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Abstract 

Interactions between carbohydrates and lectins at the surface of cells control numerous 

biological processes such as fertilization, cell-cell communication, signaling, and bacterial as 

well as viral infections. The interactions of lectins and carbohydrates are usually weak, thus 

multivalency is a hallmark of carbohydrate-binding, which is of key importance to increase the 

affinity and specificity and to control downstream biological functions. These multivalent effects 

on the cell surface are highly complex and not completely understood. A valuable strategy to 

decipher these mechanisms are well-controlled glycomimetic structures and studying their 

interaction with biological targets. These glycomimetics represent simplified analogues of the 

complex oligosaccharide structures found on the cell surface, e.g. by only presenting the 

terminal carbohydrate unit on the polymer scaffold. Glycomimetic polymer scaffolds can have 

various shapes like linear or branched polymers, 2D polymer arrays or microgels. Furthermore, 

polymer scaffolds allow the control over the elastic modulus and the hydrophobicity of the 

overall structure, which will, in turn, affect the interaction and adhesion properties to cells. 

Using so-called responsive polymers, these parameters can be controlled by remotely 

“switching” the temperature, pH or other parameters. Importantly, the multivalent presentation 

of carbohydrate ligands on polymer scaffolds and thus the specific adhesion cells could be 

controlled by such switchable scaffolds as well. This thesis thus aims at synthesizing 

thermoresponsive glycopolymer mimetics and investigating their binding properties upon 

temperature stimulus.  

In the first part of this thesis, thermoresponsive microgels based on poly(N-

isopropylacrylamide) (P(NIPAM)) are functionalized with carbohydrate ligands. By varying the 

glycomonomer concentration, it is possible to synthesize a set of microgels with different 

carbohydrate densities in a single reaction step below 1 mol%. The microgels show a decrease 

in the lower critical solution temperature (LCST) and an increase in size when the carbohydrate 

concentration increases. These microgels are able to undergo a 10-fold change in volume 

when crossing the LCST, which allows for a drastic change in the ligand density on the surface 

of the microgels. To test this effect, binding studies towards the lectin Concanavalin A (ConA) 

are carried out indicating that the binding affinity is increased with temperature and the collapse 

of the microgels. Additionally, binding studies with Escherichia coli (E.coli) showed stronger 

specific binding when the temperature is raised above the LCST. Further studies with 

fluorescence microscopy and shorter incubation times showed that it is possible to catch and 

release E. coli upon temperature switch (Figure 1a).  
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In the second part of this thesis, carbohydrate-bearing thermoresponsive polymers are 

synthesized via a two-step approach. In the first step, a poly(active ester) is synthesized. In 

the second step, amine-functionalized carbohydrates and isopropylamine are grafted onto the 

polymer. Using this technique, a set of ten glyco-functionalized thermoresponsive polymers is 

produced, and the effect of different carbohydrate linkers, as well as the ratio of the 

carbohydrate to the thermoresponsive N-isopropylacrylamide (NIPAM) units, is investigated. 

In the binding studies, the polymers serve as temperature-dependent adhesion inhibitors for 

ConA and E. coli and a change in the adhesion inhibition can be observed in dependence of 

the carbohydrate concentration within the polymer. Interestingly, for polymers with low 

amounts of carbohydrate (below 2 mol%), the binding affinity can be switched by temperature 

stimulus, and the inhibition of ConA decreases with elevated temperature while the inhibition 

of E. coli is enhanced. The coil-to-globule transition of the polymers leads to a different 

accessibility of the ligands and causing a different inhibition towards the different sized 

receptors (see Figure 1b). 

Based on the encouraging results of the first parts, selected carbohydrate-functionalized 

microgels are used to prepare thin films on solid surfaces (see Figure 1c). An inhibition and 

direct binding assay are carried out, and it is found out that ConA binding is time-dependent, 

where for short incubation times (30 min) the binding above the LCST is favored and at long 

incubation times (24 h) the binding towards the swollen microgel surface is stronger due to 

diffusion of the receptor into the microgel network. The ability of the surfaces to bind bacteria 

is tested with E. coli. As seen before, contradicting results compared to ConA binding are 

obtained. For an incubation time of 30 min, no differences in binding above or below the LCST 

can be observed, while for 24 h the affinity towards the collapsed microgel surface is enhanced. 

Overall, these results show, that diffusion times and the size of the receptor are parameters 

that lead to diverging binding affinities above or below the LCST of the glycopolymer scaffolds. 
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Figure 1. Schematic presentation of the different assays conducted in this thesis. In the first 

part (a.) the temperature-dependent binding of carbohydrate bearing microgels towards E. coli 

is shown. By raising the temperature above the LCST (40 °C), the binding of bacteria is 

enhanced, and more aggregates are formed. In the second part (b.) a schematic 

representation of the temperature-dependent adhesion inhibition assays is given. Green 

fluorescent protein (GFP) expressing E. coli or fluorescein isothiocyanate-ConA (FITC-ConA) 

adhere to a mannan coated surface. By the addition of glycopolymers the adhesion of the 

receptor towards the surface is inhibited. In the third part (c.) glyco-functionalized microgels 

are coated onto surfaces, and the adhesion of GFP-expressing E. coli and FITC-ConA is 

readout at temperatures below and above the LCST. 

To summarize, in this thesis, the effects of ligand density on different thermoresponsive 

scaffolds as well as their temperature-dependent binding towards different sized receptors in 

solution and on surfaces are demonstrated. The results shed new light on contradicting results 

in the literature on the specific binding of glycopolymer scaffolds above or below the LCST. 

New insights are provided, not only in carbohydrate-lectin based interactions but also for the 

development of catch and release devices for pathogens. 
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1. General Introduction 
1.1 The sweet nature of carbohydrates  

Carbohydrates, or simply sugars, are well-known for their role in nutrition and the 

mechanical support of tissue, but their decisive functions in more intricate processes such 

as cell adhesion and recognition were underestimated for quite a long time. The research 

of sugars started with Emil Fischer in 1891, when he was able to solve the spatial shape of 

three monosaccharides.[1] These monosaccharides are chiral polyhydroxyalkanals or 

polyhydroxyalkanones consisting of three to nine carbon atoms, which can be aligned in a 

ring or a chain.[2] By combining a wide array of these monosaccharide building blocks 

complex oligo- and polysaccharides can be built.[3] Moreover, these structures can be 

combined through various chemical linkages enabling complex architectures, e.g. linear or 

branched (see Figure 2).[4]

 

Figure 2. Schematic representation of the cell surface. The lipid double layer with membrane 

proteins is shown. On top of some lipids and membrane proteins, oligosaccharides are attached and, 

therefore, form glycolipids or glycoproteins. This dense layer of carbohydrates is called glycocalyx, 

and it is shown how different receptors interact with these carbohydrates. Examples for receptors 

that interact with the glycocalyx are bacteria, viruses, and lectins. Glycans adapted from [5]. 
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Though this structural diversity carbohydrates represent one of the three classes of 

biomacromolecules in the body besides proteins and nucleotides. It was found that 

carbohydrates are not only an energy source and structural elements but also are involved 

in important biological processes on the cellular level such as signalling, cell-cell 

communication, bacterial or viral infection, and fertilization.[6-8] Carbohydrates, mostly oligo- 

and polysaccharides, that are involved in these processes are typically attached to lipids 

and proteins and form glycoconjugates.[9] These different types of glycoconjugates are 

found at the surface of cells and form a dense layer, the so-called glycocalyx (see Figure 
2).[10] 

The thickness of this carbohydrate layer can be up to 100 nm, and the composition of the 

sugars, especially the terminal sugars is characteristic for each cell type and its stage of 

development.[11] In Figure 3, the most common terminal monosaccharides that are found 

at the glycocalyx are shown. It can be seen that α-D-sialic acid, α-L-fucose and β-D-

galactose make up nearly three-quarters of the terminal saccharides.[12] The main role of 

these carbohydrates is to act as recognition markers for e.g., bacteria, cells, or viruses. For 

example, α-D-sialic acid is known to bind to the hemagglutinin receptors of the influenza 

viruses or pseudomonas aeruginosa starts the infection and colonialization with binding to 

α-L-fucose and β-D-galactose.[13,14,15]  

 

Figure 3. Chemical structures of the terminal monosaccharides found at the glycocalyx. Their 

appearance frequency was determined by Seeberger et al.[12] Also shown is the schematic 

representation of the carbohydrates by the colored symbols. 
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As can be seen in Figure 3, the structural diversity of monosaccharides is high and gets 

even higher when two or more of them are combined. Only at one monosaccharide, five 

different linkage positions of the second sugar are possible, while there are 100 different 

structures for trisaccharides.[16] This high complexity of the carbohydrate chemistry and the 

structural diversity of oligosaccharides leads to problems in understanding the biological 

role of carbohydrates. But by looking at the natural processes, e.g. the receptors that bind 

to the glycocalyx, we can gain an insight into the complex language of carbohydrates. 

