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Summary 

 

Summary  

Schizophrenia is a severe, debilitating, and heterogeneous mental disorder. Disentangling the psychopathological 

heterogeneity in schizophrenia from its underlying dimensions and the related neurobiology remains a challenge. 

Although ample efforts have been devoted to their study, symptom dimensions and subtypes, as well as 

neurobiological substrates and differentiations in schizophrenia remain unclear. In my project, I implemented 

machine-learning frameworks aiming to develop a new method to robustly and reliably conceptualize the 

psychopathology of schizophrenia at both symptom and brain levels in a data-driven fashion. 

First, an orthonormal and projective variant of non-negative matrix factorization (OPNMF) was employed to 

identify the latent dimensions of the well-established Positive and Negative Syndrome Scale (PANSS). This 

method is capable of learning compact and homogeneous factors which can be readily generalized to novel 

patients. By evaluating OPNMF-derived factor models within a large, homogeneous schizophrenia dataset and 

then cross-validating the yielded models with an independent multi-site sample recruited from Europe, Asia, and 

the United States, a structure with four dimensions representing negative, positive, affective and cognitive 

symptoms was identified as the most stable and generalizable. This four-dimensional structure showed higher 

internal consistency than the original PANSS subscales and previously proposed factor models. Based on the 

identified dimensions, fuzzy-clustering was employed to derive symptomatically well-separated schizophrenia 

subtypes. Two core subtypes of schizophrenia patients were identified, with one featuring prominent negative and 

affective symptoms while the other featuring positive symptomatology. This positive-negative dichotomy was 

longitudinally stable in about 80% of the repeatedly assessed patients.      

Neurobiological divergence of the identified subtypes was assessed using classification analysis of 

resting-state functional MRI measurement with cross-validation in a subset of the multi-site sample. Individual 

subtypes could be well-discriminated using resting-state functional connectivity (rsFC) profiles of the ventromedial 

frontal cortex, temporoparietal junction, and precuneus, with the highest classification accuracy of 70%. Individual 

expression of the four symptom dimensions were predicted using relevance vector machine based on rsFC within 

17 meta-analytically defined task-activation networks. A strict validation procedure including 10-fold 

cross-validation, leave-one-site-out experiments, and generalization to independent samples was conducted to 

derive robust symptom-network associations. Finally, the significant and robust symptom-predictive networks were 

spatially correlated with whole-brain density maps of nine receptors and transporters from prior molecular imaging 

in healthy populations to reveal the molecular architecture related to these networks. The theory-of-mind and the 

extended socio-affective default networks, which are implicated in social cognition and affective processes, were 

identified as significantly and robustly predictive of the cognitive symptom dimension. Moreover, node importance 

of these two networks showed a spatial pattern positively co-varying with D1 dopamine receptor and serotonin 

reuptake transporter densities as well as presynaptic dopamine capacity. 

The current work provides a systematic modeling framework of schizophrenia from symptomatology to 

neurobiology. Together the proposed hybrid dimensional-categorical conceptualization of symptomatology and the 

revealed intrinsic neurobiological processes and molecular architecture further disentangle the heterogeneity in 

schizophrenia, possibly allowing for the development of more specifically targeted treatments.
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1. General background on Schizophrenia  

Patients with schizophrenia are prominently characterized by paranoid delusions, hallucinations, negative 

symptoms, and cognitive deficits. However, individual patients can present marked variability in psychopathology 

and their symptomatic expressions are often difficult to explain. Consequently, considerable effort has been 

devoted to disentangling the psychopathological heterogeneity in schizophrenia through identifying factor models 

(i.e., latent dimensions) of schizophrenia symptomatology and clustering patients into psychopathological subtypes 

based on the well-established and validated 30-item Positive and Negative Syndrome Scale (PANSS). 

Schizophrenia is an intractable syndrome. Anti-psychotics, which mainly regulate the D2 dopamine receptor 

systems, are the mainstay of pharmacological treatment strategy for alleviating the symptoms of schizophrenia 

patients; however, they are only effective for positive symptoms while producing significant side effects. Therefore, 

clarifying the neural pathophysiological underpinnings of schizophrenia different symptom dimensions remains an 

urgent goal. As a seemingly human-specific mental disorder, non-invasive invivo neuroimaging techniques offer a 

unique avenue to investigate brain structure, function, and molecular substrates of schizophrenia. 

 

In the following subheadings, I provided a detailed introduction to prior factor models of PANSS, clinical 

subtypes, and the neurobiological findings in schizophrenia patients.  

 

1.1 Prior factor models of PANSS 

The PANSS is originally divided into three subscales (positive, negative, and general psychopathology) based on 

theoretical and heuristic considerations (Kay et al., 1987). However, these original three subscales of PANSS were 

found to be neither optimal nor adequate to capture the symptom variation across individual schizophrenia patients 

(Peralta and Cuesta, 1994). The PANSS developers later introduced a four-component structure as the 

pyramidical model comprising negative, positive, excited, and depressive symptom dimensions (Kay and Sevy, 

1990). However, items reflecting cognitive disturbances were distributed across all dimensions or discarded in the 

final pyramidical model. This might contradict with the fact that cognitive deficits are a core feature of schizophrenia. 

Other factorial studies have identified inconsistent factor models with number of factors varying from five to seven 

(Kim et al., 2012; Levine et al., 2007; Wallwork et al., 2012; van der Gaag et al., 2006a; Emsley et al., 2003; Van 

den Oord et al., 2006; White et al., 1997; Jiang et al., 2013). A five-factor structure was most frequently proposed 

(Kim et al., 2012; Levine et al., 2007; Wallwork et al., 2012; van der Gaag et al., 2006a; Jiang et al., 2013) which 

commonly represents positive, negative, disorganized (or cognitive), depressed, and excited symptom dimensions. 

Only a few studies identified six- or seven-factor model as the more-superior representation. For example, a model 

with six latent factors provided five factors similar to that in previous five-factor models while a sixth withdrawn 

factor was additionally identified. The author argued that the six PANSS scales measure meaningful aspects of 

schizophrenia (Van den Oord et al., 2006). Another study applying equamax factor analysis to a multicenter, 11 

country drug trial with 535 schizophrenia patients revealed that a seven-factor solution is more-superior with 

depression and anxiety symptoms separating and a motor component emerging as compared to prior five-factor 
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models. The author suggested that, in addition to a structure with five factors, scales for catatonia, depressive and 

anxiety syndromes might also be included in future studies (Emsley et al., 2003).  

Although most of previous factorial studies have identified a model with five factors, five-factor models 

continuously failed to be confirmed in independent samples (White et al., 1997; van der Gaag et al., 2006b; Jiang 

et al., 2013) and hence the identification of a stable and well-generalizable factor model remains challenging. 

Specifically, White and colleagues re-visited prior 20 factor models in their confirmatory study and found that none 

of these models met criteria for an adequate fit to the empirical data with 1233 schizophrenia patients. Then they 

put forward a new pentagonal model which only used 25 of the 30 PANSS items to represent the positive, the 

negative, the dysphoric mood, the activation, and the autistic preoccupation symptom dimensions. However, this 

model, together with 24 others, were failed to be confirmed in van der Gaag’s study which assessed a large, 

homogeneous international sample (van der Gaag et al., 2006a). In the same study (van der Gaag et al., 2006b) 

the authors developed an improved five-factor model using 10-fold cross-validation. This improved five-factor 

model did achieve a satisfactory goodness-of-fit in their sample. However, along with other 31 five-factor models 

proposed in the literature, this improved five-factor model showed inadequate fit to both of the two large Chinese 

schizophrenia samples recruited in Singapore (Jiang et al., 2012). Basically, the authors found, or replicated, that 

there are five factors underlying the multi-dimensional symptomatology of schizophrenia. However, with regard to 

specific five-factor models, none of the previously proposed 32 models but the one derived from their own sample 

was confirmed in their data sets. They ascribed the inadequate fit of previous five-factor models to cultural 

difference and the difference in the interpretation of PANSS items across countries. Collectively, these studies 

contradict to each other, and the fundamental instability of five factor models still presented.  

On the other hand, as in the aforementioned pentagonal model, some studies have derived their final factor 

models after excluding several PANSS items which demonstrated ambiguous or unstable factor-assignment in 

literature. For example, Wallwork et al. (2012) reviewed each PANSS item loaded on each factor in 29 published 

PANSS factor-models, and excluded 10 items with inconsistent factor-assignment from their final five-factor model. 

The inconsistent item-to-factor assignment presented in the literature can possibly be attributed to methodological 

factors that both the PCA with Equamax or Varimax rotation and the EFA method used in prior studies suffer from 

the downside of non-sparse factorization where the substantial cross-loadings of some PANSS items may play an 

important role in the observed instability. To conclude, reproducibility, external validity, and generalizability remain 

a concern for previous factor models of PANSS (Lykouras et al., 2000), and hence future studies on large, 

multi-site samples with systematic cross-validation and out-of-sample generalization assessments are needed. 
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1.2 Previously proposed clinical subtypes  

Apart from identifying dimensions of symptomatology, subtyping also serves as one of the most promising 

attempts to reduce the heterogeneous psychopathology within schizophrenia. The classic classification of 

schizophrenia including hebephrenic, paranoid, catatonic and undifferentiated, which was used for several 

decades to approach the heterogeneity, however, has been dropped in DSM-5 owing to the fact that this taxonomy 

showed poor diagnostic stability over time with also limited prognostic value (Braff et al., 2013; Tandon et al., 2013). 

Other definitions of schizophrenia subtypes have thus been put forward. It is worth noting that the deficit 

schizophrenia, which characterized by primary (idiopathic, not secondary to other factors) and persistent (trait-like) 

negative symptoms (Carpenter et al., 1988), has been commonly proposed as a relatively homogeneous subgroup 

of patients (Kirkpatrick and Galderisi, 2008; Marder and Galderisi, 2017). The deficit subtype was hypothesized to 

serve as a distinct disease entity within the (broader) schizophrenia syndrome due to its unique etiological, 

neurobiological and course-related profiles including poor premorbid adjustment, impaired cognitive functioning, 

and poor functional outcome (Kirkpatrick et al., 2001; Galderisi et al., 2002; Kirkpatrick and Galderisi, 2008; Cohen 

et al., 2010; Marder and Galderisi, 2017). However, the deficit condition only occurs in roughly 15-30% of 

individuals diagnosed with schizophrenia (Kirkpatrick et al., 2001; Kirkpatrick et al., 2006), and the remaining 

others are classified as the non-deficit subgroup. Hence, this set of subtyping (i.e., deficit/non-deficit distinction) 

may suffer from the limitation of its usefulness as most patients are not well differentiated.  

To provide a general definition of schizophrenia subtypes, data-driven approaches of clustering analysis 

based on symptomatic data were introduced. For example, an earlier study identified a four-subgroup solution with 

two representative subtypes labeled as the ‗insightful schizophrenia‘ (featured by good insight, manifested neurotic 

symptoms, and minimal behavioral aberrance) and the ‗flagrant schizophrenia‘ (the patients had marked aberrant, 

agitated, or bizarre behavior, disorganization, restricted affect, but absence of anxiety or depression) (Bartko et al., 

1981). A later study identified an optimal solution with six clusters that multiple distinct symptoms (e.g., 

hallucinations, delusions, social withdrawal) were common in the characterization of these clusters. An alternative 

two-cluster solution was likewise reported by this study that the first cluster merged the clusters one, two, three, 

and five of the six-cluster solution while the second cluster was formed by the forth and the sixth clusters (Helmes 

and Landmark, 2003). Other clustering studies based on the widely used and well-established PANSS scale also 

revealed inconsistent results. In detail, the earliest study I noticed in the literature was the one applied hierarchical 

clustering (Ward‘s method) to 138 schizophrenia patients, which demonstrated that there are at least four subtypes 

of schizophrenia, representing patients with prominent positive, negative, disorganized symptoms or with a mixed 

symptomatology. The author further proposed a potential fifth subtype with few symptoms suggesting a simple 

schizophrenia category (Dollfus et al., 1996). Another study applying a similar hierarchical clustering to 255 

DSM-III-R diagnosed schizophrenia patients also revealed an optimal solution with five clusters. Three of the 

clusters were seemingly in line with the prior study (Dollfus et al., 1996) that the patients within these clusters 

presented severe positive symptoms, pure negative symptoms, and minimal severity in overall symptomatology, 

respectively. However, the other two clusters which represented i) prominent positive and excitement symptoms 

and ii) high expressions in general psychopathology but lacking the excited symptom dimension (Lykouras et al., 

2001) were different from that defined in the prior study with smaller samples (Dollfus et al., 1996).  
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Data-driven approaches also provided some updates for the clinically-defined deficit subtype. For example, a 

recent study based on only the negative and the distress dimensions of PANSS proposed a three cluster solution 

by using a two-step clustering with log-likelihood as the distance measure and Bayesian Information Criterion for 

deciding how many clusters to retain (Dickinson et al., 2017). In the resulting clusters, patients presented i) very 

severe negative and distress symptoms in cluster one which corresponds to the traditional deficit subgroup, ii) 

prominent high distress symptom level (―distress subgroup‖) in cluster two, and iii) both low levels of these two 

symptom dimensions in the third cluster (―low-symptom subgroup‖). Based on latent class analysis, another study 

with 706 DSM-IV diagnosed schizophrenia patients identified three subtypes of deficit, persistent, and transit as 

differentiated by the manifestations of patients in negative symptoms. These subtypes moreover differed in a 

variety of clinical characterizations (e.g., pattern of positive symptoms and ages of disease onset) and 

psychosocial functioning (Ahmed et al., 2017).  

On the other hand, there is also aprior study attempted to use both categorical and dimensional approaches to 

characterize the negative symptoms in schizophrenia. Using taxometric and latent variable mixture analyses, the 

investigator found that, besides a taxometric classification of deficit syndrome, a hybrid categorical-dimensional 

conceptualization of negative symptoms would make sense clinically as being external-validated its predictability of 

multiple clinical characteristics, neurocognitive performance and social functioning (Ahmed et al., 2015). In light of 

the proposed hybrid perspective of schizophrenia symptomatology, here I would also tend to provide a 

categorical-dimensional conceptualization. Hence, following the identification of symptom dimensions, I used 

fuzzy-clustering approaches, rather than those hard clustering methods (e.g., hierarchical clustering) employed in 

previous studies, to identify symptomatically well-separated (core) subtypes after filtering out those patients with 

an ambiguous cluster membership.  
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1.3 Brain structural, functional, and neurotransmitter implications in 

schizophrenia  

Using machine-learning approaches to classify schizophrenia clinical subtypes from brain imaging data would be 

substantially helpful to delineate the underlying neurobiological differentiations of the disease. However, studies on 

the neurobiological divergence of schizophrenia psychopathological subtypes are still scarce. Likewise, a 

successful prediction of the continuous symptom dimensional scores helps to uncover the neurobiological 

processes that are robustly linked to specific symptom dimensions. However, prior neuroimaging studies in 

schizophrenia mostly relied on univariate statistics. That is, between-group comparisons are first used to derive 

structural and functional brain abnormalities in patients, and then the revealed differences allow for assessment of 

regional brain parameters for subsequent group-level correlation analysis with symptoms.   

1.3.1 Neurobiological differentiations of clinical subtypes and brain regions relate to psychopathological 

distinction 

Here I first summarized the brain regions that have been consistently implicated in schizophrenia pathophysiology 

and processes relevant to the psychopathological distinction. The temporo-parietal junction (TPJ) subserves 

auditory-verbal hallucination system due to its critical role in the production of language (Vercammen et al., 2012; 

Mondino et al., 2016). Also TPJ is a key region involved in the process of social cognition including theory of mind 

(Döhnel et al., 2012), self-agency (Blanke et al., 2005), and empathy (Derntl et al., 2010). These evidently are 

themselves core negative symptoms but could also be related to positive symptoms under hypermentalization 

(Frith, 2004). Structural deficits in ventro-medial prefrontal cortex were only detected in schizophrenia negative 

subgroup but neither in the positive nor the disorganized subgroups when compared with healthy subjects 

(Nenadic et al., 2015). Cortical thickness in this region was moreover found to significantly associate with negative 

symptom severity in schizophrenia patients (Walton et al., 2017). Posterior cingulate cortex and precuneus are 

hubs of the default mood network and the mirror neuron system. These two network systems were proposed as 

importantly involved in the neural pathophysiology of negative symptoms in schizophrenia (Azorin et al., 2014). 

Moreover, grey matter volume deficit (Lee et al., 2011) and neural activation during auditory oddball experiment 

(Shaffer et al., 2015) in these regions have been related to the severity of negative symptomatology (e.g., 

anhedonia and apathy) in prior structural and task-based fMRI studies. Besides, the visual cortex, which primarily 

subserves early-stage visual processing, e.g., visual perception, was found to be dysfunctional with reduced 

functional connectivity to sensormotor cortex in schizophrenia patients at rest (Chen et al., 2015). Deficits in 

self-perception and multisensory integration would cause the so called ―self-disorder‖ in schizophrenia and have 

been linked to delusional symptoms (Postmes et al., 2014). In a prior task-based fMRI study, an enhanced 

functional connectivity between the orbitofrontal and the visual cortex in response to tasks targeting delusional 

ideation was reported and the results implied a link between perceptual instability and the appearance of 

delusional beliefs (Schmack et al., 2013).  

For the deficit/non-deficit subtyping, there are also some neuroimaging studies investigated the 

neurobiological differentiations between deficit and non-deficit patients. In detail, deficit patients showed 
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more-severe grey matter loss in right orbito-medial prefrontal cortex, parahippocampal gyrus (Benoit et al., 2012), 

and superior and middle temporal gyri (Fischer et al., 2012) than non-deficit patients. Another study based on 

resting-state fMRI reported that, comparing to the non-deficit group, spontaneous neural activity was significantly 

elevated in visual cortex in the deficit schizophrenia group, while in bilateral insula, anterior cingulate cortex, and 

the regions extended to the fronto-temporal cortex, the neural activities were decreased (Zhou et al., 2019). By 

using single-positron emission computed tomography (SPECT), reduced cerebral blood flow was revealed in right 

orbitrofrontal region in deficit patients when compared with non-deficit patients (Kanahara et al., 2013). Besides, 

event-related potential (ERP) activations in posterior cingulate and parahippocampal gyri, left superior and middle 

frontal areas, were aberrant in deficit schizophrenia patients (Mucci et al., 2007).  

 

1.3.2 Functional domains and neurobiological processes implicated in schizophrenia 

Since I am not only aimed to investigate the potential neurobiological divergence of the identified 

psychopathological subtypes, but also devoted to linking functional processes to specific symptom dimensions, I 

moreover reviewed a broad range of domains reflecting cognitive, socio-affective, and sensory-motor functions 

that have been implicated in schizophrenia. Details were provided in Table 1.3.2.  

 

 

Table 1.3.2 Review of the functional domains implicated in schizophrenia 

Domain General summary References                  

Affective   

Emotional scene 

and face 

processing   

Identifying and discriminating among different facial expressions are 

impaired in schizophrenia patients. Worse performance and 

hyper/hypo-activation in frontal and limbic (e.g., amygdala and 

hippocampus) regions in response to facial emotion recognition, as well 

as altered functional subnetwork during emotional face processing were 

reported.  

Cao et al (2016) 

Edwards et al. (2001) 

Gur et al. (2002) 

Phillips et al. (1999) 

Adolphs et al. (1994) 

Reward-related 

decision making  

Decision making is disrupted in schizophrenia that the patients are 

inability to properly estimate reward value, which has been related to 

severity of negative and cognitive symptoms, and linked to prefrontal 

GABAergic dysfunction. Increased activations were observed in anterior 

insula, putamen, and frontal sub-regions in response to reward 

outcomes. 

Piantadosi et al. (2016); 

Tikàsz et al. (2019); Kim 

et al. (2016); Collins et 

al., (2014); Gold et al., 

(2008, 2013) 

Cognitive emotion 

regulation  

Individuals with schizophrenia display emotional regulation 

abnormalities and cognitive control deficits which tend to increase 

negative emotion and cause prepotent response of unpleasant scenes 

via reappraisal. 

