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Zusammenfassung

Mathematisch-Naturwisselschaftliche Fakultät

Institut für Informatik

Phylogenetic Analyses on the Evolution of C4 Photosynthesis

Janina Maß

Der C4-Stoffwechselweg, der seinen Namen von der initialen Fixierung von Kohlen-

stoff als 4-Kohlenstoff-Verbindung erhält, kann als Erweitung zum evolutionär älteren

C3-Stoffwechselweg der Photosynthese beschrieben werden. C4-Photosynthese bringt

Pflanzen unter heißen und trockenen Bedingungen Vorteile dadurch, dass der nachteilige

Prozess der Photorespiration unterdrückt wird. In C4-Pflanzen findet die abschlieißende

Kohlenstofffixierung statt nachdem Kohlenstoffdioxid in der Nähe von Rubisco an-

gereichert wird, was durch verschiedene biochemische und anatomische Änderungen

ermöglicht wird. Trotz der Notwendigkeit komplexer Veränderungen hat sich die C4-

Photosynthese mehrfach konvergent entwickelt. C4 -Photosynthese entstand unanbhängig

in Clustern, z.B. in der Familie der Cleomaceae, die in den Manuskripten 4 and 5 un-

tersucht wurde; einige Cluster enthalten noch vorhandene intermediäre Spezies. Die

effiziente Wasser- und Stickstoffverwertung machen es erstrebenswert, den C4- Stoffwech-

selweg in C3-Pflanzen einzubringen um die landwirtschaftliche Produktion zu verbessern.

Um letztlich das Ziel der Einbringung des C4-Weges zu erreichen, ist es notwendig seine

Komplexität zu verstehen.

Die Manuskripte in dieser Arbeit zeigen Methoden und Analysen auf, deren Zielset-

zung ein besseres Verständnis der Komplexität der C4-Photosynthese ist. Dabei werden

Genexpression und genomische Sequenzen betrachtet. Die Möglichkeiten, die solch große

Datensätze, die aus verschiedenen Quellen stammen, bringen, führen allerdings auch

zu hoher Heterogenität der Daten und machen sorgfältige Prozessierung nötig. Eine

Komponente davon – die Maximierung nutzbarer Alignmentinformation durch Outlier-

Filterung – wird in Manuskript 1 beschrieben.

In den Manuskripten 4 und 5 werden Genexpressionsdaten zweier nah verwandter

Spezies aus der Familie der Cleomaceae verglichen, die den C4 bzw. C3 Stoffwechselweg

nutzen. In den Manuskripten 2 und 3 untersuchen wir die speziellen C4-Gewebe Meso-

phyll (M)- und Bündelscheidenzellen (BS) während der Blattentwicklung der wichtigen

C4 -Nutzpflanze Zea mays. Manuskript 2 ist eine Meta-Studie, in dem wir unseren eigens

generierten Datensatz mit denen anderer Studien, die BS- und M-Gewebe untersuchen,

vergleichen. Dabei wird die Nützlichkeit der Datenintegration und Querreferenzierung

mehrerer Studien deutlich. Der Datensatz wurde zum Download und zur Visualisierung
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als Ressource zur Verfügung gestellt. Die Daten wurden darüberhinaus in Manuskript 3

verwendet, in dem wir die Beziehung von Expressionsdivergenz zum Selektionsdruck un-

tersuchen. Dies beinhaltete die Durchführung automatisierter phylogenetischer Analy-

sen, einschließlich des Herausfilterns von Sequenzen mit dem inManuskript 1 beschriebe-

nen Tool, um das Auftreten positiver Selektion zu untersuchen. Dabei fanden wir qual-

itative und quantitative Belege für die präkonditionierende Rolle von Genduplikation in

der Evolution der C4-Photosynthese.
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The C4 pathway, which derives its name from the initial fixation of carbon as a four-

carbon compound, can be described as an add-on to the evolutionarily older C3 pathway

of photosynthesis. It provides advantages for plants under hot, arid conditions as it

suppresses the detrimental process of photorespiration. In C4 plants final carbon fixation

takes place after concentrating carbon dioxide near Rubisco, which is made possible by

various biochemical and anatomical alterations. Despite the complex adaptions required,

C4 photosynthesis evolved many times convergently. Independent C4 origins occur in

clusters, e.g. in the Cleomaceae family investigated in Manuscripts 4 and 5 ; some of the

clusters include extant intermediary species. The high water and nitrogen use efficiency

of the C4-trait make it a desirable target for introduction into non-C4 crops to improve

agricultural production. To ultimately achieve the goal of engineering C4, it is necessary

to understand the complexity of the trait.

Manuscripts included in this thesis present methods or analyses targeted at under-

standing the complexity of the C4-trait via examination of gene expression and genomic

sequence. The opportunities opened up by sourcing large-scale data from different pools

come at the price of high heterogeneity and necessitate careful processing. One aspect

of this – maximizing usable alignment information via outlier filtering – is described in

Manuscript 1.

Manuscript 4 and Manuscript 5 both focus on comparing gene expression between

closely related Cleomaceae species that utilize the respective photosynthesis pathways.

In Manuscript 2 and Manuscript 3 we take a look at the key C4 tissues, mesophyll (M)

and bundle sheath (BS) during leaf development in the important C4 crop species Zea

mays. Manuscript 2 is a meta-study comparing our own generated data set with those

of other studies targeting BS and M tissues; it highlights the usefulness of integrating

and cross-referencing multiple studies. The data was made available for download or

visualization as a community resource. The data was further used inManuscript 3, where

we compared expression divergence to phylogenetic signal. This included performing

an automated phylogenetic analysis, including sequence filtering with the tool from

Manuscript 1, to infer the presence of positive selection. We found qualitative and
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quantitative evidence for the preconditioning role of gene duplication in the evolution

of C4 photosynthesis.
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Chapter 1

Introduction

1.1 The Importance of Understanding Evolution

Evolution describes the gradual accumulation of changes of heritable traits in popula-

tions over time often as fitness-increasing adaptions driven by natural selection (Darwin,

1859). For evolution to take place, it needs genetic variability, through mutations, that

can be passed on to the next generation and may lead to new traits.

The impact of mutations can be neutral or detrimental, but also beneficial under

certain circumstances. An interesting example is the sickle cell trait with its protection

against malaria (Aidoo et al., 2002). Sickle cell anemia, an inherited disorder for which

both alleles need to be mutated, leads to a shorter life expectancy. Therefore, it is

expected that the mutated allele would be uncommon. However in regions with endemic

malaria, it is highly prevalent (Piel et al., 2010) due to sickle cell hemoglobin having a

survival advantage against malaria.

Research on evolution is not only figuring out how the apparent current biodiversity

could have come into existence, e.g. how birds evolved from small carnivorous dinosaurs

(Xu et al., 2003), but also impacts our everyday lives in various ways, be it medical

or agricultural advancements. Medical examples of how understanding evolution affects

our everyday lives include continuous development of influenza vaccines to keep pace

with ongoing changes, and managing antibiotic treatment regimes to minimize develop-

ment of antibiotic resistance in bacteria. In agriculture, understanding the principles

behind evolution is important for breeders who are interested in optimizing traits in

crop plants. This varies from trying to cross in traits, such as disease resistance, from

wild close relatives to very ambitious goals such as trying to engineer a highly benefi-

cial complex trait such as C4 photosynthesis in distantly related key crop species. The

C4 engineering community looks for hints on how to engineer C4 photosynthesis in the

natural occurrence of the trait. With evolutionary intermediates representing stable

states with any necessary preconditions established in order.
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Chapter 1. Introduction 3

Simple and Complex Traits

Some traits follow simple, Mendelian genetics; the presence or absence of this trait is

entirely determined by the genotype at one genetic locus. Of these, some are recessive

like certain types of albinism (Dessinioti et al., 2009), requiring an individual to have

two copies of the allele before the phenotype becomes apparent. In other cases, as

e.g. with Huntington’s disease (Walker, 2007), the mutant allele is dominant, and the

phenotype manifests as soon as there is a single copy of the allele present. Finally, many

simple traits, like the sickle cell trait discussed above, have an intermediate phenotype

in heterozygous individuals. In plants or animals, such simple trait-related alleles can

be screened for and possibly utilized for breeding with relative ease.

In contrast to simple traits, complex traits like the yield or flavor of a crop plant

are influenced by many different genetic loci. Naturally, many complex traits are of

key interest for human prosperity and therefore our breeding and engineering efforts.

However, generally speaking, attempts to influence complex traits are limited as the

understanding of the entire complexity is hard to achieve. In particular, quantitative

modifications to traits such as yield may be an ongoing challenge; but bringing a complex

trait into a species where it was previously absent, has been historically intractable.

One reason to be hopeful about future efforts to engineer complex traits is that despite

their complexity, many evolve in a convergent, repeated manner. Well known examples

of this include eyesight (Gehring, 2005) and flight. A particularly striking example of

repeated evolution is C4 photosynthesis, a trait which increases photosynthetic efficiency

in hot, arid, and high light conditions, which has evolved at least 66 times (Sage et al.,

2012). While its highly convergent evolution gives researchers optimism that it may be

possible to establish the C4 photosynthetic trait in non-C4 crop plants, doing so will

require an extraordinary understanding of the overall complexity of the trait. Obtaining

such an understanding will require large scale, cross species analyses. These analyses, in

turn, must be reliable enough to ultimately help generate a high-precision, high-recall

list of necessary genetic changes.

1.2 Advancements and Challenges in Comparative Studies

Advances in technology combined with accumulating public knowledge on genetic se-

quences of many species open new possibilities in performing the sort of large-scale

comparative analyses that are necessary to understand complex traits. However, the en-

tirety of the data generation and analysis pipeline, from the cultivation of each species

prior to sequencing through to the last phylogenetic comparison, has the potential to

influence the final conclusions. Re-generating or even just re-analyzing all the data go-

ing into a pipeline is generally not feasible, yet awareness of the various strengths and
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weaknesses of early data analyses can help keep any potentially introduced errors from

propagating through a pipeline, hindering analysis or even potentially leading to false

conclusions.

1.2.1 Genomes and Transcriptomes, Sequencing, Assembly, and An-

notation

The world of DNA and RNA sequencing has changed rapidly over the years. In the

1990s the first fully sequenced genomes were published, starting off with the bacterium

Haemophilus influenzae in 1995 (Fleischmann et al., 1995), followed by model organisms

S. cerevisiae (Goffeau et al., 1996), a unicellular eukaryote, and the bacterium E. coli

(Blattner et al., 1997). Starting in 1990, the human genome was sequenced as a large

consortium project with the help of researchers from across 20 institutions and with

a cost of about $2.7 billion, and an initial draft was published in 2001 (International

Human Genome Sequencing Consortium, 2001). In contrast, the similarly sized and

recently released American cockroach genome has 19 contributors on the authors list (Li

et al., 2018). Differences like this have been made possible by advances in sequencing

technologies.

Revolutionary at the time of its invention, Sanger sequencing (Sanger et al., 1977) can

produce reads with a very low error rate of about one kbp in length (Shendure and Ji,

2008), however, the technology produces one read per reaction tube, making obtaining

coverage of larger genomes highly work and cost intensive. With many genomes mea-

suring multiple Gbp in length, and containing repetitive regions, Sanger technology also

had to be complemented with other tools to capture the larger structures. Historical

methods to capture long range info involved time consuming protocols to create, on the

smaller end, jumping libraries (such as mate-pairs or fosmids) that rely on the circu-

larization of DNA, and the capture and sequencing of the join-point to identify regions

from several to tens of kbps of each other. On the longer end, artificial chromosomes can

be transformed, maintained and amplified in species such as E.coli and then sequenced

individually (as reviewed in Ekblom and Wolf (2014)).

Beginning in 2005, a wave of second generation sequencing (2GS) technologies became

available which broke up the one-reaction-one-sequence paradigm by allowing for the

simultaneous sequencing of thousands or even millions of sequences from one library that

have been – by methods specific to individual technologies – distributed and fixed across a

surface . Incorporation of fluorescent nucleotides can be measured at each position with a

laser and camera. These methods rely on PCR to amplify the DNA prior to sequencing,

which has some consequences for the resulting data. The PCR ultimately biases the

technologies towards sequencing of shorter fragments, for example in the range of a few

hundred bp. On the upside, these methods maintain respectable accuracy (∼99.9% for
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Illumina sequencing (Fox et al., 2014)), as not individual molecules, but rather clusters

of molecules are sequenced.

Second generation sequencing already started a revolution in genomics with the basic

coverage required for sequencing a genome becoming obtainable in individual labs. In

this time frame, not only key model, but also generally high-interest species such as hot

pepper (Capsicum annuum) (Kim et al., 2014) or hemp (Cannabis sativa) (Van Bakel

et al., 2011) were sequenced. However, obtaining long range contiguity information

remained challenging, and many genomes released in this time frame were highly frag-

mented (e.g. the barley genome (International Barley Genome Sequencing Consortium,

2012)).

Besides genomics, second generation sequencing was, and is, used heavily for transcrip-

tomes. RNAseq is frequently used complementary to genome sequencing. For instance

RNAseq can be provided as additional information for gene annotation. Additionally

however, de novo transcriptome assembly allows for the reconstruction of a species’

putative transcriptome from RNAseq data alone. While frequently much better than

assembling with no or a very distant reference, de novo transcriptome assembly is com-

plicated by the dynamic range of RNAseq data making e.g. a rare transcript essentially

indistinguishable from a sequencing error. Thus, generated sequences can be biased and

difficult to work with.

Around 2010, several third generation sequencing technologies started being devel-

oped, tested, and used (Pacific Biosciences (English et al., 2012), Oxford Nanopore

(Mikheyev and Tin, 2014)). These technologies focus on sequencing individual molecules

of DNA (or even directly RNA), removing PCR from the picture and obtaining impres-

sive lengths. Sequences can start from several kbp, and now frequently reach 100s of

kbps. Sequencing of individual molecules comes at the cost of a lower signal to noise

ratio, which results in lower accuracy, with error rates ranging from nowadays 2% up

to 38% in an early assessment (Laver et al., 2015). These long range technologies led

again to an increase in the amount of genomes being sequenced, but also to a general

improvement in contiguity. Complementing 3GS data with existing 2GS methods has

made challenges posed by the high error rate largely surmountable. More genomes are

released with these technologies on a daily basis.

Finally, several new technologies have provided ways to obtain Mbp scale contiguity

information in a high throughput manner (BioNano Genomics, Hi-C, 10x Genomics),

which can be used to scaffold the anyways improving genome assemblies and rapidly and

cheaply achieve draft genomes of seemingly comparable quality to reference assemblies.

As these different approaches have their strengths and weaknesses, multiple technologies

are typically used in tandem (e.g. Dudchenko et al. (2017), Shi et al. (2016), Zimin et al.

(2017)).
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All this development has several implications to working with public data today.

First, the data is heterogeneous: Some assemblies are more or less fragmented; some

assemblies have been annotated with the help of more or less RNAseq information or with

RNAseq information derived from very different sets of tissues. Some assemblies have

been created by genome specialists, others by the lab most interested in the particular

species. All these technologies come with their own specific error models, reflected again

in the final assembly. Second, the ratio of person-time to data production has become

very low. While there are many cases where more data can compensate for human

time investment in curation, there are still plenty of cases where this changed ratio can

lead to error. Steps such as selfing a species, to sequence a homozygous individual are

often omitted. Several infamous genomes were published with the inclusion of adapter

and technical sequences, e.g. the carp genome (Xu et al., 2014) where Illumina adapter

sequences had not been removed. Current genome papers often use all their data for

assembly, and reserve none for verification, leading to no reliable estimate of final quality.

Third, the sheer amount of data available – challenging to work with or not – opens up

new opportunities for cross species comparisons and understanding evolution.

1.2.2 Aims of Phylogenetic Analyses

Phylogenetic analyses is an umbrella term that encompasses a huge variety of distinct

analyses – from comparing the incidence of particular SNPs within populations to trac-

ing the signature of ancient whole genome duplications across whole kingdoms. However,

these analyses retain some commonalities. They all ultimately center around comparing

biological sequence (DNA, RNA, or protein) to determine the relation of the sequenced

entities. Further, once the basis for comparison and the relationships have been estab-

lished, phylogenetic analyses are the basis for investigating further questions, such as:

What occurred during evolution to produce the sequences found today. This may mean

checking for evidence of selective pressure, examining the possibility of gene duplication

or loss, investigating hints for horizontal gene transfer, or more. Below discusses in more

detail the various steps and aims that occur during a typical cross-species phylogenetic

analysis.

Gene Clustering Often cross-species comparative studies focus not on comparing

the entirety of the genomic sequence, but rather, to make the problem more tractable,

exclude intergenic regions and focus on comparing only the genes. Generally, the first

thing to determine is which genes are likely to have descended from a common ancestor.

This can be done simply by sequence-based clustering. First a preliminary graph with

links between homologous genes is constructed. This is commonly based on homology

identified by the Basic Local Alignment Search Tool (Altschul et al., 1997). Then, clus-

ters are identified within the graph using an algorithm such as Markov chain clustering
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(MCL) (Van Dongen, 2000). Such sequence-based methods can be further augmented

with the addition of information such as expected phylogenetic distance (when clustering

individual genes) (Emms and Kelly, 2015), or inclusion of additional information such

as the ordering of the genes (synteny) (Lechner et al., 2014). Ultimately gene clustering

produces a list of orthogroups and the genes within each orthogroup, which can be used

for further analyses.

Alignment Nucleotide sequences can under several types of mutations including nu-

cleotide substitution, insertions and deletions. Such sequences need to be aligned before

they can be properly compared. For two sequences an optimal global alignment (for

a given scoring scheme) can be obtained with the dynamic programming algorithm

Needleman-Wunsch (Needleman and Wunsch, 1970). In practice, many tools are avail-

able for multiple sequence alignment, and range from tools such as ClustalW (Thompson

et al., 2002), which very aggressively tries to find any matching positions it can between

sequences, to tools such as PRANK (Löytynoja, 2014), which uses bootstrapping to

repeatedly perform alignments with some data omitted and when finished only reports

robustly aligned regions as aligned. Multiple sequence alignment can be performed in

either protein space, which is suitable for aligning distantly related sequences, or in

nucleotide space when there is a need to differentiate very similar sequences.

Tree reconstruction After multiple sequence alignment, the next step in many com-

parative phylogenetic analyses is reconstructing the phylogenetic tree of the given se-

quences. Phylogenetic trees are often reconstructed based on maximum parsimony (e.g.

(Plotree and Plotgram, 1989)), maximum likelihood (e.g. Guindon et al. (2010) Sta-

matakis (2006)), or Baysian inference (e.g. Ronquist and Huelsenbeck (2003), Drum-

mond and Rambaut (2007)) methods. Challenges include propagation of earlier errors

(tree reconstruction can be sensitive to misalignments (Ogden and Rosenberg, 2006));

and reconstruction specific issues such as long branch attraction (Kolaczkowski and

Thornton, 2009). Accurate reconstruction benefits from densely packed data with only

relatively small phylogenetic distances between individual sequences. Methods such as

repeated bootstrapping with some data omitted can be used to assign confidence to

specific branches of the consensus tree. The resulting phylogenetic trees can be used

to answer questions ranging from which species or genes are most closely related, to

the relative timings of speciation and duplication events. Further, trees can be used to

identify horizontal gene transfer events.

Selective pressure A frequent question about evolution is which genes were evolving

under negative selection, where the sequences are conserved, neutral selection where the
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sequences may drift over time, or positive selection where the sequences are under pres-

sure to change rapidly or in a specific manner. Some portions of the genomic sequence are

generally more conserved than others. For instance, protein-coding regions are generally

more conserved than non-coding regions, and within coding regions, non-synonymous

substitutions that change the amino acid (often in the first and second codon positions)

are rarer than synonymous substitutions that do not result in an amino acid change

(often in the third codon position) (reviewed in Booker et al. (2017)). Synonymous

substitutions are generally assumed to be under neutral selection and occurring at a

clade-specific but fairly constant rate across time; they can be used in combination with

dated fossil evidence for dating speciation and duplication events. The ratio of non-

synonymous substitution rate (dN) to synonymous substitution rate (dS) can be used

to estimate whether genes are under positive or negative selection in genes diverging 10s

of millions of years ago (Obbard et al., 2012). Positive selection testing with dN/dS is

sensitive to the accuracy of the phylogenetic tree and further to the multiple sequence

alignment, with sequencing errors or misalignments potentially causing a false signal of

positive selection (Mallick et al., 2009).

Gene duplication Another frequent question about evolution is when and how genes

were duplicated. The relative timing of a gene duplication can be determined directly

from an accurate phylogenetic tree. Additional information can be used to understand

how a gene duplication occurred. For instance, the duplication of many genes in the same

species at a specific time is evidence for a whole genome duplication event. Other cases

can also indicate how duplication occurred, for instance when other genes in the same

region were duplicated, when the intergenic sequence around the gene was duplicated or

when the intron structure was conserved (Qiao et al., 2018). Gene duplication is often

thought to reduce the selective pressure on the duplicated paralogs and thereby allow

them more flexibility to evolve new or specialized functions (Lawton-Rauh, 2003).

Challenges

Successful cross species comparison relies heavily on both the quality and comparability

of the input data. Generally, differences in protein abundance or protein structure are of

interest. However, an accurate proteome is dependent on extended prior steps, including

sequencing the genome, the transcriptome, and combining both of the above with de

novo gene prediction and homology mapping to predict gene models.

Quality and Consistency in Data Generation Ideally, methods of data genera-

tion and analysis would be held constant, however, the sheer cost and effort that go into

sequencing a genome make re-sequencing or even re-annotating a comparative rarity.

Further, sometimes differences between species, e.g. genome size, necessitate different
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sequencing or analysis methods. Therefore researchers must be able to work with the

potentially heterogeneous data. Many cross-species analyses theoretically have more

statistical or conclusive power the more data is included. This often leads researchers

to take in as many related sequences as can be acquired, even when some of the addi-

tional sequences are of lower quality. One reason sequences of comparable quality may

not be available is limitations on the input material. For instance, the first draft of

the Neanderthal genome was sequenced largely from 40,000-year-old femur bone fossils,

which produced a very low-quality draft (Green et al., 2010) assembly compared to a

subsequent sequencing project that started with a 130,000-year-old fossilized toe bone

(Prüfer et al., 2014). When projects seek to sequence RNA instead of DNA, the within-

organism variance can make obtaining a specific tissue incredibly difficult. For instance,

there is a deal of interest in understanding the differentiation of neurons, yet separating

and sorting individual neurons is a difficult task, often resulting in working with tiny

amounts of material, degraded material, or both (Lacar et al., 2016).

In both of the above examples, small amounts of input material can be amplified by

PCR with generic primers. However, this will also amplify any DNA present, including

trace amounts of contaminants. Contamination can also occur for a variety of other

reasons from simple mistakes, the presence of pestilent species, to unavoidable cases,

such as, e.g. sequencing species in strict symbiotic relationships where one species cannot

be cultivated without the presence of the another. Contamination, depending upon

amount, can result in the need for additional filtering, can turn a single genome project

into a meta-genome project, or in extreme cases result in reads from the target genome

being rare amongst all reads obtained. Unsurprisingly, read-level contaminations can

find their way into the final assembly. Such contaminations can then cause trouble for

downstream analyses, potentially appearing as outlying sequences or masquerading as

horizontal gene transfer (Lercher and Pál, 2007).

In addition to material limitations, continuously developing sequencing technologies

mean that publicly available sequences for different species are frequently based on

entirely different technologies such as short or long read sequencing, with lower or higher

error rates, with random error or consistent bias (as discussed in more detail above).

The heterogeneity introduced during data generation should be taken into considera-

tion during further analyses.

Quality and consistency in data processing Sequencing DNA or RNA may form

the basis, yet it is only the start of how subsequent analyses may differ. The choice of

tool for sequence assembly depends upon the sequencing technology and characteristics

(e.g. repeat content and genome size) of the target.

The method used to determine the location and structure of genes in a genome as-

sembly is a further potential source of heterogeneity in the data. There are a variety of
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tools for the base de novo gene calling program, and many must be specifically trained

on the target or a closely related species (Korf, 2004, Stanke and Waack, 2003). This

is further compounded by differing availability of extrinsic data (homology, RNASeq).

Researchers face additional choices such as whether to call alternative splicing events

or allow partial gene models. Each genome project is followed by a near-unique gene

calling process of collecting and using extrinsic data to best define genes on the given

genome. However, some large-scale attempts at consistency exist, as large databases

such as NCBI may run a comparable gene calling pipeline fed with large amounts of

extrinsic homology data on uploaded genomic sequences (Souvorov et al., 2010).

In summary, genomes will vary in their completeness, continuity, error rate, and error

types. Similarly, the associated provided gene sequences will have both omissions and

mis-called genes; and the frequency of these will be very nearly genome specific. A

researcher hoping to use publicly available genomes and associated gene sequences must

be able to perform their analyses in a way that is robust to such differences.

Specific challenges in cross-species analysis The afore mentioned differences in

availability, generation, and processing of sequencing data can lead to a variety of chal-

lenges during cross-species phylogenetic comparisons. Finding evidence of absence is a

conundrum, which inherently makes any inferences of gene loss challenging. While a

few target gene loss cases can be back-checked with further wet lab analyses, evidence

of large-scale deletions must be interpreted with care so as not to mistake a relatively

incomplete genome assembly for one that has undergone extensive gene loss.

Not only can assembly errors masquerade as gene loss, but multiple alleles may be

assembled separately, masquerading as gene duplication. Inclusion of de novo transcrip-

tome assemblies greatly exacerbates this problem as different alleles, sequencing errors

or simply splice isoforms can masquerade as paralogs originating from gene duplication.

The density and phylogenetic distribution of available sequences affect the recon-

struction of phylogenetic trees. Phylogenetic tree reconstruction often suffers from long

branch attraction, whereby distantly related sequences are incorrectly grouped together

in the resulting phylogenetic tree. This can result from the introduction of outlying

sequences, or simply from a lack of phylogenetic resolution. This causes a trade-off

for the researcher, who risks inclusion of more outliers but gains resolution with the

incorporation of more species.

In addition to any issues caused by long branch attraction, outlying sequences can

cause misalignments. This can happen for sequences that are completely mis-assigned,

but can also be caused by outliers such as extremely distant sequences, chimeric se-

quences, or sequences with minor structural errors such as inclusion of some UTR or

intron sequences into the final CDS prediction. Generally, global alignment tools are

intended for use on truly homologous sequences, and many will force the best alignment
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possible, even when this alignment is improbable. Misaligned sequences have low iden-

tity with the other sequences. Further misaligned sequences lack typical characteristics

of aligned homologous sequences, such as more conserved non-synonymous than syn-

onymous sites. Misalignments can harm or lead to erroneous conclusions in almost any

analysis that requires an alignment as input.

One approach to avoid further problems caused by outlying sequences is to filter them

out. This is however a non trivial task as comparative analyses frequently work with

10s of thousands of gene families (or orthogroups). Generation of automated rules for

detection of outlying sequences in orthogroups is challenging.

1.2.3 Contributions of Manuscript 1 towards Facilitating Cross-Species

Comparative Studies

The first manuscript in this thesis focusses on implementing an early step in a cross-

species comparison to improve the robustness and reliability of the down stream analyses.

Specifically, Manuscript 1 describes a tool, seqSieve, which filters outlying sequences

from a multiple sequence alignment. This tool helps maximize the useful information

that can be obtained from the data, while avoiding inclusion of data that is too divergent

to contribute.

Manuscript 1

This manuscript describes seqSieve, a high-throughput, customizable software for re-

moving outlying sequences from multiple sequence alignments for the purpose of quality

control in large-scale studies. Such outliers can cause gaps or misaligned regions in a

multiple sequence alignment which can have detrimental effects, such as information loss

or bias introduction, on downstream analyses. Outlying sequences are detected by a cus-

tomizable scoring system that factors in (unique) gaps, (unique) insertions, mismatches,

or a weighted combination thereof.

We then compare seqSieve to several other filtering tools, of which it performs re-

spectably in terms of maximizing ungapped sum of pairs. Analysis of differences be-

tween the tools indicated that seqSieve’s more inclusive and robust scoring system is

more successful in detecting outlying sequences.

This tools is particularly suited for use in a pipeline for detecting positive selection

on a genome wide scale. Starting from primary transcripts for each species of interest,

such a positive selection detecting pipeline could look like the following: Orthogrouping,

multiple sequence alignment, seqSieve, phylogeny reconstruction, and finally testing for

positive selection per site. As multiple sequence alignment occurs early in a pipeline,

any errors are propagated and amplified during later steps frequently leading to false
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positive signals of positive selection (Fletcher and Yang, 2010). Further, the widely used

PAML codeml tool does not properly handle gapped regions (Yang, 2007).

1.3 C4 Photosynthesis as a Complex Trait

The majority of organic carbon on planet earth was fixed in a light-driven reaction known

as photosynthesis. While the majority of species in the Plant Kingdom, Viridiplantae,

use the ”classic” photosynthetic pathway, known as C3 photosynthesis, a disproportion-

ate amount of the earth’s net primary productivity (up to 23%)(Still et al., 2003) comes

from the approximately 3% of Viridiplantae species that have evolved an add-on to the

classic C3 pathway (Kellogg, 2013), namely a complex trait known as C4 photosynthe-

sis (Hatch and Slack, 1968). C4 photosynthesis is more efficient in certain (hot, arid)

environments than the C3 pathway (Amthor, 2010).

The most well known part of the C4 photosynthetic trait is a biochemical pump that

increases the amount of CO2 in the vicinity of the central carbon fixing enzyme Rubisco.

That said, efficient C4 photosynthesis requires more extensive adjustments in anatomy

and metabolism of the plant.

The efficiency advantages of C4 photosynthesis come from the suppression of the waste-

ful photorespiration process. All plants ultimately fix CO2 via Rubisco, which results

in the immediate production of 3-phosphoglycerate (3-PGA). Every sixth molecule of

3-PGA produced can be used in sugar and ultimately biomass production, while the rest

must be recycled to form the precursors in the Calvin-Benson-Bassham-Cycle (CBBC).

However, Rubisco cannot always discriminate effectively between CO2 and O2. When

O2 is fixed in the place of CO2, a molecule of 2-phosphoglycolate (2-PG) is produced

which is toxic for the plant. Recycling 2-PG results in a loss of both CO2 and energy (re-

viewed in Hagemann et al. (2016)), and in some conditions photorespiration can reduce

overall photosynthetic efficiency by 30% (Sharkey, 1988, Zhu et al., 2004).

By concentrating pre-fixed CO2 around Rubisco, C4 photosynthesis suppresses the

wasteful fixation of O2 and thereby reduces photorespiration and increases photosyn-

thetic efficiency.

1.3.1 C4 Biochemistry

In C4 plants, Rubisco and the CBBC are found in an interior compartment, most fre-

quently, bundle sheath tissue. The biochemical pump transports carbon from the exte-

rior mesophyll tissue into the bundle sheath tissue.

The biochemical pump fixes carbon onto a 3-carbon scaffold in the mesophyll, pro-

ducing a 4-carbon organic acid, which travels to the bundle sheath, where it is decar-

boxylated, releasing a molecule of CO2. The 3-carbon scaffold then travels back to the

mesophyll to start the cycle again (Hatch and Slack, 1968).
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For the biochemical pump to work efficiently, it requires anatomical alterations, for

instance, to keep mesophyll and bundle sheath tissues in close proximity.

1.3.2 Anatomical Modifications in C4 Plants

Anatomical modifications in C4 plants include reduced distance between mesophyll and

bundle sheath tissues, more space for Rubisco and the CBBC in the bundle sheath.

One of the most obvious anatomical changes is the increased vein density found in

many C4 species. Specifically, the veins become spaced tightly enough that the cells

occur in a specific ratio of vein:BS:M:M:BS:vein, so that every mesophyll cell is directly

bordering a bundle sheath cell. This minimizes the distance metabolites are required to

diffuse between cells (reviewed in Sage (2004)).

Another anatomical change is the enlarged size and increased organellar content of

the bundle sheath cells. The cell layer in C3 species, which is recruited to become the

bundle sheath in C4 species, is not always the same, but is generally derived from a small,

vein-accompanying tissue without photosynthetic function (Edwards and Voznesenskaya,

2010). Additional changes may include modifications of thylakoid structure, lignification

of the bundle sheath cell wall and plasmodesmata (Sage, 2004).

1.3.3 Convergent Evolution of C4 Photosynthesis

Despite its complexity, the C4 pathway has evolved at least 66 times (Sage et al., 2012).

Some of what makes this possible is likely the presence of all the genes in the C4 cycle

in all plants, relying on co-option from an already existing pool of genes and not novel

gene evolution. However, this still doesn’t explain how the sheer complexity can be

repeatedly obtained. This has often led to the hypothesis that C4 evolution may require

fewer changes than is immediately apparent via the recruitment of master regulator(s)

or pathway(s) (Westhoff and Gowik, 2010). Many of the C4 origins occur in clusters

and some include intermediate species that are not yet C4, but already have a partial

carbon concentrating mechanism in place. Such clades provide an opportunity to test

hypothesis in the evolutionary origin of C4 photosynthesis (Gowik et al., 2011). These

clades with C3-C4 intermediate species show evidence for a gradual evolution of C4 pho-

tosynthesis, in which an early step is the establishment of a cycle for scavenging the CO2

lost during photorespiration, now known as C2 photosynthesis (Sage et al., 2014). After

this, the gradual up-regulation of C4 enzymes and gradual localization to the bundle

sheath appears to provide continuous fitness benefits Heckmann et al. (2013). Despite

the smooth evolutionary slope once initiated, strong clustering in C4 origins hints at

preconditioning steps that make it more probable in some lineages than others. These

are thought to include e.g. gene duplication and increased vein spacing.
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Using cross-species comparisons to understand the differences between C3, C4, and

intermediate species remains an active area of research.

1.3.4 Contributions of Manuscripts 2, 3, 4, and 5 towards Under-

standing the Complexity of C4 Photosynthesis

Despite our extensive ability to describe the complexity of C4 plants, we still don’t fully

grasp the molecular basis of anatomical and metabolic changes, which remains a major

hurdle in the way towards engineering C4 photosynthesis into C3 plants.

Three manuscripts in this thesis try to address this knowledge gap by leveraging

large data sets to better understand the molecular basis of some of the complexity of

C4 photosynthesis. Specifically, they employ high-throughput sequencing to simulta-

neously measure the abundance of all mRNA transcripts in each target sample. All

three manuscripts are comparative (between species or tissues) and together expand our

knowledge of C4 photosynthesis on the transcriptional level.

In Manuscript 4 (see 3.1) mature leaf tissue of closely related C3 and C4 Cleomaceae

species is compared. In Manuscript 5 (see 3.2), the comparison of these Cleomaceae

species is expanded to look at a broad sampling of plant tissues with a focus on leaf

development. Finally,Manuscript 2 andManuscript 3 (see 2.2, 2.3 ) compare expression

between mesophyll and bundle sheath tissues in the developing leaf of a C4 maize plant.

Manuscript 4

In Manuscript 4, high-throughput 454 mRNA sequencing was used to quantitatively

compare two closely related C3 and C4 Cleomaceae species, to compile and contrast

transcription profiles and identify candidate genes related to the C4 pathway. Specif-

ically, this manuscript looks at gene expression in mature leaf tissue of Gynandropsis

gynandra (previously referred to as Cleome gynandra), a C4 plant, and Tarenaya hassle-

riana (previously referred to as Cleome spinosa), a C3 plant. As anatomical differences

are setup early in development, prior to this manuscript it was unknown whether exten-

sive differential regulation between C3 and C4 tissues was to be expected beyond the core

biochemical pump. Comparative analysis revealed over 600 differentially expressed genes

between the species. Such differentially expressed candidates found in this study include

genes associated with transport, chloroplast movement and expansion, plasmodesmatal

connectivity, cell wall modification and transcription factors.

As a pioneering work in C4 cross-species transcriptome comparison, this manuscript

also had to establish that its results were robust to the methods used. The Cleomaceae

species proved to be phylogenetically close enough to the model plant species Arabidopsis

thaliana to allow for cross-species read mapping. This simplified the analysis in some

ways by avoiding some of the troubles of de novo transcriptome assemblies. Similarly it
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circumvented the issue of establishing orthologous relationships between the Cleomaceae

species as mapping both species to A. thaliana was sufficient. However, much effort

was put into validation and optimization of the method and to establish it was robust

and allowed for biologically meaningful comparison. Two read mapping tools BLAST

and BLAT (BLAST Like Alignment Tool) were compared throughout, and output and

thresholds for both tools were optimized.

Manuscript 5

In Manuscript 5, the comparison of Gynandropsis gynandra (C4) and Tarenaya hassle-

riana (C3) from Manuscript 4 is expanded to include a more holistic view of the plant

and in particular to capture early leaf development, so as to understand the setup of the

anatomy that is critical to C4 photosynthesis. Indeed, a delay in tissue differentiation

could be linked to denser venation in the C4 species. Examination of transcripts near

the center of the delayed expression module, led to identification of candidate regula-

tory genes. Similarly, differential expression indicated increased endoreduplication in

the C4 species. Endoreduplication is the additional duplication of DNA without cell

division, and is frequently found in enlarged cell types. Here, further analyses could

confirm the increased nuclear size in a subset of cells, and microscopy could identify

enlarged nuclei in the bundle sheath cells that are enlarged in the C4 species. Further,

this work provided the community with a compendium of differences between the C3 and

C4 species during development and in a variety of tissues which will continue to support

future research.

As above, coming to the biological conclusions first required a clean bioinformat-

ics analysis, including the summarizing and extraction of precise information from 108

RNAseq samples totalling over 2.2 billion reads. As much more RNAseq data and the T.

hassleriana genome were now available, further comparison between the bias introduced

in working with a cross-species mapping vs a de novo assembly was performed. Cross

species mapping obtained a lower specificity in mapping reads between closely-related

paralogs, however, expression by gene family remained very comparable. In contrast,

the de novo assembly suffered from frequent missing, fragmented or otherwise inaccu-

rate transcripts. Therefore, the central analysis was performed based on cross-species

mapping of reads from both species to the newly available T. hassleriana genome. Even

after quantification and basic differential expression was complete, more in depth bioin-

formatic analyses were required to interpret the large dataset. This included three

different clustering methods to e.g. confirm the clustering of replicates or check that

tissues were well-matched between species. Clustering and summarizing based upon

functional annotation were used to obtain an overview and description of the dataset,

which led to further, more-targeted tests. In particular, the transcriptional modules that
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showed a delay in the C4 developmental series could be identified in both the k-means

and the hierarchical clustering.

Manuscript 2

In this manuscript, we enriched the two most prominently C4 -specialized tissues, BS and

M, along a developing maize leaf and sequenced their transcriptome. We compared our

results with a variety of other BS and M separation studies in maize or related species.

Inter-study comparison identified both weaknesses and strengths in particular methods,

and highlighted the strength of the meta-comparison. Specifically, comparison allowed

for the identification of chronic method-related bias in separation techniques leading to

different levels of 3’ bias (an indicator of RNA degradation). Some studies showed severe,

yet constant bias, but more worryingly some other studies showed minimal but uneven

bias. Here, higher degradation in the M led to erroneous conclusions. Besides identifying

weaknesses in studies, the meta-comparison allowed us to draw conclusions that would

have been hard to support based on any individual study. For instance, both maize

developmental studies indicated that protein synthesis related transcripts switched from

generally BS-specific early in development to generally M-specific in mature maize tissue,

which likely supports the high expression of the M-specific PSII. There was more infor-

mation compiled here than could be readily analyzed in a single paper. However, this

could be a useful resource for any researcher interested in BS- and M-specific transcripts

in grasses, so we developed and provided a website for visualizing and summarizing the

dataset. The meta-comparison relied heavily on bioinformatics analyses. Reads were

mapped with the fast, spliced short read mapper TopHat to the respective genome of

each species Zea mays, Panicum virgatum and Setaria viridis. Clustering was used to

gain an overview and determine how to best compare the studies. Differential expression

analysis was performed for each study, including an R package, contamDE, to provide

a more robust analysis with the partial enrichment achieved in this study. Homologous

relationships between species were established with BLAST. Further, non-standard anal-

yses were necessary, for instance, it was necessary to modify the Picard Tools software

to compute 3’ bias on a gene-by-gene basis. The website visualization and community

tool was developed as part of this study.

Manuscript 3

The manuscript deals with the question of how changes in gene expression following

gene duplication have contributed to the evolution of C4 photosynthesis. Gene duplica-

tion has long been hypothesized to facilitate the evolution of complex traits, but most

of the evidence for this is based on timing and anecdotal studies. Here we perform a
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genome-wide phylogenetic and gene expression analysis to elucidate whether gene du-

plication in the grass lineage appears to be linked to the evolution of the complex trait

C4 photosynthesis.

