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Abstract

In today’s Web, the most common model for structuring knowledge and making
it machine-readable is the knowledge graph. In this model, vertices represent Web
entities that encode real-world objects as URIs (Uniform Resource Identifiers); edges
are labeled, and represent relationships between these entities, which are modeled by
knowledge-domain-specific vocabularies and predefined schemas.

The topology of knowledge graphs differs fundamentally from other topologies,
for example those of computer networks or social graphs. This is because, first,
knowledge graphs contain hierarchical (typed) as well as transversal relationships
between vertices. Second, the shape of the graph topology is significantly influenced,
on the one hand, by knowledge-domain-specific vocabulary usage defined by particular
schemas and, on the other hand, by the inconsistent modeling habits of researchers and
modeling tools. Analyzing and understanding the distinct topology, and employing
meaningful measures for the appropriate characterization of knowledge graphs is
crucial, and can guide and inform the development of, for example, profiling tools,
benchmarking solutions, efficient data structures and indexes, and compression
techniques. Traditional measures known from network science inadequately capture
the semantics that knowledge graph topologies entail. Therefore, it is of central
importance to provide appropriate tools for the analysis, and proper measures for
the characterization of knowledge graphs.

The present cumulative dissertation is motivated by this. It makes three scientific
contributions, each of which constitutes one part of the thesis.

The first part of the thesis introduces and describes a software framework that
consolidates third-party tools for the acquisition and preparation of knowledge graphs
in order to enable graph-related tasks on their topology. We perform a large-scale
analysis of 280 knowledge graphs from nine knowledge domains provided by the Linked
Open Data (LOD) Cloud, and we calculate 54 different graph measures with this tool.
The analysis results and the processed graph objects are available to the research
community for further processing.

Building on this, the second part of the thesis deals with the investigation of
commonly used measures from network analysis as well as measures that have been
specially introduced for the characterization of RDF knowledge graphs. We examine
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them in terms of their relevance and meaningfulness for generating concise descriptions
of knowledge graph topologies. In particular, we seek to find measures that have
the capacity to discriminate graphs from other knowledge domains in order to reveal
knowledge domain specificities and derive corresponding implications for existing
solutions. To this end, we employ various statistical methods and a state-of-the-art
machine learning classification model.

In the third and final part of this thesis, we employ our framework introduced
earlier to propose solutions in other research areas of knowledge graphs. We deal
with database benchmarks for knowledge graphs and address the criticism that RDF
benchmarks deliver less reliable results due to the usage of synthetic queries for runtime
measurements. To this end, we propose a functionality of our framework to leverage
programmatic graph representations from knowledge graphs to generate application-
specific queries based on real-world data. Furthermore, we present a flexible "business
use case"-driven approach, which allows to assess response times of database queries
more reliably by means of building query groups.

This thesis is based on published papers submitted to high-ranked international
peer-reviewed open access journals, international conferences, and workshops in the
research area of Semantic Web technologies. As a commitment to open science, all
code and resources have been published as open source projects under MIT license on
popular code and data hosting platforms.



Zusammenfassung

Im heutigen Web ist der Wissensgraph (engl. knowledge graph) das gebräuchlichste
Modell, um Wissen zu strukturieren und maschinenlesbar zu machen. In diesem
Modell sind Knoten typisiert und repräsentieren Objekte der realen Welt, die als
Web-Entitäten kodiert sind; Kanten sind bezeichnet und stellen Beziehungen zwischen
den Knoten dar, die mit Hilfe von wissensdomänenspezifischen Vokabularen und
vordefinierten Schemata modelliert werden.

Die Topologie eines Wissensgraphen, die sich grundsätzlich von anderen Topologien,
wie z.B. der von Computernetzwerken oder sozialen Graphen, unterscheidet, ist durch
besondere Merkmale gekennzeichnet: Wissensgraphen enthalten sowohl hierarchische
(typisierte) als auch transversale Beziehungen zwischen Knoten. Weiter, ist die
Topologie der Verwendung von vordefinierten wissensdomänenspezifischen Vokabularen
sowie den unbeständigen Modellierungsgewohnheiten von Forschern ausgesetzt.

Die Analyse und das Verständnis der spezifischen Topologie sowie die Anwendung
geeigneter Maße für die Beschreibung von Wissensgraphen kann die Entwicklung
von z.B. Werkzeugen für die Profilbildung, Datenbank-Benchmarks, effizienten
Datenstrukturen und Indizes, sowie Techniken zur Komprimierung von Graphdaten
unterstützen und beeinflussen. Traditionelle Maße, die aus der Netzwerkanalyse
bekannt sind, erfassen nur unzureichend die Semantik, die die Topologie eines
Wissensgraphen mit sich bringt. Es ist daher von zentraler Bedeutung entsprechende
Werkzeuge für die Analyse und geeignete Maße für die Charakterisierung von
Wissensgraphen zur Verfügung zu stellen.

Davon motiviert widmet sich die vorliegende kumulative Arbeit diesem Themenge-
biet in drei Teilen.

Der erste Teil der Arbeit befasst sich mit der Einführung und Beschreibung
eines Software Frameworks, welches der Akquisition von Wissensgraphen und
deren Aufbereitung als Objektmodell dient sowie weitere graphtopologiebezogene
Operationen zur Verfügung stellt. Mit diesem Werkzeug haben wir eine groß angelegte
Analyse mit 280 Wissensgraphen aus neun Wissensdomänen durchgeführt und 54
verschiedene Graphmaße berechnet. Die Ergebnisse der Analyse und die aufbereiteten
Graphobjekte sind Forschenden zur weiteren Verarbeitung frei zugänglich gemacht
worden.
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Darauf aufbauend befasst sich der zweite Teil der Arbeit mit der Untersuchung von
bekannten Maßen aus der Netzwerkanalyse und Maßen die speziell für die Charakte-
risierung von Wissensgraphen entwickelt wurden. Unter Verwendung von statistischen
Methoden und eines Machine Learning Klassifikationsverfahrens untersuchen wir ihre
Aussagekraft und Relevanz hinsichtlich der Generierung prägnanter Beschreibungen
von Wissensgraphen. Außerdem analysieren wir Maße, die geeignet sind, Graphen
von anderen Wissensdomänen zu unterscheiden, um so wissensdomänenspezifische
Besonderheiten aufzudecken und entsprechende Implikationen für bestehende Lösungen
ableiten zu können.

Im dritten und letzten Teil der Arbeit verwenden wir unsere Ergebnisse
aus dem ersten Teil, um Lösungen in anderen, für Wissensgraphen relevanten,
Forschungsgebieten anzubieten. Wir befassen uns mit Datenbank-Benchmarks für
Wissensgraphen und der Kritik an ihnen nur unzureichende Aussagen zu liefern,
sofern synthetische Anfragen für Laufzeitmessungen verwendet werden. Wir stellen
daher eine weitere Funktionalität unseres zuvor entwickelten Frameworks vor. Diese
ermöglicht es anwendungsspezifische Anfragen auf der Grundlage von realen Daten
aus Wissensgraphen zu generieren. Ferner stellen wir einen flexiblen und „business use
case“-getriebenen Ansatz vor, der erlaubt durch Gruppenbildung Antwortzeiten von
Datenbankanfragen realistischer zu beurteilen.

Diese Dissertation basiert auf zuvor veröffentlichten Papieren, die in hochrangi-
gen internationalen Open-Access-Zeitschriften, auf internationalen Konferenzen und
Workshops auf dem Forschungsgebiet der Semantic Web-Technologien per peer-review
Verfahren begutachtet und publiziert wurden. Als Bekenntnis zur Offenen Wissenschaft
wurden alle Programme und Ressourcen als Open-Source-Projekte unter MIT-Lizenz
auf populären Quellcode- und Datenhosting-Plattformen veröffentlicht.
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1
Introduction

1.1 Motivation

In the past decades, the acquisition and aggregation of data and their presentation
on the World Wide Web has shaped not only information technology and computer
science but also our daily lives. The findability and accessibility of data on the Web
presents tremendous challenges to its users and to computers serving the content.

To organize and process the vast amount of information, computers need data to
be structured and in a machine-readable format. Today, the most widespread model
for organizing data and making them machine-readable is the knowledge graph (KG),
in which Web entities are represented by vertices, and relationships between entities
are represented by directed and labeled edges. Knowledge graphs are widely used in
contexts such as Web search (e.g., the Google Knowledge Graph,1 the Bing Knowledge
Graph2); open access knowledge organization (e.g., Wikidata,3 DBpedia [Auer et al.,
2007], Freebase [Bollacker et al., 2008]); domain-specific knowledge organization (e.g.,
Microsoft Academic Graph [Sinha et al., 2015], SemMedDB [Kilicoglu et al., 2012],
Product Knowledge Graph [Dong, 2018]); and in diverse domains of research, such as
natural language processing (NLP) and artificial intelligence (AI; smart assistants).
Thanks to (openly accessible) knowledge graphs and to the processing power of
computers today, we can relate, find, and browse human knowledge on the Web in
an organized way.

1https://blog.google/products/search/introducing-knowledge-graph-things-not/.

Last accessed on October 12, 2020.
2https://blogs.bing.com/search-quality-insights/2018-02/

bing-entity-search-api-now-generally-available. Last accessed on October 12, 2020.
3https://www.wikidata.org/. Last accessed on October 12, 2020.

1
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The state-of-the-art graph-based model that provides the corresponding formats to
make data on the Web machine-readable is the Resource Description Framework (RDF;
Manola et al., 2004). It is the de facto standard to represent and share structured data
as Linked Open Data (LOD; Heath and Bizer, 2011). Central to this concept is the
representation of entities as Uniform Resource Identifiers (URIs) and the usage of
knowledge-domain-specific vocabularies to model, interlink, and dereference in order
to obtain further details about entities on the Web. The popularity of RDF has led
to diverse initiatives, such as the Linked Open Data Cloud4 (LOD Cloud), which is a
collection of openly accessible RDF datasets5 that are highly interlinked to one another.
It is a prominent example of and a reference for the success of interlinked and queryable
data, published and pushed by the scientific community, archival institutions, and
industry from diverse domains, such as government, linguistics, and the life sciences.

Knowledge graphs published in RDF consist of a set of triples. Thus, their inherent
structure is graph-based: The set of triples {subject, predicate, object} composes a
directed and labeled multigraph, with the set of all subjects and objects forming the
vertices – that is, the described resources – and the set of predicates forming labeled
edges in the graph. Such relationships form hierarchical as well as transversal semantic
links between the vertices in the graphs.

1.2 Problem Statement & Research Goal

Compared with other graph topologies – for example, those of computer networks
or social graphs – topologies of knowledge graphs modeled with RDF impose distinct
characteristics (Fernández et al., 2018). Traditional measures and methods known from
network analysis fail to adequately capture these characteristics and to appropriately
characterize and concisely describe the particularities of state-of-the-art knowledge
graphs. This is primarily due to the semantics that knowledge graphs inherently
entail. Generally, knowledge graphs contain terminological statements (TBox – schema
definitions) and assertional statements (ABox – the data), which complement each
other in a single knowledge graph. This imposes particular semantics on the graphs,
such as typed and non-typed vertices, the recurrence of topological patterns (e.g.,
usage of particular edge labels per vertex type), and a significant and pervasive level of
redundancy, which other graphs do not have. This leads to higher connectivity, shorter
paths, and a high probability of the existence of "hubs" – that is, vertices (entities)
with high attractiveness from other graph vertices.

