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Abstract

Recent years have seen major advancements in the field of quantum cryptography
and particularly in quantum key distribution (QKD). A QKD protocol enables two
parties to generate a shared secret key via an insecure quantum channel and an
authenticated public classical channel. The security of QKD relies on intrinsic
properties of quantum theory, such as quantum entanglement.

The primary aim of this thesis is the generalization of QKD to multiple parties with
quantum conference key agreement (CKA). By exploiting multipartite entanglement,
a CKA protocol establishes a secret conference key among a group of parties that
can be later used to securely broadcast a message within the group.

To this aim, we first generalize the composable security framework of QKD to
account for CKA and we introduce a multipartite version of the popular BB84
protocol. Hence, we prove the security of our multipartite BB84 protocol and of the
multipartite six-state protocol in the finite-key regime and under the most powerful
adversarial attacks. We further compare the performances of the two CKA protocols
and demonstrate the feasibility of our new CKA protocol by collaborating to its
experimental implementation.

Despite our focus on CKA, we also address a promising QKD scheme called
twin-field (TF) QKD. TF-QKD allows two parties to establish a secret key over
long distances with single-photon interferometric measurements occurring in an
intermediate relay. We consider an improved TF-QKD protocol whose security is
based on the estimation of certain detection probabilities. By deriving analytical
bounds on these quantities, we optimize the protocol’s performance and show that
it can tolerate highly asymmetric losses and independent intensity fluctuations of
the parties’ lasers.

Inspired by the working principle of TF-QKD, we devise a novel CKA protocol
where multiple users distil a conference key through single-photon interference,
and prove its security. Thanks to this feature, the protocol significantly outperforms
previous CKA schemes in high-loss scenarios and it employs a W-class state as its
entanglement resource, in place of the conventional GHZ state.

Device-independent (DI) cryptographic protocols offer the ultimate level of se-
curity. Their security holds independently of the employed devices and relies on
the observation of non-local correlations certified by a Bell inequality violation. We
develop new theoretical tools for obtaining tight security analyses of multiparty
DI protocols, with potential application to DI-CKA. We also apply our tools to the
security of a specific tripartite DI scenario and improve previously obtained results.
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Zusammenfassung

In den letzten Jahren wurden bedeutende Fortschritte im Bereich der Quantenkryp-
tografie und insbesondere im Quantenschlüsselaustausch (QKD) erzielt. Ein QKD-
Protokoll ermöglicht es zwei Parteien einen sicheren Schlüssel über einen unsicheren
Quantenkanal und einen authentifizierten und öffentlichen, klassischen Kanal zu
teilen. Die Sicherheit des QKDs beruht auf intrinsischen Eigenschaften der Quanten-
theorie wie zum Beispiel Quantenverschränkung.

Das primäre Ziel dieser Thesis ist die Verallgemeinerung des QKDs auf mehrere
Parteien mittels der Quantenkonferenzschlüsselvereinbarung (CKA). Unter Aus-
nutzung von Mehrparteienverschränkung wird ein sicherer Konferenzschlüssel zwis-
chen einer Gruppe von Parteien etabliert welcher später genutzt werden kann, um
sicher Nachrichten innerhalb der Gruppe zu versenden.

Dazu erweitern wir den zusammensetzbaren Sicherheitsformalismus von QKD
auf CKA und führen eine Mehrparteienversion des berühmten BB84-Protokolls ein.
Wir beweisen also die Sicherheit unseres Mehrparteien BB84 und des Mehrparteien
Sechs-Zustand-Protokolls in einem Regime mit endlichem Schlüssel unter Berück-
sichtigung der allgemeinsten Lauschangriffe. Anschließend vergleichen wir die
Performance beider CKA-Protokolle miteinander und demonstrieren die Durch-
führbarkeit unserer neuen CKA-Protokolle, indem wir bei der experimentellen Im-
plementierung kollaborieren.

Ungeachtet unseres Fokus auf CKA befassen wir uns ebenfalls mit einem vielver-
sprechenden QKD Schema, dem sogenannten Zwillingsfeld (TF-) QKD. TF-QKD er-
laubt es zwei Parteien einen sicheren Schlüssel über große Distanzen zu etablieren.
Dies geschieht mittels interferometrischen Einzel-Photonen Messungen welche in
Zwischenrelais auftreten. Wir betrachten ein verbessertes TF-QKD Protokoll dessen
Sicherheit auf der Schätzung bestimmter Detektionswahrscheinlichkeiten beruht.
Durch das Herleiten analytischer Schranken für diese Größen optimieren wir die
Performance des Protokolls und können zeigen, dass es hohe asymmetrische Verluste
und voneinander unabhängige Intensitätsschwankungen der Laser einzelner Parteien
tolerieren kann.

Durch das Funktionsprinzip des TF-QKDs inspiriert, entwickeln wir ein neues
CKA-Protokoll in welchem mehrere Nutzer mittels Einzel-Photonen Interferenz
einen Konferenzschlüssel destillieren und beweisen dessen Sicherheit. Dank dieser
Eigenschaft übertrifft das Protokoll frühere CKA-Schemata in Szenarios mit großen
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Verlusten unter Verwendung eines Zustands der W-Klasse anstelle des allgegenwär-
tigen GHZ Zustandes.

Apparateunabhängige (DI-) Protokolle bieten den höchsten Grad kryptografis-
cher Sicherheit. Ihre Sicherheit gilt unabhängig von der internen Funktionsweise
eines spezifischen Apparats und beruht auf der Beobachtung nicht-lokaler Korre-
lationen, welche durch die Verletzung einer Bell-Ungleichung zertifiziert werden.
Wir entwickeln neue theoretische Methoden für stringente Sicherheitsanalysen von
Mehrparteien DI-Protokollen mit potentiellen Anwendungen auf DI-CKA. Außerdem
wenden wir unsere Methoden auf ein spezifisches Dreiparteien DI-Szenario an und
verbessern zuvor erzielte Resultate.
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Introduction 1
„[...] God had meant photons to travel rather

than to stay put! This was the insight that made
us think of using a quantum channel to transmit
confidential information.

— Gilles Brassard

Quantum cryptography exploits distinctive quantum properties of nature in order to
perform a given cryptographic task. Most quantum cryptographic protocols are –at
least in principle– information-theoretically secure, which is a very strong notion of
security as it is deduced purely from information theory.

Early ideas to use quantum properties for security purposes date back to the ’70s
[Bra05; Ben+83], when Wiesner aimed to create unfalsifiable bank notes [Wie83].
These ideas seemed however very unpractical as they required to store a single
polarized photon for days without losses (at the time, photon polarization was the
only conceived carrier of quantum information).

The breakthrough occurred in 1983, when Bennett and Brassard realized that
photons are best used to transmit quantum information rather than to store it. In
particular, they could be used to transmit a random secret key from a sender to
a receiver, who can then use the key to encrypt and decrypt sensitive messages.
Shortly after, Bennett and Brassard published the first quantum key distribution
(QKD) protocol in 1984 [BB84], hence named BB84 protocol. Since then, many new
protocols have been proposed [Eke91; Bru98; Sca+09] and implemented [Dia+16],
allowing QKD to become the major application of quantum information science.

Furthermore, pushed by increasing concerns on data security and by the prospect
of commercialization, the research on QKD has spread beyond the walls of academia
and attracted the attention of several companies, private institutions and govern-
ments [Com; Tec]. In fact, a growing number of companies and startups worldwide
are offering QKD solutions.

In the long term scientists envision the creation of large-scale quantum networks
where, thanks to quantum entanglement, QKD-enabled secure communication is
possible among any subset of users in the network. With a broader perspective, such
networks could be linked together in a quantum internet [Kim08; WEH18] that
would serve much more scopes than just secure communication, e.g. secure access
to remote quantum computers [BFK09; Fit17].
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1.1 Motivation and Results

The research on QKD beautifully combines ideas and contributions coming from
various fields of study, ranging from quantum information and quantum communi-
cation, to computer science and cryptography. The interplay between these diverse
disciplines leads to theoretical advancements that can be of broad interest and
applicable to other research fields.

Nonetheless, because of the significant commercial appeal of QKD, the on-going
research is also guided by more practical purposes. For instance, combined theo-
retical and experimental efforts are devoted to stretching the maximum distance at
which QKD can be performed, while guaranteeing high key-generation rates with
simple experimental setups.

To this aim, part of our doctoral research addressed a novel QKD protocol which
has recently received a lot of attention from the scientific community. The proto-
col, named twin-field (TF) QKD [Luc+18; CAL19], has quickly become the new
benchmark for long-distance QKD while maintaining high security standards.

In this context, we derive theoretical expressions that allow us to assess the
performance of the TF-QKD protocol devised in [CAL19] for a realistic implementa-
tion of the protocol. From our results [GC19; GNC19] (appendices C and D), we
can conclude that the TF-QKD protocol in [CAL19] can achieve at the same time
long distances and high performance even in conditions previously considered very
unfavourable, as later confirmed experimentally.

The major part of our doctoral research, however, focuses on the development,
security analysis and simulation of the generalization of QKD to multiple users:
multipartite QKD, also known as quantum conference key agreement (CKA). A CKA
protocol is employed when a confidential message needs to be securely broadcast
within a group of users. The users, upon performing a CKA protocol, share a common
secret key –the conference key– with which they can encrypt and decrypt the secret
message. Quantum conference key agreement also represents one of the first natural
applications of the emerging quantum networks.

In our first publication on this topic [GKB18] (appendix B), we introduce a
multipartite generalization of the BB84 protocol. We provide a complete proof of
its security in the most adversarial scenario and benchmark its performance with
another multipartite QKD protocol, under realistic conditions. We also collaborate
to the experimental realization of our protocol [Pro+20] (appendix F), taking care
of the security aspects of its implementation.

Inspired by our work on TF-QKD, we devise a new CKA protocol [GKB19] (ap-
pendix E) which can be regarded as a multiparty generalization of the TF-QKD
protocol in [CAL19]. We prove the protocol’s security in very general circumstances
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and show that, similarly to its bipartite counterpart, it can substantially outperform
other multipartite QKD protocols over long distances.

Among quantum cryptographic protocols, those offering the highest level of secu-
rity are the so-called device-independent (DI) protocols, such as DIQKD protocols
and DI randomness generation (DIRG) protocols. Indeed, the security of these
protocols holds independently of the actual functioning of the devices used to im-
plement them. This remarkable feature relies on the non-local nature of quantum
correlations.

In our latest work [Gra+20] (appendix H), we develop important theoretical tools
that enable more accurate security proofs of multiparty DI protocols. We also apply
these tools to improve the security of specific protocols, with potential application to
DI conference key agreement (DICKA).

Finally, we produce an exhaustive review of the existing CKA protocols [Mur+20]
(appendix G), which represents the first review on this blossoming research topic.

For a more detailed list of our results, we refer the reader to chapter 7.

1.2 Thesis Structure
The contents of the thesis are organized as follows.

• In chapter 2 we set the theoretical framework by introducing all the concepts
of quantum information theory that are necessary for the understanding of the
remainder of the thesis. We place particular emphasis on the various entropy
definitions that capture different measures of information.

• We introduce quantum key distribution (QKD) in chapter 3. After discussing
the purely quantum features on which the security of QKD is based, we describe
the paradigmatic BB84 protocol. We then consider a generic QKD protocol
and prove its security under the most general circumstances. Subsequently
we provide insights on the generalization of QKD to quantum conference key
agreement (CKA) and briefly describe the functioning of our multipartite BB84
protocol. We conclude the chapter by listing some important state-of-the-art
QKD experiments.

• In chapter 4 we draw attention to the security threats posed by performing
QKD with imperfect quantum devices and discuss the solutions proposed so far.
Specifically, we present the decoy-state method to deal with sources emitting
multiple photons. We also introduce the concept of measurement-device-
independent QKD, whose security is independent of the trustworthiness of the
measurement devices.

1.2 Thesis Structure 3



• The subject of chapter 5 is the novel TF-QKD protocol, which applies the
solutions to the security threats discussed in the previous chapter. In this
chapter we also present recent fundamental bounds on the performance of
any point-to-point QKD protocol. We introduce TF-QKD by describing its first
version and the improved version that we investigate. We summarize the
results of our investigation with the support of plots simulating the protocol’s
performance in realistic conditions. Insight is provided on the theoretical
results that enable a practical performance assessment of TF-QKD. The last
part of the chapter is devoted to the presentation and discussion of our new
CKA protocol based on the founding idea of TF-QKD.

• We start chapter 6 by proving Bell’s theorem and introducing the concept
of Bell inequality. We show that quantum correlations can violate Bell in-
equalities and clarify the relations between local, quantum, no-signaling and
causal correlations. We then elucidate the link between the violation of a Bell
inequality and the security of a device-independent (DI) QKD protocol. From
there, we introduce the archetypal DIQKD protocol based on the violation of
the Clauser-Horne-Shimony-Holt inequality, and prove its security. We then
present our theoretical results enabling similar security proofs for multipar-
tite DI protocols. We conclude the chapter by presenting a multipartite Bell
inequality specifically designed to be applied in a DICKA protocol.

• We provide a concise overview of the results of our doctoral research in
chapter 7.

• Chapter 8 concludes the thesis and gives an outlook on future research direc-
tions that stem from the results of our doctoral research.

The original publications of our research manuscripts are provided in appendices B
to H, while appendix A contains the proofs of statements made in the main body of
the thesis.
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Elements of Quantum
Information Theory

2
„Fundamental measures of information arise as

the answers to fundamental questions about the
physical resources required to solve some
information processing problem.

— Nielsen & Chuang

In this thesis, we assume the reader to be familiar with the fundamental concepts
of quantum mechanics and linear algebra. Nonetheless, in this chapter we will
briefly review some of those concepts using the Dirac notation and the density
operator formalism (sections 2.1-2.5). We also introduce the entropies characterizing
information-processing tasks which commonly occur in quantum cryptography
(sections 2.6 and 2.7). The content of this chapter is mostly inspired by the following
literature: [KLM07; NC10; Ros11; Ren08].

2.1 Dirac Notation and Linear Algebra
The state of a quantum mechanical system, with d degrees of freedom, is represented
by a normalized vector |ψ〉 in a d-dimensional Hilbert space H over the complex
numbers C, called the state space of the system. A Hilbert space is an inner product
space, which is also complete with respect to the norm induced by the inner product
if the space is infinite-dimensional.

The vector symbol |ψ〉 is called a ket. To every vector |ψ〉 in H corresponds a
unique dual vector 〈ψ| in the dual Hilbert space H∗, i.e. the space of linear maps
from H to C. The symbol 〈φ| of a dual vector is called a bra. Note that the dual of a
linear combination of vectors α |a〉+ β |b〉 is defined as α∗ 〈a|+ β∗ 〈b|, where α∗ is
the complex conjugate of α ∈ C.

The action of a linear map 〈φ| ∈ H∗ on a vector |ψ〉 ∈ H is written as a “bra-ket”:
|ψ〉 7→ 〈φ|ψ〉 ∈ C and defines the inner product of vectors |ψ〉 and |φ〉 in H. Two
vectors are said to be orthogonal if their inner product is zero. The norm induced by
the inner product is given by: ‖|ψ〉‖ =

√
〈ψ|ψ〉. A vector |ψ〉 is said to be normalized,

or called a unit vector, if ‖|ψ〉‖ = 1. An orthonormal set of vectors {|ψi〉} is exclusively
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composed of normalized and mutually orthogonal vectors: 〈ψi|ψj〉 = δi,j , where δi,j
is the Kronecker delta.

The Dirac notation provides a useful way to represent the action of linear operators
on H, through the outer product. The outer product of |ψ〉 ∈ H and 〈φ| ∈ H∗ is
represented by |ψ〉〈φ| and acts as follows on |γ〉 ∈ H: |γ〉 7→ 〈φ|γ〉 |ψ〉. The outer
product of a vector |ψ〉 by itself defines a linear operator that projects a vector
|φ〉 ∈ H in the one-dimensional subspace spanned by |ψ〉: |ψ〉〈ψ ||φ〉 = 〈ψ|φ〉 |ψ〉.

From this definition, it immediately follows that any orthonormal basis {|bi〉}di=1 of
the d-dimensional Hilbert space H satisfies the completeness relation:

∑d
i=1|bi〉〈bi |=

id, where id is the identity operator. With the completeness relation, it is possible to
represent the action of any linear operator A in the outer product notation:

A = idA id =
d∑

i,j=1
〈bi|A|bj〉 |bi〉〈bj |, (2.1)

where the element 〈bi|A|bj〉 can be regarded as the matrix entry in the i-th row and
j-th column of the matrix representation of A with respect to the basis {|bi〉}di=1.

We define the adjoint or Hermitian conjugate of an operator A on H, the operator
A† on H∗ such that:

(〈ψ|A†|φ〉)∗ = 〈φ|A|ψ〉 ∀ |ψ〉 , |φ〉 ∈ H. (2.2)

This implies that the matrix representing A† is obtained from that of A by applying
transposition and complex conjugation. It also follows that (|ψ〉〈φ|)† = |φ〉〈ψ |.

The evolution of a closed quantum system is determined by a unitary operator U ,
that is an operator for which U † = U−1, where U−1 is the inverse of U . A unitary
transformation also links any two bases {bi}di=1 and {b′i}di=1 in H: |b′i〉 = U |bi〉. Two
bases are called mutually unbiased if 〈b′i|bj〉 = 1/d for every i and j.

The observable quantities in quantum mechanics are represented by Hermitian
operators. An operator A is called Hermitian if A = A†. An important class of
Hermitian operators is the orthogonal projectors.

An operator P is called a projector if P 2 = P . If P is also Hermitian, then it
is called an orthogonal projector. An example is given by the following rank-one
orthogonal projector |ψ〉〈ψ |. Note that any orthogonal projector can be written as:

P =
∑
i∈S
|bi〉〈bi | , S ⊆ {1, . . . , d}, (2.3)

i.e. as a sum of rank-one projectors on some elements of an orthonormal basis
{|bi〉}di=1 ⊂ H.

6 Chapter 2 Elements of Quantum Information Theory



Importantly, the eigenvalues ai of an Hermitian operator A = A† on the d-
dimensional Hilbert space H are real and the eigenvectors form an orthonormal
basis {|ai〉}di=1 (if d is finite), called the eigenbasis of A. Then, the operator A can be
written in its spectral decomposition as follows:

A =
d∑
i=1

ai|ai〉〈ai |. (2.4)

Finally, we define the trace of an operator A on H as follows:

Tr[A] =
d∑
i=1
〈bi|A|bi〉 , (2.5)

where {|bi〉}di=1 is any orthonormal basis forH. We remark that the trace definition is
independent of the chosen basis thanks to the cyclic property of the trace Tr[AB] =
Tr[BA] and to the fact that a change of orthonormal basis is represented by a unitary
operator.

2.2 Density Operator Formalism

We have so far identified the state of a quantum system by its wave function |ψ〉,
implicitly assuming that it can be completely determined. However, from a practical
point of view, this is not always feasible. Consider, for instance, an electron-target
scattering experiment where the electron beam is prepared without the use of
polarizers. The electron spin will probably be oriented in a random direction for
each electron of the beam. Thus, the spin of the beam cannot be described by a pure
state of the form:

|ψ〉 = α |↑〉z + β |↓〉z , (2.6)

since the latter describes a spin oriented in a specific direction, fixed by the polar
angles θ = 2 arccos |α| and ϕ = arg β − argα. Rather, the state of the beam spin
is described by an ensemble of spins oriented in all directions, weighted by their
probability of occurrence: a mixed state.

In cases like this, where the lack of information on an ensemble of single states
prevents us from describing them one by one completely, we can still study such a
collection of states statistically by means of the density operator, introduced by von
Neumann in 1927.

2.2 Density Operator Formalism 7



Definition 2.1 (Density Operator). Consider a quantum system that is found in one
of the pure states {|ψi〉} with probabilities pi < 1, where

∑
i pi = 1. Then, the state of

the system is called a mixed state and is described by the density operator

ρ =
∑
i

pi|ψi〉〈ψi |. (2.7)

The matrix representation of ρ is called density matrix, which is often used to indicate
the operator itself.

If a quantum system is in a pure state |ψ〉 with certainty, then its density operator
reads: ρ = |ψ〉〈ψ |. A criterion to determine whether a state ρ is pure or mixed is
given by the computation of its purity: Tr[ρ2]. A state is pure if Tr[ρ2] = 1, while it’s
mixed if Tr[ρ2] < 1.

Density operators offer an alternative formulation of quantum mechanics, which
is particularly useful in quantum information. Here we provide an intrinsic charac-
terization of density operators, which allows us to abandon their interpretation in
terms of an ensemble of pure states.

Theorem 2.1 (Characterization of density operators). An operator ρ is the density
operator of a mixed state ρ =

∑
i pi|ψi〉〈ψi | if and only if it is normalized (Tr[ρ] = 1)

and positive (ρ ≥ 0, i.e. Hermitian with non-negative eigenvalues).

The proof of this Theorem can be found in [NC10].
We can now reformulate the postulates of quantum mechanics in the density

operator picture.

Postulate 2.1. The state of a quantum system is completely determined by a normalized
positive operator, denoted density operator, acting on a Hilbert space H named the state
space of the system.

Postulate 2.2. The evolution of a closed quantum system is determined by a unitary
transformation U . Specifically, the evolved state of the system ρ′ is obtained from the
initial state ρ as follows:

ρ′ = UρU †. (2.8)

Postulate 2.3. The measurement of a quantum system is defined by a collection of
measurement operators {Mm} acting on H and satisfying the completeness relation:∑
mM

†
mMm = id. If ρ is the state of the system prior to measurement, the probability

of observing the measurement outcome m is given by:

Pr(m) = Tr[M †mMmρ] (2.9)
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and the state of the system after the measurement reads

ρm = MmρM
†
m

Tr[M †mMmρ]
. (2.10)

Postulate 2.4. The state space H of a composite quantum system, with subsystems
numbered from 1 to n, is given by the tensor product of the state spaces Hi composing
the system: H = H1 ⊗H2 ⊗ . . .⊗Hn.

Thanks to Postulates 2.1 and 2.4, we can describe the state of a composite system
commonly encountered in quantum information. Consider a quantum system Q

whose state depends on the value x of a classical random variableX, with probability
distribution Pr(x). For an observer who ignores the value of X, the global state of
the quantum system and of the classical variable is given by:

ρXQ =
∑
x

Pr(x) |x〉〈x|X ⊗ ρxQ, (2.11)

where the random variable X is represented by orthogonal pure states |x〉, since its
classical outcomes can be perfectly distinguished. The quantum system is instead
found in one of the conditional states ρxQ. Moreover, we say that ρXQ is classical on
X or is a classical-quantum (c.q) state if it can be written in the form (2.11).

2.2.1 POVMs and Projective Measurements
Postulate 2.3 provides the most general description of a quantum measurement.
There are two special cases of quantum measurements which are of particular
interest in quantum information. The first one is the positive operator-valued
measure (POVM), which simplifies the formalism when only the measurement
statistics matters.

Definition 2.2 (POVM). A POVM is defined by a set of positive operators {Em}, the
POVM elements, acting on the state space, such that

∑
mEm = id. Then the probability

of obtaining outcome m when measuring the system in state ρ is given by:

Pr(m) = Tr[Emρ]. (2.12)

One can readily see that POVMs are a special case of Postulate 2.3, when the
measurement operators are given by Mm =

√
Em, which implies M †mMm = Em.

The only case in which the measurement operators and the POVM elements
coincide is for projective measurements, i.e. when they are orthogonal projectors:
Em = Mm = Pm. By combining the general expression of an orthogonal projector
(2.3) with the constraint given by the completeness relation:

∑
m Pm = id, one
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verifies that the projectors {Pm} are mutually orthogonal: PmPn = δm,nPn. From
the measurement outcomes and the projectors it is possible to define an Hermitian
operator M , called observable, through its spectral decomposition:

M =
∑
m

mPm. (2.13)

Often, a projective measurement is equivalently defined as the measurement of an
observable M , meaning that the projectors are those appearing in its spectral decom-
position (2.13). If the projectors are all rank-one Pm = |m〉〈m|, the measurement is
called a von Neumann measurement.

Identifying a projective measurement with the observable M is useful when, for
instance, one wants to compute the average outcome, since it can be directly written
in terms of the observable M :

〈M〉 :=
∑
m

mPr(m) =
∑
m

mTr[Pmρ] = Tr[Mρ]. (2.14)

Finally we remark that, although projective measurements are particular cases
of POVMs, the statistics of any POVM on a d-dimensional Hilbert space can be
reproduced by combining a projective measurement on a Hilbert space of dimension
d′ ≥ d with a unitary operation. This result is known as the Naimark theorem
[DJR05; Per06].

2.3 Qubits and Pauli Operators

In many quantum information applications, the fundamental quantum system is a
two-level system called quantum bit or qubit. Physical realizations of qubits are, for
example: a photon that can be found in one of two distinct paths, two orthogonal
polarizations of a photon, the spin state of spin-1

2 particles, or the two lowest energy
levels of an electron orbiting a nucleus.

The state of a qubit is described by a density operator acting on a two-dimensional
Hilbert space, H2. The commonly used basis for H2 is the computational basis
{|0〉 , |1〉}. Thus, any pure qubit state is represented by a superposition of the form:
|ψ〉 = α |0〉+ β |1〉, where |α|2 + |β|2 = 1.

Conversely, any general (possibly mixed) qubit state ρ on H2 can be expressed
as a combination of the identity operator id and the Pauli operators σx, σy and σz
[Pau27]:

ρ = id + ~r · ~σ
2 , ~r ∈ R3 : ‖r‖ ≤ 1, (2.15)
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where ~σ = (σx, σy, σz)T . The matrix representation of the Pauli operators with
respect to the computational basis reads:

σx =
[
0 1
1 0

]
; σy =

[
0 −i
i 0

]
; σz =

[
1 0
0 −1

]
(2.16)

Note that, depending on the context, we also indicate the Pauli operators as σx =
σ1 = X, σy = σ2 = Y and σz = σ3 = Z. The Pauli operators are Hermitian with
eigenvalues ±1, traceless, and satisfy the following relation:

σiσj = δi,j id +
3∑

k=1
εijkσk, (2.17)

where εijk is the Levi-Civita symbol, which is equal to +1 (or −1) if the triple (i, j, k)
is a cyclic (or anti-cyclic) permutation of (1, 2, 3), and zero if any two indices are
repeated.

The representation (2.15) of a qubit state, together with (2.17), is particularly
useful in many computations. For instance, the purity of a qubit state can be readily
computed as: Tr[ρ2] = (1+‖r‖2)/2. Thus, the norm of the vector ~r indicates whether
the state is pure (‖r‖ = 1) or mixed (‖r‖ < 1). When ‖r‖ = 0, the state is said to be
maximally mixed.

Moreover, the vector ~r individuates a point inside a unit sphere, called the Bloch
sphere, where the three Cartesian coordinates are associated with the eigenstates of
the Pauli operators. Often, in the quantum information jargon one can measure “in
the z direction of the Bloch sphere”, meaning that one is performing a projective
measurement in the eigenbasis of σz, which is conventionally associated with the
computational basis.

Finally, the Pauli operators have a prominent role in quantum error correction,
since they represent all the possible errors that can occur when processing a qubit.
In particular, σx produces bit flips, σz yields phase flips and σy both phase and bit
flips:

σx |a〉 = |ā〉 (2.18)

σz |a〉 = (−1)a |a〉 (2.19)

σy |a〉 = i(−1)a |ā〉 , a = 0, 1 (2.20)

where ā = 1− a.
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2.4 Composite Systems and Entanglement
Postulate 2.4 allows us to introduce one of the most astonishing features of quan-
tum mechanics, entanglement, which plays a crucial role in quantum information
protocols.

Suppose that two parties, Alice and Bob, locally prepare their own quantum
system in the state ρA and ρB, respectively. Then, the global state of the composite
quantum system, ρAB = ρA ⊗ ρB, is called a product state. If the prepared states
are pure: ρA(B) = |ψA(B)〉〈ψA(B) |, even the global state is pure and represented by
the following product state: |Ψ〉 = |ψA〉 ⊗ |ψB〉. Note that a compact notation for
|ψA〉 ⊗ |ψB〉 is |ψA, ψB〉 or |ψAψB〉.

Alice and Bob could also agree on locally preparing the states ρAi and ρBi ,
according to a shared random variable with distribution {pi}. This task only requires
local operations and classical communication (LOCC) . In this case, the state on
HAB is described by:

ρAB =
∑
i

pi ρAi ⊗ ρBi . (2.21)

However, not every composite quantum system is prepared with LOCC, hence it
cannot be expressed as the state in (2.21) [GT09].

Definition 2.3 (Separability, Entanglement). A quantum state ρAB on HA ⊗HB is
called separable if there exists a convex combination of pure product states |ψi, φi〉〈ψi, φi |,
with |ψi〉 ∈ HA and |φi〉 ∈ HB, such that:

ρAB =
∑
i

pi |ψi, φi〉〈ψi, φi |. (2.22)

Otherwise, ρAB is called entangled.

Note that every state of the form (2.21) can be reduced to a state like (2.22).
Classifying whether a state is entangled or not is challenging. Consider for example

the following pure states, known as Bell states:

|Φ±〉 = |00〉 ± |11〉√
2

, (2.23)

whose density operators are clearly entangled:

|Φ±〉〈Φ± |= 1
2 [|00〉〈00|±|00〉〈11|±|11〉〈00|+|11〉〈11|] . (2.24)

Surprisingly, their convex combination is not entangled:

1
2
[
|Φ+〉〈Φ+ |+|Φ−〉〈Φ− |

]
= 1

2 [|00〉〈00|+|11〉〈11|] . (2.25)
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The definition of entanglement can be extended to a multipartite scenario.

Definition 2.4 (Multipartite Entanglement). Consider a set of parties labelled by the
indices I = {1, 2, . . . , n} and a partition {Ik}k of I, where Ik are disjoint subsets of I
such that ∪kIk = I. Then a state ρ is separable with respect to the partition {Ik}k if it
can be written as:

ρ =
∑
i

pi ρI1,i ⊗ · · · ⊗ ρIk,i. (2.26)

If every Ik comprises only one index, then the state (2.26) is called fully-separable. If a
state is not fully-separable, then it is entangled. If the partition is only composed of two
subsets I1 and I2, the state (2.26) is called biseparable. If a state cannot be expressed
as a convex combination of biseparable states, then it is called genuine multipartite
entangled (GME).

An example of a pure GME state which plays a major role in multipartite quantum
cryptographic protocols is the Greenberger–Horne–Zeilinger (GHZ) state [GHZ89]:

|GHZn〉 = 1√
2

[
|0〉⊗n + |1〉⊗n

]
. (2.27)

A remarkable application of the density operator formalism is the ability to
describe subsystems of composite systems through the reduced density operator.
This is particularly useful when the global state is entangled and the states of its
subsystems are not immediately intelligible.

Definition 2.5 (Reduced density operator). Let ρAB be the state of a bipartite quan-
tum system. Then the reduced density operator representing the state on subsystem A is
given by:

ρA = TrB[ρAB], (2.28)

where TrB is the partial trace on subsystem B.

The partial trace is defined as the regular trace (2.5) but only acts on the subsys-
tems indicated in the subscript. Thus, for instance:

TrB[|a1〉〈a2 |⊗|b1〉〈b2 |] = |a1〉〈a2 |Tr[|b1〉〈b2 |] = |a1〉〈a2 |〈b2|b1〉 . (2.29)

Definition 2.5 is justified by the fact that the reduced density operator ρA provides
the correct measurement statistics for measurements made on subsystem A.
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2.4.1 The Schmidt Decomposition and Purifications

We observed that entanglement detection is not an easy task. A bipartite pure state is
entangled if it cannot be expressed as a product state (Definition 2.3). A useful tool
to detect entanglement in bipartite pure states is given by the Schmidt decomposition.

Theorem 2.2 (Schmidt decomposition). Let |ψAB〉 ∈ HA ⊗HB be the pure state of
a bipartite system. Then there exists an orthonormal basis {|αi〉}dAi=1 of HA and an
orthonormal basis {|βj〉}dBj=1 of HB such that:

|ψAB〉 =
R∑
k=1

λk |αk, βk〉 , (2.30)

where λk are positive real coefficients called Schmidt coefficients and R ≤ min(dA, dB)
is the Schmidt rank.

Proof. Let {|ai〉}dAi=1 and {|bj〉}dBj=1 two orthonormal bases of HA and HB, respec-
tively. Then the state |ψAB〉 can be expressed as:

|ψAB〉 =
dA,dB∑
i,j=1

cij |ai, bj〉 , (2.31)

for some complex coefficients cij which define the complex matrix C ∈ CdA×dB .
From the singular value decomposition of C we obtain: C = UDV , where U ∈
CdA×dA and V ∈ CdB×dB are unitary matrices and D ∈ RdA×dB is a rectangular
diagonal matrix of non-negative numbers. By substituting the expression for C in
(2.31) we get:

|ψAB〉 =
min(dA,dB)∑

k=1

dA,dB∑
i,j=1

uikdkkvkj |ai, bj〉 , (2.32)

where uik, dkk and vkj are the matrix elements of U , D and V , respectively. We now
define new basis elements |αk〉 =

∑dA
i=1 uik |ai〉 and |βk〉 =

∑dB
j=1 vkj |bj〉. The newly

defined bases {αk}dAk=1 and {βk}dBk=1 are orthonormal since the starting ones were
so. By substituting the bases in (2.32) and by discarding the terms in the sum over
k where dkk = 0, we obtain the claim in (2.30).

Note that the Schmidt coefficients are given by the square roots of the nonzero
eigenvalues of CC†, hence they can be easily determined.
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The Schmidt decomposition allows us to immediately compute the reduced state
of the two subsystems according to Definition 2.5:

ρA =
R∑
k=1

λ2
k|αk〉〈αk | ; ρB =

R∑
k=1

λ2
k|βk〉〈βk | (2.33)

We observe that ρA and ρB are written in their spectral decomposition and have the
same eigenvalues! Since many properties in quantum information are determined
by the eigenvalues of a state (e.g. the von Neumann entropy, see section 2.6), they
will be the same for the two subsystems of a composite quantum system in a pure
state.

Moreover, if the Schmidt rank is R = 1, the global state is separable and the two
subsystems are pure. Otherwise, for R > 1 the global state is entangled and the two
subsystems are mixed. In this case, we can completely determine the (pure) state of
the combined system (2.30), but we lack information when we focus on its single
constituents (2.33) –the reduced states are mixed. This bizarre fact is one of the
hallmarks of entanglement.