We performed large scale pairwise and gene family-wise transcriptional and phylo-

genetic analyses. The gene family-wise analyses involved performing many multiple

sequence alignments, filtering these with seqSieve (as described in Manuscript 1 ), re-

constructing phylogenetic trees, and testing for positive selections via PAML/codeml.

Overall we could link gene duplication level to increased expression divergence, tissue

specificity, and gain or loss of a photosynthetic expression pattern. We found tentative

evidence linking expression divergence to positive selection. In particular, the known

core C4 paralogs showed unusually high expression divergence, tissue specificity, corre-

lation to the photosynthetic expression pattern and positive selection. Beyond the core

C4 genes, functional categories related to C4 photosynthesis were enriched in paralogs

with key divergence patterns. For instance, transcripts of ATP-consuming photosyn-

thetic paralogs diverge in expression between mature M and BS tissue.
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Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze,

A., Renaud, G., Sudmant, P. H., De Filippo, C., et al. (2014). The complete genome

sequence of a Neanderthal from the Altai Mountains. Nature, 505(7481):43.

Qiao, X., Yin, H., Li, L., Wang, R., Wu, J., Wu, J., and Zhang, S. (2018). Different modes

of gene duplication show divergent evolutionary patterns and contribute differently

to the expansion of gene families involved in important fruit traits in pear (Pyrus

bretschneideri). Frontiers in plant science, 9:161.

Ronquist, F. and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference

under mixed models. Bioinformatics, 19(12):1572–1574.

Sage, R. F. (2004). The evolution of C4 photosynthesis. New phytologist, 161(2):341–370.



Bibliography 22

Sage, R. F., Khoshravesh, R., and Sage, T. L. (2014). From proto-Kranz to C4

Kranz: building the bridge to C4 photosynthesis. Journal of experimental botany,

65(13):3341–3356.

Sage, R. F., Sage, T. L., and Kocacinar, F. (2012). Photorespiration and the evolution

of C4 photosynthesis. Annual review of plant biology, 63:19–47.

Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-

terminating inhibitors. Proceedings of the national academy of sciences, 74(12):5463–

5467.

Sharkey, T. D. (1988). Estimating the rate of photorespiration in leaves. Physiologia

Plantarum, 73(1):147–152.

Shendure, J. and Ji, H. (2008). Next-generation DNA sequencing. Nature biotechnology,

26(10):1135.

Shi, L., Guo, Y., Dong, C., Huddleston, J., Yang, H., Han, X., Fu, A., Li, Q., Li, N.,

Gong, S., et al. (2016). Long-read sequencing and de novo assembly of a Chinese

genome. Nature communications, 7:12065.

Souvorov, A., Kapustin, Y., Kiryutin, B., Chetvernin, V., Tatusova, T., and Lipman, D.

(2010). Gnomon–NCBI eukaryotic gene prediction tool. National Center for Biotech-

nology Information, pages 1–24.

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic anal-

yses with thousands of taxa and mixed models. Bioinformatics, 22(21):2688–2690.

Stanke, M. and Waack, S. (2003). Gene prediction with a hidden Markov model and a

new intron submodel. Bioinformatics, 19(suppl 2):ii215–ii225.

Still, C. J., Berry, J. A., Collatz, G. J., and DeFries, R. S. (2003). Global distribution

of C3 and C4 vegetation: Carbon cycle implications. Global Biogeochemical Cycles,

17(1):6–1–6–14. 1006.

Thompson, J. D., Gibson, T., Higgins, D. G., et al. (2002). Multiple sequence alignment

using ClustalW and ClustalX. Current protocols in bioinformatics, pages 2–3.

Van Bakel, H., Stout, J. M., Cote, A. G., Tallon, C. M., Sharpe, A. G., Hughes, T. R.,

and Page, J. E. (2011). The draft genome and transcriptome of Cannabis sativa.

Genome biology, 12(10):R102.

Van Dongen, S. M. (2000). Graph clustering by flow simulation. PhD thesis.

Walker, F. O. (2007). Huntington’s disease. The Lancet, 369(9557):218–228.



Bibliography 23

Westhoff, P. and Gowik, U. (2010). Evolution of C4 photosynthesis—looking for the

master switch. Plant Physiology, 154(2):598–601.

Xu, P., Zhang, X., Wang, X., Li, J., Liu, G., Kuang, Y., Xu, J., Zheng, X., Ren, L.,

Wang, G., et al. (2014). Genome sequence and genetic diversity of the common carp,

Cyprinus carpio. Nature Genetics, 46(11):1212.

Xu, X., Zhou, Z., Wang, X., Kuang, X., Zhang, F., and Du, X. (2003). Four-winged

dinosaurs from China. Nature, 421(6921):335.

Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Molecular

biology and evolution, 24(8):1586–1591.

Zhu, X.-G., Portis, A., and Long, S. (2004). Would transformation of C3 crop plants with

foreign Rubisco increase productivity? A computational analysis extrapolating from

kinetic properties to canopy photosynthesis. Plant, Cell & Environment, 27(2):155–

165.

Zimin, A. V., Puiu, D., Hall, R., Kingan, S., Clavijo, B. J., and Salzberg, S. L. (2017).

The first near-complete assembly of the hexaploid bread wheat genome, Triticum

aestivum. Gigascience, 6(11):gix097.



Chapter 2

First Author Manuscripts

2.1 Manuscript 1:

seqSieve – Removing Outliers from Multiple Sequence

Alignments

Overview

Title: seqSieve – Removing Outliers from Multiple Sequence Alignments

Authors: Janina Maß, Alisandra K. Denton, and Martin J. Lercher

Submitted to PeerJ

First authorship

Contributions

• Project design

• Python implementation

• Software testing

• Data interpretation

• Writing manuscript

24



seqSieve – Removing gap-inducing sequences

from multiple sequence alignments

Janina Maß1, Alisandra K. Denton2, Martin J. Lercher3

February 2018

1Institute for Theoretical and Quantitative Biology, Heinrich Heine University,

40225 Düsseldorf, Germany
2Institute for Plant Biochemistry, Heinrich Heine University, 40225 Düsseldorf,

Germany
3Institute for Computer Science and Department of Biology, Heinrich Heine

University, 40225 Düsseldorf, Germany

Chapter 2. First Author Manuscripts 25



Abstract

The inadvertent inclusion of poorly matching sequences can cause

gaps or misaligned regions in a multiple sequence alignment and detrimen-

tally affect downstream analyses. Few methods exist to remove such disrup-

tive sequences. Here, we present seqSieve, a high-throughput, customizable,

and user-friendly Python application that iteratively removes the most outly-

ing sequences in an alignment, realigning the remaining sequences in each it-

eration. seqSieve detects outlying sequences by a user-adjustable assessment

of mismatches and gaps introduced by the sequence. Compared to alternative

filtering tools, seqSieve achieves a higher alignment quality, measured as the

number of pairwise nucleotide or amino acid matches in ungapped regions.

seqSieve is freely available from http://pypi.python.org/pypi/seqSieve.
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1 Introduction

As the availability of sequence information and the scope of sequencing

projects increases, so does the potential to introduce errors through the

inclusion of non-fitting or partial information. During selection of homol-

ogous sequences for phylogenetic or comparative analyses, sequences may be

wrongly included due to the homology of a small region; the non-matching

rest of the sequence may then induce alignment errors.

More sequence data and higher phylogenetic resolution may some-

times lead to more complete and confident results [1, 2]; however, adding

sequences that are only partially homologous can ruin an analysis by cre-

ating a poor alignment, typically signified by many gaps. Corresponding

misalignments can lead to less accurate phylogenies [3] and false discoveries

in positive selection testing [4].

While a true insertion or deletion is part of the phylogenetic signal,

excessive gaps are frequently a sign of misalignment. Gaps introduced by

non-matching sequences can bias topologies, as gaps are frequently treated

simply as ambiguous data [5, 6], and can lead to loss of information in tools

that exclude gapped columns completely [7, 8]. Removing confounding se-

quences or portions of an alignment can greatly improve accuracy in phy-

logeny reconstruction or selection testing [9–13].

While various tools facilitate filtering poorly aligned columns in an

alignment, we found few tools designed to filter out non-matching sequences.

1
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These included GUIDANCE [14], which best controlled error-rate in a com-

parison of three filtering tools [15]; OD-seq [16], which removes sequences

with an anomalously large distance to the remaining sequences; and Max-

Align [13], which removes gap-causing sequences after a multiple sequence

alignment (MSA) and optimizes the number of nucleotides or amino acids

in ungapped portions of the alignment (ungapped alignment area, or UAA;

eq 1.). Katoh and Toh [17] suggest that combining the iterative removal of

sequences performed by MaxAlign with iterative realignment may improve

results, and several studies have opted for a final realignment after using Max-

Align, or even manual iteration [18–20]. The tool presented here, seqSieve,

optimizes the UAA while iteratively removing outlying sequences from an

MSA and realigning the remaining sequences.

2 Methods

The first criterion used in this study was the ungapped alignment area

(UAA), defined as

UAA := r · c′ , (1)

where r is the number of alignment rows (nucleotide or amino acid sequences)

and c′ is the number of alignment columns devoid of gaps. The second

criterion used in this study was the ungapped sum of pairs (USoP), defined as

the number of identical pairs of nucleotides or amino acids found in ungapped

columns,

2
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USoP :=
c′
∑

p=1

r−1
∑

i=1

r
∑

j=i+1

s(aip, ajp), (2)

s(aip, ajp) =







1, aip = ajp

0, aip 6= ajp

, (3)

where aip is the nucleotide or amino acid in row i and column p of

the alignment matrix [21].

seqSieve is implemented in Python and can use either of the align-

ment programs MAFFT [22] or PRANK [23] for MSA. seqSieve is designed

for high-throughput use and thus runs from a command line interface, ac-

cepting either single alignments or a folder containing alignments as input.

As iterative realignment is time consuming, seqSieve is implemented to run

multiple MSA optimizations on multiple cores in parallel. seqSieve is avail-

able from the Python Package Index (http://pypi.python.org/pypi/seqSieve)

and has been tested under Linux and OS X. seqSieve iteratively removes the

most outlying sequence(s), realigns the remaining sequences, and calculates

the changed UAA. The final alignment returned by seqSieve is the one for

which the UAA can not be increased further through the removal of another

sequence.

seqSieve has a customizable scoring system, allowing outlying se-

quences to be detected by (unique) gaps, (unique) insertions, mismatches, or

a weighted combination of these. Whether a region has gaps or insertions is

determined by majority rule. By default, sequences are penalized for gaps

and insertions by an amount proportional to the percentage of ungapped

3
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and gapped sequences, respectively. For example, in an alignment of 10 se-

quences, if only sequence A had a gap in column 1, it would be penalized

by 0.9; if sequences A, B, and C had a gap in column 2 while the remaining

sequences did not, they would each be penalized by 0.7. The sequence(s)

with the maximum penalty are removed, and the remaining sequences are

realigned and scored again. seqSieve records and reports statistics of the

initial alignment and following iterations, and provides a summary graph;

for an example, see Figure 1 A.

We downloaded a test dataset from Ensembl v75 [24], consisting

of all 1,484 orthologous groups for which the genome of each of eight ani-

mal species contained exactly one ortholog; the animals contributing to this

dataset were Bos taurus, Drosophila melanogaster, Gallus gallus, Mus mus-

culus, Takifugu rubripes, Caenorhabditis elegans, Equus caballus, and Homo

sapiens. Prior to filtering, the data was aligned with MAFFT (Supplemen-

tal Dataset 1). To compare the performance of seqSieve to alternative ap-

proaches, we executed GUIDANCE, MaxAlign v1.1, OD-seq, and seqSieve

with default parameters.

3 Results

Compared to the original (raw) MAFFT alignments, seqSieve was able to in-

crease the UAA in 54% of the orthologous groups, with an average improve-

ment of 673 letters (13% of the average initial UAA). seqSieve increased UAA

more than GUIDANCE and OD-seq in most cases, but slightly less than Max-

4
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Align (Figure 2A). The cases where MaxAlign improved UAA substantially

more than seqSieve were manually checked to understand the differences with

the aim of improving the algorithm. However, visual examination indicated

the alignment quality may often be higher in the seqSieve filtered sequences;

for examples, see Figure 1B). To quantify the alignment quality, the num-

ber of matching nucleotide or amino acid pairs at each ungapped position

in the alignment was summed to yield the ungapped sum of pairs (USoP;

Eq. (2)). MaxAlign, GUIDANCE, and seqSieve each increased USoP rela-

tive to the original alignment, with seqSieve having the greatest effect. With

these modes, seqSieve improved USoP significantly more often than either

MaxAlign or GUIDANCE (p < 0.001, Fisher’s Exact Test; Figure 2B).

In addition to how they score outlying sequences, MaxAlign and se-

qSieve differ in the iterative re-alignment performed by seqSieve. To evaluate

the effect of iterative realignment, the test set was run through seqSieve with

re-alignment disabled, and this result compared with a final re-alignment

thereof as well as with full iterative realignment. In a small number of cases

(32 of 1484), the sequence selection differed with iterative re-alignment dis-

abled. All of these cases had higher UAA, and 22 had higher USoP with

iterative re-alignment.

4 Discussion

With real data, seqSieve was able to substantially increase UAA, and out-

performed other tools in terms of improving alignment quality as measured

5
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by USoP. Both UAA and USoP are good measures of how much information

can be utilized by gap-excluding downstream programs such as PAML [8].

Further, the sum-of-pairs scoring function [21], of which USoP is a simple

subset, is a standard quality measure used, for instance, by ClustalW [25],

and, in a weighted form, by Mafft [22]. For applications where maximiz-

ing information in the ungapped columns of an alignment is beneficial, the

two programs specialized at this, MaxAlign and seqSieve, are top perform-

ers. While MaxAlign has a more agressive algorithm at optimizing UAA,

this occassionally came at the cost of favoring long, poorly aligned sequences

over shorter, but more reliably aligned sequences. By penalizing both gaps

and insertions, seqSieve was able to outperform MaxAlign, Guidance, and

OD-seq in optimizing USoP. GUIDANCE and OD-seq are both heuristics

that lack an optimization criterion. While both seqSieve and MaxAlign aim

at optimizing a scoring function, the way in which this is achieved differs

between the two algorithms. In seqSieve, outlying sequence are identified

by scoring a dynamic (or parameterized) combination of gap and insertion

penalties, while the UAA is only used to decide if the alignment is improved

by the removal of these sequences. In contrast, MaxAlign removes the se-

quence(s) resulting in the greatest increase in UAA per sequence removed.

As poor alignments cause not just gaps, but also insertions and mismatches,

the more inclusive outlier identification used by seqSieve was more successful

in improving alignment quality. Another difference between seqSieve and

MaxAlign is that seqSieve employs iterative realignment, which cleans the

alignments from any artifacts resulting from previously identified outliers.

While iterative realignment only rarely affected sequence selection, it im-

6
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proved UAA and USoP in these rare cases.

5 Conclusion

While more and more sequencing data becomes available, it is important

to realize that more data alone may fail to benefit phylogenetic analyses, or

may even have detrimental effects [1]. Problems are of course amplified when

(partially) non-homologous sequences are added to an alignment. Automated

and self-optimized filtering by seqSieve can aid in avoiding the pitfalls of such

non-matching additions, especially in high-throughput analyses.

Availability and Requirements

seqSieve is a platform-independent Python script, and is freely available from

http://pypi.python.org/pypi/seqSieve. seqSieve requires two other python

packages: matplotlib and numpy, as well as an external alignment program:

MAFFT and/or PRANK.
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Figures

Figure 1: Filtering of an example orthogroup, where filtering with Max-

Align showed a greater improvement of UAA, but seqSieve showed a greater

improvement of the relative USoP (values shown above alignments). (A)

seqSieve graphical report showing the change in sequence statistics, num-

ber, and the optimization criterion, UAA, over the iterations. The green

bar marks the optimal sequence set selected by seqSieve. (B) The MAFFT

alignment of the original sequences, sequences after filtering with MaxAlign,

and sequences after filtering with seqSieve.
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Figure 2: Alignment improvement by different algorithms. (A) seqSieve

and MaxAlign typically showed a greater improvement of UAA than either

MaxAlign or OD-seq. (B) seqSieve achieved a higher ungapped sum of pairs

(USoP) in most cases. ”Sites” is the default mode of SeqSieve. ”raw” is the

original MAFFT alignment.
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Figure S 1: Relationship between UAA for the original (raw) MAFFT alignment
and the alignment improved with seqSieve.
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Figure S 2: The quality of alignments was visually evaluated where UAA
was most different after filtering between MaxAlign and seqSieve. Exam-
ple orthogroup where running MaxAlign (A) increased UAA, but not rel-
ative USoP, more than seqSieve (B). Alignments were plotted with vizqes
(http://pypi.python.org/pypi/vizqes).
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Abstract

The high efficiency of C4 photosynthesis relies on spatial division of labor, classically with initial carbon fixation in the 
mesophyll and carbon reduction in the bundle sheath. By employing grinding and serial filtration over liquid nitrogen, 
we enriched C4 tissues along a developing leaf gradient. This method treats both C4 tissues in an integrity-preserving 
and consistent manner, while allowing complementary measurements of metabolite abundance and enzyme activity, 
thus providing a comprehensive data set. Meta-analysis of this and the previous studies highlights the strengths and 
weaknesses of different C4 tissue separation techniques. While the method reported here achieves the least enrich-
ment, it is the only one that shows neither strong 3′ (degradation) bias, nor different severity of 3′ bias between sam-
ples. The meta-analysis highlighted previously unappreciated observations, such as an accumulation of evidence that 
aspartate aminotransferase is more mesophyll specific than expected from the current NADP-ME C4 cycle model, and 
a shift in enrichment of protein synthesis genes from bundle sheath to mesophyll during development. The full com-
parative dataset is available for download, and a web visualization tool (available at http://www.plant-biochemistry.
hhu.de/resources.html) facilitates comparison of the the Z. mays bundle sheath and mesophyll studies, their consist-
encies and their conflicts.

Key words: C4, cell separation, maize, meta-analysis, transcriptomics.

Introduction

Specialization and coordination between two cell types 

improves photosynthetic ef"ciency in most C4 photosyn-

thetic plants. Speci"cally, most C4 plants shuttle carbon 

from a surrounding mesophyll (M) tissue into a surrounded 

bundle sheath (BS) tissue (Hatch, 1987). The shuttling con-

centrates CO2 around the carbon "xing enzyme, Rubisco, 

thereby suppressing photorespiration and increasing pho-

tosynthetic ef"ciency. This lends selective advantage to 
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C4 plants in photorespiration-inducing (e.g. hot and arid) 

environments (Schulze et  al., 1996). The high photosyn-

thetic ef"ciency and stress tolerance of  C4 species has led to 

interest in engineering the trait. However, the complexity of 

the trait—with many changes to anatomy and metabolism 

beyond the core biochemical pump—makes this an ambi-

tious goal, which will require a full systems-level under-

standing of  both the mature C4 trait and its development to 

be achieved (Sage and Zhu, 2011).

BS and M cells show extensive specialization in metabo-

lism and anatomy in C4 plants. In the classic C4 arrange-

ment—Kranz anatomy—enlarged BS cells form a ring 

around the vascular bundle and are in turn surrounded by 

M cells (Hatch, 1987). Narrow vein spacing means each M 

cell borders a BS cell, allowing direct transfer of  metabolites 

between them. Compared with a C3 leaf, there is a massive 

increase in the relative amount of  BS tissue, allowing for a 

division of  labor between cell types that includes both pho-

tosynthesis and major facets of  other metabolism (Majeran 

et  al., 2010; Friso et  al., 2010). Following Rubisco, most 

enzymes in the Calvin–Benson–Bassham Cycle (CBBC) and 

the linked photorespiratory cycle are restricted to the BS 

(Broglie et al., 1984; Rawsthorne et al., 1988; Döring et al., 

2016). In Z. mays, distribution of  photosystem II and there-

fore linear electron transport and reducing equivalent regen-

eration are restricted to the M, while the BS relies on ATP 

from cyclic electron transport around photosystem I  and 

biochemical shuttles that transfer reducing equivalents to 

the BS for energy (Romanowska et  al., 2008; Wang et  al., 

2014; Bellasio and Grif"ths, 2014). Subsets of  metabolism 

are divided up between the two cell types with, for instance, 

amino acid, nucleotide, and isoprenoid synthesis in the 

M, and sulfur metabolism and starch synthesis in the BS 

(Majeran et al., 2005; Friso et al., 2010).

Information on anatomical and metabolic changes has 

been gained through comparative proteomic and tran-

scriptomic studies both between C3 and C4 species (e.g. 

Bräutigam et  al., 2011, 2014; Gowik et  al., 2011; Wang 

et  al., 2014; Covshoff  et  al., 2016), and between isolated 

tissue types (Majeran et  al., 2005; Friso et  al., 2010; Li 

et  al., 2010; Chang et  al., 2012; Tausta et  al., 2014; John 

et  al., 2014; Aubry et  al., 2014). Many of  the differences 

between cell types are set up early in development, and tis-

sue maturation studies have obtained mechanistic insights. 

For instance, comparison of  C4 and C3 Cleomaceae species 

linked delayed photosynthetic differentiation to extended 

vein proliferation and ultimately closer vein spacing in 

the C4 species (Külahoglu et  al., 2014). In Z.  mays care-

fully comparing the primordia of  Kranz leaf  tissue with 

non-Kranz husk tissue implicated the recruitment of  the 

ScareCrow regulatory module from the root epidermis to 

BS cells (Wang et al., 2013). Potentially due to the dif"cul-

ties of  isolating cell types, to date there has only been one 

transcriptomics (Tausta et  al., 2014) and one proteomics 

(Majeran et al., 2010) study that have looked at immature 

M and BS tissue. These studies have shown the early estab-

lishment of  tissue speci"city of  major C4 enzymes and the 

roles of  M and BS cells in sink vs source tissue to logically 

re'ect the broader changes between source and sink tissue. 

As neither of  the above studies could look at metabolites, 

and interstudy comparisons have produced distinct results 

on cell speci"city—particularly of  transcription factors 

(Tausta et  al., 2014)—we judged further analysis to be 

warranted.

Here we successfully perform an ‘omics’-scale analysis 

on developmental tissue separated by a method developed 

by Stitt and Heldt (1985), and thus simultaneously capture 

changes in the transcriptome, enzymatic activities, and the 

metabolome. A  subsequent meta-analysis of this and other 

BS and M separation studies highlights the strengths and 

weaknesses of each of the various separation methods, and 

the advantages of using complementary techniques. The com-

parative dataset has been made available for visual explora-

tion or download, and can assist both in experimental design 

both for BS/M related studies and for studies in the broader 

category of tissue separation.

Materials and methods

Plant genome data

Genome and gene-model data was downloaded for Setaria viridis 
(v1.1/v311; Bennetzen et al., 2012) and Panicum virgatum (v1.1/v273; 
DOE-JGI, 2016) from Phytozome 11.0 (Goodstein et al., 2012). The 
AGPv3.22 release of the Zea mays genome with the 5b+ "ltered 
gene set was obtained from ensemble plants (Kersey et al., 2016) and 
Gramene (Tello-Ruiz et al., 2016), respectively. Orthologs were identi-
"ed by best BLAST (Altschul et al., 1997) hit from Z. mays to S. vir-
idis or P. virgatum.

External RNAseq data

Complementary RNAseq data were downloaded from the sequence 
read archives (Kodama et  al., 2012) and European nucleotide 
archives (Leinonen et al., 2010). We included two additional Z. mays 
BS and M separation studies (Chang et al., 2012: SRP009063; Tausta 
et al., 2014: SRP035577); corresponding whole developmental leaf 
sections (Li et al., 2010; SRP002265); Z. mays tissue atlas (Sekhon 
et al., 2013; SRP010680); and primordial leaf and husk tissue (Wang 
et al., 2013; SRP028231). The non-Z. mays studies were separation 
of BS and M cells in S. viridis (John et al., 2014; ERA275647) and 
P. virgatum (Rao et al., 2016; SRP062667).

Note that as the original authors included the same precise set of 
sequences for BS and M tissues in section 14 (Li et al., 2010; Tausta 
et al., 2014), and reported the same plant growth conditions, we’ve 
considered these studies broadly comparable. However, to avoid 
redundancy, the BS and M samples for section 14 are only included 
with Tausta et al. (2014).

Plant growth conditions and harvest

Z. mays B73 was grown in the summer of 2012 under conditions 
previously described (Pick et al., 2011). The third leaf was harvested 
when it measured 18 cm from the second ligule to the leaf tip. Two 
different harvesting methods were performed. In the "rst, a leaf 
gradient with "ve sequential developmental slices (4 cm each) was 
harvested with the ‘leaf guillotine’ (see Fig. S1A available at Dryad 
Digital Repository http://dx.doi.org/10.5061/dryad.tf6q6; Pick 
et al., 2011). This method required 10 s to extract the third leaf and 
properly align it, which does not allow for reliable estimates of the 
high-turnover photosynthetic metabolite distributions. Therefore, 
a second harvesting method was performed, in which the plants 
were positioned above two liquid nitrogen containers and two 8 cm 
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slices were cut with connected scissors (see Fig. S1A, B at Dryad) 
achieving a delay of less than 1 s between slicing and 'ash-freezing. 
Metabolite abundance and enzyme activity were measured from 
both harvest sets; the full "ve-slice gradient was used for RNAseq.

Tissue enrichment

M and BS tissues were enriched using a method modi"ed from Stitt 
and Heldt (1985). Ground material was "ltered through 250, 80, and 
41 μm meshes on liquid nitrogen. Three fractions were selected for 
further analysis. The ‘BS-e’ fraction showed the most enrichment 
of BS tissue (it did not pass through 80 μm mesh); the ‘M-e’ frac-
tion showed most enrichment in M tissue (it passed through 41 μm 
mesh); and the ‘I-e’ fraction showed intermediate, but consistent, 
proportions of tissues (it did not pass through 41 μm mesh).

Extraction and abundance measurements metabolites and 

enzymes

Enzymes were extracted and desalted as described in Bräutigam 
et  al. (2014), and the enzyme activity was measured through col-
orimetric assays as described in Hatch and Mau (1977) and Walker 
et al. (1995). Metabolites were extracted and quanti"ed via gas chro-
matography–electron-impact time-of-'ight mass spectrometry as 
described in Rudolf et al. (2013). Both low-signal metabolites and 
individual replicates with a percentage abundance in BS more than 
3 standard deviations from the mean were excluded. The integrated 
peaks were divided by the area of the ribitol (internal standard) peak 
and the fresh weight, and to further reduce noise and compensate for 
FW/DW differences between the cell types by the mean abundance 
for the replicate. Therefore, normalized differences between metab-
olites represent not absolute distribution, but distribution relative 
to the other metabolites, particularly sucrose and the other highly 
abundant metabolites.

Sequencing and estimating transcriptional abundances

RNA was extracted with QIAGEN RNeasy Plant kits, according 
to the manufacturer’s instructions except for an extra wash step in 
80% ethanol after the standard wash steps. Libraries were prepped 
from RNA with an RNA integrity number >8 and sequenced with 
the Illumina HiSeq 2000 platform. The quality was checked with 
FastQC (Andrews, 2010). Quality and adapter trimming was per-
formed with Trimmomatic (Bolger et  al., 2014). Trimmed reads 
were mapped to their respective genomes with Tophat2 (Kim 
et al., 2013) and the unique counts per locus were quanti"ed with 
HTSeq (Anders et  al., 2015); transcripts per million (TPM) was 
calculated from the unique counts and gene length. Coverage 
metrics including 3′ bias were calculated with PicardTools 2.4.1: 
CollectRnaSeqMetrics (Wysoker et al., 2012). Non-default param-
eters used for bioinformatics programs are provided (see Table S1 at 
Dryad). The same pipeline was used for all studies except as neces-
sitated by experimental differences (e.g. paired vs single end reads), 
or otherwise noted.

Differential expression and tissue specificity normalization

Differential expression P-values and log2 fold changes were calcu-
lated with EdgeR (Robinson et al., 2009). Where no replicates were 
available (Chang et al., 2012), the mean common dispersion from 
the remaining studies was used. Additionally, due to the low level of 
enrichment achieved in this study, ContamDE (Shen et al., 2016), 
a cross-contamination tolerant package for RNAseq statistics, was 
employed for the data generated here. As necessary for interstudy 
comparisons in Z. mays, log2 fold changes from edgeR (Chang et al., 
2012; Tausta et al., 2014) and ContamDE (this study) were quantile 
normalized, and the fully normalized TPM back calculated from the 
quantile normalized log2 fold change and mean TPM.

Estimation of initial tissue specificity by ‘deconvolution’

The distribution of metabolites and enzyme activities was compared 
with the distribution of markers to estimate the original tissue speci-
"city in a method modi"ed from Stitt and Heldt (1985). First, all data 
were converted into fraction of total by developmental slice. Second, 
marker enzyme activities were used as proxies for the amount of 
M (phosphoenolpyruvate carboxylase (PEPC) activity) and BS 
(NADP-malic enzyme (ME) activity) tissue in each enrichment frac-
tion. The slope of a regression line between the ln(target/M) against 
ln(BS/M) estimated the fraction of the target found in pure BS (see 
Fig. S1C at Dryad). P-values were calculated with a null hypothesis 
of slope=0.5 (50% M, 50% BS). This was automated with a linear 
regression in R and calculated for every metabolite and non-marker 
enzyme. To estimate the ‘pure’ abundance values, the estimated frac-
tion in BS and M (1–fraction BS) were multiplied by 2× the average 
abundance value for the developmental slice.

Functional category enrichment testing

Functional categories were assigned with Mercator (Lohse et al., 
2014). Enrichment was tested with Fisher’s exact test, and the false 
discovery rate calculated according to (Benjamini and Yekutieli, 
2001).

Statistics

Unless otherwise noted, all statistical analysis was performed in the 
R statistical environment (R Development Core Team, 2011) and 
whenever a test was performed more than 20 times, the false discov-
ery rate (Benjamini and Hochberg, 1995) was calculated from the 
resulting P-values.

Accession numbers

The reads related to this article have been deposited in the Sequence 
Read Archives under the accession number SRP052802.

Results

Validation of separation method

Here, we enriched BS and M cells along a developing Z. mays 

leaf by grinding and serial "ltration (Stitt and Heldt, 1985). 

Two harvesting methods were used, the "rst using a ‘guillo-

tine’ (Pick et al., 2011) to sample "ve contiguous 4 cm slices 

from tissue just emerging from the ligule (slice 5) to the leaf 

tip (slice 1). In the second, targeted at capturing unadulter-

ated metabolite levels, two 8 cm slices were harvested in full 

illumination and quenched in liquid nitrogen within a second 

of cutting. M and BS tissues were enriched using a method 

modi"ed from Stitt and Heldt (1985) that capitalizes on the 

distinct physical properties of M and BS cells to enrich them 

in different separation fractions as ground tissue is "ltered 

through serially smaller meshes over liquid nitrogen. The 

activity of C4 enzymes and the metabolite levels were meas-

ured from both harvests, and RNAseq was performed on 

material from the "ve-slice gradient.

The distribution of tissue speci"c markers indicated BS 

and M tissue were successfully enriched (see Fig. S1D and 

Dataset S1 at Dryad). The classic BS marker is NADP-ME, 

the enzyme responsible for releasing the carbon from C4 

acids in the BS. NADP-ME activity and transcripts were 

both higher in the coarsest (from here on, BS-e for bundle 
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sheath enriched) separation fraction; in between in the mid-

dle (from here on, I-e for intermediate enrichment) separa-

tion fraction; and lowest in the "nest (from here on, M-e, for 

mesophyll enriched) fraction (see ‘Materials and methods’ for 

details). The classic M marker, PEPC, the C4 "xing enzyme, 

showed the opposite pattern, with highest activity and tran-

script abundance in the "ne, M-e fraction. While the enrich-

ment was strongest in mature tissue, it was also apparent in 

the youngest tissue (slice 5). For non-marker enzymes and 

metabolites, the original distribution was estimated based on 

the marker enzymes (see ‘Materials and methods’; Fig S1C 

at Dryad).

This enrichment method was chosen over other separa-

tion methods both for sample integrity and to obtain data on 

metabolite abundance, enzyme activity, and transcript abun-

dance from the same material. However, in the rapid harvest 

(with less than 1 s between cutting and quenching in liquid 

nitrogen), very few signi"cant differences were found between 

metabolite levels in M and BS ((iso)-citric acid and malonic 

acid were both enriched in BS slice 3–4; FDR<0.05; Fig. S2C 

at Dryad). In contrast, many metabolites showed signi"cant 

differences based on leaf age (10 metabolites with FDR<0.05 

between slice 3–4 and slice 1–2 in the sub-1 s harvest, and 20 

with FDR<0.05 between at least one of the neighboring slices 

in the 10 s harvest; Fig. S2E and Dataset S1 at Dryad). The 

observed developmental changes were very similar between 

the sub-1 s and 10 s harvest; however, there were a few excep-

tions. One example is phenylalanine, which increased in abun-

dance with leaf age in the fast harvest, but decreased in the 

slow harvest (Fig. S2C, D at Dryad). Although not statisti-

cally signi"cant, the BS vs M trend of several metabolites cor-

responded with expectations. Notably, serine and the other 

photorespiratory metabolites were higher in the BS, where 

they are expected to be produced, both in the faster (Fig. 1B) 

and, to a lesser extent, also in the slower (Fig.S2B at Dryad) 

harvest. Malate, which presumably moves from M to BS 

entirely based on a diffusion gradient, tended towards enrich-

ment in the mature M (slices 1–2, 1–3; Fig. 1A and Fig. S2A 

at Dryad). Further, there is a modest consistency between 

previous studies measuring distribution of metabolites and 

that measured here (Fig. 1C). All measured core C4 metabo-

lites shift from putative BS towards putative M enrichment 

between slice 3–4 and 1–2 (Fig.  1A). Such synchronized 

changes could relate to increasing 'ux (or changing rate-lim-

iting steps) in the C4 cycle. The differences between harvest 

speeds highlights how labile these metabolites can be, and 

discrepancies between studies or low enrichment values may 

simply re'ect response to conditions and the readiness with 

which they pass the plasmodesmata, respectively. Higher con-

"dence in metabolite distribution will require more replicates, 

and, potentially, more de"ned conditions.

Comparison with other separated transcriptomes

Quantitative study comparison
While this separation method provides high integrity and 

allowed us to simultaneously measure transcripts, metabo-

lites, and enzyme activities, it comes with its own caveats due 

to the limited enrichment. As separation studies will likely 

continue, either in new species or with variations such as sep-

arating the husk (Huang and Brutnell, 2016), we evaluated 

the advantages and disadvantages of different separation 

methods and their effect on biological results. We compiled 

a comparative dataset from all existing M/BS speci"c full 

RNAseq experiments in monocots. These covered mechani-

cal and enzymatic separation in Z. mays (Chang et al., 2012); 

mechanical separation in S. viridis (John et al., 2014); laser 

micro-dissection in Z. mays (Li et al., 2010; Tausta et al., 2014);  

Fig. 1. Metabolites. (A, B) The estimated tissue enrichment 

and abundance of measurable metabolites associated with the 

photorespiratory cycle (A) and the C4 cycle (B). Error bars indicate 

standard error. (C) Comparison of metabolite tissue enrichment measured 

by Leegood (1985) and Stitt and Heldt (1985) with the average of slice 1 

and 2 in the slower five-slice harvest and slice 1–2 in the faster two-slice 

harvest.
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mechanical micro-dissection in P. virgatum (Rao et al., 2016); 

and the serial "ltration performed here (referred to as ‘Denton 

2016’ in "gures). While the data encompass three origins 

and two subtypes of C4 photosynthesis, and BS and M cell 

speci"city is not expected to match perfectly, previous stud-

ies have found substantial conservation even between mono-

cots and dicots (Aubry et al., 2014). Overall, the combination 

of mechanical BS preparation and enzymatic (Chang et al., 

2012) or leaf rolling (John et al., 2014) M separation achieved 

the highest marker enrichment, followed by the micro-dissec-

tion studies (Li et al., 2010; Tausta et al., 2014; Rao et al., 

2016), while the method used here, as anticipated from the 

original report (Stitt and Heldt, 1985), showed the least 

enrichment (Fig. 2A). Consistent with the lower enrichment, 

this study showed the lowest statistical power of the various 

methods with an average of 2100 discoveries (FDR<0.05) per 

slice, compared with 4030–12 777 discoveries for the other 

(biological-replicate-including) studies when computed with 

edgeR. Therefore, a cross contamination aware R-package, 

contamDE, which includes a factor for the relative tissue 

enrichment of each replicate, was employed. With contamDE 

an average of 4479 discoveries (BS-e vs M-e FDR<0.05) were 

made per slice, and this was used for further analysis (see 

Table S2 at Dryad).

Tissues were matched to achieve a more in-depth compari-

son between the Z. mays studies. For mature tissues, the sam-

ple from Chang et al. (2012) was most similar to section 14 

from Tausta et al. (2014) and to slice 2, here, while the young-

est section in Tausta et al. (2014) was most similar to slice 4, 

here (Spearman correlation, Fig. S3A at Dryad). The Tausta 

et al. (2014) study was able to detect genes with a lower log 

fold change (relative to the total log fold change distribution) 

than either Chang et  al. (2012), with just one replicate, or 

this study, with low enrichment. However, examining log fold 

change indicated the differences between studies ran deeper 

than statistical power, with many genes signi"cant in one 

study not enriched or even signi"cantly enriched in the oppo-

site direction in another study (Fig 2B–D).

Qualitative study comparison
For a more qualitative look at the differences between stud-

ies we performed a hierarchical clustering of samples from 

this study, those from Chang et al. (2012) and Tausta et al. 

(2014), and the unseparated sections from Li et  al. (2010) 

that corresponded to Tausta et al. (2014). The samples clus-

tered primarily by study, followed by leaf age and then M and 

BS, with some mixing (Fig.  2E). Between-study differences 

could in theory come from growth conditions and plant age, 

from differences in separation method or from a combina-

tion thereof, and all studies but Li et al. (2010) and Tausta 

et  al. (2014) used distinct growth and harvest conditions 

(see Table S3 at Dryad). Notably, the unseparated sections 

from Li et al. (2010), which were grown comparably to those 

from Tausta et  al. (2014) clustered not with the associated 

leaf sections of Tausta et al. (2014), but with the respective 

older or younger serial "ltration data here, indicating a sub-

stantial role of separation method in clustering. Indeed, one 

of the gene clusters (3) was primarily expressed at a lower 

level across the laser micro-dissection (Tausta et  al., 2014) 

samples compared with all the other samples (including 

Li et  al., 2010). RNA is known for its degradability under 

procedures like laser micro-dissection, and Li et  al. (2010) 

clearly reported the 3′ bias in the laser micro-dissection sec-

tion 14, but did not at that time have the comparative studies 

to evaluate how this would globally affect the results. A list 

of genes most dramatically affected by laser micro-dissection 

was obtained by looking for genes with signi"cantly different 

abundance between unseparated (Li et al., 2010) and the laser 

micro-dissection separated section 14 (Li et al., 2010; Tausta 

et al., 2014). The majority (3298 of 3362) of the differentially 

regulated genes were downregulated in the laser micro-dissec-

tion samples. These laser micro-dissection ‘downregulated’ 

genes were depleted in BS vs M, differences shared with this 

study (Fig. 3A; Fisher’s exact test, P<0.001). Further, these 

genes showed several functional enrichments (MapMan cat-

egories), including major categories such as transport and 

signaling; and minor categories such as minor CHO metabo-

lism.callose, GARP G2-like transcription factor family and 

Class XI Myosin (Dataset S2 at Dryad). Finally, the strong 

3′ bias resulted in a low diversity library compared with the 

other studies (see Fig. S3B, C at Dryad).

