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“Chemists seek precise answers to well-defined problems, whereas biologists are content with 

approximate answers to complex problems.”

- Arthur Kornberg
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3. ABSTRACT

All known life to date depends on proteins. Proteins are essential molecular machines that 

participate in every process within cells and play vital roles in, for example, cell structure, 

cell signalling, cell division, motor function, metabolism, and immune responses. Proteins 

owe their diverse functions to their vast array of different structures. Knowing the three-

dimensional structure of a protein is therefore a critical step towards understanding its 

function. That knowledge can, in turn, help researchers to figure out how to modulate the 

protein function, leading to new and/or improved drugs or cleaner and more environmentally 

sustainable industrial processes.

At present, resolving a protein structure experimentally is laborious, time consuming 

and cost intensive. Therefore, being able to predict a protein structure accurately using 

computational methods is of high interest in biochemical, biomedical, and biotechnological 

research. Many methods for computational structure prediction have been developed in the 

last two decades, but no single method is consistently the best for every protein. Since 

different methods use different ideas, databases, algorithms and machine learning 

techniques, they provide different answers to the same types of problems. Consequently, 

integrating multiple so-called primary methods into a single meta-method harnesses their

strengths and counteracts their weaknesses. This results in more robust and accurate structure 

predictions. However, when the majority of primary methods consent on the wrong 

prediction, out-numbering those that make the right one, meta-methods that rely on majority 

consensus make wrong structure predictions.

The goal of this thesis is to provide a toolbox and fully automated protein structure 

prediction workflow called TopSuite. This workflow consists of multiple meta-methods, 

each of which solve different tasks for protein structure prediction. Rather than using 

consensus though, these meta-tools make use of deep neural networks that have been trained 

on large datasets to learn when, and how much, to trust each primary method. As such, the 

TopSuite meta-methods are able to go against the majority when needed, and yield 

predictions that are significantly better than any of their respective primary methods.

Furthermore, the utility of TopSuite, in particular the template-based structure 

prediction workflow TopModel, is demonstrated through the application to target proteins 

of high biological, medical, and industrial importance.
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4. ZUSAMMENFASSUNG

Proteine sind lebensnotwendig für alle bekannten Organismen. Als „molekulare Maschinen“ 

sind Proteine an allen Prozessen in der Zelle beteiligt und üben wichtige Funktionen aus, 

beispielsweise im Bereich der Zellstruktur, Signalweiterleitung, Zellteilung, Motorik, 

Stoffwechsel und Immunantwort. Proteine verdanken ihre vielfältigen Funktionen einer 

Vielzahl unterschiedlicher Strukturen. Die Kenntnis der räumlichen Struktur eines Proteins 

ist daher ein entscheidender Schritt zum Verständnis der Proteinfunktion. Dieses Wissen 

kann wiederum helfen herauszufinden, wie diese Funktion moduliert werden kann, was zu 

neuen und/oder verbesserten Arzneimitteln sowie saubereren und umweltverträglicheren 

industriellen Prozessen führen kann.

Gegenwärtig ist das experimentelle Aufklären einer Proteinstruktur arbeitsaufwendig, 

langwierig und kostenintensiv. Daher ist es für die biochemische, biomedizinische und 

biotechnologische Forschung von großem Interesse, Proteinstrukturen mithilfe von 

computer-gestützten Methoden genau vorhersagen zu können. In den letzten zwei 

Jahrzehnten wurden viele Methoden zur Vorhersage der Proteinstruktur entwickelt; jedoch 

ist keine einzelne Methode durchweg die beste für jedes Protein. Da unterschiedliche 

Methoden auf verschiedenen Ideen, Datenbanken, Algorithmen und Techniken des 

maschinellen Lernens aufbauen, produzieren sie unterschiedliche Ergebnisse bei der Lösung 

gleicher Arten von Problemen. Daher birgt die Kombination verschiedener Methoden zu 

einer Metamethode die Möglichkeit, die Stärken der Primärmethoden auszunutzen und ihren 

Schwächen entgegenzuwirken. Dies führt zu robusteren und genaueren Strukturvorhersagen.

Kommt jedoch die Mehrheit der Primärmethoden zur gleichen falschen Vorhersage, so 

überstimmt diese die eventuell richtigen Vorhersagen anderer Methoden. Dies würde dazu 

führen, dass auch die konsensbasierte Metamethode eine falsche Strukturvorhersage trifft.

Das Ziel dieser Arbeit ist es, eine Programmsuite und einen vollautomatisierten Workflow 

zur Proteinstrukturvorhersage zu erstellen: TopSuite. Die Suite enthält Metamethoden, die 

jeweils unterschiedliche Aufgaben bei der Vorhersage von Proteinstrukturen erfüllen. 

Anstelle eines Konsens verwenden diese Metamethoden Deep Neural Networks, die auf 

großen Datenmengen trainiert wurden, um zu lernen, wann und inwieweit jeder 

Primärmethode zu vertrauen ist. Daher können die TopSuite Metamethoden bei Bedarf 

gegen die Mehrheit der Primärmethoden entscheiden und Vorhersagen treffen, die deutlich 

besser sind als die, der jeweiligen primären Methoden.
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Des Weiteren wird die Nützlichkeit von TopSuite, insbesondere der templat-basierten

Strukturvorhersage, bei der Anwendung auf Proteine von hoher biologischer, medizinischer 

und industrieller Bedeutung demonstriert.
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5. INTRODUCTION

Knowing the three-dimensional structure of a protein is a key component to understand its 

stability 1, function 2, structural evolution 3, and interactions with ligands 4-5 or other proteins 
6. At present, X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy 

are the most prominent experimental methods for resolving protein structures. Recent

advances in Cryo-Electron microscopy (Cryo-EM), however, 7-8 have resolved structures at

near atomic resolution. Despite these advances, experimental structure determination, 

regardless of the method, is both cost intensive and time consuming, making it impractical 

for structural genomics and costly for research groups with limited resources.

Consequently, protein structure prediction is an essential part of knowledge-based 

protein engineering 9, drug-design and -discovery 10, as well as function assignment 11-12. In 

the last decades, many approaches to computational structure prediction have been 

developed. This raises the question of which method to use for a given protein-coding gene

of interest, also known as the target sequence. Which biological information can be derived 

from structure prediction depends on its accuracy: While highly confident models based on 

homologous templates are generally suitable for computational ligand docking and virtual 

compound screening, even models of medium confidence can be useful for identification of 

functionally important sites and disease-associated mutations 13.

Since the inception of the field, protein structure prediction has been considered the 

Holy Grail of bio-informatics 14, and the majority of computational methods in the field has 

been developed to aid in the process of predicting protein structure. Consequently, much 

work has been focused on integrating methods developed by different people and 

computational groups, to harness their strengths and counteract respective weaknesses. 

Because these methods are based on different ideas, databases, methods and machine 

learning algorithms, they all provide different solutions to the same types of problems. These 

include tasks such as: 1) searching sequence databases for matches that share common 

ancestry with the target sequence; 2) aligning multiple sequences to one another in order to 

build a multiple sequence alignment; 3) predicting physical features (e.g. secondary structure 

or solvent accessibility) for the target sequence; 4) identifying suitable template structures 

by aligning a target sequence to a template; 5) aligning protein 3D structures to one another;

6) constructing 3D structural models from a list of templates and alignments; 7) evaluating 

model quality of an ensemble of protein 3D structural models.
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The most common underlying methodology used for integrating different methods is 

the concept of consensus 15-23. At its core, the idea of consensus is to submit the target 

sequence to a large ensemble of different so-called primary predictors and then merge the 

outputs of those methods in a clever way. If each of the primary predictor outputs reflects

part of the truth, the resulting meta-prediction should be closer to reality than any single 

primary prediction. Meta-servers that implement different variants of this fundamental 

concept have shown to be one of the major advances in the field of structure prediction 24-25.

Furthermore, the best performing methods use some variation of majority-based consensus
24-25. A major drawback of consensus, however, is that sometimes the majority is not correct, 

and when the majority of methods agree on the wrong prediction, consensus will drive the 

prediction away from the truth. This can in part due to many methods being highly correlated

with one another, as they build on similar methodologies, databases and machine learning 

concepts. This means that if a particular task is difficult and prone to mistakes, correlated 

methods are prone to make the same mistakes, driving the majority away from the truth.

In this thesis, I present the development of several meta-methods for protein structure 

prediction, overcoming the problems of majority voting consensus by using deep neural 

networks (DNNs) to combine the inputs of different primary predictors. In this way, the 

DNNs learn which methods to trust most in which situations and allows the meta-methods 

to perform much better than traditional consensus.
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6. BACKGROUND

In this section, I will briefly cover some of the major experimental and computational 

methodologies that have carried the field of computational structure prediction to its current 

state. While these developments have happened more or less in tandem with one another, 

the next section is grouped according to increasing complexity of methods, while attempting 

to maintain some level of chronological order.

6.1 EXPERIMENTAL STRUCTURE DETERMINATION

6.1.1 X-RAY CRYSTALLOGRAPHY

The currently most accurate experimental method to determine protein structures is X-ray

crystallography, in which a highly concentrated solution of the purified protein is gradually 

condensed until it crystallizes. Upon crystallization, most of the proteins in solution arrange

themselves into a highly regular and periodically repeating lattice. The exact structure of this

lattice depends on the crystallization conditions and the protein itself. The crystallized 

sample is cooled, usually to around 100 Kelvin and then exposed to an X-ray beam from 

multiple angles. Cooling mitigates radiation damage and increases the lifetime of the crystal 

in the beam about 100-fold 26. The resulting diffraction pattern, in terms of scattering angles 

and intensities of the X-rays, can be measured and used to reconstruct the electron density 

of the protein and infer the mean positions of atoms 27. However, since light detectors such 

as Charge Coupled Devices (CCDs) only measure the intensity of the X-rays, the 

information about the phases is lost. In order to resolve the electron density, this information 

has to be recovered by shifting the phases and back calculating the phases from the resulting 

shifts. Resolving the phases, also known as solving the phase-problem, can be achieved in 

several ways. In Multi-wavelength Anomalous Dispersion (MAD), absorption and re-

emission of X-rays at multiple wave-lengths by low orbit electrons leads to a shift in phases
28. In Multiple Isomorphous Replacement (MIR), heavy metals are incorporated into the 

structure by soaking 29 or by modifying the protein with unnatural amino-acids with heavier 

elements such as seleno-cysteine or seleno-methionine 30, which also leads to a shift in 

phases. Another option, known as Molecular Replacement (MR), requires the reconstruction 

of the packing in the crystal lattice with a model from a close homologue, allowing for the

calculation of the phases from the model density 31. This however, requires a very high-

quality model, since the crystal packing has to be resolved without atomic clashes.
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The accuracy and quality of X-ray crystallography can in part be attributed to the

rigidification of the protein structure caused by crystallization and cooling. However, the 

physiological form of the protein is much more flexible at biologically relevant temperatures.

Since it is not known a priori, which conditions lead to formation of stable crystals, many 

thousands of different conditions with varying parameters such as protein concentration, salt 

concentration, buffer composition, temperature, pH, and ionic strength are generally carried 

out in the hope of finding a set of experimental conditions that lead to crystal formation 32.

This is time and cost intensive, and does not guarantee that a suitable set of conditions is 

ever found. Difficulties often arise when flexible parts of the protein prevent it from 

arranging into a stable crystal, making it necessary to cut these pieces out 33-35. For X-ray 

crystallography, larger proteins are especially problematic, because all of their atoms have 

to arrange themselves in the same pattern in order to form a stable crystal. Since large 

proteins tend to have multiple structural domains, which can differ in their relative spatial 

orientation, obtaining a crystal for such proteins is particularly rare. Consequently, 

crystallization becomes less likely with increasing protein size 27. An outline of an X-ray 

crystallography workflow for protein structure determination can be seen in Figure 1.

Figure 1. Outline of X-ray crystallography workflow. A) Protein expression and purification. B) 

Crystallization. C) Collection of diffraction patterns. D) Reconstruction of electron density from diffraction 

patterns. E) All-atom model derived from the electron density.

Because of their abundance in protein structure databases, crystal structures make up the 

majority of the targets used for training TopScore (Chapter 9, Publication I) and TopModel 

(Chapter 10, Publication II).

6.1.2 NMR SPECTROSCOPY

Protein structure determination is also possible using nuclear magnetic resonance 

spectroscopy (NMR spectroscopy). The big advantage of NMR spectroscopy in terms of 

structure determination is that flexible proteins, which do not readily arrange into a crystal 
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lattice, can be resolved in aqueous solution at room temperature rather than in a frozen state. 

In NMR spectroscopy a strong external magnetic field is applied to the protein solution,

which causes nuclei with a spin to orientate themselves in the direction of, or opposite to, 

that of the external field. By supplying electromagnetic radiation with so-called pulse 

frequencies, specific types of spin nuclei absorb the radiation energy and subsequently emit 

some of it, which can be measured as a so-called NMR spectrum. The exact frequency of

the energy transition, termed a chemical shift, depends on the magnetic field around the 

nucleus, which in turn depends on the chemical environment around the nucleus shielding it 

from the external magnetic field.

In general, two types of spectroscopy experiments are carried out: Correlation 

spectroscopy, in which the chemical shifts are centered on a single frequency and correlated 

resonances are measured, and Nuclear Overhauser Effect (NOE) spectroscopy, in which the 

relaxation of the resonances is observed. The former is used to unambiguously assign 

specific signals to specific residues, while the latter allows for assignment of distance 

restraints between atoms not covalently bound to each other 36.

Which type of nuclei is targeted in NMR, also termed the isotopically labelled nuclei, 

differs depending on experiment, but common ones include hydrogens and labelling with 
13C and/or 15N, the latter of which are fed to the organism producing the protein. By using 

multiple different labels at once, the coupling between different signals and their coupling 

constants can be calculated. This allows the signals to be assigned to specific atom pairs. 

The calculation of such 2D spectra prevents the overlap of different peaks, a typical example 

of which is 2D heteronuclear single quantum correlation (2D-HSQC) spectra. Using the 

calculated chemical shifts and coupling constants it is possible to calculate different types of 

restraints for the protein, most commonly torsion angle restraints and short-range (<5 Å)

NOE distance restraints.

Using the calculated torsion angle restraints and NOE distance restraints the structure 

of proteins of about 20 kilo-Dalton (about 180 amino-acids) can generally be resolved using 

computational toolboxes such as the Crystallography and NMR System (CNS) 37 to generate 

protein models that satisfy the experimental restraints 38-39. Larger protein systems, however, 

tend to have more complex shapes and intra-molecular interactions, which causes more

overlapping peaks even in 2D spectra. Thus, structural elucidation of large proteins using 

NMR generally require higher dimensionality spectra such as 3D or 4D spectra, and is much 

more difficult to perform.
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Large proteins tend to have shorter transverse correlation times and therefore the 

NMR signal decay more rapidly, leading to wide lines in the NMR spectra and consequently 

poor resolution. Transverse relaxation-optimized spectroscopy (TROSY) experiments 40

seek to alleviate this problem. Because of nuclear spin coupling along chemical bonds (also 

known as J-coupling), peaks in HSQC spectra appear as multiplets. While these peak 

components correspond to the same signal, they have different relaxation times due to 

interference between relaxation mechanisms such as dipole-dipole coupling (DDC) and 

chemical shift anisotropy (CSA). TROSY is performed at a high magnetic field strength 

(CSA is field strength dependent, DDC is not) to select the peak component for which the 

DDC and CSA relaxations cancel each other out due to destructive interference. This results 

in a single sharp peak in the spectrum, which significantly increases NMR resolution.

However, since large proteins are generally less soluble, even with TROSY and 

multi-dimensional NMR, the determination of large protein structures with NMR is difficult 

as a soluble sample is required 39, 41. An outline of an NMR workflow for protein structure 

determination can be seen in Figure 2.

Figure 2. Outline of NMR Spectroscopy workflow. A) Isotope labeling, protein expression and purification. 

B) NMR measurement. C) 1D/2D/3D spectra analysis. D) Peak assignment and derivation of secondary 

structure and NOE restraints. E) Structure calculation by simulated annealing to fulfill NMR restraints.

In the validation of TopModel (Chapter 10, Publication II) on a particularly 

difficult target protein, we showed that the structure prediction from TopModel agreed well 

with secondary structure and NOE restraints from NMR experiments.

6.1.3 CRYO-ELECTRON MICROSCOPY

Another experimental method for structure determination, which has seen great advanced in 

recent years, is Cryo-Electron Microscopy (Cryo-EM) 7-8. In Cryo-EM, a sample protein in 

solution is rapidly frozen and fixed in vitreous ice on a carbon film typically reinforced with 
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a copper grid for structural support. Ideally, the ice is thin enough to accommodate the 

proteins but not much thicker, preventing molecule overlap when the sheet is photographed.

The thin ice sheet is then exposed to an electron beam, which subsequently passes through 

one or more lenses to magnify the image before it hits a detector, usually a CCD camera.