The missing information on system A is represented by its classical randomness,
which is correlated to system B as visualized in (2.30). Only a global description of
systemsA andB, provided by the pure state (2.30), presents no classical randomness
and hence cannot be correlated with any other system. Therefore, everything that
might possibly be correlated with system A is contained in system B.

This fact is widely used in quantum cryptography. Here, a group of honest parties
holds a quantum system A. One then assumes the worst-case scenario where
the eavesdropper, Eve, holds the quantum system E that contains all the possible
correlations with A, i.e. the composite system AE is in a pure state. We say that Eve
holds the purifying system, which can be identified as follows.

Proposition 2.3. Let ρA on HA be the state of a quantum system A. Then there exists
an auxiliary system E with state space HE and a pure state |ψAE〉 ∈ HA ⊗HE , called
a purification of ρA, such that:

TrE [|ψAE〉〈ψAE |] = ρA. (2.34)

Proof. Consider the spectral decomposition of ρA:
∑d
i=1 λi|λi〉〈λi | and a Hilbert

space HE of the same dimension d of HA, with orthonormal basis {|ei〉}. The
purification of ρA is given by:

|ψAE〉 =
d∑
i=1

√
λi |λi〉 ⊗ |ei〉 . (2.35)

2.4 Composite Systems and Entanglement 15



Indeed, we have that:

TrE [|ψAE〉〈ψAE |] =
d∑

i,j=1

√
λiλj |λi〉〈λj |Tr[|ei〉〈ej |]

=
d∑
i=1

λi|λi〉〈λi |= ρA, (2.36)

as claimed.

Note that all purifications |ψAE〉 of ρA are related by unitaries on E.

2.5 Quantum Operations
A quantum operation E , also called quantum channel, provides the most general
description of a physical process acting on a system in state ρ. The final state of
the system, after the process occurs, is given by E(ρ) up to some normalization
factor. Both the unitary evolution of a closed system (Postulate 2.2) and quantum
measurements (Postulate 2.3) are examples of quantum operations.

Quantum operations are defined by the following three axiomatic properties,
based on physical grounds.

Axiom 2.1. The probability that the process represented by E occurs is given by
Tr[E(ρ)] ∈ [0, 1], when ρ is the initial state.

Axiom 2.2. The map E is convex-linear on the set of density operators, i.e.

E
(∑

i

piρi

)
=
∑
i

piE(ρi).

Axiom 2.3. The map E is completely positive (CP). That is, E(ρ) is a positive operator
for every input state ρ. Additionally, for every composite state ρAB on HA ⊗HB, the
operator (idA ⊗ E)(ρAB) is positive on HA ⊗HB.

The axioms are chosen such that quantum operations map density operators
to density operators. Axiom 2.1 includes quantum measurements (where each
outcome occurs with a certain probability) as a possible quantum operation. The
normalized state after the process in this case reads E(ρ)/Tr[E(ρ)]. The second
axiom states a desirable property, namely that if a system is in one of the states {ρi}
with distribution {pi}, after applying E it will be in one of the states {E(ρi)} with
the same probability distribution. Finally, Axiom 2.3 ensures that the output of a
quantum operation is still a density operator, even when it acts on a subsystem of a
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composite system. Note that this requirement is non-trivial, as there are maps which
are positive but not CP.

Kraus’ theorem is a beautiful result which characterizes quantum operations with
an elegant notation.

Theorem 2.4 (Kraus). A map E is a quantum operation satisfying Axioms 2.1, 2.2
and 2.3 if and only if it can be represented by a Kraus decomposition:

E(ρ) =
∑
i

KiρK
†
i , (2.37)

for some set of Kraus operators {Ki} such that
∑
iK
†
iKi ≤ id. Moreover, being d the

dimension of the Hilbert space of the system on which E acts, the number of Kraus
operators is not larger than d2.

The proof of this theorem can be found in [NC10; Par12]. We point out that
the Kraus decomposition of a quantum operation is not unique, but all the possible
decompositions are linked by unitary transformations.

Unitaries and measurements are two particular cases of quantum operations with
one Kraus operator each, given by: K = U and K = Mm, respectively. However,
while unitaries are trace-preserving operations, Tr[UρU †] = Tr[ρU †U ] = 1, quantum
measurements in general are not.

An equivalent description of quantum operations interprets them as the result
of the interaction between the system of interest (S) and an environment (E).
Conversely, in absence of interactions with an environment, the system would evolve
according to a unitary transformation (Postulate 2.2). Suppose that the system and
the environment are initially in a product state, where the environment is described
by a pure state |e0〉 and the system’s state is ρ. Note that assuming an initial pure
state for the environment is not restrictive as we did not fix its dimension, thus
we could always take its purification. The composite system (S + E) is closed and
evolves according to a unitary U . Then, the final state of system S reads:

E(ρ) = TrE
[
U(ρ⊗ |e0〉〈e0 |)U †

]
=
∑
i

〈ei|U(ρ⊗ |e0〉〈e0 |)U † |ei〉 , (2.38)

for some orthonormal basis {|ei〉} of the environment. By comparing (2.38) with
(2.37), we deduce an explicit expression for the Kraus operators:

Ki = 〈ei|U |e0〉 . (2.39)

Since the operators (2.39) satisfy the completeness relation
∑
iK
†
iKi = id, they de-

scribe trace-preserving quantum operations. Instead, non-trace-preserving quantum
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operations can be viewed as just described with an additional projective measure-
ment on the combined system, following the unitary U .

2.5.1 Depolarizing Channel
An important example of quantum operation is the depolarizing channel:

E(ρ) = (1− p)ρ+ p

3

3∑
i=1

σiρσ
†
i , (2.40)

with Kraus operators K0 =
√

1− p id and Ki =
√
p/3σi. Recall from section 2.3

that every qubit error can be reproduced by applying a Pauli operator σi. Thus, the
resulting state in (2.40) is unchanged with probability 1 − p or is affected by one
of the qubit errors with probability p/3 each. By applying the depolarizing channel
on the qubits used in a quantum information protocol, one can test the protocol’s
robustness against noise.

Note that, under the substitution p = 3q/4, the map in (2.40) can be recast as:

E(ρ) = (1− q)ρ+ q
id
2 , (2.41)

i.e. it depolarizes a qubit with probability q by replacing it with the completely
mixed state id/2.

2.6 Entropies
The uncertainty that an observer has about a physical system, i.e. the amount
of randomness characterizing the system from her perspective, is quantified by a
certain entropy measure. Here we review the principal entropy measures used in
the remainder of this thesis.

Definition 2.6 (Shannon entropy). LetX be a random variable whose outcomes follow
the probability distribution {px}. The Shannon entropy of X (or of the distribution
{px}) is given by:

H(X) = H({px}) = −
∑
x

px log px. (2.42)

Remark 2.1. The logarithm symbol in this thesis is always intended in base 2 and by
convention it holds: 0 log 0 = 0.

The Shannon entropy quantifies the uncertainty about X before we learn its value.
Equivalently, H(X) are the bits of information gained after reading the outcome of
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X. If X has only two possible outcomes, the Shannon entropy is often called binary
entropy and reads:

h(p) := −p log p− (1− p) log(1− p) (2.43)

Given two random variables X and Y jointly distributed according to {p(x, y)}, the
joint Shannon entropy reads:

H(X,Y ) = −p(x, y)
∑
x,y

p(x, y), (2.44)

while the conditional entropy is defined as:

H(X|Y ) = H(X,Y )−H(Y ). (2.45)

The conditional entropy of X given Y quantifies how uncertain we are about X,
given that we learned the value of Y . Finally, the mutual information H(X : Y )
measures the amount of information we gain on X by observing the value of Y .
This is given by the total amount of information of X, H(X), minus the uncertainty
that we still have on X after learning Y , i.e. H(X|Y ). Thus we have:

H(X : Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y ). (2.46)

Of the many properties satisfied by the above-defined entropies, we highlight in
particular that: H(X|Y ) = H(X,Y )−H(Y ) ≥ 0. We could intuitively expect this,
since the uncertainty on both random variables X and Y must be greater than
the uncertainty on Y . Conversely, this does not hold for quantum states, whose
uncertainty is quantified by the von Neumann entropy.

Definition 2.7 (von Neumman entropy). The von Neumann entropy of a quantum
state ρ, with eigenvalues {λi}, is defined as:

H(ρ) = −Tr[ρ log ρ] = −
∑
i

λi log λi. (2.47)

One can interpret the von Neumann entropy of ρ as the Shannon entropy of the
probability distribution defined by its eigenvalues, hence we use the same symbol.
Often, the von Neumann entropy of a system A in state ρ is indicated as: H(A)ρ.

For the above analogy, the previous definitions of joint entropy (2.44), conditional
entropy (2.45) and mutual information (2.46) can be extended to the von Neumann
entropy.

We observe that 0 ≤ H(ρ) ≤ log d for every state ρ on a d-dimensional Hilbert
space. Moreover H(ρ) = 0 if ρ is pure and H(ρ) = log d if the state is maximally
mixed.
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Suppose that the state ρAB of a composite system is given by the pure entan-
gled state in (2.23), already written in its Schmidt decomposition. Then, the von
Neumann entropy of the composite system is: H(AB)ρ = 0. From the Schmidt
decomposition (c.f. section 2.4) we learned that the eigenvalues of ρA and ρB

are equal and given by the squares of the Schmidt coefficients. This leads to:
H(A)ρ = H(B)ρ = 1. Clearly, in the quantum case the entropy of a subsystem can
be larger than the entropy of the composite system and the conditional entropy
becomes negative.

Other important properties of the von Neumann entropy are the strong subaddi-
tivity:

H(A|B,C) ≤ H(A|B), (2.48)

and the conditional entropy of a c.q. state. Let ρAB =
∑
a Pr(a) |a〉〈a|⊗ρaB be a

c.q. state, where the state on B depends on the value a. Then the entropy of B
conditioned on A can be expressed as:

H(B|A)ρ =
∑
a

Pr(a)H(ρaB). (2.49)

2.6.1 Operational Meaning
We conclude this section by briefly providing an operational meaning of the Shannon
and von Neumann entropies, which helps us motivate the introduction of smooth
entropies in the next section.

Consider a source emitting a sequence of random symbols represented by random
variables X1, X2,. . . ,Xn, each of them distributed according to PX and independent
from each other. They are said to be independent and identically distributed (i.i.d.)
random variables. The goal is to store the data by encoding it in a bitstring without
losing information, so that it can be later retrieved. Then Shannon’s noiseless coding
theorem affirms that asymptotically –i.e. for diverging n– the amount of bits needed
per source symbol is given by H(X).

More formally, if `εcompr(X) is the minimum amount of bits needed to compress X
without losing information, except for probability ε, then the compression rate of the
example above is given by:

rcompr(X) := lim
ε→0

lim
n→∞

`εcompr(X1X2 · · ·Xn)
n

= H(X). (2.50)

Similarly, we consider the quantum i.i.d. source defined by the state ρ, with
spectral decomposition ρ =

∑
i λi|ψi〉〈ψi |. In other words, the source emits a

sequence of quantum states drawn from {ψi}, according to the distribution {pi}.
For Schumacher’s noiseless coding theorem, the fraction of qubits needed to reliably
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encode and decode each state in the sequence is given by the von Neumann entropy
H(ρ).

Unfortunately, if one removes the asymptotic or the i.i.d. assumption, the Shannon
and von Neumann entropies no longer describe operational quantities.

2.7 Smooth Entropies
Here we define two generalizations of the entropies introduced in the last section,
which present an operational meaning in non-i.i.d. and non-asymptotic scenarios
and play a fundamental role in the security of quantum cryptographic schemes.

Definition 2.8 (Min-entropy, [Tom16; KRS09]). Let ρAB be a bipartite density oper-
ator. The min-entropy of A conditioned on B of the state ρAB is defined as:

Hmin(A|B)ρ = − log min{Tr(σB) : σB ≥ 0, (idA ⊗ σB)− ρAB ≥ 0}. (2.51)

A very useful operational interpretation of the min-entropy in (2.51) is given
in [KRS09]. Consider an agent with access to a quantum system B whose state
depends on a classical random variable X. This scenario is represented by the c.q.
state:

ρXB =
∑
x

px |x〉〈x|⊗ρxB, (2.52)

where {|x〉} is a orthonormal set of vectors and {px} is a probability distribution.
Let pguess(X|B) be the probability that the agent correctly guesses X when using an
optimal measurement strategy, i.e.:

pguess(X|B) = max
{Ex}

∑
x

px Tr[ExρxB], (2.53)

where {Ex} are POVM elements of a generic quantum measurement on system B.
Then, the min-entropy of X conditioned on B is related to the guessing probability
pguess(X|B) by:

Hmin(X|B)ρ = − log pguess(X|B). (2.54)

Definition 2.9 (Max-entropy, [Tom16; KRS09]). Let ρAB be a bipartite density
operator and let ρABC be a purification of ρAB. The max-entropy of A conditioned on
B of the state ρAB is defined as:

Hmax(A|B)ρ = −Hmin(A|C)ρ. (2.55)

Min- and max-entropy are also defined on a probability distribution PX by evalu-
ating them on the state: ρX =

∑
x PX(x)|x〉〈x|, where {|x〉} is an orthonormal basis.
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In general, they are related as follows to the von Neumann entropy of a bipartite
density operator ρAB [TCR09]:

Hmin(A|B) ≤ H(A|B) ≤ Hmax(A|B). (2.56)

In order to account for an error probability ε in the information-processing tasks
related to min- and max-entropy, we introduce the ε-smooth versions of the en-
tropies. First, we need to provide a suitable definition of distance between states.

Definition 2.10 (Purified distance, [Tom+11a]). The purified distance between two
positive operators ρ and τ is given by:

P (ρ, τ) =
√

1− F (ρ, τ)2, (2.57)

where F (ρ, τ) is the generalized fidelity:

F (ρ, τ) =
∥∥√τ√ρ∥∥+

√
(1− Tr ρ)(1− Trσ) (2.58)

and the norm of an operator O is defined as: ‖O‖ = Tr[
√
OO†].

An important property of the purified distance is that if two states are separated
by a distance P (ρ, τ), there exist purifications of ρ and τ with the same purified
distance.

We can now define the smooth entropies.

Definition 2.11 (Smooth entropies, [Tom16; KRS09]). Let ρAB be a bipartite density
operator. The ε-smooth min- and max-entropy of A conditioned on B of the state ρAB
are given by:

Hε
min(A|B)ρ = max

σ∈Bε(ρ)
Hmin(A|B)σ (2.59)

Hε
max(A|B)ρ = min

σ∈Bε(ρ)
Hmax(A|B)σ, (2.60)

where Bε(ρ) is a ball of ε-close states centered in ρ:

Bε(ρ) = {τ ≥ 0 : Tr(τ) ≤ 1, P (ρ, τ) ≤ ε}. (2.61)

The asymptotic equipartition property (AEP) links the smooth entropies to the
Shannon/von Neumann entropy [TCR09]:

H(A|B)ρ = lim
ε→0

lim
n→∞

1
n
Hε

min(An|Bn)ρ⊗n (2.62)

H(A|B)ρ = lim
ε→0

lim
n→∞

1
n
Hε

max(An|Bn)ρ⊗n , (2.63)
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where the smooth entropies are evaluated on the i.i.d. state ρ⊗n. Another important
property of the smooth entropies is the data-processing inequality [Tom16]:

Hε
min(A|B)ρ ≤ Hε

min(A|B′)(id⊗E)ρ (2.64)

Hε
max(A|B)ρ ≤ Hε

max(A|B′)(id⊗E)ρ. (2.65)

The data-processing inequality basically states that if we process the quantum
side information B through a CP trace-preserving map E , we always increase our
uncertainty on A.

2.7.1 Operational Meaning

The smooth entropies are well suited to characterize operational quantities in
realistic scenarios (e.g. finite resources and errors), which often appear in quantum
cryptographic schemes.

Data compression and error correction (EC). Recall that `εcompr(X) is the minimum
amount of bits encoding a single realization of the random variable X, from which
the value of X can be recovered with probability at least 1 − ε. This quantity is
essentially equal to the ε-smooth max-entropy of the distribution PX [KRS09]:

`εcompr(X) = Hε′
max(X) +O(log 1/ε), (2.66)

for some ε′ ∈ [ ε2 , 2ε]. This result generalizes Shannon’s noiseless coding theorem
(2.50) to a scenario where the number of realizations of X is finite. Shannon’s
theorem is recovered by employing (2.66) in (2.50) and by using the AEP (2.63).
The result in (2.66) can be applied to the cryptographic scenario where two parties,
Alice and Bob, establish a shared secret key (bitstring) over a noisy channel. Due
to the noise, Bob only has a probability distribution PX|Y of the possible keys X
held by Alice, conditioned on his side information Y . Alice then sends to Bob the
minimal amount of information that allows him to correctly guess her key, except
for probability ε. This information is equal to the smallest reliable data compression
of X, when Y is known, i.e. `εcompr(X|Y ).

Privacy amplification (PA). Consider the same cryptographic scenario described
above and suppose that an eavesdropper, Eve, has access to quantum side in-
formation E correlated with Alice’s key X. This can be described by a c.q. state
of the form (2.52). The goal of PA is to extract a secure key f(X), i.e. one that is
distributed uniformly from the point of view of the eavesdropper holding E. By
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calling `εextr(X|E) the maximum length of f(X), computed from X and which is
ε-close to a bitstring Z uniform and independent of E, it holds [KRS09]:

`εextr(X|E) = Hε′
min(X|E) +O(log 1/ε). (2.67)

Both EC and PA are fundamental tasks in any quantum key distribution (QKD)
protocol. Indeed, as we shall see in the next chapter, the final secret key length
of a generic QKD protocol is determined by a combination of smooth min- and
max-entropies.

24 Chapter 2 Elements of Quantum Information Theory



Introducing Quantum Key
Distribution

3
„As the need for unbreakable encryption looms in

networks around the world, quantum
cryptography is the solution that will safeguard
and future-proof sensitive information.

— Commercial QKD company

The security of classical cryptographic schemes relies on assumptions on the adver-
sary’s computational capabilities and on the fact that certain mathematical problems
are considered “hard” to solve. This makes classical cryptography vulnerable to
retroactive attacks. That is, an adversary could store the encrypted data while
it is communicated and wait to have sufficient computational power, or smarter
algorithms, in order to decrypt it. Conversely, the security of quantum cryptography
relies on intrinsic principles of nature, as described by quantum mechanics. There-
fore, assuming that quantum mechanics is correct, the security offered by quantum
cryptography is everlasting, in the sense that it is independent of future theoretical
or experimental advances of the adversary.

Quantum key distribution (QKD) is arguably the most developed task of quantum
cryptography, both from a theoretical and experimental point of view.

In this chapter we first present some of the security principles of QKD in section 3.1.
We then describe the BB84 protocol as an example of QKD protocol and compute its
key rate (section 3.2). Section 3.3 is bit more technical, here we define and prove the
security of a generic QKD protocol in the finite-key scenario. Quantum conference
key agreement (CKA) extends the notion of QKD to the multipartite scenario. We
introduce CKA in section 3.4 and present our multipartite generalization of the
BB84 protocol (appendix B). An exhaustive review of quantum CKA protocols can
be found in appendix G. We conclude the chapter by listing some state-of-the-art
QKD experiments (section 3.5), including the first implementation of a CKA protocol
to which we contributed (appendix F).
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3.1 The Origins of Security
QKD is a specific task of quantum cryptography where two honest parties, tradi-
tionally called Alice and Bob, establish a shared secret key when connected by
an insecure quantum channel and an authenticated public classical channel. The
combination of QKD with the Vernam cipher [Mil82; Ver26], also called one-time
pad, allows for ever-lasting secure communication.

Indeed, suppose that Alice wants to send a secret message ~m, composed of n bits,
to Bob. According to the Vernam cipher, Alice encrypts her message by adding it
modulo two1 with a n-bit key ~k she shares with Bob, thanks to a prior execution of
a QKD protocol: ~me = ~m ⊕ ~k. She then sends the encrypted message ~me to Bob,
who decrypts it by again adding the encryption key: ~me ⊕ ~k = ~m ⊕ ~k ⊕ ~k = ~m.
The Vernam cipher is provably secure as long as the number of key bits matches
the number of message bits, and the key (or parts of it) is not reused [NC10]. The
security of the communication thus depends on the security of the QKD protocol.

Many QKD protocols are based on the transmission of quantum states from Alice
to Bob, through the quantum channel. The crucial fact which makes QKD secure is
that a potential eavesdropper, Eve, cannot gain any information from the transmitted
states without disturbing them.

For instance, an obvious attack by Eve would be to create perfect copies of the
transmitted states before they reach Bob, as in classical wiretapping. However,
quantum mechanics prevents this, as shown by the no-cloning theorem.

Theorem 3.1 (no-cloning, [WZ82]). It is not possible to perfectly clone an unknown
quantum state.

Proof. Suppose by contradiction that we have a cloning machine and that we apply
it on two distinct quantum states |ψ〉 6= |φ〉 which are also non-orthogonal 〈φ|ψ〉 6= 0.
The action of the cloning machine is represented by a unitary operation U , which
copies the input state on some auxiliary system initially in a normalized state |s〉:

U(|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉 (3.1)

U(|φ〉 ⊗ |s〉) = |φ〉 ⊗ |φ〉 . (3.2)

By taking the inner product of equations (3.1) and (3.2) we obtain:

〈φ|ψ〉 = (〈φ|ψ〉)2, (3.3)

which is only true when the states |ψ〉 and |φ〉 are either the same state or are
orthogonal, thus a general cloning machine is not possible.

1The “⊕” symbol always indicates the XOR operation on bits or bitstrings, unless otherwise stated.
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We remark that this theorem does not contradict our common sense that classical
information can be copied, since the latter is always stored in physical systems (e.g.
a piece of written paper) described by orthogonal quantum states. As the proof
showed, quantum mechanics does not prevent to build a machine which clones
orthogonal quantum states.

Considered that Eve cannot copy non-orthogonal transmitted states, at least she
would like to be able to partially distinguish them, without being noticed. However,
this is also forbidden by quantum mechanics.

Proposition 3.2 (Information gain entails disturbance, [NC10]). In the attempt to
distinguish non-orthogonal quantum states in a quantum signal, any information gain
is accompanied by a disturbance of the signal.

Proof. Let |ψ〉 and |φ〉 be two non-orthogonal quantum states in the quantum signal
sent by Alice to Bob. Eve’s action on the signal is represented by a generic quantum
operation, which can be viewed as a unitary acting on a larger Hilbert space (c.f.
section 2.5). In particular, the unitary acts on the state |ψ〉 (or |φ〉) and on an ancilla
|u〉. We assume that Eve’s action leaves the signal states unchanged:

U(|ψ〉 ⊗ |u〉) = |ψ〉 ⊗ |v〉 (3.4)

U(|φ〉 ⊗ |u〉) = |φ〉 ⊗ |v′〉 . (3.5)

Eve would like |v〉 and |v′〉 to be different states, so she could partially distinguish the
corresponding signal states. However, by computing the inner product of equations
(3.4) and (3.5) we obtain that:

〈φ|ψ〉 = 〈φ|ψ〉 〈v′|v〉 , (3.6)

implying that |v〉 = |v′〉. Thus, distinguishing two non-orthogonal states implies the
disturbance of at least one of them.

The above results suggest how quantum mechanical properties can be exploited in
a key distribution scheme. Alice can encode the key bits in non-orthogonal quantum
states and send them to Bob. By checking the disturbance of the signal, the parties
can quantitatively upper bound Eve’s knowledge on the exchanged key.

3.2 The BB84 Protocol
The BB84 protocol [BB84], named after its inventors Bennett and Brassard, is
commonly considered to be the first ever QKD protocol, but it is also the simplest
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and variations of it are investigated and implemented even today. For the protocol’s
description, we follow the references [Sca+09; Pir+19].

Suppose Alice possesses a source of single photons, whose spectral properties are
well defined so that the only remaining degree of freedom is the photon’s polar-
ization. Alice and Bob align their polarizers and agree to employ two polarization
bases, one defined by the horizontal/vertical directions and the other defined by
the +45°/−45° directions. The polarization state of a photon is thus represented
by a qubit in H2. We associate the eigenbasis {|0〉 , |1〉} of Pauli operator Z to the
horizontal/vertical basis and the eigenbasis {|+〉 , |−〉} of X to the +45°/−45° basis,
where |±〉 = (|0〉 ± |1〉)/

√
2. The BB84 protocol comprises the following steps:

1. Alice sends to Bob a sequence of M photons randomly prepared in one of the
four states |0〉 , |1〉 , |+〉 and |−〉, via the quantum channel. The parties identify
the bit value 0 (1) with the non-orthogonal states |0〉 and |+〉 (|1〉 and |−〉).
The non-orthogonality condition ensures that any tampering with the quantum
channel by Eve, in order to gain information on the transmitted key, leads to a
disturbance of the signal and can be later detected by the parties.

2. Upon receiving a photon, Bob measures randomly in either the Z or the X
basis. If Bob measures in the same basis Alice used to prepare the photon, he
learns the bit she encoded on that photon, provided that the signal has not
been altered. If instead Bob measures in the complementary basis, he obtains
a random bit since the two bases are mutually unbiased (c.f. section 2.1).

3. Sifting: Once the quantum communication is over, Alice and Bob publicly
compare the bases they used on each photon and discard the bits correspond-
ing to unmatching bases. This process leaves Alice and Bob with strings of
approximately M/2 bits. In absence of errors due to noise or eavesdropping,
the bitstrings of Alice and Bob would coincide.

4. Parameter estimation (PE): Alice and Bob reveal a random sample of their
bits in order to estimate the error rate in the quantum channel and thus the
information gained by Eve2. In particular, the parties estimate the quantum
bit error rate (QBER) in the Z (X) basis, i.e. the fraction EZ (EX) of bits
generated by measuring in the Z (X) basis that disagree. The computed
QBERs are the input parameters of the following steps. The parties are now
left with two partially-correlated and partially-secret bitstrings, called the raw
keys. We denote a generic raw key bit of Alice (Bob) by the random variable
RA (RB).

2For security reasons one needs to consider the worst-case scenario, i.e. that all the noise in the
channel is due to Eve.
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5. Error correction (EC): Alice and Bob run a one-way error correction algorithm
to correct Bob’s raw key to match Alice’s. Alice sends the required information
over a classical public channel to Bob. Other EC schemes are possible.

6. Privacy amplification (PA): The parties remove the information that Eve gained
on their error-corrected keys by compressing them to a shorter secret key via a
randomness extractor (e.g. two-universal hashing).

The figure of merit of every QKD protocol is the secret key rate, i.e. the fraction of
secure key bits produced per protocol round3. A round is commonly regarded as the
transmission of a quantum state through the quantum channel. The secret key rate
generally depends on the total number of rounds M performed.

In the following we compute the secret key rate of the BB84 protocol in the
asymptotic scenario of infinitely many rounds: M → ∞. This is, of course, an
unrealistic assumption, but it greatly simplifies the math. Moreover, the asymptotic
key rate is often used as a benchmark for the performance of a newly-developed
QKD protocol.

The protocol above is presented in prepare-and-measure form, since one party
prepares and sends quantum states while the other measures them. This is typically
what happens in real-life implementations of many QKD protocols. However, when
proving the security of a QKD protocol or computing its key rate, an equivalent
entanglement-based description is much more convenient.

Ideally, in every round of the entanglement-based BB84 protocol the two-qubit
Bell state

|Φ+〉AB = |00〉+ |11〉√
2

= |++〉+ |−−〉√
2

(3.7)

is generated, and the two qubits are distributed to Alice and Bob through the
quantum channel. Alice and Bob then measure the received qubit in either the Z or
X basis, obtaining the same outcome if they chose the same basis. This scenario is
equivalent to the prepare-and-measure one since the state Bob receives, conditioned
on Alice measuring e.g. X and obtaining outcome x, is exactly |x〉 where x ∈ {+,−}.

However, in reality Eve could be in total in control of the quantum channel,
distributing a mixed state ρAB to the parties in every protocol round. We assign to
Eve all the information that can be correlated with the mixed state ρAB by assuming
that she holds the purifying system E (recall subsection 2.4.1). That is, the state on
A,B and E is pure: |φABE〉. In this scenario we say that Eve performs a collective
attack and the quantum state representing Alice and Bob’s qubits in the M protocol

3In experiments, the secret key rate is often given by secure key bits per second. This is obtained by
multiplying the secret key rate defined here by the repetition rate of the protocol, i.e. the number
of protocol rounds per second.

3.2 The BB84 Protocol 29



rounds is the i.i.d. state ρ⊗MAB . The parties detect the presence of Eve from the errors
(EZ and EX) in the outcomes generated by measuring ρAB at every round.

There is even a more general scenario where Eve directly distributes the state ρMAB
describing all the M qubit pairs to be measured, of which she holds the purifying
system E, i.e. ρMABE is pure. In this case Eve is performing a coherent attack, which
is generally more powerful than collective attacks since the states shared by Alice
and Bob in each round can be correlated with past and future rounds –formally, it
holds: ρMAB 6= ρ⊗MAB .

We address the case of coherent attacks in the next section, where we investigate
the security of QKD when the number of protocol rounds is finite. Conversely, in the
asymptotic regime discussed here, the two attacks are proven to be equivalent (c.f.
subsection 3.3.3), hence we restrict to collective attacks and focus on one specific
protocol round.

3.2.1 Secret Key Rate

The asymptotic secret key rate of any QKD protocol with one-way EC is given by the
Devetak-Winter rate [DW05]:

rDW = H(RA : RB)−H(RA : E), (3.8)

which can be recast in the more familiar form [Ren08; SR08a; SR08b]:

r = H(RA|E)−H(RA|RB), (3.9)

by using the definition of mutual information (c.f. section 2.6). Recall that RA and
RB are the random variables representing Alice’s and Bob’s raw key bit.

An intuitive explanation of the key rate expression (3.8) is the following. The
fraction of secret bits shared by Alice and Bob per round is quantified by the amount
of information that their raw key bits have in common H(RA : RB) minus the
information that Eve gained on Alice’s key bit H(RA : E).

We now compute explicitly the key rate in (3.9) for the BB84 protocol, in terms of
the observed quantities EZ and EX . For simplicity, in the computation we consider
an asymmetric version of the BB84 protocol where the raw key is only extracted
from Z basis measurements, while the X outcomes are used for PE (together with a
fraction of Z outcomes).

The entropies in the key rate expression are computed on the c.c.q. state ρRARBE
resulting after Alice and Bob measured their qubit in the Z basis to generate the
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raw key bits RA and RB, respectively. Alice and Bob’s projective measurements are
represented by the quantum maps ERA and ERB such that the state ρRARBE reads:

ρRARBE = (ERA ⊗ ERB ⊗ idE)|φABE〉〈φABE |

=
1∑

a,b=0
(P|a〉 ⊗ P|b〉 ⊗ idE)|φABE〉〈φABE |(P|a〉 ⊗ P|b〉 ⊗ idE), (3.10)

where P|a〉 = |a〉〈a| and similarly P|b〉 are rank-one projectors on the Z basis, i.e.
|a〉 , |b〉 ∈ {|0〉 , |1〉}. We remark that we restricted without loss of generality to
collective attacks where |φABE〉 represents the global state in a generic round of the
protocol.

We start the key rate computation by assuming without loss of generality (w.l.o.g.)
that, before distributing the state ρAB to the parties, Eve applies to it the maps D1

and D2, defined by:

Di(ρAB) = 1
2 ρAB + 1

2 DiρABD
†
i i = 1, 2, (3.11)

where the operators Di read:

D1 = X ⊗X ; D2 = Z ⊗ Z. (3.12)

One can easily verify that the resulting state ρ̃AB received by Alice and Bob:

ρ̃AB = (D1 ◦ D2) ρAB = 1
4 [ρAB + (Z ⊗ Z)ρAB(Z ⊗ Z)

+(X ⊗X)ρAB(X ⊗X) + (Y ⊗ Y )ρAB(Y ⊗ Y )] (3.13)

is diagonal in the Bell basis {|ψij〉}1i,j=0 of two qubits, with the same diagonal
coefficients of the original state ρAB. We can thus express ρ̃AB in the Bell basis as:

ρ̃AB =
1∑

i,j=0
λij |ψij〉〈ψij | (3.14)

for some eigenvalues 0 ≤ λij ≤ 1 such that
∑
i,j λij = 1, where the Bell basis states

read:

|ψij〉 = |0, j〉+ (−1)i |1, 1− j〉√
2

, i, j ∈ {0, 1}. (3.15)

The assumption that Alice and Bob are given the Bell-diagonal state (3.14) is not
restrictive due to two reasons. First, since the state ρ̃AB is prepared by Eve, she
also holds its purification and one can show that her uncertainty on Alice’s key is
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not increased when she distributes ρ̃AB in place of ρAB: H(RA|E)ρ ≥ H(RA|E)ρ̃.
The interested reader can find the proof of this fact in appendix A.1. The second
reason is that from the point of view of the parties, the action of D1 ◦D2 corresponds
to a simultaneous flip of both Alice’s and Bob’s bits, which occurs with probability
1/2. This implies that both the marginal distributions of Alice’s and Bob’s raw key
bits are symmetrized. However, the observed QBERs are unaffected4 as well as the
correlation of the raw keys of Alice and Bob. Therefore, the only visible effect is the
symmetrization of the marginals. This could be directly enforced by the parties by
agreeing on flipping their outcomes with probability 1/2, while communicating over
the public channel. Thus Eve would be aware of the flipping.

For the above arguments, Eve distributes w.l.o.g. the state (3.14) to Alice and
Bob.