Strauss et al. (2015); 

Sullivan et al. (2017) 

Social   
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Empathy Empathy deficits are presented in schizophrenia which would lead to 

social dysfunction. Fronto-temporal functional connectivity was related 

to cognitive empathy and experiential negative symptoms. Reduced 

cortical thickness in empathy-related neural regions (e.g., mPFC, 

aMCC, and insula) was demonstrated. Reduced activation in fusiform 

gyrus, lingual gyrus, middle and inferior occipital gyrus was found in 

schizophrenia patients during empathy task and reduced grey and white 

matter volumes were observed in these same brain areas. 

Bonfils et al. (2016) 

Singh et al. (2015) 

Abram et al. (2016) 

Massey et al. (2017) 

Mirror neuron 

system (MNS) 

Dysfunctional mirror neuron activity (MNA) has been associated with 

diverse symptoms (negative, affective) in schizophrenia and abnormal 

(including both increased and decreased) MNA have been found in the 

patients 

Mehta et al. (2014a, 

2014b);  

Horan et al. (2014); 

Pridmore et al. (2008) 

Theory-of-mind 

(ToM) 

ToM is impaired in schizophrenia, serving as a well-established feature 

and vulnerability marker of this disorder. The neural basis of ToM deficits 

has also been indicated previously including findings of abnormal brain 

activations (TPJ, MPFC middle prefrontal/inferior frontal cortex, PCC 

and temporal area) in response to tasks targeting ToM and altered brain 

functional connectivity. Multiple schizophrenia symptoms (e.g., positive, 

negative and disorganized) have been associated with ToM deficits.  

Bora and Pantelis, 

(2013) 

Fretland et al. (2015)  

Benedetti (2009) 

Shamay-Tsoory (2007) 

Mothersill (2017) 

Das et al .(2012) 

Task negative  

Extend 

socio-affective 

default (eSAD) 

Impaired social functioning is associated with cognitive (e.g., working 

memory) deficits in schizophrenia. Abnormal activation in PCC in 

response to socio- affective related tasks was co-varied with 

PCC-vmPFC functional connectivity at rest and correlated with negative 

symptoms. Abnormal social-affective processing has also been related 

to disturbed functional cohesion within social-affective affiliation 

networks. 

Ebisch et al. (2018) 

Hendler et al. (2018) 

Park et al. (2006) 

Default mode 

network (DMN) 

The DMN has been frequently investigated and consistently reported as 

abnormal in schizophrenia, both structurally and functionally (e.g., 

reduced grey matter volume, increased and decreased deactivations 

and functional hyperconnectivity) in e.g., medial prefrontal cortex, 

anterior/posterior cingulate cortex, and middle temporal gyrus were 

revealed and have been associated with negative symptoms and 

cognitive deficits. 

Garrity et al. (2017) 

Hu et al. (2017) 

Jia et al. (2016) 

Pomarol-Clotet et al. 

(2019) 

Du et al. (2008) 

Executive  

Vigilant attention 

(VigAtt) 

Deficits of attention are common in schizophrenia, and abnormal 

functional brain response to attentional tasks was reported in the frontal 

cortex, postcentral gyrus, medial temporal lobe and cerebellum. Also, 

sustained attention was found to correlate with negative symptom 

severity. 

Eyler et al (2004) 

O’Gráda et al. (2009) 

 

Cognitive action 

control (CogAC) 

 

Impaired action control was frequently reported in schizophrenia which 

may influence performance in a wide variety of cognitive domains and 

are associated with deficits in prefrontal-based control network 

particularly in (dorsolateral prefrontal cortex as well as premotor, ACC 

Reuter et al. (2007) 

Braver et al. (1999) 

Barch (2017) 

Minzenberg et al. 
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and thalamus.  (2014) 

Extend 

multi-demand 

network (eMDN) 

The general executive cognition comprises multiple processes that are 

related but not limited to action/inhibitory control, attention, working 

memory, and reasoning, which all have been implicated as abnormal in 

schizophrenia and altered neural activations were consistently found in 

anterior cingulate cortex, dorsolateral prefrontal and thalamus in the 

response to executive-related tasks. 

Giraldo-Chica et al. 

(2018) 

Rubia et al. (2001) 

Langdon et al. (2010) 

Ramsey et al. (2002) 

Minzenberg et al. 

(2009) 

Working memory 

(WM) 

As a cardinal cognitive symptom that may underlie many other cognitive 

deficits and symptoms, impaired WM is a persistent, disabling feature of 

schizophrenia, which has been frequently associated with (dorso/ventro 

lateral) prefrontal dysfunction (e.g., abnormal neural activation and 

dopamine hypofunction) with also abnormalities in thalamus and 

basal ganglia reported. 

Kaminski et al.(2020); 

Lee andPark (2005); 

Manoach et al. (2000); 

Schlösser (2003); 

Schneider (2007); 

Borgan (2019);  

Eryilmaz (2016) 

Long-term memory and language 

Semantic memory 

(SM) 

Semantic memory-based processing is impaired in SCZ, e.g., semantic 

retrieval, encoding and association, and were found to associate with 

deficits (e.g., increased connectivity and decreased neural activation) in 

fronto-parieto-temporal network (e.g., inferior parietal lobule, 

medial/inferior prefrontal gyrus, and superior/middle temporal gyrus) and 

relate to negative and positive symptoms and formal thought disorder. 

Jamadar et al. (2013a 

& 2013b) 

Kubicki et al. (2003) 

Ragland et al. (2008) 

Speech 

production (SP) 

Abnormal speech production in schizophrenia contributes to the 

symptom of formal thought disorder (FTD). FTD-associated production 

of disorganized speeches was correlated with activity in fusiform, inferior 

frontal and superior temporal cortex. Reversed laterality of activation in 

the lateral temporal cortex was found in schizophrenia patients during 

speech production, which has been related to glutamatergic imbalance. 

Kircher et al. (2012)  

Nagels et al. (2018) 

McGuire et al. (1998) 

 

Autobiographic 

Memory (AM) 

AM is impaired (e.g., reduced specificity and retrieval of memories) in 

schizophrenia and has been found to associate with reduced 

hippocampal volume and altered neural activations in multiple brain 

regions (e.g., anterior cingulate cortex, and lateral prefrontal cortex). 

Herold et al. (2015) 

Cuervo-Lombard    

et al. (2012) 

Herold et al. (2013) 

Sensory-motor 

Motor  Motor cortex and its closely inter-connected brain regions (e.g., 

prefrontal–motor, cerebello-thalamo-motor, sensory-motor and basal 

ganglia circuits)showed abnormalities in schizophrenia, and were 

related to motor behavioral problems observed in the patients including 

motor learning, sequential movements and postural control, and have 

also been associated with clinical symptoms. 

Walther et al. (2017) 

Marvel et al.  (2007) 

Berman et al. (2016) 

Bernard et al. (2014) 

Du et al., (2018) 

Auditory  Auditory processing including automatic, feed forward and pre-attentive 

functions are impaired in schizophrenia. The auditory oddball tasks 

revealed multiple regions within the auditory network that were 

abnormally activated, e.g., the (middle/superior) temporal cortex, insula, 

prefrontal and inferior parietal cortex, and the abnormalities were 

associated with negative symptoms and cognitive deficits. 

Sweet et al. (2007) 

Perez et al. (2014) 

Force et al. (2008) 

Shin et al (2009) 

Wolf et al. (2008) 

Kim et al. (2009) 

Shim et al. (2014) 
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1.3.3 Compromised neurotransmitter systems in schizophrenia 

For the last part of this section, I would highlight some neurotransmitter systems involved in schizophrenia as a 

brief introduction for the molecular basis of this disorder and its symptoms. As the final aim of my PhD project, 

networks identified as robustly predictive of the new OPNMF-derived symptom dimensions will be correlated with 

whole-brain density maps of relevant receptors and transporters. A plenty of in-vivo molecular imaging studies 

using multi-tracer positron emission tomography (PET) and SPECT have been devoted into the investigation of the 

potential molecular pathogenesis of schizophrenia. Multiple pathways involving primarily dopaminergic, 

serotoninergic, and glutamatergic neurotransmitter systems were reported to be abnormal in schizophrenia 

(Howes and Kapur, 2009; Poels et al., 2014; Selvaraj et al., 2014).  

 

1.3.3.1 Dopaminergic 

First and foremost, the dopamine system is evidenced as hyper-responsive in schizophrenia and dopaminergic 

dysfunction has been commonly hypothesized in the etiopathogenesis of this disorder (i.e., the ―dopamine 

hypothesis‖) (Howes and Kapur, 2009; Gründer and Cumming, 2016). Prior molecular imaging studies indicated 

potentially an elevated level of endogeneous dopamine release in patients who are experiencing psychosis 

(Abi-Dargham et al., 1998; Breier et al., 1997; Laruelle et al., 1996; Laruelle et al., 1999; Abi-Dargham et al., 2000). 

Moreover, presynaptic dopamine synthesis capacity, as assessed by radiolabelled L-DOPA (the precursor 

molecule for dopamine), is likewise reported as elevated in schizophrenia patients. This elevation is also observed 

in clinical high-risk patients, and is moreover predictive of clinical high-risk patients in the conversion to full 

psychosis (reviewed in Cannon et al., 2015).  

Dopamine receptors were found to be abnormal in schizophrenia patients. There are five subunits of 

dopamine receptor in the human brain, including D1-like (D1 and D5) and D2-like (D2, D3, and D4) receptor groups. 

Almost all anti-psychotic drugs take anti-psychotic actions by blocking D2 receptors, and the blockade of D2 

receptor relates to clinical anti-psychotic potencies of anti-psychotics (Mauri et al., 2014). Multiple PET and SPECT 

studies investigated the in-vivo D2/3 receptor density using various radiotracers and most of them reported an 

increased striatal D2/3 receptor density in schizophrenia patients when compared with healthy subjects, though the 

effect size was modest (roughly 10%-20% elevation) (Laruelle et al., 1998; Zakzanis et al., 1998; Kestler et al., 

2001). Reduced D2/3 receptor density was also detected in extrastriatal areas (e.g., anterior cingulate cortex and 

thalamus) (Suhara et al., 2002; Mitelman et al., 2019) but an increase of D2/3 in thalamus has been reported 

(Kegeles et al., 2010). The reason for talking the D2 and the D3 receptors together is because current radiotracers 

bind to both of the two receptors and hence it‘s not readily to interpret which receptor has contributed to the 

observed alteration. Notwithstanding, a recent PET study using a novel radiotracer has specifically assessed the 

D3 receptor density and the preliminary results showed no selective change in the high-affinity state of D2 and/or D3 

in striatum and thalamic regions in schizophrenia (Graff-Guerrero et al., 2009). Interestingly, however, a 

down-regulation of D3 RNA expression has been found in the orbitofrontal cortex of schizophrenia postmortem 

brains (Meador-Woodruff et al., 1997).  

The D1 receptor has likewise received multiple attentions due to its involvement in schizophrenia cognitive 

deficits. Dopaminergic transmission in prefrontal area mainly relies on D1 receptor, and prefrontal dopamine 
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hypofunction has been commonly proposed as the molecular substrate of the cognitive symptoms presented in 

schizophrenia patients (Arnsten et al., 2017). Prior PET studies have demonstrated contradictory results regarding 

the change of D1 receptor density in schizophrenia. An earlier study showed that D1 receptor density is decreased 

in prefrontal cortex in patients with schizophrenia when compared with healthy volunteers (Okubo et al., 1997). 

However, the radiotracer used in this study might be confounded by dopamine depletion (Guo et al., 2003) and 

later studies using a more-superior radiotracer have successfully detected an up-regulation of D1 receptor in 

schizophrenia as a compensatory (but ineffective) mechanism secondary to the persistent cortical dopamine 

hypofunctioning (Abi-Dargham et al., 2002). In the same study, D1 elevation was moreover found to correlate with 

the cognitive deficits in patients (Abi-Dargham et al., 2002). However, current anti-psychotics which have more or 

less the affinity for D1-like receptors showed minimal effects on schizophrenia cognitive symptoms (Vyas et al., 

2018). While D1 receptor antagonists has been hypothesized as novel treatments for schizophrenia (Bourne, 2001), 

a recent study proposed D1 agonists to possibly alleviate the cognitive deficits in schizophrenia patients (Arnsten et 

al., 2017).  

 

1.3.3.2 Serotonergic 

Serotonergic dysfunction has been implicated in the pathophysiology of schizophrenia (Eggers, 2013; Malhotra et 

al., 1998; Stahl, 2018; Selvaraj et al., 2014). There are seven major families of serotonin receptors (5-HT1 to 

5-HT7) (Hoyer et al., 2002; Melke et al., 2003). The 5-HT1 and 5-HT2 receptor groups, which acts inhibitory and 

excitatory functions, respectively, were more frequently reported as abnormal in schizophrenia patients. Plenty of 

postmortem and in vivo molecular imaging studies have been devoted to investigating the potential alterations in 

serotonin receptors in schizophrenia patients by contrasting to healthy subjects. Notably, most postmortem studies 

on schizophrenia brains demonstrated a reduction of 5-HT2 receptor density in cortical areas (Laruelle et al, 1993; 

Matsumoto et al, 2005; Mita et al, 1986; Pralong et al, 2000). A recent meta-analysis reported that prefrontal 

5-HT2a receptors are reduced in schizophrenia patients with a large effect size when compared with healthy 

controls (Selvaraj et al., 2014). This meta-analytic study also identified an elevation of prefrontal 5-HT1a receptors 

in schizophrenia. However, in vivo PET experiments did not support the robust finding of 5-HT2a down-regulation 

in postmortem studies. That is, apart from one voxel-based study which reported a decreased 5-HT2a binding 

potential in the dorso-lateral prefrontal cortex of neuroleptic-naive schizophrenia patients (Ngan et al., 2000), other 

regions-of-interest based studies using 5-HT2a selective radiotracers did not demonstrate any between-group 

difference in cortical 5-HT2a receptor density (Verhoeff et al., 2000; Erritzoe et al., 2008; Lewis et al, 1999; Okubo 

et al, 2000; Trichard et al, 1998). The authors attributed the contradictions to the different analytic methods used 

for PET images and the different radioligands employed for assessing the 5-HT2a.  

Besides D2 dopamine receptors, atypical anti-psychotics also exert antagonistic effects on the 5-HT2 receptor 

group, targeting mainly the 5-HT2a subunit. Interestingly, prior work demonstrated that blocking both of the 5-HT2a 

and the dopaminergic D2 receptors by atypical anti-psychotics could slow down whole-brain grey matter loss in 

schizophrenia patients over time (Lieberman et al., 2005). However, it was proposed that pharmacological 

treatments will not have any anti-psychotic effect if the agents only modulate the serotonergic pathway without 

acting on D2 receptors, (Mauri et al., 2014). Interestingly, anti-psychotic drugs, pimavanserin and SEP-363856, 
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have just been introduced that preferentially target serotonin and not dopamine receptors (Sahli and Tarazi, 2018; 

Koblan et al., 2020). Furthermore, different atypical anti-psychotics have been shown to exert differential effects on 

serotonin receptor subunits (Radhakrishnan et al., 2020). For example, schizophrenia patients treated with 

olanzapine showed both lower 5-HT6 and 5-HT2a availability, while quetiapine lowers 5-HT6 availability in the 

putamen and risperidone would lead to prefrontal low 5-HT2a availability. The 5-HTT serotonin reuptake 

transporter, which is critical for regulating serotonergic concentration and signaling, has also been implicated in 

schizophrenia (Stahl, 2018; Malhotra et al., 1998; Selvaraj et al., 2014; Kim et al., 2015; Hernandez and Sokolov 

1997; Wang et al., 2010). Although atypical anti-psychotics have an effect on the serotonin receptor groups, their 

effects on 5-HTT remain to be clarified as previous findings were largely inconsistent (Kaiser et al., 2001; Lian et al., 

2016; Barkan et al., 2006).   

 

1.3.3.3 Glutamatergic 

The involvement of glutamatergic system in schizophrenia pathophysiology is supported by multi-faceted evidence 

(reviewed in Poels et al., 2014; Uno and Coyle, 2019). First, glutamate elevation was found to correlate with the 

reduced grey matter volume in schizophrenia patients (Aoyama et al., 2011). The over-expressed glutamate has 

been proposed to cause neural excitotoxic effect (Schobel et al., 2013), leading to grey matter loss. Second, 

ketamine and phencyclidine, the noncompetitive antagonists of the Nmethyl-D-aspartate (NMDA) subtype of the 

glutamate receptor family, have been shown to induce problematic behaviors and thoughts in healthy volunteers 

which resemble the psychotic, negative, and cognitive symptoms observed in patients with schizophrenia (Krystal 

et al., 1994; Javitt and Zukin, 1991; Javitt, 1987).  

Glutamate serves as the main excitatory neurotransmitter in the human brain and glutamatergic 

neurotransmission is mediated by two types of receptors (i.e., ionotropic and metabotropic). The NMDA receptors 

are ionotropic which have drawn the most attentions amongst other glutamate receptor subtypes in schizophrenia 

studies. The metabotropic glutamate receptor 5 (mGluR5) has also been linked to schizophrenia pathophysiology 

due to its close interaction with NMDA receptor activation, which could potentiate NMDA receptors. However, 

mGluR5 mRNA level and protein expression in schizophrenia are found to be unaltered in postmortem studies 

(Matosin and Newell, 2013).  

In vivo glutamate is commonly quantified by proton magnetic resonance spectroscopic (MRS) imaging. Prior 

meta-analytic studies on proton MRS demonstrated that, comparing with healthy populations, schizophrenia 

patients present decreased glutamate in medial prefrontal area, increased glutamine in both the medial prefrontal 

cortex and thalamus (Marsman et al., 2013), and elevated Glx (glutamate+glutamine) in the medial temporal lobe 

and basal ganglia (Merritt et al., 2018). Since the development of selective glutamatergic radiotracers is difficult, 

studies assessing the densities of glutamate receptors in vivo were very scarce. Still, I noted that a SPECT study 

using [123I]CNS-1261, a highly selective tracer that binds the PCP/MK801 intrachannel site of the NMDA receptor, 

has revealed a reduced NMDA receptor binding in the left hippocampus of unmedicated schizophrenia patients 

when compared to healthy individuals (Pilowsky et al., 2006). Comparatively, there are multiple postmortem 

studies that have been conduced to assess mRNA transcript and protein expression of NMDA receptor subunits in 

schizophrenia brains. A recent meta-analysis demonstrated significant decreases in both mRNA and protein 
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expressions of the GluN1 subunit, as well as a reduced mRNA transcript of the GluN2c subunit in schizophrenia 

post-mortem prefrontal cortex relative to healthy controls (Catts et al., 2016). Elevated postsynaptic density of 

NMDA receptor in dorsolateral prefrontal cortex (Banerjee et al., 2015) and increased NMDA receptor binding in 

anterior cingulate cortex (Zavitsanou et al., 2002) have also been reported in schizophrenia post-mortem brains, 

which may serve as a compensatory mechanism secondary to NMDA receptor hypofunction (Coyle et al., 2003) 

and the impaired glutamatergic transmission (Zavitsanou et al., 2002) in schizophrenia.  

