser aufweisen.

Für beide Gruppen von Suspensionen leiten wir effektive Wechselwirkungspotentiale
für kolloidale Quasiteilchen, zusammengesetzt aus den nackten Teilchen und ihren neutral-
isierenden ionischen Ladungswolken, her. Dazu verwenden wir mittlere Feldtheoriemethoden
basierend auf der Poisson-Boltzmann Dichtefunktionaltheorie, der linearen Antworttheorie
und einer mehrkomponentigen Ornstein-Zernike Integralgleichungsmethode für ionische Mis-
chungen. Als Folge der Integration über die mikroionischen Freiheitsgrade ergibt sich ein
Beitrag zum osmotischen Suspensionsdruck, welcher sich aus einer sog. Volumenenergie
ableitet. Wir zeigen, dass dieser Druckbeitrag wichtig ist für kleine Ionenstärken. Wei-
terhin analysieren wir unterschiedliche thermodynamische Zugänge für die Berechnung des
Drucks und der osmotischen Kompressibilität einer Suspension im osmotischem (Donnan)
Gleichgewicht mit einem Elektrolyt-Reservoir. Auf der Grundlage einer verallgemeinerten
Virialgleichung analysieren wir, wie sich die Konzentrationsabhängigkeit des effektiven Paar-
potentials auf den Systemdruck auswirkt.

Unter Verwendung der effektiven Paarpotentiale in Verbindung mit der thermodynamisch
selbstkonsistenten Rogers-Young Integralgleichungsmethode berechnen wir statische Sus-
pensionseigenschaften einschließlich dem kolloidalen statischen Strukturfaktor und der ra-
dialen Verteilungsfunktion. Die Gegenionenkondensation für hochgeladene Kolloidpartikel
wird dabei berücksichtigt durch die Verwendung einer renormierten Kolloidladung und eines
renormierten elektrostatischen Abschirmparameters in dem effektiven Paarpotential. Dazu
untersuchen und verallgemeinern wir die am häufigsten verwendeten Renormierungsme-
thoden. Ihre Vor- und Nachteile diskutieren wir für einen breiten Parameterbereich. Wir
zeigen, dass strukturelle Daten und der Systemdruck, erhalten aus aufwändigen, mehrkompo-
nentigen Monte-Carlo Simulationen, gut reproduziert werden bei Verwendung einer geeigneten
Renormierungsmethode. Während Gegenionenkondensation stets eine renormierte Ladung
kleiner als die nackte Kolloidladung bedingt, ist das Gegenteil der Fall für die effektive
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Ladung in einer konzentrierten Suspension schwach geladener Teilchen. Letzteres kann von
Bedeutung sein für konzentrierte Lösungen globularer Proteine.

Die renormierten effektiven Paarpotentiale und zugehörigen Paarverteilungsfunktionen
gehen zusätzlich ein in unsere semi-analytische Berechnung dynamischer Suspensionseigen-
schaften unter Berücksichtigung der durch das Lösungsmittel vermittelten hydrodynamis-
chen Wechselwirkungen zwischen den Kolloiden. Wir studieren hier insbesondere die hy-
drodynamische Funktion, welche den Einfluss der hydrodynamischen Wechselwirkungen auf
die Kurzzeitdiffusion bei unterschiedlichen Längenskalen beschreibt, sowie die Hochfrequenz-
und statische Viskosität.

Im Rahmen unseres Modells für ionische Mikrogele verwenden und vergleichen wir zwei
mittlere Feldtheoriemethoden für die Bestimmung des konzentrationsabhängigen Mikrogel-
radius. Wir zeigen, dass das durch Gegenionen induzierte Abschwellen nicht überlappender
ionischer Mikrogele zu einer Erhöhung der Teilchendiffusion, Abnahme der Viskosität sowie
einer deutlichen Verschiebung des Kristallisationspunkts hin zu größeren Konzentrationen
führt.

Die vorliegende Dissertation stellt einen Fundus an vielseitig einsetzbaren bottom-up
Methoden bereit, mit welchen sich thermodynamische, strukturelle und dynamische Eigen-
schaften von Suspensionen geladener permeabler und impermeabler Teichen effizient berech-
nen lassen, bei Verwendung der Einzelteilchencharakteristiken.
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Chapter One

INTRODUCTION

Soft matter systems are widely present in our daily life. We can find them in products

such as food, paints, inks, cosmetics, emulsions, foams and aerosols, as well as in many

biological systems such as blood, protein solutions and the cytoplasm of cells. They are thus

of great biological and medical importance, and have vast industrial applications. The soft

mechanical nature of these systems is due the fact that their internal states can be easily

modified by applying energy of the order of the thermal fluctuations. The rigidity of soft

matter against mechanical deformations is hence many orders of magnitude smaller than

that of atomic systems [1]. The softness is related to the mesoscopic size of the constituents

and the types of interactions among them.

Since under standard ambient temperature and pressure conditions, a large variety of soft

matter systems are in the liquid phase, a thorough theoretical understanding of the proper-

ties of fluids is of great importance. Differently from simple liquids, where one deals with

one-component atomic or low-molecular systems of constituents typically with spherical sym-

metry and interacting via radially-symmetric (approximately) pairwise-additive potentials,

fluid soft matter systems are “complex”. That is, they are solutions or suspensions which,

owing to the large variety of constituent particles, are usually multi-component systems with

complex many-body interactions.

An important subgroup of complex fluids are colloidal suspensions. These are suspensions
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of solid or liquid particles, in the size range from a few nanometers to tens of micrometers,

dispersed in a low-molecular solvent such as water. The particles undergo Brownian motion,

driven by the thermal agitation of the solvent molecules [2]. The intricate coupling among

the colloidal particles and solvent brings about that changes in solvent quality, tempera-

ture, concentration of dissolved salt ions and pH can lead to very pronounced changes in

the effective interactions between the suspension components, making these systems ideal

for studying phase transitions [1]. In particular, the time scales for the phase changes are

much slower than in atomic systems, allowing for an in-depth study of these changes. From

an experimental point of view, the large size difference between colloidal particles and, in

comparison, small solvent molecules allows to study the structural ordering and dynamics of

the colloids by performing static and dynamic light scattering experiments using visible laser

light [3], and direct observation of their real-space motion by means of video microscopy for

larger particles [4]. Different from purified biological solutions, synthetic colloids are com-

monly polydisperse in size and interaction. Polydispersity tends to suppress crystallization

as compared to a putative monodisperse suspension of same mean density and temperature

[1].

Another important aspect of fluid-phase colloidal suspensions is their stabilization. Col-

loidal particles of same kind always experience an attractive so-called van der Waals force,

caused by induced electromagnetic dipole-dipole interactions between the many atoms con-

stituting the colloidal particles [2]. The attractive (effective) van der Waals potential tends

to diverge as the particles come into contact. It decays as r−6 for intermediate particle sep-

arations and, due to electromagnetic retardation effects, as r−7 for very large distances [5].

Near to two-particles contact, van der Waals attraction combined with Born repulsion, the

latter caused by overlapping of the atomic electronic clouds, gives rise to a deep potential

minimum near contact, which can drive irreversible flocculation. To avoid this, stabilization

mechanisms are needed providing an additional inter-particle repulsion. There are two major

stabilization mechanisms, namely charge stabilization and steric stabilization, respectively.
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Throughout this thesis, we focus on charge-stabilized suspensions of different kinds.

These suspensions consist of colloidal particles (macroions) carrying ionizable chemical groups,

suspended in a polar low-molecular solvent such as water [6]. The dissociation of so-called

counterions from these functional groups into the solvent results in charged colloids with

their charge sites located on their surfaces and/or in their interiors. Additionally to the

particle-released counterions, there are commonly solvent-dissolved counter- and coions (mi-

croions). An electric double layer results from the buildup of an inhomogeneous mobile

cloud of microions around each colloid, which carries a charge of opposite sign to that of

the colloidal particles and tends to screen their electrostatic potential [6]. The overlap of

the double layers of two colloids approaching each other leads to a repulsive force which

stabilizes the particles against aggregation [5]. In case of solvent-permeable particles such

as ionic microgels, the microion cloud extends also into the particle interior, where it can

affect the equilibrium particle size.

In this thesis, we study theoretically the interactions in different fluid-phase, charge-

stabilized dispersions formed by spherical charged colloids of different architecture, that co-

exist with the ions dissolved in a polar solvent. Two representative types of charge-stabilized

suspensions are considered. The first one consists of impermeable rigid colloidal spheres,

which are strongly charged on their surfaces, so nonlinear charge renormalization effects are

operative. Examples that have been widely studied experimentally are aqueous suspensions

of polystyrene and silica micro-spheres. As part of this thesis, different mean-field charge

renormalization methods are investigated and compared, together with an assessment of

their implications on structure, thermodynamics and dynamics. The second type are sus-

pensions of weakly cross-linked spherical ionic microgel particles, which are permeated by the

solvent and the microions. The electric repulsion of the cross-linked polyelectrolyte network

forming the elastic “backbone” of a microgel particle is screened by dissolved counterions

accumulated inside (and outside) its backbones. The delicate interplay of nonelectrostatic,

elastic-entropic forces, tending to limit the microgel size, and electrostatic-entropic forces,
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tending to expand the size, give rise to a state-dependent mean particle size depending on

temperature, pH, backbone charge, ionic strength and microgel concentration. In this thesis,

the peculiar concentration dependence of ionic microgels and its impact on thermodynamics,

structure and dynamics of microgel suspensions are explored in great detail. Standard ex-

perimental examples of ionic microgels, where a strong deswelling with increasing microgel

concentration is observed, are aqueous suspensions of weakly cross-linked PNIPAM (Poly

N-isopropylacrylamide) particles [7]. The multiresponsive character of the soft microgel

systems allows for various industrial and biomedical applications, including drug-delivery

vehicles, sensors, tunable microreactors and switchable membranes. Suspensions of hard-

and impermeable charge-stabilized particles of practical and biological relevance are, among

many others, aqueous paints and protein solutions.

Using the effective colloidal pair potentials derived and discussed in the thesis for charge-

stabilized suspensions of rigid impermeable spheres and of soft ionic microgels, repectively,

thermodynamic and equilibrium microstructural properties are calculated. These properties

include the osmotic pressure and compressibility for a suspension in Donnan equilibrium with

a salt reservoir, and colloidal pair distribution and static structure functions. For the latter

functions, state-of-the-art integral equation methods are used and their results compared

with simulation data. The pair distribution and static structural functions of the charged

colloidal particles are employed, in turn, for the calculation of equilibrium and dynamic prop-

erties including wavenumber-dependent diffusion functions, and zero- and high-frequency

suspension viscosities. The semi-analytic methods used in these calculations account for the

solvent-mediated hydrodynamic interactions (HIs) between the particles, and for hydrody-

namic solvent penetration effects inside the solvent- and microion-permeable microgels. In

analyzing the inter-colloid interactions, we take advantage of the large size- and charge asym-

metries between the big colloidal particles and the small microions and solvent molecules by

tracing-out the degrees of freedom of the latter ones. This leads us to the determination

of an effective Hamiltonian describing the microion- and solvent-averaged effective interac-
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tion between colloidal pseudo-particles, in the framework of an equivalent one-component

picture. We restrict our analysis to monovalent microions where their correlations can be

approximately disregarded, allowing thus for a mean-field treatment. By using different

mean-field descriptions of the microion species, we derive the effective electrostatic colloidal

pair potential and the so-called volume energy terms for the two considered hard- and soft

particle systems.

For the impermeable hard colloids, the effective interaction between the pseudo-colloids

is given by the standard double-layer DLVO (Derjaguin-Landau-Verwey-Overbeek) poten-

tial, with a renormalized effective colloid valence and screening parameter provided charge

renormalization is operative. One target of our study is to assess when nonlinear effects caus-

ing charge renormalization become relevant in concentrated suspensions of strongly charged

particles. Charge renormalization consists of introducing a renormalized effective macroion

charge number (valence), Zeff, which is different from the bare one Z, and a renormalized

screening parameter, κeff, in the DLVO potential, quantifying hereby nonlinear screening

effects. There are different charge-renormalization methods described in the current lit-

erature, providing in general different values for the renormalized interaction parameters,

Zeff and κeff, in dependence of the bare interaction parameters Z and κ of a system. We

have thoroughly analyzed, and partially extended, a selection of the most-commonly used

charge renormalization methods, and have assessed their performance and applicability in

a broad parameter range: from strongly to weakly charged particles, and from low to high

ionic strengths. We have assessed the performance of the different methods by determining

structural and thermodynamic properties from the respective effective pair potentials, in

comparison with elaborate primitive-model (PM) simulations [8]. Our evaluation of differ-

ent charge-renormalization schemes is helpful for the selection of reliable theoretical tools,

e.g., for the interpretation of light, x-ray and neutron scattering data of charge-stabilized

suspensions of impermeable particles.

Regarding solvent- and ion-permeable soft colloids, we determine the electrostatic con-
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tribution to the effective colloid interaction potential using a PM-based Ornstein-Zernike

(OZ) integral equation scheme with linear mean spherical closure [9], and contrast with the

equivalent linear response theory (LRT) prediction for the case of a uniform backbone charge

distribution [10–12]. From the effective electrostatic interaction potential between perme-

able macroions taken together with an elastic Hertz potential and a Flory-Rehner free energy

contribution, we compute the state-dependent equilibrium size of the microgels. Following

earlier work by Denton et al. [10, 13–15], we model hereby the ionic microgels in a coarse-

grained way as microion- and solvent-permeable, monodisperse elastic colloidal spheres, with

the charged sites on the cross-linked polymer-gel backbone summarily described by a uniform

charge distribution. This description is reasonable, under the proviso that the cross-linker

density does not vary strongly along the microgel particle radius. We describe the elastic

and solvent-interaction free energy contributions of a microgel using Flory-Rehner theory

[16–18] for a likewise uniform cross-linker distribution.

For calculating the electrostatic semi-grand free energy contribution of microgels in a

concentrated suspension, in Donnan equilibrium with a electrolyte reservoir, we use two

different mean-field methods: First, the spherical Poisson-Boltzmann cell model (PBCM)

approach of Denton and Tang [14], and second, a first-order thermodynamic perturbation

theory (TPT) method of Weyer and Denton [15] based on a multi-colloid-center linear-

response approach. The equilibrium microgel radius is obtained from minimizing the total

suspension semi-grand free energy, which is equivalent to enforcing the balance of the total

(intrinsic) pressure inside and outside a microgel. In combination with the derived effective

electrostatic pair potential expression for ionic microgels and the volume energy expression in

LRT [13], we explore thermodynamic, dynamic and equilibrium microstructural properties

of fluid-phase suspensions of ionic microgels in the swollen state. While being of interest

in their own right, microstructural properties such as the radial distribution function and

static structure factor are also required as input in our calculation of dynamic suspension

properties, including generalized sedimentation and collective diffusion coefficients, and the
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high-frequency and zero-frequency viscosities.

The calculation of the structural suspension properties is done in the framework of OZ

integral equations using the hypernetted chain (HNC) and thermodynamically self-consistent

Rogers-Young (RY) closures [19].

The resulting macroion pair distribution function is then used as input to our calculations

of dynamic suspension properties, such as the hydrodynamic function. For the calculation of

short-time dynamic properties, we employ as semi-analytic methods the pairwise-additivity

(PA) approximation of HIs and the Beenakker-Mazur (BM) mean-field method. The good

performance of these methods has been established earlier, by comparison with elaborate

dynamic computer simulations, for a variety of colloidal model systems describing globular

proteins, impermeable charge-stabilized colloids, and non-ionic spherical microgels [20–24].

The methods account for the salient hydrodynamic particle interactions mediated by the

intervening solvent flow. To obtain long-time dynamic properties such as the zero-frequency

viscosity, we implement a simplified mode-coupling theory (MCT) method for computing

memory (stress relaxation) contributions.

The thesis is organized as follows. In chapter 2, we explain how the effective one-

component Hamiltonian and the effective colloidal interaction potential are derived from

mapping the original multi-component system onto an effective one-component system of

pseudo-macroions. We present different mean-field methods for the derivation of the elec-

trostatic part of the effective macroion pair potential for both ion- and solvent-permeable,

and impermeable charged macroions. These methods are based on three different formula-

tions: first, a density functional theory, second a linear response theory, and third a (linear)

multi-species Ornstein-Zernike (OZ) integral equation scheme. All three methods start from

a PM-type description, where the microions are treated as pointlike and the solvent is de-

scribed as a structureless dielectric Newtonian fluid characterized by a uniform dielectric

constant ε and shear viscosity η0. The three methods are modified and used also in our

derivation of the effective pair potential of ion-permeable macroions.
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In chapter 3, we introduce the employed charge-renormalization schemes, namely: single-

colloid-center cell-models and renormalized jellium models; and multi-colloid-center renor-

malized linear response theory (RLRT) and shifted Debye-Hückel approximation (SDHA).

In chapter 4, we describe how mechanical features of microgels are modeled and introduce

the methods for modeling the concentration-dependent deswelling of ionic microgels. We

briefly describe the Hertz potential and Flory-Rehner theory for modeling the polymeric

nature of the ionic microgels. Moreover, we introduce both the Poisson-Boltzmann cell

model (PBCM) method and the thermodynamic perturbation theory (TPT) method for the

calculation of the microgel equilibrium size.

Chapter 5 summarizes the methods used for the calculation of structural, thermody-

namic and dynamic properties. We define the structural properties, namely colloidal pair

distribution function and structure factor, and thermodynamic properties such as the sus-

pension pressure and osmotic compressibility, together with their calculation methods based

on the effective macroion pair potential. In particular, we discuss hypernetted chain (HNC),

Perkus-Yevick (PY) and Rogers-Young (RY) integral equation schemes. We further dis-

cuss short-time dynamic properties including the hydrodynamic function, concentration-

dependent diffusion function, sedimentation velocity, collective diffusion coefficient and high-

frequency viscosity, in conjunction with the corresponding calculation methods that involve

the pairwise-additivity (PA) approximation and the Beenakker-Mazur (BM) methods. Re-

garding long-time dynamic properties, we discuss the zero-frequency suspension viscosity

and present a simplified MCT method for its calculation.

In chapter 6, we report our comprehensive theoretical study of concentration-dependent

deswelling effects on thermodynamic, structural, and dynamic properties of weakly cross-

linked ionic microgels dispersed in a good solvent. We scrutinize PBCM and TPT methods

for determining the equilibrium microgel size. They are used in a second step to analyze the

effect of microgel deswelling on the effective microgel interactions. By comparison with a (fic-

titious) reference suspension of constant-size microgels, we assess the impact that deswelling
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has on structural as well as on diffusion and rheological suspension properties.

In chapter 7, we finally assess the performance of charge renormalization schemes. To

this end, we compare first the different predictions of the effective interaction parameters

to assess the pros and cons of each considered method. We analyze next the performance

of the different renormalization schemes by comparing the resulting predictions for the pair

structure and thermodynamic suspension properties with those from earlier PM-based Monte

Carlo (MC) simulations. In particular, a detailed analysis of the suspension pressure is

provided, wherein we discuss the importance of the different pressure contributions arising

from the renormalized, concentration-dependent effective macroion pair potential.

We conclude the thesis with chapter 8, where we summarize and value the main results

of the thesis, and discuss possible future extensions.

In the appendixes A and B, we give salient details about PA and BM methods, respec-

tively, for calculating dynamic suspension properties. Moreover, in appendix C, we explain

how the suspension pressure is calculated in RLRT using a general virial equation.

9



Chapter Two

EFFECTIVE INTERACTIONS OF

IMPERMEABLE AND

PERMEABLE COLLOIDS

In this chapter, we present the general framework for deriving the effective interaction po-

tential of dressed, (pseudo-)colloidal particles. In this framework, the microionic degrees of

freedom are integrated out, resulting in an effective one-component suspension of microion-

dressed colloidal particles interacting by an effective potential, where the electrostatic screen-

ing by the microions is accounted for. We start with a brief description of the primitive model,

where all ionic species are treated on equal footing as isotropically charged hard spheres, im-

mersed in a structureless dielectric solvent. We later focus on a mean-field, analytic deriva-

tion of the effective colloid-colloid interaction potential and volume (grand-free) energy both

for hard ion-impermeable and soft ion-permeable charge-stabilized colloids. In addition to

employing density functional theory and linear response theory methods, we derive an effec-

tive colloid interaction potential using an Ornstein-Zernike (OZ) integral equation scheme

applied to soft, ion-permeable colloids.
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2.1 Effective one-component models

Charge-stabilized (monodisperse) colloidal suspensions consist of different ionic species, which

significantly differ in terms of their charges and sizes from one another, i.e., large multiva-

lent colloidal macroions and small (hydrated) counter- and coions, the latter collectively ad-

dressed as microions. The ion species are typically suspended/dissolved in a low-molecular,

polar solvent such as water.

In many theoretical investigations of charged-stabilized colloidal systems, the solvent is

treated as a structureless continuum, statically characterized by its macroscopic dielectric

constant ϵ and hydrodynamically modeled as a Newtonian fluid with shear viscosity η0.

This is commonly amended by a generalized Primitive Model (PM) level of description,

where the different ionic species are described on equal level as isotropically-charged (hard)

spheres, interacting by Coulombic forces [6]. In the PM, the dielectric mismatch between

solvent-impermeable (macro-)ions and solvent is disregarded, namely there are no induced

polarization charges [25], and it is assumed that the internal charge distribution of a spherical

microion follows rigidly the sphere motion. This is likewise assumed in case of solvent- and

microion permeable colloidal spheres, i.e. intra-particle effects and external electrokinetic are

disregarded. Without external electric fields or strong imposed flow, electrokinetic effects are

typically quite small. While interesting from a theoretical viewpoint, electrokinetic effects

are not considered in this thesis.

The PM has been widely applied for quantifying ionic correlations in charge-stabilized

systems using elaborate computer simulations, in particular for charge and diameter asym-

metries up to about 1:100 [8, 26–28], corresponding to micellar and protein systems, and,

furthermore, for charge and diameter ratios up to 1:250 and 1:500 respectively, describing

colloidal suspensions of moderately-charged and sized macroions [29]. Numerical solutions of

specific OZ integral equation schemes, such as the hypernetted chain scheme, have allowed to

treat asymmetries in size and charge as large as 1:1000 [29]. The analysis of larger asymme-
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tries, and a detailed exploration of salt-variation effects, where at least three ionic species are

involved, is still a challenging task using numerical methods. However, largely-asymmetric

systems admit a great simplification by tracing out the degrees of freedom associated with the

small microions in the suspension, resulting in an effective one-component system of dressed

macroions, which is governed by an effective Hamiltonian that describes the effective inter-

actions between the remaining (large) particles. The resulting effective interactions account

not only for the direct interactions between the macroions but also for the induced effects

of the solvent, counterions, salt ions and cross-linked polymer chains in case of ionic micro-

gels [1]. Even when all direct interactions among the original species are strictly pairwise

additive (as in the PM), the effective interactions can still include many-body contributions

and depend on the thermodynamic state of the system [30]. The density dependence of the

effective pair potentials is analyzed in detail in this thesis.

The advantage of working with effective interactions lies not only in the theoretical sim-

plifications that allows for using well-developed theoretical tools adapted from the theory

of simple liquids. Effective colloidal interactions are especially valuable in calculating ma-

terials properties of soft matter systems, such as viscosity and diffusion properties, and in

studying their thermodynamic behaviour. They constitute the essential input to molecular

simulation studies and statistical mechanical theories [30]. The effective one-component de-

scription also allows to make direct contact with experiments probing static and dynamical

properties of the large colloidal particles only. Having the effective interactions between the

(dressed) colloids at disposal permits the computation of structural properties such as the

colloid-colloid static structure factor, which is obtained from light scattering, small-angle

neutron or x-ray scattering, depending on the colloidal sizes [3].

Another important quantity arising from mapping a multi-component system onto an

effective one-component one is the so-called volume (grand-free) energy term. This contribu-

tion to the effective Hamiltonian is independent of the colloidal coordinates (and momenta).

The expectation value of any operator depending on these coordinates only, such as the static
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structure factor, is unaffected by the volume energy [1]. In suspensions of neutral colloidal

particles such as PMM spheres in an organic solvent, the volume energy does in general

not affect the phase behavior [31]. However, in the case of charge-stabilized systems at low

salinity, the volume term depends significantly on the concentration of the colloids due to

the overall electroneutrality constraint, rendering it relevant when studying the suspension

thermodynamics and phase behaviour [1, 32, 33].

In the following, we introduce the generalized PM and present the derivation of the ef-

fective colloid pair interaction and volume energy term, using linearized Poisson-Boltzmann-

type mean-field approximations both for ion-permeable and ion-impermeable colloids. We

focus hereby on the following methods: density functional theory, linear response theory and

a multi-ion species OZ integral equation scheme with linear (mean-spherical approximation)

closure relations. To obtain explicit analytic results, the microions are treated for simplicity

as pointlike and monovalent. The assumed monovalency allows for neglecting inter-microion

correlation effects. Under appropriated conditions, the latter can trigger microion-pairing

and macroion charge reversal in case of non-monovalente microions [34–36].

2.2 Generalized primitive model of ionic mixtures

Systems like dispersions of charge-stabilized spherical colloids, globular protein solutions and

electrolyte solutions can be described by the so-called generalized Primitive Model (PM). In

this simplified model, all ions are treated on equal footing as isotropically-charged (Brownian)

spheres, interacting by Coulomb plus excluded volume or, in case of ionic microgels, elastic

forces. All ions are immersed in a structureless dielectric and Newtonian solvent. Specific

properties of the solvent are neglected except for its static dielectric constant ϵ and its shear

viscosity η0. As already stated above, we neglect image-charge effects that can give rise to

many-body dielectric interactions, caused by differences in the dielectric properties of the

ions/colloids and the solvent.
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Consider a PM system consisting of three different ion species, with each species formed

by Nα monodisperse spherical particles of radius aα, mass mα and valence zα immersed in

a macroscopic suspension of volume V , with α = 0, 1, 2. The system Hamiltonian can be

expressed in the general form,

H = H00 +H11 +H22 +H01 +H02 +H12 +Hm, (2.1)

where Hαα is the Hamiltonian of the individual ion species α, i.e.

Hαα({rNα
α }) = Kα +

Nα∑︂
i<j

uαα(rij). (2.2)

Here, species α = 0 is identified with the large colloidal macroions. The first term on the

right-hand side of Eq. (2.2) is the kinetic energy,

Kα = 1
2

Nα∑︂
i=1

mα p2
α i, (2.3)

where pα i is the momentum of the α-type ion i. The second term is the potential energy

due to the interaction between particles of the same species α described by the bare pair

potential uαα(rij), with rij = ri − rj, and ri denoting the center position of the ith α-type

particle. H01, H02 and H12 in Eq. (2.1) correspond to the potential energies due to the bare

interactions between particles of different species α ̸= β, i.e.

Hαβ =
Nα∑︂
i=1

Nβ∑︂
i<j

uαβ(rij). (2.4)

For soft colloidal macroions, which are penetrated by solvent and microions, such as weakly

cross-linked ionic microgels, there is an additional contribution, Hm, arising from the self-

energy of the macroions, which can affect their equilibrium size and hence their effective

interactions. More specifically, the (total) system Hamiltonian accounts for the electric and

steric pair interactions between all dispersed ions. The pair-interaction potential between two

impermeable, hard PM ions of species α and β, with hard-core radii aα and aβ, respectively,

whose center distance is r, is of the form uαβ(r) = uhs
αβ(r) + uC

αβ(r). Here, uhs
αβ(r) is the
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excluded volume (hard-sphere) pair potential,

uhs
αβ(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞ , r < aα + aβ

0 , otherwise
(2.5)

and uC
αβ(r) is the Coulomb pair potential,

uC
αβ

kBT
(r) = λB

zαzβ

r
, r > aα + aβ, (2.6)

where λB = e2/kBTϵ is the Bjerrum length of the solvent, with T the system temperature, kB

the Boltzmann constant and e > 0 the elementary proton charge. The Bjerrum length is a

length scale for which the thermal energy is equal to the Coulombic energy between two unit

charges . For water at room temperature, λB ≈ 7.1 Å. For ion-permeable colloidal particles,

uHS
00 (r) is replaced, e.g., by the Hertz pair potential mimicking their elastic repulsion for small

overlap. In equilibrium, the PM obeys the global electroneutrality condition
2∑︂

α=0

nαzα = 0 (2.7)

where nα = Nα/V is the mean number density of species α. The local electroneutrality

condition in equilibrium reads
2∑︂

α=1

nα zα

∫︂
dr [h0α(r) + 1] = −z0 (2.8)

for the macroion species 0, where h0α(r) is the total pair correlation function for two ions of

species 0 and α. Here,

hαβ(r) = gαβ(r) − 1, (2.9)

and gαβ(r) are the partial total and partial pair correlation functions of two ions of species α

and β, respectively. Notice that gαβ(r) is the conditional probability of finding a β-type parti-

cle at distance r from a given α-type particle. The functions hαβ(r) and gαβ(r) are determined

by the partial pair interaction potentials uαβ(r), which are symmetric, i.e. uαβ(r) = uβα(r).

This symmetry is inherited by the partial static and dynamic pair correlation functions.

The PM is in the following our starting point for contracting out the microion degrees of

freedom.
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2.3 Effective Hamiltonian and effective pair potential

Consider a typical PM system consisting of a macroion species 0 and two microion species 1

and 2 where a0 ≫ a1, a2 and z0 ≫ z1, z2. By taking advantage of the large asymmetries, we

can integrate out the degrees of freedom associated with microion species 1 and 2. Assuming

that the PM system is in Donnan equilibrium with a large electrolyte reservoir of microions

having (constant) electro-chemical potential µ1 and µ2, the total semi-grand free energy Ω

is given by

βΩ = − ln Tr0 Tr1 Tr2 e
−βH, (2.10)

with canonical trace over the colloidal macroions defined by

Tr0( ... ) :=
∫︂

V
dpN0 drN0 ( ... ) ≡ ⟨ ( ... ) ⟩0 (2.11)

and microion grand canonical trace

Trα( ... ) :=
∞∑︂

Nα=0

ζNα
α

Nα!

∫︂
V
dpNα drNα ( ... ) ≡ ⟨ ( ... ) ⟩α (2.12)

for α = 1, 2. Here, ζα = eβµα/Λ3
α is the activity of α-type microions with thermal de Broglie

wavelength Λα = h/
√

2πmαkBT , where mα is the ion mass and h the Planck constant.

Separating the traces, one has

βΩ = − ln Tr0

[︂
e−β(H00+Hm) Tr1Tr2

[︂
e−β(H11+H22+H01+H02+H12)

]︂]︂
≡ − ln Tr0

[︂
e−βHeff

]︂
. (2.13)

The effective Hamiltonian, Heff, of microion dressed colloids is defined here by

Heff = H00 +Hm − kBT ln Tr1Tr2

[︂
e−β(H11+H22+H01+H02+H12)

]︂
≡ H00 +Hm + Ωµ, (2.14)

where Ωµ is the exact grand-free energy of microions in the external field of macroions at

fixed positions X = {R1, ...,RN0} of their centers. Capital letters are used henceforth for

macroion position vectors. The effective Hamiltonian can be re-expressed as

Heff = Evol +
N1∑︂
i<j

ueff(|Ri − Rj|;n0) + ... (2.15)
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where n0 is the colloid concentration. The first term, Evol, on the right-hand side is the vol-

ume energy, which is independent of the location X of the macroions. It can be interpreted

as a cohesion energy of the system due to the presence of the microions. It does not affect

the micro-structure of the suspension; however, it contributes to the suspension thermody-

namics. The second term is the sum of effective pair interactions among the macroions. In

principle, there are higher-order n-body effective interaction terms, which can be significant

for strongly charged macroions at low salt content [37, 38]. The effective n-particle interac-

tion potentials represent the interactions among the different n-tuples of macroions mediated

by the microions.

Practical applications of Eq. (2.14) require approximating Ωµ. We present two different

methods of calculating Ωµ related to the Poisson-Boltzmann (PB) theory, which is a pow-

erful mean-field approach for dealing with charge-stabilized suspensions having monovalent

counterions only.

2.4 Mean-field Poisson-Boltzmann-type approximations

To obtain an explicit pairwise additive expression for the effective Hamiltonian, Heff, we

focus on the particular case of negatively-charged multivalent macroions, in osmotic contact

with a reservoir of monovalent cations and anions. Explicitly, species 0 consists of negatively-

charged macroions, relabeled from now on as 0 → m, and species 1 and 2 are microion species,

relabeled 1 → + and 2 → − respectively, for notational convenience. The suspension includ-

ing the Nm spherical microions of negative charge −Ze is taken with water as the solvent in

a volume V at room temperature T . The strong 1:1 electrolyte reservoir, in Donnan equilib-

rium with the suspension, has the (fixed) microion concentration 2nres and microion chemical

potential µres for both species (±). It can be regarded to be linked to the suspension via an

ideal membrane permeable to the microions and solvent only. The microion chemical poten-

tial in the reservoir is well approximated by the ideal form µres = kBT ln (Λ3
0nres), assuming
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equal thermal de Broglie wavelength Λ0 of the ± microions. The macroion concentration

(number density), nm = Nm/V , determines the volume fraction ϕ = 4πanm/3 of macroions

of radius a. The suspension must fulfill the equilibrium electroneutrality constraint

ZNm = ⟨N+⟩ − ⟨N−⟩, (2.16)

where Ns = ⟨N−⟩ is the equilibrium number of monodisperse (salt) coions in the system,

equal to the mean number Ns of salt ion pairs, and ⟨N+⟩ is the equilibrium mean number of

monovalent counterions, with ⟨...⟩ denoting a grand-canonical average. The concentration

(number density) ns = Ns/V of salt ion pairs in the suspension is determined by the equality,

µ± = µres, of the microion chemical potentials of cations and anions, µ±, in the suspension

with the microion chemical potential, µres, in the reservoir. In the considered Donnan equi-

librium, the salt pair concentration ns in the suspension is thus determined by the given

reservoir salt pair concentration (number density) nres. Since suspension and reservoir are

each electroneutral, ns is smaller than nres at low reservoir salinity. This is known as the

Donnan salt expulsion effect. A closed suspension of given salt content ns can be straightfor-

wardly mapped to an equivalent Donnan equilibrium system using an accordingly selected

salt concentration nres ≥ ns.

We perform the calculation of the effective Hamiltonian and effective pair interactions in

the framework of the mean-field PB theory, where the ± microions are taken as pointlike [39]

and their correlations are neglected. The Coulombic interaction between pointlike microions

is accounted for in a mean-field way. The calculations invoke the (nonlinear) PB (integro-

)differential equation obtainable in an ad-hoc way from combining the exact macroscopic

Poisson equation with Boltzmann-type microion distribution. More fundamentally, the PB

equation follows from the minimization of the system semi-grand free-energy functional for

disregarded microion correlation contributions. The PB equation is a mean-field equation,

which can be also deduced using a field theoretical approach from a zeroth-order systematic

expansion of the semi-grand-partition function.
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For the specified system, in the literature, one can find different formulations to map

the multi-component system onto an effective one-component model of (dressed) colloids by

deriving an approximate effective Hamiltonian, effective pair potentials and volume energy

[31, 40]. Here, we are going to focus on three particular ways, which provide us with the basis

for the subsequent computation of structural, thermodynamic, and dynamic properties of

charge-stabilized colloidal suspensions. The first way is a density functional theory method,

based on minimizing the mean-field approach of the microion grand-free energy functional.

The second way consists of a perturbative expansion of the microion grand-free energy,

where the microion density distributions are calculated within linear response approximation.

These two formulations provide us with effective pair potentials and volume energy terms.

In the third way, we use a linear mean-spherical-approximation closure relation in the multi-

component OZ equation to derive an effective macroion pair potential. In all cases, we

consider a mean-field approach where microion correlations are disregarded.

2.4.1 Density functional theory (DFT) approach

In a given external potential created by theNm macroions at fixed positions X = {R1, ...,RNm},

the microion grand free energy functional is formally given by

Ω̂µ[n±(r)] = Ω̂id[n±(r)] + Û el[n±(r)] + Û ext[n±(r)] + Ω̂corr[n±(r)], (2.17)

where the nonlinear ideal-gas grand free energy functional has the form

βΩ̂id[n±(r)] =
∑︂
i=±

∫︂
V
drni(r)

[︄
ln
(︄
ni(r)
nres

)︄
− 1

]︄
. (2.18)

The electrostatic mean-field energy functional of the microions is given by the quadratic

form

βÛ el[n±(r)] = λB

2

∫︂
V ′
dr
∫︂

V ′
dr′ [n+(r) − n−(r)][n+(r′) − n−(r′)]

|r − r′|
, (2.19)

where V ′ is the volume available to the microions. In case of impermeable macroions, V ′ is

a Swiss-cheese-like volume consisting of V minus the volume occupied by the Nm macroions
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with centers X = {R1, ...,RNm}. For permeable macroions, V ′ = V . The free energy

contribution due to the interaction between the microions and the spatially-fixed macroions

is the linear (in n±(r)) functional

Û ext[n±(r)] =
∫︂

V
dr e[n+(r) − n−(r)]Ψ(r; X), (2.20)

where Ψ(r; X) is the given external electric potential created by the macroions. The latter

has the form

Ψ(r; X) = λB

∫︂
dr′ q(r′)

|r − r′|
, (2.21)

where q(r) is the sum of the macroion charge distributions in units of e. Notice that, for a

configuration X where macroions do not overlap, the integration of q(r) over each macroion

volume is equal to z0 = Z. We neglect correlations among the microions, thus the correlation

free energy functional vanishes, Ω̂corr = 0. Minimizing Ω̂µ with respect to the trial densities

n±(r) yields the Boltzmann distribution for the equilibrium microion densities

n±(r; X) = nres e
∓Φ(r;X) (2.22)

for r ∈ V ′(X) and Donnan equilibrium with a 1:1 microion reservoir. Here, Φ(r; X) is the

electric potential due to all ions, including the macroions, expressed in units of e/kBT , given

by

Φ(r; X) = λB

∫︂
V ′
dr′ n+(r′; X) − n−(r′; X)

|r − r′|
+ βeΨ(r; X). (2.23)

Since nres = exp(βµres/Λ3
res), it follows from Eq. (2.22) that

ln
[︂
n±(r; X)Λ3

res

]︂
± Φ(r; X) = βµres = βµ±, (2.24)

expressing the constancy of the microion electrochemical potentials µ± in equilibrium.

The mean-field character of the present DFT-PB approximation is reflected in the ideal-

gas form of the microion electrochemical potentials for the pointlike microions. Notice that

the constant electrostatic potential, Φres, of the microion reservoir is taken to be zero.
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Substitution of the equilibrium microion densities into Eq. (2.17) gives the equilibrium

microion grand-free energy Ωµ[n±(r)]. For brevity, the resulting expressions are not shown

here. Applying the Laplace operator to Eq. (2.23) gives the nonlinear PB differential equa-

tion,

∆Φ(r) = −4πλB [n+(r) − n−(r) + q(r; X)] = κ2
res sinh[Φ(r; X)] − 4πλBq(r; X), (2.25)

where q(r; X) is zero outside of the Nm spherical macroions and κ2
res = 8πλBnres is the square

of the reservoir electrostatic screening constant. For impermeable rigid macroions, the PB

equation applies only outside of the particle volumes, but it is augmented by the electrostatic

boundary conditions

∇Φ(r).n̂(r)|Si
= −λB

Z

a2
; r ∈ Si, (2.26)

on the Nm sphere surfaces Si, where the surface vector n̂ points into the fluid. These

boundary conditions properly describe impermeable colloidal macroions for neglected dielec-

tric mismatch with the solvent. This is a complicated nonlinear Nm-sphere boundary value

problem that cannot been solved analytically for Nm > 2. However, an analytic solution is

straightforwardly obtained assuming pointlike, weakly-charged macroions. This allows for

linearizing the PB equation with respect to Φ = 0, resulting in the Debye-Hückel (DH) form

∆Φ(r; X) = κ2
res Φ(r; X) − 4πλBZ

N∑︂
i=1

δ(r − Ri), (2.27)

valid for ZλB/a ≪ 1 and small volume fractions ϕ ≪ 1. The DH partial differential equation

is readily solved by Fourier transformation with the unique result

Φ(r; X) = λBZ
N∑︂

i=1

exp{−κres|r − Ri|}
|r − Ri|

, (2.28)

by requiring that Φ → 0 for |r| → ∞. Here, κ2
res = 8πλBnres is the reservoir DH electrostatic

screening parameter. We notice that the DH total electrostatic potential Φ is the sum of

Nm screened repulsive Yukawa orbitals centered at the macroion positions [41]. Substitution
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of these orbitals into Ωµ, expanded up to quadratic order in n±(r), leads to the equilibrium

grand free energy [41]

Ωµ(X) = EDH
vol + 1

2
∑︂
i<j

ueff(|Ri − Rj|), (2.29)

with effective macroion pair potential

βuDH
eff (r) = λBZ

2 exp(−κresr)
r

, r > 0. (2.30)

The first term on the right-hand side of Eq. (2.29) is the DH volume energy contribution,

given by the ideal gas form [41]

EDH
vol = −2kBTnresV. (2.31)

In addition to being independent of the macroion configuration X, the volume energy in

DH approximation is also independent of nm. This is due to ϕ ≪ 1, such that the microion

concentration in the suspension is dominated by the reservoir-provided salt ions. The salt

expulsion effect is accordingly vanishing (i.e. ns = nres), and the screening is determined by

κres.