This results in a blurry 2D image. The blurring comes from the fact that the energy from the 

beam is partially absorbed by the sample resulting in so-called beam damage and movement 

of the proteins, as well as the limitation of resolution due to the electron wavelength. One of 

the key advances in Cryo-EM is the development of ways to flash freeze the samples with 

liquid ethane to mitigate beam damage 42. Another advancement is to use multiple images

of the protein. By stacking these images and processing them with advanced image 

processing tools, the thermal movement of the sample can be measured and to some degree 

cancelled out, which greatly improves image quality and structural resolution 43. By rotating 

the sample, images can be taken from multiple angles, allowing a 3D image to be 

computationally reconstructed using programs such as EMAN2 44 or RELION 45. Combining 

all of the above advances has allowed current state-of-the-art Cryo-EM methods to resolve 

large macromolecule-complexes at medium resolution 46. Compared to X-ray 

crystallography and NMR spectroscopy, only a very small sample of just a few μl of a low 

concentration protein solution is needed, which helps to prevent protein aggregation. The 

greatest disadvantage of Cryo-EM is the low signal to noise ratio due to movement of the 

sample, and because of this, it is the method with the lowest resolution - typically 4-6 Å.

From the computational perspective, the fact that high-resolution Cryo-EM structure 

determination is relatively new means that high-resolution Cryo-EM structures are rare in 

protein structure databases. An outline of a Cryo-EM workflow for protein structure 

determination is shown in Figure 3.

Figure 3. Outline of Cryo-EM workflow adapted from 47. A) Image of the vitreous ice sheet with the 

embedded sample. B) Subset of the selected particle images showing the protein from different orientations. 
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C) Initial electron density calculated from the particle images. D) Refined density map calculated by image re-

focusing on the top and bottom domains respectively. E) All-atom model derived from the Cryo-EM density.

6.1.4 LOW-RESOLUTION METHODS

For the reasons mentioned in the previous sections, high-resolution structural information is 

often not obtainable. Multi-domain proteins, large proteins, disordered proteins and trans-

membrane proteins to name a few, each pose their own set of additional technical difficulties,

mainly related to molecular flexibility and solubility, for resolving their 3D structure.

Therefore, several techniques have been developed to get low-resolution structural 

information in a faster and cheaper fashion than the previously mentioned methods. In this 

segment, I will briefly cover a few of the more widely used methods, their advantages and 

their drawbacks.

Small Angle Scattering (SAS) covers two methods that are highly similar in 

nature: Small Angle Neutron Scattering (SANS) and Small Angle X-ray Scattering (SAXS). 

Both methods involve the bombardment of a sample with either neutron rays or X-rays at 

small angles, typically 0.1-10 degrees. By measuring the scattering patterns, the size and 

shape of the molecules in the sample can be determined at a resolution of up to 10 Å. The 

benefit compared to X-ray crystallography is that it is not required to obtain a crystal of the 

sample. Thus, the measurements can be done much cheaper and faster. Compared to NMR 

the methods also work for large proteins beyond the practical size limitation of NMR. The 

low resolution of SAS methods, however, means that, although they can determine the 

average shape of the protein in solution, they are not accurate enough to provide detailed 

atomistic information 48. Therefore these methods are most suitable for large multi-domain 

proteins or protein-protein complexes, to obtain information about the over-all arrangement 

of structural units relative to each other 49. In the validation of TopModel (Chapter 10, 

Publication II) on a particularly difficult target protein, we showed that the structure 

prediction from TopModel agreed well with the shape and scattering curves calculated from 

SAXS experiments.

Chemical cross-linking is a low-resolution method, in which the target protein of 

interest is chemically modified by covalently attaching polymer linkers to surface residues 

of the protein. These chemical polymer linkers vary from experiment to experiment but 

generally function by nucleophilic attack of the amino group of surface accessible lysine 

residues. Some variations of linkers work by activation with UV light 50-51, which in some 

cases enables the linking of other types of residues. When cross-linking is used for structure 
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determination, the cross-linked protein is subsequently digested and subjected to mass 

spectrometry. The resulting cross-linked peptide pair masses can help to determine which 

peptides, and therefore which residues in the sequence, were cross-linked before the protein 

digestion. These residue pairs, combined with the linker length, can be used to infer pseudo-

distances between the cross-linked surface residues 52. These distances are not real Euclidian 

distances, since the linkers traverse the surface of the protein. The actual distance between 

the cross-linked residue pairs is always significantly shorter than the linker length, due to 

the curvature and shape of the protein surface. In theory, these pseudo-distances can be used 

as discriminators for aiding in protein structure determination by imposing upper boundaries 

to the distance between the residues. However, in practice this has yet to be shown as a 

feasible and reliable method for protein structure determination, since up to half of the 

determined distances are generally incompatible with the native structure 53. In practice,

other more accurate sources of information are critical to resolve a structure ab initio. There 

are four main reasons for the low quality of chemical cross-linking data for structure 

determination: First, due to experimental constraints, there is ambiguity in determining the 

exact residues that were cross-linked, since the peptides may contain multiple residues that 

could have been linked. Second, the residues that can be used as covalent attachment points 

are generally limited, leading to only a limited number of cross links being possible for a 

given protein. Third, the majority of cross-linked residues are close by in sequence and as 

such has little to no discriminatory power for modelling and model selection, since the 

distance between the residues is trivially determined by their sequence distance. Fourth, even 

if long-range cross-linked residues are found, the fact that only an upper limit on the residue 

pseudo-distance can be inferred severely limits the discriminatory power of the data in terms 

of modelling and model selection.

A similar method to chemical cross-linking is Förster Resonance Energy Transfer 

(FRET) experiments. In a structure determination FRET experiment, fluorophores (also 

known as dyes) are attached to chemical linkers, which are then covalently bound to surface 

residues of the protein 54. These residues are usually cysteine that are introduced into the 

target sequence by targeted mutagenesis. Different dyes are attached in pairs, where one dye 

acts as a donor and the other acts as an acceptor. When a protein labelled with two dyes is 

exposed to light of a specific frequency, matching the excitation frequency of the donor dye,

the dye is excited, and the excitation energy is transferred non-radiatively to the acceptor 

dye by a dipole-dipole resonance interaction. Subsequently, the acceptor dye re-emits the 

energy as visible light in a frequency not overlapping with the initial light used for excitation.
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The proportion between the amount of light used for initial exposure and the re-emitted light 

is used to calculate the efficiency of energy transfer between the two dyes. This efficiency 

is inversely proportional to the sixth power of the distance between the dyes, and can be used 

to calculate upper and lower bounds for the inter-dye distance 54.

There are several key advantages to FRET compared to chemical cross-linking. First,

the distance that can be calculated is a Euclidian distance rather than a path the linker takes

on the surface of the protein (i.e. protein surface curvature is ignored). Second, both upper 

and a lower distance bounds can be determined, which increases the discriminatory power 

of the method. Third, because dyes can be attached to any surface residue pair, the number 

of distance restraints depends mainly on the amount of point mutations that can be expressed 

and purified. Fourth, by using different dyes, multiple different residue pair distances can be 

measured from the same set of point mutations, leading to a much higher amount of distance

restraints than cross-linking, with a higher information content since residues distant in 

sequence can be targeted for labelling. FRET does not come without drawbacks, however, 

since the linker length must be sufficient, such that the two dyes can be considered freely 

moving, yet longer linkers also give more uncertainty of the position of the dyes. 

Furthermore, dyes tend to stick to the surface of the protein. This can hinder the distance 

calculation in which the two dyes are approximated as freely moving. Finally, it is not always 

trivial to infer protein distance restrains from the inter-dye distance restraints. As such this 

method is often most suited for large multi-domain proteins or protein complexes, in which

case, FRET can be used to calculate the relative position of larger biological units. These 

cases are particularly difficult for high-resolution methods such as NMR or X-ray 

crystallography due to the previously mentioned issues of protein flexibility and solubility.

The relative position and orientation of biological units is also particularly difficult for 

computational methods to predict. This is because interactions between these units tend to 

be sparse, often transient or highly flexible, and are therefore weakly conserved compared 

to the structure of the units themselves.

6.2. CASP

The Critical Assessment of Structure Prediction (CASP) is a bi-annual competition that tests 

methods for protein structure prediction in a fully blind manner. The competition has been 

going on since 1994 55 and covers a 3 month period, during which sequences for which the 

structure is about to be experimentally resolved (but may not be due to experimental 

difficulties, in which case the target is cancelled) either by X-ray crystallography, NMR 
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spectroscopy, or, more recently, by high-resolution cryo-EM, is released to the modelling 

community. The registered members of the modelling community then submit models of the 

sequences before any experimental data is publicly available. These models are 

automatically assessed by a battery of model quality evaluation algorithms to identify which 

method produced the model closest to the experimentally determined structure.

The CASP experiments seek to analyze the results of each CASP round to identify 

which methodological developments led to the biggest breakthroughs, and to identify which 

areas of research would be most beneficial to pursue. In order to do so, different CASP 

categories exist to assess the progress and state-of-the-art in different fields. These include 

template-based modelling 56, template-free modelling 57, model quality assessment 58,

protein contact prediction 59, model refinement 60, and ligand binding-site prediction 61.

Additionally, CASP closely collaborates with the Critical Assessment of Predicted 

Interactions (CAPRI), which seeks to assess the state-of-the-art in predicting protein-protein 

interactions through protein-protein docking 62.

Due to the high competitiveness in the field, many structural bio-informatics groups 

keep their developments and findings accessible to the community only as black box online 

servers, in order to maintain their ranking in the CASP competition. While papers are 

generally published for most competing methods, these online servers are often very 

different from the published methods and not available as stand-alone tools. While this has 

been pointed out repeatedly by the community, it is unlikely that this is going to change in 

the future. The high competitiveness, however, has also led to gradual development in the 

field and has served as a good way for fully blind predictions to shine, rather than evaluating 

method performance only in a retrospective manner.

In the publication of TopModel (Chapter 10, Publication II) we showed that on 

CASP datasets from CASP competitions 10, 11, and 12, TopModel outperforms all primary 

predictors, and we show targets from CASP13 on which TopModel produced the second 

best model out of all predictors in the competition.

6.3 TEMPLATE-BASED STRUCTURE PREDICTION

Historically, template-based structure prediction in the form of homology modelling was the 

first type of structure prediction to be developed. Since protein structure is highly conserved, 

modelling the 3D structure of a protein structure from a closely homologous template is 

often trivial. This is because sequence identity between the target sequence and the template 

structure is generally so high that alignment between the two is unambiguous and the 
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alignment thus rarely contains any errors. Furthermore, structural conservation is generally 

so high that model construction often requires little more than copying of atomic backbone 

coordinates, reconstruction of side-chains and energy minimization. Due to the sparse 

population of structure databases, however, this type of modelling is generally very restricted 

in terms of applicability. When sequence identity decreases, the performance of alignment 

programs drops significantly, which makes alignment errors more prone to occur. Severe 

alignment errors often start to appear at around 40% sequence identity between the template 

and target sequence. The twilight zone for template-based structure prediction 63 is at about 

30% sequence identity. When a given template has less than 30% sequence identity to the 

target structure, the structural overlap between model and native structure (the percentage of 

equivalent residue pairs superimposable to less than 3.5 Å C -atom distance) decreases to 

about 60%, showing a large difference between model and native structure 63.

6.3.1 HOMOLOGY DETECTION

The first challenge one encounters in computational structure prediction is homology 

detection. Two proteins are homologous, if they share a common ancestor. To learn from 

evolution, be that in terms of structure or sequence, information from related proteins from 

different organisms is required. The task is therefore to select from a database of sequences

those matches that share a common ancestor with the target protein of interest (which may 

or may not represent experimentally determined structures). This is done by aligning the

target sequence to sequences in a database and the evaluating these alignments in terms of 

similarity to determine, whether the match and the target share common ancestry or not.

Accurate and sensitive alignment of sequences has been a goal in bioinformatics for 

decades and has driven the development of the majority of methods in the field to this day.

Sequence alignment requires an alignment algorithm and a scoring function. The scoring 

function is used by the alignment algorithm to calculate the alignment between the target

sequence and the match in order to optimize the score. Furthermore, it is used to compare 

different database matches to one another so as to select those most likely to be homologous 

to the target sequence 64. Both scoring function and alignment algorithm determine the speed 

and accuracy of the homology search. Some search algorithms may use heuristics to speed 

up calculations or use simple scoring functions to achieve faster database searches at the cost 

of lower accuracy 65-66, while others favor more accurate alignment algorithms and complex 

scoring functions to optimize accuracy at the cost of slow calculation speeds 17, 67.
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6.3.2 SUBSTITUTION MATRICES

The first scoring functions for alignment algorithms were substitution matrices, in which 

similar residues are given a better score if aligned to each other, and where gaps are given a 

penalty. This penalty is usually divided into a penalty for opening a gap and another smaller 

penalty for extending it. However, these methods are heuristics based on trial and error. The 

score for aligning two residues is traditionally defined as the logarithm of the observed 

frequency of substitution of a target residue to a template residue divided by the frequency 

of the template residue, known as the log-odds ratio. Substitution matrices are defined either 

from physiochemical similarity or by multiple sequence alignment analysis. The first widely 

used substitution matrices, the PAM matrices, were developed in the 1970's 68 by calculating 

mutation rates from multiple alignments of sequences from closely related species and 

extrapolating these to longer evolutionary timescales using matrix multiplication. This did 

not perform well when aligning dissimilar sequences, however, leading to the development 

of the BLOSUM matrices by Henikoff and Henikoff 69. The BLOSUM matrices were 

calculated by analyzing blocks of conserved residues across divergent multiple alignments. 

To remove bias from highly similar sequences, the alignments were clustered at a specific 

identity cut-off, and each cluster was weighted when calculating the substitution rates. The 

BLOSUM62 matrix (with a sequence identity cut-off of 62%) is the most widely used 

substitution matrix to date.

6.3.3 PAIRWISE SEQUENCE ALIGNMENT

Pairwise sequence alignment algorithms align a target sequence of length N with a potential 

match of length M. Needleman and Wunsch 70 introduced the dynamic programming 

algorithm, which solves the problem by representing it as finding the least-cost path through 

a cost matrix. The Needleman-Wunsch algorithm produces the optimal alignment given the 

scoring function but has a time and space requirement which is proportional to the product 

of the two sequence lengths O(N·M). An illustration of this algorithm is shown in Figure 4.

The Smith-Watermann algorithm 71 reduces the time complexity by using the observation 

that conserved residues cluster in specific regions of the sequence. It iteratively aligns only

the most similar regions, avoiding the issue of searching the entire N·M cost matrix and 

effectively decomposing it into several smaller matrices located along the diagonal. This is 

referred to as local alignment, as it effectively changes the alignment problem from a global 

to a local one. Different variations of these methodologies have been developed 72 but the 

core principles remain unchanged. Most importantly, these algorithms are highly dependent 
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on the scoring function, and even the faster variants are generally too slow to search through 

very large sequence databases, especially when using complex scoring functions. Therefore, 

heuristics are generally used for sequence matching in database search methods.

Figure 4. Illustration of the Needleman-Wunsch dynamic programming algorithm for pairwise sequence 

alignment. First, a cost matrix, F, is calculated iteratively based on a scoring matrix, M, (in this example the 

BLOSUM62 matrix) and a gap penalty d (in this case -8). For each cell [i,j] in F, the score can be computed 

recursively from the cells [i-1,j-1], [i-1,j] and [i,j-1], using the formula max( F[i-1,j-1]+M(xi,yj), F[i-1,j]-d ,

F[i,j-1]-d ). For each cell, the pointer (indicated as arrows) to which of the three cells gave the maximum value 

is stored. The uppermost row and leftmost column are filled by summing up the gap penalty d. Second, the 

optimal alignment is calculated as the least-cost path through the matrix following the pointers from the lower 

right and back through the matrix (indicated by red arrows). The resulting alignment is shown underneath.

The most famous heuristic for pairwise alignment used for database searches is the 

word-search heuristic used in the BLAST 65 and FASTA 66 algorithms. In this heuristic, the 

target sequence is cut into small fragments called words, for which exact matches are found

in a potential match sequence. The relative positions of the matched words in the target are 

then compared to the positions in the match. Only when the relative positions of the words 

are comparable between the two, are regular algorithms used, such as the Smith-Watermann 

or Needleman-Wunch algorithms. This allows these heuristic methods to disregard highly 

dissimilar sequences with few or no matching words, which increases database search speeds 
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by orders of magnitude. However, they cannot guarantee that all true hits are found

especially for distantly related sequences where only few words are completely conserved.

6.3.4 MULTIPLE SEQUENCE ALIGNMENT

Once a database search has returned a list of related sequences, these can be aligned to form 

a multiple sequence alignment (MSA) that contains more information about the target

sequence than any single match does on its own. The process of calculating an MSA is a 

computationally expensive NP-complete problem unless heuristics are used, of which three 

variations are common:

Progressive methods use pairwise alignments (such as the ones generated from a 

database search) to construct a phylogenetic tree, which is used to first combine similar 

sequences into a larger alignment, to which more dissimilar sequences are then added. This 

is computationally efficient, but it can introduce pairwise alignment errors that persist in the 

final alignment.

Iterative methods are the most common and seek to minimize pairwise alignment 

errors by iteratively removing subsets of sequences from the alignment and re-aligning them 

to the alignment from which they were removed, effectively refining the MSA. Examples of 

methods that use the progressive method with iterative refinement include ClustalW 73,

MAFFT 74, and TCOFFEE 75. However, these methods are not guaranteed to remove 

pairwise alignment errors.

To remedy the issue of persisting pairwise alignment errors, motif-search methods 

try to identify highly conserved regions in the initial MSA. The initial MSA may be 

generated by either a progressive alignment method or a progressive alignment with iterative 

refinement. These conserved regions are then aligned with global methods (e.g. Needleman-

Wunch) and the variable regions in between the conserved regions are aligned with local 

methods (e.g. Smith-Watermann). Examples of motif-search methods include FORMATT
76 and 3DCOMB 77.

