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Abstract

The investigation of transport phenomena in crowded active matter is of substantial interest to

obtain a fundamental understanding of many biophysical processes, such as the dynamics of cells

and the associated mechanisms of morphogenesis. Despite their great relevance, the underlying

physical principles are insufficiently understood in lack of appropriate theories for dense systems

far from equilibrium. One out of the few theoretical approaches that are capable to address

the regime of high densities under non-equilibrium conditions is given by a recent formulation

of the mode-coupling theory of the glass transition to describe the collective dynamics of active

Brownian particles. By suitably extending this mode-coupling approach, this work aims to

investigate non-equilibrium transport coefficients in dense suspensions of active particles in two

dimensions.

Starting from a microscopic description, the central quantity of this work is given by the tran-

sient correlation function of two angle-resolved microscopic densities in mixtures of active and

passive particles, the approximation of which within the framework of the mode-coupling theory

constitutes the first goal. Based on the resulting equations, further mode-coupling approaches

are derived to predict the transient dynamics and the mean-squared displacement of active

or passive tagged particles in both active and passive dense host environments. Moreover,

the mode-coupling approximated dynamical correlation functions are exploited to approximate

Green-Kubo-type expressions for further transport coefficients such as the viscosity and the ef-

fective swimming velocity that can be derived within the framework of the integration-through-

transients formalism.

A central constituent of the present work comprises a test of the mode-coupling theory for active

Brownian particles against results from a simulation of event-driven active Brownian hard-disks.

Both methods deliver largely qualitative, and in some cases near quantitatively consistent results.

This provides an important contribution to assess the applicability of the theory and the general

quality of its used approximations. Moreover, the use of two independent methods leads to a

deeper understanding of the universal properties of active transport at high densities that have

been barely addressed so far. A governing principle arises in the presence of competing length

scales, represented by the cageing length of volume exclusion and the persistence length of active

locomotion. This principle has played a subordinate role for most previous approaches for model

systems of active particles, which mainly referred to diluted systems or systems of moderate

densities, but is of decisive importance at high densities.

The methods of this work are further employed to assess current experimental results from

a setup with diffusiophoretic active Janus particle in a binary colloidal mixture close to the

glass transition point. In a final part of this work, mixing effects in monodisperse systems of

active and passive particles are discussed with respect to the influences of the composition and

the strength of the activity of the components on the dynamics and the glass transition. The

results reveal the possibility to influence the viscosity of samples by targeted doping with active

particles.
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Kurzzusammenfassung

Die Untersuchung von Transportphänomenen in dicht gefüllter aktiver Materie ist von erheb-

lichem Interesse, um ein grundlegendes Verständnis vieler biophysikalischer Prozesse zu erhal-

ten, wie beispielsweise der Dynamik von Zellen und den damit verbundenen Mechanismen der

Morphogenese. Trotz ihrer großen Relevanz sind die zugrundeliegenden physikalischen Prin-

zipien unzureichend verstanden, da es an geeigneten Theorien für Systeme bei hohen Dich-

ten fernab des Gleichgewichts mangelt. Einer der wenigen theoretischen Ansätze, die in der

Lage sind, den Bereich hoher Dichten unter Nichtgleichgewichtsbedingungen zu beschreiben,

ist eine kürzlich entwickelte Formulierung der Modenkopplungstheorie des Glasübergangs zur

Beschreibung der kollektiven Dynamik aktiver Brownscher Teilchen. Durch eine geeignete Er-

weiterung dieses Modenkopplungsansatzes zielt diese Arbeit darauf ab, Nichtgleichgewichts-

Transportkoeffizienten in dichten Suspensionen aktiver Teilchen in zwei Dimensionen zu un-

tersuchen.

Ausgehend von einer mikroskopischen Beschreibung ist die zentrale Größe dieser Arbeit durch die

transiente Korrelationsfunktion zweier winkelaufgelöster mikroskopischer Dichten in Mischungen

aktiver und passiver Teilchen gegeben, deren Approximation im Rahmen der Modenkopplungs-

theorie das erste Ziel darstellt. Basierend auf den resultierenden Gleichungen werden weitere

Modenkopplungsansätze zur Vorhersage der transienten Dynamik und der mittleren quadrati-

schen Verschiebung aktiver oder passiver Tracerteilchen sowohl in aktiven als auch in passiven

dichten Umgebungen hergeleitet. Darüber hinaus werden die mit der Modenkopplungstheorie

genäherten dynamischen Korrelationsfunktionen zur Approximation von Green-Kubo-artigen

Ausdrücken weiterer Transportkoeffizienten, wie der Viskosität und der effektive Schwimmge-

schwindigkeit, welche sich im Rahmen des „integration-through-transients“ Formalismus herlei-

ten lassen, ausgenutzt.

Ein zentraler Bestandteil der vorliegenden Arbeit ist ein Test der Modenkopplungstheorie für

aktive Brownsche Teilchen gegenüber Ergebnissen aus einer eventgetriebenen Simulation aktiver

Brownscher Scheiben. Die Ergebnisse beider Methoden zeigen weitgehend qualitative, und in

einigen Fällen nahezu quantitativ konsistente Ergebnisse. Dies liefert einen wichtigen Beitrag

zur Beurteilung der Anwendbarkeit der Theorie und der allgemeinen Qualität der verwendeten

Näherungen. Darüber hinaus führt die Verwendung zweier unabhängigen Methoden zu einem

tieferen Verständnis der universellen Eigenschaften des aktiven Transports bei hohen Dichten,

die bisher kaum untersucht wurden. Ein grundlegendes Prinzip ergibt sich hierbei aus dem

Vorliegen konkurrierender Längenskalen, die durch die Käfiglänge des Volumenausschlusses und

die Persistenzlänge der aktiven Fortbewegung gegeben sind. Dieses Prinzip hat bei den meisten

bisherigen Ansätzen für Modellsysteme aktiver Teilchen eine untergeordnete Rolle gespielt, da

diese sich hauptsächlich auf verdünnte Systeme oder Systeme mittlerer Dichten bezogen, ist aber

bei hohen Dichten von entscheidender Bedeutung.

Die Methoden dieser Arbeit werden weiterhin eingesetzt, um aktuelle experimentelle Ergeb-

nisse aus einem Aufbau mit diffusiophoretischen aktiven Janus-Teilchen in einer binären kol-

loidalen Mischung nahe dem Glasübergangspunkt zu bewerten. In einem letzten Teil dieser

Arbeit werden Mischeffekte in monodispersen Systemen aus aktiven und passiven Teilchen im

Hinblick auf die Einflüsse der Zusammensetzung und der Stärke der Aktivität der Komponen-

ten auf die Dynamik und den Glasübergang diskutiert. Die Ergebnisse weisen die Möglich-

keit auf, die Viskosität von Proben durch Dotierung mit aktiven Teilchen gezielt zu beeinflus-

sen.
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1. Introduction

Today’s studies estimate the number of microbial species on earth to be about one trillion, of
which only a very tiny fraction have been discovered at all [1]. Arguably, one of the key achieve-
ments that have contributed to the development of such rich biodiversity is the fact that first
microorganisms were able to develop forms of directional locomotion, sophisticated navigation
strategies and organize themselves collectively into swarms. These processes greatly enhanced
their survival and replication capabilities and can be regarded as game-changers in the devel-
opment of complex life and evolution. Conceptually, such microorganisms fall into the general
class of so-called active matter, which refers to (not necessarily living) systems that dissipate
energy to perform complex tasks. The research on active matter constitutes a fascinating field
which has received increasing interest in recent year and has created a growing interdisciplinary
research community with many bridges between various scientific disciplines such as biology,
engineering, chemistry, medicine, biophysics, and others.

With regards to microscopic scales, the investigation of active matter has, in particular, experi-
enced keen interest in the research of living or artificial systems, that exploit a self-propulsion
mechanism to move through a liquid, so-called microswimmers [2]. These usually evolve in the
hydrodynamic regime of low Reynolds numbers, where viscous forces are predominant over in-
ertia. For such systems, the underlying physical laws of the swimming behaviour are governed
by the Stokes equation, which implies the celebrated Scallop Theorem [3,4]. It states that an ef-
fective swimming motion is only achieved for such mechanisms, which are distinguishable under
time reversal. Microswimmers like bacteria, algae or sperm achieve motility by breaking this
time reversibility through non-reciprocal flagellated motion [5, 6], mostly associated with pur-
poseful exploitations of the hydrodynamic interactions with their environment that is mediated
by the surrounding fluid [7–9].

Inspired by the research on microswimmers in recent decades, it has been achieved with great
success to craft micron-sized objects which exploit artificially stimulated swimming mechanisms
by dissipating externally supplied energy, e.g. in form of heat absorption through laser light or
by the consumption of "fuel" provided by the surrounding medium. The most common examples
include diffusiophoretic colloidal Janus particles in a water-lutidine mixture [10], chemically ac-
tive particles [11,12], thermophoretic swimmers [13] or magnetically active particles [14] among
many others [15]. Artificial systems of microswimmers make it feasible to externally control the
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1. Introduction

self-propulsion mechanism which makes them greatly advantageous for experimental investiga-
tions of active particles. Moreover, the design of artificial microswimmers can be inspired by
their natural counterparts. Chlamydomonas algae couple their swimming behaviour to lighting
conditions to optimize photosynthesis [16] and a similar mechanism is found for sperms that
reach the egg cell by adapting their swimming behaviour to follow messenger elements [17].
Such guided motions towards chemical gradients (chemotaxis [18]), light (phototaxis [19]), or
gravitational fields (gravitaxis [20]) are only a few examples which emphasize the rich phe-
nomenology of active transport. Studying and adapting such strategies to artificially designed
microswimmers provides novel access to optimize transport strategies in complex environments
with a vast application spectrum in biology or medicine: Today, micro-robotic devices are al-
ready being designed to perform complex tasks such as drug delivery [21] or artificial fertiliza-
tion [22].

From the point of view of theoretical physics active particles represent ideal showcases of systems
that are intrinsically out of equilibrium. The implying non-equilibrium features (like the lack of
detailed balance) interplay with novel types of interactions. This has revealed anomalous phe-
nomena and intriguing collective behaviours in active particle systems that would have been im-
possible for systems in thermodynamic equilibrium. Examples include the clustering behaviour
of purely repulsively interacting self-propelled particles at intermediate densities, referred to as
motility-induced phase separation (MIPS) [23–27] or the presence of active pressures in systems
of active anisotropic particles that lack an equation of state and depend on the microscopic
details of the interaction with the container [27,28]. Studying such phenomena on a theoretical
level requires the adoption of coarse-grained models that greatly reduce the enormous number
of degrees of freedom that are present in many-body systems of active particles. Simultaneously
these models must include the paradigmatic features of persistent locomotion and the interac-
tions both between particles and the solvent. A fundamental model that is capable to do so is
that of the active Brownian particle (ABP), which combines the features of translational and
rotational Brownian motion with a body-fixed self-propulsion force (but neglects hydrodynamic
interactions). The ABP model can additionally be supplemented with two-body-type interac-
tions such as a hard-core potential, but also by phenomenologically inspired many-particle-types
of interactions that describe aligning effects [29] or quorum sensing [30]. Even such minimalistic
models are capable to reproduce generic features of active particles seen in in experiments, which
is why the ABP model has become popular to theoretically investigate active matter in recent
years.

Although the ABP model has been extensively studied on the single-particle level as well in
the regime of low and moderate densities, theoretical approaches and investigations that ad-
dress the regime of high densities are still rare. Filling this gap is most desirable to obtain
a better fundamental understanding of the physical mechanisms that are present in crowded
active matter and that are highly relevant for many biological systems, be it the dynamics of
the cytoskeleton or that of cell migration, whose understanding is of great importance in the
context of morphogenesis, including the underlying mechanisms of tumour development. [31–36].
These examples of crowded active matter have in common to reveal signs of dynamical arrest
which means that they have relaxation times that can exceed typical microscopical time scales
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by several orders of magnitude. This is similarly known for glass-forming systems that appear
both on atomistic scales in the context of supercooled liquids as well as on micron scales in dense
colloidal suspensions.

A well-established theoretical approach that is capable to make predictions for the slow dynamics
associated with the glass formation is the mode-coupling theory of the glass transition (MCT)
[37]. MCT predicts an idealized fluid-glass transition singularity point from the equilibrium
static structure factor and has been successfully applied in various contexts, including colloidal
mixtures [38], granular matter [39], particles in porous media [40], confined fluids [41] or colloids
in external flows [42]. The underlying physical principle that describes the glass formation can
be understood in a simple picture of particle cages that form at high densities and are also
present in dense active particle systems. This has established the concept of active glasses
[43] and has encouraged to develop different mode-coupling approaches for model systems of
active particles [44–47]. These theories have provided a better understanding of the interplay of
dynamical arrest and activity and have revealed that glasses are indeed sustainable under active
forces that act on the individual particle level. This was debated in the first place because
colloids which are collectively driven by external flows are known not to be able to form glasses,
as any arbitrary small global stress contribution is able to break the cage structure in finite
time.

The following work focuses on the MCT approach developed by Liluashvili et al. [47] to de-
scribe dynamical density correlation functions of hard-core repulsive spherical ABPs in 2D at
high densities (ABP-MCT in the following), which has been successfully applied to predict
the shift of the glass transition point to higher densities that is associated with an activity.
Still, there remain further promising application fields of the theory: It is a major strength
of MCT, that it bases on a microscopic description of the system, thus it provides access to
describe microscopic phenomena, such as the self-diffusion of tracer particles. On the other
hand, the so-called integration-through-transients (ITT) formalism [48] constitutes the theo-
retical framework to relate the microscopic transient dynamics predicted by the ABP-MCT to
non-equilibrium transport coefficients by applying a projection operator technique that allows
deriving MCT-approximated Green-Kubo-type expressions. Therewith the first goal of this work
is described, that is to provide the theoretical framework to describe non-equilibrium transport
phenomena in crowded active particle suspensions within the ABP-MCT. To do so, this work
will restrict to a 2D model of ABPs, which allows to considerably simplify the calculations while
still preserving the qualitative outcomes of a 3D model, since the predictions of MCT are known
to be insensitive on the spacial dimension. Besides that, many experimental studies of active
particles, including those referred to in this work, refer to systems whose motion is limited in
one dimension, e.g. caused by sedimentation or by the dimensions of the sample cell, and can
therefore be considered as quasi-2D.

With respect to the classical MCT for non-active particles, a large number of contributions
exist which confirm its (semi-)quantitative predictive power both in form of comparisons with
simulations [49–52] and experiments [53–55]. So far, it it unknown if this predictability similarly
holds for the ABP-MCT since the correlation functions it provides are of transient-type. This
means that they describe the quenched dynamics from an equilibrated state after switching on
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1. Introduction

activity, that is obtained by performing statistical averages taken in the equilibrium ensemble
while evolving with the full non-equilibrium dynamics. Most simulations or experiments of active
particles, however, relate to steady-state-type statistics that are far easier to sample and it is
not clear if there arise strong qualitative towards a transient-type of statistics. This constitutes
a further main objective of this work to test the ABP-MCT predictions in terms of an in-
depth comparative study with the results from an event-driven simulation of active Brownian
hard-disks. Moreover, this allows exploring the characteristic properties of active transport
phenomena at high densities by two independent methods.

The present work consists of seven chapters whose outline is given as follows. Chapter 2 presents
the model system of ABPs and introduces further required theoretical concepts from statistical
physics, including that of transient correlation functions that form the cornerstone of the ABP-
MCT. Chapter 3 starts with a phenomenological description of the glass transition and summa-
rizes the achievements of previous MCTs. Subsequently, a special perspective on approaches for
systems far from equilibrium will be given and the major result of the ABP-MCT so far will be
summarized. This will be followed by a generalization of the ABP-MCT to arbitrary mixtures of
active and passive particles. The resulting equations are further exploited to describe the tagged
particle motions of active and passive particles in both active and passive crowded environments.
The resulting mode-coupling equations are subsequently analyzed in the hydrodynamic limit to
obtain an equation of motion for the mean-squared displacement (MSD). The ABP-MCT ap-
proximated correlation functions are further employed for the calculation of the shear viscosity
and the effective swimming velocity. Chapter 4 will introduce the methodology of an event-
driven simulation of active Brownian hard-disks and the simulation results will subsequently be
compared with the predictions from the ABP-MCT for the self-intermediate scattering function
and further transport coefficients of active and passive tracer particles both in active and passive
environments. Chapter 5 will refer to some recent experimental results of active Janus particles
in passive colloidal suspension close to dynamical arrest. In chapter 6 the predictions of the
ABP-MCT are discussed with respect to the composition change in monodisperse mixtures of
active and passive particles. Finally chapter 7 summarizes the major achievements of this work
and points out further perspectives of the theory.
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2. Active Brownian Particles

2.1 Model Description

Active Brownian particles (ABPs) provide a fundamental description of persistent locomotion
motion under the neglection of hydrodynamic interactions. Besides undergoing overdamped
Brownian diffusion described by the translational diffusion coefficient Dt, ABPs experience a
constant self-propulsion force that translates into a constant self-propulsion velocity v0 along
a body-fixed orientation vector þoi(θi). This vector underlies diffusive rotational dynamics with
a rotational diffusion coefficient Dr. In terms of an overdamped Langevin equation in 2D the
equations of motion of the position þri and orientation θi of the i-th particles, where i = 1, ...N ,
read

dþri = µ þFidt +
√

2Dtd þWi + v0þoi(θi)dt,

dθi =
√

2DrdWθi
,

(2.1.1)

where þWi and Wθi
each denote independent realisations of a Wiener process with white noise

properties. It is further assumed that there is no zero surface friction or any interaction that acts
on the rotational degrees of freedom, e.g., aligning interactions often observed for microswim-
mers, which means that the orientation vector þoi(θi) = (cos θi, sin θi)

T is purely evolving through
rotational diffusion. To model volume exclusion between the particles, a hard-core interaction
potential is assumed given by

ui,j
(
|þri − þrj |

)
=







∞, if |þri − þrj | < σ,

0, else,
(2.1.2)

with the particle diameter σ and þFi = −þ∇i
∑

j Ó=i ui,j denoting the force acting on particle i. Since
microswimmers evolve in a low-Reynolds number regime where viscous damping is predominant
over inertia effects, an overdamped dynamics is a reasonable assumption and the interaction
force þFi leads to an instantaneous drift velocity proportional to the mobility µ that obeys
the fluctuation-dissipation theorem (FDT) µ = Dtβ with β = 1/(kbT ). Note that according
to the FDT Dr and Dt do not represent independent parameters. In 3D the FDT predicts
Dr = 3Dt/σ2, while finding a similar relation in 2D is in general not possible since Dt becomes
unbounded due to hydrodynamic tails in the velocity-autocorrelation function [56]. On the
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2. Active Brownian Particles

other hand, for many microswimmers, the rotational dynamics is governed by mechanisms that
are not dominated by thermal fluctuations, like for E.coli bacteria, who erratically change their
orientation by rotating flagella bundles which leads to a run-and-tumble like motion [57]. This
motivates to treat Dr as an independent parameter that accounts for an inverse time scale of a
persistent locomotion.

Despite the simplicity of the ABP model, it is capable to explain many generic features of self-
propelled particles, like tendencies to wall accumulations [58] or the formation of clusters in re-
pulsively interacting collections of active particles [59]. The feasibility of reproducing such effects
is demonstrated in figure 2.1.2 where snapshots from a simulation of purely repulsively interact-
ing ABPs are presented. The particles are confined in the x-direction by a soft wall-potential
and there apply periodic boundary conditions in the y-direction. With increasing activity, there
emerges both a strong accumulation of particles at the two enclosing walls and the formation
of clusters between the walls. Both phenomena are typical features seen in interacting self-
propelled particles, which have already been reported in different experimental setups and are
successfully reproduced by a simple model of interacting ABPs.

σ/2

θi

þoi

Figure 2.1.1.: Schematic sketch of the ABP model. The left figure shows a single ABP with di-
ameter σ and an orientation vector þoi(θi). The right figure shows a collection of active Brownian
hard-disks.

It is convenient to choose fundamental basic units for lengths and times, which is sufficient to ex-
press all remaining model parameters in terms of these basic units. Therefore lengths will be ex-
pressed in units of the hard-core diameter σ and times in units of the translational diffusive time
scale t0 = σ2/Dt in the following. The resulting model parameters for experimental realizations
of microswimmers shall be emphasized for some specific examples: Despite the enormous diver-
sity of living organisms, the universality of the physical laws that govern their motion leads to the
observation that 1-10 body lengths per second provide a reasonable estimate for the maximum
speed of any organism regardless of its size [60]. Assuming a microswimmer with a dimension of
about 1 µm and a diffusion time scale in an aqueous solution of 1 s means that v0σ/Dt ∼ 1 − 10,
that is the parameter regime primarily addressed in this work. The diffusive time scale simulta-
neously provides an estimate for the rotational diffusion coefficient of Drσ2/Dt ∼ 1 by exploiting
the connection between Dt and Dr. These estimates might, however, differ significantly for ar-
tificial microswimmers, as for laser-driven Janus particles the self-propulsion velocity can reach
magnitudes in the order of v0 σ/Dt ∼ 100 [15].
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2.2. Exact Solutions

Figure 2.1.2.: Simulation snapshots at equal times of ABPs interacting via a repulsive Weeks-
Chandler-Andersen potential for varying activites (increasing form top left to bottom right). The
particles are confined by a soft wall-potential in the x-direction (indicated in red) and periodic
boundary conditions apply in the y-direction [61].

Besides ABPs, there exist numerous further computational models to study active matter. Pi-
onering work in that context has been carried out by Wiczek in the development of the Vicsek
Model that has, as one of the first computational models for active matter, successfully repro-
duced the swarm behaviour of living systems and explained flocking phenomena [62]. An ABP
related model is that of the run-and-tumble particle, with a rotational dynamics that changes
unsteadily in tumble events instead of continuous diffusion. Differences and analogies between
both models have already been widely discussed [63]. Rather than describing activity with an
orientation vector that undergoes Brownian diffusion, so-called active Ornstein-Uhlenbeck par-
ticles enter activity through a Gaussian-noise term with a finite persistence time described by an
Ornstein-Uhlenbeck process [64]. Beyond these rather simple models, there exists an enormous
number of further theoretical and computational models [69] that are suitable for the description
of complex active systems and greatly reduce the enormous number of their degrees of freedom.
These models find wide application in the field of biophysics and particularly include descriptions
of active gels and filaments [65], molecular motors [66], cell dynamics [67] and tissue growth [68]
among many others [69].

2.2 Exact Solutions

Equation (2.1.1) is a stochastic differential equation which describes the evolution of trajectories
under single realisations of the white noise terms. Following the theory of Ito-calculus [70]
it can be translated into an equivalent equation of motion for the noise-averaged conditional
probability distribution p(Γ, t|Γ0, t0) of the combined N -particle phase space Γ = (Γþr, Γθ) at
time t under the condition that the system was prepared in the phase space configuration
Γ0 = (Γþr0

, Γθ0
) at t = t0. The time evolution of p(Γ, t|Γ0, t0) is governed by the so called
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2. Active Brownian Particles

Smoluchowski equation

∂tp(Γ, t|Γ0, t0) = Ω(Γ)p(Γ, t|Γ0, t0), (2.2.1)

Ω(Γ) =
N∑

i=1

Dt
þ∇i

(

þ∇i − β þFi

)

+ Dr∂2
θi

− v0
þ∇i · þoi, (2.2.2)

with the initial condition p(Γ, t0|Γ0, t0) = δ(Γ − Γ0) and the Smoluchowski operator Ω, which
consists of an equilibrium part describing Brownian diffusion and the particle-particle inter-
actions, and a non-equilibrium part that accounts for activity, thus it is convenient to write
Ω = Ωeq + δΩ with δΩ = − ∑

i v0
þ∇i · þoi. Defining the translational and rotational probability

currents þjt,i := Dt

(

þ∇i − β þFi

)

− v0þoi and jr,i = Dr∂θi
, the differential equation for p(Γ, t|Γ0, t0)

can be expressed equivalently as a continuity equation:

∂tp(Γ, t|Γ0, t0) =
∑

i

(
þ∇i

þjt,i + ∂θi
jr,i

)
p(Γ, t|Γ0, t0). (2.2.3)

Integrating out the translational degrees of freedom and dropping the surface terms of the
translational probability current, the conditional distribution of the orientations p(Γθ, t|Γθ0

, t0) =
´

dΓþr dΓþr0
p(Γ, t|Γ0, t0) fulfills the differential equation

∂tp(Γθ, t|Γθ0
, t0) = Dr

∑

i

∂2
θi

p(Γθ, t|Γθ0
, t0). (2.2.4)

This is nothing but a diffusion equation which can be factorized into the independent solution for
the rotational degrees of freedom of each particle, meaning that the solution can be developed
on a single-particle level. The resulting probability distribution of the orientation θ of single
particle is given by the well-known solution of a Wiener process

p(θ, t|θ0, t0) =
1

√

4πDr(t − t0)
exp

(

− (θ − θ0)2

4Dr(t − t0)

)

. (2.2.5)

One further defines the joint-probability distribution p(θ, t, θ0, t0) = (2π)−1p(θ, t|θ0, t0) of having
the orientation angle evolved from θ0 at t0 to θ at t by following the assumption of equally
distributed inital orientations. This allows to perform an exact calculation of the autocorrelation-
function of the orientation vector of a spherical ABP defined as

〈
þo (θ(t)) · þo (θ0(t0))

〉
:=

ˆ

dθ

ˆ

dθ0 p(θ, t, θ0, t0)þo (θ(t)) · þo (θ0(t0)) = e−Dr∆t. (2.2.6)

As one expects from a Markovian-process, the dependence is only on the time difference ∆t =

t − t0 and the result yields a characteristic correlation time, often denoted as the so-called
persistence time τr := D−1

r , which indicates a typical time scale it takes to randomize the
orientation vector from an initial configuration. It translates into an associated length scale, the
persistence length lp := v0τr, that indicates the distance which the particle covers balistically
during this time scale on average.
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2.2. Exact Solutions

2.2.1 Free Particle

For non-interacting systems, the noise- and ensemble averaged motion of a single ABP can be
characterized even more precisely. For brevity let t0 = 0 and þri(0) = 0 in the following. The
calculation of the mean displacements proceeds by integrating the equation of motion for þri(t)

(2.1.1) in time and exploiting
〈
d þWi

〉
= 0 which yields

〈
þr(t)

〉
= v0

ˆ

dθ

ˆ

dθ0

ˆ t

0
dt′p(θ, t′, θ0, 0)þo (θ(t′)) = 0, (2.2.7)

which is an expected result since there is no favorable orientation of the ABP. In a similar
fashion, the mean-squared displacement can be written as [71]

〈
þr 2(t)

〉
= 2Dt

ˆ t

0
dt′
ˆ t

0
dt′′

〈

d þW (t′)d þW (t′′)
〉

+ v2
0

ˆ t

0
dt1

ˆ t1

0
dt2

ˆ

dθ0

ˆ

dθ1

ˆ

dθ2 þo
(
θ1(t1)

)
· þo (θ2(t2)) p(θ1, t1, θ2, t2)

+ v2
0

ˆ t

0
dt1

ˆ t

t1

dt2

ˆ

dθ0

ˆ

dθ1

ˆ

dθ2 þo
(
θ1(t1)

)
· þo (θ2(t2)) p(θ2, t2, θ1, t1).

(2.2.8)

Rewriting the joint-probability p(θ2, t2, θ1, t1) as

p(θ2, t2, θ1, t1) =
1

2π
p(θ2, t2|θ1, t1) p(θ1, t1|θ0, 0), t2 > t1 (2.2.9)

allows to derive the following expression after carrying out the integration

〈
þr 2(t)

〉
:= δr2(t) = 4Dtt

[

1 + Pe

(

1 +
e−Drt − 1

Drt

)]

, (2.2.10)

where the Péclet number was introduced as Pe := v2
0/(2DrDt). When considering this exact

solution for δr2(t) in the different temporal regimes t ≪ τr and t ≫ τr, the different states of
motion of the free ABP can be analyzed more precisely by using a Taylor expansion up to the
second-order. This yields crossover times for the characteristic stages of motion that are given
by

τν :=
2

DrPe
, lν =

√

δr2(τν)/4 =
2Dt

v0
, (2.2.11)

τl :=
2

Dr

(

1 +
1

Pe

)

, ll :=
√

δr2(τl)/4 =
2Dt

v0
+

v0

Dr
= lν + lp, (2.2.12)

where the crossover times have been associated to corresponding length scales. Figure 2.2.1
depicts a schematic representation of δr2(t) as well as the derived crossover length- and time
scales. For t ≪ τν , the MSD of the free ABP shows the same Brownian short-time diffusion
as seen for a passive particle until the crossover length scale lν before switching to a ballistic
regime for τν ≪ t ≪ τl on length scales lν ≪ l ≪ ll. Finally the MSD is characterized by an
enhanced long-time diffusive behaviour at times t ≫ τl with an effective diffusion coefficient
Deff = Dt (1 + Pe). Knowing these transition points between the different states of motion is
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2. Active Brownian Particles
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Figure 2.2.1.: Schematic sketch of the mean-squared displacement δr2(t) of a free ABP. The
dashed lines represent the crossover time scales τν and τl.

of fundamental importance to understand active motion in the case when additional competing
length scales emerge. If these length scales are large compared to ll, it constitutes a promising
strategy to map the ABP to a passive Brownian particle with an effective diffusion constant. The
reliability of this approach can be verified experimentally in low-density systems of ABPs, e.g. in
systems with sedimenting active Janus particles [72]. If the sedimentation length of the particles
becomes much larger then their persistence length, the height distribution is well described by
a Boltzmann distribution ρ(h) ∼ e−mg h/kbTeff with an effective temperature kbTeff = Deff/µ.
On the other hand, such a distribution profile is not observed if the persistence length exceeds
the sedimentation length. When describing active transport phenomena in combination with
volume exclusion effects, an additional length in the form of the cageing length emerges, which
is easily exceeded by typical persistence lengths of microswimmers. This makes the simple-
minded approach of an effective diffusion highly unreliable at high densities as will be seen
later.

Despite its simplicity, the model of non-interacting ABPs still remains subject to current pub-
lications. Very recently interesting connections between equilibrium polymer models and the
ABP model have been shown. Notably, the probability distribution for the end-to-end distribu-
tion of the worm-like-chain model of semi-flexible polymers, which has been investigated back in
1952 [73] long before the ABP model, obeys the same Smoluchowski equation as the free ABP
under the absence of thermal noise. Shee et al. have demonstrated in [74] that it is possible
to construct a polymer model that yields an exact mapping to an ABP with thermal noise and
have exploited that mapping to derive exact expressions of all moments of the ABP in arbitrary
dimensions.
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2.3. Transient Correlation Functions

2.3 Transient Correlation Functions

In the following, an observable A(Γ) for a given phase-space configuration Γ at time t is consid-
ered. Before switching on activity for t > 0, the system is prepared in an equilibrium state Γ0 at
t0 = 0 according to the equilibrium Boltzmann distribution peq(Γ0) ∼ e−βU(Γ0) which implies the
joint-probability distribution of the full phase space to obey p(Γ, t, Γ0, 0) = p(Γ, t|Γ0, 0) peq(Γ0).
According to (2.2.1) a formal solution for p(Γ, t, Γ0, 0) is then given by

p(Γ, t, Γ0, 0) = eΩtδ(Γ − Γ0) peq(Γ0). (2.3.1)

Now one defines the transient ensemble average of 〈A〉v0(t) as follows

〈A(t)〉v0 :=

ˆ

dΓ

ˆ

dΓ0 A(Γ)p(Γ, t, Γ0, 0) =

ˆ

dΓpeq(Γ)eΩ†tA(Γ) =
〈
eΩ†tA(Γ)

〉
, (2.3.2)

with
〈
...

〉
denoting the equilibrium weighted scalar product. Further, the adjoint Smoluchwoski

operator Ω
† was introduced, which definition follows from the unweighted scalarproduct of the

phase space integration. Given two observables O and O′ there holds
´

dΓOΩO′ =
´

dΓO′
Ω

†O.
In the case of the ABP Smoluchowski operator, Ω

† can be derived by integrating by parts twice
resulting in

Ω
†(Γ) =

N∑

i=1

Dt

(

þ∇i + β þFi

)

þ∇i + Dr∂2
θi

+ v0þoi · þ∇i. (2.3.3)

The transient ensemble average describes the quenched dynamics from an equilibrated state
when activity is suddenly switched on. Since the evolution of the probability distribution is
uniquely fixed by the initial equilibrium distribution and the governing time evolution operator
eΩ†t, the expression for 〈A(t)〉v0 translates into an equilibrium ensemble average. One notes
further the analogy to quantum mechanics in the alternation between the Schrödinger and
Heisenberg picture as the time evolution has been shifted from the observable to a time evolution
operator. An alternate expression for 〈A(t)〉v0 results from the operator identity eΩt = 1 +
´ t

0 dt′eΩt′
Ω by writing

p(Γ, t, Γ0, 0) = eΩtδ(Γ − Γ0) peq(Γ0) =

(

1 +

ˆ t

0
dt′eΩt′

Ω

)

δ(Γ − Γ0) peq(Γ0). (2.3.4)

This means that the transient average of A obeys

〈
A(t)

〉v0 =

ˆ

dΓ0

ˆ

dΓ A(Γ, t)p(Γ, t, Γ0, 0) =

ˆ

dΓ peq(Γ)A(Γ) +

ˆ

dΓ

ˆ t

0
dt′A(Γ)eΩt′

Ω peq(Γ).

(2.3.5)

The second term can now be simplified by noting that in equilibrium Ωeqpeq = 0, i.e.,

ˆ

dΓ

ˆ t

0
dt′A(Γ)eΩt′

δΩ peq =

ˆ

dΓ

ˆ t

0
dt′(δΩpeq)eΩ†t′

A(Γ) =

ˆ t

0
dt′

〈δΩpeq

peq

eΩ†t′

A
〉

. (2.3.6)
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2. Active Brownian Particles

This identity reveals the integration-through-transients (ITT) formula, first proposed by Cates
and Fuchs [42] in the context of shear-driven glasses

〈
A(t)

〉v0 =
〈
A

〉
+

ˆ t

0
dt′

〈δΩpeq

peq

eΩ†t′

A
〉

. (2.3.7)

Its generalization for arbitrary time-dependent pertubations follows straightforwardly by intro-
ducing time-ordered exponentials in the formal solution of the Smoluchowski equation, e.g. car-
ried out for colloidal system exposed to time-dependent flows in [75].

