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Abstract

The influence of electrostatic effects in various model systems of the soft matter is
presented. Computer simulations (Monte Carlo and molecular dynamics) as well
as numerical and analytical theories are developed to understand the role of the
Coulomb interaction in those systems. In particular, phenomena such as anomalous
counterion distribution (overcharging), polyelectrolyte adsorption and multilayering,
image forces, and charged colloids in bulk and in strong confinement are investigated
and discussed.

ii



iii



Übersicht

Diese Habilitationsschrift fasst meine Forschungsarbeit im Gebiet der geladenen
weichen Materie. Eigentlich sind alle Materialien mehr oder weniger an der mesoskopischen
Skala geladen, dies hängt vom Grad der Polarizabilität des Lösungsmittels (oder
Matrix) und der gelösten Partikel (z. B. kolloidale Partikel, Polymere, Membra-
nen. etc.) ab. Das meiste weithin bekannte Beispiel des polaren Lösungsmit-
tels ist zweifellos Wasser, welches eine entscheidende Rolle im Leben, in biolo-
gischen Prozessen sowie bei Industrieanwendungen spielt. Wenn die gelösten Par-
tikel auch polar sind, können sie sich dann in geladene Teilchen (Makroionen) und
(mikroskopische) Gegenionen trennen. Die Gegenion-Verteilung in der Nähe der
Makroionen erweist sich für die Oberflächeneigenschaften als entscheidend.

Historisch wurden mittleres Feld (mean-field) Theorien erstmals eingeführt und ver-
wendet um geladene soft-matter-systeme zu charakterisieren. Die Pionierarbeiten
von Gouy und Chapman [Gou10, Cha13] wurden vor fast einem Jahrhundert real-
isiert. Sie haben die Gegenion-Verteilung in der Nähe von einer flachen geladenen
Grenzfläche analysiert. Die heute genannte Poisson-Boltzmann Theorie anwendend,
demonstrierten sie, dass die Gegenion-Verteilungsprofile algebraisch als eine Funk-
tion der Trennung von der Wand mit einer charakteristischen Länge abfallen. Diese
ist umgekehrt proportional zur Oberflächenladungsdichte der Grenzfläche. Zehn
Jahre später vollendeten Debye und Hückel [DH23] einen grundlegenden Fortschritt
zum Verständnis der Abschirmung. Diese Theorie wurde ursprünglich für Elek-
trolyte entwickelt (d.h. eine Lösung der mikroskopischen Kationen und der Anionen,
z.B. NaCl) und basierte auf der Linearisation der Poisson-Boltzmann Gleichung.
Diese wird heute weitgehend im Plasma und in der Festkörperphysik benutzt.1

Aufgrund ihrer intuitiven und klaren physikalischen Grundlage, sind mittleres Feld
Theorien attraktive Werkzeuge. Es sind robuste Theorien, solange die elektrostatis-
chen Korrelationen nicht zu gross sind. In vielen praxisnahenn Situationen (Chro-

1 Man beachte, dass ein ähnliches Potential der Wechselwirkung (sogenanntes Yukawa Poten-
tial) an der subatomistichen Skala entsteht, um die Kohäsion der nuklearen Materie zu beschreiben.
Nichtsdestoweniger ist die Interpretation dieses Potentials hinsichtlich der Abschirmung in diesem
Fall weniger direkt.
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matin, Polyelektrolytvielschichte, geladene kolloidale Suspension) sind elektrostatis-
che Korrelationen stark genug, um diese Theorien zu entkräften sogar auf einem
qualitativen Niveau. Zwei auffallend und natürliche Konsequenzen der elektro-
statischen Korrelationen, die sich nicht mittels mittler Feld Theorien erkären lassen
können, sind Ladung-Umkehrung (auch benannt Überladung) und “Anziehung gle-
icher Ladungen”: (i) Überladung betrifft die Situation, in der ein Makroion durch
eine Wolke von Gegenionen bedeckt wird, deren globale Ladung die des Makroions
überkompensiert. Folglich ändert die Nettoladung (oder effektive Ladung) ihr Ze-
ichen. (ii) Anziehung gleicher Ladungen ist die gegenintuitive Anziehung zwischen
zwei Makroionen, die das gleiche Ladungszeichen tragen.

Andere ebenso interessante und noch komplexere Systeme werden von der Kombi-
nation unterschiedlicher Sorten hoch geladener Körper angeboten. Die Adsorption
geladener sphärischer kolloidaler Teilchen auf einen gegesätzlich geladenes Substrat
oder die Anordnung von Polyelektrolyt-multilayers (Mischung von Polykationen
und Polyanionen) sind typische Beispiele deren volles Verständnis auch Methoden
erfordert, die weit über die mittleres Feld Konzepte hinausragen.

Die vorliegende Arbeit untersucht das Problem elektrostatischer Korrelationen, die
in Systeme der weichen Materie auftretten. Dabei werden Computersimulationen
und einfachen theoretischen Modellen benutzt. Kapitel 2 behandelt die Rolle der
Gegenionen-Korrlationen. Das Verhalten komplexerer Systeme wie Kolloid-Polyelektrolyt
Komplexbildung, die Polyelektrolyte in der Nähe einer geladenen Wand oder die
Polyelektrolytvielschichte werden im Kapitel 3 diskutiert. Geladene kolloidale Sus-
pensionen in der starken Raum-Beschränkung werden in Kapitel 4 präsentiert. Einige
ausgewählte entsprechende Publikationen befinden sich im Anhang.
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Chapter 1

INTRODUCTION

T HIS thesis outlines my research work in the field of charged soft matter. Virtu-
ally all materials are more or less charged at the mesoscopic scale, depending

on the degree of the polarizability of the embedding solvent (or matrix) and the so-
lute particles (e. g., colloidal particles, polymers, membranes. etc.). The most well
known example of polar solvent is evidently water which plays a crucial role in life,
biological processes as well as industrial applications. When the solute particles are
polar too, they can then dissociate into charged particles (also called macroions) and
(microscopic) counterions. The counterion distribution near macroions turns out to
be decisive for the surface properties of the latter.

Historically, mean-field theories were first introduced and applied to characterize
charged soft-matter-systems. The pioneering works of Gouy and Chapmann [Gou10,
Cha13], realized almost one century ago, concerns the counterion distribution near
a planar charged interface. Applying the nowadays called Poisson-Boltzmann the-
ory, they demonstrated that the counterion distribution profiles decays algebraically
as a function of the separation from the wall with a characteristic length that is in-
versely proportional to the surface charge density of wall. Ten years later, Debye
and Hückel [DH23] accomplished a fundamental advance towards the understand-
ing of screening. This theory originally developed for electrolytes (i.e. a solution
of microscopic cations and anions, e.g. NaCl) and based on the linearization of the
Poisson-Boltzmann equation is now widely used in plasma and solid state physics.1

Mean-field theories are appealing tools due to their intuitive and clear physical ba-
sis, and are robust theories as long as electrostatic correlations are not too important.

1 Note that a similar potential of interaction (so-called Yukawa potential) arises at the subatomistic
scale to describe the cohesion of the nuclear matter. Nonetheless, the interpretation of this potential
in terms of screening is less straightforward in that case.
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In many practical situations (chromatin, polyelectrolyte multilayering, charged col-
loidal suspension) electrostatic correlations are strong enough to make mean-field
theories fail even on a qualitative level. Two striking and natural consequences of
electrostatic correlations, that can not be explained by mean-field theories, are charge
reversal (also called overcharging) and like charge attraction: (i) Overcharging con-
cerns the situation where a macroion is locally covered by a cloud of counterions
whose global charge overcompensates that of the macroion so that the net charge (or
effective charge) changes its sign. (ii) Like charge attraction is the counterintuitive
effective attraction between two macroions carrying the same electric charge sign.

Other equally interesting and more complex systems are offered by the combina-
tion of different species of highly charged bodies. For instance the adsorption of
charged spherical colloidal particles onto an oppositely charged planar substrate, or
the formation of polyelectrolyte multilayers (i.e., a “stratified” mixing of polycations
and polyanions) are typical examples whose full understanding necessitates also ap-
proaches that go far beyond mean-field concepts.

The present work examines the problem of electrostatic correlations setting in soft
matter systems using computer simulations and simple theoretical models. The role
of the counterion correlations is addressed in chapter 2. The behavior of more com-
plex systems such as colloid-polyelectrolyte complexation, polyelectrolytes near a
charged wall, or polyelectrolyte multilayers are discussed in chapter 3. Charged col-
loidal dispersions in strong confinement are presented in chapter 4. Some selected
corresponding reprinted publications can be found in the appendix.
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Chapter 2

ELECTROSTATIC CORRELATIONS
IN SOFT MATTER

Most of the materials in soft matter are made up of water solvent embedding solute
bodies (macroscopic/mesoscopic particles). When those solute particles are polar,
they can dissociate into charged macroions and counterions.

The first theoretical determination of counterion distribution for an inhomogeneous
fluid was realized by Gouy [Gou10] and Chapman [Cha13] independently almost
one century ago. They applied the so-called Poisson-Boltzmann (PB) theory to pre-
dict the distribution of monovalent ions near a uniformly charged interface. The ba-
sis of the PB theory is the classical Poisson equation, ∆φ(~r) =−ρ(~r)/ε , relating the
second derivative of the (mean) electrostatic potential, φ(~r), to the source of charges,
ρ(~r), within the solution assuming a Boltzmann distribution ρ(~r) ∝ exp [−βeφ(~r)].
It is precisely this latter approximation (i.e., the potential of mean force [HM90]
is replaced by the mean electrostatic potential in the Boltzmann factor) that makes
the PB theory a mean-field one. To be more precise, lateral ion-ion correlations are
ignored in the same spirit of the Curie-Weiss theory of magnetism. A nice feature
of this mean-field theory is that the PB equation can be solved analytically for some
cases, and the numerical procedure is rather simple compared to other more sophisti-
cated existing theories. Furthermore, as long as the Coulomb coupling between ions
is “fairly” moderate (which is the case for monovalent ions in aqueous solution),
the PB theory describes astonishingly well the ion distribution when compared to
computer simulations [JWH80, BDHM04, EML06] and even experiments [BVT06].
Nonetheless, as soon as ion-ion correlations get relevant, mean field theories such as
the Poisson-Boltzmann one or its linearized version (so called Debye-Hückel the-
ory) can not explain effects (experimentally observed) such as like-charge attraction
[GC97, BS98] or overcharging [RVMW00, LGB04]. A large part of my work de-
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scribed in this chapter is devoted to the understanding of the effect of ion correlations
and especially overcharging occurring in charged colloidal suspensions.

2.1 Overcharging and like-charge attraction

One of the most curious and spectacular effect in the soft condensed matter com-
munity is the appearance, under specific circumstances, of an effective attraction
between-like charged colloids. At the beginning of the 21th century [MHK00b,
MHK00a, MHK01b], we discovered a possible mechanism explaining a long-ranged
attraction between like-charged spheres. The underlying physical mechanism is
based on the overcharging. The latter corresponds to an excess charge of the counte-
rions in the vicinity of the macroion so that the net charge of the macroion changes
its sign (also called charge inversion). Naively, one could think that the stable config-
uration corresponds to an exact neutralization of macroion by the counterions. This
intuition is only correct for the case where the counterions are uniformly smeared
out over the surface of the colloid. Indeed a simple calculation shows that the en-
ergy of interaction, between a central charge Zme < 0 (representing the macroion
charge) and the shell of the counterions of radius a and charge Zce > 0 (with e being
the elementary charge), is given by E = ZmZce2

a + Z2
c e2

2a . The criterion of stability is
provided by ∂E

∂Zc
= 0 leading to neutrality, i.e. Zc = −Zm. In reality, the counteri-

ons are discrete, and when electrostatically bound to the macroion’s surface, they
will maximize their separation such as to minimize the counterion-counterion repul-
sion. This problem turns out to be exactly the one that was addressed one century
ago by Thomson [Tho04] (also called the Thomson sphere or Thomson problem)
who studied the ground state energy and structure of n (classical) electrons confined
on a sphere (model of a classical atom). The Thompson problem has only (exact)
analytical solutions for n ≤ 5 and possibly for some magic numbers (e.g., n = 72
corresponding to the fullerene structure). Nonetheless, based on Wigner crystal
ideas [BM77, Shk99a, GNS02], we have developed a model that (nearly) quan-
titatively accounts for the energy gain upon adsorbing overcharging counterions 1

[MHK00b, MHK01b]. Our simple approach to the understanding of the overcharg-
ing via the Thomson problem, Wigner crystal concept and computer simulations has
triggered a new interest in the community [Lev02, LA02, PPK03, MSB03] for the
Thomson problem applied to soft matter.

We now consider the problem of a pair of macroions. In our paper [MHK00b],
we show that two equally charged spheres are likely to be overcharged and under-

1To achieve overcharging in nature one should normally add salt to the system to ensure global
electroneurality. For the sake of simplicity, however, we will consider non-neutral systems because
they can on a very simple basis explain why colloids prefer to be overcharged.
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charged in the strong Coulomb coupling regime leading to a metastable ionized state
that yields a strong long-ranged attraction due to a monopolar contribution. (All
the mechanisms, so far reported in the literature, can only explain short-ranged
like-charge attraction [GJBP98, ADL98, LL99, NO99, SR90, LLP00, GJMBG97,
HL97, Shk99b, KL99, ASL99, NAHN04, OJLC06] .) To further rationalize this
phenomenon and the stability of ionized states [MHK00a, MHK01b], we have con-
sidered two charged spheres (of same radius a) carrying the same electric sign of
charge but characterized by a charge ratio ρZ such that 0 < ρZ ≡ ZB/ZA ≤ 1. Start-
ing from a macroion pair where each macroion is neutralized by its counterions, we
investigate the process where a counterion is transfered from macroion B (low bare
charge) to macroion A (high bare charge). Having demonstrated that the ability of
a macroion to get overcharged increases with growing (bare) surface charge density
(or the bare charge at fixed radius), it is clear that this counterion-transfer process
will be energetically favorable below a certain value of ρZ . Our theoretical pre-
diction shows that the criterion for stable ionized states (latter also called by other
authors auto-ionization) is governed by the value of

√
ZA−

√
ZB, which reflects the

correlation-hole energy difference between the two macroions. In particular, it was
demonstrated that the higher the charge-asymmetry (i.e., ρZ) the more stable the
ionized state and concomitantly the higher the degree of ionization.

Our main findings related to this work [MHK00b, MHK00a, MHK01b], (see also
Appendices A, B, C) can be summarized as follows:

• The ground state of a charged sphere is always overcharged due to counterion
correlations.

• At finite temperature and in the strong Coulomb regime (accessible with mul-
tivalent aqueous ions), colloids having different bare surface charge density
auto-ionize due to counterion correlations.

2.2 Discretely charged surfaces

The structural (i.e., bare) charge of spherical macroions is usually modeled by a cen-
tral charge, which, by virtue of the Gauss’ law, is equivalent to a uniformly charged
macroion’s surface as far as the electrostatic field (or potential) outside the sphere is
concerned. However, in nature the charges on the colloidal surface are discrete (ex-
actly as the counterions are) and localized. Thus, a natural question that comes up
is: Why and how does the strength of overcharging and more generally counterion-
counterion correlations depend on the way the macroion structural charge is repre-
sented (i.e., uniformly charged or discrete charges on its surface)? It is precisely this
problem that was addressed in our publications [MHK01a, Mes02b].
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Why is the counterion distribution sensitive to the choice of the representation of
the macroion charge (discrete vs. uniform)? This question can be best answered
by looking at and comparing the (intrinsic) electrostatic potentials generated by dis-
cretely and uniformly charged macroions (without counterions) [MHK01a]. It was
demonstrated in Ref. [MHK01a] that the electrostatic potential at a reduced distance
r/a from the sphere (where a stands for the distance of closest approach between
an external unit test-charge and the macroion surface) may be significantly different
according to the nature of the macroion charge. In particular we show that the higher
the bare surface charge (i.e., the closer we get from a uniform charge distribution) the
shorter the correlation length (typically rc ∼

√
1/σ0, with σ0 being the macroion’s

surface charge density) between the discrete surface charges, as intuitively expected.
Besides, at contact r = a, the difference of the calculated electrostatic potentials be-
tween discrete and uniform charge distributions is considerable. To be more specific,
the contact potential is sensitive to the localization of the discrete charges, leading
to pronounced depth in their vicinity. All those features, solely based on the spa-
tial behavior of the electrostatic potential stemming from the bare macroion, indi-
cate that the counterion distribution should be much more complicated for a discrete
macroion’s surface charge distribution than for the uniform case.

We now come to the other important question: How is the counterion distribution
modified when introducing the more realistic discrete macroion’s surface charge
distribution? This point is thoroughly addressed in [Mes02b], where two regimes
are considered: Ground state (T = 0) and finite temperatures. The corresponding
relevant findings (see also Appendices D, E) can be summed up as follows:

• At zero temperature, the counterion (surface) structure is the more ordered the
higher σ0 and/or counterion valence Zc.

• When overcharging comes into play several scenarios occur: (i) At large σ0,
the overcharging is quasi the same as that obtained at a uniformly charged
macroion’s surface. (ii) At low σ0 and for monovalent counterions, overcharg-
ing is always weaker for discrete macroion charge distribution, due to the ion-
pairing frustration for the overcharging counterions. (iii) At low σ0 and for
highly multivalent counterions, overcharging can even be stronger in the dis-
crete case due to ion-pairing.

• At finite temperature (in aqueous solutions), the volume counterion distribu-
tion is only affected for low σ0 and multivalent counterions.

The effect of surface charge discretization was later examined for similar systems by
several groups [MN02, LSLP02, ALHL03, HSPP04, TSYT05, QL05].
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2.3 The crucial role of excluded volume

So far, we have a pretty good understanding of the overcharging caused by coun-
terion correlations in the regime of strong Coulomb coupling in salt-free (or low
salt content) where excluded volume effects are irrelevant. The situation becomes
much more complicated at finite salt-concentration in aqueous solutions (i.e., water
at room temperature), where the Coulomb coupling is (rather) weak especially for
monovalent ions. Thereby, a direct application of Wigner crystal ideas is not straight-
forward to account for the unexpected overcharging at weak Coulomb coupling that
was reported (by integral-equation and simulation [GTLCH85, DJAHLC01]), but
unexplained, for monovalent salt-ions of large size.

In our Letter [MGLCH02] (see Appendix F), we perform molecular dynamics com-
puter simulations as well as use integral-equation theory to identify the mechanisms
that govern overcharging in this weak Coulomb coupling regime. Those mechanisms
are as follows:

• Increasing the electrolyte particle size (at given salt concentration) decreases
the available volume of the fluid (or equivalently its entropy) which favors
ion-ion correlations.

• The interface provided by the macroion causes an increase of the ion density
close to it, and concomitantly enhances the lateral ordering (similar to the
prefreezing phenomenon in neutral inhomogeneous fluids).

• Surface lateral ordering and weak Coulomb coupling lead to overcharging.

2.4 Image charges in spherical geometry

In a typical experimental setup, the dielectric constant of a macroion is rather low
(εm ≈ 2− 5) which is much smaller than that of its embedding solvent (e. g., for
water εw ≈ 80) leading to a high dielectric contrast, ∆ε ≡ εw−εm

εw+εm
, at the interface.

The (practical) consequence of this dielectric discontinuity is that a solute ion will
then induce surface polarization charges whose strength and sign are dictated by the
value of ∆ε . Hence the electrostatic interactions for an electrolyte at finite ∆ε is much
more complicated compared to the case where ∆ε = 0, since now the contribution
of the induced surface charges (whose distribution may be very complicated) at the
interface must be taken into account. It turns out that for perfect planar substrates
(that can be seen as a colloid of vanishing curvature), there is an elegant analytical
solution: The electric field generated by the induced surface charge at the interface
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positioned at z = 0 (due to the presence of a point-like ion of charge q located at
z = b) can be exactly obtained by a “fictive” point-like charge qim = ∆εq located
at z = −b [Jac75]. This technique corresponds to the so-called method of image
charges. The inclusion of such image forces for the case of an electrolyte close to a
planar dielectric interface was studied in the past by computer simulations [TVP82,
TVO84, BJW86, MN02], integral equation formalisms [KM84, KM85], mean-field
[OB83, Net99, vGM00] and strong-coupling theories [MN02].

The problem of image forces in spherical geometry is, already at the level of a sin-
gle ion, more complex. If we want to think in terms of image charges, one would
need in that case an infinite number of image charges making the use of the image
charge method much less attractive than in the planar case. Due to this difficulty, the
problem of image charges in spherical geometry is sparsely studied in soft matter.
Nonetheless, twenty years ago, Linse studied the counterion distribution with im-
age forces around spherical charged micelles by means of Monte Carlo simulations
[Lin86]. In his work [Lin86], he used a two-image charge approximation instead of
the full continuous image charge distribution. The conclusions of his study remain
qualitatively correct.

In my work [Mes02a] (see Appendix G), I study analytically and exactly the elec-
trostatics of an ion interacting with a dielectric sphere. Furthermore, I performed
Monte Carlo simulations to elucidate the behavior of an electrolyte near a spheri-
cal macroion at finite dielectric contrast, where image forces are properly taken into
account. My main results are as follows:

• Single ion: A compact and exact analytical expression has been derived for
the polar profile of the induced surface charge. The strength as well as the
range of image forces in spherical geometry are considerably smaller than at
vanishing curvature, due to the auto-screening.

• Electrolyte: For monovalent ions the (effective) image force is basically equal
to the self-image one. However, when dealing with multivalent counterions,
the lateral image-counterions correlations can significantly affect the (local)
counterion density and, as a major effect, they screen the self-image repulsion.
Upon adding salt, it was shown that the strength of the image forces induced by
the coions is marginal. Besides, overcharging is robust against image forces.

11



Chapter 3

POLYELECTROLYTE ADSORPTION
AND MULTILAYERS

Polyelectrolytes (PEs) are polymers containing a variable (usually large) amount
of ionizable monomer along the chemical backbone. Once dissolved in a suitable
polar solvent such as water, the ion pairs dissociate by creating a charged chain with
floating counterions. PEs represent a broad and interesting class of materials that
attract an increasing attention in the scientific community. PEs have applications in
modern technology as well as biology, since virtually all proteins, as well as DNA,
are charged. The adsorption of PEs onto surfaces is an important process, since
they modify the physico-chemical properties of the surface. From a theoretical point
of view, charged polymers (in bulk or adsorbed) are much less understood [BJ96,
Joa01] than neutral ones [dG79]. One of the main difficulties is the addition of new
length scales set by the tremendous long-ranged Coulomb interaction. Hence, the
study of adsorption of PEs is motivated by fundamental aspects as well as practical
ones.

Over the last years, I have studied PE adsorption essentially by means of computer
simulations. Probably, one of the most exciting research work that I performed in
this field concerns the study of PE multilayers [MHK03, Mes03, Mes04b]. We wrote
a short overview [MHK04] (see Appendix H) on “Polyelectrolyte Adsorption and
Multilayering on Charged Colloidal Particles” emphasizing theoretical and com-
puter simulation results. I now briefly describe my contribution to this research area.
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3.1 Polyelectrolyte-colloid complexation

The complexation of flexible PEs with oppositely charged macroions is a relevant
process in biology [Sch03]. For instance a nucleosome can be seen as an electrostatic
binding between DNA and histone proteins. The latter can be visioned as charged
spheres. We are aware that this assumption is at best a caricature of a real system
(provided that non-specific interactions are dominant). Nonetheless, from an electro-
static viewpoint, we think that the qualitative features should be captured. Whereas
many studies were devoted for the case of chain-sphere complexation where the two
charged bodies are oppositely charged (see [Sch03] and references therein), much
less is known concerning the problem of like-charge sphere-PE complexation.

In [MHK02a, MHK02b], we discuss the complexation between a sphere and a long
flexible PE (both negatively charged). Whereas like-charge attraction in the strong
coupling limit is expected (and therefore complexation too), new and rather un-
expected chain conformations are reported. Different coupling regimes as well as
the influence of the linear charge density, f , of the PE chain were considered in
[MHK02b] (see Appendix I). The relevant conclusions are as follows:

• At strong coupling the PE chain is always adsorbed in a flat structure, whose
conformation strongly depends on f . At high f , the conformation consists of
a densely packed monomers following a Hamiltonian-walk. Upon reducing
f the chain tends to spread more and more over the particle surface. Those
findings could have some relevance for organic solutions.

• Under aqueous conditions, complexation can be obtained with multivalent
counterions and for high enough values of f . In contrast to the strong cou-
pling case, the formation of loops is reported.

3.2 Polyelectrolyte adsorption at planar surfaces

The adsorption of highly charged polyelectrolytes onto oppositely charged planar
surfaces in a salt-free environment was investigated by means of Monte Carlo sim-
ulations. Flexible [Mes04a, Mes06b] (see Appendix J) as well as rod-like [Mes06a]
(i. e., rigid - see Appendix K) PEs are considered. Having well understood and
analyzed the problem of image charges in spherical geometry [Mes02a], I decided
to elucidate the problem of dielectric discontinuity to the case of PE adsorption onto
planar surfaces.
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3.2.1 Flexible chains

When no image forces are present (i.e., ∆ε = 0), it was found that the monomer
density profile, n(z), decays monotonically for very short chains even near contact.
Longer chains experience a short-ranged repulsion in the vicinity of the charged wall
(z . a, with a denoting the diameter of a monomer) due to chain-entropy effects. In
all investigated cases, the density-contact-value seems to be nearly independent of
the chain length Nm and it is surprisingly close to the (exact) value obtained for
systems containing only counterions of the charged interface [n(z = a/2) = 2πlBσ2

0 ,
with lB representing the Bjerrum length, i.e., the distance at which two monovalent
ions feel a repulsion of magnitude kBT ]. This feature can be qualitatively understood
by saying that near the interface, (nearly) all the little counterions were replaced
by the monomers and the entropy of the latter is similar to that of the free surface
counterions.

When image forces come into play, (partial) monomer desorption sets in, whose
strength increases with growing chain length Nm. This feature is due to the repul-
sive image-chain force that scales like N2

m, whereas the attractive chain-interface one
scales like Nm.

The fraction of charge σ∗(z) of the fluid as a function of monomer-wall separation,
z, is another interesting quantity to characterize the adsorption behavior. At ∆ε = 0,
overcharging [as signaled by σ∗(z) > 1] occurs as soon as chains are longer than
dimers. In the presence of image forces, the strength of the overcharging is presently
nearly identical to that obtained without image forces at ∆ε = 0. Thereby, the main
effect of image charges is (i) to decrease the fraction of charge σ∗(z) near contact
(z . 1.2a) upon growing Nm and (ii) to (slightly) shift the position of the maximum
of σ∗(z) to larger z.

3.2.2 Rigid chains

Dimers exhibit a monotonic behavior for n(z) that is similar to point-like ions. For
longer chains there exits a small monomer depletion near the charged wall for an
intermediate regime of Nm. At high enough Nm, n(z) reveals again a monotonic
behavior. This interesting effect is the result of two antagonistic entropy-driving
forces, namely, (i) chain-entropy and (ii) counterion release. Electrostatic chain-
chain correlations, whose strength grows in a non-trivial way with Nm, favor also
chain adsorption. A comparison to the case of flexible chains [Mes04a] shows that
the adsorption of rigid PEs is much stronger than that of flexible ones.
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Upon polarizing the interface, it is found that the degree of adsorption is considerably
reduced. Nonetheless, a comparison with the flexible case [Mes06b] shows that the
values at contact at finite ∆ε are quite similar.

3.2.3 Summary

The adsorption behavior of flexible and rigid PEs was addressed using computer
Monte Carlo simulations. The influence of chain length and repulsive image forces
were systematically investigated. My main findings can be summarized as follows:

• Without dielectric discontinuity (∆ε = 0), flexible PE chains experience short-
ranged repulsion near the charged substrate due to chain-entropy effects. In
contrast, rigid PE chains are more strongly adsorbed (due to a weaker loss of
chain-entropy) and, when long enough, experience a purely effective attrac-
tion.

• Image forces lower the degree of adsorption for flexible and rigid PE chains.
However, the overcharging of the substrate by the PEs is robust (irrespectively
to the chain flexibility) against image forces.

3.3 Polyelectrolyte multilayers at planar and spheri-
cal substrates

PE multilayer thin films are often obtained using a so-called layer-by-layer depo-
sition technique [DHS92, Dec97]: A (say negatively) charged substrate is alterna-
tively exposed to a polycation (PC) solution and a polyion (PA) one. This method
and the resulting materials have a fantastic potential of application in technology, e.
g., biosensing [CFA+98], catalysis [OAK99], nonlinear optical devices [WYLR99],
nanoparticle coating [CCM98], etc.

From the theoretical side the literature is rather poor. However, a few analytical
works about PE multilayers on charged planar surfaces based on different levels of
approximation are available [SdlC99, NJ99, CJ00]. Solis and Olvera de la Cruz con-
sidered the conditions under which the spontaneous formation of polyelectrolyte lay-
ered structures can be induced by a charged wall [SdlC99]. Based on Debye-Hückel
approximations for the electrostatic interactions, but including some lateral correla-
tions by the consideration of given adsorbed PE structures, Netz and Joanny[NJ99]
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found a remarkable stability of the (semi-flexible) PE multilayers supported by scal-
ing laws. For weakly charged flexible polyelectrolytes at high ionic strength qualita-
tive agreements between theory [CJ00], also based on scaling laws, and experimen-
tal observations [LSV+00] (such as the predicted thickness and net charge of the PE
multilayer) were achieved.

A tremendous difficulty in PE multilayer is the strong electrostatic correlations be-
tween PCs and PAs, which are hard to be satisfactorily taken into account in (modi-
fied) mean-field theories. In this respect, computer simulations are of great help. In
my work I have addressed those PE multilayer structures by means of Monte Carlo
computer simulations [MHK03, Mes03, Mes04b]. I hereby outline our findings for
spherical [MHK03] and planar substrates [Mes04b].

3.3.1 Spherical substrates

From this study [MHK03] (see Appendix L) that concerns substrates with finite radii
(i. e., charged spheres), we have learned that non-electrostatic forces are required
to obtain (true) PE multilayers. More precisely, by introducing a (additional) short-
range van der Waals-like attraction (whose strength is characterized by its value at
contact, χvdw, in units of kBT ) between the substrate’s surface and the (monomers
of the) oppositely charged chains. The PE structure results then from a complicated
interplay between: (i) PC-PA strong attraction (favoring a collapse into a compact
globular state) (ii) PE-substrate correlations (favoring flat adsorption and wrapping
1 around the sphere). Briefly, our findings are as follows:

• Flat bilayer-structures, involving two long oppositely charged chains, set in
only for large enough χvdw. At low χvdw, the strong driving PA-PC force leads
to PE globular structures.

• Stable and flat multilayers are only obtainable at large enough χvdw. In a purely
electrostatic regime (χvdw = 0) PE globules are formed preventing a uniform
coverage of the surface.

• Short chains are not suitable candidates for PE multilayers, due to the weaker
chain-substrate correlations.

1Note that the wrapping from the chain(s) around the colloid is peculiar to spherical substrates.
Besides it should be reminded that wrapping is also governed by the repulsive interaction between
the turns of a chain [GNS02].
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3.3.2 Planar substrates

PE multilayering onto planar substrates were investigated in [Mes04b] (see Ap-
pendix M). The zero-curvature case differs qualitatively from the spherical one. First
the intrinsic electric field is higher in the former case2. Secondly the chain-wrapping
is no-longer present at zero curvature. Consequently at given surface charge den-
sity, we expect a stronger PE-layering. The important results can be formulated as
follows:

• Like for spherical substrates, the relevance of short-ranged non-electrostatic
forces was also demonstrated here. Flat multilayers can not be achieved with
solely electrostatic forces.

• The formation of islands (i.e., clusters of PC-PA chains) onto the substrate are
reported and qualitatively confirm the experimental observations in the early
stage of PE deposition (one or two bilayers) [MJCP03, HB00].

2 At zero curvature we have V ∼ r in contrast to finite curvature where V ∼ 1/r
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Chapter 4

CONFINED CHARGED COLLOIDS

It is well known from solid state studies that strongly confined (i.e., quasi two-
dimensional) systems exhibit properties and a phase behavior that may drastically
differ from those in the bulk. This feature is also vivid in colloidal systems and those
materials represent ideal model systems to analyze (experimentally as well as theo-
retically) and understand confinement effects on a mesoscopic scale corresponding
to the interparticle distance. Using external fields, a colloidal system can be prepared
in a controlled way into prescribed equilibrium and non-equilibrium states [Löw01].
For instance, in equilibrium, solidification near interfaces (provided by a substrate or
a large “impurity”) can occur under thermodynamic conditions where the bulk is still
fluid (so-called prefreezing). In non-equilibrium, a wall may act as a center of het-
erogeneous nucleation (favored by the excess surface-energy already offered by the
wall/nucleus interface) and initiate crystal growth. Most of our experimental knowl-
edge of freezing in confining slit-like geometry is based on real-space measurements
of mesoscopic model systems such as charged colloidal suspensions between glass
plates [MSW90, NBLP97].

The effective interaction between these mesoscopic macroions is neither hard-sphere
like nor purely Coulombic, but it is rather described by an intermediate screened
Coulomb [also called Yukawa or DLVO (Derjaguin-Landau-Verwey-Overbeek) [DL41,
VO48]] due to the screening mediated by the additional microions present in the sys-
tem. The screening strength can be tuned by varying the microion concentration: For
colloidal systems, salt ions can be conveniently added to the aqueous suspension;
The complex plasma, on the other hand, consists of electrons and impurity ions.

Recently, we have investigated crystalline colloidal bilayers at equilibrium [ML03,
BSK+05] and out of equilibrium under shear [ML06, LMH+05]. Our research
achievement in this field is outlined below.
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4.1 Phase diagram of crystalline colloidal bilayers

The equilibrium phase diagram at zero temperature of crystalline bilayers was inves-
tigated theoretically in [ML03] (see Appendix N). The constitutive particles interact
via a Yukawa pair potential of the form V (r) = V0

exp(−κr)
κr , where κ represents the

screening strength and V0 sets the energy scale.1 The choice of this potential is mo-
tivated by the experimental model systems described above. The crystalline bilayer
consists of two (identical) layers containing in total N particles in the (x,y) plane.
The corresponding (total) surface density ρ is then given by N/A, with A being the
the (macroscopic) layer area. The distance D, separating the two layers. in the z-
direction is prescribed by an external confining the system.

The zero-temperature phase behavior is fully determined by two dimensionless pa-
rameters, namely the reduced layer density, η = ρD2/2, and the reduced screening
strength, λ = κD. Using a straightforward lattice sum technique, the phase diagram
was calculated for arbitrary λ and η .2 Our most interesting findings [ML03] are as
follows:

• Whereas the two known extreme limits of zero [SSP99b, SSP99a, GP98] and
infinite [PSP83, SL96, SL97] screening strength λ are recovered by our calcu-
lations, it is demonstrated that, at intermediate λ , the phase behavior is strik-
ingly different from a simple interpolation between these two limits. First,
there is a first-order coexistence between two different staggered rhombic lat-
tices differing in their relative shift of the two unit cells. Second, one of these
staggered rhombic phases exhibits a novel reentrant effect for fixed density
and varied screening length. Depending on the density, the reentrant transition
can proceed via a staggered square or a staggered triangular solid including
even a double reentrant transition of the rhombic phase.

• In a joint publication [BSK+05] with the Group of Palberg at Mainz, a com-
parative study on the phase behavior of highly charged colloidal spheres in a
confined wedge geometry reveals semi-quantitative agreement between theory
and experiment.

1 Note that in the ground state, i.e. at rigorously zero temperature, the value of V0 is irrelevant.
Nonetheless in experimental situations, the energy amplitude V0 = Z2 exp(2κR)

ε(1+κR)2 scales like the square
of the charge Z of the particles with a physical hard core radius R reduced by the dielectric constant
ε of the solvent (ε = 1 for the dusty plasma). For a charged colloids, Z is typically of the order of
100− 100 000 elementary charges such that V (r = d) can be much larger than kBT at interparticle
distance (d), justifying formally our zero-temperature calculations.

2Note that η must have an upper bound, such as to prevent the onset of multilayers.
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4.2 Crystalline colloidal bilayers under shear flow

The non-equilibrium case3 at finite temperature as driven by a linear shear flow has
been addressed in [ML06, LMH+05] (see also Appendix O). The steady state devel-
oped under shear as well as the relaxation back to equilibrium after cessation of shear
were analyzed with the help of non-equilibrium Brownian dynamics. The pertinent
results are:

• For increasing shear rates, the following steady states are reported: First, up to
a threshold of the shear rate, there is a static solid which is elastically sheared.
Then, at higher shear rates the crystalline bilayer melts, and even higher shear
rates lead to a reentrant solid stratified in the shear direction.

• After instantaneous cessation of shear, a nonmonotonic behavior of the typical
relaxation time is found. In particular, application of high shear rates acceler-
ates the relaxation back to equilibrium since shear-induced ordering facilitates
the growth of the equilibrium crystal.

• The orientation of a crystalline bilayer can be tuned at wish upon applying a
(strong) shear rate in the desired direction and subsequently letting the system
relax.

3 The starting unsheared configuration corresponds to a staggered square lattice with a reduced
surface particle density η = 0.24 and a reduced screening strength λ = 2.5. Two walls are present
to ensure the confinement. To this end, screened Coulomb and short-ranged (of the Lennard-Jones
type) repulsive potentials were tested, and it was found that our results are marginally sensitive to the
choice of the repulsive wall-particle interaction.
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Chapter 5

CONCLUSIONS

In this thesis, I have presented my humble point of view and understanding of elec-
trostatic effects in soft matter. Charged systems are fascinating because they si-
multaneously involve short-ranged excluded volume effects (as soon as the latter
are properly taken into account) already present in neutral systems, and additionally
the long-ranged Coulomb interaction. The latter constitutes a formidable theoretical
challenge.

In terms of similarities with classical solid state physics and (elementary) quan-
tum chemistry, I noticed two striking analogies: (i) The overcharging occurring at a
sphere is (rigorously) equivalent to the old Thomson’s problem; (ii) The ground state
of two spherical macroions is ionized, and the degree of ionization (and therefore the
attraction strength) grows with the difference in surface charge density between the
two macroions. This behavior is highly reminiscent to the (molecular) ionic bonding
where the difference in electronegativity between the two atoms governs its stability.

Moreover, I investigated the problem of adsorption for many model systems involv-
ing substrates and adsorbate that are both charged. In particular, polyelectrolyte
adsorption, polyelectrolyte multilayering, and more recently polyampholyte adsorp-
tion have been addressed. The inclusion of image forces for spherical and planar
substrates has shown that their effect are only vivid at short range distances of the
order of the linear size of the microions1 (counterions and/or charged monomers).

An important problem in soft matter that still lacks a deep understanding is the
behavior of charged spherical colloids near an oppositely charged wall. Indeed a
sound analytical solution for the adsorption/desorption transition is still missing. I
think that some (analytical) work could be done in this direction by means of mean-
field theories that should be suitable for marginally adsorbed colloids. On a more

1 The behavior might be less clear for highly charged spherical macroions as adsorbate.
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“material-oriented” level, I think that the polyelectrolyte multilayer structures could
also be obtained by combining oppositely charged colloids. To confirm this idea, a
considerable theoretical effort would be needed to identify the parameters window
(such as salt concentration, charges of the colloids and the substrates, particle size
etc.) allowing the onset of such structures without strong clustering.
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Strong Attraction between Charged Spheres due to Metastable Ionized States
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We report a mechanism which can lead to long-range attractions between like-charged spherical
macroions, stemming from the existence of metastable ionized states. We show that the ground state of
a single highly charged colloid plus a few excess counterions is overcharged. For the case of two highly
charged macroions in their neutralizing divalent counterion solution we demonstrate that, in the regime
of strong Coulomb coupling, the counterion clouds are very likely to be unevenly distributed, leading
to one overcharged and one undercharged macroion. This long-living metastable configuration in turn
leads to a long-range Coulomb attraction.

PACS numbers: 82.70.Dd, 61.20.Ja

One of the great challenges in the theory of charged col-
loidal suspensions is the understanding of effective attrac-
tions between like-charged macroions that have recently
been observed experimentally in confined systems [1,2],
and for which no clear theoretical explanation is avail-
able. The usually employed mean field Derjaguin-Landau-
Verwey-Overbeek theory [3,4] foresees purely repulsive
electrostatic forces between like-charged macroions. How-
ever, with divalent counterions present, simulations (using
a pair of macroions) find short-range attraction for a high
macroion volume fraction in aqueous systems [5] or, at
an extremely low dielectric constant, a Coulomb depletion
force [6]. Recent simulations of similar systems in aque-
ous solutions also find attractive forces [7–9]. However
all simulations have in common the fact that the observed
attraction occurs only for very small distances away from
the colloid surface (order of counterion size).

In this Letter we investigate highly charged macroions
in bulk and present two important new results. The first
concerns the ground state of an isolated macroion sur-
rounded by excess counterions, where it is found that the
first few overcharging counterions lower considerably the
energy. As a second finding we demonstrate that, for two
highly charged macroions separated by intermediate dis-
tances, thermal fluctuations are sufficient to distribute the
counterions unevenly, leading to one overcharged and one
undercharged macroion. This results in a long-range ef-
fective Coulomb attraction between the macroions.

Consider one or two spherical macroions of radius rm

and bare charge Q � 2Zme (where e is the elementary
charge and Zm . 0) within the framework of the primitive
model [10] surrounded by an implicit solvent of relative
dielectric permittivity er . The small counterions with di-
ameter s and charge 1Zce are confined in a cubic box
of length L, and the macroion(s) are held fixed. The
colloid volume fraction fm is defined as Nm4pr3

m�3L3

(where Nm is the number of macroions). In the case of
an isolated macroion, it is located at the center of the box,
whereas, in the case of macroion pairs, they are placed
symmetrically along the axis passing by the two centers of
opposite faces.

The molecular dynamics method employed in this
paper is similar to the one used by Kremer and Grest
[11]. To simulate a constant temperature ensemble, the
ions are coupled to a heat bath and their motion is gov-

erned by the Langevin equation: m
d2

dt2 �ri � 2 �=Vtot��ri� 2

mG
d
dt �ri 1 �fi�t�, where m (chosen as unity) is the mass

of the counterions, i is the ith counterion, Vtot is the total
potential force made up of a Coulomb term and an ex-
cluded volume term, which are both pairwise additive, G

is the friction coefficient, and �fi is a random force. These
two last quantities are linked by the dissipation-fluctuation
theorem � �fi�t� ? �fj�t0�� � 6mGkBTdijd�t 2 t0�. For the
ground state simulations the random force was set to zero.

Excluded volume interactions are introduced via a pure
short-range repulsive Lennard-Jones (LJ) potential given
by VLJ�r� � 4e�� s

r2r0
�12 2 � s

r2r0
�6� 1 e for r 2 r0 ,

rcut, and 0 otherwise, where r0 � 0 for the counterion-
counterion interaction, r0 � 7s for the macroion-
counterion interaction, and rcut �� 21�6s� is the cutoff
radius. This leads to rm � 7.5s, whereas the closest
center-center distance of the small ions to the macroion is
therefore a � 8s. The Coulomb potential between a Zi

and a Zj valent ion at distance r , where i and j denote
either macroion or counterion, is given by VCoul�r� �
kBT0lB

ZiZj

r , with the Bjerrum length lB �
e2�4pe0erkBT0, where e0 is the vacuum permittivity.
To link this to experimental units and room temperature
we denote e � kBT0 �T0 � 298 K� and fix s � 3.57 Å.
We neglect hydrodynamical interactions and hydration
effects. Being interested in strong Coulomb coupling we
choose, for the rest of this paper, er � 16, corresponding
to lB � 10s.

To study the possibility of overcharging a single
macroion, we recall the Gillespie rule, also known as
the valence-shell electron-pair repulsion theory [12].
From this, one knows that the ground state structure of
two, three, and four electrons disposed on a hard sphere
corresponds to simple geometrical situations, namely, a
line (two electrons diametrically opposed), a triangle, and
a tetrahedron, respectively. A straightforward calculation

872 0031-9007�00�85(4)�872(4)$15.00 © 2000 The American Physical Society



VOLUME 85, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 24 JULY 2000

shows that, for a central charge of 12e, the maximally
obtainable overcharging is 22e (i.e., two electrons), being
independent of macroion radius. The excess electrons
gain more energy by assuming a topological favorable
configuration than by escaping to infinity, by the simple
reason of overcharge. We resort to simulations to elucidate
this behavior for one colloid with a high central charge.

To quantify this phenomenon, we have considered three
macroionic charge Zm: 50, 90, and 180, corresponding to a
surface charge density of one elementary charge per 180,
100, and 50 Å2, respectively, and fixed Zc � 2 for the
rest of this Letter. We then add successively overcharging
counterions (OC). The electrostatic energy as a function
of the number of OC is displayed in Fig. 1. We note
that the maximal (critical) acceptance of OC (4, 6, and
8) increases with the macroionic charge (50, 90, and 180,
respectively). Furthermore, for a given number of OC,
the gain in energy always increases with Zm. Also, for a
given macroionic charge, the gain in energy between two
successive overcharged states decreases with the number
of OC. Note that, at T � 0, the value er acts only as
a prefactor. It means that the ground state structure is
dictated solely by topological rules (i.e., the counterions’
arrangement around the sphere).

The resulting curve can be very simply explained by
assuming that the energy ´ per ion on the surface of a
neutralized macroion depends linearly on the inverse dis-
tance between them, hence is proportional to

p
N for fixed

area, where N is the number of counterions on the surface.
The energy gain DE1 � �N 1 1�´�N 1 1� 2 N´�N� of
the first OC is a pure surface correlation term. For the next
OC, one needs to take into account the Coulomb repulsion
lBZ2

c�a, leading to lowest order in 1�N for the energy gain
of the nth OC:

0 2 4 6 8 10 12
Overcharging counterions

−160

−140

−120

−100

−80
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0

E
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k B
T

0)
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FIG. 1. Electrostatic energy (in units of kBT0) for zero tem-
perature configurations of a single charged macroion of radius
rm � 7.5s as a function of the number of overcharging coun-
terions for three different bare charges Q (in units of e). The
neutral case was chosen as the potential energy origin, and the
curves were produced using the theory of Eq. (2) (compare text).

DEn � ne�N�

"
3
2

1
3n
8N

#
1 lBZ2

c �kBT0�
�n 2 1�n

2a
.

(2)

Determining e�N� from the measured value for DE1, we
obtain a curve that matches the simulation data almost
perfectly (compare Fig. 1).

An energy per ion, which scales like
p

N , has been
found for an ionic Wigner crystal (WC) on a planar sur-
face, where each ion interacts with an oppositely charged
background charge which is smeared out over its Wigner-
Seitz cell. This energy per ion is given by ´�c��kBT0 �
2ac1�2lBZ2

c , with a � 1.96, and c is the two-dimensional
concentration of the crystallized counterions of valence Zc

[13]. This ansatz has been tried recently to explain strong
ionic correlations observed in various soft matter systems
[14,15]. In our simulation we find, for DE1��kBT0�,
218.0, 224.4, and 235.3 for Zm � 50, 90, and 180,
respectively, whereas the Wigner crystal scenario predicts
221.0, 228.0, and 239.5, which is off by a decreasing
rate of (17–12)%. This might be due to the assumption
of a homogeneous background charge and the assumption
of a planar geometry, neither of which are fully fulfilled;
however, the error gets smaller for higher values of Zm.

Using the Wigner crystal ionic energy and Eq. (2), the
maximally obtainable number n�

max of OC counterions is
readily found to be

n�
max �

1
2

1
9a2

32p
1

3a

4
p

p

p
N

1

∑
3a

16
p

p
1

27a3

256p3�2

∏
1

p
N

1 O �1�N� . (3)

This value depends only on the number of counterions N .
It originates from the topological arrangement of the ions
around a central charge, and is independent of the Bjerrum
length or the radius of the macroion. For large Q it reduces
to the form Q�

max�e � 3a

4
p

p
�
p

ZmZc which was derived
in Ref. [15] in a more elaborate fashion.

To obtain the interaction potential profile, we added one
counterion coming from infinity towards a macroion of
bare charge Zm � 180 and computed the global electro-
static energy of the system (see Fig. 2). The first OC starts
to gain correlational energy at a distance r � 12s from the
center of the colloid, which is about 4s from the surface.
This fits only roughly with the distance Z2

c lB�4 predicted
from WC theory [14,15], and is more of the order c21�2.
By adding more excess counterions, the Coulomb barrier
increases, and for the ninth OC it exceeds the gain in cor-
relational energy, when it is on the macroion surface. Thus
the configuration becomes metastable. The curve for the
first OC can be nicely fitted with an exponential fit of
the form E1�r��kBT0 � 235.3 exp�27.1�r 2 a��a�. For
the nth OC, simply the appropriate Coulomb monopole
contribution 4lB�n 2 1��r needs to be added (see Fig. 2).
This exponential dependence is not predicted by the WC
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FIG. 2. Electrostatic energy (in units of kBT0) of a divalent
counterion as a function of distance from the center of a
macroion with radius rm � 7.5s and charge Q � 2180 (in
units of e). The energy is normalized to zero at distance
infinity. Data and fits are shown for the first, second, eighth,
and ninth overcharging (OC) counterion.

theory, where a 1�r dependence should be seen due to the
interaction of the removed ion with its correlation hole.

Next, we consider two spherical like-charged macroions
at a colloidal volume fraction fm � 7 3 1023 at room
temperature T0, at fixed center-center separation R, in
the presence of their divalent counterions (ensuring global
charge neutrality). Initially the counterions are randomly
generated. Figure 3 shows two macroions surrounded by
their quasi-two-dimensional counterion layer. The striking
peculiarity in this configuration is that it corresponds to
an overcharged and an undercharged sphere. There is one
counterion more on the left sphere and one less on the right
sphere compared to the bare colloid charge. Such a con-
figuration is referred to as an ionized state. In a total of ten
typical runs, we observe this phenomenon five times. We
have also carefully checked against a situation with peri-
odic boundary conditions, yielding identical results. How-

FIG. 3. Snapshot of a pseudoequilibrium configuration at room
temperature T0, where the counterion layers do not exactly com-
pensate the macroions’ charge. Here the deficiency charge is
61 counterion (or 62e as indicated above the macroions) and
R�a � 3.6.

ever, it is clear that such a state is in “pseudoequilibrium”
because it is not the lowest energy state.

To estimate the energy barrier, electrostatic energy
profiles at zero temperature were computed, where we
move one counterion from the overcharged macroion to
the undercharged macroion, restoring the neutral state
(see Fig. 4). We have checked that the path leading to the
lowest barrier of such a process corresponds to the line
joining the two macroions’ centers. One clearly observes
a barrier, which increases linearly with the charge Zm. The
ground state corresponds, as expected, to the neutral state.
The overcharged state is only slightly higher in energy, the
difference being approximately the monopole contribution
E�kBT0 � lB�4�8 2 4�12� � 1.67. The physical origin
of this barrier can be understood from the single macroion
case, where we showed that a counterion gains high
correlational energy near the surface. This gain is roughly
equal for both macroion surfaces, and decreases rapidly
with increasing distance from the surfaces, leading to the
energy barrier with its maximum near the midpoint. For
the single macroion case we showed that the correlational
energy gain scales with

p
Zm, whereas here we observe

a linear behavior of the barrier height with Zm. We
attribute this effect to additional ionic correlations since
both macroions are close enough for their surface ions to
interact strongly. For large separations we find again that

FIG. 4. Total electrostatic energy (in units of kBT0) of the sys-
tem, for zero temperature configurations, of two macroions at
a center-center separation of R�a � 2.4 as a function of one
displaced counterion distance from the left macroion for three
typical values Q (in units of e). The exact neutral state was
chosen as the potential energy origin. The lines are guides to
the eye. The inset indicates the path (dotted line) of the moved
counterion. The ending arrows of the arc indicate the start posi-
tion (left sphere) and final position (right sphere) of the moved
counterion.
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the barrier height increases with
p

Zm, as expected. This
Zm dependence of the barrier also shows that at room tem-
perature such ionized states can occur only for large Zm.
In our case, the ionized state was stable for all accessible
computation times only for Zm � 180. Unfortunately, it
is not possible to get a satisfactory accuracy of the energy
jumps at nonzero temperatures. Nevertheless, since we
are interested in the strong Coulomb coupling regime,
which is energy dominated, the zero temperature analysis
is sufficient to capture the essential physics.

Results concerning the effective forces at zero tempera-
ture between the two macroions are now investigated in
which the expression is given by

Feff�R� � Fmm�R� 1 FLJ 1 Fmc , (4)

where Fmm�R� is the direct Coulomb force between
macroions, FLJ is the excluded volume force between a
given macroion and its surrounding counterions, and Fmc

is the Coulomb force between a given macroion and all of
the counterions. Because of symmetry, we focus on one
macroion. To understand the extra-attraction effect of these
ionizedlike states, we consider three cases: (i) Fion �
Feff in the ionized state, (ii) Fneut � Feff in the neutral
case, and (iii) Fmono � Feff simply from the effective
monopole contribution. Our results are displayed in
Fig. 5 for Zm � 180, where the ionized state was also
observed at room temperature. The noncompensated case
leads to a very important extra attraction. This becomes
drastic for the charge asymmetry of 62 counterions at
short separation R�a � 2.5, a situation which was also
observed in our simulation at room temperature [16]. In
contrast to previous studies [5,6], these attractions are long
range. For a sufficiently large macroion separation (from
3.5) the effective force approaches in good approximation
the monopole contribution.

FIG. 5. Reduced effective force between the two spherical
macroions at zero temperature for Zm � 180 as a function of
distance from the center. The different forces are explained in
the text. The lines are guides to the eye.

In summary, we have shown that a sufficiently charged
colloid can, in principle, be highly overcharged due to cor-
relation effects of the counterions, and this effect is quan-
titatively well described by a Wigner crystal, i.e., Eqs. (2)
and (3). In the strong Coulomb coupling regime, this en-
ergy gain can be of the order of many kBT0.

Furthermore, due to this energetically favorable over-
charged state, it was found that for two like-charged
macroions, an initially randomly placed counterion
cloud of their neutralizing divalent counterions may
not be equally distributed after relaxation, leading to
two macroions of opposite net charges. The resulting
configuration is metastable, however, and separated by
an energy barrier of several kBT0 when the bare charge
is sufficiently large. Such a configuration possesses a
natural strong long-range attraction.
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Abstract. – In this letter, we study the ground state of two spherical macroions of identical
radius, but asymmetric bare charge (QA > QB). Electroneutrality of the system is ensured by
the presence of the surrounding divalent counterions. Using Molecular Dynamics simulations
within the framework of the primitive model, we show that the ground state of such a system
consists of an overcharged and an undercharged colloid. For a given macroion separation the
stability of these ionized-like states is a function of the difference (

√
NA−

√
NB) of neutralizing

counterions NA and NB . Furthermore the degree of ionization, or equivalently, the degree of
overcharging, is also governed by the distance separation of the macroions. The natural analogy
with ionic bonding is briefly discussed.

Charged colloids are found in a great variety of materials such as latex, clays, paints,
and many biological systems, and thus have an important place in everyday life. To under-
stand the complex interaction between charged colloids and their surrounding neutralizing
counterions, a reasonable starting point is to study the elementary case of a pair of spherical
macroions. From the theoretical side such a system is described by the Derjaguin-Landau-
Verwey-Overbeek (DLVO) theory [1, 2] which leads to purely repulsive effective forces. More
sophisticated modified Poisson-Boltzmann approaches based on density-functional theory [3]
or inhomogeneous HNC techniques [4,5] have been developed in order to incorporate the ion-
ion correlations which are neglected in DLVO. Surprisingly recent experiments showed effective
attractive forces between like-charged colloids [6–8] when they are confined near charged walls,
and for which no clear theoretical explanation is available. This triggered reinvestigations of
the pair-interactions in the bulk with computer simulations [9–13]. A common feature of
all these studies is that they assume the two macroions identically charged. The results of
refs. [9–12] show for high Coulomb coupling an attractive force in a range of the order of a
few counterion radii. However, Messina et al. [13] have demonstrated that it is possible to
get a strong long-range attraction between two like-charged colloids due to metastable ionized
states. In particular it has been shown that the energy difference between the compensated
bare charge case, where each colloid is exactly neutralized by the surrounding counterions,
and the ionized state can be very small (less than 2 kBT ).