Another aspect with significant influence on the characteristics of knowledge graph

4Linked Open Data Cloud. https://lod-cloud.net/. Last accessed on August 22, 2020.
5In this thesis, the terms RDF dataset, knowledge graph, knowledge base, and RDF data graph are

used interchangeably. Unless otherwise stated, the use of the term dataset refers to an RDF dataset.

Similarly, the terms RDF knowledge graph and RDF graph are used interchangeably, describing

knowledge graphs modeled in RDF.
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topologies is related to data quality and the modeling habits of RDF users. There
is no inherent need for a prior schema when using RDF. Thus, openly accessible
knowledge bases tend to be diverse and heterogeneous in their graph structure due
to a (partly) inconsistent practice of vocabulary usage and schema conformance within
and across knowledge domains (Bobed et al., 2020). Research around vocabulary
usage extends to a wide range of disciplines, including profiling tools for the creation
of descriptive summarizations (Ben Ellefi et al., 2018; Zneika et al., 2019); knowledge
graph completion and link prediction approaches (Rosso et al., 2018); dataset archiving
mechanisms to capture the dynamics of graph data evolution (Fernández et al., 2019);
benchmarking suites to model realistic synthetic datasets, queries, and test storage
strategies (Wylot et al., 2018); strategies to efficiently store (Fernández et al., 2019),
encrypt, and compress RDF data (Fernández et al., 2020); user-friendly tools to support
data modeling processes; and studies to measure qualitative dimensions of Linked
Data (Zaveri et al., 2016).

The majority of related work studies vocabulary usage in terms of two aspects:
observed structural patterns and statistical distributions at the level of the RDF model.
Research that addresses the first aspect studies combinations of the entities described,
together with their corresponding properties, whereas research that addresses the
second aspect applies descriptive statistical methods to describe patterns of vocabulary
usage in the datasets. However, the shape of the knowledge graph’s topology remains
widely unexposed.

Therefore, it is fundamental to provide tools to facilitate graph-related tasks, such
as large-scale analyses (cf. Zloch et al., 2019), as well as meaningful measures to
characterize knowledge graphs adequately (cf. Zloch et al., 2020). Performing graph-
related analyses on the topology of knowledge graphs helps to understand, for example,
their shape, their evolution over time, and their differences from other types of graphs.
Moreover, it helps to find solutions and to derive implications for existing and future
solutions in related research areas (cf. Zloch, 2016).

In the following, we present exemplary research areas with potential use and
application of graph topological features.

– RDF Benchmarking. RDF benchmarks are substantial for systematically
evaluating novel storage solutions for RDF data and RDF query language evaluation
strategies. One goal of benchmark suites is to emulate real-world datasets and
queries. Therefore, RDF benchmarks are mostly RDF-schema- and vocabulary-
specific.

Besides approaches for query execution workloads, a widespread and crucial
evaluation criterion for RDF benchmarks is the synthetic data generation process.
Generators must conform to known application- or knowledge-domain-specific
vocabularies, while simultaneously being able to scale up the dataset size. However,
results of benchmark suites are not meaningful enough when datasets and queries
are generated artificially (Duan et al., 2011), and they may have little relation
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to real-world datasets and queries. Furthermore, vocabulary usage varies across
applications and knowledge domains, even when publishers comply with one
particular vocabulary (Bobed et al., 2020). For example, two publishers of
bibliographic data in the Publications domain may have different completeness levels
and focus of the published data. Whereas one publisher publishes scientific papers
with metadata such as titles and authors, the other may additionally publish results
of a linguistic extraction process of the contents of the publications, such as keyword
distribution and topic distribution per author.

Vocabulary usage has a significant impact on a graph’s topology because cardinality
definitions in a prior schema, for example, are directly reflected in the graphs as
options/restrictions to impose new vertices and edges. Beyond aspects such as the
dataset size and the conformance to a particular vocabulary, considering reliable
statistics about the graph topology enables synthetic dataset generators to emulate
RDF datasets more appropriately.

– Graph Sampling. The aforementioned challenges during the upscaling of a
(synthetic) dataset apply also to downscaling, that is, sampling from a large graph.
Graph sampling techniques try to find a representative sample from an RDF dataset
of interest. Questions that arise in this research area are (1) how to obtain a
(minimal) representative sample, (2) what sampling method to use, and (3) how
to vary and assess measurements of the sample (Leskovec and Faloutsos, 2006).

Sampling is usually performed concerning different aspects. Apart from qualitative
aspects – such as RDF classes, properties, instances, and the vocabularies and
ontologies used – topological characteristics of the knowledge graphs should also
be considered. To this end, primitive measures of the graphs, such as the max in-,
out- and average-degree of vertices, reciprocity, and density, may be consulted to
achieve more accurate results.

– Dataset Profiling and Evolution. RDF datasets are mostly distributed and
dynamic, as the model offers simplicity, flexibility, and ease of exchange. The
analysis of a broad set of RDF datasets from openly accessible knowledge bases,
such as the LOD Cloud, concerning (1) the dynamics of evolution (Bobed et al.,
2020); (2) aspects of quality, such as the conformance to the expected usage of a
vocabulary (Rashid et al., 2019); and (3) dataset similarity for dataset search (Sousa
et al., 2020), for example, has presented significant challenges in recent years.
Furthermore, (4) aspects of linkage (linking into other datasets) and connectivity
(linking within one dataset) have been of particular interest. From the graph
perspective, all the aforementioned aspects have an immediate impact on the shape
and characteristics of the corresponding graph topology.

Profiling tools help to create RDF dataset profiles, which are quantitative
representations – that is, descriptive statistics – of the dataset of interest (Ben Ellefi
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et al., 2018). These tools extract characteristics (features) adhering to the instance-
and schema-level of an RDF dataset. However, graph-based measures extracted
from the topology of an RDF graph are unexposed to a great extent. As dataset
profiles facilitate the challenges mentioned above in various dimensions, profiling
tools should also respect the extraction of graph-based measures from RDF graphs.

Research Goals

Concerning our motivation, the problem statement, and the mentioned use cases, the
main objectives of this thesis are:

• to facilitate graph-related tasks on knowledge graphs – for example, the large-
scale investigation of graph topologies and their specificities – in particular within
popular knowledge domains (Chapter 2);

• to assess graph measure effectiveness and importance for knowledge graphs in
individual knowledge domains in order to generate concise topological profiles
(Chapter 3); and

• to leverage programmatic graph representations to provide solutions in the
research areas mentioned before (Chapter 4).

This dissertation is guided by these objectives. Please refer to Section 1.5 for a
detailed description of the resulting structure of the thesis.
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1.3 Contributions of This Thesis

The contributions of this thesis with respect to the research goals outlined in Section 1.2
are summarized as follows:

(i) Open source framework to support graph-related tasks on knowledge

graphs. We introduce an open source software framework with various capabilities.
The primary purpose of the framework is to facilitate graph-related tasks on RDF
knowledge graphs (Chapter 2).

Primarily, the framework has the capacity (1) to acquire RDF datasets, (2) to
efficiently prepare graphs, and (3) to perform graph-based analyses on the prepared
graphs. One of the framework’s main features is to scale up to large graphs and
a large number of datasets in parallel – that is, to prepare and compute graph
measure analyses efficiently over large state-of-the-art knowledge graphs of hundreds
of millions of edges. For graph measure analyses, the framework supports a total
of 54 graph-based measures, grouped into different categories, including measures
specifically defined for characterizing RDF graphs.

In addition, the framework enables us to exploit the benefits of graph
representations of knowledge graphs, such as finding graph isomorphisms to
generate query instances in the benchmarking use case (Section 4.2). Prospectively,
the framework will also have the capability to serve as a general-purpose framework
to facilitate the above-mentioned graph-related tasks on non-RDF knowledge
graphs, for example, social graphs or retweet networks. However, in the current
release, some implementations are tailored toward the semantics of RDF graphs,
such as measuring the number and ratio of typed subjects.

The framework is built on state-of-the-art third-party libraries, is extendable, well
structured and documented, and is open source (published under the MIT license).
The code is maintained on GitHub.6 Latest releases are also available via Zenodo
(Zloch, 2020).

(ii) An analysis of topological differences in popular knowledge domains. We
conduct a systematic graph-based analysis of a large and representative sample
of openly accessible knowledge bases that were part of the LOD Cloud in late
2017 (Chapter 3). The analysis covers about 11.3 billion RDF triples from
nine knowledge domains provided by the LOD Cloud: Cross-Domain, Geography,
Government, Life Sciences, Linguistics, Publications, Media, Social Networking,
and User-Generated.

For each dataset in the sample, we compute all available graph measures provided
by the framework mentioned in (i) above. Our analysis report covers observations

6The framework’s source code on GitHub: https://github.com/mazlo/lodcc. Last accessed on

September 16, 2020.
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on value distributions of measures from the group of basic graph measures, degree-
based measures, degree distribution statistics, and other metrics proposed for RDF
graph characterization. Further, it gives insights into the structure and differences
of real-world knowledge graphs within popular knowledge domains concerning
graph-related measurements. This is beneficial for existing and future developments
in the research areas mentioned in Section 1.2, which provide knowledge-domain-
dependent solutions.

(iii) Generation of topology profiles for a large sample of online knowledge

graphs. In addition to the aforementioned analysis and report over 280 knowledge
graphs, we provide a collection of all programmatic graph representations used in
the experiment to facilitate reproduction of the results and further reuse (Zloch,
2018). This collection’s main benefit is that all graphs were already acquired,
pre-processed, and instantiated as graph objects. They are provided in a binary
form (efficiently compressed), ready to be processed by third-party graph analysis
libraries like graph-tool (Peixoto, 2014). This enables advanced investigations of
statistical distributions, for example, computation of advanced centrality measures
(importance of vertices, i.e., URIs in a graph), clustering (group building within
a graph), linkage (linking into other datasets), connectivity and density (linking
within one dataset).

Compared with previous studies from related work, which were limited to a
small fraction of datasets, our sample enables reuse and large-scale analyses of
a representative sample of knowledge graphs from an openly accessible source of
datasets.

Besides that, we make a collection of all results available to the community as
topological profiles (Zloch and Acosta, 2018). To facilitate browsing of the results
and inspect the varying dimensions of particular datasets and knowledge domains,
we provide a website (Zloch, 2018). The website provides access to necessary
resources required for further analyses, like RDF dataset metadata, binary graph
representation, measure descriptions, annotation of efficient measures, and more.

(iv) Identification of effective measures for graph characterization. We study
graph measure meaningfulness and efficiency to describe graphs from nine popular
knowledge domains (Chapter 3). In order to accomplish this, we follow a three-stage
approach and seek to answer the following research questions (RQ):

– RQ1: What is a non-redundant set of measures to characterize

graphs effectively? To characterize graphs or sets of graphs within
knowledge domains concisely, graph descriptions have to be based on
meaningful and non-redundant sets of measures, with each set providing
significant information gain to the graph description (cf. Zneika et al., 2019).
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To this end, this question aims at finding a concise and finite set of measures
to reduce redundancy and maximize information gain through correlation
analysis. This step improves the effectiveness of the resulting set of graph
measures and their applicability, for instance, as part of machine learning
models.

– RQ2: Which measures describe and characterize individual

knowledge domains most/least efficiently? Datasets within the LOD
cloud are categorized into nine distinct knowledge domains so that each
dataset is associated with precisely one specific category. To understand
the representativeness and variability of graph-related measures within a
knowledge domain, we apply basic statistical metrics to investigate the
heterogeneity of measure values within these domains. Afterwards, we discuss
and identify representative measures for these knowledge domains.

This provides insights into the capacity of individual graph-based measures
to represent the nature of particular domains, and may contribute to
discriminative models and to filtering out noisy features when profiling
datasets.