The ITT formalism constitutes a powerful tool to account for the change of an observable caused
by the modification of the probability distribution due to some perturbation that acts on the
system. It remains exact for arbitrary strong drivings and delivers generalized Green-Kubo-
type expressions for non-equilibrium transport coefficients. However, it needs to be pointed
out that it poses a hopeless endeavour in almost any many-body system to find exact solutions
for the correlation function that is involved, i.e., computational schemes become inevitable.
Whereas in principle, the correlation function given in the integrand could be sampled from
simulations, such an approach usually turns out to be too laborious since the averages that
are involved must exclusively be taken over the initially equilibrated state due to the transient
nature of the correlation function. In simulations, it is, therefore, more common to use linear-
response-approximated ITT expressions by neglecting the perturbation in the time evolution
operator eΩ†t′

which allows evaluating (2.3.7) from equilibrium simulations. This has proven to
deliver satisfactory results for transport coefficients such as the effective swimming velocity [76]
or the mobility [77] of ABPs in a regime of for small self-propulsion velocities in low-density
systems.

To address parameter regimes that do not fit in the scope of linear response, it is therefore
desirable to develop theories that deliver approximate expressions for transient correlation func-
tions. Developing such a theory requires a more generalized formulation of equation (2.3.2).
Following the calculations carried out before, the transient correlation function 〈A(t)B(0)〉v0

between the equilibrium realization of an observable B at t = 0 and that of A at later time t

with respect to the time evolution according to the Smoluchowski equation can be expressed
as

〈
B(0)A(t)

〉v0 :=

ˆ

dΓ

ˆ

dΓ0 A(Γ, t) p(Γ, t, Γ0, 0)B(Γ0) =
〈
B eΩ†tA

〉
. (2.3.8)

In the next chapter, the mode-coupling theory for active Brownian particles (ABP-MCT) will be
presented as a suitable approximation for a specific type of transient correlations between two
microscopic densities. With these correlation functions at hand, ITT formulas can be suitably
approximated by using a projection operator technique. This combined MCT-ITT approach will
result in constitutive equations of non-equilibrium transport coefficients in terms of correlation
function that are based on a purely microscopic theory.

12
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The mode-coupling theory of the idealized glass transition [37] constitutes a well-established
approach to predict the slow structural dynamics in dense glass-forming liquids. Hereby, the
term glass comprises amorphous solids which form, e.g., if colloidal suspensions are sufficiently
densified under a simultaneous suppression of any thermodynamic phase transitions like crys-
tallization, which is most efficiently achieved by an appropriately chosen size disparity of the
constituents. Just as liquids, glassy materials lack a long-range spacial order with the conse-
quence that both materials cannot be distinguished solely from single configurations of each
system. However, there exists a transition point that drastically differentiates a glass from a
fluid. This so-called glass transition marks the emergence of a dynamical arrested state and
small deviations from this (idealized) sharp transition point imply dramatic changes in the
structural relaxation time and related macroscopic transport coefficients such as the viscosity
or long-time diffusion coefficients. A physical intuitive explanation of the implicated sponta-
neous arrest at the glass transition is represented by the picture of a particle trapped in a cage,
that is formed by immediate neighbouring particles at high densities. Such cages can barely
be overcome within the present thermal fluctuations. This means that the system will remain
in a non-ergodic state in a period of time that exceeds diffusive time scales by several orders
of magnitude. The resulting slow dynamics of glass-forming systems at high densities that is
predicted by MCT is experimentally accessible by measuring the dynamical scattering function
Φ. This is achieved in dynamical light scattering experiments for colloidal glass-formers or in
dynamical neutron-scattering experiments of supercooled liquids, which represent another class
of glass-forming systems. Both have in common to reveal the typical two step-behaviour of
Φ in the vicinity to the transition point, that is schematically sketched in figure 3.0.1. After
a microscopic time scale, the correlation function evolves very close to a plateau value within
the so-called β-regime. On the fluid side of the transition, there emerges another relaxation
regime describing the ultimate decay of the correlation function on time scales much larger than
the typical diffusive time scale which is empirically well-described by the stretched exponential
decay of a Kohlrausch-law. This so-called α-regime is not observed on the glass side of the tran-
sition where the correlation function remains on the plateau for infinite times. An outstanding
achievement of MCT in that context is the quantitative prediction of universal scaling laws for
the dynamic correlation functions for these distinctive relaxation regimes close to the glass tran-
sition point where asymptotic expansions of the MCT equation provide power-law predictions
that are valid on clearly defined time-windows and become increasingly large in the vicinity of
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Figure 3.0.1.: Schematic sketch of the two-step decay of the dynamical scattering function Φ
close to the glass transition point. The solid line describes the dynamics closely below, the dashed
line closely above the MCT glass transition point. The blue colour indicates the regime of the
β-relaxation process, the red colour that of the α-relaxation process.

the glass transition point [78,79]. These predictions have also been well-confirmed in a variety of
experimental setups [53–55] and computer simulations [49,51].

The fundamental concepts and phenomenological assumptions of dynamical arrest like the cage-
ing effect that are incorporated by MCT can in turn also be applied to systems that are far
from equilibrium. In these systems, structural relaxation does not mainly stem from thermal
fluctuations but is also affected by both external or intrinsic driving forces or energy dissipation.
Approaches that fit into that context are, e.g., that by the pioneering work from Fuchs et al.
who developed an MCT for systems in a steady flow [48] or that for driven granular systems by
Kranz et. al in which energy dissipation caused by inelastic collisions has been considered and
successfully adapted to systems with shear-flows. [39,80].

The increasing interest in active matter in recent years has given rise to attempts to develop
MCTs for active particles to investigate the effects of active forces on the structural relaxation
and the dynamics close to the glass transition point. A first approach has been worked out
by Brader et al. in the framework of an effective diffusion mapping [44]. The outcome of
an enhanced structural relaxation concomitant with activity has been predicted by computer
simulations before [81], but is expected from an effective diffusion approach as it accounts
activity by an effectively enhanced temperature. Moreover, the fundamental assumption of
such an approach is conflicting to be applied in an MCT as typical length scales close to the
glass transition point are in the order of the caging length lc for which the Lindemann criterion
for melting [82] provides a reasonable estimation through lc ∼ 0.1σ. This is easily exceeded by
typical persistence lengths of microswimmers in experimental setups or simulations as mentioned
before.
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Szamel et al. have worked out an MCT for athermal active Ornstein-Uhlenbeck particles where
translational thermal noise is neglected [45, 46]. Their approach follows the assumption of a
separation of time scales for the structural relaxation and the relaxation of the rotational degrees
of freedom, allowing to derive an effective time evolution operator. Additionally to the static
structure, correlation functions between particle velocities are required as an additional input
to the theory which have first to be acquired by computer simulations. The theory of Szamel
et al. has revealed a non-monotonic dependence of the relaxation time on the strength of
active driving such that depending on the rotational correlation time active forces have shown
to be capable to slow down the dynamics. Such a behaviour is not observed in the MCT
that will be discussed in this work and might be related to the absence of thermal noise in
the approach by Szamel et al.. A further ABP related MCT approach comprises force-driven
probe particles in dense suspensions [83]. This theory has revealed that there exists a force
threshold which needs to overcome to delocalize driven tracer particle that is immersed in glassy
environments. Such a model of a constant force driven tracer particle bears some analogy
to the ABP model with vanishing rotational diffusion coefficients, that will be discussed later
on.

The theory that this work aims to extend is the ABP-MCT by Liluashvili et al. [47, 84], whose
main achievements shall be briefly outlined in the following. The cornerstone of this approach is
that it starts from a complete microscopic description of all degrees of freedom of the system, in
particular including those of the rotational dynamics that are considered exactly as given by the
time evolution of the Smoluchowski equation without any prior assumptions of an effective time
evolution operator or effective diffusion preliminaries. This means that the emerging length-
and time scales resulting from the persistent motion are taken properly into account which
turns out to be of fundamental importance to explain the qualitative outcomes of the theory.
ABP-MCT has been successfully applied to predict a fluid-glass transition surface in the three-
dimensional parameter space spanned by(φ, v0, Dr), where φ denotes the packing fraction of the
system. The critical glass transition packing fraction φc has been found to increase monotonically
with the persistence length, that has been reasoned with an enhanced cage breaking ability with
increasing persistent driving. However, the glass transition revealed to explicitly depend on both
the Péclet number Pe and the persistence length lp, in contrast to transition diagrams that have
been reported for the motility-induced phase separation (MIPS) that occurs in active particle
systems with intermediate-densities. This can be explained by the emergence of an additional
length scale in systems with high densities represented by the localization length due to cageing.
Moreover, the transition diagram determined by Liluashvili et al. has shown strong qualitative
similarities with that for the jamming transition of a self-propelled Voronoi model [67], a model
to describe the slow dynamics of cell motility in dense tissues.

The present chapter provides a generalization of the ABP-MCT approach to describe the slow
dynamics in mixtures of active and passive particles. Hence the structure of the equations
and the technical steps to derive the theory are of similar spirit as in [47], but besides some
straightforward generalization, various new aspects and extensions will be presented that will
provide the theoretical framework for the calculation of non-equilibrium transport coefficients
later on.
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3.1 ABP-MCT for Mixtures

A r-component mixtures with Nα ABP constituents of type α, where α = 1...r, is consid-
ered where the concentration of species α shall be denoted as xα = Nα/N with

∑

α Nα = N ,
and {Dα

t , Dα
r , vα

0 } defining the ABP parameter space. Assuming an overdamped dynamics the
phase space is completely described by the positions of all particles and a time evolution ac-
cording to the Smoluchowski equation applies. Within the formalism introduced in the last
chapter, the evolution of the phase space distribution is governed by the Smoluchowski opera-
tor

Ω =
∑

(i,α)

Dα
t

þ∇α
i

(

þ∇α
i − β þF α

i

)

+ Dα
r

(

∂α
θi

)2
− vα

0
þ∇α

i · þo α
i . (3.1.1)

As the time evolution of the rotational degrees of freedom is decoupled from those of transla-
tional motion, it will further prove to be convenient to account for this in terms of the splitting
Ω({Dα

t , Dα
r , vα

0 }) = ΩT ({Dα
t , vα

0 })+ΩR({Dα
r }). Starting point of the ABP-MCT is the introduc-

tion of a microscopic density ρα(þr, θ) =
∑Nα

j=1 δ(þr −þr α
j )δ(θ − θα

j ) for both spacial- and rotational
coordinates of the Nα-particle phase space of type α. Of central inerest are the angular resolved
density fluctuations, defined as the spherical-harmonics expanded Fourier-transformation of such
microscopic densities. They read

ρα
l (þq ) =

1√
N

Nα∑

j=1

eiþq·þr α
j eilθα

j , l = −ΛL...ΛL, (3.1.2)

where the wavevector þq and the discrete rotational indices l have been introduced with ΛL

denoting some cutoff of the expansion. Ideally, there applies ΛL → ∞, but as for the continuous
wavenumber q such a cutoff will be inevitable for numerical considerations. The main objective of
the ABP-MCT is the development of an approximate expression for the intermediate scattering
function (ISF), defined as the transient correlation function of two angular resolved density
fluctuation according to the ITT-based expression of equation (2.3.8). Respectively, the ISF is
defined as

Sα,β
l,l′ (þq, t) :=

〈

ρα
l (þq )∗eΩ†tρβ

l′(þq )
〉

. (3.1.3)

With K = C
(2ΛL+1)×(2ΛL+1), the ISF is a K

r×r dimensional matrix whose elements provide
information both about correlations between translational and rotational degrees of freedom
between different species. At t = 0 the ISF coincides with the (angle-resolved) equilibrium static
structure factor and the matrix elements can be exactly calculated by applying the definition of
the equilibrium average, leading to

Sα,β
l,l′ (q) =

1

N

Nα∑

j=1

Nβ∑

k=1

ˆ

dΓþr peqe−iþq·
(
þr α

j −þr β

k

) ˆ

dΓθ e−i
(

lθα
j −l′θβ

k

)

(3.1.4)

=δl,0δl′,0

(

Sαβ(q) − xαδα,β

)

+ xαδl,l′δα,β , (3.1.5)
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3.1. ABP-MCT for Mixtures

where Sαβ(q) denotes the usual isotropic passive hard-disk structure factor matrix that is linked
to the direct correlation functions cα,β(q) and the density ρ = N/V via a generalized Ornstein-
Zernike equation that reads

(

S−1
)α,β

l,l′
(q) =

δl,l′δα,β

xα
− ρcα,β(q)δl,0δl′,0, (3.1.6)

and fulfills
∑

l1,γ Sα,γ
l,l1

(q)·
(
S−1

)γ,β
l1,l′ (q) = δl,l′δα,β . Note that contrary to the static structure factor

and systems with rotational symmetries the correlation functions that have been introduced
here are not invariant under rotations of the wavevector þq. This is because introducing self-
propulsion vectors breaks the rotational symmetry even for spherical particles. Nevertheless
there holds a straightforward transformation rule that results from the simple behaviour of the
system under global rotations. It follows by noting that a rotation of the wavevector by an
angle δϕ, represented in polar coordinates þq =

(
q, ϕq

)
, can be expressed equivalently by a global

rotation of the system by δϕ. This yields the following unitary transformation law for the
ISF:

Sα,β
l,l′

(

(q, ϕq + δϕ), t
)

= e−i(l−l′)δϕSα,β
l,l′

(

(q, ϕq), t
)

. (3.1.7)

This transformation law is advantageous since it reduces the dimensionality of the correlation
function parameter space. On the other hand, it reveals a relation between real- and imaginary
parts by choosing δϕ = π which implies

(

Sα,β
l,l′

)∗
(þq, t) = (−1)(l−l′)Sα,β

−l,−l′(þq, t). (3.1.8)

In particular, this means that Sα,β
0,0 (þq, t) remains real which is no longer trivial in view of the

underlying non-equilibrium time evolution, see for example the related correlation function of
a constant force driven tracer particle which possesses a non-vanishing imaginary part as a
consequence of the fixed direction of pulling [83]. The ABP correlation function remains reals
because the active force acts isotropically on all particles. Furthermore, it is explicitly high-
lighted that the correlation functions defined here are in general not symmetric both under
exchanging species and rotational indices as they are their passive counterparts. This immedi-
ately follows from the observation that the self-adjointness of the Smoluchowski operator with
respect to the Boltzmann-weighted scalar product is no longer fulfilled owing to the active per-
turbation, which in turn breaks the time-reversal symmetries of the underlying time evolution
operator.

A further useful symmetry property of the ISF results from checking, that the global variable
transformation {rγ

i,x, rγ
i,y, θγ

i } → {rγ
i,x, −rγ

i,y, −θγ
i } keeps both peq and Ω

† unchanged. Choosing
þq = qex, this implies according to equation (3.1.3) that Sα,β

l,l′ (qþex, t) = Sα,β
−l,−l′(qþex, t) and com-

bining this with equation (3.1.8) reveals that Sα,β
l,l′ (qþex, t) has a vanishing imaginary- or real

part if |l − l′| is chosen either even or odd. This can be generalized to arbitrary ϕq by using the
transformation law for rotations of the wavevector, meaning that

ei(l−l′)ϕq Sα,β
l,l′ (þq, t) = e−i(l−l′)ϕq Sα,β

−l,−l′(þq, t). (3.1.9)
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3. Mode-Coupling Equations

3.1.1 Mori-Zwanzig Formalism

The projection operator formalism developed by Zwanzig and Mori [85] constitutes a stan-
dard scheme to obtain an exact equation of motion for the ISF. It follows the idea to express
observables in a basis of density functions. Therefore one introduces the projection opera-
tor

P =
∑

l,l′,þq
αβ

∣
∣ρα

l (þq )
〉 (

S−1
)α,β

l,l′
(q)

〈
ρβ

l′ (þq )∗ ∣
∣, Q =  − P , (3.1.10)

where the factor (S−1)α,β
l1,l2

(q) accounts for the projector property of P2 = P . Furthermore, a
bra-ket notation 〈A|B〉 = 〈A B〉 for the equilibrium weighted scalar product is introduced. One
further introduces the orthogonal projector Q :=  − P which trivially fulfills QP = PQ = 0

and Qρα
l (þq )〉 = 0. Now one writes

∂te
Ω†t = Ω

†eΩ†t = Ω
†(P + Q)eΩ†(P+Q)t, (3.1.11)

and Dyson-decomposition formula for propagators is exploited further on. It states [85]

eΩ†(P+Q)t = eΩ†Qt +

ˆ t

0
dt′eΩ†Q(t−t′)

Ω
†PeΩ†t′

. (3.1.12)

Inserting this relation into (3.1.11) and multiplying with
∣
∣ρβ

l′ (þq )
〉

from the right and
〈
ρα

l (þq )∗ ∣
∣

from the left yields an exact evolution equation for the ISF, denoted as Mori-Zwanzig equation
of motion. It can be expressed in a compact matrix notation as

∂tS(þq, t) = −ω(þq )S−1(q)S(þq, t) +

ˆ t

0
dt′K(þq, t − t′)S−1(q)S(þq, t′). (3.1.13)

Here the frequency matrix ω(þq ) was introduced whose entries are defined as the matrix elements
of Ω

†. A straightforward calculation yields

ωα,β
l,l′ (þq ) = −

〈

ρα
l (þq )∗

Ω
†ρβ

l′ (þq )
〉

=
(

Dα
r l2 + Dα

t q2
)

xαδl,l′δα,β − ivβ
0 q

2
e−i(l−l′)ϕq Sα,β

l,l (q)δ|l−l′|,1.

(3.1.14)
It will be further crucial to distinguish translational- and rotational parts of ω(þq ) such that one
writes ω(þq ) = ωT (þq ) + ωR with ωR = Drl2  . The quantity appearing in the convolution is
denoted as diffusion kernel and is determined by

Kα,β
l1,l2

(þq, t) =
〈

ρα
l1 (þq )∗

Ω
†QeΩ†tQΩ

†ρβ
l2

(þq )
〉

. (3.1.15)

There holds K(þq, t) = 0 if the interaction between the particles becomes negligible. This imme-
diately follows from the fact that for a free particle the action of the fluctuating force QΩ

† on
a density vanishes since

QΩ
†ρα

l (þq ) = −(Dα
t q2 + Dα

r l2 + ivα
0 þo α

j · þq )Qρα
l (þq ) = 0. (3.1.16)
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3.1. ABP-MCT for Mixtures

Following similar arguments implies that there arise no contributions to K(þq, t) when inserting
the rotational parts of Ω

† on the left- and right-hand side of the time evolution in the definition
of K(þq, t), even in interacting systems. For the right-hand side, this is trivially seen with the
same arguments given for the free particle. For the left-hand side, the same argument applies
which follows from the observation that ΩR is self-adjoint regarding the equilibrium weighted
scalar product as it is not affected by activity.

3.1.2 Free Particle Solution

Before extending the theory to interacting systems, the solution of the Mori-Zwanzig equation in
the case of a vanishing memory-kernel, describing the motion of a free ABP, shall be investigated
in more detail in the following. This case allows to drop indices accounting for particle-types in
the following and the structure factor becomes Sl,l′(q) = δl,l′ . The formal solution to equation
(3.1.13) is then given by the matrix exponential

S(þq, t) = e−ω(þq )t. (3.1.17)

The following calculations aim to show that this is indeed an alternative representation of
the more commonly known exact solution of the single-ABP ISF that has been presented by
Kurzthaler et al. before [86]. Without loss of generality the restriction þq = qþex, shall be as-
sumed further on. The known procedure to solve a matrix exponential equation is to find a
diagonalization in terms of a transformation matrix T and a diagonal matrix D which ful-
fil

ω = T D T
−1

. (3.1.18)

The transformation matrix T can be determined by following the solution strategy for S0,0(þq, t)

by Kurzthaler et al. with a straightforward generalization to matrix elements that involve rota-
tional degrees of freedom. According to equation 2.3.8, the ISF can be expressed as

Sl,l′(þq, t) =

ˆ

dθ dθ0 dþr dþr0 eil′θe−ilθ0eiþq·(þr−þr0)p(þr, θ, t, θ0, þr0)

=
1

2π

ˆ

dθ dθ0 dþr eil′θe−ilθ0eiþq·þrp(þr, θ, t|θ0) =
1

2π

ˆ

dθ dθ0eil′θe−ilθ0 p̃(þq, θ, t|θ0),

(3.1.19)

where the initial position þr0 has been integrated out by exploiting the translational invari-
ance of the joint-probability distribution. The remaining translational degrees of freedom have
been expressed in terms of the Fourier-transformed conditional probablity density p̃(þq, θ, t|θ0) :=
´

dþr p(þr, θ, t|θ0)eiþq·þr. A differential equation for p̃ is derived as follows

∂tp̃(þq, θ, t|θ0) =

ˆ

dþr ∂tp(þr, θ, t|θ0)eiþq·þr =

ˆ

dþr Ω p(þr, θ, t|θ0)eiþq·þr

=

ˆ

dþr p(þr, θ, t|θ0)Ω† eiþq·þr = Ω̃ p̃(þq, θ, t|θ0),

(3.1.20)

with an operator
Ω̃ = iv0 þo · þq + Dr∂2

θ − Dtq
2. (3.1.21)
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3. Mode-Coupling Equations

Alike for the time-independent Schrödinger equation, the solution can be developed by determin-
ing the eigenfunctions of the operator Ω̃, where the non-trivial angular part of this eigenvalue
problem is described by the differential equation

( d2

dx2
− 2k cos(2x)

)

f(x) = λf(x), (3.1.22)

where the substitution x = θ/2 was used and the imaginary deformation parameter k = −2ilp

was introduced. The solution of this eigenvalue equation is given by the π-periodic even and odd
Mathieu functions ce2n(k, x) and se2n+1(k, x) with respective eigenvalues a2n(k) and b2n+1(k)

[87]. They form a complete basis of orthogonal functions with
´ 2π

0 dxce2n′(x)ce2n(x) = πδn,n′ and
same for se2n+1 and can be expressed in Fourier-series of sine and cosines by

ce2n(k, x) =
∞∑

m=0

A2n
2m(k) cos(2mx), se2n+1(k, x) =

∞∑

m=0

B2n+1
2m (k) sin((2m + 2)x). (3.1.23)

The completeness relations for the basis of even and odd Mathieu function imply the following
conditions for the coefficients of the Fourier-expansions:

∑

n

A2n
2mA2n

2m′ = δm,m′ − 1

2
δm,0δm′,0,

∑

n

B2n+1
2m B2n+1

2m′ = δm,m′ . (3.1.24)

p̃(þq, θ, t|θ0) is now expanded in the Mathieu functions’ basis. Making use of the initial condition
p̃(þq, θ, t = 0|θ0) = δ(θ − θ0) delivers [86]

p̃(þq, θ, t|θ0) =
e−q2Dtt

π

∞∑

n=0

{

ce2n(k, θ0/2)ce2n(k, θ/2)e−Dra2n(k)t/4

+ se2n+1(k, θ0/2)se2n+1(k, θ/2)e−Drb2n+1(k)t/4
}

.

(3.1.25)

Inserting back into (3.1.19) the ISF finally reads

Sl,l′(þq, t) = e−q2Dtt
∞∑

n=0

2 ·
{[ˆ 2π

0

dθ

2π
ce2n(k, θ/2)eil′θ

][ˆ 2π

0

dθ

2π
ce2n(k, θ/2)e−ilθ

]

e−Dra2n(k)t/4

+

[ˆ 2π

0

dθ

2π
se2n+1(k, θ/2)eil′θ

][ˆ 2π

0

dθ

2π
se2n+1(k, θ/2)e−ilθ

]

e−Drb2n+1(k)t/4

}

.

(3.1.26)

The θ-integration can be connected to the contributing Fourier-coefficients by using

ˆ 2π

0

dθ

2π
ce2n(k, θ/2)e±ilθ =

1

2

(

A2n
|2l| + A2n

0 δl,0

)

, (3.1.27)

ˆ 2π

0

dθ

2π
se2n+1(k, θ/2)e±ilθ = ± sign(l)

i

2
B2n+1

|2l|−2. (3.1.28)

This allows to identify the transformation matrix T and the diagonal matrix D as one can argue
that if equation (3.1.26) is another representation of (3.1.17), there must hold
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3.1. ABP-MCT for Mixtures

Tl,l1 =







1
2
√

2

(

A2n
|2l| + A2n

0 δl,0 + A0
|2l|δn,0 + A0

0δl,0δn,0

)

, |l1| = 2n

− sign(l) i
2
√

2

(

B2n+1
|2l|−2 + B1

|2l|−2δn,0

)

, |l1| = 2n + 1
(3.1.29)

T −1

l1,l′ =







1
2
√

2

(

A2n
|2l′| + A2n

0 δl,0 + A0
|2l′|δn,0 + A0

0δl′,0δn,0

)

, |l1| = 2n

sign(l′) i
2
√

2

(

B2n+1
|2l′|−2 + B1

|2l′|−2δn,0

)

, |l1| = 2n + 1
(3.1.30)

Dl1,l1 =







Dtq
2 + Dr

4 a2n(k), |l1| = 2n

Dtq
2 + Dr

4 b2n+1(k), |l1| = 2n + 1
(3.1.31)

where
∑

l1 Tl,l1T −1

l1,l′ = δl,l′ is easily seen by making use of the relations in (3.1.24). It needs

further to be proven that T D T
−1

= ω as defined in equation (3.1.14). This requires to
exploit the following recurence relations for the eigenvalues a2n and b2n+1, that are obtained
by inserting the expansions of the Mathieu functions into the differential equation for p̃(þq, θ, t)

(3.1.22):

a2nA2n
2m = m2A2n

2m + k(1 + δm,1)A2n
2m−2 + kA2n

2m+2, (3.1.32)

b2n+1B2n+1
2m = (m + 1)2B2n+1

2m + kB2n+1
2m−2 + kB2n+1

2m+2, (3.1.33)

with the convention A2n
2m = B2n+1

2m = 0 for m < 0. With these relations at hand, a straightforward
calculation reveals indeed that

∞∑

l1=−∞
Tl,l1Dl1,l1T −1

l1,l′ =
(

Dtq
2 + Drl2

)

δl,l′ − iv0q

2
δ|l−l′|,1, (3.1.34)

which is equation (3.1.14) for þq = qþex.

From using a numerical scheme to solve the matrix exponential in equation (3.1.17), solutions
for different matrix elements of the free particle ISF are presented in figure 3.1.1 for character-
istic wavenumbers. These wavenumbers have been associated with the crossover length scales
of the free active particle derived in the last chapter via lq = 2π/q. It can be seen that the
S0,0(q, t) component presented in subfigure (a) reveals the characteristic regimes of diffusive
and ballistic motion. As expected, the representing modes of short-time diffusive motion that
fulfill 2π/q ≪ lν decay like those of a passive particles as S0,0(q, t) = e−Dtq2t. On the other
hand when considering length scales that fulfil 2π/q ≫ ll the respective relaxation modes are
dominated by the effective long-time diffusion of the particle and are revealing a decay accord-
ing to1 S0,0(q, t) = e−Deff q2t. The non-monotonic oscillatory behaviour that is observed in the
intermediate wavenumber regime both for S0,0(q, t) and for the non-diagonal elements S1,0(þq, t)

and S0,1(þq, t) in (b) captures the ballistic regime and is a clear fingerprint of the present non-
equilibrium dynamics, as this would be an impossible property in any equilibrium system where
one can be shown that any equilibrium time evolution implies that there must exist a repre-

1This follows from the low-q expansion S0,0(q, t) ≈ 1 − (q2/4)δr2(t) after inserting equation (2.2.10). The low-q
expansion will be discussed in more detail in section 3.4.
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3. Mode-Coupling Equations

sentation of the ISF in terms of a superposition of purely relaxing exponentials [88]. Subfigure
(b) additionally depicts the S1,1(þq, t) correlation functions for the same wavenumbers as for
S0,0(þq, t), revealing an additional modulation with e−Drt that is the dominating contribution on
the long-time diffusion at low wavenumbers.

The presented free particle solutions for the (0, 0) component of the ISF have also been exper-
imentally confirmed by using a differential dynamic microscopy technique in a diluted mixture
of catalytic Janus particles immersed in hydrogen peroxide [86]. Measuring the free particle
ISF has shown to be a useful tool to probe the relevant length scales and the model parameters
to describe diluted systems of microswimmers, since the characteristic behaviour of the free
active motion can be directly linked to the behaviour of the ISF in a distinctive wavenumber
regime.
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Figure 3.1.1.: ISF of a free ABP at different wavenumbers q. Numerical solutions are drawn
in black, blue and red lines are respective approximations of the short- and long-time diffusive
regime. The parameters are lν = 0.25σ, ll = 8.25σ, q0σ = 0.05, q1σ = 2.5, q2σ = 60 (a) shows
solutions for S0,0(q, t) that represent the same distinct length- and time scales as in figure 2.2.1.
(b) shows further matrix elements where S1,1(q, t) is presented for the same wavenumbers as in
(a).
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3.1. ABP-MCT for Mixtures

3.1.3 Mori-Zwanzig Equation with Friction Kernel

Addressing back to the case of interacting systems, the convolution integral in the Mori-Zwanzig
equation must be accounted for and the diffusion-kernel K(þq, t) requires to be suitably approx-
imated due to its complexity. MCT provides the appropriate framework for this endeavour. It
is, however, a common procedure not to directly approximate the diffusion-kernel K(þq, t), but
first to derive a more robust variant of the Mori-Zwanzig equation which involves a so-called
friction kernel, that is more suitable to describe the dynamics close or above the glass transition
point. This transition is characterized by the observation that certain density-correlations in
the system persist for infinite times, formally described by non-vanishing long-time values of the
ISF, that are denoted as the non-ergodicity parameters

fα,β
l,l′ (þq ) := lim

t→∞
Sα,β

l,l′ (þq, t). (3.1.35)

In order to investigate the long-time behaviour of the ISF, it is instructive to introduce the
Laplace-transformation LT [f(t)](z) defined as

LT [f(t)](z) := f(z) :=

ˆ ∞

0
dt e−ztf(t), (3.1.36)

since the convolution term of the Mori-Zwanzig equation conveniently factorizes in the Laplace-
space. Further, the non-ergodicity of an observable A(t) in time-space can be attributed to a 1/z

for the respective Laplace-transformed quantity A(z) by making use of the final-value theorem
limt→∞ A(t) = limz→0 z · A(z). This means that non-ergodic matrix elements of the ISF are
required to possess a 1/z pole. For these elements, the Laplace-transform of equation (3.1.13)
implies the memory-kernel to behave like limz→0 Mα,β

l,l′ (þq, z) = ωα,β
l,l′ (þq) above the glass transition

which is a strong criterion that is hardly fulfilled by any approximation for M(þq, t) and one
therefore seeks for another type of memory-function that is subject to more robust criteria. The
derivation of such a memory-kernel is achieved technically by performing a further projection
step. Within this projection step, the present relaxation channels of translational and rotational
motion must be separately taken into account. In the particular case of spherical ABP, the
rotational degrees of freedom are solely driven by diffusive rotational dynamics, meaning that
they can never underly dynamical arrest. A projection operator that preserves this feature is
anticipated by choosing

P ′ = −
∑

l1,l2,þq
αβ

∣
∣
∣ρα

l1 (þq )
〉 (

ω−1
T

)α,β

l1,l2
(þq )

〈

ρβ
l2

(þq )∗
Ω

†
T

∣
∣
∣, Q′ =  − P ′. (3.1.37)

After inserting another unity operator in the time evolution operator appearing in (3.1.15) by
writing Ω

† = Q′
Ω

† + P ′
Ω

† and exploiting the Dyson decomposition once more leads to an
equation of motion given by

K(þq, t) = m(þq, t) −
ˆ t

0
dt′ K(þq, t − t′)ω−1

T (þq )m(þq, t′), (3.1.38)
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that involves a so-called friction kernel m(þq, t) which reads

mα,β
l,l′ (þq, t) =

〈

ρα
l (þq )∗

Ω
†
T QeΩ

†
irr

tQΩ
†
T ρβ

l′ (þq )
〉

. (3.1.39)

with the so-called irreducible Smoluchowski operator Ω
†
irr := Ω

†Q′. Calculating the Laplace-
transform of equations (3.1.38) subsequently reveals the relation

K(þq, z) =
(

m−1(þq, z) + ω−1
T (þq )

)−1
, (3.1.40)

which is then inserted in the Laplace-transformed version of equation (3.1.13) to eliminate the
diffusion kernel. The simplicity of an individual relaxation channel allows for an analytical back-
transform to the time domain. This yields an equation of motion for the ISF that only depends
on the friction kernel. It reads

∂tS(þq, t) = −ω(þq )S−1(q)S(þq, t) −
ˆ t

0
dt′m(þq, t − t′)ω−1

T (þq )
[

∂t′S(þq, t′) + ωRS−1(q)S(þq, t′)
]

.

(3.1.41)

This is the central equation of this work, where m(þq, t) will be subject to the mode-coupling
approximation in a further step. The necessity of a separate treatment of the present relaxation
channels in terms of an appropriately chosen projection operator has also proven to be crucial in
other variants of MCT as for the case of liquids confined in narrow channels. There the relaxation
of modes perpendicular and parallel to the enclosing wall must be accounted for within separate
irreducible projectors which results in distinct friction kernel contributions for each relaxation
channel and coupling terms between them [41, 89]. Within the ABP-MCT, memory-kernel
contributions of rotational motion do not exist and the coupling of rotational and translational
degrees of freedom is expressed in the special structure of equation (3.1.41) within the so-called
hopping term ωRS−1(q)S(þq, t). This term accounts for the fact that certain density correlation
in the system will remain ergodic even if the translational motion simultaneously experiences
dynamical arrest.

Indeed, a further analysis of equation (3.1.41) in the Laplace-domain [84] reveals the condition
ωRS−1(q)f(þq ) = 0, which requires fα,β

l,l′ (þq ) = 0 for l Ó= 0 whereas all fα,β
0,l′ (þq) Ó= 0 for φ > φc.

This non-symmetric behaviour is a further manifestation of the present non-equilibrium time
evolution and can be rationalized by the observation that translational degrees of freedom are
influenced by rotational degrees of freedom, but not the other way arround. In other words, the
slow dynamics of a density fluctuation |ρβ

l′(þq, t)∗〉 will always be superimposed by the decay of
the rotational correlations for t ≫ τr if projected on the 〈ρα

l (þq )| subspace if l Ó= 0 and α = β and
will vanish if l Ó= 0 and α Ó= β, whereas the projection on 〈ρα

0 (þq )| displays the influence of the
rotational degrees of freedom of type β on the strucural relaxation of type α that is, if β denotes
an active particle type, detectable just up to the structural relaxation time of the system and
persists for infinite times above the glass transition point.

