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“Chemists seek precise answers to well-defined problems, whereas biologists are content with

’

approximate answers to complex problems.’
- Arthur Kornberg
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Abstract

3. ABSTRACT

All known life to date depends on proteins. Proteins are essential molecular machines that
participate in every process within cells and play vital roles in, for example, cell structure,
cell signalling, cell division, motor function, metabolism, and immune responses. Proteins
owe their diverse functions to their vast array of different structures. Knowing the three-
dimensional structure of a protein is therefore a critical step towards understanding its
function. That knowledge can, in turn, help researchers to figure out how to modulate the
protein function, leading to new and/or improved drugs or cleaner and more environmentally

sustainable industrial processes.

At present, resolving a protein structure experimentally is laborious, time consuming
and cost intensive. Therefore, being able to predict a protein structure accurately using
computational methods is of high interest in biochemical, biomedical, and biotechnological
research. Many methods for computational structure prediction have been developed in the
last two decades, but no single method is consistently the best for every protein. Since
different methods use different ideas, databases, algorithms and machine learning
techniques, they provide different answers to the same types of problems. Consequently,
integrating multiple so-called primary methods into a single meta-method harnesses their
strengths and counteracts their weaknesses. This results in more robust and accurate structure
predictions. However, when the majority of primary methods consent on the wrong
prediction, out-numbering those that make the right one, meta-methods that rely on majority

consensus make wrong structure predictions.

The goal of this thesis is to provide a toolbox and fully automated protein structure
prediction workflow called TopSuite. This workflow consists of multiple meta-methods,
each of which solve different tasks for protein structure prediction. Rather than using
consensus though, these meta-tools make use of deep neural networks that have been trained
on large datasets to learn when, and how much, to trust each primary method. As such, the
TopSuite meta-methods are able to go against the majority when needed, and yield

predictions that are significantly better than any of their respective primary methods.

Furthermore, the utility of TopSuite, in particular the template-based structure
prediction workflow TopModel, is demonstrated through the application to target proteins

of high biological, medical, and industrial importance.
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Zusammenfassung

4. ZUSAMMENFASSUNG

Proteine sind lebensnotwendig fiir alle bekannten Organismen. Als ,,molekulare Maschinen*
sind Proteine an allen Prozessen in der Zelle beteiligt und {iben wichtige Funktionen aus,
beispielsweise im Bereich der Zellstruktur, Signalweiterleitung, Zellteilung, Motorik,
Stoffwechsel und Immunantwort. Proteine verdanken ihre vielfdltigen Funktionen einer
Vielzahl unterschiedlicher Strukturen. Die Kenntnis der rdumlichen Struktur eines Proteins
ist daher ein entscheidender Schritt zum Verstdndnis der Proteinfunktion. Dieses Wissen
kann wiederum helfen herauszufinden, wie diese Funktion moduliert werden kann, was zu
neuen und/oder verbesserten Arzneimitteln sowie saubereren und umweltvertraglicheren

industriellen Prozessen fiihren kann.

Gegenwirtig ist das experimentelle Aufkldren einer Proteinstruktur arbeitsaufwendig,
langwierig und kostenintensiv. Daher ist es fiir die biochemische, biomedizinische und
biotechnologische Forschung von groBem Interesse, Proteinstrukturen mithilfe von
computer-gestiitzten Methoden genau vorhersagen zu konnen. In den letzten zwei
Jahrzehnten wurden viele Methoden zur Vorhersage der Proteinstruktur entwickelt; jedoch
ist keine einzelne Methode durchweg die beste fiir jedes Protein. Da unterschiedliche
Methoden auf verschiedenen Ideen, Datenbanken, Algorithmen und Techniken des
maschinellen Lernens aufbauen, produzieren sie unterschiedliche Ergebnisse bei der Losung
gleicher Arten von Problemen. Daher birgt die Kombination verschiedener Methoden zu
einer Metamethode die Mdglichkeit, die Starken der Primdrmethoden auszunutzen und ihren
Schwichen entgegenzuwirken. Dies fiihrt zu robusteren und genaueren Strukturvorhersagen.
Kommt jedoch die Mehrheit der Primdrmethoden zur gleichen falschen Vorhersage, so
tiberstimmt diese die eventuell richtigen Vorhersagen anderer Methoden. Dies wiirde dazu

fithren, dass auch die konsensbasierte Metamethode eine falsche Strukturvorhersage trifft.

Das Ziel dieser Arbeit ist es, eine Programmsuite und einen vollautomatisierten Workflow
zur Proteinstrukturvorhersage zu erstellen: TopSuite. Die Suite enthédlt Metamethoden, die
jeweils unterschiedliche Aufgaben bei der Vorhersage von Proteinstrukturen erfiillen.
Anstelle eines Konsens verwenden diese Metamethoden Deep Neural Networks, die auf
grolen Datenmengen trainiert wurden, um zu lernen, wann und inwieweit jeder
Primirmethode zu vertrauen ist. Daher konnen die TopSuite Metamethoden bei Bedarf
gegen die Mehrheit der Primdrmethoden entscheiden und Vorhersagen treffen, die deutlich

besser sind als die, der jeweiligen primdren Methoden.
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Zusammenfassung

Des Weiteren wird die Niitzlichkeit von TopSuite, insbesondere der templat-basierten
Strukturvorhersage, bei der Anwendung auf Proteine von hoher biologischer, medizinischer

und industrieller Bedeutung demonstriert.
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Introduction

5. INTRODUCTION

Knowing the three-dimensional structure of a protein is a key component to understand its
stability !, function 2, structural evolution *, and interactions with ligands ** or other proteins
6. At present, X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy
are the most prominent experimental methods for resolving protein structures. Recent
advances in Cryo-Electron microscopy (Cryo-EM), however, ® have resolved structures at
near atomic resolution. Despite these advances, experimental structure determination,
regardless of the method, is both cost intensive and time consuming, making it impractical

for structural genomics and costly for research groups with limited resources.

Consequently, protein structure prediction is an essential part of knowledge-based
protein engineering °, drug-design and -discovery '°, as well as function assignment "2, In
the last decades, many approaches to computational structure prediction have been
developed. This raises the question of which method to use for a given protein-coding gene
of interest, also known as the target sequence. Which biological information can be derived
from structure prediction depends on its accuracy: While highly confident models based on
homologous templates are generally suitable for computational ligand docking and virtual
compound screening, even models of medium confidence can be useful for identification of

functionally important sites and disease-associated mutations '°.

Since the inception of the field, protein structure prediction has been considered the
Holy Grail of bio-informatics '#, and the majority of computational methods in the field has
been developed to aid in the process of predicting protein structure. Consequently, much
work has been focused on integrating methods developed by different people and
computational groups, to harness their strengths and counteract respective weaknesses.
Because these methods are based on different ideas, databases, methods and machine
learning algorithms, they all provide different solutions to the same types of problems. These
include tasks such as: 1) searching sequence databases for matches that share common
ancestry with the target sequence; 2) aligning multiple sequences to one another in order to
build a multiple sequence alignment; 3) predicting physical features (e.g. secondary structure
or solvent accessibility) for the target sequence; 4) identifying suitable template structures
by aligning a target sequence to a template; 5) aligning protein 3D structures to one another;
6) constructing 3D structural models from a list of templates and alignments; 7) evaluating

model quality of an ensemble of protein 3D structural models.
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Introduction

The most common underlying methodology used for integrating different methods is
the concept of consensus >3, At its core, the idea of consensus is to submit the target
sequence to a large ensemble of different so-called primary predictors and then merge the
outputs of those methods in a clever way. If each of the primary predictor outputs reflects
part of the truth, the resulting meta-prediction should be closer to reality than any single
primary prediction. Meta-servers that implement different variants of this fundamental
concept have shown to be one of the major advances in the field of structure prediction 2%
Furthermore, the best performing methods use some variation of majority-based consensus
2425 A major drawback of consensus, however, is that sometimes the majority is not correct,
and when the majority of methods agree on the wrong prediction, consensus will drive the
prediction away from the truth. This can in part due to many methods being highly correlated
with one another, as they build on similar methodologies, databases and machine learning

concepts. This means that if a particular task is difficult and prone to mistakes, correlated

methods are prone to make the same mistakes, driving the majority away from the truth.

In this thesis, I present the development of several meta-methods for protein structure
prediction, overcoming the problems of majority voting consensus by using deep neural
networks (DNNs) to combine the inputs of different primary predictors. In this way, the
DNNSs learn which methods to trust most in which situations and allows the meta-methods

to perform much better than traditional consensus.
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Background

6. BACKGROUND

In this section, I will briefly cover some of the major experimental and computational
methodologies that have carried the field of computational structure prediction to its current
state. While these developments have happened more or less in tandem with one another,
the next section is grouped according to increasing complexity of methods, while attempting

to maintain some level of chronological order.

6.1 EXPERIMENTAL STRUCTURE DETERMINATION

6.1.1 X-RAY CRYSTALLOGRAPHY

The currently most accurate experimental method to determine protein structures is X-ray
crystallography, in which a highly concentrated solution of the purified protein is gradually
condensed until it crystallizes. Upon crystallization, most of the proteins in solution arrange
themselves into a highly regular and periodically repeating lattice. The exact structure of this
lattice depends on the crystallization conditions and the protein itself. The crystallized
sample is cooled, usually to around 100 Kelvin and then exposed to an X-ray beam from
multiple angles. Cooling mitigates radiation damage and increases the lifetime of the crystal
in the beam about 100-fold %°. The resulting diffraction pattern, in terms of scattering angles
and intensities of the X-rays, can be measured and used to reconstruct the electron density
of the protein and infer the mean positions of atoms *’. However, since light detectors such
as Charge Coupled Devices (CCDs) only measure the intensity of the X-rays, the
information about the phases is lost. In order to resolve the electron density, this information
has to be recovered by shifting the phases and back calculating the phases from the resulting
shifts. Resolving the phases, also known as solving the phase-problem, can be achieved in
several ways. In Multi-wavelength Anomalous Dispersion (MAD), absorption and re-
emission of X-rays at multiple wave-lengths by low orbit electrons leads to a shift in phases
28 In Multiple Isomorphous Replacement (MIR), heavy metals are incorporated into the
structure by soaking 2° or by modifying the protein with unnatural amino-acids with heavier
elements such as seleno-cysteine or seleno-methionine *°, which also leads to a shift in
phases. Another option, known as Molecular Replacement (MR), requires the reconstruction
of the packing in the crystal lattice with a model from a close homologue, allowing for the
calculation of the phases from the model density 3!. This however, requires a very high-

quality model, since the crystal packing has to be resolved without atomic clashes.
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Background

The accuracy and quality of X-ray crystallography can in part be attributed to the
rigidification of the protein structure caused by crystallization and cooling. However, the
physiological form of the protein is much more flexible at biologically relevant temperatures.
Since it is not known a priori, which conditions lead to formation of stable crystals, many
thousands of different conditions with varying parameters such as protein concentration, salt
concentration, buffer composition, temperature, pH, and ionic strength are generally carried
out in the hope of finding a set of experimental conditions that lead to crystal formation *2,
This is time and cost intensive, and does not guarantee that a suitable set of conditions is
ever found. Difficulties often arise when flexible parts of the protein prevent it from
arranging into a stable crystal, making it necessary to cut these pieces out ¥, For X-ray
crystallography, larger proteins are especially problematic, because all of their atoms have
to arrange themselves in the same pattern in order to form a stable crystal. Since large
proteins tend to have multiple structural domains, which can differ in their relative spatial
orientation, obtaining a crystal for such proteins is particularly rare. Consequently,
crystallization becomes less likely with increasing protein size 2’. An outline of an X-ray

crystallography workflow for protein structure determination can be seen in Figure 1.

C

Figure 1. Outline of X-ray crystallography workflow. A) Protein expression and purification. B)
Crystallization. C) Collection of diffraction patterns. D) Reconstruction of electron density from diffraction

patterns. E) All-atom model derived from the electron density.

Because of their abundance in protein structure databases, crystal structures make up the
majority of the targets used for training TopScore (Chapter 9, Publication I) and TopModel
(Chapter 10, Publication II).

6.1.2 NMR SPECTROSCOPY

Protein structure determination is also possible using nuclear magnetic resonance
spectroscopy (NMR spectroscopy). The big advantage of NMR spectroscopy in terms of

structure determination is that flexible proteins, which do not readily arrange into a crystal
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lattice, can be resolved in aqueous solution at room temperature rather than in a frozen state.
In NMR spectroscopy a strong external magnetic field is applied to the protein solution,
which causes nuclei with a spin to orientate themselves in the direction of, or opposite to,
that of the external field. By supplying electromagnetic radiation with so-called pulse
frequencies, specific types of spin nuclei absorb the radiation energy and subsequently emit
some of it, which can be measured as a so-called NMR spectrum. The exact frequency of
the energy transition, termed a chemical shift, depends on the magnetic field around the
nucleus, which in turn depends on the chemical environment around the nucleus shielding it

from the external magnetic field.

In general, two types of spectroscopy experiments are carried out: Correlation
spectroscopy, in which the chemical shifts are centered on a single frequency and correlated
resonances are measured, and Nuclear Overhauser Effect (NOE) spectroscopy, in which the
relaxation of the resonances is observed. The former is used to unambiguously assign
specific signals to specific residues, while the latter allows for assignment of distance

restraints between atoms not covalently bound to each other .

Which type of nuclei is targeted in NMR, also termed the isotopically labelled nuclei,
differs depending on experiment, but common ones include hydrogens and labelling with
13C and/or N, the latter of which are fed to the organism producing the protein. By using
multiple different labels at once, the coupling between different signals and their coupling
constants can be calculated. This allows the signals to be assigned to specific atom pairs.
The calculation of such 2D spectra prevents the overlap of different peaks, a typical example
of which is 2D heteronuclear single quantum correlation (2D-HSQC) spectra. Using the
calculated chemical shifts and coupling constants it is possible to calculate different types of
restraints for the protein, most commonly torsion angle restraints and short-range (<5 A)

NOE distance restraints.

Using the calculated torsion angle restraints and NOE distance restraints the structure
of proteins of about 20 kilo-Dalton (about 180 amino-acids) can generally be resolved using
computational toolboxes such as the Crystallography and NMR System (CNS) *’ to generate
protein models that satisfy the experimental restraints ***. Larger protein systems, however,
tend to have more complex shapes and intra-molecular interactions, which causes more
overlapping peaks even in 2D spectra. Thus, structural elucidation of large proteins using
NMR generally require higher dimensionality spectra such as 3D or 4D spectra, and is much

more difficult to perform.
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Large proteins tend to have shorter transverse correlation times and therefore the
NMR signal decay more rapidly, leading to wide lines in the NMR spectra and consequently
poor resolution. Transverse relaxation-optimized spectroscopy (TROSY) experiments *
seek to alleviate this problem. Because of nuclear spin coupling along chemical bonds (also
known as J-coupling), peaks in HSQC spectra appear as multiplets. While these peak
components correspond to the same signal, they have different relaxation times due to
interference between relaxation mechanisms such as dipole-dipole coupling (DDC) and
chemical shift anisotropy (CSA). TROSY is performed at a high magnetic field strength
(CSA is field strength dependent, DDC is not) to select the peak component for which the
DDC and CSA relaxations cancel each other out due to destructive interference. This results

in a single sharp peak in the spectrum, which significantly increases NMR resolution.

However, since large proteins are generally less soluble, even with TROSY and
multi-dimensional NMR, the determination of large protein structures with NMR is difficult
as a soluble sample is required *>*'. An outline of an NMR workflow for protein structure

determination can be seen in Figure 2.

Figure 2. Outline of NMR Spectroscopy workflow. A) Isotope labeling, protein expression and purification.
B) NMR measurement. C) 1D/2D/3D spectra analysis. D) Peak assignment and derivation of secondary

structure and NOE restraints. E) Structure calculation by simulated annealing to fulfill NMR restraints.

In the validation of TopModel (Chapter 10, Publication II) on a particularly
difficult target protein, we showed that the structure prediction from TopModel agreed well

with secondary structure and NOE restraints from NMR experiments.
6.1.3 CRYO-ELECTRON MICROSCOPY

Another experimental method for structure determination, which has seen great advanced in
recent years, is Cryo-Electron Microscopy (Cryo-EM) 78, In Cryo-EM, a sample protein in

solution is rapidly frozen and fixed in vitreous ice on a carbon film typically reinforced with
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a copper grid for structural support. Ideally, the ice is thin enough to accommodate the
proteins but not much thicker, preventing molecule overlap when the sheet is photographed.
The thin ice sheet is then exposed to an electron beam, which subsequently passes through
one or more lenses to magnify the image before it hits a detector, usually a CCD camera.
This results in a blurry 2D image. The blurring comes from the fact that the energy from the
beam is partially absorbed by the sample resulting in so-called beam damage and movement
of the proteins, as well as the limitation of resolution due to the electron wavelength. One of
the key advances in Cryo-EM is the development of ways to flash freeze the samples with
liquid ethane to mitigate beam damage **. Another advancement is to use multiple images
of the protein. By stacking these images and processing them with advanced image
processing tools, the thermal movement of the sample can be measured and to some degree
cancelled out, which greatly improves image quality and structural resolution **. By rotating
the sample, images can be taken from multiple angles, allowing a 3D image to be
computationally reconstructed using programs such as EMAN2 # or RELION #°. Combining
all of the above advances has allowed current state-of-the-art Cryo-EM methods to resolve

large macromolecule-complexes at medium resolution “.

Compared to X-ray
crystallography and NMR spectroscopy, only a very small sample of just a few pul of a low
concentration protein solution is needed, which helps to prevent protein aggregation. The
greatest disadvantage of Cryo-EM is the low signal to noise ratio due to movement of the
sample, and because of this, it is the method with the lowest resolution - typically 4-6 A.
From the computational perspective, the fact that high-resolution Cryo-EM structure

determination is relatively new means that high-resolution Cryo-EM structures are rare in

protein structure databases. An outline of a Cryo-EM workflow for protein structure

determination is shown in Figure 3.

Figure 3. Outline of Cryo-EM workflow adapted from *. A) Image of the vitreous ice sheet with the

embedded sample. B) Subset of the selected particle images showing the protein from different orientations.
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C) Initial electron density calculated from the particle images. D) Refined density map calculated by image re-

focusing on the top and bottom domains respectively. E) All-atom model derived from the Cryo-EM density.
6.1.4 LOW-RESOLUTION METHODS

For the reasons mentioned in the previous sections, high-resolution structural information is
often not obtainable. Multi-domain proteins, large proteins, disordered proteins and trans-
membrane proteins to name a few, each pose their own set of additional technical difficulties,
mainly related to molecular flexibility and solubility, for resolving their 3D structure.
Therefore, several techniques have been developed to get low-resolution structural
information in a faster and cheaper fashion than the previously mentioned methods. In this
segment, [ will briefly cover a few of the more widely used methods, their advantages and

their drawbacks.

Small Angle Scattering (SAS) covers two methods that are highly similar in
nature: Small Angle Neutron Scattering (SANS) and Small Angle X-ray Scattering (SAXS).
Both methods involve the bombardment of a sample with either neutron rays or X-rays at
small angles, typically 0.1-10 degrees. By measuring the scattering patterns, the size and
shape of the molecules in the sample can be determined at a resolution of up to 10 A. The
benefit compared to X-ray crystallography is that it is not required to obtain a crystal of the
sample. Thus, the measurements can be done much cheaper and faster. Compared to NMR
the methods also work for large proteins beyond the practical size limitation of NMR. The
low resolution of SAS methods, however, means that, although they can determine the
average shape of the protein in solution, they are not accurate enough to provide detailed
atomistic information . Therefore these methods are most suitable for large multi-domain
proteins or protein-protein complexes, to obtain information about the over-all arrangement
of structural units relative to each other *°. In the validation of TopModel (Chapter 10,
Publication II) on a particularly difficult target protein, we showed that the structure
prediction from TopModel agreed well with the shape and scattering curves calculated from

SAXS experiments.

Chemical cross-linking is a low-resolution method, in which the target protein of
interest is chemically modified by covalently attaching polymer linkers to surface residues
of the protein. These chemical polymer linkers vary from experiment to experiment but
generally function by nucleophilic attack of the amino group of surface accessible lysine
residues. Some variations of linkers work by activation with UV light >*!, which in some

cases enables the linking of other types of residues. When cross-linking is used for structure
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determination, the cross-linked protein is subsequently digested and subjected to mass
spectrometry. The resulting cross-linked peptide pair masses can help to determine which
peptides, and therefore which residues in the sequence, were cross-linked before the protein
digestion. These residue pairs, combined with the linker length, can be used to infer pseudo-
distances between the cross-linked surface residues °2. These distances are not real Euclidian
distances, since the linkers traverse the surface of the protein. The actual distance between
the cross-linked residue pairs is always significantly shorter than the linker length, due to
the curvature and shape of the protein surface. In theory, these pseudo-distances can be used
as discriminators for aiding in protein structure determination by imposing upper boundaries
to the distance between the residues. However, in practice this has yet to be shown as a
feasible and reliable method for protein structure determination, since up to half of the
determined distances are generally incompatible with the native structure >*. In practice,
other more accurate sources of information are critical to resolve a structure ab initio. There
are four main reasons for the low quality of chemical cross-linking data for structure
determination: First, due to experimental constraints, there is ambiguity in determining the
exact residues that were cross-linked, since the peptides may contain multiple residues that
could have been linked. Second, the residues that can be used as covalent attachment points
are generally limited, leading to only a limited number of cross links being possible for a
given protein. Third, the majority of cross-linked residues are close by in sequence and as
such has little to no discriminatory power for modelling and model selection, since the
distance between the residues is trivially determined by their sequence distance. Fourth, even
if long-range cross-linked residues are found, the fact that only an upper limit on the residue
pseudo-distance can be inferred severely limits the discriminatory power of the data in terms

of modelling and model selection.

A similar method to chemical cross-linking is Forster Resonance Energy Transfer
(FRET) experiments. In a structure determination FRET experiment, fluorophores (also
known as dyes) are attached to chemical linkers, which are then covalently bound to surface
residues of the protein >*. These residues are usually cysteine that are introduced into the
target sequence by targeted mutagenesis. Different dyes are attached in pairs, where one dye
acts as a donor and the other acts as an acceptor. When a protein labelled with two dyes is
exposed to light of a specific frequency, matching the excitation frequency of the donor dye,
the dye is excited, and the excitation energy is transferred non-radiatively to the acceptor
dye by a dipole-dipole resonance interaction. Subsequently, the acceptor dye re-emits the

energy as visible light in a frequency not overlapping with the initial light used for excitation.
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The proportion between the amount of light used for initial exposure and the re-emitted light
is used to calculate the efficiency of energy transfer between the two dyes. This efficiency
is inversely proportional to the sixth power of the distance between the dyes, and can be used

to calculate upper and lower bounds for the inter-dye distance 3.

There are several key advantages to FRET compared to chemical cross-linking. First,
the distance that can be calculated is a Euclidian distance rather than a path the linker takes
on the surface of the protein (i.e. protein surface curvature is ignored). Second, both upper
and a lower distance bounds can be determined, which increases the discriminatory power
of the method. Third, because dyes can be attached to any surface residue pair, the number
of distance restraints depends mainly on the amount of point mutations that can be expressed
and purified. Fourth, by using different dyes, multiple different residue pair distances can be
measured from the same set of point mutations, leading to a much higher amount of distance
restraints than cross-linking, with a higher information content since residues distant in
sequence can be targeted for labelling. FRET does not come without drawbacks, however,
since the linker length must be sufficient, such that the two dyes can be considered freely
moving, yet longer linkers also give more uncertainty of the position of the dyes.
Furthermore, dyes tend to stick to the surface of the protein. This can hinder the distance
calculation in which the two dyes are approximated as freely moving. Finally, it is not always
trivial to infer protein distance restrains from the inter-dye distance restraints. As such this
method is often most suited for large multi-domain proteins or protein complexes, in which
case, FRET can be used to calculate the relative position of larger biological units. These
cases are particularly difficult for high-resolution methods such as NMR or X-ray
crystallography due to the previously mentioned issues of protein flexibility and solubility.
The relative position and orientation of biological units is also particularly difficult for
computational methods to predict. This is because interactions between these units tend to
be sparse, often transient or highly flexible, and are therefore weakly conserved compared

to the structure of the units themselves.
6.2. CASP

The Critical Assessment of Structure Prediction (CASP) is a bi-annual competition that tests
methods for protein structure prediction in a fully blind manner. The competition has been
going on since 1994 >° and covers a 3 month period, during which sequences for which the
structure is about to be experimentally resolved (but may not be due to experimental

difficulties, in which case the target is cancelled) either by X-ray crystallography, NMR
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spectroscopy, or, more recently, by high-resolution cryo-EM, is released to the modelling
community. The registered members of the modelling community then submit models of the
sequences before any experimental data is publicly available. These models are
automatically assessed by a battery of model quality evaluation algorithms to identify which
method produced the model closest to the experimentally determined structure.

The CASP experiments seek to analyze the results of each CASP round to identify
which methodological developments led to the biggest breakthroughs, and to identify which
areas of research would be most beneficial to pursue. In order to do so, different CASP
categories exist to assess the progress and state-of-the-art in different fields. These include

template-based modelling °°, template-free modelling °’, model quality assessment %,

1

t % and ligand binding-site prediction ®'.

protein contact prediction *°, model refinemen
Additionally, CASP closely collaborates with the Critical Assessment of Predicted
Interactions (CAPRI), which seeks to assess the state-of-the-art in predicting protein-protein
interactions through protein-protein docking .

Due to the high competitiveness in the field, many structural bio-informatics groups
keep their developments and findings accessible to the community only as black box online
servers, in order to maintain their ranking in the CASP competition. While papers are
generally published for most competing methods, these online servers are often very
different from the published methods and not available as stand-alone tools. While this has
been pointed out repeatedly by the community, it is unlikely that this is going to change in
the future. The high competitiveness, however, has also led to gradual development in the
field and has served as a good way for fully blind predictions to shine, rather than evaluating
method performance only in a retrospective manner.

In the publication of TopModel (Chapter 10, Publication ITI) we showed that on
CASP datasets from CASP competitions 10, 11, and 12, TopModel outperforms all primary
predictors, and we show targets from CASP13 on which TopModel produced the second

best model out of all predictors in the competition.
6.3 TEMPLATE-BASED STRUCTURE PREDICTION

Historically, template-based structure prediction in the form of homology modelling was the
first type of structure prediction to be developed. Since protein structure is highly conserved,
modelling the 3D structure of a protein structure from a closely homologous template is
often trivial. This is because sequence identity between the target sequence and the template

structure is generally so high that alignment between the two is unambiguous and the
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alignment thus rarely contains any errors. Furthermore, structural conservation is generally
so high that model construction often requires little more than copying of atomic backbone
coordinates, reconstruction of side-chains and energy minimization. Due to the sparse
population of structure databases, however, this type of modelling is generally very restricted
in terms of applicability. When sequence identity decreases, the performance of alignment
programs drops significantly, which makes alignment errors more prone to occur. Severe
alignment errors often start to appear at around 40% sequence identity between the template
and target sequence. The twilight zone for template-based structure prediction ® is at about
30% sequence identity. When a given template has less than 30% sequence identity to the
target structure, the structural overlap between model and native structure (the percentage of
equivalent residue pairs superimposable to less than 3.5 A Cy-atom distance) decreases to

about 60%, showing a large difference between model and native structure .

6.3.1 HOMOLOGY DETECTION

The first challenge one encounters in computational structure prediction is homology
detection. Two proteins are homologous, if they share a common ancestor. To learn from
evolution, be that in terms of structure or sequence, information from related proteins from
different organisms is required. The task is therefore to select from a database of sequences
those matches that share a common ancestor with the target protein of interest (which may
or may not represent experimentally determined structures). This is done by aligning the
target sequence to sequences in a database and the evaluating these alignments in terms of

similarity to determine, whether the match and the target share common ancestry or not.

Accurate and sensitive alignment of sequences has been a goal in bioinformatics for
decades and has driven the development of the majority of methods in the field to this day.
Sequence alignment requires an alignment algorithm and a scoring function. The scoring
function is used by the alignment algorithm to calculate the alignment between the target
sequence and the match in order to optimize the score. Furthermore, it is used to compare
different database matches to one another so as to select those most likely to be homologous
to the target sequence *. Both scoring function and alignment algorithm determine the speed
and accuracy of the homology search. Some search algorithms may use heuristics to speed
up calculations or use simple scoring functions to achieve faster database searches at the cost

65-66

of lower accuracy *°, while others favor more accurate alignment algorithms and complex

scoring functions to optimize accuracy at the cost of slow calculation speeds '7¢7.
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6.3.2 SUBSTITUTION MATRICES

The first scoring functions for alignment algorithms were substitution matrices, in which
similar residues are given a better score if aligned to each other, and where gaps are given a
penalty. This penalty is usually divided into a penalty for opening a gap and another smaller
penalty for extending it. However, these methods are heuristics based on trial and error. The
score for aligning two residues is traditionally defined as the logarithm of the observed
frequency of substitution of a target residue to a template residue divided by the frequency
of the template residue, known as the log-odds ratio. Substitution matrices are defined either
from physiochemical similarity or by multiple sequence alignment analysis. The first widely
used substitution matrices, the PAM matrices, were developed in the 1970's % by calculating
mutation rates from multiple alignments of sequences from closely related species and
extrapolating these to longer evolutionary timescales using matrix multiplication. This did
not perform well when aligning dissimilar sequences, however, leading to the development
of the BLOSUM matrices by Henikoff and Henikoff ®. The BLOSUM matrices were
calculated by analyzing blocks of conserved residues across divergent multiple alignments.
To remove bias from highly similar sequences, the alignments were clustered at a specific
identity cut-off, and each cluster was weighted when calculating the substitution rates. The
BLOSUMS®62 matrix (with a sequence identity cut-off of 62%) is the most widely used

substitution matrix to date.
6.3.3 PAIRWISE SEQUENCE ALIGNMENT

Pairwise sequence alignment algorithms align a target sequence of length N with a potential
match of length M. Needleman and Wunsch 7° introduced the dynamic programming
algorithm, which solves the problem by representing it as finding the least-cost path through
a cost matrix. The Needleman-Wunsch algorithm produces the optimal alignment given the
scoring function but has a time and space requirement which is proportional to the product
of the two sequence lengths O(N-M). An illustration of this algorithm is shown in Figure 4.
The Smith-Watermann algorithm 7! reduces the time complexity by using the observation
that conserved residues cluster in specific regions of the sequence. It iteratively aligns only
the most similar regions, avoiding the issue of searching the entire N-M cost matrix and
effectively decomposing it into several smaller matrices located along the diagonal. This is
referred to as local alignment, as it effectively changes the alignment problem from a global
to a local one. Different variations of these methodologies have been developed 7 but the

core principles remain unchanged. Most importantly, these algorithms are highly dependent
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on the scoring function, and even the faster variants are generally too slow to search through
very large sequence databases, especially when using complex scoring functions. Therefore,

heuristics are generally used for sequence matching in database search methods.
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Figure 4. Illustration of the Needleman-Wunsch dynamic programming algorithm for pairwise sequence
alignment. First, a cost matrix, F, is calculated iteratively based on a scoring matrix, M, (in this example the
BLOSUMG62 matrix) and a gap penalty d (in this case -8). For each cell [i,j] in F, the score can be computed
recursively from the cells [i-1,j-1], [i-1,j] and [i,j-1], using the formula max( F[i-1,j-1]+M(x.y;), F[i-1,j]-d ,
FTi,j-1]-d ). For each cell, the pointer (indicated as arrows) to which of the three cells gave the maximum value
is stored. The uppermost row and leftmost column are filled by summing up the gap penalty d. Second, the
optimal alignment is calculated as the least-cost path through the matrix following the pointers from the lower

right and back through the matrix (indicated by red arrows). The resulting alignment is shown underneath.

The most famous heuristic for pairwise alignment used for database searches is the
word-search heuristic used in the BLAST % and FASTA °® algorithms. In this heuristic, the
target sequence is cut into small fragments called words, for which exact matches are found
in a potential match sequence. The relative positions of the matched words in the target are
then compared to the positions in the match. Only when the relative positions of the words
are comparable between the two, are regular algorithms used, such as the Smith-Watermann
or Needleman-Wunch algorithms. This allows these heuristic methods to disregard highly

dissimilar sequences with few or no matching words, which increases database search speeds
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by orders of magnitude. However, they cannot guarantee that all true hits are found

especially for distantly related sequences where only few words are completely conserved.
6.3.4 MULTIPLE SEQUENCE ALIGNMENT

Once a database search has returned a list of related sequences, these can be aligned to form
a multiple sequence alignment (MSA) that contains more information about the target
sequence than any single match does on its own. The process of calculating an MSA is a
computationally expensive NP-complete problem unless heuristics are used, of which three

variations are common:

Progressive methods use pairwise alignments (such as the ones generated from a
database search) to construct a phylogenetic tree, which is used to first combine similar
sequences into a larger alignment, to which more dissimilar sequences are then added. This
is computationally efficient, but it can introduce pairwise alignment errors that persist in the

final alignment.

Iterative methods are the most common and seek to minimize pairwise alignment
errors by iteratively removing subsets of sequences from the alignment and re-aligning them
to the alignment from which they were removed, effectively refining the MSA. Examples of
methods that use the progressive method with iterative refinement include ClustalW 7,
MAFFT ", and TCOFFEE 7. However, these methods are not guaranteed to remove

pairwise alignment errors.

To remedy the issue of persisting pairwise alignment errors, motif-search methods
try to identify highly conserved regions in the initial MSA. The initial MSA may be
generated by either a progressive alignment method or a progressive alignment with iterative
refinement. These conserved regions are then aligned with global methods (e.g. Needleman-
Wunch) and the variable regions in between the conserved regions are aligned with local
methods (e.g. Smith-Watermann). Examples of motif-search methods include FORMATT
76 and 3DCOMB 77,

6.3.5 IMPROVED HOMOLOGY SEARCH

With the ability to generate a large MSA for a target sequence, information such as the
amino-acid frequency and gap frequency for each position in the target can be calculated.

Such information, called profile information, prompted the development of sequence-profile

79-80

78 and profile-profile alignment methods, which match sequence profiles rather than

sequences themselves. This allows more distantly related homologues to be detected because
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more information is available in the sequence profile than in any single member of the MSA

itself.

With the rapid growth of sequence databases and the observations that different
positions in the protein sequence mutate differently, it became possible to construct position
specific scoring matrices (PSSMs) 8182, Rather than using a single matrix like BLOSUMG62
for the entire sequence, these methods calculate the substitution matrix for every position in
the target sequence-based on a MSA of homologous sequences found for example from an
initial BLAST search. This encodes more information than the profile, as it includes not only
the residue type frequency at each position in the target sequence, but also every binary

mutation frequency (mutation of one residue type to another or to a gap).

With the development of PSSMs came the idea of iterated database searching. In this
method an initial search is used to construct a PSSM, which is then used to repeat the
database search to find more distantly related sequences. The newly identified sequences are
then used for updating the PSSM, and the updated PSSM is used for another round of
searching. In the first iteration of such a search, the PSSM of each position is generally
approximated by the BLOSUM®62 matrix. This is the essence of Position Specific Iterated
BLAST (PSI-BLAST) ®, which is one of the most widely used bioinformatics tools to date.

PSI-BLAST searches, however, still rely on the initial search to return a significant
number of good matches in order to construct a reliable PSSM. This means that the initial
standard matrices (usually BLOSUMG62) has significant impact on which sequences are
detected. To alleviate this issue, context specific matrices were developed based on multiple
alignments of proteins with known structure, to map the relationship between physical
features (e.g. secondary structure and solvent accessibility) and mutation probabilities **. By
matching a sliding window (£13 residues) of the target sequence to a set of pre-computed
context specific substitution matrices, Context Specific Iterated BLAST (CSI-BLAST) 8 is
therefore significantly more sensitive than PSI-BLAST.

Reverse Position Specific BLAST (RPS-BLAST) reverses this search methodology
by searching through a database of PSSMs to calculate how likely it is for the query sequence
to be generated by that PSSM. The latest flavor of BLAST is the development of the Domain
Enhanced Lookup Time-Accelerated BLAST (DELTA-BLAST) ®. DELTA-BLAST first
uses RSP-BLAST to find highly scoring pre-calculated PSSMs from the Conserved Domain
Database (CDD) *. The identified matches are then used to replace the initial PSSM for the
matched positions. In this way, the information of the initial PSSM used for searching the
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sequence database is more specific to the target, rather than simply being pseudo-counts
extrapolated from the BLOSUM matrix. Because the iterated searches depend largely on
correct matches being found in the first iteration, this leads to greatly improved specificity

and sensitivity of DELTA-BLAST compared to BLAST, PSI-BLAST and CSI-BLAST.

6.3.6 HIDDEN MARKOV MODELS

A major advancement in the field of sequence searching is to extend the methodology of
PSSMs and use MSAs to encode probabilistic models known as profile Hidden Markov
Models (profile HMMs, or just HMMs for short) **°°. An encoded profile HMM encodes
the insertion, deletion, and mutational probabilities at each position in the target sequence
just like a PSSM. However, HMMs also models the transitional probabilities between each
residue and the next residue in the sequence, i.e. the probability that a residue is proceeded
by a residue of a specific residue type or a gap. HMMSs therefore carry more information

than PSSMs and, thus, generally perform better for detecting distant homologues.

Once a HMM has been encoded, usually from a MSA, the probability that it would
produce a specific sequence can be calculated very quickly, and a HMM can as such be used
to rapidly search databases of sequences to identify those likely to match the query, without
the need for heuristics such as word-searching. This makes HMM searches more sensitive
especially for identifying matches with low sequence identities. The initial HMM is
generally initialized from pseudo-counts extrapolated from standard matrices such
BLOSUMSG62. The model is then updated with each search over the database similar to
iterated BLAST searches. Because HMMs are probabilistic models, they allow for explicit
calculation of the probability, that a sequence is a match, which eliminates the need for cut-
offs to the expectation value, which is based on database composition. HMMs also enable
very fast comparison between two models, which makes for much more sensitive homology
search than comparing a sequence to an HMM. Additionally, once an HMM is matched, all
sequences that match it can be matched as well. This allows for more rapid database searches
since the HMM’s essentially function as clusters of sequences and only if a cluster has been

found to match is it required to match each sequence in that cluster *'.

Finally, HMMs can be used to rapidly calculate accurate multiple alignments of
many sequences by aligning each sequence to the HMM. This avoids the issue of iterated
alignment refinement to some degree and leads to highly accurate MSAs. Thus, both
sequence searching and multiple alignment can be done at speeds much faster than with

word-search heuristics and often with better accuracy. Since HMMs can be used for scoring,
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alignment and search function, methods such as HMMER3 %7, SAM *°, HHBlits * and
HHSearch °? are some of the most powerful sequence-based search methods to this day.
However, the most sensitive searches, which use HMM-HMM comparisons, requires
HMMs to be pre-calculated for each protein domain family in the sequence database, which

takes significant computational resources. An illustration of a profile HMM can be seen in

Figure 5.
D, (D) (D)) D,
Start Iy I, L, I3 I, End
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M, Match I, Insertion D, Deletion

Figure 5: Schematic of a profile HMM. The profile HMM is encoded from a MSA. Match states (M;) encode
the mutational probability of each of the columns in the MSA similarly to the way a PSSM encodes the
mutational probability of each position in the target sequence. Insertion states (I;) encode the probability of
insertion of each of the 20 residue types in the MSA and therefore model the highly variable regions of the
MSA such as loops. Deletion states (Di) do not match any residues, however, they make it possible to jump
across columns in the MSA and thus model the deletion of residues with position specific probabilities. This
is more accurate than, for example, the affine gap penalties commonly used with substitution matrices. Because
the HMM is a sequential model, it conveys not only the estimated mutational probabilities (e.g., the probability
of observing an Alanine residue at position x mutating to a Tyrosine), but also the transitional probabilities
(e.g., the probability of observing the aforementioned mutation, given the mutational probabilities of the
previous residue). This makes profile HMMs the most sophisticated probabilistic models of MSAs and,

therefore, more efficient tools for detecting distantly related homologous sequences.
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6.4 THREADING

So far, the methodologies described focuses on matching a target sequence against a
database to retrieve and align homologous sequences. These methods are applicable to both
sequence and structure databases, since the structure databases simply contain sequences of
protein structures. However, the matching of a sequence against a structure is more difficult,
mainly because structure databases such as the PDB °° are sparsely populated compared to
sequence databases such as UniprotKB ®*. This means that, even if a related structure exists,
it is far more likely to be distantly related to the target sequence. This in turn makes a false
positive match (a template matched by pairwise alignment, which has a different 3D fold
than the target protein), much more likely to occur. Threading algorithms seek to circumvent
these issues by using a plethora of methods to improve the scoring function used for the
alignment between the target sequence and the template. While methodologies such as
FASTA °, DELTA-BLAST %, SAMT2K °°, HHBlIits *, and FFAS-03 * could therefore be
considered threading algorithms, in that they perform the same task of identifying potential

templates in a structure database, they do so purely by sequence matching.

In the next sections, discussion will focus on methods that are more complex, and
use advanced scoring functions for aligning a target sequence to a structure. This is done in
three steps: First, the target sequence is used to search a sequence database for matching
sequences and generate a MSA using one or more of the previously described methods.
Second, the MSA is used to predict physical features of the target sequence, such as
secondary structure, solvent accessibility or residue dihedral angles. Finally, these features
are used as additional scoring terms for searching through a structural database to find
matching structures with similar features. This three-step methodology is shared between all
advanced threading algorithms and takes considerably longer than any of the aforementioned

methods due to the complex scoring functions.
6.4.1 STRUCTURAL FEATURES

Over the years, the increased availability of sequence data and the maturation of machine
learning for analysis and prediction laid the foundation for extending the alignment scoring
function beyond simply matching sequences. Since the 3D structure of a protein is far more
conserved than its sequence, matching linear features improves the scoring and thus enable
the detection of far more distantly related structural homologues. Several such linear
structural features have been the target of prediction over the years, most notably secondary

structure %192 solvent accessibility 267> 9% 101105 " residue depth '°, backbone dihedral
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101-102, 107 101-103

angles , number of contacting residues 7, half-sphere exposure , and residue
disorder ', Threading algorithms such as pGenThreader %°, pDomThreader %, HHSearch
%2 LOMETS 7, MUSTER 7, RAPTORX %7 and SPARKX '? all use one or more of these
features to increase the likelihood of selecting good templates and produce high quality
pairwise alignments. This comes at the cost of slower search speeds due to the more costly

scoring functions.

Additionally, probabilistic modelling - 1%, depth-dependent alignment of structure

110 79, 105
9

fragments ''°, multiple template and structure alignment ''!, normalized Z-scores and
sequence-based solvation potentials % have been employed to increase performance of
threading alignments by including more information into the scoring function. The most
expensive approach to threading ''? uses the construction of crude models of every alignment
for every potential template and evaluates the quality based on a 3D energy function or
knowledge-based potential, but this is generally far too computationally expensive to be

feasible, especially for larger proteins and databases.

In TopModel (Chapter 10, Publication II), FASTA, DELTA-BLAST, HMMER3,
HHBIits, HHSearch, FFAS03, SAMT2K, pGenThreader, pDomThreader, LOMETS,
MUSTER, RAPTORX, and SPARKX are used as primary threading algorithms. This is

aiming to provide multiple diverse threading algorithms for template detection.

6.4.2 META-SERVERS

Meta-approaches have proven to be one of the major advances in template detection and

structure prediction '3

, as evident by the consistent high ranking of the Zhang meta-server
17 in the blind Critical Assessment of Protein Structure Prediction (CASP) experiments. The
meta-server methodology produces structure predictions using information from multiple

17, 25

different primary predictors and either re-ranks or combines their output to produce

better predictions than any of the primary predictors.

With the large diversity of methods for threading, it is not surprising that meta-
servers, which employ multiple different methods, have been shown to outperform single-
method approaches. Meta-servers have several advantages: First, templates that are missed
by one method due to differences in database composition, alignment methodology or
scoring function, are less likely to be missed by all methods, increasing the chances of a
template with the right fold to be represented in the ensemble of templates. Second, the use

of multiple threading alignments provides different pairwise alignments for those templates
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that were identified by multiple threaders. This allows for calculation of a consensus

alignment, which can be constructed to be better than its input alignments.
6.4.3 CONSENSUS

Most meta-servers work based on consensus between different algorithms. The traditional
consensus is based on majority voting at either the template selection or model building
stage. Majority voting at the template stage could be to select templates based on their
similarity to other identified templates, effectively selecting the fold that was found most
frequently by most primary predictors. This was implemented in the initial versions of the
LOMETS/I-TASSER servers. An example of majority voting at the model building stage
could be to build a library of residue contacts from an initial model ensemble and remove
contacts that contradict the majority when using those contacts to construct models. This
method is used in the most recent versions of the LOMETS/I-TASSER servers 2*. The
MULTICOM % server generates consensus models during both initial model construction
and model refinement. In model construction, multi-template consensus alignments are used,
and during refinement, models are clustered and combined with the cluster centroid, either
at the global or at the local level. Both LOMETS, I-TASSER and MULTICOM use majority
voting, since they converge the results to the fold generated most often across different
algorithms. In many cases, especially ones where most methods produce correct folds,

majority voting will correct errors and improve the overall modelling result.

However, the problem of majority voting in consensus methods is that different
programs have been developed together, building on ideas and methodology from each
other, and are as such susceptible to the same pitfalls. In other words, if a difficult target is
prone to a particular alignment error, many threading programs are likely to make the same
error. Since the erroneous alignment is in the majority, this in turn means that consensus
methods based on majority voting may discard a correct alignment and converge on the

wrong fold.

In TopModel (Chapter 10, Publication IT) top-down consensus is used instead of
majority voting to filter out false positives based on structural similarity to the best template
as identified by a series of deep neural networks. This proved to be very effective, especially
for targets where the majority of the identified templates are false positives, since it makes
it possible to go against the majority in cases where primary predictors converge on the

wrong fold.
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6.5 PROTEIN STRUCTURE MODELLING

6.5.1 STRUCTURAL ALIGNMENT

As structural databases of proteins grew, although at a slower pace than sequence databases,
it became apparent that protein structure is much more conserved than protein sequences.
Thus to determine the relationship between two protein structures, algorithms were designed
to align these, and infer residue correspondence based on spatial proximity rather than
physiochemical residue similarity. Structural alignments are generally of higher quality than
purely sequence-based alignments, and when multiple sequences with known structures are
found as matches to a target, aligning these structures can improve the correctness of the
alignment 7. The difficulties in structural alignment arise mainly from the fact that proteins
are not rigid but can adopt many conformations. As such, while the fold of two structures
might be the same, they may have different conformations that makes structural alignment
difficult. Different methods have been employed to overcome these difficulties, ranging
from the combination of structural alignments for rigid bodies and sequence alignment for

flexible parts ’®, the combination of structural alignment algorithms with evolutionary

114 115

sequence data "', the alignment of structure fragments "'~ or consensus between different
structural alignment methods . TopAligner (Chapter 10, Publication II) uses all the
structure- and sequence-based multiple alignment methods mentioned here to generate an

ensemble of different multi-template alignments from which to build models.
6.5.2 MODEL CONSTRUCTION

The construction of a 3D model of the protein is not a trivial problem to solve, as three major
challenges has to be overcome: First, the method should construct models, which are close
to the native structure. As templates are often used as input, however, model-building
software often tends to construct models that are more similar to the template(s) than to the
native structure. Second, despite the improvement in threading algorithms, the pairwise
alignment between target and template may still contain errors. Many model-building
algorithms are not able to correct these errors and these will therefore persist in the model.
Finally, the construction of models requires a scoring function to guide and select for the
best model. As with threading, however, the more sophisticated the scoring function, the
more computationally expensive the modelling becomes. The four most commonly used
methods for model construction will be discussed in the following four chapters and

illustrated in Figure 6.
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6.5.3 RESTRAINT-BASED FOLDING

In restraint-based folding, implemented in popular software such as MODELLER !!6,
distance restraints are calculated for inter-residue distances in the target sequence. These
distances are based on distances between corresponding residues in the template, with the
mapping between template and target sequence being given by the input alignment. Starting
from a pseudo-random atom positioning based on their original positions in the template;
atoms are then moved randomly until the highest number of restraints are fulfilled. There are
several advantages to this methodology, most notably the easy inclusion of restraints from
different sources. These include geometric restraints based on stereochemistry to guide side-
chain arrangement, as well as information from multiple template structures or from
predicted features (Chapter 6.4.1 and 6.7). The main disadvantage of this methodology is
that it handles modelling of parts of the sequence without template very poorly, especially if
these parts adopt secondary structure other than small loops. Furthermore, it is unable to
repair alignment errors because the mapping between the target sequence and the template
structure (i.e. the alignment) is fixed. Restraint-based folding is therefore only generally
applicable for template-based structure prediction, and is favored for easy targets with few
or no alignment errors. Finally, it tends to construct models that are close to the input
templates, and as such performs best for target sequences with highly similar templates.
Therefore, the modelling of targets for which the template structures are distant homologues
results in lower performance by restraint-based methods. This is mainly a consequence of
alignment errors, and the fact that templates are more likely to not fit the native structure.

An outline of a restraint-based model construction workflow is shown in Figure 6 A.
6.5.4 FRAGMENT ASSEMBLY

A popular model construction method is fragment assembly, most notably in the form of the
ROSETTA software suite ''’. In fragment assembly, the input sequence is first used to
generate a library of fragments by cutting the input sequence into overlapping pieces of
different sizes, generally 3 and 7 residues long. These pieces are then matched up against a
database of residue fragments of the same size. This fragment database is extracted from a
large set of protein structures and clustered to obtain a reasonably small set of representative
fragments. The scoring function that performs this match considers structural (as described
previously) as well as residue similarity when performing the fragment selection. However,
since the fragments are generally small (3 and 9 residues usually), it is difficult to obtain a

single significant match. In other words, there is a high chance of getting a random match
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due to the short fragment size. Therefore, multiple high scoring matches are kept for each

fragment of the target sequence, in the hope that one of them has the right conformation.

Once the fragment library is generated, different conformations of the protein are
sampled by exchanging the conformation of randomly selected segments with fragments
from the library using Monte Carlo sampling, and evaluating if the fragment exchange
should be accepted based on an energy function. To speed up this sampling process, two
different energy functions are used in ROSETTA, a coarse-grained energy function in which
side-chains are represented as a single pseudo-atom, and an all-atom energy function.
Initially only backbone conformations are sampled using the coarse-grained energy function
to generate a large number of diverse initial structures known as decoys. Then, a subset of
high scoring decoys according to the coarse-grained energy function are reconstructed in

atomic detail and re-sampled using the all-atom energy function.

The main advantage of fragment assembly is that it is a highly flexible method. The input
fragments can, for example, come from detected homologues. This speeds up the
convergence since the fragments match homologous structures. Additionally, because no
full-structure fragments are used, the conformations of fragment assembly models can often
end up closer to the native structure than the input templates. This also means that fragment
assembly can be used both for structures with detected templates and for structures without
known templates. Because ab-initio fragments (with no global homology to the native
structure) are used, loops are generally of better quality than from restraint-based methods
such as MODELLER. Furthermore, the scoring function used to select fragments and to
score decoys can be modified to favor agreement with predicted features (Chapter 6.4.1
and 6.7). The disadvantage of fragment assembly is that the extensive Monte Carlo sampling
is extremely computationally demanding, and since the fragments are short, long-range
interactions between residues far apart in sequence but close in the structure cannot be
captured by the assembly method to narrow down the search space. In other words, even
though long-range information can change the energy landscape of folding, the amount of
sampling required is still very large. Convergence can therefore take a very long time. This
is especially true for large structures, since tens of thousands to hundreds of thousands of
models have to be generated. An outline of a fragment assembly model construction

workflow is shown in Figure 6 B.
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6.5.5 CONTINUOUS ASSEMBLY

Contrary to fragment assembly, which performs global moves where small fragments are
replaced across the entire sequence, continuous assembly programs such as I-TASSER
assemble large fragments identified by threading. I-TASSER (Iterated Threading ASSEmbly
Refinement) 2* ''® uses replica-exchange Monte Carlo sampling to assemble larger
continuous pieces of the target sequence. These pieces are built from restraint-based models
from templates identified by threading alignments. This is done by sampling regions without
template on a lattice and allowing the rigid template-based pieces to move off-lattice. In the
first iteration of I-TASSER, one simulation is carried out for each template using consensus
restraints extracted from all alignments of all templates to generate initial models. The initial
models from this simulation are then clustered, and new restraints are extracted from the
largest cluster centroid as well as from templates that structurally align to the centroid. The
new restraints are added to the initial restraints and used for a second round of structure re-
assembly, starting from the cluster centroid. This allows for alignment errors to be rectified
and for the fold to be refined, after which full atomic-detail structures are constructed and

energy-minimized.

The advantages of continuous assembly is that it is much faster than fragment
assembly, since the fragments identified by threading are both much larger and much more
likely to have the right conformation, which makes the sampling faster and the accuracy
high. However, it comes with the drawback that sampling outside of the conformational
space defined by the threading results is limited compared to fragment assembly, and it is,
therefore, limited in terms of flexibility of which threading results can be used. To
compensate for this drawback, the most recent version of the I-TASSER server also
generates models from a more traditional fragment assembly method QUARK '8 to improve
performance for ab initio modelling. Another disadvantage that is remedied by the addition
of QUARK is that traditionally [-TASSER was unable to correct mistakes in threading if
these mistakes were made by the majority of threaders, since the conformational variability
is highly biased by the initial template threading results. Inclusion of ab initio models from
QUARK partially remedies this template-based bias. An outline of a continuous assembly

model construction workflow is shown in Figure 6 C.
6.5.6 CONTACT-BASED FOLDING

Contact-based folding is fundamentally different from the previous methods in that it
disregards template structures completely. Unlike the previous methods, which obtain
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structural information either in the form of highly specific distance restraints from templates
(MODELLER), specific structure pieces from threading results (I-TASSER), or less specific
structural information from small fragments (ROSETTA), contact-based folding uses no

structural information at all.

The main idea behind contact-based folding is that information about residue-residue
contacts can be obtained directly from a large MSA, and that given such information the
protein can be folded. How such information is obtained from the MSA will be discussed in
chapter 6.7. A classic example of contact-based folding is the CONFOLD method !, Since
the information from contact predictions is historically prone to high false positive rates,
contact-based folding is performed in two steps. In the first step, a fully extended
conformation of the protein backbone is moved in order to fulfill residue-residue contacts in
a manner similar to MODELLER. MODELLER, however, is centered on distance restraints
and starts from an input template conformation, whereas CONFOLD is centered on contact
restraints and starts from an extended conformation. Therefore, CNS *’ is used as the folding
engine, as it starts from an extended conformation and is built around contacts initially
developed for resolving structures from short-range NOE restraints from NMR experiments.
In the second step, each contact is re-weighted according to how often it was fulfilled, and
used for a second round of folding. Additionally, different weights are placed on secondary
structure restraints and distance restraints to provide models that are more diverse. This
methodology allows for false positive restraints that disagree with the majority of restraints
to be down-weighted and prevents them from distorting the final fold. An outline of a

contact-based model construction workflow is shown in Figure 6 D.
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A. Restraint-based Folding B. Fragment Assembly C. Continuous Assembly D. Contact-based Folding
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Figure 6. Outlines of different model construction workflows. The detailed description of each type of
folding is described in the previous sections. A. Restraint-based folding (e.g. with Modeller) starts with the
identification and selection of templates via threading, followed by the alignment between the target sequence
and the selected templates. After alignment, the coordinates of the template(s) are copied as starting points and
moved randomly until the distance restraints extracted from the templates using the alignment are fulfilled.
Finally, loops with no structure are refined and the final model is selected from the resulting model ensemble.
B. Fragment Assembly (e.g. with ROSETTA) starts with predicting structure features and generating a
fragment library using profile-profile alignment between the target sequence and the fragment library, while
matching predicted structure features (Chapter 6.4.1 and 6.7). After generating the fragment library, Monte
Carlo (MC) sampling is used with a coarse-grain energy function to replace dihedral angels in the target
sequence with those of the fragments from the library. The lowest energy decoy is then refined by adding side-
chains and using MC with an all-atom energy function. C. Continuous assembly (e.g. with iTASSER) starts
with threading and extraction of high-scoring template fragments identified by the threading, which are used
to generate Cq-atom traces of parts of the input sequence. Distance restraints from the fragments are used with
a decoy potential to assemble the fragments on a lattice to generate initial decoy structures. The initial decoys
are clustered and restraints from the largest cluster are combined with restraints from templates that align well
to the centroid of the largest cluster to generate refined decoys by re-assembly of the fragments. Finally, the
lowest energy decoy is selected and the full atom model constructed and refined using Replica Exchange Monte
Carlo simulations (REMO). D Contact-based folding (e.g. with CONFOLD) starts with the prediction of
secondary structure and a residue contact map. Then, a fully extended peptide is folded using simulated
annealing with CNS, to fulfil secondary structure and residue contacts. After initial folding, contacts are filtered

to remove those that disagree with the majority, and the folding is repeated using the reduced set of contacts.
6.6 MODEL QUALITY AND REFINEMENT

Once an ensemble of models, also known as decoys, has been produced for the query protein,
a common approach is to predict which models are most likely to be correct in order to select
these for model refinement 212!, The types of errors that typically appear in protein models
span a wide range. At the one end of the spectrum are template selection errors, in which the
selected templates do not share the same fold as the target sequence. In these cases, the entire

model may have a wrong fold or topology. Even if the models do share the same fold as the
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native structure, alignment errors may also cause misfolding of local regions. Misalignment
of B-sheets and wrong rotations of a-helices are the more severe types of errors while flexible
loops generally suffer less from misalignment. At the other end of the spectrum, high-quality
models with little or no alignment errors may still suffer from errors in terms of atomic

clashes, wrong loop or side-chain conformations, and poor hydrogen bonding.
6.6.1 MODEL QUALITY ASSESSMENT

The prediction of model quality is undertaken by so-called Model Quality Assessment
Programs (MQAPs). Because the potential errors span a wide range, different MQAPs tend
to focus on different types of errors. Template selection errors are for example often captured
by evaluating the agreement between predicted features (Chapter 6.4.1 and 6.7), and
alignment errors are generally identified by poor energetics from knowledge- or physics-
based potentials. Errors in loop and side-chain conformations or hydrogen bonding are often
captured best by methods that evaluate the stereochemistry of the protein backbone and side-

chains as well as atom clashes '?%.

MQAPs generally tend to focus on the global quality of the protein, assigning a single
score for each model in an ensemble of models in order to select one with the least amount
of errors. Some methods, however, also predict the local model quality, aiming to identify
both how much error is in a model and where in the model these errors occur. Prediction of
local model quality is useful especially if multiple models with errors in different structural

regions are to be combined.