Specific proteins, which bind to sugars are called lectins.  

1.2 Lectins – The sugar communicators 

Proteins that specifically interact via non-covalent bonds with carbohydrates and which are 

not enzymes or antibodies are called lectins.[17-19] The term lectin was first used by Boyd et 

al. in 1954 and originates from the Latin word legere, which means to choose.[20-21] But the 

discovery of lectins started about one century before in 1853 when Charcot and later Lyden 

found crystals in the sputum of asthma patients that were later on identified as Galectin-

10.[16] One of the most significant achievements in glycobiology was the isolation of 

Concanavalin A (ConA) by Sumner in 1919 out of the Jack Bean (Canavalia ensiformis). 

Afterwards, it was shown that ConA is able to agglutinate not only with erythrocytes but to 

distinguish between malignant cells and healthy cells.[22-23] With this knowledge, the 

importance of lectins was recognized, and in 1972, the amino acid sequence and the 3D-

structure of ConA were solved.[24-25] In general, lectins can be found in every organism and 

can be categorized into plant-, viral-, bacterial- and animal lectins and further into different 

lectin types. These different lectin types can be, for example, C-type and I-type lectins, 

which are mainly located in the membrane of cells or M-type and L-type, which are situated 

in the endoplasmatic reticulum.[26] Besides their location in organisms, these lectin types 

can be divided through their function and classification. For example, C-type lectins require 

Ca2+-ions for their structural function and carbohydrate-binding, whereas I-type lectins must 

contain an immunoglobulin-like fold.[4, 27-29] Nevertheless, all lectins exhibit a domain that 

binds to the referring mono- or oligosaccharide, which are called carbohydrate recognition 

domains (CRDs).[30] These CRDs bind specifically to one terminal carbohydrate type.  

As mentioned, not only single lectins play an important role in glycobiology, but also their 

multivalent presentation on organisms, which interact with multiple sugars at the glycocalyx. 

For example, bacteria have developed a “sweet tooth” using lectins to adhere to 

carbohydrates on the cell surface of a host`s tissue. This bacterial adhesion can be 

advantageous when it appears in an appropriate place for the host, or disadvantageous at 
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a different area of the body. For example, Escherichia coli (E. coli) adhesion in the intestinal 

tract of the human body has positive effects for the host, but it can also cause infections 

when E. coli is spread into the urinary tract.[7, 31]  

Of special interest for this thesis are lectins that bind to α-D-mannose units. α-D-mannose 

is the fourth most common terminal sugar that can be found on the glycocalyx and as model 

lectins such as ConA bind to this carbohydrate, it is particularly well suited for the 

experiments in this thesis.[12]  

1.3 α-D-mannopyranoside binding lectins  

1.3.1 Concanavalin A  

One of the most important model lectins that bind to α-D-mannopyranoside (Man) is the 

plant lectin Concanavalin A (ConA). It is isolated from the jack beans (Canavalia ensiformis) 

and was the first lectin of which the primary, as well as the quaternary structure, were 

known.[24, 32] Like most plant lectins, ConA belongs to the legume family, and as calcium 

ions are needed to bind to carbohydrates, it is a C-type lectin.[33] At neutral pH, ConA attains 

a homotetrameric structure, which consists of four identical subunits with one carbohydrate 

recognition domain (CRD) each and a minimum distance of 7.2 nm between them (see 

Figure 4).[34] Under acidic conditions (pH < 6) dimers of two of these subunits are formed. 

The CRDs of the subunits are equal and bind as mentioned to Man as well as α-D-

glucopyranoside (Glc). Even though being able to bind the two different carbohydrates Man 

and Glc, ConA is unable to bind either to α-D- or β-D-galactopyranoside (Gal). The structural 

differences of the carbohydrates at the carbon atoms C3-C6 control whether hydrogen 

bonds with the CRD can be formed or not. In the case of Gal at the C4 position, the hydrogen 

bond is not formed, and therefore, no recognition is possible.[35] As a result, Gal is used as 

a non-binding control in binding or inhibition assays.[36]  
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Figure 4.Schematic presentation of the quaternary structure of ConA with a marker on the proteins 

CRD (left) (Protein Database code: 1jbc). Additionally, the amino acids and metal ions (Mn2+ and 

Ca2+) are shown with their spatial arrangement during a binding event with α-D-mannopyranoside 

terminally bound on a scaffold R (right). Adapted from [37]. 

1.3.2 FimH 

In 1908 it was assumed for the first time that bacteria could adhere to cells after it had been 

reported that Escherichia coli (E. coli) can agglutinate animal cells.[38] E. coli have so-called 

fimbriae or pili attached to their surface that are responsible for the adhesion to cell 

surfaces.[39] This adhesion is mediated via carbohydrate-lectin interactions between the 

adhesin FimH located on the tip of those pili and Man moieties on the cell surface. This step 

of bacterial adhesion is the initial step in biofilm formation and colonization, leading to 

infections.[40] Urinary tract infections (UTI) are initiated by E. coli and are mainly treated with 

antibiotics.[41] Due to the development of resistances against antibiotics, it is of major 

interest to find new ways of treating those infections and infections of any kind.[42-43] One 

way to treat E. coli infections is by inhibiting the initial step: the adhesion to cells.[44-45] 

Therefore, it is important to understand the mechanism that takes place and the protagonist 

of the adhesion processes: the adhesin FimH. Adhesins are proteins on the surface of cells 

enabling the attachment to biological surfaces with high selectivity via recognizing molecular 

motifs.[46-47] FimH selectively recognizes and binds Man (see Figure 5) and, therefore, can 

be additionally classified as lectin.[48] In contrast to most lectins, FimH is a monovalent lectin 

able to bind only one mannose moiety as it has been determined in the X-ray structure of 

the protein.[49]  
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Figure 5. Schematic presentation of the CRD of FimH. Amino acids responsible for the development 

of hydrogen bonds (grey lines) to Man are shown, as well as hydrophobic interactions between the 

CRD and Man (red waves).Adapted from [50] 

For the development of inhibitors for lectin or bacteria adhesion, it is important to understand

the underlying adhesion mechanisms taking place between ligands and receptors. Here, it 

is essential to know that the interactions between carbohydrate and lectin leading to binding 

are secondary, non-covalent interactions such as hydrogen bonds and van der Waals 

forces. Carbohydrate-lectin interactions also work after the lock-key principle, meaning that 

the recognition is depending on the structural properties of the recognition unit of the lectin 

and the structure of the carbohydrate ligand. Therefore, a small change in the ligand 

structure, such as a different position of a single hydroxyl group or the change of a linker, 

can change the ability of a lectin to recognize and bind a carbohydrate.[51] As a single 

carbohydrate-lectin binding is weak and to overcome this problem both, ligand and receptor, 

are presented in high numbers to interact simultaneously. This effect leads to a stronger 

binding and is called multivalency. When comparing both lectins ConA and FimH, a major 

difference is the number of carbohydrate recognition domains presented on the lectin. 
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Due to its tetrameric structure, ConA is able to bind up to four mannose units, meaning it is 

able to show multivalent behavior on an nm scale.[34] However, FimH can only bind one Man 

unit and is, therefore, presented on bacteria in a multivalent fashion to increase the binding 

on a µm scale.[52]  

1.4 Multivalency 

As the interactions between carbohydrates and lectins are weak, multivalency plays a very 

important role in adhesion processes on the cell surface. As mentioned above, by 

increasing the number of ligand-receptor binding pairs, the overall strength of interactions 

increases. [53-58] This effect is also present in non-specific interactions and has already been 

taken advantage of for inventions such as Velcro.[59] On cell surfaces, the increased number 

of ligand-receptor pairs increases not only the binding strength, but also the number of 

bound states. If adhesion processes would only be mediated through single ligand-receptor 

interactions, there are only two possible states: bound and unbound. But as association and 

dissociation of a single ligand-receptor pair show low affinity constants between 103 and 

106 M-1 ligands need to be presented in a larger number to enhance overall avidity.[54] By 

increasing the number of ligands on the same scaffold, the number of bound states in 

comparison to the unbound state increases. Consequently, a linear increase in binding 

partners leads to a non-linear increase in bound states (see Figure 6). 

 

Figure 6. Schematic presentation of increasing binding by multivalent presentation of ligands and 

receptors. A linear increase in the number in binding partners starting at a single pair (left) going to 

two (middle) and up to three (right) and their non-linear increase in bound states from one to seven 

are shown. 
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When a scaffold presents more than one ligand, it enables additional effects that influence 

the binding energies. Four different effects can be distinguished (see Figure 7): 1) statistical 

rebinding, 2) chelate effect, 3) clustering and 4) sterical shielding.  