(∗) E-mail: messina@mpip-mainz-mpg.de

c© EDP Sciences
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In this letter, we use molecular dynamics (MD) simulations to investigate the case where
the colloidal radii are identical but the bare colloidal charges are different. It is found that in
this asymmetric situation the ground state is no longer the intuitive bare charge compensated
case, provided that the charge asymmetry is high enough and/or the colloid separation is
not too large. We derive a simple formula valid for large separations which gives a sufficient
condition for the bare charge asymmetry to produce a ground state consisting of an ionic pair
leading to a natural long-range attractive force.
The system under consideration is made up of two spheres: i) macroions (A and B) of

diameter d with bare charges QA = −ZAe (where e is the elementary charge and ZA = 180 is
fixed ) for the highly charged sphere and QB = −ZBe (variable) for the less charged one and
ii) a sufficient number of small counterions of diameter σ with charge q = +Zce (Zc = 2) to
neutralize the whole system. The macroions center-center separation is given by R. The ions
are confined in a cubic box of length L, and the two macroions are held fixed and disposed
symmetrically along the axis passing by the two centers of opposite faces. The colloid volume
fraction fm is defined as 2 ·4π(d/2)3/3L3. For describing the charge asymmetry we define the
quantity α =

√
NA −√

NB , where NA = −QA/q, and NB = −QB/q.
The motion of the counterions is coupled to a heat bath acting through a weak stochastic

force W (t). The equation of motion of counterion i reads

m
d2ri

dt2
= −∇iU −mΓdri

dt
+Wi(t) , (1)

where m is the counterion mass, Γ is the friction coefficient, chosen here between 0.1 and 1.0,
and U is the potential consisting of the Coulomb interaction and the excluded-volume in-
teraction. Friction and stochastic force are linked by the fluctuation-dissipation theorem
〈Wi(t) · Wj(t′)〉 = 6mΓkBTδijδ(t − t′). In the ground state T = 0 and thus the stochastic
force vanishes.
Excluded-volume interactions are taken into account with a pure repulsive Lennard-Jones

(LJ) potential given by

ULJ(r) =



4ε

[(
σ

r − r0

)12

−
(

σ

r − r0

)6
]
+ ε , for r − r0 < 21/6σ ,

0 , for r − r0 ≥ 21/6σ ,

(2)

where r0 = 0 for the counterion-counterion interaction, r0 = 7σ for the macroion-counterion
interaction, thus leading to a macroion diameter d = 2r0 + σ and electrostatically more
important to a macroion-counterion distance of closest approach a = 8σ.
The pair electrostatic interaction between any pair ij, where i and j denote either a

macroion or a counterion, reads

UCoul(r) = kBT0lB
ZiZj

r
, (3)

where lB = e2/4πε0εrkBT0 is the Bjerrum length describing the electrostatic strength. To link
this to experimental units and room temperature, we denote ε = kBT0 (T0 = 298K). Fixing
σ = 3.57 Å would then lead to the Bjerrum length of water at room temperature (7.14 Å).
Being interested in the strong Coulomb coupling regime, we choose the relative permittivity

εr = 16, corresponding to lB = 10σ.
The electrostatic energy of the system is investigated for different uncompensated bare

charge cases [14] by simply summing up eq. (3) over all Coulomb pairs. Note that for the
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Fig. 1 – Total electrostatic energy as a function of the degree of ionization for zero-temperature
configurations of two colloids (A and B), for three typical charges QB/e (−30,−90 and −150) for
macroion B and for three given distance separations: a) R/a = 4.25, b) R/a = 3.0 and c) R/a = 2.4.
Dashed lines are obtained using eq. (7).

zero-temperature ground-state study entropic effects are nonexistent. We define the degree of
ionization (DI) as the number of counterions overcharging colloid A (or, equivalently, under-
charging colloid B). The system is prepared in various DI and measure the respective energies.
These states are separated by kinetic-energy barriers, as was demonstrated in ref. [13]. We
consider three typical macroionic charges ZB (30, 90 and 150) and separations R/a (2.4, 3.0
and 4.25). The main results are given in fig. 1. For the largest separation R/a = 4.25 and
largest charge ZB = 150 (see fig. 1a), one notices that the ground state corresponds to the
classical compensated bare charge situation (referred to as the neutral state). Moreover the
energy increases stronger than linear with the degree of ionization. If one diminishes the bare
charge ZB to 90 and 30, the ground state is actually the ionized state for a DI of 1 and 3,
respectively. The ionized ground state is about 8 and 36 kBT0, respectively, lower in energy
compared to the neutral state. This shows that even for a relative large colloid separation,
stable ionized states should exist for sufficient low temperatures and that their stability is
conditioned by the structural charge asymmetry α.
For a shorter separation R/a = 3.0, ionized ground states are found (see fig. 1b) for the

same charges ZB as previously. Nevertheless, in the ground state the DI is now increased
and it corresponds to 2 and 4 for ZB = 90 and 30, respectively. The gain in energy is also
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significantly enhanced. For the shortest separation under consideration R/a = 2.4, the ground
state corresponds for all investigated values of ZB to the ionized state, even for ZB = 150.
We conclude that decreasing the macroion separation R enhances the DI and the stability of
the ionized state.
To understand this ionization phenomenon, it is sufficient to consider an isolated macroion

surrounded by its neutralizing counterions. We have investigated the energies involved in the
ionization (taking out counterions) and overcharging (adding counterions) processes. We show
in ref. [13] how they can be separated into two parts: i) a pure correlational term (∆Ecor)
and ii) a monopole contribution (∆Emon), see also ref. [15] for the case of added salt. The
main assumption is that the correlational energy per ion can be written as a pure surface term
ε(N) = −γ√N (with γ > 0), as is predicted for example in a theory where the counterions
on the surface of the colloids form a Wigner crystal (WC) [15, 16]. The gain in energy when
adding the first counterion is simply a pure correlation term of the form

∆EOC
1 = ∆Ecor

1 = (NA+1)ε(NA+1)− (NA)ε(NA) = −γ
√
NA

[
3
2
+

3
8NA

+O(N−2
A )

]
. (4)

Adding the summed up monopole contributions, one obtains the energy gained by adding the
n-th counterion to leading order in 1/NA:

∆EOC
n = ∆Ecor +∆Emon = −nγ

√
NA

[
3
2
+
3n
8NA

]
+ (kBT0)lBZ2

c

(n− 1)n
2a

, (5)

which has been verified to give a correct description when compared to simulations [13]. A
derivation of the formula describing the ionization energy ∆Eion proceeds completely analo-
gously and gives for the n-th degree of ionization

∆Eion
n = nγ

√
NB

[
3
2
− 3n
8NB

]
+ (kBT0)lBZ2

c

(n+ 1)n
2a

. (6)

In fig. 2 we compare the predictions of eqs. (5), (6) to our simulation data, which shows
excellent agreement. Our numerical data for ∆Eion

1 for NB = 15, 45, and 75, the value of
∆EOC

1 for NA = 90, as well as the corresponding values for γ, which have been used for fig. 2
can be found in table I. They show that γ is almost independent of N . The value of γ can
also be compared to the prediction of WC theory applied to an infinite plane which leads

to the value 1.96lBZ2
c

√
1
F ≈ 2.76 [17], where F denotes the surface area of the colloid. The

difference of 10% to WC theory is presumably related to the fact that we do not deal with
purely planar correlations but have a finite spherical geometry.

Table I – Measured value, for an isolated colloid, of the first ionization energy ∆Eion
1 for NB =

15, 45, 75, and the energy gain for the first overcharging counterion ∆EOC
1 for NA = 90. The value

of γ can be compared to the prediction of WC theory for an infinite plane, which gives 2.76, compare
text.

Q/e N ∆E1/kBT0 γ/kBT0

− 30 15 17.9 2.26
− 90 45 29.2 2.42
−150 75 37.4 2.50
−180 90 −35.3 2.47
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Fig. 2 – Total electrostatic energy as a function of the degree of ionization for zero-temperature
configurations of an isolated colloid. The three upper curves correspond to the ionization energy for
the three typical charges QB/e (−30,−90 and −150). The lower curve corresponds to the energy
gained by overcharging (QA/e = −180). Dashed lines were obtained using eqs. (5), (6) with the
measured values for γ from table I.

Fig. 3 – Relaxation, at room temperature T0 = 298K, of an initial neutral state towards ionized state.
Plotted is the total electrostatic energy vs. time (LJ units), for ZB = 30 and R/a = 2.4. Dashed lines
lines represent the mean energy for each DI state. Each jump in energy corresponds to a counterion
transfer from the macroion B to macroion A leading to an ionized state (DI = 2) which is lower in
energy than the neutral one. The two energy jumps ∆E1/kBT0 = −19.5 and ∆E2/kBT0 = −17.4 are
in very good agreement with those of fig. 1c (−20.1 and −16.3).

With the help of eqs. (5), (6), one can try to predict the curves of fig. 1 for finite center-
center separation R. Using for colloid A and B the measured values γA and γB , we obtain for
the electrostatic energy difference at finite center-center separation R

∆En(R) = ∆Eion
n +∆EOC

n =
3
2
nγB

√
NB

[
1− n

4NB

]
−

−3
2
nγA

√
NA

[
1 +

n

4NA

]
+ kBT0lBZ

2
c

n2

a

(
1− a

R

)
. (7)

The quality of the theoretical curves can be inspected in fig. 1. The prediction is very good
for large separations, but the discrepancies become larger for smaller separations, and one
observes that the actual simulated energies are lower. With the help of eq. (7), we can
establish a simple criterion, valid for large macroionic separations, for the necessary charge
asymmetry α to produce an ionized ground state of two unlike charged colloids with the same
size:

3
2
γ(

√
NA −

√
NB) >

(kBT0)lBZ2
c

a
. (8)

The physical interpretation of this criterion is straightforward. The left term represents the
difference in correlation energy and the right term the monopole penalty due to the ionization
process. This means that the correlational energy gained by overcharging the highly charged
colloid A must overcome the loss of correlation energy as well as the monopole contribution
(two penalties) involved in the ionization of colloid B. If one uses the parameters of the present
study one finds the requirement NB < 66 to get a stable ionized state. This is consistent with
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- 4e+ 4e

Fig. 4 – Snapshot of the ionized state (DI = 2) obtained in the relaxation process depicted in fig. 3,
with the net charges +4e and −4e as indicated.

our findings where we show in fig. 1 that, for NB = 75, and R/a = 4.25, no ionized ground
state exists whereas for NB = 60 we observed one even for infinite separation. The criterion
eq. (8) is merely a sufficient condition, since we showed in fig. 1 that when the colloids are
close enough this ionized state can appear even for smaller macroion charge asymmetry due to
enhanced intercolloidal correlations. If the colloids have different radii this can be accounted
for by simply replacing N1/2

i by the concentration of counterions (Ni/Fi)1/2, and redefining
γ in eq. (8).
At this stage, on looking at the results presented above, it appears natural and straightfor-

ward to establish an analogy with the concept of ionic bonding. It is well known in chemistry
that the electro-negativity concept provides a simple yet powerful way to predict the nature
of the chemical bonding [18]. If one refers to the original definition of the electro-negativity
given by Pauling [18]: “the power of an atom in a molecule to attract electrons to itself”,
the role of the bare charge asymmetry becomes obvious. Indeed, it has an equivalent role
at the mesoscopic scale as the electron affinity at the microscopic scale. Another interesting
analogy is the influence of the colloidal separation on the stability of the ionized state. Like
in diatomic molecules, the ionized state will be (very) stable only for sufficiently short colloid
separations. Nevertheless, one should not push this analogy too far. Indeed, in many respects
it breaks down, and these are in fact important and interesting points. One concerns the
existence of an ionized ground state in colloidal system for large colloid separation, providing
that α is large enough. In an atomistic system this is impossible since even for the most
favorable thermodynamical case, namely CsCl, there is a cost in energy to transfer an elec-
tron from a cesium atom to a chlorine atom. Indeed, the smallest existing ionization energy
(for Cs, 376 kJ mol−1) is greater in magnitude than the largest existing electron affinity (for
Cs, 349 kJ mol−1). In other terms, for atoms separated by large distances in the gas phase,
electron transfer to form ions is always energetically unfavorable.
As a last result, aimed at experimental verification, we show that an ionized state can also

exist at room temperature T0. Figure 3 shows the time evolution of the electrostatic energy of a
system ZA = 180 with ZB = 30, R/a = 2.4 and fm = 7·10−3, where the starting configuration
is the neutral state (DI = 0). One clearly observes two jumps in energy, ∆E1 = −19.5 kBT0

and ∆E2 = −17.4 kBT0, which corresponds each to a counterion transfer from colloid B to
colloid A. These values are consistent with the ones obtained for the ground state, which
are−20.1 kBT0 and −16.3 kBT0, respectively. Note that this ionized state (DI = 2) is more
stable than the neutral but is expected to be metastable, since it was shown previously that
the most stable ground state corresponds to DI = 5. The other stable ionized states for higher
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DI are not accessible with reasonable computer time because of the high-energy barrier made
up of the correlational term and the monopole term which increases with DI [13]. In fig. 4 we
display a typical snapshot of the ionized state (DI = 2) of this system at room temperature.
Obviously, these results are not expected by a DLVO theory even in the asymmetric case

(see, e.g., [19]). Previous simulations of asymmetric (charge and size) spherical macroions [20]
were also far away to predict such a phenomenon since the Coulomb coupling was weak (water,
monovalent counterions).
In summary, we have shown that the ground state of two unlike charged spherical macroions

is mainly governed by two important parameters, namely the bare charge asymmetry α and
the colloids separation R. If α is high enough, the ground state corresponds to the so-called
ionized state, whatever the macroions separation R is. In return, the degree of ionization
depends on R. Furthermore, for large R, we have established a criterion for α, allowing to
predict when a stable ionized configuration can be expected. The bare charge difference α plays
an analogous role to the electron affinity difference between two atoms forming a molecule
with ionic bonding. We demonstrated that the results presented here for the ground state can
lead to a stable ionic state even at room temperature providing that the Coulomb coupling
and/or the charge asymmetry is sufficiently large. This is a possible mechanism which could
lead to long-range attractions, even in bulk. Future work will treat the case where salt ions are
present. Finally, it would be desirable to theoretically quantify the influence of intercolloidal
correlations at short separations in a similar fashion as we have done for large separations.
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We investigate spherical macroions in the strong Coulomb coupling regime within the primitive model in
salt-free environment. We first show that the ground state of an isolated colloid is naturally overcharged by
simple electrostatic arguments illustrated by the Gillespie rule. We furthermore demonstrate that in the strong
Coulomb coupling this mechanism leads to ionized states and thus to long range attractions between like-
charged spheres. We use molecular dynamics simulations to study in detail the counterion distribution for one
and two highly charged colloids for the ground state as well as for finite temperatures. We compare our results
in terms of a simple version of a Wigner crystal theory and find excellent qualitative and quantitative agree-
ment.
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I. INTRODUCTION

Charged colloidal suspensions are often encountered in
the everyday life~technology, biology, medicine etc.! and
have an important practical impact@1#. In numerous
application-oriented situations, electrostatic repulsion among
colloids ~macroions! is desired in order to obtain a stabilized
suspension. Consequently the understanding of the electro-
static interaction in such systems is motivated by practical as
well as theoretical interests. There is recent experimental evi-
dence that the effective interaction between two like-charged
spherical colloids~in the presence of neutralizing salts! can
be attractive in the presence of one or two glass walls@2–4#.
This is in contrast with the classical work of Derjaguin, Lan-
dau, Verwey, and Overbeek~DLVO! based on a linearized
Poisson Boltzmann theory@5,6#, which foresees only repul-
sive effective Coulomb forces between two like-charged
spheres even in confined geometry. There are some indica-
tions that this attraction might be explainable in terms of
hydrodynamic effects induced by the walls@7#.

Already in the bulk case there have been disputes for a
long time about the existence of long range attractive forces,
triggered mainly by the observation of voids in colloidal so-
lutions@8–11#. There is no clear experimental and theoretical
picture, either, and there have been speculations that the ex-
periments observed phase coexistence. Recent theoretical
@12–14# and simulation@15–18# investigations have shown
the existence ofshort rangeattraction.

In two short communications@19,20#, we demonstrated
by molecular dynamics~MD! simulations, how a mechanism
involving overcharged and undercharged spherical macro-
ions could lead to astrong long rangeattraction between
charged spheres. In this paper we give a more detailed ac-
count and elaborate on the physical mechanism responsible
for charge inversion~overcharge!. Why and how does a
charged particle strongly ‘‘bind’’ electrostatically at its sur-
face so many counterions that its net charge changes sign?

We further will discuss the necessary ingredients to explain
this phenomenon in terms of a simple Wigner crystal theory.
Using this Ansatz we show that it is possible for a pair of
colloids that are sufficiently different in charge density to
have an ionized ground state. Both, the one and two colloid
cases, are treated in terms of analytical predictions and veri-
fications by simulation. Of special interest are the energy
barriers necessary to cross from a neutral pair to an ionized
pair state. We finally demonstrate by explicit simulations that
the described features survive also at finite temperature.

The paper is organized as follows. In Sec. II a simple
model based on the Gillespie rule is proposed to understand
charge inversion. Section III contains details of our MD
simulation model. Section IV is devoted to the study of a
single highly charged colloid. In Sec. V we investigate the
situation where two colloids are present. Finally, in Sec. VI
we conclude with a summary of our results.

II. UNDERSTANDING OVERCHARGING
VIA THE GILLESPIE RULE

Here we propose a simple model solely based on electro-
static energy considerations in order to understand the phe-
nomenon of charge inversion for strongly coupled systems.
Because of the analogy between a spherical macroion sur-
rounded by counterions and an atom~i.e., nucleus1 elec-
trons!, it turns out fruitful to use classical pictures of atomic
physics in order to gain comprehension of certain phenom-
ena occurring in mesoscopic colloidal systems@19,20#. To
study the possibility of overcharging a single macroion, we
recall the Gillespie rule also known as the valence-shell
electron-pair repulsion theory@21,22# that is well known in
chemistry to predict the molecular geometry in covalent
compounds. Note that originally this model has nothing to do
with overcharge. Applying simple electrostatics one can
compute that theground state structureof two, three, four,
and five electrons disposed on a hard sphere corresponds to
simple geometrical situations like those depicted in Fig. 1.
The electrons try to maximize their mutual distances that
leads, for example, in the case of three and four electrons to
equilateral triangular and tetrahedral arrangements.

Now, we can apply this concept to a spherical colloid of
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radiusa, central chargeZm512e, wheree is the elementary
charge, andNc monovalent counterions. By referring to Fig.
1, the neutral system corresponds to the case where two
counterions are present, and the three other cases~three, four,
and five counterions! correspond tonon-neutral overcharged
states.

The total electrostatic energyE(Nc) is merely made up of
two terms: i! an attractive termEatt(Nc) due to the attraction
between the counterions and the central charge and~ii ! a
repulsive termErep(Nc) due to the repulsion among the
counterions. The final expression for the electrostatic energy
as a function of the number of counter ions reads

E~Nc!5Eatt~Nc!1Erep~Nc!5kBT
l B

a
@2NcZm1 f ~u!#,

~1!

where l B5e2/(4pe0e rkBT) is the Bjerrum length andf (u)
is the repulsive energy part which is solely a function of the
topology~relative angles between counterions, such asa and
b appearing in Fig. 1, which also depend onNc) of the
ground state figure. For the specific cases reported in Fig. 1,
the calculation ofE(Nc), with 2<Nc<5, is straightforward

and the corresponding energy values are given in Fig. 1. One
deduces that the maximally obtainable overcharging is
22e ~i.e., 100%! around the central charge. That is, the ex-
cess counterions gain more energy by assuming a topological
favorable configuration than by escaping to infinity, the
simple reason of overcharge. Note the arguments for over-
charging are independent of the Bjerrum length and of the
sphere radius, which enter only as prefactors in Eq.~1!.

To safely use this above outlined model one has just to
ensure that the counterion size is small enough to avoid ex-
cluded volume effects, which in practice is always true. The
important message is that, from an energy point of view, a
colloid alwaystends to be overcharged. Obviously, for high
central charge, the direct computation of the electrostatic en-
ergy by using the exact equation~1! becomes extremely
complicated. Therefore we resort to simulations for highly
charged spheres.

III. SIMULATION MODEL

The system under consideration contains two types of
spherical charges:~i! one or two macroion~s! with a bare
central chargeQ52Zme ~with Zm.0) and~ii ! small coun-
terions of diameters with chargeq51Zce ~with Zc52) to
neutralize the whole system. All these ions are confined in an
impermeable cell and the macroion~s! is ~are! held fixed.

The MD technique employed here is similar to the one
used in previous studies@19,20#. In order to simulate a ca-
nonical ensemble, the motion of the counterions is coupled
to a heat bath acting through a weak stochastic forceW(t).
The equation of motion of counterioni reads

m
d2r i

dt2
52“ iU2mg

dr i

dt
1W i~ t !, ~2!

where m is the counterion mass,U is the potential force
having two contributions: the Coulomb interaction and the
excluded volume interaction, andg is the friction coefficient.
Friction and stochastic force are linked by the dissipation-
fluctuation theorem̂ W i(t)•W j (t8)&56mgkBTd i j d(t2t8).
For the ground state simulations the fluctuation force is set to
zero.

Excluded volume interactions are taken into account with
a purely repulsive Lennard-Jones potential given by

ULJ~r !5H 4eLJF S s

r 2r 0
D 12

2S s

r 2r 0
D 6G1eLJ , for r 2r 0,r cut ,

0, for r 2r 0>r cut ,

~3!

where r 050 for the counterion-counterion interaction,r 0

57s for the macroion-counterion interaction,r cut(521/6s)
is the cutoff radius. This leads to aneffectivemacroion radius
a (a5r 01s58s) corresponding physically to the
macroion-counterion distance of closest approach. Energy
and length units in our simulations are defined aseLJ

5kBT0 ~with T05298 K) ands53.57 Å , respectively. In
the following we will setkBT051, so that all energies are
measured in those units, suppressing thereby all factors of
kBT0 in our equations.

The pair electrostatic interaction between any pairi j ,
wherei andj denote either a macroion or a counterion, reads

FIG. 1. Ground state configurations for two, three, four, and five
counterions. The corresponding geometrical figures show the typi-
cal angles. The electrostatic energy~in units of kBTlB /a) is given
for a central charge of12e.
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Ucoul~r !5 l B

ZiZj

r
, ~4!

whereZi represents the valence of the ions~counterion or
macroion!. Being essentially interested in the strong Cou-
lomb coupling regime we choose the relative permittivity
e r516, corresponding to a Bjerrum length of 10s, for the
remaining of this paper. To avoid image charges complica-
tions, the permittivitye r is supposed to be identical within
whole the cell~including the macroion! as well as outside the
cell. Typical simulation parameters are gathered in Table I.

IV. ONE-MACROION CASE

In this section, we focus on counterion distribution exclu-
sively governed byenergy minimization, i.e., T50 K. The
single spherical macroion is fixed to the center of the large
outer spherical simulation cell~i.e., both spheres are concen-
tric! of radiusR540s. This leads to a colloid volume frac-
tion f m5a3/R35831023. In such a case correlations are
maximal, and all the counterions lie on the surface of the
spherical macroion. To avoid being trapped in metastable
states, we systematically heated and cooled~10 cycles! the
system and only kept the lowest energy state then obtained
@23#. It turns out that for this type of repulsive potential
~between counterions! no rough energy landscape appears
and thus, the MD method is efficient to find the ground state.
First, we checked that this method reproduces well the
ground state energies and structures of the simple situations
depicted in Fig. 1.

A. Counterion distribution

To characterize the counterion layerstructure, we com-
pute the counterion correlation functiong(r ) on the surface
of the sphere, defined as

c2g~r !5(
iÞ j

d~r 2r i !d~r 2r j !, ~5!

wherec5N/4pa2 is the surface counterion concentration (N
being the number of counterions!, r corresponds to the arc
length on the sphere. Note that at zero temperature all equi-
librium configurations are identical, thus only one is required
to obtaing(r ). The pair distributiong(r ) is normalized as
follows

cE
0

pa

2prg~r !dr5~Nc1n21!, ~6!

whereNc5Zm /Zc is the number of counterions in the neu-
tral state andn is the number of overcharging counterions.
Because of thefinite size and the topology of the sphere,
g(r ) has a cutoff atpa (525.1s) and azero value there.
More precisely one cannot state that the uncorrelated case
corresponds tog(r )51 for the present finite system. There-
fore at ‘‘large’’ distance the correlation function differs from
the one obtained with an infinite planar object. Furthermore
the absolute value ofg(r ) cannot be directly compared to the
one obtained with an infinite plane.

Correlation functions for the structural chargeZm5180
and for two states of charge, neutral (n50) and overcharged
(n58), can be inspected in Fig. 2. One remarks that both
structures are very similar and highly ordered. A snapshot of
the ground state structure of the neutral state (n50) is de-
picted in Fig. 3. A visual inspection gives an almost perfect
triangular crystalline structure~see Fig. 3!. A closer look at
Fig. 2 reveals that theg(r ) of the overcharged state, contain-
ing eight more counterions than the neutral one, shows its
first peak at some shorter distance compared to theg(r ) of
the neutral state, as is expected for denser systems.

It is also interesting to know how the counterion-layer
structure looks like when the system is brought toroom tem-
perature T0. At non zero temperature, correlation functions
are computed by averaging( iÞ jd(r 2r i)d(r 2r j ) over 1000
independent equilibrium configurations that are statistically
uncorrelated. Results are depicted in Fig. 4 forZm5180 and
f m5831023. As expected the long-range counterion posi-
tional order is neatly weaker at room temperature than in the
ground state case. Meanwhile, the structure remains very
correlated and highly short-range ordered and therefore it is
referred as a strongly correlated liquid@24#. In terms of Cou-

TABLE I. Simulation parameters with some fixed values.

Parameters

s53.57 Å Lennard Jones length units
T05298 K Room temperature
eLJ5kBT0 Lennard Jones energy units
Zm Macroion valence
Zc52 Counterion valence
l B510s Bjerrum length
f m Macroion volume fraction
a58s Macroion-counterion distance of closest approach

FIG. 2. Ground state surface counterion correlation functions for
Zm5180 and two states of charge@neutral (n50) and overcharged
(n58)#.
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lomb coupling parameter@24,25# G5Zc
2l B /acc , whereacc is

the average distance between counterions, we haveG'13
for Zm5180.

B. Energy analysis

As demonstrated in Sec. II, the spatial correlations are
fundamental to obtain overcharge. Indeed, if we apply the
same procedure and smearZ counterions onto the surface of
the colloid of radiusa, we obtain for the energy

E5 l BF1

2

Z2

a
2

ZmZ

a G . ~7!

The minimum is reached forZ5Zm , hence no overcharging
occurs.

To generalize results of Sec. II to higher central charges
we have considered three macroionic chargeZm of values

50, 90, and 180 corresponding to a surface charge density of
one elementary charge per 180, 100, and 50 Å2, respec-
tively. For a given macroion, we always start by adding the
exact number of counterionsNc to have an electroneutral
system. Once equilibrium of this system is reached, we add
the first overcharging counterion and let the new non-neutral
system relax, and we repeat this operation a given number of
times. The electrostatic energy is computed by summing up
the pairwise interactions of Eq.~4! over all pairs.

The electrostatic energy as a function of the number of
overcharging counterionsn is displayed in Fig. 5. We note
that the maximal~critical! acceptance ofn ~4, 6, and 8! in-
creases with the macroionic chargeZm ~50, 90, and 180 re-
spectively!. Furthermore for fixedn, the gain in energy is
always increasing withZm . Also, for a given macroionic
charge, the gain in energy between two successive over-
charged states is decreasing withn.

The results of Sec. IV A showed that in the ground state
the counterions were highly ordered. Rouzina and Bloom-
field @25# first stressed the special importance of these crys-
talline arrays for interactions of multivalent ions with DNA
strands, and later Shklovskii~@12,24# and references therein!
showed that the Wigner crystal~WC! theory can be applied
to determine the interactions in strongly correlated systems.
In two recent short contributions@19,20# we showed that the
overcharging curves obtained by simulations of the ground
state, like Fig. 5, can be simply explained by assuming that
the energy« per counterion on the surface of a macroion
depends linearly on the inverse distance between them,
hence is proportional toAN for fixed macroion area, whereN
is the total number of counterions on the surface@19,20,26#.
This can be justified by the WC theory. The idea is that the
counterions form an ordered lattice on the surface of a ho-
mogeneously charged background of opposite charge, which
is also called a one component plasma~OCP! @27#. Each ion

FIG. 3. Snapshot of the ground state structure of the neutral
state (n50) with a macroion chargeZm5180 @see Fig. 2 for the
correspondingg(r )].

FIG. 4. Surface counterion correlation functions atroom tem-
perature T0 for two states of charge@neutral~n50! and overcharged
(n58)] with Zm5180 andf m56.631023.

FIG. 5. Electrostatic energy~in units of kBT0) for ground state
configurations of a single charged macroion of as a function of the
number of overcharging counterionsn for three different bare
chargesZm . The neutral case was chosen as the potential energy
origin, and the curves were produced using the theory of Eq.~13!,
compare text.
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interacts in first approximation only with the oppositely
charged background of its Wigner-Seitz~WS! cell @24#,
which can be approximated by a disk of radiush, which
possesses the same area as the WS cell. Because we can
assume the area of the WS cell to be evenly distributed
among theN counterions on the sphere’s surfaceA54pa2

we find

ph25
A

N
5c21. ~8!

The electrostatic interaction energy« (h) of one counterion
with the background of its WS cell can then be determined
by

e (h)52 l BZc
2E

0

h

2prc
1

r
dr522Ap l BZc

2Ac, ~9!

hence is proportional toAc, which proves our initial assump-
tion. It is convenient to definel 5 l BZc

2 and a (h)52Ap
'3.54. For fixed macroion area we can then rewrite Eq.~9!
as

« (h)~N!52
a (h)l

AA
AN. ~10!

If one computes this value for an infinite plane, where the
counterions form an exact triangular lattice, and takes into
account all interactions, one obtains the same form as in Eq.
~9!, but the prefactora (h) gets replaced by the numerical
valueaWC51.96 @28#. Although thevalue is almost a factor
of two smaller than the simple hole picture suggests, the
functional dependenceon the concentration is still the same.

Not knowing the precise value ofa we can still use the
simple scaling behavior withc to set up an equation to quan-
tify the energy gainDE1 by adding the first overcharging
counterion to the colloid. To keep the OCP neutral we imag-
ine adding a homogeneous surface charge density of opposite
charge (2Zce/A) to the colloid @29#. This ensures that the
background still neutralizes the incoming overcharging coun-
terion and we can apply Eq.~10!. To cancel our surface
charge addition we add another homogeneous surface charge
density of opposite signZce/A. This surface charge does not
interact with the now neutral OCP, but adds a self-energy
term of magnitudel /(2a), so that the total energy difference
for the first overcharging counterion reads as

DE15~Nc11!«~Nc11!2Nc«~Nc!1
l

2a
. ~11!

By using Eq.~10! this can be rewritten as

DE152
al

AA
@~Nc11!3/22Nc

3/2#1
l

2a
. ~12!

Completely analogously one derives for the energy gainDEn
for n overcharging counterions@30#

DEn52
al

AA
@~Nc1n!3/22Nc

3/2#1
l

a

n2

2
. ~13!

Equation~13! can be seen as an approximation of the exact
general expression Eq.~1!, where the topological termf (u)
is handled by assuming a perfect planar crystalline structure
through Eqs.~11!–~13!. Using Eq. ~13!, where we deter-
mined the unknowna from the simulation data forDE1 via
Eq. ~12! we obtain a curve that matches the simulation data
almost perfectly, compare Fig. 5. The second term in equa-
tion ~13! also shows why the overcharging curves of Fig. 5
are shaped parabolically upwards for larger values ofn.

Using the measured value ofa we can simply determine
the maximally obtainable numbernmax of overcharging
counterions by finding the stationary point of Eq.~13! with
respect ton:

nmax5
9a2

32p
1

3a

4Ap
ANcF11

9a2

64pNc
G1/2

. ~14!

The value ofnmax depends only on the number of counteri-
ons Nc and a. For large Nc Eq. ~14! reduces tonmax

'3aANc/4Ap which was derived in Ref.@24# as the low
temperature limit of a neutral system in the presence of salt.
What we have shown is that the overcharging in this limit
has a pure electrostatic origin, namely it originates from the
topological favorable arrangement of the ions around a cen-
tral charge. In the following we will investigate the behavior
of a on the surface charge density and on the radius of the
macroion.

We have performed simulations for various surface charge
densities by keepingA fixed and changingZm52Nc in the
range 2 up to 180. Results can be found in Table II and in
Fig. 6. We observe thata is already for values ofNc as small
as two, where one can use the Gillespie rule to calculate the
energy exactly, close the planar valueaWC, and actually os-
cillates around this value. ForNC.50, one reaches a plateau
of a51.8660.05.

This value is about 5% smaller then the one predicted by
WC theory, and is presumably due to the finite curvature of
the sphere. For large values of the radiusa we expecta to
reach the planar limit. To see the rate of convergence we
varied1 a at a fixed concentrationc. The results can be found
in Table III and Fig. 7. For our smallest value ofa56s we
find a51.91. For smalla, which is equivalent to a small
number ofNc , we observe again a slight oscillatory behavior
of a, whereas for our two largest valuesa580s and 160s
we find up to numerical uncertainties the planar resulta
5aWC51.96. Again we stress that the numerical value ofa
enters only as a prefactor into the equations which govern
the overcharging, it does not change the qualitative behavior.

One could wonder if the results presented above are still
valid when the bare central charge of the colloid is replaced
by smalldiscreteions lying on the macroion surface? In fact

1Note that this is the only part of the paper whereaÞ8s.
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it has been shown that the energy of the overcharged state
~Fig. 5! for randomdiscrete colloidal charge distribution is
more or less quantitatively affected@31,32# depending on the
the valence of the counterions. More precisely it was shown
that the overcharge still persists and has a similar~for
monovalent counterions! or quasi-identical~for multivalent
counterions! behavior to the one depicted in Fig. 5, and this,
even if ionic pairing occurs between the counterions and the
discrete colloidal charges@31,32#, that is even whenno coun-
terion WC is formed.

C. Macroion-counterion interaction profile

In this part, we study the interaction potential profile at
T50 K between aneutral effectivemacroion~bare macro-
ion 1 neutralizing counterions! and one excess overcharging
counterion at a distancer from the colloid center. The profile
is obtained by displacing adiabatically the excess overcharg-
ing counterion from infinity towards the macroion. We inves-
tigated the case ofZm52, 4, 6, 8, 10, 32, 50, 90, 128, 180,
and 288. All curves can be nicely fitted with an exponential
fit of the form

E1~r !5DE1e2t(r 2a), ~15!

whereDE1 is the measured value for the first overcharging
counterion, andt is the only fit parameter~see Table II!.
Results for the two valuesZm550 and 180 are depicted in
Fig. 8. If one plots all our results fort versusANc we ob-
serve a linear dependence for a wide range of values forNc ,

t5mANc, ~16!

TABLE II. Measured values for anisolatedmacroion, with fixed
radiusa, of the energy gain for the first overcharging counterion
DE1

OC for various macroion bare chargeZm52Nc . The value ofa
can be compared to the prediction of WC theory for an infinite
plane, which gives 1.96, compare text. We also record the values of
the fitting parametert of Eq. ~15! for selectedNc corresponding to
those of Fig.~9!. The symbol(i) stands for the ionization process
discussed in Sec. V B 1.

Zm Nc DE1 /kBT0 a ts

2 1 22.5 1.94 0.12
4 2 23.8 1.89 0.18
6 3 25.3 1.97 0.19
8 4 26.1 1.92 0.24
10 5 27.5 2.02 0.24
20 10 210.7 1.93
30(i) 15 117.9 1.91
32 16 0.41
50 25 218.0 1.92 0.51
90 45 224.4 1.88 0.68
90(i) 45 129.2 1.89
128 64 0.79
150(i) 75 137.4 1.91
180 90 235.3 1.88 0.93
288 144 1.19
360 180 250.0 1.86

FIG. 6. Wigner crystal parametera as a function of the number
of counterionsNc for fixed colloid radiusa.

TABLE III. Measured values of the energy gainDE1
OC and fixed

counterion concentrationc, varying this time the macroion radiusa
and the number of counterionsNc .

a/s Nc DE1 /kBT0 a

6 9 213.3 1.91
8 16 214.4 1.97
10 25 214.5 1.93
12 36 214.7 1.92
14 49 215.1 1.94
16 64 215.1 1.92
20 100 215.3 1.92
40 400 215.9 1.94
80 1600 216.4 1.97
160 6400 216.5 1.96

FIG. 7. Wigner crystal parametera as a function of the colloid
radiusa for a fixed surface counterion concentrationc.
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with ms'0.1, as can be inspected in Fig. 9.
This behavior can again be explained using a ‘‘WC hole’’

picture in the limiting situation wherexªr 2a is small~i.e.,
the displaced counterion is close to the macroion surface!. To
this end we consider the classical electrostatic interaction
Vdisk(x) between a uniformly charged disk~the WC hole—
supposed planar! and a point ion~the displaced counterion!
located on the axis of the disk at a distancex from its surface,
which is given by

Vdisk~x!522pl c~Ah21x22x!. ~17!

As in Eq. ~9!, h5(pc)21/2 is the hole radius. For small
distancex, we expand Eq.~17!

Vdisk~x!5« (h)F12
1

h
x1

1

2h2
x21OS x4

h4D G , ~18!

where the surface termVdisk(x50)5« (h) is given by Eq.
~9!. By expanding the exponential in Eq.~15! to 2nd order
for small tx we obtain

E1~x!5DE1F12tx1
t2

2
x21O~t3x3!G . ~19!

A comparison between Eq.~19! and Eq.~18! shows that
to this order we can identify

t5
1

h
5Apc5

ANc

2a
'0.06ANc. ~20!

Comparing this to Eq.~16! we note that this simple illustra-
tion gives us already the correct scaling as well as the pref-
actor up to 30%. We neglected here the effect that the surface
concentration changes when the ion is close to the macroion
as well as the curvature of the macroion.

V. TWO-MACROION CASE

In this section we consider two fixed charged spheres of
bare chargeQA andQB separated by a center-center separa-
tion R and surrounded by their neutralizing counterions. All
these ions making up the system are immersed in a cubic box
of lengthL580s, and the two macroions are held fixed and
disposed symmetrically along the axis passing by the two
centers of opposite faces. This leads to a colloid volume

fraction f m52 4
3 p(a/L)3'8.431023. For finite colloidal

volume fractionf m and temperature, we know from the study
carried out above that in the strong Coulomb coupling re-
gime all counterions are located in a spherical ‘‘monolayer’’
in contact with the macroion. Here, we investigate the
mechanism ofstrong long rangeattraction stemming from
monopolecontributions: that is one colloid is overcharged
and the other one undercharged.

A. Like charged colloids

1. Observation of metastable ionized states

In the present charge symmetrical situation we haveQA
5QB52Zme. This system is brought atroom temperature
T0. Initially the counterions are randomly generated inside
the box. Figure 10 shows two macroions of bare chargeZm
5180 surrounded by their quasi-two-dimensional counteri-
ons layer. The striking peculiarity in this configuration is that
it corresponds to an overcharged and an undercharged
sphere. There is one counterion more on the left sphere and
one less on the right sphere compared to the bare colloid
charge. Such a configuration is referred asionized state. In a
total of ten typical runs, we observe this phenomenon five
times. We have also carefully checked against a situation
with periodic boundary conditions, yielding identical results.

FIG. 8. Electrostatic interaction energy~in units of kBT0) of a
divalent counterion with a neutral effective colloid~bare particle1
surrounded counterions! as function of distancer /a from the center
of a macroion for two different macroion bare chargesZm . The
energy is set to zero at distance infinity. Solid lines correspond to
exponential fits@see Eq.~15!#.

FIG. 9. Exponential fit parametert as a function of the square
root of the number of counterionsANc. The dashed line corre-
sponds to a linear fit inANc.
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However it is clear that such a state is ‘‘metastable’’ because
it is not the lowest energy state. Indeed, in this symmetrical
situation the ground state should also be symmetrical so that
both colloids should be exactly charge-compensated. Such
arguments remain valid even at nonzero temperature as long
as the system is strongly energy dominated, which is pres-
ently the case. Nevertheless the ionized states observed here
seem to have a long life time since even after 108 MD time
steps this state survives. In fact we could not observe within
the actual computation power the recover of the stable neu-
tral state. To understand this phenomenon we are going to
estimate the energy barrier involved in such a process.

2. Energy barrier and metastability

To estimate the energy barrier, electrostatic energy pro-
files atzero temperaturewere computed, where we move one
counterion from the overcharged macroion to the under-
charged, restoring the neutral state@see drawing depicted in
Fig. 11~a!#. We have checked that the path leading to the
lowest barrier of such a process corresponds to the line join-
ing the two macroions centers. The simulation data are
sketched in Figs. 11~a–b! and were fitted using a similar
technique to the single macroion-counterion interaction pro-
file given by Eq.~15!, which will be explicitly treated later.
The resulting simulated energy barrierDEbar is obtained by
taking the difference between the highest energy value of the
profile and the ionized state energy~start configuration!. Val-
ues ofDEbar can be found in Table IV for the small macro-
ion separation caseR/a52.4. One clearly observes a barrier,
which increases quasi linearly with the chargeZm for the
small colloids separationR/a52.4 @cf. Fig. 11~a! and Table
IV #. The ground state corresponds as expected to the neutral
state. Note that the ionized state and the neutral state are
separated by only a small energy amount~less than 2.5!, the
difference being approximately of the order of the monopole
contributionE5 l B(4/824/11)'1.36. The physical origin of
this barrier can be understood from the single macroion case

where we showed that a counterion gains high correlational
energy near the surface. This gain is roughly equal for both
macroion surfaces and decreases rapidly with increasing dis-
tance from the surfaces, leading to the energy barrier with its
maximum near the midpoint. For the single macroion case
we showed that the correlational energy gain scales with
AZm, whereas here we observe a linear behavior of the bar-
rier height with Zm . We attribute this effect to additional
ionic correlations since both macroions are close enough for
their surface ions to interact strongly. For large separations
~here R/a54.25) we find again that the barrier height in-
creases withAZm, as expected@see Fig. 11~b! and Table V#.
Furthermore the energy barrier height naturally increases
with larger colloidal separation. TheZm dependence of the
barrier also shows that at room temperature such ionized
states only can occur for largeZm . In our case only forZm
5180, the ionized state was stable for all accessible compu-
tation times. Unfortunately, it is not possible to get a satis-
factory accuracy of the energy jumps at nonzero tempera-
tures. Nevertheless, since we are interested in the strong
Coulomb coupling regime, which is energy dominated, the
zero temperature analysis is sufficient to capture the essential
physics.

Simulation results presented in Fig. 11 can be again theo-
retically well described using the previously exponential pro-
files obtained for the macroion-displaced counterion in Sec.
IV C for a single colloid. For the two macroions case, the
general expression for the electrostatic interactionEbar(r ,R)
of the present process can be approximated as

Ebar~r ,R!5DE1* exp@2t~r 2a!#

1DE1* exp@2t~R2r 2a!#2
l

R2r
, ~21!

whereDE1* is the ‘‘effective’’ correlationalenergy gained by
the first OC at one macroion surface assumed identical for
both colloids. The last term in Eq.~21! corresponds to the
additional monopole attractive contribution of the displaced
counterion with the undercharged colloid. Fitting parameters
(DE1* and t) for R/a52.4 andR/a54.25 can be found in
Tables IV and V, respectively. Same values oft were used
here as those of the single macroion case~see Fig. 9 and
Table II! . However for the small colloidal separation (R/a
52.4), due to the extra intercolloidal surface counterions
correlations, we used a slightly larger~absolute! value for
DE1* compared to the one (DE1) of an isolated colloid
~compare Tables IV and V!. This is compatible with the idea
that between the two colloids~especially when both spheres
come at contact!, we have the formation of a ‘‘superlayer’’
that is more dense, thus leading to a smaller hole radius and
a higher energy gain. An analysis of the counterions structure
of the two macroions reveals that both WC counterion layers
are interlocked, that is the projection along the axis passing
through the colloid centers gives a superlattice structure~see
Fig. 12!.

For large colloidal separation (R/a54.25), the WC struc-
ture on one of the colloids is unperturbed by the presence of

FIG. 10. Snapshot of a ‘‘pseudoequilibrium’’ configuration at
room temperatureT0 where the counterion-layers do not exactly
compensate the macroions charge. Here the deficiency charge is61
counterion~or 62e as indicated above the macroions! and R/a
53.6.
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the other, hence we can takeDE1* 5DE1, and our simulation
data can nicely be fitted by the parameters inferred from the
single colloid system.

3. Effective forces

Results concerning the effective forces atzero tempera-
ture between the two macroions are now investigated which
expression is given by

Fe f f~R!5Fmm~R!1FLJ1Fmc , ~22!

whereFmm(R) is the direct Coulomb force between macro-
ions,FLJ is the excluded volume force between a given mac-
roion and its surrounding counterions andFmc is the Cou-
lomb force between a given macroion and all the
counterions. Because of symmetry, we focus on one macro-
ion. To understand the extra-attraction effect of these ion-
izedlike states, we consider three cases:~i! Fion5Fe f f in the
ionized state with a charge asymmetry of6 1 counterion~ii !
Fneut5Fe f f in the neutral case~iii ! Fmono5Fe f f simply from
the effective monopole contribution. Our results are dis-
played in Fig. 13 forZm5180, where the ionized state was
also observed at room temperature. The noncompensated
case leads to a very important extra attraction. This becomes
drastic for the charge asymmetry of62 counterions at short
separationR/a52.4 leading to a reduced effective attractive
force Fl B5210.7, a situation that was also observed in our
simulation at room temperature. In contrast to previous stud-
ies@15,16#, these attractions are long range. For a sufficiently
large macroion separation~from 3.5a), corresponding here
roughly to a macroion surface-surface separation of one col-
loid diameter, the effective force approaches in good ap-
proximation the monopole contribution~see Fig. 13!.

B. Asymmetrically charged colloids

In this section we investigate the case where the two col-
loids have different charge densities. We will keep the col-
loidal radii a fixed, but vary the bare colloidal charges. The

TABLE V. Measured value of the energy barrier and fit param-
eters of the electrostatic interaction process involved in Fig. 11~b!
for R/a54.25 and for different macroion bare charges.

Zm DEbar /kBT0 DE1* /kBT0 ts

50 16.8 218.4 0.51
90 23.3 224.4 0.68
180 33.8 235.3 0.92

FIG. 11. Total electrostatic energy~in units of kBT0) of the
system, forzero temperatureconfigurations, of two macroions at a
center-center separation of~a! R/a52.4 ~b! R/a54.25 as a func-
tion of one displaced counterion distance from the left macroion for
three typical valuesZm . The exact neutral state was chosen as the
potential energy origin. The schematic drawing indicates the path
~dotted line! of the moved counterion. The ending arrows of the arc
indicate the start position~left sphere! and final position~right
sphere! of the moved counterion. Dashed lines correspond to the fit
using Eq.~21! of which parameters can be found in Tables IV and
V.

TABLE IV. Measured value of the energy barrier and fit param-
eters of the electrostatic interaction process involved in Fig. 11~a!
for R/a52.4 and for for different macroion bare charges.

Zm DEbar /kBT0 DE1* /kBT0 ts

50 4.9 220.4 0.51
90 9.6 227.5 0.68
180 20.4 239.4 0.92
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charge on sphereA is fixedat ZA5180, and sphereB carries
variable charges withZB ~whereZB,ZA) ranging from 30
up to 150. Global electroneutrality is ensured by addingNA
1NB divalent counterions, withNA5ZA /Zc , and NB
5ZB /Zc . In this way we vary the bare counterion concen-
trationsci5ANi /4pa2, wherei stands forA or B.

1. Ground state analysis

We start out again with studying the ground state of such
a system. The electrostatic energy of the system is investi-

gated for different uncompensated bare charge cases~ionized
states! by simply summing up Eq.~4! over all Coulomb
pairs. We define thedegree of ionization~DI! as the number
of counterions overcharging colloidA ~or, equivalently, un-
dercharging colloidB). The system is prepared at various DI
and we measure the respective energies. These states are
separated by kinetic energy barriers, as was demonstrated
above. We consider three typical macroionic chargesZB ~30,
90, and 150! and separationsR/a ~2.4, 3.0, and 4.25!. The
main results of the present section are given in Fig. 14. For
the largest separationR/a54.25 and largest chargeZB
5150 @see Fig. 14~a!#, one notices that the ground state cor-
responds to the classical compensated bare charge situation
@referred as theneutral state~DI of 0!#. Moreover the energy
increases stronger than linear with the degree of ionization. If
one diminishes the bare chargeZB to 90 and 30, theground
stateis actually the ionized state for a DI of 1 and 3, respec-
tively. The ionized ground state is about 8 and 36 , respec-
tively, lower in energy compared to the neutral state. This
shows that even for a relative large colloid separation, stable
ionized states should exist for sufficient low temperatures
and that their stability is a function of their charge asymme-
try.

For a shorter separationR/a53.0, ionized ground states
are found@see Fig. 14~b!# for the same chargesZB as previ-
ously. Nevertheless, in the ground state the DI is now in-
creased and it corresponds to 2 and 4 forZB590 and 30,
respectively. The gain in energy is also significantly en-
hanced. For the shortest separation under considerationR/a
52.4 @see Fig. 14~c!#, the ground state corresponds forall
investigated values ofZB to the ionized state, even forZB
5150. We conclude that decreasing the macroion separation
R enhances the degree of ionization and the stability of the
ionized state.

To understand this ionization phenomenon, it is sufficient
to refer to anisolatedmacroion surrounded by its neutraliz-
ing counterions. We have investigated the energies involved
in the ionization~taking out counterions!. The complemen-
tary process of overcharging~adding counterions! has al-
ready been investigated~see Fig. 5!. A derivation of the for-
mula describing the ionization energyDEion proceeds
completely analogously to the one carried out for the over-
charging Eq.~13! and gives for thenth degree of ionization

DEn
ion52

aBl

AA
@~NB2n!3/22NB

3/2#1
l

a

n2

2
, ~23!

whereaA,B are the values ofa belonging to colloidA andB,
respectively. In Fig. 15 we compare the predictions of Eqs.
~13! and ~23! to our simulation data, which shows excellent
agreement. Our numerical data forDE1

ion for NB515, 45,
and 75, the value ofDE1

OC for NA590 ~overcharging pro-
cess!, as well as the corresponding values fora, which have
been used for Fig. 15 can be found in Table II.

With the help of Eqs.~13! and~23!, one can try to predict
the curves of Fig. 14 for finite center-center separationR.
Using for colloidA andB the measured valuesaA andaB,
we obtain for the electrostatic energy difference at finite
center-center separationR

FIG. 12. Projection of the counterion positions, located on both
inner~face to face! hemispheres, along the symmetrical axis passing
through the macroion centers. Open~filled! circles are counterions
belonging to macroionA(B). One clearly sees the interlocking of
the two ordered structures yielding locally to a superlattice.

FIG. 13. Reduced effective force between the two spherical
macroions atzero temperaturefor Zm5180 as a function of dis-
tance from the center. The different forces are explained in the text.
The lines are a guide to the eye.
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DEn~R!5DEn
ion1DEn
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3naBl
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ANBF12

n

4NB
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NB
2 D G

2
3naAl

2AA
ANAF11

n

4NA
1OS n2

NA
2 D G

1
n2l

a S 12
a

RD . ~24!

The quality of the theoretical curves can be inspected in
Fig. 14. The prediction is is very good for large separations,
but the discrepancies become larger for smaller separations,
and one observes that the actual simulated energies are
lower. Improvements could be achieved by including polar-
ization effects along the ideas leading to Eq.~21!, by adjust-
ing, for example,aA and aB. More important, the physical
interpretation of Eq.~24! is straightforward. The left two
terms represent the difference in correlation energy, and last
term on the right the monopole penalty due to the ionization
and overcharging process. This means that the correlational
energy gained by overcharging the highly charged colloidA
must overcome the loss of correlation energy as well as the
monopole contribution~two penalties! involved in the ioniza-
tion of colloid B. With the help of Eq.~24! we can establish
a simple criterion~more specifically a sufficient condition!,
valid for large macroionic separations, for the charge asym-
metryANA2ANB to produce an ionized ground state of two
unlike charged colloids with the same size,

~ANA2ANB!.
4Ap

3a
'1.2. ~25!

FIG. 14. Total electrostatic energy as a function of the degree of
ionization for zero temperature configurations of two colloids (A
andB), for three typical chargesZB ~30, 90, and 150! for macroion
B and for three given distance separations:~a! R/a54.25, ~b! R/a
53.0 and~c! R/a52.4. Dashed lines were obtained using Eq.~24!.

FIG. 15. Total electrostatic energy as a function of the degree of
ionization for zero temperature configurations of anisolated col-
loid. The three upper curves correspond to the ionization energy for
the three typical chargesZB ~30, 90, and 150!. The lower curve
corresponds to the energy gained~changed sign for commodity! by
overcharging (ZA5180). Dashed lines were obtained using Eqs.
~13! and ~23! with the measured values fora from Table II.
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Referring to Fig.~15! this criterion is met when the over-
charge curve~changed sign! is higher than the ionization
curve.

If one uses the parameters of the present study one finds
the requirementNB,66 to get a stable ionized state. This is
consistent with our findings where we show in Fig. 14 that
for NB575, andR/a54.25, no ionized ground state exists
whereas forNB560 we observed one even for infinite sepa-
ration ~not reported here!. The criterion Eq.~25! is merely a
sufficient condition, since we showed in Fig. 14 that when
the colloids are close enough, this ionized state can appear
even for smaller macroion charge asymmetry due to en-
hanced intercolloidal correlations. At this stage, we would
like to stress again, that the appearance of a stable ionized
ground state is due merely to correlation. An analogous con-
sideration with smeared out counterion distributions along
the lines of Eq.~7! will again always lead to two colloids
exactly neutralized by their counterions@33#. Our energetical
arguments are quite different from the situation encountered
at finite temperatures, because in this case even a Poisson-
Boltzmann description would lead to an asymmetric counter-
ion distribution. However, in the latter case this happens due
to pure entropic reasons, namely, in the limit of high tem-
peratures, the counterions want to be evenly distributed in
space, leading to an effective charge asymmetry.

At this stage, on looking at the results presented above, it
appears natural and straightforward to establish an analogy
with the concept of ionic bonding. It is well known in chem-
istry that the electronegativity concept provides a simple yet
powerful way to predict the nature of the chemical bonding
@34#. If one refers to the original definition of the electrone-
gativity given by Pauling@34#: ‘‘the power of an atom in a
molecule to attract electrons to itself,’’ the role of the bare
charge asymmetry becomes obvious. Indeed, it has an
equivalent role at the mesoscopic scale as the electron affin-
ity at the microscopic scale. Another interesting analogy is
the influence of the colloidal separation on the stability of the
ionized state. Like in diatomic molecules, the ionized state
will be ~very! stable only for sufficiently short colloid sepa-
rations. Nevertheless, one should not push this analogy too
far. One point where it breaks down concerns the existence
of an ionized ground state in colloidal system forlarge col-
loid separation, providing that the difference in the counter-
ion concentration on the surface is large enough. In an ato-
mistic system this is impossible since even for the most
favorable thermodynamical case, namely, CsCl, there is a
cost in energy to transfer an electron from a cesium atom to
a chlorine atom. Indeed, the smallest existing ionization en-
ergy ~for Cs, 376 kJ mol21) is greater in magnitude than the
largest existing electron affinity~for Cs, 349 kJ mol21). In
other terms, for atoms separated by large distances in the gas
phase, electron transfer to form ions is always energetically
unfavorable.

2. Finite temperature analysis

As a last result, aimed at experimental verification, we
show that an ionized state can also existspontaneouslyat
room temperature T0. Figure 16 shows the time evolution of
the electrostatic energy of a systemZA5180 with ZB530,

R/a52.4 andf m5731023, where the starting configuration
is the neutral state~DI of 0!. One clearly observes two jumps
in energy,DE15219.5 andDE25217.4, each of which
corresponds to a counterion transfer from colloidB to colloid
A. These values are consistent with the ones obtained for the
ground state, which are220.1 and216.3, respectively. Note
that this ionized state~DI of 2! is more stable than the neutral
but is expected to be metastable, since it was shown previ-
ously that the most stable ground state corresponds to DI of
5. The other stable ionized states for higher DI are not ac-
cessible with reasonable computer time because of the high
energy barrier made up of the correlational term and the
monopole term that increases with DI. In Fig. 17 we display
a typical snapshot of the ionized state~DI of 2! of this sys-
tem at room temperature.

Obviously, these results are not expected by a DLVO
theory even in the asymmetric case~see, e.g.,@35#!. Previous
simulations of asymmetric~charge and size! spherical mac-
roions@36# were also far away to predict such a phenomenon
since the Coulomb coupling was weak~water, monovalent
counterions!.

VI. CONCLUDING REMARKS

In summary, we have shown that the ground state of a
charged sphere in the presence of excess counterions isal-
waysovercharged. A sufficiently charged colloid can in prin-
ciple be highly overcharged due to counterion mediated cor-
relation effects, and this phenomenon is quantitatively well
described by a simple version of Wigner crystal theory. In
the strong Coulomb coupling regime, the energy gain of a
single excess ion close to a counterion layer can be of the
order of many tens ofkBT0. Furthermore we demonstrated

FIG. 16. Relaxation, at room temperatureT05298 K , of an
initial unstable neutral state towards ionized state. Plotted is the
total electrostatic energy versus time~LJ units!, for ZB530 and
R/a52.4. Dashed lines lines represent the mean energy for each DI
state. Each jump in energy corresponds to a counterion transfer
from the macroionB to macroionA leading to an ionized state~DI
of 2! which is lower in energy than the neutral one. The two energy
jumps DE1 /kBT05219.5 and DE2 /kBT05217.4 are in very
good agreement with those of Fig. 14~c! (220.1 and216.3).
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that the electrostatic interaction between a counterion and a
macroion effectively neutralized by its counterions decays
exponentially on a length scale which is equal to the Wigner
crystal hole radius.

We further found that for twolike-chargedmacroions
~symmetric case!, an initially randomly placed counterion
cloud of their neutralizing divalent counterions may not be
equally distributed after relaxation, leading to two macroions
of opposite net charges. This is due to the short range WC
attraction that leads to this energetically favorable over-
charged state. The resulting configuration is metastable, how-
ever separated by an energy barrier of severalkBT0 when the

bare charge is sufficiently large, and can thus survive for
long times. Such configuration possess a natural strong long
range attraction.

In return, if the symmetry in the counterion concentration
on the colloidal surface is sufficiently broken, the ionized
state can bestable. The ground state of such a system is
mainly governed by two important parameters, namely, the
asymmetry in the counterion concentration determined by
AcA2AcB, and the colloid separationR. If the counterion
concentration difference is high enough, the ground state cor-
responds to an ionized state, whatever the macroions separa-
tion R is. However, the degree of ionization depends onR.
Besides, for largeR, we have established a criterion, allow-
ing to predict when a stable ionized configuration can be
expected. The counterion concentration difference plays an
analogous role to the electron affinity between two atoms
forming a molecule with ionic bonding. We demonstrated
that the results presented here for the ground state can lead to
a stable ionic state even at room temperature provided that
the Coulomb coupling and/or the counterion concentration
asymmetry is sufficiently large. This is also a possible
mechanism that could lead to strong long range attractions,
even in bulk. Future work will treat the case where salt ions
are present.
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Abstract. The effect of fixed discrete colloidal charges in the primitive model is investigated for spherical
macroions. Instead of considering a central bare charge, as it is traditionally done, we distribute discrete
charges randomly on the sphere. We use molecular dynamics simulations to study this effect on various
properties such as overcharging, counterion distribution and diffusion. In the vicinity of the colloid surface
the electrostatic potential may considerably differ from the one obtained with a central charge. In the
strong Coulomb coupling, we showed that the colloidal charge discretization qualitatively influences the
counterion distribution and leads to a strong colloidal charge-counterion pair association. However, we
found that charge inversion still persists even if strong pair association is observed.