– RQ3: Which measures show the best performance to discriminate

individual knowledge domains? Concerning topological dynamics partly
caused by vocabulary adoption in the popular knowledge domains, we can
observe distinct characteristics of graph topologies in the individual knowledge
domains. Thus, the question is which graph measures are most descriptive and
therefore important within one particular knowledge domain to discriminate
dataset categories. In contrast to RQ2, where we apply statistical metrics
to investigate representativeness and variability, here, we determine the
most important graph measures through a state-of-the-art machine learning
classification model.

Various approaches, for example synthetic dataset generators, can benefit from the
findings. Benchmark suites most often target a particular domain of interest while
generating and upscaling a dataset. For the Publications domain, for example,
besides the typically used vocabularies, a generator should follow a specific set of
measures and range of values, in order to be aligned with the shape of topologies
of real-world knowledge graphs in this category.

(v) Open source framework facilitating application-specific benchmarking.

From the list of use cases mentioned in Section 1.2, we take on the benchmarking
use case and leverage graph representations to facilitate application-specific
benchmarking (Chapter 4).

Our contributions in this regard are twofold. First, we propose a customizable
benchmarking framework and introduce a novel use-case-driven approach. In
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contrast to the classical approach, in which the runtime of database queries is
assessed as a whole, in this approach, the runtime is assessed using groups of queries
that are represented by application-specific business use cases. This allows for more
differentiated statements about the behavior and implications of individual query
groups in order to determine the best-performing database system. Our experiment
employs data and queries from a real-world application and considers a large number
of different types of database management systems (triple stores, relational and
graph-based databases, column- and row-stores).

Our second contribution leverages graph representations of knowledge graphs to
generate graph queries typically found in real-world query logs, for example, those
studied by Saleem et al. (2015a). The queries are generated from a given set
of query templates by finding appropriate matchings in the corresponding graph
representations. Our software framework mentioned in (i) implements this feature
together with a predefined set of query templates taken from a state-of-the-art
benchmarking suite. This contribution provides a solution compared with tailored
benchmarks, which prefer to consider synthetic data and query generators that
cannot reproduce the observed increasing variability of real-world datasets.

1.4 Related Publications

This dissertation is based on previously published papers in the research area of
Semantic Web technologies that were submitted to high-ranked international peer-
reviewed open access journals, international conferences, and workshops.

A list of accepted and published papers is presented below. Publications that
constitute the basis for the Ph.D. thesis, with references to the corresponding chapters
and sections in this dissertation, are mentioned first.

2020:

– Matthäus Zloch, Maribel Acosta, Daniel Hienert, Stefan Conrad, and Stefan Dietze
(2020). Characterizing RDF graphs through graph measures – framework and
assessment. In: Semantic Web – Pre-press. doi: 10.3233/SW-200409.
Contributions: Matthäus Zloch extended the framework with RDF-graph-based
measures from related work and performed all experiments, which were under the
supervision of Stefan Dietze. Matthäus Zloch also created all figures and tables and
prepared 90% of the manuscript.
Dissertation sections: 3.1
Status: Published.
Impact factor: 3.524 (2019)



10 1. INTRODUCTION

2019:

– Matthäus Zloch, Maribel Acosta, Daniel Hienert, Stefan Dietze, and Stefan Conrad
(2019). A software framework and datasets for the analysis of graph measures on
RDF graphs. In: The Semantic Web – 16th Extended Semantic Web Conference

(ESWC 2019). Vol. 11503. Lecture Notes in Computer Science. Springer, pp. 523–
539. isbn: 978-3-030-21348-0. doi: 10.1007/978-3-030-21348-0.
Contributions: Matthäus Zloch developed the software framework, designed the
experiments, and performed the graph-based analysis over all datasets. He created
the website and collected the corresponding resources (datasets, metadata files, etc.).
The manuscript was prepared by Matthäus Zloch (80%), Maribel Acosta, and Daniel
Hienert, under the supervision of Stefan Conrad and Stefan Dietze.
Dissertation sections: 2.1, 2.2, 3.1, 4.2.2
Status: Published.
Acceptance Rate: ∼29%
Remarks: Nominated for the Best Student Paper award and Best Resource Paper
award; won the Best Student Paper award.

2017:

– Matthäus Zloch, Daniel Hienert, and Stefan Conrad (2017). Towards a use case
driven evaluation of database systems for RDF data storage – a case study for
statistical data. In: Joint Proceedings of BLINK 2017: Benchmarking Linked Data

and NLIWoD3: Natural Language Interfaces for the Web of Data (BLINK 2017-

NLIWoD3). CEUR Workshop Proceedings 1932. Aachen: CEUR-WS.org. url:
http://ceur-ws.org/Vol-1932/#paper-08.
Contributions: Matthäus Zloch developed the framework, created all figures and
tables, and performed all experiments, which were under the supervision of Daniel
Hienert. The manuscript was prepared by Matthäus Zloch (90%) and Daniel
Hienert, under the supervision of Stefan Conrad.
Dissertation sections: 4.3
Status: Published.

A number of other publications (co-)authored by Matthäus Zloch during the Ph.D.
study period do not play a major role in this dissertation but are strongly related to
Semantic Web technologies. They include, among others:

2020:

– Dimitar Dimitrov, Erdal Baran, Pavlos Fafalios, Ran Yu, Xiaofei Zhu, Matthäus
Zloch, and Stefan Dietze (2020). TweetsCOV19 – a knowledge base of
semantically annotated tweets about the COVID-19 pandemic. In: Proceedings

of the 29th ACM International Conference on Information & Knowledge

Management. CIKM ’20. New York, NY, USA: ACM, pp. 2991–2998. isbn:
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978-1-450-36859-9. doi: 10.1145/3340531.3412765.
Contributions: Matthäus Zloch set up and administered the infrastructure,
imported all RDF data into the data store, and enabled SPARQL query
evaluation. He also created the project website.7 Moreover, he contributed to
formulating SPARQL-query examples in early versions of the manuscript and
proofread the manuscript.
Status: Published.

2019:

– Andon Tchechmedjiev, Pavlos Fafalios, Katarina Boland, Malo Gasquet,
Matthäus Zloch, Benjamin Zapilko, Stefan Dietze, and Konstantin Todorov
(2019). ClaimsKG: a knowledge graph of fact-checked claims. In: The Semantic

Web – 18th International Semantic Web Conference (ISWC 2019), Proceedings

Part II. vol. 11779. Lecture Notes in Computer Science. Springer, pp. 309–324.
isbn: 978-3-030-30795-0. doi: 10.1007/978-3-030-30796-7_20.
Contributions: Matthäus Zloch set up and administered the infrastructure,
imported all RDF data into the data store, and enabled SPARQL query
evaluation. He also created the project website.8 Furthermore, he made minor
contributions to the manuscript and to proofreading.
Status: Published.

2016:

– Matthäus Zloch (2016). Methods for automatic selection of database systems
for optimized query performance. In: 46. Jahrestagung der Gesellschaft für

Informatik (INFORMATIK 2016). Vol. P-259. Lecture Notes in Informatics
(LNI) – Proceedings. Bonn: Gesellschaft für Informatik e.V., pp. 2019–2024.
isbn: 978-3-88579-653-4. url: https://dl.gi.de/20.500.12116/1097.
Contributions: The research of the concept and the preparation of the
manuscript was carried out entirely by Matthäus Zloch.
Status: Published.

7TweetsCOV19 website. https://data.gesis.org/tweetscov19. Last accessed on November 2,

2020.
8ClaimsKG website. https://data.gesis.org/claimskg. Last accessed on November 2, 2020.
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1.5 Structure of the Thesis

This is a cumulative dissertation. It consists of three building blocks, each of which is
treated in a separate chapter. Central to each chapter is one publication, addressing
one of the objectives formulated in Section 1.2. In addition to a summary, the author’s
contributions, and the impact of each of the corresponding publications, we will present
further details, which could not be published with the manuscripts.

The following gives a brief overview of each chapter’s content.

Chapter 2: Acquisition of Knowledge Graphs and Graph Measure

Computation

Chapter 2 addresses our first objective, that is, to facilitate graph-related tasks
on RDF knowledge graphs, such as large-scale analyses of graph topologies. We
present a software framework capable of acquiring knowledge graphs from one popular
source of datasets. Further, it can prepare and perform graph-based analyses over
the corresponding graph topology. In the related publication, we introduce the
framework, provide a collection of prepared datasets, and report on graph-based
measures computed with the framework. In addition, as the framework is central
to follow-up research activities, we describe the package structure and other related
functionalities of the framework.

Chapter 3: Assessing Graph Measures for Knowledge Graph Characteriza-

tion

Chapter 3 continues with addressing our second objective, that is, assessing graph
measures for knowledge graph characterization. The corresponding publication
presents our large-scale study of measure meaningfulness and effectiveness. We question
a graph measure’s informative value and predictive power to discriminate knowledge
graphs by popular knowledge domains. In addition to the results presented in the
publication, we provide further details about the experimental setup. Please note
that the related publication also contains a comprehensive related work section that
aligns this whole work with existing tools and studies for graph analysis and measure
computation in the research field of Semantic Web technologies.

Chapter 4: Towards an Application-Specific RDF Benchmarking Suite

The third objective of the thesis is to leverage graph representations from RDF
knowledge graphs to provide customized solutions for a related research field in
Semantic Web technologies. Thus, in this chapter, we take on the benchmarking use
case mentioned in Section 1.2 and present two contributions towards an application-
specific benchmarking suite. We demonstrate how graph representations can facilitate
the generation of customized application-specific benchmark queries, based on data
from real-world knowledge graphs.

The second contribution is represented by a published work. It deals with an approach
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to evaluate queries executed against different types of RDF data stores to evaluate
query runtime more reliably.

Chapter 5: Conclusion and Future Work

The thesis concludes with a summary of the achievements made concerning our
objectives and the stated contributions. Further, we mention implications and derive
future work plans for each work.
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2
Acquisition of Knowledge Graphs

and Graph Measure Computation

Our first objective is to facilitate graph-related tasks on state-of-the-art knowledge
graphs, such as large-scale graph analysis and measure computation. To achieve this,
we need to acquire a large number of RDF datasets and efficiently prepare them in
such a way that we can operate on their graph structure. To provide a solution to the
mentioned challenges, we introduce a software framework (Zloch et al., 2019).

The framework can deal with typical issues one has to face when working with
publicly available RDF data, for example, format and media type issues. To publish
data in RDF, one can choose from several different formats, of which the most
prominent are RDF/XML, Notation 3, N-Triples, and Turtle. Not all formats support
the ad hoc creation of a graph structure. Existing libraries that support these formats
do not support the out-of-the-box computation of graph measures over the obtained
graph structures. Furthermore, to do large-scale analyses, there is no unique and
standardized way to acquire RDF datasets from particular knowledge domains. The
Linked Open Data Cloud (LOD Cloud) has been a prominent example of the availability
and linking of openly accessible RDF datasets. However, submitting a new dataset
does not come with any validation of the supported formats or media types and the
aimed availability and sustainability of the datasets. This is problematic for automated
acquisition and analysis techniques.

Section 2.1 gives a summary of the related publication. Section 2.2 describes the
structure of the framework introduced in Zloch et al. (2019) and shows additional
functionalities. A brief description of the supported graph measures of the framework
is given in Section 2.3.

15
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2.1 A Software Framework and Datasets for the

Analysis of Graph Measures on RDF Graphs

Matthäus Zloch, Maribel Acosta, Daniel Hienert,
Stefan Dietze, and Stefan Conrad.