6.3.5 IMPROVED HOMOLOGY SEARCH

With the ability to generate a large MSA for a target sequence, information such as the 

amino-acid frequency and gap frequency for each position in the target can be calculated. 

Such information, called profile information, prompted the development of sequence-profile 
78 and profile-profile 79-80 alignment methods, which match sequence profiles rather than 

sequences themselves. This allows more distantly related homologues to be detected because 
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more information is available in the sequence profile than in any single member of the MSA 

itself.

With the rapid growth of sequence databases and the observations that different 

positions in the protein sequence mutate differently, it became possible to construct position 

specific scoring matrices (PSSMs) 81-82. Rather than using a single matrix like BLOSUM62 

for the entire sequence, these methods calculate the substitution matrix for every position in 

the target sequence-based on a MSA of homologous sequences found for example from an 

initial BLAST search. This encodes more information than the profile, as it includes not only 

the residue type frequency at each position in the target sequence, but also every binary 

mutation frequency (mutation of one residue type to another or to a gap).

With the development of PSSMs came the idea of iterated database searching. In this 

method an initial search is used to construct a PSSM, which is then used to repeat the 

database search to find more distantly related sequences. The newly identified sequences are 

then used for updating the PSSM, and the updated PSSM is used for another round of 

searching. In the first iteration of such a search, the PSSM of each position is generally 

approximated by the BLOSUM62 matrix. This is the essence of Position Specific Iterated 

BLAST (PSI-BLAST) 65, which is one of the most widely used bioinformatics tools to date.

PSI-BLAST searches, however, still rely on the initial search to return a significant 

number of good matches in order to construct a reliable PSSM. This means that the initial 

standard matrices (usually BLOSUM62) has significant impact on which sequences are 

detected. To alleviate this issue, context specific matrices were developed based on multiple 

alignments of proteins with known structure, to map the relationship between physical 

features (e.g. secondary structure and solvent accessibility) and mutation probabilities 83. By 

matching a sliding window (±13 residues) of the target sequence to a set of pre-computed 

context specific substitution matrices, Context Specific Iterated BLAST (CSI-BLAST) 84 is 

therefore significantly more sensitive than PSI-BLAST.

Reverse Position Specific BLAST (RPS-BLAST) reverses this search methodology 

by searching through a database of PSSMs to calculate how likely it is for the query sequence 

to be generated by that PSSM. The latest flavor of BLAST is the development of the Domain

Enhanced Lookup Time-Accelerated BLAST (DELTA-BLAST) 64. DELTA-BLAST first 

uses RSP-BLAST to find highly scoring pre-calculated PSSMs from the Conserved Domain 

Database (CDD) 85. The identified matches are then used to replace the initial PSSM for the 

matched positions. In this way, the information of the initial PSSM used for searching the 
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sequence database is more specific to the target, rather than simply being pseudo-counts 

extrapolated from the BLOSUM matrix. Because the iterated searches depend largely on 

correct matches being found in the first iteration, this leads to greatly improved specificity 

and sensitivity of DELTA-BLAST compared to BLAST, PSI-BLAST and CSI-BLAST.

6.3.6 HIDDEN MARKOV MODELS

A major advancement in the field of sequence searching is to extend the methodology of 

PSSMs and use MSAs to encode probabilistic models known as profile Hidden Markov 

Models (profile HMMs, or just HMMs for short) 86-90. An encoded profile HMM encodes

the insertion, deletion, and mutational probabilities at each position in the target sequence

just like a PSSM. However, HMMs also models the transitional probabilities between each 

residue and the next residue in the sequence, i.e. the probability that a residue is proceeded 

by a residue of a specific residue type or a gap. HMMs therefore carry more information 

than PSSMs and, thus, generally perform better for detecting distant homologues.

Once a HMM has been encoded, usually from a MSA, the probability that it would 

produce a specific sequence can be calculated very quickly, and a HMM can as such be used 

to rapidly search databases of sequences to identify those likely to match the query, without 

the need for heuristics such as word-searching. This makes HMM searches more sensitive 

especially for identifying matches with low sequence identities. The initial HMM is 

generally initialized from pseudo-counts extrapolated from standard matrices such 

BLOSUM62. The model is then updated with each search over the database similar to 

iterated BLAST searches. Because HMMs are probabilistic models, they allow for explicit 

calculation of the probability, that a sequence is a match, which eliminates the need for cut-

offs to the expectation value, which is based on database composition. HMMs also enable 

very fast comparison between two models, which makes for much more sensitive homology 

search than comparing a sequence to an HMM. Additionally, once an HMM is matched, all 

sequences that match it can be matched as well. This allows for more rapid database searches 

since the HMM’s essentially function as clusters of sequences and only if a cluster has been 

found to match is it required to match each sequence in that cluster 91.

Finally, HMMs can be used to rapidly calculate accurate multiple alignments of 

many sequences by aligning each sequence to the HMM. This avoids the issue of iterated 

alignment refinement to some degree and leads to highly accurate MSAs. Thus, both 

sequence searching and multiple alignment can be done at speeds much faster than with 

word-search heuristics and often with better accuracy. Since HMMs can be used for scoring, 
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alignment and search function, methods such as HMMER3 87, SAM 90, HHBlits 88 and 

HHSearch 92 are some of the most powerful sequence-based search methods to this day. 

However, the most sensitive searches, which use HMM-HMM comparisons, requires 

HMMs to be pre-calculated for each protein domain family in the sequence database, which 

takes significant computational resources. An illustration of a profile HMM can be seen in 

Figure 5.

Figure 5: Schematic of a profile HMM. The profile HMM is encoded from a MSA. Match states (Mi) encode 

the mutational probability of each of the columns in the MSA similarly to the way a PSSM encodes the 

mutational probability of each position in the target sequence. Insertion states (Ii) encode the probability of 

insertion of each of the 20 residue types in the MSA and therefore model the highly variable regions of the 

MSA such as loops. Deletion states (Di) do not match any residues, however, they make it possible to jump 

across columns in the MSA and thus model the deletion of residues with position specific probabilities. This 

is more accurate than, for example, the affine gap penalties commonly used with substitution matrices. Because 

the HMM is a sequential model, it conveys not only the estimated mutational probabilities (e.g., the probability 

of observing an Alanine residue at position x mutating to a Tyrosine), but also the transitional probabilities 

(e.g., the probability of observing the aforementioned mutation, given the mutational probabilities of the 

previous residue). This makes profile HMMs the most sophisticated probabilistic models of MSAs and, 

therefore, more efficient tools for detecting distantly related homologous sequences.
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6.4 THREADING

So far, the methodologies described focuses on matching a target sequence against a 

database to retrieve and align homologous sequences. These methods are applicable to both 

sequence and structure databases, since the structure databases simply contain sequences of 

protein structures. However, the matching of a sequence against a structure is more difficult,

mainly because structure databases such as the PDB 93 are sparsely populated compared to 

sequence databases such as UniprotKB 94. This means that, even if a related structure exists,

it is far more likely to be distantly related to the target sequence. This in turn makes a false 

positive match (a template matched by pairwise alignment, which has a different 3D fold 

than the target protein), much more likely to occur. Threading algorithms seek to circumvent 

these issues by using a plethora of methods to improve the scoring function used for the 

alignment between the target sequence and the template. While methodologies such as 

FASTA 66, DELTA-BLAST 64, SAMT2K 90, HHBlits 88, and FFAS-03 95 could therefore be 

considered threading algorithms, in that they perform the same task of identifying potential 

templates in a structure database, they do so purely by sequence matching.

In the next sections, discussion will focus on methods that are more complex, and

use advanced scoring functions for aligning a target sequence to a structure. This is done in 

three steps: First, the target sequence is used to search a sequence database for matching 

sequences and generate a MSA using one or more of the previously described methods.

Second, the MSA is used to predict physical features of the target sequence, such as 

secondary structure, solvent accessibility or residue dihedral angles. Finally, these features 

are used as additional scoring terms for searching through a structural database to find 

matching structures with similar features. This three-step methodology is shared between all 

advanced threading algorithms and takes considerably longer than any of the aforementioned 

methods due to the complex scoring functions.

6.4.1 STRUCTURAL FEATURES

Over the years, the increased availability of sequence data and the maturation of machine 

learning for analysis and prediction laid the foundation for extending the alignment scoring 

function beyond simply matching sequences. Since the 3D structure of a protein is far more 

conserved than its sequence, matching linear features improves the scoring and thus enable 

the detection of far more distantly related structural homologues. Several such linear 

structural features have been the target of prediction over the years, most notably secondary 

structure 96-102, solvent accessibility 96-97, 99, 101-105, residue depth 106, backbone dihedral 
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angles 101-102, 107, number of contacting residues 17, half-sphere exposure 101-103, and residue 

disorder 108. Threading algorithms such as pGenThreader 80, pDomThreader 80, HHSearch
92, LOMETS 17, MUSTER 107, RAPTORX 67 and SPARKX 109 all use one or more of these 

features to increase the likelihood of selecting good templates and produce high quality 

pairwise alignments. This comes at the cost of slower search speeds due to the more costly 

scoring functions.

Additionally, probabilistic modelling 67, 109, depth-dependent alignment of structure 

fragments 110, multiple template and structure alignment 111, normalized Z-scores 79, 105, and 

sequence-based solvation potentials 80 have been employed to increase performance of 

threading alignments by including more information into the scoring function. The most 

expensive approach to threading 112 uses the construction of crude models of every alignment 

for every potential template and evaluates the quality based on a 3D energy function or 

knowledge-based potential, but this is generally far too computationally expensive to be 

feasible, especially for larger proteins and databases.

In TopModel (Chapter 10, Publication II), FASTA, DELTA-BLAST, HMMER3, 

HHBlits, HHSearch, FFAS03, SAMT2K, pGenThreader, pDomThreader, LOMETS, 

MUSTER, RAPTORX, and SPARKX are used as primary threading algorithms. This is 

aiming to provide multiple diverse threading algorithms for template detection.

6.4.2 META-SERVERS

Meta-approaches have proven to be one of the major advances in template detection and 

structure prediction 113, as evident by the consistent high ranking of the Zhang meta-server 
17 in the blind Critical Assessment of Protein Structure Prediction (CASP) experiments. The 

meta-server methodology produces structure predictions using information from multiple 

different primary predictors 17, 25 and either re-ranks or combines their output to produce 

better predictions than any of the primary predictors.

With the large diversity of methods for threading, it is not surprising that meta-

servers, which employ multiple different methods, have been shown to outperform single-

method approaches. Meta-servers have several advantages: First, templates that are missed 

by one method due to differences in database composition, alignment methodology or 

scoring function, are less likely to be missed by all methods, increasing the chances of a 

template with the right fold to be represented in the ensemble of templates. Second, the use 

of multiple threading alignments provides different pairwise alignments for those templates 
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that were identified by multiple threaders. This allows for calculation of a consensus 

alignment, which can be constructed to be better than its input alignments.

6.4.3 CONSENSUS

Most meta-servers work based on consensus between different algorithms. The traditional 

consensus is based on majority voting at either the template selection or model building

stage. Majority voting at the template stage could be to select templates based on their 

similarity to other identified templates, effectively selecting the fold that was found most 

frequently by most primary predictors. This was implemented in the initial versions of the

LOMETS/I-TASSER servers. An example of majority voting at the model building stage 

could be to build a library of residue contacts from an initial model ensemble and remove

contacts that contradict the majority when using those contacts to construct models. This 

method is used in the most recent versions of the LOMETS/I-TASSER servers 24. The 

MULTICOM 25 server generates consensus models during both initial model construction

and model refinement. In model construction, multi-template consensus alignments are used, 

and during refinement, models are clustered and combined with the cluster centroid, either 

at the global or at the local level. Both LOMETS, I-TASSER and MULTICOM use majority 

voting, since they converge the results to the fold generated most often across different 

algorithms. In many cases, especially ones where most methods produce correct folds,

majority voting will correct errors and improve the overall modelling result.

However, the problem of majority voting in consensus methods is that different 

programs have been developed together, building on ideas and methodology from each 

other, and are as such susceptible to the same pitfalls. In other words, if a difficult target is 

prone to a particular alignment error, many threading programs are likely to make the same 

error. Since the erroneous alignment is in the majority, this in turn means that consensus 

methods based on majority voting may discard a correct alignment and converge on the 

wrong fold.

In TopModel (Chapter 10, Publication II) top-down consensus is used instead of 

majority voting to filter out false positives based on structural similarity to the best template 

as identified by a series of deep neural networks. This proved to be very effective, especially 

for targets where the majority of the identified templates are false positives, since it makes 

it possible to go against the majority in cases where primary predictors converge on the 

wrong fold.
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6.5 PROTEIN STRUCTURE MODELLING

6.5.1 STRUCTURAL ALIGNMENT

As structural databases of proteins grew, although at a slower pace than sequence databases, 

it became apparent that protein structure is much more conserved than protein sequences. 

Thus to determine the relationship between two protein structures, algorithms were designed 

to align these, and infer residue correspondence based on spatial proximity rather than 

physiochemical residue similarity. Structural alignments are generally of higher quality than 

purely sequence-based alignments, and when multiple sequences with known structures are

found as matches to a target, aligning these structures can improve the correctness of the 

alignment 75. The difficulties in structural alignment arise mainly from the fact that proteins 

are not rigid but can adopt many conformations. As such, while the fold of two structures 

might be the same, they may have different conformations that makes structural alignment 

difficult. Different methods have been employed to overcome these difficulties, ranging 

from the combination of structural alignments for rigid bodies and sequence alignment for 

flexible parts 76, the combination of structural alignment algorithms with evolutionary 

sequence data 114, the alignment of structure fragments 115 or consensus between different 

structural alignment methods 75. TopAligner (Chapter 10, Publication II) uses all the 

structure- and sequence-based multiple alignment methods mentioned here to generate an 

ensemble of different multi-template alignments from which to build models.

6.5.2 MODEL CONSTRUCTION

The construction of a 3D model of the protein is not a trivial problem to solve, as three major 

challenges has to be overcome: First, the method should construct models, which are close 

to the native structure. As templates are often used as input, however, model-building

software often tends to construct models that are more similar to the template(s) than to the 

native structure. Second, despite the improvement in threading algorithms, the pairwise 

alignment between target and template may still contain errors. Many model-building

algorithms are not able to correct these errors and these will therefore persist in the model.

Finally, the construction of models requires a scoring function to guide and select for the 

best model. As with threading, however, the more sophisticated the scoring function, the 

more computationally expensive the modelling becomes. The four most commonly used

methods for model construction will be discussed in the following four chapters and 

illustrated in Figure 6.
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6.5.3 RESTRAINT-BASED FOLDING

In restraint-based folding, implemented in popular software such as MODELLER 116,

distance restraints are calculated for inter-residue distances in the target sequence. These 

distances are based on distances between corresponding residues in the template, with the 

mapping between template and target sequence being given by the input alignment. Starting 

from a pseudo-random atom positioning based on their original positions in the template;

atoms are then moved randomly until the highest number of restraints are fulfilled. There are 

several advantages to this methodology, most notably the easy inclusion of restraints from 

different sources. These include geometric restraints based on stereochemistry to guide side-

chain arrangement, as well as information from multiple template structures or from 

predicted features (Chapter 6.4.1 and 6.7). The main disadvantage of this methodology is 

that it handles modelling of parts of the sequence without template very poorly, especially if 

these parts adopt secondary structure other than small loops. Furthermore, it is unable to 

repair alignment errors because the mapping between the target sequence and the template 

structure (i.e. the alignment) is fixed. Restraint-based folding is therefore only generally 

applicable for template-based structure prediction, and is favored for easy targets with few 

or no alignment errors. Finally, it tends to construct models that are close to the input 

templates, and as such performs best for target sequences with highly similar templates.

Therefore, the modelling of targets for which the template structures are distant homologues

results in lower performance by restraint-based methods. This is mainly a consequence of 

alignment errors, and the fact that templates are more likely to not fit the native structure.

An outline of a restraint-based model construction workflow is shown in Figure 6 A.

6.5.4 FRAGMENT ASSEMBLY

A popular model construction method is fragment assembly, most notably in the form of the 

ROSETTA software suite 117. In fragment assembly, the input sequence is first used to 

generate a library of fragments by cutting the input sequence into overlapping pieces of 

different sizes, generally 3 and 7 residues long. These pieces are then matched up against a 

database of residue fragments of the same size. This fragment database is extracted from a 

large set of protein structures and clustered to obtain a reasonably small set of representative 

fragments. The scoring function that performs this match considers structural (as described 

previously) as well as residue similarity when performing the fragment selection. However, 

since the fragments are generally small (3 and 9 residues usually), it is difficult to obtain a 

single significant match. In other words, there is a high chance of getting a random match 
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due to the short fragment size. Therefore, multiple high scoring matches are kept for each 

fragment of the target sequence, in the hope that one of them has the right conformation.

Once the fragment library is generated, different conformations of the protein are

sampled by exchanging the conformation of randomly selected segments with fragments 

from the library using Monte Carlo sampling, and evaluating if the fragment exchange 

should be accepted based on an energy function. To speed up this sampling process, two 

different energy functions are used in ROSETTA, a coarse-grained energy function in which 

side-chains are represented as a single pseudo-atom, and an all-atom energy function. 

Initially only backbone conformations are sampled using the coarse-grained energy function 

to generate a large number of diverse initial structures known as decoys. Then, a subset of 

high scoring decoys according to the coarse-grained energy function are reconstructed in 

atomic detail and re-sampled using the all-atom energy function.