For finite-sized, impermeable colloids, the excluded-volume radius a can be reintro-

duced in an ad hoc way, by enforcing the local electroneutrality condition [41]. By means

of a straightforward calculation, one shows that the condition is fulfilled when replacing

Z → Z(exp(κresa)/(1 + κresa)), where a geometric factor is introduced. Then, the effective

macroion pair potential of weakly-charged macroions in the salt-dominated regimes reads

βueff(r) = λBZ
2

(︄
exp(κresa)
1 + κresa

)︄2 exp(−κresr)
r

, r > σ = 2a, (2.32)

which is the repulsive electrostatic part of the celebrated Derjaguin-Landau-Verwey-Overbeek

(DLVO) potential [2] at high salt concentration, where κ = κres. It properly describes the re-

pulsion between impermeable colloids for ZλB/a ≪ 1, strong dilution and high salt content,

and when the likelihood of two macroions being close to contact is small.

The here presented DFT-PB approach that provides an upper bound to the exact Ωµ

will be further evaluated in section 3.4 on charge renormalization of colloidal macroions in
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the framework of the so-called shifted Debye-Hückel approximation model. This method

will be derived from linearizing the total potential Φ around an appropriately selected value

Φ̃, different from the vanishing reservoir value used in DH theory, in conjunction with a

spherical cell model.

2.4.2 Linear response theory (LRT)

A different approach to calculate the microion grand-free energy in order to obtain the effec-

tive Hamiltonian is perturbation theory. This approach is inspired by the pseudopotential

theory of metals, and focuses on effective interactions derived from a perturbative expansion

of the microion grand potential about a reference system, taken as a uniform plasma of

microions unperturbed by the macroions [42]. By incorporating microion-macroion interac-

tions, this approach can model both thermodynamic and structural properties of colloidal

suspensions.

The starting point of the perturbative expansion is the Debye-charging integral [43]

expression

Ωµ(X) = Ω0 +
∫︂ 1

0
dλ (⟨Hm+⟩λ + ⟨Hm−⟩λ) − Eb (2.33)

where the reference system grand potential, Ω0, is that of a uniform plasma of microions in

the absence of the Coulombic potential created by the charged colloidal macroions. Con-

sidering that also the reference system is electroneutral, we have added and subtracted the

contribution energy, Eb, of the charge-neutralizing background. The background energy is

explicitly given in [33] for suspensions of ion-impermeable macroions, and can be similarly

obtained for ion-permeable macroions [10]. It is possible to see that Eb is formally infinite

in the thermodynamic limit. Nevertheless, it is identically canceled by compensating infinite

contributions in Hm and H±,± [33]. The integral term in Eq. (2.33) represents the elec-

trostatic grand free energy change due to the presence of the macroions. More precisely, it

expresses the grand-canonical ensemble average of the macroion-microion interaction energy,
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⟨Hm+⟩λ + ⟨Hm−⟩λ, in a system where the macroions are “charged” to a fraction λ of their

full charge −Ze [42] and average denoted by ⟨ ⟩λ. Note that when the charge of macroions

at X is gradually increased from zero to its full value, the “Swiss-cheese” plasma (for im-

permeable macroions) becomes nonuniform due to the electrostatic attraction/repulsion of

counterions/coions. Further progress is made by expressing ⟨Hm±⟩λ in terms of the macroion-

microion pair potentials and the densities of macroions and microions as [42]:

⟨Hm±⟩λ =
∫︂
dr′

∫︂
drum±(|r − r′|)nm(r)⟨n±(r′)⟩λ, (2.34)

where nm(r) and n±(r) are the macroion and microion density distributions, respectively,

and um±(r) are the macroion-microion pair potentials, wherein the (im)permeable nature of

the macroions is reflected. The integration domain is determined considering that macroions

have access to the full volume V and microions are excluded from the interior of the macroions

for impermeable macroions. Equivalently, Eq. (2.34) can be expressed in terms of Fourier

components as [33]

⟨Hm±⟩λ = 1
V

∑︂
k ̸=0

ûm±(k)n̂m(−k)⟨n̂±(k)⟩λ + lim
k→0

[ûm±(k)n̂m(−k)⟨n̂±(k)⟩λ] , (2.35)

where we have assumed periodic boundary conditions for a sufficiently large suspension box

V = L3 for an isotropic and translationally-invariant suspension. Then, the modulus of the

wave vector k attains the discrete values k = (2π/L)(nx, ny, nz) with ni ∈ Z. f̂(k) denotes

the three dimensional Fourier transformation of the function f(r),

f̂(k) =
∫︂

V
dr f(r) ei k·r, (2.36)

with the hat labelling a Fourier transformed quantity. Considering the macroions as an ex-

ternal potential and assuming that the microion densities respond linearly to this potential,

the Fourier components of the microion densities can be written in terms of the microion “ex-

ternal” potential by introducing the isotropic linear-response functions χij(k) with k = |k|,

which describe the linear response of the two-component reference plasma to the macroions.
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If we use the obvious symmetry relations χ+−(k) = χ−+(k) and ûm+(k) = −ûm−(k), the

Fourier components of the microion densities may be approximated as

⟨n̂+(k)⟩λ ≈ λ[χ++(k) − χ+−(k)]ûm+(k)n̂m(k), k ̸= 0 (2.37)

and

⟨n̂−(k)⟩λ ≈ λ[χ+−(k) − χ−−(k)]ûm+(k)n̂m(k), k ̸= 0. (2.38)

Note that for k = 0 there is no response and n̂±(0) = ⟨N±⟩/V , as determined by the grand-

canonical mean numbers of microions in the suspension [33]. Further progress is achieved by

specifying the linear-response functions χij(k), which are proportional to the corresponding

partial static structure factors, Sij(k), according to

χij(k) = −β(n+ + n−)(xixj)1/2Sij(k), (2.39)

where Sij(k) = δij + (xixj)1/2(n+ +n−)ĥij(k), with x± = ⟨N±⟩/(⟨N+⟩ + ⟨N−⟩) and mean mi-

croion densities n± = ⟨N±⟩/V [19]. The monovalent microions are characterized by relatively

small electrostatic coupling parameters Γ± = λB/a
is
± ≪ 1, where ais

± = (4πn±/3)−1/3 is the

concentration-dependent ion-sphere radius of the (pointlike assumed) microions. Typically,

in a weakly coupled plasma, short-range correlations are weak enough to justify a random

phase approximation (RPA) [44]. This amounts to approximating the two-particle direct

correlation functions of the microion plasma by its exact asymptotic (r → ∞) limiting form

c
(2)
ij (r) = −βuij(r), taken for all distances r > 0. Using the RPA closures in the Fourier-

transformed Ornstein-Zernike (OZ) equations (see section 5.3), the Fourier components of

the response functions are obtained as [33]

χ++(k) − χ+−(k) = − βn+

1 − nµĉ(k) = − βn+

1 + κ2/k2
, (2.40)

χ+−(k) − χ−−(k) = βn−

1 − nµĉ(k) = βn−

1 + κ2/k2
(2.41)
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and

χ(k) = − βnµ

1 − nµĉ(k) = − βnµ

1 + κ2/k2
(2.42)

where ĉ(k) = c
(2)
++(r) = c

(2)
−−(r) = −c(2)

+−(r). The screening constant in the suspension is given

by

κ =
√︄

4πλBnµ

(1 − ϕ) (2.43)

for ion-impermeable macroions, and by

κ =
√︂

4πλBnµ (2.44)

for ion-permeable macroions, with nµ = n+ + n− the total concentration of microions.

Substitution of these χij leads to an analytic expression for Ωµ (cf. Eq. (2.33)). When the

latter is substituted into Eq (2.14), the effective macroion Hamiltonian of pairwise additive

form is obtained,

Heff(X) = Km + 1
2

Nm∑︂
i,j=1
i ̸=j

ueff(|Ri − Rj|) + Evol, (2.45)

where Km is the kinetic energy of the Nm macroions, and

ueff(r) = umm(r) + uind(r) (2.46)

is the effective macroion electrostatic pair potential. The effective potential is the sum of the

bare Coulomb potential, umm(r), and the microion-induced potential, uind(r), whose Fourier

transform reads [33]

ûind(k) = χ(k)[ûm+(k)]2. (2.47)

The volume energy in the present linear response approximation is obtained as

Evol = Ω0 + Nm

2 lim
r→0

uind(r) +Nm(n+ − n−) × lim
k→0

[︃
− z

2Z ûind(k) + ûm+(k)
]︃

− Eb, (2.48)

where the grand-free energy, Ω0, of the unperturbed uniform plasma of microions in Donnan

equilibrium is given by the Legendre transformation Ω0 = F0 − µ+N+ − µ−N−, where F0 is
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the free energy of the two-component reference plasma approximated by the ideal-gas form.

Thus

βΩ0 =
∑︂
i=±

⟨Ni⟩
[︃
ln
(︃
n±

nres

)︃
− 1

]︃
. (2.49)

As noted earlier, Evol is independent of the macroion positions X, but it depends on the

mean density of macroions nm, contributing significantly at lower salinity to the total semi-

grand free energy Ω of the suspension [33]. It affects the system thermodynamics and

hence the osmotic pressure, as we discuss in detail further down. The suspension salt pair

concentration, ns, in the LRT approximation is determined from equating the microion

chemical potentials in suspension and reservoir, using additionally that ⟨N−⟩ = Ns.

To obtain explicit expressions for ueff(r) and Evol, still the explicit specifications of the

internal macroion structure and the corresponding interactions are required. We consider

here the case of impermeable colloids, described by a hard-core spherical volume inaccessible

to microions and solvent. The bare macroion-macroion interaction is given by

βumm(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λBZ2

r
, r > σ

∞ , r ≤ σ

(2.50)

with σ = 2a the macroion hard-core diameter, while

βum±(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∓λBZz

r
, r > a

∓λBZz
a
α , r ≤ a

(2.51)

holds for macroion-microion bare pair potentials of macroions with charge −Ze and microions

with charge ±ze. In order to ensure exclusion of microions from the macroion hard cores

and the microion densities to vanish within the core, the macroion-microion pair potentials

are extended inside the core, where α is a constant selected such that n±(r) = 0 for r < a

[33, 40]. The volume accessible to microions and fluid is Vfl = V (1 − ϕ), where ϕ is the

volume fraction of impermeable macroions. Using Eqs. (2.50) and (2.51), the corresponding
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microion densities in LRT are obtained as

n±(r) = ns ± x±
Z

z

κ2

4π
exp(κa)
1 + κa

Nm∑︂
j=1

exp(−κ|r − Rj|)
|r − Rj|

, |r − Rj| > a, (2.52)

i.e. in form of a linear superposition of spherical orbitals centered at the Nm macroion centers

X. We have approximated the bulk density of positive and negative microions far from any

macroion by the system salt concentration ns, which is a good approximation provided ϕ ≪ 1

[33]. The induced potential in Eq. (2.46) has the explicit form

βuind(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λBZ

2
(︂

exp(κa)

1+κa

)︂2 exp(−κr)

r
− λBZ2

r
, r > σ

−λBZ2

2r

(︂
1

1+κa

)︂2 [︂
2(1 + κa)κr − 1

2
(κr)2

]︂
, r < σ

, (2.53)

which results in the effective macroion electrostatic pair potential

βueff(r) = λBZ
2

(︄
exp(κa)
1 + κa

)︄2 exp(κr)
r

, r > σ (2.54)

with screening parameter

κ =
√︄

4πλB

(1 − ϕ)nµ =
√︄

4πλB

(1 − ϕ)(Zmnm + 2ns), (2.55)

where total electroneutrality is used in the second equality. Notice that the effective DH

pair potential in Eq. (2.32) is recovered in the salt-dominated case, where κ ≈ κres and

2ns ≫ nmZ provided ϕ ≪ 1 holds in addition. The factor (1 − ϕ)−1/2 accounts for the

exclusion of microions from the macroion cores.

From substituting the induced potential uind(r) into Eq. (2.48), the volume energy of a

impermeable-macroion suspension with monovalent microions, z = 1, follows as [45]

βEvol = βΩ0 −NmZ
2λB

2a
κa

1 + κa
−Nm

Z

2
n+ − n−

n+ + n−
. (2.56)

The infinities associated with the k → 0 limit formally cancel one another. The first term

on the right-hand side is the ideal-gas plasma grand-free energy. The second term accounts

for the electrostatic interaction energy between macroions and microions, and it is equal Nm

28



times the electrostatic interaction energy of a macroion and its screening cloud of microions.

Notice that this is equivalent to one half of the interaction energy of a macroion and its cloud,

where all the microions are placed at a radial distance κ−1 from the surface of the macroion.

The third term arises from the k → 0 limit term in Eq. (2.48)[33], and it can be interpreted

as the Donnan potential energy [42], i.e. the work required to move microions from the

reservoir of zero potential to the suspension in order to obtain the mean densities n±. The

Donnan potential is the mean potential difference between suspension and reservoir, and it is

equal to −Znm/2nres in units of kBT in the linearized case. It vanishes in the salt-dominated

case, where 2nres ≫ Znm.

LRT also provides a way of analytically computing the effective interaction potential and

volume energy term for ion- and solvent-permeable charged colloids. On assuming uniformly-

charged spherical colloids of charge −Ze each, the macroion-microion bare potential is given

by [10]

βum±(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∓λBZz

r
, r > a

∓λBZz
2a

(︂
3 − r2

a2

)︂
, r ≤ a

, (2.57)

where r is the distance from the center of a macroion to a pointlike microion. The potential

for r ≤ a can be obtained from integrating the electric field of a uniformly charged sphere.

Usage of this potential yields in linear-response approximation the microion density profiles

n±(r) = ns ∓ n± ψ(r), where ψ(r) as the electrostatic potential (in units of kBT ) inside and

around a macroion, given by [13]

ψ(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 3ZλB

(κa)2 r

(︂
cosh(κa) − sinh(κa)

(κa)

)︂
exp(−κr) , r > a

− 3ZλB
(κa)2 r

[︂
r
a

−
(︂
1 + 1

κa

)︂
exp(−κa) sinh(κr)

]︂
, r ≤ a

. (2.58)

with screening parameter

κ =
√︂

4πλBnµ =
√︂

4πλB(Znm + 2ns), (2.59)

using electroneutrality in the second equality. Different from Eq. (2.55), the present expres-

sion for κ excludes the factor 1/(1−ϕ)1/2 that originally accounts for the macroion excluded
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volume. The effective electrostatic pair potential between the permeable dressed macroions

is of the form

ueff(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
uY(r), r > σ = 2a

uov(r), r ≤ σ

, (2.60)

which for non-overlapping macroions is a Yukawa (screened-Coulomb) pair potential,

βuY(r) = λBZ
2
net

(︄
eκa

(1 + κa)

)︄2
e−κr

r
r > σ, (2.61)

where the net microgel valence, Znet, is given by

Znet = Z − 4π
∫︂ a

0
[n+(r) − n−(r)]r2dr , (2.62)

i.e. by the bare valence Z minus the total charge of interior microions. From inserting the

equilibrium counterion and coion density profiles n±(r), we obtain

Znet = Z
3(1 + κa)
(κa)2 eκa

(︄
cosh(κa) − sinh(κa)

κa

)︄
, (2.63)

for the linearized net macroion valence. Overlapping permeable macroions interact in LRT

via a soft electrostatic pair potential

uov(r) = umm(r) + uind(r), r ≤ σ, (2.64)

where

βumm(r) = Z2λB

a

(︃6
5 − 1

2 r̃
2 + 3

16 r̃
3 − 1

160 r̃
5

)︃
(2.65)

is the bare (Coulomb) pair potential between two overlapping, uniformly charged spheres,

and

βuind(r) =
(︃3Z
κ̃2

)︃2 λB

2r

[︄(︃
1 + 1

κ̃

)︃2

e−2κ̃ sinh(κr) +
(︃

1 − 1
κ̃2

)︃
×

×
(︃

1 − e−κr + 1
2κ

2r2 + 1
24κ

4r4

)︃
− 2

3 κ̃
2

(︃
1 − 2

5 κ̃
2

)︃
r̃ − 1

9 κ̃
4r̃3 − 1

720 κ̃
4r̃6

]︃
(2.66)

is the microion-induced pair potential, with κ̃ = κa and r̃ = r/a. The volume energy per

macroion for monovalent microions, z = 1, is given by [13]

βEvol

Nm

= βΩ0

Nm

− 3Z2λB

a

{︃1
5 − 1

2κ̃2
+ 3

4κ̃3

[︃
1 − 1

κ̃2
+
(︃

1 + 2
κ̃

+ 1
κ̃2

)︃
e−2κ̃

]︃}︃
− Z

2
n+ − n−

n+ + n−
,

(2.67)
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where the second term on the right-hand side is explicitly noticed to be different from

the corresponding term in Eq. (2.56). In closing our discussion of LRT approximation for

permeable and impermeable spherical macroion suspensions, we comment in the range of

applicability of the method. First, even though LRT assumes weak microion response to

the macroion charge perturbation, and thus a weak induced screening by the inhomogeneous

microion concentration field, the obtained potential form of a screened-Coulomb potential is

supported by Poisson-Boltzmann cell model calculations (see later), ab initio simulations [13,

14], and experiments [14]. Second, the excluded volume correction factor (1 − ϕ)−1/2 in the

screening constant κ for impermeable colloidal macroions becomes significant, even in the

weak-screening regime, for concentrated suspensions. Although LRT neglects fluctuations

and correlations in the microion densities, Monte Carlo (MC) simulations and cell model

calculations for spherical macroions suggest that such correlations contribute only marginally

to the total semi-grand free energy [33]. For zero macroion concentration (ns → 0), or high

salt concentration (nµ → ∞), such that (n+ − n−)/nµ → 0, the leading-order nonlinear

corrections all vanish. This finding partially explains the remarkably broad range of validity

of a Yukawa form of the (non-overlapping) effective pair potential [30]. Since LRT is a

mean-field method, the assumption of monovalent microions is crucial for this validity.

2.4.3 Integral equation scheme: mean spherical approximation

(MSA)

Alternatively to DFT-PB and LRT approximations of the microion grand free energy, it

is also possible to derive an expression of the effective macroion pair potential with the

generalized PM-based multispecies Ornstein-Zernike (OZ) integral equation scheme. Differ-

ent (one-component) OZ integral equation schemes are addressed in detail in section 5.3.

Here, we describe how ueff(r) can be derived using a multicomponent OZ description with

an explicit analytic result obtained from using the linear MSA closure relations, which are
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appropriate for weakly-charged macroions. Different from LRT and linearized DFT-PB ap-

proaches, the present MSA approach does not directly provide an expression for Evol. The

latter can be obtained (not shown here) from a MSA-based free energy expression [46, 47],

derived using MSA hij(r) as input.

Consider a PM suspension composed of m + 1 different spherical ionic species, where

species 0 corresponds to colloidal macroions. Instead of considering the m + 1 coupled OZ

equations relating the Fourier-transformed partial total correlation functions ĥij(q) to the

partial direct correlation functions ĉij(q), with q the modulus of the wave vector q, we

are only interested in the correlations among the macroion species 0. Therefore, we define

the Fourier-transformed effective macroion direct correlation function, ĉeff(q), of an effective

one-component macroion system by

S(q) = 1 + n0ĥ00(q) = 1
1 − n0ĉeff(q) , (2.68)

where S(q) is the structure factor of the effective one-component macroion system and

n0 = nm is the number density of macroions. We enforce here that the macroion-macroion

structure factor S00(q) of the multicomponent PM system to be the same as that of the ef-

fective one-component macroion system, i.e. S00(q) = S(q). The effective direct correlation

function is then related to the partial direct correlation functions by [9]

ĉeff(q) = ĉ00(q) + ĉ0
T (q)(1 − ĉ(q))−1 ĉ0(q), (2.69)

where the elements of the m × 1 column vector ĉ0(q) are given by (ĉ0)i = n
1/2
i ĉ0i(q) (i =

1, ...,m) and the elements of the m×m matrix ĉ(q) are given by (ĉ)ij = (ninj)1/2ĉij(q)(i, j =

1, ...,m), where ĉij(q) are the inter-species partial direct correlation functions of the multi-

component system. The latter satisfy

cij(r) → −βuij(r), (2.70)

in the long-distance limit, r → ∞, for all i, j = 0, ...,m, where uij(r) are the direct (bare)

interaction potentials between ions of species i and j. The direct correlation functions can
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be rewritten as

cij(r) = −βuij(r) + cs
ij(r), r > 0, (2.71)

where cs
ij(r) are the short-range contribution of cij(r) including, for example, hard-core inter-

actions. On specifying the direct interactions between the different ion species, it is possible

to obtain ĉeff(q) using approximate closure relations relating cij(r) to hij(r) and uij(r). The

effective pair potential, ueff(r), between the macroions is then obtained asymptotically from

ceff(r) → −βueff(r) (2.72)

for r → ∞. While this OZ-based method gives an asymptotic expression of the effective pair

potential, it does not provide per se the (grand) free energy of the effective one-component

macroion system. The latter can be derived based on the free energy functional associated

with the invoked closure relations [46, 47].

For an explicit derivation of the effective pair potential, consider the case of impermeable,

hard spherical colloids of radius a0 = a, valence z0 = −Z and concentration n0 = nm

coexisting with m different pointlike microion species, ai = 0, of valences zi. The bare

interaction potentials are

βuij(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞ , 0 < r ≤ ai + aj

λBzizj

r
, r > ai + aj

. (2.73)

Using the linear MSA closure for the partial direct correlation functions [19]

cij(r) = −βuij(r), 0 < r, (2.74)

c0j(r) = −βu0j(r), a < r, (2.75)

together with g0j(r) = 0, with 0 < r ≤ ai and i, j = 1, ...,m, i.e. the partial direct

correlation functions relative to the microions are approximated by their asymptotic forms

at all separations r, it is possible to obtain the effective interaction between macroions, as

[48, 49]

βueff(r) = λBZ
2X2

MSA

exp(−κr)
r

, r > 2a. (2.76)
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The effective colloid valence is ZMSA
eff = XMSAZ, where

XMSA = cosh(κa) + U (κa cosh(κa) − sinh(κa)), (2.77)

and the associated screening constant is given by the DH form

κ2 = 4πλB

m∑︂
i=1

niz
2
i , (2.78)

which, differently from the LRT expressions, does not include the excluded-volume factor

1/(1 − ϕ)1/2. For monovalent counterions and added 1:1 electrolyte of pair concentration ns,

we find

(κa)2 = λB

a

(︂
8πnsa

3 + 3ϕZ
)︂
, (2.79)

or simply

(κa)2 = 3λB

a
ϕZ (2.80)

in the salt-free case. The parameter U is determined by

U = c

(κa)3
− γ

κa
(2.81)

where c = 3ϕ/(1 − ϕ) and

γ = c+ ΓMSAa

1 + c+ ΓMSAa
. (2.82)

The MSA screening parameter ΓMSA is the unique positive solution of the biquadratic equa-

tion

(ΓMSAa)2 = (κa)2 + (q0a)2

(1 + c+ ΓMSAa)2
(2.83)

fulfilling ΓMSA > κ, where (q0a)2 = 3λBϕZ
2/a. In the infinite dilution limit of macroions,

ΓMSA → κ and XMSAZ → Z. In the high temperature limit, β → 0, we obtain κa ≪ 1 and

ΓMSAa ≪ 1, and hence

XMSAZ → (1 + ϕ)Z > Z. (2.84)

The fact that the effective valence ZMSA
eff is larger than Z is obtained in the MSA treatment

for higher macroion concentrations. This feature can be attributed to the reduced screen-

ing ability of the counterions in presence of surrounding macroions restricting the volume

accessible to the microions.
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Throughout this thesis, we consider a semi-open charge-stabilized suspension in osmotic

equilibrium with a microion reservoir, so that the suspension salt concentration, ns, is a state-

dependent parameter. In the shown MSA formalism, a relation between ns and the reservoir

salt concentration nres, establishing a link between a semi-open and a close system, has not

been accounted for in previous works [26]. This relation follows from the Nernst-Planck

relation in Donnan equilibrium

exp[∓ΦD] = n±γ±

nresγres

, (2.85)

expressing the equality of microion chemical potentials in suspension and reservoir. ΦD =

βeψD is the reduced (Donnan) potential jump across (a mentally-pictured) microion-permeable

membrane. Here, γ± and γres are the activity coefficients of the two monovalent ionic species

in the suspension and in the symmetric 1:1 electrolyte reservoir, respectively. Notice that

the microion activity coefficient in the reservoir is taken to be equal for counter- and coions,

i.e. γ+,res = γ−,res = γres; whereas, γ+ ̸= γ− in the suspension, due to the released coun-

terions. The suspension salt-pair concentration, ns, is equal the coion concentration in the

suspension. Using overall electroneutrality and expressing the microion activity coefficients

as γ± = γhs
± γ

C
±, where γhs

± = 1/(1 − ϕ) are the hard-sphere and γC
± the MSA Coulomb

contributions [50, 51], the suspension salt concentration is given by

ns = −1
2nmZ +

⌜⃓⃓⎷ n2
res

(1 − ϕ)2
exp[λB(2ΓMSA − κres)] +

(︃1
2nmZ

)︃2

. (2.86)

Notice that ns depends on κ via ΓMSA(κ), which in turn depends on ns. Thus, ns is self-

consistently determined in conjunction with the biquadratic equation for ΓMSA in Eq. (2.83).

When nonideal MSA contributions to the chemical potentials are neglected, which amounts

to ΓMSA = κ and ϕ = 0, the standard DH Donnan equilibrium expression is recovered from

Eq. (2.86).

The MSA method has proven to give a reasonably accurate description of the microstruc-

ture of weakly-charged macroion suspensions at high volume fractions, where electrostatic
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effects are a small perturbation to the uncharged hard-sphere reference mixture [49]. Ex-

amples in case where it can be applied are globular protein solutions for valences Z ≲ 30

and ϕ ≳ 0.3 [22]. However, for dilute suspensions of highly charged particles, MSA predicts

for the PM unphysical negative contact values for likewise charged ions, for instance g00(r).

This deficiency of the MSA can be overcome using a rescaling procedure where macroion

hard-core diameter σ at fixed concentration nm is appropriately increased [52], as established

in the rescaled mean spherical approximation (RMSA) among others [53].

Having considered the MSA-based ueff(r) for impermeable colloids, we consider next

permeable colloids. For simplicity, we treat a binary salt-free PM composed of spherical

macroions (m) of fixed (bare) charge, −Ze, uniformly distributed inside the macroion coex-

isting with the backbone-released pointlike counterions (+) encountered inside and outside

of the macroions. The Fourier transform of the effective direct macroion correlation function

ceff(r) reduces here to

ĉeff(q) = ĉmm(q) + n+ĉm+(q)ĉm+(q)
1 − n+ĉ++(q) . (2.87)

The Coulombic interactions invoking negatively-charged macroions of valence Z and mono-

valent microions are [10]

βu++ = λB

r
, r > 0 (2.88)

for the counterion-counterion interaction,

βum+(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−λBZ

r
, r > a

−λBZ
2a

(︂
3 − r2

a2

)︂
, 0 < r ≤ a

, (2.89)

for the macroion-counterion interaction, and

βumm(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λBZ2

r
, r > σ

λBZ2

a

(︃
6
5

− 1
2

(︂
r
a

)︂2
+ 3

16

(︂
r
a

)︂3
− 1

160

(︂
r
a

)︂5
)︃
, 0 < r ≤ σ

, (2.90)

for the macroion-macroion direct interaction with the counterions allowed to penetrate the
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uniformly-charged macroions of radius a. Using MSA closures

cij(r) = −βuij(r), 0 < r (2.91)

with i, j ∈ {0, 1}, the Fourier-transformed Eqs. (2.88)-(2.90) and Eq. (2.87) lead to

βûeff(q) = 36πλBZ
2 [sin(qa) − qa cos(qa)]2

(qa)6

1
q2 + κ2

(2.92)

where ĉmm(q) = ĉs
mm(q) − βûmm(q) was used. Here,

κ2 = 4πλBn+ = 4πλBnmZ (2.93)

is determined by the counterion concentration n+. Noticing that the Fourier backtransform

of

f1̂(q) = [sin(q) − q cos(q)]2
q6

(2.94)

is

f1(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(r−2)2(r+4)

192π
, 0 < r ≤ σ

0 , r > σ

(2.95)

and that f2(r) = e−κr/(4πr) is the backtransform of f2̂(q) = 1/(q2 + κ2), the effective

macroion pair potential is expressed by the convolution integral

βueff(r) = 36πλB

a3
Z2
∫︂
f1(r′)f2(|r − r′|) dr′. (2.96)

Integrating Eq. (2.96), we finally obtain

βueff(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λBZ

2
[︂

3
κ̃2

(︂
cosh(κ̃) − sinh(κ̃)

κ̃

)︂]︂2
e−κr

r
, r > σ

3λBZ2(24+12 κ̃2(r̃2−2)+κ̃4r̃(r̃−2)2(4+r̃)+12e−κ̃(2+r̃)(1+κ̃)(1+2e2κ̃(κ̃−1)+κ̃−e2κ̃r̃(1+κ̃)))

16κ̃6 r
, 0 < r ≤ σ

(2.97)

for the MSA-based effective pair potential without salt, where κ̃ = κa and r̃ = r/a. The

potential smoothly extends into the overlap region r < σ with zero slope (i.e. zero repulsive

force) at full overlap of two macroions at r = 0. This potential has been derived earlier and
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independently using the LRT method [10], and it is widely used as a simple model for the

electrostatic interaction of ionic spherical microgels with uniform backbone charge [11, 14,

15]. In fact, the effective Denton pair potential in Eq. (2.60) reduces to Eq. (2.97) in the

salt-free limit n− → 0.

The assumptions underlying Eqs. (2.91) and (2.74) are that the microion-microion corre-

lations are treated in the linear DH approximation for pointlike microions [9]. Using residual

calculus, one can show that, asymptotically, ueff(r) ∝ eκr/r, with κ given by Eq. (2.78), pro-

vided the pointlike microions are treated in DH approximation, without having to specify the

microion-macroion and macroion-macroion correlation functions. As shown here, an analytic

expression for ueff(r) is obtained when both (++) and (m+) direct correlations are treated

in the linear MSA approximation. As noted earlier, the poor description in MSA of short-

range electrostatic correlations can result in non-physical negative values of g(r) = g00(r)

near contact [5]. This is improved when instead the nonlinear HNC closures are used for the

macroion-microion direct correlation function, i.e.

c01(r) = −βu01(r) + h01(r) − ln {1 + h01(r)} , r > 0 (2.98)

guaranteeing that g01(r) ≥ 0. Instead of using HNC closure for g00(r), a great simplification

is obtained when the so-called jellium assumption is used. This constitutes the so-called

nonlinear jellium approximation (JA), presuming that all the backbone charges of the (Nm −

1) macroions around a central macroion are smeared out as a uniform background, the so-

called jellium, of charge density nmZe. Overall electroneutrality is ensured in the nonlinear

JA, but macroion-macroion correlations are disregarded [9]. One can show that the JA

implies a (nonlinear) PB equation, which in the salt-free case is of the form [9]

∆Φ(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−4πλB

[︂
n0Z + n1z e

−zΦ(r) − 3ZλB
a3

]︂
, 0 < r ≤ a

−4πλB

[︂
n0Z + n1z e

−zΦ(r)
]︂
, r > a

(2.99)

with the reduced potential Φ(r) defined in terms of h01(r) by

h01(r) = e−zΦ(r) − 1. (2.100)
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Figure 2.1 Effective electrostatic macroion pair potential, ueff, for two different cou-
pling parameters ZnetλB/a for uniformly-charged ion-permeable macroions. Dashed
red line corresponds to linear MSA-based result, while solid black line corresponds
to numerical nonlinear HNC-JA solution on identifying ueff with −kBTueff down to
r = 0. Other system parameters: ϕ = 0.005, a = 12 nm and λB = 0.726 nm.

The consequential boundary conditions are Φ(r → ∞) = 0 and Φ′(0) = 0, plus the continuity

of Φ(r) and Φ′(r) at r = a. Using the HNC closure, the numerical solution for Φ(r) gives

h01(r) and hence c01(r). When the latter is substituted into Eq. (2.87), ceff(r) and hence

the long-distance Yukawa form of ueff(r) are obtained, providing a renormalized effective

macroion valence Zeff. For Φ(r) ≪ 1, this last formulation leads back to the MSA-based

ueff(r) in Eq. (2.97). This generalizes the findings by Denton to the linear JA model case:

in linear treatment of ionic correlations, MSA integral equation scheme and LRT give the

same ueff. Such an identity does not necessarily hold for the volume energy.

In Fig. 2.1, we display the effective macroion pair potential, ueff, of uniformly-charged ion-

permeable colloids for two representative coupling parameters ZnetλB/a, obtained using the

linear MSA and nonlinear HNC-JA approximations, respectively. The first one is computed

analytically using Eq. (2.97), while the second one is obtained numerically as explained

above. At low macroion coupling, both methods give the same ueff(r), while for the larger

coupling, nonlinear contributions described by the HNC-JA scheme imply a stronger effective

pair potential.
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Chapter Three

CHARGE RENORMALIZATION

METHODS

The explicit results for ueff end Evol discussed so far are for macroion suspensions where

the microion distribution is only weakly perturbed by the macroion charges, i.e. where the

coupling parameter λBZ(net)/a is small. For strongly coupled suspensions where λBZ(net)/a

is not small, it is necessary to renormalize the bare macroion charge, Z, and suspension

screening constant, κ, to incorporate the nonlinear response of the microions to the strong

electric field of the macroions. Notice that, in the coupling parameter λBZ(net)/a, we use Z

for impermeable and Znet for microion-permeable colloids.

In this chapter, we describe how nonlinear effects can be incorporated into the discussed

multi-colloid-center LRT and DFT-PB schemes. We start by considering first simple renor-

malization schemes in the context of single-macroion PB spherical cell models and jellium

models, where inter-macroion correlations are basically disregarded. Cell-model-based charge

renormalization is combined later on with a linearized DFT-PB scheme, resulting into the

so-called shifted DH approximation. Particular focus is given to an appropriate linearization

of the suspension mean-field electrostatic potential Φ. We will mainly deal with charge-

renormalization methods for impermeable colloids where nonlinear effects are particularly

strong, but we also discuss shortly how these methods can be modified to deal with ion-
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permeable colloids. As done throughout this thesis, the microions are treated as pointlike

and monovalent, and their interactions are described in a mean-field way.

3.1 Cell model approximations

Commonly used charge renormalization schemes are based on a simplifying cell model (CM)

picture of the suspension. These schemes follow from the observation that for strongly

repelling spherical colloids, there is a region around each colloid which is void of further ones

[54]. On assuming a crystalline-like structure, a Wigner-Seitz cell tesselation can be applied,

where each Wigner-Seitz cell is approximated by a spherical cell containing a single colloid

at its center. Each cell is treated identically and independently (no inter-cell correlations)

and is considered to be in Donnan equilibrium with a large 1:1 strong electrolyte reservoir of

monovalent microions of constant concentration 2nres. The only piece of information about

the colloid environment is the volume fraction ϕ related to the spherical cell by its radius

R = a/ϕ1/3. Considering Boltzmann distributions for the microion concentration fields,

the total electrostatic suspension potential in the fluid region, a < r < R, of the cell is

determined by the nonlinear PB equation

Φ′′(r) + 2
r

Φ′(r) = κ2
res sinh{Φ(r)}, (3.1)

where Φ(r) = eβψ(r) is the reduced total electrostatic potential, and κ2
res = 8πλBnres is

the square of the reservoir electrostatic screening constant. The inner and outer boundary

conditions for ion-impermeable macroions are given by

Φ′(a) = ZλB

a2
, Φ′(R) = 0 (3.2)

at the colloid surface and cell edge, respectively. The inner boundary condition states that

the radial electric field on the colloid surface obeys Coulomb’s law, while the outer one assures

that the cell is overall electroneutral. The suspension salt pair concentration, ns, is calculated
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by integrating the coion (anion) concentration profile n−(r) across the negatively-charged

central macroion in the cell, i.e.

ns = 4π
Vc(1 − ϕ)

∫︂ R

a
n−(r)r2 dr = 4πnres

V fl
c

∫︂ R

a
eΦ(r) r2 dr, (3.3)

relating ns to the given reservoir salt concentration. Here, Vc = 4πR3/3 is the cell volume

and V fl
c = Vc(1 − ϕ) is the fluid volume in the cell interior. Since Φ < 0 for negatively-

charged macroions, one notices that ns ≤ nres, which expresses the Donnan salt expulsion

effect. The presented CM is also referred as the nonlinear PBCM approximation, hinging on

the nonlinear Boltzmann-distributed microion profiles.

For defining effective interaction parameters characterizing the effective macroion pair

potential with charge-renormalization effects included, we expand the nonlinear term in

Eq. (3.1) up to first order around a yet undetermined potential value Φ̃, leading to a PB

equation for the linearized electrostatic potential Φl(r), i.e.

Φ′′
l (r) + 2

r
Φ′

l(r) = κ2
eff(Φl(r) − Φ̃ + γ), (3.4)

where γ = tanh{Φ̃}, and

κ2
eff = κ2

res cosh{Φ̃} (3.5)

is a new renormalized (effective) screening constant. In order to make further progress,

we need to specify the linearization value Φ̃. Two convenient choices are the (nonlinear)

electrostatic potential value at the cell edge, i.e. Φ̃ = Φ(R), and the volume-average, mean

(nonlinear) electrostatic potential, Φ̃ = Φ̄ = 4π
V fl

c

∫︁ R
a r2Φ(r)dr. The first choice is referred to

as potential linearization with respect to the edge potential value, or edge linearization for

short, while the second one is called linearization with respect to the mean potential value,

or mean linearization for short. The two boundary conditions that Φl(r) has to fulfill to

be uniquely determined depend on the chosen linearization value. They read Φ′
l(R) = 0

and Φl(R) = Φ(R) for edge linearization, stating electroneutrality and equality of linearized

and nonlinear potential at the cell edge; and Φ′
l(R) = 0 and 4π

V fl
c

∫︁ R
a r2Φl(r) dr = Φ̄ for mean
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linearization, corresponding to electroneutrality and the equality of the volume-averaged

mean values of the linear and nonlinear potentials (both averaged in the fluid volume). The

general two-parametric solution of Eq. (3.4) has the form

Φl(r) = c+

eκeffr

r
+ c−

e−κeffr

r
+ Φ̃ − γ, (3.6)

where c± are constants determined by the boundary conditions. Since the cell radius is finite

for ϕ > 0, also the positive exponential has to be considered for Φl(r).