1) Statistical rebinding: As mentioned above, ligand-receptor interactions depend on the 

association and dissociation of the binding partners. Carbohydrate-lectin interactions bind 

and rebind very fast due to their weak non-covalent interactions. Therefore, having an 

unbound ligand in proximity to a bound ligand increases the binding due to a fast 

replacement of the bound ligand by the unbound one.[60] 

2) Chelate effect: The chelate effect occurs when two or more ligands presented on the 

same scaffold bind to the same receptor at the same time. After the first binding event takes 

place, subsequent binding events are favored due to entropic requirements of the first 

binding event.[61-62] Chelate binding is highly influenced by the flexibility and size of the 

scaffold, as well as the spacing of binding sites of the receptor, but using an appropriate 

structure can lead to up to a million times higher binding affinity compared to the monovalent 

ligand.[63-64] 

3) Clustering: Clustering is the binding of multivalent presented ligands towards more than 

one receptor. This means that the multivalent ligand acts as a bridging molecule or 

crosslinker between receptors and can lead to clusters of receptors and ligands up to 

agglomerates and precipitates depending on the concentrations of both molecules.[65]  

4) Sterical shielding: Ligands that are bound to a receptor can be shielded by the scaffold’s 

backbone, which is called sterical shielding. This prevents other ligands from interacting 

with the receptors binding pocket and, therefore, a displacement of the receptor-bound 

ligand by a competing ligand presenting molecule. This effect has been determined as a 

stabilizing effect for the ligand-receptor complex and, therefore, is important for the design 

of molecules used for receptor binding.[66] 
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Figure 7. Schematic presentation of the effects occurring by a multivalent presentation of ligands 

and receptors. Statistical rebinding is shown (top, left), where the bound ligand 2 is replaced by ligand 

1 due to their proximity. The chelate effect (top, right) shows the binding of two ligands, presented 

on the same scaffold, towards the same receptor. Clustering (bottom, left) is the binding of more than 

one receptor to the ligands presented on a scaffold. Sterical shielding (bottom, right) is the repulsion 

between the backbones and unbound ligands of two glyco-molecules preventing the displacement 

of the bound ligands by an unbound one from the other glyco-molecule.  
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1.5 Glycomimetics 

The glycocalyx is made of oligo- and polysaccharides bound to lipids and proteins on the 

cell surface. Due to the high complexity of those molecules and high numbers of 

carbohydrates it is, as of yet, impossible to synthesize those highly complex and partially 

branched carbohydrate structures.[67] One approach to mimic the glycocalyx is to simplify 

those complex structures on an artificial backbone, e.g. via glycopolymers or particles such 

as metal nanoparticles or polymeric microgels.[68] To target a certain lectin and control a 

biological function, usually, only the terminal carbohydrates need to be considered.[69] 

Depending on the used carbohydrates for the synthesis of a glycomimetic it can be 

distinguished between homo- and heterovalent glycomimetics, whereas homovalent 

structures only present one type of carbohydrate and heterovalent present two or more.[70-

72] Here, it has to be noted that a glycomimetic presenting a disaccharide, e.g. lactose (beta-

Gal-Glu), is a homovalent structure that binds via the Gal units in case of lactose. 

Different architectures of scaffolds for the presentation of carbohydrates are suitable for 

further applications. The architectures used for the multivalent presentation of ligands go 

from oligomers and linear polymers to dendrimers and polymeric microgels to metallic 

nanoparticles (see Figure 8).[72-76]

 

Figure 8. Schematic presentation of the glycocalyx (left) and scaffolds used as a glycomimetic (right). 

The glycomimetics vary from glycopolymers and -dendrimers, to glycomicrogels and 

glycofunctionalized surfaces as well as nanoparticles (top to bottom). Glycans adapted from [5]. 
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Due to the incorporation of carbohydrate ligands into these architectures the prefix “glyco” 

is used, in accordance with the glycocalyx, as for example in glycopolymer.[77] These 

mimetics can be used for the investigation of the interaction mechanisms between receptors 

and ligands as well as for diagnostics and different types of therapeutics.[78-80] 

Glycomimetics can be used as therapeutics in many different ways such as inhibitors for 

the adhesion of bacteria or viruses and, therefore, as an anti-inflammatory agent.[81-82] 

Moreover, they show properties to be used as a targeted drug-delivery system. Additionally, 

using polymeric backbones as a scaffold for the presentation of carbohydrate ligands gives 

the possibility of incorporating additional properties to the glycomimetic.[83] By using, for 

example, stimuli-responsive polymers and functionalize them with carbohydrates, additional 

characteristics can be included. Incorporating these stimuli responses into the backbone 

gives a higher level of control over the interactions that take place between the carbohydrate 

ligands and the lectin receptors.[84]  

1.5.1 Glycopolymers 

One important class of glycomimetics are the glycopolymers. These are synthetic polymers 

with carbohydrate ligands incorporated into the side chain, at the terminal position, or 

both.[85-86] These types of polymers are suitable for different biomedical applications 

because the abilities of these glycomimetics can even exceed the binding properties of the 

glycocalyx.[87] Therefore, they can be found in different fields of research, such as 

biosensors, drug delivery, inhibition, and drugs.[88-92] The synthesis of glycopolymers is 

mainly based on radical polymerization techniques. Controlled radical polymerization 

techniques such as atom transfer radical polymerization (ATRP) and reversible addition-

fragmentation polymerization (RAFT) are suitable for the synthesis of glycopolymers and 

give additional control over the dispersity of the polymer chains, but also free radical 

polymerization (FRP) is utilized.[91, 93-94] Moreover, different ways for the incorporation of 

carbohydrates into the polymer are suitable. In general, it can be distinguished between two 

approaches: 1) (co-) polymerization of carbohydrate bearing monomers or glycomonomers 

(see Figure 9, top), and 2) post-functionalization (see Figure 9, bottom). For the first 

approach, a carbohydrate monomer with a polymerizable unit needs to be synthesized. 

During the intense research on polymer-based glycomimetics, different methods have been 

established for the synthesis of glycomonomers, which are often based on (meth-)acrylate 

and (meth-)acrylamide as the polymerizable unit.[95-96] Using these monomers during the 

polymerization, it is possible to synthesize homopolymers presenting a high density of 

carbohydrate ligands. These polymers have such a high density of carbohydrates that they 

cause negative effects overruling the benefits of multivalency.[97] Therefore, a comonomer 
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can be included to decrease the carbohydrate density. This approach has the advantage 

that, when choosing a suitable comonomer, the polymer architecture can be controlled, but 

in the worst case, no polymer can be synthesized because a copolymerization of both 

monomers is not possible.[98] To overcome these difficulties during the polymerization, the 

post-functionalization approach can be used. Here, a polymer precursor is synthesized 

bearing reactive groups such as carboxylic acids, chlorides, anhydrides or active esters and 

are later on functionalized to construct a glycopolymer.[99-101] Using the post-

functionalization approach enables the synthesis of copolymers that could not be 

synthesized by using the corresponding monomers, and a fast synthesis of a library of 

glycopolymers with different ligand densities or different carbohydrate ligands is possible.[77] 

Both of these approaches can be used to incorporate additional properties into the 

glycopolymer. One class of polymers has especially caught the attention for the combination 

with glycopolymers: stimuli-responsive polymers.  

 

Figure 9. Scheme of different approaches for the synthesis of glycopolymers. The 

homopolymerization of glycomonomers can be used to synthesize glycopolymers with high 

carbohydrate densities (top, left). Using a second monomer during the synthesis gives copolymers 

with variable carbohydrate densities and switchable polymer properties (top, right). For the post-

functionalization approach, a homopolymer with a reactive side group (e.g. active ester, anhydride 

or acid) is synthesized. In a second step, it is functionalized with carbohydrates and a nucleophile to 

synthesize a glycopolymer with different properties and carbohydrate densities (bottom). 
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1.5.2 Stimuli-responsive polymers 

Stimuli-responsive polymers are a special class of macromolecules that respond to small 

changes in their environment by changing their properties such as shape, physical or 

chemical properties.[102-103] These external stimuli can be a change in pH, light, ionic strength 

or temperature and, therefore, are called, in accordance with their stimulus, for example, 

pH- or thermoresponsive. [84,104-106] Due to their response to different stimuli, those polymers 

are of great interest for different applications in biotechnology and medicine.[107] Imaginable 

applications range from biosensing and biomimetics to controlled drug-delivery.[108-109] One 

of the most-investigated stimuli is temperature due to the consideration of being convenient 

for many of the named applications.[110] There are two different groups of thermoresponsive 

polymers. The first group shows an Upper Critical Solution Temperature (UCST) and 

dissolves easier at elevated temperatures. The second group of thermoresponsive 

polymers exhibits a so-called Lower Critical solution Temperature (LCST), which shows the 

exact opposite behavior, meaning that those polymers precipitate at elevated temperatures. 