A key difference between MQAPs is their target value. The target value is a measure
of protein error or quality that can be measured when comparing the model to the native
structure, but has to be predicted when the native structure is unknown. The different types
of model quality scores fall into two over-all categories: Superposition-dependent scores and
superposition-independent scores. Superposition-dependent scores are calculated by
aligning the model to the native structure and evaluating a score depending on the distance
between corresponding residues after alignment. Scores that fall into this category include
the LG-Score '%, S-Score '**, TM-Score '*°, GDT-TS Score %, or MaxSub-Score '?’.
Superposition-independent scores, instead, measure the consistency of intra-molecular
distances and evaluates the structural similarity based on internal coordinates. This has the
advantage that no structural alignment is required. This makes these scores less susceptible
to being distorted by the structural alignment process, which for example produces
artificially high errors for multi-domain proteins even if the domains themselves are
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correctly folded, simply because the relative orientation of the domains differ between model
and native structure. Scores that fall into this category include the Q-Score '?®, IDDT score

129 and CAD score '3,

As with threading, meta-methods that use multiple primary MQAPs to predict errors
in protein structures have been shown to be one of the major advances in model quality
estimation and model selection for refinement '?2. This is because the focus on multiple
different error types and target scores provides both a higher accuracy and a better

consistency for different model quality ranges.

In the development of TopScore (Chapter 9, Publication I) I used an ensemble of
15 different primary MQAPs and combined their outputs using a two-stage deep neural
network. By training the method on six diverse training datasets totaling over 1.5x10°
models and 2.3x10 residues I obtained a much more accurate and consistent performance

than any of the primary predictors.
6.6.2 MODEL REFINEMENT

Model Refinement has the goal of driving the best model or ensemble of models towards the
global energy minima of the protein, essentially seeking to obtain a model more similar to a
crystal structure. Model refinement generally falls into one of two classes, the first is rooted
in molecular dynamics simulations (MD-based refinement), and the second is based on

model fragmenting and/or averaging (Fragment-based refinement).

MD-based refinement *!"132 has seen marginal success for medium quality starting
structures due to the inability to re-fold the starting structure. This is because MD-based
refinement has to balance sampling and energy minimization in order to both be able to
explore the energetic landscape, find the global energy minimum, and be able to stay in the
global energy minimum once found. In other words, if the starting model is of very high
model quality, MD-based refinement tends to over-sample the conformations and drives the
model into nearby local energy minima, deteriorating the model quality. On the other hand,
for starting models with very poor model quality, the energy landscape is too rugged and the

sampling too weak to overcome the energy barriers involved in local refolding '*3.

Fragment-based model refinement has had somewhat more success, especially in
terms of refining models of poor quality '**. The main reason for this is that fragment-based
model refinement can re-fold parts of the structure and, therefore, break bonds that lock the

protein into incorrect conformations. This is done using Monte Carlo sampling in the
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ROSETTA refinement protocol, for example '**. In this method, fragments of the structure
are randomly replaced with new fragments sampled from an ensemble of decoy structures
generated by sampling conformations of the input structure. This model ensemble is then
subjected to a genetic algorithm, which iteratively refines the ensemble. In this algorithm,
improved model ensembles are generated by combining low energy models (cross breeding),
replacing fragments in a low energy model (mutation), or keeping the best low energy
models from the previous ensemble (elitism). By consecutively applying this genetic
algorithm until convergence, the initial model can be significantly improved towards models

of low energy, corresponding to models close to the native structure.

In TopModel, refinement is performed by TopRefiner (Chapter 10, Publication II),
in which an ensemble of models is scored with TopScore (Chapter 9, Publication I) to
identify regions with errors. These regions are then removed and the remaining pieces are
used to construct a refined model. Repeating this process proved to significantly improve

model quality.
6.7 CONTACT PREDICTION

In previous sections it was described how the prediction of protein features (Chapter 6.4.1)
can improve the results of threading and model quality assessment. Residue-residue contacts,
or just contacts for short, have had such a big impact on structure prediction that it is
worthwhile to discuss it in a chapter of its own °°. Unlike linear 1D features such as
secondary structure, residue contacts are 2D, and thus, every residue pair in the target
sequence has a value that needs to be predicted. This increase in dimensionality makes
contacts more informative, for example, when used as scoring terms for threading !>, but
also makes them more expensive to predict.

Accurate ab initio prediction of residue-residue contacts is one of the major
breakthroughs in the field of ab initio protein structure prediction. In ab initio prediction the
structure of the protein is determined without the use of any structural information . The
fundamental basis for the prediction of contacts is the concept of residue co-evolution. Co-
evolution is the process, in which the mutation of a residue in a protein leads to a strong bias
in which types of mutations proximal residues can adapt if the function and/or stability of
the protein are to be maintained. This mutation bias can be detected in large sequence
alignments using statistical methods such as direct coupling analysis (DCA) or mutual

136-139

information (MI) analysis , often coupled with advanced machine learning techniques

15, 140192 " 45 provide information about the spatial proximity of residue pairs. Such
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information can subsequently be used in down-stream ab initio folding simulations with
programs such as ROSETTA "7 or CONFOLD " to reduce the conformational search space
and drive the folding process towards the native state. Other uses of contact prediction

143 contact-based template

include scoring terms for protein model quality assessment
selection '*, and protein threading '*°.
The benefits of residue-residue contact prediction have resulted in a large number of

15, 136-142, 145-151 " Ope of the most promising

methods being developed in recent years
advances in contact prediction is the use of deep neural networks, traditionally developed
for image recognition '*°. Two slightly different approaches have been employed, in which

140, 142, 148, 151 1 in which a

all contacts in the contact map are either predicted at once
receptive field (i.e. a 2D sliding window) scans across the contact map predicting each
residue according to the local information in the map around it '*°. The latter has also been
used for contact prediction with deep random forests '#°. Predicting all contacts at once is
fast and memory efficient during training and evaluation, and allows for modelling of large
and complex contact patterns potentially spanning the entire protein. However, it requires
vast amounts of training data, as each protein is considered one sample. This can limit its
ability to generalize to contact patterns not seen during training, especially for very sparse
contact maps generated from small alignments. On the other hand, when using a receptive
field, each residue pair is one sample, making it slow, memory demanding, and limited in its
ability to explicitly model contact patterns larger than the receptive field size. This limitation
however, can improve the models ability to generalize to contact patterns not seen during
training, and directly prevents over-training, since no whole-protein pattern is seen by the
network.

The accurate prediction of residue-residue contacts and residue-residue distances
using deep neural networks has led to a revolution in protein ab initio folding *°. This
revolution is founded on the ability to explicitly predict long-range interactions, i.e., those
between residues far apart in the target sequence. This improves conformational sampling
and allows contact-based methods such as CONFOLD to compete with traditional fragment-

based assembly methods such as ROSETTA at a fraction of the computational cost.
6.8. MACHINE LEARNING

Machine learning refers to a number of different techniques which, once trained on a dataset,
can convert a set of inputs (features) to an output (prediction) either linearly, e.g. classical

curve fitting, or non-linearly. It can be thought of as a general-purpose fitting methodology,
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which can be used to make prospective predictions. Over all, while machine learning is a
very broad topic that cannot be explored in depth in this chapter, it can be broadly
categorized into three main areas of research: Random Forests (RF), Support Vector

Machines (SVMs) and Deep Neural Networks (DNNSs).

SVMs are non-linear classifiers that map the input feature vector into a high-
dimensional space and use a hyperplane as a separator for classification by maximizing the
distance of data points with different labels to the hyperplane. The data is mapped using a
kernel function to keep computational load manageable, and to ensure that the dot product
between two vectors can be computed easily. The hyperplane is then calculated as the set of

orthogonal vectors that define the plane.

RFs are a generalization of decision trees and are therefore greedy classification
algorithms. They decide binary split points for the input features to generate decision trees
in which the predicted labels are on each of the leaf nodes. Multiple trees are made (hence
the forest), and bootstrapping and random feature subsets are used for each tree to prevent
the overfitting on the training data. The benefits of RFs are that they are invariant to
normalization and type of input data and as such are applicable to many types of problems,

especially ones in which the input features are highly heterogeneous.

Both RFs 13155 and SVMs 146 156-138 haye seen widespread use in bio-informatics.
They do however, come with the drawback that for highly complex tasks they do not scale
well. Both types of models scale with the amount of training data and the complexity of the
task. For SVMs, the dimensionality of the hyperplane scales with the square of the number
of training data points and can become so high that the evaluation on new data points
becomes exceedingly slow. Similarly, for RFs, the trees become very large, and the forest
size therefore has to be increased to prevent over-fitting, which in turn increases the model
size further. Although the evaluation of the RF model is generally fast, the amount of
memory required for storing the forest becomes a limiting factor. The practical limits of
memory and runtime therefore means that for complex tasks with large amounts of data,
such as for example protein contact prediction, RFs and SVMs have poor performance
compared to methods such as DNNs, in which the model size remains fixed for a given task,

irrespective of the complexity or amount of training data 4.

Recently, DNNs have been the most popular machine learning technique due to their

flexibility, high performance and fast compact models. Furthermore the increase in chip
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speed has enabled more complex models to be used '*°. For these reasons, DNNs are used

extensively throughout TopSuite.
6.8.1 DEEP NEURAL NETWORKS

Deep Neural Networks (DNNs), as the name suggests, are a class of algorithms that were
inspired by the connection of neurons in the brain. Each neuron in a DNN takes a set of
values as an input (analogous to a brain neuron receiving a signal from multiple other
neurons), processes that input by calculating a weighted sum, passes that sum through a so-
called activation function, and sends the new transformed signal to one or more other
neurons. During training, the connections between the neurons are initially given random
weights, and these weights are progressively updated as the network is trained on more and
more data. This training is done using the backpropagation algorithm, which calculates the
signal gradient with respect to a loss function. The loss function is defined according to the
target value. A simple loss function could for example be the difference between the
predicted and true value. The backpropagation algorithm adjusts the weights of the network
such, that the network with the adjusted weights give a prediction with a lower loss than
before the weight adjustment.

The neurons in DNNs are generally arranged in layers, and the signal is propagated
from the neurons in one layer to the neurons in the next. Depending on the number of layers
and the connections between the neurons in each layer, very complex patterns can be fitted
by training the network. The activation function of the neurons, the pattern of connections
between the neurons, the number of neurons in each layer, and the number of layers can all
be varied to obtain different types of models that can solve different types of problems.

While the number of different types DNNs have increased dramatically in the last
decade, most networks fall into one of five different categories: Deep Belief Networks
(DBNs), Deep Convolutional Neural Networks (DCNNs), Deep Convolutional Auto-
encoders (DCAESs), Deep Recurrent Neural Networks (DRNNs), and Generative Adversarial
Networks (GANs) ', In this section, each type of network will be briefly discussed with a
focus on the applicability of these types of networks to bioinformatics problems.

DBNs were one of the first types of neural nets to be developed. They are generally
used for predictions, in which the input vector has a fixed size, and where the input features
share no spatial relationship. Examples of these types of problems could be classification of
medical samples or linking symptoms to diseases '®!. TopThreader (Chapter 10,
Publication IT) uses a series of DBNs to predict the structural similarity between a putative

template structure and the native structure and uses this information to remove false positive
Page | 48



Background

templates and rank the templates according to suitability for modeling. TopScore (Chapter
9, Publication II) uses two stages of DBNs to predict the structural quality of an ensemble
of models both at the residue-wise and whole-protein level.

DCNNSs are particularly useful for problems, in which the input feature vector may
vary in size and where the input features have a spacial connection. An example of these

types of problems is for example image classification '

, where the images may have
different sizes and where the meaning of each pixel is highly correlated to the pixels around
it. These types of neural networks have been extensively used for prediction of protein-

protein contacts>® 140 142, 163

and protein features such as secondary structure and solvent
accessibility’®. TopContact and TopDomain use DCNNs to predict protein structural
features such as domain boundaries, secondary structure, transmembrane topology, dihedral
angles, solvent accessibility and residue-residue contacts and distances. This is because
residue proximity in sequence provides the spacial connection between the input pixels that
is required for convolution.

DCAEs are generally used for feature reduction problems, in which a high-
dimensional input needs to be reduced to a more manageable size with minimal loss of
information. Examples of these types of problems include image compression '%* and image
clustering 6.

DRNN:Ss are typically used for problems, in which the input varies in length and share
a sequential relationship. Common examples of the use of DRNNs include speech
recognition '%, text data mining '’ and genomic sequence analysis '®. DRNNs have been
instrumental to predict linear features of proteins (Chapter 6.4.1) as their sequential
relationship to each other is captured nicely by this type of network 0% 169170,

GANs are used often for signal processing, as it learns to generate new samples that
follow the same statistical distribution as its training data. This enables it to for example
generate images !’!, fill in missing parts of an image or improve image resolution '72.

A key issue with standard deep neural network learning is the vanishing gradient
problem, which limits how deep (i.e. how many layers) a network can be before accuracy
stagnates or even declines !73. Residual convolutional neural networks, originally developed
for image recognition !’* bypass this problem by passing along the input signal together with
the transformed signal after each neural transformation. This allows for very deep models to
be built, and has shown great results for bio-informatics applications such as secondary

structure !”° and residue contact prediction ',
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An issue with deep learning is that the random initialization of neurons can lead to
performance differences for different DNNs with the same network architecture and training
data. These effects have can be minimized by training multiple models with different random
seeds and averaging the output 4% 15!, However, with the development of dropout !¢, this
problem can be solved directly by randomly “switching off” neurons during model training.
This forces the network to learn using new neural connections, and effectively learn different
models simultaneously, which improves the ability of the neural network to generalize to
data not seen during training. The use of dropout has therefore become the standard in image

recognition and protein contact prediction ',

Furthermore, because DNNs have thousands of different fitting parameters (the
weights of network neurons) they are prone to over-fitting. Over-fitting happens when the
DNN memorizes the training data in order to obtain a perfect performance, which in turn
makes it unable to perform reliably for new data. There are several options for avoiding over-
fitting, of which two are so common, that they have become standard in the field: Early
Stopping and Regularization. In Early Stopping, the networks performance is evaluated on
the fly on an independent set of test data and the training is stopped early (hence the name)
when performance on the test data starts to deteriorate. Regularization is a mathematical
trick, which augments the loss function in order to penalize complexity, by assuming that
simpler models are better than complex ones. In practice, this is done by adding a term to
the loss function, which slowly pushes the weights of the neuron connections towards zero
as the model is trained. In this way, only connections that are critical to the performance of
the network (where the cost of switching off the signal is too great) end up being used, while

in practice connections that are not important are turned off.
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7. SCOPE OF THE THESIS

Since the inception of the field of bioinformatics, two decades of method development has
left researchers and scientists, who wish to predict the structure of a protein, with one major
question: “Which method should I use to predict the structure of my protein?” The large
variety of different method for structure prediction led to the answer: “Use a consensus of
different methods”. Method performance, however, depends on both algorithm design,
training data, input features and target value, and many methods produce highly correlated
results. This correlation between methods can lead majority-based consensus, which
assumes each method has a fixed chance of being right, to converge on wrong predictions.
Machine learning can go one step further than consensus and learn not only how well a
method performs on average, but also in which context it performs well. This enables
methods based on, for example, deep neural networks to perform much better than traditional

consensus. This is the dominant idea behind the development of TopSuite.

The philosophy of TopSuite is to collect and integrate many diverse primary
predictors for a given task and make it easy for a user to provide input data to them all. Then,
rather than using majority-based consensus, the output of the different predictors is used as
input for deep neural networks, which are trained on large diverse databases to produce high
quality meta-predictions. These predictions are then presented to the user in a format that is
easily transferrable from one task to the other, in order to link the different programs together

seamlessly. The aim of this thesis is to:

1. Develop a deep neural network-based meta-method for determining the quality
of a protein structure prediction and identify which parts of a model contain errors
(TopScore, Chapter 9, Publication I).

2. Develop a fully automated deep neural network-based meta-method for template-
based protein structure prediction using TopScore as the core scoring function
(TopModel, Chapter 10, Publication II).

3. Illustrate the gradual development of TopSuite and demonstrate the usefulness of
the developed methods by applying them to target proteins of high biological
(Publication III), medical (Publication 1V), and industrial (Publication V)

interest.
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8. TOPSUITE

TopSuite is a suite of programs, which has been and is being developed in order to make
automated high-quality protein structure prediction easy and accessible to non-expert users

and the scientific community as a whole.

TopSuite consists of several different modules, some of which are described in the
papers of this thesis, and some of which are still in development and therefore not yet
published. In some cases, preliminary versions of the programs have been used in projects
such as the prediction of the dimeric state of the GAF domain of ETR1 (Chapter 21,
Publication V). The modules of TopSuite can be classified into three major categories:
Protein Feature Prediction, Protein Structure Prediction, and Protein Interaction Prediction.
Within these three categories, the different modules of TopSuite are as follows (.odules still

in development are marked with a *):

1. Protein Feature Prediction

I.  TopDomain* predicts the location of domain boundaries in the input
sequence using a combination of ab initio-, co-evolution- and template-based
primary predictors and uses a two-stage DNN approach to perform high
quality predictions that approximate expert human domain annotations as
closely as possible.

II.  TopContact* predicts residue-residue contacts and residue-residue distances
as well as secondary structure (a-helix, B-strand and coil), relative solvent
accessibility and backbone dihedral angles in concert. This is done based on
25 different primary predictors and 3 stages of DNNs to combine the outputs.

2. Protein Structure Prediction (Chapter 9 and 10, Publication I and IT)

I.  TopThreader predicts templates and alignments between the templates and
the target sequence. This 1s done using 12 different primary predictors and
predicting the template similarity to the native structure using multi-stage
DNN:Gs.

II.  TopAligner calculates alignments between provided input structures and a
target sequence using different sequence and structure based multiple
sequence alignment programs.

III.  TopBuilder constructs 3D models of the input alignments using
MODELLER and ROSETTA. TopBuilder also provides an easy interface for
side-chain refinement and MD-based refinement.
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IV.  TopScore predicts the global and local structural similarity to the native
structure using 12 different primary predictors and combines the outputs
using a two-stage deep neural network. TopScore consists of two scoring
functions: TopScore and TopScoreSingle, the latter of which uses no
clustering or ensemble information. TopScore and TopScoreSingle allows for
selection of high-quality models as well as identification of errors in specific
regions of the models.

V.  TopRefiner combines and refines an input ensemble of models selected from
single-template models and multi-template models calculated using
TopThreader, TopAligner and TopBuilder. It does so by effectively
identifying poorly modelled regions using TopScore and TopScoreSingle,
removing these regions and replacing them with better modelled regions from
other models in the ensemble.

VI.  TopModel predicts protein structure by applying TopThreader, TopAligner,
TopBuilder, TopScore and TopRefiner to produce template-based protein
structure predictions in a fully automated manner.

3. Protein Interaction Prediction
I.  ToplInterface* predicts protein-protein interactions between two input
structures using a combination of conservation-based, co-evolution-based
and template-based primary predictors and a three-stage deep neural network
for combining the input features into probabilities of residue-residue contacts.

II.  TopDock* predicts protein-protein complexes using predicted contacts from
TopInterface. TopDock uses a deep neural network to predict the best
docking solution from fulfillment of predicted contacts from ToplInterface,
docking energy and model clustering.

III.  TopLigand* predicts protein-ligand interactions by predicting the binding
site and ligand pharmacophore features given a model from TopModel as an
input. In doing so, TopLigand opens closed binding pockets and optimizes
side-chain conformations to facilitate ligand binding. The binding site and
pharmacophore prediction is done using a 3D Deep Convolutional Neural

Network.

TopModel is the core workflow of TopSuite as it integrates most of the modules

seamlessly and therefore allows for fully automated structure prediction with a single
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command. The interaction between the different modules in the TopSuite workflow is

shown in Figure 7.

Sequence
VY)W)’MW}/&" Pharmacophore TopLigand

TopRefiner

7 TopThreader

TopAligner TopScore

TopBuilder

Figure 7. Simplified interaction between TopSuite modules. The target sequence is given as input to
TopDomain and the sequence is separated into domains. Each domain is then given as input for TopContact to
predict secondary structure, dihedral angles, residue contacts and residue distances. The sequence and the
predicted features are then given as input to TopThreader, which searches for templates using different primary
threaders. TopThreader uses TopBuilder to build models from the primary threader alignments, template
structures and target sequence, which are scored with TopScore, and used by TopThreader together with
primary threader scores to rank and cluster templates and remove false positives. TopThreader then uses
TopAligner to align templates and construct consensus alignments, which are built with TopBuilder, scored
with TopScore, and used together with primary threader scores in TopThreader to rank templates by predicted
similarity to the native structure. After template selection, TopAligner is used to generate a large ensemble of
pairwise and multi-template alignments from which models are built with TopBuilder and scored with
TopScore. Models are selected from the ab initio predictions from TopContact, the multi-template ensemble,
and the single-template models by TopRefiner, which combines and refines the models to produce a final
structure. Predicted structures can then be used as input for ToplInterface to predict protein-protein contacts,
and the predicted contacts and structures can be used as input for TopDock to produce a protein-protein
complex. The predicted structure can also be used as input for TopLigand to predict ligand binding sites and

pharmacophore models, which can in turn be used for virtual compound screening.
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TopSuite was used in the following publications. Publications described in this thesis are

marked with an *:

* Binding region of alanopine dehydrogenase predicted by unbiased molecular dynamics
simulations of ligand diffusion. Holger Gohlke, Ulrike Hergert, Tatu Meyer, Daniel
Mulnaes (10%), Manfred K. Grieshaber, Sander H.J. Smits and Lutz Schmitt. Journal of
Chemical Information and Modelling. 2013, 53, 2493-2498.

* Determinants of FIV and HIV Vif sensitivity of feline APOBEC3 restriction factors. Zeli
Zhang, Qinyong Gu, Ananda Ayyappan Jaguva Vasudevan, Anika Hain, Bjorn-Philipp
Kloke, Sascha Hasheminasab, Daniel Mulnaes (5%), Kei Sato, Klaus Cichutek, Dieter
Haussinger, Ignatio G. Bravo, Sander H.J. Smits, Holger Gohlke and Carsten Miink.
Retrovirology; 2016, 13, 46.

* Recognition motif and mechanism of ripening inhibitory peptides in plant hormone
receptor ETR1. Dalibor Mili¢, Markus Dick, Daniel Mulnaes (10%), Christopher Pfleger,
Anna Kinnen, Holger Gohlke and Georg Groth. Scientific Reports 2018, 8, 3890.

Molecular dynamics simulations and structure-guided mutagenesis provide insight into the
architecture of the catalytic core of the ectoine hydroxylase. Nils Widderich, Marco
Pittelkow, Astrid Hoppner, Daniel Mulnaes (10%), Wolfgang Buckel, Holger Gohlke,
Sander H.J. Smits, Erhard Bremer. Journal of Molecular Biology 2014, 426, 586-600

Structural basis of lantibiotic recognition by the nisin resistance protein from Streptococcus
agalactiae. Sakshi Khosa, Benedikt Frieg, Daniel Mulnaes (10%), Diana Kleinschrodt,
Astrid Hoppner, Holger Gohlke, Sander H.J. Smits. Scientific Reports 2016, 6, 18679.
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9. TOPSCORE: USING DEEP NEURAL NETWORKS AND
LARGE DIVERSE DATA SETS FOR ACCURATE PROTEIN
MODEL QUALITY ASSESSMENT

Daniel Mulnaes (85%), and Holger Gohlke
Journal of Chemical Theory and Computation; 2018, 14, 6117-6126.
9.1 BACKGROUND

In computational structure prediction, it is of vital importance to determine, how close to the
real protein structure the predicted model can be expected to be. High-quality models built
from closely homologous protein structures are often suitable for investigation of small
molecule binding and can therefore serve as starting points for drug-discovery '*. However,
models built from distantly related proteins or without any template may contain errors that
limit their ability to answer such detailed biological questions. Models with a medium degree
of error can still be useful to answer several biological questions though, e.g. understanding
effects of disease-associated mutations, functional annotation, or to aid the experimental
elucidation of the structure, but are generally not suitable, if fine-grained atomistic

information is required.

Errors in protein structure models can range from small differences in side-chain
conformations or flexible loop orientations, to frame-shift errors in which misalignment
causes residues to be located in wrong secondary structure elements or on the wrong side of
B-sheets. On the largest scale, template selection errors, in which the model is based on a
wrong template, can cause most or the entire model to be wrongly folded. (Chapter 6.6.1
Model Quality Assessment) Drawing conclusions based on such a model can lead

researchers to completely wrong conclusions.

Because the errors in protein models span a wide range, different types of errors are
detected by different types of Model Quality Assessment Programs (MQAPs). Minor errors
in side-chain orientation can be identified by examining bond lengths, bond angles, and steric
clashes, while frame-shift errors can be detected by examining energetic interactions
between residues using knowledge-based potentials, since these errors generally lead to less
favorable interactions between residues. At the fold level, errors can be detected by
examining self-consistency between features of the model that can be predicted from the
primary sequence. Such features include secondary structure, solvent accessibility, contact
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density and residue-residue contacts, and those same features measured in the structural
model itself. The reasoning behind this methodology is that if the model is consistent with
the independently predicted features, it is more likely to be correct. Finally, errors can also
be estimated by examining multiple independent structural models of the same protein. The
models could for example stem from different folding simulations or be based on different
templates or alignments. Regions of the protein that adopt different folds in an ensemble can

be considered less confident than those that adopt the same fold in many models.

An issue facing MQAPs, other than the detection of errors, is the conversion of
measured error features into a geometric measure of error that is useful and intuitive to
understand. These features include atomic clashes, wrong stereochemistry, unfavorable
energetics, disagreement with predicted features and structural inconsistency between
independent models, as described in the previous section. Several geometric quality
measures have been used in the past. These can be divided into two main groups:
Superposition-dependent quality measures, such as the TM-Score and the GDT TS Score,
calculate differences in atomic location after superimposing a model to the known native
structure using an algorithm that optimize these measures. Superposition-independent
measures on the other hand, such as the IDDT, and CAD scores, evaluates intra-molecular
distances and interactions and therefore calculate the consistency between the model and the
native structure using internal coordinates. The benefit of superposition-dependent measures
is that they reward correct spacial placement of secondary structure elements and domains.
However, they over-penalize multi-domain structures, since the super positioning of one
domain often leads to very large distance differences for other domains even when these are
correctly folded. Superposition-independent measures, which focus on internal coordinate
consistency do not suffer from these issues, making them ideal for estimating errors and

correct folding.

The goal of TopScore is to identify many different types of errors in predicted protein
models with a single program that uses different primary predictors (primary MQAPSs),

which focus on different types of errors and uses different definitions of model quality.
9.2 RESULTS

In this work we developed two meta-Model Quality Assessment Programs (meta-MQAPs)
called TopScore and TopScoreSingle. Meta-methods combine scores from multiple different
primary predictors to produce more consistent and accurate predictions than any single
method. The output of the different predictors was combined using a two-stage DNN
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approach to predict both the global error of the protein model as well as the local error of
individual residues. The predicted target score was chosen to be 1-IDDT score. The IDDT
score calculates intra-protein all-atom interatomic distance conservation using four different
distance cut-offs making it a highly sensitive superposition independent score. We chose 1-
IDDT to have low scores correspond to low amount of error in the protein. To ensure robust
performance across many different types of models we constructed a composite dataset of
model ensembles from many different sources. These include previous CASP experiments,
ab initio folding trajectories from I-TASSER, model decoy datasets, high-quality homology
models, homology models based on distantly related templates, and artificially misfolded
decoys from the 3DRobot dataset. Our results show that different primary MQAPs perform
very differently, depending on which dataset they are tested on. By optimally combining the
outputs of the different methods using the DNNs, we obtained a much more consistent
performance across different datasets. Furthermore, we obtained a performance that is
significantly better than any of the investigated primary predictors. An excerpt of the
performance of TopScore and TopScoreSingle compared to some of the best performing
primary predictors on the different datasets in terms of different quality measures is shown
in Figure 8 for whole-protein scores and Figure 9 for residue-wise scores. The correlation
between the whole-protein TopScore and the true value on the combined dataset as well as

an example of the residue-wise performance can be found in Figure 10.
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Figure 8. TopScore global performance. TopScore (red circles) and TopScoreSingle (red dashes) global
performance compared to a subset of primary predictors (black). Dashed lines represent single-model methods
and full lines methods that use clustering information. The 95% confidence intervals were calculated using the
Fischer r-to-z transformation. The widest confidence interval for any Ra?> or Rym’> was 0.01 and 0.12,
respectively. Statistical significance was determined by the two-sided Steiger test '”’. Accordingly, the R,> and
Rym? of TopScore and TopScoreSingle are significantly different from any primary MQAP for the combined
dataset (p < 0.05). In terms of R,%, for the CASP11/12 dataset, TopScoreSingle is not significantly different

from ProQ3D, and neither is TopScore when compared to Pcomb.
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Figure 9. TopScore local performance. TopScore (red circles) and TopScoreSingle (red dashes) local
performance compared to a subset of primary predictors (black). Dashed lines represent single-model methods
and full lines methods that use clustering information. The 95% confidence intervals and statistical
significances are calculated in the same way as for Figure 3. The widest confidence interval for any Ra? or
Rym? was 0.001 and 0.17, respectively. The Ru?> and Rym’ of TopScore and TopScoreSingle are significantly
different from any primary MQAP (p < 0.05).
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Figure 10. TopScore performance. The global TopScore predictions plotted against the IDDT error of the
models for the combined dataset. Three randomly selected example models of PDB ID 4BMB from the
3DRobot dataset are shown colored according to local TopScore error prediction (lower triangle) and true local

IDDT error (upper triangle).
9.3 CONCLUSIONS AND SIGNIFICANCE

The development of TopScore and TopScoreSingle is a key part of TopModel. These scoring

functions are essential to solve four important steps of the structure prediction workflow:

1. In template selection, TopScore and TopScoreSingle help to discard templates that
produce wrongly folded models, thus improving the template selection especially for

difficult targets.

2. In template-target alignment, TopScore and TopScoreSingle helps to both identify
and rectify parts of alignments that contain errors and produce badly scoring models.

This helps produce consensus alignments that favor good scoring models.
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3. In model selection, TopScore and TopScoreSingle help to select high-quality models
for refinement and model combination, which is required in order to perform high-

quality model refinement.

4. In model refinement, TopScore and TopScoreSingle help to identify parts of the input
models that contain errors, enabling these regions to be removed such that new

refined models can be constructed from the remaining parts.

TopScore and TopScoreSingle were both shown to perform significantly better than any of
their primary predictors (see Figures 8 and 9), and to be more consistent in their performance
across many different model datasets. This robustness is due to the large dataset used for
training (~1.5x10° models and ~2.3x10 residues) the methods as well as the large diversity
of different primary predictors. This makes TopScore and TopScoreSingle ideal scoring

functions when predicting protein structures using TopModel.

Page | 62



Extended Abstract - Publication II: TopModel

10. TOPMODEL: TEMPLATE-BASED PROTEIN
STRUCTURE PREDICTION AT LOW SEQUENCE
IDENTITY USING TOP-DOWN CONSENSUS AND DEEP
NEURAL NETWORKS

Daniel Mulnaes (60%), Nicola Porta, Rebecca Clemens, Irina Apanasenko, Jens Reiners,

Lothar Gremer, Philipp Neudecker, Sander Smits, Holger Gohlke.
Journal of Chemical Theory and Computation; 2019, Submitted
10.1 BACKGROUND

Protein structure prediction is a core part of bioinformatics that has been in development
since the initial conception of the field. This in turn has led to an abundance of different
algorithms for solving the different challenges commonly faced in structure prediction, most
notably template identification, sequence alignment, model construction, and model
refinement. However, no single method consistently outperforms all other methods for every
given protein target. In other words, different methods produce the best results for different
proteins. It is therefore not surprising that meta-methods, which utilize multiple different
algorithms, such as the MULTICOM and Zhang Servers, have shown some of the best over

all performances in every CASP competition since their conception.

These methods, however, mainly function as black box online servers (Chapters 6.2
CASP and 6.4.2 META-SERVERS). This is due to the high competition in the field, which
discourages the sharing of workflows and methods. This in turn means that users, who do
not wish to send their data to remote servers or need large-scale calculations for many
proteins, can still be at a disadvantage. Furthermore, meta-methods such as the Zhang and
MULTICOM servers generally operate using consensus information from their different
primary predictors, which is based on the assumption that the majority is more likely to be
correct. In practice, this means that templates that are identified more often by different
methods are more likely to be used. While this can often be beneficial, it means that if the

correct fold is in the minority, then the consensus drives the model away from the true fold.

These shortcomings incentivized the development of TopModel, which is the core
part of TopSuite (Figure 7) and contains the workflow needed for fully automated template-

based structure prediction using a top-down consensus methodology. The top-down
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consensus methodology aims at identifying the best template and fold using deep neural
networks, and then selects templates or models based on their agreement with the top ranked
one. Therefore, TopModel can go against the majority and improve models beyond the initial
model ensemble, if a good estimate of the template quality and model quality can be

calculated.
10.2 RESULTS

In this work, we developed a meta-method for automated template-based protein structure
prediction called TopModel. TopModel is available as a stand-alone toolbox for the
scientific community and utilizes most of the available stand-alone algorithms for template
identification, sequence and structure alignment and model construction. TopModel makes
using them easy and intuitive, requiring only a single command-line call for complete
structure prediction, while at the same time allowing the user to use each module

individually.

TopModel provides much better template selection than its constituent primary
methods due to the sophisticated threading module TopThreader, which uses both model
quality assessment with TopScore and TopScoreSingle as well as deep neural networks for
estimating template quality. Furthermore, due to the use of top-down consensus
TopThreader has very few false positives. This can be seen when comparing the ability to
select the best template between TopModel and its constituent primary predictors (Figure

11).
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Figure 11. Template enrichment by TopThreader compared to primary threaders. Comparison of
template selection performance on the CASP dataset. Performance is evaluated based on the ATM;o score,
which evaluates the difference between the best of the top five ranked templates of a given threader, and the
best template found by any threader. For each target, three categories are selected: (I) the best template is found
(ATM g < 5), (II) an adequate template is found (ATMqgo [5-15]), and (III) no adequate template is found
(ATM g0 > 15). The values represent percentages of targets in the CASP dataset for TBM (A), FM (B), and all
(C) targets, respectively. Differences between TopThreader and the best primary threader for each subset are
highly significant (p < 0.01) according to the Ghent implementation of the Freeman-Halton exact test for 3x3

contingency tables 7%,

After template identification with TopThreader, TopModel constructs an ensemble
of different multi-template alignments using the TopAligner module. In doing so, model
quality can be improved since the use of multiple templates not only has the potential to
increase the coverage of the target sequence, but also has the ability to improve the target-

template alignment. After generating the alignment ensemble, the alignments are used to

Page | 65



Extended Abstract - Publication II: TopModel

generate models with TopBuilder, which works as an interface to ROSETTA and
MODELLER, and the resulting models are scored with TopScore and TopScoreSingle.

Finally, TopModel uses an iterative refinement protocol called TopRefiner in which
the best scoring single-template models generated by TopThreader as well as the best scoring
multi-template models generated by TopAligner and TopBuilder are selected according to
TopScore and TopScoreSingle rankings. From these models, regions predicted to contain
errors by TopScore and TopScoreSingle are deleted, and the remaining pieces are used to
construct meta-models with fewer errors. This process is done iteratively to refine the
models, after which fragment-guided MD refinement with ModRefiner is performed to
provide a single refined model to the user. The effect of generating multi-template models

as well as refining the best models using TopRefiner can be seen in Figure 12.
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Figure 12. Impact of using TopAligner and TopRefiner on model quality. The relative change in GDT TS
score (AGDT_TS) is calculated by comparing a model selected before and after running TopAligner (A) or
TopRefiner (B), respectively. A. Difference in model quality when selected from a multi/single-template model
ensemble from TopAligner/TopThreader compared to selection from a single-template pairwise primary
threader model ensemble. B. Difference in model quality when selected from the first stage of TopRefiner
(before refinement) compared to selection from the last stage of TopRefiner (after refinement). The models are

selected either by true GDT_TS or by TopScoreSingle (A) or TopScore (B). Five categories are defined based
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on the AGDT TS: No change (AGDT TS < 5%), small increase/decrease (AGDT TS 1/] [5%-20%];
green/yellow), large increase/decrease (AGDT _TS 1/] > 20%; blue/red). The “No change” category is the most
abundant and is not shown as it reflects no significant change in model quality. Significance is calculated using
a one-tailed #-test between corresponding increase/decrease categories (blue-red and green-yellow,
respectively). The null hypothesis is that the probability of model quality increase of a given amount (5-20%
or >20% AGDT _TS) is the same as the probability of quality decrease by the same amount. Pairwise
comparisons where this hypothesis can be rejected are indicated with brackets and corresponding p-values (*:

p <0.05,": p<0.01, " p<0.001, *™: p <0.0001). The number of samples used is the number of CASP
targets in the TBM (140) and FM (46) categories, respectively.

TopModel was validated on the CASP10-12 datasets and showed good performance
compared to its primary methods. However, since TopModel is a template-only method, ab
initio targets for which no good template structures could be identified showed worse models
from TopModel compared to servers, which use ab initio methods for protein contact and
distance prediction as well as domain parsing for large multi-domain structures. The results

of the validation on the CASP10-12 dataset can be seen in Figure 13.
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Figure 13. GDT_TS comparisons between TopModel and CASP servers. The bars represent comparison
between TopModel and one of four established CASP servers (the Zhang Server (red), the Baker Server
(yellow), the HHPred server (green), the Zhou Server (blue)) as well as the average of the top 200 server
submissions for each target (gray). The Zhang server and Baker server both make use of ab initio folding and
domain parsing, putting them at an advantage over TopModel. A. AGDT TSas for CASP TBM targets
indicates for how many of CASP TBM targets TopModel shows similar, worse, or better model quality than
other established servers. B. AGDT TSas for CASP FM targets indicates for how many of CASP FM targets

TopModel shows similar, worse, or better model quality than other established servers.

To demonstrate the utility of TopModel, the workflow was experimentally validated
on two de novo protein systems showing good agreement with experimental data in terms of
crystal structures, NMR spectroscopy experiments, and SAXS experiments. These proteins
were the NSR protein from S. agalactiae and LipoP from C. difficile and showed far better
agreement with experimental data than predictions from any of its constituent primary

predictors. The results from the NSR protein are shown in Figure 14 and illustrate how
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TopModel go against the majority (the center of the distribution) resulting in a model of far
greater quality than any of its constituent primary predictors. The results for LipoP from C.
difficile is shown in Figure 15. They show how, after a short refinement using molecular
dynamics, the model of the LipoP show good agreement with both NOE and secondary

structure restraints from NMR as well as scattering profile and volumetric shape from SAXS.
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Figure 14. Prospective modelling of the NSR protein from S. Agalactiae. The model quality distribution (in
terms of GDT TS score) of primary threader models for the NSR protein from S. agalactiae for prospective
modelling before the release of the native structure (gray) to the PDB. The vast majority (82%) of models show
an incorrectly threaded N-terminal domain (see SPARKSX model). A minority of models (18%) show a
correctly threaded helical domain (HHSearch, RAPTORX, and FFAS03) on a few templates, often with large
errors elsewhere in the model (such as -sheets shown in red). Because TopModel does not use majority voting,
the model produced (blue box) is of far better quality (GDT_TS = 55) than those produced by primary threaders
(median GDT TS = 38), while majority voting consensus would produce a model in the middle of the
distribution at a GDT TS of ~38. Model examples from the different bins are colored according to residue-
wise IDDT score % to the native structure, with red showing incorrectly modelled regions and blue showing
perfect agreement with the crystal. The largest error in the TopModel model is the fact that the residues linking
the helical bundle with the catalytic core of the protein do not fold into an a-helix (red box). This is because
no model from any of the primary predictors correctly fold these residues into a helix, and as such, TopRefiner
has no fragment it can select during model fragmenting and refinement, which would produce a helix for these

residues. Secondary structure prediction by PSIPRED % also fails to identify these residues as helical.

Page | 68



Extended Abstract - Publication II: TopModel

o Experiment

5x10° — FoXS, x*=3.86

5%10

I(q) log scale

Residual
N
X

e S5

0 01 02 03 04 05
q[AT]

Figure 15. Model of LipoP from C. Difficile after MD refinement and selection according to agreement
with sparse experimental structural data. A. Agreement of the TopModel model with secondary structure
assignments and NOE restraints from NMR. The numbers indicate the location of errors. Blue: B-sheet residues
showing agreement between model and NMR data. Orange: Residues identified to be in a f-strand in NMR
but not found so in the model. Cyan: o-helical residues showing agreement between model and NMR data.
Red: Residues identified to be a-helical in NMR but not found so in the model. Magenta lines: Experimental
B-sheet NOE restraints showing agreement with the model. Red Lines: Experimental B-sheet NOE restraints
showing a shift of two residue positions of B-strand 3. B. Agreement between the model after MD refinement,
selection according to agreement with experimental NMR and SAXS data, and model combination with
TopBuilder Colors are following the same scheme as in panel A. The extension of a-helix 1 is seen. C.
Agreement between the experimental scattering data from SAXS (black) and simulated scattering curve of the
MD model (red); FoXS 7180 was used for simulating the scattering curve. The fit plots depict log-intensity
versus q (A™), the residuals plot shows the difference between experimental and computed intensity versus q
(A™"). D. The volumetric envelope of LipoP, as calculated from the scattering data using GASBOR '#!, is shown
in gray mesh. The MD model of LipoP (green) was docked into the volumetric envelope using SUPCOMB 82,
Disagreement with SAXS is found mainly for the disordered tail of LipoP.
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10.3 CONCLUSIONS AND SIGNIFICANCE

The idea behind the TopModel methodology is that since no method can be expected to be
the best for every protein target of interest, different predictions from different primary
predictors are integrated using deep neural networks to select the best candidate template or
model. This is, to our knowledge, the first time deep neural networks have been applied to
estimate template similarity to the native structure for use in pure template-based structure
prediction. Then, using top-down consensus, predictions that agree with the best candidate
are selected and used for multi-template modelling. This is, to our knowledge, the first use
of top down consensus, rather than majority voting consensus, for template selection and
protein structure prediction. During refinement, rather than averaging the models, regions
predicted by TopScore and TopScoreSingle to contain errors are removed and replaced by
better regions from different models based on different templates or alignments. This is, to
our knowledge, one of the first times model refinement has been driven not by energy
minimization, but by minimizing the output score of a deep neural network (TopScore,
Chapter 9, Publication I). These developments enable TopModel to make structure
predictions that go against the majority of its primary predictors and produce models that are

significantly better than any of the predictions from any of its constituent primary predictors.

TopModel is the core of TopSuite as it provides the tools and the workflow required
for high quality template-based protein structure prediction. TopModel was used in all the
application projects mentioned in this thesis, and the structures predicted by TopModel
provided valuable insights and good starting points for further study of important biological

systems.
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11. BINDING REGION OF ALANOPINE DEHYDROGENASE
PREDICTED BY UNBIASED MOLECULAR DYNAMICS
SIMULATIONS OF LIGAND DIFFUSION

Holger Gohlke, Hergert, U., Meyer, T., Daniel Mulnaes (5%),
Grieshaber, M.K., Sander H.J. Smits and Lutz Schmitt.
Journal of Chemical Information and Modelling. 2013, 53, 2493-2498.
11.1 BACKGROUND

Lack of oxygen can be caused either by an environmental change or by an increased oxygen
consumption by the organism itself, i.e. increased oxygen consumption by muscles during
movement. To maintain a continuous flux of energy under conditions of intense
physiological activity in which oxygen supply becomes a limiting factor, organisms
therefore switch to full or partial anaerobic metabolism. This anaerobic metabolism can
follow four main pathways initialized from Phosphoenolpyruvate: (1) The glucose-succinate
pathway in which the final product is succinate, (2) the aspartate-succinate pathway that also
results in succinate, (3) the glucose-lactose pathway in which the final product is lactate, and
(4) the glucose-opine pathway in which the final products are various opines. While the first
two are more energy efficient pathways, they are slower than the latter two, and thus serve
complimentary roles depending on the duration of hypoxia. In the opine pathway, opine

dehydrogenases ensure a constant supply of ATP by maintaining the NADH/NAD+ balance
183

In this work, we investigated the binding of r-alanine to the Alanopine
Dehydrogenase of Arenicola Marina (AlaDHAm), a member of the opine dehydrogenase
family. Although much is known biochemically about this enzyme class, the substrate
specificity of different Alanopine Dehydrogenases towards different amino acids, as well as

the substrate inhibition has yet to be explained at the molecular level.

Due to recent advances in molecular dynamics (MD) simulation algorithms and
hardware, the simulation of unbiased ligand binding and unbinding to their target protein has
recently become possible. In addition to the ability to identify the binding region, these
simulations can reveal binding and unbinding pathways as well as metastable binding states,
and give quantitative estimates of both binding affinity and on/off rates 84188 In this study,

we go beyond these measurements to examine determinants of substrate specificity starting
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not from a crystal structure but from a predicted 3D structural model made by a preliminary

version of our structure prediction workflow TopModel.
11.2 RESULTS

Biochemical characterization of AlaDHAm revealed a high substrate specificity for -
alanine, and showed that, with about 3- to 4-fold reduction in activity, glycine could also be
used as a substrate. For other small amino acids tested, such as r-serine, r-threonine, -
cysteine, or r-valine, none or only negligible activity was found. This indicates a high
substrate specificity and shows that the binding site of AlaDHAm has evolved to bind -
alanine specifically. In contrast, the AlaDH from M. Sanguinea has a much broader substrate

specificity allowing also other small amino-acids to form the corresponding opine ',

Structure prediction with TopModel revealed three structures representing two
proteins: Octopine Dehydrogenase (OcDH) from P. maximus with either r-arginine (PDB
ID: 3C7C) or agmatine (PDB ID: 3IQD) in the binding site, and M-(1-D-Carboxylethyl)-L-
Norvaline Dehydrogenase (CENDH) from Arthrobacter Sp. (PDB ID: 1BG6). Both
structures are opine dehydrogenases with sequence identities of 46% and 20% respectively.
I constructed a sequence alignment using the structural information of the available
structures, and analyzed the sequence conservation of the OcDH binding site compared to
AlaDHAm, which revealed a high degree of residue conservation. For example, binding-site
residues E141 and W279 cannot mediate substrate specificity since they are conserved
between OcDH and AlaDHAm. The only two sequence differences between the binding sites
of OcDH and AlaDHAm are residues V208 and N209 located in the kink of a helix-kink-
helix structural motif in the binding site. In OcDH, V208 is instead a tyrosine, and there is
no residue insertion at position 209, unlike in CENDH, where residue 209 is also inserted.
Interestingly, the N209 insertion occupies the same volume that in OcDH is occupied by the
bound r-arginine, and thus prevents the binding of large amino acids to AlaDHAm. The

structure-based alignment can be seen in Figure 16.
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Figure 16: Alignment of sequences of AlaDHAAm to the three templates. Red bars and green arrows
indicate a-helices and B-strands respectively, of the AlaDHAm model as determined by DSSP. Numbers
provided on the left and right refer to positions in the respective sequences; numbers provided on top refer to
the positions in the AlaDHAm sequence. The amino acids are colored according to the ClustalW criteria in
Jalview (orange: G; Yellow: P, cyan H and Y; blue hydrophobic amino-acids (A, I, L, M, F, W, V,C); green:
polar amino-acids (N, Q, S, T); red: positively charged amino-acids (K,R); magenta: negatively charged amino-
acids (D,E)) if the amino-acid profile of the alignment at that position meets a minimum criterion specific for

the residue type.

To produce a binding model of  -alanine to AlaDHAm the coordinates of the NADH cofactor
could be copied from OcDH without steric clashes after structural superposition. However,
superposition of -alanine to the backbone part of the OcDH bound arginine required a
geometry optimization leading to a shift in position of 3A. After constructing the initial
model of AlaDHAm, we subjected it to three independent MD simulations of 200 ns each.
The simulations showed an overall moderate deviation from the starting structure with a root
mean square deviation (RMSD) of C, atoms ranging from 2.5 to 4 A. This is comparable to
a control simulation of 100 ns of OcDH (PDB ID 3C7C) showing a 1.5-3.5 A RMSD. While
NADH stayed in the binding pocket for the full duration of all three simulations, the -
alanine showed both binding and unbinding from the binding pocket in all three simulations.
These remarkable results of binding and unbinding of substrate into bulk solution and back

into the binding pocket is therefore one of the few examples of ab initio unbiased MD
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simulations to date '%+1%8 that show unbinding and re-binding of the substrate. The results of

the MD simulations are shown in Figure 17.
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Figure 17. Unbiased MD simulations of L-alanine diffusion in the TopModel model of AlaDHAm. (A-F)
Black letters indicate regions of high density of L-alanine during the MD simulation 1 as identified in panel C.
Region G is the predicted binding region. (A) Traces of L-alanine extracted from MD trajectory 1generated by
MD simulation of 200 ns length of the AlaDHAm/NADH/L-alanine system in explicit water; L-alanine reaches
the predicted binding region after ~40 ns (see panel D). The time evolution of the MD simulation is color coded
from blue (0 ns) to red (200 ns). For clarity, only a conformation closest to the average conformation of
AlaDHAm is shown (gray cartoon). (B) Close-up view of the predicted binding region shown in panel A with
the trace of C, atoms of L-alanine extracted from trajectory 1 shown as spheres. See panel A regarding the
color-coding. (C) Overlay of density maps extracted from trajectory 1 (red surface), 2 (green mesh) and 3 (blue
mesh) showing the frequency of interaction between L-alanine on the surface of AlaDHAm; the contour level
is 3 sigma. Regions of high density in trajectory 1 are labelled with black letters. The protein conformation is
as in panel A. (D-F) Root mean square deviations (RMSDs) of the L-alanine atoms during the simulations 1-
3, respectively, with respect to the AlaDHAm starting model from TopModel after super-positioning to the

starting structure-based on Co atoms.
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In order to estimate quantitative thermodynamic binding properties, substantially
more binding and unbinding events would be required. Still, the simulations provide
suggestions for energetically favorable binding locations on the surface of AlaDHAm as
shown in Figure 12. These simulations reveal a potential binding pathway in which alanine
successively binds to interaction “hot spots” on the way towards the active site. This was
also corroborated by energetics calculations with molecular mechanics generalized born
surface area (MM-GBSA) calculations. The identification of these binding regions provides
an explanation for the substrate inhibition of AlaDHAm, as the occupation of these spots by
alanine would hinder alanopine egress from the binding site, provided that it follows the
same successive binding pathway (only in reverse). This assumption is highly likely given

the gorge-like shape of the binding funnel.
11.3 CONCLUSIONS AND SIGNIFICANCE

In summary, we presented a biochemical characterization of AlaDHAm, which catalyzes the
reductive condensation of -alanine with pyruvate to alanopine. AlaDHAm displays a high
catalytic efficiency and substrate specificity, and is prone to substrate inhibition. As the 3D
structure of AlaDHAm is unknown, I predicted the structure with TopModel and we used
the substrate-binding model from the homologue OcDH from P. maximus to infer the
cofactor-binding pose and initial L-alanine binding modes. Unbiased MD simulations of the
system captured the binding of r-alanine diffusing from solvent to the putative binding
region, located at the helix-kink-helix motif, as observed for binding of L-arginine to OcDH.
At the same time, the observed binding of 1 -alanine provides for the first time a molecular
explanation for the role of amino acids 208 and 209 in substrate specificity, the only amino
acids within the binding region that differ between OpDHs with different substrates. Finally,
the presence of energetically favorable non-native ligand binding states near the binding

region provides an explanation for the substrate inhibition of AlaDHAm.

Historically, the modelling of AlaDHAm was the first to be done with a preliminary
version of TopModel (Chapter 10, Publication II). As TopModel was in its infancy, the
threading module TopThreader included only a few search tools for template identification
such as BLAST, and TopAligner included only SAlign. For Model quality estimation
PROCHECK, DOPE, and ANOLEA was used. The availability of high-quality templates
and the close homology between the target sequence and the input structure resulted in a
high-quality model despite the preliminary status of the modelling workflow and showed the

potential of a fully automated pipeline for structure prediction.
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12. DETERMINANTS OF FIV AND HIV VIF SENSITIVITY
OF FELINE APOBEC3 RESTRICTION FACTORS

Zeli Zhang, Qinyong Gu, Ananda Ayyappan Jaguva Vasudevan, Anika Hain, Bjorn-
Philipp Kloke, Sascha Hasheminasab, Daniel Mulnaes (10%), Kei Sato, Klaus Cichutek,
Dieter Hiussinger, Ignatio G. Bravo, Sander H.J. Smits, Holger Gohlke and Carsten Miink.

Retrovirology; 2016, 13, 46.
12.1 BACKGROUND

The feline immunodeficiency virus (FIV) is a lentivirus with the potential to cause an
immunodeficiency disease in domestic cats, which is similar to human immunodeficiency
virus type 1 (HIV-1) induced AIDS '°. Additionally, under experimental conditions, FIV
infection in cats has a mortality rate of up to 60 % '°!1%3. This makes FIV infection of cats a

valuable animal model system for the study of HIV-1 and AIDS %4196,

APOBEC3 (A3) proteins are anti-viral cytidine deaminase restriction factors found
in placental mammals, which counteract lentiviruses such as HIV, FIV, and Simian
immunodeficiency virus (SIV) 2%, Primates have seven different variants of A3 proteins
while felines have four. Some retroviruses counteract the anti-viral A3 proteins by
expressing proteins themselves, such as Vif from lentiviruses (HIV, FIV, and SIV) 201-20¢,
Surprisingly, feline A3 proteins also inhibits HIV and SIV, and HIV-2 and SIV Vif proteins

can counteract some feline A3 proteins such as A3Z273.

The A3 proteins target viruses and genetic elements that depend on reverse
transcription, but also show some activity against unrelated viruses 2°’. The viral protein Vif
from lentiviruses works by inhibiting encapsidation of A3 into the virus particles, thereby
preventing the deamination of the virus single-stranded DNA cytidines. If Vif is not present,
A3 enters the nascent viral particles and introduces G-to-A mutations in the viral genes
during reverse transcription, which inhibits the function and stability of the transcribed viral
proteins. Furthermore, some A3 proteins inhibit viral replication by reducing reverse
transcription and integration 2%-213_ In cats, the feline A3 protein A3Z2Z3 is expressed
following a read-through transcription and alternative splicing, which introduces a
previously untranslated exon in-frame, which in turn encodes for a domain insertion termed

the A3 linker domain.
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HIV-1 Vif cannot counteract feline A3s, and HIV-1 is therefore inhibited by all feline
A3s, with A3Z2Z3 displaying the strongest inhibition 2!*2!7. The mechanism behind the
inability of HIV Vif to degrade feline A3 is unclear, especially since feline A3Z2Z3 and
HIV-1 Vif are recovered together using co-immunoprecipitation assays, indicating that they
do in fact bind to each other. In contrast, the Vif of SIV from macaques (SIVmac) can

degrade feline A3s 2!3,

To assess the feasibility of generating an animal model for the human system based
on FIV, we and others cloned FIV Vif into HIV-1 and proved that in feline cell lines the A3
proteins are the dominant restriction factors against HIV-1 21421 In order to understand the
FIV Vif interaction with feline A3 proteins, we identified in this study important A3 residues
and used a homology model of feline A3Z2Z3 generated by our structure prediction pipeline
TopModel to describe the structure-function relationship of these potential FIV Vif binding

amino acids.
12.2 RESULTS

In this study, we aimed to identify which residues in feline A3s are recognized by Vifs and
required for A3 degradation. To identify these residues, chimeric human-feline A3s were
tested, and to locate these interaction regions the first structural model of feline A3 was

predicted using TopModel.

For modelling the human APOBEC structure, TopModel identified templates
4J4] A (35 % Identity), 2KBO_A (37 % Identity), and 2RPZ_A (30 % Identity) resulting in
a model with 84 % accuracy according to TopScore (Chapter 9, Publication I) (TopScore
of 0.16). For modelling the feline A3Z2b, TopModel (Chapter 10, Publication II)
identified templates 3VMS8_ A (42 % Identity), 2KBO_A (39 % Identity), and IM65 A (10
% Identity) resulting in a model with 88 % accuracy according to TopScore (TopScore of
0.12). For modelling the feline A3Z3, TopModel identified templates 4J4] A (31 %
Identity), 2KBO_A (36 % Identity), and 2RPZ_A (24% Identity) resulting in a model with
84 % accuracy according to TopScore (TopScore of 0.16). For the linker domain, TopModel
identified templates 2XS9 A, 2MMB A, 2DA4 A, 2LFB_A, and 1FTZ_A with sequence

identities ranging from 9-19 %.

In the Z3 domain, we identified residues involved in binding of FIV Vif, and upon
mutation, the Vif-induced A3Z3 degradation was blocked. Furthermore, we found additional

essential residues for FIV Vif interaction in the A3Z2 domain, which allowed us to construct
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FIV Vif resistant A3Z273 mutants. These mutants also showed resistance to the Vif of a
lion-specific FIV, indicating an evolutionary conserved Vif-A3 binding. These results can

be seen in Figure 18.

The predicted structure of feline A3Z2Z73 from TopModel suggests that the residues
interacting with FIV Vif have a unique location at the domain interface of Z2 and Z3, unlike
Vif-interacting residues in human A3s. Furthermore, it showed that the linker domain
between the Z2 and Z3 domains forms a homeobox-like domain protruding from the Z273
core. HIV-2 and SIV Vifs efficiently degrade feline A3Z2Z3, possibly by targeting this

linker domain.

HsaA3C K FcaA3Z2b -

HsaA3H- FcaA3Z3

Hapll
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Figure 18. Composite model of feline APOBEC3 predicted by TopModel and the locations of residues
mediating the Vif binding. a) Structural model of feline A3Z2Z3 including the homeobox-like linker domain
(pink) above the Z2 (yellow) and Z3(green) domains as predicted by TopModel. b) The structural model in a
rotated by 90°. The linker domain and parts of the N-terminus without template were omitted for clarity.
Residues in sphere representation in yellow (D165/H166), blue (L285/1286/A309), and orange (D131-Y134)
mediate binding of Vif. ¢) The human A3C crystal structure (3VOW) and a structural model of feline A3Z2b
built by TopModel depicting the positions of respective HIV-1 Vif and FIV Vif binding sites. The structures
are oriented as the Z2 domain in a. A structural model of human A3H-Hapll and feline A3Z3 built by
TopModel depicting the positions of respective HIV-1 Vif and FIV Vif binding sites. The domains are oriented
as the Z3 domain in a. Key residues involved in Vif binding are labelled (except human A3C), represented in

sticks and highlighted with its surface in orange.
12.3 CONCLUSIONS AND SIGNIFICANCE

In this work computational structure prediction with TopModel, biological assays, and
sequence analysis were employed to identify residues in feline A3s important for binding of
FIV Vif. Our results show that HIV Vif binds human A3s differently than FIV Vif bind
feline A3s, and structure prediction with TopModel revealed a linker domain unique to feline
A3s. The linker insertion is predicted to form a homeobox-like domain, which is unique to
A3s of cats and related species, and not found in human and mouse A3s. Together, these
findings indicate a specific and different A3 evolution in cats compared to humans, which is
important to consider when using the domestic cat as a model organism for the study of HIV

and AIDS.