It further needs to be pointed out that equation (3.1.41) requires the knowledge of the inverse
of the translational part of the frequency matrix, ω−1

T (þq ), that is necessary to be taken on a
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3.1. ABP-MCT for Mixtures

infinite dimensional matrix algebra. In general, it is not possible to find an analytic solution for
this problem and numerical considerations that can only involve a finite number of rotational
modes must carefully take into account that matrix inversion and performing a cutoff are not
expected to commute. One could think of applying the transformations introduced for the exact
diagonalization of the frequency matrix given by equation (3.1.18) in the free particle solution
which would in principle allow for a trivial inversion, but the determination of the expansion
coefficients for the Mathieu functions can be reduced to a similar eigenvalue problem on an
infinite matrix algebra [87]. A possible remedy is to start with an inversion of ωT (þq ) for a large
matrix and perform the desired cutoff afterwards. The degree of accuracy for this approximation
will become clearer later when the tagged particle dynamics is discussed where the translational
part of the frequency matrix can be inverted analytically for arbitrary cutoffs due to a simplified
structure.

A well-known observation from classical MCT is that its predictions become insensitive on
the discretization of the wavenumber integration if the upper cutoff for þq is chosen sufficiently
high. For the ABP-MCT a similar question arises on how important the inclusion of higher
rotational modes is for the qualitative predictions of the theory. The results that will be pre-
sented later indicate that a first-order consideration, which only includes the modes linked
with ΛL = 1, is already able to provide quantitatively consistent results with simulations.
This is supported by the observation that explicit couplings that arise in ABP-MCT predicted
equations for central quantities as the MSD or the effective swimming velocity are only for
ΛL = 1.

3.1.4 Mode-Coupling Approximation

The following steps will sketch the derivation of the memory-kernel in the MCT approxima-
tion. It starts by noting that dynamical arrest close to the glass transition point is triggered
by the cageing effect of particles, suggesting a phenomenological approach to reduce the dy-
namics to the space of product states of density pairs. One defines the two-point projec-
tor

P2 :=
∑

1,2,3,4

∣
∣ρ1ρ2

〉
g1,2,3,4

〈
ρ∗

3ρ∗
4

∣
∣, (3.1.42)

where the convenient short hand writing with triples i := (þqi, li, γi) has been introduced with
the notation

∑

i :=
∑

li,þqi.γi
and δi,j = δþqi,þqj

δli,lj δγi,γj
. Moreover the normalization coefficient

g1,2,3,4 has to be chosen such that P2 fulfills projector properties. The first crucial step towards
an approximate expression for the memory-kernel is achieved by inserting two-point projectors
before and after the propagator in equation (3.1.39), resulting in

mα,β
l,l′ (þq, t) ≈

〈

ρα
l (þq )∗

Ω
†
T QP2eΩ

†
irr

tP2QΩ
†
T ρβ

l′ (þq )
〉

. (3.1.43)

The cornerstone of the mode-coupling approximation is the factorization of 4-point correlation
function into products of 2-point correlation functions [37,90] by writing

〈

ρ∗
3ρ∗

4eΩ
†
irr

tρ1′ρ2′

〉

≈ S3,1′ (t) S4,2′ (t) + S3,2′ (t) S4,1′ (t) . (3.1.44)
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3. Mode-Coupling Equations

This further allows to identify the normalization factor g1,2,3,4 by exploiting the idempotency
criterion for P2 which reveals

g1,2,3,4 ≈ 1

2
S−1

1,3S−1
2,4 . (3.1.45)

Moreover, averages involving three densities are approximated in terms of the convolution ap-
proximation by neglecting static triplet correlation functions, meaning that [91,92]

〈

ρ∗
1ρ∗

2ρ3

〉

≈ 1√
N

∑

ǫ

1

x2
ǫ

Sγ1,ǫ
l1,l1

(q1)Sγ2,ǫ
l2,l2

(q2)Sγ3,ǫ
l3,l3

(q3)δþq1+þq2,þq3
δl1+l2,l3 . (3.1.46)

This allows to evaluate the static expressions
〈
ρα

l (þq )∗
Ω

†
T Qρ1ρ2

〉
and

〈
ρ∗

3′ρ∗
4′QΩ

†
T ρβ

l′ (þq )
〉

and
combining the result with the mode-coupling approximation of the propagator results in the fol-
lowing equation for the memory-kernel, as presented in detail in appendix A.1:

mα,β
l,l′ (þq ) ≈ ρ

2

ˆ

d2p

(2π)2

∑

l1...l4
γ1...γ4

Wα,γ1,γ2

l,l1,l2
(þq, þq − þp, þp )Sγ1,γ3

l1,l3
(þq − þp, t)Sγ2,γ4

l2,l4
(þp, t)Vβ,γ3,γ4

l′,l3,l4
(þq, þq − þp, þp ),

(3.1.47)

Vβ,γ3,γ4

l′,l3,l4
(þq,þk, þp) := Dβ

t

[

(þq · þk )cγ3,β (k) δl3,0δγ4,β + (þq · þp ) cγ4,β(p)δl4,0δγ3,β

]

δl3+l4,l′ , (3.1.48)

Wα,γ1,γ2

l,l1,l2
(þq,þk, þp) := Dα

t

[

(þq · þk )cγ1,α (k) δl1,0δγ2,α + (þq · þp ) cγ2,α(p)δl2,0δγ1,α

]

δl1+l2,l

+
∑

ǫ

1

x2
γ2

ivǫ
0

2ρ
kei(l1+l2−l)ϕkSα,γ2

l,l (q) Sγ2,ǫ
l−l2,l−l2

(k)
(

S−1
)ǫ,γ1

l1,l1
(k) δ|l−l1−l2|,1

+
∑

ǫ

1

x2
γ1

ivǫ
0

2ρ
pei(l1+l2−l)ϕpSα,γ1

l,l (q) Sγ1,ǫ
l−l1,l−l1

(p)
(

S−1
)ǫ,γ2

l2,l2
(p) δ|l−l1−l2|,1

− 1

x2
γ1

ivγ1

0

2ρ
qei(l1+l2−l)ϕq Sα,γ1

l,l (q) δγ1,γ2
δ|l−l1−l2|,1.

(3.1.49)

Here the static vertex functions W(þq,þk, þp ) and V(þq,þk, þp ) have been introduced. They are
only entered by the equilibrium static structure factors and the self-propulsion velocities, i.e.,
consistently with equation (3.1.39), the dependence on the rotational diffusion coefficients is
only implicitly entered in the memory-kernel through the time evolution of the Smoluchowski
operator, but not in the vertex functions. For a single-component active system, the presented
MCT equations are also fully consistent with those found in [47].

The memory-kernel in the mode-coupling approximation is given as a functional of the ISF which
establishes a self-consistent system of equations, that uniquely determines the time evolution
of the ISF according to the Mori-Zwanzig equation (3.1.41) by fixing the initial condition with
the short-time solution of free diffusion. The only inputs that need to be provided to solve
the dynamics are numerical values or appropriate theoretical predictions for the equilibrium
static structure factor of the passive hard-sphere system for which numerous theories already
exist (see [93–95] for 2D hard-disks). This constitutes a remarkable achievement that only by
entering such equilibrium theories the ABP-MCT is feasible to gain insights into non-equilibrium
dynamical features beyond the limitations of perturbative theories like linear response, however
at the price, that the correlation functions are of transient-type.
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3.2. Asymptotic Equations

It is further noted, that the memory-kernel obeys the same unitary transformation law from
equation (3.1.7) for rotations of the wavevector þq = (q, ϕq). This implies that the ISF maintains
this transformation law even under the time evolution of the MCT approximated memory-kernel.
This is straightforwardly checked by considering a transformation ϕq → ϕq + δϕ of the memory-
kernel. By using the substitution ϕp → ϕp + δϕ in the wavevector integration of the memory-
kernel implies ϕk → ϕk + δϕ. With these replacements and by exploiting the transformation
rules of the initial short time ISFs, the demanded phase factor e−i(l−l′)δϕ is recovered. Obviously,
the frequency matrix given by equation (3.1.14) obeys the same transformation behaviour as
the ISF and the memory-kernel. This immediately implies that the time evolution of the Mori-
Zwanzig equation conserves the transformation rule of the ISF even after the application of the
mode-coupling approximation.

3.2 Asymptotic Equations

The glass transition is formally characterized by a bifurcation scenario of the non-ergodicity
parameter f(þq ). Usually the determination of f(þq ) is not carried out by explicitly calculating the
ISF on very large time scales, but by using a time-independent iterative algebraic equation, which
is derived from the Laplace-transformation of the Mori-Zwanzig equation under the assumption
of vanishing derivatives of the correlation functions close to the plateau value. Following this
assumption an equation for f(þq ) reads

f(þq ) + S(q) ω−1(þq )m[f(þq ), f(þq )]ω−1
T (þq )

(
f̄(þq ) − S(q)

)
= 0, (3.2.1)

where f̄(þq ) := f(þq )+ωR

´∞
0 dt S−1(q)S(þq, t). Here the memory-kernel was expressed in terms of

the mode-coupling functional as a bilinear form of two correlation functions with m[f(þq ), f(þq )]

denoting an evaluation of the memory-kernel where the involved ISFs have been replaced by
f(þq ). The appearance of the term f̄(þq ) is due to the hopping term and leads to the fact
that equation (3.2.1) is no longer self-consistent because f̄(þq ) is required to be explicitly eval-
uated in the time-domain by integration of the ISF at least on time-scales of the persistence
time, because ωRS−1(q)S(þq, t) will always reveal a decay at least after τr. This observation is
manifested in a crossover behaviour of the ISF that has not been observed in previous MCTs
and is exemplified for the one-component theory in [47]: At times t ≈ τr, there emerges a
transition between two different pleateau values. This transition marks the crossover of a
glass with an infinite persistence time τr, where f̄(þq ) = f(þq ) and a glass with finite τr with
f̄(þq ) Ó= f(þq ).

Expressing the non-ergodicity parameter in terms of the mode-coupling functional constitutes
the starting point for the glass transition asymptotics for the ISF. However, the requirement of
equation (3.2.1) to evaluate dynamical quantities bears some problems in this case because a
reliable asymptotic expansion requires a very precise determination of the glass transition point,
which is not possible due to the necessity of very many numerical evaluations of the hopping
integral close to the bifurcation. It is therefore instructive first to investigate the case Dr = 0

in more detail. In this case, the hopping term vanishes and equation (3.2.1) results in the
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3. Mode-Coupling Equations

usual algebraic equation known from passive MCT which implies the ISF to reveal the known
asymptotic regimes depicted in figure 3.0.1. Even though the limits Dr → 0 and t → ∞ are not
necessarily expected to commute and different scaling laws are expected to emerge for Dr Ó= 0,
studying the case Dr = 0 can serve as an interesting first starting point to investigate the non-
trivial influence of activity on the details of the glass transition asymptotics. One might further
expect some similarities between the cases Dr = 0 and Dr Ó= 0 for systems below the glass
transition whose structural relaxation time is still exceeded by the persistence time τr, meaning
that the crossover behaviour for t ≫ τr is cancelled. Moreover, the case Dr = 0 can serve as a
simplified model to study active systems with arrested rotational degrees of freedom, be it dense
suspensions of self-propelled elongated particles or spherical active particles with rough surfaces
that experience strong contact friction forces at high densities.

Asymptotic expansions of MCT equations have been worked out in great detail for passive mix-
tures [38] and first results have already been presented for the monodisperse ABP-MCT with
Dr = 0 [96]. In the latter case, the calculations can be conducted exactly as same as for the the-
ory of passive mixtures and do not provide any new insights. The following steps therefore only
aim to sketch the readily known standard MCT-asymptotics and are focused to summarize the
necessary quantities to predict the divergence behaviour of the α-relaxation process. This is in
particular interest in the context of this work as this allows to characterize transport coefficients
close to dynamical arrest. For a more rigorous derivation of the MCT-asymptotics with addi-
tional higher-order expansions, the reader is referred to [38,78].

Let therefore be Dα
r = 0 for all α in the following. The starting point of an asymptotic description

close to the glass transition point is to note, that the ISF evolves very close to the non-ergodicity
parameter where ∂tS(þq, t) = 0. This leads to a preliminary assumption of a power series at
the critical point where the difference to the plateau value is regarded as a small quantity,
i.e.,

S(þq, t) − f c(þq ) ∼ h(þq )(t/t0)−a + O(t/t0)−2a), t ≫ t0, (3.2.2)

where t0 denotes a typical time scale of the short-time relexation and a denotes an unknown
exponent for now. Exploiting the identity ∂t

´ t
0 dt′ f(t−t′)g(t′) =

´ t
0 dt′ f(t−t′)∂t′g(t′)+f(t)g(0),

the Mori-Zwanzig equation can written as

S(þq, t) = S(q)M(þq, t)S(q) − S(q)∂t

ˆ t

0
dt′ M(þq, t − t′)S(þq, t′), (3.2.3)

where the abbrevation M(þq, t) := ω−1(þq )m(þq, t)ω−1(þq ) has been introduced. Inserting the
expansion for S(þq, t) in the EOM and exploiting the identity

∂t

ˆ t

0
dt′ (t − t′)−xt′−y =

Γ(1 − x)Γ(1 − y)

Γ(1 − x − y)
t−x−y (3.2.4)

allows counting powers in t which yields self-consistent equations for f c(þq ) and the so-called
critical amplitude h(þq ). Counting terms of order t0 and dropping the þq-dependence for brevity
reveals

f c + Sc M [f c, f c](f c − Sc) = 0, (3.2.5)
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3.2. Asymptotic Equations

with the superscript c denoting critical quantities at the transition point. This is nothing but
equation (3.2.1) evaluated at the critical point for vanishing rotational diffusion coefficients.
Collecting terms in t−a shows

h = 2(Sc − f c)M [f c, h](Sc − f c) := C [h], (3.2.6)

which has been expressed in terms of an eigenvalue equation for the left eigenvector h induced
by the linear map C[h]. Correspondingly there exists a right eigenvector ĥ of C which fulfils
ĥC = ĥ. Both left and right eigenvectors are uniquely determined up to two normalization
coefficients, where it will prove to be convenient to fix the following conditions to simplify later
occuring terms:

ĥ† : h = 1, (3.2.7)

ĥ† : h(Sc − f c)−1h = 1. (3.2.8)

Here the contraction operator : was defined as

A : B :=
∑

þq, l1,l2
γ1,γ2

Aγ1,γ2

l1,l2
(þq )Bγ2,γ1

l2,l1
(þq ). (3.2.9)

The introduced quantities are sufficient to calculate the exponent a which describes the initial
decay towards the plateau value. This exponent is linked to the so-called exponent parameter
λ for which the following relationship can be derived by extending the expansion to the next
higher order [38]:

λ :=
Γ(1 − a)2

Γ(1 − 2a)
= ĥ† : (Sc − f c)M [h, h](Sc − f c). (3.2.10)

For times that exceed typical microscopic time scales of the system, MCT states that all cor-
relation functions will evolve close to the plateau value according to the same power-law with
exponent a on a certain time window tσ. It can be shown that this time scale grows like
tσ ∼ |σ|−1/2a, where σ is in first-order linear in the separation parameter ǫ = (φ − φc)/φc that
defines the distance to the glass transition point. If ǫ < 0 another time-window t

′

σ emerges for
t ≫ tσ that describes the transition towards the final α-relaxation regime. A nontrivial state-
ment of MCT ist that the scaling laws for the ISF towards the α-regime can be obtained by the
replacement a → −b in the previous expansion, which reveals the well-known von-Schweidler
law with an exponent b that fulfils

λ =
Γ(1 + b)2

Γ(1 + 2b)
. (3.2.11)

A further statement that can be derived within the MCT expansion is that the implying
time-window of the α-relaxation process diverges like t′

σ ∼ |σ|−γ , with the non-universal ex-
ponent

γ :=
1

2a
+

1

2b
. (3.2.12)

The resulting divergence behaviour simultaneously holds for the ISFs of all wavenumbers, which
is one of the central cornerstones of MCT. This is of particular interest in the context of
this work since transport coefficients predicted from MCT are nothing but functionals of the
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3. Mode-Coupling Equations

ISF, meaning that they are well-specified with the knowledge of the α-relaxation time. Con-
sequently, transport coefficients close to the critical point predicted from MCT follow the
same power-law with exponent γ that can be derived by calculating the exponent parameter
λ.

3.3 Tagged Particle Dynamics

The ABP-MCT for mixtures includes the specific case in which a single tracer particle is im-
mersed in a surrounding bath. This scenario is of particular interest in the context of experiments
and simulations where the statistics of single-particle quantities is far easier accessible rather
than those of collective quantities. It further allows to study different interesting scenarios,
like the motion of an active tracer particle in a host of passive hard-disks or the response of
a passive particle to an active bath. Last but not least, studying the tagged particle dynam-
ics in the limit of low wavenumbers gives rises to equations of motion for the MSD as seen
later.

The tagged particle shall be charaterized by the coordinates Γs = (þrs, θs) and ABP parameters
(Ds

t , Ds
r, vs

0) furtheron. This means that the evolution of the probability density of the combined
phase space Γ = Γs × Γb of bath- and tracer particles is determined by the total Smoluchowski
operator given by Ω = Ωs + Ωb with

Ωs = þ∇s

(

þ∇s − β þFs

)

+ Ds
r∂2

θs
− vs

0
þ∇ · þos. (3.3.1)

In the following, it will be convenient to introduce the concentration resolved fluctuating density
which results in a concentration rescaled ISF as follows:

ρ̃ α
l (þq ) :=

1√
xα

ρα
l (þq ), S̃α,β(þq, t) :=

1
√

xαxβ
Sα,β(þq, t). (3.3.2)

The quantity of interest that characterizes the dynamics of the tracer particle in the bath is the
self-intermediate scattering function (SISF) defined as

S̃s,s
l,l′ (þq, t) := Ss

l,l′(þq, t) =
〈

ρ̃ s
l (þq )∗eΩ†tρ̃ s

l′(þq )
〉

, (3.3.3)

where the introduction of a rescaled density has ensured Ss(þq, t) ∼ O(1) as desired. An equation
of motion for Ss(þq, t) can be derived from equation (3.1.41) by considering a (r + 1) component
mixture in the limit of a dilute tracer density xs → 0. The time evolution of the concentration
resolved ISF reads

∂tS̃(þq, t) + ω̃(þq )S̃−1(q)S̃(þq, t) +

ˆ t

0
dt′ m̃(þq, t − t′)ω̃−1

T (þq )
(
∂tS̃(þq, t′) + ω̃RS̃−1(q)S̃(þq, t′)

)
= 0,

(3.3.4)
where the tilted quantities are defined as in (3.3.2). It is further instructive to consider a
schematic representation, where tagged- and collective contributions are split into different
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3.3. Tagged Particle Dynamics

blocks. Following equation (3.1.6) one finds in leading order of xs that

S̃−1(þq ) =

(

 2ΛL+1 −ρcb,s√
xs

−ρcs,b√xs (S̃−1)b,b

)

, (3.3.5)

where the first row and first column accounts for tagged particle variables. An inversion of this
matrix can be performed by exploiting a matrix-inversion formula for block matrixes. Let K =

C
(2ΛL+1)×(2ΛL+1) and let A ∈ K

1×1, D ∈ K
r×r be square matrices with A invertible, B ∈ K

1×r

and C ∈ K
r×1 matrices with D−CA−1B invertible then there holds

(

A B

C D

)−1

=

(

A−1 + A−1B(D − CA−1B)−1CA −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)

. (3.3.6)

Applying this formula to (3.3.5) reveals

S̃(q) =

(

 2ΛL+1 −ρS̃b,b · cb,s√
xs

−ρcs,b · S̃b,b√xs S̃b,b

)

+ O(xs). (3.3.7)

This implies that a schematic representation of the frequency-matrix reads

ω̃(þq ) =

(

ωs(þq ) O(
√

xs)

O(
√

xs) ω̃b,b

)

+ O(xs), (3.3.8)

with the tagged particle frequency matrix ωs(þq ) := −〈ρ̃s
l (þq )∗

Ω
†ρs

l′(þq )〉 = ωs
T (þq )+ωR where the

matrix elements are

ωs
T,l,l′(þq ) = Ds

t q2 − i
vs

0q

2
e−i(l−l′)ϕq δ|l−l′|,1, ωR,l,l′ = Ds

rl2δl,l′ . (3.3.9)

The inversion of ω̃T (þq ) directly follows from (3.3.6) and reads schematically

ω̃−1
T (þq ) =

(

ωs−1

T O(
√

xs)

O(
√

xs) (ω̃b,b
T )−1

)

+ O(xs). (3.3.10)

By knowing the scaling behaviour of the structure factor with the tracer density, a tedious
inspection of all terms in equation (3.1.47) that is not elaborated here shows that m̃α,β takes a
similar form and can be written as

m̃(þq, t) =

(

ms O(
√

xs)

O(
√

xs) m̃b,b

)

+ O(xs), (3.3.11)

with the tracer memory-kernel ms(þq, t) := m̃s,s(þq, t) ∼ O(1). One can also show that all cou-
plings to tracer variables vanish in the limit xs → 0 in m̃b,b. This expected since a vanishing small
concentration of tracer particles will not be detectable in the dynamics of the bath in the ther-
modynamic limit. Extraction of the (s, s) component from equation (3.3.4) in leading order of xs
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subsequently allows to derive an equation of motion for the SISF:

∂tS
s(þq, t) = −ωs(þq )Ss(þq, t) −

ˆ t

0
dt′ms(þq, t − t′)ωs−1

T (þq )
[

∂t′Ss(þq, t′) + ωs
RSs(þq, t′)

]

. (3.3.12)

One further makes the same observation as in passive MCT that ms(þq, t) does not couple to
mixed correlation functions between tracer and bath variables in leading order of xs. As derived
in detail in appendix A.2 the contributing parts of the tracer memory-kernel can then be written
as

ms
l,l′(þq, t) ≈ ρ

ˆ

d2p

(2π)2

∑

l1,l2
γ1 Ó=s,γ2 Ó=s

Vs,γ1,γ2

l,l1,l2
(þq, þq − þp) Ss

l2,l′(þp, t) Sγ1,γ2

l1,0 (þq − þp, t), (3.3.13)

with a static vertex function Vs(þq,þk) = Veq(þq,þk) + δV(þq,þk) that combines an equilibrium part
exactly given as from passive MCT and an active contribution explicity entered by the activities
of both bath and tracer particles. The vertex functions are

(
Veq

)s,γ1,γ2

l,l1,l2
(þq,þk) = (Ds

t )2cγ1,s(k)cγ2,s(k)(þq · þk)2δl,l2δl1,0,

δVs,γ1,γ2

l,l1,l2
(þq,þk) = iDs

t

þq · þk

2
ke−i(l−l1−l2)ϕk

∑

ǫÓ=s

cǫ,s(k)cγ2,s(k)
(

vγ1

0

Sǫ,γ1(k)

xγ1

δl,l2 − vs
0δγ1,ǫδl1,0

)

δ|l−l1−l2|,1,

(3.3.14)

where the interaction between tracer and bath is entered through the tracer-bath direct corre-
lation functions cα,s(k). An alternate derivation of these equations in a monodisperse system
has already been carried out in [84] by following the strategy to use a mixed density projection
operator given by

Ps
2 :=

∑

1,2,3,4

∣
∣ρs

1ρ2
〉
gs

1,2,3,4

〈
ρs∗

3 ρ∗
4

∣
∣ (3.3.15)

to derive the mode-coupling approximation for the tracer memory-kernel. This ansatz incor-
porates the interaction between bath and tracer particles through product states of respective
densities. The result is fully consistent with that through the theory of mixtures presented here
which offers a generalization to arbitrary tracer environments.

In analogy to equation (3.2.5) there follows an algebraic equation for non-ergodicity parameter
f s(þq ) of the tracer particle in the case Ds

r = 0 given by

f s(þq ) + ωs−1

(þq )ms[f , f s]ωs−1

(þq )
(
f s(þq ) −  

)
= 0, (3.3.16)

where ms[f , f s] denotes an evaluation of ms where the correlation functions have been replaced
by f(þq ) and f s(þq ).

3.3.1 Exact Inversion

Due to the simplified structure of the tagged particle frequency matrix, it is possible to obtain an
exact inversion formula for its translational part ωs

Tl,l′
(þq ) for arbitrary values of the rotational
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3.3. Tagged Particle Dynamics

cutoff-number ΛL. This can be achieved by closing a recurrence relation for the inverse of
tridiagonal matrices [97] in the special case of Toeplitz matrices as it is ωs

T (þq ). A cumbersome
calculation that is skipped here reveals in the limit ΛL → ∞

ωs−1

Tl,l′
(þq ) = e−i(l−l′)ϕq

(
ivs

0q
)|l−l′|

∆
(
Ds

t q2 + ∆
)|l−l′| , ∆ :=

√

(Ds
t q2)2 + (vs

0q)2. (3.3.17)

This expression is straightforwardly verified by showing that ωs
T (þq) · ωs−1

T (þq) = is fulfilled
for arbitrary ΛL. It displays a peculiar behaviour for varying vs

0, that provides some insightful
interpretations. In figure 3.3.1, ωs−1

T0,0
(q) is plotted against q in a double logarithmic represen-

tation, with vs
0 varying by several orders of magnitude. There emerges a crossover from a 1/q2

behaviour, equally found for a passive tracer, to a 1/q behaviour at q ≈ vs
0/Ds

t . This crossover
can be rationalized by the motion of a free ABP, as the ballistic regime is only resolved on length
scales l ≫ lν = 2Ds

t /vs
0 that is accounted for by ωs−1

T0,0
(q) if 2π/q ≫ lν while the regime 2π/q ≪ lν

displays the features of passive Brownian diffusion. A further curious behaviour is seen when
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Figure 3.3.1.: Analytical solution for ωs−1

T0,0
according to equation (3.3.17) for different vs

0. Black

lines are 1/q and 1/q2 asymptotes as indicated.

comparing numerical solutions for ωs−1

T0,0
(q ) at finite cutoffs ΛL with the predictions from the

analytic expression, as presented in figure 3.3.2 (a)-(d). The solutions for finite ΛL reveal clear
deviations from the presented analytical expression below a certain crossover wavenumber, that
marks the emergence of different low-q asymptotes, depending on whether ΛL is chosen even or
odd. These discrepancies arise because for fixed ΛL the numerical inversion of the low-q asymp-
tote is considering the regime of small q · ΛL, whereas the true low-q asymptote that is relevant
for physical application is only correct in the limit q · ΛL → ∞ and this is always fulfilled for
the presented analytical expression. One further notes that to correctly resolve the behaviour
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3. Mode-coupling equations

of ωs−1

T0,0
(q ), the cutoff ΛL must be chosen larger with increasing vs

0. To correctly resolve the
behaviour in a regime of relevant wavenumbers for the integration of the memory-kernel, the
required ΛL quickly approaches regimes that are far beyond the MCT numerics, which complex-
ity rapidly increases with ΛL. This observation provides a hint for the instabilities that occur
at high self-propulsion velocities in the numerical routines that will be used later to solve the
ABP-MCT dynamics since the non-commutative behaviour of inversion and cutoff formation
presumably also occurs for the ISF in the numerical scheme and becomes most striking at large
v0.
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Figure 3.3.2.: (a)-(d) Comparison between numerical solutions of ωs−1

T0,0
at finite ΛL (dashed

coloured lines) with predictions from equation (3.3.17) (black solid lines) for different vs
0 and ΛL.

3.4 Hydrodynamic Limit and MSD

The dynamics of a tagged particle provides the theoretical basis to derive an equation of mo-
tion for the MSD of tracer particles in host environments. A fundamental relation between
the SISF and the MSD is seen by considering the limit of low-q in equation (3.3.3), which
reveals

δr2(t) = 1 − lim
q→0

(
4

q2
Ss

0,0(q, t)

)

. (3.4.1)
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3.4. Hydrodynamic limit and MSD

By extracting Ss
0,0(q, t) from equation (3.3.12) and inserting this relation yields an equivalent set

of coupled equations for δr2(t) of the tagged particle, reading

∂tδr2(t) + lim
þq→0

ˆ t

0
dt′ ∑

l

ms
0,l(þq, t − t′)ωs−1

Tl,0
(þq )∂t′δr2(t′) = 4Ds

t + lim
þq→0

4

q2

∑

±
ωs

0,±1Ss
±1,0(þq, t)

+ lim
þq→0

ˆ t

0
dt′ 4

q2

∑

l
l′ Ó=0

ms
0,l(þq, t − t′)ωs−1

Tl,l′
(þq )

[
∂t′Ss

l′,0(þq, t′) + l′2Ds
rSs

l′,0(þq, t′)
]
.

(3.4.2)

The structure of this equation exceeds the complexity of its passive version through additional
couplings to low-q Sl,0(þq, t) correlation functions. It is pointed out that the equation for the
MSD is invariant under the rotation of the wavevector þq according to the transformation law
given by equation (3.1.7), as it is expected since it results from the isotropic (0, 0) component.
Nevertheless, it still needs to be checked that all q → 0 terms are well-defined by inspecting the
low-q behaviour of all quantities that are involved. One first step to do so is to note that Sα,β

l,l′ (þq, t)

is of order q|l−l′|. This follows by observing that there only arise non-vanishing contribution from
the time evolution operator that result from a |l− l′|-fold action of δΩ

† on ρβ
l′(þq ) which generates

terms that are at least of order q|l−l′|.

This is sufficient to perform a first consistency check of the equation of motion for the MSD by
validating that it indeed reproduces the well-known analytic expression of the MSD for a free
ABP from equation (2.2.10). To do so it is convenient to introduce the q-independent isotropic
correlation function

φ̂s
±1,0(t) := lim

þq→0

1

q
e±iϕq Ss

±1,0(þq, t). (3.4.3)

For a free particle, the memory-integrals in equation (3.4.2) can be dropped which leads to the
following equation of motion for the MSD

∂tδr2 = 4Ds
t −

∑

±
2ivs

0φ̂s
±1,0(t). (3.4.4)

For vs
0 = 0, the trivial solution of a passive particle ∂tδr2 = 4Ds

t results. If vs
0 Ó= 0 there appear

couplings that fulfill

∂tS±1,0(þq, t) +
∑

l′

ωs
±1,l′S

s
l′,0(þq, t) =

∂tS±1,0(þq, t) + ωs
±1,0(þq )Ss

0,0(q, t) + ωs
±1,±1(q)Ss

±1,0(þq, t) + ωs
±1,±2(þq )Ss

±2,0(þq, t) = 0.

(3.4.5)

Checking the individual terms in the second line reveals that the first three are of order O(q)

while the last one is of order O(q3). Thus by multiplying both sides with (1/q)e±iϕq and taking
q → 0 yields

∂tφ̂
s
±1,0(t) =

ivs
0

2
− Ds

rφ̂s
±1,0(t), ⇒ φ̂s

±1,0(t) =
ivs

0

2Ds
r

(1 − e−Ds
rt), (3.4.6)
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3. Mode-coupling equations

where the initial condition Ss
±1,0(0) = 0 was used. Inserting this solution back into (3.4.4) and

performing an integration while using the initial condition δr2(0) = 0 finally results in equation
(2.2.10).

To solve the equation of motion for the MSD in the general case of interacting particles requires
to determine the hydrodynamic limits of the matrix elements of the memory-kernel and the
inverse of the translational part of the frequency matrix. The latter results for the trivial case
vs

0 = 0 of a passive tracer in ωs−1

Tl,l′
(þq ) = 1/q2δl,l′ . For vs

0 Ó= 0 a Taylor-expansion of (3.3.17)
shows the following expression in leading order of q:

ωs−1

Tl,l′
(þq ) = e−i(l−l′)ϕq i|l−l′|

[

1

vs
0q

− |l − l′|Ds
t

(vs
0)2

]

+ O(q). (3.4.7)

This means that the limits þq → 0 and vs
0 → 0 do not commute as the low-q asymptote changes

discontinuously from O(q−2) to O(q−1) when switching on the activity of the tracer particle. This
means that any small activity is detectable in the system if only the length scale that is observed
is chosen sufficiently large. It will also lead to entirely different equations of motion for the MSD
in the respective cases of passive and active tracers as seen below.

The low-q expansion of the tracer memory-kernel is presented in the following by starting with
an expansion of the vertex functions Veq(þq,þk) and δV(þq,þk) given by the equations in (3.3.14).
Setting þk = þq − þp and writing (þq · þk)k = (q2 − þq · þp ) k, one can exploit the Taylor-expansion
for a function of a scalar variable f(k) = f(p) − f ′(p)þq · þp/p + O(q2). Making further use
e±iαk = −e±iαp + O(þq · þeϕp) the Taylor expansion of the both equilibrium and non-equilibrium
in equation (3.3.14) read in leading order of q

(
Veq

)s,γ1,γ2

l,l1,l2
(þq,þk ) = (Ds

t )2cγ1,s(p)cγ2,s(p) (þq · þp )2 δl,l2δl1,0 + O(q3), (3.4.8)

δVs,γ1,γ2

l,l1,l2
(þq,þk) = i

Ds
t

2
e−i(l−l1−l2)ϕpδ|l−l1−l2|

{
(

(þq · þp )p − (þq · þp )2

p
− q2p

)

×
∑

ǫÓ=s

cǫ,s(p)cγ2,s(p)
(

vγ1

0

Sǫ,γ1(p)

xγ1

δl,l2 − vs
0cγ1,s(p)δl1,0δγ1,ǫ

)

− (þq · þp )2∂p

[ ∑

ǫÓ=s

cǫ,s(p)cγ2,s(p)
(

vγ1

0

Sǫ,γ1(p)

xγ1

δl,l2 − vs
0cγ1,s(p)δl1,0δγ1,ǫ

)]

+ O
(

(þq · þp )(þq · þeϕp)
)

}

+ O(q3).