Most LCST-polymers show this behavior in a polar solvent like water. Therefore, each 

thermoresponsive LCST polymer is composed of a hydrophilic and a hydrophobic part. On 

the one hand, a hydrophilic part is important to build strong intermolecular interactions such 

as hydrogen bonds to the solvent molecules below the LCST. On the other hand, a 

hydrophobic part is important to build hydrophobic intramolecular interactions above the 

LCST. By increasing the temperature, the intermolecular interactions between polymer and 

solvent are weakened, and the intramolecular interactions of the hydrophobic polymer parts 

increase. When exceeding the LCST, the polymer collapses from a hydrophilic swollen 

polymer coil into a hydrophobic polymer globule.[111] The so-called coil-to-globule transition 

is only possible by releasing the water. This release leads to an increase in entropy and, 

due to the collapse into a hydrophobic globule, the polymer chains precipitate. Well-known 

polymers that show LCST behavior are poly(N-isopropylacrylamide) (PNIPAM), 

poly(oligoethylene glycol methacrylates) and poly(N-vinylcaprolactam).[112-115] These 

polymers are of special interest because their LCST is in the range of the human body 

temperature. 

  



General Introduction   

14 

1.5.2.1 Thermoresponsive polymer PNIPAM 

One of the most-studied thermoresponsive polymers is poly(N-isopropylacrylamide) 

(PNIPAM).[116] The interest in PNIPAM is partially based on its sharp coil-to-globule 

transition at 32 °C.[117] The LCST of PNIPAM can be modified, as for every 

thermoresponsive polymer, by the incorporation of comonomers to higher or lower values 

depending on the used comonomer. Important for the variation of the LCST is the 

comonomer´s hydrophilicity. Using a monomer with higher hydrophilicity, than the 

N-isopropylacrylamide (NIPAM) monomer, increases the LCST due to stronger hydrogen 

bonding with the solvent molecules, whereas a more hydrophobic monomer leads to a 

decrease in LCST. But if the amount of NIPAM is too low, the polymer loses its 

thermoresponsiveness.[118-120] Additionally, not only the LCST can be modified but by using 

for example methacrylic acid as a hydrophilic comonomer an additional response, here a 

pH response can be incorporated into the polymer making it a duo responsive polymer.[121] 

The combination of two stimuli responses opens up additional possibilities as well as the 

incorporation of a comonomer or end group functionalization.  

The end groups of PNIPAM can be used to graft the polymer chains onto different scaffolds. 

One scaffold that can be used is, for example, a lectin or a protein that specifically binds to 

a ligand such as streptavidin.[122] By grafting onto such a scaffold, it is possible to control 

the specific binding of streptavidin and its ligand biotin by temperature stimulus.[123] 

Furthermore, it is possible to synthesize hybrid materials using nanoparticles or silica 

surfaces as a scaffold.[124] Hybrid materials offer the possibility to take advantage of 

additional properties. By using metal nanoparticles such as gold, a light response can be 

used to heat up the sample leading to a collapse of the grafted PNIPAM chains. Moreover, 

properties that only metal particles provide can be incorporated in such hybrid materials 

when using, for example, Fe3O4 particles showing a response to a magnetic field.[125-126] 

In this thesis, it is of special interest to combine thermoresponsive polymers with 

carbohydrates, vary their architecture, as well as their ligand density, and to see how the 

polymer conformation influences binding towards receptors. As described in section 1.5.1, 

two different approaches can be applied to integrate carbohydrate ligands into the polymer. 

By using a carbohydrate bearing comonomer during the polymerization step or using a 

comonomer with a reactive group that can be used to graft a carbohydrate in a second step 

is also suitable for the synthesis of many different thermoresponsive glycomimetics.[127-130] 

Besides linear polymers also carbohydrate functionalized microgels, which are based on an 

LCST-polymer, such as PNIPAM, are of high interest.[131-132] 
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1.5.3 Microgels: Structure and responsivity 

Microgels are three dimensional crosslinked macromolecules that form colloidal dispersions 

and are swollen in a good solvent.[133-134] But the expression “microgel” is often equated with 

many different terms such as hydrogel, microsphere, nanogel or macrogel.[135] The term 

hydrogel is defined over the solvent used, whereas microgels, as well as macrogels and 

nanogels, are additionally defined over their size.[136] Therefore, microgels are a sub-class 

of hydrogels. Due to the use of hydrogels in this thesis that meet the requirements of 

microgels, the terms “hydrogels” and “microgels” are used equally. Two different types of 

microgels can be distinguished based on their type of crosslinking: physically and 

chemically crosslinked microgels (see Figure 10).[137-138] The linkage of physically 

crosslinked microgels comes from non-covalent interactions such as hydrogen bonding or 

ionic interactions. One well-known physically crosslinked microgel is based on alginate. 

Adding alginate solution into a solution of divalent ions such as calcium ions (Ca2+) 

hydrogels are formed due to interactions between the ions and the guluronic acid units of 

the alginate.[139] However, these physically crosslinked microgels are not mechanically 

stable, as their properties change over time when the ions diffuse into the surrounding 

medium.[140] Chemically crosslinked hydrogels are linked via covalent bonds during 

synthesis and, therefore, they have no reversible linkage and show higher stability.[141] To 

synthesize chemically crosslinked microgels, a crosslinker is needed. These crosslinking 

molecules present two or more polymerizable units as for example, methylene 

bisacrylamide (MBA).  
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Figure 10. Schematic presentation of different types of crosslinking. Physically crosslinked 

microgels, here exemplary based on alginate, have crosslinks via non-covalent electrostatic 

interactions between Ca2+ ions and the carboxylate groups of the alginate (left). Chemical crosslinked 

microgels, here exemplary based on PNIPAM, have PNIPAM chains connected via covalent bonds 

formed with the crosslinker MBA (right).

Hydrogels offer a wide range of possible applications. Depending on the polymer, which 

builds the gel, the type of crosslinking and the combination with additional materials such 

as nanoparticles, they can be used for tissue engineering, controlled-release of molecules 

(drug-delivery), biosensors and as biomaterials. [142-145] Due to the high uptake of water, 

hydrogels show similar viscoelastic properties as human tissue and, therefore, are good 

scaffolds to be used as biomimetics.[146-147]
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1.5.3.1 Thermoresponsive microgels 

By combining the three-dimensional microgel architecture with thermoresponsive polymers, 

thermoresponsive microgels can be synthesized.[148] PNIPAM is the most used polymer for 

the synthesis of thermoresponsive microgels, which are usually synthesized via 

precipitation polymerization. The general synthesis of PNIPAM microgels, and the use of 

different comonomers, was established by Pelton et al. and the resulting particles became 

popular as drug delivery or tissue engineering systems.[149] As mentioned in section 1.5.2.1, 

comonomers can be used during the synthesis to add additional responses such as pH or 

to functionalize the polymers and microgels, respectively, with additional side chains. For 

the synthesis of PNIPAM-based microgels, besides NIPAM and a possible comonomer 

such as methacrylic acid (MAA) or 2-aminoethyl methacrylate hydrochloride (AMEA) a 

crosslinker such as MBA and a radical initiator, e.g. ammonium persulfate (APS), are 

needed.[150-152] A surfactant is not necessary for the synthesis of PNIPAM-based microgels 

but can be added to stabilize the particle growth during the polymerization.[153] Throughout 

the synthesis, the thermoresponsive behavior of PNIPAM is used to synthesize narrowly 

dispersed microgels. By using the initiation temperature of around 70 °C as reaction 

temperature, the formed polymers collapse, nuclei are formed and grow until a critical size 

is reached.[154-155] To achieve really monodisperse or narrow dispersed microgels, the time 

frame of the nuclei growth has to be longer than the time frame of nuclei formation. By using 

thermoresponsive microgels, it is possible to control the elastic properties as well as the 

water uptake, by the amount of crosslinker used and via temperature change.[156] Here, the 

same effects take place as in linear polymer chains. The temperature increase reduces 

intermolecular interactions and increases intramolecular interactions leading to a release of 

water that was incorporated into the polymeric network.[157]  

Thermoresponsive microgels are, as well, suitable scaffolds for biomaterials.[158] By 

incorporating carbohydrate ligands during the synthesis, they can be used as glycocalyx 

mimetics.[159] Due to the importance of carbohydrate-lectin interactions in many different 

infection processes (see section 1.1) they can possibly be used to prevent adhesion of 

bacteria or viruses to cells by inhibiting ligand-receptor interactions. Additionally, due to the 

thermoresponsiveness, the adhesion of receptors can be switched, which makes them 

suitable for catch-and-release devices.[160]  
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Grafting those microgels onto surfaces may be interesting for different applications. As 

Schmidt et al. found out, who coated surfaces with P(NIPAM) microgels, that cell adhesion 

processes strongly depend on the surface hydrophobicity and the elastic modulus, it is not 

only important to mimic the carbohydrates on the surface but further to mimic the elastic 

properties of the cell itself.[161] Consequently, it is an aim to create carbohydrate 

functionalized microgels to enable a switchability of the elastic modulus, as well as the 

ligand density presented on the microgel´s surface. Being able to specifically bind cells and 

bacteria upon temperature-stimulus to those microgel coated surfaces, makes them 

potentially useful as switchable cell culture dishes or to remove bacteria from wastewater.  