We proceed to provide the renormalized macroion valence, Zeff, which together with

the renormalized screening constant, κeff, determine the so-called renormalized effective pair

potential

βueff(r) = λBZ
2
eff

(︃
eκeffa

1 + κeffa

)︃2 e−κeffr

r
, r > 2a, (3.7)

for impermeable macroions, such that for a weak bare macroion charge, where Zeff = Z,

the linear electrostatic part of the DLVO potential is recovered. For a specified linearization

value Φ̃, the according renormalized screening parameter κeff follows from Eq. (3.5). For

specified Φ̃ and hence Φl(r), the renormalized valence, Zeff, is then consistently defined by

the electrostatic boundary (surface charge (SC)) condition,

Zeff := Φ′
l(a) a2

λB

, (3.8)

on the surface of the macroion sphere based on the linearized potential. This definition of Zeff

was firstly introduced in the pioneering work of Alexander et. al. using edge linearization

[55]. Depending on Φ̃, different values for κeff and Zeff are obtained.

Following Boon et. al. [56], an alternative effective valence can be defined from ana-

lytically extrapolating Φl(r) to the center of the cell by assuming a pointlike colloid with

effective valence Qeff defined by

Qeff := lim
r→0

Φ′
l(r)r2

λB

. (3.9)

The quantity Qeff is called extrapolated point charge (EPC) and its definition is triggered

from noting that Φl(r ≈ 0) = λBQeff/a, since no screening is operative at r = 0. In order
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to directly compare the two renormalized valence definitions, one needs to account for the

geometric factor in the renormalized DLVO potential. Thus, the renormalized valence Zeff

in the EPC scheme is actually defined as

Zeff = 1 + κeffa

eκeffa
Qeff. (3.10)

This definition does not agree with the definition of Zeff in Eq. (3.8), with the latter used for

the SC. Depending on the choice of Φ̃ with according boundary conditions, and on the SC

or EPC definitions of Zeff in Eqs. (3.8) and (3.10), respectively, four different expressions of

Zeff in terms of the independent system variables κresa, ZλB/a and ϕ are obtained, i.e.

ZeffλB

a
= γFi(κeffa, ϕ

−1/3). (3.11)

The four functions Fi, with i = 1, ..., 4, are obtained from Φl(r) in Eq. (3.6) with accordingly

determined coefficients c±. For the SC definition of Zeff and linearization with respect to the

edge potential (SC edge), we obtain [55]

F1(x, y) = 1
x

[(x2y − 1) sinh{x(y − 1)} + x(y − 1) cosh{x(y − 1)}], (3.12)

while for the SC definition of Zeff with linearization with respect to the mean potential (SC

mean) [57], it follows

F2(x, y) = x2(y3 − 1)
3 . (3.13)

If instead we consider the EPC definition of Zeff with edge linearization (EPC edge), we

obtain [56]

F3(x, y) = (1
x

+ 1)e−x(xy cosh(xy) − sinh(xy)); (3.14)

and, finally, for the EPC definition of Zeff in conjunction with linearization with respect to

the mean potential (EPC mean), it holds

F4(x, y) = x2(y3 − 1)ξ
3 (3.15)
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with

ξ = 1 + x

ex

⎡⎣(︄e−x(x+ 1) − exe−2yx(x− 1)(xy + 1)
xy − 1

)︄−1

+
(︄
e−xe2yx(xy − 1)(x+ 1)

xy + 1 − ex(x− 1)
)︄−1

⎤⎦ . (3.16)

Notice in all four cases that Zeff → Z for ZλB/a ≪ 1. For larger values of Z, nonlinear

screening comes into play, triggered by a strong accumulation of counterions near the colloid

surface so that Zeff < Z. For large Z, Zeff approaches a plateau value Zsat
eff . This so-

called renormalized charge saturation is due to the invoked mean-field PB approximation of

pointlike microions allowing for an arbitrarily-high surface concentration of counterions [58,

59]. The approach of Zeff to an (apparent) plateau value, however, is a genuine physical

effect when ZλB/a is not too large.

Using Eq. (3.1), one can show that |Φ(r)| is a strictly monotonically decreasing func-

tion with increasing radial distance r, implying that |Φ̄| > |Φ(R)| and consequently that

κeff(mean) > κeff(edge). Thus, there is stronger effective screening for mean than for edge

linearization.

The pros and cons of the various definition of Zeff will be discussed in chapter 7, where

we also give numerical results.

For given Φl(r), the linear microion profiles inside the cell are given by

nl
±(r) = nrese

∓Φ̃[1 ± Φ̃ ∓ Φl(r)]. (3.17)

Integrating the linear microion charge density, nl
+(r)−nl

−(r), and the total microion density,

nl
+(r)+nl

−(r), over the fluid volume V fl
c of a cell, and using the definition of Zeff in Eq. (3.8),

we obtain for the effective screening parameter under mean linearization [57]

κ2
eff = 4πλB

Vfl

(︂
Zeff + 2N eff

s

)︂
= 4πλB

(1 − ϕ)
(︂
Zeffnm + 2neff

s

)︂
. (3.18)

Here, N eff
s = 4π

V fl
c

∫︁ R
a r2 nl

−(r) dr is the mean number of the free salt ion pairs in the suspension

and neff
s = N eff

s /Vc. From Eq. (3.18), we obtain the effective suspension salt concentration,
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neff
s , related to the free (i.e. uncondensed) macroions as

neff
s a3 = a

8πλB

[︄
(1 − ϕ)(κeff a)2 − 3ϕZeffλB

a

]︄
. (3.19)

Alternatively, for edge linearization, where Φ̃ = Φ(R), it holds

κ2
eff = 4πλB

(1 − γ)Vfl

(︄
Zeff + 2N eff

s

1 + γ

)︄
= 4πλB

(1 − ϕ)(1 − γ)

(︄
Zeffnm + 2neff

s

1 + γ

)︄
, (3.20)

with the effective suspension salt concentration given by

neff
s = κ2

eff

8πλB

(1 − ϕ)(1 − γ2) − nm

2 Zeff(1 − γ), (3.21)

where γ = tanh{Φ(R)}. We notice from Eqs. (3.18) and (3.20) that the square of the

effective screening constant consists of two additive contributions, namely a contribution

proportional to nmZeff arising from the free (i.e. uncondensed) part of the macroion-surface

released counterions, and a contribution due to free salt ion pairs.

In case of implementing EPC method for incorporating nonlinear effects, the correspond-

ing renormalized interaction parameters are used in Eqs. (3.19) and (3.21) in order to obtain

approximations of the effective suspension salt concentration for mean and edge lineariza-

tions, respectively.

From a physics viewpoint, mean linearization is more consistent than edge linearization,

since in the former case the density variations of the nonlinear potential around Φl are of

second order only, which is not the case for edge linearization. Only in mean linearization, the

Donnan expression for ns is correctly recovered to first order, where Zeff = Z+ O([λBZ/a]2),

and also the correct expression of κ2
eff is recovered for nres → 0. Different from Eq. (3.20),

which invokes the factors 1/(1 ± γ), Eq. (3.18) naturally splits into free counterion and

salt ion contributions. Using a proper pressure definition, mean linearization guarantees

furthermore positive pressure values [60]. Another convenient feature of mean linearization

is that Zeff is directly obtained from Φ̄ according to

ZeffλB

a
=
(︄

1 − ϕ

3ϕ

)︄
(κresa)2 sinh(Φ̄). (3.22)
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In the salt-free case, where nres = 0, the suspension is a closed system, since no counterions

can leave the cell into the empty reservoir because of electroneutrality. For a system in

Donnan equilibrium, it holds that |Φ(R, nres)| → ∞ for nres → 0. To recover the salt-free

system as a limiting case, one therefore redefines the salt-free system potential by

Φ(r) = lim
nres→0

[Φ(r;nres) − Φ(R;nres)] . (3.23)

The salt-free potential fulfills the nonlinear PB-type equation for negatively-charged macroions,

Φ′′(r) + 2
r

Φ′(r) = −k2
0e

−Φ(r), a < r ≤ R, (3.24)

where k2
0 = 4πλBn

0
+ > 0 is the new electrostatic screening constant and n+(r) = n0

+ exp{−Φ(r)}

is the nonlinear counterion profile. The two boundary conditions in the salt-free system plus

an equation for the additional quantity k0 are

Φ′(a) = ZλB

a2
; Φ′(R) = 0, (3.25)

and

k2
0 = 4πλBZ∫︁ R

a d3r exp{Φ(r)}
= Φ′′(R), (3.26)

respectively, where the equation k2
0 expresses the electroneutrality of the cell. Notice that

Φ(R) = 0. The present nonlinear boundary value problem can be solved self-consistently.

Alternatively, it can be mapped onto a boundary value problem invoking a third-order dif-

ferential equation, following Ref. [61].

Linearization of Eq. (3.24) with respect to an arbitrary value Φ̃ gives

Φ′′
l (r) + 2

r
Φ′

l(r) = k2
0 exp{Φ̃}[1 + Φl(r) − Φ̃], a < r ≤ R, (3.27)

with boundary conditions similar to systems with salt, and k0 determined from the nonlinear

boundary value problem. The renormalized screening parameter in the salt-free case follows

then explicitly as

κ2
eff = k2

0 ×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e−Φ̄, mean

e−Φ(R), edge
. (3.28)
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Notice that e−Φ(R) = 1 under salt-free conditions. Therefore, as in the Donnan equilibrium

case, it holds that κeff(mean) > κeff(edge). The renormalized macroion valence in the four

considered cases follows from

ZeffλB

a
= Fi(κeffa, ϕ

−1/3). (3.29)

with γ = 1 and for i ∈ {1, ..., 4} with Fi(x, y) still given by Eqs. (3.12)-(3.16). For Zeff in

the SC model, it follows explicitly that

ZeffλB

a
(nres = 0) =

(︄
1 − ϕ

3ϕ

)︄
(κresa)2e−Φ̃. (3.30)

Since Φ̃ = Φ(R) = 0 in edge linearization, and Φ̃ = Φ̄ in mean linearization with Φ̄ < 0

for negatively-charged macroions, it follows that Zeff(mean) > Zeff(edge) under salt-free

condition. This inequality holds empirically also when systems with salt are considered.

In the salt-free case, we can see that Φ(r) = λBZ/r, with Zeff = Z and κeff = 0 for

nm → 0 (R → ∞). This expresses that the entropy of counterions dominates the electric

free energy of counterion attraction to the surface in an unbounded three-dimensional space

(a < r < R → ∞), i.e. the Z counterions around the central macroion are randomly

distributed throughout space, and do not contribute to screening.

We have considered here the CM for an impermeable central macroion only. Similar CM-

based charge-renormalization procedures can be also designed for a permeable macroion [62].

In section 6.3, CM renormalization procedure for permeable macroions is employed in our

discussion of the concentration-dependent deswelling of weakly cross-linked ionic microgels.

3.2 (Non-)Penetrating renormalized jellium model (RJM)

Different from the spherical CM, which is motivated by a crystalline order of the suspen-

sion, the renormalized jellium model (RJM) describes fluid-like suspensions. This charge-

renormalization scheme, used alternatively to provide renormalized values Zeff and κeff as
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input to the linear electrostatic DLVO potential, is based on the JA [9], described earlier in

subsection 2.4.3. In the JA, a spherical macroion of radius a is singled out and positioned at

the origin of the coordinate frame. The remaining (Nm − 1) macroions and their condensed

counterions are assumed to form a uniform neutralizing background, called the jellium,

smeared out in the infinite fluid space r > a, where the uncondensed counterions and coions

can freely move [63]. Assuming a Boltzmann distribution for the pointlike, monovalent free

microions and a uniform, structureless jellium for the remaining macroions, i.e. gmm(r) = 1

for r > a, the resulting nonlinear PB equation for the total (reduced) electrostatic potential

Φ in Donnan equilibrium has the form [64]

Φ′′(r) + 2
r

Φ′(r) = κ2
res sinh{Φ(r)} + 3ϕZbackλB

a3
, r > a, (3.31)

where κ2
res = 8πλBnres. The first term on the right-hand side is the reduced charge-density

contribution by the microions, while the second term is the (reduced) uniform jellium charge

density outside the central macroion, with Zback denoting the background macroion valence.

The latter is taken to be equal to Zeff, and is self-consistently determined. The boundary

conditions guaranteeing a unique solution are Φ′(a) = ZλB/a
2, with Z the bare macroion

valence, and Φ′(r → ∞) = 0, accounting for electroneutrality with an asymptotically de-

caying electric field. Different from the electric field, the electrostatic potential at infinity

r → ∞, called Donnan potential, Φ∞, is non-zero and given by

Φ∞ = arsinh
[︄
− 3ϕ

(κresa)2

ZbackλB

a

]︄
(3.32)

in terms of Zback. This boundary value problem can be solved numerically only. Linearizing

Eq. (3.31) with respect to Φ∞, we obtain the linearized electrostatic potential, Φl(r) satisfying

Φ′′
l (r) + 2

r
Φ′

l(r) = κ2
eff(Φl(r) − Φ∞), r > a, (3.33)
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with effective screening constant κ2
eff = κ2

res cosh{Φ∞}, which can be alternatively written as

(κeffa)4 = (κresa)4 +
(︄

3ϕZbackλB

a

)︄4

. (3.34)

We see that (κeffa)4 has two clearly distinguishable contributions: the first one due to the salt

microions, given by the reservoir salt concentration, and the second one, due to microion-

dressed macroions. The boundary conditions determining Φl uniquely are Φ′
l(r → ∞) = 0,

expressing overall electroneutrality of the infinite jellium system, and Φl(r) ∼ Φ(r) for

r → ∞, demanding that the linear solution matches the nonlinear one asymptotically. As

in the CM, the effective valence, Zeff, is obtained from Φl using [63, 64]

Zeff := Φ′
l(a) a2

λB

. (3.35)

The solution of Eq. (3.33) can be analytically expressed in terms of Zeff as

Φl(r) − Φ∞ = ZeffλBe
κeffa

1 + κeffa

e−κeffr

r
, r > a. (3.36)

Finally, from comparing Eq. (3.36) against the likewise-exponential asymptotic form of the

non-linear solution Φ(r), we obtain Zeff in terms of Zback. In order to find Zeff, we demand

self consistency by requiring that Zeff = Zback [64], from which Zeff is obtained iteratively

using a selected starting value Zback<Z.

Similarly to the CM, we obtain a relation between semi-open and closed systems. This

link follows from the mean concentration of the free co- and counterions inside the suspension

[63],

n± = nres exp{∓Φ∞}. (3.37)

The effective suspension salt pair concentration, neff
s , is thus obtained in terms of nres and

Φ∞ as

neff
s = n− = nres exp{Φ∞} ≤ nres, (3.38)

since Φ∞ < 0 holds for negatively charged colloids. Just as in the renormalized CM, the

renormalized valence, Zeff, in RJM asymptotes to a saturation value when Z → ∞. Likewise,
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typically Zeff < Z and it is found that Zeff → Z and κeff → κres in the limits ϕ → 0 and

nres → 0.

In the salt-free case, suspension electroneutrality requires that n0
+ exp(−Φ∞) = Zbacknm

together with Φ(r) → 0 for r → ∞. Thus, the nonlinear PB equation, Eq. (3.31), acquires

the form

Φ′′(r) + 2
r

Φ′(r) = −3ϕZbackλB

a3
(exp{−Φ(r)} − 1), r > a, (3.39)

with boundary conditions Φ′(a) = ZλB/a
2 and Φ(r → ∞) = 0. Linearizing the right-hand

side of Eq. (3.39) around Φ∞ = 0 , one obtains

Φ′′
l (r) + 2

r
Φ′

l(r) = κ2
effΦl(r), r > a, (3.40)

where

κ2
eff = 4πλBZback, (3.41)

and the boundary conditions are Φ′
l(r → ∞) = 0 and Φl(r) ∼ Φ(r) for r → ∞. With the

effective valence defined by Eq. (3.35), the solution of Eq. (3.40) has the form

Φl(r) = ZeffλBe
κeffa

1 + κeffa

e−κeffr

r
, r > a. (3.42)

As for a system with added salt, Zeff is determined from asymptotically matching the

linearized potential Φl(r) to the nonlinear one for a selected Zback. Using again the self-

consistency assumption Zback = Zeff, Zeff is obtained for a salt-free system.

A variant of the discussed non-penetrating RJM is the penetrating RJM, where the

neutralizing jellium is not only smeared out across the fluid volume r > a, but also penetrates

the volume of the central colloid while the microions are still expelled. This leads to the

same PB equation Eq. (3.31) for r > a, but with boundary conditions

Φ ′(a) = λB

a2
(Z + Zbackϕ),

Φ′(r → ∞) = 0. (3.43)

The inner boundary condition states now that the electric field on the surface of the central

colloid is due to the bare charge, −Ze, of the central colloid plus an additional contribution,
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Zbackϕ, arising from the penetrating jellium charge inside the volume of the central colloid.

Charge renormalization is introduced identically to the non-penetrating jellium case, by

linearization with respect to Φ∞. The inner boundary condition in Eq. (3.43) involves

now the altered self-consistency condition Zeff = Z + ϕZback, which implies that Zeff =

Z(1 + ϕ) + O(Z2) for small Z. This is the same effective charge obtained from the high-

temperature-limiting MSA solution.

3.3 Renormalized linear response theory (RLRT)

In this section, we discussed how charge renormalization can be implemented into the LRT

multi-colloid-center model for strongly charged macroions. We address here the case of

impermeable colloids only. As discussed, assuming a weak perturbation of the (Swiss-cheese-

like) uniform microion distribution by the charged colloids, LRT [65] provides an analytic

expression of the effective one-component effective Hamiltonian, Heff = Hmm + Ωµ, and,

consequently, of the semi-grand free energy Ω. The LRT effective Hamiltonian is stated in

Eq. (2.45), the volume energy Evol in Eq. (2.56), and the effective pair potential between

the microion-dressed colloids in Eq. (2.54) for r > σ. The screening constant is κ2 =

4πλB(n+ +n−)/(1 −ϕ), where the excluded volume of the macroions is accounted for by the

factor 1/(1 − ϕ).

The applicability of LRT ceases when, for larger colloid charges ZλB/a ≳ 1, nonlinear

screening effects due to strengthening of macroion-microion correlations come into play, re-

sulting in a strong accumulation of counterions near the macroion surface [65, 66]. The

LRT can be extended to more strongly correlated macroion suspensions by explicitly dis-

tinguishing between surface-bounded microions and so-called free microions in the volume

(grand-free) energy according to

Evol = Ωfree + Fbound, (3.44)

by analyzing the balance between electric and thermal microion energies [67]. The grand-free
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energy, Ωfree, of the free microions is treated to quadratic order, providing formally the same

effective pair potential for the colloidal particles as in Eq. (2.54), but now characterized by

a renormalized effective valence, Zeff ≤ Z, and renormalized effective screening constant,

κeff, both depending on the state-dependent concentration of free microions. The fraction

of strongly-associated, i.e. bound, microions is related to an association shell (a, a + δ) of

thickness δ surrounding a macroion, which is determined as the distance from the microion

surface at which the electrostatic energy of attraction of a counterion is comparable to its

thermal energy, i.e.

e|Φ(a+ δ)| = CkBT, (3.45)

where Φ(r) is the (LRT-orbital) electrostatic potential at distance r from a colloid center and

C is a selected number of order unity. Using LRT combined with this microion-association

scheme, the reduced electrostatic potential around a dressed colloid is of the form

Φ(r) = −ZeffλB

eκeff(a+δ)

1 + κeff(a+ δ)
e−κeffr

r
, r ≥ a+ δ, (3.46)

with κ2
eff = 4πλB(ñ+ + ñ−) being the effective (renormalized) screening constant. Moreover,

ñ± = Ñ±/[Nm(1− ϕ̃)] and Ñ± are the mean number densities and numbers of free microions,

respectively, and ϕ̃ = ϕ(1 + δ/a)3 is the effective volume fraction of the macroions including

their macroion-association shells. Notice that κeff can be rewriten as

κ2
eff = 4πλB

(1 − ϕ)
(︂
Zeff nm + 2ñeff

s

)︂
, (3.47)

using electroneutrality and ñ− = ñeff
s , with ñeff

s the renormalized salt concentration of free

microion pairs. Substituting Eq. (3.46) into Eq. (3.45), the association shell thickness is

determined by ⃓⃓⃓⃓
⃓ ZeffλB

[1 + κeff(a+ δ)](a+ δ) + Φ̄
⃓⃓⃓⃓
⃓ = C, (3.48)

for given Zeff, ϕ, and C, on noting that κeff depends self-consistently on δ. The mean potential

value has the form Φ̄ = −(ñ+ − ñ−)/(ñ+ + ñ−). Typically, and somewhat arbitrarily, C is

taken equal to 1.
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The distinction between strongly-associated and freely-moving microions implies a cor-

responding separation of the total grand free energy Ω. The free microions are only weakly

correlated with the macroions, and thus well described by linear-response theory. The volume

grand free energy per macroion, εvol = Evol/Nm, has the form

εvol =
∑︂
i=±

Ñ i

Nm

[︃
ln
(︃
ñi

nres

)︃
− 1

]︃
− Z2

eff

2
λBκeff

1 + κeff(a+ δ) − Zeff

2
ñ+ − ñ−

ñ+ + ñ−
+ fbound (3.49)

with the free energy per microion of bound counterions given by

fbound ≈ (Z − Zeff)
[︄
ln
(︄

(Z − Zeff)
vs

Λ3
0

)︄
− 1

]︄
+ Z2

effλB

2a . (3.50)

The first term on the right side is the ideal-gas free energy of the bound counterions in the

association shell of volume vs = (4π/3)[(a + δ)3 − a3], and the second term accounts for

the self-energy of a dressed macroion of valence Zeff, assuming the bound counterions to be

localized near the macroion surface (r = a). Here, Λ0 is the microion thermal de Broglie

wavelength assumed to be equal for ± ions.

The effective macroion valence, Zeff and hence the association shell thickness, δ, can be

determined then by equating the chemical potentials of microions in the free and bound

phases. It can be shown that this is equivalent to minimizing the volume grand-free energy,

εvol, at fixed temperature and mean microion densities [65]. The effective macroion valence,

Zeff is then obtained, for given bare valence Z, by the variational condition,(︄
∂εvol

∂Zeff

)︄
T,ñ±

= 0. (3.51)

Notice that Zeff and δ are inter-related by Eq. (3.48). The effective valence, Zeff, and corre-

sponding shell thickness, δ, determine in turn the effective screening constant κeff.

3.4 Shifted Debye-Hückel approximation (SDHA)

The SDHA method was developed by Boon et. al. in [56]. Like the RLRT, it is a multi-

colloid-center method based on DFT-PB-type approximations similar to the ones discussed
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in subsection 2.4.1. As originally done in [56], we present its essentials for suspensions of

impermeable colloids.

Assuming for the moment pointlike macroions, we formally expand the DFT-PB grand-

free energy functional Ω̂µ(X) in Eq. (2.17) in the presence of Nm (pointlike) macroions at

positions X up to quadratic order in the microion trial densities ρ±(r; X) − n̄±, measured

relative to yet-unknown constant densities n̄±. In the considered Donnan equilibrium, these

densities n̄± are not taken independently, but are related by

n̄± = nrese
±Φ̃, (3.52)

for a yet unspecified potential value, Φ̃, so that n̄+n̄− = n2
res. Minimizing Ω̂µ(X), quadrat-

ically expanded with respect to the trial microion densities n̄±, the linearized equilibrium

microion profiles

n±(r; X) = nres e
∓Φ̃
[︂
1 ∓

(︂
Φl(r; X) − Φ̃

)︂]︂
, r ∈ R (3.53)

are obtained, with the linearized suspension potential Φl(r; X). The so-called shifted lin-

earized potential, Φs
l(r; X), defined by

Φs
l(r; X) = Φl(r; X) − Φ̃ + γ, (3.54)

for γ = tanh(Φ̃), fulfills the multi-colloid-center linearized PB equation (shifted DH equation)

∆Φs
l(r; X) = κ2

eff Φs
l(r; X) − 4πλBq(r; X), r ∈ R3. (3.55)

Here,

q(r; X) =
Nm∑︂
j=1

δ(r − Rj)Qeff (3.56)

is the charge density of pointlike macroions at positions X = {R1, . . . ,RNm}, where charge

renormalization (discussed further down) is accounted for in the effective macroion valence

Qeff. Moreover, κ2
eff = κ2

res cosh(Φ̃) is taken as the renormalized screening parameter linked
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to Qeff. By means of Fourier transformation, one straightforwardly obtains the solution

Φs
l(r; X) = λBQeff

Nm∑︂
j=1

e−κeff|r−Rj |

|r − Rj|
, (3.57)

for the shifted linearized potential, which is a superposition of Nm Yukawa-type orbitals.

Substitution of n±(r; X), according to Eq. (3.53), into the quadratic-order expanded mi-

croion grand free energy results in

βΩµ(X) = βEvol + λBQ
2
eff

Nm∑︂
i<j

e−κeff|Ri−Rj |

|Ri − Rj|
(3.58)

with volume energy

βEvol = −V κ2
eff

8πλB

(︄
κ4

res

κ4
eff

+ 1
)︄

+NmQeff(Φ̃ − γ) (3.59)

where V is the macroscopic suspension volume.

So far, we have not specified the value of Φ̃, and hence the resulting value for κeff and

Qeff. This is done now using, for simplicity, a spherical CM with Φ̃ identified as Φ(R) or

Φ̄. The first identification, Φ̃ = Φ(R), was made in [56]. The macroion effective valence

Qeff, defined using in Eq. (3.9), is related to the effective valence Zeff by Eq. (3.10), i.e. Zeff

is obtained from Qeff by multiplying the latter with a geometric factor due to the actually

finite radius of the macroions. The hard-core of the macroions is reintroduced a posteriori

in the same way as discussed earlier by enforcing electroneutrality of the individual orbitals,

leading to the geometric factor in the relation between ZEPC
eff and Qeff.

Quite interestingly, and different from the CM with SC definition of the renormalized

valence in Eq. (3.8), ZEPC
eff in the EPC definition can be to some extent larger than the bare

colloid valence Z for high colloid concentration and small coupling ZλB/a, where nonlinear

charge renormalization effects are negligible.

In the salt-dominated case where 2nres ≫ nmZ, one finds ZEPC
eff → Z and κeff → κres. The

volume energy reduces then to the DFT-PB volume energy in Eq. (2.31), and the effective

pair potential to the DH one in Eq. (2.30).
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Chapter Four

MEAN-FIELD THEORY OF SOFT

PERMEABLE PARTICLES

In this chapter, we focus on suspensions of soft ion- and solvent permeable spherical charged

colloidal particles, with the aim of modeling ionic-microgel suspensions. We begin by pre-

senting the basic theoretical background for describing particles with state-dependent equi-

librium size. We briefly introduce the elastic Hertz potential and the Flory-Rehner theory

for modeling, in a coarse-grained way, the polymeric nature of the microgels. In combination

with the effective electrostatic interaction descriptions of chapter 2, we derive total effective

pair potentials for suspensions of stimuli-responsive ionic microgels. Finally, we end the

chapter by presenting two mean-field methods for calculating the concentration-dependent

equilibrium size of weakly cross-linked ionic microgels. Numerical results by these methods

are presented in chapter 6.

4.1 Soft Hertz potential

The Hertz potential quantifies changes in the elastic energy of two deformable objects when

subjected to an axial compression [68]. It has been derived within linear elasticity theory

using geometric considerations [69]. Due to its simple functional form, the Hertz potential for
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elastic spherical particles has been extensively used to model the elastic repulsive interaction

of weakly deformable macromolecules, such as star polymers, globular micelles [68] and

spherical microgels [12, 15, 70–72].

For two overlapping, identical elastic spheres of Hertz radius aH at center-to-center sep-

aration r, the Hertz potential reads [12]

βuH(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
εH

(︂
1 − r

2aH

)︂5/2
, r ≤ 2aH

0 , r > 2aH

, (4.1)

with softness parameter

εH = 16Y a3
H

15(1 − ν2) , (4.2)

where ν is Poisson’s ratio and Y is Young’s modulus of the particle material, related to each

other via the bulk modulus K by Y = 3K(1 − 2ν) [15]. In the limit kBT/εH → 0, the

hard-sphere potential is recovered, while for kBT/εH → ∞ the system approaches ideal gas

behavior.

In this work, we utilize the Hertz potential for modelling the steric elastic repulsion of two

spherical ionic microgel particles at small overlap, and for temperatures smaller than the low

critical solution temperature of the corresponding polymer solution. Under such conditions,

the Hertz soft particle radius aH is identified with the equilibrium (swollen) radius a. For

polymer gels in good solvents, scaling theory [19] predicts that Young’s modulus scales

linearly with temperature and crosslinker number density according to Y ∝ TNch/a
3, with

Nch the number of chains in between two crosslinkers [15]. Thus, the reduced interaction

(softness) parameter εH is determined by the single-particle elastic moduli, independent of

temperature and particle volume [12], and it scales linearly with the number of chains Nch

constituting the microgel polymeric network, neglecting any dependence of ν on the swelling

ratio α = a/a0 [15]. Here, a0 is the dry radius of the microgels, namely the radius of the

microgels in the collapsed state at temperatures T > Tcr, where Tcr is the lower critical

solution temperature of the corresponding polymer solution.
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When describing spherical microgels suspensions, the Hertz potential is typically imple-

mented under the assumption that the interacting elastic spheres are only slightly deformed.

Clearly, this does not hold for very large compression or at high microgel concentrations (well

above the overlap concentration)[68]. This important point has been recently assessed by

means of simulations of neutral microgels using a sophisticated simulation method [73]. The

simulations allowed to calculate all elastic moduli of microgels as functions of the crosslinker

concentration and to determine the effective interactions between two microgels, and con-

nect hereby the elastic properties to the effective pair potential. By doing this, in [73] the

range of validity of the Hertz potential was assessed, showing that it holds up to nominal

packing fractions smaller than ϕ ≈ 1. In another study, based on a combination of numerical

calculations and experiments on core-corona microgel suspensions, a multi-Hertzian model

was proposed in order to properly describe more complex inter-microgel interactions [74].

Notice further that the Hertz potential is defined in terms of single-particle properties. The

definition of the microgel size and the calculation of the elastic moduli of single microgels are

ambiguous and challenging tasks. In fact, an important point is that, to validate the Hertz

potential description and thus to examine the link between single-particle elasticity and bulk

behavior, the simultaneous knowledge of at least two elastic moduli is required [73].

4.2 Flory-Rehner theory for microgel polymer back-

bones

The Flory–Rehner theory provides an approximate expression for the change in free en-

ergy upon solvent-induced swelling of a cross-linked polymer network. This expression is

obtained by considering, first, the entropy change due to mixing of solvent molecules with

chains of the cross-linked network structure; second, the chain configurational entropy change

resulting from an expansion of the network; and third, the energy change of mixing. The
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entropy change due to the mixing of solvent molecules and cross-linked network chains is

approximated by the entropy change for mixing disoriented polymers and solvent. Assuming

that there is no volume change on mixing, and a microscopically uniform mixture, which is

randomly-mixed, the entropy of mixing is that of and ideal gas, i.e. [18]

∆Smix = −T [N1 lnϕ1 +N2 lnϕ2] , (4.3)

where N1 and N2 are the numbers of solvent and solute (monomer) molecules, respectively,

and ϕ1 and ϕ2 are the volume fractions of solvent and solute. Since ϕ1,2 < 0, the mixing

entropy is always positive and hence promotes mixing. This entropic contribution includes

translational entropy only and assumes that the conformational entropy of a polymer is

identical in the mixed and pure states.

Assuming a lattice model, namely the polymer and solvent molecules constituting the

solution are disposed occupying sites in a lattice, and considering that the molecules are

placed into the lattice sites randomly, ignoring any correlations, the energy change of mixing

per molecule, in mean-field approach, is given by [75]

∆umix = χϕp(1 − ϕp), (4.4)

where ϕp is the volume fraction of monomers, and χ is the Flory solvent-polymer interaction

parameter. Here, it is also assumed that the mixing takes place at constant volume, and the

interactions between the polymer backbone monomers are assumed to be small enough, that

interparticle correlations between the monomers along the chain can be ignored. Eq. (4.4)

describes the energy change when going from an unmixed two-phases system to a randomly

mixed system keeping the system volume constant. The Flory interaction parameter is

explicitly defined by

χ = β
ν

2 (2u12 − u11 − u22), (4.5)

where ν is the coordination number of the lattice, and uij represents the pair energy between

adjacent lattice sites occupied by species i and j, with i, j ∈ {1, 2} [75]. One can show that
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χ ∝ B v1, where B represents the interaction energy density characteristic of the solvent-

solute pair and v1 is the molar volume of the solvent (species 1) [18]. Depending on the sign

of the Flory interaction parameter χ, this energetic contribution can be positive (opposing

mixing), e.g. for hydrophobic polymer backbones; zero in case of ideal mixture; or negative

(favoring mixing). It is important to notice that, in deriving Eq. (4.4), it is assumed that

there is no volume change of the monomers upon mixing. In case of volume change on mixing

and local packing effects, the temperature dependence of the Flory interaction parameter is

empirically taken as

χ(T ) ≈ A+ C

T
, (4.6)

where the first term A on the right-hand side is referred to as the entropic part, and the

second one as the enthalpic part [75].

Assuming that during swelling the deformation of the polymer network takes place with-

out any appreciable change in the internal energy of the network structure, apart from the

mixing with the solvent, the free energy change produced by the network expansion is pro-

portional to the entropy change of the deformation. The latter results from combining the

entropy changes due to both the deformation of the chain end-to-end vector distribution and

the crosslinking of the chains to form the final network. Considering a network composed of

Nch randomly crosslinked chains, whose end-to-end displacements are adequately described

by a Gaussian probability distribution, the elastic free-energy contribution of the swelling

for isotropic deformation is of the form [18]

β∆Fel = 3
2Nch(α2

d − lnαd − 1), (4.7)

with αd denoting the linear deformation factor.

Combining Eqs. (4.3), (4.4) and (4.7), one obtains an expression for the free energy

change due to the isotropic (de)swelling of spherical microgels. Bearing in mind that the

number of polymer monomers remains constant upon swelling, the resulting mean-field free
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energy change per microgel is of the form [15, 72]

βfp(a) = Nmon[(α3 − 1) ln(1 − α−3) + χ(1 − α−3)] + 3
2Nch(α2 − ln α− 1) . (4.8)

Here, Nmon is the total number of polymer monomers in a microgel, and the number of

solvent molecules and the solvent volume fraction are written in terms of the swelling ratio

α = vswo/vdry, with vswo and vdry the volume of the swollen and dry microgel, respectively.

The dry state of microgels is the state where microgels collapse draining out the solvent

content. This corresponds to temperatures T > Tcr, where Tcr is the lower critical solution

temperature of the according polymer solution. The first term on the right-hand side of

Eq. (4.8) is the ideal mixing entropy of microgel monomers and solvent molecules; the

second term, proportional to χ, accounts for polymer-solvent interactions; and the last term

accounts for the elastic free energy. As argued in [15, 72], the approximations employed here

for the microgel backbone self-energies are reasonable for loosely cross-linked, uniformly

structured microgels.

The Gaussian model is reasonable for chain end-to-end displacements much shorter than

the polymer contour length, which implies swelling ratios α ≪
√︂
Nmon/Nch [15]. Although

the presented Flory-Rehner theory was originally developed for macroscopic gels, it yields a

reasonable description of the elastic properties of loosely cross-linked microgel suspensions,

despite of overestimating the solvency parameter [15]. An extension to more-crosslinked

networks is achieved by accounting for the crosslinking effects on the structural entropy of

the network and on the entropy change under derformation, as it was done in Refs. [16, 17]

for a randomly cross-linked network with tetrafunctional cross-linkers.

62



4.3 Stimuli-responsive particles: Equilibrium size de-

termination

Ion- and solvent-penetrable, charged colloidal particles might experience an intrinsic (os-

motic) pressure, due to the heterogeneous distribution of ionic species inside and outside of

the colloidal particles. Changes in the system conditions, such as temperature and colloidal

concentration, produce consequential changes in the osmotic pressure difference between the

inside and outside of the particles away from zero. To recover equilibrium, where the intrinsic

pressure is again zero, the equilibrium size of the microgels is readjusted accordingly.

Ionic microgel paticles are typically globular particles consisting of a cross-linked network

of polyelectrolyte chains. When dispersed in a polar solvent under good solvent conditions, an

ionic microgel particle becomes charged due to the dissociation of counterions from ionizable

groups on its polymer backbone. For weak cross-linking, the forces exerted by the intrinsic

osmotic pressure variations are comparable to the elastic and entropic forces in the network.

Therefore, the soft particles (de)swell to an equilibrium size, characterized by an equilibrium

radius a that can be substantially larger than the one in the dry state a0, in response to

variations in the environmental conditions.

To study ionic microgel suspensions, we implement an effective one-component suspension

description, similar to that for charge-stabilized colloids (see chapter 2), but now accounting

for the polymeric degrees of freedom in a coarse-grained way. We describe here the employed

microgel model, and the essential steps of tracing out the microion and polymer-backbone

monomeric degrees of freedom, leading to an effective one-component microgel suspension

description of pseudo-microgels interacting via a state-dependent effective pair potential [14,

15, 72].

For simplicity, we assume that the ionic microgels have a uniform distribution of backbone

polyelectrolyte monomers, cross-linkers, and backbone charges [15]. The charged microgel

backbone polymers and cross-linkers coexist with polymer-released counterions and salt ions
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dissolved in the solvent. For temperatures T > Tcr higher than the lower critical solution

temperature (LCST) Tcr of the corresponding polymer solution, the microgels are collapsed

into a dry state, characterized by a dry radius a0 < a, where a is the microgel equilib-

rium radius of a swollen microgel particle at a temperature T lower than the LCST. The

swollen microgel radius a depends, in addition to temperature and solvent quality, on the

elastic properties of the backbone network and the backbone charge, and furthermore on the

microgel concentration and background (reservoir) ionic strength. Assuming that a single

microgel consists of a uniform polymer network with Nmon monomers, the dry microgel ra-

dius a0 is well approximated by a0 ≈ (Nmon/ϕrcp)1/3amon, where ϕrcp = 0.64 is the volume

fraction for random close-packing of spherical monomers and amon is the monomer radius.

It is assumed here that random close-packing is the unstressed polymer backbone structure

in the collapsed state [16–18, 62].

Identifying the whole microgel as an ion-permeable macroion, a similar treatment to the

one in section 2.4 regarding the electrostatic part of the interactions can be made. Consider

a monodisperse microgel suspension formed by Nm spherical microgels, each of negative

backbone charge −Ze, with e the proton charge, dispersed in water at temperature T and

for (suspension) volume V . The suspension is taken in (Donnan) osmotic equilibrium with

a strong 1:1 electrolyte reservoir of ion concentration 2nres. The counterions dissociated

from the polymer backbones are likewise taken as monodisperse. The microgel concentra-

tion (number density), nm = Nm/V , determines the volume fraction ϕ0 = 4πa3
0nm/3 of dry

microgels and the volume fraction ϕ = 4πa3nm/3 of the swollen microgels. The dry volume

fraction should be thought of as a non-dimensionalized microgel concentration. For simplic-

ity, the backbone valence Z > 0 is assumed to be constant, independent of concentration,

ionic strength, and equilibrium radius, thus disregarding possible chemical charge regulation

effects. Here, Z should be viewed as a net backbone valence, already accounting for the

possibility of Manning counterion condensation at polymer sites. Global electroneutrality

implies ZN = ⟨N+⟩ − ⟨N−⟩, where Ns = ⟨N−⟩ is the equilibrium number of monodisperse
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coions in the suspension, equal to the number, Ns, of salt ion pairs, and ⟨N+⟩ is the equilib-

rium number of monovalent counterions. As mentioned, the concentration (number density)

ns = Ns/V of salt ion pairs in the suspension is determined by the equality of the microion

chemical potentials of cations and anions, µ±, in the suspension and the microion chemical

potential in the reservoir, µres. In Donnan equilibrium, the salt pair concentration ns in the

suspension is state-dependent and determined by the given reservoir salt pair concentration

(number density) nres.