The main advantage of fragment assembly is that it is a highly flexible method. The input 

fragments can, for example, come from detected homologues. This speeds up the 

convergence since the fragments match homologous structures. Additionally, because no 

full-structure fragments are used, the conformations of fragment assembly models can often

end up closer to the native structure than the input templates. This also means that fragment 

assembly can be used both for structures with detected templates and for structures without 

known templates. Because ab-initio fragments (with no global homology to the native 

structure) are used, loops are generally of better quality than from restraint-based methods 

such as MODELLER. Furthermore, the scoring function used to select fragments and to 

score decoys can be modified to favor agreement with predicted features (Chapter 6.4.1 

and 6.7). The disadvantage of fragment assembly is that the extensive Monte Carlo sampling 

is extremely computationally demanding, and since the fragments are short, long-range

interactions between residues far apart in sequence but close in the structure cannot be 

captured by the assembly method to narrow down the search space. In other words, even 

though long-range information can change the energy landscape of folding, the amount of 

sampling required is still very large. Convergence can therefore take a very long time. This 

is especially true for large structures, since tens of thousands to hundreds of thousands of 

models have to be generated. An outline of a fragment assembly model construction 

workflow is shown in Figure 6 B.
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6.5.5 CONTINUOUS ASSEMBLY

Contrary to fragment assembly, which performs global moves where small fragments are 

replaced across the entire sequence, continuous assembly programs such as I-TASSER

assemble large fragments identified by threading. I-TASSER (Iterated Threading ASSEmbly 

Refinement) 24, 118 uses replica-exchange Monte Carlo sampling to assemble larger 

continuous pieces of the target sequence. These pieces are built from restraint-based models 

from templates identified by threading alignments. This is done by sampling regions without 

template on a lattice and allowing the rigid template-based pieces to move off-lattice. In the 

first iteration of I-TASSER, one simulation is carried out for each template using consensus 

restraints extracted from all alignments of all templates to generate initial models. The initial 

models from this simulation are then clustered, and new restraints are extracted from the 

largest cluster centroid as well as from templates that structurally align to the centroid. The 

new restraints are added to the initial restraints and used for a second round of structure re-

assembly, starting from the cluster centroid. This allows for alignment errors to be rectified 

and for the fold to be refined, after which full atomic-detail structures are constructed and 

energy-minimized.

The advantages of continuous assembly is that it is much faster than fragment 

assembly, since the fragments identified by threading are both much larger and much more 

likely to have the right conformation, which makes the sampling faster and the accuracy 

high. However, it comes with the drawback that sampling outside of the conformational 

space defined by the threading results is limited compared to fragment assembly, and it is,

therefore, limited in terms of flexibility of which threading results can be used. To 

compensate for this drawback, the most recent version of the I-TASSER server also 

generates models from a more traditional fragment assembly method QUARK 118 to improve 

performance for ab initio modelling. Another disadvantage that is remedied by the addition 

of QUARK is that traditionally I-TASSER was unable to correct mistakes in threading if 

these mistakes were made by the majority of threaders, since the conformational variability 

is highly biased by the initial template threading results. Inclusion of ab initio models from 

QUARK partially remedies this template-based bias. An outline of a continuous assembly 

model construction workflow is shown in Figure 6 C.

6.5.6 CONTACT-BASED FOLDING

Contact-based folding is fundamentally different from the previous methods in that it 

disregards template structures completely. Unlike the previous methods, which obtain
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structural information either in the form of highly specific distance restraints from templates

(MODELLER), specific structure pieces from threading results (I-TASSER), or less specific 

structural information from small fragments (ROSETTA), contact-based folding uses no 

structural information at all.

The main idea behind contact-based folding is that information about residue-residue 

contacts can be obtained directly from a large MSA, and that given such information the 

protein can be folded. How such information is obtained from the MSA will be discussed in 

chapter 6.7. A classic example of contact-based folding is the CONFOLD method 119. Since 

the information from contact predictions is historically prone to high false positive rates,

contact-based folding is performed in two steps. In the first step, a fully extended 

conformation of the protein backbone is moved in order to fulfill residue-residue contacts in 

a manner similar to MODELLER. MODELLER, however, is centered on distance restraints 

and starts from an input template conformation, whereas CONFOLD is centered on contact 

restraints and starts from an extended conformation. Therefore, CNS 37 is used as the folding 

engine, as it starts from an extended conformation and is built around contacts initially 

developed for resolving structures from short-range NOE restraints from NMR experiments.

In the second step, each contact is re-weighted according to how often it was fulfilled, and

used for a second round of folding. Additionally, different weights are placed on secondary 

structure restraints and distance restraints to provide models that are more diverse. This 

methodology allows for false positive restraints that disagree with the majority of restraints 

to be down-weighted and prevents them from distorting the final fold. An outline of a 

contact-based model construction workflow is shown in Figure 6 D.
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Figure 6. Outlines of different model construction workflows. The detailed description of each type of 

folding is described in the previous sections. A. Restraint-based folding (e.g. with Modeller) starts with the 

identification and selection of templates via threading, followed by the alignment between the target sequence 

and the selected templates. After alignment, the coordinates of the template(s) are copied as starting points and 

moved randomly until the distance restraints extracted from the templates using the alignment are fulfilled.

Finally, loops with no structure are refined and the final model is selected from the resulting model ensemble. 

B. Fragment Assembly (e.g. with ROSETTA) starts with predicting structure features and generating a 

fragment library using profile-profile alignment between the target sequence and the fragment library, while 

matching predicted structure features (Chapter 6.4.1 and 6.7). After generating the fragment library, Monte 

Carlo (MC) sampling is used with a coarse-grain energy function to replace dihedral angels in the target 

sequence with those of the fragments from the library. The lowest energy decoy is then refined by adding side-

chains and using MC with an all-atom energy function. C. Continuous assembly (e.g. with iTASSER) starts 

with threading and extraction of high-scoring template fragments identified by the threading, which are used 

to generate C -atom traces of parts of the input sequence. Distance restraints from the fragments are used with 

a decoy potential to assemble the fragments on a lattice to generate initial decoy structures. The initial decoys 

are clustered and restraints from the largest cluster are combined with restraints from templates that align well 

to the centroid of the largest cluster to generate refined decoys by re-assembly of the fragments. Finally, the 

lowest energy decoy is selected and the full atom model constructed and refined using Replica Exchange Monte 

Carlo simulations (REMO). D Contact-based folding (e.g. with CONFOLD) starts with the prediction of 

secondary structure and a residue contact map. Then, a fully extended peptide is folded using simulated 

annealing with CNS, to fulfil secondary structure and residue contacts. After initial folding, contacts are filtered 

to remove those that disagree with the majority, and the folding is repeated using the reduced set of contacts.

6.6 MODEL QUALITY AND REFINEMENT

Once an ensemble of models, also known as decoys, has been produced for the query protein, 

a common approach is to predict which models are most likely to be correct in order to select 

these for model refinement 120-121. The types of errors that typically appear in protein models 

span a wide range. At the one end of the spectrum are template selection errors, in which the 

selected templates do not share the same fold as the target sequence. In these cases, the entire

model may have a wrong fold or topology. Even if the models do share the same fold as the 
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native structure, alignment errors may also cause misfolding of local regions. Misalignment 

of -sheets and wrong rotations of -helices are the more severe types of errors while flexible 

loops generally suffer less from misalignment. At the other end of the spectrum, high-quality 

models with little or no alignment errors may still suffer from errors in terms of atomic 

clashes, wrong loop or side-chain conformations, and poor hydrogen bonding.

6.6.1 MODEL QUALITY ASSESSMENT

The prediction of model quality is undertaken by so-called Model Quality Assessment 

Programs (MQAPs). Because the potential errors span a wide range, different MQAPs tend 

to focus on different types of errors. Template selection errors are for example often captured 

by evaluating the agreement between predicted features (Chapter 6.4.1 and 6.7), and

alignment errors are generally identified by poor energetics from knowledge- or physics-

based potentials. Errors in loop and side-chain conformations or hydrogen bonding are often 

captured best by methods that evaluate the stereochemistry of the protein backbone and side-

chains as well as atom clashes 122.

MQAPs generally tend to focus on the global quality of the protein, assigning a single 

score for each model in an ensemble of models in order to select one with the least amount 

of errors. Some methods, however, also predict the local model quality, aiming to identify 

both how much error is in a model and where in the model these errors occur. Prediction of 

local model quality is useful especially if multiple models with errors in different structural 

regions are to be combined.

A key difference between MQAPs is their target value. The target value is a measure 

of protein error or quality that can be measured when comparing the model to the native 

structure, but has to be predicted when the native structure is unknown. The different types 

of model quality scores fall into two over-all categories: Superposition-dependent scores and 

superposition-independent scores. Superposition-dependent scores are calculated by 

aligning the model to the native structure and evaluating a score depending on the distance 

between corresponding residues after alignment. Scores that fall into this category include 

the LG-Score 123, S-Score 124, TM-Score 125, GDT-TS Score 126, or MaxSub-Score 127.

Superposition-independent scores, instead, measure the consistency of intra-molecular 

distances and evaluates the structural similarity based on internal coordinates. This has the 

advantage that no structural alignment is required. This makes these scores less susceptible 

to being distorted by the structural alignment process, which for example produces

artificially high errors for multi-domain proteins even if the domains themselves are 
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correctly folded, simply because the relative orientation of the domains differ between model 

and native structure. Scores that fall into this category include the Q-Score 128, lDDT score
129 and CAD score 130.

As with threading, meta-methods that use multiple primary MQAPs to predict errors 

in protein structures have been shown to be one of the major advances in model quality 

estimation and model selection for refinement 122. This is because the focus on multiple 

different error types and target scores provides both a higher accuracy and a better 

consistency for different model quality ranges.

In the development of TopScore (Chapter 9, Publication I) I used an ensemble of 

15 different primary MQAPs and combined their outputs using a two-stage deep neural 

network. By training the method on six diverse training datasets totaling over 1.5×105

models and 2.3×107 residues I obtained a much more accurate and consistent performance 

than any of the primary predictors.

6.6.2 MODEL REFINEMENT

Model Refinement has the goal of driving the best model or ensemble of models towards the 

global energy minima of the protein, essentially seeking to obtain a model more similar to a 

crystal structure. Model refinement generally falls into one of two classes, the first is rooted 

in molecular dynamics simulations (MD-based refinement), and the second is based on 

model fragmenting and/or averaging (Fragment-based refinement).

MD-based refinement 131-132 has seen marginal success for medium quality starting 

structures due to the inability to re-fold the starting structure. This is because MD-based 

refinement has to balance sampling and energy minimization in order to both be able to 

explore the energetic landscape, find the global energy minimum, and be able to stay in the 

global energy minimum once found. In other words, if the starting model is of very high 

model quality, MD-based refinement tends to over-sample the conformations and drives the 

model into nearby local energy minima, deteriorating the model quality. On the other hand, 

for starting models with very poor model quality, the energy landscape is too rugged and the 

sampling too weak to overcome the energy barriers involved in local refolding 133.

Fragment-based model refinement has had somewhat more success, especially in 

terms of refining models of poor quality 134. The main reason for this is that fragment-based

model refinement can re-fold parts of the structure and, therefore, break bonds that lock the 

protein into incorrect conformations. This is done using Monte Carlo sampling in the 
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ROSETTA refinement protocol, for example 134. In this method, fragments of the structure 

are randomly replaced with new fragments sampled from an ensemble of decoy structures

generated by sampling conformations of the input structure. This model ensemble is then

subjected to a genetic algorithm, which iteratively refines the ensemble. In this algorithm, 

improved model ensembles are generated by combining low energy models (cross breeding), 

replacing fragments in a low energy model (mutation), or keeping the best low energy 

models from the previous ensemble (elitism). By consecutively applying this genetic 

algorithm until convergence, the initial model can be significantly improved towards models 

of low energy, corresponding to models close to the native structure.

In TopModel, refinement is performed by TopRefiner (Chapter 10, Publication II),

in which an ensemble of models is scored with TopScore (Chapter 9, Publication I) to 

identify regions with errors. These regions are then removed and the remaining pieces are 

used to construct a refined model. Repeating this process proved to significantly improve 

model quality.

6.7 CONTACT PREDICTION

In previous sections it was described how the prediction of protein features (Chapter 6.4.1) 

can improve the results of threading and model quality assessment. Residue-residue contacts, 

or just contacts for short, have had such a big impact on structure prediction that it is 

worthwhile to discuss it in a chapter of its own 59. Unlike linear 1D features such as 

secondary structure, residue contacts are 2D, and thus, every residue pair in the target 

sequence has a value that needs to be predicted. This increase in dimensionality makes 

contacts more informative, for example, when used as scoring terms for threading 135, but 

also makes them more expensive to predict.

Accurate ab initio prediction of residue-residue contacts is one of the major 

breakthroughs in the field of ab initio protein structure prediction. In ab initio prediction the 

structure of the protein is determined without the use of any structural information 59. The 

fundamental basis for the prediction of contacts is the concept of residue co-evolution. Co-

evolution is the process, in which the mutation of a residue in a protein leads to a strong bias 

in which types of mutations proximal residues can adapt if the function and/or stability of 

the protein are to be maintained. This mutation bias can be detected in large sequence 

alignments using statistical methods such as direct coupling analysis (DCA) or mutual 

information (MI) analysis 136-139, often coupled with advanced machine learning techniques
15, 140-142, to provide information about the spatial proximity of residue pairs. Such 
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information can subsequently be used in down-stream ab initio folding simulations with 

programs such as ROSETTA 117 or CONFOLD 119 to reduce the conformational search space 

and drive the folding process towards the native state. Other uses of contact prediction 

include scoring terms for protein model quality assessment 143, contact-based template 

selection 144, and protein threading 135.

The benefits of residue-residue contact prediction have resulted in a large number of 

methods being developed in recent years 15, 136-142, 145-151. One of the most promising 

advances in contact prediction is the use of deep neural networks, traditionally developed 

for image recognition 140. Two slightly different approaches have been employed, in which 

all contacts in the contact map are either predicted at once 140, 142, 148, 151, or in which a 

receptive field (i.e. a 2D sliding window) scans across the contact map predicting each 

residue according to the local information in the map around it 150. The latter has also been 

used for contact prediction with deep random forests 149. Predicting all contacts at once is 

fast and memory efficient during training and evaluation, and allows for modelling of large 

and complex contact patterns potentially spanning the entire protein. However, it requires 

vast amounts of training data, as each protein is considered one sample. This can limit its 

ability to generalize to contact patterns not seen during training, especially for very sparse 

contact maps generated from small alignments. On the other hand, when using a receptive

field, each residue pair is one sample, making it slow, memory demanding, and limited in its 

ability to explicitly model contact patterns larger than the receptive field size. This limitation 

however, can improve the models ability to generalize to contact patterns not seen during 

training, and directly prevents over-training, since no whole-protein pattern is seen by the 

network.

The accurate prediction of residue-residue contacts and residue-residue distances 

using deep neural networks has led to a revolution in protein ab initio folding 59. This 

revolution is founded on the ability to explicitly predict long-range interactions, i.e., those 

between residues far apart in the target sequence. This improves conformational sampling 

and allows contact-based methods such as CONFOLD to compete with traditional fragment-

based assembly methods such as ROSETTA at a fraction of the computational cost.

6.8. MACHINE LEARNING

Machine learning refers to a number of different techniques which, once trained on a dataset,

can convert a set of inputs (features) to an output (prediction) either linearly, e.g. classical 

curve fitting, or non-linearly. It can be thought of as a general-purpose fitting methodology, 
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which can be used to make prospective predictions. Over all, while machine learning is a 

very broad topic that cannot be explored in depth in this chapter, it can be broadly 

categorized into three main areas of research: Random Forests (RF), Support Vector 

Machines (SVMs) and Deep Neural Networks (DNNs).

SVMs are non-linear classifiers that map the input feature vector into a high-

dimensional space and use a hyperplane as a separator for classification by maximizing the 

distance of data points with different labels to the hyperplane. The data is mapped using a 

kernel function to keep computational load manageable, and to ensure that the dot product 

between two vectors can be computed easily. The hyperplane is then calculated as the set of 

orthogonal vectors that define the plane.

RFs are a generalization of decision trees and are therefore greedy classification 

algorithms. They decide binary split points for the input features to generate decision trees 

in which the predicted labels are on each of the leaf nodes. Multiple trees are made (hence 

the forest), and bootstrapping and random feature subsets are used for each tree to prevent 

the overfitting on the training data. The benefits of RFs are that they are invariant to 

normalization and type of input data and as such are applicable to many types of problems,

especially ones in which the input features are highly heterogeneous.

Both RFs 152-155 and SVMs 146, 156-158 have seen widespread use in bio-informatics. 

They do however, come with the drawback that for highly complex tasks they do not scale 

well. Both types of models scale with the amount of training data and the complexity of the 

task. For SVMs, the dimensionality of the hyperplane scales with the square of the number 

of training data points and can become so high that the evaluation on new data points 

becomes exceedingly slow. Similarly, for RFs, the trees become very large, and the forest 

size therefore has to be increased to prevent over-fitting, which in turn increases the model 

size further. Although the evaluation of the RF model is generally fast, the amount of 

memory required for storing the forest becomes a limiting factor. The practical limits of 

memory and runtime therefore means that for complex tasks with large amounts of data, 

such as for example protein contact prediction, RFs and SVMs have poor performance 

compared to methods such as DNNs, in which the model size remains fixed for a given task, 

irrespective of the complexity or amount of training data 142.