PACS. 82.70.Dd Disperse systems: Colloids – 61.20.Qg Structure of associated liquids: electrolytes, molten
salts, etc. – 41.20.-q Applied classical electromagnetism

1 Introduction

The electrostatic interactions in charged colloidal systems
play a crucial role in determining the physical properties of
such materials [1,2]. The behavior of these systems is ex-
tremely complex due to the long-range Coulomb interac-
tions. A first simplifying assumption is to treat the solvent
as a dielectric medium solely characterized by its relative
permittivity εr. A second widely used approximation con-
sists in modeling the short-range ion-ion excluded-volume
interaction by hard spheres. These two approximations
are the basis of the so-called primitive model of elec-
trolyte solutions. The system under consideration is an
asymmetrical polyelectrolyte made up of highly charged
macroions and small counterions in solution. A further
simplification can be achieved by partitioning the system
into subvolumes (cells), each containing one macroion to-
gether with its neutralizing counterions plus, if present,
additional salt. This approximation has been called ac-
cordingly the cell model [3,4]. The cells assume the sym-
metry of the macroion, here spherical, and are electrostati-
cally decoupled. In this way one has reduced a complicated
many-body problem to an effective one-colloid problem.
For spherical macroions the structural charge is normally
modeled by a central charge, which, by Gauss theorem, is
equivalent to considering a uniform surface charge density
as far as the electric field outside the sphere is concerned.

Most analytical work as well as simulation approaches
rely on the above assumptions. It is well known that in
the strong Coulomb coupling regime ion-ion correlations
become very important, and significant deviations from
mean-field approaches are expected. One of the effects

a e-mail: messina@mpip-mainz.mpg.de

which a mean-field theory like the Poisson-Boltzmann
one cannot explain is the phenomenon of overcharge, also
called charge inversion. It consists of binding excess coun-
terions to a charged particle (macroion) so that its net
charge changes sign. This has recently attracted signifi-
cant attention [5–14]. It may give rise to a possible mech-
anism for strong long-range attraction between like-sign
charged colloids [12,13].

The purpose of this paper is to investigate if such a
phenomenon (overcharge) depends on the way the struc-
tural charge is represented. The macroion is taken to be
perfectly spherical, i.e. we neglect any surface roughness
[15]. We introduce discrete charges on the macroion sphere
instead of a central charge, and compare the results to
those obtained with a central charge. We concentrate on
the following properties in the strong Coulomb coupling:
overcharging, counterion distribution and surface diffu-
sion.

2 Simulation model

2.1 Macroion charge discretization

The macroion charge discretization is produced by using
Nm identical microions of diameter σ, all identical to the
counterions, distributed randomly on the surface of the
macroion. Then the structural charge is Q = −Zme =
−ZcNme, where Zm > 0, Zc is the counterion valency and
e is the positive elementary charge. The discrete colloidal
charges (DCC) are fixed on the surface of the spherical
macroion. In spherical coordinates the elementary surface
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Fig. 1. Schematic view of the setup: the discrete colloidal
charges (DCC) of diameter σ are in dark grey. The radial elec-
trostatic field components Ex and Ey are represented. For a
detailed meaning of the other symbols, see text. Note that this
is a a two-dimensional representation of the three-dimensional
system.

is given by

dA = r20 sin θdθdϕ = −r20d(cos θ)dϕ , (1)

and, to produce a random discrete charge distribution on
the surface, we generated randomly the variables cos θ and
ϕ. Only configurations leading to an overlap of microions
are rejected. Figure 1 shows a schematic view of the
setup. Note that in real physical systems like sulfonated
latex spheres, no large heterogeneities are expected in the
charge distribution, provided that the colloid surface is rel-
atively regular, therefore our choice is justified. Neverthe-
less, the experimental situation is more complicated since
other phenomena such as surface chemical reactions [16],
hydration, roughness [15] and many more may be present.
Here, we restrict ourselves to a simple model in order to
understand the effect of macroion charge discretization,
and leave the other questions for future investigations.

2.2 Molecular dynamics procedure

We use molecular dynamics (MD) simulations to compute
the motion of the counterions coupled to a heat bath act-
ing through a weak stochastic force W(t). The equation
of motion of counterion i reads

m
d2ri

dt2
= −∇iU −mΓ

dri

dt
+Wi(t) , (2)

where m is the counterion mass, U is the potential force
having two contributions: the Coulomb interaction and
the excluded-volume interaction and Γ is the friction
coefficient. Friction and stochastic force are linked by

the dissipation-fluctuation theorem 〈Wi(t) · Wj(t′)〉 =
6mΓkBTδijδ(t− t′). For the ground state simulations the
fluctuation force is set to zero.

Excluded-volume interactions are taken into account
with a pure repulsive Lennard-Jones potential given by

ULJ(r)=




4ε
[(

σ
r−r0

)12
−

(
σ

r−r0

)6]
+ ε, for r−r0 < rcut,

0, for r − r0 ≥ rcut,

(3)

where r0 = 0 for the microion-microion interaction (the
microion can be a counterion or a DCC), r0 = 7σ for
the macroion-counterion interaction, and rcut (= 21/6σ)
is the cut-off radius. This leads to a macroion-counterion
distance of closest approach a = 8σ. Energy and length
units in our simulations are defined as ε =kBT0 (with T0 =
298 K), and σ = 3.57 Å, respectively.

The pair electrostatic interaction between any pair ij,
where i and j denote either a DCC or a counterion, reads

UCoul(r) = kBT0lB
ZiZj

r
, (4)

where lB = e2/4πε0εrkBT0 is the Bjerrum length describ-
ing the electrostatic strength. Being essentially interested
in the strong Coulomb coupling regime, we choose the
relative permittivity εr = 16 (lB = 10σ), divalent counte-
rions (Zc = 2) and divalent DCC for the remaining of this
paper.

The macroion and the counterions are confined in a
spherical impenetrable cell of radius R. The macroion is
held fixed and is located at the center of the cell. The
colloid volume fraction fm is defined as r3m/R

3, where
rm = a−σ/2 is the colloid radius. We have fixed R = 40σ
so that fm = 6.6× 10−3. To avoid image charge complica-
tions, the permittivity εr is supposed to be identical within
the whole cell (including the macroion) as well as outside
the cell.

3 Macroion electric field

The first step to understand the effect of colloidal charge
discretization consists of estimating the electric field, or
equivalently, the electrostatic potential generated by such
a sphere in the absence of counterions. A simple graphical
visualization of the field lines is here not possible, since
there is no perfect symmetry. Indeed, in the present case
the electric field becomes very anisotropic and irregular
close to the sphere, which is the most interesting region
where correlations are expected to be large. To describe
qualitatively the effect of charge discretization on the elec-
trostatic potential, we compute for three perpendicular di-
rections x, y, z the resulting radial potentials Vx(r), Vy(r),
Vz(r) for one given DCC random distribution as a func-
tion of the distance r ≥ a from the macroion center. The
radial component of the electric field Ei(r) = − ∂

∂rVi(r)
has the important feature of representing the attractive
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Fig. 2. Radial electrostatic potential as a function of the
macroion center distance r produced by the fixed microscopic
colloidal charges disposed on the sphere. These potentials have
been measured in three perpendicular directions (x, y, z) (see
Fig. 1). The isotropic case corresponds to the field obtained
with a central charge (monopole). Three structural charges are
considered: (a) Zm = 50, (b) Zm = 90, and (c) Zm = 180.

component towards the sphere. The normalized radial po-
tential Vi in the i -th direction at a distance r from the
colloid center is given by

Vi(r) = −kBT0lBZ2c
Nm∑
j=1

1
|rj(r)| , (5)

where rj(r) is the vector pointing from the microion j to
the point where the electric potential is computed (see
Fig. 1). Physically, V (r) is the electrostatic potential in-
teraction between a counterion and all the surface mi-
croscopic colloid charges. The monopole contribution is
merely given by Vmono(r) = −kBT0lB ZmZc

r . In Figure 2 we
show the electric potential for three typical bare charges,
each corresponding to one given random macroion charge
distribution. For all cases, one notes that in the vicinity of
the surface the potential becomes very different from the
one computed with a central charge. We carefully checked
that similar results were obtained for other choices of x,
y, z directions (by rotating the trihedron (ex, ey, ez)).
However, if we observe the electric field sufficiently far
away from the colloidal surface (about one macroion di-
ameter), the field is almost exactly the same as the one
produced by a central charge, which we term isotropic for
the rest of this paper. A closer look at Figure 2 reveals
that by increasing the bare charge Zm the electric field
starts to become isotropic at smaller distances from the
sphere’s surface. This last feature can be physically easily
interpreted. In fact when one increases the bare charge,
one also increases the absolute number of discrete charges
which has the effect of approaching the uniform contin-
uous charge density limit (corresponding to the isotropic
case).

To capture the discretization effect on the surface elec-
trostatic potential, we have measured the electrostatic po-
tential along a circle of radius a concentric to the spherical
macroion (see Fig. 1). We start from the top of a given
DCC microion and move along a circle in a random di-
rection and measure the electrostatic potential V (s) as a
function of the arc length separation s from the start-
ing point. The same formula as equation (5) has been
used here. The constant monopole contribution is merely
given by Vmono = −kBT0lB ZmZc

a . Results are reported in
Figure 3 for the same configurations as before. It clearly
shows that the electrostatic potential is strongly fluctu-
ating. More specifically, the higher the structural charge
Zm, the larger the “oscillation frequency” of the poten-
tial fluctuations over the surface. This feature can be ex-
plained in terms of “holes”. In the very vicinity of a given
DCC the potential is increased (in absolute value) in av-
erage, and around a given DCC there is a hole (depletion
of charges) which tends to decrease the potential (in abso-
lute value). The average surface of this hole is increasing
with decreasing bare charge Zm (i.e. decreasing density of
charged sites).

In the following sections we are going to study the
effect of charge discretization on the counterions distribu-
tion in the strong Coulomb coupling. For all following re-
sults we used the same random charge distributions which
gave the results of Figures 2 and 3.
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Fig. 3. Surface electrostatic potential as a function of the
arc length s along a circle of radius a concentric to the the
macroion for three different trajectories. The monopole contri-
bution is represented by the dashed line. The same configura-
tions as those of Figure 2(a-c) have been used.

4 Ground state analysis

In this section, we focus on counterion distribution exclu-
sively governed by energy minimization, i.e. T = 0 K. In
such a case correlations are maximal, and all the coun-
terions lie on the surface of the spherical macroion. To
avoid the trapping in metastable states, we systematically
heat and cool (10 cycles) the system and retain the low-
est energy state obtained in this way. Furthermore, we
choose as the starting configuration the one where each
DCC is exactly associated with one counterion, and each
of these dipoles is radially oriented (each dipole vector and
the macroion center lie on the same line). Preliminary, we
checked that this method reproduces well the ground state
energy and structure in simple situations where a central
charge with two, three, four or five counterions is present.
The structure of these systems is well known by the Gille-
spie rules [17]. It turns out that in these situations no
rough energy landscape (even for Zm = 180 and 90 coun-
terions) appears and therefore the MD simulation easily
finds the global minimum. It is only in the case of DCC
that several energy minima are observed.

4.1 Neutral case

First we consider the simple salt-free case where the sys-
tem [macroion + counterions] is neutral. In order to char-
acterize the counterion layer, we compute the counterion
correlation function (denoted by CCF) g(r) on the surface
of the sphere, defined as

ρ2sg(r) =
∑
i�=j

δ(r − ri)δ(r − rj), (6)

where ρs = Nc/4πa2 is the surface counterion concentra-
tion (Nc = Zm/Zc being the number of counterions), r
corresponds to the arc length on the sphere. Note that at
zero temperature all equilibrium configurations are identi-
cal, thus only one is required to obtain the CCF. Similarly,
one can also define a surface macroion correlation function
(MCF) for the microions on the surface of the macroion.
The CCF is normalized as follows:

ρs

∫ πa

0

2πrg(r)dr = (Nc − 1) . (7)

Because of the finite size and the topology of the sphere,
g(r) has a cut-off at πa (= 25.1σ). Therefore at “large”
distance the correlation function differs from the one ob-
tained with an infinite planar object.

The CCF and MCF for two different structural charges
Zm (50 and 180) can be inspected in Figure 4. The CCF is
computed for a system with a central charge (CC) and for
the discrete colloid charges (DCC) case. One remarks that
both CCF differ considerably following the nature of the
colloidal charge, i.e., discrete or central (see Fig. 4). For
the isotropic case (central charge) a Wigner Crystal struc-
ture is observed as was already found in references [12,13,
18]. It turns out that when we have to deal with DCC the
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Fig. 4. Ground state surface correlation functions for two
macroion bare charges: (a) Zm = 50 and (b) Zm = 180. The
two counterion correlation functions (CCF) are obtained for
discrete colloidal charges (DCC) and for the central charge
(CC). To get the same distance range for CCF and the col-
loidal surface discrete microions correlation function (MCF),
the MCF curve x-axis (r/σ) was rescaled by a factor a/r0

(compare the setup of Fig. 1).

counterion distribution is strongly dictated by colloidal
charge distribution (see Fig. 4). Ground state structures
are depicted in Figure 5. It clearly shows the ionic pairing,
between DCC and counterions. Also, it appears natural to
call such a structure a pinned configuration. However, one
can expect that the structure might become less pinned
if the typical intra-dipole distance (here σ) and the typ-
ical mean inter-dipole distance become of the same or-
der. This is a case which is not discussed in the present
paper. It would correspond to extremely highly charged
colloids that are rarely encountered in nature. Neverthe-
less, we checked that even for Zm = 360 the structure
is still pinned, where the average inter-dipole distance is
about 2σ.

(a)

(b)

Fig. 5. Ground state structures for two values, (a) Zm = 50
and (b) Zm = 180, corresponding to the two cases of Figure 4.
The colloidal surface microions are in white, and the counteri-
ons in blue. Full ionic pairing association occurs.

4.2 Overcharge

We now investigate the overcharge phenomenon. The
starting configuration corresponds to neutral ground
states as were previously obtained. The spirit of this study
is very similar to the one undertaken in reference [12].
To produce overcharge, one adds successively overcharging
counterions (OC) in the vicinity of the colloidal surface.
Thus the resulting system is no longer neutral. By using
Wigner crystal theory [6,19], we showed that the gain in
electrostatic energy (compared to the neutral state) by
overcharging a single uniformly charged colloid can be
written in the following way [12,13,18]:

∆EOCn = ∆Ecor +∆Emon =

−nγ
√
Nc

[
3
2
+

3n
8Nc

]
+ (kBT0)lBZ2c

(n− 1)n
2a

, (8)

where ∆Ecor, which is equal to the first term of the right
member, denotes the gain in energy due to ionic correla-
tions for n OC. The functional form of this term can be
derived from the WC theory [12,13,18]. The second term
on the right-hand side, ∆Emon, is the monopole repul-
sion, which sets in when the system is overcharged (with
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the number of overcharging counterions for three different bare
charges Zm. CC stands for the central charge case. The neutral
case was chosen as the potential energy origin. The dashed lines
are produced by using equation (8).

n > 1). This term will, for sufficient high number n of OC,
stop the process of overcharging. As before Nc = Zm/Zc
is the number of counterions in the neutral state, and γ is
a constant which was determined by using the measured
value of ∆EOC1 of our simulations.

The total electrostatic energy of the system as a func-
tion of the number of OC is displayed Figure 6 for four
bare charges Zm (50, 90, 180 and 360). These energy
curves corresponding to discrete systems were produced
by averaging over five random DCC realizations. Again,
the overcharging process is affected by the charge dis-
cretization and pinning, but it is still energetically favor-
able. The main effects of charge discretization are: i) the
reduction of gain of energy and ii) the reduction of max-
imal (critical) acceptance of OC. Both points can be ex-
plained in terms of ion-dipole interaction. It is exactly
this attractive ion-dipole correlation which is responsi-
ble of charge inversion for colloidal systems with discrete
charges. When the first OC is present, it is normally lo-
cated in between the pinning centers, and will essentially
interact with its neighboring dipoles (DCC-counterion).
This interaction increases with decreasing OC-dipole sep-
aration, i.e. increasing the colloid bare charge Zm. This
explains why the energy gained increases with Zm (see
Fig. 6). On the other hand, the repulsion between the
counterions is not fully minimized since they do not adopt
the ideal Wigner crystal structure that is obtained with a
central charge which in turn explains i). For a higher de-
gree of overcharge, one has to take into account a repulsive
monopolar contribution identical to ∆Emon appearing in
equation (8). Again, since for DCC structures counterions
are not perfectly ordered, the attractive correlational en-
ergy is smaller (in absolute value) than the one obtained
with a central charge, which in turn explains ii). Note that
for very high bare charge (Zm = 360) the overcharge curve

obtained with DCC approaches the one from the contin-
uous case as expected.

Common features of overcharging between isotropic
and discrete systems are briefly given here. We note that
the maximal (critical) acceptance of OC (4, 6 and 8 for a
central charge and 2, 4 and 6 for DCC) increases with the
macroionic charge Zm (50, 90 and 180, respectively). Fur-
thermore, for a given number of OC, the gain in energy
is always increasing with Zm. Also, for a given macroionic
charge, the gain in energy between two successive over-
charged states is decreasing with the number of OC. Note
that at T = 0, the value εr acts only as a prefactor. All
these features are captured by equation (8).

5 Finite temperature

In this part, the system is brought to room temperature
T0. We are interested in determining the counterions dis-
tribution as well as the counterion motion within the coun-
terion layer. The radius R of cell is again fixed to 40σ so
that the macroion volume fraction fm has the finite value
6.6×10−3. Under these conditions the system is still highly
energy-dominated so that at equilibrium all counterions lie
on the surface of the macroion (strong condensation).

5.1 Counterions distribution

Like in the ground state analysis, we characterize the
counterion distribution via its surface correlation function.
At non-zero temperature, correlation functions are com-
puted by averaging

∑
i�=j δ(r−ri)δ(r−rj) over 1000 inde-

pendent equilibrium configurations which are statistically
uncorrelated. Results are depicted in Figure 7. For both
bare charges Zm (50 and 180) considered the counterions
distributions are affected by charge discretization. The ef-
fect of temperature is to smooth the CCF. As expected,
for the central charge case, the counterion positional order
is much weaker at room temperature than in the ground
state case.

5.2 Surface diffusion

The aim of this section is to answer the following question:
do the counterions only oscillate around their equilibrium
(ground state) position or do they have also a global trans-
lational motion over the sphere?

To answer to this question one introduces the following
quantity:

∆x2(t, t0) =
1

t− t0

∫ t

t0

dt′[x(t′)− x(t0)]2 , (9)

which is referred to as the mean-square displacement
(MSD), where x(t0) represents the position of a given
counterion at time t = t0 and x(t, t0) is its position at
later time t. The root-mean-square displacement (RMSD)



R. Messina et al.: Effect of colloidal charge discretization in the primitive model 369

0 10 20 30
r/σ

0

0.5

1

1.5

2

g(
r)

(b)

Zm = 180

MCF
CCF

(DCC)

CCF
(CC)

0 10 20 30
r/σ

0

1

2

3

4

g(
r)

(a)

Zm = 50

MCF
CCF

(DCC)

CCF
(CC)

Fig. 7. Surface correlation functions at room temperature. The
two CCF are obtained for discrete colloidal charges (DCC) and
for the central charge (CC). (a) Zm = 50, (b) Zm = 180.

is defined as ∆x(t, t0) =
√
∆x2(t, t0). Like for the sur-

face correlation function, the MSD is measured on the
spherical surface (arc length) and it has a natural up-
per limit (πa)2. Results for the discrete case are depicted
in Figure 8 for two macroion bare charges Zm (50 and
180), where each counterion RMSD is given. In both cases,
the RMSD is smaller than the typical mean inter-dipole
separation, which is approximatively (ρs)−1/2 ≈ 6σ for
Zm = 50 and (ρs)−1/2 ≈ 3σ for Zm = 180. This sug-
gests that the motion of the counterion is purely oscilla-
tory around its DCC pinning center. Figure 8 also shows
that pinning is stronger for Zm = 50 than for Zm = 180.
This is in agreement with our previous statement, where
we point out that the inter-dipole distance has to be com-
parable (or smaller) to (than) the intra-dipole distance in
order to reduce pinning effect. Thus the DCC sites do pro-
duce a noticeable energy well. One can get convinced on
this point, by evaluating the electrostatic binding energy
of an ionic pair Epin which is

Epin = −kBT0lBZ2c /σ = −40kBT0. (10)
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Fig. 8. Root mean square displacement (RMSD) for each
counterion; (a) Zm = 50, (b) Zm = 180.

However, for much higher temperatures a liquid-like be-
havior is to be expected. Also, of course, the strength of
the pinning can be lowered by different parameters: larger
ions, higher dielectric constant εr, monovalent ions as is
captured by equation (10). For the isotropic case, we have
checked that counterions have a large lateral motion and
can move all over the sphere. This is obvious since in this
situation there are no pinning centers.

6 Concluding remarks

We have carried out MD simulations within the frame-
work of the primitive model to elucidate the effect of col-
loidal charge discretization. The main result of our study
is that, in the strong Coulomb coupling, the charge inver-
sion is still effective when the macroion structural charge
is carried by discrete charges distributed randomly over
its surface area. We have shown that the intrinsic elec-
trostatic potential solely due to the surface colloidal mi-
croions varies strongly from point to point on the macroion
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sphere. When counterions are present, it leads to a pinned
structure where every counterion is associated with one
colloidal charge site. Furthermore, we observed a pure
phonon-like behavior (counterion vibration with small lat-
eral motion) found at room temperature.

Future work will address the problem of valency asym-
metry, that is when the colloidal charges are represented
by monovalent counterions and the counterions are multi-
valent. This is a non-trivial situation since ionic pairing
may be frustrated. Also, the case of the weak Coulomb
coupling regime should be addressed.

We thank B. Shklovskii for helpful and constructive remarks.
This work is supported by Laboratoires Européens Associés
(LEA).
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Abstract

We report the coupled e!ects of macroion charge discretization and counterion valence in the
primitive model for spherical colloids. Instead of considering a uniformly charged surface, as it
is traditionally done, we consider a more realistic situation where discrete monovalent micro-
scopic charges are randomly distributed over the sphere. Monovalent or multivalent counterions
ensure global electroneutrality. We use molecular dynamics simulations to study these e!ects at
the ground state and for /nite temperature. The ground state analysis concerns the counterion
structure and charge inversion. Results are discussed in terms of simple analytical models. For
/nite temperature, strong and weak Coulomb couplings are treated. In this situation of /nite
temperature, we considered and discussed the phenomena of ionic pairing (pinning) and unpair-
ing (unpinning). c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Charged colloidal suspensions are a subject of intense experimental and theoretical
work not only because of their direct application in industrial or biological processes,
but also because they represent model systems for atomistic systems. The electrostatic
interactions involved in such systems have a fundamental role in determining their
physico-chemical properties [1,2]. Theoretical description of highly charged colloidal
solutions faces two challenges: (i) di!erent typical length scales due to the presence of
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macroions (i.e., charged colloids of the size 10–1000 EA) and microscopic counterions
and (ii) their long-range Coulomb interaction. A /rst simplifying assumption is to
treat the solvent as a dielectric medium solely characterized by its relative permittivity
�r . A second widely used approximation consists in modeling the short range ion–ion
excluded volume interaction by hard spheres. These two approximations are the basis of
the so-called primitive model of electrolyte solutions. The system under consideration is
an asymmetrical electrolyte solution made up of highly charged macroions and small
counterions. A further simpli/cation motivated by this asymmetry can be made by
partitioning the system into subvolumes (cells), each containing one macroion together
with its neutralizing counterions plus (if present) additional salt. This approximation
has been called accordingly the cell model [3,4]. The cells adopt the symmetry of the
macroion, here spherical, and are electrostatically decoupled. It is within the cell model
that we present our simulation results.

For spherical macroions the structural charge is usually modeled by a central charge,
which by Gauss theorem is equivalent to a uniform surface charge density as far as
the electric /eld (or potential) outside the spherical colloid is concerned.

Most analytical concepts as well as simulations rely on the above assumptions and
especially on the central charge assumption. It is well known that in the strong Coulomb
coupling regime ion–ion correlations become very important, and signi/cant deviations
from mean-/eld approaches are expected. A counter-intuitive e!ect which classical
mean-/eld theories (like Poisson–Boltzmann model) cannot explain is the phenomenon
of overcharge, also called charge inversion. That is, there are counterions in excess
in the vicinity of the macroion surface so that its net charge changes sign. This has
recently attracted signi/cant attention [5–17]. In particular, we showed recently that
this phenomenon may give rise to a strong long range attraction between like-sign
charged colloids [12,13,17]. A natural question which comes up is: does overcharge
and more generally ion–ion correlations strongly depend on the way the macroion
structural charge is represented (i.e., uniformly charged or discrete charges on its sur-
face)? In a recent paper [16], we studied such a situation in the strong Coulomb
coupling regime where the macroion charge was carried by divalent microions in the
presence of divalent counterions (same ionic valence). In Ref. [16] we reported the
important result showing that overcharge is still possible under those conditions. More-
over we showed that the intrinsic electric /eld solely due to the macroion surface
microions (without counterions) varies strongly from point to point on the colloidal
sphere [16].

The goal of this paper is to study by means of molecular dynamics (MD) simula-
tions the coupled e!ects of macroion charge discretization and counterion valence in
the primitive model for spherical colloids. A systematic comparison with the uniform
macroion charge distribution (i.e., central charge) is undertaken. The paper is organized
as follows. In Section 2 we give some details on the macroion charge discretization
as well as on the MD simulation model. Section 3 is devoted to the ground state
analysis where surface counterion structure and overcharge are addressed. In Section
4 we investigate the /nite temperature situation, where counterion structure is studied
for strong and weak Coulomb couplings. Finally, in Section 5 we provide a summary
of the results.
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DCC

a

σ

σ
r0

Fig. 1. Schematic view of the setup: the discrete colloidal charges (DCC) of diameter � are in dark gray.
For a detailed meaning of the other symbols see text. Note that this is a two-dimensional representation of
the three-dimensional system.

2. Simulation model

2.1. Macroion charge discretization

The procedure is similar to the one used in a previous study [16]. The discrete
macroion charge distribution is produced by using Zm monovalent microions of diam-
eter � (same diameter as the counterions) distributed randomly on the surface of the
macroion. Then the structural charge is Q=−Zme=−ZmZde, where Zm¿ 0; Zd = 1 is
the valence of these discrete microions and e is the positive elementary charge. These
discrete colloidal charges (DCC) are 3xed on the surface of the spherical macroion.
Fig. 1 shows a schematic view of the setup. The counterions (not shown in Fig. 1)
have a charge q = +Zce, where Zc ¿ 0 stands for the counterion valence. In spherical
coordinates the elementary surface is given by

dA = r2
0 sin � d� d’ =−r2

0 d(cos�) d’ ; (1)

where r0 is the distance between the macroion center and the DCC center. Thus to
produce a random discrete charge distribution on the surface we generated (uniformly)
randomly the variables cos � and ’. Excluded volume is taken into account by rejecting
con/gurations leading to an overlap of microions. Phenomena such as surface chem-
ical reactions [18], hydration, roughness [19] are not considered. For commodity we
introduce the notation (−Zd : +Zc) to characterize the valence symmetry (asymmetry)
for Zc = 1 (Zc ¿ 1) of the ions (DCC and counterions) involved in discrete systems.
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2.2. Molecular dynamics procedure

A MD simulation technique was used to compute the motion of the counterions
coupled to a heat bath acting through a weak stochastic force W(t). The procedure is
very similar to the one used in previous studies [12,16].

The motion of counterion i (DCC ions being 3xed) obeys the Langevin equation

m
d2ri
dt2

=−∇iU (ri)− m�
dri
dt

+ Wi(t) ; (2)

where m is the counterion mass, U is the potential force having two contributions:
(i) the Coulomb interaction and (ii) the excluded volume interaction, and � is the
friction coeLcient. Friction and stochastic force are linked by the dissipation-Muctuation
theorem 〈Wi(t) · Wj(t′)〉 = 6m�kBT�ij�(t − t′). For the ground state simulations the
stochastic force is set to zero.

Excluded volume interactions are taken into account with a pure repulsive Lennard–
Jones potential given by

ULJ (r) =




4�LJ

[(
�

r − r0

)12

−
(

�
r − r0

)6
]

+ �LJ ; for r − r0 ¡rcut ;

0 for r − r0¿ rcut ;
(3)

where r0 =0 for the microion–microion interaction (the microion being either a counte-
rion or a DCC), r0 = 7� for the macroion–counterion interaction and rcut = 21=6� is the
cuto! radius. This leads to a (center–center) macroion–counterion distance of closest
approach a= 8� (see also Fig. 1). The macroion surface charge density �m is de/ned
as

�m =
Zm

4 a2 : (4)

Energy and length units in our simulations are related to experimental units by taking
�LJ = kBT0 (with T0 = 298 K) and � = 3:57 EA, respectively.

The pair electrostatic interaction of any pair ij, where i and j denote either a DCC
a counterion or the central charge (for the non-discrete case), reads

Ucoul(r) = kBT0lB
ZiZj
r

; (5)

where lB=e2=4 �0�rkBT0 is the Bjerrum length describing the electrostatic strength. For
the rest of this paper, electrostatic energy will always be expressed in units of kBT0.
This also holds for the ground state analysis where the temperature is T = 0 K but
T0 = 298 K. From now on the pair electrostatic interaction will be written in reduced
units so that Eq. (5) reads Ucoul = ZiZj=r.

The macroion and the counterions are con/ned in a spherical impenetrable cell of
radius R. The macroion is held /xed and is located at the center of the cell. The
colloid volume fraction fm is de/ned as a3=R3. To avoid image charge complications,
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Table 1
Simulation parameters with some /xed values

Parameters

� = 3:57 EA Lennard–Jones length units
T0 = 298 K Room temperature
�LJ = kBT0 Lennard–Jones energy units
Zm Macroion valence
Zd = 1 Discrete colloidal charge valence
Zc Counterion valence
lB Bjerrum length
a = 8� Macroion–counterion distance of closest approach
�m Macroion surface charge density
R = 40� Simulation cell radius
fm = 8× 10−3 Macroion volume fraction

the permittivity �r is supposed to be identical within the whole cell (including the
macroion) as well as outside the cell. Typical simulation parameters are gathered in
Table 1.

3. Ground state analysis

In this section, we focus on counterion distribution exclusively governed by
energy minimization, i.e., T = 0 K. In such a case correlations are maximal and all
the counterions lie on the macroion surface. This situation has the advantage to enable
accurate computation of energy variations in processes such as overcharging and also to
provide a clear description of e!ects which are purely correlational in nature. The
method employed here was successfully carried out in Refs. [12,13,16,17] and is ex-
plained in detail in Ref. [17]. The Bjerrum length lB is set to 10�. Note that in the
ground state the value of lB, or equivalently the value of the dielectric constant �r , does
not inMuence the counterion structure at all. Only the electrostatic energy is rescaled
accordingly.

3.1. Neutral case

First we consider the simple case where the system [macroion + counterions] is
globally neutral. In order to characterize the two-dimensional counterion structure we
compute the counterion correlation function (CCF) gc(r) on the surface of the sphere
de/ned as

c2gc(r = |r′ − r′′|) =
∑
i �=j

�(r′ − ri)�(r′′ − rj) ; (6)

where c=Nc=4 a2 is the surface counterion concentration (Nc=Zm=Zc being the number
of counterions) and r corresponds to the arc length on the sphere. Note that at zero
temperature all equilibrium con/gurations are identical (except for degenerate ground
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state), thus only one is required to obtain gc(r). The counterion correlation function
gc(r) is normalized as follows:

c
∫  a

0
2 rgc(r) dr = (Nc − 1) : (7)

Because of the 3nite size and the topology of the sphere, g(r) has a cut-o! at rgc =
 a = 25:1� and g(rgc) = 0. Furthermore the absolute value of g(r) cannot be directly
compared to the one obtained with an in/nite plane.

Similarly, one can also de/ne a surface macroion correlation function (MCF) gm(r)
for the microions (representing the colloidal structural charge) on the surface of the
macroion. The normalization of gm(r) is very similar to Eq. (7) and reads

�m

∫  a

0
2 rgm(r) dr = (Zm − 1) ; (8)

where the arc length has been rescaled by a factor a=r0 so that gc(r) and gm(r) are
directly comparable (see also the setup Fig. 1) and are de/ned in the same r range.

3.1.1. Monovalent counterions
We /rst treat the systems where we have monovalent counterions, that is we have to

deal with the symmetric discrete system (−1 : +1). The counterion correlation functions
gc(r) are computed for a central macroion charge [denoted by g(CC)

c (r)] and for discrete
macroion charge distribution [denoted by g(DCC)

c (r)]. Results for three structural charges
Zm = 60; 180 and 360 are given in Figs. 2(a), (b) and (c), respectively. For the
continuous case (central charge) the counterion structure consists of a pseudo-Wigner
crystal (WC) as was already found in Refs. [12,13,16,17]. Also the higher the absolute
number of counterions Nc (i.e. the concentration c) the higher the order of counterion
structure for the continuous case [compare Fig. 2(a) with Fig. 2(c)].

It turns out that in the case of discrete colloidal charges the counterion distribution
is strongly dictated by the colloidal charge distribution and especially for low macroion
surface charge density �m (Zm = 60) [see Fig. 2(a)]. For Zm = 60; g(DCC)

c (r) and gm(r)
are almost identical. This indicates that each counterion is exactly associated with one
DCC site. The ground state structure for Zm = 60 is depicted in Fig. 3(a) where one
clearly observes this ionic pairing.

This strong ionic pair association can be easily explained in terms of local corre-
lations. Let us consider the picture sketched in Fig. 4 which holds for strong ionic
pairing, where a given dipole A (ionic pair made up of a counterion and a DCC
site) on the macroion surface essentially interacts with its /rst nearest surrounding
dipoles B. Note that very similar lengths were also considered in a recent theoretical
study [20] in the one-dimensional case (counterion adsorption on a linear polyelec-
trolyte). It is important to have in mind that such a local description is physically
justi/ed due to the strong screening generated by ionic pairing. Thereby local cor-
relations are twofold: (i) the attractive interaction between the DCC site of dipole
A with its paired counterion and the counterions of dipoles B, and (ii) the repul-
sive interaction between the counterion of dipole A and counterions of dipoles B. The
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Fig. 2. Ground state surface correlation functions g(r) for monovalent counterions (Zc = 1) and for three
macroion bare charges: (a) Zm = 60 (b) Zm = 180 and (c) Zm = 360. The two counterion correlation
functions (CCF) gc(r) are obtained for discrete colloidal charges [g(DCC)

c (r) denoted by CCF(DCC)] and
for the central charge [g(CC)

c (r) denoted by CCF(CC)]. MCF stands for the discrete colloidal charges pair
distribution gm(r).

correlations between DCC sites are not relevant since they are /xed. The intra-dipole
attractive interaction Epin between the DCC site and its “pinned” counterion can be
written as

Epin =−ZdZc
�

: (9)

For the elementary nearest inter-dipole (or inter-ionic pair) interactions, one can write
for the attractive interaction E+− between the DCC site of dipole A and the counterion
of dipole B:

E+− =−ZdZc
adc

: (10)
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Fig. 3. Ground state structures for discrete monovalent systems (−1 : +1): (a) Zm = 60 and (b) Zm = 360.
The discrete colloidal charges (DCC) are in white, and the counterions in blue. Full ionic pairing association
occurs. The corresponding counterion correlation functions gc(r) can be found in Figs. 2(a) and (c).

dipole B 

+ +
acc

a
σ

dc

dipole A 

Fig. 4. Schematic view of the local electrostatic interactions and typical correlation lengths involved between
nearest dipoles. The negatively charged DCC (−) are in gray and the positively charged counterions (+) in
white.

A similar expression can be written for the repulsive inter-dipole interaction E++

involving counterions of dipole A and dipole B, which reads

E++ =
Z2
c

acc
: (11)

Note that the repulsive counterion–counterion term E++ alone, even if space
truncated, 1 drives to the long-range ordered triangular WC structure. However at
zero temperature the DCC sites represent pinning centers for the counterions where
the electrostatic potential is considerably lowered (due to the term Epin) compared to
its direct “empty” neighborhood (charge hole), which in turn prevents the counterions

1 This statement holds if the cuto! is larger than the lattice constant.
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from adopting the ideal WC structure. This latter aspect was thoroughly discussed in
Ref. [16]. Another important quantity characterizing discrete systems is the ratio

+pin =
ãcc
dpin

(12)

between the mean inter-dipole separation ãcc (more exactly the mean counterion–
counterion separation) and intra-dipole separation dpin of an ionic pair (in the present
study dpin = � as depicted in Fig. 4). The value of ãcc can be obtained by taking the
/rst peak position of g(CC)

c (r).
Obviously, for suLciently low macroion surface charge density �m (i.e., large +pin)

the ionic pairing term Epin will be dominant and strong ionic pairing occurs. More
speci/cally, when the typical inter-dipole distance is large compared to the intra-dipole
distance then dipole–dipole interactions are weak (i.e., |E+− − E++|�|Epin|) and the
DCC distribution dictates the counterion structure. This is what qualitatively explains
our simulation /ndings for Zm = 60 [see Figs. 2(a) and 3(a)].

When �m becomes suLciently important the situation may become qualitatively
di!erent. In this case dipoles approach each other and because of excluded volume 2

acc becomes comparable to � (see Fig. 4). 3 Thereby, the counterion–counterion repul-
sion term E++ (overcompensating E+−) induces counterion ordering compatible with
the local attractive pinning potential /eld generated by DCC centers. This e!ect can
be inspected in Figs. 2(b) and (c) where one sees that upon increasing �m; g

(DCC)
c (r)

is gradually less correlated with gm(r) and more correlated with g(CC)
c (r). As a topo-

logical consequence, some counterions will be in contact with several (two or more)
DCC attractors as can be seen in Fig. 3(b).

The quasi-triangular counterion arrangement for high �m (Zm=360) can be inspected
in Fig. 3(b). For this symmetric system in size (same diameter for the counterions and
the DCC ions) one expects that for a compact amorphous DCC layer the counterion
structure should become perfectly ordered. This extreme limit which would correspond
to unreachable experimental charge densities has not been addressed in our simulations.

In parallel, increasing �m induces by purely excluded volume e!ect a stronger local
order within the DCC layer as can be checked on the gm(r) plots in Figs. 2(a)–(c).
This is quite similar to what occurs in a system of hard spheres where the (dense)
liquid phase is locally correlated and the (dilute) gaseous phase is uncorrelated.

In summary, the system depicted above is the siege of an order–disorder phase
transition where upon increasing �m (i.e., decreasing +pin) we pass from a disordered
counterion structure (imposed by the DCC layer) to a long-range ordered one which
is induced by local counterion–counterion correlations.

Although results presented above concern one given random distribution (for each
Zm), we carefully checked that similar results and conclusions could be drawn for
di!erent random realizations (systematically /ve). This also holds for the following
section below where we deal with multivalent counterions.

2 Note that in the present model no surface dipole Mip is allowed which should also be the case
experimentally.

3 The limiting case is where the global structure is compact, i.e., touching spherical microions.
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3.1.2. Multivalent counterions
We turn to the asymmetric discrete systems (−1 : +Zc) where multivalent counte-

rions are present (Zc ¿ 1). The correlation functions g(r) for two macroion charges
Zm = 60 and 180 and various counterion valences Zc can be found in Fig. 5. One re-
marks that upon decreasing the number of counterions Nc (i.e., increasing Zc) for /xed
Zm, the /rst peak of gc(r) is gradually shifted to the right (compare also the mono-
valent case given in Fig. 2) whatever the nature of the macroion charge is (discrete
or continuous). Furthermore, we observe for the discrete systems that upon increas-
ing Zc (for /xed Zm) the correlation between g(DCC)

c (r) and gm(r) decreases and in-
creases between g(DCC)

c (r) and g(CC)
c (r). This e!ect is clearly noticeable in Fig 2(b) and

Fig. 5(c)–(e) corresponding to Zm = 180. The very high counterion valence Zc = 10
reported in Fig. 5(e) was undertaken in order to stress the counterion multivalence
e!ect. These /ndings lead to the conclusion that the counterion valence has the e!ect
of reducing the disorder in the counterion structure stemming from the randomness of
the DCC distribution.

This related phenomenon can be theoretically explained with simple ideas. Basically,
the mechanisms involved in this counterion valence induced ordering stem from two
concomitant sources: (i) topological and (ii) correlational.

The topological aspect is due to the presence of (Zm − Zm=Zc) unbound DCC sites
(free of associated counterion) ensuring global electroneutrality [cf. e.g. Figs. 3(a) and
6]. It is to say that here, compared to the monovalent case (−1 : +1), the counterions
have all the more “freedom” to choose their pinning locations because Zc is high.
To be more precise, the number of topologically accessible “pinned” con/gurations is
given 4 by

CZm=Zc
Zm =

Zm!
(Zm − Zm=Zc)!(Zm=Zc)!

(13)

which reduces to 1 for Zc = 1. In the ground state, counterions will “decide” to choose
among these various possible arrangements the one which minimizes the total energy
of the system. It is clear that this topological feature by itself promotes counterion
valence induced ordering.

Concomitantly, there is a purely counterion correlation induced ordering which is Zc
dependent. Indeed, using similar arguments as those previously employed for mono-
valent systems (−1 : +1) built on Eqs. (9)–(11), one can infer the role of Zc. More
speci/cally, by assuming an ordered WC structure 5 the term E++ given by Eq. (11)
can be rewritten as

EWC
++ ∼ Z3=2

c Z1=2
m

a
; (14)

4 Rigorously, Eq. (13) holds when each counterion is associated with one and only one DCC site (case
of low �m). For high �m, it remains a good approximation to capture the essential physics.

5 From a topological point of view, it consists in replacing the current (random) Voronoi structure by the
ordered WC structure.
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Fig. 5. Ground state surface correlation functions for di!erent multivalent systems: (a) Zm = 60; Zc = 2; (b)
Zm = 60; Zc = 3; (c) Zm = 180; Zc = 2; (d) Zm = 180; Zc = 3; (e) Zm = 180; Zc = 10. The two counterion
correlation functions (CCF) are obtained for discrete colloidal charges (DCC) and for the central charge
(CC). The gm(r) curves (denoted by MCF) are identical from (a) to (b) and from (c) to (e).
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Fig. 6. Ground state structure for (−1 : +10) with Zm = 180. The corresponding counterion correlation
function gc(r) can be found in Fig. 5(e).

where acc in Eq. (11) is now given by

acc = ãcc ∼ c−1=2 ∼
(

Zm
Zca2

)−1=2

: (15)

Eq. (14) shows that for /xed Zm and a (i.e., /xed macroion charge density) EWC
++ ∼

Z3=2
c whereas Epin ∼ Zc (recalling that Zd =1) and therefore for suLciently high Zc the

term EWC
++ will be dominant. Thereby Zc induces counterion ordering so as to minimize

mutual counterion–counterion repulsion merely dictated by Eq. (14). As a topological
consequence, some counterions which would be in contact with several DCC sites if
they were monovalent can now be in contact with less DCC sites (see Fig. 6).

In summary, these discrete multivalent systems are again the siege of an
order–disorder phase transition which is counterion valence controlled.

3.2. Overcharge

We now investigate the charge inversion (overcharge) phenomenon. The starting
equilibrium con/gurations correspond to neutral ground states as were previously
obtained. The method employed here is very similar to the one used in Refs. [12,16].
To produce a controlled overcharge, one adds successively overcharging counterions
(OC) in the vicinity of the macroion surface. Thereby the resulting system is no longer
neutral. Using Wigner crystal concepts [6,21], we showed that the gain in electrostatic
energy (compared to the neutral state) by overcharging a single uniformly charged
macroion (i.e., central charge) with n overcharging counterions can be written in the
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Fig. 7. Total electrostatic energy for monovalent counterions ground state con/gurations as a function of the
number of overcharging counterions n: (a) Zm = 60; Zc = 1 (b) Zm = 180; Zc = 1. Overcharge curves were
computed for discrete macroion charge distribution (DCC) and macroion central charge (CC). The neutral
case was chosen as the potential energy origin. Dashed lines were produced by using Eq. (16). For discrete
systems (DCC) error bars are smaller than symbols.

following way [12,13,17]:

VEOC
n = VEcor

n + VEmon
n =−/Z2

c√
A

[
(Nc + n)3=2 − N 3=2

c

]
+ Z2

c
n2

2a
: (16)

As before Nc=Zm=Zc is the number of counterions in the neutral state, A is the macroion
area (4 a2) and / is a positive constant which was determined by using simulation
data for VEOC

1 : VEcor
n , which is equal to the /rst term of the right member, denotes the

gain in energy due to ionic correlations. The derivation of this term can be found in
Refs. [12,13,17], and the basic idea is that each counterion interacts essentially with its
neutralizing uniformly charged Wigner–Seitz cell. The second term on the right-hand
side, VEmon

n , is the self-energy of the excess of charge. This repulsive term stops the
overcharging for suLciently large n. Note that the WC concept for describing energy
correlations is already excellent for highly short range ordered structures (strongly
correlated liquids, see Ref. [6] for a detailed discussion). The total electrostatic energy
of the system as a function of n is displayed Fig. 7 (for monovalent counterions) and
Fig. 8 (for multivalent counterions) for two bare charges Zm = 60 and 180. The energy
curves corresponding to discrete systems were produced by systematically averaging
over /ve random DCC realizations.

3.2.1. Monovalent counterions
Let us /rst focus on the monovalent symmetric case (−1 : +1) where for the

neutral state each DCC site is exactly associated with one counterion as was shown
above. The results in Figs. 7(a) and (b) show that the overcharging process occur-
ring with a discrete macroion charge distribution is quite di!erent from the one ob-
tained with an uniform surface charge distribution. Especially for the smallest bare
charge Zm = 60, the e!ect of disorder is very important in agreement with what was
already found above for the neutral state in Section 3.1.1. The main e!ects of charge
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Fig. 8. Total electrostatic energy for multivalent counterions ground state con/gurations as a function of
the number of overcharging counterions n: (a) Zm = 60; Zc = 2 (b) Zm = 60; Zc = 3 (c) Zm = 180; Zc = 2
(d) Zm = 180; Zc = 3. Overcharge curves were computed for discrete macroion charge distribution (DCC)
and macroion central charge (CC). The neutral case was chosen as the potential energy origin. Dashed lines
were produced by using Eq. (16). For discrete systems (DCC) error bars are only indicated when larger
than symbols.

discretization are: (i) the reduction in gain of energy and (ii) the reduction of maxi-
mal (critical) number, n∗, of stabilizing overcharging counterions (corresponding to a
minimum in the energy curve). Both points were thoroughly discussed elsewhere [16]
for an equivalent symmetric discrete system (−2 : +2). It was shown that points (i)
and (ii) can be explained in terms of ion–dipole interaction, which presently is the
main driving force for overcharging. When the overcharging counterions are present,
each of them will essentially interact (attractively) with its neighboring dipoles (ionic
pairs). The attractive ion–dipole interaction increases with decreasing ion–dipole sepa-
ration, i.e., increasing macroion charge density �m. This explains why the energy gain
increases with Zm [compare Figs. 7(a) and (b)]. On the other hand, the repulsion be-
tween the counterions is not fully minimized since they do not adopt the ideal WC
structure that is obtained with a central charge which in turn explains (i) and (ii). How-
ever for high bare charge (Zm = 180) the overcharge curve obtained with DCC [see
Fig. 7(b)] approaches the one from the continuous case as expected for high counterion
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concentration. This feature is fully consistent with what was already found in Section
3.1.1, where it was shown that the order of the counterion structure in the neutral state
(for discrete systems) increases with �m. In other terms, the WC approach through
Eq. (16) is a good approximation for describing discrete systems at high �m since
stronger ordering exists.

Common features of overcharging between continuous and discrete systems are
brieMy given here. We note that n∗ increases with the macroionic charge Zm.
Furthermore, for a given n, the gain in energy always increases with Zm. Also, for
a given macroionic charge Zm, the gain in energy between two successive overcharged
states is decreasing with n. Note that at T=0 K, the value of �r acts only as a prefactor.
All these features are captured by Eq. (16).

3.2.2. Multivalent counterions
Now we are going to discuss the asymmetric discrete systems (−1 : +Zc) where

multivalent counterions are present (Zc ¿ 1). The results of Figs. 8(a)–(d) indicate that
the energy gain in the overcharging process at /xed Zm and n is higher the higher the
counterion valence Zc for both macroion charge distributions (discrete and continuous).
For the continuous case this can be directly explained in terms of WC concepts [i.e.,
Eq. (16)]. Indeed the main leading term of the correlational energy VEcor

n in Eq. (16)
scales like

VEcor
n ∼ −Z3=2

c (17)

for /xed n and /xed macroion charge Zm, and recalling that Nc=Zm=Zc. Eq. (17) quanti-
tatively (qualitatively) explains why overcharging is stronger with increasing counterion
valence Zc for the continuous (discrete) case.

As far as discrete systems are concerned, the overcharging mechanisms occurring
with multivalent counterions di!er from those occurring with symmetric monovalent
systems (−1 : +1). This is again due to the presence of (Zm − Zm=Zc) unbound DCC
sites in the neutral state as discussed in Section 3.1.2. When overcharging comes into
play, each overcharging counterion becomes paired with some 6 of these free DCC
sites. Fig. 8 shows that the overcharging with multivalent counterions (especially the
higher Zm) is signi/cantly less a!ected by colloidal charge discretization than in the
monovalent case (see Fig. 7).

For Zm = 60, simulations show that overcharging in the discrete case can even be
stronger than in the continuous case [see Figs. 8(a) and (b)]. This phenomenon can be
qualitatively understood by referring to the very low macroion surface charge density
limit, where the correlation term VEcor

n in Eq. (16) becomes negligible compared to
the ionic pairing term Epin given by Eq. (9). In this limiting situation, the energy gain
by overcharging is approximatively given by −nZdZc=dpin so that full overcharging
occurs where each monovalent DCC site is paired with one multivalent counterion.

For Zm = 180, the overcharging curves for discrete and continuous distributions are
almost identical [see Figs. 8(c) and (d)]. This is consistent with what we already found

6 It can be one or more depending on the valence, surface charged density and the local DCC site
arrangement.
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in Section 3.1.2 for the counterion structure in the neutral state, where we showed that
g(DCC)
c (r) approaches g(CC)

c (r) with increasing Zc. However, the agreement between
discrete and continuous cases is even better for overcharging than for counterion struc-
ture [see the corresponding gc(r) given in Figs. 5(c) and (d)]. This is due to the fact
that, as previously mentioned, the WC approach [Eq. (16)] quantifying the energy gain
by overcharging is already excellent for highly short-ranged ordered systems. Gener-
ally speaking, all the ordering mechanisms related in Section 3.1 for neutral discrete
systems hold for the overcharging features: all causes leading to ordering enhance
overcharging.

4. Finite temperature

In this part, the system is globally neutral and is brought to room temperature T0.
We are interested in determining the counterion distribution as well as the counterion
motion within the counterion layer. The cell radius R is /xed to 40� so that the
macroion volume fraction fm has the 3nite value 8× 10−3.

4.1. Strong Coulomb coupling

The Bjerrum length lB is set to 10� as previously in the ground state study Section
3.1. In this section we consider two macroion bare charges Zm (60 and 180) and three
counterion valences Zc (1, 2 and 3). A typical parameter for describing the Coulomb
coupling strength is the so-called plasma parameter 0 [22] de/ned as 0=lBZ2

c =ãcc. For
our simulation parameters, 0 ranges from 2.6 (for Zm = 60 and Zc = 1) up to 23:1 (for
Zm=180 and Zc=3). Under these conditions, systems are still highly energy dominated
so that at equilibrium almost all (if not all depending on Zm and Zc) counterions lie
in the vicinity of the macroion surface (strong condensation). Therefore for the strong
Coulomb coupling regime it is suitable to focus on the counterion surface properties.
In the following sections we are going to study surface counterion distribution and
di!usion.

4.1.1. Counterion distribution
Like in the ground state analysis, we characterize the counterion distribution via its

surface correlation function. At non-zero temperature, correlation functions are
computed by averaging

∑
i �=j �(r′ − ri)�(r′′ − rj) over 1000 independent equilibrium

con/gurations which are statistically uncorrelated.
The results for monovalent counterions are depicted in Figs. 9(a) and (b) for Zm=60

and 180, respectively. For both charges Zm the counterion distributions are weakly af-
fected by charge discretization and g(DCC)

c (r) and g(CC)
c (r) are almost identical. A closer

look on Fig. 9 reveals that the agreement between discrete and continuous distribu-
tions is even better for high macroion charge density (Zm = 180) as expected. In
fact for monovalent systems the pinning term Epin has its lowest magnitude so that,
for suLciently high �m, the 8uctuating intra-dipole separation becomes comparable to
the inter-dipole separation and discretization e!ects (i.e., pinning) are canceled. These
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Fig. 9. Surface correlation functions at room temperature T0 for monovalent counterions. The two counterion
correlation functions (CCF) gc(r) are obtained for discrete colloidal charges (DCC) and for the central charge
(CC): (a) Zm = 60; Zc = 1 (b) Zm = 180; Zc = 1. MCF stands for gm(r).

pinning and unpinning aspects will be addressed in more details in Section 4.1.2. As
expected, the counterion positional order for discrete and continuous cases is much
weaker at room temperature than in the ground state case (compare Figs. 9 and 2).

The results for multivalent counterions are depicted in Fig. 10. We now /nd that the
counterion distributions are strongly a!ected by charge discretization, and especially
the higher Zc. This is in contrast with what was found in the ground state analysis
(Section 3.1.2) where no counterion motion occurs. This e!ect is of course due to the
pinning (inhibition of large counterion motion) which is proportional to Zc.

Note that all the statements above hold for the particular /nite temperature T0. How-
ever the e!ect of /nite temperature discussed here should hold, at least qualitatively,
for a large temperature range. For very low temperature one should recover all ground
state properties mentioned in Section 3.1.

4.1.2. Surface di9usion
This section is devoted to answer the following question: do the counterions only

oscillate around the DCC sites or do they have also a large translational motion over
the sphere?

To study this problem we introduce the following observable:

Vx2(t; t0) =
1

t − t0

∫ t

t0
dt′[x(t′)− x(t0)]2 ; (18)

which is referred as the mean square displacement (MSD), where x(t0) represents the
position of a given counterion at time t = t0 (at equilibrium) and x(t; t0) is its position
at later time t. All particles lying within a distance 9:2� from the macroion center are
radially projected on the macroion surface of radius a = 8� to give x(t; t0). The root
mean square displacement (RMSD) Vx(t; t0) is de/ned as

Vx(t; t0) =
√

Vx2(t; t0) : (19)
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Fig. 10. Surface correlation functions at room temperature T0 for multivalent counterions. The two counterion
correlation functions (CCF) gc(r) are obtained for discrete colloidal charges (DCC) and for the central charge
(CC): (a) Zm = 60; Zc = 2 (b) Zm = 60; Zc = 3 (c) Zm = 180; Zc = 2 (d) Zm = 180; Zc = 3. MCF stands
for gm(r).

Like for the surface correlation function, the RMSD is measured on the spherical
surface (arc length) and it has a natural upper limit  a. For the case of free counterions
(i.e., macroion central charge without pinning) the RMSD Vxfree reads

Vxfree = a

√
 2 − 4

2
≈ 13:7� : (20)

This quantity Vxfree will be useful to refer to the “unpinned” state.
The results for discrete systems are sketched in Fig. 11 for Zm = 60 and 180. Mono-

valent counterions are free to move over the macroion surface for both bare charges
Zm considered here. Moreover, our simulation data show that the counterions gradually
become pinned with increasing Zc. All these features are captured by the Zc dependency
of the pinning term Epin. For multivalent counterions, the degree of pinning increases
with decreasing Zm. This is due to the fact that the discrete charges get closer from
each other by increasing Zm so that a counterion jump from site to site is energetically
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Fig. 11. Root mean square displacement (RMSD) as a function of counterion valence Zc for Zm = 60 and
180. Errors are smaller than symbols.

less demanding. For the continuous case, we have checked that for the same parameters
counterions always have a large lateral motion and move all over the sphere.

4.2. Moderate Coulomb coupling

In this last part, the Bjerrum length corresponds to that of water at room temperature
(lB = 2� = 7:14 EA). For this moderate Coulomb coupling counterions occupy all the
cell volume. Clearly, the probability of /nding counterions plainly outside the macroion
surface is no more negligible (in contrast with the strong Coulomb coupling). The target
quantity is the fraction P(r) of counterions lying within a distance r from the macroion
center and is de/ned as

P(r) = N (r)=Nc (21)

with

N (r) =
∫ r

r0

4 r2
i cv(ri) dri ; (22)

where cv(r) is the pro/le of the volume counterion concentration and N (r) is the
so-called integrated charge.

The results for Zm = 60 and 12 are sketched in Figs. 12(a) and (b), respectively.
For the highest charge, Fig. 12(a) shows that discretization e!ects are canceled for any
counterion valence. On the other hand, for the small charge density case, Fig. 12(b)
shows that discretization e!ects become important for multivalent counterions. In the
present situation, the Coulomb coupling is /ve times less important than in the strong
coupling case studied in Section 4.1. Therefore pinning e!ects can only be noticeable
for suLciently low �m (here Zm = 12) and multivalent counterions.
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Fig. 12. Counterion fraction within a distance r from the macroion center for di!erent counterion valence Zc.
(a) Zm = 60 (b) Zm = 12. Data were obtained for discrete macroion charge distribution (DCC) and macroion
central charge (CC).

5. Conclusion

We have performed MD simulations within the framework of the primitive model
to study the coupled e!ects of macroion charge discretization and counterion valence.
The macroion bare charge is carried by monovalent microions randomly distributed
over the colloidal surface. Di!erent correlational regimes were considered: (i) ground
state and (ii) /nite temperature.