Recall the definitions of the QBERs EZ and EX in terms of probabilities: The
QBER EZ (EX) is the probability that the Z (X) measurement outcomes of Alice
and Bob differ. Given that the parties share the state ρ̃AB in (3.14), it holds:

EZ = Tr[(P|0〉 ⊗ P|1〉 + P|1〉 ⊗ P|0〉)ρ̃AB] = λ01 + λ11 (3.16)

EX = Tr[(P|+〉 ⊗ P|−〉 + P|−〉 ⊗ P|+〉)ρ̃AB] = λ10 + λ11. (3.17)

Moreover, Eve holds the purifying system of ρ̃AB such that the global pure state
reads:

|φABE〉 =
1∑

i,j=0

√
λij |ψij〉AB ⊗ |eij〉E , (3.18)

where {|eij〉}1i,j=0 is an orthonormal basis in HE .
In order to compute the conditional entropy H(RA|E), we express it as follows:

H(RA|E) = H(E|RA) +H(RA)−H(E). (3.19)

The first term is computed on the state ρRAE derived from (3.10) by tracing out
Bob’s subsystem:

ρRAE =
1∑

a=0
|a〉〈a|RA⊗TrAB [(|a〉〈a|⊗idBE)|φABE〉〈φABE |]

=
1∑

a=0
|a〉〈a|RA⊗

1∑
i,j,k,l=0

√
λijλkl TrAB [(|a〉〈a|⊗idB)|ψij〉〈ψkl |] |eij〉〈ekl |E

=:
1∑

a=0
Pr(a) |a〉〈a|RA⊗ρ

a
E , (3.20)

4This is due to the fact that either both Alice’s and Bob’s bits are flipped, or none is.
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where the probability of Alice observing outcome a is Pr(a) = 1/2 due to the sym-
metrized distribution of RA, whereas Eve’s state ρaE , conditioned on Alice observing
a, simplifies to:

ρaE =
1∑

i,j,k=0

√
λijλkj (−1)(i+k)a |eij〉〈ekj |. (3.21)

The non-zero eigenvalues of (3.21) are independent of a and given by: {λ00 +
λ10, λ01 + λ11}. By recalling the expression (2.49) of the conditional entropy of a
c.q. state, we can compute the first term in (3.19) as follows:

H(E|RA) =
1∑

a=0
Pr(a)H(ρaE) = H({λ00 + λ10, λ01 + λ11}) = h(EZ), (3.22)

where we used the binary entropy h(p) expression (2.43) and the fact that the
coefficients λij sum to one. Symmetrized marginals imply that H(RA) = 1 and since
the state on ABE is pure, the entropies of the subsystems E and AB are equal:
H(E) = H(AB) = H({λij}). Substituting everything in (3.19) we obtain:

H(RA|E) = 1 + h(EZ)−H({λij}). (3.23)

Note that the eigenvalues {λij} are not completely fixed by the observed error rates
EZ and EX through (3.16) and (3.17). Thus we must consider the worst-case
scenario and minimize (3.23) over {λij}, with the constraints given by (3.16) and
(3.17). The minimization leads to the following result [Sca+09]:

H(RA|E) = 1 + h(EZ)− (h(EX) + h(EZ)) = 1− h(EX). (3.24)

We remark that we could minimize H(RA|E) independently of H(RA|RB) since
the latter is fixed by the QBER EZ . Indeed, the conditional Shannon entropy
H(RA|RB) is computed on the probability distribution Pr(a, b) of Alice and Bob’s
Z outcomes. Due to the symmetrization of the marginals, it is easy to express the
entropy exclusively in terms of EZ as follows:

H(RA|RB) = h(EZ). (3.25)

By employing (3.24) and (3.25) in (3.9), we obtain the asymptotic key rate of the
BB84 protocol in terms of the observed error rates:

rBB84 = 1− h(EX)− h(EZ). (3.26)
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3.3 Finite-key Security
The asymptotic secret key rate given in (3.9) is only valid in the limit of infinitely
many protocol rounds. Here, we generalize that result by presenting the secret
key length achieved by a general QKD protocol with finite resources and prove its
security. In doing so, we mainly follow the reference [Tom+12].

3.3.1 General QKD Protocol

insecure quantum 
channel

authenticated public channel

Alice

Eve

0101100…

Bob
1001110…

Fig. 3.1.: Schematic representation of the setup of an entanglement-based QKD protocol.
In each round, Eve distributes a quantum signal to Alice and Bob through the
quantum channel. Alice and Bob locally measure the incoming signal with a
randomly-chosen measurement setting and record the classical output. After the
transmission of quantum signals is over, the parties communicate via the classical
public channel to perform error correction and privacy amplification.

Consider two parties, Alice and Bob, who have access to fresh randomness and
are linked by an insecure quantum channel and an authenticated classical public
channel (see figure 3.1). A potential eavesdropper, Eve, is assumed to have full
control over the quantum channel and access to the messages sent via the public
channel.

The parties run a QKD protocol, whose goal is to output a pair of identical keys
(sA, sB) for Alice and Bob, respectively, completely unknown to Eve. The protocol
could also abort and output the symbol: sA = sB =⊥. We describe the general QKD
protocol in the entanglement-based view.

1. The protocol starts with the distribution of M quantum signals through the
quantum channel. The joint state of the signals is represented by ρMAB and
Eve holds its purifying system (we allow for coherent attacks). Alice and Bob
perform local measurements on each signal received and collect the classical
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outcomes. Depending on the protocol, Alice and Bob can randomly choose
among certain measurement settings. Typically, one setting is chosen with
higher probability and is used for key generation, while the other(s) form the
test rounds.

2. In PE, the parties reveal the settings and the outcomes of the test rounds,
as well as the outcomes of a random sample of key-generation rounds. This
information is used to estimate the noise in the quantum channel (and thus
Eve’s knowledge). If the noise is above a certain threshold, the protocol aborts.

3. At this point, both Alice and Bob hold a string of n < M partially correlated
key bits forming their raw key, denoted RnA and RnB, respectively. The parties
perform an EC procedure in order for Bob to compute a guess R̂nA of Alice’s
raw key. In doing so, they reveal leakEC bits of information over the public
channel. In order to verify if EC was successful, Alice computes a hash hA

(bitstring) of length dlog(1/εEC)e from her raw key RnA by applying a two-
universal hash function5 [CW79; Ren08]. She publicly announces the function
and hA. Bob uses the same function to compute the hash hB from his guess R̂nA.
If hA 6= hB, the protocol aborts. The total amount of information about Alice’s
raw key RnA revealed during EC is thus given by: leakEC + dlog(1/εEC)e ≤
leakEC + log(2/εEC).

4. In PA, Alice and Bob both apply the same two-universal hash function to their
error-corrected keys RnA and R̂nA and obtain shorter, secret keys sA and sB of
length `. The final key length ` is chosen such that:

` ≤ Hε
min(RnA|E)− leakEC − log 2

εEC
− 2 log 1

2 εPA
, (3.27)

for some ε, εEC, εPA > 0 which depend on the required level of security (see
below). Intuitively, the length of the secret key cannot be larger than Eve’s
uncertainty on Alice’s raw key (quantified by the min-entropy term) from
which we subtracted the information revealed during EC.

The (non-asymptotic) secret key rate of the described protocol is given by:

r = τ
`

M
, (3.28)

where τ is the repetition rate of the experimental setup, i.e. the inverse of the time
needed to perform one round of the protocol (distribution of quantum signal and
measurements). In this thesis we always consider τ = 1.

5The probability that the outputs corresponding to two different inputs of a two-universal has function
coincide, is smaller or equal than 2−lo , where lo is the bit-length of the outputs.
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Remark 3.1 (Min-entropy estimation). We emphasize that the secret key length in
(3.27) is valid for an arbitrary QKD protocol. However, the smooth min-entropy term
appearing in its expression cannot be directly computed since Eve’s action is unknown,
i.e. the state ρnRAE representing Alice’s raw key and Eve’s quantum side information is
not known. Hence, the challenge of every QKD protocol is to estimate the min-entropy
term in the tightest way possible, by relying on the observed data employed for PE.

3.3.2 Security Definition and Proof
We now define what it means for a QKD protocol to be “secure” and subsequently
prove the security of the general QKD protocol outlined above.

Definition 3.1 (Correctness). A QKD protocol is said to be εcor-correct if:

Pr[sA 6= sB] ≤ εcor. (3.29)

Definition 3.2 (Secrecy). A QKD protocol is said to be εsec-secret if, for Ω being the
event that the protocol does not abort,

Pr[Ω]12

∥∥∥ρSAEtot|Ω − ωSA ⊗ ρEtot

∥∥∥ ≤ εsec, (3.30)

where ρSAEtot|Ω is the state that describes the correlation between Alice’s final secret
key SA and the total information available to Eve Etot given that the protocol did not
abort, while ωSA = 1

|S|
∑
si∈S |si〉〈si | is the maximally mixed state over all the possible

realizations of Alice’s key sA.

The correctness definition implies that the protocol always outputs identical
keys for Alice and Bob, except for probability at most εcor. The secrecy statement
guarantees that Alice’s key sA is drawn randomly from the the set S of all possible
keys and Eve has no information about it, or the protocol aborted, except for
probability εsec.

The secrecy of Alice’s key sA alone does not guarantee that even Bob’s key sB is
secret, unless we combine it with a statement on the correctness of the protocol.
Therefore we define the security of a QKD protocol as follows.

Definition 3.3 (Security). A QKD protocol is said to be εtot-secure if it is εcor-correct
and εsec-secret, with εtot ≥ εcor + εsec.

Note that a trivial protocol that always aborts and outputs sA = sB =⊥ is secure
according to the above definitions. Thus, another important feature of a QKD
protocol is its completeness, i.e. the existence of an honest implementation of the
protocol such that the probability of not aborting is Pr[Ω] ≥ 1− εc, for some small
εc.
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We also remark that the Defs. 3.1, 3.2 and 3.3 are composable. This means that
when a QKD protocol –proven secure according to these definitions– is composed
with another cryptographic task, the security of their combination can be inferred
based on their individual security proofs and does not require a separate new proof.
This is particularly relevant for QKD, which is often composed with one-time pads
as seen in section 3.1.

Lemma 3.1 (Security of QKD). The general QKD protocol of subsection 3.3.1 is
εtot-secure, with εtot ≥ εEC + ε+ εPA.

In order to prove this statement, one first shows that the general QKD protocol
described earlier is εEC-correct. This is guaranteed by the fact that Alice and Bob
verify the success of EC by computing and comparing hashes of length dlog(1/εEC)e.
The second step is to show that the protocol is at least (ε+ εPA)-secret by employing
the quantum leftover hash lemma [Ren08; Tom+11b], which is at the core of
finite-key QKD security. We provide the full proof of Lemma 3.1 in appendix A.2.

3.3.3 Reduction to Asymptotic Key Rate

We emphasize that the non-asymptotic secret key rate in (3.28), computed with
the key length in (3.27) of a generic QKD protocol, reduces to the asymptotic key
rate given in (3.9) in the limit M →∞ of infinitely many rounds. This fact shows
that the results presented in this section properly generalize QKD key rates to the
scenario of finite resources.

In order to prove the reduction of (3.28) to (3.9), we make use of an important
tool called the postselection technique (PST) [CKR09], valid for discrete-variable
QKD protocols where the dimension d = dim(HA ⊗HB) of the quantum systems
held by Alice and Bob can be characterized. The PST states that if a QKD protocol
of M rounds is εtot-secure against collective attacks, then it is also (M + 1)d2−1εtot-
secure against coherent attacks if the secret key length (3.27) (the output of PA) is
shortened by 2(d2 − 1) log(M + 1) bits.

Recall that in case of collective attacks, the state shared by the parties in the M
rounds is the i.i.d. state ρ⊗MAB , while for coherent attacks –as we consider in this
finite-key analysis– the shared state is the more general ρMAB.

Since in the asymptotic limit (M → ∞, and εtot → 0 exponentially fast) the
corrections to the secret key rate introduced by the PST are negligible, proving the
security of a generic QKD protocol against coherent attacks reduces to proving the
security of the same protocol against collective attacks [Ren07; Sca+09; CKR09]. In
other words, we can assume without loss of generality that the state distributed to
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the parties by Eve is an i.i.d. state ρ⊗MAB . As a consequence, the smooth min-entropy
term in (3.27) is now computed on the state ρ⊗nRAE: Hε

min(RnA|E)ρ⊗nRAE
.

Moreover, by recalling the operational meaning of the smooth max-entropy (c.f.
section 2.6), the minimum amount of leakage in (3.27) is quantified by leakEC ≈
Hε′

max(RnA|RnB), where we neglected terms that tend to zero in the asymptotic limit.
In case of collective attacks, the smooth-max entropy is evaluated on the i.i.d. state
ρ⊗nRARB and reads: Hε′

max(RnA|RnB)ρ⊗nRARB
.

Finally, by applying the AEP (2.62) and (2.63) on the smooth entropy terms
appearing in (3.27), we reduce them to the correspondent von Neumann entropies:
H(RA|E) and H(RA|RB). In this way (3.9) is recovered.

Note that the PST has been fundamental for the application of the AEP, since the
latter only holds for i.i.d. quantum states.

3.4 Quantum Conference Key Agreement
The rapid development of quantum technologies allows us to foresee quantum
networks [EKB16a; EKB16b; PWD18; HPE19] as one of its near-future applications.
Quantum networks could be composed of matter-based quantum nodes where
quantum information can be processed and stored, linked together by quantum
channels where light distributes entangled states. Successful experiments on matter-
latter entanglement [Kru+19; Tch+19] bring us closer to realizing such networks.
The ultimate vision for quantum networks is building the quantum internet [Kim08;
WEH18].

A more accessible application of quantum networks is the generalization of the
task of QKD to a multiparty scenario, in what is called multipartite QKD or quantum
conference key agreement (CKA). Here, N parties in a quantum network wish to
establish a common secret key –a conference key– and use it to securely broadcast
messages within the network. We recently produced the first complete review on
this topic [Mur+20], which can be found in appendix G.

A CKA could be carried out by simply performing bipartite QKD schemes between
pairs of parties, and then employing the established keys to securely distribute the
conference key to all involved parties. However, such a solution would not exploit
the possibility offered by quantum networks of distributing multipartite entangled
states across several network nodes.

Conversely, it is possible to devise CKA protocols which make use of the correla-
tions arising in multipartite entangled states in order to establish a conference key
among several users [Wu+16; Epp+17; ZSG18; GKB18; GKB19; CP19]. This type
of truly multipartite schemes can outperform the solution based on the iteration
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of bipartite schemes in certain network configurations (e.g. networks with bottle-
necks) [Epp+17] and noise regimes [RMW19]. It is worth mentioning that the
conference key rates achievable in a given network configuration are upper bounded
by recently-derived fundamental limits, which depend on the network topology
[Pir19a; Das+19; Pir19b; Tak+19].

We emphasize that CKA based on multipartite entanglement is one of the main
research topics of this thesis. In the remainder of this section we outline the path
that led to the development of the first (discrete-variable) CKA protocols [Epp+17;
GKB18], where the second one is a result of our doctoral research and is reported in
appendix B.

3.4.1 Multipartite BB84 Protocol

Consider a scenario where Alice and N − 1 Bobs, denoted B1, B2 up to BN−1,
want to establish a secret conference key with a generalization of the BB84 protocol
presented in section 3.2. In this multipartite scenario, the conference key is extracted
from Alice’s raw key, hence during EC every Bob attempts to correct his raw key
to match Alice’s. As a consequence, even in CKA protocols the main quantity to be
estimated is the smooth min-entropy Hε

min(RnA|E) of Alice’s raw key conditioned on
Eve’s information (see Remark 3.1).

A naive approach to generalize the BB84 protocol would be to reproduce its
prepare-and-measure description, where Alice now sends a state |φk〉 (k = 1, . . . , 4)
out of the four states {|0〉 , |1〉 , |+〉 , |−〉} to every Bob (|±〉 = (|0〉 ± |1〉)/

√
2). This

means that in each round of the protocol the product state |φk〉⊗(N−1) is sent through
the quantum channel. Since Eve is in control of the whole quantum channel, she
can attempt to distinguish the four product states |φk〉⊗(N−1), whose overlap (scalar
product) is either 0 or (1/

√
2)N−1. As N increases, the four states become more

distinguishable thus allowing Eve to retrieve more information about the key without
being noticed. This leads to a dramatic decrease of the secret key rate and eventually
makes the protocol useless, even assuming a flawless implementation.

The described CKA does not rely on entangled states (as the original BB84 proto-
col) and has actually been investigated for N = 3 in [Mat07]. However, the idea is
clearly not scalable to larger numbers of parties.

In order to devise a generalization of the BB84 protocol which would work with
an arbitrary number of parties, we resort to its entanglement-based description. In
the ideal implementation of the BB84 protocol, Alice and Bob measure their qubit
in either the Z or X basis and obtain perfectly correlated and random outcomes
since their qubits have been prepared in the Bell state given in (3.7). Typically, the
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outcomes of the Z basis are used for key generation and those of the X basis are
used to estimate the noise EX in the channel and thus Eve’s knowledge.

In generalizing this idea to N ≥ 3 parties we encounter a fundamental problem.
The only N -qubit state which leads to perfectly correlated and random outcomes
in one measurement basis –necessary condition for generating a shared key– is the
N -party GHZ state:

|GHZN 〉 = 1√
2

[
|0〉⊗N + |1〉⊗N

]
, (3.31)

when measured in the Z basis. However, the authors in [Epp+17] prove that even
bipartite perfect correlations are forbidden in any other basis, contrary to what
happens with the Bell state (3.7) for N = 2.

Therefore, in an ideal N -party BB84 protocol Alice and the Bobs share an N -party
GHZ state and measure in the Z basis for key generation. However, they cannot
estimate the channel’s noise by a pairwise comparison of the X outcomes (or any
other basis), since they would be uncorrelated even in the ideal scenario. How can
we still estimate Eve’s knowledge in the multipartite scenario?

Recall that the goal is to find a lower bound on the min-entropy Hε
min(RnA|E) in

the secret key length (3.27), or, in the asymptotic scenario, a bound on the von
Neumann entropy H(RA|E) of the asymptotic secret key rate (3.9).

One possible solution is provided in [Epp+17] for the asymptotic scenario. It
basically consists in requiring the parties to measure their qubit in one of three bases,
namely the X, Y or Z basis. In doing so, the parties can sufficiently characterize the
state ρRAE describing Alice’s raw key and Eve’s quantum side information, to the
extent that H(RA|E) is completely fixed by the measurement statistics. This solution
can be interpreted as the N -party generalization of the six-state QKD protocol
[Bru98], where Alice and Bob are required to measure in the same three bases.

Alternatively, the security of a multipartite QKD scheme based on the GHZ state
can also be ensured with just two measurement bases, making the protocol a
multipartite version of the BB84 protocol. We introduce such a scheme in our work
[GKB18], which can also be found in appendix B.

The main idea is to view all the Bobs as one single Bob and define EX as the error
rate between the X outcomes of Alice (XA) and the product of the X outcomes
of all Bobs (XΠB :=

∏N−1
i=1 XBi): EX = Pr[XA 6= XΠB]. Indeed, in an ideal

implementation where the parties share the GHZ state (3.31), XA and XΠB are
perfectly correlated like in the bipartite scenario and the channel noise would be
zero: EX = 0.

In [GKB18] we directly bound the min-entropy term Hε
min(ZnA|E) as a function

of EX , where we emphasized the fact that the raw keys are obtained from Z-basis
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measurements. This is possible thanks to the uncertainty relation for smooth entropies
[TR11]. The uncertainty relation states that, given the state ρnAB1...BN−1E

of the
n rounds yielding the raw keys and assuming that Alice measures her n qubits in
either the Z or X basis, it holds:

Hε
min(ZnA|E) ≥ q −Hε

max(Xn
A|B1 . . . BN−1), (3.32)

where Xn
A represents the outcomes Alice would obtain had she measured the n raw-

key rounds in the X basis. The term q is the quality factor of the two measurements
of Alice (see [TR11] for a formal definition). In our case, since Alice measures each
qubit either in the Z or X basis, it reads: q = n. Thanks to the data-processing
inequality (2.65), we can lower bound the r.h.s. of (3.32) by letting every Bob
measure his qubit in the X basis and by multiplying the outcomes:

Hε
min(ZnA|E) ≥ n−Hε

max(Xn
A|Xn

ΠB). (3.33)

Finally we remark that the max-entropy on the r.h.s. of the last expression can
always be upper-bounded by (n times) the binary entropy of the error rate EX
affecting the strings Xn

A and Xn
ΠB, with a correction ∆ due to statistical fluctuations

(which also depends on n):

Hε
max(Xn

A|Xn
ΠB) ≤ nh(EX + ∆). (3.34)

One can interpret the inequality (3.34) as the finite version of the equality (3.25)
linking the conditional von Neumann entropy of two random variables to their error
probability. In conclusion we obtain:

Hε
min(ZnA|E) ≥ n(1− h(EX + ∆)). (3.35)

An important aspect in any CKA is the information leakage during EC. As antici-
pated, in our protocol we require every Bob to correct his raw key to match Alice’s.
By employing one-way EC, Alice needs to publicly broadcast enough information
such that even the Bob with the largest amount of errors can correct his key. Since the
information leaki she would send to each Bi only depends on the estimated Z-basis
error rate EABi but otherwise it’s independent of Bi, by broadcasting maxi leaki we
ensure that every Bob will be able to correct his raw key. In other words, the leakage
of one-way EC in a multipartite QKD protocol is equivalent to that of a bipartite
protocol performed with the worst-case Bob.

In [GKB18] we prove the finite-key security of both the novel multipartite BB84
protocol and the multipartite six-state protocol of [Epp+17], by introducing security
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definitions analogous to those presented in section 3.3. We also compare the
performance of the two protocols.

The asymptotic secret key rate of the N -partite BB84 protocol can be heuristically
inferred starting from the secret key length of a bipartite QKD protocol in (3.27). We
use Eq. (3.35) to bound the min-entropy term, while we replace the leakage term
with maxi leaki according to the argument above. Analogously to section 3.3.3, we
estimate the minimum leakage relative to Bi as leaki ≈ Hε′

max(RnA|RnBi) and bound
the max-entropy with a version of the bound (3.34) where the relevant error rate is
the Z-basis error rate EABi . Finally, by taking the limit M →∞ we remove all the
corrections due to statistical fluctuations and obtain:

rN-BB84 = 1− h(EX)− max
1≤i≤N−1

h(EABi). (3.36)

Notably, the resulting key rate reads exactly like the BB84 one in (3.26), except for
a maximization on the QBERs in the Z basis and a more general definition of EX .

Remark 3.2 (Entanglement is necessary). We emphasize that both multiparty QKD
protocols discussed in this section require the generation of entangled states even in their
prepare-and-measure version, opposed to the bipartite BB84 protocol where Alice sends
simple qubits to Bob. Indeed, in the entanglement-based view of the two multipartite
QKD protocols, the parties are given the N -partite GHZ state (3.31). Now note that
the conditional state of the Bobs, given that Alice measured X on the GHZ state and
obtained outcome a, reads:

|ψa〉B1...BN−1
= 1√

2

(
|0〉⊗(N−1) + (−1)a |1〉⊗(N−1)

)
, (3.37)

which is an entangled state. Therefore, in an equivalent prepare-and-measure version
of the protocol, Alice would need to prepare the entangled state (3.37) and send it to
the Bobs in the rounds where she chooses the X basis. However, the X-basis rounds
are test rounds and are much less frequent than the key-generation rounds. In the key-
generation rounds the conditional state of the Bobs, upon Alice measuring Z, is given
by one of the two product states |0〉⊗(N−1) and |1〉⊗(N−1). Hence for key generation
Alice can just prepare the same qubit state N − 1 times and send each of them to the
corresponding Bob.

3.5 State-of-the-art Experiments
Before continuing our theoretical analysis of QKD schemes, we provide a brief and
incomplete overview of the most recent experimental achievements involving QKD
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and CKA. More complete and elaborated reviews can be found in [Sca+09; Dia+16;
Pir+19].

In October 1989 Bennett, Brassard and other scientists implemented for the first
time a QKD protocol, specifically a version of the BB84 protocol [BB89; Ben+92].
The experiment was carried out in a laboratory and was characterized by the
transmission of polarized light over (just) 32.5 cm.

Since then much progress has been made, also thanks to the interest and invest-
ments of governments and companies [Com; Tec]. Current QKD implementations
can reach secret key rates of the order of Mbit s−1 over about 50 km of telecom
fiber [Dix+08; Pat+14; Hua+15]. Moreover, QKD has also successfully undergone
field tests on commercial telecom fibers [Zha+19b] in view of its implementation in
existing urban networks.

Thanks to novel architectures and security proofs, it has been possible to extend
the longest achieved distance of QKD to over 400 km using optical fibers [Yin+16;
Boa+18; Wan+19; Liu+19].

In 2017, Chinese and Japanese research groups independently realized the first
QKD protocols in free-space using low-Earth-orbit satellites. In particular, the Chinese
group led by Prof. Pan implemented QKD over 1000km with satellite-to-ground links
[Lia+17; Tak+17], including a quantum-secured video call between Beijing and
Vienna [Lia+18].

The experimental implementations listed so far involve just two parties estab-
lishing a secure key. Recently, thanks to the collaboration with the EMQL research
group led by Prof. Fedrizzi in Edinburgh, we performed the first experimental
demonstration of a four-party CKA protocol [Pro+20] (appendix F). The experiment
implements the multiparty BB84 protocol [GKB18] mentioned in the previous section
and presented in appendix B. It is characterized by the generation of polarization-
encoded GHZ states at telecom wavelength and by their distribution to the four
parties over up to a total of 50 km of optical fibers.
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Quantum Key Distribution
with Imperfect Devices

4
The unconditional security which is, in principle, promised by QKD, is undermined
by the difficulty of ensuring that the assumptions on its implementation (quantum
sources or measurement devices) are met in practice.

In this chapter we outline some of the experimental flaws that allow a potential
eavesdropper to successfully breach the security of a QKD protocol. We then focus
on the solutions to such problems, which are given by a combination of theoretical
advances and clever experimental design. In particular, in sections 4.1 and 4.2
we discuss how security can be proven when the BB84 protocol is implemented
with weak coherent pulses instead of single-photon sources. We then introduce
measurement-device-independent QKD in section 4.3 and consider a practical im-
plementation of it in section 4.4.

4.1 BB84 with Weak Coherent Pulses

The majority of the sources used in QKD experiments are highly attenuated lasers
producing weak coherent pulses (WCPs), whose state is of the form:

|α〉 = e
−|α|2

2

∞∑
n=0

αn√
n!
|n〉 , (4.1)

where |n〉 is called a Fock state and represents n identical photons, while |α|2 is the
intensity of the pulse and represents the average number of photon in the pulse.
Indeed, the probability of finding n photons in the coherent state (4.1) follows a
Poisson distribution and is given by:

Pr(n) = |〈n|α〉|2 = e−|α|
2 |α|2n

n! . (4.2)

Clearly the number of photons in a WCP is not well defined, opposed to the as-
sumption made in the previous chapter of Alice sending a single photon to Bob in
each round of the protocol. The multiphoton signals allow Eve to perform new
eavesdropping attacks which severely compromise security, like the photon number
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splitting attack (PNS) [Hut+95; Bra+00]. Here Eve blocks all single-photon signals
and splits one photon off each multiphoton signal, allowing the remaining photons
to reach Bob. In this way, she has a copy of what Bob receives without being noticed,
thus compromising the security of those protocols not accounting for multiphoton
signals.

From the above example, we learn that only the single-photon signals emitted
by Alice are still secure. The security proof by Gottesman-Lo-Lütkenhaus-Preskill
(GLLP) [Got+04] states that a BB84 protocol implemented with WCPs is still secure,
provided that one extracts the key only from single-photon signals. The resulting
asymptotic secret key rate, for an asymmetric BB84 protocol where the Z basis is
used for key generation and the X basis for PE, reads [LMC05; Wei+13]:

rGLLP = p2
Z

[
Q0
Z +Q1

Z(1− h(e1
X))−QZh(EZ)

]
, (4.3)

where pZ is the probability that Alice (Bob) chooses the Z basis (asymptotically
it can be chosen pZ → 1). In the GLLP rate (4.3), we recognize the contribution
coming from the estimation of Eve’s uncertainty from single-photon signals Q0

Z +
Q1
Z(1−h(e1

X)) from which we subtract the information leaked during error correction
(EC) QZh(EZ), similarly to the asymptotic BB84 rate in (3.26). In particular, QnZ
(n = 0, 1) is the probability that Alice sent n photons in the Z basis and Bob had
a detection event, while QZ is the gain in the Z basis, i.e. the probability that Bob
had a detection given that Alice sent a WCP in that basis. Analogous quantities are
defined for the X basis. We have that:

QZ(X) =
∞∑
n=0

QnZ(X). (4.4)

We note that Q0
Z = Q0

X = Q0 is independent of the basis, since in this case Bob’s
detection is caused by dark counts or stray light in his detectors. Hence, the data
Bob collected in these instances is secure and added to Eve’s uncertainty, as there is
no way for Eve to know it.

Finally EZ(X) is the QBER in the Z (X) basis given that Bob had a detection, and
enZ(X) is the error rate in the Z (X) basis given that Alice sent n photons and Bob
had a detection. It thus holds:

EZ(X)QZ(X) =
∞∑
n=0

QnZ(X)e
n
Z(X). (4.5)

In a real experiment, the observed quantities are the gains QZ , QX and the QBERs
EZ , EX , while pZ is an input parameter and Q0, Q1

Z and e1
X must be estimated. In

particular, one can lower bound the achievable key rate (4.3) by upper bounding
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e1
X and by lower bounding Q0 and Q1

Z . The decoy-state method [Hwa03; Wan05;
LMC05] provides an excellent way to obtain such bounds, thus guaranteeing high
key rates for QKD protocols implemented with WCPs.

4.2 Decoy-state Method

We start by requiring Alice to prepare and send a phase-randomized WCP in each
round, whose state is a mixture of Fock states:

ρµ = 1
2π

∫ 2π

0
dθ |√µeiθ〉〈√µeiθ |=

∞∑
n=0

e−µ
µn

n! |n〉〈n|. (4.6)

This can be viewed as Alice preparing one of the Fock states |n〉〈n| according to a
Poisson distribution like (4.2) with mean photon number µ. Thus the probability
of Alice sending exactly n photons in the Z (X) basis and Bob having a detection,
QnZ(X), is given by:

QnZ(X) = e−µ
µn

n! Y
n
Z(X), (4.7)

where the n-photon yield Y n
Z(X) is the conditional probability that Bob had a detec-

tion, given that Alice sent n photons. Again, while the intensity µ of the WCP is an
input parameter, the yields are not directly observable.

According to the decoy-state method [Hwa03; Wan05; LMC05], Alice will inter-
sperse her states ρµ used for key generation –called signal states– with decoy states
ρµi with the same characteristics of the signal states except for their intensity, which
is randomly drawn from a set {µi}i (typically µi ≤ µ). This can be achieved with
intensity modulators such as variable optical modulators (VOAs). In doing so, the
parties observe the gains QµiZ(X) and QBERs EµiZ(X).

The central idea is that, from Eve’s viewpoint, in every round a Fock state |n〉〈n|
is picked according to a probability distribution that is unknown to her and sent
through the quantum channel. In other words, Eve cannot distinguish a signal state
from a decoy state. This means that Eve’s action can only depend on the photon
number and on the basis (e.g. photon polarization), but not on the probability
distribution that generated the photons.

Therefore the yields Y n
Z(X) and the error rates enZ(X), which are a reflection of

Eve’s action on the quantum channel, are independent of the intensity determining
the photons’ distribution. This fact allows us to derive a set of linear constraints
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on the yields and error rates, in terms of the observed gains QZ , QX and QBERs
EZ , EX . Indeed, by combining (4.7) with (4.4) and (4.5), we obtain:

QµiZ =
∞∑
n=0

e−µi
µni
n! Y

n
Z , µi ∈ {µi}i (4.8)

QµiX =
∞∑
n=0

e−µi
µni
n! Y

n
X , µi ∈ {µi}i (4.9)

EµiXQ
µi
X =

∞∑
n=0

e−µi
µni
n! Y

n
Xe

n
X , µi ∈ {µi}i. (4.10)

Every equality above represents a system of equations determined by different decoy
intensities µi. The larger the number of decoy intensities, the more constrained are
the yields and error rates. By combining the different equations in a system with
Gaussian elimination techniques, one can derive bounds on the yields and error
rates of interest in terms of the observed gains and QBERs. Importantly, since the
employed decoy intensities are typically small (e.g. µi ∼ 0.1), the higher order terms
in each sum can be crudely approximated without heavily affecting the bounds.
Moreover, we remark that already two decoy intensities are enough to find good
bounds [Wan05; Wei+13; Lim+14] and that recently it was shown that the BB84
protocol can also be implemented with just one decoy intensity setting [Rus+18].

From the first set of equations (4.8) one derives lower bounds Y 0↓ and Y 1↓
Z which

correspond to lower bounds on the quantities Q0 and Q1
Z appearing in the key rate

(4.3). From the second set (4.9), one derives bounds on the yields that are then
employed in the third set (4.10) to derive the upper bound e1↑

X .
Let us briefly sum up the implementation of the asymmetric BB84 protocol with

the integration of the decoy-state method. Alice prepares phase-randomized WCPs
polarized in the Z (X) basis with probability pZ (1 − pZ). Upon choosing the
Z basis, she modulates the pulse intensity to µ with probability q to generate a
signal state, or to one of the decoy intensities {µi} to generate a decoy state with
probability 1− q. If Alice picks the X basis instead, she only generates decoy states.
Bob chooses to measure the incoming pulse in the Z (X) basis with probability pZ
(1− pZ).

At the end of the transmission, Alice reveals the intensity setting and the basis she
used in every round. Bob instead reveals all the X outcomes to estimate EµiX and
some of the Z outcomes of the signal state to estimate EµZ .

The asymptotic secret key rate of an asymmetric BB84 protocol with decoy states
is obtained with the GLLP analysis and reads [Wei+13]:

rdecoy ≥ p2
Zq
[
Q0↓ +Q1↓

Z (1− h(e1↑
X ))−QµZh(EµZ)

]
, (4.11)
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where QµZ and EµZ are the gain and QBER of the signal state, while Q0↓ (Q1↓
Z ) is a

lower bound on the probability that Alice sent 0 (1) photon and Bob had a detection
event, given that Alice sent a signal state: Q0 = e−µY 0↓ and Q1↓

Z = e−µµY 1↓
Z .

Finally, we mention that the key rate could be optimized by using the decoy-state
rounds in the Z basis even for key generation [Lim+14].

4.3 Introduction to Measurement-device-independent
QKD
The security proof of the general QKD protocol presented in section 3.3 is based on
the assumption that the measurement devices held by the parties are trusted, while
the source of quantum states can be untrusted. Indeed, we assume that Eve dis-
tributes uncharacterised quantum states, on which the parties perform characterised
measurements1 (e.g. in the Z or X basis). All the information that Eve can gain
on the measurement outcomes comes from her quantum side information E (apart
from the information leaked in the classical public channel).