As explained before, our starting point in deriving the one-component model of pseudo-

microgels is a semi-grand canonical description of uniform-backbone spherical microgels

plus hydrated microions, with the solvent degrees of freedom already integrated out. This

amounts to describing the solvent statically as a dielectric continuum of dielectric constant ϵ

and Bjerrum length λB = e2/(ϵkBT ), and dynamically as a Newtonian solvent of shear viscos-

ity η0. In this McMillan-Mayer implicit solvent picture, the semi-grand canonical partition

function of the suspension reads

Ξ = ⟨⟨⟨e−β(K+Um+Umm+Umµ+Uµµ)⟩p⟩µ⟩m . (4.9)

Here, β = 1/(kBT ), K is the total kinetic energy of all polymeric and ionic suspension con-

stituents, and the angular brackets denote canonical traces over polymer (p) and center-of-

mass microgel (m) coordinates and grand-canonical traces over the microion (µ) coordinates.

The polymer coordinates are particle-internal degrees of freedom related to the motion of

segments and associated fixed-charges constituting the cross-linked polymer chains. In the

Boltzmann factor, Um denotes the single-microgel energy, comprising both polymeric and

electrostatic self energies, Umm incorporates polymeric and electrostatic energies of interac-

tion between the microgels, and Umµ and Uµµ account, respectively, for microgel–microion

and microion–microion interactions.

Performing the trace over polymer coordinates, and exploiting the decoupling of elec-

trostatic and polymeric contributions to the free energy resulting from the assumption of a
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uniform distribution of backbone charges, one obtains

Ξ = e−β(Ue+Fp)⟨⟨e−β(Km,µ+Umm+Umµ+Uµµ)⟩µ⟩m, (4.10)

where Ue is the sum of the electrostatic self energies of the Nm microgels, which for uniformly

distributed backbone charges is

Ue(a) =
Nm∑︂
i=1

ue(a) = Nm

(︄
3
5
Z2e2

ϵa

)︄
, (4.11)

with the equilibrium radius a of swollen microgels. Furthermore, Km,µ is the translational

kinetic energy associated with the center-of-mass microgel (m) and microion (µ) coordinates.

The free energy associated with the non-electrostatic polymeric degrees of freedom of the

Nm microgels is

Fp(a) =
Nm∑︂
i=1

fp(a) . (4.12)

where the polymer free energy per microgel, fp(a), is obtained using Flory-Rehner theory

[16–18] and given by Eq. (4.8).

Tracing out in a second step the microion degrees of freedom for fixed configuration X

of microgels leads to the expression [15]

Ξ = ⟨e−βHeff⟩m , (4.13)

with the effective Hamiltonian of pseudo-microgels,

Heff = Km + Ue + Fp + Evol(nm) + Ueff(nm) , (4.14)

where Km accounts for the translational kinetic energy of the microgels. Moreover, Evol(nm)

is the microgel configuration-independent volume energy, and for ion-permeable charged col-

loids it is given by Eq. (2.67). Furthermore, Ueff(nm) is the configuration-dependent effective

Nm-particle interaction energy of pseudo-microgels. The latter incorporates electrostatic

screening by the traced-out microions and consists of the bare interaction energy, Umm, com-

prising the concentration-independent Coulomb and elastic inter-microgel interactions, and
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a concentration- and temperature-dependent contribution, related to the grand-free energy,

Ωµ, of microions in the presence of the microgels. Note that the effective Hamiltonian Heff

depends on the microgel particle size, since each contribution on the right side of Eq. (4.14),

except for the kinetic energy Km, implicitly depends on the particle radius a.

In a suspension of weakly-crosslinked spherical ionic microgels, the microgel radius a is

a state-dependent thermodynamic variable, whose equilibrium mean value for temperatures

T < Tcr in the swollen state is determined from the minimization of the semi-grand free

energy Ω(at) = −kBT ln(Ξ(at)) of the suspension with respect to trial radius values at. The

necessary condition for determining the equilibrium radius a is thus

∂Ω
∂at

⃓⃓⃓⃓
⃓
Nm,Z,res

= 0 (4.15)

at at = a. In addition to the dry radius a0 and the parameters Z and nres, the elasticity-

related Flory-Rehner and Hertz potential parameters, χ, Nm, Nch, and εH, are kept constant

in taking the size derivative for fixed reservoir properties. In this way, a is determined as a

function of the control parameters nm, Z, and nres for fixed temperature and microgel elastic

properties.

The minimization of Ω with respect to at is equivalent to the mechanical requirement

that the intrinsic (osmotic) pressure difference [14, 62],

Π(at) = Πg(at) + Πe(at) , (4.16)

between the interior and exterior of a single microgel is zero at thermodynamic equilibrium,

where at = a. Upon swelling of a microgel, the intrinsic electrostatic pressure, which is

nonzero both inside and outside the particle, must adjust to any variation of the intrinsic

gel pressure to ensure, in equilibrium, continuity of the total intrinsic pressure Π across the

particle periphery.

The polymer-gel intrinsic pressure contribution, Πg, due to solvency, elasticity, and mix-

ing entropy of individual microgel networks and the elastic inter-microgel repulsive interac-

tion, the latter modelled by the Hertz elastic pair interactions (cf. Eq. (4.1)), is given in the
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present microgel model by

Πg(at) = − ∂

∂vt

[︃
fp(at) + n

2
⟨︂
uH(r; at)

⟩︂
eff

]︃
, (4.17)

where vt = 4πa3
t/3 is the microgel trial volume. The electrostatic pressure contribution to

Π(at) is

Πe(at) = − ∂

∂vt

[︃
ue(at) + εvol(at) + n

2
⟨︂
ueff(r; at)

⟩︂
eff

]︃
, (4.18)

where ue(at) is the electrostatic self energy of the uniform backbone microgel charge, and

ueff(r; at) is the effective electrostatic pair potential (cf. Eq. (2.60)). For conditions where

overlap distances are very unlikely, the Hertz potential energy does not contribute to Π(at)

and the canonical average ⟨· · · ⟩eff over the center positions of pseudo-microgels of radius

at is determined solely by the Flory-Rehner and electrostatic parameters. The equilibrium

microgel radius is determined by the competition between Πg, which is negative for at suffi-

ciently larger than a0 favoring deswelling, and the positive-valued Πe(at) favoring swelling.

Physically speaking, the microion distribution in the microgel interior and the self-repulsion

of the charged sites of the polymer backbone network generate an outward electrostatic

pressure that swells the macroion. This swelling is limited by the inward elastic restoring

forces due to the cross-linked polymer gel. In equilibrium, the balance between these oppos-

ing pressures determines the microgel size. In principle, an additional contribution to the

pressure difference across the periphery of a microgel may arise from the Laplace pressure,

2γ/a, associated with the interfacial tension, γ, at the interface between the microgel and

the solution. We assume, however, that the water-swollen polymer gel is sufficiently dilute,

weakly cross-linked, and hydrophilic that this interfacial contribution is negligible compared

with the electrostatic and gel contributions to the total intrinsic pressure.

The microgel surface plays here the role of a mobile semi-permeable membrane, permeable

to microions and solvent only, where the outer and inner pressures on this fictitious membrane

balance to Π(a) = 0 at mechanical equilibrium. This single-particle intrinsic osmotic pressure

should be distinguished from the non-zero suspension osmotic pressure, πos = p−pres, acting
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across a (mentally pictured) fixed semi-permeable membrane separating the suspension from

the microion reservoir.

In the following, we present two methods for calculating the state-dependent equilibrium

radius a as a function of microgel concentration nm, backbone valence Z, and reservoir salt

concentration nres. For practical reasons, the results are presented in terms of the swelling

ratio

α = a

a0

, (4.19)

which measures the swelling of the microgels relative to the microgel dry size at T > Tcr.

The first method makes direct use of Eq. (4.15) and of the one-component multi-center

picture of pseudo-macroions interacting electrostatically by the linear-response effective pair

potential ueff(r) in Eq. (2.60) in combination with the Hertz potential uH(r) for describing the

elastic repulsion between overlapping polymer networks. In this method, the semi-grand free

energy is approximated using a thermodynamic perturbation theory (TPT) [15]. The second

method invokes a spherical cell model (CM) approximation for the semi-grand free energy

of a single macroion with nonlinear PB distributions of microions, referred to accordingly as

the PBCM method. The two methods differ in the manner in which they treat inter-microgel

electrostatic interactions and correlations.

4.3.1 Thermodynamic perturbation theory (TPT)

In the thermodynamic perturbation theory (TPT) method, the equilibrium radius a is ob-

tained by minimizing the semi-grand free energy per microgel [15],

Ω(at, nm)
Nm

= ue(at) + εvol(at) + fp(at) + fex(at, nm) , (4.20)

with respect to trial radius at. We have disregarded here the kinetic (ideal gas) free energy

contribution, ln (Λ3
mnm) − 1, to Ω/Nm, where Λm denotes the thermal de Broglie wave-

length of microgels, since it is independent of at. The excess semi-grand free energy per
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microgel, fex(at, nm), is due to the effective interactions between the pseudo-microgels. Pro-

vided Ueff(X;nm) is pairwise additive, fex(at, nm) is exactly given by the charging-process

(λ-integration) expression [19, 76]

fex(at, nm) = nm

2

∫︂
d3r veff(r) ×

∫︂ 1

0
dλ gλ(r; at, nm), (4.21)

irrespective of whether the pair potential is state-dependent or not. Here, gλ(r; at, nm) is the

radial distribution function corresponding to the pair potential λveff(r) at charging fraction

λ, which ranges from gλ(r) = 1 for λ = 0 to the radial distribution function of the actual

suspension for λ = 1. The effective pair potential

veff(r) = ueff(r) + uH(r), (4.22)

combines the steric effective repulsion, due to the polymer network, with the effective elec-

trostatic repulsion for ion-permeable charged particles. In principle, the above two-step

integral expression can be used in Eq. (4.20) to determine a by minimization of Ω(at, nm).

Moreover, it provides a route to determine the suspension pressure, p, and the osmotic com-

pressibility from the first and second volume derivatives of Ω(a, nm). We are going to address

the calculation of suspension pressure and the osmotic compressibility in detail in the next

chapter.

To avoid the cumbersome double integration involving the calculation of a large number

of radial distribution functions for different values of λ, we approximate fex(at, nm) instead

using a first-order perturbation expression [19], given by the right-hand side of

fex(at, nm) ≤ min
(d)

{︃
fEHS(d, nm) + 2πnm

∫︂ ∞

d
drr2 gEHS(r; d, nm)veff(r; at, nm)

}︃
, (4.23)

which invokes a reference system of effective hard spheres (EHS) of diameter d, radial distri-

bution function gEHS(r; d, nm), and free energy per particle fEHS(d, nm). The excess EHS free

energy per particle, fEHS, is accurately described by the analytic Carnahan-Starling free en-

ergy expression, and the EHS radial distribution function by the semi-analytic Percus-Yevick
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result [77] with Verlet-Weis correction [19]. The above perturbation expression provides an

upper bound to the actual excess free energy per particle, fex(at, nm), for all values of the

effective diameter d, as it is seen from the Gibbs-Bogoliubov inequality [19]. The equilibrium

radius a results from the (double) minimization of Ω(at, nm)/Nm in Eq. (4.20) with respect to

at, after substitution of the right-hand side of Eq. (4.23) for the excess free energy minimized

with respect to d > 0. For veff = ueff(r) + uH(r), we use the analytic linear-response expres-

sions from Eqs. (2.60) and (4.1), respectively; and εvol = Evol/Nm is given by Eq. (2.67).

For fp(at), we employ the Flory-Rehner expression in Eq. (4.8).

The suspension salt pair concentration ns, which affects κ(nm, ns), and hence the range of

the effective pair potential in the TPT expression for fex(a, nm) in Eq. (4.23), is determined,

in turn, from equating the microion chemical potentials in suspension and reservoir, using

⟨N−⟩ = Ns, according to

∂

∂ns

[︃
nm (εvol(a) + fex(a, nm))

]︃
nm

= kBT ln
(︂
Λ3

s nres

)︂
. (4.24)

The TPT method was successfully tested in earlier works for deswelling ionic microgels

[15], incompressible ionic microgels [13], and impermeable charged colloids [44]. The method

self-consistently incorporates effective microgel pair interactions for low to moderately high

Z values, where linear-response theory can be used.

4.3.2 PBCM-based method

The Denton-Tang PBCM-based method, or PBCM (Poisson-Boltzmann Cell Model) method

for short, was developed by Denton and Tang [14]. It combines the implementation of the PB

theory for the description of a multi-component system with spherical CM approximation

of the suspension, in order to provide a way for calculating the microgel equilibrium size.

As explained before in section 3.1, the CM applies to suspensions of ionic microgels, where,

on average, around each microgel there is a region void of others [54]. This condition

requires a sufficiently strong and long-ranged electrostatic repulsion between the microgels
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and concentrations small enough that particle overlap is unlikely. Then, a Wigner-Seitz

cell tessellation can be used, with each WS cell approximated by an overall electroneutral

spherical cell of radius R = (3/4π)1/3 n−1/3
m , containing a single spherical microgel of trial

radius at at its center. In Donnan equilibrium, the cell is in osmotic contact with a 1:1

electrolyte reservoir of salt pair concentration 2nres. In the PBCM, the radially symmetric

concentration profiles n±(r) of the pointlike monovalent ions are described in a mean-field

way by the Boltzmann distributions, n±(r) = nrese
∓Φ(r), where Φ(r) = ψ(r)e/(kBT ) is the

reduced form of the total electrostatic potential ψ(r) due to all charges in the cell. As for the

TPT method, polarization and image charge effects are disregarded, which can be justified

by the high solvent content of weakly cross-linked swollen microgels. While the cell model

focuses on a single microgel only, with the semi-grand suspension free energy being Nm times

that of a single cell, the presence of other microgels is implicitly accounted for through the

cell radius R and the associated (trial) volume fraction ϕt = (at/R)3.

Assuming, as in TPT, a uniform backbone charge distribution inside each microgel, the

electrostatic potential in the cell region 0 < r < R is obtained from solving the nonlinear

PB equations,

Φ′′(r) + 2
r

Φ′(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
κ2

res sinh Φ(r) + 3ZλB

a3
t

, 0 < r ≤ at

κ2
res sinh Φ(r) , at < r ≤ R

, (4.25)

where κ2
res = 8πλBnres is the square of the reservoir Debye screening constant. The solution

for Φ(r) is uniquely determined by the boundary conditions Φ′(0) = 0 = Φ′(R), for the

electric field at the cell center and edge, respectivaly, and by the continuity conditions,

Φ(a−
t ) = Φ(a+

t ) and Φ′(a−
t ) = Φ′(a+

t ), at the microgel surface. Once Φ(r), and hence the

microion concentration distributions, are determined by numerically solving Eq. (4.25) for

given boundary conditions and microgel trial radius at, the intrinsic osmotic pressure Π(at)

in the PBCM follows from Eqs. (4.17) and (4.18), taken for ⟨uH⟩eff = 0 = ⟨ueff⟩eff, and for

εvol replaced by ⟨umµ(r)⟩µ, i.e., by the electrostatic interaction energy between the uniform
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central microgel backbone charge and pointlike microions, weighted by the microion number

density profiles VRn±(r) and averaged over the cell volume VR = (4π/3)R3. Consideration of

the variation of the electrostatic component of the free energy with respect to the microgel

radius leads to an exact statistical mechanical expression for the electrostatic pressure [14],

βΠe(at)vt = ZλB

2at

(︄
2
5Z − ⟨N+⟩ + ⟨N−⟩ + ⟨r2⟩+ − ⟨r2⟩−

a2
t

)︄
, (4.26)

where

⟨N±⟩ = 4π
∫︂ at

0
n±(r)r2dr (4.27)

and

⟨r2⟩± = 4π
∫︂ at

0
n±(r)r4dr (4.28)

are the mean numbers of internal microions and the second moments of the interior microion

number density profiles, respectively.

Using Eq. (4.8), the polymer gel contribution to the intrinsic osmotic pressure for trial

radius at is [14]

βΠg(at)vt = −Nm[α3 ln(1 − α−3) + χα−3 + 1] −Nch(α2 − 1/2) . (4.29)

According to Eq. (4.16), the equilibrium microgel radius is obtained from setting the sum of

the intrinsic pressure contributions in Eqs. (4.26) and (4.29) equal to zero.

In the cell model, the net microgel valence Znet is calculated by means of Eq. (2.62) using

the microion number density profiles, n±(r; a), and the suspension salt pair concentration

ns, by integrating the coion (anion) profile over the cell volume according to

ns = 4π
VR

∫︂ R

0
n−(r; a)r2 dr , (4.30)

where VR = 4πR3/3. While TPT is self-consistently linked to the effective pair potential

between microgels, veff(r), such a direct link does not exist in the single-microgel PBCM,

which does, however, incorporate the nonlinear electrostatic response of the microions that

is neglected in TPT. However, an ad hoc link between PBCM and the linear-response ueff(r)
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is readily established, for given Z, by identifying the net microgel valence Znet and κa in the

no-overlap Yukawa potential in Eq. (2.61) with the PBCM-calculated values Z∗
net and κ∗a∗,

respectively, where

(κ∗)2 = 4πλB(nmZ
∗ + 2n∗

s ). (4.31)

The asterisk labels PBCM-calculated properties. An apparent backbone valence, Z∗, is

defined here as a function of Z∗
net and κ∗a∗ by

Z∗
net = Z∗ 3 (1 + κ∗a∗)

(κ∗a∗)2 eκ∗a∗

[︄
cosh(κ∗a∗) − sinh(κ∗a∗)

κ∗a∗

]︄
, (4.32)

which when used in the expression for the overlap electrostatic potential uov(r), according to

the substitution {Z, a, κ} → {Z∗, a∗, κ∗}, maintains the continuity of the effective potential

and its first derivative at r = 2a. Substitution of Z∗ into Eq. (4.31) gives an implicit equation

for κ∗, which can be solved iteratively. For lower backbone valences Z ≤ 200, Z∗ is close to

Z, so that the latter can be used instead as input in Eq. (4.31).

For ionic microgel systems with electrostatic coupling strengths Γel ≡ ZnetλB/a ≲ 5, the

nonlinear electrostatic effects by the microions are negligible or small, so that both TPT and

PBCM can be directly used in conjunction with the linear-theory effective pair potential in

Eq. (2.61). For stronger electrostatic couplings, experience gained with rigid charged colloids

suggests that the Yukawa form of the effective potential in Eq. (2.61) is still applicable, but

now for renormalized values of Z and κ, which can be obtained, e.g., from linearization of

the potential Φ(r) in the cell model with respect to its value at the cell boundary [62] or with

respect to the cell volume averaged potential value. Such charge-renormalization approaches

to obtain renormalized Zeff and κeff have been discussed before in chapter 3.
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Chapter Five

MICROSTRUCTURE,

THERMODYNAMICS AND

DYNAMICS

We explain here various analytical tools for calculating thermodynamic, structural and dy-

namic properties of charged-stabilized suspensions. We discuss the underlying concepts, and

the corresponding calculation methods of various structural and dynamical properties, which

characterize the suspension. For characterizing the static microstructure on the pair level,

the macroion pair distribution function, g(r), and the associated macroion static structure

factor, S(q), are introduced together with the methods for their calculation. Regarding

thermodynamic properties, we explain different methods for obtaining pressure and osmotic

compressibility of the suspension. Finally, as dynamic properties, we calculate and study

high- and low-frequency viscocities, and self-diffusion and collective diffusion coefficients with

the salient hydrodynamic interactions between colloids accounted for.

In this chapter, the calculation tools for determining (equilibrium) structural and dy-

namic suspension properties are based on the one-component model of (dressed) pseudo-

macroions interacting by a state-dependent effective macroion pair potential veff(r;nm), with

the exception of the suspension (osmotic) pressure, which requires accountance of the vol-
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ume energy Evol and the nm-dependence of ueff(r;nm). The employed methods for calculating

dynamic properties depend on veff only implicitly via g(r) and S(q). For simplicity, the hy-

drodynamic macroion radius is identified with a(ϕ0). As always in this thesis, we take the

suspension to be in (Donnan) osmotic equilibrium with a 1:1 electrolyte reservoir.

5.1 Static pair distribution and structure functions

The concept of reduced particle distribution functions has proven to be very useful in the

theory of simple liquids, since it provides a convenient description of the fluid micro-structure

and its thermodynamic properties. Among these reduced distribution functions, the pair

distribution functions are of greatest importance, since for a simple fluid whose potential

energy is pairwise additive with a state-independent pair potential u(r), all structural and

thermodynamic properties can be expressed in terms of g(r), S(q) and u(r). Hereafter, we

discuss the pair distribution functions first for a simple one-component fluid, and proceed

then to a suspension of monodisperse macroions.

Consider a one-component fluid ofN spherical particles at center positions X = {r1, ..., rN}

in a volume V at temperature T . The m-particle distribution function, g(m)
N (r1, ..., rm), for

m ≤ N , is defined in a canonical ensemble description by

g
(m)
N (r1, ..., rm) := ρ

(m)
N (r1, ..., rm)
Πm

i=1ρ
(1)
N (ri)

, (5.1)

where ρ(m)
N (r1, ..., rm) is the equilibrium m-particles density

ρ
(m)
N (r1, ..., rm) = N !

(N −m)!

∫︂
V Nm

dr(N−m) PN(rN), (5.2)

for given probability distribution PN(rN) = e−βU(rN )/ZN , with potential energy U(rN) =∑︁N
i<j u(|r1 − r2|) and partition function ZN =

∫︁
drN e−βU(rN ). We assume that the fluid

potential energy, U(rN), is purely pairwise-additive with isotropic pair potential u(r). Note

that ρ(m)
N (r1, ..., rm) is the density distribution function of finding any set of m particles at

76



a specified configuration of center positions X, irrespective of the positions of the remaining

particles and the momenta of all particles, and regardless of how they are labeled [19, 78].

One can also see that the single particle density of a uniform fluid is equal to the average

number density, i.e. ρ
(1)
N (r) = n = N/V . The m-particle distribution functions, g(m)

N , in

Eq. (5.1) measure the m-particle correlations in the fluid relative to a classical ideal gas

under the same conditions [78], i.e. they quantify to what extent the micro-structure of the

fluid deviates from the corresponding random structure of an ideal gas [19].

For pairwise additive U(rN), the knowledge of g(2)
N is sufficient to describe the equa-

tion of state and other thermodynamic properties. In a homogeneous and isotropic simple

fluid, the pair distribution function only depends on the distance between the particles, i.e.

g
(2)
N (r1, r2) = g

(2)
N (r), with r = |r1 −r2|, and it is called radial distribution function (rdf) [78].

By taking the thermodynamic limit, i.e. N, V → ∞ keeping n = N/V fixed, one obtains the

ensemble-independent rdf, g(r), of a macroscopic system

g(r) = lim
N,V →∞

g
(2)
N (r). (5.3)

By its very definition, g(r) ≥ 0 and g(r → ∞) = 1 in the fluid state. Moreover, one can

show that g(r) = e−βu(r) + O(n).

As noted above, the radial distribution function plays a key role in liquid state theory

for various reasons. Experimentally, g(r) is indirectly measurable by radiation scattering ex-

periments and, for large colloidal particles, also directly determined by confocal microscopy.

Theoretically, g(r) is proportional to the average number 4πr2n g(r) ∆r of particles lying

within the shell (r, r + ∆r) around a reference particle. Thus, in simulations, g(r) is ob-

tained by counting the number of particles, N(r), in a shell of thickness ∆r and volume

4πr2∆r at distance r from the central particle, i.e. g(r) ≈ ⟨N(r)⟩/(4πnr2∆r). The shape of

g(r) provides considerable insight into the structure of a liquid at the level of pair correlations

[19]. The peaks in g(r) represent shells of neighbors around a reference particle, and inte-

grating 4πr2n g(r) dr from zero up to the position of the first minimum gives an estimate of
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the nearest-neighbour coordination number. For strictly pairwise-additive interaction forces,

the thermodynamic properties can be expressed in terms of integrals over g(r) [19], as it is

demonstrated in the coming section.

The three-dimensional Fourier transform of g(r), or more precisely that of the total

correlation function h(r) = g(r) − 1 with h(r → ∞) = 0 in the fluid state, is basically the

static structure factor S(q). The latter is directly measurable in static scattering experiments

and it is defined by

S(q) = lim
N,V →∞
n fixed

⟨︄
1
N

N∑︂
l,j=1

eiq·(rl−rj)

⟩︄
, (5.4)

where q is the scattering wavevector of modulus q = |q| and ⟨...⟩ denotes an equilibrium

ensemble average. For given q, the static structure factor is the thermodynamic limit of the

autocorrelation function of the q-th Fourier component of microscopic density fluctuations

[79], characterizing the inter-particle correlations.

By splitting the double sum in Eq. (5.4) into self, l = j, and distinct parts, l ̸= j, one

shows that [5, 79]

S(q) = 1 + n
∫︂
dr eiq·r [g(r) − 1] = 1 + 4πn

∫︂ ∞

0
dr r2 [g(r) − 1] sin(qr)

qr
(5.5)

obtaining that S(q → ∞) = 1. Since Fourier transforms are one-to-one maps, S(q) can

be Fourier-inverted to determine h(r) and g(r), but this requires to know S(q) for all wave

numbers q where S(q) exhibits significant oscillations. In static light scattering experiments

on colloidal suspensions, this is usually not feasible since the largest q value accessible is

limited by qmax = 4π/λ, which corresponds to backward scattering [79].

The concepts of radial distribution function and associated structure factor are easily ex-

tended to fluid systems with more than a single component. Considering a multi-component

simple fluid constituted by m different spherical species, one can introduce m(m+ 1)/2 par-

tial pair correlation functions gαβ(r), which provide the conditional probability of finding

a β-type particle at center-to-center distance r from a given α-type particle relative to the

corresponding ideal gas mixture under same conditions. The according m(m + 1)/2 partial
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total pair correlation functions, hαβ(r) = hβα(r), are given by hαβ(r) = gαβ(r) − 1. The

associate partial static structure factors, Sαβ(q), in a homogeneous and isotropic fluid are

related to the total pair correlation functions by [5, 80]

Sαβ(q) = δαβ + (nα nβ)1/2
∫︂

V
drhαβ(r)eiq.r, α ∈ {1, ...,m} (5.6)

with δαβ denoting the Kronecker delta and nα = Nα/V . It holds then that Sαβ(q → ∞) = δαβ

in a fluid.

While introduced here for a simple fluid with state-independent particle interactions,

g(r) and S(q) are accordingly defined for an effective one-component system of (dressed)

macroions (in a McMillan-Mayer picture), with state-dependent (screened) macroion in-

teractions. The electrostatic screening guarantees that thermodynamic (virial) integrals are

finite, allowing for the application of thermodynamic concepts to the effective one-component

suspension.

5.2 Thermodynamic properties

In this section, we present our methods for calculating thermodynamic properties of charge-

stabilized suspensions of monodispersed macroions in Donnan equilibrium, notably the sus-

pension pressure and osmotic compressibility in a fluid-state system. We analyze and com-

pare the approximations invoked in the different methods.

5.2.1 Suspension pressure

The first property that we analyze is the equilibrium suspension pressure p. Provided the

radial distribution function, g(r), of an homogeneous isotropic system is constituted only

by a single species interacting with the pairwise potential u(r), the system pressure can be

expressed in terms of the pressure virial equation [19]

p = pid + pex = n kBT − 2π
3 n2

∫︂ ∞

0
drr3g(r)∂u

∂r
. (5.7)

79



The first pressure contribution on the right-hand side is the kinetic ideal gas pressure, pid =

nkBT , while the second one, pex, is the excess part due to pair interactions. Notice that pex >

0 for purely repulsive systems, where u′(r) < 0. Eq. (5.7) relates a thermodynamic property

of the system to an integral involving microscopic structural and interaction properties such

as g(r) and u(r). There exist several routes to determine the pressure from g(r) and u(r).

The one in Eq. (5.7) is addressed as the pressure route.

As detailed in chapter 2, we reduce a multi-component charge-stabilized suspension to a

one-component system of dressed macroions with effective interactions accounting summarily

for the influence of the integrated-out microion and solvent components. Provided the full

effective Hamiltonian, Heff, one can obtain the semi-grand suspension free energy, Ω =

−kBT ln Ξ, with partition function Ξ = ⟨exp{−βHeff}⟩m and ⟨...⟩m denoting the canonical

trace over macroion center positions and momenta. The pressure of the multi-component

suspension is then determined by

p = −
(︄
∂Ω
∂V

)︄
res

= n2
m

(︄
∂f

∂nm

)︄
res

, (5.8)

for constant reservoir conditions, i.e. for fixed reservoir ion chemical potentials and hence

fixed nres. Here, f = Ω/Nm is the semi-grand free energy per macroion. In taking the

macroion concentration derivative, the electroneutrality condition ns = ⟨N+⟩/V −nmZ needs

to be maintained for given Z. As noted earlier, the effective Hamiltonian can be expressed

as Heff = Km +Ue +Fp +Evol(nm)+Ueff(nm). To account for microgel suspensions with state-

dependent particle size, we have included the terms Ue and Fp, denoting the electrostatic self-

energies of the microgels and the free energy associated with the nonelectrostatic polymeric

degrees of freedom of the microgels, respectively. For incompressible impermeable particles,

Ue does not contribute to p and can be skipped, and Fp = 0. From the first equality in

Eq. (5.8), the suspension pressure is given by the exact, generalized one-component virial

equation [81]

p = pvol + pse + nmkBT − 1
3V

⟨︂ Nm∑︂
i=1

Ri · ∂Ueff

∂Ri

⟩︂
eff

−
⟨︂∂Ueff

∂V

⟩︂
eff

(5.9)
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invoking in particular the configuration-dependent effective Nm-particle interaction energy,

Ueff(X;nm), and its volume derivative originated from its concentration dependence. Here,

X = {R1, · · · ,RNm} are the positions of the spherical macroions and pvol is the pressure

contribution due to the volume energy, pvol = −(∂Evol/∂V )T,Nm,nres . Regarding the pressure

of microgel suspensions, there is an additional pressure contribution,

pse = n2
m

∂[ue(a) + fp(a)]
∂nm

, (5.10)

originating from the electrostatic and polymeric self-energies (se) per macroion, owing to

their implicit concentration dependence via the equilibrium radius a(nm). This contribution

is absent for incompressible particles. The angular brackets ⟨· · · ⟩eff denote the canonical

average with respect to the equilibrium distribution function, Peq(X) ∝ exp[−βUeff(X)], of

pseudo-microgels, not to be confused with the canonical macroion trace ⟨· · · ⟩m. The volume

derivative of Ω in Eq. (5.9) is for fixed reservoir ion chemical potentials and hence fixed nres.

The generalized virial equation, Eq. (5.9), does not suffer from ambiguities introduced when

state-dependent pair potentials are combined in an ad hoc manner with the compressibility

and virial equation of state expressions for a one-component simple fluid [76, 82].

In general, Ueff(X) can contain higher-order effective interaction terms. For sufficiently

dilute systems with non-overlapping double layers, Ueff(nm) is well approximated just by the

pairwise additive contribution invoking ueff only, as for both the DFT-PB approximation

and LRT. In such a case, the generalized virial equation of the suspension pressure under

isothermal conditions reduces to [19]

βp = nm − 2π
3 n2

m

∫︂ ∞

0
drr3g(r)∂βueff(r)

∂r
+ 2πn3

m

∫︂ ∞

0
drr2g(r)∂βueff(r)

∂nm

+ βpvol + βpse, (5.11)

where we have introduced the radial distribution function, g(r), of the effective (one-component)

particles determined by the effective pair interaction ueff(r;nm). For strongly interacting

macroions, ueff(r;nm) with charge-renormalized parameters can be used so that Eq. (5.11) is

still applicable.
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This new pressure expression provides a generic way to compute the pressure in an

effective one-component system, without pse contribution for rigid particles, and with pse

contribution for ionic microgels.

In this thesis, we also implemented different models, such as the cell model and jellium

model, that provide alternative expressions for the pressure, which are also decent approxi-

mations of the suspension pressure under certain conditions.

The pressure pµ in the spherical cell model due to the mobile microions follows from the

contact theorem [83]

βpµ = n+(R) + n−(R) , (5.12)

stating that pµ is determined in an ideal-gas-like way by the microion concentrations at

the cell edge, where the electric field vanishes due to overall electroneutrality. Since the

suspension is mentally pictured as superposition of Nm identical spherical noninteracting

cells, the suspension pressure in the CM can be approximated as

p ≈ pCM = kBT [n+(R) + n−(R)] + kBT nm, (5.13)

where we have added the ideal-gas contribution of the Nm macroions. When approximating

the thermodynamics of a charge-stabilized colloidal suspension using the CM, in addition to

the kinetic macroion pressure part nmkBT , there are macroion-correlation-induced pressure

contributions to p that are not accounted for in the CM. Thus, for non-small nm, pµ and

pCM can differ significantly from p, except for low reservoir salt concentrations, where the

dominant number of backbone-released counterions (ZNm ≫ Ns) contributes most to p [84].

We are going to analyze the various pressure parts in details in chapter 7.

Similarly to the cell model, within the jellium models the suspension pressure is derived

using the contact theorem, and the vanishing of the electric field at r → ∞ [64] according

to

βpjell = nm + n+(∞) + n−(∞) , (5.14)
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where the ideal gas pressure contribution of the macroions is added. Here, n±(∞) are the

microion concentrations far distant from the central macroion. Notice that in the limit of

strong macroion dilution, nm → 0, where R → ∞ in the cell model, it holds that pµ → pjell.

5.2.2 Osmotic compressibility

The isothermal compressibility in a one-component simple fluid is defined as

χT = − 1
V

(︄
∂V

∂p

)︄
T

= 1
n

(︄
∂n

∂p

)︄
T

. (5.15)

In case of an ideal one-component gas of concentration n, χid
T = (nkBT )−1. Calculation of the

isothermal compressibility also establishes a route that relates structural to thermodynamic

properties of a system. For an isotropic and homogeneous fluid, the compressibility equation

is
χT

χid
T

= 1 + n
∫︂
dr [g(r) − 1] = lim

q→0
S(q), (5.16)

linking the isothermal compressibility, χT , to an integral over h(r) or, equivalently, to the

long-wavelength limit of the structure factor according to Eq. (5.5). Thus, χT can be de-

termined experimentally from measuring/extrapolating the structure factor for q → 0. Very

notably, the compressibility equation holds even for particles with nonpairwise additive in-

teractions.

We address now how, for a suspension of macroions plus dissolved microions, the os-

motic isothermal suspension compressibility is obtained. Assuming a semi-open system of

macroions in Donnan (osmotic) equilibrium with a microion reservoir, the osmotic compress-

ibility, χosm, is given by [39]

χosm = 1
nm

(︄
∂nm

∂πosm

)︄
res

, (5.17)

with nm the macroion number density and

πosm = p− pres (5.18)
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the osmotic pressure of the suspension, measured relative to the reservoir pressure pres =

2kBTnres. The leading non-ideal (limiting-law) contribution to the reservoir pressure grows in

proportion with the power 3/2 of the reservoir salt concentration according to kBTκ
3
res/(24π)

[85]. Therefore, non-ideality contributions to the reservoir pressure are negligible for the

considered reservoir ionic strengths of monovalent electrolyte ions, which is consistent with

the PB description of microions implemented in this thesis.

The system volume and macroion concentration derivatives in Eqs. (5.9) and (5.17) are

for fixed reservoir properties, i.e., for fixed nres, or, equivalently, fixed µres, and fixed T , so

that [84] (︄
∂p

∂nm

)︄
res,T

=
(︄
∂πosm

∂nm

)︄
res,T

. (5.19)

Quite remarkably, in Donnan equilibrium, the osmotic compressibility can be expressed via

the so-called Kirkwood-Buff (KB) relation [84, 86],

χosm

χid
osm

= kBT

(︄
∂nm

∂p

)︄
res,T

= 1 + nm

∫︂
d3r [gmm(r) − 1] = lim

q→0
Smm(q), (5.20)

solely in terms of the solvent-averaged macroion-macroion radial distribution function gmm(r).

The KB relation follows from the isothermal differential Gibbs-Duhem relation in Donnan

equilibrium, dp = nm dµm, where µm is the macroion chemical potential, in conjunction with

the relation βSmm(0;nm) = (∂ lnnm/∂µm)T,µ±
for the zero-wavenumber structure factor of

the macroions confined to the suspension [86].

Notice that, differently from the full compressibility of the multi-component suspension

χ = (∂nt)/(∂p)/nt, with nt the total density [39], χosm depends only on the macroion-

macroion pair correlation function gmm(r), while χ requires for its calculation the knowledge

both of the microion–microion and microion–macroion correlation functions [39].

Considering the mapping of the multi-component system onto an effective one-component

macroion system, the suspension osmotic compressibility is also given by the zero-wavenumber

limit of S(q), which is uniquely determined by the effective macroion pair interaction ueff(r;nm).

Recall that the effective pair potential in the one-component system is defined such that it
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reproduces the same macoion-macroion pair correlation functions as obtained in the multi-

component PM system, gmm(r) = g(r) and Smm(q) = S(q) [39].

Like Eq. (5.9) for p, the KB relation in Eq. (5.20) is valid also for a non-pairwise additive

effective potential energy Ueff(X).

In calculations of the osmotic compressibility, one can take advantage of a theorem by

Henderson [87], asserting that for a one-component system with only pairwise interactions,

for each considered thermodynamic state (concentration nm and temperature T ) there is

a one-to-one correspondence between g(r;nm) and the underlying pair potential, up to an

irrelevant additive constant for the latter. As thoroughly discussed in [76, 84], at given

concentration n and temperature T , the osmotic compressibility is thus obtained also from

the concentration derivative of the suspension pressure, pOCM, for a fictitious system with

state-independent pair potential u(r) = ueff(r;nm, T ). Explicitly,(︄
∂p

∂nm

)︄
res,T

=
(︄
∂pOCM

∂nm

)︄
ueff,T

, (5.21)

where pOCM is the one-component model (OCM) pressure of the fictitious system, given

by the right-hand side of Eq. (5.11) without volume pressure pvol, and without the integral

invoking the concentration derivative of ueff(r). The concentration derivative on the right-

hand side of Eq. (5.21) is taken for fixed ueff, by discarding any concentration dependence of

the effective pair potential. This amounts to keeping κa and Znet fixed to their values at the

considered concentration and temperature. A consistency test of the approximations used

in calculating ueff(r), the equilibrium radius a, and g(r) follows from comparing numerical

values for the reduced osmotic compressibility identified by S(q → 0) with its values obtained

from Eq. (5.21).

5.3 Ornstein-Zernike integral equation schemes

The Ornstein-Zernike (OZ) integral equation is a theoretical concept allowing for the cal-

culation of pair correlation functions g(r) and S(q) from the knowledge of u(r). Firstly
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introduced by Ornstein and Zernike in their study of critical opalescence [88], it can be

viewed as an equation that defines the direct correlation function c(r) in terms of h(r). For

a homogeneous and isotropic one-component fluid system, the Ornstein–Zernike equation

has the form

h(r) = c(r) + n
∫︂
dr′ c(|r − r′|)h(r′). (5.22)

The second term on the right-hand side is a convolution integral. The total correlation

function, h(r), between two particles is thus expressed as the sum of a direct correlation

part, c(r), plus an indirect correlation part (convolution integral) mediated by other particles

with weight n [78]. From this physical interpretation of the OZ equation, one infers that the

range of c(r) is comparable with that of the pair potential u(r), while h(r) can be longer

ranged than u(r), due to the effect of indirect correlation part [19]. On taking the Fourier

transform of both sides of Eq. (5.22), we obtain an algebraic expression for S(q) = 1+nĥ(q):

S(q) = 1
1 − n ĉ(q) (5.23)

where ĉ(q) and ĥ(q) are the three-dimensional Fourier transforms of c(r) and h(r), respec-

tively.

The OZ equation can be also derived in the context of density functional theory, with

the introduction of density correlation functions and defining the direct correlation function

as a functional derivative with respect to the single-particle density profile of the excess part

of the free energy functional [19].

In order to calculate h(r) using the OZ equation, a second equation is required to obtain

a closed integral equation. This second equation is called closure and relates c(r) to h(r) and

u(r). There are various ways to derive different closures for specific purposes, that relate c(r)

in some physically appealing approximation to g(r) and u(r). Hereafter, we introduce various

closure relations used in this work, and we discuss their respective merits and shortcomings.