The modelling of APOBEC3 was more challenging for TopModel than it was to
model Alanopine Dehydrogenase (Chapter 11, Publication III), due in part to the more
distantly related templates and in part to its multi-domain nature. The inclusion of more
primary predictors in TopThreader, TopAligner, and TopScore at this point in the
development of TopModel, however, led to high-quality models in spite of these added
difficulties. Furthermore, the modelling of the linker domain was the first time an early
version of the TopRefiner protocol was used. The results from TopModel proved to be
critical in the identification of key residues important for the interaction between FIV Vif
and APOBEC3. They also revealed key differences between feline and human A3s, which
could have important implications for the development of anti-viral therapies using the

domestic cat as a model animal.
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13. RECOGNITION MOTIF AND MECHANISM OF
RIPENING INHIBITORY PEPTIDES IN PLANT
HORMONERECEPTOR ETR1
Dalibor Mili¢, Markus Dick, Daniel Mulnaes (10%),
Christopher Pfleger, Anna Kinnen, Holger Gohlke and Georg Groth.
Nature Scientific Reports 2018, 8, 3890.
13.1 BACKGROUND

Fruit ripening of crops, such as apples, bananas and tomatoes, is induced by the plant
hormone ethylene. To minimize fruit damage and spoilage during transportation due to over-
ripening, some industries therefore interfere with ethylene biosynthesis or signaling, by
storing and transporting the crops in an unripe state and inducing ripening by ethylene
exposure at the final destination. Synthetic peptides derived from Ethylene-Insensitive
Protein 2 (EIN2), a central regulator of the ethylene signaling pathway, were recently shown
to delay fruit ripening. In particular, the inhibitory peptide NOP-1 derived from EIN2 was
shown to delay ripening by interacting with the ETR1 protein, the prototype of the plant
ethylene receptor family. ETR1 is a large multi-domain receptor protein with a trans-
membrane domain and four cytosolic domains, which forms a dimer in-vivo. Upon ethylene
binding, ETR1 starts an intracellular signaling cascade, which ultimately results in altered

gene expression and the induction of ripening.

However, despite knowing that upon ethylene binding ETR1 induces fruit ripening,
and knowing that NOP-1 inhibits this signal, the molecular mechanism of these interactions
is still unknown. Understanding how the binding of ethylene impacts ETR1 to induce
intracellular signaling and how this signal is inhibited by NOP-1 is key to understanding
fruit ripening at the molecular level as well as figuring out how to best modulate this process

to prevent food spoilage during transport.

In this study, we show that the inhibitory peptide NOP-1 derived from EIN2 binds to
the GAF domain of ETRI. Furthermore, by combining site-directed mutagenesis,
computational structure prediction with TopModel and TopDock, molecular dynamics
simulations, and rigidity analysis we reveal the peptide interaction site and a plausible

molecular mechanism for the ripening inhibition. This in turn may aid in the future
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optimization of peptide inhibitors of fruit ripening such as NOP-1 and decrease spoilage

during crop transport.
13.2 RESULTS

To understand the structural basis of interactions between ethylene receptors and inhibitory
peptides, heterologous expression was used to produce truncated constructs of ETR1 from
the model organism A. Thaliana, which successively lack protein domains starting from the
C-terminus. The goal was to identify ETR1 domain(s) crucial for the protein-peptide
interaction between the inhibitory octapeptide NOP-1 derived from EIN2 2!%22! under the
assumption that domain truncation has minimal impact on protein stability and dimerization.
Microscale thermophoresis was used to characterize the binding and revealed that only once
all cytosolic domains of ETR1 had been removed, was the binding of NOP-1 to the receptor
abolished. This indicates that the last cytosolic domain that was removed, the GAF domain,
binds NOP-1. To investigate the binding of NOP-1 further, a construct containing the
receiver domain, the catalytic ATP-binding domain, and the dimerization histidine-
phosphotransfer domain was expressed and tested for binding to NOP-1 using microscale
thermophoresis. Surprisingly, this construct also showed no binding to NOP-1, which
disproved the initial hypothesis that NOP-1 binds to a canonical phosphorylation site in the
receiver domain. By process of elimination, the GAF domain was therefore pinpointed as
the only binding partner of NOP-1, since the constructs lacking this domain showed no

binding of NOP-1. A schematic representation of ETR1 can be seen in Figure 19.

a GAF domain
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Figure 19. Schematic representation of the full ETR1 protein in its dimeric form. The GAF domain
(yellow) was found to mediate the dimer interaction and to be the domain, which interacts with the NOP-1
inhibitory peptide. By successively removing first the Receiver domain, then also the Catalytic ATP-binding
domain, then the Dimerization histidine-phosphotransfer domain, and finally the GAF domain, and only
observing abolished NOP-1 binding at the last step, the GAF domain could be identified as a NOP-1 binding
domain. By constructing a protein with all other domain than the GAF domain and observing no NOP-1

binding, it was shown that only the GAF domain binds NOP-1.
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To explore the binding of NOP-1 to the GAF domain of ETR1, I predicted a model
of the GAF domain using TopModel, since no experimental structure exists. The identified
templates by TopModel all share the same fold, with the top five ranked templates being:
3P01_A (18 % Sequence Identity), 3TRC A (15 % Sequence Identity), 3CI6_ A (13%
Sequence Identity), 3W2Z A (12 % Sequence Identity), and 1YKD B (15 % Sequence
Identity). The final model built by TopModel (Chapter 10, Publication II) was assessed
with TopScore (Chapter 9, Publication I) to be 71% correct, with the majority of
inaccuracies being located in the flexible loop regions (residues 228247 and 257-272: 47

% and 52 % inaccuracies, respectively).

Previous findings suggest that ethylene receptors form a dimer in their simplest
functional state, which is also mediated by their GAF domains ??2. I therefore built a dimer
model of the GAF domain using a preliminary version of the protein-protein docking
software TopDock and a preliminary version of the protein-protein interface prediction
software ToplInterface, which at the time was integrated into TopDock. TopInterface predicts
protein-protein contacts based on a structure-based homology search that is independent of

sequence. It does so by using the Phyrestorm 22

clustering tree to rapidly search the PDB
database for structures similar to the input, using a 0.5 TM-Score cut-off to select true
positives. When the same PDB ID is found as a structural homologue for two queries, their
interface is inferred from the interface in the structural homologue. TopInterface identified
five different homologous interfaces (PDB ID and chain identifiers given: 3G60 AB,
3IBJ _AB, 3K2N AB, 3P01 AB, and 3TRC _AB) all of which indicate that the dimer

interface of the GAF domain consists of the N- and C-terminal helices.

I used the residue-residue contacts from each homologous interface for restrained
docking of the GAF domains using TopDock, which uses the docking engine HADDOCK
224 The docking solutions were pooled and clustered by TopDock, and ranked according to
HADDOCK energy, cluster size, distance to cluster centroid, and fulfillment of predicted
contacts to select a docking solution. Each monomeric subunit of our final model contains a
central, antiparallel, seven-strand B-sheet, flanked by one short a-helix (amino-acids 213—
220) and three, parallel-oriented a-helices that cover the N- and C-terminal regions (amino-
acids 118-173 and 290-305). The N-terminal a-helices of the two monomers together form
the dimeric interface resulting in a six-helix bundle in the homo-dimeric structure. The final
monomeric and dimeric structures predicted by TopModel and TopDock can be seen in

Figure 20.
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Figure 20. The model of the GAF domain. a) The model is colored according to predicted residue-wise error
according to TopScore and docked to form a dimeric model using TopDock. b) The truncated dimeric model
was solvated and 15 NOP-1 peptides were placed randomly in the solvent. After MD simulations of 15x2us,
the residues interacting with NOP-1 were identified. ¢) Three hot spots were identified according to hydrogen
bonding between NOP-1 and the GAF domain, and were analyzed experimentally to identify the most likely
binding site for NOP-1.

MD simulations of the protein of 500 ns length in the absence of any peptide ligand
revealed overall moderate structural variations within both monomers. Subsequently, 15 MD
simulations of 2 us each with different randomly placed NOP-1 peptides were performed to
identify putative binding sites. Three such sites were identified by analyzing hydrogen
bonding between the peptide and the GAF domains. To identify which of these potential
binding sites are more likely to be the true peptide-binding site, alanine mutations of the
binding site residues were combined with intrinsic tryptophan fluorescence quenching
experiments. These experiments confirmed that the most likely binding site is located in a
negatively charged patch (binding site III) close to the interface between the two monomers,
where the positively charged peptides bind. Using a combination of rigidity analysis 22°-226

and analysis of the stability of the GAF domains in the MD simulations showed a stabilizing
effect of NOP-1 binding. This stabilization may hamper the transmission of ethylene binding
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signals (such as a conformational change induced by ethylene binding to the TM domain)

from reaching the rest of the transporter, and thus inhibit fruit ripening.
13.3 CONCLUSIONS AND SIGNIFICANCE

The application of TopModel and TopDock to the modelling of the GAF domain of ETR1
enabled an understanding of the inhibitory effect of the NOP1 peptide on fruit ripening at
the molecular level. This understanding is rooted in the accurate modelling of the GAF
domain with TopModel and dimer construction with TopDock. These accurate predictions
enabled the identification of putative binding sites using free ligand diffusion MD
simulations of the dimeric model as well as experimental validation of the binding sites.
Furthermore, a mode of action was proposed by performing rigidity analyzes with CNA and
flexibility analyses of the MD trajectory. This new knowledge could in turn be used to design
new improved inhibitors of fruit ripening by targeting this binding site with either small

molecules or peptide inhibitors.

The modelling of the GAF domain showed the power of automated structure
prediction with TopModel (Chapter 10, Publication II). The automated structure prediction
is especially useful for target proteins such as the GAF domain, where only distantly related
templates with low sequence identity were found. All of the templates identified for the GAF
domain had less than 20% sequence identity, but the final model still had a high quality when
modelled with TopModel. Furthermore, it showed the potential of predicting protein-protein
interactions with the preliminary version of ToplInterface and using those predictions to

guide protein-protein docking with TopDock.
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14. SUMMARY AND PERSPECTIVES

In this thesis, I have described the ongoing development of TopSuite and its application to
different biological systems of interest, resulting in key biological insights and providing a

basis for further research.

I have developed a meta-tool for protein model quality estimation with two scoring
functions, TopScore and TopScoreSingle. These scoring functions use deep neural networks
to combine predictions from many diverse model quality estimation programs. They were
trained on a large dataset of models from different sources representing both homology
models from closely related and distantly related homologous templates, ab initio models
from folding simulations, artificially misfolded decoys, and models from previous CASP
competitions. TopScore and TopScoreSingle showed a significantly better and more stable
performance across the different datasets compared to all state-of-the-art primary predictors

(Chapter 9, Publication I).

Building on the ability to estimate protein model quality accurately with TopScore
and TopScoreSingle, I developed a fully automated template-based protein structure
prediction workflow called TopModel. TopModel differs from traditional structure
prediction pipelines in two main ways: First, template selection is performed based on
predicted template similarity to the native structure using deep neural networks. Then, top-
down consensus is used to discard templates, that are structurally different from the best
template, rather than selecting the fold most often found using regular consensus. Second,
instead of using regular consensus between initial models during model refinement,
TopModel predicts the residue-wise error using TopScore and TopScoreSingle and uses the
predicted error to locate and correct erroneous regions. Compared to its primary predictors,
TopModel has a much better template selection and, compared to other template-based
structure prediction workflows, it shows a significant improvement in model quality.
However, TopModel is still at a disadvantage compared to methods, which use ab initio
folding, state-of-the-art contact prediction and protein domain prediction (Chapter 10,

Publication IT).

To demonstrate the usefulness and the power of fully automated protein structure
prediction with TopModel, I applied the workflow to several projects in which the structure
of the target protein of interest was unknown. Three such examples are detailed in this thesis,

namely: (1) Structure prediction of Alanopine Dehydrogenase and the identification of
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structural determinants of ligand specificity by comparison to related structures.
Furthermore, the substrate binding pathway and substrate inhibition was predicted, using the
predicted structure as a starting point molecular dynamics simulations and free energy
calculations (Chapter 11, Publication III). (2) Prediction of feline and human APOBEC3
protein structures to determine residues important for binding viral Vif proteins from HIV
and FIV viruses, respectively. These predictions enabled the identification of key differences
in host-pathogen interaction patterns in humans and domestic cats, which are critical to
consider, when using cats as model animals for the study of HIV (Chapter 12, Publication
IV). (3) Prediction of the dimeric structure of the GAF domain of the plant Ethylene
Receptor 1 (ETRI1), which induces fruit ripening upon binding of the plant hormone
ethylene. This prediction enabled the identification of binding sites for the NOP-1 peptide
derived from the Ethylene-Insensitive Protein 2 (EIN2), which inhibits the ripening process.
These binding sites were identified by combining free ligand diffusion molecular dynamics
simulations of the structures predicted by TopModel with experimental validation. The
predicted binding sites also provided insights into the inhibition mechanism of NOP-1 on
fruit ripening and thus provide a basis for industrial application and improvement of peptide

inhibitors of fruit ripening (Chapter 13, Publication V).

In all, the results presented in this thesis show that integrating different primary
predictors for protein model quality estimation (Publication I), and template-based structure
prediction (Publication II), and combining their outputs using deep neural networks is
highly effective. Furthermore, the usefulness of the methods developed in this thesis was
demonstrated by applying them to target proteins of high biological (Publication III),

medical (Publication IV) and industrial (Publication V) interest.

However, there is still a need for methods that can handle large proteins with multiple
domains better, as well as a need for methods that can accurately predict protein structures
for which no templates are available. Therefore my ongoing work is focused on developing
methods that can identify domains in the target sequence (TopDomain), predict properties
of these domains which can be used for ab initio folding (TopContact), and predict the
interactions between domains or proteins (Toplnterface), in order to construct large multi-
domain proteins and protein-protein complexes by docking together individual proteins

and/or protein domains (TopDock).
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ABSTRACT: The value of protein models obtained with Stereochem|5try

automated protein structure prediction depends primarily on
their accuracy. Protein model quality assessment is thus critical
to select the model that can best answer biologically relevant
questions from an ensemble of predictions. However, despite
many advances in the field, different methods capture different
types of errors, begging the question of which method to use.
We introduce TopScore, a meta Model Quality Assessment
Program (meta-MQAP) that uses deep neural networks to
combine scores from 15 different primary predictors to predict
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accurate residue-wise and whole-protein error estimates. The predictions on six large independent data sets are highly correlated
to superposition-independent errors in the model, achieving a Pearson’s R ;> of 0.93 and 0.78 for whole-protein and residue-
wise error predictions, respectively. This is a significant improvement over any of the investigated primary MQADPs,
demonstrating that much can be gained by optimally combining different methods and using different and very large data sets.

1. INTRODUCTION

Protein structure prediction is an established field of structural
bioinformatics, but computational models still contain errors
that limit their utility to answer biologically relevant
ques['imls.l Thus, it is paramount to establish which model
in an ensemble of predicted structures is the most correct
(global scoring problem), and which parts of that model are
most reliable (local scoring problem). Model quality assess-
ment programs (MQAPs) are therefore a critical part of
automated protein structure prediction.' Many MQAPs have
been developed in the last few decades. These have been
continuously evaluated in the biannual Critical Assessment of
Structure Prediction (CASP) blind eriments and led to
great improvements in model selection.” Current state-of-the-
art MQAPs can be broadly divided into four categories:

L. Single model methods. These methods are generally
fast and memory-efficient and evaluate model quality
based on features from a single model. They fall into
three groups: 1. Physics- or knowledge-based potentlalq,
such as contact, angle, or distance potentlalq
2. Methods measuring geometric properties such as
bond and dihedral angles, atom volume, packing, or
steric clashes.”'* 3. Methods that evaluate agreement
between features in the model and features predicted
from the primary sequence, ﬂuah as secondary structure
and solvent accessibility."”

II. Clustering methods. Clustering methods compare
multiple models of the same sequence. They either

W ACS PU bncations © 2018 American Chemical Society
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assume that the native structure is near a cluster center
and has structural fragments that are more abundant in
the model ensemble or that the models represent
qamp]mg of potentially folded or partially folded
states."~** Clustering methods are effective and often
more accurate than single model methods especially for
difficult systems.2 However, they are computationally
expensive, and their performance suffers if the correct
fold is underrepresented. Furthermore, they become
increasingly slow and memory-dependent as the size of
the model ensemble increases, making their use
unfeasible for large model ensembles.

III. Quasi-single methods. The main idea of quasi-single
methods is to use a small independent set of good
models as a reference for a cluster-based scoring. Two
main approaches have been used in which the reference
ensemble is ecither predicted from the primary
sequence” " or selected with single model methods
from the input ensemble.”® The first approach is
computationally expensive, however, and does not
ensure that the reference ensemble is more correct
than the input ensemble. The second approach, on the
other hand, only improves ranking of models that are
not ranked at the top by single model methods, which
would not be selected in any case.
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IV. Meta-MQAPs. Meta methods seek to combine multiple
methods to improve predictions. While they are slower
than using any individual MQAP method on its own,
their accuracy is generally superior, since they find
different types of errors using different methods.” %%

Despite these remarkable developments, however, the
current state-of-the art MQAPs have often been trained with
different methods on different data sets with different models
or ensemble compositions and with different goals or target
functions in mind {see Table §1). This has led to a high degree
of MQAP diversity with a focus on different types of errors,
which begs the question of which method to use in a general
case. Yet, it also makes the MQAPs ideal components for
designing a general meta-MQAP. In this study, we present the
development and evaluation of a meta-MQAP called Top-
Score. TopScore was developed and validated on six very large
and diverse data sets totaling 910 targets, ~1.7 X 10° models,
and ~2.9 X 107 residues employing deep neural networks
{DNNs} to combine predictions from 15 different primary
MQAPs. TopScore aims to achieve four goals important to
model quality assessment:

I. Distinction between wrongly and correctly folded
models

IL.

IIL.

Assessment of the whole-model error (global score)
Ranking models to select the one closest to the native
structure

Assessment of the residue-wise error of the model {local
score)

Iv.

TopScore shows a consistent and robust performance across
multiple quality measures and data sets of very different
compositions regarding the methodology for generating
models and the model’s error distribution. As such, TopScore
proved superior to any of the 15 evaluated state-of-the-art
primary MQAPs.

2. METHODS

Target Function. To evaluate the quality of TopScore, a
definition of correctness of the scored models with respect to
the native structures is needed as a target function. We are
interested in definitions of error at the local and global level
that are bounded from zero {native) to one {wrong). Many
previous MQAPs have used superposition-dependent target
scores such as the LG-Score, > $-Score,” 'TM-Score,” GDT-
TS Score,” or MaxSub-Score®® and superposition-independ-
ent scores such as the Q-Score™ and the IDDT score.™
Superposition-dependent scores face the challenge that
calculating the target score depends on the structural
alignment of the model and the true structure, a task that
comes with its own difficulties and sources of error: The
structural alignment of a model to the native structure can, e.g,
be difficult if only parts of the model are correct, or if the
model is in a different conformation than the native
structure.”®

The IDDT score® is an all-atom measure of structure
similarity, which is independent of structural superposition. It
compares intraprotein rather than interprotein atomic
distances given certain distance cutoffs. This makes it
insensitive to domain orientation and large conformational
changes, while still being a highly accurate measure of
structural siml'lzn'it)r.S“S It is bounded between 0 and 1 both
for local and global scores.” To provide an intuitive relation
between low values for the correctness assessment and good
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models (reminiscent, e.g,, of a small structural deviation), the
target function of TopScore is chosen as 1 — IDDT score,
which is referred to as the “IDDT error”.

Primary MQAPs. The primary MQAPs are the input
programs used for local and global error estimation and upon
which the TopScore consensus is calculated. These MQAPs

{(Table 1) cover stereochemical analysis methods, knowledge-

Table 1. Local and Global Primary MQAPs in TopScore™

MQAP local score global score
PROCHECK® deviation score” local score average
Molebifyw average score” MolProbity score
ANQLEA>% ANOLEA energyb local score average
ProSA2003° ProSA2003 combined ProSA2003 energy

energy normalized by length
DOPE? local DOPE energy®  global DOPE energy
normalized by length
GOAP? not available GOAP energy normalized by
length
ProQ2'** residue-wise S-Score  predicted LG-Score
ProQ2D"’ predicted local IDDT  predicted IDDT score
score
ProQQ3D" predicted local IDDT  predicted IDDT score
score
SVMQA'®* not available average of predicted
GDT_TS and TM-Score
QMEANG> predicted local IDDT  predicted IDDT score

score

S]E',LECTpro13 not available SELECTpro energy

normalized by length

ModFOLDChist?”  predicted C, atom local score average

distance fo native

SPICKER*
30

not available relative chuster size

Poons residuewise S-Score

global S-Score normalized by
length

“Clustering-based scores are indicated in italics. “Scores smoothed

aver a five-residue window using triangular smoothing. “See Table S1

for a listing of primary MQAP target scores, training set sizes, and

reported correlations from the literature.

based potentials, clustering methods, methods that compare
measured features {e.g, secondary structure and solvent
accessibility) with ones predicted from primary sequence,
and composite scoring methods that use a combination of the
above.

For PROCHECK, no local or global score exists as of yet. A
simple local score was therefore devised as follows: The
maximum deviation of bond lengths, bond angles, and dihedral
angles within a residue was calculated. This value was
smoothed within a five-residue window using triangular
smoothing. The global score is calculated as the average
across all residues. In MolProbity, four local scores exist: A
rotamer-score, a Ramachandran-score, and the maximum
deviation from optimal values of the bond angles and bond
lengths, respectively. These were normalized to represent
probabilities of the value occurring, averaged, and smoothed
within a five-residue window using triangular smoothing, For
SPICKER, the relative cluster size was used as a quality score,
based on the assumption that larger clusters are more likely to
contain correct models.

Since the primary MQAPs have output scores in different
units, deep neural networks {DNNs} were trained for each
MQAP on alarge data set of diverse models (see next section)
to predict the [DDT error from the output score. This ensures
that each MQAP is treated the same afterward and allows for
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evaluation of the primary MQAPs ability to predict the IDDT
error on their own. Each primary MQAP is run with default
parameters to gain optimal performance, ie., for the ProQ
suite of predictors, side chain repacking is enabled. The
performance of each primary MQAP is then compared to
TopScore. Due to the need of running multiple different
primary predictors, the average runtime of T'opScore is about
1.5 min per model in the ensemble or about 5 h for an
ensemble of 200 models.

Data Sets. Because we aim to build a scoring function that
should be broadly applicable to score models from ab initio
structure prediction, homology modeling, and CASP ensem-
bles, it is important that the training data reflects as many
different types of models and ensembles as possible. This is
relevant both in terms of the methods used to generate the
models and the composition of the model ensembles for each
target. Studies have shown®* that, in particular, two cases are
difficult to score correctly: Cases when the large majority of
models are of very poor quality and cases with centralized
distributions of model scores, i.e, all models score very
similarly. Six different data sets are therefore used in order to
train the DNNs on different types of model ensembles.

The first data set is generated using our in-house structure
prediction meta-tool TopModel,q'P which uses multiple
state-of-the-art threading and sequence/structure alignment
tools to generate a large ensemble of models from different
pairwise and multiple alignments of the top three highest
ranked template structures. We chose the Top100 protein data
set™ as target structures, due to its diversity and limited size.
To simulate differences in modeling difficulty, we performed a
screening during which each target structure is predicted from
its primary sequence, with cutoffs imposed to template-target
sequence identity. The cutoffs were chosen as 90%, 60%, and
30% identity, respectively, emulating trivial, easy, and difficult
targets. The Topl00 data set consists of 300 targets comprising
~3.7 X 10* models with in total ~7.5 X 10° residues.

Furthermore, we selected five independent data sets
generated by different methods: First, the 3DRobot data
set™ consists of 200 targets comprising ~6.0 X 10* models
with a uniform error distribution with in total ~8.0 X 10°
residues. Second, from the DecoysR'us data set,™ we selected
all targets with less than 1000 medels from the multiple decoy
set. This yielded 109 targets comprising ~1.4 X 10* models
with in total ~1.5 X 10°% residues. Third, we selected the
ITASSER-II ab initio modeling decoy set,*® which contains
~2.4 % 10* models of 56 targets with in total ~1.9 X 10°
residues. Fourth and fifth, we selected the CASP10 stagel and
stage2 data sets,” which contain 1.6 X 10* models of 116
targets with in total ~4.3 X 10° residues. We combined the
data from all data sets, totaling 781 targets, ~1.5 X 10° models,
and ~2.3 X 107 residues, into a combined set that was used for
training and validating T'opScore.

To evaluate TopScore on a completely independent data set,
the CASP11 and CASP12 stagel and stage2 data sets”” were
combined and used. This set contains 129 targets, ~2.1 X 10
models, and ~5.8 X 10° residues. From this data set, no
models were used during TopScore training; rather, they were
only used for evaluation of the trained methods.

To ensure consistency of CASP ensembles, the reference
sequence was determined as the longest sequence shared by
the most models of an ensemble. Models with missing residues
were repaired using Modeller.*® Missing residues in the native
structure were repaired in the same way. For each data set, all
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primary MQAP scores and target scores were calculated using
local versions of the respective programs. The IDD'T score was
caleulated with default settings {GDT_HA) and radius cutoff
(R, =15 A).

Deep Neural Networks. The deep neural networks
(DNNs) of TopScore were trained using the Python package
SciKit-learn version 1.8.1.%° The training of all DNNs was
done in an identical manner. The data was first divided
randomly into training and evaluation sets, leaving 80% of the
data for training and 20% for final evaluation. For global
scoring, this was done on the target level, while for local
scoring all residues were considered independent samples
during training, i.e., no information of which model a residue
belongs to is retained. The evaluation data was left out of the
entire training procedure and was only used to evaluate the
final DNNs. The IsolationForest method in SciKitJearn was
used to remove the 1% most severe outliers from the training
data to ensure a {it of the most representative data.

The DNNs were trained using the MLPRegressor method
with the ADAM stochastic gradient descent aﬂgorithmSCI and
default weight decay settings for regularization to prevent
overfitting. To estimate the meta-parameters of the DNN, the
training data was randomly subdivided into training and test
sets using the k-fold method in SciKit-learn to perform 5-fold
cross-validation. By using a grid-search, the DNN architecture
and the neuron type were varied. Architectures ranged from a
single-hidden-layer perceptron to a three-hidden-layer percep-
tron with 10, 20, 40, 80, and 160 neurons in the first layer and
subsequent layers having half the neurons of the previous layer.
The tested transition functions were logistic, hyperbolic
tangent, and rectified linear unit function. For each 5-fold
cross-validation split, the DNN was trained on 50% of the data
and evaluated on the rest. To prevent overtraining, the training
was stopped early if the correlation between predicted and true
IDDT etrors on the test half decreased. After selecting an
optimal architecture and transition function, a DNN was
trained on all the training data except for the outliers, again
setting aside 50% of the data for testing and applying early
stopping to prevent overtraining. The final DNN performance
was evaluated on the 20% of the data left out as evaluation data
of the initial set at the beginning of the training, which was
thus not considered during training at all. In all cases, we
observed a difference of less than 1% correlation on evaluation
data compared to training data. An identical approach was
used for the local scores for each method with three main
differences: 1. Primary predictors GOAP, SPICKER, SELECT-
pro, and SVMQA were left out due to the lack of a local score;
2. Outlier filtering was omitted due to memory constraints
arising from a random forest with 2.7 X 107 data points;
3. Based on the outcome of several grid searches, the DNN
architecture was fixed to 160, 80, and 40 neurons in
consecutive hidden layers to speed up the local DNN training,

After each primary MQAP value was normalized using the
MQAP-specific DNN, with specific architectures and transition
functions for each primary MQAP, the normalized values were
used as inputs for another DNN to calculate the TopScore
prediction. This DNN aims to combine the normalized
primary MQAP scores in an optimal way, adjusting for
cross-correlations and performance differences, to achieve a
prediction that is on average better than any single primary
MQAP. The DNN was trained in a manner identical to the
training of the primary MQAP DNNs for selecting meta-
parameters. For the local score predictor, a DNN is trained in
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an identical manner as for the global one. The architecture of
the entire TopScore workflow is outlined in Figure 1. The
DNN architectures and transition functions of the individual
networks as a result of the grid-search optimization can be
found in Table §2.

‘ Input model ensemble |

15 F’r’ima+ MQAPs
| Y |

¥

[ Parsing/processing of output |
¥ ¥
| Raw Global MQAP scores | Raw Local MQAP scores |

Sp832832833880% FATRITRIT LS
: 1SGI0baIMQA.|:'..D.It~Jl.\;i5:%'
000000

| Global MQAP error prediction ||

TTTYYYTTYYy

Local MQAPR error prediction |

TopScore
Global DNM

TopScore
Local DNN

| TopScore Global/Local error prediction |

Fignre 1. TopScore architecture. TopScore runs 15 primary MQAPs,
parses and processes their output, and feeds the raw scores as input
tor individual primary MQAP DNNSs to predict global or local errors.
These predictions are used as input for a global or local consensus
DNN that predicts the global or local IDDT error. The architecture
for TopScoreSingle is the same as shown above except that clustering
primary MQAPs are omitted. See Figure 51 for plots of the individual
DNN functiens and their fit to the true IDD'T error. See Table 52 for
a desr;ripti(m of the individual DNN architectures (]a.)*ers, neurons,
and transition functions).

Performance Measures. MQAP performance can be
evaluated in different ways and varies depending on the
measure used.”® We evaluated MQAP performance with four
quality measures: The area under the curve (AUC), Pearson’s
product-moment coefficient of determination (Rg*), the
weighted mean Pearson’s coefficient of determination (R,,,%),
and the “Loss”. These were computed as in Dong et al.*® The
AUC is calculated based on the receiver operator characteristic
curves for each method using a 0.5 cutoff in the IDDT error.
This cutoff was selected because the IDDT error scale spans
from {) to 1 and because for most of the data sets the median
IDDT is close to this value (Table $3). It determines how well
a MQAP separates good (IDDT error <0.5) from bad (IDDT
error >0.5) models (Goal 1). Ry is the squared correlation
coeflicient calculated on all the combined data from all
ensembles and determines the accuracy with which a MQAP
predicts the global IDDT error of the models (Goal 11). R, % is
calculated using Fisher's r-to-z transformation as the weighted
average Pearson’s R* across all model ensembles and shows the
ability of a MQAP to rank the individual model ensembles
(Goal TII). The loss is the difference in the IDDT error
between the highest ranked model and the best model in the
ensemble, averaged across ensembles. It indicates the [DDT
error that could be avoided if the best model was always
selected instead of the top ranked one and, thus, shows the
ability for 2 MQAP to select the best model (Goal TV).
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3. RESULTS

DNN Training. To visualize the training of the primary
MQAP DNNs, the raw primary MQAP values are binned, and
the IDDT error distributions for each bin are compared to
predicted values from the DNNs. These can be found in
Figure S1 and show the value of outlier filtering and the
robustness of the DNN training with regards to overfitting,

TopScore and TopScoreSingle. Previous CASP
rounds™""*" have shown that clustering-based methods such
as ModFOLDClust2 and Pcons are superior to single-model
methods in terms of distinguishing between good and bad
models and for local quality assessment. This is a result of the
increased amount of information available to the former
methods from different models in the ensemble. Single-model
methods, on the other hand,' ™" have shown superior ability to
select the best model, especially when the ensemble is highly
heterogencous and the best fold is underrepresented and not
part of a cluster. To make sure that TopScore does not gain all
of its performance from the clustering methods, as well as to
obtain a method that can select the best model if the ensemble
is heterogeneous, it is interesting to see the performance when
clustering methods are omitted as primary MQAPs. A
predictor called TopScoreSingle is therefore trained on all
primary MQAPs except SPICKER, Pcons, and ModFOLD-
clust2, in @ manner otherwise identical to that of TopScore
(Figure 1). Additionally, we compare TopScore to Pcomb,**
which is a linear combination of single-model and clustering
scotes.

The global and local performance for a subset of primary
MQAPs compared to TopScore and TopScoreSingle is shown
in Figures 2 and 3, respectively. It is clear that prediction of
local error is a harder task than prediction of global error, as
scen by lower R;* and R, ? values, which is likely due to the
limited information available for a single residue and its
environment compared to that of the entire protein.

TopScore Performance. A detailed description of the four
quality measures AUC, Ry R,..}, and Loss used to cvaluate
TopScore performance is given in the Methods section. These
measures determine the ability of a MQAP to distinguish
between good and bad models, the accuracy with which it
predicts the global IDDT error of the models, its ability to rank
the individual model ensembles, and its ability to select the
best model, respectively. Our analyses (Figures 2 and 3; see
Tables $4, 85, and $6 for numerical values) show that, overall,
TopScore and TopScoreSingle outperform all other primary
MQAPs significantly (p < 0.05) with respect to all quality
measures on the combined data set, which includes the
iTASSER-II, Topl00, 3DRobot, DecoysR'us, and CASP10
stagel/2 data sets. Furthermore, on the CASP11/12 test set,
we see significantly improved performance of both TopScore
and TopScoreSingle compared to primary MQAPs for both
global and local scoring for all quality measures, with the
exception of global R,? according to which the performance
of TopScoreSingle is comparable to ProQ3D, and TopScore is
comparable to Pcomb. TopScoreSingle shows a decrease in
performance on the CASP11/12 data set compared to the
combined data set, which is likely due to the data set's
difficulty as reflected in a median IDDT error of 0.61 (Table
S$3). This drop is seen less for TopScore because TopScore
also considers clustering MQAPs, which are good at separating
good from bad models. This overall remarkable performance of
TopScore and TopScoreSingle is due to the DNN's ability to
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Figure 2. TopScore global performance. TopScore {red circles) and TopScoreSingle {red dashes) global performance compared to a subset of
primary predictors {black). Dashed lines represent single-model methods, and full lines represent methods that use clustering information. The 95%
confidence intervals were calculated using the Fischer r-to-z transformation. The widest confidence interval for any Ry* or R, " was 0.01 and 0.12,

respectively. Statistical significance was determined by the two-sided $teiger test®® Accordingly, the Ry* and R

* of TopScore and

wim

TopScoreSingle are significantly different from any primary MQAP for the combined data set (p < 0.05). In terms of Ry", for the CASP11/12 data
set, TopScoreSingle is not significantly different from ProQ3D, and neither is TopScore when compared to Pcomb. See Tables 54 and S5 for
numerical values of all investigated MQAPs. See Table 53 for statistics of IDD'T" distributions of individual data sets.

combine the performance of the primary MQAPs as well as the
very large and diverse data sets used for model training.

For the global scores (Figure 2, Tables S4 and S5),
individual methods occasionally perform better on a single
quality measure and specific data sct, which stresses the
importance of evaluating MQAPs across multiple quality
measures and data sets. One example is SVMQA out-
performing TopScoreSingle and TopScore on the
iTASSER-II data set in terms of Loss and TopScoreSingle
also in terms of R,,> Another example is QMEANG
outperforming TopScore on the DecoysR'us data set in
terms of Loss. However, when all measures and data sets are
considered, the improvement obtained from TopScore and
TopScoreSingle is unequivocal.

For the local scores (Figure 3, Table $6), TopScoreSingle
even performs better than clustering-based primary MQAPs
for several data sets. This finding indicates that there is still
much to gain from combining single model MQAPs even when
no clustering information is included and shows that
clustering-based methods are no longer exclusively the best
for evaluating residue-wise quality. Furthermore, our {indings
show that MQAP performances vary significantly between
different data sets, which also holds for TopScore and
TopScoreSingle regardless of whether the data sets were
used for their training or not. This finding suggests that the
data sets used for the development of each primary MQAP
have a large impact on their performance. This finding does
not necessarily reflect an overtraining of the MQAPs; rather, it
results from different data set compositions and a limit to the
degree of generalization possible from limited training data.

6121
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Figures 2 and 3 give a good indication of the overall
performance of each predictor but do not show if the
uncertainty of the predictions is uniformly distributed or if
certain ranges of the [DDT error are more difficult to predict.
Figure 4 shows that it is casier to predict the global error of
very bad models and very good models (IDDT error <0.2 or
IDDT error »0.50; standard deviation (SD) = 0.01-0.04)
rather than of intermediate ones (IDDT error = 0.2—0.50,
SD = 0.04—0.055). This trend is 2lso seen for TopScoreSingle
and for the local predictors.

Primary MQAP Performance. When analyzing the
performance of primary MQAPs, we see considerable differ-
ences between performances on different data sets as well as
with respect to different quality measures. When considering
the combined data set, some primary MQAPs show a good
overall estimate of the IDDT error of a model relative to all
models (indicated by Ry®) but are considerably worse at
ranking models within an ensemble (indicated by R, *). This
trend is seen for PROCHECK, MolProbity, and SPICKER.
Using SPICKER’s cluster size as an example, this is not
surprising: Since models belonging to the same cluster have
the same (or for other MQAPs a highly similar) score, the
ranking of an ensemble will be worse with increasing cluster
size. However, an ensemble where the largest cluster is small is
less likely to contain good models than one where most models
belong to the same cluster. Methods such as GOAP, DOPE,
ANOQLEA, and SELECTpro show the opposite trend, with a
higher R,,,* than Ry* These MQAPs fail to correctly estimate

. ; 2
the error of some ensembles, leading to a decrease in Ry
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{p < 0.05). See Table 56 for numerical values for all investigated MQAPs.
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Figure 4. TopScore performance. The glebal TopScore predictions
plotted against the IDDT error of the models for the combined data
set. Three randomly selected example models of PDB ID 4BMB from
the 3DRobot data set are shown colored according to local TopScore
error prediction (lower triangle) and true local IDDT error {upper
triangle).
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compared to R,,> This could be because these types of
ensembles were not seen during the training of these MQAPs.

The top performing primary MQAPs in terms of Ry” and
R,.” are, as expected, the clustering-based methods
ModFOLDClust2 and Pcons, as well as the composite method
Pcomb. They show similar global performances, with Pcons
performing better than ModFOLDClust2 in most cases,
although both show a higher Loss on some data sets than
some single model methods. This shows that much of their
performance is gained from correctly ranking the majority of
the models, but that this does not necessarily lead to the best
model being ranked at the top. Since the majority of the
models is not selected for further analysis, correctly ranking
them has a limited effect on improving the quality of the top
ranked model. For local error predictions, Pcons shows
significant advantage over ModFOLDClust2, which is likely
due to differences in target score (Table S1). Pcomb shows an
overall higher performance than most primary MQAPs on
most data sets due to its composite nature.

Figures 2 and 3 show that different primary MQAPs can
have very different performances for the different data sets.
PROCHECK and ANOLEA, for example, have a Ry of 0.32
and 0.44 on the Topl00 as well as 0.46 and 0.73 on the
DecoysR'us data set, respectively, but less than 0.2 for the
3DRobot and iTASSER-II data sets. This is expected as the
former data sets contain mostly models close to the native
structure, while the latter contain mostly models representing
misfolded or unfolded proteins. When most models are close
to the native structure, many errors can be found from
stereochemistry or loop energetics, while at the other end of
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Table 2. MQAP Cross Correlation: R,;* between Primary MQAPs and TopScore MQAPs"
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PROCHECK - .0.01 005|002 - |o15|014fo14|028| - | - |o28f030| - [032]032
MolProbity 030 - [000|o04f006| - [o12fo13]o1ofo26| - | - [030]032| - [031]031
ANOLEA 001 [oog| - |ooafoos| - [o21|o16]00s|010| - | - [oos]|006| - [o12]014
ProSA2003 021014]006| - [009| - [o20|01s|01s|o16] - | - [ooo]oro| - [o16]01s
DOPE 012|019 |o19f0s0| - | - [o0a3|o0s|o0s|o06| - | - [oo2]|002| - [009]|013
GOAP 0.19 [0.23 | 020 | 0.55
QMEANG 029042021 | 046
ProQ2 022021014057
ProQ2D 0260.19 | 0.06 | 0.55
ProQ3D 037024 | 008 | 055
SVMQA 019018 ] 0.15 | 0.52
SELECTpro 0.03 [0.02 | 0.00]029|034]026(0.16 023 0,24(}.18 -1 -7 R
ModFOLDClust2 028013 005|041 |024]041032[057]0.58 .
Peons 032 0.14]0.03 038 | 0.18 | 038
SPICKER 0.17[0.06 | 0.04 | 030 | 0.19 | 027
TopScore 040030012053 | 036|059
TopScoreSingle 041(028)0.13]0.54 | 0.36 | 0.60

“The upper triangle contains R, between local scores and the lower triangle R, between global scores. Values of 0—0.2 have a white background,
values of 0.2—0.4 have a light gray background, values of 0.4—0.6 have a medium gray background, and values of 0.6—1.0 have a dark gray

background.

the spectrum, folding energy and cluster density are better
error estimators.

The ProQ class of predictors (ProQ2, ProQ2D, and
ProQ3D) show incremental improvement with each iteration
of predictors. ProQ3D performs better than the linear method
QMEANG on most measures and data sets except for Ry on
the DecoysR'us and ToplO0 data sets. SVMQA shows
comparable performance to ProQ3D for most data sets but
has a significantly higher performance on the iTASSER-II data
set, which is in line with ProQ3D being described as having a
lower performance for ab initio targets.17 Interestingly, for
residue-wise error estimation, ProQ3D outperforms all other
primary MQAPs and even shows better performance than
clustering-based ones on several data sets.
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To analyze the similarity between the individual methods, a
cross correlation test was performed to estimate to which
degree the predictions of individual primary MQAPs correlate
to each other and to predictions from TopScore and
TopScoreSingle. The result of this analysis is shown in Table
2. It is not surprising that TopScore and TopScoreSingle have
the highest correlation with the best performing primary
MOQAPs. It is however interesting to see that simple methods
such as PROCHECK and MolProbity show higher correlation
to TopScore and TopScoreSingle for local scores than
knowledge-based potentials such as ProSA2003 and DOPE,
though the latter show higher correlation for the global scores.
This indicates that while stereochemical violations do not
necessarily reflect global correctness they do indicate locations
of local error.

DO 10.1021/acs.jcte.8b00690
J. Chem. Theory Comput. 2018, 14, 6117-6126
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4. CONCLUSION

Model quality assessment is critical for automated protein
structure prediction. In this study, we developed a scoring
function with consistently high performance for a wide range
of data sets and model ensembles resulting from ab initio
folding, homology modeling, and CASP competitions. We
used six large diverse data sets of models to examine the
relationship between MQAP scores and the global and local
IDDT error using four quality measures. We trained a DNN for
each primary MQAP to predict the IDDT error from its raw
score, using outlier filtering, weight decay, extensive cross-
validation, and early stopping to prevent overfitting, We then
combined the individual primary MQAP predictions using
DNNs to predict global and local IDDT errors more accurately
than any primary MQAP. Our methods TopScore and
TopScoreSingle show a significant improvement in prediction
of both local and global IDDT errors compared to the tested
publicly available MQAPs when all quality measures and data
sets are considered. This increase in performance indicates that
despite the primary MQAPs predictions being weakly
correlated, with the median correlation between them being
0.3 for global scores and 0.15 for local scores, there is still
much to be gained from combining knowledge from different
MQAPs into a single unified score. Notably, we observed that
MQAP performance varies significantly depending on the data
set they are evaluated on. This is likely due to varying degrees
of difficulty of the data sets as well as the methods’ limited
abilities to generalize far beyond the data set they were trained
on, which clearly stresses the importance of using large and
diverse data sets for method training. TopScore was trained on
more than 100,000 diverse models from almost 1000 targets
spanning close to 30 million residues, which led to a robust
performance across all data sets.

As a summary, a comparison of the best {when all different
quality measures are considered) single-model, clustering, and
hybrid MQAPs with TopScore and TopScoreSingle perform-
ance for local and global prediction on the combined data set
and the CASP11/12 data set is shown in Table 3.

Table 3. Comparison of the Best Single-Model, Clustering,
and Hybrid MQAPs to TopScore and TopScoreSingle

combined data set CASP11/12 data set
E

(R /B (Ra' /R’
MQAP global local global local
ProQ3D 0.77/0.70 0.66/0.50 0.68/0.29 0.59/0.34
Pcons 0.76/0.66 0.61/0.47 0.80/0.28 0.57/0.30
Pcomb 0.73/0.71 0.62/0.47 0.83/0.38 0.88/0.24
TopScoreSingle 0.90/0.73 0.71/0.58 0.68/0.33 0.61/0.42
TopScore 0.93/0.79 0.78/0.64 0.83/0.48 0.68/0.49

A comparison of all MQAPs can be found in Tables 84 and
56. TopScore as a stand-alone package and the data sets

generated for it are available at http://cpclab.uni-duesseldorf.
de/software.
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MQAPs as well as numerical tables of the performance

Page | 99

6124

of all primary MQAPs for all quality measures and data
sets used for both local and global scores, calculated
statistics describing the difficulty of each data set,
architecture and activation functions of all neural
networks, and plots of the activation function and
distribution of raw primary scores for the full range of
the primary scores and model correctness (PDF)
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Supplementary Tables
Table S1. Literature values for primary MQAP scores and their target score. See also Table 1.
MQAP Target Score / Protein systems Global Score R? /R

ANOLEA C, RMSD /23 0.69/083
ProSA2003 N/A /167 N/A
DOPE Co RMSD /20 0.76 /087
GOAP TM-Score / 390 0.39/-0.63
ModFoldClust2 GDT-TS /120 0.90/ 095
Fcons LG-Score /96 0.90/055
ProQ2 S-Score /123 0.50/0.71
ProQ2D IDDT-Score / 67 0.72/085
ProQ3D IDDT-Score / 67 0.81/050
SVMQA SVMQA-Score /385 0.83/091
QMEANG6 GDT-TS /122 0.59/0.77

Table S2. TopModel DNN architectures and activation functions (global / local). See also Figure 1.

MQAP First layer size Second layer size Third layer size Activation function
PROCHECK 160 /160 80 /80 0/40 relu / relu
MolProbity 160 /160 80 /80 40 /40 relu / relu
ANOLEA 40/160 0/80 /40 relu / relu
ProSa2003 20/ 160 10 /80 4040 relu / relu
DOPE 160 /160 80 /80 /40 relu / relu
GOAP 10/0 5/0 02/0 tanh /-
QMEANSG 160 /160 80 /80 40 /40 relu / relu
ProQ2 40/ 160 20/ 80 10740 relu / relu
ProQ2D 40/ 160 0/80 0/40 relu / relu
ProQ3D 80/ 160 40/ 80 20/40 relu / relu
SVMQA 160/ 0 80/0 40/0 relu /-
SELECTpro 2040 10/0 0/0 relu /-
ModFoldClust2 160/ 160 80 /80 40/40 relu / relu
PCONS 80/160 40/ 80 20/40 relu / relu
SPICKER 10/0 570 2/0 tanh / -
TopScore 160 /160 80 /80 40 /40 relu / relu
TopScoreSingle 160 /160 80 /80 40 /40 relu / relu

Table 82. Single model primary MQAPs are shown in the first section. Clustering primary MQAPs are shown in the second section. TopScore
and TopScoreSingle (this study) are shown in the bottom section. The number of neurons and the activation function for each of the potential
three layers of the deep neural networks are shown for each primary MQAP as well as for TopScore and TopScoreSingle. For activation
functions, “relu” refers to the rectified linear unit function and “thanh” refers to the hyperbolic tangent function. Values before the / correspond

to the global score networks and values after the / correspond to the local score networks.
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Table 83. Quality and spread of different datasets used for TopScore. See also Figure 2.

Dataset MOME! MOMADP! MDF! MADH
Topl00 0.29 0.02 029 0.09
3DRobot 0.54 0.09 0.53 011
DecoysR’us 0.28 0.02 0.46 011
iTASSER-II 0.52 0.02 0.31 0.07
CASP10 0.47 0.03 045 0.10
Combined 0.43 0.02 046 0.13
CASP11/12 0.60 0.04 0.61 0.14

Table S3. For each model ensemble in a given dataset the IDDT score to the native structure is calculated. For each model ensemble, the
median and median absolute deviation of the IDDT scores are then calculated. For each dataset, the median of medians (MOMED and median
of median absolute deviations (MOMADP) are calculated across all model ensembles in that dataset. Additionally, the median (MDIh and

median absolute deviation (M ADE are calculated when all models from all ensembles are pooled together.

Table S4. Ryt and Rum?t of global primary MQAPs and TopScore. See also Figure 2.

MQAP iTASSER-II CASP10 DecoysR’'us  Topl100 3DRobot Combined CASP11/12
PROCHECK 0.00 / 0.00 0.06/0.04 0.46 /0.05 0.32/019 0.12/027 0.38/0.15 0.04/0.05
MolProbity 0.05/0.02 0.00/0.04 0.46 /0.02 0.15/0.07 0.24/0.29 0.30/0.13 0.01/0.03
ANOLEA 0.14 / 0.06 0.19/0.10 0.73/0.14 0.44/0.28 0.15/051 0.11/0.32 0.14/0.11
ProSa2003 0.13/012 0.21/0.13 0.28/0.28 0.33/043 0.54 /075 0.50/0.53 0.19/0.13
DOPE 0.27/022 0.19/0.11 0.59/0.35 0.53/0.55 0477075 0.34/0.59 0.22/0.09
GOAP 0.16/022 0.23/0.18 0.76/0.33 0.49/0.62 0.69/0.85 0.57/0.68 0.26/0.16
QMEAN6 0277012 0.19/0.14 0.84/0.34 0.66 /0.53 0.63/080 0.5770.60 0.33/0.14
ProQ2 0.36/019% 0.42/0.18 0.77/042 0.55/04% 0.70/0.85 0.69/0.65 0.58/0.18
ProQ2D 0277020 0.63/0.23 0.70/0.44 0.51/04% 0.71/086 0.68/0.66 0.63/0.25
ProQ3D 0.21/018 0.67/0.27 0.81/044 0.64/0.358 0.77 /1 0.89 0.77/0.70 0.68/0.29
SVMQA 0.46/0.27 048/0.20 0.81/0.52 0.53/0.38 0.76 / 0.89 0.72/0.72 0.61/0.25
SELECTpro 0.07/018 0.08/0.18 0.03/0.33 0.18/041 0.17/0.70 0.11/0.51 0.10/0.14
ModFoldClust2 0497027 0.65/0.04 0.87/0.44 0.61/04% 0.82/086 0.75/0.61 0.74/0.07
Pcons 0.54/0.29 0.73/0.19 0.86/0.49 0.66 /0.56 0.78/0.88 0.76 /0.66 0.80/0.28
SPICKER* 0447022 0.29/0.06 0.58/0.13 041/017 0.39/0.44 0.46/0.27 0.45/0.10
Fcomb 0.66 /0.36 0.74/0.37 0.91/0.77 0.69 / 0.69 0.81/0.90 0.73/0.71 0.83/0.38
TopScoreSingle 0.64 /023 0.78/0.44 0.91/0.78 0.87/0.58 0.87/0.92 0.90/0.75 0.68/0.33
TopScore 0.76 /035 0.79/0.52 0.95/0.78 0.87 /0.69 0.91/0.95 0.93/0.79 0.83/0.45

Table S4. Single model primary MQAPs are shown in the first section. Clustering primary MQAPs are shown in the second section. Pcomb
is shown in the third section, and was not included as a primary predictor. TopScore and TopScoreSingle (this study) are shown in the bottom
section. In the first and second MQAP sections, the best score is highlighted in bold. Pcomb is highlighted in bold if it outperforms all other
primary MQAPs. In the fourth section, TopScore is highlighted if it outperforms all other MQAPs, and TopScoreSingle is highlighted if it
outperforms all other single primary MQAPs. The 95% confidence intervals were calculated using the Fischer r-to-z transformation. The widest
confidence interval for any Ra® or Ruw’ was 0.007 and 0.07, respectively. Statistical significance was determined by the two-sided Steiger
t47

test¥. Accordingly, on the combined dataset the R.® and Rey,® of TopScore and TopScoreSingle are significantly different from any primary

MQAP (p < 0.05). The arrows 1~ and “|” indicate if a score gets better with increasing or decreasing value respectively.
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Table S5. AUCT and Loss| of global primary MQAPs and TopScore. See also Figure 2.

MQAP iTASSERII  CASP10 DecoysR'us  Topl00 3DRobot Combined  CASPILI12
PROCHECK 046/ 9.05 0.61 /.69 00071146  0.82/4.12 06471057  0.75/7.60 0.50/12.95
MolProbity 0.62/627 0.50/1099  082/13.49  0.72/348 072/14.74  073/877 0.55/12.90
ANOLEA 0.72/629 0.69/9.49 0.86/4.09 0.88/3.35 071/11.57 0637620 0.71/13.04
ProSa2003 0.66/7.78 075/1072  069/4.72 0.86/3.94 088/11.04 0847657 0.75/13 38
DCPE 0.77/5.09 0.74/1023 0847345 0.96 /281 0.85/4.42 0.78/3.59 0.77/11.92
GOAP 0.70/ 5.68 0.76/ 6.60 0.89 /228 0.96/2.47 0.92/4.90 0.87/3.77 0.85/13.85
QMEANG 0.74 /620 0.75/9.79 0.95/2.53 0.96/2.15 0.89/3.22 0.84/2.87 0.80/10.72
ProQ2 0.82/596 0.85/7.54 091435 0.96 /281 0.94/8.14 0.92/4.95 0.91 /951
ProQ2D 0777547 0.90/6.65 0.88/4.80 0.97/3.01 0.94/7.43 0.92 /487 0.92/8.48
ProQ3D 0787552 0.91/5.62 091 /446 0.97 /236 095/2.71 0.94/3.18 0.94/7.86
SVMQA 0.84 /428 0.87/6.87 093/2.83 0.97/233 0.96/5.04 0.94/341 0.92/8.52
SELECTpro 0.60/623 0.61/1147  033/3.92 0.85/3.91 070/11.15 0667634 0.69/13.43
ModFoldClust2 084/ 731 0.92/0.97 0.97 /661 0.91/4.03 0.98/12.82  0.94/7.05 0.97/12.11
Peons 0.85/ 6.0 0.92/7.72 096 /537 0.91/3.41 097/13.07  0.94/7.09 0.97 / 10.60
SPICKER 086/ - 0.83/ - 088/ - 085/ - 079/ - 083/ - 0.86/ -
Pcomb 0.92/511 0.93/6.56 0.95/ 385 0.06 /238 0.08/ 6.0 0.95/4.54 0.97/8.16
TopScoreSingle .91/ 5.54 0.94/ 4,01 0.97/2.76 0.99/217 0.98/1.76 0.97/2.75 0.94/7.43
TopScore 0.94/4.76 0.95/3.77 0.99/3.02 0.99/1.97 0.99/ 1.69 0.99 /2,59 0.97/7.15

Table $5. Sections, highlighting, and symbols are made in an identical manner as for Table S4. For SPICKER no Loss is calculated (Indicated

by “-*), since models are ranked by cluster size and multiple models therefore have the same score.

Table 86. Ru’*1, Rum’T and AUCT of local primary MQAPs and TopScore. See also Figure 3.

MQAP Topl00 3DRobot DecoysR’us iTASSER-II  CASP10 Combined CASP11/12

PROCHECK 0.15/0.12/0.75  0.07/0.07/0.62  0.24/0.01/0.79 0.00/0.00/0.52  0.05/0.03/0.61 0.22/0.06/0.72 0.04/0.04/0.61
MolProbity 0.18/0.15/0.76 0.01/0.01/0.58  0.19/0.05/0.75 0.00/0.00/0.56  0.04/0.03/0.60 0.21/0.05/0.71  0.04/0.04/0.62
ANOLEA 0.18/0.12/0.73  0.07/0.08/0.63 0.34/0.11/0.81 0.07/0.04/0.64 0.13/0.08/0.67 0.10/0.09/0.64 0.11/0.07/0.66
ProSa2003 0.12/0.08/0.74  0.12/0.12/0.68 0.07/0.08/0.67 0.05/0.05/0.59 0.11/0.09/0.67 0.13/0.09/0.69 0.10/0.07/0.67
DOPE 0.12/0.12/0.71  0.14/0.14/0.6% 0.02/0.10/0.53  0.06/0.09/0.61 0.15/0.14/0.69 0.09/0.13/0.64 0.11/0.14/0.66
QMEAN6 0.47/039/090 036/0.36/0.80 0.53/0.28/0.89 0.14/0.07/0.71 0.35/0.24/0.80 0.40/0.31/0.82  0.33/0.20/0.80
PROQ2 0.46/0.34/089 0.42/045/0.83 047/0.16/0.88 021/0.10/0.73 047/0.29/086 0.51/0.34/0.86 047/0.22/0.86
PROQ2D 0.44/0.33/0.89 0.47/0.51/0.86 047/0.19/0.88 0.23/0.13/0.73  0.64/0.44/0.91 0.55/0.39/0.89 0.50/0.26/0.87
PROQ3D 0.61/0.50/0.93  0.57/0.60/0.88  0.64/0.33/0.92 0.26/0.16/0.75 0.66/0.48/0.92  0.66/0.50/0.91 0.59/0.34/0.90
ModFoldClust2  049/0.38/0.89 0.36/0.36/0.82 0.61/0.32/0.92 0.32/0.16/0.79% 0.56/0.33/0.88  0.53/0.34/0.87 0.54/0.24/0.8%
PCONS 0.54/0.46/0.92  0.53/0.54/0.88  0.72/0.48/0.96  0.40/0.25/0.82  0.59/0.38/0.90 0.61/0.47/0.90 0.57/0.30/0.90
PCOMB 0.57/0.56/0.92  0.55/0.56/0.8%9 0.75/0.52/0.96 0.43/0.28/0.82 0.60/0.38/0.89 0.62/0.47/0.90 0.58/0.24/0.8%
TopScore 0.74/0.63/0.96  0.71/0.72/0.93  0.79/0.58/0.96 0.48/0.32/0.84 0.73/0.57/0.94 0.78/0.64/0.95 0.68/0.49/0.94
TopScoreSingle  0.67/0.55/0.94  0.61/0.64/0.90  0.70/0.41/0.93  0.31/0.21/0.77  0.68/0.52/0.92 0.71/0.55/0.92 0.61/0.42/0.91

Table S6. Sections, highlighting, and symbols are made in an identical manner as for Table S4. The 99% confidence intervals and statistical
significances are calculated in the same way as for Supplementary Table 5. The widest confidence interval for any Ryor Ry’ was 0.002 and

0.08, respectively. The Ry and R.,* of TopScore and TopScoreSingle are significantly different from primary MQAPs (Steiger test p < 0.05).
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Figure S1. Training of local (a) and global (b) primary MQAP DNNs.
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Figure S1. Training of local (a) and global (b) primary MQAP DNNs. The raw MQAP scores are binned mto 100 bins. Black lines indicate

bin means and gray areas bin standard deviations in terms of IDDT error. The red lines indicate the output from the DINNs on the raw data

given the bin MQAP bin means as input.
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Abstract

Knowledge of protein structures is essential to understand the proteins’ functions, evolution,
dynamics, stabilities, interactions, and for data-driven protein- or drug-design. Yet,
experimental structure determination rates are far exceeded by that of next-generation
sequencing. Computational structure prediction seeks to alleviate this problem, and the Critical
Assessment of protein Structure Prediction (CASP) has shown the value of consensus- and
meta-methods that utilize complementary algorithms. However, traditionally, such methods
employ majority voting during template selection and model averaging during refinement,
which can drive the model away from the native fold if it is underrepresented in the ensemble.
Here, we present TopModel, a fully automated meta-method for protein structure prediction. In
contrast to traditional consensus- and meta-methods, TopModel uses top-down consensus and
deep neural networks to select templates and identify and correct wrongly modeled regions.
TopModel combines a broad range of state-of-the-art methods for threading, alignment and
model quality estimation and provides a versatile work-flow and toolbox for template-based
structure prediction. TopModel shows a superior template selection, alignment accuracy, and
model quality for template-based structure prediction on the CASP10-12 datasets. TopModel
was validated by prospective predictions of the nisin resistance protein NSR protein from S.
agalactiae and LipoP from C. difficile, showing far better agreement with experimental data
than any of its constituent primary predictors. These results, in general, demonstrate the utility
of TopModel for protein structure prediction and, in particular, show how combining
computational structure prediction with sparse or low-resolution experimental data can improve

the final model.
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Introduction

Knowing the 3D structure of a protein is important to understand its stability [1], dynamics,
function [2], structural evolution [3], and interactions with ligands [4, 5] or other proteins [6].
Consequently, protein structure prediction is an essential part of knowledge-based protein
engineering |7], drug-design and -discovery [8], and function assignment [9, 10]. At present,
X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy are the dominating
experimental methods for structure determination, but both are too time consuming to keep up
with current high-throughput genome sequencing information. Computational structure
prediction has sought to alleviate this problem, and in the last decades, many approaches have
been developed, raising the question of which method to use for a given sequence of interest.
The biological information that can be derived from a structure prediction depends on its
accuracy: High-confidence models based on homologous templates are generally suitable for
computational ligand docking and virtual compound screening, while models with medium
confidence can be useful for identification of functionally important sites and disease-
associated mutations [11].