Concerning the ground state analysis, we were interested in the counterion structure
in the neutral state and the overcharging phenomenon. We demonstrated that the order
in the surface counterion structure (disorder in counterion structure induced by the
discrete random macroion charge distribution) is increased (decreased) by increasing
macroion surface charge density �m and=or counterion valence Zc. For monovalent
counterions, we showed that the ratio between the intra-ion pair (made up of a discrete
colloidal surface ion and a counterion) distance and the mean distance between ion pairs
is a fundamental quantity to describe counterion ordering. When overcharge comes into
play similar e!ects occur. More precisely, for suLciently high charge density �m the
overcharging with monovalent as well as multivalent counterions is quantitatively the
same as the one obtained in the continuous case. For low �m, the overcharging with
multivalent counterions can even be stronger in the discrete case than in the continuous
case counterions. In contrast, for monovalent counterions overcharging is always weaker
than in the continuous case but approaches the latter with increasing �m.

In the /nite temperature case, strong and moderate Coulomb couplings were
addressed. In the strong Coulomb coupling, we showed that counterion pinning is
very weak for monovalent counterions but it increases with increasing Zc and decreas-
ing �m. This involves an increasing disorder in the surface counterion structure with
increasing Zc and decreasing �m. In the moderate Coulomb coupling corresponding to
an aqueous situation, the volume counterion distribution is only a!ected for low �m
and multivalent counterions.
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A future work will address the presence of added salts as well as the case of two
interacting macroions.
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4 Programa de Ingenieŕıa Molecular, Instituto Mexicano del Petróleo
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Abstract. – In this letter we investigate the mechanism for the overcharging of a single
spherical colloid in the presence of aqueous salts within the framework of the primitive model
by molecular dynamics (MD) simulations as well as integral-equation theory. We find that the
occurrence and strength of overcharging strongly depends on the salt-ion size, and the available
volume in the fluid. To understand the role of the excluded volume of the microions, we first
consider an uncharged system. For a fixed bulk concentration we find that upon increasing the
fluid particle size one strongly increases the local concentration nearby the colloidal surface and
that the particles become laterally ordered. For a charged system the first surface layer is built
up predominantly by strongly correlated counterions. We argue that this is a key mechanism
to produce overcharging with a low electrostatic coupling, and as a more practical consequence,
to account for charge inversion with monovalent aqueous salt ions.

Overcharging, or charge inversion, is defined as the situation where a charged colloid
(macroion) accumulates close to its surface more counterions than necessary to compensate
its own bare charge. This effect was already discovered in the beginning of the ’80s, both
by computer simulations [1] and analytical studies [2, 3]. Based on reversed electrophoretic
mobility, some experimental [4] and numerical (MD) [5] studies provide some hints for the
manifestation of overcharging and its possible experimental relevance. More recently, it has
regained a considerable attention on the theoretical side [6–16].
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Overcharging is rather well understood for counterions in salt-free or low-salt environment,
when excluded-volume effects play no role. The underlying physics at zero temperature of such
non-neutral systems can be quantitatively explained with Wigner crystal (WC) theory [6–8,
11]. The basic concept is that the counterions form a two-dimensional lattice on the macroion
surface, and when overcharging counterions are present on this layer the energy of the system
is lowered compared to the neutral case. This feature can be directly and exactly computed
for a small number of counterions at zero temperature, and was illustrated in refs. [11]. This
WC approach remains qualitatively correct for finite temperature as long as the Coulomb
coupling is very high. The crystal then melts into a strongly correlated liquid, where the local
order is still strong enough to lower the free energy for the overcharged state.

The situation becomes much more complicated for aqueous systems, where the coupling is
weak and in addition salt is present. One-particle inhomogeneous integral equation theories
can describe some of these situations fairly well [2, 3, 14, 16] but the computed correlation
functions do not necessarily give direct insight into the physical mechanisms behind these
effects. The presence of excluded-volume interactions can lead to layering effects near the
macroion, which are known from simple fluid theories. Here, due to the presence of charge
carriers of both signs, this can even lead to layers of oscillating charge inversions [3,14,17]. This
overcharging was also observed (by integral-equation and simulation [3, 15]) for monovalent
salt ions of large size. However, until today, the basic mechanism of charge inversion for dense
salt solutions remains unclear.

The goal of this letter is i) to study in detail the role of the excluded-volume contribution
for the overcharging of a colloidal macroion in the presence of salts and ii) to provide a
qualitative insight into the mechanism behind these effects. We find that in the presence
of salt the contribution of excluded volume can be so important that the size of the small
ions dominates the occurrence of overcharging and the overcharging strength increases with
increasing ionic size when the electrolyte concentration is fixed. Even for monovalent ions
with high enough ionic size, we observe overcharging, which cannot be explained with a salt-
free WC picture due to the low Coulomb coupling strength. In order to have the simplest
system, we study only the cases where the coion and the counterions have the same size. This
will reduce the effects of depletion forces which lead to nontrivial features already in neutral
hard-sphere fluids.

Our proposed mechanism will rest on the following arguments: For a fixed salt concen-
tration, the available volume in the fluid is a function of the electrolyte particle size. More
precisely, the entropy of the solution is decreased by enlarging the size of the salt ions [18],
which enhances inter-particle correlations. On the other hand, the interface provided by the
macroion leads to an increase of microion density close to the macroion, and promotes there
also lateral ordering, even in the absence of strong electrostatic coupling, similar to a pre-
freezing phenomenon. However, entropy alone can never lead to overcharging, since in this
limiting case coions and counterions have the same radial distribution. But ordering and weak
electrostatic correlations can lead to overcharging, as we are going to prove in this letter.

In this work we carried out MD simulations and the HNC/MSA (hypernetted chain/mean
spherical approximation) integral equation to study the overcharging in spherical colloidal
systems within the primitive model. In particular, the solvent enters the model only by its
dielectric constant and its discrete structure [19] is ignored. The system is made up of i) a
large macroion with a bare central charge Q = −Zme (with Zm > 0) and ii) symmetric salt
ions of diameter σ and valence Zc. The system is globally electrically neutral.

For the simulation procedure, all these ions are confined in an impermeable cell of radius R
and the macroion is held fixed at the cell center. In order to simulate a canonical ensemble, the
Langevin thermostat has been used to predict the ions trajectory as has been done in refs. [11].
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Table I – Simulation run parameters for the charged fluid (A–F ) and the neutral fluid (G–H).

Parameters Salt valence Zm σ/lB f

run A 2:2 48 1 2.3× 10−1

run B 2:2 48 0.5 2.9× 10−2

run C 2:2 48 0.25 3.6× 10−3

run D 1:1 10 1 2.3× 10−1

run E 1:1 48 1 2.3× 10−1

run F 1:1 48 0.5 2.9× 10−2

run G – – 1 2.3× 10−1

run H – – 0.5 2.9× 10−2

Excluded-volume interactions are taken into account with a purely repulsive (6-12) Lennard-
Jones (LJ) potential characterized by the standard (σ, ε) length and energy parameters, re-
spectively, which is cut off at the minimum [20]. The macroion-counterion distance of clos-
est approach is defined as a. Energy units in our simulations are fixed by ε = kBT (with
T = 298K).
The pair electrostatic interaction between any pair ij, where i and j denote either a

macroion or a microion, reads Ucoul(r) = kBT lB
ZiZj

r , where lB = e2/(4πε0εrkBT0) is the
Bjerrum length fixing the length unit. Being interested in aqueous solutions, we choose the
relative permittivity εr = 78.5, corresponding to lB = 7.14 Å. The time step is ∆t = 0.01τ
with τ = Γ−1, where Γ is the damping constant of the thermostat. Typical simulation runs
consisted of 2–7× 106 MD steps after equilibration.
In order to give prominence to the effect of ionic size, we choose to work at fixed distance

of closest approach (between the centers of the macroion and the salt ion) a = 2lB = 14.28 Å.
In this way, the electrostatic correlation induced by the colloid remains the same (i.e. fixed
macroion electric field at contact) no matter what the ionic size is. Thus by changing the
ionic size σ one also changes the colloidal radius accordingly, so that a remains constant. The
salt concentration ρ is given by N−/V , where V = 4

3πR
3 is the cell volume and N− is the

number of coions. We will restrict the present study to ρ = 1M salt concentration. The fluid
volume fraction f is defined as (N+ + N−)( σ

2R )
3, where N+ is the number of counterions.

To avoid size effects induced by the simulation cell, we choose a sufficiently large radius
R = 8.2lB yielding more than 1000 mobile charges. Simulation run parameters are gathered
in table I. The HNC/MSA calculations were performed using the technique presented in [16]
and references therein. Here it is assumed that the system size is infinite, and the bulk salt
concentration is fixed. In practice, there should be no observable difference in the correlation
functions (between HNC/MSA and MD) close to the macroions, because the wall effects die
off sufficiently fast.
We first illustrate the excluded-volume correlations present for a neutral hard-sphere fluid

(runs G–H) (identical to systems A–B and E–F , but uncharged (see table I)). Although
these kinds of systems are “simple” fluids [21], it is fruitful to elucidate what exactly happens
at this “low” fluid density upon varying the fluid particle size σ in the presence of a single
large spherical particle. To characterize the fluid structure, we consider the pair distribution
function g(r) between the colloid and the fluid particle, which is just proportional to the local
density n(r): n(r) = ρg(r). Results are depicted in fig. 1. For the large value σ = lB, one
clearly observes a relative high local concentration as well as a short-range ordering nearby
the colloidal surface. When the particle size is reduced by a factor 2 (keeping a fixed), the
behavior is qualitatively different and the system is basically uncorrelated. By increasing σ
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Fig. 1 – Pair distribution function g(r) between the colloid and the fluid particle in the neutral state
(runs G–H) for two particle sizes σ. The origin of the abscissa is taken at the distance of closest
approach a = 2lB. Lines and symbols correspond to the HNC theory and simulation, respectively.

at fixed fluid density ρ, the mean surface-surface distance between particles is reduced, which
in turn leads to higher collision probability and thus to higher correlations. In other words,
by reducing the available volume, one promotes ordering [16, 22]. This seems to be trivial
in the bulk, but the presence of the colloidal surface induces an even enhanced ordering and
the system can prefreeze (order) close to the colloid. Note that the same effects are naturally
present for a fluid close to a planar wall [21,23].

To characterize the overcharging, we introduce the fluid integrated charge Q(r) which
corresponds to the total net charge in the fluid (omitting the macroion bare charge Zm)
within a distance r from the distance of closest approach a. Results are sketched in fig. 2(a)
and (b) for divalent and monovalent salt ions, respectively. Theoretical and numerical analysis
are in very good qualitative agreement.
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Fig. 2 – Reduced fluid integrated charge Q(r)/Zm as a function of distance r for three different particle
sizes σ. (a) Divalent salt ions (runs A–C), (b) monovalent salt ions (runs D–F ). The origin of the
abscissa is taken at the distance of closest approach a = 2lB.
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Fig. 3 – Two-dimensional surface counterion correlation functions gcc(s) for divalent salt (run A–C),
monovalent salt (run E), and a neutral system (run G).

For the divalent electrolyte solutions (runs A–C), we observe that overcharging is strongly
dictated by the ionic size σ (see fig. 2(a)). For small ions (run C) no overcharging occurs
(i.e. Q(r)/Zm < 1), which is a nontrivial effect probably related to the forming of ionic pairs
(counterion-coion pairing) due to the strong pair interaction of 8kBT . This delicate point will
be addressed in a future study, and was also observed in [15]. Upon increasing σ, the degree of
overcharging increases. We carefully checked that the distance r = r∗, where Q(r∗) assumes
its maximal value, corresponds to a zone of coion depletion (in average there are less than 2
coions within r∗). This implies that also the absolute number of counterions at the vicinity of
the macroion surface increases with increasing σ. This is qualitatively in agreement with what
we observed above for neutral systems. However, we are going to show later that electrostatic
correlations are also concomitantly responsible of this extra counterion population (increasing
with σ) in the vicinity of the colloidal surface.
For the monovalent electrolyte solution (see fig. 2(b)) overcharging occurs for σ = lB (runs

D and E). In respect to the salt-free WC picture this is rather unexpected since here the
“plasma” parameter Γcc = lBZ

2
c /acc, where acc = (πc)−1/2 (c standing for the two-dimensional

surface counterion concentration) is the mean distance between counterions on the surface,
is small. More precisely for Zm = 10 (run D) we find Γcc ≈ 0.8, and for Zm = 48 (run
E) we have Γcc < 1.0 [24]. But following this salt-free approach, it is necessary to have at
least Γcc > 2 to get overcharge [25]. Note that from run D (Zm = 10) to run E (Zm = 48)
one increases the macroion surface-charge density leading (for Zm = 48) to a higher absolute
overcharging Q(r∗) but a weaker ratio Q(r∗)/Zm, which is qualitatively in accord with the
WC picture, since the maximal overcharging is proportional to

√
c. A closer look at fig. 2(b)

reveals that for Zm = 48 (run E) r∗/σ is shifted to the right compared to the divalent case.
This is merely a packing effect and it is due to the fact that for monovalent counterions the
macroion charge (over)compensation involves twice more the number of counterions particles
than in the divalent case. Therefore, for the macroion charge density under consideration
(Zm = 48), more than one counterion layer is needed to compensate for the macroion charge.
Again, for a smaller ionic salt size σ = 0.5lB (run F ) the overcharging effect is canceled.
Recently, a depletion of salt ions (total local density of co- and counter-ions) near the

macroion surface was reported for bulk salt ion concentrations similar to ours but very low
surface charge density [26]. For all of our investigated cases (runs A–F ), however, we never
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observe such a depletion. The reason is that such an effect vanishes as soon as the ionic size is
sufficiently large and/or the surface-charge density is large enough, which is in agreement with
our findings. Indeed, similarly to what happened with image charges, the self-image repulsion
is only relevant for low charge density [27]. Note that the parameters leading to overcharging
cannot give rise to an observation of salt ion depletion.

For the WC picture to be effective we need strong lateral correlations which cannot come
from pure electrostatic effects. To see if such correlations are present, we consider the local two-
dimensional surface counterion structure. We analyzed in our simulations the two-dimensional
counterion pair distribution gcc(s), where s is the arclength on the macroion sphere of radius
a. All counterions lying at a distance r < a + 0.5σ from the macroion center are radially
projected to the contact sphere of radius a. Predominantly, counterions are present in the
first layer. For the neutral system (run G) we analyzed the small neutral species. Results
are given in fig. 3. We observe that all systems with an ion diameter σ = lB show their first
peak at roughly 1σ, and a weaker second peak at about 2σ, exhibiting long-range surface
correlations. The second peak is very weak in the neutral system G, but clearly visible in
system A and E. Due to the stronger electrostatic repulsion the second peak for the divalent
system A is somewhat further apart than for the monovalent system E. The systems B and C
with smaller ion diameters show a correlation hole of size ≈ 2σ, which is of purely electrostatic
origin. Therefore, lateral correlations can be produced either by pure entropy effects (run G)
or pure electrostatic effects (run C), or we can have an enhanced lateral ordering due to the
interplay of both (run A,E). Qualitatively, WC arguments are still applicable to monovalent
systems (such as run E) if one considers an effective low local surface temperature stemming
from the strong surface ordering.

In summary, the observed overcharging for low Coulomb coupling can be traced back
to the complicated interplay of entropy and energy by the following two effects. First, by
enlarging the excluded volume of the salt ions at fixed concentration, one lowers the accessible
volume to the fluid particles. Second, the presence of the large macroion provides an interface
near which the density of the fluid is increased as compared to the bulk, and the solution
can prefreeze due to entropic effects, provided the available volume gets low enough. The
closest layer to the interface possesses already strong lateral correlations, even for a neutral
system. If the system is additionally charged, then even weak Coulomb correlations can lead
to the formation of a strongly correlated liquid, where the overcharged state is energetically
favorable, as shown in [7,11,12,16]. The order of this counterion layer is however not created
by electrostatic interactions as in the normal WC picture, but it is largely due to entropic
effects. The observed overcharging effect might have implications for the stability of colloidal
suspensions. Additions of monovalent salt will eventually make colloidal suspensions unstable
due to the onset of the van-der-Waals attractions. Upon addition of even more monovalent salt,
there is the possibility of salting the precipitate again in, as has been seen for polyelectrolyte
systems [28]. The observation of such a re-entrant transition could be an important hint
towards the existence of overcharging with monovalent salt ions.
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Image charges in spherical geometry: Application to colloidal systems
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The effects of image charges~i.e., induced surface charges of polarization! in spherical geometry
and their implication for charged colloidal systems are investigated. We study analytically and
exactly a single microion interacting with a dielectric sphere and discuss the similarities and
discrepancies with the case of a planar interface. By means of extensive Monte Carlo simulations,
we study within the framework of the primitive model the effects of image charges on the structure
of the electrical double layer. Salt-free environment as well as salty solutions are considered. A
remarkable finding of this study is that the position of the maximum in the counterion density
~appearing at moderately surface charge density! remains quasi-identical, regardless of the
counterion valence and the salt content, to that obtained within thesingle-counterion system.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1521935#

I. INTRODUCTION

In charged colloidal systems electrostatic effects, and es-
pecially the structure of the electrical double layer, often play
a determinant role for their physico-chemical properties. It is
well known that charged colloids~i.e., macroions! have typi-
cally a low dielectric constant (« r'2 – 5) which is much
smaller than that of the surrounding solvent~e.g., for water
« r'80). In most of the theoretical works, this dielectric dis-
continuity is ignored.

Nevertheless, a few studies have addressed the effects of
image charges~i.e., image forces stemming from the dielec-
tric discontinuity! on the counterion distribution for planar
geometry which is closely related to our problem. An
electrolyte close to a charged wall1,2 or confined between two
charged plates3 had been the subject of MC simulations.
Similar systems have also been investigated by
integral-equation4–6 and mean field theories.7–9

As far as the spherical geometry is concerned, much less
literature is available. Counterion distributions with image
forces in salt-free environment were investigated by MC
simulations.10 There some approximations for the treatment
of the image forces were used that are not always fully con-
trolled. The main conclusions however remain qualitatively
correct.

The aim of this paper is to provide a detailed analysis of
the image forces in spherical geometry and their effects on
the structure of the electrical double layer. The remainder of
this article is set out as follows. Section II corresponds to the
analytical part of the paper. We first briefly present the gen-
eral theoretical background of the concept of image charges
in spherical geometry. Then we apply it to colloidal systems
to compute~exactly! some relevant observables and discuss

our results. Section III is devoted to the computational de-
tails of our MC simulations. In Sec. IV, we present our simu-
lation results for salt-free environment as well as salty solu-
tions where image forces are explicitly taken into account
with no approximation. Finally, Sec. V contains brief con-
cluding remarks.

II. THEORY

In this part we mainly study the interaction of asingle
excesscharge with a dielectric sphere. We briefly present the
formalism of the dielectric model for spherical interfaces and
discuss some important electrostatic properties. Such a sys-
tem captures the underlying physics of image forces in
spherical geometry. Moreover a systematic quantitative com-
parison with the planar geometry is undertaken.

A. Poisson equation with azimuthal symmetry

The model system is sketched in Fig. 1. Consider an
unchargeddielectric sphere of radiusa and dielectric con-
stant ~relative permittivity! «2 embedded in an infinite di-
electric medium~region 1! characterized by«1 . A single
excess charge of magnitudeq is located outside the dielectric
sphere at a distanceb5ubu from its center.

The central problem is to determine the electrostatic po-
tential F(r ) at any point in the space. This is achieved by
solving the Poisson equation which reads

DF~r !52
r~r !

«
, ~1!

wherer(r ) is the volume charge density and«5«0« i with
«0 being the vacuum permittivity andi 51,2. Since here
r(r )5qd(r2b) and taking into account the azimuthal sym-
metry, Eq.~1! reduces~for rÞb) to the Laplace equation

a!Electronic address: messina@thphy.uni-duesseldorf.de; Permanent ad-
dress: Institut fu¨r theoretische Physik II, Heinrich-Heine-Universita¨t Düs-
seldorf, Universita¨tsstrasse 1, 40225 Du¨sseldorf, Germany.
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DF~r ,u!5
1

r 2

]

]r S r 2
]F

]r D1
1

r 2

1

sinu

]

]u S sinu
]F

]u D50,

~2!

where u is the angle betweenr and b ~see Fig. 1! and r
5ur u. The general solution of the Laplace equation with azi-
muthal symmetry is given by12–14

F~r ,u!5(
l 50

` FMlr
l1Nl

1

r l 11GPl~cosu!, ~3!

where Pl(cosu) is the associated Legendre polynomial of
order l.

Inside the dielectric sphere~region 2! the electrostatic
potentialF2(r ) must be finite atr 50 so thatNl50 in Eq.
~3!, and hence

F2~r ,u!5(
l 50

`

Alr
l Pl~cosu!. ~4!

Concerning the electrostatic potential outside the dielec-
tric sphere~region 1! we know that without dielectric discon-
tinuity ~at r 5a) the potential would simply be given by
q/4p«0«1ur2bu. Making use of the following identity

1

ur2bu
5(

l 50

` r ,
l

r .
l 11

Pl~cosu!, ~5!

wherer , (r .) is the smaller~larger! of r andb, the electro-
static potentialF1(r ) in region 1 reads11

F1~r ,u!5(
l 50

` FCl

1

r l 11
1

q

4p«0«1

r ,
l

r .
l 11GPl~cosu!, ~6!

recalling thatF1(r ) must be finite atr→` so thatMl50 in
Eq. ~3!.

B. Boundary conditions

The electrostatic potentials given by Eqs.~4! and~6! will
be univocally determined by applying the proper boundary
conditions that will fixAl andCl . The boundary conditions
are derived from the full set of Maxwell equations. The re-

sults are that the normal components of the displacementD
and the tangential components ofE on either side of the
spherical interface atr 5a satisfy

~D12D2!•n1250

~E12E2!3n1250, ~7!

wheren125r /r is a unit normal vector to the surface directed
from region 2 to region 1~see Fig. 1!. Within the framework
of the linear response theory we haveD5«E. Combining
Eqs. ~4! and ~6! with Eq. ~7! and noting thatE52¹F, it
follows that

«2Al la
l 215«1F2Cl

l 11

al 12
1

q

4p«0«1

lal 21

bl 11 G
Ala

l5Cl

1

al 11
1

q

4p«0«1

al

bl 11
. ~8!

This set of two equations@Eq. ~8!# can be readily solved to
yield the Legendre coefficientsAl andCl :

Al5
q

4p«0«1

1

bl 11

«1~2l 11!

«1~ l 11!1«2l

Cl5
q

4p«0«1

a2l 11

bl 11

~«12«2!l

«1~ l 11!1«2l
~9!

and hence

F1~r ,u!5
q

4p«0«1
F 1

ur2bu

1(
l 51

`
a2l 11

bl 11

~«12«2!l

«1~ l 11!1«2l

1

r l 11
Pl~cosu!G .

~10!

The physical interpretation of Eq.~10! is straightforward.
The first term represents the usual electrostatic potential
~without image forces! generated byq and the second term
can be referred to as the electrostatic potential due to ‘‘image
charges’’ stemming from the dielectric discontinuity. As ex-
pected, the strength of the image force is strongly governed
by the jumpD« in the dielectric constant defined as

D«5«12«2 . ~11!

In particular, one can anticipate and state that the interaction
between the microionq and the dielectric particle~i.e., the
self-image interaction! is repulsive for D«.0 ~i.e., «1

.«2) andattractivefor D«,0 ~i.e.,«1,«2) as it is also the
case in planar geometry.

One can show that Eq.~10! can also be written as fol-
lows ~see, e.g., Ref. 15 and references therein!

F1~r ,u!5
q

4p«0«1
H 1

ur2bu
1

«12«2

«11«2

1

a F u

ur2uu

2
«1

«11«2
E

0

u ~u/x!«2 /(«11«2)

ur2xu
dxG J , ~12!

FIG. 1. Model for a dielectric sphere~colloid! of dielectric constant«2

embedded in an infinite medium characterized by a different dielectric con-
stant «1 . An excess charge (q) is located near the boundary outside the
spherical particle. This is a two-dimensional representation of the three-
dimensional system.
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whereu5ba2/b2 ~see Fig. 1!.16 In this formalism the geo-
metrical structure of the image charges is transparent and it is
specified by the second main term~between brackets! of Eq.
~12!. More precisely, one has to deal with aninfinite mani-
fold of image charges distributed along the oriented segment
u that electrically compensates the image point-chargeqim

located atu and whose magnitude is given by

qim5q
«12«2

«11«2

a

b
. ~13!

C. Polarization charge

It is important to know the surface distribution of the
induced charge on the spherical interface. In the bulk~i. e., in
region 1 or 2! we have a zero volume density of polarization
charge (rpol) since rpol5«0¹•E52¹•P50 ~except atr
5b). At the interface (r 5a) the surface density of polariza-
tion chargespol

(sph) is given by

spol
(sph)52~P12P2!•n12, ~14!

where

P15«0~«121!E152«0~«121!¹F1

~15!
P25«0~«221!E252«0~«221!¹F2

are the polarizations in region 1 and 2, respectively. Using
Eqs.~4!, ~6!, ~9!, ~14! and~15!, the final expression ofspol

(sph)

reads

spol
(sph)~cosu!5

q

4p«1b2 (
l 51

` S a

bD l 21

~2l 11!l

3
«12«2

«1~ l 11!1«2l
Pl~cosu!. ~16!

The net charge of polarization Qpol
(sph)

5*21
1 2pa2spol

(sph)(cosu)d(cosu) is zero,17 meaning that
there isno monopolecontribution as it should be.

The critical angleu* wherespol
(sph) changes sign is given

by the geometrical condition

E1~r 5a,u* !'n12

~17!
E2~r 5a,u* !'n12

which is the orthogonality condition at the interface between
the ~inner and outer! electric field andn12. In terms of Leg-
endre polynomials, Eq.~17! can be equivalently written as

(
l 51

` S a

bD l 21 ~2l 11!l

«1~ l 11!1«2l
Pl~cosu* !50, ~18!

where Eq.~16! was used. Two limiting cases can be easily
described:~i! for b/a@1 we haveu* →p/2 @recalling that
P1(cosu)5cosu] and ~ii ! for b/a→1 we haveu* →0. In
general,u* increases withb and it is a complicated function
of b/a, «1 and«2 .

For aplanar interface, the surface density of polarization
chargespol

(plan)(d) is given by14

spol
(plan)~d!5

q

2p«1

«12«2

«11«2

b2a

@~b2a!21d2!] 3/2
, ~19!

whered5Ax21y2 is the radial distance~in cylindrical coor-
dinates system! belonging to the planar interface~see Fig. 2!.
Equation ~19! demonstrates thatspol

(plan)(d) never changes
sign @as can also be deduced from simple geometrical
considerations—Eq.~17!# in contrast with the spherical in-
terface. The total charge of polarizationQpol

(plan) is obtained
by direct integration ofspol

(plan)(d) and its expression is given
by

Qpol
(plan)5

q8

«1
, ~20!

where

q85q
«12«2

«11«2
~21!

is theuniqueimage charge located at the mirror position ofq
~see Fig. 2!. This nonzeromonopolar contribution for the
planar interface involves astrongerand longer rangedself-
image interaction.

D. Application to colloidal systems

So far we treat in a rather general manner the physics of
a point charge near a spherical dielectric interface. We now
would like to apply the above theory to colloidal systems. In
the remaining of this paper we suppose that region 1 corre-
sponds to water, so that we take«1580 corresponding to the
water dielectric constant at room temperature. To character-
ize the low permittivity of the colloid we consider here«2

52 so thatD«578. The little ion carries a chargeq5Ze
wheree stands for the elementary charge andZ for its va-
lence, and has a diameters. An important quantity is

r 05a1
s

2
~22!

being the center–center distance of closest approach between
the colloid and the microionq.

FIG. 2. Model for a microion (q) near a planar interface (S) separating the
two semi-infinite media characterized by«1 and«2 . The imaginary spheri-
cal dielectric of radiusa is shown for geometrical comparison with the setup
of Fig. 1. This is a two-dimensional representation of the three-dimensional
system.
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1. Induced surface charge

It is helpful to have a precise representation of the polar
profile of spol

(sph)(u) in order to get a clear understanding of
the source of the image forces. Although at first glance such
a study should belong to standard electrostatics we are not
aware of any data in the literature that treats this relevant
aspect.

The numerical computation of Eq.~16! was performed
using a cutoffl max5300 in the Legendre space leading to
high accuracy.18 The plot of spol

(sph)(u) for a57.5s and
b/s58, 9 and 10 can be found in Fig. 3. One can clearly
observe thatspol

(sph)(u) is stronglyinhomogeneous. For small
u, spol

(sph)(u) is highly positive~i.e., it carries the same charge
sign asq) and decreases abruptly. The angleu* @given by
Eq. ~18!# wherespol

(sph)(u) changes sign is 16.9°, 29.5° and
37.4° for b/s58, 9 and 10, respectively. In parallel, by in-
creasingb one drastically decreases the magnitude as well as
the inhomogeneity ofspol

(sph)(u). Recall that forb/a@1 we
havespol

(sph)(u);cosu.
It is insightful to comparespol

(sph)(u50) with spol
(plan)(d

50) @computed from Eq.~19!# since both quantities give the
maximum ofspol

(sph)(u) andspol
(plan)(d), respectively. The cor-

responding numerical values are gathered in Table I. The
values found at finite curvature are very similar to those of
zero one. The fact thatspol

(sph)(u50) is systematically
smaller thanspol

(plan)(d50) is consistent with the idea that in
spherical geometry we have the presence of opposite image

charges. Nevertheless, for sufficiently largea one should re-
cover the planar case.

2. Self-image interaction

We now compute the potential of interaction between the
microion q and the dielectric particle or, in terms of image
forces, the potential of self-image interaction. This is the
work done in bringing the microion from infinity to its posi-
tion b, and it is equal to thehalf-product ofq and the second
term of F1(r 5b) given by Eq.~10!. In that case we have
r5b ~see Fig. 1!, so thatu50 and thereforePl@cos(u50)#
51. In order to normalize the energy withkBT we introduce
the Bjerrum length l B5e2/(4p«0«1kBT) which is 7.14
Å for water atT5298 K. By choosings53.57 Å we have
l B52s. The potential of self-image interactionVsel f

(sph)(b) is
then given by

Vsel f
(sph)~b!5

1

2
kBTlB

Z2

b (
l 51

` S a

bD 2l 11 ~«12«2!l

«1~ l 11!1«2l
.

~23!

Equation~23! shows that the typical interaction range scales
like 1/b4 and therefore it isshort-ranged.19 Note that it is
fully equivalent to computeVsel f

(sph)(b) from the surface po-
larization charges as follows

Vsel f
(sph)~b!5

1

2

1

4p«0
E

21

1

2pa2q
spol

(sph)~cosu!

ura2bu
d~cosu!,

~24!

where ra is the radial vector of magnitudeurau5a and
spol

(sph)(cosu) is given by Eq.~16!.
It is insightful to compare the potential of self-image

interaction obtained in spherical geometry with that,
Vsel f

(plan)(b2a), obtained in planar geometry. The setup for a
planar interface is sketched in Fig. 2. In this situation the
analytical expression ofVsel f

(plan)(b2a) is simply given by

Vsel f
(plan)~b2a!5

1

2
kBTlBZ2

«12«2

«11«2

1

2~b2a!
. ~25!

FIG. 4. Potential of self-image interaction for a microion (q5Ze) in spheri-
cal and planar geometries with«1580 and«252.

FIG. 3. Polar profile of the surface density of polarization chargespol
(sph)(u)

in units of spol
(0)5(q/4p«1s2) for different radial distancesb of the excess

chargeq with «1580, «252 anda57.5s.

TABLE I. Numerical values ofspol
(sph)(u50) andspol

(plan)(d50) in units of
q/4p«1s2 as a function ofb. The corresponding profiles ofspol

(sph)(u) can be
found in Fig. 3.

b/s spol
(sph)(u50) spol

(plan)(d50)

8 7.41 7.61
9 0.794 0.846

10 0.278 0.304
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Profiles of Vsel f
(sph)(b) ~for two colloidal radii! and

Vsel f
(plan)(r ) are reported in Fig. 4. Since in both~planar and

spherical! cases the potential of interaction diverges at the
interface, we only show results fromr .r 0 as it is the case in
experimental systems. The numerical computation of Eq.
~23! was performed using the formalism of Eq.~12! allowing
an arbitrary precision.20

Figure 4 clearly shows that the self-image interaction
is weaker~the higher the curvature! with a spherical inter-
face than with a planar one. In particular, at contact we
have Vsel f

(sph)(r 058s)50.66Z2kBT and Vsel f
(sph)(r 0540s)

50.86Z2kBT for the spherical interface andVsel f
(plan)(s/2)

50.95Z2kBT for the planar one. These features can be physi-
cally explained in terms of polarization charges. In the con-
tact region~i.e., for smallu—see Fig. 2! we know that the
surface polarization charge is quasi-identical on both spheri-
cal and planar interfaces. However, forfinite curvature we
also know thatspol

(sph) changes sign aboveu* and in the
present casespol

(sph) getsoppositelycharged toq. This latter
effect is the main cause that leads to a weaker self-image
interaction for spherical interfaces. Nevertheless, by increas-
ing a ~i.e., reducing the curvature! one approaches the planar
case as expected~see Fig. 4!. Physically, this means that the
contribution of the negative polarization charges~lying at u
.u* ) to the self-image interaction@Eq. ~24!# becomes neg-
ligible for sufficiently large colloidal radius.

3. Effect of curvature on the contact potential

It is clear that for sufficiently low curvature one should
recover the planar case as far as the self-image interaction is
concerned. Thus, a natural question that arises is: for which
typical colloidal size are curvature effects relevant?

A suitable observable for this problem is provided by the
contact potentialVsel f

(sph)(b5a1s/2). This quantity is of spe-
cial interest since it will correspond to the highest repulsive
part of the global interaction between a macroion~i.e.,
chargedmacro-particle! and an oppositely charged counter-
ion. In order to investigate the effect of finite curvature we
are going to compareVsel f

(sph)(a1s/2) to the contact potential
Vsel f

(plan)(b2a5s/2) obtained with a planar interface.
The plot of the normalized contact potentialV0* (a) de-

fined as

V0* ~a!5

Vsel f
(sph)S a1

s

2 D
Vsel f

(plan)S s

2 D ~26!

can be found in Fig. 5. For the sake of numerical stability we
used the formalism of Eq.~12! allowing an arbitrary preci-
sion. Figure 5 shows that fora/s larger than about 100 the
contact potential is close to that of the planar interface~less
than 5% difference!. This length scale typically corresponds
to ‘‘true’’ colloidal systems (;100 nm!. Therefore, in the
dilute regime where the self-image interaction is dominant
~i.e., lateral microion–microion correlations are negligible!,
large-sized colloidal particles can be reasonably approxi-
mated by planar interfaces as far as the modeling of the
self-image interaction is concerned. On the other hand, for

a/s smaller than about 20 the contact potential varies rapidly
and therefore it is strongly dependent on the curvature. This
length scale typically corresponds to micellar systems (; 10
nm!.

Some years ago, Linse10 used an approximation where
he replaced the~exact! infinite manifold of image charges
@entering Eq.~12!# of total charge2qim by a single image
point-charge2qim @given by Eq.~13!# located at the center
of the sphere.21 Although this ansatz was motivated by the
study of many counterions~where the degree of spherical
symmetry can be enhanced compared to the single-
counterion system!, it is instructive to see what this approxi-
mation involves for the self-image interaction. Doing so, the
setup of image charges consists of a~two point-charge! di-
pole pim5qimu, and the corresponding contact potential
Ṽsel f

(sph)(r 0) reads

Ṽsel f
(sph)~b5r 0!5kBTlB

Z2

2

«12«2

«11«2

a

r 0
F 1

r 02u
2

1

r 0
G . ~27!

The plot of

Ṽ0* ~a!5

Ṽ0
(sph)S a1

s

2 D
Vsel f

(plan)S s

2 D ~28!

can also be found in Fig. 5. It shows that the two-image
charge approximation used by Linse is only valid for very
low curvature ~i.e., close to the planar case! and may
strongly overestimate the self-image repulsion as expected
by its inherent construction.22 Using MC simulations, Linse10

investigated micelles of radius 12218 Å ~i.e., a/s;3.5
25) leading to errors as large as 40%~see insert of Fig. 5!.
This proves that this ansatz is unsuitable to determine the
self-image interaction in this regime, which is the source of

FIG. 5. Reduced contact potentialV0* (a) as a function of the colloidal
radiusa with «1580, «252. The limit value of unity corresponds to the
planar interface. The solid line is the exact contact potentialV0* (a) and the

dashed one is the contact potentialṼ0* (a) obtained with the two-image
charge approximation used by Linse~Ref. 10!. The insert shows the ratio

Ṽ0* (a)/V0* (a).
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the image forces. Even in a many-counterion system, this
approximation is too strong when the self-image interaction
is dominant.23 However, in the limit of high spherical sym-
metry ~with many counterions! this approximation becomes
precise, but then the effects of image forces are negligible.

4. Charged colloid

As a last theoretical result, we consider the interaction
between~a single counterion! q and a negativelycharged
dielectric sphere. The procedure is completely similar to the
neutral colloid case, and we now apply the principle of su-
perposition to take into account the additional potential due
to a central chargeQm52Zme. The ~global! macroion-
counterion potential of interactionVm(b) reads

Vm~b!52kBTlB
ZmZ

b
1Vsel f

(sph)~b!, ~29!

whereVsel f
(sph)(b) is given by Eq.~23!, and hence

Vm~b!5kBT
l B

b
Z2F2

Zm

Z
1

1

2

3(
l 51

` S a

bD 2l 11
~«12«2!l

«1~ l 11!1«2l G . ~30!

Profiles of Vm(b) for Zm560, r 058s, «252 and Z
51, 2 and 3 are reported in Fig. 6. An important result is the
occurrence of aminimumin Vm(b) whose depth and position
r * increase with increasingZ. This is due to the purelyre-
pulsiveself-image interaction which scales likeZ2, whereas
the directattractiveCoulomb macroion-microion interaction
scales likeZ ~at fixedZm). Nevertheless the occurrence of a
minimum is strongly dictated by the ratioZm /Z @see Eq.
~30!#. For high value ofZm /Z, uVm(b)u is maximal for b
5r 0 ~only attractionoccurs! and for smallZm /Z one recov-
ers the neutral colloid case where onlyrepulsionoccurs. Of

course the same qualitatively happens for charged plates.24

The values ofr * minimizing Vm(b) ~with b.r 0) are given
in Table II. The quantityr * will be useful to discuss our
simulation results that concernmanycounterions and where
we also have the same macroion bare charge (Zm560).

Keep in mind that all our results above concern a single
microion. Whenmanycounterions come into play, other im-
portant effects might appear in principle. In particular, when
the number of counterions near the macroion surface is very
large the image forces are practically canceled by symmetry
reason.10,25 Clearly, by approaching the~perfect! spherical
symmetry one asymptotically cancels the polarization
charges everywhere on the macroion surface. This point
shows that the discrete nature of the counterions is crucial for
the existence of image charges in spherical geometry.26–28In
planar geometry the situation is radically different, where
one gets an amplified image force upon increasing the num-
ber of ‘‘surface’’ counterions.

III. MONTE CARLO SIMULATION

Standard canonical MC simulations following the Me-
tropolis scheme were used.29,30 The system we consider is
similar to those studied in previous works.31,32 It is made up
of two types of charged hard spheres:~i! a macroion of ra-
diusa with a bare chargeQm52Zme ~with Zm.0) and~ii !
small microions~counterions and coions! of diameters with
chargeq56Ze to ensure the electroneutrality of the system.
All these ions are confined in an impermeable cell of radius
R and the macroion is held fixed at the center of the cell.

The dielectric media are modeled as in Sec II. It is to
mention that we suppose, for the sake of simplicity, that the
dielectric discontinuity coincides with the macroion radius.
One must note that the effects of image forces can be sig-
nificantly reduced when the location of the dielectric bound-
ary is somewhat~a few Angstro¨ms! beneath the macroion
surface.10 On the other hand, the outer region of the simula-
tion cell is assumed to have the same dielectric constant«1

as the solvent in order to avoid the appearance of artificial
image forces.

The work done in bringing the~real! ions together from
infinite separation gives the interaction energy of the system.
The corresponding Hamiltonian,Utot , can be expressed as

Utot5(
i

FUi
(m)1(

j . i
Ui j

(bare)G
1(

i
FUi

(sel f)1(
j . i

Ui j
( im)G . ~31!

FIG. 6. Global macroion-counterion potential of interaction~solid lines!
with Zm560, r 058s, «1580 and«252. The values of the corresponding
minima r * can be found in Table II. The dashed lines correspond to the
usual electrostatic potential of interaction without image forces~i.e., D«
50).

TABLE II. Theoretical values ofr * minimizing the macroion-counterion
potential of interaction~with Zm560, «1580, «252 and r 058s). The
corresponding profiles can be found in Fig. 6.

«2 D« Z (r * 2r 0)/s

2 78 1 0
2 78 2 0.17
2 78 3 0.32
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The first two terms in Eq.~31! correspond to the tradi-
tional electrostatic interactions between real charges. More
explicitly,

Ui
(m)~r i !55 6 l BkBT

ZmZ

r i
, for r i>a1

s

2
,

`, for r i,a1
s

2
,

~32!

represents the macroion-microion interaction, where~1! ap-
plies to coions and~-! to counterions, and

Ui j
(bare)~r i j !5H 6 l BkBT

Z2

r i j
, for r i j >s,

`, for r i j ,s,
~33!

the pair interaction between microionsj and i where ~1!
applies to microions of the same type and~2! otherwise.

The two last terms in Eq.~31! account for the interaction
between images and microions. Therepulsiveself-image in-
teraction is given by

Ui
(sel f)~r i !55

1

2
kBTlB

Z2

r i
(
l 51

l max S a

r i
D 2l 11 ~«12«2!l

«1~ l 11!1«2l
, for r i>a1

s

2
,

`, for r i,a1
s

2
,

~34!

wherel max is the cutoff in the Legendre space, and

Ui j
( im)~r i ,r j !55 6 l BkBTZ2(

l 51

l max a2l 11

r j
l 11

~«12«2!l

«1~ l 11!1«2l

1

r i
l 11

Pl~cosu!, for r i>a1
s

2
,

`, for r i,a1
s

2
,

~35!

represents the interaction between microioni and the image
~surface charge induced by! of microion j, where~1! applies
to charges of the same sign@and~2! otherwise# andu is the
angle betweenr i andr j . It is this term that generateslateral
image-counterion correlations. Due to the symmetry ofUi j

( im)

upon exchangingi j with j i there is an implicit factor 1/2 in
Eq. ~35!.

Convergence of the Legendre sums with a relative error
of 1026 is obtained with the employed value ofl max5100.33

For the sake of computational efficiency and without loss of
accuracy, we computed the image-ion interactions on a
~very! fine (r ,cosu) grid where the coordinates of the micro-

ions were extrapolated. The radial distancesr i are discretized
over logarithmically equidistant nodes so that close to the
macroion surface the radial resolution is 0.01s and near the
simulation wall 0.1s. The polar discretization consists of
2000 equidistant cosu-nodes leading to even smaller lateral
resolutions. The corresponding values ofUi

(sel f)(r i) and
Ui j

( im)(r i ,r j ,cosu) were then initially stored into tables. Note
that in principle one could also have used the formalism of
Eq. ~12! to compute the image-ion interactions. However, at
identical numerical accuracy, this method involving a nu-
merical integration is too time and resource consuming.

Typical simulation parameters are gathered in Table III.
The case«2580 corresponds to the situation where there is
no dielectric discontinuity (D«50). Measurements were
performed over 106 MC steps per particle.

IV. SIMULATION RESULTS

Here we present our MC simulation results in salt-free
environment as well as in the presence of multivalent salt-
ions. We essentially study in detail the radial microion dis-
tributionsni(r ) around the macroion, which are normalized
as follows

E
r 0

R

4pr 2n1~r !dr5N1

~36!E
r 0

R

4pr 2n2~r !dr5N2 ,

TABLE III. Model simulation parameters with some fixed values. Apart
from the charge sign, counterions and coions have the same parameters.

Parameters

T5298 K room temperature
«1580 water solvent dielectric constant
«252 colloidal dielectric constant
D«5«12«2578 strength of dielectric discontinuity
Zm macroion valence
Z counterion valence
s53.57 Å counterion diameter
l B52s57.14 Å Bjerrum length
a57.5s macroion radius

r 05a1
s

2
58s macroion-counterion distance of closest approach

R radius of the outer simulation cell
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wherer is the distance separation from the macroion center,
1~2! stands for counterion~coion! species andN1 (N2) is
the total number of counterions~coions! contained in the
simulation cell.

Another quantity of special interest is the integrated~or
cumulative! fluid net chargeQ(r ) defined as

Q~r !5E
r 0

r

4pu2Z@n1~u!2n2~u!#du, ~37!

where we chosee51. Q(r ) corresponds to the total fluid
charge~omitting the macroion bare chargeZm) within a dis-
tancer from the macroion center, and at the cell wallQ(r
5R)5Zm . Up to a factor proportional to 1/r 2, @Q(r )
2Zm# gives ~by simple application of the Gauss theorem!
the mean electric field atr. ThereforeQ(r ) can measure the
strength of the macroion charge screening by salt-ions. In
salt-free environment systems we haven2(r )50 and N1

5Zm /Z.
The simulation run parameters can be found in Table IV.

For all these simulation systems, the ion densitiesni(r ) were
computed with the same radial resolutionDr .34 The discreti-
zation of the radial distancer in ni(r ) is realized over loga-
rithmically equidistant points so that close to the macroion
surface (r 2r 0,s) we haveDr ,0.04s. It is important to
obtain such an accuracy~and the required statistics! if one
wants to describe quantitatively the effects of image forces
which are short-ranged at strong curvature.

A. Salt-free environment

Salt-free systemsA2F ~see Table IV! were investigated
for a moderately charged macroionZm560 corresponding to
a surface charge densitys050.11 Cm22.

1. Monovalent counterions

The profiles ofn1(r ) and Q(r ) are depicted in Figs.
7~a! and 7~b!, respectively for the monovalent counterion
systemsA andB.

Figure 7~a! shows that the counterion density at contact
(r 5r 0) is somewhat smaller withD«578 as a direct conse-
quence of the self-image repulsion. However there is no
maximum appearing inn1(r ) with D«578, in agreement
with the study of the single-counterion system~see Fig. 6
and Table II!. For r 2r 0.;0.6s ~corresponding roughly to
three half ionic sizes from the interface!, the effects of image
forces are negligible and alln1(r ) curves are nearly identi-
cal.

To gain further insight into the effects oflateral image-
counterion correlations, we have considered the same system

A (D«578) but omitted the correlational termUi j
( im) @Eq.

~35!# in the total HamiltonianUtot @Eq. ~31!#. Physically, this
means that, on the level of the image force, each counterion
sees uniquely its self-image interaction. Thereby, Fig. 7~a!
shows that~i! the corresponding counterion densityn1

(sel f)(r )
is nearly identical ton1(r ), and ~ii ! in the vicinity of the
interface n1

(sel f)(r ) is slightly smaller thann1(r ). These
findings ~i! and ~ii ! lead to the two important conclusions:

•For monovalent counterions and moderately charged
macroions, theeffectiveimage force is basically identical to
the self-image force.35

•The crucial effect of lateral image-counterion correla-
tions is toscreenthe self-image repulsion.

This latter feature is generally true for anyfinite curvature at
identical fixed macroion charge density. Finding~i! is also
consistent with the fact that, close to the interface~say r

TABLE IV. System parameters.

System A B C D E F G H I J

Zm 60 60 60 60 60 60 60 60 180 180
Z 1 1 2 2 3 3 2 2 2 2
N1 60 60 30 30 20 20 430 430 445 445
N2 - - - - - - 400 400 400 400
«2 2 80 2 80 2 80 2 80 2 80
D« 78 0 78 0 78 0 78 0 78 0
R/s 40 40 40 40 40 40 20 20 20 20

FIG. 7. Monovalent counterion distributions~systemsA andB): ~a! Density
n1(r ). The dashed line in gray corresponds to the counterion density
n1

(sel f)(r ) obtained in the same systemA (D«578) but where the~lateral!
image-counterion correlational termUi j

( im) @Eq. ~35!# has been omitted in the
total HamiltonianUtot @Eq. ~31!#. ~b! Fluid charge.
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2r0,0.2s), the average number of~surface! counterionsN̄
is ~very! small (N̄,5) as can be deduced from the fraction
of counterionsQ(r )/Zm @Fig. 7~b!#.

Figure 7~b! shows that the fluid chargeQ(r ) decreases
when image forces are present, meaning that they lower the
macroion charge screening by counterions. At the distance
r 2r 05s ~corresponding to a 2s-layer thickness!, the mac-
roion is 29% electrically compensated@i.e., Q(r 2r 0

5s)/Zm50.29] with D«50 against 26% withD«578. At
the distancer 2r 054s, the relative differenceDQ/Q be-
tween theQ(r ) obtained withD«50 andD«578 drops to
2% ~against 10% atr 2r 05s) where the bare macroion
charge is nearly half-compensated.

2. Multivalent counterions
a. Divalent counterions. The profiles of n1(r ) and

Q(r ) are depicted in Figs. 8~a! and 8~b!, respectively for the
divalent counterion systemsC andD.

Figure 8~a! shows that the counterion density at contact
becomes strongly reduced withD«578 due to the
Z2-dependence of the self-image repulsion@compare the case
Z51 in Fig. 7~a!#. This sufficiently strong~short-ranged!
repulsion leads to a maximum inn1(r ) close to the macro-
ion surface. The corresponding radial positionr * maximiz-
ing n1(r ) is r * 5r 010.22s, in very good agreement~within
Dr ) with the one-counteriontheoretical valuer 010.17s
~see Table II!. This shows that for divalent counterions
many-body effects do nearly not affectr * . This nontrivial
finding is the result of the competition between two driving
forces that controlr * in many-counterion systems:

•Fim : the screening of the self-imagerepulsionby the
~extra! negative polarization charges tends todecreasether *
obtained in the one-counterion system.

•Fmc : the screening of the macroion-counterionattrac-
tion by the ~extra! surface counterions tends toincreasethe
r * obtained in the one-counterion system.

It is precisely a balance of these two driving forces that leads
to a nearly unchangedr * ~compared to the one-counterion
system! in many-counterion systems. Whereas for monova-
lent counterions both driving forcesFim andFmc are weak,
those become relevant for multivalent counterions.

We stress the fact that this is specific to the spherical
geometry, and that for a planar interface~at identical surface
charge density! one should get a higherr * ~compared to that
of the one-counterion system!, since there we have no
screening driving forceFim . We are not aware of any previ-
ous studies for the planar interface that address this issue.36

To gain even further insight into the effect ofZ on the
lateral image-counterion correlations, we have ignored the
term Ui j

( im) in Utot in the same systemD (D«578) as done
previously with systemA. Figure 8~a! shows a qualitatively
different n1

(sel f)(r ) where r * 5r 010.26s is now somewhat
larger, proving that with divalent counterions the screening
of the self-image repulsion by lateral image-counterion cor-
relations is appreciable. This is in contrast to what was ob-
served withZ51.

At the distancer 2r 05s, Fig. 8~b! shows that the mac-

roion is 62% electrically compensated forD«50 against
53% for D«578 @compare the caseZ51 in Fig. 7~b!#.

b. Trivalent counterions. The profiles of n1(r ) and
Q(r ) are depicted in Figs. 9~a! and 9~b!, respectively for
trivalent counterion systemsE andF.

Figure 9~a! shows that the counterion density at contact
is drastically reduced withD«578, as expected for highZ
~compare the previous cases!. At D«578, we haver * 5r 0

10.36s, in quantitative agreement with theone-counterion
theoretical valuer 010.32s ~see Table II!. This shows again
that even for trivalent counterions many-body effects do
~practically! not affectr * ~compared to that obtained in the
single-counterion system! due to a balance of the driving
forcesFim andFmc .

By neglecting the lateral image-counterion correlations
in the same systemE (D«578), Fig. 9~a! indicates that the
position r * of the maximum inn1

(sel f)(r ) gets considerably

FIG. 8. Divalent counterion distributions~systemsC and D): ~a! Density
n1(r ). The dashed line in gray corresponds to the counterion density
n1

(sel f)(r ) obtained in the same systemC (D«578) but where the~lateral!
image-counterion correlational termUi j

( im) @Eq. ~35!# has been omitted in the
total HamiltonianUtot @Eq. ~31!#. ~b! Fluid charge.
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larger (r * 5r 010.50s). This relatively strong shift confirms
the Z-enhancing of the screening of the self-image repulsion
by lateral image-counterion correlations.

At the distancer 2r 05s, the macroion is 84% electri-
cally compensated forD«50 against only 67% forD«
578 @see Fig. 9~b! and compare previous systems#. Snap-
shots of typical equilibrium configurations forD«50 and
D«578 can be visualized in Figs. 10~a! and 10~b!, respec-
tively.

B. Salty solutions

We focus on the case of divalent salt-ions. This choice is
motivated by two reasons:~i! effects of image charges are
clearly observable for multivalent counterions and~ii ! such
systems must be experimentally reachable. To study the ef-
fect of added salt we have considered two macroion charges
Zm560 ~as previously! and Zm5180 corresponding to a

charge densitys050.32 Cm-2. The salt concentration de-

fined as (N2 / 4
3pR3) is 0.44 M for all salty systemsG2J

~see Table IV!. The simulation cell radiusR520s of these
systems is still very large compared to any screening lengths
so that finite size effects are negligible.

1. Moderately charged macroion

Profiles ofn6(r ) and Q(r ) are depicted in Figs. 11~a!
and 11~b!, respectively for the salty systemsG and H with
Zm560.

The coion densityn2(r ) with D«578 is basically
shifted to the right of about 0.15s ~compared to that with
D«50) due to the repulsive coion’ self-image interaction.
Near the colloidal surface, the counterion densitiesn1(r ) are
considerably higher than those obtained with no added salt
~systemsC andD) as it should be@compare Fig. 8~a!#.

A rather surprising result here is that, despite the pres-
ence of a considerable amount of added salt, we still have
r * 5r 010.22s remaining unchanged. This is a nontrivial
finding since one should have an~extra! attractivecontribu-
tion to the macroion-counterion potential of mean force
stemming from the~localized! negativepolarization charges
induced by the coions, which in turn could lead to a shorter
r * . However there are two concomitant sources that lead to

FIG. 9. Trivalent counterion distribution~systemsE and F): ~a! Density
n1(r ). The dashed line in gray corresponds to the counterion density
n1

(sel f)(r ) obtained in the same systemE (D«578) but where the~lateral!
image-counterion correlational termUi j

( im) @Eq. ~35!# has been omitted in the
total HamiltonianUtot @Eq. ~31!#. ~b! Fluid charge.

FIG. 10. Snapshots of typical equilibrium configurations for trivalent coun-
terions~systemsE andF). ~a! D«50 ~b! D«578. One can clearly observe
the larger mean radial counterion distance forD«578 stemming from the
self-image repulsion.
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a marginal screening of the counterion’ self-image repulsion
by the negative coion-induced polarization charges:~i! there
is a strong coion depletion close to the interface@see Fig.
11~a!# due to the large direct Coulomb macroion-coion repul-
sion and~ii ! uspol

(sph)u decreases abruptly with the radial dis-
tance of the microion as discussed in Sec. II D 1~see also
Fig. 3!. Of course the role of theexcluded volumeis crucial
here.

As expected the macroion charge screening is weaker
when image forces come into play as can be deduced from
the profile ofQ(r ) plotted in Fig. 11~b!.

2. Highly charged macroion

Profiles ofn6(r ) and Q(r ) are depicted in Figs. 12~a!
and 12~b!, respectively for the salty systemsI and J with
Zm5180.

Figure 12~a! shows that the effects of image forces are
considerably reduced. The relatively small difference be-
tween then1(r ) obtained withD«50 and that obtained with

D«578 decreases drastically in the vicinity of the interface,
and already forr 2r 0.;0.2s the two profiles ofn1(r ) are
nearly identical. Besides, near the interfaceno effective
macroion-counterion repulsion occurs atD«578. This ab-
sence of a maximum inn1(r ) is due to two main concomi-
tant effects:

•For such a highly charged macroion, there is a very
large number of counterions close to the interface@compare
Fig. 12~b! and Fig. 11~b!#. In this limit, one can use Wigner
crystal concepts and say that, on the level of the force stem-
ming from the bare charges~i.e., ignoring the image forces!,
each surface counterion essentially interacts with the oppo-
sitely charged background of its Wigner-Seitz~WS! cell. At
sufficiently high macroion charge density~i.e., small WS
hole radius!, this attractive interaction becomes very impor-
tant and it always overcomes the self-image repulsion.

•The second~concomitant! mechanism is specific to the
closed spherical topology: at high number of surface counte-

FIG. 11. Divalent salt-ion distribution~systemsG andH) with Zm560: ~a!
The solid and dashed lines correspond to counterion and coion densities,
respectively.~b! Net fluid charge.

FIG. 12. Divalent salt-ion distribution~systemsI andJ) with Zm5180: ~a!
The solid and dashed lines correspond to counterion and coion densities,
respectively.~b! Net fluid charge.
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rions, the image forces are reduced because of the enhanced
degree of spherical symmetry as already mentioned in Sec.
II D 4.

The coion densitiesn2(r ) are basically identical for
both dielectric discontinuitiesD«, in contrast to what hap-
pened withZm560 ~systemsJ and K). This phenomenon
can be explained as the enhanced screening of the coion’
self-image repulsion by the positive polarization charges in-
duced by the other coions present in the electrical double
layer ~EDL!. Indeed, because of the macroion chargerever-
sal that occurs atZm5180 @i.e., Q(r )/Zm.1—see Fig.
12~b!#, there is also a larger number of coions~at fixed salt
concentration! in the EDL @compare Fig. 12~a! and Fig.
11~a!#. Therefore, since the magnitude and the inhomogene-
ity of 2spol

(sph)(u) induced by a coion strongly decreases with
its radial distance@see Eq.~16! and Fig. 3#, the screening of
the coion’ self-image repulsion gets highly sensitive to an
increase in number of coions in the EDL.