However, measurement detectors can suffer from imperfections causing them to
operate differently from their theoretical models used to prove security. Eve could
exploit such imperfections to launch powerful eavesdropping attacks [Zha+08;
Lyd+10; Ger+11] that go under the name of detector side channels. An example is
the detector blinding attack [Lyd+10], where Eve first sends bright light to Bob’s
single-photon detectors to “blind” them and make them operate in linear-mode. This
means that his detectors are now unable to detect single photons and produce a click
only above a certain intensity threshold. Eve then sends tailored light pulses to Bob
which yield a click only when Bob chooses the same basis in which Eve prepared the
pulse. Hence Eve knows the outcome of each detection observed by Bob, without
introducing noticeable disturbance.

Measurement-device-independent QKD (MDI-QKD) [LCQ12; Xu+15] provides
a solution which removes all possible detector side channels with a new QKD
paradigm. Here, the honest parties send quantum signals to an intermediate re-
lay which applies some measurement and publicly announces the outcome. The
founding idea is to remove all trust from the measurement apparatus, which can
be operated by Eve, and place it on the sources, held by Alice and Bob. Typically,
QKD sources are attenuated lasers which can be easily characterized in a controlled
environment represented by Alice’s and Bob’s laboratory. Note that this scenario is
opposite to the previous one, where the source was untrusted and the measurement
devices were trusted.

1Note that specifying the measurement operators of a party effectively fixes the dimension of the
quantum system on which they are performed.
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Despite the fact that Eve has potentially full control on the relay and on the
connecting quantum channels, Alice and Bob can still establish a secret key. This is
possible if the measurement outcome publicly announced by the relay, in an honest
implementation, is informative for Alice and Bob but is not informative –i.e. it does
not reveal information on the key– for anyone else, including Eve.

To make things more concrete, let us consider an idealized MDI-QKD protocol
[Pir+19] where Alice and Bob independently encode their bits in the rectilinear or
diagonal polarization of single-photon states, represented by the bases {|0〉 , |1〉} and
{|+〉 , |−〉} (with |±〉 = (|0〉+ |1〉)/

√
2), respectively. The quantum signals are then

sent to the relay. Here a Bell-state measurement, i.e. a projection on one of the four
Bell states |ψij〉 given in (3.15), is applied on the incoming signals and its outcome
(i, j) is announced. Upon sifting, Alice and Bob are only left with bits corresponding
to rounds in which they used the same basis. If both parties used the rectilinear
basis, the outcomes (i, 0) (for i = 0, 1) inform them that their bit values coincide,
while the outcomes (i, 1) indicate that they encoded opposite bit values. Similarly, if
Alice and Bob used the diagonal basis, the outcomes (0, j) indicate they have same
bit values while (1, j) indicate opposite bit values. Bob can thus flip his bit according
to the measurement outcome and recover Alice’s bit.

In simple terms, the outcome of the Bell-state measurement reveals the parity of
the parties’ bits but not their values. Therefore, it provides useful information only
if one of the two bit values is known (i.e. to Alice and Bob), while being useless
otherwise.

Of course, Eve could implement any other operation on the incoming pulses but
she is still required to announce an outcome of the form (i, j) at every round. Thus,
by comparing a fraction of their sifted bits, Alice and Bob can verify the deviation of
the actual measurement apparatus from the ideal one and quantify the amount of
information gained by Eve.

4.4 Practical Measurement-device-independent QKD
The first practical version of an MDI-QKD protocol was introduced by Lo and
co-workers in [LCQ12] with a fully optical setup. The single-photon pulses are
replaced by phase-randomized WCPs in combination with the decoy-state method to
guarantee security, while the Bell-state measurement is implemented using linear
optics. Unfortunately, with linear optics only two out of four Bell-state projectors can
be realized. This, however, does not undermine security as it only introduces some
inconclusive measurement outcomes, which reduce the key rate. The protocol’s
setup is reported in figure 4.1.
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Fig. 4.1.: Schematic setup of the MDI-QKD protocol in [LCQ12]. Each party prepares a
phase-randomized weak coherent pulse (WCP). With a polarization modulator
(Pol-M), the party encodes a random bit in the polarization of the pulse. The
intensity of the pulse is attenuated with an amplitude modulator (Amp-M) to
implement the decoy state method. The parties send their pulses to the central
relay, which in principle applies a 50:50 beam splitter (BS) followed by two
polarizing beam splitters (PBS) at each output port, which project the incoming
pulses on the horizontal or vertical polarization states. The resulting pulses are
detected by four single-photon detectors (DCH

, DCV
, DDH

, DDV
). The detection

pattern is publicly revealed.

In every round of the protocol, Alice (Bob) prepares a phase-randomized WCP.
Upon randomly selecting the rectilinear (horizontal, vertical) or diagonal (45◦,
−45◦) polarization basis, Alice (Bob) encodes a random bit in the polarization state
of the pulse with a polarization modulator. The amplitude of the pulse is randomly
tuned through an amplitude modulator, generating signal or decoy states. The two
pulses are then sent to the central relay where they interfere at a 50:50 beam splitter
(BS). At each output port of the BS, a polarizing beam splitter (PBS) projects the
incoming pulses onto the horizontal (H) or vertical (V ) polarization states, which
are then detected by the corresponding single-photon detectors (SPDs): DCH , DDH

(horizontal) and DCV , DDV (vertical). The outcome of the detections is publicly
announced.

The click of exactly two detectors corresponding to orthogonal polarizations indi-
cates a successful Bell-state measurement. In particular if DCH , DCV or DDH , DDV

clicked, the pulses have been projected on the Bell state |ψ01〉. If a click occurs in
DCH , DDV or DDH , DCV , the projection is on the Bell state |ψ11〉. All other detection
events are inconclusive and the corresponding bits get discarded. The parties also
discard the bits for which they used different bases. Bob flips all his remaining bits,
except for those generated in rounds where he selected the diagonal basis and the
pulses were projected on |ψ01〉.
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In order to grasp how the optical setup depicted in figure 4.1 corresponds to a
Bell-state measurement, we imagine a virtual scenario where the state preparation
goes as follows. We assume for simplicity that the parties can prepare single-photon
states. Alice (and similarly Bob) prepares an entangled state between a virtual qubit
she (he) holds and a single photon polarized either horizontally or vertically:

|Φ+
A〉 = 1√

2

[
|H〉A |1〉AH + |V 〉A |1〉AV

]
=
[
|H〉A a

†
H + |V 〉A a

†
V

]
|0〉 (4.12)

|Φ+
B〉 = 1√

2

[
|H〉B |1〉BH + |V 〉B |1〉BV

]
=
[
|H〉B b

†
H + |V 〉B b

†
V

]
|0〉 . (4.13)

The kets |H〉A , |V 〉A define the qubit’s computational basis (Z basis) indicating the
polarization state the single photon, while the Fock states |1〉AH , |1〉AV describe a
single photon polarized horizontally or vertically, and can be expressed in terms of
the corresponding creation operators a†H , a

†
V acting on the vacuum |0〉. Analogous

definitions hold for Bob’s state.
If now Alice (Bob) measures the virtual qubit in the Z or X basis, this is equivalent

to Alice (Bob) preparing the single-photon in a random polarization state of the
corresponding basis, which is the protocol’s state preparation described above.
However, since Alice and Bob’s operations on their qubits commute with the detection
at the relay, they can delay their qubit measurements until the photon detection has
occurred.

Therefore, after preparing the entangled states (4.12) and (4.13), the parties send
their photons to the relay. The global quantum state before the photons enter the
50:50 BS reads:

|Φ+
A〉 ⊗ |Φ

+
B〉 =

1
2
[
|HH〉AB a

†
Hb
†
H + |HV 〉AB a

†
Hb
†
V + |V H〉AB a

†
V b
†
H + |V V 〉AB a

†
V b
†
V

]
|0〉 . (4.14)

At the BS, every photon has a 50% chance of being transmitted or being reflected.
By labelling c† (d†) the creation operator of the photons exiting the BS from the left
(right) output port (c.f. figure 4.1), the unitary action of the BS can be summarized
as follows:

a† 7→ c† + d†√
2

(4.15)

b† 7→ c† − d†√
2

. (4.16)
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By inserting the relations (4.15) and (4.16) in the state (4.14) and by using the fact
that creation operators relative to different optical paths or different polarization
states commute, we obtain the following global state at the exit of the BS:

|ΦBS〉 =

1
2

[
|ψ01〉AB

(
|1〉CH |1〉CV − |1〉DH |1〉DV√

2

)
− |ψ11〉AB

(
|1〉CH |1〉DV − |1〉CV |1〉DH√

2

)

+ |HH〉AB

(
|2〉CH − |2〉DH

2

)
+ |V V 〉AB

(
|2〉CV − |2〉DV

2

)]
. (4.17)

In the last expression |ψ01〉AB and |ψ11〉AB are Bell states written in the compu-
tational basis {|H〉 , |V 〉}, so for example |ψ01〉AB = (|HV 〉 + |V H〉)/

√
2, and e.g.

|1〉CH , |2〉CH are the Fock states of one and two photons polarized horizontally in
the left output port of the BS.

From (4.17) we immediately deduce that if the detectors DCH , DCV or DDH , DDV

click, then the qubits have been projected on the Bell state |ψ01〉AB. If the clicks
occur in DCH , DDV or DCV , DDH , the qubits are projected on |ψ11〉AB. Since the
qubits indicate the polarization state of the photons, this confirms that the optical
setup performs the mentioned Bell state measurement. Moreover, we observe that
even in an ideal scenario (single-photons and no losses), this implementation of
a Bell state measurement cannot succeed with probability higher than 1/2, thus
reducing the key rate.

Note that the click of only one detector would reveal the polarization of both
photons (in absence of losses), hence this event cannot be used for MDI-QKD.
The same thing would happen if both detectors DCH , DDH or DCV , DDV clicked.
However, this event cannot happen (c.f. (4.17)) due to the Hong-Ou-Mandel (HOM)
effect. The HOM effect occurs when two identical photons (like Alice’s and Bob’s
photons when prepared with the same polarization) enter the input ports of a 50:50
BS. Due to the unitary nature of the BS, the two photons always exit the same output
port of the BS. If the HOM interference would not occur, the possible detection
patterns at the relay would increase, making the Bell state measurement less likely
and thus harming the key rate.

Consequently, preparing indistinguishable photons from independent light sources
and obtaining good HOM interference is an important requirement for a successful
implementation of the described protocol. For this, the authors in [LCQ12] also
show that such a requirement can be fulfilled with current technology.

The virtual qubit approach also plays a fundamental role in proving the security of
the MDI-QKD protocol here presented. Indeed, in the virtual scenario and after the
photon detection has occurred, the protocol can be interpreted as an entanglement-
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based BB84 protocol where Alice and Bob are given a pair of qubits in an entangled
state, which ideally is either |ψ01〉 or |ψ11〉. The parties then independently measure
their qubit in the Z or X basis and compute the QBERs. In this way, one can prove
the security of the MDI scheme by relying on the security proof of the BB84 protocol
with WCPs [Got+04; LCQ12] (c.f. section 4.1). Note that in this case the secure
bits generated by the MDI-QKD protocol are those where both Alice and Bob sent
a single photon to the relay. Moreover, a detection event is successful only when
exactly two detectors clicked in the combinations described above.

The authors in [LCQ12] provide the asymptotic secret key rate achieved by their
MDI-QKD protocol. They consider a version of the protocol where the rectilinear
basis is used for key generation and the diagonal basis (selected in a small fraction
of rounds) is used for estimating Eve’s knowledge (PE). The resulting secret key rate
reads:

rMDI = Q1,1
rect(1− h(e1,1

diag))−Qrecth(Erect), (4.18)

where Qrect and Erect are the gain and QBER of the signal state in the rectilinear
basis. That is, Qrect is the probability of a successful detection given that both Alice
and Bob sent a signal state in the rectilinear basis. Instead, Q1,1

rect is the probability
that both parties sent one photon and the relay had a successful detection, given
that they both prepared a signal state in the rectilinear basis. Finally e1,1

diag is the
error rate in the diagonal basis given that Alice and Bob sent one photon each and
the detection was successful.

As expected, the secret key rate in (4.18) resembles the one in (4.11) of an
asymmetric BB84 protocol with decoy states. Similarly to that case, the quantities
Q1,1

rect and e1,1
diag can be bounded with the decoy state method presented in the previous

section.
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Beyond Point-to-point
Quantum Key Distribution

5
By definition, point-to-point QKD protocols are implemented with a single quantum
channel which directly connects the two parties establishing the key, e.g. the BB84
protocol introduced in chapter 3.

In this chapter we present the recently-derived theoretical limits on the secret key
rate that can be extracted by any point-to-point QKD protocol (section 5.1). Subse-
quently, we present in detail the (arguably) simplest solution found by researchers
to overcome such limitations, which is twin-field (TF) QKD (sections 5.2 and 5.3).
This is followed by a detailed investigation of the performance of TF-QKD in realistic
conditions (section 5.4), based on our works in appendices C and D. In section 5.5
we describe the generalization of the TF-QKD idea to more parties which is at the
core of our work reported in appendix E.

5.1 Fundamental Limits of Point-to-point QKD

The secret key rate of any QKD protocol is limited by the losses that inevitably occur
in the quantum channel(s) linking the end users. In most QKD implementations, the
information is encoded in one of the degrees of freedom of photons. The photons
are then transmitted over lossy quantum channels, whose transmittance η represents
the probability that a photon is successfully transmitted. For instance, the optical
attenuation in standard telecom fibers is about γ = 0.2 dB km−1, which leads to an
overall loss of γL over L kilometers of fiber. The transmittance of an L-kilometer
telecom fiber is thus given by: η = 10−γL/10. This shows that the probability of a
photon being transmitted decreases exponentially with the length of the channel,
thus severely affecting the key rate.

The exact relation between the key rate and the channel transmittance depends on
the protocol. Nevertheless, researchers have recently derived fundamental bounds
[TGW14; Pir+17] on the secret key rate of any point-to-point QKD protocol, which
only depend on the channel transmittance η. In particular, the secret key rate of any
QKD protocol performed over a lossy channel of transmittance η is upper bounded
by the Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound [Pir+17]:

rPLOB = − log(1− η), (5.1)
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where the logarithm is intended in base 2, as usual. In the high-loss regime (η � 1),
we can expand the logarithm in (5.1):

rPLOB ≈ 1.44 η, (5.2)

and observe that the key rate cannot scale better than linearly with the transmittance
of the channel, thus decreasing exponentially with the channel length.

The only way to overcome such severe limitations on the achievable key rate is
to employ one or more intermediate nodes in the quantum channel connecting the
users. However, this fact alone is not sufficient in general to yield key rates with an
improved scaling compared to the PLOB bound.

Consider for instance the MDI-QKD protocol presented in the section 4. Despite
featuring an intermediate measuring station that splits the channel between Alice
and Bob of transmittance η in two channels of transmittance

√
η each1, the key rate

does not scale better than the PLOB bound. Indeed, in order to have a successful
detection, both photons sent by Alice and Bob need to arrive at the central relay,
which occurs with probability

√
η · √η = η. Thus, the gain and hence the key rate

cannot scale better than linearly with the transmittance η of the whole channel.
A possible solution is instead represented by quantum repeaters [Bri+98; San+11],

which guarantee a polynomial scaling of the communication efficiency with the
distance. However, such devices are still very challenging to implement as they
require either quantum memories [San+11; Dua+01; Maz+14] or quantum error
correction [Mun+12; ATL15].

Other viable options are evolutions of the original MDI-QKD scheme, like memory-
assisted MDI-QKD featuring quantum memories [Pan+14; AKB14] or adaptive MDI-
QKD with quantum non-demolition measurements [ATM15]. In both cases, the
protocol adapts to the photon losses ensuring that the Bell-state measurement is
performed between pulses from Alice and Bob that actually arrived, even combining
pulses sent in different rounds. In this way, only one photon per round is required
to arrive, thus yielding a key rate proportional to

√
η. Despite the square-root

improvement in the key rate scaling, the evolved MDI schemes still rely on two-
photon interference events and their implementation is far from being practical.

In the next section we introduce a novel QKD protocol which represents the
simplest solution, found so far, to improve the key rate scaling of QKD beyond the
PLOB bound and to reach further distances.

1Each channel has length L/2, if L is the total channel length between Alice and Bob. The transmit-
tance of each channel is thus e−γL/(2·10) = √η.
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5.2 Twin-field QKD: Original Protocol

In 2018, Lucamarini et al. [Luc+18] proposed a new QKD scheme which is based
on the same working principle of MDI-QKD: a central untrusted relay measures the
pulses sent by Alice and Bob. The measurement outcome reveals the parity of Alice
and Bob’s bits, but not their values. However, opposed to MDI-QKD, it is based
on single-photon interference events. Thanks to this feature, it naturally retains
the square-root improvement in the key rate scaling since the successful events are
exactly those where only one photon arrived, sent either from Alice or Bob. This
removes the necessity of sophisticated systems to adapt the Bell-state measurements
to photon losses.

The protocol in [Luc+18] takes the name of twin-field (TF) QKD and its original
formulation goes as follows. Alice (Bob) generates phase-randomized WCPs by
picking a random phase value ρa (ρb) in the interval [0, 2π). The phase interval is
split into M phase slices ∆k = 2πk/M (k = 0, . . . ,M − 1) and the selected random
phase necessarily falls into one of them: ∆k(a) (∆k(b)). Alice (Bob) then encodes a
secret bit and a secret basis in another phase ϕa (ϕb) which is added to the phase of
the pulse. The pulses are then sent to a central station where they are combined
in a 50:50 beam splitter with single-photon detectors at its output ports. After the
detection outcome is announced, the parties publicly reveal the slices ∆k(a),∆k(b)

and the encoded bases, and keep only the rounds with matching values. Indeed,
the optical fields whose random phase falls in the same slice are “twins” and can be
used to generate a secret key. The detection outcome combined with the revealed
information indicate to Bob whether he needs to flip his bit or not, in order to match
it with Alice’s.

Since the first TF-QKD protocol has been published, an intense research activity led
to several variants of the original scheme [CAL19; Cui+19; LL18; MZZ18; WYH18]
and to many experimental demonstrations [Wan+19; Liu+19; Zho+19; Min+19].
In particular, experimentalists managed to obtain secret key rates surpassing the
limit imposed by the PLOB bound, thus proving the improved scaling of TF-QKD.

In the following, we are going to focus on the TF-QKD protocol proposed by Curty
et al. [CAL19], which is simpler and arguably better-performing than many other
TF-QKD variants. Before moving on, we briefly mention a couple of drawbacks of
the original TF scheme in [Luc+18].

Firstly, the random phases of a pair of twin fields are not identical and differ by
less than 2π/M . This induces an intrinsic QBER that tends to zero for M → ∞.
However, the probability of having matching slices scales as 1/M , thus increasing
M leads to more discarded rounds. There exists an optimal value for M that can be
determined by appropriately modelling the experimental setup and optimizing the
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key rate. The authors in [Luc+18] obtained an optimal value of Mopt = 16. In any
case, the use of locally randomized phases by Alice and Bob and the post-selection
of the matching ones causes a consistent amount of rounds to be discarded.

The main challenge in implementing the TF-QKD protocol of [Luc+18] is con-
trolling the phase drifts of the twin fields. Indeed, the differential phase fluctuation
between the two signals sent by Alice and Bob can be quantified as follows:

δab = 2π
cf

(∆νL+ ν∆L) , (5.3)

where cf is the speed of light in the fiber, while ∆ν is the frequency difference
between the users’ lasers and ∆L is the difference of path lengths travelled by the
two signals. While ∆ν can be compensated with phase-locking techniques already
used in optical communications, the contribution due to ∆L is a more serious
drawback. Indeed, even if the two fibers have nominally the same length, the
distance travelled by each signal can fluctuate in time due for instance to thermal
expansions of the fibers, resulting in a phase drift at the output of the fiber. This
issue could be mitigated with active stabilization techniques.

5.3 Twin-field QKD without Phase Post-selection

The TF-QKD protocol introduced in [CAL19] removes the need to post-select match-
ing global phases ρa and ρb for Alice and Bob, thus sensibly increasing the protocol’s
performance. It instead relies on a preselected global phase shared by Alice and
Bob. We remark that a very similar scheme has been independently developed in
[Cui+19], but it is equipped with an alternative security proof.

5.3.1 Idealized Protocol

In order to elucidate the protocol’s functioning, we start by presenting an idealized
version of it, which also has the merit to show where the inspiration came from,
namely entanglement-generation protocols in quantum repeaters.

The idealized TF-QKD protocol in [CAL19] is composed of the following steps.

1. Alice (and analogously Bob) prepares an optical signal entangled with a qubit
she holds:

|Φ〉Aa = √q |0〉A |0〉a +
√

1− q |1〉A |1〉a 0 ≤ q ≤ 1, (5.4)
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where |0〉a , |1〉a are the Fock states of the photon representing the vacuum and
a single-photon state, while {|0〉A , |1〉A } is the qubit’s computational basis (Z
basis).

2. Both parties send their optical pulses to a central relay through optical chan-
nels, each with transmittance

√
η (the overall transmittance between Alice and

Bob is η).

3. The central relay applies a 50:50 beam splitter to the incoming pulses followed
by two threshold detectors Dc and Dd (i.e. unable to distinguish the detection
of one or more photons).

4. The relay broadcasts the outcomes kc and kd of detector Dc and Dd, where
kc = 0 and kc = 1 (kd = 0 and kd = 1) correspond to a no-click and a click
event, respectively.

5. With probability pX Alice (Bob) measures her (his) qubit in the X basis given
by {|±〉A(B) = (|0〉A(B)± |1〉A(B))/

√
2}, while with probability 1− pX she (he)

measures the qubit in the Z basis. Upon obtaining the outcome x, where
x = ±1 are the eigenvalues of the X and Z operators, Alice (Bob) records the
bit value bA (bB) with (−1)bA = x ((−1)bB = x).

6. The bits bA and bB ⊕ kd, collected by Alice and Bob in the rounds where they
measured in the X basis and where the relay announced kc ⊕ kd = 1 (i.e. only
one detector clicked), form their raw keys. The bits collected in the Z-basis
rounds where kc ⊕ kd = 1 are instead used for PE. All the other rounds are
discarded.

To understand why the protocol enables the parties to distil a secret key, imagine
that we choose 1 − q � 1 in the state preparation. This means that both parties
prepare their signals strongly unbalanced towards the vacuum. For this reason,
in the relevant events where only one detector clicked, the detection is likely to
be caused by the sending and arrival of just one photon coming from either Alice
or Bob. However, the beam splitter creates a coherent superposition of these two
possibilities, implying that either Alice’s or Bob’s qubit are in state |1〉, but not both
of them. The conditional state of the parties’ qubits is thus well approximated by
the Bell states: |ψkd 1〉AB = (|01〉 + (−1)kd |10〉)/

√
2 (kd = 0, 1). The parties then

measure their respective qubit in either the X or Z basis. From here, the protocol
can be regarded as an entanglement-based BB84 protocol whose security we proved
in the previous chapter. Any deviation from the described picture can be detected by
computing appropriate error rates.
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The states |ψkd 1〉 prompt us to define the following error rates in the X and Z

basis:

EX = pXX [bA 6= bB ⊕ kd|kc ⊕ kd = 1] (5.5)

EZ = pZZ [bA = bB|kc ⊕ kd = 1], (5.6)

where pXX(ZZ)[Ω] is the probability that the event Ω occurred given that both Alice
and Bob measured in the X (Z) basis. The two error rates are zero if the parties
share one of the Bell states |ψkd 1〉.

According to the above explanation, ideally the relevant detections are caused by
the sending and arrival of just one photon. This shows that the protocol is based on
single-photon interference events, thus producing a key rate that scales with

√
η (the

transmittance of one of the two channels) as the original TF-QKD scheme.
We can support this statement with more analytical grounds, by first computing

the conditional state of the parties’ qubits, given that only detector Dc (kd = 0) or
only detector Dd (kd = 1) clicked:

ρkdAB = p1
pclick

[
q

q + (1− q)(1−√η) |ψkd 1〉〈ψkd 1 |AB

+
(1− q)(1−√η)

q + (1− q)(1−√η) |11〉〈11|AB

]
+ p2
pclick

|11〉〈11|AB, (5.7)

where pclick = p1 + p2 is the probability that only detector Dc (Dd) clicked, while p1

(p2) corresponds to the event where the detection was caused by a single-photon
(two-photon) pulse:

p1 = √η(1− q)q + (1− q)2√η(1−√η) (5.8)

p2 = 1
2(1− q)2η. (5.9)

In (5.7) we recognize the contribution due to the Bell states |ψkd 1〉, however we
also have other spurious contributions which lead to intrinsic errors in the protocol.
The resulting error rates, for the state (5.7), read:

2EX = EZ = p1
pclick

(1− q)(1−√η)
q + (1− q)(1−√η) + p2

pclick
. (5.10)

The asymptotic secret key rate of the described protocol is simply given by the
BB84 protocol key rate (3.26), rescaled by the probability 2pclick that a successful
detection occurred. We thus get:

ridealTF = 2pclick(1− h(EZ)− h(EX)). (5.11)
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By optimizing the key rate over the input parameter q, one obtains an optimal value
in the range: q ∈ [0.88, 0.94] for every value of η. This increases the weight of the
desired contribution |ψkd 1〉〈ψkd 1 |AB in the parties’ shared state (5.7), as explained
above.

The overall scaling of the key rate (5.11) with respect to η can be immediately
visualized by neglecting the terms of second order in (1 − q) (which are small
when q is optimized). In this approximation we have that EX ≈ EZ ≈ 0 and that
2pclick ≈ 2q(1− q)√η, hence the key rate scales with

√
η, as anticipated.

5.3.2 Actual Protocol
Here we present the actual TF-QKD protocol introduced in [CAL19], which is inspired
by the idealized protocol above but it is much more practical to implement. First
of all, note that the measurements performed by Alice and Bob commute with
the operations of the relay. This means that the measurements in step 5 can be
performed right after step 1, i.e. the parties can directly measure their qubit after
generating the entangled state (5.4). In doing so, we turn the protocol into a
prepare-and-measure scheme where Alice, upon choosing the X basis, prepares an
optical pulse a in the state:

|XbA〉a := √q |0〉a + (−1)bA
√

1− q |1〉a , (5.12)

depending on the value of a bit bA, chosen at random. Instead, when Alice chooses
the Z basis, she prepares the pulse in the Fock state:

|ZbA〉 := |bA〉a (5.13)

where the vacuum |0〉a (bA = 0) is selected with probability q and the single-photon
state |1〉a (bA = 1) is selected with probability 1− q. Bob prepares his optical signal
in analogous states. The other steps of the protocol remain unchanged.

We remark that this prepare-and-measure scheme is equivalent to the entanglement-
based idealized protocol from the point of view of the security and achieved key
rate. However, it does not require the generation of entanglement between a local
qubit and an optical signal, which might be experimentally demanding. We now
replace the states prepared in the current prepare-and-measure scheme with more
practical ones, while leaving all the other protocol steps unchanged. In this way we
come to the final TF-QKD protocol of [CAL19], which is summed up in figure 5.1.

The form of the states (5.12) prepared when the X basis is chosen, combined
with the fact that the optimal value for q is close to one, suggest much more
practical states to prepare an optical pulse in, namely coherent states |(−1)bAα〉 of
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low intensity |α|2. Indeed, by recalling that a coherent state can be expressed as a
superposition of Fock states (4.1), one notices that the states in (5.12) can be well
approximated by the WCP:

X basis: |(−1)bAαA〉 , (5.14)

with an appropriate amplitude αA and where bA is a random bit. Bob prepares a
coherent state analogous to (5.14) whose amplitude αB can differ from Alice’s.

The Z-basis states (5.13) are Fock states of fixed photon number. Thus, the
corresponding error rate EZ is linked to the probabilities that Alice and Bob send a
certain number of photons to the relay and the detection is successful. We have seen
(c.f. section 4.2) that such probabilities can be estimated by using the decoy-state
method. Now, since the Z-basis rounds do not contribute to key generation, the
states prepared in these rounds have the only purpose of quantifying EZ . Therefore,
we can replace them with the more practical phase-randomized WCPs, and estimate
EZ with the decoy-state method. Thus, upon choosing the Z basis, Alice prepares a
phase-randomized WCP:

Z basis: ρµi =
∞∑
n=0

e−µi
µni
n! |n〉〈n|, (5.15)

whose intensity µi is randomly drawn from a set {µi}. Analogously, Bob prepares a
phase-randomized WCP ρνi with intensity νi randomly drawn from the set {νi}. The
two sets of intensities can be different for Alice and Bob.

Remark 5.1. We stress the fact that the TF-QKD protocol of [CAL19], instead of
requiring a global phase post-selection like the original TF-QKD scheme [Luc+18],
requires a global phase pre-selection which fixes the phases of the coherent states in
the X-basis rounds. This can be achieved if the parties share a phase-reference that
can also be controlled by Eve. The feasibility of this solution was recently proved in
some experiments [Wan+19; Liu+19; Min+19]. Conversely, in the Z-basis rounds the
phase-reference is not needed as the parties prepare locally phase-randomized WCPs.
This makes the TF-QKD protocol of [CAL19] quite robust against potential phase
misalignments, since they only affect the X-basis rounds.

5.3.3 Error Rates Estimation
When performing the practical TF-QKD protocol outlined above, the quantities that
Alice and Bob observe, after revealing their inputs in a fraction of the rounds, are the
gains pXX(kc, kd|bA, bB) and pZZ(kc, kd|µi, νj). The former is the probability that
the relay announces the detection pattern kc, kd given that Alice (Bob) prepared
|(−1)bAαA〉 (|(−1)bBαB〉), while the latter is the probability that the relay announces
the detection pattern kc, kd given that Alice (Bob) prepared ρµi (ρνj).
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Amp-M
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Amp-MBS

Dc Dd

Fig. 5.1.: Schematic setup of the practical TF-QKD protocol introduced in [CAL19]. In
every round, each party selects the X (Z) basis with probability pX (1 − pX).
When selecting the X basis, Alice (Bob) prepares a WCP whose phase encodes
her (his) random key bit bA (bB). When the Z basis is selected, she (he) prepares
a phase-randomized WCP to implement the decoy state method. Both parties
send their pulses to the central relay through channels of transmittance

√
ηA for

Alice and
√
ηB for Bob. Here, the incoming pulses are combined into a 50:50 BS

followed by two threshold detectors at its output ports. The relay announces the
results of the detection kc, kd. The parties only keep those rounds in which they
chose the same basis and kc ⊕ kd = 1, all the other rounds are discarded. The bits
bA and bB ⊕ kd form the parties’ raw keys.

From the observed gains, the parties can estimate the error rates EX and EZ as
follows. In the following, we assume that the detection pattern kc, kd is such that
kc ⊕ kd = 1.
EX estimation: From Bayes’ theorem [SO94] we obtain:

pXX(bA, bB|kc, kd) = 1
4
pXX(kc, kd|bA, bB)

pXX(kc, kd)
, (5.16)

where:

pXX(kc, kd) = 1
4

1∑
bA,bB=0

pXX(kc, kd|bA, bB). (5.17)

We can then compute the error rate EX in (5.5), for the detection pattern kc, kd, as
follows:

Ekc,kdX =
1∑
j=0

pXX(bA = j, bB = j ⊕ kc|kc, kd), (5.18)

where the probabilities pXX(bA, bB|kc, kd) are given in (5.16).
EZ estimation: What we want is an estimation of the error rate EZ that characterizes
the rounds where Alice and Bob chose the X basis. Suppose that, upon choosing
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the X basis, Alice (Bob) implements and entanglement-based version of the TF-QKD
protocol, i.e. she (he) prepares the entangled state |Φ〉Aa (|Φ〉Bb) defined as:

|Φ〉Aa = |+〉A |αA〉a + |−〉A |−αA〉a√
2

, (5.19)

and she (he) delays the X measurement on the qubit until the detection at the
relay has occurred. Note that Eve cannot distinguish this scenario from the actual
scenario in (5.14). The global state of the parties’ qubits and signals, after the relay
announced outcome kc, kd, reads:

|χkc,kd〉Aa′Bb′ :=
Mkc,kd
a,b |Φ〉Aa |Φ〉Bb√
pXX(kc, kd)

, (5.20)

where Mkc,kd
a,b is the Kraus operator describing the action of the relay on the signals

of Alice and Bob, corresponding to outcome kc, kd. The Z-basis error, as defined in
(5.6), affecting the X-basis rounds is thus given by:

Ekc,kdZ =
1∑
j=0

∥∥∥AB 〈jj|χkc,kd〉Aa′Bb′∥∥∥2
. (5.21)

Now, one can derive an upper bound on (5.21) in terms of the yields Y kc,kd
nm in the Z

basis, i.e. the probability that the relay announces kc, kd given that Alice and Bob
sent n and m photons, respectively, after choosing the Z basis. The upper bound on
EZ reads [CAL19]:

Ēkc,kdZ := 1
pXX(kc, kd)


 ∞∑
n,m=0

cA2nc
B
2m

√
Y kc,kd

2n 2m

2

+

 ∞∑
n,m=0

cA2n+1c
B
2m+1

√
Y kc,kd

2n+1 2m+1

2
 , (5.22)

where cA(B)
n is defined as: cA(B)

n = e
−α2

A(B)
2 αnA(B)/

√
n!. Then, the yields appearing

in the bound (5.22) can be estimated with the decoy-state method, by relying on
the gains observed in the Z basis: pZZ(kc, kd|µi, νj). Specifically, the yields are
constrained by the following set of equations, each corresponding to a particular
pair of decoy intensities (µi, νj):

pZZ(kc, kd|µi, νj) =
∞∑

n,m=0
e−µi−νj

µni ν
m
j

n!m! Y
kc,kd
nm µi ∈ {µi} , νj ∈ {νj}, (5.23)
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similarly to what we have seen for the decoy-state method applied to the BB84
protocol (4.8). Note that in this case, differently from the usual decoy-state method,
one needs to derive upper bounds on the yields in (5.22), which correspond to a
lower bound on the key rate. Furthermore, typically one can only bound a subset
of the infinite amount of yields appearing in (5.22), while the remaining yields are
trivially upper bounded by one.