Although atypical anti-psychotics which target the dopaminergic system (in particular D2 receptors) could 

effectively relieve positive symptoms, their effects on other dimensions of psychopathology including negative and 

cognitive symptoms are negligible (reviewed in Miyamoto et al., 2005; Fusar-Poli et al., 2015). Hence, 

dopaminergic hypofunction alone is not sufficient to account for the whole picture of schizophrenia 

psychopathology. Glutamatergic neurotransmission has been increasingly proposed as a novel target for treating 

cognitive and negative symptoms in schizophrenia (reviewed in Uno and Coyle, 2019). Indeed, multiple evidences 

pointed to a relationship between glutamatergic neurotransmission and schizophrenia negative and cognitive 

symptoms (Thomas et al., 2017). Specifically, a positive correlation between elevated Glx in the hippocampus and 

poorer performance in executive tasks (Rusch et al., 2008) as well as the neural activation in left dorsolateral 

prefrontal cortex during working memory tasks was revealed in unmedicated schizophrenia patients (Kaminski et 

al., 2020). Interestingly, compared to other anti-psychotics, clozapine, a weak D2 receptor antagonist which targets 

multiple receptor groups was demonstrated to have an effect on negative symptoms (Girgis et al., 2011) possibly 

through enhancing the function of NMDA receptors (Javitt et al., 2005; Schwieler et al., 2008; Gray et al., 2009; 

Veerman et al., 2014). Recent randomized controlled trials presented some promising findings on the 

improvements of negative and cognitive symptoms in schizophrenia by adding glutamatergic agents onto 

anti-psychotic drugs (reviewed in Uno and Coyle, 2019). For example, adding N-acetyl-L-cysteine to atypical 

anti-psychotics including risperidone and clozapine could alleviate both the negative and cognitive symptoms in 

chronic schizophrenia patients (Rossell et al., 2016; Sepehrmanesh et al., 2018)  
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2. Motivation and aims 

2.1 Dimensions of psychopathology 

Rating scales with tens of items, such as the PANSS (Kay et al., 1978) and the Scales for the Assessment of 

Positive and Negative Symptoms (SAPS and SANS) (Andreasen, 1984; Andreasen, 1989), have been introduced 

to describe the heterogeneous, multifaceted thought and behavior problems in schizophrenia patients. However, 

these scales encounter the downside of complexity and raise the question about the dimensional attribute of these 

item-wise symptoms. A precise definition of the dimensional structure of these scales is important to resolve the 

complexities in parsing schizophrenia phenomenology (Cichocki et al., 2012; Carpenter and Buchanan, 1989; 

Lenzenweger et al, 1991) and to shed light on the common neurobiological processes causing co-expressed 

symptoms as improved disease biomarkers. Principal component analysis (PCA) and exploratory factor analysis 

(EFA) provide effective ways for deriving the latent dimensional structure of the scales based on the co-expression 

patterns of symptoms. Although ample factorial studies have been devoted into the investigation of dimensions 

underlying the well-established 30-item inventory of PANSS (Kay et al., 1987), the factor models yielded by PCA 

and EFA were largely inconsistent with a varying number of factors (Kay and Sevy, 1990; Emsley et al., 2003; Van 

den Oord et al., 2006; Wallwork et al., 2012; van der Gaag et al., 2006a). 

By definition, the PANSS comprises three subscales, but later studies suggested that these subscales are 

neither adequate nor optimal for capturing the symptom variation presented across schizophrenia patients. For 

example, items within a subscale show modest internal consistency (Peralta and Cuesta, 1994), while those 

across subscales are strongly correlated (Kay and Sevy, 1990; Emsley et al., 2003; Van den Oord et al., 2006). 

Although a pyramidical model with four components using PCA has been put forward by the PANSS developers 

(Kay and Sevy, 1990), other studies proposed that a model with five factors would be superior (Kim et al., 2012; 

Levine et al., 2007; Wallwork et al., 2012; van der Gaag et al., 2006a). A few models with six and seven factors 

have also been reported (Emsley et al., 2003; Van den Oord et al., 2006). Although a five-factor model is most 

frequently proposed, its replicability, external validity, and generalizability remain a concern (Lehoux et al., 2009) 

as prior models continuously failed to be confirmed in independent samples (White et al., 1997; van der Gaag et al., 

2006b; Jiang et al., 2013), since systematic cross-validation and generalization analyses have rarely been 

performed. Also, since PCA loadings and scores contain both positive and negative weights (Devarajan, 2008), 

factorization methods used in previous studies are limited by the biological interpretability of the yielded 

factor-structure, while EFA often leads to equally low correlations between an item and multiple factors with 

ambiguous item-to-factor assignments (Trninić et al., 2013).  

 

Aim 1: To employ an Orthonormal and Projective variant of an unsupervised learning approach of Non-negative 

Matrix Factorization (OPNMF) (Yang and Oja, 2010) and a newly developed, sophisticated evaluation framework 

to identify a robust, stable, and well-generalizable factor-structure (i.e., dimensions) of PANSS to conceptualize the 

symptomatology of schizophrenia based on over 2000 schizophrenia patients recruited from 13 sites located in 

Europe, Asia, and the USA. 

OPNMF, compared to previously used PCA and EFA approaches, has several advantages:  
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1) due to the non-negative constraint on the input and the factorized matrices, NMF, and hence the OPNMF factors 

demonstrate an improved biological interpretability;  

2) due to the projective constraint, the yielded OPNMF factors can be readily applied to out-of-sample data to 

estimate the factor loadings for novel patients; 

3) due to the orthonormal constraint, OPNMF generates a sparse representation of the input data such that the 

learned factors are more compact and homogeneous than the factors derived from the original NMF method and 

PCA/EFA factors. Of note, the projective constraint also promotes sparsity in the resulting factors. 

 

2.2 Psychopathological Subtypes 

Besides factorizing symptoms into cardinal dimensions, by categorizing patients into subgroups with distinct 

symptom expression patterns provides an avenue to approach defining schizophrenia phenomenology and the 

psychopathological heterogeneity within schizophrenia. However, the classic clinical subtypes were eliminated in 

DSM-5 because of poor diagnostic stability, validity, and utility (Braff et al., 2013). Further, this set of classifications 

does not exhibit distinctive patterns of treatment response or capture the heterogeneous facets of schizophrenia 

well. Cumulatively, these downsides challenged a categorical perspective in schizophrenia symptomatology and 

moreover bring about controversies on whether discontinuously taxonomic components, i.e., subtypes, exist within 

this heterogeneous disorder. Multiple studies have re-visited the subtyping issue by applying data-driven clustering 

methods to derive symptomatically distinct subgroups. However, the numbers and definitions of 

psychopathological subtypes were highly variable across studies (Bartko et al., 1981; Helmes and Landmark, 

2003), even when the subgroups were discovered purely based on the PANSS (Dollfus et al., 1996; Lykouras et al., 

2001; Dickinson et al., 2017). Also, it is worth noting that a taxometric and latent variable mixture model has 

recently been introduced to characterize the negative symptoms of schizophrenia (Ahmed et al. 2015), though the 

model requires verification by future studies with larger sample sizes. The inconsistent clustering results could 

possibly be attributed to the fact that prior attempts mostly relied on geographically restricted small samples and 

single clustering strategies, while lacking an evaluation of stability and replicability. 

 

Aim 2: To investigate whether the newly identified dimensional structure of PANSS by OPNMF could yield new 

insights into the categorical aspects of schizophrenia. Patients were clustered by an interactive use of two 

well-established fuzzy-clustering methods based on individual expressions on the OPNMF-derived dimensions. A 

careful cluster stability assessment was also applied. These analyses would potentially allow for a hybrid 

dimensional-categorical conceptualization of schizophrenia symptomatology.  

 

The proposed soft-clustering scheme, compared to previously used hard-clustering methods, could better 

accommodate cluster-ambiguous patients and capture the expected overlap between subtypes (Insel et al., 2010). 

Moreover, soft-clustering generates membership degrees for each subject, and those patients with low 

memberships to any clusters (i.e., cases with an ambiguous cluster attribute) can be filtered out with appropriate 

cutoffs to symptomatically derive well-separated core psychopathological subtypes for schizophrenia. Also, this 
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approach would prospectively improve the statistical power to detect potential neurobiological distinctions between 

the identified subtypes, as cluster-ambiguous patients might obscure otherwise differentiable neurobiological 

features. 

  

2.3 Neurobiological Substrates 

Besides the use of factorization and clustering methods to resolve the symptomatic heterogeneity presented in 

schizophrenia, exploring the neurobiological basis for psychopathological dimensions and subtypes is critical since 

pharmacological agents, as the first line of treatment for schizophrenia, act on the central nervous system to 

presumably alleviate symptoms via regulating neurotransmitter systems. If common neurobiological processes for 

co-expressed symptoms within a dimension and neurobiological differentiations between subtypes could be 

clarified, specific and effective treatments targeting individual patients can possibly be developed. This is critical, 

as current anti-psychotics show limited improvements in functional outcomes for most patients with schizophrenia, 

and leave residual symptoms and unwanted side effects (Levine et al., 2011). Furthermore, anti-psychotics have 

minimal effects on negative and cognitive symptoms in schizophrenia patients (Miyamoto et al., 2005; Fusar-Poli et 

al., 2015). Hence, it is urgent to clarify the neural pathophysiology as well as the molecular substrates of specific 

dimensions of psychopathology. However, compelling results defining the symptom-neural substrate associations 

are still lacking. Pioneering efforts based on functional MRI (fMRI) have added valuable insights into the 

neurobiology of schizophrenia (Silverstein et al., 2016; Mwansisya et al., 2017; Dong et al., 2018) which may 

reveal an endophenotype underpinning the symptomatic heterogeneity (Gottesman and Gould, 2003). However, 

using univariate group-level correlation analysis, prior studies have demonstrated largely inconsistent findings 

when linking different symptom dimensions to functional brain parameters (e.g., reviewed in Giraldo-Chica and 

Woodward, 2017; Hu et al., 2017; Tregellas et al., 2014; Mehta et al., 2014). This is not unexpected, as the clinical 

complexity of schizophrenia together with the differences in patient populations, study designs, scanners, and 

scanning protocols across sites may lead to divergent results. Thus, identifying robust symptom-neural association 

patterns is challenging. However, pooling data from multiple international sites and applying multivariable 

machine-learning strategies with cross-validation and generalization analyses might be substantially useful for 

deriving association patterns that are generally and robustly presented in schizophrenia patients. 

Functional brain systems as reflected by connectivity patterns are known to relate with molecular architecture 

(Zilles et al., 2002; Zilles et al., 2015; Richiardi et al., 2015; Anderson et al., 2020). Specifically, previous studies 

demonstrated a relationship between network-level resting-state functional connectivity (rsFC) and local 

neurotransmitter concentration (Stagg et al., 2014; Landek-Salgado et al., 2016; Limongi et al., 2020) and 

proposed a neuroconnectivity-neurotransmitter coupling framework (Kringelbach et al., 2020). Although 

resting-state fMRI serves as a powerful tool to inform the intrinsic neurobiological substrates of symptomatology at 

regional, network connectome or whole-brain level, it cannot directly map neurotransmitter systems, the key 

towards the development of new anti-psychotic treatments. Prior invivo molecular imaging studies, however, 

mostly relied on regions-of-interest analysis and hence would fall short in the perspective of the whole-brain 

dysfunctional nature of schizophrenia involving dysconnectivity within and between multiple functional systems 
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(Pettersson-Yeo et al., 2011; Uhlhaas, 2013). Taken together, identifying functional networks whose intrinsic 

connectivity patterns are robustly associated with specific symptom dimensions might allow for linking the 

molecular architecture of the identified networks to schizophrenia symptomatology. 

 

->Unlike most previous studies which relied on p values as the criteria to derive statistically significant 

symptom-neural relationships (the downsides of using p-values as the criterion have been commented elsewhere 

[Amrhein et al., 2019; Kraemer, 2019]), here based on resting-state fMRI data I recruited multiple sites in Europe 

and the USA, and employed multivariable machine-learning methods with careful cross-validation strategies 

including 10-fold and leave-one-site-out analyses. 

 

Aim 3: Out-of-sample classification of the identified psychopathological subtypes from regional rsFC patterns was 

assessed using non-linear support vector machine. Regions with higher classification accuracies refer to more 

differentiated rsFC patterns between subtypes (i.e., higher neurobiological differentiability). 

 

Aim 4: Network-based predictive modeling was implemented as leverage to link the identified symptom 

dimensions to specific neurobiological processes. Specifically, expressions of the four symptom dimensions in 

individual patients were predicted from rsFC within 17 meta-analytical task-activation networks previously defined 

using relevance vector machine. Moreover, apart from cross-validations, the model trained within the multi-site 

main sample of 147 schizophrenia patients tested its generalization performance in an independent sample with 

117 schizophrenia patients retrieved from the Bipolar-Schizophrenia Network on Intermediate Phenotypes 

(B-SNIP) database (Tamminga et al., 2013). 

 

Aim 5: A spatial correlation analysis between the symptom-predictive networks and whole-brain density maps of 

nine receptors and transporters (involving the dopaminergic, the GABAergic, and the serotoninergic systems) from 

prior molecular imaging in healthy populations was performed to investigate the related molecular architecture of 

the identified networks. 

 

A broad range of meta-analytically defined networks relating to social, affective, executive, memory, language, and 

sensory-motor functions were employed. The use of meta-analytic functional networks is important, as they 

showed convergent activation associated with specific processes. Hence, this offers an avenue to link the 

predicted symptom dimensions to specific functional domains, which intrinsic connectivity networks cannot. Also, 

the use of multivariable predictive modeling with a clean and strict cross-validation procedure could effectively 

mitigate model overfitting and facilitate the identification of robust network-symptom association patterns.  
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3. Additional details on the employed methods  

3.1 Non-negative matrix factorization and its orthonormal and projectable variant  

Non-negative matrix factorization (NMF) produces a factorization that both of the factors (basis vectors) and the 

factor-loadings contain no negative elements. This parts-based learning approach models data by additive 

combinations of non-negative basis vectors, making the factorization results can be intuitively interpreted. NMF 

and its variants have been widely used in recent biomedical studies including metagene discovery, functional 

characterization of genes, identification of structural brain networks, and cancer subtypes stratification (Kim et al., 

2016; Hofree et al., 2013; Sadanandam et al., 2013; Sotiras et al., 2017). The present study is the first practice of 

applying this promising method to the PANSS data in schizophrenia to explore the latent dimensional structure of 

psychopathology. NMF is typically achieved by solving the following energy minimization problem: 
 

min  𝑉 −𝑊𝐻 𝐹 

𝑠. 𝑡.𝑊 ≥ 0; 

 

where W is the basis matrix (m attributes × r latent factors) containing the parts information. H is the (r factors x n 

data instances) matrix containing the loading coefficients, when used together with W, approximate the data matrix 

V. 

Based on the initial NMF algorithm, plenty of studies have been devoted to developing diversiform extensions of 

NMF with different constraints to achieve specific practical purposes. One of the principal aspects and what we are 

most interested in factorizing the PANSS data is to expect a sparse representation of psychopathology. Sparse 

representation provides almost clustering like structure to facilitate the determination of item-assignment to specific 

dimensions but also retains the weights information of an item in belonging to each of the dimensions. Moreover, 

we would expect that the current defined factor-structure can be readily applied to novel samples. In these 

considerations, we adopted a variant of NMF, namely the orthonormal projective NMF (OPNMF) (Sotiras et al., 

2015; Yang and Oja, 2010), to uncover the latent structure of the PANSS. This method differs from the original 

NMF in that it replaces the loading matrix by the inner product of the basis vectors and the input data matrix, 

making OPNMF to be projectable [i.e., H =WTV, and thus the dictionary W (basis matrix) can be readily 

generalized to new data]. Due to the projective constraint in OPNMF, the loading coefficients are not free variables 

any more, which facilitates each factor to focus on specific parts of the data, leading to factors that are sparse, 

overlap less and are naturally more orthogonal. This is important as we could extract more compact and 

homogeneous latent factors from the PANSS data. The additional orthonormality constraint promotes the 

orthogonality between the learned factors. Sparsity is of great importance in signal decomposition and biological 

interpretation (Daubechies et al., 2009) and has been associated with improved generalizability (Avants et al., 

2014). In contrast to other NMF variants to achieve sparsity, OPNMF does not involve any regularization terms or 

trade-off parameters, but is still able to learn more spatially localized, parts-based representations of the imported 

data patterns. Importantly, by enforcing the orthonormality constraint, the multiplicative update step becomes 

simpler which leads to less computational expense. This allows us to converge better to a local minimum and 
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facilitates the implementation of various cross-validation and out-of-sample generalization evaluations to obtain a 

stable and robust pattern for the latent factor structure of the PANSS. 

 

The whole optimization process for OPNMF is to minimize the reconstruction error measured by frobenius norm 

between the input data matrix V and its estimate by only updating the basis matrix W: 
 

min  𝑉 −𝑊𝑊𝑇𝑉 𝐹 

      𝑠. 𝑡.𝑊 ≥ 0; WWT=I 

 

where matrix W conveys factor information in each column with respect to the co-occurrence properties of the 

PANSS items which has a size of m (item) x r (r is the number of the estimated factors with each of the r columns 

defining a psychopathological dimension). Entry wij of W is the coefficient of item i in factor j. WWT is the projection 

matrix, on which the matrix V can project to yield a subspace so that to approximate itself. In this form, the loading 

matrix H is replaced by WTV so that the basis matrix W can be used to represent new data. The orthonormality 

constraint of WWT=I requires W to be an orthonormal matrix, and the orthogonality between the vectors in the 

learned W yields sparse factors, 

i.e., dimensions of 

psychopathology. H then 

encodes the symptomatology of 

a given patient along the 

dimensions spanned by the basis 

matrix W which has a size of r x n (each of the n columns represents the expressed symptom severity for a patient 

corresponding to the r factors defined in W) with entry hjk represents the expression level of factor j in patient k that 

can be used for further patient-centric analyses, e.g., clustering patients into subtypes.  
 

The non-convex problem was approached by iteratively performing the below multiplicative update rule:  

   

𝑊𝑖𝑗 = 𝑊𝑖𝑗

 𝑉 𝑉𝑇  𝑊 𝑖𝑗
 𝑊 𝑊𝑇𝑉𝑉𝑇  𝑊 𝑖𝑗

 

 

This update rule guarantees the positivity of the estimated factors, while monotonically decreasing the energy 

towards attaining a local optimum. Proofs of convergence have been presented in detail in previous literature (Lee 

and Seung, 2001). 

       The choice of initialization method is important since a suitable initialization of W will facilitate fast 

convergence. Non-negative singular value decomposition (NNSVD) was employed here as the initialization 

strategy (Boutsidis and Gallopoulos, 2008), which has the advantages of reduced residual error, faster 

convergence than using random initialization (Boutsidis and Gallopoulos, 2008), and most critically, renders the 

final non-negative decomposition to be deterministic. 
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3.2 Fuzzy-clustering  

In the current project, I employed two fuzzy-clustering approaches of fuzzy c-means (Bezdek, 1981) and Gaussian 

mixture modeling (GMM) (Fraley and Raftery, 2002), and have used them interactively to identify core 

psychopathological subtypes of schizophrenia. In contrast to hard-clustering methods which impose each data 

point to be assigned to a certain cluster, fuzzy-clustering techniques allow for an identification of cluster-ambiguous 

points. The cluster-ambiguous points can be moreover filtered out (if they are reasoned to not attribute to any 

clusters) with an appropriate cutoff over the generated cluster membership degrees. Specifically, fuzzy c-means 

clustering provides probabilistic cluster memberships for each patient. The object function for fuzzy c-means 

contains a fuzzy partition matrix so that each patient is allowed to belong to multiple clusters with varying degrees 

of membership. The fuzzifier m (i.e., the exponent for the fuzzy partition matrix [U]; 1 < m < ∞) controls the 

amount of fuzzy overlap between clusters (how fuzzy the boundaries between clusters can be) with larger values 

resulting in fuzzier clusters, i.e. a greater degree of overlap (Ozkan and Turksen, 2007). Squared Euclidean 

distance is commonly used as the distance metric between subjects. The resulting membership degrees reflect 

how strong a patient attributes to each cluster, and thus can be used to assign patients to specific clusters 

according to the maximal membership degree. Optimal cluster number can be determined based on several 

validity indices, for example, the fuzzy Silhouette index (SI) (Campello and Hruschka, 2006), the Xie and Beni 

index (XB) (Xie and Beni, 1991), and partition entropy (PE) (Bezdek, 1981). GMM is a model-based clustering 

approach (Fraley and Raftery, 2002; Scrucca et al., 2016), which employs a probabilistic model and takes 

moreover the covariance structure of the data into consideration. Clusters are assigned by selecting the 

component that maximizes the posterior probability. Like that in fuzzy c-means, the generated posterior 

probabilities by GMM reflect how strong a patient contributes to each Gaussian distribution component and thus 

can be likewise used to assign each patient to a certain cluster according to the highest posterior probability. The 

expectation-maximization algorithm is commonly used in practice for fitting the GMM models. 

