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II Zusammenfassung    

Zusammenfassung 

Die Anwendung der Magnetresonanztomographie zur Untersuchung von Zusammenhängen zwischen 

Gehirn und Verhalten hat unser Verständnis von Schizophrenie (SCZ), Morbus Parkinson (MP) und des 

normalen Alterns (NA) in Bezug auf Veränderungen in funktionellen Gehirnnetzwerken, einschließlich 

Veränderungen in der funktionellen Kommunikation des Gehirns im "Ruhezustand" (d.h. in 

aufgabenfreien Zuständen), erheblich verbessert. Diese Ergebnisse basieren jedoch auf traditionellen 

massen-univariaten Gruppenaggregaten innerhalb der Stichprobe und beziehen sich daher meist auf 

Veränderungen in verschiedenen Verbindungen über das gesamte Gehirn oder in 

Ruhezustandsnetzwerken. 

Erst in den letzten Jahren, hat das maschinelle Lernen (ML) in der Neurobildgebungsforschung 

beträchtliche Aufmerksamkeit erhalten, um relevante, auf Neurobildgebung-basierende Biomarker 

auf der Ebene einzelner Individuen zu erfassen. Bisher wurde ML in erster Linie eingesetzt, um die 

bestmöglichen Vorhersagen zu erreichen, um in der Zukunft für automatisierte Bildgebungsmarker-

basierte Entscheidungen in der klinischen Routine für die personalisierte Medizin integriert zu werden. 

Im Gegenzug untersuchte diese Dissertation, ob ML genutzt werden kann, um Erkenntnisse über 

Erkrankungen und das Altern zu gewinnen. 

Die beiden Dissertationsstudien zielten darauf ab, das Verständnis von Netzwerkveränderungen im 

Zusammenhang mit SCZ, MP und NA sowie der kognitiven Leistung im Alter durch die Anwendung 

modernster ML- und Kreuzvalidierungsschemata zu verbessern. Dafür wurde die funktionelle 

Konnektivität im Ruhezustand (FRK) in verschiedenen funktionellen Gehirnnetzwerken untersucht, die 

aus aufgabenbasierten Meta-Analysen abgeleitet wurden und mit kognitiven, sozial-affektiven, 

motivationalen und motorisch-sensorischen Funktionen assoziiert sind. Es wurden Support-Vektor-

Maschinen Klassifikationen und Relevanz-Vektor-Maschinen Regressionen durchgeführt, um zu 

untersuchen, ob die FRK-Muster innerhalb verschiedener funktioneller Netzwerke mit SCZ, MP und NA 

sowie der kognitiven Leistung assoziiert sind und somit Vorhersagen auf der Basis einzelner Individuen 

erlauben. 

In der ersten Dissertationsstudie wurde untersucht, ob die bekannten Beeinträchtigungen 

verschiedener Funktionen in SCZ, MP und NA sich gleichermaßen in der jeweiligen Gruppe in einer 

hohen Klassifikationsgenauigkeit eines funktionsentsprechenden Netzwerks widerspiegeln würden. 

Des Weiteren wurde evaluiert, ob die jeweiligen Netzwerke differentielle Informationen bezüglich der 

unterschiedlichen Erkrankungen und das Altern enthalten. Die Ergebnisse zeigten, dass sowohl SCZ als 

auch MP durch unterschiedliche Netzwerke, die gut mit bekannten klinischen und 

pathophysiologischen Merkmalen resonieren, spezifisch gut vorhergesagt werden konnten. Bei SCZ 

unterschieden die Netzwerke für Belohnungsverarbeitung, Empathie, kognitive Emotionsregulation 
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und emotionale Verarbeitung die Patienten am genauesten von den Kontrollen. Bei MP ergaben 

Netzwerke, die mit dem autobiographischen Gedächtnis, der motorische Ausführung und der Theory-

of-Mind Kognition assoziiert sind, die genauesten Klassifikationen. Im Gegensatz dazu klassifizierten 

alle Netzwerke ältere von jungen Erwachsenen mit hoher Genauigkeit und übertrafen beide klinischen 

Klassifikationen.  

Die zweite Dissertationsstudie untersuchte altersbedingte Unterschiede in der Vorhersagbarkeit der 

individuellen Arbeitsgedächtniskapazität (AGK) aus funktionalen Netzwerken, die mit dem AG 

assoziiert sind, und Netzwerken, die in unterschiedlichem Ausmaß mit dem AG verbunden sind. Dabei 

wurde untersucht, ob und inwieweit die verschiedenen Netzwerke bei jungen und älteren 

Erwachsenen prädiktiv sind. Es zeigte sich, dass nur bei älteren Erwachsenen AGK aus dem AG-

Netzwerk, AG-entfernteren Netzwerken, die mit exekutiven Funktionen und Kognition höherer 

Ordnung assoziiert sind, einem aufgaben-negativen Netzwerk sowie AG-unabhängigen motorisch-

sensorischen Systemen vorhergesagt werden konnte. Ein ähnliches Maß an Vorhersagekraft über die 

verschiedenen Netzwerke hinweg ist vorrangig mit einer niedrigeren AGK assoziiert. Diese Ergebnisse 

unterstützen die Annahme einer verringerten Segregation funktioneller Gehirnnetzwerke, einer 

Verschlechterung der Netzwerkintegrität innerhalb der verschiedenen Netzwerke und/oder einer 

Kompensation durch Reorganisation als Faktoren, die Assoziationen zwischen niedriger und hoher AGK 

und netzwerkinterner FRK bei älteren Erwachsenen bewirken. 

Diese Studien deuten darauf hin, dass die FRK ein Marker für funktionelle Netzwerkdysregulierungen 

bei SCZ und MP ist sowie für eine Reorganisation auf neuronaler Ebene, die mit veränderter 

Netzwerkintegrität im fortgeschrittenen Alter in einer globaleren Weise verbunden ist. Zusammen 

verbessern die Ergebnisse das neurobiologische Verständnis von SCZ, MP und NA, das auf dem FRK-

Muster der funktionellen Netzwerke und auf der Ebene des einzelnen Individuums beruht, was die 

Ergebnisse früherer univariater Ansätze erweitert. Daher können ML-Ansätze als leistungsfähige 

Methoden zur Untersuchung von Zusammenhängen zwischen Gehirn und Verhalten dienen. Die 

Ergebnisse könnten auf das Potenzial der Untersuchung von Theranostik-Markern hinweisen, d.h. 

Netzwerkmarker, die über die Diagnose von Patienten und der Vorhersage des Krankheitsverlaufs 

hinaus helfen, indem sie auch als Ziel für therapeutische Anwendungen relevant sind. Theranostik-

Marker können zu einem anderen Zweig der personalisierten Medizin mit einem Schwerpunkt auf 

individualisierten netzwerkbasierten therapeutischen Interventionen führen. 
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Abstract 

The application of magnetic resonance imaging to investigate brain-behavior relationships has greatly 

enhanced our understanding of schizophrenia (SCZ), Parkinson's disease (PD), and normal aging (NA) 

with respect to changes in functional brain networks, including alterations in the functional 

communication of the brain at ‘’rest” (i.e., in task-free states). These findings are, however, based on 

traditional mass-univariate within-sample group-aggregates and are thus mostly related to changes in 

various connections across the whole-brain or within common resting-state networks. 

In more recent years, the rise of machine learning (ML) in neuroimaging research has received 

considerable attention with regards to its ability to detect relevant neuroimaging-based biomarkers 

on the single-subject level. So far, ML has primarily been used to achieve the best possible predictions 

for the future implementation of automated neuroimaging-based decision-making in clinical routine 

for personalized medicine. In turn, the thesis investigated whether ML can be utilized to gain 

knowledge about diseases and aging. 

The two studies in this dissertation aimed to improve the understanding of network changes related 

to SCZ, PD, and NA, as well as cognitive performance in advanced age by applying state-of-the-art ML 

and cross-validation schemes. To this end, resting-state functional connectivity (RSFC) was investigated 

in various functional brain networks derived from task-based meta-analyses associated with cognitive, 

social-affective, motivational, motor-sensory functions. Support vector machine classifications and 

relevance vector machine regression were performed to investigate whether RSFC patterns within 

different functional networks are associated with SCZ, PD, and NA, as well as cognitive performance, 

and thus, allow predictions based on single-subjects. 

The first study of the thesis investigated whether the known impairments of different functions in SCZ, 

PD, or NA, would equally translate into a high classification accuracy for a given network in the 

respective group. Additionally, the study evaluated whether the respective networks contain 

differential information related to the different conditions. The results showed that both SCZ and PD 

were specifically well predicted by distinct networks that resonate well with known clinical and 

pathophysiological features. For SCZ, the reward, empathy, cognitive emotion regulation, and 

emotional processing networks distinguished patients most accurately from controls. For PD, networks 

subserving autobiographical memory, motor execution, and theory-of-mind cognition yielded the 

most accurate classifications. In contrast, all networks discriminated older from young adults with high 

accuracies and outperformed both clinical classifications.  

The second study examined age-related differences in the predictability of individual working memory 

capacity (WMC) from functional networks associated with WM and networks linked to WM to different 

degrees. Thereby, the study investigated whether and to which degree the different networks were 
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predictive in young and older adults. It was found that only in older adults WMC could be predicted 

from the WM network, WM-related networks associated with executive functions and higher-order 

cognition, and a task-negative network as well as WM-unrelated motor-sensory systems. A similar 

degree of predictive power across the diverse networks was primarily associated with low WMC. These 

results support the notion of a decreased segregation of functional brain networks, deterioration of 

network integrity within different networks, and/or compensation by reorganization as factors driving 

associations between low and high WMC and within-network RSFC in older adults. 

These studies suggest RSFC as a marker of functional network dysregulations in SCZ and PD as well as 

neural-level reorganization associated with altered network integrity in advanced age in a more global 

way. Together, the results improve the neurobiological understanding of SCZ, PD, and NA that is 

grounded in the RSFC pattern of functional networks on a single-subject level, which extends the 

results of previous univariate approaches. Hence, ML approaches can serve as powerful tools for the 

investigation of brain-behavior relationships. The findings of this thesis may point to the potential of 

investigating theranostic markers, i.e., network makers that aid beyond the diagnosis of patients and 

predicting disease progression by also being relevant as therapeutic targets. Theranostic markers may 

lead to another branch of personalized medicine with a focus on individualized network-based 

therapeutic interventions. 
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1 GENERAL INTRODUCTION 

The following introduction provides additional background information on the two studies. The first 

section describes the clinical picture of schizophrenia (SCZ) and Parkinson’s disease (PD) as well as the 

characteristics of normal aging (NA). In connection with the latter, different cognitive, motivational, 

social-affective, and motor-related functions are introduced, which are linked to the brain networks 

that play an important role in the studies. Furthermore, parallels between the diseases and 

developmental conditions are defined. The second section provides an outline of brain network-based 

functional connectivity, which provided the data basis of the analyses in both studies. Specifically, the 

section first explains how functional magnetic resonance imaging (fMRI) can be used to detect 

networks of brain regions for certain mental functions and how the disadvantages of individual studies 

in their inaccuracy in the localization of core networks can be overcome with meta-analyses. 

Subsequently, the RSFC and its advantages as well as open research questions, will be introduced. This 

section also outlines an overview of some of the previous findings related to SCZ, PD, NA, and cognitive 

performance associated with the research topic. The third section introduces ML and the two specific 

ML algorithms used in the studies. Moreover, it presents the selection of ML input features and the 

assessment of predictive power using cross-validations as used in the thesis studies.  

1.1 Introduction to Clinical and Developmental Conditions 

Psychiatric and neurodegenerative disorders are widespread and are expected to increase over the 

next decades (Jacobi et al., 2014; Jellinger, 2014). SCZ is still one of the most mysterious and 

devastating mental diseases. Although the way one perceives the environment is definitively quite 

subjective, it is still fascinating how the human brain is capable of creating such an escapistic state of 

hallucinations and delusional thinking (Chadwick, 1993; Weiner, 2003). PD, as one of the most dreaded 

neurodegenerative diagnoses with its apparent severe movement disturbances, is known for its 

enormous physical and emotional challenges (Baittie, 2014). The prevalence of developing a 

psychiatric disorder or neurodegenerative condition across the lifespan contrasts with the pathway of 

normal healthy aging. Given the growing elderly population and the increase in human life expectancy 

(Bongaarts, 2009; Sinclair & LaPlante, 2019) but also the endeavors towards immortality (Google's 

Calico Project), the focus on healthy aging has become as present as it has ever been. Successful aging 

is defined as aging in the absence of disease and disabilities as well as with the maintenance of physical 

and cognitive functions, social engagement, and productivity (J. W. Rowe & Kahn, 1997). The 

tremendous societal interest in healthy aging is reflected in increasing awareness and associated 
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efforts to optimize the personal lifestyle to maintain psychological well-being and life quality until 

advanced age.  

1.1.1 Schizophrenia 

SCZ is characterized by a heterogeneous representation of psychological dysfunctions causing a lost 

touch with reality in the acute psychotic state. Internal experiences of the characteristic perceptual 

and thought disturbances such as hallucinations and delusions affect the patients, for instance, by 

hearing commanding or offensive voices and the obsession of being persecuted or controlled (Rey, 

2011). Delusions and the common formal thought alterations are signs of affected thinking in these 

patients. The latter potentially manifests itself in missing associations between different thoughts 

resulting in conversations that seem odd and distorted (Hart & Lewine, 2017). Broadly, the symptom 

spectrum is clustered into positive and negative symptom dimensions. The positive dimension is 

expressed as distortions or exaggerations of ’’normal’’ psychological functioning and encompasses 

delusions, hallucinations, and formal thought disorder. In contrast, the negative dimension is 

represented by an attenuation or a lack of ‘’normal’’ functioning, including symptoms such as avolition, 

blunted affect, and social withdrawal (Eaton et al., 1995; van Os & Kapur, 2009). Well-established 

prominent impairments further include cognitive deficits in attention, memory, and executive 

functions (Salva et al., 2008; Vahia & Cohen, 2008). Moreover, patients suffer from social-affective 

alterations such as dysfunctional emotion regulation and show impairments in the interaction with 

their social environment. Furthermore, a core feature of the disease is an aberrant learning of reward- 

and aversion-predicting stimuli (Murray, Cheng, et al., 2008; Murray, Corlett, et al., 2008; Ochsner, 

2008).  

1.1.2 Parkinson’s Disease 

PD is a severe progressive neurodegenerative disorder manifesting itself in a characteristic 

appearance. An unstable upright standing caused by a loss of reflexes accompanied by stiffness and 

inflexibility of the limb, neck, and trunk leads to a reduced range of motion in patients. Furthermore, 

the typical shaking movements during rest (“tremor”) are a defining feature of PD, which discontinues 

with action and mostly affects the hands but potentially also legs, jaw, and chin. Facial expressions can 

be extremely reduced, and walking might involve less arm swinging. These external expressions of the 

cardinal PD symptoms, as listed above, are summarized into the predominant motor symptoms: 

tremor at rest, bradykinesia, rigidity, and postural instability (Jankovic, 2008). 

Although motor symptoms are the clinical hallmarks of PD, the non-motor symptom spectrum has 

received increasing importance for understanding the complexity and course of PD as a progressive 
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disorder (Kalia & Lang, 2015). Non-motor symptoms include autonomic dysfunctions (e.g., 

hypotension and/or constipation), cognitive impairments (e.g., mild cognitive impairment (MCI), 

dementia), psychiatric symptoms (depression, anxiety, delusions), sleep disorders (e.g., rapid eye 

movement sleep behavior disorder, insomnia, hypersomnia) and sensory abnormalities (e.g., olfactory 

dysfunction, pain) (Mahlknecht et al., 2015; Poewe et al., 2017). 

1.1.3 Normal Aging 

Normal healthy aging represents aging in the absence of a neurodegenerative or psychiatric disease 

and affects people with large inter-individual variability (Glisky, 2007). Even in the absence of MCI or 

dementia, cognitive changes are frequent and the most intensively studied domain in human aging 

research (Craik & Salthouse, 2011a; Hartshorne & Germine, 2015). One of the most frequent reasons 

for complaints from the elderly is related to memory problems. A variety of studies have demonstrated 

that new information is deficiently encoded, stored, and retrieved and affects autobiographic and 

semantic memory content (Park & Festini, 2017a). Memory deterioration with advanced age is also 

linked to working memory (WM), the capability to temporarily maintain, update, and manipulate 

information (Braver & West, 2008), which is considered as an important executive function (Miyake et 

al., 2000). Apart from WM, a similar decline in executive functions affects cognitive action control, the 

ability to suppress a prepotent response in favor of a contextually more appropriate action (Braver & 

West, 2008) as well as attention (Nobre et al., 2014). In particular, aging is associated with aberrant 

vigilant attention, the ability to maintain the focus of cognitive activity on a particular task at hand over 

a more extended period (Staub et al., 2013). All three executive functions, WM, cognitive action 

control, and attention, are essential for the effective functioning of higher-order cognition and the 

implementation of complex goal-directed behavior (Satpute et al., 2012).  

Compared to diffuse cognitive deterioration in older adults, social-affective functioning, as well as the 

intersection of these domains, have been rarely investigated. However, increasingly recognized and 

examined are age differences related to, e.g., theory-of-mind cognition, emotional processing, or 

emotion regulation (Kensinger & Gutchess, 2017; Mather, 2016). In particular, difficulties have been 

demonstrated in reasoning about the beliefs of other individuals, intentions, or goals, known as theory-

of-mind cognition (Henry et al., 2013), and dedifferentiated emotional processing patterns during 

affective picture viewing. Thereby, negative affective pictures were perceived as more negative and 

arousing, whereas positive pictures were perceived as more positive and less arousing in older (vs. 

younger) adults (Grühn & Scheibe, 2008). Moreover, when negative emotions are triggered, emotion 

regulation is less efficient in decreasing unpleasant emotions when older adults are instructed to 
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employ cognitively demanding strategies. For instance such as reappraisal, referring to cognitively 

change the meaning of a situation, to alter the negative emotional response (Urry & Gross, 2010).  

In addition to cognitive and social-affective alterations with advanced age, reward-based decision-

making and motor-execution, have been even more rarely investigated. Nevertheless, impairments in 

both domains are part of the multifaceted deteriorations in NA. These impairments impact tasks which 

require the adaptation to external feedback of right or wrong, or task-switching to pursue rewarding 

feedback. Together, these have been particularly linked to reward-related decision-making deficits in 

learning and reversing a specific reward contingency (Marschner et al., 2005). Additionally, physical 

activities of daily living are affected by coordination difficulties when the elderly are asked for bi-

manually and multi-jointly coordinated movements. Moreover, a general slowing of movements has 

been observed in the elderly and is linked to impaired motor performance (Hunter et al., 2016; Seidler 

et al., 2010). 

These specific diseases were chosen as model examples in combination with NA as they share certain 

essential parallels. Firstly, both diseases can be linked to age. Particularly, age is a critical factor that is 

relevant to the onset and clinical course of both diseases and is related to NA. The SCZ onset is rather 

early in life and typically occurs during adolescence and early adulthood (Häfner et al., 2013). In 

contrast, the onset of PD is in late adulthood, i.e., age is the most significant risk factor for the 

development of PD, therefore, it is one of the best examples of an age-related disease (Hindle, 2010; 

Poewe et al., 2017). Furthermore, SCZ (Shahab et al., 2019; Sheffield et al., 2016, 2019) and PD 

(Beheshti et al., 2020; Rodriguez et al., 2015) have been associated with premature brain aging, that 

is, accelerated neurodegeneration compared to NA. Additionally, SCZ has also been linked to 

developmental disorders as being in part associated with neural and environmental events occurring 

early in development (Gupta & Kulhara, 2010; M. J. Owen et al., 2011). On the other hand, age 

contributes to the clinical progression and outcome of both diseases. Usually, for SCZ an earlier, 

whereas, for PD a later age at onset is associated with more severe symptoms, greater cognitive 

impairments, and a worse progression (Diederich et al., 2003; Hindle, 2010; Immonen et al., 2017; Kao 

& Liu, 2010; Levy, 2007; Pagano et al., 2016). Secondly, both diseases and NA are related to 

dopaminergic alterations. SCZ and PD are characterized by disease-specific changes of the 

dopaminergic system [Jankovic, 2008; Toda and Abi-Dargham, 2007] linked to the core clinical features 

of both diseases (Cassidy et al., 2018; Heinz & Schlagenhauf, 2010; Kalia & Lang, 2015). In contrast, NA 

is linked to a more global dopamine decline that resonates with the broader deteriorations in various 

cognitive functions (Bäckman et al., 2006, 2010; Berry et al., 2016; MacDonald et al., 2012). Moreover, 

the possible treatment-related complications such as Parkinsonian symptoms in SCZ and psychoses in 

PD, further emphasizing the link between both diseases, symptoms, and affected dopaminergic brain 
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circuits (Forsaa et al., 2010; Mathews et al., 2005). Together, these findings demonstrate that age and 

dopamine play a substantial role that link all three conditions but also express different phenotypic 

characteristics in SCZ, PD, and NA.  

1.2 Brain Network-based Functional Connectivity 

1.2.1 Functional Brain Networks 

The human brain operates in flexible and specialized network configurations (Yeo et al., 2015). Brain 

networks are composed of spatially distributed but functionally linked brain regions that are conjointly 

recruited to implement flexible, adaptive behavior (Pessoa, 2014). The view that the brain is organized 

in various networks has emerged in recent decades by the rapid growth of knowledge from fMRI 

studies on brain-behavior relationships (van den Heuvel & Hulshoff Pol, 2010). By utilizing changes in 

blood oxygen level-dependent (BOLD) signal, fMRI allows the localization of brain areas of increased 

or decreased neuronal activity linked to the processing of various sensory stimuli or the performance 

of different cognitive, social-affective or motor tasks (Glover, 2011; Huettel et al., 2009) associated 

with healthy or disordered brain states. To reveal the neural correlates linked to a particular cognitive 

process, such as WM, researchers set up task-based fMRI studies to induce two or more different 

cognitive states. The induced states target the process of interest and a baseline condition while 

acquiring MRI brain volumes. To investigate the neural basis of WM, the n-back task has been one of 

the most established experimental paradigm in fMRI studies (A. M. Owen et al., 2005). This task 

requires the participants to monitor a sequence of verbal or non-verbal stimuli and to identify when 

the currently presented stimulus is the same as the one presented preceding n trials. The n is usually 

set to 1, 2, or 3 (e.g., within a 2-back task of the following letter sequence: A–B–A–C, the response 

target would be the second A as A is preceding two trials). Continuous WM processes are required 

during the n-back task, such as online monitoring and updating, to respond accurately to the target 

stimuli that recur at the specified interval. In contrast, the usually employed 0-back control condition 

does not place demands on WM. For detecting significant activation clusters of the network of brain 

areas associated with WM functioning, a fundamental statistical fMRI analysis aims to compare the 

BOLD signal differences between the induced cognitive conditions by employing the subtraction 

principle, e.g., 2-back – 0-back effect (Huettel et al., 2009; Ragland et al., 2002). Similarly, fMRI studies 

have revealed networks linked to a plethora of different mental processes, such as motor execution 

(Gerardin et al., 2000), autobiographical memory (Denkova et al., 2006), cognitive action control 

(Leung et al., 2000), vigilant attention (Langner et al., 2012), cognitive emotion regulation (McRae et 

al., 2010) and theory-of-mind cognition (Gallagher et al., 2000).  
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fMRI has provided enormous knowledge of brain-behavior localization in the healthy brain. 

Furthermore, the application to neurodegenerative and psychiatric diseases, as well as NA, have 

elucidated aberrant regional brain activity of such functional brain networks associated with altered 

behavioral performance of underlying mental tasks (Gur & Gur, 2010; Hedden, 2007; J. B. Rowe & 

Siebner, 2012). In addition to the salient disease symptoms such as delusions and hallucinations in SCZ 

or motor dysfunctions in PD, both disorders exhibit disease-characteristic features in further mental 

functions of various behavioral domains. For SCZ, apart from the well-established alterations within 

the reward network that are linked to positive and negative symptoms (Deserno et al., 2013; Heinz & 

Schlagenhauf, 2010; Radua et al., 2015), disturbances in cognitive and social-affective brain-behavior 

relationships are among the representative characteristics of psychopathological diversity (Barch, 

2005; Gur & Gur, 2010; Ochsner, 2008). In turn, the complexity of PD comprises, apart from the 

prominent motor features and abnormalities of the motor network (Herz et al., 2014), cognitive and 

social-affective brain-behavior dysfunctions (Bodden et al., 2010; Dirnberger & Jahanshahi, 2013; G. 

W. Duncan et al., 2013), and an increased risk for dementia (Aarsland et al., 2001; Aarsland et al., 

2003).  

Contrary to disease-specific brain-behavior dysfunctions, NA impacts various cognitive, social-

affective, reward, and motor-related networks (Hedden, 2007; Mather, 2016; Seidler et al., 2010; Vink 

et al., 2015). Most compelling, however, is the inter-individual variability of aging (Nyberg et al., 2012). 

Notably, there is considerable heterogeneity in cognitive functioning, although the overall picture of 

NA is one of cognitive decline, some older adults maintain their cognitive performance. Several fMRI 

studies demonstrated that this variability of declined and maintained cognitive performance depends 

on neuro-functional reorganization associated with different patterns of regional network activation 

(Grady, 2012). These different patterns have been characterized as either dedifferentiation, denoted 

as a loss in the distinctiveness of neural activation across a variety of cognitive processes, or 

compensation, defined as additional neural recruitment associated with maintained cognitive 

performance in advanced age (Cabeza et al., 2018; Rajah & D’Esposito, 2005; Spreng et al., 2010). 

Overall, as outlined above, previous research found that with diseases (SCZ, PD) and healthy aging, 

functional networks are affected differently. However, some common changes across these conditions 

may affect networks related to cognitive functions, such as memory, attention, cognitive control (SCZ, 

PD, NA) and reward-related decision making (SCZ, NA), or motor control (PD, NA).  

1.2.2 Coordinate-based Meta-analysis 

A vast amount of task-based neuroimaging studies provided a multitude of neural networks associated 

with different mental processes (e.g., working memory, cognitive emotion regulation, etc.) of various 
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behavioral domains (e.g., cognition, social and emotional functioning, etc.). To probe the same mental 

process, a variety of studies have been carried out by using a heterogeneity of paradigms on rather 

small samples. Consequently, studies produced highly variable results and uncertainty of the ‘’true’’ 

core neural correlates of the target mental process (Eickhoff et al., 2016; Müller et al., 2018). In 

particular, and to continue with the example of working memory, numerous studies have investigated 

the neural underpinnings of working memory by employing several paradigms, e.g., the n-back task, 

the Sternberg task, delayed simple matching task or delayed matching to sample task (A. M. Owen et 

al., 2005; Rottschy et al., 2012). Moreover, these studies not only differed in the type of paradigm used 

but also in the kind of stimuli applied (e.g., letters, numbers, words, abstract symbols, pictures). 

Additionally, there are dissimilarities in experimental manipulations, including variations in WM load, 

storage time interval, or distraction components across studies, and results vary considerably 

depending on the contrast performed. Hence, inconsistent results of brain-behavior relationships of 

the same mental process are limitations of single studies and have raised the need to consolidate 

neuroimaging results quantitatively. To elucidate which brain network is consistently associated with 

a specific mental process across a large number of individual studies, a widely used and well-

established technique is the coordinate-based meta-analysis using the activation likelihood estimation 

(ALE) algorithm (Eickhoff et al., 2009, 2012; Turkeltaub et al., 2002). ALE is a powerful approach that 

identifies significantly overlapping clusters of neural activation across individual experiments of 

published neuroimaging studies in an unbiased manner. To quantify the consistency (i.e., spatial 

convergence) of WM-related neural activation across selected studies, ALE models each activation foci 

as 3D Gaussian distributions centered at the reported coordinates from fMRI studies to account for 

spatial uncertainty associated with each focus. The Gaussian distribution width is estimated 

concerning the between-subject and between-template spatial normalization variance based on the 

collected data. Importantly, the ALE algorithm weights the between-subject variance by the number 

of subjects included per study accommodating the notion that larger samples should provide a higher 

probability of the ’’true’’ localization. Hence, the Gaussian distributions are modeled as ‘’tighter’’ to 

reflect the smaller spatial uncertainty (Eickhoff et al., 2009). For each experiment, the probabilities of 

all activation foci for each voxel are combined. Subsequently, the voxel-wise ALE scores defined by the 

union across all combined activation probabilities are calculated to quantify the convergence across 

experiments at each location in the brain (Turkeltaub et al., 2012). To distinguish ‘’real’’ from random 

convergence, the ALE results are tested against an empirical null-distribution of ALE scores obtained 

under conditions of random spatial association across experiments derived from permutation 

procedures (Eickhoff et al., 2012). 
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Coordinate-based ALE meta-analysis has been applied by numerous studies to synthesize task-based 

fMRI data from hundreds of participants and several modifications in experimental design to define 

core regions of functional brain networks robustly. These networks pertain to particular mental 

functions and comprise networks related to, e.g., WM (Rottschy et al., 2012), autobiographical 

memory (Spreng et al., 2009), vigilant attention (Langner & Eickhoff, 2013), emotion processing and 

regulation (Buhle et al., 2014; Sabatinelli et al., 2011), reward-related decision making (Liu et al., 2011), 

or motor execution (Witt et al., 2008). 