In: The Semantic Web – 16th Extended Semantic Web Conference (ESWC 2019),

Proceedings, Vol. 11503. Lecture Notes in Computer Science. Springer, pp. 523–539.
DOI: 10.1007/978-3-030-21348-0.

Summary

In the paper, we propose a software framework that has two major goals. The primary
goal is to provide an integrated code base for graph-related tasks on RDF knowledge
graphs. These tasks include the acquisition and preparation of RDF knowledge graphs
concerning a graph-based analysis of their topology. Other tasks include the generation
of topological profiles, by employing a number of graph-based measures, as well as query
generation (see Section 4.2 below). To this end, the second goal of the framework is
to provide this functionality at a large scale and for a high number of state-of-the-art
knowledge graphs (hundreds of millions of edges) in parallel. The paper describes all
stages of the processing pipeline, that is, acquisition, preparation, graph instantiation,
and measure computation, and gives an overview of five groups of graph measures
supported by the framework at the time of publication (Zloch, 2020).

To evaluate and stress our framework, we described the acquisition of about 280

RDF datasets from a popular dataset provider, the LOD Cloud.4 In a subsequent
step, we calculated 28 graph-based measures9 for all graphs with the framework (see
Section 2.3 below). We reported on preliminary analysis results of measure value
distributions from three different groups of measures (basic graph measures, degree-

based measures, and degree distribution statistics; see Section 2.3 below). The report
includes all datasets acquired from the nine knowledge domains provided by the LOD
Cloud (Zloch and Acosta, 2018).

Concerning our preliminary analysis results presented in the paper, we observed
general and knowledge-domain-driven particularities, which are induced by the shape
of the individual graph topology. For example, knowledge graphs in Cross-Domain

category have a particularly low average degree; the average degree over all graphs
is approximately eight; the Publications domain has the highest number of graphs
reporting a scale-free behavior (Zloch et al., 2019). For solutions respecting domain-
driven specificities, such as synthetic dataset generation, this may have strong
implications.

9The framework supported 28 graph-based measures at the time of manuscript publication. For

the full set of graph measures and recent releases, see Section 2.3 or Zloch (2020), respectively.
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Finally, we studied measure correlation and identified a set of nine measures, which
do not correlate with each other, and are therefore candidates for a minimal set of
measures to characterize knowledge graphs.

Latest releases of the framework are available under MIT license via Github and
Zenodo (Zloch, 2020).

Importance and Impact on This Thesis

The paper was nominated for the Best Student Paper award and Best Resource Paper
award at the Extended Semantic Web Conference (ESWC) 2019, and received the
Best Student Paper award for its presentation and impact to the research community.
Thus, the two resources introduced in the paper – the software framework and the
pre-processed knowledge graphs – have significant importance for the thesis and our
follow-up research activities.

Follow-up research ideas built on the investigation of measure effectiveness and
importance, in particular, to distinguish knowledge domains by means of graph-
topological specificities. Chapter 3 addresses the assessment of graph measures and
introduces our publication about effective measures for RDF graph characterization in
the individual knowledge domains.

To facilitate reuse of the software framework, and to demonstrate its connectivity
to related research areas in the Semantic Web community, we included a functionality
to leverage a graph representation for generating queries in application-specific settings
(see Section 4.2).

Author Contributions

The first author, Matthäus Zloch, developed the software framework, designed the
processing pipeline, and chose the measures to compute over the graphs. He also
created the overall structure and wrote the majority of the content of the paper. And
finally, he created the website in order to have a browsable version for all datasets and
measures (Zloch, 2018).

Maribel Acosta contributed to Section 2 by preparing related work. Later on, she
created Figure 2 and Figure 3, in order to provide an overview of the corresponding
measure values. Daniel Hienert and Matthäus Zloch made first efforts to analyze
the results from the graph measure analysis. Daniel Hienert then had the idea to
analyze the correlation coefficients of all values. He created first figures that showed
the dependencies. Later on, these figures were replaced by Figure 5, also created by
Maribel Acosta.

The paper underwent proofreading by all authors. The whole work was under the
general supervision of Stefan Dietze and Stefan Conrad.
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Figure 2.2: Package structure overview of the framework’s most important
packages.
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db. The framework has support for the relational database SQLite10 to store
metadata about the corresponding knowledge base – for example, category, media
types, download URLs, and the obtained graph measure values after graph
measure computation. The package db contains related code – for example, the
loading of datasets from the corresponding tables – which is used throughout
the framework. The support for Postgresql and MySQL database has been
discontinued since version v0.5.

datapackage. This package contains code for the optional preliminary initialization
of datasets from datahub.io,11 an online platform that provides access to open
(RDF) data and metadata, such as the datasets from the Linked Open Data
Cloud.4 The framework offers the functionality to extract metadata from the
so-called datapackage.json file provided by datahub.io. It contains the available
media types and URLs to access and download RDF dataset dumps.

graph. The graph package is split up into further subpackages: graph.building

contains code for graph preparation from RDF datasets and graph instantiation;
graph.measures.core contains the set of traditional network-based measures,
such as the fill, h-index, and diameter, which were described in the paper
beforehand; the package graph.measures.fernandez contains RDF-related
measures developed by Fernandez et al. in Fernández et al. (2018), which were
integrated into the framework.

Measures in the package graph.measures.fernandez are much more computa-
tionally intensive than the set of network-based measures in the core-package.
For example, many measures require creating lists of tuples of vertices and
outgoing (or incoming) edges. One must then group these lists and count the
number of occurrences of the outgoing edges. This does not scale well for large
graphs with hundreds of millions of edges.

To improve this, this package includes an implementation of a graph-partitioning
feature that may be configured before execution. It enables to dispatch chunks of
work to subsets of vertices/edges, and improves overall computation time while
requiring fewer resources of the host system. Please note that at the time of
writing, this feature is not yet production-ready.

query. The package query contains an implementation for SPARQL query instantia-
tion from SPARQL query templates. It works by finding subgraph isomorphisms
of the query graphs in the corresponding graph. An example set of state-of-the-
art real-world SPARQL query templates from the Waterloo Diversity Benchmark

10SQLite, an embedded SQL database engine. https://sqlite.org/. Last accessed on September

10, 2020.
11Data sharing provider. https://datahub.io. Last accessed on October 26, 2020.
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Suite (WatDiv) can be found in the query.watdiv subpackage. Please find details
of that implementation in Section 4.2.

util. The package util provides additional helper methods. For example, it provides
methods to de-reference hash values of vertex or edge labels, which employs a
brute-force search mechanism in the original data. This functionality is required
for query generation, for example (see Section 4.2.2). The package also contains
legacy code of former versions of the framework. For instance, vertices used to
be coded as unique integer values in order to save memory and hard disk space
consumption (Kunegis, 2013).

tasks.*. Some of the packages contain a tasks subpackage (see the far right-hand
column in Figure 2.2), for example, datapackage.tasks, graph.tasks. They
contain parameterizable executable code. For instance, to prepare a bunch
of RDF datasets for graph instantiation and graph analysis, one may use the
following command:

$ python3 -m graph.tasks.prepare \

--from-db nobelprizes museums-in-italy \

oecd-linked-data transport-data-gov-uk \

--threads 3

Detailed descriptions can be found in the README-file of the corresponding
subpackage or via the –-help parameter.

2.3 Supported Measures for Knowledge Graph

Characterization

Supplementary to Zloch et al. (2019), we give a descriptive summary of the two
groups of measures supported by our software framework to perform knowledge graph
characterization. The first group contains measures from classical network analysis,
which are typically used to characterize non-RDF graphs. The second group contains
novel measures introduced by related work primarily for RDF knowledge graphs. We
also address the applicability of the measures to non-RDF graphs.

2.3.1 Graph Measures

In Zloch et al. (2019), we introduced measures from classical network analysis that
can also be applied to graphs imposed by the RDF data model. As there are many
measures to characterize graphs in classical network analysis, we considered a subset
only. We based our choice on the following criteria:
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Popularity of the measure in related literature, for example, the size (the number of
vertices) and volume (the number of edges) of the graph. Some of these measures –
such as like the average degree and degree centrality, as well as statistical measures
on the degree distribution – represent basic and rather primitive characteristics
of graphs and are computationally not expensive.

Relevance of the measure, in particular to RDF graph characterization. These
represent measures such as the number of parallel edges and reciprocity that
respect the distinct graph topology of RDF graphs compared with social graphs
and computer networks, for instance.

Impact of the measure with regard to RDF dataset discrimination concerning popular
knowledge domains. Such measures – for example, the diameter (the longest
shortest path between two vertices in the graph) - can be computationally
intensive.

We categorized the chosen measures into five groups: (1) basic graph measures,
(2) degree-based measures, (3) centrality measures, (4) edge-based measures, and (5)
descriptive statistical measures. Zloch et al. (2020) provided a detailed description
of the measure groups and the formalization of the chosen measures concerning RDF
graphs.

2.3.2 RDF-Graph-Based Measures

In addition to the measures mentioned in Section 2.3.1, recent releases of the framework
implement a wider set of measures, that is, RDF-graph-specific measures.

Knowledge graphs modeled in RDF have a topology that is distinct from that of
other graphs, such as social graphs or computer networks, due to the pervasive existence
of hierarchical relations. Relations within the ABox (assertional statements – the data)
are complemented by relations within the TBox (terminological statements – schema
definitions, e.g., rdfs:subClassOf) and between the ABox and the TBox. The most
well-known example, which adheres to almost every description of a resource in an RDF
knowledge graph, is probably rdf:type. These particularities are directly reflected in
a graph’s topology, and lead, for example, to higher overall connectivity and existence
of redundant structural patterns in the graphs, and as such, they cannot be captured
with ordinary measures. In addition to primitive measures, such as the number of
vertices/edges and the distribution of vertex degrees, there have been some efforts to
introduce measures that capture particularities of RDF graphs.

Fernández et al. (2018) introduced a comprehensive list of measures for capturing
low-level metrics tailored for RDF graphs. In particular, they addressed the
development of efficient data storage techniques, index structures, and compression
algorithms for RDF data. The measures introduced are grouped into six groups: subject
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and object degrees; predicate degrees ; common ratios; subject-object degrees; predicate

lists ; and typed subjects and classes.
The main difference between these measures and the measures introduced in

Section 2.3.1 is that the former additionally consider fine-grained combinations of
(multivalued) pairs of vertices of specific types, such as subject-predicate and subject-
object. Moreover, the distribution of predicates, repeated predicate lists in use, and
the distribution of subjects and objects per predicate receive special attention. Such
measures allow frequent patterns in RDF data and their graph topology to be exposed
when subjects are described. By introducing a number of different ratios to capture
repetitions of vertex usage, they also help to expose particular local constructs, such as
vertices acting as a “star” (multiple incoming edges) and the presence of paths between
vertices.

The authors consider that these measures characterize RDF graphs in particular,
due to the required classification of vertices into types – that is, a subject or an object.
On closer inspection, some of the measures can be computed on non-RDF graphs, too.
To this end, we can treat a subject vertex as one having outgoing edges, and an object
vertex as one having incoming edges. However, the existence of constant labeling of
edges is still necessary for most of the measures introduced. See our future work plans
on this in Section 5.2.
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3
Assessing Graph Measures for

Knowledge Graph

Characterization

The software framework introduced in the last chapter enables us to perform graph-
related tasks, such as knowledge graph acquisition and large-scale graph-based analyses
on their topologies, by means of the provided set of graph measures. However,
some measures involve a fair degree of complexity and are computationally expensive.
Moreover, after computation, a measure may be of no additional informative value
when included in a topological profile, as it may be redundant due to the fact that it
was unable to capture knowledge-domain-dependent specificities.

