
 

 

 

 

 

Natural and synthetic metabolism of plant 
photorespiration 

 

Inaugural-Dissertation 

 

zur  

Erlangung des Doktorgrades 

der Mathematisch-Naturwissenschaftlichen Fakultät  

der Heinrich-Heine-Universität Düsseldorf 

 

vorgelegt von  

Marc-Sven Röll  

aus Wuppertal 

 

Düsseldorf, Oktober 2020 

 



 

aus dem 
Institut für Biochemie der Pflanzen 
der Heinrich-Heine-Universität Düsseldorf  

 

 

 

 

 

 

 

Gedruckt mit der Genehmigung  
der Mathematisch-Naturwissenschaftlichen Fakultät  
der Heinrich-Heine-Universität Düsseldorf  

 

 

Referent: Prof. Dr. Andreas P.M. Weber  

Korreferent: Prof. Dr. Matias D. Zurbriggen  

Tag der mündlichen Prüfung:  

 
 

Marc-Sven Röll
18. Dezember 2020



 

Eidesstattliche Erklärung  

Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne 
unzulässige fremde Hilfe unter Beachtung der „Grundsätze zur Sicherung guter 
wissenschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf“ erstellt worden 
ist.  

Die Dissertation habe ich in der vorgelegten oder in ähnlicher Form noch bei keiner 
anderen Institution eingereicht.  

Ich habe bisher keine erfolglosen Promotionsversuche unternommen.  

 

Düsseldorf, den  

 

_____________________________________ 
Marc-Sven Röll 

 

 

Statement of authorship 

I hereby certify that this dissertation is the result of my own work. No other person’s work 
has been used without due acknowledgement. This dissertation has not been submitted in 
the same or similar form to other institutions. I have not previously failed a doctoral 
examination procedure.  

 

 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“To Winfried Noack” 
 

 
 
 
 
 
 
 



 

Summary 
The basis to meet the global food demands of a growing world population is the 
photosynthetic conversion of carbon dioxide into biomass. The enzyme ribulose-1,5-
bisphosphate carboxylase/oxygenase (Rubisco) accounts for the majority of all carbon 
fixing reactions on earth but remains error prone. On average, one of four Rubisco 
catalyzed reactions are oxygenations, that necessitate photorespiration to retain the 
photosynthetically fixed carbon. However, photorespiration recycles only 75% of carbon – 
a matter that diminishes plant yield by up to 30%. Synthetic biochemical bypasses hold 
the potential to facilitate efficient photorespiration by conserving carbon and nitrogen at 
reduced energetic costs. Deriving from this, elucidating the natural metabolic interactions 
profits the fundamental understanding and future engineering on photorespiration.  

The aim of this work was to understand the consequences on plant growth and metabolism 
of two synthetic bypasses that avoid the carbon-, nitrogen- and energy losses of canonical 
photorespiration. We established the β-hydroxyaspartate cycle in peroxisomes of the 
model plant Arabidopsis thaliana (Manuscript I). The pathway itself operates at lower 
energetic costs, without carbon or nitrogen losses and alters the carbon stoichiometry of 
photorespiration by producing a C4 acid instead of a C3 acid. We demonstrated 
peroxisomal targeting and enzyme functionality of all four enzymes. Further the 
functionality of the cycle as photorespiratory bypass was addressed. So far, the 
unconstraint conversion of the cycle’s product limited a positive growth effects but can be 
overcome via synthetic C4 photosynthesis. In an alternative approach to frame efficient 
photorespiration, we implemented the reductive glycine pathway in Arabidopsis thaliana 
to bypass the enzyme of photorespiratory carbon dioxide release by engineering a cytosolic 
one carbon unit sink (Manuscript II). We identified the metabolic bottlenecks and 
addressed these by a developed photosynthetic tissue specific genome editing tool to 
optimize flux and eliminate the carbon dioxide releasing reactions of photorespiration. 
Within this work, we characterized the mitochondrial formate dehydrogenase and propose 
a role as regulator of the one carbon shunt that connects mitochondrial and cytosolic one 
carbon metabolism (Manuscript III). The distribution of one carbon units from the 
mitochondria depending on cytosolic needs is a previously unknown mechanism in plants 
and unravels part of the interaction between photorespiration and one carbon metabolism.  

In summary, the used synthetic biochemical pathways and the characterization of formate 
dehydrogenase contribute to the understanding natural metabolic interactions and future 
engineering approaches of plant photorespiration.  



Zusammenfassung 
Photosynthese ist ein fundamentaler Prozess zur Sicherung des globalen Nahrungsbedarf 
einer wachsenden Weltbevölkerung. Das Enzym Ribulose-1,5-bisphosphat 
Carboxylase/Oxygenase (Rubisco) ist verantwortlich für den Großteil der Kohlenstoff-
fixierenden Reaktionen der Erde, aber ist gleichzeitig fehleranfällig. Im Mittel ist jede 
vierte durch Rubisco katalysierte Reaktion eine Oxygenierung, die den Stoffwechselweg 
der Photorespiration erfordert um den bereits fixierten Kohlenstoff wieder verfügbar zu 
machen. Bei der Photorespiration – auch „Lichtatmung“ genannt – können nur 75% des 
Kohlenstoffs wieder nutzbar gemacht werden. Dieser Aspekt führt zu einer Verringerung 
des pflanzlichen Wachstums um bis zu 30%. Synthetische biochemische Stoffwechselwege 
liefern Lösungsansätze für eine effizientere Photorespiration durch die Konservierung von 
Kohlen- und Stickstoff bei reduzierten Energiekosten. Dadurch gewonnene Kenntnisse 
können genutzt werden um zum einen die metabolischen Wechselwirkungen der 
Photorespiration zu verstehen und um zukünftige Verbesserungsansätze zu vereinfachen. 

Ziel dieser Arbeit war es, den grundlegenden Metabolismus der Photorespiration zu 
verändern und die Folgen auf den pflanzlichen primären Stoffwechsel und das 
Pflanzenwachstum zu untersuchen. Im Zuge dessen wurden die Effekte von zwei 
synthetischen Stoffwechselwegen in der Modellpflanze Arabidopsis thaliana analysiert. 
Der Einbau des β-Hydroxyaspartat Zyklus in pflanzliche Peroxisomen führt zu einer 
effizienteren Stickstoffnutzung und verändert die grundlegende Stöchiometrie der 
pflanzlichen Photorespiration durch die Bildung einer C4-Säure anstelle einer C3-Säure 
(Manuskript I). Als Teil dessen wurde die peroxisomale Lokalisierung der vier beteiligten 
Enzyme sowie deren Aktivität in der Pflanze validiert. Außerdem wurden die 
metabolischen Konsequenzen des Zyklus auf den pflanzlichen Primärstoffwechsel 
analysiert. Zum jetzigen Zeitpunkt, limitiert die Verwertung der produzierten C4-Säure 
in verschiedenen Stoffwechselwegen einen Wachstumszuwachs, jedoch kann dies über 
einen synthetischen C4-Photosynthese Zyklus adressiert werden. In einem alternativen 
Ansatz, wurde ein synthetischer Stoffwechselweg genutzt um eine zytosolische 
Alternative für die Bereitstellung von Einkohlenstoff Molekülen zu erzeugen, was eine 
Umgehung des Kohlenstoffdioxid freisetzenden Enzyms der Photorespiration ermöglicht 
(Manuskript II). Basierend auf der Analyse des primären Stoffwechsels konnten die 
limitierenden Schritte des synthetischen Stoffwechselweges identifiziert werden. Durch 
ein entwickeltes CRISPR/Cas9 System zur Erzeugung von Mutationen im 
photosynthetisch-aktiven Gewebe wurden die limitierenden Schritte addressiert und 
gleichzeitig die Kohlenstoffdioxid freisetzenden Reaktionen der pflanzlichen 



Photorespiration eliminiert. Als Teil dieser Arbeit, wurde die mitochondriale Formiat-

Dehydrogenase charakterisiert (Manuskript III). Nach momentanem Stand 

hypothetisieren wir die Rolle der Formiat-Dehydrogenase als regulierendes Enzym des 

metabolischen Flusses von Einkohlenstoffverbindungen zwischen dem Mitochondrium 

und dem Zytosol.  

Zusammenfassend, tragen die hier verwendeten synthetischen biochemischen 

Stoffwechselwege und die Untersuchung der Formiat-Dehydrogenase zum grundlegenden 

Verständnis der Rolle der Photorespiration im pflanzlichen Metabolismus bei und 

ermöglichen weiterführende Verbesserungsansätze.  
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Preface 

Motivation and research aim  

Photosynthesis is an efficient – probably the most efficient – natural strategy to convert 

light energy into biomass by sequestering atmospheric carbon dioxide. Error prone 

photosynthesis by the primary carbon dioxide fixing enzyme ribulose-1,5-bisphoshate 

carboxylase/oxygenase (Rubisco) is caused by the acceptance of oxygen. Photorespiration 

detoxifies the produced molecule and recycles the containing carbon. However, high 

energetic costs and the release of carbon dioxide by photorespiration negatively affect 

plant biomass yield. Further, rising temperatures and severe drought caused by climate 

change favor Rubisco oxygenation/photorespiration and accelerate photorespiratory 

drawbacks. The aim of this work is to design, construct and test synthetic metabolic 

pathways that enable carbon-neutral, energy efficient photorespiration in plants. 

Analyzing the consequences of such a metabolic redesign will contribute to understand 

the integration of photorespiration in the cellular metabolic network.  

Outline 

This dissertation consists of three chapters and includes three manuscripts that cover the 

experimental work and results obtained during my doctorate. In the following section, I 

will give a brief introduction on oxygenic photosynthesis and a detailed description of 

photorespiration with an emphasize on the underlying metabolic nature. In this part, I 

will explicitly highlight the role of one carbon metabolism in plants and finally give a 

summary on engineering strategies to improve photosynthesis with the focus the 

photosynthetic carbon reactions.  

The second chapter contains three scientific manuscripts envisaged to be published in 

international peer-review journals. My contribution to the respective manuscript is 

indicated on the front page of each manuscript. Manuscript I and II describe engineering 

strategies of two synthetic biochemical bypasses of photorespiratory metabolism in 

Arabidopsis thaliana. In Manuscript I, the metabolic effects of the peroxisomal β-
hydroxyaspartate cycle as photorespiratory bypass are analyzed and a perspective on this 

bypass as first engineering step of a synthetic C4 photosynthetic cycle is given. Part of this 

work is a pending EU patent application and a brief summary of the patent including the 

made claims is added. In Manuscript II, a one carbon based metabolic engineering strategy 

is employed to bypass the mitochondrial glycine decarboxylase complex, the carbon dioxide 

releasing enzyme of canonical photorespiration. In a follow-up story described in 
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Manuscript III, we propose that mitochondrial formate dehydrogenase regulates the one 
carbon shunt that connects mitochondrial and cytosolic one carbon metabolism. The final 
chapter of this dissertation comprises two review articles published in international peer-
review journals. The review article, “Mechanistic understanding of photorespiration paves 
the way to a new green revolution” (in New Phytologist), summarizes the biochemical 
fundamentals of photorespiration and validated engineering approaches. In the review 
article, “The impact of synthetic biology for future agriculture and nutrition” (in Current 

Opinion in Biotechnology), the multifaceted contribution of synthetic biology to plant 
biology is pictured with a focus on agriculture and nutrition. Finally, three News and 
Views articles are included, that are published in the international peer-review journal 
Plant Physiology, and address the topics photorespiration, terpene biosynthesis in 
cannabis and nanoparticle mediated plant transformation. 
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Introduction 

Oxygenic photosynthesis 

Oxygenic photosynthesis provides the basis for urban life by converting light energy into 
chemical energy stored as reduced carbon (Sharkey, 2020). Historically, photosynthesis is 
divided into the light-dependent reactions and the light-independent carbon reactions 
(Cardona et al., 2018). The light-dependent reactions produce chemical energy as 
adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide phosphate 
(NADPH). Chlorophyll molecules in the photosystems I and II are excited by light energy 
and electrons are transferred to NADP+ via several electron carriers (Kramer et al., 2004). 
The release of protons from the oxygen evolving complex, by splitting water to produce 
oxygen, and proton shuttling across the thylakoid membrane generates a proton motif 
force that drives ATP synthesis by chemiosmosis (Mitchell, 1961; Kramer et al., 2004). 
Both, the produced ATP and NADPH are required for the photosynthetic carbon 
assimilation to convert carbon dioxide (CO2) into organic molecules via the Calvin-Benson-
Bassham cycle (CBBC; Bassham et al., 1954; Benson, 2010; Sharkey, 2019). A crucial role 
in the CBBC states ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) - the most 
abundant enzyme on earth - that carries out the carboxylation of the primary CO2 acceptor 
molecule ribulose 1,5-bisphosphate (RuBP; Stitt et al., 2010; Bar-On and Milo, 2019). A 
single carboxylation event yields two molecules of 3-phosphoglycerate (3-PGA), the stable 
C3 intermediate of CO2 fixation, that defines the photosynthesis type as C3 
photosynthesis. The following stepwise reduction of 3-PGA to triosephosphate (TP) 
consumes the majority of ATP and NADPH produced by the light reactions. Overall within 
the CBBC, three CO2 molecules are fixed producing six TPs at the cost of nine ATP and 
six NADPH (Stitt et al., 2010; Sharkey, 2020). Whereas, one TP molecule can be used for 
cellular anabolism, five TPs are required to recycle the primary acceptor molecule RuBP 
via a series of isomerization-, aldol-, phosphorylation- and dephosphorylation reactions 
(Stitt et al., 2010).  
The early evolution in an oxygen (O2) depleted atmosphere favored Rubisco’s carboxylation 
reaction but over time, oxygenic photosynthesis accelerated the atmospheric O2/CO2 ratio 
(Schlueter and Weber, 2020). Under current atmospheric conditions 25% of Rubisco’s 
catalyzed reactions are oxygenations that cause the high metabolic flux in a process, called 
photorespiration (Walker et al., 2016).  
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Photorespiration 

In 1920, Otto Warburg discovered that oxygen inhibits photosynthesis in the unicellular 
green alga Chlorella sp. (Warburg, 1920; Nickelsen, 2007). Historically known as the 
“green Warburg effect”, photorespiration – often called C2 cycle or oxidative 
photosynthetic carbon cycle – describes the light-dependent CO2-release of photosynthetic 
organisms (Busch, 2020; Kutschera et al., 2020). After Otto Warburg’s observation, it took 
half a century to unravel the metabolic pathway and the biochemical reasons of 
photorespiration (Rabson et al., 1962). The ability of Rubisco to fix oxygen instead of CO2 
causes the oxygenation of the substrate RuBP and yields 2-phosphoglycolate (2-PG) and 
3-PGA (Bowes et al., 1971). The produced 2-PG by RuBP oxygenation inhibits enzymes of 
the CBBC (triose phosphate isomerase and sedoheptulose-1,7-bisphosphatase) and starch 
biosynthesis (phosphofructokinase) and is therefore rapidly metabolized by 
photorespiration (Anderson, 1971; Kelly and Latzko, 1976; Flügel et al., 2017). In C3 
plants, ~25% of Rubisco catalyzed reactions are oxygenations, quantitatively depending 
on the CO2/O2 ratio around the active site, the kinetic properties of the enzyme and 
temperature (Eisenhut et al., 2019). The net carbon equation of photorespiration defines 
the conversion of two 2-PG molecules into one 3-PGA and CO2, thereby recycling 75% of 
previously fixed carbon (Weber and Bar-Even, 2019). In addition, nitrogen reassimilation 
and chemical energy consumption (3.5 ATP and two NADPH per 3-PGA molecule), reason 
the hypothesis of photorespiration as a ‘wasteful’ process that reduces plant yield by 
approximately 30% (Walker et al., 2016). Opposing the consequences of rising atmospheric 
CO2 concentration and changing environmental conditions, e.g. drought and rising 
temperature, on Rubisco, likely favors RuBP oxygenation and following photorespiration 
(Ehlers et al., 2015; Walker et al., 2016). Given this, circumventing the accelerated 
drawbacks of increased photorespiration on plant yield justify the urgent need to engineer 
and improve the photorespiratory pathway in an efficient manner (Walker et al., 2016; 
Simkin et al., 2019; Weber and Bar-Even, 2019). However, the multifaceted role of 
photorespiration as electron sink under environmental stress conditions and the metabolic 
interactions with nitrogen-, sulfur-, one carbon (C1) metabolism and the tricarboxylic acid 
cycle (TCA cycle) are often overlooked, marginally understood and their consequences on 
plant growth in changing environmental conditions are not predictable (Huang et al., 
2015; Eisenhut et al., 2019; Busch, 2020).  
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The biochemistry of photorespiration  

Photorespiration is a highly compartmentalized metabolic processes and includes 
enzymatic steps carried out in the chloroplast, peroxisome, mitochondria and the cytosol 
(Fig. 1). In total, the core cycle includes nine enzymatic steps and requires multiple solute 
carriers to shuttle intermediates and cofactors across organellar membranes. So far, the 
two plastidial carriers of the core cycle are biochemically and physiologically characterized 
(Pick et al., 2013; South et al., 2017). However, the definition of a ‘photorespiratory’ 
phenotype, that is rescued under non-photorespiratory conditions in CO2 enriched air, led 
to the identification of genes and enzymes involved in photorespiration (Somerville and 
Ogren, 1981; Somerville, 2001; a list of photorespiration associated genes is given in 
Eisenhut et al., 2019).  
In the chloroplast RuBP oxygenation produces 2-phosphoglycolate that is 
dephosphorylated by phosphoglycolate phosphatase (PGLP) and yields glycolate 
(Schwarte and Bauwe, 2007). Glycolate is exported from the chloroplast by the plastid 
glycolate/glycerate transporter1 (PLGG1) and the bile acid sodium symporter 6 (BASS6, 
Pick et al., 2013; South et al., 2017). Although the mechanism of glycolate import into the 
peroxisome remains unknown, in the peroxisome glycolate is oxidized to glyoxylate by 
glycolate oxidase that produces hydrogen peroxide as byproduct (Dellero et al., 2016). 
Catalase directly detoxifies hydrogen peroxide into water (Queval et al., 2007). Multiple 
nitrogen donors serve for glyoxylate transamination to produce glycine (Fig. 1). Glutamate 
by glutamate:glyoxylate transaminase (GGAT) and serine by serine:glyoxylate 
aminotransferase (SGAT) are considered the major nitrogen donors, supported by the 
photorespiratory and lethal phenotypes of loss-of-function mutants respectively (Liepman 
and Olsen, 2001; Dellero et al., 2015; Modde et al., 2017). Further, alanine is hypothesized 
to play a minor role in maintaining peroxisomal transamination of glyoxylate (Liepman 
and Olsen, 2001). The involved transporters to export glycine from the peroxisome and 
into mitochondria are unknown. In mitochondria glycine is converted into serine by the 
joint action of the multienzyme complex glycine decarboxylase (GDC) and serine 
hydroxymethyltransferase 1 (SHM1; Douce et al., 2001; Bauwe, 2003; Voll et al., 2006; 
Engel et al., 2007; Timm et al., 2012; Timm et al., 2015; Timm et al., 2017). As source of 
photorespiratory CO2 and NH3 release the GDC has been the subject of intensive studies 
to understand the biochemical, structural and physiological details. In particular the 
physiological role of the GDC remains to be fully understood but is limited by seedling 
lethality of Arabidopsis thaliana (Arabidopsis) loss-of-function mutants (Engel et al., 
2007; Timm et al., 2017). In order to prevent the unhampered loss of photorespired CO2, 



  Introduction 

 4 

plants position their chloroplasts at the mesophyll periphery to reassimilate ~30 % of the 
mitochondrial released CO2 by the CBBC (Busch et al., 2013).  
Structurally, the GDC consists of four protein subunits, the P- (GLDP), T- (GLDT), H- 
(GLDH) and L-protein (GLDL), that are arranged in a stoichiometry of 1L2-4P2-8T and 20 
or 26 GLDH proteins in Arabidopsis and pea respectively (Douce et al., 2001; Wittmiß et 
al., 2020). The pyridoxal-dependent GLDP catalyzes the reductive methylamination of 
glycine, releasing the CO2 and transferring the reduced methylamine to the GLDH protein 
that acts as mobile element between the subunits of the complex (Douce et al., 2001). The 
methylamine is deaminated by the T-protein in a tetrahydrofolate (THF)-dependent 
process to produce the C1-intermediate, 5,10-methylene-THF. The electron transfer from 
GLDT via the GLDH finally produces NADH by the GLDL and recycles the H-protein 
(Douce et al., 2001). A second glycine molecule is then condensed with 5,10-methylene-
THF to produce serine by SHM1 (Voll et al., 2006). The following deamination of serine by 
SGAT produces hydroxypyruvate (Fig. 1). The peroxisomal reduction of hydroxypyruvate 
by NAD-dependent hydroxypyruvate reductase 1 (HPR1) is the preferred route of 
glycerate production (Timm et al., 2011). However, the cytosolic (HPR2) and chloroplastic 
isoform (HPR3) serve as peroxisomal bypasses of the redox-dependent step of 
photorespiration (Timm et al., 2008; Timm et al., 2011). Glycerate is imported into the 
chloroplast by PLGG1 and phosphorylated by glycerate kinase under ATP-consumption to 
produce 3-PGA that enters the CBBC (Boldt et al., 2005; Pick et al., 2013).  
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Fig. 1: Photorespiratory metabolism and the interaction with cellular metabolism. Photorespiratory 
metabolism in Arabidopsis thaliana. Interdependency of photorespiration (PR) with nitrogen (N), one carbon 
(C1), and sulfur (S) metabolism. Abbreviations: PGLP1, phosphoglycolate phosphatase 1; GOX1, glycolate 
oxidase 1; GOX2, glycolate oxidase 2; CAT2, catalase 2; GGAT1, glutamate:glyoxylate aminotransferase 1; 
GGAT2, glutamate:glyoxylate aminotransferase 2; GDC, glycine decarboxylase complex; SHM1, serine 
hydroxymethyltransferase 1; SGAT, serine:glyoxylate aminotransferase; HPR1, hydroxypyruvate reductase 
1; HPR2, hydroxypyruvate reductase 2; HPR3, hydroxypyruvate reductase 3, GLYK, glycerate kinase, GS2, 
glutamine synthetase 2; GOGAT, glutamine:oxoglutarate aminotransferase; THF, tetrahydrofolate; 
MTHFD2, Bifunctional 5,10-methylene-THF dehydrogenase/5,10-methenyl-THF cyclohydrolase; 5-FCL, 5-
formyl-THF cycloligase; FDF, 10-formyl deformylase; FDH, formate dehydrogenase; SAT3, serine o-
acetyltransferase; OAS-TL C, O-acetylserine lyase isoform C. Figure adapted from Eisenhut et al., 2019.  

The integration of photorespiration in cellular metabolism 

In C3 plants photorespiration is an integral part of cellular metabolism and interacts with 
several auxiliary metabolic pathways (Fig. 1). Whereas the uptake of nitrogen depends on 
overall photorespiratory flux, the mitochondrial NH3 release connects photorespiration 
and nitrogen reassimilation (Bloom, 2015). The chloroplastic ATP- and reducing power 
consuming glutamine synthetase/ferredoxin-dependent glutamine:oxoglutarate 
aminotransferase system (GS2/Fd-GOGAT) reassimilates nitrogen, released by glycine 
oxidation (Coschigano et al., 1998). Initially, glutamate and ammonia are converted into 
glutamine by GS2 and the Fd-GOGAT mediated transamination produces two glutamate 
molecules (Fig. 1). One glutamate is reused by GS2 and the second glutamate is exported 
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from the chloroplast (Fig. 1). In sum, the reassimilation of photorespiratory released 
nitrogen to produce glutamate consumes one ATP and two reduced ferredoxins per two 2-
PG molecules (Weber and Bar-Even, 2019). Two chloroplastic transport proteins are 
essential for nitrogen reassimilation. The 2-oxoglutarate/glutamate transporter DiT1 
imports 2-oxoglutarate required for glutamate production by Fd-GOGAT (Kinoshita et al., 
2011). Glutamate is exported from the chloroplast by the glutamate/malate transporter 
DiT2 and serves as amino group donor for the peroxisomal transamination of glyoxylate 
into glycine by GGAT1, that produces 2-oxoglutrate (Fig. 1; Renné et al., 2003; Dellero et 
al., 2015). 
The metabolism of 2-oxoglutarate connects photorespiration with the TCA cycle and the 
gamma-aminobutyric acid (GABA) shunt (see Obata et al., 2016 and references therein). 
The positive correlation between photorespiration- and day respiration rates indicates 
that mitochondrial metabolism recycles carbon backbones for photorespiratory nitrogen 
reassimilation and maintains the redox homeostasis in the mitochondrial matrix 
(Tcherkez et al., 2012). In order to avoid overreduction of the mitochondrial matrix by high 
rates of glycine oxidation, the produced NADH is oxidized by the respiratory chain. 
Thereby, the cytosolic ATP/ADP ratio is increased and the mitochondrial redox 
homeostasis is maintained (Gardeström and Wigge, 1988; Wigge et al., 1993). Further, the 
export of reducing power from the mitochondria by the uncoupling protein 1 and 2, 
biochemically characterized as solute carriers for aspartate, glutamate and 
dicarboxylates, supplies the mitochondrial/cytosolic redox shuttles and 
glutamate:oxaloacetate transaminase reactions with their respective substrates 
(Sweetlove et al., 2006; Monné et al., 2018; Eisenhut et al., 2019). Malate valves play a 
pivotal role in maintaining organellar NAD(P)/NAD(P)H ratios (Selinski and Scheibe, 
2019). The peroxisomal reduction of hydroxypyruvate by HPR1 produces NAD+ that needs 
to be reduced to maintain the high photorespiratory flux (Fig. 1). The peroxisomal malate 
dehydrogenase is only marginally involved in this process, reasoned by the lack of the 
photorespiratory phenotype in the Arabidopsis double mutant (Cousins et al., 2008). 
Instead, the regeneration of NADH involves the mitochondrial malate dehydrogenase to 
return reducing power generated by glycine oxidation to the peroxisome (Tomaz et al., 
2010; Lindén et al., 2016; Shameer et al., 2019).   
Finally, photorespiratory derived serine constitutes the largest part of the soluble pool in 
an illuminated leaf (Li et al., 2003) and the conversion of mitochondrial serine for cysteine 
and glutathione biosynthesis connects photorespiration and sulfur metabolism (Samuilov 
et al., 2018).  
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The role of one carbon metabolism in photorespiration  

The dependency of the GDC/SHM1 reactions on THF and 5,10-methylene-THF 
respectively, connect photorespiration and one carbon (C1) metabolism (Fig. 1; Eisenhut 
et al., 2019). Within mitochondria, 5,10-methylene-THF produced by glycine oxidation 
enters the THF cycle, as alternate flux to serine biosynthesis by SHM (Fig. 1). The 
stepwise oxidation of 5,10-methylene-THF finally releases THF and produces formate, 
oxidized to CO2 by NAD-dependent formate dehydrogenase (Fig. 1). THF regeneration by 
the THF-cycle is an integral to sustain mitochondrial photorespiratory flux, shown by the 
photorespiratory phenotype of the 10-formyl-deformylase double knockout mutant (Fig. 1; 
Collakova et al., 2008). The second catalytical reaction of SHM with 5,10-methenyl-THF 
produces 5-formyl-THF, a stable storage form of C1 THF-intermediates (Goyer et al., 
2005). The recycling of 5-formyl-THF by 5-formyl-THF cycloligase is an essential 
metabolic repair mechanism to prevent the 5-formyl-THF dependent inhibition of SHM 
(Goyer et al., 2005).  

The biochemistry of one carbon metabolism 

C1 metabolism is essential to all living organisms (Hanson and Roje, 2001). In eukaryotes 
the transfer of C1 units relies on derivatives of folic acid (folates) and C1 THF-
intermediates (C1 folates). Further, S-adenosyl-L-methionine (SAM) serves as universal 
donor for cellular methylation reactions (Hanson et al., 2000). The enzymatic transfer of 
C1 units contributes to glycine/serine metabolism, methionine-, pantothenate-, purine- 
and thymidylate biosynthesis and organellar protein biosynthesis (Hanson et al., 2000; 
Hanson and Roje, 2001; Hanson and Gregory, 2011). Further methylated molecules, like 
lignin, alkaloids and betaines depend on C1 metabolism as well as chlorophyll biosynthesis 
(Hanson and Roje, 2001; Van Wilder et al., 2009). The fundamental function in cellular 
metabolism prevents to study form and function of C1 metabolism by classical 
biochemistry and genetic approaches (Hanson and Roje, 2001). Lethal loss-of-function 
mutants, intermediate instability and a high degree of genetic redundancy still limit the 
understanding of C1 metabolism in plants (Hanson and Roje, 2001). 
The central dogma of C1 metabolism states the reversible conversion of formate into 5,10-
methylene-THF and in Arabidopsis the necessary enzymes are predicted to exists in the 
cytosol, mitochondria and plastid (Fig. 2; Hanson et al., 2000). Formate is converted into 
10-formyl-THF by 10-formyl-THF synthetase (FTHFS). The produced 10-formyl-THF is 
used for de novo purine biosynthesis by glycinamide ribonucleotide transformylase and 5-
aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine monophosphate 
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cyclohydrolase to catalyze the attachment of the formyl group (Zrenner et al., 2006). 
Alternatively, 10-formyl-THF is cyclized to 5,10-methenyl-THF and subsequently reduced 
to 5,10-methylene-THF by the bifunctional enzyme 5,10-methenyl cycloligase/5,10-
methylen-THF reductase (MTHFD; Hanson and Roje, 2001). Whereas in plants joint 
FTHFS and bifunctional MTHFD activity mediates formate to 5,10-methylene-THF 
conversion, heterotrophic eukaryotes rely on a trifunctional C1-THF synthase (Song and 
Rabinowitz, 1993).  
The metabolization in several pathways defines the fate of 5,10-methylene-THF (Fig. 2). 
In addition to the discussed role in glycine/serine metabolism, methionine biosynthesis is 
one fate of 5,10-methylene-THF by reduction to 5-methyl-THF and C1 unit transfer to 
homocysteine (Fig. 2; Ravanel et al., 1998; Ravanel et al., 2004). Methionine is either 
incorporated into proteins or used in the cytosolic methyl-cycle to produce SAM for cellular 
methylation reactions (Sauter et al., 2013). Whereas DNA methylation strongly depends 
on cytosolic C1 metabolism, plastids import SAM as methyl-group donor by the SAMT1 
transporter (Bouvier et al., 2006; Groth et al., 2016).  
Finally, 5,10-methylene-THF is used for pantothenate- and thymidylate biosynthesis 
(Hanson and Roje, 2001). The bifunctional dihydrofolate reductase-thymidylate synthase 
converts 5,10-methylene-THF into THF and produces deoxythymidine monophosphate 
(Gorelova et al., 2017). The NADP-dependency of this process contributes to the cellular 
redox state and maintains folate integrity (Gorelova et al., 2017).  
THF is the essential co-factor of eukaryotic C1 metabolism (Hanson and Gregory, 2011). 
Whereas mammals depend on the dietary supply of THF (vitamin B12), plants synthesize 
THF de novo in mitochondria (Hanson and Gregory, 2011). In order to stabilize the THF-
pool and increase the affinity of folate-depending enzymes, cellular folates are mono- or 
polyglutamylated (Mehrshahi et al., 2010). In Arabidopsis three folylpolyglutamate 
synthetases (FPGS) with redundant compartmentalization across mitochondria, plastids 
and cytosol, maintain the polyglutamylated folate pools (Mehrshahi et al., 2010). The 
dominant mitochondrial isoform FPGS2 is essential for plant viability, in line with 
mitochondrial THF de novo biosynthesis (Mehrshahi et al., 2010).  
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Fig. 2: One carbon metabolism in plants. Schematic representation of one carbon metabolism in 
Arabidopsis thaliana. Abbreviations: THF, tetrahydrofolate; Hyc, homocysteine; SAM, S-adenosyl-L-
methionine; AdoHyc, S-adenosyl-L-homocysteine; GDC, glycine decarboxylase complex; SHM, serine 
hydroxymethyltransferase; MTHFD, Bifunctional 5,10-methylene-THF dehydrogenase/5,10-methenyl-THF 
cyclohydrolase; FDF, 10-formyl deformylase; FDH, formate dehydrogenase; DHFR-TS1, bifunctional 
dihydrofolate reductase-thymidylate synthase; MTHFR, methylene-THF reductase; MS, methionine 
synthase; AdoHycH, S-adenosyl-L-homocysteine hydrolase; SAM-MT, S-adenosyl-L-methionine dependent 
methyltransferase; SAMT1, S-adenosyl-L-methionine transporter 1; FBT1, folate-biopterin transporter 1; 
FOL1T, folate transporter 1.  

Open questions on one carbon metabolism in plants 

Since the transport of C1 folates across biological membranes is unlikely, the distribution 
of folates and THF within the plant cell is a pressing question (Cybulski and Fisher, 1981). 
So far, the transporter for plastidial THF import was identified, but the mitochondrial 
counterpart remains be discovered (Bedhomme et al., 2005; Hanson and Gregory, 2011). 
If the mitochondrial carrier A BOUT DE SOUFFLE is directly involved in C1 metabolism 
to sustain mitochondrial glutamate levels and the polyglutamylated THF pool to drive the 
photorespiratory GDC/SHM1 reactions remains to be proven (Eisenhut et al., 2013; 
Porcelli et al., 2018). Further, the role of vacuolar THF transport and polyglutamyl-tail 
cleavage by ɣ-glutamyl hydrolase in maintaining cellular folate homeostasis remains to be 
fully understood (Raichaudhuri et al., 2009; Akhtar et al., 2010).   
In addition, the origin, cellular/organellar pool sizes and the role of formate in C1 
metabolism need to be understood (Igamberdiev et al., 1999). Although, formate is used 
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as a C1 source for 5,10-methylene-THF production, the existence of SHM isoforms in the 
cytosol, mitochondria, plastid and nucleus, remain the possibility of 5,10-methylene-THF 
production by serine catabolism (Zhang et al., 2010). In mammalian cells, the 
serine/formate shuttle between cellular compartments adjusts C1 metabolic fluxes 
according to the redox state (Ducker et al., 2016; Ducker and Rabinowitz, 2017; Morscher 
et al., 2018; Zheng et al., 2018). In comparison in plant cells, mitochondria are also 
considered the hub of cellular C1 metabolism, an hypothesis reasoned by lethality of 
gldp1gldp2, gldt and shm1shm2 loss-of-function mutants (Engel et al., 2007; Engel et al., 
2011; Timm et al., 2017). However, the underlying C1 fluxes in plants likely differ between 
photosynthesizing and heterotrophic tissue and one could only assume a serine/formate 
shuttle like in mammalian cells (Zhang et al., 2010; Engel et al., 2011; Nunes-Nesi et al., 
2014, see for details Manuscript III in this thesis).  

Plant synthetic biology  

The rising field of plant synthetic biology (SynBio) will contribute to fundamental and 
applied plant science (Wurtzel et al., 2019; Patron, 2020; Roell and Zurbriggen, 2020). 
Various definitions of SynBio share the common syntax of applying engineering principles 
to a biological system at the DNA level (Arkin et al., 2009). Based on established modular 
genetic parts and tools, synthetic systems were developed to modulate gene expression, 
using synthetic promoters, optogenetic systems and genetic switches (Sarrion-Perdigones 
et al., 2011; Engler et al., 2014; Müller et al., 2014; Patron et al., 2015; Chatelle et al., 
2018; Andres et al., 2019; Belcher et al., 2020; Cai et al., 2020; Ochoa-Fernandez et al., 
2020). Combining established SynBio tools with the expanding repertoire of genome 
editing is essential to engineer multigenic traits in plants (Schindele et al., 2019; Anzalone 
et al., 2020; Gaillochet et al., 2020).  