 

3.3 Brain-based subtype classification and symptom dimension prediction  

In my Ph.D project, a supervised support vector machine (SVM) (Soentpiet, 1999) was adopted to approach the 

classification problem, i.e., to classify psychopathological subtypes from resting-state fMRI features. SVM learns 

the relationship between a set of input variables or features, and a particular outcome across a set of observations. 

The goal of SVM is to fit a function which approximates the relation between the features and the outcomes that 

can be used later to infer the outcomes for a new observation given its features. The non-linear extension of SVM 

of radial basis function (RBF) kernel SVM can moreover accommodate the potential non-linear relationship 

between the neural space and psychopathology. A nested 10-fold grid-search is commonly implemented to tune 

the hyperparameters of C (the error/margin trade-off parameter; in SVM classification case, its target function 

attempts to find a separating hyperplane based on the feature space that is minimizing a measure of error on the 

training set while simultaneously maximizing the 'margin' between the two classes) and γ (the kernel parameter) 

for the RBF kernel (Hsu and Chang, 2003). Class weights can be set when the size of sample is differing across 
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clusters.  

To approach the prediction problem, I employed a Relevance Vector Machine (RVM) (Tipping, 2001) as 

implemented in the SparseBayes package (http://www.miketipping.com/index.htm) to achieve multivariable 

regression so that continuous target variables can be predicted based on set of features (i.e., exploratory 

variables). The RVM refers to a specialization of the general Bayesian framework which has an identical functional 

form to the support vector machine (SVM) (Soentpiet, 1999). In SVM, a separating hyperplane is computed based 

on the feature space learned from the training data by maximizing the margin between the two groups. The SV 

regression (SVR) extends the binary outputs from SVM to achieve an estimation and prediction of continuous 

variables. Analogous to the margin in SVM classification, the regression line of SVR is surrounded by a tube. 

Unlike SVM/SVR, RVM is embedded in a probabilistic Bayesian framework which substitutes the margin term in 

SVM by a prior distribution over the parameters. Specifically, an explicit zero-mean Gaussian prior is imposed to 

avoid severe overfitting associated with the maximum likelihood estimation of the model weights (Ghosh and 

Mujumdar, 2008; Zheng et al., 2008). Sparsity can be achieved in RVM without adding any penalty terms to shrink 

the predictor coefficients since the posterior distributions of many of the estimated weights are already towards 

zero. By computing the predictive distribution, the target value of a previously unseen input vector can be predicted 

from the trained model. RVM is free from constraints on the kernel functions (such as the Mercer‘s condition that 

required by SVM) and utilizes dramatically fewer basis functions. Moreover, the control parameters in RVM can be 

automatically estimated by the learning procedure itself (i.e., no hyperparameters that need to be tuned), which 

thus, exerts enhanced efficiency comparing to a classical SVM/SVR. 

Ten-fold cross-validation and leave-one-site-out analysis are two common strategies to assess the 

out-of-sample generalization performance in classification and prediction experiments (Friedman et al. 2001). In 

10-fold cross-validation, the available data are randomly split into 10 equal-sized groups, and in turn each one of 

the 10 groups is treated as the test set (i.e., the sample that is left-out), to which, the model trained based on the 

remaining 9 groups (training set) is applied, to predict the target for the left-out subjects. Each of the 10 groups will 

be left out once in the process so that every subject got predicted or classified. Then, classification accuracy can 

be calculated as how many subjects are correctly assigned to real clusters in proportion to the total number of 

subjects analyzed. If the sample size is differed across clusters, the balanced accuracy should be used in order to 

account for sample-imbalance condition which can be calculated using the equation below for a binary 

classification: 
 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

 

Where TP is the number of true positives; TN is the number of true negatives; FP is the number of false positives; 

FN is the number of false negatives. 

 

For assessing the performance in multivariable prediction, Pearson’s linear or Spearman’s rank correlation 

coefficient, mean absolute error (MAE), and normalized root-mean-square-error (nRMSE) are commonly used 

http://www.miketipping.com/index.htm
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metrics. The correlation coefficient denotes the model‘s ability to predict, where an unseen patient will fall within a 

previously known distribution (i.e., the relative predictive power). The MAE and the nRMSE denote the absolute 

predictive accuracy referring to how much predicted values deviate from the corresponding observed values, while 

nRMSE is moreover expressed as a fraction of the standard deviation of the observed values. Equations for 

calculating MAE and nRMSE are defined as follows: 
 

 

𝑀𝐴𝐸 = 1 𝑁 ∗  𝑠𝑛
′ − 𝑠𝑛  

𝑛
 

 

with N (1,2,…,n) being the total number of observations (subjects),  sn
′  the predicted value, and sn  the observed 

value for the n-th subject.  
 

𝑛𝑅𝑀𝑆𝐸 =  

  𝑦𝑖 − 𝑦𝑖
′ 
 𝑁

𝑖−1

  𝑦𝑖 − 𝑦𝑖
′    
 𝑁

𝑖−1

 

 

where N is the number of observations (subjects), y is the observed response variable for i-th subject, y̅ is its 

mean, and ŷ is the corresponding predicted value. 

     Leave-one-site-out analysis is particularly useful for evaluating the cross-site generalization performance 

when the data is pooled from multiple sites. In each leave-one-site-out analysis, researchers leave one site out, 

training models on the other sites, and then predict the target‘s values or cluster memberships in the left-out site. 

The process will be repeated until each site has been left out once, and, then, the classification accuracies or the 

correlations/MAE/nRMSE between actual values and their out-of-sample predictions for the left-out sites can be 

averaged to denote the generalization performance. In the prediction of continuous variables, one can also 

calculate the correlation strength between the actual values and the out-of-sample predictions pooled from the 

left-out sites.  

To assess whether the classification or prediction is significant against chance in 10-fold and 

leave-one-site-out cross-validations, permutation testing, instead of parametric statistical tests, need to be used. 

This is because the folds in 10-fold cross-validation and the sites in leave-one-site-out experiments are not 

completely independent. That means the number of degrees of freedom (DOFs) is overestimated and using 

parametric correlation analysis here to derive the p values for cross-validated performance is problematic 

(Noirhomme et al., 2014; Combrisson et al., 2015). For constructing an empirical distribution of the chance 

correlation, one can repeatedly run the following two steps 1) shuffle the values of response variable randomly 

between subjects while keeping everything else exactly the same as that used for predicting the actual values, and 

then 2) record the (chance-level) correlation coefficient between the shuffled values and their predictions. 

Afterward, we can compare the true correlation coefficient (i.e., prediction based on the observed values) with the 

empirical null distribution for deriving the p-values. That is, for example, a null distribution with 1000 chance 
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correlations is constructed, if the true correlation coefficient exceeds all of the 1000 chance correlations, indicating 

a statistical significance of p = 0.001 (i.e., right-tailed).  

 

 

The features (i.e., exploratory variables) I used for brain-based classification of subtypes and prediction of 

symptom dimensional scores were not the original blood oxygen level-dependent (BOLD) signals 

obtained from MRI scanning, but the resting-state functional connectivity measurements computed 

following a series of preprocessing steps. Since the preprocessing procedure for fMRI images was 

identical in my Ph.D projects, I provided the detailed description here ahead of the two attached papers. 

Other supporting information and supplementary materials specific to each paper were provided directly 

after the corresponding papers attached.   

3.4 MRI data preprocessing  

Preprocessing of resting-state fMRI and T1-weighted structural images was done in Statistical Parametric Mapping 

software (SPM12; https://www.fil.ion.ucl.ac.uk/spm) and Computational Anatomy Toolbox (CAT12; 

https://www.neuro.uni-jena.de/cat), respectively. In brief, for the resting-state modality, the first four volumes from 

all fMRI scans were discarded. Then, the DVARS metric (Power et al., 2012) was employed by calculating the 

voxel-wise BOLD signal intensity change between one frame (timepoint) and it‘s backward to detect and remove 

the patients with excessive movements. This is a critical step before any subsequently quantitative investigations, 

since excessive head motion will lead to spurious signals that bias the functional connectivity measures (Power et 

al., 2015). Equation for calculating DVARS was given as follows: 
 

𝐷𝑉𝐴𝑅𝑆 ∆  𝐼𝑖 =    ∆ 𝐼𝑖   𝑥   
2 =   𝐼𝑖 𝑥  − 𝐼𝑖−1

  𝑥   2  

 

where 𝐼𝑖 𝑥   is image BOLD signal intensity at locus 𝑥  on frame i and angle brackets denote the spatial average 

of the voxel-wise signal intensity changes over the whole brain. The DVARS metric was further scaled by dividing 

by the median brain intensity and then multiplying by 1000 to approximate the magnitude that was reported in 

Power et al. (2012), i.e., 10 units of DVARS refer to 1% BOLD signal change. Afterward, all of the images 

were slice timing corrected using a newly proposed method of filter shift (Parker et al., 2017). The effectiveness 

and superiority of this method over the existing interpolation-based methods have been demonstrated (Parker et 

al., 2017), especially in the case that the subjects have moderate to high head motions. The slice timing corrected 

images were then head motion corrected in SPM12, and the derived six motion parameters were recorded. 

Following head motion correction, the images were normalized to MNI152 space by using an EPI template in 

SPM12 with a 4 x 5 x 4 basis set to alleviate overfitting (Calhoun et al., 2017). The normalized images were 

resampled to an isotropic voxel size of 2mm. The high-resolution T1-weighted structural images were 

preprocessed in CAT12 including tissue segmentation and spatial normalization to MNI152 space based on the 

shoot program (Ashburner and Friston, 2011). The resulting partial volume image for each patient encompasses 

the segmentations of white matter (WM) and CSF which were used as masks for extracting the global mean WM 

https://www.fil.ion.ucl.ac.uk/spm
https://www.neuro.uni-jena.de/cat
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and CSF signals. Here a quality control analysis was conducted by using the ―check sample homogeneity‖ module 

in CAT12 to filter out those subjects with poor segmentation quality in structural images which may bias the 

estimation of WM and CSF signals. Twenty-four head motion parameters (the 6 head motion parameters of roll, 

pitch, yaw, translation in three dimensions, their first temporal derivatives, and quadratic term signals), together 

with the non-neuronal components of the extracted total WM and CSF signals were regressed out from the overall 

BOLD signals (Varikuti et al., 2017). Finally, band-pass filtering was performed on the data to restrict frequencies 

between 0.01 and 0.08 Hz.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Synopsis of the article 

24 

4. Synopsis of the article 

Collectively, the aforementioned aims 

Aim 1: To identify a robust, stable, and generalizable factor-structure (i.e., dimensions) of the Positive and 

Negative Syndrome Scale (PANSS); 

Aim 2: To identify psychopathological subtypes expressed along the new axes of psychopathology derived from 

aim 1 to realize a hybrid dimensional-categorical conceptualization of schizophrenia symptomatology; 

Aim 3: To identify neurobiological divergence between the yielded psychopathological subtypes; 
have been addressed by  

1) implementing an orthonormal projective non-negative matrix factorization (OPNMF) with a strict evaluation 

procedure (incl. split-half analyses, bootstrap resampling stability, and 10-fold cross-validation) for model selection 

to derive the factor-structure that is stable irrespective of data perturbation and generalizable across samples;  

2) applying two well-established fuzzy-clustering approaches (fuzzy c-means and Gaussian mixture modeling) to 

individual patients based on their symptom expressions on the OPNMF-derived stable, and generalizable 

dimensions of PANSS;  

3) performing classification analysis based on regional resting-state functional connectivity (rsFC) patterns using 

non-linear radial basis function support vector machine. Ten-fold cross-validation was employed to assess the 

out-of-sample neurobiological classifiability of the identified psychopathological subtypes;  

in my first Ph.D paper published in “Biological Psychiatry”:  

Neurobiological Divergence of the Positive and Negative Schizophrenia Subtypes Identified on a New Factor 

Structure of Psychopathology Using Non-negative Factorization: An International Machine Learning Study 

(https://www.biologicalpsychiatryjournal.com/article/S0006-3223(19)31707-X/fulltex). 
 

Aim 4: To link the identified dimensions of psychopathology to intrinsic brain connectivity patterns of functional 

brain networks; 

Aim 5: To investigate whether the identified symptom-predictive networks are associated with the distribution of 

specific receptor/transporter systems (i.e., molecular architecture); 

have been addressed by: 
1) conducting network-based predictive modeling using relevance vector machine. That is, individual expressions 

of the identified symptom dimensions in individual patients were predicted from rsFC within 17 a priori, 

meta-analytically defined task-activation networks. Besides the application of 10-fold and leave-on-site-out 

cross-validations, predictive models identified in a multi-site sample were moreover validated in an independent 

schizophrenia sample. 

2) implementing a spatial correlation analysis between the identified symptom-predictive networks and whole-brain 

density maps of nine receptors and transporters from prior molecular imaging in healthy populations. These 

receptors and transporters are primarily subserving the dopaminergic, the serotoninergic, and the GABAergic 

systems. 

In my second Ph.D paper in ―bioRxiv‖ as a preprint:  
Connectivity patterns of task-specific brain networks allow individual prediction of cognitive symptom dimension of 

schizophrenia and link to molecular architecture 

(https://www.biorxiv.org/content/10.1101/2020.07.02.185124v1). 

https://www.biologicalpsychiatryjournal.com/article/S0006-3223(19)31707-X/fulltex
https://www.biorxiv.org/content/10.1101/2020.07.02.185124v1
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5.1 Main text 
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5.2 Supporting information  

(for complete supplementary methods, tables, and figures please refer to 

https://www.biologicalpsychiatryjournal.com/cms/10.1016/j.biopsych.2019.08.031/attachme

nt/9bc24329-8974-4452-b65f-d3d634ccc4b1/mmc1.pdf; below I only provided some key 

aspects for the purpose of an integrative demonstration within the thesis) 

 

5.2.1 Detailed sample information  

The Utrecht sample: 

Patients with chronic schizophrenia were diagnosed according to the Diagnostic and Statistical Manual of Mental 

Disorders, Fourth Edition (DSM-IV) criteria (Association AP, 1994) by an independent psychiatrist using the 

"Comprehensive Assessment of Symptoms and History (CASH)" (Andreasen et al., 1992). This study was 

approved by the Humans Ethics Committee of the University Medical Center Utrecht with written informed consent 

obtained from the all participants (Clos et al., 2014). 

The Göttingen sample: 

Patients were recruited from the Department of Psychiatry and Psychotherapy, University Medical Center 

Göttingen. They met the diagnostic criteria of schizophrenia according to DSM-IV (Association AP, 1994). Patients 

who had substance abuse within the last month, cannabis abuse within the last 2 weeks, past or present 

substance dependency, somatic or mental disorders that would interfere with the protocol, acute suicidal tendency 

or an inability to give written consent were excluded (Chahine et al., 2017). 

The Groningen sample: 

Diagnosis of schizophrenia was established based on the DSM-IV criteria (Association AP, 1994), confirmed by a 

Schedules for Clinical Assessment in Neuropsychiatry (SCAN) interview (Giel and Nienhuis, 1996). Exclusion 

criteria included a personal or family history of epileptic seizures, a history of significant head trauma or 

neurological disorder, the presence of intracerebral or pacemaker implants, inner ear prosthesis or other metal 

prosthetics/implants, severe behavioral disorders, current substance abuse, and pregnancy (Vercammen et al., 

2010). The study was approved by the Institutional Review Board of the University Medical Center Groningen. 

The Lille sample: 

Patients were diagnosed with schizophrenia according to the DSM-IV-TR criteria (Spitzer et al., 2002). All patients 

routinely presented frequent (more than 10 per day) and resistant hallucinations as evaluated with item P3 of the 

PANSS. The exclusion criteria included the presence of an Axis-II diagnosis, secondary Axis-I diagnosis, 

neurological or sensory disorder, and a history of drug abuse, which was based on a clinical interview and urine 

tests that were administered at admission. The study was approved by the local ethics committee (CPP 

Nord-Ouest IV, France). Written informed consent from each patient was obtained (Lefebvre et al., 2016).  

The Munich sample: 

All participants provided informed consent in accordance with the Human Research Committee guidelines of the 

Klinikum Rechts der Isar, Technische Universität München. Patients with a diagnosis of schizophrenia based on 

https://www.biologicalpsychiatryjournal.com/cms/10.1016/j.biopsych.2019.08.031/attachment/9bc24329-8974-4452-b65f-d3d634ccc4b1/mmc1.pdf
https://www.biologicalpsychiatryjournal.com/cms/10.1016/j.biopsych.2019.08.031/attachment/9bc24329-8974-4452-b65f-d3d634ccc4b1/mmc1.pdf
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the Structured Clinical Interview for DSM-IV (SCID-I German version) were recruited from the Department of 

Psychiatry, Klinikum Rechts der Isar, TU München. Exclusion criteria were current or past neurological or internal 

systemic disorder, current depressive or manic episode, substance misuse (except for nicotine) and cerebral 

pathology on MRI (Peters et al., 2017; Sorg et al., 2012).  

The Albuquerque sample： 

This dataset was collected and shared by the Mind Research Network and the University of New Mexico funded by 

a National Institute of Health Center of Biomedical Research Excellence (COBRE; 

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html). Patients with schizophrenia were diagnosed based on 

DSM-IV using the Structured Clinical Interview used for DSM-IV axis I disorders (SCID). Informed consent was 

obtained from participants at the University of New Mexico. All patients were chronic andwith relatively well-treated 

symptoms by a variety of antipsychotic medications (no medication changes in 1 month).Those patients with a 

history of neurological disorder, head trauma with loss of consciousness greater than 5 min, mental retardation, 

active substance dependence or abuse (except for nicotine) within the past year, current use of mood stabilizers, 

history of dependence on PCP, amphetamines or cocaine, or history of PCP, amphetamine, or cocaine use within 

the last 12 months were excluded (Mayer et al., 2013).  

The Wayne State sample:  

Diagnosis of schizophrenia was established according to the DSM-V criteria (Association AP, 2013) using the 

Structured Clinical Interview used for DSM-V axis I disorders. The Wayne State University Institutional Review 

Board approved all experimental procedures, and written informed consent was obtained from each patient. All 

patients were on stable antipsychotic treatments with either first generation, second generation antipsychotics or a 

combination of both. Exclusion criterion: (i) significant history of, or current medical or neurologic illness requiring 

systemic treatment; (ii) neurologic disorders, including head injury with loss of consciousness; (iii) Significant drug 

or alcohol use in the previous month or meeting DSM-V criteria for substance Abuse; (iv) meeting the DSM-V 

criteria for schizoaffective disorder or any other psychotic disorders other than schizophrenia; (v) co-morbidity for 

any (major) DSM-V Axis I diagnosis. 

The Aachen sample: 

Patients were diagnosed with schizophrenia according to the DSM-IV criteria (Association AP, 1994) using the 

German version of the Structured Clinical Interview for DSM Disorders (SCID) by attending psychiatrists. Any 

patients with past or current presence of secondary Axis-I diagnosis, neurological or sensory disorder, and a 

history of drug abuse were excluded. The study was approved by the ethics committee of the Medical Faculty of 

the RWTH Aachen University with written informed consent obtained (Regenbogen et al., 2015; Schilbach et al., 

2016).  

The Singapore sample: 

Patients were diagnosed with schizophrenia according to the DSM-IV criteria using the Structured Clinical 

Interview for DSM-IV Axis I disorders-Patient Edition (SCID-P) (First et al., 1994) by the treating psychiatrist. 