Concerning the net fluid chargeQ(r ), we see that both
profiles obtained withD«578 andD«50 are nearly identi-
cal, as expected from those ofn6(r ). The net fluid charge
Q(r ) reaches its maximum atr Q* 2r 050.90s and 0.94s for
D«250 and 78, respectively. In both cases we have a mac-
roion charge reversal of 9%@more explicitly Q(r Q* )/Zm

51.09]. This proves the important result that, for typical
systems~with high macroion charge density! leading to
overcharging,27,28,32,37,38 image forces donot affect the
strength of the macroion charge reversal.

V. CONCLUDING REMARKS

We have presented fundamental results about the effects
of image forces on the counterion distribution around a
spherical macroion.

Exact analytical results have been provided for the case
of a single microion interacting with a dielectric sphere.
Within this framework, the self-image interaction and the
surface charge of polarization have been studied and also
compared to those obtained with a planar interface. Besides
we also estimated the positionr * where the macroion-
counterion potential of interaction is minimized. We demon-
strated that the effects of image forces due to a spherical
interface are qualitatively different from those occurring with
a planar interface, especially when the colloidal curvature is
large. We showed that theself-screeningof the polarization
charges~i.e., the screening of the positive surface charges of
polarization by the negative ones! is decisive to explain the
weaker and the shorter range of the self-image interaction in
spherical geometry. This self-screening increases with the
colloidal curvature.

Many-counterion systems have been investigated by
means of extensive MC simulations where image forces were
properly taken into account.

In salt-free environment and for moderately charged
macroions, a maximum in the counterion density~near the
spherical interface! appears for sufficiently large dielectric
discontinuityD«. An important result is that the correspond-
ing positionr * is basically identical, regardless of the coun-
terion valenceZ, to that obtained within theone-counterion

system. This feature is specific to the spherical geometry and
can not take place with planar interfaces where there isno
self-screening of the polarization charges. For monovalent
counterions we showed that the~effective! image force is
basically equal to that of the self-image interaction, and the
lateral image -counterion correlations are~very! weak. How-
ever for multivalent counterions the lateral image-counterion
correlations affect significantly the counterion density, and as
major effect theyscreenthe self-image repulsion. Neverthe-
less, the combined effects of~i! the macroion charge screen-
ing by counterions and~ii ! the screening of the self-image
repulsion lead to a nearly unchangedr * ~compared to that
obtained in the single-counterion system! for multivalent
many-counterion systems. Furthermore, we showed that the
counterion density at contact decreases drastically withZ ~as
also found in Ref. 10!, and thatr * also increases withZ as
expected. These latter results have important implications for
the stabilization of charged colloidal suspensions where a
component of the pair-force is proportional to the ion density
at contact.

By adding salt, it was found for moderately charged
macroions that the strength of the image forces induced by
the coionsis very small compared to that resulting from the
counterions. This is due to the coupled effects of~i! the coion
depletion in the vicinity of the colloidal interface due to the
strong direct Coulomb macroion-coion repulsion and~ii ! the
~highly! short range of the image forces in spherical geom-
etry. Consequently the positionr * remains identical to that
obtained in salt free environment and a fortiori to that ob-
tained within the one-counterion system. Forhighly charged
macroions the effects of image charges are significantly re-
duced since~i! the attractive counterion-hole interaction
dominates the repulsive counterion’ self-image interaction
and~ii ! the screening of the counterion’ self-image repulsion
gets enhanced by symmetry reason. In this situationno maxi-
mum appears in the counterion density and it was found that
overchargingis nearly unaffected by image forces.

Although our MC analysis was carried at given macro-
ion size, all the above reasonings that concernmanycounte-
rions remain unchanged~for symmetry reason! for anyfinite
curvature by a rescaling at fixed macroion charge density.

Finally, this contribution should constitute a solid basis
to understand and predict the effects of image charges in
other similar systems~e.g., polyelectrolyte adsorption onto
spherical charged colloids!.
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ABSTRACT: In this article we review the complexation behavior of charged polymers
adsorbed onto charged substrates. In the first part we summarize the results obtained
on the adsorption properties of a single polyelectrolyte chain with one or several
oppositely charged spherical colloids. The results of various simulational studies are
compared with theoretical predictions. After that, we show that under strong electro-
static coupling conditions one can also obtain complexations, where chain and colloid
carry the same charge (like-charge complexation). This effect is due to counterion
correlation effects. Finally, we investigate the case of polyelectrolyte multilayers struc-
tures, which are composed of alternating polycations and polyanions on various sub-
strate geometries. This structure, normally obtained by a so-called layer-by-lay depo-
sition, is very stable experimentally, but only poorly understood in terms of theoretical
approaches. Our simulation results suggest that short range attractive interactions
(e.g., van der Waals) are important for obtaining a stable sequence of multilayers.
© 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3557–3570, 2004

INTRODUCTION

Polyelectrolytes (PEs) are polymers that possess
ionizable groups that can dissociate charges in
polar solvents, resulting in charged polymers and
small counterions. Both charged species can be
influenced by external electric fields, or additional
charged bodies, like charged membranes, charged
colloids, or other charged polymers. Because the
interactions are long ranged in low-salt or salt-
free solutions, and due to the complicated inter-
actions, various complexes, and even hierarchical
nanostructures, can emerge. On the other hand,

charged species are notoriously difficult to de-
scribe with analytical theories.1,2 This is one rea-
son that theoretical insight of very complex
charged systems had to go hand in hand with
more and more involved computer simulations of
such systems. With the increase in speed of mod-
ern computers on the one hand, and with the
development of advanced simulation methods for
the treatment of time consuming electrostatics
routines3 on the other hand, more and more in-
sight could be gained by computer simulations.

In this article we present three different cir-
cumstances under which PE adsorption were
studied by numerical simulations. The first one
deals with the usual adsorption of PEs onto an
oppositely charged spherical particle. This case
has been experimentally extensively studied4–7

because it can be observed in many soft matter
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Journal of Polymer Science: Part B: Polymer Physics, Vol. 42, 3557–3570 (2004)
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systems like surfactant–polyelectrolyte systems,
protein–DNA complexes, or even chromatin fibers
that are built out of DNA–histone complexes in a
very complicated fashion.8 Various authors have
investigated this phenomenon theoretically9–17

and by Monte Carlo simulations,18–22 and we will
put the different findings into relation with each
other. The second part deals with the much less
investigated case of the complexation of a charged
sphere with a like-charged PE. It is only very
recently that we reported such a phenomenon in
the strong Coulomb coupling regime.23,24 From a
theoretical point of view, the long-range Coulomb
interactions of these systems represents a formi-
dable challenge, and especially the understand-
ing of effective attraction of like-charged bodies
has attracted recent attention.25 There, we will
elaborate on the complexation between a sphere
and a long flexible PE both negatively charged.
Although complexation in the strong coupling
limit due to counterion correlations is expected,
we report new and rather unexpected chain con-
formations. We present MD simulation results
without added salt but taking into account the
counterions explicitly. We will explain the mech-
anisms accounting for the different encountered
complex structures. The last part of this article
deals with thin PE multilayer films made up of
alternating layers of polycations (PCs) and polya-
nions (PAs). The so-called layer-by-layer method,
first introduced in planar geometry by Decher,
consists in a successive adsorption of the polyions
onto a charged surface, and has proven to be
extremely efficient.26,27 Due to the many poten-
tial technological applications such as biosens-
ing,28 catalysis,29 optical devices,30 and more, this
process is today widely used. Another very inter-
esting application is provided by the PE coating of
spherical metallic nanoparticles.7,31 This process
can modify in a well-controlled way the physico-
chemical surface properties of the colloidal parti-
cle.

Some experiments (see, e.g., ref. 32) were de-
voted to the basic mechanisms governing PE mul-
tilayering on planar mica surfaces where, espe-
cially, the role of surface charge overcompensa-
tion was pointed out. Nevertheless, despite the
huge amount of experimental works, the detailed
understanding of the multilayering process is still
rather unclear.33 Hence, the study of PE multi-
layering is motivated by both experimental and
theoretical interests. We will discuss our recently
obtained results on substrates of various geome-
tries, and stress the importance of nonelectro-

static short-range interactions for a smooth lay-
ering structure.

ADSORPTION OF A SINGLE
POLYELECTROLYTE

Case of an Oppositely Charged Sphere

We first briefly review the works related to the
adsorption of a long PE onto an oppositely
charged sphere. The situation where a single PE
chain wraps around a spherical macroion is often
encountered in practical situations. For instance,
the case of chromatin corresponding to the com-
plexation between DNA and histone is one of the
most well-known examples, and was thoroughly
reviewed by Schiessel.8 Many analytical works
were devoted to understand the role of electro-
static interactions coming into play within those
structures.10–16,34 The most common result is the
overcharging of the spherical macroion by the
long PE chain and a strong wrapping, see Figure
1 for an example.

On the simulation side, there is today a consid-
erable amount of available contributions where var-
ious authors have analyzed the PE–macroion com-
plexation by means of MC simulations.19–22,35–40

We briefly review here the main results.

Effect of Chain Stiffness

The effect of chain flexibility (at prescribed chain
length) was first systematically investigated by
Wallin and Linse19 and then recently further in-
vestigated by Stoll and Chodanowski37 and Ak-
inchina and Linse.38 In these first simulations,
with explicit counterions in a salt-free environ-
ment, Wallin and Linse19 showed that the degree
of PE adsorption, and concomitantly that of over-
charging, decreases with the stiffness of the chain
as expected. Using Debye-Hückel pair interac-
tions in their MC simulations, Stoll and
Chodanowski37 could include the effect of added
salt beside of that of the chain flexibility. In that
work,37 the PE carries the same absolute charge
as that of the spherical macroion, so that no PE-
induced overcharging could occur. Within this
framework, Stoll and Chodanowski37 showed that
by increasing the chain stiffness, solenoid confor-
mations are progressively achieved at the particle
surfaces, as also analytically predicted by Nguyen
and Shklovskii16 for semiflexible chains. At high
salt concentration, full PE desorption is always
predicted.37 It is interesting to mention that the
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large values of PE stiffness (characterized there
by kang considered at zero-salt concentration in
ref. 19 and ref. 37 differ in many orders of mag-
nitude. This explains the qualitatively different
PE conformations observed at large kang (compare
Fig. 6 in ref. 19 with Table 3 in ref. 37). Unfortu-
nately, Stoll and Chodanowski37 did not comment
this point, nor did they compare their results with
those of the earlier work of Wallin and Linse.19

Effect of Chain Length

Some systematical studies about the effects of
chain length (or more precisely, the ratio �L � L/d
between the chain contour length L and the col-
loid diameter d) on the micro structural proper-
ties of the PE–colloid complexation were carried
out by Wallin and Linse,21 Chodanowski and
Stoll,35,36 and Akinchina and Linse.38 At (very)
high �L Chodanowski and Stoll35,36 found, for
fully flexible chains, that only a marginal portion
of the PE is adsorbed to the colloid, and extended
tails in solution are formed. At “intermediate” �L,
again for fully flexible chains, the PE always col-
lapses (at low salt concentration) to a so-called
“tennis-ball” like conformations.35,36 At suffi-
ciently small �L, one basically recovers the planar
case (i.e., zero curvature), where the PE confor-
mations look very similar.36 Akinchina and
Linse38 also investigated the effect of chain stiff-
ness in addition to �L. They find a rich phase
diagram (see Fig. 1 in ref. 38) comprising “tennis
ball”-like, solenoid, multiloop (also called “ro-
sette”34), single loop, as well as “U” conforma-
tions. The rosette conformation had already been
predicted theoretically for short-range attractive
sphere–polymer interactions17 that could corre-
spond to a high-salt concentration regime. None-
theless, Schiessel also confirms theoretically this
type of structure for screened Coulomb interac-
tions (involving charged species) for low salt con-
centration (see Fig. 2 of ref. 17) and a (very) good
qualitative agreement is reached with the MC
findings (at a salt-free environment) of Akinchina
and Linse.38

Other Relevant Effects

Recently, Carlsson et al.41 considered the effect of
the discrete nature of the protein charge distribu-
tion on protein–polyelectrolyte complexation.
Still, in the primitive model, instead of consider-
ing a uniform surface-charge density (see also
Ref. 42 for a more detailed discussion), they dis-
tribute little ions (each of valence Z � �1, 0 or

�1) so that the net charge of the protein could be
either positive or negative.41 The motivation of
such a protein charge model41 stems from the
experimental situation (lyzozymes) where the
protein net charge, as prescribed by the number
of ionized amino groups, is pH-dependent. Be-
sides electrostatic correlations, short-range at-
tractions (typically scaling like �1/r6) were also
considered so as to allow a more realistic compar-
ison with experimental data.41 Within that
framework, Carlsson et al.41 showed the following
interesting results:

1. Complexation can be stronger with a dis-
crete protein-charge distribution. This lat-
ter result is fully consistent with the find-
ing of Messina concerning counterion dis-
tribution (see Fig. 12b in ref. 44).

2. Concomitantly, their analysis also reveals
that the negative beads tends to be local-
ized around the positive discrete positive
surface ions, as expected.

For the completeness of the model, image
charges should have been taken into account, as
recently analyzed by one of us.43

The “polarizability” of PE–colloid complexes
(i.e., the derivative � � dP/dE of the complex-
polarization P with respect to the external ap-
plied electric field E) has also been recently inves-

Figure 1. An example of PE–colloid complexation
(tennis ball-like conformation). Here all 80 monomers
are positively charged (le/bead) with a diameter �, and
the oppositely charged colloid carries a bare charge of
�40e and has a diameter of 9�.40
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tigated by Dzubiella et al. (see Sec. III in Ref. 39).
Notice that, strictly speaking, in a presence of a
uniform external electric field the true equilib-
rium state corresponds to a colloid and a PE chain
that are infinitely separated from each other. In
practice, however, one can say that the energy
barrier of “decomplexation” is so high that the
complex state is apparently very stable (but still
metastable). The authors restrict their MC study
to the case where the PE chain and the spherical
macroion have the same charge in absolute value,
so that there is no monopole contribution.39 More-
over, image forces43 were not taken into account,
which might be a crude approximation for short
chains. Within this framework, Dzubiella et al.39

showed that two length scales are relevant:

1. For small chains and small E, � is strong
and reaches its maximal value for chain
length comparable to the circumference of
the colloid. This regime can be theoreti-
cally well described in terms of thermally
fluctuating dipoles with an effective length
that depends on the chain length.

2. For chains longer than circumference of
the colloid, the magnitude of the polariz-
ability � is of the order of that of a classical
conducting sphere of radius of the complex
size.

Multisphere Complexation

The complexation between a single PE and many
spherical colloids were investigated by Jonsson
and Linse45,46 by means of MC simulations. In
these works, electroneutrality is ensured by the
explicit presence of little monovalent counterions
(anions and cations), and no salt-ions were added.
The effect of charge density, chain length, and
macroion charge was discussed in ref. 45,
whereas the effect of chain flexibility was dis-
cussed in ref. 46. Jonsson and Linse introduced
two dimensionless charge-parameters:45,46

� � �NMZM

NmZm
� , (1)

and

�c � �NM
c ZM

NmZm
� , (2)

where NM is the total number of macroions, ZM is
the negative valence of the macroions, Nm is the
number of monomers, Zm is the positive valence of
the monomers, and NM

c is the number of macro-
ions in molecular contact to the PE defining the
degree of complexation. We briefly review and
discuss the main results of those two articles.45,46

Effect of Charge Density, Chain Length, and
Macroion Charge45

In this study, the PE is modeled as charged hard
spheres connected by harmonic bonds, so that
here the chain is fully flexible (i.e., kang � 0). The
main relevant findings can be summarized as fol-
lows:

1. For undercharged complexes (i.e., �c � 1),
the degree of complexation [i.e., �c � �c(�)]
is first linear in � at low �, and in the
overcharging regime (i.e., �c � 1) �c exhib-
its a plateau that is the signature of an
overcharging saturation.

2. An increase of the linear charge density
and/or of the colloidal surface-charge den-
sity leads to a stronger complexation or
equivalently to a stronger overcharging
(i.e., higher values of �c), as expected.

3. At fixed PE linear charge density, an in-
crease of the chain length leads also to a
stronger complexation.

From an overcharging viewpoint, one can say
that those results are in qualitative agreement
with the theoretical predictions of Nguyen and
Shklovskii16,47 and Schiessel et al.48

Effect of Chain Flexibility46

In a subsequent work,46 Jonsson and Linse con-
sidered the effect of chain flexibility (kang � 0).
The latter is taken into account by a harmonic
angular potential. The main relevant findings can
be summarized as follows:

1. In the undercharging regime (�c � 1), the
binding isotherms [�c � �c(�)] is also linear
and identical to that found for flexible
chains.

2. The complexation structure, however,
strongly depends on the chain flexibility.
As the latter is decreased, the macroion
arrangement gets gradually more linear
and ordered along the chain.
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LIKE-CHARGE COLLOID–POLYELECTROLYTE
COMPLEXATION

The complexation of a highly charged colloid with
a long flexible PE, both negatively charged, was
recently investigated by ourself 23,24 by means of
molecular dynamics (MD) simulations. Electro-
neutrality is ensured by multivalent counterions,
whose presence is crucial for the occurrence of
that rather counterintuitive like-charge complex-
ation. In this MD simulation model,23,24 the coun-
terions of the colloid and the PE are supposed to
be identical. Below, we review some important
aspects of those new studies that concern the
strong Coulomb coupling23 and the weak Cou-
lomb coupling,24 the latter corresponding to aque-
ous solutions. We would like to mention here that
there is no particular advantage to use MD sim-
ulations rather than MC ones. These two methods
are fully equivalent as long as equilibrium prop-
erties are concerned. It is only for “historical”
reasons that MD simulations were employed here
in the present context.

Strong Coulomb Coupling

The colloid carries a negative bare charge of
�180e and has a diameter d � 15� with � � 3.57
Å being the diameter of the positive divalent
counterions. The long polymer chain contains
about Nm � 256 monomers, and 1/f monomer is
negatively charged (�2e). The strong Coulomb
coupling is ensured by taking a Bjerrum length of
lB � 10� � 35.7 Å.

Typical equilibrium microstructures of the col-
loid–polyelectrolyte complex can be found in Fig-
ure 2. In all reported cases complexation occurs
and the PE is completely adsorbed onto the col-
loidal surface. This renders the conformation qua-
si-two-dimensional, in contrast to the bulk case
(i.e., in the absence of the macroion but with the
presence of the PE counterions — see also Fig. 3
in ref. 24. Nevertheless, the structure of these
resulting complexes depends strongly on the
value of f. For the fully charged PE case [f � 1, see
Fig. 2(a)] the monomers are closely packed form-
ing a two-dimensional compact Hamiltonian-
walk with the condensed counterions on the PE.
Upon reducing f [see Figs 2(b) and (c)], the com-
plex structures are qualitatively different. For f
� 1/2 [see Fig. 2(b)], the monomers spread more
over the particle surface and the polymer par-
tially wraps around the sphere exhibiting a quasi-

two-dimensional pearl necklace structure. For f
� 1/3 [see Fig. 2(c)], the monomers spread en-
tirely over the particle surface, and the chain
wraps the colloidal particle leading to an almost
isotropic distribution of the monomers around the
spherical macroion.

Within this strong Coulomb coupling regime,
we were able to quantify the chain conformation
with simple theoretical concepts.23,24 More pre-

Figure 2. Typical equilibrium configurations of the
like-charge colloid–polyelectrolyte complex in strong
Coulomb coupling for (a) f � 1, (b) f � 1/2, and (c) f
� 1/3. Monomers are in white and counterions in red.
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cisely, it was shown that the concept of polyelec-
trolyte overcharging is relevant to rationalize
those observed PE conformations. The degree of
PE overcharging �PE is defined as follows

�PE �
Ncd

Ncm
, (3)

where Ncd is the number of “condensed” counteri-
ons onto the PE chain (i.e., counterions that are
within a prescribed distance from the PE chain)
and Ncm stands for the total number of charged
monomers. Hence, the PE is (locally) overcharged
when �PE � 1. The plot of �PE as a function of 1/f
can be found in Figure 3. It is seen that �PE is a
decreasing function of f. This result can also be
obtained analytically (see also Fig. 3) by assum-
ing that the counterion distribution of the colloid
(that are responsible of the PE overcharging) is
nearly unperturbed by the presence of the PE
chain with its stuck counterions. This latter fea-
ture was carefully checked by our MD simulations
in refs. 23 and 24. Thereby, the theoretical degree
of PE overcharging is given by:

�PE � 1 � C/f, (4)

where C is a constant that depends on the chosen
system parameters (see eqs 4 and 5 in ref. 23).
Because the renormalized charge q*m of a mono-
mer can be given by

q*m � � ��PE � 1�qm, (5)

where qm is the bare monomers charge, we can
state that q*m increases with 1/f as deduced from
Figure 3. This PE overcharging leads to an effec-
tive local monomer–monomer repulsion that is
controlled by q*m, and therefore, to a bond stiffen-
ing that is f-dependent. The latter in turn ex-
plains why the PE expands with increasing 1/f.
Concomitantly, by increasing 1/f, one reduces the
number of available dipoles (i.e., ion pairs made
up of monomers and counterions), which also dis-
favors the compaction of the chain.

Weak Coulomb Coupling

The case of a weak Coulomb coupling, involving
monovalent monomers and the Bjerrum length of
water lB � 7.14 Å (i.e., aqueous solvent), was also
investigated by us.24 Interestingly, it was found
that even in that situation like-charge complex-
ation can occur for trivalent counterions.

Typical colloid–PE complex microstructures
are depicted in Figure 4. In all cases (here, 1/3 � f
� 1), we have adsorption of the PE onto the like-
charged colloid. Compared to the (very) strong
Coulomb coupling, the PE adsorption is much
weaker due to the reduced counterion correla-
tions in the weak Coulomb coupling. More specif-
ically, for f � 1 [see Fig. 4(a)] the PE conformation
consists of dense globules (which are mainly coun-
terion induced and at least extend entropically
mediated) separated by strings, reminiscent of
the pearl necklaces found in studies of polyam-
pholytes.49 Upon reducing f, the PE adsorption is
weakened due to the reduced available dipoles
leading to the formation of chain loops [see Fig.
4(b) and (c)].

MULTILAYERING

PE multilayer thin films are made of alternating
layers of polycations (PCs) and polyanions (PAs),
supposing that the substrate is negatively
charged. It was only recently that the study of PE
multilayering by means of numerical simulations
was reported.40,50,51 The presence of oppositely
and highly charged PEs renders the understand-
ing of PE multilayers extremely difficult, and a
robust analytical theory will be difficult to con-
struct.14,52,53 We briefly review some important

Figure 3. Degree of PE overcharging �PE as a func-
tion of 1/f. The dashed line corresponds to the theoret-
ical prediction (eq 4).23
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aspects of PE multilayering for spherical,40 pla-
nar,50 and cylindrical substrates.51

In all these studies,40,50,51 the influence of an
additional nonelectrostatic short-range attraction
between the PC monomers and the substrate was
considered. The strength of this “sticky” potential
is characterized by a value for the attractive en-
ergy �vdw that corresponds to the PC monomer
energy (in units of kBT) at contact. The PEs are
always fully charged (f � 1), and the PAs and PCs
have the same length and carry the same charge
in absolute value.

Spherical Substrate

The formation of PE multilayers on charged
spheres was investigated by MC simulations in
ref. 40. The colloid is characterized by a radius a
� 4.5�, with � � 4.25 Å being the microion (mono-
mer and counterion) radius, and a negative
charge of �40e. Counterions were explicitly taken
into account, ensuring the overall electroneutral-
ity of the system.

A highly interesting situation is already pro-
vided by the study of PE bilayering. Equilibrium
configurations of two oppositely charged PEs
(with Nm � 80) adsorbed onto the negatively
charged colloid can be found in Figure 5. One can
clearly see that at sufficiently low �vdw (in partic-
ular at �vdw � 0 corresponding to purely electro-
static regime) the oppositely charged PEs build
up a rather compact complex (i.e., a globule), rem-
iniscent of the classical PE collapse. In return for
�vdw 	 2 the PE complex gets flatter and wraps
around the colloidal particle, indicating the im-
portance of nonelectrostatic contribution in the
bilayering process. The two main mechanisms
controlling the structure and the PE bilayer can
be summarized as follows:

1. The PC–PA globalization driving force
tends to produce one or more neutral glob-
ules and results thus in a weaker and more
diffuse PE adsorption.

2. The attractive PC monomer–colloid short-
range interaction increases the PE adsorp-
tion. True bilayering (involving flat layers)

Figure 4. Typical equilibrium configurations of the
like-charge colloid–polyelectrolyte complex in “weak”
Coulomb coupling for (a) f � 1, (b) f � 1/2, and (c) f
� 1/3. Monomers are in white and counterions in red.
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requires a minimal �vdw, and hence, flat
layers cannot be obtained within a purely
electrostatic regime.

For a detailed analysis of the monomer and the
net fluid charge distributions, the reader is in-
vited to look at Secs. IV and V of ref. 40.

Now that PE bilayering is rather well under-
stood, the much more complicated case of PE mul-
tilayering (beyond bilayering) can be addressed.
The adsorption of 12 PEs (6 PCs and 6 PAs) onto
the negatively charged colloid is sketched in Fig-
ure 6. Even for such a high number of adsorbed
PE chains (always with Nm � 80), MC simula-
tions show that in a purely electrostatic regime
[�vdw � 0; see Fig. 6(a)] that the formation of
globular PC–PA complexes is still strong, leading
to a nonhomogeneous monomer coverage of the
colloidal surface. In particular, large “holes” are
present at �vdw � 0 due to this PC–PA globaliza-
tion driving force. On the other hand, at �vdw � 3
[see Fig. 6(b)], the monomer coverage gets much
more homogeneous, where the colloidal surface is

nearly uniformly recovered by the PC and PA
monomers. This feature indicates again the im-
portant role of nonelectrostatic interaction in PE
multilayering (even at a relatively high degree of
layering).

The influence of chain length was also investi-
gated by considering the adsorption of short PE
chains with Nm � 10 (see Sec. VII of ref. 40).
Typical equilibrium configurations are sketched
in Figure 7. In the purely electrostatic regime
(�vdw � 0), the PE adsorption is weak and it
significantly increases with �vdw. Nevertheless, at
finite �vdw only PE bilayering is found to be stable
in contrast to previous systems containing long
chains (for a more quantitative analysis, compare
also Fig 13 with Fig. 10 of ref. 40). Moreover,
several globally neutral PC–PA complexes are de-
tected in the bulk, whose number decrease with
�vdw (see Fig. 7). This feature is inhibited for long
chains (here Nm � 80) due to the strong PC–PA
binding energy that keeps all chains near the
colloidal surface. Those results concerning short
chains, indicate that PE multilayering must also

Figure 5. Typical equilibrium configurations for one PC (in white) and one PA (in red)
adsorbed onto the negatively charged colloid at different �vdw couplings. The little
counterions (anions and cations) are omitted for clarity. (a) �vdw � 0 (b) �vdw � 1 (c) �vdw

� 2 (d) �vdw � 3 (e) �vdw � 5.
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involve specific PC–PA interactions and/or non-
equilibrium effects that are not captured by our
model.

Comparison with Other Substrate Geometries

More insight can be gained by comparing the
process of PE multilayering just studied above for
a spherical substrate with those involving differ-
ent charged substrate geometries. For instance,
the case of a planar substrate has the property of
being curvature-independent (where no wrapping
can occur), and hence, it corresponds to a more

universal situation. On the other hand, the case of
a cylindrical substrate presents a very low dimen-
sionality.

Planar Substrate

The study of PE multilayering onto charged pla-
nar surfaces was investigated by one of us (see
Sec. VI of ref 50 for the present discussion). The
monomer density profiles n�(z) are depicted in
Figure 8 (at fixed total number of monomers of
800 where the number of PC and PA chain is the
same) and the corresponding microstructures can
be found in Figure 9. Even at �vdw � 0 with Nm
� 10, a nonnegligible second peak in n�(z) can be
detected [see Fig. 8(b)], which is the signature of
a third layer. This finding strongly contrasts with
what was just reported above at spherical sub-
strates for short chains (also with a similar mac-
roion surface charge density), where not even a
stable PE bilayer could build up. This behavior
can be accounted by geometrical arguments. In-
deed, the electrostatic potential in spherical ge-
ometry goes like 1/r against z in the planar case.
Hence, at sufficiently high curvature (as it was
the case in ref. 40 where Nm�/a � 1), qualitative
differences from the planar case are then ex-
pected. Always at �vdw � 0, but with longer chains
(Nm � 20), Figure 8(a) shows that the degree of
layering is higher as expected. This feature is well
illustrated by Figure 9(b), where the PA mono-
mers are visibly more attracted to the planar
macroion surface. At �vdw � 5, the adsorption of
monomers is drastically increased due to the en-
hanced stability of the first PC layer that, in turn,
induces a larger adsorption of the subsequent PAs
and PCs. Compared to �vdw � 0, all the peaks in
n�(z) are shifted to smaller z, indicating a higher
compaction. These higher ordering and compac-
tion at �vdw � 5 can be visually checked in Figure
9(c) and (d).

Cylindrical Substrate

The adsorption of oppositely charged PEs onto a
charged rod was recently investigated by on of us
in ref. 51. Typical equilibrium configurations (Nm
� 20) can be visualized in Figure 10(a)–(f). The
main relevant conclusions of this work can be
summarized as follows:

1. As far as the PC adsorption is concerned
(in the absence of PAs), it was demon-
strated that huge macroion charge reversal
occurs even at �vdw � 0 (see Fig. 3 in ref.

Figure 6. Typical equilibrium configurations for 12
PEs (6 PCs in white and 6 PAs in red) adsorbed onto the
negatively charged colloid at different �vdw couplings.
The little counterions (anions and cations) are omitted
for clarity. (a) �vdw � 0 (b) �vdw � 3.
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51). By adding exactly the same amount of
PAs, only a (relatively) marginal over-
charging is surprisingly observed [see Fig.
10(a)], which is due to (a) PC–PA cluster-
ing and (b) above all to entropic effects.

2. At higher number of PEs, MC simulation
data show that true bilayering (i.e., flat
and dense PE layers) can only occur at
finite �vdw, in contrast to what was found
with planar substrates,50 but similar to the
spherical case. Even at finite �vdw, stable
multilayering (beyond bilayering) is hard
to reach at large macroion rod curvature
[see Figs. 10(b), (d), and (f), and Fig. 5 in

ref. 51 for a detailed radial monomer dis-
tribution] due to the high entropy loss
there. This latter, in turn, inhibits the ap-
pearance of charge oscillations.

CONCLUDING REMARKS

In this article we have reviewed various ways how
polyelectrolytes adsorb onto other charged ob-
jects. This can happen with oppositely charged
colloids, like-charged colloids, or with polyanions
and polycations which form multilayers on

Figure 7. Typical equilibrium configurations for short PC (in white) and PA (in red)
chains adsorbed onto the negatively charged colloid at different �vdw couplings. The
little counterions (anions and cations) are omitted for clarity. (a) �vdw � 0 (b) �vdw � 3
(c) �vdw � 5.

Figure 8. Profiles of monomer density n � (z) for oppositely charged PEs adsorbed
onto a negatively charged planar substrate. �vdw couplings. (a) �vdw � 0 (b) �vdw � 5.
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charged surfaces with varying substrate geome-
tries.

At this point we would like to remark that
the analytical theories have been developed
best for the polyelectrolyte complexes with op-
positely charged bodies. The discussed case of
like-charged complexations is based on strong
charge correlations, and requires thus a strong
Coulomb interaction. This is certainly out of the
validity of mean-field theories, and needs alter-
native theoretical approaches, like Wigner crys-
tal theories or theories based on strong coupling

expansions. For the last discussed case of poly-
electrolyte multilayers it is not even known if
the experimentally observed PE multilayers are
equilibrium structures or meta-stable states. At
least for our choice of short range �vdw and of
the electrostatic coupling parameter, which is
based on chain interactions in the bulk state,
we do not observe a slow relaxation dynamics of
the layers. The chains can reorient in the layers
quite freely. This is different from observations
in experiments,33 under slightly different con-
ditions. It is too early to compare quantitatively

Figure 9. Corresponding microstructures of systems involved in Figure 8, with PCs
in white and PAs in red. The little counterions (anions and cations) are omitted for
clarity. (a) �vdw � 0, Nm � 10 (b) �vdw � 0, Nm � 20 (c) �vdw � 5, Nm � 10 (d) �vdw � 5,
Nm � 20.
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Figure 10. Typical equilibrium configurations for the adsorption of oppositely
charged PE chains (at different total number NPE of PEs) onto a cylindrical macroion.
The polycations are in white and the polyanions in red. The little ions are omitted for
clarity. The outer green cylinder is a guide for the eye. (a) �vdw � 0, NPE � 12 (b) �vdw

� 5, NPE � 12 (c) �vdw � 0, NPE � 24 (d) �vdw � 5, NPE � 24 (e) �vdw � 0, NPE � 48 (f)
�vdw � 5, NPE � 48.
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the outcome of our simulations with experi-
ments, because we dealt only with a consider-
ably small number of chains that also were
rather short. However, our results suggest that
also nonelectrostatic interactions quite strongly
influence the layer morphology. Certainly, more
careful experiments and simulations are
needed to elaborate on this point.

In basically all cases the observed PE confor-
mations depend highly on the exact parameters of
the systems like stiffness, salt content, charge
strength, counterion type, and others. The mu-
tual dependencies of these parameters on the ob-
served complexes lead to a highly nontrivial be-
havior. Although we are far from understanding
all the details, we made great progress in under-
standing at least the qualitative behavior of these
systems. Nevertheless, there are still many more
questions to be resolved in the future, which par-
tially explains why this field has attracted that
much interest in the last few years.

R.M. thanks F. Caruso, H. Löwen, S.K. Mayya, and E.
Pérez for helpful discussions. This work was supported
in part by the SFB TR6, the SFB 625, and the “Zentrum
für Multifunktionelle Werkstoffe und Miniaturisierte
Funktionseinheiten,” grant BMBF 03N 6500.
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We investigate the complexation of a highly charged sphere with a long flexible polyelectrolyte,
both negatively chargedin a salt-free environment. Electroneutrality is insured by the presence of
divalent counterions. Using molecular dynamics within the framework of the primitive model, we
consider different Coulomb coupling regimes. At strong Coulomb coupling we find that the
adsorbed chain is always confined to the colloidal surface but forms different conformations that
depend on the linear charge density of the chain. A mechanism involving the polyelectrolyte
overchargingis proposed to explain these structures. At intermediate Coulomb coupling, the chain
conformation starts to become three-dimensional, and we observe multilayering of the highly
charged chain while for lower charge density the chain wraps around the colloid. At weak Coulomb
coupling, corresponding to an aqueous solvent, we still find like-charge complexation. In this latter
case the chain conformation exhibits loops. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1490595#

I. INTRODUCTION

The adsorption of polyelectrolytes onto anoppositely
charged spherical particle has been experimentally exten-
sively studied recently.1–4 Various authors have investigated
this phenomenon theoretically5–13 and by Monte Carlo
simulations.14–18 Nonetheless, much less is known concern-
ing the complexation of a charged sphere with a like-charged
polyelectrolyte. It is only very recently that we reported in a
short communication such a phenomenon in the strong Cou-
lomb coupling regime.19 From a theoretical point of view, the
long range Coulomb interactions of these systems represents
a formidable challenge, and especially the understanding of
effective attraction of like charged bodies has attracted recent
attention.

In this paper, we elaborate on the complexation between
a sphere and a long flexible polyelectrolyteboth negatively
charged. While complexation in the strong coupling limit it
is expected, we report new and rather unexpected chain con-
formations. We present MD simulation results without added
salt but taking into account the counterions explicitly. Vari-
ous Coulomb couplings as well as different polyelectrolyte
linear charge densities are investigated. A detailed study of
the ions~monomer and counterion! distribution is reported
and mechanisms accounting for the different encountered
complex structures are proposed.

The paper is organized as follows: Section II contains
details of our MD simulation model. Section III is devoted to
the strong Coulomb coupling regime. Section IV is devoted
to the intermediate Coulomb coupling regime. In Sec. V, we
consider the like-charge complexation in the weak Coulomb
coupling regime corresponding to the water solvent.

II. SIMULATION METHOD

The MD method employed here is based on the Lange-
vin equation and is similar to that employed in previous
studies.20 Consider within the framework of the primitive
model one spherical macroion characterized by a diameterd
and a bare chargeQM52ZMe ~wheree is the elementary
charge andZM.0! surrounded by an implicit solvent of rela-
tive dielectric permittivitye r . The polymer chain is made up
of Nm monomers of diameters. Both ends of the chain are
always charged and each 1/f monomer is charged so that the
chain containsNcm5(Nm21) f 11 chargedmonomers. The
monomer charge isqm52Zme ~with Zm.0!. The small
counterions, assumed all are identical, ensure global electro-
neutrality and have a diameters and charge1Zce ~with
Zc.0!. All these particles making up the system are con-
fined in an impermeable spherical cell of radiusR, and the
spherical macroion is heldfixedat the center of the cell.

The equation of motion of any mobile particle~counter-
ion or monomer! i reads

m
d2r i

dt2
52¹iU~r i !2mg

dr i

dt
1W i~ t !, ~1!

where m is the mass particle~supposed identical for all
mobile species!, U is the total potential force, andg is the
friction coefficient. Friction and stochastic force are linked
by the dissipation-fluctuation theorem̂W i(t)•W j (t8)&
56mgkBTd i j d(t2t8).

Excluded volume interactions are introduced via a pure
short range repulsive Lennard-Jones~LJ! potential given by

ULJ~r !5H 4eF S s

r 2r 0
D 12

2S s

r 2r 0
D 6G1e,

for r 2r 0,r cut,

0, for r 2r 0>r cut,

~2!a!Electronic mail: messina@mpip-mainz.mpg.de
b!Electronic mail: holm@mpip-mainz.mpg.de
c!Electronic mail: k.kremer@mpip-mainz.mpg.de
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where r 050 for the microion–microion interaction,r 0

57s for the macroion–microion interaction, andr cut

521/6s is the cutoff radius. This leads tod52r 01s
515s, whereas the closest center–center distance of the mi-
croions to the spherical macroion isa5r 01s58s. The
macroion volume fraction is defined asf M5(a/R)3 and is
fixed to 831023 with R540s.

The pair electrostatic interaction between any pairij ,
wherei andj denote either a macroion or a charged microion
~counterion or charged monomer!, reads

Ucoul~r !

kBT
5 l B

ZiZj

r
, ~3!

wherel B5e2/4pe0e rkBT is the Bjerrum length. Energies are
measured in units ofe5kBT with T5298 K. Choosings
53.57 Å requires that the Bjerrum length of water at room
temperature equals 2s ~7.14 Å!. In this work the macroion
charge is fixed atZM5180.

The polyelectrolyte chain connectivity is modeled by us-
ing a standard finitely extensible nonlinear elastic~FENE!
potential in good solvent~see for example Ref. 20!, which
reads

UFENE~r !5H 2
1

2
kR0

2 lnF12
r 2

R0
2G , for r ,R0 ,

`, for r>R0 ,

~4!

where k is the spring constantlike chosen as 1000kBT/s2

and R051.5s. These values lead to an equilibrium bond
length l 50.8s.

Typical simulation parameters are summarized in Table
I. The simulation runs are reported in Table II. The time step
is Dt50.002t with t5g21. Each simulation run requires
about 107 MD steps, and equilibrium is typically reached
after 53105 up to 33106 steps. We normally performed
between 53106 and 107 MD steps to take measurements.
We cover the whole range of strength of Coulomb electro-
static interaction from the strong coupling limit, which is
more theoretical interest, to the weak coupling limit, which
corresponds to an aqueous solvent.

III. STRONG COULOMB COUPLING

First we look at the like-charge complexation in the
strong Coulomb coupling regime. We choose the relative
permittivity e r516, corresponding tol B510s, and divalent
microions (Zm5Zc52). Such a set of parameters is of spe-
cial theoretical interest to study the influence of strong elec-
trostatic correlations.

A. Single charged object

In this section we first studyseparately~i! the spherical
macroion and~ii ! the flexible polyelectrolyte in the presence
of their surrounding neutralizing divalent counterions. This
provides the reference states for the more complicated situ-
ation, where both of these two objects interact.

TABLE I. General data of the simulation model. Note that the temperature
is used as energy scale for the simulations.

Parameters

s53.57 Å Lennard-Jones length units
T5298 K room temperature
e5kBT Lennard-Jones energy units
ZM5180 macroion valence
Zm monomer valence
Zc counterion valence
Nc total number of counterions
l B Bjerrum length
a58s macroion–counterion distance of closest approach
R540s simulation cell radius
f M5831023 macroion volume fraction
k51000kT/s12 FENE spring constant
R051.5s FENE cutoff
l 50.8s average bond length
Nm total number of monomers
Ncm number of charged monomers
f monomer charge fraction
lPE5Zme f/ l polyelectrolyte linear charge density

TABLE II. Specification of the simulated systems. The chain radii of gyrationRg
(bulk) andRg

(comp) are given for
an isolated chain~i.e., in the absence of the colloid! and for the complexed case~i.e., in the presence of the
colloid!, respectively.

Parameter 1/f Nm Ncm Nc Zm Zc l B /s Rg
(bulk)/s Rg

(comp)/s

run A 1 256 256 346 2 2 10 3.81 6.42
run B 2 257 129 219 2 2 10 3.90 8.69
run C 3 256 86 176 2 2 10 3.95 8.75
run D 5 256 52 142 2 2 10 4.49 8.86
run E 1 256 256 346 2 2 4 4.40 4.8
run F 2 257 129 219 2 2 4 4.8 9.4
run G 3 256 86 176 2 2 4 5.4 9.3
run H 1 256 256 346 2 2 2 6.6 6.1
run I 2 257 129 219 2 2 2 12 13
run J 3 256 86 176 2 2 2 ¯ 21
run K 1 252 252 144 1 3 2 ¯ 8.4
run L 2 251 126 102 1 3 2 ¯ 9.8
run M 3 250 84 88 1 3 2 ¯ 10.4
run N 1 256 256 436 1 1 2 ¯ ¯
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1. Spherical macroion

Consider an isolated macroion with its surrounding di-
valent counterions. A pertinent parameter to describe the
Coulomb coupling for such highly asymmetric electrolyte
solution ~macroion and counterions! is the so-called
‘‘plasma’’ parameterG5Zc

2l B /acc , whereacc ~which will be
determined below! is the average distance~triangular lattice
parameter in the ground state! between counterions lying on
the macroion surface.21 For the strong Coulomb coupling
considered we findG'13 ~with ZM5180!, and for finite
macroion volume fraction~here f M5831023!, all counteri-
ons lie in the vicinity of the macroion surface.22–25

To characterize the counterion layerstructure, we com-
pute the counterion correlation functiong(s) on the surface
of the sphere,23,25 defined as

c2g~s!5K (
iÞ j

d~s82si !d~s92sj !L , ~5!

where c5Nc/4pa2 is the surface counterion concentra-
tion ~Nc5ZM /Zc being the number of counterions!, and s
5us82s9u corresponds to thearc length on the sphere of
radiusa ~center-distance of closest approach of macroion and
counterion!. Each counterion~located in the vicinity of the
surface! is radially projected on the~‘‘contact’’ ! shell around
the macroion center of radiusa58s. Correlation functions
are computed by averagingg(s) over 1000 independent
equilibrium configurations which are statistically uncorre-
lated. The pair distributiong(s) is normalized as follows:

cE
0

pa

2psg~s!ds5~Nc21!. ~6!

Because of thefinite size and the topology of the sphere,
g(s) has a cutoff atpa ~525.1s! and azero value there.
Therefore, at large values ofs, g(s) cannot directly be com-
pared to the correlation function in an infinite plane.

Results are depicted in Fig. 1 forZM5180. The first
peak26 appears at abouts5acc'3s, whereas the second

peak abouts'6s and finally the third small peak arounds
'9s. This structure, which is highly correlated, is referred
to as a strongly correlated liquid~SCL!,23,27 but not yet a
Wigner crystal. A typical equilibrium configuration is de-
picted in Fig. 2, where one can see the local arrangement
close to a triangular lattice.

2. Polyelectrolyte chain

Now we investigate an isolated polyelectrolyte chain to-
gether with its surrounding divalent counterions in bulk con-
fined to the same spherical cell of radiusR540s. We con-
sider four monomer charge fractions~i.e., four linear charge
densities! f 51, 1/2, 1/3, and 1/5. The chain is made up of
Nm5256 monomers~Nm5257 for f 51/2!, while Zm5Zc

52. The polymer chain parameters are identical to those of
the complexation case~see Table II!. The chain extension is
characterized by its radius of gyrationRg given by

Rg
25

1

Nm
K (

i 51

Nm

~r i2rCM!2L , ~7!

whererCM is the center-of-mass position of the chain.
The corresponding values ofRg can be found in Table II

@seeRg
(bulk) for runs A–D#. The chain extension varies little

with f and is roughly given byRg'4s. For this strong Cou-
lomb coupling, all counterions are ‘‘condensed’’ into the
polyelectrolyte globule for all three linear charge densities
considered. The strong counterion condensation induces a
collapse of the chain, which is by now well understood.28–32

A typical equilibrium chain conformation is shown in Fig. 3
for f 51. As expected the structure is very compact and
highly ordered. Very similar structures are obtained forf
51/2, 1/3, and 1/5.

FIG. 1. Counterionsurfacecorrelation functiong(s) for 90 divalent coun-
terions (ZM5180) in the case of anisolatedmacroion in strong Coulomb
coupling (l B510s). See Fig. 2 for a typical equilibrium snapshot.

FIG. 2. Snapshot of the equilibrium counterion structure of anisolated
macroion with a bare chargeZM5180 @see Fig. 1 for the corresponding
g(s)#.
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B. Complexation

We now investigate the complexation of a highly
charged colloid with a long flexible polyelectrolyte, both

negatively charged. Four different parameter combinations,
denoted by run A, B, C, and D, were investigated which are
summarized in Table II. Going from run A to D the polyelec-
trolyte charge fractionf decreases from 1 to 1/5. The contour
length of the chain is much larger~Nml /d'14 times! than
the colloidal particle diameter.

Due to the high coupling energies involved forf 51 ~run
A!, we carefully examined the final results, to avoid meta-
stable states. We started with several initial configuration
where each monomer is close to the macroion surface, and
ensured that we ended up each time in the same final~lowest
energy! equilibrium state. By starting from a chain that is far
from the colloid we found a ‘‘long globule’’ adsorbed on the
macroion surface with a much higher energy (DE
'80kBT), which we therefore discarded. For all other inves-
tigated parameters, we found the same final equilibrium con-
figuration, irrespectively of the starting configuration.

1. Observation of the complexation

Figure 4 shows typical equilibrium configurations of the
colloid–polyelectrolyte complex. We notice that in all re-
ported cases complexation occurs and the polyelectrolyte is
completely adsorbed onto the colloidal surface, that is, in
presence of a highly charged colloid, the polyelectrolyte con-
formation becomes quasi-two-dimensionalin contrast to the
bulk case~compare Fig. 4 with Fig. 3!. However the struc-

FIG. 3. Snapshot of the equilibrium conformation of anisolatedpolyelec-
trolyte chain made up of 256 monomers where all monomers are charged
( f 51). Monomers are in white and counterions in dark gray.

FIG. 4. ~Color! Typical equilibrium configurations of the colloid–polyelectrolyte complex in strong Coulomb coupling (l B510s) for ~a! run A (f 51), ~b!
run B (f 51/2), ~c! run C (f 51/3), and~d! run D (f 51/5). Monomers are in white and counterions in red.
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ture of these resulting complexes depends strongly on the
value of f. For the fully charged polyelectrolyte case@run A
with f 51, see Fig. 4~a!# the monomers are closely packed
forming a two-dimensionalcompact Hamiltonian-walk with
the condensed counterions on the polyelectrolyte. This struc-
ture consists of closed packed lines made from either coun-
terions or monomers. When the linear change density is re-
duced @see Figs. 4~b!–4~d!#, the complex structures are
qualitatively different. In these cases the monomers are no
longer closely packed. For run B@f 51/2, Fig. 4~b!#, the
monomers spread more over the particle surface and the
polymer partially wraps around the sphere exhibiting a
quasi-two-dimensional surface pearl-necklace structure. For
run C @f 51/3, Fig. 4~c!# and run D@f 51/5, Fig. 4~d!#, the
monomers spread entirely over the particle surface, and the
chain wraps the colloidal particle leading to an almost iso-
tropic distribution of the monomers around the spherical
macroion.

The like-charge complex formation is due to the strong
counterion mediated correlations which are known to induce
attractions in the strong Coulomb coupling regime. Basically,
the charged species will try to order locally in a way which is
compatible with the chain connectivity and the macroion sur-
face constraints. We now quantify those observations and
propose a simple mechanism to explain the observed confor-
mations.

2. Adsorption profile

To quantify the adsorption of the monomers and counte-
rions on the macroion particle surface, we analyze three
quantities:~i! the ion radial distribution functionni(r ), ~ii !

the ion fractionPi(r ), and ~iii ! the net fluid chargeQi(r )
~omitting the macroion bare chargeZM!, wherer is the dis-
tance from the spherical macroion center. The radial ion dis-
tribution functionni(r ) is normalized as follows:

E
r 0

R

ni~r !4pr 2dr5Ni with i 5c,m, ~8!

whereNi is the total number of ions, and the subscriptsc and
m stand for counterion and monomer, respectively. The re-
duced integrated ion radial densityPi(r ) is linked to ni(r )
via

Pi~r !5
* r 0

r ni~r 8!4pr 2dr8

Ni
with i 5c,m. ~9!

Note that for f ,1, neutral and charged monomers are all
included in the quantitiesnm(r ) and Pm(r ). The net fluid
chargeQ(r ) is given by

Q~r !5E
r 0

r

@Zcnc~r 8!2Zmnm~r 8!#4pr 2dr8, ~10!

where we choosee51.
Integrated distributionP(r ), radial distribution n(r ),

and fluid net chargeQ(r ) profiles are depicted in Figs. 5~a!–
5~c!, respectively. Figure 5~a! shows that all ions for all runs
are condensed within a distance of about 10s from the col-
loid center and more than 80% of the monomers and coun-
terions are within a distance of 9.3s from the colloid center
corresponding roughly to two atomic layers@see also the
radial distribution in Fig. 5~b!#. Due to strong electrostatic
attraction between the sphere and the counterions and strong

FIG. 5. Ion adsorption profiles~runs
A–D! as a function of the distancer
from the macroion center.~a! Fraction
P(r ) and ~b! radial densityn(r ) of
counterions~thin lines! and monomers
~thick lines!; ~c! reduced net fluid
chargeQ(r )/ZM .
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electrostatic repulsion between the sphere and the charged
monomers the first layer (r;a58s) is exclusively made up
of counterions@see Figs. 5~a! and 5~b!#. Note that the mono-
mer depletion in this first counterion layer also concernsneu-
tral monomers~runs B–D! and this effect is attributed to the
chain connectivity. This means that the repulsion stemming
from thechargedmonomers impose the polymer structure as
long as f and the Coulomb coupling are sufficiently high,
which is the case in the present study. The height of the first
peak in the counterionnc(r ) profile is almost independent on
f. The second ion layer is mixed of monomers and counteri-
ons, however with a majority of monomers@see Figs. 5~a!
and 5~b!#. Indeed the first monomer peak in thenm(r ) profile
~located atr'8.7s! and the second counterion peak in the
nc(r ) profile ~located atr'9.2s! are only separated by
roughly Dr'0.5s @see Fig. 5~b!#. This leads to a medium
position located atr'9s corresponding to a bilayer thick-
ness. The height of the second peak in the counterionnc(r )
profile increases with increasingf @see Fig. 5~b!#.

For f 51 ~run A!, we observe a massive macroion
charge inversionof more than 100%@i.e., Q(r )/ZM.2# in
the first layer as well as a strong charge oscillation@see Fig.
5~c!#. Upon reducingf ~runs B–D! the macroion charge over-
compensation decreases as well as the charge oscillation am-
plitude @see Fig. 5~c!#. This is due to the fact that upon re-
ducing f less counterions are present and their correlations
change.

3. Polyelectrolyte chain radius of gyration

Next, we investigate the radius of gyrationRg of the
chain, i.e., Eq.~7!, in order to gain insight of the spreading of
the monomers over the sphere. The results reported in Fig. 6
~for l B510s! show that Rg increases with decreasingf
which demonstrates that the spreading of the monomers over
the macroion surface is enhanced by decreasing the polyelec-
trolyte charge density. The jump inRg is particularly large
betweenf 51 andf ,1. This is in agreement with the visual

inspection of the chain conformations presented in Fig. 4.
Moreover, the isotropic case~monomers fully spread over
the particle! corresponding toRg'8.7s ~Ref. 33! is already
reached forf 51/2 ~run B!.

4. Surface counterion correlation function

In this section we are interested in determining the struc-
ture of the ‘‘free’’ counterions which arenot condensedonto
the polyelectrolyte chain. Counterions are called ‘‘con-
densed’’ on the polyelectrolyte chain when they lie within a
distancer c51.2s perpendicular to the chain~Fig. 7!. All
other counterions are called ‘‘free,’’ although they are still
adsorbed onto the colloidal surface. To characterize the struc-
ture of the free counterions we proceed in the same way as in
Sec. III A 1. The surface free counterion correlation function
gfree(s) is now given by

cfree
2 gfree~s!5K (

iÞ j
d~s82si !d~s92sj !L , ~11!

where the sum in Eq.~11! is restricted to the free counteri-
ons, andcfree5Nfree/4pa2 is the surface free counterion con-
centration, withNfree being the average number of free coun-
terions. The normalization is obtained as follows:

cfreeE
0

pa

2psgfree~s!ds5~Nfree21!. ~12!

Results are depicted in Fig. 8 for runs A–D. The impor-
tant result is that the first peak ofgfree(r ) is located at the
same position (s'3s) as in the ‘‘unperturbed’’ case of an
isolated macroion~without polyelectrolyte! studied in Sec.
III A 1 ~see Fig. 1!. Although the second peak ofgfree(s) is
less pronounced than in the ‘‘unperturbed’’ case~compare
Fig. 8 with Fig. 1!, the local order of the free counterion
structure is still high as can be visually inspected on the
snapshots sketched in Fig. 4. Thus the adsorbed chain only
affects the counterion distribution significantly in its imme-
diate neighborhood.

5. Polyelectrolyte overcharging

We now show that the concept of polyelectrolyteover-
chargingcan be used to explain the observed complex struc-

FIG. 6. Radius of gyration of the polymer as a function of the polyelectro-
lyte charge fractionf for l B510s ~runs A–D!, l B54s ~runs E–G!, and l B

52s ~runs H–J!.

FIG. 7. Schematic view of the chain intercepting counterions within a
distancer c .
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tures. LetNcd be the number of counterions we consider as
condensed onto the polyelectrolyte. Then the overcharging
ratio xPE is defined as

xPE5
Ncd

Ncm
, ~13!

which is merely the ratio between the amount of thetotal
condensed counterion charge and the polyelectrolytebare
charge.

This ‘‘overcharging’’ can also be analytically predicted
by the simple assumption that the presence of the polyelec-
trolyte ~with its counterions! does not affect the free coun-
terion distribution.34 Let us consider the bare charged chain
plus its own neutralizing counterions as an uncharged object
that gets overcharged by intercepting all counterions~of the
macroion! whose center lie within a ribbon of width 2r c and
area Arib52r cNml ~Fig. 7!. If c is the counterion~of the
macroion! concentration, then the theoretical overcharging
ratio x th is merely given by

x th511
Aribc

Ncm
511

2r cNmlZM

NcmZc4pa2 , ~14!

and since the number of charged monomersNcm is given by
Ncm5(Nm21) f 11, Eq. ~14! reduces forNm@1 to

x th;11C/ f , ~15!

with C52r clZM /Zc4pa2.
Results are presented in Fig. 9 and the corresponding

values can be found in Table III. It indicates that in all cases
overcharging occurs~i.e., xPE.1!, and that it increases with
decreasing polyelectrolyte charge density. We have excellent
agreement~less than 10% difference! between simulation re-
sults and our toy model@Eq. ~14!#. In turn it explains why
xPE varies almost linearly with 1/f in our simulations.

The f-dependency of the complexation structure can be
explained through the overcharging. For this we consider the
overcharged polyelectrolyte as adressed~or renormalized!
chain @bare chain1counterions# with an effective~or renor-

malized! linear charge densitylPE* 52(xPE21)lPE that ob-
viously has the opposite sign oflPE .35 Similarly one can
define therenormalizedcharge of a monomer as

qm* 52~xPE21!qm . ~16!

Using Eq.~16! and the results of Fig. 9 this shows thatqm*
increases with increasing 1/f . The overcharging leads to an
effective local repulsion of the monomers, and subsequently
to a bond stiffening of the chain. This in turn explains why
the chain expands with increasing 1/f ~see Figs. 4 and 6 for
the corresponding structures!.36

IV. INTERMEDIATE COULOMB COUPLING

In this section we are dealing with a higher dielectric
constant (e r540), meaning that we consider weaker Cou-
lomb coupling (l B54s). Experimentally this could corre-
spond to using alcohol as a solvent. We consider a set of
three runs E–G withl B54s ~see Table II!. Thus these sys-
tems are, up to a shorter Bjerrum lengthl B , identical to runs
A–C. It will be helpful to start the discussion with the de-
scription of the observed complex microstructures.

A. Complex microstructure

Typical equilibrium macroion–polyelectrolyte complex
structures are sketched in Fig. 10. When the polyelectrolyte
is fully charged ~f 51, run E!, Fig. 10~a! shows again a
strongly compact chain conformation. But in the present situ-
ation the chain does not spread on the macroion surface as it
was the case in the strong Coulomb coupling@compare Fig.

FIG. 8. Free counterion~unbounded to the polyelectrolyte! surface correla-
tion functiongfree(s) for runs A–D.

FIG. 9. Polyelectrolyte overcharge as a function off ~runs A–D!. The
dashed line corresponds to the theoretical prediction where Eq.~14! was
used.

