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Zusammenfassung  

Das Entscheidungsverhalten und das assoziative Gedächtnis sind allgegenwärtige kognitive 

Prozesse, die eine hohe Alltagsrelevanz für Menschen und andere Tiere aufweisen. Daher 

verwundert es nicht, dass beide Prozesse über lange Forschungstraditionen als separate Disziplinen 

in der Psychologie und in den (kognitiven) Neurowissenschaften verfügen. Allerdings entstand durch 

diese getrennte Betrachtung der Eindruck, beide Prozesse liefen vollkommen unabhängig 

beziehungsweise getrennt voneinander ab und die Forschung fokussierte sich auf eine isolierte 

Betrachtung beider Phänomene. Erst kürzlich entwickelte sich die Idee, dass sich Gedächtnis- und 

Entscheidungsprozesse gegenseitig beeinflussen und sogar systematisch verzerren könnten. 

Neoklassische ökonomische Modelle des Entscheidungsverhaltens nehmen an, dass Gedächtnis-

repräsentationen von Präferenzen und der Wertigkeit von Entscheidungsoptionen einseitig das 

Entscheidungsverhalten bestimmen. Allerdings beinhalten viele Entscheidungssituationen komplett 

neue Stimuli, Ereignisse oder situationale Gegebenheiten, für die die Entscheiderin keinerlei 

Vorerfahrungen besitzt. Darüber hinaus stellen sich nicht nach allen Entscheidungen direkt 

belohnende oder bestrafende Konsequenzen ein und häufig entwickeln sich die Folgen von 

Entscheidungen erst sehr viel später als die konkrete Entscheidungssituation. Unter diesen 

Bedingungen ist es äußert schwierig, ausschließlich fehlerbasiert oder durch Belohnungs-

lernmechanismen zu lernen. Es erscheint daher unplausibel, dass alle Entscheidungen auf die 

durchschnittliche, lerngeschichtlich erworbene Wertigkeit von Entscheidungsoptionen zurück-

zuführen sind. Wahrscheinlicher ist, dass andere Mechanismen, wie etwa assoziative 

Gedächtnisprozesse, genutzt werden, um Wertrepräsentationen in neue Entscheidungskontexte zu 

generalisieren beziehungsweise zu übertragen. Weiterhin ignorieren neoklassische ökonomische 

Modelle des Entscheidungsverhaltens die Möglichkeit, dass das Entscheidungsverhalten selbst 

einen verändernden Einfluss auf Wertigkeits- und Präferenz-Repräsentationen im Gedächtnis haben 

könnte. In der vorliegenden Arbeit wurde daher untersucht, ob es zu zweiseitigen Interaktionen 

zwischen dem Entscheidungsverhalten und assoziativen Gedächtnisprozessen kommt. 

 Um diese Interaktionen zu untersuchen wurden gesunde Normalprobandinnen mit 

Konditionierungsparadigmen höherer Ordnung und klassischen Konditionierungsexperimenten 

getestet. Zusätzlich kamen gedächtnisbasierte Entscheidungsaufgaben zum Einsatz, mit denen 

Präferenz und Präferenzänderungen auf der Verhaltensebene gemessen werden sollten. Wir 

nutzten computationale Modellierung um mögliche Lernmechanismen die das beobachtete 

Entscheidungsverhalten beschreiben können zu quantifizieren und um verschiedene Modelle zu 

vergleichen. Zur Messung von Gedächtnisrepräsentationen und der Veränderung der assoziativen 

Stärke zwischen Stimuli, nutzten wir drei repräsentationale Neurobildgebungstechniken auf 

funktionellen Magnetresonanztomografie (fMRT)-Daten: fMRT-Adaptation, Ähnlichkeitsanalysen 

multivariater neuronaler Muster und klassifikationsbasierte multivariate Musteranalyse. 

 Im Entscheidungsverhalten der Probandinnen nach einem Konditionierungsprozess höherer 

Ordnung fanden sich Belege für eine Übertragung von Wertrepräsentationen. Zu diesem 
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Entscheidungsmuster kam es obwohl Probandinnen über kein explizites Wissen über die (höher-

geordnete) assoziative Struktur des Lernexperiment verfügten, was darauf hindeutet, dass 

Menschen Wertigkeiten von Entscheidungsoptionen implizit über Lernmechanismen höherer 

Ordnung erlernen können. Auf neuronaler Ebene gab es Belege dafür, dass die verwendeten 

gustatorischen unkonditionierten Stimuli (und damit einhergehend vermutlich der durch diese Stimuli 

transportierte motivationale Zustand oder die Wertigkeit) im linken lateralen orbito-frontalen Kortex 

durch die vorher damit gepaarten konditionierten Stimuli erster Ordnung reaktiviert wurde. Zusätzlich 

fanden sich Anzeichen dafür, dass eine direkte assoziative Verbindung zwischen dem durch den 

unkonditionierten Stimuli transportierten motivationalen Zustand oder dessen Wertigkeit und dem 

konditionierten Stimulus zweiter Ordnung in der Amygdala erzeugt wurde. 

 In einer weiteren Reihe von Experimenten mit einem neu entwickelten Lern- und 

Entscheidungsparadigma fanden sich konsistente Belege für entscheidungsinduzierte 

Präferenzänderungen: Zuvor ausgewählte Entscheidungsoptionen wurden häufiger gewählt, für 

nicht ausgewählte Optionen zeigten sich verringerte Präferenzen – im Vergleich zu ansonsten 

gleichwertigen Optionen. Diese Entscheidungseffekte wirken scheinbar in entgegengesetzte 

Richtungen und konnten entscheidungsinduzierte Präferenzänderungen bei Optionen, die gleich 

häufig ausgewählt und nicht ausgewählt wurden, aufheben. In einem zusätzlichen Experiment 

konnte zudem ausgeschlossen werden, dass die beobachteten entscheidungsinduzierten 

Präferenzänderungen ausschließlich auf akquirierte Stimulus-Reaktions-Tendenzen zurückführbar 

sind. Diese entscheidungsinduzierten Präferenzänderungen traten auf, ohne dass Probandinnen 

jemals die Konsequenzen ihrer Entscheidungen präsentiert wurden. Auf neuronaler Ebene gab es 

Belege dafür, dass die assoziative Stärke der Stimulus-Belohnungs-Verbindung zuvor gewählter 

Optionen gestärkt, wohingegen die assoziative Stärke der Stimulus-Belohnungs-Verbindung zuvor 

nicht gewählter Optionen abgeschwächt wurde. Diese Veränderungseffekte zeigten sich im linken 

Hippocampus und im rechten lateralen orbito-frontalen Kortex. Darüber hinaus waren stärkere 

entscheidungsbezogene Erhöhungen der assoziativen Stärke der Stimulus-Belohnungs-Verbindung 

assoziiert mit erhöhter Präferenz für zuvor ausgewählte Optionen. 

 Insgesamt deuten die Experimente der vorliegenden Arbeit daraufhin, dass es zu 

zweiseitigen Interaktionen zwischen dem Entscheidungsverhalten und assoziativen Gedächtnis-

prozessen kommt. Es konnte gezeigt werden, dass erlernte assoziative Strukturen höherer Ordnung 

für die Übertragung von Wertrepräsentationen auf Stimuli, die selbst nie direkt mit einer Belohnung 

oder Bestrafung gepaart wurden, genutzt werden können. Außerdem zeigte sich, dass 

entscheidungsinduzierte Präferenzänderungen durch die Veränderung von assoziativen 

Gedächtnisinhalten entstehen könnten. Entgegen der einseitigen Perspektive neoklassischer 

ökonomischer Modelle des Entscheidungsverhaltens, deuten beide Hauptergebnisse dieser Arbeit 

darauf hin, dass Werterepräsentationen im Gedächtnis und das Entscheidungsverhalten sich 

gegenseitig beeinflussen. 
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Abstract 

Decision-making and associative memory represent ubiquitous cognitive processes that are highly 

relevant in humans’ and other animals’ everyday lives. Consequently, both processes have long 

standing traditions of investigation – yet within two separate fields of research in psychology and 

(cognitive) neuroscience. For decades of research, both processes have been viewed as distinct 

entities and were therefore studied mostly in isolation. Only recently it has been suggested that both 

memory and decision-making processes might influence and bias each other. Neo-classical 

economic models of decision-making have proposed that memory representations of preferences 

and choice option values unidirectionally guide or influence choice behavior. However, many 

decision scenarios involve entirely new stimuli, events or situational setups for which previous 

experience is lacking. Additionally, decisions are often not immediately followed by reinforcing stimuli 

or need to be taken in situations where the consequences arise at sometimes drastically long 

timescales. Both these circumstances render learning based on error-driven, reinforcement learning-

based strategies challenging. Thus, it has been proposed that not all decisions are exclusively based 

on the averaged value resulting from a past learning history. Rather it seems that other mechanisms, 

like associative memory processes, are necessary for generalization and transfer of value to novel 

choice contexts. Moreover, neo-classical economic models neglect the possibility that choice 

behavior itself might have a modificatory influence on value and preference representations stored 

in the memory systems. In the present work, we therefore aimed at investigating bidirectional 

interactions between decision-making and associative memory processes. 

 To study these interactions, we investigated healthy human subjects and combined second-

order conditioning and Pavlovian conditioning experiments with memory-based decision-making 

paradigms to assess preference (changes) on the behavioral level. We used computational 

modelling to quantify and compare model fits of candidate learning mechanisms that describe the 

observed choice behavior. To measure memory representations and changes of associative 

strength between stimuli, we employed three representational neuroimaging analysis techniques on 

functional magnetic resonance imaging (fMRI): fMRI repetition suppression, multivariate neural 

pattern similarity analyses and classification-based multivariate pattern analyses. 

 We found hallmarks of value transfer in the choice patterns following second-order 

conditioning. Importantly, this choice bias was present even though participants were unaware of 

the underlying (higher-order) associative learning structure of the experiment, indicating that humans 

implicitly acquire subjective value through higher-order learning mechanisms. The observed 

behavioral effect was paralleled by neuroimaging findings suggesting that neural patterns 

representing the administered gustatory unconditioned stimuli (and presumably the motivational 

state or value conveyed by these outcomes) are reinstated in the left lateral orbitofrontal cortex by 

previously paired first-order conditioned stimuli. Additionally, there was evidence for the formation of 

a direct associative link between the reinstated motivational state or value conveyed by outcomes to 

second-order conditioned stimuli in the amygdala.  



 

X 
 

Moreover, in a series of experiments employing a newly developed learning and decision-making 

paradigm, we found converging evidence for choice-induced preference changes: While previously 

chosen options were selected more frequently, unchosen options showed diminished preferences – 

compared to otherwise equivalent options. The choice effects were cancelled out when an option 

was chosen and unchosen equally often during choice-induced revaluation. Additional experimental 

results indicated that the observed choice-induced preference changes were unlikely to be 

exclusively driven by acquired stimulus-response tendencies. Importantly, preference changes 

occurred even without participants ever experiencing the consequences of their choice. There was 

neuroimaging evidence for choice-induced strengthening of stimulus-outcome associations of 

previously chosen options, whereas we observed weakening of stimulus-outcome associations of 

previously unchosen options in the left hippocampus and right lateral orbitofrontal cortex. 

Additionally, stronger hippocampal representations of stimulus-outcome associations were 

associated with higher preference for previously chosen options.  

 Taken together, the results of all experiments conducted in this work strongly suggest 

bidirectional interactions between decision-making and associative memory. Here we show that 

exploiting acquired higher-order associative structures stored in memory might support transfer of 

value to stimuli that had themselves never been directly coupled with reinforcement. Additionally, we 

found that choice-induced preference changes might arise from choice-related transformations of 

associative memories. Contrary to the unidirectional view of neo-classical economic models of 

decision-making, both our key findings suggest that value representations in memory and decision-

making influence each other bidirectionally. 
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1. Introduction 

This work is dedicated to decision-making and associative memory processes, two cognitive abilities 

with tremendous implications for humans’ and other animals’ lives. Decision-making and associative 

memory represent two fields of research in psychology and (cognitive) neuroscience that each have 

long standing traditions. For the largest part of the past decades of research, however, both 

processes had been viewed as distinct entities and were therefore studied mostly in isolation. Only 

recently it has been proposed that both memory and decision-making processes might influence and 

bias each other (Shohamy & Daw, 2015). The present work therefore aimed at investigating 

interactions between decision-making and associative memory processes. In the following 

introductory section, I will first provide an overview of contemporary theories, models and (functional) 

neuroanatomical substrates of associative memory and highlight key empirical findings. Next, I turn 

to a selective description of (computational) theories of learning and decision-making and their neural 

correlates. Finally, I will highlight the literature investigating interactions between associative 

memory and decision-making and derive the main hypotheses of the present work. 

1.1 Associative Memory 

Associative learning and memory describe the acquisition and recall of relationships between stimuli, 

objects, events, or internal states (Mondragón, Alonso, & Kokkola, 2017), providing relational 

knowledge of the world. Since associative memory is ubiquitous and highly relevant for our everyday 

lives, most people have an intuitive understanding of what associative memory is and how 

associations might be acquired. Take the last time you met family or friends for instance: Upon 

recalling who exactly was present or remembering the place you met, one might also associatively 

retrieve the topics of conversation or what particularly funny joke your best friend made (e.g. “What’s 

the best thing about Switzerland? I don’t know, but the flag is a big plus”), easily enabling to tell this 

joke in front of colleagues.  

The hippocampus is involved in the formation of associative links between items, stimuli or 

events, that occur in spatio-temporal proximity (Dusek & Eichenbaum, 1997; Eichenbaum & Cohen, 

2001). Models and empirical findings have additionally suggested a pivotal role of the hippocampus 

in orchestrating the retrieval of episodic memory contents and associations between stimuli (Lisman 

et al., 2017; Staresina & Wimber, 2019; Tonegawa, Morrissey, & Kitamura, 2018; Yassa & Reagh, 

2013). It has been proposed that the theta-dependent information flow from primary sensory areas 

across the sensory processing hierarchy towards the hippocampal formation observed during 

memory encoding is reversed during retrieval or reinstatement (Staresina & Wimber, 2019). Further, 

it is assumed that the hippocampus might indeed not represent episodic and associative memory 

content per se, but rather functions as a general purpose sequence generator storing memory-

specific indices to preserve the spatio-temporal pattern of (sensory) neocortical neural populations 

that were activated during experience and encoding of events (Buzsáki, 2019; Lisman et al., 2017; 
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Staresina & Wimber, 2019). In this framework, the hippocampus stores and provides sequences 

organizing the memory-based reinstatement of cortical patterns representing sensory events in the 

neocortex, presumably tied to theta frequency oscillations (Buzsáki, 2019; Lisman et al., 2017; Liu, 

Dolan, Kurth-Nelson, & Behrens, 2019). 

While the ability to encode and retrieve information is highly functional in everyday life, a 

counterintuitive finding from associative memory research suggests that remembering can cause 

forgetting (Wimber, Alink, Charest, Kriegeskorte, & Anderson, 2015). It has been shown that retrieval 

of a memory can selectively reduce the retrievability of competing memories (Anderson, Bjork, & 

Bjork, 1994; Hulbert & Norman, 2015; Storm, Bjork, & Bjork, 2008), for instance if two stimuli are 

associated with the exact same third stimulus and participants are asked to selectively recall one of 

these two associations (Anderson et al., 1994; Wimber et al., 2015). However, more recent accounts 

for memory retrieval dynamics, like the nonmonotonic plasticity hypothesis (Ritvo, Turk-Browne, & 

Norman, 2019), argue for unsupervised learning and U-shaped spreading activation underlying 

strengthening and weakening of retrieved memory contents: Inactive memories remain unaltered, 

whereas moderately activated memories are weakened and strongly retrieved memories are 

strengthened. The proposed U-shaped activation is motivated by the finding that moderate post-

synaptic depolarization induces long-term depression, or synaptic weakening, whereas strong 

depolarization has been found to elicit long-term potentiation (Ritvo et al., 2019). While moderate 

activation might lead to differentiation of highly related memory contents, like competing memories, 

strong activation could facilitate integration of memories (Ritvo et al., 2019). Accordingly, retrieval-

induced forgetting might result from strong activation of target associations and moderately activated 

competitor memories, leading to differentiation of the memory content and overall weakening of the 

competitor, impairing its future retrievability (Ritvo et al., 2019). Retrieval-induced forgetting might 

arise from prefrontal cortex-mediated suppression of neural patterns representing the competitor 

memory trace by the remembered target association and is assumed to have adaptive functionality 

(Wimber et al., 2015). 

 These theoretical perspectives and empirical findings suggest that the hippocampal 

formation does not act in isolation during memory encoding and retrieval. There is substantial 

evidence for strong bidirectional anatomical connections (Barbas & Blatt, 1995; Kondo & Witter, 

2014) between the hippocampal formation and prefrontal cortical areas and for their functional 

interaction during memory encoding and retrieval (Wikenheiser & Schoenbaum, 2016). For instance, 

the lateral prefrontal cortex is involved in selectively suppressing neural patterns of competing 

memory during retrieval-induced forgetting (Wimber et al., 2015). Additionally, functional covariation 

between the hippocampus and individual change of reinstated future state representations in the 

orbitofrontal cortex has been observed in a maze-like task promoting learning about distal future 

rewards (Wimmer & Büchel, 2019). Moreover, both hippocampus and the medial prefrontal cortex 

seem to be involved in constructing prospective and compositional representations of novel 

rewarding stimuli (e.g. “tea jelly” – a linear combination of known stimuli: tea and jelly), dependent 
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on simultaneous activation of previously experienced rewards (Barron, Dolan, & Behrens, 2013). 

However, valuation of those novel goods is related to the medial prefrontal cortex only. 

1.2 Decision-Making 

Next to associative memory, decision-making is a vital part of our everyday lives. From deciding 

what kind of clothes to put on in the morning, which food to buy in the supermarket, to deciding for 

a career path and what kind of life one wants to live. A fundamental assumption in decision-making 

theories is that behavior aims at maximizing subjective utility (Ariely & Norton, 2008) and that choices 

can be predicted based on the difference between the (objective or subjective) values of available 

choice options (Padoa-Schioppa & Conen, 2017). Importantly, it is assumed that choices reveal 

preferences, i.e. that choice behavior reflects learned and remembered value structures in the world 

(Ariely & Norton, 2008). A plethora of seminal studies and theoretical models has implicated 

involvement of the orbitofrontal cortex/ventromedial prefrontal cortex and amygdala in the 

representation of value (Barron et al., 2013; Gottfried, O’Doherty, & Dolan, 2003; Jocham et al., 

2016; Klein-Flugge, Barron, Brodersen, Dolan, & Behrens, 2013; Kringelbach, O’Doherty, Rolls, & 

Andrews, 2003; O’Doherty, 2004; Padoa-Schioppa & Assad, 2006; Padoa-Schioppa & Conen, 2017; 

Schultz, 2004; Seo & Sinha, 2011; Suzuki, Cross, & O’Doherty, 2017; Wang et al., 2018). 

Additionally, the orbitofrontal cortex/ventromedial prefrontal cortex plays a critical role in reward-

guided decision-making, presumably by representing the difference between choice option values 

(Boorman, Behrens, Woolrich, & Rushworth, 2009; Jocham, Hunt, Near, & Behrens, 2012; 

Wunderlich, Range, & O’Doherty, 2009). This function might arise from neural dynamics underlying 

a biophysically plausible mechanism for choice behavior based on competition through mutual 

inhibition, that has been related to the balance of excitatory and inhibitory neurotransmission 

(Jocham et al., 2012; Kaiser, Gruendler, Speck, Luettgau, & Jocham, 2019; Soltani & Wang, 2010). 

It has been proposed that value might be assigned to stimuli or choice options by error-driven 

learning mechanisms, like the reward prediction error (RPE). Computationally, RPEs are derived 

from the difference between the actually received reward and the expected value of a stimulus, an 

action, or a stimulus-action combination at a given time point (Sutton & Barto, 1998). Since its initial 

formulation, the reward prediction error theory of learning has been a powerful and influential 

framework for investigating how value is computed by dopamine neurons and used for decision-

making in brains (Rescorla & Wagner, 1972; Schultz, Dayan, & Montague, 1997; Sutton & Barto, 

1998). Dopaminergic ventral tegmental area and more downstream areas receiving dopaminergic 

innervation, like the ventral striatum, have consistently been associated with the neural computation 

of RPEs (D’Ardenne, McClure, Nystrom, & Cohen, 2008; Deserno et al., 2015; Maes et al., 2020; 

Schultz et al., 1997; Sharpe et al., 2020; Takahashi et al., 2017).  

Initially formulated as a quantitative account of Pavlovian conditioning (Rescorla & Wagner, 

1972), the RPE computation enables individual tracking of environmental value functions in the form 

of running averages of values. Through experiencing both positive and negative mismatches in 
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varying magnitudes, RPEs allow approximation of the mean, or expected value, of the distribution of 

obtained outcomes, which is proportional to the respective stimulus/action/stimulus-action value. 

Despite the affordance of a quantitative account for behavior, the derivation of model-implied 

predictions for neural signals and its tremendous influence on (cognitive) neuroscience research in 

the past four decades, the canonical framework for value estimation has faced increasing challenges 

in recent years. More recent accounts have suggested that value assignment to stimuli or actions 

might not be driven by the mismatch between expected and received environmental outcomes, but 

could instead emerge from (active) reductions of the distance between current internal state 

variables (e.g. the level of hunger or thirst) and intrinsic goal states of the agent (Juechems & 

Summerfield, 2019). In this framework, the value or reward of stimuli, actions or stimulus-action 

combinations would be proportional to the expected minimization of the distance to the intrinsic goal. 

Furthermore, agents would aim at balancing the distances between a multitude of different intrinsic 

goal states and their respectively assigned internal state variables (Juechems & Summerfield, 2019).  

Additionally, the implicit, canonical assumption that all dopamine neurons uniformly represent 

value to compute RPEs as a singular scalar quantity might be incompatible with recent empirical 

findings and computational models (Dabney et al., 2020). Firing rates of the many different dopamine 

neurons in the rat’s ventral tegmental area have instead been found to vary drastically in response 

to reward receipt. This suggests that individual dopamine neurons might represent different 

information channels, conjunctively encoding a probability distribution over possible future rewards 

that represents a range of more “optimistic” to more “pessimistic” expected future outcome scenarios 

in parallel (Dabney et al., 2020). This distributional coding might facilitate weighting of different 

environmental scenarios with respect to their likelihood and uncertainty to motivate behaviors. 

Additionally, it has been suggested that neural RPE correlates might indeed encode more 

information than a scalar representation of the difference between the expected value and received 

rewards. For instance, it has been shown that value representations are most likely not learned in 

absolute terms (Klein, Ullsperger, & Jocham, 2017), but rather in relation to a reference point. This 

learning process shows hallmarks of adaptation to the range of presented outcome magnitudes in 

humans (Bavard, Lebreton, Khamassi, Coricelli, & Palminteri, 2018). Additionally, reward-responsive 

dopamine neurons in rats exhibit similar changes in firing rates as observed during violations of 

expected value, when sensory features of the reward (i.e. the reward identity), but not the value (i.e. 

the reward magnitude) itself is changed (Takahashi et al., 2017). These findings are difficult to 

reconcile with the canonical RPE framework.  

 Moreover, it is questionable whether all value learning and decision-making behavior 

observed in humans and other animals may exclusively be attributed to error-driven, or mismatch-

based learning processes. Specifically, despite absence of external feedback there is evidence for 

improvement in perceptual decision-making performance driven by confidence-related signals, 

suggesting that mesolimbic confidence representations might be used as internally generated 

reinforcement signals for guidance and optimization of behavior (Guggenmos, Wilbertz, Hebart, & 
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Sterzer, 2016). Consistently, the internal representation of individuals’ very own choice histories 

strongly biases subsequent decision-making processes (Urai, De Gee, Tsetsos, & Donner, 2019), 

and elicits adaptation to statistical properties of the environment even without experiencing the 

outcomes of choices (Braun, Urai, & Donner, 2018). Additionally, humans display preference 

increases for options they have chosen (Cockburn, Collins, & Frank, 2014; Leotti & Delgado, 2011) 

over and above what could be explained by reward history. It has been suggested that this valuation 

effect might result from dopamine-dependent amplification of RPEs elicited by free choices in the 

basal ganglia circuitry (Cockburn et al., 2014). 

1.3 Interactions between Associative Memory and Decision-Making 

Many decision scenarios that humans and other animals face every day involve entirely new stimuli, 

events or situational setups for which any previous experience is lacking. In other words, for many 

situations and stimuli encountered every day no value estimates based on error-driven learning are 

available (Biderman, Bakkour, & Shohamy, 2020). Moreover, decisions are often not immediately 

followed by reinforcing stimuli (Gewirtz & Davis, 2000) or need to be taken in situations where the 

consequences of the path taken unroll at sometimes drastically long timescales, rendering learning 

based on traditional error-driven strategies challenging, if not impossible. Despite these situational 

constraints affording tremendous cognitive flexibility, humans and other animals are – for the most 

part – capable of efficiently navigating through their lives. Thus, it has been proposed that not all 

decisions are exclusively based on the averaged value resulting from a past learning history 

(Biderman et al., 2020). Rather it seems that other mechanisms, like associative memory processes, 

are necessary for generalization and transfer of past experiences to novel choice contexts (Biderman 

et al., 2020) or for prospective planning in complex decision scenarios (Shohamy & Daw, 2015). 

Highlighting a potential way by which goal-directed behavior might be possible in novel contexts, 

empirical data show that decisions in humans are biased by reminder cues related to previously 

experienced episodes. These episodic reminder cues are assumed to associatively reinstate past 

choice contexts, performed actions and formerly received outcomes, over and above the influence 

of decision variables encoding the current choice context. Modelling results suggest that choice 

behavior might indeed be better explained by sampling of past actions from episodic memory than 

by error-driven computation and updating of running value averages for choice options (Bornstein, 

Khaw, Shohamy, & Daw, 2017; Bornstein & Norman, 2017). Additionally, it has been found that 

unexpected and strongly rewarded stimuli create event boundaries between environmental states in 

memory, presumably driven by the magnitude of expectancy violations, as encoded by RPEs 

(Rouhani, Norman, Niv, & Bornstein, 2020). 

The fascinating (human) ability to make highly accurate predictions and perform choices 

based on one- or even zero-shot learning (in situations with very limited or no previous experience) 

has been proposed to emerge from acquiring, storing, application and manipulation of cognitive 

maps (Tolman, 1948) of the environment, containing relational knowledge of stimuli, actions and 
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potential outcomes (Behrens et al., 2018; Tolman, 1948; Wikenheiser & Schoenbaum, 2016). 

Cognitive maps are related to the place and grid cell architecture in the hippocampal formation and 

entorhinal cortex and have traditionally been thought of and investigated in the context of spatial 

navigation (O’Keefe & Nadel, 1978). Only recently this view has been extended by experimental 

work in non-spatial, abstract and conceptual frameworks (Behrens et al., 2018; Bellmund, 

Gärdenfors, Moser, & Doeller, 2018; Constantinescu, O’Reilly, & Behrens, 2016; Garvert, Dolan, & 

Behrens, 2017; Kurth-Nelson, Economides, Dolan, & Dayan, 2016; Schuck, Cai, Wilson, & Niv, 

2016; Schuck & Niv, 2019), leading to a more general perspective on cognitive maps as representing 

predictive relationships between environmental states (Behrens et al., 2018; Momennejad et al., 

2017; Niv, 2019; Stachenfeld, Botvinick, & Gershman, 2017). Importantly, theoretical models and 

empirical findings suggest that not only the hippocampal formation, but also the orbitofrontal cortex 

might encode a map, or state space of the environment (e.g. Niv, 2019; Schuck et al., 2016). These 

orbitofrontal cortex state space representations are thought to emerge from interactions with the 

hippocampus (Schuck & Niv, 2019) and might encode other aspects of abstract relational knowledge 

than the hippocampus, e.g. by focusing on environmental aspects with immediate biological 

relevance (Wikenheiser & Schoenbaum, 2016). Indeed, it has been shown that agents use their 

knowledge of relational structures in the environment to spread value from rewarding events to novel 

stimuli and guide their behavior (Kurth-Nelson, Barnes, Sejdinovic, Dolan, & Dayan, 2015; Wang, 

Schoenbaum, & Kahnt, 2020; Wimmer & Shohamy, 2012). Crucially, the observed spread of value 

in the employed sensory preconditioning paradigms is related to interactions between the 

hippocampus, ventral striatum (Wimmer & Shohamy, 2012) and orbitofrontal cortex (Wang et al., 

2020).  

Drawing on a rich literature and research tradition, the dominant – and perhaps also more 

intuitive – perspective on interactions between associative memory and decision-making is that 

associative memory processes, specifically storing of value and preference representations, are 

used to guide choice behavior, consistent with the views of neo-classical economic models of 

decision-making (Ariely & Norton, 2008; Padoa-Schioppa & Conen, 2017). However, this view 

neglects the possibility that choice behavior itself might have a modificatory influence on value and 

preference representations stored in the memory systems. Early studies on choice-induced 

preference changes found increased subjective value ratings for chosen options after subjects had 

made a free decision between two choice options with roughly the same a priori subjective value 

(Brehm, 1956). The general idea of this findings – that past choices bias future preferences and 

decision-making – has been replicated (conceptually) several times (Hornsby & Love, 2020; Izuma 

et al., 2010; Luettgau, Tempelmann, Kaiser, & Jocham, 2020; Riefer, Prior, Blair, Pavey, & Love, 

2017; Sharot, Martino, & Dolan, 2009). Subsequently, the original finding has been criticized for 

mathematical inaccuracies, since the usually employed procedure – rating, choice, rating – might 

indeed not reveal preference changes, but could instead emerge naturally as a result of random 

error accumulation, regressions to the mean or simply inaccurate reflection of the “true” preference 
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during the initial rating (Chen & Risen, 2010). However, other experimental procedures overcoming 

this confound have found support for the reliability of choice-induced preference changes (Sharot, 

Velasquez, & Dolan, 2010). 