Participants were free from a history of neurological illness or a diagnosis of alcohol or drug misuse in the past 

three months based on DSM-IV criteria. All patients were on a stable dose of antipsychotic medication for at least 2 

weeks, and none had medication withdrawn for the purpose of the study (Collinson et al., 2014).  
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Table 5.2.1 Demographic and clinical characteristics of the schizophrenia samples for each site 

 

Characteristics 
           Europe  The USA Asia 

Total 
Aachen Lille Göt tingen Groningen Utrecht Munich Albuquerque Wayne State Singapore 

Total N for OPNMF 89 53 35 28 50 21 48 19 147 490 

Age  35.73±9.59 35.09±9.45 32.31±9.83 35.25±11.19 29.98±9.68 34.05±12.27 37.67±13.76 30.53±8.62 32.72±9.10 34.89±11.67 

Gender (male/female) 57/32 41/12 28/7 17/11 32/18 10/11 37/11  10/9 101/46 333/157 

N with illness duration 

information for ANOVA and 

sub-typing 

70 40 35 23 11 0 48 19 147 393 

Illness duration 8.90± 8.39 12.60± 6.81 7.29±7.72 8.39±7.94 9.00± 7.06 N.A 16.69± 12.47 7.79± 8.29 6.55±7.47 9.13±8.98 

PANSS           

P3 item 2.16±1.73 5.13±0.83 4.07±1.71 1.46±1.02 3.60±1.99 2.57±1.81 2.69±1.49 1.95±0.94 1.88±1.25 2.66±1.83 

Positive 14.54±5.77       21.32± 4.76 15.82± 5.06     12.03±3.54     16.14±4.43     19.38±6.15     14.50±4.97 11.63±2.16 10.59±3.84 14.24±5.76 

Negative 19.38±8.90      21.02±6.08 14.21±4.64        13.57±4.87 16.28±4.99     20.90± 7.75 14.15±4.48         11.63±3.25 9.00±3.03 14.67±7.21 

General 34.64±13.68        40.85±10.65 29.11±7.74       27.97±5.86 33.20±7.68    39.95 ±11.09 28.21±8.36 20.79±3.79       20.21±3.70         29.10±11.34 

Total 68.56±24.69         83.19±19.06 59.14±14.92        53.57±11.04          65.62±14.32    80.24±21.70 56.85±13.52          44.05±7.55 39.80±8.39         58.01±21.87 

N with medication information 29  17  38  24 15  N.A 69 19  N.A 211 

Antipsychotic treatment           
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FGA 0 3  0  1  5  N.A 8  9 N.A 26  

SGA 27 12  29 23 9  N.A 58  9 N.A 167  

FGA + SGA 2  2  7  0  1  N.A 3  1  N.A 16  

None 0 0 2 0 0 N.A 0 0 N.A 2  

OZP-equivalent dosage 20.64±11.03 26.24±21.21 25.06±11.49 14.55±8.31 17.10±12.42 N.A 14.84±10.96 12.47±12.88 N.A 19.64±14.15  

 

Note: Data are mean±SD; N: number of subjects, OPNMF: orthonormal projective nonnegative matrix factorization, FGA: first-generation antipsychotic, SGA: second-generation 

antipsychotic, PANSS: Positive and negative symptom scale, OZP: Olanzapine, NA, not available. 

 

 

 

 

 

 

 

 

 

 

 



Supporting information: Machine Learning Models of Schizophrenia Psychopathology 

42 

5.2.2 Model evaluation procedure for OPNMF factorization 

To determine the optimal factor model of PANSS as the robust, stable and generalizable low-dimensional 

representation of schizophrenic symptomatology, a sophisticated evaluation procedure was developed based on 

three data perturbation methods of split-half, bootstrap, and 10-fold cross-validation. Below I firstly provided a 

detailed description on the implementation of split-half evaluation.   

In summary, in each split-half realization, the set of columns of the original item by patient matrix is randomly 

split into two independent sets of equal length. Then, OPNMF was performed on the ensuing two-half submatrices 

and each item was assigned to a certain factor for the submatrices. Three evaluation indices were calculated 

based on the similarities of item-assignment (adjusted Rand index [aRI], variation of information [VI], Jaccard index 

[JI]), plus the concordance index (CI) which was calculated based on the whole entries of the basis matrix W (here 

instead of using the hard-assignment results of the items based on the entries of W, CI was calculated based on 

the initial values within W) between the two submatrices to demonstrate stability. Generalizability was evaluated by 

measuring increase in out-of-sample reconstruction error. 

 

Overview 

1. Stability:  

A. based on hard-assignment of the items to specific factors (as a natural clustering):  

Decomposition of the data matrix V results in two matrices, i.e. with the loading matrix WTV we can cluster on it 

using cardinal clustering methods to identify the subtypes of schizophrenia patients according to their differential 

symptomatic expressions; the basis matrix W is exactly the factorization results encoding the latent dimensions of 

the PANSS. As that conducted in previous literature (Brunet et al., 2004), we assigned the items into k factors 

based on the largest coefficients. Specifically, item j is placed in factor i if the wij is the largest entry in column i. 

Afterward, three evaluation indices of aRI, JI and VI were employed to reflect how similar of the factor-label 

assignment for each item and item-pair grouping between the two split samples in each split-half realization. 

B. based on the initial values of the all entries in the basis matrix W. Since an item can be influenced by multiple 

dimensions and may have small contributions to other factors (low coefficients loaded on other factors besides the 

one an item is assigned to), the CI which reflects the concordance of the cosine similarity for each pair of the 

PANSS items between the factorizations of split-samples was thus employed to account for the items with multiple 

factor-memberships. 

2. Generalizability (indicates how well novel data can be compressed by a given dictionary): 

Generalizability is assessed by measuring increase in out-of-sample reconstruction error. The reconstruction error 

is the absolute differences between the reconstructed matrix and the original data matrix, and then averaged over 

items (for per subject). The out-of-sample increased reconstruction error refers to how much worse the matrix is 

reconstructed relative to the original data matrix by the dictionary (basis matrix) obtained from model-unseen 

sample comparing to the reconstruction error calculated by the matrix recovered from the within-sample dictionary. 

 

Methodological notes for bootstrapping and 10-fold cross-validation based evaluations 

In bootstrap and 10-fold cross-validation, we implemented the evaluations in a similar way as that have been done 
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for the split-half analysis, except for the following highlighted differences: 

 

In bootstrap (within-sample):  

The four evaluation indices were calculated based on the comparison of the basis matrix W from the bootstrapped 

sample to the one derived from the original sample; the transfer (out-of-sample increased) reconstruction error was 

derived as follows: after projecting the left-out sample (patients that were not selected in the bootstraps) onto the 

dictionary obtained from the bootstrapped sample, we compared the ensuing (out-of-sample) reconstruction error 

with the within-sample reconstruction error of the left-out data. 

 

In 10-fold: 

We created ten partitions of equal length sampling randomly from the original sample, and performed OPNMF on 

nine of the ten partitions (training set), as well as the held-out one (test set). Then, we calculated the evaluation 

indices of aRI, JI, VI and CI between the basis matrix from the nine partitions and the one from the test sample. For 

transfer reconstruction error calculation, we likewise projected the held-out (1/10th) sample onto the dictionary 

obtained from the other nine partitions (9/10th) and compared the ensuing (out-of-sample) reconstruction error with 

the within-sample reconstruction error of the test set. The above process was repeated for ten times to ensure that 

each of the partition has been treated as the held-out (test) sample once. Afterwards, the obtained values were 

averaged over the ten repeats as the metric for one 10-fold realization. Finally, the above procedures were iterated 

for 1000 times, i.e. 1000 sets of randomly generated ten partitions. 

 

In between-sample (PHAMOUS vs. international) bootstrap-based comparisons: 

In each realization of the between-sample bootstrap-based comparison, we bootstrapped the two datasets 

independently and performed OPNMF separately on the ensuing bootstrapped samples. The evaluation indices of 

aRI, JI, VI and CI were calculated between the basis matrices derived from the two bootstrapped samples. To 

calculate the transfer (out-of-sample increased) reconstruction error, we projected the bootstrapped sample that 

was drawn from the international data onto the dictionary obtained from the bootstrapped PHAMOUS sample, and 

then we compared the ensuing (out-of-sample) reconstruction error with the within-sample reconstruction error of 

the bootstrapped international sample. This reflects how well the PHAMOUS dictionary can decode the 

international data, indicating the generalization performance of the PAHMOUS derived factor-structure to the 

heterogeneous, international patient cohorts.  
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Figure 5.2.2-1 Illustration of OPNMF factorization 
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Figure 5.2.2-2 Flow chart for OPNMF model evaluation 
 
 

 

 
 
 



Supporting information: Machine Learning Models of Schizophrenia Psychopathology 

46 

5.2.3 Evaluation of loading and item-score predictions 

The stability and accuracy of loading (i.e., dimension score) and item-score predictions were evaluated based on 

between-sample bootstrap resampling. Basically, we showed the variations of the PHAMOUS dictionary predicted 

factor-loadings and PANSS item-scores for the international sample over the 5,000 bootstrap realizations, and 

then aggregated over subjects. In detail, in each bootstrap realization, we computed the factor-loadings for each 

individual patient in the international sample following the projection of international data onto the PHAMOUS 

generated dictionaries. Then, the predicted loadings were compared with the loadings that were estimated within 

the international sample. After multiplying the predicted loadings by the PHAMOUS dictionary, we got the predicted 

PANSS item-scores for each individual patient in the international sample. Here, the predicted item-scores were 

compared with the actual ratings. We used two metrics, Pearson correlation coefficient and the normalized 

root-mean-square-error (nRMSE), to quantify the aforementioned comparisons, denoting the precise patterns of 

the predicted loadings and the item-scores. Results showed that the best prediction of loadings and item-scores 

(averaged over the factors and the subjects) was achieved by a model with four factors where the correlation 

coefficient reaches highest and the nRMSE reaches lowest (Figures 5.2.3-1A, C), providing a solid support for 

future actionable use of the current OPNMF four-factor model. More specifically, for the four dimension loadings, 

prediction for the negative loadings was the most stable and accurate (Figure 5.2.3-1B). We also tested the 

prediction performance for each individual site in the international sample. Basically, the prediction accuracies for 

both the loadings and the item-scores for each of the nine sites were similar, and local minimums were achieved 

consistently across sites at a solution with four factors, indicating that the predictions from a four-factor model were 

stable across sites (Figure 5.2.3-2). In addition, the newly emerged fifth factor in the five-factor model showed the 

worst out-of-sample prediction accuracy (highest nRMSE and lowest correlation coefficients) with lower stability 

compared to the other factors in the five-factor model (Figure 5.2.3-1B) and the all factors in the four-factor model 

(Figure 5.2.3-1B). These results further corroborated that a four-factor model outperforms a model with five factors. 
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Figure 5.2.3-1 Stability and accuracy of predicting factor-loadings and item-scores for 
independent sample 
 

 
Note: The newly emerged fifth factor in the OPNMF five-factor model represents excited symptoms primarily including 

poor impulse control and excitement items. 
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Figure 5.2.3-2 Stability and accuracy of predicting factor-loadings and item-scores for each 
independent site 
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5.2.4 Quantitative comparison of PCA and OPNMF factor models 

First, we applied PCA and OPNMF to the PHAMOUS sample (as training set), then we computed the 

(within-sample) explained variance (EV) for the matrix reconstructed by the basis matrix (i.e., OPNMF dictionary) 

and the PCA loadings, respectively (Figure 5A). Of note, the higher variance explained by PCA compared to 

OPNMF is not unexpected as OPNMF applies a lot of regularizations/constraints which will then reduce the final 

variance that can be explained by the learned factors: 1) H and W (the learned parameter) must be non-negative; 2) 

H can be replaced by W’V (projectable); 3) factors are as orthogonal as possible (W becomes sparse). 

Furthermore, we measured the ―loss of EV‖ metric based on the international sample to indicate the generalization 

performance. As in the previous evaluations, we performed PCA and OPNMF on the international dataset, and got 

the within-sample EV for each of the two methods. Then, we tested how much worse (i.e., decreases in EV) when 

the international data were recovered by the dictionaries/components derived from the PHAMOUS sample. A 

higher loss of EV indicates worse generalizability of the dictionaries/components (Figure 5B). From these results, 

obviously that OPNMF is with better generalization performance with lower loss of EV, especially for the four factor 

model which achieved the local minimum. That is, PCA showed higher within-sample EV, but at the cost of much 

lower interpretability. In turn, OPNMF showed a slightly lower EV, but it better generalized to new data with lower 

loss of EV when the trained dictionaries were applied to novel samples. In summary, the good generalization 

combined with the superior interpretability of a parts-based representation make OPNMF a more appropriate tool 

for representing latent dimensions of psychopathology than PCA.  
 

 

Figure 5.2.4 Quantative comparison between OPNMF and PCA

 

 

A) Within-sample explained variance (EV) for the matrix reconstructed by OPNMF dictionary and the PCA loadings.  

B) A higher loss of EV indicates worse generalizability. OPNMF is with better generalization performance with lower loss 

of EV, especially for the four factor model which achieved the local minimum. 
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5.2.5 Exploratory and confirmatory factor analysis 

Finally, we conducted exploratory factor analysis (EFA) on the PHAMOUS sample to derive factor-models by 

setting the factor numbers from four to seven according to previous literature (these factor numbers have been 

reported in previous PANSS factorial studies) (Kay and Sevy, 1990; Emsley et al., 2003; Van den Oord et al., 2006; 

van der Gaag et al., 2006b), and then applied confirmatory factor analysis on the international sample to test the 

goodness of fit of the models that derived from EFA experiments. EFA was done with SPSS version 19.0 (IBM, NY, 

USA), and the Analysis of Moment Structures (AMOS; version 25) was used for performing CFA. Specifically, in 

EFA, principal components factor analysis using varimax rotation was conducted. The varimax rotation was 

chosen to keep consistency with previous factorial studies on PANSS (White et al., 1997; Kim et al., 2012). 

Following the varimax rotation, items were assigned to factors according to their highest loadings. Internal 

consistency for each of the factors was quantified by the Cronbach's alpha coefficient (higher values indicate more 

closely related items within a set) (Cronbach, 1951). Of note, the internal consistency analysis, as well as the 

below CFA was conducted in the international sample. In all CFA, PANSS items were specified to load on a single 

factor based on the PHAMOUS-derived EFA models. All factors were allowed to correlate with error covariates set 

to zero. The robust maximum likelihood method was employed to compute the fit indices, since this method is less 

likely to be affected by sample size, nonnormality and model size (Bentler, 1985; Chou and Bentler, 1995). In 

compliance with previous PANSS factorial studies (Kay and Sevy, 1990; Emsley et al., 2003; Van den Oord et al., 

2006; van der Gaag et al., 2006b), three indices of the Comparative Fit Index (CFI), the Normed Fit Index (NFI), 

and the Root Mean Square Errors of Approximation (RMSEA) were adopted to assess the goodness-of-fit. Models 

assessed by CFA with values of CFI and NFI greater than 0.90 and RMSEA less than 0.08 are indicated to have 

adequate fit (Kline, 2015; Marsh et al., 2004).      

Results showed that the internal consistency coefficients for all of the four factor-models that identified by EFA 

were variable (ranging from 0.49 to 0.91) with multiple were lower than the least acceptable level of 0.7. All of 

these factor-models could not to be confirmed in the international sample, i.e., inadequate fit (Table 5.2.5). 

 

Table 5.2.5 Fit indices for EFA models on independent samples 

 

Models NFI CFI RMSEA Cronbach's alpha 

Four-factor 0.712 0.756 0.099 0.59, 0.82, 0.82, 0.91 

Five-factor 0.757 0.804 0.089 0.59, 0.79, 0.81, 0.83, 0.91 

Six-factor 0.748 0.793 0.092 0.49, 0.59, 0.78, 0.79, 0.81, 0.91 

Seven-factor 0.756 0.800 0.091 0.49, 0.59, 0.69, 0.70, 0.78, 0.79, 0.91 

Note: NFI: Normed Fit Index, CFI: Comparative Fit Index, RMSEA: the Root Mean Square Errors of Approximation. 
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5.2.6 Assessment of clustering stability 

After the optimal cluster number was determined, leave-one-site-out analysis was performed to validate that the 

clustering results are not driven by any particular site. Specifically, in each leave-one-site-out experiment, we left 

out all the patients from one site, and on the remaining sample we re-calculated the residuals after partialling out 

the effects of age, gender, illness duration and symptom severity from the factor-loadings. Then, the same fuzzy 

c-means clustering strategy was applied to the obtained residuals followed by the same cluster selection criteria to 

determine the optimal number of clusters. These processes were repeated until each site had been left out once. 

Stability of cluster solutions was tested via subsampling and bootstrap resampling evaluation processes, reflecting 

how stable the partitions hold when the original sample is perturbed. If the structure in the data has been captured 

well by a partition, this partition should be stable with respect to data perturbation. The evaluation scheme was 

implemented as follows: the whole dataset is clustered by fuzzy c-means; a set of random subsamples (70% of the 

whole dataset) and bootstrapped samples are generated and clustered as well. ARI was used to indicate stability, 

which reflects the similarity between the partition of the reference clustering and the partitions of the subsampled 

and bootstrapped data, i.e. the consistency of patient-pair assignment between the sub/bootstrapped partitions 

and the partition derived from the original sample. The best partition in representing the structure of the original 

sample should have the highest stability (aRI). The idea and the process of testing clustering stability in the present 

study were similar as that demonstrated in previous literature (Ben-Hur and Guyon, 2003). Also, values of the three 

employed validity indices were calculated for each subsampled and bootstrapped data, to verify whether the 

optimal cluster solution holds when the original data were perturbed. Of note, for any new subsampled and 

bootstrapped data, residuals that used for clustering were re-calculated based on the corresponding covariates of 

age, gender, illness duration and total PANSS score.  
 

5.2.7 Longitudinal stability analysis of the identified subtypes 

Fuzzy c-means clustering with the same parameter settings as the one applied to the international sample was 

performed on the followed patients in the PHAMOUS sample. 527 patients who have the complete age, gender 

and illness duration information were involved. The optimal dictionary with four factors, identified on the 

PHAMOUS 1545 patients without repeatedly assessed PANSS scores, was used for projection to yield the 

factor-loadings. Effects of age, gender, illness duration and symptom severity (total PANSS score) on the projected 

loadings were regressed out, and the residuals were used for clustering analysis to identify patient subtypes. The 

aforementioned three validity indices were employed to ascertain the optimal cluster number, and we found that all 

the values pointed to a cluster solution equaling to 2 as well. Then, we assessed the longitudinal stability of the 

identified psychopathological subtypes as follows (i.e., whether a patient preserved his/her subtype over time from 

the initial recorded PANSS scores to the follow-up psychopathology):  

A.  Used the optimal four-factor dictionary from the PHAMOS sample (1545 patients with initial PANSS scores) as 

reference, on which the initially recorded PANSS scores of the 527 follow-up patients were projected to derive 

the factor-loadings. 

B.  On the factor-loadings performed 4-way ANOVA analysis and recorded the resulting betas for the four 
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factor-loadings.  

C.  Effects of age, gender, illness duration and symptom severity (total PANSS score) on the four factor-loadings 

were then removed to obtain the residuals. We performed fuzzy c-means on the residuals to partition the 

patients into 2 clusters and those patients with membership likelihoods lower than 0.7 were excluded. The 

subtype (cluster label) for each patient and the cluster centers were recorded. 

D.  Likewise, the four-factor dictionary from the whole PHAMOUS sample was used for deriving the 

factor-loadings of the repeatedly assessed PANSS scores of the 527 follow-up patients. Of note, we here 

constructed a regression model using the betas that obtained in B to derive the residuals after removing the 

effects of age, gender, illness duration and symptom severity on the factor-loadings. 

E.  Based on the residuals obtained in D, we calculated the squared Euclidean distance between each patient 

and the two cluster centers defined in C (i.e., based on the initially assessed PANSS scores). Then, each 

patient was assigned to a specific cluster if its center, comparing to other clusters, has the closest distance to 

that patient. Afterwards, each patient has a ―predicted‖ cluster label (i.e., psychopathological subtype) 

according to the follow-up PANSS assessments. In this stage, by comparing the cluster label of each patient 

based on the repeatedly assessed PANSS scores to the one identified based on the initial assessments 

derived in C, we have the information about how many patients retained their subtypes longitudinally. 
 