1.6 Microgel analysis 

Since microgels represent very complex structures and are usually in the nanometer size 

range, special analytical techniques are required to characterize these structures. The 

analytical techniques can be distinguished in methods that analyze the properties of 

microgels in solution and on surfaces. In solution, the stability of microgel dispersions is of 

great interest for further applications. Therefore, the ζ-potential can be measured to get a 

deeper inside into the surface charge and the electrostatic stabilization, preventing 

microgels from aggregation. Additionally, the particle size is of great interest and, for stimuli-

responsive microgels, swelling properties in dependence of the stimulus.[162] To analyze 

those characteristics, dynamic light scattering (DLS) is a very suitable method. Moreover, 

analyzing thermoresponsive microgels, DLS is suitable to additionally determine the 

particles LCST.[163]  

To analyze microgels, bound onto surfaces, different techniques can be applied. A 

prominent example is atomic force spectroscopy (AFM), which can be used to determine 

the elastic modulus of surface grafted microgels and the changes that occur upon 

temperature shifts.[164-165] Additionally, AFM can be utilized to determine the packing of 

microgels, grafted onto the surface. Another method that can be used to define the 

thickness of microgel-layers at surfaces in dependence of the temperature is 

ellipsometry.[166]  
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1.6.1 Dynamic light scattering  

Dynamic light scattering, or photon correlation spectroscopy, is a method to determine 

different parameters of suspended particles.[167] As microgels in solution scatter light, the 

scattered light waves of many particles can interfere with each other, leading to fluctuations 

when laser light is used. By analyzing these fluctuations in dependence of time for spherical 

particles, two different parameters can be determined: diffusion coefficient D and the 

hydrodynamic radius Rh. The relation of those parameters is given by the Stokes-Einstein 

relation as following: 

D =  
kBT

6πηRh
 

with kB as Boltzmann constant, T as temperature, η as viscosity of the solvent.[168] Moreover, 

DLS is a suitable method to determine changes in the size of the microgels at different 

temperatures. By measuring the hydrodynamic radii over a temperature range, it is possible 

to determine the LCST of a thermoresponsive microgel system.[169] 

1.6.2 Atomic force microscopy 

To further analyze the particle properties, atomic force microscopy (AFM) can be used. The 

AFM method was developed in 1986 by Binning et al. and allows to image the topography 

of a surface.[170] Here, the microgels are coated onto a surface, e.g. glass, and washed to 

remove multilayers and generate a monolayer of microgels. This surface can now be 

scanned with a cantilever resulting in a height profile of the surface.[165] These height profiles 

are generated due to the interactions such as van der Waals forces and repulsive Coulomb 

forces between the surface and the cantilever. Additionally, in contrast to electron-based 

microscopy, for example, scanning electron microscopy (SEM), the sample is not damaged. 

By using these profiles, an image of the surface can be calculated. These profiles give the 

size of the microgels coated to a surface in a dry state as well as in liquid.[171] Additionally, 

the profile and the calculated image show how the microgels are arranged, and the spacing 

between the single particles on the surface can be determined (see Figure 11).[172] 

Moreover, besides the determination of the particle size and the surface coating, the AFM 

technique can be used to measure the elastic modulus (E-modulus) of the particle system. 

For this technique, a low micrometer-sized silicon dioxide particle is glued on a tipless 

cantilever and pressed onto the particle leading to a deformation of those. The force-

distance curve measured can then be used to calculate the E-modulus using different 

models.[173-174] 



General Introduction   

20 

 

Figure 11. Schematic presentation of atomic force microscopy used for scanning a microgel coated 

surface. The cantilever moves upon interacting with the microgel surface leading to a laser 

movement on the photodiode. Those movements are transferred into a height profile of the line 

scanned. By using height profiles of multiple scanned lines, an image of the microgel coated surface 

can be calculated.   
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1.7 Methods to determine and characterize carbohydrate–lectin 
interactions  

As the importance of glycobiology and the interactions at the glycocalyx rose in the scientific 

audience, a wide array of assays was developed to determine and characterize 

carbohydrate–lectin interactions. Depending on the setup, the assays can be divided by the 

presentation of the ligand and the receptor, which can be bound to a surface or be in 

solution. Further, the assays not only differ in the presentation of the ligand or receptor but 

also if they are performed in a static or dynamic environment.[175]  

One of the easiest and fastest assays to determine if a ligand binds to the regarding receptor 

is the turbidity assay.[176-177] Ligand and receptor are in solution, and since most lectins have 

multiple carbohydrate recognition domains (CRDs), so-called glycoclusters can be formed 

when a multivalent carbohydrate ligand is present. The formation of these aggregates then 

leads to a change in the transmission and, therefore, the turbidity assay is a quick indicator 

of ligand–receptor interactions. This technique can be utilized to determine the turbidity at 

varying ratios of ligands and receptors and further on to compare different carbohydrate 

ligands.[178-179] Additionally, this technique can be used to analyze the temperature-

dependent binding of, for example, ConA to carbohydrate bearing thermoresponsive 

polymers or microgels.[119, 180] 

1.7.1 Inhibition studies 

While turbidity measurements are helpful to observe trends and the change of binding in 

dependence of the temperature for thermoresponsive glycopolymers and glycomicrogels, 

however, these studies say little about the potential to inhibit a binding event. To investigate 

the potency of the referring ligands to inhibit the adhesion of lectins and pathogens towards 

a cell surface inhibition studies can be performed. A well-known assay for the measurement 

of inhibition of ligand-receptor interactions is the enzyme-linked immunosorbent assay 

(ELISA). This assay was first established by Perlmann and Engvall in 1971 and was further 

developed. In this assay, an antigen or protein is immobilized onto a microtiter plate, and 

an enzyme-labeled antibody is added.[181-182] By adding the enzyme’s substrate, the binding 

between antigen and antibody can be detected due to the reaction catalyzed by the enzyme 

giving a dye that can be detected via fluorescence spectroscopy.[183-184] Adding an inhibitor 

for the antibody-protein/antigen interaction, an inhibition potential can be determined by the 

reduction of the enzyme-catalyzed reaction (see Figure 12).[185] 



General Introduction   

22 

 

Figure 12. Schematic presentation of an ELISA with and without inhibitor added. The binding of the 

antibody-enzyme conjugate towards protein/antigen, coated onto the surface, can catalyze a reaction 

with a substrate giving a dye that can be read out via UV-vis (1). By adding an inhibitor for the binding 

of the antibody towards the functionalized surface, the enzyme-catalyzed reaction is reduced, and 

an inhibition potential can be determined (2). 

Based on this principle, the inhibition of carbohydrate-lectin or carbohydrate-bacteria 

interactions can be quantified (see Figure 13). Here, the main difference is that the binding 

of fluorescence labelled lectins or bacteria is inhibited, and no enzyme-catalyzed reaction 

is used as an indicator for the binding.[186] Therefore, a microtiter surface is coated with 

mannan to build a model surface that mimics the glycocalyx.[187] Mannan is a polysaccharide 

that belongs to the group of hemicelluloses, containing only mannose and can be extracted 

via alkaline treatment of plants or yeast.[188] Next, a lectin, labelled with a fluorescence dye, 

e.g. ConA or green fluorescent protein (GFP) expressing bacteria and an inhibitor are 

added. Using a microtiter plate allows the analysis of a series of different inhibitor 

concentrations in direct comparison to the non-inhibited binding.[189] An important step 

before the fluorescence signal is read out is that the inhibited receptor that is hindered from 

binding to the mannan functionalized surface is washed off.[190] This measurement is a fast 

method to analyze different inhibitor concentrations at once and to determine the inhibition 

potency of the investigated inhibitor. To compare inhibitors with each other, the so-called 

IC50-value can be used. This value gives the inhibitor concentration, where 50% of the 

receptor is inhibited.[191] The IC50-value can be calculated from the slope of the inhibition 

curve in dependence of the inhibitor concentration by using the Hill plot. Moreover, due to 

the use of many multivalent inhibitors, the inhibitory potential of a single ligand presented 
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on a multivalent scaffold can be compared to a monovalent inhibitor to get the relative 

inhibition potential (RIP) per ligand. 