Improving the photosynthetic carbon use efficiency 

Applied plant science aims to close the yield gap but yield remains a complex trait (Weber 
and Bar-Even, 2019). The interception efficiency (ability to harvest the light), the 
partitioning index (the biomass portion in the harvestable part of the plant) and the 
conversion efficiency - the conversion of light into biomass are deterministic factors of 
agricultural yield (Long et al., 2015; Weber and Bar-Even, 2019). In modern cultivars the 
conversion efficiency only reaches 20% of its theoretical potential - 0.02 vs 0.1 in C3 plants 
and 0.13 in C4 plants- and is considered an approachable engineering target to improve 
yield and meet the global food demands (Zhu et al., 2008; Zhu et al., 2010; Tilman et al., 
2011; Tilman and Clark, 2014; Ort et al., 2015; Clark and Tilman, 2017). Optimizing the 
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capacity of linear photosynthetic electron flux by an accelerated recovery from 
photoprotection and faster D1 protein synthesis improved plant growth under field 
conditions (Kromdijk et al., 2016; Chen et al., 2020). However, constraints on 
photosynthetic carbon metabolism limit the use of ATP and NADPH produced by the light 
reactions (Long et al., 2015). Based on computational modeling a higher investment in the 
CBBC enzyme seduheptulose-1,7-bisphosphatase was hypothesized to accelerate RuBP 
regeneration and photosynthetic carbon assimilation (Zhu et al., 2007). Overexpression of 
the cyanobacterial bifunctional enzyme fructose-1,6-bisphosphatase/sedoheptulose-1,7-
bisphosphatase increased biomass yield under field conditions (Lopez-Calcagno et al., 
2020). Further, combining accelerated photosynthetic electron transport by expression of 
the red algae cytochrome c6 and increased capacity of RuBP regeneration by 
sedoheptulose-1,7-bisphosphatase overexpression caused an additive positive effect on 
biomass yield (Lopez-Calcagno et al., 2020).  
The before mentioned issue of photorespiratory CO2 loss lowers the photosynthetic carbon 
use efficiency. Therefore, photorespiration has gained much attention for crop 
improvement and overcoming rate-limiting steps of canonical photorespiration by 
overexpression of the GDLH or GLDL subunit seems a valuable approach to increase 
biomass (Timm et al., 2012; Timm et al., 2015; Lopez-Calcagno et al., 2019). In general, 
bacterial 2-phosphoglycolate salvage pathways are well-suited as metabolic bypasses of 
plant photorespiration (Eisenhut et al., 2008; Claassens et al., 2020). In a pioneering 
study, the implementation of the bacterial glycerate pathway in Arabidopsis was the first 
bypass of plant photorespiration, followed by engineering a plastidial malate cycle 
(Kebeish et al., 2007; Maier et al., 2012). Both pathways share the oxidation of glycolate 
and release either one (glycerate pathway) or two CO2 molecules (malate cycle) per 
glycolate in the chloroplast to enrich CO2 around Rubisco (Kebeish et al., 2007; Maier et 
al., 2012). The use of the Chlamydomonas reinhardtii glycolate dehydrogenase in the 
malate cycle in combination with flux optimization by transcriptional repression of 
PLGG1, resulted in a 24% biomass yield increase in field grown tobacco (South et al., 
2019). Finally, the third bacterial route of glycolate metabolization via oxalate 
decarboxylation improved biomass yield in field grown rice plants (Shen et al., 2019). 
Although, all photorespiratory bypasses positively influenced plant growth and biomass, 
the underlying metabolic reasons remain to be clarified and are controversially discussed 
(Weber and Bar-Even, 2019; Sharkey, 2020).  
A rational approach to circumvent photorespiration is to increase the carboxylation- or 
reduce the oxygenation reaction of Rubisco (Ort et al., 2015). The renaissance of Rubisco 
research in the last years holds the promise of creating a version with improved 
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carboxylation efficiency, although the phylogenetic and catalytic constrains of earth’s most 
abundant enzyme are still under debate (Flamholz et al., 2019). A key in Rubisco 
engineering is to combine the aspects of the historical evolution of the enzyme, a cross-
kingdom analysis of its kinetic parameters as well as bacterial and plant screening 
systems to assemble and test different Rubisco variants (Lin et al., 2014; Flamholz et al., 
2019; Banda et al., 2020; Davidi et al., 2020; Flamholz and Shih, 2020; Gunn et al., 2020; 
Martin-Avila et al., 2020). 
As an alternative, carbon concentrating mechanisms (CCM) are a natural strategy to 
enrich CO2 at the site of Rubisco, reduce the oxygenation reaction and improve the water 
use efficiency of plants (Weber and Bar-Even, 2019). C4 photosynthesis – the spatial 
separation of CO2 prefixation by PEPC in mesophyll- and the decarboxylation of the C4 
acid malate in bundle sheath cells at the site of Rubisco has gained much attention for 
implementation in C3 crops (Ermakova et al., 2020). A major achievement includes the 
cell-specific reconstruction of a minimal biochemical C4 cycle in rice and CO2 fixation via 
this path (Lin et al., 2020). A single cell CCM alternative are cyanobacterial carboxysomes 
and algal pyrenoids, that encapsulate Rubisco and enrich CO2 by carbonic anhydrases and 
bicarbonate/CO2 transporter (Kerfeld et al., 2018; Hennacy and Jonikas, 2020). Plant yield 
is predicted to improve up to 60% by a cyanobacterial CCM (McGrath and Long, 2014) and 
the implementation of a Rubisco containing α-carboxysome in tobacco was the first step to 
achieve this goal (Long et al., 2018). The algal pyrenoid is a eukaryotic alternative to the 
cyanobacterial CCM (Hennacy and Jonikas, 2020). Several breakthroughs contribute to 
the understanding of form and function of the pyrenoid and highlight the role of the 
Rubisco linking protein Essential Pyrenoid Component 1, as critical component for 
formation of the highly dynamic pyrenoid structure (Mackinder et al., 2016; Freeman 
Rosenzweig et al., 2017; Mackinder et al., 2017; Li et al., 2019).  

Synthetic CO2 fixation 

The accelerating pace in the SynBio field enables the design of new-to-nature solutions for 
CO2 fixation exemplified by engineering the canonical CBBC in E. coli to produce all 
carbon biomass from CO2 (Bar-Even et al., 2012; Antonovsky et al., 2016; Gleizer et al., 
2019). Further, C1 compounds like methanol and formate are efficient electron carriers to 
combine the CO2 reduction by renewable energy sources with microbial biological 
utilization for industriell relevant product generation (Yishai et al., 2017; Claassens et al., 
2019; Kim et al., 2020; Satanowski and Bar-Even, 2020). Additionally, the advances in 
protein engineering enable to design novel biochemical reactions including new-to-nature 
chemistry (Erb and Zarzycki, 2016; Erb et al., 2017; Erb, 2019). Mix-and-match of novel 
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reactions with existing biochemistry sets the basis for synthetic CO2 fixation by the 
crotonyl-coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle 
(Schwander et al., 2016). Construction of a chloroplast mimic with light-empowered CO2 
fixation via the CETCH cycle now paves the way for CBBC-independent CO2 fixation 
(Schwander et al., 2016; Miller et al., 2020).  

Outlook 

Optimizing photorespiration promises increased plant growth and yield (Ort et al., 2015; 
Hagemann and Bauwe, 2016; Bar-Even, 2018; Weber and Bar-Even, 2019). The aim of 
this thesis is to test and analyze the consequences of carbon-neutral and energy efficient 
photorespiratory bypasses on plant metabolism and growth. We aim to use the recently 
discovered β-hydroxyaspartate cycle (Schada von Borzyskowski et al., 2019) as driving 
force of a photorespiration dependent synthetic C4 photosynthesis cycle in plants 
(Manuscript I). Further, based on the current understanding of C1 metabolism in plants, 
we establish a C1 based bypass that should facilitate carbon neutral photorespiration 
(Manuscript II). In addition, we characterized the mitochondrial formate dehydrogenase 
at the interface of mitochondrial and cytosolic C1 metabolism (Manuscript III).  
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Abstract  

Plants depend on the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) 
for CO2 fixation. However, especially in C3 plants, photosynthetic yield is reduced by 
formation of 2-phosphogyloclate, a toxic oxygenation product of Rubisco, which needs to 
be recycled in a high flux-demanding metabolic process, called photorespiration. Canonical 
photorespiration dissipates energy and causes carbon and nitrogen losses. Reducing 
photorespiration by carbon concentrating mechanisms, such as C4 photosynthesis, or 
bypassing photorespiration by metabolic engineering is expected to improve plant growth 
and yield. The β-hydroxyaspartate cycle (BHAC) is a recently described microbial pathway 
that converts glyoxylate, a metabolite of plant photorespiration, into oxaloacetate in a 
highly efficient, carbon-, nitrogen- and energy conserving manner. Here, we engineered a 
functional BHAC in plant peroxisomes, to create the first photorespiratory bypass that is 
independent of 3-phosphoglycerate regeneration or decarboxylation of photorespiratory 
precursors. While efficient oxaloacetate conversion in Arabidopsis thaliana still masks the 
full potential of the BHAC, nitrogen conservation and accumulation of signature C4 
metabolites demonstrate the proof-of-principle, opening the way for engineering a 
photorespiration-dependent synthetic C4 carbon concentrating mechanism in C3 plants.  

Introduction  

Future agriculture must reconcile sustainability with increased productivity to supply 
global food demands that will have doubled by 2050 (Tilman et al., 2011; Jones and Sands, 
2013). To fulfill this goal, agricultural yields will have to increase annually by 2.4%. 
However, yields currently plateau at 1% annual increase in all major food crops, including 
maize, rice and wheat (Ray et al., 2013; Pradhan et al., 2015). In high-yielding crop 
varieties, both plant architecture and the harvest index - the fraction of total energy in 
plant biomass contained in the harvestable organs - approach their theoretical limits 
(Long et al., 2015).  

Synthetic biology based approaches are focusing on improving the carbon conversion 
efficiency of plants that currently only reaches 20% of its theoretical potential (Long et al., 
2015; Wurtzel et al., 2019). Synthetic biology applies engineering principles to biological 
systems and multiple synthetic-biological solutions to improve the carbon conversion 
efficiency of plants were recently proposed (Weber and Bar-Even, 2019; Wurtzel et al., 
2019). These include pathways for improved CO2 fixation (Rubisco-based and Rubisco-
independent), such as the crotonyl-coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-



Manuscript I  

 

 27 

CoA (CETCH) cycle, photorespiratory bypasses, including the Tartonyl-CoA (TaCo) 
pathway and a modified 3-hydroxypropionate bi-cycle, as well as synthetic carbon 
concentrating mechanisms (Schwander et al., 2016; Miller et al., 2020; Scheffen et al., 
2020). Altogether, these proposed solutions showcase the potential of plant synthetic 
biology to increase productivity and sustainability of future agriculture beyond the realms 
of natural evolution (Bar-Even et al., 2010; Weber and Bar-Even, 2019; Roell and 
Zurbriggen, 2020).  

Natural carbon concentrating mechanisms boost carbon fixation by concentrating CO2 at 
the site of Rubisco and have independently evolved in cyanobacteria (carboxysomes), green 
algae (pyrenoids) and plants (C4 photosynthesis and crassulacean acid metabolism; 
Kerfeld et al., 2018; Weber and Bar-Even, 2019; Hennacy and Jonikas, 2020). In C4 
photosynthesis, primary CO2 fixation is spatially separated from Rubisco. First, CO2 is 
captured into a C4 acid via phosphoenolpyruvate carboxylase (PEPC) in mesophyll cells 
and this C4 acid is then decarboxylated in bundle sheath cells, where Rubisco is located. 
The increase in the local CO2 concentration reduces the oxygenation reaction of Rubisco, 
as well as the subsequent process of photorespiration (Schlueter and Weber, 2020). 
Consequently, implementation of C4 photosynthesis into C3 plants has received much 
attention to increase yield in crop plants that suffer from photorespiration (Schuler et al., 
2016; Ermakova et al., 2020).  

Another target to improve plant growth is photorespiration itself. During natural 
photorespiration, the Rubisco oxygenation product 2-phosphoglycolate is recycled back 
into 3-phosphoglycerate. However, natural photorespiration comes with the loss of up to 
30% of previously fixed carbon, release of nitrogen and the dissipation of energy, which 
has led to the engineering of photorespiratory bypasses to mitigate the deleterious effects 
of photorespiration (Walker et al., 2016; Eisenhut et al., 2019) . In particular glycolate, 
formed by dephosphorylation of 2-phosphoglycolate, has been considered an ideal starting 
metabolite for several photorespiratory bypasses (Trudeau et al., 2018; Weber and Bar-
Even, 2019). Photorespiratory bypasses that recycle glycolate into 3-phosphoglycerate by 
the cyanobacterial ‘glycerate pathway’ or oxidize glycolate in the chloroplast have already 
shown growth benefits in green-house grown Arabidopsis thaliana and tobacco and rice in 
field experiments (Kebeish et al., 2007; Maier et al., 2012; South et al., 2019; Shen et al., 
2019). However, all these bypasses still release CO2, which limits their efficiency compared 
to natural photorespiration. 
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Recently, the β-hydroxyaspartate cycle (BHAC) was described as primary pathway of 
glycolate assimilation in marine proteobacteria (Schada von Borzyskowski et al., 2019). In 
this pathway, glycolate is first oxidized into glyoxylate, which is further converted into 
oxaloacetate (OAA) in four enzymatic steps (Fig. 1). Notably, the BHAC enables the direct 
formation of a C4 compound from glycolate, without the loss of carbon and nitrogen, which 
render the BHAC more efficient than natural photorespiration and all other 
photorespiration bypasses engineered so far.  

Here we demonstrate the implementation of the BHAC in Arabidopsis thaliana 
(Arabidopsis) peroxisomes. We validate activity of the BHAC in planta by demonstrating 
β-hydroxyaspartate (BHA) formation under photorespiratory conditions. Further, we 
show improved nitrogen conversation through the BHAC, which results in reduced free 
ammonia levels compared to natural photorespiration. We also determine the metabolic 
fate of BHAC-derived OAA and outline a strategy to use BHAC-derived OAA to establish 
a synthetic C4 cycle in C3 plants. Altogether, our proof-of-principle study demonstrates a 
novel approach to turn a photorespiratory bypass into a carbon concentrating mechanism. 
Synergistically coupling photorespiration and C4 metabolism, two of the main targets in 
primary plant metabolism, thus creates novel opportunities for improved agricultural 
productivity in the future.  

 

Fig. 1: The BHAC as photorespiratory bypass in plant peroxisomes. Schematic representation of plant 
photorespiration (PR) and photorespiratory nitrogen (N) reassimilation (light blue) and the BHAC (dark blue). 
Aspartate:glyolxyate aminotransferase (AGAT), β-hydroxyaspartate aldolase (BHAA), β-hydroxyaspartate 
dehydratase (BHAD), iminosuccinate reductase (ISR), glutamate:glyoxylate aminotransferase (GGT1), 
ribulose-1,5-bisphosphate (RuBP), plastidial glycolate/glycerate transporter 1 (PLGG1), bile-acid sodium 
symporter 6 (BASS6). 
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Results 

BHAC implementation in plant peroxisomes 

Photorespiratory glycolate is converted to glyoxylate in peroxisomes. Since glyoxylate is 

the starting substrate of the BHAC, we implemented the BHAC in the peroxisomal matrix. 

The four BHAC enzymes, aspartate:glyoxylate aminotransferase (AGAT, EC: 2.6.1.35), β-
hydroxyaspartate aldolase (BHAA, EC: 4.1.3.41), β-hydroxyaspartate dehydratase 

(BHAD, EC: 4.3.1.20), and iminosuccinate reductase (ISR), were targeted to plant 

peroxisomes, by fusion of a peroxisomal target signal (PTS). AGAT, BHAD and ISR were 

C-terminally fused with PTS1 (Lingner et al., 2011). BHAA was fused N-terminally with 

the  peroxisomal target signal 2 from Arabidopsis citrate synthase 3 (At2g42790; Lingner 

et al., 2011). Peroxisomal localization of the four BHAC enzymes was confirmed by 

fluorescence co-localization with a peroxisomal marker in Nicotiana benthamiana 

protoplasts (Fig. 2A).  

We selected four Arabidopsis photosynthetic promoters (Rubisco small subunit 1B, 2B, 3B 

and chlorophyll A/B binding protein 1; Dedonder et al., 1993; Mitra et al., 2009) to restrict 

BHAC enzyme expression to photosynthetic tissue (Supplemental Fig. S1). Further, we 

hypothesized that reduced conversion of glyoxylate to glycine would enhance metabolic 

flux through the BHAC. Besides Arabidopsis wild type Col-0 (WT), we therefore selected 

the photorespiratory ggt1-1 mutant as background for BHAC implementation. The ggt1-1 

mutant is deficient in the peroxisomal glutamate glyoxylate aminotransferase 1 (Dellero 

et al., 2015) and shows a strong photorespiratory phenotype, which allowed us to screen 

for the function of the BHAC via a convenient visual readout.  

Two independent lines each were established in the WT (Col::BHAC#1 and #2) and ggt1-

1 background, respectively (ggt1-1::BHAC#1 and #2, Supplemental Fig. S1), and 

expression of all four BHAC enzymes in the transgenic lines was verified by immunoblot 

analysis (Supplemental Fig. S1). We quantified activity of each BHAC enzyme in mature 

rosette leave extracts of four-weeks-old air grown plants by enzyme activity assays (Fig. 

2B and C). AGAT was highest in both WT and ggt1-1 background compared to BHAA and 

BHAD activity (Fig. 2B). Iminosuccinate is a labile product formed by BHAD (Schada von 

Borzyskowski et al., 2019). To demonstrate functional expression of ISR, we therefore 

quantified the rate of 15N-incorporation into L-aspartate, which confirmed ISR activity in 

BHAC plants (Fig. 2B). In summary, these experiments confirmed the successful 

expression of all enzymes in planta 
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Fig. 2: Peroxisomal targeting and enzyme activity of the BHAC. A) Fluorescent fusion constructs for 
each BHAC enzyme were co-infiltrated with a peroxisomal marker in N. benthamiana leaves and protoplasts 
were analyzed by confocal microscopy two days post infection. Both, the peroxisomal targeting sequence 
(subscripted) and the fluorescent fusion protein are indicated based on the protein N- or C-terminal position. 
Aspartate:glyolxyate aminotransferase (AGAT), β-hydroxyaspartate aldolase (BHAA), β-hydroxyaspartate 
dehydratase (BHAD), iminosuccinate reductase (ISR). Images were analyzed using Fiji. Chlorophyll A 
autofluorescence: blue, peroxisomal marker: cyan fluorescent protein or mCherry (only for ISR) with C-
terminal PTS1. B) BHAC enzyme activity in Arabidopsis mature rosette leave extracts of four-weeks-old air 
grown plants. n = 3.  

Peroxisomal BHAC functions as photorespiratory bypass  

Next, we verified that the peroxisomal BHAC functions as photorespiratory bypass by 
steady-state metabolomics on green tissue of 14 days old seedlings either grown in CO2 
enriched air (3000 ppm CO2, HC), ambient air (400 ppm CO2, AC), or shifted from CO2 
enriched to ambient air three days before sampling (Shift, Fig. 3). Our metabolomics 
analysis included the BHAC intermediates BHA and glycine; malate, produced by 
reduction of BHAC-derived OAA by peroxisomal NAD-dependent MDH (Cousins et al., 
2008), as well as aspartate, which can regarded both as BHAC intermediate and product 
of OAA transamination (Fig. 3).  
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BHA is a unique metabolite of the BHAC and not naturally present in Arabidopsis 
(Fig. 3A-D). We analyzed analytical standards of BHA diastereomers via gas-
chromatography time of flight mass spectrometry to annotate BHA according to the 
electron impact mass spectral fragmentation pattern (Supplemental Fig. S2). As expected, 
BHA specific fragments were neither detected in WT nor in ggt1-1 controls under all 
conditions tested (Fig. 3A and B). In contrast, BHA could be detected in plants carrying 
the BHAC (Fig. 3A-D). However, relative quantification revealed that BHA was only 
detectable when plants were grown in ambient air or shifted from CO2 enriched to ambient 
air, but not in CO2 enriched air (Fig. 3C and D). This confirmed function of the BHAC in 

planta and suggested that BHA formation is exclusively linked to photorespiratory 
conditions.  

Glycine levels decreased 2-fold in both Col::BHAC lines, which is consistent with glycine 
conversion into BHA by BHAA under photorespiratory conditions in ambient air (Fig. 3E). 
In the ggt1-1 mutant total glycine levels were 10-fold lower compared to WT (Dellero et 
al., 2015), remained unaltered in ggt1-1::BHAC#1 and increased 1.2-fold in ggt1-

1::BHAC#2 (Fig. 3E). In line with BHAC activity, aspartate and malate levels were 
elevated 6- and 2-fold, respectively, in BHAC plants grown in ambient air (Fig. 3E). 
Together, the formation and accumulation of BHAC-specific metabolites exclusively in 
photorespiratory conditions demonstrated that the peroxisomal BHAC indeed functions 
as photorespiratory bypass.  
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Fig. 3: The BHAC functions as photorespiratory bypass. A and B) Representative extracted ion 
chromatogram of the β-hydroxyaspartate specific masses. In vivo formation of both diastereomers, erythro-β-
hydroxyaspartate (A) and threo-β-hydroxyaspartate (B) is shown in one T-DNA line per background genotype. 
C and D) Relative metabolite levels per mg fresh weight (FW) of in vivo erythro-β-hydroxyaspartate (C) and 
threo-β-hydroxyaspartate (D) formation in wild type Col-0 (top) and ggt1-1 background (bottom). Green tissue 
of 14 days old seedlings was harvested in the middle of the light phase. Plants were grown either in CO2 
enriched air (3000 ppm CO2, HC), ambient air (400 ppm CO2, AC) or shifted from HC to AC three days prior 
to harvest (Shift). E) Relative metabolite levels per mg fresh weight (FW) of glycine, aspartate and malate in 
BHAC plants in wild type Col-0 (top) and ggt1-1 background (bottom) grown in AC. Student’s t-test against 
background genotype. Shown Col-0 in bottom panel is same as in top and added for comparative reasons. 
Asterisks indicate significance after multiple testing correction using Benjamini-Hochberg. p < 0.05 = *, < 0.01 
= **, < 0.001 = ***. n = 4. 

The BHAC reshapes carbon and nitrogen metabolism  

To better understand the metabolic implications of the BHAC, we generated metabolite 
profiles for all four BHAC lines (BHAC plants) and their background genotypes at 
different CO2 concentrations (HC, AC, Shift, Supplemental Fig. S3 for WT background 
and Supplemental Fig. S4 for ggt1-1 background). Growth condition dependent principle 
component analysis revealed that the metabolic profiles of BHAC plants are clearly 
distinct from their background genotypes (Fig. 4A), and that all BHAC plants cluster 
together, independent of their genetic background under photorespiratory conditions (AC 
or Shift, Fig. 4A). Notably, we did not observe such clustering of genotypes under HC 

A B

Figure 3. The BHAC functions as photorespiratory bypass. A and B) Representative extracted ion chromatogram of the β-hydroxyaspartate specific masses. In vivo formation of both diastereomers, 
erythro-β-hydroxyaspartate (A) and threo-β-hydroxyaspartate (B) is shown in one T-DNA line per background genotype. C and D) Relative metabolite levels per mg fresh weight (FW) of in vivo erythro-β-
hydroxyaspartate (C) and threo-β-hydroxyaspartate (D) formation in wild type Col-0 (top) and ggt1-1 background (bottom). Green tissue of 14 days old seedlings was harvested in the middle of the light phase. 
Plants were grown either in CO2 enriched air (3000 ppm CO2, HC), ambient air (400 ppm CO2, AC) or shifted from HC to AC three days prior to harvest (Shift). E) Relative metabolite levels per mg fresh weight 
(FW) of glycine, aspartate and malate in BHAC plants in wild type Col-0 (top) and ggt1-1 background (bottom) grown in AC. Student’s t-test against background genotype. Shown Col-0 in bottom panel is same 
as in top and added for comparative reasons. Asterisks indicate significance after multiple testing correction using Benjamini-Hochberg. p < 0.05 = *, < 0.01 = **, < 0.001 = ***. n = 4. 
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(Fig. 4A), which is consistent with the observation that the BHAC is only active under 
photorespiration. 

We further focused on the metabolite profile of BHAC plants in comparison to the WT and 
ggt1-1 mutant backgrounds grown under photorespiratory conditions in ambient air 
(Fig. 4B). In plant photorespiration mitochondrial glycine decarboxylase is the major hub 
of carbon and nitrogen losses (Eisenhut et al., 2019; Fernie and Bauwe, 2020). Nitrogen 
conservation by the BHAC is assumed to prevent mitochondrial ammonia release and 
avoid chloroplastic nitrogen re-assimilation by glutamine synthase. Consequently, cellular 
free ammonia levels were reduced on average by 20% compared to WT under 
photorespiratory conditions (Fig. 4C). Further, ambient air-grown BHAC plants 
accumulated soluble amino acids that are either involved in the urea cycle (glutamate and 
ornithine) or depend on OAA-derived carbon skeletons (lysine, methionine, Fig. 4B).  

Besides peroxisomal reduction to malate, three further routes of OAA assimilation are 
theoretically possible that are all coupled to the direct export of OAA from the peroxisome 
(Charton et al., 2019). Cytosolic phosphoenolpyruvate carboxykinase 1 (PCK1) could 
decarboxylate OAA to phosphoenolpyruvate (PEP; Eastmond et al., 2015). PEP is then 
used either for gluconeogenesis or converted into pyruvate by pyruvate kinase (PK; 
Wulfert et al., 2020). The accumulation of pyruvate strongly indicated that the cytosolic 
PK route is active in BHAC plants and that PEP is not channeled into gluconeogenesis, 
which was supported by reduced glucose and fructose levels in the same plants (Fig. 4B). 
In addition to cytosolic decarboxylation, OAA could also be transported into mitochondria, 
where it could fuel the mitochondrial TCA cycle. Accumulation of citrate in ambient air-
grown BHAC plants suggested that this route was also active, eventually in combination 
with an increased flux of pyruvate into the TCA cycle (Fig. 4B).  

To further validate that reshaping of the metabolome in BHAC plants is caused by an 
active BHAC and not AGAT alone, we complemented the ggt1-1 mutant with AGAT under 
control of the chlorophyll A/B binding protein 1 promoter, also used for AGAT expression 
in ggt1-1::BHAC plants (Supplemental Fig. S5). Steady-state metabolomics on plants 
grown under photorespiratory conditions in ambient air, revealed that AGAT expression 
was not sufficient to cause the metabolome signature of BHAC plants. Instead AGAT 
expression restored canonical photorespiration, probably by using aspartate as amino 
donor for the peroxisomal transamination reaction (Supplemental Fig. S5).  

In summary, these experiments showed that the BHAC is active under photorespiratory 
conditions and reshapes the metabolome in plants by altering nitrogen metabolism (amino 
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acid accumulation and free ammonia reduction) and OAA utilization in the cytosol and/or 
mitochondrial TCA cycle.  

Fig. 4: The BHAC reshapes the plant metabolome. Metabolite profiles were generated using green tissue 
of 14-days-old seedlings grown either at 3000 ppm CO2 (HC), 400 ppm CO2 (AC) or shifted from 3000 ppm CO2 
to 400 ppm CO2 three days prior to harvest at the middle of the light phase (Shift). A) Principle component 
analysis. B) Metabolome profiles of AC grown plants. Log2 fold change (FC) was calculated compared to wild 
type Col-0 and clustered based on Pearson correlation. C) Quantification of free ammonium in BHAC plants. 
Shown Col-0 in bottom panel is same as in top and added for comparative reasons. Student’s t-test against 
background genotype. p < 0.05 = *, < 0.01 = **, < 0.001 = ***. n = 4, biological replicates measured in technical 
triplicates. 
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The BHAC reduces plant growth by impaired photosynthesis in the WT 
background 

Despite carbon and nitrogen conservation by the BHAC, Col::BHAC plants are reduced in 
growth as compared to WT controls in ambient air (Fig. 5A, Supplemental Fig. S6). 
Rosettes of four-weeks-old air-grown Col::BHAC plants are decreased by 70% in area and 
50% in diameter (Fig. 5B). However, BHAC implementation in the ggt1-1 mutant partially 
suppressed the photorespiratory phenotype of the mutant (Fig. 5C) and growth was 
comparable to Col::BHAC plants (Fig. 5B and D). In CO2 enriched air, growth of BHAC 
plants was not altered compared to the background genotype (Fig. 5).  

 

Fig. 5: The BHAC reduces plant growth in air. A and C) Representative images of BHAC plants in wild 
type Col-0 (A) or ggt1-1 mutant (C) background grown in ambient air (400 ppm CO2, AC) or CO2 enriched air 
(3000 ppm CO2 HC). Images were taken 28 days after transfer to light. scalebar = 2 cm. B & D) Growth of 
BHAC containing plants in wild type Col-0 (B) or ggt1-1 mutant (D) background. Rosette area and rosette 
diameter were measured over time for plants grown under AC (top) or HC (bottom). Student’s t-test against 
background genotype. Colored asterisks represent the significance for the respective genotype. p< 0.05 = *, p 
< 0.01 =**, < 0.001 = ***. n = 5. Shown Col-0 in C) and D) is same as in top and added for comparative reasons. 
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To test if the reduced growth in BHAC plants resulted from affected photosynthesis, we 
generated A/Ci curves, the rate of CO2 assimilation (A) in relation to intercellular CO2 
concentration (Ci) under saturating light (1000 µmol s-1 m2-2), by leaf-gas exchange 
measurements of six-week old ambient air-grown plants (Fig. 6A). Based on the A/Ci curve, 
we determined the CO2 compensation point (CCP), a net quotient of zero for 
photosynthetic CO2 assimilation and respiratory CO2 release (Schlueter et al., 2017). 
Col::BHAC plants displayed an increased CCP compared to WT (Fig. 6B). The ggt1-1 
mutant itself had a higher CCP and the BHAC did not significantly alter the CCP in this 
photorespiratory mutant (Fig. 6B). 

Finally, we modelled the A/Ci curves based on the Farquhar, von Cammerer, Berry model 
of C3 photosynthesis to estimate the maximum rate of Rubisco carboxylation efficiency 
(Vcmax) and maximum electron transport rate (Jmax; Farquhar et al., 1980). Both Vcmax and 
Jmax were reduced in Col::BHAC plants by 15% and 25% respectively (Fig. 6C). Comparison 
of Rubisco large subunit abundance by immunoblot analysis revealed no changes in 
Rubisco content in BHAC plant leaves that could explain the reduced Vcmax (Supplemental 
Fig. S1). Implementation of the BHAC in the ggt1-1 mutant did not alter Vcmax and Jmax 

was only reduced in ggt1-1::BHAC#2 compared to the mutant background, but remained 
lower compared to WT (Fig. 6C).  
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Fig. 6: Photosynthesis is impaired in BHAC plants. A) CO2 assimilation based on intracellular CO2 
concentration (Ci) for BHAC plants in wild type Col-0 (left) and ggt1-1 background (right). Shown mean ± SD. 
n = 4 per genotype. B) Calculated CO2 compensation point (CCP) from the A-Ci curves (A) for BHAC plants in 
wild type Col-0 (top) and ggt1-1 background (bottom). C) Maximum rate of Rubisco carboxylation (Vcmax) and 
maximum rate of electron transport (Jmax) for BHAC plants in wild type Col-0 (top) and ggt1-1 background 
(background) modeled using the Farquhar, von Caemmerer, Berry model of C3 photosynthesis (Farquhar et 
al., 1980). Student’s t-test against background genotype. p < 0.05 = *, < 0.01 = **, < 0.001 = ***. Shown mean 
± SD. n = 4 per genotype. Shown Col-0 in bottom panel is same as in top and added for comparative reasons. 

Discussion 

An estimated loss of 30% photosynthetically fixed carbon define photorespiration as a 
limiting factor of plant growth. However, photorespiratory bypasses can address this issue 
and improve plant yield (Wurtzel et al., 2019; Roell and Zurbriggen, 2020). The recently 
described β-hydroxyaspartate cycle (BHAC), naturally found in marine proteobacteria, 
allows the direct conversion of glyoxylate into oxaloacetate, providing new options to 
assimilate photorespiratory glyoxylate without the loss of carbon and nitrogen (Schada 
von Borzyskowski et al., 2019). Here, we report on engineering a functional BHAC in 
Arabidopsis peroxisomes, the first photorespiratory bypass independent of 3-
phosphoglycerate regeneration or decarboxylation of a photorespiratory precursor.  

Redirecting the metabolic flux towards a synthetic pathway was demonstrated by 
combining transcriptional suppression of the plastidial glycolate/glycerate transporter 1 
with chloroplastic glycolate decarboxylation in field-grown tobacco plants (South et al., 
2019). Similarly, implementing the BHAC in the ggt1-1 mutant to push pathway flux 
improved plant growth compared to the mutant background (Fig. 5C). In plant 

●●

●

●
● ●

●

●

●●

●

●

●

●

●

●●

●

● ● ●

●

●

●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●●

●

●

●

●

●

−4
−2

0
2
4
6
8

10
12
14
16
18
20

0 400 800 1200 1600
Ci [µbar]

A 
[µ

m
ol

 m
−2

 s
−1

] Genotype
●

●

●

Col−0

Col::BHAC#1

Col::BHAC#2

●●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●●
●

● ● ●

●

●

●●

●

●

●

●

●

●●
●

● ● ●

●

●

●●

●

●

●

●

●

−4
−2

0
2
4
6
8

10
12
14
16
18
20

0 400 800 1200 1600
Ci [µbar]

A 
[µ

m
ol

 m
−2

 s
−1

] Genotype
●

●

●

●

Col−0

ggt1−1

ggt1−1::BHAC#1

ggt1−1::BHAC#2

A 
[µ

m
ol

 C
O

2 
m

-2
 s

.1
]

Ci [µbar]

●●

●

●
● ●

●

●

●●

●

●

●

●

●

●●

●

● ● ●

●

●

●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●●

●

●

●

●

●

−4
−2

0
2
4
6
8

10
12
14
16
18
20

0 400 800 1200 1600
Ci [µbar]

A 
[µ

m
ol

 m
−2

 s
−1

] Genotype
●

●

●

Col−0

Col::BHAC#1

Col::BHAC#2

●●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●●
●

● ● ●

●

●

●●

●

●

●

●

●

●●
●

● ● ●

●

●

●●

●

●

●

●

●

−4
−2

0
2
4
6
8

10
12
14
16
18
20

0 400 800 1200 1600
Ci [µbar]

A 
[µ

m
ol

 m
−2

 s
−1

] Genotype
●

●

●

●

Col−0

ggt1−1

ggt1−1::BHAC#1

ggt1−1::BHAC#2

A 
[µ

m
ol

 C
O

2 
m

-2
 s

.1
]

Ci [µbar]

B

** **

0

25

50

75

Co
l−0

Co
l::B
HA
C#
1

Co
l::B
HA
C#
2

Ci
* [

µm
ol

 C
O

2 
m

ol
−1

 a
ir]

 

***

0

25

50

75

Co
l−0

gg
t1−
1

gg
t1−
1::
BH
AC
#1

gg
t1−
1::
BH
AC
#2

Ci
* [

µm
ol

 C
O

2 
m

ol
−1

 a
ir]

 

* *

0

10

20

30

40

50

Co
l−0

Co
l::B
HA
C#
1

Co
l::B
HA
C#
2

Vc
m
ax

*

0

10

20

30

40

50

Co
l−0

gg
t1−
1

gg
t1−
1::
BH
AC
#1

gg
t1−
1::
BH
AC
#2

Vc
m
ax

* *

0

50

100

Co
l−0

Co
l::B
HA
C#
1

Co
l::B
HA
C#
2

Jm
ax

**

0

50

100

Co
l−0

gg
t1−
1

gg
t1−
1::
BH
AC
#1

gg
t1−
1::
BH
AC
#2

Jm
ax

C
C

P 
 [µ

m
ol

 m
ol

-1
]

V
cm

ax
 [µ

m
ol

 m
-2

 s
-1

]

J m
ax

 [µ
m

ol
 m

-2
 s

.1
]

** **

0

25

50

75

Co
l−0

Co
l::B
HA
C#
1

Co
l::B
HA
C#
2

Ci
* [

µm
ol

 C
O

2 
m

ol
−1

 a
ir]

 

***

0

25

50

75

Co
l−0

gg
t1−
1

gg
t1−
1::
BH
AC
#1

gg
t1−
1::
BH
AC
#2

Ci
* [

µm
ol

 C
O

2 
m

ol
−1

 a
ir]

 

* *

0

10

20

30

40

50

Co
l−0

Co
l::B
HA
C#
1

Co
l::B
HA
C#
2

Vc
m
ax

*

0

10

20

30

40

50

Co
l−0

gg
t1−
1

gg
t1−
1::
BH
AC
#1

gg
t1−
1::
BH
AC
#2

Vc
m
ax

* *

0

50

100

Co
l−0

Co
l::B
HA
C#
1

Co
l::B
HA
C#
2

Jm
ax

**

0

50

100

Co
l−0

gg
t1−
1

gg
t1−
1::
BH
AC
#1

gg
t1−
1::
BH
AC
#2

Jm
ax

C
C

P 
 [µ

m
ol

 m
ol

-1
]

V
cm

ax
 [µ

m
ol

 m
-2

 s
-1

]

J m
ax

 [µ
m

ol
 m

-2
 s

.1
]

C

●●

●

●
● ●

●

●

●●

●

●

●

●

●

●●

●

● ● ●

●

●

●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●●

●

●

●

●

●

−4
−2

0
2
4
6
8

10
12
14
16
18
20

0 400 800 1200 1600
Ci [µbar]

A 
[µ

m
ol

 m
−2

 s
−1

] Genotype
●

●

●

Col−0

Col::BHAC#1

Col::BHAC#2

●●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●●
●

● ● ●

●

●

●●

●

●

●

●

●

●●
●

● ● ●

●

●

●●

●

●

●

●

●

−4
−2

0
2
4
6
8

10
12
14
16
18
20

0 400 800 1200 1600
Ci [µbar]

A 
[µ

m
ol

 m
−2

 s
−1

] Genotype
●

●

●

●

Col−0

ggt1−1

ggt1−1::BHAC#1

ggt1−1::BHAC#2

●●

●

●
● ●

●

●

●●

●

●

●

●

●

●●

●

● ● ●

●

●

●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●●

●

●

●

●

●

−4
−2

0
2
4
6
8

10
12
14
16
18
20

0 400 800 1200 1600
Ci [µbar]

A 
[µ

m
ol

 m
−2

 s
−1

] Genotype
●

●

●

Col−0

Col::BHAC#1

Col::BHAC#2

●●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●●
●

● ● ●

●

●

●●

●

●

●

●

●

●●
●

● ● ●

●

●

●●

●

●

●

●

●

−4
−2

0
2
4
6
8

10
12
14
16
18
20

0 400 800 1200 1600
Ci [µbar]

A 
[µ

m
ol

 m
−2

 s
−1

] Genotype
●

●

●

●

Col−0

ggt1−1

ggt1−1::BHAC#1

ggt1−1::BHAC#2

A



Manuscript I  

 

 38 

peroxisomes the BHAC bypasses the mitochondrial glycine decarboxylase complex that 
would otherwise releases ammonia during photorespiration (Fig. 1). Ammonia re-
assimilation by passive transport to the chloroplast and re-fixation by the glutamine 
synthetase 2/ ferredoxin-dependent glutamine:oxoglutarate aminotransferase complex 
(GS2/Fd-GOGAT) is an integral part of photorespiration (Bloom, 2015; Eisenhut et al., 
2019). Based on the metabolite profiles, we hypothesize three metabolic adaptations that 
compensate the impaired nitrogen shuttle in BHAC plants. A general response upon 
impaired GS2/Fd-GOGAT-dependent nitrogen assimilation is the use of cytosolic 
glutamine synthetases and glutamate dehydrogenases (Pérez-Delgado et al., 2015). 
Further, excess nitrogen is stored in the urea cycle (Blume et al., 2019) and the ornithine–
citrulline shuttle would ensure mitochondrial-chloroplastic nitrogen exchange (Linka and 
Weber, 2005). Finally, BHAC-derived OAA can be directly converted into aspartate by 
aspartate aminotransferase (Schultz and Coruzzi, 1995). Produced aspartate is used for 
chloroplastic de-novo biosynthesis of amino acids dependent on C4-carbon skeletons, in 
particular lysine, threonine and methionine that accumulate in BHAC plants (Fig. 4; 
Ravanel et al., 2004; Kirma et al., 2012). This implies that the BHAC functions as nitrogen 
conserving pathway and allows rerouting of photorespiratory glycolate into amino acids. 