(3.4.9)

It is convenient to introduces isotropized correlation functions as Ŝα,β
l,l′ (p, t) := ei(l−l′)ϕpSα,β

l,l′ (þp, t)

which allows to express the correlation functions that appear in the þp integration of equation
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3.4. Hydrodynamic limit and MSD

(3.3.13) in terms of

Ss
l2,l′(þp, t) = e−i(l2−l′)ϕpŜs

l2,l′(p, t),

Sγ1,γ2

l1,0 (þk, t) = e−il1(ϕp+π)
(

1 − þq · þp

p
∂p + O(þq · þeϕp)

)

Ŝγ1,γ2

l1,0 (p, t) + O(q2).
(3.4.10)

After inserting the expansions (3.4.8), (3.4.9) and (3.4.10) into equation (3.3.13), the þp inte-
gration is performed in polar coordinates, where the ϕp integration can be done analytically.
The resulting matrix elements of the tracer memory-kernel that will be relevant for the latter
calculation of the MSD are given in leading order in q as follows:

(
meq

)s

0,0
(þq, t) = (Ds

t q)2 ρ

4π

ˆ ∞

0
dp

∑

γ1 Ó=s,γ2 Ó=s

p3cγ1,s(p)cγ2,s(p)Ŝs
0,0(p, t)Ŝγ1,γ2

0,0 (p, t) + O(q3), (3.4.11)

δms
0,0(þq, t) = iDs

t q2 ρ

8π

ˆ ∞

0
dp

∑

ǫÓ=s
γ1 Ó=s,γ2 Ó=s

{

vγ1

0 ∂p

[

p3cǫ,s(p)cγ2,s(p)
Sǫ,γ1(p)

xγ1

∑

±
Ŝγ1,γ2

±1,0 (p, t)
]

Ŝs
0,0(p, t)

+ vs
0∂p

[

p3cǫ,s(p)cγ2,s(p)δǫ,γ1
Ŝγ1,γ2

0,0 (p, t)
] ∑

±
Ŝs

±1,0(p, t)

}

+ O(q3),

(3.4.12)

δms
0,l(þq, t) = − iδ|l|,1eilϕq Ds

t q
ρ

8π

ˆ ∞

0
dp

∑

ǫÓ=s
γ1 Ó=s,γ2 Ó=s

p3cǫ,s(p)cγ2,s(p)

{

vγ1

0

Sǫ,γ1(p)

xγ1

Ŝs
0,l(p, t)

∑

±
Ŝγ1,γ2

±1,0 (p, t)

+ vs
0δǫ,γ1

∑

±
Ŝs

l,±1(p, t)Ŝγ1,γ2

0,0 (p, t)

}

+ O(q2),

(3.4.13)

δms
l,0(þq, t) = − iδ|l|,1e−ilϕq Ds

t q
ρ

8π

ˆ ∞

0
dp

∑

ǫÓ=s
γ1 Ó=s,γ2 Ó=s

p3cǫ,s(p)cγ2,s(p)

{

vγ1

0

Sǫ,γ1(p)

xγ1

∑

±
Ŝs

l,0(p, t)Ŝγ1,γ2

±1,0 (p, t)

+ vs
0δǫ,γ1

∑

±
Ŝs

l±1,0(p, t)Ŝγ1,γ2

0,0 (p, t)

}

+ O(q2),

(3.4.14)

where any other ms
l,l′(þq, t) shows to be of order O(q) for |l − l′| = 1 and of order O(q2) else.

Having determined the low-q behaviour of all quantities, the resulting equations of motion for
δr2(t) after performing the limits in equation (3.4.2) are given in the following by distinguishing
the scenarios of active and passive tracer particles. This is necessary because there arise different
equation of motion as one notes that the components of the memory-kernel that couple in leading
order to δr2(t) change in the respective scenarios. As derived in detail in appendix A.3.1 the
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equation of motion for a passive tracer reads

∂tδr2(t) + Ds
t

ˆ t

0
dt′m̂s(t − t′)δr2(t′) = 4Ds

t ,

m̂s(t) := lim
q→0

1

(Ds
t q)2

(

(meq)s
0,0(þq, t) + δms

0,0(þq, t)
)

.

(3.4.15)

This is the same equation that is already known from passive MCT, but with an extra memory-
kernel δms

0,0(þq, t). The activity of the host particles is being entered in two different ways. On
the one hand, there arises an implicit contribution through a faster relaxation of the S0,0(þq, t)

correlation function within (meq)s
0,0(þq, t) when increasing activity. This can be seen as a renor-

malization of the density as activity shifts the glass transition density. On the other hand,
there emerges an explicit activity-induced term δms

0,0(þq, t) that translates typical features of ac-
tive motion like superdiffusive behaviour to the passive particle through couplings to Sα,β

±1,0(þq, t)

correlation functions of the active bath.

The equation of motion for δr2(t) in the case of an active tracer particle becomes more com-
plicated because additional couplings to low-q Sl,0(q, t) correlation functions are involved, that
are governed by a separate equation of motion. Using the expansions for the memory-kernels
and equation (3.4.7), the same structure as for the free particle is observed that only φ̂s

±1,0(t)

correlators surive in leading order of q. As derived in detail in appendix A.3.2 the equation of
motion for δr2(t) is given by

∂tδr2(t) +
i

vs
0

ˆ t

0
dt′ ∑

±
m̂s

0,±1(t − t′)∂t′δr2(t′) = 4Ds
t −

∑

±
2ivs

0φ̂s
±1,0(t)

+
4i

vs
0

ˆ t

0
dt′m̂s

0,0(t − t′)
∑

±

[
∂t′ φ̂s

±1,0(t′) + Ds
rφ̂s

±1,0(t′)
]
,

+
4Ds

t

(vs
0)2

ˆ t

0
dt′ ∑

±
m̂s

0,±1(t − t′)
∑

±

[
∂t′ φ̂s

±1,0(t′) + Ds
rφ̂s

±1,0(t′)
]
,

(3.4.16)

∂tφ̂
s
±1,0(t) =

ivs
0

2
− Ds

rφ̂s
±1,0(t) − i

vs
0

ˆ t

0
dt′m̂s

±1,0(t − t′)
∑

±

[
∂t′ φ̂s

±1,0(t′) + Ds
rφ̂s

±1,0(t′)
]
. (3.4.17)

Where the isotropized and q-independent memory-kernels are defined as

m̂s
l,l′(t) = lim

þq→0

q|l−l′|

q2
ei(l−l′)ϕq ms

l,l′(þq, t). (3.4.18)

If the system experiences dynamical arrest, the tracer particle remains in a localized state for
infinite times, meaning that limt→∞ δr2(t) approaches a constant, while becoming unbounded in
the fluid state. In the first case, the plateau value of the MSD indicates the localization length
of the tracer via the relation 4l2c = limt→∞ δr2(t) which can be calculated from the long-time
behaviour of the memory-kernels. This is achieved by dropping ∂tδr2(t) at long times wherein
the case of a passive tracer, both equations in (3.4.15) reveal

lc = 1/
√

lim
t→∞

m̂s(t). (3.4.19)
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3.5. ITT Effective Swimming Velocity

It is therefore possible to immediately calculate the localization length from the non-ergodicity
parameters f(þq ) and f s(þq ) by replacing the correlation functions in m̂s(t) with them. In the
specific case of Dr = 0, this constitutes an efficient way to calculate lc by using the self-consistent
iterative equations for f(þq ) and f s(þq ).

In the case of an active tracer, the equation for the localization length changes entirely and can
be obtained for Ds

r = 0 by

lim
t→∞

δr2(t) = lim
t→∞

vs
0

∑

± im̂s
0,±1(t)

[

4Ds
t −

∑

±
f̂s

±1,0

(

2ivs
0 − 4i

vs
0

m̂s
0,0(t) − 4Ds

t

(vs
0)2

∑

±
m̂s

0,±1(t)
)]

,

(3.4.20)
where the f̂±1,0 := limt→∞ φ̂±1,0(t) are obtained by

∑

±
f̂s

±1,0 =
(vs

0)2

limt→∞
∑

± m̂s
±1,0(t)

. (3.4.21)

3.5 ITT Effective Swimming Velocity

A transport coefficient that is specific for ABPs is given by the effective swimming velocity
which underlying definition stems from the projection of the velocity vector in the direction of
orientation. Both vectors are in general not expected to be equally aligned in an interacting
system as for a free self-propelled particle. The effective swimming velocity, therefore, accounts
for the reduction of motility through interactions with the host environment. An expression for
vα results from the overdamped Langevin-equation for þ̇r α

i by projecting on þo α
i and taking the

transient ensemble average. This yields

vα = vα
0 +

Dα
t β

Nα

Nα∑

i=1

〈

þF α
i · þo α

i

〉v0

. (3.5.1)

After applying the ITT formula (2.3.7) the effective swimming velocity is expressed as a Green-
Kubo integral by using δΩpeq = −β

∑

(j,γ)vγ
0

þF γ
j ·þo γ

j peq. This results in

Dα
t β

Nα

Nα∑

i=1

〈

þF α
i ·þo α

i

〉v0

= −Dα
t β2

Nα

Nα∑

i=1

∑

(j,γ)

vγ
0

ˆ ∞

0
dt

〈

þF γ
j ·þo γ

j eΩ†t þF α
i ·þo α

i

〉

= −Dα
t β2

Nα
lim
z→0

∑

γ

vγ
0 Cγ,α(z),

(3.5.2)
where the integral has been expressed in terms of the correlation function Cγ,α(z) in Laplace
space that reads

Cγ,α(z) :=
Nα∑

i=1

Nγ∑

j=1

〈

þF γ
j · þo γ

j (z − Ω
†)−1 þF α

i · þo α
i

〉

. (3.5.3)

This is a straightforward generalization of the Green-Kubo expression that has already been
derived and approximated in the framework of the linear-response theory [76] as well as in the
MCT-ITT approach [84] for a single-component active system. Before this MCT-ITT approach
can be extended to the theory of mixtures, the derived ITT expression demands some further
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treatment because the force-force correlation function that is involved obeys the same charac-
teristics as the diffusion memory-kernel in equation (3.1.15) close to the glass transition point,
meaning that it would easily violate vα < 0. Following the same technical steps as when rewrit-
ing the diffusion kernel in terms of a friction kernel the force-force correlator can be rewritten
in terms of an irreducible Smoluchowski operator by defining

Ω
†
irr := Ω

† − Dα
t β2

Nα

Nα∑

i=1

Nγ∑

j=1

∣
∣
∣ þF α

i · þo α
i

〉 〈

þF γ
j · þo γ

j

∣
∣
∣ . (3.5.4)

Inserting this expression into Cγ,α(z) and making use of the Dyson decomposition written in
Laplace space,

(z − A + B)−1 = (z − A)−1 + (z − A + B)−1B(z − A)−1, (3.5.5)

reveals a connection between Cγ,α(z) and Cγ,α
irr (z), where the latter is defined by replacing Ω

†

with Ω
†
irr in equation (3.5.3). One finds

Cγ,α(z) =
Cγ,α

irr (z)

1 + (Dα
t β2/Nα)Cγ,α

irr (z)
. (3.5.6)

Taking the limits z → 0 on both sides and transforming back to the time domain results
in

ˆ ∞

0
dt Cγ,α(t) =

´∞
0 dtCγ,α

irr (z)

1 + (Dα
t β2/Nα)

´∞
0 dt Cγ,α

irr (t)
. (3.5.7)

The irreducible correlator Cγ,α
irr (t) is suitable to be subject of the mode-coupling approximation

by inserting two-point projectors, viz.

Cγ,α
irr (t) ≈

Nα∑

i=1

Nγ∑

j=1

〈

þF γ
j · þo γ

j P2eΩ
†
irr

tP2
þF α

i · þo α
i

〉

. (3.5.8)

The calculation of the static vertex functions is presented in detail in appendix A.4 where it is
shown that the irreducible correlator that determines vα can be written after performing the
MCT approximation as

Dα
t β2

Nα
Cγ,α

irr (t) ≈ Dα
t ρ

8πxα

∑

γ1..γ4

l=±1,l′=±1

ˆ ∞

0
dp p3cγ1,γ2(p)cγ3,γ4(p)δγ,γ2

×
(

Ŝγ1,γ3

0,0 (p, t)Ŝγ2,γ4

l,l′ (p, t)δα,γ4
+ Ŝγ1,γ3

0,l (p, t)Ŝγ2,γ4

l′,0 (p, t)δα,γ3

)

.

(3.5.9)

Restricting to the effective swimming velocity v of a single component active system, this ex-
pression yields

v =
v0

1 + (Dtβ2/N)
´∞

0 dt Cirr(t)
, (3.5.10)

with Cirr(t) as given as in (3.5.9) by dropping all species indices and already derived in [84].
In this case, the mean effective swimming velocity exhibits an interesting connection with the
motility-induced phase separation: Although the ABP-MCT assumes the system to be homo-
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geneous and does not consider this phenomenon from first principle, the effective swimming
velocity can be exploited to construct an effective free energy functional, that yields a stability
criterion for a spinodal decomposition to occur in a homogeneous system [98]. This criterion
has been invoked in [84] to construct a MIPS transition diagram that has revealed qualitative
agreements with those reported from simulations.

A further implying special case of equation (3.5.9), that will be in the focus of interest in the
numerical analysis of the MCT equations later on is the effective swimming velocity vs of an
active tagged particle in a passive hard-disk environment. In this case the derived MCT-ITT
expression yields by taking the limit xs → 0

vs =
vs

0

1 + Ds
t β2
´∞

0 dtCs
irr(t)

, (3.5.11)

with an irreducible correlator given by

Ds
t β2Cs

irr(t) ≈ Ds
t ρ

8π

∑

γ1 Ó=s,γ2 Ó=s
l=±1,l′=±1

ˆ ∞

0
dp p3cγ1,s(p)cγ2,s(p)Ŝs

l,l′(p, t)Ŝγ1,γ2

0,0 (p, t).
(3.5.12)

Moreover one checks for the disappearance of an effective swimming velocity of a passive particle
type α in an active bath from equation (3.5.9) as an expected physical result. This is seen by
noting that there can only arise contributions for Cγ,α(t) correlators with γ Ó= α denoting active
particle types. But these correlators vanish as they are entered by Ŝγ,α

l,l′ (p, t) and Ŝγ1,α
0,l (p, t) that

both disappear for l, l′ Ó= 0.

3.6 ITT Zero-Shear Viscosity

A transport coefficient that quantifies the stress contributions arising in dense suspension close
to dynamical arrest is the zero-shear viscosity, denoted as η in the following. An approximate
expression for η can be derived by following the MCT-ITT approach by considering a system that
is subject to a constant shear-flow in one direction. In this case, the trajectories are governed
by the following overdamped Langevin-equation

dþr α
i = βDα

t
þF α

i dt +
√

2Dα
t d þW α

i + vα
0 þo α

i (θα
i )dt + κ · þr α

i dt,

dθα
i =

√

2Dα
r dW α

θi
.

(3.6.1)

Here κ denotes the flow tensor, which in the case of a a linear shear flow in x-direction with
a constant shear rate γ̇ is given by κx,y = γ̇ δa,xδb,y, fulfilling the incompressibility condition
tr(κ) = 0 with tr denoting the trace operator. Note that any flow gradient induces a constant
torque on all particles, that would have to be considered when discussing the dynamics of ABPs.
This term is neglected however as it vanishes in the case γ̇ → 0 that will be the only of interest
later on for the calculation of the zero-shear viscosity. The presented equations of motion can be
translated into an equivalent time evolution equation for the probability density that is driven

41



3. Mode-coupling equations

by the Smoluchowski operator

Ω =
∑

(i,α)

Dα
t

þ∇α
i

(

þ∇α
i − β þF α

i

)

+ Dα
r ∂2

θα
i

− vα
0

þ∇α
i · þo α

i − þ∇α
i κ · þr α

i , (3.6.2)

where an additional non-equilibrium pertubation in form of the shear flow emerges. To discimi-
nate the two types of non-equilibrium contributions, one splits δΩ = δΩ

v0 +δΩ
γ̇ . A macroscopic

variable that characerizes the stress contributions in the system is the (transient) shear stress
σx,y, defined as the transient average of the microscopic stress tensor σ̂x,y := −V −1 ∑

(i,α) F α
i,xrβ

i,y

as
σx,y :=

〈

σ̂x,y
〉v0,γ̇

= − 1

V

∑

(i,α)

〈

F α
i,x rα

i,y

〉v0,γ̇
. (3.6.3)

Applying the ITT formula requires to calculate the action of δΩ on the Boltzmann-distribution.
This results in

δΩ peq = −
∑

(i,α)

(
vα

0
þ∇α

i þo α
i + þ∇ α

i κ · þr α
i

)
peq = −

∑

(i,α)

vα
0 β þF α

i þo α
i peq + γ̇βV σ̂x,ypeq, (3.6.4)

and reveals a Green-Kubo type expression for the shear stress as given as follows

σx,y = −
∑

(i,α)

vα
0

ˆ ∞

0
dt

〈

β þF α
i þo α

i eΩ†tσ̂x,y
〉

+ γ̇βV

ˆ ∞

0
dt

〈

σ̂x,yeΩ†tσ̂x,y
〉

=
〈

σ̂x,y

〉v0

+
〈

σ̂x,y

〉γ̇
,

(3.6.5)

where 〈σ̂x,y
〉

= 0 was exploited in equilibrium. It is further noted that the associated struc-
ture of the Smoluchowski operator violates the translational invariance of the system due
to the shear flow term. This means that at finite shear rates, transient correlation func-
tions must account for this effect by including time-dependent advection of the wavevectors
[48]. However, these considerations can also be dispensed in the limit γ̇ → 0 performed later
on.

In a similar fashion as in the last section, the equilibrium averages in the definition of the shear
stress are approximated by inserting the two-point projectors given by equation (3.1.42) which
allows the MCT approximation to be applied once more, thus

σx,y ≈ −
∑

(i,α)

vα
0

ˆ ∞

0
dt

〈

þo α
i β þF α

i P2eΩ†tP2σ̂x,y
〉

+ γ̇βV

ˆ ∞

0
dt

〈

σ̂x,yP2eΩ†tP2σ̂x,y
〉

. (3.6.6)

The calculation of the static vertex functions is shifted to appendix A.5, revealing that the first
term, the explicit active contribution to the stress, vanishes1. The contributing term to the
zero-shear viscosity in the MCT-ITT approximation is

η = lim
γ̇→0

σx,y

γ̇
≈ ρ2

32πβ

ˆ ∞

0
dt

ˆ ∞

0
dq q3 tr

[(

S0,0(q, t)∂qc(q)
)2]

. (3.6.7)

1This should already hold from equation (3.6.5) before applying the MCT approximation by calculating powers of
Ω

† and calculating the equilibrium average, but is not easily seen.
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This means that the influence of activity is only implicitly entered in terms of its influence on
the S0,0(q, t) correlation functions. The shear viscosity in the limit of small shear rates is also
denoted as yield-viscosity and indicates the minimum work, that is required to break the global
cage structure of the system and restore the ergodicity in the system. It is therefore closely
related to the relaxation time which becomes clear for systems close to the glass transition point
where the integrand is dominated by the long-time contributions of the correlation functions. In
this case, η is well approximated by replacing the correlation functions with their plateau value
and the time integral is approximated by the relaxation time,

η ≈ ρ2

32πβ

ˆ ∞

0
dq q3 τα(q) tr

[(

f0,0(q)∂qc(q)
)2]

. (3.6.8)

This means that the decisive variable to characterize the stress contributions near the glass
transition point is the exponent parameter γ that describes the divergence of the τα(q). It
is therefore of great interest to investigate the non-trivial effect of activity on this divergence
behaviour by using the asymptotic expansion of the MCT equations presented in section 3.2.
Further, it is noted that by following the spirit of the ITT formalism only allows calculating
relative viscosity contributions, that stem from the perturbation of the hard-disk interaction,
meaning that both contributions of the solvent and single-particle contributions are entirely
left out. This yields a good approximation at medium and high densities since the solvent’s
contribution to the viscosity is in first-order in the density by noting the well-known Einstein
correction. But on the other hand, the lack to describe single-particle contributions inhibits
the investigation of diluted active particle systems for which intriguing viscosity contributions
on a single particle level have been reported which are designated to lead to a highly-debated
superfluid-like behaviour of active particles [99–101].
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4. Comparison with Simulations

As a central part of this work, this chapter is dedicated to a quantitative comparative study
between the predictions of the ABP-MCT and results from an event-driven Brownian dynamics
simulation with active Brownian hard-disks in two dimensions (BD in the following). The ABP-
MCT predictions for the collective dynamics of a monodisperse active system have already been
discussed in [47] and [84] focusing on the influence of the ABP parameters on the relaxation
time and the shape of the glass transition diagram. In this chapter, the different scenarios which
arise from the active and passive tagged particle dynamics in a monodisperse passive or active
environment shall be targeted. These scenarios are (i) an active tracer particle in a passive
environment, (ii) a passive tracer particle in an active environment, and (iii) and active tracer
particle in an identical active environment. Before presenting and discussing the results, a few
remarks about the simulation method and the numerical procedure to solve the mode-coupling
equations will be given, as well as the general methodology of how the results from both methods
can be quantitatively compared.

4.1 Event-Driven Active Brownian Dynamics Simulation

Event-driven Brownian dynamics is a well-established method to simulate a system of strictly
non-overlapping hard-disks. The idea of the algorithm is to combine the standard simulation
method of Brownian dynamics with an event-driven algorithm for a deterministic system of
hard-disks as proposed in [102]. The method has been validated to reproduce the correct 2-
particle displacement distribution according to the Smoluchowski equation in a system of passive
hard-disks [103] and can be straightforwardly adapted to systems of active particles [104]. The
procedure of the algorithm is to assign pseudo-velocities to both translational and rotational
degrees of freedom according to the Langevin equation of free Brownian motion after so-called
Brownian-events, and an additional drift velocity that accounts for an active self-propulsion.
The assignment of pseudo-velocities takes place after a fixed time unit, the Brownian-timestep
∆τb. Subsequently, all particles are propagated according to laws of ballistic motion in terms
of an event-driven algorithm by predicting and performing collision events over a variety of
collisions during ∆τb, whereby the collision rules are chosen to fulfil both energy and momentum
conservation.
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For the case that two particles i and j with radii Ri and Rj and masses mi and mj and separated
by þri,j = þri−þrj will collide in the future, the collision will occur after [105]

∆t =
−(þvi,j · þri,j) −

√

(þvi,j · þri,j)2 − v2
i,j

(
r2

i,j − (Ri + Rj)2
)

v2
i,j

, (4.1.1)

where the relative velocity þvi,j = þ̇ri,j was introduced. The velocities after the collision þv
′

i and þv
′

j

according to the laws of energy and momentum conservation are

þv
′

i = þvi − 2(þvi,j · þri,j)þri,j

(Ri + Rj)2
(
1 + mi/mj

) , þv
′

j = þvj +
2(þvi,j · þri,j)þri,j

(Ri + Rj)2
(
1 + mj/mi

) . (4.1.2)

Moreover, the particle masses must be chosen pursuant to m = ∆τb/(2βDt) to meet the re-
quirements of the FDT. This follows from the fictive velocity distribution of Brownian diffu-
sion to match the Maxwell-Boltzmann distribution [103]. This requires the masses to obey
miRj = mjRi to account for the Stokes-Einstein relation for the translational diffusion coeffi-
cients.

All simulations were carried out in a box with periodic boundary conditions and packing frac-
tions ranging from φBD = 0.5 − 0.80 with a constant number of particles N = 625, i.e., the
different densities have been achieved by varying the simulation box size. Mimicking the be-
haviour of an infinite system with a system with periodic boundary condition inevitably leads
to finite-size effects and additional care must also be taken to eliminate possible drifts both
of rotational and translational diffusion after assigning the pseudo-velocities through subtract-
ing the respective average velocities. Otherwise, this would lead to undesired artefacts that
are especially dangerous in the rotational degrees of freedom as there a drift would lead to
effectively enhanced rotational diffusion coefficients that would attenuate the long-time diffu-
sion.

As a monodisperse system of hard-disks would start to crystalize at φBD ≈ 0.69 and this
crystallization transition is not described by MCT, it has to be suppressed in the simulations.
This is known to be efficiently achieved by the introduction of a small size polydispersity, for
example in terms of a continuous particle diameter distribution, that was chosen according
to a Gaussian distribution with a standard deviation of 20% of the mean diameter. Such
polydispersity was observed to lead to a suppression of MIPS for the investigated parameter
regime and only homogeneous systems are considered in the present study, desirable in so far
as MIPS is also not accounted for by the ABP-MCT. Polydispersity is also a present feature in
almost all experimental colloidal systems and is inevitable for the experimental investigation of
glass-forming systems as seen later. Note that both crystallization and MIPS could just as well
have been prevented by using a binary mixture with properly chosen composition and size ratio.
However, polydispersity achieved in terms of a symmetrical diameter distribution can be better
approximated with a monodisperse system with a mean diameter which makes it more feasible
to compare the BD results to the monodisperse MCT outcomes.

On the other hand, the generation of well-equilibrated start configurations for systems with a
continuous diameter distribution is itself challenging regarding the considered density regime,
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as it already constitutes a non-trivial task to generate a non-overlapping arrangement of such a
system, since disposing the particles on a simple cubic lattice most probably creates forbidden
configurations for the high densities considered here. A method to generate an allowed polydis-
perse arrangement is described by the Lubachevsky–Stillinger algorithm [106] which proposes
to slowly increase the particle diameters of an initially monodisperse system. In addition to
the particle collisions, swelling events according to a swelling rate are implemented in which
particles are inflated with the restriction that they remaining non-overlapping. These swelling
events are performed until all particles are very close to the desired target diameter. Subse-
quently, the system needs to be equilibrated by ensuring a sufficient structural rearrangement
that becomes increasingly difficult at high densities due to the strong presence of the cageing ef-
fect in that regime. Achieving equilibrated start configurations has proven to be most efficiently
be achieved by evolving the systems purely by Newtonian-dynamics through switching off the
Brownian-events during that procedure since this ensures a quicker structural decorrelation of
the system.

Simulation results were obtained in terms of both transient averages over the initially equili-
brated state and stationary averages over all possible time-shifts between stationary states with
different obtained equilibrated start configurations for both the MSD and the SISF for a variety
of wavenumbers. To sufficiently sample the single-particle statistics and the heterogeneous cage
structures, 200 simulations were carried out for each set of parameters if the tagged particle
type has differed from the bath particle type, whereas 20 simulations have shown to be sufficient
to sample the statistics of a system with only one single active component. Unless otherwise
stated, all simulation results that will be shown in the following will refer to the stationary type
of averaging.

4.2 Density Mapping between MCT and BD

Solving MCT equations requires first and foremost an input for the static structure factors.
While previous investigations of the ABP-MCT carried out in [47] have been obtained by using
the hard-disk structure factors predicted by the theory of Baus and Colot [94], the hard-disk
structure factors used here were obtained from a density functional theory approach proposed
by Thorneywork et. al [95]. The latter theory additionally provides the tracer bath direct
correlation function for different size ratios of the tracer compared to the bath particle and
allow to calculate structure factors for arbitrary compositions. With this theory as an input, the
mode-coupling equations were solved with a time-decimation algorithm that is specially adapted
to the present structure of the Mori-Zwanzig equation with a hopping term and provides solutions
for the ISF and SISF over many decades in time. Details of the algorithm are presented in the
appendix of [47] and are not repeated here. Having successively determined both the ISF and
SISF, the low-q limits of the tagged particle memory-kernel can be computed and a similar time-
decimation scheme can be used to solve the equation of motion for δr2(t). All results presented
in this chapter were obtained on a uniform wavevector-grid with qmin = 2.5 and qmax = 40

with Nq = 128 grid points, were the wavevector integration has been carried out with a higher-
order open Newton-Cotes formula to account for the divergence at q → 0 that occurs in the
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wavenumber integration in 2D. Moreover, the rotational cutoff was chosen as ΛL = 1. This
set of parameters has provided numerically stable solution for self-propulsion velocities up to
v0 ∼ 8Dt/σ.

By using a bisection method that searches for the root of f0,0(q) as a function of φ in the passive
system, where f0,0(q) is determined through iteratively solving the algebraic equation (3.2.1)
for Dr = 0, the passive glass transition point was found at φc ≈ 0.6986, which is close to that
reported by Bayer et. for the same 2D system under usage of a structure factor taken from
a hypernetted chain approximation, bringing φc ≈ 0.6968 [107]. Besides the difference in the
structure factor, the deviation can also be attributed to the varying discretization scheme for the
wavenumber grid and different integration schemes. Either way, a very precise determination of
the transition point is not required in a comparative study with simulations since an equal density
mapping is not expected in the first place for several reasons. First of all, it is well-known from
former simulations in 2D [107] and 3D [50] that structure factors found in simulations generally
differ from those predicted by approximate theories. Most theories are capable to reproduce the
right peak position that stems from the hard-core volume exclusion and consistently reveals an
increasing local ordering in the form of sharper peaks when increasing the density. Correctly,
these peaks are also shifted to higher q values when increasing the density, but the effect of local
ordering shows to be overestimated resulting in a lower second peak as observed in simulations.
This peak height influences the outcome of the wavevector integration carried out in the MCT
calculations and results in an overestimation of the glass-formation tendency in MCT compared
to what is observed in simulations [51]. But even when incorporating the structure factors
obtained from the BD simulation as input for the MCT calculation as it was carried out in [51],
this still leads to discrepancies owing to the approximate nature of MCT whose degree of quality
is hard to quantify such that a parameter-free comparison is not possible even in that case and
requires a density-mapping between both methods. For this work, the deviations from such
a density-mapping should be minimized for an optimal investigation of activity effects. To
achieve such an optimal mapping, least-square fits of the SISFs from the passive BD at fixed
wavenumber q = 7.5 to the SISFs from the passive MCT have been carried out for several
densities. Results from these fits for different φBD are depicted in figure 4.2.1 (a) and show
a very good agreement in the whole range of fitted densities. The fit reveals a linear relation
between the densities from MCT and BD given by φBD = 1.651 · φMCT − 0.376, which is
additionally presented in the inset of figure 4.2.1 (a). With higher densities though, it becomes
apparent that the MCT underestimates the SISFs in an intermediate time window after the
short-time diffusion. This effect has also been reported for the ISF in a similar comparative
study between BD and MCT in 2D [52] and reveals the general weak point of MCT in the
description of the intermediate time regime. Still, the quantitative description of the final α-
relaxation phase and the resulting structural relaxation time whose prediction is the major
strength of MCT, is throughout satisfactory over the whole range of presented densities. Going
beyond this density range reveals a breakdown of the linear density-mapping is found, which can
be attributed to ergodicity-restoring effects in the simulations that are not captured by the MCT.
These effects stem from various origins and are reflected in deviations of the generalized Stokes-
Einstein relation in terms of a decoupling of self-diffusion and structural relaxation caused by
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cage-hopping effects [108] or dynamical heterogeneities [109]. To that reason, the investigations
of this thesis are largely limited to the density range where a linear mapping was still possible,
offering a good compromise between manageable simulation times and the emergence of a slow
structural dynamics.
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Figure 4.2.1.: (a) Ss
0,0(þq, t) of a passive tracer particle in the passive hard-disk system for a

fixed wavenumber q = 7.5 and different packing fractions φBD as indicated. Crosses show BD
simulation results, lines are least-square fits to the MCT predictions with resulting optimal φMCT

described by the linear fit φBD = 1.651φMCT − 0.376, shown as black line in the inset. (b)-(c)
Ss

0,0(þq, t) as in the main figure, but for fixed densities φBD = 0.73 and φBD = 0.77 each for
varying q.

To estimate the quality of the density mapping for the description of the SISF in a full range
of wavenumbers, additional correlation functions are shown in the figures 4.2.1 (b) and (c).
These correspond to the different maxima of the structure factor at q = 7.5, q = 12.5, q =

17.5 and the lowest accessible wavenumber q = 2.5 for MCT, each for the densities φBD =

0.73 and φBD = 0.77 in the respective figures. For the density, φBD = 0.77 the deviations
in the intermediate time range become visible again and do increase with higher wavenum-
bers, which can be attributed to the erroneous treatment of the short-time collision regime of
MCT.
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The performed MCT fits for the SISF could additionally be used as a basis for a comparison
between the MSDs. Although the fit for the SISF to the lowest wavenumber is well matched
between BD and MCT, systematic deviations in the limiting case q → 0, that is necesarry to
resolve the MSD, are to be expected, as documented in detail in [50] and [51]. Since this work
primarily aims for an investigation of the influence of the activity, it is important to minimize
these systematic deviations for an optimal comparison of the respective active systems. A
separate density adjustment for the comparison of MSDs between BD and MCT was therefore
performed, as shown in figure 4.2.2, that forms the basis for later comparisons of MSDs of active
particles. This comparison reveals a quantitatively satisfactory agreement over the entire density
range.
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Figure 4.2.2.: MSD of a passive tracer particle in the passive hard-disk system for different
packing fractions φBD as indicated. Crosses show BD simulation results, lines are MCT fits with
resulting optimal φMCT described by the linear fit ΦBD = 1.661φMCT − 0.337, shown as black
line in the inset.

4.3 Active Tracer in the Passive Bath

Having adjusted the densities from MCT and BD in an error-minimizing way, the results from
both methods shall now be compared in an active system. The discussion starts with the
scenario of an active tagged particle in a host system of passive hard-disks. In the simulations,
the diameter of the active tracer was chosen as the mean diameter of the passive bath particles.
All ABP parameters were identically chosen in both BD and MCT, and except for the density
no further parameters were adjusted.

4.3.1 Self-Intermediate Scattering Function

Before addressing the regime of high densities, it is worth to check if the BD simulations are
capable to confirm the theoretical prediction of the free particle SISFs developed in 3.1.2. The
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4.3. Active Tracer in the Passive Bath

agreement can be very well confirmed as demonstrated in figure 4.3.1 where numerical solutions
of equation 3.1.17 are compared with the simulation results. Both results exhibit the oscillatory
behaviour of S0,0(q, t) and S0,1(q · þey, t) in the intermediate wavenumber regime and the sim-
ulations confirm the long-time diffusive decay for S0,0(q, t). The comparison to the simulation
results also allows assessing the influence of the rotational cutoff number ΛL on the numerical
solutions of the Mori-Zwanzig equation. As demonstrated in figure 4.3.1, both solutions only
become quantitatively according if the matrix exponential to determine the SISFs is taken for
ΛL = 10, which is far beyond the limitations of the MCT numerics. Nevertheless, even ΛL = 1

as will be used to determine the SISFs in the mode-coupling approximation later on delivers
satisfactory results here.
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Figure 4.3.1.: SISFs of an active tracer particle in a diluted system of passive hard-disks at
fixed vs

0 = 8 and Ds
r = 1. Symbols show BD simulation results, solid lines are numerical solutions

of equation 3.1.17 for ΛL = 1, dashed lines for ΛL = 10. The blue dotted lines shows the low-q
prediction for q = 0.04 according to the long-time diffusion constant of a free ABP.

To test the ABP-MCT predictions for the tagged particle dynamics, SISFs at fixed density
φBD = 0.77 are presented the figures 4.3.2 (a)-(d) and 4.3.4 (a)-(d) for different self-propulsion
velocities each for Ds

r = 1 and Ds
r = 0.05 and compared to the corresponding simulation results.