Thus, our second objective in this dissertation is to detail our investigation of graph
topologies and their specificities, particularly within distinct knowledge domains. To
this end, we investigate the quality of our measures concerning the generation of concise

topological profiles for knowledge graphs in the given knowledge domains.
Central to this chapter is the publication described in Section 3.1, which deals with

the assessment of the efficiency of graph measures and their informative value. In
addition to the description of the experimental setup and results in the publication,
Section 3.2 addresses the challenges of determining measures that are particularly
important for the characterization of knowledge graphs in the individual knowledge
domains.

25
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3.1 Characterizing RDF Graphs Through Graph-

Based Measures – Framework and Assessment

Matthäus Zloch, Maribel Acosta, Daniel Hienert,
Stefan Conrad and Stefan Dietze.

In: Semantic Web – Pre-press. DOI: 10.3233/SW-200409.

This paper addresses our second objective, which is to assess graph measure
effectiveness.

Summary

In this paper, we follow up on our previous investigations to identify graph measures
that are non-redundant, meaningful, and efficient. To achieve this, we follow a three-
stage approach and let the following research questions (RQ) guide our experiments:

RQ1 What is an efficient and non-redundant set of features for characterizing
RDF graphs?

RQ2 Which measures and values describe and characterize knowledge domains
most/least efficiently?

RQ3 Which measures show the best performance to discriminate knowledge
domains?

To answer these questions we employ various methods commonly known in statistics
and machine learning (feature selection), such as analyzing the Spearman correlation
coefficients (Spearman, 1904) and performing low variance and univariate statistical
tests, for example, chi-square, mutual information (MI), and maximum information-
based nonparametric estimation (MINE) (Pedregosa et al., 2011). To determine
a measure’s capacity to discriminate knowledge graphs from other categories, we
employ a state-of-the-art machine learning classification model (see Section 3.2 below).
Measures performing well in the learning process can be considered useful and
important for particular categories, that is, one or more of the nine knowledge domains
provided by the LOD Cloud.

To make the study more comprehensive, and to respect recent findings on RDF
graph characterization from related work, we implemented an additional set of 29

RDF graph measures into our framework (see Section 2.3.2, below) and repeated the
graph-based analysis on all 280 knowledge graphs acquired before (see Section 3.2.2
below).

As a result of the investigations, we identified a distinct set of 29 measures as
being meaningful, and 13 measures as having the capacity to discriminate graphs from
other knowledge domains particularly well. While respecting the measures’ individual
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semantics, the paper gives a comprehensive report about the particularities of the
inspected knowledge domains. For instance, in contrast to the Cross-Domain category,
knowledge graphs in the Publications category report on a regular use of vocabularies,
and thus, contain recurrent patterns in the topologies; a distinctive factor of knowledge
graphs in the Linguistics category is their unusually large diameter.

Most of the measures considered important for knowledge graphs in the given
knowledge domains were measures particularly designed to capture topological
specificities of RDF graphs. This confirms our claims stated in Section 1.2 and previous
findings of related work that knowledge graph topologies are distinct from those of
other types of graphs. Therefore, it is fundamental to provide appropriate tools and
meaningful measures to characterize knowledge graphs adequately.

Importance and Impact on This Thesis

As some measures are computationally expensive, the across-the-board computation
of all graph measures over a graph topology is computationally expensive, not always
reasonable, and thus discouraged. Therefore, we identified an efficient set of measures
for the sake of creating topological profiles that contain meaningful and essential
measures only. Hence, the paper constitutes a major contribution to the objectives
of the thesis formulated in Section 1.2.

We are confident that various research fields related to RDF knowledge graphs
can derive implications from our findings. Section 7 in the paper details implications
in some domains of RDF research, such as RDF benchmarking (synthetic dataset
generation), graph sampling, and RDF profiling (e.g., frameworks for quality
evaluation).

In fact, to extend and deepen our knowledge about the particularities of knowledge
graph topologies modeled in RDF, we consider, as future prospect, including non-RDF
graphs and investigating the differences (see Section 5.2.2), which can also be done
with the methods provided by our framework.

Author Contributions

The first author, Matthäus Zloch, extended the software framework with RDF graph-
based measures. He created the experimental environment, performed all experiments,
and presented the results to the other authors. Matthäus Zloch also designed and
created all figures and tables. He created the overall structure and wrote the majority
of the content of the paper.

Maribel Acosta suggested to include measures from Fernández et al. (2018). She also
supervised Matthäus Zloch during the implementation of the graph-partitioning feature
for this set of measures (see Section 2.2). Maribel Acosta reviewed all mathematical
notations in Section 3 of the paper.
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The paper underwent proofreading by all authors. The whole work was under the
general supervision of Stefan Conrad and Stefan Dietze.



3.2. DETERMINING GRAPH MEASURE IMPORTANCE 29

3.2 Determining Graph Measure Importance

In addition to the results of our investigation on overall and category-wise measure
importance presented in Zloch et al. (2020), we describe in this section the setup of
our learning pipeline, and provide additional results on the models’ predictive power.

First, Section 3.2.1 gives a summary of the general functionality of the employed
model. Section 3.2.2 describes standard but necessary data preparation tasks applied
to the input datasets. Section 3.2.3 details the two classification tasks and the machine
learning pipeline we set up. Section 3.2.4 presents and discusses the additional results
and mentions some caveats and limitations.

3.2.1 Introduction

In Zloch et al. (2020) we employed random forest (Breiman, 2004; Louppe, 2014),
a popular and state-of-the-art machine learning multiclass classification model, to
determine overall and category-wise measure importance. To this end, we set up two
classification tasks and treat our graph measures as features in the learning process
(see Section 3.2.3). The following gives a brief summary of the functionality of the
employed classifier.

Central to random forest is the concept of a decision tree. A decision tree is a
binary tree, where each node in the tree represents a feature (i.e., a graph measure)
and the leaf nodes represent the target variables (i.e., dataset categories) to be
predicted. Besides the ability to predict, decision trees can be employed to obtain
feature importance scores at each node in the tree after building it up from the available
training data. Random forest is an ensemble method, which means that it consists of a
predefined number of single decision trees that are built up and evaluated from different
subsamples of the original dataset. Final prediction performance is then averaged over
the given number of single trees. By this means, random forest tackles the tendency
of single Decision Trees to overfit the data (Louppe, 2014).

For a random forest model, it is crucial to find the tree with the best choice of
nodes (i.e., graph measures) where at each node the value of a predefined cost function
is minimized. The cost-function evaluates the splitting of the input data at each
node concerning the target variable, and is the final indicator for the efficiency of
the represented feature at that node. The cost is minimized when the feature is able to
perfectly split its values according to the given target variable. Popular cost functions
for features of decision trees are Gini impurity and entropy.

A random forest model reaches acceptable prediction accuracy in many situations
and is available for the Python programming language (Pedregosa et al., 2011).
However, predicting categories for RDF datasets imposes some challenges, which we
depict in the following. Please note that, in this context, we use the terms knowledge

domain, category, and class interchangeably.
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predictive model that can be over-interpreted and which does not show how good the
model is on datasets from the underrepresented category. Instead of duplication, a more
robust approach is to create synthetic datasets in the category with underrepresented
samples. This leads to a more distinctive set of datasets as training data in the
corresponding categories. We employed the synthetic minority over-sampling technique

(SMOTE) (Chawla et al., 2002; Pedregosa et al., 2011), which is the most prominent
approach to tackling class imbalance in statistical learning.

Feature value distribution

We investigated the heterogeneity of our graph measure values for knowledge graphs
in various knowledge domains (Zloch et al., 2020). We found that most of the
values have different scales. Their values range from natural numbers of hundreds
to hundreds of millions, for example, in the case of number of edges; similarly
decimal numbers with high precision ranging from one to six decimal places (10−6),
for example, in the case of fill and reciprocity. Apart from that, we found that many
features have single to many isolated outliers. This can be problematic for machine
learning prediction models, as most of the implementations expect feature values to
be standard normal distributed (Pedregosa et al., 2011). This is due to the fact that
normal distribution of feature values is very common when measuring physical and
economical phenomena (Wonnacott and Wonnacott, 1990). However, we are the first
to do graph-based analyses of this extent on such a large sample of knowledge graph
topologies (Zloch et al., 2020). Thus, we do not have any evidence that our graph
measure values are inherently normally distributed too. In addition, samples, such
as our samples from the LOD Cloud may not necessarily reflect the same type of
distribution concerning a particular measure as the original set (Stumpf et al., 2005).

To return robust prediction results, and to perform well in terms of computation
time, our input data needed to be standardized accordingly. Concerning our findings
on the presence of outliers, we decided to use the robust scaling method proposed
by Cao et al. (2016), primarily because it can deal with outliers very well.

3.2.3 Classification Tasks

In Zloch et al. (2020), we sought to investigate measure importance (1) with respect
to all available categories, and (2) with respect to one category in binary classification.
Supplementary to the description of the experimental setup in the publication,
Figure 3.2 illustrates the complete process pipeline to accomplish our goals in the
two classification tasks described in Zloch et al. (2020). To recap:

Task 1. In the first classification task, we set up, trained, and tuned one classification
model to predict one out of all available categories (i.e., knowledge domains).
Thus, we investigated measure importance in terms of the classifier’s capacity
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Table 3.1: Parameters for grid search that we used to tune each of the instantiated
classifiers (see Step 3, Model Selection).

Parameter Short description Value range

criterion Measure by which the splitting
of nodes is based in the trees

entropy, Gini

max_depth Maximum depth of the trees 2, 4, 6, 8, 10, 12

max_features Maximum number of features to
consider for split criteria

[4..25]

min_samples_leaf Number of samples per tree leaf 1, 3, 5, 7, 9

min_samples_split Number of samples per tree node 2, 4, 6, 8, 10, 12

n_estimators Number of decision trees in the
forest

300

method reduces the negative effects of outliers (if present). After that, we split the
data into 75% for training and 25% for testing.

2. Balancing. As mentioned in Section 3.2.2, our sample of knowledge domains is not
balanced. In order to avoid overfitting the model concerning datasets from the majority
class, that is, Linguistics (see Figure 3.1), in this step, the training data was subjected
to three balancing strategies: we experimented with undersampling, oversampling
techniques and with leaving the training data unbalanced by not applying any balancing
strategy. For undersampling, we randomly sampled from all classes except the minority
class. For oversampling, we used the SMOTE algorithm to systematically generate
synthetic datasets for all categories except the majority class. As a result of this step,
we obtained three balanced training datasets for each of the two feature sets.

3. Model Selection. Note that our main aim was to understand overall and category-
wise graph measure importance, rather than finding the best prediction model type
for predicting category labels of knowledge graphs. However, we were obliged to
find meaningful results. Thus, for each balancing strategy obtained from Step 2,
we instantiated the classifiers in different variations: (i) a basic random forest, (ii)
a random forest with a stratified sampling of categories, and (iii) a one-vs-rest (OvR)
binary classifier with an instantiated basic random forest. The difference between
(i) and (ii) is that the latter respects a balanced subsample concerning the available
categories to be predicted for each decision tree that gets evaluated.

All classifier instances were subjected to hyperparameter tuning via grid search
with five-fold cross-validation (Pedregosa et al., 2011). Grid search finds the best
constellation of hyperparameter values for a given model instance and training dataset
to ensure that the model that best fits the data will be found. Table 3.1 lists the
parameters that we tuned and their corresponding range of values. Each classifier is
instantiated with a fixed number of 300 decision trees in the “forest”.
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Table 3.2: Evaluation metrics for the best prediction model, i.e., the tuned OvR
model with random forest, instantiated with the meaningful feature set and SMOTE

as balancing strategy. Note. For the experiments, we removed categories with too few
samples (see Zloch et al. (2020)). Prec = precision; rec = recall.