Considering the effect degraded RNA can have, we evalu-

ated the 3′ bias across studies to see how the other separation 

methods compared. The three prime bias was highest in the 

laser (Tausta et al., 2014) and mechanical (Rao et al., 2016) 

micro-dissection studies; however, it was present to various 

degrees in at least some samples of the other separation stud-

ies and in multiple other Z.  mays studies without separa-

tion (Li et al., 2010; Sekhon et al., 2013; Wang et al., 2013; 

Fig. 3C). Notably, both studies that used distinct methods for 

isolation of BS strands and M cells (John et al., 2014; Chang 

et al., 2012) showed minor 3′ bias, but each M sample showed 

more than its corresponding BS sample (Fig. 3C). The 3′ bias 

was not spread evenly across all genes, but was higher in the 

199 genes where Chang et al. (2012) and slice 2 (this study) 

were signi"cantly, but oppositely, enriched in the BS and M, 

respectively (see Fig. S4 at Dryad). Overall mild increases in 

3′ bias between samples are prominent in these 199 genes and 

their orthologs, notably including the M samples in Chang 

et  al. (2012) and Tausta et  al. (2014) and one BS replicate 

from this study. The orthologs of these 199 genes, measured 

by John et al. (2014) mostly (138 of 184; 75%) were enriched 

in the same direction as Chang et al. (2012), while those meas-

ured by Rao et  al. (2016) mostly (101 of 152; 66%) agreed 

with this study (Fig.  3C). In contrast, neither cross-species 

comparison showed a notable BS or M bias in orthologs of 

the opposite gene set—the 14 genes where Chang et al. (2012) 

and slice 2 (this study) were signi"cantly enriched in the M 

and BS, respectively (Fig.  3D). In summary, despite evolu-

tionary distance between Z.  mays and S.  viridis, the stud-

ies with higher, degradation-marking 3′ bias in the M than 

BS (Chang et al., 2012; John et al., 2014) share a set of ‘BS 

enriched’ genes that con'ict with the M enrichment seen in 

Z. mays (this study) and P. virgatum (Rao et al., 2016).

To determine if  different RNA quality and 3′ bias relate 

to some of the discrepancies between the Z.  mays studies, 
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we quanti"ed the level of 3′ bias on genes in two differ-

ent con'ict sets—con'ict set 1: BS speci"c in Chang et  al. 

(2012) or Tausta et al. (2014) and M speci"c in the compa-

rable tissue here, or BS (Chang et al., 2012) and M (Tausta 

et  al., 2014, section 14); con'ict set 2: as con'ict set 1 but 

with BS and M switched). This showed that con'ict set 1 

had the most 3′ bias across all studies while con'ict set 2 had 

the same or even less bias than the whole gene set (Fig. 3B). 

One of the genes in ‘con'ict set 1’ is related to the C4 cycle, 

namely phosphoenolpyruvate carboxylase kinase (PPCK; 

GRMZM2G178074), which regulates PEPC in the M (Vidal 

and Chollet, 1997). The coverage across the PPCK locus 

shows a mild 3′ bias in unseparated studies and in both BS 

and M samples here, with higher coverage in the M (Fig. 4). 

In the laser micro-dissection study, there is a strong 3′ bias in 

both samples, with more remaining coverage in the M sam-

ple, while in the Chang et al. (2012) sample, there is a mild 3′ 

bias in the BS sample, but a strong 3′ bias in the M sample, 

Fig. 2. Interstudy comparison. (A) Enrichment of the classic BS (NADP-ME) and M (PEPC) marker genes in each study. (B–D) Log2 fold change of genes 

that were significantly enriched in BS or M in at least one of the paired Z. mays studies. (E) Hierarchical clustering of fully normalized log2 (TPM) for 

Z. mays samples, with Pearson and Spearman correlation-based distance for genes and samples, respectively. Genes filtered to those with TPM min>0, 

max>50. Side colors included to help delineate studies on the x-axis and major clusters on the y-axis. C, Chang et al. (2012); D, this study; L, Li et al. 

(2010); T, Tausta et al. (2014).
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causing PPCK to appear higher in the BS based on total read 

count. While not all genes in ‘con'ict set 1’ looked like this 

(e.g. many had a very strong 3′ bias across every sample and 

study; not shown), other similar examples were not hard to 

"nd (see Fig. S5 at Dryad). Further, components of ‘con'ict 

set 1’ were enriched in several MapMan categories. These 

included three transcription factor sub-categories (PHD "n-

ger, pseudo ARR, and putative), and minor CHO metabo-

lism.callose in genes BS speci"c in Chang et al. (2012), and M 

speci"c in slice 2 of this study (Dataset S2 at Dryad).

Another likely artifact of the separation method is the 

residual contamination with non-M and non-BS tissue types. 

The mechanical separation methods are expected to co-purify 

the vascular bundle with the BS cells, while the serial grinding 

and "ltration used here presumably includes all cell types in at 

least one of the enrichment fractions. To con"rm and quan-

tify these expectations would require unambiguous markers 

that were known to, for instance, be highly speci"c to the 

vascular tissues and absent from M or BS. In the absence of 

fully characterized markers in Z. mays, we tested a variety of 

candidates, largely known from other species.

Putative vascular markers were initially selected from the 

literature based on functions expected to be highly vascu-

lar speci"c. Enzymes associated with ligni"cation of proto-

xylem elements (LAC17) were more abundant in the BS base 

sample (Fig. S6A at Dryad; FDR<0.05 for three of the four 

expressed). Similarly, homologs to Arabidopsis XYLEM 

CYSTEIN PROTEASE (XCP) 1 (GRMZM2G066326) and 

Fig. 3. Technical bias. (A) The fraction of significant differences discovered here (slice 2) that were shared with the Tausta et al. (2014; section 14) study 

broken up based on whether these genes were of significantly lower abundance in the laser micro-dissected section 14 compared with whole section 

14 (Li et al., 2010; Tausta et al., 2014). (B) The 3  bias observed in the coverage for the genomic background and the two conflict sets in each Z. mays 

separation study, and all the unseparated samples of Li et al. (2010), Wang et al. (2013), and Sekhon et al. (2013). (C, D) The tissue enrichment of the 

Z. mays genes and the S. viridis (John et al., 2014) and P. virgatum (Rao et al., 2016) orthologs where the Z. mays gene was significantly more abundant 

in the BS in Chang et al. (2012), and the M in slice 2 (this study) (C), or vice versa (D). (E) Transcript coverage by study. For all BS and M separation 

studies, blue represents BS, yellow represents M, and tissue maturity increases from light to dark. Green represents I-e in this study (Denton 2016).
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2 (GRMZM2G367701), involved in programmed cell death 

in the xylem, were higher in the BS base sample (Fig. S6B at 

Dryad; FDR<0.001 for all three). These markers, however, 

were not expressed in older tissue and thus could not be used 

for interstudy comparisons. SUCROSE TRANSPORTER 

2 (SUT2), frequently used as a companion cell marker in 

Arabidopsis (AT2G02860; Meyer et  al., 2000), has "ve 

homologs in Z.  mays, for which the cumulative expression 

was enriched in the BS across all Z. mays studies (see Fig. 

S6C at Dryad). A  study on phloem transported RNAs in 

Arabidopsis (Deeken et  al., 2008) provided a larger list of 

potential vascular markers; however, the cumulative expres-

sion was again higher in the BS across studies (Fig. S6D at 

Dryad). We further examined sets of genes that included 

‘phloem’ (Fig. 5A), ‘xylem’ (Fig. S6E at Dryad), or ‘vascu-

lar’ (Fig. S6F at Dryad) in their descriptions. Cumulative 

expression of these keyword gene sets was largely higher in 

the BS across studies; however, for ‘phloem’ and ‘vascular’ 

genes, BS enrichment in the laser micro-dissected samples 

was less than BS enrichment of these genes in the mechanical 

separation studies.

We further evaluated the distribution of putative epider-

mal markers. A previous study using laser micro-dissection 

to separate epidermal and M tissues identi"ed two epi-

dermal speci"c genes in Z.  mays (Javelle et  al., 2010). The 

more highly expressed of these, GRMZM2G345700, was 

consistently higher in the M samples (Fig. S6G at Dryad; 

FDR<0.05 in six of nine comparisons), while the less highly 

expressed GRMZM2G387360 was not signi"cantly enriched. 

A broader look at all genes including the words ‘epidermal’ in 

their descriptions (Fig. 5B) showed higher cumulative expres-

sion in the M in most comparisons, while the most substan-

tial M enrichment appeared to be in this study (Fig. 5B). It is 

hard to draw a "rm conclusion in the absence of unambigu-

ous markers, as expression patterns in epidermal cells may 

be more similar to M than BS, and vice versa for vascular 

expression. However, both expectation and a view on the 

broader patterns support co-puri"cation of vascular tissues 

with the mechanical BS puri"cation methods, co-puri"cation 

of epidermal tissue with the M in the serial "ltration method 

used here, and generally less co-puri"cation using laser 

micro-dissection.

The strengths of interstudy comparison

Multiple study comparisons allow for con"dence in results 

that would seem dubious alone. In this study, aspartate ami-

notransferase stood out as having transcript enrichment in 

M cells (Fig. 6A) that was contrary to the expected even dis-

tribution between cell types in the current Z. mays C4 model 

(Furbank, 2011; Pick et al., 2011). Comparison with the other 

datasets con"rmed the same pattern in all NADP-ME studies 

(Z. mays and S. viridis). Previous studies (Chang et al., 2012; 

Tausta et al., 2014) have mentioned a low-expression BS spe-

ci"c AspAT paralog, or the detection of AspAT in both BS 

and M proteomic studies as balancing explanations. However, 

in both transcriptomics and proteomics (Friso et  al., 2010; 

Majeran et al., 2010) the total abundance is much higher in 

the M.  This is further supported by the high M speci"city 

of the AspAT enzyme activity (Fig. 6A). A similar but less 

pronounced pattern in transcripts could be found for alanine 

aminotransferase (see Fig. S7A at Dryad).

Consistent BS or M enrichment as the leaf develops helps 

increase con"dence, both as a repeat observation and as a sim-

ple explanation consistent with the gradual nature of changes 

in transcript abundance during leaf development (Pick et al., 

2011). On the 'ip side, however, it seems less likely that a gene 

changed from BS speci"c to M speci"c or vice versa during 

development. We used the interstudy comparison to evalu-

ate the reliability of observed switches in enrichment across 

leaf development. As expected, genes that were signi"cantly 

enriched in M-then-BS or BS-then-M in sections 4 and 14 of 

Tausta et al. (2014) were much less likely to "nd cross-study 

support (same enrichment direction in slice 4 and 2 of this 

Fig. 4. Coverage of example gene PPCK. Read depth across genomic 

region of PPCK (GRMZM2G178074; which is in conflict set 1) in the 

various Z. mays separation studies, and in the unseparated samples of Li 

et al. (2010), Wang et al. (2013), and Sekhon et al. (2013).

Downloaded from https://academic.oup.com/jxb/article-abstract/68/2/147/2770524
by Universitaetsbibliothek Duesseldorf user
on 22 January 2018

Chapter 2. First Author Manuscripts 50



Freeze-quenched separation of maize mesophyll and bundle sheath | 155

study) than their M-then-M or BS-then-BS enriched coun-

terparts (19% vs 78%, Fisher’s exact test P<0.001). However, 

the 48 genes that were signi"cantly enriched in the BS in sec-

tion 4 (Tausta et al., 2014) and in the M in section 14 (Tausta 

et al., 2014) with support from this study showed enrichment 

in the functional category ‘protein.synthesis.ribosomal pro-

tein.eukaryotic.60S subunit’ and all parental categories there 

of (Dataset S2 at Dryad). Further investigation showed that 

both the 60S and 40S ribosomal subunits have a clear pattern 

with strong BS enrichment in young but entirely unsheathed 

tissue (section 4, Tausta et al., 2014; slice 4, here). As the leaf 

develops the strong BS enrichment fades, and even switches 

to a mild M enrichment (Fig. 6B and Fig. S7B at Dryad). To 

determine if  the mature M enrichment could be related to 

supporting the high turnover of photosystem II components, 

we included the data for S.  viridis (John et  al., 2014) and 

P. virgatum (Rao et al., 2016) in the analysis. Notably the 60S 

and 40S ribosomal subunits showed M enrichment in S. vir-

idis (Fig. 6B and Fig. S7B at Dryad), in which photosystem 

II, like in Z. mays, is primarily localized to the M (Fig. 6C). 

In contrast, these subunits showed BS enrichment in P. virga-

tum (Fig. 6B and Fig. S7B at Dryad), in which photosystem 

II is not primarily localized to the M (Fig. 6C).

Data accessibility and visualization

To facilitate public comparison of these transcriptomes, we 

are providing (i) a Z. mays gene browser with gene-speci"c or 

gene-group visualization of the data from BS/M separation 

studies in Z. mays; and (ii) all the data analysed in this study 

(including non-Z.  mays BS vs M comparisons, and unsepa-

rated Z. mays studies) in tabular format (Dataset S3 and S4 at 

Dryad). The Z. mays gene browser aims to facilitate compari-

son and critical evaluation of the similarities and differences 

between these studies. To this end, the graphics include the sep-

aration method in the display and necessary contextual data 

(e.g. unseparated samples from Li et al. (2010) corresponding 

to the laser micro-dissection samples from Tausta et al. (2014), 

and 3′ bias (Fig.  7). Further, the browser includes several 

pre-loaded gene sets to help users compare studies (Fig. 7B). 

These sets include, for example ‘con'ict set 1’ described above. 

Further gene sets include three gradations of highly supported 

M or BS speci"c genes across studies (735, 365, and 126 signi"-

cant differences; shared between 7+, 8+, or all 9 of the com-

parisons, respectively), and highly supported M or BS speci"c 

transcription factors (52 signi"cant differences shared between 

7+ comparisons), and transcription factors of special inter-

est in immature tissue (36 signi"cant differences in two of the 

three youngest comparisons (Tausta et al., 2014 section 4, and 

slice 4 and 5, here) and higher in foliar than husk primordia in 

Wang et al. (2013). Full lists and descriptions are provided in 

Dataset S5 at Dryad and with the visualization tool at http://

www.plant-biochemistry.hhu.de/resources.html.

Discussion

Despite the variety of BS and M separation methods used 

and increasing number of studies, no method presents itself  

as a clear best option. Rather, the various methods come with 

advantages and disadvantages, which should be considered 

both when planning the experiment and evaluating the data.

The only fast methods for metabolite extraction are leaf 

rolling (Leegood, 1985) for M compared with whole tissue, 

and grinding and serial "ltration on liquid nitrogen as per-

formed here (Stitt and Heldt, 1985). Only a handful of metab-

olites measured in these studies overlap, and the correlation 

between studies is modest. Elements of this study might help 

clarify why and plan the next experiment. First, there were 

very substantial differences between the <1 s harvest and the 

10 s harvest and between the different leaf slices. This high-

lights that the dynamics of abundance of metabolites make 

them extremely sensitive to both conditions and harvest 

methods. Considering the dominance of age, conditions and 

Fig. 5. Co-purification of additional tissues. Fully normalized abundance of genes that included the word ‘phloem’ (A) or ‘epidermal’ (B) in their MapMan 

description.

Downloaded from https://academic.oup.com/jxb/article-abstract/68/2/147/2770524
by Universitaetsbibliothek Duesseldorf user
on 22 January 2018

Chapter 2. First Author Manuscripts 51



156 | Denton et al.

method over BS vs M differences in the clustering of RNAseq 

data, it is perhaps unsurprising that the even more labile 

metabolites continue to pose challenges. Similarly, the low 

absolute enrichment of this method and the Leegood (1985) 

method decreases the signal to noise ratio, particularly mak-

ing identi"cation of low log fold changes between cell types 

dif"cult (as seen in the RNAseq). This is likely exacerbated 

by the division of some metabolites, such as aspartate and 

Fig. 6. Biological insights drawn from interstudy comparison. (A) Tissue enrichment of AspAT of transcripts in maize (left), enzyme activity in Z. mays 

(mid-left), transcripts in S. viridis (mid-right) and transcripts in P. virgatum (right). (B, C) Tissue enrichment of transcripts in the MapMan functional category 

for 60S ribosomal protein (B) and photosystem II (C) in Z. mays (left), S. italica (middle), and P. virgatum (right). In (A) asterisks denote significance of FDR 

for transcripts and P-values for enzyme activity (*P<0.05, **P<0.01, ***P<0.001).
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malate, into active and inactive pools. These inactive pools 

can be substantial, accounting for about 60% and 80% of the 

total aspartate and malate, respectively, in the grass Chloris 

gayana (Hatch, 1979). In contrast, the high density of plas-

modesmata between M and BS cells in C4 plants supports 

diffusion of C4-cycle metabolites at the rate of carbon "xa-

tion (Laisk and Edwards, 2000); it is thus implausible that 

any cytoplasmic metabolite could build up enrichment levels 

comparable to transcripts and enzymes. Therefore a study 

prioritizing understanding metabolic differences between BS 

and M cells should err on the side of a few more replicates 

than the "ve that is the ‘industry standard’ for metabolic stud-

ies (Sumner et  al., 2007). Similarly, sequencing a few more 

than the typical two to three replicates for RNAseq may help 

compensate for the lower sensitivity of this method.

For any study not targeting metabolites, the higher purity 

achieved by any of the other methods over the method here 

has an obvious allure; however, the biases associated with 

lower quality RNA must be accounted for. As shown here 

and reported previously (Romero et al., 2014) RNA does not 

degrade at consistent rates, but rather some RNA molecules, 

often including transcription factors (Yang et al., 2003), are 

much more sensitive to degradation. These degradation-

sensitive genes are numerous (12.5% of detectable genes 

showed signi"cantly lower abundance after laser micro-dis-

section; Li et al., 2010; Tausta et al., 2014). Further, shared 

genes with bias in Chang et al. (2012) and John et al. (2014) 

indicate degradation sensitivity is conserved across species 

and can masquerade as conserved tissue speci"city. For the 

above reasons, care must be taken not to intermingle any 

biological signal sensitive to degradation and the biological 

signal between samples. For instance, the two callose syn-

thases that Chang et al. (2012) discussed as being BS speci"c 

(GRMZM2G553532 and GRMZM2G004087) appear to 

be very sensitive to degradation as they are both among the 

genes signi"cantly less abundant after laser micro-dissection, 

and one, GRMZM2G553532, is in the con'ict set 1 list with 

strong 3′ bias. This raises the worrisome question of whether 

this is a case of differential expression, or differential degrada-

tion. Future studies may be able to circumvent such problems 

by including a third and unseparated sample that can be used 

to detect genes particularly affected by degradation—much 

Fig. 7. Web visualization resource. (A) Comparative BS and M separation targeted graphical heatmap view of example gene (GRMZM2G129261). (B) 

Example gene set visualization of highest confidence M transcription factors.
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as we’ve been using the unseparated section 14 from Li et al. 

(2010) as the context for the Tausta et  al. (2014) separated 

section. This method has been employed by a recent study 

using SuperSage on mechanically separated BS and M proto-

plast in Sorghum (Döring et al., 2016).

A more ideal solution is of course to avoid mixing biologi-

cal and technical signals by handling RNA in a fashion that 

preserves RNA quality or at least results in the same amount 

of degradation in the M and BS samples. Quality control must 

be performed carefully as a study using the same separation 

technique as John et al. (2014) for qPCR in sorghum achieved 

very comparable bioanalyser traces for their mechanical BS 

puri"ed and their leaf-rolled M samples (Covshoff et  al., 

2013). Indeed, this method was speci"cally employed for its 

speed and lack of stress response compared with M proto-

plast isolation, but still showed distinctly higher 3′ bias in M 

than BS (John et al., 2014). Thus if  a distinct method is to be 

used for M and BS puri"cation, equivalent RNA needs to be 

con"rmed for the particular species and particular researcher, 

and not simply assumed based on literature.

While the micro-dissection studies had the strongest overall 

3′ bias, there was equivalent bias in the M and BS samples. 

This resulted in false negatives and lower library complexity, 

but had no clear link to false positives. In the microdissec-

tion studies, an alternative explanation for the 3′ bias is the 

synthesis of the "rst strand cDNA using an Arcturus Ribo 

Amp HS kit, which has been shown to induce a strong 3′ bias 

in housekeeping genes (Clément-Ziza et al., 2009). This does 

not, however, nullify the substantial differences and loss of 

transcript detection seen between the laser micro-dissected 

(Li et al., 2010; Tausta et al., 2014) and the unseparated sam-

ples (Li et  al., 2010). There is ongoing research in improv-

ing laser-micro-dissection techniques in plants (Ludwig and 

Hochholdinger, 2014). We recommend that while techniques 

remain uncertain, researchers invest the necessary time and 

money in quality control steps and unseparated controls to 

assure that the bias that is there is traceable.

Use of a different bioinformatics work'ow may make a 

small difference in the measured abundance of genes with a 

strong 3′ bias, but a perfect solution is not yet available, par-

ticularly as tools are not optimized for this. Small additions 

to a typical work'ow, such as 'agging discrepancy in 3′ bias 

between groups (e.g. Chang et al., (2012)’s samples in Fig. 4), 

could help avoid erroneous conclusions.

Where one study has weaknesses, interstudy comparison 

can provide a helpful additional opinion. The completion of 

a third Z. mays M and BS separation RNAseq study with a 

complementary technique here continued to yield new bio-

logical results. Particularly in areas where results may seem 

dubious, consensus between several studies (with different 

techniques or information gathered) is required to gain con-

"dence. An example of this is AspAT’s consistent M localiza-

tion, which while previously noted (Chang et al., 2012; Tausta 

et al., 2014), was not taken seriously without the supporting 

enzyme activity data. It may have a simple explanation such 

as a higher substrate to product ratio in the BS requiring less 

enzyme, or a more complex one such as an aspartate pool in 

the M simply adding stability to CO2 "xation should diffusion 

or decarboxylation of malate become temporarily limiting. 

Either way, this warrants further investigation. Similarly, 

the switch from BS to M speci"city of ribosomal proteins is 

much easier to trust when identi"ed in two independent stud-

ies. Differentiation of veins and the associated BS cells pre-

cedes that of the M, and signals from the BS are necessary for 

M differentiation in Arapidopsis (Kinsman and Pyke, 1998; 

Lundquist et al., 2014), and the C4 dicot Gynandropsis gynan-

dra shows the same developmental trajectory (Külahoglu 

et al., 2014). Therefore, we hypothesize the initial BS enrich-

ment in protein synthesis may re'ect faster differentiation and 

photosynthetic ramp-up in the BS cells. As the photosynthetic 

rate increases along the developing leaf (Pick et  al., 2011), 

the shifting of the protein synthesis towards the M likely sup-

ports the high turnover of photosystem II subunits (Rokka 

et al., 2005). Considering that photosynthesis-related proteins 

make up over half of mature leaf protein (Friso et al., 2010; 

Majeran et al., 2010), the distribution of protein synthesis in 

mature leaf may re'ect the balance between the demand from 

synthesizing photosystem II (when in the M) and synthesizing 

Rubisco and the other BS-speci"c CBBC enzymes.

Altogether, the separation technique of choice depends 

upon the research question. In many cases the weaknesses of 

one study are compensated for by the strengths of another, 

particularly when biases are characterized and taken into 

consideration. This work provides a visual access tool sum-

marizing this study and Li et al. (2010), Chang et al. (2012) 

and Tausta et  al. (2014), tables of all data looked at here 

(above and Wang et al., 2013; Sekhon et al., 2013; John et al., 

2014; Rao et al., 2016), and highlights biological observations 

drawn from the sum of many studies.

Data deposition

The following data are available at Dryad Digital Repository 

http://dx.doi.org/10.5061/dryad.tf6q6.

Datasets S1. Enzyme activity and metabolite abundance.

Datasets S2. Functional enrichments.

Datasets S3. Compiled RNAseq data.

Datasets S4. By gene 3′ bias.

Datasets S5. Gene sets of interest. 

Fig. S1. Setup and con"rmation of separation method.

Fig. S2. Metabolite enrichment.

Fig. S3. Contextual data for interstudy comparison.

Fig. S4. Coverage of BS (Chang et  al., 2012) vs M (this 

study) con'ict genes.

Fig. S5. Example read coverage.

Fig. S6. Co-puri"cation of additional tissues.

Fig. S7. AlaAT and 40S ribosome distributions.

Table S1. Bioinformatics parameters.

Table S2. Counting signi"cant differences.

Table S3. Harvest and growth conditions.
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Supplementary Fig. 6: Evaluating Co-purification of additioan tissues. Fully normalized abundance
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2.3 Manuscript 3:

Expression divergence following gene duplication con-

tributes to the evolution of the complex trait C4 pho-
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Title: Expression divergence following gene duplication contributes to the evolution of

the complex trait C4 photosynthesis.

Authors: Alisandra K. Denton∗, Janina Maß∗, Canan Külahoglu, Martin Lercher, An-

drea Bräutigam and Andreas P.M. Weber

∗ These authors contributed equally to this manuscript

Co-first authorship

Contributions

• Assistance in wet lab work (see 2.2)

• Phylogenetic analyses (pipeline automation), incl.

– homology detection

– multiple sequence alignment

– outlier filtering

– phylogenetic tree reconstruction

– selective pressure (dN/dS) determination

• Discussion and interpretation of data

• Editing of manuscript

• Additional bioinformatic support
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b

a

Fig. 1: The core C4 cycle: abundance and distribution of transcripts and enzyme activities (a).

The bars from left to right are immature to mature M, followed by immature to mature BS, as

summarized in (b). Bars show transcript abundance in FPKM with colors denoting different

paralogs. Red lines represent relative enzyme activity. Inside: schematic summary of the core C4

cycle with enzymes as pentagons, transporters as circles, and regulatory proteins as stars.

Chloroplastic enzymes are in green compartments and the (putative) mitochondrial reactions in

the purple compartments. Abrieviations: Asp = aspartate, Mal = malate, OAA = oxaloacetate, Pyr

= pyruvate, PEP = phosphoenolpyruvate, PPDK = pyruvate phosphate dikinase, PPDK RP =

PPDK regulatory protein, PEPC = PEP carboxylase, PEPCK = PEP carboxykinase, PPCK =

PEPC kinase, CA = carbonic anhydrase, PPT = phosphate/PEP tanslocator, ASPAT = aspartate

amino transferase, ALAAT2 = alanine amino transferase 2, TPT = triose phosphate translocator,

NAD(P) = nicotinamide adenine dinucleotide (phosphate), MDH = malate dehydrogenase, ME =

malic enzyme.
11

Chapter 2. First Author Manuscripts 81



C
4

c
lo

s
e
s
t

re
m

a
in

in
g

0
2
0
0
0

4
0
0
0

6
0
0
0

P
e
a
k
 F

P
K

M

*Zm

Zm

Sb Si
Os

Bd

Zm

Zm

SbSiBd

Os

a

C
4

c
lo

s
e
s
t

re
m

a
in

in
g

1
.0

0
.5

0
.0

0
.5

1
.0

r p
 t
o
 P

S

C
4

c
lo

s
e
s
t

re
m

a
in

in
g

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ti
s
s
u
e
 s

p
e
c
if
ic

it
y

b c

d e f

all C4

8
6

4
2

0
2

4

 l
n

[(
1

+
R

)/
(1

R
)]

all C4

0
5

1
0

1
5

|l
n

(M
a

x
1

/M
a

x
2

)|

Fig. 2: Expression characteristics and divergence of the core C4 genes. The absolute expression

level (excluding regulatory genes)(a), the BS or M tissue specificity (for C4 genes that are tissue

specific in Z. mays only)(b), and the similarity (rp) in expression to the PS (photosynthesis)

MapMan category (c) between C4 genes (green), their phylogenetically closest homologs in each

species (blue), and the remaining homologs (red). Example classification of homologs on a

perfect, no-loss gene tree (d). Where there was only one non-C4 homolog in any species (grey),

homologs could not be classified as closest nor remaining and were excluded. Quantification of

the divergence in expression pattern (e) and level (f) between the C4 genes and their paralogs vs

between all other paralogs.
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Fig. 3: Paralogs in the edges between expression clusters and their functional enrichments.

Example’s of significantly enriched functions (fdr <0.05) are shown with an arrow to edge

between clusters in which they are enriched (all significant enrichments included in

Supplementary Dataset 4). Clusters plotted as z-scores with M base to tip followed by BS base to

tip from left to right. The width of the lines connecting clusters is relative to the number of pairs

in the edge connecting the respective clusters, while the color indicates whether the edges are

larger (blue) or smaller (yellow) than expected based on the total number of pairs in non-loop

edges of the connected clusters.
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Fig. 4: The relationship between paralog number and expression characteristics related to C4
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orthogroup in respective species)(a-b). Cases where all 5 species show a photosynthetic-like

expression pattern (see Supplementary Fig. 18) are considered conserved, while cases where 4 of

5 or 1 of 5 species show a photosynthetic-like expression pattern are considered gain or loss,

respectively. The odd species out is Z. mays in (a) or O. sativa in (b). The significance of tissue

specificity (average p-value) vs the group size in (c) Z. mays and (d) O. sativa.
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Methods

Statistical notes. Unless otherwise noted, all statistical analysis was performed in the R statistical

environment. Whenever a test was performed more than 20 times, the false discovery rate [68] was

calculated from the resulting p-value.

Obtaining and processing plant Genome Data. Genome and gene-model data was downloaded

for 12 grasses with available genomes and for banana as an outgroup from Phytozome 10.0 (Z.

mays, S. bicolor, S. italica, O. sativa, B. distachyon, Panicum halli, Panicum virgatum; [69])

or Gramene V40 (Oryza brachyantha, Oryza glaberrima, Triticum aestivum, Triticum urartu,

Hordeum vulgare, Musa acuminata; [70]). In cases with multiple gene models, the longest protein

sequence was used for further analysis.

Defining homology. Three methods were used to define homologous genes as appropriate for

the context. First, BLAST [71] was used to define pairs of homolgous genes by reciprocal best

hits as well as the ’best’ ortholog for a Z. mays gene by one-directional best blast hit. Second,

OrthoMCL [72] was used to more inclusively define whole orthogroups/gene families. Third, we

used paralogs which were previously found to have originated from the pan-grass WGD, the Z.

mays specific tetraploidy, or from tandem duplications [27].

Mapping between species and genome annotations. Combining data for this study required

confident mapping of gene identity between different genome releases. As not all genes with the

same identifier show any homology, we used a combination of BLAST and provided mappings

(i.e. matching IDs, ftp://ftp.gramene.org/pub/gramene/maizesequence.org/release-5a/working-set/

4a discontinued ids.txt) to obtain confident mappings. Mappings were given a score of 0 for a

provided mapping and a reciprocal best BLAST hit, 2 for only a reciprocal best blast hit, 3 for

a provided mapping and best BLAST hit from Z. mays 6a to the other genome, and 5 for only

a best BLAST hit from 6a to the other genome. Ties were broken randomly. The same scoring

was used for interspecies mappings, but without provided mappings. Finally, before using the

annotated duplicate origins [27] we filtered pairs that didn’t pass a final quality check to see if

the mapped WGD derived duplicates showed collinearity using McscanX [73] and if the mapped

tandem duplicates occurred within 40 genes of each other.

Phylogenetic analysis. Multiple sequence alignment for orthologous groups was performed with

prank [74], and in the case of pairwise Z. mays sequences with MAFFT [75]. The ungapped align-

ment area of the resulting multiple sequence alignment was maximized by filtering poorly aligned

and gap-causing sequences with seqSieve (https://pypi.python.org/pypi/seqSieve/0.9.1). Resulting

protein alignments were translated to codons with pal2nal [76]. Phylogentic trees were constructed

with RaxML [77]. Plots were produced using the ete2 python package [78]. For display only, we

manually corrected the PPDK tree so that the paralogs originating from the Z. mays tetraploidy

were sister to each other. Pairwise estimates for the synonymous and non-synonymous substi-

tution rate (dS and dN) were calculated using codeml from the PAML package [79]. In a test

set (described at end of methods) the signature of positive selection (dN/dS >1) was tested using
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the branch site model, and significance calculated with a likelihood ratio test [80]. This test was

performed at all Z. mays genes, their parental branches, and the parental branches there of.

Plant Growth conditions and harvest. Z. mays B73 were grown in the summer of 2012 in the

same green house and conditions as previously described [36]. The 3rd leaf was harvested when

it measured 18 cm from the 2nd ligule to the leaf tip. Two different harvesting methods were

performed. In the first, a leaf gradient consisting of 5 sequential developmental slices (4 cm each)

were harvested simultaneously using the “leaf guillotine” [36]. This method required 10s to extract

the 3rd leaf and properly align it, which does not allow for reliable estimates of the metabolite

distributions for high-turnover photosynthetic metabolites. Therefore, a second harvesting method

was performed, in which the plants were positioned above two liquid nitrogen containers and two

8 cm slices were cut with connected scissors (Supplementary Fig. 1). With this method there was

a delay of less than 1s between slicing and quenching. The full, five slice gradient was used for

RNA sequencing, and the faster two slice gradient was used for metabolite extraction.

Tissue enrichment. Mesohpyll and bundle sheath tissues were mechanically enriched by serial

filtration on liquid nitrogen using a method modified from [37]. Ground material was filtered

through 250, 80, and 41µM meshes on liquid nitrogen. Three fractions were selected for further

analysis because they showed the most enrichment of bundle sheath tissue (did not pass through

80µM mesh), most enrichment in mesophyll tissue (passed through 41µM mesh) or intermediate,

but consistent proportions of tissues (did not pass through 41µM mesh).

Extraction and abundance measurements metabolites/enzymes. Enzymes were extracted and

desalted as described in [22] from the three enrichment fractions, and the enzyme activity was

measured through chlorometric assays as described in [81, 82]. Metabolites were extracted and

quantified via gas chromatography/electron-impact time-of-flight mass spectrometry as described

in [83]. To consistently exclude data where the peak was hard to distinguish from the background,

low-signal metabolites were excluded. Further individual replicates with a raw % abundance in

BS of more than 3 standard deviations from the mean were excluded. The integrated peaks were

divided by the area of the ribitol (internal standard) peak and the fresh weight, and to further reduce

noise and compensate for FW/DW differences between the cell types by the mean abundance

for the replicate. Therefore, normalized differences between metabolites represent not absolute

distribution, but distribution relative to the other metabolites, particularly sucrose and the other

highly-abundant metabolites.

Sequencing and estimating transcriptional abundances. RNA was extracted with QIAGEN

RNeasy Plant kits, according to the manufactures instructions except for the addition of an extra

wash step in 80% EtOH. Libraries were prepped from RNA with a RNA integrity number >8 and

sequenced with the Illumina HiSeq 2000 platform. All additional reads were downloaded from the

Sequence Read Archives [84]. Illumina adaptors were trimmed using cutadapt [85] and trimmed

for quality using FASTX (Hannon Lab). Trimmed reads were mapped to the 6a release of the

Z. mays B73 genome (or the respective species’ genome, as available from Phytozome 10.0, so

S. viridis reads were mapped to S. italica genome) with Tophat2 [86] and transcripts abundance
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calculated with Cufflinks [87]. However, one study [39] used for minor comparisons was mapped

only to the 5a genome. For the one microarray study included [35] data was downloaded from Gene

Expression Ombibus [88], and the expression and significance calculated with GEO2R, which

uses the Limma R package [89]. Non-default parameters used for all bioinformatics programs are

provided (Supplementary Table 7).

Estimation of initial tissue specificity by “deconvolution”. The abundance of metabolites, en-

zymes and transcripts was compared to abundance of BS and M markers to estimate the original tis-

sue specificity by a method modified from [37]. First, to allow for comparison of data with different

absolute expression levels, all data was converted into fraction of total transcript in developmental

slice. Second, marker transcript (or marker enzyme) levels were used as proxies for the amount

of M and BS tissue in each enrichment fraction. The natural log of the BS marker/M marker was

plotted against the natural log of a target unknown/M marker across all samples, and the slope of

a regression line between these two log ratios estimated the fraction of target gene transcripts that

are localized to the BS Supplementary Fig. 2. To determine if target unknowns were more related

to either of the tissue markers, we tested whether the slope of this line was significantly different

from 0.5 (corresponding to a null enrichment of 50% M, 50% BS). This was automated with a lin-

ear regression in R and calculated for every non-marker enzyme, metabolite, and every gene that

had a minimum FPKM >0. Tissue specificity was estimated independently in each developmental

slice. We assumed the average abundance between the raw values of all enrichment fractions was

equal to the average abundance between M and BS. Therefore, to estimate the “pure” abundance

values the estimated fraction in BS and M (1 - fraction BS) were multiplied by 2 x the average

FPKM value for the developmental slice. For enzyme and metabolite data, the enzyme activity

of PEPC and NADPME were used as markers for M and BS respectively. For RNA sequencing

data, Lipoxygenase 2 (GRMZM2G015419) and the sum of Ribulose-phosphate 3-epimerase (GR-

MZM2G026807) and Phenylalanine ammonia-lyase 1 (GRMZM2G074604) were used as M and

BS markers, because these markers showed similar enrichment to-, but more steady enrichment

than- PEPC and NADPME throughout development.

K-means clustering. K-means clustering was performed to get an overview of the data and allow

qualitative categorization of divergence between paralogs. K-means clustering was performed

on all genes where the initial tissue specificity could be estimated in every developmental slice

(minimum raw FPKM >0). To choose the number of clusters, the sum of standard error (SSE)

of clusters with the original data was compared to the SSE of clusters with scrambled data [90].

We proceeded with 8 clusters as this provided a fairly low SSE for the original data and a large

difference in SSE between original and scrambled data Supplementary Fig. 25. Clustering was

repeated 10,000 times and the solution with the lowest SSE was selected. Each cluster was tested

for functional enrichment in all distinct MapMan [41] categories with a Fisher’s Exact test.

Defining divergence. We employ two quantitative methods and one qualitative method to esti-

mate divergence. First, we use transformed Pearson correlation between expression patterns as an

interval scaled variable for the amount of divergence in expression pattern. The transformation

is performed to provide an unbounded and more normally distributed value. The transformation
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of Pearson’s r (rp) is equal to ln(1+rp

1−rp
). Second, to measure divergence in expression level, we

recorded the absolute value of the natural log for the ratio between peak expression of the paralogs

(|ln(peakFPKM1

peakFPKM2
)|). Finally, to evaluate divergence in a qualitative fashion, we developed a clus-

tering based method to track particular patterns of divergence. Using graph theory, we considered

the k-means clusters nodes, and pairs of paralogs formed edges either between them or, when both

paralogs occurred in the same cluster, loops. To avoid assigning pairs of paralogs to a divergent

(non-loop) edge, if they had a conserved expression pattern that was intermediate between the clus-

ters, we excluded “boundary” pairs from further analyses. Boundary pairs were defined as pairs in

a non-loop edge where the rp between the expression pattern of the two paralogs was higher than

the the rp of either pair to its cluster center.

Regression analysis. Multiple linear regression was used to compare the expression divergence

(for both pattern and level) of two paralogs to their other characteristics (dN, dS, dN/dS, number

of Z. mays paralogs in orthogroup, whether either paralog was a C4 gene or not). The calculated

p-value represents the chance of seeing the observed improvement in model fit of adding the factor

in question to a model already containing all the other factors if the null hypothesis (no relation)

is true. When comparing values that did not approach a normal distribution (e.g. p-values, FPKM,

% abundance in BS or M) we performed Spearman rank correlation.

Controlling pairwise counting bias. Some analyses could be sensitive to a bias resulting from

counting the pairwise combinations of different sized orthogroups. For instance, there are three

pairwise combinations of the group “a”, “b”, “c” (“a-b”, “a-c”, and “b-c”) and every group member

is counted twice; however, add ’d’ to the group and there are six pairwise combinations (“a-b”, “a-

c”, “a-d”, “b-c”, “b-d”, “c-d”) and every group member is counted three times. To control for

this, without introducing other bias by sub setting the data (e.g. taking reciprocal best blast hits

selects for young paralogs from small gene families), we scrambled the data to get an empirical

p-value accounting for this bias. Specifically we scrambled expression information, but held gene

family information constant and counted the number of instances where the result was as, or more,

extreme than the original to obtain an empirical p-value.

We expected this bias to be most problematic for two analyses: the correlation between num-

ber of Z. mays genes in orthogroup and the expression divergence and the functional enrichment in

edges between clusters. To test the significance of the correlation between the number of Z. mays

genes in the orthogroup and expression divergence we scrambled the expression patterns of genes

and re-calculated rp between the afore mentioned values 3200 times. To test for an enrichment (or

depletion) in edges between clusters and MapMan functional categories, we scrambled the cluster

assignment of ’divergent’ and ’conserved’ pairs 63999 times, and counted the number of cases

where each functional category was more or less enriched than the original in each cluster pair

using the Python Language [91].