The field of computational structure prediction has driven many advances in structural
bioinformatics, the most important being the development of threading algorithms that seek to
identify a template structure most similar to the native structure of a target sequence of interest.
These developments include fast and sensitive alignment methods such as: Iterated search
methods [12], position-specific-scoring matrices (PSSM's) [13, 14], sequence-profile alignment
[15], profile-profile alignment [16, 17], and hidden Markov models (HMM's) [18-22]. The
accuracy of threading algorithms has been further improved by adding structural features such
as predicted secondary structure, residue contacts, solvent accessibility [23], residue-depth [24],
and backbone dihedral angles [25] to the alignment and scoring functions. Additionally,
probabilistic modeling [26, 27|, depth-dependent alignment of structure fragments [28],
multiple template and structure alignment [29], normalized Z-scores [16, 23], and sequence-
based solvation potentials [17] have been employed to increase performance. Advances in
multiple structure/sequence alignment methods, model building, clustering, and quality
estimation have also had a large impact in the field [30, 31]. Meta-approaches have proven to
be one of the major advances [32], as evident by the consistent high ranking of the Zhang meta-
server [33] in the blind critical assessment of protein structure prediction (CASP) experiments.
The meta-server methodology is to produce structure predictions using information from
multiple different algorithms [33, 34] and either re-rank or combine their output to produce

better predictions than any of their component predictors. Considering the diversity of
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optimization procedures, training sets and quality measures, it is not surprising that meta-
methods provide more robust results with a higher over-all quality.

Here, we present a meta-approach to template-based structure prediction, which uses a
top-down consensus approach rather than traditional majority-voting consensus termed
TopModel. The development of TopModel was inspired by the success of meta-approaches in
CASP experiments [35]. The CASP experiments, however, are undertaken on a working group
rather than an algorithmic level, and competing groups use different algorithms not only for
threading, but also for alignment, model construction, model refinement, model evaluation, and
model selection. It is therefore difficult to assign the differences in model quality from difterent
groups to improvement of a specific step of the structure prediction workflow.

The aim of TopModel is therefore to individually optimize four steps of the structure
prediction pipeline: Template selection, target-template(s) alignment, model selection, and
model combination and refinement. By focusing on each step individually, we aim to improve
the final quality of models produced by TopModel. TopModel aims to provide a versatile and
accurate toolbox for template-based protein structure prediction, expand applicability of
existing algorithms for threading, alignment, model quality estimation and refinement via an
automated integration of all methods, and vield high quality structure predictions even for low
sequence identities that are in agreement with experimental data.

Ab initio folding methods have in recent years seen a large increase in model accuracy
due to a revolution in using image recognition deep neural networks for predicting residue-
residue contacts and distances [36]. The aim of TopModel, however, is to establish an automated
workflow for template-based modeling in order to explore how deep learning can improve
template selection and how well the use of structural information from multiple templates and
alternate alignments can improve model quality compared to single-template based modeling.
In parallel to the development of TopModel, we are working on an ab initio folding pipeline
that builds on the recent advances in prediction of residue-residue distances, which we aim to

combine with the template-based folding in TopModel for improved performance.
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Methods and implementation

TopModel. TopModel is a protein structure prediction work-flow with five modules that are

executed consecutively or can be used individually. A simplified depiction of the interaction

between the different TopModel modules can be seen in Figure 1; a detailed description of each

module is given below.

1.

TopThreader. TopThreader identifies template structures from a target sequence based
on predictions from twelve different primary threading programs using a top-down
consensus approach instead of traditional majority voting.

TopAligner. TopAligner makes an ensemble of alignments between the target sequence
and the provided templates based on template-template alignments from eight different
primary alignment programs and template-target alignments from TopThreader.
TopBuilder. TopBuilder makes models of the target sequence based on alignments from
TopAligner or TopThreader and templates from Top Threader, using Modeller9 [37] and
Rosetta [38].

TopScore. TopScore and TopScoreSingle [39] predicts the global and local error of
models based on predictions from fifteen primary model quality assessment programs.
TopScoreSingle is similar to TopScore but does not include clustering information and
is therefore suitable when the best model is not part of a cluster.

TopRefiner. TopRefiner selects, combines, and refines models made by TopBuilder

based on predicted global and local errors from TopScore and TopScoreSingle.
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Figure 1. Simplified interaction between TopModel modules. The target sequence is given as input to
TopThreader (1), which searches for templates using different primary threaders. TopThreader uses TopBuilder (2)
to build models from the primary threader alignments, template structures and target sequence, which are scored
with TopScore (3), and used by TopThreader (4) together with primary threader scores to rank and cluster templates
and remove false positives. TopThreader then uses TopAligner (5) to align templates and construct consensus
alignments which are built with TopBuilder (6), scored with TopScore (3), and used together with primary threader
scores in TopThreader (4) to rank templates by predicted similarity to the native structure. After template selection,
TopAligner (5) is used to generate a large ensemble of pairwise and multi-template alignments from which models
are built with TopBuilder (6) and scored with TopScore (3). Models are selected from the multi-template ensemble
(7) and the single-template models (8) by TopRefiner, which combines and refines the models to produce a final

model (9).

TopThreader. The threading process is the firstand most critical step of template-based protein
structure prediction [33]. [t has three main goals: (1) Identification of correct template structures
for a target sequence, also known as fold recognition or threading, (2) target-template
alignment, and (3) ranking of templates according to their similarity to the native structure. The
TopModel threading module TopThreader uses a combination of deep neural networks (DNNs),
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model quality prediction by TopScore and TopScoreSingle [39], and sequence/structure
alignments to predict the TM-Score [40] between each template and the native structure,
remove false positive templates, calculate consensus alignments, and rank templates by their
predicted TM-Score. The TM-Score is a robust measure of structural similarity between two
proteins which is independent of the protein sizes.

Prediction of template quality is similar to protein model quality assessment but not
identical. First, template similarity to the native structure differs from model quality because of
different possible target-template alignments, which is one of the main determinants of
template-based model quality. In other words, a template may be similar to the native structure,
but if the target-template alignment is wrong, the resulting model can have a low quality.
Consequently, while a template has just one TM-Score to the native structure, models built from
different alignments between the target and the template may have different model qualities,
which can obscure the detection of the best template. Second, template similarity to the native
structure 1s based on comparison between structures with different sequences and sizes, while
model quality is based on comparison between structures of the same size and sequence as the
native structure. Thus, while a small partially matching template may have the right fold for a
given part of the target sequence, a model based on such a template alone could have a poor
quality due to low coverage. These differences are important especially for hard cases, in which
threaders may prefer a wrong template with a large coverage over a short template with a correct
fold but poor coverage. As such, the prediction of template similarity to the native structure is
a challenging task.

TopThreader has cight steps outlined here. In the Supporting Information a detailed
description of the TopThreader workflow (Text T1, Figure S1), the DNN training (Text T1,
Figure S2), and the primary threading programs (Text T2) can be found.

1. Primary Threaders. TopThreader uses twenty primary threading algorithms
from twelve primary threaders and selects the top five templates from each
threader (Table S1). All threaders are run with default settings following the
provided instructions by their respective authors.

2. Pre-filtering. Pre-filtering allows the user to discard templates according to
cutoffs with respect to, e.g., sequence identity, coverage, experimental method,
or submission date. By default, templates with less than 30% coverage and
artificially designed proteins are removed.

3. Alignment Fitting. TopThreader fits all pairwise threading alignments to the

template structures and target sequence to ensure that residues match exactly.
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4. Score templates using DNNs. TopThreader initially predicts a target-template
TM-Score (Initial Score) using DNNs. The DNNs’ input features include
primary threader scores and values calculated from threading alignments such
as sequence identity and target coverage.

s Redundancy clustering. TopThreader clusters templates at 90% sequence
identity and pairwise TM-Score of 0.9, selecting the cluster centroid with the
highest /nitial Score. Alignments from other threaders/templates in the cluster
are transferred to the centroid by superimposing their target-template alignments
to the (nearly identical) centroid while minimizing changes to the alignment.

6. False positive removal. Removal of false positives is critical to ensure correct
fold recognition. TopThreader first clusters templates structurally to remove bias
towards folds with many templates. For each cluster, DNNs are used to predict
the centroid TM-Score (Filtering Score). Templates are then structurally aligned
to the best centroid based on Filtering Score and TopScoreSingle of a model
built from the template. Using a top-down consensus approach, models are
discarded if they are dissimilar (TM-Score < 0.4) to the best centroid.

7. Consensus. TopThreader uses local and global quality scores of models from
different pairwise threading alignments combined with a structural alignment of
all templates to calculate consensus alignments for each template.

8. Ranking. The final template ranking is based on predicted TM-Score from a
DNN with input features from all previous steps. This score, the TopThreader
Score, has a Pearson’s R? of 0.77 with the true TM-Score of the template.

A key difference between TopThreader and consensus methods such as the MULTICOM|[41]
or Zhang servers [42] is that consensus in TopThreader is calculated based on DNN-predicted
template similarity (TM-Score) to the native structure and top-down structural comparison to
the highest scoring template. This contrasts with traditional consensus approaches like the ones
mentioned above, in which the frequency with which a fold is identified is the driving factor of
the consensus decision. TopThreader therefore has the advantage that, even if the majority of
identified templates or alignments are wrong, it can find true templates and good alignments if
the highest scoring template is correct. This selection scheme is a key advantage in cases where
correlated threading results produce a bias towards the same false positive templates or wrong
alignments, as seen for CASP target T0O742 as well as for prospective modeling of the nisin
resistance protein NSR from Streptococcus agalactiae (SaNSR; see Experimental Validation

section). An analogous situation is found in protein model quality assessment, in which
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clustering methods (which determine quality based on consensus between models) perform
worse at selecting the best model if this model does not belong to a cluster, a task single-model
and quasi-single-model methods handle better [43]. In turn, the top-down approach is at a
disadvantage if the highest scoring template does not have the correct fold, in which case a
potentially correct fold could be discarded when being compared to the highest scoring
template.

TopAligner. The use of information from multiple templates can improve model quality by
increasing total target coverage or improving pairwise alignments between templates and target
by matching structural elements of different templates [26]. This improvement depends heavily
on the quality of the templates and their similarity to each other, however. If the quality
difference between the best template and other identified templates is large, including sub-par
information from bad templates may decrease model quality or distort multiple alignments.
Therefore, the Top Aligner module calculates an ensemble of pairwise and multiple alignments
using every possible combination of the top five compatible (pairwise TM-Score > 0.5)
templates. TopAligner uses eight different state-of-the-art programs for template-template
alignment (Table S1) and all primary threader and consensus alignments from TopThreader for
template-target alignment. Each pairwise template-target alignment is weighted both globally
and locally according to the weights calculated by TopThreader from model quality assessment
with TopScore, residue-wise IDDT to the best scoring pairwise-alignment model, and residue-
wise sequence similarity between target and template. A detailed description of TopAligner and
its primary alignment programs can be found in the Supporting Information Text T3 and T4.
TopBuilder. All alignments from TopAligner are modeled using the TopBuilder module, which
is also used at the initial modeling stages of TopThreader. TopBuilder uses Modeller9 [37] and
the partial thread function of Rosetta [38] to construct models based on alignments and template
structures. It includes algorithms for knot detection and elimination, multiple types of loop
refinement selected automatically based on loop size, and four methods for model refinement
[44-47]. A detailed description of TopBuilder can be found in the Supporting Information Text
T5. By default, model refinement is done by side-chain repacking with RASP [45].

TopScore. The ensemble of models generated by TopBuilder is evaluated using TopScore and
TopScoreSingle [39]. Since Top Aligner produces more alignments based on multiple templates,
model selection with TopScore is, due to the use of clustering information, biased towards
selecting a multi-template model. As mentioned (see TopAligner section), this bias can in some
cases lead to worse models due to inclusion of information from worse templates. Therefore it

is key to consider both TopScore and TopScoreSingle when selecting models for refinement
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and model combination (see TopRefiner section).

TopRefiner. Previous work [34, 41, 48] has shown that combining different templates or
models can improve the accuracy of the final model. Previous work has focused on combining
pairwise alignments [41], extracting consensus restraints from templates [42]. or averaging
models [49]. The TopRefiner module refines models using model quality assessment, model
fragmenting, fragment recombination, template/model hybridization and fragment-guided MD
refinement in order to remove regions with predicted errors and combine good fragments into
full-length models. Models are first selected from the TopAligner (top ranked model for each
template combination) and TopThreader (top five primary threader models and top five
consensus models according to TopScore and TopScoreSingle) model ensembles. From these
models, regions predicted to contain errors by TopScore or TopScoreSingle are removed, and
the resulting fragments are re-combined into improved models. After fragment recombination,
the models are used to construct new structural alignments to all identified templates, from
which hybrid models are built using Rosetta [38]. Finally the best models from each of the
previous steps of the refinement are selected and refined with Modrefiner [46] followed by a
second round of model fragmenting and recombination. The final model is selected as the
highest ranked model in the largest cluster according to TopScore. A detailed description of

TopRefiner can be found in the Supporting Information Text T6 and Figure S3.

Data sets

Screening. To train the DNNs of TopThreader on a set of diverse structures and difficulties
(with respect to low sequence identity), a screening protocol is used, in which a set of known
structures are re-predicted while removing templates with a sequence identity above a given
cut-off. The sequence identity cut-offs were chosen as 90%, 60%, and 30%, respectively, to
simulate trivial, easy, and difficult modeling situations. A detailed description of the screening
can be found in the Supporting Information.

CASP dataset. To evaluate how TopModel performs when compared to other automated
methods in the field, the conditions of the CASP10, CASP11, and CASP12 experiments were
approximated. By turning on the PDB submission date filter in TopThreader, templates
submitted on the day of or after the submission of a CASP target are removed, a procedure
similar in nature to the CAMEQO experiments [50]. A CASP target was kept if it fulfills three
criteria: (1) The target native structure must be submitted to the PDB as of writing this
manuscript, to allow for comparison between model and native structure, (2) the target must

not have been cancelled during the CASP competition by the organizers, (3) the sequence

Page | 120



Publication II: TopModel

identity between the sequence released for prediction and the resolved native structure must be
at least 50%. Applying these filtering criterial leaves 140 template-based targets and 46 free
modelling targets (Supporting Information Table S2). It is important to note that this
approximation will not yield the exact same results as if TopModel was run at the time of each
CASP competition. Since threader and sequence databases have been updated since the
respective competitions, quality scores (such as e-values and Z-scores) calculated by primary
threaders, as well as primary feature predictions (such as secondary structure), will differ from
what they would have been at the time of the competition. This can lead to hits that would have
been identified with scores above significance cut-offs at the time of CASP competition, but
now have scores below the cutoffs for the updated databases. This effect is compounded by
database clustering, in particular for threaders that only return a fixed number of hits, of which
a significant portion may be released too recently and thus removed by the filter. However,
despite these approximations it can serve as a useful indicator of structure prediction
performance. None of the CASP targets were considered for the training of the TopThreader
DNNSs. This dataset will be referred to as the CASP dataset and is used as external evaluation
of TopModel performance.

Experimental validation. To evaluate the performance of TopModel on two de novo cases, we
modeled the SaNSR protein from the nisin operon of 8. agalactiae (Uniprot ID AOA140UHB6)
[51] before its release to the PDB, and the LipoP from Closiridium difficile (Uniprot 1D
Q18BL3). These structures were then experimentally validated by crystallization [51] or by
agreement with SAXS and NMR data (see Experimental Validation).
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Results and discussion

Evaluation of TopThreader
The aim of template selection with TopThreader is to retrieve a set of templates ranked
according to their similarity (according to TM-Score) to the native structure. To evaluate how
well this goal is achieved, we calculate the following: For each target in the CASP dataset
(Supporting Information Table 82), the highest TM-Score between the native structure and any
template identified in the top five templates of any primary threader is calculated, to find the
best obtainable TM-Score given the primary threader results if template selection by TM-Score
is perfect. Then, for TopThreader and each primary threader, the highest TM score of the top 5
ranked templates is compared to this best obtainable score. From this comparison we calculate
ATMioo = 100-(max[TMall templates] — max[TMtops templates)]). Based on this ATMioo score for a
given target, we define three categories: (I) the best template is found (ATMioo < 5), (II) an
adequate template is found (ATMioo [5-15]), and (III) no adequate template 1s found (ATMioo >
15). We count the frequency of each category for each primary threader and for TopThreader
for three subsets of the CASP dataset: (1) Cases assigned by CASP organizers as template-
based modeling (TBM) targets, (2) cases assigned as free modeling (FM) targets, and (3) all
(TBM+FM) targets. The results are presented in Figure 2 (see Table 83 for numerical values).
The Ghent implementation of the Freeman-Halton exact test for 3x3 contingency tables
[52] was used to determine significance between the categorization of TopThreader and each
primary threader in terms of the three categories (I, II, III) described above (see Table S4 for
summarized normalized tables). Accordingly, all differences are highly significant (p < 0.01),
for all cases showing a large and significant benefit to selecting templates with TopThreader

over any of the tested stand-alone primary threaders.
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Figure 2. Template enrichment by TopThreader compared to primary threaders. Comparison of template
selection performance on the CASP dataset. Performance is evaluated based on the ATM g score, which evaluates
the difference between the best of the top five ranked templates of a given threader, and the best template found
by any threader. For each target, three categories are selected: (I) the best template is found (ATM;pp < 5), (II) an
adequate template is found (ATM;np [5-15]), and (IIT) no adequate template is found (ATM;gp > 15). The values
represent percentages of targets in the CASP dataset for TBM (A), FM (B), and all (C) targets, respectively.
Differences between TopThreader and the best primary threader for each subset is are highly significant (p < 0.01)
according to the Ghent implementation of the Freeman-Halton exact test for 3x3 contingency tables [52]. For

numerical values see Supporting Information Table $3 and S4.

The results in Figure 2 show that for the CASP subsets (A: TBM / B: FM / C: TBM+FM),
TopThreader identifies the best template (category I, blue) as one of the top five templates in
92 %, 56 %, and 83% of the cases, respectively. Furthermore, an adequate template (category
I, vellow) 1s found in 4 %, 24 %, and 9% of the cases, respectively. The best template
(according to TM-Score) 1s not identified in only 4 %, 20 %, and 8 % of the cases 1s (category
I1I, red). It also becomes clear that for FM targets it 1s more difficult to select the template with
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the best TM-Score (Figure 2B) since all primary threaders and TopThreader fail to identify the
best template for ~20% of targets. It is important to note, however, that for FM targets most
TM-Scores are close to or below 0.4 even for the best template, and as such poorly reflect
structural similarity in the first place, as two random structures will have a TM-Score of 0.17
when aligned [40].

In addition to evaluating absolute performance for all top five templates, we evaluated
the difference in template TM-Score of each of the top five ranked templates by normalizing
the TM-Score of a template with a given rank to the template with that rank if the templates had
been ranked according to true (rather than predicted) TM-Score. These normalized scores were
then averaged, resulting in values closer to 1 corresponding to a ranking similar on average to
a perfect ranking by true rather than predicted TM-Score. The full results can be found in Table
S5 and show that, in terms of ranking, TopThreader has a significantly better performance
compared to the best primary threaders for TBM targets, with an average increase of 2 % across
all top five template ranks. For FM targets, a large improvement is seen for the top ranked
model (7 %), and lower performance than primary threaders for subsequent ranks. This is
surprising considering that templates for FM targets are close to or below the 0.4 TM-Score
limit used by TopThreader to distinguish true from false templates, and because according to
CASP organizers these targets should have no templates available. This suggests that even for
extremely remote structural similarities, TopThreader is able to distinguish between low quality
templates and a random match to some degree, as is also reflected in Figure 2B. The lower
ranking performance for FM targets for ranks other than the top ranked template is an effect of
TopThreader requiring structural consensus between selected templates. Primary threaders do
not require consensus, and can therefore rank multiple incompatible folds highly. This gives a
higher chance that one of the lower ranked templates is the best, while TopModel only finds the
best template if it is either ranked at the top or 1s structurally similar to the top-ranked template.

Evaluation of TopAligner

To evaluate the effect of using TopAligner to sample alignments with different template
combinations and alignment programs, we compared models built from primary threading
alignments (TopThreader step 7) with models from TopRefiner stage 1, which are selected from
the TopAligner and TopThreader ensembles, but without modifying the models themselves.
Model quality is evaluated in terms of GDT TS score [53], which is used in CASP to evaluate
model quality by comparing a model to the native structure and evaluates inter-model Cy atom

distance conservation given different distance thresholds. We calculated the change in GDT TS
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score between the two alignment ensembles. However, as we are interested in the relative
change in model quality, we calculate the percentage-wise difference denoted as the AGDT TS.
All models are built with TopBuilder and selected either with TopScoreSingle or according to
the true GDT _TS score, and thus only the alignment ensemble used to generate the models
differ. There 1s no bias from the composition or size of the model ensemble, since neither
TopScoreSingle nor the true GDT TS score depend on composition or size of the model
ensemble. This allows us comparing the use of an ensemble of multi-template and single-

template alignments, to the use of an ensemble of only single-template threading alignments.
The results are shown in Figure 3A.
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Figure 3. Impact of using Top Aligner and TopRefiner on model quality. The relative change in GDT TS score
(AGDT _T8S) is calculated by comparing a model selected before and after running TopAligner (A) or TopRefiner
(B), respectively. A. Difference in model quality when selected from a multi/single-template model ensemble from
TopAligner/TopThreader compared to selection from a single-template pairwise primary threader model ensemble.
B. Difference in model quality when selected from the first stage of TopRefiner (before refinement) compared to
selection from the last stage of TopRefiner (after refinement). The models are selected either by true GDT_TS or
by TopScoreSingle (A) or TopScore (B). Five categories are defined based on the AGDT TS: No change
(AGDT _TS < 5%), small increase/decrease (AGDT TS 1/] [3%-2000]; green/yellow), large increase/decrease
(AGDT _TS 1/] = 2090, blue/red). The “No change™ category is the most abundant and is not shown as it reflects
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no significant change in model quality. Significance is calculated using a one-tailed #test between corresponding
increase/decrease categories (blue-red and green-yellow, respectively). The null hypothesis is that the probability
of model quality increase of a given amount (5-20% or >20% AGDT_T8S) is the same as the probability of quality
decrease by the same amount. Pairwise comparisons where this hypothesis can be rejected are indicated with
brackets and corresponding p-values (*: p < 0.05, ™: » < 0.01, ™ p < 0.001, ™ p < 0.0001). The number cf
samples used 1s the number of CASP targets in the TBM (140) and FM (46) categories, respectively.

These findings indicate that sampling different alignments and combinations of templates using
TopAligner in the majority of cases (56% and 82% of TBM and FM targets, respectively, if
selected with TopScoreSingle) leads to little change in GDT TS score. This result is expected,
as for most targets, the different templates cover similar residues or are so similar that model
quality is comparable. Furthermore, FM targets rarely have many similar templates identified
by TopThreader, since TopThreader requires all identified templates to have the same fold as
the top ranked template, which is rarely the case for FM targets. For TBM targets, using multiple
templates leads to a decrease in GDT TS score in 9% and 5 % of cases if selected by
TopScoreSingle or by best GDT TS, respectively. This indicates that in a small number of cases
model quality decreases by using multiple templates, usually due to introduction of alignment
errors when aligning poor templates with good ones. More importantly, however, for 22% of
TBM targets the GDT TS score improves by 5-20%, and for 9% of targets it improves
by >20%. This shows an over three times higher chance that using TopAligner to sample
different multi-template alignments will increase model quality. These findings are in line with
previous work, showing that using multiple templates and sampling alternate alignments can

improve model accuracy [41].

Evaluation of TopRefiner

TopRefiner has three aims: (1) Selection of a small ensemble of good models built by
TopThreader and TopAligner, to be used for model combination and refinement, (2)
combination of selected models to generate an ensemble of models converging on the correct
fold, (3) selecting the best possible model as the final TopModel prediction.

To evaluate the achievement of the first goal, we calculate the AGDT TS between the
best model from the stage 1 ensemble and the best model achieved at any previous step of the
TopModel workflow from any alignment of any template. We find that in just 6% of TBM
targets this distance is more than 5 GDT TS units (26% for FM targets). The cases in which
this distance is large are primarily ones in which template selection with TopThreader fails to

select the best template. This confirms that the models selected for refinement and model
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combination represent good models compared to ones generated at earlier steps in the pipeline.

To see how well the second goal is achieved, the models from TopRefiner stage 1, which
are not refined but simply selected from the TopThreader/TopAligner model ensembles, are
compared with models from TopRefiner stage 4, which is after refinement. If TopRefiner is
successful, significantly more targets should see an increase in GDT TS compared to ones with
a decrease. The result of this comparison is shown in Figure 3B and demonstrates that in 42%
of TBM targets (92% for FM targets) AGDT TS is < 5%, indicating that in these cases no
significant change in GDT TS score is observed, either because the starting models are too far
from the true fold to be refined (most FM targets), or because the starting models are so close
to the true structure that no improvement is seen (most TBM targets). However, for TBM
targets, we find that there is a significant advantage of refinement, with over two times as many
systems showing an increase in GDT TS rather than a decrease. It is interesting to see that
model selection with TopScore shows a larger improvement than according to true GDT TS.
This shows that part of the benefit of refinement is an improved ability to select the best model,
and not only improving the models themselves, indicating that for many targets convergence to

the native fold is a key part of refinement.

Comparison to previous CASP performances

To evaluate the performance of the entire TopModel pipeline, the final TopModel models from
the CASP datasets are compared with the highest ranked CASP stage 2 models (CASP stage 2
consists of the top 200 automated server models for each target) from four established CASP
servers: The Zhang [42] server (best automated server in CASP8-13) and Baker server [38],
both of which use domain parsing and ab initio folding as part of their pipeline, and the HHPred
[54] and Zhou [27] servers, which do not. Since TopModel has no ab initio folding module, and
does not parse the target sequence into domains, servers that include such methods are expected
to be at an advantage. To evaluate the performance based on the part of the target structure that
was solved experimentally, rather than the sequence submitted for prediction, only
experimentally resolved residues were evaluated. For each target, the GDT TS score was
calculated for the final model produced by TopModel and the top ranked model from each of
the servers mentioned above, as well as the distribution of all server submissions in the stage 2
dataset. As we are interested in the absolute difference in model quality, we classify each CASP
target based on the absolute difference in GDT TS score (AGDT TSabs) between the final
model from TopModel and the top ranked model from each server. The results can be found in

Figures 4A and B for TBM and FM targets, respectively.
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As of yet, TopModel has no domain parsing module to cut the input sequence into
domains before modeling. Therefore, in the cases where multiple domains have good templates
but no template covers the whole sequence, TopModel will match the best (often largest)
domain template, leaving the other domains without template. Therefore TopModel is at a
disadvantage for large multi-domain targets for which no template is found that covers all
domains. We expect this to be particularly detrimental for FM targets, most of which have
multiple domains. To estimate the hypothetical performance that TopModel could achieve if
multi-domain targets were modeled domain-wise, and combined in the correct way, the CASP
domain annotations (released after the end of each competition) were used to parse the
sequences of multi-domain targets into their respective domains. Each domain was then
submitted to TopModel separately, given the same restrictions as for regular targets to emulate
previous CASP rounds. For each target, a weighted average (by number of residues) of the
GDT TS scores of the respective domains 1s calculated as the hypothetical accuracy if domain
parsing and combination was used. We then compare the GDT TS score of models built from
the CASP sequence released for prediction with this weighted average, and evaluate the change
1IN AGDT _TSabs (AAGDT _TSabs). IFAAGDT T Sabs 1s positive, domain parsing improves model
quality relative to other servers, and 1f negative, it deteriorates model quality. The results are

depicted in Figures 4C and D for TBM and FM targets, respectively.
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Figure 4. GDT TS comparisons between TopModel and CASP servers. The bars represent comparison
between TopModel and one of four established CASP servers (the Zhang Server (red), the Baker Server (yellow),

the HHPred server (green), the Zhou Server (blue)) as well as the average of the top 200 server submissions for
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each target (grey). The Zhang server and Baker server both make use of ab initio folding and domain parsing,
putting them at an advantage over TopModel. A. AGDT TSy, for CASP TBM targets indicates for how many of
CASP TBM targets TopModel shows similar, worse, or better model quality than other established servers. B.
AGDT T8 for CASP FM targets indicates for how many of CASP FM targets TopModel shows similar, worse,
or better model quality than other established servers. C. AAGDT TSy, for multi-domain TBM CASP targets
shows the change n the number of targets for which TopModel performs worse, similar, or better than established
servers, 1f domain parsing, domain-wise modeling, and domain recombination was used. A large shift from
worse/similar model qualities to better model qualities (compared to established servers) 1s seen. D. AAGDT TS,
for multi-domain FM CASP targets shows the change in the number of targets for which TopModel performs
worse, similar, or better than established servers, if domain parsing, domain-wise modeling, and domain
recombination was used. A large shift from worse/similar model qualities to better model qualities (compared to

established servers) 1s seen.

Our findings shows that despite being at a disadvantage compared to the Zhang and
Baker servers due to lack of domain parsing and ab initio folding, 60-70% of TBM target
models from TopModel are of comparable quality, with 10-15% of targets having higher quality
and 19-22% of targets having lower quality (Figure 4A). Compared to pure template based
servers such as HHPred and Zhou Servers, on the other hand, TopModel has a clear advantage,
with 28-48% of TBM targets having higher quality and 6-11% having lower quality. For FM
targets, despite having no ab initio module, TopModel shows comparable accuracy to the Zhang
and Baker server for 54-61% of targets (Figure 4B), but a lower accuracy for 30-41% of targets,
which is not surprising given the lack of ab initio folding and domain prediction in TopModel
(most FM targets are multi-domain targets).

The results in Figures 4C and 4D show that a large improvement is possible for multi-
domain targets if the sequence is parsed into domains, predicted separately, and combined into
a full-chain model. When compared to the Zhang Server, for example, for TBM targets the
percentage of multi-domain targets for which TopModel is worse than the Zhang server drops
by 31 points, while the percentage of targets for which TopModel is better than the Zhang server
increases by 51 points. For FM targets the same trend is seen, with the percentage of worse
models dropping by & points and the percentage of better models increasing by 88 points.
Similar trends are observed for the other three investigated servers. This indicates that correctly
parsing the input sequence into domains has a large impact on the quality of multi-domain
models, in particular for FM targets.

We speculate that the reason behind this is that accurately identifying a partially
matching template for a large multi-domain protein is difficult, especially for methods that have

been trained to identify templates for single domains. As such, many FM targets may have been
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classified as such due to a failure to detect templates using the full sequence as a query, and not
because of an actual lack of templates. These results show that, when properly parsed into
domains and searching for each domain, template detection is easier and distant structural
homologues become detectable for many targets that would traditionally be considered without
templates. Thus, a large model quality improvement is achievable by predicting domain
boundaries and combining the domains into a final model. However, in order to achieve such
accuracy on prospective targets, accurate domain prediction and domain combination is
required, which is therefore the focus of our future work.

The results in Figure 4 show that TopModel has comparable or better performance than
the average server submission (grey) for the majority of targets (97% for TBM, 93% for FM)
and performs significantly better than template-based servers without ab inifio folding such as
the Zhou and HHPred servers. TopModel even shows comparable or better performance than
the Baker and Zhang servers for 82% and 78% of TBM targets and 59% and 70% of FM targets,
respectively. These data show the benefit of using a top-down consensus rather than majority
voting, and the benefit of combining threading scores, model quality, and structural alignment
using deep neural networks for ranking and selecting templates.

It is interesting to examine a case such as T0742 from CASP10. For this target the vast
majority of predictions from CASP servers, including the consensus based MULTICOM server,
fail to identify the best template (PDB ID 3TZG, identity = 14%, coverage = 70%,
GDT TS =0.31) and instead predict a fold based on the wrong template identified by the
majority of threaders. TopModel, however, identifies PDB ID 3TZG as the best template, a
direct effect of its ability to discard wrong templates even when the consensus is indicating that
thev should be correct. A similar effect is seen for the prospective modeling of SaNSR (see

below).

Hard cases
Although TopModel correctly folds most CASP TBM targets and has better template selection
and alignment than any of its primary threaders (Figures 1-3), there are cases where it fails to
predict the best template when comparing GDT TS scores to those of other competing servers.
Aside from the issues of simulating previous CASP rounds mentioned earlier, manual
inspection indicated three main types of such cases where TopModel is at a disadvantage
compared to servers such as those of Zhang and Baker.

First, for several targets, no template is found that covers all domains of the target. Based

on CASP annotations released after the competitions, 39% of targets in the CASP dataset are
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multi-domain targets (18% of TBM, 98% of FM). Additionally, there are several targets
(including T0721, TO737 and T0755) that are non-consecutive multi-domain targets annotated
as single-domain by the CASP organizers, for which TopModel is either only able to match one
domain (such as for TO755) or finds a slightly different and more favorable (better score from
TopScore) conformation, resulting in a lower GDT TS score (such as for T0922 and T0833).

Second, there are many targets (in particular FM targets), for which the sequence
submitted for prediction differs significantly from that of the resolved native structure. In most
such cases, the native structure covers only a small fraction of the residues submitted for
prediction. This makes structure prediction much more difficult, since threading algorithms
focus on templates that cover as much of the target sequence as possible, when in fact only a
small fraction of it can be resolved. For these targets, servers that use domain prediction have
an advantage as they mitigate the inherent threader bias towards high target coverage by cutting
the sequence into predicted domains.

Third, there are a few cases in which TopThreader discards the best template for TBM
targets as a false positive. Three such cases (10678, T0700, and T0O818) were identified. To
examine these cases, the best template, the highest ranked template by /nitial Score, and the
highest ranked template identified by Filtering Score are compared to the native structure in

terms of GDT TS and TM scores. The results are shown in Table 1.

Table 1: Inspection of hard TopThreader TBM targets

) Initial TopScore
D Template Threaders Identity? Coverage| ) GDT TSt ™1
Score? Single |
20VR* HHSearch 17% 79% 0.64 0.59 0.49 0.51
=3 HHBlits
= wWiD({ 21% 52% 0.66 0.59 0.35 047
2 HHSearch
1EZT(F) pDomThreader 21% 60% 046 049 0.21 0.22
4BQ2* LOMETS 10% 87% 045 0.60 0.28 045
1
g 1TH6Y (1) RAPTORX 12% 60% 0.51 0.60 0.12 0.20
[_1
3LY6 (F) RAPTOR-X 18% 59% 048 0.60 0.14 0.33
HHBlits
AHYZ* 15% 55% 0.64 0.72 0.25 037
HHSearch
o
= SPARKSX
= IHSHD) 13% 80% 0.68 0.69 0.14 034
FFASO3
4CEA(F) LOMETS 13% 91% 0.56 0.62 0.15 0.25

Table 1: Inspection of hard Top Threader TBM targets. Summary of scores for the CASP TBM targets for which TopThreader fails to select
the best templates. * indicates the best template according to lowest GDT TS for a model built from that template. (I) indicates the highest
ranked template according to Mnitial Score, which is a prediction of template TM-Score using only sequence-derived features from primary
threaders. (F) Indicate the highest ranked template according to the Filtering Score, which is a prediction of template TM-Score using both
sequence-derived features from primary threaders and predicted error in the resulting model according to TopScoreSingle. The GDT TS and

TM columns indicate structural similarity between the best model from a given template and the native structure {not the TM-Score of the
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template). The arrows 1| indicate if a score gets better with increasing or decreasing values, respectively.

T0700: For this target the best template (PDB ID 20VR) is discarded because it scores
much worse by TopScoreSingle, which lowers the Filtering Score. This shows that despite
higher coverage, models built from such a template will not always exhibit a better model
quality, and as such, selection by model quality alone does not guarantee that the best template
is found.

T0812: For this target the best template (PDB ID 4BQ2) has a lower /nitial Score than
both the false positive templates PDB ID 1H6Y and PDB ID 31Y6. All three templates result
in models with identical scores from TopScoreSingle. This shows that using scores from
primary threaders alone does not guarantee that the best template is found.

T0818: For this target the best template (PDB ID 4HYZ) has lower coverage and
consequently also worse TopScoreSingle score than both the best ranked template according to
Initial Score (PDB 1D 3H51) and Filtering Score (PDB ID 4CE4), leading to a false positive
template being selected due to higher coverage. This is similar to TO700 in the sense that a
higher weight on the /nifial Score would have led to a better model, but in this case the template
with lower coverage is better, unlike for TO700 and T0812 where the higher coverage templates
are better.

Analyzing the few TBM cases for which TopThreader does not select the best template
shows that template selection is a complex task and that no single feature 1s likely to result in a
flawless prediction for every target. However, the performance of TopThreader (Figure 2)
shows that taking features from both primary threaders and model quality into account using
deep neural networks significantly improved template selection. We expect that using predicted

residue-residue contacts can further improve the template selection to resolve such issues.

Prospective prediction and experimental validation of SaNSR
Because TopModel uses a different consensus methodology than other methods, it can
potentially go against the majority of threading results and give a prediction better than any of
its constituent predictors. To illustrate the effect of this kind of consensus, we prospectively
predicted the structure of SaNSR (PDB ID 4Y68) prior to experimental structure determination
and submission to the PDB. SaNSR is a member of the S41 protease family, degrades the
lantibiotic nisin, and that way contributes to the congenital resistance against nisin of S.
agalactiae[51].

We then compared the model from TopModel to the distribution of primary threader

models in terms of how close each model is to the experimental structure (measured by
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GDT _TS) (Figure 5). The results reveal that models based on most of the primary threader
alignments are of poor quality, with median GDT TS scores of 38, while the model from
TopModel is much more accurate, witha GDT TS score of 55 and a Co atom RMSD of 3.1 A.
The main reason for the failing of primary threaders in this case 1s that in most available
templates, there is one or more large domain insertions. This causes the majority (82%) of
threaders to thread the N-terminal helix bundle sequence onto the wrong domain (see the
SPARKSX example in Figure 5) due to low (< 16%) sequence identity, incorrectly folding it
into a (-sheet domain. However, because this B-sheet domain is scored poorly by TopScore and
TopScoreSingle, the helix bundle is recovered in the model from TopModel. There is a minority
of primary predictor models (18%) that show a correctly aligned helix bundle N-terminal
domain. However, these contain signficant differences in other parts of the model and are with
traditional majority voting consensus far outweighed by the incorrect alignments, showing the

benefit of using a top-down consensus approach rather than majority voting.

FFASO3 0. 32 RAPTO§O.49
I..Il II IE =

50 60
GDT_TS (%)

Figure 5. Prospective modeling of the VSR protein from S. agalactiae. The model quality distribution (in terms

of GDT TS score) of primary threader models for the NSR protein from S agalactiae for prospective modeling
before the release of the native structure (grey) to the PDB. The vast majority (82%0) of models show an incorrectly
threaded N-terminal domain (see SPARKSX model). A minority of models (18%6) show a correctly threaded helical
domain (HHSearch, RAPTORX, and FFAS03) on a few templates, often with large errors elsewhere in the model
(such as p-sheets shown in red). Because TopModel does not use majority voting, the model produced (blue box)
is of far better quality (GDT_TS8 = 55) than those produced by primary threaders (median GDT_TS = 38), while
majority voting consensus would produce a model in the middle of the distribution at a GDT TS of ~38. Model

examples from the different bins are colored according to residue-wise 1DDT score [55] to the native structure,

Page | 133



Publication II: TopModel

with red showing incorrectly modeled regions and blue showing perfect agreement with the crystal. The largest
error in the TopModel model 1s the fact that the residues linking the helical bundle with the catalytic core of the
protein do not fold into an a-helix (red box). This 1s because no model from any of the primary predictors correctly
fold these residues into a helix, and as such TopRefiner has no fragment it can select during model fragmenting
and refinement which would produce a helix for these residues; secondary structure prediction by PSIPRED[56]

also fails to 1dentify these residues as helical.

Prospective prediction and experimental validation of LipoP from C. difficile

Building on the previous successes, TopModel was used to prospectively predict the structure
of LipoP from C. difficile. The templates identified by TopThreader (sequence identity in
parenthesis; chain after the “ ") are PDB IDs 5J7R_A (11%), 6GZ8 A (18%), 2INV_A (18%),
50351 C (9%), and 3GKU_A (8%). Interestingly, the top ranked structure PDB ID 5J7R is a
putative lipoprotein from C. perfringens, and as such is suggested to share the biological
function with the homolog from C. difficile, despite the sequence identity being far below the
30% sequence identity limit generally considered the twilight-zone for template-based structure
prediction [31]. The final model quality predicted by TopScore was 0.35, indicating about 35%
error in the model. This shows that the model may not be highly confident, which is to be
expected given the low sequence identity and the fact that the first 43 residues (28% of the
protein) of the N-terminus (termed the tail region) are unstructured and therefore highly mobile
(a description of the tail region is available in the Supporting Information Text T7). To validate
the model and identify errors, NMR experiments were therefore carried out to determine the
secondary structure and [-strand pairing, and small-angle X-ray scattering (SAXS) experiments
were performed to estimate the shape and radius of gyration (£a). A detailed description of the
NMR and SAXS experiments can be found in the Supporting Information Text T7.

The initial model from TopModel has a good agreement with the secondary structure
assignment and matches two out of three NOE B-strand pairings (strand 1/2, and strand 4/5)
from NMR. The Matthews correlation coefficient (MCC) between the DSSP [57] secondary
structure of the model from TopModel and the experimental assignment from NMR is 0.81 for
B-strands, 0.68 for a-helices, and 0.66 for coil. However, there are still discrepancies between
the predicted model and the experimental data. Four differences can be identified (Figure 6A,
B): (1) a-helix 1 is eight residues shorter in the model than indicated by NMR, which is also
indicated by TopScore showing the loop between a-helix 1 and B-strand 3 to have a high error
(> 50% residue-wise error). This is also the reason that random coil and helical MCCs are much
lower than those for B-strands. (2) B-strand 3 is indicated by NMR NOE measurements to be

shifted by two residues, which produces a longer loop between a-helix 1 and B-strand 3, the
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loop indicated by TopScore to contain high error. Since the shift is 2 residues however, the
hydrophobic valines in this sheet are still buried. (3) According to NMR, the C-terminus of the
protein is folded into a (B-strand, which most likely pairs up with the previous stand (B-strand
5), which in the model is three residues too short. (4) a-helix 2 is scoring poorly according to
TopScore, due to a difference in helix length of one residue and its proximity to errors 1 and 2.

All of the differences in the LipoP model are due to the fact that TopModel is a template-
based structure prediction method which does not use ab initio folding. When none of the initial
template-based models from pairwise or multi-template alignments produce correct structural
fragments, TopRefiner is unable to select a fragment with the correct fold for such residues. A
comparison of the final model from TopModel and the two highest ranked templates is shown
in Figure S4 and illustrates this point. To correct differences such as these, ab initio folding is
required, in order to supplement the template-based model ensemble with models from ab initio
folding, and enable TopRefiner to select folded fragments not present in the templates. The
Zhang server [42] had the same 1ssue, which was remedied by the inclusion of ab initio models
from QUARK [38]. It is important to note, however, that without the use of TopModel, the
highest scoring model from primary threading alignments, generated by dPPAS2 from the
LOMETS server, is of much lower quality (Figure 6C, D).
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Figure 6. Prospective modeling of LipoP from C. difficile (disordered tail not shown for cdarity). A.
Agreement of the TopModel model with secondary structure assignments and NOE restraints from NMR. Blue:
[B-sheet residues showing agreement between model and NMR data. Orange: Residues identified to be in a -
strand in NMR but not found so in the model. Cyan: ¢-helical residues showing agreement between model and
NMR data. Red: Residues identified to be a-helical in NMR but not found so in the model. Magenta lines:
Experimental $-sheet NOE restraints showing agreement with the model. Red Lines: Experimental -sheet NOE
restraints showing a shift of two residue positions of B-strand 3 (**). B. The model colored according to residue-
wise TopScore. Yellow/Red regions indicate regions with high residue-wise error (> 50%0). C. The best model
(according to TopScore) from primary predictors (dAPPAS2 from the LOMETS server). The coloring scheme is the
same as in A. D. The best model (according to TopScore) from primary predictors (dPPAS2 from the LOMETS
server). The coloring scheme is the same as in B. The shift of B-strand 3 (***) is only 1 residue in this model,
placing two hydrophobic valines on the wrong side of the sheet and exposing them to the solvent. Furthermore, 3-
strand 1(*) and 2 (**) are exposed to the solvent, exposing five hy drophobic isoleucines and one leucine to the
solvent, all of which are buried in the TopModel prediction. Numbers 1-4 relate to the location of the errors
described in the main text for panel A and B and corresponding locations in the best primary threader model in
panels C and D. In panels A and B, these errors are caused by the fact that no template-based model from any
primary predictor folds these regions correctly, which leaves TopRefiner unable to select a correctly folded

fragment for these residues.

Since TopModel does not include any ab initic folding as of yet, we carried out molecular
dynamics (MD) simulations of in total 600 ns starting from the TopModel model, either using
only the folded domain or the full-length sequence including the disordered tail, in an attempt
to improve agreement with the available experimental data in terms of NMR secondary
structure assignment and radius of gyration (Rg) from SAXS. The best snapshot from the
globular domain simulations and the best snapshot from the full length model simulations were
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selected according to agreement with NMR and SAXS data, respectively. These two snapshots
were combined with TopBuilder and energy minimized to create a final full-length refined
model (Figure 6). A detailed description of the MD simulations, the selection protocol, and the
structural refinement can be found in the Supporting Information Text T7. The final refined
model shows a secondary structure MCC of .81 for B-sheets, 0.88 for a-helices, and 0.78 for
random coils. The propensity for each residue to be helical or B-sheet across all simulations can
be found in the Supporting Information Figure S5. The initial shape agreement with SAXS (see
Table S6 and Figure S7 for experimental data) has a ¢* of 49.8 (Figure S7A, B), which is high
but not surprising given the highly mobile disordered tail. The model shows a radius of gyration
of 26.7 A, which compares favorably to the experimentally determined value of 24.3 A (Table
S6). Most interestingly, in the M D simulations, the loop between a-helix 1 and -strand 3 shows
some a-helix formation (see Figure S6 for a normalized distribution of secondary structure
agreement with NMR across the MD simulations). After combining the two models agreeing
best with NMR and SAXS, respectively, using TopBuilder, we find that error (1) (Figure 7A,
B) has been mostly corrected, in that a-helix 1 has been extended to nearly the same length
indicated by NMR. None of the other errors were significantly impacted by the MD refinement;
however, one cannot expect MD simulations to be able to fix alignment errors on the time scales
applied (2030 ns).
To explore if the high y* with respect to SAXS data is caused by the disordered tail, a truncated
version of the protein was expressed in which the first 30 of the 43 disordered tail residues were
removed. When SAXS measurements of the truncated protein are compared to the full-length
model after MD refinement and combination with TopBuilder (Figure 7A) from which the same
tail residues were removed, the shape agreement increases markedly as indicated by a drop in
* from 49.8 to 3.9 (Figure 7C, D and Figure $7), confirming that the initial disagreement with
the full-length SAXS data is indeed caused by the high mobility of the disordered tail, and that
the shape of the folded domain shows a high agreement with experiment.

In short, the modeling of LipoP from C. difficile clearly demonstrates the value of close
interplay between computational structure prediction with TopModel and the use of sparse
experimental structural data to validate and improve the predicted model but also to identify

structural parts that still lack accuracy.
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Figure 7. Model of LipoP from C. difficile after MD refinement and selection according to agreement with
sparse experimental structural data. A. Agreement of the TopModel model with secondary structure
assignments and NOE restraints from NMR. The numbers indicate the location of errors as described in the text
previously. This panel is as in Figure 6A and again shown for ease of comparison here. Blue: B-sheet residues
showing agreement between model and NMR data. Orange: Residues identified to be in a B-strand in NMR but
not found so in the model. Cyan: ¢-helical residues showing agreement between model and NMR data. Red:
Residues identified to be a-helical in NMR but not found so in the model. Magenta lines: Experimental [3-sheet
NOE restraints showing agreement with the model. Red Lines: Experimental -sheet NOE restraints showing a
shift of two residue positions of B-strand 3. B. Agreement between the model after MD refinement, selection
according to agreement with experimental NMR and SAXS data, and combination with TopBuilder (see main text
and Supporting Information Text T7 for details) and experimental NMR data, colors are following the same scheme
as in panel A. The extension of a-helix 1 is seen. C. Agreement between the experimental scattering data from
SAXS (black) and simulated scattering curve of the MD model (red); FoXS [59, 60] was used for simulating the
scattering curve. The fit plots depict log-intensity versus q (A™1), the residuals plot shows the difference between
experimental and computed intensity versus q (A™"). D. The volumetric envelope of LipoP, as calculated from the
scattering data using GASBOR [61], is shown in gray mesh. The MD model of LipoP (green) was docked into the
volumetric envelope using SUPCOMB [62]. Disagreement with SAXS is found mainly for the disordered tail of
LipoP.

Preliminary competition in CASP13
Despite TopModel development not being fimished at the time of the CASP13 competition, in
particular lacking most of the TopRefiner module, we decided to compete as a human server.
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The CASP12 and CASP13 competitions saw a huge impact of recent developments in ab initio
folding in terms of highly accurate residue-residue contact and distance predictions, which also
have had a large impact in template selection to remove false positive templates. CASP13 also
had the highest number of multi-domain targets of any CASP competition to date, with some
targets having more than 1000 residues. As such we did not expect TopModel to rank very well
compared to servers that utilize these tools such as the Zhang and A7D servers. TopModel
showed a very good performance for several targets, however, most notably targets T1016-D1
(Figure 8A), T1014-D2 (Figure 8B) and T0964-D1 (Figure 8C), for which the models produced
by TopModel were ranked second. Overall, our findings in CASP13 confirm our conclusions
from our own benchmarking on the CASP dataset, in that while deep learning does improve
template-based structure prediction, ab initio folding and domain prediction is required for
folding large multi-domain structures and structures without known templates.

Figure 8. Examples of highly accurate structure predictions from TopModel in CASP13. A. T1016-D1: A7D
predicted the best model (blue) and TopModel predicted the second best one (orange) (GDT_TStopnode = 81.9,
GDT_TSgest = 85.4, Ca-RMSD Togtodet_to_Bes—=1.1A). B. T1014-D2: McGuffin predicted the best model (blue) and
TopModel predicted the second best one (orange) (GDT TStoviess = 76.4, GDT _TSpew = 76.7, Cu-
RMSDophiodel_to Bes=1.54). C. T0964-D1: MESHI predicted the best model (blue) and TopModel predicted the
second best one (orange) (GDT_TS Topiodet = 78.7, GDT_TSpest = 80.0, Co-RMSD Topiodel to_es=1.64). RMSD was
calculated using the align function in PyMol[63]. The native structures were not released as of writing this
manuscript.

Concluding remarks

In this study, we introduced TopModel, a fully automated meta-method for protein structure
prediction, which improves template-based threading beyond any of the twelve evaluated
primary predictors. Instead of using majority voting during template selection and model

averaging during refinement as other approaches [41, 42], TopModel uses top-down consensus
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and deep neural networks to select templates and identify and correct wrongly modeled regions.
TopModel builds on numerous well-founded approaches to template-based structure prediction
in terms of primary programs used for threading, alignment, model building, refinement, and
model quality estimation. Yet, aside from the aspect of automation, TopModel offers several
advantages over using these programs individually: We demonstrate a significant improvement
for template selection and alignment accuracy due to sophisticated template selection with
TopThreader, use of multiple alternate alignments between different combinations of templates
with TopAligner, and model refinement with TopRefiner using TopScore and TopScoreSingle
to detect wrongly modeled regions of the protein.

By applying TopModel to our CASP dataset, which includes targets from CASP10, 11,
and 12 with released structures, we showed that TopModel consistently performs better than
the average competing server, and outperforms established template-based servers such as the
Zhou and HHPred servers. Yet, we identified two arcas in which TopModel currently falls short
of state-of-the art predictors, mainly in terms of ab initio structure prediction and domain
prediction for multi-domain targets. As seen for top ranking servers in CASP12 and CASP13,
such methods are required to be competitive for multi-domain targets for which no template 1s
available that covers all domains, or for targets for which a correct template structure cannot be
detected by threading.

Early versions of TopModel have been applied to several systems, including enzymes
[2, 4], ethylene receptors [64], and restriction factors [65], and yielded good predictions that
agreed with experimental results and/or allowed for guiding of biochemical experiments. Here,
we applied TopModel to predict the structure of the SaNSR protein de novo, subsequent
experimental structure determination by X-ray crystallography showed that TopModel
predicted the correct fold even when the vast majority of primary threaders produced incorrect
alignments and models. Finally, we used TopModel to predict the structure of LipoP, which
showed a good agreement with data from NMR spectroscopy and SAXS. The modeling of
LipoP highlights the utility of the method and shows how the close interplay between
computational structure prediction and sparse or low-resolution experimental data can be used
synergistically to improve the final model.

Overall, we have shown that TopModel outperforms other stand-alone methods in the
field with regards to template selection, template-target alignment, and model quality. However
TopModel is at a disadvantage when compared to black-box automated online servers, which
utilize recent developments in residue-residue contact predictions, ab initio folding, and domain

predictions. Therefore, we are focusing future work on contact prediction, ab initio folding, and
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domain prediction to improve the performance of TopModel for such targets. The TopModel

suite is available as stand-alone program from https://cpelab.uni-duesseldort.de/software.
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Table S1. Primary methods used in TopModel

Threading Alignment Quality Assessment®
DeltaBLAST [1] TCOFFEE [2] PROCHECK [3]
HMMER3 [4] MAFFT7 [5] MolProbity [6]
HHBlits [7] MergeAlign?2 [8] ANOLEA [9]
HHSearch[10] SAlign [11] ProSA2003 [12]
FFAS03 [13] PROMALS3D [14] DOPE [15]
SPARKSX [16] FORMATT[17] GOAP [18]
RAPTORX [19] MUSTANG [20] ModFOLDClust2 [21]
LOMETS! [22] 3DCOMB [23] Pcons [24]
pGenThreader [25] SPICKER [26]
pDomThreader [25] QMEANG [27]
FASTA [28] ProQQ2 [29]
SAMT2K [30] ProQ2D[31]
ProQ3D[31]
SVMQA[32]

SELECTPRO [33]

' The LOMETS software includes the threading algorithms PPAS, wPPAS, dPPAS, wdPPAS, PPAS?2, dPPAS2, Env-PPAS, MUSTER, and
wMUSTER.

? The following programs are used within the TCOFFEE suite as the default methods for calculating alignments: MUSTANG, Clustal W [34],
POA [35], MUSCLE [36], ProbA [37], PCMA [38], ProbCons [39], DiAlign [40], SAP [41], and TM-Align [42].

? The model quality assessment programs are used as part of the TopScore module, which is also used extensively during the TopThreader and

TopRefiner work flows[43].

Supporting Text T1: Detailed Description of TopThreader
The aim of TopThreader is to select templates most suited for structure prediction based on their
structural similarity to the native structure. This requires a measure of structural similarity,
which can be measured when the native structure is known, but has to be predicted for de novo
cases. For this purpose, TopThreader uses the Template Modeling Score (TM-Score) [42]
between a template and the native structure. The TM-score measures structural similarity using
Levitt-Gerstein weights to emphasize small distances between residues and is normalized to be
independent of protein size. Two structures with a TM-Score > (.45 are considered to have the
same fold, though our experience is that this cut-off is too strict, thus, a cut-off of 0.4 is used in
TopThreader. Two random structures have a TM-Score of ~0.17. TopThreader predicts the TM-
Score iteratively, using different input features from the threaders that identified the template,
from pairwise alignment between the template and the target sequence, from initial structural
models based on these alignments, and from the ensemble of alignments and templates found
for the given target.

TopThreader uses a combination of deep neural networks (DNNs), model quality estimation
using TopScore and TopScoreSingle[43], and pairwise structure alignments to predict TM-

Scores, remove false positive templates, correct pairwise target-template alignments, and rank
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templates according to their predicted TM-Score. TopThreader has eight over-all steps outlined
next. A detailed workflow for TopThreader is shown in Fig. S1.