A deeper understanding of these closures and the physical meaning of c(r) can be obtained
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using diagramatic and density functional theory methods. Following Ref. [78], we establish

the employed closures simply using plausibility arguments. For the studied systems, some

general properties that the closures must fulfill are the following. All considered closures

account for the non-overlap condition h(r < σ) = −1, i.e. g(r < σ) = 0, in case of a

pair potential u(r) including a hard-core excluded volume part with particle diameter σ.

Furthermore, they need to fulfill the asymptotic condition c(r) = −βu(r) for r → ∞, valid

for a wide class of pair potentials [78].

Before proceeding, we briefly extend the OZ equation to multi-component systems. In a

multi-component mixture constituted by m different species, the m(m+1)/2 total correlation

functions hαβ(r), that fully characterize the micro-structure of the system, are related by

a set of m(m + 1)/2 coupled OZ equations. In case of a homogeneous and isotropic fluid

mixture, these OZ equations are given by

hαβ(r) = cαβ(r) +
m∑︂

γ=1

nγ

∫︂
dr′cαγ(|r − r′|)hγβ(r′), (5.24)

where cαβ(r) are the partial direct correlation functions for two particles belonging to com-

ponents α and β, respectively, with α, β, γ ∈ {1, ...,m}, and nα denoting the concentration

of α-component particles. Fourier-transforming these equations leads to

hαβ(q) = cαβ(q) +
m∑︂

γ=1

nγ cαγ(q)hγβ(q). (5.25)

To obtain a complete set of integral equations that determine the (partial) total cor-

relation functions hαβ(r), m(m + 1)/2 closure relations are needed. Similarly to the one-

component case, we also observe that the total correlation functions, hαβ(r), between two

particles of components α and β are written as the sum of a direct correlation part, cαβ(r),

plus an indirect correlation part mediated through all the other particles of components

γ = 1, ...,m with relative weight nγ (see Eq. (5.24)).
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5.3.1 Hypernetted chain (HNC) scheme

The approximate hypernetted chain (HNC) closure for the direct correlation function of a

one-component fluid system has the from [19]

c(r) ≈ −βu(r) + h(r) − ln [1 + h(r)] . (5.26)

Exponentiating, we obtain

g(r) ≈ e−βu(r)+h(r)−c(r), (5.27)

showing that the positive definiteness of the exact g(r) is preserved at any density. Since

h(r → ∞) = 0 in a fluid, the HNC closure guarantees the correct asymptotic behavior of

c(r) for arbitrary concentration n. Combining Eq. (5.26) with the OZ equation produces

the nonlinear HNC integral equation for g(r) [79]

ln g(r) + βu(r) = ρ
∫︂

[g(|r − r′|) − 1] [g(r′) − 1 − ln g(r′) − βu(r′)] dr′. (5.28)

This equation can be solved only numerically for given pair potential.

The HNC approximation predicts g(r) exactly to first order in n [79]. While being of poor

performance for neutral hard spheres [19, 78], the HNC satisfactorily accounts for the effects

of soft cores and long-range repulsive potential tails, which makes it relevant for the study

of ionic fluids and dispersions of Yukawa particles.

5.3.2 Percus-Yevick (PY) scheme

The Percus-Yevick closure has the form [89]

c(r) ≈ g(r)
[︂
1 − eβu(r)

]︂
, (5.29)

predicting c(r) to vanish wherever the potential is zero. The implementation of the Perkus-

Yevick closure into the OZ equation results in the nonlinear integral equation [19]

y(r) = 1 + ρ
∫︂
dr′

[︂
e−βu(|r−r′|)y(|r − r′|) − 1

]︂ [︂
e−βu(r′) − 1

]︂
y(r′), (5.30)
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for the continuous cavity function y(r) := eβu(r)g(r). For the three-dimensional hard-sphere

fluid case, this equation can be solved analytically, but a numerical solution is required for

other pair potentials [79]. The PY scheme has proved to be more accurate than the HNC

approximation when the potential is short-ranged and strongly repulsive [78]. In this sense,

HNC and PY methods are complementary closures.

As already mentioned, the PY integral equation is of special interest in the theory of

simple liquids, because it is solvable analytically in the case of a hard-sphere fluid, which,

when combined with the so-called Verlet-Weis correction, produces highly-accurate predic-

tions of g(r) and S(q) in good agreement with computer simulation results even up to the

freezing volume fraction ϕf = 0.494 [78]. For a monodisperse hard-sphere system of particles

with diameter σ = 2a and volume fraction ϕ, the Verlet-Weis corrected radial distribution

function, gVW
HS (r), is given by [19, 78, 90]

gVW
HS (x;σ) = gPY

HS (x;σ′) + A
e−(µ−1)x

x
cos[µ(x− 1)] (5.31)

where x = r/σ > 1. The rescaled volume fraction ϕ′ is of the form ϕ′ = ϕ(1 − ϕ/16),

corresponding to a rescaled diameter σ′ = (ϕ′/ϕ)1/3σ. The constant A is fixed by demanding

that the contact value predicted by Eq. (5.31) matches the one obtained from the Carnahan-

Starling equation of state [19], i.e. gVW
HS (σ+;ϕ) = gCS

HS(σ+;ϕ). The exponent µ is determined

from enforcing equal isothermal compressibility between Verlet-Weis and Carnahan-Starling

expressions, i.e. SVW
HS (q = 0;ϕ) = SCS

HS(q = 0;ϕ). The Verlet-Weis corrected PY-scheme gives

in practise an accurate estimation of the principal-peak height S(qm) of the hard-sphere

structure factor up to the freezing concentration.

Different from the HNC approximation, the PY approximation does allow for unphysical

negative values of g(r). Although the PY-g(r) of mondisperse hard-sphere fluids is non-

negative at all distances r, negative values of PY partial radial distribution functions of

strongly size-asymmetric hard-sphere mixtures are found at certain intermediate distances.

However, the PY predicted contact values in these asymmetric systems remain positive
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valued [79].

5.3.3 Rogers-Young (RY) scheme

As noted earlier, there are different routes to compute thermodynamic properties directly

from the pair correlation functions. We have discussed the virial route, Eq. (5.7), and

the compressibility route, Eq. (5.16), but additionally there exist the energy route and the

chemical potential route [91]. Due to the approximate nature of the different closures, the

results for a thermodynamic property, such as p, obtained via different routes are in general

different. This lack of thermodynamic consistency is a common feature of many OZ integral

equation schemes.

In order to overcome part of the thermodynamic inconsistencies of the HNC and PY

closures, Rogers and Young have combined them in a hybrid integral equation scheme that

produces a consistent estimation of the compressibility and improved results for g(r) [92].

The Rogers-Young (RY) closure is given by [78, 92]

g(r) ≈ e−βu(r)

{︄
1 + 1

f(r)
[︂
ef(r)[h(r)−c(r)] − 1

]︂}︄
(5.32)

with the mixing function

f(r) = 1 − e−αr (5.33)

including a mixing parameter α ∈ [0,∞). From comparison with Eqs. (5.27) and (5.29), it is

noticed that the RY closure reduces to the PY closure when α = 0 and to the HNC case when

α = ∞ [89]. The mixing parameter α determines thus the proportion in which HNC and PY

solutions are mixed. It is determined from enforcing equality of the compressibilities derived

from the virial and compressibility routes, i.e. χv
T = χc

T , commonly done by assuming α to

be density independent. In our application of the RY method to the effective one-component

macroion system, we enforce the osmotic compressibility equality, χv
osm = χc

osm.

The RY closure has been found to perform quite well for fluids with purely repulsive

potentials, when compared against computer simulation results, but it underestimates g(r)
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and S(q) oscillations for Yukawa systems close to the freezing transition [78].

5.4 Dynamic properties

In charge-stabilized colloidal suspensions, different (macroion) diffusion coefficients and rhe-

ological properties needs to be distinguished. Colloidal self-diffusion relates to the Brownian

motion of the spherical colloidal macroions in a uniform suspension, and it is characterized

by the colloidal mean-square displacement, with its short-time and long-time slopes referred

to as translational short-time and long-time self-diffusion coefficients ds and dL
s , respectively.

For arbitrary effective interactions between the (dressed) colloidal particles, it holds that

dL
s < ds ≤ d0, where d0 = kBT/(6πη0ah) is the Stokes-Einstein-Sutherland translational dif-

fusion coefficient of an isolated spherical colloid with hydrodynamic radius ah. For directly

and hydrodynamical interacting colloids, there are dynamic cages of neighboring particles

formed around each colloid which slow their self-diffusion motion. This is the reason for the

inequalities noted above. The long-time coefficient, dL
s , can be substantially smaller than ds

for strongly correlated particles, e.g. dL
s ≈ 0.1 × ds under freezing transition conditions [93,

94].

Different from self-diffusion, collective diffusion is a collective transport mechanism where

colloidal particles diffuse collectively along a thermally induced local concentration gradient.

The associated diffusion coefficient is called collective diffusion coefficient dc. In principle,

one needs to distinguish, as in self-diffusion, the short-time collective diffusion from the

long-time one. However, the latter is only slightly smaller than the first one, even for

concentrated suspensions. Depending on the effective colloid interactions, dc is larger than

d0, and substantially so at low salinity and intermediate concentrations where the osmotic

compressibility of the suspension is low. Experimentally, dc can be inferred from the so-

called dynamic structure factor, S(q, t), obtained in dynamic scattering experiment. This

structure factor is an extension of S(q) to finite correlation times t.

91



Two rheological properties, addressed in this section in addition to diffusion, are the

short-time (high-frequency) and long-time (zero-frequency) suspension viscosities η∞ and

η > η0, respectively. These properties linearly relate the average suspension shear stress to

the rate-of-strain applied to the suspension in a low-amplitude oscillatory shear experiment

at high and low (zero) frequencies, respectively.

The employed methods for calculating dynamic suspension properties are all based on the

one-component model of pseudo macroions interacting via an (equilibrium) state-dependent

effective pair potential ueff(r;nm). By this, we ignore electrokinetic effects arising from the

non-instantaneous response of the microioins to the colloid dynamics. Without external

electric fields, electrokinetic effects are typically small and hence of secondary importance.

In our calculations, we identify for simplicity the hydrodynamic radius, ah, with the hard-

core radius a in case of rigid, impermeable colloids, and with the equilibrium particle radius

a(nm) in case of size-variable, ionic microgels. While on first sight this identification seems to

be a severe approximation for weakly-crosslinked solvent permeable microgels, calculations

show that the Darcy permeability of microgels is actually quite small, i.e. the water inside

a microgel moves actually quite rigidly along with the particle [24].

5.4.1 General expressions

We are interested in charge-stabilized colloidal suspensions consisting of mesoscopic imper-

meable solid or soft permeable (dressed) spherical particles of radius a, dispersed in a polar

solvent, whose molecules are orders of magnitude smaller. Consequently, we treat the solvent

as a structureless dielectric continuum on the relevant time and length scales of the colloidal

particles. Particularly, the solvent is hydrodynamically described as a Newtonian fluid,

characterized by the constant shear viscosity η0. The incompressible fluid around colloidal

particles, which are suspended in the fluid without experiencing significant sedimentation,

flows under low Reynolds number conditions. Therefore, the solvent flow can be described
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by the quasi-steady linearized Navier-Stokes equation for incompressible flow, referred to as

Stokes or creeping flow equations. The Stokes equation describes an instantaneous, inertia-

free force balance between viscous, pressure and external forces acting on each fluid element

[95]. On this level of description, the quasi-stationary flow follows instantaneously the like-

wise inertia-free motion of the suspended colloidal particles. Any perturbation that the

colloidal particles exert on the fluid flow is quasi-instantaneously transmitted, affecting the

motion of neighboring particles in the suspension, which are, in turn, sources of additional

flow perturbations which instantaneously react back on the motion of the original particle

which readjusts its motion accordingly. This long-range coupling of the motion of individual

colloids by the intervening solvent flow is referred to as Hydrodynamic Interactions (HIs)

[95], which are typically long-ranged and of many-body character [19]. Different from the

direct (effective) interaction forces such as embodied in ueff(r;nm), HIs are dissipative and

hence not derivable from a potential energy. These features make the theoretical treatment

of HIs a demanding task.

The colloidal particles are furthermore affected by the thermal bombardment by the

solvent molecules, giving rise to stochastic forces on the colloids that drive their Brownian

motion. There is a characteristic time, τB, that quantifies the momentum relaxation of a

colloidal Brownian particle in a suspending fluid. It is given by τB = m/ζ0, where m is

the mass of the colloidal particle and ζ0 = 6πη0ah is its friction coefficient. For correlation

times t ≫ τB, the velocities of the colloidal spheres have relaxed to Maxwellian equilibrium,

so that only the slow relaxation of their positions (and orientations) is resolved. Therefore,

one can describe the dynamics of the interacting Brownian spheres in terms of the many-

particles probability density function, P (X, t), for the configurational space of positional

degrees of freedoms only [78]. For a quiescent suspension of spherical colloidal particles with

orientation-independent direct pair forces, P (X, t), with X = {R1, ...,RN}, is given by the
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translational generalized Smoluchowski equation (GSE) [78, 96],

∂

∂t
P (X, t) = Ô(X)P (X, t), (5.34)

where

Ô(X) =
N∑︂

i,j=1

∇i · µij(X) ·
[︂
kBT∇j − Fint

j (X)
]︂

(5.35)

is the second-order Smoluchowski differential operator. Eq. (5.34) is also addressed as the

N -particle diffusion equation. Here, Fint
j (X) = −∇jU

eff(X) is the force owing to the N -

particle interaction potential U eff(X) and µij are the translational hydrodynamic mobility

tensors arising from the HIs. These tensors linearly relate the hydrodynamic force exerted

by the surrounding fluid on a particle j, Fh
j , to the translational velocity, vi, of a particle i

[96, 97], i.e.

vi = −
N∑︂

i,j=1

µij(X) · Fh
j . (5.36)

Eq. (5.36) states that the velocity of a colloidal particle is influenced quasi-instantaneously

by the hydrodynamic forces exerted on all other particles. The tensor µij depends on the

instantaneous particle configuration X and on the hydrodynamic boundary conditions on

the particle surfaces. In our study, we only consider the case of stick surface hydrody-

namic boundary conditions. The mobility tensors can be combined to form the 3N × 3N

translational mobility matrix µ, which is symmetric, positive definite and proportional to

the diffusivity tensor D, D = kBTµ [78]. The calculation of the mobility tensors requires,

in principle, the solution of the Stokes equation by accounting for the boundary conditions

imposed on the surfaces of all colloidal particles [19]. This is a complex many-spheres bound-

ary value problem that can be analytically solved only on the pair level, applicable in the

high-dilution regime only.

In equilibrium, (∂/∂t)P = 0, and the GSE is satisfied by the equilibrium density function

Peq(X) ∝ exp{−βU eff(X)}. The latter is independent of the mobility tensors, showing

explicitly that the HIs are dynamic viscous forces with no influence on the static equilibrium

properties [78].
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Diffusion of the colloidal particles can be experimentally determined by the dynamic

structure factor

S(q, t) = lim
N,V →∞

⟨︄
1
N

N∑︂
j,k=1

exp{iq · [rj(0) − rk(t)]}
⟩︄
, (5.37)

in a dynamic light, x-ray or neutron scattering experiment. Here, N is the number of colloidal

particles in the scattering volume, q the scattering wave vector, and rj(t) the position of the

j-th particle at time t. The brackets, ⟨...⟩, denote an equilibrium ensemble or time average

for an ergodic system. The thermodynamic limit, N → ∞ and system volume V → ∞ with

n = N/V fixed guarantees that S(q, t) is ensemble independent.

Using the GSE, Eq. (5.34), S(q, t) can be in principle calculated from [78]

S(q, t) = lim
N,V →∞

⟨︄
1
N

N∑︂
j,k=1

eiq·rj

(︂
eÔBte−iq·rk

)︂⟩︄
eff

, (5.38)

where ÔB is the formal adjoint of the Smoluchowski operator (cf. Eq (5.35)), also called

backward Smoluchowski operator. The script “eff” in the average ⟨...⟩eff and in U eff reminds

that an effective one-component colloidal system of dressed colloidal spheres with direct

interactions encoded in ueff(r) is considered. The operator ÔB is negative-semi definite, so

that S(q, t) is a positive valued and strictly monotonic decaying function of time in the

fluid-phase regime [98].

For analyzing the information on diffusion embodied in S(q, t) based on Eq. (5.38), it is

appropriate to consider different time scales. We focus on times t ≫ τB, where inertial effects

are not resolved anymore and the GSE applies [78]. Under these conditions, there are two

well-defined regimes: first, the colloidal short-time regime, characterized by correlation times

t such that τB ≪ t ≪ τI; and second, the colloidal long-time regime where τI ≪ t. Here,

τI = a2/d0 is the structural relaxation time over which noticeable changes in the particle

positions over distances of the order of a take place.

For t ≪ τI , particle displacements by Brownian motion are minuscule compared to the

particle radius. Hence, the short-time dynamic properties are influenced solely by the inter-

particle HIs, which are quasi-instantaneously transmitted. These transport properties can
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thus be calculated as genuine equilibrium averages invoking the configuration-dependent hy-

drodynamic mobilities. The non-dynamic direct interactions embodied in the inter-particle

potential are only indirectly influential through their effect on the equilibrium colloidal mi-

crostructure encoded in g(r) and S(q) = S(q, t = 0). Long-time transport properties, such

as the zero-frequency suspension viscosity η, and the long-time self-diffusion coefficient dL
s ,

are influenced additionally by the inter-particle interactions via non-instantaneous caging

(i.e., memory) effects. In the following two subsections, we are going to address short- and

long-time dynamics separately.

5.4.2 Short-time dynamics

The short-time regime corresponds to correlation times τB ≪ t ≪ τI well above the momentum-

relaxation characteristic time τB, and shorter than the structural relaxation time τI. Within

this range, S(q, t) in Eq. (5.38) can be expanded in a series of cummulants. The leading

cummulant describes an exponential decay of S(q, t) according to [5, 99, 100]

S(q, τB ≪ t ≪ τI) ≈ S(q) exp{−q2D(q) t} , (5.39)

where D(q) is a wavenumber-dependent, short-time diffusion function characterizing the

short-time decay of concentration fluctuations of wavelength 2π/q. Comparing Eq. (5.39)

with the first cummulant of S(q, t) obtained from the expression in Eq. (5.38), one identifies

that D(q) is given by the ratio [5, 99, 100]

D(q) = d0

H(q)
S(q) , (5.40)

where H(q) is the so-called hydrodynamic function given by the equilibrium average [5]

H(q)=
⟨︄

1
Nµ0q2

N∑︂
l,j=1

q · µlj(X) · qeiq·(rl−rj)

⟩︄
eff

, (5.41)

over the configurations X of the colloidal particles. Here, kBTµ0 = d0 and µlj(X) are the

translational N -spheres mobility tensors from Eq. (5.36).
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The positive-valued function H(q) is a measure of the influence of HIs on short-time

translational diffusion over the length scale ∼ 1/q. In the (hypothetical) case of hydrody-

namically non-interacting particles, H(q) ≡ 1, independent of q and particle concentration.

Deviations of H(q) from the infinite dilution value of one thus hallmark the influence of HIs.

Eq. (5.41) can be split according to

H(q) = ds

d0

+Hd(q) , (5.42)

into the sum of a self-part equal to the short-time self-diffusion coefficient ds (in units of d0),

quantifying the initial slope of the particle mean-square displacement, and a wavenumber-

dependent distinct part, Hd(q), accounting for hydrodynamic cross correlations between

the particles. The latter part decays to zero at large q. Thus, for large qah ≫ 1, the

hydrodynamic function becomes equal to ds/d0, while for small wavenumbers qah ≪ 1 it

reduces to the (short-time) sedimentation coefficient, K, of an homogeneous suspension

subjected to a weak constant (gravitational) force field, given by

K = Vsed

V0

= lim
q→0

H(q), (5.43)

with Vsed being the short-time average sedimentation velocity of hydrodynamically interact-

ing monodisperse particles, and V0 the isolated particle sedimentation velocity in the same

constant force field.

Two additional diffusion coefficients arising from D(q) in Eq. (5.40) are the (short-time)

collective diffusion coefficient, dc, and the (short-time) cage diffusion coefficient, dcge. The

collective diffusion coefficient is related to the sedimentation coefficient by

dc = d0

K

S(q → 0) = d0K

kBT (∂n/∂πosm)res

, (5.44)

and it characterizes the decay rate of thermally-induced concentration fluctuations of macro-

scopic wavelengths. The cage diffusion coefficient dcge = D(qm), with qm indicating the prin-

cipal peak position of the hydrodynamic function, characterizes the decay rate of thermally
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induced concentration fluctuations of a wavelength related to the extension, 2π/qm, of the

dynamic nearest-neighbor cage formed around a colloidal particle [97]. Like any cooperative

diffusion coefficient, dc is the ratio of a kinetic coefficient (here, K) and a thermodynamic

property, which in the present case is the isothermal (osmotic) compressibility factor.

A non-diffusional, rheological short-time property characterizing the suspension as a

whole is the high-frequency viscosity, η∞, at low shear rates. This property linearly relates

the average deviatoric suspension shear stress to the applied rate of strain in a low-amplitude,

oscillatory shear experiment at frequencies ω ≫ 1/τI, where shear-induced perturbations of

the microstructure away from the equilibrium spherical symmetry are negligible. Experi-

mentally, η∞ can be determined using a torsional rheometer operated at high frequencies

and low amplitudes. The high-frequency viscosity is a purely hydrodynamic property, whose

statistical physics expression is given, owing to isotropy, by (see, e.g., [101])

η∞ = η0 + lim
q→0

3∑︂
α,β=1

⟨︃ 1
10V

N∑︂
l,j=1

µdd
lj,αββα(X)eiq·(rl−rj)

⟩︃
eff

, (5.45)

where µdd
lj,αββα are the Cartesian components of the fourth-rank dipole-dipole hydrodynamic

tensor µdd
lj , relating the symmetric hydrodynamic force dipole moment tensor of microgel

sphere l to the rate of strain tensor evaluated at the center of a sphere j. Other parameters

are the suspension volume V and the fluid viscosity η0. In Eq. (5.45), the zero-wavenumber

limit is taken after the ensemble averaging over a macroscopic system, guaranteeing in this

way convergence of the integrals following from the averaging over the spatially slowly de-

caying hydrodynamic tensors [102].

5.4.3 Long-time dynamics

As noted before, the long-time regime corresponds to correlation times t ≫ τI , during which

the particle configuration has changed significantly. Different from short-time properties,

in the long-time regime the suspension properties are additionally influenced by thermally-
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driven microstructural relaxation processes depending not only on the hydrodynamic inter-

actions, but also on the direct inter-particle interactions. The joint influence of these inter-

actions renders the calculation of long-time transport properties demanding. The dynamic

caging effect noted before leads to a weak distortion of the dynamic next-neighboring cage

formed around each particle at longer times, so that long-time properties are not equilibrium

averages anymore, as it is the case for short-time properties [78].

In this thesis, we analyze the (long-time) collective diffusion coefficient, dc, and the zero-

frequency viscosity, η. The long-time collective diffusion coefficient appears in Fick’s law,

j = −dL
c ∇nm, linearly relating a macroscopic concentration gradient, ∇nm, to the collective

diffusion current j. As discussed earlier, the long-time collective diffusion coefficient is only

slightly smaller than the short-time one given in Eq. (5.44) (by at most 6% for concentrated

suspensions of no-slip colloidal hard spheres) [103]. The difference can be expected to be

even smaller for particles with electrostatic repulsion [99]. Therefore, we use the short-time

collective diffusion coefficient as a good approximation of the long-time collective diffusion

coefficient.

The second considered colloidal long-time property is the low-shear-rate, zero-frequency

viscosity as measured in a suspension subjected to steady-state weak shear flow. This vis-

cosity is the sum [98],

η = η∞ + ∆η , (5.46)

of η∞ and a positive shear-stress relaxation contribution denoted as ∆η. The latter is related

to the additional dissipation in the suspension originating from stress relaxations of the shear-

perturbed next-neighbor particle cages formed around each particle, and it is influenced both

by direct and hydrodynamic interactions. The viscosity part, ∆η, can be calculated based on

an exact Green-Kubo relation for the time integral of the equilibrium stress auto-correlation

function where HIs are included [98].
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5.4.4 Methods of calculation

We describe here the different analytic methods used in this thesis for calculating the con-

sidered short-time and long-time dynamic properties on basis of the effective one-component

colloidal model.

For the calculation ofH(q), we use the well-established analytic BM-PA scheme [97]. This

scheme is a hybrid of the second-order Beenakker-Mazur method (BM), used here for the

wavenumber-dependent distinct part Hd(q), and the hydrodynamic pairwise-additivity (PA)

approximation used for the q-independent self part ds/d0. The BM-PA scheme combines

the advantages of the BM and PA methods. It requires the (dressed) colloidal macroion

structure factor and radial distribution function, S(q) and g(r), respectively, as its only

input, for which the RY scheme based on the effective pair interaction ueff(r) is used. In case

of microion-permeable soft colloids with concentration-dependent radius a(nm), the latter is

determined using the TPT/PBCM methods in section 4.3 for the according effective pair

potential. The overall good accuracy of the BM-PA scheme was assessed by comparison with

elaborate dynamic simulation results, where many-particles HIs are accounted for, and with

experimental H(q) data, for a variety of colloidal model systems including solvent-permeable

hard spheres (as a model of non-ionic microgels), charge-stabilized rigid spherical particles,

and globular proteins exhibiting short-range attraction and long-range repulsion [21, 97, 99,

104]. PA and BM methods are described in Appendix A and Appendix B, respectively.

The high-frequency viscosity, η∞, is calculated using a modified Beenakker-Mazur mean-

field method. In this semi-analytic method invoking one-dimensional integrals only, many-

particles HIs are approximately accounted for, but lubrication is disregarded. Lubrication is

rather irrelevant, however, for the charge-stabilized suspensions explored in this work. Like

the BM-PA scheme for H(q), the modified BM method for η∞ has S(q) as its only input.

The modified BM expression for η∞ reads [97]

η∞

η0

= 1 + 5
2ϕ(1 + ϕ) − 1

λ0

+ 1
λ0 + λ2

, (5.47)
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with the so-called zeroth and second-order BM viscosity contributions, λ0(ϕ) and λ2(ϕ),

respectively, whose explicit forms are given in Appendix B. The invoked modification of

the standard BM expression for η∞/η0 is the subtraction of the structure-independent BM

part, 1/λ0, and its replacement by the structure-independent pairwise additive viscosity

contribution, 1 + 2.5ϕ(1 + ϕ), which is known to give the dominant contribution at low

salinity and small volume fractions. The modified BM expression is in very good agreement

with Stokesian Dynamics simulation data for the high-frequency viscosity of low-salinity

charge-stabilized suspensions, even up to the freezing transition concentration [97].

As noted above, the calculation of the shear relaxation contribution, ∆η, to the zero-

frequency viscosity, η = η∞ +∆η, is more demanding since it is explicitly influenced by direct

and hydrodynamic interactions. Starting from an exact but formal Green-Kubo relation for

∆η, mode-coupling theory (MCT) integro-differential equations with HIs included have been

derived for its approximate calculation, whose numerical solution is quite involved. We use

therefore a simplified MCT theory expression for ∆η, constituting the first-iteration step in

the self-consistent numerical solution of the MCT equations. This simplified MCT expression

is [98]
∆η
η0

= 1
40π

∫︂ ∞

0
dy y2 (S ′(y))2

S(y)
1

H(y) , (5.48)

where y = 2qa and S ′(y) = dS(y)/dy. HIs enter here only through the dynamic structure

factor S(q, t), which in turn is approximated by its short-time form given by the right-

hand side of Eq. (5.39) involving H(q). Since for correlated particles S(q, t) decays more

slowly than exponentially at longer times, ∆η is somewhat underestimated by Eq. (5.48), as

compared to the fully self-consistent MCT viscosity solution. This underestimation becomes

more pronounced at higher ϕ.
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Chapter Six

SIZE-VARYING IONIC

MICROGELS: NUMERICAL

RESULTS

In this chapter, we explore theoretically suspensions of soft weakly-crosslinked spherical

ionic microgels. We present a comprehensive treatment of dynamic and static equilib-

rium microstructural properties of these suspensions in the swollen state accounting for

counterion-regulated deswelling effects. For this purpose, the ionic microgels are modeled

in a coarse-grained way as microion- and solvent-permeable, monodisperse elastic colloidal

spheres, with the charged sites of the crosslinked polymer gel backbone simply described by

a uniform charge distribution. This description is reasonable, under the proviso that the

cross-linker density does not vary strongly along the particle radius. Within this descrip-

tion, we employ the PBCM and TPT mean-field methods from section 4.3 for describing the

concentration-dependent deswelling of microgels and calculating their equilibrium mean size.

In combination with an effective pair potential expression of ionic microgels derived within

the multi-center approach in sections 2.1 and 4.1, we determine the pressure and osmotic

compressibility of ionic microgel suspensions as well as the microgel pair distribution func-

tion and static structure factor using the HNC and thermodynamically self-consistent RY
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integral-equation methods, presented in section 5.3. Finally, the microgel pair distribution

function is used as input to our calculations of dynamic suspension properties. Semi-analytic

methods, based on the one-component effective microgel picture presented in section 5.4, are

used to calculate dynamic properties. In our assessment of deswelling effects, the results ob-

tained for various static and dynamic suspension properties are compared with the ones for

a (fictitious) reference suspension of constant-size microgels.

In order to analyze the influence of counterion-induced deswelling on thermodynamic,

structural and dynamic properties, and to make contact with a study by Weyer et. al.

[15], in which TPT results for the mean microgel radius were compared against computer

simulations for salt-free systems, we use the following system parameters, corresponding to

aqueous suspensions at lower salinity: solvent Bjerrum length λB = 0.714nm (i.e., water as

solvent at temperature T = 293K), backbone microgel bare valences Z = 100, 200, and 500,

dry microgel radius a0 = 10 nm, backbone monomer number per microgel Nmon = 2 × 105,

polymer chain number per microgel Nch = 100, solvency parameter χ = 0.5, and Hertz

softness parameter ϵH = 1.5 × 104. For the 1:1 electrolyte reservoir concentration in the

considered Donnan equilibrium, we use cres = 100 µM, if not stated otherwise, so that

nres = cres NA, where NA is the Avogradro number. Values of the dry volume fraction,

ϕ0 = (4π/3)nma
3
0, in the range from 2 × 10−4 − 5 × 10−2 are considered. Here, nm is the

microgel (macroion) number density. Thus, ϕ0 ∝ nm has the meaning of a dimensionless

microgel concentration. The Debye screening length, 1/κ, introduced in Eq. (2.59), attains

values from 40 − 4.4 nm, for (reduced) concentration values ϕ0 varied from 0.001 − 0.05.

It is noteworthy that, for most of the considered suspensions, κ is determined by the mean

concentration, Znm, of monovalent counterions released from the microgel polymer backbone,

which is significantly higher than the salt pair concentration ns in the suspension.

The electrostatic repulsion between the microgels is quantified by the reduced electro-

static coupling strength Γel ≡ ZnetλB/a, which in the present study is in the range of 1 -

9, comparable to values for typical ionic microgel systems [7, 105, 106]. The electrostatic
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repulsion between the microgels is here strong enough that configurations of microgels that

are in contact or overlapping are very unlikely, such that g(r ≤ 2a) ≈ 0 holds for the microgel

radial distribution function. On the other hand, nonlinear screening effects are in most cases

weak enough that the linear TPT method can be used for determining the mean microgel

equilibrium radius a, in addition to the PBCM method.

6.1 Equilibrium radius predictions

For computing the microgel equilibrium radius a, we follow the stability criterion presented

in Eq. (4.15) or, equivalently, in Eq. (4.16). We describe the elastic and solvent-interaction

free energy contributions of a microgel using Flory-Rehner theory [16–18] for uniform cross-

linker distribution. For calculating the electrostatic semi-grand free energy contribution of

microgels in a concentrated suspension, in Donnan equilibrium with a 1:1 strong electrolyte

reservoir, we use two different mean-field methods, namely the spherical Poisson-Boltzmann

cell model (PBCM) approach of Denton and Tang [14], presented in subsection 4.3.2, and

a first-order thermodynamic perturbation theory (TPT) method of Weyer and Denton [15],

introduced in subsection 4.3.1. The equilibrium microgel radius is obtained from minimiz-

ing the total suspension free energy, equivalent to enforcing the balance of total (intrinsic)

pressure inside and outside a microgel particle.

In the following, we analyze TPT and PBCM predictions for the concentration-dependent

microgel swelling ratio, α(ϕ0) = a(ϕ0)/a0, the suspension salt concentration ns(ϕ0), and

the electrostatic coupling strength Γel(ϕ0), where ϕ0 ∝ nm is the non-dimensional microgel

concentration.

The physical mechanism leading to counterion-induced deswelling with increasing con-

centration can be reasoned on the basis of Fig. 6.1, which shows PBCM results at two

different concentrations for the radial dependence of the (reduced) total microion charge

density, ρel(r) = [n+(r) − n−(r)] e, and of the coion concentration n−(r) (displayed in the
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Figure 6.1 PBCM predictions for radial profile of microion charge density ρel(r) in
units of 1/(a3

0 e), versus radial distance r from center of cell (units of dry radius a0)
for microgel valence Z = 500, dry radius a0 = 10 nm, reservoir salt concentration
cres = nres/NA = 100µM, and dry volume fractions ϕ0 = 0.03 and 0.005 (red and
black solid curves). Inset: Reduced coion number density n−(r)a3

0 (dashed-dotted
curves). All curves terminate at the cell radius r = R = a0/ϕ

1/3
0 . Vertical line seg-

ments indicate the equilibrium swelling ratio, α = a/a0, computed from zero balance
of intra-particle pressure contributions in Eqs. (4.26) and (4.29), respectively.

inset) inside and outside of a negatively charged microgel centered at r = 0. For both con-

sidered concentrations ϕ0, the counterions constitute the dominant microion species where

n+(r) ≫ n−(r), and hence ρel(r) ≈ n+(r)e holds for the total microgel charge concentra-

tion inside the cell up to its boundary at radius R = a0/ϕ
1/3
0 , where the curves in Fig. 6.1

terminate.

One clearly notices that both the equilibrium microgel radius a, marked by the vertical

line segments in the figure, and the radius R of the spherical cell in PBCM decrease with

increasing concentration. The counterion concentration profile rises with increasing system

concentration, while the coion concentration profile falls. With increasing concentration, the

volume exterior to the microgels is reduced, making it (entropically) less favorable for coun-

terions to reside outside the oppositely charged microgel backbone region. Consequently, a

fraction of the outside counterions permeates into the backbone region, thereby lowering the

expansive intrinsic PBCM pressure contribution Πe (Eq. (4.26)). In response, the micro-
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gel deswells until a new equilibrium with the contractile polymer gel pressure contribution

Πg, in Eq. (4.18), is established at a smaller equilibrium radius. The enhanced counterion

permeation of microgels with increasing concentration is reflected in the lowering of the net

microgel valence Znet, defined in Eq. (2.62), which for the backbone valence Z = 500 is

given by Znet = 223 at ϕ0 = 0.005 and by Znet = 154 at ϕ0 = 0.03. The counterion-induced

deswelling becomes weaker with increasing salt concentration, which causes a flattening of

the microion concentration profiles across the microgel surface.

In the PBCM method, the mean salt concentration, ns, in the suspension is obtained

by integrating the coion concentration profile over the cell volume according to Eq. (4.30).

In the TPT method, ns is computed using the equality of the chemical potentials of the

microions in the suspension and reservoir. We reemphasize that in Donnan equilibrium,

ns is a state-dependent quantity. The TPT and PBCM predictions for the concentration

dependence of ns are depicted in Fig. 6.2 (red and black curves, respectively), for reservoir

microion concentration cres = 100 µM and backbone valences Z = 100, 200, and 500. The

monotonic decrease of ns with increasing ϕ0, and hence with increasing number of backbone-

released counterions, is due to an increasing expulsion of salt ion pairs into the reservoir,

necessitated to maintain global electroneutrality in the suspension.

At high dilution, ϕ0 → 0, where the concentration of salt counterions greatly exceeds

the concentration of backbone-released counterions, the exact limit ns → nres is recovered

by both methods. For the moderately high valences Z = 100 and Z = 200 considered here,

the TPT and PBCM curves for ns(ϕ0) in Fig. 6.2 lie close to each other, but with a slightly

stronger salt expulsion predicted in the PBCM. Pronounced differences are observed for the

high valence Z = 500 and intermediate ϕ0, where the concentration, Znm, of backbone-

released counterions is comparable to the salt-counterion concentration. While the PBCM

predicts a decreasing ns with increasing Z, in accord with physical expectation, this trend

is reversed for ϕ0 ≲ 0.005 by the TPT curve for Z = 500. We attribute this reversal to the

disregard in the linear TPT of nonlinear electrostatic effects, which come into play at high
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valences and low ϕ0. The PBCM is based on the nonlinear PB-type equation Eq. (4.25)

and accounts for nonlinear electrostatic effects, but not for inter-microgel correlations. The

latter are accounted for in TPT, but on linear level only.
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Figure 6.2 Reduced suspension salt concentration, nsa
3
0, versus microgel concentra-

tion ϕ0. Inset: Reduced Debye screening constant κa0. TPT predictions are in red,
and PBCM predictions in black, for backbone valence Z = 100 (dotted), 200 (solid),
and 500 (dash-dotted). Reservoir salt concentration is cres = nres/NA = 100µM.

The inset of Fig. 6.2 displays TPT and PBCM predictions for the Debye screening con-

stant κ based on Eq. (2.59), but using different predictions for ns depending on the method.

We notice that these predictions for κ are practically equal on the scale of the inset. In

dimensionless form, the screening constant is

(κa0)2 = (κca0)2 + (κsa0)2 = 3ϕ0

ZλB

a0

+ 8πλBnsa
2
0 . (6.1)

The first term on the right-hand side is the contribution by the backbone-released counteri-

ons (subscript c). The second term, proportional to ns, is the salt-ion contribution (subscript

s). This splitting of κ2 into released-counterion and salt-ion contributions allows to identify

the counterion-dominated regime by the condition κc ≫ κs and the salt-dominated regime

by κc ≪ κs. At very low microgel concentrations, i.e., in the salt-dominated regime where

κ ≈ κs, the TPT and PBCM predictions for κ differ due to differing values for ns. However,

these differences are not visible in the inset. At higher concentrations in the counterion-

dominated regime where κ ≈ κc, both methods predict practically the same κ ≈ κc, de-
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Figure 6.3 Electrostatic coupling parameter, Γel = ZnetλB/a, versus microgel con-
centration ϕ0, where Znet is the net microgel valence. System parameters, colors,
and linetypes are the same as in Fig. 6.2.

termined by Z and ϕ0. With increasing backbone valence, κc increases while κs decreases,

owing to increased salt expulsion. The total screening constant κ increases monotonically

with increasing concentration, more steeply so for higher Z.

Figure 6.3 shows the electrostatic coupling strength, Γel, as a function of ϕ0. Notice that

Γel depends on the equilibrium radius a and net microgel valence Znet, both of which are

monotonically decreasing with increasing ϕ0. The decrease of Znet due to inside-permeated

counterions is more pronounced than the decrease of a with increasing concentration, which

explains the monotonic decrease of Γel. The overall behavior of the coupling strength as

function of concentration and backbone valence is similar in the TPT and PBCM, but

the TPT consistently predicts a stronger electrostatic coupling than PBCM. The greatest

differences are visible for low concentrations and for the highest considered backbone valence

Z = 500 where Γel > 5, such that nonlinear electrostatic effects, not accounted for in the

linear TPT, come into play, as we are going to see in chapter 7. We stress here that, in

contrast to suspensions of impermeable, solid particles, a reduction in the concentration of

permeable, compressible particles results in a strengthening of the electrostatic interparticle

repulsion.