1.2.3 Resting-State Functional Connectivity 

More recently, resting-state fMRI (RS-fMRI) has gained popularity in neuroimaging research. 

Compared to task-based fMRI, RS-fMRI enables the examination of the brain at “rest” (i.e., without an 

externally structured task) (Biswal, 2012). Similar to task-based fMRI, RS-fMRI studies have revealed 

evidence of altered brain networks associated with behavioral deficits in clinical and developmental 

conditions. However, the latter operates at the level of intrinsic functional communication between 

network regions in task-free states (Azeez & Biswal, 2017; M. H. Lee et al., 2013). RS-fMRI captures 

low-frequency fluctuations in the BOLD signal that provides a measure of network’s resting-state 

functional connectivity (RSFC) within networks by computing the temporal correlation of spontaneous 

BOLD signal time courses between spatially distributed brain regions (Fox & Raichle, 2007). 

Functionally related brain regions exhibit increased temporal coherence in spontaneous brain activity 

at ‘’rest’’ (Fox et al., 2007; Fox & Raichle, 2007) that converge with task-related fMRI network 

activations (Smith et al., 2009). Thus, investigating variations in interregional RSFC strength has 

evolved as a promising marker for network disturbances in disease and developmental conditions as 

well as for cognitive functions (van den Heuvel & Hulshoff Pol, 2010; Dongyang Zhang & Raichle, 2010). 

In contrast to task-based neuroimaging, examining RSFC in patients and adults of advanced age offers 

three crucial advantages. Firstly, it may circumvent task-specific confounds associated with task 

activation differences due to differences in task performance, strategy, or motivation. Secondly, RS 

studies can be also used to examine patients with cognitive or physical dysfunctions that are incapable 

of performing fMRI tasks, thus allowing the assessment of a broader patient sample. Thirdly, the ease 

of acquiring RS data while the subject lies quietly, mind-wandering in the scanner for 5 to 13 minutes 

provides an immense practical advantage over longer and demanding task-based fMRI studies (Birn et 

al., 2013; Fox & Greicius, 2010).  

Intriguingly, since the rise of RS-fMRI, a vast number of studies delineated a wealth of alterations in 

whole-brain RSFC and well-established resting-state networks (RSNs) associated with SCZ, PD, or NA 

(Damoiseaux, 2017; Gao & Wu, 2016; Greicius, 2008; Karbasforoushan & Woodward, 2012; Prodoehl 
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et al., 2014; Sala-Llonch et al., 2015; Q. Yu et al., 2012). Furthermore, it was demonstrated that 

differences in RSFC could provide a reliable neural substrate of inter-individual cognitive performance 

(Hampson et al., 2006; Mueller et al., 2013; Smith et al., 2015) and this brain-behavior association can 

be affected by NA (Li et al., 2017; H. Zhang et al., 2018). However, these previous findings of RSFC 

studies in disease and developmental conditions are limited in the following three aspects: 

(1) These studies do not offer insight into connectivity alterations in well-circumscribed functional 

networks recruited during a specific mental process, and that are known to be affected in clinical and 

developmental conditions (cf. Schilbach et al., 2014). Contrary to the investigation of network-based 

RSFC alterations, the majority of previous studies used data-driven independent component analysis 

to enable a robust definition of separate RSN of covariant activity (Damoiseaux et al., 2006; Smith et 

al., 2009). However, these studies are limited in their reliability as they depend on the current sample 

data (Cole et al., 2010). In turn, with seed-based approaches, the RSFC structure may be potentially 

biased depending on the selected seed region, especially by using regions from a single previous study 

(Eickhoff et al., 2009; Turkeltaub et al., 2002). In the former data-driven approach, the functional 

meaning associated with the derived networks is usually post-hoc assigned by using reverse inference, 

i.e., inferring the existence of particular mental functions based on the involvement of certain brain 

regions, as these results initially lack any direct relationship to mental functions (Poldrack, 2011). 

Hence, neither approach allows the investigation of altered functional connectivity (FC) in SCZ, PD, or 

NA in a priori robustly defined brain networks that are linked to potentially affected mental functions 

of interest (Figure 1 depicts a schematic principle of a network-based RSFC). 
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Figure 1: Schematic Principle of a Network-based Resting-State Functional Connectivity 

A) The eigenvariates of the BOLD-signal time series of seed regions within a network are extracted from a series of RS-fMRI 

Echo-Planar Imaging images. For the right superior parietal lobule (SPL) depicted in red, the right inferior frontal gyrus (IFG) in 

blue and for the temporo-parietal junction (TPJ) in grey. B) The correlation coefficients (r) between the signal time course of 

each pair of network regions reflects the network-based FC. 

(2) Previous RS-fMRI studies neglected subtle disease- and age-related effects as well as information 

on inter-individual cognitive performance that are manifested in spatially distributed patterns across 

the multiple interconnectivities of a given functional brain network (Orrù et al., 2012). This negligence 

relates to the conventional approach to perform RSFC data analysis with univariate statistics to identify 

significantly altered RSFC of single connections based on average between-group differences (e.g., SCZ 

vs. HC, PD vs. HC, or young vs. old; Bzdok, 2017). By far the majority of RS-fMRI studies of inter-

individual differences in advanced age used correlation analysis to establish a relationship between 

age-related RSFC alterations of single connections and cognitive performance (Andrews-Hanna et al., 

2007; Jockwitz et al., 2017; Mevel et al., 2013; L. Wang et al., 2010).  
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(3) Most RSFC studies did not exploit the potential to associate the unique pattern of functional brain 

network connectivity of an individual as a feature for a clinical diagnosis, developmental stage, or 

cognitive performance. Moreover, the generalizability of findings on such a brain-behavior 

relationships in terms of making predictions about an unknown subject was most often not assessed 

(Dubois & Adolphs, 2016). 

1.3. Machine Learning in Neuroimaging 

ML techniques have recently received substantial attention in the field of neuroimaging (Lemm et al., 

2011). The combination of ML-based methods and neuroimaging offers the possibility of making 

inferences about the status of an individual subject from the multivariate patterns in neuroimaging 

data. Providing information at the single-subject level is particularly interesting for clinical decision-

making (Arbabshirani et al., 2017; Orrù et al., 2012; Zarogianni et al., 2013) but ML methods are also 

promising tools to advance and strengthen the current knowledge about the neurobiological 

alterations of diseases and developmental conditions. 

Supervised ML refers to multivariate decoding techniques where an algorithm is provided with 

neuroimaging data represented as input features X (n subjects x m variables) and corresponding 

outcome as either discrete or continuous target variables Y (one value per subject) (Bishop, 2006; 

Bzdok & Meyer-Lindenberg, 2018). Input features can comprise brain imaging data, such as RSFC from 

RS-fMRI. Depending on whether the learning task is a classification or regression problem, different 

algorithms are applied. Given the input features, in classification problems the aim is to predict a 

discrete variable (label), e.g., in binary classification: 1= patient and 0 = healthy control (HC), whereas 

in regression problems the aim is to predict a continuous variable, e.g., a cognitive performance score 

2.8, 9, or 13.6, etc. In supervised ML, an algorithm is trained on these known data pairs by optimizing 

the model parameter to map the relationship between features and targets. The trained model is then 

applied to predict the discrete outcome (e.g., 1 = patient) or continuous outcome (e.g., cognitive 

performance score = 9) from previously unseen features of an individual (Arbabshirani et al., 2017; 

Orrù et al., 2012). Most importantly, this approach allows generating useful predictions in new subjects 

from unseen out-of-sample data (i.e., data not used for training the model). For example, the study by 

Tang et al. (2012) classified SCZ patients (vs. HC) based on whole-brain RSFC with an accuracy of 93.2% 

and found that most discriminative connections were located within the visual, cortical, default-mode, 

and sensorimotor networks. 
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Different ML algorithms are available for solving classification and regression tasks. For instance, 

support vector machine and relevance vector machine can both be applied to classify subjects as well 

as to predict a particular cognitive performance score from individual patterns in neuroimaging data.  

1.3.1 Support Vector Machine 

For pattern-classification, the support vector machine (SVM) has emerged as a powerful algorithm that 

allows to capture diagnostically relevant key differences contained in the features between groups of 

individuals (disease group vs. healthy controls) to predict the group membership of a new test subject 

(C.-C. Chang & Lin, 2001, 2011; P.-H. Chen et al., 2005; see Figure 2A). The non-sparse two-class 𝜈-SVM 

is trained to optimize the hyperplane function that separates the individual subjects input features 

according to the target group labels (e.g. patient vs. healthy controls). To map non-linear relationships, 

SVM uses the kernel trick in which the input features are transformed into a higher dimensional feature 

space via kernel function in order to model a linear separator to divide the data. To find the optimal 

hyperplane that separates both groups, the margin, i.e., the distance between the hyperplane and the 

two groups need to be maximized by incorporating the location of support vectors. These are the 

important data points belonging to one of the groups but lying closest to the other group, hence these 

are the most difficult cases to classify. During the training different soft-margin regularization 

parameters 𝜈 are iteratively tested to attain the optimal weight parameters w for the hyperplane 

function by solving a primal and dual optimization problem. Thereby the regularization parameter 𝜈 

controls the minimal and maximal fraction of training errors (misclassifications/margin errors, i.e., 

slack variables 𝜉𝑖) and the number of support vectors (i.e., controlling model complexity and 

overfitting). After solving the dual optimization problem, the optimal weights are assigned to only a 

subset of training data points, the support vectors. The resulting optimized model for separating the 

groups is then applied to classify features of a new subject into one of the two groups in relation to 

the support vectors (for more details, please see Bishop, 2006; C.-C. Chang & Lin, 2001; P.-H. Chen et 

al., 2005; Hastie et al., 2009c).  

1.3.2 Relevance Vector Machine 

The relevance vector machine (RVM) is a well-established ML algorithm used for pattern-regression 

(see Figure 2B). Set in Bayesian formulations, RVM provides posterior probability outputs as well as 

allows obtaining sparse solutions (Tipping, 2001; Tipping & Faul, 2003). RVM for pattern-regression 

tasks is applied to map the relationship between input features and a pre-defined corresponding target 

variable by weighting the importance of single features within the complex feature pattern in 

determining the specific continuous target value. Thereby, RVM utilizes zero-mean Gaussian prior 
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distributions with variance σ2 over the model weights w governed by one hyperparameter α 

associated with each weight. Each hyperparameter and variance is iteratively optimized during the 

training phase by maximizing the marginal likelihood function to compute the posterior distribution 

over the weights associated with the corresponding data. As a result of the optimization process, the 

posterior probability for many weight parameters peak around zero, and these parameters are pruned 

out from the model. Most importantly, this leads to sparsity as the final model solely contains the 

parameters associated with the relevant vectors, i.e., the ‘’relevant’’ subset of specific features to 

predict the target variable in the most representative subjects. The trained RVM model is then utilized 

in the test phase to predict the target value from the feature pattern of a new subject in relation to 

the relevance vectors (for more details, please see Bishop, 2006; Tipping, 2001; Valente, De Martino, 

Esposito, Goebel, & Formisano, 2011).  

 

 

 

Figure 2: Machine Learning Analysis Workflow for Classifications and Performance Predictions based 

on Network-based Resting-State Functional Connectivity 

1.3.3 Feature Reduction 

ML-based neuroimaging studies have been challenged by a phenomenon referred to as the ‘’curse of 

dimensionality’’. This challenge relates to the large number of brain features, such as connections of 

the entire brain, that greatly outnumber the amount of observations usually determined by small 

sample sizes (Arbabshirani et al., 2017; Domingos, 2012). In cases of whole-brain connectivity, features 

can comprise 264 functional regions resulting in up to 34.716 connections (Power et al., 2011). Thus, 
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feature reduction has been increasingly used to tackle this disequilibrium. One essential step involves 

feature selection, the selection of a subset of features, expected to facilitate the training of the ML 

model by removing redundant predictor features, experimental noise. The reduction aims to avoid ML 

model overfitting, resulting in improved prediction accuracy and generalizability (Mwangi et al., 2014). 

On the contrary, a high number of features or utilizing only a small subset of features may lead to 

underfitting and, consequently, poor prediction accuracy and generalizability. Thus, the number of 

informative features is crucial for ML applications to capture relevant underlying information. Over- 

and under-fitting can be counteracted by adapting the model complexity (Domingos, 2012; Janssen et 

al., 2018). 

For RSFC data, the selection approach can consist of selecting regions of interest based on previous 

literature on differences in FC between groups or cognitive performance. Accordingly, the selection 

can be performed in an objective manner by using, e.g., functionally meaningful features such as brain 

networks derived from a coordinate-based meta-analysis (Mwangi et al., 2014) and are based on prior 

knowledge regarding affected functional brain systems in different phenotypical conditions (Chu et al., 

2012). Consequently, potentially relevant features are selected in a hypothesis-driven manner while 

at the same time decreasing computational load and time of the ML analysis (Orrù et al., 2012). 

Importantly, this approach also leads to results with superior interpretability as the predictive models 

are based on well-circumscribed brain systems. 

1.3.4 Assessment of Predictive Power 

The generalization performance of an ML model refers to its prediction capacity on new unseen test 

subjects, i.e., subjects not involved in training the model. The evaluation of model performance 

provides the quality measure of the finally chosen model (Hastie et al., 2009b). A standard procedure 

to train the model and to empirically evaluate its predictive power to extrapolate to unseen test 

subjects is the implementation of a two-step cross-validation (CV) scheme. Firstly, the model algorithm 

is fitted on training data based on pairs of features-target and, secondly, its generalization 

performance is evaluated on the hold-out unseen test data, i.e., based on out-of-sample prediction.  

Yet, neuroimaging studies have mostly used a ‘’leave-one-out’’ CV scheme, which involves the 

exclusion of a single-subject as the test set while the model is trained on the remaining sample. 

Although this results in a desirably large training set, it also leads to unstable predictive performance 

and overly optimistic results due to increased test set variance. For controlling both drawbacks, 

repeated random split strategies have been implemented for the studies of this thesis. In particular, a 

10-fold CV has evolved as a superior scheme for the estimation of predictive accuracy (Hastie et al., 

2009a; Varoquaux et al., 2016). This procedure involves randomly splitting the entire data set into ten 
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equally sized subsamples. The model is then trained on nine subsamples, and the testing is performed 

on the subjects of the one left-out unseen subsample. By leaving out each of the subsamples one at a 

time, the CV process is then repeated ten times. The advantage of this method is a superior training-

test-set data balance in which it matters less how the data is divided, and usually lower variance in 

model performance is achieved. Subsequently, the prediction performance is averaged across the ten 

different data splits.  

In cases where the model parameters are tuned on the data (for example, the regularization parameter 

ν of the SVM), the most reliable way of attaining the highest accuracy and generalizability to the test 

data is by implementing a nested CV scheme (Lemm et al., 2011; Varoquaux et al., 2016). This scheme 

ensures that model parameter optimization and evaluation are performed independently of each 

other, hence, avoiding a circularity bias and invalidated results given by overestimates of the 

generalization performance of the model (Kriegeskorte et al., 2009). In a nested CV scheme, an inner 

‘‘nested" CV loop is first implemented to optimize the regularization parameters through grid-search 

to achieve the most accurate model fit. Secondly, an outer CV loop is used to evaluate the 

generalizability of the inner loop selected model to new subjects that have not been part of the model 

optimization process. On both loop levels, the data is randomly split into training and test splits. In 

either CV scheme, more stable estimates of the performance of a model can be attained, incorporating 

the broad spectrum of sample heterogeneity of the disease or aging population, by performing 

multiple repetitions of a 10-fold CV scheme. Thereby, in each repetition, the data are shuffled and 

randomly split so that different distributions of sample subjects are assigned to the folds in each 

repetition (Varoquaux et al., 2016). 

Supervised ML allows the association of patterns of RSFC with disease or developmental conditions 

and cognitive performance. Most importantly, the identification of disease, aging, or cognitive 

characteristic in RSFC patterns across the whole-brain or specific brain networks can then be 

generalized to make predictions based on new single-subjects outside the model training procedure. 

So far, several studies that deployed RSFC for predictions, have demonstrated the importance of RSFC 

as a neural marker to predict (Arbabshirani et al., 2017; Du et al., 2018; Kambeitz et al., 2015; Orrù et 

al., 2012; Wolfers et al., 2015; Zarogianni et al., 2013), PD (Y. Chen et al., 2015; Long et al., 2012), and 

NA (Billings et al., 2017; Meier et al., 2012; Vergun et al., 2013) as well as inter-individual differences 

in cognition (Finn et al., 2015; Rosenberg et al., 2016; Shen et al., 2017). Thereby, the major aim of 

previous studies was preferably determined by extracting RSFC-based biomarkers linked to the most 

accurate predictions in classifying disease from healthy conditions for clinical application and 

personalized medicine. The precise method of how these models were generated and whether they 

contained disease- or aging-related insight was rather of secondary importance. Thus, the identified 
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regions that played the most crucial role for the predictions were often barely discussed in the context 

of neurobiological, behavioral, and/or the psychopathological insights. 



RATIONALE OF THE THESIS  

 
17 

 

2 RATIONALE OF THE THESIS 

Given the outlined theoretical background and presented limitations, leveraging the advantages of 

different approaches to a unique methodological combination applied in the thesis studies shall 

provide novel insights into brain-behavior relationships in SCZ, PD, and NA. Meta-analytical networks 

are reflections of robustly and objectively defined, circumscribed functional brain systems. Moreover, 

RSFC is an easily accessible, informative neural marker associated with SCZ, PD, NA, and inter-

individual differences in cognitive performance. In summary, examining RSFC within a priori meta-

analytically derived brain networks pertaining to a specific mental function constitutes a functionally 

meaningful selection of brain features for the application of ML algorithms. Meaningful dimensionality 

reduction results in increased interpretability of RSFC changes related to well-defined brain systems. 

The combination with ML algorithms offers the potential to investigate whether complex and 

distributed patterns in RSFC within functional brain networks are associated with SCZ, PD, NA, and 

inter-individual differences in cognitive performance. Moreover, ML enables predictions at the level 

of new subjects on their phenotypic status. 

ML holds excellent promises for personalized medicine as a diagnostic tool for individual patient-level 

classification of disease and the prognosis of disease progression or treatment response. However, this 

method has been rarely used to address its impact on gaining novel insight into classical brain-behavior 

relationships and such questions have been primarily investigated with traditional univariate analysis 

approaches. Hence, it remains largely unexplored whether connectivity patterns within functional 

networks during task-free states are associated with a specific disease or developmental condition or 

inter-individual performance differences at the single-subject level. Therefore, this lack of knowledge 

raises the questions of whether ML can aid in gaining insights into pathological changes in SCZ and PD 

as well as developmental alterations in NA linked to RSFC patterns in functional brain networks. 

Importantly, this approach allows one to address open questions about how the commonalities and 

phenotypical differences of these conditions manifest themselves in different functional brain systems. 

For this purpose, ML-based predictions offer to interpret prediction capacity as a measure of the 

amount of information about the diseases, NA, and cognitive performance that is contained in 

different networks. Conversely, it allows one to interpret how much information is contained in 

networks with regard to the different conditions. The amount of information also serves as an indicator 

of the degree of change in the integrity of the networks with respect to the different phenotypical 

conditions. Thus, the motivation behind the approach aims to enhance our understanding of the 
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relationships between SCZ, PD, NA, as well as cognitive performance and functional brain networks. 

As a result, this thesis, therefore, aims to address the following central research questions: 

Study 1: On the Integrity of Functional Brain Networks in Schizophrenia, Parkinson’s Disease, and 

Advanced Age: Evidence from Connectivity-based Single-Subject Classification  

Do known impairments in different functions in SCZ, PD, or NA, respectively, manifest in the 

connectivity patterns within networks that subserve these affected mental functions, and hence, 

translate into high classification accuracy for a given network in the respective group? 

This study aimed to investigate in a “proof-of-principle’’, explorative, and comparative manner 

whether networks pertaining to functions known to be affected by SCZ, PD, and NA carry differential 

information related to these conditions. Thereby, it was examined whether single-subjects can be 

differently classified based on a variety of different functional networks with respect to their condition. 

Comparisons were performed to evaluate the single-subject classification accuracies within and 

between the three conditions and across the various networks.  

Study 2: Age differences in predicting working memory performance from network-based functional 

connectivity 

Do neuro-behavioral features of aging manifest in inter-individual differences in behavioral measures 

of WM capacity (WMC) associated with variations in connectivity patterns at rest within the WM 

network and different cognitive networks, either closely or distantly related to WM? 

This study aimed to examine whether age-related differences in RSFC patterns within functional brain 

networks related to WM to different degrees are associated with individual WMC. Thereby it was 

investigated whether and to which degree individual WMC can be predicted from different cognitive 

networks in young and old participants. By comparing prediction performance across networks and 

between the two age groups, it was evaluated whether aging affects the neural-level organization at 

rest related to inter-individual WM task demands outside the scanner. 

Furthermore, for NA, the results from both studies allowed one to assess which networks that 

performed well in distinguishing young and old participants also contained relevant behavioral 

information on age-related inter-individual cognitive performance. Additionally, the specificity of 

brain-behavior relationships in young and older adults was examined to evaluate if distinct networks 

carry information on cognitive performance to different degrees.
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Abstract 

Previous whole-brain functional connectivity studies achieved successful classifications of patients and 

healthy controls but only offered limited specificity as to affected brain systems. Here, we examined 

whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson’s 

disease (PD), or normal aging equally translate into high classification accuracies for these conditions. 

We compared classification performance between pre-defined networks for each group and, for any 

given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 

80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, 

were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 

25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various 

networks clearly differed between conditions, as those networks that best classified one disease were 

usually non- informative for the other. For SCZ, but not PD, reward, empathy, emotion regulation, and 

emotion-processing networks distinguished patients most accurately from controls. For PD, but not 

SCZ, networks subserving autobiographical memory, motor execution, and theory-of-mind cognition 

yielded the best classifications. In contrast, young–old classification was excellent based on all 

networks and outperformed both clinical classifications. Our pattern-classification approach captured 

associations between clinical and developmental conditions and functional network integrity with a 

higher level of specificity than did previous whole-brain analyses. Taken together, our results support 

resting-state connectivity as a marker of functional dysregulation in specific networks known to be 

affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way. 

 

Keywords: schizophrenia; Parkinson’s disease; normal aging; support vector machine; resting-state 

fMRI; functional connectivity; brain networks; machine learning  
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Introduction 

Schizophrenia (SCZ) and Parkinson’s disease (PD) are two of the most prevalent and socioeconomically 

relevant brain diseases (Andlin-Sobocki et al., 2005). Although SCZ onset typically emerges during 

adolescence and early adulthood (Häfner et al., 2013), PD is characterized by an onset during late 

adulthood (Hughes et al., 1992; Poewe et al., 2017) and has been associated with premature aging, 

that is, earlier and more rapid neurodegeneration as compared to the course of normal aging (NA) 

(Rodriguez et al., 2015). Both SCZ and PD are characterized by disease-specific pathophysiological 

changes of the dopaminergic system (Jankovic, 2008; Toda & Abi-Dargham, 2007), contrasting with a 

more global dopamine decline in NA (Bäckman et al., 2006). However, it has been proposed that 

dopaminergic dysfunction in SCZ arises as a secondary effect due to alterations of the glutaminergic 

system (Laruelle et al., 2003). In contrast, in PD dopaminergic deficiency represents the primary cause 

leading to pathophysiological upstream dysregulations of different neural systems (Obeso et al., 2008). 

These neurobiological features of SCZ, PD, and NA (Bäckman et al., 2006; Jankovic, 2008; Laruelle et 

al., 2003; Obeso et al., 2008; Rodriguez et al., 2015; Toda & Abi-Dargham, 2007) may manifest 

themselves in functional connectivity alterations at the level of large-scale brain networks (Cole et al., 

2013; Kelly et al., 2009; Narr & Leaver, 2015; Prodoehl et al., 2014; Sala-Llonch et al., 2015). However, 

some putative commonalities (neurodegeneration, dopaminergic dysregulations, and altered 

connectivity) need to be juxtaposed with the prominent phenotypical differences between SCZ, PD, 

and NA (Bäckman et al., 2006; Jankovic, 2008; Narr & Leaver, 2015; Prodoehl et al., 2014; Sala-Llonch 

et al., 2015; Toda & Abi-Dargham, 2007) and the fact that the clinical presentations of SCZ and PD are 

very different (Eaton et al., 1995; Jankovic, 2008; Kalia & Lang, 2015; van Os & Kapur, 2009), raising 

the question whether various functional systems are differentially affected in the three conditions. 

Rather than assessing altered activations in different functional systems by conducting task-based 

functional magnetic resonance imaging (fMRI) studies, we examined altered functional connectivity 

within various functional networks robustly defined by meta-analyses of task-based neuroimaging 

studies in a comparative fashion (cf. New et al., 2015; Schilbach et al., 2016). This has the practicable 

advantage of using easily accessible, short, and standardized resting-state (RS) data while at the same 

time incorporating the consolidated knowledge based on task-based imaging into the analysis. We 

argue that such an approach is particularly relevant, given that in contrast to RS imaging, task-based 

assessments will rarely be feasible in a routine clinical setting. 

Alterations in functional network integrity patterns in SCZ, PD, or older adults (compared to respective 

healthy/young controls) can be captured by using machine learning-based classification. For extracting 

a diagnostically relevant marker that allows the classification of individual subjects based on the 

connectivity in functional brain networks, multivariate decoding algorithms like support vector 
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machine (SVM) should provide the most appropriate approach for this endeavor. Rather than testing 

each connection independently for group differences, SVMs are trained on part of the data by 

weighting all connections in order to separate the known clinical status from healthy controls (HCs). 

Classification accuracy can then be determined by assessing the ability to predict group membership 

of previously unseen subjects. Applied to (whole-brain) connectivity data, this approach has previously 

been found to distinguish SCZ patients (cf. Arbabshirani, Plis, Sui, & Calhoun, 2017; Kambeitz et al., 

2015; Wolfers, Buitelaar, Beckmann, Franke, & Marquand, 2015) or PD patients (cf. Y. Chen et al., 2015; 

Long et al., 2012) from healthy controls (HC), as well as aged from young subjects (NA) (cf. Meier et 

al., 2012; Vergun et al., 2013).  

Previous pattern-classification studies aimed at providing the best possible classification performance 

on whole-brain connectivity. In contrast, the aim of this work was to assess whether specific 

functionally defined networks are altered in SCZ, PD, and NA. Although previous studies mainly used 

independent component analysis (ICA) based data-driven methods to extract major RS networks 

(Damoiseaux et al., 2006; Smith et al., 2009), our work is based on a priori meta-analytically defined 

networks associated with specific sets of behavioral functions, such as working memory (Rottschy et 

al., 2012) or emotional processing (Sabatinelli et al., 2011). In contrast to well-established RS networks, 

these networks represent the consolidated information from hundreds of task-based fMRI studies and 

hence those locations in the brain that are reliably activated when subjects perform tasks pertaining 

to a particular mental function. We thus argue that these nodes define robust functional networks in 

the brain related to specific mental domains. In turn, the functions associated with RS networks are 

usually derived from a reverse inference approach, as these lack any direct relationship to mental 

functions (Poldrack, 2011). We suggest that this more direct relationship between the network-nodes 

and actual task-demands is an important advantage of our approach. Moreover, the employed 

strategy results in an a priori, unbiased definition of the respective networks, whereas ICA-based 

networks are usually defined from the current data (Cole et al., 2010). Our meta-analytically derived 

network model approach, thus, offers the potential to investigate functional connectivity within robust 

a priori brain networks that are implicated in processing a specific mental process.  

Therefore, this study aimed to examine whether the known impairment of different functions in SCZ, 

PD, or aging, respectively, would equally translate into a high classification accuracy for a given 

network in the respective group, based on the connectivity pattern within this network. As a “proof-

of-principle” approach, we, therefore, intended to investigate whether various a priori networks based 

on task-activation findings carry differential disease-related information assessable by RS imaging. To 

this end, we examined two diseases which are clinically very disparate but well studied in the previous 

neuroimaging literature. The findings were then juxtaposed to findings on age-related effects in the 
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same networks. Thereby, we could evaluate whether the respective networks carry differential 

information related to the different conditions or, conversely, whether the different networks carry 

differential information related to a particular condition. Given some putative commonalities and 

especially phenotypical differences, the aim was to examine the possibility for differential classification 

of SCZ, PD und age, rather than to primarily study the specific diseases and their clinical separation 

from each other or aging per se. In our investigation, these three groups thereby serve as examples to 

evaluate this approach. For example, we assume that connectivity in the reward (Rew) network will be 

potent in differentiating SCZ patients from matched HCs, as several studies have shown impairments 

related to reward learning in SCZ, and the neurobiology of this network has been linked to psychosis 

(Deserno et al., 2013; Heinz & Schlagenhauf, 2010; Radua et al., 2015). Likewise, we would expect a 

good classification accuracy for PD patients based on FC in the motor network, given that motor 

impairments represent the core feature of this disease (Jankovic, 2008), and motor circuits in the 

brains of PD patients are altered during motor tasks and at rest (Herz et al., 2014; Prodoehl et al., 2014; 

Tessitore et al., 2014). Finally, NA is accompanied by cognitive decline in various domains (Glisky, 

2007), such as deterioration in working-memory function (Braver & West, 2008). For the latter, age-

related neural changes have repeatedly been shown at task (Dennis & Cabeza, 2008; Rajah & 

D’Esposito, 2005) and rest (Keller et al., 2015). Accordingly, we assume that the working memory (WM) 

network allows a clear distinction between old and young adults. 