1. Primary threaders. Individual threaders may fail to identify templates due to
differences in database composition (usually due to database clustering), search
algorithm, and significance cutoffs. TopThreader seeks to avoid this by using twenty
different primary threading algorithms from twelve different threaders (Table S1) and
selects all alignments for the top five template structures from each threader. The top
five templates were selected as the default to limit the amount of potential false
positives, based on the assumption that the best template is found in the top five for at
least one of the primary threaders. All threaders are run with default settings as described
by the authors and uses multiple cores when possible.

2. Pre-filtering. Pre-filtering allows the user to discard templates according to imposed
cutoffs to sequence identity, e-value, coverage, experimental method, and submission
date. This feature is particularly useful in benchmarking to eliminate closely related
templates. By default, templates with less than 30% coverage and computationally
designed proteins (i.e. non-natural proteins) are removed during pre-filtering.

3. Alignment fitting. Since primary threaders use differently clustered databases and
output formats, their alignments may not fit the template or target sequences exactly.
The differences are generally small and arise from partial matches and non-standard or
missing template residues. To alleviate this problem, the target and template sequences
are fitted to the alignments produced by the threading programs using MAFFT7[5]. This
fitting is also used to transfer alignments from highly similar templates identified by
different threading programs (see Redundancy clustering subsection).

4. Score templates using DNNs. Different threading programs have different scores for
ranking the alignments they produce, ranging from e-values to Z-scores or energy
measures (see the references of the primary threaders in Table S1). However, these
scores are not comparable between programs. Thus a template is usually found by only
a subset of threaders. To overcome this, TopThreader first calculates a number of
alignment features from the pairwise threading alignments, including sequence identity,
sequence similarity, and target coverage. These are used to predict the TM-score, which
is combined with those same input features as input for DNN’s trained to impute the
scores of the threaders that did not identify the template. The real and imputed scores
are then used as input for DNN’s to predict the TM-Score given the threader scores.

This eliminates missing values for individual threaders if those threaders did not identify
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a specific template, and is necessary to keep the input feature vector size constant, as
the neural network cannot process missing values when a threader does not identify a
template. All scores are then used as input for a final DNN to predict the TM-Score
based on all pairwise alignment and threading features of the given template (real or
imputed in the case of missing values) denoted as the Initial Score (R* = 0.69, p < 0.053).

5. Redundancy clustering. Differences in primary threader databases can lead to highly
similar templates being identified. Thus, TopThreader clusters templates at 90%
pairwise sequence identity to remove redundancy. From each cluster, the template with
the highest predicted {nitial Score is kept, and pairwise alignments from other templates
are transferred to it using the alignment fitting mentioned in step 3. If a template with a
TM-Score lower than 0.9 to the centroid but over 90% sequence identity to the centroid
is found, both the alternate conformation and the centroid are kept and alignments are
transferred to both, allowing TopModel to sample alternate conformations.

6. False positive removal. Removal of false positives is critical for both ensuring correct
fold recognition and preventing structural alignment between templates from failing.
Therefore, templates are clustered with the Phyrestorm clustering tree [44] to remove
bias towards folds with many templates. For each cluster, models are built for each
template and scored with TopScoreSingle to select the best centroid. For each cluster,
the Centroid Score 1s predicted with a DNN using as input features the TopScoreSingle
score[43], cluster size, PSIPRED [45] secondary structure agreement, and all features
from step 4. The Centroid Score shows a better agreement with the true TM-Score
(R? = 0.85, p < 0.05) than the Initial Score due to the inclusion of secondary structure
agreement, cluster size, model quality, and scores from all cluster members (see Fig.
S1). However, it does not reflect the TM-Score of the individual cluster members but
only the centroid. To remove false positives, templates are compared to the best scoring

centroid, and discarded if they are structurally dissimilar (TM-Score < 0.4).

7. Consensus. TopThreader attempts to correct pairwise threading alignments by using
residue-wise weights indicative of alignment quality and combining pairwise threading
alignments with a structural alignment between templates. First, models are built from
all primary threader alignments and scored with TopScore. Three local and global scores
are then calculated: (A) The global and local TopScore, (B) the local and global IDDT
score [46] of a model compared to the highest ranked model, and (C) the global and
local sequence similarity relative to all residues aligned to a specific position in the

target sequence. These three scores are scaled from 0 (worst) to 1 (best) and applied as
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weights to target-template residue pair restraints calculated from the pairwise
alignments. The weighted target-template restraints are then added to a list of template-
template residue restraints calculated from a MUSTANG [20] alignment to include
template-template structural similarity. Template-template restraints are given a weight
of 3 to enforce the structural alignment between templates, letting the much lower
target-template weights (ranging from 0 to 1) determine the alignment between the
target sequence and the template structures. For each of the three scores (A, B, and C
described above) the combined set of template-template and template-target restraints
is then converted into a multiple alignment using TCOFFEE|2], yielding three multiple
alignments each maximizing one of the three scores A (structural quality), B (structural
consensus), and C (sequence similarity to target). These three multiple alignments are
combined with MergeAlign2 [8] to calculate a consensus alignment. For each template,
the consensus alignment is extracted from the consensus multiple alignment, modeled
with TopBuilder, and scored with TopScore and TopScoreSingle.

8. Ranking. The final template ranking is based on the predicted TM-Score from a DNN
with input features from steps 4, 6, and 7. This prediction is termed the TopThreader
Score (R* = 0. 77, p < 0.05) and is used for the final ranking of templates.
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Figure S1. Detailed TopThreader workflow

Target Sequence
|

A
Sparse Primary Scores
B
L
Alignment Features
C
Centroid Modeling & Scoring
Y ¥
Cluster, Aligment & TM Features | |TopScoreSingle| | SS Agreement
D Y
Alignment & TM Features > Threading Modeling & Scoring
Y ¥
TopScore & IDDT
Alignment & TM Features Consensus Modeling & Scoring
Y Y
TopScore & IDDT

L]
Template Ranking

Figure 51. Detailed workflow of TopThreader. White boxes symbolize ternplate features, calculated from threading programs, pairwise
alignments or models of the pairwise alignments. Red boxes symbolize deep neural networks used to predict the Th-Bcore from the input
features (white boxes). Blue boxes symbolize fitting of alignments or template-template alignment Yellow boxes symbolize modeling of
alignments and scoring of the models with Top3core and Top3corelingle. Magenta boxes symbolize removal of termplates because they are
net meeting cut-offs or pre-filtering criteria, are structurally redundant, or are false positives. Green boxes symbolize threading with primary
threaders and structural clustering of templates. Step A: The target sequence is threaded using primary threaders, the temnplates filtered, and
the top five templates from each primary threader selected. Step B: The ternplate alignments are fit to match the PDB structure and target
sequence. Threading and alignment features are fed to DNNs to calculate the Ingiad Score. The templates are aligned and clustered. Step C:
The redundant templates are removed and their alignments transferred to the cluster centroids. The non-redundant templates are clustered
structurally, and the highest scoring centroid 15 modelled and scored. Then, DNIs predict the Centroid Score, and false positives are removed.
Step D: Threading alignments from all temnplates are modeled and scored. DINIs then predict the TopThreader Score and rank models based
on it for consensus calculation. Templates are then structurally aligned, and consensus alignments are calculated, modeled, and scored. Finally,

all features are used to predict the TopThreader Score of each of the templates.
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Training Dataset. The dataset used to train the TopThreader DNNs is a combination of the
Top100 dataset [47] and the heterodimer docking cases in the ZDOCKS dataset[48], using the
receptor and the ligand chains as two separate entries. These datasets were chosen due to their
high structural diversity and relatively limited size, because running TopThreader is
computationally expensive. For each query, TopThreader was run with three different upper
limits to the template-target pairwise sequence identity. These were chosen as 90%, 60% and
30% sequence identity to emulate trivial, easy, and difficult modeling cases, respectively. To
increase the number of false positive templates, the top ten hits for each primary threading
program was used instead of the default five. This was done to increase the DNNs performance
at ranking false positives and the ability of TopThreader to discard them.

DNN training. All DNNs in TopThreader are built and trained in the same way, only differing
in input features and architectures. The DNNs were trained using the python package SciKit-
learn version 1.8.1 [49]. The data was first divided randomly into training and evaluation sets,
leaving 80% of the data for training and 20% for final evaluation. The evaluation data was left
out of the entire training procedure and was only used to evaluate the final DNNs. The
IsolationForest method in SciKit-learn was used to remove the 1% most severe outliers from
the training data to ensure a fit on the most representative data.

The DNNs were trained using the MLPRegressor method with the ADAM stochastic
gradient descent algorithm [50] and default weight decay settings for 1.2 regularization to
prevent overfitting. To estimate the meta-parameters of the DNNs, the training data was
randomly sub-divided into training and test sets using the k-fold method in SciKit-learn to
perform five-fold cross-validation. By using a grid-search, the DNN architecture and neuron
type were varied. Architectures ranged from a single-hidden-layer perceptron to a three-hidden-
layer perceptron with 10, 20, 40, 80, and 160 neurons in the first layer and subsequent layers
having half the neurons of the previous layer. The tested transition functions were logistic,
hyperbolic tangent, and rectified linear unit function. For each five-fold cross-validation split,
the DNN was trained on 50% of the data and evaluated on the rest. To prevent over-training,
the training was stopped early if the correlation between predicted and true TM-Score on the
test half decreased. After selecting an optimal architecture and transition function, a DNN was
trained on all the training data except for the outliers, again setting aside 50% of the data for
testing and applying early stopping to prevent over-training. The final DNN performance was
evaluated on the 20% of the data left out for evaluation at the beginning of the training. The

performance of TopThreader training is shown in Figure S2.
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Figure S2. TopThreader training performance
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Figure 52. Distributions of templates found during the screening and used for training the Top Threader DNINs. A: Terrplate sequence
identity versus true Thi-Score to native. B: Predicted versus true Th-Scores, predicted using only threading scores and alignment features
(Initiad Score). Cr Predicted versus true Thi-Scores of cluster centroids after Phyrestorm clustering, using input features from all cluster
members, predicted model quality, and cluster size (Certroid Score). D: Predicted versus true Th-3core of remaining templates after false
positive remmoval using all features (Top Threader Score).

Table S2. Targets in the CASP evaluation dataset

TOE44 TOs45 To642 TOE50 T0651 TOE52 T0653 TOE54 T0655 T0e57
T0E58 T0E59 To661 TOEE2 TOEE3 ToE64 TO6E6 TOEE7 ToEE2 T0&71
TOE72 TO&E73 ToE74 TO&E7S TOE76 TOE73 TOE72 TOE30 To681 T0&s2
T0E83 T0634 T0685 TOE36 TO6E7 T0E33 To682 TOE20 To691 T0&F2
TOE92 TO700 TO703 TO704 TO705 TO707 TO708 TO712 TO713 TO715
TO716 TO717 TO712 TO720 T0721 TO724 TO726 T0731 T0O733 T0735
TO736 TO737 TO738 TO742 T0743 TO744 TO746 TO747 T0742 T0752
T0O753 TO755 TO756 T0757 TO752 TO760 TO761 TO762 TO763 TO764
TO765 TO766 TO767 TO763 TO762 TO770 TO771 TO772 TO773 TO774
TO775 TO776 TO777 TO730 TO781 TO732 TO783 TO734 TO785 TO786
TO792 TO794 TO796 TO797 TO793 TO799 TOS00 T0Oe01 To202 T0a03
TOS06 T0807 TO208 TO812 T0S13 TOS14 T0215 T0S16 T0S17 T0818
T0S812 T0821 T0S28 TO829 T0S30 T0E31 T0832 T0E33 T0S34 T0340
T0841 T0243 T0245 T0347 T0243 TO342 T0851 T0E52 T0853 T0S54
T0855 T0857 T0852 TO860 T0261 TO862 T0263 TO8E5 T0266 T0363
TO862 TO870 T0S72 T0E73 TOS77 TO873 T0OS72 TOes2 TOS34 T0g85
T0S36 T0s39 T0s91 T0892 T0S93 TOe24 T0S95 TOS00 TO%02 T0SC3
TO204 TO20% T0912 T0918 T0920 T0921 T0922 T0928 T0%942 T0%943
TO%44 T0%45 T0%943

Table 52. CASP Targets in the CASP evaluation dataset indicated with CASP ID
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Table S3. Comparison of template selection by TopThreader and primary threaders

CASP subset 140 TBM targets 46 FM targets 186 Alltargets

ATMin <5 5-15 =15 <5 5-15 =15 <5 5-15 =15
HMMER3 39% 11% 50% 7% 4% 89% 30% 10% 60%
FASTA 51% 11% 38% 15% 13% 72% 42% 11% 47%
SAMTIK 56% 11% 33% 26% 0% T4% 48% 8% 44%
DELTABLAST 52% 16% 32% 20% 6% 74% 44% 14% 42%
pDomThreader 35% 26% 39% 48% 28% 24% 38% 26% 36%
HHBlits 49% 9% 42% 11% 15% 74% 39% 11% 50%
HHSearch 76% 13% 11% 30% 15% 55% 65% 13% 22%
pGenThreader 69% 14% 19% 46% 35% 19% 63% 19% 18%
RAPTOR-X 72% 15% 13% 46% 17% 37% 66% 15% 19%
LOMETS 66% 24% 10% 37% 26% 37% 59% 24% 17%
SPARKS-X 81% 8%o 11% 39% 31% 30% 71% 13% 16%0
FFAS03 79% 14% 7% 41% 26% 33% 70% 17% 13%
TopThreader 92% 4% 4% 56% 24% 20% 83% 9% 8%

Comparison of template selection performance on the CASP dataset. Performance is evaluated based on the ATM g score, which evaluates the
difference between the best of the top five ranked templates of a given threader, and the best template found by any threader. The ATM,q, score
is calculated using the formula ATM g = 100% - (max [TMay rersprates] — MAX[TMigps erpiates] ). For each target, three categories are selected: (I) the
best template is found (ATM;g; < 5), (II) an adequate template is found (ATM;y = (5, 15)), and (III) no adequate template is found
(ATM 50 > 15). The values represent percentages of CASP dataset targets for template-based modeling ( TBM) targets, template-free modeling
(FM) targets, and all targets. For each column, the best primary threader and TopThreader are highlighted in bold. See Figure 2 in the main

text for a bar plot representation.
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Table S4. Pairwise comparison of TopThreader with primary threaders

Type Threader I/11 vs. II/I I/III vs. II/I II/IID vs, III/IT
HMMERS3 et 10.0 % 0.0% 43.6 % 0.0 % 36% 0.7 %

FASTA ### 10.0 % 0.7% 321% 0.0 % 29% 0.0%
SAMT2K *** 10.0 % 0.7% 279% 0.7 % 29% 0.0%
DELTABL AST % 15.7% 0.0% 243% 0.0 % 36% 0.6 %

z pDomThreader * 20.0 % 0.0% 37.9% 0.7 % 0.7 % 21%
%D HHBlits ###* 6.4% 0.7% 40.0 % 2.1 % 0.7 % 0.0%
% HHSearch *++* 11.4 % 2.1 % 7.9% 1.4 % 0.7 % 0.0%
Z pGenThreader ** 10.7 % 0.7% 143 % 0.7 % 14 % 0.7 %
- RAPTOR-X ekt 12.9% 0.7% 8.6 % 0.7 % 14 % 0.0%
LOMETS *** 19.3 % 0.7% 8.6 % 14% 0.0 % 0.7 %
SPARKS-X 6.4% 1.4 % 6.4 % 0.7% 14 % 0.0%
FFASQ3 ekt 10.0 % 0.7% 5.7 % 14 % 0.7 % 1.4 %
HMMERS3 ** 43 % 0.0% 45.7 % 0.0 % 23.9% 0.0%

FASTA ** 10.9 % 0.0% 32.6% 22% 21.7% 0.0%
SAMT2K *** 0.0% 0.0% 304 % 0.0 % 23.9% 0.0%
DELTABLAST ** 22% 2.2% 37.0% 0.0 % 19.6 % 22%

" pDomThreader ** 152 % 10.9 % 10.9 % 6.5 % 22% 22%
gﬁ HHBlits ** 87% 0.0% 37.0% 0.0 % 17.4 % 0.0%
é HHSearch ** 10.9 % 43% 239% 43% 15.2% 0.0%
= pGenThreader ** 17.4 % 10.9 % 8.7% 43% 43 % 8.7 %
RAPTOR-X e 6.5 % 10.9 % 15.2% 0.0 % 4.3 % 22%
LOMETS #### 17.4 % 13.0% 152 % 0.0 % 4.3 % 22%
SPARIS-X ekt 174 % 87% 10.9% 22% 43 % 22%
FFAS0Q3 e 13.0% 8.7% 15.2% 43 % 43 % 22%

Comparison of relative template selection performance on the CASP dataset. Performance is evaluated based on the ATMiy score, which
evaluates the difference between the best of the top five ranked templates by a given threader, and the best template found by any threader. The
ATM, g score is caleulated using the formula ATM;gp = 100-(max| TMan temptares] — MAX[TMigps temiatesy]). For each target, three categories are
selected: (I) the best template is found (ATM;p < 5), (I} an adequate template is found (ATM;y £ (5, 15)), and (IIT) no adequate template is
found (ATM, g > 15). The values represent percentages of CASP dataset targets for template-based modeling (TBM) targets and template free
modeling (FM) targets. Targets where both TopThreader and the primary threader are in the same category are not shown as they reflect no
change. The first column shows the percent of targets where TopThreader is in category I but the primary threader is in category II, compared
to when the opposite is the case. The other columns follow the same format but for different pairs of categories. Pairwise comparisons in which
a primary predictor outperforms TopThreader are highlighted in gray. Significance is calculated by comparing contingency tables between
each primary Threader and Top Threader with the Freeman-Halton exact test and indicated for each primary threader. In all cases, the difference
p <0001, p<0.0001).

drk

between Top Threader and any primary threader is highly significant (" p < 0.01,

CASP results. TopThreader was evaluated on the targets of our CASP dataset (Table S2) as
described in the main paper. The results shown in Table S3 and S4 show that for CASP TBM
targets, TopThreader outperforms all primary predictors for almost all categories significantly
(p < 0.01). However, in a few cases a primary threader performs slightly better than
TopThreader at selecting category II over category III templates. For the FM targets, two out of
36 pairwise comparisons shows a primary predictor being slightly better at selecting templates

than TopThreader. Overall, TopThreader outperforms all primary threaders even for FM targets
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despite these templates having true TM-Scores close to or below the 0.4 cutoff that TopThreader
uses to distinguish between true and false positive templates.

To compare the ranking ability of TopThreader, for each of the CASP targets, the
templates are ranked according to their true TM-Score to the native structure, and this ranking
is compared to the ranking of templates by the individual threaders as well as TopThreader. For
each ranking position, as well as for the best template in the top five ranked templates, the TM-
Score of a template ranked by a threader is normalized to the template with that rank in the
perfect ranking. For the TBM and FM targets, the mean of that normalized TM-Score are

calculated, and the results are shown in Table S5.

Table S5. Template ranking of TopThreader compared to its primary threaders

Type Best of top 5 1* ranked 22 ranked 3" ranked 4t ranked 5t ranked
HMMER3 0.61+0.10 0.58+0.07 0.53+0.08 033008 0.18+0.07 0.0440.03

FASTA 0.73+0.09 0.70£0.07 0.55+0.08 0.33+0.08 0.15£0.06 0.014+0.01
SAMT2K 0.70+0.10 0.66+0.06 0.61£0.08 0.56:0.08 0.54+0.09 0.53£0.09
DELTABL AST 0.80+0.09 0.76+0.06 0.65+0.07 0.50+0.08 0.27+0.08 0.03+0.03

P pDomThreader 0.78+0.06 0.72+0.06 0.73+0.07 0.69+0.07 0.63+0.07 0.62+0.07
Eﬂ HHBlits 0.56+0.09 0.53+0.07 0.50+0.07 0.46+0.08 0.38+0.08 0.25+£0.07
g HHSearch 0.94+0.07 0.89+0.06 0.88+0.07 0.85+0.07 0.77+0.07 0.53£0.09
E pGenThreader 0.91+0.06 0.86+0.06 0.85+0.08 0.83+£0.08 0.83+0.08 0.82+0.09
§ RAPTOR-X 0.92+0.06 0.88+0.06 0.85+0.07 0.82+0.07 0.71£0.07 0.70+£0.08
LOMETS 0.91+0.06 0.86+0.06 0.76+0.07 0.64+0.07 0.45+0.08 0.21+0.07
SPARKS-X 0.95+0.06 0.91+£0.06 0.88+0.07 0.83£0.07 0.82+0.08 0.76+0.08

FFAS03 0.95+0.06 0.90+0.06 0.91+£0.07 0.88+:0.08 0.85+0.08 0.84+0.08
TopThreader 0.97+£0.05 0.94+£0.06 0.93+£0.06 0.88=0.07 0.§7+£0.07 0.87+£0.08
HMMER3 0.20+0.14 0.20+0.13 0.10+0.10 0.11+0.11 0.05+0.08 0.00+0.00

FASTA 044+0.18 0.43£0.16 0.33+0.18 0.13+0.13 0.07£0.10 0.00£0.00
SAMT2K 0.37+0.22 0.30£0.16 0.33£0.19 0.32+0.18 0.36+0.21 0354021
DELTABLAST 0.37+0.20 0.35£0.17 0.2240.14 0.15+0.12 0.07£0.10 0.00£0.00
pDomThreader 0.81+0.18 0.69+0.16 0.71+0.16 0.68+0.15 0.73+0.18 0.63+0.15

f"n HHBlits 0.37+0.18 0.35+0.15 0.31+0.15 0.26x0.16 0.25+0.17 0.19+0.16
E HHSearch 0.56+0.23 0.52+0.17 0.47+0.18 045+0.19 0.43+0.20 0.30+0.18
E pGenThreader 0.85+0.18 0.76+£0.17 0.73+0.17 0.81+:0.18 0.82+£0.20 0.67+0.19
= RAPTOR-X 0.78+0.19 0.70+0.16 0.67+0.17 0.64+0.16 0.59+0.20 0.53+0.20
LOMETS 0.80+0.19 0.70+0.16 0.65+0.16 0.60+0.17 0.39+0.17 0.19+0.16
SPARKS-X 0.81+0.18 0.72£0.17 0.76+0.18 0.70£0.17 0.70£0.18 0.65+0.20
FFAS03 0.78+0.19 0.69£0.16 0.73£0.17 0.64+:0.15 0.61£0.18 0.56+0.20
TopThreader 0.87+£0.20 0.83+£0.19 0.69+0.18 0.60+:0.19 0.55+0.21 0.53+0.22

Mean normalized TM-Score, normalized to the TM-Score of a template at a given rank if the ranking was perfect according to TM-Score to
the native structure. A value of 1 thus indicates that the average template with that rank is identical to the best possible template for that rank,
if all identified templates were ranked according to true rather than predicted TM-Score. The 95% confidence interval is indicated after the
+ sign. For each column, the best primary predictor values and TopThreader values are highlighted in bold.
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Supporting Text T2: Primary Threader Description

PSIPRED [45] was developed by the Jones lab and predicts secondary structure from sequence
profiles and PSSM's generated by PSI-BLAST using a three-state neural network.
DELTABLAST [1] was developed by Boratyn et al. and scans the conserved domain database
to construct a PSSM that is used to increase sensitivity when running PSI-BLAST.

HMMER3 [4] was developed in the Eddy group and uses the Multiple Segment Viterbi
algorithm to accelerate HMM-HMM comparison for HMM database alignment searches.
HHBLITS [7] was developed by the Soding group as an accelerated HHSEARCH. It constructs
a HMM by adding context-specific pseudo-counts at each residue position and iteratively
searches HMM databases using heuristic filters to remove false positives.

HHSEARCH [10] was developed by the Soding group. It uses HHBLITS to generate a target
HMM from which secondary structure is predicted using PSIPRED and combined with the
HMM, which is then used to search a template database by matching both sequence and
secondary structure terms.

RAPTOR-X [19] was developed by the Xu group and uses a regression tree-based non-linear
alignment scoring-function. It measures the profile information, based on which gap-penalties
and sequence similarity are derived, from profile- and context-specific features including
predicted secondary structure, solvent accessibility, amino acid identity, and residue
hydropathy.

SPARKSX [16] was developed by the Zhou group and uses predictions of secondary structure,
solvent accessibility, and dihedral angles from SPINE-X [51] combined with HMM-predicted
probability of the predicted values on a residue-wise level. These scores are combined with
PSSM's and profile-profile comparisons to increase alignment accuracy.

FFASO03 [13] was developed by the Godzik group and combines normalized PSSM's derived
from PSI-BLAST profiles with predicted secondary structure, solvent accessibility, and residue
depth. It uses a weighted dynamic programming algorithm from which alignment scores are
calibrated by length and ranked according to a neural network-predicted MaxSub score.
LOMETS [22] was developed by the Zhang group and includes eight versions of the MUSTER
algorithm with differently optimized scoring terms. It uses weighted dynamic programming
with differently weighted features from closely and distantly homologous profiles as well as
predicted secondary structure, solvent accessibility, backbone dihedral angles, hydropathy
scoring matrices, and depth-dependent structure profiles to generate alignments.
pGenThreader and pDomThreader [25] were developed by the Jones Lab. pGenThreader
uses profile-profile alignment based on PSI-BLAST PSSMs combined with secondary
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structure-specific gap penalties, pairwise residue potentials, and hydrophobic burial scores.
Weights for the individual terms were optimized using support vector machine regression to
optimize template-target TM-Score. pDomThreader was trained on the same input but using
support vector classification rather than regression to provide a clearer distinction between
protein super-families.

SAMT2K [30] was developed by the Karplus group. It uses HMMSs generated from profiles
from BLAST searches against the non-redundant sequence database to detect templates and
performs both forward and reverse alignment of the query sequence to the HMM to improve
confidence in the ranking of hits.

FASTA [28] was developed by Pearson as one of the first rapid sequence-sequence comparison
methods. It uses word search heuristics to identify identical fragments and joins the ten largest
regions based on their word matches. These regions are then joined using a penalty analogous
to a gap penalty. Sequences that score well according to this rapid heuristic are aligned using

standard dynamic programming.

Supporting Text T3: Detailed Description of TopAligner

The templates identified by TopThreader should belong to the same fold, but may occasionally
differ too much to be accurately aligned by primary alignment programs. To prevent templates
with a different fold from being included in the multiple alignment, TopAligner clusters the
templates and uses only templates that share the same structural fold (TM-Score > 0.5) as the
majority of the top five-ranked templates for multiple alignment. TopThreader then calculates
an ensemble of different pairwise and multiple alignments using eight different primary
methods for constructing multiple alignments (see Table S1). Aside from the alignments
produced by the primary MSA programs, TopAligner uses the MSA generated by TopThreader,
as well as all pairwise threading and consensus alignments.

After building a multiple alignment of the templates from a specific primary alignment
program, TopAligner uses the local and global scores calculated by TopThreader to weight the
pairwise primary threading and consensus alignments calculated by TopThreader. These
weighted pairwise alignments are used to add the target sequence to the multiple template
alignment using TCOFFEE (see also TopThreader step 7). From the multiple template-target
alignment calculated by the primary alignment program, every possible combination of the top
five-ranked templates are then extracted and added to the alignment ensemble. Then the
procedure is repeated for the next primary alignment program. Finally, the pairwise threading

and consensus alignments of the top five-ranked templates are added to the alignment ensemble.

Page | 160



Supporting Information Publication II: TopModel

The primary alignment programs used by TopAligner can be found in Table S1 and a
detailed description of them in the following section. They vary in methodologies but can be
broadly divided into one or more of the following categories:

1. Horizontal-first methods. These methods [2, 5, 8, 11, 14, 20] progressively merge
pairwise alignments using a guide-tree in the order of pairwise sequence similarity,
which is fast but may introduce alignment errors and requires iterative refinement.

2. Vertical-first methods. These methods [17, 23] identify similar fragment blocks
across all templates and expand the alignment between blocks to generate a full
MSA, which is more costly but seeks to eliminate pairwise alignment errors.

3. Structure-improved sequence alignment. These methods [5, 11, 14] use 3D-
and/or secondary structure information to improve sequence alignment methods, for
example, by changing gap penalties in secondary structure elements.

4. Sequence-improved structure alignment. These methods [17, 23] use sequence
information to improve structural alignment by using regional alignment of flexible

parts of the structure with sequence- rather than structure-based methods.

Supporting Text T4: Primary Aligner Description

TM-Align [42] was designed by the Zhang group. It performs pairwise structure alignments
using rigid-body superposition by iteratively optimizing the TM-score. The TM-score measures
structural similarity using Levitt-Gerstein weights to emphasize small distances between
residues and is normalized to be independent of protein size.

MAFFT?7 [5] was designed by the Katoh group. It represents residues as vectors of polarity and
volume and uses fast Fourier transformations to calculate pairwise alignments, which are
combined progressively using a guide-tree and iteratively refined using tree-dependent
restricted partitioning.

MergeAlign2 [8] was designed by the Kelly group to make a consensus MSA from an ensemble
of MSA's. It represents the ensemble as a directed acyclic graph, weights nodes by their
prevalence in the ensemble, and uses dynamic programming to find the highest-weighted path
corresponding to the consensus. In the context of calculating MSA's, MergeAlign2 uses 91
different substitution matrices with MAFFT7 to generate alignments from which a consensus
alignment is constructed.

PROMALS3D [14] is a horizontal-first multiple sequence/structure alignment tool developed
by the Grishin group. It combines PSI-BLAST homologue detection, with PSSM's, SS-

prediction, sequence clustering, profile-profile alignment, and constraints from TM-Align [42]
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and FAST [52].

SALIGN [11] is a horizontal-first multiple sequence/structure alignment tool developed by the
Sali group. It uses a tree constructed from all combinations of pairwise alignments and serially
aligns closest branches to each other using sequence and structure features with heuristic
weights and context specific gap penalties.

MUSTANG [20] is a horizontal-first multiple structure alignment software developed by the
Lesk group. It calculates the largest structural fragments that can be rigidly superimposed to
generate pairwise alignments that consider flexibility without the need for gap-penalties. These
are progressively combined using a neighbor-joining guide tree into a full MSA.

TCOFFEE [2] is a horizontal-first multiple sequence/structure alignment meta-tool developed
by the Notredame group. It combines libraries of residue matches from pairwise alignments
from multiple structure and sequence alignment methods. From this library, a PSSM and a
guide-tree are calculated from which a MSA is calculated using dynamic programming. In
TopModel, the default alignment methods for TCOFFEE is the 3DCOFFEE mode, consisting
of MUSTANG [20], ClustalW [34], POA [35], MUSCLE [36], ProbA [37], PCMA [38],
ProbCons [39], DiAlign [40], SAP [41], and TM-Align [42] as input aligners.

3DCOMB [23] is a vertical-first multiple structure alignment tool developed by the Xu group.
It combines local and global structure features with Conditional Random Field probabilistic
modeling to identify highly similar fragment blocks in all templates and uses these as anchors
from which the alignment is extended.

FORMATT [17] is a vertical-first multiple structural alignment method developed by the
Cowen group. Ituses MATT [53] to identify and align highly similar fragment blocks and aligns
residues that do not belong to a block using default settings of MAFFT7. In TopModel, these
regions are aligned using Merge Align2 as described above, rather than MAFFT7.

Supporting Text TS: Detailed Description of TopBuilder

TopBuilder functions as a front and back end to Modeller 9 [54]. Template-covered residues are
built with the default Modeller procedure. Folding of loops without template have by default
constraints, based on secondary structure predictions from PSIPRED[45], imposed to guide
folding. Loop refinement is based on loop size, where tiny loops (1-2 residues) are not refined,
medium loops (3-15 residues) are refined using the DOPE potential [15], large loops (16-25)
are refined with Modeller’s geometric potential, and massive loops (> 25 residues) are skipped
because convergence of loops of this size is unlikely.

TopBuilder uses a knot detection algorithm inspired by Khatib et al. [55] to identify
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knots in the models. If knots are identified, template-based restraints are removed for the
knotted region, and the whole model is then re-built up to five times with different random
seeds to generate a model without knots. Should a modeling fail to converge (usually due to
large regions not covered by a template), it is restarted up to three times with different random

seeds. After model construction, additional refinement is done using either SCWRL35[36],

RASP[57], 13Drefine[ 58], or Modrefiner[59], with RASP being the default option.

Supporting Text T6: Detailed Description of TopRefiner

The goal of TopRefiner is to select the best models from previous modeling steps, combine and
refine these models, and present a single high-quality model to the user. This is accomplished
in a four-step workflow which is outlined below and in Figure S3:

1. Model selection. For TopAligner there are two possible scenarios: Either the alignment and
model quality improves when using multiple templates, or it deteriorates. If the former is the
case, models converge on the same fold, and TopScore and TopScoreSingle scores are highly
correlated. In the latter case, TopScore performance at selecting the best model declines because
the clustering methods bias TopScore towards multi-template models, whereas TopScoreSingle
performance remains unaffected. Therefore, the correlation of TopScore and TopScoreSingle
determines which of the two 1s used for model selection, a selection scheme denoted as
TopScoreMix. For each template combination from TopAligner’s multi-template model
ensemble, the best-scoring model is selected according to this scheme. Additionally, the top
five single-template models according to TopScore and TopScoreSingle are selected from the
single-template and consensus steps of TopThreader. The selected models are scored, and each
model is compared to the highest ranked model using TM-Align[42]. Outlier models with a
TM-Score < 0.5 are removed as they are too different from the best model to be used for the
fragment combination and model hybridization.

2. Model fragment recombination. The models from step 1 are fragmented by removing bad
regions predicted to contain local errors according to TopScore and TopScoreSingle. Three rules
are used to select whether a given residue is good or bad: (I) Residues with an error larger than
0.7 are bad (0.6 if the residue is in an unstructured terminus). (II) Residues with a local error
below 0.4 are good if they have non-loop secondary structure. (III) Residues are good if their
local error is within 0.5 median absolute deviations of the best scoring residue at this position
across all models. Limits are imposed to ensure that no deleted region is smaller than 4 residues,
and no fragment smaller than 7 residues is kept. The fragmented models with bad regions

removed are then used as input templates for the ROSETTA [60] template-based hybridization
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protocol ROSETTACM. Fifty models are generated of which the top 20 are selected according
to ROSETTA score. If all ROSETTA models are very different from the best model from stage
1 (TM score < 0.5), the model fragments are instead used as input templates for TopBuilder to
produce a set of 20 models. Models that are not consistent with the best model from step 1 (TM
score < ().5) are removed. The remaining models are scored with TopScore and TopScoreSingle.
This step combines good regions from different models while letting ROSETTA or TopBuilder
reconstruct regions that are predicted to be bad in all models.

3. Template hybridization. The top five best models from step 1 and 2 according to
TopScoreMix are selected for model/template hybridization. These models are structurally
aligned to each template identified by TopThreader with a TM-Score > (.5 to the model using
MUSTANG]20]. This produces new pairwise alignments with the highest structural agreement
between good scoring models and the templates. These pairwise alignments are used with the
templates as input for the ROSETTACM protocol. Fifty models are generated of which the top
20 are selected according to ROSETTA score, and scored with TopScore and TopScoreSingle.
This step allows for information from all true templates to be included, not just the top five, and
allows for new alignments between good structural models and the templates to be used, instead
of threading-based sequence-structure alignments.

4. Model selection and final refinement. The best five models from steps 1, 2, and 3 according
to TopScoreMix are selected, and outliers are filtered as in step 1 (TM-score > 0.5). From these
models bad regions are removed as in step 2 and the fragmented models used as input templates
for TopBuilder to vield 10 average models which are added to the pool of input models. All
models are then refined with Modrefiner [59], which uses fragment-guided MD to refine the
models. Finally, the models are scored with TopScore. The best model according to TopScore
from the largest cluster according to SPICKER [26] is selected as the final model and returned
to the user. This step lets the best models from previous steps be averaged and refined before
final scoring and model selection. TopScore is used rather than TopScoreSingle since the final

model ensemble is converged due to the filtering of outliers and averaging of structures.
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Figure S3. Detailed TopRefiner workflow
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Figure 83. Detailed workflow of Top Refiner. White boxes symbolize model scoring, calculated using Top3core and TopScorelingle. Red
beoxes symbolize model fragmenting, in which regions of the models containing errors according to TopScore and Top3coreSingle are deleted
resulting in model fragments. Blue boxes symbolize input or output models or the structural alignment between good scoring models and input
ternplates. Yellow boxes symbolize assernbly of fragments into improved models, modeling of new alignments to the templates, or refinement
of the models with ModRefiner Magenta boxes symbolize removal of models or ternplates because they have a TM-Score less than 0.5
commpared to the best scoring model. Green boxes symbolize selection of models from previous steps using Top3core and Top ScoreSingle.
Step 1: An initial model ensemble is selected from the pairwise single-ternplate ensemble from TopThreader and the rmulti-template ensernble
from TopAligner. Step 2: The selected models are fragmented by deleting regions predicted by Top Score or Top3coredingle to contain errors
and the resulting fragments are used as termp lates for ternplate-based modeling with ROSETTACM, if all resulting models don’t pass the cutlier
filter, the fragment assembly 15 carried out by TopBuilder nstead. The resulting models are filtered for outliers and scored with TopScore and
TopScorelingle. Step 3: The top 5 best models from steps 1 and 2 are selected and structurally aligned to all identified ternplates that has a
Th-Scere larger than 0.5 to the model These alignments are modeled with ROSETTACM and scored with TopScore and TopScoreSingle.
Step 4: The top 5 best models from steps 1, 2 and 3 are selected and outliers areremoved. The remaining models are fragmented and TopBuilder
15 used for fragment assembly to generate improved models. All models are then refined with ModRefiner and scored with TopScore. The best

model according to Top3care 15 selected from the largest cluster according to SFICKER.
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Supporting Text T7: Validation of LipoP from C. difficile

Experimental SAXS data collection

At the EMBL-Lab outstation Grenoble, the lipoprotein LipoP (UniProt ID Q18BL.3) was freshly
purified with a Superdex 200 10/300 column (GE Healthcare) pre-equilibrated with SAXS-
buffer (25 mM MES pH 6.5, 250 mM NacCl, 5 % glvcerol) at a flow rate of 0.5 mL/min.

SAXS data for the full length LipoP was collected on beamline BM29 at the ESRF
Grenoble [61, 62], equipped with a PILATUS 1M detector (Dectris) with a fixed distance of
2.867 m. The achievable g-range under these conditions was 0.025 - 5 nm™, and the maximum
measurable radius of gyration (Rg) of the investigated particles was 20 nm. All measurements
were performed at 4°C with protein concentrations between 0.51 and 7.68 mg/ml.. For each
sample, ten frames with an exposer time of one second were collected. By comparing these
frames, we excluded the possibility of radiation damage during the measurement.

SAXS data for the truncated LipoP was collected on beamline P12, PETRA III at the
DESY Hamburg[63], equipped with a PILATUS 6M detector (Dectris) with a fixed distance of
3.0 m. The achievable g-range under these conditions was 0.02 - 6 nm™. All measurements were
performed at 4°C with protein concentrations between 0.9 and 8.8 mg/ml.. We collected frames
with an exposer time of 0.045 seconds.

All used programs for data processing were part of the ATSAS Software package
(Version 2.8.1) [64]. The primary data reduction was performed with the program PRIMUS
[65]. With the Guinier approximation [66] (implemented in PRIMUS [65]), we determined the
forward scattering /(0) and Rg. We estimated the maximum particle dimension (Dmax) with the
pair-distribution function p(r), computed with the program GNOM [67]. Low resolution ab
initio density models were calculated with GASBOR [6&]. Superimposing of the predicted
model into the SAXS density was done with the program SUPCOMB [69]. We used a reference
solution of bovine serum albumin (66 kDa) to determine the molecular weight of the protein

from the forward scattering. A summary of the SAXS data collection can be found in Table S6.

Experimental NMR data collection for secondary structure determination

The NMR samples contained 0.63mM [U-!"N] or 0.63 mM [U-13C.'N] (His)io-LipoP,
100 mM NaCl, 5 mM NaNjs, 25 mM MES (pH 6.5) in 10% (v/v) D20. NMR experiments were
recorded at 30.0°C on Bruker AVANCE III HD 600 MHz, Bruker AVANCE III HD 700 MHz,
Varian VNMRS 800 MHz, or Varian VNMRS 900 MHz NMR spectrometers equipped with
room temperature (900 MHz) or cryogenically cooled (600 MHz, 700 MHz, 800 MHz) triple

or quadruple resonance probes with z-axis pulsed field gradient capabilities. The sample
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temperature was calibrated using methanol-daf70. Sequence-specific assignments for the
backbone resonances were obtained from TROSY [71-73] versions of the following 2D and 3D
triple-resonance experiments [74, 75]: ['HL1*N] TROSY [73] ['H.}*C] CT-HSQC[76], ['1L°N]
TOCSY-HSQC [77] with a 10.0 kHz DIPSI-2r¢ mixing scheme ([78]; 60 ms mixing time),
['IL'°N] NOESY-TROSY ([77]: 120ms mixing time), TROSY-IINCO [72], TROSY-
HN(CO)CA [79], TROSY-HN(CO)CACB [79], TROSY-HNCA [79]. TROSY-HN(CA)CO
[79], TROSY-HNCACB [79], and H(CCO)NH-TROSY and C(CO)NH-TROSY [80] with a
16.7 kHz FLOPSY-16 mixing scheme ([81]; 14 ms mixing time). The 'H20 resonance was
suppressed by gradient coherence selection, with quadrature detection in the indirect
dimensions achieved by States-TPPI [82] and the echo-antiecho method [83, 84]. All NMR
spectra were processed with NMRPipe [76] software and analyzed with NMRView] [85]. 'H
chemical shifts were referenced with respect to external DSS in D20; *C and °N chemical
shifts were referenced indirectly [86]. 'HN and '°N amide group chemical shifts were obtained
from the peak positions of the TROSY multiplet components by subtracting out the scalar
coupling contribution of -|'Tnu//2 and +|'Inu|/2, respectively, assuming a uniform scalar
coupling constant of 'Jxu = -93 Hz. Random Coil Index [87] backbone order parameters, Srcr’,
and confidence levels for helical (H) or extended/strand (E) secondary structure, Pu or P,
respectively, were calculated from the backbone chemical shifts using TALOS-N[88] with the

default parameters.
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Data collection parameters

Full length LipoP

Truncated LipoP

Beamline BM29, ESRF Grenoble [61, 62] P12, PETRAIIL DESY Hamburg[63]
Detector PILATUS 1 M PILATUS 6 M
Detector distance (m) 2.867 30

Beam size (um x um) 700 x 700 12 x 200
Wavelength (A) 0.99 1.24

Sample environment Quartz glass capillary, | mm o Quartz glass capillary, 1 mm o
srange (nm™)? 0.025-5.0 0.02-6.0
Temperature (K) 277 277

Exposure time per frame (s) s 0.45s

Mode of measurement Static Static

Protein concentration range (mg/ml) 0.51 —7.68 09-88
Structural parameters

1(0) from P(1) 14.31 0.013

Ry (real-space from P(r)) (nm) 2.54 2.49

{0y from Guinier fit 14.25 0.013

s-remge for Guinier fit (nm ™) 0.154 - 0.453 0.27-0.53

R, (from Guinier fit) (nm) 243 245

D (TIT1) 10.14 8.13

PORCD volume estimate (nm”) 3512 35.70
Molecular mass from POROD volume (kDa) 20.66 21.00
Molecular mass from I(0) (kDa) 14.28 18.0
Molecular mass from sequence (kDa) 18.63 174

Software

Primary data reduction PRIMUS [65]

Data processing GNOM [67]

Ab initio modelling
Superimposing

Model visualization

GASBOR [68]
SUPCOMB [69]
PYMOL [89]

L5 =4m sin{0)/A, 20 — scattering angle, A — X-ray wavelength
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Figure S4. Top ranked templates and TopModel model of LipoP from €. difficile
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Figure S4. Top ranked temp lates and TopModel model of LipoP from C. difficife. The top ranked template with PDB ID 5J7R is shown n
magenta. The protruding B-sheet makes contacts to other monormers in the tetrameric structure. The second highest-ranked template with FDE
ID 6GZ8 is shown in purple, with the p-sheet folded up against the core of the protein. TopModel favors the posttioning of the B-sheet up
against the core of the protein. The model from Tophdodel is colored according to residue-wise TopScore. Yellow/Red regions indicate regions
with high residue-wise error (> 50%4%). The disordered tail isnot shown before residue 43,

The intrinsically disordered tail region of LipoP from C. difficiie

In the starting model from TopModel, residue 43 separates the unstructured N-terminal
(denoted as the tail region) from the rest of the protein (denoted as the folded domain). In MD
simulations, the tail region has a much higher mobility than the folded domain (Figure S5). In
the tail region, only transient secondary structure elements with low consistency between
individual replicas are observed (Figure S5). Furthermore, the enrichment of disorder-
promoting residues (e.g., K and S) [90, 91] support the hypothesis that the tail region is
intrinsically disordered. The ability of disordered regions to bind, and exert a function, 1s mainly
attributed to segments called molecular recognition features (MoRFs), which undergo a
disorder-to-order transition upon binding [92, 93]. Residues 8-SISAVELV-15 are highly likely
(53%-78%) a MoRF region as predicted by MoRFPred [94].

Molecular dynamics simulations
To increase agreement between the LipoP model from TopModel and the experimental data, we

subjected the model to all-atom molecular dynamics (MD) simulations in explicit solvent.
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Because we have experimental data from both NMR and SAXS, we simulated both the full
model and a truncated version of it, without the unstructured tail. In the first case, with the aim
of finding a tail conformation that results in a radius of gyration (Rg) in agreement with SAXS,
and in the latter, in order to select snapshots of the folded domain that agree best with secondary
structure determined from NMR. Both models were prepared for MD simulations with LEaP
[95]. Sodium counter ions were added to establish charge neutrality, and each system was
placed in a truncated octahedral box of TIP3P water [96] with a minimum distance between the
solute and the border of the box of 11 A.

Structural relaxation, thermalization, and production runs of MD simulations were
conducted with pmemd.cuda [97] of Amber 16 [98] using the force field ff14SB [99] for the
protein and Joung-Chetham parameters for ions, as reported previously [100]. Ten independent
replicas of 30 ns were performed for both systems, with an aggregate simulation time of 2>300
ns. To setup independent replicas, the temperature was set to ten slightly different values in the
thermalization (between 299.5 K and 300.4 K, offset 0.1 K), resulting in diverse starting
structures for MD production runs, which were then performed in the NVT ensemble at 300 K.

The MD trajectories were analyzed with cpptraj [101]. To remove global translational
and rotational motions, snapshots were extracted every nanosecond and fit on the folded domain
using the first frame as reference. To measure protein compactness, we calculated Rg, defined
as the root mean square distance of the collection of atoms from their common center of gravity.
Secondary structure was analyzed using DSSP[102]. The eight DSSP secondary structure
classes were reduced to three classes using the scheme: I'H/G—H, B/E—E, S/T/C—C to allow
for comparison with NMR data. To summarize the secondary structure information of each
snapshot from the MD simulation, collected with 1 ns in between snapshots, for each residue
was assigned to a class H, E, or C if the propensity of the secondary structure was > 0.5. The
secondary structure propensity was calculated as the fraction of snapshots exhibiting a given
secondary structure class (H, E or C) across all replicate simulations for all systems. The results

of this analysis is shown in Figure S5.
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Figure S5. Secondary structure propensity across all MD simulations of LipoP
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Figure 85. Secondary structure propensity across all MD simulations of LipoP. The average propensity for each residue to be in a helix
(red) or B-strand (blue) is shown. The disordered tail barely shows secondary structure content apart firom sparse helix formation. Secondary
structure assignment according to NMR data 1s shown on top. Four differences between NME secondary structure assignment and secondary
structure propensity from MD simulations are visible, and numbered according to importance as discussed in detail in the main text: (1) a-
helix 1 is longer according to NME than found in the mitial model, but shows an extension in sorme of the snapshots of the simulations, (2) B-
strand 3 is shifted by two residues towards the C terrminus in the mitial model, which causes sorme strand formation earlier in the sequence and
makes f-strand 3 less stable; (3) B-strand € 15 3 residues too short in the initial model compared to MME, (4) a-helix 2 is one residues shorter

at the Cterminal end.

Model selection and combination

To build a model from the MD simulations-generated ensembles that agrees best with the
experimental NMR-based secondary structure assignment, the Matthews correlation coefficient
(MCC) was calculated for each secondary structure type and normalized to a standard Z-score
using the mean and standard deviation across all snapshots of all replica simulations, with or
without tail. These distributions are shown in Figure S6. As expected, during the MD
simulations, the agreement with the NMR-determined secondary structure mostly deteriorates
due to atomic fluctuations, however, some models show a better agreement with experimental
secondary structure, indicating that these models are closer to a more native-like structure. The
top ten snapshots from the MD trajectories in terms of average MCC for helix, strand, and coil
were then selected from the non-tail residues of all MD simulations. These snapshots were
subsequently energy minimized, using the same procedure applied prior to MD simulations,
consisting of three steps. First, harmonic restraints with a force constant of 5 kcal-mol!- A

were applied to all protein atoms (500 cycles steepest descent (SD) and 2000 cycles conjugate
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gradient (CG) mimmization). Second, we reduced the harmonic restraints and applied a force
constant of 1 kecal-mol A2 (2000 cycles SD and 8000 cycles CG minimization). Finally, the
positional restraints were removed completely, and all atoms were free to move (1000 cycles
SD and 4000 cycles CG minimization). After minimization, the model with the highest average
MCC for helix, strand, and coil was selected as the model for the folded domain.

From the MD simulations with the unstructured tail, all models with a radius of gyration within
+1 A of the experimentally determined value from SAXS were selected. Of these models, the
one with the highest agreement with NMR-determined secondary structure was selected
according to average MCC for helix, strand, and coil. Finally, the best model of the folded
domain was combined with the best model with the disordered tail by using TopBuilder with
both models as templates for building the full target sequence. Subsequently the combined

model was energy minimized as the final MD-refined model.

Figure S6. Distributions of standard z-scores of secondary structure agreement for LipoP.
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Figure S6. Distributions of standard z-scores of secondary structure agreement for LipoP. The black line ndicated where the initial
model from Tophodel is located relative to the distribution from MD. Distributions of standard z-scores for a-helix (red), B-sheet (blue) and
random-coil (green). Despite the majority of MD snapshots showing a lower agreement (lower z-score) with experimentally deterrined
secondary structure, some snapshets (right of the black line) show an mcreased agreement.

For the final MD-refined model, we calculated the R value and computed theoretical scattering
profiles with FoXS [103, 104]. The profile is computed using the Debye formula for spherical
scatterers and plotted as intensity (log scale) versus the momentum of transfer (¢). Finally, the
goodness of fit between scattering profiles was measured in terms of % [105]. The final model
after MD refinement shows a secondary structure MCC of 0.81 for [-sheets, 0.88 for a-helices,
and 0.78 for random coils. The final shape agreement with SAXS shows a % of 49.8, which is
high, but not surprising given the mobile, disordered tail, and 1s still an improvement compared
to the initial model from TopModel with a %> of 81.5. The model shows a radius of gyration of
26.7 A compared to the experimentally determined value of 24.3 A, due to slight drift of the
disordered tail during model combination and energy minimization.

To explore if the high ¥ from SAXS is indeed caused by the mobile, disordered tail, a truncated
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version of the protein was expressed in which the first 30 of the 43 disordered tail residues were
removed. When SAXS measurements of the truncated protein are compared to a the final model
in which the same residues were removed, the shape agreement increases markedly as indicated
by a drop in ¥* from 49.8 to 3.86, confirming that the initial disagreement with the SAXS data
for the full-length protein is indeed caused by the high mobility of the disordered tail, and that
the shape of the folded domain shows a high agreement with experiment.

To conclude, generating conformational ensembles by MD simulations starting from a model
structure obtained by homology modelling allowed us to improve its agreement with secondary
structure assignment and SAXS data. The tail region is highly mobile and disordered, which
likely results in the elongated shape density seen in SAXS experiments on the full-length
protein. At present, it is unclear what causes the elongated shape and if the underlying tail

conformation(s) is (are) functionally relevant.
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Figure 87. Comparison of SAXS data for full-length and truncated LipoP from C. dffficile
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Figure S7. Comparison of SAXS data for full-length and truncated LipoP from C. difficile

Cornparison of the experimental and simulated scattering profiles of the full-length (A) and truncated (C) LipoP and their calculated density
maps from the full-length (B) and truncated (D) proteins as calculated with GASBOR. The SAXS densities show how the disordered tail
occupies different average conformations in the full-length and truncated versions of the proteins. The 3 values from Fo3(2 show that the
shape agreement is greatly increased once the majority of the disordered tail is removed. In panel B, the final model after MD refinerent is
shown in green. For the truncated version in D, the first 30 residues of the 43 residues of the disordered tail were removed.
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ABSTRACT: Opine dehydrogenases catalyze the reduc-
tive condensation of pyruvate with L-amino acids.
Biochemical characterization of alanopine dehydrogenase
from Arenicola marina revealed that this enzyme is highly
specific for L-alanine. Unbiased molecular dynamics
simulations with a homology model of alanopine
dchydrogenase captured the binding of L-alanine dilfusing
from solvent to a putative binding region near a distinct
helix-kink-helix motif. These results and sequence
comparisons reveal how mutations and insertions within
this motif dictate the 1-amino acid specificity.

Unbiased MD simulations of ligand binding have become
possible only recently due to advances in the simulation
algorithms and hardware. In addition to identifying the binding
region of a ligand, they can reveal (un)binding pathways,
identify metastable intermediate states, and provide %u:mtita\tivc
estimates of binding affinities and on- and off-rates. > To the
best of our knowledge, unbiased MD simulations of ligand
binding have not yet been applied for investigating determi-
nants of substrate specificity starting from comparative protein
models. Such an application should be widely interesting for
other areas of structure-based life sciences as well. In this
context, we investigate r-alanine binding to alanopine
dehydrogenase of Arenicola marina (AlaDHAm)® by means of
comparative modeling in combination with unbiased molecular
dynamics (MD) simulations and a biochemical characterization
of AlaDHAm.

AlaDHAm is a member of the family of opine dehydro-
genases (OpDHs), which catalyze the reductive condensation
of pyruvate with an L-amino acid in the presence of NADH to
so-called opines during anaerobic glycolysis.” The best
characterized enzyme of this family is octopine dehydrogenase
(OcDH), which catalyzes the reductive condensation of
pyruvate with L-arginine to D-on:tt:)pine.s_m Structures of

WACS Publica‘hons © 3013 American Chemical Saciety
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CcDH determined by X-ray crystallography in complex with
NADH, with NADH and 1-arginine as well as with NADH and
pyruvate'! demonstrated that domain I of OcDH binds the
cofactor NADH, whereas the main binding site of the amino
acid substrate is located in domain II. The binding of L-argmine
induces a rotational movement of domain II toward
domain 1M AlaDHAm catalyzes the reductive condensation
of pyruvate with L-alanine to alanopine (N-(1-p-carboxylethyl)-
1-alanine).'"'S With lower efficiency also glycine can be used as
amino acid precursor, which results in the formation of
strombine (N-(carboxymethyl)-p-alanine)” In contrast to
QcDH, but in agreement with N-(1-p-carboxylethyl)-L-norva-
line dehydrogenase (CENDH),'® AlaDHAm contains a
characteristic insertion at position 209 in the helix-kink-helix
motif located at the N-terminal part of domain II (AlDHAm
numbering is used throughout this study; Figure S1 in the
Supporting Information (S1)). In OpDHs having an N209
insertion, almost exclusively valine is found at position 208
then, whereas in OpDHs lacking N209, aspartate, arginine,
lysine, or tyrosine is found at position 208 depending on the
respective L-amino acid substrate.'' CENDH has been
crystallized only in the ape form, and no structural information
is available for AlaDHA#. Thus, the role of sequence positions
208 and 209 in the helix-kink-helix motif in determining the
specificity for the r-amine acid substrate in OpDHs has
remained elusive.

In order to eclucidate this role, first, we biochemically
characterized AlaDHAwm. Cloning and expression of the gene of
AlaDHAm (Uniprot entry: BSD5P2_AREMA) was performed
as described for OcDH from P. maximus'® (see SI for details).
The final preparation contained a single homogeneous protein
of approximately 45 kDa (S] Figure SZ), in agreement with the
sequence-based calculated mass and the molecular mass
estimated by size-exclusion chromatography using standard
proteins (results not shown). The AlaRDHAm followed standard
Michzelis—Menten kinetics for the substrates used (Figure 1
and Table 1). Substrate inhibition was observed for L-alanine as
well glycine, a feature observed for many other OpDHs_'? For
1-alanine, a K, of 148 + 2.1 mM and a ¥, of 1513.0 + 144.5
U/mg was found (Table 1). Thus, AlaDHA#m is highly active, in
contrast to other AlkDH characterized:'® The AlaDH from M.
sanguinea displays an almost 20-fold reduced catalytic efficiency
(k. for AlaDH is 1084.6 and 51.70 s™! for A marina and M.
sanguinea, respectively). Furthermore, AlaDHAm displays a
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Figure 1. Michaelis—Menten kinetics of the alanopine reaction. Plotted is the specific activity of the AlaDHAm against increasing amounts of (A) -
alanine and (B) glycine. The envymatic activity of AllDHAm was measured spectrophotometrically at 25 °C following the decrease in absarbance at
340 nm. Standard assays were carried out using 3 mM pyruvate, 0.16 mM NADH in 50 mM triethanclamine buffer pH 7.0. The reaction was started
by the addition of 1-alanine or glycine. Activities were calculated using a specilic absorbance coeflicient & = 631 mM ™ e ™! for NADH. One unit is
defined as the amount of enzyme catalyzing the oxidation of 1 ymol NADH per minute.