1.4 Hypotheses 

Given the assumed bidirectional relationship between associative memory and choice behavior, one 

of the two aims of the present work was to investigate how associative memory processes might 

serve goal-directed decision-making in novel situation. Specifically, we asked how value might be 

transferred from conditioned stimuli (CS) to other stimuli that had themselves never been directly 

followed or paired with reinforcement. We reasoned that one possibility to assign value to novel 

stimuli would be to chain together sequences of stimuli or actions that have themselves never been 

observed in direct contiguity with reinforcement, but eventually might lead to reward (or avoid 

punishment) in the future. Higher-order learning mechanisms like second-order conditioning (SOC) 

might support instrumental behavior despite absent reinforcement, by enabling spread of value to 

stimuli or actions that have never been directly paired with reinforcing stimuli (Gewirtz & Davis, 2000; 

Sharpe, Batchelor, & Schoenbaum, 2017). To the best of our knowledge, it is not known whether 

human decision-making might be influenced by value that is assigned through transfer learning 

mechanisms, like second-order conditioning. In Experiment I, we therefore employed a SOC 

paradigm and a memory-based choice preference test in healthy human participants. We 

hypothesized that choice behavior would exhibit hallmarks of value transfer to second-order CS and 

that there would be evidence for reinstatement of neural patterns representing unconditioned stimuli 

(US) by previously paired first-order CS during SOC. We additionally predicted that this US 

reinstatement would be paralleled by establishment of a direct associative link between the second-

order CS and the US, as evidenced by learning-dependent increases in neural pattern similarity. 

Even though most of the previously presented studies on choice-induced preference changes 

have implicitly assumed that choices might influence the underlying value representations stored in 

memory, this assumption has never been explicitly tested. This most likely results from the fact that 

former studies directly presented participants with the choice outcomes to be selected. Hereby, the 

decision-making process and the underlying changes in memory representations of value are by 

design obliterated. We reasoned that it would be necessary to disentangle both processes to 

investigate whether and how decision might bias future decision-making. Therefore, we developed 

a novel learning and memory-based decision-making paradigm presenting participants with binary 

decisions between CS that had previously been paired with differently valued US. Decisions were 

performed during a choice-induced revaluation phase and in a decision probe phase to assess final 

preferences. Crucially, participants were never presented with the consequences of their choices. 

This paradigm was then applied in several behavioral and a functional magnetic resonance imaging 

(fMRI) experimental setups (Experiment II A-E), allowing us to study and (conceptually) replicate the 

effects of choices on subsequent preferences and on the neural representations of associative 
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strength between CS and US. We hypothesized that CS chosen during choice-induced revaluation 

would be preferred over otherwise identical CS (paired with the same US) during the decision probe 

phase, whereas unchosen CS should be preferred less than equivalent CS. Additionally, we 

assumed that choices would induce alter the neural representation of associative strength between 

the chosen and unchosen CS and the respectively paired US.  
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2. Methods 

The following section provides a short overview and description of the key experimental and analysis 

methods that were used in the present work.  

2.1 Second-order conditioning and Pavlovian conditioning paradigms  

In the present work, second-order conditioning and Pavlovian conditioning procedures (Pavlov, 

1927) were used to establish associative relationships between CS and differently valued US. During 

the employed Pavlovian conditioning paradigms, previously neutral stimuli became CS by being 

repeatedly presented in close temporal succession of US, thus establishing expectations or 

predictions of the respectively paired US. By means of this contiguity, value is conferred from US to 

CS, so that conditioned responses (CR) towards the CS that closely mirror unconditioned responses 

(UR) can be observed (Pavlov, 1927). Quantitative accounts of Pavlovian conditioning suggest that 

CS develop the ability to pre-activate neural populations representing US during formation of an 

associative relationship between CS and US (Rescorla & Wagner, 1972; Sutton & Barto, 1998; 

Wagner, 1981).  

Second-order conditioning is a higher-order learning mechanism, by which value may be 

spread to stimuli that have never been directly paired with US, or other stimuli with reinforcing 

properties. Like in Pavlovian conditioning, during the employed SOC paradigm, a first-order 

conditioned stimulus (CS1) is initially linked associatively to a US. In a subsequent conditioning 

phase, another previously neutral second-order conditioned stimulus (CS2) is presented in close 

temporal succession of the CS1. Theoretically, CS2 should acquire incentive properties similar to CS1 

and thus develops the ability to elicit a CR.  

We administered gustatory reinforcers (quinine solution and orange juice or chocolate milk) 

in Experiment I or presented images of food items, drawn from an online database (Blechert, Meule, 

Busch, & Ohla, 2014) in Experiment II A-E as US. As CS1, we used fractal images (Experiment I). 

Additionally, as CS2 (Experiment I) or CS (Experiment II A-E) we used Japanese kanji character 

images drawn from an online database (Tamaoka, Makioka, Sanders, & Verdonschot, 2017). 

The aims of this procedure were threefold: First, we sought to enhance motivational salience 

and behavioral relevance of the learned associations by employing (depictions of) primary 

reinforcers. Second, we planned to use representational fMRI methods (see detailed description 

below) to identify reinstated memory representations of US (Experiment I) and to test choice-related 

alterations of the associative strength between CS and US (Experiment II E). We reasoned that 

inferential power to detect neural pattern information and fMRI repetition suppression effects would 

be maximized if not only value, but also identity features (i.e. color, shape, size, texture) would be 

distinct for the respectively used US. Third, in Experiment I we trained a classification algorithm on 

gustatory neural patterns from one session to classify neural patterns related to visual CS recorded 

during another session. This procedure offered a way to avoid biased classification accuracies due 
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to same-session and same-modality variance, or due to confounding influence of associations to a 

learned first-order CS.  

2.2 Memory-based decisions  

In all our experiments, we used memory-based decision-making scenarios presenting participants 

with binary choices between two CS. CS had previously been paired with differently valued US, 

indirectly (Experiment I) or directly (Experiment I and II). Crucially, these decisions were always 

performed in extinction, i.e. participants never experienced the consequences of their choices, or 

the associated US. We reasoned that due to these constraints, participants would have to make their 

choices based on remembered CS-US associations and by exploiting the learned underlying value 

structure. Importantly, this memory-based procedure prevents additional outcome- or US-related 

learning processes during decision-making and might thus allow for reliable estimation of acquired 

subjective preferences.  

Memory-based decisions were presented on computer screens or projected onto MRI-

compatible projection screens (Experiment I and II E). Choice options were presented on the left and 

right side of a computer screen and participants selected the desired option via button presses on 

German standard keyboards (QWERTZ) or on fMRI-compatible button boxes (Experiment I and II 

E) using the index fingers of both right and left hand while lying in a MRI scanner. All decisions had 

to be performed under time-pressure, allowing participants no more than 1500 ms to respond. We 

quantified choice behavior by means of choice probability (CP) for a given stimulus, i.e. the 

proportion of trials during which the respective stimulus was selected divided by the number of times 

the respective stimulus was presented. Since we employed binary choice situations, it is possible to 

compare each stimulus’ CP against a binary chance level criterion (CP = 0.50) and infer statistically 

significant deviations of each CP from chance level performance. 

2.3 Computational modelling 

In order to formally describe the participants’ choice behavior and to formalize candidate learning 

mechanisms that participants could have employed to acquire CS-US associations – and update 

associative strength during choice-induced revaluation – we used Rescorla-Wagner-like models of 

reinforcement learning (Rescorla & Wagner, 1972; Sutton & Barto, 1998). Computational models 

allow to quantitatively fit different parameter value constellations to the data and optimize model 

parameters so that the likelihood of the observed data given the parameters is maximized. 

Additionally, since computational models are generative, optimized parameter values can be used 

to simulate behavior employing artificial agents. 

In Experiment II A-C and E, we modelled six different learning mechanism that participants 

could have used to learn and update CS value. Four of these models incorporated the effect of 

choosing a CS (and not choosing the alternative CS) on the related CS-US associative strength by 

introducing “fictive reward prediction errors”, the difference between the associatively retrieved 
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(subjective) US value and the expected stimulus value/associative strength during each choice trial, 

scaled by a learning parameter α. This discrepancy was then used to update the respective CS’ 

value/associative strength after each choice. Estimated CS values were then be passed through a 

softmax decision function to generate trial-by-trial choice probabilities for the respectively presented 

CS.  

We used the learned and altered associative strength between each CS and the respective 

US for fitting models to subsequent preference test behavior and for parameter optimization. We 

employed a two-stage parameter fitting procedure to minimize the negative log-likelihood estimate 

and find the model parameter constellation most compatible with the observed choice behavior. This 

procedure involved 1) a grid search on n-dimensional grid in log space (where n is the number of 

free, optimized parameters in the model) with 30 steps in each dimension to find the grid optimum 

as initial values for function optimization and 2) a constrained non-linear function optimization. Model 

fits, as represented by the optimized negative log likelihoods, were then compared with the sample-

size corrected Akaike Information Criterion, which penalizes the likelihood for model 

complexity/number of free parameters. The model with the lowest sample-size corrected Akaike 

Information Criterion at the group level was considered most compatible with the empirical choice 

behavior observed in our participants. Additionally, we used the individual participants’ model 

parameters of the best-fitting model at the group level to simulate choice behavior for the exact same 

sequence of choices our participants experienced (10,000 simulations for each participant in each 

experiment). The resulting simulated choice behavior was compared to the participants’ choice 

behavior to identify whether the qualitative features of the empirical choice data (i.e. increased choice 

probability for previously chosen CS) could also be captured by the candidate computational models.  

2.4 fMRI repetition suppression 

fMRI repetition suppression (fMRI-RS) is a fMRI technique that can be used to measure neural 

representations of stimuli or cognitive variables (Barron, Garvert, & Behrens, 2016; Grill-Spector & 

Malach, 2001; Larsson, Solomon, & Kohn, 2016). fMRI-RS makes use of neurons’ tendency to 

respond with reduced firing if stimuli or environmental states are repeatedly presented in rapid 

succession (Barron et al., 2016; Grill-Spector & Malach, 2001; Larsson et al., 2016; Summerfeld, 

Wyart, Johnen, & de Gardelle, 2011), which can be indirectly measured at the neural population-

level by a reduction of the blood-oxygenation level-dependent (BOLD) signal. Crucially, fMRI-RS 

might be able to overcome a limiting factor in contemporary mass-univariate fMRI, where inference 

about neural activation is constrained by averaged BOLD signal within the acquired voxels. Typical 

isotropic voxel dimensions range between 2 and 4 mm, which averages activation states of 

approximately 105 neurons per voxels and hence impedes dissociation of activation levels in different 

neuronal populations within a voxel. The resolution of the acquired voxels thus constitutes the spatial 

resolution of activation patterns in the functional image. Contrarily, repeated presentation of the 

same stimulus should in principle repeatedly activate the same – or at least a large proportion of – 
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the same neural population that is responsive to the respective stimulus of interest. Thereby, 

changes in activation patterns driven by specific neuronal populations could be made observable 

even at below voxel size spatial resolutions (Barron et al., 2016).  

Despite its wide range of implications and the explanatory potential for investigating neural 

representations, the exact neural mechanisms underlying repetition suppression and whether it 

reflects expectation violation or adaptation (Larsson et al., 2016) remain elusive. Biologically 

plausible fMRI forward modelling suggests that repetition suppression effects might arise from 

scaling of the response amplitudes for presented stimuli, locally affecting tuning-curves close to the 

adapting stimulus (Alink, Abdulrahman, & Henson, 2018). However, empirical work using 

optogenetic manipulations in monkey inferotemporal cortex provides evidence against the 

hypothesis of intrinsic firing rate changes and hints on a transsynaptic origin of repetition suppression 

effects (Fabbrini et al., 2019).  

Recent studies have extended fMRI-RS’s range of potential applications to contexts going 

beyond the initially postulated signal reductions reflecting repetition of stimuli (Barron et al., 2013; 

Garvert et al., 2017; Klein-Flügge et al., 2013). It has been suggested that repetition of shared 

features or the strength of associative links between stimuli might result in similar reductions of BOLD 

responses as repetition of stimuli, a phenomenon known as cross-stimulus suppression (Barron et 

al., 2016). Reinforcement learning accounts have proposed that Pavlovian conditioning procedures 

establish a predictive, associative relationship between the CS and the US, and that CS should be 

capable to pre-activate neural populations representing US after an association has been formed 

(Wagner, 1981). Building on these assumptions, we predicted that presentation of a US preceded 

by a previously associated CS should elicit reduced fMRI signal, i.e. increased repetition 

suppression, compared to presentation of a US preceded by a CS that was not associatively linked. 

In Experiment II E, we hence used fMRI-RS as a measure of the associative strength of previously 

learned CS-US associations, and how the associative strength between CS and US are altered by 

previously choosing or not choosing a CS (i.e. choice-induced revaluation).  

In learning contexts, it is often challenging to design experiments and fMRI-RS sessions so 

that confounding effects, such as extinction, new learning or unlearning related to re-exposure to 

stimuli can be avoided. Since applying fMRI-RS requires many repeated presentations of stimuli, it 

is by design not always possible to harmonize the experimental (learning) paradigm with the 

affordances of the fMRI-RS session that will be used to measure neural representations. Even 

though studies have demonstrated that fMRI-RS may be applied to investigate trial-to-trial changes 

in neural representations of stimulus-outcome associations (Boorman, Rajendran, O’Reilly, & 

Behrens, 2016), experimental designs using fMRI-RS are often constrained to relatively stable 

representations. Additionally, canonical fMRI-RS makes use of mass-univariate statistical inference, 

which has been criticized for giving rise to inflated false-positive rates (Eklund, Nichols, & Knutsson, 

2016) and might indeed not be able to adequately capture multivariate dependencies and spatial 
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correlations in the BOLD signal. We therefore also employed multivariate, information-based 

neuroimaging methods to identify and characterize neural representations distributed across voxels. 

2.5 Cross-session, cross-modality searchlight multivariate pattern analysis  

Another representational fMRI technique employed in the current work is multivariate pattern 

analysis (MVPA, Haxby, 2012; Haxby et al., 2001; Haynes & Rees, 2006), a pattern classification 

and machine learning based approach to the analysis of neuroimaging data. An important difference 

between MVPA and mass-univariate neuroimaging analysis approaches is that the direction of 

statistical inference is essentially reversed. Whereas mass-univariate approaches ask the question, 

where in the brain stimuli, conditions or cognitive variables (independent variable) are encoded in 

clusters of voxels (dependent variable), MVPA uses a decoding approach to make classification 

decisions about different conditions or trials (dependent variable) related to different multivariate 

activation patterns (independent variables, i.e. voxels). The technique has been proposed to be more 

sensitive to small deviations in activation patterns across different conditions or trials, since it uses 

the complete distribution of voxel activation levels to make predictions about the condition or class. 

This is an important feature to increase sensitivity, since even voxels with low activation levels might 

contribute meaningful information and could thus be diagnostic of condition differences. Such 

information conveyed by low activation levels of voxels might be lost in mass-univariate 

neuroimaging techniques, that traditionally “discard” activation below certain thresholds (Haxby, 

2012; Haynes & Rees, 2006).  

Most fMRI MVPA approaches employ cross-validation schemes, in which the complete data 

set is partitioned into independent training and test data sets (chunks). The training data set – often 

in combination with a cost function – is used to teach the regular features of the training data to a 

multivariate classification algorithm (Bishop, 2006; Hanke et al., 2009; Haxby, 2012). Then, the 

trained classification algorithm uses the weights that optimally distinguish between activation 

patterns from different conditions to make a prediction about the class or condition labels of the 

remaining test data set, thus generalizing to unseen data (Bishop, 2006). This procedure is repeated 

for n – 1 times or folds (where n is the number of data chunks) until each fold has been assigned to 

the test data set exactly one time. The resulting accuracy values for each test data set are used to 

score the overall out-of-sample predictive accuracy of the classification algorithm (Bishop, 2006). 

This out-of-sample predictive accuracy may then be tested against a chance-level classification 

criterion (1/k, where k is the number of classes/conditions in each classification decision, e.g. ½ = 

0.50, for 2 conditions).  

In Experiment I, we employed MVPA techniques to obtain estimates for neural pattern 

reinstatement of US by CS. Our main assumption was again that after Pavlovian conditioning, CS 

should be able to pre-activate neural ensembles representing US. We reasoned that it would be 

possible to use a multivariate classification algorithm trained on neural patterns representing the US 

to correctly predict class labels of previously paired CS neural patterns during second-order 
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conditioning. To this end, we employed a cross-session (Stokes, Thompson, Cusack, & Duncan, 

2009) and cross-modality (gustatory to visual) multivariate pattern classification. During a first test 

session, we administered gustatory US (quinine and orange juice) to participants in the fMRI scanner 

and trained a support vector machine (default C = 1) algorithm on the neural pattern related to the 

US. We then asked whether the trained classifier could correctly predict the class of new, unseen 

data of the visually presented CS1 in a second test session, after these CS1 had been associatively 

paired with gustatory US in a Pavlovian conditioning phase. This procedure was based on the 

reasoning that for unbiased classification, the gustatory US neural patterns used as a training data 

set should not yet be associatively linked to a CS and that the possibility to correctly predict visual 

stimulus classes from gustatory stimulus information could not readily be explained by adaptation 

effects that might occur in same-modality classification.  

To obtain predictions in an a priori spatially unconstrained fashion, we employed a searchlight 

classification approach (Kriegeskorte, Goebel, & Bandettini, 2006) that allowed to iterate through 

whole-brain patterns of activation using 3-mm searchlight spheres. Searchlight sphere classification 

accuracies were then mapped to the center voxel of each sphere, leading to a whole-brain map of 

classification accuracies. This procedure was then repeated 100 times per participant using shuffled 

class labels in the training data set to obtain chance level whole-brain accuracy maps. To correct for 

multiple comparisons we employed group-level random-effect cluster-statistics (Stelzer, Chen, & 

Turner, 2013). Here, for each of 50,000 iterations, one chance level per participant was randomly 

drawn and a group level z-statistic map was calculated. The resulting empirical null distribution 

(50,000 samples) was then compared to the clusters in the “real” whole-brain classification accuracy 

map.  

Importantly, it would not have been possible to obtain comparable estimates of neural pattern 

reinstatement using other representational neuroimaging approaches, like fMRI-RS. In order to use 

fMRI-RS as an index of US neural pattern reinstatement during SOC, it would have been necessary 

to introduce trials presenting CS1 followed by the US. However, this procedure would have 

invalidated the fundamental assumption of SOC: Second-order learning of CS2 value should occur 

despite the fact that US are never presented during the second-order learning phase. 

2.6 Neural pattern similarity analyses 

Similar to fMRI-RS, neural pattern similarity analyses, a variant of representational similarity analysis 

(RSA, Kriegeskorte, Mur, & Bandettini, 2008) can be used to quantify the similarity (or dissimilarity) 

between BOLD activation patterns in fMRI data. Neural pattern similarity is mostly calculated in a 

distributional, multivariate fashion. This presents potential gains in sensitivity over the estimated 

representations resulting from mass-univariate fMRI-RS. Since the degree of similarity between 

brain activation patterns for different conditions, different trials etc. is calculated in unit-free 

representational space, the method is not limited to fMRI, but allows multi-modal and even cross-

species comparisons of activation/activity similarity.  
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In Experiment I, we performed a template-based variant of neural pattern similarity analyses (Wimber 

et al., 2015), using a least-squares separate approach (Mumford, Turner, Ashby, & Poldrack, 2012) 

which aimed at deconvolving single trial estimates of CS1 and CS2 neural activation. This was done 

to compare early and late phase similarity between gustatory US neural patterns and visual CS2 

neural patterns in the second-order conditioning phase of Experiment I, as a measure of a 

developing associative link between CS2 and the respective US. This approach also allowed us to 

estimate the associative relationship between CS1 and the respective US, which was then used as 

a control condition to rule out non-specific changes in pattern similarity between CS2/CS1 (that were 

always presented in succession) and the respective US. We explicitly decided for this neural pattern 

similarity approach, since calculation of neural pattern similarity affords lower computational and 

storing demands than computationally intensive random-effect cluster-statistics that are necessary 

for multiple comparison corrections in MVPA. An alternative approach, classification of single trial 

CS1/CS2 neural patterns with a classifier trained on gustatory US neural patterns – similar to the 

cross-session, cross-modality classification approach described earlier – using adequate correction 

for multiple comparisons would have easily exceeded our available storing capacities (150 (trials) 

real classifications, and 150 x 100 = 15,000 classifications using shuffled class labels, total: 15,150 

whole-brain maps per subject) 

In Experiment II E, we used an ordinary least-squares approach to estimate the changes of 

neural pattern similarity between equivalent CS during trials in which they were followed by US that 

had not been paired with the respective CS during Pavlovian conditioning. This was based on our 

assumption that Pavlovian conditioning should establish predictive, associative CS-US and that CS 

should pre-activate neural populations representing US. Here, we calculated the PRE to POST 

choice-induced revaluation changes of neural pattern similarity. In both experiments, we conducted 

neural pattern similarity analyses in theoretically derived and anatomically defined regions-of-interest 

(ROI), spatially constraining the multivariate neural patterns under investigation, e.g. to the amygdala 

(Experiment I) or hippocampus and lateral orbitofrontal cortex (lOFC) (Experiment II E). 

3. Results 

3.1 Experiment I: Reinstatement of cortical pattern representing US during second-

order conditioning 

The following section is based on our submitted manuscript (see attachments), which is currently 

under review at Nature Communications: 

 

Luettgau L., Porcu E., Tempelmann C., & Jocham G. Reinstatement of cortical outcome 

representations during higher-order learning. Preprint at bioRxiv (2020), doi: 

10.1101/2020.05.28.121558 

 



 

16 
 

Building on the “direct link” hypothesis of second-order conditioning, we sought to investigate 

whether CS2 are directly paired with a neural representation of the US, or more specifically, with the 

motivational state associated with the US (Gewirtz & Davis, 2000; Parkes & Westbrook, 2011). This 

direct link would constitute a neural mechanism underlying value transfer in SOC. In Experiment I, 

we hypothesized that presentation of a CS1 should reinstate the cortical pattern representing the US 

that it had been paired with during first-order conditioning in the lOFC. The lOFC has been implicated 

in gustatory processing, specifically in higher-order motivational (Rolls, 2000, 2006; Small et al., 

1999) aspects of gustatory perception and memory for taste (Kobayashi et al., 2004). This 

reinstatement could allow to associatively link CS2 and US neural representations, using plasticity 

mechanisms in the amygdala and hippocampus.  

In two separate samples (behavioral: N = 20, fMRI: N = 29), participants first rated fractal and 

kanji images serving as visual CS1 and CS2, respectively. Subsequently, subjects underwent 

Pavlovian first-order conditioning to establish associations between visual CS1 (CS1
+ and CS1

–) and 

appetitive or aversive gustatory US (US+ and US–). In a second-order conditioning phase, 

participants learned to associate visual CS2 (CS2
+ and CS2

–) with previously learned CS1. 

Additionally, participants were presented with an association between two novel, neutral CS (CS2
n 

and CS1
n). During the SOC phase, fMRI data was recorded (in the fMRI sample). Finally, participants 

made choices between pairs of differently valued CS1 or CS2, respectively, to assess subjective 

preferences. These choices were interleaved with lure decisions between CS1
n or CS2

n and novel 

fractal or kanji images, which had only been presented during a pre-task rating. Importantly, 

participants were instructed to perform simple attentional control tasks, but were not informed about 

the underlying associative structure of the tasks, aiming at leaving them unaware of intended 

associative learning. We verified this assumption using post-experimental questionnaires. Indeed, 

participants did not report explicit knowledge of the (higher-order) associations between CS2 and 

US. Participants in the fMRI sample additionally received gustatory US (quinine and orange juice) in 

a separate session performed one day before second-order conditioning. The recorded fMRI data 

from this session were used to train a multivariate classification algorithm.  

Despite absent explicit knowledge of the associations, participants across both samples were 

more likely to choose both appetitive first- and second order stimuli, CS1
+ and CS2

+, over the aversive 

CS1
– and CS2

–. Importantly, both choice probabilities of CS1
n and CS2

n against novel fractal or kanji 

images did not differ from chance level. The observed high preference of both appetitively paired CS 

(or low preference for both aversively paired CS) suggests that both CS1 and CS2 acquired value 

during second-order conditioning. The absence of such clear preference patterns for both novel, 

neutral CS (CS2
n and CS1

n) suggests that the observed preferences cannot readily be explained by 

simple mere exposure or novelty-related effects.  

A multivariate cross-session, cross-modality searchlight classification analysis provided 

evidence for reinstatement of US patterns by previously paired visual CS1 in the left lOFC. In this 

region, the classification algorithm trained on US neural pattern information was able to make correct 
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predictions about CS identity with above chance level accuracy. We next asked whether the 

reinstated US neural pattern would be projected to other multimodal brain areas like amygdala and 

hippocampus convergence and linking of “online” CS2 and US representations. In a 

psychophysiological interaction analysis, the covariation between BOLD signals in the left lOFC and 

a cluster in the hippocampus, amygdala and medial temporal lobe was found to be higher in trials 

presenting CS–
 and CS+ than during CSn trials.  

We subsequently investigated the putative direct associative link between CS2 and the 

respective US. If the amygdala indeed uses the reinstated US pattern to form an association with 

CS2, one would predict similarity between CS2 and US neural pattern. Since the association between 

CS2 and US is acquired with repeated presentations/trials, this similarity should show an increase 

over the course of second-order conditioning (e.g. from early to late stages of SOC). Indeed, 

averaged over the whole course of SOC, there was significant pattern similarity between CS2
– and 

US– in a bilateral amygdala ROI, however, we found no evidence for pattern similarity between CS2
+ 

and US+. This finding might be due to differential motivational salience of the employed gustatory 

US. Presumably, the administered bitter and aversively tasting quinine solution as US– might have 

elicited innate avoidance responses (Yiannakas & Rosenblum, 2017), producing a salient gustatory 

sensation. However, we used orange juice as a US+, a compound stimulus consisting of many 

different taste facets, which likely was familiar to (and differently valued by) most of our participants. 

This might have introduced high variability in taste responses and could have reduced the 

motivational relevance and salience of US+. Since highly palatable and high caloric food and drinks 

are available abundantly in German and other Western societies, orange juice might additionally not 

have been considered particularly salient by our participants.  

Consistent with the predicted formation of an associative link between CS2 and US over the 

course of second-order conditioning, we observed an increase of neural pattern similarity between 

CS2
– and US– in the bilateral amygdala from early to late trials of SOC. This finding indicates the 

development of an associative link between CS2 and US across trials. Importantly, there was no 

evidence for such change in similarity between first-order CS1
+ and US+ or between first-order CS1

– 

and US–. The latter two findings are consistent with the assumption that during SOC, the association 

between CS1 and the US should remain unaltered (or become weaker), since CS1 is presented in 

extinction, i.e. not followed by the previously paired US. Again, we also did not find evidence for 

neural pattern similarity increases between CS2
+ and US+ from early to late trials of SOC. 

In sum, our findings support the “direct link” hypothesis of second-order conditioning (Barnet, 

Arnold, & Miller, 1991; Gewirtz & Davis, 2000; Rizley & Rescorla, 1972), proposing that the 

motivational state or value of outcomes might directly be linked to second-order CS by exploiting 

higher-order associative structures. The empirical results suggest a neural mechanism for 

propagation of outcome value to stimuli that had never been directly coupled with reinforcement. 

This mechanism might be used to enable proper credit assignment to reward-predictive stimuli in 
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real-world learning scenarios which are typically characterized by infrequent direct encounters with 

reinforcers. 

3.2 Experiment II 

The following section is based on our manuscript published in Nature Communications (see 

attachments): 

 

Luettgau L., Tempelmann C., Kaiser L. F., & Jocham G. (2020). Decisions bias future choices by 

modifying hippocampal associative memories. Nature Communications. doi: 10.1038/s41467-020-

17192-7. Preprint at bioRxiv (2019), doi: 10.1101/802462 

3.2.1 Experiment II A: Choice-induced preference changes in high value and 

intermediate value conditioned stimuli 

In Experiment I we had demonstrated how associative memory processes could support value 

transfer in second-order conditioning to influence choice behavior in humans. In the following five 

experiments (Experiment II A-E) we focused on the opposite direction of influence: We asked 

whether choice behavior itself could give rise to preference changes (choice-induced preference 

changes) and how this choice-induced preference changes might be related to altered 

representations of CS-US associations held in associative memory.  

A recent theoretical framework has proposed nonmonotonic plasticity in associative memory: 

inactive memories remain unchanged, whereas moderately activated memories are weakened, and 

strongly activated memories get strengthened (Ritvo et al., 2019). Building on this framework, we 

hypothesized that both chosen and unchosen CS should moderately activate neural ensembles 

representing the respectively associated US. However, we further assumed that choosing a CS 

would elicit additional activation of the associated outcome, consistent with studies proposing 

heightened attentional weighting of chosen options, as reflected in higher learning rates (Klein et al., 

2017; Palminteri, Khamassi, Joffily, & Coricelli, 2015). Contrarily, we assumed that the unchosen CS 

would retain a moderate activation level of the associated US, resulting in a weakened CS-US 

association. 

In a newly developed paradigm, healthy human volunteers (N = 40 in final analyses) first 

established associations between six neutrally rated CS and three differently valued US (images of 

food items) in a Pavlovian conditioning phase. The three US were selected based on ratings of the 

subjective value prior to conditioning, so that a low value US–, an intermediate value US0, and a high 

value US+ were each associated with two CS, resulting in pairs of differently valued CS (CS–
A/B, 

CS0
A/B, CS+

A/B). In Experiment II A, we presented participants with binary decisions between an 

intermediate value CS0
A and a high value CS+

A during a subsequent choice-induced revaluation 

phase. These choices were interleaved with lure decisions between novel kanji images, which had 
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only been presented during a pre-task rating. In a final decision probe phase, participants made 

binary choices between all possible combinations of CS to assess final preferences for all CS. 

According to our hypothesis, choice of CS+
A should strengthen the association between CS+

A and 

US+, leading to increased preference for CS+
A (compared to CS+

B) during the decision probe phase. 

Contrarily, not choosing CS0
A should weaken the association between CS0

A and US0, resulting in 

decreased preference for CS0
A (compared to CS0

B) in the decision probe phase.  

We indeed observed an increased overall choice probability for CS+
A (i.e. probability of 

choosing this stimulus, regardless of which other CS was the alternative option) compared to the 

overall choice probability for CS+
B. More specifically, in trials directly contrasting CS+

A and CS+
B, 

participants favored CS+
A. Conversely, there was a decreased overall choice probability for CS0

A 

compared to the overall choice probability for CS0
B. In trials directly comparing CS0

A and CS0
B, 

participants chose CS0
A less likely. 