5.2.8 Connectivity matrix construction and classification analysis 

Scanning parameters for both the T1-weighted structural and resting-state fMRI images were provided in Tables 

5.2.8-1&5.2.8-2. The resting-state blood oxygen level-dependent (BOLD) time-series were extracted based on a 

parcellation system combining Schäfer‘s 600 cortical parcels (local-global parcellation based on resting-state 

functional connectivity) (Fan et al., 2016) and 36 subcortical parcels that taken from the brainnetome atlas (Shen et 

al., 2013). The extracted voxel-wise time-series for each of the 636 parcels were compressed using the first 

eigenvariate which were then used to calculate pairwise Pearson correlations to form the whole brain connectivity 

matrix. The correlations were then Fisher’s z-transformed prior to classification analysis. According to the 

histograms of the mean DVARS values for the patients (Figure 5.2.8-1), any patient with a DVARS larger than 50 

(i.e., 5% BOLD signal change) was treated as an outlier and was removed from the classification analysis. Of note, 

the threshold of DVARS = 50 is roughly equivalent to a framewise displacement (FD) of 0.5 mm as was 

demonstrated in Power et al. (2012) and the cutoff of FD = 0.5mm has been commonly used in the literature (as 

reviewed in Power et al. [2015]). A supervised support vector machine (SVM) was adopted to approach the 

classification problem, to classify the psychopathological subtypes for novel patients from the resting-state fMRI 

features. Parcel-wise classification analysis was conducted using the connectivity profile of each parcel individually. 

Effects of age, gender, site, illness duration, symptom severity (total PANSS score) and head motion parameter on 

the connectivity matrix in both the training and the test samples were adjusted using the beta weights obtained 

from performing linear regression models within only the training samples (Snoek et al., 2019). A nested 10-fold 

grid-search was implemented among (only) the training data to tune the hyperparameters of C and γ (the kernel 

parameter) for the radial basis function kernel (Figure 5.2.8-2). Sample imbalance was addressed by setting class 

weights when training the RBF-SVM models, as well as a stratified 10-fold cross-validation strategy for assessing 
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the out-of-sample classification performance. The resulting balanced-accuracy for each parcel was averaged over 

folds and then over 50 replications of the entire procedure to avoid influences of the initial splits.  
 

 

 

Figure 5.2.8-1 Histograms for the head motion parameter 

 
 
Head motion shown for the patients of core subtypes (left panel), and all patients including those with an ambiguous 

subtype membership (right panel). Ten DVARS units refer to 1% BOLD signal change. 
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Figure 5.2.8-2 Schematic for 10-fold cross-validation in classification analysis 
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Table 5.2.8-1 Scanning parameters for resting-state BOLD fMRI 
 

Site Aachen-1 Aachen-2 Groningen Goettigen Lille Albuquerque Utrecht 

Scanner 
Siemens   

TrioTim3T 

Siemens  

TrioTim3T 
Philips Achieva3T 

Siemens 

TrioTim 3T 

Philips1 

Achieva 3T 

Siemens  

TrioTim 3T 

Philips1 

Achieva 3T 

TR (ms) 2000 2000 2400 2000 19.25 2000 21.75 

TE (ms) 21 28 28 30 9.6 29 32.4 

Number  

of slices 
44 34 43 33 45 32 40 

Slice-thickness 

(mm) 
3 3.3 3 3 3.22 4 4 

Gap (mm) n.a 3.6 n.a 0.6 n.a 1 n.a 

FA (degree) n.a 77 85 70 9  75 10 

Orientation Axial Axial Axial Axial Sagittal Axial coronal 

In-plane 

resolution 

(mm2) 

3 x 3 3.6 x 3.6 3.44 x 3.44 3 x 3 n.a 3 x 3 n.a 

Voxel size (mm3) 3 x 3x 3 3.6 x 3.6x 3.3 3.44 x 3.44x 3  3 x 3x 3 3.22 x 3.22 x 3.4 3 x 3x 4 4 x 4 x 4 

 

Note: TR: repetition time, TE: echo time, FA: flip angle; 1PRESTO-SENSE sequence achieving full brain coverage within 609 ms 

for the Utrecht site and 1001 ms for the Lille site combining a 3D-PRESTO pulse sequence with parallel imaging in 2 directions 

(8-channel SENSE head-coil). 
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Table 5.2.8-2 Scanning parameters for T1-weighted structural MRI 
 

Site Aachen-1 Aachen-2 Groningen Goettigen Lille Albuquerque Utrecht 

Scanner 
Siemens 

TrioTim3T 

Siemens  

TrioTim3T 

Philips Achieva 

3T 

Siemens  

TrioTim3T 

Philips1 

Achieva 3T 

Siemens2 

TrioTim3T 
Philips1 

Achieva 3T 

TR (ms) 1900 2300 2500 2250 10 2530 9.86 

TE (ms) 2 3.03 4.6 3.26 4.6 
[1.64, 3.5, 5.36, 

7.22, 9.08] 4.6 

Number  

of slices 
176 176 160 176 160 176 160 

Slice-thickness 

(mm) 
1 1 1 1 1 1 

1 

FA n.a 9 30 n.a n.a 7 n.a 

In-plane 

resolution 

(mm2) 

0.97 x 0.97 1 x 1 1 x 1 1 x 1 1 x 1 1 x 1 0.875 x 0.875 

 

Note: TR: repetition time, TE: echo time, FA: flip angle; 1PRESTO-SENSE sequence, 2a multi-echo MPRAGE (MEMPR) sequence 

with 5 TEs. 
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6.2 Supporting information   

(for complete supplementary materials and methods please refer to 

https://www.biorxiv.org/content/10.1101/2020.07.02.185124v1.supplementary-material; below I 

only provided some key aspects for the purpose of an integrative demonstration within the 

thesis while avoiding reiteration) 
 

6.2.1 Detailed sample information 

Main sample 
The main sample used for the discovery of network-symptom associations was the same patient cohorts as that 

have been employed in the above ―Biological Psychiatry‖ paper. Details can be found in ―5.2.1 Detailed sample 

information‖. 

The B-SNIP sample for validation 

Subjects with schizophrenia in the independent, validation sample were recruited as part of the 

Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) Consortium study which used identical 

diagnostic and clinical assessment techniques with similar recruitment approaches at multiple sites (Baltimore, 

Chicago, Dallas, Detroit, and Hartford). Detailed information on the entire study sample is provided elsewhere 

(Tamminga et al., 2013). These clinical patients were diagnosed using the Structured Clinical Interview for DSM-IV 

Axis I Disorders, Patient Edition (SCID-I/P) and were stably medicated outpatients. The study protocol was 

approved by the institutional review board at each local site and written informed consent was obtained from each 

of the volunteers. For our current study purpose, only schizophrenia patients with complete PANSS and fMRI data 

were included. Among the four sites (Baltimore, Dallas, Detroit, and Hartford) data we retrieved, the Dallas site was 

scanned using a Philips machine such that the details on the order of each slice scanned within a EPI volume were 

not stored in the Header of the resting-state images and was hence excluded, because inaccurate slice timing 

correction will lead to a biased estimation of resting-state functional connectivity (rs-FC). The Detroit site was also 

not included due to the small sample size (<10) retained after sample curation and quality control. Resultantly, the 

dataset (in total 117 schizophrenia patients) pooled from the Hartford site (40 patients) and the Baltimore site (77 

patients) was used as an independent validation for our predictive models. The sample size was considered to be 

sufficient. That is, if the highest effect size of 0.31 (i.e., the correlation r: observed dimensional symptom scores vs. 

their out-of-sample predictions) which was identified in 10-fold cross-validation within the main sample could be 

replicated in the validation sample, the minimal sample size for detecting a significant correlation of 0.31 at an 

α-level of 0.05 (two-tailed) and a power of 80% would be 76 subjects. Our validation sample includes 117 subjects, 

which still has a power of 70% for detecting a statistical significance at the α-level of 0.05 (one-tailed) even at a 

lower effect size of 0.2. Therefore, the sample size of 117 was deemed sufficient for validation. Power analysis was 

performed using the G*Power software (https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie 

-und-arbeitspsychologie/gpower.html) (Faul et al., 2009).  

 

 

https://www.biorxiv.org/content/10.1101/2020.07.02.185124v1.supplementary-material
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie%20-und-arbeitspsychologie/gpower.html
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie%20-und-arbeitspsychologie/gpower.html
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Figure S1. Illustration of the robust four-dimensional representation of psychopathology identified in 
our prior machine-learning study (A) and the dimensional-scores estimated for the main (B) and the 
validation (C) samples investigated in the present study 
 

 

 

The four dimension model shown in the left panel was adapted from Figure 1 in (Chen et al., 2020) with permission 

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). The sample used for 

creating the four dimension model is independent of the main and the validation samples analyzed in the present 

work. PANSS: Positive and Negative Syndrome Scale.  

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Table S1. Clinical characteristics of the main, international schizophrenia sample for each site    

 Aachen-1 Aachen-2 
Albuquerque 

(COBRE) 
Göttingen Groningen Utrecht Lille Total P-value1 

N 13 10 47 32 22 10 13 147  

Illness duration 7.93± 8.52 13.11 ±10.93 16.66 ±12.21 7.03 ±7.59 7.64 ±7.23 8.5 ±7.23 12.38±6.06 11.23 ± 10.31 <0.001 

Gender (Male/Female) 10/3 5/5 36/11 26/6 13/9 5/5 8/5 103/44 0.178  

Age 35.07±11.15 34±9.77 37.72±13.9 32.28±9.94 34.05±12.83 33.3±8.69 32.77±8.45 34.77±14.71 0.537 

Antipsychotic treatment          

Typical antipsychotics 0 0 4 0 1 1 1 7  

Atypical antipsychotics 13 10 41 26 19 4 10 123  

Both atypical and typical 

antipsychotics 
0 0 2 5 0 0 1 8  

Missing/None 0 0 0 1 2 5 1 9  

olanzapine -equivalent2 21.72±10.05 18.92±12.87 14.84 ±10.96 25.06 ± 11.49 14.55 ± 8.31 17.10 ± 12.42 26.24±21.21 18.81 ± 11.60 0.001 

Scores on the Four  
Dimensions of PANSS 

        

Negative 1.78±1.68 5.99±3.94 2.41±2.05 1.93±1.59 2.30±2.20 3.69±2.36 5.59±2.96 2.92±2.53 <0.001 

Positive 2.99±2.23 4.47±2.97 2.99±2.03 1.61±1.54 4.27±2.32 4.91±1.44 6.45±2.12 3.41±2.44 <0.001 

Affective 2.65±1.79 6.70±3.29 3.12±2.19 2.76±1.60 3.01±2.11 3.33±1.73 5.12±3.10 3.40±2.38 <0.001 
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Cognitive 1.35±1.26 5.91±2.61 2.12±1.22 2.10±1.35 2.29±1.84 2.69±1.43 5.90±2.30 2.67±2.08 <0.001 

PANSS subscales          

Positive 15.36±6.70 17.11 ± 5.75 14.53 ± 5.07 11.72 ± 3.52 16.59 ± 5.18 17.2 ± 2.78 22.08±4.70 15.31 ± 5.52 <0.001 

Negative 11.14±3.90 24.00±8.00 14.08±4.56 12.75±4.22 14.45±4.97 17.50±5.72 22.15±6.07 15.02±6.05 <0.001 

General 25.29±6.71 49.44±13.09 28.34±8.48 27.56±5.88 29.55±8.56 30.50±8.95 44.15±14.35 30.90±10.98 <0.001 

Symptom severity 

(Total score) 
51.79±15.44 90.56±22.89 56.98±13.79 52.03±10.36 60.59±16.24 65.20±14.75 88.38±23.86 61.33±19.58 <0.001 

 
Note: Data are mean ± SD. N: number of subjects per research site; PANSS, Positive and Negative Symptom Scale; 1Statistical comparison between sites was conducted using 

either one-way analysis of variance (ANOVA) or chi-square test where appropriate. 2Dosage in mg/day.  
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Table S2. Demographic and clinical characteristics of schizophrenia patients retrieved from the 
B-SNIP database  

Characteristics 
Hartford  
(N=40) 

Baltimore 
 (N=77) p-value 

Demographic    

Age (years)a 30.4 (10.98) 37.25 (12.641) 0.004 
Gender (male/female) 29/11 56/21 0.979 

Illness during (years)b 7.62 (7.98) 15.19 (11.77) 0.001 
PANSS  

Positivec 15.03 (5.13) 14.69 (6.19) 0.768 

Negative 14.78 (6.69) 

30.68 (8.39) 

15.40 (5.24) 

25.94 (6.12) 

0.578 

Generald 0.001 

Illness severity (Total 

PANSS)e 

Loadings on the 
dimensions of PANSS 

60.48 (17.91) 

 

56.03 (13.74) 

 

0.138 

 

Negative 2.74 (2.58) 2.85 (2.05) 0.798 

Positive 3.27 (2.47) 3.19 (2.58) 0.882 

Affective 3.25 (1.70) 2.19 (1.61) 0.001 
Cognitive 2.89 (1.93) 2.55 (1.65) 0.310 

 

Note: Data are mean (SD). p-values in bold indicate a significance of p < 0.05. Except for gender, 

which was based on chi-square test, other statistics were based on two sample t-test. 

 

After estimating subject-wise head movement and assessing T1-image segmentation, 16 patients in the main 

sample were found to have excessive head-motion and five patients were identified with poor tissue segmentation 

quality and hence these 21 patients were removed from the subsequent analyses. In the validation B-SNIP sample, 

one schizophrenia patient was excluded from the Hartford site due to an excessive head-motion, while 16 patients 

in the Baltimore site were excluded (15 patients had excessive head-motion and one patient was with bad tissue 

segmentation in the resulting T1 partial volume image). After filtering out the in total 17 schizophrenia patients in 

B-SNIP, 39 patients in the Hartford site and 61 patients in the Baltimore site were retained for validation analysis. 

In the remaining patients, age did not correlate with any of the four symptom dimensions in the main (all 

p-values>0.25; Pearson correlation analysis) and the B-SNIP samples (all p-values>0.20). No gender differences 

were observed for the scores of the four symptom dimensions within the main sample (all p-values>0.09). While in 

the B-SNIP sample, male patients (2.43±1.67) showed significantly lower (p=0.018) affective dimensional-scores 

than female patients (3.31±1.69). Scores for the other three symptom dimensions did not show any gender 

differences within the B-SNIP sample. Age and gender were both adjusted in our predictive modeling to avoid (any) 

possible contributions from them.  
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6.2.2 Details for the density maps of receptors/transporters from prior molecular imaging 

studies 

As detailed in our prior study (Dukart et al., 2018), the density estimates of gamma-aminobutyric acid (GABAa) and 

dopamine transporter (DAT) were obtained from flumazenil positron emission tomography (PET) and single photon 

emission tomography (SPECT), respectively. Here in brief:   

DAT 

Baseline DAT-SPECT data of 174 healthy elderly volunteers (mean age±SD: 61±11 years, 109 males) were 

extracted from the Parkinson‘s Progression Marker Initiative database (PPMI, www.ppmi-info.org/) (Marek et al., 

2018). Written informed consent was obtained from all subjects. The study was approved by Institutional Review 

Boards/Independent Ethics Committees. A mean image was computed from the preprocessed data in MNI space 

with a Gaussian kernel of 8mm FWHM. DAT density estimates were extracted from this mean image. Of note, 

previous studies showed that in vivo DAT density in the brain assessed by SPECT declines with age (mostly linear) 

which is typically up to 10% per decade year for some regions (e.g., caudate and putamen) (roiano et al., 2010; 

Ishibashi et al., 2009; Shingai et al., 2014). However, that should be less of a concern with respect to our current 

network-based analysis relying on the relative ratio of regions to each other which is robust to age. This is because 

the expression of DAT in some specific brain regions e.g., the basal ganglia (and to some little extent the prefrontal 

cortex) is in very high amounts and hence the relative differences between these DAT-rich areas and other 

DAT-poverty brain regions (e.g., thalamus) (Shingai et al., 2014) are still fairly large. That is, these observation and 

relative order of brain regions with respect to each other remains stable throughout a healthy life span. Also, here 

we used Spearman‘s rank correlation which assesses monotonic relationships. 

GABAa 

Dynamic [11C]flumazenil PET scans were acquired from 6 healthy volunteers with full arterial blood sampling for 

quantitative compartmental modeling (Myers et al., 2012). PET images were reconstructed into 20 frames using 

filtered back projection. Voxel level spectral analysis (Cunningham and Jones, 1993) with 100 logarithmically 

distributed orthogonal basis functions between 0.0008 and 1 s-1 was performed to create parametric maps of total 

distribution volume (VT), with 2.09x2.09x2.42 mm resolution. These individual volumes of distribution maps 

calculated as the summed integral of the peaks after spectral analysis were used as individual GABAa density 

estimates and were then normalized to MNI space. This study was approved by a NHS Research Ethics 

Committee, the Administration of Radioactive Substances Advisory Committee and local NHS Research and 

Development. 

 

D2/3 (https://datadryad.org/resource/doi:10.5061/dryad.rc073)  

The radiotracer [11C]raclopride binding in striatal subregions, the thalamus and the cortex was investigated using 

the bolus-plus-infusion method and a high resolution PET (Alakurtti et al., 2015). Seven healthy male volunteers 

underwent two PET [11C]raclopride assessments, with a 5-week retest interval. Spatial resolution in the 

reconstructed PET images varies in radial and tangential directions from ~2.5 to 3 mm and in axial directions from 

2.5 to 3.5 mm in the 10-cm field of view covering the brain. D2/3 receptor density was quantified as binding potential 

using the simplified reference tissue mode tissue compartmental modeling (SRTM) (Lammertsma et al., 1996; 

http://www.ppmi-info.org/
https://datadryad.org/resource/doi:10.5061/dryad.rc073
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Innis et al., 2007). The cerebellum which is devoid of D2/3 receptors (Hall et al., 1998) was chosen as the 

reference tissue. For voxel-level model fitting, they used a linearized model using a basis-function approach (Gunn 

et al., 1997) implemented also in in-house software (http://www.turkupetcentre.net/programs/doc/imgbfbp.html). 

The absolute variability and intraclass correlation coefficient values demonstrated good test-retest reliability. We 

accessed to the baseline session and obtained the group average whole-brain map with voxel-wise D2/3 density 

estimates. The study protocol was approved by the Ethics Committee of the Hospital District of Southwestern 

Finland. Written consent was obtained from each volunteer. 

 

D1  

Thirteen healthy volunteers (7 female, age 33 ± 13 yrs) underwent 90-min emission scans, each after 90-s bolus 

injection of 486 ± 16 MBq [11C]SCH23390, on two separate days within 2-4 weeks using a PET/MRI system 

(Kaller et al., 2017). This study was approved by the local ethics committee (registration number 083/11) and the 

German Federal Office for Radiation Protection (number Z5-22461/2-2012-003). Informed consent was obtained 

from all participants. Motion correction was performed with Statistical Parametric Mapping (SPM8, Wellcome 

Department of Cognitive Neurology, London, UK). Individual MRI T1-weighted MPRAGE data sets and the related, 

already-fused PET data of each subject were spatially reoriented onto a standard brain data set similar to the 

Talairach space, reconstructing the images to 128×128×64 voxels with dimensions of 1.7×1.7×2.5 mm3. 

Parametric images of binding potential (BPND) were generated in PMOD (version 3.5, PMOD Technologies, 

Zurich, Switzerland) from the PET data by the multi-linear reference tissue model with two parameters (MRTM2) 

and the cerebellar cortex as the receptor-free reference tissue (Ichise et al. 2003). The BPND maps were used in 

our present spatial correlation analysis as a reflection of D1 receptor density.  