Table 1. Kinetic Parameters for the Forward Reaction
(NADH Osidation)} Catalyzed by AlaDHAm®

substrate L-alanine glycine
K, [mmol L ] 148 + 2.1 655.1 + 452
¥, [Umg™" 1513.0 £ 144.5 246.1 £ 32.1
K; [mmol L '] 38.0 + 10.5 b
Ea st 1084.6 + 78.1 176.4 + 24.1
catalytic efficiency [mol ' s '] 73 % 10* ]

“For the determination of the kinetic constants, the initial velocities at
dilferent substrate concentrations of L-alanine or glycine were recorded
spectrophotometrically at 340 nm. Kinetic parameters were obtained
uging nonlinear least-squares analysis of the data fitted to the
Michaelis—Menten rate equation (v = V,.[S]/K, + [8]) or the
Michaelis—Menten equation corrected for uncompetitive substrate
inhibition (v = V,,[$]/K, + [8](1 + [8]/K,) where v is the velocity,
Ve 15 the maximum velocity, [S] is the substrate concentration, K,,, is
the Michaelis constant, and K; is the inhibition constant, using the
enzyme kinetic module 2.0 of Sigma-plot 9.0 (Systat Software, Erkrath,
Germany). "Not determined,

high specificity toward L-alanine: When glycine was used as a
substrate, activity dropped at least 3- to 4-fold with a
significantly higher K, value suggesting a significantly lower
affinity (Table 1), whereas for other small amino acids tested,
e.g. L-serine, T-threonine, 1-cysteine, or T-valine, no or only
negligible activities were found (data not shown). In contrast,
the AlaDH from M. sanguinea displayed a broader substrate
specificity allowing also other small amino acids to form the
corresponding opine.'® This suggests that the binding site for
the amino acid has been optimized in AlaDHAm to
preferentially bind 1-alanine with high efficiency.

In order to structurally elucidate the binding region of L-
alanine in AlaDHAm, a model of the protein was generated by
comparative modeling using the in-house workflow TopModel
(D. Mulnaes and H. Gohlke, unpublished results), which is
based on the Modeler program]g (see SI for details). Pursuing a
multitemplate modeling strategy, a pBLASTZU search on the
Protein Data Base®' revealed three suitable template structures,
two of which are OcDHs bound to NADH and either 1-
arginine (PDB code 3C7C)"" or agmatine (3IQD)."* The third
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template was CENDH (1BG6)."® The sequence identities of
AlaDHAm with OcDH and CENDH are 46% and 20%,
respectively.

A multiple sequence alighment using structural information
from the templates revealed a high degree of residue
conservation for sequence positions in the vicinity of the
substrate-binding region identified in OcDDH and respective
sequence positions in AlaDHAm (SI Figure $1). In particular,
El4] of domain | and W279 of domain 1l are conserved in
OpDHs and are present in AlaDHAm, too. Thus, the substrate
specificity toward 1-alanine of AlaDHAm cannot be mediated
by these amino acids. Y208 of OcDH from P. maximus located
in the kink of the helix-kink-helix motif is the only amino acid
involved in substrate binding that differs between the OpDHs,
In addition, in AlaDHA#, N209 is inserted. As position 209 is
also located in the kink, N209 can be accommodated in the
model structure of AlaDHAm without disturbing the overall
structure (SI Figure S3A; see the Homology modeling section
in the SI for an evaluation of the structural quality of the
model). An overlay of the r-arginine bound OcDH structure
with the AlaDHAm meodel indicated that the inserted amino
acid would sterically interfere with the binding position of 1-
arginine (Figure $3B). Accordingly, while for the generation of
an  AlaDHAm/NADH/1-alanine model the coordinates of
NADH could be copicd from the OcDH/NADH/L-arginine
complex structure without steric clashes, a geometry
optimization was required to reduce steric clashes of the 1-
alanine substrate initially placed at the position of the backbene
of the arginine substrate {see Supporting Information for
details). The optimized binding pose of 1-alanine is shifted by
~3 A with respect to the starting location (Figure $3B),

To further refine the AlaDHAm/NADH/-alanine complex
structure, the structure was subjected to three independent
molecular dynamics (MD) simulations in explicit salvent of
200 ns length each (see Supporting Information for details on
the protocols of the MD simulation). Overall, only moderate
deviations of the AlaDHAm structures from the starting
structure were observed (root mean-square deviations {rmsd)
of the C, atoms in all trajectories between 2.5 and 4 A, in rare
cases also up to 4.5 A; §1 Figure 54A and B), which are
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Figure 2. Unbiased MD simulations of L-alanine diffusion. (A=F) Black letters indicate regions of high density of r-alanine during the MD
simulation 1 as identified in panel C. Region G is the predicted binding region. (A) Traces of L-alanine extracted from the trajectory 1 generated by
MD simulations of 200 ns length of the AlaDHAm/NADH/L-alanine system in explicit water {see Supporting Information for details}; L-alanine
reaches the predicted binding region after ~40 ns (see panel D). The time evolution of the MD simulation is color coded from blue {0 ns} to red
{200 ns). For clarity, only a conformation closest to the average conformation of AlaDHAm is shown (gray cartoon). (B) Close-up view of the
predicted binding region shown in panel A with the trace of C, atoms of r-alanine extracted from trajectory 1 shown as spheres. See panel A
regarding the color coding. (C) Overlay of density maps extracted from trajectories 1 {red isocontour surface), 2 (green isocontour mesh), and 3
{blue isocontour mesh) showing the frequency of interactions of L-alanine on the surface of AlaDHAm; the contour level is 3 sigma. Regions of high
density identified from trajectory 1 are labeled with black letters. The protein conformation is as in panel A, {D—F) Root mean square deviations
{rmsds) of the r-alanine atoms during the course of the MD simulations 1 (panel D), 2 (panel E), and 3 (pancl F) with respect to the modeled
starting structure {see SI Figure S3) after superimposing AlaDHAm based on its C, atoms.

comparable to those observed when MD simulations of 100 ns remaining simulation time. Similar returns are observed in MD
length are started from one of the crystal structures used as a simulation 2 (after 95 and 120 ns) and 3 (after 82 and around
template (PDB ID 3C7C; rmsd = 1.5—3.5 A; data not shown). 137 ns) with residence times of L-alanine of at most 6 ns
NADH remained at its binding position in all three simulations (Figure 2E and F). Such short residence times do not
(Figure S4). However, despite a careful thermalization of the contradict expectations arising from the knowledge of the
complex stractures, the ligand, L-alanine, left the initial binding very weak binding affinity observed for L-alanine to AlaDHAm
region after at most 5 ns in all three simulations and escaped (K. = 580 £ 10 mM; Table 1). These MD results are
into the solvent (rmsd up to 60 A; Figure 2A—F). Yet, 1.-alanine remarkable for three reasons: (I) initially, the ligand completely
spontaneously returned to this region after 40 ns in MD escapes to the solvent (see the trace of i-alanine in MD
simulation 1 (Figure 2A, B, and D; the binding region is simulation 1 in Figure 2A) and diffuses there for at Ieast 40 ns
marked with a “G”) and remained bound for almost all of the before rebinding such that the rebinding should not be
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influenced by the starting position; (IT) the observed binding
events occurred from unbiased MD simulations, i.e. no prior
knowledge of the binding region was applied during the MD
simulations; (IIT) it is reassuring that in all three independent
MD simulations L-alanine does bind again. In all, this makes our
MD simulations one of the few examples' ™ known to date that
capture binding of a ligand dilfusing from solvent to the bound
state.

In order to provide quantitative estimates of the binding
thermodynamics and kinetics® substantially more observed
unbinding and binding events would have been required. In
particular, sampling of the unbound state is not converged after
200 ns of simulation time as demonstrated by nonoverlapping
regions of highest frequency of v-alanine interactions on the
outer surface of AlaDHAm in MD simulations 1-3 (Figure
2C). $till, the simulations provide suggestions for energetically
favorable interaction “hot spots” on the protein’s outside, as
exemplarily shown for L-alanine “hopping” between regions A—
D in MD simulation 1 (Figure 24, C, and D). In contrast, all
three MD simulations yield overlapping densities of the
frequency of L-alanine interactions with AlaDHAm when L-
alanine approaches the bound state, ie,, for regions E, F, G, and
H (Figure 2B and C). When mapped onto the MD trajectories,
these findings suggest that L-alanine consistently unbinds from
(and binds to) region G via regions F and E (Figure 2D—F).
The effective energy of binding AG 4.y (i.e., the sum of gas-
phase and solvation free energy) computed along MD
trajectory 1 by the MM-GBSA method (see Supporting
Information for details)’* corroborates this view, which shows
a global effective energy minimum corresponding to 1-alanine
binding to region G accompanied by several local minima
corresponding to L-alanine in non-native poses (the most
pronounced of which refers to region E) (Figure 3A; SI Figure
S5A). In total, a funnel-shaped I'.mcl',scapez"quS of the binding
effective energy emerges, which is similar to landscapes of the
binding cifective energy observed for the binding of kinase
inhibitors to the Src kinase." Contributions due to the changes
in the configurational entropy of the solute molecules upon
binding are not considered in the elfective energy calculations.
Considering that bound L-alanine shows a considerable amount
of residual motions as judged from the observation of
configurational fluctuations of L-alanine of ~3 A in region G
(Figures 2D and 3A), adverse contributions to binding due to
changes in the configurational entropy are expected to be small
(see ST Supplemental Results for an estimate). Thus, the overall
shape of a landscape of the free energy of binding should not
differ qualitatively from our landscape. Finally, from these
calculations, three energetically most favorable and non-
distinguishable L-alanine positions (AGugeve = —27.34,
—27.38, —27.25 keal mol™') are identified which all reside in
region G (Figure 3A; Figure SSA). When computing the
effective energy of binding for MD trajectories 2 and 3,
AGgune = —1673 and —13.4 keal mol™ are found for L-
alanine positions in region G, respectively (SI Figure 56); these
values are among the most favorable effective energies
computed in both cases. Global minima arc found at AG 4,05, =
—22.23 and —24.68 kcal mol™' for these trajectories,
respectively; the corresponding 1-alanine positions belong to
regions H and E (Figures $6 and 2E and F). The time series of
AG e values identify these cases as singletons, however,
suggesting that the energy wells associated with these minima
are narrow and that, accordingly, adverse contributions to
binding due to changes in the configurational entropy should
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Figure 3. Effective binding energy calculations and predicted binding
region. (A) Effective energies (ie., the sum of gas-phase and solvation
free energies) of L-alanine binding to AlaDHAm calculated by the
MM-GBSA approach {see Supporting Information for details) along
the trajectory 1 as a function of the L-alanine rmsd with respect to the
starting structure. The time evolution along the trajectory is color
coded from blue (0 ns) to red (200 ns) (see also color scale}. The
black circle indicates the three most faverable and energetically
indistinguishable AlaDHAwm/L-alanine configurations belonging to
region G depicted in Figure 2, panels A=D (see also SI Figure S8).
A second minimum at ~10 A rmsd refers to binding in region E. {B)
Close-up view of the binding region with one of the three most
favorable and energetically indistinguishable AlaDHAm/L-alanine
cunﬁguratiunx {see Figure S35B for the full structure)} obtained from
MD simulation 1. The bound t-alanine is depicted by a surface
representation to indicate its residual configurational fluctuations of
~3 A NADH is depicted as sticks as are residues surrounding the
binding region and/or involved in enzymatic function. The side chain
of Y304 has been omitted for clarity. Label numbers refer to the
AlaDHAm sequence.

be pronounced (Figure $6). Furthermore, these global minima
are at least 2.5 keal mol™ higher than those found in MD
simulation 1. Thus, in addition to showing the most favorable
effective energy of binding found in all MM-GBSA calculations,
region G is also most frequently populated across all three MD
simulations. These two independent results strongly suggest
that region G is the substrate-binding region of AlaDHAm
(Figures 3B and SI Figure $5B and C).

Figure 3B reveals that r-alanine is accommodated in a pocket
mainly formed by residues Y236, V276, W279, Y280, Y284,
L294, N301, and Y304 of domain I, five of which are strictly
conserved across OcDH, CENDH, and AlaDHAm (SI Figure
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§1). 1-Alanine sits with its amino moiety “above” W279,
allowing for favorable cation-7 interactions, thereby pointing
with its amino moiety toward a putative binding region of
pyruvate; W279 itself is stabilized by weak hydrogen bond
interactions with E141 of domain I {occupancy along the
trajectory: 16%). E141 and W279 both have been found to be
involved in L-arginine binding in OcDH, too.” However, in
OcDH, the guanidinium moiety of arginine is placed “below”
W279 (SI Figure $3); this position is sterically precluded for 1-
alanine in AlaDHAm by the inserted N209, however. Thus,
sequence position 209 is decisive in determining the substrate
specificity of AlaDHAm. In OcDH, which lacks position 209,
this role is taken over by Y208, which generates a large binding
site for the L-arginine side chain.'' Accordingly, in other
OpDHs lacking N209, aspartate, arginine, lysine, or tyrosine are
found at position 208 depending on the respective amino acid
substrate, while almost exclusively valine is found at this
position in OpDHs that do have an N209 insertion.!

The carboxylate moiety of L-alanine is surrounded by the
polar groups of Y280, Y284, N301, and Y304. However, in
neither case are strong hydrogen bonds formed as judged from
the distances (3.5—4.5 A); this is in line with the observation of
residual mobility of L-alanine when bound to region G (see
above). Finally, C; of L-alanine points to a wall of aromatic and
aliphatic carbons in close proximity. This may explain why
larger amino acids such as L-cysteine, L-serine, L-threonine, or L-
valine cannot bind to AlaDHAm {see above). In turn, glycine
binding may lack the hydrophobic interactions formed by the
methyl group of r-alanine, which may explain why the K, is
~50-fold higher for glycine than for r-alanine {Table 1).

The binding of r-alanine is accompanied by a rotation of
domain II toward the NADH binding domain {domain I; SI
Figure S7A). After superimpositioning domain I, this results in
an rmsd of the C, atoms of domain IT of ~3.7 A with respect to
the starting structure. A similar closing movement has been
observed when L-arginine binds to an OcDH/NADH
complexu_13 and an even more pronounced closing after
pyruvate binding to OcDH/NADH.” A bound pyruvate
together with the additional closing movement can be expected
to restrict the residual mobility observed for I-alanine when
bound to region G {see above), which may otherwise hamper
an efficient catalysis.

The closing movement of domain II also leads to an enclosed
binding region of L-alanine {SI Figure $7B). This together with
the {un)binding pathway of 1-alanine toward {from) there via
the regions E and F {Figure 2A—F) can also provide an
explanation at an atomic level as to the observed substrate
inhibition of AlaDHAm. Assuming that after the enzymatic
reaction alanopine needs to escape the binding region on the
same pathway as L-alanine accesses it, this escape will be the
more hampered the more L-alanine occupies the energetically
favorable (Figures 3A and S3A} regions E and F. The
assumption of the same access and escape pathways seems to
be justified particularly for the transition between regions F and
G, given the narrow, gorge-like character of that region (SI
Figure S7B}. This narrowness has also been implicated” as the
reason for the observed binding of substrates to OcDH in a
sequential, ordered manner (first L-arginine, then pyru-
vate).">'* Capturing AlaDHAm in an alanopine bound state
that way would result in a decrease of the enzymatic reaction
velocity that becomes more pronounced with increasing I-
alanine concentration.
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In summary, we presented an initial biochemical character-
ization of AlaDHAm, which catalyzes the reductive condensa-
tion of L-alanine with pyruvate to alanopine. AlaDHAm displays
a high catalytic efficiency and substrate specificity, although it is
prone to substrate inhibition. Unbiased MD simulations
captured the binding of r-alanine diffusing from solvent to
the putative binding region. This binding region is located at
the helix-kink-helix motif, as observed for binding of 1-arginine
to OcDH from P. maximus. At the same time, the observed
binding of r-alanine provides an explanation for the role of
amino acids 208 and 209 in substrate specificity, the only amino
acids within the binding region that differ between OpDHs
with different substrates. Finally, the presence of energetically
favorable non-native ligand binding states in the vicinity of the
binding region can provide an explanation for the substrate
inhibition of AlaDHAm.
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Material and methods, results on estimating changes in the
configurational entropy upon binding, and figures of the
alignment of sequences of AlaDHAm and the three templates,
Coomassie stained SDS-PAGE of AlaDHAm from different
purification steps, modeled AlaDHAm/NADH/I1-alanine start-
ing structure vs OcDH/NADH/L-arginine crystal structure,
structural deviations during the MD simulations, -effective
binding energies and energetically most favorable AlaDHA#n/L-
alanine configurations, time course of effective energies of
binding of L-alanine to AlaDHAm for MD simulations 2 and 3,
and movement of domain IT of AlaDHAm relative to domain I
in the course of I-alanine binding, This material is available free
of charge via the Internet at http://pubs.acs.org.
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Supplemental Material & Methods
Cloning and expression of alanopine dehydrogenase from Arenicola marina (AlaDHAm)

For large scale expression, F. coli cells ER2566 harboring the plasmid pTYB1-AlaDHAm,
introducing a hexa-histidine tag at the C-terminus, were grown at 37°C in 8 liter LB medium
containing 100 pg mL-1 ampicillin until an ODgy of 0.6 was reached. Expression of
AlaDHAm-Hig6 was induced by adding 0.2 mM IPTG, and cultivation continued at 18°C for
24 hours. Cells were harvested, resuspended in lysis buffer (50 mM Na-phosphate buffer pH
8.0 containing 300 mM NaCl and 10 mM imidazole) and disrupted by sonification (Bandelin,
Berlin, Germany). After centrifugation for 60 min at 22.000g and 4°C, the supernatant was
subjected to a Ni*" nitrilo-triacetic acid column (Ni-NTA, Qiagen, Hilden, Germany).
Unbound proteins were washed off the column with a Na-phosphate bufter (pH 8.0, 300 mM
NaCl, 10 mM imidazole) followed by a second washing step with the same buffer, but
including 20 mM imidazole. Bound AlaDHAm was eluted using a linear gradient ranging
from 40 to 250 mM imidazole. Fractions with the highest AlaDHAm activity were pooled and
concentrated using an Amicon cell with YM-10 filter membranes (10.000 MW CQO; Millipore,
Eschborn, Germany). The resulting solution was applied on a Sephadex G-100 column,
equilibrated with 50 mM K-phosphate buffer pH 7.5 containing 2 mM EDTA, 10% (v/v)
glycerol, and 0.1% (v/v) mercapto-ethanol. From 1 1 of cell culture 3.2 mg homogenous

AlaDIHAm was obtained.

Homology modeling of the AlaDH.Am structure

Protein structures to be used as templates in the homology modeling were searched by
pBLAST ! on the Protein Data Base.” Requiring a sequence coverage and identity > 20%, a
resolution < 3A, and an expectation value < 107 vielded three templates with PDB codes
3C7A (chain A), 31QD (chain B), and 1BG6 (chain A). The template sequences were aligned
repetitively three times using structural information by the Modeller . salign class (Figure
S1). Each re-alignment takes into account more features of the template structures and had
1D gap-penalties for initialization and extension of -450 and -50 and an rmsd cut-off of
3.5 A

Then the AlaDHAm sequence is aligned to the template alignment by using a progressive
pairwise alignment with 1D initialization and extension penalties of -450 and 0. The 2D

penalties were set to 0.35 for sequence/structure, 1.2 for a-helix, 0.9 for B-sheet, 1.2 for
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sidechain accessibility, 0.6 for straightness, 8.6 for pairwise Ca-Ca distances, 1.2 for local
conformation and 0 otherwise.

For generating homology models, Modeller’s automodel class is used with a three-fold
slow refinement for 300 iterations with a molpdf (“energy” computed by Modeller’s
objective function) limit of 10°. Then the loops in each model are refined using the
dope loopmodel * class with the slow md level, giving 25 models in total.

Each model is processed using Anolea >, Dope ¢, and Procheck ' to determine structure
quality. For Procheck a residue-wise score is calculated as the maximum deviation of
dihedral-angles, bond-angles and bond-lengths from optimal values for that residue. To
compare each model to the rest, an "Ensemble Z-score™ is calculated for each score. These
residue-wise Ensemble Z-scores are averaged over a window of nine residues and divided by
the standard deviation of the model to avoid bias between score types. In the same way a
"Template Z-score™ is calculated, using the template ensemble to compare model residues to
the aligned template residues. "Composite Scores™ are then computed as the average of the
respective Z-scores, showing the quality of the modelling of each residue compared to the
reference (ensemble structures or templates). “Global Scores™ are computed as the residue-
average of the Composite Scores for the respective reference, and the “best” model is defined
as the one with the lowest average of the Global Ensemble and Global Templates Score. This
model is characterized by an average Anolea energy per residue of -3.487, a global Dope
score of -0.9386, and a Ramachandran plot with 92.9% of the residues in the core region,
5.6% in the allowed region, 1.2% in the generously allowed region, and 0.3% in the
disallowed region. This model was used for further generation of the AlaDHAm/L-alanine

complex structure.

Generation of the AlaDH.Am/NADH/]L.-alanine starting structure

For generation of the starting structure for the molecular dynamics (MD) simulations, the
modeled AlaDHAm structure was root mean-square fitted onto the octopine dehydrogenase
(OcDH) structure from PDB code 3C7C. Coordinates of the NADH of the latter structure
where copied without steric clashes to the AlaDHAm model. The L-alanine ligand for
AlaDHAm was initially modeled from the bound L-arginine in the OcDH structure. Keeping
all residues of the AlaDHAm model fixed but the sidechains immediately surrounding the -
alanine ligand, the complex was then minimized using the MAB force field ® as implemented

in Moloc; this resulted in a shift of L-alanine with respect to the backbone region of L-
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arginine of ~3 A rmsd (Figure S3; see also main text for details). This complex structure was

used as a starting structure for the MD simulations.

MD simulations of the AlaDH.A#/NADH/L-alanine complex

The MD simulations were performed with the AMBER 11 suite of programs ° using the GPU
accelerated code of pmemd '° together with the ff99SB force field.'’!? Atomic charges for L-
alanine in the zwitterionic form were derived by the RESP procedure;® bonded and
nonbonded parameters for NADH were taken from refs. '* '°. The complex consisting of
AlaDHAm, NADH, and L-alanine was neutralized by adding Na® counter ions, and the
systems were then solvated in a truncated octahedral periodic box of TIP3P water '° with a
distance between the edges of the box and the closest solute atom of at least 11 A. This
resulted in system sizes of ~5%10* atoms.

The particle mesh Ewald (PME) method was used to treat long-range electrostatic
interactions '’, and a direct-space non-bonded cutoff of 8 A was applied. Bond lengths
involving bonds to hydrogen atoms were constrained using SHAKE.'® The time-step for all
MD simulations was 2 fs. The systems were initially minimized by 500 steps applying
harmonic restraints with force constants of at least 5 kcal mol™ A? to all solute atoms.
Applying harmonic restraints with force constants of 5 kcal mol™ A” to all solute atoms,
NVT-MD was carried out for 50 ps, during which the system was heated from 100 K to 300
K. Subsequent NPT-MD was used for 150 ps to adjust the solvent density. Finally, the force
constants of the harmonic restraints on solute atom positions were gradually reduced to zero
during 100 ps of NVT-MD. Three NVT-MD simulations for production were spawned at that
point, at 300.0, 300.1, and 300.2 K, respectively. Trajectories of 200 ns length were generated
with conformations extracted every 20 ps for analysis. Structural analyses were performed
with the program ptraj of the AMBER 11 suite. All figures and images were generated by

gmuplot ** and pymol

Calculation of effective binding energies

For calculation of effective energies (i.e., the sum of gas-phase and solvation free energies) of
binding, the single-trajectory MM-GBSA approach was employed via the mm_pbsa.pl script

21.23
All water molecules were

on the 10" conformations extracted from MD simulation 1.
deleted as were all counter ions. Gas-phase energies (MM) were calculated by summing up

contributions from internal energies, electrostatic energies, and van der Waals energies using
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the f99SB ' ' force-field with no cutoff. Solvation free energies were computed as the sum
of polar and non-polar contributions. The polar contribution was calculated using the GB%®¢
generalized Born model ** as implemented in AMBER 11 (igh = 5) together with mbondi2
dielectric radii and a concentration of 1-1 mobile counterions of 100 mM. The nonpolar
contribution was calculated by a solvent-accessible surface areca (SASA)-dependent term
using a value of 0.0072 kcal mol™ A for the surface tension and a zero offset. The SASA

was determined with the LCPO method * implemented in AMBER 11.

Supplemental Results

Estimating changes in the configurational entropy upon binding

Applying the rigid-rotor harmonic oscillator approximation commonly used in the context of

end-point free energy calculations 2% %

, we estimated contributions to the binding at
7'=300 K due to changes in the configurational entropy in the following way: I) Assuming a
bound volume ¥y ~ 3’ A® from the configurational fluctuations observed for the ligand when
bound to region G (see main text) and considering the standard-state volume 7° = 1661 A* at
1 M concentration, an adverse effect to binding due to the loss in the translational entropy of
the ligand of TAS = RT In(Vy / ) = -2.5 keal mol™ is estimated;*’ II) the adverse contribution
due to the loss in the rotational entropy of the ligand can be at most TAS = -1.2 keal mol™, as
the absolute value equals the rotational entropy contribution of the ligand in the gas-phase as
determined from classical statistical ‘[hermodylrlamics;28 III) although probably the most

difficult to determine,n’ 26

we think that it is safe to assume that contributions to the binding
due to changes in the vibrational entropy of the solutes will be small here, given that -

alanine is rather rigid and does not make strong interactions with AlaDHAm (see below).
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Supplemental Figures
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Figure S1: Alignment of sequences of AlalDDHAm and the three templates.

See chapter “Homology modeling of the alanine dehydrogenase structure” for how the
alignment was generated. Red bars and green arrows indicate c-helices and [-strands,
respectively, of the AlaDHAm model generated as determined by DSSP.” Numbers provided
on the left and right refer to positions in the respective sequences; numbers provided on top
refer to the positions in the AlaDHAm sequence. The amino acids are colored according to
the ClustalW criteria in Jalview (orange: G; yellow: P; cyan: H and Y, blue: hydrophobic
amino acids (A, I, L, M, F, W, V, C); green: polar amino acids (N, Q, S, T); red: positively
charged amino acids (K, R); magenta: negatively charged amino acids (D, E)) if the amino
acid profile of the alignment at that position meets a minimum criterion specific for the
residue type.

Page | 193



Supporting Information Publication III: Alanopine Dehydrogenase

o
kDa &,'z <
& W ¢

200

100—

70 —

50 — -

-

30 —

20 —

Figure S2: Coomassie stained SDS-PAGE of AlaDHAm from different purification
steps.

Loaded on the SDS gel are the crude extract, pooled elution from the IMAC column, and

elution fraction from the size exclusion chromatography column.
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Figure S3: Modeled AlaDHAm/NADH/L-alanine starting structure vs. OcDH/NADH/L-
arginine crystal structure.

A, B: Overlay of the modeled starting structure of L-alanine bound to AlaDHAm (blue) and
L-arginine bound to O¢DH (white; PDB code: 3C7C);*® the bound amino acids and NADH
are depicted as sticks. Panel B 1s a close-up view of the binding region with residues
discussed in the text depicted as lines. Label numbers refer to the AlaDHA4m sequence.
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Figure S4: Structural deviations during the MD simulations.

A: Root mean-square deviations (rmsd) of the C, atoms of AlaDHd4m during the course of
the MD simulations 1 (red), 2 (green), and 3 (blue) with respect to the modeled starting
structure (see Figure S3) after superimposing AlaDH4m based on its C,, atoms. B: Rmsd of
the C,, atoms of the C-terminal domain (red) and the N-terminal domain (green) of AlaDHA4m
as well as of all atoms of NADH (blue) during the course of the MD simulation 1. For
computing the rmsd of the domains, the domains were superimposed onto themselves,
respectively; the rmsd of NADH was computed after superimposing the protein
conformations.
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Figure S3: Effective binding energies and energetically most favorable AlaDHAm/L-
alanine configurations.

A: Time course of effective energies of binding of L-alanine to AlaDHAm during the MD
simulation 1. The two black circles indicate the three most favorable and energetically
indistinguishable AlaDHA4m/L-alanine configurations belonging to region G in panels A-D of
Figure 2 (see also Figure 3A). B: The three most favorable and energetically
indistinguishable AlaDHA4m/L-alanine configurations (lime, green, red) as identified from
panel A (see also Figure 3A); a close-up view of the lime structure 1s shown in Figure 3B. In
white, the OcDH/L-arginine complex crystal structure (PDB code 3C7C) *° is shown for
comparison. The L-alanine and L-arginine ligands are depicted as sticks. C: Blowup of the
region marked by the black square in panel B.
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Figure S6: Time course of effective energies of binding of L-alanine to AlaDHAm.

A: The effective energies of binding were calculated from MD simulation 2. B: The effective
energies of binding were calculated from MD simulation 3. In both panels A and B, the black
circles with straight lines indicate the most favorable effective energy found for L-alanine
binding to region G (see also Figure 2E, F); the black circles with dashed lines mark the
respective global minima.
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Figure S7: Movement of domain II of AlaDHAm relative to domain I in the course of L-
alanine binding,

A: Overlay of the modeled starting structure of AlaDHAm (blue) and one of the three most
favorable and energetically indistinguishable AlaDHd4m/L-alanine configurations (lime) as
identified from Figure S5A for MD simulation 1 (see also Figure 3A). The bound L-alanine 1s
depicted by a surface representation. NADH is depicted as sticks as are residues surrounding
the binding region and/or involved in enzymatic function (for labels see Figure 3A). The
sidechain of Y304 has been omitted for clanity. B: One of the three most favorable and
energetically indistinguishable AlaDHA4m/L-alanine configurations as in panel A except that
now the protein including NADH are represented with a transparent molecular surface. The
bound L-alanine (dark blob at the center) 1s occluded by Y304.
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Abstract

Background: Feline immunodeficiency virus (FIV) is a global pathogen of Felidae species and a model systern for
Hurnan immunodeficiency virus (HIV)-induced AIDS. In felids such as the domestic cat (Feffs catus), APOBEC3 (A3)
genes encode for single-domain A372s, A373 and double-domain A37273 anti-viral cytidine deaminases. The feline
A37273 s expressed following read-through transcription and alternative splicing, introducing a previcusly untrans-
lated exon in frame, encoding a domain insertion called linker, Only A373 and A37273 inhibit Vif-deficient FIV. Feline
A3s also are restriction factors for HIY and Simian immunodeficiency viruses (SIV), Surprisingly, HIV-2/SIV Vifs can
counteractfeline A3Z273,

Results: To identify residues in feline A3s that Vifs need for interaction and degradation, chimeric hurman—feline A3s
were tested, Here we describe the molecular direct interaction of feline A3s with Vif proteins from cat FIV and present
the first structural A3 model locating these interaction regions. In the 73 domain we have identified residues involved
in binding of FIY Vif, and their mutation blocked Vit-induced A373 degradation. We further identified additional essen-
tial residues for FIV Vif interaction in the A372 dornain, allowing the generation of FIV Vif resistant A37273. Mutated
feline A3s also showed resistance to the Vif of a lion-specific FIV, indicating an evolutionary conserved Yif-A3 binding.
Comparative modelling of feline A37273 suggests that the residues interacting with FIV Vif have, unlike Vif-interacting
residues in human A3s, a unique location at the domain interface of 72 and Z3 and that the linker forms a homeobox-
like dormain protruding of the Z223 core, HIV-2/5IV Vifs efficiently degrade feline A32223 by possible targeting the
linker stretch connecting both Z-domains.

Conclusions: Here we identifiad in feline A3s residues important for binding of FIV Vif and a unique protein domain
insertion (linker), To understand Vif evolution, a structural model of the feline A3 was developed, Our results show
that HIV Vif binds human A3s differently than FIV Vif feline A3s. The linker insertion is suggested to form a homeo-box
dormain, which is unique to A3s of cats and related species, and not found in huran and mouse A3s. Together, these
findings indicate a specific and different A3 evolution in cats and human,

Keywords: APOBECS, FIV, Gerne evolution, HIV, Homeobox, Homalogy modelling, Restriction factar, SIV, Vif

Background numbers and gene arrangements in placental mam-
APOBEC3 (A3) cytidine deaminases are anti-viral mals [1-4]. For example, primates have seven genes
restriction factors containing either one or two zinc (Z)-  (A3A-A3D, A3F-A3H), while cats encode four genes
binding domains found in different clade-specific gene  (A3Z2a-A3Z2c, A373) [3, 5]. These A3 proteins target

broadly viruses and mobile genetic elements that depend
*Camespordence. carstenmuenkameduni-duesseldorfde on reverse transcription, but also show antiviral activity
1 Clinic for Gastroenterology, Hepatology, and Infectiology, Medical against unrelated viruses {for recent reviews see [6, 7]).
Faculty, Heinrich-Heine-University Dilsseldorf, Building 23.12.U1.82, Some retroviruses express viral A3-counteracting pro-

Moorenstr. 5, 40225 Disseldarf, Germany tei h Vif of lentivi Bet of f )
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the nucleocapsid of Human T cell leukemia virus type 1
(HTLV-1), and the glycosylated (glyco)-Gag of Murine
lertkeria virus (MLV) [8-13]. The Vil protein prevents
encapsidation of host-cell derived A3 proteins into nas-
cent viral particles. In the absence of Vif, encapsidated
A3s inhibit lentiviruses during infection by deamination
of cytidines in the single-stranded DNA formed during
reverse transcription, by introducing G-to-A mutations
in the coding strand. Additionally, some A3s inhibit virus
replication by reducing reverse transcription and integra-
tion via non-editing mechanisms [14—19].

The domestic cat Felis catus {Fea) is the host to many
diverse retroviruses, such as the lentivirus Feline fmnine-
nodeficiency virus (FIV), gammaretroviruses of the Feline
lertkeria virus (FelV) group, and the spumaretrovirus
Feline foamy virus (FFV) (for reviews see [20-23]). In a
small proportion of naturally infected domestic cats, FIV
causes an immunodeficiency disease similar to Human
immunodeficiency virus type 1 (HIV-1)-induced AIDS
[24]. However, highly pathogenic FIV isolates can cause
mortality up to 60 % under experimental conditions
[25-27]. Thus, FIV infection of cats is a valuable animal
model to study HIV-1 and AIDS [28-30]. In addition to
the domestic cat, species-specific FIVs that might cause
disease in some natural hosts have been isolated in many
Felidae [31]. FFVs replicate in domestic cats and in other
Felidae and are not causing disease [32—34]. In contrast,
Fel.Vs are pathogenic and induce in domestic cats seri-
ous diseases such as lymphomas and anemia [24], but are
rarely found in other Felidae [31].

The domestic cat, and likely all other Felidae, encode
four A3 genes, three closely related A372 genes (A372a,
A372b, A372¢c) and one A373 gene [4, 35]. Besides the
four canonical A3 proteins, the cat genome can express,
by read-through transcription and alternative splicing,
a fifth A3 protein, namely the double-domain A3727.3,
with two detected variants A37Z2bZ3 and A3Z72c7Z3
(Fig. 1a). A37273s are also found in big cats (Pantheri-
nae), indicating evolutionary conserved gene regulation
[4, 36]. FIV Vif induces proteasome-dependent degra-
dation of feline A37Z2s, A373, and A37Z273 [4, 37]. The
double-domain feline A37273 contains two FIV Vif
interaction regions, one in each Z-domain [36]. Inter-
estingly, and currently unexplained, FIVAvif can be
inhibited by feline AZ3 and A37273, but not by A372s
[4, 36]. A reverse observation was made with FFVAbet,
where feline A372s act as major inhibitors while A373
and A37273 only moderately reduce the infectivity of
FEVAbet [4, 10, 38, 39]. Recent data indicate that certain
polymorphisms in feline A3Z3 genes correlate with the
susceptibility to FIV and/or FeLV infections [40].

FIV Vif induces the poly-ubiquitination of feline A3s and
bridges A3s to an E3 ubiquitin ligase complex containing
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Cullin5 (Cul5), Elongin B/C (EloB/C), and RING-box
protein RBX2 [37]; HIV-1 Vif forms a similar E3-ligase
complex [41-43]. However, while HIV-1 Vif needs to addi-
tionally interact with the CBF-f protein to be stabilized
and form this multiprotein complex [44, 45], FIV Vif does
not bind CBF-B, and the F1V Vif-induced degradation of
feline A3s does not require CBF-f to be expressed [46—
49]. HIV-1 Vif cannot counteract feline A3s, and HIV-1
is therefore inhibited to various degrees by all feline A3s,
with A37Z273 displaying the strongest anti-HIV activity
[36, 50-52]. The mechanistic reason preventing HIV-1 Vif
from degrading feline A3s is unclear, especially because
HIV-1 Vifand feline A37Z273 are recovered together using
co-immunoprecipitation assays [51]. In contrast to the Vif
protein of HIV-1, Vil of Simian immunodeficiency virus
from macaques (5IVmac) induces degradation of feline
A3s [46, 51]. To assess the feasibility of generating an ani-
mal model for the human system based on FIV, we and
others cloned FIV vifinto HIV-1 and proved that in feline
cell lines the A3 proteins are the dominant restriction fac-
tors against HIV-1 [36, 51].

In order to understand the FIV Vif interaction with
feline A3 proteins, we identified in this study impor-
tant A3 residues and used a homology model of feline
A37273 to describe the structure—function relationship
of these potential FIV Vif binding amino acids.

Results
FIV¥ and HIV-2/SI¥mac/smm Vif induced degradation
of felines A3s
In order to identify the molecular interaction of the FIV
Vif protein and feline A3 proteins, we used FIV of domes-
tic cats (Felis catus, Fca), hereafter referred as FIV. Co-
transfection experiments of cat-derived A3s and FIV Vif
expression plasmids were performed in 293T cells. All
A3 constructs expressed the corresponding A3 protein
as a C-terminal HA-tag, whereas Vif was expressed as a
C-terminal V5-tag fusion protein. In addition, we also
studied Vifs derived from HIV-1, HIV-2, SIVmac, and
SIVsmm. Immunoblots of protein extracts from cells
co-expressing both A3 and Vif were used as a read-out
for degradation of the respective A3 protein. Results in
Fig. 1b show that FIV Vif induces degradation of single-
domain feline A372a, A372b, A372c, A3Z3, and dou-
ble-domain A372b73 and A372c¢73 in agreement with
previous reports [4, 36, 37, 51]. The double-domain feline
A372b73 and A372c73 were degraded by SIVmac Vif as
seen before [46, 51], as well by the Vifs of STVsmm and
HIV-2. For subsequent experiments we used the expres-
sion plasmid FcaA372b73, hereafter referred to as feline
A37273 for simplicity.

To understand, whether FIV Vif binds directly to
feline A3s, we expressed A372 and A373 as GST fusion
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proteins in E. coli. Recombinant A3s were purified by
affinity chromatography and mixed with lysates of 293T
cells expressing FIV Vif. Following GST pulldown, immu-
noblots showed Vif binding to GST-A372 and to GST-
A373 but not to GST (Fig. 1c). We further explored the
interaction of FIV Vif with feline A3s by analyzing the
cellular distribution in co-expressing cells. HOS cells
were transfected either with plasmids encoding for feline
A372, A373, or A37273 alone or together with a plas-
mid encoding for FIV Vif-TLQAAA. The TLQ to AAA
mutation in the Vif putative BC-box prevents its interac-
tion with the E3 complex [37]. Feline A3 proteins showed
a mostly cytoplasmic localization with no or very little
nuclear A3, and feline A373 localized in addition to the
nucleoli (Additional file 1: Fig. S1, compare to Fig. S4).
Nucleolar localization of A37Z3 proteins derived from
humans and horses had been described before [53]. Very
similar to the A3s, FIV VIif-TLQAAA showed a cvto-
plasmic distribution with little presence in the nucleus.
Under these experimental conditions, strong co-locali-
zation of Vif and A3s was detected in cytoplasmic areas
near the nucleus {Additional file 1: Fig. 51).
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Identification of feline A3Z3 residues important for FIV Vif
induced degradation

Feline A373 and A37Z273 are the restriction factors for
FIVAvif, whereas A372s are not active against FIVAvif
[4, 36, 37, 51]. To characterize the Vif interaction with
residues in feline A37Z3, A3Z3s derived from humans
{A3H haplotype II, HsaA3H) and big cats (tiger, Pau-
thera tigris, Pti; lion, Pauthera leo, Ple; lynx, Lynx [ynx,
Lly; puma, Puma concolor, Pco) (protein alignments are
highlighted in Additional file 1: Fig. S2) were used in co-
transfection experiments with FIV Vif. A3s derived from
tiger, lion, lynx, and puma were efficiently degraded by
FIV Vif (Fig. 2a). Because A3H was resistant to FIV Vif-
induced degradation, the construction of Hsa—Fca chi-
meric A373s promised a rational approach to identify the
A3Z3/FIV-Vif binding region. The chimeras Z3C1 and
Z3C2 spanned respectively amino acids 1-22 and 1-50
of feline A373, with the remaining part being derived
from A3H, whereas Z3C6 and Z3C7 were mostly feline
A373 with residues 1-22 or 1-50 derived from A3H
{Fig. 2b). Among the four A373 chimeras, Z3C2 and
73C6 were efficiently degraded by FIV Vif, while Z3C1
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Fig. 2 Identification of residues in FcaA3Z3 for FIV Vif induced degradation. a Expression plasmids for FcaA323, HsaA3H and big cat A373s were co-
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concolor. b Scheme of FcaA3Z3/HsaA3H. hapll chimeras (23C1, -C2, -C&, -C7). Highlighted sequence diversity between HsaA3H and FcaA3Z3 inan
N-terrninal region. € 293T cells were co-transfected with expression plasmids for FcaA3Z3, 23C1, Z3C2, Z3C6, Z3C7 or HsaA3H hapll and FIVVIE, HIV-1
(NL4-3 or LAD or SWVmac Vif. The expression of chimeras and Vif proteins were detected by using anti-HA and anti-v5 antibodies, respectively. Tubulin
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identified to evolve under diversifying selection in this A3Z3 stretch

and Z3C7 showed resistance to degradation (Fig. 2c).
HIV-1 Vif (derived from clones NL4-3 or LAI) could not
degrade any of the A373 chimeras, but LAI Vif degraded
A3H as reported before [54], and SIVmac Vif degraded
Z3C1 and A3H but not Z3C2, Z3C6 and Z3C7 (Fig. 2c).
Our findings indicate that feline-derived residues
shared by Z3C2 and Z3C6 (positions 23-50) are essen-
tial for FIV Vif interaction. This A3 stretch contained a
number of positions evolving exclusively under purifying
selection, for both carnivores and for primates (Fig. 2d).
Globally, diversity among A373 from carnivores was
higher than among the primates’ orthologs {respectively
0.24 + 0.02 vs 0.054 + 0.007, overall average pairwise
nucleotide distance + bootstrap standard error esti-
mate) (Additional file 1: Fig. S3A). During this analysis,
we identified for the first time duplicated A373s in the
gsame genome (i.e. in-paralogs [55]) retrieved from differ-
ent lineages within Caniformia (Ursidae, the giant panda
and the polar bear; Phocidae, the Weddell seal; and Odo-
benidae, the walrus) but we could neither identify the
two A3Z3 in-paralogs in Canidae (dog) nor in Mustelidae
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(ferret) genomes. By contrast, in all Felidae genomes that
we have screened we could only identify one of these in-
paralogs (Additional file 1: Fig. S3A).

The A373 region position 23-50 differs in 16 amino
acids between human and feline A373s, and contains
certain highly conserved amino acid positions (Fig. 2b,
d). We mutated thus most feline-specific residues in
feline A373, in positions 35-38 and 40-48. Residues in
position 35 + 36 (KL), 37 + 38 (PE), 41 + 42 (L) and
43 (H) in A373 were substituted by the correspond-
ing ones found in A3H. Additionally, we exchanged the
A373 residues at position 45 4+ 46 (DC), 47 + 48 (LR)
and 41 + 42 (LI) against AA (Fig. 3a). These mutated
A3s were characterized for resistance to degradation by
co-expression with FIV Vif. We found that only A373s
mutated at position 41 + 42 (LI 3> TP and LI » AA)
showed partial resistance to degradation by Vif (Fig. 3b).
ABSL in feline A3Z3 has been described in Brazilian
cats and discussed to be a relevant resistance mutation
against FIV [40, 56]. Under our experimental conditions,
A373 mutated in position 65 (A651) displayed only little
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resistance to Vif-mediated degradation (Fig. 3c). How-
ever, very important, the combination of mutations, A651
and L41A-142A, resulted in an A373 variant that showed
complete resistance to FIV Vif degradation (Fig. 3¢). We
wondered whether experimental overexpression of the
V5-tagged FIV Vif could mask the potency of the natural
A65I variant to resist degradation. To address this ques-
tion, we used as a source for Vif expression the replica-
tion-deficient FIV packaging construct pCPRAenv [57].
Expression of increasing levels of pCPRAenvy in the pres-
ence of constant amounts of A3 revealed that the AG5I
mutation was degraded less efficiently than the wild-type
A373 (Fig. 3d). As a control we used A3C and A373.
A651 + LI-AA, which both showed no degradation by
Vif derived by pCPRAenv. Together, these findings indi-
cate that the A65] mutation in feline A37Z3 mediates a
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partial protection, and that a combination with L41A-
[42A resulted in enhanced resistance to Vif.

The stretch involved in the interaction with Vif encom-
passed a number of highly conserved residues between
A373s from carnivores and primates, as well as residues
under purifying selection (Fig. 2d). The L41-142 residues
in cat A373 identified to interact with Vif are strictly con-
served (L|I) in A3Z3 from felids, to the extent that even
the codons used are also strictly conserved (CTT|ATT)
for the five Felidae species analyzed. Interestingly, the
two A373 paralogs in Caniformia display different amino
acid profiles in this Vif-binding region {Additional file 1:
Fig. S3A), and albeit chemically related, amino acid resi-
dues in these positions are variable (I/L/V|I/T). Finally,
this A373 stretch is very different in the corresponding
positions in A3Z3 from primates (T/M|P). Altogether,



evolutionary relationships for these two residues could
thus at least partly explain species-specificity of the inter-
action between felidae A373 and FIV Vif, reflecting adap-
tation and specific targeting.

Generation of a FIV Vif resistant feline A37273

Our results demonstrate that feline A372 can also be
efficiently degraded by FIV Vif, thus implying a specific
interaction between both proteins (Fig. 1b). In order
to generate an A37Z273 protein resistant to FIV Vif, we
decided to mutate as well the A372 moiety. To identify
residues important for FIV Vif interaction with feline
A372, chimeric A3s of A372 and human A3C, called
7Z2C1, -C4, -C5 and -C30 (Tig. 4a), were co-expressed with
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FIV Vif. The chimeras Z2C1, Z2C4 and Z2C5 spanned
the 1-22, 1-131 and 1-154 amino acids of feline A372,
respectively, the remaining parts being derived from A3C.
Chimera Z2C30 was feline A372, with amino acids 132—
154 derived from A3C, Chimeras Z2C1 and Z2C4 showed
moderately reduced protein levels when TIV Vif was
co-expressed, chimera Z2C5 resistance to degradation,
and chimera Z2C30 was efficiently degraded by FIV Vif
(Fig. 4b). As controls, we investigated all chimeras for deg-
radation by HIV-1 and SIVmac Vifs. HIV-1 Vif induced
degradation of Z2C1 only, and SIVmac Vif completely
degraded Z2C1, Z2C4 and Z2C30, and mostly Z2C5
(Fig. 4b). Because the Z2C5 chimera, in which the C-ter-
minal 37 residues were of A3C origin, was resistant to FIV
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Vif, we speculated that the C-terminal region of cat A3Z2
could be important for FIV Vif-induced degradation.
SIVmac Vif, which cannot degrade feline A3Z2 (Fig. 4b),
interacts presumably with C-terminal human-derived
sequences spanning A3C sequences present in Z2C5 and
Z2C30 (Fig. 4b). In addition we analyzed the degradation
sensitivity of A3Z2 proteins from big cats and found that
FIV Vif did not induce degradation of A372 from tiger,
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lion or lynx (Fig. 4c). These felid A3Z2s are very similar
to FcaA372 as they share 89-93 % identically conserved
residues (Additional file 1: Figs. S2, S3B, Fig. 4d), whereas
cat A372 and human A3C are much more diverse and
share only 47 % identical amino acids. Thus, we identified
four positions in which all big cat A372s differed from
FeaA372, in positions N18, T44, D165 and H166 (Addi-
tional file 1: Fig. S2, Fig. 5a). We mutated accordingly
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Fig.5 FcaA3Z2 and FcaA37273 mutations block degradation by feline Vifs, a Representation of FcaA3Z2b protein. Residues investigated are shown.
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tigris corbetti; Panthera leo bleyenberght; Lyru lyri. b Expression plasmids for FIV Vifand FcaA3Z2, PriA3Z2 or several mutants of feline A3Z2 were co-
transfected into 2937 cells. The expression of A3 and Vif proteins were detected by using anti-HA and anti-v5 antibodies, respectively. ¢ FcaA3Z273-
M that contains DH-YN and AgSl -+ LIEAA mutations in Z2- and Z3-domains was analyzed. Expression plasmids for FcaA32273 wild-type or
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position 18 (N18K) and 44 (144R) in FcaA3Z2, but
found both mutants to be efficiently degraded by FIV Vif
(Fig. 5b). Very similar, A372.D165Y was depleted when
co-expressed with FIV Vif, Interestingly, mutation of
residue 166 (H166N) generated a partially Vif-resistant
A37Z2 protein. We speculated that the adjacent D165
might enhance the Vil-resistance seen in the H166N
variant. Indeed, the A37Z2.DH-YN mutant showed com-
plete resistance to FIV Vif (Fig. 5b). We also analyzed
tiger A372.Y165D but could not reverse the resistance
to degradation by FIV Vif (Fig. 5b). We conclude that
D165-H166 in the C-terminal region of cat A372 are
important for Vif-mediated degradation together with
other residues that remain to be characterized.

Finally, we constructed A37273-M containing D165Y,
H166N in 72 and A651 + L41A, 142A in Z3. Co-expres-
sion experiments of A3Z27Z3-M with FIV Vif showed
that this A3 variant was Vif-resistant (Fig. 5¢). Impor-
tantly, the mutations that generated Vif-resistance did
not impact the subcellular localization of the feline A3,
as demonstrated by confocal microscopy of transiently
transfected HOS cells {Additional file 1: Fig. S4). We also
studied lion specific FIV (F1Vple) Vif, which shares only
52 % identical residues with domestic cat FIV Vif (Addi-
tional file 1: Fig. S2C). FIVple Vif was able to induce deg-
radation of PleA372 and of FcaA372, A373 and A37273
(Fig. 5d). Interestingly, FIVple Vif could not induce deg-
radation of the mutated cat A3s A3Z2.DH-YN, A3Z3.
A651 + LIAA and A37273-M (Fig. 5e). These findings
suggest that Vifs from lion and from domestic cat FIVs
interact with identical residues in the domestic cat A3s.

To check whether the FIV Vif-resistant mutant A3s dis-
played modified binding to Vif, wild-type and mutated
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A3s together with FIV Vi{-TLQAAA were co-expressed
and analyzed by anti-HA immuno-precipitation (Fig. 6).
Wild-type cat A3Z3 precipitated FIV Vif (Fig. 6a), con-
sistent with a direct interaction of both proteins (Fig. 1c).
Only very little Vif bound to A373.A65] and no Vif was
detected in precipitations of A3Z3.LI-AA and A3Z3.
A651 + LI-AA (Fig. 6a). However, when we examined
wild-type A372 and the DH-YN mutant, we detected
similar amounts of Vif in both precipitations. Wild-
type A3Z2Z3 bound high levels of Vif, and this binding
was much reduced by the mutated variant A37273-M
(Fig. 6b). Globally, our observations suggest that A65I
and LI-AA mutations in A373 abolished FIV Vif binding,
while hitherto not identified residues mediate Vif binding
in A372.

Structural analysis of feline A3Z2Z3

To identify the position of residues in feline A3s that,
when mutated, prevent binding of FIV Vif and A37273
degradation, a structural model of feline A3Z273 was
generated, initially aligning its sequence te the human
full-length A3G model [58]. Surprisingly, the alignment
indicated a large insertion in the Z2-Z3 linker region
in the feline sequence that is not present in the human
counterpart (Additional file 1: Fig. S5). 'This domain
insertion spans 46 residues, extending the feline A37273
linker to 83 residues compared to 27 residues in humans.
‘The structure of the 83-residue linker was predicted using
TopModel [59, 60]. Although the five identified tem-
plate structures show only a low sequence identity with
respect to the linker (up to 19.4 %; see “Methods” sec-
tion), they all share a homeo-box domain fold [61]. The
best three templates were aligned to the linker sequence
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Fig. 6 Differential binding of FIV Vif to wild-type and mutant feline A3s. a Expression plasmids for FcaA3/3s wild-type and mutants (all with HA-tag)
and FIV Vi-TLOAAA (V5 tag) were co-transfected into 2937 cells. The proteins were immunoprecipitated by a-HA beads and analyzed by immuno-
blots using anti-HA and anti-v5 antibodies. b Expression plasmids for FeaA3s (FcaA372, FcaA372 DHYN, FraA3 /7273 and FcaA3/2/73-M, all with HA-
tag) and FIVVIF- TLOAAA (V5-tag) and were co-transfected into 2937 cells, pcDNA3.T (4) served as an A3-free control. 48 h later, cells were harvested,
proteins were immunoprecipitated by a-HA beads. The FcaA3s and FIV Vif proteins were detected by anti-HA and anti-v5 antibodies, respectively




(Additional file 1: Fig. S5) and used for structure predic-
tion. The rest of the feline A3Z273 protein was predicted
using the homology model of human A3G [58] as a tem-
plate. Finally, the linker domain and the rest of the feline
A37273 protein were manually docked, sequentially
connected, and unstructured parts of the linker domain
were energy minimized (Fig. 7a). While this cannot be
expected to result in an exact structural model, it pro-
vides a representation where the linker domain inser-
tion could be located with respect to the rest of the feline
A37273 protein.

The five residues in feline A3s that, when mutated, pre-
vent binding of FIV Vif and A37273 degradation (D165,
H166, 1.285, 1286, A309; the last three corresponding to
L41, 142 and A65 of A373), are located opposite to the
putative location of the linker domain and are at the
boundary between the 72 and 73 domains {Fig. 7b}. The
predicted HIV-1 Vif binding regions in human A3G,
A3C and A3H are additionally depicted in Fig. 7b—d,
respectively. For A3C and A3H, the predicted HIV-1
Vif binding regions are spatially clearly separated {rom
the respective five residues identified here in feline A3s
(Fig. 7¢, d). One may thus speculate that our findings
indicate a FIV Vif binding region in feline A3 different
from the ones described for HIV-1 Vif in human A3s.

FIV Vif-resistant feline A3s are antiviral

In the next set of experiments, we investigated whether
feline A3s carrying the putative Vif-binding mutations
displayed antiviral activity and resistance against Vif in
F1V infections. We generated FIV luciferase reporter
viruses by co-expression with either no A3 or with A373,
A37Z3.A051, A3Z3 LI-AA or A3Z3.A05]1 + LI-AA and
increasing levels of the FIV Vif plasmid (0-160 ng). Vec-
tor particles were normalized for reverse transcription
(RT) activity, and luciferase activity was quantified 2 days
post infection (Fig. 8a). All feline A373s, either wild-type
or mutants, were able to inhibit to the same extent Vif-
deficient FIV, demonstrating that the described muta-
tions do not hinder the potential for antiviral activity.
Wild-type feline A373 was fully counteracted by the
lowest amount of Vif plasmid (40 ng) (Fig. 8a), match-
ing well complete degradation observed in the lysates of
FIV-producing cells (Fig. 8k). Opposite to the homog-
enous behavior in the absence of Vif, mutated A373s
showed variable resistance to Vif-counteraction, as was
obvious in the levels of remaining A3 signal in the cell
lysates of the FIV-producing cells (Fig. &b). Intermedi-
ate amounts of vif-encoding plasmid (40-80 ng) par-
tially counteracted the inhibition of A3Z3.A651 or A3Z3.
LI-AA mutants, and higher levels of Vif (160 ng plasmid)
recovered infectivity of FIVs produced in the presence of
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A373.A651 and A373.LI-AA. However, even the high-
est levels of Vif were not able to counteract the antiviral
activity of A3Z3.A65] + LI-AA (Fig. 8a, b). The impor-
tance of Z2- and Z3-mutations in feline A37273-M was
characterized with 100 ng of FIV Vif plasmid. FIV lucif-
erase viruses were produced and examined as described
above using A37273 and A37273-M. FIV Vif restored
the infectivity to levels similar to those in the absence of
A37273, while A37273-M strongly inhibited FIV, either
with or without Vif expression (Fig. 8c). The immunob-
lots of the corresponding FIV producing cells confirmed
protein expression and Vif-dependent degradation of the
wild-type A37273 protein (Fig. 8d). To explore whether
stable expression of A37273-M can impact spread-
ing infection, human HOS.CD4.CCR5 cells expressing
either wild-type or mutated A37Z273 were established
(Fig. 8e, Additional file 1: Fig. S6) and infected by HIV-1
expressing FIV Vif (HIV-1vif,) [36]. FIV could not be
investigated directly, because there are no feline cell lines
known to be negative for A3 expression, and FIV cannot
replicate in human cell lines. Whereas HIV-1vify,, was
detected at day six in the supernatant cells with wild-type
A37273, HOS cells expressing the A37273-M showed
a much delayed kinetic of viral replication (Fig. 8f). This
observation suggests that the engineered A37273-M
protein also gained the capacity to restrict FIV Vif during
multi-rounds of replication.