In an explorative manner, we furthermore assessed a broad set of networks associated with different 

behavioral domains (cognitive, social-affective, motivational and motor-related) since all three 

conditions (PD, SCZ, and NA) show alterations in various functional domains on the behavioral and 

neural level (Barch, 2005; G. W. Duncan et al., 2013; Seidler et al., 2010). Importantly, in our approach, 

we reasoned that classification performance may be interpreted as an indication for the amount of 

information contained in a given network regarding a particular disease or age status, and thus, of the 

degree of change observed in the integrity of particular networks under these conditions. 

We assume that classification performance will be best for connectivity in those networks that 

subserve mental functions known to be affected in SCZ and PD. SCZ is characterized by prominent 

social-affective/motivational alterations (Brunet-Gouet & Decety, 2006; Deserno et al., 2013; Heinz & 

Schlagenhauf, 2010; Kring & Elis, 2013; Radua et al., 2015), whereas in PD motor impairments are most 

affected (Herz et al., 2014; J. B. Rowe & Siebner, 2012; Tessitore et al., 2014). We, therefore, 

hypothesized that social-affective/motivational and motor-related networks provide a superior 

classification of SCZ and PD patients, respectively. As both diseases are accompanied by cognitive 

impairments as well, we assumed that cognitive networks may also be predictive to some degree 

(Barch, 2005; G. W. Duncan et al., 2013; Elgh et al., 2009; Nieoullon, 2002). As NA is associated with a 
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broad spectrum of decline affecting various functional systems (albeit to a varying degree) (Hedden, 

2007; Mather, 2016; Seidler et al., 2010), we expected that most networks allowed for an accurate 

discrimination of old from young adults. 

Materials and Methods 

Samples 

Schizophrenia 

RS fMRI data and phenotypical information of 86 SCZ patients and 84 HCs obtained from the COBRE 

sample (http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html) and the University Hospital of 

Göttingen, Germany, were included in the analysis. SCZ diagnosis was assigned as assessed by the 

DSM-IV-TR based on the structured clinical interview (SCID-P) and the International Classification of 

Diseases (ICD-10), respectively. SCZ symptom severity was assessed using the Positive and Negative 

Symptom Scale (PANSS) (Kay et al., 1987) evaluating the severity of positive and negative symptoms 

as well as the general psychopathology. Patients received their regular medication therapy with 

considerable variability in the exact compounds used and a high prevalence of combination drug 

therapy (medicated patients but exact medication and dose unknown for Olanzapine equivalent dose 

(Gardner et al., 2010): COBRE: 50.9%; Göttingen: 25.8%; medication status unknown: COBRE: 1 SCZ 

patient; Göttingen: 2 SCZ patients). 

Parkinson’s disease 

RS fMRI data of 80 PD patients and 84 HCs obtained from the RWTH Aachen University Hospital and 

the University Hospital Düsseldorf, Germany, were included in the analysis. Diagnosis of PD was 

assigned by consultant neurologists with longstanding expertise in movement disorders based on 

clinical examination and review of the medical history. Included PD patients fulfilled the standard UK 

Brain Bank criteria for PD and had on average a mild cognitive impairment as confirmed by the 

Montreal Cognitive Assessment (MoCA) but no major depression symptoms (Hoops et al., 2009; 

Hughes et al., 1992; Nasreddine et al., 2005). To assess PD symptom severity and evaluate motor 

impairments the Unified Parkinson’s disease Rating Scale Part III ( UPDRS; Movement Disorder Society 

Task Force on Rating Scales for Parkinson’s Disease, 2003) and Hoehn and Yahr Scale ( H & Y Scale; 

Hoehn & Yahr, 1967) were applied. All patients were medicated with their regular individual PD-related 

treatment [medication and dose unknown for Levodopa equivalent daily dose (Tomlinson et al., 2010): 

Aachen: 28.1%; Düsseldorf: 12.5%].  

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
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Healthy controls  

RS fMRI data of HC (HCSCZ and HCPD) were obtained from the four different sites as respective clinical 

subjects (SCZ and PD) and were without any record of neurological or psychiatric disorders as 

confirmed via structured clinical screening. 

Normal Aging 

RS fMRI data of 95 old (age range: 55 – 70 years) and 93 young (age range: 20 – 35 years) participants 

with an age range of 15 years in each group were obtained from the population-based 1000BRAINS 

study (Caspers et al., 2014) and another separate study at the Research Centre Jülich, Germany. This 

relatively small age-range aims to enhance the subsample homogeneity. “NA” in old participants refers 

to the absence of neurodegenerative diseases. Older adults showed cognitive performance adequate 

for their age as assessed by the Mild Cognitive Impairment and Early Dementia Detection assessment 

(DemTect > 13; Kalbe et al., 2004) and all participants did not exhibit clinically relevant symptoms for 

depression as evaluated via the Beck Depression Inventory-II ( BDI-II < 13; Beck, Steer, & Brown, 1996). 

Importantly, target and control groups (i.e., patients vs. HC, old vs. young adults) of all three samples 

(PD, SCZ, NA) represent subsamples from larger samples that were post-hoc matched for gender, 

within-scanner movement and (only for the clinical samples) age (cf. S1 Table 1 for sample and group 

matching characteristics). Written informed consent from all subjects and approval by the local ethics 

committees was obtained from all sites. Joint reanalysis of the anonymized data was approved by the 

ethics committee of the Heinrich Heine University Düsseldorf.  
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S1 Table 1: Sample and Group Matching Characteristics 

Sample  n 

(males) 

Age 

(years) 

Head 

movement 

(DVARS) 

Age at 

onset 

(years) 

Illness 

duration 

(years) 

Antipsychotic/ 

dopaminergic 

medication 

Neuropsychology and 

Psychopathology 

SCZ sample      OZP-equivalent PANSS: Total / PS / NS / GEN 

   COBRE        

SCZ patients 55 (46) 38 ± 14 1.66 ± 0.55* 20 ± 8 17 ± 14 13 ± 8 58 ± 14 / 14 ± 5 / 14 ± 5 / 29 ± 8 

HCscz 55 (42) 38 ± 12 1.44 ± 0.41     

   Göttingen        

SCZ patients 31 (25) 32 ± 10 1.47 ± 0.30* 25 ± 8 7 ± 8 14 ± 9 52 ± 11 / 12 ± 3 / 13 ± 4 / 28 ± 6 

HCscz 29 (22) 32 ± 9 1.31 ± 0.23 
 

   

   Total        

SCZ patients 86 (71) 36 ± 13 1.59 ± 0.48*     

HCscz 84 (64) 36 ± 11 1.39 ± 0.36     

PD Sample      LEDD H & Y Scale UPDRS-III MoCA 

   Aachen          

PD patients 32 (21) 64 ± 9 0.51 ± 0.16 59 ± 8 6 ± 5 449 ± 238 2 ± 1 23 ± 12 27 ± 2 

HCPD 33 (20) 63 ± 6 0.62 ± 0.29       

   Düsseldorf          

PD patients 48 (30) 59 ± 9 0.69 ± 0.26 51 ± 9 8 ± 6 1029 ± 416 2.5 ± 1 16 ± 8 24 ± 4 

HCPD 51 (30) 57 ± 9 0.68 ± 0.22       

   Total          

PD patients 80 (51) 61 ± 9 0.62 ± 0.24       

HCPD 84 (50) 59 ± 8 0.66 ± 0.25       

NA sample       DemTect  BDI-II 

   Jülich          

Old 48 (26) 61 ± 5 1.58 ± 0.41*    16 ± 2  5 ± 5 

Young 52 (26) 26 ± 3 1.24 ± 0.24      5 ± 4 

   1000BRAINS  

   Jülich 

         

Old 47 (25) 64 ± 4 1.79 ± 0.43*    15 ± 2  6 ± 5 

Young 41 (23) 28 ± 4 1.28 ± 0.26      4 ± 4 

   Total          

Old 95 (51) 63 ± 5 1.68 ± 0.43*       

Young 93 (49) 27 ± 4 1.26 ± 0.25       

SCZ, schizophrenia; HCSCZ, matched healthy controls (HCs) of SCZ sample; PD, Parkinson’s disease; HCPD, matched HCs of PD 

sample; NA, normal aging; characteristic values in mean±standard deviation; DVARS, derivative of root mean squared variance 

over voxels (head movement parameter) (Power et al., 2012); significant difference in age (clinical samples), gender and 

movement are marked with * for p <0.05; SCZ: OZP-equivalent (Gardner et al., 2010), Olanzapine equivalent dose; PANSS, 

Positive and Negative Symptom Scale, (PS, Positive Symptoms Scale/NS, Negative Symptoms Scale/GEN, General 

Psychopathology Scale); PD: LEDD (Tomlinson et al., 2010), Levodopa equivalent daily dose; H & Y Scale, Hoehn and Yahr Scale; 

UPDRS-III, Unified Parkinson’s Disease Rating Scale Part III; MoCA, Montreal Cognitive Assessment; NA: DemTect, Mild 

Cognitive Impairment and Early Dementia Detection, BDI-II, Beck Depression Inventory II. 

Resting-state fMRI data acquisition, preprocessing, and analysis  

During image acquisition (see Supplement S1 Table SI for fMRI parameters), participants were 

instructed to lie still, let their mind wander, and not fall asleep (confirmed at debriefing). SPM8 

(www.fil.ion.ucl.ac.uk/spm) was used for image realignment, spatial normalization to the MNI-152 

template using the unified segmentation approach (Ashburner & Friston, 2005), and smoothing ‘’5-

mm full width at half-maximum Gaussian kernel’’.  

We investigated 12 functional networks, robustly defined by previous quantitative meta-analyses, to 

reflect neural correlates of a broad set of cognitive, social-affective/motivational, and motor functions 

(see S1 Table 2 for an overview and S1 Table SII for detailed network coordinates and corresponding 

brain regions). Only meta-analytic networks with a minimum of 10 nodes were included, since a lower 

file:///C:/Users/Rachel%20Nirmala%20P/Documents/Wissenschaftliche%20Mitarbeit%20Düsseldorf%20Jülich/Dissertation/Monographie/DissFinalVeröffentl/www.fil.ion.ucl.ac.uk/spm
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number of features are uninformative for robust classification. RS functional connectivity (RSFC) within 

each network was computed per subject by first extracting the time-series for each node within 6 mm 

of the meta-analytic peaks. To reduce spurious correlations, variance explained by the six movement 

parameters and their derivatives (modeled as first and second order effects) as well as the mean white-

matter and cerebrospinal fluid signal time-courses was removed from the time series (Satterthwaite 

et al., 2013; Varikuti et al., 2017). Subsequently, time series were high-pass filtered retaining 

frequencies above 0.01 Hz. Connectivity was computed as the Fisher’s Z-transformed Pearson 

correlation between the time series of each network’s nodes; connectivity values were adjusted for 

effects of acquisition site, gender, movement, total brain volume, and (only for the clinical samples) 

age (cf. Schilbach et al., 2016, 2014) to avoid classification based on spurious between-subject effects. 

S1 Table 2: Network Overview 

Network 

(Abbr.) 

Network Contrast Nodes Publication 

EmoSF emotional scene and 

face processing  

emotional scene > neutral scene and emotional 

face>neutral face 

24 (Sabatinelli et al., 2011) 

ER cognitive emotion 

regulation 

reappraise > naturalistic emotional responses 14 (Buhle et al., 2014) 

ToM theory-of-mind 

cognition 

Theory-of-mind > non-social baseline 15 (Bzdok et al., 2012) 

Empathy empathic processing ‘’feel into’’ affect-laden social situations > watched or  

listened passively 

19 (Bzdok et al., 2012) 

Rew reward-related decision 

making 

ME: reward valence and decision stages 25 (Liu et al., 2011) 

AM autobiographical 

memory  

autobiographical memory > non-autobiographical 

baseline 

22 (Spreng et al., 2009) 

SM semantic memory  access to word meaning > processing word structure 23 (Binder et al., 2009) 

WM working memory  ME: n-back, Sternberg, delayed matching to sample 

and delayed simple matching tasks 

23 (Rottschy et al., 2012) 

CogAC cognitive action control ME: stroop-task, spatial interference task, stop-signal 

task and go/no-go task 

19 (Cieslik et al., 2015) 

VigAtt vigilant attention  ME: detection task, discrimination task 16 (Langner & Eickhoff, 

2013) 

MNS mirror neuron system action observation ∩ action imitation 11 (Caspers et al., 2010) 

Motor motor execution finger tapping > baseline; excl. regions associated with 

visually paced finger-tapping tasks 

10 (Witt et al., 2008) 

ME, main effect. 
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Support Vector Machine Features and Classification 

To examine whether the RSFC pattern of a network contains predictive information on the respective 

groups (SCZ vs. HCSCZ, PD vs. HCPD, old vs. young) non-sparse linear two-class SVMs were computed 

using LibSVM (Chang & Lin, 2011) (https://www.csie.ntu.edu.tw/~cjlin/libsvm). SVMs were trained 

separately for each of all three analyses (PD, SCZ, NA) and each of the functional networks. Of note, 

we did not attempt between-patient classification (i.e., PD vs. SCZ), as the different groups were closely 

matched to their respective controls but substantially different from each other with respect to age, 

gender, and movement. The input variables (features) to the SVM consisted of edge-wise RSFC 

between all nodes of a given network. Each SVM was trained and tested by a nested 10-fold cross-

validation scheme for each individual group [see example S1 Figure 1 (Xia et al., 2013)] (cf. Lemm, 

Blankertz, Dickhaus, & Müller, 2011). The inner loop used a 10-fold cross-validation within the training 

group to optimize the soft-margin slack parameter. For each fold of the outer loop, the left-out 

(unseen) 10% were then classified using the SVM trained on the (entire) training-set using the 

optimized parameter. This nested scheme ensured that classifier optimization and evaluation were 

performed independently of each other (Kriegeskorte et al., 2009). Classification performance was 

evaluated based on accuracy (Acc.), balanced accuracy (bAcc.), sensitivity (Sens.), and specificity 

(Spec.) as well as two measures derived from signal-detection theory: the area under the receiver 

operating characteristics (ROC) curve (AUC) (Fawcett, 2004) and d’. Acc. denotes the overall proportion 

of subjects correctly classified as patients (PD, SCZ) or advanced age versus healthy or younger age, 

respectively. The bAcc. is calculated as the average proportion of subjects correctly classified as 

patients (PD, SCZ) or advanced age versus healthy or younger age, respectively. Sens. indicates the 

percentage of patients (SCZ or PD) correctly classified as ill or subjects correctly classified as old in the 

aging sample (true positives). Spec., in turn, represents the fraction of HCs correctly classified as 

healthy or subjects correctly identified as young in the aging sample (true negatives). AUC refers to the 

area under the ROC curve. A ROC curve depicts the relationship between true positive rate and false 

positive rate, and its AUC value indicates the sensitivity of the diagnostic process independent of any 

specific decision criterion. Finally, we assessed d’, an alternative index of diagnostic sensitivity 

independent of the decision criterion, calculated as z(true positive rate) – z(false positive rate). To 

increase robustness, the entire procedure was repeated 25 times, and each performance measures 

was averaged across repetitions. To examine significant differences in classification performance 

between networks within each group, pairwise t-tests were performed for each of the 12 networks 

based on the accuracies obtained from the 25 cross-validation outer loop replications of the separate 

SVMs (significance threshold of p < 0.05, Bonferroni-corrected for the number of pairwise network 

comparisons).  

https://www.csie.ntu.edu.tw/~cjlin/libsvm
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To compare the separately conducted classifications for SCZ versus HCSCZ and PD versus HCPD 

subgroups, accuracies obtained for each individual analysis for every network were converted to 

standardized z-scores by reference to the binomial distribution reflecting chance level and corrected 

for multiple comparisons by the amount of networks-based classifications. Log-likelihood ratios were 

estimated to identify networks showing better classification performance for one patient group than 

the other. To investigate significant differences in classification performance between the groups, t-

tests were calculated based on the 25 accuracies obtained from the cross-validation outer loop 

replications of the separate SVMs performed in each group (SCZ, PD, NA) for each of the 12 networks 

(significance threshold of p < 0.05, Bonferroni-corrected for the number of groups and networks). 

 

S1 Figure 1: Linear Two-class SVM Nested 10-Fold Cross-validation Scheme 

Illustration of an SVM example for classification of the SCZ sample based on the EmoSF network. As input variables (DATA) (= 

features) served the subjects’ RSFCs of all edges of every network. The inner loop was performed in a 10-fold manner with 10 

repetitions conducted as parameter setting optimization on a training sample. The outer loop was performed in a 10-fold 

manner with 25 repetitions conducted as classification accuracy testing on an unseen test set. Classification performance 

measures are computed based on the confusion matrix. Acc., accuracy; Sens., sensitivity; Spec., specificity; AUC, area under 

the ROC curve and d’.  



STUDY 1: SCHIZOPHRENIA; PARKINSON’S DISEASE AND AGING CLASSIFICATIONS 

 
30 

 

Results 

As expected, SCZ patients could be distinguished above chance even with the highest accuracy from 

matched HCs based on RSFC in the reward network (Rew; Acc. = 74%; AUC =0.80). In turn, PD patients 

were distinguished above chance from their matched HCs based on RSFC in the motor network (Motor; 

Acc. = 68%; AUC = 0.77). Finally, old and young subjects were differentiated very well from each other 

based on RSFC in the working memory network (WM; Acc. = 83%; AUC = 0.90). Results are summarized 

as follows: S1 Figure 2A for the polar plot of group classification accuracies, S1 Table 3 for Acc., Sens., 

Spec. and AUC, S1 Table SIII for bACC., S1 Table SIV for d’, S1 Figure SI for z-standardized accuracies of 

all groups, and S1 Figure SII for variance of accuracies.  

 

 

S1 Figure 2: Group Classification Results of the SVM 

(A) Polar plot of group classification accuracies based on all 12 networks for SCZ (in green), PD (in blue) and NA (in yellow). 

Accuracy refers to the proportion of subjects correctly classified as patients (PD, SCZ) or older age and subjects correctly 

classified as being HCs or younger age. (B) Polar plot of z-standardized accuracies (corrected for multiple comparisons) of 

patients classification for SCZ (in green) and PD (in blue). (C) Log-likelihood ratios of classification performance for networks 

showing higher classification for one patient group vs. the other. 

Considering the performance of all functional networks in distinguishing SCZ and PD patients from 

their respective HCs, a clear differentiation between networks becomes evident, even though only 2 

(SCZ) and 1 (PD) out of 12 networks, respectively, did not significantly exceed chance accuracy (S1 

Figure 2B). The following results and discussion are focused on networks with superior classification 

performance for the respective disorders. In this context, we would like to re-iterate that we did not 

attempt to train any classifier to distinguish SCZ from PD patients, since the two samples differed 

substantially from each other in various confounding factors such as age, gender distribution, and 

within-scanner movement.  
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S1 Table 3: Classification Results of the Support Vector Machine of all Groups based on Specific 

Networks 

Network  

(Abbr.) 

SCZ vs. HCSCZ 

Acc. (Sens. / Spec.) AUC 

PD vs. HCPD 

Acc. (Sens. / Spec.) AUC 

Old vs. Young 

Acc. (Sens. / Spec.) AUC 

EmoSF 70%  (78% / 62%) 0.78 65%  (65% / 64%) 0.71 87%  (88% / 85%) 0.95 

ER 70%  (80% / 60%) 0.77 64%  (67% / 62%) 0.70 80%  (82% / 78%) 0.87 

ToM 65%  (76% / 53%) 0.70 68%  (74% / 63%) 0.74 80%  (80% / 79%) 0.88 

Empathy 71%  (71% / 71%) 0.80 65%  (66% / 64%) 0.74 78%  (78% / 78%) 0.86 

Rew 74%  (74% / 74%) 0.80 65%  (64% / 66%) 0.75 91%  (91% / 92%) 0.96 

AM 64%  (70% / 59%) 0.72 72%  (74% / 70%) 0.77 82%  (83% / 81%) 0.90 

SM 71%  (76% / 66%) 0.77 70%  (67% / 72%) 0.81 85%  (86% / 83%) 0.92 

WM 68%  (69% / 67%) 0.77 68%  (67% / 70%) 0.75 83%  (83% / 83%) 0.90 

CogAC 64%  (70% / 58%) 0.67 66%  (64% / 69%) 0.75 81%  (82% / 80%) 0.92 

VigAtt 69%  (73% / 64%) 0.73 69%  (69% / 68%) 0.74 84%  (84% / 85%) 0.92 

MNS 56%  (65% / 46%) 0.56# 53%  (53% / 52%) 0.46# 82%  (83% / 81%) 0.88 

Motor 58%  (69% / 47%) 0.51# 68%  (66% / 70%) 0.77 75%  (76% / 75%) 0.87 

Abbreviations: Acc., Accuracy (in %)/Sens., sensitivity (in %)/Spec., specificity (in %)/AUC, area under the ROC curve.  

EmoSF, emotional scene/ face processing, ER, cognitive emotion regulation, ToM, theory-of-mind cognition, Empathy, 

empathic processing, Rew, reward-related decision making, AM, autobiographical memory, SM, semantic memory, WM, 

working memory, CogAC, cognitive action control, VigAtt, vigilant attention, MNS, mirror neuron system, Motor, motor 

execution. 

#Network with no significant classification result. 

Acc. refers to the proportion of subjects correctly classified as patients (PD, SCZ) or older age and subjects correctly classified 

as being healthy or younger age (mean of sensitivity and specificity). Sensitivity relates to the percentage of patients (SCZ or 

PD) correctly classified as being ill or else subjects correctly identified as old in the aging sample (true positives). Specificity 

relates to the percentage of healthy subjects correctly classified as being healthy or else subjects correctly identified as young 

in the aging sample (true negatives). AUC refers to the area under the ROCs curve. The ROC curve depicts the relationship 

between true positive rate and false positive rate. 

For SCZ, the reward (Rew; Acc. = 0.74%; AUC = 80), the empathic processing (Empathy; Acc. = 71%; 

AUC = 0.80), cognitive emotion regulation (ER; Acc. =70%; AUC = 0.77) as well as the emotional scene 

and face processing networks (EmoSF; Acc. = 70%; AUC = 0.78) distinguished patients most accurately 

from their HCs. Hence these networks’ connectivity patterns may be considered to contain the highest 

level of information with respect to SCZ. The Rew network was significantly better in the SCZ 

classification compared to all other networks (p< 0.001). For PD, the networks subserving 

autobiographical memory (AM; Acc. = 72%; AUC = 0.77), motor execution (Motor; Acc. = 68%; AUC = 

0.77) and theory-of-mind cognition (ToM; Acc. = 68%; AUC = 0.74) yielded the highest classification 

accuracies, that is, contained the most informative PD-related differences in RSFC. The AM network 
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was significantly better in the PD classification compared to all other networks (p < 0.001). All network 

comparison results within the patient groups are summarized in S1 Table SV and SVI. 

The between-network comparison of classification performance with respect to SCZ and PD revealed 

that the networks discriminating either disorder from their respective controls were highly specific (S1 

Figure 2B, C), indicating that these networks carry differential amounts of information regarding SCZ 

and PD, respectively. In particular, the Rew network showed the best performance at distinguishing 

SCZ patients from HCs (Rew: z = 6.2) but were notably worse at discriminating PD patients from their 

HCs (Rew: z = 3.5). Similarly, the Empathy, ER and EmoSF networks exhibited high accuracies at 

classifying SCZ patients and their respective HCs (Empathy: z = 5.5; ER: z = 5.2 and EmoSF: z = 5.2) but 

inferior performance at distinguishing PD patients from their HCs (Empathy: z = 3.5; ER: z = 3.2 and 

EmoSF: z = 3.4). In turn, the motor network very well classified PD patients and their HCs (z = 4.3) but 

was remarkably ineffective at classifying SCZ patients and their HCs (z = 1.9). Likewise, the AM and 

ToM networks achieved high accuracies in classifying PD patients and controls (AM: z = 5.5; ToM: z = 

4.5) but performed much less well when classifying SCZ patients and controls (AM: z = 3.6; ToM: z = 

3.6). Networks which were most accurate in distinguishing SCZ from HCs (Rew, Empathy, ER and 

EmoSF) exhibited significant better classification performance in the SCZ group compared to the PD 

group (Rew: p < 0.001; Empathy: p < 0.001; ER: p < 0.001; EmoSF: p < 0.001; S1 Table SVII). Likewise, 

networks which performed best at discriminating PD patients from HCs (AM, Motor and ToM) showed 

significant better classification performance in the PD group compared to the SCZ group (AM: p < 

0.001; Motor: p < 0.001; ToM: p < 0.001; S1 Table SVII). This differential picture markedly contrasted 

with the results obtained for the classification between old and young subjects. In the aging sample, 

each network yielded accuracies ≥ 75% (see S1 Table SVIII for network comparison results within NA), 

significantly outperforming every classification obtained in the SCZ or PD samples (p < 0.001; see S1 

Figure 2A, S1 Figure SI, S1 Table 3, S1 Table SIX and S1 Table SX). In particular, for each network, the 

accuracy for classifying a previously unseen participant as young or old was about 10% higher than any 

clinical classification based on the same network. Only the reward processing network yielded the 

highest accuracy (Acc. = 91%; AUC = 0.96) and was also significantly better at classifying young vs. old 

subjects than any of the other networks (p < 0.001; S1 Table SVIII). Additionally, the comparison of all 

three separate group classifications revealed that the variance of the classification accuracies over the 

25 replications of the outer loop was distinctively lower for the classification of age, as compared with 

classifying the clinical status. (S1 Figure SII).   
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Discussion 

We assessed whether RSFC patterns in a diverse set of functionally defined brain networks allowed for 

a classification of patients with SCZ or PD or healthy older adults on the one hand, and their respective 

healthy or young controls on the other. Thereby, we evaluated which functional system was most 

informative for a given condition (i.e., SCZ, PD, or higher age). Conversely, our analysis also assessed 

the amount of information on each condition found in a given network. Our results show in a proof-

of-principle manner that networks pertaining to functions known to be affected by SCZ, PD, or aging 

indeed exhibited good classification performance for the respective condition. Furthermore, each 

network’s young-old classification outperformed any disease-related classification. This indicates that 

specific networks are affected by and associated with the diseases, whereas for healthy older adults, 

RSFC appears to be altered rather globally. 

Conceptual Considerations 

Our study demonstrates that machine-learning techniques can be successfully used to assess whether 

RSFC in functional systems known to be affected in SCZ, PD, or advanced age exhibits high classification 

capacity for the respective condition. Further, our approach compared the classification capacity of 

RSFC patterns between different functional networks and between several clinical and physiological 

states. Of note, for each classification, target and control groups (i.e., SCZ vs. HCscz, PD vs. HCPD, old 

vs. young) were well matched with respect to gender and (for the clinical samples) age. In addition, 

RSFC variance attributable to these confounding factors or within-scanner movement were regressed 

out of the data before the SVM analyses. Therefore, these confounds were evidently heterogeneous 

across the three groups (SCZ, PD, NA) but should not have influenced classification accuracy within 

each condition. In spite of proper matching and state-of-the-art removal of variance related to motion 

(cf. Power et al., 2012; Satterthwaite et al., 2013), residual effects that only manifest in the multivariate 

pattern cannot be fully ruled out. However, one factor worth noting is that, for example, we observed 

differential classification performance across networks in the SCZ sample, largely ruling out a dominant 

general effect of head motion.  

Given that both groups were assessed under their regular medication, differences in classification 

performance may be influenced by pharmacological treatment. In particular, we cannot exclude that 

classification results of networks modulated via dopaminergic transmission (e.g., reward or motor 

system) might originate from interactions between disease condition and medication. Unfortunately, 

however, we could not perform a more detailed assessment of the influence of medication, as the 

compounds, duration of treatment, and doses varied considerably between subjects, with many 

receiving a combination of drugs. 
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When comparing classification performance to previous work based on whole-brain functional 

connectomes (cf. Y. Chen et al., 2015; Long et al., 2012; Meier et al., 2012; Su et al., 2013; Tang et al., 

2012; Vergun et al., 2013; Y. Yu et al., 2013), we note that our approach yielded higher functional 

specificity, allowing inference on the amount of disease-specific information in well-defined functional 

systems. We acknowledge the fact that even though most of the classifications well-exceeded chance 

level, the achieved network-based classification accuracies are not strong enough for successful 

connectivity-based single-subject disease diagnosis. Still, our “sparse” approach achieved classification 

accuracies comparable to those reported in previous whole-brain studies, whose feature space 

obviously was substantially larger than ours. This is particularly noteworthy given that two further 

aspects besides feature space could be expected to decrease classifier performance in our study 

(Arbabshirani et al., 2017; Haller et al., 2014; Kambeitz et al., 2015; Schnack & Kahn, 2016; Varoquaux 

et al., 2016): First, all of our three groups were based on relatively large samples that were combined 

from two different measurement sites and hence should be more heterogeneous than usual. Second, 

we used replicated 10-fold cross-validation, rather than the more optimistic leave-one-out approach 

(Varoquaux et al., 2016). We thus argue that the chosen combination of examining robustly defined 

functional networks and optimized analysis through replicated and nested 10-fold cross-validation may 

provide valuable new insights into the pathophysiology of brain disorders that is not attainable through 

global analyses of the entire functional connectome. 