5.3.4 Secret Key Rate

The asymptotic secret key rate of the practical TF-QKD protocol introduced in
[CAL19] is given by:

rTF ≥ r1,0
TF + r0,1

TF, (5.24)

where rkc,kdTF is the contribution due to the detection event kc, kd with kc ⊕ kd = 1,
defined as:

rkc,kdTF = pXX(kc, kd)
[
1− h(Ekc,kdX )− h(Ēkc,kdZ )

]
(5.25)

with pXX(kc, kd), Ekc,kdX and Ēkc,kdZ given in (5.17), (5.18) and (5.22), respectively.
In figure 5.2 we plot the asymptotic key rate (5.24) of the practical TF-QKD protocol
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Fig. 5.2.: Logarithmic plot of the asymptotic secret key rates of the TF-QKD scheme in
[CAL19] (Eq. 5.24, blue) and of the symmetric BB84 protocol with a single-
photon source (Eq. 5.26, green), as a function of the distance between Alice and
Bob. We assume that the quantum channels are telecom fibers with 0.2 dB km−1

of loss. Apart from this, the implementation of both protocols is error-free.
We also plot the PLOB bound (Eq. 5.1, magenta). We observe the square-root
improvement in the scaling of the TF key rate with the transmittance, compared to
the BB84 protocol and to the PLOB bound. Note that a square-root improvement
results in an increased slope in this logarithmic plot.
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in [CAL19] as a function of the total distance L between Alice and Bob, assuming
that they are both linked to the central relay by equally-long telecom fibers with
0.2 dB km−1 of loss. Hence the transmittances of their channels are:

√
ηA = √ηB =:

√
η = 10−

0.2L
20 . In the figure we also report the PLOB bound (5.1) and the asymptotic

key rate of a symmetric BB84 protocol (c.f. section 3.2) implemented with a single-
photon source:

rsymBB84 = η/2. (5.26)

For both protocols, we assume an ideal implementation where the only source of
errors is the loss in the quantum channel(s) (simulations including other sources of
error can be found in [CAL19]). In the case of the TF scheme, we also assumed an
infinite number of decoy intensity settings, which basically means that the parties
know the exact values of all the yields appearing in the upper bound Ēkc,kdZ . Finally,
we optimized the TF key rate (5.24) over the signal intensities α2

A and α2
B of the

WCPs prepared by Alice and Bob in the X-basis rounds (for simplicity αA, αB ∈ R).
Note that, for identical losses

√
ηA = √ηB, the optimal signal intensities are equal:

α2
A = α2

B.
From figure 5.2 we observe the improved scaling of the TF key rate compared to

the BB84 protocol and to the upper bound on the key rate of any point-to-point QKD
protocol, i.e. the PLOB bound. Indeed, while the TF key rate scales with ∼ √η, the
BB84 protocol and the PLOB bound scale with ∼ η. In particular, there exists a loss
threshold/distance after which TF-QKD performs better than any point-to-point QKD
scheme, i.e. when the PLOB bound is surpassed. We emphasize that this theoretical
prediction has been recently confirmed experimentally [Wan+19; Liu+19; Zho+19;
Min+19].

5.4 Twin-field QKD with Finite Decoys and Asymmetric
Channels
In the reference [CAL19] that introduced the TF-QKD protocol without phase post-
selection, the key rate performance is mainly investigated in the unrealistic scenario
where Alice and Bob can use an infinite number of decoy intensity settings.

In order to investigate the real performance of the proposed TF scheme, in our
paper [GC19] (also reported in appendix C) we derive analytical bounds on several
yields appearing in the upper bound (5.22) on the error rate EZ , when the parties
have at their disposal either two, three, or four decoy intensity settings.

Note that, since to every pair of decoy intensities corresponds a linear constraint
on the yields (see (5.23)), increasing the number of decoy intensities enables us to
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bound a larger number of yields and more tightly. In the limit of infinitely many
decoy intensity settings, the parties can correctly estimate all the infinite yields
appearing in (5.22). Moreover, the larger the number of yields with an analytical
bound, the smaller the number of yields trivially bounded by one in (5.22). This has
the obvious effect of increasing the protocol’s key rate.

Equipped with the derived bounds on the yields, we show that two decoy settings
are enough to beat the PLOB bound (5.1) and that four decoy settings are close to
optimal, i.e. the resulting key rate is almost indistinguishable from that where Alice
and Bob have infinite decoy settings.

Furthermore, in the performance analysis in [CAL19] it is assumed that the losses
affecting the quantum channels of Alice and Bob are equal and so are the optimal
signal and decoy intensities. However, this does not reflect realistic scenarios where
two parties establishing a secret key, e.g. in the context of a quantum network, are
likely to be at different distances from the untrusted relay which processes their
signals according to the TF-QKD protocol in [CAL19]. Moreover, potential intensity
fluctuations affecting the parties’ lasers are likely to be uncorrelated, causing the
parties to effectively employ different signal and decoy intensities.
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Fig. 5.3.: Contour lines for the asymptotic secret key rate of the TF-QKD scheme in [CAL19],
evaluated with the yields bounds derived in [GNC19] relative to three decoy
intensity settings. The key rate is optimized over the signal α2

A, α
2
B and decoy

intensities {µi}, {νi} of Alice and Bob, respectively. In (a) we additionally imposed
the constraints: αA = αB and {µi} = {νi}. We observe that, when the parties can
use asymmetric intensities (b), the key rate is never enhanced by adding noise
in one of the channels in order to symmetrize the losses. The black dotted lines
enclose the region where the key rate beats the PLOB bound (5.1). We employed
a realistic channel model with 2% polarization and phase misalignments and a
dark count probability in each detector of 10−7.
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In order to address these issues, in another paper [GNC19] (also reported in
appendix D) we investigate the performance of the TF-QKD protocol of [CAL19]
in asymmetric-loss scenarios and in the presence of independent laser intensity
fluctuations. To this aim, we derive new analytical bounds on the relevant yields
appearing in (5.22), when the parties use two independent sets of decoy intensities
({µi} and {νj}). In particular, inspired by the results of the previous work [GC19],
we consider the cases of two, three and four decoy intensity settings for each party.
We then numerically optimize the key rate over the (potentially) different signal and
decoy intensities.

An example of the advantage gained by allowing Alice and Bob to independently
select their signal and decoy intensities is given in figure 5.3. Here, we provide two
contour plots of the secret key rate optimized over the signal and decoy intensities,
as a function of the loss (measured in dB) in the quantum channels linking Alice
and Bob to the untrusted relay. For instance, if LossA is the loss in Alice’s channel,
then the transmittance of her channel is given by:

√
ηA = 10−LossA/10.

The plot in figure 5.3a is optimized with the constraint that Alice and Bob use
the same set of decoy intensities and the same signal intensity, while the plot in
figure 5.3b is optimized without that constraint –i.e. Alice and Bob are free to
independently optimize their intensities. We observe a drastic improvement of the
key rate when the parties can independently select the signal and decoy intensities,
especially when the losses in two channels are highly asymmetric. Surprisingly,
when the parties are forced to employ the same intensities and their losses are
significantly asymmetric, it is convenient for them to artificially increase the loss
in one of their channels (e.g. by adding fiber) in order to maximize the key rate
(see figure 5.3a). Further plots and analyses can be found in the paper [GNC19]
reported in appendix D.

Finally we illustrate, in the simplest case of two decoy intensities per party, the
procedure we adopt in [GC19; GNC19] to derive good bounds on the relevant
yields in (5.22). In particular, as an example we derive the upper bound on Y kc,kd

11 .
We assume that Alice (Bob) can choose among the decoy intensities {µ0, µ1} with
µ0 > µ1 ({ν0, ν1} with ν0 > ν1). To keep the notation simple, we define the following
rescaled gains in the Z basis (where we omit the detection pattern kc, kd):

Q̃µi,νj = eµi+νjpZZ(kc, kd|µi, νj), (5.27)

and we rewrite the linear constraints on the yields (5.23) as follows:

Q̃µi,νj =
∞∑

n,m=0

Ynm
n!m!µ

n
i ν

m
j . (5.28)
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Consider the following combination of gains:

G := Q̃0,0 + Q̃1,1 − Q̃0,1 − Q̃1,0 =
∞∑

n,m=0

Ynm
n!m! (µ

n
0 − µn1 )(νm0 − νm1 ), (5.29)

and note that the coefficients of the yields Yn0 and Y0m are null for every n and m.
We can then recast the last expression as follows:

G = Y11(µ0 − µ1)(ν0 − ν1) +
∞∑

n,m=1 s.t.
n+m>2

Ynm
n!m! (µn0 − µn1 ) (νm0 − νm1 ) . (5.30)

We emphasize that Y11 is now the yield with the largest coefficient2 in (5.30), thus
trivially bounding the other yields is not as harmful as it would be if they had the
largest coefficients.

An upper bound on Y11 is then obtained by considering the worst-case scenario
for the other yields, taking into account that they are probabilities, i.e. 0 ≤ Ynm ≤ 1.
Since all the yields’ coefficients have the same sign in (5.30), the yield Y11 is maximal
when all the other yields are minimal. Hence, the upper bound on Y11 is obtained
by setting all the other yields to zero in (5.30):

Y U
11 = min

{
G

(µ0 − µ1)(ν0 − ν1) , 1
}
. (5.31)

Note that by taking the minimum in the above expression we make sure that Y U
11 is

a meaningful bound on a probability. The upper bound in (5.31) is only expressed
in terms of input parameters (the decoy intensities) and observed gains contained in
G (see (5.29)).

5.5 Conference Key Agreement with Single Photon
Interference
The founding idea of TF-QKD, elucidated in subsection 5.3.1, can also be generalized
with some adjustments to the multiparty scenario. Indeed, in our work [GKB19] (also
found in appendix E) we devise a conference key agreement (CKA) where N parties
simultaneously distil a secret conference key through single-photon interference
occurring at an untrusted relay.

In particular, parties Alice1, Alice2, . . . , AliceN establish the conference key by
sending optical pulses to the relay and by performing suitable measurements on their

2Optimal decoy intensity values are typically smaller than one, and one of the decoy intensities of
each party is always as small as allowed by the experimental equipment [GC19; GNC19].
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Alice1

Untrusted relay

DND1

Di

AliceN

Alicei

multiport BS

Fig. 5.4.: In the CKA we introduce in [GKB19], every party initially prepares an entangled
state between a qubit she holds and an optical signal given by (5.32). The state is
unbalanced towards the vacuum: 1− q � 1. The signals are then sent to the un-
trusted relay through optical channels with transmittance

√
η. The relay combines

the pulses in a balanced multiport BS featuring a detector at every output port,
and then announces the outcome of the detection of each detector. The events in
which only one detector clicked are most likely caused by the detection of just one
photon, sent by one of the parties with equal probability (single-photon interfer-
ence). Hence, the conditional state of the qubits A1, . . . , AN is well approximated
by a W state, which can be used by the parties to distil a conference key.

qubits. The resulting CKA is sketched in figure 5.4 and each round is characterized
by the following steps.

1. Alicei (i = 1, . . . , N) prepares an optical pulse ai entangled with a qubit Ai
she holds:

|Φ〉Aiai = √q |0〉Ai |0〉ai +
√

1− q |1〉Ai |1〉ai 0 ≤ q ≤ 1 (5.32)

where |0〉ai , |1〉ai are the photon’s vacuum and single-photon state, while
{|0〉Ai , |1〉Ai} is the computational basis of qubit Ai (Z basis).

2. Every party sends her optical pulse ai to the relay via optical channels of
transmittance

√
η. The transmittance between any two parties is thus η.

3. The relay applies a Bell-multiport beam splitter [ZZH97; LB05; Per+11;
Spa+13] with M input and M output ports (where M ≥ N) to the incoming
pulses and is followed by a threshold detector Di (i = 1, . . . ,M) at each output
port. If M > N , some inputs ports receive the vacuum. The action of the
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multiport beam splitter (BS) is defined by the following unitary transformation
which reduces to the standard 50:50 BS for M = 2:

a†in,i 7→
M∑
j=1

Uija
†
out,j , (5.33)

where a†in,i (a†out,j) are the creation operators of the incoming (outgoing)
photons and Uij are the coefficients of a unitary matrix defined as:

Uij = 1√
M
ei

2π
M

(i−1)(j−1) i, j ∈ {1, . . . ,M}. (5.34)

4. The relay broadcasts the outcome kj of every detector Dj , with kj = 0 (kj =
1) corresponding to a no-click (click) event. The round is discarded when∑M
j=1 kj 6= 1, i.e. whenever single-photon interference did not occur. The

probability that only detector Dj clicked is pD and is independent of the
detector due to the symmetric action of the multiport BS.

5. The round is classified either as a parameter-estimation (PE) round with
probability pr or as a key-generation (KG) round with probability 1− pr. In
case of a PE round, every party measures her qubit in the Z-basis. In case of
a KG round, conditioned on detector Dj clicking, Alicei measures her qubit
in the basis of the operator OXY (ϕi) = cos(ϕi)X + sin(ϕi)Y (where X and Y
are the Pauli operators), with ϕi = arg(Uij). Upon observing the outcome xi
(where x = ±1 are the eigenvalues of Z and OXY (ϕi)), Alicei records the bit
value bi with (−1)bi = xi.

6. The bits bi measured in KG rounds form Alicei’s raw key, while those obtained
in PE are used to detect Eve’s action and quantify the information she gained
on Alice1’s raw key.

After performing a suitable number of rounds, all the parties perform one-way
error correction to match their raw keys to Alice1’s raw key. The parties then
perform privacy amplification on their error-corrected keys to distil a shorter, secret,
conference key.

The error rates EZ and EA1Ai devoted to quantify Eve’s knowledge and the
information that Alice1 needs to send for error correction are defined as follows:

EZ = pPE
[
b1 =

⊕N
i=2 bi|

∑M
j=1 kj = 1

]
(5.35)

EA1Ai = pKG
[
b1 6= bi|

∑M
j=1 kj = 1

]
, (5.36)
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where pPE(KG)[Ω] is the probability that the event Ω occurred in a PE (KG) round.
The asymptotic secret conference key rate achieved by the described CKA protocol
based on single-photon interference events reads:

rspCKA = MpD

(
1− h(EZ)− max

2≤i≤N
h(EA1Ai)

)
(5.37)

Notably, the above CKA scheme and the relative asymptotic key rate reduce to the
idealized TF-QKD protocol presented in subsection 5.3.1 when N = M = 2.

Remark 5.2 (Preshared key). The parties can know beforehand the nature of each
round of the protocol thanks to a preshared secret key they hold. For instance, they
could share a key with as many bits as rounds, where the bit value 1 (0) indicates a
PE (KG) round. Since pr is typically small, the key is composed mainly of zeroes and
can thus be highly compressed. In particular, if R is the total number of rounds, the
parties need a preshared secret key of Rh(pr) bits, where h(x) is the binary entropy.
The length of the preshared key must be subtracted from the final secret key length in
order to quantify the amount of fresh secret bits produced by the protocol. However,
in the asymptotic regime (R → ∞) considered here, the penalty introduced by the
preshared key on the asymptotic conference key rate is given by h(pr) and is negligible,
e.g. by choosing pr ∼ 1/R.

5.5.1 Multipartite QKD with a W state

Here we would like to provide, as in the case of the idealized TF-QKD protocol, a bit
of intuition on why the above CKA protocol works.

When optimizing the conference key rate in (5.37) over q, we obtain values such
that 1 − q � 1, that is the initial entangled states (5.32) are strongly unbalanced
towards the vacuum. Therefore, the rounds where only one detector clicked are
mainly caused by the sending and detection of just one photon. The photon could
be sent by any Alicei, implying that her qubit would be in state |1〉Ai while the
qubits of the other parties would be in state |0〉A 6=i . Since the multiport BS creates a
coherent superposition of all these possibilities, by post-selecting the rounds where
e.g. detector Dj clicked, the state of the parties’ qubits is approximately given by
the following W -class state3 [DVC00]:

|Wj〉A1...AN
= 1√

N

N∑
i=1

√
MUij |~vi〉 , (5.38)

3The W state usually considered in the literature reads: 1√
N

∑N

i=1 |~vi〉.
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where the bitstring ~vi ∈ {0, 1}N is composed of all zeroes except for the i-th bit
which has value one and where Uij is defined in (5.34). We remark that the qubits’
state in (5.38) is only an approximation in the limit 1−q � 1 where terms of second
or higher order in 1− q have been neglected and in the ideal scenario of no losses
(
√
η = 1) and no other sources of noise.
Although it is proven [Epp+17] that no N -qubit state other than the GHZ state

(3.31) can lead to perfectly correlated outcomes in one measurement basis (for
N ≥ 3), the parties can still distil a secret conference key by properly measuring
their qubits in state (5.38).

Indeed, the measurements that the parties perform in KG rounds (see protocol
description) are chosen to minimize the key-bit error rate EA1Ai between Alice1

and any other party. In particular, one could view the measurement of Alicei in the
eigenbasis of cos[arg(Uij)]X + sin[arg(Uij)]Y as composed of two steps. First she
rotates her X operator in the (x, y)-plane of the Bloch sphere by an angle arg(Uij),
in order to remove the effect of the complex phase

√
MUij introduced by the BS

when Dj clicked. Then she measures in the eigenbasis of the rotated operator.
The resulting error rate EA1Ai (5.36) the parties would observe if their qubits

were exactly in the state (5.38) is given by:

EA1Ai = 1
2 −

1
N
. (5.39)

This intrinsic error rate affecting the parties’ raw key bits is unavoidable due to the
fact that they are measuring a W -class state, instead of a GHZ state. Conversely, the
error rate EZ (5.35) computed in PE is null on the state (5.38), confirming that in
ideal conditions Eve does not gain any information.

We have thus argued that multipartite QKD can also be implemented on a W
state, instead of the conventional GHZ state used in the majority of cases, e.g. with
the multiparty BB84 and six-state protocols (c.f. section 3.4). Despite presenting the
drawback of the intrinsic error rate (5.39), the CKA based on the W state becomes
dramatically advantageous in high-loss scenarios.

Indeed, the W state is post-selected when single-photon interference occurred at
the relay. This implies that the resulting conference key rate (5.37) scales linearly
with the transmittance

√
η of one of the channels linking the parties to the relay.

Let us now consider a generic optical implementation of a CKA based on an
N -qubit GHZ state, where the qubit state is encoded in one of the photon’s degrees
of freedom (e.g. the polarization). The N photons described by an N -qubit GHZ
state are distributed from a central untrusted node to the N parties through the
same quantum channels with transmittance

√
η. The conference key rate of this
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protocol cannot scale better than ∼ (√η)N , since all the photons are required to
arrive in order to have a successful round.

Clearly, in a high-loss scenario (
√
η → 0) the conference key rate of our CKA based

on single-photon interference will outperform any CKA based on GHZ states and
implemented as described above.

Remark 5.3 (Impossibility of prepare-and-measure CKA). We emphasize that the
measurements performed by the parties in the KG rounds do not commute with the
operations of the relay, inasmuch as they depend on which detector clicked. This means
that the CKA cannot be turned into a prepare-and-measure scheme where each party
prepares some optical signal depending on a random bit and on the basis choice. For
this reason, it cannot be regarded as an MDI-QKD protocol since the parties still need
to perform trusted measurements on their qubits.

This contrasts with the TF-QKD idealized protocol presented in subsection 5.3.1,
which is recovered here for N = M = 2. The bipartite case is special since the complex
phase introduced by the BS in the shared state (5.38) reduces to a minus sign, which
can be reabsorbed by asking Alice2 to flip her classical outcome b2 when detector D2

clicks, as described in subsection 5.3.1. This removes the need to adjust the parties’
measurements depending on the result of the detection, hence making these two steps
commute.

Nevertheless, the quantum operations required by our CKA seem to be feasible with
present-day technology [Ber+13; Roz+19; Abo+18].

5.5.2 Performance assessment
In [GKB19], we prove the CKA security in the finite-key scenario for the most
general attacks the eavesdropper can perform. We also investigate the protocol’s
performance for a realistic channel model that accounts for polarization and phase
misalignments and dark counts in the detectors.

In order to benchmark the performance of our CKA based on a central untrusted
relay, we consider a scenario where the relay is removed and the parties are all
connected in a star network where the transmittance between any two parties is
η. In this configuration, we consider the conference key rate generated by the
following strategy and compare it with the CKA key rate (5.37). One special party,
say Alice1, performs the best possible bipartite QKD protocol with every other party,
thus establishing N −1 secret keys whose key rate is given by the PLOB bound (5.1).
Alice1 then uses the established keys to distribute the conference key to the other
parties with one-time pad encryption. The resulting conference key rate is thus
given by the rate at which the bipartite keys were generated, rescaled by the factor
1/(N − 1) which accounts for the fact that Alice1 repeated the bipartite scheme
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Fig. 5.5.: Conference key rates yielded by the CKA based on single-photon interference
(solid lines, Eq. 5.37 optimized over q with M = N) and by the N -party BB84
protocol (dashed lines, Eq. 5.41) as a function of the channel length between
one party and the untrusted relay, for different numbers of parties N . The solid
magenta lines are the direct-transmission bound (N = 2 top, N = 4 middle,
N = 10 bottom; Eq. 5.40). The experimental setup is assumed to be ideal except
for the lossy quantum channels with 0.2 dB km−1 of loss. The improved key rate
scaling of the single-photon-based CKA enables it to outperform both the N -BB84
protocol and the direct-transmission bound on longer distances.

N −1 times. The conference key rate resulting from the above strategy implemented
on the star network reads:

rdir.tr. = − log2(1− η)
N − 1 (5.40)

and we call it the direct-transmission bound. This is similar to what is done for
TF-QKD when benchmarked against the PLOB bound (c.f. figure 5.2), which bounds
the highest possible key rate achieved between Alice and Bob if the untrusted relay
is removed.

In figure 5.5 we plot the CKA key rate in (5.37) (solid lines) and the conference
key rate of the N -partite BB84 protocol (dashed lines), as a function of the distance
between one party and the relay and for different numbers of parties (N = 2, 4, 10).
In the same figure, we also plot the direct-transmission bound (5.40) (solid magenta
lines; the top line corresponds to N = 2, the middle to N = 4 and the bottom to
N = 10).

The conference key rates are obtained in an ideal experimental setup where the
only source of errors is the photon loss in the quantum channels. We assumed as
usual 0.2 dB km−1 of loss in each quantum channel, the typical loss of standard
telecom fiber. In [GKB19] (appendix E) we account for more realistic channel
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models, which include dark counts in the detectors and misalignments of the phase
and polarization.

The considered N -BB84 protocol is such that the relay has the function of dis-
tributing the entangled photon state to the N parties. In the chosen ideal setting,
the conference key rate of the N -BB84 protocol is just given by the probability that
each photon reaches the corresponding party:

rNBB84 = ηN/2. (5.41)

The CKA key rate (5.37) has been optimized over the parameter q and we fixed
the number of BS ports to match the number of parties: M = N . We remark that the
optimal number of BS ports –and thus detectors– is M ≈ N but it actually depends
on the loss. Indeed, a larger number of BS ports decreases the possibility of detecting
two photons in the same detector, which is a source of error especially at low losses.
However, when accounting for dark counts in the detectors, increasing the number
of detectors implies a higher probability of dark counts, which is another source of
error manifesting itself at high losses with a drop of the key rate.

As anticipated, figure 5.5 clearly shows the significant improvement in the con-
ference key rate when employing our CKA based on single-photon interference,
as opposed to employing a GHZ-state-based CKA like the N -party BB84 protocol.
Moreover, due to the improved scaling with the loss, the CKA key rate (5.37) also sur-
passes the direct-transmission bound (5.40) for sufficiently long distances, similarly
to what happens with the TF-QKD protocol and the PLOB bound (see figure 5.2).
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Device-independent
Cryptography

6
„Bell’s theorem, formulated in 1964, is one of the

profound scientific discoveries of the century.

— Alain Aspect

We have already seen in chapters 4 and 5 how imperfections in the quantum devices
employed in a QKD protocol, when not accounted for in the security proof, can be
exploited by an eavesdropper to spoil the protocol’s security. In this context, MDI-
QKD and TF-QKD protocols represent possible solutions as they do not require to trust
the measurement devices, which can be completely controlled by the eavesdropper,
and yet derive a secret key. However, both MDI-QKD and TF-QKD still require to
trust the sources held by the parties.

Until now we presented QKD protocols where at least some devices in the experi-
mental apparatus need to be trusted. Of course, we could place our trust in such
devices more lightheartedly upon deeply characterizing their functioning. However,
the characterization process is often challenging and we might not be capable or
willing to do it. Indeed, in most cases QKD users are laymen who simply want to
purchase a service which guarantees a high level of security, without bothering to
verify the claimed security.

Quite astonishingly, secure QKD is still possible even when the whole experimen-
tal apparatus is untrusted and potentially under the control of the eavesdropper1.
Indeed, by exploiting the non-local properties of quantum correlations, device-
independent (DI) QKD protocols [YM98; AGM06; Pir+09; MPA11; VV14; Arn+18]
and DI conference key agreement (DICKA) protocols [SG01a; SG01b; RMW19;
HKB19] deliver the same secret key to a group of two or more parties, respec-
tively, where the security of the key is independent of the actual functioning of the
employed devices.

In a similar fashion, in DI randomness generation (DIRG) protocols [Col07;
Pir+10; CK11; Nie+18; PM13; FGS13], the intrinsic randomness generated by
quantum mechanical processes is proven to be private upon the observation of

1Minimal requirements on the devices are still in place, such as the isolation of the trusted parties’
labs. Without this requirement, the devices could simply broadcast the established secret key upon
completing the protocol.
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certain non-local correlations. Note that secret true randomness is one of the
prerequisites of most quantum cryptographic protocols.

The chapter is organized as follows. In section 6.1 we introduce the concept
of non-local correlations and show how they can be witnessed through a Bell
inequality violation. We formalize the definitions of different kinds of correlations in
section 6.2. Then, we link the observation of a Bell violation to the security proof
of DI protocols in section 6.3. In section 6.4 we provide an explicit example of
DIQKD protocol and prove its security in section 6.5. In section 6.6 we illustrate our
recent results which enable tight security proofs of certain multiparty DI protocols
(paper in appendix H). We conclude by discussing the suitability of full-correlator
Bell inequalities for DICKA and present a multipartite Bell inequality specifically
built for the task of DICKA (section 6.7).

6.1 Bell’s Theorem

Bell’s theorem [Bel64; Bel04] states that there exist predictions of quantum theory
that cannot be explained by any local theory, i.e. a theory based on the assumption of
locality. In this section we clarify our definition of locality and prove Bell’s theorem.
The proof critically relies on the introduction of a Bell inequality [Bel04], that is an
inequality involving a linear combination of correlators which is satisfied by every
local theory but is violated by quantum mechanics.

In the literature one can find several versions of Bell’s theorem’s proof, leveraging
on different assumptions. Here, we mainly follow the proofs presented in [Val02;
Gol+11; Bru+14; HR19] that make use of the Clauser-Horne-Shimony-Holt (CHSH)
inequality [Cla+69], arguably the most popular Bell inequality.

Let us consider the following Bell experiment, depicted in figure 6.1. Two physical
systems, which could have interacted in the past, are now far apart and are indi-
vidually measured by two parties, Alice and Bob. No information is given on the
systems, which are thus treated as black boxes. Each box (system) is equipped with
two inputs corresponding to the measurement choices of the parties, and generates
a binary output upon selecting an input. Hence, the measurement process consists
in Alice (Bob) selecting an input x ∈ {0, 1} (y ∈ {0, 1}) on her (his) system and
collecting the output a ∈ {−1, 1} (b ∈ {−1, 1}). We assume that the measurement
processes of Alice and Bob are spacelike separated events.

By repeating the experiment several times, the parties can roughly estimate the
probability distribution p(a, b|x, y) governing the occurrence of the outcomes a and
b, given the inputs x and y. In general, the outcomes recorded by Alice and Bob
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Alice

time

Bob

space

Fig. 6.1.: In a bipartite Bell experiment, two unknown systems are given to Alice and Bob.
The systems might have interacted in the past, in the spacetime region where
their past light cones overlap. Alice (Bob) can only interact with her (his) system
by selecting an input x (y) and collecting an output a (b). The interactions of the
two parties with the respective systems are assumed to be spacelike separated
events.

may not be statistically independent, which means that the probability distribution
p(a, b|x, y) is not factorized:

p(a, b|x, y) 6= p(a|x, y)p(b|x, y). (6.1)

This fact could be caused by the previous interaction of the two systems and does
not necessarily imply any kind of direct influence of one system on the other. Let us
denote with λ the set of underlying (or hidden) variables that completely describe
the two systems under consideration. By fixing the value of λ, we fix the microstate
of the Bell experiment. Hence, λ can account for any dependence relation between
the two systems due to their previous interaction. Since the value of λ could vary
in different runs of the experiment, the probability distribution p(a, b|x, y) can be
expressed as:

p(a, b|x, y) =
∫
dλ p(a, b|x, y, λ)p(λ|x, y). (6.2)

We remark that so far we did make any assumption on the theory we employ
to describe the Bell experiment, indeed Eq. (6.2) is still completely general. We
now assume that any theory describing the experiment should satisfy the following
(apparently) natural conditions:
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1. (Bell-)locality: All the statistical correlations of the outputs a and b are fully
attributable to their past interaction and thus explainable with the knowledge
of λ. Formally we have that:

p(a, b|x, y, λ) = p(a|b, x, y, λ)p(b|x, y, λ)

= p(a|x, y, λ)p(b|x, y, λ), (6.3)

where the second equality represents the fact that, conditioned on the knowl-
edge of λ, the residual indeterminacy of a is local and not due to a lack of
knowledge of b.

2. Parameter independence: For each microstate λ, the probability of Alice (Bob)
obtaining outcome a (b) is independent of the input y (x) selected by Bob
(Alice):

p(a|x, y, λ) = p(a|x, λ)

p(b|x, y, λ) = p(b|y, λ). (6.4)

This assumption is justified by special relativity, according to which spacelike
separated measurements do not influence each other’s outcome probability
distribution.

3. Free will: The measurements inputs are uncorrelated from the underlying state
of the systems described by λ:

p(x, y, λ) = p(x, y)p(λ). (6.5)

In other words, Alice and Bob are free to choose their inputs independently of
the value of the hidden variables λ. By combining this assumption with the
previous one, we are basically assuming that spacelike separated parties cannot
communicate superluminally, which is the causality constraint of relativity.

By employing the assumptions (6.3), (6.4) and (6.5) in (6.2), we obtain the Bell
experiment description of a local hidden variable (LHV) model:

p(a, b|x, y) =
∫
dλ p(λ)p(a|x, λ)p(b|y, λ). (6.6)
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We will now show that the correlations predicted by quantum mechanics on certain
implementations of the Bell experiment cannot be expressed in the form (6.6). To
this aim, we define the correlator:

〈axby〉 =
∑

a,b=±1
ab p(a, b|x, y), (6.7)

as the expectation value of the product of Alice and Bob’s outcomes, given that they
selected inputs x and y. We then define the CHSH value [Cla+69]:

SCHSH = 〈a0b0〉+ 〈a0b1〉+ 〈a1b0〉 − 〈a1b1〉 (6.8)

and prove that if the probabilities p(a, b|x, y) are explainable in terms of a LHV
model (6.6), then the CHSH inequality holds:

SCHSH = 〈a0b0〉+ 〈a0b1〉+ 〈a1b0〉 − 〈a1b1〉 ≤ 2. (6.9)

We start by using (6.6) to express the correlators 〈axby〉 in (6.7) as a product of local
expectation values:

〈axby〉 =
∫
dλ p(λ) 〈ax〉λ 〈by〉λ (6.10)

where 〈ax〉λ =
∑
a a p(a|x, λ) and similarly for 〈by〉λ, with 〈ax〉λ , 〈by〉λ ∈ [−1, 1]

(recall that a, b ∈ {−1, 1}). By inserting (6.10) into (6.8) we can write that:

SCHSH =
∫
dλ p(λ)SλCHSH, (6.11)

where:

SλCHSH = 〈a0〉λ 〈b0〉λ + 〈a0〉λ 〈b1〉λ + 〈a1〉λ 〈b0〉λ − 〈a1〉λ 〈b1〉λ
= 〈a0〉λ (〈b0〉λ + 〈b1〉λ) + 〈a1〉λ (〈b0〉λ − 〈b1〉λ). (6.12)

Since every expectation value is in the range [−1, 1], the last expression can be upper
bounded by:

SλCHSH ≤ |〈b0〉λ + 〈b1〉λ|+ |〈b0〉λ − 〈b1〉λ| . (6.13)

Without loss of generality we can assume that: 〈b0〉λ ≥ 〈b1〉λ ≥ 0 (the other cases
lead to the same result), which substituted in the last expression yields:

SλCHSH ≤ 2 〈b0〉λ ≤ 2. (6.14)
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By employing (6.14) in (6.11), we prove the CHSH inequality in (6.9) for every
probability distribution that can be written in the form (6.6).

In order to complete the proof of Bell’s theorem, we demonstrate that quantum
theory predicts correlations violating the CHSH inequality (6.9) for a specific im-
plementation of the Bell experiment. This implies that they cannot be explained in
terms of an LHV model (6.6).

Suppose that Alice’s system and Bob’s system are qubits in the entangled (Bell)
state:

|Φ+〉 = 1√
2

(|00〉+ |11〉), (6.15)

whose corresponding density operator can be written in terms of the Pauli operators
X,Y and Z as follows [TG05; Hol+19]:

|Φ+〉〈Φ+ |= 1
4 (id⊗ id +X ⊗X + Z ⊗ Z − Y ⊗ Y ) . (6.16)

Notably, the last expression decomposes the projector on the state |Φ+〉 as a sum
over all the stabilizer operators of the state |Φ+〉. An operator O is a stabilizer of a
state |ψ〉 if O |ψ〉 = |ψ〉, i.e. if the state is an eigenstate of O with eigenvalue one.