TABLE III. Polyelectrolyte overchargexPE values as a function off.

Run 1/f xPE ~MD! xPE ~Theory!

A 1 1.14060.002 1.21
B 2 1.3960.02 1.43
C 3 1.5960.02 1.64
D 5 1.8860.03 2.06
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10~a! with Fig. 4~a!#. In fact the conformation of the charged
chain in the presence of the macroion is very similar to the
bulk conformation@compare Fig. 10~a! with Fig. 3#.

By reducing the monomer charge fraction, Figs. 10~b!
and 10~c! show that the complex microstructure for runs F, G
is again qualitatively different from the fully charged case
~run E!. For these smaller polyelectrolyte linear charge den-
sities ~f 51/2 and f 51/3!, the chain conformation is again
almost wrapping around the colloid. Forf 51/2 ~run F! the
pearl-necklace structure observed in the strong Coulomb
coupling @see Fig. 4~b!# does not appear here, instead small
loops appear@see Fig. 10~b!#. For the smallest monomer
charge fraction~f 51/3, run G! the monomers fully spread
over the macroion surface and the conformation is not com-

pact, and also small loops appear@see Fig. 10~c!#. Again it is
observed that upon reducing the polymer charge density the
chain expands, but this time it expands also into the radial
direction away from the macroion.

The forthcoming sections are devoted to study in more
detail the monomer and counterion distributions.

B. Adsorption profile

Integrated distributionP(r ), radial distribution n(r ),
and fluid net chargeQ(r ) profiles are given in Figs. 11~a!–
11~c!, respectively. In a general manner, the fraction of
monomers and counterions in the vicinity of the macroion
surface is clearly smaller than the one obtained in the strong

FIG. 10. ~Color! Typical equilibrium configurations of the colloid-polyelectrolyte complex in moderate Coulomb coupling (l B54s) for ~a! run E (f 51), ~b!
run F (f 51/2), and~c! run G (f 51/3). Monomers are in white and counterions in red.
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Coulomb coupling as expected@compare Fig. 11~a! with Fig.
5~a!#. Also the width in theP(r ) profile of adsorbed ions is
enlarged with decreasing Coulomb coupling@compare Fig.
11~a! with Fig. 5~a!#. These features show that the monomer
adsorption is more diffuse~in the normal direction to the
macroion sphere! as expected for a weaker Coulomb cou-
pling. Concerning the ion densityn(r ) profile @see Fig.
11~b!#, it is interesting to note that the height of thefirst peak
in the monomer densitynm(r ) profile is twice smaller forf
51 than forf ,1, whereas the one from the counterion den-
sity profile is almost independent onf. In parallel, the mac-
roion charge overcompensation as well as charge oscillation
amplitudes are clearly reduced compared to the strong Cou-
lomb regime@compare Fig. 11~c! with Fig. 5~c!#.

For the fully charged polyelectrolyte case~f 51, run E!
thenm(r ) profile in Fig. 11~b! shows a strong second mono-
mer peak and a weaker third one in agreement with the snap-
shot of Fig. 10~a!. The radial monomer ordering naturally
goes along with a counterion ordering in antiphase. In other
words, multilayering of different chain segments occurs, but
without strong adsorption of the macroion@compare Fig.
10~a! with Fig. 4~a!#. Therefore we find three charge oscilla-
tions @see Fig. 11~c!# against only two in the strong Coulomb
coupling @see Fig. 5~c!#.

For smaller linear charge density, Figs. 11~a! and 11~b!
indicate that for runs F (f 51/2) and G (f 51/3) the chain is
almost fully adsorbed to the macroion surface without mono-
mer chain multilayering@i.e., no appearance of monomer
second peak in thenm(r ) profile, see Fig. 11~b!#. However,
the conformation is a little bit swollen probably due to the
onset of loop formation, compare the snapshots in Fig. 10.

As in the strong Coulomb coupling case, we find here only
one charge oscillation forf 51/2 andf 51/3, and the ampli-
tude of the reduced net fluid charge decreases with decreas-
ing f.

C. Polyelectrolyte chain radius of gyration

Results for the radius of gyrationRg of the polymer
chain are reported in Fig. 6~for l B54s!. As for the high
Coulomb coupling case withl B510s, Rg increases with de-
creasingf. However, for f 51, here we obtainRg'4.8s
which is clearly smaller than the valueRg'6.4s obtained in
run A ~see Fig. 6!. This proves that forl B54s the chain
conformation stays as a globule, since we already found that
for the same chain length and withl B510s the chain con-
formation was compact and two-dimensional. In the case un-
der consideration (f 51,l B54s), the value ofRg'4.8s is
almost identical to the one obtained in the bulk whereRg

54.4s ~see Table II!.
Upon reducingf ~runs F and G!, the chain is much more

expanded and it is found thatRg'9.4s. Taking into account
the fact the chain is still adsorbed for both systems~runs F
and G! as was found in the analysis of the adsorption profile

TABLE IV. Polyelectrolyte overchargexPE values as a function off ~runs
E–G!.

Run 1/f xPE

E 1 1.04360.002
F 2 1.08960.003
G 3 1.06560.006

FIG. 11. Ion adsorption profiles~runs
E–G! as a function of the distancer
from the macroion center.~a! Fraction
P(r ) and ~b! radial densityn(r ) of
counterions~thin lines! and monomers
~thick lines!; ~c! reduced net fluid
chargeQ(r )/ZM .

2955J. Chem. Phys., Vol. 117, No. 6, 8 August 2002 Like-charge colloid–polyelectrolyte complexation

Downloaded 11 Oct 2006 to 134.99.64.141. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



~see Fig. 11!, one deduces that the spreading of the mono-
mers is very important as soon asf ,1. A comparison with
the strong Coulomb coupling shows that values ofRg for
l B54s are systematically larger than those ofRg with l B

510s ~see Fig. 6 and Table II!, indicating again that the
chain fluctuates more in the outward macroion radial direc-
tion at weaker Coulomb coupling.

D. Polyelectrolyte overcharging

In order to check if the local polyelectrolyte overcharge
is responsible for the expansion of the chain upon reducingf
as was demonstrated in the strong Coulomb coupling forl B

510s in Sec. III B 5, we again consider the overcharging

ratio xPE defined by Eq.~13! with the same condensation
distancer c51.2s as was done forl B510s in Sec. III B 5.

Numerical values ofxPE can be found in Table IV. It
clearly shows that polyelectrolyte overcharge is negligible
~i.e., xPE'1! for the present Coulomb coupling regime
whatever the value off. Consequently one cannot explain the
expansion of the chain with increasing 1/f with a polyelec-
trolyte overcharge mechanism. We will give clear and quali-
tative arguments in Sec. VI that account for these conforma-
tions.

V. WEAK COULOMB COUPLING

This part is devoted to aqueous solutions where the Bjer-
rum length isl B52s57.14 Å corresponding to the dielec-

FIG. 12. ~Color! Typical equilibrium configurations of the colloid-polyelectrolyte complex in weak Coulomb coupling (l B52s) for ~a! run H ( f 51), ~b! run
I ( f 51/2), and~c! run J ( f 51/3). Monomers are in white and counterions in red. Snapshot~c! was obtained with periodic boundary conditions.
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tric constante r'80 of water. Such systems will be referred
to as the weak Coulomb coupling regime. We have consid-
ered the set of runs H–N~see Table II!. Runs H–J are iden-
tical to the previous ones but with a shorter Bjerrum length
l B52s. Runs K–M, that will be investigated in Sec. V D,
correspond to systems where each charged monomer is
monovalent (Zm51) and counterions are trivalent (Zc53).
This latter choice~runs K–M! is motivated by the fact that
such systems should be easily accessible by experiments.
Run N has both, counterions and monomers, monovalent.

A. Complex microstructure

Typical equilibrium macroion–polyelectrolyte complex
structures for runs H–J can be found in Fig. 12. In all cases,
one finds that the polymerneveradopts a ‘‘two-dimensional’’
conformation. A comparison of the bulk value ofRg and the
Rg of the chain in the complexed situation~compare Table
II ! reveals that the chain conformation is only weakly af-
fected by the macroion. For the fully charged polymer~f
51, run H!, the conformation is again rather compact but
without exhibiting a strong monomer-counterion ordering
~within the polymeric aggregate! as it was the case for higher
Coulomb coupling regimes@compare Fig. 12~a! with Figs.
4~a! and 10~a!#. However we do have an effective macroion–
polyelectrolyte attraction, and the dense monomer–
counterion aggregate is adsorbed onto the colloidal surface.

For f 51/2 ~run I!, the chain conformation is more ex-
panded than forf 51 @compare Fig. 12~b! with Fig. 12~a!#.
Nevertheless we do have polymer adsorption with the forma-
tion of chain loops. Therefore even for couplings which are

typical of aqueous systems, our simulations show that like-
charge complexation can occur forf 51 and f 51/2 with
divalent ions (Zm5Zc52).

For even lower linear charge density~f 51/3, run J!, Fig.
12~c! shows polymer desorption fromf 51/2 to f 51/3. In
the same time there is a certain ‘‘counterion release’’ for f
51/3, meaning that not all counterions are in the vicinity of
the highly charged objects~macroion and polyelectrolyte!.
We carefully checked that, with periodic boundary condi-
tions, the same features qualitatively appear, namely, chain
desorption fromf 51/2 to f 51/3.

B. Adsorption profile

Integrated distributionP(r ), radial distributionn(r ) and
fluid net chargeQ(r ) profiles for runs H–J are depicted in
Figs. 13~a!–13~c!, respectively. The ion fractionP(r ) pro-
files show that forf 51 ~run H! and f 51/2 ~run I! almost all
particles lie within a distancea,r ,20s @i.e., P(r 520s)
'1#, corresponding to roughly one macroion diameter away
from the colloidal surface@see Fig. 13~a!#. This is in contrast
to what was previously found~with f 51 and f 51/2! at
stronger Coulomb coupling regimes where almost all ions lie
within a distance of a few monomer sizes from the macroion
surface@compare Fig. 13~a! with Figs. 5~a! and 11~a!#. For
f 51/3 ~run J! only a very small fraction of monomers
@Pm(r 510s),5%# lie in the vicinity of the macroion sur-
face. In this latter situation, the counterionPc(r ) profile in-
dicates that a larger fraction of counterions float in the solu-
tion. Because theRg of the chain is very large and some
chain monomers might be interacting with the cell boundary
we performed for this situation a simulation where we em-

FIG. 13. Ion adsorption profiles~runs
H–J! as a function of the distancer
from the macroion center.~a! Fraction
P(r ) and ~b! radial densityn(r ) of
counterions~thin lines! and monomers
~thick lines! adsorbed on the spherical
macroion;~c! reduced net fluid charge
Q(r )/ZM .
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ployed periodic boundary condition, and where the interac-
tions were computed using the P3M algorithm.37 With this
run we found no chain monomers in the vicinity of the col-
loid surface, hence unambiguously found monomer desorp-
tion from the colloidal surface.

Concerning the intrachain monomer ordering forf 51,
Fig. 13~b! shows that, although the chain conformation is
relatively dense, there is only one main peak in the monomer
nm(r ) profile ~the second peak is marginal!. This proves that
there is no strong intrachain monomer ordering~in the nor-
mal direction to the macroion sphere! in this weak Coulomb
coupling in contrast with our observations atl B54s @com-
pare with Fig. 11~b!#. Nevertheless a second counterion layer
~third monomer layer! is built. The heighthm of the mono-
mer peak is identical~within the statistical uncertainty! for

f 51 and f 51/2 and corresponds tohm'0.038/s3, whereas
for f 51/3 we havehm'0.01/s3.

C. Polyelectrolyte chain radius of gyration

As far as the net fluid chargeQ(r ) is concerned, Fig.
13~c! shows that forf 51 a weak charge oscillation appears
with a marginal macroion overcharge compensation of 3%.
For f 51/2, the same marginal macroion overcharging occurs
but without exhibiting charge oscillation. Finally, forf
51/3 no overcharging appears and the net charge increases
monotonically.

In Fig. 6 ~for l B52s! the chain radius of gyrationRg as
function of f is plotted for runs H–J. It is found thatRg

increases almost linearly with 1/f . This result fits well with

FIG. 14. ~Color! Typical equilibrium configurations of the colloid–polyelectrolyte complex in weak Coulomb coupling~l B52s, Zm51, andZc53! for ~a!
run K (f 51), ~b! run L (f 51/2), and~c! run M (f 51/3). Monomers are in white and counterions in red.
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the scaling theory in this regime from Ref. 38, where it is
found that the chain extension shrinks proportionally with
l B , and we can assume for our purposesf } l B . Because the
electrostatic interactions are weaker in the present case (l B

52s), the ion pair~monomer-condensed counterion! attrac-
tions are weaker which results in a higherRg value~at fixed
f ! than in the strong Coulomb coupling regime.

D. Moderately charged polyelectrolyte

Typical macroion-polyelectrolyte complex microstruc-
tures for runs K–M are depicted in Fig. 14. In all cases we
have adsorption of the polyelectrolyte onto the like-charged
sphere. Similar features as with systems H–J~i.e., Zm5Zc

52! happen here. In particular, for the highest linear charge
density@f 51, run K, Fig. 14~a!# the polyelectrolyte consists
of dense globules separated by strings, reminiscent of the
pearl-necklaces found in studies of polyampholytes.39 Also
for run K, we have a stronger polymer adsorption compared
to run H due to the stronger counterion mediated correla-
tions. By decreasingf @see Figs. 14~b! and 14~c!#, we observe
the formation of loops as for run I.

Integrated distributionP(r ), radial distribution n(r ),
and fluid net chargeQ(r ) profiles are depicted in Figs.
15~a!–15~c!, respectively. Figure 15~a! shows that withinr
'10s, corresponding to a three-layer thickness, most of the
counterions are adsorbed@i.e., Pc(r'10s)'80%#. More-
over, the fractionPm(r ) of adsorbed monomers is signifi-
cantly higher than that with systems H–J@compare Fig.
13~a!#. As in the previous runs H–J, the height of the first
peak in the counterion densitync(r ) is nearly independent of
f @compare Figs. 13~b! and 15~b!#. The monomer density

nm(r ) is now significantly higher than for runs H–J andhm

increases withf as was observed on the snapshots in Fig. 14.
The expansion of the chain as a function off can be

deduced fromRg . The corresponding values are gathered in
Table II and show that the chain expands with decreasingf as
observed in the previous runs.

The net fluid charge is similar to that of runs H–J@com-
pare Figs. 13~c! and 15~c!#. Due to the stronger counterion
induced correlations that occur withZc53, we find a stron-
ger macroion overcharging and amplified charge oscillations.

Finally, we checked that forZc5Zm51 and f 51, cor-
responding to run N~see Table II!, we have a strong
macroion–polyelectrolyte repulsion that does not allow like-
charge complexation.

VI. CONCLUDING REMARKS

We have carried out MD simulations to study the com-
plexation of a charged colloid with a charged polyelectrolyte
of the same charge for various Coulomb couplingsl B and
varying monomer charge fractionf.

For high Coulomb coupling (l B510s) we gave a rea-
soning for the observed conformation in terms of overcharg-
ing of the single chain. However this argument only worked
for the largest coupling parameter.

A complementary view of the observed conformations is
to regard both macroions as being neutralized by their coun-
terions. The isolated chain would then collapse into a glob-
ule, and the colloid would be regularly covered by its coun-
terions. By changing the Bjerrum lengthl B we change the
correlations between the charges which lead in a first ap-

FIG. 15. Ion adsorption profiles~runs
K–M! as a function of the distancer
from the macroion center.~a! Fraction
P(r ) and ~b! radial densityn(r ) of
counterions~thin lines! and monomers
~thick lines! adsorbed on the spherical
macroion;~c! reduced net fluid charge
Q(r )/ZM .
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proximation to attractions of dipolar origin, and the attraction
is roughly proportional tol B . On the other hand, by varying
f we change the number of counterions of the chain, hence
the number of available dipoles.

For f 51 we can regard the colloidal particle as exerting
only a perturbation of the chain complex~which has a higher
density of dipoles!. For l B510s the strong attraction results
in a flat disk, whereas for smallerl B the disk swells back into
the bulk structure, the globule.

By reducingf, the number of counterions of the poly-
electrolyte and the colloid become comparable in number,
and both macroions can equally compete for the counterions
leading to a greater freedom of both macroions to ‘‘move’’ in
their common counterion cloud. For the largest value ofl B

we have again the strongest dipolar attractions leading to a
purely 2D conformation, where the chain is wrapped around
the colloid. For smaller values ofl B the conformations be-
come more and more 3D-like, but the chain is still wrapping
around the colloid.

Of special interest here is the fact that even for a cou-
pling strength which is typically for an aqueous solvent (l B

52s57.1 Å) we find that like-charge complexation still oc-
curs provided that the linear charge density is sufficiently
large or the counterion valenceZc high enough. However the
adsorption of the polymer chain onto the colloid is weaker
than in the larger Coulomb coupling regimes. For divalent
chain-monomers~i.e., Zm52! and f 51/2, we observe for-
mation of large loops. ForZm52 and f 51/3 we find no
complex, but end with two single macroions together with
their counterion cloud which interact mainly with their bare
charge, i.e., repulsively. In the case of monavalent chain-
monomers (Zm51) and trivalent counterions (Zc53), we
find for all f >1/3 like-charge complexation where the chain
wraps around the colloid. Again, forf 51 the conformation
is more compact and expands with decreasingf, showing
loops for all f.

Our parameters concerning aqueous solutions should be
experimentally accessible, typically for small highly charged
colloids ~micelles and relatively short polyelectrolyte
chains!. The other cases corresponding to lower dielectric
constants might also be relevant for organic solutions.
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The adsorption of flexible and highly charged polyelectrolytes onto oppositely charged planar surfaces is
investigated by means of Monte Carlo simulations. The effect of image forces stemming from the dielectric
discontinuity at the substrate interface is analyzed. The influence, at fixed polyelectrolyte volume fraction, of
chain length and surface-charge density is also considered. A detailed structural study, including monomer and
fluid charge distributions, is provided. It is demonstrated that image forces can considerably reduce the degree
of polyelectrolyte adsorption and, as a major consequence, inhibit the charge inversion of the substrate by the
polyelectrolytes.
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I. INTRODUCTION

The adsorption of charged polymers[polyelectrolytes
(PEs)] on charged surfaces is an important phenomenon in
industrial and biological processes. Well controlled model
experiments[1,2] were devoted to characterize PE adsorp-
tion. The understanding of PE adsorption remains an out-
standing problem because of the many different typical in-
teractions involved there: strong electrostatic substrate-PE
binding, monomer-monomer(PE-PE) repulsion, chain en-
tropy, excluded volume, etc. Another complication arises
from thedielectric discontinuitybetween the solvent and the
substrate generating surface-polarization charges. In most
practical cases, water plays the role of the solvent for PEs,
whereas the substrate corresponds to an unpolar dielectric
medium leading to considerable polarization(image) forces.

On the theoretical side, PE adsorption on planar charged
surfaces has been intensively studied by several authors
[3–24] on the level of mean--field theories. The case of PE
adsorption on heterogeneously charged surfaces was recently
theoretically addressed by de Vrieset al. [21]. A remarkable
common feature of some of these studies is the charge rever-
sal (overcharging) of the substrate by the adsorbed PEs(see,
e.g., Refs.[12,13,15,16,19,25]). The problem of PE adsorp-
tion onto similarly charged substrates was recently investi-
gated by Dobrynin and Rubinstein[19] and Cheng and Lai
[23,24]. In the latter situation, the PE adsorption is then
driven either bynonelectrostatic short-rangeforces [19] or
attractive image forces[23,24] stemming from a high-
dielectric surface. The problem ofrepulsive image forces
stemming from a low-dielectric surface was studied by
Borisov et al. [9] and Netz and Joanny[16] on the level of
the Debye-Hückel approximation.

As far as computer simulations are concerned, there exist
few Monte Carlo(MC) studies about PE adsorption on pla-
nar charged substrates[23,26–30]. The first MC study on PE
adsorption was that of Beltánet al. [26], where a lattice
model was employed. Yamakovet al. [28] performed exten-
sive MC simulations and found excellent agreement with the

scaling predictions of Borisovet al. [9], where different re-
gimes of adsorption are identified. Elliset al. [29] considered
the interesting case of heterogeneously charged surfaces
(made of positively and negatively charged surface sites) and
demonstrated that a PE carrying the same sign of charge as
that of the net charge of the substrate can adsorb. Chenget
al. [23] also investigated the effect of image charges on a
high-dielectric constant substrate. It is important to mention
that all these MC simulations[23,26–29] use the Debye-
Hückel approximation. The problem of PE multilayering was
very recently studied by Messina[30], where the full un-
screened long-range electrostatic interactions were consid-
ered but without image forces.

In this paper, we investigate multichain adsorption in the
dilute regime at fixed PE volume fraction in a salt-free envi-
ronment but where counterions from the substrate and the
PEs are explicitly taken into account. In order to clearly
identify the effect of image forces on PE adsorption, we
systematically compare situationswith and without image
forces, which was not properly done in the literature(see,
e.g., Refs.[9,16,24]). The influence of chain length(for short
chains) and substrate-charge density is also considered. Our
paper is organized as follows. The model and simulation
technique are detailed in Sec. II. Our results are presented in
Sec. III, and Sec. IV provides concluding remarks.

II. MODEL AND PARAMETERS

A. Simulation model

The setup of the system under consideration is similar to
that recently investigated with a planar substrate(without
image forces) [30]. Within the framework of the primitive
model, we consider a PE solution near a charged hard wall
with an implicit solvent(water atz.0) of relative dielectric
permittivity esolv<80. The substrate located atz,0 is char-
acterized by a relative dielectric permittivityesubs which
leads to a dielectric jumpDe (whenesolvÞesubs) at the inter-
face defined as

De =
esolv − esubs

esolv + esubs
ù 0. s1d
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The negativebare surface-charge density of the substrate
is −s0e, where e is the (positive) elementary charge and
s0.0 is the number of charges per unit area. Electroneutral-
ity is always ensured by the presence of explicit monovalent
sZc=1d substrate counterions(i.e., monovalent cations) of
diametera. PE chains are made up ofNm monovalentposi-
tively charged monomerssZm=1d of diametera. Each mono-
mer is charged so that the fraction of charged monomers is
unity. Their counterions(monovalent anions) are also explic-
itly taken into account with the same parameters up to the
charge sign as the monomers. Hence, all microions are
monovalent:Z=Zc=Zm=1 with the same diameter sizea.

All these particles making up the system are immersed in
a rectangularL3L3t box. Periodic boundary conditions
are applied in thesx,yd directions, whereas hard walls are
present atz=0 (location of the charged interface) and z=t
(location of anunchargedwall).

The total energy of interaction of the system can be writ-
ten as

Utot = o
i

fUhs
splatedszid + UCoul

splatedszidg + o
i,i, j

fUhssr ijd

+ UCoulsr i,r jd + UFENEsr ijd + ULJsr ijdg, s2d

where the first(single) sum stems from the interaction be-
tween an ioni (located atz=zi) and the charged plate, and
the second(double) sum stems from the pair interaction be-
tween ionsi and j with r ij = ur i −r ju. All these contributions to
Utot in Eq. (2) are described in detail below.

Excluded volume interactions are modeled via a hardcore
potential[31] defined as follows:

Uhssr ijd = H0 for r ij ù a

` for r ij , a
J s3d

for the microion-microion one, and

Uhs
splatedszid = H0 for a/2 ø zi ø t − a/2

` otherwise
J s4d

for the plate-microion one. For clarity, we recall that a mi-
croion stands either for a(charged) monomer or a counter-
ion.

The electrostatic energy of interaction between two mi-
croionsi and j reads

bUCoulsr i,r jd = ± lBF 1

r ij
+

De

Îxij
2 + yij

2 + szi + zjd2G , s5d

where 1 (2) applies to microions of the same(opposite)
sign, lB=be2/4pe0esolv is the Bjerrum length corresponding
to the distance at which two protonic charges interact with
1/b=kBT, andDe is given by Eq.(1). The first term in Eq.
(5) corresponds to the direct Coulomb interaction between
real ions, whereas the second term represents the interaction
between the real ioni and the image of ionj . By symmetry,
the latter also describes the interaction between the real ionj
and the image of ioni yielding an implicit factor 1/2. The
electrostatic energy of interaction between an ioni and the
(uniformly) charged plate reads

bUCoul
splatedszid = lBF±2ps0zi +

De

4zi
G , s6d

where, for the first term,1 (2) applies to positively(nega-
tively) charged ions. The second term in Eq.(6) stands for
the self-imageinteraction, i.e., the interaction between the
ion i and its own image. An appropriate and efficient modi-
fied Lekner sum was utilized to compute the electrostatic
interactions with periodicity intwo directions[32]. To link
our simulation parameters to experimental units and room
temperaturesT=298 Kd, we choosea=4.25 Å leading to the
Bjerrum length of waterlB=1.68a=7.14 Å. In order to in-
vestigate the effect of image forces, we take a value of
esubs=2 for the dielectric constant of the charged substrate
(which is a typical value for silica or mica substrates[33])
and esolv=80 for that of the aqueous solvent yieldingD«

=s80−2d / s80+2d<0.951. The case of identical dielectric
constantsesolv=esubssDe=0d corresponds to the situation
where there are no image charges.

The PE chain connectivity is modeled by employing a
standard finite extension nonlinear elastic(FENE) potential
for good solvent, which reads

UFENEsrd = 5−
1

2
kR0

2 lnF1 −
r2

R0
2G for r , R0

` for r ù R0
6 s7d

with k=27kBT/a2 andR0=1.5a. The excluded volume inter-
action between chain monomers is taken into account via a
shifted and truncated Lennard-Jones(LJ) potential given by

ULJsrd = 54eFSa

r
D12

− Sa

r
D6G + e for r ø 21/6a

0 for r . 21/6a
6 , s8d

wheree=kBT. These parameter values lead to an equilibrium
bond lengthl =0.98a.

All the simulation parameters are gathered in Table I. The
set of simulated systems can be found in Table II. The equi-
librium properties of our model system were obtained by
using standard canonical MC simulations following theMe-

tropolis scheme[34,35]. Single-particle moves were consid-
ered with an acceptance ratio of 30% for the monomers and

TABLE I. List of key parameters with some fixed values.

Parameters

T=298 K room temperature

s0L
2 charge number of the substrate

De=0 or 0.951 dielectric discontinuity

Z=1 microion valence

a=4.25 Å microion diameter

lB=1.68a=7.14 Å Bjerrum length

L=25a sx,yd-box length

t=75a z-box length

NPE number of PEs

Nm number of monomers per chain
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50% for the counterions. Depending on the parameters, the
length of a simulation run ranges from 23106 up to 7
3106 MC steps per particle. Typically, about 33105 to 2.5
3106 MC steps were required for equilibration, ands1−4d
3106 subsequent MC steps were used to perform measure-
ments.

B. Measured quantities

We briefly describe the different observables that are go-
ing to be measured. In order to study the PE adsorption, we
compute the monomer densitynszd that is normalized as fol-
lows:

E
a/2

t−a/2

nszdL2dz= NPENm. s9d

To further characterize the PE adsorption, we also compute

the total number of accumulated monomersN̄szd within a
distancez from the planar charged plate that is given by

N̄szd =E
a/2

z

nsz8dL2dz8. s10d

It is useful to introduce the fraction of adsorbed monomers,
N* szd, which is defined as follows:

N * szd =
N̄szd

NPENm
. s11d

Another relevant quantity is the globalnet fluid charge
sszd, which is defined as follows:

sszd =E
a/2

z

fn+sz8d − n−sz8dgdz8, s12d

where n+ and n− stand for the density of all the positive
microions(i.e., monomers and plate’s counterions) and nega-
tive microions(i.e., PEs’ counterions), respectively. It is use-
ful to introduce the reduced surface charge densitys* szd
defined as follows:

s * szd =
sszd
s0

. s13d

Thereby,s* szd corresponds, up to a prefactors0e, to the net
fluid charge per unit area(omitting the surface charge density
−s0e of the substrate) within a distancez from the charged
wall. At the uncharged wall, electroneutrality imposess* sz
=t−a/2d=1. By simple application of Gauss’ law,fs* szd
−1g is directly proportional to the mean electric field atz.
Therefore,s* szd can measure thescreeningstrength of the
substrate by the neighboring solute charged species.

III. RESULTS AND DISCUSSION

From previous studies[9,16,36,37], it is well understood
that effects of image charges become especially relevant at
sufficiently low surface charge density of the interface. It is
also clear that the self-image interaction(repulsive for
De.0, as is presently the case) is higher the higher the
charge of the ions(polyions) since it scales likeZ2. In the
present situation where we have to deal with PEs, the length
of the chainsNmd is a key parameter that can be seen as the
valence of a polyion. Hence, we are going to study(i) the
influence of chain length(Sec. III A) and(ii ) that of surface
charge density(Sec. III B). For the sake of consistency, we
fixed the total number of monomers toNPENm=192, meaning
that the monomer concentration isfixed (see also Table II):
The PE volume fraction

f =
4p

3

NPENmsa/2d3

L2t
< 2.143 10−3

is fixed.

A. Influence of chain length

In this part, we consider the influence of chain lengthNm
at fixed surface charge density parameters0L

2=64. The lat-
ter corresponds experimentally to a moderate[2] surface
charge density with −s0e<−0.091 C/m2. The chain length
is varied fromNm=2 up toNm=32 (systemsA−E, see Table
II ). We have ensured that, for the longest chain withNm
=32, size effects are still negligible since the mean end-to-
end distance is about 14a, which is significantly smaller than
L=25a or t=75a.

The profiles of the monomer distributionnszd can be
found in Fig. 1 and the corresponding microstructures are
sketched in Fig. 2. Let us first comment on the more simple
case where no image charges are present[De=0—see Fig.
1(a)]. For (very) short chains(hereNmø4), Fig. 1(a) shows
that the density profiles exhibit a monotonic behavior even
near contact. Within this regime of chain length, the mono-
mer density near the charged wall increases with increasing
Nm. This feature is fully consistent with the idea that stronger
lateral correlations, the latter scaling likeZ3/2 for spherical
counterions at fixeds0 [38,39], induce a higher polyion ad-
sorption. In other words, at(very) low Nm, conformational
entropic effects are not dominant and the short-chains sys-
tems can be qualitatively understood with the picture pro-
vided by spherical(or pointlike) ions. The scenario becomes

TABLE II. Simulated systems’ parameters. The number of coun-
terions(cations and anions) ensuring the overall electroneutrality of
the system is not indicated.

System NPE Nm s0L
2

A 96 2 64

B 48 4 64

C 24 8 64

D 12 16 64

E 6 32 64

F 12 16 32

G 12 16 128

H 12 16 192
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qualitatively different at higher chain length[here
Nmù8—see Fig. 1(a)], wherenszd presents a maximum near
contact which is the signature of ashort-range repulsionthat
was also theoretically predicted[10]. This nontrivial feature
can be explained in terms of entropy: Near the surface of the
substrate, the number of available PE conformations is con-
siderably reduced, yielding to an entropic repulsion that can
be detected if the driving force of PE adsorption(crucially
controlled bys0) is not strong enough. This latter statement
will be properly examined and confirmed in Sec. III B,
where the influence ofs0 is addressed. Nonetheless, the
highest value ofnsz;Nmd increases withNm, as it should be.
All these mentioned features can be visualized on the micro-
structures depicted in Fig. 2. One can summarize those rel-
evant findings, valid for small enoughs0 and De=0, as
follows: (i) For very short chains, the PE adsorption is
similar to that occurring with spherical electrolytes;(ii ) PE
chains experience a short-range repulsion near the substrate
due to conformational entropic effects. Now, attrue con-
tact (i.e., z=0.5a) it seems that the monomer densitynsz
→a/2d [40] seems to be nearly independent ofNm for the

parameters under consideration. In fact, for a(one-
component) electrolyte, the density at contact can beexactly
obtained [41] via the relation nsz=a/2d−nsz=t−a/2d
=2plBs0

2 yielding nsz=a/2d<0.11a−3 [where basicallynsz
=t−a/2d<0], which is in remarkable agreement with the
value found in Fig. 1(a). One can wonder why such a simple
theorem is “equally” well satisfied for PE systems that sig-
nificantly deviate from simple structureless spherical ions. In
fact, this is a nontrivial finding since already forrodlike PEs
a fully different behavior is observed. Certainly more data
are needed to clarify this point.

We now turn to the more complicated situation where
image forces are present[De=0.951—see Fig. 1(b)]. An im-
mediate remark that can be drawn from a comparison with
the De=0 case is that the PE adsorption is much weaker due
to the repulsive image-polyion interactions. At allNm, nszd
presents a maximum atz=z* that is gradually shifted to
largerz with increasingNm. In other words, thethicknessof

FIG. 1. Profiles of the monomer densitynszd for different chain
lengthNm with s0L

2=64 (systemsA−E). (a) De=0. (b) De=0.951.

FIG. 2. Typical equilibrium microstructures of systemsA−E.
The little counterions are omitted for clarity.
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the adsorbed PE layer as determined byz* increases with
Nm. This phenomenon is of course due to the fact that the
image-polyion repulsion increases withNm, similarly to what
happens with multivalent(pointlike or spherical) counterions
[36,37]. On the other hand, interestingly, the monomer den-
sity at contactdecreaseswith increasingNm. This is the re-
sult of a combinedeffect of (i) conformational entropy as
explained above and(ii ) the Nm-induced image-polyion re-
pulsion. All those features are well illustrated on the micro-
structures of Fig. 2.

To gain further insight into the properties of PE adsorp-
tion, we have plotted the fraction of adsorbed monomers
N* szd [Eq. (11)] in Fig. 3. At De=0 [see Fig. 3(a)], it is
observed in the immediate vicinity of the wall(roughly for
z&1.5a) thatN* sz;Nmd increases monotonically withNm, as
expected. However, further away from the wall, a nontrivial
effect is found whereN* sz;Nmd surprisingly exhibits a non-
monotonic behavior with respect toNm. More explicitly, in
the regime of largeNm we haveN* sz;Nm=32d, which is

clearly smaller thanN* sz;Nm=16d and even smaller than
N* sz;Nm=8d when one is sufficiently far from the wall. This
remarkable phenomenon is going to be explained later by
advocating the role of overcharging. Upon switching the im-
age forces on[De=0.951—see Fig. 3(b)], N* sz;Nmd shows a
qualitatively different behavior from that found atDe=0, in
accordance with our study concerningnszd. More precisely,
(i) very close to the wall,N* sz;Nmd decreaseswith Nm,
while (ii ) sufficiently far away from the wall,N* sz;Nmd in-
creaseswith Nm. This behavior is fully consistent with our
mechanisms previously discussed fornszd. Below, we are
going to show that the reduced net fluid charges* szd is a
key observable to account for those reported properties of
N* sz;Nmd.

A deeper understanding of the physical mechanisms in-
volved in PE adsorption can be gained by considering the net
fluid charge parameters* szd [Eq. (13)] that describes the
screening of the charged interface. The profiles ofs* szd for
differentNm can be found in Fig. 4. AtDe=0 [see Fig. 4(a)],
it is shown that for long enough chains(here Nmù4) the
substrate gets locallyovercharged, as signaled bys* szd.1.
Physically, this means that the global local charge of the
adsorbed monomers[42] is larger in absolute value than that
of the interface. In other words, the charged wall isover-
screenedby the adsorbed PE chains. Figure 4(a) indicates
that the degree of overcharging increases withNm, as ex-
pected from the behavior of multivalent counterions, and
seems to saturate at highNm. This enhancedNm overcharging
leads to a sufficiently strong effective repulsion between the
substrate and the PEs in the solution, which in turn prevents
further adsorption. It is precisely this mechanism that ex-
plains the apparent anomaly found in Fig. 3(a), where, suffi-
ciently away from the surface, it was reported a significantly
lower monomer fractionN* sz;Nmd at Nm=32 than atNm

=16 or Nm=8. That is to say, although the amount of over-
charging is essentially the same forNm=32 andNm=16, the
effective repulsiveinteraction between the wall(covered by
the adsorbed PEs) and the nonadsorbed PEs increases with
Nm, leading to a stronger PE depletion above the PE layer at
large enoughNm. This spectacular effect(due to electrostatic
correlations) is well illustrated in Fig. 2 (with Nm=32),
where above the(strongly bound) adsorbed PEs there is a
depletion zone.

Upon inducing polarization charges[De=0.951—see Fig.
4(b)], overscreening is canceled. This, in turn, accounts for
the absence of plateau inN* sz;Nmd at De=0.951. That strik-
ing disappearance of overcharging can be rationalized by es-
tablishing again an analogy with multivalent spherical ions,
as follows.

For the sake of simplicity, let us assume that the PE can
be electrostatically envisioned as a spherical polyion of va-
lenceNm with a radius corresponding roughly to the radius of
gyration of the chain. Thereby, the image-polyionrepulsive
interactions[including the self-image repulsion as well as the
lateral image-ion correlations as given by the second term of
Eq. (5)] scale likeNm

2 , whereas theattractivedriving force of
polyion adsorption due to Wigner crystal ordering scales like
Nm

3/2 [37]. The latter driving force corresponds to the highest
possible attraction between the substrate and the polyion, and

FIG. 3. Profiles of the fraction of adsorbed monomersN* szd for
different chain lengthNm (as indicated by its numerical value) with
s0L

2=64 (systemsA−E). (a) De=0. (b) De=0.951.
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is therefore a good candidate for the present discussion. Con-
sequently, at large enoughNm, image forces are dominant
and inhibit overcharging.

This behavior strongly contrasts with the case ofspherical
substrates, where image forces do not affect the occurrence
of overcharging[37].

B. Influence of substrate surface-charge density

To complete our investigation, we would like to address
the influence of the substrate charge density on the PE ad-
sorption in the presence of image forces. In this respect, we
consider (at fixed Nm=16) three additional values of the
charge density:s0L

2=32, 128, 192 corresponding to the sys-
temsF ,G,H, respectively(see Table II).

The plots of the monomer densitynszd at various values
of s0L

2 can be found in Fig. 5. Microstructures of systemsF
and H are presented in Fig. 6. AtDe=0 [see Fig. 5(a)], the
monomer density at contact increases withs0 as it should be.

Interestingly, the local maximum innszd [present at smalls0

(heres0L
2ø64)] vanishes at larges0 [see Fig. 5(a)]. This

feature is the result of as0-enhanced driving force of adsorp-
tion that overcomes entropic effects at large enoughs0. The
strong adsorption ats0L

2=192 leads to aflat PE layer as
well, illustrated in Fig. 6.

By polarizing the substrate surfacesDe=0.951d, it can be
seen from Fig. 5(b) and the snapshot of Fig. 6 that there is a
strong monomer depletion near contact ats0L

2=32. This
feature is due to the combined effects of(i) conformational
entropy, (ii ) image-monomer repulsion, and(iii ) a lower
electrostatic wall-monomer attraction. Upon increasings0,
the monomer density near contact becomes larger, and con-
comitantly, the maximum innszd is systematically shifted to
smallerz. That is to say, the thickness of the adsorbed PE
layer decreases withs0.

The profiles ofN* szd are provided in Fig. 7, from which
further characterization of PE adsorption can be obtained. At

FIG. 4. Profiles of the reduced net fluid charges* szd for differ-
ent chain lengthNm with s0L

2=64 (systemsA−E). (a) De=0. (b)
De=0.951.

FIG. 5. Profiles of the monomer densitynszd for different pa-
rameters of surface charge densitys0L

2 with Nm=16 (systems
D ,F−H). The cases0L

2=64 (systemD) from Fig. 1 is reported
here again for easier comparison.(a) De=0. (b) De=0.951.
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De=0, Fig. 7(a) indicates thatN* sz;s0d increases withs0

but saturates at highs0. This latter saturation effect should
only be relevant for a regime of charge whereh
;NPENm/s0L

2 is about unity. Indeed, in a typical experi-
mental situation at finite monomer concentration(even in the
dilute regime), we haveh@ .1 so that overcharging is al-
ways possible at larges0 and therebyN* sz;s0d should al-
ways significantly increase withs0 as long as packing effects
(as generated by the excluded volume of the monomers) are
not vivid. In parallel, the plateau reported ats0L

2=128 and
s0L

2=192 in Fig. 7(a) is the signature of a monomer deple-
tion above the adsorbed PE layer(see also Fig. 6) due to a
strong screening of the surface charge by the latter. AtDe

=0.951, Fig. 7(b) shows thatN* szd is considerably smaller
than atDe=0 even for highs0, in accordance with the be-
havior of nszd from Fig. 5. TheDe-induced desorption is
especially strong ats0L

2=32, where the image-monomer re-
pulsion clearly counterbalances the electrostatic wall-
monomer attraction. More quantitatively, atz=3a (a z dis-
tance corresponding roughly to the radius of gyration of the
chain with Nm=16), about 30%[i.e., N* szd=0.3] of the
monomers are adsorbed withDe=0 against only 10% with
De=0.951[see Fig. 7(b)].

IV. CONCLUDING REMARKS

We first would like to make some final remarks about the
presented results. As far as the charge surface distribution on
the substrate’s surface is concerned, we have assumed a
smeared-outone in contrast to a real experimental situation
where it isdiscrete. Previous numerical studies[43–45] have
shown that the counterion distribution at inhomogeneously
charged substrates may deviate from that obtained at
smeared-out ones at strong Coulomb coupling(i.e., multiva-
lent counterions and/or high Bjerrum length) or strong sub-
strate charge modulations. Nonetheless, at standard Bjerrum
length (i.e., lB=7.1 Å for water at room temperature, as is
presently the case) and with discrete monovalent ions gener-
ating the substrate’s surface charge, it has been demonstrated

that the counterion distribution is marginally modified[43]
even for trivalent counterions. Hence, we think that our re-
sults will not qualitatively differ from the more realistic situ-
ation of non-smeared-out substrate charges consisting of dis-
crete monovalent ions.

Another approximation in our model is the location of the
dielectric discontinuity. More precisely, it was implicitly as-
sumed that the latter coincides with the charged interface
(considered here as a hard wall). In fact, experimentally, it is
not clear where the dielectric discontinuity is located and the
transition is rather gradual and spreads out over several ang-
stroms[46], so that in a continuum description the dielectric
discontinuity might be located somewhat below thehard in-
terface. In this respect, our model tends to slightly overesti-
mate the effect of image forces and namely, withDe.0, the
self-imagerepulsion. Furthermore, in the presence ofshort-
range attractive interactions between the substrate and the

FIG. 6. Typical equilibrium microstructures of systemsF andH.
The little counterions are omitted for clarity.

FIG. 7. Profiles of the fraction of adsorbed monomersN* szd for
different parameters of surface charge densitys0L

2 (as indicated by
its numerical value) with Nm=16 (systemsD ,F-H). The case
s0L

2=64 (systemD) from Fig. 3 is reported here again for easier
comparison.(a) De=0. (b) De=0.951.
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PEs (for instance, stemming from some specific chemical
properties of the chains and the substrate, i.e., chemisorp-
tion), the effect of image charges might also be reduced[19].
This means that the substrate-chargeundercompensationby
PEs induced by repulsive image forces as reported in Fig.
4(b) is dependent on the relative strength of that short-range
attractive interaction, which is not taken into account in our
model. Nevertheless, we are confident that our results pro-
vide a reliable fingerprint for the understanding of the effect
of image forces on PE adsorption in a salt-free environment.

It is not a straightforward task to access experimentally
these effects stemming from image forces. One major diffi-
culty arises from the fact that by changing the dielectric con-
stant of the solvent,esolv, one changes the degree of ioniza-
tion of the PEs. However, there is the experimental
possibility to tuneDe by usingorganic solvents(i.e., with a
low esolv but still polar) with a mixture of large colloidal
particles[e.g., latex particles with weak curvature and(low)
dielectric constantesubssuch thatesubsøesolv] and PEs. In this
experimental context, one should be able to verify the trends
of our current findings.

To conclude, we have performed MC simulations to ad-
dress the effect of image forces on PE adsorption at oppo-
sitely charged planar substrates. The influence of chain
length and surface-charge density was also considered. We
have considered a finite monomer concentration in the dilute
regime for relatively short chains. Our main findings can be
summarized as follows.

(i) For very short chains(hereNmø4) and with no image
forces (i.e., De=0), the PE adsorption is similar to that oc-

curring with little (spherical) multivalent counterions. For
longer chains(here Nmù8), the PEs experience(even at
De=0) a short-range repulsion near the substrate due to chain
entropy effects. This latter feature is especially relevant at
low substrate charges0.

(ii ) At fixed s0 and in the presence of repulsiveimage
forces(hereDe=0.951), it was demonstrated that the mono-
mer depletion in the vicinity of the substrate as well as the
thickness of the PE layer grow with chain lengthNm. Con-
comitantly, and as a major result, thecharge reversalof the
substrate by the adsorbed PEsvanishes. This latter point was
in fact overlooked in the literature(see, e.g., Refs.
[9,15,16,24]).

(iii ) Upon varyings0 at fixedNm, it was shown atDe=0
that the net substrate-PE force becomes purely attractive at
sufficiently high s0, where chain-entropy effects are over-
compensated. When image forces are present, the PEdeple-
tion near the substrate as well as the thickness of the ad-
sorbed PE layer decrease withs0.

A future work will address the adsorption of stiffrodlike
PEs. This situation was recently theoretically examined by
Cheng and de la Cruz[22]. Nonetheless, simulation data
would be of great help to further characterize the arrange-
ment of the rodlike charged particles near the interface as
well as to elucidate the influence of image forces on the
latter.
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Equation �6� is erroneous and leads to an overestimation of the effect of image forces. The correct form of that equation
containing the dielectric term discontinuity �� reads

�UCoul
�plate��zi� = lB�±2��0�1 + ���zi +

��

4zi
� . �6�

It is precisely the term �1+��� that was missing in the original paper, which physically represents the image charge contri-
bution stemming from the charged interface itself. A simple derivation can be obtained as follows: Assume that a charged
surface characterized by a surface charge density � is located at z=��0 �z=0 being the dielectric interface position�, then its
image is located at z=−��0 with a charge ���. Taking the limit �→0, the effective surface charge density of the interface
becomes �1+���� �1�. Doing so the total image charge of the electroneutral system �charged interface+counterions� remains
also zero. Despite the error in Eq. �6� most of our conclusions remain qualitatively correct. The only conclusion that is truly
affected concerns the overcharging. With our data based on the corrected Eq. �6�, it is found that overcharging is robust against
image forces. Furthermore, all our results obtained in the absence of image charges �i.e., ��=0� in the original paper are
evidently unaffected by this mistake.

We now briefly discuss the impact of our corrections by providing some representative corrected data. The profiles of the
monomer distribution n�z� can be found in Fig. 1 that corresponds to our earlier Fig. 1�b�. From Fig. 1, it can be seen that the
same qualitative behavior is found as that sketched in Fig. 1�b� from the original paper. The height of the peaks in Fig. 1 are
roughly twice as large as those found in Fig. 1�b� in the original paper. Some data from Fig. 1 were also published elsewhere
�see Fig. 3�b� in Ref. �2��.

*Electronic address: messina@thphy.uni-duesseldorf.de

FIG. 1. �Color online� Profiles of the monomer density n�z� for different chain length Nm with �0L2=64 and ��=0.951.
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An important change concerns Fig. 4�b� in the original paper where an erroneous cancellation of overcharging was reported.
The corrected data are now depicted in Fig. 4. The strength of the overcharging is presently nearly identical to that obtained
without image forces at ��=0 �compare with Fig. 4 in the original paper�. Near contact �z	1.2a� it is found that the fraction
of charge �*�z� �see Fig. 4�, that is, essentially due to the adsorbed monomers, decreases with growing Nm. This feature was
already reported in Fig. 4�b� from the original paper.

�1� Note that one obtains exactly the same effective surface charge
density if we start from a charged surface located at z=−�
�0 and then take the limit �→0.

�2� R. Messina, J. Chem. Phys. 124, 014705 �2006�.

FIG. 4. �Color online� Profiles of the reduced net fluid charge �*�z� for different chain length Nm with �0L2=64 and ��=0.951. The inset
is a magnification of the region near contact.
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Behavior of rodlike polyelectrolytes near an oppositely charged surface
René Messinaa�

Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1,
D-40225 Düsseldorf, Germany
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The behavior of highly charged short rodlike polyelectrolytes near oppositely charged planar
surfaces is investigated by means of Monte Carlo simulations. A detailed microstructural study,
including monomer and fluid charge distributions and chain orientation, is provided. The influence
of chain length, substrate’s surface-charge density, and image forces is considered. Due to the lower
chain entropy �compared to flexible chains�, our simulation data show that rodlike polyelectrolytes
can, in general, better adsorb than flexible ones do. Nonetheless, at low substrate-dielectric constant,
it is found that repulsive image forces tend to significantly reduce this discrepancy. © 2006
American Institute of Physics. �DOI: 10.1063/1.2140692�

I. INTRODUCTION

Polyelectrolyte �PE� �i.e., charged polymer� adsorption
on charged surfaces is a versatile process having industrial as
well as biological applications. In particular, the case of rod-
like �stiff� PEs, which corresponds to the situation of short
DNA fragments or other similar biomaterials, has some rel-
evance for biological processes such as gene therapy1 or
biotechnology.2–4

From a theoretical viewpoint, the behavior of stiff PEs
near an oppositely charged surface has been studied by vari-
ous authors on a mean-field level.5–11 Menes et al.5 consid-
ered the interaction between two infinitely long charged rods
near a salty surface in the framework of the Debye-Hückel
theory. Due to the low dimensionality of the system, they
reported an algebraic decay for the effective interaction that
was confirmed by their Brownian dynamics simulations.5

The more simple and fundamental situation of a single and
infinitely long charged rod in the vicinity of a charged sur-
face was investigated by several authors.6–8 The problem of
the so-called counterion release �i.e., “Manning decondensa-
tion”� from a rigid PE approaching an oppositely charged
was examined by Sens and Joanny7 and by Fleck and von
Grünberg8 using the Poisson-Boltzmann theory. In a similar
spirit, Menes et al.6 found that the screening of the adsorbed
charged rod’s field, due to counterions and mobile surface
charges, is highly sensitive to the degree of membrane’s sur-
face charging. The adsorption of short rodlike PEs was also
considered by some researchers.9,10 Recently, Cheng and
Olvera de la Cruz9 investigated the adsorption/desorption
transition including lateral correlations by assuming a regular
flat lattice for the adsorbed charged rods. This latter assump-
tion is only valid when the electrostatic rod-surface binding
is strong enough. Closely related to our problem, Hoagland10

analyzed the monomer concentration profile as well as the
chain orientation with respect to the charged substrate’s sur-
face for a single short rodlike PE. The notorious complica-
tion of image forces stemming from the dielectric disconti-

nuity between the substrate and the solvent was also
addressed by some authors.7,11,12 More specifically, for low
dielectric constant �i.e., repulsive image forces� and fixed
surface ions of the substrate, �i� Sens and Joanny7 showed
that the condensed counterions are not always released as the
stiff PE approaches the substrate and �ii� Netz11 showed an
extra decrease of the charge dissociation of the stiff PE �i.e.,
charge regulation in salty solution nearby an uncharged po-
larized interface�.

Since those studies7,10,11 were realized in the framework
of the the Poisson-Boltzmann theory and for a single chain,
the relevant phenomenon of charge reversal of the sub-
strate’s surface charge by the adsorbed PEs cannot be cap-
tured.

In this paper, we propose to elucidate the microstructural
behavior of �very� short rodlike PEs near an oppositely
charged surface by using Monte Carlo �MC� computer simu-
lations. The effect of image forces is also systematically in-
vestigated. To better understand the effect of chain entropy, a
comparison with the previous work of Messina13 concerning
fully flexible PEs is carried out. Our article is organized as
follows: The simulation model is detailed in Sec. II. Our
results are presented in Sec. III, and concluding remarks are
provided in Sec. IV.

II. MODEL AND PARAMETERS

A. Simulation model

The model system under consideration is similar to that
recently investigated for the adsorption of flexible
chains.13,14 Within the framework of the primitive model, we
consider a PE solution near a charged hard wall with an
implicit solvent of relative permittivity �solv�80 �i.e., water
at z�0�. The substrate located at z�0 is characterized by a
relative permittivity �subs which leads to a dielectric jump ��

�when �solv��subs� at the interface �positioned at z=0� de-
fined as

�� =
�solv − �subs

�solv + �subs
. �1�

a�Electronic mail: messina@thphy.uni-duesseldorf.de
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The negative bare surface-charge density of the sub-
strate’s interface is −�0e, where e is the �positive� elemen-
tary charge and �0�0 is the number of charges per unit area.
The latter is always electrically compensated by its accom-
panying monovalent counterions of charge Z+e �i.e.,
monovalent cations with Z+= +1� of diameter a. Rodlike PE
chains are made up of Nm monovalent positively charged
monomers �Zm=Z+= +1� of diameter a. The bond length l
is also set to l=a so that the length Lrod of a rodlike PE
is Lrod=Nml=Nma. The counterions �monovalent anions:
Z−=−1� of the PEs are also explicitly taken into account with
the same parameters, up to the charge sign, as the substrate’s
counterions. Hence, all the constitutive microions are
monovalent �Z=Z+=Zm=−Z−=1� and monosized with diam-
eter a. All these particles are immersed in a rectangular L
�L�� box. Periodic boundary conditions are applied in the
�x ,y� directions, whereas hard walls are present at z=0 �lo-
cation of the charged interface� and z=� �location of an un-
charged wall�. It is to say that we work in the framework of
the cell model.

The total energy of interaction of the system can be writ-
ten as

Utot = �
i

�Uhs
�intf��zi� + UCoul

�intf��zi��

+ �
i,i�j

�Uhs
�mic��rij� + UCoul

�mic��ri,r j�� , �2�

where the first �single� sum stems from the interaction be-
tween a microion i �located at z=zi with i= �+,−,m�� and the
charged interface, and the second �double� sum stems from
the pair interaction between microions i and j with rij = �ri

−r j�. All these contributions to Utot in Eq. �2� are described in
detail below.

Excluded volume interactions are modeled via a hard-
core potential defined as follows:

Uhs
�mic��rij� = �0 for rij � a

	 for rij � a
	 �3�

for the microion-microion one and

Uhs
�intf��zi� = �0 for a/2 
 zi 
 � − a/2

	 otherwise
	 �4�

for the interface-microion one.
The electrostatic energy of interaction between two mi-

croions i and j reads

�UCoul
�mic��ri,r j� = ZiZjlB
 1

rij
+

��

�xij
2 + yij

2 + �zi + zj�2� , �5�

where lB=�e2 / �4��0�solv� is the Bjerrum length correspond-
ing to the distance at which two protonic charges interact
with 1/�=kBT, and �� is given by Eq. �1�. The first term in
Eq. �5� corresponds to the direct Coulomb interaction be-
tween real microions, whereas the second term represents the
interaction between the real microion i and the image of
microion j. By symmetry, the latter also describes the inter-
action between the real microion j and the image of microion
i, yielding an implicit prefactor of 1 /2 in Eq. �5�. The elec-

trostatic energy of interaction between a microion i and the
�uniformly� charged interface reads

�UCoul
�intf��zi� = lB
2�Zi�1 + ����0zi +

Zi
2��

4zi
� . �6�

The second term in Eq. �6� stands for the self-image interac-
tion, i.e., the interaction between the microion i and its own
image. An appropriate and efficient modified Lekner sum
was utilized to compute the electrostatic interactions with
periodicity in two directions.15 This latter technique was al-
ready successfully applied to the case of PE multilayering14

and polycation adsorption.13 To link our simulation param-
eters to experimental units and room temperature �T
=298 K�, we choose a=4.25 Å leading to the Bjerrum
length of water lB=1.68a=7.14 Å. In order to investigate the
effect of image forces, we take a value of �subs=2 for the
dielectric constant of the charged substrate �which is a typi-
cal value for silica or mica substrates16� and �solv=80 for that
of the aqueous solvent yielding ��= �80−2� / �80+2�
�0.951. The case of identical dielectric constants �subs

=�solv ���=0� corresponds to the situation where there are no
image charges.

All the simulation parameters are gathered in Table I.
The set of simulated systems can be found in Table II. The
equilibrium properties of our model system were obtained by
using standard canonical MC simulations following the Me-
tropolis scheme.17,18 In detail, single-particle �translational�
moves were applied to the counterions �i.e., anions and cat-
ions� with an acceptance ratio of 50%. As far as trial moves
for the rodlike PEs are concerned and given the anisotropy of

TABLE I. List of key parameters with some fixed values.

Parameters

T=298 K Room temperature
�0L2 Charge number of the substrate
��=0 or 0.951 Dielectric discontinuity
Z=1 Microion valence
a=4.25 Å Microion diameter
lB=1.68a=7.14 Å Bjerrum length
L=25a �x ,y� box length
�=75a z box length
Nrod Number of rodlike PEs
Nm Number of monomers per rodlike chain

TABLE II. Simulated systems’ parameters. The number of counterions �cat-
ions and anions� ensuring the overall electroneutrality of the system is not
indicated.

System Nrod Nm �0L2

A 96 2 64
B 48 4 64
C 32 6 64
D 24 8 64
E 16 12 64
F 24 8 32
G 24 8 128
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these objects, random translational moves as well as rota-
tional ones were performed at the same frequency.19 Random
rotational moves were achieved by choosing randomly new
orientation vectors of the rodlike particles. This method is �i�
computationally not too demanding, �ii� leads to an efficient
configurational space sampling, and �iii� fulfills the rules of
detailed balance. The acceptance ratio was also set to 50%.

The total length of a simulation run is set to 3�106 MC
steps per particle. Typically, about 105 MC steps were re-
quired for equilibration, and 2.5�106 MC steps were used to
perform measurements.