Classification of Schizophrenia patients and controls 

We found that the networks subserving reward-related decision making, empathic processing, 

cognitive emotion regulation as well as emotional scene and face processing yielded the best 

performance. Given the prominent role of the dysfunctional reward system associated with 

dopaminergic alteration in SCZ (Toda & Abi-Dargham, 2007) and aberrant salience processing in 

psychosis (Heinz & Schlagenhauf, 2010; Radua et al., 2015), it very much corroborates with the Rew 

network showing the best result in differentiating SCZ from HCs (Acc. = 74% AUC = 0.80). Impaired 

abilities to relate to others’ affective states (Benedetti et al., 2009; Derntl et al., 2012; Harvey et al., 

2012), dysfunctional emotion regulation (Khoury & Lecomte, 2012; van der Meer et al., 2014) as well 

as aberrant processing of emotional stimuli (Takahashi et al., 2004) are features of SCZ and mirrored 

in the degree of SCZ-related information that is contained in the Empathy (AUC = 0.80), ER (AUC = 0.77) 

and EmoSF (AUC = 0.78) networks.   
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Classification of Parkinson’s disease patients and controls 

The superior classification performance observed for the motor execution network (AUC = 0.77) is 

hardly surprising, since motor impairments represent a key clinical feature of PD, and differences in 

action-related brain circuitry are well established in this disorder (Herz et al., 2014; J. B. Rowe & 

Siebner, 2012; Tessitore et al., 2014). The finding that the AM (AUC = 0.77) network also achieved a 

very good differentiation of PD patients from HCs was rather surprising, though. While PD is a 

neurodegenerative disorder and dementia is common in PD patients (Aarsland et al., 2001, 2003), 

several patients showed evidence for mild cognitive impairment, using the Montreal Cognitive 

Assessment for screening. We can hence only speculate that the RSFC differences in the AM network 

may pick up these deficits as revealed by standard behavioral screening instruments. Finally, the good 

classification performance achieved by the ToM network (AUC = 0.74) was unexpected but matches a 

growing literature of impaired social cognition in PD patients (Bora et al., 2015; Díez-Cirarda et al., 

2015; Poletti et al., 2011). 

Age Group Classification 

One of the most striking observations from this study was that every single network achieved a better 

classification with respect to age group than with respect to SCZ or PD. While we hypothesized that 

the broad spectrum of age-related changes in various mental functions (Craik & Salthouse, 2011; 

Glisky, 2007; Seidler et al., 2010) would be reflected by changes in several networks (Craik & Salthouse, 

2011; Hedden, 2007; Mather, 2016; Seidler et al., 2010; Vink et al., 2015), the consistency (across both 

networks and replications) of high classification accuracies is intriguing. It stands to reason that the 

mechanisms underlying the discriminative changes in functional connectivity patterns may be diverse. 

In particular, they should include neurodegeneration [cognitive networks (Hedden, 2007)], 

neurochemical changes [Rew network (Bäckman et al., 2006)], altered affective processing 

[socialaffective networks (Mather, 2016)] and use-dependent plasticity [motor networks (Demirakca 

et al., 2016)]. Moreover, the Rew network showed outstanding performance in the young vs. old 

classification. The fact that this network even outperformed the SCZ and PD classifications indicates 

the relevance of age-related changes associated with the reward system (Vink et al., 2015) as a marker 

for age group classification. In addition, it may be argued that in spite of all inter-individual variability, 

age-related changes represent a more homogeneous change of the neuro-functional architecture 

(Ferreira et al., 2016; Meier et al., 2012) relative to the inevitable heterogeneity among clinical 

populations. 

Given that connectivity patterns of all systems differentiated very well between young and old 

participants, we acknowledge the possibility that the relevant drivers may be of non-neural origin. In 
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particular, despite of our optimized confound removal (Power et al., 2012; Satterthwaite et al., 2013; 

Varikuti et al., 2017), we cannot exclude that residual effects related to motion or brain atrophy as well 

as physiological effects such as macro- and microvascular changes and their cumulative impact on 

hemodynamic signals (D’Esposito et al., 2003) may have contributed to our findings. 

Although the contributions of neural and non-neural effects outlined in this section certainly warrant 

further investigation, one of the most critical conclusions that should be taken from the high 

classification accuracy between younger and older participants is the danger of obtaining spuriously 

high accuracies in clinical classification studies if patients and HCs are not carefully matched for age. 

Conclusions and Outlook 

We investigated the potential of RS connectivity patterns in a wide variety of functional networks to 

distinguish SCZ and PD patients from matched HCs as well as old from young adults. We showed that 

networks defined by robust activation due to mental operations known to be affected in the respective 

condition indeed contained information on the respective condition that is captured by our pattern-

classification approach and translates into good classification accuracies. Classification accuracies 

obtained through replicated, nested 10-fold cross-validation were not only generally comparable to 

those obtained from whole-brain analyses but also revealed a differentiated picture for both disorders 

in comparisons. Both SCZ and PD were specifically well predicted by distinct networks that resonate 

well with known clinical and pathophysiological features. The presented approach, thus, opens an 

avenue toward robust and more specific assessments of clinical and developmental differences in 

functional systems than previous whole-brain analyses. One of the most striking findings of this work 

was the fact that integrity in all networks was much better at identifying participants with advanced 

age than with any of the two disorders. While the most likely heterogeneous mechanisms behind this 

phenomenon certainly need to be addressed in more detail, the current findings highlight the 

importance of considering age-related effects as a potential source of bias in clinical classification 

studies. 
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Supplement 

S1 Table SI: Functional Magnetic Resonance Imaging Parameters 

Acquisition Site Measurement Parameters: 

Scanner/volumes/TR/TE/FA/voxel size 

Schizophrenia Sample  

Mind Research Network, Center for Biomedical 

Research Excellence (COBRE), The University of 

New Mexico, Albuquerque, NM, USA 

3 T/300/2000/29/75°/3 x 3 x 4 mm3 

University Hospital Göttingen, Germany 3 T/156/2000/30/70°/3 x 3 x 3 mm3 

Parkinson’s Disease Sample  

RWTH, University Hospital Aachen, Germany 3 T/165/2200/30/90°/3.1 x 3.1 x 3.1 mm3 

HHU, University Hospital Düsseldorf, Germany 3 T/300/2200/30/90°/3.1 x 3.1 x 3.1 mm3 

Normal Aging Sample  

Research Centre Jülich, Germany 3 T/200/2200/30/80°/3.1 x 3.1 x 3.1 mm3 

1000BRAINS (Caspers et al., 2014),  

Research Centre Jülich, Germany 

3 T/300/2200/30/90°/3.1 x 3.1 x 3.1 mm3 

Measurement parameters: Scanner: magnetic field strength of the scanner/ number of acquired volumes/TR: repetition time 

(in ms)/TE: echo time (in ms)/ FA: flip angle/ voxel size. 
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S1 Table SII: Network Coordinates and Corresponding Brain Regions 

Emotional Scene / Face Processing (EmoSF) 

(Sabatinelli et al., 2011) 

x y z Macroanatomical Region 

4 47 7 R Anterior Cingulate Cortex 

42 25 3 R Inferior Frontal Gyrus (p. Triangularis) 

-42 25 3 L Inferior Frontal Gyrus (p. Triangularis) 

48 17 29 R Inferior Frontal Gyrus (p. Opercularis) 

-42 13 27 L Inferior Frontal Gyrus (p. Triangularis) 

-2 8 59 L Posterior Medial Frontal 

20 -4 -15 R Amygdala 

-20 -6 -15 L Amygdala 

-20 -33 -4 L Hippocampus 

14 -33 -7 R Lingual Gyrus 

53 -50 4 R Middle Temporal Gyrus 

38 -55 -20 R Anterior Fusiform Gyrus 

-40 -55 -22 L Anterior Fusiform Gyrus 

38 -76 -16 R Posterior Fusiform Gyrus 

-40 -78 -21 L Cerebellum 

-4 52 31 L Superior Medial Gyrus 

36 25 -3 R Anterior Insula 

-38 25 -8 L Inferior Frontal Gyrus (p. Orbitalis) 

2 19 25 R Anterior Cingulate Cortex 

0 -15 10 Thalamus 

-2 -31 -7 Superior Colliculus 

-28 -70 -14 L Fusiform Gyrus 

46 -68 -4 R Inferior Temporal Gyrus 

-48 -72 -4 L Inferior Occipital Gyrus 

 

Cognitive Emotion Regulation (ER) 

(Buhle et al., 2014) 

x y z Macroanatomical Region 

48 24 9 R Inferior Frontal Gyrus (p. Triangularis) 

42 21 45 R Middle Frontal Gyrus 

9 30 39 R Superior Medial Gyrus 

0 -9 63 L Posterior Medial Frontal 

-3 24 30 L Anterior Cingulate Cortex 

-33 3 54 L Middle Frontal Gyrus 

-36 21 -3 L Anterior Insula 

-42 45 -6 L Inferior Frontal Gyrus (p. Orbitalis) 

63 -51 39 R Inferior Parietal Lobule 

-42 -66 42 L Angular Gyrus 

-63 -51 -21 L Inferior Temporal Gyrus 

-51 -39 3 L Middle Temporal Gyrus 

30 -3 -15 R Amygdala 

-18 -3 -15 L Amygdala 

 



STUDY 1: SCHIZOPHRENIA, PARKINSON’S DISEASE AND AGING CLASSIFICATIONS  

 
39 

 

Theory-of-Mind Cognition (ToM) 

(Bzdok et al., 2012) 

x y z Macroanatomical Region 

0 52 -12 R Mid Orbital Gyrus 

2 58 12 R Superior Medial Gyrus 

-8 56 30 L Superior Medial Gyrus 

2 -56 30 L Precuneus 

56 -50 18 R Superior Temporal Gyrus 

-48 -56 24 L Angular Gyrus 

54 -2 -20 R Anterior Middle Temporal Gyrus 

-54 -2 -24 L Anterior Middle Temporal Gyrus 

52 -18 -12 R Middle Temporal Gyrus 

-54 -28 -4 L Middle Temporal Gyrus 

50 -34 0 R Posterior Superior Temporal Sulcus 

-58 -44 4 L Posterior Superior Temporal Sulcus 

54 28 6 R Inferior Frontal Gyrus (p. Triangularis) 

-48 30 -12 L Inferior Frontal Gyrus (p. Orbitalis) 

48 -72 8 R Occipital Lobe (V5/MT) 

 

Empathic Processing (Empathy) 

(Bzdok et al., 2012) 

x y z Macroanatomical Region 

2 56 18 L Superior Medial Gyrus 

36 22 -8 R Inferior Frontal Gyrus (p. Orbitalis) 

-30 20 4 L Anterior Insula 

50 12 -8 R Anterior Insula 

-44 24 -6 L Inferior Frontal Gyrus (p. Orbitalis) 

-4 18 50 L Posterior Medial Frontal 

-2 28 20 L Anterior Cingulate Cortex 

-4 42 18 L Anterior Cingulate Cortex 

-2 -32 28 Posterior Cingulate Cortex 

52 -58 22 R Posterior Superior Temporal Gyrus 

-56 -58 22 L Posterior Superior Temporal Gyrus 

22 -2 -16 R Amygdala 

54 -8 -16 R Middle Temporal Gyrus 

52 -36 2 R Posterior Superior Temporal Sulcus 

-12 -4 12 L Anterior Thalamus 

6 -32 2 R Posterior Thalamus 

26 -26 -12 R Hippocampus 

2 -20 -12 Midbrain 

14 4 0 R Globus Pallidum 
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Reward-related Decision Making (Rew) 

 (Liu et al., 2011) 

x y z Macroanatomical Region 

12 10 -6 R Nucleus Caudate 

-10 8 -4 L Pallidum 

36 20 -6 R Anterior Insula 

-32 20 -4 L Anterior Insula 

0 24 40 L Superior Medial Gyrus 

0 54 -8 L Mid Orbital Gyrus 

24 -2 -16 R Amygdala 

6 -14 8 R Thalamus 

-6 -16 8 L Thalamus 

0 8 48 L Posterior Medial Frontal Gyrus 

8 -18 -10 R Brainstem 

-6 -18 -10 L Brainstem 

2 44 20 L Anterior Cingulate Cortex 

-24 2 52 L Middle Frontal Gyrus 

-38 -4 6 L Insula  

24 40 -14 R Superior Orbital Gyrus 

-16 42 -14 L Superior Orbital Gyrus 

40 32 32 R Middle Frontal Gyrus 

-28 -56 48 L Inferior Parietal Lobule 

28 -58 50 R Superior Parietal Lobule 

0 -32 32 L Posterior Cingulate Cortex 

-36 50 10 L Middle Frontal Gyrus 

-46 42 -4 L Inferior Frontal Gyrus (p. Orbitalis) 

30 4 50 R Middle Frontal Gyrus 

-22 30 48 L Superior Frontal Gyrus 

 

Autobiographical Memory (AM) 

(Spreng et al., 2009) 

x y z Macroanatomical Region 

-1 -53 21 L Precuneus 

-26 -28 -17 L Parahippocampal Gyrus 

-49 -61 31 L Angular Gyrus 

-2 51 -11 L Mid Orbital Gyrus 

-60 -9 -18 L Middle Temporal Gyrus 

-50 27 -12 L Inferior Frontal Gyrus (p. Orbitalis) 

26 -33 -15 R Fusiform Gyrus 

-1 20 57 L Posterior Medial Frontal 

55 -58 30 R Angular Gyrus 

-47 9 46 L Precentral Gyrus 

-42 53 7 L Middle Frontal Gyrus 

26 -14 -23 R Parahippocampal Gyrus 

54 -5 -20 R Middle Temporal Gyrus 

-39 13 -41 L Inferior Temporal Gyrus 

-38 -82 38 L Middle Occipital Gyrus 

-48 29 17 L Inferior Frontal Gyrus (p. Triangularis) 
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-11 62 9 L Superior Medial Gyrus 

4 -8 2 Thalamus 

-4 39 16 L Anterior Cingulate Cortex 

-5 -34 36 L Midcingulate Cortex 

-29 16 51 L Middle Frontal Gyrus 

31 1 -26 R Amygdala 

 

Semantic Memory (SM) 

(Binder et al., 2009) 

x y z Macroanatomical Region 

-46 -69 28 L Angular Gyrus 

-50 -56 31 L Angular Gyrus 

-64 -44 -4 L Posterior Middle Temporal Gyrus 

-47 -24 -17 L Middle Temporal Gyrus 

-40 -12 -30 L Inferior Temporal Gyrus 

-8 -57 17 L Precuneus 

-20 36 44 L Superior Frontal Gyrus 

-53 27 -4 L Inferior Frontal Gyrus (p. Orbitalis) 

54 -59 30 R Angular Gyrus 

43 -72 31 R Middle Occipital Gyrus 

-1 51 -7 L Mid Orbital Gyrus 

-5 56 24 L Superior Medial Gyrus 

-31 -34 -16 L Fusiform Gyrus 

-8 29 -10 L Anterior Cingulate Cortex 

-46 25 23 L Inferior Frontal Gyrus (p. Triangularis) 

64 -41 -2 R Posterior Middle Temporal Gyrus 

-43 -53 55 L Inferior Parietal Lobule 

-1 -18 40 L Midcingulate Cortex 

-2 -56 46 L Precuneus 

51 20 26 R Inferior Frontal Gyrus (p. Triangularis) 

64 -38 32 R Supramarginal Gyrus 

-23 26 -16 L Inferior Frontal Gyrus (p. Orbitalis) 

-5 -39 40 L Midcingulate Cortex 

 

Working Memory (WM) 

(Rottschy et al., 2012) 

x y z Macroanatomical Region 

-32 22 -2 L Anterior Insula  

-48 10 26 L Inferior Frontal Gyrus (p. Opercularis) 

-46 26 24 L Inferior Frontal Gyrus (p. Triangularis) 

-38 50 10 L Anterior Middle Frontal Gyrus 

36 22 -6 R Anterior Insula  

50 14 24 R Inferior Frontal Gyrus (p. Triangularis) 

44 34 32 R Middle Frontal Gyrus 

38 54 6 R Anterior Middle Frontal Gyrus 

2 18 48 L Posterior Medial Frontal 

-28 0 56 L Posterior Middle Frontal Gyrus 
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30 2 56 R Posterior Middle Frontal Gyrus 

-42 -42 46 L Inferior Parietal Lobule/Intraparietal Sulcus 

-34 -52 48 L Inferior Parietal Lobule/Intraparietal Sulcus  

-24 -66 54 L Superior Parietal Lobule 

42 -44 44 R Inferior Parietal Lobule/Intraparietal Sulcus 

32 -58 48 R Angular Gyrus/Intraparietal Sulcus 

16 -66 56 R Superior Parietal Lobule 

-12 -12 12 L Thalamus 

-16 2 14 L Nucleus Caudate 

-16 0 2 L Globus Pallidum 

12 -10 10 R Thalamus 

-34 -66 -20 L Cerebelum/Fusiform Gyrus 

32 -64 -18 R Cerebelum/Fusiform Gyrus 

 

Cognitive Action Control (CogAC) 

(Cieslik et al., 2015) 

x y z Macroanatomical Region 

36 22 -4 R Anterior Insula 

2 16 48 L Posterior Medial Frontal 

48 12 30 R Inferior Frontal Gyrus (p. Opercularis) 

36 2 54 R Middle Frontal Gyrus 

48 30 24 R Inferior Frontal Gyrus (p. Triangularis) 

-38 -44 46 L Inferior Parietal Lobule/Intraparietal Sulcus 

-24 -66 48 L Superior Parietal Lobule 

40 -46 46 R Inferior Parietal Lobule/Intraparietal Sulcus 

60 -44 24 R Supramarginal Gyrus 

30 -62 52 R Superior Parietal Lobule 

-44 10 30 L Precentral Gyrus 

-34 20 -4 L Anterior Insula  

-26 2 52 L Middle Frontal Gyrus 

6 -18 -2 R Thalamus 

-40 -66 -10 L Inferior Occipital Gyrus 

48 19 6 R Inferior Frontal Gyrus (p. Opercularis) 

8 29 30 R Midcingulate Cortex 

-45 27 30 L Inferior Frontal Gyrus (p. Triangularis) 

11 7 7 R Nucleus Caudate 

 

Vigilant Attention (VigAtt) 

(Langner & Eickhoff, 2013) 

x y z Macroanatomical Region 

-2 8 50 L Posterior Medial Frontal 

8 32 46 R Superior Medial Gyrus 

0 26 34 L Midcingulate Cortex 

50 8 32 R Precentral Gyrus 

40 22 -4 R Anterior Insula  

46 36 20 R Anterior Middle Frontal Gyrus 

-40 -12 60 L Precentral Gyrus 
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-46 -68 -6 L Inferior Occipital Gyrus 

-48 8 30 L Precentral Gyrus 

62 -38 17 R Inferior Parietal Lobe 

8 -12 6 R Thalamus 

32 -90 4 R Middle Occipital Gyrus 

-42 12 -2 L Anterior Insula 

-10 -14 6 L Thalamus 

6 -58 -18 Cerebellar Vermis 

44 -44 46 R Inferior Parietal Lobule 

 

Mirror Neuron System (MNS) 

(Caspers et al., 2010) 

x y z Macroanatomical Region 

-56 8 28 L Precentral Gyrus 

-54 6 40 L Precentral Gyrus 

58 16 10 R Inferior Frontal Gyrus (p. Opercularis) 

44 -54 -20 R Fusiform Gyrus 

-38 -40 50 L Inferior Parietal Lobule/Intraparietal Sulcus 

51 -36 50 R Inferior Parietal Lobule/Intraparietal Sulcus  

-1 16 52 L Posterior Medial Frontal 

-54 -50 10 L Posterior Middle Temporal Gyrus 

-52 -70 6 L Occipital Lobe (V5) 

54 -64 4 R Occipital Lobe (V5) 

30 -62 63 R Superior Parietal Lobule 

 

Motor Execution (Motor) 

(Witt et al., 2008) 

x y z Macroanatomical Region 

-39 -21 54 L Postcentral Gyrus 

41 -16 57 R Precentral Gyrus 

-3 -2 54 L Posterior Medial Frontal 

-57 2 32 L Precentral Gyrus 

-53 -24 21 L Supramarginal Gyrus 

45 -38 48 R Inferior Parietal Lobule 

-23 -7 1 L Globus Pallidum 

25 -8 3 R Globus Pallidum 

-22 -52 26 L Cerebellum 

18 -54 -22 R Cerebellum 

R= right; L = left; for consistency coordinates (MNI-space) are assigned to the most probable brain areas as revealed by the 

SPM Anatomy Toolbox (Version 2.1) (Eickhoff et al., 2005, 2006, 2007).  
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S1 Table SIII: Classification Results of the Support Vector Machine of all Groups based on Specific 

Networks (balanced accuracy) 

Network (abbr.) SCZ vs. HCSCZ PD vs. HCPD Old vs. Young 

EmoSF 70% 65% 87% 

ER 70% 64% 80% 

ToM 64% 68% 80% 

Empathy 71% 65% 78% 

Rew 74% 65% 91% 

AM 64% 72% 82% 

SM 71% 70% 85% 

WM 68% 68% 83% 

CogAC 64% 66% 81% 

VigAtt 69% 69% 84% 

MNS 56% 53% 82% 

Motor 58% 68% 75% 

Balanced accuracy is calculated as the average proportion of subjects correctly classified as patients (PD, SCZ) or advanced age 

versus healthy or younger age, respectively. 

S1 Table SIV: Classification Results of the Support Vector Machine of all Groups based on Specific 

Networks (d') 

Network (abbr.) SCZ vs. HCSCZ PD vs. HCPD Old vs. Young 

EmoSF 1.08 0.75 2.24 

ER 1.10 0.72 1.68 

ToM 0.77 0.97 1.66 

Empathy 1.12 0.79 1.55 

Rew 1.29 0.78 2.75 

AM 0.75 1.19 1.83 

SM 1.11 1.04 2.07 

WM 0.96 0.95 1.90 

CogAC 0.71 0.85 1.77 

VigAtt 0.99 0.98 2.02 

MNS 0.29 0.14 1.86 

Motor 0.42 0.94 1.38 
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d’: sensitivity index calculated as z (true positive rate) – z (false positive rate).  

 

S1 Figure SI: Group Classification Results of the Support Vector Machine (z-values) 

Polar plot of z-standardized accuracies (corrected for multiple comparisons) of group classification based on all 12 networks 

for schizophrenia (in green), Parkinson’s disease (in blue) and normal aging (in yellow). 

 

 

S1 Figure SII: Variance of Group Classification Results of the Support Vector Machine (accuracies) 
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Polar plot of variance for group classification accuracies over all 25 repetitions in the outer loop based on all 12 networks for 

A) schizophrenia (in green), B) Parkinson’s disease (in blue) and C) normal aging (in yellow). 

S1 Table SV: Differences in Classification Performance between Networks within Schizophrenia 

Network (abbr.) comparison Mean difference (Acc.) T P 

EmoSF - ER -0.04 -0.10 0.92 

EmoSF - ToM 5.64 15.10 <0.001 

EmoSF - Empathy -1.24 -2.21 0.037 

EmoSF - Rew -3.88 -9.77 <0.001 

EmoSF - AM 5.56 14.51 <0.001 

EmoSF - SM -0.88 -2.11 0.046 

EmoSF - WM 1.76 3.89 <0.001 

EmoSF - CogAC 6.32 12.26 <0.001 

EmoSF - VigAtt 1.40 3.50 0.002 

EmoSF - MNS 14.44 24.06 <0.001 

EmoSF - Motor 12.00 20.79 <0.001 

ER - ToM 5.68 11.96 <0.001 

ER - Empathy -1.20 -1.75 0.093 

ER - Rew -3.84 -9.00 <0.001 

ER - AM 5.60 11.85 <0.001 

ER - SM -0.84 -2.11 0.046 

ER - WM 1.80 4.06 0.001 

ER - CogAC 6.36 10.15 <0.001 

ER - VigAtt 1.44 3.00 0.006 

ER - MNS 14.48 28.56 <0.001 

ER - Motor 12.04 21.69 <0.001 

ToM - Empathy -6.88 -11.50 <0.001 

ToM - Rew -9.52 -26.03 <0.001 

ToM - AM -0.08 -0.21 0.834 

ToM - SM -6.52 -16.45 <0.001 

ToM - WM -3.88 -9.04 <0.001 

ToM - CogAC 0.68 1.46 0.156 

ToM - VigAtt -4.24 -10.26 <0.001 

ToM - MNS 8.80 16.73 <0.001 
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ToM - Motor 6.36 10.86 <0.001 

Empathy - Rew -2.64 -4.21 0.001 

Empathy - AM 6.80 12.63 <0.001 

Empathy - SM 0.36 0.53 0.604 

Empathy - WM 3.00 4.33 <0.001 

Empathy - CogAC 7.56 10.65 <0.001 

Empathy - VigAtt 2.64 4.18 <0.001 

Empathy - MNS 15.68 25.03 <0.001 

Empathy - Motor 13.24 16.80 <0.001 

Rew - AM 9.44 22.44 <0.001 

Rew - SM 3.000 8.54 <0.001 

Rew - WM 5.640 10.67 <0.001 

Rew - CogAC 10.20 17.67 <0.001 

Rew - VigAtt 5.28 11.96 <0.001 

Rew - MNS 18.32 38.85 <0.001 

Rew - Motor 15.88 32.57 <0.001 

AM - SM -6.44 -14.51 <0.001 

AM - WM -3.80 -9.81 <0.001 

AM - CogAC 0.76 1.88 0.073 

AM - VigAtt -4.16 -11.03 <0.001 

AM - MNS 8.88 17.72 <0.001 

AM - Motor 6.44 12.62 <0.001 

SM - WM 2.64 6.01 <0.001 

SM - CogAC 7.20 13.37 <0.001 

SM - VigAtt 2.280 5.12 <0.001 

SM - MNS 15.32 29.18 <0.001 

SM - Motor 12.88 30.84 <0.001 

WM - CogAC 4.56 9.79 <0.001 

WM - VigAtt -0.36 -0.73 0.475 

WM - MNS 12.68 21.78 <0.001 

WM - Motor 10.24 17.05 <0.001 

CogAC - VigAtt -4.92 -9.91 <0.001 

CogAC - MNS 8.12 11.43 <0.001 

CogAC - Motor 5.68 9.23 <0.001 
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VigAtt - MNS 13.04 23.74 <0.001 

VigAtt - Motor 10.60 19.57 <0.001 

MNS - Motor -2.44 -4.14 <0.001 

Comparison between networks with highest classification performance and all other networks in schizophrenia (in bold); 

significance threshold pcorr < 0.001. 

S1 Table SVI: Differences in Classification Performance between Networks within Parkinson’s Disease 

Network (abbr.) comparison Mean difference (Acc.) T P 

EmoSF - ER 0.52 0.97 0.344 

EmoSF - ToM -3.84 -7.41 <0.001 

EmoSF - Empathy -0.64 -1.76 0.092 

EmoSF - Rew -0.64 -1.15 0.261 

EmoSF - AM -7.80 -14.92 <0.001 

EmoSF - SM -5.32 -11.54 <0.001 

EmoSF - WM -3.72 -5.46 <0.001 

EmoSF - CogAC -1.84 -3.35 0.003 

EmoSF - VigAtt -4.24 -7.23 <0.001 

EmoSF - MNS 11.72 17.77 <0.001 

EmoSF - Motor -3.52 -5.73 <0.001 

ER - ToM -4.36 -8.25 <0.001 

ER - Empathy -1.16 -2.29 0.031 

ER - Rew -1.16 -1.88 0.073 

ER - AM -8.32 -19.48 <0.001 

ER - SM -5.84 -11.12 <0.001 

ER - WM -4.24 -9.31 <0.001 

ER - CogAC -2.36 -4.60 0.001 

ER - VigAtt -4.76 -12.25 <0.001 

ER - MNS 11.20 14.66 <0.001 

ER - Motor -4.04 -6.51 <0.001 

ToM - Empathy 3.20 6.77 <0.001 

ToM - Rew 3.20 7.04 <0.001 

ToM - AM -3.96 -9.13 <0.001 

ToM - SM -1.48 -3.20 0.004 

ToM - WM 0.12 0.22 0.825 
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ToM - CogAC 2.00 3.67 0.001 

ToM - VigAtt -0.40 -0.75 0.460 

ToM - MNS 15.56 26.81 <0.001 

ToM - Motor 0.32 0.49 0.626 

Empathy - Rew 0.00 0.00 1.000 

Empathy - AM -7.16 -18.76 <0.001 

Empathy - SM -4.68 -13.03 <0.001 

Empathy - WM -3.08 -5.02 <0.001 

Empathy - CogAC -1.20 -2.40 0.025 

Empathy - VigAtt -3.60 -6.47 <0.001 

Empathy - MNS 12.36 21.21 <0.001 

Empathy - Motor -2.88 -5.28 <0.001 

Rew - AM -7.16 -13.48 <0.001 

Rew - SM -4.68 -10.67 <0.001 

Rew - WM -3.08 -4.96 <0.001 

Rew - CogAC -1.20 -2.35 0.027 

Rew - VigAtt -3.60 -7.06 <0.001 

Rew - MNS 12.36 17.43 <0.001 

Rew - Motor -2.88 -4.61 0.001 

AM - SM 2.48 6.40 <0.001 

AM - WM 4.08 9.05 <0.001 

AM - CogAC 5.96 13.39 <0.001 

AM - VigAtt 3.56 7.07 <0.001 

AM - MNS 19.52 31.65 <0.001 

AM - Motor 4.28 9.30 <0.001 

SM - WM 1.60 2.80 0.010 

SM - CogAC 3.48 8.05 <0.001 

SM - VigAtt 1.080 1.900 0.070 

SM - MNS 17.04 26.78 <0.001 

SM - Motor 1.80 3.46 0.002 

WM - CogAC 1.88 2.96 0.007 

WM - VigAtt -0.52 -0.94 0.357 

WM - MNS 15.44 20.15 <0.001 

WM - Motor 0.20 0.27 0.790 
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CogAC - VigAtt -2.40 -4.59 0.001 

CogAC - MNS 13.56 18.80 <0.001 

Cog AC- Motor -1.68 -3.26 0.003 

VigAtt - MNS 15.96 21.69 <0.001 

VigAtt - Motor 0.72 1.20 0.243 

MNS - Motor -15.24 -21.46 <0.001 

Comparison between networks with highest classification performance and all other networks in Parkinson’s disease (in bold); 

significance threshold pcorr < 0.001. 