Calculating divergence on phylogenetic tree We used a mean of pairs method to calculate the

divergence for nodes of a phylogenetic trees. Pairs consisted of any genes originating from the

same species and occurring on different daughter branches of the node. The mean divergence

23

Chapter 2. First Author Manuscripts 88



across all pairs was taken as the divergence at the node. The test set where this was calculated

consisted of 64 orthogroups of 60 genes or less with at least one divergent pair of Z. mays genes

and one conserved pair of Z. mays genes. The orthogroups were sorted by the expression of lowest

paralog contributing to the conserved or divergent pair, and the 64 most highly expressed were

chosen.
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Supplementary Information

Supplemental Note

C4 cycle. The key feature of C4 photosynthesis is the biochemical pump which concentrates CO2

at the site of Rubisco and suppress the costly process of photorespiration. This can result in a 50%

increase in photosynthetic efficiency [92]. To achieve this, C4 plants use the non-oxygen sensitive

enzyme, Phosphoenolpyruvate Carboxylase (PEPC), to fix CO2 onto Phosphoenolpyruvate (PEP)

in the M. The resulting 4-carbon acid must diffuse to the BS, and be decarboxylated, releasing

CO2. In Z. mays, the primary decarboxylating enzyme is NADP Malic Enzyme (NADPME); how-

ever, around 15% of the carbon appears to flow through the secondary decarboxylating enzyme

PEP Carboxykinase (PEPCK) [36, 93, 94]. The resulting 3-carbon acid diffuses back to the M and

is regenerated to PEP, as necessary, completing the cycle. In addition to the carbon shuttle, a small

part of the Calvin Benson Bassham cycle is localized to the M and the rest to the BS, resulting in a

triphosphate based redox shuttle transporting reducing equivalents to the BS. Both the C4 cycle and

redox shuttle require upregulation of metabolite transporters to support the high flux of metabolites

in and out of subcellular compartments. However, only two transporters have been fully character-

ized in Z. mays. Here-after, when we refer to the core-C4 cycle, we are referring to the enzymes

of the primary and secondary C4 cycle, the known transporters Phosphoenolpyruvate/Phosphate

Translocator (PPT) and Triose Phosphate Transporter (TPT), and the two established regulatory

proteins PEPC Kinase (PPCK) and Pyruvate Phosphate Dikinase - Regulatory Protein (PPDK-

RP).

The elements of the key C4 cycle are well distributed in our data. Transcripts, and where

available enzyme activity, for the enzymes responsible for regenerating PEP (Pyruvate Phosphate

Dikinase, PPDK), converting (Carbonic Anhydrase; CA) and fixing the CO2 (PEPC), and con-

verting the resulting oxaloacetate (OAA) to the transfer acid Mal (NADP Malate Dehydrogenase;

NADPMDH) are higher in the M as expected (p <0.05, enzymes; fdr <0.05, transcripts in Slice

3 - 1; except NADPMDH in Slice 2 where fdr = 0.058; Supplementary Fig. 10, 11. The decar-

boxylation enzymes are both higher in the BS (fdr <0.05, transcripts in Slice 4 - 1; Supplementary

Fig. 10, 11), and the enzyme which can convert OAA that was transported as aspartate to malate

(NAD Malate Dehydrogenase; NADMDH) showed a preference for the BS (p <0.05, enzyme in

Slice 1; fdr <0.05, transcripts in Slice 3 - 2);Supplementary Fig. 10). Several activities in the cycle

are expected to be balanced between tissue types, including the TPT transporter, and the Aspartate-

and Alanine-Amino Transferase (AspAT and AlaAT). TPT expression is quite even between tissues

Supplementary Fig. 12, while AlaAT is enriched in the M at the level of transcripts but not enzyme

activity Supplementary Fig. 10. In contrast, for AspAT both enzyme activity and transcripts are

strongly enriched in the M. However, we find a M specific paralog with high expression level,

and a BS specific paralog with a low expression level, which is very consistent with the previous

studies [39, 40], and even with S. italica [34].
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Metabolites. The metabolic data is hard to interpret as separation was not sufficient to produce sig-

nificant results after multiple hypothesis correction. However, as there is very little data available

for the separation of metabolites between BS and M cells, we want to describe the data anyways

to provide information that may help in the design or analysis of future studies.

This study shows the care that will be required to confidently measure the values of photo-

synthetically active metabolites. The major advantage of the employed technique, is the immediate

shock freezing, and frozen processing of tissue, which allows very little time for changes in leaf

metabolome. Unfortunately, the employed thecnique allows for only modest enrichment of tis-

sues, and in contrast to enzymes and transcripts there are no known internal metabolite controls

that are close-to-perfectly tissue specific, and as small molecular weight metabolites can readily

diffuse across the plasmodesmata, there are unlikely to be any fully tissue specific and cytoplasmic

metabolites. Therefore, enzyme activity was used for normalization.

Although nothing was significant, we will try to briefly summarize the trends in the data.

Metabolites in the core-C4 cycle all behaved similarly in our data, with a tendency towards BS en-

richment in slice 3 4 and a tendency towards M enrichment in slice 1 2 (Supplementary Fig. 26).

The mature tendency towards M matches expectation for aspartate and malate, which need to dif-

fuse from the M to the BS. Two previous studies [37, 95] also estimated that concentrations of

malate were higher in the M than the BS (Supplementary Fig. 27). Glutamate and α-ketoglutarate

are not expected to show a net flux between tissues, and the tendency towards M in mature tissue

is therefore unexpected; however, the estimated % M is surprisingly consistent with that reported

by [95]. In contrast α-alanine showed a tendency opposite to that of the expected concentra-

tion gradient, and incosistent with the previously reported even distribution [95] (Supplementary

Fig. 27). Notably, there were also major differences between the fast 2-slice harvest and slower

5-slice harvest (e.g. α-ketoglutarate; Supplementary Fig. 27). The lack of statistically significant

enrichments, differences between the developmental stages, differences in slow harvest vs fast har-

vest, and inconsistency with previous data (Supplementary Fig. 27), point to, if nothing else, the

lability of metabolites. The same lability that makes metabolites hard to measure between experi-

ments and sensitive for instance to shading or cooling, means the plant must be able to tolerate a

non-continuous distribution of metabolites between tissues.

All the measured photorespiratory metabolites had a tendency towards BS enrichment, as is

expected with the BS specific localization of the photorespiratory cycle (Supplementary Fig. 28).

Other categories of sugars (Supplementary Fig. 29), amino- (Supplementary Fig. 30) and other

organic acids (Supplementary Fig. 31) showed a variety of distributions, with frequent change both

in level and tendency towards tissue specificity between the two slices. Indeed the metabolites

appeared to show more frequent changes in tissue preference than the enzymes or transcripts.

While this may simply reflect the generally high error and low-significance, it may also, in part,

reflect how dynamic the metabolome is.
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Transcription factors of interest There is strong interest in engineering the C4 trait into C3 crop

species to increase photosynthetic efficiency and ultimately growth and yield. However, the com-

plexity of the C4 trait goes well beyond the capabilities of even the most successful current en-

gineering methods. However, the highly convergent nature of C4-evolution provides hope that

extreme changes may be facilitated by comparatively simple changes in regulatory architecture.

Therefore, we used the compiled expression data to highlight some top-candiate transcription fac-

tors of interest to understanding C4 photosynthesis and its evolution.

Individual studies targeting transcription factors of interest to the C4 trait in Z. mays, have

provided candidate lists from X-Y members [29, 36, 38–40]. While this remains a very ambitious

number for individual characterization, taking the intersection of various studies is an extremely

strict measure, that results in 0 remaining candidates [38]. Therefore, we take a more permissive

and inclusive approach to find transcription factors that are of interest in understanding C4 photo-

synthesis supported by four or more of the following six criteria relating to C4 photosynthesis, its

evolution, and kranz anatomy. The criteria were: 1) significantly associated with either the M or

BS marker in all 5 slices in this study; 2) consistent direction of enrichment across all samples

and studies (all BS >M or all M >BS; 3) the FPKM in Z. mays leaf (“V5 Tip s-2 Leaf”, [30]

was at least twice that of both B. distachyon and O. sativa leaves [31]; 4) The peak expression in

floral primordia was at least 1.5 times that of husk primodia [29]; 5) expressed at least 20 FPKM

in floral primordia; And 6) show a correlation to the PS expression pattern (rp) higher that 0.4 in

Z. mays, but not in B. distachyon or O. sativa. In total, 19 transcription factors met these criteria

(Supplementary Dataset 5).

Among the identified transcription factors are ones with particularly interesting orthologs in

A. thaliana. Three DOF transcription factors were selected (GRMZM2G114998, AC233935.1 -

FG005, and GRMZM2G179069), all of which had higher FPKM in maize and the other C4 species

than either C3 species, a photosynthetic-like expression pattern in Z. mays but not in either C3

species, and were more highly expressed in floral than husk primordia. Further, in concordance

with the enrichment of the whole DOF family among BS specific genes, all three selected DOF

genes were higher in the BS of every comparison, and significantly higher in the BS in every slice

of our leaf gradient. The A. thaliana ortholog of GRMZM2G114998, AT4G24060 or DOF4.6,

is expressed at the sites of early vein formation [96], making DOF4.6 an interesting candidate in

understanding the narrower vein spacing in C4 species. The other two DOF family transcription

factoers, GRMZM2G179069 and AC233935.1 FG005, share their closest A. thaliana homolog,

AT3G55370 or OBP3, which is a mediator of phytochrome signaling [97]. Phytochrome signaling

is a major regulator of photomorphogenesis or how a plant develops in response to light [98].

Another mediator of phytochome signaling, the COP9 signalosome, has been putatively linked to

the differences in leaf development seen between C3 and C4 sister species [18].

Two auxin response regulators were identified, both of which were higher in Z. mays than

either C4 species, and higher in floral than husk primordia. Further ARF3 was expressed highly in

the floral primordia, and consistently higher in M than BS; while AXR2 had a photosynthetic pat-
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tern in Z. mays and S. bicolor that was not shared with the C3 species, and was consistently higher

in BS than M. In A. thaliana, ARF3 (AT2G33860) helps mediate the specification of abaxial and

adaxial fate [99, 100]. In a study in grasses, the C4 leaves showed more asymmetry, and modi-

fied M/BS ratios between abaxial and adaxial regions, while the C3 leaves did not [101]. AXR2

(AT3G23050) is involved in the interplay between ABA and auxin response [102]. Auxin is a ma-

jor hormone for specifying vascular cell fate [103], and modifications in auxin signaling, through

modifications in synthesis, transport, perception and timing, are thought to be related to the spe-

cialized vein pattering in C4 species [47]. Finally, in relation to the enhanced secondary cell walls

in BS, MYB52 (GRMZM2G455869) is an exceptionally interesting candidate. MYB52 showed

over twice the FPKM in the C4 species compared to the C3 species, showed a photosynthetic-like

expression pattern specifically in the C4 species, was expressed more highly in the BS in every

comparison, and significantly so across the leaf gradient. A. thaliana over expressing MYB52

(AT1G17950) show hypersensitivity to ABA and increased drought tolerance [104]. MYB52 was

further identified in a “post-genomic” screen for secondary cell wall related proteins, and it’s mu-

tant showed hyper-lignification [105]. In summary, the transcription factors discussed here and

the rest from (Supplementary Dataset 5) are highly interesting candidates, which warrant further

investigation to see if their promising expression patterns and annotations might help drive any of

the features of BS or M tissue specificity in C4 species.

Advancements in understanding the differences between BS and M cells. To determine if this

separation method was consistent with previous studies at a functional level, we tested sets of

genes significantly co-regulated with M and BS markers and our k-means clusters for enrichments

in MapMan functional categories. To facilitate the comparison of the various M and BS separation

studies, we re-ran enrichment testing for all provided [38, 39] or described [40] gene sets that were

considered differentially regulated between BS and M cells. For comparability, each set was com-

pared to a background of the 6a genome release. Enrichments in genes specific to the BS were quite

consistent between studies (Supplementary Fig. 5), with a handful of categories shared between

all samples and studies. Many of these categories are well understood (e.g. the Calvin Benson

Bassham cycle) or have hypothesized benefits (e.g. S- assimilation, the DOF transcription factor

family; [39, 40, 57, 106]. However, one previously un-examined category, misc.myrosinases-

lectin-jacalin, was consistently enriched in the BS. An A. thaliana homolog (AT4G19840) of the

Z. mays myrosinases-lectin-jacalins is a phloem sap protein with a putative role in defense [107,

108], indicating that this category may relate to conserved BS functions and not C4 photosynthesis.

In addition to functions that were consistent across all tissues, many sub categories of protein syn-

thesis were enriched in BS specific genes specifically in three comparable younger tissues (slice 4,

slice 3, and section -1 from [38]).

Enrichments in M specific genes showed greater variability between studies (Supplementary

Fig. 4). While no categories were enriched in every sample, there was still a strong bias for particu-

lar categories. For instance, 20 categories were enriched in seven or more of the ten samples. These

included several subcategories of the photosynthesis light reactions, particularly photosystem II;

lipid metabolism and lipid transfer proteins; isoprenoid/carotenoid synthesis; and light signaling.
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Interestingly, transport was consistently enriched in both M and BS specific genes, indicating it is

a category generally undergoing specialization between tissues.

The above analyses compared genes differentially expressed in each developmental slice

individually, and to integrate gradient and tissue specificity patterns we performed a functional

enrichment analysis on k-means clusters. As clustering was performed only on genes expressed

sufficiently to be “deconvoluted” (min FPKM >0), but compared, as above, to the unfiltered 6a

genome; some major categories such as RNA, protein, and signaling were enriched in most to all

clusters, and not assigned.unknown was frequently depleted. Therefore, we focus on the smaller

categories and more specific enrichments.

Clusters 2 and 5 consisted of genes with high expression in the BS base and tip, respec-

tively, and showed a distinct set of enrichments. In cluster 2 many developmental and structural

categories were enriched; including cell and cell organization; cell wall proteins and precursor

synthesis; lignin synthesis; and categories likely related to the cell wall such as β- 1,3 glucan

hydrolases. Additionally several regulation related categories were enriched, such as hormone

metabolism with jasmonate and auxin response, and a few transcription factor families. In con-

trast, in cluster 5, with expression high in the BS tip, the enrichments were dominated by major

energy and metabolism categories. In relation to energy production, cluster 5 was enriched in

the photosynthetic categories of Calvin Benson Bassham cycle, and photorespiration, as well as

mitochondrial electron transport and the TCA cycle. Related to metabolism, cluster 5 was en-

riched in major and minor carbohydrate metabolism, sulfur metabolism, nucleotide metabolism,

secondary nitrogen metabolism, polyamine metabolism, and the oxidative pentose phosphate path-

way. Finally, cluster 5 was enriched in a set of regulatory categories distinct from that of cluster 2,

including ethylene metabolism and response, and six transcription factor families, of which, only

basic Helix-Loop-Helix was shared with cluster 2. In summary, while genes and categories sig-

nificantly up-regulated in the BS were fairly constant across the leaf (Supplementary Fig. 5) [38],

strong differences could be seen in functions of clusters peaking in the BS base or tip, with the base

more specialized in development, cell wall and lignification, while the tip was more specialized in

photosynthesis and metabolism. Both BS base and tip were enriched in regulatory genes, but

largely distinct subcategories of hormone metabolism/response, and transcription factor families.

Similarly, in the M we observed distinct enrichments in the M base cluster (4) and the M tip

cluster (3). In the M base cluster 4, enrichments included lipid metabolism and some development,

protein and signaling categories, as well as tetrapyrolle synthesis. While in the M tip cluster 3,

there were strong enrichments in photosynthesis including both photosystem I and photosystem II,

and a concomitant enrichment in light stress. In addition, cluster 3 was enriched in isoprenoid and

flavenoid biosynthesis, and the often down-stream-of-photoreceptors family, CONSTANS.

Clusters expressed highly in both tip tissues (6) or both base tissues (7) showed enrichments

distinct from the individual tissue types. Most striking in cluster 6, were not the few enrichments,
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such as heat stress, that were specific to this cluster; but the lack of an enrichment in the PS cat-

egories that was so characteristic of the tissue specific tip clusters 3 and 5. The even base cluster

7, shared cell wall enrichments with the BS base cluster 2, showed distinct auxin related enrich-

ments (auxin response factor (ARF) and Aux/IAA family instead of the auxin.induced-regulated-

responsive-activated in cluster 2), and was the only cluster enriched in brasinosteroid metabolism.

The “mixed” categories 1 and 8 appear to contain biological information despite their weird

appearance. The deconvolution method is such that it can induce a small pattern in a fairly evenly

expressed gene. Double checking the raw data for these clusters, we see that cluster 1 can be de-

scribed as expressed evenly high in the base, and otherwise slightly higher in the BS than M, while

cluster 8 can be described as expressed highest in tip and base, and shows mild M enrichment in

some slices (Supplementary Fig. 32). Cluster 1 shared enrichments with other more basal clusters,

like cell wall and protein synthesis, as well as histones. Cluster 8 was enriched in cytoskeleton,

lipid degradation, minor CHO metabolism, protein degradation and targeting, various regulation

of transcription and signaling pathways, and various stress categories.

Bundle fraction contains not only BS but also tracheary elements. Consistent with expecta-

tions for the enrichment method, the transcriptome reflects co-enrichment of the vascular tissue

with the BS tissue. Ethylene response is enriched in the BS in every slice, which has been im-

plicated in triggering cambial cell division and xylem growth in populus and Zinna cell cultures

[109, 110]. We observed many positive regulators of tracheary elements with peak expression in

the basal BS slice (BS5). Both vascular cells and BS cells have highly developed and lignified

secondary cell walls, which would be difficult to tease apart from each other in the enrichments

in cell wall and lignin biosynthesis in basal BS up-regulated genes. However, LAC17 is neces-

sary for lignification of the protoxylem elements in A. thaliana [111], and three of it’s homologs

in Z. mays are expressed (21-309 FPKM), and BS specific (fdr <0.05) in the basal slice. In the

vasculature, programmed cell death is induced after secondary cell wall deposition [112]. Among

genes associated with programmed cell death we find XYLEM CYSTEIN PROTEASE (XCP) 1

(GRMZM2G066326) and 2 (GRMZM2G367701) highly (664 and 398 FPKM) and specifically

(fdr <0.01) expressed in BS5.
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Supplemental Datasets

Supplementary Dataset 1: Spreadsheet with transcriptional, annotation, and mapping information

for Z. mays genes

Supplementary Dataset 2: Spreadsheet with metabolic and enzyme activity data

Supplementary Dataset 3: Spreadsheet with significant enrichments for tissue specific genes in

each slice and for k-means clusters

Supplementary Dataset 4: Spreadsheet with significant enrichments for edges between clusters

Supplementary Dataset 5: Spreadsheet with transcription factors meeting the criteria of interest
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Supplemental figures

S1S2S3S4S5

S1_2S3_4

18 cm

20 cm

8 cm

8 cm

a

b

Supplementary Fig. 1: Visual summary of tissues (a) and harvest method (b). The five 4 cm slices

(a) were harvested for transcriptome analysis using the leaf “guilotine” [36], while the two 8 cm

(a) slices were harvested for metabolite analysis using two pairs of attached scissors (b).
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Supplementary Fig. 2: Example comparision between target genes and markers used to

“deconvolute” data, that is, estimate the original distribution of target abundance between BS and

M cells [37]. PEPC (GRMZM2G083841) as an example of a M specific target, NADPME

(GRMZM2G085019) as an example of a BS specific target, and a peptidase M28

(GRMZM2G159171) as an example of a non-enriched target. The slope of the linear regression

line yields the estimated fraction of abundance in BS.
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Supplementary Fig. 4: Comparison of tissue enrichments between studies. For comparability all

enrichments were calculated with the significantly tissue-specific genes (as defined in each study)

in the foreground and the remainder of the unfiltered 6a genome in the background for a Fisher’s

exact test. The most-consistent enrichments (those enriched in at least 7 samples) are labeled. For

the sake of compact display, green bars indicate highlighted categories are subcategories of the

more basal category indicated with an arrow, and square bracets indicate enrichment of both basal

category and [sub category] 36
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Supplementary Fig. 5: Comparison of tissue enrichments between studies. For comparability all

enrichments were calculated with the significantly tissue-specific genes (as defined in each study)

in the foreground and the remainder of the unfiltered 6a genome in the background for a Fisher’s

exact test. The most-consistent enrichments are labeled. Categories enriched in every sample are

labeled in black, and those only enriched in the most similar immature tissues (Slice 4 and 3 here,

and section -1 from [38]) are labeled in blue. For the sake of compact display, green bars indicate

highlighted categories are subcategories of the more basal category indicated with an arrow, and

square bracets indicate enrichment of both basal category and [sub category].
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Supplementary Fig. 6: K-means clustering of BS & M gradient, individual genes in grey and

centers in black.
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a b

d e

c

Supplementary Fig. 7: Photosynthetic expression pattern (blue) in tissues used to define it in (a)

B. distachyon, (b) S. bicolor, (c) S. italica, (d) O. sativa, and (e) Z. mays.
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Supplementary Fig. 8: Cartoon summary of the types of tissues coverd by the expression data in

each species.
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Supplementary Fig. 9: Distribution of transcript abundance of genes with known tissue specificity

in raw data. In the BS (a), NADPME (GRMZM2G085019), and in the M (b) PEPC

(GRMZM2G083841).
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Supplementary Fig. 10: Abundance and specificity of enzyme activity (red) and trancripts

(non-red colors represent different paralogs) in core C4 gene families. Error bars show standard

error. In PEPC (a) and NADPME (b) the enzyme activities were used as the markers, and

therefore are defined at 0 and 1 fraction in BS, respectively. The remaining families are AlaAT2

(c), AspAT (d), NADMDH (e), NADPME (f). Two identifiers per color indicate the sum of the

genes annotated on positive and negative strand at same loci is used.
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Supplementary Fig. 11: Abundance and specificity of trancripts (colors represent different

paralogs) in core C4 gene families. Error bars show standard error. Families are CA (a), PEPCK

(b), PPDK (c) and PPDK-RP (d).
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Supplementary Fig. 12: Abundance and specificity of trancripts (colors represent different

paralogs) in core C4 gene families. Error bars show standard error. Families are PPCK (a), PPT

(b), and TPT (c).

44

Chapter 2. First Author Manuscripts 109



4
2

0
2

 l
n
[(

1
+

R
)/

(1
R

)]

0
2

4
6

8
1
0

1
2

dS

|ln
(p

e
a
k
 1

/p
e
a
k
 2

)|

0 0.5 1 1.5 2

dN

0 0.5 1 1.5 2 2 5 8 12 17

# paralogs in Zm

+

Colinear

Supplementary Fig. 13: Comparison of sequence and gene family factors to divergence in pattern

(transformed pearson correlation; above) and level divergence

(|ln(peakFPKM1/peakFPKM2)|; below). Shading indicates number of pairs in bin, relative

to the largest bin. The red diamonds indicate pairs including core C4 genes. To control age prior

to plotting colinearity, pairs were filterd to those with dS <1.6, after which the mean dS of

colinear (0.397) and non-colinear (0.402) pairs did not significantly differ (t-test p = 0.44).
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Supplementary Fig. 14: Expression pattern of PEPCK gene family on phylogeny. The C4 gene

and its young, syntenic paralog are marked with red and black stars, respectively.
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Supplementary Fig. 15: Expression pattern of PPDK gene family on phylogeny. The C4 gene and

its young, syntenic paralog are marked with red and black stars, respectively.
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Supplementary Fig. 16: Expression pattern of PPDK-RP gene family on phylogeny. The C4 gene

and its young, syntenic paralog are marked with red and black stars, respectively.
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Supplementary Fig. 17: The relationship between expression pattern divergence and possible

indicators of selection pressure. In (a) divergence is compared to the dN of genes with different

annotated origins [27] including those where all duplicates are of the same age (the Z. mays

tetraploidy and pan-grass WGDs). In (b) divergence at a branch on a phylogenetic tree is

compared to the significance of positive selection at the same branch of the tree.
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Supplementary Fig. 18: The categorization of expression patterns into photosynthesis-like or not.

For the tissues in (Supplementary Fig. 7; Supplementary Table 8) the rp between the expression

pattern of each gene and the mean z-score of the genes in PS (photosynthesis) MapMan [41]

category. Threshholds (red) were set to divide the resulting bi-modal distributions.
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Supplementary Fig. 19: The relationship between group size (# paralogs in orthogroup in

respective species) and photosynthetic pattern evolution. Cases where all 5 species show a

photosynthetic-like expression pattern (see Supplementary Fig. 18) are considerd conserved,

while cases where 4 of 5 or 1 of 5 species show a photosynthetic-like expression pattern are

considered gain or loss, respectively. The odd species out is S. bicolor in (a), S. italica in (b) and

B. distachtyon in (c).
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duplications. Lines depict scaled histogram of duplicates originating from the pangrass
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ongoing tandem duplications (black). The green and blue boxes represent the age ranges of

duplicates in orthogroups defined as “old” (dS >1) and “young” (dS <0.3), respectively.
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Supplementary Fig. 21: The relationship between group size (# paralogs in orthogroup in

respective species) and photosynthetic pattern evolution in “ancient orthogroups” (min dS >1).

cases where all 5 species show a photosynthetic-like expression pattern (see Supplementary

Fig. 18) are considerd conserved, while cases where 4 of 5 or 1 of 5 species show a

photosynthetic-like expression pattern are considered gain or loss, respectively. The odd species

out is Z. mays in (a), s. bicolor in (b), S. italica in (c), o. sativa in (d), and B. distachtyon in (e).
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Supplementary Fig. 22: The relationship between group size (# paralogs in orthogroup in

respective species) and photosynthetic pattern evolution in “young orthogroups” (max dS <0.3).

Cases where all 5 species show a photosynthetic-like expression pattern (see Supplementary

Fig. 18) are considerd conserved, while cases where 4 of 5 or 1 of 5 species show a

photosynthetic-like expression pattern are considered gain or loss, respectively. The odd species

out is Z. mays in (a), S. bicolor in (b), S. italica in (c), O. sativa in (d), and B. distachtyon in (e).
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Supplementary Fig. 23: The relationship between group size (# paralogs in orthogroup in

respective species) and significance of tissue specificity (average p-value) in (a) “ancient

orthogroups” (min dS >1) and (b) “young orthogroups” (max dS <0.3)

Supplementary Fig. 24: Local gene organization of syntenic, young duplicates with high

divergence (in boxes). Namely, (a) PEPCK, (b) PPDK, and (c) PPDK-RP. Data and visualization

from Plaza 3.0 [64]. Different colors or shades denote different homologous groups.
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Supplementary Fig. 25: Sum of standard error compared between original and random data with a

different number of cluster centers.
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Supplementary Fig. 26: Distribution of measured core C4 metabolites between slice 3 4 and 1 2

and between M and BS. Values are relative between slices for each metabolite (mean = 1), and

normalized by sum peak area (so distributions are relative to other metabolites, and not absolute).
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Supplementary Fig. 27: Comparison between the cell specificity of metabolites that have been

measured in previous studies [37, 95]; the fast, 2-slice metabolite havest; and the slower, 5-slice

gradient harvest.
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Supplementary Fig. 28: Distribution of measured photorespiratory metabolites between slice 3 4

and 1 2 and between M and BS. Values are relative between slices for each metabolite (mean =

1), and normalized by sum peak area (so distributions are relative to other metabolites, and not

absolute).
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Supplementary Fig. 29: Distribution of measured sugars between slice 3 4 and 1 2 and between

M and BS. Values are relative between slices for each metabolite (mean = 1), and normalized by

sum peak area (so distributions are relative to other metabolites, and not absolute).
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Supplementary Fig. 30: Distribution of measured non-C4 core nor photorespiratory amino acids

between slice 3 4 and 1 2 and between M and BS. Values are relative between slices for each

metabolite (mean = 1), and normalized by sum peak area (so distributions are relative to other

metabolites, and not absolute). Metabolites split arbitrarily into (a) and (b) for plotting clarity.
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Supplementary Fig. 31: Distribution of measured non-C4 core nor photorespiratory organic acids

between slice 3 4 and 1 2 and between M and BS. Values are relative between slices for each

metabolite (mean = 1), and normalized by sum peak area (so distributions are relative to other

metabolites, and not absolute). Metabolites split arbitrarily into (a) and (b) for plotting clarity.

62

Chapter 2. First Author Manuscripts 127



Supplementary Fig. 32: K-means clustering of BS & M gradient, plotted with the z-score of the

raw (not deconvoluted) expression data. Individual genes in grey and centers in black.
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Supplemental Tables

Supplementary Table 1: Comparison of BS/M values between studies by linear regression. The

study using enzymatic and mechanical separation [40] reported the purest tissues, while the

studies using laser micro dissection [38, 39] are more able to separate BS from vascular bundle.

In mature tissue Slice 1 and Section + 9 [38] were compared; while in immature tissue Slice 4, 5

and Section -1 [38] were compared.

Min > 10 FPKM Min > 100 FPKM

x.study y.study slope p.value r2 slope p.value r2

[40] [39] 0.32 1.21× 10−91 0.35 0.44 1.32× 10−27 0.64

[40] [38] 0.33 3.45× 10−161 0.36 0.39 8.71× 10−31 0.51

Mature [40] S1 0.40 4.91× 10−252 0.27 0.71 9.22× 10−54 0.63

[39] [38] 0.96 ∼ 0 0.94 0.99 8.72× 10−186 0.97

[39] S1 0.94 2.22× 10−115 0.43 1.13 2.54× 10−25 0.64

[38] S1 0.94 9.65× 10−220 0.42 1.16 4.79× 10−40 0.59

Immature [38] S5 0.61 7.21× 10−102 0.24 0.68 1.99× 10−30 0.42

[38] S4 0.70 1.39× 10−157 0.37 0.68 2.92× 10−30 0.45

Supplementary Table 2: P-values from wilcox-rank test for differences between the C4 genes,

their closest homologs, and their remaining homologs.

C4

vs closest

C4

vs remaining
remaining

vs closest
notes on data

rp to photosynthesis 1.21× 10−5 1.84× 10−7 0.15 see Table S.Tissues

peak FPKM 4.77× 10−6 7.84× 10−9 0.37 no PPDK RP, PPCK

tissue specificity 9.32× 10−3 3.22× 10−4 0.61 C4 > 0.7 only
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Supplementary Table 3: P-values for a t-test of the divergence between the C4 core genes and all

their paralogs vs all other paralog pairs in genome.

Pattern divergence Level divergence

ln(1+rp

1−rp
) |ln(peakFPKM1

peakFPKM2
)|

M & BS gradient 0.016 1.01× 10−5

primordial leaf/husk gradient [29] 0.638 0.085

Atlas including leaves [30] 0.048 0.130

All non-leaf/husk tissues from above 0.683 0.417

All leaf/husk tissues from above 4.72× 10−4 1.40× 10−6

Supplementary Table 4: Multiple regression of expression level divergence vs sequence and gene

family features.

features estimate
standard

error
p-value r-squared

dS 0.029 0.0099 3.28× 10−03

dN -0.017 0.0102 9.76× 10−02

deconvoluted Colinearity -0.050 0.0097 2.90× 10−07 0.0045

BS & M gradient # paralogs Z. mays 0.007 0.0094 4.48× 10−01

dN/dS -0.003 0.0087 7.37× 10−01

C4 or not 0.027 0.0087 1.67× 10−03

dS 0.053 0.0054 1.02× 10−22

dN -0.012 0.0056 3.81× 10−02

non-photosynthetic Colinearity -0.051 0.0055 7.35× 10−21 0.00461

atlas tissues[30] # paralogs Z. mays -0.026 0.0055 1.77× 10−06

dN/dS 0.007 0.0052 2.11× 10−01

C4 or not 0.003 0.0052 5.41× 10−01

all (developing) dS 0.040 0.0099 4.89× 10−05

photosynthetic dN -0.020 0.0102 5.33× 10−02

tissues (deconvoluted, Colinearity -0.051 0.0097 1.76× 10−07 0.0061

primordial[29] # paralogs Z. mays 0.020 0.0094 3.78× 10−02

and atlas[30] dN/dS 0.001 0.0087 8.80× 10−01

C4 or not 0.025 0.0087 3.46× 10−03
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Supplementary Table 5: Multiple regression of expression pattern divergence vs sequence and

gene family features.

features estimate
standard

error
p-value r-squared

dS 0.060 0.0098 5.77× 10−10

dN 0.029 0.0100 4.30× 10−03

deconvoluted Colinearity -0.096 0.0095 8.56× 10−24 0.034

BS & M gradient # paralogs Z. mays 0.068 0.0093 2.71× 10−13

dN/dS -0.007 0.0086 3.88× 10−01

C4 or not 0.039 0.0086 6.52× 10−06

dS 0.029 0.0054 9.58× 10−08

dN 0.027 0.0055 9.52× 10−07

non-photosynthetic Colinearity -0.065 0.0054 2.29× 10−33 0.025

atlas tissues[30] # paralogs Z. mays 0.108 0.0054 3.76× 10−87

dN/dS -0.009 0.0052 9.69× 10−02

C4 or not 0.005 0.0051 3.51× 10−01

all (developing) dS 0.108 0.0095 6.97× 10−30

photosynthetic dN -0.029 0.0097 2.69× 10−03

tissues (deconvoluted, Colinearity -0.148 0.0093 1.78× 10−56 0.085

primordial[29], # paralogs Z. mays 0.160 0.0090 2.54× 10−69

and atlas[30]) dN/dS -0.009 0.0084 2.68× 10−01

C4 or not 0.041 0.0084 1.18× 10−06
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Supplementary Table 6: The paralog pairs of the MapMan PS category, which occurred

non-ambiguously in the edge of Clusters 3 “M-tip” and 5 “BS-tip”, and whether they consume

ATP

Paralogs
MapMan

bincode
MapMan subcategory of PS

Uses

ATP
Clusters

calvin cycle

GRMZM2G089136, GRMZM2G382914 1.3.3 phosphoglycerate kinase Y 3, 5

GRMZM2G026024, GRMZM2G463280 1.3.12 PRK Y 5, 3

GRMZM2G162529, GRMZM2G463280 1.3.12 PRK Y 5, 3

photorespiration

GRMZM2G018786, GRMZM2G054663 1.2.7 glycerate kinase Y 3, 5

GRMZM2G076239, GRMZM2G129246 1.2.2 glycolate oxydase N 3, 5

lightreaction

GRMZM2G010555, GRMZM2G102349 1.1.40 cyclic electron flow-chlororespiration N 5, 3

GRMZM5G885392, GRMZM5G896082 1.1.40 cyclic electron flow-chlororespiration N 3, 5

GRMZM2G048313, GRMZM2G122337 1.1.5.2 other electron carrier (ox/red).ferredoxin N 5, 3

GRMZM2G329047, GRMZM2G377855 1.1.2.2 photosystem I.PSI polypeptide subunits N 5, 3
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Supplementary Table 7: Non-default parameters used for bioinformatics programs.

tophat2
For studies with reads shorter than 50 bases --segment-length=N (N = read

length/2) was set so that reads were mapped in at least 2 segments
--b2-very-sensitive and --read-realign-edit-dist=0 were set to increase sen-

sitivity
-G <file.gtf> was used to guide mappings to annotated transcriptome

cufflinks2 -u was set to improve distribution of reads mapping to more than one position

-G <file.gtf> was used to guide assembly to annotated transcriptome

cutadapt -e0.1 was used to set the maximum fraction of errors for a match
-O5 was used to require an adaptor match to be at least 5 bases long

fastq-quality-trimmer -Q33 indicates the quality encoding

-l25 was used to discard trimmed reads shorter than 25 bases
-t28 was set for the quality score threshhold

blastall

-p blastn was used for BLAST searches in nucleotide space between Z. mays

genome releases, while -p blastp was used for BLAST searches in protein

space between species
-m8 was set for a tabular output
-FF was set to turn off quality filtering, and thereby allow avoid excluding

perfect matches between different Z. mays genome releases
-e1e-1 was set to skip any matches of a quality where 0.1 or more would be

expected by chance based on database size

McscanX
-w1, -k300, -m50, and -g-0.5 were set to err on the sensitive side while de-

tecting colinearity

Prank +F was set as recommended for sequences with many insertions or deletions

Mafft --auto was used

RaxML

-m PROTGAMMAIJTT was set to employ the JTT amino acid substitution

matrix with optimized substitution rates, and a gamma model of rate hetero-

genity including invariant sites.
-k was used to print branch lengths

-NautoMR was used to stop bootstrapping after convergence

-b 123 is used to set a seed for random numbers while bootstrapping

-p 12345 was used to set a seed for random numbers in parsimony inference

codeml
runmode = -2, model = 0, and Nssites = 0 F3x4 model were used to estimate

pairwise dN and dS
runmode = 0, seqtype = 1, CodonFreq = 2, model = 2, Nssites = 2, fix -

kappa = 0, and kapa = 2 were used for both null and alternative branch site

models
The negative log likelihood of the null model with parameters fix omega =

1 and omega = 1 in the null model was compared to the alternative model

with parameters fix omega = 0 and omega = 1.5 to determine significance of

dN/dS signature >1 for the branch site models
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Supplementary Table 8: Tissues used for differnet analyses

Z. mays rp PS Leaf & husk mature tissue specificity

6DAS Prim Root [30] Y

24H Germ seed [30] Y

16DAP Embryo [30] Y

V3 Stem SAM [30] Y

12DAP W seed [30] Y

10DAP W seed [30] Y

16DAP W seed [30] Y

14DAP W seed [30] Y

14DAP Endopsperm [30] Y

12DAP Endopsperm [30] Y

16DAP Endosperm [30] Y

V9 13th Leaf [30] Y

V9 11th Leaf [30] Y

V9 Immature Leaves [30] Y

R2 13th Leaf [30] Y

VT 13th Leaf [30] Y

V9 8th Leaf [30] Y

V5 Tip s-2 Leaf [30] Y Y

All primordia samples [29] Y

M5 Y

M4 Y

M3 Y

M2 Y Y

M1 Y Y

BS5 Y

BS4 Y

BS3 Y

BS2 Y Y

BS1 Y Y

S. italica rp PS

M [34]

BS [34]

leaf ligule 4 + 1 [32]

leaf ligule 3 - 1 [32]

leaf ligule 3 + 2 [32]

leaf tip - 1 [32]

root [33] Y

stem [33] Y

leaf [33] Y

spica [33] Y
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An mRNA Blueprint for C4 Photosynthesis Derived from
Comparative Transcriptomics of Closely Related C3 and
C4 Species

1[W][OA]

Andrea Bräutigam2, Kaisa Kajala2, Julia Wullenweber, Manuel Sommer, David Gagneul,
Katrin L. Weber, Kevin M. Carr, Udo Gowik, Janina Maß, Martin J. Lercher, Peter Westhoff,
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United Kingdom (K.K., J.M.H.); and Bioinformatics Core, Research Technology Support Facility, Michigan
State University, East Lansing, Michigan 48824 (K.M.C.)

C4 photosynthesis involves alterations to the biochemistry, cell biology, and development of leaves. Together, these
modifications increase the efficiency of photosynthesis, and despite the apparent complexity of the pathway, it has evolved
at least 45 times independently within the angiosperms. To provide insight into the extent to which gene expression is altered
between C3 and C4 leaves, and to identify candidates associated with the C4 pathway, we used massively parallel mRNA
sequencing of closely related C3 (Cleome spinosa) and C4 (Cleome gynandra) species. Gene annotation was facilitated by the
phylogenetic proximity of Cleome and Arabidopsis (Arabidopsis thaliana). Up to 603 transcripts differ in abundance between
these C3 and C4 leaves. These include 17 transcription factors, putative transport proteins, as well as genes that in Arabidopsis
are implicated in chloroplast movement and expansion, plasmodesmatal connectivity, and cell wall modification. These are all
characteristics known to alter in a C4 leaf but that previously had remained undefined at the molecular level. We also document
large shifts in overall transcription profiles for selected functional classes. Our approach defines the extent to which transcript
abundance in these C3 and C4 leaves differs, provides a blueprint for the NAD-malic enzyme C4 pathway operating in a
dicotyledon, and furthermore identifies potential regulators. We anticipate that comparative transcriptomics of closely related
species will provide deep insight into the evolution of other complex traits.

C4 photosynthesis is a complex biological trait that
enables plants to either accumulate biomass at a much
faster rate or live in adverse environments compared
with “ordinary” plants (Hatch, 1987; Osborne and
Freckleton, 2009). These C4 plants have added a CO2
concentration mechanism on top of their regular pho-
tosynthetic carbon fixation that makes them not only
more efficient at assimilating inorganic carbon; they
frequently also have higher water and nitrogen use
efficiencies (Black, 1973; Oaks, 1994; Osborne and

Freckleton, 2009). Beyond the basic biochemistry, our
understanding of C4 photosynthesis is limited.