Computational modelling indicated that among a set of candidate reinforcement learning 

models, an algorithm that differentially updated both chosen and unchosen CS associative strength 

to its respective US (or value updating) using “fictive reward prediction errors”, explained the 

observed decision probe phase behavior of the participants best. “Fictive reward prediction errors” 

were calculated as the difference between the associatively retrieved (subjective) US value and the 

expected stimulus value/associative strength during each choice trial. This discrepancy was then 

used to update the respective CS’ value/associative strength after each choice. Empirical choice 

patterns, i.e. increased choice probability for the previously chosen CS+
A relative to CS+

B and 

decreased choice for the previously unchosen CS0
A relative to CS0

B, could successfully be recovered 

in model simulations using the best-fitting model parameters. 

These results suggest that choices can increase preferences for previously chosen options, 

whereas not choosing an option might diminish its subjective desirability.  

3.2.2 Experiment II B: Choice-induced preference changes in intermediate value and 

low value conditioned stimuli 

Since Experiment II A provided evidence for decreased preference of a previously non-chosen CS0
A, 

in Experiment II B we asked whether choices of CS0
A during choice-induced revaluation could induce 

the exact opposite – preference increases for CS0
A relative to CS0

B. Importantly, this experiment was 

designed to (conceptually) replicate the choice-induced preference changes found in Experiment II 

A and to investigate whether the observed effects are independent of CS value. We again 

hypothesized that choice of CS0
A should strengthen the association between CS0

A and US0, leading 

to increased preference for CS0
A (compared to CS0

B) during the decision probe phase. Contrarily, 

not choosing CS–
A should weaken the association between CS–

A and US–, resulting in decreased 

preference for CS–
A (compared to CS–

B) in the decision probe phase.  

Like in Experiment II A, an independent sample of healthy human volunteers (N = 40 in final 

analyses) first established associations between six neutrally rated CS and three differently valued 
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US during a Pavlovian conditioning phase. In the subsequent choice-induced revaluation phase, we 

presented participants with binary decisions between a low value CS–
A and an intermediate value 

CS0
A. In the final decision probe phase, participants again made binary choices between all possible 

combinations of CS.  

Replicating the choice-induced preference change effects observed in Experiment II A, 

overall choice probability for CS0
A was increased compared to the overall choice probability for CS0

B. 

In trials directly contrasting CS0
A and CS0

B, participants preferred CS0
A. Additionally, we found 

decreased overall choice probability for CS–
A compared to the overall choice probability for CS–

B. 

More specifically, in trials directly comparing CS–
A and CS–

B, there was descriptively reduced 

preference for CS–
A. Like in Experiment II A, a computational model differentially updating both 

chosen and unchosen CS associative strength to its respective US using “fictive reward prediction 

errors” elicited by revaluation phase choices best captured the observed decision probe phase 

behavior. Moreover, simulations using the optimized parameter values could recover the empirical 

choice pattern.  

These results, in conjunction with the results of Experiment II A, provide evidence that 

choices enhance preferences for previously chosen options, whereas not choosing an option might 

reduce its subjective desirability, independent of choice option value. 

3.2.3 Experiment II C: Choice-induced preference changes can be cancelled out in 

intermediate value conditioned stimuli 

The findings of Experiment II A and B suggest that choices and non-choices have opposite effects: 

While choosing increases preferences, not choosing decreases subjective desirability of choice 

options. In Experiment II C, we therefore investigated whether there was empirical support for the 

claim that choice-induced preference increases and decreases for CS0
A should cancel each other 

out. Like in Experiment II A and B, an independent sample of healthy human volunteers (N = 44 in 

final analyses) first established associations between six neutrally rated CS and three differently 

valued US during a Pavlovian conditioning phase. In Experiment II C, we presented participants with 

an equal amount of binary decisions between an intermediate value CS0
A and a low value CS–

A as 

between the same CS0
A and a high value CS+

A during the subsequent choice-induced revaluation 

phase. In the final decision probe phase, participants again made binary choices between all 

possible combinations of CS. Since the equal amount of choosing and not choosing CS0
A should 

even out putative preference changes, we predicted that choice probabilities for CS0
A and CS0

B would 

not differ during the decision probe phase. 

Indeed, there was no evidence for differences between the overall choice probability for CS0
A 

and the overall choice probability for CS0
B. In trials directly contrasting CS0

A and CS0
B, participants 

did not show preference for either CS0
A or CS0

B. As before, the observed decision probe phase 

behavior was best explained by a computational model differentially updating both chosen and 

unchosen CS associative strength to its respective US using “fictive reward prediction errors” elicited 
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by revaluation phase choices. In simulations using the optimized parameter values, we found that it 

was possible to recover the empirical choice pattern. 

 Experiment II C provides evidence that previously found choice-induced preference 

increases for chosen and preference reductions for unchosen options (Experiment II A and B) work 

in opposite directions and that these opposing effects cancel each other out. 

3.2.4 Experiment II D: Choice-induced preference changes are unlikely to be 

explained by choice heuristics 

According to our hypothesis, choice-induced preference increases for previously chosen CS result 

from choice-induced strengthening of the association between the CS and its respectively associated 

US. Contrarily, not choosing a CS should weaken the association between the CS and its 

respectively associated US, resulting in decreased preference for the unchosen CS (associative 

hypothesis). However, the observed empirical choice behavior could alternatively be explained by 

acquired choice heuristics, or simple stimulus-response tendencies. Participants might have formed 

associations between each of the two CS presented during choice-induced revaluation and stimulus-

response tendencies, i.e. choice heuristics. Specifically, chosen CS might have acquired go tags 

(“choose this stimulus”), whereas no-go tags could have been assigned to unchosen CS (“do not 

choose this stimulus”). According to the choice heuristic account, the observed increases and 

decreases of choice probabilities for chosen and unchosen CS, respectively, could thus be attributed 

to the expression of such acquired heuristics.  

 In Experiment II D, we therefore addressed this possibility by orthogonalizing the 

contributions of CS-US associative strength and choice heuristics. Participants (N = 40 in final 

analyses) first established associations between four neutrally rated CS and two differently valued 

US during a Pavlovian conditioning phase. Crucially, within each of the differently valued CS pairs, 

one CS had been associated strongly (80% association, CS0
80 or CS+

80) to the respective US, 

whereas the other CS was weakly associated (20% association, CS0
20 or CS+

20). In the subsequent 

choice-induced revaluation phase, participants were presented with binary choices between 

differently valued, but equally strongly associated CS: CS0
80 vs. CS+

80 and CS0
20 vs. CS+

20. We 

reasoned that participants would be more likely to choose both CS+
80 and CS+

20 and would thus 

assign go tags to both chosen CS. Contrarily, non-choices of both CS0
80 and CS0

20 would assign no-

go tags to both unchosen CS. During the decision probe phase, participants made binary choices 

between CS from the same value category, that exhibited a comparable choice history (i.e. frequency 

of being chosen or unchosen) but differed in associative strength with the US (CS+
80 vs. CS+

20 and 

CS0
80 vs. CS0

20). We hypothesized that if participants made choices based on the learned associative 

strength and choice-induced strengthening/weakening of associations, more strongly associated CS 

(CS+
80 and CS0

80) should be preferred. However, if choice behavior during the decision probe phase 

was exclusively driven by learned choice heuristics (go or no-go tags), there should be no clear 
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preference for either CS at choice, i.e. there should be no evidence for choice probabilities different 

from chance level (CP = 0.50). 

Importantly, there was no evidence for differences between choice probabilities for both high 

value options, CS+
80 (vs. CS0

80) and CS+
20 (vs. CS0

20), during choice-induced revaluation, indicating 

that go or no-go tags had been assigned equivalently across both CS pairs. In the decision probe 

phase, participants were more likely to select the previously chosen and strongly associated CS+
80 

against CS+
20. However, only a descriptive increase of choice probability for CS0

80 over CS0
20 could 

be observed (Median = 0.60). These results strongly suggest that decision probe behavior was not 

exclusively driven by learned choice heuristics, although a potential role of no-go tags assigned to 

unchosen stimuli as an alternative explanation for the observed choice behavior cannot be ruled out 

based on Experiment II D. 

3.2.5 Experiment II E: Choice-related modifications of neural CS-US representations 

as a mechanism for choice-induced preference changes 

After having established and (conceptually) replicated behavioral choice-induced revaluation effects, 

and partially ruled out alternative explanations, we next asked whether decisions would change 

neural representations of CS-US associations and their associative strength.  

In Experiment II E, healthy human volunteers (N = 42 in final analyses) first established 

associations between six neutrally rated CS and three differently valued US in a Pavlovian 

conditioning phase, resulting in pairs of differently valued CS (CS–
A/B, CS0

A/B, CS+
A/B), as in 

Experiments II A-C. Next, participants underwent one run of fMRI repetition suppression (PRE), 

repeatedly presenting them with each CS followed by all possible US. In a subsequent choice-

induced revaluation phase, we presented participants with binary decisions between an intermediate 

value CS0
A and a high value CS+

A. After choice-induced revaluation, participants underwent another 

run of fMRI repetition suppression (POST), again presenting them with all possible combinations of 

CS-US transitions. In a final decision probe phase, participants made binary choices between all 

possible combinations of CS to assess final preferences for all CS.  

We predicted that presentation of a US preceded by a previously associated CS should elicit 

reduced fMRI signal, i.e. increased fMRI-RS, compared to presentation of a US preceded by a CS 

that was not associatively linked. According to our hypothesis inspired by nonmonotonic plasticity in 

associative memory (Ritvo et al., 2019), the fMRI-RS signal during the POST run should be 

increased for the previously chosen CS+
A followed by US+ (relative to CS+

B followed by US+) and the 

fMRI-RS signal would be decreased for previously unchosen CS0
A followed by US0 (relative to CS0

B 

followed by US0). However, such differences should be absent during the PRE fMRI-RS run. We 

expected to find choice-induced changes in representations of CS-US associations in the 

hippocampus and lOFC, brain regions that have consistently be involved in memory processing, 

storing and updating of stimulus-outcome associations (Boorman et al., 2016; Klein-Flügge et al., 

2013).  
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Indeed there was evidence for both an increase of fMRI-RS for the previously chosen CS+
A followed 

by US+ (compared with CS+
B followed by US+) and reduced fMRI-RS for the previously unchosen 

CS0
A followed by US0 (compared with CS0

B followed by US0) during the POST fMRI-RS run in the 

left hippocampus (whole-brain corrected) and in the right lOFC (small-volume corrected for an 

independent functional mask from Jocham et al., 2016). The alterations in the fMRI-RS signal were 

not present during the PRE fMRI-RS run. Also, there was evidence for a PRE-POST decrease of 

RS signal for CS0
A followed by US0 (compared with CS0

B followed by US0) and a qualitative increase 

of RS signal for CS+
A followed by US+ (compared with CS+

B followed by US+). Importantly, we found 

no evidence for PRE-POST differences and also no significant effects during the PRE or the POST 

fMRI-RS run for the two unpresented control stimuli (CS–
A and CS–

A, followed by US–). 

These mass-univariate fMRI-RS based findings were further supported by converging 

evidence from multivariate neural pattern similarity analyses in the left hippocampus and right lOFC. 

For the PRE and the POST fMRI-RS runs, we separately calculated the pattern similarity between 

equivalent CS followed by US they had not been paired with during Pavlovian conditioning. This was 

based on our assumption that Pavlovian conditioning should establish predictive CS-US 

associations and that each CS should pre-activate neural populations representing US after learning. 

This pre-activation should also be observable in trials where the CS was not followed by the 

previously paired US. Our multivariate neural pattern similarity analyses thus focused only on trials 

during which the CS was followed by the two US it had not been associatively linked with during 

Pavlovian conditioning. We found that for both pairs of high value CS+ and intermediate value CS0 

neural pattern similarity decreased from PRE to POST in the hippocampus, indicating that the pre-

activation of neural populations representing the US might have changed due to decisions made in 

the choice-induced revaluation phase. However, in the pair of the low value CS– similarity did not 

change from PRE to POST. Qualitatively similar results were obtained in the right lOFC. 

Nevertheless, these results should be interpreted with caution, since changes in neural pattern 

similarity might equally likely arise from both strengthening or weakening of CS-US associations of 

the chosen and unchosen CS. Unlike the mass-univariate fMRI-RS approach used before, the 

multivariate neural pattern similarity method employed here does not allow to tease apart these 

possibilities and thus thwarts the inference about the direction of changes. 

We next asked whether the observed choice-induced changes in representations of CS-US 

associations were related to behavioral preference changes. Unlike in Experiment II A, participants 

did not select the previously unchosen intermediate CS0
A less likely than the equivalent control 

stimulus CS0
B. We reason that this might be related to the fact that participants in Experiment II E 

had to be re-exposed to the CS-US associations during the POST fMRI-RS run to measure CS-US 

associative strength. This restudying might have allowed them to relearn the putatively weakened 

association between CS0
A and US0, as consistently observed in studies reporting reversal of 

retrieval-induced forgetting effects following restudy of memorized materials (Hulbert & Norman, 

2015; Storm et al., 2008). However, participants once again presented robust choice-induced 
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preference increases for CS+
A compared with CS+

B. We thus focused on the difference between 

overall choice probabilities of CS+
A and CS+

B for brain-behavioral correlations. The fMRI-RS signal 

difference between the previously chosen CS+
A followed by US+ compared with CS+

B followed by 

US+ was positively correlated with the difference between the overall choice probability of CS+
A and 

the overall choice probability of CS+
B. In other words, the more the hippocampal representation of 

the CS-US association between CS+
A and US+ (relative to CS+

B and US+) had been strengthened 

during the choice-induced revaluation phase, the more likely participants were to select CS+
A 

compared to CS+
B. 

These findings, also in conjunction with Experiment II A-D, suggest that choices change the 

neural representations of CS-US associations and the associative strength of stimulus-outcome 

associations. These choice-induced changes in neural representations of CS-US associations 

correlated with future decisions, suggesting mechanistic involvement in choice-induced preference 

changes. 
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4. General Discussion 

The present work aimed at investigating interactions between decision-making and associative 

memory processes. These two cognitive domains have been studied in isolation quite extensively 

for many decades, however, only recently it has been proposed that both memory and decision-

making processes might influence and bias each other (Shohamy & Daw, 2015). The traditional, 

neo-classical economic view on decision-making would solely predict a guiding influence of 

associative memory processes, specifically value representations in memory, on choice behavior 

(Ariely & Norton, 2008; Padoa-Schioppa & Conen, 2017). Contrary to this unidirectional view, we 

here provide evidence for both influences of value representations stored in associative memory on 

choice behavior and choice-induced modifications of associative memories, supporting the idea of 

bidirectional interactions.  

Specifically, there was behavioral evidence for value transfer in choice patterns following 

second-order conditioning, a memory-dependent higher-order learning paradigm. Importantly, this 

choice bias was present even though participants were unaware of the underlying (higher-order) 

associative learning structure of the experiment, suggesting that humans implicitly acquire subjective 

value through higher-order learning mechanisms. This finding extends previous studies promoting 

the acquisition of explicit reward-predictive associations between stimuli (Jara, Vila, & Maldonado, 

2006; Wang et al., 2020; Wimmer & Shohamy, 2012). To the best of our knowledge, this is the first 

demonstration that humans exhibit choice biases arising from second-order conditioning, using 

similar paradigms and procedures as previously employed in animal studies. The observed 

behavioral effect was paralleled by neuroimaging findings suggesting that neural patterns 

representing the administered gustatory outcomes (and presumably the motivational state or value 

conveyed by these outcomes) are reinstated in the left lOFC by previously paired first-order CS. The 

left lOFC has been implicated in higher-order processing of gustatory information, especially in 

motivational (Rolls, 2000, 2006; Small et al., 1999) aspects of gustatory perception and memory for 

taste (Kobayashi et al., 2004). Additionally, there was evidence for the formation of a direct 

association between the reinstated motivational state or value conveyed by outcomes and second-

order CS in the amygdala, a multimodal brain area commonly implicated in associative plasticity. 

These results suggest that value might be propagated to stimuli that had never been directly coupled 

with reinforcement by exploiting acquired higher-order associative structures stored in memory.  

Moreover, in a series of experiments employing a newly developed learning and decision-

making paradigm, there was converging evidence for choice-induced preference changes: While 

previously chosen options were selected more frequently, unchosen options showed diminished 

preferences – compared to otherwise equivalent options. These choice effects seem to counteract 

and were found to cancel each other out when the same choice option was chosen and unchosen 

equally often during choice-induced revaluation. Additional experimental results indicate that the 

observed choice-induced preference changes are unlikely exclusively driven by acquired choice 

heuristics (go and no-go tags) for chosen and unchosen options, respectively. Importantly, 
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preference changes occurred even without participants experiencing the consequences of their 

choice (i.e. the reward/outcomes associated with the chosen or unchosen options was never 

presented). These behavioral findings suggest choice-related alterations of associative memory 

processes in choice-induced revaluation. There was neuroimaging evidence for choice-induced 

strengthening of stimulus-outcome associations of previously chosen options, whereas we observed 

weakening of stimulus-outcome associations of previously unchosen options in the left hippocampus 

and right lOFC, two key regions involved in the acquisition and updating of stimulus-outcome 

associations (Boorman et al., 2016; Klein-Flügge et al., 2013). Additionally, the altered hippocampal 

representations of stimulus-outcome associations were correlated with future decision-making: 

Higher preference for previously chosen options (compared to otherwise equivalent options) was 

associated with stronger hippocampal stimulus-outcome representations. These results suggest that 

merely retrieving outcome representations and making a choice – even without experiencing the 

outcome related to that decision – induces plasticity in stimulus-outcome associations stored in 

associative memory systems and biases future decision-making. 

 In conjunction, the results of all experiments conducted in this work strongly suggest 

bidirectional interactions between decision-making and associative memory. Importantly, in each 

experiment, participants made decisions without ever experiencing the outcomes related to those 

choices. This might closely resemble real-world decision-making scenarios, where direct and 

immediate exposure to the consequences of choices or rewarding and punishing stimuli is rare. 

Instead, humans and other animals might regularly make use of memory mechanisms to simulate 

prospective future outcomes to make decisions (Wikenheiser & Schoenbaum, 2016) and employ 

their relational knowledge of actions and consequences. Here we show that exploiting acquired 

higher-order associative structures stored in memory might support transfer of value to stimuli that 

had themselves never been directly coupled with reinforcement (Gewirtz & Davis, 2000). 

Additionally, we found that choice-induced preference changes, or more broadly choice history 

biases, might arise from nonmonotonic plasticity processes in memory retrieval (Ritvo et al., 2019) 

and choice-related transformations of associative memories. In summary, both our key findings 

suggest that value representations in memory and decision-making influence each other 

bidirectionally. 

5. Future Research 

The present work provides evidence for bidirectional influences of decision-making and associative 

memory processes. There is evidence that value is transferred to stimuli that were never directly 

paired with reinforcement and this transfer seems to be related to the outcome reinstatement in the 

lOFC and interactions between lOFC and the amygdala/anterior hippocampus. However, the 

direction of information flow remains elusive due to the poor temporal resolution of fMRI. It is unclear, 

whether pattern information is first reinstated by the lOFC and then represented in the amygdala to 

form an association, suggesting a projection of reinstated patterns from lOFC to amygdala, or vice 
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versa. To resolve this issue, asymmetric lesions or separate optogenetic inactivation of lOFC and 

amygdala neurons in rodents, or transcranial magnetic stimulation of the lOFC in humans (Howard 

et al., 2020) during second-order conditioning could be used to delineate between those possibilities 

and to overcome the so far only correlational evidence provided here. Future studies will also be 

necessary to elucidate whether this putative information transfer is supported by phase coherence 

in theta oscillations between lOFC and amygdala/anterior hippocampus, a plausible neural 

mechanism for inter-area communication (Benchenane et al., 2010; Knudsen & Wallis, 2020; Young 

& Shapiro, 2011).  

Another promising avenue for future studies is to provide a more conclusive behavioral 

dissociation between the choice heuristic and associative strengthening account for choice-induced 

preference reductions of unchosen options, supporting the conclusions that can be drawn from 

neuroimaging results. Participants during Experiment II A-C and E pursued the same behavioral goal 

during the choice-induced revaluation phase and decision probe: choose the more preferred option. 

The choice heuristic and associative strengthening accounts could be delineated by specifically 

changing participants’ aim during the decision probe phase, i.e. instruct them to choose the less 

preferred option (Frömer, Dean Wolf, & Shenhav, 2019). If indeed choices/non-choices 

strengthened/weakened the respective stimulus-outcome association and hence the value of choice 

options, the associative account would predict increased choice probabilities for the previously 

unchosen option and decreased choice probabilities for the previously chosen option. However, if 

the stimulus-outcome associations remain unaltered by choice and participants instead acquire go 

and no-go tags, the choice heuristic account would predict the exact opposite choice pattern: 

increased choice probabilities for previously chosen options and decreased choice probabilities for 

previously unchosen options.  

 Since we used unique stimuli as options to be chosen/unchosen in the present experiments, 

an important future perspective could be to investigate (stimulus similarity-dependent) generalization 

of the found choice-induced preference change effects to other neutral stimuli in novel choice 

situations. It appears plausible, that preference for stimuli exhibiting perceptual similarity with the 

chosen/unchosen option (but are unpaired with any outcome) should be increased/decreased over 

other neutral, but more dissimilar stimuli in novel choice situations, suggesting similarity-based 

spread of choice-induced revaluation effects and value (Onat & Büchel, 2015). 

Pharmacological interventions in humans could be used to investigate a putative role of 

dopamine, e.g. using dopamine D2 receptor antagonist amisulpride, in mediating the choice-induced 

preference increase and strengthening of stimulus-outcome associations for chosen options, akin to 

model-implied dopamine-dependent amplification of reward prediction errors related to free choices 

in the basal ganglia circuitry (Cockburn et al., 2014). This hypothetical future investigation could 

provide a neurochemical mechanism for the choice-induced preference change effects (for chosen 

options) presented in the current work.  
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6. Conclusion 

The present work focused on influences between two cognitive faculties, decision-making and 

(associative) memory processes, providing evidence for bidirectional interactions. Participants made 

binary memory-based decisions during which they never experienced the outcomes related to their 

choices. This set-up might closely mirror real-world decision-making scenarios where consequences 

of choices typically unroll at later time points (if ever), which renders learning from outcomes and 

credit assignment to stimuli or actions challenging (Jocham et al., 2016; Walton, Behrens, Buckley, 

Rudebeck, & Rushworth, 2010). Here, we provide evidence for value transfer and biases of decision-

making by higher-order associative memory processes and for choice-induced changes of 

associative memory representations. The former finding might explain how humans (and other 

animals) use associative mechanisms to perform goal-directed decision-making in novel contexts 

without any prior experience. The latter result contrasts with the predominant neo-classical economic 

model of decision-making, proposing that memory representations of preferences and choice option 

values unidirectionally guide choice behavior (Ariely & Norton, 2008). Instead, we found that retrieval 

of outcome representations and making a choice might be sufficient to induce plasticity in value 

representations stored in memory, suggesting that value representations and decision-making 

influence each other bidirectionally.  

The present work thus strongly supports adopting a more cognitively flavored perspective on 

decision-making. This perspective – considering the interactions between value representations and 

choice behavior – has important implications for theories of learning and decision-making. Our 

results might for instance explain how flexible decision-making is possible in new choice contexts 

despite lacking prior experience and could contribute to our understanding of why humans (and other 

animals) tend to make coherent decisions and assign high value to previously chosen options (Riefer 

et al., 2017), despite experiencing negative consequences of those choices. This bias might have 

drastic consequences, especially for consumers sticking to unhealthy food choices, in substance 

dependence and obsessive-compulsive disorder, psychiatric conditions characterized by 

maladaptive decision-making or in voting behavior, where a candidate could be (re-)elected due to 

long-lasting choice-induced preference changes (Hornsby & Love, 2020). In a broader perspective, 

our results suggest that choice behavior might provide a means for individuals to manipulate the 

environment (Cockburn et al., 2014) and internal state variables, i.e. the way they remember how 

stimuli, action and consequences in the environment are related, if no external feedback to guide 

behavior is available. Additionally, the current results indicate that choice behavior could serve as a 

brain mechanism providing a spatio-temporal grounding to neural firing patterns and representations 

of the environment (Buzsáki, 2019). The present work strongly suggests that relational structures 

constituting decision-makers’ cognitive maps (Behrens et al., 2018; Tolman, 1948) might be biased 

and dynamically transformed by their very own choice behavior. This provides a novel, intriguing and 

cognitive perspective on decision-making, essentially reversing the long-held assumption of neo-

classical economic theories that associative memory processes influence choice unidirectionally.  
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Decisions bias future choices by modifying
hippocampal associative memories
Lennart Luettgau 1,2✉, Claus Tempelmann3, Luca Franziska Kaiser 1,2 & Gerhard Jocham1,2

Decision-making is guided by memories of option values. However, retrieving items from

memory renders them malleable. Here, we show that merely retrieving values from memory

and making a choice between options is sufficient both to induce changes to stimulus-reward

associations in the hippocampus and to bias future decision-making. After allowing partici-

pants to make repeated choices between reward-conditioned stimuli, in the absence of any

outcome, we observe that participants prefer stimuli they have previously chosen, and

neglect previously unchosen stimuli, over otherwise identical-valued options. Using functional

brain imaging, we show that decisions induce changes to hippocampal representations of

stimulus-outcome associations. These changes are correlated with future decision biases.

Our results indicate that choice-induced preference changes are partially driven by choice-

induced modification of memory representations and suggest that merely making a choice -

even without experiencing any outcomes - induces associative plasticity.
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According to neo-classical economic models of decision-
making, choices are guided by memories of option
values1. This unidirectional view has been challenged by

cognitive accounts of decision-making, suggesting that memory
representations of option values might themselves be subject to
changes induced by an agent’s choices. This suggests a bidirec-
tional relationship between value representations in memory and
decision-making1,2.

Even though real-life decisions often involve memory retrieval
of learned associations between reward-predictive cues and out-
comes, memory mechanisms underlying choice-induced pre-
ference changes have, to the best of our knowledge, never been
systematically studied1,3–5. This might be partially related to the
fact that most studies on choice-induced preference changes
employed direct presentation of the outcomes to be chosen.
However, this approach by design obliterates and confounds
underlying associative learning contributions to the revaluation
process6, and is blind to related memory processes, such as
retrieval competition7.

In naturalistic decision-making scenarios, choices often have to
be made without direct experience of feedback. Instead, decision
makers have to rely on relational knowledge of actions and out-
comes. Likely candidate mechanisms for behavioral adaptation
without direct external feedback are memory retrieval dynamics.
It is well established that retrieval of an item from memory, e.g. a
conditioned stimulus (CS) triggering retrieval of an associated
outcome, leads to improved remembering. However, memory for
competing items, e.g. another CS associated with the same out-
come, is impaired simultaneously7–9. Such retrieval-induced
forgetting8 would predict choice biases towards previously cho-
sen CS based on retrieval-related strengthening of CS–US asso-
ciation. However, the same effect would be predicted for a
previously presented, but unchosen CS, since both chosen and
unchosen CS activate neural populations representing the asso-
ciated outcome10–15. A recent theoretical framework16 suggests
nonmonotonic plasticity during associative memory retrieval:
Inactive memories remain unaltered, moderately activated asso-
ciative memories are weakened, and high activation strengthens
memories16. Translating this idea to memory-based decisions
between two CS, we assume that both CS will moderately activate
neural populations representing the associated outcome (as the
outcome is never presented). However, consistent with the find-
ing that chosen options receive higher attentional weighting than
unchosen options (as reflected in learning rates17,18), we further
assume that choices of a CS will induce additional activation of
the associated outcome, whereas this will not be the case for
unchosen CS, retaining an intermediate activation state of the
associated outcome. Thus, we hypothesize that choosing a CS will
strengthen the related stimulus-outcome association. Conversely,
not choosing a CS will weaken the respective stimulus-outcome
association. We expect that these choice-induced alterations of
the associative memory structure will result in subsequent pre-
ference changes.

We expect choice-induced preference changes to be driven by
modifications of stimulus-outcome associations in the hippo-
campus and lateral orbitofrontal cortex, two key regions for
storing and updating associative representations10,14.

Thus, the goal of the present study is twofold. First, we aim at
investigating how choice-related alterations of associative mem-
ories bias future decision-making. Second, we seek to investigate a
neurobiologically plausible mechanism underlying choice-
induced preference changes. To test our key predictions, we
designed a learning and decision-making paradigm which we use
in three independent behavioral experiments and one functional
magnetic resonance imaging (fMRI) experiment. For the fMRI
study, we exploit repetition suppression (RS) effects10,11,19–21 to

measure associative strength between conditioned (CS) and
unconditioned stimuli (US)10,14. Participants first establish Pav-
lovian associations between CS and differently valued US. Next,
in a choice-induced revaluation, participants make binary choices
between differently valued CS, without observing the associated
US. Finally, in a probe phase, where they make choices between
all possible CS combinations, participants show preference
increases for previously chosen, and preferences decreases for
previously unchosen CS, compared to otherwise equivalent CS.
These choice-induced alterations in decision behavior are
accompanied by corresponding changes in CS–US RS effects in
the hippocampus and lateral orbitofrontal cortex. Our findings
are corroborated by multivariate pattern similarity analyses (a
variant of representational similarity analysis, RSA22). Further-
more, the magnitude of the hippocampal RS effect correlates with
individual probe phase decision biases.

Results
Behavioral experiments. First, we detailed the behavioral choice-
induced revaluation effect in three independent experiments. In
each experiment, participants learnt associations between neu-
trally rated CS23 and three food items24 serving as unconditioned
stimuli (US, Fig. 1a). For each participant, the US were indivi-
dually chosen based on a prior rating of subjective preference,
and a low-value (US–), an intermediate-value (US0), and a high-
value (US+) food item was selected. Next, participants rated kanji
stimuli23 according to their subjective preference. Six of these
kanjis rated in close proximity to neutral were selected as CS for
Pavlovian learning. Two CS each were paired with one US,
resulting in three categories of differently valued CS: CSþA=B,
CS0A=B, and CS"A=B, for high-value, intermediate-value, and low-
value CS.

The Pavlovian learning phase was followed by choice-induced
revaluation. From two value categories, one CS each was selected,
and participants made binary choices between them, interspersed
with lure decisions between non-reward-predictive kanjis
(Fig. 1b). Crucially, no associated US were presented following
choices, excluding the possibility of alterations in strength of
stimulus-outcome associations due to directly experienced out-
comes. The choice-induced revaluation phase was followed by a
decision probe phase in which participants chose repeatedly
between all binary CS combinations to assess preferences (Fig. 1c).
Again, no outcomes were presented. The key comparison was
between CS presented during revaluation and CS from the same
value category that had not been presented.