It can be observed that the correlation functions are only weakly coupled to the activity of the
tracer and reveal a similar shape to those found for the corresponding passive tracer particle in
figure 4.2.1 (c). This observation can be reasoned by the weak influence of the tracer’s activity
on the surrounding cage structure in the presented parameter regime. A stronger variation can
therefore only be observed for small wavenumbers when resolving the behaviour of the tracer
particle on large length scales. This is best seen by investigating the α-relaxation times τ s

α(q),
defined as Ss

0,0(τα, q) = 0.1 as a function of the wavenumber as presented in the figures 4.3.3 and
4.3.5, where the trend of a stronger variation at low wavenumbers is confirmed in both MCT
and BD results for several densities, though the MCT results reveal a non-monotonic trend for
τ s

α(q) when increasing vs
0 at fixed Ds

r = 1 and φBD = 0.77 that cannot be confirmed from the
BD results.
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Figure 4.3.2.: (a)-(d) Ss
0,0(þq, t) of an active tracer particle in the passive hard-disk system for

different wavenumbers q and self-propulsion velocities vs
0 at fixed φBD = 0.77 and fixed Ds

r = 1.
Symbols show BD simulation results, lines are MCT fits with adjusted φMCT .
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Figure 4.3.3.: Relaxation times τ s
α(q) as a function of the wavenumber q for an active tracer
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Figure 4.3.4.: (a)-(d) Ss
0,0(þq, t) of an active tracer particle in the passive hard-disk system

for different wavenumbers q and self-propulsion velocities vs
0 at fixed φBD = 0.77 and fixed

Ds
r = 0.05. Symbols show BD simulation results, lines are MCT fits with adjusted φMCT .
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To address a parameter regime that goes beyond the stability range of the time-decimation algo-
rithm, further simulation results with larger vs

0 were carried out. The results are depicted in the
figures 4.3.6 (a)-(d) and reveal a notable influence on the structural dynamics if the activity of the
tracer is chosen sufficiently high. One can observe a significant influence on the correlation func-
tions in the entire wavenumber regime. From v0 = 64 on, the relaxation time is of similar order
as for the corresponding correlation functions of the free particle and exhibits the typical under-
shoots that is an indication of a pronounced ballistic motion.
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Figure 4.3.6.: (a)-(d) Ss
0,0(þq, t) of an active tracer particle in the passive hard-disk system for

different wavenumbers q and self-propulsion velocities vs
0 at fixed φBD = 0.77. Symbols show BD

simulation results, dashed lines are eye guides.

4.3.2 Mean-Squared Displacement

Results for the MSD that were obtained from both simulations and from the MCT predictions
by solving the equations (3.4.16) and (3.4.17) are shown in the figures 4.3.7 (a) and 4.3.8 (a)
each for different rotational diffusion coefficients Ds

r = 1 and Ds
r = 0.05 and various φBD as well

as the same vs
0 as discussed for the SISFs. The presented MSDs show a much stronger variation

both with vs
0 and Ds

r as the presented SISFs. This is expected as the MSD resolves the tagged
particle correlator for q → 0. Both ABP-MCT predictions and simulation results exhibit the
characteristic phases of anomalous diffusion in terms of a sub- and superdiffusive behaviour.
Like in the passive system, a short-time diffusive motion is seen with a subsequent transition
to a subdiffusive regime through the presence of the cageing effect. Whereas this subdiffusive
phase always arises, the subsequent superdiffusive behaviour as an already known feature of the
free active particle is not observed in all cases. Its emergence hinges on the interplay between
structural relaxation and the simultaneous decorrelation of the rotational degrees of freedom. If
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4.3. Active Tracer in the Passive Bath

the structural relaxation within the subdiffusive regime proceeds faster than the decorrelation
of the rotational degrees of freedom, a superdiffusive regime follows from the plateau until
the same crossover time τl towards the long time diffusion regime that has been derived for
a free active particle in equation (2.2.11). On the other hand, if the relaxation time exceeds
τl, superdiffusion is suppressed over the entire time-window as exemplarily demonstrated for
the MSDs with φ = 0.77 and Ds

r = 1. The free particle time scales also allow reasoning the
lack of superdiffusive behaviour before the plateau in the presented parameter regime from the
crossover time scale τν that indicates the transition from the short-time diffusive to the ballistic
regime because the associated length scale lν always exceeds the localization length lc ≈ 0.1σ

of the tracer particle, meaning that collisions arise which hinder the subsequent superdiffusive
behaviour through the cageing effect. As expected, the ultimate stage of the MSDs follows
a long-time diffusive behaviour according to an effective diffusion constant that increases both
with the self-propulsion velocity and the persistence time, but is far weaker than in the free ABP
system. For the parameter regime that lacks superdiffusive behaviour (Ds

r = 1, φBD = 0.77)
the influence of the activitiy of the tracer can be assessed with a mapping to the motion of a
passive tracer with a reduced effective density φBD

eff as depicted as black dotted lines in figure
4.3.7.

The different stages of anomalous diffusion are best seen in time-dependent local diffusion expo-
nents α(t) that were additionally extracted from the MSDs for MCT and BD results. Writing the
MSD in terms of δr2(t) ∼ tα, these local diffusion exponents are determined with the logarithmic
derivative as

α(t) = t
d

dt
ln δr2(t). (4.3.1)

This allows for a precise identification of the transitions between subdiffusive (α < 1) to diffusive
(α = 1) and superdiffusive (α > 1) behaviour. The resulting α(t) for the presented MSDs are
additionally depicted in the figures 4.3.7 (b)-(e) and 4.3.8 (b)-(e) each for fixed self-propulsion
velocities and all densities. As an additional reference, the exponents of the free particle as
well as its transition times determined from equation (2.2.12) and (2.2.11) are shown. These
exponents consistently reveal the occurrence of cageing in form of pronounced minima and
the enhancement of superdiffusion with increasing persistence lenghts. Furtheron they confirm
that superdiffusive behaviour can be supressed in the entire time window which is the case for
φBD = 0.77 and Ds

r = 1.

The physical effects which have been reasoned to explain the emergence of sub- and superdif-
fusive behaviour are consistently described by both the ABP-MCT predictions and simulation
results. The agreement is even of quantitative nature in some parts which is notable in view of
several sources of errors that hamper the comparison between both methods, as the influence of
polydispersity in the simulations or finite size effects. On the other hand, the general approxi-
mate nature of the MCT results is not quantifiable. A further striking observation is the overall
agreement despite different kinds of averaging in terms of transient MCT results and stationary
BD results which suggests that these differences do not seem to be relevant for the qualitative
outcomes in the parameter regimes that were addressed here.
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Figure 4.3.7.: (a) MSD of an active tracer in a passive hard-disk environment for different
self-propulsion velocites vs

0 and packing fractions φBD at fixed rotational diffusion coefficient
Ds

r = 1. Symbols are simulation results, lines are MCT results with adjusted densities φMCT .
Black dotted lines are fits to a passive system with an effective density, with φeff

BD indicated in the
inset. (b)-(e) Local diffusion exponents α(t). The black solid line shows the analytical solution
according to the free particle MSD. The dashed line represents τν , the dashed dotted line τl.
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Figure 4.3.8.: (a) MSD of an active tracer in a passive hard-disk environment for different self-
propulsion velocites vs

0 and packing fractions φBD at fixed rotational diffusion coefficient Ds
r =

0.05. Symbols are simulation results, lines are MCT results with adjusted densities φMCT . (b)-
(e) Local diffusion exponents α(t). The black solid line shows the analytical solution according
to the free particle MSD. The dashed line represents τν , the dashed dotted line τl.
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The results for the MSD confirm the observation made for the tagged particle dynamics that
activity of the tracer does only lead to a slight reduction of the structural relaxation time, seen
by the fact that increasing vs

0 does not lead to a faster emergence of superdiffusive behaviour.
This is the main reason that explains the good agreement of the ABP-MCT predictions with the
simulation results without the necessity of fitting any parameters except for the density because
the motion of the particle is well characterized by the knowledge of the free particle time scales
and the structural relaxation time. Both time scales are well-matched since the former is an
intrinsic parameter of the ABP and the latter is adjusted through the density mapping between
the passive MSDs from BD and MCT. Still, it needs to be stressed out that the reliable predic-
tions of MSDs by the ABP-MCT is through its feasibility to correctly include the competition
between both time scales as a central part of the theory.

Alike as for the tagged particle dynamics, figure 4.3.9 addresses MSDs obtained from simula-
tions that go beyond the self-propulsion velocities of the stability range of the time-decimation
algorithm and correspond to the SISFs depicted in figure 4.3.6 (a)-(d). The presented MSDs
confirm the conjecture of a significantly enhanced structural relaxation at very high activities
of the tracer particle. This behaviour is reflected in an attenuated plateau phase leading to a
relaxation time that is roughly decreased by one decade if vs

0 is doubled, consistently seen for
the corresponding SISFs in figure 4.3.4 (a)-(d). Interestingly, the motion of the active tracer
shares the features of a free ABP if vs

0 is chosen sufficiently high. As seen for vs
0 = 128 the MSD

of the tracer can be mapped to that of a free particle with an effectively reduced self-propulsion
velocity vs

0eff
= 16 over a large time window, additionally depicted in the figure as a black line.

This is consistently seen for the SISF that exhibits the typical undershoots of the free particle
solution.

A condition for the emergence of superdiffusive behaviour before the plateau region can be
written as lν < lloc where lloc denotes a typical localization length of the active tracer in the
passive hard-disk environment. This length scale is indicated by the plateau height of the MSD
and the critical localization length at the glass transition point lc ≈ 0.1σ represents an estimate
for a lower bound for lloc. Figure 4.3.10 (a) and (b) show the MSDs and respective diffusion
exponents resulting from BD and MCT for parameters in the sense of lν < lloc at constant
Péclet number Pe = 16. Both methods confirm the emergence of a superdiffusive behaviour in
the short-time regime, but only the simulations resolve an expected subdiffusive plateau regime,
while the MCT solutions suggest an immediate transition to a long-time diffusive behaviour that
is reflected in a quick decay of the memory-kernel after the short-time dynamics. This failure
of MCT points to issues that are related to the approximation of the memory-kernel in the
present parameter regime and illustrate the general difficulties to achieve the regime of high self-
propulsion velocities, even if the persistence time is kept small.

The simulation results reveal that the MSDs collapse in the long-time diffusive regime according
to an effective diffusion constant as seen for the solution for the MSD of the free particle at
constant Péclet number. This observation gives rises to an attempt to circumvent the numerical
issues related to the mode-coupling equations in the spirit of an effective diffusion mapping
approach of the memory-kernel by following the idea of replacing Ds

t → Ds
t (1 + Pes) in the

equation of motion (3.4.15) for the MSD of a passive tracer in a passive hard-disk environment.
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Figure 4.3.9.: Simulation results for the MSD of an active tracer particle in a passive hard-disk
environment for the same ABP parameters as in figure 4.3.6 (a)-(d). The black line shows the
analytical solution of a free active particle for vs

0 = 16 and Ds
r = 0.05.

This solution is shown as black dashed line in 4.3.10 (a), but also fails to describe the long-time
diffusive regime consistently with the simulation results and demonstrates that such mappings
on a single Péclet number that are well established in the case of diluted systems need be treated
with caution when addressing the regime of high densities.

The further discussion is dedicated to a more detailed analysis of the long-time diffusive con-
stants extracted through 4DL

t = δr2(tmax)/tmax from both the ABP-MCT predictions and
the simulation results. The influence of the packing fraction on the long-time diffusion coef-
ficients at a constant rotational diffusion coefficient Ds

r = 1 and several vs
0 is depicted in figure

4.3.11. Here the MCT results predict the expected characteristic power-law behaviour according
to

DL
t (φ) ∼ (φc − φ)γ (4.3.2)

when approaching the glass transition. This power-law can also be verified by corresponding fits
that are represented as black dotted lines for densities close to the glass transition. These fits do
predict identical φc for the respective vs

0 as well as exponent parameters γ for all presented curves.
The idealized power-law is not reproduced in the simulations, where the diffusion constants show
an inflexion point near the divergent density predicted from the MCT fits instead. This is an
expected observation, that can be reasoned by the emergence of ergodicity restoring effects
not considered by MCT and have already been mentioned in the previous section. As it was
already evident for the presented MSDs, the enhancement of the long-time diffusion both with
increasing self-propulsion velocity and decreasing density is qualitatively well-confirmed by both
methods while the agreement becomes quantitatively satisfying for high densities, which are
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Figure 4.3.10.: (a) MSD of an active tracer in the passive hard-disk system for a fixed tracer
Péclet number Pes = 16 and fixed φBD = 0.73 for different lν and ll. Symbols are simula-
tion results, lines are ABP-MCT predictions with adjusted densities φMCT (b) Local diffusion
exponents α(t).

still not too close to the divergence point of MCT. Major deviations are particularly reflected
in a stronger amplification of the long-time diffusive behaviour by increasing the self-propulsion
velocities in the regime of the lowest presented densities and these effects amplify with increasing
vs

0.

Figure 4.3.12 depicts the long-time diffusion constants as a function of the tracer’s Péclet number
Pes for both MCT and BD predictions at different densities and rotational diffusion coefficients.
Upon reaching a certain threshold value of the Péclet number, both MCT and BD predict
a strong amplification of the long-time diffusion constant, which indicates the emergence of
superdiffusive behaviour. On the other hand, if superdiffusion is suppressed, the increase of
the Péclet number barely influences the long-time diffusion only through the slightly stronger
cage breaking ability of the tracer particle. The comparison between MCT and BD results
reveals largely quantitative agreements in the entire parameter range and underlines the reliable
prediction of transport coefficients by the presented ABP-MCT.

It is further instructive to check in more detail how the long-time diffusion coefficient scales
with the Péclet number by validating an approach in the spirit of an effective-diffusion map-
ping

DL
t = DL

t (φ, Pes → 0)(1 + Peeff), (4.3.3)

with DL
t (φ, Pes → 0) denoting the long-time diffusion of the passive tracer and some parameter-

dependent effective Péclet number Peeff. As this expression becomes exact for φ → 0 and
Peeff = Pe, one can check if a simple approach in terms of a rescaling Peeff = αPe with
0 ≤ α ≤ is capable to match the results for DL

t (φ). Whereas a simple-minded approach for
α = 1 fails (black dotted line), one can find φ- and Ds

r- dependent α that convincingly describes
the dependence of DL

t in the whole range of Péclet numbers. This means that the long-time
diffusive behaviour of the tracer particle can be equivalently described as the motion of a free
particle with a renormalized Péclet number.
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Figure 4.3.11.: Long-time diffusion constants DL
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4. Comparison with Simulations

4.3.3 Effective Tracer Swimming Velocity

This section aims for a test of the MCT-ITT approach for the effective swimming velocity vs of an
active tracer in the passive hard-disk system as derived in equation (3.5.11) by comparing with
BD results. In the first place, the way of determining the effective swimming velocity vs from a
simulation of strictly hard-core interacting particles in the sense of an average over the projected
force as in equation (3.5.1) is not obvious, since the particles are non-overlapping at any time,
which begs the question how to properly define the force. Previous investigations on the effective
swimming velocity have been restricted to soft particle-type of interactions like the Weeks-
Chandler-Andersen potential that would allow a clean definition at this point. Nevertheless a
simple approach that can be conducted within the event-driven simulation to determine the
swimming velocity is to associate the displacement ∆þr s(i · ∆τb) = þr s((i + 1) · ∆τb) − þr s(i · ∆τb)

of the i-th Brownian timestep with a velocity and use the definition of an effective swimming
velocity that immediately relates to a projection of þo s on a resulting particle velocity in the
spirit of the Langevin-equation. This suggests the following definition of a running time average
for the effective swiming velocity given by

vs
BD =

1

∆τb

∑

i

〈

∆þr s(i · ∆τb) · þo s(i · ∆τb)
〉

, (4.3.4)

where the brackets denote an average over all simulations. The comparison between the MCT-
ITT predictions and the simulations results is depicted in the main figure of 4.3.13 in a range
of densities at fixed Ds

r = 1. After adjusting the density for the MCT results according to the
density-mapping for the SISFs from figure 4.3.4, the results for the effective swimming velocity
are well in line with those predicted by the simulations in the density-regime where the mapping
of the passive SISFs has provided an accurate match. The slight overprediction of vs by BD
might relate to the fact that the Green-Kubo equation for vs is also entered by the ISF of the
passive bath which is known from previous passive MCT studies to obey a slightly different
density-mapping [51]. In view of further differences between MCT and BD represented by the
influence of polydispersity effects and the general approximate nature of the MCT-ITT approach,
the agreement can be regarded as very satisfactory, concluding that ABP-MCT feasibly accounts
for the renormalization of a φ-independent vs

0 to a φ dependent vs from first-principle only by
entering the equilibrium features of the system.

The inset of figure 4.3.13 vs in a full density range without prior adjustment of the density. The
simulation results reveal a linear decrease with the density in a low and medium density range,
as reported active particles with a soft particle-type of interaction in [76]. This is, however, not
seen for the MCT-ITT results, even after adjusting the density according to the mapping of the
main figure. These discrepancies point to a wrong prediction of the density correlation functions
for low-density systems, but not to a failure of the MCT-ITT approach itself. It has been shown
that there exists a mapping of densities in the low and intermediate-density range which includes
quadratic terms and provides consistent results for the density correlation functions. Adjusting
the densities according to this mapping, the vs between BD and MCT do even agree for low and
intermediate densities [110].
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Figure 4.3.13.: Normalized effective swimming velocity vs/vs
0 of an active tracer particle in

the passive hard-disk environment for different vs
0 in a range of densities and fixed Ds
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BD results from [110]. The main figure shows the comparison in a range of high densities with
a prior density-adjustment for the MCT-ITT results from 4.2.1 (a). The inset compares the
results without a density adjustment in the whole range of densities.

4.4 Passive Tracer in the Active Bath

The scenario addressed in the following is that of a passive tracer particle immersed in an
environment of identical active particles. Simulation results were obtained from stationary
averaging over trajectories of a single passive tracer particle, whose diameter corresponds to
the mean diameter of the active bath particles. Note that whereas the particles were assumed
to follow the Stokes-Einstein relationship for the translational diffusion coefficient according
to their individual particle size, the rotational diffusion coefficient was kept the same for all
particles as otherwise this would distort the comparison with the results from the monodisperse
ABP-MCT too much.

4.4.1 Self-Intermediate Scattering Function

A comparison for the SISFs of the passive tracer particle in the active bath, in which as in the
previous section only the densities from MCT were adjusted according to the passive density-
matching, is shown for the density φBD = 0.77 in the figures 4.4.1 (a)-(d) and in 4.4.3 (a)-(d)
each for Dr = 1 and Dr = 0.05 and different wavenumbers and self-propulsion velocities, where
the ABP-MCT results related to this comparison are drawn as solid lines in the figures. In
order to assess the effects of activity, the passive SISFs are additionally shown as a reference.
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4. Comparison with simulations

It can be seen that the structural relaxation of the bath particles is much more pronounced
when increasing activity than in the case of a single active tracer. This is expected since the
ability of cage breaking in the collective active system proceeds much more efficiently compared
to the case of a single active particle. Moreover, the impact of the density differs in the present
scenario as cageing effects associated with a densification of the system can be compensated
with the concomitant enhanced coupling to the active forces of the bath particles, whereas in
the former case of a single active tracer increasing the density would always lead to a slower
dynamics.

Even though these qualitative features are reproduced both by ABP-MCT and simulations, a
comparison that only accounts for a density mapping reveals systematic deviations which amplify
with increasing self-propulsion velocities. It is seen that MCT consistently underestimates the
influence of the activity on fluidizing the system compared to the predictions of the simulations.
Similar to the density matching of the passive systems, it constitutes a reasonable approach to
check for a mapping of self-propulsion velocities between MCT and BD for which the results
for the SISFs optimally coincide. In the last section within the discussion of the active tracer,
its dynamics at high densities was found to be strongly coupled to the properties of the passive
environment, which was well matched by the density adjustment between the respective passive
systems of MCT and BD. But in the scenario that is discussed here, it is not necessarily to be
expected from first-principle that the properties of the active environment are equally captured in
the mode-coupling approximation as in the simulations, which is why the quantitative outcomes
for the dynamics of the tracer particle can be expected to differ such that the procedure of
a velocity adjustment is well justified. By following the approach of a least-square method,
the SISFs from MCT have therefore been fitted to those predicted from BD in a range of self-
propulsion velocities at a fixed wavenumber q = 7.5. These SISFs for the optimally found
self-propulsion velocities are additionally presented in the figures as dashed lines. Notably, one
finds that a simple rescaling given by vMCT

0 ≈ 1.5vBD
0 provides near quantitative agreements

between MCT and BD results in a wide range of wavevectors and self-propulsion velocities.
This agreement has also been verified for further densities and delivers consistent results for
the α-relaxation times τ s

α(q) of the passive tracer particle in a wide range of wavenumbers and
different densities as demonstrated in the figures 4.4.2 and 4.4.4 each for Dr = 1 and Dr = 0.05

and the same v0 as for the presented SISFs. There, the effect of a pronounced coupling of
the tracer particle to the active bath is best seen in the comparison with the relaxation times
for φBD = 0.5 that show a far weaker variation with activity and it is seen that this coupling
amplifies when increasing the persistence time of the bath particles by comparing the results for
Dr = 1 and Dr = 0.05.

Qualitative differences in the comparison between simulation and theory become striking for the
SISFs with wavenumber q = 2.5 for v0 = 6 and Dr = 0.05, where the MCT predicts pronounced
undershoots for the correlation functions, that are not seen in the simulations. As with the free
particle, these undershoots are an indicator of the ballistic motion of the passive tracer particle
that is induced by the coupling to the active bath in the present theory. This suggests that
there might arise qualitative differences in the description of the MSD in this parameter range,
as will also be confirmed later.
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Figure 4.4.1.: (a)-(d) Ss
0,0(þq, t) of a passive tracer particle in an active hard-disk environment

for different wavenumbers q and self-propulsion velocities v0 of the active bath at fixed Dr = 1
and φBD = 0.77. Symbols show BD simulation results, solid lines are MCT fits where only
φMCT was adjusted, dashed lines show additonal adjustments to v0 (with vMCT

0 as indicated).
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Figure 4.4.2.: Relaxation times τ s
α(q) of a passive tracer particle in an active hard-disk envi-

ronment as a function of the wavenumber q for different self-propulsion velocities v0 of the active
bath at fixed Dr = 1 for φBD = 0.77 and φBD = 0.50. Symbols show BD simulation results, solid
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Figure 4.4.3.: (a)-(d) Ss
0,0(þq, t) of a passive tracer particle in an active hard-disk environment

for different wavenumbers q and self-propulsion velocities v0 of the active bath at fixed Dr = 0.05
and φBD = 0.77. Symbols show BD simulation results, solid lines are MCT fits where only φMCT

was adjusted, dashed lines show additonal adjustments to v0 (with vMCT
0 as indicated).
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Figure 4.4.4.: Relaxation times τ s
α(q) of a passive tracer particle in an active hard-disk en-
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4.4. Passive Tracer in the Active Bath

When approaching the regime of low persistence lengths it is observed that the empirical velocity
rescaling to match the correlation functions from ABP-MCT and BD fails. Instead, a direct
mapping of vMCT

0 = vBD
0 allows for a quantitative description of the simulation data. This is

exemplified in figure 4.4.5 (a)-(d) for Dr = 200 at fixed density φ = 0.77 for the same v0 where
clearly the direct mapping delivers the better results.
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Figure 4.4.5.: (a)-(d) Ss
0,0(þq, t) of a passive tracer particle in an active hard-disk environment

for different wavenumbers q, self-propulsion velocities v0 of the active bath and fixed Dr = 200,
φBD = 0.77. Symbols show BD simulation results, solid lines are MCT fits where only φMCT

was adjusted, dashed lines show results for vMCT
0 = 1.5vBD

0 .

A much simpler MCT approach to address the regime Dr → ∞ has been proposed by Farage et
al in terms of an effective diffusion approximation [44]. It is achieved by the introduction of an
effective Smoluchowski operator given by

Ωeff(Γ) =
N∑

i=1

Dt
þ∇i

(

αþ∇i − β þFi

)

+ Dr∂2
θi

, (4.4.1)

where the factor α := 1 + Pe accounts for an effectively enhanced temperature (but violates
the FDT). This delivers the same outcome as for the passive MCT, but with a q-dependent
prefactor in the memory-kernel that is obtained by replacing ω0,0(q) → Dtq

2
(
1+S(q) Pe

)
which

is speeding up the dynamics when increasing Pe. But even for a large Dr = 200 this approach
arguably fails to reproduce the simulation results as shown in figure 4.4.6. This failure points
to the fact that even for a small persistence length as lp = 0.02σ, given for Dr = 200σ2/Dt and
v0 = 4Dt/σ, the relevant length scale that describes the ballistic regime and under which the
passive tracer feels the persistent motion of the active bath is ll = 2Dt/v0 + lp = 0.145σ which
is in the order of the cage size formed by the active particles.
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Figure 4.4.6.: (a)-(d) Ss
0,0(þq, t) of a passive tracer particle in an active hard-disk environment

for different wavenumbers q, self-propulsion velocities v0 of the active bath and fixed Dr = 200,
ΦBD = 0.77. Symbols show BD simulation results, dashed lines show results from the effective
diffusion approach according to equation (4.4.1).

4.4.2 Mean-Squared Displacement

Comparing the ABP-MCT predictions for the MSD according to equation (3.4.15) with the
simulations results only with a mapping that adjusts the density confirms the observation made
for the SISFs, that also here the MCT underestimates the influence of activity on fluidizing
the system. With the same strategy as before, the MSDs predicted by MCT were adjusted
to an optimal self-propulsion velocity to match the simulation results as shown in figure 4.4.7
(a) as well as for the resulting diffusion exponents in (b)-(e) for different densities and self-
propulsion velocities at fixed Dr = 1. These optimally selected self-propulsion velocities from
the least-square fit confirm the same empirical relation for the velocity mapping that has previ-
ously been found for the SISFs and provide a near quantitative agreement with the simulation
results.

The passive tracer in the active bath exhibits the same characteristic transport regimes as the
active tracer in the passive bath with phases of both sub- and superdiffusive behaviour. Nev-
ertheless, the mechanisms of how activity influences these transport regimes differ from the
previous scenario because the activity is no longer an intrinsic feature of the tracer particle, but
arises through a coupling with an active bath. Since a collective activity is arguably way more
efficient to fluidize the system leads to the observation that increasing activity has now a more
pronounced effect on the relaxation time of the tracer particle. Moreover, the variation of the
MSD from increasing v0 becomes stronger when increasing the density, as the coupling to the
bath is enhanced, whereas the opposite trend is seen in the scenario of an active tracer in a
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4.4. Passive Tracer in the Active Bath

passive bath. In the latter scenario, superdiffusion emerges because it is as an intrinsic feature
of the active tagged particle. The superdiffusive behaviour for the passive tracer only occurs
through its coupling to the active bath. ABP-MCT is capable to account for this transmission
of superdiffusivity through the active environment which is only achieved by the correct resolu-
tion of the coupling of the passive tracer’s translational degrees of freedom with the rotational
degrees of freedom of the active bath described by the S±1,0(þq, t) correlation functions that enter
the memory-kernel to determine the MSD. Theories that coarse-grain the rotational degrees of
freedom like those in the spirit of an effective diffusion approach are not capable to account for
such explicit coupling terms, meaning that these approaches will produce positive decaying cor-
relation functions that can only assess an enhanced long-time diffusive behaviour concomitant
with activity, but no superdiffusivity.

When approaching the regime of large Pe, it is observed from the ABP-MCT predictions that
even though the underestimation to account for the influence of the activity to fluidize was
demonstrated can be corrected by a simple velocity rescaling, this rescaling does not repro-
duce the enhancement of superdiffusion with activity quantitatively according to the simulation
results. This means that this approach is limited to parameter regimes where superdiffusive
behaviour does not occur or is only weakly indicated. This failure to correctly resolve the
superdiffusion in the parameter range of large Pe is indicated in 4.4.7 (e), where MCT still de-
livers consistent results with the simulations but starts to overestimate α(t) in the superdiffusive
regime. This effect is more pronounced for higher Pe as shown here, meaning that it was there-
fore not possible to achieve reasonable agreements between BD and MCT in the regime Pe & 10

where superdiffusion was observed to be the dominant transport mechanism of the tracer par-
ticle. Addressing the MSDs for low Pe on the other hand, reveals the same picture as for the
SISFs, that a quantitative agreement between MSDs from simulations and the ABP-MCT can be
found without a prior velocity rescaling, exemplified for Dr = 200 in figure 4.4.8. Even though
there emerges no superdiffusive behaviour of the tracer particle, an MCT approach to calculate
the MSD in the spirit of an effective-diffusion approach by inserting the MCT-approximated
correlation functions stemming from an effective Smoluchowski equation into the equation of
motion for the MSD of a passive tracer in a passive bath fails to describe the simulation results,
exemplified in figure 4.4.8 for v0 = 6 where on the other hand ABP-MCT delivers quantitatively
according to the predictions from the simulations.

The long-time diffusion coefficients extracted from the simulation results are depicted in figure
4.4.9 and compared with the prediction from ABP-MCT in a parameter range where a velocity
rescaling approach was successful to assess the simulation results. The failure of ABP-MCT in
the regime Pe ≈ 10 is indicated as an excesively stronger increase of DL

t at Pe = 10 which is
due to its overprediction of superdiffusive behaviour compared to the BD results. The simu-
lation results at large Pe reveal a striking observation in terms of a non-monotonic behaviour
of the long-time diffusion constant as a function of density at fixed Pe. This suggests that the
cageing of the tracer particle which is associated with an increase of the density can be over-
compensated by the increased coupling to the activity of the bath particles. Even at very high
densities, this can lead to long-time diffusion coefficients that exceed those of the free passive
particle.

69



4. Comparison with simulations

10−3 10−2 10−1 100 101 102

t
[

σ2/Dt

]

10−4

10−2

100

102

δr
2 (
t)
[

σ
2]

Dr = 1

(a)

φBD = 0.50
φBD = 0.73
φBD = 0.77

vBD
0

= 0

vBD
0

= 2

vBD
0

= 4

vBD
0

= 6

0 2 4 6

vBD

0

0

2

4

6

8

v
M

C
T

0

0.4

0.6

0.8

1.0

1.2

1.4

α

vBD

0
= 0 Dr = 1

(b)

φBD = 0.50
φBD = 0.73
φBD = 0.77

vBD

0
= 2 Dr = 1

(c)

φBD = 0.50
φBD = 0.73
φBD = 0.77

10
−3

10
−2

10
−1

10
0

10
1

10
2

t
[

σ2/Dt

]

0.4

0.6

0.8

1.0

1.2

1.4

α

vBD

0
= 4 Dr = 1

(d)

φBD = 0.50
φBD = 0.73
φBD = 0.77

10
−3

10
−2

10
−1

10
0

10
1

10
2

t
[

σ2/Dt

]

vBD

0
= 6 Dr = 1

(e)

φBD = 0.50
φBD = 0.73
φBD = 0.77

Figure 4.4.7.: (a) MSDs of a passive tracer particle in an active hard-disk environment for
different self-propulsion velocites v0 and packing fractions φBD at fixed rotational diffusion co-
efficient Dr = 1. Symbols are simulation results, lines are MCT results with adjusted densities
φMCT and adjusted v0 (see inset). For clarity the curves with φBD = 0.73 and φBD = 0.77
have been shifted down by a factor 10 and 100 respectively. The inset shows the velocity map-
ping between MCT and BD that has provided the best agreement, where the black line is a fit
vMCT

0 = 1.5vBD
0 . (b)-(e) Local diffusion exponents α(t).
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4.4. Passive Tracer in the Active Bath
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Figure 4.4.8.: MSDs of a passive tracer particle in an active hard-disk environment for different
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Dr = 200. Symbols are simulation results, solid lines are ABP-MCT predictions with adjusted
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0 = vBD
0 . The dashed lines shows the predictions of the effective-

diffusion approach.
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Figure 4.4.9.: Long-time diffusion constants of a passive tracer in an active hard-disk envi-
ronment as a function of the bath Péclet number Pe for different φBD and rotational diffusion
coefficients Dr. Symbols are simulation results, crosses with dashed lines are ABP-MCT predic-
tions with adjusted φMCT and vMCT

0 = vBD
0 for Dr = 200, vMCT

0 = 1.5vBD
0 for Dr = 1.
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4. Comparison with simulations

4.4.3 Active Microrheology

Transport coefficients of tracer particles can be purposefully exploited to probe the rheologi-
cal properties of the surrounding medium. This constitutes a versatile method to explore the
characteristics of complex fluids in the framework of so-called microrheology [111]. The most
common example is the connection between the experienced friction of colloidal probe particles
and the viscosity of the much smaller solvent particles in terms of a Stokes-Einstein relation.
Passive MCT makes such a prediction even for solvents that consist of particles of similar size as
the tracer particle and states that the product DL

t · η, with DL
t denoting the long-time diffusion

constant of the tracer and η the viscosity of the host particles, remains asymptotically constant
when approaching dynamical arrest. This is because close to the glass transition, MCT predicts
equal power laws for both DL

t and η, but with exponents of opposite signs. So-called active
microrheology approaches check if similar predictions can be made for systems far from equi-
librium beyond the framework of linear response theory, in common to the active systems that
are investigated here. In this sense, it is instructive to investigate how the long-time diffusion
constant of a passive tracer in an active bath relates to the viscosity of the bath particles and if
there still exists a regime that maintains the predictions from passive MCT. To check for such
a fundamental relationship, the ABP-MCT predictions for the zero-shear viscosity of the active
bath according to equation (3.6.7) and for the long-time diffusion coefficient DL

t of the passive
tracer, as well as the product of both are presented in figure 4.4.11 for different Dr as a function
of Pe at fixed density φBD = 0.77. It is seen that the relation DL

t ·η = const is well fulfilled in the
regime of low and medium Péclet numbers, but that for large Pe, there emerges an excessively
stronger increase in long-time diffusion compared to the simultaneous reduction in viscosity
caused by the superdiffusive transport mediated by the active bath. This was also verified by
local diffusion exponent that fulfilled α > 1 in this regime.
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Figure 4.4.10.: ABP-MCT predictions for the zero-shear viscosity η of an active bath, the long-
time diffusion constants DL

t of an immsersed passive tracer and the product η · DL
t of both for

different Dr at fixed φBD = 0.77 as a function of Pe.
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4.5. Active Tracer in the Active Bath

Noting that the viscosity close to the glass transition point is, up to a prefactor, well-determined
by the structural relaxation time allows comparing the ABP-MCT predictions with the simu-
lation results. It is therefore sufficient to consider the product of τα(q) · DL

t at fixed q, with
τα(q) denoting the relaxation time of the active bath, and to compare the result with a rescal-
ing of η · DL

t from the ABP-MCT predictions with a constant factor. This comparison shows
that the deviations from τα(q) · DL

t = const are consistently seen in the simulations as pre-
sented in 4.4.11 and suggests that the decoupling between structural relaxation of the active
bath and the mediated transport properties of the tracer are not due to the overestimation of
superdiffusion by ABP-MCT, but represent a generic phenomenon in the microrheology of active
particles.
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Figure 4.4.11.: Product of τα · DL
t for a passive tracer in an active hard-disk environment as

a function of the bath Péclet number Pe, where τα is the α-relaxation time of the active bath
particles at fixed q = 7.5 and DL

t denotes the long-time diffusion constant of the passive tracer.
Open symbols are simulation results. The solid green line shows the ABP-MCT prediction for
DL

t · η at fixed Dr = 1, shifted by a constant factor to match the simulation results for Pe → 0
and with a velocity rescaling vMCT

0 = 1.5vBD
0 .