Encapsidation of A3 proteins in nascent virions is
required for their antiviral activity. We investigated first
whether mutated feline A3s could be differentially encap-
sidated into nascent virions. For this, we produced Vif-
deficient FIV particles during expression of the different
A3 proteins, measured the differential infectivity of the
particles (Additional file 1: Fig. S7A) and subjected virus
lysates to immunoblot analysis (Additional file 1: Fig.
S7B). Results showed that wild-type and mutated feline
A3s were detected in the concentrated FIVs {(VLPs). How-
ever, while wild-type A373 was less efficiently packaged
compared with the A373.A651 + LI-AA mutant, the
wild-type A37273 was detected in virions in higher abun-
dance than the A37273-M variant (Additional file 1: Fig.
$7B). We addressed then the question whether encapsi-
dated mutated feline A3s effectively exerted their cytidine
deaminase activity onto the FIV genome in the virion.
To tackle this question, cells were infected with FIV pro-
duced during cellular expression of feline A37Z3, A373.
ABSL + LI-AA, A37Z273 or A37273-M, in the absence
of A3 expression as a negative control, or during expres-
sion of human A3G as positive control. Total DNA was
isolated from infected cells and subjected to differential
DNA denaturing PCR (3D-PCR) [62] on the viral vec-
tor encoded luciferase gene 12 h post infection. Based on
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HsaA3C '-> FcaA3Z2b )

FcaA3Z3

Fig. 7 Composite madel of feline APOBEC3 and locations of residues mediating Vif binding. a Structural model of FcaA37273 including the linker
(pink) at a putative location above the 22 (vellow) and Z3 (blue) domains; the linker connections to the Z2 and Z3 domains are highlighted by
dashed lines. [69]. b Structural model of FcaA37273 rotated by 90° with respect to a (72 domain: yellow; 73 domain: blug; the linker region and parts
of the N-terminus of 72 and the C-terminus of 73 for which no structure could be modeled were omitted for clarity). Residues in sphere representa-
tion in yelfow {D165/H166), those in blue (L 285/1286/A309), and those in orange ((2131-Y134). Residues sequentially equivalent to the latter in the sol-
uble N-terminal Vif-binding domain (sNTD) of A3G (PDB 1D 2M77; pale green) are colored in green; these residues are part of the Vit-binding regions
of the sNTD [68]. € Crystal structure of human A3C (PDB 1D: 3VOW) and structural model of feline A3/72b depicting the pasitions of respective HIV-1
Vif and FIV Vif binding sites. The domains are orientated as the /2 domain in a. d Structural model of human A3H-Hapll and feline A3/3 depicting
the paositions of respective HIV-1 Vif and FIV Vif binding sites. The domains are orientated as the 73 domain in a. Key residues involved in Vif binding
are labelled (except human A3C), represented in sticks and highlighted with its surface in crange color

the overall nucleotide content, 3D-PCR amplifies PCR  denaturing temperatures than amplicons with higher
products at different denaturing temperatures (1d), with G + C content. 'The net effect of the cytidine deami-
amplicons with higher A + T content displaying lower  nase A3 activity is thus expected to lower the denaturing
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Fig.8 Theimpact of mutations in FcaA3s on FIV infectivity. a FIVAVIf luciferase reporter virions were produced in the presence of feline A3 expres-
sion plasmids (FcaA3/73 wild-type, FcaA3/3.A651, FcaA373.LIFAA or FcaA3/73.A651 + LIFAA, 250 ng plasmid) with increasing amounts of FIV VIf (0, 40,
80 and 160 ng plasmid), pcDNA3.T () was added as a control (vector). Infectivity of reporter vectors was determined by quantification of luciferase
activity in 293T cells transduced with vector particles. b Cell lysates of FIV producer cells examined in a were used to detect the expression of
FcaA3/3 and FIV Vif by anti-HA and anti-v5 antibodies, respectively. Cell lysates were also analyzed for equal amounts of total proteins using anti-
tubulin antibody. € The impact of FcaA37273 and FcaA37273-M on infectivity of FIVAvIf luciferase reporter vectors in the presence of FIV Vif. 293T
cells were co-transfected FIVAvVIf luciferase reporter viruses with 1000 ng FcaA3s and 100 ng FIV Vif expression plasmids. 48 h later, FIV particles were
used to infect 2937 cells, and infectivity was determined by quantification of luciferase activity. d Cell lysates for FIV producer cells used in ¢ were
analyzed by immunoblots to detect the expression of FcaA3Z3s and FIV Vif by anti-HA and anti-V5 antibodies, respectively. Cell lysates were also
analyzed using anti-tubulin antibody. e, f Spreading replication of HIV-1 expressing FIV Vif (NL-Bal.vif,,} is inhibited by feline A32273-M. e Immuno-
blot analysis of HOS.CD4.CCR5 cells stable expressing feline A37273 proteins. A3 proteins were detected by anti-HA antibody. Anti-tubulin served
to demonstrate equal protein loading. f HOS.CD4.CCRS cells expressing either wild-type A37273 or A37273-M were infected by NL-Bal.vif;, with
an MOl of 0.01 and virus replication was monitored by using the cell culture supernatant for infection of TZM-bl luciferase reporter cells. Asterisks
represent statistically significant differences: ###p < 0.001; *#0.001 < p < 001; *0.01 < p < 005; ns, p > 0.05 (Dunnett t test)

temperature of the target DNA, leading to lower Tds val-  resulted in 3D-PCR products with decreased Tds (as low
ues. Indeed, FIV virions produced in the absence of A3s  as 84.2 °C) (Additional file 1: Fig. S7C). This indicates that
yielded 3D-PCR products with the lowest Td of 86.3 °C,  the wild-type and mutant feline A3s display enzymatic
whereag all FIV virions produced during A3 expression  deamination aclivities.
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The linker in feline A37273 is targeted by HIV-2

and SIVmac/smm Vifs

We and others have observed that SIVmac Vif can
induce degradation of feline A37273 (Fig. 1b) [46,
51]. Figure 1b demonstrates that the Vifs of SIVsmm
and HIV-2 also display this phenotype and are able to
degrade feline A37Z273. To elucidate this unexpected
capacity of primate lentiviruses to counteract feline A3s
in the context of viral infections, we generated luciferase
reporter viruses for SIVmac and HIV-2 (Fig. 9). SIV-
mac or SIVmacAvif luciferase reporter viruses [63] were
produced in the absence or presence of human A3G,
feline A3Z2a, A372b, A3Z2¢c, A372b7Z3, A3Z2cZ3 or
A372b73s that included polymorphic residues found in
exon 4 of different E catus breeding lines (Birman, Japa-
nese Bobtail, British Shorthair, Turkish Van [36]). The Vif
proficient virus SIVmac-Luc expresses Vif in its natural
expression context; however Vif lacks a tag for detection.
Viral particles were normalized for RT activity and lucif-
erase activity of infected cells was quantified 2 days post
infection (Fig. 9a). We found that double-domain feline
A3s strongly inhibited Vif-deficient SIVmac, and that Vif
expression fully counteracted this antiviral activity, show-
ing therefore a similar pattern to human A3G. However,
Vif expression did not affect inhibition of SIVmac by sin-
gle domain A3s (Fig. 9a). The corresponding immunob-
lots of the virus producing cells showed Vif-dependent
degradation of human A3G and of all feline A37273s
inspected. Feline A372s and A373 displayed a resistance
to degradation by Vif proficient SIVmac (Tig. 9¢). We
performed a similar experiment using a HIV-2 luciferase
reporter virus [64], which is a three-plasmid lentiviral
vector system that requires Vif to be co-expressed {rom
a separate plasmid (Fig. 9b). Using this system, we found
that HIV-2 Vif counteracted the antiviral activity of
human A3G, feline A372b72 and of A372c73. Again, the
antiviral activity of feline single-domain A3s could not be
inhibited by HIV-2 Vif (Fig. 9b). The immunoblots of the
virus producing cells showed a Vif-dependent depletion
of human A3G as well as of the feline double-domain A3s
(Fig. 9d).

The Vif-mediated degradation profile exclusive to
A37273s may indicate that the HIV-2/5IVmac/smm Vifs
require for interaction with the feline A37273 a pro-
tein domain that is absent in the single-domain A372 or
A373. We speculated that the homeo-box domain inser-
tion (linker region) could play a central role in these Vif
interactions. To test our hypothesis, three constructs
were assayed: an A3Z273 in which the linker was deleted
(ALinker); and two versions of A37Z273 in which either
residues 223-240 (A222) or residues 211-240 (A210) in
the linker were removed (Fig. 10a). All these constructs
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successfully expressed protein upon transfection, and
FIV Vif was able to degrade all of them. Only the linker
truncations A222 and A210 were efficiently degraded
by Vif of HIV-2/SIVmac/smm, whereas the Alinker
construct showed very little degradation (Fig. 10b). We
extended this experiment and analyzed the degradation
with increasing levels {0, 20, 50, 150 or 250 ng) of SIV-
mac or HIV-2 Vif expression plasmid (Additional file 1:
Fig. S8). Interestingly, the A37273 lacking the linker
domain (ALinker) showed dose-dependent moder-
ate degradation, while mutants A222 and A210 showed
a HIV-2/SIV Vif-dependent degradation similar as the
wildtype A37273 protein (Fig. 10b, Additional file 1: Fig.
S8). To characterize the linker mutant A3s for functional
antiviral activity, FIVAvif and SIVmacAvif luciferase
reporter viruses were generated in the presence of wild-
type and mutated A3s (Fig. 10¢, d, Additional file 1: Tig.
$9). Immunoblots of the viral particles showed that all
A3s were encapsidated (Additional file 1: Fig. 59). Con-
sistently in both viral systems, A37273 moderately lost
antiviral activity when part or the complete linker was
deleted (ALinker, A210, A222) (Fig. 10c, d). Together,
our results suggest that the linker domain enhances the
antiviral activity of feline A37273 but is not essentially
required for it and that the linker is important for HIV-2/
SIVmac/smm Vif degradation of feline A37273. Whether
the linker domain forms part of the HIV-2/SIV Vif inter-
action surface will be an important future question.

Because the linker insertion is absent in human A3s,
we tried to learn more about the evolution of this unique
domain. The DNA sequences in A373 exon 2 encoding
for the linker region in the double-domain A37273 pro-
teins are extremely conserved among members of Feli-
nae and Pantherinae. The linker sequence is indeed more
conserved than the corresponding 72 and 73 domains,
the evolutionary distances being 0.044 + 0.006 for the
72 stretch, 0.011 4 0.006 for the linker and 0.018 4+ 0.004
for the Z3 stretch (overall average pairwise nucleo-
tide distance + bootstrap standard error estimate). The
evolutionary origin of the linker remains neverthe-
less obscure, as systematic BLASTn and BLAT searches
using this linker sequence as seed did not retrieve hits
bevond spurious matches. However, tBLASTn success-
fully retrieved hits associated with A3 genes: in the 5’
untranslated region of the A3 gene (XR_434780) in the
Weddell seal genome, in the 5" untranslated region of the
A3 gene (F]716808) in the camel genome, as well as in
the 5" regulatory region of the A3 gene (FJ716803) in the
pig genome. The only very remote hit in primates with
linker-similar sequence could be located in an A2 gene
of tarsier (XM_008049574.1), but similarity levels do not
allow in this case claiming common ancestry.
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Fig.9 SiVmac and HiV-2 escape inhibition by FcaA3.2223. a, b 2931 cells were transfected with expression plasmids for a SIVmacAvif-Luc (SWmacAvif)
or Sivmac-Luc (SIYmac W) or b HIV-2Avif-Luc (HV-2Avif) or HIV-2Avif-Luc + HIV-2 Vif (HIV-2 WT), together with expression plasmids for HsaA3G or
FraA3s, pcDNA3.T (4) was used as a control (vector). Reporter virus infectivity was determined by quantification of luciferase activity in 2937 cells
transduced with vector particles after normalizing for reverse transcriptase activity. Luc luciferase. € Lysates of SI¥Vmac producer cells were used to
detect the expression of FcaA3s and SIvmac capsid by anti-HA and anti-p27 antibodies, respectively. SIVmac Vif cannot be detected because of

the unavailability of a suitable antibody. d Lysates of HIV-2 producer cells were used to detect the expression of FcaA3s and HIV-2 Vif by anti-HA
and anti-V5 antibody, respectively. BIR, BOB, SHO and VAN represent FcaA37273s including polymarphic sequences of exon 4 of four different Felis
catus breeding lines: BIff Birman, BOB Japanese Bobtail, SHO British Shorthair, VAN Turkish Van. Asterisks represent statistically significant differences:
*n < 0,001, #0001 < p < 001;*0.01 < p < 005; ™p > 0.05 (Dunnett t test)

HIV-1 Vif weakly interacts with feline A3Z2Z3

The finding that HIV-2 Vif counteracts one of the feline
A3s reinforces the view that the initially described spe-
cies-specificity of Vifs [63] is not absolute [36, 52]. For
the generation of an HIV-1 animal model based on the
cat, it would of advantage to understand whether feline
A3 proteins are structurally accessible for HIV-1 Vif, We
show here that HIV-1 fails to degrade feline A3 proteins
{(Figs. 1b, 10b) and appears only to bind weakly to the
feline A37273 protein compared to FIV Vif (Additional
file 1: Fig, S10A),

The structural model of feline A3Z2Z3 was used to
rationalize the binding of HIV-1 Vil to A37273. When
comparing the amino acid sequences of A3G and feline
A3s, we noticed that the HIV-1 Vif binding domain
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124-YYFWDPDY-131 is conserved in feline A3Z2 (Addi-
tional file 1: Fig. S10B). This domain spans amino acid res-
idues with a well-characterized role in Vif-binding, such
as 128-DPD-130 [65] and the recently characterized Y125
[66] in the (34-a4 loop of human A3G [67]. In the feline
A372 domain we find DPN instead of the DPD motif;
however, in human A3G DPN binds to HIV-1 Vif as wild-
type DPD [65]. As our structural model of A37273 in
comparison to the soluble N-terminal domain (sN'TD)
of A3G [68] revealed that the two regions around these
residues are similarly accessible (Fig. 7b), we attempted
to restore binding of HIV 1 Vif to feline A3Z273 by a
N133D mutation, resulting in a YYFWDPD133Y motif
sequentially identical to the one in A3G (Additional file 1:
Fig. S10b). We did not observe degradation of A37273.
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N133D by HIV-1 Vif {Additional file 1: Fig. S10C), how-
ever; neither were mutations of P132 to introduce addi-
tional side chain interactions successful in that respect
(Additional file 1: Figs. S10B, S10C). As to a possible
explanation, for A3C, which is structurally highly simi-
lar to the sNTD of A3G [68], ancther motif of residues
critical for Vif binding was found, centering on F75, Y86,
F107, and H111 [69] (Fig. 7c). The sequentially equivalent
residues of A37Z273 are F78, Y89, F110, and Y114 such
that the exchange of His versus Tyr may explain the fail-
ing of the binding of HIV-1 Vif. Another possible expla-
nation for A37273 is given by the occlusion of space
required for HIV-1 Vif binding due to the presence of the
predicted linker domain, where the long unstructured
regions at the beginning and the end of the structured
linker part may make it possible that the linker domain
tips over the Z2 domain, that way shielding the putative
HIV-1 Vif binding region (Fig. 7a, b).
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Discussion

The A3 restriction factors are of extraordinary impor-
tance for the evolution and pathogenicity of lentiviruses
and likely also of most other retroviruses. Here we identi-
fled A3 residues that are relevant for the FIV Vif inter-
action with both single-domain A3s, A372 and A373
(results are summarized in Table 1). In addition, we
analyzed a unique A3 protein insertion domain called
linker present in the feline A37273 protein. The linker
is suggested to form a homeo-box domain and mediates
the sensitivity of A37273 to degradation by Vifs of the
HIV-2/5IVmac/smm group of primate lentiviruses,

Our knowledge about the interaction regions of A3s
and of human and non-human lentivirus Vifs is limited.
It was discussed that Vif is not simply a linker between
the substrate A3 and the E3 ubiquitin ligase [70, 71]. In
our study we investigated the interaction of three groups
of Vif proteins (FIV, HIV-2/5IV, HIV-1) with feline A3s.



Table 1 Summary Vif-mediated A3 degradation
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Feline A3? Degradation by Vif Rescue of infection by Vif®
FIV HIV-1 HIV-2 SIV¥mac/smm FIV HIV-2 SlVmac

A3 ++ — = — ND — —
A3Z2.DH-YN ND ND ND ND ND ND
A3Z3 ++ - — — ++ - -
A3Z3.A65I + ND ND ND + ND ND
A3Z3LI-AA + ND ND MDD + ND ND
A3Z3AES 4 LI-AA - ND ND MDD — ND ND
A37273 ++ - ++ ++ ++ ++ ++
A3Z273-M ND ++ ++ — ND ND
A3Z2Z3ALInker ++ — + + ND ND ND

Degradation of A3 by Vif: +4, mostly degraded; &, partial degradation with high amount of ¥if; —, no degradation

Resaue of infection by Vif: 44, complete rescue; £, partial rescue; —, norescue
ND not done

? Feline A3: A3s from domestic cat Fefis aatus

5 Experiments to rescue the infection were not done with HIV-1 and SIVsmm

Previous experimental evidence described residue A65 in
feline A373 in modulating the sensitivity to FIV Vif [56].
We identified here two additional residues (L41, 142) in
feline A3Z3 whose combined mutation resulted in an A3
protein that was resistant even to degradation by very
high amounts of co-expressed FIV Vif. The mutated feline
A373 protein clearly showed reduced binding to FIV Vif,
supporting the model that Vi binding to A3 is needed for
A3 degradation. In feline A37Z2 residues D165 and H166
were also found to regulate the FIV Vif induced degrada-
tion, but mutations in these positions did not block the
binding to FIV Vif in co-immunoprecipitation assays.
This observation demonstrates that Vif binding to A3s is
not sufficient for A3 degradation. Supporting evidence
that Vif interaction is necessary but not sufficient is com-
ing from reports describing that HIV-1 NL4-3 Vif binds
A3C mutants, A3B and A3H without inducing APOBEC3
degradation [71-73]. The qualitative co-immunoprecipi-
tation assays used in our study did not much differentiate
the binding strength of individual Vif-A3 pairs, and it is
very well possible that a weak interaction of e.g. HIV-1
Vif with feline A37273 is below a thresheld to form a sta-
ble E3 ligase complex. However, the binding of mutated
feline A372.DH-YN to FIV Vif appeared to be robust,
indicating a more complex mechanism. Studies on HIV-1
Vif binding to human A3B and A3H similarly concluded
that the interaction strength is not the only determinant
for complete Vif-mediated degradation, and the indi-
vidual interfaces of the A3-Vif pair additionally regulate
degradation [72].

Recently, Richards et al. [74] presented a wobble model
of the evolution of the Vif-A3 interaction. This model
implicates that Vif forms several interactions, of which
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some are essential and some provide additional stabiliz-
ing contacts. Based on this idea, only if Vif forms a suffi-
cient network of interactions with its A3 binding partner,
a functional interaction is made. Suboptimal, destabilized
interactions could be restored by the evolution of com-
pensatory changes in Vif—A3 interface. It is thus possible
that in feline A373 residue A65 and L41, 142 are major
independent interactions in the Vif-A3 interface, whereas
in feline A372 D165 and H166 represent one of the rel-
evant interacting points for FIV Vif complex formation,
while additional contact points still exist. Such a subop-
timal Vif-A3 interaction might, for example, not be suf-
ficient to facilitate E3 ligase conjugation of K48-linked
polyubiquitin chains that are generally recognized by the
proteasome.

The exact Vif-A3 interfaces are not known, because
high-resolution structures have been only solved of sin-
gle proteins such as of Z1- and Z2-domain human pro-
teins (A3A, A3C), of the N-terminal Z2- and C-Terminal
Z1-domain of human A3G, of the C-terminal Z2-domain
of A3F and of HIV-1 Vif [67, 75, 76]. The structures of the
full-length double domain A3s are unknown, however.
Human A371s and A3Z2s are globular proteins with six
a-helices and five Pf-sheets arranged in a characteristic
motif (al-f1-f2/2'-02-f3-a3-B4-ad-B5-a5-ab) [67, 76].
In human A3C, A3D and A3F, the HIV-1 Vif binding site
is conserved and located in a hydrophobic cavity and on
the surrounding surface of the a2, a3 and a4 helices [69,
77, 78]. In human A3G, HIV-1 Vif binds a surface dif-
ferent to the binding region in A3C/D/E with residues
Y125, 128-DPN-130 in the p4-a4 loop being important
for HIV-1 Vif binding [65, 66]. In the human Z3 protein
A3H, binding of HIV-1 Vif is mediated by residue 121



(either E or D) [79, 80]. Based on our structural model
of feline A37273 (Fig. 7b), we locate the residues impor-
tant for FIV Vif binding in feline A3Z273 at the domain
boundary of the 72 and the 73 domains, distant to the
binding motifs in human A3s (Fig. 7c, d).

In feline A372, the presumed HIV-1 Vif-binding
domain of human A3G, the B4-a4 loop, is conserved.
Nevertheless, HIV-1 Vif fails to degrade feline A372 or
A37273 despite the presence of the well-characterized
residues DPN (in A3G residues 128-130) and Y125 [65,
66]. Based on our structural model, we suggest that the
p4-ad loop of feline A37Z2 is surface exposed. This sug-
gests that the Z2-domain of human A3G contains in
addition to the Y125, 128-DPN-130 motif residues for
HIV-1 Vif binding that are absent or hidden in feline
A372 or A37273. Indeed, the presences of such impor-
tant residues outside this motif in A3G were recently
postulated [68, 81]. In addition to FIV Vif, we and others
found previously that HIV-2/5Vmac/smm Vifs induce
degradation of feline A37Z273 [46, 51] by possibly tar-
geting the unique linker domain. The previously called
linker, a domain insertion in feline A37273, is not found
in any double-domain A3 protein of human or mouse
origin. Our modelling results suggest that the insertion
forms a homeo-box domain-like structure that protrudes
the Z2-7Z3 structure.

In general, it appears that double-domain A2 proteins
display stronger antiviral activities than single-domain
A3s. The evolution of double-domain encoding A3 genes
could thus have been most likely adaptive, as it signifi-
cantly increased the host fitness against retroviral infec-
tions. Our results suggest that primates and felids could
have evolved double-domain A3s through different
routes. The sequence of the linker insertion is located in
5UTR of the felid A373 gene in exon 2, which is exclu-
sively translated in read-through transcripts spanning the
A372 and A373 genes in felines (Fig. 1a). The sequence
encoding for exon 2 seems to be restricted to members
of Felinae and Pantherinae. In this sense, the A37273
linker region resembles an orphan domain specific to
Feliformia, and the linker could thus be a synapomor-
phy of this clade. Nevertheless, homology searches iden-
tified an enrichment of significantly remote tBLASTn
hits associated with regulatory or non-coding regions
of A3 genes in the genomes of different species, in the
carnivore Weddell seal and in the artyodactyls pig and
camel. This concentration of sequences with a possible
common origin with the feline A37273 linker found in
the close vicinity of the A3 genes in other species within
Laurasiatheria suggests that the linker could have been
recruited as a coding sequence into the feline A37Z273
mature mRNA from a pre-existent non-coding possibly
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regulatory sequence, in an example of gain of function.
This sequence could have been recruited after point
mutation/s resulting in stop codon removal, introduc-
tion of {rameshifts or unmasking previously cryptic func-
tional sites [82] during the evolution of carnivores, after
the split Caniformia/Feliformia but before the split Pan-
therinae/Telinae. In the case of primates and of rodents
there are no descriptions of read-through transcripts of
single domain A3s resulting in mRNAs encoding double-
domain A3s. Instead, the human heterologous double
domain A3s (i.e. A3B and A3G, both being A37271) or
homologous double domain A3s {(i.e. A3D and A3F, both
being A37272) could have evolved after the fusion of
head-to-tail duplicated genes, as the several rounds of
gene duplication in the evolutionary history of the A3
locus in primates suggest [3].

During our evolutionary analysis of the A37Z3 genes,
we found here for the first time duplicated A3Z3 genes.
A373 duplications were identified in the genomes of
different carnivores (the giant panda, the polar bear,
the Weddell seal and the walrus), but were not found in
dog and ferret and also not in any felid. The most par-
simonious hypothesis would be that a duplication event
occurred within Caniformia, after the basal split of Cani-
dae. However, given the inferred position of the most
recent common ancestor of all A373 in carnivores, and
given the within-clades and between-clades evolutionary
distances (Additional file 1: Fig. 53), we propose that an
ancient A373 duplication event may have occurred prior
to the Caniformia/Teliformia split. One of the in-paralogs
would have disappeared in the Felidae ancestor, and at
least in the dog genome, while both copies would have
been maintained in most lineages within Caniformia (the
absence in the ferret genome should be confirmed when
better quality data are available).

Conclusions

Host-virus arms races formed the Vif-A3 interactions.
Our data support that the evolution of HIV-1, HIV-2 and
FIV follow intrinsic currently unexplained evolutionary
pathways adapting to the antiviral A3 repertoire. This
study also revealed that the A3 gene evolution included
newly identified duplications (in-paralogs) of A373 genes
in some caniformia and the inclusion of a homeobox-
domain in the feline A37Z273 protein. This homeobox
domain insertion may reflect a transitional situation
(read-through transcription) of the evolutionary devel-
opment of double Z-domain containing A3 proteins.
Further resolution of the interaction surface of feline
A3s with Vif proteins will help us to understand the bio-
chemistry of these interactions and may give us tools to
explore the HIV-1 Vil interaction with human A3s.



Methods

Cells and transfections

HEK293T (293T, ATCC CRL-3216), HOS (ATCC CRIL-
1543) and TZM-bl cells (NIH AIDS Reagent program [83,
84]) were maintained in Dulbecco’s high-glucose modi-
fied Eagle’s medium (DMEM, Biochrom, Berlin, Ger-
many) supplemented with 10 % fetal bovine serum (FBS},
2 mM L-glutamine, penicillin (100 U/ml), and streptomy-
cin {100 pg/ml). Stable A3 expressing cells: FcaA37273
wild type and mutant pcDNA-constructs were digested
by Bglll, and then were transfected into HOS.CD4.CCR5
cells using Lipofectamine LTX (Thermo Fisher Scien-
tific, Schwerte, Germany) according to manufacturer’s
instruction, cells stably express feline A3s were selected
by 750 pg/ml G418 (Biochrom, GmbH) in the following
3 weeks. The A3s degradation experiments were per-
formed in 24-well plates, 1 x 10° 293T cells were trans-
fected with 250 ng A3s expression plasmids together with
250 ng HIV-1, HIV-2, SIVmac and SIVsmm Vif expres-
sion plasmids or 20 ng codon-optimized FIV Vil expres-
sion plasmid, pcDNA3.1 (+) (Life Technologies) was
used to fill the total plasmid to 500 ng. To produce FIV-
luciferase viruses, 293T cells were co-transfected with
0.6 pg FIV packaging construct, 0.6 pg FIV-luciferase
vector, 1 g A3 expression plasmid, 0.1 pg VSV-G expres-
sion plasmid; in some experiments pcDNA3.1 (4) (Life
Technologies) was used instead of Vif or A3 expression
plasmids. For HIV-2 and SIVmac-luciferase transfec-
tions, 1.2 pg HIV-2-Luc and SIVmac-Luc plasmids were
used instead of FIV plasmids. At 48 h post transfection,
cells and supernatants were collected.

Vif and A3 plasmids

FIV-34TF10 (codon-optimized), HIV-1, HIV-2, SIVmac
and SIVsmm Vif genes were inserted into pcWPRE con-
taining a C-terminal V5 tag [36]. HIV-1 Vif represents
always HIV-1 Vif from clone N1L4-3, except specifically
stated LAL HIV-1 Vif LAl is a gift from Viviana Simon
and does not contain a protein tag [54]. pCPRAenv
F1V gag-pol plasmid that in addition expresses Vif was
described previously [57]. FIV-Lion Vif gene (FIV, sub-
type B, accession number EU117991) was synthesized
and codon-optimized. FIV-Lion Vif expression plasmid
was generated by cloning codon-optimized FIV-Lion Vif
fragment containing a V5 tag into pcWPRE using EcoRI
and Notl. All A3s are expressed a carboxy-terminal
hemagglutinin (HA) tag. Domestic cat and big cat (Pan-
therinae) A3s were described previously [36]. Human
A3C (HsaA3C) and feline A372b (FcaA3Z2b) chime-
ras were made by overlapping extension PCR. HsaA3C/
FcaA372 chimera Z2C1, Z2C4 and Z2C5 contain resi-
dues 1-22, 1-131 and 1-154 of FcaA3Z2, respectively;
the remaining C-terminal fragments are derived {rom
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human A3C. The 5 and 3’ fragments were amplified
separately by using primer pairs (Additional file 2: Table
51); two fragments were then mixed and amplified with
the two external primers (Additional file 2: Table $1). To
make HsaA3C/FcaA3Z2 chimera Z2C30, the first frag-
ment was amplified by primers feApo3.fw and hufe3C
485.rv using chimera Z2C4 as a template, the second
fragment was amplified by primers hufe3C 485.fw and
HA-rv using FcaA372 as a template, the two fragments
were mixed and amplified with the two external primers.
The FcaA372b mutants were generated by fusion PCR
using primer pairs described in Additional file 2: Table
51, The final products of HsaA3C/FcaA3Z2 chimeras
and FcaA372 mutants were cloned into pcDNA3.1 (+)
using HindIIl and Xhol restriction sites. The HsaA3H/
FcaA 373 chimeras were constructed by the same method
using primer pairs listed in Additional file 2: Table S2. To
make FcaA372b73-M, the PCR products of FcaA372b
DH-YN and FeaA37Z3 A651 + LI-AA were fused, and
then inserted into pcDNA3.1 {+) by EcoRI and Notl
restriction sites. The FcaA37273 mutation constructs
were generated by using the primers shown in Additional
file 2: Table S3.

Viruses and infection

To produce F1V single-cycle luciferase viruses (FIV-Luc),
293T cells were co-transfected with the replication defi-
cient packaging construct pFP93, a gift from Eric M.
Poeschla [85], which only expresses gag, pol, and rev;
the FIV luciferase vector pLinSin [4]; a VSV-G expres-
sion plasmid pMD.G; FcaA3s expression plasmids; FIV
Vif expression plasmid; or empty vector pcDNA3.1 (+).
To produce SIV-Luc viruses, 293T cells were co-trans-
fected with SIVmac-Luc (R-E-); or SIVmac-Luc (R-E-)
Avif [63]; and FcaA3s expression plasmids. HIV-2-Luc
was produced by co-transfecting 293T cells with HIV-2
packaging plasmid pHIV2A4 [86]; transfer vector plas-
mid HIV-2-luc (SV40) [64]; pMD.G, together with
FcaA3s expression plasmids or empty vector pcDNA3.1
(+) and HIV-2 Vif-V5 expression plasmid or pcDNA3.1
(+) empty vector. The reverse transcriptase (RT) activity
of FIV, SIVmac and HIV-2 were quantified by using the
Cavidi HS lenti RT kit (Cavidi Tech, Uppsala, Sweden).
For reporter virus infection, 2937 cells were seeded in
96-well plate 1 day before transduction. After normal-
izing for RT activity, the same amounts of viruses were
used for infection. Three days post transduction, firefly
luciferase activity was measured with the Steadylite HTS
reporter gene assay system (Perkin-Elmer, Cologne, Ger-
many) according to the manufacturer’s instructions on a
MicroLumat Plus luminometer (Berthold Detection Sys-
tems, Pforzheim, Germany). Fach sample was performed
transduction in triplicates; the error bar of each triplicate



was shown. Replication-competent HIV-1 plasmids NL-
BaL.vif, were described previously [36]. NL-BaL.vify,
virus stocks were prepared by collecting the supernatant
of transfected 293T cells. The kinetics of viral spread-
ing replication was determined with HOS.CD4.CCR5.
FcaA3s cells by infection with MOI 0.01 of NL-BaL vifyy.
Spreading virus replication was quantified over 15 days
by infecting 10 pl supernatant to TZM-bl cells. All exper-
iments were repeated independently at least three times.

Immunoblot analysis

Transfected 293T cells were lysed in radioimmunopre-
cipitation assay (RIPA) buffer (25 mM Tris—HCI [pH7.6],
150 mM NaCl, 1 % NP-40, 1 % sodium deoxycholate,
0.1 % sodium dodecyl sulfate [SDS], protease inhibitor
cocktail set 111 [Calbiochem, Darmstadt, Germany]}. The
expression of FcaA3s and lentivirus Vif were detected by
mouse anti-hemagglutinin (anti-HA) antibody (1:7500
dilution, MMS-101P; Covance, Minster, Germany) and
mouse anti-V5 antibody (1:4500 dilution, MCA1360,
ABDserotec, Diisseldorf, Germany) separately, the tubu-
lin and SIV capsid protein were detected using mouse
anti-a-tubulin antibody {1:4000, dilution, clone B5-1-2;
Sigma-Aldrich, Taufkirchen, Germany), HIV Vif LAl was
detected by HIV-1 Vif monoclonal antibody (#319) (NTH
AIDS Reagent Program [8§7]) and mouse anti-capsid p24/
p27 MAD AG3.0 (1:50 dilution [88]) separately, followed
by horseradish peroxidase-conjugated rabbit anti-mouse
antibody (a-mouse-IgG-HRP; GE Healthcare, Munich,
Germany), and developed with ECL chemiluminescence
reagents (GE Healthcare). Encapsidation of FcaA3 pro-
teins into FIV particles: HEK293T cells were transfected
with 600 ng pFP93, 600 ng of pLinSin, 100 ng pMD.G and
1000 ng of FcaA3 constructs. Viral supernatants were
collected 48 h later, overlaid on 20 % sucrose and centri-
fuged for 4 h at 14,800 rpm in a table top centrifuge. Viral
pellet was resuspended in RIPA buffer, boiled at 95 °C
for 5 min with Roti load reducing loading buffer (Carl
Roth, Karlsruhe, Germany) and resolved on a SDS-PAGE
gel. The FeaA3s and tubulin proteins were detected as
the above method. VSV-G and FIV p24 proteins were
detected using mouse anti-VSV-G antibody (1:10,000
dilution; clone P5D4; Sigma-Aldrich) and mouse anti-
FIV p24 antibody (1:2000 dilution; clone PAK3-2C1; NIH
AIDS REPOSITORY) separately, followed by horserad-
ish peroxidase-conjugated rabbit anti-mouse antibody
(x-mouse-1gG-HRP; GE Healthcare, Munich, Germany),
and developed with ECL chemiluminescence reagents
(GE Healthcare).

Immunofluorescence and flow cytometry

HOS cells grown on polystyrene coverslips (Thermo
Fisher Scientific, Langenselbold, Germany) were
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transfected with expression plasmids for FcaA3 wild-type
and mutants or together with FIV Vif-TLQAAA using
Lipofectamine LTX (Life Technologies). At day one post
transfection, cells were fixed in 4 % paraformaldehyde in
PBS for 30 min, permeabilized in 0.1 % Triton X-100 in
PBS for 15 min, incubated in blocking buffer (FBS in PBS)
for 1 h, and then cells were stained by mouse anti-HA
antibody in a 1:1000 dilution in blocking solution for 1 h.
Donkey anti-mouse Alexa Fluor 488 (Life Technologies)
was used as a secondary antibody in a 1:300 dilution in
blocking solution for 1 h. FIV Vif-TLQAAA was stained
by rabbit anti-V5 antibody in a 1:1000 dilution in block-
ing solution for 1 h. Donkey anti-rabbit Alexa Fluor 594
(Life Technologies) was used as a secondary antibody in
a 1:300 dilution in blocking solution for 1 h. Finally, DAPI
was used to stain nuclei for 2 min. The images were cap-
tured by using a 40 objective on a Zeiss LSM 510 Meta
laser scanning confocal microscope (Carl Zeiss, Cologne,
Germany). To analyze CD4 and CCR5 expression level of
HOS.CD4.CCR5.FcaA3s, cells were stained by a-hCD4
PE mouse IgGl, (Dako, Hamburg, Germany) and
a-hCCR5 FITC (BD Bioscience, Heidelberg, Germany)
separately according to the manufacturer’s instruction.
The measurement was carried out by BD FACSanto (BD
Bioscience). Data analysis was done with the Software
FlowJo version 7.6 (Flow]o, Ashland, USA).

Immunoprecipitation

To determine Vif and A3 binding, 2937 cells were co-
transfected with 1 pg FIV Vif TLQAAA-V5 and 1 pg
FeaA3 wild-type or mutants or pcDNA3.1 (4). 48 h later,
the cells were lysed in [P-lysis buffer (50 mM Tris/HCI
pH 8, 1 mM PMSE 10 % Glvcerol, 0.8 % NP-40, 150 mM
NaCl, and protease inhibitor cocktail set III (Calbic-
chem, Darmstadt, Germany). The lysates were cleared
by centrifugation. The supernatant were incubated with
20 pl a-HA Affinity Matrix Beads (Roche) at 4 °C for 2 h.
The samples were washed 5 times with lysate buffer on
ice. Bound proteins were eluted by boiling the beads for
5 min at 95 °C in SDS loading buffer. Immunchblot analy-
sis and detection were done as described.

3D-PCR

293T cells (5 x 10° cells/well in a 6-well plate)} were trans-
fected with 600 ng pFP93, 600 ng pLinSin, 100 ng pMD.G
and 1000 ng FcaA3s expression plasmids or pcDNA3.1
(+) as a control. 48 h later, the viral supernatant was har-
vested, filtered {0.45 pm) and treated with DNase I (Life
Technologies) at 37 °C for 1 h. 200 pl of supernatant was
used for infecting 293T cells. 12 h post transduction,
293T cells were washed with PBS and DNA was isolated
using DNeasy blood and tissue kit (Qiagen, Hilden, Ger-
many). A 714-bp fragment of within the spliced luciferase



gene was amplified using the primers 5-GATATGTG-
GATTTCGAGTCGTC-3" and 5-GTCATCGTCTTTC-
CGTGCTC-3". For selective amplification of the
hypermutated products, the PCR denaturation temper-
ature were lowered stepwise from 87.6 to 83.5 °C (83.5,
84.2, 85.2, 86.3, 87.6 °C) using a gradient thermocycler.
The PCR parameters were as {ollows: (1) 95 °C for 5 min;
(2) 40 cycles, with 1 cycle consisting of 83.5-87.6 °C for
30 s, 55 °C for 30 s, 72 °C for 1 min; (3) 10 min at 72 °C,
PCRs were performed with recombination Tag DNA pol-
ymerase (Thermo Fisher Scientific).

Purification of GST tagged proteins and pull down assay

Feline A372 and A373 coding sequences were cloned in
pGEX-6P2 vector (GE healthcare) with a C terminal HA
tag to produce fusion proteins GST-FcaA3Z2-HA and
GST-FeaA373-HA (PCR primer in Additional file 2: Table
54). GST alone and fusion proteins were overexpressed in
E. coli Rosetta (DE3) cells (EMD Millipore, Darmstadt,
Germany) and purified by affinity chromatography using
Glutathione Sepharose 4B beads (GE healthcare). After
the culture of transformants until 0.6 ODgy,, cells were
induced with 1 mM isopropyl-beta-n-thiogalactopyra-
noside (IPTG) and 1 pM ZnSO, and cultured at 18 °C
overnight. GST and Feline A372/Z3 harboring cells were
washed with PBS and lysed with 1x Bug buster protein
extraction reagent (EMD Millipore) containing 50 mM
Tris {pH 7.0}, 10 % glycerol, and 1 M NaCl clarified by
centrifugation and the soluble protein fraction was mixed
with pre-equilibrated glutathione Sepharose beads. After
3 h incubation at 4 °C in end-over-end rotation, the beads
were washed thrice with wash buffer containing 50 mM
Tris (pH 8.0), 10 % glycerol and 500 mM NaCl and a sin-
gle wash with the mild lysis buffer (50 mM Tris (pH 8),
1 mM PMSF, 10 % glycerol, 0.8 % NP-40, 150 mM Na(l
and 1x complete protease inhibitor). These GST pro-
tein bound beads are used for the subsequent binding
assay. GST pull down assay to detect direct binding with
Vif of FIV: The protocol of protein—protein interactions
was adapted from a previously described procedure [89].
HEK293T cells were transfected with 1.5 pg of FIV Vil-
V5 coding plasmid and incubated for 48 h. Soluble pro-
tein fraction of HEK293T cells were obtained by lysing
the cells with mild lysis buffer (50 mM Tris (pH 8), 1 mM
PMST, 10 % glycerol, 0.8 % NP-40, 150 mM NaCl, and 1 x
complete protease inhibitor (Calbiochem) and a 30 min
centrifugation at 14,800 rpm. A fraction of the superna-
tant was kept for immunoblots; remaining lysates were
equally added on the bead samples GST, GST-FcaA372-
HA and GST-FcaA373-HA and incubated overnight at
4.°C in end-over-end rotation. Next day, the beads were
washed thrice with the mild lysis buffer and the GST pro-
tein and protein complexes were eluted by adding wash
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buffer containing 25 mM reduced glutathione. A frac-
tion of the eluted proteins (equal amount) were boiled
at 95 °C for 5 min with Roti load reducing loading buffer
(Carl Roth) and resolved on a SDS-PAGE gel. FIV Vifand
GST-FcaA3s were detected by anti-V5 and -HA antibody,
respectively. Coomassie brilliant blue stained gel was
also added to show the purity of GST and FeaA3 fusion
proteins.

Evolutionary analyses

The initial set of A3 sequences was taken from Miink
and coworkers [3]. These sequences were used as seeds
for BLASTn, tBLASTn and BLAT searches to recover
additional A3 sequences from genomes in Carnivora.
The final dataset (closed on November 2015) contained
four A371 sequences from four Caniformia species, six
A372 sequences from six Caniformia species, eleven
A372 sequences from six Feliformia species, ten A373
sequences from five Caniformia species and five A373
sequences from five Feliformia species. Sequences were
aligned at the amino acid level with MUSCLE [90]. The
final alignment encompassed 629 and 269 alignment pat-
terns at the nucleotide level and at the amino acid level,
respectively. Phylogenetic inference was performed with
RAXML_v8.2 [91, 92] using the GTR + 4I' model at the
nucleotide level and LG + T model at the amino acid
level, the model choice done after initial maximum like-
lihood searches with RAxMI.. Additional phylogenetic
inference was performed separately for the A37Z2 and
A373 genes using the same settings. In all cases, no sig-
nificant differences between amino acid and nucleotide
tree topologies were observed using the Shimodaira—
Hasegawa test [93]. Phylogenetic supernetworks were
constructed with SplitsTree v4 [94] using 1000 either
nucleotide or amino acid bootstrapped maximum likeli-
hood trees. Selection on individual codons was inferred
under a Bayesian framework with SELECTON V2.4
(http://selecton.tav.ac.il/) [95] contrasting the M8 and
MS8a models, and with DATAMONKEY (http://www.
datamonkey.org/} using the Random Effects Likelihood
(REL) model [96].

Statistical analysis

Data are represented as the mean with SD in all bar dia-
grams. Statistically significant differences between two
groups were analyzed using the unpaired Student’s t test
with GraphPad Prism version 5 {GraphPad software, San
Diego, CA, USA). Validity of the null hypothesis was ver-
ified with significance level at o value = 0.05.

Homology modelling of feline A3Z273 protein
The homology modeling of the linker region of the
feline A37Z273 was performed in several steps: First, the



in-house meta-tool TopModel [59, 60] was used to com-
pute a consensus alignment for the feline A3 sequences
to the structural model of the human A3G [58] using 13
different alignment programs (Additional file 2: Table
S5). From the consensus alignment, the feline A3 linker
was identified and then submitted to TopModel for
automated structure prediction using eight state-of-the-
art threading programs {Additional file 2: Table S5). The
identified templates (2YS9, chain A (19.4 %); 2MMB,
chain A {17.1 %); 2DA4, chain A (14.7 %); 2LFB, chain
A (9.2 %) and 1FTZ, chain A (12.9 %); sequence iden-
tities with respect to the linker are given in parenthe-
ses) were aligned to the linker sequence with TopModel
using threading, sequence, and structural alignment
programs, to produce a large alignment ensemble {rom
every combination of the top three ranked templates
and the target sequence. These alignments were mod-
eled using Modeller9.1 [97], refined with RASP [98], and
ranked using the in-house meta-tool for model quality
assessment TopScore (D. Mulnaes, H. Gohlke, unpub-
lished results), which combines quality assessments
from eight different model quality assessment programs
(Additional file 2: Table S5). The top ranked models for
each template combination were refined with ModRe-
finer [99] and used as templates for a second round of
modeling where bad scoring regions were removed.
The resulting models were re-ranked and refined, and
the top ranking model was selected as the linker rep-
resentative. The model of the rest of the feline A37273
was made with TopModel in a similar fashion using the
feline-human consensus alignment. The linker domain
was manually positioned near the linker region gap,
unstructured parts were connected to the rest of the
feline A37273 and minimized using the MAB force
field [100] as implemented in Moloc, thereby keeping all
other protein atoms fixed.

Homology modelling of human A3H and feline A3Z2b

and A3Z3 proteins

The models of the three proteins were built using the
default settings in TopModel and all possible combina-
tions of the top three ranked templates in each case.
For the human A3H model, the templates were: PDB
ID 4 J4 ], chain A, 35 % identity/96 % coverage; 2KBO,
chain A, 37/95 %; 2RPZ, chain A, 30/94 %, resulting in
a model with 84 % accuracy according to TopScore. TFor
the feline A372b model, the templates were: 3VMS,
chain A, 42/94 %; 2KBO, chain A, 39/94 %; 1M#65, chain
A, 10/87 %, resulting in a model with 88 % accuracy
according to TopScore. For the feline A373 model, the
templates were: 4J4], chain A, 31/91 %; 2KBO, chain A,
36/90 %; 2RPZ, chain A, 24/92 %, resulting in a model
with 84 % accuracy according to TopScore.
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Additional files

Additional file 1: Figure $1. Cellularlocalization of feline A3s and FIV

Vif HOS cells were transfected with FcaA372b, FcaA373, or FcaA3Z 273

(all with HA-tag), together with FIVVIFTLOAAA To detect A3 (green)
immunoflucrescence, staining was performed with an anti-HA antibody.
To detect FIVVif (red) immunofluorescence, staining was performed with
an anti-v5 antibody, Muclei (blue) were visualized by DAPI staining. Figure
$2. Camparison of protein sequences of A3s and Vif (A, B) The sequence
alignment of (4) FraA372 (Frah3Z2h), (B) FraddZ 3 and big cat A3 proteins,
The D165-H166 and L40-141 + A&5 domains that are essential for FIVVif
incluced degradation are marked by red boxes. (C) Sequence alignment of
domestic cat FIV Vi (FIvfca subtype 34TF10) and lion FIV (FiVple subtype B)
Vif. The C187 and C190 that are essential for induced FcaA3s degradation
and marked the presurned BC box (TLQ/SLA) marked by red boxes. (D)
Sequence alignment of HIV-1 (strain NL4-3) and HIV-2 (strain RodA) Vif The
CULS5 box (HCCH) and BC box (SLQ) were marked by red boxes. Pti, Ple, Ly
and Pca represent Panthera tigris corbetti Panthera leo blevenberghi; Lyinx
lvn; Puma concolor. Figure $3. Evolutionary supernetwork of A3 sequences
retrieved from carnivores. The network was canstructed with SplitsTree_v4
using 1,000 maximum likelihood bootstrapped trees created with
RAYML_w8.2, Scale bar is given in substitutions persite, The approximate
pasition of the raot obtained using maximum likelihood inference with

all A3Z1, A3Z22 and A3Z3 sequences from carnivores is indicated in grey.
(A} The evolutionary distances amaong A3Z3 sequences withinthe two
in-paralogs within Caniformia (upper branches and left branch) and
within Feliformia (right branches) are indicated as overall average pairwise
nuclectide distance £ bootstrap standard error estimate. For each tip, the
actual sequence orthologous ta positions 38-44 in the £ catius A373 gene
are given in parentheses, The inset displays the evolutionary relation-
ships among the Carnivara species far which we have identified A373
paralogs. (B) The evolutionary distances among A3Z2 sequences within
Caniformia (Upper branches) and within Felifarmia (lower branches) are
indicated as overall average pairwise nucleotide distance & bootstrap
standard error estimate. For each tip, the actual sequence orthalagaus

to pasitians 165-170 inthe £ oatis A372 genes are given in parentheses,
Figure S4. The mutations in FcaA3 that cause resistance to FIV Vif do not alter
the cellular distribution of FcaA3s, HOS cells were transfected with FcaA372
(FcaA3Z2b), FcaA3Z2 DH-YN, FcaA3Z3, FcaA3Z3 AGSl + LI-AA, FcaA3Z223
or Fcaf37273-M {all with Ha-tag). To detect A3 (green) immunofluores-
cence, staining was performed with an ant-HA antibody. Muclei (blue)
were visualized by DAPI staining. Figure $5. Sequence alignment of feline
APOBEC3. Sequence alignment of feline A32223 and human A3G as gen-
erated by the TopMaodel approach. The Z2 and Z3 domains are underlined
inyellow and blue, respectively. The sequence of the linker damain is
underlined in magenta. Helical regions and B-strands are depicted as red
helices and green arrows, respectively. In addition, the alignments of three
template structures used to model the structure of the linker domain

are given (PDB IDs 2Y59, 2DA4, 2MMB). Figure S6. Expression of CD4 and
CORS receptors on the surface of HOS (red) and HOS.CD4CCRS cells (hiie)
expressing feline A3Z2223 or A3Z223-M CD4 and CCRS were detected by
flow cytornetry and ant-CD4 and ant-CCRS antibodies. Numbers indicate
the percentage of positive cells. HOS cells served as background control,
Figure S7. The mutated FraA3s are encapsidated and inhibit FIV by cytidine
deamination. (A) The mutated FcaA3s can inhibit the infectivity of FIVAWF
reparter viruses, 2937 cells were co-transfected with plasmids for FMWAVE
luciferase together with FcaA3s. 48 h later, supernatant normalized for
reverse transcriptase activity was used to transduce 293T cells. Luciferase
activity was determined two days post transduction. Asterisks represent
statistically significant differences: ™, p < 0001, **, 0,001 < p < 0.01;
*,001<p< 005 ns, p> 005 Dunnett ttest] (B) Immunoblot of FIV
producer cells and VLPs used for (4). Encapsidation of wild-type and
rautated feline A3s into FIVAVIFvirus like particles (WLPs), A3 proteins were
detected by anti-HA antibody. Tubulin detection for equal loading of cell
lysate was done using anti-tubulin, for demenstration of equal loading

of FM VLPs VSV-G and FIV p24 proteins were detected by anti-vov-G

and anti-FIV p24 antibodies separately. (C) Encapsidated wild-type and
mutated FcaA3s deaminate cytidines FIV genores. FIVAVI was produced
inthe absence and presence of wild-type and mutant FcaA3s (FcaA3Z3,




FcaA3Z3 A5l + LI-AA, FcaA3Z273, FcaA372273-M) or HsaA3 G, The vector
particles were used to infect 293T cells, 12 h later, the total cellular DNA
wias extracted and differential DMNA denaturation PCR (30-PCR) was per-
formed. Td: denaturing temperature. Figure S8, Vif titration on FcaA3 linker
rutants. Co-transfection of increasing amounts of expression plasmids
for (A) HNV-2 Vif and (B) SWmac Vif with constant amounts of the indicated
A3 expression plasmids. The expression of FcaA3s and Vifs were analyzed
by anti-HA and anti-v5 antibodies, respectively. Cell lysates were also
analyzed for equal amounts of total proteins using anti-tubulin antibody.
Figure $9. Expression and encapsidation of feline A3 linkermutants using (A)
FIVAVIE and (B) SIVmac/Avit Immunoblats of corresponding experiments
shown in Fig. 10C and 100, Immunoklots of lysates of virus producer cells
{cell} and virus particles (VLF). A3s were detected by anti-HA antibod-

ies, cell lysates were also analyzed for equal amounts of total proteins
using anti-tubulin antibody and VLP lysates using anti-VSV-G antibody.
Figure $10. HIV-T Vif cannot target the "YYFWDPN/DY" domain in FcaA3.

(24 CO-IP of feline A37 273 (HA tag) with either HIW-1Vif (W5 tag) ar FIWIf
(TLOAAA mutant, V5 tag). A3Z2Z23 immune precipitated and detected by
anti-HA antibody, co-precipitated Vif was detected by anti-W5 antibody. (B)
Comparison of the "YYFWDPN/DY"damain in HsaA3G and FcaA3Z22Z3 and
derived mutations generated in Feal3Z 273, the mutated residues shawn
in bold. (Q) FcaA3Z2Z23 mutants were investigated far being sensitive

for degradation by HIV-1 Vit Expression plasmids of FcaA3Z273 mutanits
of HsaA3G were co-transfected together with HV-1 Vif into 293T cells,

48 h later, Cell lysates were used to detect the expression of FcaA37273
and HIV-1Vif by anti-HA and anti-v5 antibodies, respectively. Cell [ysates
were also analyzed for equal amounts of total proteins using anti-tubulin
antibody.

Additional file 2: Table $1. Primer list used for HsaA3C,/Feaf37 2 chime-
ras and FcaA3Z22 mutants. Table $2. Primer list used for HsaA2H/FcaA3Z3
chirmeras and Fcaf37 3 mutants. Table $3. Primer list used for Frad3z273
mutants, Table $4. Primer used to clone GST fusion constructs. Table
$5.The software used in TopMadel for threading, alignment and maodel

quality estimation®
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Supplemental Table S1: Primer list used for HsaA3C/FcaA3Z2 chimeras and FcaA3Z2 mutants
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Supplemental Tables

Construct Primer Name Primer Sequence
5'tataagctttgagagaggaatggagecctggegece
Z2C1 fehuApo3 1-63.fw agcccaagaaacccaatggacaggatagatectaaca
ccttccgtttccaatttaaaaacctatg-3’
hufe3C 397 fu 5 gcctctactacttctgggaccca’fgttaccaggaggg
79¢a gctecegeag-3
hufe3C 397 rv 5’ctgcggagcccctcctggtaaca’fgggtcccagaagt
agtagaggc-3
hufe3C 493.fw 5 aaacactgttgggacaactttgtgltacaatgataatg
agccattcaa-3
Z2C5 !
hufe3C 493 rv 5 ttgaatggctcattatcattgtac’acaaagttgtccca
acagtgttt-3
hufe3C 485.fw 5’taaatattgttgggaaaactttg:(ggaccacaaggga
atgegett-3
Z2C30 hufe3C 485.rv 5’aagcgcattcccttgtggtcca(’:aaagttttcccaaca
atattta-3
N18K.fw 5’-gatagatcctaagaccttcegtttc-3’
FcaZ2bN18K N18K.rv 5’-gaaacggaaggtcttaggatctatc-3’
T44R.fw 5’-cttccaagtggagagagaagactacttc-3’
Fcaz2bT44R T44R.rv 5’-gaagtagtcttctctctccacttggaag-3°
D165Y.fw 5’'-caactttgtgtaccacaagggaatge-3’
Fcaz2bD165Y D165Y.rv 5’-gcattcccttgtggtacacaaagttg-3°
H166N.fw 5’'-caactttgtggacaacaagggaatge-3’
FcaZ?bH166
N H166N.rv 5'-gcattcecttgttgtccacaaagttg-3°
DH-YN.fw 5’-caactttgtgtacaacaagggaatgc-3’
FcaZz2b DH-
YN DH-YN.rv 5’'-gcattcccttgtigtacacaaagttg-3’
Y165D.fw 5’'-caactttgtggaccacaagggaatge-3’
PtiZ2Y165D Y165D.rv 5’-gcattcccttgtggtecacaaagttg-3’
feApo3.fw 5 tataagctttgaagaggaa:cggagccctggcgcccc
External ag-3
primers HA-rv S5'agctcgagtcaagegtaatctggaacatcgtatggat

aagcgtaatctggaacatcgtatg-3’
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Supplemental Table S2: Primer list used for HsaA3H/FcaA3Z3 chimeras and FcaA3Z3 mutants

Construct Primer Name Primer Sequence
73C1 fw 5 ccagcaccgggtcccaaagcc?tactacccgaggaaggcc
ctc-3
Z3C1 S5'gagggccttectegggtagtagggctttgggacceggtect
Z3Cl.rv ;
gg-3
7302 fw 5’caaagactgccttcgaaataag?aaaagtgccatgcagaa
7302 atttg-3
73C2.1v 5’'caaatttctgeatggeactttttcttatttcgaaggeagtettt
. iy
73C6.fw 5 caagcgccgcctcagaaggcc:ctactaccggaggaaaacc
tac-3
Z3C6 73C6.rv 5 gtaggttttcctccggtagtaa’ggccttctgaggcggcgctt
g-3
23C7 fw 5 gaggctactttgaaaacaagaa:aaagcgccatgcggaaat
gtg-3
73C7 ! -
73C7.rv 5 cacatttccgcatggcgctt?:c:ctcttgttttcaaagtagcctc
KL-TP.fw 5’-gctaccagetgacgeegeccgaaggeace-3°
FcaZ3KL-TP KL-TP.rv 5'-ggtgccttcgggeggcgtcagetggtage-3’
PE-QN.fw 5'-ccagctgaagetgecagaatggeaccctaatte-37
FcaZ3PE-QN PE-QN.rv 5'-gaattagggtgccattctgeagettcagetgg-3'
LI-TP.fw 5’-gcccgaaggeaccacacctcacaaagactgee-3’
FcaZ3LI-TP LI-TP.rv 5’-ggcagtctttgtgaggtgtggtgccttcggge-3
H-T.fw 5’-cgaaggcaccctaattaccaaagactgec-3°
FcaZ3H-T H-T.rv 5’-ggcagtctttggtaattagggtgectteg-3’
DC-AA.fw 5'-ctaattcacaaagccgeccttcgaaataag-3°
FcaZ3DC-AA DC-AA.rv 5'-cttatttcgaagggcggctttgtgaattag-3’
LR-AA fw 5’-cacaaagactgcgctgcaaataagaaaaag-3’
FcaZ3LR-AA LR-AA.rv 5'-ctttttcttatttgcagegeagtetttgte-3’
LI-AA fw 5’'-gcccgaaggceaccgeagetcacaaagactgee-3°
FcaZ3LI-AA LI-AA-rv 5’-ggcagtctttgtgagetgeggtgecttcggge-3’
External FcaZ3.fw 5’-atgaattcgccaccatgaatccactacaggaag-3'
primers HA-rv S5'agctcgagtcaagegtaatctggaacategtatggataage

gtaatctggaacatcgtatg-3’
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Supplemental Table S3: Primer list used for FcaA3Z2273 mutants

Construct Primer Name Primer Sequence
A210 A210.rv 5’ctgtagtggattcattgtgggtctttgg’gcccctgggcgg
ggagggaagggee-3
A229 A299 1y 5 ctgtagtggattcattgtgggtctctct'gtcacctcctgaa
cccaactcctiggg-3
Alinker fw 5 gcttcaagaaatccttagaccca}:caatgaatccactaca
ggaag-3
Alink !
inker Alinker.rv 5 cttcctgtagtggattcattgtgggtctaaggatttcttga
age-3
N133D.fw 5’-ctacttctgggacccagattaccaggaggggc-3’
FcaZ273N133D
N133D.rv 5'-gceectectggtaatetgggteccagaagtag-3'
P132Y.fw 5’'-ctacttctgggactacaattaccaggaggggc-3’
FcaZ273P132Y
P132Y.rv 5'-gccectectggtaattgtagteccagaagtag-3’
P132F.fw 5'-ctacttctgggacttcaattaccaggaggggc-3’
FcaZ273P132F
P132F.rv 5’-gcecctectggtaattgaagtcccagaagtag-3°
P132W.fw 5’'-ctacttctgggactggaattaccaggaggggc-3’
FcaZ273P132W
P132W.rv 5'-geecctectggtaattecagteccagaagtag-3’
P132PP.fw 5’-cttctgggacccaccaaattaccaggagg-3’
FcaZ273P132PP
P132PP.rv 5'-cctectggtaatttggtggeteccagaag-3'
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Supplemental Table 54: Primer used to clone GST fusion constructs

Construct

Primer Name

Primer Sequence

FcaGST-Z2-HA

FcaZ2b-GST-EcoRI-F

5-ATAGAATTCCCATGGAGCCCTGGCGCCCC-31

HA-Notl-R

5-ATGCGGCCGCTCAAGCGTAATCTGGAACATC-3'

FcaGST-Z3-HA

FcaZ3-GST-EcoRI-F

5-ATAGAATTCCCATGAATCCACTACAGGAAG-3'

HA-NotI-R

5-ATGCGGCCGCTCAAGCGTAATCTGGAACATC-3'

FcaGST-Linker

Fca-Linker-EcoRI-F

5-ATGAATTCCCAGTCCCGGCCAACAAAG-3'

Fca-Linker-EcoRI-R

5-ATGTCGACTCATGTGGGTCTGGGCAAGAG-3'
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Supplemental Table S5: The software used in TopModel for threading, alignment and model

quality estimation.?®

Threading Alignment Model Quality Estimation
DeltaBLAST [1] Clustalw# [2] PROCHECK [3]
HMMER3 [4] POA*® [5] MolProbity [6]

HHblits [7] MUSCLE* [8] ANOLEA [9]

SAMT2K [10] ProbA* [11] Pro5a2003 [12]
FFASO3 [13] ProbCons* [14] DOPE [15]

SPARKSX [16] PCMA®* [17] GOAP [18]

RAPTORX [19] DiAlign* [20] ModFoldClust2 [21]
LOMETS [22] SAP* [23] SPICKER [24]

TM-Align* [25]
MAFFT7 [26]
MergeAlign2 [27]
TCOFFEE [28]
PROMALS3D [29]
FORMATT [30]
MUSTANG [31]
3DCOMB

SALIGN [32]

a Software marked with “*” are used within TCOFFEE.
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of ripening inhibitory peptides in
plant hormone receptor ETR1

Dalibor Mili¢(H%%, Markus Dick?*, Daniel Mulnaes?, Christopher Pfleger?, Anna Kinnen?,
Holger Gohlke(** & Georg Groth*

Synthetic peptides derived from ethylene-insensitive protein 2 (EIN2), a central regulator of ethylene
signalling, were recently shown to delay fruit ripening by interrupting protein—protein interactions in
the ethylene signalling pathway. Here, we show that the inhibitory peptide NOP-1 binds to the GAF
domain of ETR1 - the prototype of the plant ethylene receptor family. Site-directed mutagenesis and
computational studies reveal the peptide interaction site and a plausible molecular mechanism for the
ripening inhibition.