Figure 6.4 depicts the concentration dependence of the equilibrium microgel swelling ra-
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Figure 6.4 Swelling ratio, α = a/a0, versus reduced concentration, ϕ0, for backbone
valence Z = 500 (dashed-dotted), 200 (solid), and 100 (dotted) at cres = 100 µM.
Inset: Swollen microgel volume fraction ϕ = ϕ0 α

3 versus ϕ0. The straight dashed
line in the inset depicts ϕ = ϕ0 α(ϕ∗

0)
3 for a fixed TPT microgel radius taken at

ϕ∗
0 = 2.0 × 10−4 and backbone valence Z = 500. Other system parameters are the

same as in Fig. 6.2.

tio, α = a/a0, for three different backbone valences. At a given ϕ0, the swelling ratio increases

with increasing Z, owing to an enhanced electrostatic repulsion between the Z monovalently

charged backbone sites for a constant reservoir salt concentration cres = 100 µM. Deswelling

in the counterion-dominated regime displayed in the figure is most pronounced at smaller

ϕ0, where a decreases more strongly for higher Z. For Z = 500, the TPT predicts distinctly

higher swelling ratios than the PBCM, and a distinctly steeper decay of α = a/a0 with

increasing ϕ0.

An important quantity characterizing the swollen microgels is the volume fraction ϕ =

ϕ0α
3, whose concentration dependence is shown in the inset for Z = 500. Due to deswelling,

ϕ increases sublinearly with increasing ϕ0. Differences between the TPT and PBCM predic-

tions for ϕ are small except for small concentrations, where nonlinear electrostatic coupling

is significant.

To assess quantitatively the effect of deswelling on structural and dynamic properties, it

is useful to compare findings for the actual suspension of deswelling microgels with those for

a fictitious reference suspension of non-swelling particles. We select the system parameters
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of the reference system to be the same as in the actual one, except for the microgel radius

aref, which is fixed to the equilibrium value of the deswelling system at the lowest considered

concentration, ϕref
0 , where nonlinear screening by the microions can still be disregarded.

Explicitly, we set aref = a(ϕref
0 ) using ϕref

0 = 0.005, a reservoir concentration fixed to cres =

100 µM, and backbone valences restricted to values Z ≤ 200.

Figure 6.5 shows the swelling ratio, α, predicted by the two methods, compared with the

respective constant value α(ϕ0 = 0.005) (dashed horizontal lines) for the reference system.

Note that the reference-system microgel radius is different for the two methods, namely,

aref ≈ 24.1 nm in TPT and aref ≈ 23.8 nm in PBCM. The transition from salt-ion to

counterion domination occurs at very small concentrations, resolved in the inset of Fig. 6.5.

The vertical line segments mark here the microgel concentration where Znm = 2ns and

hence κc = κs. At very small concentrations where κc < κs, α changes only little with

concentration.
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Figure 6.5 Predictions of TPT and PBCM for swelling ratio α = a/a0 versus micro-
gel concentration ϕ0 compared with corresponding reference system results (dashed
lines). Inset: Swelling ratio α for low concentrations where the salt-dominated
regime is resolved. System parameters: Z = 200 and cres = 100µM.

It was shown in [54, 56, 57, 63, 65, 67] and will be presented in chapter 7, that non-

linear electrostatic coupling, which comes into play for Γel ≳ 5, can be incorporated into

linear Yukawa-type effective pair potentials, such as in Eq. (2.61), by using renormalized
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values, Zeff and κeff, of the particle (backbone) valence and of the Debye screening constant,

respectively. Different renormalization schemes were developed for this purpose for charge-

stabilized suspensions of impermeable particles, as discussed in chapter 3, but considerably

less applications to ionic microgels were reported so far [62, 105–108].

In the remainder of this chapter, we study fluid-phase suspensions mostly for conditions

Γel < 5 where the TPT and PBCM results can be directly compared without the need to

invoke microgel charge renormalization. For higher values of Znet, this condition limits us

to concentrations ϕ0 > ϕref
0 = 0.005 in the counterion-dominated regime where deswelling is

most pronounced.

6.2 Potential parameters and pressure contributions

Having introduced the reference system of constant-size microgels, we analyze next the pa-

rameters characterizing the effective pair potential of deswelling ionic microgels, in compar-

ison with the reference system values. For the considered system parameters, the likelihood

of particle overlap is small. The effective microgel interaction is thus determined by the

non-overlapping (Yukawa) part of the effective pair potential, uY(r;n), in Eq. (2.61). The

Yukawa potential, which is characterized by Znet and κ, can be expressed in the form

βuY(r;nm) = 2a0AY

e−κr

r
, (6.2)

where AY = βuY(2a0;nm) exp(2κa0) is an interaction strength parameter.

In Fig. 6.6, the concentration dependence of the net microgel valence Znet and the De-

bye screening constant κ of deswelling particles are compared with the reference system

predictions. While Znet decreases with increasing concentration, κ monotonically increases.

This trend can be attributed to the associated increase in the number of counterions inside

the microgels. Deswelling slightly increases Znet, but has almost no effect on κ, which in

the counterion-dominated regime is determined solely by Z and ϕ0, independent of ns (see
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reference system predictions (dashed lines). System parameters: Z = 200 and
cres = 100 µM.

Eq. (6.1)). At low ϕ0, the Znet curves merge with those of the reference system, since aref

at ϕ0 = 0.005 becomes equal to the radius a of the deswelling microgels. Deswelling en-

larges the volume available to the microions outside the microgels by a factor V (ϕref − ϕ),

where ϕref = ϕ0 (aref/a0)3 is the volume fraction of the reference system. The resulting gain

in entropy for counterions leaving the deswelling microgels is nearly compensated by the

larger work required to expel these ions, as the backbone charge density of opposite sign

is increased by a factor (aref/a)3. The net effect is an only slightly increased Znet for the

deswelling microgel system. Both TPT and PBCM predict such a slight enhancement of

Znet at higher ϕ0, but with consistently higher values in case of TPT.

According to Figs. 6.7(a) and (b), AY grows with increasing concentration, while βuY(2a)

decreases. The order relation Znet(ϕ0) ≥ Zref
net(ϕ0) is valid, which implies the order relation

βuY(2a) ≥ βuref
Y (2a) for the effective potential at contact distance 2a. The opposite order

AY ≤ Aref
Y holds for the interaction parameter AY in Eq. (6.2). To understand these relations,

recall with Eq. (2.63) that AY is proportional, in addition to Z2
net, to a geometric factor

depending on κa, and this factor is higher for the reference system. Fig. 6.7(b) quantifies

the aforementioned peculiarity of ionic microgel systems that, with decreasing concentration,
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the electrostatic coupling strength measured at contact distance is increased.
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Figure 6.8 PBCM prediction for microion osmotic pressure pµ − pres (in reduced
units) versus ϕ0 for backbone valences Z as indicated and reservoir pressure pres =
2nreskBT . For Z = 200, the microion osmotic pressure of reference system is also
shown (blue dashed line). Other parameters as in Fig. 6.2.

Having assessed how the effective pair potential is affected by deswelling, we address

next various pressure contributions. Figure 6.8 displays PBCM results for the microion

pressure pµ, calculated using the contact theorem in Eq. (5.12). As expected, for given ϕ0,

pµ grows rapidly with increasing backbone valence. For Z = 200, the microion pressure of

the reference system slightly exceeds the pressure for deswelling particles, essentially due to
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the higher volume fraction, ϕref > ϕ, of the reference system.

It is instructive to compare the PB cell model pressure, pµ, defined in Eq. (5.12), with the

total suspension pressure p from TPT and the volume energy-derived contribution pvol. In

TPT, the suspension pressure can be computed from f(a, nm) = F (a, nm)/Nm, in Eq. (4.20),

using the thermodynamic relation in Eq. (5.8), where the concentration dependence of a(nm)

must be accounted for, giving rise, in particular, to the extra pressure contribution pse

in Eq. (5.10). In taking the concentration derivative of f , the electroneutrality condition

ns = ⟨N+⟩/V − nmZ must be maintained for given Z. Using Eq. (2.67) for the volume

energy of ion-permeable particles, the volume pressure contribution, pvol in LRT and used

in the TPT method, takes the form [13]

βpvol = n2
m

(︄
∂βεvol

∂nm

)︄
res

= Znm + 2ns + 3Z2

2
λB

a
nm

[︃
− 1
κ̃2

+ 9
4κ̃3

− 15
4κ̃5

+
(︃ 3

2κ̃2
+ 21

4κ̃3
+ 15

2κ̃4
+ 15

4κ̃5

)︃
e−2κ̃

]︃
, (6.3)

where κ̃ = κa. Note that the (reduced) kinetic pressure of the microions, equal to Znm +2ns,

is included in pvol.

The comparison among the pressure predictions of the different methods is shown in Fig. 6.9

for a system with Z = 200 and cres = 100 µM. All pressures are measured relative to the

reservoir osmotic pressure pres. Together with these predictions, also shown is the kinetic

microion pressure, pkin = (Zn+ 2ns) kBT , with ns calculated from TPT. In the dilute limit

(ϕ0 → 0), all pressure terms converge to pres, and the system salt concentration ns tends to

nres. The dry volume fraction at which Znm = 2ns is ϕ0 ≈ 0.002. The displayed pressure

curves hence represent the counterion-dominated regime.

As seen from comparing p to pvol, inter-microgel correlation contributions to p become

significant for ϕ0 ≳ 0.04, where p becomes distinctly larger than pvol. This comparison

shows further that the pressure contribution pse in Eq. (5.9), generated by the concentration

dependence of a(nm) in the single-particle energies ue(a) and fp(a) in Eq. (4.20), is negligible

at lower concentrations. The PBCM pressure pµ exceeds pvol for non-zero concentrations
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and is overall close to p, except at high ϕ0. At this relatively low salt concentration, the

kinetic microion pressure difference pkin − pres (dotted curve) is practically equal to the

reduced ideal gas pressure of counterions, ZnmkBT (or 3Zϕ0 in reduced units), up to a small

negative correction proportional to 2 (ns − nres), owing to the salt expulsion (Donnan) effect

(cf. Fig. 6.2). While in the concentration range of Fig. 6.9 the counterions contribute most

strongly to the suspension osmotic pressure, due to the electrostatic attraction of the fixed

backbone charge they behave distinctly non-ideal, which is reflected in the non-constant,

radially decaying counterion concentration profile n+(r) (see Fig. 6.1). This is why pkin is

higher than p.
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Figure 6.9 Reduced pressure, p, of microgel suspension from TPT (Eqs. (5.8)
and (4.20)), volume energy contribution pvol (Eq. (6.3)), and PBCM pressure, pµ

(Eq. (5.12)), versus microgel concentration ϕ0. All pressures are relative to the
reservoir pressure pres. System parameters are Z = 200 and cres = 100 µM. Also
shown is the TPT prediction for the kinetic (ideal gas) pressure, pkin = Znm + 2ns,
where ns is system salt density (nearly identical to PBCM prediction).

6.3 Structural properties and charge renormalization

For studying the structural properties of the microgel suspension, we use the (density-

dependent) total effective pair potential veff(r;nm) = ueff(r;nm) + uH(r), from Eq. (4.22),

for describing the effective pair interactions between the pseudo-microgels particles in the

effective one-component suspension, but additionally coupling the concentration-dependent
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microgel size a(nm). The effective potential combines the steric effective repulsion, uH(r) de-

scribed by Eq. (4.1), due to the polymer network, with the effective electrostatic repulsion,

ueff(r;nm), presented in Eq. (2.60). For non-overlapping particles, the effective pair potential

is of a screened-Coulomb form, akin to the potential for ion-impermeable charge-stabilized

colloidal particles, but with a coupling strength that decreases with increasing concentration

and ionic strength of the suspension, as demonstrated in the foregoing section. For overlap-

ping microgels, the effective electrostatic potential remains finite, and is augmented in our

model by a soft Hertz potential accounting for elastic repulsion at modest overlap [69, 73].

Van der Waals attraction between the weakly cross-linked microgels can be neglected due to

their high solvent content.

Notice that the potential veff(r;nm) was used already in the TPT method, where it was

accounted for in computing the equilibrium microgel size. The electrostatic part ueff of veff

is derived within LRT and it is self-consistently linked to the TPT method. Whereas for

PBCM, we established the link to ueff in an ad hoc way, by demanding that Znet and κa in

the nonlinear PBCM method match those used in the LRT-based ueff part. This matching

procedure was described in detail in subsection 4.3.2.

As explained in section 5.3, using veff(r;nm) with associated values for the equilibrium

radius a, net valence Znet, and screening constant κ, one can calculate the microgel radial

distribution function (rdf) g(r) and static structure factor S(q) characterizing pair corre-

lations in real and Fourier space, respectively. For this purpose, we use the Rogers-Young

(RY) integral-equation scheme, described in subsection 5.3.3. This thermodynamically self-

consistent scheme is known, from the comparison with a vast body of computer simulation

results, to be overall very accurate for the fluid-phase g(r)’s and S(q)’s of charge-stabilized

particles interacting via a repulsive Yukawa-type pair potential [99, 109, 110].

To illustrate the accuracy of the RY method for ionic microgel particles, in Fig. 6.10 the

RY results for g(r) and S(q) are compared with Monte-Carlo (MC) simulation data obtained

using the method in [15] for a salt-free suspension with Z = 100. The RY predictions are
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also compared with results from the numerically faster, but thermodynamically not self-

consistent, HNC integral-equation scheme. There is overall good agreement between the

RY and MC data, while the real-space pair correlations are underestimated by the HNC

scheme. For the considered specific system, however, the RY prediction for the structure

factor principal peak S(qm) shown in the inset is less accurate than the HNC prediction.
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Figure 6.10 Results of RY, HNC, and MC for the radial distribution function,
g(r), and static structure factor, S(q) (inset), of a salt-free microgel suspension with
ϕ0 = 0.01, Z = 100, α = 2.327, and κa0 = 0.463. Swelling ratio α is computed
using TPT. Length unit is the microgel diameter σ = 2a.

Rogers-Young results for the concentration dependence of the structure factor peak height

S(qm), contact value g(σ) and the osmotic compressibility factor S(0) are displayed in

Fig. 6.11(a), inset of Fig. 6.11(a) and Fig. 6.11(b) respectively. The contact value, g(σ),

of the associated rdf remains small in the considered concentration range, showing that the

no-overlap potential part, uY(r), essentially determines the microstructure of the microgels.

The total overlap potential, uov(r) + uH(r), comes into play only at high concentrations.

From comparison with the reference system peak height predictions, one notices that S(qm)

is reduced when deswelling is accounted for, though only slightly, since for Z = 200 the

decrease in the microgel radius relative to the reference value remains small even at larger

concentrations (cf. Fig. 6.5).

For a given concentration, TPT predicts a more structured system than PBCM, as re-

flected by the larger values of S(qm). This difference originates from the higher net charge

117



and larger microgel radius in the TPT, as discussed already in relation to Figs. 6.3 and 6.4.
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Figure 6.11 RY results for (a) structure factor peak height, S(qm), contact value,
g(σ) (inset), and (b) osmotic compressibility factor, S(q → 0), versus ϕ0 for Z = 200
and cres = 100 µM. Results are presented for deswelling microgels with radius a
computed in TPT and PBCM and compared with corresponding results for the
reference system (dashed curves). Other parameters as in Fig. 6.5.

In discussing the Kirkwood-Buff relation (Eq. (5.20)), we noted that, for a monodis-

perse suspension in osmotic equilibrium with a salt reservoir, S(0) = S(q → 0) equals the

osmotic compressibility factor. Rogers-Young predictions for the concentration dependence

of S(0) (Fig. 6.11(b)) show that deswelling slightly increases the osmotic compressibility.

The increase of S(0) predicted by both methods follows from the reduced volume fraction of

deswelling particles, which is lower by the factor (a/aref)3 than that of the reference system.

In its effect on S(0), this reduction in volume fraction overcompensates the small deswelling-

induced increase of Znet (see Fig. 6.6). The PBCM yields distinctly higher compressibilities

than the TPT, since it predicts smaller equilibrium radii and net charges.

The peak value of the structure factor, S(qm), can be used as an indicator for the proxim-

ity of a fluid suspension to a freezing transition. The frequently cited empirical Hansen-Verlet

criterion, S(qm) = 2.85, applies only to the freezing of a hard-sphere fluid. It does not apply

to suspensions with longer-range, soft inter-particle repulsion. As shown in detail in [110], a

somewhat higher freezing indicator value, S(qm) = 3.1, should be used for suspensions with
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long-range Yukawa-type repulsion, where overlap configurations are unlikely. An alternative

indicator of freezing in these systems, applicable for very low salinity only, where κn−1/3
m ≲ 7

and freezing into a bcc lattice takes place, is the value g(rm) ≈ 2.6 for the principal-peak

height of the radial distribution function at radial distance rm [110].

To illustrate how the freezing transition concentration is determined using the cite-

rion S(qm) = 3.1, we consider a strongly charged microgel suspension with Z = 500 and

cres = 50 µM, for which g(2a) ≈ 0 holds to excellent accuracy up to the freezing transition

concentration. For such a strongly coupled system, it is necessary to renormalize the (net)

microgel charge and suspension screening constant, so as to incorporate nonlinear response

of the microions to the strong electric field of the microgel backbone. To determine these

renormalized parameters in the framework of PBCM, we follow Colla et al. [62] in linearizing

the PB equation (Eq. (4.25)) around the nonlinear potential value ΦR = Φ(R) at the cell

boundary. This procedure leads to a linearized PB equation, (see also section 3.1)

∆Φl(r) = κ2
eff [Φl(r) − ΦR + γR] + 3λBZ

ren

a3
Θ(a− r) , (6.4)

for r ≤ R, where κ2
eff = κ2

res cosh (ΦR), and γR = tanh (ΦR), with the latter quantity being

negative due to the negative backbone charge. Here, Zren is the yet unknown renormalized

backbone valence, and Θ(r) is the unit step function.

The unique solution for the linearized potential, Φl(r), inside and outside the microgel

sphere can be obtained analytically using the boundary conditions Φl(R) = ΦR, Φ′
l(R) =

0, and Φ′
l(0) = 0, in conjunction with the continuity of Φl(r) and its first derivative at

r = a. These five conditions determine Zren, together with the four integration constants

arising from the integration of the linearized PB equation (Eq. (6.4)) inside and outside a

microgel sphere. Input parameters are here ΦR and the equilibrium radius a, determined

independently. Note that the linearized potential Φl(r) gives rise to the same potential and

electric field values at the cell boundary as the nonlinear PBCM potential. We refrain from

quoting the somewhat lengthy analytic expressions for Φl(r) and Zren given in [62]. As
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discussed in [62] (see also [111]), due to the monotonic increase of the microgel radius with

increasing bare backbone valence Z, the renormalized valence Zren ≤ Z does not reach a

saturation value beyond the linear regime, as it does for non-permeable rigid colloids [55,

57]. Instead, Zren grows monotonically with increasing Z, showing only a slight indication

of a plateau behavior in the regime of intermediately high Z and low suspension salinity.

In Donnan equilibrium, the renormalized net microgel charge number, Zren
net , is obtained in

the PBCM as

Zren
net = −a2Φ′

l(a)
λB

= tanh(ΦR)
κeffλB

[︃
κeff(a−R) cosh(κeff(a−R))

+ (κ2
effaR−1) sinh(κeff(a−R))

]︃
, (6.5)

which follows alternatively from Eq. (2.62), wherein Z and n±(r) on the right-hand side are

replaced, respectively, by Zren and the linearized microion profiles

nl,±(r) = nrese
∓ΦR [1 ∓ (Φl(r) − ΦR)] , (6.6)

whose values at the cell boundary match the non-linearized ones.

To implicitly account for nonlinear effects, we use Zren
net given by Eq. (6.5) as the input for

the net valence in the linear-response, non-overlap Yukawa potential uY(r) in Eq. (2.61).

In addition, κeff might be identified as the renormalized input for the screening constant in

uY(r), as done based on the original description by Alexander et al. [55] for the case of

non-permeable rigid spheres [56, 57]. However, to recover the PBCM screening constant in

Eq. (4.31) in the limiting case of low backbone charges, where charge renormalization is not

operative, we determine the renormalized screening constant, κren, to be substituted into

ueff(r), in a manner that maintains the smoothness of the effective potential at r = a for the

nonlinear case. Explicitly, we determine κren as

(κren)2 = 4πλB

(︂
nZren

app + 2nren
s

)︂
, (6.7)

where

nren
s = 4π

VR

∫︂ R

0
nl,-(r)r2 dr . (6.8)
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The apparent renormalized backbone valence, Zren
app, is defined by Eq. (4.32) using the sub-

stitutions Z∗ → Zren
app, κ∗ → κren, and Z∗

net → Zren
net . Notice that κren is given here only

implicitly, so that an iteration procedure with starting seed κeff is used for its calculation.

For κeff, we obtain the expression

(κeff)2 = 4πλB

1 − γR

[︄
nmZ

ren + 2nren
s

1 + γR

]︄
, (6.9)

similar to the one for impermeable charged colloids [57] (cf. Eq. (3.20)). The screening

constants κeff, κren, and κ mutually differ, except in the limit Z → 0, where γR → 0 and

{ns, n
ren
s } → nres, in which case all three quantities are equal to the reservoir screening

constant, κres.
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Figure 6.12 RY peak height, S(qm), for strongly repelling microgels with Z = 500
and cres = 50 µM. Results are presented for deswelling (solid curve) and reference
system constant-size microgels (dashed curve), based on the charge-renormalized
PBCM. The dotted horizontal line marks the freezing criterion S(qm) = 3.1. Inset:
Swelling ratio α = a/a0 in charge-renormalized PBCM.

Rogers-Young results for the concentration dependence of S(qm) of strongly charged

microgels are displayed in Fig. 6.12. The effective pair potential parameters are determined

here using the PBCM charge-renormalization method described above. The inset shows the

size ratio, a(ϕ0)/aref, with aref = a(ϕ0 = 0.005), as predicted by the nonlinear PBCM method.

The RY values for g(2a) are practically zero (i.e. g(2a) < 0.001) for all considered ϕ0, so

that S(qm) = 3.1 qualifies as a freezing indicator. Figure 6.12 illustrates that, for strongly
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charged microgels, deswelling significantly increases the freezing transition concentration by

about 16 %, corresponding to a 4 % decrease in the swelling ratio α (see inset).

For deswelling microgels, the freezing transition concentration determined by S(qm) = 3.1

is ϕ0 ≈ 0.01. The RY rdf peak height is here g(rm) = 2.7, which is close to the freezing

transition value 2.6 holding for suspensions of colloids interacting by a repulsive hard-core-

Yukawa pair potential, whose state points in the phase diagram are located on the fluid-bcc

part of the freezing transition line, characterized by κcolln
−1/3
m ≲ 7 [110]. If we identify κcoll

by κren, where (κren)2 = 4πλBnmZ
ren
app holds for the present counterion-dominated microgel

system, we obtain κcolln
−1/3
m ≈ 6.3, consistent with a fluid-bcc freezing transition close to the

fluid-bcc-fcc triple point [110].

6.4 Diffusion and rheological properties

We explore next dynamic properties of ionic microgel suspensions, using the one-component

picture of pseudo-microgels interacting via the state-dependent total effective pair potential

veff(r;nm) (see Eq. (4.22)). For a single microgel swollen by the solvent, the solvent inside is

nearly immobilized, moving quasi-instantaneously with the microgel backbone [112]. In fact,

it has been shown that the microgels behave hydrodynamically as permeable spheres with

a reduced penetration length of about 3% of their interaction radius a [24]. Since we are

not interested in the effect of the concentration-dependent deswelling on the hydrodynamic

radius, we can then identify for simplicity the hydrodynamic radius ah of the microgels with

the equilibrium radius a.

The deswelling ratio α(ϕ0), net valence Znet(ϕ0), and Debye screening constant κ(ϕ0)

are determined here using TPT and PBCM methods. As explained in subsection 5.4.4, the

employed methods for calculating dynamic properties depend on veff(r;nm) only implicitly

via the radial distribution function g(r) and static structure factor S(q).

Figure 6.13(a) displays our results for the positive definite hydrodynamic function H(q)
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at concentration ϕ0 = 0.005, calculated using the BM-PA hybrid scheme described in sub-

section 5.4.4, which requires S(q) as the only input. This input is calculated using the RY

scheme, which gives somewhat different results in TPT and PBCM, respectively, owing to

their different predictions for a and Znet. For example, at ϕ0 = 0.005, we find ϕ = 0.067

in PBCM and ϕ = 0.073 in TPT. The differences in S(q) cause less pronounced differences

in H(q), since the latter depends on S(q) only in a global (functional) way [24, 97]. The

differences in H(q) are greatest at the peak position, which is located at practically the same

wavenumber qm as the principal peak of S(q). There are pronounced undulations in H(q)

due to strong HIs between the microgels. Recall that in the absence of HIs, H(q) = 1 inde-

pendent of q. The peak height H(qm) exceeds unity for ϕ0 = 0.005, a feature characteristic

for general charge-stabilized suspensions at low salinity and low volume fractions ϕ, where

the hard core of the colloidal particles is masked by the strong and long-range electrostatic

repulsion [23, 99].

Also displayed in Fig. 6.13(a) is the hydrodynamic function (with TPT input for a) of

a more concentrated suspension at ϕ0 = 0.02, which corresponds in the TPT case to the

volume fraction ϕ = 0.26. The principal peak of H(q) at qm is here significantly below

one. The reduced short-time self-diffusion coefficient, ds/d0(a) = H(qσ ≫ 1), is accordingly

significantly lower than its value for ϕ0 = 0.005, which can be attributed to the enhanced

hydrodynamic hindrance of self-diffusion for higher concentrations (cf. Eq. (5.42)).

The differences in the H(q)’s of deswelling and reference microgels (solid and dashed

curves, respectively, in Figs. 6.13(a) and 6.13(b)) are small, and basically due to the higher

volume fraction of the reference system. This is also the reason for the slight downshift of the

reference-system H(q) relative to the one of the deswelling system. The microgel H(q) bears

a qualitative similarity to the one of colloidal hard spheres (hs) at the same volume fraction

ϕ = 0.26, in particular regarding its peak value and location. The hydrodynamic function of

hard spheres, Hhs(q), is likewise characterized by a peak height below one, and the peak is

located at qmσ ≈ 2π. TPT based explicit values are H(qm) = 0.81 (0.65) for the peak height,
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Figure 6.13 (a) BM-PA results for the hydrodynamic function H(q) as function
of reduced wavenumber, qσ, for two concentrations ϕ0 as indicated. The lower one,
ϕ0 ≈ 0.005, is the concentration where the collective diffusion coefficient attains
its maximum. At ϕ0 = 0.02, the H(q) of deswelling particles with TPT-calculated
radius is compared with that of the reference system. (b) Concentration dependence
of sedimentation coefficient K = H(q → 0). Solid curves: deswelling particles in the
TPT (red) and PBCM (black). System parameters: Z = 200 and cres = 100 µM.

ds/d0 = 0.52 (0.51) for the short-time self-diffusion coefficient, and K = H(q → 0) = 0.11

(0.18) for the sedimentation coefficient, where the values given in brackets are the respective

values for colloidal hard spheres, obtained using the analytic expressions [24, 100]

Hhs(qm) = 1 − ϕ/ϕcp = 1 − 1.35ϕ

dhs
s /d0 = 1 − 1.8315ϕ

(︂
1 + 0.12ϕ− 0.70ϕ2

)︂

Khs = 1 − 6.5464ϕ
(︂
1 − 3.348ϕ+ 7.426ϕ2 − 10.034ϕ3 + 5.882ϕ4

)︂
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ghs(rm = 2a+) = 1 − 0.5ϕ
(1 − ϕ)3 , (6.10)

which are accurate for volume fractions up to the hard-sphere freezing transition value ϕ =

0.494. Notice the strictly linear decline of Hhs(qm) with increasing volume fraction, which

holds to high accuracy for the complete liquid-phase concentration range. In the above

expression for Hhs(qm), ϕcp = π/
(︂
3
√

2
)︂

≈ 0.74 is the highest possible volume fraction,

attained for monodisperse hard spheres in close-packed fcc and hcp crystalline structures.

Equation (6.10) quotes also the accurate Carnahan-Starling expression for the height,

ghs(2a+), of the principal peak of the hard-sphere rdf, located at the contact distance rm =

2a+. The BM-PA values of H(q) at q = qm and in the q → ∞ limit are somewhat higher than

the corresponding hard-sphere values. There are also differences between the microgel g(r)

and the hard-sphere ghs(r) (not shown here). The microgel rdf for ϕ0 = 0.02 has the peak

height g(rm) = 2.50 at pair distance rm = 1.32σ, whereas ghs(σ+) = 2.15. The differences

from the hard-sphere values are due to the electrostatic repulsion between the microgels,

which is here of shorter range 1/κ = 0.4a. The pair potential contact value, βuY(2a) ≈ 18,

is still significantly higher, however, than the thermal energy kBT (see Fig. 6.7(b)), reflected

in a nearly zero probability, g(2a) < 10−3, of finding two microgels in contact.

Owing to HIs, two microparticles in contact sediment faster than at larger separations.

This underlies the fact that the sedimentation coefficient, K = Vsed/V0 = H(q → 0), for a

homogeneous ionic microgel suspension is lower than that for hard spheres at the same ϕ.

The monotonic decline of K with increasing concentration is shown in Fig. 6.13(b). Owing to

stronger solvent backflow, the sedimentation velocity, Vsed(ϕ), is lower in a more concentrated

suspension than in a less concentrated one. The maximal sedimentation velocity, Vsed(ϕ =

0) = V0, is thus attained at infinite dilution, where K = 1. Since the major effect of

deswelling is to lower ϕ, K is higher for deswelling microgels than for the constant-size

reference particles, which explains the slightly higher values of K in PBCM, since aPBCM <

aTPT.
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Figure 6.14 BM-PA results for (a) hydrodynamic function peak height, H(qm),
and (b) reduced cage diffusion coefficient, D(qm)/d0(nm), as functions of volume
fraction ϕ = ϕ0α(nm)3 using TPT (solid red curve) and PBCM (sold black curve) for
α(nm) and compared with hard-sphere results (dashed curves). System parameters:
Z = 200 and cres = 100 µM.

As seen in Fig. 6.14(a), the H(qm) of ionic microgels has a nonmonotonic volume fraction

dependence. Starting from a value of one at infinite dilution, with increasing ϕ, H(qm)

increases towards its maximal value ∼ 1.2 at ϕ ≈ 0.07 corresponding to ϕ0 ≈ 0.005, but

it thereafter declines monotonically, reaching values below one for ϕ ≳ 0.2. This behavior

should be contrasted with the strictly linear decrease of H(qm) for hard spheres (curved,

dashed line on the employed lin-log scale). In contrast to the nonmonotonic H(qm), both K

and ds/d0 (latter not shown here) decrease monotonically with increasing ϕ. Furthermore,

unlike the swollen radius a, which decreases with increasing ϕ0, the reduced Debye screening

constant κa increases monotonically from κa ≈ 1.24 at ϕ0 = 0.005 to κa ≈ 3.4 at ϕ0 = 0.05.

For rigid charged particles interacting via a repulsive Yukawa-type potential, the order

relations H(qm;ϕ) > Hhs(qm;ϕ), ds(ϕ) > dhs
s (ϕ), and K(ϕ) < Khs(ϕ) were previously demon-

strated [113, 114]. These relations hold also for ionic microgels provided particle overlap is

very unlikely, i.e., provided g(2a) ≈ 0.

At low Z or high salt content, overlap of microgels is likely and their softness matters. To

illustrate this, we briefly consider a weakly charged system, Z = 5, with soft Hertz repulsion

126



0 5 10 15 20 25
qσ

0.2

0.4

0.6

0.8

1

H
(q

)

0.012

0.31

0.13

0.05

0.024

φ =

Figure 6.15 BM-PA results for hydrodynamic function, H(q), of soft low-charge mi-
crogels for different volume fraction ϕ as indicated. We employ PBCM equilibrium-
size calculations and PY closure. System parameters: ϵH = 10, a = 23 nm, Z = 5
and cres = 100 µM.

of strength ϵH = 100. We use here PBCM method for calculating the microgel equilibrium

size, which does not significantly vary in the range of studied concentrations, due to the

weak electrostatic effects. For the static pair correlation functions, we use PY closure, which

is applicable owing to the short-range effective pair interaction (cf. subsection 5.3.2). Here,

we find that the contact value of the soft particles is approximately equal to the unity,

g(σ) ≈ 1, in the range of considered concentrations. In Fig. 6.15, we observe a flattening of

the oscillations of H(q) at larger q, implying H(qm) ≈ ds/d0. Moreover, the particle softness

tends to enhance K, while H(qm) is lowered, as noticed in Fig. 6.16 for a comparison against

hard-sphere results. This behavior of H(q) is also observed for model system of particles

interacting by pure Hertz potential [24]. The conditions under which softness effects matter

in nonionic and weakly charged microgel systems are not further explored in this work. This

will be the subject of a forthcoming study.

An important feature distinguishing (ionic) microgels from impermeable solid particles is

that d0(nm) = kBT/(6πη0a(nm)) = ddry
0 /α(nm) depends on concentration. Here, ddry

0 is the

Stokes-Einstein diffusion coefficient of collapsed (dry) microgels, and α(nm) = a(nm)/a0 the

swelling ratio at microgel concentration nm.
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Figure 6.16 BM-PA results for (a) hydrodynamic function peak height, H(qm),
and (b) sedimentation coefficient, K = H(q → 0), versus swollen volume fraction ϕ
for weakly-charged microgel and hard-sphere systems. Eq. (6.10) has been used to
compute hard-sphere quantities. Other parameters as in Fig. 6.15.

The wavenumber-dependent short-time diffusion function, D(q), measured in units of

d0(nm), is determined according to Eq. (5.40) by the ratio of the kinetic factor H(q) and

S(q), the latter being independent of HIs. The principal minimum of D(q) is located, for

repulsive interactions, at practically the same wavenumber qm at which S(q) and H(q) attain

their respective maxima, with S(qm) being in general distinctly higher than H(qm). The

so-called cage diffusion coefficient, D(qm), quantifies the slow relaxation of concentration

fluctuations of wavelength 2π/qm comparable with the diameter of the dynamic cage formed

around each particle by its neighbors. For hard spheres, D(qm)/d0 decreases monotonically

with increasing ϕ, which reflects a dynamic stiffening of the next-neighbor cage. The cage

diffusion coefficient of hard spheres is quantitatively described, within 2% accuracy up to

the freezing volume fraction, by the polynomial

Dhs(qm)
d0

= 1 − 2ϕ− 0.566ϕ2 + 2ϕ3 , (6.11)

according to which Dhs(qm) follows closely a linear decline with slope −2 for volume fractions

up to ϕ ∼ 0.3. At freezing, where Hhs(qm) ≈ 0.33 and Shs(qm) ≈ 2.85, Dhs(qm) ≈ 0.12 × d0.

The cage diffusion coefficient of ionic microgels is plotted in Fig. 6.14(b) as a function

of ϕ, where D(qm) is normalized by the concentration-dependent single-microgel diffusion
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coefficient d0(nm), allowing direct comparison with the reduced cage diffusion coefficient of

hard spheres (Eq. (6.11)). Unlike H(qm), the reduced cage diffusion coefficient monotonically

decreases with increasing ϕ. The only remnant of the peak in H(qm) is a shallow inflection

point in D(qm)/d0(nm) at ϕ ≈ 0.07. Owing to the electrostatic repulsion, the next-neighbor

cage of microgels is more structured than that of hard spheres at the same ϕ, reflected

in an accordingly higher structure factor peak and lower cage diffusion coefficient. The

distinctly higher values of S(qm) in TPT, in comparison to PBCM, lead to lower values

of D(qm)/d0(nm) in TPT, which explains the reverse order in the curves of H(qm) and

D(qm)/d0(nm) in Figs. 6.14(a) and (b), respectively.
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Figure 6.17 BM-PA results for the reduced collective diffusion coefficient of
deswelling microgels, dc/d

dry
0 , versus ϕ0 (solid curves) for swollen radius a calcu-

lated using TPT (red) and PBCM (black). Dotted curves are results without HIs
where H(0) = 1. Vertical line segments mark concentrations at which κc = κs (cf.
Eq. (6.1)). System parameters: Z = 200 and cres = 100 µM. Inset: Comparison
with reference system results (dashed lines) for concentrations exceeding the peak
position value ϕ0 ≈ 0.005.

While D(q) is minimal at qm, it attains its maximum at q = 0 where, according to

Eq. (5.44), it has the physical meaning of a collective diffusion coefficient, denoted as dc =

D(q → 0). The maximum reflects the fast relaxation of long-wavelength concentration

fluctuations by a collective diffusive motion of particles. In this context, recall that H(q) and

S(q) are both minimal at q = 0. At a given ϕ0, however, S(0) appearing in the denominator
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of dc = d0(nm)K/S(0) is clearly smaller than K = H(0), as noticed from Figs. 6.11 and

6.13(b), leading to a consequentially large value of dc.

Figure 6.17 displays dc for deswelling ionic microgels, obtained using the BM-PA method

with respective TPT and PBCM input for a. To uncover its genuine concentration de-

pendence, dc is divided, in lieu of d0(nm), by the concentration independent single particle

diffusion coefficient, ddry
0 , of collapsed microgels, implying that dc/d

dry
0 → a0/a for ϕ0 → 0.

Akin to low-salinity suspensions of impermeable charge-stabilized particles, a nonmono-

tonic concentration dependence of dc is observed, with a pronounced maximum of dc at

ϕ0 ≈ 0.005, i.e., at about the same concentration where H(qm) is largest. The nonmonotonic

concentration dependence of dc is explained on noting first that K and S(0) are both mono-

tonically decreasing with increasing ϕ0. At low ϕ0, the decrease of S(0) with increasing ϕ0 is

stronger than that of K, giving rise to a growing dc. At higher concentrations, the slowing

influence of HIs on K is strong enough that the increase of dc is turned into a monotonic

decline. To show explicitly that the maximum of dc, and its decline at higher ϕ0, are due

to HIs, results for dc without HIs are included in the figure for comparison. Without HIs,

K = 1 holds independent of concentration. The curves for dc(ϕ0) without HIs are monoton-

ically increasing, and they converge to the ones with HIs at very low concentrations only.

It is further noticed that the larger values of dc in TPT are due to the lower osmotic com-

pressibility values predicted by this method, and this even though d0(n) ∝ 1/a in TPT is

lower than in PBCM. Quite interestingly, the concentration in Fig. 6.17 where the number

of backbone-released counterions equals the number of salt counterions marks an inflection

point, where the shape of the curve of dc(ϕ0) changes from convex to concave.

The influence of deswelling on dc at higher ϕ0 is assessed in the inset of Fig. 6.17, in

comparison with the reference system predictions (dashed lines). Deswelling slightly en-

hances collective diffusion, as predicted by both TPT and PBCM. This enhancement can be

attributed to weaker HIs between deswelling microgels, with a corresponding increase in K

overcompensating the increase in S(0).
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A short discussion is in order regarding the BM-PA scheme results for H(q) at wavenum-

bers q ≪ qm, where its accuracy is known to worsen with increasing concentration, up to a

degree where non-physical negative values for K are predicted [97, 113]. This is mainly due

to the self-diffusion contribution to H(q) = Hd(q) + ds/d0, which in the hybrid scheme is

calculated using the pairwise additivity (PA) approximation. The PA method fully accounts

for two-body HIs but neglects three-body and higher-order contributions. These complicated

higher-order contributions account for the reduction in the strength of the HIs between two

particles, due to a hydrodynamic shielding by intervening particles. The disregard of this

hydrodynamic shielding effect by the PA scheme leads at higher concentrations to an un-

derestimation of ds. The latter contributes to H(q) most significantly at q = 0 where the

distinct part, Hd(0), is negative. For this reason, we show BM-PA results for K = H(0) and

dc ∝ K for concentrations up to ϕ0 = 0.02 only, where the small-q BM-PA predictions are

trustworthy.
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Figure 6.18 Modified BM theory results for the reduced high-frequency viscosity,
η∞/η0, as function of ϕ0, for interaction parameters and a calculated using TPT and
PBCM. Solid curves are for deswelling microgels, while dashed curves are for the
reference system. Dotted curve is the prediction by Eq. (6.12) using ϕ = ϕ0α

3(ϕ0),
with α(ϕ0) calculated in PBCM. System parameters: Z = 200 and cres = 100 µM.