Recently, DNNs have been the most popular machine learning technique due to their 

flexibility, high performance and fast compact models. Furthermore the increase in chip 
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speed has enabled more complex models to be used 159. For these reasons, DNNs are used 

extensively throughout TopSuite.

6.8.1 DEEP NEURAL NETWORKS

Deep Neural Networks (DNNs), as the name suggests, are a class of algorithms that were 

inspired by the connection of neurons in the brain. Each neuron in a DNN takes a set of 

values as an input (analogous to a brain neuron receiving a signal from multiple other 

neurons), processes that input by calculating a weighted sum, passes that sum through a so-

called activation function, and sends the new transformed signal to one or more other 

neurons. During training, the connections between the neurons are initially given random 

weights, and these weights are progressively updated as the network is trained on more and 

more data. This training is done using the backpropagation algorithm, which calculates the 

signal gradient with respect to a loss function. The loss function is defined according to the 

target value. A simple loss function could for example be the difference between the 

predicted and true value. The backpropagation algorithm adjusts the weights of the network 

such, that the network with the adjusted weights give a prediction with a lower loss than 

before the weight adjustment.

The neurons in DNNs are generally arranged in layers, and the signal is propagated 

from the neurons in one layer to the neurons in the next. Depending on the number of layers 

and the connections between the neurons in each layer, very complex patterns can be fitted 

by training the network. The activation function of the neurons, the pattern of connections 

between the neurons, the number of neurons in each layer, and the number of layers can all 

be varied to obtain different types of models that can solve different types of problems.

While the number of different types DNNs have increased dramatically in the last 

decade, most networks fall into one of five different categories: Deep Belief Networks 

(DBNs), Deep Convolutional Neural Networks (DCNNs), Deep Convolutional Auto-

encoders (DCAEs), Deep Recurrent Neural Networks (DRNNs), and Generative Adversarial 

Networks (GANs) 160. In this section, each type of network will be briefly discussed with a 

focus on the applicability of these types of networks to bioinformatics problems.

DBNs were one of the first types of neural nets to be developed. They are generally 

used for predictions, in which the input vector has a fixed size, and where the input features 

share no spatial relationship. Examples of these types of problems could be classification of 

medical samples or linking symptoms to diseases 161. TopThreader (Chapter 10, 

Publication II) uses a series of DBNs to predict the structural similarity between a putative 

template structure and the native structure and uses this information to remove false positive 
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templates and rank the templates according to suitability for modeling. TopScore (Chapter 

9, Publication II) uses two stages of DBNs to predict the structural quality of an ensemble 

of models both at the residue-wise and whole-protein level.

DCNNs are particularly useful for problems, in which the input feature vector may 

vary in size and where the input features have a spacial connection. An example of these 

types of problems is for example image classification 162, where the images may have 

different sizes and where the meaning of each pixel is highly correlated to the pixels around 

it. These types of neural networks have been extensively used for prediction of protein-

protein contacts59, 140, 142, 163 and protein features such as secondary structure and solvent

accessibility98. TopContact and TopDomain use DCNNs to predict protein structural 

features such as domain boundaries, secondary structure, transmembrane topology, dihedral 

angles, solvent accessibility and residue-residue contacts and distances. This is because 

residue proximity in sequence provides the spacial connection between the input pixels that 

is required for convolution.

DCAEs are generally used for feature reduction problems, in which a high-

dimensional input needs to be reduced to a more manageable size with minimal loss of 

information. Examples of these types of problems include image compression 164 and image 

clustering 165.

DRNNs are typically used for problems, in which the input varies in length and share 

a sequential relationship. Common examples of the use of DRNNs include speech 

recognition 166, text data mining 167 and genomic sequence analysis 168. DRNNs have been 

instrumental to predict linear features of proteins (Chapter 6.4.1) as their sequential 

relationship to each other is captured nicely by this type of network 102, 169-170.

GANs are used often for signal processing, as it learns to generate new samples that 

follow the same statistical distribution as its training data. This enables it to for example 

generate images 171, fill in missing parts of an image or improve image resolution 172.

A key issue with standard deep neural network learning is the vanishing gradient 

problem, which limits how deep (i.e. how many layers) a network can be before accuracy 

stagnates or even declines 173. Residual convolutional neural networks, originally developed 

for image recognition 174 bypass this problem by passing along the input signal together with 

the transformed signal after each neural transformation. This allows for very deep models to 

be built, and has shown great results for bio-informatics applications such as secondary 

structure 175 and residue contact prediction 140.



Background

Page | 50

An issue with deep learning is that the random initialization of neurons can lead to 

performance differences for different DNNs with the same network architecture and training 

data. These effects have can be minimized by training multiple models with different random 

seeds and averaging the output 140, 151. However, with the development of dropout 176, this 

problem can be solved directly by randomly “switching off” neurons during model training. 

This forces the network to learn using new neural connections, and effectively learn different 

models simultaneously, which improves the ability of the neural network to generalize to 

data not seen during training. The use of dropout has therefore become the standard in image 

recognition and protein contact prediction 140.

Furthermore, because DNNs have thousands of different fitting parameters (the 

weights of network neurons) they are prone to over-fitting. Over-fitting happens when the 

DNN memorizes the training data in order to obtain a perfect performance, which in turn 

makes it unable to perform reliably for new data. There are several options for avoiding over-

fitting, of which two are so common, that they have become standard in the field: Early 

Stopping and Regularization. In Early Stopping, the networks performance is evaluated on 

the fly on an independent set of test data and the training is stopped early (hence the name) 

when performance on the test data starts to deteriorate. Regularization is a mathematical 

trick, which augments the loss function in order to penalize complexity, by assuming that 

simpler models are better than complex ones. In practice, this is done by adding a term to 

the loss function, which slowly pushes the weights of the neuron connections towards zero

as the model is trained. In this way, only connections that are critical to the performance of 

the network (where the cost of switching off the signal is too great) end up being used, while 

in practice connections that are not important are turned off.
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7. SCOPE OF THE THESIS

Since the inception of the field of bioinformatics, two decades of method development has 

left researchers and scientists, who wish to predict the structure of a protein, with one major

question: “Which method should I use to predict the structure of my protein?” The large 

variety of different method for structure prediction led to the answer: “Use a consensus of 

different methods”. Method performance, however, depends on both algorithm design, 

training data, input features and target value, and many methods produce highly correlated 

results. This correlation between methods can lead majority-based consensus, which 

assumes each method has a fixed chance of being right, to converge on wrong predictions. 

Machine learning can go one step further than consensus and learn not only how well a

method performs on average, but also in which context it performs well. This enables 

methods based on, for example, deep neural networks to perform much better than traditional 

consensus. This is the dominant idea behind the development of TopSuite.

The philosophy of TopSuite is to collect and integrate many diverse primary 

predictors for a given task and make it easy for a user to provide input data to them all. Then, 

rather than using majority-based consensus, the output of the different predictors is used as 

input for deep neural networks, which are trained on large diverse databases to produce high 

quality meta-predictions. These predictions are then presented to the user in a format that is 

easily transferrable from one task to the other, in order to link the different programs together 

seamlessly. The aim of this thesis is to:

1. Develop a deep neural network-based meta-method for determining the quality 

of a protein structure prediction and identify which parts of a model contain errors 

(TopScore, Chapter 9, Publication I).

2. Develop a fully automated deep neural network-based meta-method for template-

based protein structure prediction using TopScore as the core scoring function 

(TopModel, Chapter 10, Publication II).

3. Illustrate the gradual development of TopSuite and demonstrate the usefulness of 

the developed methods by applying them to target proteins of high biological 

(Publication III), medical (Publication IV), and industrial (Publication V)

interest.
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8. TOPSUITE

TopSuite is a suite of programs, which has been and is being developed in order to make 

automated high-quality protein structure prediction easy and accessible to non-expert users

and the scientific community as a whole.

TopSuite consists of several different modules, some of which are described in the 

papers of this thesis, and some of which are still in development and therefore not yet 

published. In some cases, preliminary versions of the programs have been used in projects 

such as the prediction of the dimeric state of the GAF domain of ETR1 (Chapter 21, 

Publication V). The modules of TopSuite can be classified into three major categories: 

Protein Feature Prediction, Protein Structure Prediction, and Protein Interaction Prediction. 

Within these three categories, the different modules of TopSuite are as follows (.odules still 

in development are marked with a *):

1. Protein Feature Prediction

I. TopDomain* predicts the location of domain boundaries in the input 

sequence using a combination of ab initio-, co-evolution- and template-based 

primary predictors and uses a two-stage DNN approach to perform high

quality predictions that approximate expert human domain annotations as 

closely as possible.

II. TopContact* predicts residue-residue contacts and residue-residue distances 

as well as secondary structure ( -helix, -strand and coil), relative solvent 

accessibility and backbone dihedral angles in concert. This is done based on 

25 different primary predictors and 3 stages of DNNs to combine the outputs.

2. Protein Structure Prediction (Chapter 9 and 10, Publication I and II)

I. TopThreader predicts templates and alignments between the templates and 

the target sequence. This is done using 12 different primary predictors and 

predicting the template similarity to the native structure using multi-stage 

DNNs.

II. TopAligner calculates alignments between provided input structures and a 

target sequence using different sequence and structure based multiple 

sequence alignment programs.

III. TopBuilder constructs 3D models of the input alignments using 

MODELLER and ROSETTA. TopBuilder also provides an easy interface for 

side-chain refinement and MD-based refinement.
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IV. TopScore predicts the global and local structural similarity to the native 

structure using 12 different primary predictors and combines the outputs 

using a two-stage deep neural network. TopScore consists of two scoring 

functions: TopScore and TopScoreSingle, the latter of which uses no 

clustering or ensemble information. TopScore and TopScoreSingle allows for 

selection of high-quality models as well as identification of errors in specific

regions of the models.

V. TopRefiner combines and refines an input ensemble of models selected from 

single-template models and multi-template models calculated using

TopThreader, TopAligner and TopBuilder. It does so by effectively 

identifying poorly modelled regions using TopScore and TopScoreSingle, 

removing these regions and replacing them with better modelled regions from 

other models in the ensemble.

VI. TopModel predicts protein structure by applying TopThreader, TopAligner, 

TopBuilder, TopScore and TopRefiner to produce template-based protein 

structure predictions in a fully automated manner.

3. Protein Interaction Prediction

I. TopInterface* predicts protein-protein interactions between two input 

structures using a combination of conservation-based, co-evolution-based 

and template-based primary predictors and a three-stage deep neural network 

for combining the input features into probabilities of residue-residue contacts.

II. TopDock* predicts protein-protein complexes using predicted contacts from 

TopInterface. TopDock uses a deep neural network to predict the best 

docking solution from fulfillment of predicted contacts from TopInterface,

docking energy and model clustering.

III. TopLigand* predicts protein-ligand interactions by predicting the binding 

site and ligand pharmacophore features given a model from TopModel as an 

input. In doing so, TopLigand opens closed binding pockets and optimizes 

side-chain conformations to facilitate ligand binding. The binding site and 

pharmacophore prediction is done using a 3D Deep Convolutional Neural 

Network.

TopModel is the core workflow of TopSuite as it integrates most of the modules 

seamlessly and therefore allows for fully automated structure prediction with a single 
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command. The interaction between the different modules in the TopSuite workflow is 

shown in Figure 7.

Figure 7. Simplified interaction between TopSuite modules. The target sequence is given as input to 

TopDomain and the sequence is separated into domains. Each domain is then given as input for TopContact to 

predict secondary structure, dihedral angles, residue contacts and residue distances. The sequence and the 

predicted features are then given as input to TopThreader, which searches for templates using different primary 

threaders. TopThreader uses TopBuilder to build models from the primary threader alignments, template 

structures and target sequence, which are scored with TopScore, and used by TopThreader together with 

primary threader scores to rank and cluster templates and remove false positives. TopThreader then uses 

TopAligner to align templates and construct consensus alignments, which are built with TopBuilder, scored 

with TopScore, and used together with primary threader scores in TopThreader to rank templates by predicted 

similarity to the native structure. After template selection, TopAligner is used to generate a large ensemble of 

pairwise and multi-template alignments from which models are built with TopBuilder and scored with 

TopScore. Models are selected from the ab initio predictions from TopContact, the multi-template ensemble,

and the single-template models by TopRefiner, which combines and refines the models to produce a final 

structure. Predicted structures can then be used as input for TopInterface to predict protein-protein contacts, 

and the predicted contacts and structures can be used as input for TopDock to produce a protein-protein 

complex. The predicted structure can also be used as input for TopLigand to predict ligand binding sites and 

pharmacophore models, which can in turn be used for virtual compound screening.
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TopSuite was used in the following publications. Publications described in this thesis are 

marked with an *:

* Binding region of alanopine dehydrogenase predicted by unbiased molecular dynamics 

simulations of ligand diffusion. Holger Gohlke, Ulrike Hergert, Tatu Meyer, Daniel 

Mulnaes (10%), Manfred K. Grieshaber, Sander H.J. Smits and Lutz Schmitt. Journal of 

Chemical Information and Modelling. 2013, 53, 2493–2498.

* Determinants of FIV and HIV Vif sensitivity of feline APOBEC3 restriction factors. Zeli 

Zhang, Qinyong Gu, Ananda Ayyappan Jaguva Vasudevan, Anika Hain, Björn-Philipp 

Kloke, Sascha Hasheminasab, Daniel Mulnaes (5%), Kei Sato, Klaus Cichutek, Dieter 

Häussinger, Ignatio G. Bravo, Sander H.J. Smits, Holger Gohlke and Carsten Münk. 

Retrovirology; 2016, 13, 46.

* Recognition motif and mechanism of ripening inhibitory peptides in plant hormone 

receptor ETR1. Daniel Mulnaes (10%), Christopher Pfleger, 

Anna Kinnen, Holger Gohlke and Georg Groth. Scientific Reports 2018, 8, 3890.

Molecular dynamics simulations and structure-guided mutagenesis provide insight into the 

architecture of the catalytic core of the ectoine hydroxylase. Nils Widderich, Marco 

Pittelkow, Astrid Höppner, Daniel Mulnaes (10%), Wolfgang Buckel, Holger Gohlke, 

Sander H.J. Smits, Erhard Bremer. Journal of Molecular Biology 2014, 426, 586-600

Structural basis of lantibiotic recognition by the nisin resistance protein from Streptococcus 

agalactiae. Sakshi Khosa, Benedikt Frieg, Daniel Mulnaes (10%), Diana Kleinschrodt, 

Astrid Höppner, Holger Gohlke, Sander H.J. Smits. Scientific Reports 2016, 6, 18679.
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9. TOPSCORE: USING DEEP NEURAL NETWORKS AND 

LARGE DIVERSE DATA SETS FOR ACCURATE PROTEIN 

MODEL QUALITY ASSESSMENT

Daniel Mulnaes (85%), and Holger Gohlke

Journal of Chemical Theory and Computation; 2018, 14, 6117-6126.

9.1 BACKGROUND

In computational structure prediction, it is of vital importance to determine, how close to the 

real protein structure the predicted model can be expected to be. High-quality models built 

from closely homologous protein structures are often suitable for investigation of small 

molecule binding and can therefore serve as starting points for drug-discovery 13. However, 

models built from distantly related proteins or without any template may contain errors that 

limit their ability to answer such detailed biological questions. Models with a medium degree 

of error can still be useful to answer several biological questions though, e.g. understanding 

effects of disease-associated mutations, functional annotation, or to aid the experimental 

elucidation of the structure, but are generally not suitable, if fine-grained atomistic 

information is required.

Errors in protein structure models can range from small differences in side-chain 

conformations or flexible loop orientations, to frame-shift errors in which misalignment 

causes residues to be located in wrong secondary structure elements or on the wrong side of 

-sheets. On the largest scale, template selection errors, in which the model is based on a 

wrong template, can cause most or the entire model to be wrongly folded. (Chapter 6.6.1 

Model Quality Assessment) Drawing conclusions based on such a model can lead 

researchers to completely wrong conclusions.

Because the errors in protein models span a wide range, different types of errors are 

detected by different types of Model Quality Assessment Programs (MQAPs). Minor errors 

in side-chain orientation can be identified by examining bond lengths, bond angles, and steric 

clashes, while frame-shift errors can be detected by examining energetic interactions 

between residues using knowledge-based potentials, since these errors generally lead to less 

favorable interactions between residues. At the fold level, errors can be detected by

examining self-consistency between features of the model that can be predicted from the 

primary sequence. Such features include secondary structure, solvent accessibility, contact 
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density and residue-residue contacts, and those same features measured in the structural 

model itself. The reasoning behind this methodology is that if the model is consistent with 

the independently predicted features, it is more likely to be correct. Finally, errors can also 

be estimated by examining multiple independent structural models of the same protein. The 

models could for example stem from different folding simulations or be based on different 

templates or alignments. Regions of the protein that adopt different folds in an ensemble can 

be considered less confident than those that adopt the same fold in many models.