Decisions are biased by past choices. There was evidence for
value transfer from US to CS across all studies (Fig. 1e–h), as
indicated by significant main effects of CS value on probe
phase choice probabilities (CP, all Fs > 94.99, Ps < 0.001, η2ps >
0.69, 1–βs > 0.99, repeated-measure analyses of variance, rmA-
NOVA). Decision-making during the revaluation phase had
clearly dissociable effects on choices during the probe phase. CS
that were chosen during the revaluation phase were more likely to
be selected during the later probe phase compared to the CS of
equal value that were not presented during choice-induced
revaluation.

In Experiment 1, participants (N= 40) made choices between
the intermediate-value CS0A and the high-value CSþA during the
choice-induced revaluation phase. As we had directed hypotheses
for the choice effects (increased CP for the previously chosen and
decreased CP for the previously unchosen CS), we used one-tailed
post hoc tests. In the probe phase, participants preferred CSþA ,
the previously selected stimulus, compared to CSþB (Z= 3.98,
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P < 0.001, Cohen’s U3= 0.85, Wilcoxon signed-rank test, one-
tailed). This effect was mainly driven by preference for CSþA
in pairwise within-category choice trials between CSþA and CSþB
(Z= 3.43, P < 0.001, Cohen’s U31= 0.69, one-sample Wilcoxon
signed-rank test vs. 0.5, one-tailed; Supplementary Fig. 2e).
Conversely, participants selected CS0A, the previously non-selected
stimulus, compared to CS0B less likely (Z= 1.97, P= 0.025, U3=
0.70, Wilcoxon signed-rank test, one-tailed). Again, this effect
was mainly driven by reduced choice of CS0A in pairwise within-
category choice trials contrasting CS0A and CS0B (Z= 2.05, P=
0.020, U31= 0.68, one-sample Wilcoxon signed-rank test vs. 0.5,
one-tailed; Supplementary Fig. 2e). The observed dissociation in
choice behavior was also evident in a significant interaction effect
of CS value ×CS type (A or B): F2, 78= 10.01, P < 0.001, η2p =
0.20, 1–β > 0.99 (rmANOVA, Fig. 1e). Thus, compared to
equivalent CS, participants exhibited a systematic
preference for CS they had previously chosen, whereas they

displayed a diminished preference of CS they had previously not
chosen.

After having established that an intermediate value CS (CS0A)
could be devalued by non-choices, we next asked in Experiment 2,
whether we could induce the exact opposite — increased
preference for CS0A. Therefore, participants (N= 40) were
presented with decisions between intermediate-value CS0A and
low-value CS"A during the choice-induced revaluation phase.
Conceptually replicating the results of Experiment 1, participants
in Experiment 2 favored the previously chosen CS0A over CS0B
(Z= 2.20, P= 0.014, U3= 0.68, Wilcoxon signed-rank test, one-
tailed) during the decision probe, resulting from preference for
CS0A in pairwise within-category choice trials between CS0A and
CS0B (Z= 1.93, P= 0.027, U31= 0.68, one-sample Wilcoxon
signed-rank test vs. 0.5, one-tailed; Supplementary Fig. 2f).
Conversely, participants neglected CS"A compared to CS"B (Z=
1.91, P= 0.028, U3= 0.66, Wilcoxon signed-rank test, one-tailed),
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Fig. 1 Task schematic and behavioral results. a Participants rated subjective desirability of conditioned stimuli (CS, kanjis) and unconditioned stimuli (US,
food items). Kanji images were selected from an online database (https://www.kanjidatabase.com/)23. During Pavlovian conditioning, participants learned
to associate six CS with three US. Each US was associated with two CS. b Choice-induced revaluation: after Pavlovian conditioning, participants made
choices between CSþA versus CS0A (Experiments 1 and 5), CS0A versus CS"A (Experiment 2), CS0A versus either CS"A or CSþA (Experiment 3), and CSþ80 versus
CS080 or CSþ20 versus CS020 (Experiment 4), interleaved with lure decisions. c Decision probe: following choice-induced revaluation, participants made binary
choices between all possible combinations of CS, or CSþ80 versus CSþ20 and CS080 versus CS020 (Experiment 4), to assess preferences. d Attentional control
task performed during fMRI repetition suppression (Experiment 5). e–h Previously chosen CS (blue dots) are selected more often compared to equivalent
CS (black dots) in Experiment 1 (e, N= 40, Z= 3.98, P < 0.001, Cohen’s U3= 0.85, Wilcoxon signed-rank test, one-tailed), Experiment 2 (f, N= 40, Z=
2.20, P= 0.014, U3= 0.68, Wilcoxon signed-rank test, one-tailed), Experiment 5 (h, N= 42, Z= 3.03, P= 0.001, U3= 0.76, Wilcoxon signed-rank test,
one-tailed) and previously unchosen CS (yellow dots) are selected less often compared to equivalent CS (black dots) in Experiment 1 (e, N= 40, Z= 1.97,
P= 0.025, U3= 0.70, Wilcoxon signed-rank test, one-tailed) and Experiment 2 (f, N= 40, Z= 1.91, P= 0.028, U3= 0.66, Wilcoxon signed-rank test, one-
tailed) during decision probe. The effect is not present in Experiment 3 (g, N= 44, Z= 0.41, P= 0.680, U3= 0.55, Wilcoxon signed-rank test, two-tailed),
indicating that the roughly equal proportion of choices and non-choices of CS0A during revaluation had canceled each other out. i Behavioral control
experiment (Experiment 4), orthogonalizing contributions of go and no-go tagging and associative strength between CS and US to choice probabilities.
Previously chosen (go tag) and strongly associated CSþ80 is preferred over previously chosen and weakly associated CSþ20 (blue dots, N= 40, Z= 3.55, P <
0.001, U31= 0.75, 1–β > 0.99, one-sample Wilcoxon signed-rank test, one-tailed), while there is only descriptive evidence for preference of previously
unchosen (no-go tag) and strongly associated CS080 over previously unchosen and weakly associated CS020 (yellow dots, N= 40, Z= 0.61, P= 0.271, U31=
0.61, 1–β= 0.23, one-sample Wilcoxon signed-rank test, one-tailed). Box plot center lines represent sample medians and box bottom/top edges show
25th/75th percentile of the data, respectively. Source data are provided as a Source Data file.
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resulting from descriptively reduced preference for CS"A
in pairwise within-category choice trials between CS"A and CS"B
(Z= 1.41, P= 0.079, U31= 0.63, one-sample Wilcoxon signed-
rank test vs. 0.5, one-tailed; Supplementary Fig. 2f). Again, there
was a significant interaction effect of CS value ×CS type (F2, 78=
4.84, P= 0.010, η2p = 0.11, 1–β > 0.99, rmANOVA, Fig. 1f)
indicating clearly dissociable choice behavior during the decision
probe. This pattern of results suggests a value-independent
mechanism of choice-induced revaluation.

These results so far show that choices and non-choices act in
opposite directions. Consequently, we predicted that choice-
induced preference increases and devaluation of CS0A would
cancel out. To test this prediction, in Experiment 3 (N= 44), we
presented an equal number of binary decisions between CS0A and
CS"A as between CS0A and CSþA during choice-induced revaluation.
Since choice-induced revaluation effects for CS0A should cancel
each other out, we did not have directed hypotheses for the choice
effects. We thus used two-tailed post hoc tests. As expected, there
was no evidence for change in preference for CS0A compared to
CS0B (Z= 0.41, P= 0.680, U3= 0.55, Wilcoxon signed-rank test,
two-tailed, Fig. 1g). Consistently, there was no evidence for CS0A
preference changes in pairwise within-category choices between
CS0A and CS0B (Z= 0.12, P= 0.905, U31= 0.57, one-sample
Wilcoxon signed-rank test vs. 0.5, two-tailed; Supplementary
Fig. 2g), suggesting that the effects of choices and non-choices
had indeed canceled each other out (interaction effect of CS
value × CS type: F2, 86= 1.31, P= 0.280, η2p = 0.03, 1–β= 0.71,
rmANOVA).

Importantly, the dissociations observed in choice behavior in
Experiments 1 and 2 rule out alternative accounts for explaining
choice behavior, such as extinction or mere exposure effects. Both
accounts would predict unidirectional preference changes for the
CS presented during choice-induced revaluation, independent of
the choices made (decreases or increases in preference, respec-
tively), which is incompatible with the present results.

However, an alternative explanation for the observed choice
pattern is that participants learned simple choice rules for the two
CS presented during the revaluation phase, akin to go tags for
chosen CS (“choose this stimulus”) and no-go tags for unchosen
CS (“do not choose this stimulus”). Accordingly, the observed
changes in preferences could be attributed to repeating such
choice heuristics acquired during revaluation. An additional
behavioral experiment (Experiment 4, N= 40) was specifically
designed to address this possibility. We orthogonalized contribu-
tions of associative strength and choice rule by letting participants
assign choice-induced go tags to two chosen CS+ that differed in
their associative strength to US+ (80% vs. 20% association) and
no-go tags to two unchosen CS0 that likewise differed in their
associative strength to US0 (80% vs. 20%). According to our
hypothesis (associative account), probe phase decisions are
guided by the learned associations and the strengthening/
weakening of this association during revaluation. Therefore, we
expected significantly increased CP for both highly associated
stimuli: CS080 should be preferred over CS020, and CSþ80 should be
preferred over CSþ20. Contrarily, if choice behavior was instead
exclusively driven by learned go and no-go tags (heuristic
account), both same-value pairwise CP should be at chance level
(CP= 0.50). Due to the directionality of our hypothesis, we used
one-tailed tests.

Importantly, there was no significant difference between
revaluation CP of CSþ80 versus CS080 and CSþ20 versus CS020 (Z=
1.19, P= 0.234, U3= 0.53, Wilcoxon signed-rank test, two-
tailed), ruling out unequal assignment of go and no-go tags
across CS pairs. We observed that participants favored the

previously chosen and strongly associated CSþ80 over the
previously chosen and weakly associated CSþ20 (Z= 3.55,
P < 0.001, U31= 0.75, 1–β > 0.99, one-sample Wilcoxon signed-
rank test, one-tailed). Descriptively, participants also tended to
favor the previously unchosen and strongly associated CS080 over
the previously unchosen and weakly associated CS020 (Z= 0.61,
P= 0.271, U31= 0.61, 1–β= 0.23, one-sample Wilcoxon signed-
rank test, one-tailed, Fig. 1i) during the decision probe phase.
This pattern of results favors an explanation based on associative
strengthening of the memory trace between CS+ and US+, rather
than on merely expressing a go tag. However, there is no definite
evidence against the alternative explanation that participants
learned a no-go tag for the unchosen stimuli. This asymmetric
expression of response tendencies might result from differential
acquisition of go and no-go choice rules, akin to well-described
Pavlovian biases25. Presumably, during high-value (CSþ80 vs. CS

þ
20)

choices, most participants used the learned CS–US associative
strength instead of go response tendencies to guide their
decisions, while this only tended to be the case for
intermediate-value (CS080 vs. CS020) choices (Median CP= 0.60).
Consistent with modeling and empirical evidence for asymmetric
action and inaction learning26, reverting the initially learned
action tendency for CSþ20 could have less of an impeding effect on
re-acquisition of a no-go response during decision probe, than re-
acquisition of a go response for CS080, which was initially learned
with an inaction choice rule.

For each experiment (Experiments 1, 2, 3, and 5), we compared
six reinforcement learning models27 that implemented different
ways by which participants could have learned CS–US associa-
tions—and updated associative strength during choice-induced
revaluation based on fictive reward prediction errors (RPE). The
fictive RPE were based on our reasoning that presentation of
CS during revaluation would lead to retrieval of the associated US
and strengthening/weakening of the chosen/unchosen CS–US
association, respectively. Our behavioral results were best
captured by a model that differentially updated the learned
CS–US associative strengths using fictive RPE elicited by
revaluation phase decisions (see Methods section and Supple-
mentary Table 1). Simulations using the best-fitting parameters
successfully reproduced the observed empirical choice pattern
(with the exception of the observed reduced CP of CS0B in
Experiment 5, Supplementary Fig. 1e–h). Thus, the best fitting
models likely incorporate candidate computational mechanisms
underlying the observed choice biases.

Choices modify univariate neural measures of stimulus-
outcome associations. Having established and replicated the
behavioral effect of choice-induced revaluation in three inde-
pendent behavioral samples, we next tested whether decisions
induce changes of neural representations of CS–US associations.
In Experiment 5, we used fMRI and leveraged RS effects10,11,19–21
to measure CS–US associative strength10,14. When a neural
ensemble is activated twice in brief succession (e.g. by rapid
sequential presentation of the same visual stimulus), the second
stimulus causes a diminished response. Accordingly, after learn-
ing the association between CS and US, the CS should elicit a
representation of its associated US. Thus, presentation of the US
itself, following the CS, should induce a diminished neural
response. If the association between CS and US has been wea-
kened by non-choices during revaluation, the CS is no longer
capable of evoking the US representation to the same degree and
should therefore elicit a stronger response (less RS). The same
logic in reverse applies when the association has been strength-
ened by choices during revaluation.
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As in the first three behavioral experiments, participants first
learned the six CS–US associations during Pavlovian learning.
Following Pavlovian learning, we administered two RS blocks,
one immediately before (PRE) and one immediately after (POST)
the choice-induced revaluation phase, where participants (N=
42) made binary choices between CS0A and CSþA . For the RS effects
during POST we had directed hypotheses (increased RS for the
previously chosen, and decreased RS for the previously unchosen
CS). Therefore, we used one-tailed post hoc tests. For the PRE
phase, as well as for the control RS effects of CS"A relative to CS"B ,
there was no such directed hypothesis and we used two-tailed
tests accordingly. Consistent with our hypothesis, we observed
both a decrease in RS for CS0A " US0 relative to CS0B "US0, and
an increase in RS between CSþA " USþ compared to CSþB " USþ

during POST but not during PRE (Z= 2.53, P= 0.006, U3= 0.67,
Wilcoxon signed-rank test, one-tailed) in the left hippocampus
(Fig. 2a). Detailed analyses showed that this effect was driven by
dissociable effects (interaction effect CS value and time (PRE or

POST), F1, 41= 4.51, P= 0.040, η2p = 0.10, 1–β= 0.99, rmA-
NOVA): we found decreased RS for CS0A (Z= 2.26, P= 0.012,
U31= 0.67, one-sample Wilcoxon signed-rank test, one-tailed)
and increased RS for CSþA (Z= 2.26, P= 0.012, U31= 0.69, one-
sample Wilcoxon signed-rank test, one-tailed) during POST,
without any evidence for non-zero differences in PRE (all Zs <
1.05, Ps > 0.296, U31 < 0.62, one-sample Wilcoxon signed-rank
tests, two-tailed) or for the control contrast of either CS"A or CS"B
(all Zs < 0.31, Ps > 0.760, U31 < 0.55, one-sample Wilcoxon
signed-rank tests, two-tailed, Fig. 2d). These effects arose from
(numerically) reduced RS elicited by CS0A and increased RS for
CSþA in separate analyses for CS0A − US0 and CSþA "USþ

(Supplementary Fig. 3, Supplementary Notes 2 and 3). Thus, CS
choices during choice-induced revaluation increased, whereas
non-choices decreased hippocampal CS–US associative strength.
However, while there was evidence for significant PRE–POST
reduction in RS for CS0A (Z= 1.84, P= 0.033, U3= 0.69,
Wilcoxon signed-rank test, one-tailed), the PRE–POST increase
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US0) (Eq. (2)). b Using small-volume correction (independent mask from ref. 28), the same effect was found in the right lateral orbitofrontal cortex (lOFC).
c At a lenient threshold of Z > 2.8 (uncorrected) we observed the same effect in left ventral tegmental area and right nucleus accumbens. d Extracted
parameter estimates of the effect in left hippocampus (N= 42), showing an interaction effect of CS value and time (PRE or POST), F1, 41= 4.51, P= 0.040,
η2p = 0.10, 1–β= 0.99, repeated-measures ANOVA (rmANOVA). There was evidence for significant PRE–POST reduction in repetition suppression for CS0A
(Z= 1.84, P= 0.033, U3= 0.69, Wilcoxon signed-rank test, one-tailed). However, PRE–POST increase in repetition suppression for CSþA was not significant
(Z= 1.48, P= 0.070, U3= 0.62, Wilcoxon signed-rank test, one-tailed). We observed decreased repetition suppression for CS0A (Z= 2.26, P= 0.012,
U31= 0.67, one-sample Wilcoxon signed-rank test, one-tailed) and increased repetition suppression for CSþA (Z= 2.26, P= 0.012, U31= 0.69, one-sample
Wilcoxon signed-rank test, one-tailed) during POST, without any evidence for non-zero differences in PRE (all Zs < 1.05, Ps > 0.296, U31 < 0.62, one-sample
Wilcoxon signed-rank tests, two-tailed) or for the control contrast of either CS"A or CS"B (all Zs < 0.31, Ps > 0.760, U31 < 0.55, one-sample Wilcoxon signed-
rank tests, two-tailed). e Extracted parameter estimates of the effect in right lOFC (N= 42). The interaction effect of CS value and time (PRE or POST) was
significant, F1, 41= 5.57, P= 0.023, η2p = 0.12, 1–β= 0.99, rmANOVA. We found a significant PRE–POST reduction in repetition suppression for CS0A (Z=
1.77, P= 0.039, U3= 0.55, Wilcoxon signed-rank test, one-tailed), but no evidence of a PRE–POST increase in repetition suppression for CSþA (Z= 0.65,
P= 0.260, U3= 0.50, Wilcoxon signed-rank test, one-tailed). However, we found decreased repetition suppression for CS0A (Z= 1.74, P= 0.040, U31=
0.55, Wilcoxon signed-rank test, one-tailed) and increased repetition suppression for CSþA (Z= 2.68, P= 0.004, U31= 0.67, Wilcoxon signed-rank test,
one-tailed) during POST, without evidence for non-zero differences in PRE (all Zs < 1.77, Ps > 0.077, U31 < 0.62, Wilcoxon signed-rank tests, two-tailed).
Bar plots represent sample means. Error bars indicate standard errors of the means. Asterisks indicate P-values < 0.05, plus signs represent P-values >
0.05 and < 0.10. Color bars indicate Z-values. Source data are provided as a Source Data file.
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in RS for CSþA was not significant (Z= 1.48, P= 0.070, U3= 0.62,
Wilcoxon signed-rank test, one-tailed).

Furthermore, we found decreased RS for CS0A " US0 relative to
CS0B "US0 and increased RS for CSþA " USþ relative to CSþB "
USþ in the right lateral orbitofrontal cortex that survived small-
volume correction (Fig. 2b). Extraction of parameter estimates
from this cluster using an independent region of interest28
revealed that the interaction effect (CS value and time (PRE or
POST), F1, 41= 5.57, P= 0.023, η2p = 0.12, 1–β= 0.99, rmA-
NOVA) was driven by a significant PRE–POST reduction in RS
for CS0A (Fig. 2e, Z= 1.77, P= 0.039, U3= 0.55, Wilcoxon signed-
rank test, one-tailed) but not by a PRE–POST increase in RS CSþA
(Z= 0.65, P= 0.260, U3= 0.50, Wilcoxon signed-rank test, one-
tailed). However, we found decreased RS for CS0A (Z= 1.74, P=
0.040, U31= 0.55, Wilcoxon signed-rank test, one-tailed) and
increased RS for CSþA (Z= 2.68, P= 0.004, U31= 0.67, Wilcoxon
signed-rank test, one-tailed) during POST, without evidence for
non-zero RS in PRE (all Zs < 1.77, Ps > 0.077, U31 < 0.62,
Wilcoxon signed-rank tests, two-tailed).

Exploratory analyses at a lenient, uncorrected threshold (Z >
2.8, uncorrected) yielded clusters in the left ventral tegmental area
(VTA) and the right nucleus accumbens (NAcc, Fig. 2c). Both
effects were driven by significantly reduced RS for CS0A (VTA:
Z= 1.81, P= 0.035, U3= 0.79; NAcc: Z= 2.38, P= 0.009, U3=
0.64, Wilcoxon signed-rank tests, one-tailed), but only NAcc
showed evidence of increased RS for CSþA (VTA: Z= 0.41, P=
0.340, U3= 0.55; NAcc: Z= 1.53, P= 0.064, U3= 0.64, Wilcoxon
signed-rank tests, one-tailed). Overall, these RS results suggest
that decisions during choice-induced revaluation had clearly
dissociable effects on the neural representation of previously
learned CS–US associations: While the previously chosen CS
exhibited increased associative strength to its related US, the exact
opposite effect was true for the previously unchosen CS.
Importantly, the observed dissociation of choice-induced increase
of RS effects for CSþA and decrease of RS effects for CS0A and the
absence of PRE–POST differences of RS effects for the CS"A
relative to CS"B cannot be explained by general extinction effects
resulting from exposition to CS–US associations other than the
initially learned associations. Extinction would imply equidirec-
tional PRE–POST changes of all CS–US associations, which is
incompatible with the observed results.

Choice-induced decrease of multivariate neural pattern simi-
larity. Complementary to the mass-univariate RS-based
approach, we performed multivariate fMRI analyses, employing a
neural pattern similarity analysis22 in the left hippocampus and
right lateral OFC. Using the same logic as for the RS-based
analyses, we reasoned that presentation of a CS would activate
neural ensembles representing the associated US. This mnemonic
pre-activation should not only be present in trials where the CS
was followed by the originally learned US, but also in trials where
the CS was followed by any of the other two possible, but not
associatively linked US. Similarity of neural patterns related to
two CS from the same value category could thus be indicative of
associative memory retrieval of a US representation. According to
the idea of choice-induced weakening of CS0A association with
US0 and strengthening of CSþA association with US+, our
hypothesis therefore was that neural pattern similarity between
same-value stimulus–outcome pairs (CS0A "US"=CS0B " US"

and CS0A "USþ=CS0B " USþ; CSþA "US"=CSþB " US" and
CSþA " US0=CSþB " US0) should decrease from PRE to POST,
indicating less similarity between patterns of interest (i.e. the
weakened/strengthened CS and the respective same-value CS, see
Methods section for a detailed description). Therefore, we used

one-tailed tests accordingly. For the pairs of control stimuli
(CS"A " US0=CS"B "US0 and CS"A "USþ=CS"B " USþ), we did
not expect changes in neural pattern similarity and thus
employed two-tailed tests.

In the left hippocampus ROI, we observed negative PRE–POST
change in neural pattern similarity when averaging across all
patterns of interest (t41= 2.09, P= 0.021, U31= 0.64, 1–β= 0.63,
one-sample t-test, one-tailed) and for CSþA=CS

þ
B pairs (t41= 1.81,

P= 0.039, U31= 0.57, 1–β= 0.53, one-sample t-test, one-tailed),
but only a numerically decreased neural pattern similarity from
PRE to POST for CS0A=CS

0
B pairs (t41= 1.01, P= 0.144, U31=

0.50, 1–β= 0.28, one-sample t-test, one-tailed). Importantly,
change of neural pattern similarity for the control stimulus pairs
CS"A=CS

"
B was positive and not significant (t41= 0.76, P= 0.451,

U31= 0.57, 1–β= 0.12, one-sample t-test, two-tailed, Fig. 3a).
In the right lOFC ROI, we observed qualitatively similar results

as in the left hippocampus: There was significant negative
PRE–POST change in neural pattern similarity when averaging
across all patterns of interest (t41= 1.70, P= 0.049, U31= 0.62,
1–β= 0.40, one-sample t-test, one-tailed). However, there was no
evidence of significant change in pattern similarity for CSþA/CS

þ
B

pairs (t41= 1.23, P= 0.113, U31= 0.64, 1–β= 0.23, one-sample t-
test, one-tailed). There was also no evidence for decreased neural
pattern similarity from PRE to POST for CS0A=CS

0
B pairs (t41=

1.55, P= 0.061, U31= 0.62, 1–β= 0.13, one-sample t-test, one-
tailed). Only descriptively, both CSþA=CS

þ
B pairs and CS0A=CS

0
B

pairs became less similar from PRE to POST. The change of
neural pattern similarity for the control stimulus pairs CS"A=CS

"
B

was positive, but not significantly different from 0 (t41= 0.04,
P= 0.969, U31= 0.43, 1–β= 0.05, one-sample t-test, two-tailed,
Fig. 3b).

Taken together, these multivariate results conceptually confirm
the findings from the mass-univariate RS-based analyses and
further support the interpretation that the observed choice effects
could be explained by choice-induced changes of associative
strength. However, these results should be interpreted with
caution, as power was generally low (1–β < 0.80), most likely
resulting from the reduced number of trials included in the
analyses (40 trials per CS pair in PRE and POST). Additionally,
unlike our RS-based results, changes in neural pattern similarity
do not allow to infer the directionality of the effects (i.e. patterns
may become more dissimilar both due to strengthening or
weakening of the associative trace). Nevertheless, the results from
both sets of analyses provide convergent evidence for our
hypothesis that revaluation choices changed the degree to which
neural US representations were pre-activated by their
associated CS.

Hippocampal CS–US RS correlates with future choices. We
next investigated whether the observed choice-induced mod-
ifications of hippocampal CS–US RS were correlated with choice
biases during the probe phase. As in Experiments 1 and 2, we had
directed hypotheses for the choice effects and thus used one-tailed
post-hoc tests.

Unlike in Experiment 1, CS0A (unchosen stimulus during
revaluation) was not chosen less likely than CS0B in the decision
probe (Z= 1.01, P= 0.844, U3= 0.55, Wilcoxon signed-rank test,
one-tailed, Fig. 1h) in Experiment 5. Relatedly, there was no
evidence for preference differences in within-category
choice trials directly comparing CS0A and CS0B (Z= 1.07, P=
0.857, U31= 0.62, one-sample Wilcoxon signed-rank test vs. 0.5,
one-tailed; Supplementary Fig. 2h). To assess PRE–POST changes
of associative strength, participants had to be re-exposed to the
initially learned CS–US associations and were explicitly instructed
to judge whether the presented CS–US associations were correct.
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It is well established that restudying of memorized material
reverses retrieval-induced forgetting effects9,29. Thus, the
observed behavioral null effect for CS0A might be due to re-
exposure and restudy of the original CS–US association, allowing
the weakened association between CS0A " US0 to regain its
original associative strength.

However, replicating Experiment 1, we observed a choice-
induced increase in preference for CSþA over CSþB (Z= 3.03, P=
0.001, U3= 0.76, Wilcoxon signed-rank test, one-tailed, Fig. 1h).
This effect was mainly driven by preference for CSþA in within-
category choices contrasting CSþA and CSþB (Z= 1.93, P= 0.027,
U31= 0.62, one-sample Wilcoxon signed-rank test vs. 0.5, one-
tailed; Supplementary Fig. 2h). We therefore focused on this
effect in brain–behavior correlations. We hypothesized a positive
linear relationship between the difference between choice
probabilities of CSþA and CSþB and the magnitude of hippocampal
RS between CSþA " USþ and CSþB " USþ), and thus tested the
Spearman correlation coefficient one-tailed. The difference of
hippocampal RS between CSþA " USþ and CSþB " USþ was
positively correlated with the difference between choice prob-
abilities of CSþA and CSþB (ρ40= 0.31, P= 0.024, one-tailed;
Fig. 4b). The more hippocampal representations of the CSþA "
USþ association had been strengthened by choices during
revaluation, the more likely participants were to select CSþA
compared to its non-revalued partner stimulus CSþB .

Consistently, in a whole-brain analysis we observed a positive
relationship between the difference in choice preference for CSþA
versus CSþB and changes in CS–US RS from PRE to POST in the
left posterior hippocampus, extending to occipito-temporal
complex (Fig. 4c). A similar whole-brain analysis using only the

choices between CSþA and CSþB as behavioral covariate revealed
areas in the bilateral anterior insula and orbitofrontal cortex
(Supplementary Fig. 5b). Neither VTA, NAcc, nor the cluster in
the lateral orbitofrontal cortex showed relationships with probe
phase behavior.

An alternative explanation of our results is based on cached
values, a possibility that we address in the Supplementary
Methods, Supplementary Notes 1 and 4, and Supplementary
Fig. 4.

Discussion
Using a carefully designed paradigm, we show that decisions bias
future choices, even without participants directly experiencing the
outcomes of their decisions. Participants were more likely to
select CS they had previously chosen, and less likely to select CS
they had not chosen, compared to equivalent CS. At the neural
level, we found that choices induced alterations to hippocampal
and orbitofrontal representations of stimulus–outcome associa-
tions that were correlated with future decisions.

The idea that past decisions bias preferences was put forth
decades ago1,4 and evidence for post-decision revaluation has
accumulated since1–3,6 (see ref. 30 for critical discussion). Here,
we present behavioral evidence that reward-predictive CS that
were chosen in the past are more likely to be selected during
future choices, compared to CS of equal value that were not
presented. Conversely, we found decreased preferences for CS
that were not chosen in the past, compared to equivalent CS,
indicating bidirectional effects of choice-induced revaluation.
Most importantly, our behavioral findings are independent of
rewards, as participants never experienced the outcomes of their
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choices. This suggests that the observed effect could arise from
associative memory mechanisms, as also indicated by an addi-
tional control experiment designed to rule out the alternative
explanation that the observed choice biases could result from
learned choice heuristics. Additionally, computational models
implementing differentially updated CS–US associative strength
of chosen and unchosen options based on fictive prediction errors
explained our data best.

Our results are in line with previous reports of choice-induced
preference changes1,3,4,6 and conceptually replicate studies
showing changes in stimulus valuation by cued approach training
(CAT)5,31–33. Similar to the present approach, performance of a
button press (go response) upon presentation of go stimuli during
CAT induces long-term31 non-reinforced changes of desirability
of go stimuli over no-go stimuli. CAT effects are independent of
initial value of the stimuli and rely on integrity33 and activa-
tion5,31 of ventromedial prefrontal cortex, and interactions
between orbitofrontal cortex and ventral striatum31. Importantly,
the results of Experiment 4 suggest that choice-induced reva-
luation effects, at least for previously chosen options, seem to go
beyond a trained action tendency or choice rule (go response), as
observed in CAT.