Knowledge Domain Prec. Rec. F1-Score Support

Cross-Domain 0.250 0.250 0.247 4

Geography 0.000 0.000 0.000 3

Government 0.649 0.611 0.628 9

Life Sciences 0.758 0.975 0.852 8

Linguistics 0.892 0.806 0.847 31

Publications 0.571 0.666 0.615 12

columns). As we applied standard feature selection methods to obtain a meaningful
feature set before training the models (see Zloch et al., 2020), we expected the models
employing this set to score (considerably) higher than the other models employing the
whole set of features. This was not the case.

The second observation is that models employing datasets balanced using the
upsampling strategy (far right-hand sub-figure in Figure 3.3) performed similarly to
models that employed unbalanced datasets, although the former had slightly higher
scores. Models employing datasets that were downsampled performed worst. This
was apparently due to the fact that there were too few samples per category during
training.

Both observations are consequences of the model type chosen for the tasks (i.e.,
random forest), which we used for classification and feature importance extraction.
Random forest averages prediction performance over the number of decision trees to
be created, each fitting different subsamples of the training dataset, including a random
feature set for each of the created samples. Thus, concerning both observations, the
model was robust against the actual set of features employed. It seems that the outliers
that we observed in single features in our dataset (see Section 3.2.2) did not have
significant impact.

In Zloch et al. (2020), we used the best model obtained from Step 4 to extract
category-wise feature importances, which employs the meaningful feature set with the
SMOTE balancing strategy. To give an impression of the actual precision, recall, and
F1-measure values for this model, Table 3.2 shows averaged evaluation metric values
over 10 predictions attempts. The far right-hand column, Support, gives the number
of samples in the corresponding categories given in the test set. Please note that
samples in the test set are not balanced over the categories, as the data were split
before balancing (see Step 1 in Figure 3.2). The test dataset with which the model was
tested thus contains only real-world samples and no artificial samples.

The model reaches the best prediction performance for test samples of knowledge
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graphs in the Life Sciences and Linguistics domains, with F1-scores of 0.852 and 0.847,
respectively. The exceptionally high recall value of 0.975 for test samples in the Life

Sciences category is striking. It means that approximately 97% of all test samples in
this category were correctly classified. The precision value is 0.758, which means that
approximately 76% of the predicted samples were correctly classified. The Linguistics

category had the most samples (31) to predict. Here, the classifier achieved a precision
value 0.892 and a recall value of 0.806. The model performed less well on knowledge
graph samples from the Government and Publications domains, with F1-scores of 0.628
and 0.615, respectively. In both categories, less than two-thirds of the samples were
correctly classified.

The model performed very poorly on samples predicted for the categories Cross-

Domain and Geography. For the 10 prediction attempts, none of the three samples in
Geography was correctly classified, whereas in the Cross-Domain category, at least one
of four samples (0.25) was classified correctly. The main reason for this is probably
that the number of distinct training samples available in these categories was too low.
Although the training dataset was balanced with SMOTE, it is a synthetic upsampling
method, and is not powerful enough to emulate real samples (see our future work plans
on this in Section 5.2.2).

Caveats & Limitations

One limitation of our approach to determine category-wise measure importance
described in Zloch et al. (2020) may be that we exclusively employed the random forest
classifier and did not experiment with other implementations of classifiers, for example,
logistic regression (LR) or support vector machine (SVM). Hence, the numbers reflect
measure importance determined by this particular model type. However, random forest
is one of the most popular and robust classifiers, and is suited for many “standard”
classification setups (Louppe, 2014). A huge advantage of this classifier is that it is
an ensemble method – that is, it averages classification performance over combined
set of individual models (i.e., decision trees). Our primary concern was to highlight
topological differences in the given knowledge domains, not to find the best model for
predicting category labels for knowledge graphs. In future work, we want to tackle the
bad prediction performance observed in the categories Geography and Cross-Domain

by acquiring more samples (see Section 5.2.2) to re-run the experiment with and to
validate our findings. As future prospect, we want to investigate results of the other
classifiers mentioned.



4
Towards an Application-Specific

RDF Benchmarking Suite

Chapter 2 introduced a software framework enabling us to perform large-scale analyses
on the topologies of RDF knowledge graphs. To achieve this, the framework represents
a knowledge graph topology as a programmatic graph object. We now want to further
benefit from the framework’s abilities and to address the third objective of this thesis,
which is to leverage these programmatic graph representations to guide and support
solutions in related research areas (Zloch et al., 2020).

This chapter takes on the benchmarking use case mentioned in Section 1.2
and introduces two approaches for the creation of custom- and application-specific
benchmarks for RDF data. Central to this chapter are two contributions, one of which
has already been published, and the other is a work in progress.

Section 4.1 gives a brief introduction to the use case of RDF benchmarking and the
recent challenges in this research field concerning query runtime evaluation. We will
address this in the two subsequent sections. Section 4.2 describes another functionality
of our framework, that is, to utilize graph representations from knowledge graphs to
generate customized benchmark queries. Section 4.3 presents our second approach to
application-specific RDF benchmarking. The corresponding publication introduces a
"business-use-case"-driven approach for query runtime evaluation on state-of-the-art
RDF data storage solutions (Zloch et al., 2017).

37
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4.1 Application-Specific Benchmarking

The design of scalable data storage solutions – not only for RDF data – is based on
benchmarks suites. Benchmark suites assess a data storage solution’s performance with
regard to a variety of community-driven use cases and procedures, such as browsing and
exploration, business intelligence, reasoning, querying/updating the data, and testing
the coverage of features in the query language specification. In the past, business
applications had similar requirements, and data had a similar shape. Thus, domain-

specific benchmarks have been the source of truth for database engineers and designers,
and have driven the development of efficient data stores.12

However, the Web has become more data-oriented, with an enormous amount of
data being collected, prepared, and made available to researchers and the public.
Publicly available RDF knowledge graphs are primarily application-specific and diverse
in their structure (Zloch et al., 2020). This challenges existing domain-specific
benchmarking approaches concerning the delivery of meaningful and reliable results
that reflect real-world situations (Seltzer et al., 1999).

The assessment of RDF data storage solutions with domain-specific logics and
synthetic data of traditional benchmarks can be problematic, primarily for two reasons.
First, the flexibility that RDF offers: RDF is designed to be data-oriented, and
thus it is inherently flexible regarding vocabulary usage. Compared with the highly
structured synthetic data generated by traditional benchmarks, real-world LOD have
weak structure (Duan et al., 2011; Saleem et al., 2015b). The second reason is the
impedance mismatch problem – that is, the problem of bridging the gap between the
native graph model that RDF comes with and the internal storage model of a data store,
which is most likely a relational database. There are several strategies to implement
a graph model in a relational schema (Aluç et al., 2014b; Bornea et al., 2013; Erling,
2012; Wilkinson et al., 2003). Paired with synthetic queries, which may not necessarily
reflect real-world situations, the evaluation of query runtimes of RDF benchmarks may
not be meaningful enough and equally meaningful for two different applications (Aluç
et al., 2014a).

For this reason, research on RDF benchmarking is favoring application-specific

benchmarks that employ data and queries from real-world applications and do not
generate data synthetically. Application-specific benchmarks in RDF employ particular
datasets and vocabularies to design benchmarks for particular use cases. Queries
generated by this type of benchmarks are based on query logs, for example, in order
to more accurately mimic real-world situations.

12DB-Engines Ranking. https://db-engines.com/en/ranking. Last accessed on October 21,

2020.
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Contributions

In the context of this thesis, we present two contributions to the development of
application-specific benchmarks.

• In Section 4.2, we address the issue of synthetic queries used by RDF
benchmarks. We propose a flexible query instantiation mechanism leveraging
graph representations of real-world knowledge graphs. A corresponding
implementation is shipped with our graph-based framework introduced in Zloch
et al. (2019). It can generate queries of the types that are frequently found in
query logs. This contributes to generating query loads based on real data.

• In Section 4.3, we propose a method that enables to evaluate real-world query
results more reliably. In the corresponding paper (Zloch et al., 2017), we show
that, in situations where we want to find a suitable data store for our data,
it is advantageous to look at application-specific business use cases to detect a
suitable data store candidate.

4.2 Query Generation for Application-Specific

Benchmarks

In this section, we propose a simple and flexible variant of a query instantiation
mechanism that is based on programmatic graph representations from knowledge
graphs to produce customized benchmarks for query evaluation. We integrate the
functionality into our software framework introduced in Zloch et al. (2019) (see
Chapter 2). This allows to generate any number of query instances out of the box,
after knowledge graph acquisition and preparation. To create a first demonstration of
its feasibility, we include a comprehensive list of query templates introduced by the
WatDiv benchmark, which is a state-of-the-art RDF benchmark that contains a list
of real-world query templates (Aluç et al., 2014a). By this means, our approach can
generate over 90% of state-of-the-art queries frequently found in today’s query logs of
RDF data stores. (Bonifati et al., 2017).

The next section, 4.2.1, aligns related work with our approach. The approach itself
is described in Section 4.2.2. As this is unpublished work in progress, Section 4.2.3
concludes by mentioning current caveats and limitations.

4.2.1 Related Work

For RDF data, the overall performance of a data store depends on three major factors:
(1) the characteristics of the data; (2) the implementation of the data model in the
database schema, also known as the storage strategy or physical design; and (3) the
queries themselves. The structure of the queries, and the strategy with which they
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are evaluated, play an essential role in runtime performance evaluations (Zloch et al.,
2017).

To measure whether benchmark queries appropriately represent patterns and types
of queries observed in real-world systems, the literature introduces several metrics that
measure structural and data-driven feature variability in SPARQL queries (Aluç et al.,
2014a; Gallego et al., 2011; Möller et al., 2010; Picalausa and Vansummeren, 2011).
Examples of such metrics include the query type, that is, SELECT, CONSTRUCT, ASK,
or DESCRIBE; the number of triple patterns; the number of join patterns (star, path,
hybrid, sink); mean degree of join vertices in graph patterns in a query.

Many works consider the aforementioned prevalent join pattern of basic graph
patterns in SPARQL queries (Harris and Seaborne, 2013) to be an important aspect
that influences the performance (Aluç et al., 2014a; Görlitz et al., 2012). Related work
considers four different types: star, which has multiple outgoing links but no incoming
links; path, which has precisely one incoming and one outgoing link; hybrid, with at least
one incoming and outgoing link; and sink, the vertex type with multiple incoming links
but no outgoing links. Existing data stores behave very differently when evaluating
such join patterns that they encounter in queries, as they have different strategies to
decompose and map query graph patterns to the internal graph representation.

Saleem et al. (2015a) analyzed logs from four large SPARQL endpoints, involving a
total of 1.2 billion triples from DBpedia, Linked Geo Data, Semantic Web Dog Food,
and the British Museum. They introduced different characteristics for the observed
queries, classified them, and reported on each class’s usage statistics. They found
that 66% of the queries that they analyzed on the four logs, contained no join vertex
type at all, and that 33% of all queries could be considered queries of the type star.
This situation may be different for other datasets and endpoints, as queries are highly
dependent on the underlying vocabulary used in the dataset, and thus may be more
diverse (Duan et al., 2011; Gallego et al., 2011).