S1 Table SVII: Group Differences between Schizophrenia and Parkinson’s Disease Classification based 
on Specific Networks 

Network (abbr.) Mean difference (Acc.) T P 

EmoSF 5.60 10.88 <0.001 

ER 6.16 11.46 <0.001 

ToM -3.88 -9.41 <0.001 

Empathy 6.20 9.36 <0.001 

Rew 8.84 16.94 <0.001 

AM -7.76 -19.24 <0.001 

SM 1.16 2.69 0.010 

WM 0.12 0.22 0.827 

CogAC -2.56 -4.37 <0.001 

VigAtt -0.04 -0.07 0.942 

MNS 2.88 4.43 <0.001 

Motor -9.92 -15.08 <0.001 

Networks with highest classification performance in schizophrenia (in green); networks with highest classification performance 

in Parkinson’s disease (in blue); significance threshold pcorr < 0.001.  

S1 Table SVIII: Differences in Classification Performance between Networks within Normal Aging 

Network (abbr.) comparison Mean difference (Acc.) T P 

EmoSF - ER 7.08 18.30 <0.001 

EmoSF - ToM 7.40 19.55 <0.001 

EmoSF - Empathy 8.76 17.97 <0.001 

EmoSF - Rew -4.52 -12.85 <0.001 

EmoSF - AM 4.96 10.23 <0.001 
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EmoSF - SM 1.72 4.04 <0.001 

EmoSF - WM 3.96 8.97 <0.001 

EmoSF - CogAC 5.80 14.81 <0.001 

EmoSF - VigAtt 2.32 5.70 <0.001 

EmoSF - MNS 4.60 10.55 <0.001 

EmoSF - Motor 11.48 20.83 <0.001 

ER - ToM 0.32 0.74 0.465 

ER - Empathy 1.68 3.83 0.001 

ER - Rew -11.60 -29.62 <0.001 

ER - AM -2.12 -5.23 <0.001 

ER - SM -5.36 -13.71 <0.001 

ER - WM -3.12 -7.94 <0.001 

ER - CogAC -1.28 -3.22 0.004 

ER - VigAtt -4.76 -13.69 <0.001 

ER - MNS -2.48 -6.13 <0.001 

ER - Motor 4.40 6.96 <0.001 

ToM - Empathy 1.36 3.73 0.001 

ToM - Rew -11.92 -33.53 <0.001 

ToM - AM -2.44 -5.55 <0.001 

ToM - SM -5.68 -16.02 <0.001 

ToM - WM -3.44 -9.19 <0.001 

ToM - CogAC -1.60 -6.05 <0.001 

ToM - VigAtt -5.08 -15.12 <0.001 

ToM - MNS -2.80 -8.08 <0.001 

ToM - Motor 4.08 10.32 <0.001 

Empathy - Rew -13.28 -28.64 <0.001 

Empathy - AM -3.80 -8.36 <0.001 

Empathy - SM -7.04 -14.63 <0.001 

Empathy - WM -4.80 -11.31 <0.001 

Empathy - CogAC -2.96 -6.88 <0.001 

Empathy - VigAtt -6.44 -16.09 <0.001 

Empathy - MNS -4.16 -8.69 <0.001 

Empathy - Motor 2.72 5.46 <0.001 

Rew - AM 9.48 23.19 <0.001 
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Rew - SM 6.24 17.03 <0.001 

Rew - WM 8.48 20.54 <0.001 

Rew - CogAC 10.32 28.36 <0.001 

Rew - VigAtt 6.84 20.41 <0.001 

Rew - MNS 9.12 29.68 <0.001 

Rew - Motor 16.00 30.60 <0.001 

AM - SM -3.24 -6.74 <0.001 

AM - WM -1.00 -2.22 0.036 

AM - CogAC 0.84 1.80 0.085 

AM - VigAtt -2.64 -6.83 <0.001 

AM - MNS -0.36 -0.85 0.404 

AM - Motor 6.52 12.10 <0.001 

SM - WM 2.24 6.19 <0.001 

SM - CogAC 4.08 12.92 <0.001 

SM - VigAtt 0.60 1.90 0.070 

SM - MNS 2.88 5.91 <0.001 

SM - Motor 9.76 17.41 <0.001 

WM - CogAC 1.84 5.66 <0.001 

WM - VigAtt -1.64 -4.24 <0.001 

WM - MNS 0.64 1.48 0.151 

WM - Motor 7.52 18.04 <0.001 

CogAC - VigAtt -3.48 -12.03 <0.001 

CogAC - MNS -1.20 -2.80 0.010 

CogAC - Motor 5.68 11.46 <0.001 

VigAtt - MNS 2.28 5.35 <0.001 

VigAtt - Motor 9.16 15.73 <0.001 

MNS - Motor 6.88 14.31 <0.001 

Significance threshold pcorr < 0.001.  
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S1 Table SIX: Group Differences between Schizophrenia and Normal Aging Classifications based on 

Specific Networks 

Network (abbr.) Mean difference (Acc.) T P 

EmoSF -16.68 -38.84 < 0.001 

ER -9.56 -19.91 < 0.001 

ToM -14.92 -44.24 < 0.001 

Empathy -6.68 -9.73 < 0.001 

Rew -17.32 -42.98 < 0.001 

AM -17.28 -36.36 < 0.001 

SM -14.08 -34.52 < 0.001 

WM -14.48 -36.37 < 0.001 

CogAC -17.20 -35.61 < 0.001 

VigAtt -15.76 -36.60 < 0.001 

MNS -26.52 -50.20 < 0.001 

Motor -17.20 -27.42 < 0.001 

Significance threshold pcorr < 0.001. 

S1 Table SX: Group Differences between Parkinson’s Disease and Normal Aging Classifications based 
on Specific Networks 

Network (abbr.) Mean difference (Acc.) T P 

EmoSF -22.28 -43.66 < 0.001 

ER -15.72 -30.34 < 0.001 

ToM -11.04 -27.35 < 0.001 

Empathy -12.88 -26.08 < 0.001 

Rew -26.16 -53.25 < 0.001 

AM -9.52 -20.87 < 0.001 

SM -15.24 -39.09 < 0.001 

WM -14.60 -28.46 < 0.001 

CogAC -14.64 -32.50 < 0.001 

VigAtt -15.72 -31.78 < 0.001 

MNS -29.40 -50.67 < 0.001 

Motor -7.28 -11.55 < 0.001 

Significance threshold pcorr < 0.001. 
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Abstract 

Deterioration in working memory capacity (WMC) has been associated with normal aging but it 

remains unknown how age affects the relationship between WMC and connectivity within functional 

brain networks. We therefore examined the predictability of WMC from fMRI-based resting-state 

functional connectivity (RSFC) within eight meta-analytically defined functional brain networks and the 

connectome in young and old adults using relevance vector machine in a robust cross-validation 

scheme. Particular brain networks have been associated with mental functions linked to WMC to a 

varying degree and are associated with age-related differences in performance. Comparing prediction 

performance between the young and old sample revealed age-specific effects: In young adults, we 

found a general unpredictability of WMC from RSFC in networks subserving WM, cognitive action 

control, vigilant attention, theory-of-mind cognition, and semantic memory, whereas in old adults each 

network significantly predicted WMC. Moreover, both WM-related and -unrelated networks were 

differently predictive in older adults with low versus high WMC. These results indicate that the within-

network functional coupling during task-free states is specifically related to individual task 

performance in advanced age, suggesting neural-level reorganization. In particular, our findings 

support the notion of a decreased segregation of functional brain networks, deterioration of network 

integrity within different networks and/or compensation by reorganization as factors driving 

associations between individual WMC and within-network RSFC in older adults. Thus, using 

multivariate pattern regression provided novel insights into age-related brain reorganization by linking 

cognitive capacity to brain network integrity. 

Keywords: working memory; brain networks; aging; resting-state functional magnetic resonance 

imaging; machine learning; relevance vector machine, performance prediction 
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Introduction 

Decline in various cognitive and executive functions has been recognized as a part of normal aging 

(Glisky, 2007; Salthouse et al., 2003). In particular, age-related deterioration in working memory (WM) 

functionality, that is, the capability to temporarily maintain, update, and manipulate information, has 

received increased attention (Braver & West, 2008). WM decline has been addressed in a majority of 

cognitive aging theories (Park & Festini, 2017b) and is considered a source of age-related deficits in a 

wide range of cognitive tasks (Gazzaley et al., 2005; Park et al., 1996; Salthouse, 1991) and social-

affective behaviors (Moran, 2013; Opitz et al., 2012).  

While the neural underpinnings of age-related deficits in cognitive functions were found to be 

associated with activation differences in task-related brain networks (Cabeza et al., 2016a; Hedden, 

2007; Nielson et al., 2006), several findings have demonstrated that age-related WM decline may in 

part be accounted for by changes in resting-state functional connectivity (RSFC) architecture of the 

brain (Charroud et al., 2016; Jockwitz et al., 2017; Sala-Llonch, Arenaza-Urquijo, et al., 2012). It remains 

unclear, however, to which extent neuro-behavioral features of aging manifest in individual 

differences in WM capacity (WMC) associated with variations in interregional coupling at rest across 

different cognitive networks. To investigate how WM performance relates to other cognitive systems 

in an aging population prone to WM decline is particularly interesting as it has been shown that WMC 

is strongly associated with variations among other executive functions (Courtney, 2004; Miyake et al., 

2000) as well as constitutes an underlying executive function in a broad range of higher-order 

cognitions including language comprehension and reasoning (Kane, Conway, Hambrick, et al., 2007). 

Hence, shared neuro-behavioral variance can be expected among executive and higher-order cognitive 

functions that are regulated by the degree these functions depend on WMC. This interplay may 

potentially be affected by variation in WMC in older adults that associate with neural-level 

reorganization as previously reported for age-related brain-behavior relationships (Grady, 2012; Sala-

Llonch et al., 2015). It is, however, still unclear which role RSFC within brain networks related to 

different aspects of cognitive function may play as a marker of individual WMC, raising the question 

whether RSFC within these networks can be considered (equally) informative about individual WMC 

and how this relationship may change with age.  

Here we addressed this question by taking a novel approach leveraging the power of coordinate-based 

meta-analyses (Eickhoff et al., 2016; Müller et al., 2018) to robustly define regions of the brain that are 

consistently recruited across dozens to hundreds of neuroimaging studies examining a particular 

mental function. In turn, in the commonly used data-driven approach to define networks from whole-

brain RSFC data by means of independent component analysis (ICA), the mental functions associated 
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with these networks are usually derived via reverse inference, as there is no a priori knowledge about 

the mental functions these networks subserve (Poldrack, 2011). Although the ICA-based approach has 

yielded stable and reproducible resting-state networks, the networks are usually defined from the 

same data set as used for the subsequent analysis (Cole et al., 2010). In contrast, our meta-analytically 

derived network model approach offers an a priori, unbiased definition of nodes forming a functional 

network, among which RSFC may then be computed for individual participants (cf. Pläschke et al., 

2017; Schilbach et al., 2014; Varikuti et al., 2017). That is, meta-analyses provide robust information 

on the most likely location of the brain network subserving a task by integrating over task-activation 

findings based on hundreds of participants. Such a network can then be used to study individual RSFC 

connectivity profiles, which in turn can be linked to specific cognitive processes. Given that mental 

functions should best relate to interactions between multiple regions (Genon et al., 2018), we assume 

that the pattern of within-network connectivity may capture a substantial degree of inter-individual 

differences in cognitive performance. Using machine learning (ML)-based regression methods, 

previous studies have successfully predicted cognitive performance from RSFC distributed across the 

brain (Rosenberg et al., 2016) and revealed age effects in the prediction of executive functions from 

connectivity profiles between specific resting-state networks (La Corte et al., 2016). In the current work 

we employed the relevance vector machine (RVM; Tipping, 2001) in order to identify the relationship 

between input features (here: RSFC within a pre-defined functional network) and a continuous target 

variable (here: WMC score). The capability of such an approach to predict individual WMC in previously 

unseen subjects was evaluated using a repeated cross-validation scheme, yielding a scalar measure of 

average prediction performance for each network. To investigate the relationship between functional 

network integrity and WM performance and resolve the above-mention question about network 

specificity (see also Pläschke et al., 2017), we here examined five different meta-analytically defined 

networks. To examine how these relationships were affected by age, we compared prediction 

performance in young and old samples. The five networks comprised: WM (Rottschy et al., 2012), 

cognitive action control (CogAC; Cieslik, Mueller, Eickhoff, Langner, & Eickhoff, 2015), vigilant attention 

(VigAtt; Langner & Eickhoff, 2013), theory-of-mind cognition (ToM; Bzdok et al., 2012), and semantic 

memory (SM; Binder, Desai, Graves, & Conant, 2009). Importantly, the WM network reflects consistent 

neural recruitment during WM tasks that primarily demand recognition-related processes, such as the 

n-back paradigm, rather than tapping free retrieval-under-interference processes as examined via 

complex WM span tasks (Kane, Conway, Miura, et al., 2007). 

The choice of these networks was based on our intent to cover a range of functional systems that are 

functionally (and neurally) either closely or only distantly related to WM (Chun, 2011; Diamond, 2013; 

Mutter et al., 2006; Nyberg et al., 2003; Unsworth et al., 2014). WM, CogAC, and VigAtt networks are 
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representatives of executive function networks closely related to WM, whereas ToM and SM networks 

are linked to higher-order cognitive processes involving reasoning and language comprehension (i.e., 

more distantly associated with WM). Thereby, the ToM network is linked to social reasoning, and the 

SM network is linked to semantic memory/processing and associated with language comprehension 

(Martin & Chao, 2001; Van Overwalle, 2009). Given that several lower-level sub-processes contribute 

to higher-level executive functioning (Miyake et al., 2000; Müller et al., 2015), it may be argued that 

networks associated with the former may predict WMC better than do higher-order networks.  

In addition, three WM-unrelated (‘’control’’) meta-analytic networks were included to assess whether 

WMC predictability is specifically associated with the above-mentioned cognitive networks closely or 

distantly related to WM. These control networks were linked to task-negative, social-affective and 

introspective processes, as well as motor and sensory processes. In particular, the three networks 

comprised (i) the extended social-affective default network (eSAD; Amft et al., 2015), (ii) a combined 

motor network associated with finger tapping and prosaccade eye movements (Motor+PS; Cieslik, 

Seidler, Laird, Fox, & Eickhoff, 2016; Witt, Meyerand, & Laird, 2008), and (iii) a combined motor-

sensory network linked to finger tapping and hand stimulation/somatosensory processing (Motor+SS; 

Lamp et al., 2019; Witt et al., 2008). These motor-sensory systems are strongly interconnected 

compared to large-scale cognitive networks with transitions between network boundaries, and 

converge less with fronto-parietal cognitive areas (Cieslik et al., 2016; Fox & Raichle, 2007; Yeo et al., 

2011). While the coupling between the default-mode and WM networks has been associated with WM 

performance (Keller et al., 2015; Piccoli et al., 2015), the eSAD network is strongly involved in social-

affective and introspective processes (Amft et al., 2015). Hence, it may be positioned between 

(broadly) WM-linked networks and WM-unrelated control networks. For all three ‘’control’’ networks, 

age-related functional connectivity changes have been reported (Chan et al., 2014a, 2017; Roski et al., 

2013; L. Wang et al., 2010). Furthermore, we combined all individually investigated networks (related 

to cognitive action control, vigilant attention, theory-of-mind cognition, and semantic memory as well 

as eSAD) with the WM network to assess the predictability of intra- and inter-network connectivity. To 

further expand on this, we also examined predictability based on a connectome-wide network of 264 

functional areas (Power et al., 2011), in order to compare the performance of the whole-brain 

connectome with that of our “sparse” functional networks and network combinations. 

Previous findings and theories strongly suggest a general factor involved in age-related cognitive 

decline across several domains (Gazzaley et al., 2005; Mather, 2016; Moran, 2013; Park et al., 1996; 

Salthouse, 1991), which can partly be attributed to a general slowing in information processing 

(Salthouse, 1996; Salthouse, 1994). This, in turn, may possibly be related to a 

dedifferentiation/decreased segregation of functional networks (Chan et al., 2014a, 2017; Goh, 2011; 



STUDY 2: AGING AND WORKING MEMORY PREDICTIONS  

 
59 

 

Roski et al., 2013; Sala-Llonch et al., 2015). Alternatively, performance decline with age might reflect 

a global age-related deterioration in network integrity, observable across various functional networks 

throughout the brain (Varangis et al., 2019; Zonneveld et al., 2019). Either or both of these network-

related changes should result in less specific associations between performance and RSFC within any 

given network in advanced age. We therefore hypothesized similar predictive power across different 

networks with advanced age, as compared to greater network specificity in young adults, for whom 

we expected to find better prediction performance in networks more closely related to WM 

processing. Such an age-related “broadening” (i.e., network non-specificity) of WMC predictability 

should not only apply to distinct though related brain systems but might as well extend to WM-

unrelated networks. 

Materials and Methods 

Sample 

In the following we report how we determined our sample size, all data exclusions (if any), all 

inclusion/exclusion criteria, whether inclusion/exclusion criteria were established prior to data 

analysis, all manipulations, and all measures in the study. Resting-state functional magnetic resonance 

imaging (fMRI) data of 50 young (age range: 20 – 34 years) and 45 old (age range: 51 – 71 years) 

participants were acquired at the Research Centre Jülich, Germany. For this explorative study, we did 

not estimate predictability effect sizes a priori for determining sample size. Participants did not report 

any present or past psychiatric or neurological disorders (including dementia), as assessed in a 

structured interview. Older adults’ cognitive performance was age-adequate as evaluated by the Mild 

Cognitive Impairment and Early Dementia Detection assessment (DemTect; Kalbe et al., 2004; scores 

13-18: age-adequate cognitive performance). None of the participants showed clinically relevant 

symptoms of depression as evaluated via the Beck Depression Inventory-II (all BDI-II scores < 13; Beck, 

Steer, & Brown, 1996). For further sample characteristics, please see S2 Table 1. Written informed 

consent was obtained from all participants before entering the study, which was approved by the 

ethics committee of the RWTH Aachen University Hospital, Aachen, Germany.   



STUDY 2: AGING AND WORKING MEMORY PREDICTIONS 

 
60 

 

S2 Table 1: Sample Characteristics 

Normal Aging 

Sample 

N 

(males) 

Age 

(years) 

Head 

Movement 

(DVARS)   

DemTect BDI-II WMC  

Young 50 (27) 26 ± 3 1.25 ± 0.25 - 6 ± 5 1.93 ± 0.24 

Old 45 (24) 62 ± 5 1.57 ± 0.41* 16 ± 2 5 ± 5 1.60 ± 0.29* 

      WMC Low 24 (9) 61 ± 5 1.51 ± 0.46 16 ± 2 6 ± 5 1.40 ± 0.26 

      WMC High 21 (15) 62 ± 6 1.63 ± 0.34 17 ± 2 4 ± 5 1. 82 ± 0.09* 

Note. All values (except n) represent mean ± standard deviation;  

DVARS, derivative of root mean squared variance over voxels (head movement parameter);  

DemTect, Mild Cognitive Impairment and Early Dementia Detection; BDI-II, Beck Depression Inventory II;  

WMC, working memory capacity score;  

* Significantly different between groups at p < 0.05 

Performance Measures 

Working Memory Span Tasks: Corsi Block-Tapping  

Visuo-spatial WMC was assessed by the computerized version of the Corsi block-tapping task (forward 

and backward versions) from the Schuhfried Test System (https://www.schuhfried.com/test/CORSI; 

test forms S1 and S5). Here, participants were presented with a spatial array of nine irregularly 

arranged cubes on the monitor and observed a cursor that tapped a sequence of cubes. After an 

acoustic signal, participants were asked to re-tap the sequence either in the same (forward) or reverse 

(backward) order. Starting with three block taps, sequence length increased after three runs of a given 

length up to a maximum of 9 taps. The visuo-spatial WM span scores (forward and backward) 

correspond to the longest sequence correctly reproduced twice in a row. 

Complex Working Memory Span Tasks: Operation and Reading Span 

Complex verbal WMC was assessed by a shortened version of the “operation and reading span tasks” 

(Oswald et al., 2015). For each trial in the operation span task, participants were first presented with 

an arithmetic equation, then had to decide whether a presented answer is true or false. After each 

trial, a letter was presented to remember for later recall. After 3 to 7 trials, a 4 × 3 letter matrix was 

presented, and participants were asked to recall the letter sequence by clicking on the letters in the 

correct order. The reading span task was similarly structured except for the distractor task presented 

between letters, which consisted of sentences (approximately 10–15 words) for which participants had 

to decide whether or not they made sense. In total, each of the five sequence lengths (3-7 trials) was 

https://www.schuhfried.com/test/CORSI
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presented once in a pseudo-randomized order per subtests. The verbal WM complex span was then 

calculated by the average number of letters recalled in the correct order across all trials of each 

subtest. 

Composite Working Memory Capacity Score 

As we aimed to assess global WMC, we aggregated all three test scores (Corsi forward and backward 

scores, complex span score) into a composite WMC score per subject by expressing individual 

performance per test as a fraction of the theoretically maximal score for this test and summing these 

values. The intercorrelations and age-controlled partial correlation between the single WMC subscores 

were calculated. Differences in WMC scores between young and old adults were assessed by the 

independent sample t-test, the relationship between WMC and age by a Pearson correlation analysis.  

fMRI Data Acquisition and Processing 

Whole-brain fMRI data were collected using a 3-T MR scanner (Tim-TRIO, Siemens Medical Systems) 

with a T2*-weighted echo-planar imaging (EPI) sequence (200 volumes; TR: 2200 ms; TE: 30 ms; flip 

angle: 80°; voxel size: 3.1 x 3.1 x 3.1 mm3; 36 axial slices; inter-slice gap: 0.47 mm). During fMRI data 

acquisition, participants were instructed to lie still, close their eyes, let their mind wander, and not fall 

asleep (confirmed at debriefing). After discarding initial four EPI volumes to allow for field saturation, 

images were processed using SPM12 (www.fil.ion.ucl.ac.uk/spm) involving EPI unwarping (using 

additionally acquired field maps), two-pass affine realignment for motion correction, spatial 

normalization to the MNI-152 template brain provided by SPM12 using the “unified segmentation” 

approach (Ashburner & Friston, 2005), as well as spatial smoothing with a 5-mm FWHM Gaussian 

kernel.  

The above-mentioned five cognitive brain networks examined here comprised, to varying degrees, 

common and distinct brain regions. For instance, the WM, CogAC, VigAtt, und SM networks included 

peak coordinates in the inferior frontal gyrus, parietal regions, and midline structures. All but the SM 

and ToM networks included the anterior insula, while the SM and ToM networks were the only ones 

to include temporal regions and the mid-orbital gyrus. Moreover, only the SM network exhibited a 

strong left lateralization, presumably due to its involvement in language. In contrast, the ToM network 

uniquely included the right posterior temporo-parietal junction. Subcortical structures were only part 

of the WM, CogAC, and VigAtt networks (see S2 Figure. 1, S2 Table SI for an overview, and S2 Table SII 

for detailed network coordinates and corresponding brain regions).  

file:///C:/Users/Rachel%20Nirmala%20P/Documents/Wissenschaftliche%20Mitarbeit%20Düsseldorf%20Jülich/Dissertation/CC%20Emotion%20&%20Action/Analysen_MultiNet/Publication/PaperFiles/www.fil.ion.ucl.ac.uk/spm
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S2 Figure 1: Nodes of Meta-analytically defined Networks 

RSFC within each of the meta-analytically defined networks were computed by first extracting the 

BOLD-signal time course of each node as the first eigenvariate of all voxels located within a 6-mm 

sphere around the meta-analytic peak voxel and conforming to the CanLab gray-matter mask 

(https://canlabweb.colorado.edu). In order to reduce spurious correlations, variance explained by (i) 

the six movement parameters obtained during preprocessing, (ii) their derivatives (each modeled as 

first- and second-order effects), as well as (iii) the mean white-matter and cerebrospinal-fluid signal 

time courses were statistically removed from each node’s time series (Ciric et al., 2017; Satterthwaite 

et al., 2013), which has been shown to yield reliable estimates of within- and between-network 

connectivity (Varikuti et al., 2017). Moreover, this approach ensures that less gray-matter-specific, 

motion-unrelated variance of BOLD-signal fluctuations of neural origin will be removed from the data 

(G. Chen et al., 2012), as compared to global signal regression. Subsequently, time series were high-

pass filtered retaining frequencies above 0.01 Hz.  

Although we regressed out motion-related variance such that afterwards the correlation between 

RSFC and motion was near zero, we conducted further analyses to follow up on this important issue, 

given that motion-related artifacts in resting-state fMRI data can lead to spurious functional 

connectivity. In particular, two additional RSFC denoising procedures were separately applied: First, 

global signal regression was performed (Ciric et al., 2017; Power et al., 2018; Satterthwaite et al., 

2013). Second, data censoring was applied to remove data points in each time series that were 

contaminated by motion (using the method proposed by Afyouni & Nichols, 2018) and to account for 

spuriously inflated RSFC of short-distance connections and spuriously decreased RSFC of long-distance 

ones (Ciric et al., 2018). 

https://canlabweb.colorado.edu/
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Pair-wise functional connectivity was computed as Fisher’s Z-transformed Pearson correlation 

between the first eigenvariate of the time series of each network’s nodes. Connectivity values were 

then adjusted (via linear regression) for effects of age, gender and movement based on the derivative 

of root mean squared variance over voxels (DVARS) within each age group to avoid predictions based 

on spurious between-subject differences (N. W. Duncan & Northoff, 2013; Power et al., 2012; 

Satterthwaite et al., 2013). Analogously, WMC scores were adjusted for effects of age and gender 

within each age group. 

RVM Features and Prediction 

RSFC values for all connections within a given network and subject represent individual features from 

which the individual WMC score were predicted using RVM (Tipping, 2001; Tipping & Faul, 2003) as 

implemented in the SparseBayes package (version 2.0 Matlab R2017b; 

http://www.relevancevector.com). To estimate the generalizability of the RVM models, a 10-fold 

cross-validation scheme was employed (see S2 Figure 2 for a schematic analysis workflow). The 

available data (subjects) were randomly split into 10 equally sized subgroups. In each cross-validation 

fold, an RVM was trained on 9 of these and then used to predict the WMC score of the left-out split 

(i.e., the subjects not used during training). Input features (= all RSFC values of a given network) and 

target variables were scaled to zero mean and unit standard deviation based only on the training 

sample as to avoid any leakage. Deconfounding of input features and targets (as described above) was 

done once outside the cross-validation as recently proposed as the optimal strategy for prediction 

studies on individual phenotypes from RSFC (Pervaiz et al., 2020). To ensure the robustness of 

performance evaluation against the initial folds, the cross-validation procedure was repeated 250 

times using independent splitting. These analyses were performed for each network separately in 

young (n = 50) and old (n = 45) adults to investigate age-related differences in predictive performance. 

To examine whether residual movement-related effects may be a relevant contributor to WMC 

predictability, additional analyses were conducted with including DVARS as a predictor in the models 

(see supplementary method section for details). 

http://www.relevancevector.com/
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S2 Figure 2: Schematic Exemplary Analysis Workflow: Working Memory Capacity (WMC) is Predicted 

from Resting-state Functional Connectivity in the WM Network in the Old Sample 

�̅� / 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅: mean Pearson correlation coefficient / mean absolute error between real and predicted scores across 250 cross-

validation repeats. 