In contrast to previous photorespiratory bypasses, the BHAC also alters the carbon 
stoichiometry of photorespiration (Fig. 1; Kebeish et al., 2007; Maier et al., 2012; Shen et 
al., 2019; South et al., 2019). C3 plants depend on the regeneration of 3-PGA by 
photorespiration, which is exemplified by the strong phenotype of several photorespiratory 
mutants (Boldt et al., 2005; Voll et al., 2006; Eisenhut et al., 2013; Dellero et al., 2015). It 
is reasonable to believe that both reduced carboxylation (Vcmax) and ribulose-1,5-
bisphosphate regeneration (Jmax) are caused by lowered metabolic flux in the 3-
phosphoglycerate regenerating branch of photorespiration (Fig. 1). Whereas previously 
described photorespiratory bypasses release four CO2 molecules per two molecules of 
glycolate (Maier et al., 2012; South et al., 2019), the BHAC is carbon neutral and 
maximally releases one CO2 molecule, in case OAA is decarboxylated into PEP (Schada 
von Borzyskowski et al., 2019). This suggests that either streamlining OAA assimilation 
or re-integration of the produced C3-intermediate PEP and/or CO2 into the CBBC will be 
the key to achieve the full potential of the BHAC. At current stage, however, pleiotropic 
effects of diffuse OAA metabolism by several routes (amino acid biosynthesis, TCA cycle, 
PEP/pyruvate metabolism) likely mask the full potential of the BHAC (Fig. 4). Integrating 
the BHAC into kinetic- and genome-scale metabolic models will help to identify further 
engineering targets (Sweetlove and Ratcliffe, 2011; Trudeau et al., 2018; Küken and 
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Nikoloski, 2019; Matuszyńska et al., 2019). Finally, the construction of a synthetic C4 
cycle based on BHAC-derived OAA, either as single-celled- or spatial-separated between 
mesophyll- and bundle sheath cells would allow to enhance carbon assimilation in plants 
(Jurić et al., 2019; Ermakova et al., 2020). Note that using photorespiration as source of 
the synthetic C4 cycle would circumvent the need to establish PEPC-dependent CO2 
fixation in C3 plants, make an ATP-dependent regeneration of PEP dispensable and 
ultimately conserve energy. Further, the dependency of the BHAC on C2 intermediates 
(glyoxylate and glycine) allows to decarboxylate BHAC-derived OAA twice and thereby 
boost CO2 enrichment around Rubisco.  

In summary, this work on engineering a functional BHAC into Arabidopsis is a first 
starting point to turn a photorespiratory bypass into a synthetic C4 cycle, constituting a 
promising novel approach towards creating higher crop yields in the future. 

Materials and Methods  

Chemicals 

D-Erythro-BHA ([2R,3S]-β-hydroxyaspartate) was custom-synthesized by NewChem 
(Newcastle upon Tyne, United Kingdom), and determined to be >95% pure by NMR 
analysis. DL-threo-BHA was purchased as racemic mixture (Sigma Aldrich).  

Plasmid construction 

BHAC genes were codon optimized for expression in Arabidopsis thaliana by gene 
synthesis (ThermoFisher Scientific) and matured for golden-gate cloning. All plasmids 
were generated with the MoClo tool kit, including vector backbones and genetic parts 
(Engler et al., 2014). Plasmids were sequenced by Sanger sequencing (Microsynth). 
Plasmids and primers used in this study are listed in Supplemental Tables S1 and S2, 
respectively. 

BHAC enzyme activity assays  

BHAC enzyme activity was measured in total leaf protein extracts from four-week old air 
grown Arabidopsis plants. Purified recombinant BHAC enzymes were produced as 
described in (Schada von Borzyskowski et al., 2019). The reaction mixture to assay AGAT 
activity contained 100 mM potassium phosphate buffer pH 7.5, 0.1 mM PLP, 0.2 mM 
NADH, 5 mM glyoxylate, 20 mM aspartate, 25 µl of leaf extract and 8.75 µg NAD-
dependent malate dehydrogenase (Sigma Aldrich). The reaction mixture to assay BHAA 
activity contained 100 mM potassium phosphate buffer pH 7.5, 0.1 mM PLP, 0.2 mM 
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NADH, 0.5 mM MgCl2, 5 mM glyoxylate, 10 mM glycine, 25 µl of leaf extract and 7 µg 
purified BHAD and 7 µg purified ISR enzyme. The reaction mixture to assay BHAD 
activity contained 100 mM potassium phosphate buffer pH 7.5, 0.1 mM PLP, 0.2 mM 
NADH, 2 mM erythro-BHA, 25 µl of leaf extract and 7 µg purified ISR enzyme. The 
reaction mixture to assay ISR activity contained 100 mM potassium phosphate buffer pH 
7.5, 0.1 mM PLP, 0.2 mM NADH, 5 mM glyoxylate and 10 mM 15N-glycine, 50 µl of leaf 
extract and 7 µg purified BHAA and BHAD enzyme. The formation of 15N-aspartate by 
ISR activity was confirmed by LC-MS/MS. A detailed description of the LC-MS/MS method 
is provided in the Supplementary text.   

Plant material and cultivation conditions 

The Arabidopsis thaliana ecotype Col-0 and the ggt1-1 mutant (Dellero et al., 2015), 
deficient in the peroxisomal glutamate:glyoxylate aminotransferase 1 (GGT1) were used 
as reference backgrounds. Seeds were surface-sterilized using the vapor-phase 
sterilization method (Clough and Bent, 1998). Seeds were grown on half-strength 
Murashige and Skoog medium (pH 5.7) supplemented with 0.8% (w/v) agar. Seeds were 
cold stratified for two days at 4°C. After germination, seedlings were grown for 14 days at 

100 µmol m-2 s-1 light intensity, at atmospheric CO2 concentration (400 ppm) or in CO2 
enriched air (3000 ppm) in 12-h light/12-h dark photoperiod prior transfer to soil.  

Metabolite profiling 

For metabolite profiling green tissue of 14-days-old seedlings was harvested by liquid 
nitrogen dousing. immediate quenching with liquid nitrogen at the middle of the light 
phase. 50 mg of leaf material was used for metabolite profiling using one-phase extraction 
as previously described (Fiehn et al., 2000) and was analysed by gas-chromatography time 
of flight mass spectrometry (GC/MS Q-TOF, Agilent). For relative quantification 
metabolite peak areas are normalized to the internal extraction standard and the material 
fresh weight. A detailed description is provided in the Supplemental Information.  

Gas exchange measurements  

Mature rosette leaves of six weeks old, air grown plants were used for gas exchange 
measurements. Measurement were performed using a LICOR6800 (Licor Bioscience) with 
a flow set to 300 µmol s-1, saturating light intensity of 1000 µmol m-2 s-1, leaf temperature 
of 25 °C and a vapor pressure deficit below 1.5 kPa. A-Ci curves were measured via 
stepwise changes in external CO2 supply ranging from 0 µbar to 1600 µbar. From the A-
Ci curves the CO2 compensation point was calculated as x-intercept (Sharkey et al., 2007). 
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The initial slope of the A-Ci curve was calculated in the linear range between 0 and 200 
µbar external CO2 and the maximal assimilation rate above 1000 µbar CO2 was 
determined. Further, the A-Ci curves were fitted with the classic Farquhar, von 
Caemmerer and Berry model of photosynthesis (Farquhar et al., 1980) to estimate the 
maximum ribulose-1,5-bisphosphate saturated rate of carboxylation (Vcmax) and the 
maximum rate of electron transport (Jmax).  

Accession Numbers 

The protein accession numbers used in this study are: GGT1 (Q9LR30), BHAA (A1B8Z1), 
BHAD (A1B8Z2), AGAT (A1B8Z3), ISR (A1B8Z0).  
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Supplemental Information 

Supplementary Text 

Genetic transformation of Arabidopsis thaliana 

T-DNA constructs were introduced into Agrobacterium tumefaciens strain 
GV3101::pMP90 (Koncz and Schell, 1986) and Arabidopsis thaliana plants were 
transformed via agrobacterium-mediated transformation (Clough and Bent, 1998). 
Homozygous T3 plants were used for further analysis.  

Transient expression in Nicotiana benthamiana and protoplast isolation 

Overnight grown Agrobacterium tumefaciens GV3101::pMP90 cells, carrying the T-DNA 
construct were diluted in infiltration medium (10 mM MgCl2, 10 mM MES [pH 5.7], 100 
µM acetosyringone) to an OD600 of 0.4. Leaves of four-week old greenhouse-grown 
Nicotiana benthamiana plants were infiltrated using a syringe without a needle. For co-
localization analysis T-DNA peroxisomal marker constructs were co-infiltrated, 
expressing either cyan fluorescent protein or mCherry, C-terminally fused with 
peroxisomal target signal 1 (PTS1). Protoplasts were isolated two days post infection. 
Leaves were sliced into small pieces, vacuum-infiltrated with protoplast digestion solution 
(1.5% [w/v] cellulase R-10, 0.4 % [w/v] macerozyme R-10, 0.4 M mannitol, 20 mM KCl, 20 
mM MES [pH 5.7], 10 mM CaCl2, 0.1% [w/v] bovine serum albumin) and incubated for 2 
hours at 28°C. Sedimented protoplasts were resuspended in W5 solution (154 mM NaCl, 
125 mM CaCl2, 5 mM KCl, 2 mM MES [pH5.7]) and analyzed by confocal laser scanning 
microscopy.  

Confocal laser scanning microscopy  

Zeiss LSM780 confocal microscope and Zeiss ZEN software (Zeiss) was used for confocal 
laser scanning microscopy. Excitation/emission wavelengths were as followed: mCherry 
(561 nm/580 to 625), cyan fluorescent protein (450 nm/510 to 550) nm), green fluorescent 
protein (488 nm/490 to 550 nm), chlorophyll A (488 nm/640 to 710 nm). Images were 
processed with Fiji (Schindelin et al., 2012).  

Enzyme activity assays  

Total leaf protein was isolated from four-week old air grown Arabidopsis plants. Leaf 
material was frozen in liquid nitrogen and grinded, using glass beads and windmill, and 
resuspended in 700 µl extraction buffer (50 mM potassium phosphate pH 7.5, 5 mM MgCl2, 
1 mM EDTA, 0.1% [v/v] Triton-X 100). After centrifugation for 10 min at 12,000 rpm at 
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4°C, 25 µl of the supernatant was used for enzyme assays. All assays were carried out at 
30°C in a total volume of 300 µl. The oxidation of NADH was followed at 340 nm on a Cary 
60 UV-Vis photospectrometer (Agilent) in quartz cuvettes with a path length of 10 mm 
(Hellma Analytics).  

Glutamate:glyoxylate activity measurements were performed based on AGAT assays as 
described. Aspartate was replaced by 50 mM glutamate.   

To take samples for LC-MS/MS analysis, the reaction volume of the assay was increased 
to 600 µl. 90 µL aliquots were taken after 0, 1, 2 and 3 minutes and the reaction was 
immediately stopped by addition of formic acid (4% final concentration). The samples were 
centrifuged at 17,000 x g and 4°C for 15 min and the supernatant was subsequently used 
for LC-MS analysis. Quantitative determination of 15N-aspartate (Asp-15N) and Aspartate 
(Asp) was performed using a LC-MS/MS. The chromatographic separation was performed 
on an Agilent Infinity II 1290 HPLC system using a ZicHILIC SeQuant column (150 × 2.1 
mm, 3.5 µm particle size, 100 Å pore size) connected to a ZicHILIC guard column (20 × 2.1 
mm, 5 µm particle size) (Merck KgAA) at a constant flow rate of 0.3 ml/min with mobile 
phase A being 0.1% formic acid in 99:1 water:acetonitrile (Honeywell, Morristown, New 
Jersey, USA) and phase B being 0.1% formic acid in 99:1 acetonitrile:water (Honeywell, 
Morristown, New Jersey, USA) at 25° C. The injection volume was 5 µl. The mobile phase 
profile consisted of the following steps and linear gradients: 0 – 5 min from 80 to 65% B; 5 
– 7 min from 65 to 20% B; 7 – 9 min constant at 20% B; 9 – 10 min from 20 to 80% B; 10 – 
12 min constant at 80% B. An Agilent 6495 ion funnel mass spectrometer was used in 
positive mode with an electrospray ionization source and the following conditions: ESI 
spray voltage 2000 V, sheath gas 250° C at 12 l/min, nebulizer pressure 50 psig and drying 
gas 100° C at 11 l/min. Compounds were identified based on their mass transition and 
retention time compared to standards. Chromatograms were integrated using 
MassHunter software (Agilent, Santa Clara, CA, USA). Absolute concentrations of Asp-
15N and Asp were calculated based on an external calibration curve of Asp-13C prepared in 
sample matrix after confirming that the uniformly labelled analyte cannot be detected in 
the matrix prior to standard addition, and after confirming that the correlation between 
the signal intensity and concentration of the 13C-labelled analyte equals the correlation of 
the unlabeled as well as the 15N-labelled amino acid by standard addition. Quantification 
via an isotopically labelled external standard was required, as the unlabeled analyte that 
was found in the matrix in high abundance interfered with the measurement. 
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SDS-PAGE and immunoblot analysis 

SDS-PAGE and immunoblot analysis were performed as described in (Laemmli, 1970; 
Kuhnert et al., 2020). 15 µg total leaf was loaded for SDS-PAGE. For immunoblot analysis 
monoclonal conjugated horseradish peroxidase anti-HA antibody (Miltenyi Biotech) was 
used for the detection of AGAT and ISR. Monoclonal conjugated horseradish peroxidase 
anti-His antibody (Miltenyi Biotech) was used for the detection of BHAA and BHAD.  

Plant phenotyping  

For fresh weight and dry weight analysis, 12-days-old seedlings were harvested. Seedlings 
were dried for four days at 65°C before dry weight analysis. Rosette area and rosette 
diameter were quantified on photographed pots via Fiji.  

Chlorophyll fluorescence measurements 

Chlorophyll photochemical efficiency of photosystem II in dark-adapted leaves (Fv/Fm) 
(Krause and Weis, 1991) was measured on 12-days-old seedlings using an imaging 
chlorophyll fluorometer (Imaging PAM, Walz). Upon dark adaptation for 20 min, seedlings 
were exposed to a pulsed, blue probe beam and a saturating light flash to measure Fv/Fm 

values. 

Free ammonium quantification  

Free ammonium was quantified in plant tissue using a colorimetric assay as described 
previously (Bräutigam et al., 2007).  

Metabolite profiling 

Frozen material was grinded using precooled mortar and pistil. Grinded material was 
aliquoted under continuous liquid nitrogen exposure to avoid sample thawing. Extraction 
mix, containing water:methanol:chloroform (ratio 1:2.5:1) and 5 µM ribitol as internal 
standard, were added to frozen material. Samples were vortexed for 20 seconds, rotated 
for 6 min at 4°C and centrifuged for 2 min at 20,000 x g at room temperature. The 
supernatant was transferred to a new tube and stored at -80°C before further processing. 
For metabolite profiling by gas-chromatography time of flight mass spectrometry (GC/MS 
Q-TOF), 50 µl of extract was dried using a speed vacuum concentrator. Dried samples were 
placed in the Gerstel MPS 2 XL autosampler for automatic sample derivatization using 
methoxyamine hydrochloride and N-Methyl-N-(trimethylsilyl) trifluoroacetamide before 
injection. The GC-MS device is a 7200 accurate mass Q-TOF GC/MS (Agilent). For relative 
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quantification metabolite peak areas are normalized to the internal extraction standard 

and the material fresh weight.  

Data analysis and software 

Data analysis was performed in R. For analysis of gas exchange measurements, the 

‘plantecophys’ package was used (Duursma, 2015).  

Supplemental Figures and Tables 

Supplemental Fig. S1: BHAP implementation in Arabidopsis thaliana wild type Col-0 and ggt1-1 

mutant background. A) Schematic representation of the multigene T-DNA construct for BHAC pathway 

implementation. Aspartate:glyolxyate aminotransferase (AGAT), β-hydroxyaspartate aldolase (BHAA), β-
hydroxyaspartate dehydratase (BHAD), iminosuccinate reductase (ISR). Kanamycin resistance (KanR). B and 

C) Genotyping of transgenic homozygous T3 BHAC plants in wild type Col-0 (B) and ggt1-1 mutant 

background (C). D and E) Immunoblot analysis of BHAC enzyme expression in Col-0 background (D) and ggt1-

1 background (E). Arabidopsis Rubisco large subunit (RbcL) served as loading control and was visualized by 

ponceau staining. 15 µg total leaf protein of four weeks old air grown plants was loaded per lane. Protein 

expression was detected using anti-HIS HRP antibody (top) or anti-HA HRP antibody (bottom). AGAT and 

ISR are HA-tagged and BHAA and BHAD are HIS-tagged.  

 

Fig. S1. BHAP implementation in Arabidopsis thaliana wild type Col-0 and ggt1-1 mutant background. A) Schematic representation of the multigene T-DNA construct for BHAC pathway 
implementation. Aspartate:glyolxyate aminotransferase (AGAT), β-hydroxyaspartate aldolase (BHAA), β-hydroxyaspartate dehydratase (BHAD), iminosuccinate reductase (ISR). Kanamycin 
resistance (KanR). B and C) Genotyping of transgenic homozygous T3 BHAC plants in wild type Col-0 (B) and ggt1-1 mutant background (C). D and E) Immunoblot analysis of BHAC enzyme 
expression in Col-0 background (D) and ggt1-1 background (E). Arabidopsis Rubisco large subunit (RbcL) served as loading control and was visualized by ponceau staining. 15 µg total leaf protein 
of four-weeks-old air-grown plants was loaded per lane. Protein expression was detected using anti-HIS HRP antibody (top) or anti-HA HRP antibody (bottom). AGAT and ISR are HA-tagged and 
BHAA and BHAD are HIS-tagged.  
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Supplemental Fig. S2: β-hydroxyaspartate detection by GC-MS QTOF. A) Deconvoluted mass 

spectrum of erythro-β-hydroxyaspartate. B) Extracted ion chromatogram of erythro-β-hydroxyaspartate 

specific masses in wildtype Col-0 extract spiked with 20 µM analytical standard of D-erythro-β-
hydroxyaspartate. C) Deconvoluted mass spectrum of threo-β-hydroxyaspartate. B) Extracted ion 

chromatogram of threo-β-hydroxyaspartate specific masses in wild type Col-0 extract spiked with 20 µM 

analytical standard of DL-threo-β-hydroxyaspartate. 
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Fig. S2. β-hydroxyaspartate detection by GC-MS QTOF. A) Deconvoluted mass spectrum of erythro-β-hydroxyaspartate. B) Extracted ion-chromatogram of erythro-β-hydroxyaspartate specific 
masses in wild type Col-0 extract spiked with 20 µM analytical standard of D-erythro-β-hydroxyaspartate. C) Deconvoluted mass spectrum of threo-β-hydroxyaspartate. B) Extracted ion-
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Supplemental Fig. S3: Metabolome profile of BHAC in wild type Col-0 background. Metabolite 
profiles were generated using green tissue of 14 days old seedlings grown either in CO2 enriched air (3000 
ppm CO2, HC), ambient air (400 ppm CO2, AC) or shifted from HC to AC three days prior to harvest (Shift). 
Relative metabolite levels of BHAC plants in wild type Col-0 background. Student’s t-test against wild type 
Col-0. Asterisks indicate significance after multiple testing correction using Benjamini-Hochberg. p < 0.05 = 
*, < 0.01 = **, < 0.001 = ***. n = 4. 
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Supplemental Fig. S4: Metabolome profile of BHAC in ggt1-1 background. Metabolite profiles were 
generated using green tissue of 14 days old seedlings grown either in CO2 enriched air (3000 ppm CO2, HC), 
ambient air (400 ppm CO2, AC) or shifted from HC to AC three days prior to harvest (Shift). Relative 
metabolite levels of BHAC plants in ggt1-1 background. Student’s t-test against ggt1-1 mutant. Asterisks 
indicate significance after multiple testing correction using Benjamini-Hochberg. p < 0.05 = *, < 0.01 = **, < 
0.001 = ***. n = 4.  Shown wild type Col-0 is the same as in Supplemental Fig. S3 and added for comparative 
reasons. 
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Supplemental Fig. S5: Peroxisomal aspartate:glyoxylate aminotransferase restores canonical 
photorespiration in the ggt1-1 mutant. The ggt1-1 was complemented by expression of 
aspartate:glyoxylate aminotransferase under the chlorophyll A/B binding protein 1 promoter (ggt1-1::AGAT). 
Numbers indicate independent T-DNA lines. A) Representative images of seedlings for Fv/Fm measurements 
using twelve days old seedling grown at ambient air (400 ppm CO2, AC) or in CO2 enriched air (3000 ppm CO2, 

HC). scalebar = 0.5 cm. B) Quantification of Fv/Fm values of plants grown at AC (top) or HC (bottom).  Student’s 
t-test against wild type Col-0 p < 0.05 = *, < 0.01 = **, < 0.001 = ***. n >25 per genotype per condition. C) In 
vitro glutamate:glyoxylate (GGT) and aspartate:glyoxylate (AGAT) activity. Activity was measured in three 
biological replicates in technical triplicates using mature rosette leaves of 28 days old air grown plants. D) 
Relative metabolite levels in ggt1-1::AGAT complementation lines grown in air. Student’s t-test against wild 
type Col-0. Asterisks indicate significance after multiple testing correction using Benjamini-Hochberg. p < 
0.05 = *, < 0.01 = **, < 0.001 = ***. n = 4. E) Images of plants grown in ambient air (400 ppm CO2) at 21 days 
(top) and 28 days (bottom) after transfer to light. F) Rosette area (left) and rosette diameter (right) of ambient 
air grown plants. Student’s t-test against wildtype Col-0. p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***. Colored 
asterisks represent the significance for the respective genotype. n = 3. Shown mean ± SD. 
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Supplemental Fig. S6: Phenotyping of BHAC plants at seedling stage. A) Representative images of 
BHAC plants for Fv/Fm measurements using 12-days-old seedling grown in ambient air (400 ppm CO2, AC), 
CO2 enriched air (3000 ppm CO2, HC) or shifted from HC to AC three days prior measurements and harvest 
(Shift). scalebar = 0.5 cm. B) Quantification of Fv/Fm values of plants grown at AC (B), HC (C) or Shift (D). 
Student’s t-test against wild type Col-0. p < 0.05 = *, < 0.01 = **, < 0.001 = ***. n >25 per genotype per 
condition. E to H) Seedling fresh weight (E and F) and dry weight (G and H) of 12-days-old grown at AC (E 
and G) or HC (F and H). Student’s t-test against wildtype Col-0 p < 0.05 = *, < 0.01 = **, < 0.001 = ***. Shown 
mean ± SD. n = 4
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Fig. S7. A BHAC derived synthetic C4 cycle. Schematic representation of plant photorespiration (PR), 
BHAC and potential routes for a synthetic C4 cycle between mesophyll (MS) and bundle sheath cells (BS). 
These include the decarboxylation of malate or malate catabolism and acetyl-CoA decarboxylation and glycine 
decarboxylation (Gly decar.) or regeneration (Gly reg.). Abbreviations: Aspartate:glyolxyate aminotransferase 
(AGAT), β-hydroxyasparate aldolase (BHAA), β-hydroxyaspartate dehydratase (BHAD), iminosuccinate 
reductase (ISR), glutamate:glyoxylate aminotransferase (GGT1), ribulose-1,5-bisphosphate (RuBP), plastidial 
glycolate/glycerate transporter 1 (PLGG1), bile-acid sodium symporter 6 (BASS6), malate synthase (MSyn), 
aminotransferase (AT), malic enzyme (ME), pyruvate dehydrogenase (PDH).   
 

CO2

O2

2-phosphoglycolate glycolate glyoxylate glycine

3-phosphoglycerate

glycolate

BASS6

PLGG1

aspartate oxaloacetate

β-hydroxyaspartate 

iminosuccinate

NAD+

RuBP

glutamate 2-oxoglutarate

GGT1

AGAT

BHAA

BHADISR

MS chloroplast Peroxisome

malate

glyoxylate

CO2

O2

MSyn

glycine

AT

acetyl-CoA

glycine

acetyl-CoA

3-phosphoglycerate

RuBP

glycine

AT

BS chloroplast

Oxidative 
decarboxylation

CO2

Fig. S7. A BHAC derived synthetic C4 cycle. Schematic representation of plant photorespiration (PR), BHAC and potential routes for a synthetic C4 cycle between mesophyll (MS) and bundle sheath 
cells (BS). These include the decarboxylation of malate or malate catabolism and acetyl-CoA decarboxylation and glycine decarboxylation (Gly decar.) or regeneration (Gly reg.). Abbreviations: 
Aspartate:glyolxyate aminotransferase (AGAT), β-hydroxyasparate aldolase (BHAA), β-hydroxyaspartate dehydratase (BHAD), iminosuccinate reducate (ISR), glutamate:glyoxylate aminotransferase 
(GGT1), ribulose-1,5-bisphosphate (RuBP), plastidial glycolate/glycerate transporter 1 (PLGG1), bile-acid sodium symporter 6 (BASS6), malate synthase (MSyn), aminotransferase (AT), malic enzyme 
(ME), pyruvate dehydrogenase (PDH). 

BS mitochondria

PDH

acetyl-CoA

pyruvate malateME

PR 
BHAC
Gly reg.
Gly decar.
CO2 pumps
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Table S1: List of primer used in this study. Gene specific nucleotides indicated in caps. Abbreviations: 
GGT1 (glutamate:glyoxylate aminotransferase 1, At1g23310).  

Primer sequence  Purpose Reference 

fwd: 5’-CCTTGCCCTTGGCTCTAGAACC-3’ 
rev: 5’-GTCATACCTAAACCGCCTGAAGTC-3’ 
 
fwd: 5’-TAACTCTCCCCACTCTTTGCC-3’ 
rev: 5’-ATATTGACCATCATACTCATTGC-3’ 
 
 

Genotyping GGT1  
 

 

T-DNA primer ggt1-1 
 

  

This Study 

 



Manuscript I  

 

 57 

Table S2: List of constructs used in this study. Vector backbones, promoters and terminators are 
described in (Engler et al., 2014). Abbreviations: aspartate:glyolxyate aminotransferase (AGAT), β-
hydroxyasparate aldolase (BHAA), β-hydroxyaspartate dehydratase (BHAD), iminosuccinate reductase (ISR), 
peroxisomal target signal 1 (PTS1), peroxisomal target signal 2 (PTS2), β-hydroxyasparate cycle (BHAC), 
Arabidopsis thaliana (At), Solanum lycopersicum (Sl), Agrobacterium tumefaciens (Atu).  

Purpose Vector Insert Comment 

Localization 
AGAT 

pICH86966  UBQ10p::mCherry-AGATPTS1::SlRbsc3cT PTS1: serine-
lysine-leucine 

Localization 
BHAA 

pICH86966 UBQ10p::PTS2BHAA-mCherry::SlRbsc3cT PTS2 from 
Arabidopsis 
thaliana Citrate 
Synthase 
(At2g42790) 

Localization 
BHAD 

pICH86966 UBQ10p::mCherry-BHADPTS1::SlRbsc3cT PTS1: serine-
lysine-leucine 

Localization ISR pICH86966 UBQ10p::eGFP-ISRPTS1::SlRbsc3cT PTS1: serine-
lysine-leucine 

ggt1-1 
complementation 

pICH86966 AtCaBp::AGATPTS1:: SlRbsc3cT 
 

Kanamycin 
resistance for 
plants 

BHAC T-DNA 
construct for 
implementation 
in plants 

pICH75322 Pos. 1: AtRbcS2Bp::PTS2BHAA::AtuOcsT 
Pos. 2: AtRbcS1Bp::BHADPTS1::AtuNosT 
Pos. 3: AtRbcS3Bp::ISRPTS1::35sT 
Pos. 4: AtCaBp::AGATPTS1:: SlRbsc3cT 
Pos. 5: AtuNosp::NptII::AtuOcsT 

Kanamycin 
resistance for 
plants 
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European patent application 

A method for the production of plants with altered photorespiration 

and improved CO2 fixation  

The experimental work and underlying ideas described in Manuscript I are part of the 
pending EU patent application EP 19190404.4 that claims the use of the β-
hydroxyaspartate cycle to alter photorespiration and improve CO2 fixation in plants.  

At the time of submitting this dissertation, the patent application passed the priority year 
and the final patent application was handed over to the European patent amt for 
evaluation at the 6th August 2020. The patent application is filled by Dr. Lennart Schada 
von Borzykowski, Prof. Dr. Tobias J. Erb (both (Max-Planck Institute for Terrestrial 
Microbiology, Marburg, Germany), Prof. Dr. Andreas P.M. Weber and myself (Institute 
Plant Biochemistry, Heinrich-Heine University, Düsseldorf, Germany) with support of the 
Heinrich-Heine University Düsseldorf and the Max-Planck Society.  

The claims made in original Patent application are listed below and the complete patent 
application is available upon request.  

1. A method for the production of a transgenic plant with altered photorespiration and 
improved CO2 fixation, comprising introducing into a cell or tissue of said plant one 
or more nucleic acids encoding at least four polypeptides having the enzymatic 
activities of  

(a) erythro-β-hydroxyaspartate aldolase belonging to the EC class 4.1.3.14, 

(b) erythro-β-hydroxyaspartate dehydratase belonging to the EC class 4.3.1.20, 

(c) iminosuccinate reductase    and  

(d) aspartate-glyoxylate transaminase,  

wherein the introduction of said nucleic acid(s) results in a de novo expression of the 
at least four polypeptides having the enzymatic activities of  

(a) erythro-β-hydroxyaspartate aldolase belonging to the EC class 4.1.3.14, 

(b) erythro-β-hydroxyaspartate dehydratase belonging to the EC class 4.3.1.20, 

(c) iminosuccinate reductase    and  

(d) aspartate-glyoxylate transaminase, 
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 wherein the polypeptide having the enzymatic activity of (c) iminosuccinate 
reductase comprises an amino acid sequence selected from SEQ ID NO: 1-299, or an 
amino acid sequence having at least 80% sequence identity to a sequence selected 
from SEQ ID NO: 1-299; and the polypeptide having the enzymatic activity of (d) 
aspartate-glyoxylate transaminase comprises an amino acid sequence selected from 
SEQ ID NO: 300-599, or an amino acid sequence having at least 80% sequence 
identity to a sequence selected from SEQ ID NO: 300-599. 

2. The method of claim 1, wherein the polypeptide having the enzymatic activity of (c) 
iminosuccinate reductase comprises an amino acid sequence selected from SEQ ID 
NO: 1, 7, 22, 25, 26, 39, 47, 58, 75, 123, 135, and 160, or an amino acid sequence 
having at least 80% sequence identity to a sequence selected from SEQ ID NO: 1, 7, 
22, 25, 26, 39, 47, 58, 75, 123, 135, and 160. 

3. The method of claim 1 or 2, wherein the polypeptide having the enzymatic activity 
of (c) iminosuccinate reductase comprises an amino acid sequence as set forth in SEQ 
ID NO: 135, or an amino acid sequence having at least 80% sequence identity to said 
sequence; and the polypeptide having the enzymatic activity of (d) aspartate-
glyoxylate transaminase comprises an amino acid sequence as set forth in SEQ ID 
NO: 433, or an amino acid sequence having at least 80% sequence identity to said 
sequence. 

4. The method of any one of claims 1 to 3, wherein the polypeptides having the 
enzymatic activities (a)-(d) comprise an amino acid sequence targeting said 
polypeptides to the peroxisomes. 

5. The method of claim 4, wherein the (a) erythro-β-hydroxyaspartate aldolase 
belonging to the EC class 4.1.3.14 is C-terminally fused to a peroxisomal targeting 
signal 2 of SEQ ID NO: 952 and the polypeptides having the enzymatic activities (b)-
(d) are N-terminally fused to a peroxisomal targeting signal 1 of amino acid sequence 
SKL. 

6. The method of any one of claims 1 to 3, wherein the one or more nucleic acids further 
encode a polypeptide having the enzymatic activity of   

(e) glycolate dehydrogenase belonging to the EC class 1.1.99.14,  

wherein the introduction of said nucleic acid(s) results in a de novo expression of at 
least five polypeptides having the enzymatic activity of  

(a) erythro-β-hydroxyaspartate aldolase belonging to the EC class 4.1.3.14, 
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(b) erythro-β-hydroxyaspartate dehydratase belonging to the EC class 
4.3.1.20, 

(c) iminosuccinate reductase, 

(d) aspartate-glyoxylate transaminase, and 

(e) glycolate dehydrogenase belonging to the EC class 1.1.99.14,  

wherein said polypeptides having the enzymatic activities (a)-(e) are localized in 
cellular mitochondria, and wherein said polypeptides having the enzymatic 
activities (a)-(e) are N-terminally fused to a serine hydroxymethyltransferase 1 
target peptide of SEQ ID NO: 919. 

7. The method of any one of claims 1 to 3, wherein the one or more nucleic acids further 
encode two polypeptides having the enzymatic activities of   

(e) glycolate dehydrogenase belonging to the EC class 1.1.99.14,  

(f) phosphoenolpyruvate carboxykinase belonging to the EC class 4.1.1.49 

wherein the introduction of said nucleic acid(s) results in a de novo expression of at 
least six polypeptides having the enzymatic activities of  

(a) erythro-β-hydroxyaspartate aldolase belonging to the EC class 4.1.3.14, 

(b) erythro-β-hydroxyaspartate dehydratase belonging to the EC class 
4.3.1.20, 

(c) iminosuccinate reductase, 

(d) aspartate-glyoxylate transaminase,  

(e) glycolate dehydrogenase belonging to the EC class 1.1.99.14, and 

(f) phosphoenolpyruvate carboxykinase belonging to the EC class 4.1.1.49, 

wherein said polypeptides having the enzymatic activities (a) - (f) are localized in 
cellular chloroplasts, and wherein said polypeptides having the enzymatic activities 
(a) - (f) are N-terminally fused to Arabidopsis Ferredoxin-2 chloroplastic target 
peptide of SEQ ID NO: 917. 

8. A transgenic plant comprising one or more heterologous nucleic acids encoding at 
least four polypeptides having the enzymatic activities of (a) erythro-β-
hydroxyaspartate aldolase belonging to the EC class 4.1.3.14, (b) erythro-β-
hydroxyaspartate dehydratase belonging to the EC class 4.3.1.20, (c) iminosuccinate 
reductase comprising an amino acid sequence selected from SEQ ID NO: 1-299, or 
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an amino acid sequence having at least 80% sequence identity to a sequence selected 
from SEQ ID NO: 1-299; and (d) aspartate-glyoxylate transaminase comprising an 
amino acid sequence selected from SEQ ID NO: 300-599, or an amino acid sequence 
having at least 80% sequence identity to a sequence selected from SEQ ID NO: 300-
599. 

9. The transgenic plant of claim 8, wherein the polypeptide having the enzymatic 
activity of (c) iminosuccinate reductase comprises an amino acid sequence selected 
from SEQ ID NO: 1, 7, 22, 25, 26, 39, 47, 58, 75, 123, 135, and 160, or an amino acid 
sequence having at least 80% sequence identity to a sequence selected from SEQ ID 
NO: 1, 7, 22, 25, 26, 39, 47, 58, 75, 123, 135, and 160. 

10. The transgenic plant of claim 8 or 9, wherein the wherein the polypeptide having the 
enzymatic activity of (c) iminosuccinate reductase comprises an amino acid sequence 
as set forth in SEQ ID NO: 135, or an amino acid sequence having at least 80% 
sequence identity to said sequence; and the polypeptide having the enzymatic 
activity of (d) aspartate-glyoxylate transaminase comprises an amino acid sequence 
as set forth in SEQ ID NO: 433, or an amino acid sequence having at least 80% 
sequence identity to said sequence. 

11. The transgenic plant of any one of claims 8 to 10, wherein the (a) erythro-β-
hydroxyaspartate aldolase belonging to the EC class 4.1.3.14 is C-terminally fused 
to a peroxisomal targeting signal 2 of SEQ ID NO: 952 and the polypeptides having 
the enzymatic activities (b)-(d) are N-terminally fused to a peroxisomal targeting 
signal 1 of amino acid sequence SKL. 

12. The transgenic plant of any one of claims 8 to 10, wherein the one or more nucleic 
acids further encode a polypeptide having the enzymatic activity of  (e) glycolate 
dehydrogenase belonging to the EC class 1.1.99.14, wherein said polypeptides 
having the enzymatic activities (a)-(e) are localized in cellular mitochondria, and 
wherein said polypeptides having the enzymatic activity (a) - (e) are N-terminally 
fused to a serine hydroxymethyltransferase 1 target peptide of SEQ ID NO: 919. 

13. The transgenic plant of any one of claims 8 to 10, wherein the one or more nucleic 
acids further encode two polypeptides having the enzymatic activities of (e) glycolate 
dehydrogenase belonging to the EC class 1.1.99.14, (f) phosphoenolpyruvate 
carboxykinase belonging to the EC class 4.1.1.49, wherein said polypeptides having 
the enzymatic activities (a)-(f) are localized in cellular chloroplasts, and wherein said 
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polypeptides having the enzymatic activity (a) - (f) are N-terminally fused to 
Arabidopsis Ferredoxin-2 chloroplastic target peptide of SEQ ID NO: 917.  

14. The transgenic plant of any one of claims 8 – 13, wherein the plant is selected from 
Helianthus annuus, Brassica napus, Camelina sativa, Oryza sativa, Hordeum 

vulgare, Triticum spp., Avena sativa, Solanum lycopersicum, Solanum tuberosum, 

Glycine max, Beta vulgaris, Nicotiana tabacum, and Arabidopsis thaliana. 

15. A nucleic acid construct comprising nucleic acid sequences encoding at least four 
polypeptides having the enzymatic activities of (a) erythro-β-hydroxyaspartate 
aldolase belonging to the EC class 4.1.3.14, (b) erythro-β-hydroxyaspartate 
dehydratase belonging to the EC class 4.3.1.20, (c) iminosuccinate reductase 
comprising an amino acid sequence selected from SEQ ID NO: 1-299, or an amino 
acid sequence having at least 80% sequence identity to a sequence selected from SEQ 
ID NO: 1-299; (d) aspartate-glyoxylate transaminase comprising an amino acid 
sequence selected from SEQ ID NO: 300-599, or an amino acid sequence having at 
least 80% sequence identity to a sequence selected from SEQ ID NO: 300-599, a 
selection marker nucleic acid, wherein the nucleic acid sequences are operably linked 
to at least one promoter for expression in a plant and are operably linked to at least 
one terminator. 
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Abstract  

Rising levels of greenhouse gas emission threaten the global climate and agricultural 
productivity. Plants naturally sequester atmospheric carbon dioxide (CO2) and convert it 
into biomass. However, the primary CO2-fixing enzyme, ribulose-1,5-bisphosphate 
carboxylase/oxygenase (Rubisco) also accepts oxygen as substrate and Rubisco-catalyzed 
oxygenation requires the recycling of photosynthetically fixed carbon by photorespiration. 
During photorespiration up to 30% of previously fixed carbon is lost and this loss will 
increase in a climate changing environment of elevated temperature and enhanced 
drought. Therefore, genetically engineering CO2-neutral photorespiration will positively 
impact plant growth. Here, we set the genetic basis for CO2-neutral photorespiration in 
plants by module-assisted engineering. Photorespiratory CO2-release depends on the 
mitochondrial glycine to serine conversion that requires a one-carbon unit, produced by 
glycine oxidation via the glycine decarboxylase complex. We implemented the reductive 
glycine pathway in Arabidopsis thaliana to provide a cytosolic sink for one-carbon units 
by tetrahydrofolate-dependent formate assimilation. The produced one-carbon unit is used 
for the glycine decarboxylase independent glycine to serine conversion in a CO2-neutral 
manner. In order to address limited metabolic flux towards serine biosynthesis, we 
developed a photosynthetic tissue-specific clustered regularly interspaced short 
palindromic repeat (CRISPR)/ CRISPR-associated protein 9 (Cas9) [CRISPR/Cas9]) 
module. This allows to redirect the flux towards the synthetic bypass by knockout out of 
the glycine decarboxylase P-subunit and formate dehydrogenase, as CO2-releasing and 
interfering reactions of canonical plant photorespiration. 