The principle of C4 photosynthesis is deceivingly
simple: instead of using Rubisco as the primary
carbon-fixing enzyme, C4 plants use phosphoenolpy-
ruvate carboxylase (PEPC). Unlike Rubisco, PEPC is
more specific for inorganic carbon (Hatch, 1987). Since
the C4 cycle is an add-on rather than a replacement for
Rubisco and the Calvin-Benson cycle, the prefixed CO2
is transported in a bound form, a C4 acid (hence the
name), to the site of Rubisco. The C4 cycle generates
high concentrations of CO2 around Rubisco (Hatch,
1987), and this increases the rate of photosynthesis
because competition between CO2 and oxygen at the
active site of Rubisco is reduced (Jordan and Ogren,
1984). In most C4 plants, concentrating CO2 around
Rubisco involves the reactions of photosynthesis being
partitioned between bundle sheath (BS) and meso-
phyll (M) cells as well as changes to cell biology and
leaf development (Hatch, 1987; Sage, 2004), although
in some lineages, C4 photosynthesis operates within
individual cells (Reiskind et al., 1989; Keeley, 1998;
Voznesenskaya et al., 2001, 2002, 2003).

In all known C4 plants, CO2 enters M cells and is
converted into bicarbonate by carbonic anhydrase.

1 This work was supported by the German Research Council
(grant nos. WE 2231/4–1 to A.P.M.W., SFB TR1 to P.W. andA.P.M.W.,
and IRTG 1525/1 to P.W. and A.P.M.W.) and the Leverhulme Trust
and Isaac Newton Trust (to J.M.H.).

2 These authors contributed equally to the article.
* Corresponding author; e-mail andreas.weber@uni-duesseldorf.de.
The authors responsible for distribution of materials integral to

the findings presented in this article in accordance with the policy
described in the Instructions for Authors (www.plantphysiol.org)
are: Julian M. Hibberd (julian.hibberd@plantsci.cam.ac.uk) and
Andreas P.M. Weber (andreas.weber@uni-duesseldorf.de).

[W] The online version of this article contains Web-only data.
[OA] Open Access articles can be viewed online without a sub-

scription.
www.plantphysiol.org/cgi/doi/10.1104/pp.110.159442

142 Plant Physiology!, January 2011, Vol. 155, pp. 142–156, www.plantphysiol.org " 2010 American Society of Plant Biologists
www.plant.org on January 6, 2015 - Published by www.plantphysiol.orgDownloaded from 

Copyright © 2011 American Society of Plant Biologists. All rights reserved.

Chapter 3. Co-Author Manuscripts 139



PEPC then combines HCO3
2 with PEP to generate the

C4 oxaloacetic acid, which is rapidly converted into
either Asp or malate. These C4 acids then diffuse to the
site of Rubisco through abundant plasmodesmata,
where C4 acid decarboxylases release CO2 (Hatch,
1987). Three distinct C4 acid decarboxylases, known as
NADP-dependent malic enzyme (NADP-ME), NAD-
dependent malic enzyme (NAD-ME), and PEP car-
boxykinase, have been coopted into the C4 pathway,
and this has been used to define three biochemical
subtypes of C4 photosynthesis. The three-carbon com-
pound released after decarboxylation diffuses back to
the M cells and is converted to PEP catalyzed by
pyruvate,orthophosphate dikinase (PPDK; Hatch and
Slack, 1968). Because the enzymes involved in the C4
cycle are found in the cytosol, chloroplasts, and mito-
chondria, a significant amount of transport across
organellar membranes is required for the C4 cycle to
operate. However, few genes encoding transporters
that allow the increased intracellular flux of metabo-
lites required for C4 photosynthesis have been identi-
fied (Bräutigam et al., 2008a; Majeran and van Wijk,
2009). In addition, we have a very limited understand-
ing of the mechanisms controlling the altered cell
biology and morphology associated with C4 leaves.
The C4 cycle likely affects not only the relatively small
number of enzymes and transport proteins needed to
perform the core reactions but, given the consequences
on the ecological performance of the plants, also a
range of other processes.
The gaps in our understanding of the mechanisms

underlying C4 photosynthesis limit insight into a met-
abolic pathway that has evolved repeatedly at least 45
times in plants (Sage, 2004) and so is of interest in terms
of understanding a remarkable example of convergent
evolution. In addition, because C4 plants are among the
most productive on the planet and the pathway is
associated with increased water and nitrogen use effi-
ciencies (Brown, 1999), it has been suggested that
characteristics of C4 photosynthesis should be placed
into C3 crops (Matsuoka et al., 2001; Mitchell and
Sheehy, 2006; Hibberd et al., 2008). A more complete
understanding of genes involved in C4 photosynthesis
is fundamental to attempts at placing components of
the C4 pathway into C3 crops to increase yield.
Recently, a new set of tools has become available to

analyze species without sequenced genomes on a ge-
nomic scale: next generation sequencing (NGS) technol-
ogy (summarized in Metzker, 2010). With NGS, the
transcriptome of a tissue can be sequenced and quan-
tified at the same time (RNA-Seq;Wang et al., 2009). The
454 FLX genome sequencer provides a quarter million
sequence reads of 230 bases in each run from a cDNA
template generated from mRNA (http://www.454.
com/; Metzker, 2010). The resulting reads can be
mapped onto a closely related reference to quantify
the number of reads matching a gene locus, thus pro-
viding a measure of transcript abundance (Flicek and
Birney, 2009; Bräutigam and Gowik, 2010). We chose to
compare the C4 plant Cleome gynandra with the C3 plant

Cleome spinosa, since they are members of the same
genus and are closely related to Arabidopsis (Arabidopsis
thaliana; Brown et al., 2005; Marshall et al., 2007). Given
the close phylogenetic relationship, we can take ad-
vantage of the well-annotated Arabidopsis genome
(Swarbreck et al., 2008) and its known genome history
(Bowers et al., 2003; Haberer et al., 2004; Thomas et al.,
2006) to identify and quantify the biological functions
regulated at the level of transcript abundance in the C4
species compared with the C3 species. Although the
experiment will also capture variation in the abundance
of transcripts associated with differences between the
species that do not relate to C4 photosynthesis, the close
proximity of the Cleome species should reduce this
effect. We chose to use mature fully differentiated leaves
for the analysis, since we wanted to minimize the
influence of species-specific effects during leaf differen-
tiation but rather focus on transcript profiles when C4
photosynthesis is fully operational. Once this profile is
defined, analysis of developmental stages may reveal
how the profile is achieved during differentiation.

By comparing the transcriptomes of closely related
C3 and C4 species, we will test (1) whether cross-
species transcriptomic comparisons are feasible, (2)
the degree to which the core C4 cycle enzymes and
transport proteins are regulated at the level of tran-
script abundance, and (3) whether the changes in
metabolism associated with C4 photosynthesis are
associated with additional unexpected shifts in tran-
script profiles in leaves of C4 compared with C3 plants,
and (4) define candidates for additional functions
critical to C4 photosynthesis based on unbiased obser-
vation of the data. By analyzing the complete tran-
scriptome, we define the maximal extent to which the
C4 pathway alters leaf transcript profiles.

RESULTS

Physiological Analysis of C3 and C4 Leaves Confirms C4

Metabolism in C. gynandra

To confirm that the C. spinosa and C. gynandra leaves
we used for transcriptomic analysis were using C3 and
C4 photosynthesis, respectively, we analyzed the
steady-state levels of metabolites associated with the
C4 cycle. For example, large quantities of Asp, Ala, and
pyruvate are produced in M and BS cells of NAD-ME
C4 leaves, and they were 19, 3.9, and 3.6 times more
abundant, respectively, in C. gynandra compared with
C. spinosa (Supplemental Table S1). In contrast, and in
agreement with the lower demand for the photorespi-
ration in C4 leaves, glycerate and glycolate, intermedi-
ates of the photorespiratory cycle, were 4.5 and 1.9
times more abundant in C. spinosa (Supplemental Ta-
ble S1). We also determined the extractable activities
of PEPC, aspartate aminotransferase (AspAT), NAD-
dependent malate dehydrogenase (NAD-MDH), NAD-
ME, and alanine aminotransferase (AlaAT). Except
for NAD-MDH, significantly higher activities of the
enzymes required for the C4 cycle were measured in
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C. gynandra leaf extracts (Supplemental Fig. S1).
The metabolite profiling of leaf extracts using gas
chromatography-electron impact-time of flight (GC-
EI-TOF) and the enzyme activity assays showed that
the plants we used for digital gene expression analysis
had clear differences in their metabolite profiles and
enzyme activities, and these were consistent with func-
tional C3 and C4 photosynthesis operating in leaves of
C. spinosa and C. gynandra, respectively.

The Leaf Transcriptomes for Closely Related C3 and C4

Species Are Qualitatively Similar

To obtain sequence tags for digital gene expression
(DGE) analysis from C. spinosa (C3) and C. gynandra
(C4), RNA was isolated from mature leaves of each
species and prepared for 454 sequencing. One se-
quencing run on a Genome Sequencer FLX (GS FLX;
Roche) sequencing system was conducted on leaf
cDNA isolated from either C. gynandra or C. spinosa.
From C. spinosa, we obtained 70,564,592 nucleotides,
and from C. gynandra, 91,851,136 nucleotides of raw
sequence were obtained; after quality control, these
corresponded to 65,525,139 and 85,681,233 nucleo-
tides, respectively (Table I). The mean read length of
the cleaned sequence reads was 232 nucleotides for C.
gynandra and 230 nucleotides for C. spinosa (Table I).

To exclude program-specific mapping artifacts and
to test whether the C. gynandra and C. spinosa libraries
behave robustly during mapping, two different pro-
grams, BLAST and BLAT (BLAST-Like Alignment
Tool), were used to align the reads to Arabidopsis as
the reference genome. To define the most suitable
mapping parameters, an array of parameters for map-
pings in both the DNA and protein space were tested
(Table II). Neither the C. gynandra nor the C. spinosa
library mapped well to Arabidopsis cDNAs in the
DNA space using BLAT or BLAST, although the dif-
ferences are more dramatic for BLAT (Table II). In the
protein space, however, the proportion of mapped
reads increased dramatically. When 75% amino acid

sequence identity was required, three-quarters of the
reads could be mapped with BLAT, resulting in 1.48
and 1.57 average mappings per read, respectively.
Even with the most lenient mapping parameters, the
proportion of mapped reads did not exceed 83% with
BLATand 78.8% with BLAST (Table II). In all mapping
attempts, the C. gynandra and C. spinosa read libraries
yielded qualitatively similar mapping results, irre-
spective of mapping program or parameters.

To obtain a stringent yet inclusive mapping, the
mapping conducted in protein space at 75% or greater
identity with BLATwas chosen, and this mapping file
was parsed by in-house scripts to keep only the read
match with the highest number of matching bases. For
a more lenient mapping, a BLAST mapping at a cutoff
of 1e25 was chosen and parsed to keep only the best
BLAST hit for each read. For each Arabidopsis Ge-
nome Initiative (AGI) code, the number of matching
reads was counted and the hit count was then trans-
formed to reads per million (RPM) to normalize for the
number of reads available for each species. After
parsing, the sequenced libraries matched between
50.5% and 55.3% of the genes in the Arabidopsis
reference (Supplemental Table S2).

To assess whether the data sets for the two different
species and the two different mappings were qualita-
tively similar, we tested the coverage of the functional
classes. Overall, about 50% of all genes were repre-
sented in both species with the BLAT (Fig. 1A) and the
BLAST mapping (Fig. 1B). Although the majority of
gene classes were represented by more than 50% of
genes in each class for both mappings, the classes
function unknown, putative lipid transfer protein,
storage protein, and defense were underrepresented
compared with all genes (Fig. 1). Genes present in the
organellar genomes were not well represented (Sup-
plemental Table S3). Genes classified into primary
metabolism including photosynthesis, central carbon,
nitrogen metabolism, amino acid, and nucleotide me-
tabolism as well as many cellular processes were well-
represented categories, and about four-fifths of genes
predicted to be involved in the C4 pathway were
detected in both species. Overall, the pattern of detec-
tion in the different gene classes was similar for both
species and independent of the program used for the
mapping (Fig. 1).

Transcripts of Known C4 Genes Are More Abundant with
One Exception

Detailed analysis of known C4 genes showed that all
but one gene necessary for the core C4 cycle of NAD-
ME-type plants were massively up-regulated in C.
gynandra compared with C. spinosa. Transcripts encod-
ing PEPC were up-regulated 78-fold, those encoding
AspAT were up-regulated 343-fold, the transcripts
for the two isoforms of NAD-ME were up-regulated
27- and 21-fold, respectively, and AlaAT were up-
regulated 29-fold (Table III). The results for the BLAT

Table I. Massively parallel signature sequencing allows large-scale
assembly of transcripts in both C. spinosa and C. gynandra after
comparison with the TAIR 8 Arabidopsis database

One GS FLX sequencing run allowed significant generation of
sequence for both species, and the vast majority of these could be used
to assemble contigs and then matched to Arabidopsis genes.

Data C. spinosa C. gynandra

Raw reads 313,807 402,674
Raw nucleotides 70,564,592 91,851,136
Raw mean length 225 228
Clean reads 284,318 368,333
Clean nucleotides 65,525,139 85,681,233
Clean mean length 230 232
Contigs 17,655 18,992
Total length (nucleotides) 7,746,894 9,062,043
Total reads 245,324 319,732
Percent assembled 86.3 86.8
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and the BLAST mappings were similar with one
exception. In the BLAST mapping, the reads mapping
to PEPC were split onto two genes in the Arabidopsis
reference genome, whereas they mapped to only one
gene in the BLAT mapping (Table III). Transcripts
encoding mitochondrial malate dehydrogenases were
increased only 1.3-fold (Supplemental Table S3). Not
only were genes associated with the C4 pathway up-
regulated compared with C3, but they also had high
absolute read counts between 1,800 and 4,806 RPM.

The Leaf Transcriptomes for Closely Related C3 and C4

Species Are Quantitatively Different

Before undertaking detailed analysis of differences
in transcript abundance between C. gynandra and C.
spinosa, we used quantitative (q)PCR to confirm esti-
mates of transcript abundance identified by RNA-Seq.

We chose genes whose transcript abundance differed
over 4 orders of magnitude and used qPCR to assess
their abundance. qPCR was performed on both the
cDNA used for RNA-Seq and cDNA generated from
RNA isolated from leaves in a separate experiment.
This approach provided strong support for the differ-
ences in abundance of transcripts between the two
species that we determined from RNA-Seq (Fig. 2).
Overall, this showed that the ratios of transcript abun-
dance obtained by RNA-Seq-based DGE are suitable
for calling differentially expressed genes between two
related species.

Of the 13,662 transcripts for which we captured
quantitative data (Supplemental Table S3), we identi-
fied 583 (BLAT) or 603 (BLAST) transcripts whose
abundance differed significantly (P# 0.01) between C.
spinosa and C. gynandra, with 256/258 (1.2%/1.2%)
transcripts being more abundant in C. gynandra and

Table II. Mapping the sequence reads with different BLAT and BLAST parameters to empirically
determine suitable mapping conditions

The percentage of AGI codes with at least one mapped read and the average mappings per read were
determined prior to parsing the tables to retain only the best match. Suitable mapping conditions are
printed in bold; for BLAT, the cutoff value is the minimal number of matching bases; for BLAST, it is the
minimal accepted e-value.

Mapping

Program
Library

Search

Space

Cutoff

Value

Percentage

Reads

with at Least

One Hit in the

Reference

Percentage

AGI

Codes with at

Least One

Mapped Read

Average

Mappings

per Read

BLAT C. gynandra DNA 60 40.9 42.0 1.19
75 40.7 41.7 1.19
85 30.2 35.8 1.15
90 7.7 19.5 1.09

Protein 25 82.6 70.4 2.35
50 82.6 70.4 2.35
75 75.4 62.6 1.48
80 56.4 52.2 1.27

C. spinosa DNA 60 40.8 38.9 1.29
75 40.6 38.5 1.28
85 29.7 32.3 1.21
90 8.5 17.1 1.15

Protein 25 83.0 67.7 2.49
50 83.0 67.7 2.46
75 76.0 58.9 1.57
80 57.9 48.4 1.32

BLAST C. gynandra DNA 1e-05: 68.9 56.5 30.7
1e-10: 58.8 49.1 27.7
1e-30: 29.6 30.5 18.9
1e-50: 9.9 15.9 11.5

Protein 1e-05: 78.0 76.9 106.6
1e-10: 67.8 71.0 64.6
1e-30: 29.0 39.5 22.9
1e-50: 0.1 0.3 7.5

C. spinosa DNA 1e-05: 69.7 53.0 28.2
1e-10: 59.6 46.3 25.1
1e-30: 29.4 28.3 16.2
1e-50: 9.8 14.4 9.8

Protein 1e-05: 78.8 75.3 93.7
1e-10: 68.3 68.7 56.4
1e-30: 29.3 36.0 21.2
1e-50: 0.1 0.3 4.6
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327/345 (1.5%/1.6%) transcripts being more abundant
in C. spinosa (Fig. 3, “all”). We tested whether signif-
icantly changed transcripts are enriched in functional
categories and whether they were more highly ex-
pressed in the C4 or the C3 species. While the qualita-
tive classification of detected genes showed a very
similar pattern between C. spinosa and C. gynandra
(Fig. 1), the quantitative analysis revealed massive
differences in representation between gene classes in
the C3 and the C4 species (Fig. 3). The transcript profile
generated by the BLAT mapping (Fig. 3A) is similar to
the one generated by the BLAST mapping (Fig. 3B),
although not all genes called as significantly regulated
were identical (Supplemental Table S3). The classes
containing the highest percentage of changed genes
are the photosynthetic classes as well as the C4 cycle,
Calvin-Benson cycle, and photorespiration (Fig. 3).
The latter two have lower steady-state mRNA levels in
C4 leaf tissue (Fig. 3, bottom), while the photosynthetic

classes of PSI, cyclic electron flow, and cytochrome b6/f
complex as well as the C4 cycle have higher levels
in C4 leaf tissue (Fig. 3, top). A number of classes
involved in primary metabolism also have lower
steady-state transcript levels in C4 tissues: one-carbon
compound metabolism, other central carbon metabo-
lism, shikimate pathway, and amino acid metabolism.
Protein synthesis also has lower steady-state tran-
script levels, which are limited to cytosolic and
plastidic protein synthesis genes (Supplemental Fig.
S3). Among the classes with higher steady-state
transcript levels are starch metabolism, cofactor syn-
thesis, putative lipid transfer proteins, nitrogen
metabolism, and b-1,3 glucan metabolism. The quan-
titative pattern (Fig. 3) is similar to the qualitative
pattern (Fig. 1) with regard to the influence of the
mapping program; the BLAT and BLAST mappings
look remarkably similar with the exception of shiki-
mate metabolism.

Figure 1. The qualitative patterns of transcript abundance between C. gynandra and C. spinosa are very similar, with the same
classes underrepresented and overrepresented in both libraries. A, Analysis based on BLATmapping. B, Analysis based on BLAST
mapping. Black bars refer to the C4 plant C. gynandra, and white bars refer to the C3 plant C. spinosa.
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Transcripts with Similar Patterns of Abundance
Compared with Bona Fide C4 Genes and Rubisco

The list of 13,662 transcripts detected in either C.
spinosa or C. gynandra tissues and the list of 603
transcripts that are differentially regulated between
both species (Supplemental Table S3, BLAST map-
ping) prompted us to determine which transcripts
showed changes in abundance similar to the core C4
genes or Rubisco subunit-encoding genes. Such tran-
scripts display both a large fold change between the C3
and the C4 plants and large absolute read numbers. For
example, among the transcripts encoding putative
transport proteins, three plastidic transport proteins,
the PEP phosphate translocator PPT, a putative bile
acid:sodium symporter, and a putative proton:sodium
antiporter, two mitochondrial dicarboxylate carriers,
and one plasma membrane intrinsic protein were
massively up-regulated in C4 C. gynandra (Table IV).
No transcripts encoding transport proteins were
found to be down-regulated to a comparable degree.
Among metabolic genes, two cytosolic carbonic anhy-
drases, one of which (CA4; Table IV) is likely tethered
to the plasma membrane, an adenylate kinase, and a
pyrophosphatase were up-regulated at levels compa-
rable to those of C4 cycle genes. Many proteins of
unknown function showed differential expression, the
most striking case being a putative lipid transfer
protein, also annotated as an extensin-like protein.
Based on annotation and differential expression pat-
tern, several transcripts predicted to encode known C4
functions that have not yet been assigned to genes,
such as CHLOROPLAST UNUSUAL POSITIONING1
(CHUP1) and actin for chloroplast positioning or
callose-degrading enzymes for regulating plasmodes-
matal opening, were identified (Table IV).

Regulatory Genes That Are Significantly Changed

The transcript profiles of these C3 and C4 species
identify a number of regulatory proteins that are
candidates for maintaining C4 status. Among tran-
scripts encoding proteins with regulatory functions, 43

were significantly up-regulated in either C. gynandra
or C. spinosa (Fig. 3). These include bona fide tran-
scription factors, protein phosphatases and kinases,
and the regulatory proteins of the pyruvate dehydro-
genase complex (up-regulated in C4), of PPDK (up-
regulated in C4), and of Rubisco (down-regulated in
C4). Only 17 transcription factors are significantly
changed; seven of those have higher steady-state
mRNA levels compared with the C3 leaf tissue, while
10 have lower steady-state mRNA levels (Table V).

In addition to the detailed quantitative and qualita-
tive analysis of read mappings to generate ESTs for
both species, contigs were assembled from cleaned
reads for each species as described previously (Weber
et al., 2007; Bräutigam et al., 2008b) and then annotated
by BLASTX versus The Arabidopsis Information Re-
source (TAIR) 9 protein models. A total of 18,992 and
17,655 contigs representing total sequence lengths of
9,062,043 and 7,746,894 nucleotides were obtained for
C. gynandra and C. spinosa, respectively (Table I).

Table III. Transcript abundance of C4 cycle genes that have significantly higher transcript abundance in C4 leaf tissue

Asterisks denote changes significant only in BLAST mapping.

Enzyme Locus
BLAT Mapping BLAST Mapping

C. gynandra RPM C. spinosa RPM Fold Change C. gynandra RPM C. spinosa RPM Fold Change

AspAT AT2G30970 4,806 14 343.3 4,601 18 257.9
PPDK AT4G15530 3,262 14 233.0 3,216 13 240.3
PEPC AT2G42600 9,702 124 78.2 8,321 169 49.1
AlaAT AT1G17290 7,610 267 28.5 7,242 259 28.0
NAD-ME1 AT4G00570 1,357 51 26.6 1,326 49 27.0
NAD-ME2 AT2G13560 1,800 87 20.7 1,723 85 20.3
PEPC kinase AT1G08650 230 37 6.2 226 36 6.3
NADP-ME* AT1G79750 227 60 3.8 216 45 4.8
PEPC* AT1G53310 94 248 0.4 950 192 5.0
PPDK regulatory protein* AT4g21210 148 32 4.6 198 27 7.3

Figure 2. Massively parallel sequencing of mRNAs (RNA-Seq) and
qPCR generate similar profiles of transcript abundance in C. gynandra
and C. spinosa. Ratios of transcript abundance in C. gynandra and C.
spinosa were calculated, and transcripts selected for this analysis
spanned 4 orders of magnitude. CA, Carbonic anhydrase; PPCk, PEPC
kinase; LHCA, light-harvesting complex subunit A; RbcS1a, ribulose
bisphosphate carboxylase oxygenase 1a; RCA, Rubisco activase. Black
bars represent data from RNA-Seq, and white bars represent data from
qPCR. The horizontal dashed line represents a ratio of 1 and indicates
no difference in transcript abundance between the two species.
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DISCUSSION

Transcriptomic Comparisons of Different Species with
NGS Technology Are Feasible

Read mapping by alignment is a well-established
tool to quantify transcript abundance and thus deter-
mine mRNA steady-state levels (Wall et al., 2009;
Metzker, 2010). The concept of mapping to a cross-
species reference has also been established theoreti-
cally (Palmieri and Schlotterer, 2009), although the
potential has not been experimentally explored to date
(Bräutigam and Gowik, 2010).

To explore cross-species mapping, the transcriptome
sequencing was carried out using 454 FLX, a long-read
technology, since theoretical work had established that
at least BLAT is capable of mapping reads that contain
alterations in comparison with the reference if the reads
are at least 100 bases long (Palmieri and Schlotterer,

2009). We also established a reference database, which
removes the genome history of Arabidopsis as far as
it is known (Bowers et al., 2003; Haberer et al., 2004;
Thomas et al., 2006). Tandem duplicated genes and
segmentally duplicated genes (remnants of the last
whole genome duplications) were removed to pre-
vent genome history from interfering with compara-
tive quantitative mapping (Bräutigam and Gowik,
2010).

Both BLATand BLASTmappings indicate that using
a minimal reference does not diminish read mappings
(Supplemental Table S4) while avoiding mapping
problems based on genome history (Bräutigam and
Gowik, 2010). The mappings in protein space allowed
more successful read mappings, because protein se-
quences diverge more slowly than nucleotide se-
quences. Although the proportion of reads mapped
varied with changing mapping parameters (Table II;

Figure 3. The quantitative patterns of transcript accumulation in C. gynandra and C. spinosa are distinct. A, Analysis based on
BLATmapping. B, Analysis based on BLASTmapping. Shown are the percentages of genes with significantly higher abundance of
transcripts in C4 (red bars), unchanged (white bars, including genes not detected), and significantly lower abundance of
transcripts in C4 (blue bars) based on the total number of genes in each annotation class (in parentheses on the y axis).
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Supplemental Table S4), the C. spinosa and C. gynandra
libraries yielded similar results, indicating that, evo-
lutionarily, both species are approximately equally
distant from Arabidopsis, with mapping incurring
similar penalties depending on parameters.
Since no read alignment program has emerged as the

consensus program for NGS data analysis, two differ-
ent programs were used for mapping and the output
was compared in all cases. The output proved robust
against changing the mapping program both qualita-
tively and quantitatively. Whenwemapped the quarter
million reads obtained from each species of Cleome to a
minimized TAIR 9 release of the Arabidopsis genome,
they corresponded to approximately 11,000 loci. As
theminimized TAIR 9 data set contains 21,972 gene loci,
the reads we collected in C. gynandra and C. spinosa
represent approximately 50% of the transcriptome.
In Arabidopsis seedlings, approximately 60% of the
loci represented in the TAIR 8 release were detectable
(Weber et al., 2007); hence, we have likely captured a
large proportion of the transcripts associated with
leaves of C. spinosa and C. gynandra.
The qualitative representation of gene classes de-

tected reflects that leaf tissues were analyzed. While
photosynthetic genes as well as primary metabolism
are well represented in all data sets, genes implicated
in cell walls, secondary metabolism, and defense re-
sponses are underrepresented (Fig. 1). These classes
contain genes that are likely specific to certain tissues,
developmental stages, or environmental challenges. For
example, cell wall genes may be better represented if
our sampling had included expanding leaf or stem
material (Schmid et al., 2005), and stress-response genes
may be better represented if plants were sampled after
exposure to extreme conditions (Kilian et al., 2007).

Likewise, certain pathways of secondary metabo-
lism are likely restricted to defined tissues or devel-
opmental stages, making it unlikely that wewould pick
up many of these genes when profiling leaf libraries.
Based on the gene detection pattern, the two plant
species did not encounter different biotic or abiotic
stresses or were not in different stages of growth, as
very similar genes were detected in both species (Figs.
1 and 3).

Finally, only a very small proportion of transcripts
showed significant differences in abundance between
the two different species (Supplemental Tables S2 and
S3), and these changes were enriched in a limited
number of functional classes (Fig. 3). We conclude that
cross-species mapping in protein space is a feasible
strategy to compare different species as long as an
equidistant reference is available.

Transcripts Derived from Core C4 Cycle Genes Are More
Abundant in the C4 Species

C4 photosynthesis has evolved convergently in
many different lineages of plants (Sage, 2004), and in
many cases the alterations to expression of specific
genes has been related to transcriptional regulation
(summarized in Sheen, 1999). Our genome-scale anal-
ysis allowed us to compare the steady-state transcript
levels for all candidate C4 genes at the same time. For
all of the enzymes where a change in total extractable
activity could be shown (Supplemental Fig. S1), a
higher mRNA level of at least one isoform as judged
from the read count was also present (Table III). The
only enzyme showing no changes in transcript level is
the mitochondrial NAD-MDH. Possibly, the activity of
the mitochondrial NAD-MDH is high enough already

Table IV. Transcript abundance of selected genes with an expression similar to that of C4 cycle genes and Rubisco

All changes are significant at P # 0.01. n/a, Not available.

Function Locus Annotation (TAIR 9) C. gynandra RPM C. spinosa RPM Ratio

Transport proteins
AT2G26900 Bile acid:sodium symporter family protein 4,774 55 86.8
AT2G22500 Mitochondrial dicarboxylate carrier 324 0 n/a
AT4G24570 Mitochondrial dicarboxylate carrier 148 0 n/a
AT2G45960 Plasma membrane intrinsic protein subfamily protein 2,686 133 20.2
AT5G33320 Phosphoenolpyruvate/phosphate translocator 1,955 97 20.2
AT1G49810 Member of Na+/H+ antiporter family 1,321 83 15.9

Metabolism
AT3G52720 a-Carbonic anhydrase 1 227 152 1.5
AT1G23730 b-Carbonic anhydrase 4 497 87 5.7
AT5G35170 Adenylate kinase family protein 1,994 235 8.5
AT5G09650 Inorganic pyrophosphatase 2,664 833 3.2

Proteins of unknown function
AT1G12090 Extensin-like protein (ELP) 6,278 147 42.7

Callose-degrading enzymes
AT3G57240 Member of glycosyl hydrolase family 17, likely b-1,3 glucanase 436 0 n/a
AT1G32860 Member of glycosyl hydrolase family 17, likely b-1,3 glucanase 50 0 n/a
AT5G42100 Plasmodesmal-associated b-1,3-glucanase 173 32 5.4

Cell biology
AT3G25690 CHUP1 22 170 0.13
AT3G12110 ACTIN 122 727 0.2
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in C3 plants to support a C4-type metabolic flux. The
only transport protein known to date that is involved in
the C4 cycle, the PEP phosphate translocator (Fischer
et al., 1997; Bräutigam et al., 2008a), is also up-regulated
20-fold, indicating that this transport protein is regu-
lated at the level of mRNA abundance. Based on
similarities in transcript abundance to known C4
genes, our comparative RNA-Seq also identified likely
additional components needed for C4 photosynthesis.
When PPDK was characterized, it was proposed that
adenylate kinase as well as inorganic pyrophosphatase
need to be abundant in C4 chloroplasts (Hatch and
Slack, 1968). RNA-Seq confirmed this prediction and
showed that the up-regulation also occurs at the level
of transcript abundance. Taken together, we found that
almost all transcripts encoding the proteins required
for the core C4 cycle have higher steady-state mRNA
levels, and we propose that, at least in C. gynandra, the
activity of C4 cycle enzymes and transport proteins is
controlled at least partially at the level of transcript
abundance.

Alterations to the Abundance of Transcripts Associated
with Other Metabolic Processes

Changes in the abundance of transcripts that are not
associated with the core C4 cycle are also detectable in
leaves of C. gynandra and C. spinosa. The high-flux C4
cycle poses additional demands in terms of ATP and
reduction equivalents on the light reaction (Hatch,
1987). Specifically, the recycling of the initial CO2
acceptor PEP requires additional ATP molecules
(Hatch, 1987). In C4 leaf tissue, one-third to one-half
of the genes in the photosynthetic gene classes that
contribute to ATP production by cyclic electron flow
are up-regulated compared with C3 leaf tissue: PSI, the

cytochrome b6/f complex, and the genes mediating
cyclic electron flow themselves (Fig. 3). It remains an
open question whether these higher steady-state levels
are caused by higher ATP demand or whether C4
photosynthesis requires up-regulation of these genes
to meet the ATP demand prior to establishing C4
photosynthesis.

On the other hand, the classes of Calvin-Benson
cycle genes and photorespiratory genes are those with
the highest number of genes with significantly lower
steady-state mRNA levels. It is a well-established fact
that most C4 plants have less Rubisco protein com-
pared with C3 plants (Ku et al., 1979) and that flux
through the photorespiratory pathway is reduced
compared with C3 species (Chollet and Ogren, 1975;
Leegood, 2002). Transcripts encoding the large and
small subunits of Rubisco were reduced from 22,968
and 15,442 RPM to 6,984 and 4,900 RPM in C. spinosa
and C. gynandra, respectively. Overall, the trend for
Calvin-Benson cycle genes was for them to be down-
regulated in C. gynandra compared with C. spinosa (Fig.
3). Likewise, a large number of genes encoding photo-
respiratory proteins, proteins involved in one-carbon
compound metabolism, and the genes involved in
ammonia reassimilation, Gln synthetase, and Glu syn-
thase have lower steady-state transcriptional levels
(Fig. 3; Supplemental Table S3). The reduced flow
through the photorespiratory pathway obviously de-
creases the demand on the expression system to main-
tain high steady-state levels of mRNA for many
Calvin-Benson cycle and photorespiratory genes. The
photosynthetic genes, the Calvin-Benson cycle and
photorespiratory genes (in C3), and the C4 cycle genes
(in C4) are those with the highest read counts of the
genes with known function (Supplemental Table
S3). Although it is currently not possible to quantify

Table V. Transcription factors that are significantly changed between the leaf tissue samples

Asterisks denote changes significant only in BLAST mapping. n/a, Not available.

Locus
Transcription Factor

Type

BLAT Mapping BLAST Mapping Segmentally

Duplicated?C. gynandra RPM C. spinosa RPM Ratio C. gynandra RPM C. spinosa RPM Ratio

AT1G25560 AP2-EREBP 176 9 19.6 219 9 24.3 Yes
AT5G07580 AP2-EREBP 223 51 4.4 292 36 8.1 Yes
AT1G53910 AP2-EREBP* 32 138 0.2 84 268 0.3 Yes
AT5G10570 bHLH 0 83 n/a 0 112 n/a Yes
AT3G21330 bHLH* 0 74 n/a 0 107 n/a
AT3G62420 bZIP 11 138 0.1 10 138 0.1
AT2G20570 G2-like 220 0 n/a 292 0 n/a
AT1G72030 GNAT 11 179 0.1 10 330 0.0
AT2G22430 HB 515 106 4.9 505 116 4.4 Yes
AT1G10200 LIM 22 230 0.1 21 205 0.1
AT4G30410 Not specified* 0 32 n/a 0 76 n/a
AT1G32700 PLATZ 176 9 19.6 115 4 28.8
AT5G02810 Pseudo ARR-B 0 106 n/a 10 112 0.1
AT2G36990 Sigma70-like 130 0 n/a 143 0 n/a
AT1G48500 Tify 11 147 0.1 10 174 0.1 Yes
AT1G17380 Tify* 18 110 0.2 24 161 0.1 Yes
AT3G02790 Zinc finger 374 87 4.3 407 112 3.6 Yes
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absolute transcript levels, since the genome of neither
Cleome species has been sequenced, the high read
counts obtained for the genes of central carbon me-
tabolism and photosynthesis indicate that the steady-
state levels of transcripts are high. Since the most
altered gene classes are also those that contain the
genes with the highest absolute read counts, it is not
clear whether C4 photosynthesis lowers or raises the
demand on protein synthesis and accessory pathways
such as amino acid synthesis. However, both the
protein synthesis and the amino acid metabolism
classes contain more genes that have lower steady-
state levels in C4 leaf tissue (Fig. 3). Within the protein
synthesis gene class, many transcripts encoding struc-
tural components of plastidic and cytosolic ribosomes
were reduced (Supplemental Fig. S3). This was not the
case for components of mitochondrial ribosomes (Sup-
plemental Fig. S3), indicating that there is not a general
effect on translation but that the effect is likely specific
to ribosomes involved in translation for the Calvin-
Benson cycle and photorespiration. The protein-to-
fresh weight ratio is also lower in C4 leaf tissue
compared with C3 leaf tissue (Supplemental Fig. S2).
We propose that plastidic ribosomes are relieved of the
high translation load associated with the large subunit
of Rubisco and that the cytosolic ribosomes need to
translate fewer transcripts associated with central
carbon metabolism as well as the small subunit of
Rubisco. The reduced production of proteins in the
leaves of C4 plants is considered important in increas-
ing nitrogen use efficiency, because the rate of photo-
synthesis per unit of nitrogen in the leaf is increased
(Oaks, 1994). Our data indicate that there is also likely
a significant saving in the nitrogen provision in the
leaf, because fewer ribosomes as well as fewer proteins
for central carbon metabolism are required.
The data set contains two additional gene classes,

b-1,3 glucan metabolism and putative lipid transfer
proteins, that showed differences in transcript abun-
dance between C. gynandra and C. spinosa that could be
explained within the current framework of knowledge
of C4 photosynthesis. The C4 pathway requires effi-
cient exchange of metabolites between M and BS cells
via large numbers of plasmodesmata connecting both
cell types, while the BS cell wall of many C4 plants is
suberized to reduce diffusion of CO2 away from
Rubisco (Hatch, 1987). Transcripts encoding three dis-
tinct glucan 1,3-b-glucosidases (Table IV) involved in
governing plasmodesmatal conductivity by regulating
the turnover of the b-1,3-glucan callose (Levy et al.,
2007) were up-regulated in leaves of C. gynandra
compared with C. spinosa. Therefore, it is possible
that these genes are involved in increasing the open
probability of plasmodesmata (Roberts and Oparka,
2003), which allows the efficient flux of organic acids
between M and BS cells required during C4 photosyn-
thesis (Evert et al., 1977; Botha, 1992; Roberts and
Oparka, 2003). A transcript annotated as a putative
lipid transfer protein is among those that are most
highly up-regulated in C. gynandra compared with C.

spinosa. Lipid transfer proteins are required for the
export of lipids to the cell wall during cutin biosyn-
thesis (DeBono et al., 2009). Interestingly, in Arabi-
dopsis, some lipid transfer proteins are exclusively
and abundantly expressed in the root endodermis,
where suberin biosynthesis is required to establish the
Casparian strip.

There are additional changes in the transcript profile
that are less easily explained. Among the gene classes
containing more genes with significantly higher tran-
script levels in C4 leaf tissue are starch metabolism,
cofactor synthesis and nitrogen metabolism, and heat
shock/protein folding (in order of decreasing number
of significantly different genes). On the other hand, it
is difficult to conceive why genes involved in metal
handling are frequently lower in transcript level in C4
leaf tissues (Fig. 3). These changes may be connected
to currently unknown phenomena relating to the C4
pathway or may be part of differences not relating
to C4 photosynthesis between the two species. Overall,
the global analysis of transcription on the level of
functional classes reveals unexpected shifts in tran-
script profiles that can be explained based on the
current knowledge about the C4 pathway, while a
range of smaller changes remain enigmatic.

Finally, our global transcriptional analysis of C4 and
C3 leaf tissues not only allows testing hypotheses
about the C4 pathway on a global scale but also allows
genes with expression patterns similar to those of
known C4 genes to be identified. The phylogenetic
proximity of the Cleomaceae to Arabidopsis allows the
identification of the orthologs in Arabidopsis, which
will facilitate translational research into the model
species (Brown et al., 2005).

Candidates for Additional C4-Related Genes

The identification of transport proteins involved in
the C4 cycle lags behind that of enzymes, considering
that the C4 cycle requires the intracellular transport of
pyruvate, PEP, Asp, and Ala across different organ-
ellar membranes (Bräutigam andWeber, 2011). Awide
range of C4 plants take up pyruvate into chloroplasts
from the M in cotransport with sodium (Aoki et al.,
1994; Aoki and Kanai, 1997), which might explain the
requirement for sodium as a micronutrient in many C4
species (Brownell and Crossland, 1972). Since the rate
of pyruvate transport into C4 M cell chloroplasts
occurs at or exceeds the apparent rate of CO2 assim-
ilation, sodium-coupled pyruvate import implies a
large influx of sodium into these chloroplasts, but the
transporter has not yet been identified at the molecular
level (Aoki and Kanai, 1997). Our finding that a
putative plastidic proton:sodium symporter (NHD1)
is 16-fold up-regulated in C. gynandra prompts us to
hypothesize that it functions in exporting sodium from
the chloroplast in order to maintain the sodium gra-
dient required for import of pyruvate. In addition, we
found strong up-regulation of a putative bile acid:
sodium cotransporter in C. gynandra. Interestingly, up-
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regulation of the putative bile acid:sodium cotrans-
porter or of NHD1 was not observed in maize (Zea
mays; Bräutigam et al., 2008a), which belongs to a
group of C4 plants that show proton-dependent, not
sodium-dependent, transport of pyruvate into M cell
chloroplasts (Aoki et al., 1994; Aoki and Kanai, 1997).
PEP generated from pyruvate in M cell chloroplasts is
exported from these chloroplasts by PPT, thereby
providing the substrate for the cytosolic PEPC reac-
tion. Accordingly, transcripts encoding PPTare 20-fold
up-regulated in C. gynandra, likely reflecting the in-
creased requirement for transport of PEP (Table III). In
contrast to what has been observed for the NADP-ME-
type C4 plant maize by quantitative proteomic analysis
(Bräutigam et al., 2008a), we did not detect increased
transcript abundance of the putative M chloroplast
oxaloacetate/malate exchanger DiT1 (Taniguchi et al.,
2002, 2004; Renne et al., 2003; Supplemental Table S3).
This is consistent with the fact that oxaloacetic acid/
malate shuttling across the M cell chloroplast envelope
membrane is not required for NAD-ME-type C4 pho-
tosynthesis (Weber and vonCaemmerer, 2010; Bräutigam
and Weber, 2011). The mitochondrial dicarboxylate
carriers are prime suspects for the C4 acid importer
into the mitochondria, where decarboxylation takes
place (Table IV). The initial uptake of inorganic carbon
and its conversion to bicarbonate may be facilitated by
the concerted action of a membrane intrinsic protein
channeling the gas and a carbonic anhydrase that is
predicted to be membrane bound (Table IV).