4.5 Active Tracer in the Active Bath

The following section discusses the tagged particle motion in a bath of identical active parti-
cles which allows the necessary averages in the simulations to be taken over all particles and
thus makes it feasible to study quantities that have not easily been accessible in the study
of single tracer particles so far, like transient-types of averages that are exclusively performed
over the equilibrated initial state and form the theoretical basis for the ABP-MCT predictions.
This allows to assess quantitative differences compared to a stationary-type statistics and to
address the question if there can even arise qualitative differences in the comparison between
both. With a better capability to sample the statistics of the system further allows for an ex-
ploration of a wider regime of parameters which will be exploited to compare the behaviour
close to the glass transition point between the ABP-MCT predictions and the simulation re-
sults.
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4. Comparison with simulations

4.5.1 Self-Intermediate Scattering Function

Transient correlation functions were determined from the simulation results by exclusive aver-
aging over the initially equilibrated state, in line with the definition of the ABP-MCT-predicted
correlation functions, and compared to the stationary-type of correlation functions that exploit
the Markovian properties of the steady-state to sample the statistics. For Ss

0,0(þq, t), qualitative
differences between both types of averages could not be observed for the parameter range studied
here, as presented in the figures 4.5.1 (a)-(d), which shows a comparison between both types
of correlation function for fixed Dr and and different v0 and q with the transient ABP-MCT
predictions. Except for statistical errors, the equivalence between transient and steady-state
correlation functions in the equilibrium system is very well confirmed. For the active system,
the steady-state correlation functions show a slightly faster relaxation but do not reveal any
qualitative differences. This observation is consistently confirmed by comparing the τ s

α(q) for
the respective kind of averages as shown in figure 4.5.2, where also here the simple rescaling
vMCT

0 = 1.5vBD
0 provides a near quantitative agreement between ABP-MCT predictions and

stationary simulation results. One further notes that the slightly slower decay of the transient
simulation results is most pronounced in the regime of intermediate wavenumbers wherein the
regime of low wavenumbers transient and stationary types of averages deliver near-identical
τ s

α(q). As for passive MCT, this low-q regime reflects the existence of a finite long-time diffusion
constant seen in form of an asymptotic behaviour with τ s

α ∼ 1/q2, indicated as a black dotted
line and consistent with both ABP-MCT and simulation results.

Recall that as a consequence of the underlying non-equilibrium time evolution of ABPs, a sym-
metric relation between the non-diagonal SISFs Ss

1,0(þq, t) and Ss
0,1(þq, t) is not expected, as dis-

cussed in section 3.1.3. This is a manifestation of the transient nature of the ABP-MCT averages
and the presence of different relaxation channels in the system which implies that Ss

1,0(þq, t) will
always decay at least after the persistence time contrary to what is expected for Ss

0,1(þq, t). This
striking ABP-MCT prediction is tested in the simulation by comparing with transient types of
averages int the simulations, as presented in figure 4.5.3 (a). For this comparison, it is instructive
to choose parameters that maximize the difference between the persistence time and the struc-
tural relaxation time, which is well achieved by choosing Dr = 200 and φBD = 0.77. Also note
that to obtain a better statistics, averages for non-isotropic correlation functions have been ob-
tained by including both correlation functions with þq = qþey and þq = qþex transformed to þq = qþey

by using the unitary transformation for rotations of þq. Indeed, the ABP-MCT predictions and
simulation results predict non-symmetric correlation functions with the Ss

1,0(þq, t) decaying after
τr and the Ss

0,1(þq, t) showing the slow structural dynamics. The difference towards stationary
averages is shown in subfigure (b), revealing that both non-diagonal components approach each
other after t ≈ τr and both decay on the time scale of structural relaxation time. This allows
for the conclusion that both components will become non-ergodic above the glass transition,
contrary to what is predicted by the ABP-MCT in the transient case. It further indicates that
the qualitative differences between transient and steady-state averages might become important
if the persistence time and the structural relaxation time become increasingly different, while at
the same time the persistence length remains large, and thus the coupling of the non-diagonal
elements to Ss

0,0(q, t) presumably becomes more pronounced.
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Figure 4.5.1.: (a)-(d) Ss
0,0(þq, t) of an active tracer in an identical active hard-disk environment

for different wavenumbers q, self-propulsion velocities v0 and fixed Dr = 1 and φBD = 0.77.
Filled symbols are transient simulation results, empty symbols are stationary simulation results,
solid lines are ABP-MCT results where only φMCT was adjusted, dashed lines are ABP-MCT
results for an additonal adjustment of vMCT
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Figure 4.5.2.: τ s
α(q) of an active tracer particle in an identical active hard-disk environment for

a range of wavenumbers q and different self-propulsion velocities at fixed Dr = 1 and φBD = 0.77.
Filled symbols are transient simulation results, open symbols are stationary simulation results
and black solid lines are MCT results with adjusted φMCT = 0.77 and vMCT
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Figure 4.5.3.: Non-diagonal elements Ss
1,0(þq, t) and Ss

0,1(þq, t) of an active tracer in an identical
active hard-disk environment at fixed wavevector þq = 7.5ey, Dr = 200, ΦBD = 0.77 and different
self-propulsion velocities. In each figure the dotted vertical line indicates the persistence time
τr. (a) compares transient averages from BD (filled symbols for Ss

1,0(þq, t), open symbols for
Ss

0,1(þq, t)) with ABP-MCT predictions. (b) compares transient averages from BD, with same
symbols as in (a), with stationary averages from BD (dashed lines for Ss

1,0(þq, t) and solid lines
for Ss

0,1(þq, t))

Justified by the good agreement between ABP-MCT predictions and stationary averages from
simulations, the following discussion will restrict back to a comparison with a stationary type
of statistics from the simulations. To address a further range of parameters, the extracted
τ s

α(q) from both methods are examined in a wide range of densities for a fixed wavenumber
q = 7.5 as depicted in 4.5.4. This comparison delivers quantitative agreements in a wide range
of densities for different v0 that is also convincingly seen for the SISFs as shown in figure
4.5.5.
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4.5. Active Tracer in the Active Bath

MCT predicts a divergent behaviour of the relaxation time when approaching the glass transition
point according to

τ s
α ∼ (φc − φ)−γ , (4.5.1)

with both γ and φc depending on v0 and Dr. This asymptotic power-law behaviour is only
confirmed in the simulations for densities that are not too close to the glass transition point
whereas for φBD > 0.77 and low activities, the simulation results are subject to ergodicity
restoring effects that are not captured by MCT.
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Figure 4.5.4.: τ s
α(q) of an active tracer particle in an identical active hard-disk environment in

a range of densities and different self-propulsion velocities at fixed Dr = 1 and fixed wavenumber
q = 7.5. Filled symbols are simulation results, empty symbols are MCT predictions with adjusted
φMCT and vMCT

0 = 1.5vBD
0 . Dashed lines are power-law fits to the MCT results according to

equation (4.5.1). For the resulting fit parameters see the table below.

vBD
0 0 1 2 3 4

φBD
c 0.779 0.780 0.784 0.790 0.797

γ 2.28 2.08 1.65 1.36 1.17

Resulting parameters for the power-law fits depicted in in figure 4.5.4.

A question that arises within the asymptotic regime of the ABP-MCT is how activity influ-
ences the parameters φc and γ that govern the power-law divergence of the relaxation time.
While it is rather descriptive that particles undergoing a persistent motion are more likely to
escape the neighbouring cages with the consequence of increasing φc with increasing v0 and τr,
there exists no illustrative picture to assess to influence on the exponent γ that quantifies the
strength of the divergence. MCT, however, provides a quantitative description for γ through
the determination of the exponent parameter λ from equation (3.2.10) by determining the left-
and right eigenvectors h and ĥ of the linear mapping of C[h] in equation (3.2.6) in the case
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Figure 4.5.5.: Ss
0,0(þq, t) of an active tracer in an identical active hard-disk environment for

different self-propulsion velocities v0 each for different φBD at fixed wavenumber q = 7.5, Dr = 1.
Symbols are simulation results, solid lines are ABP-MCT predictions with adjusted φMCT and
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Dr = 0. The resulting exponents γ are depicted in figure 4.5.6 (a) in a wide range of v0 and
compared to the resulting fit parameters from figure 4.5.4 for Dr = 1. Both cases Dr = 1 and
Dr = 0 consistently reveal an identical exponent γ ≈ 2.29 in the passive case and are well in line
with the passive MCT study by Bayer et al [107] for 2D hard-disks which has found γ ≈ 2.38.
Some exponents that were determined for the active system for Dr = 0 have additionally been
verified by plotting the τα(q) at fixed q, that were extracted from the ISF, against the relative
distance from the glass transition point ǫ = (φ − φc)/φc, as depicted in figure 4.5.6 (b) and very
well in line with the predicted power-law exponents. For increasing v0, both cases Dr = 0 and
Dr = 1 show a decrease of γ, as previously reported by Ni et al. for simulations of event-driven
active Brownian hard-spheres in 3D [81]. The case Dr = 0 that is studied here shows that γ

approaches a plateau of γ ≈ 1.76 with increasing v0 and an even steeper decrease is seen for
Dr = 1. The interpretation of these results must be taken with care and do not necessarily
indicate a non-monotonic behaviour with Dr as one might expect, because the case Dr = 0

always relates to the regime τr ≫ τα(q), where the asmyptotic power-laws depicted in figure
4.5.4 fall into the regime τr < τα(q) for which different asymptotic laws are expected to arise,
as seen by the more subtle structure of equation (3.2.1) with its hopping integral in the time
domain that determines the non-ergodicity parameters.
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4.5. Active Tracer in the Active Bath

The decrease of γ with increasing v0 and the resulting divergence behaviour of the relaxation
time translates into a notable behaviour of the viscosity of active fluids close to dynamical arrest.
A striking consequence is that dense active suspensions in the fluid state with equal separations
from the glass transition point can have viscosities that differ by an order of magnitude, as seen
in 4.5.6 (c). This is even though that an active fluid with equal distance to the glass transition
point compared to a less active fluid exists a higher density.
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Figure 4.5.6.: (a) ABP-MCT predicted divergence exponents γ for an active bath of ABPs
as a function of the self-propulsion velocity v0. Crosses are results from the asymptotic MCT
equations for Dr = 0, rectangles are results from the power-law fits of figure 4.5.4. (b) shows the
dependence of τα(q) at fixed q = 7.5, (c) of the viscosity η as a function of the separation from
the glass transition point for Dr = 0, where the dashed lines are power-laws with the γ from (a).

4.5.2 Mean-Squared Displacement

Figure 4.5.7 displays MSDs of an active tracer in an identical active bath obtained both from
ABP-MCT and simulations. To assess the influence of the activity of the tracer particle, it is
instructive to compare the simulation results with the reference case of a passive tracer particle
in the same active host system, indicated as black symbols. This further allows addressing
polydispersity effects by noting that coloured and black symbols do not coincide even in the
case v0 = 0 as the latter stem from a collective average over a polydisperse passive bath where
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4. Comparison with simulations

black symbols are results obtained by taking averages over a single passive tracer particle with
the same diameter as the mean diameter as the passive host environment. In case of an active
bath, the active tracer exhibits both mechanisms of enhanced transport in terms of intrinsic
activity and the persistent driving of the surrounding host particles. The direct comparison
with the scenario of a passive tracer particle where only the second contribution arises allows
assessing the dominant mechanism, depending on the considered density regime. The results
for φBD = 0.73 and φBD = 0.77 indicate that the influence of the active bath is the way more
dominant contribution as there emerge no notable differences when comparing the scenarios of
passive and active tracers which is explained by the superior influence of the cageing effect of the
active bath particles. On the other hand, the results for φBD = 0.50 reveal that the dominant
transport mechanism originates from the intrinsic activity of the tracer in the regime of low and
moderate densities. This is a consequence of the weak coupling to the bath particles that are
less effective in transmitting superdiffusivity to the tracer. Instead, superdiffusive motion comes
from the intrinsic activity of the tracer particle as it is not suppressed by the bath particles
because cageing effects are less pronounced and not capable to hinder the ballistic motion of the
tracer.
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Figure 4.5.7.: Comparison between MSDs of an active tracer in an identical active hard-disk
environment and the MSDs of a passive tracer in the same environment for varying densities
and self-propulsion velocities and fixed Dr = 1. Coloured symbols are BD results for the active
tracer, black symbols are BD results for the passive tracer in an active hard-disk system repeated
from figure 4.4.7. Lines are ABP-MCT predictions for an active tracer in an active hard-disk
system with adjusted φMCT and adjusted vMCT

0 = 1.5vBD
0 .

4.5.3 Mean Effective Swimming Velocity

To conclude the discussion, the MCT-ITT predictions for the collective swimming velocity ac-
cording to equation equation (3.5.10) are compared with respective simulation results as shown
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4.5. Active Tracer in the Active Bath

in figure 4.5.8. Having established a rescaling of the density to match the dynamical correlation
functions reveals consistent results in both theory and simulation in a density regime close to
dynamical arrest, with v going to zero when approaching the (shifted) glass transition point.
On the other hand, the agreement in the medium density is not as good as for the swimming
velocity of an active tracer in a passive bath vs, presented before in figure 4.3.13. The inset
compares the same results without prior adjustment of the densities and as same as for the
passive tracer, the large discrepancies that arise in the low- density regime are due to an erro-
neous prediction of the relaxation time, that can be corrected by including quadratic terms in
the density mapping, rather than a general failure of the ABP-MCT approach to predict the
effective swimming velocity.
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Figure 4.5.8.: Normalized mean effective swimming velocity v/v0 in an active hard-disk system
at fixed Dr = 1. Red circles are MCT-ITT predictions, black symbols are BD results. The main
figure shows the comparison after a prior density adjustment of the MCT-ITT results. The inset
shows the comparison without such a density adjustment. BD results were obtained and provided
by L. Granz [110].
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5. Comparison with Experiments

This chapter refers to recent experimental results from a setup with laser-driven diffusiophoretic
Janus particles immersed in a binary colloidal suspension, reflecting the scenario of an active
tracer in a bath of passive particles discussed in section 4.3. The experiments were conducted
by Lozano et al. and the results have been published in [112]. First, the described experimental
setup is briefly explained, allowing for an assessment of emerging deviations in the subsequent
comparison with both the results for passive and active particles in active hard-disk environments
according to the methods of this work.

5.1 Experimental Setup

The experiments were performed with a 50 : 50 mixture of binary colloids with diameters
of σs = 4.6 µm and σl = 6.3 µm immersed in a water-lutidine mixture at a temperature of
T = 26 ◦C. With the selected composition, the colloidal suspension did not show signs of
crystalization in the whole range of investigated densities. The dimension of the sample cell
was chosen that the particles were confined in a way that translational and rotational motion
can be regarded as quasi-two-dimensional. Lozano et al. added few Janus particles with a
diameter of σl to the suspension. These Janus particles were half-capped with light-absorbing
patches, which heat up when illuminated with a laser. This heating triggers a critical demix-
ing of the local surrounding water-lutidine mixture upon reaching a critical temperature of
Tc = 34 ◦C. The phoretic effects that are associated with the emerging concentration gradient
of the surrounding fluid subsequently result in a self-propelled motion of the tracer particle.
This mechanism has been exploited in a various number of experimental realizations of active
particles and offers a clean method to control activity on a single particle level. With the same
surface power density of the laser, which was kept constant in all experiments considered here
to compare with, a persistent motion of the Janus particle with a velocity of around 1 µm/s

was achieved in the diluted system. By tracking the particles’ trajectories and the orientation
of the caps, r2(t) and θ2(t) were determined each for passive and active tracer Janus parti-
cles at several densities and averages were taken over varying number of Janus particles in the
system.

In the experiment, a glass transition point indicated by a constant plateau value of the MSD was
found near φc,exp = 0.784. One of the central observation was that if the density was increased
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up to just below the glass transition density, the measured rotational diffusion coefficients of
the active particles revealed an increase by around a factor of 27 compared to the rotational
diffusion coefficient of a tracer particle in a diluted suspension. On the other hand, if the density
was further increased above the critical density, the rotational diffusion coefficient was observed
to approach the same magnitude as for the free particle again. Such a variation of the rotational
dynamics could not be detected for passive tracer particles and was explained by the viscoelastic
response of the colloidal suspension to the active driving of the tracer, resulting in a torque that
acts on tracer particles. This explanation was supported by fitting the experimental results to
a viscoelastic-fluid Jeffreys liquid model [113] in [112].

5.2 Passive Tracer in the Passive Bath

Due to the different experimental and MCT glass transition points, the densities of the passive
systems must first be adjusted for a comparison with the active experimental data as it was sim-
ilarly done in the comparison with the simulation results. This further allows assessing possible
sources of error, that might not be related to the activity of the particles. An important issue in
that context is the dominant influence of hydrodynamic interactions between the colloids, which
are entirely neglected in the ABP model but must be taken properly into account with regard to
the high-density regime studied here, as it is well known that hydrodynamic interactions lead to
a strong density dependence of the short-time diffusion coefficients as reported in [114,115]. This
effect is not directly assessable from the experimentally reported MSDs, as these only allow the
determination of the short-time diffusion coefficient of the free particle, but for higher densities,
the short-time diffusive regime was not measured. Due to the lack of distinctive theories and
the fact that the influence of hydrodynamic interactions is rather specific to the experimental
details, assessing the slow down of short-time diffusion at high densities requires a more subtle
approach. It can be achieved by noting that that the MCT predictions are rather insensitive
on the short-time dynamics and that a change of the short-time diffusion coefficient only affects
the MCT prediction through a simple rescaling in time. Therefore, the density dependence of
the diffusive time scale can be extracted by allowing physically reasonable shifts of the time-axis
of the MCT predictions when fitting to the experimental data by treating such shifts as an
additional density-dependent fit parameter.

A further observation that needed to be taken into account for such a fit was that the MCT
predicted plateau value of the MSD closely above the glass transition significantly differs from
the plateau value reported from the experiment. It turns out that the associated localization
length reported by Lozano et al. is underestimated by a factor of about seven in comparison
to the expectation for hard-spheres of lc ≈ 0.1σ, that is in turn well fulfilled by MCT. The
exact reasons for these discrepancies are not completely clear, but might be related to the
deviations from an idealized hard-core potential in form of additional electrostatic forces or
interactions with the surface of the sample cell. Deviations between experimental and MCT
predicted localization lengths of a similar order of magnitude have also been observed in [107] in
connection with a quasi-two-dimensional system with magnetic dipole interaction [116]. Bayer et
al. corrected these deviations by introducing an effective diameter, that was accordingly chosen
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5.2. Passive Tracer in the Passive Bath

to match the plateaus between experimental and MCT-predicted MSDs. Following the same
strategy, the experimental data can also here be convincingly adapted to the MCT predictions
by treating the system as effectively monodisperse with an effective diameter of σeff ≈ (1/7) · σ̄

with σ̄ = (σl +σs)/2 despite the presence of a binary mixture in the experiments. The resulting
MCT fits to the experimental data are depicted in figure 5.2.2 and are given in terms of the same
physical units as reported in [112]. These fits reveal a nearly linear relationship between densities
in the experiment and MCT as shown in the inset and as previously seen in the comparison
between passive MCT and simulations. Figure 5.2.1 shows the resulting hydrodynamic factors
D(φ)/D0 to match MCT-predicted and experimental MSD in an error minimizing way, where
D0 relates to the translational diffusion coefficient of a free particle with diameter σeff and D(φ)

to the short time diffusion coefficient of the dense system. The fit reveals that the diffusive time
scale in the case of the highest investigated density of φexp = 0.814 is increased by a factor of four
compared to the time scale of the diluted system, underlining the necessity to take hydrodynamic
interactions seriously into account. The results of the fits are also supported by comparing them
with former experimental works with colloidal suspensions in quasi-2D [117] or 3D [118] that
reported consistent hydrodynamic factors with those found here.
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Figure 5.2.1.: Hydrodynamic factors D(φ)/D0 of the translational short-time diffusion of a
passive Janus particle immersed in a binary colloidal suspension for different φexp predicted
from least-square fits of the experimental MSDs to the monodisperse passive MCT.

By using the density mapping between MSDs predicted from MCT and simulations in figure
4.2.2, the experimental results can also be compared with the simulation results as presented in
5.2.2. The resulting MSDs from simulations describe the experimental data rather satisfactory,
even though experimental and simulational densities slightly differ. This can mainly be retraced
to the mixing effects that have been neglected in both MCT and simulations. Such mixing
effects can be assessed by a comparison with the predictions of the MCT for binary mixtures in
2D which reveals a relative reduction of the glass transition point compared to a monodisperse
system in the order of 1% [119] for the size composition in the experiment. This is rather
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consistent with the observed deviations between the estimated experimental density of the glass
transition point and the density estimated from the simulation. For the two densities in the glassy
state, it is, however, observed that the simulation data show deviations in the intermediate time
regime towards the plateau and that within the last time decade, there emerges a delocalization
transition. The fact that this delocalization is not observed in the experiment, even though it is
subject to similar ergodicity restoring effects, demonstrates a possible influence of ageing effects
in the simulations due to an insufficient equilibration, that is easier to realize in the experiment.
Despite these discrepancies, the simulation data describes the localization of the passive tracer
particle consistent with the experiment in form of corresponding plateau values over several
decades in time.
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Figure 5.2.2.: Comparison between the experimentally reported MSDs of a passive Janus par-
ticle in a binary colloidal suspension with simulation results and MCT predictions for the MSD
of a passive tracer particle in a passive hard-disk environment. Red symbols are experimental
results from [112]. Dashed back lines are MCT fits with adjusted densities as shown in the inset,
blue symbols are simulations results with adjusted densities according to the inset of figure 4.2.2.

5.3 Active Tracer in the Passive Bath

Having performed the necessary density adjustments for the passive bath, the experimental
results of the active system are now to be compared with the methods of this work. Arguably,
the rather simplified nature of a model of hard-core repulsive ABP might hamper the comparison
to the far more complex experimental system as the ABP model is not feasible to account for
the complex diffusiophoretic mechanisms upon the critical demixing and the hydrodynamic
interactions triggered by the resulting persistent motion of the Janus particle. Still, such a
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comparison might serve as an instructive test of the model.

To perform an adaption the ABP model, the rotational diffusion coefficients were extracted
from the experimental data by determining the slope of 〈θ2(t)〉. For the free passive particle, a
relative error of 50% of the resulting Dr compared to the prediction from the Stokes-Einstein re-
lation between rotational and translational diffusion coefficients was found. These discrepancies
demonstrate that solely measuring Dr would not provide a method to precisely quantify the slow-
down of short-term diffusion, which underlines the necessity of the fitting procedure performed
in the previous section. For the active Janus particles, δθ2(t)/(2t) was subject to fluctuations in
the order of magnitude of 20% at long times. These fluctuations might be explained by the force-
dipole characteristic of self-propelled particles, which is known to cause torques triggered by the
hydrodynamic interactions with the surface of the sample cell. This means that the rotational
dynamics cannot be regarded as completely diffusive in contradiction with a model of spherical
ABP with a purely diffusive rotational dynamics. Further, the reported effect of an increase of
Dr close to the glass transition is not described by the ABP model and can only be contained
by adjusting Dr(φ) by hand as it was done for the comparison.

The experimentally reported results for the MSDs of the active Janus particle are depicted in
figure 5.3.1 for different densities. Within the extracted Dr, the MSD of a free Janus particle can
be accordingly fitted to the analytic solution of the free ABP as shown as a dotted line. This fit
yields a self-propulsion velocity of 1.07 µm/s, in line with the reported value from the experiment
of 1 µm/s. In terms of the used ABP model units this is equivalent to v0 = 109 D0,l/σeff

l , with
D0,l = 0.0087 µm2/s denoting the experimentally reported diffusion coefficient of the free particle
and σeff

l = σl/7 its effective diameter.

An estimation for the order of magnitude of the required v0 to adapt the data to the ABP
model is provided by a comparison with figure 4.3.9, where the MSDs for φBD = 0.77 reveal a
significant reduction of the relaxation time caused by activity. A similar effect is also seen for the
MSDs reported in the experiment, concluding that they fall into a similar parameter range where
necessary v0 to adjust the data to the ABP-MCT are unfortunately far beyond the stability range
of the numerical scheme that is limited to v0 ≈ 8Dt/σ.

Even though an adaption to the ABP-MCT was not possible, it is still instructive to fit sim-
ulations results to the experimental data. This has been achieved by adjusting v0 with fixed
Dr as reported in the experiment for each density. Thereby it was assumed that the influence
of the laser-induced temperature increase of ∆T=8 ◦C on the short-time diffusion coefficients
is negligible and that these do also not show a significant dependence on the activity, meaning
that they are given by those determined in the last section from the passive systems. The simu-
lation results which have provided the best qualitative agreement under these assumptions are
additionally shown as blue symbols in figure 5.3.1 and provide a rather well agreement for all
densities.

Nevertheless, this comparison reveals several puzzling observations, e.g. when comparing the
MSDs for the densities φexp = 0.73 and φexp = 0.776. According to what has been reported
in this thesis so far, the mobility of an active tracer particle shows a monotonically decreasing
behaviour with both the rotational diffusion coefficient and the density, but the experimental
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Figure 5.3.1.: Comparison between the experimentally reported MSDs of an active Janus par-
ticle in a binary colloidal suspension with simulation results for the MSD of an ABP in a pas-
sive hard-disk environment. Red symbols are experimental results from [112], blue symbols are
simulations results with resulting ABP parameters in terms of experimental units and adjusted
densities as indicated. Black dotted lines correspond to the passive plateau values. The black
dotted line shows a fit to the analytical solution of the free ABP, with fixed Dr as reported from
the experiment.

results contradict this observation. Despite an increase in density and even a concomitant
increase of the rotational diffusion coefficient approximately by a factor of five, the MSD does
not reveal an expected weaker transport for φexp = 0.776 compared to φexp = 0.73. Resolving
this striking non-monotonic behaviour within the adaption to the simulation could only be
achieved by a non-monotonic variation of the self-propulsion velocities, which had to be chosen
twice as large for φexp = 0.776 as for φexp = 0.73 to match the experimental results. This seems
questionable given the decreasing effectiveness of the laser-induced self-propulsion mechanism
when increasing the density in the experiment, accordingly seen for φexp = 0.784 and φexp =

0.814 and therefore leaves some open questions.

A striking observation for the densities φexp = 0.784 and φexp = 0.814 above the glass transition
is an increase of the MSD from the plateau value of the corresponding passive systems both
in the simulations and in the experiment. In the simulations, this increase emerges at least
one decade before the rise from the plateau caused by the deviations from an ideal glass as
seen for the passive system and can therefore be attributed to the influence of the tracer’s
activity. For φexp = 0.784 it is not possible to judge from the experimental data, whether these
changes represent a delocalization transition in form of a finite long time-diffusion constant
or a jump to another plateau value. Results reported from active microrheology for a tracer
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particle pulled with a constant force suggest that the localization length before reaching the
localization transition caused by a critical force increases to about one particle diameter [83]
which corresponds to an increase of the plateau value by a factor of about 100 compared to
the passive system as it is fulfilled here. It becomes also apparent that the crossover time scale
that induces the change of the plateau in the experimental data does not match the rotational
correlation time suggesting that this crossover could indeed be related to a delocalization of
the tracer particle. On the other hand for φexp = 0.814 the increase of the plateau value takes
place on the same time scale as rotational correlation time in both experimental and simulation
results which indicates a changeover to a new plateau value as it is similarly observed for the
correlation functions with finite Dr [47]. Together with the observation that the change in the
plateau value is only of factor 10 suggests that the tracer particle is still in a localized state in
this case.

Even though passive MCT has proven to be a useful tool to assess the effects of hydrodynamic
interactions, it was not possible to compare the experimental results of the active system with
the ABP-MCT predictions due to its numerical limitations. Nonetheless, one can address the
question if ABP-MCT predicts such a delocalization transition in the parameter range that
is accessible. To check this, localization lengths lc for an active tracer in the passive hard-
disk system according to equation (3.4.20) have been calculated very closely above the critical
glass transition density for the solvable case Ds

r = 0 as depicted in figure 5.3.2 in the range of
accessible vs

0. The results were obtained by calculating the critical non-ergodicity parameters
fc(þq ) and f s

c (þq ) from the respective self-consistent iteratively solvable equations. Here f s
c (þq )

converged up vs
0 ≈ 9 and a better convergence in a regime of larger vs

0 could also not be achieved
by increasing ΛL. The critical localization length reveals an expected monotonically increasing
behaviour with vs

0, but a delocalization transition is not seen in the presented parameter range,
but might be expected to occur at higher vs

0 when lc approaches the magnitude of one particle
diameter.
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Figure 5.3.2.: ABP-MCT predictions for the critical localization length of an active tracer
particle in the passive hard-disk environment at the glass transition density in a range of vs

0 at
fixed Ds

r = 0
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6. Mixtures of Active and Passive Par-

ticles

The numerical solutions of the ABP-MCT equations for mixtures of active and passive particles
addressed so far have been restricted to compositions in which the concentration of a second
particle type was only present in a highly diluted form, meaning that it had no influence on the
dynamics of the bulk component in the thermodynamic limit. Since this work has constituted
the framework to investigate arbitrary mixtures of active mixtures, this chapter aims to present
first predictions of the ABP-MCT for the simplest conceivable composition of active and passive
particles, that of a monodisperse binary mixture with varying concentration c of an active particle
component. There are several reasons why the investigation of such a system might be of interest.
First, there might arise technical difficulties to keep a global activity level in an experimental
realization of active particles. Further, a controllable increase of the active components in the
system allows to selectively modify the rheological properties of a sample, as it was already
demonstrated in figure 4.5.6 that the viscosity of an active fluid can be manipulated to a great
extent by making the system active and this effect could equivalently be achieved by adding
small amounts of active particles. Moreover, the ABP-MCT for mixtures can be used to assess
presumably non-linear influences of a composition change in order to modify the properties of
samples in an efficient way.

6.1 Glass transition

Since the present theory lacks a strict method to determine the glass transition point in the case
of non-vanishing rotational diffusion coefficients, as discussed in section 3.2, the case Dr = 0

is considered in this section. This allows to calculate the glass transition points in the same
way as in passive MCT by using the iterative solutions of equation (3.2.5) in combination
with a bisection method that searches for a root of the non-ergodicity parameter as a function
of the density. The resulting fluid-glass transition diagram for the monodisperse mixture of
passive particles and ABPs with an infinite persistence time is presented in figure 6.1.1 in the
three-dimensional parameter space of (φ, c, v0). The critical glass transition density shows to
be monotonically increasing with both the concentration and activity of the active species, as
already seen for the single component active system. By increasing the fraction of active particles
of the system leads to a higher chance to escape cages formed by neighbouring particles with
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Figure 6.1.1.: ABP-MCT-predicted fluid-glass transition diagram of the monodisperse binary
mixture of active and passive particles with Dr = 0 in the three-dimensional parameter space of
(φ, c, v0). The colours indicate the magnitude of the critical density φc.

the consequence of a shift of dynamical arrest to higher densities. A striking observation is,
that the resulting transition diagram shows that this effect is not in general linearly related to
the increase in the concentration of the active component. This is highlighted in figure 6.1.2 (a)
which shows the intersecting lines of the transition diagram with the planes of constant activity.
While an increase in the concentration of the active component is accompanied by a linear
increase in the critical density at low activities, a non-linear dependence is observed for higher
activities. In that case, the shift of the glass transition point is most efficiently achieved by only
adding a small number of active components. This observation is in line with the glass transition
diagrams reported for the MCT approach for mixtures of active Ornstein-Uhlenbeck particles
in [120], where transition lines of similar shapes have been reported. This non-linear dependence
can be explained by the cage picture. If several active particles form such a cage, some part
of active forces will be compensated by means of opposite orientation vectors, which weakens
the effects of an enhanced structural rearrangement. On the other hand, when considering
such a cage in a system with a diluted active component, compensation effects of neighbouring
active particles do only occur very rarely and the shift of the glass transition proceeds more
efficiently.
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6.1. Glass Transition

Intersecting lines of the transition diagram with the planes of a constant concentration of the
active component are shown in figure 6.1.2 (a). For the varying concentrations, it is observed
that at low activities, the increase in v0 is only slowly accompanied by an increase of φc with a
quadratic dependence on v0. This is an expected observation since the transition lines are sym-
metric under changing v0 → −v0, meaning that their first-order expansion must be quadratic in
leading order of v0. Besides this effect, there do not emerge novel qualitative features compared
to the homogeneous active case with c = 1. For this case, the resulting transition lines are
presented with an additonal instructive test of cutoff dependencies on ΛL by calculating the
transition for ΛL = 2 instead for ΛL = 1. This comparison does not reveal strong quantita-
tive differences for both cases and serves as further justification to restrict to ΛL = 1 in the
calculations in the presented parameter regime.
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Figure 6.1.2.: MCT-predicted fluid-glass transition lines of the monodisperse binary mixture
of active and passive particles at fixed Dr = 0. (a) shows the intersecting lines of figure 6.1.1
with the planes of constant self-propulsion velocities v0 of the active particle type. (b) shows the
insersecting lines with the planes of constant concentration c of the active particle type. Orange
and purple symbols are results for c = 1 each for a rotational cutoff number of ΛL = 1 (orange)
and ΛL = 2 (purple).

The resulting structure factor normalized critical non-ergodicity parameters

f̂α,α
c 0,0

(q) := fα,α
c 0,0

(q)/Sα,α(q) (6.1.1)

of active and passive types according to the transition lines for v0 = 4 are presented in figure
6.1.3 for the same concentrations as shown in figure 6.1.2 (b). In the diluted cases of each active
and passive particle type, the non-ergodicity parameters converge to those of the tagged particle
dynamics, seen in form of a weaker modulation with the structure factor. This means that
the red curve for the f̂a,a

c 0,0
(q) approaches the non-ergodicity parameter of an active tracer in a

passive bath, where the orange curve for f̂p,p
c 0,0

(q) that of a passive tracer in an active bath. Since
the critical density of active glasses is increased compared to passive glasses explains why in the
latter case, the non-ergodicity parameters are larger. It is seen that the passive tracer in the
active glass close is subject to stronger localization effects than an active tracer in a passive glass,
which is due to the higher critical density in the former case.
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Figure 6.1.3.: Structure-factor normalized critical nonergodicity parameters of the monodis-
perse mixture of active and passive particles for active (top) and passive (bottom) components
for different concentrations c of the active species, fixed Dr = 0 and fixed v0 = 4.