 

Figure 13. Schemes of adhesion inhibition assays. On the left, GFP-tagged E. coli binds to mannan 

functionalized surfaces, and the number of bound bacteria can be determined via fluorescence 

readout (1). When an inhibitor is added, the inhibited E. coli can be washed off, and the fluorescence 

intensity during the readout decreases (2). On the right, fluorescence labelled ConA binds to mannan 

coated microtiter surface. The binding is determined via fluorescence readout (3). Adding an inhibitor 

that binds to ConA hinders the lectin from binding to the mannan surface and is washed off. Only 

small amounts of ConA can bind to mannan and, therefore, leads to lower fluorescence intensities 

(4). 

In this work, these inhibition assays were used to investigate the adhesion of ConA as well 

as E. coli. Both receptors are well-known for their binding towards mannose, but they need 

to be labeled with a fluorescence dye for the readout of the adhered receptor on the surface. 

Therefore, the E. coli strain PKL 1162 was used due to its GFP gene and the possibility to 

detect the expressed GFP via fluorescence spectroscopy. Additionally, the ConA was 

labeled with the fluorescence dye fluorescein (FITC). For the inhibition assays, 

thermoresponsive glycopolymers were used as inhibitors for the investigation of 

temperature-switchable inhibition of these receptors, as well as thermoresponsive 

glycomicrogels. 
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2. Aims and Outline  

Carbohydrate-lectin based interactions are known to mediate various important processes 

at the cell surface such as signaling, fertilization or cell-cell adhesion. Also, in diseased 

states, such as viral or bacterial infections these interactions play a pivotal role and, 

therefore, it is of great interest to understand the underlying molecular mechanisms in more 

detail. Single carbohydrate-lectin interactions are usually weak and show low specificity. 

Nature overcomes this problem by presenting the ligands in a multivalent fashion and 

thereby enhance the overall binding. Since the fundamental binding mechanisms of 

structurally complex natural carbohydrates are hard to decipher, it is an aim to create 

glycomimetics based on synthetic polymers. With these glycopolymers, it is the aim of this 

thesis to gain new insights into the different effects that could influence the binding events, 

such as ligand density, ligand spacing and the scaffold properties.  

Furthermore, it is an aim to harness the coil-to-globule transition of responsive polymer 

scaffolds to control the carbohydrate presentation and thereby carbohydrate binding. The 

responsive polymer scaffolds used in this work are based on the LCST (lower critical 

solution temperature) polymer poly(N-isopropylacrylamide) (PNIPAM), which has been 

shown to “switch” cell adhesion on and off trough changes in surface hydrophobicity and 

the elastic modulus.[161] Here, an aim is to combine the shifts of these “material cues” upon 

crossing the LCST with the changes in carbohydrate presentation to create materials with 

tunable specific adhesion to carbohydrate-binding receptors and bacteria.  

In the first part of this thesis, carbohydrate functionalized microgels are established and 

tested for their switchable binding. Via the synthesis of glycomonomers and the 

copolymerization of these monomers to form crosslinked spherical PNIPAM microgels, the 

sugar units are incorporated into the polymeric network. Further on, the effects of the 

carbohydrate density on the microgels’ hydrodynamic radii and swelling properties are 

investigated. The temperature-dependent binding of these glyco-microgels is evaluated in 

different binding assays towards Concanavalin A (ConA) and type 1-fimbriated Escherichia 

coli (E. coli).  

In the second part, mannose-functionalized thermoresponsive linear polymers are 

synthesized via post-functionalization of a poly(active ester) with different carbohydrates. 

The resulting series of glycopolymers differ in their carbohydrate linker hydrophilicity, length 

and the amount of sugar units on the polymeric backbone. The coil-to-globule transition of 

these glycopolymers likely affects the binding affinity of the carbohydrate units, but the 
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literature showed inconsistent results, i.e. higher and lower affinities have been reported 

upon phase transition. Therefore, using a series of glycopolymers, the binding towards 

different receptors (E. coli and ConA) is systematically tested in an inhibition-competition 

assay towards a mannan coated surface.  

In the last part of this thesis, thin films composed of the synthesized carbohydrate 

functionalized microgels are prepared to enable switchable carbohydrate-binding surfaces. 

The optimal microgel surface coverage for ConA and E. coli binding is analyzed via atomic 

force microscopy and fluorescence readout. The coated surfaces are analyzed towards 

their temperature-dependent binding properties towards E. coli and ConA, and especially 

different incubation times are tested. Furthermore, the ability to release the bound receptors 

by washing with buffer below or above the LCST is tested.  
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3. Conclusion and Perspectives  

The synthesis of thermoresponsive carbohydrate-functionalized microgels and polymers 

and their binding towards different receptors in solution and on surfaces was studied. The 

following main results were obtained: 

1) It was confirmed that the binding between carbohydrates and receptors could be 

controlled via temperature stimulus.  

2) It was shown that the temperature-induced coil-to-globule transition can lead to an 

increase or decrease of the binding affinity depending on the accessibility of the 

carbohydrate units, which in turn depends on the size of the receptor target.  

3) A full reversibility of carbohydrate mediated interactions to the polymer scaffolds by 

“switching back” the temperature stimulus was not obtained in most instances. This can 

be attributed to a large reswelling hysteresis of the polymer scaffolds. 

In the first part of this thesis, a set of microgels with varying densities of carbohydrate units 

was synthesized. Therefore, glycomonomers were synthesized first using the 

carbohydrates α-D-mannopyranoside (Man) and β-D-galactopyranoside (Gal). These two 

ligands were used because the tested receptors for the inhibition studies, Concanavalin A 

(ConA) and Escherichia coli (E. coli), specifically bind to the Man moiety but are unable to 

bind Gal and, therefore, the latter was used as non-binding control. First, Man and Gal were 

functionalized with protecting groups to enable the successful functionalization with 

hydroxyethyl methacrylamide (HEMAm) in the next step. With the combination of Man and 

Gal with HEMAm, two different glycomonomers N-(2-(α-D-

mannosepyranosyloxi)ethyl)methacrylamide (ManEMAm) and N-(2-(β-D-

galactopyranosyloxi)ethyl)methacrylamide (GalEMAm) were synthesized. These 

glycomonomers were used to construct microgels with different carbohydrate densities in a 

single reaction step. By using the radical copolymerization procedure of poly(N-

isopropylacrylamide) microgels with a bifunctional cross-linker (N,N´-

methylenebiacrylamide) (MBA), large amounts of the initiator ammonium persulfate (APS), 

the surfactant sodium dodecyl sulfate (SDS), and varying amounts of the glycomonomers 

a set of different microgels was synthesized.  

The carbohydrate density for the microgels ranged from 0 µmol/g to 67 µmol/g, which 

corresponded a maximum carbohydrate/NIPAM ratio of 0.8%. The dynamic light scattering 

(DLS) analysis showed that with an increasing amount of carbohydrate ligands, the 

hydrodynamic radius, as well as the polydispersity index, increased whereas the swelling 
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ratio was in the same range for all microgels. Moreover, the lower critical solution 

temperature (LCST) decreased with an increasing Man functionalization degree, which was 

unexpected due to the hydrophilicity of the glycomonomers that should reduce the tendency 

for a hydrophobic collapse of the PNIPAM. For the investigation of ConA binding towards 

the microgels in solution, a Bradford assay was carried out after the incubation of both and 

filtration of the aggregates below the LCST. The assay showed that with a carbohydrate 

density of 15 µmol/g only 8% of ConA could be adsorbed on the microgels but having a 

density of 32 µmol/g almost 90% could be bound. The temperature-dependent binding of 

ConA was determined via turbidity measurements showing that not only the interactions 

were specific but also that the reswelling of the microgel system was hindered when ConA 

was bound to the microgels. 

The temperature-dependent binding between microgels and receptors as well as the 

potential release of receptors upon temperature stimulus was additionally investigated using 

E. coli as a receptor. Therefore, temperature-dependent E. coli-microgel aggregation was 

investigated showing that, in contrast to the binding of ConA, even for the microgels having 

only 32 µmol/g Man incorporated, a temperature-dependent aggregation could be 

observed. Only at a high Man content of 67 µmol/g, no temperature-dependent binding was 

observed. Furthermore, an aggregation-filtration assay was carried out to quantify the 

number of bacteria that are bound onto the microgels. Microgels and bacteria were mixed 

below and above the LCST, and the effectiveness of capturing bacteria was determined by 

filtrating the aggregates and quantifying the growth of non-captured bacteria on agar plates. 