 
18F-DOPA (https://www.nitrc.org/projects/spmtemplates/):  

Participants‘ dopamine synthesis capacity was measured by using [18F]DOPA PET. The map we used for local 

DSC estimates was the 18F-DOPA template in SPM. Data acquisition and template construction were detailed in 

the original publication (Gómez et al., 2018) and briefly as follows: Brain PET images were acquired with 

18F-DOPA to 12 control subjects (6 males and 6 women aged 55.1 ± 16.6 years) without evidence of nigrostriatal 

degeneration. PET experiments were performed on a CT scanner Siemens Biograph 16 PET/CT, which provides a 

2.0 mm FWHM of the FOV. One hour before the injection of the established dose of 18F-DOPA, 150 mg of 

carbidopa was administered by oral to block the enzymatic activity of the DOPA decarboxylase. The PET images 

acquisition started 90 minutes after intravenous injection of the radiotracer using 222 MBq. The emission PET data 

were acquired for 20 minutes in 3D mode, after a brain CT scan in spiral mode at 120 kVp and 160 mA with the 

CARE program Dose 4D. The raw data were reconstructed using the OSEM algorithm with 4 iterations, 8 subsets, 

all-pass filter and a matrix resolution of 128 × 128. All images were transformed from DICOM format to NIfTI using 

the dcm2nii function in MRIcron (http://www.mccauslandcenter.sc.edu/mricro/mricron/). Then, the baseline PET 

scans were spatially normalized to a common anatomical space using a T1-weighted structural MRI template as 

reference in software SPM8 (SPM; Welcome Department of Cognitive Neurology. London, UK). To avoid the 

intrinsic asymmetries presented in the recruited sample, the left-right hemisphere flipped (i.e., mirrored) images of 

http://www.turkupetcentre.net/programs/doc/imgbfbp.html
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the original PET scans for each of the 12 patients were obtained, resulting in total 24 brain PET images for 

subsequent template construction. Afterward, an intensity normalization procedure was performed on the PET 

images, which resulted in each voxel has a value between 0 and 1. For a precise alignment to the standardized 

anatomical space of MNI152 (MNI; http://www.bic.mni.mcgill.ca), the resultant maps were resampled with a 

bounding box of 90 × 109 × 91 and an isotropic voxel size of 2mm. Finally, the 24 PET images were averaged to 

form the template, and the value for each voxel in the template was the group mean intensity-normalized value 

with a Gaussian filter step applied. The authors declared that the procedures conformed to the ethical standards of 

the responsible human experimentation committee. 

 

Serotonergic receptors and serotonin reuptake transporter 

For the serotonergic system, including the three serotonin receptors of 5HT1a, 5HT1b, 5HT2a and serotonin 

reuptake transporter 5-HTT, the density estimates were derived from a multi-center PET study with different 

radiotracers (Savli et al., 2012). A total of 95 healthy subjects (mean age= 28.0±6.9 years, range= 18-54, 59% 

males) were included in this multicenter PET study to map the serotonergic receptors and transporter in vivo. All 

subjects were physically healthy and life-time naïve for psychotropic drugs. All participants gave written informed 

consent according to the procedures approved by the local Ethics Committees at the Medical University of Vienna, 

the Medical Faculty of the University of Düsseldorf and the Yale School of Medicine Human Investigation 

Committee. 

For assessing 5HT1a, the [carbonyl-11C]WAY-100635 was used as the radioligand. PET scans were 

conducted with a GE Advance PET scanner (General Electric Medical Systems, Milwaukee, Wisconsin) with a 

spatial resolution of 4.36 mm full-width at half maximum (FWHM) at the center of the FOV (35 slices). Details in 

image acquisition and reconstruction are described elsewhere (Fink et al., 2009). 

For 5HT1b, [11C]P943 PET scans were acquired for 120 min on an HRRT PET scanner (207 slices, resolution 

less than 3 mm full-width at half maximum in 3D acquisition mode). PET image acquisition and image 

reconstruction were performed as described previously (Gallezot et al., 2010).  

For the 5-HT2a receptor, a highly selective radioligand of [18F]altanserin was used. PET measurements were 

performed in 3D mode on a Siemens ECAT EXACT HR+ scanner (Siemens-CTI, Knoxville, TN, USA; 63 slices; 

full-width of half maximum 5.8, 5.8, 6.6 mm (x, y, z) at 10 cm from the central axis). Tracer application according to 

a 2-min bolus plus constant infusion schedule (KBol= 2.1 h), venous blood sampling, metabolite correction of the 

plasma input function, PET image acquisition and reconstruction were conducted according to the previous 

publication (Hurlemann et al., 2008. 

For in vivo quantification of 5-HTT serotonin transporter, [11C]DASB is used as the radioligand which is high 

affinity and selectivity to 5-HTT. PET scans were obtained from a GE Advance PET scanner (General Electric 

Medical Systems, Milwaukee, Wisconsin) with a spatial resolution of 4.36 mm full-width at half maximum (FWHM) 

at the center of the FOV (35 slices). 

Apart from the preprocessing of 5-HT2a scans which was performed at the Research Centre Jülich using 

SPM2 (Hurlemann et al., 2008), the raw PET scans for other receptors and the 5-HTT transporter were 

preprocessed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) and the motion correction was carried 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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out by co-registration of each frame to the mean of the subjects' motion-free frames. Dynamic PET scans were 

normalized onto tracer-specific templates in MNI stereotactic space by computing the transformation matrices of 

individual PETADD (sum over all time frames) and subsequent application to dynamic scans. Ligand-specific 

templates were created following the approach introduced previously (Meyer et al., 1999) and provided mean 

values for each voxel. The original PET images were further spatially smoothed with an isotropic 8 mm Gaussian 

kernel. Finally, the quality of spatially normalized images was visually inspected where necessary. 

The binding potential (Innis et al., 2007) was calculated using the kinetic modeling tool PKIN as implemented 

in PMOD (PMOD Technologies Ltd, Zürich, Switzerland) to denote receptor density. Cerebellum was used as the 

reference region. For the quantification of [carbonyl-11C] WAY-100635, [11C]P943 and [11C]DASB binding, the 

―multilinear reference tissue model‖ (MRTM/MRTM2) was used as described previously (Ichise et al. 2003) to 

calculate the BPND, while the [18F]altanserin scans were parameterized on the basis of the cerebellum (CReference) 

and the plasma activity concentration attributable to parent compound (CPlasma) using the following equation: 

BPP=(CROI−CReference)/CPlasma with radioactivity concentrations averaged from 120 to 180 min p.i. (Pinborg et al., 

2003). [18F]altanserin binding potentials were then read out from parameterized maps.  

 

Overall, for comparability, the maps of density estimates obtained from aforementioned multi-tracer molecular 

imaging studies, in MNI152 space, were linearly rescaled to a minimum of 0 and a maximum of 100 and were 

resampled to an isotropic 2mm spatial resolution (original resolutions: 1.7-6.6mm) as in our fMRI data. The closest 

between-node distance within the two robustly predictive networks, theory-of-mind and extended socio-affective 

default, is 12mm, and thus the nodal density estimates for the investigated receptors/transporters were 

differentiable in the molecular data. 

 

6.2.3 Assessing statistical significance for spatial correlation analysis  

We implemented a spatial permutation testing to assess the statistical significance for the spatial correlation 

between network nodes and receptor/transporter densities calculated for these nodes. That is, we generated 1000 

random networks by re-distributing the nodes throughout the grey matter with the same number of nodes as in real 

network while preserving the between-node distance (±6mm tolerance). Nodal receptor/transporter densities were 

extracted from these simulated (random) networks which were then correlated with the node importance scores for 

the real network. This allowed us to construct a null with 1000 (chance-level) correlations based on a set of 

randomized topographic configuration of networks. Finally, the true correlation based on the nodal 

receptor/transporter densities extracted from the real network was compared with the null distribution to derive the 

significance (lowest p=0.001). If the true correlation obtained from the real network exceeds the 95% percentile of 

the null, indicating a statistical significance for the true correlation against a (pseudo)-random placement of nodes 

within the grey matter. 

Several metrics were additionally employed to assess the property of the generated random networks, including:  

1) between-node distances within each random network; 

2) distance between the nodes of random networks; 

3) distance between the nodes of the original (real) and the random networks.  
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Metrics 2) and 3) allowed to check if the random networks are adequately different from each other and from the 

real network.  

As shown in Figure S3, the histograms demonstrated that our simulated random networks well reflected the 

possible spatial configurations within the grey matter of the entire brain, as these random networks were 

sufficiently different from, but neither too far or too close to, each other and the two real networks.
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Table S3. Meta-analytic functional brain networks, domains and their implications in 

schizophrenia 

                    Description of meta-networks 

Domain 
Network (Abbr.) Linked processes 

Experiments/tasks/contrasts 

for deriving the networks  

Number 

of nodes 

Source 

publication 

Affective  

Emotional scene 

and face 

processing(EmoSF) 

Perception of emotional 

scenes and faces 

Discrimination of emotional 

faces and scenes from neutral 

24 Sabatinelli, 

(2012) 

Reward-related 

decision making 

(Rew) 

Reward value-based 

preferences for possible 

options, selecting and 

executing actions, and 

evaluating the outcome 

Convergence across reward 

valence and decision stages  

23 Liu et al. 

(2011) 

Cognitive emotion 

regulation (CER) 

Reappraisal of emotional 

stimulus 

Reappraise > naturalistic 

emotional responses 

14 Buhle et al. 

(2014) 

Social  

Empathy conscious and isomorphic 

experience of somebody 

else‘s affective state 

―feel into‖ affect-laden social 

situations > watched or listened 

passively 

22 Bzdok 

(2012) 

Mirror neuron system 

(MNS) 

mental imitation (i.e., 

‗mirroring‘) of others' 

nonverbal expression (e.g., 

actions and behavior) 

Action observation ∩ action 

imitation 

11 Caspers   

et al. (2010) 

Theory-of-mind (ToM) the cognitive ability of an 

individual to 'infer the mental 

states of others' 

 

ToM > non-social baseline 15 Bzdok et al. 

(2012) 

Task-deactivation 
and interacting  

 

Extend 

socio-affective 

default (eSAD) 

A general default mode of 

socio-affective processing 

 

Regions within the DMN that are 

consistently found to relate with 

socio-affective processinga, together 

with their intimately coupled regions 

identified by MACM and ALE  

12 Amft et al.  

(2013) 

Default mode 

network (DMN) 

Active at rest or during 

passive rest 

and mind-wandering that 

relates to a variety of 

functions including 

self-reference, 

autobiographical 

Contrasts that were coded as a 

Deactivation (e.g., Control - Task) 

using a Low-Level Control (strictly 

defined as either resting or fixation 

conditions) across a wide range of 

paradigms (i.e., task-independent 

deactivations) 

9 Laird et al.  

(2009) 
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information, theory-of-mind 

and episodic memory. 

Executive  
Vigilant attention 

(VigAtt) 

Maintaining stable and 

focused attention 

Tasks posing only minimal cognitive 

demands on the selectivity and 

executive aspects of attention for 

more than 10s 

16 Langner, 

(2012) 

Cognitive action 

control (CogAC) 

 

Supervisory control for the 

suppression of a routine 

action in favor of another, 

non-routine one 

ALE coordinate-based meta- 

analysis on stroop-task, spatial 

interference task, stop-signal task 

and go/no-go tasks 

19 Cieslik et al. 

(2011) 

Extend multi-demand 

network (eMDN) 

Performance of executive 

functioning across multiple 

demands 

Using regions of the MDNb as seeds 

for whole-brain resting-state and 

MACM analyses. The eMDN was 

then delineated by identifying 

regions in which the consensus 

connectivity maps of at least half of 

the seeds overlapped 

17 Camilleri et 

al. (2014) 

Working memory 

(WM) 

A limited resource that is 

distributed flexibly among all 

items to be maintained in 

memory 

 

Consistently activated during all WM 

contrasts/experiments (mainly 

n-back, Stenberg, DMTS, delayed 

simple matching) 

22 Rottschy, 

(2012) 

Long-term memory 
and language 

 

Semantic memory 

(SM) 

The long term storage of 

personally relevant 

semantic knowledge, 

independent of recalling a 

specific experience  

Activated during SM contrasts: 

experiments mainly comprising 

paradigms: words vs. pseudo words, 

semantic vs. phonological task, high 

vs. low meaningfulness 

23 Binder, 

(2009) 

Speech production 

(SP) 

The process by which 

thoughts are translated into 

speech, involving the 

integration of auditory, 

somatosensory, and motor 

information 

Studies contrasted speech 

production (including phonemes, 

syllables, words, sentences or 

narratives) with a condition in which 

no speech was produced 

 

13 Adank, 

(2012) 

Autobiographic 

Memory (AM) 

Long-term memory for 

personal experiences and 

personal knowledge of an 

individual's life 

Tasks referring to autobiographical 

recall: episodic recollection of 

personal events from one‘s own life 

23 Spreng, 

(2008) 

Sensory-motor  
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Motor  Motor execution Finger tapping > baseline; excl. 

regions associated with visually 

paced finger-tapping tasks 

10 Witt et al. 

(2008) 

Auditory  Auditory sensory processing Purely auditory tasks using highly 

controlled synthesized acoustic 

stimuli 

 11 Petacchi et 

al. (2005) 

 

aDetails on the Identification of DMN regions involved in socio-affective processing can be found at (Schilbach et al., 2012); 

bthe MDN network was derived from a conjunction across three neuroimaging meta-analyses on working memory, vigilant 

attention, and inhibitory control using coordinate-based ALE (Müller et al., 2015). ALE: activation likelihood estimation; MACM: 

meta-analytic connectivity modeling. 
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Table S4. Functional MRI scanning parameters for each site in B-SNIP 
 

Site 
Scanner 

Type 

Magnetic 
Field 

TR (ms) TE (ms) FA (°) 
No. 

Slices 
Voxel-size 

(mm3) 
Orientation 

Scan 
Duration (s) 

The validation B-SNIP sample        

Hartford 
Siemens 

Allegra 
3.0T 1500 27 70 29 3.4x3.4x5 Axial 315 

Baltimore 
Siemens  

Triotim 
3.0T 2210 30 70 36 3.4x3.4x3 Axial 309.4 

 
Note: TR: repetition time, TE: echo time, FA: flip angle; 1PRESTO-SENSE sequence combining a 3D-PRESTO 

pulse sequence with parallel imaging in 2 directions (8-channel SENSE head-coil) which achieved full brain 

coverage within 609 ms for the Utrecht site and within 1001 ms for the Lille site.  

 

 

 

 

 

 

 

Table S5. T1-weighted structural MRI scanning parameters for each site in B-SNIP 

 

Note: TR: repetition time, TE: echo time, FA: flip angle; 1a multi-echo MPRAGE (MEMPR) sequence with 5 TEs; 

2PRESTO-SENSE sequence.  

 

  

 

 

 

 

Site Scanner Type 
Magnetic 

Field 
TR (ms) TE (ms) FA (°) 

No. 
Slices 

Voxel-size (mm3) 

The validation B-SNIP sample       

Hartford 
Siemens 

Allegra 
3.0T 2300 2.91 9 160 1 x 1x1.2 

Baltimore 
Siemens  

Triotim 
3.0T 2300 2.91 9 160 1 x 1x1.2 
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Table S6. Reliably relevant connections for the ToM and the eSAD networks in the prediction of the 
cognitive dimension 

 

Network Connection 

ToM vmPFC<->PCC/PrC; vmPFC<->right pSTS; PCC/PrC<->left 

MTG; right TPJ<->dmPFC; left MTG<-> left aMTG; left 

MTG<->right IFG;  RMTG<-> left lFG; right MTG<-> right 

aMTG 

eSAD ACC<-> right Amy; SGC<->PCC/PrC; SGC<->dmPFC; 

PCC<-> left aMTG; PCC<->vmPFC; dmPFC<->right vBG; 

dmPFC<-> left Amy; vmPFC<->RTPJ; left vBG<-> left Amy; 

right Amy<-> left Amy 

 

Abbreviations: ToM, theory-of-mind; eSAD, extended socio-affective default. Amy, amygdala; Hipp, hippocampus; 

vmPFC, ventro-medial prefrontal cortex; dmPFC, dorso-medial prefrontal cortex; dmPFG, dorso-medial prefrontal 

cortex;  aMTG, anterior middle temporal gyrus, IFG, inferior frontal gyrus; TPJ, temporo-parietal junction, PCC, 

posterior cingulated cortex, PrC, precuneus; SGC, subgenual cingulate cortex, vBG, ventral basal ganglia; ACC, 

anterior cingulated cortex. 
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Table S7. Coordinates and brain locations of the nodes connected by reliably predictive connections 
within the identified robustly predictive networks 
 

Network 
MNI coordinates Macroanatomy 

of nodes  
Macroanatomy of the 

connected nodes x    y z 

ToM      

 0 52 -12 vmPFC PrC; right pSTS 

 2 -56 30 PCC/PrC vmPFC; left MTG 

 50 -34 0 pSTS vmPFC 

 56 -50 18 TPJ dmPFC 

 -8 56 30 dmPFC Right TPJ 

 -54 -28 -4 MTG PrC; left aMTG; right IFG 

 52 -18 -12 MTG left IFG; right aMTG 

 54 -2 -20 aMTG right MTG 

 -54 -2 -24 aMTG left MTG 

 -48 30 -12 IFG right MTG 

 54 28 6 IFG left MTG 

eSAD      

 0 38 10 ACC right Amy/Hipp 

 -2 32 -8 SGC PCC/PrC; dmPFC 

 -2 -52 26 PCC/PrC SGC; left aMTG; vmPFC 

 -2 52 14 dmPFC 
SGC; right vBG;  

left Amy/Hipp 

 -54 -10 -20 aMTG PCC/PrC 

 -2 50 -10 vmPFC PCC/PrC; right TPJ 

 6 10 -8 vBG dmPFC 

 -6 10 -8 vBG left Amy/Hipp 

 -24 -10 -20 Amy/Hipp left vBG; dmPFC;  
right Amy/Hipp 

 24 -8 -22 Amy/Hipp left Amy/Hipp 

 50 -60 18 TPJ vmPFC 
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Note: Coordinate (x, y, z) of each node is reported in standard space of the Montreal Neurological Institute (MNI) 

as demonstrated in the source publications of the two identified functional networks. Nodes that were spatially 

overlapping between the subnetworks of ToM and eSAD are highlighted in red.  

Abbreviations: ToM, theory-of-mind; eSAD, extended socio-affective default; Amy, amygdala; Hipp, hippocampus; 

vmPFC, ventro-medial prefrontal cortex; dmPFC, dorso-medial prefrontal cortex; dmPFG, dorso-medial prefrontal 

cortex; aMTG, anterior middle temporal gyrus, IFG, inferior frontal gyrus; TPJ, temporo-parietal junction, PCC, 

posterior cingulated cortex, PrC, precuneus; SGC, subgenual cingulate cortex, vBG, ventral basal ganglia; ACC, 

anterior cingulated cortex. 
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Table S8. Node importance for the ToM and the eSAD networks 

Network Node Importance score  

ToM vmPFC 4.20 

mFG 3.39 

dmPFC 3.33 

PCC/PrC 4.24 

Right TPJ 2.83 

Left TPJ 3.67 

Right aMTG 3.89 

Left aMTG 4.81 

rMTG 4.58 

lMTG 4.87 

Right pSTS 3.11 

lpSTS 2.82 

rIFG 3.07 

lIFG 4.07 

rV5 3.15 

eSAD ACC 3.21 

SGC 4.14 

PCC 4.59 

dmPFC 4.05 

rTPJ 1.96 

lTPJ 2.56 

lvBG 4.40 

rvBG 3.50 

Left aMTG 2.85 

Right Amy 4.27 

Left Amy 3.98 

vmPFC 4.21 

Abbreviations: ToM, theory-of-mind; eSAD, extended socio-affective default. Amy, amygdala; Hipp, 

hippocampus; vmPFC, ventro-medial prefrontal cortex; dmPFC, dorso-medial prefrontal cortex; dmPFG, 

dorso-medial prefrontal cortex; aMTG, anterior middle temporal gyrus, IFG, inferior frontal gyrus; TPJ, 

temporo-parietal junction, PCC, posterior cingulated cortex, PrC, precuneus; SGC, subgenual cingulate 

cortex, vBG, ventral basal ganglia; ACC, anterior cingulated cortex. 
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Figure S2. Multivariable prediction of the original three PANSS subscales from the resting-state 
functional connectivity within each of the 17 functional networks using the same validation 
procedure as we have done for the four symptom dimensions  

 

A) Tile plot shows the 10-fold cross-validation results for the main sample in the prediction of the three PANSS 

subscales. *p<0.05, **p<0.01, identified through 1000 permutation tests.  