An issue facing MQAPs, other than the detection of errors, is the conversion of 

measured error features into a geometric measure of error that is useful and intuitive to 

understand. These features include atomic clashes, wrong stereochemistry, unfavorable

energetics, disagreement with predicted features and structural inconsistency between 

independent models, as described in the previous section. Several geometric quality

measures have been used in the past. These can be divided into two main groups:

Superposition-dependent quality measures, such as the TM-Score and the GDT_TS Score,

calculate differences in atomic location after superimposing a model to the known native

structure using an algorithm that optimize these measures. Superposition-independent 

measures on the other hand, such as the lDDT, and CAD scores, evaluates intra-molecular 

distances and interactions and therefore calculate the consistency between the model and the 

native structure using internal coordinates. The benefit of superposition-dependent measures 

is that they reward correct spacial placement of secondary structure elements and domains. 

However, they over-penalize multi-domain structures, since the super positioning of one 

domain often leads to very large distance differences for other domains even when these are 

correctly folded. Superposition-independent measures, which focus on internal coordinate 

consistency do not suffer from these issues, making them ideal for estimating errors and 

correct folding.

The goal of TopScore is to identify many different types of errors in predicted protein 

models with a single program that uses different primary predictors (primary MQAPs), 

which focus on different types of errors and uses different definitions of model quality.

9.2 RESULTS

In this work we developed two meta-Model Quality Assessment Programs (meta-MQAPs) 

called TopScore and TopScoreSingle. Meta-methods combine scores from multiple different 

primary predictors to produce more consistent and accurate predictions than any single 

method. The output of the different predictors was combined using a two-stage DNN
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approach to predict both the global error of the protein model as well as the local error of 

individual residues. The predicted target score was chosen to be 1-lDDT score. The lDDT 

score calculates intra-protein all-atom interatomic distance conservation using four different 

distance cut-offs making it a highly sensitive superposition independent score. We chose 1-

lDDT to have low scores correspond to low amount of error in the protein. To ensure robust 

performance across many different types of models we constructed a composite dataset of 

model ensembles from many different sources. These include previous CASP experiments, 

ab initio folding trajectories from I-TASSER, model decoy datasets, high-quality homology 

models, homology models based on distantly related templates, and artificially misfolded 

decoys from the 3DRobot dataset. Our results show that different primary MQAPs perform 

very differently, depending on which dataset they are tested on. By optimally combining the 

outputs of the different methods using the DNNs, we obtained a much more consistent

performance across different datasets. Furthermore, we obtained a performance that is 

significantly better than any of the investigated primary predictors. An excerpt of the 

performance of TopScore and TopScoreSingle compared to some of the best performing 

primary predictors on the different datasets in terms of different quality measures is shown 

in Figure 8 for whole-protein scores and Figure 9 for residue-wise scores. The correlation 

between the whole-protein TopScore and the true value on the combined dataset as well as 

an example of the residue-wise performance can be found in Figure 10.
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Figure 8. TopScore global performance. TopScore (red circles) and TopScoreSingle (red dashes) global 

performance compared to a subset of primary predictors (black). Dashed lines represent single-model methods 

and full lines methods that use clustering information. The 95% confidence intervals were calculated using the 

Fischer r-to-z transformation. The widest confidence interval for any Rall
2 or Rwm

2 was 0.01 and 0.12, 

respectively. Statistical significance was determined by the two-sided Steiger test 177. Accordingly, the Rall
2 and 

Rwm
2 of TopScore and TopScoreSingle are significantly different from any primary MQAP for the combined 

dataset (p < 0.05). In terms of Rall
2, for the CASP11/12 dataset, TopScoreSingle is not significantly different 

from ProQ3D, and neither is TopScore when compared to Pcomb.
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Figure 9. TopScore local performance. TopScore (red circles) and TopScoreSingle (red dashes) local 

performance compared to a subset of primary predictors (black). Dashed lines represent single-model methods 

and full lines methods that use clustering information. The 95% confidence intervals and statistical 

significances are calculated in the same way as for Figure 3. The widest confidence interval for any Rall
2 or 

Rwm
2 was 0.001 and 0.17, respectively. The Rall

2 and Rwm
2 of TopScore and TopScoreSingle are significantly 

different from any primary MQAP (p < 0.05).
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Figure 10. TopScore performance. The global TopScore predictions plotted against the lDDT error of the 

models for the combined dataset. Three randomly selected example models of PDB ID 4BMB from the 

3DRobot dataset are shown colored according to local TopScore error prediction (lower triangle) and true local 

lDDT error (upper triangle).

9.3 CONCLUSIONS AND SIGNIFICANCE

The development of TopScore and TopScoreSingle is a key part of TopModel. These scoring 

functions are essential to solve four important steps of the structure prediction workflow:

1. In template selection, TopScore and TopScoreSingle help to discard templates that 

produce wrongly folded models, thus improving the template selection especially for 

difficult targets.

2. In template-target alignment, TopScore and TopScoreSingle helps to both identify 

and rectify parts of alignments that contain errors and produce badly scoring models.

This helps produce consensus alignments that favor good scoring models.



Extended Abstract - Publication I: TopScore

Page | 62

3. In model selection, TopScore and TopScoreSingle help to select high-quality models 

for refinement and model combination, which is required in order to perform high-

quality model refinement.

4. In model refinement, TopScore and TopScoreSingle help to identify parts of the input 

models that contain errors, enabling these regions to be removed such that new 

refined models can be constructed from the remaining parts.

TopScore and TopScoreSingle were both shown to perform significantly better than any of 

their primary predictors (see Figures 8 and 9), and to be more consistent in their performance 

across many different model datasets. This robustness is due to the large dataset used for 

training (~1.5×105 models and ~2.3×107 residues) the methods as well as the large diversity 

of different primary predictors. This makes TopScore and TopScoreSingle ideal scoring 

functions when predicting protein structures using TopModel.
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10. TOPMODEL: TEMPLATE-BASED PROTEIN 

STRUCTURE PREDICTION AT LOW SEQUENCE 

IDENTITY USING TOP-DOWN CONSENSUS AND DEEP 

NEURAL NETWORKS

Daniel Mulnaes (60%), Nicola Porta, Rebecca Clemens, Irina Apanasenko, Jens Reiners, 

Lothar Gremer, Philipp Neudecker, Sander Smits, Holger Gohlke.

Journal of Chemical Theory and Computation; 2019, Submitted

10.1 BACKGROUND

Protein structure prediction is a core part of bioinformatics that has been in development 

since the initial conception of the field. This in turn has led to an abundance of different 

algorithms for solving the different challenges commonly faced in structure prediction, most 

notably template identification, sequence alignment, model construction, and model 

refinement. However, no single method consistently outperforms all other methods for every 

given protein target. In other words, different methods produce the best results for different 

proteins. It is therefore not surprising that meta-methods, which utilize multiple different 

algorithms, such as the MULTICOM and Zhang Servers, have shown some of the best over

all performances in every CASP competition since their conception.

These methods, however, mainly function as black box online servers (Chapters 6.2 

CASP and 6.4.2 META-SERVERS). This is due to the high competition in the field, which 

discourages the sharing of workflows and methods. This in turn means that users, who do 

not wish to send their data to remote servers or need large-scale calculations for many 

proteins, can still be at a disadvantage. Furthermore, meta-methods such as the Zhang and 

MULTICOM servers generally operate using consensus information from their different 

primary predictors, which is based on the assumption that the majority is more likely to be 

correct. In practice, this means that templates that are identified more often by different 

methods are more likely to be used. While this can often be beneficial, it means that if the 

correct fold is in the minority, then the consensus drives the model away from the true fold.

These shortcomings incentivized the development of TopModel, which is the core 

part of TopSuite (Figure 7) and contains the workflow needed for fully automated template-

based structure prediction using a top-down consensus methodology. The top-down 
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consensus methodology aims at identifying the best template and fold using deep neural 

networks, and then selects templates or models based on their agreement with the top ranked 

one. Therefore, TopModel can go against the majority and improve models beyond the initial 

model ensemble, if a good estimate of the template quality and model quality can be 

calculated.

10.2 RESULTS

In this work, we developed a meta-method for automated template-based protein structure 

prediction called TopModel. TopModel is available as a stand-alone toolbox for the 

scientific community and utilizes most of the available stand-alone algorithms for template 

identification, sequence and structure alignment and model construction. TopModel makes 

using them easy and intuitive, requiring only a single command-line call for complete

structure prediction, while at the same time allowing the user to use each module 

individually.

TopModel provides much better template selection than its constituent primary 

methods due to the sophisticated threading module TopThreader, which uses both model 

quality assessment with TopScore and TopScoreSingle as well as deep neural networks for 

estimating template quality. Furthermore, due to the use of top-down consensus 

TopThreader has very few false positives. This can be seen when comparing the ability to 

select the best template between TopModel and its constituent primary predictors (Figure 

11).
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Figure 11. Template enrichment by TopThreader compared to primary threaders. Comparison of 

100 score, 

which evaluates the difference between the best of the top five ranked templates of a given threader, and the 

best template found by any threader. For each target, three categories are selected: (I) the best template is found 

100 100 [5-15]), and (III) no adequate template is found

100 > 15). The values represent percentages of targets in the CASP dataset for TBM (A), FM (B), and all 

(C) targets, respectively. Differences between TopThreader and the best primary threader for each subset are 

highly significant (p < 0.01) according to the Ghent implementation of the Freeman-Halton exact test for 3x3 

contingency tables 178.

After template identification with TopThreader, TopModel constructs an ensemble 

of different multi-template alignments using the TopAligner module. In doing so, model 

quality can be improved since the use of multiple templates not only has the potential to 

increase the coverage of the target sequence, but also has the ability to improve the target-

template alignment. After generating the alignment ensemble, the alignments are used to 
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generate models with TopBuilder, which works as an interface to ROSETTA and 

MODELLER, and the resulting models are scored with TopScore and TopScoreSingle.

Finally, TopModel uses an iterative refinement protocol called TopRefiner in which 

the best scoring single-template models generated by TopThreader as well as the best scoring 

multi-template models generated by TopAligner and TopBuilder are selected according to 

TopScore and TopScoreSingle rankings. From these models, regions predicted to contain 

errors by TopScore and TopScoreSingle are deleted, and the remaining pieces are used to 

construct meta-models with fewer errors. This process is done iteratively to refine the 

models, after which fragment-guided MD refinement with ModRefiner is performed to 

provide a single refined model to the user. The effect of generating multi-template models 

as well as refining the best models using TopRefiner can be seen in Figure 12.

Figure 12. Impact of using TopAligner and TopRefiner on model quality. The relative change in GDT_TS 

TopRefiner (B), respectively. A. Difference in model quality when selected from a multi/single-template model 

ensemble from TopAligner/TopThreader compared to selection from a single-template pairwise primary 

threader model ensemble. B. Difference in model quality when selected from the first stage of TopRefiner 

(before refinement) compared to selection from the last stage of TopRefiner (after refinement). The models are 

selected either by true GDT_TS or by TopScoreSingle (A) or TopScore (B). Five categories are defined based 
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-20%]; 

green/yellow)

abundant and is not shown as it reflects no significant change in model quality. Significance is calculated using 

a one-tailed t-test between corresponding increase/decrease categories (blue-red and green-yellow, 

respectively). The null hypothesis is that the probability of model quality increase of a given amount (5-20% 

e

comparisons where this hypothesis can be rejected are indicated with brackets and corresponding p-values (*: 

p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001). The number of samples used is the number of CASP 

targets in the TBM (140) and FM (46) categories, respectively.

TopModel was validated on the CASP10-12 datasets and showed good performance 

compared to its primary methods. However, since TopModel is a template-only method, ab

initio targets for which no good template structures could be identified showed worse models 

from TopModel compared to servers, which use ab initio methods for protein contact and 

distance prediction as well as domain parsing for large multi-domain structures. The results 

of the validation on the CASP10-12 dataset can be seen in Figure 13.

Figure 13. GDT_TS comparisons between TopModel and CASP servers. The bars represent comparison 

between TopModel and one of four established CASP servers (the Zhang Server (red), the Baker Server 

(yellow), the HHPred server (green), the Zhou Server (blue)) as well as the average of the top 200 server 

submissions for each target (gray). The Zhang server and Baker server both make use of ab initio folding and 

domain parsing, putting them at an advantage over TopModel. A. GDT_TSabs for CASP TBM targets 

indicates for how many of CASP TBM targets TopModel shows similar, worse, or better model quality than 

other established servers. B. GDT_TSabs for CASP FM targets indicates for how many of CASP FM targets 

TopModel shows similar, worse, or better model quality than other established servers.

To demonstrate the utility of TopModel, the workflow was experimentally validated 

on two de novo protein systems showing good agreement with experimental data in terms of 

crystal structures, NMR spectroscopy experiments, and SAXS experiments. These proteins 

were the NSR protein from S. agalactiae and LipoP from C. difficile and showed far better 

agreement with experimental data than predictions from any of its constituent primary 

predictors. The results from the NSR protein are shown in Figure 14 and illustrate how 
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TopModel go against the majority (the center of the distribution) resulting in a model of far 

greater quality than any of its constituent primary predictors. The results for LipoP from C. 

difficile is shown in Figure 15. They show how, after a short refinement using molecular 

dynamics, the model of the LipoP show good agreement with both NOE and secondary 

structure restraints from NMR as well as scattering profile and volumetric shape from SAXS.

Figure 14. Prospective modelling of the NSR protein from S. Agalactiae. The model quality distribution (in 

terms of GDT_TS score) of primary threader models for the NSR protein from S. agalactiae for prospective 

modelling before the release of the native structure (gray) to the PDB. The vast majority (82%) of models show 

an incorrectly threaded N-terminal domain (see SPARKSX model). A minority of models (18%) show a 

correctly threaded helical domain (HHSearch, RAPTORX, and FFAS03) on a few templates, often with large 

errors elsewhere in the model (such as -sheets shown in red). Because TopModel does not use majority voting, 

the model produced (blue box) is of far better quality (GDT_TS = 55) than those produced by primary threaders 

(median GDT_TS = 38), while majority voting consensus would produce a model in the middle of the

distribution at a GDT_TS of ~38. Model examples from the different bins are colored according to residue-

wise lDDT score 129 to the native structure, with red showing incorrectly modelled regions and blue showing 

perfect agreement with the crystal. The largest error in the TopModel model is the fact that the residues linking

the helical bundle with the catalytic core of the protein do not fold into an -helix (red box). This is because 

no model from any of the primary predictors correctly fold these residues into a helix, and as such, TopRefiner 

has no fragment it can select during model fragmenting and refinement, which would produce a helix for these 

residues. Secondary structure prediction by PSIPRED 99 also fails to identify these residues as helical.
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Figure 15. Model of LipoP from C. Difficile after MD refinement and selection according to agreement 

with sparse experimental structural data. A. Agreement of the TopModel model with secondary structure 

assignments and NOE restraints from NMR. The numbers indicate the location of errors. Blue: -sheet residues 

showing agreement between model and NMR data. Orange: Residues identified to be in a -strand in NMR 

but not found so in the model. Cyan: -helical residues showing agreement between model and NMR data. 

Red: Residues identified to be -helical in NMR but not found so in the model. Magenta lines: Experimental 

-sheet NOE restraints showing agreement with the model. Red Lines: Experimental -sheet NOE restraints 

showing a shift of two residue positions of -strand 3. B. Agreement between the model after MD refinement, 

selection according to agreement with experimental NMR and SAXS data, and model combination with 

TopBuilder C -helix 1 is seen. C.

Agreement between the experimental scattering data from SAXS (black) and simulated scattering curve of the 

MD model (red); FoXS 179-180 was used for simulating the scattering curve. The fit plots depict log-intensity 

versus q (Å 1), the residuals plot shows the difference between experimental and computed intensity versus q

(Å 1). D. The volumetric envelope of LipoP, as calculated from the scattering data using GASBOR 181, is shown 

in gray mesh. The MD model of LipoP (green) was docked into the volumetric envelope using SUPCOMB 182.

Disagreement with SAXS is found mainly for the disordered tail of LipoP.
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10.3 CONCLUSIONS AND SIGNIFICANCE

The idea behind the TopModel methodology is that since no method can be expected to be 

the best for every protein target of interest, different predictions from different primary 

predictors are integrated using deep neural networks to select the best candidate template or 

model. This is, to our knowledge, the first time deep neural networks have been applied to 

estimate template similarity to the native structure for use in pure template-based structure 

prediction. Then, using top-down consensus, predictions that agree with the best candidate

are selected and used for multi-template modelling. This is, to our knowledge, the first use 

of top down consensus, rather than majority voting consensus, for template selection and 

protein structure prediction. During refinement, rather than averaging the models, regions 

predicted by TopScore and TopScoreSingle to contain errors are removed and replaced by 

better regions from different models based on different templates or alignments. This is, to 

our knowledge, one of the first times model refinement has been driven not by energy 

minimization, but by minimizing the output score of a deep neural network (TopScore,

Chapter 9, Publication I). These developments enable TopModel to make structure 

predictions that go against the majority of its primary predictors and produce models that are 

significantly better than any of the predictions from any of its constituent primary predictors.

TopModel is the core of TopSuite as it provides the tools and the workflow required 

for high quality template-based protein structure prediction. TopModel was used in all the 

application projects mentioned in this thesis, and the structures predicted by TopModel 

provided valuable insights and good starting points for further study of important biological 

systems.
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11. BINDING REGION OF ALANOPINE DEHYDROGENASE 

PREDICTED BY UNBIASED MOLECULAR DYNAMICS

SIMULATIONS OF LIGAND DIFFUSION

Holger Gohlke, Hergert, U., Meyer, T., Daniel Mulnaes (5%),

Grieshaber, M.K., Sander H.J. Smits and Lutz Schmitt.

Journal of Chemical Information and Modelling. 2013, 53, 2493–2498.