As most previous studies have presented participants directly
with the choice outcomes and thereby confounded contributions
of memory and choice mechanisms, our study might be the first
to provide evidence for a value-independent associative memory
mechanism driving choice-induced preference changes. Further-
more, although associative memory dynamics are a likely candi-
date mechanism of choice-induced preference changes, the exact

neural mechanisms underlying this phenomenon have remained
unknown. Here, we provide evidence that past choices bias future
decision-making, in part by modifying the strength of neural
stimulus–outcome associations. The present results suggest that,
during decision-making, reactivation of stimulus–outcome asso-
ciations10,11,14,34, and making a choice renders them subject to
nonmonotonic plasticity16, with the association of the chosen
stimulus being strengthened, and the association of the unchosen
stimulus being diminished. Since both chosen and unchosen CS
activate neural populations representing the respective-associated
outcome10–15, we reason that the observed opposing decision
biases are presumably related to additional choice-induced acti-
vation of the chosen CS–US association, and absence of such
choice-induced activation of the unchosen CS–US associations.
Our results suggest that choices can act as self-generated teaching
signals18,35, dynamically altering stimulus–outcome associations
stored in memory. However, it should be noted that we did not
observe behavioral evidence for choice-induced weakening of the
unchosen CS–US association in Experiment 5. This might be due
to re-exposure to the initially learned CS–US associations during
the POST fMRI run, which presumably allowed the weakened
association between CS0A " US0 to regain its original associative
strength, in line with studies showing that restudying of mem-
orized material reverses retrieval-induced forgetting effects9,29.

Even though our data provide evidence for choice-induced
changes to associative strength, the current approach does not
allow to dissociate which exact features of the US contribute to RS
effects. As US value and identity are inextricably linked in our
experiment, the observed effects could be related to changes in
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CS-dependent pre-activation of identity-related or value-related
features of the US. However, both identity-related and value-
related features of the US are learned associatively in the present
study and are therefore likely retrieved in an associative fashion to
guide choices. Alternatively, the observed change in the hippo-
campal RS could be due to choice-induced alterations of CS
representations per se. However, changes of CS representation
cannot explain the specificity of RS signals to presentations of the
learnt CS–US associations, and, perhaps more importantly, can-
not account for the reversed directionality of RS effects depending
on choice during revaluation.

Our results suggest that merely making a choice induces
plasticity of associative representations in the hippocampus and
lateral OFC. In line with the present results, a fronto-
hippocampal network comprising hippocampus and lateral
OFC seems to be critically involved in reward-related updating of
stimulus–outcome associations14,28. Whereas the hippocampus
has been found to support relational learning and memory pro-
cesses, including value spread34 and factorized replay of event
trajectories36, the lateral OFC has been additionally implicated in
the resolution of credit-assignment problems in reinforcement
learning28,37.

Our study has at least three implications for current theories of
decision-making. First, it proposes a memory-based account for
choice-induced revaluation and, more broadly, choice history
bias, two well-known, but still poorly understood decision-
making phenomena. We show that choices are not only guided by
associative representations of value stored in memory, but that
decisions themselves dynamically transform associative mem-
ories. This suggests that relational structures constituting deci-
sion-makers’ cognitive maps38,39 can be distorted through their
very own choice behavior. Second, we provide evidence for
involvement of the hippocampus and lateral OFC in maintaining
and updating of stimulus–outcome associations. This extends
previous findings10,14,28,37 by describing a functional role of the
hippocampus in value-based decision-making that is independent
of experienced reward. Such a role may more closely resemble
naturalistic decision situations where consequences of choices
often unravel at distant future time points, rendering credit
assignment challenging28,37. Third, we provide a mechanism
underlying seemingly irrational choice behavior: Even though
participants chose between equivalent options, they were biased
to prefer chosen, and to neglect non-selected options. The latter
might have important implications for explaining subjective
preferences, especially in consumer choice behavior2 and in
understanding why humans tend to make coherent decisions,
even in conditions characterized by maladaptive choice behavior,
such as substance dependence or obsessive compulsive disorder.

Taken together, both our behavioral and neural results support
the key prediction that past choices bias future decision-making,
partially by altering hippocampal and orbitofrontal representa-
tions of stimulus–outcome associations. Our study provides a
memory-based mechanism for choice-induced preference change
effects1,3,4,6. The present study shows that merely retrieving
stimulus–outcome associations and making a choice is sufficient
to induce plasticity in reward-predictive associations stored in
memory.

Methods
Participants. Participants were recruited from the local student community of the
Otto von Guericke University Magdeburg and the Heinrich Heine University
Düsseldorf, Germany by public advertisements and via online announcements.
Only participants indicating no history of psychiatric or neurological disorder and
no regular intake of medication known to interact with the central nervous system
were included. Participants in all experiments had normal or corrected-to-normal
vision and did not report experience with Japanese kanjis or Chinese characters. All
participants provided informed written consent before participation and received

monetary compensation for taking part in the study. The study was approved by
the local ethics committee at the medical faculty of the Otto von Guericke Uni-
versity Magdeburg, Germany (February 2, 2018, reference number: 19/18) and
conducted in accordance with the Declaration of Helsinki.

Forty-nine young, healthy volunteers (age: M= 23.93, SD= 2.90 years, 18
males) participated in Experiment 1. Seven participants were excluded from
statistical analyses due to lacking engagement in the cover task during the
Pavlovian conditioning phase that served as an attentional control (<10% responses
in trials that required to indicate the color of the square surrounding the
conditioned stimuli. Two additional participants had to be excluded due to not
passing the manipulation check (high-value option selected <50% during choice-
induced revaluation), thus leaving a total of N= 40 participants for final analyses.

Sixty-four young, healthy volunteers (age: M= 23.47, SD= 3.79 years, 26
males), participated in Experiment 2. Ten participants were excluded from
statistical analyses due to lacking engagement in the cover task during the
Pavlovian conditioning phase, and 13 subjects were excluded due to not passing the
manipulation check (intermediate valued option selected <50% during choice-
induced revaluation), one additional participant had to be excluded due to a
technical error, leaving N= 40 participants for statistical analyses.

Sixty-one young, healthy volunteers (age: M= 23.26, SD= 3.27 years, 23
males), participated in Experiment 3. Ten participants were excluded from
statistical analyses due to lacking engagement in the cover task during the
Pavlovian conditioning phase, and six subjects were excluded due to not passing
the manipulation check (high-value option selected <50% during choice-induced
revaluation), one additional participant had to be excluded due to a technical error
(no data was recorded), leaving N= 44 participants for statistical analyses.

Fifty-two young, healthy volunteers (age: M= 22.06, SD= 3.69 years, 20
males), participated in Experiment 4. Twelve subjects were excluded due to not
passing the manipulation check (high-value option selected <50% during choice-
induced revaluation), leaving N= 40 participants for statistical analyses.

Fifty-eight young, healthy and magnetic resonance imaging (MRI)-compatible
volunteers (age: M= 24.61, SD= 4.01 years, 30 males) participated in Experiment
5 (functional MRI (fMRI) experiment). One participant fell asleep during the
POST revaluation fMRI-RS run, three participants discontinued the MRI
acquisition (one due to claustrophobia, two reported a headache during task
performance). Twelve additional subjects were excluded due to not passing the
manipulation check (high-value option selected <50% during choice-induced
revaluation), leaving N= 42 participants for statistical analyses.

Behavioral task—ratings. Participants received written instructions for the
experiment and were instructed once again on the computer screen. The experiments
were programmed in MATLAB 2012b (MATLAB and Statistics Toolbox Release
2012b, The MathWorks, Inc., Natick, MA, USA, v8.0.0.783), using Psychophysics
Toolbox40 (version 3) and MATLAB 2019a (v9.6.0.1072779). Before the task, parti-
cipants rated 25 different sweet and high-caloric food items selected from an online
database24. Subjects were instructed to indicate the subjective desirability of the food
items by using the “y” and “m” button on a standard German (QWERTZ) computer
keyboard to position a red slider bar on a white visual analog scale (VAS) between 0
(not liked) and 100 (very much liked). The lowest- (Experiment 1: M= 17.5, SD=
20.51; Experiment 2: M= 16.65, SD= 16.29; Experiment 3: M= 18.59, SD= 22.15;
Experiment 5: M= 20.41, SD= 20.44), and highest-rated (Experiment 1: M= 96.55,
SD= 7.10; Experiment 2: M= 94.85, SD= 9.08; Experiment 3: M= 95.21, SD=
14.52; Experiment 4: M= 96.63, SD= 6.62; Experiment 5: M= 97.79, SD= 4.96)
food item as well as a food item rated with the median value of all ratings (Experiment
1: M= 57.43, SD= 11.55; Experiment 2: M= 56.23, SD= 9.80; Experiment 3: M=
57.14, SD= 13.95; Experiment 4: M= 56.48, SD= 9.95; Experiment 5: M= 60.07,
SD= 11.71) were selected for Pavlovian conditioning. We explicitly decided for
clearly differentiable pictures of food items in order to elicit activation of differential
neural ensembles coding for those stimuli and to facilitate learning of vivid memories
of stimulus–outcome associations. Next, subjects rated 20 (11 in Experiment 1)
Japanese kanjis23 according to subjective value/liking by using the “y” and “m” button
on a standard computer keyboard to position a red slider bar on a VAS between 0
(not liked) and 100 (very much liked). The six kanjis rated closest to 50 (equivalent to
neutral) were selected and their order was randomized before being associated with
the food items in Pavlovian conditioning. The subjective values/liking of the six
selected kanjis did not differ significantly from each other in Experiments 1, 3, 4, and
5 (main effects of stimulus: all Fs < 1.14, Ps > 0.344, η2ps < 0.03, rmANOVA). However,
there was a main effect of stimulus in Experiment 2 (F5, 195= 2.65, P= 0.024, η2p =
0.064, rmANOVA), resulting from a significantly higher pre-rating for control sti-
mulus CSþA compared to control stimulus CSþB (t39 = 3.13, P= 0.003, paired-samples
t-test). More importantly, both critical pairs (CS– and CS0) did not differ significantly
(all ts < 0.79, Ps > 0.437, paired-samples t-tests).

Behavioral task—Pavlovian conditioning. Participants learned to associate the
selected kanjis (conditioned stimuli, CS) with differently valued outcomes
(unconditioned stimuli, US) by repeatedly observing one CS (2000 ms), followed by
an inter-stimulus interval (1000 ms) marked by a fixation cross, and presentation of
one US (2000 ms). Each trial was separated by an inter-trial-interval (ITI) marked
by a gray screen. The ITI per trial was drawn from a discretized γ-distribution
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(shape= 5, scale= 0.9) truncated for an effective range of values between 3000 and
8000 ms. Across all CS, CS–US couplings were interleaved with 20% CS–no-US
couplings. This was intended to create an association that would not rapidly
extinguish due to extinction effects related to not being presented with the asso-
ciated US during the subsequent choice phases. Each US was associated with two
different CS, resulting in three pairs of differently valued CS: CSþA=B, CS

0
A=B and

CS"A=B. Participants completed 180 trials (19 of the participants included in
Experiment 1 had performed 240 trials) of Pavlovian conditioning, 30 (40,
respectively) trials per CS–US association. In Experiment 4, participants performed
160 trials and learned associations between four neutrally rated CS and an inter-
mediate value outcome and a high value outcome (40 trials per CS–US association),
resulting in two pairs of differently valued CS: CSþ80, CS

þ
20 and CS080, CS

0
20.

Importantly, one of the two CS in each pair was followed by the outcome with a
probability of 80% (CSþ80 and CS080) while the other CS was followed by the US in
20% (CSþ20 and CS020) of the trials. The participants were presented with a cover
story for the experiment: They were told to imagine themselves in preparation for a
journey to Japan during which they would need to learn kanjis associated with
certain food items to be ready to select their favorite sweets in Japanese shops. As
an attentional control, we introduced a simple binary classification task, presenting
participants with a red or blue square surrounding the CS. Each CS was equally
often presented with a red or blue square and color of the square did not predict US
contingency. Subjects were instructed to react as quickly and as correctly as pos-
sible by pressing “y” upon seeing a blue square and pressing “m” upon seeing a red
square surrounding the CS. Pavlovian conditioning was split up in three blocks of
60 (80, respectively) trials, interleaved with self-paced breaks. In Experiment 5,
both ratings and Pavlovian conditioning were performed outside the MRI scanner.

Due to a coding error in the script creating pseudo-randomized reward
schedules in Experiment 1, 2, and 3 (which we spotted during setup of Experiment
4), CS were not followed by outcomes in exactly 80% of trials equivalently across all
CS. For each experiment, we had set up five different reward schedules, assigning
different outcome probabilities to each CS. In Experiment 1, participants received
the following outcome probabilities on average: CS"A (Probability: M= 0.80,
range= 0.70–0.87), CS"B (M= 0.78, range= 0.73–0.88), CS0A (M= 0.78, range=
0.70–0.87), CS0B (M= 0.78, range= 0.63–0.90), CSþA (M= 0.80, range= 0.70–0.90),
CSþB (M= 0.86, range= 0.73–0.93). In Experiment 2, participants received the
following outcome probabilities on average: CS"A (M= 0.80, range= 0.73–0.87),
CS"B (M= 0.76, range= 0.73–0.83), CS0A (M= 0.78, range= 0.70–0.87), CS0B (M=
0.78, range= 0.63–0.90), CSþA (M= 0.80, range= 0.70–0.90), CSþB (M= 0.88,
range= 0.83–0.93). In Experiment 3, participants received the following outcome
probabilities on average: CS"A (M= 0.80, range= 0.73–0.87), CS"B (M= 0.77,
range= 0.73–0.83), CS0A (M= 0.79, range= 0.70–0.87), CS0B (M= 0.77, range=
0.63–0.90), CSþA (M= 0.79, range= 0.70–0.90), CSþB (M= 0.88, range= 0.83–0.93).
It should be noted that these minor differences in outcome probabilities between CS
cannot account for the observed choice-induced revaluation effects, as the respective
chosen CS on average received less outcomes (CSþA in Experiment 1) than or an
equal number of outcomes (CS0A in Experiment 2) as their same-valued partner
stimuli. Contrarily, the respective unchosen CS on average received more outcomes
(CS"A in Experiment 2) than or an equal number of outcomes (CS0A in Experiment
1) as their same-valued partner stimuli. Thus, the outcome probabilities assigned to
each CS would have worked against the hypothesized effects. Consistently, there
were no significant correlations between the outcome probability during Pavlovian
conditioning and decision probe overall or pairwise within-category choice
probability (ρs < 0.29, Ps > 0.067, Spearman correlations, two-tailed). Importantly,
Experiment 5 was not affected from this error, as reward schedules were created
with a different script in which we correctly coded that each CS would be followed
by an outcome in 80% of the trials.

Behavioral task—choice-induced revaluation. After completion of Pavlovian
conditioning, participants were presented with repeated choices (28 trials) between
a CSþA versus a CS0A (Experiments 1 and 5), CS0A versus a CS"A (Experiment 2), a
CS0A versus either a CS"A (14 trials) or a CSþA (14 trials) (Experiment 3), or a CSþ80
versus a CS080 and a CSþ20 versus a CS020 (Experiments 4), interleaved with lure
decisions (28 trials) between four other neutrally rated kanjis that had never been
presented during Pavlovian learning and thus were not associated with any of the
US. The choice-induced revaluation phase served as the crucial manipulation in all
experiments and was systematically varied across studies. Choice probability (CP)
for the high-value CS served as a control for learning and as a manipulation check.
Only participants selecting the higher valued CS more than 50% (CP ≥ 0.50) were
included in the final analysis, as we reasoned that choice-induced revaluation
choices would (1) represent a marker of having learned the true associative values
of the CS, (2) be a measure for learning, independent of the actual decision probe
phase data (avoiding biased and arbitrary decisions for exclusion of participants),
and (3) allow us to exclude decision makers showing random, or arbitrary choice
behavior. Choice options were presented for 1500 ms and the chosen option was
highlighted by a gray square surrounding the chosen CS. If participants did not
respond within the time-window, a time-out message was displayed, and the
respective trial was repeated at the end of the choice-induced revaluation phase.
Order (left/right) of choice options was counterbalanced to avoid simple

response patterns or decision rules (e.g. “always press left”). Participants were
instructed to imagine themselves in a Japanese shop, where they would like to buy
their favorite food items based on the previously learned kanjis (CS). Participants
were told that one of the choice trials would randomly be drawn and their choice
would determine which food item (US) they would receive as a bonus upon
completion of the experiment. Participants selected choice options by pressing the
“y” (left option) or “m” (right option) button (left or right index finger on an MRI-
compatible response box in Experiment 5). Importantly, participants were not
presented with the US related to their chosen or unchosen CS to dissociate the
observed effects from outcome-related relearning of CS–US associations. We
assumed that presentation of a CS would pre-activate neural ensembles coding for
the associated US. Consequently, we expected that choosing a CS would induce
strengthening of the chosen option’s CS–US association, whereas not choosing a
CS would weaken the unchosen option’s CS–US association.

Behavioral task—decision probe. Following choice-induced revaluation, partici-
pants were presented with repeated binary choices (120 trials) between all possible
CS combinations to assess CS preferences. Every CS combination was presented
eight times in pseudo-random order. In Experiment 4, participants made choices
between the two same-value pairs of stimuli that were differently strong associated
to their respective outcomes (CSþ80 versus CS

þ
20 and CS080 versus CS

0
20). Here, every

CS pair was presented 10 times in pseudo-random order. Choice options were
presented for 1500 ms. If participants did not respond within this time-window, a
time-out message was displayed, and the respective trial was repeated at the end of
the decision probe phase. Participants selected choice options by pressing the “y”
(left option) or “m” (right option) button (left or right index finger on MR-
compatible response box in Experiment 5). Order (left/right) of choice options was
counterbalanced. Participants were instructed that their shopping bag was torn,
and they had to return to the shop for buying their favorite food items based on the
previously learned kanjis (CS). Again, participants were told that one of the choice
trials would randomly be drawn and their choice would determine which food item
(US) they would receive as a bonus upon completion of the experiment. Impor-
tantly, participants were again not presented with the US related to their chosen or
unchosen CS.

fMRI-RS task (Experiment 5). After Pavlovian conditioning outside the MRI-
scanner, we administered two fMRI-RS blocks, one immediately before (PRE) and
one immediately after (POST) the revaluation phase to assess choice-induced
effects of fMRI-RS. Every possible combination of CS and US (18 combinations)
was presented 20 times each (360 trials in total). In one-third of the trials, the
originally learned CS–US associations were presented, the remaining two-third of
trials contained incorrect CS–US associations. In every trial, a CS was presented for
700 ms, followed by an interstimulus interval (fixation cross) for 400 ms and a US
for 700 ms. The intertrial interval was drawn from a discretized γ-distribution
(shape= 2.01, scale= 1), truncated for an effective range of values between 2000
and 6000 ms. Order of trials was pseudo-random, between-trial repetition of CS or
US did not occur. Additionally, every batch of 18 trials contained every possible
combination of CS–US association to avoid comparison of temporally distal trials
and between-trial biases in RS introduced by, e.g. fluctuations of attention,
“novelty” or surprise. During both runs of fMRI-RS, participants performed an
attentional control task. After a pseudo-random 20% of trials, participants were
presented with probe trials in which they were asked to indicate whether or not the
previously seen CS–US-association matched the true CS–US-association learned
during Pavlovian conditioning via button presses with their right and left index
fingers on an MRI-compatible response box. Correct responses were rewarded
with 0.05€ and incorrect responses or time-out trials (without a response by
the participant within 2500 ms after onset of the probe trial) resulted in a 0.05€
penalty which would be summed up as a bonus upon completion of the experi-
ment. On average, participants earned a bonus of 5.93€ (SD= 1.05). Performance
during the attentional control task was generally high (overall probability of correct
answers, excluding time-out trials: M= 0.92, SD= 0.06 (t41= 41.54, P < 0.001,
one-sample t-test vs. chance level (0.5)), with no evidence for a difference in
performance between PRE and POST choice-induced revaluation run (PRE: M=
0.92, SD= 0.07; POST: M= 0.92, SD= 0.072; t41= 0.06, P= 0.95, paired-samples
t-test).

fMRI acquisition. Two runs of fMRI were recorded with a 3 Tesla Siemens
PRISMA MR-system (Siemens, Erlangen, Germany), using a 64-channel head coil.
Blood oxygenation level-dependent (BOLD) signals were acquired using a multi-
band accelerated T2*-weighted echo-planar imaging (EPI) sequence (multi-band
acceleration factor 2, repetition time (TR)= 2000 ms, echo time (TE)= 30 ms, flip
angle= 80°, field of view (FoV)= 220 mm, voxel size= 2.2 × 2.2 × 2.2 mm, no
gap). Per volume, 66 slices covering the whole brain, tilted by ~15° in z-direction
relative to the anterior–posterior commissure plane were acquired in interleaved
order. The first five volumes of the functional imaging time series were auto-
matically discarded to allow for T1 saturation. After each run, a B0 magnitude and
phase map was acquired to estimate field maps and B0 field distortion during
preprocessing (TR= 660 ms, TE 1= 4.92 ms, TE 2= 7.38 ms, flip angle= 60°,
FoV= 220 mm). Additionally, before the PRE choice-induced revaluation
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fMRI-RS run, a high-resolution three-dimensional T1-weighted anatomical map
(TR= 2500 ms, TE= 2.82 ms, FoV= 256 mm, flip angle= 7°, voxel size= 1 × 1 ×
1 mm, 192 slices) covering the whole brain was obtained using a magnetization-
prepared rapid acquisition gradient echo (MPRAGE) sequence. This scan was used
as anatomical reference to the EPI data during the registration procedure.

Behavioral analyses. Data were analyzed in MATLAB 2012b (v8.0.0.783), 2017a
(v9.2.0.556344), and 2019a (v9.6.0.1072779) (The MathWorks, Inc., Natick, MA,
USA) using custom analysis scripts. For the manipulation check, indicating
learning of the CS–US-associations, average choice probabilities (CPs) for the
higher valued CS were calculated (one average in Experiments 1, 2, and 5, two
averages in Experiments 3 and 4) by summing up choices of the higher-valued CS
and dividing by the number of choice trials with a recorded response. This CP was
compared against the inclusion criterion of CP ≥ 0.50. If participants had chosen
the high-valued CS in more than 50% (or in exactly 50%) of the trials of choice-
induced revaluation, they were included in the final analyses. For the decision
probe phase, we computed an average overall CP per CS per subject including all
binary decisions in which the respective CS was present (count data, 1 representing
selection of the CS, 0 representing selection of the alternative CS). Lacking a non-
parametric alternative to the parametric two-way repeated-measures analysis of
variances (rmANOVA), distributions of mean overall CPs were analyzed at the
group level with a rmANOVA with factors CS valence (3) and stimulus type (2)
and post-hoc Wilcoxon sign-rank tests for paired samples, focusing on the pairwise
comparison of stimulus types within each level of valence. We hypothesized a main
effect of CS valence and an interaction effect of CS valence ⨯CS type (A vs. B),
resulting from higher CPs for previously chosen CS relative to the equivalent
control CS and lower CPs for previously unchosen CS relative to the equivalent
control CS (Experiments 1, 2, and 5). However, we expected absence/no
evidence for such an interaction effect in Experiment 3 in which a CS0A was
chosen and unchosen equally often (resulting in no change of the preference
relative to the control CS). Additionally, we performed one-sample Wilcoxon
sign-rank tests of overall CP against chance level (CP= 0.50). As an alternative
measure of choice preference in addition to overall CP, we also computed
pairwise choice probabilities by comparing choice ratios of the two CS within
each valence category with one-sample Wilcoxon sign-rank against chance level
(CP= 0.50).

Experiment 4 was specifically designed to rule out the possibility that
participants did not guide their choices based on (altered) associative strength
between CS and US but had simply learned choice rules for the two CS presented
during the revaluation phase (go tag for chosen CS, no go tag for unchosen CS).
We thus aimed to orthogonalize contributions of associative strength and choice
rule, by assigning go tags to the two chosen CS+ that differed in their associative
strength to US+ and no-go tags to the two unchosen CS0 that differed in their
associative strength to US0. Our hypothesis was that if choice behavior was
exclusively driven by these tags participants had learned, go tags for both
chosen CSþ80 and CSþ20 and no-go tags for both unchosen CS080 and CS020, there
should be no evidence for both same-value pairwise choice probabilities
different from chance level (CP= 0.50). However, if the choices were made
based on the learned associations and the associative strengthening/weakening
of the memory trace between CS and US, there should be a significantly
increased choice probability for CS080=CS

þ
80 that were more strongly associated

with their respective outcomes.
As we had formulated directional hypotheses for the choice effects, we

performed one-tailed (post-hoc) tests. In Experiment 3, there were no directional
hypotheses for the choice effects, therefore, we used two-tailed post-hoc tests. We
report effect sizes η2p for rmANOVAs, Cohen’s U3 for Wilcoxon signed-rank tests
and Cohen’s U31 for one-sample Wilcoxon signed-rank tests (range: 0–1, 0.5
indicating no effect), calculated in the MATLAB-based Measures-of-Effect-Size-
toolbox41. Based on the reported effect sizes η2p we additionally indicate post-hoc
achieved power (1–β) for the hypothesized interaction effects of CS valence ⨯ CS
type in rmANOVAs across behavioral analyses in Experiments 1, 2, 3, and 5. Based
on the means and standard deviations for both choice probabilities, we indicate
post-hoc achieved power for Experiment 4. All power analyses were conducted in
G*Power42,43 (v3.1.9.2).

Univariate fMRI data analysis. We exploited fMRI-RS effects (rapid, repeated
presentation of the same stimulus or pre-activation of a stimulus by associated
stimuli elicits reduced neural responses, as stimuli are represented by overlapping
neural ensembles19,20) to investigate choice-related changes in neural representa-
tions of CS–US associations. As conditioning enhances CS’s ability to pre-activate
neural ensembles coding for US, we expected a change of CS–US associative
strength, as measured by RS after choice-induced revaluation. Strong CS–US
associations should elicit high fMRI-RS effects (i.e. low activation), whereas weak
CS-US associations should elicit low fMRI-RS effects (i.e. high activation). We
expected decreased neural representations of CS–US associations for CSþA and
increased choice-related neural representations of CS–US associations for CS0A after
choice-induced revaluation.

All univariate fMRI analyses steps were performed using tools from the
functional magnetic resonance imaging of the brain (FMRIB) Software Library

(FSL, v6.0)44. Preprocessing included motion correction using rigid-body
registration to the central volume of the functional time series45, correction for
geometric distortions using the field maps and an n-dimensional phase-
unwrapping algorithm (B0 unwarping)46, slice timing correction using Hanning
windowed sinc interpolation, high-pass filtering using a Gaussian-weighted lines
filter of 1/100 Hz. EPI images were registered with the high-resolution brain images
and normalized into standard (MNI) space using affine linear registration
(boundary-based registration) as well as nonlinear registration47,48. Functional data
were spatially smoothed using a Gaussian filter with 6 mm full-width at half
maximum. We applied a conservative independent components analysis (ICA) to
identify and remove obvious artefacts. Independent components were manually
classified as signal or noise based on published guidelines49, and noise components
were removed from the functional time series. General linear models (GLMs) were
fitted into pre-whitened data space to account for local autocorrelations50. The
individual level (first level) GLM design matrix per run and participant included 22
box-car regressors in total. Eighteen regressors coded for onsets and durations of all
18 presented CS–US association trials (each modeled as single events of 1800 ms
duration), one regressor coded for onsets and durations of the three within-run
pauses (each 45 s), one regressor coded for onsets and durations of the attentional
control task probes, two regressors coded onsets and durations of left and right
button presses (delta stick functions on the recorded time of response button
presses) and the six volume-to-volume motion parameters from motion correction
during preprocessing were entered. Regressors were convolved with a
hemodynamic response function (γ-function, mean lag= 6 s, SD= 3 s). Each first
level GLM included five contrasts to estimate individual per run contrasts of
parameter estimates for (1) lower CS0A " US0 RS relative to the other equivalent
CS0B, controlling for all other combinations of CS0 presentations (Eq. (1)), (2)
higher CSþA " USþ RS relative to the other equivalent CSþB , controlling for all other
combinations of CS+ presentations (Eq. (2)), (3) higher CS"A RS relative to the
other equivalent CS"B , controlling for all other combinations of CS− presentations,
(4) Conjunction of (1) and (2), i.e. voxels coding for both decrease of CS0A " US0

RS and increase of CSþA " USþ RS (Eq. (3)), (5) right vs. left button press. Two
separate PRE and POST choice-induced revaluation second level (group level)
GLMs were carried out by submitting individual level parameter estimates to
mixed-effects statistics and ordinary least-squares (OLS) regression for higher-level
contrast of parameter estimates (COPE) estimation. To control for multiple
comparisons, cluster-based correction with an activation threshold of Z > 2.3 using
a cluster-extent threshold of P < 0.05 was applied at the whole-brain level.

The key tests for our hypothesis were focused on the effect of revaluation
choices on CS–US-associations during the POST run. The PRE run served as a
control to rule out potential baseline differences in RS for CS0A or CSþA .

A priori regions-of-interest (ROIs) comprised the lateral orbitofrontal cortex
(lOFC) and the hippocampus, as those regions have been implicated in
representation and adaptive changes of stimulus–outcome associations,
respectively10,14,21,28. We investigated POST choice-induced revaluation
conjunction effects (Eq. (3)) to identify regions involved in processing of choice-
induced changes to CS–US associations. An independent functional mask of a
contrast investigating stimulus–outcome associations from a previous study28
(restricted along the z-direction from –6 to –14 to constrain spatial extent), was
used for small-volume correction (PSVC) of the bilateral lOFC. The small-volume
corrected functional activation mask from the conjunction contrast was used to
extract contrast parameter estimates of the CS0A contrast and the CSþA contrast.
Additionally, an independent anatomical mask of the hippocampus
(Harvard–Oxford Atlas) was used to extract PRE and POST choice-induced
revaluation contrast parameter estimates of the CS0A contrast and the CSþA contrast.
PRE versus POST comparisons of activation were carried out using a repeated-
measures ANOVA and post-hoc Wilcoxon-sign rank tests. As we had formulated
directed hypotheses, and because parameter estimates were extracted from family-
wise error corrected ROIs, we used one-tailed post-hoc tests. We report effect sizes
η2p for rmANOVAs, Cohen’s U3 for Wilcoxon signed-rank tests and Cohen’s U31
for one-sample Wilcoxon signed-rank tests (range: 0–1, 0.5 indicating no effect),
calculated in the MATLAB-based Measures-of-Effect-Size-toolbox41. Based on the
reported effect sizes η2p we additionally indicate post-hoc achieved power (1–β) for
the hypothesized interaction effects of CS valence ⨯ time in rmANOVAs, calculated
with G*Power42,43 (v3.1.9.2). Additionally, we explored functional activation not
surviving whole-brain or small-volume family-wise error corrections by
thresholding activation maps at Z= 2.8 and extracting contrast estimates of the
CS0A contrast and the CSþA contrast for brain–behavioral correlations.