Having discussed (short-time) diffusion properties of ionic microgel suspensions, we fi-

nally consider rheological properties, namely the high-frequency (short-time) viscosity η∞

and the zero-frequency viscosity η introduced in Eqs. (5.45) and (5.46), respectively. Our
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analysis is limited here to weakly sheared suspensions, where nonlinear phenomena such as

shear thinning and the buildup of normal stress differences are negligible. Just as for the

diffusion properties, we identify the hydrodynamic particle radius with a. As described in

subsection 5.4.4, η∞ is calculated using the modified Beenakker-Mazur (BM) expression in

Eq. (5.47). The shear stress relaxation contribution, ∆η, in η = η∞ + ∆η is calculated using

the simplified mode-coupling theory (MCT) expression in Eq. (5.48). The only input to

these methods is S(q), which is calculated in RY approximation based on veff(r;nm), with

a obtained in the TPT and PBCM, respectively. HIs are incorporated into the simplified

MCT expression via H(q), determined using the BM-PA method.

Figure 6.18 presents results for η∞ (in units of the solvent viscosity η0) as a function of

ϕ0. With increasing concentration, η∞ grows gradually to a value at ϕ0 = 0.03 only three

times larger than the solvent viscosity. Such a modest growth with increasing concentration

is a characteristic feature of η∞. In addition, η∞ is known to be rather insensitive to the form

of the pair potential [21, 97] and hence to changes in the equilibrium radius a, as reflected

in the nearly coincident curves for η∞ with a obtained from TPT and PBCM methods. At

a given concentration, the reference microgel suspension has a larger volume fraction than

the deswelling microgels system, which explains the mildly higher viscosity values.

For comparison, we show the prediction for η∞ from the polynomial expression,

η∞

η0

≈ 1 + 5
2ϕ(1 + ϕ) + 7.9ϕ3 , (6.12)

derived in [21]. This expression is a good viscosity approximation for dilute suspensions

of strongly repelling charge-stabilized spheres with prevailing two-body HIs and low values

of S(0). As shown in Fig. 6.18, Eq. (6.12) is in qualitative accord with the modified BM

results, but underestimates η∞ at higher concentrations. Note that Eq. (6.12), although not

a virial expansion to third order in ϕ, reduces to the linear Einstein viscosity formula for

very low volume fractions where the particles are uncorrelated, and thus ∆η = 0. For the

hypothetical case of vanishing HIs, the particles remain uncorrelated on short time scales for
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all fluid-phase volume fractions. In this case, η∞/η0 = 1+[η]ϕ holds for all ϕ, with [η] = 5/2

for no-slip spheres.
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Figure 6.19 Reduced zero-frequency viscosity, η/η0, versus ϕ0 for system parame-
ters Z = 200 and cres = 100 µM. The viscosity contribution η∞ is calculated using
modified BM theory, and the shear stress relaxation contribution ∆η using simplified
MCT. Inset: Comparison with reference system viscosity (dashed curves).

The reduced zero-frequency viscosity, η/η0, of deswelling microgels is plotted in Fig. 6.19

(solid curves). The viscosity curves terminate at the concentration where S(qm) ≈ 3, which

is of different value in PBCM and TPT, respectively. The pronounced increase of η at

higher ϕ0 is mainly due to the shear stress relaxation part ∆η, which we calculated using the

simplified MCT expression in Eq. (5.48). The latter is more sensitive to changes in the pair

potential than η∞, as reflected in visibly higher values of η for ϕ0 ≳ 0.03, when the TPT

radius input is used. The higher volume fractions of the reference system in comparison to

the system of deswelling microgels imply a lower zero-frequency viscosity for the deswelling

particles, visible in the inset at higher concentrations.

In closing this section, we notice that for the employed model of ionic pseudo-microgels

electro-kinetic effects, which arise due to the non-instantaneous dynamic response of the

microion clouds formed inside and outside the microgels, have been disregarded. These

effects tend to lower dc and dl, and to increase η, but in general by small amounts only.

Electrokinetic effects on diffusion and rheology are of secondary importance, in particular,
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when non-dilute suspensions are considered and when the microions are small compared to

the microgels, which is commonly the case.

134



Chapter Seven

CHARGE RENORMALIZATION:

NUMERICAL RESULTS

As noted in chapter 3, in the current literature one encounters different colloid charge-

renormalization methods, which allow to extend the effective pair potential concept in the

one-component picture of diluted suspensions of weakly-charged colloids to highly-charged

colloids and more concentrated suspensions. For the here considered systems of ion- and

solvent-impermeable colloidal macroion spheres of fixed size and in osmotic equilibrium with

a 1:1 electrolyte microion reservoir, the effective one-component description is based on three

reduced parameters that uniquely determine the system: the colloid concentration, expressed

by the colloid volume fraction ϕ; the reduced reservoir screening parameter κresa, related to

the microion reservoir concentration; and the coupling parameter ZλB/a, with Z denoting

the bare colloidal valence. Here, a and λB are the colloidal (hard-sphere) radius and the

solvent Bjerrum length, respectively. We consider impermeable, rigid colloidal particles

only, where charge renormalization effects are caused by the quasi-condensation of microions

at the surface of the colloidal macroions, leading to renormalized valence values, Zeff, smaller

than Z.

The renormalization methods map a highly-charged macroion system, with significant

nonlinear electrostatic effects, onto an equivalent linearly-behaving system characterized by
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renormalized effective interaction parameters, namely the renormalized screening constant

κeff and the renormalized valence Zeff. These renormalized interaction parameters are used in

the effective DLVO-type electrostatic pair potential ueff(r) in Eq.(2.32), in order to summar-

ily account for nonlinear effects in the macroion-macroion interactions. The accuracy of each

method for describing nonlinear electrostatic effects depends on the addressed region of the

parameter space. A drawback of most of these approaches is that they rely on (uncontrolled)

approximations which to date are not fully tested [64].

In this chapter, we quantitatively evaluate the performance of the most prominently

used charge-renormalization methods by assessing their resulting predictions of structural

and thermodynamic properties of colloidal suspensions. We focus on the PB mean-field

renormalization methods presented in chapter 3: Surface Charge (SC) and Extrapolated

Point Charge (EPC) methods, based on the spherical cell model approximation with edge

and mean potential linearizations; the Renormalized Jellium Model (RJM) and the Renor-

malized Linear Response Theory (RLRT). These methods provide the renormalized effective

interaction parameters, κeff and Zeff, which we use as input to the effective macroion pair

potential for computing pair correlation functions characterizing the colloidal structure. We

explore the different renormalization predictions for (κeff,Zeff) also in their respective effects

on thermodynamic quantities including the suspension pressure, p, and the osmotic suspen-

sion compressibility, χosm.

To assess the performance of the considered renormalization methods and to compare

the calculated structural and thermodynamic properties with earlier computer simulation

results, we use the following system parameters: solvent Bjerrum length λB = 0.714nm (i.e.,

water at T = 293K), bare colloid valence Z = 40, colloid (macroion) radius selected such

that λB/a = 0.0222 , 0.0445 , 0.0889 , 0.1779 , 0.3558 and 0.7115, with according coupling

parameter ZλB/a = 0.89 , 1.78 , 3.56 , 7.12 , 14.23 and, 28.5. Regarding the 1:1 electrolyte

reservoir concentration, nres is chosen such that κresa is in the range of 0−18, which connects

the counterion-dominated regime at low κres with the salt-dominated regime at large κres.
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The selected values of the volume fraction ϕ = (4π/3)nm a
3 are in the range of 1 × 10−4 −

3.75 × 10−1.

7.1 Renormalized interaction parameters

We utilize the mean-field charge renormalization methods discussed in chapter 3 to compute

the renormalized (effective) parameters κeff and Zeff, going into the effective macroion pair

potential ueff(r), e.g. in Eq. (2.32). A connection between the calculated renormalized

parameters and ueff(r) can be directly established in the RJM and RLRT schemes, while it

is only established in an ad hoc way in the CM-based renormalization schemes, such as the

SDHA scheme by Boon et. al. [56].
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Figure 7.1 Reduced renormalized screening constant, κeffa, versus colloid volume
fraction, ϕ, for different renormalization methods as indicated. A salt-free suspen-
sion (nres = 0) is considered with bare macroion valence Z = 40 and ZλB/a = 7.12
for λB = 0.714nm. Inset: κeffa versus coupling parameter, ZλB/a, for the different
methods at ϕ = 0.01. In the inset, the SC/EPC results with edge linearization
are indistinguishable from the RJM result on the scale of the figure. Dotted grey
line corresponds to the screening constant κa =

√︂
3ϕZλB/a without accounting for

charge renormalization.

To explore numerically the effective interaction parameter predictions, we first focus on

the salt-free case, where a system in Donnan osmotic equilibrium and a closed (canonical)

system become identical, since microions cannot leave the suspension into the reservoir due to
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the electroneutrality constraint. In the salt-free limit, the parameter space is two-dimensional

and spanned by ϕ and ZλB/a.

The predictions by the various renormalization schemes for κeff as a function of ϕ and

ZλB/a, respectively, are shown in Fig. 7.1 for the salt-free case. For all considered methods,

one observes an increase of κeff with increasing ϕ and ZλB/a (inset). Notice that for the

CM-based methods SC and EPC, κeff only differs by the invoked linearization. Within

the underlying mean-field approximation, κeff is only determined by the free (uncondensed)

microions for all methods. Therefore, it increases when the number of (surface-released)

free counterions is increased, as done by increasing the colloid volume fraction ϕ or the

colloid bare valence Z. This is noticed directly from Eqs. (3.18) and (3.20) for the CM-

based methods with edge and mean linearization, respectively, and in Eq. (3.47) for RLRT

and Eq. (3.41) for RJM. The potential linearization in RLRT is equivalent to the potential

linearization with respect to the (volume-averaged) mean electrostatic potential. There

is thus a clear distinction visible in Fig. 7.1 between the curves by the methods invoking

linearization with respect to the mean electrostatic potential and the curves by the methods

with linearization with respect to the minimum absolute value of the electric potential at

the cell edge. This distinction is more pronounced at larger ϕ and larger ZλB/a. Methods

invoking mean potential linearization predict thus larger renormalized screening parameter.

Fig. 7.2 shows the different predictions for Zeff and its dependence on ϕ and ZλB/a (in

inset). The renormalized valence Zeff < Z arises from the interaction of the strongly-charged

colloid surfaces with their associated counterions. The strongly associated microions can be

considered as quasi-condensed [36, 55, 115], which is a nonlinear electrostatic effect. The

renormalized valence Zeff is determined by the competition between the electric interac-

tion energy reduction, via (counterion) quasi-condensation, and the gain in entropy of the

microions by spreading out across the system volume. For small but increasing colloid con-

centration, the number of microions available for surface-condensation is increased, which
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Figure 7.2 Reduced renormalized valence, Zeff/Z, versus ϕ for the indicated renor-
malization methods and a salt-free suspension (nres = 0) with bare macroion valence
Z = 40 and ZλB/a = 7.12 for λB = 0.714 nm. Inset: ZeffλB/a versus coupling pa-
rameter, ZλB/a, at ϕ = 0.01. In the inset, EPC edge and SC edge curves overlap,
and likewise EPC mean and SC mean curves.

leads to a decrease of the renormalized charge as observed in the figure. However, this re-

duction of Zeff ceases eventually with increasing ϕ, since the quasi-condensation reduces the

electric potential difference between a colloidal surface and the bulk volume (distant from

the colloids) disfavoring the condensation of microions. This leads to a minimum of Zeff

at ϕ ≈ 0.01 with a subsequantial increase of Zeff with further concentration growing. All

considered renormalization methods share qualitatively the same behavior, except for RJM

where Zeff increases only very weakly for large volume fractions. The effect on Zeff by varying

the bare valence Z is shown in the inset of Fig. 7.2. For low bare valence Z, the potential

difference between a colloidal surface and the bulk of the suspension is small so that Z ≈ Zeff

without noticeable counterion condensation. As Z is increased, quasi-condensation appears

leading to Zeff < Z. For high values of Z, Zeff tends to a saturation value, which is different

for each method.

All considered methods make comparable predictions for Zeff and κeff, except for RJM

that predicts distinctly stronger microion condensation in comparison to the other ones with

accordingly smaller Zeff values. From comparing the CM-based methods only, one notices
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that the effective valence is larger for mean than for edge linearization. The fact that

Zeff(mean) > Zeff(edge) was noted already in relation to Eq. (3.30).

We study next the effect of varying the salt concentration. Since we assume Donnan

equilibrium with a microion reservoir, our results are presented as functions of the reservoir

screening constant, κres ∝ √
nres, which is proportional to the square root of the reservoir salt

concentration. We analyze how salt variation affects the renormalized interaction parame-

ters. Figure 7.3 depicts how Zeff and κeff (the latter in inset) vary with increasing reservoir
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Figure 7.3 Reduced renormalized valence, Zeff/Z, versus reduced reservoir screen-
ing constant κresa (κ2

res ∼ nres) for ϕ = 0.08 and different renormalization methods
as indicated. Inset: Reduced renormalized screening constant, κeffa, versus reduced
reservoir screening constant κresa. Other system parameters: Z = 40, ZλB/a = 7.12
and λB = 0.714 nm.

salt concentration, i.e. increasing κres ∝ √
nres. At low salt content, all considered renor-

malization methods predict Zeff to be constant and equal to the renormalized valence of a

salt-free system. With increasing salt concentration, all predictions of Zeff, except for RLRT,

start to grow monotonically and tend to match in the high-salt concentration regime, where

Zeff → Z. RLRT, however, has a peculiar behavior. It shows the correct limiting behavior

for low and high salt concentrations, but it is nonmonotonic for intermediate concentra-

tions and with constant value Zeff = Z above a critical high-salt value κeff. According to

the RLRT renormalization scheme described in section 3.3, quasi-condensation is taken to
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cease abruptly. Similarly to Zeff, the renormalized screening constant κeff is constant and

equal to the salt-free renormalized screening constant at low salt concentrations (see inset of

Fig. 7.3). With increasing salt content, κeff monotonically grows and becomes equal to the

reservoir screening constant κres for high concentrations.

In systems with added salt and for the employed mean-field models, κ2
eff has two additive

contributions: one arising from the linearly-behaving salt ions, (κeff
s )2, and a second one,

(κeff
c )2, from the free, noncondensed microions, i.e.

κ2
eff = (κeff

c )2 + (κeff
s )2. (7.1)

In chapter 3, we showed that κeff
c ∝

√
ϕZeff for the CM-based methods, RLRT and RJM;

whereas κeff
s ∝ √

nres in RJM. These dependencies follow readily from Eqs. (3.18), (3.20),

(3.34) and (3.47). Equation (7.1) allows to specify two regimes: a counterion-dominated

regime for κeff
c ≫ κeff

s so that κeff ≈ κeff
c ; and a salt-dominated regime, for κeff

c ≪ κeff
s so that

κeff ≈ κeff
s . The major differences between the renormalization predictions for Zeff and κeff

are observed in the counterion-dominated regime, where these parameters are insensitive to

salinity variations. In contrast, in the salt-dominated regime, all renormalization methods

converge to κeff → κres and Zeff → Z. Therefore, in analyzing differences between the

different renormalization schemes, one should focus on the salt-free limit.

An important quantity that provides a connection between the semi-grand canonical and

canonical description in systems with added salt is the suspension salt pair concentration.

This quantity also expresses the salt expulsion effect in Donnan equilibrium with increase

of the colloid concentration. The suspension salt pair concentration, ns, is (formally) deter-

mined from equating the microion chemical potentials in the reservoir and the suspension,

within the semi-open description. In case of nonlinear CM approximation, this leads to the

result for ns stated in Eq. (3.3). When charge renormalization is operative, the renormalized

suspension salt pair concentration, neff
s , can be obtained from the renormalized interaction

parameters. This quantity would measure the effectively linearly-behaving salt microion
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Figure 7.4 Reduced renormalized suspension salt concentration, neff
s /nres, versus

reduced reservoir salt concentration, nresa
3, for ϕ = 0.08 and for the indicated

renormalization schemes. Inset: magnification of the counterion- to salt-dominated
transition region. Red: nonlinear ns from CM. Other system parameters: Z = 40,
ZλB/a = 7.12 with λB = 0.71 nm.

pairs. Explicit expressions for neff
s by the various methods are given in Eqs. (3.21) and (3.19)

for SC with edge and mean linearization, respectively; Eq. (3.47) for RLRT; and Eq. (3.38)

for RJM. For the EPC method, Eqs. (3.21) and (3.19) have been also used as approximations

for edge and mean linearization, respectively. The respective results are plotted in Fig. 7.4,

where we observe how n(eff)
s varies with increasing reservoir salt concentration nres. Two lim-

iting plateau regions are observed: one in the counterion-dominated regime at low reservoir

salt concentration, where neff
s ≈ 0; and one in the salt-dominated regime at high reservoir

salt concentration, where neff
s → (1−ϕ)nres. The predictions for neff

s by the different methods

tend to overlap in these limits. In the transition regime for intermediate salt concentrations,

the relative differences amount to 20% at most. It is interesting to compare the various

predictions for neff
s with ns (red curve), the latter obtained from integrating the nonlinear

coion profile in nonlinear CM approximation in Eq. (3.3). As it is seen, ns is approximately

equal to the RLRT prediction of neff
s .

Recall that salt ions are expelled from the suspension into the reservoir at low- to in-

termediate reservoir salt concentrations leading to neff
s < (1 − ϕ)nres, since the counterions
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make here the largest contribution to the suspension chemical potentials. According to

Fig. 7.4, RJM predicts the weakest salt-expulsion effect, while the expulsion predicted by

the CM-based methods is the strongest.

7.1.1 Effective valence larger than bare one

On exploring the predictions by the various charge-renormalization methods in the (ϕ, nresa
3)

parameter space, we observed that the EPC methods can predict an effective valence Zeff

that is larger than the bare valence Z, for high colloid concentrations and small values of Z.

Since quasi-condensation of counterions for larger Z always results in renormalized values

Zeff < Z, this observation is not a nonlinear renormalization effect. Instead, it is due to a

reduction in the linear microion screening of a macroion caused by other nearby macroions.

In Fig. 7.5, Zeff and κeff are plotted for an exemplary, weakly-coupled system with

ZλB/a = 1.52. Note that Zeff > Z in EPC for ϕ ≥ 0.075, with no noticeable differences

for edge and mean linearizations. There is a remnant of quasi-condensation of counterions

visible for ϕ ≤ 0.075, where Zeff < Z. The inset shows the expected monotonic growth of

κeff, being the results for the different linearizations approximately similar.

The EPC method is not the only method to predict Zeff > Z for concentrated suspen-

sions of weakly charged colloids. Another method is the penetrating RJM (see section 3.2),

where, different from the nonpenetrating RJM, the homogeneous neutralizing jellium also

occupies the colloid interior. As noted before in section 3.2, the RJM is based on the jellium

approximation JA, widely used in solid state physics and applied to charge-stabilized sus-

pensions by Beresford-Smith et. al. [9]. The JA assumes for the microion radial distribution

function that gmm(r) = 1 for all r > 0. By combining this approximation with the linear

MSA closures for the microion-microion direct correlation functions of pointlike microions,

and the MSA closure for the macroion-microion direct correlation functions at r > a, the

effective macroion pair potential for weak macroion coupling and high dilution is obtained
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renormalization schemes. Inset: Reduced renormalized screening constant κeff/κres
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in the linear penetrating JA as [9]

βueff(r) = λBZ
2(1 + ϕ)2

(︃
eκa

1 + κa

)︃2 e−κr

r
, (7.2)

with κ2 = 4πλB(n+ +n−) for monovalent microions. Contrasting this pair potential with the

ones for impermeable colloids derived in section 2.1 by means of DFT and LRT, one notices

that they are identical apart from the factor (1 + ϕ)2, which is due to the macroion core

penetration by the jellium. By combining the (penetrating) JA with the nonlinear HNC

closure for the macroion-microion direct correlation functions, nonlinear effects might be

included. This leads to a description equivalent to the nonlinear PB equation in Eq. (3.31)

with associated boundary conditions for the penetrating jellium in Eq. (3.43). Thus, one

can apply a charge-renormalization procedure, similar to the one for the nonpenentrating

case, resulting in renormalized valence and screening parameter used as inputs to Eq. (7.2)

in order to incorporate nonlinear screening effects. The effective pair potential derived

within nonlinear penetrating JA approximation by Beresford-Smith et. al. [9] has proven to

accurately describe the pair structure of a highly-coupled systems with ZλB/a ≈ 13, up to

macroion concentrations of ϕ = 0.13 [9].
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The second method predicting Zeff > Z at high concentration and small ZλB/a is the

PM-MSA scheme (see subsection 2.4.3), which gives rise to ueff(r) shown in Eq. (2.76). This

resulting MSA-based effective pair potential is of DLVO-type with Zeff = XMSAZ, where

XMSA is given by Eq. (2.77), and κeff = κ, with κ of the DH form in Eq. (2.78) [48]. In

the infinite dilution limit nm → 0, one obtains XMSA → eκa/(1 + κa), recovering hereby the

standard DLVO potential. In the high temperature limit β → 0, where κa ≪ 1, it follows

ZMSA
eff = Z XMSA → Z

1 − ϕ
≈ (1 + ϕ)Z + O(κ2). (7.3)

Note that ZMSA
eff differs from the linear effective valence Zeff = Z(1 + ϕ) in the pair potential

of Eq. (7.2), the latter derived using linear penetrating JA, only by small correction terms

of quadratic order in ϕ and κ. Explicit calculation shows indeed that ZMSA
eff > Z.

Figure 7.5 depicts Zeff and κeff predicted by the EPC methods, and by the penetrating-

and nonpenetrating RJM for weakly coupled macroion suspensions with ZλB/a = 1.52.

The system parameters have been selected in a region where the EPC-based g(r) calculated

using RY is of better accuracy than the one based on the SC methods [56]. The curves of

κeff, depicted in the inset, present the expected monotonic increase with increasing ϕ for all

cases, however it is only in the EPC and penetrating RJM methods that Zeff > Z is found

for ϕ ≳ 0.1. The nonpenetrating RJM predicts Zeff ≤ Z for all concentrations.

The solid lines in Fig. 7.5 corresponds to ZMSA
eff and κ as obtained from the linear MSA

solution in Eqs. (2.76) and (2.78). Explicitly,

ZMSA
eff

Z
= 1 + κa

eκa
[cosh(κa) + U (κa cosh(κa) − sinh(κa))], (7.4)

with U given in Eq. (2.81). The MSA results for ZMSA
eff and κ are depicted only for ϕ > 0.3,

where the MSA contact value g(σ+) is nonnegative. As noted already in the context of

Eq. (2.84), ZMSA
eff is lager than Z and approximately equal to Zeff predicted by the penetrating

RJM. According to Ref. [48], the MSA prediction ZMSA
eff > Z or, equivalently, XMSA >

eκa/(1 + κa), can be attributed to a decreased screening ability of the microions around

145



given macroion owing to neighboring macroions, leading to a stronger effective macroion-

macroion repulsion. This reduced screening arises in the high concentration region and it

might be understood as a consequence of the overlap of the double layers predicted by the

standard DLVO potential.
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Figure 7.6 (a) Sketch of the geometry indicating all relevant quantities. (b) Re-
duced effective screening length, λeff/a, and reduced mean distance between two
colloid surfaces ξ = n−1/3

m /a− 2 versus ϕ for EPC edge method. (c) Reduced effec-
tive valence, ZeffλB/a, versus ϕ. System parameters as in Fig. 7.5.

In order to examine how the double layer overlap is related to the predictions from

EPC method, the effective screening lengths resulting from EPC-κeff are plotted in Fig. 7.6.

Figure 7.6(a) shows a sketch of the analyzed geometry. In Fig. 7.6(b), we compare twice the

effective screening length, λeff = κ−1
eff , with the (reduced) mean surface-to-surface distance,

ξ = n−1/3
m − 2a, of two neighboring macroions. By contrasting this with Fig. 7.6(c), one

notices that Zeff becomes larger than Z roughly at the same concentration ϕ, where the two

(diffuse) electric double layers begin to overlap. This illustrates that the finding Zeff > Z
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is not a single-macroion effect. We point out that the linear screening effect Zeff > Z for

overlapping macroion electric double layers at large ϕ is masked by microion condensation

(charge-renormalization) for larger coupling, so that Zeff < Z is observed even at large

ϕ. However, the here discussed linear screening effect with Zeff > Z can play a role in

concentrated solutions of proteins.

7.2 Pair structure

Once the renormalized parameters κeff and Zeff entering in ueff(r) are determined, the macroion-

macroion g(r) and S(q) can be calculated using the thermodynamically consistent RY scheme

described in subsection 5.3.3. The RY scheme provides accurate results for dispersions with

Yukawa-type repulsive interactions [99, 109, 110]. This allows for comparing the considered

renormalization schemes for κeff and Zeff in terms of their predictions for g(r) and S(q).

We focus first on salt-free systems, where the largest differences in the renormalized

interaction parameters are observed (cf. Fig. 7.3), and for which PM-based Monte Carlo

(MC) simulation results of g(r) are available [8].

In Fig. 7.7, the g(r) for κeff and Zeff obtained using SC scheme with mean linearization

is compared with PM-MC simulation results by Linse et. al. [8], for six different coupling

parameter values ZλB/a as indicated. The depicted curves based on the SC mean method

are representative for all considered renormalization schemes. Qualitatively, all schemes

give good results for g(r) in the explored parameter range. With increasing ZλB/a at

fixed ϕ = 0.01, there is an initial build-up of the macroion pair structure progressing from

ZλB/a = 0.89 to 7.12. In this coupling range, the principal peak of g(r) at rm increases

with increasing coupling and rm is decreasing. One further observes an increasing distance

range, wherein g(r) ≈ 0, reflecting stronger electric repulsion. Notice that in the considered

coupling range, there is perfect agreement between the g(r) curves with SC mean input for

Zeff and κeff and the PM-MC simulation data. Small differences between the simulation data
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for g(r) and the RY-g(r) are visible for the two largest coupling values, but even there the

observed trends are the same, i.e. a gradual decrease in g(rm) in increasing ZλB/a from 7.12

to 28.46, with the correlation-hole range g(r) ≈ 0 decreasing accordingly and rm increasing.

In the simulation study in Ref. [8], it is shown that for further increasing coupling macroion

aggregation occurs.
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Figure 7.7 Macroion pair correlation function, g(r), for different coupling param-
eters, ZλB/a, of a salt-free suspension (nres = 0) at ϕ = 0.01. The solid curves are
obtained using RY scheme with SC mean charge-renormalization input for Zeff and
κeff in ueff(r), while open circles are PM-MC simulation data [8]. From bottom to
top, ZλB/a = 0.89, 1.78, 3.56, 7.12, 14.23, 28.46. The curves are vertically shifted
for better visualization. Other system parameters: Z = 40 and λB = 0.71 nm

The peak height of g(r) is plotted in Fig. 7.8(a) in dependence of ZλB/a, for renormalized

interaction parameters by all considered renormalization schemes. Quite interestingly, the
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initial increase of g(rm) at low coupling as seen in the PM-MC simulation data is accurately

reproduced by all considered schemes, due to the fact that they agree with the RY-g(rm)

without charge renormalization (dotted curve in panel (a)). The observed agreement ex-

presses thus simply the good accuracy of the RY-scheme for particle systems with repulsive

Yukawa-type interactions. Notice that Zeff ≈ Z and κeff ≈ κ0, with κ2
0 = 4πλBn+, are pre-

dicted by all charge renormalization schemes for ZλB/a ≲ 5 (cf. insets of Figs. 7.1 and 7.2).

For ZλB/a ≳ 5, charge renormalization becomes relevant and the predictions for κeff and

Zeff by the considered methods become progressively different from each other with further

increasing coupling. The dotted curve Fig. 7.8(a) shows that g(rm) is largely overestimated

at stronger coupling for neglected charge renormalization. With charge renormalization ac-

counted for, the nonmonotonic behaviour of the MC data in panel (a) are well described

qualitatively by all the renormalization methods. Consistent with its stronger renormaliza-

tion prediction for Zeff (cf. Fig. 7.2), the RJM strongly underestimates g(rm). RLRT is

more accurate, with the simulated g(rm) overestimated for very high coupling only. The

CM-based methods for both linearizations reproduce the PM-MC g(rm) most accurately,

being slightly better than RLRT. We also notice that the CM-based methods with mean

linearization perform slightly better than those with edge linearization. Except for RJM, all

methods overestimate g(rm) at very high coupling. There is hardly any difference between

EPC and SC curves for g(rm) when edge or mean linearization is used, respectively.

For salt-free suspensions, g(rm) is closely associated with the contact value, ueff(σ+), of

the effective pair potential. This can be noticed from Fig. 7.8 (b), where βueff(σ+) is plotted

as function of ZλB/a. The curves for the contact value of the effective pair potential by the

different renormalization schemes qualitatively reflect the curves for g(rm) in panel (a), with

peaks at the same respective coupling values. Notice that βueff(σ+) ∝ Z2
eff(1+κeffa)−2, where

the geometric factor (1 + κeffa)−2 arises from the finite radius a = σ/2 of the impermeable

macroions.

Figure 7.9 displays the concentration dependence of the g(r) and g(rm) compared with
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Figure 7.8 (a) Principal peak height, g(rm), of the macroion pair correlation func-
tion and (b) reduced effective pair potential at contact, βueff(σ+), versus bare cou-
pling, ZλB/a, for the indicated charge-renormalization schemes describing a salt-free
suspension (nres = 0) with bare macroion valence Z = 40 at ϕ = 0.01 for λB = 0.714
nm. SC edge and SC mean results are very close to EPC edge and EPC mean
results, respectively (the latter not shown here). Dotted grey line in (a) corresponds
to results without charge renormalization. Curves in (a) are RY-based results, while
symbols are PM-MC data from [8].

PM-MC simulation results (open circles) for a salt-free suspension with fixed coupling value

ZλB/a = 7.12, corresponding to the most structured g(r) in Fig. 7.8 having ϕ = 0.01. For

the smallest concentration, ϕ = 0.00125, the suspension is only weakly structured with a low

and flat peak g(rm) at r/a ≈ 15. However, the electric repulsion between macroions is still

strong enough that g(r < 7a) ≈ 0. With increasing ϕ, the fluid-ordered suspension becomes

more structured, which is reflected in the sharpening of the principal peak of g(r), with its

position rm shifting to small inter-particle distances. Moreover, the secondary peak becomes

more pronounced, reflecting the build-up of a second next-neighbour shell. The position

of the principal peak is approximately equal to the macroion next-neighbour distance, i.e.

rm ≈ n−1/3
m = (3ϕ/(4πa3))−1/3. This is typical of suspensions whose structure is determined

by long-range repulsive interactions [8], for which g(σ+) = 0. All the considered charge-

renormalization methods provide g(r)’s in good agreement with the PM-MC simulation data.

Therefore, only g(r)’s with SC-mean input for the renormalized interaction parameters are

150



5 10 15 20
r/a

0

0.5

1

1.5

g
(r

)

PM-MC sim.
SC mean

0.001 0.01 0.1
φ

1

1.2

1.4

1.6

1.8

2

g
(r

m
)

PM-MC sim.
RJM
RLRT
SC mean
SC edge

(a) (b)

φ

Figure 7.9 (a) Macroion pair correlation function, g(r), for ϕ = 0.00125, 0.0025,
0.005, 0.01, 0.02, 0.04, 0.08, (b) Principal peak height, g(rm), versus ϕ. Salt-free
suspensions (nres = 0) are considered with ZλB/a = 7.12. The solid curves in (a)
are obtained using RY and renormalized interaction parameters from the indicated
schemes. Open circles are PM-MC simulation data from [8]. In (b), SC edge and
SC mean results for g(rm) are very close to the ones for EPC edge and EPC mean,
respectively (the latter not shown). Dotted grey line in (b) corresponds to results
without charge renormalization. Other system parameters: Z = 40 and λB = 0.714
nm.

shown in panel (a).

In Fig. 7.9(b), g(rm) is plotted as function of ϕ for the different methods. As seen, g(rm)

is underestimated by RJM and, to a lower degree, also by RLRT method, while CM-based

methods give quite accurate results in the full concentration range.

As discussed in section 5.1, the static structure factor, S(q), related to g(r) by Eq. (5.5)

characterizes pair correlations in Fourier space. Its peak value S(qm) at qm ≈ 2π/rm al-

lows to roughly identify the freezing transition of suspensions of spherical particles with

Yukawa-type repulsion, while S(0) provides the osmotic compressibility factor of a monodis-

perse suspension in osmotic equilibrium with a salt reservoir. We use here S(q) to study

the effect of added salt on the pair structure as predicted by the different renormalization

methods. Figure 7.10 shows the RY-generated principal peak, S(qm), as function of the

concentration nres nondimensionalized in form of the reduced reservoir screening constant

κresa = 8πλBa
2nres, for the indicated charge-renormalization inputs. The different salinity

151



2 3 4 5 6 7
r/a

0

0.5

1

1.5

g
(r

)

PM-MC sim.

1 10
κ

res
a

1

1.2

1.4

1.6

1.8

2

S
(q

m
)

SC edge

SC mean
EPC edge

EPC mean
RLRT
RJM

φ = 0.08

Figure 7.10 Static structure factor peak, S(qm), versus reduced reservoir screening
constant κresa (κ2

res ∼ nres) for different renormalization methods as indicated with
ϕ = 0.08 and ZλB/a = 7.12. Inset: Macroion pair correlation function, g(r), for the
different methods and three reservoir salt concentrations representative, respectively,
of the counterion-dominated regime (κresa = 0.3, green), transition regime (κresa =
2.06, yellow), and salt-dominated regime (κresa = 10.68, red). The blue circles
in the inset are PM-MC simulation results for the salt-free case. The horizontal
dotted line in the main figure is the S(qm) of a HS system, obtained in Carnahan-
Starling approximation according to Eq. (7.5). Other system parameters: Z = 40
and λB = 0.714 nm.

values in the counterion-dominated, salt-dominated, and transition regime are selected as

indicated in the figure. The suspension with the largest concentration, ϕ = 0.08, is con-

sidered so that the structural differences in S(q), predicted by the different renormalization

schemes, are clearly visible. Two plateaus regimes of S(qm) are distinguishable at low and

high salt concentrations, corresponding to the counterion-dominated and salt-dominated

regimes, respectively. The strongest differences in S(qm) obtained from the different charge-

renormalization methods are visible in the counterion-dominated regime, consistent with

the finding for the renormalized parameters in Fig. 7.3. In line with its most-pronounced

charge renormalization prediction (cf. Fig. 7.3), the RJM-based S(qm) is the smallest one

for low salt content, followed by the RLRT and CM-based results. Regarding the CM-based

methods, namely SC and EPC, S(qm) with mean linearization is smaller than with edge
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linearization. The differences between edge and mean linearization are more pronounced

for S(qm) than for g(rm). This is relevant for estimating the freezing transition by means

of the empirical Hansen-Verlet rule, which states that S(qm) ≈ 3.1 at the freezing point of

charge-stabilized systems with g(σ+) ≈ 0 [85], as in the case of salt-free systems. According

to Figs. 7.8 and 7.9, the interaction parameters Zeff and κeff obtained from SC mean lead to

the most accurate freezing concentration prediction based on the Hansen-Verlet criterion.

In the transition regime between counterion-dominated and salt-dominated regimes,

S(qm) decreases with increasing nres, reflecting a loss in structure. The differences in the

predictions of S(qm) by the different renormalization methods cease in the salt-dominated

regime, where S(qm) approaches the hard-sphere value SHS(qm) at the considered ϕ. The

horizontal, dotted line in Fig. 7.10 indicates the hard-sphere peak value SHS(qm) ≈ 1.06

obtained from the parametrization

SHS(qm) = 1 + 0.644ϕ 1 − ϕ/2
(1 − ϕ)3

(7.5)

given by Banchio et. al. in [116], which reproduces quantitatively the simulation data and

the Verlet-Weiss corrected PY peak height for hard spheres in the fluid phase.

The inset of Fig. 7.10 shows g(r) for the different renormalization schemes for three

considered reservoir salt concentrations, nres. At low nres (green curves), the g(r)’s by all

methods, except those for RJM, are close to each other and to the zero-salt PM-MC g(r)

shown in Fig. 7.9(a) for ϕ = 0.08.

7.3 Pressure and osmotic compressibility

Having discussed the indirect implications of the charge renormalization schemes on g(r) and

S(q) through their effect on the interaction parameters entering ueff(r), we address now their

implications on various suspension pressure contributions and the osmotic compressibility.

For instance, the suspension pressure p can be determined by Eq. (5.8), provided the semi-

grand suspension free energy per macroion, f = Ω/Nm, is known including its volume energy
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contribution. Recall from subsection 2.4.2 that in LRT, f is obtained for impermeable, rigid

macroions as

f = εvol + fm, (7.6)

where εvol = Evol/nm is volume energy per macroion given in Eq. (2.56), and fm is the

macroion free energy per macroion. Charge renormalization is introduced into the LRT

scheme, according to section 3.3, by accounting for the thickness δ of the shell of surface-

associated (bound) microions. The pressure in RLRT follows thus from Eq. (5.8) as

p = n2
m

(︄
∂ω

∂nm

)︄
res

= pfree + pm. (7.7)

According to Eq. (2.56) with renormalized input κeff and Zeff as explained in section 3.3,

βpfree = ñ+ + ñ− − Zeff(ñ+ − ñ−)κeffλB

4[1 + κeff(a+ δ)]2 (7.8)

is the pressure contribution arising from the renormalized volume energy. Here, the tilde

indicates a free volume correction for the concentrations of free (unbound) microions. In

taking the macroion concentration derivative in Eq. (7.7), temperature and reservoir salt

concentration, nres, are held constant, and the system electroneutrality is maintained for

given Z. There is no direct pressure contribution due to bound microions, since the ef-

fective interaction parameters are kept fixed in the concentration derivative. The pressure

contribution, pm, arising from the microion-dressed macroions follows from [67]

βpm = nm + n2
m β

(︄
∂f ex

m

∂nm

)︄
res

. (7.9)

As explained in subsection 4.3.1 in relation to Eq. (4.23), the excess macroion free energy

per macroion, f ex
m , can be approximated by [19]

f ex
m (nm) ≤ min

(d)

{︃
fEHS(d, nm) + 2πnm

∫︂ ∞

d
drr2gEHS(r; d, nm)ueff(r;nm)

}︃
, (7.10)

which invokes a reference system of effective hard spheres (EHS) of diameter d, radial distri-

bution function gEHS(r; d, nm), and excess free energy per particle fEHS(d, nm). The latter is
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described by the Carnahan-Starling free energy expression, and the EHS radial distribution

function by the Percus-Yevick expression [77] with Verlet-Weis correction [19]. In practice,

the renormalized interaction parameters (Zeff, δ, κeff) are held constant in the variational

minimization and in taking thermodynamic derivatives [67].

Alternatively, the suspension pressure p can be computed from the generalized virial

equation in Eq. (5.11), since for the considered mean-field methods there are no third- or

higher-order effective potential contributions. There is also no pressure contribution, pse,

arising from polymeric degrees of freedom because only impermeable, rigid macroions are

considered in this section. The suspension pressure results then from

βp = nm − 2π
3 n2

m

∫︂ ∞

0
drr3g(r)∂βueff(r)

∂r
+ 2πn3

m

∫︂ ∞

0
drr2g(r)∂βueff(r)

∂nm

+ βpfree (7.11)

where pfree is the contribution from the renormalized volume energy. Regarding the pressure

contribution invoking the concentration derivative of the effective pair potential in Eq. (7.11),

the following points are important to observe. In taking the derivative ∂ueff/∂nm, only the

concentration dependencies of ueff(r;nm) arising from the tracing-out of the microions should

be considered, and not the additional ones due to the extra imposed charge renormalization.

Only the first ones are thermodynamically relevant. An example is given by the volume

energy from SDHA, Eq. (3.59), with renormalized Zeff and κeff taken for the salt-free case.