Prediction accuracy (i.e., the ability of a given network’s RSFC pattern to predict individual WMC 

scores) was indicated by the mean Pearson’s correlation (�̅�) and mean absolute error (𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅) between 

the real and predicted WMC scores computed first within each of the 10-folds and subsequently across 

all 250 cross-validation replications. To test whether performance was significantly different from zero, 

one-sample t-tests were performed on the 250 correlation coefficients, correcting for multiple 

comparisons over the assessed networks using Bonferroni’s method. In addition, we only considered 

those predictions relevant that were at least of a medium effect size (i.e., �̅� ≥ 0.24, corresponding to 

Cohen’s d ≥ 0.5). When WMC predictability was significant in either the young or old group, group 

differences were calculated using independent sample t-tests (Bonferroni-corrected for the number 

of networks). To evaluate effect sizes of group differences, Fisher's Z-transformed mean correlation 

coefficients of the young and old groups were subtracted from each other. Subsequently, Cohen’s q 

served for effect size interpretation (Cohen, 1988).  

Moreover, to statistically examine differences in prediction performance between significantly 

predictive networks within each group, paired-sample t-tests were performed on prediction accuracies 

obtained from the 250 cross-validation replications of the RVMs (significance threshold: p < 0.05, 

Bonferroni-corrected for the number of comparisons). For a given network to be considered notably 
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different, its prediction accuracy needed to differ to an at least small degree (Cohen’s q) from most of 

the other networks (i.e., from at least 6 out of 8 networks). 

To examine a potential performance dependence of WMC predictability from network-based RSFC in 

advanced age, the older sample was median-split into high- and low-WMC subgroups (post-hoc to the 

prediction analyses). The prediction accuracies (�̅�) were calculated within each subgroup, and 

significance tests were conducted as described above. 

Given the inherent sparsity of RVM prediction models, induced by forcing feature weights to be zero 

to indicate irrelevant network connections, the remaining non-zero (i.e., contributing) connections in 

each RVM model were inspected to determine which connections of a given network were predictive 

of individual WMC scores. Connections used in at least 90% of the total 2500 predictive models per 

network are reported as the most frequently used and, therefore, most consistently predictive 

connections and are visualized with the BrainNet Viewer (Xia et al., 2013).  

Results 

Working Memory Capacity 

WMC was significantly lower in the older sample compared to the young sample (t = 6.07, p < 0.001) 

and the variance did not differ (F = 0.69, p = 0.21; see S2 Table 1 and S2 Figure 3). This is corroborated 

by a significant negative correlation between WMC and age in the entire sample (r = −0.48; p < 0.001). 

The correlations between all three WMC subscores were significant in the entire sample with and 

without removing the effects of age. This suggests that age had very little influence on the relationship 

between single subscores (S2 Table SIII). 



STUDY 2: AGING AND WORKING MEMORY PREDICTIONS 

 
66 

 

 

S2 Figure 3: Working Memory Capacity (WMC) Plotted against Age for Young (in blue) and Old (in 

gray) Participants 

Mean WMC (horizontal line) ± standard deviation (bounded box) for the young sample was 1.93 ± 0.24 and for the old one: 

1.60 ± 0.29.  

Working Memory Capacity Predictability from Network RSFC 

Young and Old Sample 

All cognitive networks significantly predicted WMC in the older group: WM: �̅�old = 0.35; 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ = 0.30; 

cognitive action control (CogAC): �̅�old = 0.37; 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ = 0.28; vigilant attention (VigAtt): �̅�old = 0.33; 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ 

= 0.33; theory-of-mind cognition (ToM): �̅�old = 0.52; 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ = 0.24; and semantic memory (SM): �̅�old = 

0.43; 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ = 0.27. All four control networks significantly predicted WMC in the older group: extended 

social-affective demand (eSAD): �̅�old = 0.45; 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ = 0.27; finger tapping and prosaccade eye 

movements (Motor+PS): �̅�old = 0.24; 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ = 0.34; finger tapping and somatosensory processing 

(Motor+SS): �̅�old = 0.52; 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ = 0.24; connectome-wide network (Connectome): �̅�old = 0.42; 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ = 

0.27. The S2 Figure 4 and S2 Table 2 provide an overview of the averaged prediction accuracies of the 

RVM results. The S2 Figure 5 summarizes the scatter plots of real and predicted WMC scores based on 

each network.  



STUDY 2: AGING AND WORKING MEMORY PREDICTIONS  

 
67 

 

 

S2 Figure 4: Bar Plot of Prediction Accuracies expressed as Mean (error bars: standard deviation) 

Pearson correlations (�̅�) between real and mean predicted working memory capacity (WMC) scores across 250 cross-validation 

repeats for the young (in blue) and old (in gray) sample.  

* significant (p < 0.001) predictions / group differences.  

WM, working memory; CogAC, cognitive action control; VigAtt, vigilant attention; ToM, theory-of-mind cognition; SM, semantic 

memory; eSAD, extended social-affective default; Motor+PS, motor+prosaccades; Motor+SS, motor+somatosensory. 

S2 Table 2: Predictability of Individual Working Memory Capacity based on Functional Connectivity in 

Nine Brain Networks 

 Networks 

 WM CogAC VigAtt ToM SM eSAD Motor+PS Motor+SS Connectome �̅�young 0.17 0.01 -0.06 0.03 0.16 -0.05 0.16 0.12 0.16 �̅�old 0.35* 0.37* 0.33* 0.52* 0.43* 0.45* 0.24* 0.52* 0.42* 

Cohen’s q 0.19 0.38 0.40 0.55 0.30 0.54 0.08 0.46 0.29 

Pearson correlations between real and predicted working memory capacity (WMC) scores in the young (�̅�young) and old (�̅�old) 

sample. Cohen’s q: effect size of age group differences in correlations (<.1: no effect; 0.1 - 0.3: small effect; 0.3 - 0.5: medium 

effect; >0.5: large effect). 

* significant (p < 0.001) predictions with at least medium effect size (�̅� ≥ 0.24, corresponding to Cohen’s d ≥ 0.5).  
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S2 Figure 5: Predictability of Individual Working Memory Capacity (WMC) based on Functional 

Connectivity Patterns in Nine Brain Networks 

Scatter plots show real against mean predicted WMC scores across 250 cross-validation repeats (error bars: standard 

deviations) for young (denoted in blue) and old (denoted in gray) participants. For significant prediction accuracies (�̅�: Pearson 

correlations between real and predicted scores), a linear regression line and a gray bounded line indicating the mean absolute 

error (𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅) were added. 

Furthermore, S2 Table SIV provides the detailed statistics on the WMC predictability from each 

network’s RSFC. When compared to all other eight predictive networks in the older group, the ToM 

network showed significantly better predictability (between-network comparison of prediction 

performance r at p < 0.001: WM: t = 21.39; CogAC: t = 19.53; VigAtt: t = 24.81; SM: t = 13.04; Motor+PS: 

t = 34.79; Connectome: t = 12.86). In contrast, only the predictability of the Motor+PS network 

combination was significantly lower (WM: t = -13.68; CogAC: t = -15.72; VigAtt: t = -10.69; ToM: t = -

34.79; SM: t = -22.68; eSAD: t = -24.03; Motor+SS: t = -32.67; Connectome: t = -22.06), whereas the 

Motor+SS combination exhibited significantly better predictability (WM: t = 21.41; CogAC: t = 18.79; 

VigAtt: t = 22.59; SM: t = 11.52; Motor+PS: t = 32.67; Connectome: t = 12.76 [see S2 Table SV]). 

In contrast, in the young group none of the networks was significantly predictive of WMC, only slight 

trends were observed for the WM: �̅�young = 0.17 and �̅�young = 0.16 for the SM, Motor+PS, and 

Connectome networks. Using global signal regression (compared to white-matter and cerebrospinal-

fluid signal removal) resulted in an increase in the specificity of predictability across networks mainly 

linked to a decrease in prediction accuracy (see S2 Table 3). Although global signal regression has a 

particular impact on WMC predictability in the old group, for which potential motion-unrelated 

sources are discussed later, additional analyses controlling for movement-related artifacts in RSFC data 

did not corroborate that residual motion effects unduly influenced WMC predictability in the old group 

(see S2 Table SVI for RVM results based on data for which preprocessing included censoring as well as 

S2 Table SVII for results of analyses that included DVARS as a predictor). Moreover, neither the 
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predictiveness from intra- and inter-network connections nor from the entire connectome 

demonstrated substantial improvements over that of individual functional networks (see S2 Table SVIII 

and S2 Table 2). 

S2 Table 3: Predictability of Individual Working Memory Capacity based on Functional Connectivity in 

Nine Brain Networks - Global Signal Regression 

 Networks 

 WM CogAC VigAtt ToM SM eSAD Motor+PS Motor+SS Connectome �̅�young 0.12 0 0.06 0.09 0.18 -0.19 0.11 0.16 0.20 �̅�old 0.40* 0.27* 0.26* 0.42* 0.33* 0.32* 0.39* 0.36* 0.43* 

Cohen’s q 0.30 0.28 0.21 0.36 0.16 0.52 0.30 0.22 0.26 

Pearson correlations between real and predicted working memory capacity (WMC) scores in the young (�̅�young) and old (�̅�old) 

sample. * significant (p < 0.001) predictions with at least medium effect size (�̅� ≥ 0.24, corresponding to Cohen’s d ≥ 0.5). 

We observed significant age-related differences in WMC predictability for all networks with effect sizes 

ranging from small to large: Cohen’q: WM = 0.19; CogAC = 0.38; VigAtt = 0.40; ToM = 0.55; SM = 0.30; 

eSAD = 0.54; Motor+SS = 0.46 and Connectome = 0.29 (p < 0.001; see S2 Table 2 and S2 Table SIX).  

Moreover, the analyses of high- versus low-WMC participants of the older subsample revealed that 

overall predictability in the elderly might have been mainly driven by low-WMC older adults for the 

majority of networks: WM: �̅�old_low = 0.37, �̅�old_high = 0.22; CogAC: �̅�old_low = 0.41, �̅�old_high = 0.19; VigAtt: �̅�old_low = 0.40, �̅�old_high = 0.18; ToM: �̅�old_low = 0.33, �̅�old_high = 0.30; SM: �̅�old_low = 0.49, �̅�old_high = 0.29; 

Motor+PS: �̅�old_low = 0.28, �̅�old_high = -0.02; Motor+SS: �̅�old_low = 0.40, �̅�old_high = 0.24 (see S2 Table 4, S2 

Table SX for additional predictions based on intra- and inter-network connectivity, S2 Tables SXI and 

S2 SXII for statistics). 

S2 Table 4:Predictability of Individual Working Memory Capacity based on Functional Connectivity in 

Nine Brain Networks in Low- and High-WMC Older Adults 

 Networks 

 WM CogAC VigAtt ToM SM eSAD Motor+PS Motor+SS Connectome �̅�old_low   

(n = 24) 

0.33* 0.34* 0.25* 0.37* 0.41* 0.42* 0.28* 0.45* 0.35* �̅�old_high  

(n = 21) 

0.08 0.12 0.23 0.33* 0.21 0.18 -0.02 0.31* 0.26* 

Cohen’s q 0.26 0.23 0.02 0.05 0.22 0.27 0.31 0.16 0.10 

Pearson correlations between real and predicted working memory capacity (WMC) scores in the old sample with low (�̅�old_low) 

and high (�̅�old_high) WMC. Cohen’s q: effect size of differences in correlations between networks in low and high WMC older 

adults (<.1: no effect; 0.1 - 0.3: small effect; 0.3 - 0.5: medium effect; >0.5: large effect). 

* significant (p < 0.001) predictions with at least medium effect size (�̅� ≥ 0.24, corresponding to Cohen’s d ≥ 0.5).  
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Relevance of Single Connections  

As RVMs generates sparse solutions, we could identify specific connections within each of the cognitive 

networks that were frequently used by the prediction models (i.e., in at least 90% of the 2500 [10 

foldings × 250 repeats] models per network), hence representing consistent and potentially relevant 

contributions to predicting WMC. In the older group, these frequently used connections were as 

follows (see S2 Figure SI): for the WM network, the connection between left inferior frontal gyrus and 

left thalamus, and for the ToM network, the connection between right superior medial gyrus/frontal 

pole and left angular gyrus/temporo-parietal junction. For the CogAC, VigAtt and SM networks, none 

of the connections met our criteria. For all the networks the percentage of connection usage across 

models are displayed in S2 Figure 6. 

 

 

S2 Figure 6: Illustration of the Frequency with which Connections were used in each of the Nine 

Functional Brain Networks for Predicting Working Memory Capacity (WMC) in the Old Sample 

Displayed are only nodes with a ‘’relevant’’ connectivity (edge) value attached to them. Color indicates the percentage of use 

across 2500 cross-validation repeats per network (ranges are indicated with the color bars). 

Augmented reality app support for this figure can be downloaded under https://osf.io/wru83/ or via  

https://osf.io/wru83/
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For further information please see supplement. 

Discussion 

We examined whether and to what degree individual RSFC patterns in any of eight meta-analytically 

defined functional brain networks and a connectome-wide network predicted WMC in previously 

unseen young and old participants using ML-based regression analysis with the aim to investigate age-

related differences (young vs. old adults). Our results demonstrate that individual WMC could be 

predicted from all five cognitive WM-related networks (�̅� ≥ 0.33) with the highest accuracy of �̅� = 0.52 

(ToM network), whereas predictability from the WM-unrelated networks varied with differential 

degree, with the Motor+PS network showing the lowest significant predictability (�̅� = 0.24) in the older 

group. In the young group, none of the networks was predictive. WMC predictability across networks 

in the old group was primarily linked to lower WMC. 

Age Differences in Working Memory Capacity Predictability 

In the old sample, individual WMC could be similarly well predicted from the RSFC pattern of the WM 

network and networks both closely related to WM (i.e., CogAC and VigAtt) and distantly related to WM 

(i.e., ToM and SM). This demonstrates that the interregional coupling in a task-unconstrained state 

within robustly defined brain networks recruited for executive functions and higher-order cognitive 

tasks contains information about individual WM performance. Moreover, WM-unrelated networks 

associated with task-negative, social-affective and introspective processes (eSAD), finger tapping and 

prosaccade eye movements (Motor+PS) and finger tapping and somatosensory processing (Motor+SS) 

predicted WMC in advanced age. Thus, the strength of functional coupling (at rest) between these 

regions (defined by consistent activation during tasks) is associated with WM abilities tested outside 

the MRI scanner. The similarity to which WMC is predicted across different networks, related or 

unrelated to WM, is potentially linked to a decreased segregation of functional brain networks in 

advanced age (Chan et al., 2014a, 2017), which in turn may be related to the often proposed neural-

level dedifferentiation with aging (i.e., a declining specificity of neuro-functional systems; Goh, 2011; 

Grady, 2012; Sala-Llonch et al., 2015). The fact that networks become less segregated with age may 

lead to a situation where predictive information on individual WMC can be extracted from a broad 

range of networks. Alternatively, this “broadened” predictability of WMC may reflect widespread age-

related changes that lead to similarly reduced network integrity within different networks (Varangis et 

al., 2019; Zonneveld et al., 2019), through which all the networks sampled here come to contain 

reasonably predictive information on performance. 
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While all of the cognitive networks may be expected to relate to some degree to WM, given some 

shared neural and behavioral variance between WM and other executive and cognitive processes, it 

should be noted that the predictive capacity of the CogAC and VigAtt networks was not primarily driven 

by their partial spatial overlap with regions of the WM network (Camilleri et al., 2017; Müller et al., 

2015). That is, spatial similarity does not automatically lead to a similar pattern of RSFC—performance 

associations (see S2 Figure 6). The significant predictability of WMC in the old sample from the RSFC 

patterns of multiple networks (WM, CogAC, VigAtt, ToM, SM, eSAD, Motor+PS and Motor+SS) extends 

previous aging research that revealed age differences in univariate associations between WM 

performance and RSNs (Charroud et al., 2016; Jockwitz et al., 2017; Sala-Llonch, Arenaza-Urquijo, et 

al., 2012).  

In addition, not finding any substantial improvement in predictiveness from intra- and inter-network 

connectivity over individual networks suggests, first, that it is not the sheer (higher) number of features 

that determines prediction performance here, and second, that it is not the connectivity between the 

different networks that provides higher information content with respect to WMC. In line with this, 

even the connectome-based prediction, which rests on an even higher number of connections, was 

not superior, suggesting that no additionally predictive information can be distilled from a functionally 

agnostic, though spatially comprehensive, brain-wide representation of RSFC, as compared to sparse 

but functionally meaningful brain networks. Alternatively, finding no substantial improvement in 

predictiveness for the whole-brain connectome might partly also be due to a less favorable feature-

to-sample ratio. 

The generally low predictability of WMC in young adults based on the networks investigated here 

(chosen according to theoretical considerations as detailed in the introduction) indicates that RSFC 

patterns within these networks do not hold information on individual WM performance in younger 

age. While this remains somewhat surprising, particularly for the WM network, it may be attributable 

to the differences in task demands between WM paradigms used in the scanner (and hence defining 

the meta-analytic network) and the WMC score employed here (Kane, Conway, Miura, et al., 2007). 

This assumption would reinforce the notion of a higher specificity in brain-behavior relations in young 

adults, as compared to a less segregated and/or altered integrity situation among the elderly, leading 

to a more global predictability of cognitive capacities from a broad range of brain networks (cf. Ward 

et al., 2015). Alternatively, this observation could also simply mean that young adults reconfigure their 

networks in task states more extensively to meet task-specific demands and, therefore, RSFC patterns 

at rest are less predictive, whereas task and rest configurations are more similar to, or predictive of, 

each other in advanced age. Ultimately, the overall low predictability, with only slight predictive trends 

for some networks, indicates a lack of shared variance between RSFC and WMC. Accordingly, young 
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adults appear to not exhibit typical network-based RSFC patterns that correspond to certain WMC 

levels, at least in the functional networks investigated in relation to the composite WMC score used 

here. 

The better overall prediction in the older group might be related to factors of age-related neural 

decline that include brain atrophy and white-matter degeneration (Allen et al., 2005; Cabeza et al., 

2016b; Cox et al., 2016), which may be related to altered network integrity and, hence, altered within-

network processing efficiency. Together, these may lead to brain organizational changes that 

strengthen the association between WMC and the integrity of brain networks as assessed by RSFC. 

This suggests that the composite WMC score contains information related to advanced age. Hence, 

the high predictability across networks in older adults may, in part, result from age-related neural 

reorganization that is associated with performance and includes RSFC changes across different 

networks (Sala-Llonch et al., 2015). These age-related changes in older adults were then picked up by 

the prediction models, leading to better prediction performance. Importantly, predictability across 

networks differed between low- and high-WMC older adults. Differential age-related neural plasticity 

may be related to low versus high WM abilities represented by reorganization mechanisms linked to a 

decreased segregation of functional brain networks. This seems to be associated with reduced 

functional specificity across networks and/or reduced network integrity within different networks as 

well as, possibly, compensation through reorganization. Each reorganizational process may manifest 

itself in altered patterns of within-network RSFC, which may drive associations between network RSFC 

patterns and WMC. The higher predictability across cognitive networks (closely and distantly linked to 

WM) as well as task-negative and motor-sensory networks (WM-unrelated) in older adults with lower 

WMC may be related to a stronger association such as a blurring of functionally distinct network 

systems almost exclusively linked with declined performance. This might represent reorganization 

mechanisms related to a decreased segregation of functional brain networks (e.g., a tighter link 

between cognitive, task-negative and motor-sensory systems) manifested in altered patterns of 

within-network RSFC, and may drive associations with lower WMC scores. Alternatively, the high 

predictability across networks might be linked to widespread age-related changes leading to a 

weakening of within-network connectivity associated with an increase in networks’ susceptibility to 

inference and, hence, performance deterioration (Stevens et al., 2008; Varangis et al., 2019; Zonneveld 

et al., 2019). These alterations may lead to similarly reduced network integrity in distinct networks, 

which are linked to low WMC. Either way or in combination, this suggests that especially very low 

performance levels in the old subsample are predictable from RSFC across networks possibly because 

the network changes are so pronounced that they cannot be compensated during WM-related task-

demands. As a consequence, reduced WM functioning may result from this decreased network 
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segregation and/or reduced network integrity due to a loss of effective neural communication. Such a 

decrease in functional specificity of multiple brain systems has previously been shown to have a 

negative impact on WM functioning (Chan et al., 2014a, 2017; Goh, 2011). These assumptions are 

based on graph-theoretical analyses of major RSNs demonstrating that aging is concomitant with a loss 

in distinctiveness of functionally specific networks (Geerligs et al., 2015) and decline in episodic 

memory performance (Chan et al., 2014a). In response to detrimental neuro-functional changes with 

age such as less segregated networks, older adults may also show compensatory neural reorganization 

to maintain cognitive functioning, including altered RSFC patterns associated with increased neural 

efficiency in particular systems (Cabeza et al., 2018). Concretely, we found RSFC patterns associated 

with high WMC for the ToM network, rather distantly related to WM but linked to higher-order social 

cognition, and for control networks involved in motor and somatosensory processing (Motor+SS). The 

association between higher WMC and significantly better predictiveness of the higher-order social-

cognition network (compared to other cognitive networks) but significantly lower predictability from 

motor-sensory systems (Motor+PS: �̅�old_high = -0.02, Motor+SS: �̅�old_high = 0.31; compared to the higher 

predictability of motor-sensory networks in lower performers Motor+PS: �̅�old_low = 0.28, Motor+PS: �̅�old_low = 0.45) may be related to network configurations more responsive to neuroplastic adaptation 

to improve cognitive functions (Gallen et al., 2016; Iordan et al., 2018). Hence, network configurations 

in older adults with higher WMC may constitute a marker for compensatory re-configuration that may 

be relevant for (and thus, predictive of) task performance, counteracting the neuro-functional 

deterioration of cognitive systems in advanced age. Alternatively, this may indicate the beginning of 

neural-level dedifferentiation with aging, at an as-yet less pronounced stage of decline than exhibited 

in old adults with low WMC. In turn, RSFC patterns associated with declined WMC may indicate a 

marker for less efficient network configurations during WM task performance (and possibly other 

cognitive functions that depend on WMC) potentially due to less segregated network systems (Chan 

et al., 2014a; Grady, 2012) and/or altered network integrity (Varangis et al., 2019; Zonneveld et al., 

2019). 

Eventually, the pattern of our results suggests that normal aging is accompanied by some rather global 

brain reorganization, broadly affecting brain systems linked to various functions including WMC 

(Pläschke et al., 2017). Accordingly, brain systems involved in executive functions and other higher-

order cognitive functions, as well as perceptuo-motor systems would be affected by this age-related 

reorganization, which seems to share some variance with normal age-related WMC decline. 
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Contribution of Network Connections to Working Memory Capacity Predictability in 

Advanced Age 

In the older group, the most consistently informative connections (i.e., used > 90% throughout all 

prediction models) of the WM and ToM networks may, at least in part, account for inter-individual 

differences in WMC. In particular, the connection between the left inferior frontal gyrus (p. 

opercularis) and the left thalamus of the WM network may plays a potential role in gating access to 

WM within the basal ganglia-thalamo-cortical loops (Bäckman et al., 2006; Nyberg & Eriksson, 2016; 

Schroll et al., 2012). Within the ToM network, the most prominent connection is located between the 

right superior medial gyrus / frontal pole (FP) and the left angular gyrus / temporo-parietal junction 

(AG/TPJ). The AG/TPJ has been associated with the retrieval of verbal material implicated in verbal 

WM, whereas, the FP has been associated with the planning and organization of future actions. Both 

regions may hence subserve cognitive processes that overlap between ToM and WM. Therefore, this 

connection’s strength may reflect a substrate of the crucial interplay between retrieval of verbal 

information and the planning of task execution associated with WM tasks.  

The observed key connections seem to play a relevant role in the corresponding network at rest, 

suggesting that older adults with low WMC (potentially related to less segregated 

systems/deteriorated network integrity) might recruit these networks differently in demanding task 

settings than do older adults with larger WMC (possibly linked to compensatory reorganizational 

adaptations; see S2 Figure 3, S2 Table 4 and S2 Figure SI).  

Conceptual Considerations and Outlook 

Using ML in an out-of-sample prediction framework, we investigated the association between WMC 

and the multivariate intrinsic coupling pattern within functional brain networks and its modulation by 

age, which extends results of previous univariate approaches examining the relationship between 

cognitive decline and RSFC in advanced age (Andrews-Hanna et al., 2007; Sala-Llonch, Peña-Gómez, et 

al., 2012). 

We would like to highlight that our predictions are based on RSFC in meta-analytically defined 

functional networks, which offers the key advantage of being able to relate WMC to particular well-

circumscribed functional systems, allowing for a specific interpretation of functionally distinct brain 

network–WMC associations revealed by ML-based predictions. Remarkably, our prediction 

performance of about r = 0.40 in the older group based on sparse single functional networks, as 

opposed to whole-connectome approaches, can compete with WM performance predictions from 
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combined measures of structural and functional imaging (alpha span and digit backwards: r = 0.35) in 

a sample of 132 older adults (Y. Wang et al., 2013).  

Furthermore, our observed prediction performance is quite noteworthy given the relatively small 

sample size in the groups and the application of a robust and rather conservative approach to testing 

model generalizability (viz., 250 repetitions of a 10-fold cross-validation scheme), than using the 

optimistic leave-one-out approach known to be prone to overfitting (Varoquaux et al., 2016). However, 

for the young sample we cannot exclude that the absent to low predictability might be related to the 

moderate sample size. Besides, it needs to be acknowledged that the meta-analytical networks were 

derived from imaging studies primarily done in young and middle-aged adult samples. Therefore, it is 

likely that networks defined from studies in older samples would reveal age-specific differences in 

network topology. For instance, additional regions might turn out to be implicated in altered network 

configurations linked to reorganizational processes in advanced age and, hence, may result in 

differences in brain-behavior associations between young and older adults (Burianová et al., 2013). As 

such, the observed age-related prediction differences may also reflect topological differences in 

network architecture between age groups. Nevertheless, because the meta-analyses defining the 

networks comprised samples with varying mean age and age range, we would argue that they reflect 

the normative definition of the spatial network layout, even if this means a certain bias against the 

average network layout that may develop in advanced age. Despite proper state-of-the-art removal of 

variance related to potential cofounds (Ciric et al., 2017; Pervaiz et al., 2020; Power et al., 2012; 

Satterthwaite et al., 2013) as well as motion-related control analyses, we cannot entirely exclude that 

the alteration in WMC predictability when applying GSR may in part be related to residual motion-

related effects. However, the global signal may contain neural signal of interest that is unduly removed, 

which in turn may have contributed to reduced predictability. In line with this, recent evidence points 

to the need to be especially cautious with applying GSR when comparing groups with different noise 

characteristics, as in young versus older adults, or with varying neural network structures (Murphy & 

Fox, 2017). 

Given that multiple functional networks were predictive of WMC and the connectome-wide network 

showed similar predictability, we cannot rule out that RSFC between regions distributed across the 

entire brain (i.e., outside our pre-defined networks) is a marker for WMC in advanced age. Support for 

this notion stems from data-driven whole-brain approaches, demonstrating that RSFC between 

regions outside the well-known attention-related network can be crucial to predict sustained-

attention performance (Rosenberg et al., 2016). This may similarly apply to WMC, particularly in 

younger adults. Moreover, we cannot exclude that factors of non-neural origin such as physiological 

changes linked to aging and their impact on the hemodynamic signals (D’Esposito et al., 2003; West et 
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al., 2019) may have contributed to our findings. Hence, the relationship between RSFC and cognition 

in aging definitively demands further investigation with the aim of precise predictions on a single-

subject level. One of the highlights is the use of the RVM, which offers the advantage of a better 

localization and interpretability of connections that mainly drove the predictions by providing 

considerably sparse solutions with superior generalizability (Tipping, 2001; Y. Wang et al., 2010). 

Therefore, a more detailed evaluation of the neural mechanisms driving the predictions can be 

achieved.  

Compared to previous studies addressing such age-related brain-behavior relationships in a data-

driven way (Charroud et al., 2016; Y. Wang et al., 2013), our approach offers the chance to improve 

our understanding of how and to what degree individual differences in particular cognitive functions 

(here: working memory) are represented and potentially implemented by particular features (here: 

RSFC) of a priori defined functional networks. Using meta-analytically derived functional networks in 

combination with performance prediction, we can evaluate whether particular features of networks 

known to be involved in certain cognitive functions do in fact contribute to inter-individual behavioral 

variation in this function, and how this is affected by age. As we have shown, individual RSFC patterns 

do not always translate into individual performance levels (here: WMC), and the average level of 

predictability per group also seems to be related to the specificity of the predictability across networks: 

With both overall low predictability (in young adults) and overall rather high predictability (in older 

adults), specificity is low, which appears like floor and ceiling effects, respectively. 

Although our data and analyses do not reveal the specific mechanisms underlying the generally better 

WMC predictability in advanced age, the network-specific analyses allowed us to reveal that normal 

aging is linked to a non-specific (i.e., network-independent) pattern of RSFC–performance 

relationships that spans across rather distinct networks. This would not have been possible with 

previous approaches based on the whole-brain connectome, which even in young samples often 

yielded patterns of RSFC among widely distributed and (seemingly) unrelated brain regions to be 

predictive of a given behavioral or cognitive feature (Finn et al., 2015; Rosenberg et al., 2016). Overall, 

the present study may answer as many questions as it raises new ones, but we hope that this will spur 

future research to unravel the neural mechanisms driving these predictions and their age-related 

differences. We argue that our approach of combining meta-analytically defined functional networks 

with multivariate pattern-regression using a robust cross-validation scheme provided new insights into 

aging-related brain reorganization by linking WMC to brain network integrity.  
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Conclusion  

We investigated whether and to what degree the RSFC pattern of eight functional brain networks and 

a connectome-wide network predict individual WMC in young and old adults. By using ML-based 

regression modeling in a robust cross-validation scheme, age differences in predictability were 

examined. The comparison of prediction performance in young and old participants revealed 

differences in brain-behavior associations.  