Introduction  

Two major societal challenges are on one hand the rising atmospheric carbon dioxide (CO2) 
concentrations that threaten the balance of the planetary climate, and on the other, 
innovative strategies to efficiently sequester the released CO2 (Kim et al., 2020). 
Currently, chemical CO2 sequestration into syngas and downstream processing into 
complex hydrocarbons, is limited by a small product spectrum and low product specificity 
(Liao et al., 2016). Hybrid systems of physiochemical and biological processes can be 
optimized for efficient CO2 sequestration and broad-spectrum utilization (Claassens et al., 
2019; Satanowski and Bar-Even, 2020). In a hybrid system, renewable energies are used 
to activate CO2 into small molecules, e.g. one-carbon (C1) compounds like methanol and 
formate (Claassens et al., 2019). The subsequent microbial utilization of the C1 molecules 
into biomass or commercial carbon-based products sets the framework of the microbial C1 
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bioeconomy (Satanowski and Bar-Even, 2020). Compared to hybrid systems that require 
engineered microbes to convert the C1 molecules, plants (terrestrial and aquatic- including 
algae) naturally assimilate approximately 170 gigatons atmospheric CO2 per year by 
photosynthetic carbon fixation (Bar-On and Milo, 2019). Catalyst of the photosynthetic 
carbon fixation is ribulose 1,5-bisphophate carboxylase/oxygenase (Rubisco), the most 
abundant enzyme on earth (Bar-On and Milo, 2019). However, photosynthetic carbon 
fixation is limited by the Calvin-Benson-Bassham cycle (CBBC) and Rubisco’s acceptance 
of oxygen as substrate (Raines, 2003). Carbon recycling and detoxification of the 
oxygenation product, 2-phosphoglycolate, by photorespiration releases up to 30% of 
previously fixed carbon (Walker et al., 2016). Synthetic biology aims to design new-to-
nature biological solutions for CO2 fixation by constructing synthetic pathways, organelles 
and organisms (Bar-Even et al., 2010; Antonovsky et al., 2016; Schwander et al., 2016; 
Gleizer et al., 2019; Kim et al., 2020; Miller et al., 2020). The transfer of these approaches 
to a plant system, either as synthetic photorespiratory bypasses or CBBC/ Rubisco-
independent CO2 fixation via C1 units (e.g. formate), promises a boost for plant growth 
(Bar-Even, 2018; Trudeau et al., 2018; Shen et al., 2019; South et al., 2019; Weber and 
Bar-Even, 2019).  

In plants, C1 metabolism is directly connected with photorespiration (Eisenhut et al., 2019; 
Busch, 2020). The mitochondrial glycine decarboxylase complex (GDC), produces a 
C1 tetrahydrofolate (THF) intermediate by glycine oxidation, thereby releasing NH3 and 
CO2 while producing NADH (Engel et al., 2007; Timm et al., 2012; Timm et al., 2017). In 
brief, the GDC consists of four subunits (P, T, L and H). The H-protein (GLDH) acts as a 
mobile element that undergoes a three-step cycle of (1) reductive methylamination, 
catalyzed by the P-subunit and releasing CO2, (2) methylamine transfer by the T-protein 
(GLDT) releasing NH3 and producing the C1 THF intermediate 5,10-methylene-THF and 
finally (3) electron transfer by the L-protein (GLDL) to produce NADH and recycling of 
the H-protein (Douce et al., 2001; Wittmiß et al., 2020). The produced C1 unit is then 
condensed with a second glycine molecule by serine hydroxymethyltransferase 1 (SHM1) 
to produce serine and subsequent 3-phosphoglycerate regeneration (Fig. 1; Voll et al., 
2006; Eisenhut et al., 2019). Instead of utilization for serine biosynthesis, GDC-derived  
5-10-methylene-THF is oxidized to produce formate and further CO2 (Fig. 1). Thereby the 
THF moiety is recycled, an essential requirement for functional photorespiration, as 
shown by the photorespiratory phenotype of the 10-formyl-THF deformylase double 
knockout mutant (Fig. 1; Collakova et al., 2008). Further, the lethality of glycine 
decarboxylase mutants and mitochondrial serine hydroxymethyltransferase define 
mitochondria as hub of cellular C1 metabolism (Engel et al., 2007; Engel et al., 2011a; 
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Timm et al., 2017). However, unstable and low abundant C1 metabolites, severe 
phenotypes of characterized mutants and a high genetic redundancy that requires higher 
order mutants, limit a conceptualized understanding of C1 metabolism in plants (Hanson 
and Roje, 2001; Mehrshahi et al., 2010; Groth et al., 2016). The rise of the clustered 
regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 
(Cas9) [CRISPR/Cas9] system for genome editing now offers the opportunity to 
characterize these blackspots in primary plant metabolism, in particular by tissue-specific 
knockout strategies to study constitutive lethal loss-of-function mutants (Decaestecker et 
al., 2019).  

Here, we set the genetic basis for CO2-neutral photorespiration in plants by module-
assisted genetic engineering. Within the first module, we established the cytosolic 
reductive glycine pathway (cRGP) in Arabidopsis thaliana (Arabidopsis) to provide 
C1 units by THF-dependent formate assimilation and facilitate GDC/SHM1-independent 
glycine to serine conversion (Fig. 1). The implementation of the cRGP slightly impaired 
plant growth, in particular by low cytosolic glycine to serine conversion and elevated 
methionine biosynthesis. Therefore, we developed a photosynthetic tissue-specific 
CRISPR/Cas9 module to optimize metabolic flux by knocking out the GDC P-subunit 
(GLDP) and mitochondrial NAD-dependent formate dehydrogenase (FDH1), the CO2-
releasing reactions of plant photorespiration. Plants with a photosynthetic tissue specific 
knockout of both GLDP genes overcame the seedling-lethal phenotype of previously 
characterized loss-of-function mutants (Engel et al., 2007), but showed impaired growth 
under photorespiratory conditions. At a current stage, the combination of both modules 
did not enhance plant growth, likely because the high photorespiratory flux could not be 
sustained by low cellular formate levels – a matter that needs to be addressed by a third 
engineering module.  
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Fig. 1: The reductive glycine pathway to engineer CO2 neutral photorespiration in plants. Partial 

schematic representation of plant photorespiration (PR), auxillary one-carbon metabolism (C1) and the 
integration of the reductive glycine pathway (cRGP). Abbreviations: Methylobacterium extorquens AM1 10-
formyl-THF ligase (MeFTL), methenyl-THF cyclohydrolase (MeFCH) and NADP-dependent methylene-THF 
dehydrogenase (MeMtdA) and E. coli serine hydroxymethyl transferase (EcGlyA), serine 
hydroxymethyltransferase 1 (SHM1), glycine decarboxylase complex (GDC), bifunctional 
methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHDF2), 10-formyl-THF deformylase (FDF), 
formate dehydrogenase 1 (FDH1). Native Arabidopsis enzymes are indicated in grey. The unknown 
peroxisomal glycine and serine transport proteins are indicated as grey oval.  

Results 

Formate assimilation by native C1 metabolism in plants  

Plants encode enzymes for the THF-dependent formate assimilation into serine by 10-
formyl-THF synthetase (FTHFS), the bifunctional methylene-THF dehydrogenase/ 
methenyl-THF cyclohydrolase (MTHFD) and SHM in the cytosol, plastid and 
mitochondria (Hanson and Roje, 2001; Voll et al., 2006; Zhang et al., 2010; Engel et al., 
2011; Groth et al., 2016). The ATP-dependent condensation of formate and THF by FTHS 

Figure 1: The reductive glycine pathway to engineer CO2 neutral photorespiration in plants. Partial schematic representation of plant photorespiration (PR) and auxillary one-carbon metabolism (C1, blue) and the reductive glycine pathway (cRGP, green). Abbreviations: 

Methylobacterium extorquens AM1 10-formyl-THF ligase (MeFTL), methenyl-THF cyclohydrolase (MeFCH) and NADP-dependent methylene-THF dehydrogenase (MeMtdA)and E. coli serine hydroxymethyl transferase (EcGlyA), serine hydroxymethyltransferase 1 (SHM1), 

glycine decarboxylase complex (GDC), bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHDF2), 10-formyl-THF deformylase (FDF), formate dehydrogenase 1 (FDH1). 
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produces 10-formyl-THF, used in purine- and histidine biosynthesis (Zrenner et al., 2006). 
Alternatively, 10-formyl-THF is converted into 5,10-methenyl-THF and further 5,10-
methylene-THF by the bifunctional methylenetetrahydrofolate 
dehydrogenase/cyclohydrolase (MTHFD; Groth et al., 2016). At least three metabolic 
routes are served via the 5,10-methylene-THF pool: (1) cytosolic/plastidial methionine 
biosynthesis by methyl-THF reductase and methionine synthase, (2) serine biosynthesis 
by SHM and (3) thymidylate biosynthesis by mitochondrial/cytosolic bifunctional 
dihydrofolate reductase-thymidylate synthase (Supplemental Fig. S1; Ravanel et al., 
1998; Hanson and Roje, 2001; Ravanel et al., 2004; Gorelova et al., 2017).  

Formate assimilation by native THF-dependent C1 metabolism was demonstrated in yeast  
and mammalian cells, but did not take place in E. coli (Ducker et al., 2016; Yishai et al., 
2017; Zheng et al., 2018; Gonzalez De La Cruz et al., 2019). We used steady-state formate-
13C labeling of Arabidopsis seedlings and assessed the contribution of formate assimilation 
on methionine-, serine- and histidine biosynthesis (Supplemental Fig. S1). To this extent, 
five days old seedlings were cultivated on agar with 1 mM sodium formate-13C for five days 
before harvest. The 13C label enrichment in soluble amino acid pools of serine (3.32 ± 
0.84%), methionine (44.45 ± 5.99%) and histidine (6.85 ± 3.55%) demonstrated formate 
assimilation by native C1 metabolism in plants (Supplemental Fig. S1). Futher, the 
disturbance of mitochondrial glycine/serine metabolism in the shm1 mutant enhanced 13C 
label incorporation into methionine (1.5-fold), serine (3-fold) and histidine (3-fold, 
Supplemental Fig. S1).  

The cytosolic reductive glycine pathway impairs plant growth  

We hypothesized that the low enzyme abundance and unknown regulation of native 
C1 metabolism might be insufficient to produce C1 units for the synthetic bypass. Recently, 
the reductive glycine pathway (RGP) was employed as the seventh natural CO2 fixation 
pathway and used as synthetic route to enable auxotrophic growth of E. coli on formate 
and methanol (Yishai et al., 2017; Kim et al., 2020; Sánchez-Andrea et al., 2020). Core of 
the synthetic pathway to convert formate into 5,10-methylene-THF are three enzymes 
from the methylotrophic bacterium Methylobacterium extorquens AM1 (10-formyl-THF 
ligase (MeFTL), methenyl-THF cyclohydrolase (MeFCH), NADP-dependent methylene-
THF dehydrogenase (MeMtdA; Crowther et al., 2008)). The final step, the condensation of 
5,10-methylene-THF with glycine to serine, is catalyzed by E. coli SHM (EcGlyA, Fig. 1). 
We implemented a cytosolic variant of the RGP (cRGP) into Arabidopsis wild type Col-0 
(WT) via a multi-gene T-DNA construct and photosynthetic tissue specific pathway 
expression under strong promoters. In detail, the Arabidopsis Rubisco small subunit 1B, 
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2B, 3B and chlorophyll A binding protein promoters were used to drive cRGP expression 
in photosynthetic tissue (Supplemental Fig. S2; Dedonder et al., 1993; Mitra et al., 2009). 
We validated full cRGP implementation on a genomic level and confirmed the abundance 
of all cRGP enzymes in three independent transgenic lines by immunoblot analysis 
(Supplemental Fig. S2). The three transgenic lines (Lines #1, #9, #11, hereafter as Col-

0::cRGP#1-3) showed reduced photosynthetic efficiency, but were not altered in 
chlorophyll content (Fig. 2B, Supplemental Fig. S2). Further, the cRGP diminished plant 
growth, independent of growth under photorespiratory conditions in ambient air (400 ppm 
CO2) or non-photorespiratory conditions in CO2 enriched air (3000 ppm CO2) (Fig. 2C and 
D, Supplemental Fig. S7). Remarkably, plants with a detectable abundance of only MeFTL 
and EcGlyA showed WT-like phenotype (exemplified by line #17, Fig. 2 and Supplemental 
Fig. S2).  

Fig. 2: The reductive glycine pathway impairs plant growth. A) Phenotype of four independent 
transgenic Arabidopsis lines with an implemented reductive glycine pathway (cRGP) in comparison to wild 
type Col-0. The lines #1, #9 and #11 expressed all four enzymes of the cRGP (Supplemental Fig. S1). Pictures 
were taken after 28 days of growth in ambient air (400 ppm CO2, 12h light/ 12h dark). Scalebar = 1 cm. B) 
Fv/Fm values of twelve days old seedlings grown in ambient air. n >25 per genotype. C) Seedling fresh weight 
(FW) and D) seedling dry weight (DW) of 12-days-old seedlings grown in ambient air. n = 4. Shown is mean ± 
SD. Student’s t-test against wild type Col-0, p < 0.05 = *, < 0.01 = **, < 0.001 = ***. 
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Cytosolic glycine to serine conversion is the limiting step of the cRGP  

To understand the metabolic implications of the cRGP that caused the observed 
phenotype, we used steady-state metabolome profiling on 14-days-old seedlings grown in 
ambient air (Supplemental Fig. S3). Relative quantification of soluble amino acid pools 
revealed cRGP-dependent methionine and threonine accumulation, whereas glycine and 
serine pools did not significantly differ compared to WT (Fig. 3A). In addition, we aimed 
to understand the effects of the cRGP on C1 metabolism by quantification of total THF-
intermediates (C1 folates, Fig. 3B). To this extent, the absolute levels of 5-methyl-THF, 
5,10-methenyl-THF, 5-formyl-THF as mono- or polyglutamylate C1 folates were 
determined in green tissue of 14-days-old seedlings (Fig. 3B). Consistent with the 
increased methionine levels, total 5-methyl-THF levels are elevated in Col-0::cRGP#1, #3 
plants (40.91 ± 1.38 and 42.95 ± 1.91 versus 30.91 ± 2.82 µg 100 g FW-1 in Col-0, Fig. 3B). 
Further, mono-glutamylated 5-methyl-THF was elevated in Col-0::cRGP#1, #2 (21.46 ± 
1.05 and 19.97 ± 1.37 versus 16.64 ± 1.49 µg 100 g FW-1 in Col-0) and poly-glutamylated 
5-methyl-THF in Col-0::cRGP#3 (23.68 ± 2.79 versus 14.28 ± 2.98 µg 100 g FW-1 in Col-0). 
Further the 5,10-methenyl-THF levels are reduced in cRGP plants. Total 5-10-methenyl-
THF levels are reduced in Col-0::cRGP#2, #3 (53.45 ± 1.17 and 63.55 ± 2.78 versus 83.88 
± 1.36 µg 100 g FW-1 in Col-0) and polyglutamylated levels are reduced in all three cRGP 
lines. The 5-formyl-THF levels did not differ between the genotypes (Fig. 3B).  
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Fig. 3: The cRGP alters soluble amino acid pools and C1 folate levels. A) Relative metabolite levels of 
glycine, serine, methionine, threonine in green tissue of 14-days-old seedlings grown in ambient air (400 ppm 
CO2). Student’s t-test against wild type Col-0. Asterisks indicate significance after multiple testing correction 
using Benjamini-Hochberg. p < 0.05 = *, < 0.01 = **, < 0.001 = ***. n = 4, shown mean ± SD, each biological 
replicate is indicated as point. B) Quantification of cellular C1 folate levels in green tissue of 14-days-old 
seedlings grown in ambient air. Total folate represents the sum of all detectable individual C1 folates and are 
differentiate in mono- and polyglutamylated C1 folates. Student’s t-test against wild type Col-0. Asterisks 
indicate significance p < 0.05 = *, < 0.01 = **, < 0.001 = ***. n = 3, shown mean ± SD and each biological 
replicate is indicated as point. 
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A photosynthetic tissue-specific CRISPR/Cas9 module for targeted 
knockout of cRGP rate limiting steps  

Based on the shm1 amino acid labeling profile (Supplemental Fig. S1) and the metabolome 
profile of cRGP plants (Fig. 3), we phrased three engineering milestones to be reached to 
envision the cRGP as CO2-neutral photorespiratory bypass. First, disturbed 
photorespiration and mitochondrial C1 metabolism will favor cytosolic C1 metabolism and 
thereby the cRGP as photorespiratory bypass. Second, the cytosolic pools of glycine and 
serine need to be adjusted to ensure serine production by EcGlyA and avoid 5,10-
methylene-THF use for methionine biosynthesis. Third, we assumed that native formate 
catabolism by mitochondrial NAD-dependent formate dehydrogenase 1 (FDH1) negatively 
impacts the cRGP by formate oxidation (see for details on FDH1 in plants Manuscript III 
in this thesis). The knockout out of both GLDP genes that encode the GDC P-subunit, 
addresses two of the defined engineering milestones, (a) disturbed photorespiratory flux 
and (b) cytosolic glycine accumulation to ensure serine biosynthesis. However, reverse 
genetic studies on GLDP1 and GLDP2 revealed seedling lethality of homozygous 
gldp1glp2 loss-of function mutants in Arabidopsis (Engel et al., 2007).  

We developed two photosynthetic tissue-specific CRISPR/Cas9 modules to either mutate 
GLDP1 and GLDP2 (tkoG) and or in combination with FDH1 (tkoGF) to also address the 
third engineering milestone (Supplemental Fig. S4). The CRISPR/Cas9 module was based 
on somatic mutations in photosynthetic tissue and should thereby overcome seedling 
lethality of constitutive gldp1gldp2 mutants (Engel et al., 2007). The module consisted of 
four individual genetic parts. A seed-specific expressed turbo eGFP under the NapinA 
promoter and a constitutively overexpressed eGFP under the UBIQUITIN10 promoter 
served as fluorescent reporters (Supplemental Fig. S4; Stålberg et al., 1996; Grefen et al., 
2010). Functionality of the reporters was tested in tobacco protoplasts and stable 
transgenic Arabidopsis plants (Supplemental Fig. S4). Photosynthetic tissue specificity of 
the Cas9 endonuclease was ensured by expression of the Streptococcus pyogenes Cas9 
protein under the Arabidopsis Rubisco small subunit 2 B promoter (Dedonder et al., 1993). 
Finally, a transfer RNA–guide RNA multiplexing system was used to target each gene 
with two guide RNAs (gRNA) respectively (Supplemental Fig. S4). Based on target gene 
PCR-amplification and Sanger sequencing, we validated that only the respective gRNA2 
induced somatic mutations in GLDP1, GLDP2 and FDH1 genes in leaf tissue and thereby 
confirmed functionality of the photosynthetic tissue-specific CRISPR/Cas9 module 
(Supplemental Fig. S5).  



Manuscript II 

 74 

Photosynthetic tissue-specific knockout of the GDC overcomes seedling 
lethality but impairs plants growth under photorespiratory conditions 

We established two independent tkoG lines (tkoG#1 and #2) in the WT background to test 
the developmental consequences of a photosynthetic tissue-specific gldp1gldp2 knockout. 
lants were grown either in ambient air or in CO2 enriched air. The tkoG plants did not 
differ in germination efficiency compared to WT under both in ambient air or in CO2 
enriched air (Fig. 4A). Upon seedling development in ambient air three distinct 
phenotypes appeared in tkoG plants. The three phenotypes were classified based on the 
degree of growth reduction and include a severe growth phenotype (here after as ‘strong’), 
a milder growth phenotype (here after as ‘weak’) and WT-like growth (‘wildtype’; Fig. 4B). 
Both the ‘strong’ and ‘weak’ phenotype occurred at the same frequency of 40% upon growth 
of tkoG plants in ambient air (Fig 4C). Further, time-dependent imaging of chlorophyll 
photochemical efficiency of photosystem II in dark-adapted leaves (Fv/Fm) during seedling 
development demonstrated reduced Fv/Fm values in tkoG seedlings grown in ambient air 
(Fig. 4D). Both, ‘strong’ and ‘weak’ tkoG plants showed a gradual reduction in Fv/Fm values 
during seedling development in ambient air (Fig. 4E). Growth under non-photorespiratory 
condition in a CO2 enriched environment suppressed the observed phenotypes and the 
reduction in Fv/Fm values during seedling development (Fig. 4E).  
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Fig. 4: Photosynthetic tissue-specific knockout of the glycine decarboxylase overcomes seedling 

lethality. The tkoG module facilitates the knockout of both GLDP genes in photosynthetic tissue. Two 
independent tkoG module containing transgenic Arabidopsis lines were established in the wild type Col-0 
background (tkoG#1 and tkoG#2). A) Germination efficiency of tkoG plants in ambient air (400 ppm CO2, AC) 
or in CO2 enriched air (3000 ppm CO2, HC). Germination was quantified as cotyledon appearance four days 
after transfer to light. n > 25. B) Representative image of the phenotypes of tkoG plants grown under ambient 
CO2. Images taken 12 days after transfer to light. Brightfield (left) and representative image of a chlorophyll 
photochemical efficiency of photosystem II in dark-adapted leaves (Fv/Fm) measurement (right). Scalebar = 1 
cm. C) Quantification of phenotype appearance of tkoG plants (‘strong’, ‘weak’ and ‘wildtype’), grown in 
ambient air (400 ppm CO2, AC) or in CO2 enriched air (3000 ppm CO2, HC). n> 25. D & E) Quantification of 
Fv/Fm values during seedling establishment in ambient air (D) or in CO2 enriched air (E). Shown mean ±SD. 
n > 25. Student’s t-test against Col-0. p > 0.01 = *, p > 0.001 = **. Colored asterisk indicated the student’s t-
test result for the respective phenotypes of tkoG plants. Wild type Col-0 is indicated in light grey. 

Figure 4: Photosynthetic tissue-specific knockout of the glycine 

decarboxylase P-subunit overcomes seedling lethality. The tkoG 

module facilitates the knockout of the glycine decarboxylase P-subunit in  

photosynthetic tissue and tkoG#1 and #2 are two independent transgenic 

Arabidopsis lines. A) Germination efficiency of tkoG plants in ambient air 

(400 ppm CO2, AC) or in CO2 enriched air (3000 ppm CO2, HC). 

Germination was quantified as cotyledon appearance four days after 

transfer to light. n > 25. B) Representative image of the phenotypes of tkoG 
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Prolonged growth of ‘strong’ tkoG plants in ambient air caused an 80% reduction in rosette 
area and rosette diameter respectively (Fig. 5A and B). Further, we validated reduced 
GLDP protein in mature rosette leaves of four-week-old ‘strong’ tkoG plants by 
immunoblot analysis (Fig. 5C). Additionally, we quantified the level of somatic mutations 
in GLDP1 and GLDP2 genes in mature leaves of four-week-old rosettes ‘strong’ tkoG 
plants by qPCR (Supplemental Fig. S5). Therefore gene specific primers were designed 
that span the site of Cas9 induced double strand breaks at the gRNA site to quantify the 
degree of induced indel mutations (Yu et al., 2014). In ‘strong’ tkoG plants the presence of 
WT GLDP1 and GLDP2 is diminished by 85% and 50% on average respectively (Fig. 5D). 
Considering each leaf as a chimera of different induced mutations in GLDP genes, the 
overall degree of somatic mutations remained constant between leaves of independent 
plants of tkoG#1 and #2 plants (Fig. 5D). In addition to the tkoG module, we also 
implemented the tkoGF module in the WT background to simultaneously mutate GLDP1, 
GLDP2 and FDH1 (Supplemental Figure S4). Two independent transgenic lines were 
established (tkoGF#1 and #2). Compared to WT, ‘strong’ tkoGF plants were 50% reduced 
in rosette area and rosette diameter (Fig. 5E and F). Growth of tkoG and tkoGF plants 
CO2 enriched air repressed the observed growth phenotypes and plants were 
indistinguishable from WT regarding rosette area and diameter (Fig. 5, Supplemental Fig. 
S6).  
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Fig. 5: Photosynthetic tissue specific knockout of the glycine decarboxylase affects plants growth 
under photorespiratory conditions. A) Phenotype of three-weeks-old ‘strong’ tkoG plants grown in 
ambient air (400 ppm CO2, AC) or in CO2 enriched air (3000 ppm CO2, HC). Scalebar = 2 cm. B) Rosette area 
(top row) and rosette diameter (bottom row) were quantified in AC grown ‘strong’ tkoG plants. Wild type Col-
0 is indicated in light grey. Shown mean ± SD. n= 4. C) GLDP protein abundance in tkoG plants was quantified 
by immunoblot analysis. Total leaf protein from the fourth leaf of four-week-old AC grown rosettes was loaded. 
Rubisco large subunit (RbcL) detected by ponceau- and coomassie staining served as loading control. D) 
Quantification of wild type (WT) GLDP1 and GLDP2 abundance by qPCR. Genomic DNA from the fourth 
mature leaf of two independent plants (A & B) was isolated. Wild type Col-0 was set to 100 %. Shown mean ± 
SD. ntech = 4. E) Phenotype of three-weeks-old ‘strong’ tkoGF plants grown in AC or in HC. Scalebar = 2 cm. 
F) Rosette area (top row) and rosette diameter (bottom row) was quantified in AC grown ‘strong’ tkoGF plants. 
Wild type Col-0 is indicated in light grey. Shown mean ± SD. n= 4. Line connects means. For B) and F) 
Student’s t-test against Col-0. p <0.05 = *, < 0.01 = **, p < 0.001 = ***. 

Figure 5 : Photosynthetic tissue specific knockout of glycine 
decarboxylase affects growth. A) Phenotype of three week old early edit 
tkoG plants grown in air (400 ppm CO2, AC) or in CO2 enriched air 
(3000 ppm CO2, HC). B) Rosette area (top) and rosette diameter 
(bottom) was quantified in air grown early edit tkoG plants. Wildtype 
Col-0 is indicated in light grey. Shown mean ± SD. n= 4. Line connects 
means. Student’s t-test against Col-0 p < 0.01 = **, p < 0.001 = ***. C) 
Glycine decarboxylase P protein (GLDP) abundance in tkoG lines was 
quantified by immunblot analysis using polyclonal glycine 
decarboxylase P protein antibody. 5 and 10 µg of total leaf protein, 
isolated from the fourth leaf of four week old air grown rosettes. RbcL 
detected by ponceau staining and coomassie staining served as 
loading control. D) Quantification of  CRISPR/Cas9 editing in GLDP 
genes at the position of guide RNA 2 (g2) by qPCR. Genomic DNA from 
the fourth mature leaf of two biological replicates  (A & B) from two 
independent T-DNA lines was isolated and used for qPCR analysis. 
Shown percentage wild type gene abundance compared to the wild 
type. Shown mean ± SD. ntech = 4. E) Phenotype of three week old early 
edit tkoGF plants grown in air (400 ppm CO2, AC) or in CO2 enriched 
air (3000 ppm CO2, HC). F) Rosette area (top) and rosette diameter 
(bottom) was quantified in air grown early edit tkoGF plants. Wildtype 
Col-0 is indicated in light grey. Shown mean ± SD. n= 4. Line connects 
means. Student’s t-test against Col-0 p < 0.01 = **, p < 0.001 = ***. 
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Setting the genetic basis for CO2-neutral photorespiration   

Finally, we combined the cRGP module with the photosynthetic tissue specific 
CRISPR/Cas9 module to set the genetic basis for CO2-neutral photorespiration via a 
cytosolic C1 unit sink. Therefore, we established independently the tkoG and tkoGF 
modules in Col-0::cRGP#1 and #3 backgrounds. Per cRGP background genotype two 
independent transgenic lines were established for each photosynthetic tissue specific 
CRISPR/Cas9 module. Initially, we quantified plant growth in ambient air, CO2 enriched 
air, or shifted from CO2 enriched air to ambient air three days before harvest. The 
combination of the cRGP and tkoG module did not significantly recover growth compared 
to tkoG plants and overall growth was considerably reduced compared to WT 
(Supplemental Fig. S7). Further the combination of tkoGF and cRGP modules reduced 
plant growth in the Col-0::cRGP#1 background and but remained unaltered in the Col-

0::cRGP#3 background compared to tkoGF plants. Both, growth in CO2 enriched air and 
a three days shift from CO2 enriched air to ambient air showed a cRGP-dependent growth 
reduction (Supplemental Fig. S7).  

Discussion 

Photorespiratory CO2 release lowers plant growth and reduces the extent atmospheric 
CO2 sequestration into biomass. Bypasses of photorespiration have been proven as a valid 
approach to accelerate plant growth and plant carbon use efficiency (Kebeish et al., 2007; 
Maier et al., 2012; Shen et al., 2019; South et al., 2019). However, the validation of a 
metabolic bypass that addresses the hub of photorespiratory CO2 release, the 
mitochondrial GDC, in plants is not described. Photorespiratory glycine oxidation by the 
GDC yields the C1 unit 5,10-methylene-THF, that is condensed with a second glycine 
molecule by SHM1 to produce serine (Fig. 1). The underlying biochemistry implies that a 
potential CO2-neutral bypass of photorespiration requires an alternative supply of 5,10-
methylene-THF for GDC/SHM1-independent glycine to serine conversion in a CO2-neutral 
manner. For this purpose, we combined the cRGP, for cytosolic C1 unit provision based on 
THF-dependent formate assimilation, with a photosynthetic tissue specific CRISPR/Cas9 
module to eliminate CO2-releasing reactions of photorespiration (GDC and FDH1). 

The cornerstone of our approach is the assimilation of formate into serine (Fig. 1). 
Although a small contribution of native formate assimilation to cellular serine production 
was shown, the direct use of formate derived C1 units in auxiliary pathways has not been 
clarified (Prabhu et al., 1996; Prabhu et al., 1998; Li et al., 2003). Based on formate-13C 
labeling of Arabidopsis seedlings, we demonstrated that formate derived C1 units were 
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predominantly used for histidine- and methionine- rather than serine biosynthesis 
(Supplementary Fig. S1). We note that, the 13C-label quantification did not consider the 
cellular pool sizes and the 13C-label abundance in the large serine pool might be 
underestimated. However, it is assumed that cytosolic and plastidial SHM produce 5,10-
methylene-THF for C1 metabolism by hydroxymethyl transfer to THF rather than serine 
biosynthesis (Zhang et al., 2010). The cytosol and plastid contribute to 55% of the soluble 
cellular methionine pool and are autonomous for methionine de novo biosynthesis 
(Ravanel et al., 1998; Ravanel et al., 2004; Szecowka et al., 2013). An average 13C-label 
enrichment of 44% in methionine indicates that formate assimilation took place in both 
the cytosol and plastid (Supplementary Fig. S1). This is further supported by 13C-label 
incorporation in histidine, a consequence of plastidial purine de-novo synthesis (Zrenner 
et al., 2006; Witte and Herde, 2020). This observation supports the hypothesis of 
intracellular formate dependent C1 unit provision since the transport of C1 folates across 
biological membranes is unlikely (Cybulski and Fisher, 1981; Zrenner et al., 2006; Witte 
and Herde, 2020; see Manuscript III in this thesis).  

Although Arabidopsis is capable to assimilate formate by native C1 metabolism, we 
implemented the cRGP  to avoid unknown catalytic and regulatory deficits of native plant 
C1 metabolism (Yishai et al., 2017; Kim et al., 2020). Based on metabolome profiling we 
identified glycine to serine conversion as the rate-limiting step of the cRGP (Fig. 3). A low 
cytosolic glycine/serine ratio would favor the reverse reaction of the final enzyme EcGlyA 
and in plants the combined C1 part of the cRGP and the EcGlyA reaction contributed to 
C1 folate pools (Fig. 3B; Szecowka et al., 2013). In line, the 5,10-methylene-THF and 5-
methyl-THF levels increased in cRGP plants (Fig. 3B). In Arabidopsis methylene-THF 
reductase is not allosterically regulated by S-adenosyl-L-methionine and would allow a 
constant metabolic flux towards methionine biosynthesis and the SAM cycle (Fig. 3A; Roje 
et al., 2002). Remarkably, the cRGP did not influence the cellular 5-formyl-THF levels, 
which is critical to avoid inhibition of SHM activity by 5-formyl-THF accumulation (Goyer 
et al., 2005). Further, the large cellular glycine and serine pools were not significantly 
altered in cRGP plants (Fig. 3), but threonine and branch-chain amino acid levels were 
elevated and could be explained by increased cytosolic threonine aldolase and methionine 
ɣ-lyase activity (Joshi et al., 2006; Joshi and Jander, 2009). Although, the aldol reaction 
of plants threonine aldolases seems unlikely, direct evidence by glycine-13C labeling is 
lacking (Prabhu et al., 1996; Prabhu et al., 1998). Taken together, the observed changes 
in the metabolome of cRPG plants might contribute to the reduced growth phenotype (Fig. 
2). However, downstream effects like DNA hypermethylation by increased SAM cycle 
activity and altered cytosolic redox metabolism are not assessed so far and could be 
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alternative explanations of the phenotype  (Groth et al., 2016; Gorelova et al., 2017; Meng 
et al., 2018).  

A GDC knockout seemed the rational solution to redirect photorespiratory flux towards 
the cRGP and alter the cytosolic glycine/serine ratio to favor EcGlyA dependent serine 
production (Fig. 1). The dual role of the GDC in photorespiration and C1 metabolism 
prevents traditional reverse genetic approaches due to seedling lethality of loss-of-function 
mutants (Engel et al., 2007; Timm et al., 2017). Further, a limited understanding on the 
integration of the GDC in cellular metabolism restricts metabolic engineering approaches 
and the underlying reasons for the growth supporting effects of GDC subunit 
overexpression are mysterious (Timm et al., 2012; Timm et al., 2015; Lopez-Calcagno et 
al., 2019). We developed a tissue specific CRISPR/Cas9 module to knockout both GLDP 
genes in photosynthetic tissue. The use of tissue-specific knockouts is a novel approach to 
study conditional lethal genes and pioneering work on Arabidopsis root caps, the stomatal 
lineage and lateral roots demonstrated the potential to induce somatic mutations and 
study the effects in a defined cell type or tissue (Decaestecker et al., 2019). The role of the 
GDC in photorespiration explains the reduced growth of tkoG plants in ambient air that 
is suppressed under non-photorespiratory conditions (Fig. 5, Supplemental Fig. S7). 
However, the quantity of homozygous gldp1gldp2 cells within a chimeric leaf, consisting 
of WT, gldp1, gldp2, gldp1glpd2 cells, remained unknown and challenging to determine. 
Single cell RNA sequencing (scRNA-seq) offers a novel tool to decipher transcriptional 
changes at the cellular level (Rich-Griffin et al., 2020). We propose that scRNA-seq could 
be used to identify gldp1gldp2 cells in tkoG plants and thereby elucidate the 
transcriptome of a homozygous GLDP knockout in plants. The mix of CRISPR/Cas9 
genome editing with scRNA-seq is already used in mammalian cells in randomized gRNA 
screens to identify genetic circuits of epigenetic gene regulation and immune response 
(Jaitin et al., 2016; Datlinger et al., 2017; Alda-Catalinas et al., 2020). The combination of 
tissue-specific knockouts in plants with scRNA-seq will be a powerful tool to understand 
the role of lethal loss-of-function genes in photorespiration, e.g. the peroxisomal 
serine:glyoxylate aminotransferase (Modde et al., 2017).  

In comparison to the observed growth reduction in tkoG plants, the simultaneous 
knockout of GLDP1, GLDP2 and FDH1 affected plant growth less (Fig. 5). It is appealing 
to believe that reduced formate catabolism increased the formate pool and partially 
complemented the GDC loss by enhanced cytosolic formate to serine conversion (see 
Manuscript III in this thesis). However, it remains to be determined if the tkoGF growth 
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phenotype is based on a metabolic consequence or a result of lower editing efficiency in 
the GLDP genes.  

Based on the current understanding of photorespiration, we established the genetic basis 
for CO2-neutral photorespiration in plants. However, a growth promoting effect was not 
observed by combining the cRGP and tkoG or tkoGF modules (Supplemental Fig. S7). 
Likely, the low intracellular formate concentration (~100 nmol g FW-1) is not sufficient to 
sustain the high serine demands of photorespiration (Igamberdiev et al., 1999; Wingler et 
al., 1999). A third engineering module will focus on enhancing in vivo formate production. 
One potential strategy includes the direct conversion of CO2 into formate by formate 
dehydrogenase and requires a high reduction potential and/or metal-dependent enzymes 
(Hartmann and Leimkühler, 2013; Cotton et al., 2018; Nielsen et al., 2019). Alternatively, 
an acetyl-CoA/malony-CoA shuttle could enable in vivo production of formate from 
bicarbonate (personal communication with Tobias Erb, Max-Planck Institute for 
Terrestrial Microbiology, Marburg, Germany). It should be noted, that the direct 
production of formate from CO2 and the subsequent assimilation by the cRGP will 
transform plant photorespiration into a carbon positive process (Weber and Bar-Even, 
2019).  

Conclusion 

In summary, the genetic basis for CO2-neutral photorespiration was set by implementing 
the cRGP to engineer a cytosolic C1 unit sink for GDC/SHM1-independent glycine to serine 
conversion. In addition, the developed photosynthetic tissue specific CRISPR/Cas9 module 
can be used as a novel tool to redirect the metabolic flux towards a synthetic bypass and 
eliminate interfering reactions of native plant metabolism. Future work will elucidate the 
potential of a combined photosynthetic tissue specific knockout with scRNA-seq to 
understand the role of conditional lethal genes in the photorespiratory cycle. Given the 
role of the GDC in photorespiration, picturing the transcriptome of a gldp1gldp2 knockout 
at the single cell levels will benefit fundamental research and engineering approaches of 
photorespiration.  