The results show that for all mannose bearing microgels, the temperature increase leads to 

lower numbers of colonies formed, meaning that at above the LCST the binding between 

bacteria and microgel is improved. For the microgel sample with 32 µmol/g carbohydrates, 

nearly all bacteria could be bound during the assay at elevated temperatures. For all these 

assays, neither galactose bearing microgels nor non-functionalized PNIPAM microgels 

showed any binding, indicating that the microgel-bacteria binding was due to specific 

interactions. 

Taken together, a straightforward method for the synthesis of carbohydrate-functionalized 

microgels was achieved, and the binding of ConA and E. coli to the microgels in solution 

proved to be temperature-dependent. All in all, different effects may contribute to the 

improved binding above the LCST, like reduced steric repulsion and an increase of sugar 

density on the microgel surface but it was shown that a modest temperature change at 

around 30 °C enables the control over ligand affinity.  



  Conclusion and Perspectives 

29 

In the second part of this thesis, the binding of linear, non-crosslinked thermoresponsive 

glycopolymers was investigated in solution. All glycopolymers, synthesized via a two-step 

approach by a collaboration partner, were composed of PNIPAM and presenting Man or 

non-binding control Gal units on the polymer backbone with two different linkers. The linkers 

used for the synthesis were an ethyl linker (EL) as well as a 2-hydroxypropyl linker (HPL) 

giving a total of ten polymers (eight Man, one Gal, and one unfunctionalized) with a 

carbohydrate amount of 0% to 97%. Here, the influence of the receptor size of ConA as well 

as E. coli on the temperature-dependent binding strength was investigated. The first 

analysis of the polymers showed that with an increasing amount of Man the LCST increased 

up to 40.2 °C for 7% of carbohydrate incorporated and with a higher carbohydrate amount 

no LCST below 45 °C could be observed and the linkers did not show any influence on the 

LCST. After the successful characterization of the polymers, first binding studies with ConA 

were carried out. Here, the different linkers influenced the binding, where the more 

hydrophobic linker EL showed more stable polymer-lectin complexes via temperature-

dependent turbidimetry studies. Overall, the turbidimetry studies confirmed that an 

increased number of Man units leads to a more persistent clustering with ConA and that the 

linker affects the cluster formation. Next, these polymers were used as inhibitors for the 

binding of ConA and E. coli towards a mannan coated microtiter surface. For the 

measurements with E. coli, an increased Man functionalization leads to a stronger inhibition 

of the bacteria adhesion towards the surface. By comparison of ManEL and ManHPL 

polymers with the same carbohydrate concentration, it can be seen that higher inhibitory 

potentials were measured for the more hydrophobic linker ManEL. This was attributed to a 

higher lectin-binding affinity of the hydrophobic linker, which was observed before in the 

literature.[190] For polymers with a functionalization degree of 1 to 2%, the inhibition was 

increased for globular polymer conformations above the LCST. At higher Man 

concentrations within the polymer the cloud point was above 40 °C, indicating that the coil 

to globule transition did not take place and, therefore, no differences in the inhibition 

potential could be observed. The Hill coefficients were determined, and an increase in 

binding cooperativity could be observed at elevated temperatures for all polymers with less 

than 5 mol% of Man. This leads to the assumption that the coil-to-globule transition of these 

polymers increases the adhesion inhibition of E. coli towards the mannan surface. The 

temperature-dependent adhesion inhibition studies with ConA confirmed higher inhibitory 

potentials for increased carbohydrate densities. However, it could be noted that for the 

temperature-dependent measurements, the majority of the polymers showed no increase 

in inhibition when raising the temperature above the LCST. This is explained by the small 

size of ConA compared to E. coli. ConA is a nanometer-sized receptor with a CRD-CRD 

(carbohydrate recognition domain) distance of a minimum of 7.2 nm (see section 1.3.1). 
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Below the cloud point, the polymers were swollen, and in a similar size range, thus the 

polymers were able to bind more than one CRD. When exceeding the LCST, the polymer 

collapses and shrinks in size only able to bind one CRD even though the hydrophilic ligand 

is presented in a higher density on the surface of the globules. Taken together, for polymers 

with low functionalization degrees, a large shift in affinity towards the different receptors 

was observed. The results from the inhibition studies with ConA and E. coli gave first 

insights that the conformation of the glycopolymers and glycomimetics, in general, is an 

important factor. Further, first insights into the size-dependence of ligand-receptor 

interactions, and first explanations of contradictory results of the literature are given. 

In the third part of this thesis, it was the aim to study the temperature-dependent 

carbohydrate binding on surfaces. Therefore, a set of three different microgels, which were 

synthesized with different carbohydrate densities and different glycomonomers was 

synthesized to prepare surface coatings. The surface coatings were prepared on 

polystyrene surfaces, and the conditions were optimized to obtain microgel monolayers. 

This was confirmed via atomic force microscopy and fluorescence readouts. Next, the 

binding of ConA to the prepared surfaces was tested via an inhibition assay and direct 

binding assay for different incubation times of 30 min and 24 h. The inhibition showed that 

for short incubation times, ConA was more strongly bound above the LCST. For longer 

incubation times, the ConA binding strength increased. Importantly, given longer incubation 

time ConA binding was stronger below the LCST suggesting diffusion of ConA into the 

microgel layer and multivalent binding. On the other hand, when studying the inhibition of 

E. coli adhesion to the microgel surfaces, stronger binding was observed above the LCST 

at short and long incubation times. This is explained by the inability of E. coli to diffuse into 

the microgel network, i.e. binding is restricted to the surface of the microgel layer. Since the 

microgel surface attains a smooth structure where the hydrophilic carbohydrates units are 

likely in contact with the solution phase, the E. coli binding is always enhanced when raising 

the temperature above the LCST. Overall, these experiments showed that by changing the 

temperature, the affinity of the surfaces can be changed and that this effect can be different 

when different incubation times are applied.  

Overall, the main aim was to shed light into carbohydrate-lectin-based interactions and to 

see whether it is possible to control the binding affinity towards different receptors by a 

temperature stimulus. As shown in this thesis, combining specifically interacting 

carbohydrate scaffolds with thermoresponsive properties can result in quite intricate effects. 

Nevertheless, this thesis provides first insights into the underlying principles that will allow 

for a promising platform to create capture and release devices for pathogens and other 
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carbohydrate-binding species. The discussed effects of parameters such as receptor size, 

inhibitor size, solution or surface studies and temperature as well as time dependence shed 

new light on the ongoing contradicting results in the literature.  

Based on the results in this thesis, future studies could be performed on glyco-functionalized 

microgels and polymers. Microgels capable of releasing receptors upon temperature 

stimulus should be improved in terms of material parameters like the size, the swelling ratio, 

the positioning of the ligands, the cross-linking density or by including zwitterionic residues 

into the polymer network. For example, the microgels could be designed in a core-shell 

structure, where the carbohydrates are located in the core of the microgels and get exposed 

via the temperature stimulus.  

Additionally, it would be interesting to bind, for example, ConA to microgels or nanometer-

sized silica-particles, to create a medium-sized receptor (compared to ConA and E. coli) for 

future binding studies. Furthermore, the coupling of other biological ligands to the microgel 

matrix could be investigated. For example, ligands with a different degree of hydrophobicity, 

like biotin (hydrophobic) and hyaluronic acid (hydrophilic), could be used. In addition, using 

glycan mimicking multivalent ligands would offer interesting prospects for further studies.  
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6 Appendix  
6.1 List of abbreviations 

6.1.1 General abbreviations 

e.g. exempli gratia (for example) 

et al. et alii (and others) 

E. coli Escherichia coli 

UTI urinary tract infection 

CRD carbohydrate recognition domain 

UCST upper critical solution temperature 

LCST lower critical solution temperature 

ATRP atom transfer radical polymerization 

RAFT reversible addition-fragmentation polymerization 

FRP free radical polymerization 

DLS dynamic light scattering 

AFM atomic force microscopy 

3D three dimensional 

2D two dimensional 

PDI polydispersity index 

GFP green flurescent protein 

MS mass spectrometry 

ESI Electronspray Ionization 

calc. calculated 

NMR nuclear magnetic resonance spectroscopy 

RP-HPLC-MS reversed phase high pressure liquid chromatography-mass 
spectrometry 

VWD Variable wavelength detector 

PSA Phenol Sulfuric Acid 

OD optical density 
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SEC size exclusion chromatography 

IR infrared 

DSC differential scanning calorimetry 

GFP green fluorescent protein 

 