To increase the diversity of queries in RDF benchmark suites, Aluç et al. (2014a)
propose a flexible synthetic data and query generator suite based on a data description
language that covers a large number of the above-mentioned query features. Their
Waterloo SPARQL Diversity Test Suite (WatDiv) provides 20 query templates of four
different categories: linear, star, snowflake, and complex. They vary in their number
of triple patterns and overall complexity. WatDiv, however, requires to generate a
synthetic dataset first in order to instantiate the queries. Further, RDF predicates
in triple patterns of SPARQL query templates are fixed and cannot be instantiated
dynamically.

Saleem et al. (2015b) developed FEASIBLE to overcome the issue of benchmark
suites to generate synthetic queries. The authors claimed that FEASIBLE can
construct queries of all four query types (i.e., SELECT, CONSTRUCT, ASK, and DESCRIBE),
all based on real data. They performed a comprehensive study with four other popular
benchmarks, constructing queries of the types mentioned. They demonstrated that
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(a) An example query graph having a

linear join pattern.

SELECT ?v0 ?v2 ?v3

WHERE {

?v0 {{ e0 }} {{ v1 }} .

?v2 {{ e2 }} ?v3 .

?v0 {{ e1 }} ?v2 .

}

(b) A query template that is instantiated

with a subgraph match of the query graph

shown on the left.

Figure 4.2: Example query graph (a) and corresponding query template (b)

taken from the WatDiv benchmark suite (Aluç et al., 2014a; query label l1).

processing in RDF (Kim et al., 2015). Concerning our goal of generating queries, the
problem can be defined more precisely as follows: Given a query graph QG, we seek to
find all subgraphs in our original graph G that are isomorphic to QG. We call these
isomorphic subgraphs matches of QG in G.

Figure 4.1 illustrates the SPARQL query generation process for the found matches,
which is described in detail in the following. Let I be the set of all types of queries, for
example, I = {star, linear, ..}, introduced in Saleem and Ngonga Ngomo, 2014. First,
each query type i is instantiated as a query graph Qi by the framework (A in Figure
4.1). An example query graph instance of the join pattern linear is shown in Figure
4.2a. Our framework finds the desired number of isomorphic subgraphs in the original
knowledge graph (possibly prepared and instantiated itself by the framework), for each
of the given query graphs (B). To achieve this, we employ methods provided by the
graph-tool library (Peixoto, 2014), which we already employed for graph instantiation
and graph measure computation in Zloch et al. (2019). Therefore, all query graphs
need to be available beforehand as graph objects, for example, in individual files.

Finally, to generate the final queries from the found subgraphs we employ a template
engine. A template engine works by passing a data structure (also called model) to a
string-based template. The template engine then instantiates the template by filling
in variable placeholders around static content placed in the template. Our templates
are SPARQL queries that may contain variable placeholders in any part of a basic
graph pattern, that is, the subject, predicate, or object. The data model passed to
the template is thus one single isomorphic subgraph found in the original graph. An
example SPARQL query template that we employed from the WatDiv benchmark suite
is shown in Figure 4.2b. Consequently, for each of the query graphs there must exist a
corresponding query template TQi

(below C).
After finding the desired number of subgraphs for each query graph Qi, we pass

each subgraph to the template engine, which in turn passes it as a data model to the
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corresponding query template (C). The queries are then written to disk accordingly.
The desired number of query graphs and number of subgraphs to find, as well as the
number of queries per query graph to generate is configurable at the time of execution
of the framework.

We tested our design and implementation on queries from the Waterloo Diversity

Benchmark Suite (WatDiv), a state-of-the-art benchmark suite (Aluç et al., 2014a).
All queries provided by WatDiv are implemented as query graphs and query templates
in the submodule query.watdiv of our framework (see Section 2.2).

Please refer to list items 3 and 4 in Section 5.2.3 for our future work plans for this
feature.

4.2.3 Caveats & Limitations

Although the proposed approach for query instantiation is part of our framework
and its latest releases (Zloch, 2020), the feature has unfortunately not yet been
published. Preliminary tests showed that all queries from WatDiv that we integrated
into the framework can be instantiated and return reliable results when executed
against data loaded into a data store. This has been tested on various knowledge
graphs acquired from the LOD Cloud acquired in Zloch et al. (2019). However, for a
publication, a robust evaluation of the generated queries concerning their variability
and a demonstration of their feasibility are lacking.

During our preliminary tests, we encountered high runtimes when generating queries
of the type complex (Aluç et al., 2014a). This was in fact due to the complexity of
the queries and the resulting query (sub)graphs for which a match needed to be found
in the original knowledge graph. Additionally, our programmatic knowledge graph
representations are highly optimized to lower hard disk and memory consumption.
To this end, vertices and edges labels are encoded by employing a non-cryptographic
hashing strategy (Zloch et al., 2019). After finding the corresponding subgraph
matches, we thus need to decode the vertices and edges of the subgraph using the
original RDF dataset. Our framework offers the corresponding functionality for that.
However, this is a crucial point.

Speaking of limitations, we can see that in the current implementation of our query
templates, variables can be placed only within any part of the basic graph pattern, that
is, the subject, predicate, or object of any triple pattern occurring in the SPARQL
query. The usage of such variables in other SPARQL query clauses – for example,
FILTER – has not yet been tested. Further, although the code is designed to be
generic – that is, to merely point to source packages and folders with the corresponding
query graphs and query templates – we did not test it to generate queries from other
benchmarks.

Section 5.2.3 presents our future plans regarding this feature.
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4.3 Towards a Use Case Driven Evaluation of

Database Systems for RDF Data Storage

Matthäus Zloch, Daniel Hienert and Stefan Conrad.

In: The Semantic Web – 16th International Semantic Web Conference (ISWC 2017),

Joint Proceedings of BLINK 2017: 2nd International Workshop on Benchmarking

Linked Data and NLIWoD3: Natural Language Interfaces for the Web of Data.. Vol.
1932. CEUR-WS.org. URL: http://ceur-ws.org/Vol-1932/#paper-08.

Following up on the application-specific benchmarking setting, the primary concern
of this publication was to vary the evaluation strategy of queries when executed against
data stores.

Summary

In this paper, we propose a customizable benchmarking approach and framework
to evaluate queries against overall query runtime performance, what we call the
standard benchmark approach, and a novel use-case-driven approach, where query
groups from application-specific use cases are respected. The overall hypothesis is
that such groups have similar structural characteristics. This means that they (a)
target similar (disjunct) parts of a domain model (and thereby the database schema),
and (b) stress query evaluation techniques offered by the data stores in different ways
(highly structured vs. plain tabular).

Our approach is to compare results for query runtimes for a comparably large
number of data storage solutions of different types (triple stores, relational and
graph-based databases, column- and row-stores) and real data from a productive web
application. For the experiment, we transformed all data and the corresponding queries
into the format and language required by the database solutions we evaluated – for
example, N-Triples and SPARQL for RDF stores, and edgelists and Cipher for the
graph-based database Neo4j. All transformed data and translated queries are available
for further reuse.13

Based on the two approaches – that is, the use-case driven and the classical “non use-
case driven” approach – we developed a configurable, extendable, and property-based
query evaluation framework in order to automatically run query runtime evaluations.
By this means, one can compare query runtimes for the configured number of data
stores and make a decision about a suitable solution for one application. The framework
is further able to generate query load sequence mixtures of use-case-relevant queries
and non-relevant queries, for the ratios of 100-0 (use-case-only queries) and 50-50 (half
of the queries are use-case-specific), beforehand.

13https://github.com/mazlo/blink17. Last accessed on October 29, 2020.
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Importance and Impact on This Thesis

This publication represents the foundation for the ideas subsequently introduced in
Zloch et al. (2019) and Zloch et al. (2020). After observing the different behavior of data
stores concerning query runtimes of query group loads in comparison with considering
all queries, our aim was to find correlations between characteristics adhering to the
actual data, features of the used queries, and the corresponding query runtimes. Our
aim was to derive implications from that in order to possibly predict a suitable data
store by observing particular characteristics in the data beforehand. In this sense,
the work done in this publication had a significant impact on the subsequent works
described in Chapter 2 and Chapter 3.

Author Contributions

The first author, Matthäus Zloch, programmed the parameterizable framework to
evaluate both query runtime evaluation approaches. He created the experimental
environment, mapped and transformed all data and queries into the type and language
required by the target data store, and performed all experiments. Matthäus Zloch also
wrote most of the content of the paper and created all the figures.

Daniel Hienert advised Matthäus Zloch during the experiments, and contributed to
analyzing the results. He proposed the inclusion of further data stores for evaluation.
Daniel Hienert also contributed to the content in Sections 4 and 5.

The paper underwent proofreading by all authors. The whole work was under the
supervision of Daniel Hienert and Stefan Conrad.
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5
Conclusion and Future Work

This chapter concludes with a summary of the achievements made during the Ph.D.
studies and provides some ideas and directions for future work.

The main objective of the thesis was to facilitate graph-related tasks on RDF
datasets, to study graph measure effectiveness and importance, and to find possible
applications of our previous findings in related research areas. We provide use cases and
research areas that can benefit from the knowledge about the topological structure(s) of
individual knowledge graphs as well as from knowledge-domain-dependent knowledge
graphs. We report on the topological structure of a large number of real-world datasets
and investigate measure meaningfulness. In the final step of the thesis, we take on the
benchmarking use case and show how to leverage a knowledge graph’s programmatic
graph representation to generate realistic queries for application-specific benchmarking
suites.

During the Ph.D. studies three papers with particular relevance for this thesis were
published – two appeared in the peer-reviewed proceedings of international conferences
(Zloch et al., 2019; Zloch et al., 2017) and one was published in an international peer-
reviewed journal (Zloch et al., 2020).

Along with these papers, we published all code for the developed software, datasets,
and scripts under open source licenses on popular code and data hosting platforms, such
as GitHub and Zenodo. Both web services provide search interfaces, which makes the
code and all results web-findable.
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5.1 Summary of Results

We summarize the results by referring to the overall objectives of the thesis and its
contributions, which are outlined in Sections 1.2 and 1.3, respectively.

5.1.1 Facilitating Graph-Related Tasks on Knowledge Graphs

Our first objective was to facilitate graph-related tasks on knowledge graphs, such as the
large-scale study of graph topologies. Thus, our first contribution is the development
of a software framework offering various capabilities to support graph-related tasks on
RDF knowledge graphs, such as dataset acquisition; dataset cleaning and preparation;
instantiation; and graph measure computation (Section 2.1). The framework has the
capacity to deal with typical issues known from public knowledge graph acquisition
– for example, various formats, unofficial and unsupported media and file types, and
compressed archives. It is designed to support large-scale analyses, particularly when
a large number of datasets are analyzed in parallel. In this thesis, we also described
in detail the framework’s technical architecture (Section 2.2) and the supported graph
measures (Section 2.3).

To demonstrate the feasibility of the framework, we successfully used it to acquire
a representative sample of 280 real-world knowledge graphs from a popular source of
publicly available data, namely, the LOD Cloud. We then conducted a systematic
graph-based analysis with regard to the available 54 graph-based measures, and
analyzed the topological differences of the acquired graphs in popular knowledge
domains. For all the acquired knowledge graphs, we generated topological profiles
that are available to the research community for further use (Zloch and Acosta, 2018).

On the one hand, this comprehensive study enabled us to make general observations
about the graph-based structure of RDF knowledge graphs. For instance, it showed
that, on average, the vertex degree is approximately 8 and that the distribution of
vertex degrees in many graphs can be described with a power-law function. This
confirms previous findings of related works (Ding and Finin, 2006). On the other hand,
we observed characteristics specific to knowledge domains and individual datasets, and
assumed a dependency on the employed RDF vocabularies. For instance, in most
knowledge domains, the average degree is not affected by the size of the graph (in
terms of number of edges).