Materials and Methods  

Gene synthesis 

The coding sequences of Methylobacterium extorquens AM1 10-formyl-THF ligase (MeFTL, 
EC: 6.3.4.3), methenyl-THF cyclohydrolase (MeFCH, EC: 3.5.4.9), NADP-dependent 
methylene-THF dehydrogenase (MeMtdA, EC: 1.5.1.5) and E. coli serine 
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hydroxymethyltransferase (EcGlyA, EC: 2.1.2.1) were codon optimized for expression in 
Arabidopsis by gene synthesis (ThermoFisher Scientific, Waltham, USA) and matured for 
golden-gate cloning.  

Plasmid construction 

All plasmids were generated with the golden-gate based MoClo tool kit, including vector 
backbones and genetic parts (Engler et al., 2014). Plasmids used for the CRISPR/Cas9 
based tool for tissue specific knockouts in photosynthetic tissue were modified from (Xie 
et al., 2015) and provided by Claus-Peter Witte (University of Hannover, Hannover, 
Germany). Plasmids were sequenced by Sanger sequencing (Microsynth, Balgach, 
Switzerland). Generated plasmids and primers used in this study are listed in 
Supplemental Table S1 and S2, respectively.  

Plant material and cultivation conditions 

The Arabidopsis ecotype Col-0 was used as reference wild type and genetic background for 
transgenic plants. Seeds were surface-sterilized using the vapor-phase sterilization 
method (Clough and Bent, 1998). Seeds were grown on half-strength Murashige and Skoog 
medium (pH 5.7) supplemented with 0.8% (w/v) agar (½ MS plates). Seeds were cold 
stratified for two days at 4°C. After germination, seedlings were grown for 14 days at 100 

µmol m-2 s-1 light intensity, at atmospheric CO2 concentration (400 ppm) or in CO2 enriched 
air (3000 ppm) in 12 hours light/12 hours dark photoperiod prior transfer to soil and 
cultivation under similar conditions.  

For stable isotope labeling experiments with formate-13C, seedlings were grown on ½ MS 
plates for five days and afterwards transferred to ½ MS plates supplemented with 1 mM 
sodium formate-13C (Cambridge Isotope Laboratories, Tewksbury, USA). Plates were 
placed in the growth chamber for five additional days and whole seedlings were harvested 
in the middle of the light phase. 

Generation of transgenic Arabidopsis lines  

T-DNA constructs were introduced into Agrobacterium tumefaciens strain 
GV3101::pMP90 (Koncz and Schell, 1986) and Arabidopsis Col-0 plants were transformed 
via agrobacterium-mediated transformation (Clough and Bent, 1998). Homozygous T3 
plants were used for further analysis.  

Chlorophyll fluorescence and chlorophyll measurements  

Fv/Fm values were measured using an imaging chlorophyll fluorometer (Imaging PAM, 
Walz, Effeltrich, Germany). Upon dark adaptation for 20 min, seedlings were exposed to 
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a pulsed, blue probe beam and a saturating light flash to measure Fv/Fm values. 

Chlorophyll was extracted in 80% acetone and rotating at 4°C in the dark before 
photometric measurement. Chlorophyll was calculated based on (Inskeep and Bloom, 
1985).  

Plant phenotyping 

For fresh weight and dry weight analysis, either 12- or 14-days old seedlings were 
harvested and weight for fresh weight analysis. Seedlings were dried for four days at 65°C 
before dry weight analysis. Germination was quantified as cotyledon appearance four days 
after transfer to light. 

Immunoblot analysis 

SDS-PAGE and immunoblot analysis was performed as described in (Laemmli, 1970; 
Kuhnert et al., 2020). Monoclonal conjugated horseradish peroxidase anti-His antibody 
(Miltenyi Biotech, Bergisch Gladbach, Germany), polyclonal glycine decarboxylase P 
protein antibody (Agrisera, Vännäs, Sweden) and goat anti-rabbit IgG horse radish 
peroxidase (Miltenyi Biotech, Bergisch Gladbach, Germany) were used for immunoblot 
analysis.  

Quantitative real time PCR (qPCR) 

Genomic DNA (gDNA) of mature Arabidopsis leaves was extracted by precipitation with 
isopropanol (Weigel and Glazebrook, 2009). The qRT-PCR was carried out using 
Luna Universal qPCR Master Mix (New England Biolabs, Ipswich, USA) and a 
StepOnePlus Real-Time PCR thermocycle (Applied Biosystems, Foster City, 
USA). PCR conditions were as followed: an initial denaturation step at 95°C for 10 
min, followed by 45 cycles of 95°C for 15 s, and 60°C for 60 s, followed by a melting curve. 
Per assay 50 ng of extracted gDNA was used. In order to quantify the degree of mutations 
gene specific primer were designed that span the Cas9 cleavage site three nucleotides 
before the PAM (Yu et al., 2014). Primer sequences are listed in Supplemental Table S1 
and the primer efficiency for each pair was determined (Supplemental Fig. S5). ACTIN2 
(ACT2) served as reference gene. The relative abundance was calculated as described in 
(Simon, 2003) and for comparison WT levels were set to 100%.   

Transient expression in Nicotiana benthamiana 

Overnight grown Agrobacterium tumefaciens GV3101::pMP90 cells, carrying the T-DNA 
construct were diluted in infiltration medium (10 mM MgCl2, 10 mM MES [pH 5.7], 100 
µM acetosyringone) to an OD600 of 0.4. Leaves of four-week old greenhouse-grown 
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Nicotiana benthamiana (N. benthamiana) plants were infiltrated using a syringe without 
a needle.  

Protoplast isolation 

N. benthamiana protoplasts were isolated two days post infection. Leaves were sliced into 
small pieces, vacuum-infiltrated with protoplast digestion solution (1.5% [w/v] cellulase 
R-10, 0.4% [w/v] macerozyme R-10, 0.4 M mannitol, 20 mM KCl, 20 mM MES [pH 5.7], 10 
mM CaCl2, 0.1% [w/v] bovine serum albumin) and incubated for two hours at 28°C. 
Sedimented protoplasts were resuspended in W5 solution (154 mM NaCl, 125 mM CaCl2, 
5 mM KCl, 2 mM MES [pH5.7]) and analyzed by confocal laser scanning microscopy.  

Confocal laser scanning microscopy 

Zeiss LSM780 confocal microscope and Zeiss ZEN software (Zeiss, Jena, Germany) was 
used for confocal laser scanning microscopy. Excitation/ emission wavelengths were as 
followed: green fluorescent protein (488 nm/490 to 550 nm), chlorophyll A (488 nm/ 640 to 
710 nm). Images were processed with Fiji (Schindelin et al., 2012).  

Reversed-phase liquid chromatography/ mass spectrometry analysis of 
mono- and polyglutamylated C1 folates  

Levels of mono- and polyglutamylated C1 folates were quantified in 200 mg material of 
green tissue of 14-days-old Arabidopsis seedlings grown under atmospheric CO2 
concentration (400 ppm). Absolute quantification was performed by reverse-phase liquid 
chromatography with tandem mass spectrometry detection as described previously (De 
Brouwer et al., 2010; Blancquaert et al., 2013).  

Metabolite profiling by gas-chromatography time of flight mass 
spectrometry 

For metabolite profiling green tissue of 14-days-old seedlings was harvested by liquid 
nitrogen dousing at the middle of the light phase. Frozen material was ground using 
precooled mortar and pistil. Ground material was aliquoted under continuous liquid 
nitrogen exposure to avoid sample thawing. Metabolites were extracted by one-phase 
extraction as previously described (Fiehn et al., 2000). In detail, the extraction mix, 
containing water:methanol:chloroform (ratio 1:2.5:1) and 5 µM ribitol as internal 
standard, was added to frozen material. Samples were vortexed for 20 seconds, rotated for 
6 minutes at 4 °C and centrifuged for 2 minutes at 20,000 x g at room temperature. The 
supernatant was transferred to a new tube and stored at -80 °C before further processing. 
For metabolite profiling by gas chromatography-time of flight mass spectrometry (GC/MS 
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QTOF, Agilent, Santa Clara, USA). 50 µl of extract was dried using a speed vacuum 
concentrator. Dried samples were placed in the Gerstel MPS 2 XL autosampler for 
automatic sample derivatization using methoxyamine hydrochloride and N-Methyl-N-
(trimethylsilyl) trifluoroacetamide before injection. The GC-MS device is a 7200 accurate 
mass Q-TOF GC/MS (Agilent, Santa Clara, USA). For relative quantification metabolite 
peak areas are normalized to the internal extraction standard and the material fresh 
weight.  

Reversed-phase liquid chromatography/mass spectrometry analysis of 
amino acids 

Soluble amino acids in whole seedlings were quantified using a 6530 quadrupole-time-of-
flight mass spectrometer (Agilent, Santa Clara, USA) coupled to a 1290 HPLC system 
(Agilent, Santa Clara, USA). For chromatographic separation a Waters Symmetry C18 
column (2.1 × 100 mm, 3.5-µm particle size) was used with column oven temperature at 
30°C. The injection volume was set to 10 µl, and the HPLC flow rate was 0.3 ml/min using 
the following mobile phases and gradient: Starting conditions were 98% mobile phase A 
(1 mM aqueous perfluoroheptanoic acid) and 2% mobile phase B (100% Acetonitrile). 
Within 0.1 min B increased to 20%, following a 40% increase after 2.3 min. This was hold 
until 4 min before dropping down to 2% until 4.1 min. Equilibration time with start 
conditions was 4 min. Mass spectra were acquired using electrospray ionization in positive 
ion mode. The source parameters were set as follows: capillary voltage 3500V, gas 
temperature 250°C, drying gas flow of 5 l/min, nebulizer pressure 25 psig, sheath gas 
temperature 350°C, and a sheath gas flow of 10 l/min. The fragmentor was set to 100 V, 
the skimmer to 65 V and the Oct1 RF Vpp to 750 V. Data were acquired with MassHunter 
Workstation Data Aqusition (Version B.08.00; Agilent) and processed and analyzed for 
quantification with MassHunter Quantitative Analysis (Version B.08.00; Agilent). 
Retention times of target metabolites were verified with standard compounds as reference. 
The peak area of the isotopomers was corrected for the natural abundance to quantify 13C 
label enrichment (Supplementary Table S3).  

Data analysis and software 

Data analysis was performed in R. The respective code and the primary data are available 
upon request from the corresponding author.   
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Accession Numbers 

The protein accession numbers used in this study are as followed: FDH1 (AT5G14780, 
Q56X34), GLDP1 (AT4G33010, Q94B78), GLDP2 (AT2G26080, O80988), MeFCH 
(P55818), MeFTL (Q83WS0), MeMtdA (P55818) , EcGlyA (P0A825) 
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Supplemental Information 

Supplemental Fig. S1: Formate-13C labeling with Arabidopsis seedlings. A) Schematic representation 
of cytosolic C1 metabolism in plants. B) Reversibility of cytosolic C1 metabolism in Arabidopsis by formate-13C 
feeding. Five days old seedlings of Arabidopsis wild type or the serine hydroxymethyltransferase 1 mutant 
(shm1) were grown in CO2 enriched air (3000 ppm CO2) either on 1 mM sodium formate (top) or 1 mM sodium 
formate-13C (bottom) for five days before harvesting. The 13C label enrichment in soluble amino acids pools of 
glycine (G), serine (S), methionine (M), histidine (H) and threonine (T) was quantified. n = 6. Abbreviations: 
10-formyl-THF synthetase (FTHFS), bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase 
(MTHFD), serine hydroxymethyltransferase (SHM), bifunctional dihydrofolate reductase-thymidylate 
synthase (DHFR-TS), methylene-THF reductase (MTHFR), methionine synthase (MS), threonine aldolase 
(THA).  

Supplemental Figure S1: A) Schematic representation of cytosolic C1-metabolism in plants. B) Reversibility of cytosolic C1 metabolism in Arabidopsis by formate-13C feeding. Five day old seedlings of Arabidopsis wild type or the serine hydroxymethyltransferase 1 mutant (shm1) 

were grown either in CO2 enriched air (3000 ppm CO2) on 1 mM sodium formate (top) or 1 mM sodium formate-13C (bottom) for five days before harvesting. 13C label enrichment in soluble amino acids pools of glycine (G), serine (S), methionine (M), histidine (H) and threonine (T) 

was quantified. n = 6. Abbreviations: 10-formyl-THF synthetase (FTHS1), bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD1), serine hydroxymethyltransferase (SHM), bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS1), 

methylene-THF reductase (MTHFR), methionine synthase (MS), threonine aldolase (THA). 
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Supplemental Fig. S2: Implementation of the cRGP in Arabidopsis. A) Schematic representation of the 
multigene T-DNA construct for cRGP pathway implementation. Kanamycin (KanR) was used as antibiotic 
selection marker. B) Genotyping of transgenic T1 cRGP plants in wild type Col-0. C) Immunoblot analysis of 
cRGP enzyme abundance. Arabidopsis Rubisco large subunit (RbcL) served as loading control, shown by 
coomassie staining. 12 µg leaf protein of four-weeks-old air-grown plants was loaded per lane. Protein 
abundance was detected using a monoclonal anti-HIS HRP antibody for all four cRGP enzymes, separated 
based on size. D) Chlorophyll (Chl) content in rosettes of four-weeks-old plants. Chlorophyll a, chlorophyll b, 
total chlorophyll content, ratio chlorophyll a/b was determined. n = 4. Shown mean ± SD. Biological replicates 
are indicated as points. Students t-test against wild type Col-0. p > 0.05 = *,> 0.01 = **, > 0.001 = ***.  
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Supplemental Fig. S3: Metabolome profile of cRGP plants. Green tissue of 14-days-old seedlings was 
harvested in the middle of the light phase. Plants were grown in ambient air (400 ppm CO2) and metabolite 
levels were analyzed by GC-MS QTOF. Student’s t-test against wild type Col-0. Asterisks indicate significance 
after multiple testing correction using Benjamini-Hochberg. p < 0.05 = *, < 0.01 = **, < 0.001 = ***. n = 4. UK 
indicates detected metabolites by GC-MS QTOF, that were identified based on NIST-library searches but not 
verified with analytical standards.  
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Supplemental Figure S3: Metabolome profile of cRGP plants. Green tissue of 14 days old seedlings was harvested in the middle of the light phase. Plants were grown in air (400 ppm CO2).and Metabolite levels were analyzed by GC-MS. 
Student’s t-test against wild type Col-0. Asterisks indicate significance after multiple testing correction using Benjamini-Hochberg. p < 0.05 = *, < 0.01 = **, < 0.001 = ***. n = 4.  UK indicates detected metabolite by GC-MS that were annotated 
based on NIST-library search and not additionally verified with an analytical standard. 
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Supplemental Fig. S4: A CRISPR/Cas9 based module for photosynthetic tissue specific knockouts. 
A) Schematic representation of the T-DNA constructs for photosynthetic tissue specific knockouts (tko). Two 
T-DNA constructs were designed to simultaneously knockout both glycine decarboxylase P-subunit encoding 
genes (GLPD1 and GLDP2) and formate dehydrogenase 1 (FDH1, tkoGF). Alternatively, only GLPD1 and 
GLDP2 are knocked out (tkoG). The guide RNAs (g1 and g2) are indicated with the respective target 
subscripted. B) The constitutive eGFP marker (UBQ10p::eGFP) was tested in N. benthamiana protoplasts and 
transgenic Arabidopsis lines. Images are representative for both the tkoGF and tkoG module. Red = 
chlorophyll A autofluorescence. Confocal microscopy images were analyzed using Fiji. D) Arabidopsis seed 
expressing the turbo eGFP under the NapinA promoter. E) Schematic representation of the GLDP1 
(At4g33010), GLDP2 (At2g26080) and FDH1 (At5g14780) genomic loci with position of the used guide RNAs 
(g) indicated in purple. Exons are indicated in grey.  
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Supplemental Figure S4: Design of a CRISPR/Cas9 based tool for tissue specific knockouts in photosynthetic tissue. A) Schematic representation of the T-DNA constructs for tissue knockout (tko) in photosynthetic tissue. Two T-DNA constructs 
were designed to simultaneously edit both glycine decarboxylase P-protein  genes, GLPD1 and GLDP2 and formate dehydrogenase 1 (FDH1) gene (tkoGF). Alternatively, only both glycine decarboxylase P-protein  genes, GLPD1 and GLDP2 are edited 
(tkoG). The guide RNAs (g1 and g2) are indicated with the subscripted target. B) The constitutive eGFP marker (UBQ10p::eGFP) was tested in N.benthamiana protoplasts and transgenic Arabidopsis lines. Images are representative for tkoGF and tkoG. 
Red = chlorophyll A autofluorescence. Confocal microscopy images were analyzed using Fiji. D) Arabidopsis seed expressing the turbo eGFP under the napA promoter. E) Schematic representation of the GLDP1 (At4g33010), GLDP2 (At2g26080) and 
FDH1 (At5g14780) genomic loci with position of the used guide RNAs (g) indicated in purple. Exons are indicated in grey. 
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Supplemental Fig. S5: Functionality of the CRISPR/Cas9 module. A) Verification of CRISPR/Cas9 
dependent editing in GLDP1, GLDP2 and FDH1 genes by the respective used guide RNA 2 (g2). Genomic DNA 
was isolated from mature leaves of four weeks old plants grown in CO2 enriched air. Target genes were 
amplified by PCR and PCR fragments were sequenced by Sanger sequencing. B) Primer efficiency of qPCR 
primers, determined by genomic DNA dilution series. GLDP1 and GLDP2 primers were specific for the 
position of g2. Linear equation and R2 were determined based on the regression line. ntech= 3. C) Ct-values for 
the ACT2 reference gene to quantify wild type GLDP1 and GLDP2 abundance by qPCR. Genomic DNA from 
the fourth leaf of four-week-old air grown rosettes of two independent plants (A & B) per genotype was isolated. 
ntech= 4.  

 

Supplemental Figure S5: CRISPR-Cas9 based tissue-specific knockout system. A) Verification of CRISPR/Cas9 dependent editing in GLDP1,GLDP2 and FDH1 genes by the respective used guide RNA 2 (g2). Genomic DNA was isolated from 
four week old leaves. Target genes were amplified by PCR and PCR fragments were sequenced by Sanger sequencing. B) Schematic representation of the qPCR assay to quantify the CRISPR/Cas9 dependent editing efficiency.  Positions of the guide 
RNAs (g1 and g2) are indicated in red. Primers used for the qPCR assay are indicated as black arrows. One primer binds at the position off the guide RNA and the second primer binds in the inter genomic region between the guide RNAs.  Actin 2 
(ACT2) serves as reference gene for quantification. C) Primer efficiency of qPCR primers. ntech= 3. D)F) Ct- values for the ACT2 reference gene. 4 technical replicates. Each target was assayed with reference gene on the same plate. 
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Supplemental Fig. S6: Growth of tkoG and tkoGF plants in CO2 enriched air. A and B) Rosette area 
(top) and rosette diameter (bottom) of three weeks old tkoG (A) and tkoGF plants grown in CO2 enriched air 
(3000 ppm CO2) was quantified. Shown mean ± SD. n= 4. Student’s t-test against Col-0. p > 0.05 = not 
significant.  

 

 

Supplemental Figure S6: CO2 enriched air suppresses the growth phenotype of tkoG and tkoGF plants. A and B) Rosette area (top)and rosette diameter 
(bottom) of three week old tkoG (A) and tkoGF1 plants grown in CO2 enriched air (3000 ppm CO2) was quantified. Shown mean ± SD. n= 4. Student’s t-
test against Col-0. p > 0.05 = not significant.
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Supplemental Figure S7: Growth of plants with the cRGP and the CRISPR/Cas9 module. 
Quantification of seedlings fresh weight (FW, top) and dry weight (DW, bottom) of the combined cRGP and 
photosynthetic tissue-specific CRISPR/Cas9 modules tkoG and tkoGF. Plant growth was quantified on 14-
days-old seedlings grown in ambient air (400 ppm CO2, A), in CO2 enriched air (3000 ppm CO2, B) or shifted 
from CO2 enriched air to ambient air three days before harvest (C). n per genotype = 5. One-way ANOVA with 
a post-hoc Tukey HSD test. 

Supplemental Figure S7: Quantification of seedlings fresh weight (FW, top) and dry weight (DW, bottom) of the combined cRGP and photosynthetic tissue-
specific CRISPR/Cas9 module. Plant growth was quantified on 14 days old seedlings grown in ambient air (400 ppm CO2, A), in CO2 enriched air  (3000 ppm 
CO2, B) or shifted from CO2 enriched air to ambient air three days before harvest (C). Per biological replicate 6 seedlings were pooled. n per genotype = 5. One-
way anova with a post-hoc Tukey HSD test. 
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Supplemental Table S1: List of primer used in this study. Gene specific nucleotides are indicated in 
caps. Abbreviations: guide RNA (gRNA). Arabidopsis Formate Dehydrogenase 1 (FDH1, At5g14780), 
Arabidopsis Glycine decarboxylase P-protein 1 (GLDP1, At4g33010), Arabidopsis Glycine decarboxylase P-

protein 2 (GLDP2, At2g26080), Arabidopsis ACTIN2 (ACT2, At3g18780). 

 

 

Primer sequence  Purpose Reference 

fwd: 5’-CTGGTACTGAAGGTGAAGTCTTG-3’ 
rev: 5’-CAACACTCACAGGCTTGC-3’ 

Sequencing primer GLDP1 This study 

fwd: 5’-GTTCCGAAATCGATTCGGTTAG-3’ 
rev: 5’-CTCACAGTGTTGGAGTCCAC-3’ 

Sequencing primer GLDP2 This study 

fwd: 5’-GCCAACGAATACGCTACC-3’ 
rev: 5’-CGATGTAATTCTCAGTAGGGAAG-3’ 

Sequencing primer FDH1 
 

This study 

fwd: 5’ GAGTATAAGAGAATGATGCCTGGGAGG-3’ 
rev: 5’-CTTGAGCAGTACAGATGTTGCTAGTG-3’ 

qPCR gRNA1 GLDP1 
 

This study 

fwd: 5’-CTTCATCTTTTCATTTTCCTGCAGGCG-3’ 
rev: 5’-GCAGGTCCATGGTAAACAGCATAC-3’ 

qPCR gRNA2 GLDP1 
 

This study 

fwd: 5’-GTGACGGTTGATATTAAGGATGTGG-3’ 
rev: 5’-GTCAAAGCCAACAAATCCGTAGCC-3’ 

qPCR gRNA1 GLDP2 
 

This study 

fwd: 5’-GAGGTACCGAGAGAGCAGTACC-3’ 
rev: 5’-GGTCCATGGTAAACAGCATACATAGC-3’ 

qPCR gRNA2 GLDP2 
 

This study 

fwd: 5’-CCGGATCTTCACGTCCTAATCTCC-3’ 
rev: 5’-CAATATGATCCGAGCCAATACCAGC-3’ 

qPCR gRNA1 FDH1 
 

This study 

fwd: 5’-GAACAACGCAAGAGGAGCCATC-3’ 
rev: 5’-TTAGGAGCTGGCTGTGGGTC-3’ 

qPCR gRNA2 FDH1 
 

This study 

fwd: 5’-CCAAGCTGTTCTCTCCTTGTACGC-3’ 
rev: 5’-GTGAGACACACCATCACCAGAATCC-3’ 

qPCR ACT2 
 

This study 

fwd: 5’-CTGGTACTGAAGGTGAAGTCTTG-3’ Sequence gRNA1 GLDP1 
 

This study 

fwd: 5’-CTGGTACTGAAGGTGAAGTCTTG-3’ Sequence gRNA2 GLDP1 
 

This study 

fwd: 5’-CTGGTACTGAAGGTGAAGTCTTG-3’ 
 

Sequence gRNA1 GLDP2 
 

This study 

fwd: 5’-CTGGTACTGAAGGTGAAGTCTTG-3’ 
 

Sequence gRNA2 GLDP2 
 

This study 

fwd: 5’-CTGGTACTGAAGGTGAAGTCTTG-3’ 
 

Sequence gRNA1 FDH1 
 

This study 

fwd: 5’-CTGGTACTGAAGGTGAAGTCTTG-3’ 
 

Sequence gRNA2 FDH1 
 

This study 
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Supplemental Table S2: List of constructs used in this study. Vector backbones, promoters and 
terminators are described in (Engler et al., 2014). Abbreviations: Methylobacterium extorquens AM1 10-
formyl-THF ligase (MeFTL), methenyl-THF cyclohydrolase (MeFCH) and NADP-dependent methylene-THF 
dehydrogenase (MeMtdA) and E. coli serine hydroxymethyl transferase (EcGlyA). Streptococcus pyogenes 
Cas9 (SpCasp). Arabidopsis Formate Dehydrogenase 1 (FDH1, At5g14780), Arabidopsis Glycine decarboxylase 
P-protein 1 (GLDP1, At4g33010), Arabidopsis Glycine decarboxylase P-protein 2 (GLDP2, At2g26080), 
Arabidopsis ACTIN2 (ACT2, At3g18780). Arabidopsis thaliana (At), Solanum lycopersicum (Sl), 
Agrobacterium tumefaciens (Atu). The CRISPR/Cas9 multiplexing system was adapted based on (Xie et al., 
2015). 
 

Purpose Vector Insert Comment 

cRGP T-DNA 
construct for 
implementation 
in plants 
 

pICH75322  Pos. 1: AtrbcS2Bp::MeFTL::AtuOCSt 
Pos. 2: AtrbcS1Bp::MeFCH::AtuNOSt 
Pos. 3: AtrbcS3Bp::MeMtdA::35St 
Pos. 4: AtCABp::MeGlyA:: SlRbcS3Ct 
Pos. 5: AtuNosp::NptII::AtuOCSt 

Implementation of the 
cytosolic reductive 
glycine pathway  

tkoG T-DNA 
construct for 
implementation 
in plants 
 

pICH86966 Pos. 1: UBQ10p::eGFP::35St 

Pos. 2: AtrbcS2Bp::SpCas9::ACT2t 
Pos. 3: U6p::gRNAs-GLDP::U6t 
Pos. 4: NapinAp::turbo eGFP::OCSt 

Tissue knockout (tko) in 
photosynthetic tissue of 
both glycine 
decarboxylase P-protein 
genes, GLPD1 and 
GLDP2.  

tkoGF T-DNA 
construction for 
implementation 
in plants 

pICH86966 Pos. 1: UBQ10p::eGFP::35St 

Pos. 2: AtrbcS2Bp::SpCas9::ACT2t 
Pos. 3: U6p::gRNAs-GLDP::U6t 

Pos. 4: U6p::gRNAs-GLDP::U6t 

Pos. 5: NapinAp::turbo eGFP::OCSt 

Tissue knockout (tko) in 
photosynthetic tissue of 
both glycine 
decarboxylase P-protein 
genes, GLPD1 and 
GLDP2 and formate 
dehydrogenase 1 (FDH1) 
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Supplemental Table S3: Masses and natural abundance used for LC-MS QTOF based amino acid 
profiling and 13C label quantification.  
 

Metabolite Molecular mass [g mol-1] 
13C-

label 
Formula Natural abundance [%] 

Glycine 
 

76.0393 
77.0419 
78.0436 

0 
1 
2 

C2H5NO2 
 

 
26.73 
4.34 

Serine 
 

106.0498 
107.0527 
108.0542 

0 
1 
2 

C3H7NO3 
 

 
3.81 
0.67 

Methionine 
150.0583 
151.0610 
152.0552 

0 
1 
2 

C5H11NO2S 
 

 
6.77 
5.08 

Histidine 
156.0767 
157.0792 

0 
1 

C6H9N3O2 
 

 
7.77 

Threonine 
120.0655 
121.0684 
122.0699 

0 
1 
2 

C4H9NO3 
 

 
4.92 
0.71 
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Abstract  

The transfer of one carbon (C1) units is an integral part of cellular metabolism and 
essential for nucleotide-, amino acid-, and cofactor biosynthesis as well as cellular 
methylation reactions. Within the plant cell, mitochondria are considered the hub of one 
carbon metabolism, but mechanisms and fluxes to distribute C1 units from the 
mitochondria within the cell are unknown. Formate, the anion of formic acid, is an 
intermediate of C1 metabolism and is converted into C1-tetrahydrofolate intermediates (C1 
folates) or oxidized to CO2 by formate dehydrogenase. In plants, the existence of formate 
dehydrogenase questions formate exchange between mitochondria and the cytosol, a basic 
principle of eukaryotic cellular and organellar C1 metabolism. Based on biochemical and 
physiological characterization of Arabidopsis thaliana formate dehydrogenase 1 (FDH1), 
we propose a FDH1-regulated C1 shunt that connects mitochondrial and cytosolic C1 
metabolism by formate exchange. Finally, we give a perspective on a cellular 
serine/formate shuttle that allows the distribution and transfer of C1 units according to 
the redox state within the compartments.  

Introduction  

One carbon (C1) metabolism is essential to all living organisms (Hanson et al., 2000). In 
plants, folate (vitamin B9) co-enzymes, supply activated C1 units for a variety of metabolic 
processes. The biosynthesis of nucleotides (purine and thymidylate) mitochondrial and 
chloroplastic proteins, vitamin as well as amino acid metabolism and methylation 
reactions all depend on the provision of C1 units (Hanson and Roje, 2001). Within the cell, 
tetrahydrofolate (THF) functions as carrier for C1 units via C1 THF (C1 folates; Hanson 
and Roje, 2001). C1 folates exist in several oxidation states (10-formyl-THF as most 
oxidized and 5-methyl-THF as most reduced form) and are reversibly converted between 
the different oxidation states (Hanson and Gregory, 2011).  

Since the transport of C1 folates across organellar membranes is unlikely, different 
mechanisms need to exist that allow the distribution of C1 units between compartments 
(Cybulski and Fisher, 1981). Heterotrophic eukaryotes use a C1 shunt based on formate 
exchange to connect mitochondrial and cytosolic C1 metabolism (Christensen and 
MacKenzie, 2006) Ducker:2016kk, Zheng:2018fj}. In mammalian cells, mitochondrial 
derived formate fuels cytosolic C1 metabolism for 10-formyl-THF formation and thereby 
maintains cellular redox homeostasis and folate integrity (Ducker et al., 2016) (Zheng et 
al., 2018). However in plants, a comparable C1 shunt between mitochondria and the cytosol 
is questioned by the existence of a mitochondrial formate dehydrogenase (Li et al., 2000). 
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In leaf mitochondria, photorespiration and C1 metabolism interact by glycine to serine 
conversion catalyzed by the combined activity of the glycine decarboxylase complex (GDC) 
and serine hydroxymethyltransferase (SHM). Both enzymes catalyze THF-dependent 
reactions and are major soluble proteins of leaf mitochondria (Eisenhut et al., 2019; Busch, 
2020; Fuchs et al., 2020; Wittmiß et al., 2020). The lethal phenotypes of the gldp1gldp2 
(GDC P-protein), gldt1 (GDC T-protein) and shm1shm2 mutants in Arabidopsis thaliana 
(Arabidopsis) are explained by the dual role of GDC and SHM in C1 metabolism and define 
mitochondria as the cellular hub for the provision of C1 units within the plant cell (Engel 
et al., 2007; Engel et al., 2011; Timm et al., 2017). The central C1 intermediate of the 
GDC/SHM catalyzed reactions is 5,10-methylene-THF, that either derives from glycine 
oxidation or reversible hydroxymethyl group transfer from serine. Besides glycine/serine 
metabolism, 5,10-methylene-THF is also oxidized in the mitochondrial THF cycle 
(Eisenhut et al., 2019; Busch, 2020). The final step of the cycle, catalyzed by 10-formyl-
deformylase (FDF), releases THF and produces a single formate molecule (Collakova et 
al., 2008; Eisenhut et al., 2019). The photorespiratory phenotype and progeny lethality of 
the 10-formyl-deformylase double knockout mutant is additional evidence on the role of 
mitochondrial C1 metabolism in photorespiration and plant development (Collakova et al., 
2008). Further, the THF-cycle together the non-enzymatic glyoxylate decarboxylation, 
methanol metabolism and oxalate catabolism contributes to the cellular formate pool 
(Igamberdiev et al., 1999; Wingler et al., 1999; Foster et al., 2012).  

At least two metabolic routes exist that determine the fate of formate and imply either a 
role as intermediate of folate-dependent C1 metabolism or the oxidation to CO2 (Hanson 
and Roje, 2001). Plants possess enzymes for the THF-dependent conversion of formate into 
5,10-methylene-THF and isoforms exist in the plastid, mitochondria and cytosol (Hanson 
and Roje, 2001). In the cytosol 5,10-methylene-THF is allocated between thymidylate- and 
methionine biosynthesis (Groth et al., 2016; Gorelova et al., 2017). Methionine is integral 
part of the methyl cycle to produce S-adenosyl-L-methionine (SAM), the cellular methyl 
group donor(Ranocha et al., 2001; Sauter et al., 2013). Although plastids are autonomous 
for methionine biosynthesis, they depend on the import of SAM as methyl donor by the 
SAMT1 transporter (Ravanel et al., 2004; Bouvier et al., 2006). The essentiality of cytosolic 
C1 metabolism was shown by characterization of the hypomorphic and dwarfed mutant of 
the cytosolic methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate 
cyclohydrolase activity (MTHFD1). Loss of MTHFD1 activity abolishes the SAM cycle and 
causes genome-wide DNA hypomethylation and loss of histone H3K9 methylation (Groth 
et al., 2016). However, given by the existence of mitochondrial NAD-dependent formate 
dehydrogenase (FDH), formate could also be oxidized to CO2 while reducing a pyridine co-
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factor, preferentially NADH. The existence of FDH was demonstrated in several plant 
species (potato, rice, Arabidopsis) and a role as stress inducible protein was hypothesized 
(Colas des Francs-Small et al., 1993; Hourton-Cabassa et al., 1998; Li et al., 2000; 
Shiraishi et al., 2000; Alekseeva et al., 2011; Choi et al., 2014; Lou et al., 2016). Further, 
FDH is regulated via post-translational modifications, including phosphorylation and 
acetylation, but the consequences on FDH activity remain unknown (Bykova et al., 2003; 
Kuhnert et al., 2020; Møller et al., 2020). In Arabidopsis, FDH is encoded by a single gene 
(hereafter as FDH1) and several studies at the beginning of the century reported on the 
biochemical characterization of FDH1 and dual targeting of the enzyme to mitochondria 
and the chloroplast (Li et al., 2000; Olson, 2000; Li et al., 2002; Baack et al., 2003).  

Here, we address the limited understanding of C1 metabolism in plants by 
characterization of Arabidopsis FDH1. Based on this, we propose that plants use a C1 
shunt based on formate exchange to connect mitochondrial and cytosolic C1 metabolism 
and regulate flux via the shunt by FDH1. To this extent, we analyzed the kinetic constants 
of recombinant FDH1 and define the enzyme as NAD-dependent FDH. In addition, we 
confirmed that FDH1 is localized to plant mitochondria and not dual-targeted to the 
chloroplast as previously described (Li et al., 2000; Olson, 2000; Li et al., 2002; Baack et 
al., 2003). Further, we assessed the in planta role of FDH1 by generated loss-of function 
mutants and overexpression plants. The loss of FDH1 reduced plant growth and altered 
chlorophyll biosynthesis whereas overexpression increased plant growth. Finally, we 
picture a potential serine/formate shuttle to mediate C1 unit transfer between 
compartments according to the cellular and/or organellar redox state.  

Results 

FDH1 is a NAD-dependent formate dehydrogenase  

Biochemical characterization of FDH1 reported kinetic constants that differ by one order 
of magnitude with respect to the affinity for formate, ranging from 1.4 mM to 10 mM (Li 
et al., 2000) (Olson, 2000). In order to accurately determine the kinetic constants of FDH1, 
we heterologously expressed FDH1 in E. coli and purified the protein by immobilized 
metal affinity chromatography based on an N-terminal 6xHis-tag. Recombinant FDH1 
had a Km value of 3.85 ± 0.14 mM for formate and a Vmax of 1.02 ± 0.01 µmol min-1 mg-1 
protein determined by Michaelis-Menten kinetics (Supplemental Fig. S1). In a recently 
published mitochondrial proteomic dataset, we identified the first 30 N-terminal amino 
acids of FDH1 as mitochondrial target peptide that is cleaved upon mitochondrial import 
(Kuhnert et al., 2020). Comparison of FDH1 activity with a variant lacking the 
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mitochondrial target peptide (FDH1Δ1-30), revealed no significant differences in total FDH 
activity (Fig. 1A), although both, the Km value for formate (4.11 ± 0.1 mM) and Vmax (1.47 
± 0.02 µmol min-1 mg-1 protein) increased (Supplemental Fig. S1).  

We only considered FDH1 for further biochemical characterization and determined a pH 
optimum of 7.5 (Fig. 1B). Formate was the preferred substrate of FDH1, since no activity 
was detected with glutamate, glycolate, acetate or oxalate (Fig. 1C). However, glyoxylate 
was accepted as a secondary substrate with 4% activity compared to formate (Fig. 1C). In 
addition, FDH1 was neither allosterically regulated by photorespiratory metabolites 
(glycine, serine, glycolate, glyoxylate), glutamate and oxalate (Fig. 1D), nor did oxidized 
or reduced conditions alter the activity (Fig. 1E and F).  

Fig. 1: Biochemical characterization of Arabidopsis formate dehydrogenase 1. Arabidopsis formate 
dehydrogenase 1 (FDH1) was N-terminally 6xHis-tagged, heterologously expressed in E. coli and purified by 
immobilized metal affinity chromatography. All enzymatic assays were performed with 50 mM sodium 
formate, if not stated otherwise. A) Activity of FDH1 and FDH1Δ1-30. B) pH-optimum of FDH1, C) Substrate 
specificity of FDH1. Activity with formate was set to 100%. D) Allosteric regulation of FDH1. Assays performed 
with 1 mM formate in the presence of 10 mM allosteric inhibitor. E) FDH1 under oxidized conditions. 
Recombinant FDH1 protein was preincubated with 0.5 mM diamide before enzymatic assays. F) FDH1 activity 
under reduced conditions in the presence of 5 mM DTT. For all experiments: n ≥ 3. Shown = mean ± SD, 
replicates shown as points. 

Figure 1: Biochemical characterization of formate dehydrogenase 1. Arabidopsis formate dehydrogenase 1 (FDH1) was N-terminally 6xHis-tagged for affinity chromatography purification. All enzymatic assays were performed with 50 mM sodium formate, if not stated otherwise. 