In this setting, we describe Alice’s (Bob’s) measurement on her (his) qubit as a bi-
nary projective measurement represented by the observable Ax (By), corresponding
to input x (y). The generic form of Ax (By) is given by Ax = ~α(x) · ~σ (By = ~β(y) · ~σ),
where ~σ is the vector of Pauli operators: σ1 = X, σ2 = Y and σ3 = Z and where∥∥∥~α(x)

∥∥∥ =
∥∥∥~β(y)

∥∥∥ = 1.
Then, the correlators in the CHSH inequality (6.9) can be written as:

〈axby〉 = 〈Φ+|Ax ⊗By|Φ+〉 = Tr
[
|Φ+〉〈Φ+ |(Ax ⊗By)

]
= α

(x)
1 β

(y)
1 − α(x)

2 β
(y)
2 + α

(x)
3 β

(y)
3 , (6.17)

where we used the decomposition (6.16), the multiplication rule of Pauli operators
in (2.17) and the fact that the Pauli operators are traceless.

We aim at maximizing the CHSH value (6.8), expressed in terms of the measure-
ment directions ~α(x) and ~β(y) of Alice and Bob via (6.17):

SCHSH =α(0)
1 (β(0)

1 + β
(1)
1 )− α(0)

2 (β(0)
2 + β

(1)
2 ) + α

(0)
3 (β(0)

3 + β
(1)
3 )

α
(1)
1 (β(0)

1 − β(1)
1 )− α(1)

2 (β(0)
2 − β(1)

2 ) + α
(1)
3 (β(0)

3 − β(1)
3 ). (6.18)

The last expression is maximized if we choose, for instance,

~α(0) = (1, 0, 0) ~α(1) = (0, 0, 1)

~β(0) =
( 1√

2
, 0, 1√

2

)
~β(1) =

( 1√
2
, 0,− 1√

2

)
, (6.19)
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With these measurement settings the CHSH value (6.18) is given by:

SCHSH = 2
√

2 > 2, (6.20)

i.e. the CHSH inequality (6.9) is violated.
Note that the measurement settings in (6.19) correspond to Alice and Bob mea-

suring the observables:

A0 = X A1 = Z

B0 = X + Z√
2

B1 = X − Z√
2

, (6.21)

which substituted into the CHSH expression (6.8) and upon simplifications lead to:

SCHSH =
√

2 〈Φ+|X ⊗X|Φ+〉+
√

2 〈Φ+|Z ⊗ Z|Φ+〉 = 2
√

2. (6.22)

The last expression has the merit to show that it is optimal for the parties to choose
measurements such that the resulting CHSH expression (after being simplified)
is exclusively composed of correlators of stabilizers of the state |Φ+〉. This makes
sense, since by definition the correlator of a stabilizer evaluated on the stabilized
state achieves the maximum value of 1.

The CHSH violation predicted by quantum theory has profound consequences,
as it implies that one of the three assumptions (6.3), (6.4) and (6.5) that led to the
derivation of the CHSH inequality does not hold for quantum theory. The quantum
theory we consider in this thesis is the standard non-relativistic quantum theory,
which describes quantum systems and measurements in terms of tensor-product
Hilbert spaces and local Kraus operators acting on the corresponding Hilbert space.
These features, combined with the partial trace rule, ensure that the local statistics
of a system only depend on its reduced density operator. Therefore, no superluminal
communication is allowed between parties and in particular the conditions of
parameter independence (6.4) and of free will (6.5) are satisfied.

From the above argument, we conclude that quantum mechanics is a non-local
theory, i.e. it does not satisfy the locality assumption in (6.3), and its predictions
cannot be reproduced by any local theory. This concludes the proof of Bell’s theorem.

Another important consequence of Bell’s theorem are Bell inequalities. These can
seen as means to experimentally test if Nature behaves according to local theories or
not. The numerous experiments demonstrating the violation of Bell inequalities have
proved beyond reasonable doubt that Nature is non-local. In particular, we mention
the first successful results in this direction by Aspect et al [ADR82]. Recent and more
sophisticated experiments have confirmed the existence of non-local correlations in
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loophole-free Bell tests [Hen+15; Giu+15; Sha+15], i.e. conducted without making
any assumption that could lead to a description of the non-local correlation through
an LHV model.

6.2 Local, Quantum, No-signaling and Causal
Correlations
In this section we wish to clarify the relations existing between different types of
correlations, starting from what we have seen in the proof of Bell’s theorem.

First of all, we can derive the so called no-signaling constraints [Bru+14; HR19]
from the parameter-independence (6.4) and free-will (6.5) assumptions used in
Bell’s theorem:

p(a|x, y) =
∫
dλ p(a|x, y, λ)p(λ|x, y)

(6.5)=
∫
dλ p(a|x, y, λ)p(λ)

(6.4)=
∫
dλ p(a|x, λ)p(λ)

= p(a|x), (6.23)

and similarly one gets
p(b|x, y) = p(b|y). (6.24)

Note that another way to write the no-signaling constraint in (6.23) is
∑
b p(a, b|x, y) =∑

b p(a, b|x, y′) for every a, x, y and y′. The no-signaling constraints state that the
probability distribution of the outcomes of one party is independent of the inputs of
the other party.

The justification of the no-signaling constraints for spacelike separated parties
comes from the causality constraint of special relativity, according to which one party
cannot communicate with another party by sending a superluminal signal, i.e. a
signal that travels faster than the speed of light. Indeed, the constraints on the
probability distributions of a two-party Bell scenario imposed by causality coincide
with (6.23) and (6.24).

The no-signaling constraints are generalized as follows in an N -party Bell scenario
[MAG06]:

∑
aj

p(a1, . . . , aj , . . . , aN |x1, . . . , xj , . . . , xN )

=
∑
aj

p(a1, . . . , aj , . . . , aN |x1, . . . , x
′
j , . . . , xN ) (6.25)

∀ j ∈ {1, . . . , N}, {a1, . . . , aN} \ {aj}, {x1, . . . , xj , x
′
j , . . . , xN},
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stating that the probability distribution of the outcomes of any subset of parties
is independent of the inputs of the complementary set of parties. Note that the
constraints in (6.25) explicitly express this statement only for subsets of one party
each, but the general statement can be deduced from (6.25) [HR19].

Interestingly, the multiparty no-signaling constraints (6.25) do not precisely cap-
ture the causality constraints for certain configurations of parties in the Minkowski
spacetime (when N ≥ 3). In other words, one can arrange the parties in space-
time such that the constraints on their probability distributions purely derived from
causality are a strict subset of the no-signaling constraints in (6.25) [HR19]. By
labelling NS the set of all possible correlations obeying the no-signaling constraints
(6.25) and analogously R the set of correlations obeying the causality constraints
of relativity, we have that: NS ⊂ R. We remark that this situation occurs only
when the Bell scenario is composed of N ≥ 3 parties, while for N = 2 we have that
NS ≡ R as stated above.

Considering again the bipartite Bell scenario, the set Q of quantum correlations is
defined by those probability distributions that can be expressed as:

p(a, b|x, y) = Tr
[
ρABMa|x ⊗Mb|y

]
, (6.26)

where ρAB is a quantum state on the joint Hilbert space HA ⊗HB and Ma|x,Mb|y

are POVM elements (c.f. section 2.2) relative to outcomes a, b given the inputs x, y.
Finally, the set L of local correlations is characterized by probability distributions

that can be expressed in terms of an LHV model (6.6).
It is proved that every local correlation is also a quantum correlation, and that

every quantum correlation satisfies the no-signaling constraints, as anticipated
[Bru+14]. However, with the violation of the CHSH inequality (6.9), we have seen
that there are quantum correlations outside the set of local correlations. Moreover,
there are no-signaling correlations which are not quantum correlations. For instance,
there are no-signaling correlations whose CHSH value SCHSH achieves the algebraic
bound of the expression: SCHSH = 4. Conversely, it is shown [Bru+14] that any
quantum correlation leads to a CHSH value upper bounded by 2

√
2, which is called

the Tsirelson bound.
Due to these observations, the following strict inclusions hold: L ⊂ Q ⊂ NS.

6.3 From Bell Violation to Security
Whenever a set of probability distributions, e.g. p(a, b|x, y) in the bipartite Bell
scenario, violates a Bell inequality, we talk about Bell violation and we call the
correlations generated by such distributions non-local. In this section we clarify
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the connection between Bell violation and the security of device-independent (DI)
quantum cryptographic protocols.

The security of DI protocols, such as DIQKD and DIRG, is guaranteed irrespective
of the trustworthiness of the devices used in their implementation. In a DI protocol,
each party holds a device modelled as black box producing an output upon receiving
an input from the party. By repeating this operation for several rounds, the parties
collect a series of outcomes, each related to the input that generated it.

A fraction of the collected outputs forms the secret key shared by the parties in
DIQKD and DICKA protocols, or the secret random bitstring in DIRG protocols. The
remaining outputs are used to test a Bell inequality with a Bell experiment like the
one described in section 6.1.

Performing a Bell test during the execution of a device-independent (DI) protocol
is crucial to ensure its security. Indeed, upon observing a Bell violation, the parties
can certify that the random outcomes collected during the execution of the protocol
are (at least partially) secret, i.e. unknown to a potential eavesdropper (Eve). What
is the link between Bell violation and the privacy of the parties’ outcomes?

Firstly, observing a Bell violation rules out the possibility that the outcomes
collected by the parties have been generated by an LHV strategy (6.6). In particular,
this excludes the possibility that the outcomes have been predetermined by Eve
by setting up the systems such that the probabilities p(a|x, λ) and p(b|y, λ) are
deterministic functions of x, y and λ: p(a|x, λ), p(b|y, λ) ∈ {0, 1}. This ensures that,
even if the parties’ systems were fabricated by Eve, she could not have predicted all
the outcomes observed by the parties during the Bell experiment. This is a good
starting point to have a secret string of random bits.

As we discussed in Bell’s theorem proof (c.f. section 6.1), quantum theory allows
for correlations violating a Bell inequality. Specifically, a Bell violation occurs
only when the parties share a quantum entangled state and their measurements
are described by non-commuting observables (e.g. [A0, A1] 6= 0) [Bru+14]. One
can thus interpret Bell inequalities –and violation thereof– as device-independent
entanglement witnesses [Pir+09].

An important property of entanglement, called monogamy of entanglement [CKW00;
BKP06], states that if the quantum systems of two parties, say Alice and Bob, are
strongly entangled, then a third quantum system shares little entanglement with
them. Thanks to this property, upon observing a Bell violation, Alice and Bob are
sure that Eve was poorly entangled with their systems and thus has little information
on their outcomes. Hence the secrecy of the parties’ outcomes is granted. Notably,
the monogamy of correlations is not specific to quantum theory, rather it is present
in any no-signaling theory leading to non-local correlations [Bru+14].
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6.3.1 DIQKD Security under Coherent Attacks

Let us now formalize the intuition provided above on the security of DI protocols.
Here we focus on DIQKD protocols, but analogous considerations hold for DICKA
and DIRG protocols.

The Bell violation estimated by the parties while running a DIQKD protocol only
describes, on average, the amount of non-locality characterizing one protocol round,
and in particular a round devoted to the generation of the secret key. This is enough
to make a security statement for one round of the protocol. In particular, given
the observed Bell violation, one can bound the conditional von Neumann entropy
H(RA|E) of Alice’s raw key bit RA given Eve’s side information E, which we already
encountered when computing the secret key rates of QKD protocols (c.f. chapter 3).
The quantitative tradeoff between Bell violation and conditional entropy is illustrated
in section 6.5 for the simplest DIQKD protocol.

However, the validity of the security statement for one round cannot be directly
extended to the whole DI protocol and to all its outputs. The reason is that we
consider the most general scenario where Eve performs coherent attacks, meaning
that she can act differently in the various rounds and so can the devices. In fact, the
security of DIQKD follows the same definitions and results reported in section 3.3
for the security of general QKD schemes, where the main quantity to be estimated is
the smooth min-entropy Hε

min(RnA|E) of Alice’s bits RnA given the side information
available to Eve (see (3.27)). Here, Eve’s side information includes her quantum
system correlated with the initial state distributed to the parties’ devices, but also the
additional side information generated by the untrusted devices during the process.

In standard QKD2, we have discussed the existence of methods –such as the
postselection technique (PST)– which reduce the security proof against coherent
attacks to one against collective attacks, i.e. when the behaviour of the devices and
the state distributed by Eve is the same in every round (c.f. subsection 3.3.3). In
this case, one can focus on proving the security of one protocol round by using the
AEP (c.f. (2.62)), which links the min-entropy of an i.i.d. state to the von Neumann
entropy of one of its copies.

However, the methods used in standard QKD are not applicable to DIQKD. Recall,
for instance, that the PST requires the knowledge of the Hilbert space dimension of
the parties’ systems, which is clearly not known in DIQKD.

Nevertheless, an important result named entropy accumulation theorem (EAT)
[DFR16; Arn+18; DF19] allows us to link the security of the whole DIQKD scheme
to the security of one round and can be seen as a generalization of the AEP valid
for non-i.i.d. rounds. In particular, the protocol rounds considered by EAT are such

2In this context, standard QKD refers to non-DI QKD.
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that the key bit R(i)
A generated in the i-th round can also depend on what happened

in all the previous rounds, but not on the future rounds, which is a meaningful
assumption in sequential DIQKD protocols. According to EAT, the amount of entropy
accumulated during the described sequential processes, i.e. the smooth min-entropy
Hε

min(RnA|E), is at least n times the conditional von Neumann entropy of one round
H(RA|E) evaluated over the observed Bell violation (up to correction factors of
order

√
n).

Therefore, our discussion will now focus on quantitatively connecting the condi-
tional von Neumann entropy of one protocol round with the Bell violation observed
in the Bell test. In the next two sections we explore this relationship in the context
of the simplest example of a DIQKD protocol.

Finally, we remark that these considerations similarly hold for DIRG protocols,
where a secret random biststring is extracted from the collected outcomes of one
party or more parties, who can be co-located –e.g. located in the same laboratory.

6.4 Device-independent QKD
In this section we summarize the assumptions that still hold in any bipartite DI
protocol (the generalization to more parties is straightforward). We then illustrate
the most common DIQKD protocol, which is based on the violation of the CHSH
inequality [Cla+69]. In the next section we prove the protocol’s security by deriving
a lower bound on the conditional von Neumann entropy of one round as a function
of the observed CHSH violation.

6.4.1 Assumptions

Despite the fact that in a DI scenario no assumption is made on the quantum state
shared by the parties, nor on its dimension and measurement, there are still some
unavoidable assumptions in place [Mur+19]. Here we list them:

1. Isolated laboratories: No information flows in or out Alice’s and Bob’s labs
except for what is established by the protocol, i.e. the state distribution in
each round and the public classical communication between Alice and Bob.

2. Isolated source: The preparation of the states is independent of the measure-
ments performed on them.

3. Trusted classical post-processing: The classical communication is performed
over a public authenticated channel and the data is processed with trusted
computers.
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4. Trusted random number generators: Alice and Bob independently possess a
trusted random number generator whose outcomes are only known to the
owner.

Note that the complete removal of any of the above assumptions would lead to a
strategy where the key is leaked to Eve [Mur+19].

6.4.2 DIQKD Based on the CHSH Inequality
Consider the following DIQKD protocol whose security is based on testing the CHSH
inequality [Pir+09; Arn+18]. Alice holds an uncharacterized device with two inputs
x ∈ {0, 1} and two outputs for each input: ax ∈ {−1, 1}. Ideally, upon receiving
an input, the device performs a measurement on Alice’s portion of an entangled
state that she shares with Bob and provides the outcome of the measurement. We
emphasize, however, that we do not specify the implementation when proving the
protocol’s security. Similarly, Bob holds a device with three inputs y ∈ {0, 1, 2} and
two outputs per input by ∈ {−1, 1}.

Before initiating the protocol, Alice and Bob agree on a set of parameters: the
total number of rounds M , the probability pt ∈ (0, 1) with which they perform a
test round, the expected CHSH value Sexp ∈ (2, 2

√
2] and its tolerated statistical

fluctuation δ ∈ (0, 2
√

2− 2).
The protocol comprises the following steps3 [Pir+19]:

1. Alice and Bob perform a test round with probability pt or a key-generation
(KG) round with probability 1−pt. The information on which round to perform
can be provided to them by a short preshared key (c.f. Remark 5.2). The total
number of rounds is M .

2. In a test round Alice (Bob) randomly selects an input x ∈ {0, 1} (y ∈ {0, 1})
on her (his) device and collects the output ax (by), i.e. the parties test the
CHSH inequality. In a KG round, Alice (Bob) selects the predefined input x = 1
(y = 2) and records the output –her (his) raw key bit– in the random variable
RA (RB).

3. In parameter estimation (PE) the parties reveal the inputs and outputs of every
test round to compute the observed CHSH value S:

S = 〈a0b0〉+ 〈a0b1〉+ 〈a1b0〉 − 〈a1b1〉 . (6.27)

3We remark that there exist more sophisticated versions of the same scheme with an improved
secret key rate [Arn+18]. However, since we are not interested in investigating the protocol’s
performance, we consider this simplified version.
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If S < Sexp − δ, the protocol aborts. The parties additionally reveal a fraction
of the KG outcomes to estimate the QBER EAB:

EAB = Pr[RA 6= RB] (6.28)

4. The parties perform one-way error correction (EC): Alice discloses some in-
formation on her raw key by communicating it to Bob via the classical public
channel. With the information received from Alice, Bob computes a guess of
her raw key. If the EC scheme fails, the protocol aborts.

5. The parties distil two secret keys from their error-corrected raw keys by
applying a privacy amplification (PA) procedure.

In an ideal implementation of the above scheme, the CHSH inequality is maxi-
mally violated, implying that Eve has no information on the generated secret key
(section 6.5). In order for this to happen, the parties can e.g. share the pure Bell
state |Φ+〉 (6.15) in each round of the protocol. The measurements of Alice and Bob
in the test rounds are given by (6.21) and are the same used to maximally violate
the CHSH inequality in the example of section 6.1.

In the DIQKD protocol, Bob has an additional setting y = 2 that is only used
for KG. In order for Bob to have his raw key bits RB perfectly correlated with
Alice’s, he must measure the same observable B2 = Z that Alice measures in a
KG round. Indeed, in a KG round Alice measures A1 = Z (according to (6.21))
and the outcomes of two local Z measurements on the Bell state |Φ+〉 are perfectly
correlated.

As explained in the previous section, thanks to EAT the security proof of the
described DIQKD protocol in the finite-key scenario is reduced to the computation
of the conditional von Neumann entropy H(RA|E), relative to one protocol round,
as a function of the observed CHSH violation S. Note that, since without violation
(S ≤ 2) the estimation of the entropy H(RA|E) would be H(RA|E) = 0 (see
section 6.5), from now one we refer to S as the CHSH violation rather than the
CHSH value.

We point out that the security of the protocol is composable in the sense of the
definition given in section 3.3. However this is true only as far as the devices are not
reused in another run of the protocol [Pir+19; Mur+19].

In the asymptotic limit (M → ∞) the finite-key effects become negligible and
the asymptotic secret key rate constitutes an upper bound on the secret key rate
achieved with finite resources [ARV19]. The asymptotic secret key rate of the
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described DIQKD protocol coincides with the one of standard QKD protocols (3.9)
and reads:

r = H(RA|E)−H(RA|RB). (6.29)

The second term in (6.29) is due to the classical information leaked during EC
and can be estimated analogously to standard QKD in terms of the QBER EAB

(see (3.25)). However, differently from standard QKD schemes, here the entropy
H(RA|E) is estimated device-independently as a function of the observed CHSH
violation. This is the content of the next section.

In a similar fashion, the asymptotic rate of secret bits generated by a DIRG protocol
reads:

r = H(RA|E), (6.30)

where the term due to EC is removed since the only goal is to produce a secret
random bitstring in one specific location.

6.5 Conditional Entropy Bound
We derive a tight analytical lower bound on the conditional von Neumann entropy
H(RA|E), relative to the DIQKD protocol of section 6.4, for a given CHSH violation
S. This result yields a lower bound on the protocol’s secret key rate both in the
finite-key and asymptotic regimes.

The analytical lower bound on H(RA|E) was first derived in [Pir+09]. This
fundamental result allows for analytical expressions of the secret key rates (secret
randomness generation rates) of all the DIQKD (DIRG) protocols based on the CHSH
inequality or reducible to a CHSH violation (e.g. the DICKA protocol in [RMW19]).
Indeed, there is no analytical DIQKD key rate which does not rely on the bound
derived in [Pir+09].

There are other ways to lower bound H(RA|E) in terms of the violation of a
given Bell inequality, which are employed when a tight analytical lower bound is
not available. A common procedure is to numerically compute the min-entropy
Hmin(RA|E) [NPA07; NPA08; NPS14; BSS14] and use the fact that the min-entropy
is a lower bound of the von Neumann entropy (see Eq. 2.56). However the bounds
derived in this way are fairly loose, leading to poorly-performing DIQKD schemes.

The critical result derived in [Pir+09] is the reduction of the state shared by
Alice and Bob in one round of the protocol to a two-qubit state which is diagonal
in the Bell basis (3.15). Note that this result is derived assuming i.i.d. rounds in
the DIQKD protocol above, i.e. Eve performs collective attacks. Nevertheless, as we
discussed, the result can be applied to proving the protocol’s security in the most
general scenario thanks to EAT.
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Theorem 6.1 ([Pir+09]). Let Alice and Bob perform the DIQKD protocol described in
subsection 6.4.2. It is not restrictive to assume that, in each round, Eve distributes a
mixture

∑
α pαρα of two-qubit states ρα, together with a flag |α〉 (known to her) which

determines the measurements performed on ρα given the parties’ inputs. Without loss of
generality, the measurements performed by Alice’s and Bob’s devices on ρα are rank-one
binary projective measurements in the (x, y)-plane of the Bloch sphere. Moreover, each
state ρα is diagonal in the Bell basis (3.15) and reads:

ρα =
1∑

i,j=0
λαij |ψij〉〈ψij | with λα0j ≥ λα1j ∀ j ∈ {0, 1}. (6.31)

The proof of Theorem 6.1 is given in appendix A.3 and is rearranged in order to
coherently fit with the more general result we prove in [Gra+20] (appendix H).

The second crucial ingredient to derive the bound on H(RA|E) is the analytical
expression of the maximal CHSH violation Sρ that can achieved on a given two-qubit
state ρ. In other words, there exist measurements performed by Alice and Bob on
ρ such that the observed CHSH violation is S = Sρ, and any other measurement
setting leads to violations S ≤ Sρ. This is a well-known result derived in [HHH95].

Theorem 6.2 ([HHH95]). The maximum violation Sρ of the CHSH inequality (6.27),
attained by a two-qubit state ρ, is given by:

Sρ = 2
√
t0 + t1 (6.32)

where t0 and t1 are the largest and second-to-the-largest eigenvalues of the matrix
TρT

T
ρ , where Tρ is the correlation matrix of ρ, with elements: [Tρ]ij = Tr[ρ(σi ⊗ σj)]

for i, j = 1, 2, 3 (σi are the Pauli matrices).

For the state ρα in (6.31), the maximal CHSH violation reads:

Sα = 2
√

2 max
{√

(λα00 − λα11)2 + (λα01 − λα10)2,
√

(λα00 − λα10)2 + (λα01 − λα11)2
}
.

(6.33)

We are now ready to derive the lower bound on the conditional entropy H(RA|E)
in terms of the observed CHSH violation S. The derivation provided in this thesis,
although based on the same concepts used in [Pir+09], presents further details in
order to better guide the reader in the various steps. Moreover, the last step of the
proof leading to the final result substantially differs from [Pir+09] as it employs a
completely different approach.

To start with, Theorem 6.1 says that we can restrict the computation of the
conditional entropy of interest over a mixture of states ρα of the form (6.31). We
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emphasize that the total information available to Eve includes the knowledge of the
value α stored in a random variable Ξ, therefore we must compute the conditional
entropy H(RA|Etot), where Etot = EΞ.

More specifically, the aim is to derive a tight lower bound F (S) of H(RA|Etot)
where F is a function of the observed CHSH violation S. The bound is tight if for
every violation S there exist a quantum state and a set of measurements that achieve
that violation and whose conditional entropy is exactly given by F (S).

By the argument above4, we can be express the conditional entropy H(RA|Etot)
as follows:

H(RA|Etot) =
∑
α

pαH(RA|EΞ = α)

=
∑
α

pαH(RA|E)ρα , (6.34)

where H(RA|E)ρα is the conditional entropy of Alice’s raw key bit given that Eve
distributed the state ρα. Similarly, the observed violation S can be written as:

S =
∑
α

pαSα, (6.35)

where Sα is the violation that the parties would observe if they were given the state
ρα in each round.

We can then focus on deriving a tight lower bound on H(X|E)ρα:

H(RA|E)ρα ≥ F (Sα), (6.36)

where F is a convex function of the violation Sα. Note that the tightness of the
bound (6.36) is crucial to obtain a tight bound onH(RA|Etot). Indeed, by combining
(6.34), (6.35), (6.36) and the convexity of F , we get the desired lower bound on
H(RA|Etot) as a function of the observed violation S:

H(RA|Etot) ≥ F (S). (6.37)

Remark 6.1. The task is thus reduced to minimizing the conditional entropyH(RA|E)ρα
over all the states ρα of the form (6.31) (Theorem 6.1), whose CHSH violation Sα is
upper bounded by (6.33) (Theorem 6.2). In doing so we obtain (6.36).

We start by providing Eve with the maximum amount of side information (as
in every QKD protocol) by assuming that the state on HA ⊗HB ⊗HE is pure, i.e.

4As a matter of fact, the quantum state on which H(RA|Etot) is computed is a c.q. state derived from
(A.22), which is given in the proof of Theorem 6.1. Recall the formula to compute the conditional
entropy of c.q. states: (2.49).
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Eve holds the purifying system of ρα. Considering that ρα is written in its spectral
decomposition in (6.31), we have the following pure state on HA ⊗HB ⊗HE:

|φαABE〉 =
1∑

i,j=0

√
λαij |ψij〉 ⊗ |eij〉 , (6.38)

where {|eij〉}1i,j=0 is an orthonormal basis in HE .
We then decompose the entropy H(RA|E)ρα according to the definition of condi-

tional von Neumann entropy:

H(RA|E)ρα = H(E|RA)ρα +H(RA)ρα −H(E)ρα . (6.39)

Due to the fact that the state on HA ⊗HB ⊗HE is pure, we can directly compute
H(E)ρα as follows:

H(E)ρα = H(AB)ρα = H({λαij}), (6.40)

where the entropy on the r.h.s. is the Shannon entropy of the probability distribution
defined by the eigenvalues λαij of ρα. Indeed, the eigenvalues of a density operator
sum to one and are non-negative, due to the normalization and positivity of the
density operator.

Note that the entropies in (6.39) are computed on the quantum state ραRAE
obtained by applying Alice’s projective measurement corresponding to input x = 1
(the input for KG) on the pure state |φαABE〉 and by tracing out Bob’s system.
According to Theorem 6.1, Alice’s measurement is described by a quantum operation
ERA which projects on the eigenstates {|a〉}1a=0 of a generic observable in the (x, y)-
plane: A = cos(ϕ)X + sin(ϕ)Y , with ϕ ∈ [0, 2π]. The eigenstates of A are given by:

|a〉RA = 1√
2

(|0〉+ (−1)aeiϕ |1〉), (6.41)

and the corresponding measurement outcomes are defined as a = 0, 1 (a = 0
corresponds to eigenvalue +1 and a = 1 to eigenvalue −1). The state ραRAE thus
reads:

ραRAE = (ERA ⊗ idE) TrB [|φαABE〉〈φαABE |]
(6.38)=

∑
a=0,1

|a〉〈a|RA⊗
∑

i,j,k,l=0,1

√
λαijλ

α
kl TrB[〈a|ψij〉 〈ψkl|a〉]|eij〉〈ekl |E

=: 1
2
∑
a=0,1

|a〉〈a|RA⊗ρ
α,a
E , (6.42)

where we defined the normalized conditional state of Eve ρα,aE , given that Alice’s
raw key bit is equal to a.
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The matrix representing ρα,aE in the orthonormal basis |eij〉 is given by the following
Hermitian matrix5:

ρα,aE =


λα00 0 (−1)a

√
λα00λ

α
01 cosϕ (−1)a+1√λα00λ

α
11i sinϕ

λα10 (−1)a
√
λα10λ

α
01i sinϕ (−1)a+1√λα10λ

α
11 cosϕ

λα01 0
λα11

 , (6.43)

with non-zero eigenvalues that are independent of a and given by:

η±(ϕ) = 1
2

[
1±

√
(λα00 − λα10)2 + (λα01 − λα11)2 + 2(λα00 − λα10)(λα01 − λα11) cos(2ϕ)

]
.

(6.44)

From (6.42), one immediately deduces that the reduced state on HRA is: ρRA =
(1/2)

∑
a=0,1|a〉〈a|, hence its entropy is maximal:

H(RA)ρα = 1. (6.45)

Moreover, by exploiting the fact that the state ραRAE in (6.42) is a c.q. state, we can
recast the expression for the entropy H(E|RA)ρα as follows (c.f. (2.49)):

H(E|RA)ρα = 1
2
(
H(ρα,0E ) +H(ρα,1E )

)
. (6.46)

Now, the von Neumann entropy of the states ρα,aE (for a = 0, 1) is simply given by
the Shannon entropy of their eigenvalues (6.44). The entropy H(E|RA)ρα is thus
given by:

H(E|RA)ρα = h(η+(ϕ)), (6.47)

where we used the definition of binary entropy (2.43) and the fact that the eigen-
values of a quantum state sum to one.

Note that the entropy in (6.47) depends on the angle ϕ which determines the
direction of Alice’s KG measurement in the (x, y)-plane of the Bloch sphere. Since
in a DI scenario we do not have any information on the measurement direction,
we have to consider the worst-case scenario, i.e. the direction that minimizes Eve’s
uncertainty represented by H(E|RA)ρα . The function in (6.47) is clearly minimized
for ϕ = 0 and simplifies to:

H(E|RA)ρα = h(λα00 + λα01), (6.48)

5The missing entries are fixed by the fact that the matrix is Hermitian.
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By substituting the results (6.40), (6.45) and (6.48) into (6.39), we can express
the entropy H(RA|E)ρα to be minimized as follows:

H(RA|E)ρα = 1−H({λαij}) + h(λα00 + λα01). (6.49)

We can now formulate the optimization problem (stated in Remark 6.1) whose
solution is the lower bound on H(RA|E)ρα (6.36). The optimization problem reads
as follows:

F (Sα) := min
{λαij}

1−H({λαij}) + h(λα00 + λα01)

sub. to Sα ≥ Sα ; λα0j ≥ λα1j ;
∑

i,j=0,1
λαij = 1, (6.50)

and its detailed solution is given in appendix A.4. We remark that our solution is
based on a completely different approach with respect to the original derivation
in [Pir+09]. Indeed, our derivation is inspired by similar proofs contained in our
recent work [Gra+20] where we extend the results of this section to multiparty
scenarios. For this, the analytical solution of the optimization in (6.50) provided in
appendix A.4 can be regarded as a new result exclusive to this thesis.

The solution of the above optimization is given by:

F (Sα) = 1− h

1
2 + 1

2

√(
Sα
2

)2
− 1

 , (6.51)

which is a convex function as required by (6.37). Hence, by employing (6.51) in
(6.37), we finally obtain the lower bound on the conditional von Neumann entropy
of Alice’s raw key bit as a function of the observed CHSH violation S:

H(RA|Etot) ≥ 1− h

1
2 + 1

2

√(
S

2

)2
− 1

 . (6.52)

By employing the derived bound e.g. in the asymptotic secret key rate (6.29) of
the described DIQKD protocol, one can obtain a lower bound on the achievable key
rate in terms of the observed CHSH violation S. We stress the fact that the bound in
(6.52) plays a crucial role in obtaining an analytical expression for the secret key
rate of any DIQKD protocol based on the CHSH inequality.
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6.5.1 Privacy Certification in Standard- and DI-QKD

The conditional entropy bound in (6.52) can be seen as a quantitative certification
of the privacy of Alice’s key bit, in the context of a DIQKD protocol based on the
CHSH inequality. It is interesting to compare this result with the analogous privacy
certification (conditional entropy bound) used in a standard QKD protocol, namely
the BB84 protocol studied in section 3.2.

BB84 protocol

DIQKD protocol

CHSH violation
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Fig. 6.2.: Conditional von Neumann entropy H(RA|E) certified by a CHSH-based DIQKD
protocol (green line, Eq. 6.54) and by a BB84 protocol (blue line, Eq. 6.55), as a
function of the mixing parameter q of the depolarized Bell state (6.53) shared by
Alice and Bob. We observe that, opposed to the BB84 protocol, the conditional
entropy of the DIQKD protocol is non-zero only when the parties share a state
that leads to a CHSH violation.

In order to carry out a fair comparison, we set equal grounds for the DIQKD
protocol and the BB84 protocol. In particular, we have seen that the ideal resource
state distributed in each round to Alice and Bob is the Bell state |Φ+〉 for both
protocols (see (6.15) and (3.7)). In a more realistic scenario, the pure state |Φ+〉
undergoes a depolarizing channel (c.f. subsection 2.5.1) generating the following
mixed state:

ρAB = q|Φ+〉〈Φ+ |+(1− q) idA ⊗ idB
4 . (6.53)

We thus assume that in both protocols the state in (6.53) is distributed to Alice and
Bob in every round. Then, in the DIQKD protocol the observed Bell violation reads
S = 2

√
2q when the parties perform the measurements given in (6.21) which are

optimal6 for the Bell state |Φ+〉.

6Note that the maximally mixed state in (6.53) does not contribute to the violation S.
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This leads to the following conditional entropy bound (6.52) for the DIQKD
protocol:

H(RA|E)DIQKD = 1− h
(1

2 + 1
2

√
2q2 − 1

)
. (6.54)

In the entanglement-based BB84 protocol described in section 3.2, Alice and Bob
perform measurements in the Z basis for key generation and in the X basis to
estimate Eve’s knowledge. The QBER in the X basis, given that they share the state
in (6.53), reads: EX = (1 − q)/2. This leads to the following conditional entropy
bound (3.24) for the BB84 protocol:

H(RA|E)BB84 = 1− h
(1− q

2

)
. (6.55)

We emphasize that DIQKD removes most of the assumptions on the measurement
devices that typically hold in a BB84 protocol, where the additional assumptions
need to be verified experimentally. However, the price to pay is a reduced capability
of certifying the privacy of Alice’s bit compared to the BB84 protocol, given that the
parties share the same quantum state.