11.1 BACKGROUND

Lack of oxygen can be caused either by an environmental change or by an increased oxygen 

consumption by the organism itself, i.e. increased oxygen consumption by muscles during 

movement. To maintain a continuous flux of energy under conditions of intense 

physiological activity in which oxygen supply becomes a limiting factor, organisms 

therefore switch to full or partial anaerobic metabolism. This anaerobic metabolism can 

follow four main pathways initialized from Phosphoenolpyruvate: (1) The glucose-succinate 

pathway in which the final product is succinate, (2) the aspartate-succinate pathway that also 

results in succinate, (3) the glucose-lactose pathway in which the final product is lactate, and 

(4) the glucose-opine pathway in which the final products are various opines. While the first 

two are more energy efficient pathways, they are slower than the latter two, and thus serve 

complimentary roles depending on the duration of hypoxia. In the opine pathway, opine 

dehydrogenases ensure a constant supply of ATP by maintaining the NADH/NAD+ balance
183.

In this work, we investigated the binding of L-alanine to the Alanopine 

Dehydrogenase of Arenicola Marina (AlaDHAm), a member of the opine dehydrogenase 

family. Although much is known biochemically about this enzyme class, the substrate 

specificity of different Alanopine Dehydrogenases towards different amino acids, as well as 

the substrate inhibition has yet to be explained at the molecular level.

Due to recent advances in molecular dynamics (MD) simulation algorithms and 

hardware, the simulation of unbiased ligand binding and unbinding to their target protein has 

recently become possible. In addition to the ability to identify the binding region, these 

simulations can reveal binding and unbinding pathways as well as metastable binding states, 

and give quantitative estimates of both binding affinity and on/off rates 184-188. In this study, 

we go beyond these measurements to examine determinants of substrate specificity starting 
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not from a crystal structure but from a predicted 3D structural model made by a preliminary 

version of our structure prediction workflow TopModel.

11.2 RESULTS

Biochemical characterization of AlaDHAm revealed a high substrate specificity for L-

alanine, and showed that, with about 3- to 4-fold reduction in activity, glycine could also be 

used as a substrate. For other small amino acids tested, such as L-serine, L-threonine, L-

cysteine, or L-valine, none or only negligible activity was found. This indicates a high 

substrate specificity and shows that the binding site of AlaDHAm has evolved to bind L-

alanine specifically. In contrast, the AlaDH from M. Sanguinea has a much broader substrate 

specificity allowing also other small amino-acids to form the corresponding opine 189.

Structure prediction with TopModel revealed three structures representing two 

proteins: Octopine Dehydrogenase (OcDH) from P. maximus with either L-arginine (PDB 

ID: 3C7C) or agmatine (PDB ID: 3IQD) in the binding site, and M-(1-D-Carboxylethyl)-L-

Norvaline Dehydrogenase (CENDH) from Arthrobacter Sp. (PDB ID: 1BG6). Both 

structures are opine dehydrogenases with sequence identities of 46% and 20% respectively. 

I constructed a sequence alignment using the structural information of the available 

structures, and analyzed the sequence conservation of the OcDH binding site compared to 

AlaDHAm, which revealed a high degree of residue conservation. For example, binding-site 

residues E141 and W279 cannot mediate substrate specificity since they are conserved 

between OcDH and AlaDHAm. The only two sequence differences between the binding sites 

of OcDH and AlaDHAm are residues V208 and N209 located in the kink of a helix-kink-

helix structural motif in the binding site. In OcDH, V208 is instead a tyrosine, and there is 

no residue insertion at position 209, unlike in CENDH, where residue 209 is also inserted. 

Interestingly, the N209 insertion occupies the same volume that in OcDH is occupied by the 

bound L-arginine, and thus prevents the binding of large amino acids to AlaDHAm. The 

structure-based alignment can be seen in Figure 16.
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Figure 16: Alignment of sequences of AlaDHAAm to the three templates. Red bars and green arrows 

-helices and -strands respectively, of the AlaDHAm model as determined by DSSP. Numbers 

provided on the left and right refer to positions in the respective sequences; numbers provided on top refer to 

the positions in the AlaDHAm sequence. The amino acids are colored according to the ClustalW criteria in 

Jalview (orange: G; Yellow: P, cyan H and Y; blue hydrophobic amino-acids (A, I, L, M, F, W, V,C); green: 

polar amino-acids (N, Q, S, T); red: positively charged amino-acids (K,R); magenta: negatively charged amino-

acids (D,E)) if the amino-acid profile of the alignment at that position meets a minimum criterion specific for 

the residue type.

To produce a binding model of L-alanine to AlaDHAm the coordinates of the NADH cofactor 

could be copied from OcDH without steric clashes after structural superposition. However, 

superposition of L-alanine to the backbone part of the OcDH bound arginine required a 

geometry optimization leading to a shift in position of 3Å. After constructing the initial 

model of AlaDHAm, we subjected it to three independent MD simulations of 200 ns each. 

The simulations showed an overall moderate deviation from the starting structure with a root 

mean square deviation (RMSD) of C atoms ranging from 2.5 to 4 Å. This is comparable to 

a control simulation of 100 ns of OcDH (PDB ID 3C7C) showing a 1.5-3.5 Å RMSD. While 

NADH stayed in the binding pocket for the full duration of all three simulations, the L-

alanine showed both binding and unbinding from the binding pocket in all three simulations. 

These remarkable results of binding and unbinding of substrate into bulk solution and back 

into the binding pocket is therefore one of the few examples of ab initio unbiased MD 
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simulations to date 184-188 that show unbinding and re-binding of the substrate. The results of 

the MD simulations are shown in Figure 17.

Figure 17. Unbiased MD simulations of L-alanine diffusion in the TopModel model of AlaDHAm. (A-F)

Black letters indicate regions of high density of L-alanine during the MD simulation 1 as identified in panel C. 

Region G is the predicted binding region. (A) Traces of L-alanine extracted from MD trajectory 1generated by 

MD simulation of 200 ns length of the AlaDHAm/NADH/L-alanine system in explicit water; L-alanine reaches 

the predicted binding region after ~40 ns (see panel D). The time evolution of the MD simulation is color coded 

from blue (0 ns) to red (200 ns). For clarity, only a conformation closest to the average conformation of 

AlaDHAm is shown (gray cartoon). (B) Close-up view of the predicted binding region shown in panel A with 

the trace of C atoms of L-alanine extracted from trajectory 1 shown as spheres. See panel A regarding the 

color-coding. (C) Overlay of density maps extracted from trajectory 1 (red surface), 2 (green mesh) and 3 (blue 

mesh) showing the frequency of interaction between L-alanine on the surface of AlaDHAm; the contour level 

is 3 sigma. Regions of high density in trajectory 1 are labelled with black letters. The protein conformation is 

as in panel A. (D-F) Root mean square deviations (RMSDs) of the L-alanine atoms during the simulations 1-

3, respectively, with respect to the AlaDHAm starting model from TopModel after super-positioning to the 

starting structure-
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In order to estimate quantitative thermodynamic binding properties, substantially 

more binding and unbinding events would be required. Still, the simulations provide 

suggestions for energetically favorable binding locations on the surface of AlaDHAm as 

shown in Figure 12. These simulations reveal a potential binding pathway in which alanine 

successively binds to interaction “hot spots” on the way towards the active site. This was 

also corroborated by energetics calculations with molecular mechanics generalized born 

surface area (MM-GBSA) calculations. The identification of these binding regions provides

an explanation for the substrate inhibition of AlaDHAm, as the occupation of these spots by 

alanine would hinder alanopine egress from the binding site, provided that it follows the 

same successive binding pathway (only in reverse). This assumption is highly likely given 

the gorge-like shape of the binding funnel.

11.3 CONCLUSIONS AND SIGNIFICANCE

In summary, we presented a biochemical characterization of AlaDHAm, which catalyzes the 

reductive condensation of L-alanine with pyruvate to alanopine. AlaDHAm displays a high 

catalytic efficiency and substrate specificity, and is prone to substrate inhibition. As the 3D 

structure of AlaDHAm is unknown, I predicted the structure with TopModel and we used 

the substrate-binding model from the homologue OcDH from P. maximus to infer the 

cofactor-binding pose and initial L-alanine binding modes. Unbiased MD simulations of the 

system captured the binding of L-alanine diffusing from solvent to the putative binding 

region, located at the helix-kink-helix motif, as observed for binding of L-arginine to OcDH. 

At the same time, the observed binding of L-alanine provides for the first time a molecular

explanation for the role of amino acids 208 and 209 in substrate specificity, the only amino 

acids within the binding region that differ between OpDHs with different substrates. Finally, 

the presence of energetically favorable non-native ligand binding states near the binding 

region provides an explanation for the substrate inhibition of AlaDHAm.

Historically, the modelling of AlaDHAm was the first to be done with a preliminary 

version of TopModel (Chapter 10, Publication II). As TopModel was in its infancy, the 

threading module TopThreader included only a few search tools for template identification 

such as BLAST, and TopAligner included only SAlign. For Model quality estimation 

PROCHECK, DOPE, and ANOLEA was used. The availability of high-quality templates 

and the close homology between the target sequence and the input structure resulted in a 

high-quality model despite the preliminary status of the modelling workflow and showed the 

potential of a fully automated pipeline for structure prediction.
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12. DETERMINANTS OF FIV AND HIV VIF SENSITIVITY 

OF FELINE APOBEC3 RESTRICTION FACTORS

Zeli Zhang, Qinyong Gu, Ananda Ayyappan Jaguva Vasudevan, Anika Hain, Björn-

Philipp Kloke, Sascha Hasheminasab, Daniel Mulnaes (10%), Kei Sato, Klaus Cichutek, 

Dieter Häussinger, Ignatio G. Bravo, Sander H.J. Smits, Holger Gohlke and Carsten Münk.

Retrovirology; 2016, 13, 46.

12.1 BACKGROUND

The feline immunodeficiency virus (FIV) is a lentivirus with the potential to cause an 

immunodeficiency disease in domestic cats, which is similar to human immunodeficiency 

virus type 1 (HIV-1) induced AIDS 190. Additionally, under experimental conditions, FIV 

infection in cats has a mortality rate of up to 60 % 191-193. This makes FIV infection of cats a 

valuable animal model system for the study of HIV-1 and AIDS 194-196.

APOBEC3 (A3) proteins are anti-viral cytidine deaminase restriction factors found 

in placental mammals, which counteract lentiviruses such as HIV, FIV, and Simian 

immunodeficiency virus (SIV) 197-200. Primates have seven different variants of A3 proteins 

while felines have four. Some retroviruses counteract the anti-viral A3 proteins by 

expressing proteins themselves, such as Vif from lentiviruses (HIV, FIV, and SIV) 201-206.

Surprisingly, feline A3 proteins also inhibits HIV and SIV, and HIV-2 and SIV Vif proteins 

can counteract some feline A3 proteins such as A3Z2Z3.

The A3 proteins target viruses and genetic elements that depend on reverse 

transcription, but also show some activity against unrelated viruses 207. The viral protein Vif 

from lentiviruses works by inhibiting encapsidation of A3 into the virus particles, thereby 

preventing the deamination of the virus single-stranded DNA cytidines. If Vif is not present, 

A3 enters the nascent viral particles and introduces G-to-A mutations in the viral genes 

during reverse transcription, which inhibits the function and stability of the transcribed viral 

proteins. Furthermore, some A3 proteins inhibit viral replication by reducing reverse 

transcription and integration 208-213. In cats, the feline A3 protein A3Z2Z3 is expressed 

following a read-through transcription and alternative splicing, which introduces a 

previously untranslated exon in-frame, which in turn encodes for a domain insertion termed 

the A3 linker domain.
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HIV-1 Vif cannot counteract feline A3s, and HIV-1 is therefore inhibited by all feline 

A3s, with A3Z2Z3 displaying the strongest inhibition 214-217. The mechanism behind the 

inability of HIV Vif to degrade feline A3 is unclear, especially since feline A3Z2Z3 and 

HIV-1 Vif are recovered together using co-immunoprecipitation assays, indicating that they 

do in fact bind to each other. In contrast, the Vif of SIV from macaques (SIVmac) can 

degrade feline A3s 218.

To assess the feasibility of generating an animal model for the human system based 

on FIV, we and others cloned FIV Vif into HIV-1 and proved that in feline cell lines the A3 

proteins are the dominant restriction factors against HIV-1 214, 216. In order to understand the 

FIV Vif interaction with feline A3 proteins, we identified in this study important A3 residues 

and used a homology model of feline A3Z2Z3 generated by our structure prediction pipeline 

TopModel to describe the structure-function relationship of these potential FIV Vif binding 

amino acids.

12.2 RESULTS

In this study, we aimed to identify which residues in feline A3s are recognized by Vifs and 

required for A3 degradation. To identify these residues, chimeric human-feline A3s were 

tested, and to locate these interaction regions the first structural model of feline A3 was 

predicted using TopModel.

For modelling the human APOBEC structure, TopModel identified templates 

4J4J_A (35 % Identity), 2KBO_A (37 % Identity), and 2RPZ_A (30 % Identity) resulting in 

a model with 84 % accuracy according to TopScore (Chapter 9, Publication I) (TopScore 

of 0.16). For modelling the feline A3Z2b, TopModel (Chapter 10, Publication II)

identified templates 3VM8_A (42 % Identity), 2KBO_A (39 % Identity), and 1M65_A (10 

% Identity) resulting in a model with 88 % accuracy according to TopScore (TopScore of 

0.12). For modelling the feline A3Z3, TopModel identified templates 4J4J_A (31 % 

Identity), 2KBO_A (36 % Identity), and 2RPZ_A (24% Identity) resulting in a model with 

84 % accuracy according to TopScore (TopScore of 0.16). For the linker domain, TopModel 

identified templates 2XS9_A, 2MMB_A, 2DA4_A, 2LFB_A, and 1FTZ_A with sequence 

identities ranging from 9-19 %.

In the Z3 domain, we identified residues involved in binding of FIV Vif, and upon 

mutation, the Vif-induced A3Z3 degradation was blocked. Furthermore, we found additional 

essential residues for FIV Vif interaction in the A3Z2 domain, which allowed us to construct 
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FIV Vif resistant A3Z2Z3 mutants. These mutants also showed resistance to the Vif of a 

lion-specific FIV, indicating an evolutionary conserved Vif-A3 binding. These results can 

be seen in Figure 18.

The predicted structure of feline A3Z2Z3 from TopModel suggests that the residues 

interacting with FIV Vif have a unique location at the domain interface of Z2 and Z3, unlike 

Vif-interacting residues in human A3s. Furthermore, it showed that the linker domain 

between the Z2 and Z3 domains forms a homeobox-like domain protruding from the Z2Z3 

core. HIV-2 and SIV Vifs efficiently degrade feline A3Z2Z3, possibly by targeting this 

linker domain.
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Figure 18. Composite model of feline APOBEC3 predicted by TopModel and the locations of residues 

mediating the Vif binding. a) Structural model of feline A3Z2Z3 including the homeobox-like linker domain 

(pink) above the Z2 (yellow) and Z3(green) domains as predicted by TopModel. b) The structural model in a

rotated by 90°. The linker domain and parts of the N-terminus without template were omitted for clarity. 

Residues in sphere representation in yellow (D165/H166), blue (L285/I286/A309), and orange (D131-Y134) 

mediate binding of Vif. c) The human A3C crystal structure (3VOW) and a structural model of feline A3Z2b 

built by TopModel depicting the positions of respective HIV-1 Vif and FIV Vif binding sites. The structures 

are oriented as the Z2 domain in a. A structural model of human A3H-HapII and feline A3Z3 built by 

TopModel depicting the positions of respective HIV-1 Vif and FIV Vif binding sites. The domains are oriented 

as the Z3 domain in a. Key residues involved in Vif binding are labelled (except human A3C), represented in 

sticks and highlighted with its surface in orange.

12.3 CONCLUSIONS AND SIGNIFICANCE

In this work computational structure prediction with TopModel, biological assays, and 

sequence analysis were employed to identify residues in feline A3s important for binding of 

FIV Vif. Our results show that HIV Vif binds human A3s differently than FIV Vif bind 

feline A3s, and structure prediction with TopModel revealed a linker domain unique to feline 

A3s. The linker insertion is predicted to form a homeobox-like domain, which is unique to 

A3s of cats and related species, and not found in human and mouse A3s. Together, these 

findings indicate a specific and different A3 evolution in cats compared to humans, which is 

important to consider when using the domestic cat as a model organism for the study of HIV 

and AIDS.

The modelling of APOBEC3 was more challenging for TopModel than it was to 

model Alanopine Dehydrogenase (Chapter 11, Publication III), due in part to the more 

distantly related templates and in part to its multi-domain nature. The inclusion of more 

primary predictors in TopThreader, TopAligner, and TopScore at this point in the 

development of TopModel, however, led to high-quality models in spite of these added 

difficulties. Furthermore, the modelling of the linker domain was the first time an early 

version of the TopRefiner protocol was used. The results from TopModel proved to be 

critical in the identification of key residues important for the interaction between FIV Vif 

and APOBEC3. They also revealed key differences between feline and human A3s, which 

could have important implications for the development of anti-viral therapies using the 

domestic cat as a model animal.
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13. RECOGNITION MOTIF AND MECHANISM OF 

RIPENING INHIBITORY PEPTIDES IN PLANT 

HORMONERECEPTOR ETR1

Daniel Mulnaes (10%),

Christopher Pfleger, Anna Kinnen, Holger Gohlke and Georg Groth.