A) Activity of FDH1 and FDH1 Δ1-30. B) Substrate specificity of FDH1. Enzymatic assays performed with 50 mM substrate. C) Allosteric regulation of FDH1. Assays performed with 1 mM formate in the presence of 10 mM respective inhibitor. D) FDH1 activity under reduced 

conditions in the presence of 5 mM DTT. E) FDH1 under oxidized conditions. Recombinantly FDH1 protein was preincubated with 0.5 mM diamide before enzymatic assays. F) FDH1 activity under different pH values. For all experiments: n ≥ 3. error bars = SD. 
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FDH1 is a mitochondrial enzyme  

It was previously hypothesized that FDH1 is dual localized to mitochondria and 
chloroplasts (Olson, 2000; Herman et al., 2002). Based on subcellular fluorescence studies 
we demonstrated that FDH1 is only localized in mitochondria (Fig. 2A and B and 
Supplemental Fig. S2). Initially, we generated GFP fusions of FDH1 N-termini and 
analyzed the subcellular localization in tobacco protoplasts by confocal laser scanning 
microscopy. The GFP-fusion of the N-terminal 60 amino acids (FDH11-60) resulted in 
mitochondrial protein localization, whereas shorter FDH1 N-termini fusions (FDH11-30, 1-

40, 1-50) localized in the cytosol (Supplemental Fig. S2). In order to independently validate 
the mitochondrial localization of FDH1, we generated stable Arabidopsis plants. 
Therefore, full-length FDH1 was C-terminally fused with mCherry and overexpressed 
under the constitutive active UBQ10 promoter (Grefen et al., 2010). The respective FDH1-
mCherry fusion localized to mitochondria in leaves and roots and remained FDH activity 
when heterologously expressed in E. coli (Fig. 2C).  

Fig. 2: Localization of Arabidopsis formate dehydrogenase 1. A and B) Arabidopsis formate 
dehydrogenase 1 (FDH1) was C-terminally fused with mCherry. Transgenic Arabidopsis lines expressing 
FDH1-mCherry under the constitutive UBQ10 promoter were generated. Leaves (epidermal cell layer, A) and 
roots (root cortex, B) of 14 days old seedlings were analyzed by confocal laser scanning microscopy. Red = 
FDH1-mCherry signal, Green = MitoTracker Green FM as mitochondrial marker, in A) Blue = chlorophyll A 
autofluorescence. (C) FDH activity of FDH1-mCherry fusion. FDH1-mCherry was heterologously expressed in 
E. coli. The respective lysate was measured for FDH activity and compared to the empty vector control (EV). 
n = 3, Shown = mean ± SD, replicates shown as points. 

 

 

Figure 2: Localization of formate dehydrogenase 1. Arabidopsis formate dehydrogenase 1 (FDH1) was C-terminally tagged with mCherry. Transgenic Arabidopsis lines expressing 

FDH1-mCherry under the constitutive UBQ10 promoter were generated. A,B) Leaves (epiderminal cell layer, A) and roots (root cortex, B) and of 14 days old seedlings were analyzed by 

confocal laser scanning microscopy. Red color = FDH1-mCherry signal, Green color = MitoTracker™ Green FM as mitochondrial marker, in A) Blue = chlorophyll A autofluorescence. (C) 

FDH activity of FDH1-mCherry fusion. FDH1-mCherry was heterologously expressed in E. coli. Lysate was measured for FDH activity and compared to the empty vector control (EV). n = 3, 

errorbars = SD. 
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Generation of fdh1 mutants by genome editing  

Although previous studies hypothesized on a role of plant FDHs in stress response, direct 
evidence by mutant characterization is lacking (Hourton-Cabassa et al., 1998; Choi et al., 
2014; Møller et al., 2020). We generated three independent fdh1 (hereafter fdh1-1, fdh1-2 
and fdh1-3) loss-of function mutants in Arabidopsis using the clustered regularly 
interspaced short palindromic repeat (CRISPR)/ CRISPR-associated protein 9 (Cas9) 
[CRISPR/Cas9] system for genome editing (Hahn et al., 2017b). Two guide RNAs (gRNA) 
were designed, targeting the 4th exon of the FDH1 gene, encoding for the NAD-binding site 
(Fig. 3). The induced genomic mutations and homozygosity of the fdh1 mutants were 
confirmed by Sanger-sequencing of the FDH1 genomic locus upon PCR-based 
amplification (Supplemental Fig. S3). The fdh1 mutants harbor 34, ten and seven base 
pair deletions, respectively, either at the position of gRNA1 (fdh1-1 and fdh1-2) or gRNA2 
(fdh1-3) (Fig. 3A and B). FDH activity measurements, using isolated mitochondria, 
confirmed all three fdh1 mutants as loss function mutants, since FDH activity was not 
detectable, whereas mitochondrial NAD-dependent malate dehydrogenase activity, 
remained unaltered between wild type (WT) and fdh1 mutants (Fig. 3C). To independently 
validate the fdh1 mutants as loss of function mutants, the primary FDH1 transcript from 
each fdh1 mutant was isolated. Based on the respective transcript, recombinant protein 
was synthesized in vitro and FDH activity was measured (Fig. 3D). Recombinant FDH1 
proteins from the fdh1 mutants did not catalyze FDH activity and immunoblot analysis 
confirmed truncated FDH1 protein of 84 and 64 amino acids in the fdh1-2 and fdh1-3 

mutant, respectively (Fig. 3D, Supplemental Fig. S3). Although a 100 amino acid ablated 
FDH1 protein was expected in the fdh1-1 mutant, mis-splicing of the FDH1 transcript 
resulted in an early stop codon 120 base pairs after the start codon (Supplemental Fig. 
S3).  
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Fig. 3: Generation FDH1 knockout mutants. A) Schematic representation of the Arabidopsis FDH1 
genomic locus. Red lines indicate the position of the guide RNAs (g1 & g2) used for genome editing by the 
CRISPR/Cas9 system. B) Genomics mutations in the fdh1 mutants. Within the wild type (WT) FDH1 sequence 
the 20 base pairs target sequence of the guide RNAs (g1 top, g2 bottom panel) is underlined. The protospacer 
adjacent motif is indicated in bold. C) FDH activity in isolated leaf mitochondria. Mitochondrial NAD-
dependent malate dehydrogenase (MDH) was measured as control. Shown = mean ± SD, replicates shown as 
points, n = 3. D) FDH activity of in vitro synthesized recombinant FDH1 protein based on the primary FDH1 
transcript of the fdh1 mutant (fdh1-1, fdh1-2, fdh1-3). Wild type (Col-0) FDH1 protein, N- and C-terminally 
HA tagged (HA-FDH1, FDH1-HA respectively) served as positive controls. Empty vector (EV) served as 
negative control. Shown = mean ± SD, replicates shown as points, n = 4.  

The lack of FDH1 causes hypersensitivity to exogenously supplied formate  

To characterize the physiological role of FDH1, we combined the fdh1 mutants with three 
independent overexpression lines (OEX:FDH1#1-3). The OEX:FDH1 plants express the 
FDH1-mCherry fusion under the constitutive UBQ10 promoter and the FDH1 transcript 
is eightfold (#1), 13-fold (#2) and 14-fold (#3) more abundant compared to WT 
(Supplemental Fig. S4). Millimolar concentrations of exogenously supplied formate reduce 

Figure 3: Generation FDH1 knockout mutants. A) Schematic representation of the Arabidopsis FDH1 genomic locus. Red lines indicate the position of the guide RNAs (g1 & g2) used for genome editing by the CRISPR/Cas9 system. B) Genomics mutations in the fdh1 mutants. 

Within the wildtype (WT) FDH1 sequence the 20 base pair target sequence of the guide RNAs (g1 top, g2 bottom panel) is underlined. The protospacer adjacent motif is indicated in bold. C) Formate dehydrogenase (FDH) activity measurements in isolated leaf mitochondria. 

Mitochondrial NAD-dependent malate dehydrogenase (MDH) was measured as control. Shown are mean (bar) ± SD of three technical replicates (dots). D) FDH activity of in vitro synthesized recombinant FDH1 protein based on the primary FDH1 transcript in each fdh1 mutant 

(fdh1-1, fdh1-2, fdh1-3). Wildtype (Col-0) FDH1 protein, N-  and C-terminally HA tagged (HA-FDH1, FDH1-HA respectively) served as positive control. Empty vector (EV) served as negative control. Shown mean (bar) ± SD of four technical replicates (dots). 
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plant growth and photosynthetic electron transport in isolated chloroplasts (Stemler, 
1980; Blubaugh and Govindjee, 1988). Competitive inhibition of the bicarbonate binding 
site within photosystem II by formate, prevents proton donation to the plastoquinone 
reductase site (Blubaugh and Govindjee, 1988; Li et al., 2002). To initially verify the effect 
of exgenously supplied formate on plant growth and development, we quantified seedling 
establishment of fdh1 mutants and OEX:FDH1 plants in the presence of 5 mM formate. 
Even without formate treatment the fdh1-2 and fdh1-3 mutants are reduced in 
germination compared to WT, whereas fdh1-1 is not altered (χ2 = 0.16). All OEX:FDH1 
plants germinated WT-like in the absence of formate. Plant cultivation in the presence of 
5 mM formate impaired germination and development of the fdh1 mutants compared to 
WT (Fig. 4A and B). Chlorophyll photochemical efficiency of photosystem II in dark-
adapted leaves (Fv/Fm) is a key parameter reflecting photosystem II efficiency and a 
common marker of plant stress (Krause and Weis, 1991). To test the inhibitory effect of 
formate on photosystem II, we quantified Fv/Fm values (Fig. 4B). Even under control 
conditions fdh1 mutants showed reduced Fv/Fm values compared to WT (Fig. 4B). Growth 
on 5 mM formate reduced Fv/Fm values of all genotypes but severely affected fdh1 mutants, 
whereas the overexpression plants were less affected in comparison to WT (Fig. 4B and 
C). This highlights that fdh1 mutants are hypersensitive to exogenously supplied formate, 
whereas overexpression of FDH1 conferred resistance.   
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Fig. 4: Sensitivity of fdh1 mutants and FDH1 overexpression plants to exogenously supplied 

formate. A) Seedling establishment, quantified on twelve days after transfer to light. Seedlings grown at 

ambient CO2 on agar plates (1/2MS) or agar plates supplemented with 5 mM sodium formate (+ 5 mM 

Formate). n > 25. Chi-square test χ2 > 0.05 = *,> 0.01 = **, > 0.001 = ***. B) Quantification of chlorophyll 

photochemical efficiency of photosystem II in dark-adapted leaves (Fv/Fm). Students t-test against wild type 

Col-0. p > 0.05 = *,> 0.01 = **, > 0.001 = ***. n 1/2MS > 25, n + 5 mM Formate > 10. C) Representative image of Fv/Fm 

measurement of twelve days old seedlings. Scale bar = 0.5 cm. 

Mitochondrial formate dehydrogenase activity is required for plant 

growth  

The absence of mitochondrial FDH1 activity impaired growth of air grown plants, whereas 

FDH1 overexpression accelerated growth and an earlier completion of the life cycle (Fig. 

5, Supplemental Fig. S4). Consistently, fresh weight and dry weight of 12-d-old seedlings 

were reduced in the fdh1 mutants and increased in the OEX:FDH1 plants (Fig. 5B and C). 

In addition, both, mutants and overexpression plants were reduced in primary root length 

(Fig. 5D).  

Recent evidence shows that an integral folate status is required for functional chlorophyll 

biosynthesis (Van Wilder et al., 2009). Chlorophyll synthesis requires the conversion of 

Mg-protoporphyrin IX into Mg-protoporphyrin IX monomethyl ester. The enzyme, Mg-

protoporphyrin IX methyltransferase catalyzing this reaction uses the universal methyl-

donor Ado-Met as substrate. Chlorophyll analysis indicated an altered chlorophyll a to 

chlorophyll b ratio in the fdh1 mutants (Fig. 5H). An opposite trend was found in the 

Figure 4: Sensitivity of fdh1 mutants and FDH1 overexpression plants to exogenously supplied formate. A) Seedling establishment, quantified on twelve days after transfer to light. 

Seedlings grown at ambient CO2 on agar plates (1/2MS) or agar plates supplemented with 5 mM sodium formate (+ 5 mM Formate). n > 25. Chi-square test χ2 > 0.05 = *,> 0.01 = **, > 0.001 

= *** . B) Quantification of chlorophyll photochemical efficiency of photosystem II in dark-adapted leaves (Fv/Fm) . Students t-test against wild type Col-0. p > 0.05 = *,> 0.01 = **, > 0.001 = *** 

. n 1/2MS > 25, n + 5 mM Formate > 10. C) Representative image of Fv/Fm measurement of twelve days old seedlings. Scale bar = 0.5 cm. 
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overexpression lines. Total chlorophyll a content was significantly reduced in two out of 
three fdh1 mutants and unaltered in the overexpression lines (Fig. 5G). In contrast, 
chlorophyll b content was increased in the fdh1 mutants (Fig. 5F; p < 0.05 for fdh1-1 and 
fdh1-2). However, despite the visible growth effects, soluble metabolite pools linked to C1 
metabolism (glycine, serine, methionine) were not altered (Supplemental Fig. S5).  

Fig. 5: Phenotype of fdh1 mutants and overexpression plants. A) Representative image of phenotypes 
of four weeks old plants grown at ambient CO2. B and C) Fresh weight (B) and dry weight C) of twelve days 
old seedlings. n = 4. Shown mean ± SD. Biological replicates are indicated as points. D) Primary root length of 
twelve days old seedlings. n > 30. E-H) Chlorophyll content in rosettes of four weeks old plants. Chlorophyll a 
(E), chlorophyll b (F), total chlorophyll content (G), ratio chlorophyll a/ chlorophyll b (H) was determined. n = 
4. Shown mean ± SD. Biological replicates are indicated as points. For all: Students t-test against wild type 
Col-0. p > 0.05 = *,> 0.01 = **, > 0.001 = ***. 

Discussion 

Underlying fundamental principles of C1 metabolism in plants are marginally defined, 
caused by a high genetic redundancy, low metabolic flux, metabolite instability and 
mutant lethality (Hanson and Roje, 2001). Formate, an intermediate of C1 metabolism, is 

Figure 5: Phenotype of fdh1 mutants and overexpression plants. A) Representative image of phenotypes of 4 weeks old plants. B & C) Fresh weight (B) and dry weight C) of twelve day old seedlings. 
n = 4. Shown mean ± SD. Biological replicates are indicated as points. D) Primary root length of twelve day old seedlings. n > 30. E-H) Chlorophyll content in rosettes of 4 week old plants. Chlorophyll a 
(E), chlorophyll b (F), total chlorophyll content (G), ratio chlorophyll a/ chlorophyll b (H) was determined. n = 4. Shown mean ± SD. Biological replicates are indicated as points. Students t-test against wild 
type Col-0. p > 0.05 = *,> 0.01 = **, > 0.001 = *** .
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either used in folate-dependent C1 metabolism or oxidized to CO2 (Ducker and Rabinowitz, 
2017). In mammalian cells, formate exchange between mitochondria and the cytosol is 
essential for compartmentalized folate-dependent C1 metabolism (Fan et al., 2014; Ducker 
et al., 2016; Zheng et al., 2018). However, a comparable C1 shunt in plants, is questioned 
by the existence of mitochondrial FDH, that is putatively dual localized to the chloroplast 
(Olson, 2000; Herman et al., 2002; Alekseeva et al., 2011). Based on characterizing the 
role of Arabidopsis FDH1, we propose that in plants, FDH regulates the flux of the C1 
shunt that mediates formate exchange between mitochondria and the cytosol to maintain 
homeostatic C1 metabolism.  

In Arabidopsis, FDH is encoded by a single gene (FDH1) and localized to mitochondria 
(Fig. 2, Supplemental Fig. S2). Given the expected low intracellular formate levels in the 
plant cell, the high Km for formate of recombinant FDH1 was surprising ((Wingler et al., 
1999) Supplemental Fig. S1). However, it implies either underestimated cellular formate 
levels or a small pool size, that is maintained below a toxicity threshold (Fig. 4, (Stemler, 
1980; Blubaugh and Govindjee, 1988; Igamberdiev et al., 1999)). Further, in vitro 
determined kinetic constants could differ from in vivo scenarios based on the cellular 
environment and regulation of the enzyme. Indeed, redox regulation of the plastidial 
glucose-6-phosphate dehydrogenase, the first enzyme of the glucose-6-phosphate shunt, 
increases the Km of the enzyme under reduced conditions (Scheibe et al., 1989; Hauschild 
and Schaewen, 2003; Sharkey and Weise, 2016). Although FDH1 activity was not 
influenced by oxidized or reduced conditions (Fig. 1), posttranslational modification, by 
phosphorylation and/or acetylation, could play a role in regulating FDH activity and 
kinetics (Bykova et al., 2003; Kuhnert et al., 2020; Møller et al., 2020). We note, that FDH1 
was identified in a mitochondrial lysine (Lys) acetylome study of Arabidopsis (König et al., 
2014). In a recent study on the mitochondrial carrier protein A BOUT DE SOUFFLE from 
Arabidopsis, FDH1 was differentially abundant between the WT and the mutant but 
unchanged in activity, indicating in vivo regulation of the enzyme by posttranslational 
modifications (Kuhnert et al., 2020). However, a recombinant FDH1K184R mimicking 
mutant, with the mutated lysine in the NAD-binding pocket did not show altered activity 
and kinetics (data not shown).  

The photorespiratory phenotype of the 10-deformylase double knockout mutant indicates 
that 5,10-methylene-THF produced by the GDC is oxidized in the mitochondrial THF cycle 
and formate is produced (Collakova et al., 2008). This implies that in an illuminated leaf, 
the GDC is one source of mitochondrial derived formate. In line with the hypothesis of 
mitochondrial formate export via the shunt for cytosolic folate-dependent C1 metabolism, 
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the transcriptional abundance of FDH1 within a light phase behaved acyclic to GLDT 

(Supplemental Fig. S6). The GLDT gene encodes the GDC T-protein that is required to 
produce 5,10-methylene-THF that is oxidized by the THF-cycle to produce formate. 
However, a quantitative estimate on the fate and flux of photorespiratory C1 metabolism 
is lacking (Busch, 2020). Stable-isotope tracing by 13CO2 and 33sulfur using the soluble 
methionine pool as readout of C1 fluxes, do not differentiate between cytosolic and/or 
plastidial SHM and formate-dependent folate metabolism that both contribute to the 5,10-
methylene-THF pool used for methionine synthesis (Gauthier et al., 2010; Abadie and 
Tcherkez, 2019).  

In order to provide in planta evidence on the C1 shunt and the associated regulatory role 
of FDH1, we generated FDH1 knockout mutants and overexpression plants (Fig. 3 and 5, 
Supplemental Fig. S4). The stunted growth of the fdh1 mutants indicates impaired C1 
metabolism, that has to be addressed by the quantification of cellular formate, folate and 
SAM levels. Indeed, dysfunctional cytosolic C1 metabolism in a hypomorphic and dwarfed 
mthfd1 mutant, caused DNA hypomethylation and reduced folate levels (Groth et al., 
2016). Further, chlorophyll biosynthesis depends on the integrity of the cellular folate pool. 
Depletion of the THF pool by methotrexate caused decreased chlorophyll biosynthesis, 
whereas the altered chlorophyll a/b ratio in the fdh1 mutants might be a consequence of 
an altered folate pool (Fig. 5H; Van Wilder et al., 2009). Remarkably, FDH1 
overexpression accelerated plant growth (Fig. 5, Supplemental Fig. S4). At least three 
effects could explain the observed phenotype. First, overcoming the rate limiting steps of 
photorespiration by overexpression of the GDCH protein was shown to increase plant 
growth (Timm et al., 2012; Timm et al., 2015; Lopez-Calcagno et al., 2019). So far, it 
remains to be proven, that higher mitochondrial FDH activity by FDH1 overexpression 
expedites THF recycling and the GDC catalyzed reaction of photorespiration because 
glycine and serine pools remained unaltered (Supplemental Fig. S5). Further, produced 
NADH by formate oxidation could be used in the redox shuttles and the respiratory chain 
to positively affect the cytosolic ATP/ADP ratio, as well as NADH/NAD ratio (Gardeström 
and Wigge, 1988; Wigge et al., 1993; Igamberdiev and Gardeström, 2003; Tomaz et al., 
2010; Tcherkez et al., 2012). Finally, a positive effect of respired CO2 on the Calvin-
Benson-Bassham cycle seems possible and can be addressed by gas-exchange 
measurements (Busch et al., 2013).  

However, all three explanations imply a plastic system to ensure integrity of C1 
metabolism. Based on comparison to mammalian C1 metabolism and the unlikely 
transport of C1 folates across organellar membranes, we propose a formate/serine shuttle 
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between the compartments in the plant cell (Cybulski and Fisher, 1981; Ducker et al., 
2016; Zheng et al., 2018; Li et al., 2020; Yang et al., 2020). Such a shuttle allows the inter-
compartment distribution of C1 units and enables to adapt the fluxes according to the 
redox status in the respective compartment. It should be noted that the specificity for NAD 
or NADP of the plant enzymes in C1 metabolism remain unknown. Therefore, the following 
hypothesis is based on specificity of mammalian counterparts and considers the ratio of 
reduced/oxidized NAD(P) in the compartments of the plant cell.  

In an illuminated leaf, photorespiration and within combined GDC and SHM1 activity 
represent the primary route of serine biosynthesis (Prabhu et al., 1996; Prabhu et al., 
1998; Voll et al., 2006; Igamberdiev and Kleczkowski, 2018). However, GDC derived 5,10-
methylene-THF is also oxidized in the THF cycle, producing NADH, used by the 
respiratory chain or redox shuttles (Gardeström and Wigge, 1988; Wigge et al., 1993; 
Douce et al., 2001; Tomaz et al., 2010; Selinski and Scheibe, 2019; Shameer et al., 2019). 
The NADH-dependency of the mammalian mitochondrial MTHFD and the slightly 
oxidized mitochondrial NAD pool support NADH production by C1 metabolism 
(Christensen et al., 2005; Fan et al., 2014). Generated formate is assimilated in the cytosol 
and reduced to 5,10-methylene-THF under NADPH consumption, given a NADPH/NAPD 
ratio of 1.5 in the cytosol (Gardeström and Wigge, 1988; Igamberdiev and Gardeström, 
2003). This implies only a minor role of cytosolic SHM in C1 unit provision or a regulatory 
role in mediating flux between SAM- and thymidylate biosynthesis (Herbig et al., 2002). 
Depending on the redox state, the fluxes could be reversed and formate produced in the 
cytosol is oxidized in the mitochondria to produce NADH and CO2, if necessary.  

In the chloroplast, formate is used to produce 10-formyl-THF for purine biosynthesis or 
5,10-methylene-THF for methionine biosynthesis (Hanson and Roje, 2001; Ravanel et al., 
2004; Zrenner et al., 2006). So far, the plastidial SHM3 was biochemically characterized, 
but a respective mutant is not described (Zhang et al., 2010). Therefore, conclusion on the 
extend of plastidial SHM to the 5,10-methylen-THF pool are hard to make at this point 
and requires shm3 mutant establishment and characterization to understand plastidial 
C1 metabolism and associated genes.  

In contrast to an illuminated leaf, the phosphoserine pathway is the dominant route of 
serine biosynthesis in the night and in heterotrophic tissue (Benstein et al., 2013; 
Cascales-Miñana et al., 2013; Wulfert and Krueger, 2018). In mitochondria, serine 
catabolism by SHM2 and the GDC produces two 5,10-methylene-THF molecules per serine 
and one NADH. The subsequent complete oxidation of the 5,10-methylene-THF produces 
four additional NADH molecules, which might be particularly important under energy 
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limiting conditions to maintain respiration (Mouillon et al., 1999; Engel et al., 2011; 
Nunes-Nesi et al., 2014; Yang et al., 2020).  

In general, the plasticity of the proposed formate/serine shuttle ensures C1 unit 
distribution between compartments. Further, C1 metabolic fluxes can be rapidly adjusted 
according to the cellular and organellar redox state. The experimental proof of the C1 
shunt and the formate/serine shuttle requires a dynamic flux analysis by formate-13C 
feeding. The first step towards this was made by elucidating the time to reach isotopic 
steady-state labeling in the pools of glycine, serine and methionine (Supplemental Fig. 
S7). Now, dynamic metabolite profiling in the established fdh1 mutants and 
overexpression plants as well as established mutants of shm1, shm2 and a necessary shm3 
mutant will contribute to understand C1 metabolic fluxes within the plant cell (Voll et al., 
2006; Zhang et al., 2010; Engel et al., 2011).   

Conclusion 

Taken together, mitochondrial FDH1 seems crucial to maintain homeostatic C1 
metabolism by controlling the flux via the C1 shunt that connects the mitochondria and 
the cytosol. Hypothetically, the low metabolic flux of the C1 shunt prevents alterations in 
whole cell pool sizes, detected by steady-state metabolomics. Therefore, the quantification 
of cellular formate, C1 folates and SAM levels, dynamic formate-13C labeling in 
combination with flux analysis and gas-exchange measurement will provide further proof 
of the C1 shunt in plants.  

Material and Methods 

Chemicals 

All chemicals were purchased from Sigma Aldrich (St. Louis, USA) unless otherwise 
stated. 

Plasmid construction 

The Arabidopsis thaliana (Arabidopsis) FDH1 coding sequence (At5g14780) was cloned 
into pET-16b (Merck, Darmstadt, Germany) by Gibson Assembly  for heterologous protein 
expression (Gibson et al., 2009). Plasmids used for localization studies were made using 
the MoClo GoldenGate cloning system (Engler et al., 2014). Internal BsaI and BpiI 
restriction sites of the FDH1 coding sequence were removed by gene synthesis 
(ThermoFisher Scientific, Waltham, USA). FDH1 localization constructs were assembled 
in pICH86966 (Addgene #46967). Sites and plasmids for targeted mutagenesis of the 
FDH1 gene by CRISPR/Cas9 were designed and cloned as described in (Hahn et al., 
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2017a). All constructs were verified by Sanger sequencing (Microsynth, Balgach, 
Switzerland). Primers and constructs used in this study are listed in Supplemental Tables 
S1 and S2 respectively.  

In vitro protein synthesis, heterologous expression in E. coli and 
purification of FDH1  

In vitro protein synthesis was performed using the PURE system according to the 
manufacturer (New England Biolabs, Ipswich, USA) (Shimizu et al., 2001). FDH1 and 
FDH1 Δ1-30 was expressed in E. coli BL-21(DE3) Rosetta cells (Novagen, Wisconsin, 
USA). Cells were grown at 37°C and 140 rpm in liquid lysogeny broth medium 
containing 200 µg mL-1 ampicillin and 25 µg mL-1 chloramphenicol to an OD600 of 0.6. 
Cultures were cooled to 30°C, protein expression was induced with isopropyl β-d-1-
thiogalactopyranoside to a final concentration of 0.5 mM, and the cultures were 
incubated at 30°C and 200 rpm for 2 h. Cells were pelleted by centrifugation at 
4,000 x g for 15 min and stored at -20°C. Pellets containing recombinant protein were 
resuspended in cell lysis buffer (50 mM NaPi [pH 7.5], 1 mM EDTA, 0.5 M NaCl, 
10 mM Imidazole, 10% [v/v] Glycerol, 1 mM DTT, 0.5 mM PMSF, 100 µM AEBSF, 
1 µM Pepstatin, 1 mg mL-1 Lysozyme) at a ratio of 5 mL per gram wet weight cells 
and incubated for 30 min with gentle shaking. After 30 min, 6 mM 3-[(3-
Cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) was added and 
the mixture was incubated for a further 30 min with gentle shaking. Subsequently, 
10 mM MgCl2, 5 mM ATP and a few DNase crystals were added and the mixture was 
incubated for 20 min at room temperature with gentle shaking, followed by 
centrifugation for 10 min at 3,000 x g at 4°C. The supernatant was collected and 
incubated for 1 h at 4°C with Ni-NTA resin pre-equilibrated with 50 mM NaPi (pH 
7.5) and 0.5 M NaCl. The Ni-NTA resin was washed twice with wash buffer I (50 mM 
NaPi [pH 7.5], 20 mM Imidazole) followed by one washing step with wash buffer II 
(50 mM NaPi [pH 7.5], 50 mM Imidazole). The recombinant protein was eluted with 
50 mM NaPi (pH 7.5) containing 500 mM imidazole. Imidazole was removed and 
protein samples concentrated using Amicon® Ultra Centrifugal Filter units (cutoff 
30 kDa, Merck Millipore) according to the manufacturer’s instruction. Protein 
concentration of the purified FDH1 was determined using the Quick StartTM Bradford 
Protein Assay Kit (Bio-Rad), with gamma-globulin as the standard. 

Enzyme assays 



Manuscript III 

 118 

FDH activity was measured in a plate-reader spectrophotometer by following the 
absorbance at 340 nm. The standard activity assay contained 100 mM potassium 
phosphate buffer (pH 7.5), 1 mM NAD, 50 mM sodium formate, 1–3 µg purified 
recombinant protein or 5 µg isolated mitochondria, and was conducted at 30°C. For 
determination of substrate specificity, the following substrates were tested at a final 
concentration of 50 mM: sodium glutamate, sodium oxalate, sodium acetate, glycolate, and 
glyoxylate. Inhibition of enzyme activity was determined at 1 mM sodium formate and 10 
mM of the following inhibitors: glycine, serine, glycolate, glyoxylate, sodium glutamate, 
and sodium oxalate. The influence of pH on enzyme activity was determined at 50 mM 
sodium formate and 1 mM NAD using 100 mM citrate buffer (pH 3.4–5.8), 100 mM 
potassium phosphate (pH 5.8–8.0), 100 mM Tris buffer (8.0–9.3), and 100 mM N-
cyclohexyl-3-aminopropanesulfonic acid buffer (pH 10–11). Redox regulation of FDH was 
tested in the presence or absence of 5 mM DTT and 0.5 mM diamide. To fully oxidize the 
enzyme purified recombinant FDH was preincubated with 0.5 mM diamide 0–12 min. 
Kinetic constants (Km and Vmax) for sodium formate were determined at pH 7.5 over a 
concentration range of 0.1–50 mM sodium formate. Assays were conducted at least in 
triplicates. Activities were calculated from initial velocities. Mitochondrial malate 
dehydrogenase activity was measured as described previously (Tomaz et al., 2010; 
Kuhnert et al., 2020). 

SDS-PAGE and immunoblot analysis 

Successful protein purification was confirmed by SDS-PAGE using standard protocols 
(Laemmli, 1970). 20 µg of in vitro synthesized protein was heated at 96°C in SDS-
PAGE loading buffer for 10 min and separated on 12% SDS-polyacrylamide gels 
(Laemmli, 1970).  Proteins were transferred onto 0.45 µm nitrocellulose membranes 
(Thermo Scientific) using the semi-dry blotting procedure. Membranes were blocked 
in Tris-buffered saline containing 0.1% (v/v) Tween 20 (TBST) and 5% (w/v) non-fat 
milk powder, washed with TBST and subsequently incubated with a monoclonal 
conjugated horseradish peroxidase anti-HA antibody (Miltenyi Biotech)  overnight at 
4°C. Membranes were washed five times with TBST and visualized using a 
chemiluminescence detection system (Immobilon Western HRP Substrate, Merck 
Millipore). 

Plant material and growth conditions 

Arabidopsis ecotype Col-0 was used in this study. Seeds were surface-sterilized using the 
vapor-phase sterilization method (Clough and Bent, 1998). Seeds were grown on half-
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strength Murashige and Skoog medium (pH 5.7) supplemented with 0.8% (w/v) agar (½ 
MS plates). Seeds were cold stratified for 2 d at 4°C. After germination, seedlings were 

grown for 14 d at 100 µmol m-2 s-1 light intensity, ambient CO2 atmosphere (0.04% [v/v] 
CO2) and a 12-h light/12-h dark photoperiod unless otherwise stated.  

Generation of transgenic Arabidopsis lines  

T-DNA constructs were introduced into Agrobacterium tumefaciens strain 
GV3101::pMP90 (Koncz and Schell, 1986) and Arabidopsis Col-0 plants were transformed 
via Agrobacterium-mediated transformation (Clough and Bent, 1998). Homozygous T3 
plants were used for physiological analysis.  

Transient expression in Nicotiana benthamiana and protoplast isolation  

For transient expression in Nicotiana benthamiana, overnight-grown Agrobacterium 

tumefaciens cells harboring the T-DNA construct were diluted in infiltration medium (10 
mM MgCl2, 10 mM MES [pH 5.7], 100 µM acetosyringone) to an OD600 of 0.4. Leaves of 4-
weeks-old greenhouse-grown Nicotiana benthamiana plants were infiltrated using a 
syringe without a needle. The pIVD145-eqFP611 plasmid (Forner and Binder, 2007) was 
co-infiltrated as mitochondrial mCherry marker. Protoplasts were isolated 2 d post 
infection. Leaves were sliced into small pieces, vacuum-infiltrated with protoplast 
digestion solution (1.5% [w/v] cellulase R-10, 0.4% [w/v] macerozyme R-10, 0.4 M mannitol, 
20 mM KCl, 20 mM MES [pH 5.7], 10 mM CaCl2, 0.1% [w/v] bovine serum albumin) and 
incubated for 2 h at 28°C. Sedimented protoplasts were resuspended in W5 solution (154 
mM NaCl, 125 mM CaCl2, 5 mM KCl, 2 mM MES [pH5.7]).  

Mitochondria isolation 

Mitochondria were isolated from 4-weeks-old Arabidopsis Col-0, fdh1-1, fdh1-2, and fdh1-

3 rosette leaves via differential centrifugation and Percoll gradient purification, as 
described previously (Kühn et al., 2015). BSA was omitted from all solutions. 

Chlorophyll fluorescence and chlorophyll measurements  

Fv/Fm values of 12-days-old seedlings were measured using an imaging chlorophyll 
fluorometer (Imaging PAM, Walz, Effeltrich, Germany). Upon dark adaptation for 20 min, 
seedlings were exposed to a pulsed, blue probe beam and a saturating light flash to 
measure Fv/Fm values. Chlorophyll was extracted from 4-week-old leaves in 80% acetone 

and rotating at 4°C in the dark before photometric measurement. Chlorophyll content was 
calculated based on (Inskeep and Bloom, 1985).  
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Quantification of germination efficiency, primary root length, fresh 
weight and dry weight  

Germination efficiency was quantified as seedlings establishment twelve days after 
transfer to light. For primary root length measurements, seeds were spotted on ½ MS 
plates and grown in vertical position for 12 d. Seedlings were photographed and primary 
root length was measured using Fiji (Schindelin et al., 2012). Fresh weight and dry weight 
were analyzed using 12-d-old seedlings. Seedlings were collected in a 1.5 mL 
microcentrifuge tube and immediately weighted for fresh weight analysis. The same 
samples were dried at 65°C for 4 d and tubes were weighted again for dry weight analysis.  

Quantitative real time PCR  

Total RNA from Arabidopsis tissue was extracted with Universal RNA kit (Roboklon). 2 
µg of total RNA was DNase treated with RNA-free DNase RQ1 (Promega). 1 µg DNase-
treated RNA was reverse-transcribed into cDNA using LunaScript™ RT SuperMix Kit 
(New England Biolabs). The quantitative real time PCR was carried out using 
Luna® Universal qPCR Master Mix (New England Biolabs) and a StepOnePlus™ Real-
Time PCR thermocycle (Applied Biosystems, Foster City, USA). PCR conditions 
were as followed: an initial denaturation step at 95°C for 10 min, followed by 45 cycles 
of 95°C for 15 s, and 60°C for 60 s, followed by a melting curve. Gene specific primers are 
listed in Supplemental Table S1. Transcript abundance was normalized to the reference 
gene Protein Phosphatase 2A Subunit A3 (PP2A, At1g13320) (Czechowski et al., 2005). 
Relative transcript abundance was calculated as described by (Simon, 2003).  

Confocal laser scanning microscopy  

Zeiss LSM780 confocal microscope and Zeiss ZEN software (Zeiss, Jena, Germany) was 
used for confocal laser scanning microscopy. In Arabidopsis, mitochondria were stained 
with the MitoTracker™ Green FM (ThermoFisher Scientific, Waltham, USA) and imaged 
according to the manufacturer’s instructions. Excitation/ emission wavelengths were as 
followed: mCherry (561 nm/580 to 625 nm), eGFP (488 nm/490 to 550 nm), chlorophyll A 
(488 nm/ 640 to 710 nm). Images were processed with Fiji (Schindelin et al., 2012).  

Stable isotope labeling  

For stable isotope labeling experiments with formate-13C, seedlings were grown on ½ MS 
plates for 5 d and afterwards transferred to new ½ MS plates supplemented with 1 mM 
sodium formate-13C (Cambridge Isotope Laboratories, Tewksbury, USA). Plates were 
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placed in the growth chamber for five additional days and whole seedlings were harvested 
in the middle of the light phase.  

Metabolite profiling by gas-chromatography time of flight mass 
spectrometry 

For metabolite profiling green tissue of 14-days-old seedlings was harvested by liquid 
nitrogen dousing at the middle of the light phase. Frozen material was grinded using 
precooled mortar and pestil. Grinded material was aliquoted under continuous liquid 
nitrogen exposure to avoid sample thawing. Metabolites were extracted by one-phase 
extraction as previously described and normalized to ribitol as internal standard and the 
sample freshweight (Fiehn et al., 2000).  

Data Analysis  

Data analysis was performed in R. The respective code and the primary data are available 
upon request from the corresponding author. The Michaelis-Menten constants of 
recombinant FDH1 were calculated using Michaelis-Menten plot (GraphPad PRISM 8). 

Accession Numbers 

The protein accession numbers used in this study are as followed: Formate dehydrogenase 
1 (FDH1, At5g14780, Q56X34), Glycine decarboxylase T-protein (GLDT, At1g11860, 
A0A2H1ZEA9)  
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Supplemental Information 
 

 
Supplemental Fig. S1: Michaelis-Menten kinetics of recombinant FDH1 protein. A) SDS-PAGE and 
coomassie staining of purified recombinant 6xHis-tagged FDH1 protein. B and C) Michaelis-Menten kinetics 
were determined using recombinant purified protein B) recombinant FDH1, C) recombinant FDH1Δ1-30. 
KmFormate and Vmax were calculated based on fitting the measured activities with the Michaelis-Menten 
equation. n ≥ 4. 
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Supplemental Figure S1: Michaelis-Menten kinetics of recombinant FDH1 protein. A) SDS-PAGE and coomassie staining of purified recombinant His-tagged FDH1 protein.  
B and C) Michaelis-Menten kinetics were determined using recombinant purified protein B) Recombinant FDH1, C) recombinant FDH1 Δ1-30. KmFormate and Vmax were 
calculated based on the fit. n ≥ 4. 
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Supplemental Fig. S2: Localization of Arabidopsis formate dehydrogenase 1 N-termini. Four 

different N-terminal length of Arabidopsis formate dehydrogenase 1 (FDH1): A) FDH11-30, B) FDH11-40, C) 
FDH11-50, D) FDH11-60 were used and C-terminally fused with enhanced green fluorescent protein (eGFP). 
Fusion proteins were expressed under the UBQ10 promoter. Protoplasts from N. benthamiana leaves were 
isolated two days post infection and imaged by confocal laser scanning microscopy. Red = mitochondrial 
marker (Forner and Binder, 2007). Blue = chlorophyll A autofluorescence.  
 