Here, the correct ideal gas limit pvol = kBT (1 + Z)nm + O(n2
m, Z

2) is recovered from pvol =

n2
m∂Evol/∂nm only when Zeff and κeff are kept constant.

As discussed in section 5.2, in a nonlinear CM description of a suspension, macroion

correlations are neglected and p is approximated according to Eq. (5.13) by p ≈ pCT, where

βpCT = nm + 2nres cosh[Φ(R)]. (7.12)

Recall that Φ(R) is the nonlinear total electrostatic potential value at the cell edge, and

kBTnm is the ideal-gas pressure contribution by the macroions.

In the RJM, the suspension pressure is approximated as p ≈ pjell, where

βpjell = nm +
√︂

(2nres)2 + (nmZeff)2, (7.13)
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for a suspension in Donnan equilibrium (cf. Eq. (5.14). The first term on the right-hand

side is the ideal-gas macroion contribution. The second term is the microion contribution,

resulting from salt ions of concentration nres and non-condensed surface-released counterions,

respectively. In the salt-free case, Eq. (7.13) reduces to

βpjell = nm + nmZeff = nm(1 + Zeff), (7.14)

which is of the same form as the ideal gas pressure, pid, of macro- and counterions,

βpid = nm(1 + Z), (7.15)

but with Z replaced by Zeff < Z.

To analyze the different approximations for the suspension pressure noted above, we

consider first the salt-free case. In Fig. 7.11(a), we compare the different approximations

of p as a function of ϕ, for coupling values ZλB/a as indicated, in comparison with PM-

MC simulation results for p [8]. For calculating the suspension pressure in RLRT, we have

used Eqs. (7.7)-(7.9) that provide the same numerical results as Eq. (7.11) up to small

numerical errors. Details of the RLRT calculation of p can be found in Appendix C. The

suspension pressure resulting from combining SDHA (see section 3.4) with the EPC charge-

renormalization scheme is computed using the generalized virial equation in Eq. (7.11). The

volume contribution, pvol, is obtained analytically in SDHA from the volume derivative of

Eq. (3.59) by keeping the effective interaction parameters Zeff and κeff and the linearization

points, ρ̃±, constant. This results in [56]

βpvol =
(︄
∂βEvol

∂V

)︄
N,T,ρ̃±

= κ2
eff

8πλB

[︄(︃
κres

κeff

)︃4

+ 1
]︄
, (7.16)

for a suspension in osmotic equilibrium with a reservoir of microion pair concentration 2nres.

In the salt-free case where κres = 0, this reduces to

βpvol = κ2
eff

8πλB

. (7.17)
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We have followed here [56] in holding the effective pair potential and the linearization point

fixed when taking the volume derivative in Eq. (7.16). A thorough theoretical study [60]

based on the linearized cell model came to the conclusion, that while treating the linearization

points of the microion concentrations as volume-dependent in calculating p is an admissible

procedure, there are advantages in treating them as independent variables. In particular, in

linear approximation p remains always positive for a proper choice of the linearization point.

It should be stressed that, when p is determined in this way using the SDHA with EPC charge

renormalization, the correct Debye-Hückel limiting law for p is recovered to first order in nm

[117]. Notice that this procedure is equivalent to computing the suspension pressure using an

equivalent pointlike macroion system by keeping the charge, Qeff (see Eq. (3.9)), of pointlike

macroions fixed and neglecting the density-dependence of κeff in ueff(r).
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Figure 7.11 (a) Reduced suspension pressure, p/pid, with pid = nmkBT (1 +Z) and
(b) reduced renormalized valence, Zeff/Z, versus ϕ for a salt-free system (nres = 0)
and different couplings. Different colors label different couplings. From top to
bottom: ZλB/a = 0.89; 3.56; 7.12; 14.23; 28.46. The lines corresponds to different
charge-renormalization schemes as indicated, while the circles are PM-MC simula-
tion data [8]. In (a): For ZλB/a = 0.89 and 3.56, EPC edge and EPC mean values
practically overlap, thus only one curve is shown; the nonlinear CT pressure, pCT, is
practically indistinguishable from RLRT; orange dashed-dotted line corresponds to
(unrenormalized) LRT result for ZλB/a = 14.23. Other system parameters: Z = 40,
λB = 0.714nm.

In Fig. 7.11, p is normalized by pid, so that deviations from pid due to pair interactions are
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revealed. Notice that p is smaller than pid, except for low coupling values and large volume

fractions, where charge renormalization ceases and the excluded-volume interaction begins

to play a role. At given non-small coupling ZλB/a, the reduced suspension pressure has a

weakly non-monotonic ϕ-dependence with a shallow minimum. At constant ϕ, p decreases

with increasing ZλB/a. From an analysis of the PM-MC results for p in [8], it was found

that the deviations of p from pid and its decrease with increasing coupling are related to the

sctrong accumulation of counterions near the macroion surfaces. This reduces the number of

free counterions making a full pressure contribution. As seen, p/pid displays a minimum at

ϕ ≈ 0.03, where the decrease in the reduced pressure due to enlarged electrostatic interaction

with increasing ϕ is balanced by an increase in the excluded-volume contribution [8].

All considered effective one-component methods in Fig. 7.11 capture the PM-MC data

for p/pid quite well, except for pjell (from RJM) at larger ϕ. The similarity between the

pressure and effective valence curves in Fig. 7.11(b) shows that, without salt, p/pid ≈ Zeff/Z

holds for not too large values of ϕ, as suggested by Eq. (7.14). In particular, note that the

concentration value at the minimum of p/pid roughly coincides with that of the minimum of

Zeff/Z.

We recall here that the effective one-component macroion and charge-renormalization

methods discussed in the thesis are all of mean-field type. The overall good agreement of

these methods with the PM-MC pressure calculations suggests that the microion finite size

and other correlation effects are thermodynamically negligible for the considered suspensions

of monovalent microions. That charge renormalization has a significant influence on p is seen

from the comparison with calculations without an account for charge renormalization (cf.

orange dash-dotted line in Fig. 7.11(a)). From comparing the different methods in more

detail, one notices from Fig. 7.11 that the contact theorem and RLRT provide overall good

approximations of the suspension pressure predicting nearly identical curves on the scale of

Fig. 7.11(a). SDHA with EPC methods (edge and mean linearization) tend to overestimate

p, particularly at large ϕ and for strong coupling. Since in SDHA-EPC the generalized virial
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expression, Eq. (7.11), for computing p is used, for which the according g(r) overestimates

the pair structure for strong coupling (cf. Fig. 7.8(a)), it is apparent that the predicted p

is less accurate. On contrasting the different linearizations within SDHA-EPC, one notices

that in mean linearization p is larger than in edge linearization. This is understood from

the effective valence predictions in Fig. 7.11(b), showing that Zmean
eff > Zedge

eff , expressing

that counterion condensation is less pronounced for mean linearization. The strong effective

coupling predicted in mean linearization implies that pmean > pedge. Even though RJM

performs rather poorly in structure prediction, it predicts p accurately at high coupling and

mildly underestimates p at low coupling and high concentrations. According to Eq. (7.14),

this is due to the stronger condensation predictions.
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Figure 7.12 (a) Reduced suspension pressure, p/pid, and its additive constituents
versus ϕ for ZλB/a = 7.12. (b) Reduced suspension pressure, p, and pressure
difference p − pdens, versus ϕ for different couplings; different colors correspond to
different couplings: From top to bottom ZλB/a = 0.89, 7.12 and 28.46. In both
(a) and (b), we consider a salt-free system, and the generalized virial theorem in
Eq. (7.11) is used in combination with the RLRT charge renormalization scheme.
Open circles correspond to PM-MC simulations [8]. Other system parameters are
as in Fig. 7.11.

It is interesting to analyze how the different pressure contributions pi in the generalized

virial equation, Eq. (7.11), contribute to the total suspension pressure p. We exemplify this

for the RLRT, focusing in particular on the importance of the pressure contribution

βpdens = 2πn3
m

∫︂ ∞

0
drr2g(r)∂βueff(r)

∂nm

, (7.18)
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due to the macroion density derivative of ueff. Recall that this term is absent in the calcu-

lation of p when implementing SDHA method. For this reason, we split p accordingly to

p = pfree + pOCM + pdens (7.19)

where pfree is the pressure contribution from the volume energy term with renormalization

included, Eq. (7.8), and pOCM is the state-independent pressure contribution for an effective

one-component macroion system with the state-dependence of ueff(r) disregarded,

βpOCM = nm − 2π
3 n2

m

∫︂ ∞

0
drr3g(r)∂βueff(r)

∂r
. (7.20)

Figure 7.12(a) shows the various RLRT-calculated pressure contributions for the most

structured suspension treated in the PM-MC simulations. We observe that pvol is the domi-

nant contribution in the full considered concentration range for the free-salt suspension. Note

further that pdens is negative and practically compensates the positive contribution pOCM for

most ϕ values. At large ϕ, the macroion-induced pressure contribution pm = pOCM + pdens

becomes non-negligibly positive valued. In fact, for ϕ > 0.1, pm contributes up to 20% to

the total pressure.

Figure 7.12(b) quantifies the contribution of pdens to p for different indicated couplings.

The RLRT method predicts a non-negligible (negative) contribution of pdens to p with a larger

relative contribution for weaker coupling. Neglecting pdens would result in a nonphysically

large contribution of the macroion-induced pressure pm at low ϕ. At low ϕ, p is mainly given

by the microions, and pm is only a small correction of O(nm).

The effects of adding salt for p and its constituents is analyzed in Fig. 7.13. For low

salt concentrations in the counterion-dominated regime (κresa ≲ 1), p stays constant and

is practically equal to the pressure of a salt-free system. With increasing reservoir salt

concentration, p grow monotonically, approaching the reservoir pressure pres = 2kBTnres

in the salt-dominated regime, where the Donnan effect is absent and Zeff ≈ Z holds with

κeff ≈ κres. As noted before in the salt-free case, pvol is the main contributor to p, approaching
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Figure 7.13 Reduced suspension pressure, 4πλBa
2βp, and its additive constituents

versus κresa (κ2
res ∼ nres) for ϕ = 0.2. The pressure is calculated using the RLRT

scheme. The red dashed line represents the pressure of a hard-sphere system, com-
puted using the Carnahan-Starling equation of state at the same ϕ. Other system
parameters: ZλB/a = 7.12, Z = 40, λB = 0.714 nm.

pres ≈ p in the high-salinity limit. Although pvol is dominant throughout in the counterion-

dominated regime, pm = pOCM +pdens gives a non-negligible positive contribution to p visible

even on the depicted logarithmic scale. It is seen in Fig. 7.13 that the negatively valued

pdens tends to compensate pOCM for κresa ≲ 1. Similarly to p and pvol, pOCM and pdens are

constant in the low-salt region. With further increasing reservoir salinity, pOCM tends to the

hard-sphere pressure value (red dashed segment), while pdens tends to zero.

In addition to the suspension pressure p, we have analyzed the osmotic compressibility,

χosm, of the suspension as a second thermodynamic quantity of interest. It was discussed in

section 5.2 that for a semi-open system in osmotic equilibrium with a microion reservoir, the

osmotic compressibility factor, χosm/χ
id
osm, is equal to the macroion-macroion static structure

factor in the long wavelength limit, S(q → 0). Hence, the accuracy of the considered

renormalization methods in predicting thermodynamic properties is linked to their respective

accuracy on describing the pair structure. In Fig. 7.14(a), the RY-S(0) obtained using ueff(r)

with EPC-mean input for Zeff and κeff is plotted versus ϕ for different coupling parameters

as indicated. At fixed coupling, S(0) has a non-monotonic ϕ dependence with a maximum
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Figure 7.14 (a) χosm/χ
id
osm versus ϕ for different coupling parameters using EPC-

mean scheme. Different colors represent different coupling. From bottom to top:
ZλB/a = 0.89, 1.78, 3.56, 7.12, 14.23, 28.46. (b) χosm/χ

id
osm versus ϕ for different

charge-renormalization schemes and ZλB/a = 7.12. Circles are PM-MC results
obtained from numerical derivative of the PM-MC pressure data in Fig. 7.11. Other
system parameters as in Fig. 7.11.

at ϕ ≈ 0.01 for all considered cases. The position of this maximum approximately coincides

with the concentration at which Zeff has its minimum (cf. Fig. 7.11(b)). For fixed ϕ, S(0)

increases with increasing coupling, i.e. the suspension becomes more compressible due to

an accordingly decreasing Zeff. Figure 7.14(b) depicts S(0) versus ϕ for different charge-

renormalization schemes and fixed ZλB/a = 7.12. Obviously, S(0) is larger for the methods

that predict stronger charge renormalization, i.e. smaller Zeff, except for the CM-based

methods, where this tendency is reversed both for edge and mean linearizations.

The simulation data for p from Fig. 7.11 [8] allows us to compute the compressibility

factor from numerical differentiation according to Eq. (5.17). While the shape of S(0) is

qualitatively reproduced by the different methods including the location of the maximum,

there are significant quantitative differences. The figure shows that the mean-linearization-

based methods provide more accurate results for the osmotic compressibility factor than the

ones invoking edge linearization.

In summary, we have shown that all considered renormalization schemes considerably

improve the pressure predictions in the highly-coupling regime compared to calculations
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where charge renormalization is disregarded. The volume pressure gives the dominant

contribution to p under salt-free conditions, but the macroion-related part pm is a non-

negligible contribution at large macroion concentrations and for strong coupling. Although

the accounted mean-field charge renormalization improves the pair structure description for

stronger-coupled suspensions, for values ZλB/a ≳ 15 the peak height S(qm) is overestimated

by all renormalization schemes. On the plus side, charge renormalization allows for calcu-

lating p quite accurately within ∼ 5% deviations for ZλB/a ≈ 30, which is due to the fact

that pvol gives the main pressure contribution.

The accuracy of the methods used to determine the osmotic compressibility via S(0) is

linked to their performance for the pair structure. As a consistency test, it will be inter-

esting to compare osmotic compressibility predictions with charge renormalization based on

alternative routes for calculating χosm. This is left to future work.

In summary, we have analyzed the concentration-derivative contribution, pdens, to p,

whose incorporation is still controversially debated. Depending on the charge renormalization

scheme, this contribution is accounted for [66] or neglected [56] in computing p via the

generalized virial equation Eq. (7.11). We have argued that the nm-depencence of ueff(r)

arising from charge renormalization must be distinguished from the thermodynamically-

relevant nm-dependence. We found that neglecting pdens in the RLRT calculation of pm leads

to a wrong prediction for p. However, an incorporation of pdens into the SDHA scheme does

violate the limiting pressure behavior for nm ≪ 1 and low coupling, and it gives wrong

pressure results at large concentrations. It is clear that the good agreement with PM-MC

pressure data is per se not a convincing argument for the omission of pdens, since this could

be an artifact caused by the approximation in the employed mean-field method. As another

point of principle, we have provided quantitative evidence that supports the fact that mean

linearization is a better option than the more frequently employed edge linearization. In

addition to being more consistent from a general viewpoint, it gives accurate results both

for thermodynamic and structural properties.

163



Chapter Eight

CONCLUSIONS AND OUTLOOK

In this thesis, we have presented a comprehensive theoretical study of charged-stabilized

colloidal suspensions of soft and permeable spherical particles (ionic microgels) and of im-

permeable, rigid particles. Our focus was on the exploration of effective macroion (colloid)

interactions with associated effective interaction parameters, and their consequential effects

on structural, thermodynamic and transport properties of the suspensions. Mapping the

multi-component suspension onto an effective one-component system of dressed macroions

by means of different mean-field methods, including DFT-PB, LRT and a MSA-based OZ

integral equation scheme, we have obtained semi-analytic expressions for the electrostatic

contributions to the free energy, effective pair potential and pressure terms of permeable and

impermeable macroion systems. We have considered colloidal macroions carrying different

bare charge distributions: ion-impermeable colloids with surface or internal charges, namely

charged silica particles, and homogeneously-charged ion-permeable colloids.

Using the PM-based MSA integral equation scheme [9], we have given an alternative

derivation of the effective electrostatic pair potential of ion-permeable colloids. This deriva-

tion is straightforward and fully analytical under linear MSA, and it offers the possibility to

numerically obtain the effective interaction parameters accounting for nonlinear screening

effects, by using the simple JA [9].

By taking advantage of the spherical PBCM approach of Denton and Tang [14] and the
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first-order TPT method of Weyer and Denton [15], based on a multi-center linear-response

approach, we have combined the description of effective electrostatic interactions between

ion-permeable colloids with a polymer network description, in order to model deswelling

of microgel particles with uniform cross-linker distribution and uniform polymer backbone

charge. Using these two methods, we thoroughly studied the influence of changing microgel

concentration on deswelling, thermodynamics, structure, and dynamic properties of weakly

cross-linked, ionic microgels suspended in a good polar solvent and being in osmotic equi-

librium with a 1:1 electrolyte reservoir. We have assessed the respective pros and cons of

the implemented PCBM and TPT methods by calculating microion density profiles, and

single-particle and bulk osmotic pressures, and the state-dependent swelling ratios. More-

over, we consistently combined the results by these methods with our calculations of the net

microgel valence, Znet, and Debye screening constant, κ, characterizing the electrostatic part

of the effective one-component microgel pair potential derived from LRT. On basis of the

effective one-component model of microion-dressed microgels, we determined static struc-

tural properties, including S(q) and g(r), by implementing the self-consistent Rogers-Young

integral equation method, and we used these structure functions as input to our calculations

of dynamic suspension properties, with the salient hydrodynamic interactions included.

At salt concentrations large enough that salt ions dominate the electrostatic screen-

ing, the microion distributions inside and outside the microgels are rather uniform and the

counterion-induced deswelling is consequently a weak effect. Therefore, our study focused on

the counterion-dominated regime, where salt and microgel concentrations are low enough and

microgel valences high enough that deswelling is pronounced even without particle overlap.

The TPT method neglects nonlinear electrostatic effects, but accounts for inter-microgel

correlations. In contrast, the PBCM method accounts for nonlinear screening by mobile

microions, but neglects inter-microgel correlations, except for the remnant concentration

dependence of the cell radius. Unlike impermeable surface-charged colloidal particles, ionic

microgels are characterized by electrostatic interactions whose strength, as measured at
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mutual contact, increases with decreasing microgel concentration. This behavior restricts

the applicability of the TPT method to nonvanishing microgel concentrations.

While both methods predict the same trends for the effective microgel pair potential,

there are quantitative differences in the swelling ratio, net valence, and interaction potential

value at contact, whose values are in general higher in TPT than in PBCM. In the counterion-

dominated regime, the range 1/κ of the electrostatic repulsion is equal in both methods. The

greatest differences in the pair potential parameters occur at very low concentrations and high

backbone valences, which can be partially attributed to the linear-response approximation

inherent in the TPT. The relative variation in the microgel radius with changing microgel

concentration is less pronounced in PBCM, whose account of nonlinear response confines the

counterions more strongly to the microgel interior.

Differences in the predictions of the TPT and PBCM methods are more pronounced

for static (i.e., thermodynamic and structural) properties than for dynamic ones, which

is explained by the fact that dynamic properties depend only globally (i.e., functionally)

on S(q). The only exception is the collective diffusion coefficient, dc, which is directly

proportional to the inverse of the static compressibility factor.

Owing to the dominance of the electrostatic interactions in the considered microgel sys-

tems, their dynamic behavior resembles that of charged-stabilized suspensions of imperme-

able solid particles. In particular, the peak, H(qm), of the hydrodynamic function has a

non-monotonic concentration dependence, with a maximum higher than one for intermedi-

ate concentrations, reflected in a concomitant inflection point of the cage diffusion coefficient.

The collective diffusion coefficient, dc, behaves likewise non-monotonically and has a max-

imum at the same concentration as H(qm). This maximum was shown to arise from the

slowing effect of HIs, which becomes more influential with increasing concentration. The

electric repulsion between the microgels distinctly enhances the zero-frequency viscosity at

higher concentrations, as compared to suspensions of uncharged particles.

Our comparison with the corresponding results for a reference system of constant-sized
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microgels revealed that the major influence of deswelling on structural and dynamic prop-

erties is via the reduced volume fraction ϕ, which grows only sublinearly with increasing

concentration. The effect of counterion-induced deswelling on structural and dynamic prop-

erties is overall quite weak, for valences where nonlinear electrostatic contributions to the

microion distributions are negligible, and changes of α = a(ϕ0)/a0 with concentration are

accordingly small.

At higher concentrations, deswelling slightly enhances S(0) and the hydrodynamic func-

tion H(q) for all wavenumbers q. Deswelling reduces the zero- and high-frequency viscosity

and slightly enhances collective diffusion. From the relation dc = d0H(0)/S(0), one no-

tices that the deswelling-induced enhancement of d0 ∝ 1/a is nearly counterbalanced by the

accompanying de-enhancement of H(0)/S(0).

The most pronounced effect of deswelling is to shift the freezing (crystallization) transition

to higher concentration values, as we have determined from an empirical freezing rule for the

static structure factor peak height. This concentration shift is more pronounced for strongly

charged microgels, in which case the nonlinear PBCM method can still be used to determine

the swelling ratio α. To determine the concentration shift, however, the PBCM must be

combined with a charge renormalization procedure to determine renormalized values of the

microgel net valence and screening constant from a linearized Poisson-Boltzmann equation

in the cell model. The renormalized parameters are used in the linear-response pair potential

(Eq. (2.61)), where they summarily account for the enhanced accumulation of counterions

inside and close to the spherical backbone region. We have illustrated such a renormalization

procedure using a linearization of the nonlinear PB equation around the potential at the cell

boundary. While such a linearization is most commonly used in renormalization schemes

applied to impermeable and permeable colloidal particles, it is not the only choice. As

discussed, there are sound reasons to use instead a linearization around the mean (i.e., cell-

volume-averaged) electrostatic potential value [57, 118].

For charge-stabilized suspensions of ion-impermeable, rigid colloids, we have assessed the
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pros and cons of different mean-field charge-renormalization schemes, which are applicable to

suspensions with purely monovalent microions and larger macroion/microion size ratios. The

evaluation has been done by the comparison with PM-MC simulation results of structural

and thermodynamic properties of salt-free suspensions by [8]. In computing thermodynamic

properties such as the suspension pressure and osmotic compressibility, we have also tested

different prescriptions that the various renormalization methods provide for computing each

of them.

The employed charge renormalization methods can be split into two groups depending

on the invoked potential linearization: First, into edge linearization, for CM-based methods

using linearization with respect to the electric potential value at the cell edge and for RJM

using linearization with respect to the asymptotic value of the electric potential; and second,

into mean linearization, for CM-based methods and RLRT, where the potential is linearized

around the mean (volume-averaged) value. From analyzing the resulting effective interaction

parameters, we have found that there is a clear distinction between the renormalized screen-

ing parameter based on edge and mean linearization according to κeff(mean) > κeff(edge) for

most of the methods. Such a clear distinction, however, is not observed for the renormalized

valence.

In analyzing the effect of adding salt on the renormalized interaction parameters, we

detected that the largest differences between the renormalization schemes is for low salt con-

centrations in the counterion-dominated regime. As expected, the addition of salt attenuates

the existing differences. While in the explored parameter space most of the renormalization

methods predict effective interaction parameters in rather close agreement, RJM predicts

remarkably smaller values of Zeff and κeff than all the other methods. Consequently, RJM

predicts a distinctly stronger counterion quasi-condensation on the colloid surfaces.

Interestingly, the EPC method predicts an effective valence, Zeff, larger than the bare

one, Z, for low coupling values and large concentrations. The PM-MSA and penetrating-JA

results for Zeff also reproduce this high-concentration effect which, according to the PM-MSA,
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can be attributed to the reduced electrostatic screening caused by the excluded volume of

nearby colloids. The prediction of Zeff > Z gives rise to an improved estimation of g(rm) in

comparison with PM-MC data [56].

In comparing the RY g(r) and S(q) with the PM-MC simulation results, we found a

considerable improved agreement for high coupling values, 5 ≲ ZλB/a ≲ 30, when charge

renormalization is accounted for. Most of the considered charge-renormalization methods

predict g(rm) with an error of less than 5% for ZλB/a < 15, and an error of less than 10% for

ZλB/a < 30. Regarding RJM that predicts a noticeable stronger condensation, RY-g(rm)

values with an error of less than 10% are found for the high coupling condition ZλB/a > 5.

According to what is observed for the renormalized interaction parameters, major differ-

ences in the structure functions are detected in the counterion-dominated regime. All charge

renormalization methods give the correct hard-sphere limit at high salt concentrations.

The performance of the various renormalization methods for predicting thermodynamic

properties was assessed by calculating the suspension pressure p with its constituents and the

osmotic compressibility χosm. Our analysis shows that nonlinear electrostatic effects become

relevant for coupling values ZλB/a > 5, in accordance with our findings for the structure

properties.

We analyzed different prescriptions for computing the suspension pressure. In particular,

we have analyzed the pair-potential density-derivative contribution, pdens, to the macroion-

related pressure contribution, pm, whose incorporation is to some extent controversial. De-

pending on the invoked renormalization scheme, this contribution is accounted for or ne-

glected when computing p via the generalized virial equation, Eq. (7.11). We have discussed

how the nm-dependence of ueff(r;nm) should be interpreted: The density dependence of ueff

arising from a charge renormalization procedure must be distinguished from the thermody-

namically relevant one in the calculation of the suspension pressure. From the analysis of

the RLRT method, we showed that pdens makes an important contribution to p. In contrast,

the account of pdens in the SDHA scheme would violate the correct limiting-law behavior for
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p at nm ≪ 1. Hence, pdens is not included in the SDHA-based pressure.

Different from structural properties where the predictions by the various renormalization

schemes start to deviate form the PM-MC results for ZλB/a ≳ 15, the according predictions

for p are valid to good accuracy (i.e. 5%) even up to ZλB/a ≈ 30. This is explained by the

fact that pvol gives the major contribution to p.

Regarding the overall performance of the considered renormalization methods, the fol-

lowing comments are in order. The CM-SC method with edge linearization is most widely

used for impermeable colloids due to its simplicity and easy implementation. The usage of

the spherical CM approximation has the extra advantage to allow for estimating p using

the contact theorem. However, implementing mean linearization instead is not only con-

ceptually preferable, as reported in [57], but it also leads to improved results of g(r) and

S(q). Implementing this alternative linearization simply demands an extra integration step

for computing the mean potential value without requiring any further modification in the

numerical integration of the nonlinear PB equation. The SDHA combined with the EPC

scheme from CM approximation provides the most accurate structural description at low

coupling and high concentrations, where it correctly predicts Zeff > Z. This method is as

easy to implement as the pure CM, but its validity additionally extends to high concentra-

tions and salinities by using, e.g., the generalized virial theorem for pressure calculation.

In this parameter range inter-colloid correlations become relevant and the contact theorem

prediction for p becomes poor. The originator of the RJM have argued [64] that the renor-

malized valence predicted by this method is more appropriate than that from CM-based

calculations, since the DLVO-type ueff(r) arises naturally within JA by integrating, for in-

stance, the electrostatic stress tensor over the colloid surfaces [2, 36]. Despite this fact, we

showed that the RJM significantly underestimates the pair structure in comparison with the

PM-MC simulation data for g(r). However, it accurately predicts the suspension pressure in

a wide range of colloid concentrations. In our study, RLRT has proven to be overall quite

accurate both regarding structural and thermodynamic properties. Different from the other
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considered methods, its renormalization mechanism relies on a thermodynamic argument

and offers a clear picture of the phenomenology behind charge renormalization. While its

implementation is more laborious, it provides an expression for the suspension free energy

that includes the inter-colloid interactions.

Finally, we give an outlook on future developments based on this thesis. As shown in

[119], it is possible to synthesize spherical microgels with different internal backbone charge

distributions as well as different polymer-chain backbone structures. Due to mutual elec-

trostatic repulsion and mixing with the solvent molecules, the charged sites on the polymer

backbones tend to be accumulated at the periphery of a microgel [105, 119]. Furthermore,

the role of the macroion charge distribution results crucial for understanding the role of the

electrostatic interactions in viral aggregation [120]. Viral capsids are usually modeled as

ion-permeable charged shells in presence of water-dissolved salt ions [121, 122]. These ex-

amples have motivated us to explore effective electrostatic interactions for different internal

macroion charge distributions of ion-permeable colloids using the accordingly-modified mean-

field methods presented in chapter 2. Results for the limiting case of a δ-like-shell charge

distribution at the microgel periphery have been obtained already and will be communicated

in a future publication [123]. Deriving ueff(r) for a surface or shell charge distribution allows

to model viral capsids and microgel suspensions with an according microgel architecture.

The resulting effective potential ueff(r) in combination with the PBCM and TPT methods

for the equilibrium microgel size allow to quantify the concentration-dependent deswelling,

which is stronger than in the uniformly charged case studied in this thesis. On basis of this

thesis, one can also explore the applicability of the various charge-renormalization methods

for suspension having different internal backbone charge distributions. An interesting task

will be to extent the RLRT method to suspensions of strongly-charged, ion-permeable col-

loids with homogeneous and inhomogeneous internal charge distributions, with the prospect

to gain a clearer picture of nonlinear screening effects. An alternative way of incorporating

nonlinear screening effects, applicable both to ion-permeable and impermeable macroions, is
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the derivation of ueff(r) by means of an effective macroion direct correlation function, ceff(r),

using multi-species integral equation schemes such as the MSA in section 2.4. Following the

procedure in [9], nonlinear effects can be incorporated using HNC instead of MSA closure.

In this thesis, we have exemplified such a derivation by applying the MSA to ion-permeable

colloids with a homogeneous charged distribution. The integral equation method can be

extended to different radially-symmetric macroion charge distributions, allowing thus for an

according analysis of structural and thermodynamic properties. This analysis can be the

topic of future work.

The thesis has been focused on truly charged-stabilized systems, where particle overlap

is very unlikely. For micellar and protein solutions as well as for microgel suspensions, it

could be rewarding to explore conditions where the softness and elasticity of the particles

matter. In case of weakly overlapping microgels, a Hertz potential can be used to account

for elasticity effects.

In conclusion, the bottom-up methods presented in this thesis constitute a versatile tool-

box for efficiently calculating thermodynamic, structural and dynamic properties of suspen-

sions of permeable and impermeable charged particles. This toolbox is useful not only for the

analysis of scattering and rheological data, but also for the optimization of technologically

relevant processes such as pressure-driven filtration of dispersions [85, 124]. The present

work allows to extend the modeling of ultrafiltration process [124] to protein solutions and

to ionic microgel suspensions. Work on this extension is in progress.
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Appendix A

Pairwise-additive (PA) approximation

of short-time dynamic properties

The PA approximation of short-time diffusion properties used in this thesis is based on

a truncated cluster expansion of the N -particle translational mobility matrix of colloidal

spheres, with three-body and higher-order cluster contributions disregarded. The N -spheres

hydrodynamic mobility tensors µjk(X) are approximated here by [97]

1
µ0

µjk(X)
⃓⃓⃓⃓
⃓
PA

= δkj

⎡⎣1 +
N∑︂

l ̸=j

a11(rj − rl)
⎤⎦+ (1 − δjk) a12(rj − rk), (A.1)

where 1 is the 3 × 3 unit matrix and rj the center position of the colloidal sphere j. The

two-particle tensors a11 and a12 describe, respectively, the hydrodynamic self-interaction of

a sphere through flow reflections by other ones, and the interaction induced by the motion

of a second particle. The axial symmetry of the two-sphere problem allows to split these

tensors into longitudinal and transverse components,

δij1 + aij(r) = xij r̂r̂ + yij(r)[1 − r̂r̂], (A.2)

where r̂ = r/r. The mobility components xij(r) and yij(r) can be calculated recursively,

leading to a power series in the reduced inverse pair distance σ/r.

Combining Eq. (A.1) with Eq. (5.41) and using the fact that we can write the equilibrium

ensemble average of a function f(r) in the thermodynamic limit as

⟨f(r)⟩ = lim
⟨N⟩,V →∞

1
V

∫︂
V
dr g(r)f(r), (A.3)
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one obtains an expression for the short-time self-diffusion coefficient, ds, given in PA by

dS

d0

⃓⃓⃓⃓
⃓
PA

= 1 + 8ϕ
∫︂ ∞

1
dx x2 g(r)[x11(x) + 2y11(x) − 3], (A.4)

where x = r/σ. The distinct contribution, Hd, to H(q) is obtained in PA by

Hd(y)|PA = − 15ϕj1(y)
y

+ 18ϕ
∫︂ ∞

1
dx x [g(x) − 1] ×

[︄
j0(xy) − j1(xy)

xy
+ j2(xy)

6x2

]︄

+ 24ϕ
∫︂ ∞

1
dx x2 g(x) ỹ12(x) j0(xy)

+ 24ϕ
∫︂ ∞

1
dx x2 g(x)[x̃12(x) − ỹ12(x)] ×

[︄
j1(xy)
xy

− j2(xy)
]︄
, (A.5)

where y = qσ is the diameter-scaled wavenumber, and jn is the spherical Bessel function of

first kind and order n. The short-range mobility parts, labeled here by a tilde, are

x̃12(x) = x12(x) − 3
4x

−1 + 1
8x

−3, (A.6)

ỹ12(x) = y12(x) − 3
8x

−1 − 1
16x

−3, (A.7)

where the far-field terms up to the dipolar (Rotne-Prager) level have been subtracted.
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Appendix B

Beenakker-Mazur (BM) method of

short-time dynamic properties

In the zeroth-order BM-scheme expression for H(q) = ds/d0 + Hd(q) used in thesis, the

self-part is given by the microstructure-independent part [97],

ds(ϕ)
d0

⃓⃓⃓⃓
⃓
BM

= 2
π

∫︂ ∞

0
dy

[︄
sin(y)
y

]︄2 1
1 + ϕSγ0(y) . (B.1)

The structure-dependent distinct part, Hd(q), is given by

Hd(y)
⃓⃓⃓
BM

= 3
2π

∫︂ ∞

0
dy′

[︄
sin(y′)
y′

]︄2 1
1 + ϕSγ0(y′) ×

∫︂ 1

−1
dµ (1 − µ2)[S(|q − q′|) − 1], (B.2)

where S(q) is the structure factor, µ the cosine of the angle between q and q′, y = qσ

and y′ = q′σ. The function Sγ0(y′) consists of an infinite sum of wavenumber-dependent

contributions depending on the volume fraction ϕ, as well as on the scalar coefficients γ(n)
0 ,

with n ∈ {1, 2, 3, ...}. The explicit expressions of Sγ0(x) and γ
(n)
0 are given in Refs. [125,

126].

The employed modified BM expression for η∞ reads

η∞

η0

= 1
λ0 + λ2

, (B.3)

where

λ0 =
[︃
1 + 5

2ϕ γ̃
(2)
0

]︃−1

= 1 − 5
2ϕ+ 215

168ϕ
2 + O(ϕ3), (B.4)

λ2 = 30ϕ
4π

[︂
λ0 γ̃

(2)
0

]︂2 ∫︂ ∞

0
dy

j2
1(y/2)[S(y/σ) − 1]

1 + ϕSγ0(y/2) (B.5)
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and

γ̃
(2)
0 = γ

(2)
0

nm

= 1 + 167
84 ϕ+ O(ϕ2) . (B.6)
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Appendix C

Suspension pressure using RLRT

We summarize here how the suspension pressure, p, in a suspension of impermeable charged

macroions of hard-core diameter σ = 2a is calculated in RLRT method. As explained in the

context of Eq. (5.9), for pairwise additive effective potential energy, p is obtained from

βp = βpfree + nm − 2π
3 n2

m

∫︂ ∞

0
drr3g(r)∂βueff(r)

∂r
+ 2πn3

m

∫︂ ∞

0
drr2g(r)∂βueff(r)

∂nm

. (C.1)

with renormalized effective pair potential

βueff(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞, 0 ≤ r ≤ σ

λBZ
2
eff

(︂
exp(κeffa)

1+κeffa

)︂2 exp(κeffr)

r
, r > σ

(C.2)

where the renormalized κeff and Zeff are calculated using RLRT (see section 3.3). Here, pfree

is the pressure contribution due to free, i.e. not surface-condensed, microions related to the

volume energy pressure. By accounting for charge-renormalization, pfree is given in RLRT

by

βpfree = ñ+ + ñ− − Zeff(ñ+ − ñ−)κeffλB

4[1 + κeff(a+ δ)]2 . (C.3)

where δ characterizes the thickness of the shell of quasi-condensed counterions and ñ± =

n±/(1 − ϕ). The remaining three terms in Eq. (C.1) correspond to the three additive parts

conforming the macroion pressure contribution, pm,

βpm = nm + βp(1)
m + βp(2)

m . (C.4)
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The first term in Eq. (C.4) is the ideal-gas contribution. The second term is

βp(1)
m = −2π

3 n2
m

∫︂ ∞

0
drr3g(r)∂βueff(r)

∂r

= 4πnmϕ g(σ+) + 2π
3 n2

m

∫︂ ∞

σ+
dr r2g(r)βueff(r)(κeff r + 1) (C.5)

where, in the second equality, we have singled-out the contribution due to the contact value

of g(r). The concentration derivative of ueff in the third contribution of Eq. (C.4) is taken

by accounting only for the variations of ueff with nm that are relevant thermodynamically,

disregarding the natural nm-dependence of the renormalized interaction parameters κeff and

Zeff arising from the charge-renormalization process. These derivatives should be also taken

keeping the thermodynamic variables constant according to the statistical ensemble chosen

for the calculation. Furthermore, the electroneutrality condition must be maintained. Using

for simplicity a (full) canonical-ensemble description in conjunction with the electroneutrality

condition ZeffNm = N eff
+ − N eff

− , where N eff
± are the number of freely-moving microions, we

find
∂Zeff

∂ϕ
= 0. (C.6)

The only concentration dependence of the effective pair potential arises here from the effective

screening parameter κeff. Within RLRT, the latter is given by

κ2
eff = 4πλB

(︄
N eff

+

V (1 − ϕeff) + N eff
−

V (1 − ϕeff)

)︄
, (C.7)

where ϕeff = ϕ(1 + δ/a)3. Assuming δ to be independent of nm, it follows

βp(2)
m = 2πn3

m

∫︂ ∞

σ+
dr r2g(r) ∂βueff

∂nm

= 8π2

3 n3
ma

3
∫︂ ∞

σ+
dr r2g(r)βueff(r)γ

(︃
α− r

a

)︃
, (C.8)

where

α = 2κeffa

1 + κeffa
(C.9)

γ = ∂κeffa

∂ϕ
= κeffa

2ϕ (1 − ϕ(1 + δ/σ)3) (C.10)
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with x = κeffa.

The pressure results for a charge-renormalized system, computed using Eq. (C.4), are

in total agreement with results utilizing both the first-order thermodynamic perturbation

expansion (Gibbs-Bogoliubov) and the OCM-MC results from Ref. [67].
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List of Abbreviations

BM Beenakker and Mazur

CM Cell Model

DFT Density Functional Theory

DH Debye-Hückel

DLVO Derjaguin-Landau-Verwey-Overbeek

EHS Effective Hard Spheres

EPC Extrapolated Point Charge

EPC edge EPC and linearization with respect to the edge potential

EPC mean EPC and linearization with respect to the mean potential

GSE Generalized Smoluchowski Equation

HIs Hydrodynamic Interactions

HNC Hypernetted Chain (Closure)

HS/hs Hard Spheres

JA Jellium Approximation
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KB Kirkwood-Buff

LRT Linear Response Theory

MC Monte Carlo

MCT Mode-Coupling Theory

MSA Mean Spherical Approximation (Closure)

OZ Ornstein-Zernike

PA Pairwise-Additive approximation

PB Poisson-Boltzmann

PBCM Poisson-Boltzmann Cell Model

PM Primitive Model

PY Percus-Yevick (Closure)

rdf radial distribution function

RJM Renormalized Jellium Model

RLRT Renormalized Linear Response Theory

RMSA Rescaled Mean Spherical Approximation (Closure)

RPA Random Phase Approximation (Closure)

RY Rogers-Young (Mixed Closure)

SC Surface Charge

SC edge SC and linearization with respect to the edge potential
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SC mean SC and linearization with respect to the mean potential

SDHA Shifted Debye-Hückel Approximation

TPT Thermodynamic Perturbation Theory
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