Extracted parameter estimates were additionally used for brain–behavioral
correlations using non-parametric Spearman correlations. For brain–behavior
correlations, we had the directed hypotheses that associative strength, as measured
by RS should be positively related to the difference between overall CP of CSþA and
overall CP CSþB and negatively related to difference between overall CP CS0A and
overall CP CS0B. Additionally, to refine our insights in the relationship of neural and
behavioral results, we also correlated RS with pairwise CP for CSþA versus CSþB ,
again assuming a positive relationship and pairwise CP for CS0A versus CS0B,
predicting a negative relationship. Due to our directed hypotheses, and because
parameter estimates were extracted from family-wise error corrected ROIs, we
performed one-tailed tests on Spearman correlation coefficients.
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Furthermore, whole-brain voxel-wise regressions were applied at the group level
for both PRE and POST run and also a group level analysis on the activation
change from PRE to POST run. We used demeaned individual behavioral
difference regressors of overall CP of CSþA – overall CP CSþB and overall CP
CS0A – overall CP CS0B and demeaned pairwise within-category CP of trials directly
comparing CSþA and CSþB and CS0A and CS0B, respectively.

Multivariate fMRI data analysis. Complementary to the univariate RS-based
approach, we performed confirmatory multivariate fMRI analyses, employing a
neural pattern similarity analysis (a variant of RSA22) in the left hippocampus and
right lateral OFC to further support the hypothesized associative strengthening/
weakening mechanism. As for the RS-based analyses we assumed that presentation
of a CS should induce pre-activation of neural ensembles coding the respective
associated US. This mnemonic pre-activation should not only be present in trials
where the CS was followed by the originally learned US, but also in trials where the
CS was followed by any of the other two possible, but not associatively linked US.
Similarity of neural patterns related to two CS from the same value category could
thus potentially be indicative of associative memory retrieval of a US representa-
tion. According to the idea of choice-induced weakening of the CS0A association
with US0 and strengthening of the CSþA association with US+, our hypothesis was
that neural similarity between same value stimulus–outcome pairs
(CS0A " US"=CS0B " US" and CS0A " USþ=CS0B " USþ; CSþA " US"=CSþB " US"

and CSþA " US0=CSþB " US0) should decrease from PRE to POST, indicating less
similarity between patterns of interest (i.e. the weakened/strengthened stimulus
and the respective partner stimulus). The assumption of decreased neural pattern
similarity for pairs of CSþA and CSþB as a result of choice-induced strengthening of
CSþA is based on two grounds. Firstly, we assumed that both CSþA and CSþB would
equivalently, and partially reinstate the pattern representing US+ during PRE, but
repeated retrieval of US+ and choice of CSþA should selectively strengthen the
association between CSþA and US+ during POST. Since CSþB is not presented during
revaluation and thus not actively rehearsed, the memory trace between CSþB and
US+ should be subject to passive decay, presumably resulting in a slightly wea-
kened association. Secondly, consistent with the literature on retrieval-induced
forgetting7–9, it is plausible to assume that actively retrieving the memory trace
between the target stimulus CSþA and US+ would additionally weaken the memory
trace between the competitor stimulus CSþB and US+. Both of the above
mechanisms would lead to a differentiation of the memory engrams encoding CSþA
and US+, and CSþB and US+ and should be reflected in diminished PRE to POST
similarity. For the pair of control stimuli (CS"A " US0=CS"B " US0 and
CS"A " USþ=CS"B " USþ), we did not expect changes in neural pattern similarity.

Preprocessing steps for multivariate fMRI analyses were identical as for
previously mentioned univariate fMRI analyses, with the only exception that the
functional imaging timeseries were not spatially smoothed. As for univariate fMRI
analyses, we applied a conservative ICA to identify and remove obvious artefacts.
GLMs were fitted into pre-whitened data space to account for local
autocorrelations50. The individual level (first level) GLM design matrix per run and
participant included 22 box-car regressors in total. Eighteen regressors coded for
onsets and durations of all 18 presented CS–US-association trials (each modeled as
single events of 1800ms duration), one regressor coded for onsets and durations of
the three within-run pauses (each 45 s), one regressor coded for onsets and
durations of the attentional control task probes, two regressors coded onsets and
durations of left and right button presses (delta stick functions on the recorded time
of response button presses) and the six volume-to-volume motion parameters from
motion correction during preprocessing were entered. Regressors were convolved
with a hemodynamic response function (γ-function, mean lag= 6 s, SD= 3 s). Each
first level GLM included one contrast to model activation related to each of the 18
presented CS–US-associations versus baseline (18 contrasts in total). The a priori
ROIs were built in MNI space and back-projected into subject native space using
inverse normalization parameters obtained from FSL during preprocessing
procedures. We used these individual ROIs for spatially constrained multivoxel
pattern extraction from the respective contrast t-value maps. Similarity-based
analyses were carried out using the MATLAB-based multivariate pattern analysis
toolbox CoSMoMVPA51. We employed 1−Pearson’s product–moment correlation
coefficient (1−r) as a measure of pairwise dissimilarity between neural patterns of
interest, separately for PRE and POST and the two ROIs. Within-subject pairwise
neural dissimilarity was subtracted from 1 (to create a measure of neural pattern
similarity) and Fisher-Z transformed to closer approximate normally distributed
data. We then calculated the within-subject PRE–POST change between the
resulting pairwise neural pattern similarity measures (POST r – PRE r, ΔPearson’s
r). As we had a directional hypothesis of negative PRE–POST change of both
CS0A=CS

0
B and CSþA=CS

þ
B and to increase the number of trials included in the

inference, we pooled neural pattern similarity measures across all patterns of
interest. Lastly, average neural similarity changes were analyzed at the group
level with one-sample t-tests against 0. Due to the expected negative effects of
neural pattern similarity changes in patterns of interest, we used one-tailed
tests accordingly. As there was no such directional hypothesis for the pairs of
CS"A=CS

"
B , we employed two-tailed tests. We report effect sizes Cohen’s U31 for

one-sample t-tests against 0 (range: 0–1, 0.5 indicating no effect), calculated in the
MATLAB-based Measures-of-Effect-Size-toolbox41. Based on the mean and

standard deviation of pattern similarity measures, we report post-hoc achieved
power of all analyses.

Univariate fMRI contrasts.
CS0A fMRI-RS contrast:

½2´ ðCS0A " US0 " CS0B "US0Þ& " ½ðCS0A " US" " CS0B " US"Þ
þ ðCS0A " USþ " CS0B " USþÞ&

ð1Þ

CSþA fMRI-RS contrast:

½2 ´ ðCSþA " USþ " CSþB "USþÞ& " ½ðCSþA "US" " CSþB " US"Þ
þ ðCSþA " US0 " CSþB " US0Þ&

ð2Þ

Conjunction fMRI-RS contrast:

½2´ ðCS0A " US0 " CS0B "US0Þ& " ½ðCS0A " US" " CS0B " US"Þ
þ ðCS0A " USþ " CS0B " USþÞ&

and

½2 ´ ðCSþA " USþ " CSþB "USþÞ& " ½ðCSþA "US" " CSþB " US"Þ
þ ðCSþA " US0 " CSþB " US0Þ&:

ð3Þ

Computational models. To formally characterize behavior in experiments 1, 2, 3,
and 5, we fit six different variants of a reinforcement learning model using
Rescorla–Wagner-like delta update rules27. For each experiment, we compared the
six models that implemented different ways by which participants could have
learned CS–US associative strength—and updated associative strength during
choice-induced revaluation.

In model 1 (Pavlovian learning only), CS values are exclusively acquired during
Pavlovian learning, without any further update during the choice-induced
revaluation. On each trial, the value of the stimulus currently presented was
updated according to the following rule:

Vtþ1;i ¼ Vt;i þ αLearningðRt " Vt;iÞ ð4Þ

where αLearning is the learning rate, Vt,i is the value of the ith stimulus (1–6 for the
six CS), and Rt is the reward value of the US (0, 0.5, and 1 for low-value,
intermediate-value, and high-value outcome, respectively, and 0 if no outcome was
presented) in the Pavlovian conditioning phase. CS values were initialized at 0.5.
The estimated associative strength for each CS after the learning phase was directly
passed to a softmax choice rule (Eq. (6)), without further modulation of CS
associative strength by choice-induced revaluation.

Model 2 (Pavlovian learning and choice-induced revaluation, chosen CS)
acquired stimulus values during Pavlovian learning exactly like model 1, but
additionally updated CS–US associative strength by fictive reward prediction errors
elicited by decisions in the choice-induced revaluation phase. The fictive reward
prediction errors was based on our reasoning that presentation of CS during
revaluation would lead to retrieval of the associated US and that, consistent with
our hypothesis, stimulus–outcome association of the chosen CS would be
strengthened, whereas the association of the unchosen CS would be weakened,
resulting from nonmonotonic memory plasticity16. As no objective feedback (US)
was presented during choice-induced revaluation, the reward prediction could only
be derived by assuming associative retrieval. This model only updated associative
strength of the chosen, but not the unchosen CS.

Vtþ1;ch ¼ Vt;ch þ αchðRt;ch " Vt;chÞ ð5Þ

where αch is the choice revaluation learning rate scaling the impact of fictive reward
prediction errors elicited by fictive outcomes Rt,ch (1 for chosen CS and −1 for
unchosen CS) elicited by the US associated with each CS.

Model 3 (Pavlovian learning and choice-induced revaluation, chosen, and
unchosen CS) was set up to account for the possibility that updating of both the
chosen and unchosen CS association could occur during the choice-induced
revaluation. It was identical to model 2, with the exception that it performed an
update to the associative strength of the unchosen stimulus, using a separate
learning rate αunch, in addition to updating the chosen CS associative strength.

These same three models were set up as variants (associative value models) that
were identical in all respects except for the outcomes during Pavlovian learning,
which were modeled as 0 (no outcome presented) or 1 (outcome presented) and CS
associative strength values were scaled with the normalized (0–1), individually
rated subjective value of the outcome (pre-rating) at the end of the Pavlovian
learning phase.

The estimated associative strengths for all CS after the choice-induced
revaluation phase were passed to a softmax decision function to generate choice
probabilities for each option on each trial:

PC;t ¼
1

1þ expð"VDt=τÞ
ð6Þ

where PC,t is the model’s probability to select option C on trial t, the choice the
participant actually made on trial t. VDt, is the value difference (or difference in
associative strength) between the chosen and unchosen CS on trial t, and τ is a
temperature parameter that determines the degree of stochasticity in participants’
choice behavior.
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To find the free parameters that best described participants’ behavior, we used a
two-step fitting procedure to minimize the negative log-likelihood estimate
(−LLE):

"LLE ¼ "Σ logðPC;tÞ ð7Þ
First, we ran a grid search on an n-dimensional grid in log space (where n=

number of free parameters for each model), with 30 steps along each dimension.
The grid optimum was then used as initial value and passed to constrained non-
linear optimization using the MATLAB function fmincon. Optimized negative log
likelihoods were compared by means of the sample-size corrected Akaike
Information Criterion (AICc, Eqs. (8) and (9)). The model with the lowest AICc
value was considered to account best for the observed participants’ choice data,
penalized for model complexity and sample size (number of participants).

AIC ¼ 2k" 2 "LLEð Þ ð8Þ

where k is the number of free parameters of the model and −LLE is the negative
log likelihood of the model given the data.

AICC ¼ AICþ 2k2 þ 2k
n" k" 1

ð9Þ

where k is the number of free parameters in the model, and n is the sample size.
Additionally, we performed 10,000 simulations of choice behavior per

participant. After value estimation as described above, using individual parameters
of the best-fitting models at group level, the resulting value estimates for each
stimulus were entered in the exact same sequence of 120 choices that the
participants individually experienced during the decision probe phase. Simulated
overall choice probabilities were averaged per participant across
10,000 simulations.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The raw behavioral data, univariate parameter estimates extracted from regions of
interest, thresholded and unthresholded univariate Z-maps, neural pattern similarity
correlation matrices and brain–behavioral correlation data that support the findings of
this study are publicly available at GitHub (https://github.com/LLuettgau/revaluation).
The neuroimaging raw data that support the findings of this study are available upon
reasonable request from the corresponding author (L.L.). The neuroimaging raw data are
not publicly available due to them containing information that could compromise
research participant privacy/consent. The source data underlying Figs. 1e–i, 2d, e, 3a, b,
4b and Supplementary Figs. 1a–h, 2a–h, 3a, b, and 5a are provided as a Source Data file.
A reporting summary for this article is available as a Supplementary Information
file. Source data are provided with this paper.

Code availability
Custom analysis code for the reported behavioral data analyses, univariate fMRI analyses
on extracted parameters, multivariate fMRI analyses on neural pattern similarity
correlation matrices, brain–behavioral correlational data analyses and computational
modeling/simulations are publicly available at GitHub (https://github.com/LLuettgau/
revaluation). Source data are provided with this paper.
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Supplementary Methods 

For our proposed associative mechanism, we assumed that after Pavlovian conditioning, a CS 

would pre-activate the respective, associatively learned US and participants would make their 

decisions between CS based on the associated outcome. Our hypothesized mechanism relies 

on the assumption that participants form a (simple) model of the task, which is well in line with 

the literature on associative learning1,2. However, alternatively, the observed pattern of results 

could also be explained by a cached value account. According to this account, participants 

acquire cached values during Pavlovian conditioning and further use those model-free values 

to guide their decision, independent of associated outcomes or the learned relationships 

between CS and US. Our study was not designed to dissociate both mechanisms on a 

behavioral level. The prediction of the cached value account would be that decisions during 

choice-induced revaluation lead to changes in cached values and leave CS-US association 

unaffected. In other words, CS0
A should have a reduced cached value, whereas the cached 

value of CS+
A should be increased following choice-induced revaluation. In another fMRI 

contrast, we tested whether the relationship/similarity between CS0
A and US− (Supplementary 

Note 4) would change due to the choice-induced revaluation phase. If our results can be 

explained by the cached value account, we would assume that CS0
A followed by US− would 

show reduced activation/higher similarity in the post choice-induced revaluation run, compared 

to its equivalent partner stimulus CS0
B followed by US−. As any other stimulus- or outcome-

related effects are controlled for in the contrast, and CS0
A was not learned to be associated 

with US− during Pavlovian conditioning (i.e. not being able to pre-activate a US− 

representation), we assumed that reductions in activation could only be interpreted as a 

repetition of a shared feature, namely the stimulus/outcome value. After testing the contrast, 

we extracted parameter estimates from an independent hippocampus mask and correlated the 

parameter estimates with CP. We hypothesized that CS0
A and US− similarity would be 

negatively related to overall CP CS0
A – overall CP CS0

B. The lower the CS0
A and US− similarity, 

the less likely participants would be to select CS0
A. 
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Supplementary Note 1 

As an alternative to the proposed associative mechanism, parts of our functional neuroimaging 

results could also be explained based on cached values. During Pavlovian conditioning, 

participants might acquire incentive (cached) CS values and use these to guide their decisions, 

independent of CS-US associations. It is possible that revaluation choices changed these 

cached CS values, instead of the CS-US associations. Under this reasoning, one would 

assume that the value information conveyed by CS0
A, the CS not chosen during revaluation 

and supposedly devalued, would become more similar to the value information of the low-

valued US– after choice-induced revaluation3. By its very nature, the fMRI-RS signal for learned 

CS-US associations represents BOLD signal reductions due to repetition of both value and 

identity features shared by CS and US, alongside the associative strength between CS and 

US1. However, CS0
A should by design of the experiment not be capable to elicit any associative 

strength- or identity-related RS effects when followed by US–, as it was never coupled with US– 

during Pavlovian conditioning. Since value and identity of the US are inextricably linked in the 

present design, we reasoned that any RS signal changes for CS0
A followed by US– from PRE 

to POST would most likely be attributable to changes in valuation of CS0
A. The cached value 

account would predict larger repetition suppression effects for CS0
A followed by US– as for 

CS0
B followed by US– during POST. Our design allowed us to set up a contrast to test this 

possibility (Supplementary Note 4). This indeed yielded effects in the right posterior 

hippocampus and a midbrain region in the vicinity of the dorsolateral substantia nigra pars 

compacta (Supplementary Figure 4) in POST. However, consistent with the absence of a 

behavioral revaluation effect for CS0
A, the observed hippocampal effect did not differ PRE-

POST (test on parameter estimates extracted from right hippocampal anatomical mask, Z = 

0.90, P = .184, U3 = .64, Wilcoxon signed-rank test, one-tailed). Importantly, the parameter 

estimates of the cached value effect in the right hippocampus and the associative effect in the 

left hippocampus were not correlated (all ρs < .18, Ps > .260, Spearman correlations, two-

tailed). Even when extracting parameter estimates for cached value (Supplementary Note 4) 

and associative effect (Equation 1) from the exact same anatomical mask of the left 
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hippocampus, we did not observe significant correlations between the two contrasts (PRE: ρ 

= .22, P = .170; POST: ρ = –.03, P = .852; Spearman correlations, two-tailed), which would 

have been expected if both contrasts measure the same with flipped signs. According to the 

cached value account, hippocampal representations of CS0
A-US– should be inversely related 

to preferences of CS0
A. However, directly opposing this prediction, relationships of right 

hippocampus parameter estimates, and choice behavior were positive (all ρs < .31, P > 0.05, 

Spearman correlations, two-tailed), rendering an explanation of the observed behavioral 

results based on cached values unlikely. It should be noted that the cached value effects would 

have critically depended on choice-induced devaluation of CS0
A. However, as we did not find 

behavioral support for the hypothesized devaluation effect, the cached value effects should be 

interpreted with caution. 
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Supplementary Figure 1. Behavioral and simulation results. 
A-D) Empirical choice results (as in Fig. 1E-H). Previously chosen CS (blue dots) are selected 
more often compared to equivalent CS (black dots) in Experiment 1 (A, N = 40, Z = 3.98, P < 
.001, Cohen’s U3 = .85, Wilcoxon signed-rank test, one-tailed), Experiment 2 (B, N = 40, Z = 
2.20, P = .014, U3 = .68, Wilcoxon signed-rank test, one-tailed), Experiment 5 (D, N = 42, Z = 
3.03, P = .001, U3 = .76, Wilcoxon signed-rank test, one-tailed) and previously unchosen CS 
(yellow dots) are selected less often compared to equivalent CS (black dots) in Experiment 1 
(A, N = 40, Z = 1.97, P = .025, U3 = .70, Wilcoxon signed-rank test, one-tailed) and Experiment 
2 (B, N = 40, Z = 1.91, P = .028, U3 = .66, Wilcoxon signed-rank test, one-tailed) during decision 
probe. The effect is not present in Experiment 3 (C, N = 44, Z = 0.41, P = .68, U3 = .55, Wilcoxon 
signed-rank test, two-tailed), indicating that the roughly equal proportion of choices and non-
choices of CS0

A during revaluation had cancelled each other out. E-H) Averaged simulated 
choice probabilites (10,000 simulations per participant, Experiment 1: N = 40 (E), Experiment 
2: N = 40 (F), Experiment 3: N = 44 (G), Experiment 5:  N = 42 (H)), recapitulating observed 
empirical choice patterns. Please note that no statistical tests were performed on simulated 
data. Box plot center lines represent sample medians and box bottom/top edges show 25th/75th 
percentile of the (simulated) data, respectively. Source data are provided as a Source Data 
file. 
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Supplementary Figure 2. Extended Behavioral Results and Pairwise Choice 
Probabilities. 
Decision probe pairwise choice probabilities for CS that were presented during revaluation 
against every other CS. A) In Experiment 1 (N = 40), CS0

A is only preferred over CS-
A and CS-

B (top), CS+
A is the most preferred CS (bottom). B) In Experiment 2 (N = 40), CS-

A is the least 
preferred CS (top), CS0

A is chosen more frequently than CS-
A, CS-

B, and CS0
B (bottom). C) In 

Experiment 5 (N = 42), CS0
A is only preferred over CS-

A and CS-
B (top), CS+

A is the most 
preferred CS (bottom). D) In Experiment 3 (N = 44), CS0

A is chosen at the same frequency as 
CS0

B (middle). Please note that since these plots serve descriptive purposes only, no statistical 
tests were performed. E-H) Pairwise within-category choice probabilities displaying the 
pairwise comparison that are most indicative of choice-induced preference changes. E) 
Experiment 1 (N = 40): CS+

A and CS+
B (Z = 3.43, P < .001, Cohen’s U31 = .69, one-sample 

Wilcoxon signed-rank test vs. 0.5, one-tailed; CS0
A and CS0

B (Z = 2.05, P = .020, U31 = .68, 
one-sample Wilcoxon signed-rank test vs. 0.5, one-tailed), F) Experiment 2 (N = 40): CS0

A and 
CS0

B (Z = 1.93, P = .027, U31 = .68, one-sample Wilcoxon signed-rank test vs. 0.5, one-tailed); 
CS–

A and CS–
B (Z = 1.41, P = .079, U31 = .63, one-sample Wilcoxon signed-rank test vs. 0.5, 

one-tailed), G) Experiment 3 (N = 44): CS0
A and CS0

B (Z = 0.12, P = .905, U31 = .57, one-
sample Wilcoxon signed-rank test vs. 0.5, two-tailed), H) Experiment 5 (N = 42): CS+

A and 
CS+

B (Z = 1.93, P = .027, U31 = .62, one-sample Wilcoxon signed-rank test vs. 0.5, one-tailed); 
CS0

A and CS0
B (Z = 1.07, P = .857, U31 = .62, one-sample Wilcoxon signed-rank test vs. 0.5, 

one-tailed). These results suggest that initially conditioned value was not overridden by 
revaluation choices and that the choice bias was mostly driven by the pairwise decisions of the 
respective revaluation CS against the same-value CS. However, repetitions of choices 
between the two revaluation CS also contributed to the observed overall choice probability 
effects. Box plot center lines represent sample medians and box bottom/top edges show 
25th/75th percentile of the data, respectively. Source data are provided as a Source Data file. 
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Supplementary Figure 3. Repetition suppression effects, separately for CS0
A-US0 and 

CS+
A-US+. 

Extracted parameter estimates of the repetition suppression effects for CS0
A-US0, controlling 

for activation elicited by CS0
A followed by both incorrect outcomes (US- and US+) 

(Supplementary Note 2) and CS+
A-US+

 repetition suppression, controlling for activation elicited 
by CS+

A followed by both incorrect outcomes (US- and US0) (Supplementary Note 3). A) 
Extracted parameter estimates from the left hippocampus (interaction effect: F1, 41 = 4.31, P = 
.044, η2

p = .10, 1–β = .99, rmANOVA). CS0
A-US0 showed a marginal effect from PRE to POST 

(Z = 1.82, P = .069, U31  = .64, Wilcoxon signed-rank test, two-tailed), but only a numerical 
difference was observed for PRE-POST change of CS+

A-US+ (Z = 1.56, P = .120, U31  = .69, 
Wilcoxon signed-rank test, two-tailed). B) Extracted parameter estimates from the right lateral 
orbitofrontal cortex (interaction effect: F1, 41 = 3.51, P = .068, η2

p = .08, 1–β = .99, rmANOVA). 
CS0

A-US0 showed a significant decrease from PRE to POST (Z = 2.44, P = .015, U31  = .71, 
Wilcoxon signed-rank test, two-tailed), but there was no evidence of a PRE-POST difference 
for CS+

A-US+ (Z = .01, P = .995, U31  = .52, Wilcoxon signed-rank test, two-tailed). Bar plots 
represent sample means. Error bars indicate standard errors of the mean. Asterisks indicate 
P-values < .05, plus signs represent P-values > .05 and < .10. Color bars indicate Z-values. 
Source data are provided as a Source Data file. 
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Supplementary Figure 4. Cached value control analysis results. 

Whole-brain corrected pattern of activation (activation threshold Z > 2.3, cluster-forming 
threshold P < 0.05, thresholded at Z > 2.8 for display purposes) for the cached value control 
analysis (Supplementary Note 4) during the POST choice-induced revaluation fMRI run (N = 
42). Two clusters in the right posterior hippocampus and in a left midbrain region in the vicinity 
of the dorsolateral substantia nigra pars compacta survived whole-brain correction. Extracting 
hippocampal activation with an independent anatomical right hippocampus mask and 
comparison of parameter estimates for PRE and POST yielded no significant difference (Z = 
0.90, P = .184, U3 = .64, Wilcoxon signed-rank test, one-tailed), suggesting no evidence for an 
influence of choice-induced revaluation decisions on activation. Additionally, we did not 
observe significant correlations between the cluster in the right posterior hippocampus from 
the cached value control analysis and the left hippocampus result from the associative 
analyses (all ρs < .18, Ps > .260, Spearman correlations, two-tailed), suggesting different 
processes. Even when extracting parameter estimates for cached value (Supplementary Note 
4) and associative effect (Equation 1) from the exact same anatomical mask of the left 
hippocampus, we did not observe significant correlations between the two contrasts (PRE: ρ 
= .22, P = .170; POST: ρ = –.03, P = .852; Spearman correlations, two-tailed), which would 
have been expected if both contrasts measure the same with flipped signs. Parameter 
estimates from the right posterior hippocampus were only marginally related with overall CP 
CS0

A – overall CP CS0
B: ρ40 = .30, P = .050 (two-tailed) and the within-category CP CS0

A vs. 
CS0

B: ρ40 = .29, P = .062 (two-tailed). However, the direction of the correlation was exactly 
opposite to the predictions of the cached value account. As there was no apriori anatomical 
hypothesis for the SNpc, we were unable to extract parameter estimates in an unbiased 
fashion. Thus, PRE and POST parameter estimates could not be compared. Left SNpc 
parameter estimates were not significantly related to left VTA parameter estimates from the 
associative analysis (all ρs < .08, Ps > .63), nor with decision probe behavior (all ρs < .20, Ps 
> .20). Color bar indicates Z-values. 

2.8 4

z = 5 y = –33x = 32
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Supplementary Figure 5. Brain-behavior correlation and whole-brain regressions. 

A) Left hippocampus parameter estimates (independent anatomical mask, Fig. 4A) for 
repetition suppression of CS+

A relative to CS+
B relative to CS+

B-US+, controlling for activation 
elicited by CS+

A and CS+
B followed by both incorrect outcomes (US- and US0) (Equation 2) 

during the POST choice-induced revaluation fMRI run positively correlate with decision probe 
pairwise choice probability of CS+

A vs. CS+
B (N = 42, ρ41 = .27, P = .044, Spearman correlation, 

one-tailed). The higher repetition suppression was after choice-induced revaluation, the more 
likely participants were to prefer CS+

A over CS+
B. B) CS+

A preference vs. CS+
B was correlated 

with POST choice-induced revaluation run repetition suppression (N = 42) in the bilateral 
anterior insula, suggesting choice-induced strengthening of CS-related pre-activation of neural 
ensembles coding for the used food items. C) We observed a positive relationship between 
PRE-POST changes in associative strength of CS0

A and pairwise CP for CS0
A vs. CS0

B, in two 
clusters in the medial orbitofrontal cortex and lOFC, extending to the anterior insula (N = 42). 
Color bars indicate Z-values. Source data are provided as a Source Data file. 
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Supplementary Table 1. Computational Parameters and Model Fits 

Exp. 1 Update Model αLearning αch αunch τ –LLE AICc 

RW 

Model 1 < .001 
(0 – 1) - .0002 

(0 – 1.55) 
63.43 

(37.50 – 81.58) 133.59 

Model 2 .04 
(0 – 1) 

< .001 
(0 – .78) - .20 

(0 – 1.48) 
40.52 

(26.19 – 80.67) 98.10 

Model 3 .02 
(0 – .58) 

.50 
(0 – .85) 

.006 
(0 – .86) 

.15 
(0 – .77) 

37.27 
(25.62 – 79.88) 94.62 

Asso. 
Value 

Model 1 .002 
(0 – 1) - .11 

(.05 – 2.65) 
41.35 

(27.38 – 80.9) 97.10 

Model 2 .02 
(0 – 1) 

.002 
(0 – .84) - .14 

(.06 – 1.43) 
40.60 

(20.64 – 77.37) 95.87 

Model 3 .03 
(0 – 1) 

.42 
(0 – .84) 

.005 
(0 – 1) 

.17 
(.06 – 3.37) 

37.08 
(20.60 – 81.88) 96.30 

Exp. 2 

RW 

Model 1 .55 
(0 – .95) - .45 

(0 – 66.59) 
53.41 

(31.86 – 83.18) 115.99 

Model 2 .18 
(0 – .72) 

.005 
(0 – .95) - .24 

(0 – 3.44) 
45.42 

(15.43 – 82.02) 103.18 

Model 3 .04 
(0 – .85) 

.02 
(0 – .88) 

.005 
(0 – .99) 

.24 
(0 – .77) 

44.67 
(5.55 – 77.11) 98.98 

Asso. 
Value 

Model 1 .003 
(0 – 1) - .15 

(.05 – 2.65) 
48.77 

(15.81 – 83.23) 101.68 

Model 2 .04 
(0 – 1) 

.005 
(0 – .92) - .20 

(.002 – 6.11) 
44.53 

(15.71 – 82.81) 100.51 

Model 3 .03 
(0 – 1) 

.02 
(0 – .99) 

.005 
(0 – .74) 

.20 
(.004 – 2.08) 

44.38 
(5.55 – 82.4) 97.43 

Exp. 3 

RW 

Model 1 .03 
(0 – .88) -  .18 

(0 – 1.55) 
50.60 

(22.15 – 82.66) 107.92 

Model 2 .02 
(0 – .85) 

< .001 
(0 – .70) - .07 

(0 – 16.92) 
41.06 

(14.50 – 82.99) 95.31 

Model 3 .01 
(0 – .83) 

.009 
(0 – .55) 

< .001 
(0 – .40) 

.08 
(0 – 24.81) 

40.47 
(13.64 – 83.07) 93.15 

Asso. 
Value 

Model 1 .005 
(0 – 1) -  .11 

(0 – 1.44) 
41.12 

(13.65 – 82.64) 93.78 

Model 2 .02 
(0 – 1) 

.008 
(0 – .76) - .16 

(0 – 1.28) 
40.29 

(13.65 – 82.62) 93.84 

Model 3 .02 
(0 – 1) 

.012 
(0 – .86) 

.009 
(0 – .80) 

.13 
(.004 – 2.01) 

44.38 
(5.55 – 82.4) 91.96 

Exp. 5 

RW 

Model 1 < .001 
(0 – 1) -  < .001 

(0 – 3.89) 
71.61 

(49.60 – 82.72) 143.94 

Model 2 < .001 
(0 – .85) 

< .001 
(0 – 1) - .16 

(0 – 5.05) 
54.25 

(22.54 – 82.64) 114.94 

Model 3 .04 
(0 – .61) 

.52 
(0 – .85) 

.008 
(0 – .72) 

.24 
(0.03 – 1.02) 

51.11 
(22.54 – 81.86) 110.71 

Asso. 
Value 

Model 1 .002 
(0 – 1) -  .16 

(0.04 – 4.78) 
55.11 

(23.54 – 82.86) 112.97 

Model 2 .13 
(0 – 1) 

.007 
(0 – 1) - .24 

(0.05 – 4.81) 
50.79 

(23.37 – 82.61) 110.69 

Model 3 .18 
(0 – 1) 

.50 
(0 – 1) 

.009 
(0 – .97) 

.22 
(.04 – 2.98) 

49.25 
(22.90 – 82.51) 107.85 

 

Note: Median and range of computational parameters, negative log likelihood estimates (–LLE) 

and corrected Akaike Information Criteria (AICc) of the Rescorla-Wagner like (RW)4 and 

Associative Value (Asso. Value) reinforcement learning models for the four experiments. 