This is clear from figure 6.2, where we plot the conditional entropy bound of
the DIQKD protocol (6.54) and of the BB84 protocol (6.55) as a function of the
mixing parameter q of the depolarizing channel. Indeed, in the BB84 protocol Eve’s
uncertainty on Alice’s bit is non-zero as soon as a fraction of the shared state is
an entangled state. Conversely, in the DIQKD protocol Eve’s uncertainty is only
certified in the presence of a CHSH violation, which requires a much larger fraction
of entanglement in the shared state (q > 1/

√
2).

6.6 Entropy Bounds for Multipartite Device-independent
Cryptography

As anticipated in the previous section, we recently generalized Theorems 6.1 and
6.2 to multiparty DI scenarios [Gra+20] (also in appendix H). Our results allow for
the derivation of analytical bounds on conditional entropies of interest for DIRG and
DICKA protocols.

Consider a DI scenario with N parties that are denoted Alice1, . . . , AliceN for
simplicity. In performing a DI protocol, the parties test a generic full-correlator Bell
inequality [Bel04; WW01] with two dichotomic observables A(i)

x (x = 0, 1) per party
(i = 1, . . . , N). We call this an (N, 2, 2) Bell scenario. A full-correlator Bell inequality
is an inequality whose correlators always involve every party, i.e. they are of the
form: 〈

A(1)
x1 · · ·A

(N)
xN

〉
. (6.56)
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From the observed Bell violation, the parties can certify the privacy of their
outcomes by computing an appropriate conditional von Neumann entropy and thus
determine the asymptotic rate of secret random bits generated by their DIRG or
DICKA protocol.

In order to illustrate the generalized state reduction valid for an arbitrary (N, 2, 2)
Bell scenario, we first define the generalization of the Bell basis (3.15) in an N -qubit
space [Epp+17].

Definition 6.1. The GHZ basis is composed of the following 2N states:

|ψσ,~u〉 = 1√
2

(
|0〉 |~u〉+ (−1)σ |1〉 |~̄u〉

)
, (6.57)

where σ ∈ {0, 1} while ~u ∈ {0, 1}N−1 and ~̄u = ~1⊕ ~u are (N − 1)-bit strings.

We can now state our generalization of Theorem 6.1 to an (N, 2, 2) Bell scenario.

Theorem 6.3 ([Gra+20]). Consider N parties testing an (N, 2, 2) full-correlator
Bell inequality. It is not restrictive to assume that, in each round, Eve distributes a
mixture

∑
α pαρα of N -qubit states ρα, together with a flag |α〉 (known to her) which

determines the measurements performed on ρα given the parties’ inputs. Without loss
of generality, the measurements performed by each device on ρα are rank-one binary
projective measurements in the (x, y)-plane of the Bloch sphere. Moreover, each state
ρα is diagonal in the GHZ basis, except for some purely imaginary off-diagonal terms:

ρα =
∑

~u∈{0,1}N−1

λα0~u|ψ0,~u〉〈ψ0,~u |+λα1~u|ψ1,~u〉〈ψ1,~u |+isα~u
(
|ψ0,~u〉〈ψ1,~u |−|ψ1,~u〉〈ψ0,~u |

)
.

(6.58)

Finally, N arbitrary off-diagonal terms sα~u can be assumed to be zero. Independently, N
pairs of the form (λα0~u, λα1~u) can be arbitrarily ordered (e.g. λα0~u ≥ λα1~u).

We remark that Theorem 6.3 reduces to Theorem 6.1 when one considers the
CHSH Bell scenario (N = 2).

The second main tool to derive conditional entropy bounds is an analytical ex-
pression for the maximal violation of the considered Bell inequality achievable by
a given state (e.g. Theorem 6.2 in section 6.5). In [Gra+20] we derive such a
result for a specific (N, 2, 2) full-correlator inequality, namely the Mermin-Ardehali-
Belinskii-Klyshko (MABK) inequality [Mer90; Ard92; BK93]. The MABK inequality is
a multiparty generalization of the CHSH inequality and is obtained on the following
MABK operator.
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Definition 6.2. The MABK operator MN is defined by recursion [Col+02; RMW18]:

M2 = GCHSH(A(1)
0 , A

(1)
1 , A

(2)
0 , A

(2)
1 )

≡ A(1)
0 ⊗A

(2)
0 +A

(1)
0 ⊗A

(2)
1 +A

(1)
1 ⊗A

(2)
0 −A

(1)
1 ⊗A

(2)
1

MN = 1
2GCHSH(MN−1,MN−1, A

(N)
0 , A

(N)
1 ), (6.59)

where A(i)
x (i = 0, 1) is the x-th binary observable of Alicei and where Ml is the operator

obtained from Ml by replacing every observable A(i)
x with A(i)

1−x.

Then the N -partite MABK inequality reads as follows:

〈MN 〉 = Tr[MNρ] ≤


2, classical bound

2N/2, GME threshold

2(N+1)/2 quantum bound

(6.60)

where MN is the MABK operator and a violation of the GME threshold implies that
the parties share a genuine multipartite entangled (GME) state (c.f. Definition 2.4).

We now present the upper bound on the maximal N -partite MABK violation
derived in [Gra+20]. This result can be seen as a generalization of Theorem 6.2
since the latter is recovered for N = 2.

Theorem 6.4 ([Gra+20]). The maximum violation Mρ of the N -partite MABK
inequality (6.60), attained by rank-one projective measurements on a given N -qubit
state ρ, satisfies

Mρ ≤ 2
√
t0 + t1 (6.61)

where t0 and t1 are the largest and second-to-the-largest eigenvalues of the matrix
TρT

T
ρ , where Tρ is the correlation matrix of ρ.

The correlation matrix of an N -qubit state can be defined as follows.

Definition 6.3. The correlation matrix Tρ of an N -qubit state ρ is defined by the
matrix elements [Tρ]ij = Tr[ρσν1 ⊗ . . .⊗ σνN ] such that:

i = 1 +
dN/2e∑
k=1

3dN/2e−k(νk − 1)

j = 1 +
N∑

k=dN/2e+1
3N−k(νk − 1) (6.62)

where ν1, . . . , νN ∈ {1, 2, 3}, σ1 = X, σ2 = Y and σ3 = Z are the Pauli matrices and
dxe returns the smallest integer greater or equal to x.
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We remark that the upper bound on the maximal MABK violation in Theorem 6.4
is only tight on certain classes of states, differently from its bipartite counterpart,
Theorem 6.2. Nevertheless, it still enables us to derive tight conditional entropy
bounds, as we discuss below. Opposed to Theorem 6.2, Theorem 6.4 also restricts
the measurements on each qubit to rank-one projective measurements (defined
by combinations of Pauli operators) in agreement with the result of Theorem 6.3,
thus excluding the identity as a viable observable. Note that for N = 2 the identity
would not lead to any violation [HHH95], hence Theorem 6.4 effectively reduces to
Theorem 6.2.

To the best of our knowledge, Theorem 6.4 is the first result of such kind valid
for an N -partite Bell inequality. Recently a similar bound was derived in the N = 3
case [SS19]. However, our bound is proved to be tight on a larger set of states and
is valid for an arbitrary number of parties N .

6.6.1 Conditional Entropy Bounds for Three Parties
Equipped with the results of Theorems 6.3 and 6.4, we are able to obtain analytical
bounds on conditional von Neumann entropies that are relevant for the security of
certain DI protocols [Gra+20].

Specifically, we consider the (3, 2, 2) Bell scenario where Alice, Bob and Charlie
test the tripartite MABK inequality in order to certify the privacy of some of their
outcomes, by deriving lower bounds on suitable conditional von Neumann entropies.
In particular, we obtain bounds on the conditional von Neumann entropies H(RA|E)
and H(RARB|E) as a function of the observed MABK violation. The bounds deriva-
tion is similar to the one described in section 6.5 for two parties, although it presents
additional difficulties due to the increased number of parties and outcomes. The
details can be found in appendix H, where our work [Gra+20] is reported.

We recall that the entropy H(RA|E) determines the asymptotic rate of secret
random bits generated at Alice’s location by a multiparty DIRG or DICKA protocol7

[DFR16; BRC20]. Similarly, the bound on the entropy H(RARB|E) can represent
the rate at which co-located parties generate DI global randomness from Alice and
Bob’s outcomes [DFR16; WBA18].

In figure 6.3 we plot the derived lower bounds on H(RA|E) and H(RARB|E) as a
function of the observed MABK violation. The analytical expressions corresponding
to the plotted curves can be found in appendix H. Some comments are due.

Firstly, the lower bound on H(RA|E) is tight and in [Gra+20] we provide the
family of states that attains the bound for every value of the violation. In [Gra+20]

7In a DICKA protocol, the asymptotic conference key rate is given by H(RA|E) from which one
subtracts the information leaked during error correction.
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Fig. 6.3.: Lower bounds on the conditional von Neumann entropies H(RA|E) and
H(RARB |E) and on the conditional min-entropy Hmin(RARB |E) as a function
of the MABK violation observed by three parties. We notice that Eve has full
information on Alice’s outcome RA for violations below the GME threshold (green
line). Moreover, bounding Eve’s uncertainty on Alice and Bob’s outcomes with the
suitable von Neumann entropy (blue solid line) brings a substantial advantage
compared to bounding the correspondent min-entropy (blue dashed line). The
analytical expressions relative to the plotted curves can be found in [Gra+20].

we additionally present a tight lower bound on H(RA|E) when an arbitrary number
of parties N test the N -partite MABK inequality.

From figure 6.3 we observe that the lower bound on H(RA|E) is null for violations
of the tripartite MABK inequality below the GME threshold. This characteristic is
shared by the N -party lower bound on H(RA|E), which is null for violations below
the N -partite GME threshold.

Given that the bounds on H(RA|E) are tight, this implies that GME is necessary
to certify the privacy of a party’s outcome in any DI scenario based on the MABK
inequality. Being the latter a prerequisite of any DICKA protocol (not necessarily
based on the MABK inequality), it is an open question whether GME is necessary for
a successful implementation of a DICKA protocol.

The lower bound on the von Neumann entropyH(RARB|E) is plotted in figure 6.3
together with a tight analytical lower bound on the correspondent min-entropy
Hmin(RARB|E), derived in [WBA18]8. There is a significant improvement in certi-
fying the privacy of Alice and Bob’s outcomes, from a given MABK violation, with
our bound on the von Neumann entropy, as opposed to using the more accessible

8We remark that the min-entropy is often used to lower bound the von Neumann entropy in DI
protocols, since it can be directly estimated from the observed statistics of the Bell test [NPA07;
NPA08; NPS14; BSS14] and since Eq. (2.56) holds.
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min-entropy. This has a direct impact on the performance of DI (global) randomness
generation protocols, since it increases the fraction of generated random bits proved
to be secret.

The last observation demonstrates the potential of our analytical approach in
bounding the von Neumann entropies of interest in DI protocols. In particular,
the developed techniques could pave the way for similar results valid for the Bell
inequalities employed in the existing DICKA protocols [RMW19; HKB19]. In this
context, the derivation of tight analytical bounds on the von Neumann entropy
would translate to tight security proofs, which are still missing, and to increased
protocol performance.

6.7 Device-independent Conference Key Agreement
In this section we argue on the potential applicability of the conditional entropy
bounds of section 6.6 to the security proofs of DI conference key agreement (DICKA)
protocols. In particular, we investigate the relationship between the structure of
full-correlator Bell inequalities and the task of DICKA. We conclude the chapter
by providing an example of multipartite Bell inequality suited to DICKA protocols
[HKB19].

6.7.1 Full-correlator Bell inequalities and DICKA
All the results presented in section 6.6 stem from the consideration of a Bell scenario
with two distinctive features: every party can measure two binary observables and
the Bell inequality is only composed of full-correlators. These two features can be
exploited –as in [Gra+20]– to drastically simplify the state shared by the parties
without loss of generality and in a DI fashion. While the first feature allows the
reduction to qubits, the second enables further simplifications on the multi-qubit
state shared by the parties (for a reference, see section 6.5).

Here we would like to provide an argument suggesting that any multipartite
full-correlator Bell inequality with two binary measurements per party –e.g. the
MABK inequality– seems to be incompatible with the task of DICKA. We stress the
fact that this is still an open question in the scientific community and there is not yet
a formal proof which confirms or disproves the above statement. More details on
this argument can be found in [Gra+20].

The secret conference key rate yielded by a generic N -partite DICKA protocol
performed by Alice1, . . . , AliceN , in the asymptotic limit, reads [RMW18; HKB19]:

rDICKA = H(RA1 |E)− max
2≤i≤N

H(RA1 |RAi). (6.63)
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The second term in (6.63) is due to EC (see subsection 3.4.1) and represents the
fact that Alicei for i = 2, . . . , N corrects her raw key to match Alice1’s raw key.
The conditional entropy H(RA1 |E) quantifies Eve’s uncertainty on Alice1’s key bits,
which compose the secret conference key shared by all the parties after EC and PA.
As we discussed in the previous section, the entropy H(RA1 |E) can be bounded
when the parties observe a violation of an N -partite Bell inequality.

In light of the key rate expression (6.63), a DICKA protocol is successful (it can
yield a positive key rate) when the following two events take place. The test-round
data leads to a significant violation of a multiparty Bell inequality (H(RA1 |E) is
large) and the parties’ raw keys are sufficiently correlated (H(RA1 |RAi) are small).

In the DIQKD protocol based on the CHSH inequality and illustrated in subsec-
tion 6.4.2, one of the two test inputs of Alice is also used for key generation (KG),
while Bob has a third additional input only devoted to KG. This fact is necessary
in any DIQKD or DICKA protocol [Hol+19; HKB19]. In a DICKA protocol, we
consider that Alice1 plays the role of Alice, i.e. she is the only party without an input
(observable) exclusively dedicated to KG.

If even Alice1 had an additional setting only for KG, Eve –who manufactures
the devices– would be able to distinguish a test round from a KG round on all the
devices. Then, she could equip the devices with a maximally entangled state and
suitable test-round measurements so that the parties would observe a maximal
violation of the Bell inequality under test. Additionally, Eve could preprogram the
devices to always output the same bit when the parties use their KG inputs, so that
they would also have perfectly correlated raw keys. In doing so, Eve would be able
to learn the whole conference key without being noticed.

The above argument implies that in an honest implementation of a DICKA protocol,
the distributed quantum state and the chosen Bell inequality are such that the parties
can have highly correlated outputs while violating the Bell inequality. Ideally, in
an error-free implementation, it should be possible to maximally violate the Bell
inequality and at the same time observe perfect correlations of the parties’ raw keys.
Indeed, this would maximize the protocol’s asymptotic secret key rate (6.63) to:
rDICKA = 1.

Let us now consider a DICKA protocol based on the violation of a full-correlator
Bell inequality with two binary observables per party. Here we heuristically argue
that, for such DICKA protocols, it is forbidden to simultaneously have maximal Bell
violation in the test rounds and perfect correlations in the KG rounds.

Given that the Bell inequality under consideration has two binary observables
per party, we can restrict the analysis to multi-qubit states (c.f. section 6.5). Then,
we recall from subsection 3.4.1 that the only multi-qubit state leading to perfectly
correlated outcomes is the GHZ state (3.31) where every party measures the Pauli
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operator Z. If a party instead measures the operator X or Y , she would obtain a
completely uncorrelated outcome. Therefore, we assume that the parties share a
GHZ state and in the KG rounds every party measures the observable Z. In particular,
this fixes one of Alice1’s test-round observables to be Z.

In [WW01], the authors show that every full-correlator Bell inequality with two
binary observables per party is maximally violated by the GHZ state. However,
we argue that in order to achieve maximal violation, the measurements must be
chosen such that the resulting inequality (after simplifications) is only composed
of expectation values of GHZ stabilizers (e.g. Eq. 6.22). Indeed, they acquire
the extremal value 1 when evaluated on the GHZ state. Moreover, the stabilizers
appearing in the inequality cannot contain the identity operator since that would
not generate maximal violation. We identify these stabilizers as “full-stabilizers”.

Unfortunately, all the observables of every N -partite GHZ state full-stabilizer
(with N odd) are either the X or Y Pauli operators [TG05]. Therefore, in order to
maximally violate the inequality, Alice1’s test-round observables lie in the (x, y)-plane
of the Bloch sphere and have null Z component. This requirement collides with
the fact that one of Alice1’s two observables is fixed to Z in order to have perfect
correlations in KG rounds. A similar argument can be made for the N even case9.

Apparently, perfect correlations and maximal Bell violation are mutually exclusive
conditions in any DICKA protocol based on a full-correlator Bell inequality with two
binary observables per party, even for an ideal implementation of the protocol.

We emphasize that this argument, even if proven to be true, does not rule out the
existence of implementations where the parties observe an adequate Bell violation
while having reasonably correlated raw keys. However, it is an open question
whether such implementations exist and lead to non-zero conference key rates.

We point out that in [Hol+19] the authors have already discussed the apparent
incompatibility of the tripartite MABK inequality with the task of DICKA. Indeed,
they show that there exists no implementation such that the parties’ outcomes are
perfectly correlated and concurrently the MABK inequality is violated above the GME
threshold, which is a necessary condition to ensure the privacy of the established
key (c.f. subsection 6.6.1).

In conclusion, the conditional entropy bounds presented in section 6.6 are not
likely to find direct application in the security of DICKA protocols. Nevertheless,
since in DIRG the requirement of perfect correlations is dropped, they can still be
employed in tight security proofs of DIRG protocols. Moreover, the techniques that

9The N = 2 case includes the CHSH inequality that can be violated with Alice measuring Z, as we
have seen in section 6.4.2. However this is a degenerate case due to the low number of parties, as
discussed in [Gra+20].
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led to the entropy bounds can inspire similar derivations which are relevant for the
Bell inequalities used in current DICKA protocols [RMW19; HKB19].

6.7.2 A Bell Inequality tailored to DICKA

We conclude the chapter by presenting a multipartite Bell inequality specifically
designed to achieve both perfect correlations and maximal violation in an error-free
implementation of a DICKA protocol. The Bell inequality is characterized by two
binary observables per party, like in all the other cases discussed in this thesis. For
the argument of the previous subsection, the inequality is not exclusively composed
of full-correlators.

The inequality under consideration has been recently introduced in [HKB19] for
the general case of N parties and its structure allows it to be maximally violated by
an N -partite GHZ state where one of Alice1’s optimal observables is Z. In this way,
Alice1’s outcomes are perfectly correlated with the other parties’ outcomes, when
every party measures Z in the KG rounds and the parties share a GHZ state10.

Here we focus on the N = 3 case for simplicity, where we denote the parties as
Alice1, Alice2 and Alice3 with observables A(i)

xi for i = 1, 2, 3 and xi = 0, 1. The Bell
inequality in this case reads:

〈A(1)
1 A

(2)
+ A

(3)
+ 〉 − 〈A

(1)
0 A

(2)
− 〉 − 〈A

(1)
0 A

(3)
− 〉 − 〈A

(2)
− A

(3)
− 〉 ≤ 1, (6.64)

where we defined non-normalized observables A(j)
± = (A(j)

0 ± A
(j)
1 )/2 for j = 2, 3.

The maximal quantum violation is given by 3/2 and is achieved on the tripartite
GHZ state (2.27). The density operator relative to the tripartite GHZ state |GHZ3〉
can be expressed in terms of all its stabilizers, similarly to (6.16), as follows [TG05]:

|GHZ3〉〈GHZ3 |=
1
8 (id⊗ id⊗ id + Z ⊗ Z ⊗ id + Z ⊗ id⊗ Z + id⊗ Z ⊗ Z

+X ⊗X ⊗X −X ⊗ Y ⊗ Y − Y ⊗X ⊗ Y − Y ⊗ Y ⊗X) . (6.65)

The observables of Alice2 and Alice3, A(j)
x = ~α

(j)
x · ~σ (where j = 2, 3 and ~σ =

(X,Y, Z)), are qubit projective measurements11 whose directions in the Bloch sphere

10We recall that all the parties except for Alice1 are equipped with a third measurement setting only
used for KG.

11We can restrict to qubit projective measurements since the Bell inequality has two inputs with binary
outputs for each party.
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are identified by the unit vectors ~α(j)
x . Then, the non-normalized observables A(j)

+
and A(j)

− read:

A
(j)
± = ~α

(j)
± · ~σ , ~α

(j)
± := ~α

(j)
0 ± ~α

(j)
1

2 (6.66)

and are characterized by orthogonal measurement directions ~α(j)
+ ⊥ ~α

(j)
− and by

normalizations which depend on each other:
∣∣∣~α(j)

+

∣∣∣2 +
∣∣∣~α(j)
−

∣∣∣2 = 1. These constraints
must be taken into account when looking for the optimal observables leading to a
maximal violation of (6.64).

Starting from the form of the inequality in (6.64), we can easily guess the optimal
measurements to be performed on the GHZ state. In doing so, we follow the
principle (see Eq. 6.22) that the resulting inequality should be only composed of
correlators of the GHZ stabilizers (6.65). Note that the terms in (6.64) which are
not full-correlators allow us to use the GHZ stabilizers containing the Z and the
identity operator, without introducing the identity as one of the parties’ observables.
In this way we can impose that one of Alice1’s optimal observables is Z, which is
necessary to achieve perfect correlations with the other parties in the KG rounds.

For the arguments above, we choose the following optimal observables:

A
(1)
0 = Z , A

(1)
1 = X

A
(j)
− = −1

2Z , A
(j)
+ =

√
3

2 X (j = 2, 3), (6.67)

where A(j)
+ and A(j)

− have orthogonal directions and Alice1’s optimal observable A(1)
0

is the Z operator. By substituting the optimal observables in (6.64) we obtain the
maximal quantum violation:

3
4 〈XXX〉+ 1

2 〈ZZ〉+ 1
2 〈ZZ〉 −

1
4 〈ZZ〉 = 3

2 > 1 (6.68)

where all the terms of the inequality are indeed proportional to correlators of the
GHZ stabilizers, which yield the value 1 when evaluated on the GHZ state.

The authors in [HKB19] investigate the performance of the DICKA protocol based
on the illustrated inequality. The security of the protocol is proven by bounding the
single-round von Neumann entropy H(RA|E) as a function of the violation with
rather loose numerical techniques [NPA08; MPA11]. This inevitably leads to a poor
performance of the conference key rate. A solution to this problem would be to
derive a tight analytical bound on H(RA|E) similarly to what we did in [Gra+20]
and possibly using similar techniques. The bound would guarantee a tight security
analysis and hence a better performance.
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Finally, we mention that the only other DICKA protocol proposed so far [RMW19]
is based on a Bell inequality that can be seen as a particular case of the one introduced
in [HKB19] and analysed here in the tripartite case. In particular, the inequality
used in [RMW19] is recovered when one imposes that Alicei for i ≥ 3 has only one
measurement setting at her disposal used for testing, instead of two.

The DICKA protocol proposed in [RMW19] also lacks a tight security proof, and
would benefit from a tight analytical bound on H(RA|E) like the one we derived in
[Gra+20].
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Overview of Results 7
In this chapter we summarize the scientific contributions resulting from our doctoral
research that led to the publication of scientific papers. The original publications are
attached in appendices B to H.

Finite-key effects in multipartite quantum key distribution protocols
(Appendix B)

In this work [GKB18] we systematically generalize the security definitions of a
quantum key distribution (QKD) protocol (c.f. Definitions 3.1-3.3) to the multipartite
scenario, thereby introducing the concept of ε-security of a quantum conference key
agreement (CKA) protocol.

We devise an N -partite version of the BB84 protocol (N -BB84) where Alice,
Bob1, . . . , BobN−1 ideally share the N -partite GHZ state (3.31) in every round and
generate their raw key bits by measuring in the Z basis. They measure in the X
basis in m test rounds and compute the error rate EX = Pr[XA 6=

∏N−1
i=1 XBi ] (see

section 3.4). They also estimate the quantum bit error rate (QBER) in the Z basis
EABi by using m key-generation rounds.

We prove that the protocol, when combined with an ideal error correction (EC)
scheme, is (2ε + εEC + εPA)-secure, with ε =

√
(N − 1)εz + εx (εz and εx are

input parameters), as long as the length ` of the secret key generated by privacy
amplification is upper bounded by (compare with (3.27)):

` ≤n
[
1− h (EX + 2ξ(εx, n,m))− max

1≤i≤N−1
h (EABi + 2ξ(εz, n,m))

]
− log 2(N − 1)

εEC
− log 1− 2(N − 1)ε

2εPA
, (7.1)

where n is the number of raw-key bits, h(p) is the binary entropy and ξ(ε, n,m) is
due to statistical fluctuations and reads:

ξ(ε, n,m) :=

√
(n+m)(m+ 1)

8nm2 ln 1
ε
. (7.2)

In a similar fashion, we prove the security of the N -partite six-state protocol (N -
six-state) introduced in [Epp+17] and derive its secret key length expression. We
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compare the secret key rates achieved by the N -BB84 and N -six-state protocols
under the action of the depolarizing channel (c.f. section 2.5), taking into account
the effects due to finite resources. As expected, the N -six-state protocol outperforms
the N -BB84 protocol in the asymptotic limit of infinitely many rounds due to a more
complete characterization of the eavesdropper’s information. However, for lower
number of rounds, the N -BB84 protocol provides higher secret key rates thanks to
its tighter security analysis.

Practical decoy-state method for twin-field quantum key distribution
(Appendix C)

The maximum distance achieved by point-to-point QKD protocols is fundamentally
limited by channel losses and their secret key rates cannot scale better than linearly
with the channel transmittance, as proven by the Pirandola-Laurenza-Ottaviani-
Banchi (PLOB) bound (5.1). Twin-field (TF) QKD is arguably the simplest solution
to overcome such limitations by placing an untrusted measuring station (relay) in
the middle of the quantum channel, where the key is established by single-photon
interference events.

In this paper [GC19] we investigate the performance of the improved TF-QKD
protocol introduced in [CAL19] (c.f. section 5.3), whose security is based on the
estimation of detection statistics (yields) of Fock states sent by the two parties to
the relay. The yields estimation is carried out through the decoy-state method (c.f.
section 4.2). We derive analytical bounds on several yields appearing in the key
rate formula (5.25) assuming that each party uses either two, three or four decoy
intensity settings, which are the most relevant cases from an experimental point of
view. The bounds enable a closed analytical expression of the secret key rate, which
is particularly useful when optimizing the protocol’s performance over a large set of
parameters, e.g. in the finite-key regime.

By optimizing the secret key rate over the input parameters, we show that the use
of two decoy intensity settings per party is enough to beat the PLOB bound. We also
show that the secret key rate achieved with four decoy intensity settings is almost
indistinguishable from the ideal key rate attained with an infinite number of decoy
intensity settings.

Asymmetric twin-field quantum key distribution (Appendix D)

Our work in [GNC19] represents a follow-up publication of [GC19] where we
address the asymmetric-loss scenario for the same TF-QKD protocol [CAL19] in-
vestigated in the previous paper. Indeed, it is common practice to initially analyse
the performance of QKD protocols with an intermediate relay, such as TF-QKD, in
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a simplified symmetric scenario where the channel losses for the two parties are
equal and thus are their optimal laser intensities. However, in a realistic situation
the parties might be placed at different distances from the relay and their lasers
might be affected by random and independent intensity fluctuations. Therefore, in
view of field implementations of TF-QKD, it is crucial to assess its performance in
the presence of asymmetric losses and for independent laser intensities of the two
parties.

For the above reasons, we derive new analytical bounds on the relevant yields
of the TF-QKD scheme in [CAL19] allowing the parties to have independent decoy
intensities (a simple example is given in section 5.4). Based on the results of the
previous paper [GC19], we consider the cases of two, three or four decoy intensity
settings per party. With the derived bounds, we optimize the secret key rate for
asymmetric losses and show that a secret key can be extracted even when the losses
are highly asymmetric. Moreover, we show that the protocol is considerably robust
against independent intensity fluctuations of the parties’ lasers.

Conference key agreement with single-photon interference (Appendix E)

Inspired by our works on TF-QKD, in [GKB19] we devise a new CKA where N parties
establish a secret conference key by relying on single-photon interference events
occurring in a central untrusted relay. We prove the protocol’s security according to
the definitions introduced in [GKB18] and derive the expression of its conference
key length.

The conditional state of the parties’ qubits, given that a single-photon interference
event occurred, is approximately given by a W -class state (5.38), i.e. a coherent
superposition of product states where one qubit is in state |1〉 of the computational
basis and the others are in state |0〉. This feature makes our protocol the first CKA
based on a W -class state instead of a GHZ state, as in the N -partite BB84 and
six-state protocols (c.f. section 3.4). Moreover, since only one of the N photons sent
by the parties to the central relay is required to arrive in order to have single-photon
interference, our CKA is much more robust against high losses –i.e. long distances–
than any other CKA protocol based on the GHZ state.

We analyse the protocol’s performance in the finite-key regime and for a realistic
channel model. In particular, we introduce a generalization of the PLOB bound
suited to the multipartite scenario and show that our protocol can overcome it for
sufficiently high losses (similarly to TF-QKD surpassing the PLOB bound). Further-
more, we compare the conference key rate achieved by our CKA with that obtained
by composing bipartite TF-QKD schemes among pairs of parties on the same exper-
imental setup used for the CKA protocol. In this context, we show that our truly
multipartite CKA can be advantageous for certain parameter regimes.

111



Experimental quantum conference key agreement (Appendix F)

In [Pro+20] we take part to the first experimental realization of a quantum CKA, in
collaboration with the EMQL research group in Edinburgh. The experiment enables
four parties to establish a secret conference key by implementing the multipartite
BB84 protocol we introduce in [GKB18].

In every successful protocol round, the parties receive a four-party GHZ state from
a quantum server. The server is composed of two sources of entangled photons pairs
at telecommunication wavelength (1550 nm) supplied by the same mode-locked
laser. In each source, photon pairs are produced by type-II spontaneous parametric
down conversion embedded in a polarization-based Sagnac interferometer equipped
with a half-wave plate and a polarizing beam splitter (PBS)1. The interference of
the photon pairs in the Sagnac interferometer generates polarization-entangled
photons pairs, whose state is described by the Bell state |Φ+〉. Then, one photon
from each source interferes in a PBS such that the resulting state of the four photons,
post-selected on the events where each output contains a photon (which occurs with
probability 1/2), is the four-party GHZ state.

After interfering one photon per source in the PBS, the four signals are coupled to
single-mode fibers of total length up to 50 km and sent to the four parties. Each party
measures the incoming photon either in the Z basis {|H〉 , |V 〉} for key generation
or in X basis {(|H〉 + |V 〉)/

√
2, (|H〉 − |V 〉)/

√
2} for parameter estimation, where

|H〉 and |V 〉 represent the horizontal and vertical polarizations of the photon. Only
the events with coincident detections in all four detectors are retained, since those
correspond to the post-selection of a GHZ state.

Once the distribution of quantum states is completed, the parties perform one-way
EC from Alice to the other parties, with a low-density parity-check code (LDPC)
adapted to the multipartite scenario. LDPC codes disclose a fixed amount of infor-
mation only depending on the largest QBER between Alice and any other party, thus
reducing the amount of information revealed in multiparty EC (see discussion in
section 3.4).

Finally the parties perform privacy amplification by applying an appropriate
Toeplitz matrix –a two-universal hash function– on their error-corrected raw keys.
As a result, the parties hold an εtot-secure conference key of 1.15 × 106 bits, with
εtot = 1.8 × 10−8. The established key is used to encrypt an image with one-time
pad in order to securely share it among the four parties.

1In a polarizing beam splitter, light polarized horizontally is transmitted while light polarized vertically
is reflected.
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Quantum Conference Key Agreement: A Review (Appendix G)

In this manuscript [Mur+20] we address the quantum cryptographic task of confer-
ence key agreement (CKA), also known as multipartite quantum key distribution.
While a composition of bipartite quantum key distribution protocols can accomplish
the task, genuine multipartite protocols exploiting multipartite quantum correla-
tions can potentially be more efficient and represent a defining feature of future
quantum networks. In [Mur+20] we review the existing quantum CKA protocols
based on multipartite entanglement, both in the device-dependent and the device-
independent scenario.

Analytical entropic bounds for multiparty device-independent cryptog-
raphy (Appendix H)

Multipartite device-independent (DI) cryptographic protocols include DI randomness
generation (DIRG) and DI conference key agreement (DICKA) protocols. The security
of DI protocols relies on the ability to carefully bound an appropriate conditional
von Neumann entropy as a function of the violation of a multipartite Bell inequality,
as discussed in section 6.3.

In [Gra+20] we consider N parties testing a generic full-correlator Bell inequality
with two inputs and two outcomes per party. In this context, we significantly
simplify the general form of the quantum state shared by the parties in every
protocol round, without loss of generality (Theorem 6.3). We then consider a
particular Bell inequality, namely the Mermin-Ardehali-Belinskii-Klyshko (MABK)
inequality [Mer90; Ard92; BK93], and derive an upper bound on the maximal MABK
violation attained by a given N -qubit state (Theorem 6.4).

With the above results, we derive analytical bounds on the conditional von
Neumann entropies that enter the security proofs of tripartite DI protocols based
on the MABK inequality. We stress the fact that tighter bounds on the conditional
entropies enhance the protocol’s noise tolerance and relax the strict experimental
requirements typical of DI protocols. In particular, we obtain a tight bound on the
conditional entropy of a single party’s outcome when three parties test the MABK
inequality and extend the bound to N parties. We also derive a bound on the joint
conditional entropy of two parties’ outcomes and show that our result drastically
improves a previous bound on the same quantity (c.f subsection 6.6.1).

Based on our results, we raise interesting open questions on the necessity of
genuine multipartite entanglement and the employability of full-correlator Bell
inequalities in DICKA protocols.
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Conclusion and Outlook 8
The fruitful combination of concepts and ideas from different fields of study, as
well as the practical implications for the security of our data, have made quantum
cryptography a very active research topic in recent years. In this context a major role
is played by quantum key distribution (QKD), which enables information-theoretic
secure communication between two users. In a world evermore demanding for
connectedness, the need for an equally-secure communication established among
several users is going to be satisfied by quantum conference key agreement (CKA).

CKA is only one aspect of a wider vision on how quantum communication will
change our lives, with the quantum internet as its most ambitious representative
[Kim08; WEH18]. Within this view, future quantum networks will provide on-
demand entanglement to any subset of users in the network, allowing the execution
of quantum-enabled tasks unachievable with classical means.