Chloroplasts in the BS of C. gynandra are larger than
those in the BS of C3 species and, as in many other C4
plants, are positioned in a strictly centripetal pattern
(Marshall et al., 2007; Voznesenskaya et al., 2007).
Transcripts derived from the GIANT CHLOROPLAST1
(GC1) gene were more abundant in C. gynandra than in
C. spinosa (Table IV). Although overexpression of GC1
in Arabidopsis is reported not to effect chloroplast
division (Maple et al., 2004), it is possible that it does
so in C. gynandra. In addition, we also detected re-
duced accumulation of transcripts derived from the
CHUP1 and ACTIN11 genes. In Arabidopsis, the outer
chloroplast envelope membrane protein CHUP1 con-
tains an actin-binding motif and is required for pre-
venting chloroplast aggregation (Oikawa et al., 2003).
Differential positioning of chloroplasts in BS and M

cells of the C4 plants finger millet (Eleusine coracana)
and maize requires the actomyosin system (Kobayashi
et al., 2009). Since AtCHUP1 is involved in positioning
chloroplasts at the periclinal plasma membrane dur-
ing the weak-light acclimation response via a coiled-
coil domain and interaction with the cytoskeleton
(Oikawa et al., 2003), it is possible that the centripetal
positioning of chloroplasts in BS cells is linked to lower
expression of the CgCHUP1 and ACTIN11 genes.

Controlling and Maintaining a C4 State in Leaf Tissue

Our estimate that around 603 transcripts accumulate
differentially in leaves of C3 and C4 species provides
insight into the extent to which gene expression pro-
files change in C4 leaves. For example, the fact that 258
transcripts were more abundant in the leaves of C4
compared with C3 species indicates that about 2.8% of
the leaf transcriptome differentially accumulates in C4
leaves (Supplemental Tables S2 and S6). To compare
the complexity of the C4 pathway with other multi-
genic traits, we assessed the number of transcripts that
are known to be regulated by sugars, cold, diurnal and

Table VI. Comparison of alterations in transcript abundance in C4 and C3 leaves with those induced by
cold, sugar feeding, attack by pests or pathogens, diurnal changes to light, or circadian rhythms

Cause Estimated Change in Transcriptome Change Reference

%

Cold treatment 514 (24,000) ATH1 2.1 Vogel et al. (2005)
C4 leaves and C3 leaves 583/603 (13,443/13,662) 2.7/2.8 This study
Glc feeding 978 (22,500) ATH1 4.4 Price et al. (2004)
Pseudomonas syringae 2,034 (23,750) ATH1 8.6 De Vos et al. (2005)
Myzus persicae 2,181(23,750) ATH1 9.1 De Vos et al. (2005)
Diurnal regulation 1,115 (11,521) cDNA array 11 Schaffer et al. (2001)
Circadian regulation 2,282 (18,890) Galbraith 12 Dodd et al. (2007)

Figure 4. Schematic of components associated with the C4 cycle in the
NAD-ME subtype based on interpretation of RNA-Seq. Proteins that
have been described previously are in gray, and novel proteins are
marked in red. Metabolites are in black. PIP1B:CA4, PIP1B plasma
membrane aquaporin:membrane-tethered carbonic anhydrase; OAA,
oxaloacetic acid; ACT11-CHUP11, ACTIN11-CHUP1 complex; Pyr,
pyruvate; OEP24, chloroplast outer envelope protein 24.
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circadian rhythms, as well as attack by pests and
pathogens (Table VI). Interestingly, the alterations in
transcript abundance of leaves of C. gynandra com-
pared with those of C. spinosa were greater than those
observed in response to cold treatment and lower than
those induced by Glc feeding, those occurring during
pathogen attack, and the response to both diurnal and
circadian rhythms. As significant progress has been
made in understanding sugar signaling (Rolland et al.,
2006), pathogen attack (Wise et al., 2007), and the
control of gene expression in response to the diurnal
cycle and circadian rhythms (Imaizumi et al., 2007), it
should be possible to identify the regulators responsi-
ble for these alterations in transcript abundance in a C4
leaf compared with a C3 leaf. The changes in transcript
abundance that we document in a C4 leaf compared
with a C3 leaf likely overrepresent the changes in
transcript abundance actually associated with C4 pho-
tosynthesis on a whole leaf basis, as some differences
in gene expression are likely due to the phylogenetic
distance between C. gynandra and C. spinosa. A more
confident estimate of the extent to which the leaf
transcriptome is altered in association with C4 photo-
synthesis will be generated when additional conge-
neric pairs of C3 and C4 species are subjected to deep
transcriptome analysis and shared transcripts are
identified. Between M and BS cells, the alterations in
gene expression may be greater than those that we
have defined for whole leaves. For example, up to 18%
of genes are estimated to be differentially expressed
between M and BS cells of maize (Sawers et al., 2007).
However, it is not clear how different the transcript
profiles of M and BS cells are in a dicot C3 leaf, and
until this is defined, it is not possible to infer the extent
to which transcript abundance alters in these cell types
in association with C4 photosynthesis.
As we sampled from mature leaves to capture the

differences between C3 and C4 leaves at the point of
fully differentiated pathways, we likely also captured
regulatory genes needed to maintain C4 architecture
and metabolism in mature leaves. Of the 17 transcrip-
tion factors significantly altered (Table V), GOLDEN2-
LIKE1 (GLK1) has previously been implicated in reg-
ulating genes important in C4 photosynthesis. In
maize, GOLDEN2 controls functional differentiation
of chloroplasts in BS cells (Langdale and Kidner, 1994),
and GLK1 has been implicated in the expression of
photosynthesis genes in M cells (Rossini et al., 2001).
The fact that GLK1 transcripts are significantly more
abundant in leaves of C. gynandra would not neces-
sarily be predicted, as previous work indicates that it
becomes specialized in BS cells of C4 leaves but not
that its abundance is altered significantly. This implies
that the increase in abundance of GLK1 transcripts
may not simply be due to its involvement in C4
photosynthesis. When overexpression of GLK1 was
induced in Arabidopsis, the abundance of 114 tran-
scripts was altered (Waters et al., 2009). We assessed
the extent to which the genes that are controlled by
GLK1 change in abundance in leaves of C. gynandra

compared with C. spinosa and found that only 19 genes
were shared between the two data sets. This may be
due to a number of factors that could include the
following: that there are differences in the targets of
GLK1 in Arabidopsis and C. gynandra; that a number
of other transcriptional regulators are more important
than GLK1 in maintaining patterns of photosynthesis
gene expression in C. gynandra; and that a rapid
induction of GLK1 gene expression has more impact
than increasing the steady-state level of GLK1. This
analysis is also subject to the caveat that in neither case
was the amount of GLK1 protein measured.

In all of our analyses, differences in transcript abun-
dance between the leaves of C. gynandra and C. spinosa
may reflect the operation of the C4 and C3 photosyn-
thetic pathways; alternatively, they may be due to
differences in metabolism and cell biology associated
with the phylogenetic distance between the two spe-
cies. However, in many cases, it is striking that our
analysis has identified differences in the abundance of
transcripts derived from genes that have been docu-
mented to be involved in processes known to alter in a
C4 leaf. Taken together, the analysis allows us to sig-
nificantly extend the number of C4-related genes con-
trolled at the level of transcript abundance and to
extend the current model for C4-related processes in
NAD-MEC4 plants (Fig. 4). Analysis of additional pairs
of C3 and C4 species will likely facilitate the identifica-
tion of genes specifically involved in the C4 pathway
and exclude genes that are modified for other reasons.

MATERIALS AND METHODS

Plant Material and 454 Sequencing

Cleome spinosa and Cleome gynandra plants for transcript profiling by RNA-

Seq were grown in standard potting mix in a glasshouse in August and

September 2007. To obtain sequence tags for DGE analysis from C. spinosa and

C. gynandra, total RNAs were isolated from fully expanded leaves sampled

from 56-d-old plants of each species. mRNAwas reverse transcribed to cDNA

after two consecutive rounds of oligo(dT) purification and prepared for 454

sequencing as described previously (Weber et al., 2007).

Mapping and Quantification of the Sequence Reads

Evolution did not stop in the lineage to the reference genome of Arabi-

dopsis (Arabidopsis thaliana) after the Cleomaceae branch diverged. Hence,

there may be genes that were tandem duplicated or retained after the whole

genome duplication event of the Brassicaceae that are absent in either of the

Cleomaceae species (Bräutigam and Gowik, 2010). To avoid mapping prob-

lems such as splitting of reads or mapping errors due to differential retention

of genes in either Cleomaceae or Arabidopsis, we created a minimal genome

for mapping. The remnants of the last whole genome duplication in the

lineage of the Brassicaceae (Bowers et al., 2003; Thomas et al., 2006) and the

tandem duplicated genes (Haberer et al., 2004) were reduced to one repre-

sentative for each based on the TAIR 9 coding sequence set. In each case, the

gene with the lowest AGI code was retained for mapping. For each gene, the

Supplemental Data store whether there are duplicates and which duplicates

match the gene (Supplemental Tables S3 and S5). We recommend recovery of

the associated duplicated genes followed by a detailed analysis with phylo-

genetic trees to define the true ortholog when translating the results of

Cleomaceae analyses to Arabidopsis research.

The 454 sequence reads were mapped onto coding sequences of the

minimalized TAIR 9 genome by BLAT (Kent, 2002) and BLAST (Altschul et al.,
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1997) with varying parameters, and the output was parsed with in-house PERL

scripts to retain only the best matchingAGI codes for each sequence read and the

best BLAST hit, respectively. Differentially expressed transcripts were identified

using the Poisson statistics developed byAudic andClaverie (1997) followed by a

Bonferroni correction to account for the accumulation of a-type errors when

conducting multiple pair-wise comparisons (Audic and Claverie, 1997).

Plant Material and qPCR Analysis

Both species were grown in a growth chamber in long-day conditions (16 h

of light/8 h of dark) under 350 mmol photons m22 s21, at 22#C, and 65%

relative humidity prior to samples being taken for qPCR. qPCR was con-

ducted on the same samples used for RNA-Seq and also on mature leaves

collected at noon grown in the growth cabinet. For qPCR, RNA was isolated

using TriPure reagent (Roche Applied Science). RNAwas treated with DNase

I (Promega) and purified with the RNeasy Mini Kit (Qiagen). First-strand

cDNA was then synthesized with SuperScriptII reverse transcriptase (Invi-

trogen) using 4 mg of RNA and oligo(dT) primers (Roche Applied Science).

Quantitative reverse transcription-PCR was carried out with 96-well plates

using a DNA Engine thermal cycler, Chromo4 real-time detector (Bio-Rad),

SYBR Green JumpStart Taq Ready Mix (Sigma), and 15-fold dilution of the

cDNA as a template. Initial denaturation was carried out at 94#C for 2 min,

followed by 40 cycles of 94#C for 20 s, 60#C for 30 s, 72#C for 30 s, and 75#C for

5 s. Primers were designed to have melting temperatures of 60#C 6 0.5#C and

to produce amplicons of 91 to 189 bp. The specificity of the primers and lack of

primer dimers in the PCR were verified using agarose gel electrophoresis and

melting curve analysis. For each product, the threshold cycle CT, where the

amplification reaction enters the exponential phase, was determined for three

technical replicates and four independent biological replicates per species.

The comparative 22DDCT method was used to quantify relative abundance of

transcripts (Livak and Schmittgen, 2001). ACTIN7 was chosen as a reference

because the 454 sequencing data showed equal, intermediate levels ofACTIN7

transcripts in both species. For the qPCR, SE values were calculated from

22DDCT values of each combination of biological replicates.

Polar Metabolite, Chlorophyll, Protein, and Enzyme
Activity Analyses

For metabolite analysis, mature leaves from 56-d-old plants were collected

in the middle of the light period and immediately frozen in liquid nitrogen.

Three independent biological replicates were used. The tissues were ground

in a mortar, and a 50-mg fresh weight aliquot was extracted using the pro-

cedure described by Lee and Fiehn (2008). Ribitol was used as an internal stan-

dard for data normalization. For GC-EI-TOF analysis, samples were processed

and analyzed according to Lee and Fiehn (2008). Enzyme activities, chlorophyll,

and protein content were determined according to Hausler et al. (2001).

The Cleome read data have been submitted to the National Center for

Biotechnology Information Short Read Archive: C. spinosa = SRS002743.1 and

C. gynandra = SRS002744.2.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Quantitation of marker enzyme activities in leaf

extracts of C. spinosa and C. gynandra.

Supplemental Figure S2. Protein-to-fresh weight and protein-to-chloro-

phyll ratios in leaves of C. gynandra and C. spinosa.

Supplemental Figure S3. Changes in transcript abundance for ribosomal

proteins.

Supplemental Table S1. Relative abundance of predominant metabolites

detected by GC-EI-TOF in C. gynandra and in C. spinosa.

Supplemental Table S2.Number of gene loci and number of differentially

expressed genes detected with BLAT and BLAST.

Supplemental Table S3. Quantitative information for all reads mapped

onto the reference genome from Arabidopsis.

Supplemental Table S4. Comparison of mapping parameters.

Supplemental Table S5. Segmental and tandem duplicates in the Arabi-

dopsis genome.
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C4 photosynthesis outperforms the ancestral C3 state in a wide range of natural and agro-ecosystems by affording higher

water-use and nitrogen-use efficiencies. It therefore represents a prime target for engineering novel, high-yielding crops by

introducing the trait into C3 backgrounds. However, the genetic architecture of C4 photosynthesis remains largely unknown.

To define the divergence in gene expression modules between C3 and C4 photosynthesis during leaf ontogeny, we generated

comprehensive transcriptome atlases of two Cleomaceae species, Gynandropsis gynandra (C4) and Tarenaya hassleriana

(C3), by RNA sequencing. Overall, the gene expression profiles appear remarkably similar between the C3 and C4 species. We

found that known C4 genes were recruited to photosynthesis from different expression domains in C3, including typical

housekeeping gene expression patterns in various tissues as well as individual heterotrophic tissues. Furthermore, we

identified a structure-related module recruited from the C3 root. Comparison of gene expression patterns with anatomy during

leaf ontogeny provided insight into genetic features of Kranz anatomy. Altered expression of developmental factors and cell

cycle genes is associated with a higher degree of endoreduplication in enlarged C4 bundle sheath cells. A delay in mesophyll

differentiation apparent both in the leaf anatomy and the transcriptome allows for extended vein formation in the C4 leaf.

INTRODUCTION

C4 photosynthesis has evolved concurrently and convergently in

angiosperms more than 65 times from the ancestral C3 state

(Sage et al., 2011) and provides fitness and yield advantages over

C3 photosynthesis under permissive conditions, such as high tem-

peratures (Hatch, 1987; Sage, 2004). In brief, C4 photosynthesis

represents a biochemical CO2 pump that supercharges photosyn-

thetic carbon assimilation through the Calvin-Benson-Bassham

cycle (CBBC) by increasing the concentration of CO2 at the site

of its assimilation by the enzyme Rubisco (Andrews and Lorimer,

1987; Furbank and Hatch, 1987). Rubisco is a bifunctional enzyme

that catalyzes both the productive carboxylation and the futile

oxygenation of ribulose 1,5-bisphosphate. The oxygenation reaction

produces a toxic byproduct, 2-phosphoglycolic acid (Anderson,

1971), which is removed by an energy-intensive metabolic repair

process called photorespiration. By concentrating CO2 through

the C4 cycle, the oxygenation of ribulose 1,5-bisphosphate and

thereby photorespiration is massively reduced. However, the C4

cycle requires input of energy to drive the CO2 pump. Photo-

respiration increases with temperature and above ;23°C, the

energy requirements of metabolic repair become higher than the

energy cost of the C4 cycle (Ehleringer and Björkman, 1978;

Ehleringer et al., 1991). Hence, operating C4 photosynthesis is

beneficial at high leaf temperatures, whereas C3 photosynthesis

prevails in cool climates (Ehleringer et al., 1991; Zhu et al., 2008).

With a few exceptions, C4 photosynthesis requires specialized

Kranz anatomy (Haberlandt, 1896), in which two distinct cell

types share the photosynthetic labor, namely, mesophyll cells

(MCs) and bundle sheath cells (BSCs). MCs surround the BSCs

in a wreath-like manner and both cell types form concentric

rings around the veins. This leads to a stereotypic vein-BSC-

MC-MC-BSC-vein pattern (Brown, 1975). MCs serve as carbon

pumps that take in CO2 from the leaf intercellular air space,

convert it into a C4 carbon compound, and load it into the BSCs.

Here, CO2 is released from the C4 compound and assimilated
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into biomass by the CBBC, and the remaining C3-compound is

returned to the MC to be loaded again with CO2. The carbon pump

runs at a higher rate than the CBBC (overcycling), which leads to

an increased concentration of CO2 in the BSCs. Our understanding

of the different elements required for C4 photosynthesis varies, with

many components of the metabolic cycle known, while their in-

terplay and regulation remain mostly enigmatic, and very little is

known about their anatomical control (Sage and Zhu, 2011).

C4 photosynthesis can be considered a complex trait, since it

requires changes to the expression levels of hundreds or perhaps

thousands of genes (Bräutigam et al., 2011, 2014; Gowik et al.,

2011). While complex traits are typically dissected by measuring

the quantitative variation across a polymorphic population, this

approach is not promising for C4 photosynthesis, due to lack of

known plasticity in “C4-ness” (Sage and McKown, 2006). Historical

crosses between C3 and C4 plants (Chapman and Osmond, 1974)

are no longer available and would have to be reconstructed before

they can be analyzed with molecular tools.

Alternatively, closely related C3 and C4 species provide a plat-

form for studying C4 photosynthesis. In the Cleomaceae and

Asteraceae, comparative transcriptomic analyses have identified

more than 1000 genes differentially expressed between closely

related C3 and C4 species (Bräutigam et al., 2011; Gowik et al.,

2011). These studies, however, compared the end points of leaf

development, i.e., fully matured photosynthetic leaves. Therefore,

they do not provide insight into the dynamics of gene expression

during leaf ontogeny, which is important for understanding the

establishment of C4 leaf anatomy. Systems analyses of maize

(Zea mays) leaf gradients have provided a glimpse into de-

velopmental gene expression modules (Li et al., 2010; Pick et al.,

2011; Wang et al., 2013); however, maize lacks a close C3 relative

and has simple parallel venation making any generalizations to

dicot leaf development difficult.

Tarenaya hassleriana, previously known as Cleome hassleri-

ana (Iltis and Cochrane, 2007; Iltis et al., 2011), which is a C3

plant, and Gynandropsis gynandra (previously known as Cleome

gynandra), which is a derived C4 plant, represent an ideal pair for

a comparative analysis of the complex trait of C4 photosynthesis

(Bräutigam et al., 2011). Both species belong to the family of

Cleomaceae, are closely related to each other and to the well-

annotated C3 plant model species Arabidopsis thaliana (Brown

et al., 2005; Marshall et al., 2007; Inda et al., 2008), and both

Cleome sister lineages share many traits (Iltis et al., 2011). In

addition, the genome of T. hassleriana has been recently se-

quenced and serves as a reference for expression profiling via

RNA sequencing (Cheng et al., 2013).

In this study, we take advantage of the phylogenetic proximity

between G. gynandra and T. hassleriana to compare the dy-

namic changes in gene expression during leaf development

(Inda et al., 2008). We generated a transcriptome atlas for each

species, consisting of three biological replicates of six different

stages of leaf development, three different stages of each seed

and seedling development, reproductive organs (carpels, sta-

men, petals, and sepals), stems, and roots. In parallel, we per-

formed microscopy analysis of the leaf anatomy. Finally, we

measured leaf cell ploidy levels by flow cytometry and mea-

surements of nuclear size in different leaf cell types by confocal

laser scanning microscopy.

RESULTS

Selection of Tissues Featured in the Comparative Atlases

For high-resolution characterization of photosynthetic development

between a dicotyledonous C3 and C4 species, a leaf developmental

gradient was defined. Stage 0 was the youngest sampled leaf,

2 mm in length, and not yet emerged from the apex. The stage

0 leaves are the first to show a discernible palmate shape and

contain the first order vein (midrib vein) in both species (Figure 1A;

Supplemental Figure 1A). New leaves emerged from the apex every

2 d (plastochron = 2 d) in both species and were numbered se-

quentially from the aforementioned stage 0 to stage 5 (Figure 1A).

The leaves emerge and initiate secondary vein formation at stage 1

(Supplemental Figure 1B) and fully mature by stages 4 and 5

(Supplemental Figures 1E and 1F). The mature leaf of the C4 spe-

cies has more minor veins (up to 7°) than that of the C3 species (up

to 6°; Supplemental Figure 1F). The leaf expansion rate is initially

indistinguishable and never significantly different between the

species (Figure 1B). The sampled leaf gradient covered the

development from non-light-exposed sink tissues to fully photo-

synthetic source tissues.

Complementary to this and to provide a broader comparison

between C3 and C4 plants, seedlings, minor photosynthetic, and

Figure 1. Overview of Leaf Shape and Expansion Rate in G. gynandra

and T. hassleriana.

(A) Image of each leaf category sequenced (bar = 1 cm). Each category is

2 d apart from the other.

(B) Leaf expansion rate of each leaf category in cm2 over 12 d (n = 5;

6SD)

[See online article for color version of this figure.]
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heterotrophic tissues were selected for further characterization.

The aerial portion of seedlings (cotyledon and hypocotyl) was

sampled 2, 4, and 6 d after germination to cover early cotyledon

maturation (Supplemental Figure 2). The full root system and

stem tissue were sampled from plants after 6 to 8 weeks of

growth before inflorescence emergence (Supplemental Figure

3A); floral organs (petals, carpels, stamen, and sepals) were

harvested during flowering of 10- to 14-week-old plants as well

as three different stages of seed development (Supplemental

Figure 3B). In total, 10 phototrophic and 8 heterotrophic tissues

per species were included in the atlases (Table 1).

The C3 and C4 Transcriptomes Are of High Quality

and Comparable between Species

Cross-species mapping provided a more reliable data set than

de novo transcriptome assembly. Between 1.4 and 67 million high-

quality reads were generated per replicate (Supplemental Data Set

2). Initially, paired-end reads from each tissue were assembled by

VELVET/OASES (Supplemental Table 1). Comparing the resulting

contigs to reference data, including the T. hassleriana genome

(Cheng et al., 2013), revealed several quality issues. These include

excessive numbers of contigs mapping to single loci, fused and

fragmented contigs, and the absence of C4 transcripts known to be

highly expressed in G. gynandra (Supplemental Figures 4A to 4C

and Supplemental Data Set 3). As an alternative, we aligned single-

end reads from both species to the recently sequenced T. has-

sleriana genome (Cheng et al., 2013). Albeit slightly lower, the

mapping efficiency and specificity remained comparable between

both species with 60 to 70% of reads mapped for both leaf

gradients (Supplemental Data Set 1). To define an upper

boundary for any artifacts caused by cross-species mapping,

three T. hassleriana samples (mature leaf stage 5, stamen,

and young seed) were mapped to Arabidopsis. The correlation

between replicates was equivalent in reads mapped to the

cognate genome and across species with an average r = 0.98.

Furthermore, there was a strong correlation between both

mappings, reaching an average Pearson correlation of r = 0.86

after collapsing expression data to Arabidopsis identifiers

to minimize bias from different genome duplication histories

(Supplemental Table 2 and Supplemental Figure 5). Cross-

species mapping has been successfully used for inter species

comparisons before (Bräutigam et al., 2011, 2014; Gowik

et al., 2011), and in this study mapping of both species to the

T. hassleriana genome provided a quality data set with a limited

degree of artifacts.

The generated transcriptome atlases were reproducible and

comparable between species. To reduce noise, downstream

analyses focused on genes expressed above 20 reads per

mappable million (RPKM; Supplemental Figure 6), unless otherwise

noted. Biological replicates of each tissue clustered closely

together and were highly correlated (mean r = 0.92, median

r = 0.97; Figure 2A; Supplemental Figures 7A and 7B and

Supplemental Table 3). On average, 4686 and 5308 genes

displayed significantly higher expression values in G. gynandra

and T. hassleriana, respectively, with the greatest differences

observed in seed and stem tissue (Supplemental Table 4). In

contrast, the transcriptome patterns were highly similar be-

tween the sister species (Figure 2A; Supplemental Figure 7C).

Principle component analysis (PCA) showed that the first

component separated the species and accounted for only

15% of the total variation (Supplemental Figure 8A).

Table 1. Sequencing and Mapping Stats for Each Averaged Tissue Sample in T. hassleriana and G. gynandra

T. hassleriana G. gynandra

Total No. of

Reads in Three

Replicates

No. of Genes

Expressed > 1

RPKM

No. of Genes

Expressed > 1000

RPKM

Total No. of

Reads in Three

Replicates

No. of Genes

Expressed > 1

RPKM

No. of Genes

Expressed > 1000

RPKM

Leaf gradient 0 58,874,878 23,238 64 75,895,556 22,357 104

1 59,389,701 23,134 74 66,822,298 22,021 133

2 63,590,283 23,104 81 55,247,053 22,143 129

3 90,654,684 23,004 90 75,944,275 21,854 144

4 36,572,303 22,844 106 69,951,930 21,734 119

5 102,018,867 22,905 106 69,639,670 21,039 119

Floral organs Sepal 103,721,357 23,656 74 77,430,418 23,145 83

Petal 21,754,853 21,379 86 10,872,686 21,322 77

Stamen 57,929,412 22,642 140 55,748,506 22,489 133

Carpel 28,021,839 23,910 67 4,929,824 23,577 76

Stem 30,932,633 23,292 75 59,516,389 22,508 98

Root 88,911,824 24,255 68 86,879,963 23,430 89

Seedling 2 DAG 90,777,012 23,306 120 89,262,140 21,960 130

4 DAG 89,517,055 23,041 116 112,658,149 22,036 130

6 DAG 71,271,739 22,877 138 64,470,699 21,910 136

Seed

maturation

1 52,229,844 23,708 118 32,763,383 22,991 118

2 31,872,067 22,969 145 29,958,720 22,262 148

3 53,271,349 21,737 138 56,453,325 20,082 152

Reads were normalized as RPKM (n = 3). DAG, days after germination.
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Gene expression patterns and dynamics are conserved be-

tween species. The number of genes expressed above 20

RPKM varied by tissue from 6900 to 12,000, with the fewest in

the mature leaf and most in the stem and youngest leaf in both

species (Table 1; Supplemental Data Set 2). Hierarchical clus-

tering revealed major modules with increasing and decreasing

expression along the leaf gradient (Figure 2B), a large overlap of

peak expression between seedlings and mature tissue, and

distinct gene sets for the other sampled tissues (Supplemental

Figure 9A). In leaves, the genes with decreasing expression split

into two primary clusters, of which the smaller cluster main-

tained higher expression longer in the C4 than the C3 species

(Figure 2B). Clustering of the tissues with 10,000 bootstrap

replications confirmed the visual similarity of mature leaves and

seedlings and showed further major branches consisting of (1)

carpel, stem, and root; (2) a seed gradient and remaining floral

Figure 2. Comparative Tissue Dynamics and Gene Expression Pattern between G. gynandra and T. hassleriana.

(A) Pearson’s correlation heat map of the expression of tissue-specific signature genes (RPKM) of all leaf gradient sample averages (n = 3) per species.

Yellow, low expression; red, high expression. G, G. gynandra; H, T. hassleriana.

(B) Pearson’s correlation hierarchical cluster of all leaf gradient sample averages as Z-scores. Blue is the lowest expression and yellow the highest

expression.

(C) Expression patterns of transcriptional regulators in both species within the leaf gradient. Pearson’s correlation hierarchical cluster of all sample

averages as Z-scores. Blue is the lowest expression and yellow the highest expression.
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organs; and (3) young leaves (Supplemental Figure 9A). Limiting the

clustering to transcription factors (TFs) showed equivalent results

(Supplemental Figure 9B; Figure 2C), except that in leaves, a higher

proportion of the TFs with decreasing expression maintained ex-

pression longer in the C4 species. Notably, this delay impacted the

clustering of the tissues and older C4 leaves tended to cluster with

younger C3 leaves by TF expression (Supplemental Figures 9A and

9B). The delay was further reflected in a PCA of the leaf gradient

where stage 0 and 1 show much less separation in G. gynandra

than in T. hassleriana (Supplemental Figure 8B).

The functional categories with dominant expression showed

distinct patterns across the tissues and high conservation be-

tween the species. As in the hierarchical clustering, the species

showed similar profiles when examining the number of signature

genes (expressed over 1000 RPKM; Figure 3) or the total RPKM

(Supplemental Figure 9) in each functional category. As expected,

in mature leaves and seedlings, transcriptional activity is dominated

by photosynthesis, which is almost entirely lacking from roots,

seeds, stamens, and petals (Figure 3; Supplemental Figure 9).

Younger leaf tissues of the C3 species show higher expression of

genes in the photosynthetic category, displayed as signature genes

(Figure 3) or as cumulative RPKM per category (Supplemental

Figure 9). In all floral tissues, roots, and stems, transcriptional ac-

tivity is comparatively balanced between categories. In seeds, a

major portion of the total expression is allocated to a few, extremely

highly expressed lipid transfer protein type seed storage proteins

(Supplemental Figure 9). The differences between the two species

lie in the details, especially within the developmental leaf gradient.

In young G. gynandra leaves, more signature genes encode DNA

and protein-associated MapMan terms than in T. hassleriana (Fig-

ure 3). A close examination of secondary MapMan categories

shows that specifically histone proteins (34 genes with P < 0.05

in stage 1, enriched with Fisher’s exact test P = 2.6$10213) and

protein synthesis (222 genes with P < 0.05 in stage 1, enriched with

Fisher’s exact test P = 1.8$10217) are upregulated in G. gynandra

and that these categories have a larger dynamic range in

G. gynandra than T. hassleriana (Supplemental Figure 10).

In summary, transcriptomic analysis indicates the tissues are

well paired and comparable between species and although there

are differences in expression level, there is conservation of ex-

pression patterns between species. Within the leaf gradient,

there is a subset of genes that shows a delay in the onset of

expression changes in G. gynandra.

The Comparative Transcriptome Atlases Revealed Diverse

Recruitment Patterns from the C3 Plant T. hassleriana to

C4 Photosynthesis

The expression patterns of the core C4 cycle genes were com-

pared in G. gynandra and T. hassleriana to gain insight into the

evolutionary recruitment of C4 cycle genes to photosynthesis.

During convergent evolution of C4 photosynthesis, these genes

Figure 3. Distribution of Signature Genes in Each Tissue in G. gynandra and T. hassleriana.

Percentage of signature genes expressed over 1000 RPKM falling in each basal MapMan category for every averaged tissue.
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were recruited from ancestral C3 genes (Sage, 2004; Edwards

et al., 2010; Sage et al., 2011). To contextualize the change in

expression of the C4 cycle genes, the between species Euclid-

ean (absolute) and Pearson (pattern) distances were calculated

and compared from the leaf developmental gradients (Figure

4A). All known C4 cycle genes showed a large Euclidean dis-

tance (844 to 9156 RPKM), while they split between a correlated

and an inversely correlated pattern. In addition to the known C4

genes, histones, lipid transfer proteins, protein synthesis, and

DNA synthesis are functional categories found among genes

with greater than 844 RPKM differences in absolute expression

(Supplemental Data Set 6).

To identify ancestral C3 expression domains from which C4

genes were recruited, the expression of the core C4 cycle genes

was compared between species. In G. gynandra, all core C4

cycle genes increase in expression along the leaf gradient and

are high in seedlings (Figures 4C and 4D; Supplemental Figures

12A to 12F); this pattern matches that of other photosynthetic

genes (Figure 4B). For each C4 cycle gene, the T. hassleriana

sequence to which most G. gynandra reads mapped was taken

as the most likely closest putative ortholog (Supplemental

Figures 13 and 14). The putative orthologs of core C4 genes are

expressed at comparatively low levels in C3 (Supplemental Figures

13 and 14). Activity measurements of the core C4 cycle enzymes

match the observed gene expression profiles (Supplemental Figure

15). In contrast to leaves and seedlings, the remaining tissues show

a variety of expression patterns of C4 cycle genes in both species

(Figures 4C to 4E; Supplemental Figures 12A to 12G). Of the C4

cycle genes, NAD-MALIC ENZYME (NAD-ME) and the SODIUM:

HYDROGEN ANTIPORTER (NHD) show a fairly constitutive ex-

pression pattern in C3, while the others have a small number of

tissues where the expression peaks (Figure 4C; Supplemental Figure

12A). The expression of PYRUVATE PHOSPHATE DIKINASE

(PPDK ), the PHOSPHOENOLPYRUVATE TRANSLOCATOR

(PPT), and DICARBOXYLATE CARRIER (DIC) peaks in floral organs

(Supplemental Figures 12B and 12C; Figure 4D); the expression of

ASPARTATE AMINO TRANSFERASE (AspAT ) and ALANINE

AMINOTRANSFERASE (AlaAT ) peaks in seed (Figure 4E;

Supplemental Figure 12D); and the expression of the pyruvate

transporter BILE ACID:SODIUM SYMPORTER FAMILY PROTEIN2

(BASS2) peaks in the young leaf (Supplemental Figure 12E). Albeit

erroneous identification of the closest C3 ortholog in some cases

(e.g., BASS2 and PHOSPHOENOLPYRUVATE CARBOXYLASE

[PEPC]) impedes identification of the ancestral C3 expression do-

main (Supplemental Figures 12 and 13), the majority of known C4

cycle genes were recruited to a photosynthetic expression pattern

from a variety of expression domains (Figure 4B).

To assess the possibility of small modular recruitment from

other tissues to the C4 leaf, we searched for evidence of an

expression shift between the C3 root and the C4 leaf. This shift is

expected, if the bundle sheath tissue is partially derived from the

regulatory networks of root endodermis, as proposed previously

(Slewinski, 2013). Expression pattern filters were used to identify

37 genes that were expressed primarily in the C3 root and the C4

leaf (C3 leaf/root < 0.3; C4/C3 leaf > 1; C4 leaf4-5/root > 0.5; C4

leaf5 > 30 RPKM; leaf5/root enrichment 6-fold greater in C4),

significantly more than in a randomized data set (P value < 10229;

Supplemental Table 5). This set of genes showed a very similar

expression pattern to photosynthetic genes along the C4 leaf

gradient (Figure 5A).

The functions encoded by the genes that were apparently

recruited to the leaf from a root expression domain were con-

sistent with structural modifications and C4 photosynthesis. In

Arabidopsis, 29 of the corresponding homologs are heteroge-

neously expressed across different root tissues with their high-

est expression in either the endodermis or cortex, analogous

to bundle sheath and mesophyll cells, respectively (Slewinski,

2013). Three functional groups could be identified in the cluster.

The first is related to tissue structure, i.e., cell wall modification

and plasmodesmata, the second to metabolic flux and redox

balance, and the third to signaling (Figure 5B). Among these

genes are two C4 cycle genes, namely, DIC1, and a carbonic

anhydrase. The group contains three TFs, one of which is in-

volved in auxin response stimulation. Coexpression network

analysis of the Arabidopsis homologs (ATTED-II) shows 11

genes from the cluster occur in a shared regulatory network. In

summary, a set of genes related to cell wall, metabolic/redox

flux, and signaling was recruited from the C3 root to the C4 leaf,

many of which are coexpressed in Arabidopsis and found in leaf

tissues analogous to BSC and MC.

Changes in the Leaf Transcriptomes Reveal Differences in

Cellular Architecture and Leaf Development in the

C4 Species

Altered expression of cell cycle genes and enlarged BSC nuclei

in G. gynandra suggest the occurrence of endoreduplication

within this cell type. During early leaf development, G. gynandra

leaf samples clustered together with younger samples in

T. hassleriana (Supplemental Figures 8A and 8B), indicating a delay

in leaf maturation. We hypothesized this delay in G. gynandra leaf

maturation is manifested through alterations of cell cycle gene

expression during leaf development. Hierarchical clustering of ab-

solute expression values showed that the majority of known core

cell cycle genes (Vandepoele et al., 2002; Beemster et al., 2005)

have comparable expression patterns between both species

(Supplemental Figure 16 and Supplemental Data Set 7). However,

two distinct groups of genes were identified, which are either

upregulated in G. gynandra between stage 0 to 2 (group 1: 9 of

18 genes with P value < 0.05) or show a delayed decrease

during C4 leaf development (group 2: 9 of 12 genes with P

value < 0.05 between stage 0 and 3; Supplemental Figure 16

and Supplemental Data Set 7). Interestingly, GT-2-LIKE1 (GTL1),

a key cell cycle regulator, was not correlated between G. gynandra

and T. hassleriana during leaf development. GTL1 is upregulated

in later stages of leaf development in T. hassleriana but not in

G. gynandra (P value < 0.001 in stage 5; Supplemental Figure 16

and Supplemental Data Set 7).

As GTL1 has been demonstrated to operate as an inhibitor

of endoreduplication and ploidy-dependent cell growth (Breuer

et al., 2009, 2012), we examined whether nuclei were enlarged in

any G. gynandra leaf tissues. First, both leaf developmental

gradients were subjected to flow cytometry. Polyploidy (DNA

content > 2C) was observed in both species, but clearly en-

riched in C4 compared with C3, especially in the more mature

leaves (5% versus 1% $ 8C, 16% versus 4% $ 4C; Figure 6A).
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Figure 4. Comparison of Gene Expression Dynamics within the Leaf Gradient of Both Species.

(A) Euclidean distance versus Pearson’s correlation of average RPKM (n = 3) of genes expressed (>20 RPKM) in both leaf developmental gradients.

Comparison of gene expression by similarity of expression pattern and expression level in T. hassleriana and G. gynandra. Relevant highly expressed C4
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In the G. gynandra C4 leaf, the BSC nuclei were 2.9-fold larger

than those in the MC (P < 0.001; Figures 6B and 6C). In contrast,

the C3 T. hassleriana nuclei of both cell types were similar sizes

with a size ratio of 1.0 (Figures 6B and 6C). The proportion of

BSC in the leaf was estimated from transversal sections as 15%

in G. gynandra and 6% in T. hassleriana (Figures 7A to 7L). This

number fits with the subpopulation of cells with higher ploidy

observed in G. gynandra in the mature leaf. In summary, the

extended expression of a subgroup of cell cycle genes and

downregulation of GTL1 correlate with higher ploidy levels in the

G. gynandra mature leaf based on BSC nuclei area and flow

cytometry measurements.

The C4 Species Shows Delayed Differentiation of Mesophyll

Tissue, Coinciding with Increased Vein Formation

The transcriptional delay in a large subset of G. gynandra genes

(Figures 2B, 2C, and 3) reflects a later differentiation of the C4

leaf. The delayed pattern of this large subset of genes indicated

that there might be a delay in the differentiation of leaf internal

anatomy, although leaf growth rates and shape are similar be-

tween species (Figure 1A). Thus, the leaves were examined

microscopically. Since dicotyledonous leaves differentiate in

a wave from tip toward petiole (Andriankaja et al., 2012), leaves

were cross-sectioned at the midpoint (50% leaf length) for

comparison. The cross sections revealed that in C4 leaves, cell

differentiation was delayed in the transition from undifferentiated

ground tissue toward fully established palisade parenchyma

(Figures 7A to 7L). Both species start undifferentiated at leaf

stage 0 with only the primary vein distinctly visible in cleared

leaves (Figures 7A and 7G; Supplemental Figure 1A). In stage 1,

the C3 leaf starts to differentiate its palisade parenchyma, while

the C4 leaf shows dividing undifferentiated cells (Figures 7B and

7H). Mesophyll differentiation has finished by stage 2 in the C3

leaf (Figure 7I), but not until stage 4 in the C4 leaf (Figure 7D).