Lowest AICc per experiment, which was considered to account best for the observed 

participants’ choice data, penalized for model complexity and sample size (number of 

participants) in bold letters.  
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Supplementary Note 2 

CS0
A simple effect contrast: 

 

Supplementary Note 3 

CS+
A simple effect contrast: 

[ 2 ⨯ CS+A-US+ ] − [ CS+A-US− + CS+A-US0 ]  

 

Supplementary Note 4 

Cached value control analysis contrast: 

[ 2 ⨯ (CS0
B-US− − CS0

A-US−) ] − [ (CS0
A-US0 − CS0

B-US0) − (CS0
B-US+ − CS0

A-US+) ]  

 

  

[ 2 ⨯ CS0A-US0 ] − [ CS0A-US− + CS0A-US+ ]  
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Abstract 

Naturalistic learning scenarios are characterized by infrequent experience of external 

feedback to guide behavior. Higher-order learning mechanisms like second-order 

conditioning (SOC) may allow agents to infer value in environments with sparse rewards. 

Despite its explanatory potential for real-world learning phenomena, surprisingly little is 

known about the neural mechanism underlying such value transfer in SOC. Here, we used 

multivariate cross-session, cross-modality searchlight classification on functional magnetic 

resonance imaging data obtained from healthy humans during SOC. We show that visual 

first-order conditioned stimuli (CS) reinstate cortical patterns representing previously paired 

gustatory outcomes in the lateral orbitofrontal cortex (OFC). The same OFC region was 

found to increase functional coupling with amygdala and anterior hippocampus during SOC. 

In the amygdala, neural pattern similarity specifically increased between second-order CS 

and outcomes from early to late stages of SOC. Our data suggest a mechanism by which 

value is conferred to stimuli that were never paired with reinforcement.  
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Main text 

Learning in naturalistic settings is characterized by infrequent direct encounters with 

rewarding or punishing stimuli1. Hence, several stimuli or actions often need to be chained 

together, such that one stimulus serves as a proxy for another stimulus that might eventually 

predict reward1. Exploiting such statistical regularities would allow agents to infer the value of 

stimuli or actions that were never directly followed by reinforcement and support instrumental 

behavior in the absence of reinforcement or in new contexts. Second-order conditioning 

(SOC) is an example of higher-order learning that allows exactly such spread of value to 

stimuli that have never been directly paired with reinforcement2. In SOC, a first-order 

conditioned stimulus (CS1) is first paired with a motivationally salient event or stimulus 

(unconditioned stimulus, US). By virtue of this pairing, the CS1 is capable of evoking 

conditioned responses (CR, e.g. salivating, as in the presence of food), enabling it to function 

as conditioned reinforcer2. Subsequently, another previously neutral conditioned stimulus 

(CS2) is paired with the CS1. Thereby, CS2 acquires incentive properties and is, like CS1, now 

able to elicit a CR. Despite its relevance for real-life learning phenomena1,3  and decades of 

behavioral investigations1,3–5, surprisingly little is known about the neural mechanism 

underlying the transfer of value in SOC3.  

 At least four potential mechanisms accounting for SOC have been proposed1,3–5. 

Three of these suggest that CS2 could become associated with a CR using (i) the associative 

link between CS2 and CS1, (ii) direct pairing of the CS1-evoked CR with CS2, or (iii) because 

CS1 reactivates a representation of the US which then evokes a CR that becomes paired with 

CS2. Behavioral evidence suggests that neither of these three hypotheses can account for 

second-order learning effects4,5. This leaves open a fourth possibility: that CS2 is directly 

paired with a neural representation of the US, or more precisely, with the motivational state 

or value conveyed by the US during second-order learning (“direct link” hypothesis)1,3. 

Recent evidence suggests that acquisition of incentive properties by second-order stimuli 

(CS2) is related to activity of mesencephalic dopamine neurons that encode a reward 

prediction error elicited by CS1
6. Presumably, SOC critically depends on convergence of 
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neural patterns representing CS2 and US in the amygdala1,3,7,8 and hippocampus9. However, 

it remains unclear, how exactly a “direct link” between CS2 and US-related motivational value 

is formed at the neural level. Additionally, to the best of our knowledge, it is unknown 

whether human value-based decision-making is affected by value conferred through second-

order learning. This complicates cross-species translation of higher-order learning effects 

described in animal studies and highlights the need for using similar paradigms in humans. 

Building on models of memory reinstatement10, we hypothesized that during SOC, 

presentation of the CS1 would trigger reinstatement of the neural pattern representing the US 

with which it had previously been paired during first-order conditioning (FOC). This would 

allow linkage of “online” US and CS2 representations by associative plasticity in 

amygdala1,3,7,8,11 and hippocampus9. Both amygdala and hippocampus, as well as 

orbitofrontal cortex (OFC) and ventral striatum12 have consistently been shown as the key 

structures involved in second-order learning and conditioned reinforcement1,3,7–9,11. Our 

analyses therefore focused on these regions.  

To test our predictions, we combine a SOC paradigm and choice preference tests 

with cross-session13, cross-modality searchlight14 classification of functional magnetic 

resonance imaging (fMRI) data in healthy human participants. Participants first established 

Pavlovian associations between visual CS1 and appetitively or aversively valued gustatory 

US. During SOC, participants were exposed to associations between visual CS2 and 

previously learned first-order CS1. In a subsequent preference test phase, participants were 

more likely to select directly (CS1) and indirectly (CS2) appetitively paired stimuli over 

aversively paired stimuli. These value transfer effects were accompanied by first-order CS-

related reinstatement of the neural patterns representing US in the lateral OFC and 

increased functional coupling between OFC and amygdala/anterior hippocampus during 

SOC. Furthermore, representations of second-order CS in the amygdala became more 

similar to US representations from early to late phases of second-order conditioning, 

indicating the acquisition of an association between CS2 and US patterns. 
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----------------------------------------Insert Figure 1 about here---------------------------------------------- 

Results  

Evidence for value transfer during second-order conditioning 

Participants (N = 49, combined across two experiments) first established Pavlovian visuo-

gustatory associations between a visual CS+
1 and an appetitive gustatory US+ (chocolate 

milk or orange juice), and between a visual CS–
1 and an aversive gustatory US– (quinine-HCl) 

during first-order conditioning (FOC, Fig. 1C). During SOC, participants were visually 

presented with CS2
+ followed by CS1

+, CS2
–

 followed by CS1
–, and a novel pairing of CS2

n 

followed by CS1
n (Fig. 1D). Since CS1

n had not been presented during first-order 

conditioning, both CS2
n and CS1

n were considered neutral CS, serving as control stimuli for 

mere exposure effects. Importantly, participants were not informed about the underlying 

associative structure of the tasks but were instructed to perform simple attentional control 

tasks. This was aimed at leaving participants unaware of the associative learning process. 

Post-experimental tests for explicit knowledge indeed revealed that participants were 

unaware of the (indirect) associations between CS2 and US (Supplementary Results and 

Supplementary Table 1).  

In a subsequent choice preference test (Fig. 1E), participants performed binary 

decisions between pairs of CS1 and CS2. Choice trials were interspersed with lure decisions 

between CS1
n or CS2

n and novel fractals or kanjis, respectively, that had only been seen 

during pre-task rating. We reasoned that choice probabilities (CP) should exceed the 

indifference criterion (CP > 0.5) if they reflect acquired (CS1) and transferred (CS2) value. 

Additionally, we assumed that choice probability should not exceed the indifference criterion 

in trials involving novel-to-lure stimuli, if choice behavior was not exclusively driven by mere 

exposure or novelty-dependent response biases. Participants showed a preference both for 

the appetitive first- and second order stimuli, CS1
+ and CS2

+, respectively, over the aversive 

CS1
– and CS2

– (Fig. 1F). Highest posterior density intervals (HPDI) of choice probabilities 

(binomial model) for CS1
+ versus CS1

– [.58; .65] and for CS2
+ versus CS2

– [.60; .67] did not 

overlap (0% overlap) with the defined region of practical equivalence (ROPE, CP = [.45; 
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.55]), an interval of parameter values representing the null hypothesis of no difference from 

chance level. These findings show that our conditioning procedure conferred value to both 

CS1 and CS2. Importantly, there was no evidence for both choice probabilities of CS1
n and 

CS2
n being different from chance level in novel-to-lure comparison choice trials (Fig. 1F, 

HPDIs: [.46; .52] and [.42; .48], 100% and 48% ROPE overlap, respectively). This pattern of 

results rules out an explanation of CS1
+ and CS2

+ preference arising from mere-exposure or 

novelty. 

 

First-order CS reinstate neural US patterns during second-order conditioning 

After establishing behavioral evidence for associative value transfer, we reasoned that a 

prerequisite for the observed learning effect would be reinstatement of the neural US pattern 

by the paired CS1 to establish a direct associative link between CS2 and US. To test for 

cortical reinstatement of neural patterns representing US during second-order conditioning, 

we used functional magnetic resonance imaging (fMRI) and a cross-session13, cross-

modality searchlight14 classification approach (multivariate pattern analysis, MVPA). To 

obtain unbiased estimates of the neural patterns representing our gustatory US, without the 

confounding influence of associations to a learned first-order CS, we first performed an fMRI 

classifier training experiment on day 1 (Fig. 1B) during which the US+ and US– were 

presented. A multivariate pattern classifier (linear support vector machine, C-SVM) was 

trained on the fMRI data from this session. On day 2, during SOC, we used the weights of 

the classifier trained on gustatory neural patterns to predict the identity of the visual CS (Fig. 

1D) that had been paired with the US during FOC (Fig. 1C, see Methods and Fig. 2A for 

schematic of the classification approach). In other words, we used data from one sensory 

modality, assessed during a first day to train a classification model and tested the model’s 

generalizability to unseen data from another sensory modality on a second day. We found 

evidence for reinstatement of US patterns in a region in the left lateral orbitofrontal cortex 

(lOFC). In this region, significant decoding of CS identity was possible on the basis of the US 

pattern obtained during classifier training on the previous day. Classification with a 3-mm 
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searchlight revealed a small-volume corrected (Neurosynth15 meta-analytic functional mask 

for term “taste”) cluster of above-chance level (0.5) classification accuracy (extracted cluster 

mean = 0.56, SD =  0.07) in the left lateral OFC (lOFC, Fig. 2B, peak voxel at MNI [x = –21, y 

=  30, z = –17], z = 2.26, P = 0.012, random-effect cluster corrected16, 50,000 iterations, one-

tailed). The location of this lOFC cluster is consistent with this region's well-documented role 

in gustatory processing, particularly in representing motivational17–19 aspects of gustatory 

sensation and taste memory20. To ensure that our results are not dependent on this particular 

choice of ROI, we repeated the same analysis using two different, independent ROIs. The 

first was an anatomical mask of lateral orbitofrontal cortex (Harvard-Oxford atlas), the second 

was obtained from an independent gustatory mapping study by Benz et al. (personal 

correspondence). Again, we found significant CS decodability in both ROIs (Supplementary 

Results).  

When we split participants into a high- and low-bias group, depending on their 

preference for the CS2
+, we observed that significant classification of CS identity in lOFC was 

possible in the high bias group (Z = 3.43, P = .006, U31 = .88, one-sample Wilcoxon signed-

rank test, two-tailed), but not in the low bias group (Z = 1.44, P = .151, U31 = .58, one-sample 

Wilcoxon signed-rank test, two-tailed, Fig. 2C).  

 

----------------------------------------Insert Figure 2 about here---------------------------------------------- 

Interaction between lOFC and amygdala during second-order conditioning 

To form an associative link between CS2 and US, the reinstated US patterns need to be 

projected from their cortical storage site to regions like amygdala and hippocampus, allowing 

for convergence of US and CS2 information. We investigated whole-brain BOLD signal 

covariation of the cluster in the left lOFC with the whole brain during SOC using a 

psychophysiological interaction (PPI) analysis. We contrasted CSn trials with CS– and CS+ 

trials, where the reinstated US is presumably paired with CS2. We found that covariation of 

BOLD signal in the left lOFC with a cluster in the hippocampus, extending to amygdala and 
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medial temporal lobe, was higher in CS–
 and CS+ compared to CSn trials (Fig. 3A, peak voxel 

at MNI [x = –60, y =  3, z = –24], Z = 3.97, P = 0.029, whole-brain corrected).  

Furthermore, in the same PPI analysis, we found a positive correlation between 

second-order choice preference and functional covariation of the left lOFC with a region in 

the right lateral prefrontal cortex (Fig. 3B, peak voxel at MNI [x = 49, y =  43, z = 6], Z = 4.21, 

P = 0.034, whole-brain corrected). The more participants preferred CS2
+ (versus CS2

–), the 

stronger these regions’ BOLD signal covaried during SOC.  

 

Plasticity of association between second-order CS and US in the amygdala 

We reasoned that if the amygdala uses the reinstated cortical outcome pattern in lOFC to 

acquire an association between CS2 and the respective US, one would expect similarity 

between the neural patterns evoked by CS2 and US, respectively. This similarity should 

increase over the course of second-order conditioning, as the association is being acquired. 

Using a least-squares separate (LS-S) approach21 to deconvolve single-trial estimates, we 

first computed overall neural pattern similarity22 between the pattern evoked by CS2 (during 

SOC) and their respective US (during classifier training) in the bilateral amygdala. There was 

significant pattern similarity between CS2
– and US– (t28 = 3.38, P = 0.002, U31 = 0.79; but not 

between CS2
+ and US+, t28 = 0.74, P = 0.464, U31= 0.55). We reason that this could be due 

to differential motivational aspects of the gustatory outcomes we used. The US– consisted of 

an aversively tasting quinine solution, which has been shown to produce innate avoidance 

responses that are not thought to be generated by learning23. In contrast, US+ was orange 

juice, a compound stimulus that consists of many taste features (e.g. sour and fruity 

components), next to sweet sensation, which also produces innate responses23. Presumably, 

this heterogeneity of taste facets in US+ had induced more variability in taste responses in 

our participants. Additionally, it appears likely that in a society offering sugary and highly 

palatable foods and drinks in abundance, US+ (an orange juice, most likely a very familiar 

taste to most of our participants) might not have been perceived rewarding, novel enough to 

represent a motivationally relevant and salient event for our participants. It might well be that 
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participants did not have experience with the aversive taste of quinine, rendering it a novel 

and salient gustatory sensation, presumably resulting in only the US– being considered 

behaviorally and motivationally relevant. Thus, it is possible that the observed preference for 

CS1
+ and CS2

+ was indeed due to an aversion against CS1
– and CS2

–. 

If the observed neural pattern similarity between CS2 and US indeed reflects the 

formation of an associative link during second-order learning, one would expect this similarity 

to increase from early to late stages of learning, as the association is being acquired and the 

CS comes to predict the US. We therefore compared our measure of neural pattern similarity 

between early and late trials of SOC. As expected, neural pattern similarity between CS2
– 

and US– in the bilateral amygdala ROI increased from early to late trials of SOC (t28 = 1.88, P 

= 0.035, Cohen’s d = 0.35, paired-samples t-test, one-tailed, Fig. 3C). This change in 

similarity was not observed for the first-order CS1
+-US+ or CS1

–-US– pattern similarity (Fig. 

3D), nor for second-order CS2
+-US+ similarity (all P > .310, paired-samples t-tests, one-tailed, 

Fig. 3C).  

 

----------------------------------------Insert Figure 3 about here---------------------------------------------- 

Discussion 

Using a second-order conditioning paradigm, we show transfer of outcome value during 

higher-order learning, even when participants are unaware of the underlying associative 

structure of the experiment. Participants were more likely to select directly and indirectly 

appetitively paired stimuli over aversively paired stimuli, closely resembling rodent studies 

describing choice biases consistent with second-order conditioning2,6. This suggests that 

humans, similar to rodents, implicitly acquire preferences through higher-order transfer 

learning mechanisms – a finding that goes beyond previous studies promoting acquisition of 

explicit associative relationships between stimuli24–26. Notably, choice biases for second-

order conditioned stimuli emerged in the absence of explicit knowledge of the underlying 

higher-order associative structure. To the best of our knowledge, this is the first report 

demonstrating that human value-based decision making is affected by value conferred 
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through second-order conditioning. Such transfer of value may be beneficial, as it allows an 

agent to exploit the underlying relational structure and infer value in states for which direct 

experience with reinforcement is not available. It may however also be maladaptive when it 

leads to pursuit of suboptimal options, for example if states only share contiguous 

occurrence but lack correlated reward-predictive properties. 

 Using a multivariate cross-session, cross-modality searchlight classification approach, 

we found reinstatement of neural outcome representations by visual first-order CS that had 

previously been directly paired with gustatory outcomes during first-order conditioning. This 

reinstatement of outcome patterns occurred in a region in the lateral OFC. Notably, the exact 

same rostrolateral portion of OFC has previously been implicated in representing stimulus-

outcome associations27–29 and in correctly assigning credit for a reward to the causal stimulus 

choice29. It is also part of the network most consistently involved in taste processing as 

obtained from the Neurosynth data base15 and plays a well-documented role in representing 

motivational17–19 aspects of gustatory sensation and taste memory20. Importantly, we had 

trained the classifier on the gustatory US prior to pairing them with visual first-order CS (on a 

separate day). Thus, decoding of the visual CS during second-order learning cannot be 

spuriously driven by visual responses elicited by the US during classifier training. 

Reinstatement of the neural pattern representing the outcome constitutes a necessary 

prerequisite to establish an associative link between second-order CS and the motivational 

state or value conveyed by gustatory outcomes. Our findings are consistent with a body of 

lesion studies in animals that indicate a key role of OFC in second-order conditioning and in 

responding for conditioned reinforcement30,31. They also align with the account of OFC 

representing abstract relational structure, or a state space32,33 and recent evidence 

suggesting that OFC neurons encode relevant second-order combinations of past state 

variables to guide decision-making34. 

 OFC clearly does not act in isolation. A plethora of studies suggests that interactions 

between OFC, amygdala and ventral striatum30,35–37 might also support second-order learning 

processes. We found evidence for the region of OFC that showed reinstatement of outcome 
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representations to increase BOLD signal covariation with amygdala and anterior 

hippocampus during second-order learning. Neurons in OFC and amygdala show complex, 

bi-directional interactions during acquisition and reversal of outcome-predictive associations36 

and functional disconnection of OFC and amygdala using asymmetric lesions produce 

deficits in flexibly adjusting behavior to changes in stimulus value35,37. We also observed that 

representations of visual second-order CS in amygdala became more similar to gustatory US 

representations from early to late phases of second-order conditioning. This indicates the 

gradual development of an associative link between CS2 and US in this region. Indeed, both 

amygdala and hippocampal lesions impair second-order learning7,9. The hippocampus may 

play a specific role, since animals with lesions show impaired acquisition of second-order 

contingencies, while acquisition of first-order stimulus-outcome associations is spared9.  

Our study has at least two implications for current theories of learning and decision-

making. First, our study is – to the best of our knowledge – the only report so far of 

behavioral evidence for value transfer during human second-order learning. Although there is 

a rich literature on second-order conditioning, direct evidence for this phenomenon in 

humans using similar procedures as in previous animal work was lacking. The present study 

thus enables a closer comparison between humans and other species during higher-order 

learning. Second, the neural mechanisms of value transfer in SOC have remained elusive. 

The present study suggests that during second-order conditioning, outcome representations, 

and presumably features pertaining to the motivational value of outcomes, are reinstated in 

the lateral OFC. Our data suggests that reinstated outcome representations could be 

communicated between lOFC and amygdala/anterior hippocampus for associative linking of 

previously neutral stimuli with the motivational value conveyed by the reinstated outcomes.  

It has been proposed that relational knowledge of events and behavior characterized 

by considering the state-transition probabilities of the environment might emerge from 

associative learning mechanisms38. Second-order conditioning can be thought of as an 

instantiation of such a learning process in which a currently absent, but previously 

experienced and motivationally relevant task state (receipt of an outcome) is reinstated in 
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lOFC to enable propagation of motivational value to task states that are never directly 

experienced in contiguity with reward or punishment. Higher-order learning paradigms 

impose a relational structure of events on agents and thus can be cast as an inference 

problem, very much like in transitive inference (AàB, BàC, hence AàC)39. Credit 

assignment processes of this kind have been shown to involve the lOFC29,40. The lOFC 

reinstatement of outcome representations observed in the present study could thus pose a 

necessary prerequisite for value attribution to task states or stimuli that have never been 

directly followed by an outcome, but nevertheless possess outcome-predictive properties. 

How the reinstatement of cortical US patterns found in our study relates to the 

observation in rats that midbrain dopamine neurons acquire temporal difference error signals 

in response to CS2
6 presents an important question for future studies. Furthermore, it would 

be of great interest to elucidate the directionality and exact content of information flow 

between lOFC and amygdala/anterior hippocampus and whether this information transfer is 

supported by phase coherence in theta oscillations41–43.  

Taken together, our data support the “direct link” hypothesis of second-order 

conditioning1,4,5, stating that second-order CS and the motivational value of outcomes – 

events that had never been explicitly paired during the individual’s learning history – can be 

linked by exploiting the relational structure of events. Importantly, the present study enables 

a closer comparison between humans and other species during higher-order learning. In 

conclusion, our results suggest a neural mechanism by which the motivational value of 

outcomes can be propagated to stimuli that are never experienced in contiguity with 

reinforcement, allowing for credit assignment in real-world learning scenarios with infrequent 

direct encounters with rewards or punishments.  
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Methods 

Participants 

Participants were recruited from the local student community of the Otto-von-Guericke 

University Magdeburg, Germany by public advertisements and via online announcements. 

Only participants indicating no history of psychiatric or neurological disorder, no regular 

intake of medication known to interact with the central nervous system and participants not 

reporting quinine intolerance were included. Participants in both samples had normal or 

corrected-to-normal vision and did not report experience with Japanese kanjis or Chinese 

characters. All participants provided informed written consent before participation and 

received monetary compensation for taking part in the study. The study was approved by the 

local ethics committee at the medical faculty of the Otto-von-Guericke University Magdeburg, 

Germany (reference number: 101/15) and conducted in accordance with the Declaration of 

Helsinki. 

32 healthy adult volunteers (age: M = 24.16, SD = 3.61 years, 15 males) participated in 

the fMRI study, 20 healthy adult volunteers (age: M = 23.40, SD = 3.07 years, 9 males), 

participated in the behavioral study. In the fMRI study, two participants were excluded from 

statistical analyses due to self-reports of having fallen asleep during the second-order 

conditioning scanning run. One additional participant had to be excluded due to a scanner 

malfunction and corruption of three of the five classifier training experiment scanning runs, 

thus leaving a total of N = 29 participants for final analyses. 

 

Learning experiment – ratings 

The learning experiment was performed on day 2 in the fMRI sample, in the behavioral 

sample, only the learning experiment was performed in a single session. Participants 

received written instructions for the experiment and were instructed once again on the 

computer screen. All experiments were programmed in MATLAB 2012b (v8.0.0.783, 

MATLAB and Statistics Toolbox Release 2012b, The MathWorks, Inc., Natick, MA, USA), 

using Psychophysics Toolbox44 (version 3). Before and after the learning experiment, 
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participants rated ten different round, greyscale fractal images (300 x 300 pixels) serving as 

first-order conditioned stimuli (CS1), ten white Japanese kanjis45 (250 x 250 pixels) serving as 

second-order conditioned stimuli (CS2) and gustatory stimuli (aversive: quinine-HCl 0.2 

mmol/l solved in purified water, appetitive: either chocolate milk (Nesquik, Nestlé, 

Switzerland) or orange juice (Milde Orange, EDEKA, Germany) in the behavioral study, only 

orange juice in the fMRI study, serving as unconditioned stimuli (US). Each participant 

received the same kind and amount of US per trial during the experiment. Ratings of 

subjective value/liking were assessed with the number buttons on a German (QWERTZ) 

computer keyboard from 1 (not liked) to 9 (very much liked). In the fMRI sample, participants 

additionally rated gustatory stimuli regarding their subjective intensity levels from 1 (low 

intense) to 9 (very intense). Three fractals and kanjis rated closest to 5 (equivalent to 

“neutral”) were selected for first- and second order conditioning and their order was 

randomized before being associated with the US in first-order conditioning or with the first-

order CS1 in second-order conditioning. To ensure motivational salience of the gustatory US, 

participants were instructed to abstain from food for 12 hours and on average reported 

having fasted for 13.28 (SD = 2.71) hours. Participants reported intermediate levels of 

hunger before the task on a paper-pencil visual analog scale (VAS), ranging from 0 (“not 

hungry”) to 100 (“very hungry”), M = 58.38 (SD = 29.61). 

 

Learning experiment – first-order conditioning 

In first-order conditioning (FOC), participants were presented with CS+
1 followed by the 

appetitive US+, and CS–
1 followed by the aversive US–. In a typical trial, a CS1 (2000 ms) was 

followed by an inter-stimulus interval (1000 ms) marked by a fixation cross, and oral infusion 

of one US (1 ml bolus per trial). Each CS1 was presented 50 times, amounting to 100 trials 

total. CS1 were followed by a US with 80% probability (40 trials of each CS1-US pair, 10 trials 

of CS1-no US per CS). US were delivered by a MATLAB code-controlled custom-made 

gustometer consisting of two high pressure single syringe pumps (AL-1000HP, World 

Precision Instruments, Saratoga, FL) operating 50 ml Luer lock syringes. Syringes were 
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attached to Luer lock infusion lines (1,40 m length, 2 mm inner diameter) that participants 

held centrally in their mouths like drinking straws. In the fMRI study, infusion line position 

order (Q-O (N = 17) and O-Q (N = 15) for quinine (Q) and orange juice (O)) was 

counterbalanced across participants. In the fMRI study, the US bolus onset was preceded 

(500 ms) by a blue square that was presented for 2500 ms on the screen (Figure 1B). 

Participants were instructed to only swallow the US bolus upon offset of the blue square. 

Each trial was separated by an inter-trial-interval (ITI) marked by a grey screen. The ITI per 

trial was drawn from a discretized γ-distribution (shape = 6, scale = 1) truncated for an 

effective range of values between 3500 ms and 10,000 ms. Participants took self-paced 

breaks after each 10th trial during which they could drink water. Importantly, the instructions 

did not contain information about the underlying associative structure of the experiment, 

aiming at leaving participants unaware of the associative learning process. Instead, 

participants were instructed to perform a simple attentional control task, during which they 

should react as quickly and as correctly as possible by pressing the “y” button upon seeing 

the CS1 colored in red. Each CS1 was colored red in 10 % of the trials (90 % of trials 

grayscale image) and color did not predict US contingency. Performance during the task was 

rewarded with a bonus of 1 € (if > 70 % correct answers). Participants performed very well in 

the attentional control task (overall probability of correct answers: M = .99, SD = .05). In the 

fMRI sample, both ratings and first-order conditioning were performed outside the MRI 

scanner.  

 

Learning experiment – second-order conditioning 

For second-order conditioning (SOC), participants were presented with CS2
+ followed by 

CS1
+, CS2

–
 followed by CS1

– and CS2
n followed by CS1

n. CS1
n had not been presented during 

first-order conditioning and thus was not paired with any US. The novel CS2
n-CS1

n pair 

served to control for attentional and novelty effects. In each trial (Figure 1D), a CS2 (2000 

ms) was followed by an inter-stimulus interval (500 ms) marked by a fixation cross, and a 

CS1 (2000 ms). CS2 were followed by a CS1 deterministically. Each trial was separated by an 
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ITI marked by a grey screen. The ITI per trial was drawn from a discretized γ-distribution 

(shape = 7, scale = 1) truncated for an effective range of values between 4000 ms and 

10,000 ms. Each CS2-CS1 pair was presented 50 times, amounting to 150 trials total. Again, 

instructions did not explicitly mention relational structures to be learned, but participants were 

instructed to perform a simple attentional control task. Participants were instructed to 

respond as quickly and as correctly as possible by pressing the “y” button (behavioral study) 

or with the right index finger on an MRI-compatible 4-button response box (fMRI study) upon 

seeing the CS2 tilted by a 45° angle. Each CS2 was tilted in 10 % of its presentations. 

Performance during the task was rewarded with a bonus of 1 € (if > 70 % correct answers). 

Participants performed very well in the attentional control task (overall probability of correct 

answers: M = .97, SD = .07). In the fMRI study, SOC was performed inside the MRI scanner. 

 

Learning experiment – choice preference test 

Following SOC, participants were presented with two separate test phases consisting of 

repeated binary choices (30 trials) between pairs of CS1 and pairs of CS2 to assess 

behavioral signatures of first- and second-order conditioning. Each choice between CS1
+ and 

CS1
–, and between CS2

+ and CS2
– was presented ten times (twelve times in the fMRI 

sample). We hypothesized preference for both CS1
+ and CS2

+ over CS1
– and CS2

–, 

respectively, as expressed by choice probabilities above indifference criterion (CP > 0.5). 

Decision trials were interleaved with choices between the novel CS1
n or CS2

n and lure stimuli 

(fractal or kanjis, respectively) that had only been seen during pre-task rating in pseudo-

random order. These novel-to-lure comparison trials were intended to rule out response 

biases related to mere exposure to the stimuli experienced during conditioning. We reasoned 

that if choices were reflecting acquired and transferred value and could not only be attributed 

to mere exposure-dependent response biases, choice probability in trials involving novel-to-

lure stimuli should not exceed the indifference criterion. Choice options were presented for 

1500 ms on the right- and left-hand side of the screen. Order (left/right) of choice options was 

counterbalanced. If participants did not respond within this time-window, a time-out message 
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was displayed, and the respective trial was repeated at the end of the choice preference test. 