6.2 Dynamics

The effects of a composition change can be observed equivalently on the fluid side of the glass
transition. For this purpose, a monodisperse passive system just above the critical density
φc ≈ 0.6986 is considered in the following and the dynamical properties are to be investigated
by increasing the fraction of the active component in the system. The resulting structure factor
normalized ISFs

Ŝα,α
0,0 (q) = Sα,α

0,0 (q, t)/Sα,α(q) (6.2.1)

of both active and passive particle types for a varying concentration of the active particle type
are shown in figure 6.2.1. For a passive system closely above a dynamical arrested state, a low
amount of active particles is sufficient to bring the system into the fluid state, as demonstrated
by the red curve for c = 0.07. This happens for active and passive components alike and is
expected by the MCT prediction of a coupling of all density fluctuations in the system, seen
by the fact that the relaxation times τα(q) at fixed q are almost identical for active and passive
particle types. The further increase of the active particle concentration leads to a continuing
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reduction of the relaxation time and a less pronounced β-relaxation phase, as the system is
further driven from the glass transition point. A quantitative picture to describe the influence
of the concentration on the relaxation time of the active component is provided by the inset in
the lower picture, which illustrates the divergent behaviour for c → 0. It is further important
to note that the intersections of the ISFs of the passive component for different c is due to the
transition from a collective to a self-dynamics concomitant with an increase of c and only arises
due to the properties of the normalization, but not due to generic mixing effects between active
and passive particles.
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Figure 6.2.1.: Structure-factor normalized ISFs of the monodisperse mixture of active and
passive particles for the active (top) and passive (bottom) components for different concentrations
c of the active species, fixed Dr = 0, fixed v0 = 4 and fixed density φ = 0.6986. The inset of the
bottom figure shows the dependence of τα(q) at fixed q = 7.5 in a wide range of c.
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The development of novel theoretical concepts for systems far from equilibrium constitutes an
ongoing challenge in the field of statistical physics. This work has provided a variety of contri-
butions to this endeavour by extending the mode-coupling theory for active Brownian particles
(ABP-MCT) for the calculation of non-equilibrium transport coefficients in dense active sus-
pensions. The predictions of the theory have further been tested against simulation results and
the agreement has been found to be overall well. This chapter aims to summarize and recapitu-
late the main achievements of this work and concludes by providing some ideas on prospective
research topics that have arisen within the results of this work.

In chapter 2, the integration-through-transients (ITT) formalism has provided a suitable theo-
retical framework to describe a non-equilibrium dynamics by stating exact relations for transient
correlation functions in terms of equilibrium averages. Such transient correlation functions form
the cornerstone of the ABP-MCT. Chapter 3 has started from an exact description of both
translational and rotational microscopic degrees of freedom of the system. With the time evolu-
tion of the phase space distribution being exactly described by the Smoluchowski-equation, the
Mori-Zwanzig projection operator formalism has subsequently been applied to obtain an exact
rewriting for the equation of motion for the transient correlation function of two microscopic
angle-resolved densities, designated as intermediate scattering-function (ISF). Formal solutions
for the ISF of non-interacting ABPs have been provided in section 3.1.2 and generalized to
correlation functions that include the rotational degrees of freedom. This has been achieved by
deriving matrices that describe the basis change from spherical harmonics expanded density-
fluctuations to the basis of Mathieu functions by following the work of Kurzthaler et al. [86].
The ABP-MCT to describe the collective dynamics of identical ABPs [47] has subsequently
been generalized to describe the dynamics of arbitrary mixtures with both active and passive
constituents. One key principle, represented by the presence of separate relaxation channels
in the system, has conserved the features of a diffusive relaxational dynamics of the rotational
degrees of freedom, in line with the definition of spherical ABPs with a purely diffusive rota-
tional dynamics. The approximation of the memory-kernel, that determines the time evolution
of the ISF in dense active systems has been generalized to mixtures within the framework of
the mode-coupling approximation. These generalized ABP-MCT equations have further been
exploited to describe compositions of active and passive particles, in which one component only
exists in a highly diluted form, resulting in MCT equations to describe the self-intermediate
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scattering function (SISF) of active or passive tracer particle both in active or passive dense
host environments. This theory was further investigated in the limit of low wavenumbers, which
has resulted in a novel approach to calculate the mean-squared displacement (MSD) of tracer
particles in dense active or passive suspensions beyond any preliminary coarse-graining of the
rotational degrees of freedom. This makes the theory capable to resolve the various regimes
of anomalous diffusion for both active and passive tracer particles in terms of activity-induced
superdiffusive motion and sub-diffusive motion due to cageing which has been achieved by the
correct inclusion of the competing time scales of persistent motion and structural relaxation.
Expressions for further transport coefficients given by the zero-shear viscosity and the effective
swimming velocity have been derived within the ITT formalism and have been approximated
with the MCT-predicted dynamical correlation functions by using a projection operator tech-
nique.

A further main achievement of this work was to demonstrate that the ABP-MCT is indeed capa-
ble to make accurate predictions in comparison with results from an event-driven simulation of
active Brownian hard-disks. This was demonstrated by an in-depth analysis of each conceivable
scenario of both active and passive tagged particle motion in an active or passive hard-disk envi-
ronment, that is recapitulated for each scenario in the following:

• The motion of a passive tracer in a passive bath has formed the basis for a quantitative
comparison between ABP-MCT predictions and simulation results for active systems by
providing a calibration for the density, that was performed in section 4.2. This gauging is
necessary to correct a well-known error of MCT to quantitatively overpredict the tendency
for the glass-formation, though it was demonstrated that this error can be corrected by
a linear mapping between MCT and BD densities. This has provided near quantitatively
agreeing results for both the tagged particle dynamics and the MSD in the passive system
in a wide range of densities.

Within chapter 5, such a system was also investigated in form of experimental results
for the MSD of tracer particles in a binary colloidal suspension near the glass transition
point. Although such systems have already been studied in detail and compared with
the predictions of passive MCT, it was emphasized that it can make accurate predictions
for dense colloidal suspensions and is an effective method to quantify the influence of
hydrodynamic interactions on the reduction of the short-time diffusion coefficient.

• The scenario of an active tracer particle in a passive bath was presented in section 4.3.
It turned out, that the tagged particle correlation functions predicted by ABP-MCT show
only little variation compared to the passive self-dynamics in a range of self-propulsion
velocities at least up to eight diameters per diffusive time unit. This is explained by the
dominant influence of the cage effect of the surrounding passive bath in this parameter
regime, where the impacts of the tracer’s activity on the dynamics and the structural
relaxation time is only felt on large length scales. A much stronger variation with the
ABP parameters of the tracer has been observed for the tagged particle MSD, which has
revealed all phases of anomalous diffusion which have been resolved almost quantitatively
identically within both ABP-MCT predictions and the simulation results. The condition
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for the occurrence of a superdiffusive behaviour has been argued by the competition of
the structural relaxation time due to the volume exclusion and the persistence time of
the active tracer. The corresponding length scales, given by the cageing length and the
crossover length scales of the free active particle derived in section 2.2 have provided a sim-
ple condition for the occurrence of a superdiffusive motion before the cageing. Moreover,
it was shown that an MCT-ITT approach is feasible to account for the renormalization
of the swimming velocity of the active tracer due to its interaction with the passive host
environment.

Further simulations have revealed that there is indeed a stimulating influence on the struc-
tural relaxation of the active tagged particle if its activity is chosen sufficiently high. In
this parameter regime, the localisation effects of the passive bath are attenuated, so that
the motion of the tracer particle has revealed the characteristics of free active motion with
an effective swimming velocity. It has, however, turned out that this represents a param-
eter regime which has not been accessible by ABP-MCT within the numerical efforts of
this work due to occurring numerical instabilities at high self-propulsion velocities. Their
presumed origins will be discussed separately at the end of this section.

Laser-driven diffusiophoretic Janus particles in binary colloidal suspensions comprise the
simplest experimental approach to study the active motion of tracer particles in dense
environments as presented in chapter 5. The conducted experiments by Lozano et al.
have revealed an unexpected viscoelastic response of active motion, that led to a strong
amplification of the rotational diffusion close to the dynamical arrested state. If this
effect is correctly included in the respective ABP model parameter, the experimentally
measured MSDs of such a system can be reproduced within the methods of BD simulations.
Moreover, the experiments by Lozano et al. have revealed a delocalisation transition of
the active Janus particle in a glass-like environment, which has also been observed in the
simulations if the activity of the tracer was chosen sufficiently high.

• The motion of a passive tracer particle in an active bath was investigated in section
4.4. Here the activity of the bath has led to a significantly faster relaxation of the passive
tagged particle dynamics. It has turned out that ABP-MCT underestimates the influence
of the active perturbation to fluidize the system, but this effect has been successfully cor-
rected by an empirical rescaling of the self-propulsion velocities, which has delivered very
satisfactory agreements between ABP-MCT predictions and simulations results for both
the tagged particle dynamics and the MSD in a wide range of parameters. A remarkable
achievement of ABP-MCT is its capability to account for the transmission of superdiffusiv-
ity from an active bath to a passive tracer particle, that is only possible by the inclusion
of correlation functions between rotational and translational degrees of freedom. More
common approaches proceed by integrating out the rotational degrees of freedom in terms
of an effective Smoluchowski operator and it is not clear if such approximation are capable
to account for a superdiffusive motion of passive particles.

• The behaviour of a active tracer in an active bath at high densities has shown great
similarities with that of a passive tracer particle in the same active bath, through the neg-
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ligible influence of the tracer’s activity on the cage structure in the investigated parameter
range. It was demonstrated that within the same empirical rescaling of the self-propulsion
velocity as for a passive tracer in the active bath, ABP-MCT can make accurate pre-
dictions for the tagged particle dynamics in a wide range of densities that are not too
close to the glass transition. A consistent observation from both MCT and BD is that
activity leads to a decrease of the exponent that characterizes the divergence behaviour
of the relaxation time. This effect has been studied in more detail by investigating the
asymptotic ABP-MCT equations in the case of a vanishing rotational diffusion coefficient.
Moreover, the peculiar feature of non-symmetric correlation functions that arises within
the non-equilibrium time evolution and the transient nature of the ABP-MCT averages
has been successfully confirmed within the simulations.

An existing problem in connection with the time-decimation algorithm [47] to numerically solve
the ABP-MCT equations are instabilities associated with high self-propulsion velocities. Their
origin can presumably be seen in the matrix structure of the theory with the necessary cut-
off of the rotational modes. The degree of justification of performing such a cutoff decreases
with increasing activities, where couplings of higher modes might have a non-negligible influ-
ence on the dynamics. An impression of this is effect has been provided by the analytical
expression for the inverse of the translation frequency matrix of an active tracer particle in
figure 3.3.2, which has emphasized, that inversion and performing a cutoff at high activities
are highly non-commutative. This has shown to lead to systematic errors in the range of low
wavenumbers and at sufficiently high activities this error range has extended up to a relevant
wave number regime for the integration of the memory-kernel. Even though these effects can
be corrected for the inverse of the frequency matrix by employing the correct inversion formula,
similar cutoff-dependencies are expected to occur for the ISF, since its inverse explicitly enters
the time-decimation scheme to solve the MCT-approximated equation of motion. Numerical
analyses show that both the complexity and the memory demand of the time decimation pro-
cedure increases in the third power with the size of the considered matrices [84] which implies
enormous limitations to explore parameter regimes that require the inclusion of larger matri-
ces.

The ABP-MCT predictions regarding mixtures of active and passive particles have been inves-
tigated in chapter 6 and have revealed a non-linear impact of the compositional change of the
active species on the shift of the glass transition point. The presented study of mixing effects
which are associated with the increase of the amount of an active component in a monodisperse
system has provided a first preliminary step to address the effects that are associated with the
change of the size of the constituents. The influence of the size composition on the dynamics and
the glass transition of passive systems is well-studied [38,119] and shows peculiar non-monotonic
dependencies on the size disparity. It is, however, unclear how activity interplays with such a size
disparity change. Addressing this question constitutes a promising prospective research topic,
for which this work has established the necessary theoretical framework to deal with. However,
when investigating active mixtures within the ABP-MCT, there arise further numerical limita-
tions, emphasized by the observation that the increase of numerical complexity to investigate an
active binary mixture with the same wavenumber discretization as a single component system
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has been observed to be increased by a factor of around eight. At the same time, the investi-
gation of mixing effects due to changes in the size composition requires a better discretization
of the wavenumber grid, which additionally increases computational times and requires future
work to optimize the used integration schemes. One promising approach in that context is given
by a recent study on non-uniform wavenumber grids and their impact on the complexity of the
MCT numerics [121], which can be significantly reduced by using more sophisticated discretiza-
tion schemes. More elaborated wavenumber grids would also allow for an investigation of the
ABP-MCT on a logarithmic wavenumber grid which can be exploited to explore the long-time
tails of the velocity autocorrelation function by suitable analysis of the long-wavelength dynam-
ics as previously done for dense systems of passive Brownian hard-spheres [122]. Performing
an analogous study in high-density systems of ABPs constitutes a further interesting project to
which the ABP-MCT might deliver a valuable contribution.
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Appendix

MCT Calculations

A.1 ABP mixtures

The necessary steps to arrive at the expressions for the vertex functions, equation (3.1.48) and
(3.1.49), to describe the mode-coupling approximated memory-kernel are carried out in detail
in the following. For clarity the necessary quantities and approximations are again summarized
below:

The MCT approximation of the memory-kernel after performing the second projection step is
given by

mα,β
l,l′ (þq, t) ≈

〈

ρα
l (þq )∗

Ω
†QP2eΩ

†
irr

tP2QΩ
†ρβ

l′(þq )
〉

=
∑

1,2,3,4
1′2′3′4′

〈

ρα
l (þq )∗

Ω
†Qρ1ρ2

〉

g1,2,3,4

〈
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3ρ∗

4eΩ
†
irr

t′

ρ1′ρ2′

〉

g1′,2′,3′,4′

〈

ρ∗
3′ρ∗

4′QΩ
†ρβ

l′(þq )
〉

,

with the normalization tensor

g1,2,3,4 =
1

2

(

S−1
)γ1,γ3

l1,l1
(q1)

(

S−1
)γ2,γ4

l2,l2
(q2) δþq1,þq3

δþq2,þq4
δl1,l3δl2,l4 . (A.1.1)

Moreover, there applies the mode-coupling approximation that reads

〈

ρ∗
3ρ∗

4eΩ
†,
irr

tρ1′ρ2′

〉

≈ S3,1′ (t) S4,2′ (t) δþq3,þq1′ δþq4,þq2′ + 1′ ↔ 2′. (A.1.2)

The action of the adjoint Smoluchowski operator is splitted into equilibrium and non-equilibrium
contributions, i.e., Ω

† = Ω
†
eq + δΩ

† with

Ω
†
eq =

∑

(j,α)

(

þ∇α
j + β þF α

j

)

þ∇α
j + Dr∂α2

ϕj
, δΩ

† =
∑

(j,α)

vα
0

þ∇α
j · þo α

j .

It is further convenient to use the following identity for a representation of a vector in polar
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coordinates þq = (q, ϕq), that is

þq · T ·
(
δl,l′+1, δl,l′−1

)T
= qe−i(l−l′)ϕq δ|l−l′|,1 with T :=

(

1 1

−i i

)

. (A.1.3)

This allows to express the action of δΩ
† on a density ρi := ργi

li
(þqi) in a compact notation

as
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†ρi =
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i
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2
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−ieiθ
γi
n + ie−iθ

γi
n

)

eiþqi·þr γi
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2
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ρi−

)

, (A.1.4)

with the short-hand notation ρi± = ργi

li±1(þqi). Moreover, the following approximations for the ap-
pearing static correlation functions which involve 3 densities will be used

〈

ρ∗
1ρ∗

2ρ3
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≈ 1√
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To calculate the static vertex functions the following identity is further needed. Two scalar
observables A and B fulfill

〈

A(þ∇i + β þFi)þ∇iB
〉

= −
〈

þ∇iAþ∇iB
〉

. (A.1.7)

This is seen by showing that
〈
Aβ þFiB

〉
= −

〈
þ∇i(AB)

〉
through integration by parts.

With these relations at hand, the calculation of the vertex functions proceeds straightfor-
ward. Starting with the right part of the vertex and using the orthogonal projector of Q
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Inserting the projector brings for the second term
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× δþq3′ +þq4′ ,þq δ|l′−l3′ −l4′ |,1

Terms which arise from equilibrium and non-equilibrium contributions in the first term of (A.1.8)
are calculated separately. Starting with the equilibrium contribution reveals
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Apparently the active parts from the first and second term of equation (A.1.8) cancel out and
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This expression can be further simplified by using the Ornstein-Zernicke relation given by equa-
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The calculation of the left vertex proceeds in a similar fashion. Writing again
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reveals for the first term
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The equilibrium contributions of the second term are given by
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Taking again the sub-sum over the normalization tensor and exploiting the Ornstein-Zernike
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relation results in
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N

[
∑

γ1

1

x2
γ4

vγ1

0 q3ei(l3+l4−l)αq3 Sα,γ4

l,l (q)Sγ4,γ1

l−l4,l−l4
(q3)

(

S−1
)γ1,γ3

l3,l3
(q3)

+
∑

γ2

1

x2
γ3

vγ2

0 q4ei(l3+l4−l)αq4 Sα,γ3

l,l (q)Sγ3,γ2

l−l3,l−l3
(q4)

(

S−1
)γ2,γ4

l4,l4
(q4)

− 1

x2
γ3

vγ3

0 qei(l3+l4−l)ϕq δγ3,γ4
Sα,γ3

l,l (q)

]

δþq,þq3+þq4
δ|l−l3−l4|,1

=
ρ

2
√

N
Wα,γ3,γ4

l,l3,l4
(þq, þq3, þq4) δþq,þq3+þq4

.

After applying the mode-coupling approximation for
〈

ρ∗
3ρ∗

4eΩ
†
irr

tρ1′ρ2′

〉

and evaluating the wavevec-
tor delta functions, the single remaining wavevector sum is expressed in the thermodynamic limit
as

∑

þp = V/(2π)2
´

d2p finally results in equation (3.1.47).

A.2 Tagged Particle Dynamics

The memory-kernel ms(þq, t) is explicitly calculated from equation (3.1.47) by multiplying out
the vertexfunctions, restricting to the only contributing terms of structure Ss(þq1, t)Sα,β(þq2, t)

where α, β Ó= s. Abbreviating þk = þq−þp and splitting the memory-kernel in ms(þq, t) = ms
eq(þq, t)+

δms(þq, t) yields for the equilibrium part

(meq)s
l,l′ (þq, t) ≈ (Ds

t )2 ρ

2

ˆ

d2p

(2π)2

∑

l1..l4
γ1 Ó=s,γ2 Ó=s

[

δl3,0δl1,0(þq · þk)2cγ1,s(k)cγ2,s(k)Sγ1,γ2

l1,l3
(þk, t)Ss

l2,l4(þp, t)

+ δl4,0δl2,0(þq · þp)2cγ1,s(p)cγ2,s(p)Ss
l1,l3(þk, t)Sγ1,γ2

l2,l4
(þp, t)

]

δl1+l2,l δl3+l4,l′

= (Ds
t )2ρ

ˆ

d2p

(2π)2

∑

l1,l2
γ1 Ó=s,γ2 Ó=s

cγ1,s(k)cγ2,s(k)
(

þq · þk
)2

δl,l2δl1,0Ss
l2,l′(þp, t) Sγ1,γ2

l1,0 (þk, t)

= ρ

ˆ

d2p

(2π)2

∑

l1,l2
γ1 Ó=s,γ2 Ó=s

(
Veq

)s,γ1,γ2

l,l1,l2
(þq,þk, þp)Ss

l2,l′(þp, t) Sγ1,γ2

l1,0 (þk, t).

Here a factor 2 was obtained by changing þp ↔ þk, l1 ↔ l2 and l3 ↔ l4 in the second line and the
vertex

(
Veq

)s,γ1,γ2

l,l1,l2
(þq,þk, þp) coincides with the definition of the main text. The contributing terms

of the active part of the memory-kernel are given by

δms
l,l′ (þq, t) ≈ Ds

t

4

ˆ

d2p

(2π)2

∑

l1..l4
γ1 Ó=s,γ2 Ó=s

(þq · þk)cγ2,s(k)Sγ1,γ2

l1,l3
(þk, t)Ss

l2,l4(þp, t)δl3,0δl3+l4,l′δ|l−l1−l2|,1

107



A. MCT Calculations

×
[

1

x2
s

ivs
0kei(l1+l2−l)αkSs,s

l,l (q)Ss,s
l−l2,l−l2

(k)
(
S−1)s,γ1

l1,l1
(k)

+
1

x2
s

∑

ǫÓ=s

ivǫ
0kei(l1+l2−l)αkSs,s

l,l (q)Ss,ǫ
l−l2,l−l2

(k)
(
S−1)ǫ,γ1

l1,l1
(k)

+
1

x2
γ1

ivs
0pei(l1+l2−l)αpSs,γ1

l,l (q)Sγ1,s
l−l1,l−l1

(p)
(
S−1)s,s

l2,l2
(p)

+
1

x2
γ1

∑

ǫÓ=s

ivǫ
0pei(l1+l2−l)αpSs,γ1

l,l (q)Sγ1,ǫ
l−l1,l−l1

(p)
(
S−1)ǫ,s

l2,l2
(p)

]

+
Ds

t

4

ˆ

d2p

(2π)2

∑

l1..l4
γ1 Ó=s,γ2 Ó=s

(þq · þp)cγ2,s(p)Ss
l1,l3(þk, t)Sγ1,γ2

l2,l4
(þp, t)δl4,0δl3+l4,l′δ|l−l1−l2|,1

×
[

1

x2
s

ivs
0pei(l1+l2−l)αpSs,s

l,l (q)Ss,s
l−l1,l−l1

(p)
(
S−1)s,γ1

l2,l2
(p)

+
1

x2
s

∑

ǫÓ=s

ivǫ
0pei(l1+l2−l)αpSs,s

l,l (q)Ss,ǫ
l−l1,l−l1

(p)
(
S−1)ǫ,γ1

l2,l2
(p)

+
1

x2
γ1

ivs
0kei(l1+l2−l)αkSs,γ1

l,l (q)Sγ1,s
l−l2,l−l2

(k)
(
S−1)s,s

l1,l1
(k)

+
1

x2
γ1

∑

ǫÓ=s

ivǫ
0kei(l1+l2−l)αkSs,γ1

l,l (q)Sγ1,ǫ
l−l2,l−l2

(k)
(
S−1)ǫ,s

l1,l1
(k)

]

.

The appearing terms can be simplified by using Ss,s
l,l′ = xsδl,l′ , Ss,γ

l,l′ ∝ xsδl,l′ as shown in the main
text. Further, the Ornstein-Zernike equation for the inverse structure factors is applied. Insert-
ing these relations and evaluating the delta functions in the rotational indices reveals that the last
two terms after both integrations vanish in the limit xs → 0. Again a factor 2 with the same vari-
able transformation as for the passive vertex and the result reads

δms
l,l′ (þq, t) ≈ ρ

ˆ

d2p

(2π)2

∑

l1,l2
γ1 Ó=s,γ2 Ó=s

iDs
t

(þq · þk)

2
kei(l1+l2−l)αkcγ2,s(k)

[

vγ1

0

Ss,γ1(k)

ρxsxγ1

δl,l2 − vs
0cγ1,s(k)δl1,0

]

× Sγ1,γ2

l1,0 (þk, t)Ss
l2,l′(þp, t)δ|l−l1−l2|,1.

Finally write Ss,γ1(k)/xs =
∑

ǫÓ=s ρSγ1,ǫ(k)cǫ,s(k) for γ1 Ó= s to get the form of the non-
equilibrium vertex as given in the main text.
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A.3 Equations of Motion for the MSD

The resulting equations of motion for the tagged particle MSD as given in the main text are de-
rived in detail. For clarity, the fundamental equations are repeated again:

∂tδr2(t) + lim
þq→0

ˆ t

0
dt′ ∑

l

(

ms
0,l(þq, t − t′)ωs−1

Tl,0
(þq )

)

∂t′δr2(t′)

︸ ︷︷ ︸

I

= 4Ds
t + lim

þq→0

4

q2

[ ∑

±
ωs

0,±1Ss
±1,0(þq, t)

]

+ lim
þq→0

ˆ t

0
dt′ 4

q2

∑

l
l′ Ó=0

[

ms
0,l(þq, t − t′)ωs−1

Tl,l′
(þq )

(
∂t′Ss

l′,0(þq, t′) + l′2Ds
rSs

l′,0(þq, t′)
)]

︸ ︷︷ ︸

II

,

∂tS
s
l,0(þq, t) +

∑

l′

ωl,l′S
s
l′,0(þq, t) =

−
ˆ t

0
dt′ ∑

l′,l′′

ms
l,l′(þq, t − t′)ωs−1

Tl′,l′′
(þq )

[

∂t′Ss
l′′,0(þq, t′) + l′′2Ds

rSs
l′′,0(þq, t′)

]

.

Also recall that the leading order in þq for ms
l,l′(þq, t) is O(þq ) for |l − l′| = 1, and O(þq 2 )

else.

A.3.1 Passive Tracer

For the passive tracer recall that ωs
l,l′(þq ) = (Ds

t q2 + Ds
rl2)δl,l′ and ωs−1

Tl,l′
(þq ) = 1/(Ds

t q2)δl,l′ ,
meaning that

lim
þq→0

I = lim
þq→0

ˆ t

0
dt′ m

s
0,0(q, t − t′)

Ds
t q2

δr2(t′) = Ds
t

ˆ t

0
dt′m̂s(t − t′)δr2(t′),

with m̂s(t) defined as in (3.4.15). The MSD further couples to Ss
l,0(þq, t) SISFs with l Ó= 0 whose

equation of motion read

∂tSl,0(þq, t) = −ωs
l,lS

s
l,0(þq, t) −

ˆ t

0
dt′ ∑

l′

ms
l,l′ω

s−1

Tl′,l′
(þq )

[

∂t′Sl′,0(þq, t) + Drl′2Ss
l′,0(þq, t)

]

,

where the diagonlity of both ωs(þq ) and ωs−1

T (þq ) has been exploited. Inspecting the expression
for the tagged particle memory-kernel, equation (3.3.13), one sees that ms

l,l′(þq, t) only couples
to the Ss

l,l′(þq, t) component of the tagged particle correlator. This means that ms(þq, t) must be
diagonal because Ss

l,l′(þq, t) has a vanishing initial value for l Ó= l′. But this also means that for
l Ó= 0 the only trivial solution to equation (A.3.1) is Ss

l,0(þq, t) = 0 because the equation of motion
only couples to other Ss

l′,0(þq, t) with l′ Ó= 0.
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A.3.2 Active Tracer

Recall that the terms for both the frequency matrix and the inverse of its translational part for
vs

0 Ó= 0 are

ωs
l,l′(þq ) = (Ds

t q2+Ds
rl2)δl,l′−i

vs
0q

2
e−i(l−l′)ϕq , ωs−1

Tl,l′
(þq ) = e−i(l−l′)ϕq i|l−l′|

(

1

vs
0q

−|l − l′|Ds
t

(vs
0)2

)

+O(q)

This means that the only contributing terms in I are for δ|l|,1 because only then m0,l is of order
O(q). One keeps

lim
þq→0

I = lim
þq→0

ˆ t

0
dt′ ∑

±
ms

0,±1(þq, t − t′)e∓iϕq
i

vs
0q

∂t′δr2(t′) =
i

vs
0

ˆ t

0
dt′ ∑

±
m̂s

±1,0(t − t′)∂t′δr2(t′),

as in the main text.

Potentially contributing terms that arise in leading order of q in II are for

II =
4

q2

ˆ t

0
dt′ ∑

l
l′ Ó=0

ms
0,l(þq, t − t′)ωs−1

Tl,l′
(þq )

[

∂t′Ss
l′,0(þq, t′) + Drl′2Ss

l′,0(þq, t′)
]

×
(

δl,0δ|l′|,1 + δ|l|,1δ|l′|,1 + δ|l|,2δ|l′|,1 + δ|l|,1δ|l′|,2
)

+ O(q).

The δ|l|,2δ|l′|,1 terms do not contribute as exemplified:

4

q2

ˆ t

0
dt′ ∑

l
l′ Ó=0

ms
0,l(þq, t − t′)ωs−1

Tl,l′
(þq )

[

∂t′Ss
l′,0(þq, t′) + Drl′2Ss

l′,0(þq, t′)
]

δ|l|,2δ|l′|,1

=
4

q2

ˆ t

0
dt′ ∑

|l|=2

∑

±
ms

0,l(þq, t − t′)e−ilϕq e±iϕq
i|l∓1|

vs
0q

[

∂t′Ss
±1,0(þq, t′) + DrSs

±1,0(þq, t′)
]

,

which vanishes by using the symmetry eiϕq Ss
1,0(þq, t) = e−iϕq Ss

−1,0(þq, t). For the same reasons
of symmetry, also the δ|l|,1δ|l′|,2 terms do not contribute. It seem that the overall order of the
δ|l|,1δ|l′|,1 terms is of O(q−1) which means taht and one also has to take into account the next
leading order of ωs−1

Tl,l′
(þq ):

4

q2

ˆ t

0
dt′ ∑

l
l′ Ó=0

ms
0,l(þq, t − t′)ωs−1

Tl,l′
(þq )

[

∂t′Ss
l′,0(þq, t′) + Drl′2Ss

l′,0(þq, t′)
]

δ|l|,1δ|l′|,1

=
4

q2

ˆ t

0
dt′ ∑

l=±1
l′=±1

ms
0,l(þq, t − t′)e−i(l−l′)ϕq i|l−l′| 1

vs
0q

[

∂t′Ss
l′,0(þq, t′) + Drl′2Ss

l′,0(þq, t′)
]

− 4

q2

ˆ t

0
dt′ ∑

l=±1
l′=±1

ms
0,l(þq, t − t′)e−i(l−l′)ϕq i|l−l′||l − l′| Ds

t

(vs
0)2

[

∂t′Ss
l′,0(þq, t′) + Drl′2Ss

l′,0(þq, t′)
]

,

where the potentially dangerous terms in the second line vanishes for the same symmetry reasons
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as before. In the last line there remain contributions for l and l′ with opposite signs. Alltogether
with the δl,0δ|l′|,1 contribution one gets

lim
þq→0

II = lim
þq→0

4

q2

ˆ t

0
dt′ms

0,0(q, t − t′)
ie±iϕq

vs
0q

∑

±

[

∂t′Ss
±1,0(þq, t′) + Ds

rSs
±1,0(þq, t′)

]

+ lim
þq→0

8

q2

ˆ t

0
dt′ ∑

±
e∓iϕq ms

0,±1(þq, t − t′)
Ds

t

(vs
0)2

e±iϕq

[

∂t′Ss
±1,0(þq, t′) + DrSs

±1,0(þq, t′)
]

=
4i

vs
0

ˆ t

0
dt′m̂s

0,0(t − t′)
∑

±

[
∂t′ φ̂s

±1,0(t′) + Ds
rφ̂s

±1,0(t′)
]

+
4Ds

t

(vs
0)2

ˆ t

0
dt′ ∑

±
m̂s

0,±1(t − t′)
∑

±

[
∂t′ φ̂s

±1,0(t′) + Ds
rφ̂s

±1,0(t′)
]
,

with the isotropic and q-independent quantities

φ̂±1,0(t) = lim
þq→0

e±iϕq
Ss

±1,0(þq, t)

q
, m̂s

l,l′(t) = lim
þq→0

ei(l−l′)ϕq
ms

l,l′(þq, t)q|l−l′|

q2
,

as defined as in the main text. Still an equation of motion for φ̂±1,0 is needed. It reads

∂tφ̂±1,0(t) − ivs
0

2
+ Ds

rφ̂±1,0(t) =

− lim
þq→0

e±iϕq

q

ˆ t

0
dt′ ∑

l,l′

ms
±1,l(þq, t − t′)ωs−1

Tl,l′
(þq )

[
∂tS

s
l′,0(þq, t) + Ds

rl′2Ss
l′,0(þq, t)

]

× δ|l′|1δ|±1−l|,1.

By inserting the expression for ωs−1

Tl,l′
(þq ) one easily checks that there only surive terms for l = 0

which leads to

∂tφ̂
s
±1,0(t) =

ivs
0

2
− Ds

rφ̂s
±1,0(t) − i

vs
0

ˆ t

0
dt′m̂s

±1,0(t − t′)
∑

±

[
∂t′ φ̂s

±1,0(t′) + Ds
rφ̂s

±1,0(t′)
]
.

as given in the main text.

A.4 ITT Effective Swimming Velocity

This section aims to derive the MCT approximated expression for the irredubible correlator
Cα,γ

irr (t) given by equation (3.5.9). Recall that

Cα,γ
irr (t) ≈

Nα∑

i=1

Nγ∑

j=1

∑

1,2,3,4
1′2′3′4′

〈

þF γ
j · þo γ

j ρ1ρ2

〉

g1,2,3,4

〈

ρ∗
3ρ∗

4eΩ
†
irr

t′

ρ1′ρ2′

〉

g1′,2′,3′,4′

〈

ρ∗
3′ρ∗

4′
þF α

i · þo α
i

〉

.
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Starting with the left vertex one gets

∑

i

〈

þo γ
i

þF γ
i ρ1ρ2

〉

= − 1

β

∑

i

〈

þo γ
i

þ∇γ
i (ρ1ρ2)

〉

= − i

2β
δγ,γ1

þq1 · T ·
(

〈ρ2ρ1+〉
〈ρ2ρ1−〉

)

+ 1 ↔ 2

= − i

2β
δγ,γ1

þq1 · T ·
(

δ−l2,l1+1

δ−l2,l1−1

)

Sγ1,γ2

l2,l2
(q1)δþq1,−þq2

+ 1 ↔ 2

= − i

2β
δγ,γ1

q1ei(l1+l2)ϕq1 Sγ1,γ2

l2,l2
(q1)δþq1,−þq2

δ|l1+l2|,1 + 1 ↔ 2

And after summation over (1, 2).

∑

i

∑

1,2

〈

ρ1ρ2
þF γ

i · þo γ
i

〉

g1,2,3,4 =
iρ

4β
δ|l3+l4|,1δþq3,−þq4

cγ3,γ4(q3)q3

(

eil4ϕq3 δl3,0δγ,γ4
− eil3ϕq3 δl4,0δγ,γ3

)

:= Yγ,γ3,γ4

l3,l4
(þq3)δþq3,−þq4

.