Supplemental Figure S2: Localization 
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Supplemental Fig. S3: Verification of fdh1 mutants. A) FDH1 genomic locus was amplified by PCR and 
sequenced. Chromatograms of respective wild type (WT) sequence for the position of guide RNA 1 and 2 (g1 & 
g2) is shown. Chromatograms of sequencing results for each fdh1 mutant is shown below the wild type. B) 
Immunoblot of E. coli cell-free produced FDH1 protein used for FDH activity measurements (Figure 3D). 20 
µg of total protein was loaded per lane and protein was detected using HA-HRP single step antibody. C) 
Detected missplicing of the primary FDH1 transcript in the fdh1-1 mutant. Early stop codon is highlighted in 
bold.   

 
 

Supplemental Figure S3: Verification of fdh1 mutants.  

(A) FDH1 genomic locus was amplified by PCR and sequenced. Chromatogramms of respective wild type (WT) sequence for the position of guideRNA 1 and 2 (g1 & g2) is shown, with the guide RNA sequence underlined. Chromatogramms of sequencing results for the respective 

mutant are shown below the wildtype. (B) Immunoblot of E. coli cell-free produced FDH1 protein used for FDH activity measurements (Figure 3D). 20 µg of total protein was loaded per lane and protein was detected using HA-HRP single step antibody. (D) Detected missplicing of the 

primary FDH1 transcript in the fdh1-1 mutant. Early stop codon is highlighted in bold.  
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Supplemental Fig. S4: FDH1 transcript abundance in overexpression lines and phenotype of six 
weeks old plants. A) FDH1 transcript abundance in mature rosette leaves of four weeks old plants. Shown 
are mean ± SEM of four biological replicates measured in technical triplicates. B) Phenotype of plants six 
weeks after transfer to light, grown at ambient CO2. 
 

Supplemental Figure S4: FDH1 transcript abundance in over expression lines and phenotype of six weeks old plants. 

A) FDH1 transcript abundance in leaves of four week old plants. Shown are mean ± SEM of four biological replicates measured in technical triplicates. B) Phenotype of plants 42 days after 

transfer to light.
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Supplemental Fig. S5: Steady state metabolite levels. A) Soluble metabolites in green tissue of 14 days 
old seedlings grown under ambient CO2 were analyzed. Samples were taken midday. n = 4. Students t-test 
against wild type Col-0. p > 0.05 = *,> 0.01 = **, > 0.001 = ***. 
 

Supplemental Figure S5: Steady state metabolite levels. A) Soluble metabolites in green tissue of 14 day old seedlings grown under ambient CO2 were analysed. Samples were taken 

midday. n = 4. Students t-test against wild type Col-0. p > 0.05 = *,> 0.01 = **, > 0.001 = *** .

A

●

●●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

0

5

10

Col−
0
fdh

1−
1
fdh

1−
2
fdh

1−
3

OEX:FDH1 #
1

OEX:FDH1 #
2

OEX:FDH1 #
3

Re
la

tiv
e 

am
ou

nt
 p

er
 m

g 
FW

Glycine

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

****

0

1

2

3

Col−
0
fdh

1−
1
fdh

1−
2
fdh

1−
3

OEX:FDH1 #
1

OEX:FDH1 #
2

OEX:FDH1 #
3

Re
la

tiv
e 

am
ou

nt
 p

er
 m

g 
FW

Serine

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

0.00

0.02

0.04

0.06

Col−
0
fdh

1−
1
fdh

1−
2
fdh

1−
3

OEX:FDH1 #
1

OEX:FDH1 #
2

OEX:FDH1 #
3

Re
la

tiv
e 

am
ou

nt
 p

er
 m

g 
FW

Methionine

●

●

●

●

●

●

●
●
●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

0.0

0.1

0.2

0.3

0.4

Col−
0
fdh

1−
1
fdh

1−
2
fdh

1−
3

OEX:FDH1 #
1

OEX:FDH1 #
2

OEX:FDH1 #
3

Re
la

tiv
e 

am
ou

nt
 p

er
 m

g 
FW

Threonine

●

●

●

●

●
●●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

Col−
0
fdh

1−
1
fdh

1−
2
fdh

1−
3

OEX:FDH1 #
1

OEX:FDH1 #
2

OEX:FDH1 #
3

Re
la

tiv
e 

am
ou

nt
 p

er
 m

g 
FW

Malate
R

el
. a

m
ou

nt
 F

W
-1

R
el

. a
m

ou
nt

 F
W

-1

R
el

. a
m

ou
nt

 F
W

-1

R
el

. a
m

ou
nt

 F
W

-1

R
el

. a
m

ou
nt

 F
W

-1



Manuscript III 

 132 

 
Supplemental Fig. S6: FDH1 and GLDT transcript levels during a light period. A) Normalized 
transcript level during a light period of formate dehydrogenase 1 (FDH1) and glycine decarboxylase T-protein 
(GLDT). Green tissue of 14 days old seedlings was harvested per time point. Night periods are indicated in 
grey. Transcript abundance was normalized against PP2A (Czechowski et al., 2005). Shown is mean of three 
technical replicates per biological replicate (dots).  Shown mean ± SD, n = 4 per timepoint. Line connects the 
mean. 
 

Supplemental Figure S6: FDH1 and GLDT transcript levels during a light period. A) Normalized transcript level during a light period of formate 

dehydrogenase (FDH) and glycine decarboxylase T-protein (GLDT). Green tissue of 14 day old seedlings was harvested per time point. Transcript abundance 

was normalized against PP2A. For each biological replicate (n = 4, dots) mean of three technical replicates is shown. Errorbars = SD. 
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Supplemental Fig. S7: Time-dependent formate-13C pulse-chase labeling. For stable isotope labeling 
experiments with formate-13C, seedlings were grown on agar plates for eight days and afterwards transferred 
to new agar plates supplemented with 1 mM sodium formate-13C. Samples were taken over three consecutive 
days. Night periods are indicated in grey. A) Relative metabolite levels of soluble glycine, serine, methionine, 
threonine pools. Metabolite pools were quantified as sum of all isotopomers. n = 3. Each biological replicate 
shown as point. Error bar = SD. B) Percentual 13C label abundance in the soluble metabolite pools of glycine, 
serine methionine and threonine. 13C label was corrected for natural isotope abundance of the detected 
fragment. n = 3. Shown: mean ± SD.  

 
 

Supplemental Figure S7: Time-dependent formate-13C pulse-chase labeling. For stable isotope labeling experiments with formate-13C, seedlings were grown 

on 0.5X MS plates for eight days and afterwards transferred to new 0.5X MS plates supplemented with 1 mM sodium formate-13C and harvested over three 

consecutive days. Night periods are indicated in grey. A) Relative metabolite levels of soluble glycine, serine, methionine, threonine pools. Metabolite pools were 

quantified as sum of all isotopomers. n = 3. Each biological replicate shown as point. Error bar = SD. B) Percentual 13C label abundance in the soluble metabolite 

pools of glycine, serine methionine and threonine. 13C label was corrected for natural isotope abundance of the detected fragment. n = 3. Shown mean ± SD.  
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Supplemental Table S1: List of primer used in this study. Gene specific nucleotides indicated in caps. 
Abbreviations: hemagglutinin A (HA), coding sequence (CDS), formate dehydrogenase 1 (FDH1, At5g14780, 
glycine decarboxylase T-protein (GLDT, At1g11860), Arabidopsis Protein Phosphatase 2A Subunit A3 (PP2A, 
AT1G13320). Superscripted numbers indicated base pairs.  
 

Primer sequence  Purpose Reference 

fwd: 5’-actttaagaaggagatatacatgcatcaccatcaccaccacGCGATGAGACAAGCCGCTAAG-3’ 

rev: 5’-tcgggctttgttagcagccgTTACCGGTACTGAGGAGCAAG-3’ 

 

FDH1 CDS in 

pET-16b N-

term 6xHis 

This Study 

fwd: 5’-actttaagaaggagatatacatgcatcaccatcaccaccacTCTTCTGGTGATAGCAAAAAG-3’ 

rev: 5’-tcgggctttgttagcagccgTTACCGGTACTGAGGAGC-3’ 

 

FDH1Δ1-90 CDS 

in pET-16b N-

term 6xHis 

 

This Study 

fwd: 5’-actttaagaaggagatatacATGGCGATGAGACAAGCC-3’ 

rev: 5’-

tcgggctttgttagcagccgttaagcgtaatccggaacatcgtatgggtaCCGGTACTGAGGAGCAAG-3’ 

 

FDH1 CDS in 

pET-16b with 

C-term HA-

tag 

This Study 

fwd: 5’-

actttaagaaggagatatacatgtacccatacgatgttccggattacgctGCGATGAGACAAGCCGCTAAG-

3’ 

rev: 5’-tcgggctttgttagcagccgTTACCGGTACTGAGGAGCAAG-3’ 

 

FDH1 CDS in 

pET-16b with 

N-term HA-

tag 

This Study 

fwd: 5’-GCCAACGAATACGCTACC-3’ 

rev: 5’-CGATGTAATTCTCAGTAGGGAAG-3’ 

 

Sequencing 

primer fdh1 

CRISPR/Cas9 

mutants 

This Study 

fwd: 5’-CATGCCTAACCAGGCTATG-3’ 

rev: 5’-CTCTCCAACATGTCTTTCGTC-3’ 

 

qRT-PCR 

FDH1 

This Study 

fwd: 5’- GGATATGTGAAGTCAGGTCAGCAC-3’ 

rev: 5’- GGTTTGTAGTATTTGGTGGCCACG-3’ 

 

qRT-PCR 

GLDT 

This Study 

fwd: 5’-TAACGTGGCCAAAATGATGC-3’  

rev: 5’-GTTCTCCACAACCGCTTGGT-3’ 

 

qRT-PCR 

PP2A 

 

(Czechowski 

et al., 2005) 

fwd: 5’- GAGGCAAGCAGTGGTGGATG-3’  

 

Sequence 

gRNA1  

 

This Study 

fwd: 5’- CCTTAGGAGCTGGCTGTGGG-3’  

 

Sequence 

gRNA2 

This Study 
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Supplemental Table S2: List of constructs used in this study. Abbreviations: hemagglutinin A (HA), 
coding sequence (CDS), Arabidopsis formate dehydrogenase 1 (FDH1, At5g14780). Superscripted numbers 
indicated base pairs. 
 

Purpose Vector Insert Comment Reference 
Heterologous expression of 
FDH1 in E. coli 

pET-16b 

 
FDH1 CDS 
FDH1Δ1-90 CDS 

N-term 6xHis 
N-term 6xHis 

 

Cell-free expression of 
FDH1 
 

pET-16b 
 

FDH1 CDS 
FDH1 CDS 
FDH1 CDS fdh1-1 
FDH1 CDS fdh1-2 
FDH1 CDS fdh1-3 

N-term HA 
C-term HA 
N-term HA 
N-term HA 
N-term HA 

 

Localization of FDH1 pICH86966 FDH1 CDS 
FDH11-90 CDS 
FDH11-120 CDS 
FDH11-150 CDS 
FDH11-180 CDS 

C-term 
mCherry 
C-term eGFP 
C-term eGFP 
C-term eGFP 
C-term eGFP 

Vector from (Engler 
et al., 2014) 

Generation of fdh1 
mutants by CRISPR/Cas9 
 
 

pUB-Cas9 gRNA1 FDH1 +  
gRNA2 FDH1 
 

 Vector from (Hahn 
et al., 2017b) 
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Supplemental Table S3: Masses and natural abundance used for GC-MS QTOF based 13C label 
quantification.  
 

Metabolite Molecular mass [g mol-1] 13C-label Formula Natural abundance [%] 
Glycine 

 
174.113 
175.115 

0 
1 

C7H20NSi2  
18.32 

Serine 
 

204.124 
205.125 
206.122 

0 
1 
2 

C8H22NOSi2  
9.46 
8.50 

Methionine 176.092 
177.094 

0 
1 

C7H18NSSi  
14.01 

Threonine 219.111 
220.112 

0 
1 

C8H21NO2Si2  
19.4958 
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Summary

Photorespiration is frequently considered a wasteful and inefficient process. However, mutant
analysis demonstrated that photorespiration is essential for recycling of 2-phosphoglycolate in
C3 andC4 land plants, in algae, and even in cyanobacteria operating carboxysome-based carbon
(C) concentrating mechanisms. Photorespiration links photosynthetic C assimilation with other
metabolic processes, such as nitrogen and sulfur assimilation, as well as C1 metabolism, and it
may contribute to balancing the redox poise between chloroplasts, peroxisomes, mitochondria
and cytoplasm. The high degree ofmetabolic interdependencies and the pleiotropic phenotypes
of photorespiratory mutants impedes the distinction between core and accessory functions.
Newly developed synthetic bypasses of photorespiration, beyond holding potential for
significant yield increases in C3 crops, will enable us to differentiate between essential and
accessory functions of photorespiration.

I. Introduction

Photorespiration designates an essential metabolic pathway that
occurs in all organisms that perform oxygenic photosynthesis.
Photorespiration recycles 2-phosphoglycolate (2PG), a dead-end
metabolite that inhibits enzymes needed for CO2 assimilation, into
the Calvin–Benson cycle (CBC) intermediate 3-phosphoglycerate
(3PGA). 2PG is formed because ribulose 1,5-bisphosphate
carboxylase/oxygenase (RubisCO) cannot fully discriminate
betweenCO2 andO2, and thus catalyzes not only the carboxylation
of its substrate, ribulose 1,5-bisphosphate (RuBP), but also its
oxygenation. The ratio of carboxylation and oxygenation reactions
depends on the kinetic properties of the enzyme, temperature and

the CO2 : O2 ratio at the site of Rubisco. During glycine
decarboxylation in mitochondria, previously assimilated carbon
(C) and nitrogen (N) is lost as CO2 andNH3. ATP andNAD(P)H
are consumed in the process. Photorespiration constrains the rate of
CO2 assimilation because Rubisco is partially occupied with
unproductive oxygenation reactions and part of the CBC flux is
wasted to produce RuBP for the counterproductive oxygenation
reactions (reviewed in Hagemann & Bauwe, 2016). Photorespi-
ration hence reduces the CO2 assimilation efficiency and biomass
production. In C3-type land plants, losses due to photorespiration
can be in the range of 30–50%. For the US corn belt alone, this
means an estimated minus of c. 322 trillion calories per year
(Walker et al., 2016).

! 2019 The Authors
New Phytologist! 2019 New Phytologist Trust

New Phytologist (2019) 1
www.newphytologist.com

Review



Journal version of published articles 

 139 

 

 
 

II. The core photorespiratory pathway and its
metabolic interdependency

Plant core photorespiratory metabolism

Photorespiration means ‘respiration in light’ and describes the
observation that plants consume O2 and release CO2 in the light.
The core reactions of photorespiratory metabolism comprise nine
enzymatic reactions distributed over the three compartments
chloroplast, peroxisome and mitochondrion (Fig. 1a; Table 1;
Bauwe et al., 2010). The initial pathway metabolite is 2PG, which
results from the oxygenase activity of Rubisco. 2PG is dephos-
phorylated by phosphoglycolate phosphatase (PGLP) in the
chloroplast. The resulting glycolate is exported by the plastid
glycolate/glycerate transporter1 (PLGG1; Pick et al., 2013) and the
bile acid sodium symporter6 (BASS6; South et al., 2017), and then
imported into the peroxisome by an unknown transport or channel
protein. Glycolate is oxidized to glyoxylate by glycolate oxidase
(GOX). In this step O2 serves as electron acceptor and H2O2 is
formed, which is decomposed by catalase (CAT). Glyoxylate is
then transaminated into glycine by the action of glutamate:
glyoxylate aminotransferase (GGAT). Glycine is exported from
peroxisomes and taken up into mitochondria by unknown
transporters. In the mitochondria, glycine is converted into serine,
CO2 and NH3 by the joint activities of the multienzyme system
glycine decarboxylase (GDC) and serine hydroxymethyl trans-
ferase (SHMT; reviewed in Bauwe & Kolukisaoglu, 2003). Serine
is shuttled back into the peroxisome for deamination by serine:
glyoxylate aminotransferase (SGAT) to generate hydroxypyruvate.
Thismetabolite is reduced by hydroxypyruvate reductase1 (HPR1)
into glycerate. Glycerate is taken up by PLGG1 into the chloroplast
for phosphorylation, which is catalyzed by glycerate kinase
(GLYK). The final metabolite of the photorespiratory pathway is
3PGA, which can enter the CBC.

Photorespiratory metabolism is essential for all organisms
performing oxygenic photosynthesis, including cyanobacteria,
algae, mosses and vascular plants, as evidenced by the observation
that deletion of involved enzymes results in a photorespiratory
phenotype (Fig. 1b). That is, mutants can grow only under
elevated CO2 concentrations. Current ambient CO2 concentra-
tions (0.041%) impair growth and some mutants are even lethal
in ambient air. This also holds for photosynthetic organisms that
employ a C-concentrating mechanism, such as cyanobacteria
(Eisenhut et al., 2008) and C4 plants (Levey et al., 2019). It is
likely that photorespiratory metabolism co-evolved with oxygenic
photosynthesis in cyanobacteria as an essential consequence to
thrive in an O2-containing atmosphere (Eisenhut et al., 2008) In
addition to detoxification of 2PG, which acts as an inhibitor of
CBC enzymes, multiple functions of photorespiratory
metabolism have been proposed: protection from photoinhibi-
tion by dissipation of excess energy; biosynthesis of amino acids
glycine and serine; and source of activated one-carbon (C1) units
(Bauwe et al., 2010).

The photorespiratory core enzymes and corresponding genes
(Fig. 1a; Table 1) have been identified during the past four decades
mostly using Arabidopsis thaliana (A. thaliana) as model organism

(reviewed in Bauwe et al., 2010). Importantly, photorespiratory
metabolism is not a closed metabolic cycle, but interacts with N
assimilation (Bloom, 2015), respiration and the TCA cycle
(reviewed in Obata et al., 2016), C1 metabolism (Hodges et al.,
2016) and sulfur (S) metabolism (Samuilov et al., 2018). In the
following, we describe steps/reactions demonstrating metabolic
interdependencies with the core photorespiratory pathway in
A. thaliana. The genes assigned to these are specified in Fig. 1a and
Table 1.

Photorespiration and N metabolism

Glycine decarboxylation by the mitochondrial multi-subunit
enzyme system GDC releases NH3 and CO2. NH3 must be re-
assimilated utilizing ATP- and reducing power consumption by
glutamine synthetase (GS2) and the ferredoxin-dependent glu-
tamine:oxoglutarate aminotransferase (Fd-GOGAT;Coschigano
et al., 1998) in chloroplasts. Two chloroplastic transport proteins
are essential for photorespiratory N metabolism. The 2-
oxoglutarate/malate transporter Dit1 imports the C backbone
required for glutamate production (Kinoshita et al., 2011).
Produced glutamate is exported from the chloroplast by the
glutamate/malate transporter Dit2.1 (Renn!e et al., 2003). Glu-
tamate is required for the peroxisomal conversion of glyoxylate to
glycine by GGAT1. Alternatively, alanine might serve as amino
group donors for the GGAT1-mediated transamination reaction
(Liepman & Olsen, 2003; Dellero et al., 2015). The conditional
lethal phenotype of the sgat1 knockout mutants indicates its
predominant role in maintaining photorespiratory flux by
glyoxylate transamination and hydroxypyruvate production.
(Liepman & Olsen, 2001).

Photorespiration, respiration and the TCA cycle

Photorespiration represents the highest metabolic flux during
photosynthesis in mitochondria. Rapid fractionation of barley
protoplasts under photorespiratory or nonphotorespiratory
conditions demonstrated that the NADH produced in the
GDC reaction is oxidized by the respiratory chain, leading to
increased cytosolic ATP/ADP and higher mitochondrial
NADH : NAD ratio under photorespiratory conditions (Garde-
str€om&Wigge, 1988;Wigge et al., 1993).Uncoupling protein 1
(UCP1) supports photorespiratory flux by modulating the
mitochondrial redox status (Sweetlove et al., 2006). Recently,
UCP1 andUCP2were biochemically characterized asmetabolite
carriers for aspartate, glutamate and dicarboxylates, and pro-
posed to function in exporting reducing power by supplying the
mitochondrial and cytosolic glutamate:oxaloacetate transami-
nase reactions with their respective substrates (see Monn!e et al.,
2018, for details).

Photorespiration and C1 metabolism

Mutant analyses emphasized the importance of photorespiration in
C1 metabolism. C1 metabolism is essential for the synthesis of
nucleic acids, proteins, pantothenate and methylated molecules,
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Fig. 1 Photorespiratory metabolism in Arabidopsis thaliana. (a) Interdependency of photorespiration with nitrogen, C1 and sulfur metabolism. (b)
Photorespiratory phenotype of the bou-2mutant. The plants,A. thalianawild-type (WT) and bou-2, were grown under elevatedCO2 conditions (0.3%CO2)
for 3 weeks and then shifted for 12 d to ambient CO2 conditions (0.03% CO2) before the picture was taken. Abbreviations: PGLP1, phosphoglycolate
phosphatase 1; GOX1, glycolate oxidase 1; GOX2, glycolate oxidase 2; CAT2, catalase 2; GGAT1, glutamate:glyoxylate aminotransferase 1; GGAT2,
glutamate:glyoxylate aminotransferase 2; GDC, glycine decarboxylase complex; SHMT1, serine hydroxymethyltransferase 1; SGAT, serine:glyoxylate
aminotransferase; HPR1, hydroxypyruvate reductase 1; HPR2, hydroxypyruvate reductase 2; HPR3, hydroxypyruvate reductase 3, GLYK, glycerate kinase,
GS2, glutamine synthetase 2; GOGAT, glutamine:oxoglutarate aminotransferase; THF, tetrahydrofolate; MTHDF2, bifunctional 5,10-methylene-THF
dehydrogenase/5,10-methenyl-THF cyclohydrolase; 5-FCL, 5-formyl-THF cycloligase; FDF, 10-formyl-THF deformylase; FDH, formate dehydrogenase;
SAT3, serine o-acetyltransferase; OAS-TL C, o-acetylserine lyase isoform C.
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including DNA (Hanson &Roje, 2001). The lethal phenotypes of
the gldp1gldp2 (GDC P-protein), gldt1 (GDC T-protein) and
shm1shm2 mutants, even under nonphotorespiratory conditions,
demonstrate that GDC and SHMT are essential for cellular C1

metabolism (Engel et al., 2007, 2011; Timm et al., 2018). GDC
links the co-factor tetrahydrofolate (THF), de novo synthesized in
mitochondria, with the produced C1 unit. However, under
photorespiratory conditions THF re-cycling by mitochondrial
C1metabolism is required tomaintain photorespiratory flux via the
GDC-SHMT complex. In particular, 10-formyl deformylase

(FDF) releases THF and thereby maintains the mitochondrial
THF pool (Collakova et al., 2008). A second catalytic activity of
SHMT produces the SHMT-inhibitory C1 compound 5-formyl-
THF from 5,10-methenyl-THF in the presence of glycine. This 5-
formyl-THF is re-converted into 5,10-methenyl by 5-formyl-THF
cycloligase (5-FCL; Goyer et al., 2005). Fluctuating 5-formyl-
THF concentrations might regulate the metabolic flux between C1

metabolism and serine biosynthesis in plant mitochondria. The
mitochondrial transporter A bout de souffle (BOU) contributes to
GDC activity and is essential under photorespiratory conditions

Table 1 Genes that have been associated with photorespiration in Arabidopsis thaliana.

Name EC AGI locus Function PR phenotype Reference

Core photorespiratory metabolism
PGLP1 EC 3.1.3.18 At5g36700 Phosphoglycolate phosphatase 1 Yes Schwarte & Bauwe (2007)
GOX1 EC 1.1.3.15 At3g14420 Glycolate oxidase 1 Redundancy,

double k.d. yes
Dellero et al. (2016)

GOX2 At3g14415 Glycolate oxidase 2
CAT2 EC 1.11.1.6 At4g35090 Catalase 2 Yes Queval et al. (2007)
GGAT1 EC 2.6.1.4 At1g23310 Glutamate:glyoxylate aminotransferase Mutant in GGAT1: yes Dellero et al. (2015)
GGAT2 At1g70580 GGAT2: no mutant report Igarashi et al. (2003)
GDC-P1 EC 1.4.4.2 At4g33010 P protein, glycine decarboxylase Redundancy,

double k.o. lethal
Engel et al. (2007)

GDC-P2 At2g26080
GDC-T EC 2.1.2.10 At1g11860 T protein, aminomethyl transferase Lethal Timm et al. (2018)
GDC-H1 At2g35370 H protein, lipoamide (5[3-(1,2) dithiolanyl]

pentanoic acid) protein
Redundancy, no
mutant report

Bauwe & Kolukisaoglu
(2003)GDC-H2 At2g35120

GDC-H3 At1g32470
GDC-L1 EC 1.8.1.4 At3g17240 L protein, dihydrolipoamide dehydrogenase Redundancy, no

mutant report
Bauwe & Kolukisaoglu
(2003)GDC-L2 At1g48030

SHMT1 EC 2.1.2.1 At4g37930 Serine hydroxymethyltransferase 1 Yes Voll et al. (2006)
SGAT EC 2.6.1.45 At2g13360 Serine:glyoxylate aminotransferase Yes Liepman & Olsen (2001)
HPR1 EC 1.1.1.29 At1g68010 Hydroxypyruvate reductase 1 (peroxisomal) Redundancy, double

k.o. hpr1hpr2 yes
Timm et al. (2008)

HPR2 EC 1.1.1.81 At1g79870 Hydroxypyruvate reductase 2 (cytosolic) Redundancy, double
k.o. hpr1hpr2 yes

Timm et al. (2008)

GLYK EC 2.7.1.31 At1g80380 Glycerate kinase Yes Boldt et al. (2005)
PLGG1 At1g32080 Plastid glycolate glycerate transporter 1 Yes Pick et al. (2013)
BASS6 At4g22840 Bile acid sodium symporter 6, plastid glycolate importer Yes South et al. (2017)
BOU At5g46800 A bout de souffle, mitochondrial transporter involved in

photorespiratory metabolism
(substrate undefined, possibly glutamate)

Yes Eisenhut et al. (2013)
Porcelli et al. (2018)

Nitrogen metabolism
GS2 EC 6.1.3.2 At5g35630 Glutamine synthetase 2 No mutant report
Fd-GOGAT EC 1.4.7.1 At5g04140 Ferredoxin-dependent glutamine:oxoglutarate

aminotransferase
Yes Coschigano et al. (1998)

DiT1 At5g12860 Plastidial dicarboxylate
(2-oxoglutarate/malate) transporter

Yes Kinoshita et al. (2011)

DiT2.1 At5g64290 Plastidial dicarboxylate
(2-oxoglutarate/malate) transporter

Yes Renn!e et al. (2003)
DCT
Sulfur metabolism
SAT3 EC 2.3.1.30 At3g13110 Serine o-acetyltransferase (mitochondrial) Redundancy, no Watanabe et al. (2008)
OAS-TL C EC 2.5.1.47 At3g59760 O-acetylserine lyase (mitochondrial) Not tested,

retarded growth
Heeg et al. (2008)

C1 metabolism
MTHDF2 EC 1.5.1.5 At2g38660 Bifunctional 5,10-methylene-THF

dehydrogenase/5,10-methenyl-THF cyclo-hydrolase
No Collakova et al. (2008)

EC 3.5.4.9
5-FCL EC 6.3.3.2 At5g13050 5-formyltetrahydrofolate cycloligase Weak Goyer et al. (2005)
FDF1 EC 3.5.1.10 At4g17360 10-formyl-THF deformylase Redundancy,

double k.o. yes
Collakova et al. (2008)

FDF2 At5g47435
PurU
FDH EC 1.2.1.2 At5g14780 Formate dehydrogenase No mutant report

PRphenotype, photorespiratoryphenotype, knock-outmutant showsgrowth impairmentunder ambientCO2 conditions (0.041%in air) that canbealleviated
under elevated CO2 conditions (> 0.3% CO2 in air); k.o., knockout; k.d., knock-down.
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(Eisenhut et al., 2013). Recent work showed that BOU is a
glutamate transporter (Porcelli et al., 2018). Polyglutamylation of
THF enhances co-enzyme affinity and THF stability (Mehrshahi
et al., 2010).Whether altered co-enzyme affinity or overall reduced
THF concentrations in BOU mitochondria cause the photorespi-
ratory phenotype remains to be tested.

Photorespiration and S metabolism

The majority of serine in illuminated leaves of C3 plants is
produced by mitochondrial SHMT1 (Li et al., 2003). Serine is
converted into o-acetylserine by serine o-acyltransferase. O-
acetylserine is required for cysteine and glutathione metabolism.
Indeed, it was shown that the bou mutant displays reduced serine
concentrations and shows altered transcription in S metabolism
associated genes (Samuilov et al., 2018).

III. Synthetic approaches modulating
photorespiratory metabolism

Photorespiration decreases the rate of CO2 fixation and increases
the energy costs of photosynthesis. This results in a yield penalty of
20-50% in C3 plants, depending on environmental conditions
(Bauwe et al., 2010). These losses define photorespiratory
metabolism as a prime target in biotechnological efforts aiming
at increased crop productivity (reviewed in Weber & Bar-Even,
2019). Here, we focus on two different metabolic engineering
strategies: eliminating enzymatic bottlenecks and introducing
synthetic bypasses.

Flux through a metabolic pathway is controlled by the capacity
of the enzymes involved. It was suggested that flux through the
photorespiratory pathway in plants is limited by the rate of
mitochondrial glycine-to-serine conversion (Hagemann&Bauwe,
2016). Overexpression of different subunits of the GDC system in
A. thaliana supports this assumption. Increasing the activities of the
H (Timm et al., 2012) or L proteins (Timm et al., 2015),
respectively, was associated with decreased CO2 compensation
points and enhanced plant performance. The T protein apparently
is not a limiting factor because neither down- nor upregulation of
its activity affected photosynthetic CO2 uptake and plant growth
(Timm et al., 2018). By contrast to those neutral to beneficial
effects, overexpression of peroxisomal SGAT negatively affects
plant performance. Elevated SGAT amounts caused reduced
photosynthetic CO2 uptake under ambient air conditions,
enhanced serine and asparagine consumption, and thus disturbed
the C/N balance, leading to diminished growth (Modde et al.,
2017). Obviously, the tight interaction with other metabolic
pathways, such as N metabolism, does not allow arbitrary
manipulation of every photorespiratory enzyme but requires
careful examination and better understanding of regulation and
interdependency of these metabolic routes.

Synthetic bypasses to photorespiration aim at avoiding mito-
chondrial glycine decarboxylation and the release of NH3 that is
associated with this reaction. Instead, current synthetic bypasses
metabolize glycolate in the chloroplast stroma and release CO2

from glycolate metabolization next to Rubisco. The first synthetic

bypasses implemented into A. thaliana were inspired by the
glycolate oxidizing pathway occurring naturally in E. coli (Kebeish
et al., 2007). Alternatively, photorespiratory enzymes from other
compartments were re-targeted to the chloroplasts, thereby
shortening the pathway (Maier et al., 2012). In both cases, an
increase in biomass was observed under controlled low-light and
short-day environmental conditions. Severalmodifications to these
bypasses recently have been engineered into the cropmodel tobacco
and into rice. South and colleagues (South et al., 2019) designed an
alternative plastid glycolate oxidizing pathway that requires only
two transgenes plus the repression of one transporter activity.
Glycolate dehydrogenase from mitochondria of the green alga
Chlamydomonas reinhardtii and malate synthase from peroxisomes
of Cucurbita maxima were redirected to chloroplasts of tobacco
plants. In these transgenic tobacco lines, 2PG is converted to
glycolate by native PGLP. Glycolate is then oxidized to glyoxylate
by the glycolate dehydrogenase inside the chloroplast. Catalyzed by
malate synthase, the second introduced enzyme, glyoxylate reacts
with acetyl-CoA to form malate. The resulting malate is then
converted to acetyl-CoA and two molecules of CO2 by the native
chloroplast enzymes malic enzyme and pyruvate dehydrogenase
(Fig. 2a). Overall, glycolate is converted into CO2 while acetyl-
CoA for renewed malate biosynthesis is regenerated. Importantly,
to restrict export of glycolate from the chloroplast, the plastidial
glycolate exporter PLGG1was silenced. The synthetic bypass led to
a biomass increase of 40% in the field, as compared to tobaccowild-
type (WT) plants (South et al., 2019).

An alternative full decarboxylation strategy was implemented by
Shen and colleagues in rice (Shen et al., 2019). The GOC bypass
requires three additional enzymes in the chloroplast stroma:
glycolate oxidase, oxalate oxidase and catalase. The native enzymes
localize to peroxisomes in rice and hence had to be redirected to the
chloroplast. There, they catalyze the complete decarboxylation of
glycolate to CO2. By contrast to the approach by South et al.
(2019), efflux of glycolate from the chloroplast was not restricted
(Fig. 2b). TheGOC rice plants outperformed theWT in field trials
with respect to biomass yield. The grain yield, however, strongly
varied depending on the seeding season (Shen et al., 2019). It is not
fully understood why full decarboxylation of glycolate inside
chloroplasts is associated with higher yields because computational
modelling indicated that such pathways would decrease photosyn-
thetic efficiency (see Box 1 for details).

The actual flux distribution betweennative photorespiration and
the various synthetic bypasses remains elusive. However, even a
reduced metabolic flux through endogenous photorespiration in
the presence of a bypass is apparently sufficient to meet the
metabolic demands in associated processes, such as C1-, N and S
metabolism. Advanced engineering strategies that fully replace
endogenous photorespiration with synthetic pathways will be
required to resolve whether photorespiration fulfils other essential
functions beyond the recycling 2PG.

IV. Conclusions and future perspectives

The enzymes catalyzing the core reactions of photorespiration have
been identified. However, most of the involved transporters and
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channels, respectively, from peroxisomes (glycine, serine, glycerate,
glycolate) and mitochondria (glycine, serine) are still unknown.
The difficulties in identifying the still missing shuttle proteins
might be due to genetic redundancy or to an essential role of these
proteins in other cellular functions, whichwould lead to lethality in
corresponding mutants. The generation of higher order mutants
will likely be required to identify themissing transport and channel
proteins involved in photorespiration. Also, a clear demarcation of
core photorespiratory metabolism from other metabolic pathways
remains a challenge.

Another less understood aspect of photorespiration is the
mechanisms that distinguish dynamic, short- and long-term
regulation of photorespiration. Transcriptional regulation and
redox-regulation via thioredoxins is believed to play a crucial role in
adapting photorespiration to fluctuating environmental condi-
tions. Post-translational modification via S-nitrosylation, amino
acid oxidation and phosphorylation likely play roles in regulating
photorespiratory core enzymes (reviewed in Hodges et al., 2016,

and references therein). Obviously, transcriptional, post-
transcriptional and post-translational regulation of photorespira-
tion will be important focii of future research.

Newly established synthetic approaches that shortcut photores-
piratory metabolism have produced intriguing yield increases.
However, the discrepancies between theoretical expectations and
results observed in crops expressing glycolate-decarboxylating
bypasses remain to be resolved. These andmore advanced synthetic
approaches hold the potential to spur a new green revolution.
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Chlamydomonas reinhardtii (1),malate synthase fromCucurbitamaxima (2), andendogenousmalic enzyme(3) andpyruvatedehydrogenase (4) forglycolate
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Global food production needs to be increased by 70% to meet

demands by 2050. Current agricultural practices cannot cope

with this pace and furthermore are not ecologically sustainable.

Innovative solutions are required to increase productivity and

nutritional quality. The interdisciplinary field of synthetic biology

implements engineering principles into biological systems and

currently revolutionizes fundamental and applied research. We

review the diverse spectrum of synthetic biology applications

that started impacting plant growth and quality. We focus on

latest advances for synthetic carbon-conserving pathways

in vitro and in planta to improve crop yield. We highlight

strategies improving plant nutrient usage and simultaneously

reduce fertilizer demands, exemplified with the engineering of

nitrogen fixation in crops or of synthetic plant-microbiota

systems. Finally, we address engineering approaches to

increase crop nutritional value as well as the use of

photoautotrophic organisms as autonomous factories for the

production of biopharmaceuticals and other compounds of

commercial interest.
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Introduction
An estimated population increase of about 2 billion
people until 2050 will require novel and innovative
solutions to improve agricultural productivity and ensure
food security [1]. Several factors pose extra challenges, for
example the loss of arable land by rapid urbanization,

erosion, and climate warming. In addition, changes in
living standards, specifically higher meat consumption,
require increased plant-based protein production for ani-
mal feed. The development and massive implementation
of synthetic and natural fertilizers-nitrogen, phosphorous
and potassium in particular- and the Green Revolution —
including breeding strategies to maximize plant architec-
ture and light harvesting — resulted in higher yields. This
is however currently not sufficient, and in order to meet
food demands of the growing world population crop yield
has to double in the next 30 years, representing an annual
yield increase of 2.2% [2,3]. However, within the last
years the yield-increase rate of major crop plants pla-
teaued and the possibility to increase arable land is
limited. Genetically engineering plant performance
towards improving growth and yield is a potential solution
to overcome upcoming problems [4,5]. Classical plant
biotechnology rather focuses on modulating individual
components, but improving complex multigenic traits
requires rational and systematic engineering strategies.
The revolutionizing field of synthetic biology applies
principles of modern engineering to biological systems.
Modular genetic parts are the cornerstone and are com-
bined to construct synthetic biological systems, supported
by mathematical model guided design and quantitative
functional characterization of the individual parts [6].

Currently, plant synthetic biology is lagging behind
bacterial, yeast and mammalian systems, where these
approaches are already reshaping fundamental
research and the biotechnological/biopharmaceutical
industries [7,8]. Within the plant field the standardi-
zation of genetic parts and establishment of modular
cloning tools were the first steps towards a more
generalized implementation of synthetic biology strat-
egies [9,10!]. Synthetic tools for controlling gene
expression and cellular processes, in particular chemi-
cally inducible systems and optogenetics [6,11,12],
CRISPR/Cas9-based technologies and other advances
in genome engineering are fundamental for future
progress of plant synthetic biology [13].