B) Scatter plots show the leave-one-site-out cross-validation results for the three significant predictions identified in 

500x repeated 10-fold cross-validation in the main sample. Except for the prediction of the positive subscale from 

the rs-FC within the vigilant attention network, other two predictions were both confirmed by leave-one-site-out 

cross-validation with significant correlations observed.  

C) Scatter plot show that neither of the two tested predictive patterns was significant in the B-SNIP sample. 

 

Abbreviations: EmoSF, emotional scene and face processing; Rew, reward-related decision making; CER, 

cognitive emotion regulation; ToM, theory-of-mind; MNS, minor neuron system; DMN, default mode network; 

eSAD, extended socio-affective default; VigAtt, vigilant attention; CogAC, cognitive action control; eMDN, the 

extended multi-demand networks; SM, semantic memory; SP, speech production; WM, working memory; AM, 

autobiographical memory; APN, auditory processing network. GPS: general psychopathology subscale. 
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Figure S3. Histograms of the three metrics assessing the property of random networks 

 

 

Abbreviations: ToM, theory-of-mind; eSAD, extended socio-affective default 
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Figure S4. Reliably relevant connections for the ToM network in the prediction of the negative 
dimension and the two subnetworks within ToM  

 

   

 
A) Reliably relevant connections selected by 10-fold process on main sample in the prediction of negative 

dimension. The reliably relevant edges are colored in red and the selection frequency for these edges was coded 

by line size. Other connections within each of the networks are shown in light grey. These connections were all 

reliably selected in both the seven leave-one-site-out experiments and the models trained within the entire main 

sample for validation in B-SNIP. 
B) Subnetworks of ToM which predicted the cognitive or the negative dimension of psychopathology. Their shared 

nodes and connections were shown in red color.  
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7. Discussion 

My Ph.D work provided a novel conceptualization of schizophrenia psychopathology from symptomatology to 

neurobiology by applying advanced machine-learning approaches and sophisticated cross-validation and 

out-of-sample generalization assessments to aggregately over 2000 patients recruited from 15 medical centers. A 

four-dimensional representation of schizophrenia symptomatology comprising negative, positive, affective, and 

cognitive dimensions was proposed. Along these new axes of psychopathology, two symptomatically 

well-separated core subtypes representing prominent negative and positive symptomatology of schizophrenia 

were identified. This positive-negative dichotomy was longitudinally stable and could be moreover discriminated 

from resting-state functional connectivity (rsFC) profiles of the ventromedial frontal cortex, temporoparietal junction, 

and precuneus, with a highest classification accuracy of 70%. Moreover, individual expressions of the cognitive 

symptom dimension were significantly and robustly predicted by rsFC within the theory-of-mind and the extended 

socio-affective default (eSAD) networks. These two networks are implicated in social and affective processes. 

Finally, node importance of the identified networks in predicting the cognitive dimension showed a spatial pattern 

significantly and positively co-varying with D1 dopamine receptor and serotonin reuptake transporter densities as 

well as presynaptic dopamine capacity.  

7.1 A hybrid dimensional-categorical framework of schizophrenia symptomatology 

As discussed in the “Biological Psychiatry” paper, our four dimensional-representation of schizophrenia 

symptomatology showed higher stability, generalizability, and internal consistency than the original three PANSS 

subscales and previously proposed PCA and EFA models with factor numbers from four to seven. Importantly, the 

factor-model we identified can be readily applied to new samples that people could project individual PANSS 

single-item scores onto this four-dimensional structure to obtain dimensional scores for their patient cohorts in 

future studies. For the convenience of interested researchers, we have set up an online tool 

(http://webtools.inm7.de/sczDCTS/). With this online tool, users could handily obtain the dimensional scores by 

simply uploading an excel file with item-wise PANSS scores arranged in a form as instructed on the website. 

Furthermore, I not only assessed the robustness, stability, and generalizability of the dimensions, but also the 

stability and robustness of the estimation of dimensional-scores for novel patients. 

    Probably the most interesting point, that is to compare our four-factor model which represents negative, 

positive, affective, and cognitive symptom dimensions with the models consisting of five dimensions that have 

been commonly proposed in previous factorial studies (Kim et al., 2012; Levine et al., 2007; Wallwork et al., 2012; 

van der Gaag et al., 2006a). Basically, a model with five factors was continuously failed to be confirmed in 

independent samples (White et al., 1997; van der Gaag et al., 2006a; Lehoux et al., 2009; Jiang et al., 2013). 

Please refer to the ―Discussion‖ section of the “Biological Psychiatry” paper for details. Another interesting point 

worth mention but has not been detailed in the “Biological Psychiatry” paper, is the cross-loadings of some PANSS 

items displayed in the OPNMF four-factor structure. Although OPNMF generates sparse solutions that the yielded 

factor structure is almost clustering like, there are still some items loaded on multiple dimensions. For example, the 

item G16 (―active social avoidance‖) had almost equally high coefficients on both the negative and the affective 

http://webtools.inm7.de/sczDCTS/
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dimensions, while the item G5 (―mannerisms and posturing‖) shared the negative and the cognitive dimensions. 

These observations were in line with previous studies that G16 loaded highest on either of the negative and the 

affective dimensions and had a secondary loading on another (van der Gaag et a., 2006b). This might owe to the 

fact that symptoms assessed by item G16 have a complex causation (e.g., lacking of initiative and interest, and/or 

having negative emotionality). The item G5 has also been assigned to either the cognitive (van der Gaag et al., 

2006b) or the negative dimension (White et al., 1997) in literature. Taken together, the cross-loadings of the G16 

and the G5 items still presented even when a sparse learning method was used. Hence, our OPNMF four-factor 

model possibly reflects the causative complexity of schizophrenia symptomatology. Some previous studies have 

excluded several PANSS items which demonstrated ambiguous or unstable factor-assignment to improve the 

goodness-of-fit in their final models; however, the excluded items could also reflect specific and important aspects 

of schizophrenia symptomatology. Removing these items cause the model to fail to capture this part of the 

variation across individual patients. 

I moreover used the new four dimensions of schizophrenia symptomatology to identify subtypes where 

patients showed a distinct expression pattern of these dimensions. However, previous investigations on 

schizophrenia symptom dimensions and subtypes were mostly performed in separate studies. Given the 

consideration that sub-typing, apart from the identification of symptom dimensions, also serves as an important 

facet capturing the symptomatic heterogeneity within schizophrenia, an integrative investigation of dimensions and 

subtypes would complement each other to better disentangle the heterogeneity. Also, the identification of reliable 

schizophrenia subtypes would be largely helpful for the development of more-specifically target treatments on 

patients with specific symptom profiles. In my Ph.D study, two core subtypes were identified using fuzzy-clustering 

after filtering out those patients with an ambiguous subtype-membership. The core subtypes should represent the 

well-defined ends of a spectrum while the ambiguous cases would reflect the intermediate levels of a smooth trend 

expressed on the continuous dimensional axes. To my best knowledge, there is only one prior attempt to use both 

categorical and dimensional approaches to characterize the symptoms in schizophrenia (Ahmed et al., 2015).  

On the other hand, here I only confirmed the widely-supported positive-negative dichotomy (Kay and Singh 

1989; Peralta et al., 1995) as the stable and robust subtypes in schizophrenia. More subtypes have been proposed, 

but the number and the definition of the yielded subtypes were variable across studies (i.e., poor replicability) 

(Dollfus et al., 1996; Lykouras et al., 2001; Dickinson et al., 2017; Bartko et al., 1981; Helmes and Landmark, 

2003). This might because prior work mostly assessed small and geographically restricted samples using single 

clustering strategy but lacking an evaluation of stability. The present study, which particularly focused on stability 

and robustness and used a fairly heterogeneous dataset with respect to patient recruitment criteria (e.g., DSM-IV, 

DSM-IV-TR, and DSM-5), clinical states of the patients (e.g., in-patients vs. out-patients), study designs, 

populations, and medical systems, did not support a more fine-grained differentiation among the patients. 
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7.2 Neurobiological substrates of the new symptom dimensions and subtypes 

I furthermore characterized the dimensional-categorical framework of schizophrenia symptomatology from brain 

intrinsic functional connectivity pattern and molecular architecture. Specifically, classification analysis based on 

regional rsFC patterns revealed robust neurobiological differentiations of the positive and negative core subtypes 

of schizophrenia. Network rsFC-based predictive modeling linked the cognitive symptom dimension to 

socio-affective processing and moreover the dopaminergic and the serotoninergic neurotransmitter systems.  

Functional MRI studies targeting neurobiological differences between schizophrenia subgroups are still few. 

Prior attempts were limited by the utilization of univariate statistical approaches which yielded inconsistent or even 

contradictory results (Zhang et al., 2014; Meda et al., 2016; Nenadic et al., 2015). Consequently, the question of 

whether functional brain parameters could serve as a biomarker differentiating patients with distinct symptom 

profiles remains open. In contrast to previous studies, my Ph.D work serves as the first practice of applying 

multivariable classification analysis to identify neurobiologically differentiable rsFC patterns for schizophrenia 

symptomatically distinct subtypes. As assessed through cross-validation, the yielded classifier demonstrated a 

good performance in differentiating the subtype memberships for novel patients. Moreover, the results revealed 

that rs-FC profiles of temporo-parietal junction (TPJ), ventro-medial prefrontal cortex (vmPFC), and posterior 

cingulate cortex (PCC)/precuneus were most classifiable. These top classifiable regions all have been implicated 

in processes that are related to psychopathological distinction. Here I provided the details which have not been 

included in the ―Biological Psychiatry‖ paper due to word limits: i) the TPJ has been implicated in core positive 

symptoms of auditory-verbal hallucination (Vercammen et al., 2012; Mondino et al., 2016) and also in the 

processes of social cognition including theory-of-mind (Döhnel et al., 2012). The later is in itself a negative 

symptom but could also be related to positive symptoms under hypermentalization (Frith, 2004); ii) Structural 

deficits in vmPFC were only detected in the negative subgroup of schizophrenia but neither the positive nor the 

disorganized subgroups when compared with healthy subjects (Zhang et al., 2014; Nenadic et al., 2015). Cortical 

thickness in this region was moreover found to co-vary with negative symptom severity in schizophrenia patients 

(Walton et al., 2017); iii) abnormalities in PCC and precuneus have been closely related with the severity of 

negative symptoms in schizophrenia (Lee et al., 2011; Shaffer et al., 2015). 

Discussions on the relationship between social and affective processes and the predicted cognitive dimension 

by rsFC within the theory-of-mind and the eSAD networks have been elaborated in the ―Discussion‖ section of my 

second Ph.D paper. Importantly, the meta-analytically defined task-activation networks employed in the present 

work comprise regions consistently activated by particular tasks that are functionally convergent in specific 

processes across a set of task-fMRI studies (Laird et al., 2009, Eickhoff et al., 2012). Predictive modeling based on 

intrinsic connectivity patterns within these networks is hence able to inform the associated functional processes 

and systems of the predicted symptom dimensions. Together with the strict validation procedure implemented, a 

robust link between schizophrenia cognitive dimension and socio-affective processes was revealed, and the 

networks-symptom association moreover showed a good out-of-sample generalization performance.  

One may concern the prediction accuracy reported in the present work, that the effect sizes for the correlation 

between the observed values and their out-of-sample predictions were moderate. This might because I restricted 

the feature space to within-network rs-FC in predictive modeling to improve the functional specificity and 



Discussion 

114 

interpretability and hence in my Ph.D work I did not rely on the whole-brain connectome as in previous studies (e.g., 

Lei et al., 2019; Huang et al., 2018; Orban et al., 2017). Although whole-brain connectome may include more 

features that are predictive of symptoms than single networks, the feature/sample ratio will become very high when 

using the whole-brain connectome as features leading to curse of dimensionality which affects all standard 

machine learning algorithms (Friedman, Hastie and Tibshirani 2017). Therefore, the inclusion of more features 

needs larger samples; while it is necessary to perform a careful feature reduction in the case of limited samples, 

the restriction to network-connectivity as we implemented here should have effectively addressed the issue of high 

feature/sample ratio. Intriguingly, despite the clinical complexity of schizophrenia patient cohorts across sites and 

the differences in scanners and MRI scanning protocols, the effect size we revealed is similar to those reported for 

predicting, e.g., creativity (Beaty et al., 2018), personality (Nostro et al., 2018), and memory performance (Persson 

et al, 2018), from resting-state data in healthy subjects (r-values mostly around 0.2-0.35). Similar concerns may 

rise with regard to the top accuracy of 70% in classifying the two core subtypes. However, we would demonstrate 

this accuracy as fairly desirable, that previous image-based classification experiments in discriminating 

schizophrenia patients from healthy controls using multi-site samples reported percent accuracies mostly in 70s / 

low 80s (Mikolas et al., 2016; Rozycki et al., 2017; Orban et al., 2017; Mikolas et al., 2017; Yan et al., 2017).  

Cognitive deficits are a core feature of schizophrenia, which occur in the prodrome and present throughout the 

illness (reviewed in Cannon et al., 2015). However, including the mainstay antidopaminergic agents, few 

pharmacological treatments could effectively ameliorate the cognitive symptoms in schizophrenia, (Miyamoto et al., 

2005; Arnsten et al., 2017). According to the previously proposed neuroconnectivity-neurotransmission coupling 

rationale (Stagg et al., 2014; Kringelbach et al., 2020), I came up with the idea that the identification of connectivity 

patterns within specific functional networks that are robustly associated with schizophrenia symptomatology may in 

turn allow to uncover the distribution of specific receptor/transporter systems (i.e., molecular architecture) that are 

related to the identified networks. Besides the commonly proposed D1 dopaminergic hypofunctioning in the 

involvement of schizophrenia cognitive symptomatology (McClure et al., 2010; Arnsten et al., 2017; Howes and 

Kapur, 2009), our results revealed that the spatial distribution of 5-HTT serotonin transporter was correlated with 

the eSAD network and the node importance of the eSAD network in predicting the cognitive dimension was 

moreover co-varying positively with the 5-HTT density. The extension of previous regional findings in molecular 

imaging studies (e.g., Abi-Dargham et al., 2002; Okubo et al., 1997; Ngan et al., 2000) to the current network-level 

analysis of receptor/transporter systems is important, as network dysconnection has been proposed as an 

important pathophysiological component that underlies schizophrenia symptomatology (Pettersson-Yeo et al., 

2011; Uhlhaas, 2013; Dong et al., 2018) and network-based analyses are moreover suggested to be helpful for 

understanding the mechanisms of action of anti-psychotic drugs (De Rossi et al., 2015).  

Overall, the present work provided an integrative receptor-connectivity-symptom link in schizophrenia, starting 

from factorization of the PANSS. Apart from the yielded new insights into the involvement of socio-affective 

processes, as well as the dopaminergic and the serotoninergic neurotransmitter systems in the cognitive 

dimension of schizophrenia, the analyses performed on the brain data in turn added validity to the usefulness of 

my novel, four-dimensional presentation of psychopathology.  
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8. Considerations and future directions  

First, medication effects on brain data have long been a topic of discussion in schizophrenia studies. This is 

because most patients, when recruited for specific research aims, have been medicated or are still on 

pharmacological treatments with different kinds of anti-psychotics. Current atypical anti-psychotics act upon 

anti-psychotic effects by regulating mainly the dopaminergic and also the serotoninergic systems (Mauri et al., 

2014). Regulated neurotransmission would lead to alterations in neural activation and functional connectivity 

(Landek-Salgado et al., 2016; Limongi et al., 2020). Anti-psychotics have also been shown to alter regional grey 

matter volumes (Scherk and Falkai, 2006; Emsley et al., 2017), especially in the striatum (Deng et al., 2009; 

Ebdrup et al., 2011). Consequently, medication effects may confound the observed neurobiological correlates of 

schizophrenia symptomatology. However, pharmacological treatments including types of anti-psychotic drugs and 

dosage can vary markedly among individual patients owing to different psychiatrists and medical centers. Different 

anti-psychotic drugs likewise vary in specific mechanisms of action as well as targeted receptor subunits (Mauri et 

al., 2014; Radhakrishnan et al., 2020). Therefore, it stands to reason that pooling schizophrenia patient cohorts 

from international sites will render medication largely as a source of random variation in our data. Indeed, there 

were no significant correlations observed between individual expressions of the four symptom dimensions and 

olanzapine-equivalent dosage. Also, the symptom-network correlative patterns were unchanged after additionally 

adjusting for olanzapine-equivalent dosage in predictive modeling, which confirmed that the possible medication 

effects are not systematic. Although cross-validation procedures could mitigate the effects caused by random 

variation on the assessment of symptom-network relationships, such random noise would have made our results 

more conservative. Future studies with drug-naïve first-episode schizophrenia patients would be ideal to elucidate 

the neural pathological mechanism of symptoms, completely free from medication effects and with improved 

statistical power. However, in practice, it remains difficult to recruit multi-center drug-naïve schizophrenia patients 

with a decent sample size.  

Second, the symptom-connectivity-receptor link revealed in the present work does not imply causality. This is 

because the brain imaging data we recruited were cross-sectional. Future studies with patients longitudinally 

assessed both phenotypic and neurobiological data would be largely helpful for clarifying the causal relationship 

between them.  

Third, the presently revealed molecular architecture of the networks whose intrinsic connectivity robustly 

predicted the cognitive symptomatology could allow future neurochemical and molecular biology researchers to 

specifically focus on the underlying mechanisms of the D1 dopamine receptor group and the serotonin reuptake 

transporter in animals with schizophrenia-like cognitive deficits modeled via manipulating copy number variants 

(reviewed in Forsingdal et al., 2018). There are multiple techniques available for an assessment of receptors in 

animal models. For example, reverse transcription-polymerase chain reaction and western-blotting can be used to 

quantify receptor-related mRNA and protein expressions, respectively. Patch-clamp recording and invivo 

electrophysiology are both powerful techniques for examining the electroneurographic signals mediated by 

receptors and transmitters. Moreover, specific antagonists and agonists can be administered to investigate how 

the affected receptors possibly mediate alterations in neurotransmission. This is particularly interesting, as an 
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investigation of the potential interactions among dopaminergic, serotonergic, and glutamatergic systems is critical 

since they are not functioning alone. The multi-facet symptom expressions in schizophrenia are likewise unlikely to 

result from deficits in only one of the many neurotransmitter systems (Coyle and Balu, 2018; Uno and Coyle, 2019). 

Although the glutamatergic hypofunction has been increasingly implicated in schizophrenia neurocognitive deficits 

(Dempster et al., 2015; Uno and Coyle, 2019; Kaminski et al., 2020), there are no publicly available in-vivo 

measured density maps for glutamate or glutamate receptors (e.g., Nmethyl-D-aspartate [NMDA]). Future studies 

with patients assessed both the glutamine and the NMDA receptor densities as well as functional connectivity are 

desired to specifically investigate the involvement of glutamatergic transmission in schizophrenia cognitive 

symptomatology. Also, future neurochemical and molecular studies to specifically investigate 5-HTT signaling with 

pharmacological interventions to regulate 5-HTT functioning for probing its relationship with schizophrenia 

cognitive symptoms are required to verify the link as we implied here. 

Forth, the classification and prediction analyses performed in the present work were all relying on functional 

connectivity measurements since functional brain parameters would temporally better align with the likewise 

state-dependent symptomatology. Notwithstanding, the features used for multivariable machine-learning could 

also be structural brain metrics (e.g., grey matter volume, cortical thickness, and structural covariance) and 

diffusion MRI derived measures. Combining metrics from multi-modal fMRI in future studies may prospectively 

improve the accuracies in classification and prediction experiments. More importantly, multi-modal fMRI studies 

would allow for an investigation of the potential structural-functional coupling basis for specific dimensions of 

psychopathology in schizophrenia.  
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