The result of the right vertex can be directed concluded by exploiting that the projected force is a
real function. This means that

∑

i

∑

3′,4′

〈

ρ∗
3′ρ∗

4′
þF α

i ·þo α
i

〉

g1′,2′,3′,4′ =
(

Yα,γ1′ ,γ2′

l1′ ,l2′
(þq1′)

)∗
δþq1′ ,−þq2′ . Af-

ter applying the mode-coupling approximation of the propagator and evaluation of the wavevec-
tor delta functions there remains a single wavenumber integral that is carried out in polar
coordinates by with the use of isotropic correlation functions Sγ1,γ2

l,l′ (þq, t) = e−i(l−l′)ϕq Ŝγ1,γ2

l,l′ (q, t)

as follows:

Dα
t β2

Nα
Cα,γ

irr (t) =
Dα

t V

2π2Nα

ˆ

d2p
∑

l1..l4
γ1..γ4

Yγ,γ1γ2

l1,l2
(þp )Sγ1,γ3

l2,l4
(þp, t)Sγ2,γ4

l1,l3
(−þp, t)Yα,γ3,γ4

l3,l4
(þp )

=
Dα

t ρ

32π2xα

ˆ 2π

0
dϕ

ˆ ∞

0
dp

∑

l1..l4
γ1..γ4

p3cγ1,γ2(p)cγ3,γ4(p)δ|l1+l2|,1δ|l3+l4|,1

×
[(

eil2ϕδl1,0δγ,γ2
− eil1ϕδl2,0δγ,γ1

)(
e−il4ϕδl3,0δα,γ4

− e−il3ϕδl4,0δα,γ3

)]

× e−i(l1−l3)ϕŜγ1,γ3

l1,l3
(p, t)e−i(l2−l4)(ϕ+π)Ŝγ2,γ4

l2,l4
(p, t)

=
Dα

t ρ

8πxα

∑

γ1..γ4

l=±1,l′=±1

ˆ ∞

0
dp p3cγ1,γ2(p)cγ3,γ4(p)δγ,γ2

×
(

Ŝγ1,γ3

0,0 (p, t)Ŝγ2,γ4

l,l′ (p, t)δα,γ4
+ Ŝγ1,γ3

0,l (p, t)Ŝγ2,γ4

l′,0 (p, t)δα,γ3

)

,

as given in the main text.

A.5 ITT Zero-Shear Viscosity

In the main text it was shown that by following the ITT formalism, there arise two stress contri-

butions
〈

σ̂x,y
〉v0

and
〈

σ̂x,y
〉γ̇

in equation (3.6.7) which respective mode-coupling approximations
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are derived in the following. The active contribution is

〈

σ̂x,y
〉v0

≈ −
ˆ ∞

0
dt

∑

(i,α)

vα
0

〈

þo α
i β þF α

i P2eΩ†tP2σ̂x,y
〉

= −
ˆ ∞

0
dt

∑

(i,α)

∑

1,2,3,4
1′2′3′4′

vα
0

〈

þoi,αβ þFi,αρ1ρ2

〉

g1,2,3,4

〈

ρ∗
3ρ∗

4eΩ†tρ1′ρ2′

〉

g1′,2′,3′,4′

〈

ρ∗
3′ρ∗

4′ σ̂x,y
〉

.

From the last section one can conclude

−
∑

(i,α)
1,2

vα
0

〈

þo α
i β þF α

i ρ1ρ2

〉

g1,2,3,4 = −
∑

α

iρ

4
vα

0 δ|l3+l4|,1δþq3,−þq4
cγ3,γ4(q3)q3

× (eil4ϕq3 δl3,0δα,γ4
− eil3ϕq3 δl4,0δα,γ3

)

= −
∑

α

vα
0 Yα,γ3,γ4

l3,l4
(þq3)δþq3,−þq4

and the calculation of the right vertex is conducted as follows:

〈

ρ∗
3′ρ∗

4′ σ̂x,y
〉

= − 1

NV

∑

i,i3′ ,i4′
γ,γ3′ ,γ4′

〈

F γ
i,xrγ

i,ye
−iþq3′

(
þr

γ
3′

i
3′

−þr
γ

4′

i
4′

)

e
−il3′ θ

γ
3′

i
3′ e

−il4′ θ
γ

4′

i
4′

〉

δþq3′ ,−þq4′

=
1

NβV

∑

i,i3′ ,i4′
γ,γ3′ ,γ4′

〈

rγ
i,ye

−il3′ θ
γ

3′

i
3′ e

−il4′ θ
γ

4′

i
4′ ∂γ

i,xe
−iþq3′

(
þr

γ
3′

i
3′

−þr
γ

4′

i
4′

)
〉

δþq3′ ,−þq4′

=
1

NβV

∑

i,i3′ ,i4′
γ,γ3′ ,γ4′

〈

e
−il3′ θ

γ
3′

i
3′ e

−il4′ θ
γ

4′

i
4′ iq3′,x(δi,i4′ δγ,γ4′ − δi,i3′ δγ,γ3′ )

× rγ
i,ye

−iþq3′

(
þr

γ
3′

i
3′

−þr
γ

4′

i
4′

)
〉

δþq3′ ,−þq4′

=
1

βV

q3′,xq3′,y

q3′
∂q3′ S

γ3′ ,γ4′

0,0 (q3′)δl3′ ,0δl4′ ,0δþq3′ ,−þq4′ ,

where in the last line the transformation rule for polar coordinates ∂q3′,y
= (q3′,y/q3′)∂q3′ was

exploited. Taking the sub-sum over g1′,2′,3′,4′ shows

∑

3′,4′

g1′,2′,3′,4′

〈

ρ∗
3′ρ∗

4′ σ̂x,y
〉

=
1

2βV

qx
1′q

y
1′

q1′

∑

γ3′ ,γ4′

(
S−1)γ2′ ,γ4′

0,0
(q1′)

(
S−1)γ1′ ,γ3′

0,0
(q1′)∂q1′ S

γ3′ ,γ4′

0,0 (q1′)

× δl1′ ,0δl2′ ,0δþq1′ ,−þq2′

=
ρ

2βV

qx
1′q

y
1′

q1′
∂q1′ c

γ1′ ,γ2′ (q1′)δl1′ ,0δl2′ ,0δþq1′ ,−þq2′ := X γ1′ ,γ2′

l1′ ,l2′
(þq1′)δþq1′ ,−þq2′ ,

which follows by using the product rule and the Ornstein-Zernike equation in the first line:

∑

γ3′

(
S−1)γ1′ ,γ3′

0,0
∂q1′ S

γ3′ ,γ4′

0,0 = −
∑

γ3′

S
γ3′ ,γ4′

0,0 ∂q1′

(
S−1)γ1′ ,γ3′

0,0
= ρ

∑

γ3′

S
γ3′ ,γ4′

0,0 ∂q1′ c
γ1′ ,γ3′ .
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Having determined the static vertex functions one can write

〈

σ̂x,y
〉v0

= − V

2π2

ˆ ∞

0
dt

ˆ

d2p
∑

l1..l4
γ1..γ4

∑

α

vα
0 X γ1,γ2

l1,l2
(þp )Sγ1,γ3

l1,l3
(þp, t)Sγ2,γ4

l1,l3
(−þp, t)Yα,γ3,γ4

l3,l4
(þp )

=
ρ2

16iπ2β

ˆ ∞

0
dt

ˆ ∞

0
dp

∑

l1..l4
γ1..γ4

p3∂qcγ1,γ2(q)cγ3,γ4(q)Ŝγ2,γ4

l2,l4
(p, t)Ŝγ1,γ3

l1,l3
(p, t)

×
ˆ 2π

0
dϕ cos ϕ sin ϕ

∑

α

vα
0

(

eil4θδl3,0δα,γ4
− vγ3

0 eil3θδl4,0δα,γ3

)

e−i(l1−l3)ϕe−i(l2−l4)(ϕ+π)

× δ|l3+l4|,1δl1,0δl2,0,

which vanishes after carrying out the ϕ integration.

The shear-induced contribution to the viscosity after inserting two-point projectors reads

〈

σ̂x,y
〉γ̇

≈
ˆ ∞

0
dt γ̇βV

〈

σ̂x,yP2eΩ†tP2σ̂x,y
〉
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1′2′3′4′
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〈

σ̂x,yρ1ρ2
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〈
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4eΩ†tρ1′ρ2′
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ρ∗
3′ρ∗

4′ σ̂x,y
〉

And because σ̂x,y is a real function allows to conclude
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32πβ
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.

114



Bibliography

[1] Kenneth Locey and Jay Lennon. Scaling laws predict global microbial diversity. January
2015.

[2] J. Elgeti, R. G. Winkler, and G. Gompper. Physics of microswimmers–single particle
motion and collective behavior: a review. Reports on Progress in Physics, 78(5):056601,
April 2015.

[3] E. M. Purcell. Life at low reynolds number. American Journal of Physics, 45(2):3–11,
January 1977.

[4] Tian Qiu, Tung-Chun Lee, Andrew G. Mark, Konstantin I. Morozov, Raphael Münster,
Otto Mierka, Stefan Turek, Alexander M. Leshansky, and Peer Fischer. Swimming by
reciprocal motion at low reynolds number. Nature Communications, 5(1):5119, November
2014.

[5] C. J. BROKAW. Non-sinusoidal bending waves of sperm flagella. J. Exp. Biol., 43(1):155,
August 1965.

[6] Linda Turner, William S. Ryu, and Howard C. Berg. Real-time imaging of fluorescent
flagellar filaments. J. Bacteriol., 182(10):2793, May 2000.

[7] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, Madan Rao, and
R. Aditi Simha. Hydrodynamics of soft active matter. Rev. Mod. Phys., 85:1143–1189,
Jul 2013.

[8] Allison P. Berke, Linda Turner, Howard C. Berg, and Eric Lauga. Hydrodynamic attrac-
tion of swimming microorganisms by surfaces. Phys. Rev. Lett., 101:038102, Jul 2008.

[9] Jinglei Hu, Mingcheng Yang, Gerhard Gompper, and Roland G. Winkler. Modelling the
mechanics and hydrodynamics of swimming e. coli. Soft Matter, 11(40):7867–7876, 2015.

[10] Ivo Buttinoni, Julian Bialké, Felix Kümmel, Hartmut Löwen, Clemens Bechinger, and
Thomas Speck. Dynamical clustering and phase separation in suspensions of self-propelled
colloidal particles. Phys. Rev. Lett., 110:238301, Jun 2013.

[11] Walter F. Paxton, Kevin C. Kistler, Christine C. Olmeda, Ayusman Sen, Sarah K. St. An-
gelo, Yanyan Cao, Thomas E. Mallouk, Paul E. Lammert, and Vincent H. Crespi. Cat-
alytic nanomotors:- autonomous movement of striped nanorods. J. Am. Chem. Soc.,
126(41):13424–13431, October 2004.

[12] Jonathan R. Howse, Richard A. L. Jones, Anthony J. Ryan, Tim Gough, Reza Vafabakhsh,
and Ramin Golestanian. Self-motile colloidal particles: From directed propulsion to ran-
dom walk. Phys. Rev. Lett., 99:048102, Jul 2007.

115



[13] Thomas Bickel, Arghya Majee, and Alois Würger. Flow pattern in the vicinity of self-
propelling hot janus particles. Phys. Rev. E, 88:012301, Jul 2013.

[14] Alexander M. Maier, Cornelius Weig, Peter Oswald, Erwin Frey, Peer Fischer, and Tim
Liedl. Magnetic propulsion of microswimmers with dna-based flagellar bundles. Nano
Lett., 16(2):906–910, February 2016.

[15] Clemens Bechinger, Roberto Di Leonardo, Hartmut Löwen, Charles Reichhardt, Giorgio
Volpe, and Giovanni Volpe. Active particles in complex and crowded environments. Rev.
Mod. Phys., 88(4):045006, November 2016.

[16] Rachel R. Bennett and Ramin Golestanian. A steering mechanism for phototaxis in
chlamydomonas. Journal of The Royal Society Interface, 12(104):20141164, March 2015.

[17] Benjamin M. Friedrich and Frank Jülicher. Chemotaxis of sperm cells. Proc Natl Acad
Sci USA, 104(33):13256, August 2007.

[18] George H. Wadhams and Judith P. Armitage. Making sense of it all: bacterial chemotaxis.
Nature Reviews Molecular Cell Biology, 5(12):1024–1037, December 2004.

[19] Gáspár Jékely. Evolution of phototaxis. Philosophical transactions of the Royal Society of
London. Series B, Biological sciences, 364(1531):2795–2808, October 2009.

[20] A. Roberts. Mechanisms of gravitaxis in chlamydomonas. The Biological bulletin, 210:78–
80, May 2006.

[21] Deasung Jang, Jinwon Jeong, Hyeonseok Song, and Sang Kug Chung. Targeted drug
delivery technology using untethered microrobots: a review. Journal of Micromechanics
and Microengineering, 29(5):053002, March 2019.

[22] Shuailong Zhang, Erica Y. Scott, Jastaranpreet Singh, Yujie Chen, Yanfeng Zhang, Mo-
hamed Elsayed, M. Dean Chamberlain, Nika Shakiba, Kelsey Adams, Siyuan Yu, Cindi M.
Morshead, Peter W. Zandstra, and Aaron R. Wheeler. The optoelectronic microrobot: A
versatile toolbox for micromanipulation. Proc Natl Acad Sci USA, 116(30):14823, July
2019.

[23] Yaouen Fily and M. Cristina Marchetti. Athermal phase separation of self-propelled par-
ticles with no alignment. Phys. Rev. Lett., 108:235702, Jun 2012.

[24] Gabriel S. Redner, Aparna Baskaran, and Michael F. Hagan. Reentrant phase behavior
in active colloids with attraction. Phys. Rev. E, 88:012305, Jul 2013.

[25] Gabriel S. Redner, Michael F. Hagan, and Aparna Baskaran. Structure and dynamics of
a phase-separating active colloidal fluid. Phys. Rev. Lett., 110:055701, Jan 2013.

[26] Joakim Stenhammar, Adriano Tiribocchi, Rosalind J. Allen, Davide Marenduzzo, and
Michael E. Cates. Continuum theory of phase separation kinetics for active brownian
particles. Phys. Rev. Lett., 111:145702, Oct 2013.

[27] Alexandre P. Solon, Joakim Stenhammar, Raphael Wittkowski, Mehran Kardar, Yariv
Kafri, Michael E. Cates, and Julien Tailleur. Pressure and phase equilibria in interacting
active brownian spheres. Phys. Rev. Lett., 114:198301, May 2015.

[28] A. P. Solon, Y. Fily, A. Baskaran, M. E. Cates, Y. Kafri, M. Kardar, and J. Tailleur.
Pressure is not a state function for generic active fluids. Nature Physics, 11(8):673–678,
August 2015.

116



[29] Aitor Martín-Gómez, Demian Levis, Albert Díaz-Guilera, and Ignacio Pagonabarraga.
Collective motion of active brownian particles with polar alignment. Soft Matter,
14(14):2610–2618, 2018.

[30] Andreas Fischer, Friederike Schmid, and Thomas Speck. Quorum-sensing active particles
with discontinuous motility. Phys. Rev. E, 101(1):012601, January 2020.

[31] Ben Fabry, Geoffrey N. Maksym, James P. Butler, Michael Glogauer, Daniel Navajas,
and Jeffrey J. Fredberg. Scaling the microrheology of living cells. Phys. Rev. Lett.,
87(14):148102, September 2001.

[32] M. Poujade, E. Grasland-Mongrain, A. Hertzog, J. Jouanneau, P. Chavrier, B. Ladoux,
A. Buguin, and P. Silberzan. Collective migration of an epithelial monolayer in response
to a model wound. Proc Natl Acad Sci USA, 104(41):15988, October 2007.

[33] Xavier Trepat, Michael R. Wasserman, Thomas E. Angelini, Emil Millet, David A. Weitz,
James P. Butler, and Jeffrey J. Fredberg. Physical forces during collective cell migration.
Nature Physics, 5(6):426–430, June 2009.

[34] Thomas E. Angelini, Edouard Hannezo, Xavier Trepat, Jeffrey J. Fredberg, and David A.
Weitz. Cell migration driven by cooperative substrate deformation patterns. Phys. Rev.
Lett., 104(16):168104, April 2010.

[35] Andy Aman and Tatjana Piotrowski. Cell migration during morphogenesis. Special Sec-
tion: Morphogenesis, 341(1):20–33, May 2010.

[36] Thomas E. Angelini, Edouard Hannezo, Xavier Trepat, Manuel Marquez, Jeffrey J. Fred-
berg, and David A. Weitz. Glass-like dynamics of collective cell migration. Proc Natl Acad
Sci USA, 108(12):4714, March 2011.

[37] Wolfgang Götze. Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory.
2009.

[38] Thomas Voigtmann. Mode Coupling Theory of the Glass Transition in Binary Mixtures.
PhD thesis, 2002.

[39] W. Till Kranz, Matthias Sperl, and Annette Zippelius. Glass transition for driven granular
fluids. Phys. Rev. Lett., 104(22):225701, June 2010.

[40] V. Krakoviack. Liquid-glass transition of confined fluids: insights from a mode-coupling
theory. Journal of Physics: Condensed Matter, 17(45):S3565–S3570, October 2005.

[41] Lukas Schrack and Thomas Franosch. Mode-coupling theory of the glass transition for
colloidal liquids in slit geometry. Philosophical Magazine, 100(8):1032–1057, April 2020.

[42] M. Fuchs and M. E. Cates. A mode coupling theory for brownian particles in homogeneous
steady shear flow. Journal of Rheology, 53(4):957–1000, July 2009.

[43] Ludovic Berthier, Elijah Flenner, and Grzegorz Szamel. Glassy dynamics in dense systems
of active particles. J. Chem. Phys., 150(20):200901, May 2019.

[44] T. F. F. Farage and J. M. Brader. Dynamics and rheology of active glasses, 2014.

[45] Grzegorz Szamel, Elijah Flenner, and Ludovic Berthier. Glassy dynamics of athermal
self-propelled particles: Computer simulations and a nonequilibrium microscopic theory.
Phys. Rev. E, 91(6):062304, June 2015.

117



[46] Grzegorz Szamel. Theory for the dynamics of dense systems of athermal self-propelled
particles. Phys. Rev. E, 93(1):012603, January 2016.

[47] Alexander Liluashvili, Jonathan Ónody, and Thomas Voigtmann. Mode-coupling theory
for active brownian particles. Phys. Rev. E, 96:062608, Dec 2017.

[48] Matthias Fuchs and Michael E. Cates. Theory of nonlinear rheology and yielding of dense
colloidal suspensions. Phys. Rev. Lett., 89(24):248304, November 2002.

[49] Walter Kob and Hans C. Andersen. Scaling behavior in the β-relaxation regime of a
supercooled lennard-jones mixture. Phys. Rev. Lett., 73(10):1376–1379, September 1994.

[50] Th. Voigtmann, A. M. Puertas, and M. Fuchs. Tagged-particle dynamics in a hard-sphere
system: Mode-coupling theory analysis. Phys. Rev. E, 70(6):061506, December 2004.

[51] F. Weysser, A. M. Puertas, M. Fuchs, and Th. Voigtmann. Structural relaxation of poly-
disperse hard spheres: Comparison of the mode-coupling theory to a langevin dynamics
simulation. Phys. Rev. E, 82(1):011504, July 2010.

[52] Fabian Weysser and David Hajnal. Tests of mode-coupling theory in two dimensions.
Phys. Rev. E, 83(4):041503, April 2011.

[53] G. Li, W. M. Du, X. K. Chen, H. Z. Cummins, and N. J. Tao. Testing mode-coupling
predictions for α and β relaxation in ca0.4k0.6(no3)1.4 near the liquid-glass transition by
light scattering. Phys. Rev. A, 45(6):3867–3879, March 1992.

[54] W. van Megen and S. M. Underwood. Glass transition in colloidal hard spheres: Mode-
coupling theory analysis. Phys. Rev. Lett., 70(18):2766–2769, May 1993.

[55] W. Götze and Th. Voigtmann. Universal and nonuniversal features of glassy relaxation in
propylene carbonate. Phys. Rev. E, 61(4):4133–4147, April 2000.

[56] G. G. Stokes. On the effect of the internal friction of fluids on the motion of pendulums.
Trans. Camb. Phil. Soc. 9, 8–106.

[57] Nicholas C. Darnton, Linda Turner, Svetlana Rojevsky, and Howard C. Berg. On
torque and tumbling in swimming &lt;em&gt;escherichia coli&lt;/em&gt;. J. Bacteriol.,
189(5):1756, March 2007.

[58] Jens Elgeti and Gerhard Gompper. Wall accumulation of self-propelled spheres. EPL
(Europhysics Letters), 101(4):48003, February 2013.

[59] Thomas Speck. Collective behavior of active brownian particles: From microscopic clus-
tering to macroscopic phase separation. The European Physical Journal Special Topics,
225(11):2287–2299, November 2016.

[60] Nicole Meyer-Vernet and Jean-Pierre Rospars. How fast do living organisms move: Max-
imum speeds from bacteria to elephants and whales. American Journal of Physics,
83(8):719–722, August 2015.

[61] Julian Reichert. Druck selbstangetriebener teilchen: Brownsche- und multi-particle colli-
sion dynamik. Master’s thesis, Universität des Saarlandes, 2017.

[62] Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet. Novel type
of phase transition in a system of self-driven particles. Phys. Rev. Lett., 75(6):1226–1229,
August 1995.

118



[63] M. E. Cates and J. Tailleur. When are active brownian particles and run-and-tumble par-
ticles equivalent? consequences for motility-induced phase separation. EPL (Europhysics
Letters), 101(2):20010, January 2013.

[64] Étienne Fodor, Cesare Nardini, Michael E. Cates, Julien Tailleur, Paolo Visco, and Frédéric
van Wijland. How far from equilibrium is active matter? Phys. Rev. Lett., 117(3):038103,
July 2016.

[65] K. Kruse, J. F. Joanny, F. Jülicher, J. Prost, and K. Sekimoto. Asters, vortices, and
rotating spirals in active gels of polar filaments. Phys. Rev. Lett., 92(7):078101, February
2004.

[66] Stefan Klumpp, Reinhard Lipowsky, and David R. Nelson. Cooperative cargo transport by
several molecular motors. Proceedings of the National Academy of Sciences of the United
States of America, 102(48):17284–17289, 2005.

[67] Dapeng Bi, Xingbo Yang, M. Cristina Marchetti, and M. Lisa Manning. Motility-driven
glass and jamming transitions in biological tissues. Phys. Rev. X, 6(2):021011, April 2016.

[68] Dirk Drasdo and Stefan Höhme. A single-cell-based model of tumor growthin vitro: mono-
layers and spheroids. Physical Biology, 2(3):133–147, July 2005.

[69] M. Reza Shaebani, Adam Wysocki, Roland G. Winkler, Gerhard Gompper, and Heiko
Rieger. Computational models for active matter. Nature Reviews Physics, 2(4):181–199,
April 2020.

[70] A Modern Course in Statistical Physics, 4th revised and updated edition. Linda E. Reichl.,
2016.

[71] Borge Hagen, Sven van Teeffelen, and Hartmut Löwen. Non-gaussian behaviour of a self-
propelled particle on a substrate. Condensed Matter Physics, 12, June 2009.

[72] Jérémie Palacci, Cécile Cottin-Bizonne, Christophe Ybert, and Lydéric Bocquet. Sed-
imentation and effective temperature of active colloidal suspensions. Phys. Rev. Lett.,
105(8):088304, August 2010.

[73] J. J. Hermans and R. Ullman. The statistics of stiff chains, with applications to light
scattering. Physica, 18:951–971, November 1952.

[74] Amir Shee, Abhishek Dhar, and Debasish Chaudhuri. Active brownian particles: mapping
to equilibrium polymers and exact computation of moments. Soft Matter, 16(20):4776–
4787, 2020.

[75] S. Papenkort and Th. Voigtmann. Multi-scale lattice boltzmann and mode-coupling the-
ory calculations of the flow of a glass-forming liquid. J. Chem. Phys., 143(20):204502,
November 2015.

[76] A. Sharma and J. M. Brader. Communication: Green-kubo approach to the average swim
speed in active brownian systems. J. Chem. Phys., 145(16):161101, October 2016.

[77] Sara Dal Cengio, Demian Levis, and Ignacio Pagonabarraga. Linear response theory and
green-kubo relations for active matter. Phys. Rev. Lett., 123(23):238003, December 2019.

[78] T. Franosch, M. Fuchs, W. Götze, M. R. Mayr, and A. P. Singh. Asymptotic laws and
preasymptotic correction formulas for the relaxation near glass-transition singularities.
Phys. Rev. E, 55(6):7153–7176, June 1997.

119



[79] M. Fuchs, W. Götze, and M. R. Mayr. Asymptotic laws for tagged-particle motion in
glassy systems. Phys. Rev. E, 58(3):3384–3399, September 1998.

[80] W. Till Kranz, Fabian Frahsa, Annette Zippelius, Matthias Fuchs, and Matthias Sperl. In-
tegration through transients for inelastic hard sphere fluids. Phys. Rev. Fluids, 5(2):024305,
February 2020.

[81] Ran Ni, Martien A. Cohen Stuart, and Marjolein Dijkstra. Pushing the glass transition
towards random close packing using self-propelled hard spheres. Nature Communications,
4(1):2704, October 2013.

[82] Jean-Pierre Hansen I.R. McDonald. Theory of Simple Liquids, 4th Edition. 2013.

[83] M. Gruber, G. C. Abade, A. M. Puertas, and M. Fuchs. Active microrheology in a colloidal
glass. Phys. Rev. E, 94(4):042602, October 2016.

[84] A. Liluashvili. Mode-Coupling Theory of Active Brownian Hard Disks. PhD thesis, 2017.

[85] Robert Zwanzig. Nonequilibrium Statistical Mechanics. 2004.

[86] Christina Kurzthaler, Clémence Devailly, Jochen Arlt, Thomas Franosch, Wilson C. K.
Poon, Vincent A. Martinez, and Aidan T. Brown. Probing the spatiotemporal dynamics of
catalytic janus particles with single-particle tracking and differential dynamic microscopy.
Phys. Rev. Lett., 121:078001, Aug 2018.

[87] C. H. Ziener, M. Rückl, T. Kampf, W. R. Bauer, and H. P. Schlemmer. Mathieu functions
for purely imaginary parameters. Journal of Computational and Applied Mathematics,
236(17):4513–4524, November 2012.

[88] T. Franosch and Th. Voigtmann. Completely monotone solutions of the mode-coupling
theory for mixtures. Journal of Statistical Physics, 109(1):237–259, October 2002.

[89] Gerhard Jung, Thomas Voigtmann, and Thomas Franosch. Scaling equations for mode-
coupling theories with multiple decay channels. May 2020.

[90] Kyozi Kawasaki. Correlation-function approach to the transport coefficients near the
critical point. i. Phys. Rev., 150(1):291–306, October 1966.

[91] Setsuo Ichimaru. Strongly coupled plasmas: high-density classical plasmas and degenerate
electron liquids. Rev. Mod. Phys., 54(4):1017–1059, October 1982.

[92] Rolf Schilling and Thomas Scheidsteger. Mode coupling approach to the ideal glass tran-
sition of molecular liquids: Linear molecules. Phys. Rev. E, 56(3):2932–2949, September
1997.

[93] Yaakov Rosenfeld and N. W. Ashcroft. Theory of simple classical fluids: Universality in
the short-range structure. Phys. Rev. A, 20(3):1208–1235, September 1979.

[94] M. Baus and J. L. Colot. Theoretical structure factors for hard-core fluids. Journal of
Physics C: Solid State Physics, 19(28):L643–L648, October 1986.

[95] Alice Thorneywork, Simon Schnyder, Dirk Aarts, Jürgen Horbach, Roland Roth, and
Roel Dullens. Structure factors in a two-dimensional binary colloidal hard sphere system.
Molecular Physics, 116:1–13, July 2018.

[96] J. Ónody. Dense Microswimmer Systems in Model Porous Media. PhD thesis, 2020.

120



[97] Y. Huang and W. F. McColl. Analytical inversion of general tridiagonal matrices. Journal
of Physics A: Mathematical and General, 30(22):7919–7933, November 1997.

[98] Michael E. Cates and Julien Tailleur. Motility-induced phase separation. Annu. Rev.
Condens. Matter Phys., 6(1):219–244, March 2015.

[99] Roberto Alonso-Matilla, Barath Ezhilan, and David Saintillan. Microfluidic rheology of
active particle suspensions: Kinetic theory. Biomicrofluidics, 10(4):043505–043505, June
2016.

[100] S. C. Takatori and J. F. Brady. Superfluid behavior of active suspensions from diffusive
stretching. Phys. Rev. Lett., 118(1):018003, January 2017.

[101] David Saintillan. Rheology of active fluids. Annu. Rev. Fluid Mech., 50(1):563–592, Jan-
uary 2018.

[102] G. Foffi, C. De Michele, F. Sciortino, and P. Tartaglia. Scaling of dynamics with the range
of interaction in short-range attractive colloids. Phys. Rev. Lett., 94(7):078301, February
2005.

[103] A. Scala, Th. Voigtmann, and C. De Michele. Event-driven brownian dynamics for hard
spheres. The Journal of Chemical Physics, 126(13):134109, Apr 2007.

[104] Suvendu Mandal, Christina Kurzthaler, Thomas Franosch, and Hartmut Löwen.
Crowding-enhanced diffusion: An exact theory for highly entangled self-propelled stiff
filaments. Phys. Rev. Lett., 125(13):138002, September 2020.

[105] Werner Krauth. Statistical Mechanics: Algorithms and Computations. Oxford University
Press, 2006.

[106] Boris D. Lubachevsky and Frank H. Stillinger. Geometric properties of random disk
packings. Journal of Statistical Physics, 60(5):561–583, September 1990.

[107] M. Bayer, J. M. Brader, F. Ebert, M. Fuchs, E. Lange, G. Maret, R. Schilling, M. Sperl,
and J. P. Wittmer. Dynamic glass transition in two dimensions. Phys. Rev. E,
76(1):011508, July 2007.

[108] Parisi G Zamponi F. Charbonneau P, Jin Y. Hopping and the stokes– einstein re-
lation breakdown in simple glass formers. Proc Natl Acad Sci USA. 111:15025. doi:
10.1073/pnas.1417182111, 2014.

[109] Jean-Philippe Bouchaud Luca Cipelletti Ludovic Berthier, Giulio Biroli and Wim van
Saarloos. Dynamical Heterogeneities in Glasses, Colloids, and Granular Media. Oxford
Science Publications, 2011.

[110] Leon Granz. Event-driven molecular dynamics simulations of dense two-dimensional active
brownian systems. Master’s thesis, 2020.

[111] T. G. Mason and D. A. Weitz. Optical measurements of frequency-dependent linear vis-
coelastic moduli of complex fluids. Phys. Rev. Lett., 74(7):1250–1253, February 1995.

[112] Celia Lozano, Juan Ruben Gomez-Solano, and Clemens Bechinger. Active particles sense
micromechanical properties of glasses. Nature Materials, 18(10):1118–1123, October 2019.

[113] Yuriy L. Raikher, Victor V. Rusakov, and Régine Perzynski. Brownian motion in a vis-
coelastic medium modelled by a jeffreys fluid. Soft Matter, 9(45):10857–10865, 2013.

121



[114] Jesús Santana-Solano, Angeles Ramírez-Saito, and José Luis Arauz-Lara. Short-time dy-
namics in quasi-two-dimensional colloidal suspensions. Phys. Rev. Lett., 95(19):198301,
October 2005.

[115] Chen W. Fischer-T. Weitz D. & Tong P. Peng, Y. Short-time self-diffusion of nearly hard
spheres at an oil-water interface. Journal of Fluid Mechanics, 618:243–261, 2009.

[116] H. König, R. Hund, K. Zahn, and G. Maret. Experimental realization of a model glass
former in 2d. Eur. Phys. J. E, 18(3):287–293, November 2005.

[117] Alice Thorneywork, Roberto E. Rozas, Roel Dullens, and Jürgen Horbach. Effect of hy-
drodynamic interactions on self-diffusion of quasi-two-dimensional colloidal hard spheres.
Physical Review Letters, 115, December 2015.

[118] W. van Megen, T. C. Mortensen, S. R. Williams, and J. Müller. Measurement of the self-
intermediate scattering function of suspensions of hard spherical particles near the glass
transition. Phys. Rev. E, 58(5):6073–6085, November 1998.

[119] David Hajnal, Joseph M. Brader, and Rolf Schilling. Effect of mixing and spatial dimension
on the glass transition. Phys. Rev. E, 80(2):021503, August 2009.

[120] Meng-kai Feng and Zhong-huai Hou. Mode-coupling theory for glass transition of active-
passive binary mixture. Chinese Journal of Chemical Physics, 31(4):584–594, August
2018.

[121] Michele Caraglio, Lukas Schrack, Gerhard Jung, and Thomas Franosch. An improved
integration scheme for mode-coupling-theory equations, 2020.

[122] Suvendu Mandal, Lukas Schrack, Hartmut Löwen, Matthias Sperl, and Thomas Franosch.
Persistent anti-correlations in brownian dynamics simulations of dense colloidal suspen-
sions revealed by noise suppression. Phys. Rev. Lett., 123:168001, Oct 2019.

122



Acknowledgements

This work should not end without having acknowledged all those who have supported me during
its creation.

First and foremost, I would like to express my sincere thanks to my supervisor Prof. Thomas
Voigtmann, not only for giving me the opportunity to continue my research in the field of
active matter but in particular for his warm and supportive manner, which I have very much
appreciated during the past years. He followed my work with great interest and was always
available for questions. With his vast experience and optimistic approach to solving prob-
lems, he has been an extremely valuable support during my entire time as a doctoral stu-
dent.

I gratefully acknowledged the funding of this work by the SPP 1726 of the German Research
Foundation.

Moreover, I would also like to thank the head of the Institute of Materials Physics in Space
at DLR, Prof. Andreas Meyer, in particular for the excellent computational resources he
has provided at the institute and for giving me the opportunity to complete my thesis at DLR
beyond the funding through the SPP 1726.

I would like to express my special gratitude towards Dr. Suvendu Mandal for providing his
implementation of the event-driven Brownian dynamics simulation, which was a tremendous
help to finish this work in time.

Also, I want to extend my thanks to Dr. Celia Lozano for granting me access to her experi-
mental data.

Further, I would like to acknowledge Prof. Hartmut Löwen for being available as a second
reviewer and mentor of this work.

During my time at the DLR, I had the pleasure to meet many great colleagues. These include
in particular Dr. Alexander Liluashvili, who I would like to thank in view of the helpful
introduction he gave me into his work, my lunch partner Dr. Sandro Szabó for the numer-
ous and exciting discussions beyond our scientific works, my former and new office colleagues
Jonathan Ónody and Sebastian Steinhäuser for creating a pleasant working atmosphere
in the pre-Corona office and many more. Moreover, I wish to thank Leon Granz, who was
a great help in view of numerous scientific discussions we had and for providing some valuable
simulation results.

Undoubtedly, the greatest thanks are due to my family and in particular to my parents, who have
supported me unconditionally in every possible way during my life so far.

123