While a general unpredictability of the networks’ connectivity patterns was observed in young adults, 

each network predicted WMC in old adults, suggesting neurobiological adaptation related to WM task 

demands predictable from resting-state interregional coupling. In advanced age, a similar degree of 

predictive power across diverse networks suggests different possibilities or combinations of neural-

level reorganization such as a decreased segregation of functional networks, brain-wide alterations in 

network integrity, and/or compensatory connectivity changes as common factors underlying inter-

individual variation in WMC. Our results, thus, offer novel insights into age-related reorganization of 

functional brain networks linked to low and high WMC. Finally, our study underlines the value of RSFC 

as a marker for individual WMC in advanced age and potentially as a source for examining neural 

mechanisms linked to cognitive deterioration by using ML-based prediction.  
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S2 Table SII: Network Coordinates and Corresponding Brain Regions 

Working Memory (WM) 

(Rottschy et al. 2012)  

x y z Macroanatomical Region 

-32 22 -2 L Anterior Insula  
-48 10 26 L Inferior Frontal Gyrus (p. Opercularis) 
-46 26 24 L Inferior Frontal Gyrus (p. Triangularis) 
-38 50 10 L Anterior Middle Frontal Gyrus 
36 22 -6 R Anterior Insula  
50 14 24 R Inferior Frontal Gyrus (p. Triangularis) 
44 34 32 R Middle Frontal Gyrus 
38 54 6 R Anterior Middle Frontal Gyrus 
2 18 48 L Posterior Medial Frontal 

-28 0 56 L Posterior Middle Frontal Gyrus 
30 2 56 R Posterior Middle Frontal Gyrus 
-42 -42 46 L Inferior Parietal Lobule/Intraparietal Sulcus 
-34 -52 48 L Inferior Parietal Lobule/Intraparietal Sulcus  
-24 -66 54 L Superior Parietal Lobule 
42 -44 44 R Inferior Parietal Lobule/Intraparietal Sulcus 
32 -58 48 R Angular Gyrus/Intraparietal Sulcus 
16 -66 56 R Superior Parietal Lobule 
-12 -12 12 L Thalamus 
-16 2 14 L Nucleus Caudate 
-16 0 2 L Globus Pallidum 
12 -10 10 R Thalamus 
-34 -66 -20 L Cerebelum/Fusiform Gyrus 
32 -64 -18 R Cerebelum/Fusiform Gyrus 

 

Cognitive Action Control (CogAC) 

(Cieslik et al. 2015)  

x y z Macroanatomical Region 

36 22 -4 R Anterior Insula 
2 16 48 L Posterior Medial Frontal 

48 12 30 R Inferior Frontal Gyrus (p. Opercularis) 
36 2 54 R Middle Frontal Gyrus 
48 30 24 R Inferior Frontal Gyrus (p. Triangularis) 
-38 -44 46 L Inferior Parietal Lobule/Intraparietal Sulcus 
-24 -66 48 L Superior Parietal Lobule 
40 -46 46 R Inferior Parietal Lobule/Intraparietal Sulcus 
60 -44 24 R Supramarginal Gyrus 
30 -62 52 R Superior Parietal Lobule 
-44 10 30 L Precentral Gyrus 
-34 20 -4 L Anterior Insula  
-26 2 52 L Middle Frontal Gyrus 
6 -18 -2 R Thalamus 

-40 -66 -10 L Inferior Occipital Gyrus 
48 19 6 R Inferior Frontal Gyrus (p. Opercularis) 
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8 29 30 R Midcingulate Cortex 
-45 27 30 L Inferior Frontal Gyrus (p. Triangularis) 
11 7 7 R Nucleus Caudate 

 

Vigilant Attention (VigAtt) 

(Langner et al. 2013)  

x y z Macroanatomical Region 

-2 8 50 L/R Anterior Paracentral Lobule 
8 32 46 R Superior Medial Gyrus 
0 26 34 L Midcingulate Cortex 

50 8 32 R Precentral Gyrus 
40 22 -4 R Anterior Insula  
46 36 20 R Anterior Middle Frontal Gyrus 
-40 -12 60 L Precentral Gyrus 
-46 -68 -6 L Inferior Occipital Gyrus 
-48 8 30 L Precentral Gyrus 
62 -38 17 R Inferior Parietal Lobule 
8 -12 6 R Thalamus 

32 -90 4 R Middle Occipital Gyrus 
-42 12 -2 L Anterior Insula 
-10 -14 6 L Thalamus 
6 -58 -18 Cerebellar Vermis 

44 -44 46 R Inferior Parietal Lobule 

 

Theory-of-Mind Cognition (ToM) 

(Bzdok et al. 2012)  

x y z Macroanatomical Region 

0 52 -12 R Mid Orbital Gyrus 
2 58 12 R Superior Medial Gyrus 
-8 56 30 L Superior Medial Gyrus 
2 -56 30 L Precuneus 

56 -50 18 R Superior Temporal Gyrus 
-48 -56 24 L Angular Gyrus 
54 -2 -20 R Anterior Middle Temporal Gyrus 
-54 -2 -24 L Anterior Middle Temporal Gyrus 
52 -18 -12 R Middle Temporal Gyrus 
-54 -28 -4 L Middle Temporal Gyrus 
50 -34 0 R Posterior Superior Temporal Sulcus 
-58 -44 4 L Posterior Superior Temporal Sulcus 
54 28 6 R Inferior Frontal Gyrus (p. Triangularis) 
-48 30 -12 L Inferior Frontal Gyrus (p. Orbitalis) 
48 -72 8 R Occipital Lobe (V5/MT) 
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Semantic Memory (SM) 

(Binder et al. 2009) 

x y z Macroanatomical Region 

-46 -69 28 L Angular Gyrus 
-50 -56 31 L Angular Gyrus 
-64 -44 -4 L Posterior Middle Temporal Gyrus 
-47 -24 -17 L Middle Temporal Gyrus 
-40 -12 -30 L Inferior Temporal Gyrus 
-8 -57 17 L Precuneus 

-20 36 44 L Superior Frontal Gyrus 
-53 27 -4 L Inferior Frontal Gyrus (p. Orbitalis) 
54 -59 30 R Angular Gyrus 
43 -72 31 R Middle Occipital Gyrus 
-1 51 -7 L Mid Orbital Gyrus 
-5 56 24 L Superior Medial Gyrus 

-31 -34 -16 L Fusiform Gyrus 
-8 29 -10 L Anterior Cingulate Cortex 

-46 25 23 L Inferior Frontal Gyrus (p. Triangularis) 
64 -41 -2 R Posterior Middle Temporal Gyrus 
-43 -53 55 L Inferior Parietal Lobule 
-1 -18 40 L Midcingulate Cortex 
-2 -56 46 L Precuneus 
51 20 26 R Inferior Frontal Gyrus (p. Triangularis) 
64 -38 32 R Supramarginal Gyrus 
-23 26 -16 L Inferior Frontal Gyrus (p. Orbitalis) 
-5 -39 40 L Midcingulate Cortex 

 

Extended Social-Affective Default (eSAD) 

(Amft et al. 2015)  

x y z Macroanatomical Region 

0 38 10 Anterior Cingulate Cortex 
-24 -10 -20 L Hippocampus/Amygdala 
24 -8 -22 R Hippocampus/Amygdala 
-2 -52 26  L Posterior Cingulate Cortex/Precuneus 
-2 32 -8 L Subgenual Cingulate Cortex 

-46 -66 18 L Posterior Middle Temporal Gyrus  
50 -60 18 R Posterior Middle Temporal Gyrus 
-2 52 14 L Superior Medial Gyrus 
-6 10 -8 L Caudate Nucleus 
6 10 -8 R Caudate Nucleus 
-2 50 -10 L Mid Orbital Gyrus 

-54 -10 -20 L Anterior Middle Temporal Gyrus 
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Motor + Prosaccades (Motor+PS) 

(Witt et al. 2008; Cieslik et al. 2016) 

x y z Macroanatomical Region 

-39 -21 54 L Postcentral Gyrus 
41 -16 57 R Precentral Gyrus 
-3 -2 54 L Posterior Medial Frontal 

-57 2 32 L Precentral Gyrus 
-53 -24 21 L Supramarginal Gyrus 
-23 -7 1 L Globus Pallidum 
25 -8 3 R Globus Pallidum 
-22 -52 26 L Cerebellum 
18 -54 -22 R Cerebellum 
4 6 62 R Posterior Medial Frontal 
-2 8 58 L Posterior Medial Frontal 

-40 -2 50 L Precentral Gyrus 
-16 -68 62 L Precuneus 
-30 -56 56 L Superior Parietal Lobule 
24 -62 56 R Superior Parietal Lobule 
44 4 50 R Precentral Gyrus 
-10 -16 6 L Thalamus 
32 -52 48 R Inferior Parietal Lobule 
43 -39 49 R Inferior Parietal Lobule 

 

Motor + Somatosensory (Motor+SS) 

(Witt et al. 2008; Lamp et al. 2019) 

x y z Macroanatomical Region 

-39 -21 54 L Postcentral Gyrus 
41 -16 57 R Precentral Gyrus 
-3 -2 54 L Posterior Medial Frontal 

-57 2 32 L Precentral Gyrus 
-53 -24 21 L Supramarginal Gyrus 
45 -38 48 R Inferior Parietal Lobule 
-23 -7 1 L Globus Pallidum 
25 -8 3 R Globus Pallidum 
-22 -52 26 L Cerebellum 
18 -54 -22 R Cerebellum 
-48 -20 20 L Rolandic Operculum 
-54 -20 48 L Postcentral Gyrus 
-44 -26 58 L Postcentral Gyrus 
-38 -12 4 L Insula Lobe 
-40 4 10 L Insula Lobe 
56 -22 20 R Rolandic Operculum 
56 -34 18 R Superior Temporal Gyrus 
56 -38 28 R Supramarginal Gyrus 
60 -20 32 R Postcentral Gyrus 
-4 14 36 L Midcingulate Cortex 

R= right; L = left; for consistency, coordinates (MNI-space) are assigned to the most probable brain areas as revealed by the 

SPM Anatomy Toolbox ( Version 2.1; Eickhoff, Heim, Zilles, & Amunts, 2006; Eickhoff et al., 2007, 2005). 
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For the Connectome-wide Network (Connectome) please see Power et al. 2011 Supplementary Material Table S02. 

Supplementary Method Section to 2.4 RVM Features and Prediction 

To further elucidate whether motion-related effects may contribute to WMC predictability, DVARS was 

added as a predictor to the network connectivity matrices before running RVM predictions. This 

allowed us to investigate whether RVM performance would increase overall and whether DVARS 

would receive more than 90% non-zero weights over the total of 2500 predictive models calculated, 

that is, whether it would be considered a frequently used, and thus, particularly relevant feature. 

S2 Table SIII: Pearson Correlations among Working Memory Capacity Subscores 

 All Young Old 

CorsiF - CWMspan 0.39*/0.32* 0.13 0.54* 

CorsiR - CWMspan 0.36*/0.29* 0.02 0.43* 

CorsiF - CorsiR 0.54*/0.43* 0.45* 0.37* 

Note. For the full sample (All), zero-order (without controlling for age)/partial (controlling for age) correlations are reported. 

CWMspan, complex verbal working memory span: reading span + operation span; CorsiF, visuo-spatial working memory 

forward span: Corsi block-tapping forward; CorsiR, visuo-spatial working memory reverse span: Corsi block-tapping reverse. 

* significant at pcorr < 0.05  

S2 Table SIV: Statistics on the Predictability of Working Memory Capacity from Network-based 

Resting-state Functional Connectivity 

Network / Sample Mean Difference  t 

WM   

young 0.17 25.77* 
old 0.35 52.47* 

CogAC   

young 0.01 0.95 
old 0.37 55.12* 

VigAtt   

     young -0.06 -9.89* 
     old 0.33 44.52* 

ToM   

     young 0.03 4.79* 
     old 0.52 89.18* 
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SM   

     young 0.16 24.65* 
     old 0.43 62.53* 

eSAD 
  

     young -0.05 -8.32* 
     old 0.45 79.72* 

Motor+PS 
  

     young 0.16 24.87* 
     old 0.24 30.40* 

Motor+SS 
  

     young 0.12 19.18* 
     old 0.52 79.06* 

Connectome   

     young 0.16 26.13* 
     old 0.42 59.45 

One-sample t-tests on prediction accuracies (r) different from a zero mean across all 250 cross-validation repeats of the 

relevance vector machine; t* significant at threshold p < 0.001. 

S2 Table SV: Statistics on Prediction Accuracy Differences between Networks in the Old Sample 

Networks  WM CogAC VigAtt ToM SM eSAD Motor 

+PS 

Motor 

+SS 

Connectome 

 r 0.35 0.37 0.33 0.52 0.43 0.45 0.24 0.52 0.42 

  Cohen’s q effect sizes 

WM 

 

  0.02 0.02 0.21 0.09 0.12 0.12 0.21 0.08 

CogAC 

 

 -3.18  0.05 0.19 0.07 0.10 0.14 0.19 0.06 

VigAtt 

 

 2.63 5.54*  0.23 0.12 0.14 0.10 0.23 0.11 

ToM 

 

 -21.39* -19.53* -24.81*  0.12 0.09 0.33 0 0.13 

SM 

 

 -10.69* -7.31* -13.14* 13.05*  0.03 0.22 0.12 0.01 

eSAD 

 

 -12.57* -9.64* -14.81 10.33* -2.57  0.24 0.09 0.04 

Motor 

+PS 

 13.68* 15.72* 10.69* 34.79* 22.68 24.03*  0.33 0.20 

Motor 

+SS 

 -21.40* -18.79* -22.59* 0.99 -11.52* -8.38* -32.67*  0.13 

Connectome 

 

 -9.97* -6.28* -11.85 12.86* 0.88 3.28 -22.06* 12.76*  

                                                            t 

r: Pearson correlations between real and predicted working memory capacity (WMC) scores. Cohen’s q: effect size of 

differences in correlations between networks (<.1: no effect; 0.1 - 0.3: small effect; 0.3 - 0.5: medium effect; >0.5: large effect). 

In red are highlighted small and medium effect sizes. t* significant at threshold p < 0.001. 
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S2 Table SVI: Predictability of Individual Working Memory Capacity based on Functional Connectivity 

in Nine Brain Networks – Censoring 

 Networks 

 WM CogAC VigAtt ToM SM eSAD Motor+PS Motor+SS Connectome �̅�young 0.17 -0.02 -0.10 0.02 0.16 -0.06 0.16 0.13 0.17 �̅�old 0.37* 0.38* 0.33* 0.54* 0.44* 0.43* 0.24* 0.47* 0.41* 

Pearson correlations between real and predicted working memory capacity (WMC) scores in the young (�̅�young) and old (�̅�old) 

sample. * significant (p < 0.001) predictions with at least medium effect size (�̅� ≥ 0.24, corresponding to Cohen’s d ≥ 0.5). 

S2 Table SVII: Predictability of Individual Working Memory Capacity based on Functional Connectivity 

in Nine Brain Networks – DVARS as a Predictor 

 Networks 

 WM CogAC VigAtt ToM SM eSAD Motor+PS Motor+SS Connectome �̅�young 0.40 0.08 -0.05 0.10 0.36 -0.04 0.34 0.25 0.41 �̅�old 0.32* 0.35* 0.29* 0.54* 0.42* 0.45* 0.17* 0.55* 0.43* 

Pearson correlations between real and predicted working memory capacity (WMC) scores in the young (�̅�young) and old (�̅�old) 

sample. * significant (p < 0.001) predictions with at least medium effect size (�̅� ≥ 0.24, corresponding to Cohen’s d ≥ 0.5). 
DVARS was not among the most frequently used connection in any of the networks.  

S2 Table SVIII: Predictability of Individual Working Memory Capacity based on Inter-network 

Functional Connectivity 

  Networks 

   

WM+ CogAC 

 

WM+VigAtt 

 

WM+ToM 

 

WM+SM 

 

WM+eSAD 

 

 �̅�young 0.13 0.08 0.07 0.10 0.06  
 �̅�old 0.39* 0.48* 0.46* 0.37* 0.36*  

Pearson correlations between real and predicted working memory capacity (WMC) scores in the young (�̅�young) and old (�̅�old) 

sample. * significant (p < 0.001) predictions with at least medium effect size (�̅� ≥ 0.24, corresponding to Cohen’s d ≥ 0.5). All 

networks showed significant group differences between young and old sample (p < 0.001). 

S2 Table SIX: Differences between Young and Old in the Predictability of Working Memory Capacity 

from Network-based Resting-state Functional Connectivity 

Network Mean Difference t 

WM -0.18 -19.12* 

CogAC -0.36 -38.58* 

VigAtt -0.39 -40.01* 

ToM -0.49 -59.13* 

SM -0.27 -29.49* 
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eSAD -0.50 -61.86* 

Motor+PS -0.08 -7.46* 

Motor+SS -0.40 -45.29* 

Connectome -0.26 -27.36* 

Independent sample t-tests on prediction accuracies (r) across the 250 cross-validation repeats of the relevance vector 

machine; t* significant at threshold p < 0.001. 

 

S2 Table SX: Predictability of Individual Working Memory Capacity based on Inter-network Functional 

Connectivity in Older Adults with Low and High Working Memory Capacity 

  Networks 

   

WM+ CogAC 

 

WM+VigAtt 

 

WM+ToM 

 

WM+SM 

 

WM+eSAD 

 

 
�̅�old_low 

(n = 24) 
0.33* 0.38* 0.33* 0.34* 0.30*  

 �̅�old_high 

(n = 21) 
0.16 0.30* 0.26* 0.16 0.13  

 Cohen’s q 0.14 0.04 0.12 0.13 0.09  

Pearson correlations between real and predicted working memory capacity (WMC) scores in the old sample with low (�̅�old_low) 

and high (�̅�old_high) WMC. Cohen’s q: effect size of differences in correlations between networks in low- and high-WMC older 

adults (<.1: no effect; 0.1 - 0.3: small effect; 0.3 - 0.5: medium effect; >0.5: large effect). 

* significant (p < 0.001) predictions with at least medium effect size (�̅� ≥ 0.24, corresponding to Cohen’s d ≥ 0.5). All networks 

showed significant group differences between low- and high-WMC older adults (p < 0.001). 

S2 Table SXI: Statistics on the Predictability of Working Memory Capacity from Network-based 

Resting-state Functional Connectivity in Older Adults with Low and High Working Memory Capacity 

Network / Sample Mean Difference  t 

WM   

Low WMC 0.33 35.56* 
High WMC 0.08 7.34* 

CogAC   

Low WMC 0.34 35.34* 
High WMC 0.12 11.25* 

VigAtt   

Low WMC 0.25 26.25* 
High WMC 0.23 19.03* 

ToM   
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Low WMC 0.37 43.10* 
High WMC 0.33 29.17* 

SM   

Low WMC 0.41 41.52* 
High WMC 0.21 20.83* 

eSAD 
  

Low WMC 0.42 55.75* 
High WMC 0.18 17.60* 

Motor+PS 
  

Low WMC 0.28 24.33* 
High WMC -0.02 -1.56 

Motor+SS 
  

Low WMC 0.45 49.31* 
High WMC 0.31 25.79* 

Connectome   

Low WMC 0.35 32.83* 
High WMC 0.26 24.07* 

One-sample t-tests on prediction accuracies (r) different from a zero mean across all 250 cross-validation repeats of the 

relevance vector machine; t* significant at threshold p < 0.001. 

S2 Table SXII: Differences between Older Adults with Low and High Working Memory Capacity in the 

Predictability of Working Memory Capacity from Network-based Resting-state Functional 

Connectivity 

Network Mean Difference t 

WM -0.25 -17.51* 

CogAC -0.22 -14.72* 

VigAtt -0.02 -1.65 

ToM -0.04 -2.65* 

SM -0.20 -13.73* 

eSAD -0.24 -18.87* 

Motor+PS -0.30 -19.63* 

Motor+SS -0.14 -9.35* 
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Connectome -0,09 -5.40* 

Independent sample t-tests on prediction accuracies (r) across the 250 cross-validation repeats of the relevance vector 

machine; t* significant at threshold p < 0.001. 

 

 

S2 Figures SI: Illustration of most Frequently used Connections within the Working Memory and 

Theory-of-Mind Cognition Networks 

Most frequently used connections in at least 90% of the total 2500 predictive models between regions within the working 

memory (WM) and theory-of-mind cognition (ToM) networks for the prediction of working memory capacity (WMC) in the old 

sample.  

WM network: IFG, left Inferior Frontal Gyrus (p. Opercularis); Thal, left Thalamus. 

ToM network: SMG/FP, right Superior Medial Gyrus / Frontal Pole; AG/TPJ, left Angular Gyrus / Temporo-Parietal Junction 
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Information on the Augmented Reality App Support 

 

The result brains as 3D models, using the BrainMesh_ICBM152_smoothed template, were exported 

from Matlab/BrainNet Viewer to VRML-file format. The VRML-to-OBJ-file conversion was done via the 

CAD Exchanger and the AR-App development with Unity3D/Vuforia.
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4 GENERAL DISCUSSION 

4.1 Results Summary 

By applying ML algorithms, these two studies investigated the potential to associate RSFC patterns 

within meta-analytically defined functional brain networks with different phenotypic conditions. In 

study 1, pattern-classification was applied to disease and developmental conditions, and in study 2, 

pattern-regression was employed to cognitive performance in young and old adults. Both studies 

assessed the potential to make predictions from functional brain networks for individual subjects upon 

their clinical and developmental condition as well as cognitive capacity. With regards to the central 

research questions, study 1 revealed that patients with SCZ or PD were disease-specifically well 

classified based on different functional networks that resonate well with established impairments in 

these conditions. The most discriminating networks for SCZ, but not PD, were the reward processing 

and social-affective networks, whereas for PD, but not SCZ, the networks subserving memory, motor 

execution, and higher-order cognition, showed the highest accuracies. In turn, age discrimination was 

excellent based on all functional networks and outperformed classifications in both clinical conditions. 

Study 2 demonstrated that within-network functional coupling during task-free states is associated 

with individuals’ WMC in older but not in young adults. Particularly, the WMC score of an older adult 

was successfully predicted from the RSFC patterns pertaining to the WM network, WM-related 

networks associated with executive functions and higher-order-cognition, and a task-negative network 

as well as WM-unrelated motor-sensory systems. Moreover, it was found that predictability differed 

between older adults with high versus low WMC. A similar degree of predictability across functionally 

different networks is associated with low WMC performance. Linking the results of both studies for NA 

demonstrates that the connectivity pattern of the WM network is not only informative when it comes 

to the distinction between young from older adults. The WM connectivity pattern also contains age-

related information on individual WM performance that is not exclusively linked to the WM network 

but rather is extractable from a broader range of different networks. Together, the studies reinforce 

the notion that in SCZ and PD, networks are more disease-specifically altered, whereas NA is associated 

with alterations affecting a broad range of mental systems. Furthermore, these results support a 

connection to age-related reorganization linked to neural-level decreased segregation of functional 

brain networks, deterioration of network integrity within different networks, and/or compensation by 

reorganization as factors that may drive associations between connectivity patterns in functionally 

distinct networks and WMC in advanced age. 
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4.2 Contribution of Machine Learning Approaches to the Understanding of Brain-Behavior 

Relationships 

4.2.1 Machine Learning Compared to Classical Statistical Approaches 

The two studies underline the potential of ML algorithms as a novel approach to address classical 

questions of brain-behavior relationships, which have been mostly investigated with traditional 

univariate methods in the previous SCZ, PD, and NA literature. Traditional approaches primarily reveal 

isolated alteration in single connections associated with phenotypical conditions yielding a rather 

mechanistically understanding of the pathophysiology. Such an obtained neurobiological insight 

commonly relies on within-sample group-aggregates across subjects pertaining to a disorder or 

developmental condition to their general population inference of the established relationship. Hence, 

traditional approaches rarely validate out-of-sample predictions that is whether a significant 

relationship between isolated alterations in single connectivities and phenotypic conditions still holds 

in unseen single-subjects who have not been included in fitting the model (Bzdok, 2017; Dubois & 

Adolphs, 2016; Orrù et al., 2012). In contrast, by applying ML, both thesis studies demonstrated that 

the multivariate network patterns of an individual can be associated with disease and developmental 

conditions as well as cognitive performance and allow for out-of-sample generalization to the 

individual case through successful predictions based on unseen single-subjects.  

The ultimate goal, at least for clinical practice, is to use neuroimaging data (brain scans) for automated 

decision-making on the level of individuals for diagnostic and prognostic purposes. Therefore, the 

majority of ML studies have been applied to achieve the best possible accuracies necessary for a 

transition into clinical practice and personalized medicine (Arbabshirani et al., 2017; Orrù et al., 2012). 

This application aim often goes along with a rather subordinate demand to gain an understanding of 

disease mechanisms (Bzdok & Ioannidis, 2019). Instead, and in alignment with the rationale, both 

studies showed that applying ML to primarily approach rather classical questions on the associations 

between intrinsic functional networks and disease, or developmental conditions provides valuable 

insights into altered network patterns. ML, therefore, provides a powerful tool to ascertain 

brain-behavior relationships in individual subjects and may be positioned between classical 

neuroimaging studies reporting group-level characteristics and those ML studies aiming at identifying 

the most reliable markers for diagnoses and prognoses in clinical applications (Fisher et al., 2018). 

Together, the study results show that the application of ML reveals an association between functional 

network patterns and different phenotypes, providing pathophysiological understanding on a broader 

system level of the entire network pattern with relevance on the single-subject level. Hence, ML 

applications to classical questions can provide insight into generally valid associations (without any 
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cause-and-effect link) in brain-behavior relationships of disease and developmental conditions. As the 

results are valid in an idiographic perspective, this type of ML studies, between traditional approaches 

and diagnosis and prognosis clinical applications, may also offer valuable knowledge for personalized 

medicine, targeting functional network-based therapeutic interventions, as discussed below. 

4.2.2 Functional Specificity  

The thesis examined brain-behavioral associations with a new combination of different 

methodological approaches that offered functional specificity in the interpretation of results. In 

studies 1 and 2, disease and aging as well as age-related cognitive decline was related to alterations in 

different well-circumscribed functional brain systems.  

Meta-analytical networks, chosen in a hypothesis-driven manner based on previous literature on 

regional activation changes in the examined conditions, provide a functionally meaningful sparse 

feature space, as compared to the complexity and functional non-specificity of whole-brain imaging 

data. The applied approach contrasts with often-used feature selection methods, e.g., based on the 

importance of features for the classification task via t-tests or dimensionality reduction methods, such 

as principal component analyses. However, the results in the first case are often isolated connections 

representing the most discriminant features linked to the target phenotype and rarely form coherent 

functional brain systems, or in the latter case, show no obvious relation to the disease and 

developmental conditions (Khosla et al., 2019). Nevertheless, prediction accuracies of such studies are 

similarly good as in the thesis studies (Arbabshirani et al., 2017), however, resulted in a lack to connect 

findings with meaningful functionally defined networks.  

The classification and continuous prediction results of both studies likewise showed that a 

meaningfully reduced feature space could be utilized in combination with state-of-the-art ML to 

deliver differential effects within and between groups. Moreover, results yielded increased functional 

specificity of brain-behavior relationship with superior interpretability compared to ML studies on 

whole-brain data (Y. Chen et al., 2015; Tang et al., 2012) or RSN based on data-driven approaches (Cole 

et al., 2010; Poldrack, 2011). Therefore, the studies allowed the interpretation of the prediction 

accuracies based on well-defined functional systems in relation to behavior, brain disorders, and 

developmental states. Especially when the ML-based research is directed towards a better 

understanding of deviant conditions, it is crucial to also pay attention to the feature space and the 

associated interpretation possibilities. In comparison, in ML-studies for clinical application, researchers 

are more concerned with achieving the highest possible sensitivity and specificity in detecting a disease 

versus, e.g., no disease or predicting behavioral measures. Thus, it is not necessarily important which 

mechanisms are the underlying drivers and whether they produce interpretable neurobiological 
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findings (Bzdok & Ioannidis, 2019; Scheinost et al., 2019). Together, the studies showed that meta-

analytical networks as a priori feature selection is a powerful reduction approach for high-dimensional 

neuroimaging data to enable effective phenotypic classifications and predictions. Moreover, this 

feature selection offers increased interpretability at the level of well-defined functional brain 

networks. 

4.2.3 Resting-state fMRI and the Potential of Multi-modal Approaches 

Both studies used meta-analytical networks derived from task-based fMRI assessed via RSFC. To some 

extent, this approach linked different brain organizational principals measured via two modalities 

insofar that RSFC is assessed while at the same time the meta-analytical network configuration 

incorporates reliable knowledge about the localization of brain activity linked to specific mental 

processes. This combined setup allows speculating about the notion that altered RSFC pattern might 

also be associated with altered network recruitment during task-demands. Such a probable 

relationship, although not directly investigated, seems plausible given that this agrees well with 

previous task-based studies on diverse altered activation in functional network findings which both 

studies are based on.  