Nature Scientific Reports 2018, 8, 3890.

13.1 BACKGROUND

Fruit ripening of crops, such as apples, bananas and tomatoes, is induced by the plant 

hormone ethylene. To minimize fruit damage and spoilage during transportation due to over-

ripening, some industries therefore interfere with ethylene biosynthesis or signaling, by 

storing and transporting the crops in an unripe state and inducing ripening by ethylene 

exposure at the final destination. Synthetic peptides derived from Ethylene-Insensitive 

Protein 2 (EIN2), a central regulator of the ethylene signaling pathway, were recently shown 

to delay fruit ripening. In particular, the inhibitory peptide NOP-1 derived from EIN2 was 

shown to delay ripening by interacting with the ETR1 protein, the prototype of the plant 

ethylene receptor family. ETR1 is a large multi-domain receptor protein with a trans-

membrane domain and four cytosolic domains, which forms a dimer in-vivo. Upon ethylene 

binding, ETR1 starts an intracellular signaling cascade, which ultimately results in altered 

gene expression and the induction of ripening.

However, despite knowing that upon ethylene binding ETR1 induces fruit ripening, 

and knowing that NOP-1 inhibits this signal, the molecular mechanism of these interactions 

is still unknown. Understanding how the binding of ethylene impacts ETR1 to induce 

intracellular signaling and how this signal is inhibited by NOP-1 is key to understanding 

fruit ripening at the molecular level as well as figuring out how to best modulate this process

to prevent food spoilage during transport.

In this study, we show that the inhibitory peptide NOP-1 derived from EIN2 binds to 

the GAF domain of ETR1. Furthermore, by combining site-directed mutagenesis,

computational structure prediction with TopModel and TopDock, molecular dynamics 

simulations, and rigidity analysis we reveal the peptide interaction site and a plausible 

molecular mechanism for the ripening inhibition. This in turn may aid in the future 
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optimization of peptide inhibitors of fruit ripening such as NOP-1 and decrease spoilage 

during crop transport.

13.2 RESULTS

To understand the structural basis of interactions between ethylene receptors and inhibitory 

peptides, heterologous expression was used to produce truncated constructs of ETR1 from 

the model organism A. Thaliana, which successively lack protein domains starting from the 

C-terminus. The goal was to identify ETR1 domain(s) crucial for the protein-peptide 

interaction between the inhibitory octapeptide NOP-1 derived from EIN2 219-221, under the 

assumption that domain truncation has minimal impact on protein stability and dimerization. 

Microscale thermophoresis was used to characterize the binding and revealed that only once 

all cytosolic domains of ETR1 had been removed, was the binding of NOP-1 to the receptor 

abolished. This indicates that the last cytosolic domain that was removed, the GAF domain, 

binds NOP-1. To investigate the binding of NOP-1 further, a construct containing the 

receiver domain, the catalytic ATP-binding domain, and the dimerization histidine-

phosphotransfer domain was expressed and tested for binding to NOP-1 using microscale 

thermophoresis. Surprisingly, this construct also showed no binding to NOP-1, which 

disproved the initial hypothesis that NOP-1 binds to a canonical phosphorylation site in the 

receiver domain. By process of elimination, the GAF domain was therefore pinpointed as 

the only binding partner of NOP-1, since the constructs lacking this domain showed no

binding of NOP-1. A schematic representation of ETR1 can be seen in Figure 19.

Figure 19. Schematic representation of the full ETR1 protein in its dimeric form. The GAF domain 

(yellow) was found to mediate the dimer interaction and to be the domain, which interacts with the NOP-1

inhibitory peptide. By successively removing first the Receiver domain, then also the Catalytic ATP-binding 

domain, then the Dimerization histidine-phosphotransfer domain, and finally the GAF domain, and only 

observing abolished NOP-1 binding at the last step, the GAF domain could be identified as a NOP-1 binding 

domain. By constructing a protein with all other domain than the GAF domain and observing no NOP-1

binding, it was shown that only the GAF domain binds NOP-1.
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To explore the binding of NOP-1 to the GAF domain of ETR1, I predicted a model 

of the GAF domain using TopModel, since no experimental structure exists. The identified 

templates by TopModel all share the same fold, with the top five ranked templates being: 

3P01_A (18 % Sequence Identity), 3TRC_A (15 % Sequence Identity), 3CI6_A (13% 

Sequence Identity), 3W2Z_A (12 % Sequence Identity), and 1YKD_B (15 % Sequence 

Identity). The final model built by TopModel (Chapter 10, Publication II) was assessed 

with TopScore (Chapter 9, Publication I) to be 71% correct, with the majority of 

inaccuracies being located in the flexible loop regions (residues 228–247 and 257–272: 47 

% and 52 % inaccuracies, respectively).

Previous findings suggest that ethylene receptors form a dimer in their simplest 

functional state, which is also mediated by their GAF domains 222. I therefore built a dimer 

model of the GAF domain using a preliminary version of the protein-protein docking 

software TopDock and a preliminary version of the protein-protein interface prediction 

software TopInterface, which at the time was integrated into TopDock. TopInterface predicts 

protein-protein contacts based on a structure-based homology search that is independent of 

sequence. It does so by using the Phyrestorm 223 clustering tree to rapidly search the PDB 

database for structures similar to the input, using a 0.5 TM-Score cut-off to select true 

positives. When the same PDB ID is found as a structural homologue for two queries, their 

interface is inferred from the interface in the structural homologue. TopInterface identified 

five different homologous interfaces (PDB ID and chain identifiers given: 3G6O_AB, 

3IBJ_AB, 3K2N_AB, 3P01_AB, and 3TRC_AB) all of which indicate that the dimer 

interface of the GAF domain consists of the N- and C-terminal helices.

I used the residue-residue contacts from each homologous interface for restrained 

docking of the GAF domains using TopDock, which uses the docking engine HADDOCK 
224. The docking solutions were pooled and clustered by TopDock, and ranked according to 

HADDOCK energy, cluster size, distance to cluster centroid, and fulfillment of predicted 

contacts to select a docking solution. Each monomeric subunit of our final model contains a 

central, antiparallel, seven- - -helix (amino-acids 213–

220) and three, parallel- -helices that cover the N- and C-terminal regions (amino-

acids 118–173 and 290–305). The N- -helices of the two monomers together form 

the dimeric interface resulting in a six-helix bundle in the homo-dimeric structure. The final 

monomeric and dimeric structures predicted by TopModel and TopDock can be seen in 

Figure 20.



Extended Abstract - Publication V: Alanopine Dehydrogenase

Page | 83

Figure 20. The model of the GAF domain. a) The model is colored according to predicted residue-wise error 

according to TopScore and docked to form a dimeric model using TopDock. b) The truncated dimeric model 

was solvated and 15 NOP-1 peptides were placed randomly in the solvent. After MD simulations of 15x2μs,

the residues interacting with NOP-1 were identified. c) Three hot spots were identified according to hydrogen 

bonding between NOP-1 and the GAF domain, and were analyzed experimentally to identify the most likely 

binding site for NOP-1.

MD simulations of the protein of 500 ns length in the absence of any peptide ligand 

revealed overall moderate structural variations within both monomers. Subsequently, 15 MD 

simulations of 2 μs each with different randomly placed NOP-1 peptides were performed to 

identify putative binding sites. Three such sites were identified by analyzing hydrogen 

bonding between the peptide and the GAF domains. To identify which of these potential 

binding sites are more likely to be the true peptide-binding site, alanine mutations of the 

binding site residues were combined with intrinsic tryptophan fluorescence quenching 

experiments. These experiments confirmed that the most likely binding site is located in a 

negatively charged patch (binding site III) close to the interface between the two monomers, 

where the positively charged peptides bind. Using a combination of rigidity analysis 225-226

and analysis of the stability of the GAF domains in the MD simulations showed a stabilizing 

effect of NOP-1 binding. This stabilization may hamper the transmission of ethylene binding 
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signals (such as a conformational change induced by ethylene binding to the TM domain) 

from reaching the rest of the transporter, and thus inhibit fruit ripening.

13.3 CONCLUSIONS AND SIGNIFICANCE

The application of TopModel and TopDock to the modelling of the GAF domain of ETR1 

enabled an understanding of the inhibitory effect of the NOP1 peptide on fruit ripening at 

the molecular level. This understanding is rooted in the accurate modelling of the GAF 

domain with TopModel and dimer construction with TopDock. These accurate predictions 

enabled the identification of putative binding sites using free ligand diffusion MD 

simulations of the dimeric model as well as experimental validation of the binding sites. 

Furthermore, a mode of action was proposed by performing rigidity analyzes with CNA and 

flexibility analyses of the MD trajectory. This new knowledge could in turn be used to design 

new improved inhibitors of fruit ripening by targeting this binding site with either small 

molecules or peptide inhibitors.

The modelling of the GAF domain showed the power of automated structure

prediction with TopModel (Chapter 10, Publication II). The automated structure prediction 

is especially useful for target proteins such as the GAF domain, where only distantly related 

templates with low sequence identity were found. All of the templates identified for the GAF 

domain had less than 20% sequence identity, but the final model still had a high quality when 

modelled with TopModel. Furthermore, it showed the potential of predicting protein-protein 

interactions with the preliminary version of TopInterface and using those predictions to 

guide protein-protein docking with TopDock.
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14. SUMMARY AND PERSPECTIVES

In this thesis, I have described the ongoing development of TopSuite and its application to 

different biological systems of interest, resulting in key biological insights and providing a

basis for further research.

I have developed a meta-tool for protein model quality estimation with two scoring 

functions, TopScore and TopScoreSingle. These scoring functions use deep neural networks 

to combine predictions from many diverse model quality estimation programs. They were 

trained on a large dataset of models from different sources representing both homology 

models from closely related and distantly related homologous templates, ab initio models 

from folding simulations, artificially misfolded decoys, and models from previous CASP 

competitions. TopScore and TopScoreSingle showed a significantly better and more stable 

performance across the different datasets compared to all state-of-the-art primary predictors 

(Chapter 9, Publication I).

Building on the ability to estimate protein model quality accurately with TopScore 

and TopScoreSingle, I developed a fully automated template-based protein structure 

prediction workflow called TopModel. TopModel differs from traditional structure 

prediction pipelines in two main ways: First, template selection is performed based on 

predicted template similarity to the native structure using deep neural networks. Then, top-

down consensus is used to discard templates, that are structurally different from the best 

template, rather than selecting the fold most often found using regular consensus. Second,

instead of using regular consensus between initial models during model refinement, 

TopModel predicts the residue-wise error using TopScore and TopScoreSingle and uses the 

predicted error to locate and correct erroneous regions. Compared to its primary predictors,

TopModel has a much better template selection and, compared to other template-based 

structure prediction workflows, it shows a significant improvement in model quality. 

However, TopModel is still at a disadvantage compared to methods, which use ab initio

folding, state-of-the-art contact prediction and protein domain prediction (Chapter 10,

Publication II).

To demonstrate the usefulness and the power of fully automated protein structure 

prediction with TopModel, I applied the workflow to several projects in which the structure 

of the target protein of interest was unknown. Three such examples are detailed in this thesis, 

namely: (1) Structure prediction of Alanopine Dehydrogenase and the identification of 
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structural determinants of ligand specificity by comparison to related structures.

Furthermore, the substrate binding pathway and substrate inhibition was predicted, using the 

predicted structure as a starting point molecular dynamics simulations and free energy 

calculations (Chapter 11, Publication III). (2) Prediction of feline and human APOBEC3

protein structures to determine residues important for binding viral Vif proteins from HIV 

and FIV viruses, respectively. These predictions enabled the identification of key differences 

in host-pathogen interaction patterns in humans and domestic cats, which are critical to 

consider, when using cats as model animals for the study of HIV (Chapter 12, Publication 

IV). (3) Prediction of the dimeric structure of the GAF domain of the plant Ethylene 

Receptor 1 (ETR1), which induces fruit ripening upon binding of the plant hormone 

ethylene. This prediction enabled the identification of binding sites for the NOP-1 peptide 

derived from the Ethylene-Insensitive Protein 2 (EIN2), which inhibits the ripening process. 

These binding sites were identified by combining free ligand diffusion molecular dynamics 

simulations of the structures predicted by TopModel with experimental validation. The 

predicted binding sites also provided insights into the inhibition mechanism of NOP-1 on 

fruit ripening and thus provide a basis for industrial application and improvement of peptide 

inhibitors of fruit ripening (Chapter 13, Publication V).

In all, the results presented in this thesis show that integrating different primary 

predictors for protein model quality estimation (Publication I), and template-based structure 

prediction (Publication II), and combining their outputs using deep neural networks is 

highly effective. Furthermore, the usefulness of the methods developed in this thesis was 

demonstrated by applying them to target proteins of high biological (Publication III), 

medical (Publication IV) and industrial (Publication V) interest.

However, there is still a need for methods that can handle large proteins with multiple 

domains better, as well as a need for methods that can accurately predict protein structures 

for which no templates are available. Therefore my ongoing work is focused on developing 

methods that can identify domains in the target sequence (TopDomain), predict properties 

of these domains which can be used for ab initio folding (TopContact), and predict the 

interactions between domains or proteins (TopInterface), in order to construct large multi-

domain proteins and protein-protein complexes by docking together individual proteins 

and/or protein domains (TopDock).
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pDomThreader

Structure Prediction Modeller, ROSETTA, CONFOLD, I-TASSER, CNS

Feature Prediction PSICOV, EVFOLD, CCMPred, MetaPSICOV, NebCon, NNCON, 

SVMCON, DeepCov, DNCON2, PCONSC4, COLORS, SPOT, 
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BETAWARE, LIPS, RYTHM, COILS2, SIGNALP, GlobPlot, 

TRUST, DeepCoil, T-REKS, HHrep, ScoobyDomain, PPRODO, 

DOMPRO, DROP, DOBO, DOMCUT, DeepDom, ConDo, 

FIEFDom, ThreaDom, DOMPRED, InterProScan5

Protein Docking HADDOCK, FRODOCK, JET

Ligand Docking Autodock Vina, IONCOM, CAVER, OpenBabel, PocketAnalyzer, 

FunFold3, P2Rank, CONCAVITY, SiteHound, eFindSite, fPocket,

LigSiteCSC

Others: Microsoft Office, Open Office, Inkscape.

Advanced Training

Interdiciplinary Graduate and Research Academy (iGRAD), Düsseldorf

- Good Scientific Practise for Doctoral Researchers

- Presenting (in) Science - How to own the stage on (international) 

conferences

- Optimizing Writing Strategies for Publishing Research in English (for 

CEPLAS)

CLIB Graduate Cluster, Düsseldorf

- Introduction to Project- and Innovation Management and Patent Law
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Publications

I) Daniel Mulnaes, and Holger Gohlke. TopScore: Using deep neural networks and 

large diverse datasets for accurate protein model quality assessment. Journal of 

Chemical Theory and Computation, 2018, 14, 6117-6126.

II) Daniel Mulnaes, Nicola Porta, Rebecca Clemens, Irina Apanasenko, Jens 

Reiners, Lothar Gremer, Philipp Neudecker, Sander Smits, Holger Gohlke.

TopModel: A deep neural network and model quality driven meta-approach to 

template-based protein structure prediction. Journal of Chemical Theory and 

Computation, 2019, Submitted.

III) Holger Gohlke, Ulrike Hergert, Tatu Meyer, Daniel Mulnaes, Manfred K. 

Grieshaber, Sander H.J. Smits and Lutz Schmitt. Binding region of alanopine 

dehydrogenase predicted by unbiased molecular dynamics simulations of ligand 

diffusion. Journal of Chemical Information and Modelling, 2013, 53, 2493–

2498.

IV) Zeli Zhang, Qinyong Gu, Ananda Ayyappan Jaguva Vasudevan, Anika Hain, 

Björn-Philipp Kloke, Sascha Hasheminasab, Daniel Mulnaes, Kei Sato, Klaus 

Cichutek, Dieter Häussinger, Ignatio G. Bravo, Sander H.J. Smits, Holger 

Gohlke and Carsten Münk. Determinants of FIV and HIV Vif sensitivity of feline 

APOBEC3 restriction factors. Retrovirology, 2016, 13, 46.

V) niel Mulnaes, Christopher Pfleger, Anna Kinnen, 

Holger Gohlke and Georg Groth. Recognition motif and mechanism of ripening 

inhibitory peptides in plant hormone receptor ETR1. Nature Scientific Reports,

2018, 8, 3890.

VI) Nils Widderich, Marco Pittelkow, Astrid Höppner, Daniel Mulnaes, Wolfgang 

Buckel, Holger Gohlke, Sander H.J. Smits, Erhard Bremer. Molecular dynamics 

simulations and structure-guided mutagenesis provide insight into the 

architecture of the catalytic core of the ectoine hydroxylase. Journal of Chemical 

Information and Modelling, 2013, 53, 2493–2498.

VII) Sakshi Khosa, Benedikt Frieg, Daniel Mulnaes, Diana Kleinschrodt, Astrid 

Höppner, Holger Gohlke, Sander H.J. Smits. Structural basis of lantibiotic 

recognition by the nisin resistance protein from Streptococcus agalactiae. Nature 

Scientific Reports 2016, 6, 18679.
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VIII) Prakash Chandra Rathi, Daniel Mulnaes and Holger Gohlke. VisualCNA: a GUI 

for interactive Constraint Network Analysis and protein engineering for 

improving thermostability. Bioinformatics, 2015, 31, 2394–2396
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