B. Measured quantities

We briefly describe the different observables that are go-
ing to be measured. In order to study the PE adsorption, we
compute the monomer density n�z� that is normalized as fol-
lows:



a/2

�−a/2

n�z�L2dz = NrodNm. �7�

To further characterize the PE adsorption, we also compute

the total number of accumulated monomers N̄�z� within a
distance z from the charged interface that is given by

N̄�z� = 

a/2

z

n�z��L2dz�. �8�

It is useful to introduce the fraction of adsorbed monomers
N*�z�, which is defined as follows:

N*�z� =
N̄�z�

NrodNm
. �9�

The orientation of the rodlike PEs can be best monitored
by the angle 
 formed between the z axis and the PE axis.10

A convenient quantity is provided by its second-order Leg-
endre polynomial:

P2�cos 
�z�� = 1
2 �3 cos2 
�z� − 1� , �10�

where z corresponds to the smallest wall-monomer distance
for a given PE. Thereby

S�z� � �P2�cos 
�z��� �11�

takes the values − 1
2 , 0, and +1 for PEs that are perpendicular,

randomly oriented, and parallel to the z axis, respectively.
Another relevant quantity is the global net fluid charge

��z� which reads

��z� = 

a/2

z

�n+�z�� − n−�z���dz�, �12�

where n+ and n− stand for the density of all the positive
microions �i.e., monomers and substrate’s counterions� and
negative microions �i.e., PEs’ counterions�, respectively. The
corresponding reduced surface-charge density �*�z� is given
by

�*�z� =
��z�
�0

. �13�

Thereby, �*�z� corresponds, up to a prefactor �0e, to the net
fluid charge per unit area �omitting the surface-charge den-
sity −�0e of the substrate� within a distance z from the
charged wall. At the uncharged wall, electroneutrality im-
poses �*�z=�−a /2�=1. By simple application of the Gauss
law, ��*�z�−1� is directly proportional to the mean electric
field at z. Therefore �*�z� can measure the screening strength
of the substrate by the neighboring solute charged species.

III. RESULTS AND DISCUSSION

It is well known that the effects of image forces become
especially relevant at low surface-charge density of the
interface.21,22 Furthermore, it is also clear that the self-image
interaction �repulsive for ���0, as is presently the case� is
higher the higher the charge of the ions �polyions�. Hence,
we are going to study �i� the influence of chain length �Sec.
III A� and �ii� that of surface-charge density �Sec. III B�. For
the sake of consistency, we set the total number of monomers
to NrodNm=192, meaning that the monomer concentration is
fixed leading to a PE volume fraction �= �4� /3�
��NrodNm�a /2�3 /L2���2.14�10−3 �see also Table II�.

A. Influence of chain length

In this part, we consider the influence of chain length Nm

at fixed surface-charge-density parameter �0L2=64. The lat-
ter would experimentally correspond to a moderate20

surface-charge density with −�0e�−0.091 C/m2. The chain
length is varied from Nm=2 up to Nm=12 �systems A–E, see
Table II�. We have ensured that, for the longest chains with
Nm=12, finite-size effects are not important since there Lrod

=12a which is significantly smaller than L=25a or
�=75a.

1. Monomer distribution

The profiles of the monomer distribution n�z� can be
found in Fig. 1, and the corresponding microstructures are
sketched in Fig. 2. When no image charges are present
���=0, Fig. 1�a��, the monomer-density profile n�z� exhibits
a monotonic behavior for very short rigid chains �here Nm

=2�. For longer chains there exists a small monomer deple-
tion near the charged wall for an intermediate regime of Nm

�here 4
Nm
8�. At high enough Nm �here Nm=12� our
simulation data reveal again a monotonic behavior of n�z�.
This interesting behavior is the result of two antagonistic
driving forces, namely, �i� chain entropy and �ii� the electro-
static wall-monomer attraction. More precisely, the mecha-
nisms responsible for this Nm-induced reentrant behavior at
��=0 are as follows.

• For very short chains �here Nm=2� chain-entropy effects
are negligible so that one gets a similar behavior to that
of pointlike counterions with the usual monotonic de-
caying n�z� profile.
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Downloaded 11 Oct 2006 to 134.99.64.141. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



• The chain-entropy loss �per chain� by adsorption should
typically scale like ln Nm, whereas the electrostatic
wall-chain attraction scales like Nm, explaining why at
high enough Nm a purely effective attractive wall-
monomer interaction is recovered.

Upon polarizing the charged interface ���=0.951, Fig.
1�b��, the PE adsorption becomes weaker and the n�z� profile
more broadened due to the repulsive image-polyion interac-
tion. For Nm
4, n�z� presents a maximum at z=z*�0.9a
that can be seen as the thickness of the adsorbed PE layer.
Interestingly, the monomer density at contact decreases with
increasing Nm. This is the result of a combined effect of �i�
chain-entropy loss near the interface and �ii� the Nm-induced
image-polyion repulsion. All those features are well illus-
trated on the microstructures of Fig. 2.

It is instructive to compare the above findings with those
obtained for fully flexible chains. To do so, we use existing
MC data for flexible chains from our previous work13 where
all the parameters, up to the chain flexibility, are identical
with those presently employed for rodlike PEs. The compari-
son is provided in Fig. 3. At ��=0 �see Fig. 3�a��, the n�z�
profiles for flexible and rigid PEs are quasi-identical for
Nm=2, as it should be. For longer chains �Nm=8�, we clearly

see at ��=0 that the degree of adsorption as indicated by the
value of n�z� near contact is considerably stronger for rigid
chains. This feature is due to entropy and electrostatic ef-
fects. Indeed, in the bulk and at given degree of polymeriza-
tion Nm, the chain entropy associated to rigid PEs is much
lower than that associated to flexible chains, so that chain-
entropy loss upon adsorption is reduced for rigid chains. Sec-
ondly and concomitantly, the wall-PE attraction is more ef-
ficient for rigid chains than for flexible chains because in the
latter case the z fluctuations of the charged monomers are
more important.

As far as the monomer density at true contact is con-
cerned �i.e., n�z→a /2��, it seems that, for flexible PEs, its
value is nearly independent of Nm as already reported in Ref.
13. For a single ionic species of spherical shape, a variant of
the contact theorem provides the exact relation, n�a /2�
−n��−a /2�=2��0

2lB, yielding to n�a /2��0.11a−3, which is
surprisingly in remarkable agreement with the value reported
in Fig. 3�a� for flexible PE �and rigid ones for Nm
4�. None-
theless, Fig. 3�a� shows, already with Nm=8, a strong devia-
tion from the contact theorem �which in principle only holds
for structureless spherical ions� for rigid PEs, as expected.

The scenario becomes qualitatively different when ��

=0.951 �see Fig. 3�b��, where the n�z� profiles for flexible

FIG. 1. Profiles of the monomer density n�z� for different chain length Nm

with �0L2=64 �systems A–E�. �a� ��=0. �b� ��=0.951.

FIG. 2. Typical equilibrium microstructures of systems A–E. The little
counterions are omitted for clarity.
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and rigid PEs become more similar. It is to say that the
image-polyion repulsion tends to cancel chain-entropy ef-
fects. A closer look at Fig. 3�b� reveals, however, that, at
given Nm, the degree of PE adsorption is systematically
larger for rigid PEs than for flexible ones, as expected. Those
relevant findings can be summarized as follows.

• Without dielectric discontinuity ���=0� rigid PE chains
can much better adsorb than flexible ones at oppositely
charged surfaces essentially because of their significant
lower chain entropy.

• In the presence of polarization charges ���=0.951� the
degree of PE adsorption becomes significantly less sen-
sitive to the chain stiffness.

In order to quantify the amount of adsorbed monomers
as a function of the distance z from the charged wall, we
have also studied N*�z� as defined by Eq. �9�. Our results are
reported in Fig. 4. At ��=0 �see Fig. 4�a�� the fraction of
adsorbed monomers N*�z� is always larger with growing Nm

even near the interface. On the other hand, at ��=0.951 �see
Fig. 4�b��, �i� N*�z� gets smaller with growing Nm near the
interface �roughly for z /a�0.65� and �ii� N*�z� is consider-

ably reduced compared to the ��=0 case. For instance �with
Nm=12�, at z /a=0.9 �corresponding to a layer thickness at
��=0.951�, N*�z� can be as large as 0.4 for ��=0 against
only 0.2 for ��=0.951.

2. PE orientation

To gain further insight into the properties of rodlike PE
adsorption, we have plotted S�z� as given by Eq. �11� in Fig.
5 so as to characterize the PE orientation with respect to the
charged interface. At ��=0, Fig. 5�a� shows that in the vi-
cinity of the interface �roughly for z�a�, the rodlike PEs
tend to be parallel to the interface plane with growing Nm,
i.e., S�z�→−1/2 �see also Fig. 2�. This effect is obviously
due to the electrostatic wall-PE binding whose strength in-
creases linearly with Nm. For the longest chains �Nm=12�
non-negligible positive S�z� values are reported at intermedi-
ate distance from the wall �roughly for 2�z /a�6�, signal-
ing a nontrivial orientation correlation with respect to the
interface plane that will be properly discussed later. Suffi-
ciently away from the wall, the rodlike PEs are randomly
oriented �i.e., S�z�→0�, as it should be.

FIG. 3. Comparison between flexible and rodlike �rigid� PEs for the profiles
of the monomer density n�z� at different chain length Nm. �a� ��=0. �b�
��=0.951.

FIG. 4. Profiles of the fraction of adsorbed monomers N*�z� for different
chain length Nm with �0L2=64 �systems A–E�. �a� ��=0. �b� ��=0.951. The
inset is merely a magnification near contact.
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In the presence of image forces ���=0.951, see Fig.
5�b�� the S�z� behavior is more complex. A comparison with
Fig. 5�a� corresponding to ��=0 immediately shows that re-
pulsive image forces tend to inhibit the alignment of the
rodlike PEs with respect to the interface plane near contact.
This effect will be especially vivid at lower surface-charge
density �0, as we are going to show later.

The nonmonotonic behavior of S�z� near contact at ��

=0.951, similar to that reported for n�z� in Fig. 1�b�, is the
result of two antagonistic forces: �i� the repulsive image driv-
ing force that scales like 1/z and �ii� the attractive wall-
monomer one that scales like z. As in the case with ��=0, �i�
the degree of PE-wall parallelism increases with growing Nm

near contact and �ii� far enough from the wall the PEs are
randomly oriented.

3. Fluid charge

Another interesting property is provided by the net fluid
charge parameter �*�z� �Eq. �13�� that describes the screen-
ing of the charged interface. The profiles of �*�z� for differ-
ent Nm can be found in Fig. 6. At ��=0 �see Fig. 6�a��, it is
shown that for long enough chains �here Nm�4� the sub-
strate gets locally overcharged as signaled by �*�z��1.
Physically, this means that the �integrated� local charge of

the adsorbed monomers23 is larger in absolute value than that
of the substrate’s surface charge. In other words, the plate is
overscreened by the adsorbed PE chains. Fig. 6�a� indicates
that the degree of overcharging increases with Nm as ex-
pected form the behavior of multivalent counterions. Upon
inducing polarization charges ���=0.951, see Fig. 6�b��
overscreening is maintained and weakly disturbed, proving
that the latter is robust against repulsive image forces.

B. Influence of substrate’s surface-charge density

To complete our investigation, we would like to address
the influence of the substrate-charge density on the PE ad-
sorption. In this respect, we consider �at fixed Nm=8� two
additional values for the surface-charge density: �0L2=32
and 128, corresponding to the systems F and G, respectively
�see Table II�.

1. Monomer distribution

The plots of the monomer density n�z� for various values
of �0L2 can be found in Fig. 7. Typical microstructures of
systems F and G are sketched in Fig. 8. At ��=0 �see Fig.
7�a��, the monomer density at contact increases with �0, as it
should be. Interestingly, the local maximum in n�z�, present

FIG. 5. Profiles of S�z� for different chain length Nm with �0L2=64 �systems
A–E�. �a� ��=0. �b� ��=0.951.

FIG. 6. Profiles of the reduced net fluid charge �*�z� for different chain
length Nm with �0L2=64 �systems A–E�. �a� ��=0. �b� ��=0.951.
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at small �0 �here �0L2
64�, vanishes at large �0 �see Fig.
7�a��. This feature is the result of a �0-enhanced driving
force of adsorption that overcomes chain-entropy effects at
large enough �0. The strong adsorption at �0L2=128 leads to
a flat PE layer, as well illustrated in Fig. 8.

By polarizing the interface ���=0.951�, it can be seen
from Fig. 7�b� and the snapshot from Fig. 8 that there is a
strong monomer depletion near the interface for �0L2=32.
This feature is due to the combined effects of �i� image-PE
repulsion and �ii� a lower electrostatic wall-PE attraction.
Upon increasing �0 the monomer density near contact be-
comes larger, and concomitantly, the location of the maxi-
mum in n�z� is systematically shifted to smaller z. It is to say
that the thickness of the adsorbed PE layer decreases with
�0. We also expect that, at very large �0 �not reported here�,
this maximum vanishes leading to a purely attractive effec-
tive wall-PE interaction.

2. PE orientation

At ��=0, Fig. 9�a� shows that near the charged interface
�when z�a�, the degree of parallelism between the rodlike
PE and the interface increases with growing �0, as indicated

by S�z�→−1/2. This observation is merely due to the elec-
trostatic wall-PE binding whose strength scales like �0 at
fixed Nm.

In the presence of image forces ���=0.951�, Fig. 9�b�
demonstrates again for �0L2=32 �see also Fig. 5�b� for com-
parison� a strongly nonmonotonic behavior of S�z� near the
interface. This feature is fully consistent with the ideas that
�i� image forces become especially strong at low �0 and �ii�
repulsive image forces induce orientational disorder, as pre-
viously established. This finding leads to the important gen-
eral statement: Repulsive image forces at low surface-charge
density induce orientational disorder near the interface.

3. Fluid charge

The profiles of �*�z� for different �0L2 can be found in
Fig. 10. At ��=0 �see Fig. 10�a��, it is found that the planar
interface gets always locally overcharged as signaled by
�*�z��1. The location of the maximum in �*�z� is shifted to
lower z with increasing �0.

Upon inducing polarization charges ���=0.951, see Fig.
10�b��, overscreening is still there. However, at �0L2=64,
there is a non-negligible shift of the maximum of about 0.5a.
The distance at which the substrate is compensated �i.e.,
where �*�z�=1� corresponds to 1.72a �2.54a� for ��=0
���=0.951�, leading to a neutralization z shift of 0.72a.

IV. SUMMARY

To conclude, we have performed MC simulations to ad-
dress the behavior of rodlike polyelectrolytes at oppositely
charged planar surfaces. The influence of image forces stem-
ming from the dielectric discontinuity at the charged inter-
face was also analyzed. We have considered a finite and fixed
monomer concentration in the dilute regime for relatively
short chains.

In the absence of image forces ���=0�, our main find-
ings can be summarized as follows.

FIG. 8. Typical equilibrium microstructures of systems F and G. The little
counterions are omitted for clarity.

FIG. 7. Profiles of the monomer density n�z� for different parameters of
surface-charge density �0L2 with Nm=8 �systems D, F, and G�. The case
�0L2=64 �system D� from Fig. 1 is reported here again for easier compari-
son. �a� ��=0. �b� ��=0.951.
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• At moderately charged interfaces, only �very� short rod-
like PEs �here 2�Nm
8� experience a short-ranged
repulsion near the interface. For longer rodlike PEs the
effective wall-PE interaction becomes purely attractive.
This behavior is in contrast to that occurring with flex-
ible PEs, where the chain entropy is larger leading to
stronger entropy-driven depletion.

• Near the charged interface, the rodlike PEs get more
and more parallel to the interface plane when the chain
length Nm is increased. Concomitantly, the strength of
the substrate-charge reversal is Nm enhanced.

• Upon increasing the substrate-surface-charge density �0

it was demonstrated that: �i� The monomer adsorption is
enlarged and the wall-PE effective interaction becomes
purely attractive for high enough �0. �ii� The degree of
parallelism �near the interface� between the interface
plane and the rodlike PE is enhanced.

The main effects stemming from repulsive image forces
as revealed by this study are as follows.

• The monomer adsorption is reduced at finite �� and the
n�z� profiles become similar to those obtained with flex-
ible chains, in contrast to what was reported at ��=0.

• Repulsive image forces induce PE orientational disorder
near the interface.

• The substrate-charge reversal is robust against repulsive
image forces.
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The adsorption of highly oppositely charged flexible polyelectrolytes on a charged sphere is investigated
by means of Monte Carlo simulations in a fashion which resembles the layer-by-layer deposition technique
introduced by Decher. Electroneutrality is ensured at each step by the presence of monovalent counterions
(anions and cations). We study in detail the structure of the equilibrium complex. Our investigations of
the first few layer formations strongly suggest that multilayering on a charged colloidal sphere is not
possible as an equilibrium process with purely electrostatic interactions. We especially focus on the influence
of specific (nonelectrostatic) short-range attractive interactions (e.g., van der Waals) on the stability of the
multilayers.

I. Introduction

Polyelectrolyte multilayer thin films are made of
alternating layers of polycations (PCs) and polyanions
(PAs). The so-called layer by layer method, first introduced
in planar geometry by Decher, consists of a successive
adsorption of the polyions onto a charged surface and has
proved to be extremely efficient.1,2 Due to the many
potential technological applications such as biosensing,3
catalysis,4 optical devices,5 etc., this process is nowadays
widely used. Various techniques are employed to control
the polymer multilayer buildup such as optical6,7 and
neutron8,9 reflectometry, AFM,10 UV spectroscopy,11 NMR
techniques,12 and others. Some experiments (see, e.g., ref
13) were devoted to the basic mechanisms governing
polyelectrolyte multilayering on planar mica surfaces
where, in particular, the role of surface charge overcom-
pensation was pointed out.

Another very interesting application is provided by the
polyelectrolyte coating of spherical metallic nanopar-
ticles.14,15 This process can modify in a well-controlled way

the physicochemical surface properties of the colloidal
particle. Despite of the huge amount of experimental
works, the detailed understanding of the multilayering
process is still rather unclear, especially for a charged
colloidal sphere. Hence, the study of polyelectrolyte
multilayering is motivated by both experimental and
theoretical interests.

On the theoretical side, the literature on this subject is
rather poor. Based on Debye-Hückel approximations for
the electrostatic interactions and including lateral cor-
relations by considering different typical semiflexible
polyelectrolyte-layer structures, Netz and Joanny16 found
a remarkable stability of the periodic structure of the
multilayers in planar geometry. For weakly charged
flexible polyelectrolytes at high ionic strength, qualitative
agreements between theory,17 based on scaling laws, and
experimental observations,9,18 have been provided. The
driving force of all these multilayering processes is of
electrostatic origin, and it is based on an overcharging
mechanism, where the first layer overcharges the mac-
roion and the subsequent layers overcharge the layers
underneath. However, the role of nonelectrostatic inter-
actions, though pointed out in refs 17 and 19, is not clear.
In particular, it is still open whether the layer buildup is
an equilibrium or out of equilibrium process, which
resemblesmoreasuccessionofdynamically trappedstates.
Therefore, we do not know whether the complex poly-
electrolyte is in thermodynamical equilibrium. This point
has also been emphasized in a recent experimental work
on planar multilayers7 where considerable kinetic effects
were reported. So far, there are neither analytical results
nor simulation data for multilayering formation onto
charged spheres.

The goal of this paper is to study the underlying physics
involved in the polyelectrolyte multilayering onto a
charged colloidal sphere by means of MC simulations.
The paper is organized as follows: section II is devoted
to the description of our MC simulation method. The
relevant target quantities are specified in section III. The
single chain adsorption is studied in section IV, and the
polyelectrolyte bilayering in section V. Then the multi-

* Corresponding author. E-mail: messina@thphy.uni-
duesseldorf.de.Permanentaddress: Institut für theoretischePhysik
II, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse
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layering process is investigated in section VI. The case of
short polyelectrolyte chains is considered in section VII.
Finally, section VIII contains some brief concluding
remarks.

II. Simulation Method
The setup of the system under consideration is very

similar to those recently investigated by means of mo-
lecular dynamics simulations.20,21 Within the framework
of the primitive model we consider one charged colloidal
sphere characterized by a radius a ()4.5σ) and a bare
charge QM ) -ZMe (where e is the elementary charge and
ZM ) 40) surrounded by ZM neutralizing monovalent
(Zc ) 1) counterions and an implicit solvent (water) of
relative dielectric permittivity εr ≈ 80. In the remainder
of the paper, we will refer to the term macroion as the
charged colloidal sphere. Polyelectrolyte chains (N+ PCs
and N- PAs) are made up of Nm monovalent monomers
(Zm ) 1) of diameter σ. For the sake of simplicity, we only
consider here symmetrical complexes where PC and PA
chains have the same length and carry the same charge
in absolute value. To each charged PC or PA we also add
Nm small monovalent (Zc ) 1) counterions (anions and
cations countering the charge of the polyelectrolytes) of
diameter σ; hence, always a charge neutral entity was
added. Thereby all the microions have the same valence
Z ) Zc ) Zm ) 1 as well as the same diameter σ. Added
salt of course would even weaken the effects observed and
would be especially important for the case of an adsorption
interaction between macroion and polyelectrolyte.

All these particles making up the system are confined
in an impermeable spherical cell of radius R ) 60σ. The
spherical macroion is held fixed and located at the center
of the cell. To avoid the appearance of image charges,22

we assume that the macroion has the same dielectric
constant as the solvent.

Standard canonical MC simulations following the
Metropolis scheme were used.23,24

The total energy of interaction of the system can be
written as

where all the contributions of the pair potentials in eq 1
are described in detail below.

Excluded volume interactions are modeled via a hard
sphere potential Uhs

25 defined as follows

where rcut ) σ for the microion-microion excluded volume
interaction, and rcut ) a + σ/2 for the macroion-microion
excluded volume interaction. Hence the center-center
distance of closest approach between the macroion and a
microion is r0 ) a + σ/2 ) 5σ.

The pair electrostatic interaction between two ions i
and j (where i and j can be either a microion or the

macroion) reads

where +(-) applies to charges of the same (opposite) sign
and lB ) e2/4πε0εrkBT is the Bjerrum length corresponding
to the distance at which two elementary charges interact
with kBT. To link our simulation parameters to experi-
mental units and room temperature (T ) 298 K), we choose
σ ) 4.25 Å, leading to the Bjerrum length of water lB )
1.68σ ) 7.14 Å and to a macroion surface charge density
of 0.14 Cm- 2.

The polyelectrolyte chain connectivity is modeled by
using a standard FENE potential in good solvent (see,
e.g., ref 26), which reads

where we chose κ ) 27kBT/σ2 and R0 ) 1.5σ. The excluded
volume interaction between chain monomers is taken into
account via a purely repulsive Lennard-Jones (LJ) po-
tential given by

where ε ) kBT. These parameters lead to an equilibrium
bond length l ) 0.98σ.

An important interaction in the multilayering process
addressed in this study is the non-electrostatic short
ranged attraction, Uvdw, between the macroion and the
PC chain. To account for this kind of interaction, we choose
without loss of generality a van der Waals (VDW) potential
of interaction between the macroion and a PC monomer
that is given by

where øvdw is a positive dimensionless parameter describ-
ing the strength of the attraction. Thereby, at contact
(i.e., r ) r0), the magnitude of the attraction is øvdwε )
øvdwkBT, and for øvdw ) 1, one recovers the standard
attractive component of the LJ-potential (see eq 5). Since
it is not straightforward to link this strength of adsorption
directly to experimental values, we therefore investigated
different possible strengths of attraction, which are known
to be realistic for soft matter systems.

All the simulation parameters are gathered in Table 1.
The set of simulated systems can be found in Table 2.
Single-particle moves were considered with an acceptance
ratio of 20-30% for the monomers and 50% for the
counterions. At equilibrium, the (average) length of the
trial moves ∆r are about 30σ for the counterions and 0.1σ
for the monomers. About 105-106 MC steps per particle
were required for equilibration, and about 2 × 106

subsequent MC steps were used to perform measurements.

III. Target Quantities
Before presenting the results, we briefly describe the

different observables that are going to be measured. Of

(20) Messina, R.; Holm, C.; Kremer, K. Phys. Rev. E 2002, 65, 041805.
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2947-2960.
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Academic Publishers: Amsterdam, 1993.

Utot ) ∑
i,i<j

Uhs + Ucoul + UFENE + ULJ + Uvdw (1)

Uhs(r) ) {∞, for r < rcut

0, for r g rcut
(2)

Ucoul(rij) ) (kBTlB

ZiZj

rij
(3)

UFENE(r) ) {- 1
2
κR0

2 ln[1 - r2

R0
2], for r < R0

∞, for r g R0

(4)

ULJ(r) ) {4ε[(σr)12
- (σr)6] + ε, for r e 21/6σ

0, for r > 21/6σ
(5)

Uvdw(r) ) -εøvdw( σ
r - r0 + σ)6

, for r g r0 (6)
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first importance, we compute the radial density of
monomers n((r) around the spherical macroion normalized
as follows

where (+)- applies to PCs (PAs). This quantity is of special
interest to characterize the degree of ordering in the
vicinity of the macroion surface.

The total number of accumulated monomers Nh ((r)
within a distance r from the macroion center is then given
by

where (+)- applies to PCs (PAs). This observable will be
used for the study of the adsorption of (i) a single PC chain
(section IV) and (ii) two oppositely charged polyelectrolytes
(section V).

Another quantity of special interest is the global net
fluid charge Q(r) which is defined as follows

where ñ+ (ñ-) include the density of all the positive
(negative) microions. Thus, Q(r) corresponds to the total
fluid charge (omitting the macroion bare charge ZM) within
a distance r from the macroion center, and at the cell wall
Q(r ) R) ) ZM. Up to a factor proportional to 1/r2, [Q(r)
- ZM] gives (by simple application of the Gauss theorem)
the mean electric field at r. Therefore, Q(r) can measure
the strength of the macroion charge screening by the
charged species present in its surrounding solution.

IV. Single Chain Adsorption
In this part, we study the adsorption of a single long PC

chain (system A) for different couplings øvdw. Experimen-

tally, this would correspond to the process of the first
polyelectrolyte layer formation.

The monomer density n+(r) and fraction Nh +(r)/Nm are
depicted in Figure 1, parts a and b, respectively. The
density n+(r) near contact (r ∼ r0) increases considerably
with øvdw as expected. At a radial distance of 1.5σ from the
macroion surface (i.e., r ) r0 + σ), more than 97% of the
monomers are adsorbed for sufficiently large øvdw (here
øvdw > 3) against only 78% for øvdw ) 0.

The net fluid charge Q(r) is reported in Figure 2. In all
cases, we observe a macroion charge reversal (i.e., Q(r)/
ZM > 1), as expected from previous studies27,28 addressing
only øvdw ) 0. The position r ) r* at which Q(r*) gets its
maximal value decreases with øvdw, due to the øvdw-
enhanced adsorption of the chain. This overcharging
increases with øvdw, since the gain in energy by macro-
ion-monomer VDW interactions can better overcome (the
higher øvdw) the cost of the self-energy stemming from the
adsorbed excess charge. Note that the maximal value of
charge reversal of 100% allowed by the total PC charge
(i.e., Q(r*)/ZM ) 2) cannot be reached due to a slight
accumulation of microanions.

Typical equilibrium configurations can be found in
Figure 3. For all øvdw values, there is a wrapping of the
chain around the macroion. In parallel, one can clearly
see that the formation of chain loops is gradually inhibited
by increasing øvdw.

Although all the obtained results are intuitively easy
to understand, they will turn out to be helpful in order to
have a quantitative analysis of the effect of an extra short-
range attraction already on the level of a single chain
adsorption.

V. Adsorption of Two Oppositely Charged
Polyelectrolytes

We now consider the case where we have additionally
a PA chain (system B), so that we have a neutral
polyelectrolyte complex (i.e., one PC and one PA). Ex-
perimentally this would correspond to the process of the
second polyelectrolyte layer formation (with system A as
the initial state). We stress the fact that this process is
fully reversible for the parameters investigated in our
present study. In particular, we checked that the same
final equilibrium configuration is obtained either by (i)
starting from system A and then adding a PA or (ii) starting
with no chains and then adding the two oppositely charged
polyelectrolytes, together with their counterions, simul-
taneously.

The monomer density n((r) and fraction Nh ((r)/Nm are
depicted in Figure 4. parts a and b, respectively. The
corresponding microstructures are sketched in Figure 5.
The density of PC monomers n+(r) near contact (r ∼ r0)
increases considerably with øvdw as expected. However, a
comparison with system A (see Figure 1) indicates that
the adsorption of PC monomers (at given øvdw) is weaker
when an additional PA is present. This is consistent with
the idea that the PC chain tends to build up a globular
state by getting complexed to the PA chain. This feature
is well illustrated in Figure 5. More precisely, for suf-
ficiently small øvdw j1, the polyelectrolyte globular state
is highly favorable compared to the “flat” bilayer state
(see also Figure 5). Nevertheless, at sufficiently large øvdw
J 2, the first layer made up of PC monomers is sufficiently
stable to produce a second layer made up of PA monomers.
Thereby, the two chains wrap around the macroion. As
far as the PA monomer adsorption is concerned, Figure

(27) Wallin, T.; Linse, P. Langmuir 1996, 12, 305-314.
(28) Wallin, T.; Linse, P. J. Phys. Chem. 1996, 100, 17873-17880.

Table 1. Model Simulation Parameters with Some Fixed
Values

parameters

T ) 298 K room temp
ZM ) 40 macroion valence
Z ) 1 microion valence
σ ) 4.25 Å microion diameter
lB ) 1.68σ ) 7.14 Å Bjerrum length
a ) 4.5σ macroion radius
r0 ) a + σ/2 ) 5σ macroion-microion dist of closest approach
R ) 60σ radius of the outer simulation cell
N+ no. of PCs
N- no. of PAs
NPE ) N+ + N- total no. of polyelectrolyte chains
Nm no. of monomers per chain
øvdw strength of the specific van der Waals

attraction

Table 2. System Parameters

system NPE N+ N- Nm

A 1 1 0 80
B 2 1 1 80
C 3 2 1 80
D 4 2 2 80
E 5 3 2 80
F 6 3 3 80
G 12 6 6 80
H 40 20 20 10

a The number of counterions (cations and anions) ensuring the
overall electroneutrality of the system is not indicated.

∫r0

R
4πr2n((r) dr ) N(Nm (7)

Nh ((r) ) ∫r0

r
4πr′2n((r′) dr′ (8)

Q(r) ) ∫r0

r
4πr′2Z[ñ+(r′) - ñ-(r′)] dr′ (9)
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4 shows that n-(r) always increases with øvdw. For øvdw )
0, the polyelectrolyte complex is very close to the globular
polyelectrolyte bulk state (i.e., in the absence of the
macroion). This a nontrivial result, since naively one would
expect a “true” multilayering for any øvdw. It is only for
large øvdw J 3 that one gets a true bilayer formation, where
there is a pronounced peak in n-(r) around r - r0 ≈ σ.

It is useful to introduce the following dimensionless
interaction parameters ΓM ) ZMZ(lB/r0), which measures
the strength of the macroion-PC electrostatic attraction,
and Γm ) Z2(lB/σ) which controls the PC-PA complex
interaction. For large values of Γm the bulk complex will
always be in a globular state, since then the Coulomb
interaction will give rise to a chain collapse, similar to
those seen in polyelectrolyte systems. Thus, for a suf-
ficiently large value of Γm/ΓM at given øvdw, the globular
state will always be favorable and no bilayering can occur.
In this case unwrapping occurs, similar to the micro-
structures depicted in Figure 5, parts a and b. On the
other hand, we find at fixed parameters Γm and ΓM, that
one needs a sufficiently large value øvdw

/ , to achieve
bilayering.

One can summarize these important results as follows:
•The equilibrium bilayering process on a spherical

charged colloid with long polyelectrolyte chains requires
a sufficiently strong extra short-ranged macroion-PC
attraction.

A closer look at Figure 4b reveals a further nontrivial
behavior in the profiles of Nh ((r) at high øvdw. Very close
to the macroion surface we always have a monotonic
behavior of the fraction of adsorbed PC [Nh +(r; øvdw)] and
PA monomers [Nh -(r; øvdw)] with respect to øvdw as it should
be. However, for a certain distance away from the surface
we observe an unexpected behavior where Nh +(r; øvdw ) 3)
> Nh +(r; øvdw ) 5) as well as Nh -(r; øvdw ) 3) > Nh -(r; øvdw )
5). One can qualitatively explain this effect by the onset
of the formation of one (or several) polyelectrolyte mi-
croglobule(s), i.e., small cluster(s) of oppositely charged
monomers (see Figure 5, parts d and e). This is indeed
possible because at high øvdw in principle more PC (and
consequently also PA) monomers want to get close to the
macroion surface. Already for neutral chains a two-
dimensional flat adsorbed chain needs a high (surface)
binding energy. Compared to bulk conformations the chain
entropy is roughly reduced by kBTN ln(qd)2/qd)3). Here q
is the effective number of conformational degrees of
freedom of a bond, giving that ln(qd)2/qd)3) ) O(1). Thus,
local microglobules that induce a small local desorption,
are entropically much more favorable. Also, on the level
of the energy, an increase of q concomitantly favors the
PC-PA microglobule.

The net fluid charge Q(r) is reported in Figure 6. For
øvdw J 2, the macroion gets even overcharged and
undercharged as one gets away from its surface, whereas
for low øvdw no local overcharging occurs. Again, at high
øvdw the strength of the charge oscillation is not a monotonic
function of øvdw where we observe a higher local over-
charging (and undercharging) with øvdw ) 3 than with
øvdw ) 5. This latter feature is fully consistent with the
profiles of Nh ((r) (see Figure 4b) previously discussed.29

However this onset of local (surface) microglobules (for
øvdw ) 5) is not strong enough to produce a nonmonotonic
behavior of r* with respect to øvdw.

VI. Multilayering

We now turn to the case where there are many
polyelectrolytes (with NPE g 3) in the system. We recall

(29) Here we assume the presence of little counterions to be negligible
in the vicinity of the macroion surface, which is a very good approxima-
tion.

Figure 1. Monomer adsorption profiles of a single PC-chain (system A) at different øvdw couplings: (a) radial density n+(r); (b)
fraction of monomers Nh +(r)/Nm.

Figure 2. Net fluid charge Q(r) for system A at different øvdw
couplings. The horizontal line corresponds to the isoelectric
point.
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that when øvdw * 0, the VDW interaction concern
monomers of all PCs lying within the range of interaction.
To keep the number of plots manageable, we will present
our results obtained for øvdw ) 0 and øvdw ) 3. The case
øvdw ) 0 is (conceptually) important since it corresponds
to thesituationwhereonlypurelyelectrostatic interactions
are present. The other case øvdw ) 3 seems to be a
reasonable choice, since we found a “true” bilayering for
that value. Moreover, such a strength should be easily
accessible experimentally.

A. Adsorption with øvdw ) 0. The density profiles of
n((r) for the systems A-G (with øvdw ) 0) are reported in
Figure 7, and the corresponding microstructures are
sketched in Figure 8.

Figure 7 shows that when the total polyelectrolyte
charge

is zero, the density of PC monomers n+(r) near contact is
lower than when charge QPE ) Nme (recalling that our
systems are such that QPE ) 0 or Nme). This tendency
[lower n+(r) near contact with QPE ) 0] gradually decreases
as the total number NPE of polyelectrolytes is increased.
In particular, for system G, where NPE ) 12 and QPE )
0, the density n+(r) near contact is nearly identical to that
of systems A, C, and E where QPE ) Nme. On the other
hand, when QPE ) Nme, then n+(r) near contact is nearly

Figure 3. Typical equilibrium configurations for a single PC adsorbed onto an oppositely charged macroion (system A). The little
ions are omitted for clarity. (a) øvdw ) 0 (b) øvdw ) 1 (c) øvdw ) 2 (d) øvdw ) 3 (e) øvdw ) 5.

Figure 4. Monomer adsorption profiles of two polyelectrolyte chains (system B) at different øvdw couplings. The solid and dashed
lines correspond to PC and PA monomers, respectively. Key: (a) radial density n((r); (b) fraction of monomers N(h (r)/Nm.

QPE ≡ (N+ - N-)Nme (10)
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independent of NPE. The height of the peak in the PA
monomer density n-(r) increases monotonically with NPE.
Concomitantly, a third layer made of PC monomers builds
up for high enough NPE. This multilayering is especially
remarkable for NPE ) 12 (system G).

All these features concerning the first layer structure
can be rationalized with simple ideas. When QPE ) 0, then
the resulting global attraction between the macroion and
the polyelectrolyte complex is much weaker than when
QPE ) Nme. In this latter situation, where QPE ) Nme, this
excess charge carried by a PC chain leads to a relatively
strong PC adsorption near the surface. The equilibrium
configurations sketched in Figure 8 suggest a wrapping
from the PC monomers when QPE ) Nme (see Figure 8,
parts a and c) and a (partial) unwrapping when QPE ) 0

[see Figure 8, parts b and d). Even for high NPE ) 12 (see
Figure 8e), we can see this tendency of unwrapping leading
to a polyelectrolyte complex globular state. However, for
symmetry reasons, when the total number of monomers
is large enough as it is the case with NPE ) 12, the
distribution of the polyelectrolyte complex gets more
isotropic leading to a weaker unwrapping at QPE ) 0.

The collapse into a globular polyelectrolyte complex
becomes even more spectacular when σ is reduced (i.e.,
larger Γm).30 In that case (not reported here), we found a

(30) Messina, R. Unpublished data.

Figure 5. Typical equilibrium configurations for one PC (in white) and one PA (in red) adsorbed onto the charged macroion (system
B). The little ions are omitted for clarity. (a) øvdw ) 0 (b) øvdw ) 1 (c) øvdw ) 2 (d) øvdw ) 3 (e) øvdw ) 5.

Figure 6. Net fluid charge Q(r) for system B at different øvdw
couplings. The horizontal line corresponds to the isoelectric
point.

Figure 7. Radial monomer density for the systems A-G with
øvdw ) 0. The solid and dashed lines correspond to n+(r) and
n-(r), respectively. The number of PC and PA chains is indicated.
The plots of n((r) for the systems A (1PC) and B (1PC-1PA) are
again reported here for direct comparison.
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wrapping (for QPE ) Nme) similar to that depicted in Figure
8, parts a and c, and a strong unwrapping (for QPE ) 0)
where the compact neutral polyelectrolyte complex is
adsorbed onto a small area of the colloid.

The net fluid charge Q(r) is reported in Figure 9. As
expected one detects an overcharging and undercharging
for QPE ) Nme and QPE ) 0, respectively. For QPE ) 0, the
macroion is also locally overcharged very close to the
macroion surface and its strength increases with NPE. On
the other hand, the strength of the undercharging (oc-
curring at the largest radial position r* of the extrema)

at QPE ) 0 is nearly independent of NPE. In parallel, the
strength of the overcharging (occurring at the largest
radial position r* of the extrema) measured at QPE ) Nme
is also nearly independent of NPE (systems C and E).
Moreover, our simulations show that for NPE g 2 the
strength of the overcharging (with QPE ) Nme) and
undercharging (with QPE ) 0) have nearly the same
amplitude, in qualitative agreement with experimental
data.

B. Adsorption with øvdw * 0. In this part, we consider
the additional attractive VDW macroion-PC monomer
interaction with øvdw ) 3. The same investigation as with
øvdw ) 0 is carried out here.

The density profiles of n((r) for the systems A-G (with
øvdw ) 3) are reported in Figure 10, and the corresponding
microstructures are sketched in Figure 11.

Figure 10 shows that the density n+(r) near contact (for
a given system) is about six times larger than that obtained
at øvdw ) 0 (compare Figure 7). When QPE ) Nme, the
density n+(r) at contact (slightly) increases monotonically
with NPE in contrast to what happened at øvdw ) 0 where
it was nearly independent of NPE. When QPE ) 0, we
remark that the density n+(r) near contact is nearly
independent of NPE (for NPE g 2) in contrast to what
happened at øvdw ) 0.

As far as the PA density n-(r) is concerned, the height
of the first peak (for a given system) is about twice larger
than that obtained at øvdw ) 0. This height is a monotonic
function of NPE within a given regime of QPE (here, either
0 or Nme). Nevertheless, in general this height exhibits a
nontrivial dependence on NPE, in contrast to our results
with øvdw ) 0. For the systems B and C both containing
a single PA chain (N- ) 1), the height of the first peak in
n-(r) is smaller with N+ ) 2 (system C) than with N+ )
1 (system B). This is again due to the formation of clusters
of oppositely charged monomers that takes place above

Figure 8. Typical equilibrium configurations for many polyelectrolyte chains adsorbed onto the charged macroion with øvdw ) 0.
The PC monomers are in white and PA ones in red. The little ions are omitted for clarity. (a) 2PC-1PA (system C) (b) 2PC-2PA
(system D) (c) 3PC-2PA (system E) (d) 3PC-3PA (system F) (e) 6PC-6PA (system G).

Figure 9. Net fluid charge Q(r) for the systems A-G with
øvdw ) 0. The number of PC and PA chains is indicated. The
plots for the systems A (1PC) and B (1PC-1PA) are again
reported here for direct comparison. The horizontal line
corresponds to the isoelectric point.
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the first layer. This effect is more pronounced when the
amount of PC monomers (at given N-) is larger (system
C), leading to a local desorption of PA monomer. Those
features are remarkable by a comparison of the snapshots
of the systems B and C depicted in Figure 5d and Figure
11a, respectively. Similar arguments can be used for the
systems D and E, where the same effect is found. At large
NPE, the height of the first peak in n-(r) saturates as
expected.

For 3 e NPE e 6, our simulation shows that the formation
of the third layer [i.e., the second peak in n+(r) at r - r0
≈ 2.6σ] is enhanced when QPE ) Nme at fixed N+. This
effect can again be explained in terms of polyelectrolyte
(micro)globules formation. Indeed, above the second layer,
the formation of clusters made up of oppositely charged

monomers is enhanced when the polyelectrolyte complex
(seen by the underneath bilayer) is uncharged which
corresponds to a state of charge QPE ) 0.

It is interesting to see that with NPE ) 12 one even gets
a second peak (and not a shoulder) in n-(r), which is the
signature of a fourth layer. This qualitatively contrasts
with our findings at øvdw ) 0. Therefore, we conclude that
the effect of an extra short-ranged macroion-PC attraction
is crucial for the multilayering process.

On a more qualitative level, it is very insightful to
compare the microstructures obtained with purely elec-
trostatic interactions (øvdw ) 0) sketched in Figure 8 with
those obtained with a short-ranged VDW macroion-PC
interaction (øvdw ) 3) sketched in Figure 11. From such
a visual inspection, it is clear that in all cases the adsorbed
polyelectrolyte complex is flatter at øvdw ) 3 than at øvdw
) 0. An other important qualitative difference, is that the
unwrapping occurring at øvdw ) 0 with QPE ) 0 [see Figure
8b and (d)] is no longer effective when øvdw ) 3 (see Figure
11, parts b and d). In the same spirit, for a large number
of chains (NPE ) 12), the macroion surface is only partially
covered by the PC monomers where some (large) holes
appear (see Figure 8e), in contrast to what occurs at
øvdw ) 3, where all the macroion surface is covered (see
Figure 11e).

The net fluid charge Q(r) is reported in Figure 12. As
expected one finds an overcharging and undercharging
for QPE ) Nme and QPE ) 0, respectively. Now one can get
a local overcharging larger than 100% (i.e., Q(r)/ZM > 2)
due to the VDW attraction that can lead to a first layer
with many PC chains. For systems C and E, we see that
the overcharging at the third layer is around 50% and
nearly independent of NPE.

On the other hand, the strength of the undercharging
(occurring at the largest radial position r* of the extrema)
at QPE ) 0 decreases with increasing NPE, providing a

Figure 10. Same as Figure 7 but with øvdw ) 3.

Figure 11. Same as Figure 8 but with øvdw ) 3. (a) 2PC-1PA (system C) (b) 2PC-2PA (system D) (c) 3PC-2PA (system E) (d) 3PC-3PA
(system F) (e) 6PC-6PA (system G).
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gradually weaker driving force for the subsequent ad-
sorption of the PC chain. On the basis of our results with
øvdw ) 0, we expect that the strength of the undercharging
at øvdw ) 3 (for larger NPE) should stabilize around 50%.
So it appears that the oscillations of under- and over-
charging are not 100% but instead close to 50%. This is
probably sensitive to the specific model parameters chosen.

What can be stated from our data is that there is no reason
to find a generally applicable overcharging fraction. In
particular, for the case of relatively small colloids, the
results will strongly depend on the specific system
parameters, which are both of electrostatic and of non-
electrostatic natures.

VII. Case of Short Chains

We now investigate the effect of chain length depen-
dence. In this case, the adsorption of a single chain does
not necessarily produce an overcharging since the chain
length (Nm ) 10, system H) is too short. The density profiles
of n((r) are reported in Figure 13 for various øvdw, and the
corresponding microstructures are sketched in Figure 14.

In the purely electrostatic regime (øvdw ) 0), the
polyelectrolyte adsorption is weak and it significantly
increases with øvdw. However, for all reported cases, we
only observe a bilayering in contrast with previous long
chain systems (compare Figure 13 with Figures 7 and 10)
where thereby a true multilayering was reported.

In addition we observe several globally neutral poly-
electrolyte complexes in the bulk, whose number decreases
with øvdw (see Figure 14). This feature was inhibited for
long chains due to the strong PC-PA binding energy that
keeps all the chains near the macroion surface. At
sufficiently strong øvdw (see Figure 14c with øvdw ) 5), the
macroion area gets largely (and uniformly) covered by the
PC chains, leading to a strong bilayering. Nevertheless,
due to the weak PC-PA binding energy, the formation of
additional layer seems to be prohibited in contrasts to
what was observed at øvdw ) 3 with systems D and E that
contain a similar number of monomers. Those observations
lead us to the relevant conclusion that multilayering with
short chains (if experimentally observed on a charged
colloidal sphere) must involve additional nontrivial driving
forces likespecificPCmonomer-PAmonomer interactions
that are not captured by our model. This again seems to
be in agreement with the arguments presented in ref 7
which argue against a stable thermodynamic equilibrium
complex when there is excess polyelectrolytes present.

The net fluid charge plotted in Figure 15 indicates that
only one charge oscillation (around the isoelectric point)
is obtained in contrast to what can happen with longer
chains. Again, here the driving force for the bilayer
formation is the overcharging that increases with øvdw.

VIII. Concluding Remarks

We have carried out MC simulations to study the basic
mechanisms involved in forming equilibrium polyelec-
trolyte complexes on a charged colloidal sphere. This work

Figure 12. Same as Figure 9 but with øvdw ) 3.

Figure 13. Radial monomer density for short polyelectrolyte
chains (system H) at different øvdw couplings. The black and
gray lines correspond to PC and PA monomers, respectively.

Figure 14. Typical equilibrium configurations for short PC (in white) and PA (in red) chains adsorbed onto the charged macroion
(system H). The little ions are omitted for clarity. (a) øvdw ) 0 (b) øvdw ) 3 (c) øvdw ) 5.
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emphasizes the role of the short-range van der Waals-
like attraction (characterized here by øvdw) between the
spherical macroion surface and the oppositely charged
adsorbed chain(s).

It was demonstrated that, for the bilayering process
involving two long oppositely charged chains at fixed Γm
and ΓM, it is necessary to have a sufficiently high øvdw. In
particular, below a certain value of øvdw ) øvdw

/ , a dense
adsorbed polyelectrolyte globule is obtained, whereas
above øvdw

/ a flat bilayer builds up.
The same qualitatively applies to the case of many (more

than two) long polyelectrolytes. In a purely electrostatic
regime (i.e., øvdw ) 0) one can never obtain a true (uniform)
multilayering. However, by increasing øvdw, one gradually

increases the polyelectrolyte (polycation and polyanion)
chain adsorption ultimately leading to a true multilayering
where the macroion is uniformly covered. Nonetheless, at
given øvdw and especially for small øvdw, the polyelectrolyte
globular state is always favored when its net charge is
zero.

As far as the short chain case is concerned, it was shown
that even bilayering cannot be reached within the pure
electrostatic regime. Only at higher øvdw (higher than those
coming into play with long chains), one recovers a bilayer
formation. However, multilayering (beyond bilayering)
with very short chains seems to be very unlikely within
our model. The large complex would not be thermody-
namically stable and dissolve into smaller charge neutral
polyelectrolyte complexes, consistent with the ideas
presented in ref 7.

As an overall conclusion, our results clearly demon-
strated that besides an overcharging driving force [i.e.,
successive macroion (effective) charge reversal by suc-
cessive polymer layering], the stability of the polyelec-
trolyte multilayer is strongly influenced by the specific
macroion-polyelectrolyte short-range attraction. This
statement should at least hold for the investigated cases
of equilibrium structures.

A future study should include other important effects,
such as chain flexibility, specific interchain monomer-
monomer interaction, microion valency, etc. Nevertheless,
our present findings hopefully will generate some further
systematic studies to explore the effects of nonelectrostatic
effects for the layer-by-layer deposition technique.
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Figure 15. Net fluid charge Q(r) for system H at different øvdw
couplings. The horizontal line corresponds to the isoelectric
point.
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ABSTRACT: The adsorption of highly oppositely charged flexible polyelectrolytes (PEs) on a charged
planar substrate is investigated by means of Monte Carlo (MC) simulations. We study in detail the
equilibrium structure of the first few PE layers. The influence of the chain length and of a (extra)
nonelectrostatic short range attraction between the polycations and the negatively charged substrate is
considered. We show that the stability as well as the microstructure of the PE layers are especially
sensitive to the strength of this latter interaction. Qualitative agreement is reached with some recent
experiments.

I. Introduction

PE multilayer structures are often obtained in a so-
called layer-by-layer method by alternating exposure of
a charged substrate to solutions of polycations (PCs) and
polyanions (PAs). This widely used technique was first
introduced by Decher and co-workers,1,2 and its simplic-
ity and versatility have triggered a large interest in the
engineering community. As examples of technological
applications, one can mention biosensing,3 catalysis,4
nonlinear optical devices,5 nanoparticles coating,6-7 etc.

On the theoretical side, there exist a few analytical
works about PE multilayers on charged planar surfaces
based on different levels of approximation.8-10 Solis and
Olvera de la Cruz considered the conditions under which
the spontaneous formation of polyelectrolyte layered
structures can be induced by a charged wall.8 On the
basis of Debye-Hückel approximations for the electro-
static interactions, including some lateral correlations
by the consideration of given adsorbed PE structures,
Netz and Joanny9 found a remarkable stability of the
(semiflexible) PE multilayers supported by scaling laws.
For weakly charged flexible polyelectrolytes at high ionic
strength qualitative agreements between theory,10 also
based on scaling laws, and experimental observations11

(such as the predicted thickness and net charge of the
PE multilayer) have been provided.

The important driving force for all these PE multi-
layering processes is of electrostatic origin. More pre-
cisely, it is based on an overcharging mechanism, where
the first layer overcharges the substrate and, along the
PE multilayering process, the top layer overcharges the
adsorbed PE layers underneath. Nevertheless, the
strong correlations existing between oppositely charged
polyions, especially for highly charged PEs, provide a
formidable challenge for the understanding of the PE
multilayer microstructures. In this respect, numerical
simulations are of great help. It is only recently, that
MC simulations were carried out to study such PE
structures built up on spherical charged surfaces.12

In this paper, we provide a detailed study of the PE
multilayer structure adsorbed on a charged planar
surface and discuss the basic mechanisms that are
involved there by means of MC simulations. Our paper
is organized as follows: section II is devoted to the

description of our MC simulation technique. The mea-
sured quantities are specified in section III. The PE
monolayering is studied in section IV, and the PE
bilayering is studied in section V. Then the PE multi-
layering process is addressed in section VI. Finally,
section VII contains some brief concluding remarks.

II. Simulation Details

The setup of the system under consideration is similar
to that recently investigated with a spherical sub-
strate.12 Within the framework of the primitive model,
we consider a PE solution near a charged hard wall with
an implicit solvent (water) of relative dielectric permit-
tivity εr ≈ 80. This charged substrate located at z ) 0
is characterized by a negative surface bare charge
density -σ0e, where e is the (positive) elementary charge
and σ0 > 0 is the number of charges per unit area.
Electroneutrality is always ensured by the presence of
explicit monovalent (Zc ) 1) plate’s counterions of
diameter a. PE chains (N+ PCs and N- PAs) are made
up of Nm monovalent monomers (Zm ) 1) of diameter a.
Hence, all microions are monovalent: Z ) Zc ) Zm ) 1.
For the sake of simplicity, we only consider here
symmetrical complexes where PC and PA chains have
the same length and carry the same charge in absolute
value.

All these particles making up the system are confined
in a L × L × τ box. Periodic boundary conditions are
applied in the (x, y) directions, whereas hard walls are
present at z ) 0 (location of the charged plate) and z )
τ (location of an uncharged wall). To avoid the appear-
ance of image charges,13,14 we assume that on both parts
of the charged plate (at z ) 0) the dielectric constants
are the same.

The total energy of interaction of the system can be
written as

where the first (single) sum stems from the interaction
between an ion i (located at z ) zi) and the charged
plate, and the second (double) sum stems from the pair† E-mail: messina@thphy.uni-duesseldorf.de.

Utot. ) ∑
i

[Uhs
(plate)(zi) + U coul

(plate)(zi) + Uvdw
(plate)(zi)] +

∑
i,i<j

[Uhs(rij) + Ucoul(rij) + UFENE(rij) + ULJ(rij)] (1)
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interaction between ions i and j with rij ) |ri - rj|. All
these contributions to Utot. in eq 1 are described in detail
below.

Excluded volume interactions are modeled via a
hardcore potential defined as follows

for the microion-microion one, except for the monomer-
monomer one,15 and

for the plate-microion one.
The electrostatic energy of interaction between two

ions i and j reads

where +(-) applies to charges of the same (opposite)
sign, and lB ) e2/4πε0εrkBT is the Bjerrum length
corresponding to the distance at which two monovalent
ions interact with kBT. The electrostatic energy of
interaction between an ion i and the (uniformly) charged
plate reads

where +(-) applies to positively (negatively) charged
ions. An appropriate and efficient modified Lekner sum
was utilized to compute the electrostatic interactions
with periodicity in two directions.16,17 To link our
simulation parameters to experimental units and room
temperature (T ) 298 K), we choose a ) 4.25 Å, leading
to the Bjerrum length of water lB ) 1.68a ) 7.14 Å. The
surface charge density of the planar macroion was
chosen as -σ0e ≈ -0.165 C/m2.

The polyelectrolyte chain connectivity is modeled by
employing a standard FENE potential in good solvent
(see, e.g., ref 18), which reads

with κ ) 27kBT/a2 and R0 ) 1.5a. The excluded volume
interaction between chain monomers is taken into
account via a purely repulsive Lennard-Jones (LJ)
potential given by

where ε ) kBT. These parameter values lead to an
equilibrium bond length l ) 0.98a.

An important interaction in PE multilayering is the
nonelectrostatic short ranged attraction, U vdw

(plate), be-
tween the planar macroion and the PC chain. To include
this kind of interaction, we choose without loss of
generality a (microscopic) van der Waals (VDW) poten-

tial of interaction between the planar macroion and a
PC monomer that is given by

where øvdw is a positive dimensionless parameter de-
scribing the strength of this attraction. Thereby, at
contact (i.e., z ) a/2), the magnitude of the attraction is
øvdwε ) øvdwkBT which is, in fact, the relevant charac-
teristic of this potential. Since it is not straightforward
to directly link this strength of adsorption to experi-
mental values, we chose øvdw ) 5 (also considered among
other values in the case of a spherical macroion12), so
as to mimic good “anchoring” properties to the planar
substrate.

All the simulation parameters are gathered in Table
1. The set of simulated systems can be found in Table
2. The equilibrium properties of our model system were
obtained by using standard canonical MC simulations
following the Metropolis scheme.19,20 Single-particle
moves were considered with an acceptance ratio of 30%
for the monomers and 50% for the counterions. Typi-
cally, about 5 × 104 to 106 MC steps per particle were
required for equilibration, and about 5 × 105 - 106

subsequent MC steps were used to perform measure-
ments. To improve the computational efficiency, we
omitted the presence of PE counterions when N+ ) N-
so that the system is still globally electroneutral. We
have systematically checked for N+ ) N- ) 20 (system
C) that the (average) PE configurations (especially the
monomer distribution) are indistinguishable, within the
statistical uncertainty, from those where PE counterions
are explicitly taken into account, as it should be.

III. Measured Quantities
We briefly describe the different observables that are

going to be measured. To characterize the PE adsorp-
tion, we compute the monomer density n( (z) that is
normalized as follows

Uhs(rij) ){∞, for rij < a
0, for rij g a (2)

Uhs
(plate)(zi) ){∞, for zi < a/2

∞, for zi > τ - a/2
0, for a/2 e zi e τ - a/2

(3)

Ucoul(rij)
kBT

) (
lB

rij
(4)

U coul
(plate)(zi)
kBT

) (2πlBσ0zi (5)

UFENE(r) ){- 1
2
κR0

2ln[1 - r2

R0
2], for r < R0

∞, for r g R0

(6)

ULJ(r) ){4ε[(ar)12
- (ar)6] + ε, for r e 21/6a

0, for r > 21/6a
(7)

Table 1. Model Simulation Parameters with Some Fixed
Values

parameters

T ) 298 K room temp
σ0 ) 90/L2 macroion surface charge
Z ) 1 microion valence
a ) 4.25 Å microion diameter
lB ) 1.68a ) 7.14 Å Bjerrum length
L ) 22a (x, y)-box length
τ ) 75a z-box length
N+ no. of PCs
N- no. of PAs
NPE ) N+ + N- total no. of PEs
Nm no. of monomers per chain
øvdw strength of the specific VDW attraction

Table 2. System Parametersa

system NPE N+ N- Nm

A 20 20 0 10
B 10 10 0 20
C 40 20 20 10
D 20 10 10 20
E 80 40 40 10
F 40 20 20 20

aThe number of counterions (cations and anions) ensuring the
overall electroneutrality of the system is not indicated.

Uvdw
(plate)(z) ) -εøvdw( a

z + a/2)6
, for z g a/2 (8)

∫a/2

τ-a/2
n((z)L2 dz ) N( Nm (9)
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where + (-) applies to PCs (PAs). This quantity is of
special interest to characterize the degree of ordering
in the vicinity of the planar macroion surface.

The total number of accumulated monomers Nh ((r)
within a distance z from the planar macroion is given
by

where + (-) applies to PCs (PAs). This observable will
be addressed in the study of PE monolayer (section 4)
and PE bilayer (section 5).