The prediction performance in both studies range between moderate (for some network-based 

classifications of SCZ and PD, as well as WMC predictions) to excellent (for a range of networks in 

young-old classifications). This can be considered as quite remarkable given that the predictions are 

based on only a single modality (i.e., FC at rest). Nevertheless, it is equally evident that an individual 

modality is likely insufficient to elucidate the whole complexity of brain-behavior relationships 

(Eickhoff & Grefkes, 2011). Therefore, one should not neglect the importance of leveraging different 

cross-information of brain structural and functional neuroimaging measures by using multi-modal 

approaches (including, e.g., gray-matter density and white-matter connectivity) to assess clinical and 

developmental conditions as well as cognitive performance (Sui et al., 2012; Y. Wang et al., 2013). Yet, 

studies demonstrated successfully that the ML approach is suitable to combine features of multiple 

imaging modalities, resulting in predictive capacities mostly exceeding those compared to a single 

modality (Meng et al., 2017; Sui et al., 2013; Y. Wang et al., 2013; Wee et al., 2012). Hence, a multi-

modal fusion of neuroimaging data for ML applications may provide additional valuable insights into 

brain-behavior relationships that are not attainable from only studying intrinsic connectivity. To apply 

a multi-modal approach for the two studies would have been an alternative. For instance, this could 

have resulted in increased sensitivity to more effectively discriminate disease-specific profiles of 

networks that yielded similar classification accuracy for SCZ and PD. To gain a potential enhanced 

distinction in disease profiles would indicate abnormalities only detectable in specific modalities other 
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than RSFC. Furthermore, the possibility of a more distinct classification pattern of different networks 

in NA as well as an association between networks and cognitive capacity, might be detectable from 

joint brain organizational information provided by multiple modalities. However, a multi-modal 

approach was not performed since the aim was to evaluate in an initial step whether ML can be applied 

to examine classical brain-behavior relationships. Nevertheless, future studies that address such 

questions from multi-modal ML-based predictions may add important knowledge. 

4.3 Insights into Disease and Developmental Conditions from Machine Learning 

Approaches 

With an as-yet unique methodological combination, both studies provided evidence for meaningful 

multivariate patterns within functional brain networks at rest related to disease-specific and 

developmental conditions as well as inter-individual differences in cognitive performance that enables 

the characterization at the level of individuals. The manifestation of disease characteristics in patterns 

of affected brain networks revealed a heterogeneous profile among and across clinical populations as 

indicated by the distinct classification performance of networks pertaining to functions known to be 

affected by SCZ and PD, respectively. In turn, age-related changes represented a more homogeneous 

profile across both studies as all networks are similarly accurate in distinguishing young from old 

adults. In line with this result, most networks are similarly predictive for inter-individual differences in 

older adults with low cognitive performance. ML approaches, in this regard, allow for obtaining 

knowledge on networks in their ability to characterize a mental condition and the reorganization 

processes of networks linked to declined cognitive performance. Hence, the novel neuro-functional 

insight gained is the degree of predictive power in functional networks that relate to differential 

neurobiological disturbances in the features of network connectivity of an individual compared to the 

classical discovery of affected single connectivities at the group level. 

Depicted in a lifespan perspective, considering the distinct disease onsets of SCZ (‘’early’’) and PD 

(‘’late’’) and both diseases opposing the normal course of aging, the classification study illustrates how 

network systems are differently affected across life, depending on these diseases and developmental 

conditions. The commonality of altered dopamine systems between the three conditions was mirrored 

in the networks that best classified either condition. In particular, networks that are substantially 

modulated via dopaminergic transmission, such as the reward (SCZ, NA) and the motor execution (PD) 

networks. Altered social-affective networks in SCZ suggest a relationship to dysfunctional 

developmental processes as empathy, emotion processing, and emotion regulation develop rather 

early in childhood and during adolescence (Decety, 2010; Herba et al., 2006; albeit the evolvement and 
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adaptations continues throughout life). The emotion regulation and its intersection with executive 

functions, on the other hand, may link to cognitive deficits due to accelerated neurodegeneration 

and/or aberrant neurodevelopmental processes of cognitive decline in SCZ (Duggirala et al., 2020; 

Perlman & Pelphrey, 2010; Pino et al., 2014). In contrast, for PD dysfunctional memory and 

social/higher-order cognition networks as well as the fact that networks are rather selectively affected, 

may indicate accelerated neurodegeneration in later stages of life (compared to SCZ and NA around a 

similar age range). This accelerated process seems to be primarily related to the deterioration of 

cognitive functions (Aarsland et al., 2017). In particular, dysfunctional theory-of-mind cognition has 

been linked to deficits in cognitive control in PD (Foley et al., 2019). For aging, the findings of both 

studies show a rather diffuse picture of deteriorations affecting a broader range of networks and 

associated mental functions to a similar degree and which are rather linked to reduced cognitive 

performance. This may reflect possible continuous alterations of global neural-level reorganization 

(compared to more selective accelerated network changes in PD) that manifests in the integrities of 

networks and a decrease of more general cognitive processes such as various executive functions and 

information processing (Brown et al., 2012; Guest et al., 2015; Salthouse et al., 2003). Ultimately, such 

alterations affect a wide range of behavior at the intersection with these cognitive processes, including 

lower- and higher-order cognition in NA (Diamond, 2013; Mutter et al., 2006; Salthouse, 1991, 1996; 

Unsworth et al., 2014). Overall, the application of ML in a comparative manner between SCZ, PD, and 

NA, revealed insights at the level of disturbed network patterns of individual subjects that link to 

shared neurobiological commonalities but also phenotypical differences of these conditions. 

Particularly, they link to commonalities in dopamine alterations and different neural-processes across 

the life span, such as neurodevelopment, accelerated and NA-related neurodegeneration. 

4.3.1 Schizophrenia and Parkinson’s Disease  

When comparing SCZ and PD, study 1 provided evidence for disease-specific disturbed RSFC patterns 

in task-unconstrained conditions within networks known for dysfunctional recruitment under task 

demands. The findings imply that based on easily accessible RS-fMRI scans of a single-subject, 

extracted FC provides a potential marker with discriminative qualities for different neurodegenerative 

and psychiatric disease conditions associated with disease-specific networks. Together with the 

advantages of RS-fMRI in clinical populations, the simplicity of acquisition (Fox & Greicius, 2010), 

several consensuses with insights from task-based fMRI (New et al., 2015; Schilbach et al., 2016; Smith 

et al., 2009) and ample information regarding individual clinical characteristics (Hou et al., 2016; W. H. 

Lee et al., 2018; Vaidya & Gordon, 2013), it might be argued that RS-fMRI serves as a pivotal source to 

elucidate clinical conditions. Thus, these findings support the notion that the acquisition of large 
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amounts of clinical data can be utilized to develop reliable and valid ML-based models as tools to serve 

a better understanding of these diseases and to aid in clinical routine. 

The demonstration that disease-related network patterns exist, indicating a deviant recruitment of 

respective neural-circuits, could offer a source to elucidate disease-pattern-mechanisms that manifest 

at the level of the holistic configuration within network systems. It would be obvious that diseases 

have specifically disturbed network patterns (even if the classification performance of a particular 

network is similar across diseases) that indicate, e.g., specific dysfunctional integrity or segregation 

within the network. However, the thesis results leave such questions unanswered as there are 

currently only limited suitable methods in connection with ML to detect and interpret such changes in 

more detail at the system network level (Holzinger et al., 2019; Kohoutová et al., 2020). Efforts to 

develop such methods could, though, offer insights into diseases at a novel functional level, i.e., about 

the specific mechanisms within the network pattern. Gaining such a functional understanding 

underlying the predictability of the ML models would provide knowledge on how the altered 

configuration pattern of the entire network operates. 

Although not further investigated within the scope of the thesis, it would be obvious to assume that 

well-classifying networks in SCZ and PD would also contain informative patterns that at least in part 

allow predicting behavioral measures linked to the disease conditions. Evidence for such brain-

behavior relationships stems from studies that demonstrated the prediction of schizophrenia-related 

positive, negative, and disorganization symptoms (W. H. Lee et al., 2018) as well as the prediction of 

clinical scores in PD (Hou et al., 2016) from FC at rest. Moreover, it has also been shown that network-

based RSFC exhibits changes already in the prodromal stages of SCZ and PD (Rolinski et al., 2016; H. 

Wang et al., 2016). Thus, RSFC may constitute a relevant marker for early detection of dysfunctions 

related to both disorders and may also serve as a target for early interventions. 

While these studies have been dedicated towards the achievement of reliable diagnostic and 

prognostic tools for the transition into clinical practice, the investigation of the predictive capacity in 

functional networks may aid to elucidate pathophysiological dysfunctions linked to clinically relevant 

behavior or early disease-related changes. To detect networks underlying such alterations with 

increased knowledge on the disturbed mechanistic of FC pattern may serve as targets for a different 

branch of personalized medicine that focus on therapeutic interventions. For instance, target networks 

for interventions such as neuromodulation, including neuropharmacology, transcranial magnetic 

stimulation, and neurofeedback to alter neural circuits and symptoms. (Ruiz et al., 2013; Yahata et al., 

2017; Yamada et al., 2017).  
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4.3.2 Normal Aging 

The studies presented in this thesis demonstrated that NA is linked to changes in neuro-behavioral 

patterns that allow the differentiation between young and older adults as well as the prediction of 

individual cognitive performance in advanced age based on diverse functional networks. Furthermore, 

these findings reveal that networks with high classification performance also contain behaviorally 

relevant information in advanced age. The similarity in which functional brain networks are informative 

is quite intriguing and reinforces the notion that aging affects a wide range of different brain systems 

that are also linked to inter-individual differences in cognitive performance. Together, the results 

suggest neural-level reorganization and underline the importance of RSFC as an age-related maker for 

cognitive deterioration. The improved understanding of neural-level RSFC reorganization lies in the 

level of RSFC in functional brain networks and the result of alterations across the variety of networks. 

These findings provide a neurobiological understanding that has not been covered yet with univariate 

or ML approaches. Since in previous studies on whole-brain FC or RSN alteration, findings are based 

on single or only a few networks examined simultaneously (Jockwitz et al., 2017; La Corte et al., 2016; 

Meier et al., 2012; Vergun et al., 2013).  

Although the present approach provides novel insights into age-related reorganization of functional 

brain networks from a multivariate and individual subject perspective, several limitations certainly 

need to be addressed. The underlying mechanisms of brain-behavior relationships require further 

investigation, given the overall predictability of functional brain networks associated with advanced 

age. While the current findings agree well with a neuro-functional reorganization of various networks 

that has been proposed in the aging literature (Chan et al., 2014b; Goh, 2011; Meier et al., 2012; Sala-

Llonch et al., 2015), it cannot be excluded that other age-related processes are ultimately influencing 

all networks and behavior. Factors of neural origin other than FC and/or non-neural origin, as outlined 

in the discussion of each study, may have influenced the finding. Hence, a more precise interpretation 

of age-related connectivity changes and reorganizational processes might only be stated once these 

have been contrasted simultaneously with other structural and functional brain organizational 

measures (Fjell & Walhovd, 2010; Hedden, 2007). Additionally, in the same study, physiological 

changes linked to aging need to be measured separately and disentangled from neural signals 

(D’Esposito et al., 2003; West et al., 2019; Wright & Wise, 2018). 

Additionally, it needs to be acknowledged that meta-analytical networks are derived from imaging 

studies based on young adult samples. Therefore, it cannot be excluded that networks defined via 

advanced age samples would potentially include additional regions implicated in dedifferentiated or 

compensatory neural processes (i.e., incorporating altered network configurations linked to 
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reorganizational processes), and hence, may result in different brain-behavior associations (Burianová 

et al., 2013).  

Moreover, for a more detailed understanding of the particular reorganizational mechanisms 

(dedifferentiation or compensation) underlying better or worse performance in older adults, brain-

phenotype relationships need to be further disentangled. For instance, by juxtaposing the 

predictability in cohorts with maintained and deteriorated cognitive performance ideally across 

various scores of cognitive functions and brain networks. 

Furthermore, the network-phenotype associations driving the classifications and performance 

prediction did not provide details on the age-related alterations within the connectivity patterns of 

networks. Although the application of RVM allows the assessment of frequently used connections, no 

direct inference can be drawn about the nature of the change. Post-hoc statistics can be applied to 

reveal significant age-related decrease or increase in connectivity of relevant connections based on 

the input RSFC matrices. However, it is ultimately the overall pattern of connectivity in their interaction 

that allowed the performance predictions. As discussed in the SCZ and PD insights section, currently, 

details on the altered configuration pattern at a functional level, i.e., how the altered configuration 

pattern of the entire network operates, are insufficiently assessable. 

Even though the thesis addressed classical questions of brain-behavior relationships with pattern-

based predictive modeling, the results may provide valuable information for diagnostic utility in clinical 

routine. By demonstrating the importance of FC as an age-related marker for cognitive deterioration 

at the individual level, subtle alterations in FC in very early stages of progressive neurodegeneration 

might also be detectable and linked to deficient cognitive performance (Badhwar et al., 2017). ML 

algorithms may identify such subtle abnormalities in FC and could aid in the early detection of 

degenerative processes. The early identification of such conditions would be an essential step forward 

and would offer the possibility for prompt interventions before a potential manifestation of a 

neurodegenerative disorder. Indeed, some successful studies revealed that cognitive impairment 

related to Alzheimer's disease (AD) could be predicted from FC on an individual level in a 

heterogeneous sample including NA, MCI and AD participants (Q. Lin et al., 2018) as well as long-term 

memory impairment in patients with MCI (Meskaldji et al., 2016). While evidence also indicate a 

combination of modalities to establish predictive markers (Daoqiang Zhang et al., 2012), by further 

developing predictive models based on well-circumscribed networks connectivity may in parallel offer 

a target for therapeutic interventions to modulate different FC measures and cognitive performance 

(Cao et al., 2016; Deng et al., 2019).  
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Especially changes on the network level seem to be reliable markers for NA as well as aging-related 

diseases (Cha et al., 2013; Chan et al., 2014b; Gomez-Ramirez & Wu, 2014). The usefulness of a 

network approach has already been demonstrated for the classification of MCI/AD patients (Koch et 

al., 2012). Therefore, characterizing various connectivity profiles of brain networks, ranging from NA 

to various pathological aging conditions and to also link these to cognitive performance, could serve 

as a crucial step towards diagnostic and prognostic applications (Hojjati et al., 2017, 2019; L. Lin et al., 

2018). This profile approach may lead to detect subtle neural changes already in advanced age 

individuals linked to a high-risk for pathological aging via a neuroimaging scan by predicting risky 

cognitive scores and classification labels. Such predictive tools could aid clinical practice enormously 

by being potentially advantageous in elderly populations over standardized assessments of cognitive 

functioning that can be challenging and time-consuming, which however, are the current approach to 

examine cognitive deficits (Q. Lin et al., 2018). Thereby, the preliminary studies that link FC with aging 

and cognition, as well as the thesis findings, provide promising evidence that FC derived from a RS-

fMRI scan can contribute to the development of reliable markers for cognitive decline in healthy aging 

and a potential transition into pathological conditions such as MCI or AD. 

4.4 Methodological Considerations and Outlook 

4.4.1 Current Status of Neuroimaging-based Personalized Medicine 

Since the thesis results have been reiteratively discussed in terms of personalized medicine, the 

current state of clinical utility is outlined in the following section. While automated tools for diagnostic 

and prognostic purposes are eagerly awaited and constitute an intensively investigated topic of current 

research, it must also be noted that its current utility in clinical routine is still immature. Although the 

accuracies reported in previous studies seem good for clinical applications at first glance, e.g., for the 

diagnosis of SCZ (vs. HC) and prognosis of illness course being partly over 80% (Arbabshirani et al., 

2013, 2017; Janssen et al., 2018; Rashid & Calhoun, 2020), the majority of studies were based on small 

samples, biased CV schemes and rare validation on independent test samples. These settings have 

raised concerns on the validity as such methodological choices may have led to systematic 

overestimations (Cearns et al., 2019). For the acceptance of, e.g., the clinical application of brain 

imaging in psychiatry for clinical diagnoses and for aiding in treatment decisions, First et al. (2018) 

postulate biomarkers with a sensitivity of at least 80 % for detecting a particular psychiatric disease 

and a specificity of at least 80% for distinguishing this disease from healthy controls other psychiatric 

disorders. Further, the marker needs to be reliable, reproducible and validated in at least two 

independent study samples by at least two independent investigators. Although, first promising 



GENERAL DISCUSSION 

 
104 

 

studies emerged (Kalmady et al., 2019; Koutsouleris et al., 2018), it has also been shown that across-

sample or true hold-out predictions usually achieve worse results (Woo et al., 2017). In this context, it 

should also be mentioned once again that, in theory, although we did not attempt clinical utility but 

to attain neurobiological insight, our classifications with sensitivities and specificities of around > 70 % 

would not have been sufficient for reliable applications. Furthermore, the classification models would 

have needed to be tested for their generalizability in independent larger samples. In conclusion, at the 

present stage, the applications in clinical practice that use neuroimaging markers for automated 

decision-making in psychiatry and neurology are still futuristic visions in this field (First et al., 2018). 

This excludes amyloid positron emission tomography scans which aid in decisions to exclude the 

diagnosis of AD. 

4.4.2 Meta-analytical Networks and Individual Definition of Network Nodes 

Although meta-analytically derived networks are not individual-specific, their use as the base for 

individual differences approaches offers the advantage that these networks represent a reliable and 

robust convergence of a region across a vast majority of subjects. Hence, there is a high likelihood that 

the macro-/micro-anatomical reference for a given network of a single subject is being located in 

alignment with the meta-network. Likewise, it can be assumed that individual differences in 

phenotypes are linked with the meta-networks as these have been aggregated on different individuals 

who vary in the target behavior. Therefore, networks should also carry information that allows 

predictions on a single-subject level to a substantial degree as mirrored in the thesis study results. 

Although this individual variance stems from young participants in the meta-analyses networks that 

were utilized here, variation due to disease and aging conditions have been found to be based on 

deviation within the networks associated with HC (Minzenberg et al., 2009; New et al., 2015; Roski et 

al., 2013; Schilbach et al., 2016; Yaple et al., 2019). Together, this demonstrates the relevance of meta-

analysis networks for individual differences approaches such as ML-based predictions. Recently, it has 

been found based on resting-state measures that functional brain networks can vary substantially at 

given cortical locations across individuals as well as between an individual and the group-average 

(Gordon, Laumann, Adeyemo, & Petersen, 2017; Laumann et al., 2015). Even variations occur to the 

extent to which individual differences occur in the system membership of cortical regions (Gordon, 

Laumann, Adeyemo, Gilmore, et al., 2017). Furthermore, brain-behavior relationships are higher when 

networks are individualized than based on the group-average (Kong et al., 2019). Likewise, single brain 

regions vary essentially in their stereotactic location, subdivision position, as well as distribution and 

magnitude of FC across the cerebral cortex from individual-to-individual (Sylvester et al., 2020). Hence, 

future ML-based prediction studies may benefit from combining both approaches by leveraging the 
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advantages of meta-analyses and individualized approaches to define individualized functional 

networks that are still converging with the knowledge gained from meta-analyses. 

4.4.3 The Importance of Various Connectivity Measures 

Only connection strength was examined in the studies reported in this thesis. It should be noted that 

there is an array of other connectivity analyses possible, which provide other important connectivity 

measures to gain a more holistic insight into the brain architecture at rest. Examples are the fractional 

amplitude of low-frequency fluctuations, which reflect the ratio of low-frequency power to that of the 

entire frequency range within individual regions spontaneous brain activity (Zou et al., 2008); the 

regional homogeneity, which represents FC at a local-level between nearest surrounding voxels (Zang 

et al., 2004); and graph theory analysis. The latter quantifies the topology of networks into different 

local and global properties, often after binarizing the FCs of networks (Bullmore & Sporns, 2009). 

Common units include small worldness, a network organization in which nodes exhibit dense short-

range connection with only a few long-range connections, or hubs, nodes that are densely connected 

to other nodes and play a crucial role in the degree of efficiency of a network (van den Heuvel & 

Hulshoff Pol, 2010). It has been found that small worldness is altered in SCZ patients (Q. Yu et al., 2011) 

and that specific hub nodes are differently expressed in HC, MCI and AD that may relate to 

compensatory effects (Khazaee et al., 2017). Moreover, the aging brain shows deterioration in local 

efficiency in motor-sensory RSN that can be linked to cognitive performance (Varangis et al., 2019). 

These studies indicate the important role of other FC properties in disease and aging conditions. 

Accordingly, it would be interesting if future studies use multiple connectivity measures to investigate 

the predictive accuracy of diseases or healthy and pathological aging or behavioral measures, e.g., in 

terms of multi-RS measures of functional networks as input features for ML algorithms.  

4.4.4 The Impact of the Length of RS-fMRI Scans on Capturing Inter-individual Differences 

Furthermore, the question arises to what extent a scan length of 5 - 11 minutes as used here is 

sufficient to reliably detect inter-individual differences related to diseases, developmental stages, or 

cognitive abilities. It has previously been shown that stable intra-individual FC estimates are achieved 

with a scan duration of only 5 minutes (Van Dijk et al., 2009) but that reliability is strongly improved if 

the duration is increased from 5 to up to 13 minutes (Birn et al., 2013). In addition, it was also found 

that a scan length of 3-4 minutes was sufficient to differentiate subjects from each other, i.e., to detect 

inter-individual differences (Airan et al., 2016). These results indicate that our scan length (i.e., 5 - 11 

min) should provide intra-individual reliability as well as capture inter-individual differences of RSFC. 

However, further investigations are needed to clarify whether longer scanning time may more reliably 
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detect differences, which are primarily linked to clinical and age-related differences that go beyond 

the ''normal'' inter-individual differences that occur from subject-to-subject detectable at shorter scan 

duration (Shah et al., 2016). Such investigations could be of particular importance when classifying 

single-subjects with neurodegenerative, psychiatric, or developmental conditions or predicting 

behavioral measures. Longer scans may enhance the detection of systematic FC characteristics 

associated with clinical or age-related inter-individual differences at a single-subject level. In line with 

this notion, a study has shown superior predictability of individual cognitive performance levels from 

connectivity profiles based on approx. one hour of RS-fMRI measurement (Finn et al., 2015). 

The aforementioned studies and this thesis have investigated static measures of RSFC, which represent 

the average RSFC over the RS scan duration. The dynamics of within-network RSFC (i.e., changes in 

RSFC over the scan duration; Preti et al., 2017), were not considered here. Recently, however, it has 

been demonstrated that dynamic FC captures more behavioral variance and specifically encodes task-

based measures such as WM performance (Liégeois et al., 2019). Moreover, in SCZ, dynamic FC was 

shown to be associated with the inner dynamics of thought disruption, a core feature of the 

disease (Du et al., 2016). Hence, examining the dynamic properties of RSFC may capture pivotal 

information on disease- or performance-related inter-individual differences, which may not be 

attainable via static measures of RSFC. 

Future research should address the influence of scan duration on predictions at the single-subject level 

in ML studies. This scan setting may need to be addressed differently than in previous studies that 

focus on assumptions for univariate analyses that aim to identify group differences. The examination 

of dynamic FC may explain important additional phenotypical variance that could be utilized to boost 

single-subject predictions. 
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5 SCENARIO OF INDIVIDUALIZED NETWORK-BASED THERAPEUTIC INTERVENTIONS  

Previous ML-based studies aimed at extracting disease-related structural and functional neural 

markers to achieve the best possible classification performance or prognosis of illness course and 

treatment response. In contrast, the gain of neuro-functional insight into pathological and 

developmental profiles of disturbed networks may pave the way to a treatment-decision tool. Such a 

tool could provide individual-centered advice for cognitive and behavioral training/therapy or 

neurofeedback training in the sense of individualized network-based therapeutic interventions. This 

approach requires the combination of elucidating disease mechanisms based on functional networks 

that, in parallel, offer a personalized neural network-based therapeutic target based on the neural 

foundation of a psychiatric or neurodegenerative condition (Yamada et al., 2017). For example, fMRI-

brain-computer interface approaches such as fMRI-neurofeedback have successfully been applied to 

directly modulate altered brain network connectivity with training, resulting in measurable behavioral 

modifications in SCZ (Ruiz et al., 2013) and PD patients (Subramanian et al., 2016). Accordingly, one 

aim might rather be to find theranostic markers, i.e., network makers that aid beyond the diagnosis of 

patients and predicting disease progression by also being relevant as therapeutic targets (Duda & 

Sweet, 2019; Gomez-Ramirez & Wu, 2014; Yamada et al., 2017). This may constitute a potentially 

different branch towards personalized medicine in everyday clinical practice. 

Considering the preliminary thesis results, the ability to extract specific reliable and valid network 

profiles for different psychiatric, neurodegenerative, and developmental conditions on a single-subject 

level is possible. Additionally, presuming that such networks profiles can be replicated through 

investigations in larger samples and across different sites on validation samples. Some approaches 

from the Methodological Consideration and Outlook section might be useful to achieve extreme 

individualized and phenotype-specific network profiles. This could lead to potential characteristic 

network-disease ‘’fingerprints’’ (see Figure 3A), i.e., a specific profile of various predictive and non-

predictive functional networks for a given disease compared to various other diseases as well as for 

disease subtypes and developmental stages. These network-disease ‘’fingerprints’’, in turn, may 

constitute functionally specific targets for treatment options based on the affected brain systems and 

their relation to behavior as already known from clinical and developmental conditions (theranostic 

markers, Figure 3B). Behavioral and/or symptom score predictions from these networks and clinical 

consultation may reveal superior specificity in such network-disease ‘’fingerprints’’ and improve the 

individualization of treatment decisions. Such individualized network-based interventions may also 
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reveal profiles in clinical cases not obviously categorizable or risk cases in potential transition periods 

such as ultra-high-risk psychosis or MCI patients.  

 

 

Figure 3:Scenario-Flow of Individualized Network-based Therapeutic Interventions 

A) After extracting the different information from networks related to different diseases, disease subtypes, and 

neurodevelopmental stages using ML methods. B) Based on neuroimaging scans, single-subject classifications using models 

trained on these different conditions may yield an individual-specific profile of network-disease/developmental condition 

labels upon which therapeutic recommendations can be given. For example, different networks may be labeled with normal 

aging, Parkinson’s disease, and schizophrenia and could potentially lead to following recommendations, 1) Non-pathological 

alteration in cognitive networks as known from normal aging might be treatable or decreased in their progression with 

cognitive trainings targeting these specific functions/networks. 2) Aberrant motor systems as known from, e.g., movement 

disorders such as Parkinson’s disease that could potentially be modified with fMRI-based neurofeedback motor training. 3) 

Alterations in social-affective networks as known from psychotic disorders, might improve with, e.g., training/psychotherapy 

targeting these functions/networks. 

Certainly, the scenario is very optimistic and futuristic as the scientific basis is insufficiently anchored 

in the results of the thesis and the existing literature. Furthermore, it requires discussions on the 

ethical implications (Eickhoff & Langner, 2019). Nevertheless, such a scenario is not unlikely given the 

possibilities and developments in artificial intelligence and the efforts in the field of personalized 

medicine.
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6 CONCLUSION 

The thesis aimed to investigate the potential of RSFC patterns in a variety of functional networks to 

distinguish SCZ and PD patients from HCs as well as old from young adults. Moreover, it examined 

whether and to what degree the RSFC pattern of functional networks predict individual cognitive 

performance in young and old adults.  

By using ML-based single-subject predictions, the thesis has shown that the RSFC patterns in various 

functional brain networks of an individual differently predicted SCZ and PD, based on networks that 

resonate well with known clinical and pathophysiological features. Most discriminating for SCZ were 

the reward processing and social-affective networks, whereas for PD, networks subserving memory, 

motor execution, and higher-order cognition, showed the highest accuracies. In contrast, the young-

old classification was highly accurate for all networks. Additionally, diverse networks including both 

those that are related and unrelated to WM, predicted inter-individual differences in WMC differently 

in older adults. These studies suggest resting-state connectivity as a marker of functional network 

dysregulation in SCZ and PD as well as neural-level reorganization associated with altered network 

integrity in advanced age in a more global way. Together, the results improve the neurobiological 

understanding of SCZ, PD, and NA that is grounded in the pattern of functional networks RSFC on a 

single-subject level, which extends the results of previous univariate approaches. Moreover, these 

findings suggest that ML approaches can serve as powerful tools for the investigation of questions on 

brain-behavior relationships that have been so far investigated using more classical approaches. 

Although the use of functional networks offers functional specificity in the interpretation of results, 

the underlying mechanisms of aberrant network patterns driving the predictions in SCZ, PD, and 

advanced age cannot be elucidated in detail in this approach. Moreover, the contributions of neural 

and non-neural effects to the findings in older adults need further investigation in future studies. Based 

on the methodological considerations, further research is also needed to determine the effects of 

multi-modal/ multi-RS measures, including static and dynamic FC, individual network node selection, 

and scan duration on prediction performance within and across disease and developmental conditions.  

While single-subject based predictions for disease diagnosis and prognosis of illness course and 

treatment response for the application in clinical routine is on the way to mature, the present findings 

may point to the potential of theranostic markers for personalized medicine. The investigation of 

theranostic markers may lead to a different branch of personalized medicine that aims at individualized 

network-based therapeutic interventions. 
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