Ripening of climacteric fruits, such as apples and tomatoes, is induced by the plant hormone ethylene. Such
fruits and vegetables are usually harvested, transported, and stored in a green, unripe state, and full ripening is
then induced by ethylene exposure at the final destination shortly before delivery. In order to avoid fruit damage
and spoilage due to overripening, strategies have been developed to control ripening and minimize postharvest
losses' by interfering with ethylene biosynthesis or signalling. Much of the current knowledge on signal per-
ception and transduction of the plant hormone has been established by physiological, biochemical and genetic
studies in the model plant Arabidopsis thaliana. Overall, more than a dozen genes have been implicated in the
ethylene-signaling pathway, and their multi-stage interconnecting network has been tentatively determined
using a combination of genetic and molecular approaches. In Arabidopsis, the ethylene signal is perceived by
a family of five receptor proteins, which form homo- and heterodimers at the membrane of endoplasmic retic-
ulum (ER) and function as negative regulators of the ethylene response’”. The receptors are modular (Fig. 1a),
organized similar to bacterial sensor histidine kinases and contain N-terminal transmembrane sensor domains
(TM) followed by a cytosolic GAF domain (GAF), a dimerization histidine-phosphotransfer (DHp) and a cat-
alytic ATP-binding (CA) domain forming the catalytic core, and a C-terminal response regulator domain (RD;
not present in all members of the ethylene receptor family)®®. Although the exact output of the receptors is still
obscure, genetic studies demonstrate that in the absence of ethylene, receptors activate the Raf-like protein
kinase CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1), a negative regulator of the pathway'®. Although CTR1
lacks any predicted transmembrane domains, it also resides at the ER membrane due to its physical interac-
tion with the receptors'!. Interaction with the receptors is considered critical for the induction of CTRI kinase
activity. Downstream of the receptors and the ER associated CTR1 kinase the membrane protein ETHYLENE
INSENSITIVE 2 (EIN2) implements a positive regulatory role on ethylene signaling. The integral membrane pro-
tein was identified as the most crucial step in ethylene signaling since ein2 is the only gene whose loss-of-function
mutation confers complete ethylene insensitivity to the plant'. Recently, we identified inhibitory oligopeptides
that delay ripening of tomatoes (Selanum Iycopersicum) when applied onto the surface of an unripe fruit before
or after its harvesting'*~'*, Their amino acid sequences are based ona highly conserved nuclear localization signal
(NLS) found at the C-terminus of EIN2'“. Molecular and genetic studies revealed that the C-terminal cytoplasmic
part of EIN2 (EIN2-CEND) gets cleaved in the presence of ethylene by a so far unknown mechanism and has a
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Figure 1. Identification of the AtETR1 domain interacting with inhibitory octapeptide NOP-1. {a) Modular
organization of the AtETRI structure. The receptor forms a covalent dimer via two disulfide bridges at the
N-terminus. The ethylene binding site (Cu™ ion) is situated at the interface of two c-helical transmembrane
('T'™M) domains immersed in a membrane of the endoplasmic reticulum (ER). 'The highly flexible cytoplasmic
part of AIETR1 is composed of four domains: a GAF, a dimerization histidine-phosphotransfer (DHp}, a
catalytic ATP-binding (CA), and a receiver (R1D) domain. DHp and CA domains are parts of a histidine

kinase functional unit. (b) Binding of NOP-1 (o the truncated AIETR1 constructs studied by microscale
thermophoresis (MST). AF,,,n, i a relative normalized fluorescence measured for a fluorescently labelled
protein at constant concentration (25nM) in the presence of NOP-1 at different concentrations, ¢(NOD-1}.
AtETRI (TM-GAF) still binds NOP-1, while AtETR1'-'% (T'M) and AtETR1*%7 (DHp-CA-RD) show no
binding. Mean values and standard deviations of AF, . are plotted. {¢) Dissociation constants (K,) determined
in MS'I" binding experiments with the truncated AtETR1 constructs. All corresponding binding curves are
presented in Supplementary Fig. S2.

crucial role in regulating expression of ethylene response genes!” 2!, Recent work in our laboratory showed that
the synthetic inhibitory peptides derived from the NLS motif at the EIN2 C-terminus bind directly to ethylene
receptors!™® and disrupt their interactions with EIN2-CEND'™!1,

In this report, we demonstrate that the inhibitory peptides bind to the GAF domain of ethylene receptor 1
(ETR1). Furthermore, the results of our experimental and computational biophysical studies not only indicate the
peplide interaction site but also suggest a probable molecular mechanism of the ripening inhibition.

Results and Discussion

To understand the structural basis of inleraclions belween ethylene receplors and inhibitory peplides, we hel-
crologously expressed and purified C-terminally truncated constructs of ETRI from the plant model organism
A. thaliana (AILTR1), which were successively lacking protein domain modules starting from the C-terminus
(Fig. la and Supplementary Fig. S1). Our goal was to identify AtETRI domain(s) crucial for the interaction
with the archetypal inhibitory octapeptide NOP-1 {(LKRYKRRL-N H,) P15, the sequence of which matches
exactly the NLS sequence found in FIN2 of most plant species'®, including A. thaliana and tomato. 'Therefore,
we used microscale thermophoresis to characterize binding of NOP-1 to the fluorescently labelled full-length
A(ETR1 and each of its four C-terminally truncated constructs (Tig. 1b.c and Supplementary Lig. $2). Out of
these, AIETR1'-'%, containing the transmembrane {TM) domain only, showed no binding Lo the inhibilory
peptide. All other C-terminally truncated constructs bound NOP-1 with binding affinities very similar to
those of the full-length protein (dissociation constant K; — 88+ 41 nM; Fig. 1c). To further explore the role of
the histidine kinase (DHp and CA} or receiver domains (RD) in binding of NOP-1, we prepared AtETR12% 738
containing only these domains. 1o our surprise, we observed no binding of NOP-1 to AtETR1*"-78 (Fig. 1b),
thus ruling oul our initial hypothesis that the NOP-1 binding sile corresponds Lo a canonical phosphoryla-
tion site in the ETR1 histidine kinase or receiver domain'®. Taken together, these results pinpointed the GAF
domain as the ETRI structural unit that interacts with NOP-1. Moreover, the three extended peptides NID-1
(AFPKGKENLASVLKRYKRRL-NH,}", N30P (GRTGTAAGDVAFPKGKENLASYLKRYKRRL-NH,), and
N41P (KDVEMAISSRKGRTGTAAGDVAFPKGKENLASVLKRYKRRL-NH,} - all of which were derived
from the AtEIN2 sequence and contain the NLS motif with additional 12, 22, or 33 upstream amino acid res-
idues, respectively — also showed binding to AtETR1! 307 (Fig. 1c and Supplementary Fig. §2). Their binding
affinities improved with increasing peptide length, highlighting the importance of the NLS-core motif in this
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interaction along with the positive correlation of sequence length on folding and/or stability of the biologicals
(Supplementary Fig. 53).

Previous in vive studies by various labs™**® have demonstrated a crucial role of the GAF domain for noncova-
lent homo- and hetero-oligomerization of ethylene receptors. Even before these discoveries, several researchers
proposed that non-covalent interactions between the receptors and formation of higher-order oligomers might
have functional implications in ethylene signalling and could explain the high sensitivity and broad concentration
range of ethylene response™ 7.

To further understand the nature of peptide-GAF domain interactions, we first focused on predicting possible
common structural motifs of peptides NOP-1, NIP-1, N30P, and N41P. We used 50 ps long molecular dynamics
(MD) simulations, with three independent replicates for each system, in implicit solvent to perform ab initio fold-
ing simulations, motivated by recent successful studies’®””. In neither case did we see tertiary structure formation,
and, except for specific regions (amino acids 7-9, 11-15 that tend to form «-helices), the major secondary struc-
tural elements were random coils (Supplementary Fig. §3a); these predictions were confirmed by CD spectros-
copy (Supplementary Fig. S3b,¢). Hence, it was not possible to identify a common structural motif. Nevertheless,
such a result is not completely unexpected, considering the short length and high number of positive charges of
the peptides, and the fact that the peptide sequences are part of the C-terminal domain of AtEINZ, which is pre-
dicted to be mainly disordered (60% disordered regions according to DISOPRED®").

As no experimental structure of the ETR1 GAF domain has been reported so far, we used our in-house soft-
ware package TopModel® to build a structural model based on available templates (Supplementary Fig. $4 and
Supplementary Table S1) applying the sequence of AtETR1118-305 as the target (PDB ID and chain identifier
of the templates given, with sequence identity indicated in parentheses: 3P01_A (18%), 3TRC_A (15%), 3CI6_A
(13%), 3W27Z_A (12%), and 1YKD_B (15%)). A structural alignment between the GAF domain model and the
templates used is shown in Supplementary Fig. §5. The final model built by TopModel (Fig. 2a) was assessed
with our in-house model quality assessment program TopScore (D. Mulnaes, H. Gohlke, unpublished results;
see Materials and Methods section for details) to be 719% correct, with the majority of inaccuracies being located
in the flexible loop regions (residues in AtETR1 228-247 and 257-272: 47% and 52% inaccuracies, respectively).

Previous findings suggest that ethylene receptors form a dimer in their simplest functional state that is also
mediated by their GAF domains®. We therefore built a dimer model of the AtETR1 GAF domain using our
in-house protein-protein docking software TopDock (D. Mulnaes, H. Gohlke, unpublished results). TopDock
predicts protein-protein contacts based on a structure-based homology search that is independent of sequence.
TopDock identified five different homologous interfaces (PDB ID and chain identifiers given: 3G60O_AB,
3IB]_AB, 3K2N_AB, 3P01_AB, and 3TRC_AB) all of which indicate that the dimer interface consists of the N-
and C-terminal helices of the GAF domain (Supplementary Fig. §6). TopDock-predicted residue-residue con-
tacts from each homologous interface were used for restrained docking of the GAF domains with HADDOCK™.
The docking solutions were pooled and clustered by TopDock, and ranked according to HADDOCK energy,
cluster size, distance to cluster centroid, and fulfilment of predicted contacts to select a docking solution (Fig. 2a).
Each monomeric subunit of our final model contains a central, antiparallel, seven-fold (-sheet, flanked by one
short ai-helix (amino acids 213-220) and three, parallel-oriented -helices that cover the N- and C-terminal
regions (amino acids 118-173 and 290-305). Both N-terminal o-helices form the dimeric interface resulting
in a six-helix bundle in the homodimeric structure (Fig. 2a). MD simulations of the protein of 500 ns length
in the absence of any peptide ligand revealed overall moderate structural variations within both monomers
(Supplementary Fig. §7), when the unstructured loop regions (residues 222-290) were omitted.

To identify interaction sites on the GAF dimer to which NOP-1 binds, we performed 15 independent MD
simulations of 2 us length each of free NOP-1 diffusion around the dimer, motivated by our own experience®’ and
that of others™* in related studies. To prevent any bias, NOP-1 was randomly placed in the simulation box also
containing the ETR1 GAF dimer and explicit solvent (Fig. 2b). Over the simulation times, the locations of NOP-1
at the GAF dimer converge to three binding regions (Fig. 2b): (I) in the upper loop region (residues 283-286), (1)
nearby the central §-sheets (residues 190-205), and (III) at the helices of the dimeric interface (residues 152-170).
The propensity of hydrogen bond and salt bridge formation between a protein residue and NOP-1, averaged over
the entire MD simulation data, confirmed preferred NOP-1/GAF dimer interactions with the three sites (Fig. 2c).

To validate the predictions of the interaction sites, we mutated the residues with the highest frequency of
hydrogen bond formation (region I: E177, E178, E246, D283; region IT: E190, E204; region I11: E152, E169; Fig. 3a)
to alanine and probed for NOP-1/GAF dimer interactions in vitro. AtETR1'*" variants I (E190A, E204A) and
III (E152A, E169A) showed no binding of NOP-1 in the MST experiments (Fig. 3b). In contrast, AtETR1!-3%7
variant [ (E177A, E178A,E246A, D283A) interacted with NOP-1 with a similar affinity (K; =128 + 65nM) as the
unmutated AtETR1-*%7 (K; = 104+ 24 nM), but with a smaller change in the relative normalized fluorescence
(AF, ;). This is probably due to an increased net electric charge of the variant I and the related change in its
hydration sphere, which ultimately influence both temperature-induced fluorescence jump and thermophoresis,
and yet do not prevent NOP-1 from binding to the fluorescentlylabelled protein. Altogether, these results elimi-
nate region I as a NOP-1 interaction site, however they do not clarify the roles of regions IT and ITI in the NOP-1
binding.

To obtain more insights, we performed intrinsic fluorescence quenching experiments. Initially, we mutated
two tryptophan residues inthe AtETR1 GAF domain (W265 and W288) to phenylalanine to reduce background
noise by natural tryptophan residues. The third tryptophan (W182) is located in the interior of the GAF domain
and might be important for its structural integrity; hence, we left it unchanged resulting in the AtETR1-%"7-
W265F-W288F construct. This variant was used as reference for individually introducing a tryptophan fluores-
cence reporter in close proximity of each predicted binding region (Fig. 3a). We then monitored intrinsic tryp-
tophan fluorescence of four Trp-mutants (plus reference variant) in the presence of NOP-1 and found the largest
quenching effect in the case of AtETRI1!-M148W-W265F-W288F - a variant with a tryptophan reporter
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Figure 2. Molecular modelling of NOP-1 interactions with the GAF domain of AtETR1. (a) Model building

of the GAF domain (dimeric form). Amino acids 118 to 305 of AtETR1 were used as a target sequence to build
a homology model using TopModel®!. The colouring of the monomeric structures represents the residue-wise
uncertainty of the predicted model computed by TopScore. Next, protein—protein docking guided by positional
restraints was performed to determine the interface between both monomeric subunits. As is known from
experimental data (see Fig. 1b}, amino acids 118 to 141 do not interact with NOP-1 and are not needed for

the dimer formation. Thus, only the part of the protein shown in the dashed black box was used for further
studies. (b) Starting from different initial NOP-1 positions (left, NOP-1 structures are coloured in beige, while
the GAF domains are labelled in dark and light grey) 15 MD simulations of 2 us length were performed. The
cumulative distribution of the peptide after 100 ns (yellow), 500 nis (turquois), and 2000 ns {(pink) over the 15
MD simulations is shown as points (representing the centre of mass of NOP-1} superimposed onto the average
structure of the GAF dimer. The three main binding sites are highlighted by red arrows and labelled with
Roman numerals (I to IIT). (c) The overall percentage of hydrogen bond and salt bridge formation with NOP-1
is shown for each residue of the GAF domain over the 15 MD simulations; results obtained for either domain

in the GAF dimer were averaged. All residues chosen for mutation to alanine are labelled. The Roman numerals
represent the corresponding binding sites as in panel b.

(M148W) located in binding region III (Fig. 3c and Supplementary Fig. $8). When placing the Trp reporter at a
more distant position {T161W) to the proposed binding motif at site III, no significant quenching was observed,
emphasizing that the NOP-1 inhibitory peptide binds in close proximity to acidic residues E152 and E169 in
region III. In addition, the electrostatic potentials mapped onto the molecular surfaces of the GAF dimer and
NOP-1 show a strong complementarity at site I1I, which supports a potential binding motif of NOP-1 at this site
(Fig. 3d).

To probe a potential influence of NOP-1 binding on the structural stability of the GAF dimer, we used an
ensemble-based perturbation approach’” integrated into a method for analysing biomolecular rigidity and flex-
ibility*®. Initially, we clustered snapshots fram the 15 MD simulations of free NOP-1 diffusion, in which NOP-1
binds to binding site III of the GAF domain on chain A (Fig. 4a,b), in order to combine similar configurations of
bound NOP-1. Comparing the GAF dimer with and without bound NOP-1 for clusters 1-4 (which cover ~60%
of all snapshots) revealed an increase in structural stability upon NOP-1 binding for about 60% of the residues
(Fig. 4c). The largest AG;,cy4 were found for the loop region (A175-A180) and residues in the neighbouring
helix (L167-L174} of the NOP-1-binding domain (Fig. 4¢,d), with a maximal AG,,, = 0.5 kealmol ! for residue
L176. Notably, even residues up to 20 A away from the binding site I1I were influenced by NOP-1 binding, with
E273 being the most distant one located in the other domain (Fig. 4c,d). The affected residues form a narrow
pathway running across the dimer interface and extending into the other domain. Root mean square fluctuations
(RMSF), a measure for atomic mobility, averaged over all MD simulations of the GAF dimer with NOP-1, are
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Figure 3. Evaluation of the predicted binding regions in the GAF domain of AtETR1. (a) Model of AtETR1
GAF domain with the highlighted acidic residues potentially involved in binding of NOP-1 (region I - red,
region II - green, region I1I - cyan). Two tryptophans (W265 and W288) mutated to phenylalanine for the
intrinsic fluorescence quenching experiments are shown in yellow. The remaining tryptophan (W182) and

the four residues separately exchanged for tryptophan (fluorescence reporter) are highlighted in orange. (b)
Binding of NOP-1 to the fluorescently labelled AtETR1'-*” and its three variants monitored via microscale
thermophoresis (relative normalized fluorescence, AF,,.). (¢) Tryptophan fluorescence quenching of the
AtETR1'"3% Trp-variants by NOP-1. Fluorescence intensity of each Trp-variant in the presence of 10-fold excess
of NOP-1 is given relative to fluorescence intensity of each protein measured without NOP-1. The complete
titration data are presented in Supplementary Fig. 8. Mean values and standard deviations of independent
triplicate measurements are shown in panels (b} and (c). (d) NOP-1 (within the black box) bound to the GAF
domain at binding site ITI, taken from the merged clusters Cl 1-4 (Fig. 4). Circles indicate the three potential
binding sites of the peptide as in panel (a). The colour scale of the electrostatic potentials ranges from —3.0 (red)
to + 3.0 (blue) kyT/e; the potentials were computed with the Adaptive Poisson-Boltzmann Solver (APBS)*. The
view of NOP-1 is rotated by 180°, depicting the binding interface with the GAF dimer.

smaller by up to ~2 A compared to MD simulations of the GAF dimer alone in regions distant to binding site 111
(residues 201-207 and 267-276; Supplementary Fig. $9); these regions coincide with those of higher structural
stability identified by the rigidity and flexibility analysis (Fig. 4c,d). Thus, both independent approaches mutually
corroborate each other. As the GAF dimer is rotationally symmetric, such an influence will also be felt vice versa
if NOP-1 binds to the other domain. As a consequence, we speculate that due to the increased structural stability
of the GAF dimer, the transmission of a signal, arising from ethylene binding to the TM domain of AtETR1, to
domains C-terminal of the GAF domain is hampered (Fig. 4d). The structural stabilization does not contradict
the observed Trp fluorescence quenching of the M148W mutant upon NOP-1 binding. We believe a positive
charge of NOP-1 in close vicinity of W 148 outweighs the positive effect that packing stabilization might have on
the fluorescence intensity and results in the overall fluorescence quenching.

In summary, we have shown that the archetypical ripening inhibitory peptide NOP-1 interacts with the GAF
domain of the plant ethylene receptor AtETRI at helices of the dimeric interface. As a result, signal transmis-
sion from the TM domain of AtETR1 to the histidine kinase or receiver domains may be hampered, which may
explain how NOP-1 inhibits ripening. While currently a full understanding of the AtETR1 signal transduction is
hindered by the lack of a complete atomistic structure, our speculation is supported in that for a related histidine
kinase® such signal transmission involved TM helix movements that are predicted in computational models
to modulate the structural dynamics of the cytoplasmic domains. The predominant predicted binding mode
involves primarily residues at the C-terminus of NOP-1, which may explain why the extension of NOP-1 at the
N-terminus resulting in NIP-1, N30P, and N41P did not interfere with binding. Hence, this peptide part may be
used to further optimize binding, stability, and applicability.
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Figure 4. Influence of NOP-1 binding on the structural stability of the AtETR1 GAF dimer. (a) The
dendrogram shows the clustering of 954 NOP-1 configurations bound at site I1I of the GAT dimer model

(see Fig. 2). Hierarchical clustering was performed using the all-atom RMSD of NOP-1 as distance metric

and Ward’s minimum variance algorithm. The dendrogram was cut at a distance threshold &(¢,, ¢;) = 160 A
resulting in six clusters (Cl 1-6). &(¢y, ¢,) is the square-root of the change in total sum of squares resulting from
the fusion of clusters ¢, and ;> (b) CNA was applied on each cluster separately, and residues with AG; o4
above a threshold of 0.1 kcal mol~! are depicted as spheres on the GAF dimer of each cluster centroid®®. Blue
colors reflect predicted AG, oy, values, with darker colors indicating larger values. (¢) The histogram shows
the per-residue AG, -, of the merged clusters Cl 1-4. The dashed line at 0.1 kcal mol ! indicates the threshold
above which residues are considered perturbed, and pink colors highlight the region where NOP-1 binds. (d)
Same information as shown in (c) for the merged clusters Cl 1-4 with NOP-1 bound at site I1I (salmon). The
yellow arrow indicates how the perturbation upon removal of NOP-1 influences residues in chain B. The grey
bars indicate connections to the transmembrane (TM) domain and dimerization domain. Due to the increased
structural stability of the GAF dimer upon NOP-1 binding, we speculate that the transmission of a signal,
arising from ethylene binding to the TM domain of AtETR1, to domains C-terminal of the GAF domain is
hampered.
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Materials and Methods

Inhibitory peptides.  C-terminally amidated peptides NOP-1 (LKRYKRRL-NI1,), NIP-1 (AFPKGKENLASV
LKRYKRRL-NH,), N30P (GRTGTAAGDVAFPKGKENLASVLKRYKRRL-NH,) and N41P (KDVEMAISSRKGRT
GTAAGDVAFPKGKENLASVLKRYKRRL-NH,) were purchased from GenScript as lyophilized trifluoacetate
(TFA) salts with > 98% HPLC purity and stored at —20 °C. After dissolving a white peptide powder in a buffer
of choice, peptide concentration in the resulting solution was determined spectroscopically from absorbance at
280 nm and the calculated molar attenuation coefficient (ProtParam)*.

Molecular cloning.  All truncated AtETR1 constructs and AtETR1!-*"” mutants were prepared in pTEV-16b
vector backbone*?, a modified version of pET-16b (Novagen, Darmstadt, Germany) containing the N-terminal
decahistidine-tag followed by alinker (SSGH) and a tobacco etch virus (TEV) protease cleavage site (ENLYFQG;
instead of a Factor Xa cleavage site in pET-16b). The new constructs were made by using a two-fragment PCR
approach* starting from the expression plasmid pTEV-16b-AtETRI that contains the full-length Arabidopsis
thaliana ethylene receptor 1 (AtETR1) cDNA. In short, the mutagenesis PCR primers were designed in either
PCRdesign or AAscan program* with a 21-nucleotides overlap for a mutagenesis primer pair. Bach fragment
was amplified in a PCR with Phusion or Q5 high-fidelity DNA polymerase (both from New England BioLabs)
or purchased from Integrated DNA Technologies as a gBlocks gene fragment. A pair of fragments was combined
into the target plasmid in Gibson assembly’, as described in our earlier report®’. A detailed overview of the
molecular cloning as well as the sequences of primers and gene fragments are given in Supplementary Tables S2—-
S4. The target constructs were verified by sequencing at SEQLAB Sequence Laboratories Gottingen or at the
Biological-Medical Research Centre (BMFZ) of the Heinrich Heine University Diisseldorf.

Expression and purification of AtETRL, its C-terminally truncated constructs and AtETR1:3%7
mutants. For production of AtETRI and its variants containing the transmembrane domain, we slightly
modified our previous protocol®’. In brief, the chemically competent E. coli C43 (DE3) (Lucigen Corporation)
cells were transformed with the corresponding pTEV-16b expression plasmid. Transformants were precultured
overnight in 2YT medium [16gL~" peptone, 10 gL.~* veast extract and 5gL ™" NaCl] with 100 pg mL ™" ampicillin
at 30°C. Typically, 30 mL preculture was diluted in 500 mL 2YT medium containing 100 ug mL ™ ampicillin in a
1-L baffled flask. Cultures were incubated at 30 °C while shaking at 180 rpm. The cells were grown to an optical
density at 600 nm (ODy,) between 0.8 and 1.0 and induced with 0.5 mM isopropyl B-p- 1-thiogalactopyranoside
(IPTG). After incubation for additional 5h, cells were spun down at 7,500 ¢ for 15 min at 4 °C, flash-frozen inlig-
uid nitrogen and stored at —20 °C. If not stated otherwise, all further purification steps were done on ice or at 4°C.
Cell pellets thawed on ice were resuspended by vortexing in ice-cold lysis buffer 1 [pH 8.0, 140mM NaCl, 2.7 mM
KCl, 10 mM Na,HPO,, 1.8 mM KH,PO,, 100 gL~! glycerol, 20 mgL~* phenylmethylsulfonyl fluoride (PMSF)
and 10 mgL~" DNase [ (PanReac AppliChem); 5 mL lysis buffer per 1g cells] and broken with Constants Cell
Disruption System (Constant Systems) at 2.4 kbar and 5°C. Cell debris and inclusion bodies were removed by
centrifugation at 14,000 g for 30 min. The supernatant was centrifuged further at 40,000 ¢ for 30 min, the resulting
pellet was washed with the lysis buffer and centrifuged again at 34,000 ¢ for 60 min to isolate cell membranes.
Membrane pellets were used immediately in further purification or flash-frozen in liquid nitrogen and stored at
—80°C. To isolate the His-tagged proteins, membranes were resuspended with a paint brush in the solubilization
buffer [50mM Tris/HCL pH 8.0 at 4°C, 200 mM NaCl, 12gL " fos-choline-16 (#-hexadecyl-phosphocholine;
Glycon Biochemicals), 20 mgL~' PMSF; 10 mL per 1 g membranes] and incubated for 1h at 4 °C while mixing.
Insoluble part was spun down at 200,000 for 30 min and the supernatant was loaded to a 5-mL Ni-NTA HisTrap
FF column (GE Healthcare Life Sciences) equilibrated with buffer A1 [50 mM Tris/HCI, pH 8.0 at 4 °C, 200 mM
NaCl, 0.15gL~" fos-choline-16, 20 mg L~* PMSF]. The protein-loaded column was washed with 25 mL buffer
Al, followed by 100 mL buffer ATP1 [buffer Al with additional 50 mM KCI, 20 mM MgCl, and 10 mM adeno-
sine triphosphate (ATP)] to remove copurified chaperone DnaK, 50 mL buffer A and, finally, 50 mL wash buffer
[buffer A1 with 50 mM imidazole]. His-tagged proteins were eluted with 25 mL elution buffer 1 [buffer Al with
250 mM imidazole] and concentrated in a 100-kDa-MWCO Amicon Ultra-15 concentrator (EDM Millipore)
to a final volume 2.5 mL. Buffer was exchanged for storage buffer 1 [50 mM Tris/HCL, pH 8.0 at 20°C, 300 mM
Na(Cl, 0.15gL " fos-choline-16, 50 gL ™" glycerol] on a desalting PD-10 column (GE Healthcare Life Sciences)
and the sample was centrifuged at 200,000 ¢ for 30 min. Protein concentration in the supernatant was deter-
mined from absorbance measured at 280 nm and a corresponding molar attenuation coefficient computed using
the ProtParam tool®. Glycerol was added to purified protein samples to final concentration 200 gL~!. The sam-
ples with glycerol were distributed into 50-pL aliquots in 200-uL PCR tubes, flash-frozen in liquid nitrogen and
stored at —80°C. Purified proteins were analysed in SDS-PAGE followed by colloidal Coomassie staining’” or
western blotting to PVDF membrane (Amersham, GE Healthcare Life Sciences) and immunodetection with
anti-His-HRP monoclonal antibody (Miltenyi Biotech).

Expression and purification of AtETR13%738,  AtETR1%%7%% was expressed in chemically competent E.
coli BL21 (DE3) Gold cells (Stratagene) additionally transformed with pBB540 and pBB542 plasmids®® (a kind
gift from Bernd Bukau, Heidelberg University), carrying the genes for chaperones GrpE, ClpB, DnaK, Dnal],
GroEL and GroES. Typically, 500 mL terrific broth (TB) medium (12gL~! tryptone, 24gL~! yeast extract, 5gL~*
glycerol, 2.31 gL=! KH,PO, and 12.54 gL~ K,;HPO,) with 100 ug mL~! ampicillin, 34 pg mL~* chloramphenicol
and 50 pg mL™! spectinomycin in a 1-L baffled flask was inoculated with 1 ml. overnight preculture and incu-
bated at 37 °C while shaking at 160 rpm. The bacteria were grown to QD between 1.1 and 1.3, when they were
cooled down on ice (5 min incubation), induced with 0.4 mM IPTG and further grown for 18 h at 20°C. Cells
were spun down (15min, 7,500), flash-frozen in liquid nitrogen and stored at —20°C. As already observed for
some other AtETRI constructs without the transmembrane domain (AtETR1-ATM)®, purified AtETR1%¢-7%8
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precipitated at higher protein concentrations (>>1 mg mL™") in our preliminary purification trials. To circumvent
this, we used 0.15gL ™" fos-choline-16 in our purification buffers (the same detergent concentration as for the
other AtETR1 constructs with the transmembrane domain described in this work). If not stated otherwise, all
purification steps were performed at 4°C or on ice. The frozen cell pellet was thawed on ice, resuspended in lysis
buffer 2 [5mL buffer per 1 g wet cell pellet; 50 mM Tris/HCI, pH 8.5 at 4°C, 250 mM NaCl, 20 mM imidazole,
2.5 mM dithiothreitol (DTT), cOmplete EDTA-free protease inhibitor cocktail (Roche) and 10mgL.~! DNase ]
and lysed in Constants Cell Disruption System at 2.4 kbar and 5 °C. Insoluble cell debris was separated by cen-
trifugation at 200,000 for 30 min, the supernatant was filtered through 0.22-um syringe filter and loaded on a
5-mL HisTrap HP column (GE Healthcare Life Sciences) equilibrated with buffer A2 (50 mM Tris/HCI, pH 8.5
at 4°C, 250 mM NaCl, 2.5mM DT'T, 0.15gL! fos-choline- 16, cOmplete EDTA-free protease inhibitor cocktail).
The column was washed with 50 mL buffer A2, followed by 100 mL buffer ATP2 [50 mM Tris/HCL pH 8.5 at 4°C,
250 mM NaCl, 25mM DTT, 0.15gL~! fos-choline- 16, 50 mM KCl, 20 mM MgCl, and 10 mM ATP], 50 mL buffer
A2 and 75mL buffer A2 with 100 mM imidazole. Finally, AtETR1*"57%* was eluted with 50 mL elution buffer 2
(buffer A2 with 250 mM imidazole) and analysed in SDS-PAGE. The fractions containing the target protein were
poured, concentrated (10-kDa-MWCO A micon Ultra-15 concentrator, EDM Millipore) and imidazole removed
by buffer exchange on a PD-10 column for storage buffer 2 [50 mM Tris/HCL, pH 8.5 at at 4 °C, 250 mM NaCl,
0.15gL~! fos-choline-16, 50g L ! glycerol, 2.5 mM DTT, cOmplete EDTA-free protease inhibitor cocktail]. The
protein sample was centrifuged at 200,000 ¢ for 30 min to remove potential aggregates. Finally, glycerol concen-
tration in the supernatant was adjusted to 200g1.~%, the sample divided info 50-pL aliquots in 200-pL PCR-tubes,
flash-frozen in liquid nitrogen and stored at —80°C.

Circular dichroism spectroscopy. Peptides and purified protein constructs were characterized in circular
dichroism (CD) spectroscopy. For that, peptides were directly dissolved in degassed ultrapure Milli-Q water
(Millipore) or degassed and filtered (0.22-um filter) CD buffer (10 mM KH,PO/K,HPO,, pH 8.0 at 20°C) and
subsequently diluted to 0.10 mg mL ™. Original buffer of protein samples was exchanged for the CD buffer ona
desalting PD MiniTrap G-25 column (GE Healthcare Life Sciences). Protein and fos-choline- 16 concentrations
were determined by using a Direct Detect infrared spectrometer (EMD Millipore) and the samples diluted to
final protein concentration 0.10-0.20 mg mL~!. Fos-choline- 16 was added to each blank buffer solution to match
detergent concentration in the final protein samples. CD spectra were recorded at room temperature ona J-715
spectropolarimeter (JASCO) using a 1-mm-path-length cylindrical quartz cuvette (Hellma). Each spectrum rep-
resents an average of 10 continuous scans (100 nm min™") with response time 0.25s and bandwidth 1.0nm. CD
spectra of the peptides were analysed using the K2D2 web server® (Supplementary Fig. $3b,c). Secondary struc-
ture content of the protein constructs was calculated in programs CDSSTR®?, CONTIN®! and SELCON3**? from
CDPro software package® using the reference protein set SMP30 (Supplementary Fig. $10 and 811).

Fluorescent labelling.  For the microscale thermophoresis binding experiments, the proteins were labelled
with thiol-reactive Alexa Fluor™ 488 C; maleimide fluorescent dye (ThermoFisher Scientific). For that, buffer
of a concentrated freshly purified protein sample was exchanged on a desalting PD MiniTrap G-25 column
resulting in 800 pl. protein sample in labelling buffer [50 mM K,HPO ,/KH,PO,, 300 mM NaCl and 0.15g L~}
fos-choline-16]. 10 mg mL.~" Alexa Fluor™ 488 C; maleimide dimethyl sulfoxide (DMSQO) solution was added to
the protein sample in 3:1 dye:protein molar ratio and incubated in dark for 30 min at 20°C while mixing slightly.
Buffer was exchange for the storage buffer 2 (AtETR1%¢-7%) or storage buffer 1 (all other protein constructs) and
the sample centrifuged for 30 min at 200,000¢ and 4 °C. Spectroscopically determined degrees of labelling in the
supernatants ranged from 140% to 300% for different AtETR1 constructs. After adjusting glycerol concentration
to 200gL 7", the labelled protein samples were divided into 20-pL aliquots in 200-pL PCR tubes, flash-frozen in
liquid nitrogen and stored at —80°C.

Microscale thermophoresis {(MST). Each inhibitory peptide was dissolved in the binding buffer [50 mM
Tris/HCL, pH 8.0 at 20°C, 300 mM Na(Cl, 0.15gL~! fos-choline-16] and serially diluted for MST measurements.
Alexa-Fluor™- 488 labelled AtETR1 constructs were diluted with the binding buffer to concentration 50 nM and
mixed in a 1:1 volume ratio with each member of the peptide dilution series, resulting in 25 nM fluorescently
labelled protein in the final 20-pL mixture. The protein-peptide mixtures were centrifuged at 14,000g for 2 min
before filling-up standard treated Monolith NT.115 MST glass capillaries (NanoTemper Technologies). Binding
interactions were characterized in Monolith NT.115 Blue/Green (NanoTemper Technology) at 23-25°C without
temperature control. Power of the blue LED (excitation wavelength ca 470nm) was adjusted depending on a
degree of fluorescent labelling of each particular construct and fluorescence. Fluorescence in each capillary (emis-
sion wavelength 520 nm) was measured for 5s without heating, then 30s heating with 80% infrared laser (MST)
power followed by 5s without heatingand 25 s delay before measurement of the next capillary. All measurements
were run in at least three independent replicates. Data were evaluated from temperature jump (fluorescence
signal between 0.5s and 1.5s after applying the laser normalized with the fluorescence signal in the last second
before applying the laser) and fitted with nonlinear regression to the one-binding-site model*~*” in GraphPad
Prism version 7.00 for Windows (GraphPad Software, La Jolla California USA). As a negative control, a pro-
tein sample was diluted in the denaturation buffer [50 mM Tris/HCI, pH 8.0 at 20 °C, 300 mM NaCl, 0.15gL ™!
fos-choline- 16, 40 gL.~! sodium dodecyl sulfate (SDS) and 40 mM DTT] and the MST measurements were carried
out as described above.

Model building. The model structure of the GAF domain (amino acid 142 to 305 of AtETRI) was pre-
dicted using our in-house automated structure prediction pipeline TopModel*-*%. TopModel is a multi-template
meta-approach in which 20 different state-of-the-art threaders (see Supplementary Table S1) are used to detect
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homologous templates. For each template the Topmodel-Score™ to the native structure, a measure of structural
similarity, is predicted using deep neural networks. These networks use alignment features, PSIPRED® second-
ary structure agreement, threading scores from individual threaders, model quality predicted by TopScore (D.
Mulnaes, H. Gohlke, unpublished results; see also below for details), and structural consensus as input. Based on
the neural network predictions, false positive templates are removed, consensus alignments are calculated, and
the templates are ranked according to predicted TopModel-Scores. To sample different alignments, TopModel
makes an ensemble of multiple sequence alignments (MSAs) using all combinations of the top five templates and
eight different sequence and structure alignment programs (see Supplementary Table S1). These MSAs are used
to generate 3D models of the GAF domain using Modeller9% and the template structures. Loops without template
were refined using the DOPE potential® and secondary structure restraints based on PSIPRED predictions. The
generated models were ranked with TopScore, and the highest ranked model for each template combination was
selected for model combination and refinement. The selected models are refined with ModRefiner®® and scored
with TopScore. Based on TopScore predictions, regions with errors are removed and the remaining regions used
as templates to construct meta-models. Two iterations of this refinement and model combination is performed,
after which the best scoring model according to TopScore is selected as the final model of the GAF domain.

The correctness of the model is measured by TopScore as the predicted global and local IDDT score compared
to the native structure. The IDDT score compares all intra-molecular heavy-atom distances within two structures
and, thus, is superposition-free. Two models are considered completely different if all distances deviate by more
than 4 A, and completely identical if all distances deviate by less than 0.5 A. Since the native structure is unknown
in our case, the score is predicted by a deep neural network which uses multiple sources of information as input.
These include knowledge-based angle, distance and contact potentials, residue stereochemistry, atom clashes,
model clustering, and agreement between features predicted from the sequence and measured in the model, such
as secondary structure, solvent accessibility, and residue contacts. The deep neural network was trained ona large
data-set of 660 protein targets totaling over 133,000 models and over 19-10° residues.

Molecular dynamics (MD) simulations.  The model structure of the GAF domain (amino acid 142 to
305 of AtETRI1) and thelinear forms (¢ = 1= 180%) of NOP-1, NIP-1, N30P, and N41P with a C-terminal amino
(NHE)-cap served as input structures for MD simulations. For receptor-peptide interaction studies, NOP-1 was
randomly placed next to the GAF dimer with a minimum distance of 8 A using the software package PackMal®4
fifteen representative systems were generated that way. The solutes were placed in a truncated octahedral box of
TIP3P* waterleaving a distance of at least 11 A between the protein and the solvation box boundaries, and Na*
and Cl~ ions were added to reach a final salt concentration of 0.15 M. MD simulations were performed with the
114SB force field*. Hydrogen mass repartitioning was used, allowinga time step of 4 fs*”. Purther parameters for
system preparation, thermalization, and production runs are described in Minges et al.%®. In short, each system
was prepared performing a conjugate gradient minimization, followed by rising the temperature from 0K to
300K (over 100ps) and adjusting the system density under NPT conditions. Production NVT-MD simulations
were performed at 300K utilizing the Berendsen thermostat®, and conformations were saved every 100 ps.

For peptide folding simulations, three independent replicates (initiated by slightly different thermalization
temperatures) of 50 ps simulation length were performed for each system. All simulations were performed in
implicit solvent using the ff14SBonlysc force field in combination with mbondi3 radii and the GB-Neck2 model”
as described by Nguyen et al.?®. In short, after minimization and thermalization, MD simulations were performed
with a time step of 4 fs using hydrogen mass repartitioning®’, temperature control at 300K with a Langevin ther-
mostat”, and along-range distance cut-off of 999 A. Conformations were saved every 1 ns.

The trajectories were analysed with respect to secondary structure formation, distribution of NOP-1 around
the GAF dimer, and RMSF using cpptraj”. The DSSP method of Kabsch and Sander™ was utilized to calculate sec-
ondary structure types of each residue of NOP-1, NIP-1, N30P, and N41P. Values were averaged over all trajecto-
ries. For caleulating the distribution of NOP-1 around the GAF dimer along the 15 MD simulations of free NOP-1
diffusion, the snapshots were superimposed onto the starting structure of the GAF dimer, a cubic grid with bin
size 3 x 250 A® was placed in the simulation box, and the presence of the centre of mass of NOP-1 within a grid
bin was assessed after 100, 500, and 2000 ns of simulation time over all snapshots. The number of hydrogen bonds
(and salt bridges) formed between NOP-1 and each residue of the GAF dimer over all trajectories was determined
using VMD™, where NOP-1 was chosen as donor and the receptor as acceptor molecule. Prior to computing C,,
atom RMSE, snapshots of either the 15 MD simulations of free NOP-1 diffusion or the three MD simulations of
the apo GAF dimer were superimposed onto the starting structure of the GAF dimer.

Tryptophan fluorescence. Steady-state intrinsic fluorescence of the freshly prepared AtETR1'73%
Trp-mutants was measured on a LS-55 fluorescence spectrometer (PerkinElmer) using an excitation wavelength
295 nm. In thelast protein purification step, the elution buffer 1 was exchanged for the binding buffer on a desalt-
ing PD MiniTrap G-25 column. To monitor binding of NOP-1 by fluorescence quenching, each protein sample
was diluted with the same buffer to final concentration 1 uM and titrated with a concentrated stock solution of
NOP-1 in the binding buffer at room temperature (22 °C) while stirring slowly in a 4-mm Quartz SUPRASIL
Macro/Semi-micro cell with a small magnet (PerkinElmer). At the same time, intensity of an emission maximum
at 344 nm was recorded as an average of 5 measurements. Fluorescence readings were corrected for the dilution
effect. The inner filter effect of NOP-1 was negligible and could be ignored.

Constraint Network Analysis. To detect changes in biomolecular rigidity and flexibility upon NOP-1
binding, we analysed ensembles of snapshots in the biomolecule’s bound and unbound states in terms of a pertur-
bation approach®”. First, an ensemble of network topologies is saved every 2 ns from the 15 x 2 us of independent,
unbiased MD simulations of free NOP-1 diffusion around the GAF dimer (see above). From this ensemble of
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150,000 conformations, those conformations were extracted that have a hydrogen bond between NOP-1 and the
residues E152 or E169, indicative of NOP-1 binding to site IIT of the GAF dimer; this yielded 954 snapshots for the
ground state. The perturbed state is obtained by removing the covalent and non-covalent interactions associated
with NOP-1 from each network topology of the ground state. In order to further group similar binding modes
of NOP-1, we clustered NOP-1 conformations based on a pairwise all-atorn RMDS according to Ward’s method
as implemented in SciPy”. This resulted in six clusters (see Fig. 4a). Second, altered biomolecular stability due to
removal of NOP-1 is quantified in terms of a per-residue decomposition AG; 4y, of the perturbation free energy.
AG, gy was computed based on rigidity analyses performed with the CNA software package™ on the ensembles
of network topologies of the ground and perturbed states. Network topologies (containing nodes (atoms) and
constraints (covalent and non-covalent interactions)) were constructed with the FIRST (Floppy Inclusions and
Rigid Substructure Topography) software (version 6.2)° to which CNA is a front and back end. The strength of
hydrogen bonds (including salt bridges) were assigned by the energy Eyp computed by FIRST”. Hydrophobic
interactions between carbon or sulfur atoms were taken into account if the distance between these atoms was
less than the sum of their van der Waals radii (C: 1.7 A, S: 1.8 A) plus D, = 0.25 A™. Non-covalent interactions
between NOP-1 and the GAF domain were identified using knowledge-based DrugScore pair potentials™.

When CNA was applied on each cluster 1-6 (see above) separately, the clusters 5 and 6 revealed only minor
andlocal altered structural stability of the GAF dimer upon NOP-1 removal (see Fig. 4b) and, thus, were excluded
from further analyses. Clusters 1-4 were merged for subsequent analyses. This resulted in a final ensemble of
592 snapshots used as input for CNA. Upon perturbation, the network topologies lose on average 7.5 (=1.3%
of all) hydrogen bond constraints and 2.2 (=1.6% of all) hydrophobic tether constraints. About 60% of the
residues in the GAF domain show altered stability characteristic, with 9% of the residues having AG; oy, val-
ues > 0.1 keal mol ! upon removal of NOP-1.

Electrostatic surface potential.  The electrostatic surface potential for the GAF dimer and NOP-1 was
calculated using the Adaptive Poisson-Boltzmann Solver (APBS)™. The complex structure of the GAF dimer and
NOP-1 were first split into their single components. For the APBS calculations, default parameters were used, the
temperature of the system was set to 300K, and the concentration of 1:1 connterions to 0.15 M.

Data availability statement. The data generated and analysed during the current study are either included
in this published article and its Supplementary Information file or available from the corresponding authors on
reasonable request.
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Supplementary Figure S1 | SDS-PAGE of the truncated His-tagged AtETR1 constructs. (a) Coomassie-
stained gels. (b) Western blotting with the anti-His antibody. Molecular weight of each construct is given
in parentheses. The gel bands below the dye front are artefacts due to fos-choline-16 — a detergent used

in purification.
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Supplementary Figure S2 | Microscale thermophoresis (MST) interaction studies of the fluorescently
labelled AtETR1 mutants with peptides NOP-1, NIP-1, N30P, and N41P. Relative normalized
fluorescence (AF,om; ®) was fitted to the one-binding-site model, and the corresponding K, value is
given for each binding curve. Data for the chemically denatured proteins (O) are given for comparison.
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Supplementary Figure 53 | Secondary structure of the four EIN2-derived peptides. (a) Residue-wise
secondary structure prediction based on three MD simulations for each system in implicit solvent. The
secondary structure content was calculated by DSSP " as an average over all snapshots in 50 ps of MD
simulations. (b) Far UV-CD scan for NOP-1, NIP-1, N30OP and N41P. {c) Comparison of secondary structure
contents predicted by MD simulations (mean over all residues and three MD simulations) and computed
from CD data (using the K2D2 web server?).
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Supplementary Figure S4 | Sequence alignment between the AtETR1 GAF domain (residues 118-304)
and five template sequences used to predict the structure. The flexible regions 1 (residues 228-247)
and 2 (residues 257-272) with the highest degree of inaccuracy in the final GAF domain model are
indicated in brackets. The alignment was calculated using the in-house meta-alignment tool TopAligner
as a consensus between alignments calculated by eight different state-of-the-art multiple alignment
programs. The alignment programs used are given in Supplementary Table 1.

Supplementary Table 51 | TopModel methods used for threading, alignment and model quality
assessment of the GAF domain model

Threading Alighment Quality Assessment
DeltaBLAST * TCOFFEE"? PROCHECK °
HMMERS3 ° MAFFT7 ’ MolProbity ®
HHBIits ° MergeAlign2 ™ ANOLEA ™
HHSearch™ SAlign ProSA2003 '
FFAS03 ™ PROMALS3D " DOPE "/

SPARKSX ** FORMATT * GOAP

RAPTORX ** MUSTANG ** ModFOLDClust2 *
LOMETS 212 3DCOMB *° PCONS *©
pGenThreader*’ SPICKER **
pDomThreader %’ QMEANG *°

FASTA *° PROQ2 **
SAMT2K ¥ SELECTPRO *

" The following programs are used within the TCOFFEE suite as the default methods for calculating
alignments: Clustalw **, POA *°, MUSCLE *°, ProbA *’, PCMA *, ProbCons *°, Dialign *, SAP *, and TM-
Align ¥

’ The LOMETS software includes the algorithms PPAS, wPPAS, dPPAS, wdPPAS, PPAS2, dPPAS2, Env-
PPAS, MUSTER, and wMUSTER.
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Supplementary Figure S5 | Structural alignment between the final GAF domain model and the five
templates used to predict the structure. The flexible regions 1 (residues 228-247) and 2 (residues 257—
272) with the highest degree of inaccuracy are indicated in red.
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GAF dimer 3IBJ: RMSD 5.4A

Supplementary Figure 56 | The homologous interfaces identified by TopDock and used to calculate
protein—protein contacts for guided protein—protein docking. For each interface, the C, RMSD to the
GAF docking solution is shown. All five interfaces show similar folds and interaction patterns despite low
sequence identity to the GAF domain.
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Supplementary Figure S7 | Root mean square deviations (RMSD) along three independent, unbiased
MD simulations of the dimeric GAF domain of AtETR1 (amino acids 118 to 305) without ligand. RMSD
values were calculated separately for chains A (top) and B (bottom) with respect to the starting
structure, excluding unstructured loop regions (residues 222—290). The histograms to the right depict
the frequency distributions of RMSD values within the single trajectories.
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Supplementary Figure S8 | Binding of NOP-1 to AtETR1 Trp variants monitored by intrinsic
tryptophan fluorescence. Excitation and emission wavelengths were 295 nm and 344 nm, respectively.
Protein concentration was 1.0 pM.
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Supplementary Figure S9 | Root mean square fluctuations (RMSF) of the dimeric GAF domain of
AtETR1 with (blue) and without (red) NOP-1 derived from MD simulations. The average RMSF value of
chains A and B is depicted. Regions of residues with lower RMSF in the presence of NOP-1 are marked by
grey boxes. These regions coincide with those identified by the rigidity and flexibility analysis (CNA; Fig.
4c,d in the main text) as having an increased structural stability upon NOP-1 binding.
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Supplementary Table S2 | Molecular cloning scheme

Target plasmid

Template plasmid

Primer pair or gene fragment*

Fragment 1 Fragment 2
pTEV-16b-AtETR1 % pTEV-16b-AtETR1 ColE1-F AtETR1-STOP-F
AtETR1-589-R ColE1-R
pTEV-16b-AtETR1 pTEV-16b-AtETR1 ColE1-F AtETR1-STOP-F
AtETR1-407-R ColE1-R
pTEV-16b-AtETR1 "’ pTEV-16b-AtETR1 ColE1-F AtETR1-STOP-F
AtETR1-307-R ColE1-R
pTEV-16b-AtETR1" ™’ pTEV-16b-AtETR1 ColE1-F AtETR1-STOP-F
AtETR1-157-R ColE1-R
pTEV-16b-AtETR1°% "% pTEV-16b-AtETR1 ColE1-F AtETR1-306-F
pET16b-TEV-R  ColE1-R
pTEV-16b-AtETR1'™""- pTEV-16b-AtETR1'™ 1 F 20170417 A 20170417
E177A-E178A-E246A-D283A 1 R 20170502  (gene fragment)
pTEV-16b-AtETR1*™"- pTEV-16b-AtETR1™ 2 F 20170417 B 20170417
E152A-E169A 2 R 20170502 {gene fragment)
pTEV-16b-AtETR1* - pTEV-16b-AtETR1 ™ 2 F 20170417  C 20170417
E190A-E204A 2 R 20170417  (gene fragment)
pTEV-16b-AtETR1* - pTEV-16b-AtETR1™ ™’ F_for 20170614 W265F-W288F
W265F-W238F F rev 20170614 (gene fragment)
pTEV-16b-AtETR1 - pTEV-16b-AtETR1 ™'~ ColE1-F 244 R
L244W-W265F-W288F W265F-W288F 244 R ColE1-R
pTEV-16b-AtETR1'™"'- pTEV-16b-AtETR1™'-  ColE1-F 205 F
Y205W-W265F-W288F W265F-W288F 205 R ColE1-R
pTEV-16b-AtETR1'"'- pTEV-16b-AtETR1™-  ColE1-F 148 R
M148W-W265F-W288F W265F-W288F 148 F ColE1-R
pTEV-16b-AtETR1* ™"~ pTEV-16b-AtETR1-  ColE1-F 161 _F
T161W-W265F-W288F W265F-W288F 161 R ColE1-R

* Each target plasmid was assembled in a Gibson reaction from the two fragments. Fragments were
either purchased as a synthetic double-stranded DNA (gBlocks gene fragments from Integrated DNA
Technologies) or amplified in a PCR using an indicated pair of primers.
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Supplementary Table S3 | Primers used in the molecular cloning

Primer Sequence (5’ = 3')
ColE1-F GGAGCGAACGACCTACACCGAACTGAGATACCTACAGCG
ColE1-R CGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCC

AtETR1-STOP-F
AtETR1-589-R
AtETR1-407-R
AtETR1-307-R
AtETR1-157-R
pET16b-TEV-R
AtETR1-306-F
1_F_ 20170417
1_R_20170502
2_F_20170417
2_R_20170502
2_R_20170417
2_F_20170417

F_for_20170614
F_rev_20170614

244 F
244 R
205_F
205_R
148_F
148_R
161_F
161_R

TAAGGATCCGGCTGCTAACAAAGCCCGAAAG
TTGTTAGCAGCCGGATCCTTATTCGTTTGAACGTTCTGAGATCCCAAGTTTAAC
TTGTTAGCAGCCGGATCCTTAATCTTCTAACCTTGAAAGATCTAAGACATCATTCATC
TTGTTAGCAGCCGGATCCTTAGAGAGCTACAGCCACCTGATCAGC
TTGTTAGCAGCCGGATCCTTATAAAGTGCTTCTAATCTCATGAGTCAACATTCTCAC
ATGTCCCTGAAAATACAGGTTTTCATGGCCGCTG
AACCTGTATTTTCAGGGACATGCTCTCTCACATGCTGCGATCCTAG
AGTGCAAGGCAATGGCATGTCCATGAG
CAAAGCTAATGTCCTACCAAGCTCAACAAG
TATACGGTTCCTATTCAATTACCGGTGATTAACC
ATGAGTCAACATTCTCACATGCCTTCCGGTTTC
GAAACCGGAAGGCATGTGAGAATGTTGACTCAT
TATACGGTTCCTATTCAATTACCGGTGATTAACC
GTCATTAATCTGAAAATTAGAAAGGTGGAGAAGCGGAAC
TAAGGATCCGGCTGCTAACAAAGCCCGAAAG
ATGTGGGGGGAGGTGGTCGCTGTG
CCTCCCCCCACATATATTTCCCAGAAACAGG
CCCGTGGAGTGGACGGTTCCTATTCAATTAC
GGAACCGTCCACTCCACGGGATGTTG
GGCATGTGAGATGGTTGACTCATGAGATTAG
CCATCTCACATGCCTTCCGGTTTCTTCC
TGGATTTTAAAGACTACACTTGTTGAGCTTGGTAGGAC
GTCTTTAAAATCCAATGTCTATCTAAAGTGCTTCTAATCTCATG
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Supplementary Table S4 | Gene fragments used in the molecular cloning

Gene fragment

Sequence (5'23')

A_20170417

CTTGGTAGGACATTAGCTTTGGCGGCGTGTGCATTGTGGATGCCTACTAGAACTGGGTTA
GAGCTACAGCTTTCTTATACACTTCGTCATCAACATCCCGTGGAGTATACGGTTCCTATTCA
ATTACCGGTGATTAACCAAGTGTTTGGTACTAGTAGGGCTGTAAAAATATCTCCTAATICT
CCTGTGGCTAGGTTGAGACCTGTTTCTGGGAAATATATGCTAGGGGCGGTGGTCGCTGT
GAGGGTTCCGCTTCTCCACCTTTCTAATTTTCAGATTAATGACTGGCCTGAGCTTTCAACAA
AGAGATATGCTTTGATGGTTTTGATGCTTCCTTCAGCTAGTGCAAGGCAATGGCATGTC

B_20170417

CATGTGAGAATGTTGACTCATGCGATTAGAAGCACTTTAGATAGACATACTATTTTAAAG
ACTACACTTGTTGCGCTTGGTAGGACATTAGCTTITGGAGGAGTGTGCATTGTGGATGCCT
ACTAGAACTGGGTTAGAGCTACAGCTTTCTTATACACTTCGTCATCAACATCCCGTGGAGT
ATACGGTTCCTATTCAATTA

C_20170417

CATGTGAGAATGTTGACTCATGAGATTAGAAGCACTTTAGATAGACATACTATTTTAAAG
ACTACACTTGTTGAGCTTGGTAGGACATTAGCTTTGGAGGAGTGTGCATTGTGGATGCCT
ACTAGAACTGGGTTAGCGCTACAGCTTTCTTATACACTTCGTCATCAACATCCCGTGGCGT
ATACGGTTCCTATTCAATTA

W265F-W288F

TCTAATTTTCAGATTAATGACTTTCCTGAGCTTTCAACAAAGAGATATGCTTTGATGGTTTT
GATGCTTCCTTCAGATAGTGCAAGGCAATTCCATGTCCATGAGTTGGAACTCGTTGAAGT
CGTCGCTGATCAGGTGGCTGTAGCTCTCTAAGGATCCGGCTGCTAACAA
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Supplementary Figure S11 | Secondary structure content of the not mutated AtETR1 and its
variants. The plotted fractions are averaged values determined from the CD spectra by three different
methods (as described in the Materials and Methods).
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