During this study, we found that not all graph measures are equally meaningful –
especially when it comes to describing RDF knowledge graphs effectively and concisely.

5.1.2 Assessment of Graph Measure Effectiveness

Our second objective was to deepen the investigation of graph topologies and their
specificities, especially for knowledge graphs within distinct knowledge domains. In
particular, we assessed graph measure performance in terms of their capacity to
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discriminate knowledge graphs from popular knowledge domains (see Section 3.1). Our
assumption was that measures performing well on this task can be considered useful
and important for a particular category. By this means, we identified a set of effective
and important measures for knowledge graph characterization.

To make the study more comprehensive, we extended our framework with another
set of RDF-graph-based measures, which was defined by Fernández et al. (2018), and
repeated our graph-based analysis with all knowledge graphs acquired in the previous
study (Zloch et al., 2019). From the initial set of 54 graph-based measures, we
identified 29 measures that are effective, distinct, and meaningful. From this set, 13
measures have the capacity to discriminate dataset categories with particular impact.
The majority of the measures are RDF-graph-based measures. To determine graph
measure importance in the individual knowledge domains, we employed a state-of-the-
art machine learning classification model. Additionally, in this thesis, we described the
challenges faced during the experiments, and detailed the performance of the model
employed in the experiment (Section 3.2).

We concluded our graph measure investigation and assessment with two aspects that
shape the prevalent structure of knowledge graph topologies: (1) the characteristics
that adhere to knowledge graphs modeled in RDF in particular, as the topology of
the graphs differs from that of other types of graphs (e.g., social graphs); and (2)
the compliance with a (knowledge-domain-dependent) standardized RDF vocabulary,
as the vocabulary shapes the way in which data are modeled, thereby leading to
similarities in the graph topologies (see Zloch et al., 2020).

5.1.3 Leveraging Graph Representations for Other Tasks

Finally, we took on the benchmarking use case and provided two contributions to
the generation of application-specific benchmarking suites. Both contributions provide
approaches against tailored benchmarks suites that prefer to consider synthetic data
and query generators, which cannot reproduce the observed variability of real-world
SPARQL queries.

First, we proposed an approach to leverage graph representations programmatically
to facilitate the generation of application-specific benchmark query loads (Section 4.2).
Our software framework provides a simple yet flexible template-based implementation
and integrates SPARQL query templates from the WatDiv benchmark suite (Aluç et
al., 2014a) as a proof of concept. Aluç et al. (2014a) claimed that the employed queries
exhibit the required variability that synthetic queries are lacking, and that they are
based on query structures observed in real-world query logs. The integration of this
feature into our framework (Section 2.1) provides a designated code base for the out-
of-the-box generation of queries after knowledge graph acquisition and preparation. In
preliminary experiments, we successfully generated all types of queries provided by the
WatDiv benchmark for several exemplary knowledge graphs. Unfortunately, as this is
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a work in progress, it has not yet been published.
Our second contribution in the context of RDF benchmarks is our open source

framework facilitating application-specific benchmarking of RDF data. The related
publication considers a use-case-driven approach to evaluate query loads executed on
different RDF data stores (Zloch et al., 2017). To this end, we employed an RDF data
model, data, and queries from a real-world application and investigated query runtimes
of well-designed query workloads on different types of data stores. We showed that
grouping queries according to application-specific use cases partly yields shorter query
runtimes, compared with the standard benchmarking approaches, which obtain query
runtimes over the total set of queries.

5.2 Future Work

Based on the results of each of the publications, we derived plans for the future
directions of our research in order to further strengthen our achievements and to
propose improvements in related research fields. The ideas for future work outlined
below go beyond the propositions stated in the individual publications. Some of
the items mentioned originated from discussions in the peer-review processes of our
submitted papers.

5.2.1 Graph-Based Framework

Multiple improvements to the software framework are currently undergoing or planned.

1. Semantic attributes in graphs. So far, a graph representation represents an RDF
knowledge graph as a simple structure of vertices and edges. However, vertices and
edges of RDF graphs contain semantics. Finding vertices of a certain type (e.g.,
subjects or objects), filtering, and building subgraphs, involves time-consuming
iterations over the set of edges or vertices. Therefore, in order to facilitate the
aforementioned tasks, we want to add RDF-graph-specific attributes to the graphs’
vertices and edges during the graph preparation. Attributes attached to edges could
include the edge type, such as relationship or attribute, indicating whether the edge
connects another RDF resource or RDF literal. Attributes attached to vertices
could, for instance, include the join vertex type (i.e., star, path, hybrid, sink, or
simple) or the join vertex degree (Saleem and Ngonga Ngomo, 2014).

2. Extensions to sampling functionality. RDF graph sampling is an active
research field in the Semantic Web community. Our framework supports the
sampling of vertices and edges in a very basic form (see Section 2.2). We want to
extend the provided feature to implement more comprehensive sampling strategies,
particularly taking into account the above-mentioned semantic enrichment of
vertices and edges. With that in mind, it should be possible to generate subgraphs
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containing vertices and edges of a certain type, for example. In the long term, we
want to add a feature to sample from large graphs, respecting the “proportions” and
ratios of particular graph measures.

3. Further extensions. We want to add support for the obtained results from our
investigation of effective graph measures – for example, to add further command
line parameters, such as –-meaningful and –-category, in order to limit the
number of measures and focus on the meaningful ones upfront, which are essential
for a particular knowledge domain. This will save time during graph measure
computation.

5.2.2 Investigations on Graph Topologies

Regarding investigations of knowledge graph topologies, we aim to reach out in the
following directions:

1. Extend sources for knowledge graph acquisition. Using our framework,
we aim to conduct further studies to investigate topological aspects of knowledge
graphs. So far, we have considered dataset dumps of knowledge graphs only (Zloch
et al., 2019). Moreover, in order to find additional samples for small categories
(e.g., Cross-Domain and Geography), and to validate our findings afterwards, we
also want to acquire knowledge graphs from other sources, for example, public
SPARQL endpoints. Additionally, we want to analyze other types of graphs, such
as social graphs and retweet networks, in order to compare them with non-RDF
datasets and to extend and deepen our knowledge about the unique structure of
RDF graphs.

2. Comparison of synthetic dataset designs. Synthetic RDF dataset generators
claim to be compliant with real-world datasets. This is true for the employed RDF
vocabularies, but not necessarily for the topological structures they generate. We
aim to empirically investigate the ability of existing dataset generators to follow
statistical distributions of graph measures that we observed in popular knowledge
domains. Further, as dataset generators are designed to scale up, we aim to
investigate the graph-evolution irregularities concerning particular graph measures
that occur during upsampling. All of the popular synthetic dataset generators for
RDF data – for example, BSBM (Bizer and Schultz, 2009), Sp2Bench (Schmidt
et al., 2010), LUBM (Guo et al., 2005) – will be subjected to this investigation. As
a result, we aim to propose an RDF graph generator that is able to take as input
– for example, a knowledge domain and a graph size – and generate a graph with
similar properties to the ones in the LOD cloud.

3. Evolutionary and qualitative aspects of graph topologies. Data quality
assessments of knowledge bases are an evolving research area. A central aspect of
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data quality is the congruent use of the vocabulary in a knowledge base regarding the
schema definition (Bobed et al., 2020). As vocabulary usage significantly impacts a
graph topology’s shape, we plan to align our graph measures with quality metrics for
vocabulary usage obtained with other tools. This will allow to study graph measure
importance from a different angle and can shed light on possible correlations, which
can be broken down to the level of knowledge domains. Consequently, we will be
able to derive implications for our measures and underline or revise our statements
about measure importance in the studied categories.

We also plan to study evolutionary aspects in terms of structural growth of different
versions of a knowledge base. Our framework offers a platform to monitor and
investigate the evolution of knowledge base inter-linkage, structural growth, and
the assessment of qualitative metrics. These are primarily data-driven tasks and
have become a continuous challenge for researchers (Bobed et al., 2020; Rashid
et al., 2019). Ongoing work is to investigate changes to the topology of a large
co-citation graph from Springer Nature.14

5.2.3 Application-Specific RDF Benchmarking

1. A data store recommender. Query runtime estimation is a key feature of query
evaluators that reside within a data store. Recent efforts focus on training predictive
models to predict the performance of SPARQL queries (Hasan, 2014; Zhang et al.,
2016). Such approaches aim to represent a SPARQL query as a feature vector
(respecting the query characteristics) and to employ known query runtimes from
query logs.

Besides the effect of data volume, query runtime performance is affected mainly by
the data model and the index structures created by data storage solutions. Thus,
we propose to also employ advanced characteristics of the data (i.e., the graph
topology) to improve prediction models for query runtimes. Building on this, we
aim to create a data store recommender that predicts a suitable data store based
on a given dataset and a group of queries (Zloch, 2016). Such a recommender is
beneficial for users (researchers, developers, database engineers) who need to choose
one data storage solution prior to the storage of data. A comprehensive training
dataset can be built from real-world queries generated with the approach described
in Section 4.2. Accordingly, query runtimes can be evaluated with the proposed
framework described in Section 4.3.

2. General-purpose query groups. In the experiment described in Section 4.3,
we used data, queries, and business use cases from one real-world application,
and distributed queries across the groups Navigation, Statistics, Validation, and

14SN SciGraph, a Linked Open Data platform for the scholarly domain. https://www.

springernature.com/gp/researchers/scigraph. Last accessed on October 26, 2020.
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User Query. These use cases are specific to the application data we used for
the experiment. Although queries are highly individual to an application, and to
the data model used, investigating a general-purpose mechanism for query group
building in future work may be beneficial. To this end, one might investigate
clustering mechanisms on query features, for example. With regard to the above-
mentioned data store recommender, it might be interesting to investigate how
such general-purpose query groups perform, and whether the obtained results are
comparable with state-of-the-art benchmark results.

3. Dataset of exemplary queries. Regarding the query generation feature of our
framework, we want to offer a dataset of exemplary queries for the purpose of
providing a systematic benchmarking dataset based on real-world RDF datasets
and real queries. The generated queries would be tailored to a large number of real-
world RDF datasets and made available to the research community. Such a dataset
would be beneficial for database engineers and data storage designers to validate and
benchmark new solutions, for instance. Further, it would leverage the development
of new solutions in the context of data stores, such as the above-mentioned data
store recommender.

The creation of such a benchmarking dataset requires to invoke our query generation
module on some RDF datasets, preferably all of the provided 280 datasets that have
already been acquired, prepared, and instantiated as graph objects from the LOD
Cloud (see Section 2.1).

4. Extension of query templates. So far, our framework offers query templates
provided by the WatDiv benchmark suite (Aluç et al., 2014a), as it is one of the
state-of-the-art benchmarking frameworks supporting query types and structures
found in real-world queries. Thus, all queries generated are based on these query
templates. In the future, we plan to implement further templates from recent
investigations on the patterns found in real-world SPARQL queries, such as those
found by Saleem et al. (2015a). In addition, to extend the diversity of the queries
supported by our framework, we want to add support for other SPARQL query
types (e.g., ASK-, CONSTRUCT) as well as more advanced SPARQL query features
(e.g., OPTIONAL-, UNION, and FILTER-clauses).

Knowledge graphs have fundamentally changed the way in which we represent and
browse human knowledge. Research on their shape and topological properties has
great potential to provide new insights and to improve existing solutions in related
research areas and in industry. We hope that we have motivated other researchers and
students to engage with the topic, too.
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