Here, we discuss current applications and the potential of
synthetic biology approaches for improving agriculture
productivity, food quality and production, ideally attain-
ing a sustainable and cost-effective practice (Figure 1). In
particular, we focus on strategies to: i) develop synthetic
metabolic routes for improved CO2 fixation and carbon-
conservation; ii) reduce the usage of natural and synthetic
fertilizer in agriculture by engineering nitrogen fixation in
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crop plants and the construction of synthetic plant
microbiome consortia; iii) increase the nutritional value
of crop plants; and finally iv) use photoautotrophic organ-
isms as production platforms for commercially interesting
compounds. We would like to emphasize that this work
focuses on synthetic biology approaches, as needed to
improve such complex traits, rather than classical bio-
technological approaches which are thoroughly reviewed
elsewhere [14].

Synthetic metabolism to increase plant
growth and agricultural yield
Agricultural yield is mostly influenced by three major
components: the efficiency of light energy capture and of
light conversion into biomass, and the harvest index —
fraction of total energy in plant biomass contained in the
harvestable organs. Whereas, the efficiency of light
energy capture and the harvest index have reached their

biological limits, the conversion efficiency represents
only 20% of its theoretical maximum, constituting
therefore a potential engineering target [4]. However,
manipulation of such multicomponent traits is still
cumbersome. Optimizing and re-designing carbon
metabolism using novel synthetic pathways including
tailored-engineered enzymes are promising approaches
as described below (Figure 1, [reviewed in Ref. 15]). The
in silico accurate and fast prediction of the behavior of the
synthetic metabolic routes integrated within the endoge-
nous metabolic networks will facilitate in planta imple-
mentation (Figure 1), supported by recent advances in
computational tools (Box 1, [reviewed in Ref. 16]).

We discuss here three major targets for enhancing plant
carbon efficiency: i) improving carboxylation efficiency,
minimizing ii) photorespiratory and iii) respiratory CO2

loss (summarized in Table 1).

Synthetic biology for agriculture and nutrition Roell and Zurbriggen 103

Figure 1

Impact of synthetic biology on future agriculture and nutrition
Increasing the nutritional value

Synthetic metabolism to improve plant growth

Photoautotrophy-based production

Reducing fertilizer usage

Plant microbiome
engineering and

synthetic microbial
communities

Phosphorous and nitrogen mobilization by
mycorrhizal fungi and nitrogen fixing bacteria

Immunotherapeutics and biopharmaceuticals Biofuel

In silico  prediction In planta establishment

Increased carotenoids
content

Increase in PUFAs Removal of toxic or
taste reducing

metabolites

Allergene-free food

(a)

(b)

(c)

(d)

Current Opinion in Biotechnology

Impact of synthetic biology on future agriculture and nutrition. (a) Enhancing the nutritional value of plants includes increasing the content of
diverse carotenoids (exemplified by provitamin A) and very-long polyunsaturated fatty acids (PUFAs, exemplified by arachidonic acid). Steviosid
(shown), the major component of Stevia rebaudiana, is used as natural sweetener, but its bitter aftertaste limits its application in food. (b) The
construction of synthetic metabolism in plants will contribute to plant growth improvement. Synthetic metabolic pathway design and in silico
prediction of its function in the context of the endogenous plant network will contribute to a successful implementation in planta. (c)
Photoautotrophy-based platforms are employed for the production of vaccines, immunotherapeutics, antibodies, biopharmaceuticals and biofuels
(from left to right). (d) Reducing fertilizer usage can be achieved by plant microbiome engineering and the construction of synthetic microbial
communities using arbuscular and/or ectomycorrhizal symbioses as well as nodule forming nitrogen-fixing bacteria (from left to right).
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The CO2-fixing enzyme ribulose-1,5-bisphosphate car-
boxylase/oxygenase (Rubisco) has been an engineering
target for several years. However, attempts to increase its
activity and substrate specificity to minimize oxygenase
activity were not successful [5]. Instead, engineering
carbon concentrating mechanisms, such as C4 photosyn-
thesis, pyrenoids or cyanobacterial carboxysomes are
currently preferentially addressed for improving carbox-
ylation efficiency (Table 1). The exploration of rather
radical engineering strategies aims at developing syn-
thetic, more efficient routes of CO2 fixation besides the
Calvin-Benson-Bassham cycle (CBBC). The first steps
towards this goal are exemplified by the construction of a
complete synthetic route for CO2 fixation in vitro, namely
the crotonyl–coenzyme A (CoA)/ ethylmalonyl-CoA/
hydroxybutyryl-CoA (CETCH) cycle [17!!]. Extensive
computational analysis is needed to identify the most
efficient enzymes for de novo engineering efficient CO2

fixation, improve their activity and integrate them into a
balanced network including precursors and intermedi-
ates. All these constraints considered, a final version of
the engineered CETCH cycle yielded comparable CO2

fixation rates to the CBBC (5 nmol CO2 min" mg"1

versus 1–3 nmol CO2 min"1 mg"1) [17!!].

Theengineering ofchloroplastic photorespiratory bypasses
to reducephotorespiratory CO2 loss hasbeen demonstrated
as a suitable approach to improve plant growth [reviewed in
18]. For example, the chloroplastic oxidation of glycolate
into two molecules of CO2upon expression of two enzymes
(glycolate dehydrogenase and malate synthase) resulted in
a 40% biomass increase in tobacco plants under field
conditions [19!!]. Inhibition of glycolate export from the
chloroplast upon transcriptional downregulation by RNA
interference of the plastidic glycerate/glycolate transporter
1 (PLGG1) improved the phenotypic effect of the syn-
thetic pathway [19!!]. Glycolate seems to be the most
promising substrate for redesigning photorespiration with-
out CO2 and ammonia release as by products (carbon-
conserving photorespiration). Recently, CO2-neutral

synthetic bypasses of photorespiration based on the con-
version of glycolate into glycolyl-CoA and re-assimilation
into the CBBC were identified computationally [20].
Kinetic-stoichiometric modelling supported the impact
of these pathways on plant growth. Engineering of an
acetyl-CoA synthetase to convert glycolate into glycolyl-
CoA and of a propionyl-CoA reductase for higher glycolyl-
CoA selectivity and NADPH specificity, was performed
and pathway functionality was demonstrated in vitro [20].

Finally, as up to 60% of assimilated carbon is lost by
respiration, minimizing respiratory CO2 losses would be a
breakthrough to improve plant productivity. Although
engineering respiratory metabolism has been overlooked
within the last years, recently four main targets for
manipulation were identified in order to reduce respira-
tory costs. These include, i) optimize protein turnover, ii)
redesign respiratory metabolism, iii) avoid futile cycles,
and iv) engineering efficient ion transport [21!]. However,
negative side effects of these approaches need careful
evaluation. A detailed overview about engineering strat-
egies regarding respiration is provided in [21!].

Besides the engineering and implementation of synthetic
metabolic pathways in plants, the manipulation of stoma-
tal kinetics [22!] and accelerated recovery from photo-
protection [23] are strategies of current interest (Table 1).

Reducing fertilizer usage in agriculture
The massive use of (synthetic) fertilizers — #140 kg per
hectare of arable land — sustains western agricultural
productivity today. In developing countries, the high
costs pose a limitation, ergo low fertilization leads to
lower yields. However, current heavy fertilization prac-
tices are not sustainable due to low nitrogen utilization
efficiency of crop plants, contamination of ground waters,
energy-intensive fertilizer production and finite phospho-
rous resources [24–26]. Therefore, strategies to improve
plant nutrient use efficiency, uptake or assimilation
mechanisms are needed.

Previous attempts to improve nitrogen and phosphorous
use efficiency in plants, which have shown limited suc-
cess, mostly focused on genetically modifying individual
components involved in nutrient uptake, allocation,
metabolism or transcriptional regulation. Current limita-
tions can be overcome by differentiating between nutri-
ent uptake and nutrient utilization [25,26].

Promising efforts towards reducing nitrogen fertilization
involve complex synthetic biology strategies for the engi-
neering of a nitrogenase into plants, or establishing sym-
biotic nitrogen fixation in major crop plants, otherwise
only present in legumes [24]. The implementation of a
functional multi-subunit nitrogenase is challenging due
to the high number of involved genes, oxygen-sensitivity
and metal co-factor dependence (iron and molybdenum)
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Box 1 Computational tools for synthetic metabolism in plants

Applying principles of engineering to the field of biology requires
computational tools for in silico predictions. The realization of syn-
thetic pathways not only requires assessing the thermodynamic
feasibility [53], but also predicting its behavior in the context of the
endogenous metabolic network and identifying potential bottlenecks
by flux balance analysis (FBA) [16]. The construction of metabolic
networks for cyanobacteria [54], Chlamydomonas reinhardtii
[55,56] and plants [summarized in Ref. 16] were major achievements
aided by the prediction of the behavior of synthetic pathways in
phototrophic organisms. Further, classical biochemical models of C3
and C4 photosynthesis [57,58] and cross-scale models connecting
leaf photosynthesis with crop field performance can be assessed to
predict the effects of photosynthesis manipulation [59]. Integrating
these advanced computational tools to the engineering approach will
facilitate the realization of synthetic metabolism in plants.
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Table 1

Synthetic biology applications for future agriculture and food

Approach Description Species Reference

Improving plant growth and agricultural yield
Improving carboxylation reactions
C4 photosynthesis in C3 plants Implementation of C4 photosynthesis in C3 species

includes biochemical and developmental
(Kranz-Anatomy) engineering with the most prominent
example of the C4 Rice Project (https://c4rice.com).

C3 crop plants
(e.g. Oryza sativa)

[60]

Implementation of carbon-concentrating-
microcompartments

Implementation of algae (pyrenoid) or cyanobacterial
(carboxysomes) carbon concentrating mechanism in
plant chloroplasts to suppress RubisCO oxygenase
activity

C3 crop plants
(e.g. Oryza sativa)

[61,62]

Synthetic pathways for CO2 assimilation In vitro CO2 fixation using a synthetic pathway
composed of 17 enzymes (CETCH cycle)

[17!!]

Minimizing (photo)–respiratory CO2losses
Chloroplastic photorespiratory bypass Oxidation of glycolate in the chloroplast to release two

CO2 molecules and native photorespiratory flux
knockdown resulted in a 40% biomass increase under
field conditions

Nicotiana
tabacum

[19!!]

Synthetic CO2 neutral photorespiration In vitro conversion of glycolate into glycoly-CoA and
re-assimilation into the CBBC without CO2 and
nitrogen release. Two enzymes were engineered for
substrate and co-factor specificity

[20]

Minimizing respiratory CO2 loss Potential targets:

i) optimize protein turnover

ii) redesign respiratory metabolism,
iii) avoid futile cycle,

iv) efficient ion transport

[21!]

Improving water use efficiency and photosynthetic light reactions
Optogenetic manipulation of stomatal kinetics Guard-cell specific of a synthetic blue light-gated

K+-channel to allow rapid response of stomatal
opening under fluctuating light conditions

Arabidopsis
thaliana

[22!]

Accelerating recovery from photoprotection Overexpression of PsbS and xanthophyll cycle
enzymes resulted in a faster restoration of maximum
CO2 assimilation from nonphotochemical quenching of
chlorophyll fluorescence

Nicotiana
tabacum

[23]

Design Breeding
De novo domestication Genetic manipulation of several domestication genes

in wild type plants enables a timesaving domestication
process

Solanum
lycopersicum

[63!!]

Reducing synthetic fertilizer usage in agriculture
Establish functional nitrogenase or symbiotic nitrogen fixation in crop plants
Functional nitrogenase in plants Expression of 16 nitrogenase genes in plant

mitochondria
Nicotiana
benthamiana

[29!]

Symbiotic nitrogen fixation in crop plants Requires the expression of four regulatory programs.
The SynSym international consortia addresses
questions regarding synthetic nitrogen fixation (https://
synthsym.org)

Several crop
plants

[24]

Synthetic microbiota for improved nutrient utilization
Cultivation with growth promoting plant
microbiome bacteria

Different Rhizobiales isolated supported growth of
Arabidopsis. In particular, taxonomic groups
containing nitrogen-fixing nodule symbionts

Arabidopsis
thaliana

[32!!]

Plant microbiome composition Identification of root-associated fungus in non-
mycorrhizal plants to improve phosphorous utilization

Arabis alpina [64]

Construction of synthetic microbiota for crops Within the private sector engineering the microbiome
of crops is already addressed

Several crop
plants

[52]

Increasing the nutrional value of crop plants
Increase provitamin A content GoldenRice project (http://www.goldenrice.org) Oryza sativa [35]
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[27 and references therein]. To achieve spatiotemporal
separation of photosynthesis and N2 fixation, the mito-
chondrion is suggested as the suitable target compart-
ment for implementing the nitrogenase. However, it still
remains to be analyzed how to achieve correct mitochon-
drial targeting, functionality of the nitrogenase subunits
and nitrogenase metal cluster assembly [28]. First steps
made in this direction comprise the transient expression
and correct targeting of 16 nitrogenase subunit proteins in
Nicotiana benthamiana [29!].

An alternative strategy requires the establishment of the
rhizobium-legume symbiosis in crop plants. This requires
the coordinated engineering of four genetic regulatory
programs: i) Nod factor perception, ii) root nodule organ-
ogenesis, iii) bacterial infection, and iv) establishing
nitrogenase activity inside the nodule [24].

In contrast to the before mentioned approaches, bottom-
up construction of synthetic plant microbiota is a suitable
strategy to concurrently improving the utilization of nitro-
gen and phosphorous in plants [30]. Tremendous efforts
in understanding the plant microbiome pinpoint to its
engineering potential [31!!,32!!,33], and will probably
soon be reflected in a generalized implementation of
such synthetic consortia.

Establishing plant microbe interactions depends on phy-
tohormones. In particular strigolactones play an essential
role in mediating the symbiosis with arbuscular mycor-
rhizal fungi and nitrogen fixing bacteria [34]. Engineering
of targeted and regulated strigolactone secretion or the
production and release of metabolites able to recruit

useful microorganisms for plant nutrition might represent
a simple strategy towards improved nutrition [34].

Increasing the nutritional value of crop plants
Reaching the limits of productivity implies that agricul-
ture needs to increase the nutritional value of crop plants
to secure sufficient food supply and tackle issues of
malnutrition (Figure 1). The most prominent example
of the biotech-era is the Golden Rice Project [35].
Vitamin A deficiency causes major health problems, an
issue overrepresented in countries where rice is the
staple food and diet diversity is limited. Implementation
of two carotenoid biosynthesis genes, phytoene synthase
and carotene desaturase, lead to the biosynthesis and
accumulation of beta-carotene (provitamin A) in rice
plants [35]. However, in order to engineer complex,
multigenic traits and multi-enzymatic pathways as those
needed to produce other vitamins and secondary metab-
olites, synthetic biology strategies are needed [36]. Of
interest are several carotenoids and their oxygen contain-
ing derivatives, xanthophylls. They are associated with
major health benefits, like eye-health and cardiovascular-
health, functional immune system, cognitive function
and antioxidant activity [36]. The red ketocarotenoid
astaxanthin is of high commercial value as food supple-
ment in particular for the fish industry. However, most of
the astaxanthin used in salmon and trout farming is
currently of synthetic origin and plant-based sources
would represent a cheap alternative as fish feed [37].
Understanding the regulatory mechanisms coordinating
astaxanthin and fatty acid biosynthesis would facilitate
future engineering strategies. Indeed, it was shown that
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Table 1 (Continued )

Approach Description Species Reference

Increase VLC-PUFA content Seed-specifically expression of VLC-PUFAs
biosynthetic genes

Brassica napus
Canola sativa

[41!,42]

Remove cyanogenic glycosides RNA interference targeting two cytochrome P450
genes

Manihot
esculenta Crantz

[43]

Increased anthocyanin content Fruit-specific expression of two transcription factors
(Del and Ros1) inducing anthocyananin biosynthesis

Solanum
lycopersicum

[65]

Reduced gluten content in wheat CRISPR/Cas9 mediated knockout of up to 45 genes in
wheat to lower gluten content

Triticum aestivum [66!]

Vitamin B12 biosynthesis in plants Engineering E. coli for de novo vitamin B12 biosynthesis [67]

Photoautotrophic organisms as production platform
Vaccine and cosmetic production Use mosses as green cell factory for the production of

vaccines and cosmetics
Physcomitrella
patens

[48!]

Scalable production of artemisinin in
biomass crops

Chloroplastic expression of the core artemisinic acid
biosynthesis pathway and additional enzymes to
improve flux through the pathway

Nicotiana
tabacum

[68]

Improving saccharification
efficiency

TALEN-mediated mutagenesis of more than
100 caffeic acid O-methyltransferase alleles in
polyploid sugarcane to improve the saccharification
efficiency for biofuel production

Saccharum
officinarum

[69]

Synthetic or biohybrid systems Construction of artificial leaves and synthetic
photosynthetic cell as solar energy driven production
platforms

[50,51]

Abbreviations: VLC-PUFAs: very long poly-unsaturated fatty acids; CETCH cycle: crotonyl–coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-
CoA; CBBC: Calvin-Benson-Bassham cycle; TALEN: transcriptional activator like effector nuclease.
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astaxanthin esterification is a prerequisite for astaxanthin
accumulation in algae [38].

Very-long-chain polyunsaturated  fatty acids (VLC-PUFAs)
such as arachidonic acid (AA; C20:4 D5,8,11,14), eicosapen-
taenoic acid (EPA; C20:5 D5,8,11,14,17) and docosahexaenoic
acid (DHA; C22:6 D4,7,10,13,16,19) are associated with brain
development and are beneficial for reducing cardiovascular
disease prevalence. The consumption of microalgae by
marine fish represents the primary, but non-sustainable
source of VLC-PUFAs in human diet. While flowering plants
contain low amounts of VLC-PUFAs [39], several moss
species are known to accumulate higher levels [40]. The
introduction of VLC-PUFA biosynthetic genes, including
moss genes, has shown success in improving the VLC-PUFA
content in model plants [39 and references therein]. In oil
crops the expression of VLC-PUFA biosynthetic genes
resulted in a 15% VLC-PUFA content in Camelina sativa
[41!]. Further, in canola (Brassica napus) the seed-specific
expression of VLC-PUFA biosynthetic genes caused an
increased VLC-PUFA content of 12%. These transgenic
plants are expected to have full regulatory approval in the
US soon [42].

Increasing the nutritional value of food also comprises the
elimination of undesired secondary metabolites and pro-
teins. The presence of toxic cyanogenic glycosides is a
major issue for cassava (Manihot esculenta Crantz) based
diets, as it is the case in Sub-Saharan countries [35].
Engineering efforts to reduce cyanogenic glycoside con-
tent are limited to RNA interference approaches targeting
two cytochrome P450 genes, CYP79D1 and CYP79D2,
encoding the first enzymes in linamarin and lotaustralin
synthesis [43]. Stevia rebaudiana, naturally found in South
America, is a source of steviol glycosides which have
attracted the attention of the food industry as natural
sweetener. However, its organoleptic qualities, namely a
bitter aftertaste limit their generalized consumer/food
industry acceptance [44]. Within the private sector the
recent advances in genome-editing are already used to
facilitate the targeted elimination of undesired traits.
These approaches will further contribute to reducing
the allergenicity of plant-based food, which is of rele-
vance due to severe health risks. In particular peanuts, a
high protein containing plant-based food source, cause
severe allergies [45]. Therefore, elimination of the major
allergens — Ara proteins — would make these crops
available to a wider market. Table 1 includes several
other approaches recently developed to increase the
nutritional value in crop plants (Table 1).

Harnessing photoautotrophy as a
bioproduction platform
Photoautrophic organisms are well-suited systems for the
large-scale production of immunotherapeutics, biophar-
maceuticals and biofuels due to their low cost, highly
scalable biomass production and no endotoxin synthesis

(Table 1). Furthermore, the native post-translational
modification machinery can be further engineered to
achieve humanized N-glycan structure as exemplified
in [46]. For a thorough overview on higher plants as
production platform we refer the reader to [47]. The
moss Physcomitrella patens emerged as an efficient green
cell factory, with moss-made pharmaceuticals currently in
clinical trial and moss-product cosmetics already on the
market [48!]. Aquatic phototrophic organism, such as
cyanobacteria and green algae, are in turn of industrial
relevance for biofuel production [reviewed in Ref. 49].
Besides phototrophic organisms, complete synthetic or
biohybrid systems are emerging using solar energy as
driving force, as exemplified by artificial leaves [50]
and synthetic photosynthetic cells [51].

Conclusions and future perspectives
Recent advances in the engineering of complex traits in
plants as illustrated here indicate the potential of plant
synthetic biology to tackle some of the urgent nutritional
and ecological demands. Some of the mentioned approaches
have already entered the market as for example the engi-
neering of synthetic microbiota to reduce fertilizer use in
agriculture [52]. However, many of the associated technolo-
gies still need to mature and a regulatory framework to be in
placebeforeageneralizedcommercialapplicationcan  finally
ensue. The suitability of the approaches within the regula-
tory framework, in particular in the EU, needs to be carefully
evaluated in the future (fordetailed information see article in
this issue). In accordance with the fast, widespread and
successful implementation of synthetic biology strategies
witnessed in the biomedicalfieldand thewhite and red high-
value compounds and biopharmaceutical industries, we
foresee the game changing effects of plant synthetic biology
for agriculture and nutrition.
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16. Küken A, Nikoloski Z: Computational approaches to design and
test plant synthetic metabolic pathways. Plant Physiol 2019,
179:894-906.

17.
!!

Schwander T, Schada von Borzyskowski L, Burgener S,
Cortina NS, Erb TJ: A synthetic pathway for the fixation of
carbon dioxide in vitro. Science 2016, 354:900-904

This study demonstrates the construction of a novel, complete synthetic
pathway for the in vitro fixation of carbon dioxide. The pioneering study is
the first to show synthetic CO2 fixation in vitro.

18. Eisenhut M, Roell MS, Weber APM: Mechanistic understanding
of photorespiration paves the way to a new green revolution.
New Phytol 2019, 15:330-338 http://dx.doi.org/10.1111/
nph.15872.

19.
!!

South PF, Cavanagh AP, Liu HW, Ort DR: Synthetic glycolate
metabolism pathways stimulate crop growth and productivity
in the field. Science 2019, 363

In this study the authors demonstrate a biomass increase of 40% in
tobacco plants under field conditions using a chloroplastic bypass of
photorespiration. It is the first study to demonstrate the positive impact of
bypasses of photorespiration under field conditions.

20. Trudeau DL, Edlich-Muth C, Zarzycki J, Scheffen M, Goldsmith M,
Khersonsky O, Avizemer Z, Fleishman SJ, Cotton CAR, Erb TJ et al.:
Design and in vitro realization of carbon-conserving
photorespiration.ProcNatlAcadSciUSA2018,115:E11455-E11464.

21.
!

Amthor JS, Bar-Even A, Hanson AD, Millar AH, Stitt M,
Sweetlove LJ, Tyerman SD: Engineering strategies to boost
crop productivity by cutting respiratory carbon loss. Plant Cell
2019, 31:297-314

In this study the authors outline the importance of respiratory CO2 loss as
engineering target and propose different approaches that are of future
interest.

22.
!

Papanatsiou M, Petersen J, Henderson L, Wang Y, Christie JM,
Blatt MR: Optogenetic manipulation of stomatal kinetics
improves carbon assimilation, water use, and growth. Science
2019, 363:1456-1459

In this study a synthetic blue light regulated potassium channel was
expressed in Arabidopsis guard cells to accelerate the response of
stomatal behavior causing a growth-promoting phenotype.

23. Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK,
Long SP: Improving photosynthesis and crop productivity by
accelerating recovery from photoprotection. Science 2016,
354:857-861.

24. Rogers C, Oldroyd GED: Synthetic biology approaches to
engineering the nitrogen symbiosis in cereals. J Exp Bot 2014,
65:1939-1946.

25. Heuer S, Gaxiola R, Schilling R, Herrera-Estrella L, López-
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Phosphoregulation within the Photorespiratory Cycle:
Regulate Smarter, Adapt Better?

To cope with various abiotic and biotic stress factors,
plants must be facile in adapting cellular metabolism.
In particular, they have to adjust photosynthesis
and balance associated metabolism. Heat and drought
stress strengthen plant photorespiration, a metabolic
process resulting from Rubisco oxygenase activity
(Busch, 2020). Rubisco oxygenase activity results in the
production of 2-phosphoglycolate, a toxic intermediate
that needs to be rapidly detoxified via the photo-
respiratory cycle to avoid inhibition of several Calvin-
Benson-Bassham cycle enzymes (Fernie and Bauwe,
2020). The interconnection with associated metabo-
lism, in particular the nitrogen cycle, demands a precise
regulation of photorespiration depending on the envi-
ronmental circumstances (Eisenhut et al., 2019). In order
to achieve short-term regulation of photorespiratory
fluxes, the activities of several photorespiratory enzymes
are regulated by posttranslational modifications, in-
cluding S-nitrosylation and phosphorylation (Hodges
et al., 2016).
In this issue of Plant Physiology, Liu et al. (2020)

demonstrate a novel regulatory mechanism that de-
pends on cofactor switching mediated by phosphoryl-
ation of the photorespiratory enzyme hydroxypyruvate
reductase 1 (HPR1) in Arabidopsis (Arabidopsis thaliana;
Fig. 1). Under changing environmental conditions, the
phosphorylation-dependent changes in HPR1 cofactor
specificity allow the regulation of photorespiratory
fluxes.
HPR catalyzes the second to last step of photores-

piration, converting hydroxypyruvate into glycerate,
while oxidizing a pyridine cofactor, preferentially
NADH. In photosynthetic leaves, peroxisomal HPR1
accounts for up to 80% of HPR activity (Liu et al., 2020).
The central role of HPR1 in photorespiration is sup-
ported by the retarded growth phenotype of the hpr1-
1 loss-of function mutant in air (Fig. 1).
Based on previous knowledge of the likely HPR1

phosphorylation site, Liu et al. (2020) demonstrate that
mimickingHPR1phosphorylation at Thr-335 (HPR1T335D)
shifted HPR activity toward NADPH dependency.
Speaking in numbers, the catalytic efficiency forNADPH-
dependent HPR1 activity was increased by 35%, while
the NADH-dependent activity was reduced by 50%.
Consequently, HPR1T335D was more specific for hydroxy‐
pyruvate as substrate for HPR activity in the presence of
NADPH (31% increase) compared with NADH (56% re-
duction). Homology-based modeling revealed that the
position of the phosphorylated Thr residue is within an

a-helix connecting the substrate-binding and cofactor-
binding domains. Structural changes upon Thr phospho-
rylation can explain the observed effects regarding cofac-
tor and substrate specificity (Fig. 1).

Liu et al. (2020) complemented the hpr1-1 photo-
respiratory phenotype in planta to assess the effects
of HPR1 phosphorylation at Thr-335. Whereas wild-
type HPR1 and nonphosphorylated HPR1 fully
complemented the photorespiratory hpr1-1 mutant
phenotype in air, HPR1T335D only partially rescued the
phenotype (Fig. 1). In planta, HPR1T335D also preferen-
tially catalyzed NADPH-dependent HPR activity,
consistent with the biochemical data using purified
HPR1T335D protein. The partial complementation of the

Figure 1. Phosphorylation of HPR1 at Thr-335 alters cofactor specificity
and impacts Arabidopsis growth in air. A, HPR1 catalyzes the reduction
of hydroxypyruvate to glycerate upon NADH oxidation. Phosphoryla-
tion at Thr-335 shifts HPR1 cofactor specificity toward NADPH. B,
Complementation of the hpr1-1 mutant with a nonphosphorylated
HPR1 (HPR1T335A), a mimicked phosphorylation HPR1 (HPR1T335D),
and wild-type HPR1 (HPR1WT). Columbia-0 (Col-0) served as the wild-
type control. A was generated with BioRender and B was adapted from
Liu et al. (2020).
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hpr1-1 phenotype implies that constitutive HPR1
phosphorylation is obstructive under optimal growth
conditions in air.

Indeed, HPR1 phosphorylation negatively influ-
enced photosynthetic CO2 assimilation due to dis-
turbed photorespiration, shown by decreased levels
of photorespiratory metabolites (glycerate, Gly, and
glyoxylate). It remains to be proven if the reduced levels
of photorespiratory metabolite are due to a feedback
inhibition of the peroxisomal Ser:glyoxylate amino-
transferase or reduced chloroplastic export of glycolate
via the plastidial glycolate/glycerate transporter1 (Pick
et al., 2013).

The study by Liu et al. (2020) provides evidence for
a novel regulatory mechanism within the photo-
respiratory cycle. In contrast to previous studies
that focused on altered enzymatic activity of photo-
respiratory enzymes upon posttranslational modifi-
cations, phosphorylation of HPR1 changes cofactor
specificity. The shift from NADH toward NADPH for
the HPR1-catalyzed step of photorespiration allows
the adaptation of photorespiratory fluxes in response
to altered environmental conditions that directly in-
fluence cellular NADH/NADPH ratios. Moreover,
cofactor switching allows the cell to modulate the
peroxisomal NADH/NADPH ratio by HPR1 activity.
However, the advantages of altering cofactor specificity
as an adaptive mechanism under changing environ-
mental conditions have to be proven. Furthermore,
open questions remain regarding the in vivo functions
of the other HPR isoforms (Timm et al., 2011) as well

as the regulation of both isoforms in the context of
photorespiration.
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Terpenes in Cannabis: Solving the Puzzle of How to
Predict Taste and Smell

Cannabis sativa (cannabis) is the cornerstone of the
multibillion-dollar legal marijuana industry. Cannabis
plants are industrially used for fiber and oilseed pro-
duction, but are primarily known for their resin, which
is produced from glandular trichomes covering the
surface of female flowers and is rich in cannabinoids
and terpenes. The medicinal and psychoactive proper-
ties of cannabis depend on the total cannabinoid
amount and the ratio of tetrahydrocannabinolic acid to
cannabidiolic acid. However, fragrance and flavor are
affected by terpene composition (Booth et al., 2017). To
predict and design cannabis smell and taste to meet
consumer demands, twomilestones have to be reached.
First, a comprehensive understanding of terpene
composition is required, which can be achieved by
using quantitative terpene profiling in existing culti-
vars. Second, the underlying molecular and bio-
chemical mechanisms leading to these distinct profiles
need to be understood.

In this issue of Plant Physiology, Booth et al. (2020)
provide the framework for future breeding efforts to
produce cannabis fragrance and flavor features
demanded by consumers. Specifically, they analyzed
terpene profiles of eight cannabis cultivars and char-
acterized 13 new cannabis terpene synthases. In plants,
terpenes form a diverse group of hydrocarbon-based
metabolites estimated to encompass thousands of
different molecules (Pichersky and Raguso, 2018).
Terpenes have diverse roles. They function as pri-
mary cellular components, e.g. as hormones or anti-
oxidants, and they are indispensable for ecological
interactions, e.g. signaling and defense against her-
bivores (Pichersky and Raguso, 2018). In cannabis,
more than 100 different terpenes have been identified

that define odor and flavor of different cultivars
(Rothschild et al., 2005; Andre et al., 2016).

Terpene- and cannabinoid-biosynthesis depend on
the five carbon building block isopentenyl pyrophos-
phate (IPP; Fig. 1). IPP is produced by the plastidial
methylerythritol phosphate pathway and the cytosolic
mevalonate pathway. Metabolic fluxes within both
pathways contribute to the substrate pools available for
terpene synthases (TPSs). TPSs produce the diversity of
cyclic and acyclic terpene core structures, using geranyl
diphosphate or farnesyl diphosphate for monoterpene
or sesquiterpene synthesis, respectively (Fig. 1).

The accurate predicting and design of cannabis ter-
pene profiles requires understanding of TPS, the key
enzyme in terpene biosynthesis (Fig. 1). Booth et al.
(2020) identified 19 TPS gene models in the ‘Purple
Kush’ cannabis reference genome. TPS genes show
multicopy gene clustering, a common phenomenon
previously observed for genes of the IPP and cannabi-
noid biosynthetic pathways (Taura et al., 2009). Foliar
terpene profiling of eight cannabis cultivars revealed a
total of 48 different terpenes with three monoterpenes
(myrcene, a‐pinene, and limonene) and two sesquiter-
penes (b‐caryophyllene and a‐humulene) present in
all cultivars. In six selected cultivars, monoterpenes
accumulated during the life cycle, in tissues including
leaves, juvenile flowers, and adult flowers. Using tri-
chome transcriptome profiling, Booth et al. (2020)
identified 33 TPS genes among the selected six culti-
vars. Further, 13 new TPSs were biochemically char-
acterized regarding product formation using both
geranyl diphosphate and farnesyl diphosphate as
substrates. Overall TPS specificity varied between the
production of a single mono- or sesquiterpene to as

Figure 1. Simplified scheme of terpene
biosynthesis. IPP is produced either by
the methylerythritol phosphate (MEP)
pathway or the mevalonate (MEV) path-
way. TPSs catalyze the last step of terpene
biosynthesis. G3P, Glyceraldehyde
3-phosphate; CBGA, cannabigerolic acid.
Adapted from figure 1 of Booth et al.
(2020).
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many as 13 different sesquiterpenes produced by a
single TPS enzyme.
With these results, simple assumptions regarding

TPS transcript abundance and terpene profiles can be
made. However, spatiotemporal profiling of TPS tran-
script levels and terpene quantities will be necessary for
more accurate predictions. Integrating the 13 TPSs
characterized in this study with previously character-
ized TPS brings the total number to 30 known TPSs
across 14 different cannabis cultivars (Booth et al., 2017;
Zager et al., 2019; Livingston et al., 2020). Harmonizing
trichome transcriptomics tools, knowledge of TPS func-
tion, and terpene profiling sets the framework for can-
nabis breeders to predictively shape and design terpene
composition on demand.
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A Novel Trojan Horse for Molecule Delivery into Plants

The agronomic application of nanotechnology har-
bors huge potential for future agriculture (Landry and
Mitter, 2019). Within the last years, nanocarriers have
emerged as vehicles for the delivery of cargo (RNA,
DNA, protein, and plant protection substances) into the
plant cell (Wang et al., 2016). RNA-induced gene si-
lencing (also known as RNA interference) is a reliable
method to study and alter the genetic form and func-
tion of plants. Nanocarriers offer the possibility to
directly deliver small interferingRNAs (siRNAs; double-
stranded RNAs of 20–25 bp) into the plant cell without
involving a biological carrier (e.g. viruses) or genetic
transformation (Cunningham et al., 2018).

Carbon-based nanostructures such as carbon dots
and single-walled carbon nanotubes (Demirer et al.,
2019, 2020) are valuable alternatives to common trans-
formation methods, since they do not require genetic

transformation (Wang et al., 2016) and avoid heavy
metal nanoparticles, usually used for biolistic trans-
formation (Klein et al., 1987). Although single-walled
carbon nanotubes and carbon dots share most benefi-
cial properties, they differ in size. Single-walled carbon
nanotubes are;1 nm in diameter and up to 1,000 nm in
length; in contrast, carbon dots are on average ;3 nm
in size (Demirer et al., 2020; Schwartz et al., 2020).
The benefits of carbon-based nanostructures are a
high aspect ratio (i.e. the ratio of length to width), good
biocompatibility (especially compared with metal
nanoparticles), and the ability to protect bound bio-
molecules from cellular metabolism and degradation
(Demirer et al., 2019; Kwak et al., 2019). Furthermore,
tissue-specific tracking based on their fluorescent prop-
erties and intracellular on-demand cargo release holds
great promise for broad application (Wang et al., 2016;

Figure 1. Carbon dot-delivered siRNA-mediated gene silencing in plants. A, Schematic representation of carbon dot leaf entry
and intracellular siRNA release. B, Spray application of carbon dot-delivered siRNAs. GFP fluorescence (GFP fluores.) in leaves of
a tomato reporter line was imaged after treatment with a non-GFP-specific siRNA (Control) or a GFP-specific siRNA (Treatment).
Images were taken 5 d after application. Adapted from Schwartz et al. (2020).
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Cunningham et al., 2018). The cellular uptake of nano-
complexes is facilitated by endocytosis (Fig. 1), and in-
tracellular release of the nanocomplex is caused by an
osmotically driven endosome burst, called the proton-
sponge effect (Behr, 1997). The utilization of nano-
particles that respond either to intracellular stimuli (pH,
redox state, and enzymes) or external stimuli (light or
ultrasound) facilitates controlled cargo releasewithin the
cell (Wang et al., 2016; Cunningham et al., 2018).
In this issue of Plant Physiology, Schwartz et al. (2020)

establish the use of carbon dots for the delivery of
siRNAs as a novel tool for gene silencing in plants.
Simple spray application of carbon dots results in
highly efficient reporter and endogenous gene silencing
in model and crop species and holds great potential for
field application. In their study, Schwartz et al. (2020)
optimized the chemical synthesis and purification of
carbon dots before application. The low-cost bottom-up
synthesis of carbon dots is based on a one-pot reaction
using citrate or Glc with branched polyethyleneimine
for carbon dot surface functionalization. Size-exclusion
chromatography of prepared carbon dots revealed that
carbon dots with an average size of 3.8 nm in diameter,
combined with 22mer siRNAs, are most efficient for in
planta gene silencing.
Whereas previous nanoparticle approaches in plants

rely on particle bombardment (Klein et al., 1987) or leaf
infiltration (Demirer et al., 2019, 2020), carbon dots with
siRNA cargo are efficient for gene silencing upon low-
pressure spraying application (Schwartz et al., 2020).
GFP transcript and protein abundance were more than
80% reduced in reporter lines of wild tobacco (Nicotiana
benthamiana) and tomato (Solanum lycopersicum) 5 d af-
ter application (Fig. 1). Remarkably, systemic spreading
of silencing was observed in emerging leaves 12 d after
application due to intercellular and long-distance
movement of siRNAs (Melnyk et al., 2011).
Reporter gene independent validation was achieved

by targeting the endogenous H and I subunits of
magnesium chelatase. Magnesium chelatase catalyzes
the insertion of magnesium into protoporphyrin IX, an
essential step in chlorophyll biosynthesis, and knock-
down results in leaf bleaching. Comparable to GFP si-
lencing, endogenous gene silencing also reached an
80% reduction in mRNA level.

Carbon dot-based siRNA delivery into plant cells
expands the spectrum of carbon-based nanoparticles
for molecule delivery into plant cells and is an exciting
tool for fundamental and applied plant science. The
simple spray application makes it well suited for large-
scale agricultural use. Furthermore, prepared carbon
dots are also persistent and retain overall efficacy for at
least 1week of storage before application. Nevertheless,
a comparable high efficacy with less established plant
species needs to be shown, and fine-tuning cellular
entry and intracellular siRNA release can further opti-
mize broad-spectrum application.
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