Classical mature C4 leaf architecture appears in stage 4 in

G. gynandra (Figure 7E). C4 leaves ultimately develop more veins

and open veinlets leading to Kranz anatomy (Supplemental

Figure 1). Leaf mesophyll tissue of the C3 species differentiates

faster and develops fewer veins than the C4 species.

The expression of genes related to vein development was

consistent with greater venation in the C4 leaf but failed to explain

the larger delay in expression patterns and mesophyll differenti-

ation in the C4 leaf. Hierarchical clustering indicated that most

known leaf and vasculature developmental factors (reviewed in

Ohashi-Ito and Fukuda, 2010) showed similar expression patterns

in the two species (Supplemental Figure 17 and Supplemental

Table 6). However, two clusters with distinct expression patterns

were detected. In the C4 species, seven genes were upregulated

(P value < 0.05), including vasculature facilitators PIN-FORMED

(PIN1), HOMEOBOX GENE8 (HB8), and XYLOGEN PROTEIN1

(XYP1) (Motose et al., 2004; Scarpella et al., 2006; Donner et al.,

2009), while five genes were downregulated (P value < 0.05),

among those the negative regulators KANADI1 and 2, as well as

HOMEOBOX GENE15 (Supplemental Figure 17 and Supplemental

Table 6; Ilegems et al., 2010).

To further elucidate the magnitude and nature of the delayed

expression changes on the transcriptional level, the leaf gradient

data were clustered with the K-means algorithm (Supplemental

Figure 4. (continued).

cycle genes are marked in plot. Above inset shows an example of two highly correlated genes by expression trend and strength. Lower inset shows an

example of two genes inversely correlated with different expression level.

(B) Expression pattern across the atlas of averaged relative expression of transcripts encoding for photosystem I (PSI), photosystem II (PSII), and

soluble enzymes of the Calvin-Benson-Bassham (CBB) cycle in G. gynandra.

(C) to (E) Average expression pattern of highest abundant ortholog of C4 cycle genes (NAD-ME, DIC, and AspAT ) in photo- and heterotrophic tissues in

G. gynandra (light gray) and T. hassleriana (dark gray); 6SE, n = 3.

Figure 5. Recruitment of Genes from the Root to Leaf Expression Do-

main in the C4 Plant G. gynandra.

(A) Relative average RPKM normalized to expression in G. gynandra leaf

5 (gray bars). Bars represent the arithmetic means of all 37 genes; lines

show expression patterns of a reference C4 cycle gene (PEPC ) and of

two genes found in the shifted module.

(B) Genes in the module displayed as functional groups. Light blue:

absolute number of genes in the group. Dark blue overlay: portion of

genes controlled by a transcription factor of the module.
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Figures 17A and 17B and Supplemental Data Set 9). Of 16

clusters, six were divergent (1 to 3, 8, 9, and 15; 1270 genes).

The remaining clusters were similar; however, four showed

a transcriptional delay (4, 5, 13, and 16; 3361 genes), while six

did not (6, 7, 10 to 12, and 14; 5162 genes). Of all clustered

genes, 87% belonged to highly conserved clusters, 34% with

a delay and 53% without. Thus, the transcriptional delay cannot

be explained by general slower development.

All of the K-means clusters were functionally characterized

by testing for enrichment in MapMan categories (Supplemental

Figure 6. Distribution of Ploidy Levels during Leaf Development and Nuclei Area of BSC and MC between G. gynandra and T. hassleriana.

(A) Ploidy distribution of developing leaf (category 0 till 5) in percentage in G. gynandra and T. hassleriana. Measurements performed in n = 3 (except

G0 = 1 replicate). For each replicate, at least 2000 nuclei were measured by flow cytometry.

(B) Quantification of BSC and MC nuclei area in cross sections (n = 3 6 SE) of mature G. gynandra and T. hassleriana leaves (stage 5). Area of nuclei in

µm2 with at least 150 nuclei analyzed per cell type per species per replicate. Asterisks indicate statistically significant differences between BSC and MC

(***P value < 0.001); n.s., not significant.

(C) Fluorescence microscopy images of propidium iodide-stained leaf cross sections (stage 5) of T. hassleriana (left) and G. gynandra (right). Arrow-

heads point to nuclei of the indicated cell type. V, vein; S, stomata. Bar = 50 mm.
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Data Set 10). The visually “shifted” patterns were: later onset of

increase in clusters 13 and 5 (1058 and 395 genes, respectively),

delayed decrease in cluster 4 (1644 genes), and a later peak in

cluster 16 (264 genes; Figure 7M). The “late decrease” cluster 4

is enriched in genes related to mitochondrial electron transfer,

CONSTITUTIVE PHOTOMORPHOGENESIS9 (COP9) signal-

osome, and protein degradation by the proteasome (Figure 7M;

Supplemental Data Set 10). The “late onset” cluster 13 is enriched

in all major photosynthetic categories: N-metabolism, and chlo-

rophyll, isoprenoid, and tetrapyrrole biosynthesis (P value < 0.05;

Supplemental Figures 17C and 17D and Supplemental Data

Sets 9 and 10). The smaller “late onset” cluster 5 is enriched

in the categories protein synthesis, tetrapyrrole synthesis,

carotenoids, and peroxiredoxin. Cluster 16 peaks earlier in

T. hassleriana than G. gynandra and is enriched in lipid metabolism

(e.g., ACYL CARRIER PROTEIN4, CHLOROPLASTIC ACETYLCOA

CARBOXYLASE1, 3-KETOACYL-ACYL CARRIER PROTEIN SYN-

THASE1, and 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE

III) and plastid division genes, such as the FILAMENTATION

TEMPERATURE-SENSITIVE genes FtsZ2, FtsH, and FtsZ, as

well as ACCUMULATION AND REPLICATION OF CHLORO-

PLASTS11 (Figure 7M; Supplemental Data Sets 9 and 10).

Figure 7. Analysis of Shifted Gene Expression Pattern and Leaf Anatomy during Leaf Ontogeny.

(A) to (L) Leaf anatomy development along the gradient in G. gynandra and T. hassleriana depicted by cross sections stained with toluidine blue. Bar =

20 mm.

(M) Selected clusters from K-means clustering of gene expression shown as Z-scores, which show a phase shift between G. gynandra and

T. hassleriana during leaf development.
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The core of the phase-shifted clusters, defined as genes with

Pearson’s correlation coefficient of r > 0.99 to the cluster center,

contained candidate regulators for the observed delayed pat-

terns. The core of cluster 13 contained 17 TFs and genes in-

volved in chloroplast maintenance (Supplemental Data Set 11).

The core of cluster 4 contained 30 transcriptional regulators,

including PROPORZ1 (PRZ1), and eight other chromatin-

remodeling genes. Nineteen cell cycle genes were found in the

core of cluster 4 (Supplemental Figures 19A and 19B), including

CELL DIVISION CYCLE20 (CDC20), CDC27, and CELL CYCLE

SWITCH PROTEIN52 (CCS52), which are key components of

cell cycle progression from M-phase to S-phase (Pérez-Pérez

et al., 2008; Mathieu-Rivet et al., 2010b).

Our data were quantitatively compared with data from Arab-

idopsis leaf development to test if the observed phase shift

related to a switch from proliferation to differentiation (Andriankaja

et al., 2012). This study identified genes that were significantly up-

or downregulated during the shift from proliferation to expansion

(Andriankaja et al., 2012). Putative orthologs of these genes were

clustered by the K-means algorithm (without prior expression

filtering), producing seven clusters for the upregulated genes

(containing 483 genes in total) and five clusters for the down-

regulated genes (1112 genes in total; Supplemental Figure 20).

The trend was well conserved across species, with 75% of the

upregulated and 96% of the downregulated genes falling into

clusters with a matching trend. The genes showed a higher

proportion of delay in G. gynandra than in the total data set, with

60 and 68% falling in delayed up- and downregulated clusters,

respectively (Supplemental Figure 20).

In summary, about a third of all gene expression patterns

show a delay in the G. gynandra leaf (Figure 7M; Supplemental

Figure 18). Delayed genes include major markers of leaf maturity

such as the upregulation of photosynthetic gene expression and

downregulation of mitochondrial electron transport (Supplemental

Figures 19C and 19D and Supplemental Data Set 10). This delay

was more common in putative orthologs of genes differentially

regulated during the shift from cell proliferation to expansion

(Supplemental Figure 19; Andriankaja et al., 2012). The slow

maturation can be seen on the anatomical level as a delayed

differentiation that coincides with increased vein formation in the

C4 species (Figures 7A to 7L).

DISCUSSION

Comparative Transcriptome Atlases Provide a Powerful

Tool for Understanding C4 Photosynthesis

Two transcriptome atlases were generated to allow the analysis

of gene recruitment to photosynthesis and to detect differences

related to C4 leaf anatomy. Two Cleomaceae species were

chosen for this study due to their phylogenetic proximity to the

model species Arabidopsis (Marshall et al., 2007). The sampled

leaf tissues covered development from sink tissue to fully ma-

ture source tissue (Figures 1 and 3), and all higher order vein

development (Supplemental Figure 1). Since C4 genes are re-

cruited from genes already present in C3 ancestors, where they

carry out housekeeping functions (Sage, 2004; Besnard et al.,

2009; Christin and Besnard, 2009; Christin et al., 2009), seed,

stem, floral, and root tissues were included in the atlases in

addition to leaves and seedlings.

The high similarity in expression pattern between the species

maximizes our ability to detect differences related to C4 photosyn-

thesis. While PCA analysis showed that the first principle compo-

nent separated the data set by species, this accounted for only

15% of the variation (Supplemental Figure 8A). Excluding floral or-

gans and stem, all tissues correlated with r > 0.7 between species

(Supplemental Figure 7C and Supplemental Table 3). Hierarchical

and K-means clustering showed the vast majority of genes had

a similar pattern between species, and tissue types clustered

closely with the same tissue in the other species. Specific groups of

highly expressed genes exclusively expressed in one tissue type,

such as root, stamen, and petal, are shared between G. gynandra

and T. hassleriana, suggesting that these genes might represent

drivers for the respective tissue identity (Supplemental Figure 9).

A subset of genes showed a consistent adjustment to their ex-

pression pattern, namely, a delay in the leaf gradient of G. gynandra

relative to T. hassleriana (Figure 7M). Thus, organ identity is highly

conserved between G. gynandra and T. hassleriana, but the rate at

which organ identity, especially the leaf, is established can differ.

Expression Patterns of C3 Putative Orthologs Support

Small-Scale or Modular Recruitment to Photosynthesis,

Implying That a General C4 Master Regulator Is Unlikely

Ancestral expression patterns can be compared with assess

whether a master regulator could have facilitated recruitment of

genes to C4 photosynthesis. The patterns of gene expression in

T. hassleriana provide a good proxy for the ancestral C3 ex-

pression pattern due to its phylogenetic proximity to G. gynandra

(Inda et al., 2008; Cheng et al., 2013). Genes active in the C4 cycle

were recruited from previously existing metabolism (Matsuoka,

1995; Chollet et al., 1996; Streatfield et al., 1999; Wheeler et al.,

2005; Tronconi et al., 2010). Expression patterns in T. hassleriana

reflect known metabolism and expression; for instance, PPDK is

expressed in seeds, stamens, and petals (Supplemental Figure

12B), which is similar to the expression domain reported by

Chastain et al. (2011). Furthermore, PPT is highly expressed in

stamens and during seed development (Supplemental Figure

12C; Knappe et al., 2003a, 2003b), since it is required for fatty

acid production (Hay and Schwender, 2011).

The C3 putative orthologs of C4 cycle genes show a variety of

expression patterns within the atlas, providing strong evidence

they could not have been recruited by a single master regulator.

All C4 cycle genes are expressed to a low degree in T. has-

sleriana, either constitutively or in defined tissues such as sta-

mens, seeds, or young leaves (Figures 4C to 4E). Expression of

NHD, AlaAT, AspAT, and PPDK increased along the leaf gradi-

ent in both C3 and C4 species, but in C3, the expression was

highest in tissues other than the leaf (Figure 4E; Supplemental

Figures 12A, 12B, and 12D). In contrast, DIC, BASS2, NAD-ME,

and PPT are expressed in inverse patterns between C3 and C4

along the leaf gradient (Figures 4C and 4D; Supplemental

Figures 12C and 12E), and PEPC is expressed only in mature

leaves in the C3 species (Supplemental Figure 12F). Except for

DIC and PPDK, the expression level of the C4 cycle genes was

higher in G. gynandra across all tissues (Figure 4; Supplemental
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Figures 12 to 14). Thus, most of the C4 cycle genes may still

maintain their ancestral functions in addition to the acquired C4

function. The correct ortholog in C3 may not have been con-

clusively determined by cross species read mapping in all cases

reported here. However, the main conclusion—that C4 cycle

genes are recruited from a variety of C3 expression patterns—

holds regardless of which putative C3 paralog is selected

(Supplemental Figures 13 and 14).

A set of genes shifted from a root to leaf expression domain

during C4 evolution provides an example of small-scale modular

recruitment. The proposed analogy between root endodermis and

bundle sheath and between root cortex and mesophyll (Slewinski,

2013) has been linked to cooption of the SCARECROW (SCR) and

SHORTROOT (SHR) regulatory networks into developing leaves

(Slewinski et al., 2012; Wang et al., 2013). A set of 37 genes

consistent with such a recruitment module was identified. For this

gene set, the C3 species T. hassleriana (Figure 5; Supplemental

Table 5) and Arabidopsis (Brady and Provart, 2009) showed con-

served root expression, while the C4 species showed an expres-

sion pattern similar to photosynthesis. Much of the root to leaf

gene set was coregulated in Arabidopsis, and it contained TFs,

including ETHYLENE RESPONSE FACTOR1 (Mantiri et al., 2008),

as well as an AUX/IAA regulator (Pérez-Pérez et al., 2010) and

VND-INTERACTING2 (Yamaguchi et al., 2010). Functionally, the

majority of the gene set is involved in processes related to cell wall

synthesis and modification. The set contains the cell wall-plasma

membrane linker protein (Stein et al., 2011) and the xyloglucan

endotransglycosylase TOUCH4 (Xu et al., 1995), the tonoplast in-

trinsic protein involved in cell elongation (Beebo et al., 2009), and

a plasmodesmata-located protein (Bayer et al., 2008). The ob-

served coregulation and structural functions support an underlying

structural relationship between the root tissues endodermis and

cortex, and the leaf tissues bundle sheath and mesophyll.

It is still unresolved whether expression level recruitment of

genes to the C4 cycle was facilitated by the action of one or a few

master switches controlling C4 cycle gene expression and/or by

changes to promoter sequences of C4 genes (Westhoff and Gowik,

2010). The diverse transcriptional patterns of the core C4 cycle

genes in T. hassleriana provide strong evidence that they were not

recruited as a single transcriptional module facilitated by one or

a fewmaster regulators. However, the identified root to leaf module

indicates that small-scale corecruitment occurs, and this may help

bring about the 3 to 4% overall transcriptional changes occurring

during C4 evolution (Bräutigam et al., 2011, Gowik et al., 2011). The

similarities in expression pattern between photosynthetic genes

and C4 cycle genes are evident (Figure 4B), and light-dependent

induction of C4 genes has been reported (Christin et al., 2013),

leading us to hypothesize that C4 cycle genes may use the same

light-induced regulatory circuits employed for the photosynthetic

genes, possibly through acquisition of cis-regulatory elements or

modification of chromatin structure, as has been shown for the

PEPC gene promoter in maize (Tolley et al., 2012).

Cell Size in G. gynandra Coincides with Nuclei

Size and Ploidy

In addition to the biochemical C4 cycle genes, transcriptional

changes related to cell and tissue architecture are required for

C4 leaf development (Westhoff and Gowik, 2010). The compar-

ative atlases were contextualized with anatomical data to better

understand BSC size.

G. gynandra has generally larger cells (Figures 7A to 7L),

which might be attributed to a larger genome. After divergence

from T. hassleriana, the G. gynandra lineage has undergone

a putative whole-genome duplication (Inda et al., 2008). Cell size

has been tied to genome ploidy status previously (Sugimoto-

Shirasu and Roberts, 2003; Lee et al., 2009b; Chevalier et al.,

2011). A relationship between ploidy and cell size could explain

the generally larger cells in G. gynandra leaves (Figures 7A to 7L)

or relate to the upregulation of DNA and histone-associated genes

in developing leaves (Figure 3; Supplemental Figures 10 and 11).

Changes in the expression of key cell cycle genes indicated

endoreduplication may be increased in G. gynandra, and follow-

up nuclear size measurements indeed indicate BSCs have un-

dergone endoreduplication. Enlargement of BSC is a common

feature of C4 plants (Sage, 2004; Christin et al., 2013) including

G. gynandra (Figures 7D to 7F), but the genetic mechanism is

unknown. During leaf development, key cell cycle genes showed

changes in expression pattern and expression level between

G. gynandra and T. hassleriana (Supplemental Figure 16). CDC20

and CCS52A, which are closely linked with cell cycle M-to-S-

phase progression or endocycle onset (Lammens et al., 2008;

Larson-Rabin et al., 2009; Kasili et al., 2010; Mathieu-Rivet et al.,

2010a), exhibit prolonged expression during C4 leaf development,

whereas the expression of the master endoreduplication regulator

GTL1 (Breuer et al., 2009, 2012; Caro et al., 2012) is suppressed

in the older leaf stages (Supplemental Figure 16). Although a

comparison of the more distantly related species Arabidopsis and

G. gynandra discounted endoreduplication as a factor in bundle

sheath cell size (Aubry et al., 2013), the BSC and MC nuclei area

measurements of mature G. gynandra and T. hassleriana leaves

revealed that the BSC nuclei are 2.9-fold enlarged compared with

MC nuclei in G. gynandra (Figures 6B and 6C). At the same time,

T. hassleriana BSC and MC cells do not differ significantly in

nuclei size (Figures 6A and 6C).These results are supported by

a flow cytometry analysis of both leaf developmental gradients,

where the proportion of endoreplicated cells in the mature C4 leaf

(Figures 6A) matches the number of BSCs present in G. gynandra

(Figures 6A and 7A to F). Interestingly, we also find significant (P >

0.001) enlarged BSC nuclei in other C4 species (e.g., Flaveria

trinervia,Megathyrsus maximum, and maize; Supplemental Figure

22), indicating that larger nuclei size in BSC compared with the

MC could be a general phenomenon in C4 plants conserved

across mono- and dicotyledons. Whether endoreplication is the

cause of increased cell size in C4 BSC, as found for trichomes and

tomato (Solanum lycopersicum) karyoplasm (Traas et al., 1998;

Chevalier et al., 2011) or whether endoreplication only occurs to

support the high metabolic activity and large size of the BSCs

(Sugimoto-Shirasu and Roberts, 2003) remains to be determined.

Late Differentiation of Mesophyll Tissue Allows

Denser Venation

General regulators of leaf anatomy and shape (reviewed in Byrne,

2012) are expressed in very similar patterns between the two

species (Supplemental Figure 17), reflecting the very similar
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palmate five-fingered leaf shape and speed of leaf expansion

(Figures 1A and 1B). However, anatomical studies of leaf de-

velopment show that differentiated palisade parenchyma is al-

ready observed at the midpoint of stage 1 leaves in T. hassleriana

(Figure 7H) but can only be detected in the middle of the leaf in

stages 3 and 4 in G. gynandra (Figures 7D to 7F). Hierarchical

clustering of transcriptome data indicates a similarity between

younger T. hassleriana and olderG. gynandra tissues (Supplemental

Figure 9), which we attribute to a delay in G. gynandra leaf ex-

pression changes observed in the hierarchical clusters (Figures 2B

and 2C) and observed for K-means clustering involving about

a third of clustered genes (Figure 7M; Supplemental Figure 18).

Analysis of the delayed clusters for significant enrichment of func-

tional categories indicated that the metabolic shift from sink to

source tissue was delayed (Figures 3 and 7M; Supplemental

Figure 18 and Supplemental Data Set 10). Furthermore, the

“delayed decrease” cluster 4 was enriched in COP9 signalosome

and marker genes of the still developing heterotrophic leaf.

Cell cycle and cell differentiation regulators show a delayed

expression pattern in G. gynandra. The expression of PRZ1,

which switches development from cell proliferation to differen-

tiation in Arabidopsis (Sieberer et al., 2003; Anzola et al., 2010),

is prolonged in the C4 leaf (Figure 7M, cluster 4), as is the ex-

pression of chromatin remodeling factor GRF1-INTERACTING

FACTOR3 implicated in the control of cell proliferation upstream

of cell cycle regulation (Lee et al., 2009a). Plastid division genes

peak around leaf stage 1 in T. hassleriana and leaf stage 2 in

G. gynandra (Figure 7M, cluster 16). It has recently been shown

that chloroplast development and division precedes photosyn-

thetic maturity in Arabidopsis leaves and retrograde signaling

from the chloroplasts affects cell cycle exit from proliferation

(Andriankaja et al., 2012). Quantitative comparison of differen-

tially regulated genes during the shift from cell proliferation to

cell expansion found in Arabidopsis (Supplemental Figure 20;

Andriankaja et al., 2012) to the expression patterns of the pu-

tatively orthologous genes along leaf developmental gradients in

Cleome, reveals a strong conservation of expression pattern

between Arabidopsis and Cleome during development. A higher

proportion of delay of G. gynandra genes is observed in this

gene set. This supports the idea that the transcriptional delay is

directly linked to the anatomical delay in differentiation observed

in G. gynandra (Supplemental Figure 19).

The delay in cell differentiation allows for increased vein for-

mation in the C4 leaf. Mesophyll differentiation has already been

shown to limit minor vein formation in Arabidopsis (Scarpella

et al., 2004; Kang et al., 2007). G. gynandra and T. hassleriana

have altered vein densities, which result from more minor vein

orders in G. gynandra (Supplemental Figure 1), similar to results

for the dicot Flaveria species (McKown and Dengler, 2009).

Given that differentiation of photosynthetic mesophyll cells limits

minor vein formation in Arabidopsis (Scarpella et al., 2004; Kang

et al., 2007) and that mesophyll differentiation is delayed in the

C4 species compared with the C3 species (Figure 7), dense vena-

tion may indeed be achieved by delaying mesophyll differentiation.

Genes related to vascular patterning are expressed in a man-

ner consistent with higher venation in the C4 leaf. The high ex-

pression of vascular pattern genes such as PIN1, HB8, ARF3,

and XYP1 in the C4 leaf (Supplemental Figure 17) is similar to

that observed for Kranz patterned leaves in maize (Wang et al.,

2013). However, these genes may be a consequence, rather

than a cause, of higher venation, especially since some of these

markers are only expressed after pre-procambial or procambial

identity is introduced (Ohashi-Ito and Fukuda, 2010). Once

procambial fate is established, cellular differentiation of vein

tissues proceeds through positional cues and localized signal-

ing, possibly via the SCR/SHR pathway (Langdale and Nelson,

1991; Nelson and Langdale, 1992; Nelson and Dengler, 1997;

Griffiths et al., 2013; Wang et al., 2013; Lundquist et al., 2014).

Interestingly, in accordance with the delay in leaf differentiation

in G. gynandra, we could monitor a delay in higher expression

for SHR peaking around leaf stage 1 to 3 (Supplemental Figure

21A). SCR transcript abundance is clearly divided in both G.

gynandra and T. hassleriana between two homologs, one of

which is more abundant in the C4 leaf and the other in the C3 leaf

(Supplemental Figure 21B). SCR expression in G. gynandra

follows the SHR pattern with a delayed upregulation. This is in

accordance with earlier studies conducted in maize, where SHR

transcript highly accumulates in the BSC to activate SCR ex-

pression (reviewed in Slewinski et al., 2012)

The identification of mesophyll differentiation as the proximate

cause for fewer minor vein orders in T. hassleriana raises the

question of how mesophyll differentiation is controlled. In both

C4 and C3 species, vascular patterning precedes photosynthetic

tissue differentiation (Sud and Dengler, 2000; Scarpella et al.,

2004; McKown and Dengler, 2010). Light is one of the most

important environmental cues that regulate leaf development,

including its cellular differentiation and onset of photosynthesis

(Tobin and Silverthorne, 1985; Nelson and Langdale, 1992;

Fankhauser and Chory, 1997). The COP9 signalosome, which

plays a central role in repression of photomorphogenesis and

G2/M cell cycle progression (Chamovitz et al., 1996; Dohmann

et al., 2008), showed a delayed decrease in G. gynandra com-

pared with T. hassleriana (Supplemental Figure 19B). The delay

and earlier vein formation termination induced by excess light in

Arabidopsis (Scarpella et al., 2004) suggest that light perception

and its signal transduction may be differentially regulated in

species with denser venation patterns.

Conclusions

In this study, we report a detailed comparison of the tran-

scriptomes and the leaf development of two Cleomaceae spe-

cies with different modes of photosynthetic carbon assimilation,

i.e., C3 and C4 photosynthesis. The gene expression patterns are

quite similar between both species, which facilitates the identi-

fication of differences related to C4 photosynthesis. We could

link two key features of Kranz anatomy to developmental pro-

cesses through integration of expression and anatomical data.

First, we show that the larger size of the bundle sheath cells in

the C4 species is associated with a higher ploidy in these cells,

which might be controlled by delayed repression of the endo-

cycle via the transcription factor GTL1. Second, a prominent

difference between C3 and C4 leaf development is the delayed

differentiation of the leaf cells in C4, which is associated with

a delayed onset of photosynthetic gene expression, chloroplast

proliferation and development, and altered expression of a few
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distinct cell cycle genes. Delayed mesophyll differentiation allows

for increased initiation of vascular tissue and thus contributes to

the higher vein density in C4. We hypothesize that delayed onset

of mesophyll and chloroplast differentiation is a consequence of

the prolonged expression of the COP9 signalosome and, hence,

a delayed derepression of photomorphogenesis.

METHODS

Plant Material and Growth Conditions

Gynandropsis gynandra and Tarenaya hassleriana plants for transcriptome

profiling by Illumina Sequencing were grown in standard potting mix in

a greenhouse between April and August 2011. Internal transcribed spacer

sequences of G. gynandra and T. hassleriana were analyzed and plant

identity confirmed according to Inda et al. (2008). Leaves were harvested

from 4- to 6-week-old plants, prior to inflorescence initiation. All samples

were harvested during midday. Flowers, stamens, sepals, and carpels were

harvested after induction of flowering. Green tissues from seedlings were

harvested 2, 4, and 6 d after germination. Root material was harvested from

plants grown in vermiculite for 6 weeks and supplemented with Hoagland

solution. Leaf material for the ontogeny analysis was selected by the order

of leaf emergence from the apex in leaf stages from 0 to 5. Up to 40 plants

were pooled for each biological replicate.

Leaf Expansion Rate

Leaves from stage 0 to 5 were analyzed in five biological replicates for

each G. gynandra and T. hassleriana. Leaves were scanned on a flat bed

scanner (V700 Photo; Epson), and the area was analyzed with free image

analysis software ImageJ.

Leaf Cross Sections for Anatomical Studies

Leaves from stage 0 to 5 were analyzed in biological triplicates. Leaf

material (23 2mm) was cut next to the major first order vein at 50% of the

whole leaf length. Leaf material was fixed in 4% paraformaldehyde so-

lution overnight at 4°C, transferred to 0.1% glutaraldehyde in phosphate

buffer, and vacuum infiltrated three times for 5 min. The leaf material was

then dehydrated with an ascending ethanol series (70, 80, 90, and 96%)

with a 1-h incubation in each solution. Samples were incubated twice in

100% ethanol and twice in 100% acetone, each for 20 min, and infiltrated

with an acetone:araldite (1:1) mixture overnight at 4°C. After acetone

evaporation, fresh araldite was added to the leaf samples until samples were

covered and incubated for 3 to 4 h. Sampleswere transferred to fresh araldite

in molds and polymerized at 65°C for 48 h. Cross sections were stained with

toluidine blue for 15 s and washed with H2Odest. Cross sections were imaged

with bright-field settings using an Eclipse Ti-U microscope (Nikon).

Flow Cytometry

Three biological replicate samples were chopped with a razor blade in

200 mL of Cystain UV Precise P Nuclei extraction buffer followed by the

addition of 800 mL of staining buffer (buffers from Partec). The chopped

leaves in buffer were filtered through a 50-mmmesh. The distribution of the

nuclear DNA content was analyzed using a CytoFlow ML flow cytometer

and FLOMAX software (Partec) as described (Zhiponova et al., 2013).

Measurement of Nuclei from Mature Leaves

Freshmature leaves (leaf stage 5, three biological replicates) ofG. gynandra

and T. hasslerianawere cut transversally, fixed in 13PBSbuffer (1%Tween

20 and 3%glutaraldehyde) overnight at room temperature, and stainedwith

propidium iodide solution directly on the microscopic slide. Cross sections

were imaged by fluorescence microscopy using an Axio Imager M2M

fluorescence microscope (Zeiss) with an HE DS-Red Filter. Images were

processed with ZEN10 software (Zeiss), and the nuclear area of at least 200

nuclei per cell type per species was measured with ImageJ.

RNA Extraction, Library Construction, and Sequencing

Plant material was extracted using the Plant RNeasy extraction kit

(Qiagen). RNA was treated on-column (Qiagen) and in solution with RNA-

free DNase (New England Biolabs). RNA integrity, sequencing library

quality, and fragment size were checked on a 2100 Bioanalyzer (Agilent).

Libraries were prepared using the TruSeq RNA Sample Prep Kit v2

(Illumina), and library quantification was performed with a Qubit 2.0

(Invitrogen). Single-end sequenced samples were multiplexed with six

libraries per lane with ;20 million reads per library. For paired-end se-

quencing, RNA of all photosynthetic and nonphotosynthetic samples was

pooled equally for each species and prepared as one library per species.

Paired end libraries were run on one lane with;175 million clean reads for

T. hassleriana and 220 million clean reads forG. gynandra. All libraries were

sequenced on the HISEQ2000 Illumina platform. Libraries were sequenced

in the single-end or paired-end mode with length ranging from 80 to 100

nucleotides. The paired-end library ofG. gynandra had an average fragment

size of 304 bp; T. hassleriana had an average fragment size of 301 bp.

Gene Expression Profiling

Reads were checked for quality with FASTQC (www.bioinformatics.

babraham.ac.uk/projects/fastqc/), subsequently cleaned and filtered for

quality scores greater than 20 and read length greater than 50 nucleotides

using the FASTX toolkit (http://hannonlab.cshl.edu/fastx_toolkit). Ex-

pression abundances were determined by mapping the single-end read

libraries (each replicate for each tissue) independently against T. has-

sleriana representative coding sequences (Cheng et al., 2013) using BLAT

V35 (Kent, 2002) in protein space and counting the best mapping hit

based on e-value for each read uniquely. Default BLAT parameters were

used for mapping both species. Expression was normalized to reads per

kilobase T. hassleriana coding sequence per million mappable reads

(RPKM). T. hassleriana coding sequences were annotated using BLASTX

searches (cutoff 1e210) against the TAIR10 proteome database. The best

BLAST hit per read was filtered by the highest bit score. A threshold of

20 RPKM per coding sequence in at least one species present in at

least one tissue was chosen to discriminate background transcription

(Supplemental Figure 14). Differential expression between T. hassleriana

and G. gynandra was determined by EdgeR (Robinson et al., 2010) in

R (R Development Core Team, 2009). A significance threshold of 0.05

was applied after the P value was adjusted with false discovery rate via

Bonferroni-Holms correction (Holm, 1979).

Data Analysis

Data analysis was performed with the R statistical package (R De-

velopment Core Team, 2009) unless stated otherwise. For Pearson’s

correlation and PCA analysis, Z-scores were calculated by gene across

both species. For all other analyses, Z-scores were calculated by gene

within each species, to focus on comparing expression patterns. For

K-means and hierarchical clustering, genes were filtered to those with

more than 20 RPKM in at least one of the samples used in each species.

To determine the number of centers for K-means clustering, the sum of SE

within clusters was plotted against cluster number and compared with

randomized data (Supplemental Figures 18B, 20C, and 20D). A total of 16

centers was chosen, and K-means clustering was performed 10,000

times and the best solution, as defined by theminimum sum of SE of genes

in the cluster, was taken for downstream analyses (Peeples, 2011).

Multiscale bootstrap resampling of the hierarchical clustering was
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performed for samples with 10,000 repetitions using the pvclust R

package (Suzuki and Shimodaira, 2006).

Stage enrichment was tested for all K-means clusters and for tissue

“signature genes” with expression of over 1000 RPKM in each tissue

using TAIR10 MapMan categories (from http://mapman.gabipd.org) for

the best Arabidopsis thaliana homolog. Categories with more than five

members in the filtered (K-means) or complete (signature genes) data set

were tested for enrichment by Fisher’s exact test, and P values were

adjusted to false discovery rates via Benjamini-Yekutieli correction, which

is tolerant of dependencies (Yekutieli and Benjamini, 1999).

Accession Numbers

Sequence data from this article can be found in NCBI GenBank under

the following accession numbers: SRP036637 for G. gynandra and

SRP036837 for T. hassleriana.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. Venation Patterning during Leaf Development

of G. gynandra and T. hassleriana.

Supplemental Figure 2. G. gynandra Cotyledon Anatomy 2, 4, and 6 d

after germination (DAG).

Supplemental Figure 3. Images of Tissues Harvested for Atlases in

G. gynandra and T. hassleriana.

Supplemental Figure 4. Quality Assessment of Velvet/OASES As-
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Supplemental Figure 1. Venation patterning during leaf development of G. 
gynandra and T. hassleriana. 
(A-B) Cleared safranine stained leaves of stage 0 and 1  (n=3; scale bar 0.5 mm) 

 (C-F) Cleared leaves of stage 2, 3, 4 and 5 respectively (n=3; scale bar 1 mm) 
Open arrows indicate the midvein (1°) and closed arrows the secondary vein (2°) 

localization 

G. gynandra T. hassleriana 
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A 

B 

C 

Supplemental Figure 2.  G. gynandra cotyledon anatomy two, four and six days  
after germination (DAG). Semi-thin cross sections (3 µm) of G. gynandra cotyledons 
after two (A); four (B); six (C) DAG. Cross sections were stained with Toluidine Blue. 

(Scale bar 10 µm, n=3) 
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A 

Supplemental Figure 3. Images of tissues  harvested for RNA-seq in G. gynandra 
and T. hassleriana. (A) Photographic image of  G. gynandra and T. hassleriana 8-week 
old plants, from which leaf gradient, stem and root system were harvested (B) Seed coat 

development from harvested developmental seed gradient. (1)  young seed (2) semi-
mature seed (3) mature seed. (Scale bar = 1cm) 

B 
G. gynandra  T. hassleriana 

G. gynandra  T. hassleriana 
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A 

Number of best matching 
contigs per predicted cds 

within T. hassleriana 

B C 
Fragmented contig aligned to T. hassleriana cds Fused/Hybrid contig aligned to T. hassleriana cds 

Supplemental Figure 4. Quality assessment of Velvet/OASES assembled T. hassleriana 
contigs against predicted corresponding cds from T. hassleriana genome. 
(A) Percentage of contig number per predicted cds (Cheng et al., 2013) showing redundancy in 

assembled contigs. 
(B) ClustalW alignment of fragmented contig (top) with corresponding cds (below). 

(C) ClustalW alignment of fused contig (top) with corresponding cds (below).  
 