Another relevant quantity is the global net fluid
charge σ(z), which is defined as follows

where ñ+ (ñ-) stands for the density of all the positive
(negative) microions (i.e., monomers and counterions).
Thus, σ(z) corresponds to the net fluid charge per unit
area (omitting the bare macroion surface charge -σ0)
within a distance z from the charged wall. At the
uncharged wall, electroneutrality imposes σ(z ) τ - a/2)
) σ0. By simple application of the Gauss’ law, [σ(z) -
σ0] is directly proportional to the mean electric field at
z. Therefore, σ(z) can measure the screening strength
of the macroion-plate charge by the neighboring solute
charged species.

IV. Monolayer
In this part, we study the adsorption of PC chains

for two chain lengths Nm ) 10 (system A) and Nm ) 20
(system B), and for two different couplings øvdw ) 0 and
øvdw ) 5. Experimentally, this would correspond to the
formation of the first polyelectrolyte layer. This is a
decisive step to elucidate the even more complex PE
multilayer structures where additionally PAs are also
present.

Here, where N- ) 0 (i.e., no polyanions), global
electroneutrality is ensured by the presence of explicit
PC’s counterions (i.e., monovalent anions) and the

macroion-plate’s counterions (i.e., monovalent cations).
Also, we recall that the total number of monomers,
N+Nm ) 200, is identical for both systems A and B
under consideration (see Table 2). Hence, the total
monomer charge is the same for systems A and B.

The profiles of the monomer density n+(z) are depicted
in Figure 1. At øvdw ) 0, the density n+(z) near contact
(z ∼ a/2) is basically independent of the chain size Nm.
However, away from the surface, the density of mono-
mers is slightly higher for larger Nm. This is a combined
effect of (i) entropy and (ii) electrostatic correlations.
These underlying mechanisms at øvdw ) 0 can be
explained with simple ideas as follows:

•At fixed number of total monomers, entropic effects
are larger the shorter the chains, and in the limiting
case of Nm ) 1 (i.e., the electrolyte limit) entropy effects
are maximal leading to the highest monomer “release”.
It is to say that the chain connectivity lowers the
entropy of the system.

•In parallel, electrostatic correlations21-23 are also
higher the higher the valence of the adsorbed particles.
In our case Nm plays the role of the polyion valence.

Figure 1. Profiles of PC monomer-density n+(z) at different
øvdw couplings (systems A and B). The inset corresponds to øvdw
) 5 where the two curves (Nm ) 10 and 20) are nearly
indistinguishable.

Nh ( (z) ) ∫a/2

z
n( (z′)L2 dz′ (10)

σ(z) ) ∫a/2

z
[ñ+(z′) - ñ-(z′)] dz′ (11)

Figure 2. Fraction Nh +(z)/(N+Nm) of adsorbed PC monomers
at different øvdw couplings (systems A and B).

Figure 3. Net fluid charge σ(z) at different øvdw couplings
(systems A and B).
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The density n+(z) near contact increases consider-
ably with øvdw (here about 1 order of magnitude) as
expected. It turns out that with øvdw ) 5, the n+(z)-
profiles are basically identical for Nm ) 10 and Nm )
20. This is due to the sufficiently strong nonelectrostatic
attractive force that can overcompensate the antago-
nistic entropic effects that were more efficient at
øvdw ) 0.

The fraction Nh +(z)/(N+Nm) of adsorbed monomers
can be found in Figure 2. At a z-distance of 1.5a
from the planar macroion surface (corresponding to a
width of two monomers), about 90% of the mono-
mers are adsorbed for øvdw ) 5 against only ∼50%
for øvdw ) 0. Again, at given øvdw, Nh +(z)/(N+Nm) is
larger for longer chains due to the same coupled
effects of entropy and electrostatic correlations ex-
plained above.

The (global) net fluid charge σ(z) is reported in Figure
3. In all cases, we observe a macroion-surface charge
reversal (i.e., σ(z)/σ0 > 1). The position z ) z* at which
σ(z*) gets its maximal value decreases with øvdw, due to
the øvdw-enhanced adsorption of the PCs. Concomitantly,
this overcharging increases with øvdw, since the (extra)
gain in energy by macroion-monomer VDW interactions

can better overcome (the higher øvdw) the cost of the self-
energy stemming from the adsorbed excess charge.12

More quantitatively, we have σ(z*)/σ0 ≈ 1.7 at øvdw ) 5
against only σ(z*)/σ0 ≈ 1.25 at øvdw ) 0. Note that the
maximal value of charge reversal of (200-90)/90 ) 122%
(i.e., σ(z*)/σ0 ) 2.22) allowed by the total charge of PCs
cannot be reached due to a slight accumulation of
microanions. In agreement with the profiles of n+(z) and
Nh +(z) (see Figure 1 and Figure 2), at given øvdw, the
overcharging gets higher the higher the chain length.
Those (locally) overcharged states should be the driving
force for the building of subsequent PE bilayers when
PA chains are added.

Typical equilibrium configurations can be found in
Figure 4. The qualitative difference between øvdw ) 0
(Figure 4, parts a and b) and øvdw ) 5 (Figure 4, parts
c and d) is rather spectacular. Without additional VDW
attraction (øvdw ) 0) the adsorption is much weaker than
at øvdw ) 5, where in the latter situation the z-
fluctuation is very weak within the adsorbed layer.
Basically the first layer is glued at øvdw ) 5, and the
excess PC chains float in the solution. It is typically this
type of configurations for the first layer that is wanted
in experimental situations.

Figure 4. Typical equilibrium configurations for PC chains adsorbed onto an oppositely charged planar macroion (systems A
and B). The little counterions are omitted for clarity. Key: (a) øvdw ) 0, Nm ) 10; (b) øvdw ) 0, Nm ) 20; (c) øvdw ) 5, Nm ) 10; (d)
øvdw ) 5, Nm ) 20.
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The next section (section 5), which concerns bilayer-
ing, will show that the (enhanced) stability of this first
layer is decisive for the onset of multilayers.

V. Bilayer
We now consider the case where additionally PA

chains are present (systems C and D), so that we have
a neutral polyelectrolyte complex (i.e., N+Nm ) N-Nm
) 200). Global electroneutrality is ensured by the
counterions of the planar macroion as usual. For such
parameters, the final equilibrium structure consists
essentially of bilayers with sometimes the onset of a
weakly stable third layer. Experimentally this would
correspond to the process of the second polyelectrolyte
layer formation (with system A or B as the initial state).
We stress the fact that this process is fully reversible
for the parameters investigated in our present study.
In particular, we checked that the same final equilib-
rium configuration is obtained either by (i) starting from
system A or B and then adding PAs or (ii) starting
directly with the mixture of oppositely charged poly-
electrolytes.

The profiles of the monomer density n( (z) at øvdw )
0 and øvdw ) 5 are depicted in Figure 5, parts a and b,
respectively. The corresponding microstructures are

sketched in Figure 6. The density of PC monomers
n+(r) near contact increases considerably with øvdw as
expected. Interestingly, at øvdw ) 0, a comparison with
systems A and B (see Figure 1) indicates that the
adsorption of PC monomers is weaker when additional
PAs are present. This effect was already observed with
spherical substrates,12 and the same mechanisms apply
here to planar surfaces. More explicitly, the PC chain
tends to build up a globular state (reminiscent of the
classical bulk PE collapse24) by getting complexed to the
PA chain, as well illustrated in Figure 6, parts a and b.
Thereby, the mean monomer coordination number (or
the mean number of monomer neighbors) gets higher
which is both (i) entropically and (ii) energetically (at
least from the PE complex viewpoint) favorable. This
PC desorption is only appreciable at sufficiently low øvdw
where the energy loss stemming from the PC desorption
is well balanced (or even overcompensated depending
generally on the parameters) by the energy gained in
building a PC-PA globular structure. This “auto-
globalization” is also enhanced by increasing Nm as it
should be (compare Figure 6, part a and part b). Note
also that there is a small second peak in n+(z) at z ≈
3.8a (see Figure 5a), which is rather the signature of a
strong PC-PA globalization than a third PE layer.
Besides, the peak in the PA density n-(z) located at z )
z* ≈ 2.3a (see Figure 5a), which is relatively far from
that of a compact bilayer where z* ) 1.5a, indicates the
diffuse character of the bilayer at øvdw ) 0.

At øvdw ) 5, the n+(z)-profiles are basically identical
for Nm ) 10 and Nm ) 20. In contrast to øvdw ) 0, n+(z)
near contact is somewhat larger at øvdw ) 5, and it is
going to be explained later in the discussion of Nh +(z).
As far as the PA density n-(z) is concerned, we see that
the peak is roughly 2-3 times higher (depending on Nm)
with øvdw ) 5 than with øvdw ) 0. Also, its position (z*
≈ 1.5a) corresponds to that of a compact bilayer. A
visual inspection of Figure 6, parts c and d, confirms
this feature. This again shows how important is the role
of extra nonelectrostatic attractive force for the stability
of bilayers.

An intermediate conclusion can be drawn from the
above findings and especially from the microstructures
depicted in Figure 6:

• True bilayering (i.e., flat and dense layers) can only
occur at nonzero øvdw, as already reported for spherical
charged substrates12 with large curvature.

An interesting common characteristic of the micro-
structures at øvdw ) 0 and øvdw ) 5 is the formation of
small islands (along the substrate) made up of more or
less flat (depending on øvdw) PC-PA complexes, easily
identifiable at Nm ) 20 (see Figure 6, parts b and d).

The fraction Nh +(z)/(N+Nm) of adsorbed monomers at
øvdw ) 0 and øvdw ) 5 can be found in Figure 7, parts a
and b, respectively. A close look at Figure 7a reveals a
smaller PC monomer accumulation (at øvdw ) 0) up to z
≈ 3a (independently of Nm) than in the case where PA
chains were absent (compare with Figure 2). This is
fully consistent with the formation of PC-PA globules
(relevant at øvdw ) 0) leading to the effective PC
desorption already discussed above. In parallel, this
PC-PA globalization tends to cancel the effect of chain
length Nm on Nh +(z). On the other hand, at øvdw ) 5, the
situation is qualitatively different where the presence
of PAs now induces an increase of Nh +(z) (compare Figure
7b and Figure 2). This phenomenon can be explained
by electrostatic correlation effects. Indeed, at øvdw ) 5,
the highly stable PC layer attracts more PA monomers
than at øvdw ) 0, and thereby, “super” dipoles made of

Figure 5. Profiles of monomer density n( (z) for oppositely
charged polyelectrolytes (systems C and D). Key: (a) øvdw ) 0;
(b) øvdw ) 5.
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PC-PA monomer pairs build up, that are perceptible
in Figure 6, parts c and d. This leads to a strong
attractive correlation interaction between the plate and
those dipoles. In other terms the effect of finite øvdw is
to (strongly) polarize the adsorbed charged chains. Note
also that at øvdw ) 5 the PC-PA globalization is much
less favorable than at øvdw ) 0 due to the higher cost of
PC desorption energy in the former case. As a net effect
there can be more adsorbed PC monomers compared to
øvdw ) 0. In that case of øvdw ) 5, it is precisely this
mechanism that tends to cancel the effect of Nm on
Nh +(z). As far as the PA monomer fraction Nh -(z) is
concerned, Figure 7 shows that the adsorption of
monomers is much weaker and more diffuse at øvdw )
0 than at øvdw ) 5, as expected from Figures 5 and 6.

The net fluid charge σ(z) is reported in Figure 8. In
all cases, the planar macroion gets overcharged and
undercharged as one gets away from its surface. That
is we have to deal with charge oscillations. Our results
clearly show that the amplitude of those oscillations is
systematically larger at high Nm, as also observed
without PAs (see Figure 3). This is consistent with the
idea that lateral electrostatic correlations are enhanced
by increasing the valence of the polyions (here Nm).

Nevertheless, as soon as oppositely charged polyions can
interact, there is a subtle interplay between clustering
and the lateral correlations of polyions that governs the
degree of overcharging near the planar macroion. At øvdw
) 5, we observe a significantly higher overcharging than
without PAs (compare with Figure 3). This is in agree-
ment with the profiles of N+(z) discussed previously.
However, the positions of the first peak (z* ≈ a for øvdw
) 5 and z* ≈ 1.8a for øvdw ) 0) in σ(z) remain nearly
unchanged by the presence of PAs (compare Figure 8
with Figure 3).

VI. Multilayer

Presently, we consider the case where there are
enough polyelectrolytes (N+Nm ) N-Nm ) 400) in the
system to produce multilayers (systems E and F). Hence,
compared to systems C and D, we have now doubled
the polyelectrolyte concentration. Global electroneutral-
ity is ensured by the counterions of the planar macroion
as usual.

The density profiles of n( (r) for øvdw ) 0 and øvdw )
5 are depicted in Figure 9, parts a and b, respectively.
The corresponding microstructures are sketched in

Figure 6. Typical equilibrium configurations for the adsorption of oppositely charged PE chains (systems C and D) onto a planar
macroion. The polycations are in white and the polyanions in red. The little ions are omitted for clarity. Key: (a) øvdw ) 0, Nm )
10; (b) øvdw ) 0, Nm ) 20; (c) øvdw ) 5, Nm ) 10; (d) øvdw ) 5, Nm ) 20.
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Figure 10. In general, the densities of PC and PA
monomers are systematically larger than those found
for systems C and D corresponding to a lower PE
concentration. This effect is due to the fact that, at
higher concentration of oppositely charged chains, the
number of dipoles (i.e., PC-PA monomer pairs) are also

larger, and from this it gives larger plate-dipole cor-
relations.

Even at øvdw ) 0 with Nm ) 10, we can observe a
nonnegligible second peak in n+(z) (located at z ≈ 3.8a)
which is the signature of a third layer. This finding
contrasts with what was observed at spherical sub-
strates12 (also with øvdw ) 0, Nm ) 10, and with a similar
macroion surface charge density), where not even a
stable bilayer could build up. This radically different
behavior can be accounted by geometrical arguments.
Indeed, the potential of electrostatic interaction scales
like 1/r in spherical geometry against z in planar one.
Hence, at sufficiently high curvature (as it was the case
in ref 12 where Nma/r0 > 125 with r0 being the radius of
the spherical macroion), qualitative differences from the
planar case are then expected. However, the corre-
sponding microstructure (see Figure 10a) suggests a
relatively large formation of PC-PA globules leading
to a diffuse and porous multilayer. Always at øvdw ) 0,
but with longer chains (Nm ) 20), Figure 9a shows that
the degree of layering is higher as expected. This feature
is well illustrated by Figure 10b, where the PA mono-
mers are visibly more attracted to the planar macroion
surface.

At øvdw ) 5, the adsorption of monomers is drastically
increased due to the enhanced stability of the first PC

Figure 7. Fraction of adsorbed monomers Nh ( (z) for oppositely
charged polyelectrolytes (systems C and D). Key: (a) øvdw ) 0;
(b) øvdw ) 5.

Figure 8. Net fluid charge σ(z) at different øvdw couplings
(systems C and D).

Figure 9. Profiles of monomer density n( (z) for oppositely
charged polyelectrolytes (systems E and F). Key: (a) øvdw ) 0;
(b) øvdw ) 5.
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layer that, in turn, induces a larger adsorption of the
subsequent PAs and PCs. Compared to øvdw ) 0, all the
peaks in n( (z) are shifted to smaller z, indicating a
higher compaction. These higher ordering and compac-
tion at øvdw ) 5 can be visually checked in Figure 10,
parts c and d.

The net fluid charge σ(z) is reported in Figure 11. As
expected charge oscillations are detected. However in
all cases, the corresponding amplitude is decaying (as
also found in ref 12 for spherical geometry). Compared
to the bilayer situation (see Figure 8), one remarks that
the charge oscillations are now larger due to the
enhanced “plate-dipole” correlations occurring at higher
chain concentrations (as discussed above). On the other
hand, the positions of the extrema in the charge oscil-
lations remain quasi unchanged.

VII. Concluding Remarks

We first would like to briefly discuss our findings with
some experimental examples.Our results concerning the
first layer (i.e., single PC layer) show that an additional
nonelectrostatic force is needed to enhance its stability.
Experimentally, this is achieved by choosing PCs with

good “anchoring” properties to a given substrate. In our
model this was done by taking øvdw ) 5. This being said,
the case øvdw ) 0 is from a fundamental point of view

Figure 10. Typical equilibrium configurations for the adsorption of oppositely charged PE chains (systems E and F) onto a
planar macroion. The polycations are in white and the polyanions in red. The little ions are omitted for clarity. Key: (a) øvdw )
0, Nm ) 10; (b) øvdw ) 0, Nm ) 20; (c) øvdw ) 5, Nm ) 10; (d) øvdw ) 5, Nm ) 20.

Figure 11. Net fluid charge σ(z) at different øvdw couplings
(systems E and F).
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interesting, since it corresponds to a purely electrostatic
regime.

Recently, Menchaca et al. found, by means of “liquid-
cell AFM”, that PE-complex grains appear at the first
PE-layers.26 This kind of structure (that we referred to
as small islandsssee Figure 6) are confirmed by our
simulations. Concomitantly, a significant roughness of
the deposited bilayer was also detected in this experi-
ment, which is directly linked to the presence of those
grains. This microstructure seems also to be (indirectly)
reported in other experiments using ellipsometry,27

where it is found that the structure of the two first
bilayers are more porous than that of later bilayers. This
is also in qualitative agreement with our microstruc-
tures depicted in Figures 6 and 10. However, more
simulation data are needed to understand the PE
structure beyond two bilayers.

The degree of charge inversion of the substrate can
be indirectly obtained by measuring the ú-potential via
electrophoresis.11 In their experiment, Ladam et al.11

observed that, after a few deposited PE layers,28 the
ú-potential profile is symmetrically oscillating. This
reveals a “stationary” regime where successively, poly-
cations and polyanions are adsorbed with the same
strength. Unfortunately, it is not possible for us to
investigate numerically this regime due to the highly
prohibitive computation time required there. However,
the charge oscillations observed in our σ(z) profiles
indicate that by increasing the amount of layers, one
first increases the amplitude of these oscillations. This
confirms at least the general experimental evidence of
the nonstationary regime a the early stage of PE
multilayering.

We also would like to mention the possible effect of
image charges stemming from the dielectric discontinu-
ity between the substrate (typically εr ≈ 2-5) and the
solvent (here εr ≈ 80), as is the case under experimental
conditions. It is expected that image forces become
especially relevant for PE monolayering (i.e., when PCs
solely are present).29 Indeed for multivalent ions, a
strong self-image repulsion occurs and leads to a shifted
density-profile n+(z) with a maximum located somewhat
further than the contact region.13,14 However for PE
multilayering, due to the presence of oppositely charged
PEs, the effect of image forces may be considerably
reduced (especially sufficiently away from the wall) due
to the (self-)screening of the image charges.

In summary, we have investigated by means of
extensive MC simulations the equilibrium buildup of the
few first layers adsorbed on a charged planar substrate.
Two parameters were considered: (i) the chain length
Nm and (ii) the extra nonelectrostatic short-range at-
traction (characterized here by øvdw) between the planar
macroion surface and the polycation chains.

For the bilayering, it was demonstrated that, within
the electrostatic regime (i.e., øvdw ) 0), significant PC-
PA globules build up leading to a very “porous” and
diffuse bilayer structure. The PC-PA globalization is
enhanced with Nm. At sufficiently large øvdw (here øvdw
) 5), the bilayer is much less diffuse and the oppositely
charged chains are more polarized, leading to a high
stability of the structure.

The same qualitatively applies to the case of the two-
bilayer (i.e., four PE layers) adsorption. Within this
regime of layering as investigated here (up to four
layers), we also found a nonlinear regime, where for
instance the separation of the peaks in the monomer
densities are not identical. This is in qualitative agree-

ment with the finding of Ladam et al.11 where they
reported a nonlinear regime in the so-called “region I”
corresponding to the PE multilayer-region close to the
buffer.28 The effect of Nm is to globally enhance the
stability of the multilayer structure due to the higher
electrostatic correlations and also due to entropic effects.

A future study should take into account the rigidity
of the chain, which can drastically change the multilayer
structure depending the stiffness. The formation of PE
multilayers on cylindrical substrates seems also to be
a promising research area, and to our knowledge it has
never been investigated so far.30
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The phase diagram of crystalline bilayers of particles interacting via a Yukawa potential is calculated
for arbitrary screening lengths and particle densities. Staggered rectangular, square, rhombic, and
triangular structures are found to be stable including a first-order transition between two different
rhombic structures. For varied screening length at fixed density, one of these rhombic phases exhibits
both a single and even a double reentrant transition. Our predictions can be verified experimentally in
strongly confined charged colloidal suspensions or dusty plasma bilayers.
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Confined systems exhibit structural and dynamical
behavior very much different from the corresponding
bulk state [1,2]. In particular, freezing is strongly af-
fected by the presence of a planar wall. In equilibrium,
solidification near walls can occur at thermodynamic
conditions where the bulk is still fluid (so-called ‘‘pre-
freezing’’) [3,4]. In nonequilibrium, the wall may act as a
center of heterogeneous nucleation [5] in order to initiate
crystal growth [6]. A system confined between two par-
allel planar walls exhibits various layered crystalline
states at low temperature if the plate distance gets com-
parable to the mean interparticle distance. For hard
spheres between hard plates, geometric packing consid-
erations lead to the stability of different crystalline latti-
ces including multiple square and hexagonal layers [7] as
well as buckled [8], rhombic [8,9], and prism superlattices
[10]. On the other hand, for pure Coulombic systems such
as (classical) electrons in quantum wells [11] or trapped
ions [12], several crystalline bilayer structures were re-
ported [13].

Most of our experimental knowledge of freezing in
confining slitlike geometry is based on real-space mea-
surements of mesoscopic model systems such as charged
colloidal suspensions between glass plates [7,10] or of
multilayers of highly charged dusty plasmas [14]. The
actual interaction between these mesoscopic ‘‘macroions’’
is neither hard-sphere-like nor pure Coulombic but is
described by an intermediate screened Coulomb or
Yukawa pair potential [15,16] due to the screening via
additional microions in the system. The screening length
can be tailored by changing the microion concentration:
For charged colloids, salt ions are conveniently added to
the aqueous suspensions; the complex plasma, on the
other hand, consists of electrons and impurity ions.

In the present Letter, we study the stability of different
crystal lattices in bilayers of Yukawa particles as moti-
vated by the experimental model systems. The zero-
temperature phase diagram is calculated for arbitrary
screening lengths and particle densities [17]. We find a
variety of different staggered solid lattices to be stable
which are separated by either first- or second-order phase

transitions. The two known extreme limits of zero or
infinite screening length corresponding to hard spheres
[9] and the plasma [13,18] are recovered. For intermediate
screening lengths, the phase behavior is strikingly differ-
ent from a simple interpolation between these two limits.
First, there is a first-order coexistence between two differ-
ent staggered rhombic lattices differing in their relative
shift of the two unit cells. Second, one of these staggered
rhombic phases exhibits a novel reentrant effect for fixed
density and varied screening length. Depending on the
density, the reentrant transition can proceed via a stag-
gered square or a staggered triangular solid including
even a double reentrant transition of the rhombic phase.
All of our theoretical predictions can, in principle, be
verified in real-space studies of confined charged suspen-
sions or dusty plasmas.

In detail, our system consists of two layers containing
in total N particles in the �x; y� plane. The total area
density of the two layers is � � N=A with A denoting
the system area in the �x; y� plane. The distance D be-
tween the layers in the z direction is prescribed by the
external potential confining the system. The particles are
interacting via the Yukawa pair potential,

V�r� � V0
exp���r�

�r
; (1)

where r is the central separation. The inverse screening
length � which governs the range of the interaction is
given in terms of the microion concentration by Debye-
Hückel screening theory. The energy amplitude V0 �
Z2 exp�2�R��=��1� �R�2 scales with the square of the
charges Z of the particles of physical hard core radius R
[19] reduced by the dielectric � permittivity of the sol-
vent (� � 1 for the dusty plasma). Typically, Z is of the
order of 100–100 000 elementary charges such that V�r�
at typical interparticle distances can be much larger
than the thermal energy kBT at room temperature justify-
ing formally zero-temperature calculations. Then the
energy scale is set by V0 alone and phase transitions in
large bilayer systems are completely determined by two
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dimensionless parameters, namely, the reduced layer den-
sity � � �D2=2 and the relative screening strength � �
�D. For zero temperature, the stable state is solid but
different crystalline structures of the bilayers are con-
ceivable. As possible candidate structures, we assume that
the two two-dimensional periodic lattices in the bilayers
are the same, have a simple unit cell, and are shifted
relative to each other in the lateral direction by a displace-
ment vector c. If the two layers are labeled with A and B,
the particle positions in the �x; y� plane of the two layers
are given by

RA�m; n� � ma1 � na2; RB�m; n� � ma1 � na2 � c;

(2)

where a1 and a2 are the primitive vectors of the two-
dimensional lattice and m; n are integers. The total inter-
nal energy U is obtained by the double lattice sum,

U �
1

2

X

RA�R0
A

V�jRA �R0
Aj� �

1

2

X

RB�R0
B

V�jRB �R0
Bj�

�
X

RA;RB

V��jRA �RBj
2 �D2	1=2�: (3)

In the limit N ! 1, the stable crystalline structure mini-
mizes the total internal energy per particle U=N.

We have minimized U=N with respect to a1, a2, and c
under the constraint of prescribed density � for given �
mapping out the phase diagram in the ���� plane. As a
result, five typical staggered lattice structures turn out to
minimize U=N for different �. Adopting the notation
developed for plasma bilayers [18], we label them by I,
II, III, IV, and V. As summarized in Table I, phase I is the
staggered rectangular crystal with a fixed aspect ratio
a2=a1 of

���
3

p
; phase II is also staggered rectangular but

with a different aspect ratio � interpolating continuously
between phase I and the staggered-square phase III where
a2=a1 � 1. The staggered rhombic phase IV has two
nonorthogonal lattice unit vectors (a1 and a2) forming
an angle � and contains a general lateral shift c � ��a1 �
a2� between the two rhombic lattices. In fact, we find two
possibilities for � defining two variants of stable rhombic
phases which we call IVA and IVB. For IVA, � � 1=2

while �< 1=2 for IVB. Finally, phase V is a staggered
triangular crystal. Both phases III and V can be consid-
ered as special cases of the rhombic phase IV; the former
has � � �=2 and � � 1=2 while the latter is character-
ized by � � �=3 and � � 1=3.

The result for the phase diagram for a wide range of
screening strengths (0 
 � 
 100; � ! 1) and densities
(0 
 � 
 0:8) is shown in Fig. 1. At very low screening
�, we recover the known plasma limit [18], with our
labeling of the phases being in line with their sequence

TABLE I. Structure and parameters of the different stag-
gered bilayer crystals. a1 is set to �a1; 0�, where a1 is the nearest
intralayer distance between particles. For phase II, � � a2=a1
is the aspect ratio. For phase IV, � is the angle between a1 and
a2, and � is a free parameter characterizing the relative lateral
interlattice shift c.

Phase a2=a1 c �a21=2

I. Rectangular �0;
���
3

p
� �a1 � a2�=2 1=

���
3

p

II. Rectangular �0; �� �a1 � a2�=2 �
III. Square (0,1) �a1 � a2�=2 1
IV. Rhombic �cos�; sin�� �a1 � a2�� 1= sin�
V. Triangular �1=2;

���
3

p
=2� �a1 � a2�=3 2=

���
3

p

I III V

0.5 0.77 ηII IVB

0 0.2 0.4 0.6 0.8
η

0.00

20.00

40.00

60.00

80.00

100.00

λ

IVB

II V

I

IVA

III

(a)

0.5 0.52 0.54 0.56 0.58 0.6
η

0.00

5.00

10.00

15.00

λ

(b)

V

IVA

III

FIG. 1 (color online). Phase diagram of the Yukawa bilayer in
the ��; �� plane. (a) The hard sphere limit � ! 1 is sketched
on top. The dashed (solid) lines denote continuous (discontinu-
ous) transitions. The filled region corresponds to the coexis-
tence domain of phases IV and V. The vertical arrow indicates
the double reentrant behavior of phase IVA. The insets show the
lattice geometries, where the filled (open) circles correspond to
the lower (upper) layer. (b) Magnification of (a) showing a
reentrant behavior of phase IVA occurring at moderate �. The
four diamonds along the arrow indicate state points which were
investigated by computer simulation at finite temperatures.
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for increasing density �. Phase I has a finite but extremely
small density region of stability up to � � 3:6� 10�5 at
� � 0 [18]. For finite �, the I ! II transition stays second
order and occurs at even smaller densities which decrease
monotonically to zero as a function of � until the hard-
sphere limit � ! 1 is reached. In this latter case, a1 is
playing the role of an effective particle diameter. This is
sketched by the vertical line in Fig. 1. The II ! III tran-
sition is second order and the transition densities increase
drastically with growing � and interpolating monotoni-
cally between the plasma and hard-sphere limit. More
details of the I ! II ! III transition scenario are de-
picted in Fig. 2 where the aspect ratio � of phase II is
shown versus � for different �. Phases I and III corre-
spond to � �

���
3

p
and � � 1, respectively. As can be

clearly deduced from Fig. 2, the aspect ratio � interpo-
lates continuously as a function of � between

���
3

p
and 1 for

any � such that both the I ! II and the II ! III transitions
are second order. In the hard-sphere limit, � approaches
�hs � �2��

�����������������
4�2 � 3

p
continuously which is also

shown in Fig. 2.
Novel effects are observed for the III ! IV ! V tran-

sitions. First, for small �, the III ! V transition proceeds
via a IVA phase, the former being second order, and the
latter first order. For � � 8, however, there is a strong first-
order transition directly from III toV with a large density
jump as determined by Maxwell’s construction [20]. For
even higher screening, � * 30, the III ! V transition
happens via the cascade III ! VIA ! IVB ! V. The
stability range of the IVA phase becomes smaller for
increasing � shrinking to zero in the hard-sphere limit.
Details of the III ! V transition scenario can be detected

via the order parameters sin� and � of the lattice mini-
mizing the total potential energy at prescribed density �.
Plotting sin� and � versus � reveals the order of the
transitions (see Fig. 3): A cusp, which is found for the
III ! IVA transformation, implies a second-order tran-
sition. All other transitions are first order as signaled by
discontinuous jumps in at least one of these order pa-
rameters. The corresponding coexistence density gap is
not shown in Fig. 3 but included in Fig. 1(a). Across the
IVA ! IVB transition, the order parameter jump is small
yielding a tiny density gap which cannot be resolved in
Fig. 1(a).

Our most striking result is reentrant behavior of the
IVA phase at fixed density upon varying � as indicated in
Fig. 1 by the vertical arrow. For 0:5<�< 0:525, there is
reentrance of the VIA phase via the III phase. The
full sequence over the whole range of � is IVA !
III ! IVA ! IVB. For 0:530<�< 0:536, there is even
a double reentrant behavior of the VIA phase via the

0.52 0.57 0.62 0.67 0.72
η

0.85

0.9

0.95

1

si
n(

θ)

λ = 20
λ = 30
λ = 40
λ = 60
λ = 80
λ = 100

(a)

IV

θ

0.52 0.57 0.62 0.67 0.72

η

0.3

0.35

0.4

0.45

0.5

α

λ = 20
λ = 30
λ = 40
λ = 60
λ = 80
λ = 100

(b)

l

c
IV

FIG. 3 (color online). (a) Sine of the angle � and (b) the
relative shift parameter � � c=‘ (with ‘ � ja1 � a2j) versus
density regarding the III ! IV ! V transition scenario for
different �. The insets show the lattice geometry of phase IV.

0 0.1 0.2 0.3 0.4 0.5
η
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1.2
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1.6

1.8

γ

λ = 0.1
λ = 1
λ = 2
λ = 5
λ = 10
λ = 30
λ = 100
γhs

a2

1a

II

FIG. 2 (color online). Aspect ratio � � a2=a1 for phase II
versus density � for different screening strengths �. The hard
sphere case �hs is also shown. The lattice geometry is shown as
an inset, where the filled (open) circles correspond to the lower
(upper) layer.
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sequence IVA ! V ! IVA ! III ! IVA ! IVB. This
rich scenario is due to a subtle interplay of the range of
the interaction in conjunction with the different bilayer
lattice structures. Finally, at finite temperatures T, we
performed extensive Monte Carlo computer simulations
with 800 particles in a rectangular-shaped box periodi-
cally repeated in the x and y directions and with hard
walls of distance D in the z direction allowing fluctuating
z positions of the particles (‘‘buckling’’). For fixed � �
0:533, we investigated four states at � � 0:5, 3.0, 8.2, 10
[see the four diamonds along the arrow in Fig. 1(b)] for
different T up to melting. The melting point is detected
via a modified Lindemann-type criterion involving dif-
ferences of mean-square displacements of nearest neigh-
bors [13]. We confirm that the reentrant behavior is stable
with respect to increasing T up to melting.

In summary, we have calculated the full phase diagram
for a Yukawa bilayer at zero temperature by lattice sum
minimizations. A competition between three length
scales, namely, the bilayer distance D, the averaged par-
ticle distance ��1=2, and the range 1=� of the interaction,
induces a rich phase behavior which is different from a
simple interpolation of the extreme limits of the confined
plasma and the hard-sphere system. We predict a coex-
istence of two different rhombic phases at finite screening
and a single and double reentrant scenario for one of the
rhombic phases for varied ‘‘softness’’ of the interaction.
These effects are in principle detectable in real-space
experiments of charged colloidal suspensions confined
between plates and in layers of dusty plasmas by tuning
the screening strength via the microion concentration. The
reentrant effect as obtained here in equilibrium should
also manifest itself as an interesting fingerprint in non-
equilibrium situations. For example, bilayer crystal nu-
cleation and growth could be greatly stimulated via
structures which are energetically close to the stable
ones [21]. Soft particle interactions different from the
Yukawa type of Eq. (1), as, e.g., inverse power potentials
where V�r� / r�n, will lead to similar reentrant effects as
long as the softness of the potential (e.g., the exponent n)
is varied. Different realizations of soft interactions occur
in sterically stabilized colloids, in spherical block-
copolymer micelles, and in star polymers and den-
drimers, where the softness of the effective interaction
can be tuned by the length and grafting density of the
polymer chains or the solvent quality [22]. Hence, the
reentrant scenario should also occur in foam films con-
taining polymer bilayers [23]. Finally, for a general ex-
ternal potential confining the particles to layers, the
bilayer distance D is not prescribed but the system will
minimize its total energy realizing an optimal D. In this
case, second-order phase transitions will still be de-
scribed in terms of scaled parameters. This implies a
universal behavior of our bilayer phase diagram. In a
general external potential, however, the system has the

additional possibility to split into tri- and higher-order
multilayers. This can happen either discontinuously or
continuously via merging prism phases. Details have to
be explored in future studies.
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Crystalline bilayers of charged colloidal suspensions which are confined between two parallel plates and
sheared via a relative motion of the two plates are studied by extensive Brownian dynamics computer simu-
lations. The charge-stabilized suspension is modeled by a Yukawa pair potential. The unsheared equilibrium
configuration is two crystalline layers with a nested quadratic in-plane structure. For increasing shear rates �̇,
we find the following steady states: First, up to a threshold of the shear rate, there is a static solid which is
elastically sheared. Above the threshold, there are two crystalline layers sliding on top of each other with a
registration procedure. Higher shear rates melt the crystalline bilayers and even higher shear rates lead to a
reentrant solid stratified in the shear direction. This qualitative scenario is similar to that found in previous bulk
simulations. We have then studied the relaxation of the sheared steady state back to equilibrium after an
instantaneous cessation of shear and found a nonmonotonic behavior of the typical relaxation time as a
function of the shear rate �̇. In particular, application of high shear rates accelerates the relaxation back to
equilibrium since shear-ordering facilitates the growth of the equilibrium crystal. This mechanism can be used
to grow defect-free colloidal crystals from strongly sheared suspensions. Our theoretical predictions can be
verified in real-space experiments of strongly confined charged suspensions.

DOI: 10.1103/PhysRevE.73.011405 PACS number�s�: 82.70.Dd, 83.10.Mj, 61.20.Ja

I. INTRODUCTION

A fundamental understanding of the different processes
governing the relaxation of metastable phases back to equi-
librium is critical for many basic questions in condensed
matter physics and material science. Also, relaxational pro-
cesses are omnipresent in industrial applications. Colloidal
suspensions represent excellent model systems where such
questions can be studied directly in real space as the length
scales are conveniently accessed experimentally, the �vari-
able� interactions can be described theoretically in a simple
way, and the microscopic processes are rather slow as com-
pared to molecular materials. This has been extensively ex-
ploited in previous studies of interaction-dependent equilib-
rium properties and dynamics �1–4�. One important example
for a nonequilibrium steady state is a sheared colloidal sus-
pension. It is known that application of shear may destroy
the underlying equilibrium crystalline structure of the un-
sheared suspension �5� and can also lead to a reentrance or-
dering for high shear rates �6�. After cessation of shear the
system will relax back to equilibrium from the sheared
steady state. The microscopic details of this relaxation pro-
cess are far from being resolved.

If an additional confinement between two parallel plates is
considered �7�, various experiments �8–14� reveal a rich and
subtle influence of shear on the structure. Accordingly the
relaxation back to equilibrium after cessation of shear is a
fascinating but complex process which is a competition be-
tween wetting effects near the walls and bulk relaxation. In
experiments on strongly confined suspensions, for instance, a
complex pathway of the relaxation back to equilibrium was
obtained �15�: a bilayer bcc crystal was shear-molten to re-
crystallize as a buckled single-layer triangular lattice which
subsequently underwent a martensitic transition back to the
equilibrium phase.

Most of the theoretical studies on colloidal suspensions
have addressed the influence of linear shear flow on the bulk
structure via nonequilibrium Brownian dynamics �NEBD�
computer simulations �16� where hydrodynamic interactions
�17� are neglected and involve charged colloidal particles
modeled by a Yukawa pair interaction �18–27�. Shear-
induced melting of colloidal bulk crystals and subsequent
reentrant ordering at higher shear rates are confirmed by
simulation. More recent works addressing a wall acting on a
sheared suspension include a NEBD simulation in a channel
�28� and theoretical investigations for a single colloidal par-
ticle �29,30�.

In the present paper we address the relaxation of shear-
induced structures after cessation of shear. We use the stan-
dard Yukawa model for confined systems and employ NEBD
simulations. Here we focus on the simple and transparent
situation of colloidal bilayers which are confined between
two parallel plates and sheared via a relative motion of the
two plates. The reasons to do so are threefold: First, the
equilibrium phase diagram for confined crystalline bilayers
interacting via a Yukawa pair potential is known from recent
lattice-sum techniques at low temperatures �31�. The phase
diagram is drastically influenced by the presence of the walls
and differs from its bulk limit. This phase diagram was re-
cently confirmed in experiments on charged suspensions
strongly confined between two glass plates �32�. Second, the
structure and the defects in a crystalline bilayer are easier to
classify than in a multilayer. Last but not least, there are
experimental studies for strongly confined situations which
are not completely understood and are a challenge for a the-
oretical treatment �15�. Recent simulation studies of Das and
co-workers �33,34� have addressed similar questions regard-
ing sliding bilayers. The model employed in the studies of
Das et al., however, is simpler than ours: it does not possess
a spatial dimension z perpendicular to the plates and hopping
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processes between the layers are ignored. Furthermore, the
relaxation back to equilibrium is not investigated in Refs.
�33,34�.

In order to be specific, we chose the unsheared equilib-
rium configuration to be two crystalline layers with a nested
quadratic in-plane structure. This is the same starting con-
figuration as used in the experiments �15�. For increasing
shear rates �̇, we find the following scenario of steady states:
first, there is a static solid which is elastically sheared until a
shear-rate threshold is reached. Then there are two crystalline
layers sliding on top of each other with a lock-in registration
procedure similar to that observed in recent experiments by
Palberg and Biehl �35,36�. Higher shear rates melt the crys-
talline bilayers and even higher shear rates lead to a reentrant
solid stratified in the shear direction. This qualitative sce-
nario is similar to that found in previous bulk simulations
�18,20,23�. The shear-induced ordering at high shear rates is
reminiscent of the transition towards lane formation in oppo-
sitely driven particles �37�. We have then studied the relax-
ation of the sheared steady state back to equilibrium after an
instantaneous cessation of shear and found a nonmonotonic
behavior of the typical relaxation time as a function of the
shear rate �̇. In particular, application of high shear rates
accelerates the relaxation back to equilibrium via shear or-
dering in the steady state. This mechanism can be used to
grow defect-free colloidal crystals from strongly sheared sus-
pensions as was proposed by Clark and co-workers �38,39�.
Our theoretical predictions can be verified in experiments of
confined charged suspensions �15,35,36�.

The paper is organized as follows: In Sec. II, we introduce
the ground state model for crystalline bilayers. The nonequi-
librium Brownian dynamics simulation technique is ex-
plained in Sec. III. Results are presented in Sec. IV. Finally
we conclude in Sec. V.

II. THE MODEL

In this part, we define our model. This is basically a gen-
eralization towards finite temperature of the ground state
model used in Ref. �31� concerning the equilibrium �i.e.,
without external applied shear flow� phase diagram of crys-
talline colloidal bilayers interacting via a Yukawa potential.
In detail, our system consists of two layers containing in total
N particles in the �x ,y� plane. The total area density of the
two layers is �=N /A with A denoting the layer area in the
�x ,y� plane. The distance D between the layers in the z di-
rection is prescribed by the external potential confining the
system. The particles are interacting via the Yukawa pair
potential

Vyuk
�part��r� = V0

exp�− �r�
�r

, �1�

where r is the center-center separation. The inverse screening
length � which governs the range of the interaction is given
in terms of the micro-ion concentration by Debye-Hückel
screening theory. The energy amplitude V0
=Z2exp�2�R�� /��1+�R�2 scales with the square of the

charges Z of the particles of physical hard core radius R
reduced by the dielectric � permittivity of the solvent ��=1
for the dusty plasma�. Typically, Z is of the order of
100–100 000 elementary charges such that Vyuk�r� at typical
interparticle distances can be much larger than the thermal
energy kBT at room temperature, justifying formally zero-
temperature calculations. Then the energy scale is set by V0
alone and phase transitions in large bilayer systems are com-
pletely determined by two dimensionless parameters, namely
the reduced layer density,

� = �D2/2, �2�

and the reduced screening strength,

� = �D . �3�

For zero temperature, the stable state is solid but different
crystalline structures of the bilayers are conceivable. The re-
sult for the phase diagram in a �� ,��-map can be found in
Ref. �31�. Here, we explore the same model for finite tem-
perature by computer simulation.

III. THE NONEQUILIBRIUM BROWNIAN DYNAMICS
COMPUTER SIMULATION

A. Simulation method

Here, we provide a detailed description of our Brownian
dynamics method that was used to investigate nonequilib-
rium sheared colloidal bilayers �at finite temperature�. A
schematic setup of the system in the �x ,z� plane is depicted
in Fig. 1. The integration scheme for our model system in the
presence of an external steady shear rate �̇ reads

ri�t + �t� = ri�t� +
D0

kBT
Fi�t��t + �Wi + �̇zi�t��tex. �4�

Thereby ri�t�= �xi�t� ,yi�t� ,zi�t�� is the position of the ith col-
loidal particle at time t and D0 denotes its free diffusion
constant. By imposing a linear velocity profile, the

FIG. 1. �Color online� View in the �x ,z� plane of the setup of the
colloidal bilayer confined between two walls.
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possibility of solvent shear-banding is excluded. All the con-
tributions to the equation of motion �4� are explained below.

Within a small time interval �t, that particle moves under
the influence of the sum of conservative forces Fi�t� stem-

ming from �i� the pair interaction Vyuk �see Eq. �1�� between
particle i and the neighboring ones and �ii� the repulsive
interaction with the �soft� wall�s� whose potential of interac-
tion, Vwall, is modeled as follows:

Vwall
�LJ��z� =���LJ�� 	LJ

Dwall

2
− �z�	

10

− � 	LJ

Dwall

2
− �z�	

4


 + �LJ,

for

Dwall

2
− �z�

	LJ

 �5

2
�1/6

,

0,
for

Dwall

2
− �z�

	LJ
� �5

2
�1/6

,

�5�

where

� = − 
� 1

zmin
�10

− � 1

zmin
�4�−1

= 3.070 02...

�with zmin= �5 � 2 �1/6
	LJ minimizing Vwall in Eq. �5�� so that

Vwall�	LJ�=�LJ. This �truncated and shifted� 10−4 Lennard-
Jones potential given by Eq. �5� assumes that we have thin
soft walls. Note that the use of a 9−3 Lennard-Jones poten-
tial corresponding to semi-infinite walls would not qualita-
tively change the results. Also the use of charged hard walls
would not affect our main results. To check this latter state-
ment, we have also considered charged walls leading to the
following external interaction potential,

Vwall
�ch� �z� = W0�cosh��z� − 1� , �6�

where the amplitude W0 is governed by the surface charge
density of the plates.

Furthermore, due to the presence of the solvent, the par-
ticles experience �i� a friction whose constant is given by
kBT /D0 and �ii� random displacements, �Wi. Those latter are
sampled from a Gaussian distribution with zero mean and
variance 2D0�t �for each Cartesian component�. The last
term in Eq. �4� represents the applied shear in the x direction
and imposes an explicit linear flow field. The zero velocity
plane of the imposed shear lies at the midplane between the
plates.

B. Parameters

The colloidal particles are confined in a rectangular L

L
Dwall box where periodic boundary conditions are ap-
plied in the �x ,y� directions. The system is made up of N
=800 particles �i.e., 400 particles per layer�. The units are set
as follows: kBT=1/� sets the energy scale, the �typical aver-
age� interlayer separation D=Dwall−2	LJ �see also Fig. 1�
sets the length scale, and �=D2 /D0 sets the time scale. For
the screened Coulomb wall-particle interaction �see Eq. �6��
we use �W0=30. For the Yukawa interparticle interaction

�see Eq. �1�� we choose �V0=6000, whereas for the wall-
particle interaction �see Eq. �5�� we choose ��LJ=1 and
	LJ=0.1D. The time step was set to �t=10−5�. The reduced
colloidal particle density is set to �=ND2 /2L2=0.24 �so that
L=40.82D� and the reduced screening is �=�D=2.5. Those
latter parameters lead to the staggered square phase in the
ground state �or at very low temperature� as can be seen on
the phase diagram from Ref. �31�.

A time interval of 1.5
105 BD time steps �i.e., 1.5�� was
sufficient to obtain the equilibrium �i.e., �̇=0� properties of
our model system. The corresponding in-plane �x ,y� pair dis-
tribution function g�r� is shown in Fig. 2. It clearly shows a
high degree of ordering as characterized by the pronounced
peaks and the deep minima. The snapshot also provided in
Fig. 2 confirms the square lattice structure expected for those
parameters. Moreover, the structural properties are insensi-
tive to the kind of particle-wall potential �here Eq. �5� versus
Eq. �6�� as expected.

To quantify the layer extension in the z direction we have
also plotted the particle density n�z� that can be found in Fig.
3. The mean interlayer separation is then given by
2�0

Dwall/2zn�z�L2dz�0.99D, so that �in practice� D corre-
sponds indeed to the interlayer separation. This latter result
was identically obtained by employing either Eq. �5� or �6�.
In the forthcoming, where �̇�0, we will only show results
for the LJ potential �Eq. �5��. We have carefully checked that
the results are qualitatively the same as those obtained with
charged walls �Eq. �6��. In particular, the general scenario for
increasing shear rates does not change.

IV. RESULTS

A. Effect of shear flow

Starting from the equilibrium configuration described in
the previous section, an external shear is applied during a
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period of 4
106 BD steps �i.e., 40��. A steady state is
reached after typically 10�, and subsequent measurements
are performed over a typical period of 20�.

It is instructive to start our study by analyzing the micro-
structures reported in Fig. 4 corresponding to different �̇.
From a structural point of view one can �qualitatively� iden-
tify three regimes:

• At sufficiently low shear rates �here �̇=20/� and �̇
=50/��, it can be seen that the crystalline structure �namely

square� as well as the degree of ordering are conserved com-
pared to the equilibrium situation �i.e., �̇=0, see Fig. 2�.
Consequently, we are in an elastic regime.

• For intermediate shear rates �here �̇=60/� and �̇
=80/��, there is a �relatively� strong disorder and the struc-
ture can therefore be qualified as liquid. In other words we
have to deal with a shear induced melting.

• At high shear rates �here �̇=100/� and �̇=200/��, the
system gets ordered again �especially for the highest shear
rate �̇=200/�� but exhibits a different �intralayer� crystalline
symmetry �namely a triangular lattice� than the equilibrium
one. Consequently, we have a reentrant behavior concerning
the intralayer-ordering upon shearing.

In order to obtain a more quantitative description of these
�̇-dependent structural properties, we have also computed
the �azimuthally averaged� interlayer- and intralayer-pair-
distribution functions g�r=�x2+y2� for different �̇. The re-
sults are presented in Fig. 5.

The elastic behavior can be best understood by consider-
ing the interlayer and intralayer g�r�. From Fig. 5, we see
that at weak shearing �here �̇=20/��, the intralayer crystal-
line structure as well as the interlayer-lattice-correlation re-
mains unchanged compared to the �̇=0 case �the latter is not
reported in Fig. 5�. At larger shear rate �here �̇=50/�� the
degree of interlayer-lattice-correlation gets weaker than that
of the intralayer one. A closer look at Fig. 5�a� reveals that,
for �̇=50/�, the first peak is �asymmetrically� split into two
neighboring peaks. This is the signature of a small relative
displacement of the two square layer lattices. Upon further
increasing the shear rate �now at �̇=60/��, the bilayer be-
comes a liquid, demonstrating that there is a critical shear
rate �̇0 �below which an elastic behavior is recovered� whose
value is such that 50/���̇0�60/�.

Above �̇0, the intralayer g�r� exhibits a nontrivial behav-
ior with respect to �̇ �see Fig. 5�b��, in agreement with our
previous discussion on the microstructures depicted in Fig. 4.
More precisely, at intermediate �̇ �here 60/� and 80/��, the
intralayer layer structure corresponds to a liquid one. None-
theless and interestingly, at first neighbor separations, the
square structure locally persists, but in coexistence with a
triangular structure, as indicated by the broadened �splitted�
first peak. This feature can also be nicely visualized on the
snapshots from Fig. 4. At high shear rates �here 100/� and
200/��, there is a strong short-ranged �re�ordering into a tri-
angular lattice as indicated by the shifted first pronounced
peak �especially for �̇=200/��. However, the degree of or-
dering reported for those highly sheared structures is not as
high as that observed below �̇0.

In order to quantify the degree of ordering in the x shear
direction, we have also investigated the �intralayer� one-
dimensional pair distribution function g��x � �. For the compu-
tation of g��x � � we consider pairs of particles �of a given
layer� that lie within a width �y /D=0.25. The results are
shown in Fig. 5�c�: Below �̇0 and for �̇=200/� a crystalline
state is found, whereas for the intermediate values of �̇ a
liquid one is reported. A special case is achieved for �̇max
=100/� �thick solid line in Figs. 5�b� and 5�c��: Here there is
liquid-like ordering in the shear flow direction �see Fig.

FIG. 2. �Color online� Intralayer �x ,y� pair distribution function
g�r=�x2+y2� at equilibrium ��̇=0�. The solid and dashed lines cor-
respond to the use of Eqs. �5� and �6� �for the wall-particle potential
of interaction�, respectively. The inset shows a simulation snapshot
where the filled �open� circles represent particles belonging to the
upper �lower� layer.

FIG. 3. �Color online� Laterally averaged inhomogeneous par-
ticle density n�z� at equilibrium ��̇=0�. The solid and dashed lines
correspond to the use of Eqs. �5� and �6� �for the wall-particle
potential of interaction�, respectively.
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5�c��, but long-ranged solid-like ordering in the radial g�r�
�see Fig. 5�b��. This immediately implies that there is solid-
like ordering in the vorticity direction. Hence, this structure
can be classified as a liquid crystalline columnar phase.

To further quantify the behavior of highly sheared colloi-
dal bilayers and also to provide a dynamical information, we
are going to examine the �dimensionless� modified Linde-
mann parameter, �L�t�, that is defined as follows,

FIG. 4. �Color online� Simulation snapshots for different values of the shear rate �̇ �as indicated� where the filled �open� circles represent
particles belonging to the upper �lower� layer.
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�L�t� =
�u2�t��

D2 , �7�

where �u2�t�� corresponds to the difference in the mean
square displacement of neighboring particles from their ini-

tial sites r0=r�t= t0�. More explicitly, �u2�t�� can be written
as

�u2�t�� =� 1

N
�
i=1

N
1

Nb
�
j=1

Nb

��ri�t� − ri�t0�� − �r j�t� − r j�t0���2� ,

�8�

where ri�t�= �xi�t� ,yi�t��, �¯� denotes an averaging over BD
steps and the index j stands for the Nb nearest neighbors of
particle i lying in the same upper or lower layers. Typically,
for a �local� triangular lattice environment Nb=6 while for a
rectangular one Nb=4. Besides, we also average over several
reference times t0 to improve the statistics. Due to the finite
size of the simulation box, one is typically limited to obser-
vation times �tobs of the order of �tobs�L / �̇maxD�0.2� �by
taking here �̇max=200/��.

Our results are presented in Fig. 6. In the elastic regime
�small �̇�, the Lindemann parameter ��t� exhibits a plateau at

FIG. 5. �Color online� �a� Interlayer �x ,y� pair distribution func-
tion g�r=�x2+y2� for small values of �̇ �as indicated in the legend�.
�b� Intralayer �x ,y� pair distribution function g�r=�x2+y2� and �c�
g��x � � for different values of �̇ �as indicated in the legend�. The
corresponding simulation snapshots are displayed in Fig. 4.

FIG. 6. �Color online� Modified Lindemann parameter �L�t� for
different values of �̇ �as reported in the legend�.

FIG. 7. �Color online� Time evolution of the total potential en-
ergy of interaction E�t�: before, during, and after shear. The values
of �̇, considered during the shear process, are reported in the
legend.
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“long” times, confirming the crystalline intralayer structure.
At higher �̇ �i.e., �̇
60/�� the situation gets more compli-
cated. For 60/���̇�100/�, �L�t� diverges, proving a liquid
behavior, in agreement with our static analysis of g��x � � �see
Fig. 5�c��. It is therefore only at very high shear rate �i.e.,
�̇
200/�� that true intralayer crystalline reordering is re-
covered, as indicated by the existence of the plateau in �L�t�
whose value is comparable to that obtained in the elastic
regime.

B. Relaxation after cessation of shear

We now investigate how the system gets back to equilib-
rium after cessation of shear. A suitable and simple way to

study a relaxation process is to monitor the evolution in time
of the total potential energy of interaction E�t�=Vyuk+Vwall.
In our simulations, the cessation of shear occurs at t=40�.
Profiles of E�t� for different shear rates �̇ applied prior re-
laxation are plotted in Fig. 7. The corresponding microstruc-
tures at long time t=80� for 60/���̇�200/� are sketched
in Fig. 8. For low �̇ �here �̇�50/��, the relaxation process is
very fast as it should be. Note that the equilibrium energy
value is not exactly recovered because of the existence of
some long-living defects.

The relaxation process gets qualitatively different for
more highly sheared systems �here �̇
60/��. For the
samples that have undergone a shear-induced melting as de-

FIG. 8. �Color online� Simulation snapshots of relaxed systems taken at t=80� for different values of the prior applied shear rates �̇ �as
indicated�.
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duced from our criterion based on �L�t� �see Fig. 6 with
�̇�=60,80,100�, we remark that they all exhibit a similar
relaxation behavior �see Fig. 7 with �̇�=60,80,100�. In par-
ticular the relaxation is thereby much slower, partly due to
the existence of many long-living defects. Those latter also
explain the high energy reported in the long time scale. There
are several defects such as dislocations, �low angle� grain
boundaries �especially for �̇�=60,80�, and vacancies that are
easily identifiable in the snapshots of Fig. 8.

On the other hand, at large enough �̇ �here �̇=200/��, the
relaxation is faster as indicated by the faster earlier occur-
rence of an E�t� plateau �which is also deeper�. Nonetheless,
the energy of this �nearly� relaxed system remains higher
than those that were weakly sheared ��̇��̇0�. Again the ex-
istence of some vacancies �see Fig. 8 with �̇=200/�� in-
creases the energy system as well as the time of full relax-
ation.

By fitting E�t� with an exponential decay, we were
able to extract a typical relaxation time, �R, for the
early stage �40.5� t /��60� of the relaxation process:
�R /�=5.3�±0.1� ,9.3�±0.1� ,4.7�±0.1� ,4.3�±0.1� for �̇�
=60,80,100,200, respectively. Those data confirm at least
the general trend that very highly sheared samples having
strong ordering �prior cessation of shear� relax faster than
those moderately sheared having weak ordering.

V. CONCLUSIONS

To conclude we perform Brownian dynamics computer
simulations to study crystalline bilayers of charged colloidal

suspensions which are confined between two parallel plates
and sheared via a relative motion of the two plates. For the
parameters under consideration, the unsheared equilibrium
configuration is two crystalline layers with a nested quadratic
in-plane structure. For increasing shear rates �̇, we find the
following steady states: first, there is a static solid which is
elastically sheared until a shear-rate threshold is reached.
Higher shear rates melt the crystalline bilayers and even
higher shear rates lead to a reentrant solid stratified in the
shear direction. We have then studied the relaxation of the
sheared steady state back to equilibrium after an instanta-
neous cessation of shear and found a nonmonotonic behavior
of the typical relaxation time as a function of the shear rate
�̇. In particular, application of �very� high shear rates accel-
erates the �post-�relaxation back to equilibrium since shear
ordering facilitates the growth of the equilibrium crystal. The
steady-state structure may be drastically altered by shearing
topographically structured walls �e.g., atomic structures,
roughness, chemical patterns, etc.�. Hydrodynamic flow ef-
fects of the solvent are also expected to have significant in-
fluence at high shear rate. These questions will be addressed
in future work. We finally point out that similar effects might
be present in sheared granular sheets �40�.
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