6.1.2 Carbohydrate abbreviations 

Man α-D-mannopyranoside 

Gal β-D-galactopyranoside 

MeMan methyl α-D-mannopyranoside 

ManEMAm N-(2-(α-D-mannopyranosyloxi)ethyl)methacrylamide 

GalEMAm N-(2-(β-D-galactopyranosyloxi)ethyl)methacrylamide 

AcGalEMAm 2`-acrylamidoethyl-2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside 

AcManEMAm 2`-acrylamidoethyl-2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside 

ManEL 2-aminoethyl-α-D-mannopyranoside 

ManHPL 3-amino-2-hydroxypropyl-α-D-mannopyranoside 

GalHPL 3-amino-2-hydroxypropyl-β-D-galactopyranoside 

ManEAm N-(2-(β-D-galactopyranosyloxi)ethyl)acrylamide 

 

6.1.3 Chemical abbreviations 

N nitrogen 

O oxygen 

ConA Concanavalin A 

PNIPAM poly(N-isopropylacrylamide) 

Fe3O4 magnetite 

Ca2+ calcium ions 

MBA methylene bisacrylamide 
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MAA methacrylic acid 

NIPAM N-isopropylacrylamide 

AMEA 2-aminoethylmethacrylatehydrochloride 

APS ammonium persulfate 

PBS phosphate buffered saline 

RBITC rhodamine B isothiocyanate 

SDS sodium dodecyl sulfate 

LBB lectin binding buffer 

He helium 

Ne neon 

Mn2+ manganese ions 

H hydrogen 

CDCl3 deuterochloroform 

HEMAm hydroxyethylmethacrylate 

Ac acetyl 

C carbon 

NAS N-acryloxysuccinimide 

PNAS poly(N-acryloxysuccinimide) 

DMF N,N-dimethylformamide 

DMSO dimethyl sulfoxide 

BSA bovine serum albumine 

HPL Hydroxypropyl 

EL ethyl 

LiBr Lithium bromide 

FITC fluorescein isothiocyanate 
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6.1.4 Units, parameters and symbols 

nm nanometer 

M mole per liter 

°C degree Celcius 

D diffusion coefficient 

Rh hydrodynamic radius 

kB Boltzmann constant 

T temperature 

η viscosity 

mol % percentage of substance 

mL milliliter 

g gram 

mmol millimole 

mg milligram 

rpm rounds per minute 

min minute 

µM micromole per liter 

µL microliter 

wt % weight percentage 

nm nanometer 

% percent 

vol % volume percentage 

µg microgram 

cm centimeter 

N Newton 

m meter 

mW milliwatt 

mM millimole per liter 
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µm micrometer 

CFU colony forming units 

K degree Kelvin 

nmol nanomole 

h hour 

MHz megahertz 

Hz Hertz 

pmol picomole 

ppm parts per million 

mV millivolt 

𝑀𝑛
̅̅ ̅̅  number average molecular weight 

kDa kilodalton 

Tg glass transition temperature 

IC50 Inhibitory concentration at half maximum intensity 
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6.2 List of Figures  

Figure 1. Schematic presentation of the different assays conducted in this thesis. In the first 

part (a.) the temperature-dependent binding of carbohydrate bearing microgels towards 

E. coli is shown. By raising the temperature above the LCST (40 °C), the binding of bacteria 

is enhanced, and more aggregates are formed. In the second part (b.) a schematic 

representation of the temperature-dependent adhesion inhibition assays is given. Green 

fluorescent protein (GFP) expressing E. coli or fluorescein isothiocyanate-ConA (FITC-

ConA) adhere to a mannan coated surface. By the addition of glycopolymers the adhesion 

of the receptor towards the surface is inhibited. In the third part (c.) glyco-functionalized 

microgels are coated onto surfaces, and the adhesion of GFP-expressing E. coli and FITC-

ConA is readout at temperatures below and above the LCST. ........................................ XIII 

Figure 2. Schematic representation of the cell surface. The lipid double layer with 

membrane proteins is shown. On top of some lipids and membrane proteins, 

oligosaccharides are attached and, therefore, form glycolipids or glycoproteins. This dense 

layer of carbohydrates is called glycocalyx, and it is shown how different receptors interact 

with these carbohydrates. Examples for receptors that interact with the glycocalyx are 

bacteria, viruses, and lectins. Glycans adapted from [5]. ................................................... 1 

Figure 3. Chemical structures of the terminal monosaccharides found at the glycocalyx. 

Their appearance frequency was determined by Seeberger et al.[12] Also shown is the 

schematic representation of the carbohydrates by the colored symbols. ........................... 2 

Figure 4.Schematic presentation of the quaternary structure of ConA with a marker on the 

proteins CRD (left) (Protein Database code: 1jbc). Additionally, the amino acids and metal 

ions (Mn2+ and Ca2+) are shown with their spatial arrangement during a binding event with 

α-D-mannopyranoside terminally bound on a scaffold R (right). Adapted from [37]. .......... 5 

Figure 5. Schematic presentation of the CRD of FimH. Amino acids responsible for the 

development of hydrogen bonds (grey lines) to Man are shown, as well as hydrophobic 

interactions between the CRD and Man (red waves).Adapted from [50] ............................ 6 

Figure 6. Schematic presentation of increasing binding by multivalent presentation of 

ligands and receptors. A linear increase in the number in binding partners starting at a single 

pair (left) going to two (middle) and up to three (right) and their non-linear increase in bound 

states from one to seven are shown. .................................................................................. 7 
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Figure 7. Schematic presentation of the effects occurring by a multivalent presentation of 

ligands and receptors. Statistical rebinding is shown (top, left), where the bound ligand 2 is 

replaced by ligand 1 due to their proximity. The chelate effect (top, right) shows the binding 

of two ligands, presented on the same scaffold, towards the same receptor. Clustering 

(bottom, left) is the binding of more than one receptor to the ligands presented on a scaffold. 

Sterical shielding (bottom, right) is the repulsion between the backbones and unbound 

ligands of two glyco-molecules preventing the displacement of the bound ligands by an 

unbound one from the other glyco-molecule. ...................................................................... 9 

Figure 8. Schematic presentation of the glycocalyx (left) and scaffolds used as a 

glycomimetic (right). The glycomimetics vary from glycopolymers and -dendrimers, to 

glycomicrogels and glycofunctionalized surfaces as well as nanoparticles (top to bottom). 

Glycans adapted from [5]. ................................................................................................. 10 

Figure 9. Scheme of different approaches for the synthesis of glycopolymers. The 

homopolymerization of glycomonomers can be used to synthesize glycopolymers with high 

carbohydrate densities (top, left). Using a second monomer during the synthesis gives 

copolymers with variable carbohydrate densities and switchable polymer properties (top, 

right). For the post-functionalization approach, a homopolymer with a reactive side group 

(e.g. active ester, anhydride or acid) is synthesized. In a second step, it is functionalized 

with carbohydrates and a nucleophile to synthesize a glycopolymer with different properties 

and carbohydrate densities (bottom). ................................................................................ 12 

Figure 10. Schematic presentation of different types of crosslinking. Physically crosslinked 

microgels, here exemplary based on alginate, have crosslinks via non-covalent electrostatic 

interactions between Ca2+ ions and the carboxylate groups of the alginate (left). Chemical 

crosslinked microgels, here exemplary based on PNIPAM, have PNIPAM chains connected 

via covalent bonds formed with the crosslinker MBA (right). ............................................ 16 

Figure 11. Schematic presentation of atomic force microscopy used for scanning a microgel 

coated surface. The cantilever moves upon interacting with the microgel surface leading to 

a laser movement on the photodiode. Those movements are transferred into a height profile 

of the line scanned. By using height profiles of multiple scanned lines, an image of the 

microgel coated surface can be calculated. ...................................................................... 20 

Figure 12. Schematic presentation of an ELISA with and without inhibitor added. The 

binding of the antibody-enzyme conjugate towards protein/antigen, coated onto the surface, 

can catalyze a reaction with a substrate giving a dye that can be read out via UV-vis (1). By 
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adding an inhibitor for the binding of the antibody towards the functionalized surface, the 

enzyme-catalyzed reaction is reduced, and an inhibition potential can be determined (2).

 .......................................................................................................................................... 22 

Figure 13. Schemes of adhesion inhibition assays. On the left, GFP-tagged E. coli binds to 

mannan functionalized surfaces, and the number of bound bacteria can be determined via 

fluorescence readout (1). When an inhibitor is added, the inhibited E. coli can be washed 

off, and the fluorescence intensity during the readout decreases (2). On the right, 

fluorescence labelled ConA binds to mannan coated microtiter surface. The binding is 

determined via fluorescence readout (3). Adding an inhibitor that binds to ConA hinders the 

lectin from binding to the mannan surface and is washed off. Only small amounts of ConA 

can bind to mannan and, therefore, leads to lower fluorescence intensities (4). .............. 23 
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