 

                           1
T.hassleriana_contig_2395  ATACTCTTAT TCTATATCTC AATTAACCAA ACGTCTAGAA AGAAAGAGAG AGGTGAAAAA GCAGCCCTTT TTCCCTCTAT
T.hassleriana_cds_07811    ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

                          81
T.hassleriana_contig_2395  AAAGAGCAGG GCTATTTCCT CTGTTCCCCT CGCAGCTGCA GCCTGGCCGT TGGTTGGTTA ATCAGATATC CCTCTCCCTC
T.hassleriana_cds_07811    ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

                         161
T.hassleriana_contig_2395  TCTCTCTCTC TCTCTCTCTC TGAGAAGAGA AATGGCTCTC TCTCCTTCTT CTGTTGGTCT TCGTGTCATC GTTTTCCTCT
T.hassleriana_cds_07811    ---------- ---------- ---------- -ATGGCTCTC TCTCCTTCTT CTGTTGGTCT TCGTGTCATC GTTTTCCTCT

                         241
T.hassleriana_contig_2395  CTCTTCTCTG CAATGCCTTC CCCTACGCTC CTCACAGCCA TCGGCACCGT ATTGCCAACC ACAACTACAG AGACGCTCTC
T.hassleriana_cds_07811    CTCTTCTCTG CAATGCCTTC CCCTACGCTC CTCACAGCCA TCGGCACCGT ATTGCCAACC ACAACTACAG AGACGCTCTC

                         321
T.hassleriana_contig_2395  ACCAAGTCCA TCCTCTTCTT CGAAGGCCAG AGGTCCGGCA AGCTCCCCTC CCACCAGAGG ATGACTTGGA GGAGAGACTC
T.hassleriana_cds_07811    ACCAAGTCCA TCCTCTTCTT CGAAGGCCAG AGGTCCGGCA AGCTCCCCTC CCACCAGAGG ATGACTTGGA GGAGAGACTC

                         401
T.hassleriana_contig_2395  TGGTCTCTCT GACGGCTCTG CCCTTCACGT GGACTTGGTG GGAGGATACT ATGATGCAGG GGACAATGTG AAGTTTGGGT
T.hassleriana_cds_07811    TGGTCTCTCT GACGGCTCTG CCCTTCACGT GGACTTGGTG GGAGGATACT ATGATGCAGG GGACAATGTG AAGTTTGGGT

                         481
T.hassleriana_contig_2395  TCCCAATGGC ATTCACGACC ACAATGCTAT CATGGAGTGT GATTGAGTTC GGTGGCCTCA TGAAATCTGA GTTGCAAAAC
T.hassleriana_cds_07811    TCCCAATGGC ATTCACGACC ACAATGCTAT CATGGAGTGT GATTGAGTTC GGTGGCCTCA TGAAATCTGA GTTGCAAAAC

                         561
T.hassleriana_contig_2395  GCCAAAGAAG CTATCCGTTG GGCCACTGAC TATCTCCTCA AAGCCACTTC ACGCCCTGGT GTCATTTATG TTCAGGTTGG
T.hassleriana_cds_07811    GCCAAAGAAG CTATCCGTTG GGCCACTGAT TATCTCCTCA AAGCCACTTC CCACCCTGAC ACCATTTATG TTCAGGTTGG

                         641
T.hassleriana_contig_2395  TGACGCGAAC AAGGACCATG CCTGTTGGGA GAGACCAGAA GACATGGACA CGCCGAGAAG TGTGTTCAAA GTGGACAAGA
T.hassleriana_cds_07811    TGATGCGAAC AAGGACCATG CCTGTTGGGA GAGACCAGAA GACATGGACA CGCCGAGAAG TGTGTTCAAA GTGGACAAGA

                         721
T.hassleriana_contig_2395  ACACTCCTGG CTCTGACGTC GCCGGCGAAA CAGCCGCCGC TCTCGCCGCC GCGTCCATCG TTTTCAGGAA ATGCGACCCT
T.hassleriana_cds_07811    ACACTCCTGG CTCTGACGTC GCCGGCGAAA CAGCCGCCGC TCTCGCCGCC GCGTCCATCG TTTTCAGGAA ATGCGACCCT

                         801
T.hassleriana_contig_2395  TCTTACTCCA AGACCCTCCT CCGGCGAGCC ATTAGGGTTT TCGCCTTCGC CGACAAGTAC AGAGGCCCGT ACAGCGGCGG
T.hassleriana_cds_07811    TCTTACTCCA AGACCCTCCT CCGGCGAGCC ATTAGGGTTT TCGCCTTCGC CGACAAGTAC AGAGGCCCGT ACAGCGGCGG

                         881
T.hassleriana_contig_2395  TTTGAAAATG GCCGTTTGCC CATTCTACTG TTCTTACTCT GGGTATCAGG ATGAATTGTT GTGGGGAGCT GCTTGGTTGC
T.hassleriana_cds_07811    TTTGAAAATG GCCGTTTGCC CATTCTACTG TTCTTACTCT GGGTATCAGG ATGAATTGTT GTGGGGAGCT GCTTGGTTGC

                         961
T.hassleriana_contig_2395  ACAAGGCGAC AAAGAAGGCG ACATATCTGA ACTACATCCA AGTTAACGGA CAGCTCCTTG GAGCTGCTCA GTTCGACAAC
T.hassleriana_cds_07811    ACAAGGCGAC AAAGAAGCCG ACATATCTGA ACTACATCCA AGTTAACGGA CAGATCCTTG GAGCTGCTCA GTTCGACAAC

                        1041
T.hassleriana_contig_2395  ACCTTTGGTT GGGATAACAA GCATGTCGGA GCCAGGATTC TTCTCTCCAA GGCGTTCCTG GTTCAGAAGG TCAAATCACT
T.hassleriana_cds_07811    ACCTTTGGTT GGGATAACAA GCATGTCGGA GCCAGGATTC TTCTCTCCAA GGCGTTCCTG GTTCAGAAGG TCAAATCACT

                        1121
T.hassleriana_contig_2395  GCATGAGTAC AAAGGGCATG CTGATAATTT CATCTGCTCT GTCATCCCCG GTGCCCCTTT CTCTTCTTCC CAGTTCACCC
T.hassleriana_cds_07811    GCATGAGTAC AAAGGGCATG CTGATAATTT CATTTGCTCT GTCATCCCTG GCGCTCCTTT CTCTTCTTCC CAGTTCACCC

                        1201
T.hassleriana_contig_2395  CAGGTGGGCT CTTATTCAAG ATGGGGGATA GCAACATGCA GTATGTAACG TCGACGTCGT TCTTGCTGTT GACCTATGCC
T.hassleriana_cds_07811    CAGGTGGGCT CTTATTCAAG ATGGGGGATA GCAACATGCA GTATGTAACG TCGACGTCGT TCTTGCTGTT GACCTATGCC

                        1281
T.hassleriana_contig_2395  AAGTATTTGA CCTCCGCTCG CACCGTCGTC AATTGCGGCG GCTCCGTCAT CACCGCCGGC CATCTCCGCT CCATCGCCAA
T.hassleriana_cds_07811    AAGTATTTGA CCTCCGCTCG CACCGTCGTC AATTGCGGCG GCTCCGTCAT CACCGCCGGC CATCTCCGCT CCATCGCCAA

                        1361
T.hassleriana_contig_2395  GAAGCAGGTG GATTATCTGT TGGGGGACAA TCCATTGAGG ATGTCGTATA TGGTGGGATA TGGTCGGAAA TATCCGAGGA
T.hassleriana_cds_07811    GAAGC----- ---------- ---------- -------AGG ATGTCGTACA TGGTGGGGTA CGGTCCGAAA TACCCAAGGA

                        1441
T.hassleriana_contig_2395  GGATCCACCA CCGGGGTTCG TCA------- ---------- ---CTGCCGT CGGTGACAGC TCATCCGGCG AAGATCCAAT
T.hassleriana_cds_07811    GGATCCACCA CCGTGGCTCG TCACTGCCGG CGGGGGCGGC CCCCTGCCGT CGGTGGCGAC CCACCCGGGG AAGATCCAAT

                        1521
T.hassleriana_contig_2395  GCCGTGAGGG CTTCGCCTTC ATGAACTCAC AGTCTCCCAA CTTCAACGTC CTCGTCGGCG CCGTTGTGGG AGGTCCCGAC
T.hassleriana_cds_07811    GCCACGAAGG CTTCGCCTTC ATGAACTCGC AGTCTCCCAA CTTCAACGTC CTGGTCGGCG CCGTCATCGG AGGTCCAGAC

                        1601
T.hassleriana_contig_2395  CTCCACGACC GCTTCCCGGA CTACCGGTCC GACTACGAGC AGTCCGAACC CGCCACTTAC ATCAACGCCC CTCTTGTCGG
T.hassleriana_cds_07811    CTCCACGACC GGTTCCCGGA CGACCGAGCC GACTACGAGC AGTCGGAGCC AGCCACGTAC ATCAACGCCC CTCTCGTCGG

                        1681
T.hassleriana_contig_2395  CGTCCTCTCT TACTTCGCTC ACTCCTTCGG CCAGCTTTGA CCGCAGCCGC AAACCCAAAC GTTATTATGA CGACAGTATC
T.hassleriana_cds_07811    TGCCCTCTCT TATTTCGCCC ACTCCTTCGG ACAGCTCTAA ---------- ---------- ---------- ----------

                        1761
T.hassleriana_contig_2395  AAGAAGTCGT TGATCGACCA AGAAAGATTT AAAGGAATAG TCGCGATTGG TCCGTATGCG TGCTTTGTTC GTTATTTATC
T.hassleriana_cds_07811    ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

                        1841
T.hassleriana_contig_2395  GTCTCAAGTA CATCGATTGA TATGTACTTA AAGAGATGAC ATCTCCCTTA AGTATAACAC TGCAAAAACG TTATAAGAAA
T.hassleriana_cds_07811    ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

Seaview [blocks=10 fontsize=8 A4] on Sat Jan 18 17:34:07 2014 

                            1
T.hassleriana_contig_22959  ---------- ---------- ---------- ---------- ---------- ---------- ----------
T.hassleriana_cds_26192     ATGGAAATGC TTGGGTCTCA CTTTGGCTCT TTACTGTCTA AATTGAATGC GGTGTCCACT TCTGATCACT

                           71
T.hassleriana_contig_22959  ---------- ---------- ---------- ---------- ---------- ---------- ----------
T.hassleriana_cds_26192     CATCCGTGGT TTCACTGAAT CTCTTTGTTG CACTTCTCTG TGCCTGTATT GTGATTGGGC ACCTTTTGGA

                          141
T.hassleriana_contig_22959  ---------- ---------- ---------- ---------- ---------- ---------- ----------
T.hassleriana_cds_26192     AGAGAACCGA TGGATGAACG AATCCATCAC TGCTTTATTG ATTGGTCTTG GCACTGGTAT TGTCATTTTG

                          211
T.hassleriana_contig_22959  ---------- ---------- ---------- ---------- ---------- ---------- ----------
T.hassleriana_cds_26192     TTGATTAGTG GTGGGAAAAG CTCACGTCTT ATGGTCTTCA GTGAAGATCT CTTCTTCATA TATCTTTTGC

                          281
T.hassleriana_contig_22959  ---------- ---------- ---------- ---------- ---------- ---------- ----------
T.hassleriana_cds_26192     CACCAATCAT ATTCAACGCG GGGTTTCAAG TGAAAAAGAA GCAGTTCTTC CGTAATTTCG TGACGATTAT

                          351
T.hassleriana_contig_22959  ---------- ---------- ---------- ---------- ---------- ---------- ----------
T.hassleriana_cds_26192     ACTTTTTGGG GCCATCGGGA CTATAATCTC TTGCATAATC ATAACTTTAG GTGTAACTCA GTTCTTCAAG

                          421
T.hassleriana_contig_22959  ---------- ---------- ---------- ---------- ---------- ---------- ----------
T.hassleriana_cds_26192     AATCTGGACA TTGGAACCTT CGATTTGGGT GATTATCTCG CAATCGGAGC GATATTTGCT GCAACGGATT

                          491
T.hassleriana_contig_22959  ---------- ---------- ---------- ---------- ---------- ---------- ----------
T.hassleriana_cds_26192     CCGTTTGCAC ATTGCAGATT CTTAATCAGG ACGAGACACC TTTGCTGTAC AGTCTTGTTT TCGGAGAGGG

                          561
T.hassleriana_contig_22959  ---------- ---------- ---------- ---------- ---------- ---------- ----------
T.hassleriana_cds_26192     TGTCGTGAAC GATGCCACCT CAGTCGTGCT CTTCAACGCG ATCCAAAGCT TCGACCTTTC CCACCTTAAT

                          631
T.hassleriana_contig_22959  ---------- ---------- ---------- ---------- ---------- ---------- ----------
T.hassleriana_cds_26192     CTTGAAGCTG CTCTGCATTT TCTCGGAAAC TTCTTGTATC TGTTTATCCT GAGCACCTTG CTTGGTGTCG

                          701
T.hassleriana_contig_22959  ---------- ---------- ---------- ---------- ---------- ---------- ----------
T.hassleriana_cds_26192     CTACTGGTCT GGTAAGTGCG TACATAATCA AGAAGCTATA TTTCGGAAGG CATTCAACTG ATCGGGAGGT

                          771
T.hassleriana_contig_22959  ---------- ---------- ---------- ---------- ----AGCTAT TCGAGTTGAG CGGCATTCTC
T.hassleriana_cds_26192     TTCCCTCATG ATGCTTATGG CGTATCTTTC CTACATGCTT GCTGAGCTAT TCGAGTTGAG CGGCATTCTC

                          841
T.hassleriana_contig_22959  ACCGTGTTCT TCTGCGGAAT CGTGATGTCT CATTACACCT GGCACAATGT GACCGAGAGC TCGAGAATCA
T.hassleriana_cds_26192     ACCGTGTTCT TCTGCGGAAT CGTGATGTCT CATTACACCT GGCACAATGT GACCGAGAGC TCGAGAATCA

                          911
T.hassleriana_contig_22959  CTACCAAGCA TACATTTGCG ACGTTGTCGT TTGTTGCCGA GACATTTATC TTCCTCTACG TCGGAATGGA
T.hassleriana_cds_26192     CTACCAAGCA TACATTTGCG ACGTTGTCGT TTGTTGCCGA GACATTTATC TTCCTCTACG TCGGAATGGA

                          981
T.hassleriana_contig_22959  TGCTCTCGAC ATTGAGAAGT GGAGATCTGT GAGCGACAGC CCGGGGACAT CAGTTGCAGT GAGCTCGATT
T.hassleriana_cds_26192     TGCTCTCGAC ATTGAGAAGT GGAGATCTGT GAGCGACAGC CCGGGGACAT CAGTTGCAGT GAGCTCGATT

                         1051
T.hassleriana_contig_22959  CTGCTCGGAC TAGTGATGCT CGGAAGAGCA GCCTTTGTGT TTCCATTATC GTTTATCTCC AACTTATCCA
T.hassleriana_cds_26192     CTGCTCGGAC TAGTGATGCT CGGAA----- ---------- ------TATC GTTTATCTCC AACTTATCCA

                         1121
T.hassleriana_contig_22959  AGAAGAATCC AAACGAGAAA ATCGACATAA AGCAGCAAGT GTGTAAACTA TCCCGCTTTG TCTACTAGAT
T.hassleriana_cds_26192     AGAAGAATCC AAACGAGAAA ATCGACATAA AGCAGCAAGT -CGTTATTTG GTGGGCCGGT CTGATGAGAG

                         1191
T.hassleriana_contig_22959  TCATCGTTCT TCGGGATCTG GCTGTTTATC GTT----GGG CTTTGTTCCT CTCCGTTTAG GTCGTTATTT
T.hassleriana_cds_26192     GCGCTGTATC TATGGCTCTG GCTTACAATA AGTTCACAAG GTCGGGACAT ACAGAGTTGC GGGGGAATGC

                         1261
T.hassleriana_contig_22959  GGTGG----- GCCGGTCTGA TGAGAGGCGC TGTATCTATG GCTCTGGCTT ACAATAAGTT CACAAGG---
T.hassleriana_cds_26192     GATAATGATC ACCAGTACTA TAACTGTCTG TCTTGTTAGC ACCATGGTGT TCGGTATGCT GACGAAACCG

                         1331
T.hassleriana_contig_22959  ---------- ---------- ---------- ---------- ---------- ---------- ----------
T.hassleriana_cds_26192     CTCATACAGT TCCTGCTGCC GCAACAGAAA GCAACGACGA GCATGCTATC CGACGGTGGT ACCCCAAAAT

                         1401
T.hassleriana_contig_22959  ---------- ---------- ---------- ---------- ---------- ---------- ----------
T.hassleriana_cds_26192     CGATAACGAT CCCCCTGCTC GAGGGAGAGC AGCAGGACTC GTTCCTGGAG CTCGTCGGGA CGCCCGAGAT

                         1471
T.hassleriana_contig_22959  ---------- ---------- ---------- ---------- ---------- ---------- ----------
T.hassleriana_cds_26192     GCAACGGCCG AACAGCATCC GAGCCCTTCT AACGCGTCCC ACACGAACCG TCCACCACTA CTGGAGAAAG

                         1541
T.hassleriana_contig_22959  ---------- ---------- ---------- ---------- ---------- ---------- ----------
T.hassleriana_cds_26192     TTCGACGACG CCTTCATGCG TCCCGTCTTC GGCGGCCGCG GCTTCGTCCC GTTCGTCCGA GGCTCTCCCA

                         1611
T.hassleriana_contig_22959  ---------- ---------- ---------- -----
T.hassleriana_cds_26192     CCGAGCGTAG CTCCCATGAC CTTACCAAAC CCTAA
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A 

Supplemental Figure 5. Quality assessment of the biological replicates of T. 
hassleriana libraries mapped to A. thaliana and mapping similarity of T. hassleriana 
libraries mapped to A. thaliana and to its own cds. 

(A) Pair-wise Pearson's correlation (r) was calculated for all three pairs of biological 
replicates for each tissue in T. hassleriana mapped to A. thaliana. (B) Pair-wise Pearson‘s 

correlation (r) between leaf 5, stamen and seed 1 in (n=3) of T. hassleriana mapped to its 
own coding sequence and A. thaliana. 

B 
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PSI/PSII expression levels in roots

RPKM

F
re
q
u
e
n
c
y

0 10 20 30 40

0
1
0

2
0

3
0

4
0

Supplemental Figure 6. Determination of base line gene expression via a 
histogram of photosystem (PS) I and II transcript abundances reads per 
mappable million  (RPKM) in the G. gynandra root.  

Y- axis shows frequency and Y- axis depicts RPKM level of PSI and PSII transcript 
abundance. Red line indicates where threshhold of base line expression was set.  
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Supplemental Figure 7. Quality assessment of the biological replicates within each 
species and tissue similarity between G. gynandra and T. hassleriana. (A) Pair-wise 
Pearson's correlation (r) was calculated for all three pairs of biological replicates for each 

tissue (n=3) in G. gynandra. (B) Pair-wise Pearson's correlation (r) was calculated for all 
three pairs of biological replicates for each tissue (n=3) in T. hassleriana. (C) Pair-wise 

Pearson‘s correlation between individual tissues of T. hassleriana and G. gynandra. 
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Supplemental Figure 8. Principle component analysis between G. gynandra and T. 
hassleriana.  
(A) Plot shows all averaged tissues from G. gynandra (G) and T. hassleriana (H) sequenced 

(n=3). The first component describes 15% of all data variablility seperating both species. The 
second component (14%) separates samples by tissue identity within each species. Tissues are 

indicated by color key (left). 
(B) Averaged leaf gradient samples (n=3) from G. gynandra (G) and T. hassleriana (H) were 
analysed. First component decribes 44 % and second component describes 29% of variability. 

A 

B 
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Supplemental Figure 9. Hierarchical cluster analysis with bootstrapped samples of G. 
gynandra and T. hassleriana. Numbers above the nodes show the approximately unbiased 
p-value (red) and the bootstrap probability (green). Blue is lowest expression and yellow 

highest expression. Left-hand vertical bars denote major clusters in the dendrogram by 
color. (A) Clustering of all over 20 RPKM expressed genes in all averaged samples (n=3). 

Sample averages were clustered as species scaled Z-scores with Pearson‘s Correlation. 
(B) Hierarchical Clustering of all transcriptional regulators expressed in all tissues 
sequenced in G. gynandra and T. hassleriana. Sample averages (n=3) were clustered as 

species-scaled Z-scores with Pearson‘s Correlation.  

A 

B 
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Supplemental Figure 11.1. Transcriptional investment at secondary Mapman 
category of each tissue compared in both species (Part 1). Distribution of the 
Mapman  categories in each tissue in G. gynandra and T. hassleriana.  Plot shows 

percent of average RPKMs of the 12 customized secondary Mapman bins for each 
tissue. 
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Supplemental Figure 11.2. Transcriptional investment at secondary Mapman 
category of each tissue compared in both species (Part 2). Distribution of the 
Mapman  categories in each tissue in G. gynandra and T. hassleriana.  Plot shows 

percent of average RPKMs of the 12 customized secondary Mapman bins for each 
tissue. 
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Supplemental Figure 12. Comparison of gene expression dynamics within the 
leaf gradient of both species.  
(A-F) Average expression pattern of highest abundant putative ortholog of C4 cycle 

genes (NHD, PPDK, PPT, AlaAT, BASS2, PEPC) in photo- and heterotrophic tissues 
in G. gynandra (light grey) and T. hassleriana (dark grey); (n=3 ± SE, standard error) 
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Supplemental Figure online 13. Plot of all C4 gene putative orthologs expression pattern 
(RPKM) in G. gynandra, that were annotated as C4 genes with AGI identifier and respective T. 
hassleriana ID. (A-F) Average expression pattern of putative ortholog of C4 cycle genes (DIC, 

BASS2, AspAT, NAD-ME, PPT, PEPC) in photo- and heterotrophic tissues in G. gynandra 
(n=3). 
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Supplemental Figure online 14. Plot of all C4 gene putative orthologs expression pattern 
(RPKM) in T. hassleriana, that were annotated as C4 genes with AGI identifier and respective 
T. hassleriana ID. (A-F) Average expression pattern of putative ortholog of C4 cycle genes 

(DIC, BASS2, AspAT, NAD-ME, PPT, PEPC) in photo- and heterotrophic tissues in T. 
hassleriana (n=3). 
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Supplemental Figure 15. Enzyme activity measurement of soluble C4 cycle 
enzymes. Enzyme activities of PEPC, NAD-ME, PEPCK, NADP-ME, AspAT, AlaAT, 
NAD-MDH and NADP-MDH were measured along the developing G. gynandra leaf 

(stage 1-5) with the mature T. hassleriana leaf (stage 5) as C3 control. (FW: fresh 
weight; n=3 ±SE, standard error; biological replicates with each 3 technical replicates) 
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Supplemental Figure 16. Hierarchical clustering of average RPKM with 
Euclidean distance of core cell cycle genes in T. hassleriana and G. gynandra.  
Core cell cycle genes were extracted from (Vandepoele et al., 2002; Beemster et al., 

2005). Deregulated cluster of interest are marked with blue and red boxes. GTL1 
cluster is highlighted with green box. 
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Supplemental Figure 17. Hierarchical clustering with Pearson‘s correlation of leaf 
developmental factors. Averaged transcript abundances (RPKM) of leaf gradient sample of 
transcriptional regulators involved in axial and vasculature fate determination were clustered. 

Group 1 (orange) and group 2 (red)  show genes that are altered between T. hassleriana (H) and 
G. gynandra (G). 
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Supplemental Figure 18. K-means clustering of leaf 
gradient expression data and quality assessment. 
(A) K-means clustering of transcript abundances 

(RPKM) of leaf stage averages (n=3) between T. 
hassleriana and G. gynandra shown as species-scaled 

Z-scores. Size of each cluster is indicated in each 
cluster box. (B) Ln of the sum of the squared euclidean 
distance (SSE) between each gene and the center of it's 

cluster across various numbers of clusters calculated 
with a K-means algorithm for the leaf gradient data 

(blue) compared to the average of 250 scrambled 
datasets (red). 
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Supplemental Figure 19.  Z-score plots of enriched mapman categories in the 
shifted clusters. Species scaled Z-scores from averaged transcript abundances (RPKM) 
for each leaf stage per species (n=3). (A,B) shifted enriched categories from cluster 4. 

(C,D) shifted enriched categories from cluster 13. Number in brackets are the respective 
Mapman category bin codes. 
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Supplemental Figure 20.  K-means clustering of genes differentially regulated 
during the transition from proliferation to enlargement. (A,B) K-means clustering of 
T. hassleriana and G. gynandra homologs of gene set that is significantly up-regulated 

(A; p-value<0.05) or down-regulated  (B; p-value<0.05) between day 9 and 10 day in 
developing A. thaliana leaves (Andriankaja et al., 2012). Per species scaled Z-scores 

from averaged transcript abundances (RPKM) for each leaf stage per species (n=3).  
(C,D) Ln of the sum of the squared Euclidean distance (SSE) between each gene 
and the center of its clusters across various numbers of clusters calculated with a K-

means algorithm for the leaf gradient data (blue) compared to the average of 250 
scrambled datasets (red) for (C) up- and (D) down-regulated. 
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Supplemental Figure 21. Transcript abundances of SCARECROW and SHORTROOT 
homologs in G. gynandra (G) and T. hassleriana (H) leaf and root.  
(A-C) Expression pattern (average RPKM; n=3) of all homologs of SCARECROW (SCR; A);  

SHORTROOT (SHR; B) and JACKDAW (JKD; C) in both species. (D) Dual color map of 
significant (blue; FWE corrected p-Value<0.05) or non significant (yellow; n.s) expressed 

transcripts of SCR, SHR and JKD. 
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Supplemental Figure 22. Nuclei area and images of C4 and C3 species. 
(A) Quantification of BSC and MC nuclei area of mature leaves of monocotyledonous (Zea mays;  
Megathyrsus maximus; Dichantelium clandestinum) and dicotyledonous (Flaveria trinervia;  

Flaveria cronquistii) C4 and C3 species cross sections (error bars ±SD; n=3). Area of nuclei is given 
as µm2 with at least 100 nuclei analyzed per cell type per species. Asterisks indicate statistically 

significant differences between BSC and MC (*** p-value<0.001; * p-value<0.05). (B-F) Microscopic  
fluorescence images of propidium iodide stained mature leaf cross sections of Zea mays,C4 (B);  
Dichantelium clandestinum;C3 (C); Megathyrsus maximus, C4 (D); Flaveria cronquistii, C3 (E); 

 Flaveria trinervia, C4 (F). Scale bar: 50 µm; closed arrows pointing to nuclei of indicated cell type.  
BSC: bundle sheath cell; MC: mesophyll cell;  V: vein; S: stomata. 
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Supplemental Table 1 online. Velvet/OASES assembly stats from G. gynandra and T. 
hassleriana paired end reads. Backmapping of paired end reads was performed with TopHat 
standard settings. Annotation via blastp against TAIR10 proteome. 

  G. gynandra (C4) T. hassleriana (C3) 

k-mer 31 31 

N50 contig 1916 1996 

unigenes 59471 52479 

total transcripts 176850 163456 

Backmapping % 60 63 

Annotation of TAIR10 % 86 87 
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Supplemental Table 2 online. Cross species mapping results. T. hassleriana Leaf 5, Seed 
1, Stamen (n=3) was mapped to A. thaliana via blat in translated protein (A) mode to assess 
sensitvity of cross species mapping. Results of mapping were normalized as RPKM and 

collapsed on 1 AGI per multiple identifier in T. hassleriana Pearson's correlation r values of 
collapsed T. hassleriana Leaf 5, Seed 1 and Stamen (n=3) mapped to A. thaliana (B) and to 

itself were calculated (C). 

Species Sample 

Total number 

of cleaned 

reads 

Total number 

of mapped 

reads 

Mapping 

efficiency 

against 

A.thaliana 

reference 

Number of 

genes >20 

RPKM 

Number of 

genes >1000 

RPKM 

T
. 

h
a
ss

le
ri

a
n

a
 

Hleaf5_1 41085063 23502678 57.20492141 5825 151 

Hleaf5_2 26393836 22289304 84.44889936 5675 122 

Hleaf5_3 67907227 43184738 63.59372913 5684 146 

Hstamen_1 46237107 27726175 59.96520284 5923 48 

Hstamen_2 48025041 28220020 58.76105343 5950 47 

Hstamen_3 17855771 14433105 80.83159781 5467 60 

Hseed1_1 38620315 21654259 56.06960741 6253 39 

Hseed1_2 28792149 17462026 60.64856777 6301 48 

Hseed1_3 25372947 14217549 56.03428329 6107 42 

collapsed expression by mapping 

 to own cds vs to A. thaliana 1vs1 2vs2 3vs3 average  

Hleaf5 

r 0.90 0.89 0.91 0.90 

r2 0.81 0.80 0.82 0.81 

Hstamen 

r 0.79 0.79 0.79 0.79 

r2 0.62 0.62 0.62 0.62 

r 0.91 0.86 0.9 0.89 

Hseed1 r2 0.83 0.74 0.81 0.79 

T. hassleriana mapped to A. thaliana 1vs2 1vs3 2vs3 average  

Hleaf5 

r 0.98 1.00 0.98 0.99 

r2 0.97 0.99 0.96 0.97 

Hstamen 

r 0.97 0.96 0.98 0.97 

r2 0.94 0.92 0.96 0.94 

Hseed1 

r 0.97 0.99 0.98 0.98 

r2 0.94 0.98 0.96 0.96 

A 

B 

C 
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Supplemental Table 3 online. Pearson's correlation (r) of each individual replicate per 
tissue in G. gynandra and T. hassleriana respectively (A). Pearson's correlation 
between G. gynandra and T. hassleriana individual tissues (B).  

  Pearson correlation r between biological replicates 

# Species Tissue 1 vs 2 1 vs 3 2 vs 3 

1 

G
. 
g
yn

a
n
d
ra

 

Gleaf0 0.98 0.99 0.99 

2 Gleaf1 0.97 0.96 0.98 

3 Gleaf2 0.95 0.92 0.98 

4 Gleaf3 0.79 0.92 0.93 

5 Gleaf4 0.81 0.97 1.00 

6 Gleaf5 0.99 0.99 0.99 

7 Groot 0.92 0.93 0.93 

8 Gstem 0.97 0.94 0.95 

9 Gstamen 0.61 0.61 0.97 

10 Gpetal 0.88 0.84 0.84 

11 Gcarpel 0.99 0.61 0.57 

12 Gsepal 1.00 0.97 0.97 

13 Gseedling2 0.99 0.98 0.99 

14 Gseedling4 0.90 0.92 0.99 

15 Gseedling6 0.70 0.99 0.75 

16 Gseed1 0.99 0.99 1.00 

17 Gseed2 1.00 1.00 1.00 

18 Gseed3 0.77 0.64 0.94 

19 

T
. 
h
a
ss

le
ri

a
n
a
 

Hleaf0 0.97 0.97 0.99 

20 Hleaf1 0.97 0.98 0.98 

21 Hleaf2 0.96 0.98 0.98 

22 Hleaf3 0.96 0.99 0.98 

23 Hleaf4 0.96 0.99 0.98 

24 Hleaf5 0.97 0.99 0.98 

25 Hroot 0.95 0.96 0.96 

26 Hstem 0.23 0.62 0.87 

27 Hstamen 0.94 0.91 0.98 

28 Hpetal 0.98 0.97 0.97 

29 Hcarpel 0.95 0.99 0.98 

30 Hsepal 0.87 0.86 0.90 

31 Hseedling2 0.99 0.99 0.98 

32 Hseedling4 0.99 1.00 0.99 

33 Hseedling6 0.82 0.82 0.98 

34 Hseed1 0.99 1.00 0.99 

35 Hseed2 1.00 1.00 1.00 

36 Hseed3 0.93 0.96 0.95 

A 
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Supplemental Table 3 online. Pearson's correlation (r) of each individual replicate per 
tissue in G. gynandra and T. hassleriana respectively (A). Pearson's correlation 
between G. gynandra and T. hassleriana individual tissues (B).  

Pearson Correlation r between  

G. gynandra and T. hassleriana 

# Tissue r 

1 Leaf0 0.723369664 

2 Leaf1 0.693967315 

3 Leaf2 0.774414647 

4 Leaf3 0.718280077 

5 Leaf4 0.845767325 

6 Leaf5 0.801946455 

7 Root 0.693418487 

8 Stem 0.397920288 

9 Stamen 0.465027959 

10 Petal 0.296842384 

11 Carpel 0.409336161 

12 Sepal 0.216833607 

13 Seedling2 0.864093832 

14 Seedling4 0.79602302 

15 Seedling6 0.757896499 

16 Seed1 0.922002838 

17 Seed2 0.882400443 

18 Seed3 0.612106172 

B 
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Supplemental Table 4 online. Number of significatly up- or downregulated genes in G. 
gynandra compared to  T. hassleriana within the different tissues. Differential expressed 
gene p-Values were calculated via EdgeR and Bonferroni-Holms corrected, genes with 

p<0.05 were classified as differential regulated. 

Tissue UP p< 0.05 UP p< 0.01 UP p< 0.001 DOWN p< 0.05 DOWN p< 0.01 DOWN p< 0.001 

leaf0 5435 5061 4539 6076 5696 5237 

leaf1 5197 4841 4391 5914 5529 5026 

leaf2 4234 3894 3443 5047 4644 4204 

leaf3 4646 4283 3833 5484 5070 4576 

leaf4 3250 2911 2511 3774 3399 2979 

leaf5 3236 2894 2447 4133 3716 3191 

root 4343 3973 3511 5151 4755 4254 

stem 7835 7497 7123 8462 8129 7698 

stamen 4545 4116 3652 5388 4976 4451 

petal 4445 4063 3613 5122 4751 4317 

carpel 3718 3352 2929 3640 3274 2894 

sepal 5650 5276 4780 6422 6023 5539 

seedling2 4012 3644 3186 4354 3981 3546 

seedling4 4113 3684 3202 4416 4043 3569 

seedling6 2874 2534 2180 3542 3154 2714 

seed1 4116 3764 3321 4457 4083 3591 

seed2 6600 6270 5807 7075 6727 6276 

seed3 6108 5725 5307 7088 6674 6190 

mean  4686.5 4321.222222 3876.388889 5308.055556 4923.555556 4458.444444 

max 7835 7497 7123 8462 8129 7698 
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Supplemental Table 5 online. List of genes present in root to shoot recruitment 
module. 

T. hassleriana cds ID 

(Cheng et al., 2013) 

Arabidopsis 

homologue 

Coexpressed with 

TF 
TAIR short annotation 

T.hassleriana_10164 AT1G70410   beta carbonic anhydrase 4 

T.hassleriana_20805 AT2G22500   uncoupling protein 5 

T.hassleriana_17885 AT5G61590 ERF Integrase-type DNA-binding superfamily protein 

T.hassleriana_27615 AT1G04250 Aux/IAA AUX/IAA transcriptional regulator family protein 

T.hassleriana_13599 AT5G13180 VND-I2 NAC domain containing protein 83 

T.hassleriana_07159 AT4G12730 Aux/IAA FASCICLIN-like arabinogalactan 2 

T.hassleriana_22160 AT5G57560   Xyloglucan endotransglucosylase/hydrolase family protein 

T.hassleriana_03276 AT1G11545 Aux/IAA xyloglucan endotransglucosylase/hydrolase 8 

T.hassleriana_11774 AT1G43670   Inositol monophosphatase family protein 

T.hassleriana_19959 AT5G19140 ERF Aluminium induced protein with YGL and LRDR motifs 

T.hassleriana_13658 AT1G25230 ERF Calcineurin-like metallo-phosphoesterase superfamily protein 

T.hassleriana_11758 AT3G14690 VND-I2 cytochrome P450, family 72, subfamily A, polypeptide 15 

T.hassleriana_00726 AT5G46900   Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily 

T.hassleriana_13312 AT3G22120   cell wall-plasma membrane linker protein 

T.hassleriana_18867 AT3G54110   plant uncoupling mitochondrial protein 1 

T.hassleriana_22110 AT1G14870   PLANT CADMIUM RESISTANCE 2 

T.hassleriana_13333 AT5G19190     

T.hassleriana_11698 AT3G13950     

T.hassleriana_01980 AT5G25265     

T.hassleriana_04483 AT5G62900     

T.hassleriana_21987 AT1G13700 ERF 6-phosphogluconolactonase 1 

T.hassleriana_15837 AT1G05000   Phosphotyrosine protein phosphatases superfamily protein 

T.hassleriana_08797 AT5G23750 Aux/IAA Remorin family protein 

T.hassleriana_08517 AT5G36160   Tyrosine transaminase family protein 

T.hassleriana_12936 AT5G25980   glucoside glucohydrolase 2 

T.hassleriana_04639 AT2G01660   plasmodesmata-located protein 6 

T.hassleriana_22812 AT4G21870 ERF HSP20-like chaperones superfamily protein 

T.hassleriana_10363 AT3G11660 VND-I2 NDR1/HIN1-like 1 

T.hassleriana_19882 AT3G04720   pathogenesis-related 4 

T.hassleriana_27070 AT2G15220   Plant basic secretory protein (BSP) family protein 

T.hassleriana_05312 AT2G37170   plasma membrane intrinsic protein 2 

T.hassleriana_05313 AT2G37170   plasma membrane intrinsic protein 2 

T.hassleriana_12285 AT2G36830 Aux/IAA gamma tonoplast intrinsic protein 

T.hassleriana_12284 AT2G36830   gamma tonoplast intrinsic protein 

T.hassleriana_14369 AT1G11670 Aux/IAA MATE efflux family protein 

T.hassleriana_08980 N.A.     

T.hassleriana_07000 N.A.     
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Supplemental Table online 6.  List of clustered general leaf developmental and 
vasculature regulating genes along both leaf gradients. 

T. hassleriana cds ID 

(Cheng et al., 2013) AGI Annotation based on TAIR10 Function in vascular development 

T.hassleriana_16883 AT1G19850 MONOPTEROS (MP) leaf initiation 

T.hassleriana_08823 AT1G19850 MONOPTEROS (MP) leaf initiation 

T.hassleriana_08424 AT1G32240 KANADI 2 (KAN2) leaf axis formation 

T.hassleriana_09176 AT1G32240 KANADI 2 (KAN2) leaf axis formation 

T.hassleriana_20498 AT1G52150 ATHB-15 neg reg of vasc cell diff 

T.hassleriana_09793 AT1G52150 ATHB-15 neg reg of vasc cell diff 

T.hassleriana_06450 AT1G65620 ASYMMETRIC LEAVES 2 (AS2) leaf initiation 

T.hassleriana_19648 AT1G73590 PIN-FORMED 1 (PIN1) vein initiation (polar auxin transport) 

T.hassleriana_01843 AT1G79430 ALTERED PHLOEM DEVELOPMENT (APL) vascular cell identity repressed by REV 

T.hassleriana_19440 AT1G79430 ALTERED PHLOEM DEVELOPMENT (APL) vascular cell identity repressed by REV 

T.hassleriana_27016 AT2G13820 Bifunctional inhibitor/lipid-transfer protein vein formation (xylogen) 

T.hassleriana_27989 AT2G27230 LONESOME HIGHWAY (LHW) transcription factor-related 

T.hassleriana_09087 AT2G27230 LONESOME HIGHWAY (LHW) transcription factor-related 

T.hassleriana_15265 AT2G27230 LONESOME HIGHWAY (LHW) transcription factor-related 

T.hassleriana_15152 AT2G28510 Dof-type zinc finger DNA-binding family protein Dof-type zinc finger DNA-binding family protein 

T.hassleriana_27908 AT2G28510 Dof-type zinc finger DNA-binding family protein Dof-type zinc finger DNA-binding family protein 

T.hassleriana_06822 AT2G33860 ETTIN (ETT) leaf axis formation abaxial fate 

T.hassleriana_23279 AT2G33860 ETTIN (ETT) leaf axis formation abaxial fate 

T.hassleriana_23086 AT2G37630 ASYMMETRIC LEAVES 1 (AS1) leaf initiation 

T.hassleriana_18733 AT4G08150 KNOTTED-like from Arabidopsis thaliana (KNAT1) leaf initiation 

T.hassleriana_09854 AT4G08150 KNOTTED-like from Arabidopsis thaliana (KNAT1) leaf initiation 

T.hassleriana_25576 AT4G24060 Dof-type zinc finger DNA-binding family protein Dof-type zinc finger DNA-binding family protein 

T.hassleriana_22410 AT4G32880 homeobox gene 8 (HB-8) vein initiation (post auxin marker of vascular patterning) 

T.hassleriana_28697 AT5G16560 KANADI (KAN) leaf axis formation abaxial; neg reg of PIN1 

T.hassleriana_19776 AT5G16560 KANADI (KAN) leaf axis formation abaxial; neg reg of PIN1 

T.hassleriana_18288 AT5G60200 TARGET OF MONOPTEROS 6 (TMO6) TARGET OF MONOPTEROS 6 

T.hassleriana_16642 AT5G60200 TARGET OF MONOPTEROS 6 (TMO6) TARGET OF MONOPTEROS 6 

T.hassleriana_18265 AT5G60690 REVOLUTA (REV) adaxial leaf axis formation 

T.hassleriana_19132 AT5G60690 REVOLUTA (REV) adaxial leaf axis formation 

T.hassleriana_17767 AT5G64080 XYP1  vein formation (xylogen) 

T.hassleriana_26861 AT5G64080 XYP1 vein formation (xylogen) 
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Supplemental Methods 

Leaf clearings and safranine staining (Supplemental Figure 1)  

For leaf clearings T. hassleriana and G. gynandra leaves of stage 0 to 5 were destained 
in 70% EtOH with 1% glycerol added for 24 hrs and cleared in 5% NaOH until they 
appeared translucent and rinsed with H2Odest. Leaves were imaged under dark field 

settings with stereo microcope SMZ1500 (Nikon, Japan). Prior safranine staining, leaves 
were destained with increasing EtOH series until 100% EtOH and stained for 5 -10 min 
with 1% safranine (1g per 100ml 96% EtOH). After destaining leaves were analyzed with 
bright field microscope (Zeiss, Germany). Vein orders were determined by width and 
position as described by (McKown and Dengler, 2009) for Flaveria species. 

Contig assembly and annotation (Supplemental Figure 4, Table 1 and Dataset 3) 

Cleaned and filtered paired end (PE) reads were used to create a reference 
transcriptome for each species. The initial de novo assembly was optimized by using 31- 
kmer using Velvet (v1.2.07) and Oases (v0.2.08) pipeline (Zerbino and Birney, 2008; 
Schulz et al., 2012). For quality purposes the longest assembled transcript was selected 
with custom made perl scripts if multiple contigs were present (Schliesky et al., 2012) 
resulting in 59,471 G. gynandra and 52,479 T. hassleriana contigs. For quality 
assessment PE reads were aligned again to the respective contigs for each species via 
TopHat standard settings with over 60% backmapping efficiency in both species. 
Assembled longest transcripts were annotated using BLASTX mapping against TAIR10 

proteome database (cut-off 1e
-10

). The best blastx hits were filtered by the highest 
bitscore. For quality assessment of contigs, T. hassleriana contigs were aligned with 
BLASTN against T. hassleriana predicted cds (Cheng et al., 2013). Multiple matching 
contigs to one cds identifier were filtered with customized perl script. 

Cross species mapping sensitivity assessment (Supplemental Figure 5; Table 2) 

All three biological replicates of leaf stage 5, stamen and young seed  from T. 
hassleriana were mapped with BLAT V35 in dnax mode (nucleotide sequence of query 
and reference are translated in six frames to protein) with default parameters to both, the 
T. hassleriana gene models and the A. thaliana TAIR10 representative gene models. 
Subsequently, the BLAT output was filtered for the best match per read based on the 
highest score. RPKMs were calculated based on mappable reads per million (RPKM). 
The RPKM expression data was collapsed to single A. thaliana AGIs (RPKM were 
added) to avoid multiple assigned T. hassleriana‘s IDs to the same AGI. Pearson’s 
correlation r was calculated between the mapped T. hassleriana replicates mapped on 
A. thaliana gene models among each other. Also Pearson’s correlation r was calculated 
between cross species mapped T. hassleriana leaf5, stamen and seed1 replicates and 
the replicates of Leaf5 mapped to its own cds in T. hassleriana.  

Principal component analysis (Supplemental Figure 8) 

Principal component analyses (PCA,Yeung and Ruzzo, 2001) was carried out with 
MULTI EXPERIMENT VIEWER VERSION 4 (MEV4, (Saeed et al., 2003; Saeed et al., 

Chapter 3. Co-Author Manuscripts 203



2006) on gene row SD normalized averaged RPKMs with median centering. 

Enzyme Assays (Supplemental Figure 15) 

From G. gynandra leaf stage 2 to 5, enzymatic activities of known C4 enzymes were 

determinedas summarized by Ashton et al. (1990) in three biological replicates. 

Comparison of Cleomaceae leaf gradients to A. thaliana leaf differentiation 

(Supplemental Figure 19) 

Examination of Cleomaceae expression patterns of genes differentially regulated during 

the transition from cell proliferation to expansion in A. thaliana.  

Andriankaja et al. (2012) observed that the transition between cell proliferation and 

expansion occurred between days 9 and 10. They defined two sets of genes 

significantly differentially expressed between day 9 and 10, one up-regulated and one 

down-regulated. The expression of the T. hassleriana and G. gynandra homologues of 

these genes were analyzed. The sum of standard error (SSE) was taken as a quality 

control to determine an appropriate number of clusters. The number of cluster centers 

chosen was 7 and 5 for up-regulated and down-regulated genes, respectively. The K-

means clustering was performed the same as before, except that genes were not 

previously filtered by expression level and genes were only binned once into clusters.  
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