Participants selected choice options by pressing the “y” (left option) or “m” (right option) 

button (behavioral sample, left or right index finger on MR-compatible response box in the 

fMRI sample). Participants were instructed to select the CS they preferred/liked more. 

Importantly, participants were never presented with the US related to their chosen or 

unchosen CS. 

 

Behavioral analyses 

Data were analyzed using MATLAB 2019a (v9.6.0.1072779, The MathWorks, Inc., Natick, 

MA, USA) and RStudio46 (version 3.6.3, RStudio Team, Boston, MA) using custom analysis 

scripts. We calculated an average choice probability (CP) per first- and second-order CS per 

subject including all binary decisions in which the respective CS was present (1 = selection of 

the respective target CS, 0 = selection of the alternative CS) for CS1
+ and CS2

+ (versus CS1
– 

and CS2
–, respectively). We hypothesized above-chance level CPs for both CS1

+ and CS2
+. 

For both first-order and second-order novel-to-lure comparison trials, we calculated an 

average CP per stimulus and expected no difference from chance level for these choices. 

CPs for each CS in the fMRI and behavioral study were pooled and jointly analyzed. For 

hypothesis testing, we calculated 89%-highest posterior density intervals (89%-HPDI) for 

each choice probability using the R package rethinking47. The HPDI represents the 

parameter values most consistent with the data. We specified a weakly informative prior 

probability distribution (10000 steps), an aggregated binomial distribution including the 

number of choices for the respective stimulus and the total number of choice trials involving 

the respective CS as likelihood function (Equation 1) and randomly drew 100000 samples 

from a grid-approximated (10000 steps) normalized posterior probability distribution. For 

hypothesis testing, we specified a region of practical equivalence (ROPE), i.e. an interval of 

parameter values (CP = [.45; .55]) representing the null hypothesis. Specifically, we expected 

that the 89%-HPDI would not overlap with the ROPE for choices of CS1
+ and CS2

+ (versus 

CS1
– and CS2

–, respectively), allowing to reject the null hypothesis. However, the ROPE 
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would overlap with the 89%-HPDI for both first-order and second-order novel-to-lure 

comparison trials. Overlap between HPDIs and ROPEs was quantified using the R package 

bayestestR48. 

!"! 	~	Binomial(-! , /!) 

	/! 	~	Normal(0.5,0.1) 
 

(1) 

where CPi is the binomially distributed choice probability for CSi (CS1
+, CS2

+, CS1
n or CS2

n). 

Ni is the total number of trials in which CSi was present and pi is the proportion of choices of 

CSi.  

 

fMRI – classifier training experiment 

The classifier training experiment was always performed on day 1 of two consecutive testing 

days. This was done to acquire unbiased estimates of the neural patterns representing the 

two US for training of a multivariate classification algorithm (multivariate pattern analysis, 

MVPA), before any association of the US with first- or second order CS had been acquired. 

Participants received oral instructions for the classifier training experiment and were 

instructed once again on the projection screen in the MRI. Before and after the experiment, 

participants rated gustatory US (aversive: quinine-HCL 0.1 mmol/l solved in purified water 

and appetitive: orange juice) according to subjective value/liking and intensity via button 

presses with their right and left index and middle fingers on a MRI-compatible 4-button 

response box. Ratings ranged from 1 (not liked/not intense) to 4 (very much liked/very 

intense) and were indicated by e.g. pressing the left middle finger corresponding to rating 1 

or pressing the right index finger corresponding to rating 3. As on day 2, participants were 

instructed to abstain from food for 12 hours and on average reported to have fasted for 13.59 

(SD = 2.18) hours. Participants reported intermediate levels of hunger before the experiment 

on a paper-pencil VAS, M = 48.50 (SD = 31.28). In each of the five total runs of the classifier 

training experiment, each US was administered twenty times (40 trials per run, 200 trials in 

total). Per trial, one US (1 ml bolus per trial) was delivered by a MATLAB code-controlled 

custom-made gustometer and Luer lock infusion lines (8.30 m length, 2 mm inner diameter). 
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Participants held infusion lines centrally in their mouths like drinking straws. Additionally, 

infusion lines were fixed at absorbent materials attached to throat, chin and cheeks. The US 

bolus onset was preceded (500 ms) by a blue square that was presented in total for 4000 ms 

on the screen. Participants were instructed to only swallow the US bolus upon offset of the 

blue square. Each trial was separated by an ITI marked by a grey screen. The ITI was drawn 

from a uniform distribution with 5 discrete steps (range: 3000 – 7000 ms). Both US were 

presented in a pseudo-random order, thus reducing the influence of potentially confounding 

low-level features of the schedule (e.g. number of same/different US repetitions, different ITI 

lengths following each US). During each run of the classifier training experiment, participants 

performed a 0-back style attentional control task. After a pseudo-random 20% of trials, 

participants were presented with probe trials in which they were asked to indicate which US 

they had received last (“pleasant” (US+) or “unpleasant” (US–)) via button presses with their 

right and left index fingers on an MRI-compatible response box. Correct responses were 

rewarded with 0.05 € and incorrect responses or time-out trials (without a response by the 

participant within 2500 ms after onset of the probe trial) resulted in a 0.05 € penalty which 

would be summed up as a bonus upon completion of the experiment. On average, 

participants earned a bonus of 1.86 € (SD = .11) during the classifier training experiment. 

Performance during the 0-back attentional control task was generally high (overall probability 

of correct answers, excluding time-out trials: M = .93, SD = .05). 

 

fMRI – acquisition 

During SOC, one run and during the classifier training experiment, five runs of fMRI were 

acquired on a 3 Tesla Siemens PRISMA MR-system (Siemens, Erlangen, Germany), using a 

64-channel head coil. Blood oxygenation level dependent (BOLD) signals were acquired 

using a multi-band accelerated T2*-weighted echo-planar imaging (EPI) sequence (multi-

band acceleration factor 2, repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle 

= 80°, field of view (FoV) = 220 mm, voxel size = 2.2 × 2.2 × 2.2 mm, no gap). Per volume, 

66 slices covering the whole brain, tilted by approximately 15° in z-direction relative to the 
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anterior–posterior commissure plane were acquired in interleaved order. The first 5 volumes 

of the functional imaging time series were automatically discarded to allow for T1 saturation. 

To ensure close spatial alignment of the acquired slices during both sessions, the AutoAlign 

technique provided by the vendor was applied. At the end of both testing days, a B0 

magnitude and phase map was acquired to estimate field maps and B0 field distortion during 

preprocessing (TR = 660 ms, TE 1 = 4.92 ms, TE 2 = 7.38 ms, flip angle = 60°, FoV = 220 

mm). Additionally, before task-based fMRI on both days, a high-resolution three-dimensional 

T1-weighted anatomical map (TR = 2500 ms, TE = 2.82 ms, FoV = 256 mm, flip angle = 7°, 

voxel size = 1 × 1 × 1 mm, 192 slices) covering the whole brain was obtained using a 

magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence. This scan was 

used as anatomical reference to the EPI data during the registration procedure. For all cross-

session classification analyses, SOC EPI data was referenced to orientation of the classifier 

training experiment. 

 

fMRI – data preprocessing 

All fMRI preprocessing steps were performed using tools from the Functional Magnetic 

Resonance Imaging of the Brain (FMRIB) Software Library (FSL, v5.0 and v6.0)49. 

Preprocessing for each run of both classifier training task and SOC task included motion 

correction using rigid-body registration to the central volume of the functional time series50, 

correction for geometric distortions using the field maps and an n-dimensional phase-

unwrapping algorithm (B0 unwarping)51, slice timing correction using Hanning windowed sinc 

interpolation and high-pass filtering using a Gaussian-weighted lines filter of 1/100 Hz. EPI 

images were registered to the high-resolution structural image using affine linear registration 

(boundary-based registration) and then to standard (MNI) space using linear (12 degrees of 

freedom) and nonlinear registration52,53. Functional data was not spatially smoothed. We 

applied a conservative independent components analysis (ICA) to identify and remove 

obvious artefacts. Independent components were manually classified as signal or noise 
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based on published guidelines54, and noise components were removed from the functional 

time series.  

 

fMRI – searchlight classification analyses 

As conditioning enhances CS’s ability to pre-activate neural ensembles representing an 

associated US, we expected that a multivariate classification algorithm trained on neural 

patterns representing the US (during the classifier training task) would be able to correctly 

predict the class of a paired CS during SOC. Hence, we used a cross-session13, cross-

modality searchlight14 classification approach to identify brain regions in which the CS class 

during SOC could be predicted based on training the classifier during the classifier training 

experiment on day 1. General linear models (GLMs) were fitted into pre-whitened data space 

to account for local autocorrelations55. For the searchlight classification analyses, the 

individual level (first level) GLM design matrix per run and participant of the classifier training 

experiment included four box-car regressors in total. Two regressors coded for onsets and 

durations of both US (each modelled as single events of 4000 ms duration) and two 

regressors coded onsets and durations of left and right button presses (delta stick functions 

on the recorded time of response button presses) and the six volume-to-volume motion 

parameters from motion correction during preprocessing were entered to account for residual 

head motion. The SOC run per participant included five box-car regressors in total. Three 

regressors coding for onsets and durations of all combinations of CS2-CS1 (CS2
+/CS1

+, CS2
-

/CS1
-, CS2

n/CS1
n) trials (each modelled as single events of 4500 ms duration, due to the 100 

% contingency of CS-CS pairs), one regressor coding onsets and durations of right button 

presses (delta stick functions on the recorded time of response button presses), one 

regressor coding onset and duration of the within-run pause (45 sec), and the six volume-to-

volume motion parameters from motion correction during preprocessing were entered.  

Regressors were convolved with a hemodynamic response function (γ-function, mean 

lag = 6 s, SD = 3 s). Each first level GLM included two or three (for classifier training 

experiment or SOC, respectively) contrasts to estimate individual per run t-statistic maps for 
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each US or each CS2-CS1 pair (for classifier training experiment or SOC, respectively). For 

SOC, the activation pattern of CS2
n/CS1

n was subtracted from CS2
+/CS1

+ and CS2
-/CS1

- 

activation patterns to account for general visual activation that was common to both CS and 

US (i.e., swallowing cue) presentation and could thus confound classification accuracies. 

All classification-based analyses were conducted in subject native space. Per 

participant t-statistic maps were subjected to linear support vector machine (C-SVM, default 

C = 1) classification using the MATLAB-based multivariate pattern analysis toolbox 

CoSMoMVPA56. For cross-session, cross-modality classification, a classifier was trained on 

the spatial activation patterns of US+ versus US- and tested on CS2
+/CS1

+ versus CS2
-/CS1

- 

during SOC within 3-mm searchlight spheres across the whole brain. Each searchlight 

sphere classification accuracy was mapped to the center voxel of the sphere, resulting in one 

whole-brain map of classification accuracies per participant. Additionally, we repeated this 

procedure 100 times per participant with randomly permuted class labels in the training data 

set (US+ versus US-) to create chance level maps. Before group level statistics, the 

normalization parameters obtained from preprocessing were applied to both whole-brain 

classification accuracy maps and chance level maps for normalization to MNI space. The 

resulting normalized whole-brain maps were spatially smoothed with a Gaussian kernel (5 

mm full-width half-maximum). 

We employed small-volume correction (PSVC) to assess significance of clusters with 

above-chance level (0.5) classification accuracy in the lateral orbitofrontal cortex (lOFC), our 

a priori region-of-interest (ROI). This region has been implicated in higher-order gustatory 

processing, such as motivational aspects and discrimination of taste17,20,57, but also 

representation and adaptive changes of stimulus-outcome associations27–29,58,59. We thus 

reasoned that this brain region would be a well-suited candidate for associative coupling 

between visual conditioned stimuli and gustatory outcomes and the proposed associative 

transfer learning. We employed two different approaches for ROI definition: 1) an 

independent anatomical mask of the lateral OFC (Harvard-Oxford Atlas) and 2) a meta-

analysis-based explicit mask for functional activations related to the term “taste” in the 



 22 

Neurosynth data base15 (www.neurosynth.org), thresholded at z > 7. This value was chosen 

so that only meta-analytic clusters of activation, but not single voxels, survived thresholding. 

The Neurosynth-based mask encompassed, aside from the lateral OFC, functional activation 

clusters in bilateral anterior insula. This approach aimed at reducing inferential limitations 

related to arbitrary ROI definition. 

Within these ROIs, we computed group-level random-effect cluster-statistics corrected 

for multiple comparisons in small volumes as implemented in CoSMoMVPA56. In brief, for 

50,000 iterations, we randomly selected one chance level map per participant, calculated a 

group level z-statistic map for the respective permutation and finally compared the resulting 

cluster sizes drawn from this empirical null distribution (50,000 samples) to the clusters in the 

“real” classification accuracy map16. Since classifications accuracies below chance level are 

generally limited in interpretability, we considered clusters significant if PSVC < .05 (one-

tailed).  

Additionally, we split participants into a high- or low-bias group, depending on their 

preference for the CS2
+ (vs. CS2

-) and compared classification accuracies within the small-

volume corrected cluster. The cluster ROI was built in MNI space and the ROI was then 

back-projected into subject native space using inverse normalization parameters obtained 

during preprocessing to extract individual averaged classification accuracies from the ROI. 

Both groups’ average extracted classification accuracies were separately tested against 

chance level (0.5) using one-sample Wilcoxon signed-rank tests. We report measures of 

effect size Cohen’s U31 for one-sample Wilcoxon signed-rank tests (range: 0 – 1, .5 indicating 

no effect), calculated in the MATLAB-based Measures-of-Effect-Size-toolbox60. 

 

fMRI – functional covariation analyses 

We investigated functional covariation between the MVPA-identified lOFC cluster surviving 

multiple comparisons (thresholded at z > 1.65, or P < .05, one-tailed) during SOC as a seed 

region and the whole-brain using a psychophysiological interaction (PPI) analysis in FSL. For 

each participant, we set up a first-level PPI GLM with the following regressors: 1) the BOLD 
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timeseries (preprocessed functional time series) of the lOFC seed as physiological regressor, 

2) onsets and durations of CS2
+/CS1

+ and CS2
-/CS1

- pairs (magnitude coded as 1) and 

CS2
n/CS1

n (magnitude coded as –1) as psychological regressor and 3) the interaction 

between 1) and 2) as psychophysiological interaction regressor. First-level regressor 2) was 

convolved with a hemodynamic response function (γ-function, mean lag = 6 s, SD = 3 s). 

Contrast images from the first level were then taken to the group level using a random effects 

analysis. In addition to the main effect of the PPI regressor, we also investigated whether 

task-related functional covariation of lOFC with the rest of the brain was related to second-

order conditioning. For this, we entered the averaged second-order choice preference test 

data per subject as an additional regressor to the group level GLM. We used cluster-based 

correction with an activation threshold of Z > 2.3 and a cluster-extent threshold of P < .05 at 

whole-brain level to control for multiple comparisons. 

 

fMRI – neural pattern similarity analyses 

In addition to our classification-based approach, we investigated whether there was evidence 

for changes of neural pattern similarity across second-order conditioning. Specifically, we 

used a least-squares separate (LS-S) approach21 to deconvolve single-trial estimates of 

neural patterns representing CS2 and CS1
 and performed a template-based neural pattern 

similarity analysis61 (a variant of representational similarity analysis, RSA22) between patterns 

of the two US during the classifier training experiment and all trial-specific CS2/CS1
 patterns 

during the SOC run. We estimated two subject-specific GLMs per trial, one for both CS1 and 

CS2, containing the following regressors: 1) onset and duration of the respective trial to be 

estimated (each modelled as a single event of 2000 ms duration), 2) onsets and durations of 

the remaining CS1 or CS2 trials, respectively, 3) onsets and durations of all other CS1 or CS2 

trials, respectively. Additionally, one regressor coding onsets and durations of right button 

presses (delta stick functions on the recorded time of response button presses), one 

regressor coding onset and duration of the within-run pause (45 sec), and the six volume-to-

volume motion parameters from motion correction during preprocessing were entered. For 
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example, the GLM of the 25th trial of CS1
+, contained one regressor (onset and duration) 

modelling this particular trial and one separate regressor (onsets and durations) for all 

remaining CS1
 trials but the 25th trial of CS1

+ (149 other trials in total) and one separate 

regressor (onsets and durations) modelling all CS2 trials. This procedure is assumed to allow 

for better deconvolution of events happening within close temporal proximity than standard 

least-squares-based approaches, which generally do not distinguish between overall and 

trial-specific error terms21,62.  

Each first level GLM included one contrast to model activation related to the 

respective trial of interest versus baseline. The a priori ROIs of the bilateral amygdala were 

built in MNI space and back-projected into subject native space using inverse normalization 

parameters obtained during preprocessing. We used these individual ROIs for spatially 

constrained multivoxel pattern extraction from the respective contrast t-value maps. 

Similarity-based analyses were carried out using CoSMoMVPA56. We employed 1−Pearson’s 

product-moment correlation coefficient (1−r) as a measure of pairwise dissimilarity between 

trial-specific neural patterns and the US template. Within-subject pairwise neural dissimilarity 

was subtracted from 1 (to create a measure of neural pattern similarity) and Fisher-Z 

transformed to closer approximate normally distributed data. CS1
n-US–/CS2

n-US– and CS1
n-

US+/CS2
n-US+ early and late neural pattern similarity were subtracted from CS1

–-US–/CS2
–-

US– and CS1
+-US+/CS2

+-US+ early and late neural pattern similarity, respectively. We 

hypothesized that neural pattern similarity would show dissociable changes from early (first 

25) to late (last 25) trials, as both CS2
+ and CS2

– should become more similar to the 

respective indirectly associated US, indicating associative learning transfer from CS1
 to CS2. 

Contrarily, CS1
+ and CS1

– should, if anything, become less similar to the respectively paired 

US (e.g. due to extinction). Average change of early to late CS-US neural pattern similarity 

was analyzed at the group level with paired-samples t-tests. Due to the expected negative 

change for CS1
+ and CS1

– and the expected positive change for CS2
+ and CS2

– across trials, 

we used one-tailed tests accordingly. 
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Fig. 1. Experimental procedure, task schematic and behavioral results. 

A) Experimental procedure: Participants in the fMRI study (N = 29) performed both day 1 and 

day 2 (B-E), participants in the behavioral study (N = 20) only performed the procedures of 

day 2 (C-E, outside fMRI). B) Classifier training experiment: After rating of subjective value 

and intensity of both gustatory US (US+: orange juice and US–: quinine-HCL 0.1 mmol/l 

solved in purified water), in a total of five runs each US was administered twenty times (40 

trials per run, 200 trials in total). Per trial, one US (1 ml bolus per trial) was delivered by a 

gustometer and infusion lines. The US bolus onset was preceded by a blue square. Trials 

were separated by an inter-trial-interval (ITI) marked by a grey screen. Participants 

performed a 0-back-style attentional control task. In 20% pseudo-randomly selected trials, 

participants were presented with probe trials in which they were asked to indicate which US 

they had received last (“pleasant” (US+) or “unpleasant” (US–)). C) First-order conditioning: In 

each trial, a CS1 was followed by an inter-stimulus interval marked by a fixation cross, and 

oral infusion of one US (1 ml bolus per trial). Trials were separated by an ITI marked by a 

grey screen. Each CS1 was presented 50 times, amounting to 100 trials total. CS1 were 

followed by a US with 80% probability. D) Second-order conditioning: In each trial, a CS2 was 

followed by an inter-stimulus interval marked by a fixation cross, and a CS1. CS2 were 

followed by a CS1 fully deterministically. Each trial was separated by an ITI marked by a grey 

screen. Each CS2-CS1 pair was presented 50 times (150 trials total). E) Choice preference 

test: Following SOC, participants were presented with two separate test phases consisting of 

repeated binary choices between pairs of CS1 (right) and pairs of CS2 (left) to assess 

behavioral signatures of first- and second-order conditioning. F) Behavioral results (pooled 

across fMRI and behavioral study, N = 49): Raincloud plots63 showing posterior density of 

choice probability. CS1
+ (dark blue, 89%-highest posterior density interval (89%-HPDI): [.58; 

.65]) and CS2
+ (light blue, 89%-HPDI: [.60; .67]) were preferred over CS1

– and CS2
–, 

respectively. There was no evidence for choice probabilities of CS1
n and CS2

n being different 

from chance level in novel-to-lure comparison choice trials (dark and light gray, 89%-HPDIs: 

[.46; .52] and [.42; .48]). Box plot center lines represent sample medians and box bottom/top 

edges show 25th/75th percentile of the data, respectively.  
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Figure 2. Cross-session, cross-modality classification analysis. 

A) Analytic approach: For cross-session, cross-modality classification, a multivariate 

classifier was trained on the spatial activation patterns (t maps) of US+ versus US- and tested 

on CS2
+/CS1

+ versus CS2
-/CS1

- (CS2
n/CS1

n related activation were subtracted to control for 

general visual effects) during SOC within 3-mm searchlight spheres across the whole brain, 

resulting in one whole-brain map of classification accuracies per participant. Additionally, we 

repeated this procedure 100 times per participant with randomly permuted class labels in the 

training data set (US+ versus US-) to create 50,000 chance level group maps for random-

effect cluster-statistics16. B) Classification accuracy exceeded chance level (0.5) in a small-

volume corrected cluster in the left lateral orbitofrontal cortex (lOFC, peak voxel at [x = –21, y 

=  30, z = –17], z = 2.26, P = .012, one-tailed, random-effect cluster-statistics, 50,000 

iterations). C) Average classification accuracy in the lOFC cluster (extracted cluster mean = 

.56, SD =  .07)  was significantly above chance level in the high bias group of participants 

showing higher than chance preference for CS2
+ (dark purple raincloud, Z = 3.43, P = .006, 

U31 = .88, one-sample Wilcoxon signed-rank test, two-tailed), but not in the low bias group 

(light purple raincloud, Z = 1.44, P = .151, U31 = .58, one-sample Wilcoxon signed-rank test, 

two-tailed). Black dots indicate sample means and error bars represent standard errors of the 

means of the data, respectively. 
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Figure 3. Psychophysiological interaction analysis and neural pattern similarity 
results. 

A) BOLD covariation in the left lOFC and a cluster in the anterior hippocampus, extending to 

(basolateral) amygdala and medial temporal lobe was higher in CS–
 and CS+ trials than in 

CSn trials (peak voxel at [x = –60, y =  3, z = –24], Z = 3.97, P = .029, whole-brain corrected). 

B) A positive correlation was observed between second-order choice preferences and 

functional covariation between the left lOFC and a region in the right lateral prefrontal cortex 

(peak voxel at [x = 49, y =  43, z = 6], Z = 4.21, P = .034, whole-brain corrected). The more 

participants preferred CS2
+ (versus CS2

–), the higher these regions’ activation covaried during 

second-order conditioning. C & D) Template-based neural pattern similarity between 

classifier training experiment patterns of both US and least-squares separate (LS-S)41 

estimated, pooled (early 25 and late 25 SOC trials) single-trial estimates of neural patterns 

representing CS2 (C) and CS1
 (D), corrected for the respective pooled CSn neural patterns in 

a bilateral amygdala ROI. C) CS2
– and US– patterns became more similar from early to late 

trials (t28 = 1.88, P = .035, Cohen’s d = .35, paired-samples t-test, one-tailed). However, there 

was also no evidence for a difference between early and late trial similarity for CS2
+ and US+ 

(t28 = .50, P = .310, Cohen’s d = .09, paired-samples t-test, one-tailed). D) There was no 

evidence for change in similarity for CS1
–-US– (t28 = .50, P = .310, Cohen’s d = .09, paired-

samples t-test, one-tailed) or CS1
+ and US+ neural pattern similarity (t28 = .50, P = .310, 

Cohen’s d = .09, paired-samples t-test, one-tailed). Black dots indicate sample means and 

error bars represent standard errors of the means of the data, respectively. 
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Supplementary Results 
 
Explicit knowledge of associative structure 
Post-experimental paper-pencil tests for explicit knowledge of the associative structure 

revealed that the number of participants that had indeed realized the indirect associations 

between CS2 and US was significantly below the value that would be expected under a random 

guessing assumption (29%, P = 0.004, binomial test vs. 0.5). Participants could also not 

reliably indicate which CS2 and which US had been indirectly linked in the experiment (mean 

correct responses: M = 0.31, SD = 0.68, maximum of 2 correct answers possible, 

Supplementary Table 1). 

 

CS and US ratings 
During the ratings prior to the learning experiment, the subjective values/liking of the three 

kanjis selected as CS2
 did not differ significantly from each other (main effect of stimulus: F2,96 

= 0.07, P = .993, η2
p < .001, rmANOVA). However, there was a significant main effect of 

stimulus for the three fractals selected as CS1
 (main effect of stimulus: F2,96 = 3.25, P = .043, 

η2
p = .06, rmANOVA) that was driven by higher rating of CS1

n than CS1
– (t48 = 2.26, P = .028, 

paired-samples t-test). This difference most likely resulted from the selection process and the 

inherent rank-ordering of the CS according to subjective value ratings. However, there were 

no significant differences between CS1
n and CS1

+ (t48 = 1.68, P = .101, paired-samples t-test). 

Most importantly, no rating differences were observed between CS1
– and CS1

+ (t48 = 0.44, P = 

.659, paired-samples t-test). Overall, US valence ratings did not differ from pre to post rating 

across both US (main effect of time (pre/post): F1,48 = 0.34, P = .564, η2
p = .01, rmANOVA), 

but the appetitive US+ was – as expected – rated as significantly more pleasant than the 

aversive US– (main effect of stimulus: F1,48 = 466.64, P < .001, η2
p = .91, rmANOVA). There 

was also a significant interaction effect between stimulus and time, indicating that US+ was 

rated as more pleasant and US– was rated as less pleasant from pre to post (interaction effect 

of stimulus x time: F1,48 = 7.32 P = .009, η2
p = .13, rmANOVA). Importantly, no subject rated 

US– as more pleasant than US+ (pre or post). In the fMRI study, intensity ratings did not differ 

between US overall (main effect of stimulus: F1,28 = 1.05, P = .315, η2
p = .04, rmANOVA), but 

US were rated as significantly more intense at the post rating (main effect of time: F1,28 = 4.89, 

P = .035, η2
p = .15, rmANOVA). There was also a significant interaction effect between stimulus 

and time, indicating that US– intensity rating increased more strongly than US+ from pre to post 

(interaction effect of stimulus x time: F1,28 = 5.62, P = .025, η2
p = .17, rmANOVA). Average 

temperature (°Celsius) of US+ (M = 22.53, SD = 1.52) and US– (M = 22.44, SD = 1.47) did not 

differ before being loaded into the syringes (t27 = 1.36, P = .184, paired-samples t-test). 
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In the fMRI classifier training experiment, overall US valence ratings were higher in pre 

than in post rating (main effect of time (pre/post): F1,28 = 11.67, P = .002, η2
p = .29, rmANOVA), 

but the appetitive US+ was, as intended, rated as significantly more pleasant than the aversive 

US– across ratings (main effect of stimulus: F1,28 = 185.28, P < .001, η2
p = .87, rmANOVA). 

There was no interaction effect between stimulus and time (F1,28 = 0.28, P = .602, η2
p = .01, 

rmANOVA). Importantly, no subject rated US– as more pleasant than US+ (pre or post). 

Intensity ratings for US+ were higher than for US– across ratings (main effect of stimulus: F1,28 

= 15.14, P < .001, η2
p = .35, rmANOVA). There was no difference between US ratings from 

pre to post (main effect of time: F1,28 = 0.02, P = .899, η2
p < .001, rmANOVA). However, there 

was also a marginal interaction effect between stimulus and time, indicating that US– intensity 

rating increased while US+ intensity rating decreased from pre to post (interaction effect of 

stimulus x time: F1,28 = 3.93, P = .057, η2
p = .12, rmANOVA). Average temperature of US+ (M 

= 21.71, SD = 1.94°C) and US– (M = 21.68, SD = 1.95) did not differ before being loaded into 

the syringes (t27 = 0.61, P = .544, paired-samples t-test).  

 

fMRI searchlight classification 
In the main article, we present evidence for reinstatement of US patterns in a region in the left 

lateral orbitofrontal cortex (lOFC). In this region, significant decoding of CS identity was 

possible on the basis of the US pattern obtained during classifier training on the previous day 

using classification with a 3-mm searchlight and small-volume correction in a ROI defined by 

a meta-analysis based on the term "taste" in the Neurosynth data base. To ensure that our 

results are not dependent on this particular choice of ROI, we repeated the same analysis 

using two different, independent ROI. The first was an anatomical mask of lateral orbitofrontal 

cortex (Harvard-Oxford atlas), the second was obtained from an independent gustatory 

mapping study by Benz et al. (personal correspondence). Using random-effect cluster-

statistics1 with 50,000 iterations, we found similar results in the left lOFC anatomical ROI (peak 

voxel at MNI [x = –21, y =  30, z = –17], z = 1.96, P = .024, corrected, one-tailed) and in the 

mask from Benz et al. (peak voxel at MNI [x = –21, y =  30, z = –17], z = 1.84, P = .033, 

corrected, one-tailed). 
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Supplementary Table 1. Explicit knowledge of CS-US associations 

 

 

Note: Number (N) and percentage (in parentheses) of participants indicating explicit 

knowledge of CS–US associations between directly paired CS1 and US (providing an answer 

to the question which CS1 was associated with which US, regardless of being correct or 

incorrect) and indirectly paired CS2 and US (responding “yes” to the question whether there 

was a relationship between CS2 and US). These numbers of participants were significantly 

above (CS1–US) and below (CS2–US) the numbers expected under the assumption of random 

guessing, P < .001 and P = .004, respectively (Binomial test vs. 0.5). Additionally, we provide 

the mean (and standard deviation, SD) number of correct answers for CS–US associations 

between CS1 and US, and CS2 and US. Since participants were presented with two CS–US 

associations during conditioning, the maximum number of correct answers is 2 in both cases. 

 

  

CS1–US  
(N = yes) 

CS1–US 
(Mean + SD) 

CS2–US  
(N = yes) 

CS2–US 
(Mean + SD) 

    
38 (78 %) .98 (.95) 14 (29 %) .31 (.68) 
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