Our research, which culminated with this thesis, has contributed to driving the
transition of quantum-secured communication beyond the two-user paradigm, from
bipartite QKD to CKA.

As a matter of fact, we extended the composable security definitions of QKD to the
multipartite scenario [GKB18] allowing the analysis of CKA schemes in the finite-key
regime. We introduced two novel CKA protocols [GKB18; GKB19], proved their
security and benchmarked their performance with other multipartite QKD schemes
and with the iteration of bipartite QKD protocols. We additionally demonstrated
the practicality of the first protocol [GKB18] by collaborating to its experimental
implementation [Pro+20], which represents the only CKA experiment performed so
far. In the context of device-independent (DI) quantum cryptography, we developed
theoretical tools allowing the derivation of tight conditional entropy bounds that are
crucial for the security of multipartite DI protocols [Gra+20].

The extensive work on multipartite key distribution schemes helped us to develop
a comprehensive view of the topic, which supported the creation of the first review
on quantum conference key agreement [Mur+20].

Nevertheless, we also investigated the promising bipartite TF-QKD approach,
which has arguably become the new benchmark for far-distance QKD. By deriving
analytical formulas for certain detection probabilities in realistic scenarios, we
showed that TF-QKD is a major candidate for being implemented in near-future
quantum networks.
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Despite the contributions of this thesis, there is still much to be done in order to
concretely make CKA protocols the ultimate solution for secure multi-user commu-
nication. Here we briefly outline the research directions stimulated from the results
presented in this thesis.

The tools developed in [Gra+20] lay the ground for the derivation of further
tight conditional entropy bounds for multipartite DI cryptographic protocols. We
remark that a careful estimation of these entropies is of paramount importance
for the experimental feasibility of DI protocols, as it increases noise tolerance and
relaxes the experimental requirements. Of particular interest are the existing DI
conference key agreement (DICKA) protocols [RMW19; HKB19]. Indeed, they
currently lack a tight bound on the relevant conditional entropy, which severely
penalizes their performance. Based on the results of [Gra+20], one could aim to
develop a theoretical framework which enables the derivation of tight conditional
entropy bounds for the existing and for future DICKA protocols. This would optimize
the security analyses of DICKA protocols and boost their potential application in the
upcoming quantum networks.

Another research line that stems from [Gra+20] is the characterization of the
essential requirements for DICKA. To be more specific, in [Gra+20] we showed
that genuine multipartite entanglement (GME) shared by all the participants is
necessary if the inequality being tested is the Mermin-Ardehali-Belinskii-Klyshko
(MABK) inequality [Mer90; Ard92; BK93]. It is unclear, however, if the task of DICKA
necessarily needs to rely on GME states. Moreover, in [Gra+20] we raised doubts
about the employability of full-correlator Bell inequalities for DICKA protocols. Such
open questions could trigger the search for definitive answers which we believe
would shed light on novel fundamental aspects of multipartite quantum correlations.
In doing so, one could obtain prescriptions that a Bell inequality should fulfil in
order to be used in a DICKA protocol, and suggest new DICKA protocols based on
Bell inequalities satisfying these conditions.

From an experimental point of view, our CKA experiment [Pro+20] only repre-
sents the first step towards a fully fledged CKA which can serve the needs of secure
multi-user communication. We point out two aspects that should be addressed to
meet such a goal. Firstly, one should increase the generation rate of the distributed
multipartite entangled state in order to speed up the resulting secure communi-
cation. Additionally, the future field implementation of CKA should be performed
in the existing telecommunication infrastructure. This would remove the need for
dedicated fiber networks linking the users. Finally, the recent developments in
photonic detector efficiencies [Li+18; Zha+19a] and parametric down-conversion
sources [Fed+07; Gra+18] open the possibility for an all-photonic implementation
of DI cryptographic schemes, paving the way for the application of this technology
to future metropolitan quantum networks.
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In conclusion, we hope that our doctoral research has supported the on-going
process transforming QKD and CKA protocols into concrete cryptographic solutions,
and at the same time has stimulated further fundamental research on the flourishing
field of quantum cryptography.
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Proofs A
In this appendix we prove some statements made in the main text, whose articulated
proof would have altered the cohesion and flow of the text.

A.1 Eve’s Uncertainty is Non-increasing under
Symmetrization
Part of the proof in this section is inspired by [Wat+07].

In computing the secret key rate of the BB84 protocol [BB84] in section 3.2, we
argue that w.l.o.g. the state ρAB distributed to Alice and Bob by Eve is replaced by
(3.13):

ρ̃AB = 1
4 [ρAB + (Z ⊗ Z)ρAB(Z ⊗ Z) + (X ⊗X)ρAB(X ⊗X)

+(Y ⊗ Y )ρAB(Y ⊗ Y )] . (A.1)

This scenario can be viewed as Eve preparing one of the four states

ρAB, (Z ⊗ Z) ρAB (Z ⊗ Z), (X ⊗X) ρAB (X ⊗X), (Y ⊗ Y ) ρAB (Y ⊗ Y ) (A.2)

depending on the outcome t = 1, 2, 3, 4 of a random variable stored in the register
T , which Eve is aware of. Since Eve holds the purifying system E of every state in
(A.2), the state prepared by Eve is:

ρ̃ABET = 1
4
∑
t

|φtABE〉 〈φtABE | ⊗ |t〉〈t|T , (A.3)

where {|φtABE〉}4t=1 are pure states. Finally, we assume that Eve holds the purifying
system T ′ of the state in (A.3). Thus the global state is pure and reads:

|φABETT ′〉 = 1
2
∑
t

|φtABE〉 ⊗ |t〉T ⊗ |t〉T ′ . (A.4)

Note that (A.4) is a purification of (A.3), where both registers T and T ′ are held
by Eve. The above argument holds only if it’s not disadvantageous for Eve. In
other words, Eve’s uncertainty on Alice’s key, quantified by the conditional entropy
H(RA|E), must be non-increasing. Therefore, we must verify that:

H(RA|E)ρ ≥ H(RA|Etot)ρ̃, (A.5)
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where Eve’s quantum system Etot = ETT ′ contains: the quantum side information
E, the outcome of the random variable T , and the purifying system T ′.

Proof. In order to prove (A.5), we start by using the strong subadditivity property
(c.f. section 2.6):

H(RA|Etot)ρ̃ ≤ H(RA|ET )ρ̃ (A.6)

where the r.h.s. entropy is computed on the following state:

ρ̃RAET = (ERA ⊗ idET ) TrB [ρ̃ABET ]

= 1
4(ERA ⊗ idET ) TrB

[∑
t

|φtABE〉 〈φtABE | ⊗ |t〉〈t|T

]

=: 1
4
∑
t

ρtRAE ⊗ |t〉〈t|T , (A.7)

where the quantum map

ERA(σ) =
1∑

a=0
|a〉〈a| 〈a|σ |a〉

represents the measurement performed by Alice for key generation, i.e. a projection
onto the Z basis. Being the state in Eq. (A.7) a c.q. state, its entropy simplifies to:

H(RA|ET )ρ̃ = 1
4
∑
t

H(RA|E)ρt . (A.8)

The last part of the proof shows that H(RA|E)ρt is actually independent of t and
equal to conditional entropy of the original state H(RA|E)ρ. This is clear if the state
ρtRAE is made explicit. From Eq. (A.7) we have that:

ρtRAE = (ERA ⊗ idET ) TrB
[
|φtABE〉 〈φtABE |

]
, (A.9)

where |φtABE〉 is the purification of one of the four states in (A.2) prepared by
Eve according to the random variable T . For definiteness, let’s fix that state to be
(X ⊗X) ρAB (X ⊗X), although an analogous reasoning holds for any other state
in Eq. (A.2). By writing ρAB in its spectral decomposition:

ρAB =
∑
λ

λ|λ〉〈λ|, (A.10)

we can immediately explicit |φtABE〉 as follows:

|φtABE〉 =
∑
λ

√
λ |λt〉AB ⊗ |eλ〉E , (A.11)
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where the eigenstates of the operator (X⊗X) ρAB (X⊗X) read: |λt〉 = (X⊗X) |λ〉.
By substituting (A.11) into (A.9) and by making explicit the map ERA we obtain the
following chain of equalities:

ρtRAE =
1∑

a=0
|a〉〈a|⊗

∑
λ,σ

√
λσTrB

[
〈a| |λt〉 〈σt| |a〉

]
|eλ〉〈eσ |

=
1∑

a=0
|a〉〈a|⊗

∑
λ,σ

√
λσTrB [〈a| (X ⊗X)|λ〉〈σ |(X ⊗X) |a〉] |eλ〉〈eσ |

=
1∑

a=0
|a〉〈a|⊗

∑
λ,σ

√
λσTrB [〈ā| |λ〉〈σ ||ā〉] |eλ〉〈eσ |

=
1∑

a=0
|ā〉〈ā|⊗

∑
λ,σ

√
λσTrB [〈a| |λ〉〈σ ||a〉] |eλ〉〈eσ |

=:
1∑

a=0
|ā〉〈ā|⊗ρaE , (A.12)

where in the third equality we used the cyclic property of the trace and the fact
that Alice measures in the Z basis {|0〉 , |1〉}, hence the Pauli operator X flips its
eigenstates: X |a〉 = |ā〉. In the fourth equality we relabelled the classical outcomes:
a↔ ā. Finally, by comparing (A.12) with the state ρRAE obtained in an analogous
way from the original state ρAB:

ρRAE = (ERA ⊗ idE) TrB [|φABE〉〈φABE |]

=
1∑

a=0
|a〉〈a|⊗

∑
λ,σ

√
λσTrB [〈a| |λ〉 〈σ| |a〉] |eλ〉〈eσ |

=
1∑

a=0
|a〉〈a|⊗ρaE , (A.13)

we observe that ρtRAE and ρRAE are the same state up to a permutation of the
classical outcomes, thus their conditional entropies coincide:

H(RA|E)ρt = H(RA|E)ρ ∀ t. (A.14)

In conclusion, by combining Eqs. (A.14), (A.8) and (A.6), we prove the claim in
Eq. (A.5). This concludes the proof.
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A.2 Finite-key Security of QKD

Here we prove Lemma 3.1, following the lines of [Ren08; Tom+12]. For clarity, we
report the Lemma’s statement.

Lemma 3.1 The general QKD protocol described in subsection 3.3.1 is εtot-secure, with
εtot ≥ εEC + ε+ εPA.

Proof. We start by showing that the protocol is εEC-correct.
Recall that at the end of EC, Alice and Bob apply a two-universal hash function

on their raw keys RnA and R̂nA, obtaining hashes hA and hB of length dlog(1/εEC)e.
The defining feature of two-universal hash functions is that the probability that two
outputs of length dlog(1/εEC)e coincide, given that the inputs are different, is small,
namely: 2−dlog(1/εEC)e. In formulas, we have that:

Pr[hA = hB, R
n
A 6= R̂nA] ≤ Pr[hA = hB|RnA 6= R̂nA] ≤ 2−dlog(1/εEC)e ≤ εEC. (A.15)

Then we observe that the keys sA and sB always coincide when the protocol aborts,
thus Pr[sA 6= sB, hA 6= hB] = 0. By employing (A.15) in the following expression,
we prove that the protocol is εEC-correct:

Pr[sA 6= sB] = Pr[sA 6= sB, hA = hB] ≤ Pr[RnA 6= R̂nA, hA = hB] ≤ εEC. (A.16)

In order to prove the secrecy, we make use of the quantum leftover hash lemma
[Ren08; Tom+11b], which provides the following upper bound:

1
2

∥∥∥ρSAEtot|Ω − ωSA ⊗ ρEtot

∥∥∥ ≤ ε+ 1
2

√
2`−Hε

min(RnA|CE), (A.17)

where ` is the length of Alice’s key after PA and where we emphasize Etot being
the total information available to Eve. This comprises her purifying system E, the
classical communication C occurred during EC and the knowledge F of the hash
function used in PA: Etot = FCE.

We now employ the following chain-rule for the min-entropy [Tom+12]:

Hε
min(RnA|CE) ≥ Hε

min(RnA|E)− log|C|

= Hε
min(RnA|E)− leakEC − log 2

εEC
, (A.18)

where log|C| quantifies all the information revealed during EC and is given by
leakEC + log(2/εEC) (see the protocol’s description).
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By inserting Eq. (A.18) into (A.17) we obtain the following chain of inequalities:

1
2

∥∥∥ρSAEtot|Ω − ωSA ⊗ ρEtot

∥∥∥ ≤ ε+ 1
2

√
2`−(Hε

min(RnA|E)−leakEC−log(2/εEC))

≤ ε+ 1
2
√

2log(2 εPA)2

= ε+ εPA, (A.19)

where we used the key length expression (3.27) in the second inequality. We have
thus proven that the protocol is εsec-secret, with εsec ≥ ε+ εPA. By combining this
with the correctness proof, we have shown that the protocol is εtot-secure, with
εtot ≥ ε+ εPA + εEC. This concludes the proof.

A.3 State Reduction in the CHSH Scenario
Here we present the proof of Theorem 6.1, whose statement is reported for clarity.

Theorem 6.1 ([Pir+09]). Let Alice and Bob perform the DIQKD protocol described in
subsection 6.4.2. It is not restrictive to assume that, in each round, Eve distributes a
mixture

∑
α pαρα of two-qubit states ρα, together with a flag |α〉 (known to her) which

determines the measurements performed on ρα given the parties’ inputs. Without loss of
generality, the measurements performed by Alice’s and Bob’s devices on ρα are rank-one
binary projective measurements in the (x, y)-plane of the Bloch sphere. Moreover, each
state ρα is diagonal in the Bell basis (3.15) and reads:

ρα =
1∑

i,j=0
λαij |ψij〉〈ψij | with λα0j ≥ λα1j ∀ j ∈ {0, 1}. (A.20)

Proof. The proof follows the same principles of the original proof in [Pir+09],
however we apply some modifications and add details in a way which is coherent
with its generalization valid for N parties that we prove in [Gra+20] (appendix H).
Reduction to qubits: Firstly we reduce the state shared by Alice and Bob in one
round to a convex combination of two-qubit states.

Recall that the statistics of a general quantum measurement (POVM, c.f. sec-
tion 2.2) is reproduced by a projective measurement in a larger Hilbert space, due
to the Naimark theorem. Since in a DI scenario the Hilbert space dimensions are
not fixed, we can assume without loss of generality (w.l.o.g.) that Alice and Bob
perform binary projective measurements on their share of the quantum state.
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Now we make use of a preliminary result derived in [Pir+09], which we extend
and detail in [Gra+20]. The result states that the Hilbert space on which Alice’s
two projective measurements, corresponding to inputs x = 0, 1, are acting can be
decomposed into the following direct sum (indicated by ⊕) of Hilbert spaces:

H = ⊕αH2
α , (A.21)

where every subspace H2
α is two-dimensional (qubit space) and both Alice’s mea-

surements act within H2
α as rank-one projective measurements1. Therefore, from

Alice’s perspective, the measurement process in one round consists of a projection in
one of the two-dimensional subspaces H2

α, followed by a projective measurement in
that subspace selected according to her input. For this reason, we can think that Eve
is effectively distributing to Alice a direct sum of qubits at every round. Moreover,
since Eve fabricates the measurement devices, she can preprogram the projective
measurements that Alice can select on every qubit. By repeating the same argument
for Bob, we deduce that Eve effectively distributes a direct sum of two-qubit states
in each round.

Now, consider that it cannot be detrimental for Eve to learn the value α corre-
sponding to the two-qubit space selected in a particular round by Alice’s and Bob’s
measurements. Hence, we can assume that Eve directly sends to the parties the
two-qubit state ρα relative to the two-qubit space the parties would select. Since
the selection of the two-qubit space can be random, Eve sends a statistical mixture
of states ρα. Furthermore, since she could have preprogrammed the devices to
perform specific measurements upon selecting a given subspace, together with the
state ρα she sends a flag |α〉 to Alice and Bob’s devices to instruct them on which
measurement to perform on the state ρα. In conclusion, in every round Eve prepares
the following mixture of two-qubit states ρα:

ρABΞ =
∑
α pαρα ⊗ |α〉〈α|ξA⊗|α〉〈α|ξB , (A.22)

where the two ancillae Ξ := {ξA, ξB} fix the qubit measurements that Alice and
Bob can select on ρα. This can be modelled for instance by defining Alice’s qubit
measurement Ax as follows (and similarly Bob’s):

Ax =
∑
α

(
Πx,α

+1 −Πx,α
−1
)
⊗ |α〉〈α|ξA , (A.23)

1Note that a binary projective measurement on a qubit can also be of rank-two and corresponds to the
identity as observable. In this case one outcome has probability 1 to occur and the other outcome
never occurs. This possibility was originally neglected in [Pir+09] since measuring the identity
cannot lead to a CHSH violation, as pointed out by [HHH95]. However, the identity might lead to
violations of multipartite Bell inequalities such as the MABK inequality we consider in [Gra+20].
In [Gra+20] we show how one can restrict to rank-one projective measurements, thus excluding
the identity, without loss of generality.
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where Πx,α
±1 are the projectors on the eigenvalues ±1 of the qubit projective mea-

surement defined by Alice’s choice of input x and by the particular state ρα she is
measuring.

We now fix α and proceed in specifying the form of the two-qubit state ρα (we
omit the symbol α in the following). At the moment, we can only say that ρα is
a normalized positive Hermitian operator acting on the four-dimensional Hilbert
space HA ⊗HB.
Symmetrization of the marginal distributions: We define the planes individuated
by the two measurements of Alice and of Bob to be the (x, y)-plane of the Bloch
sphere. We can now assume w.l.o.g. that the marginal distributions of the outcomes,
p(a|x) and p(b|y), are symmetrized. In other words, the expectation values of the
corresponding observables are null:

〈Ax〉 = 〈By〉 = 0 ∀x, y ∈ {0, 1}, (A.24)

where Ax and By are the observables of Alice and Bob, respectively, defining rank-
one binary projective measurements in the (x, y)-plane. If (A.24) were not true, Alice
and Bob could enforce it by agreeing on flipping their outcomes with probability
1/2 in every round. This classical procedure would not change the observed CHSH
value (6.27) nor the QBER, since either both parties flip or none of them does.
Additionally, it would require classical communication between Alice and Bob,
known to Eve.

Given that the experiment statistics satisfies (A.24), we can assume that it is Eve
herself who flips the outcomes in place of the parties. However, instead of doing this
classically on the outcomes of the devices, she could provide Alice and Bob with a
suitable state which already embodies the symmetry of the outcomes distributions.
By calling ρ the generic state she initially prepares, the state she distributes that
satisfies (A.24) is given by:

ρ̄ = 1
2
[
ρ+ ZA ⊗ ZB ρZ†A ⊗ Z

†
B

]
, (A.25)

where ZA, ZB are Pauli operators on Alice’s and Bob’s qubits. As a matter of fact,
the outcome of a measurement in the (x, y)-plane is flipped if one first applies the Z
operator.

We remark that it is safe to assume that Eve distributes the state (A.25) since this
is not disadvantageous to her. Indeed, her uncertainty on Alice’s raw key bit RA,
quantified by the conditional von Neumann entropy H(RA|E), does not increase
when she sends the state ρ̄ instead of ρ. The proof of this fact follows the same lines
of the proof given in section A.1, hence we omit it.
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By expressing the initial generic state ρ in the Bell basis (3.15):

ρ =
1∑

i,j,k,l=0
ρ(ij),(kl) |ψij〉 〈ψkl| ρ(ij),(kl) ∈ C, (A.26)

and by substituting it into (A.25), we observe that all the coherences relative to Bell
states such that j 6= l are set to zero:

ρ̄ =
1∑

i,j,k=0
ρ(ij),(kj) |ψij〉 〈ψkj | . (A.27)

The matrix representation of the state in (A.27) in the Bell basis is thus block-
diagonal and reads as follows, upon relabelling the coefficients2:

ρ̄ =


λ00 r0 + is0 0 0

r0 − is0 λ10 0 0
0 0 λ01 r1 + is1

0 0 r1 − is1 λ11

 , (A.28)

where λij , rj and sj are real numbers.
Exploiting the orientation of the local reference frames: The state in (A.28)
can be further reduced by carefully choosing the orientation of the parties’ local
reference frames. Indeed, although we already fixed the measurement directions
of Alice and Bob to lie in the (x, y)-plane, we can still choose the orientation of the
axes with respect to the measurement directions by applying rotations R(θ) along
the z direction on the qubit spaces. In particular, the state distributed by Eve can be
rotated w.l.o.g. as follows:

ρ̄+ = RA(θA)⊗RB(θB) ρ̄ R†A(θA)⊗R†B(θB), (A.29)

where the rotation RA(θA) acts on Alice’s Hilbert space and is given by:

RA(θA) = cos
(
θA
2

)
idA + i sin

(
θA
2

)
ZA, (A.30)

and similarly for Bob. The resulting rotated state ρ̄+ is still block-diagonal and reads:

ρ̄+ =


λ′00 r0 + is′0 0 0

r0 − is′0 λ′10 0 0
0 0 λ′01 r1 + is′1
0 0 r1 − is′1 λ′11

 , (A.31)

2Recall that ρ̄ is a Hermitian operator, hence the matrix representing it must be Hermitian.
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where the new matrix coefficients are given by:

λ′ij =1
2
[
λ0j + λ1j + (−1)i(λ0j − λ1j) cos[θj(θA, θB)] + 2(−1)isj sin[θj(θA, θB)]

]
(A.32)

s′j =sj cos[θj(θA, θB)]− 1
2(λ0j − λ1j) sin[θj(θA, θB)], (A.33)

where the angle θj(θA, θB) is defined as:

θj(θA, θB) := θA + (−1)jθB. (A.34)

From (A.33) we deduce that by choosing the rotation angles such that both the
following conditions are verified3:

θA + (−1)jθB = arctan 2sj
λ0j − λ1j

for j = 0, 1, (A.35)

we can set the imaginary parts of the off-diagonal terms to zero: s′0 = s′1 = 0. Thus,
w.l.o.g. we can assume that the state distributed by Eve is of the form:

ρ̄+ =


λ00 r0 0 0
r0 λ10 0 0
0 0 λ01 r1

0 0 r1 λ11

 . (A.36)

Moreover, by applying further rotations on (A.36) defined by angles θ̃A and θ̃B such
that:

θ̃A + (−1)j θ̃B = π, (A.37)

we can exchange the position of the two diagonal terms λ0j and λ1j in (A.36), for
j = 0, 1 (see (A.32)). This implies that we can assume w.l.o.g. that the diagonal
elements in (A.36) are ordered as follows:

λ00 ≥ λ10 , λ01 ≥ λ11. (A.38)

3Note that this is possible since we have two linear conditions for two independent variables.

A.3 State Reduction in the CHSH Scenario 141



Independence from the off-diagonal terms: Finally, let us construct the state ρ̄−
starting from ρ̄+ given in (A.36) by replacing rj with −rj:

ρ̄− :=


λ00 −r0 0 0
−r0 λ10 0 0

0 0 λ01 −r1

0 0 −r1 λ11

 . (A.39)

We observe that the two states ρ̄+ and ρ̄− yield the same probability distribution of
the outcomes:

p(a, b)ρ̄+ = Tr [ΠaΠbρ̄+] = Tr [ΠaΠbρ̄−] = p(a, b)ρ̄− , (A.40)

where the projectors Πa and Πb represent Alice and Bob’s projective measurements
in the (x, y)-plane relative to some non-specified inputs. The projectors can be
parametrized by writing the corresponding observables A and B as convex combi-
nations of the Pauli operators X and Y :

A = cos(ϕA)X + sin(ϕA)Y

B = cos(ϕB)X + sin(ϕB)Y, (A.41)

for some unknown angles ϕA, ϕB. The eigenstates of the observables in (A.41) read:

|a〉A = 1√
2

(|0〉+ (−1)aeiϕA |1〉)

|b〉B = 1√
2

(|0〉+ (−1)beiϕB |1〉) (A.42)

where the measurement outcomes are defined as a, b ∈ {0, 1} (a = 0 corresponds
to eigenvalue +1 and a = 1 to eigenvalue −1). Then the projectors Πa and Πb are
simply given by Πa = |a〉〈a|A and Πb = |b〉〈b|B.

Furthermore, the states ρ̄+ and ρ̄− provide Eve with the same information, i.e.
their conditional entropies coincide:

H(RA|E)ρ̄+ = H(RA|E)ρ̄− . (A.43)

Additionally, it is not disadvantageous for Eve to prepare the balanced mixture:

ρα := ρ̄+ + ρ̄−
2 , (A.44)

rather than preparing one of the two states with certainty, if she knows which of
the two states she prepared:

H(RA|E)ρα ≤ H(RA|E)ρ̄+ . (A.45)
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The proofs of the observations (A.40), (A.43) and (A.45) follow by direct com-
putation and are omitted. Nevertheless, the interested reader can find analogous
proofs in the Supplementary Information of our recent work [Gra+20], valid for the
general N -party scenario.

We conclude that it is not restrictive to assume that Eve distributes to the parties
the mixture (A.22) of two-qubit states ρα together with ancillae that fix the parties’
possible measurements. Each state ρα is given by (A.44) and is diagonal in the Bell
basis:

ρα =


λ00 0 0 0
0 λ10 0 0
0 0 λ01 0
0 0 0 λ11

 , (A.46)

with the conditions (A.38) on the diagonal elements. This concludes the proof.

A.4 Lower Bound on the Conditional Entropy: Analytical
Proof
The security of the DIQKD protocol presented in subsection 6.4.2 is based on the
ability to lower bound the conditional von Neumann entropy H(RA|E)ρα as a
function of the CHSH violation Sα, as discussed in section 6.5. In that section, the
conditional entropy is simplified to (6.49):

H(RA|E)ρα = 1−H({λαij}) + h(λα00 + λα01), (A.47)

and its lower bound is obtained by solving the following optimization problem:

F (Sα) := min
{λαij}

1−H({λαij}) + h(λα00 + λα01)

sub. to Sα ≥ Sα ; λα0j ≥ λα1j ;
∑

i,j=0,1
λαij = 1 (A.48)

where Sα is the maximal CHSH violation given in (6.33) and reported here for
completeness:

Sα = 2
√

2 max
{√

(λα00 − λα11)2 + (λα01 − λα10)2,
√

(λα00 − λα10)2 + (λα01 − λα11)2
}
.

(A.49)
Here we analytically derive the solution of the optimization problem in (A.48).

We start by assuming that the CHSH value Sα is such that Sα ≥ 2, i.e. we assume
that the CHSH inequality is violated. Otherwise, Eve would have full information on
Alice’s raw key bit RA and the lower bound on the conditional entropy would be
zero.
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Because of the symmetry of the problem, we assume w.l.o.g. that λα01 ≥ λα00.
Indeed, for every solution of (A.48) with λα00 ≥ λα01, there exists an equivalent
solution –that leads to the same minimum– with λα01 ≥ λα00: the equivalent solution
is obtained by relabelling λα01 ↔ λα00

4.
By noticing that the second term in (A.49) is larger than the first if and only if

λα01 ≥ λα00, we can simplify the maximal CHSH violation to:

Sα = 2
√

2
√

(λα00 − λα10)2 + (λα01 − λα11)2. (A.50)

Then, a necessary condition for Sα ≥ 2 can be derived by upper bounding (A.50)
as follows:

2 ≤ Sα ≤ Sα ≤ 2
√

2
√

(λα00)2 + (λα01)2 ≤ 2
√

2
√
λα01(λα01 + λα00) ≤ 2

√
2
√
λα01, (A.51)

which implies the following necessary condition on λα01:

λα01 ≥
1
2 . (A.52)

Consider the following class of states parametrized by ν ∈ [1
2 , 1]:

τ(ν) = (1− ν)|ψ00〉〈ψ00 |+ν|ψ01〉〈ψ01 |, (A.53)

whose maximal CHSH violation (A.49) reads:

Sτ (ν) = 2
√

2
√
ν2 + (1− ν)2. (A.54)

It is straightforward to verify, by using the last expression, that

Sτ (λα01) ≥ Sα ∀ ρα, (A.55)

where Sα is given in (A.50). Moreover, the entropy (A.47) of the states (A.53) reads:

H(X|E)τ (ν) = 1− h(ν), (A.56)

where we used the binary entropy h(x) = −x log x− (1− x) log(1− x).
By definition of the optimization problem (A.48), the solution of the optimization

for a given Sα is upper bounded by the entropy of any particular state with Sα = Sα.
Thus for the states (A.53) we have:

F (Sα) ≤ H(RA|E)τ (να) (A.57)

4Note that the relabelling does not modify the maximal CHSH violation (A.49).
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where να is fixed such that the maximal violation Sτ (να) of the state τ(να) is exactly
given by Sα:

Sτ (να) = 2
√

2
√
ν2
α + (1− να)2 = Sα, (A.58)

where we choose the solution να ≥ 1/2.
By proving the following result (with the assumption λα01 ≥ λα00 and (A.52)):

H(RA|E)ρα ≥ H(RA|E)τ (λα01) ∀ ρα (A.59)

we obtain the solution of the optimization problem. In order to realize this, let us
use the last expression on the state ρ∗α, which is the solution of the minimization in
(A.48):

F (Sα) = H(RA|E)ρ∗α ≥ H(RA|E)τ (λα,∗01 )

≥ H(RA|E)τ (να). (A.60)

The last inequality in (A.60) is motivated by the following observations. (i) by
applying (A.55) to the state ρ∗α, we obtain Sτ (λα,∗01 ) ≥ Sα,∗ ≥ Sα, which combined
with (A.58) implies that λα,∗01 ≥ να since Sτ (ν) in (A.54) is monotonically increasing
in the interval ν ∈ [1

2 , 1]. (ii) the entropy H(RA|E)τ(ν) in (A.56) is monotonically
increasing in the interval ν ∈ [1

2 , 1]. The two observations lead to the second
inequality in (A.60).

By combining (A.60) with (A.57), we obtain the desired lower bound:

F (Sα) = H(RA|E)τ (να) = 1− h(να)

= 1− h

1
2 + 1

2

√(
Sα
2

)2
− 1

 , (A.61)

where the last equality is obtained by reverting Eq. (A.58).
The bound (A.61) is tight. Indeed, for every violation Sα, there exists a state

τ(να) such that its entropy coincides with the bound and such that it can produce a
violation equal to Sα, thanks to Sτ (να) = Sα (A.58) and to the fact that the maximal
CHSH violation (A.49) is achievable.

We are left to prove the inequality in (A.59), which can be made explicit by using
(A.47) and (A.56):

D := h(λα01)−H({λαij}) + h(λα00 + λα01) ≥ 0. (A.62)

A.4 Lower Bound on the Conditional Entropy: Analytical Proof 145



We simplify the first two terms in D:

h(λα01)−H({λαij}) = −(1− λα01) log(1− λα01) +
∑

(i,j)6=(0,1)
λαij log λαij . (A.63)

Now we apply Jensen’s inequality:

f(x+ y) ≥ f(2x) + f(2y)
2 for f(x) = −x log x, (A.64)

to the last term in (A.62):

h(λα00 + λα01) = −(λα00 + λα01) log(λα00 + λα01) + f(λα10 + λα11)

≥ −(λα00 + λα01) log(λα00 + λα01)− λα10 log(2λα10)− λα11 log(2λα11)

= −(λα00 + λα01) log(λα00 + λα01)− (1− λα00 − λα01)

− λα10 log(λα10)− λα11 log(λα11). (A.65)

By combining (A.63) and (A.65) in (A.62) we get:

D ≥ −(1− λα01) log(1− λα01)− (λα00 + λα01) log(λα00 + λα01)− (1− λα00 − λα01)

+ λα00 log λα00

= −(λα00 + λα01) log(λα00 + λα01)− (1− λα01) log[2(1− λα01)] + λα00 log(2λα00)

=: g(λα01, λ
α
00). (A.66)

In the last expression we defined the function g(x, y):

g(x, y) = −(x+ y) log(x+ y)− (1− x) log[2(1− x)] + y log(2y), (A.67)

and we will analyse it in the ranges of interest for the variables x = λα01 and y = λα00,
i.e.: 1/2 ≤ x ≤ 1, 0 ≤ y ≤ 1− x.

In these ranges the function in (A.67) is concave in x since its second derivative is
always negative:

∂2 g(x, y)
∂ x2 =− 1

ln(2)

( 1
1− x + 1

x+ y

)
< 0. (A.68)

Consider the points at the boundary x + y = 1, for which we get g(1− y, y) = 0.
Thanks to the concavity of g(x, y), it holds that:

g

(
p

1
2 + (1− p)(1− y), y

)
≥ pg

(1
2 , y

)
+ (1− p)g(1− y, y), 0 ≤ p ≤ 1
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or equivalently that:

g(x, y) ≥
(

1− x− y
1
2 − y

)
g

(1
2 , y

)
. (A.69)

Note that in the parameter regimes of x and y it holds that

0 ≤
(

1− x− y
1
2 − y

)
≤ 1. (A.70)

We finally analyse the properties of g(1
2 , y), which is convex in y since its second

derivative is always positive:

∂2 g(1
2 , y)

∂ y2 = 1
y ln(2) + y2 ln(4) > 0. (A.71)

A convex function has a unique minimum if it exists in the parameter regime. In our
case this is given by:

∂ g(1
2 , y)
∂ y

= log(2y)− log(1
2 + y) != 0 ⇔ y = 1

2 (A.72)

for which g(1
2 ,

1
2) = 0 holds. Thus in general it holds:

g

(1
2 , y

)
≥ 0. (A.73)

By combining these considerations we prove the inequality in (A.62):

D
(A.66)
≥ g(λα01, λ

α
00)

(A.69)
≥

(
1− λα01 − λα00

1
2 − λ

α
00

)
g

(1
2 , λ

α
00

)
≥ 0, (A.74)

where in the last inequality we used the fact that the pre-factor is positive (A.70)
and that g(1

2 , λ
α
00) is lower bounded by zero (A.73). This concludes the proof

of inequality (A.59), thus completing the analytical solution of the optimization
problem in (A.48).
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Abstract
Weanalyze the security of twomultipartite quantumkeydistribution (QKD)protocols, specificallywe
introduce anN-partite versionof theBB84protocol andwediscuss theN-partite six-state protocol
proposedbyEpping et al (2017New J. Phys.19093012). The security analysis proceeds from the
generalizationof known results inbipartiteQKDto themultipartite scenario, and takes into accountfinite
resources. In this contextwederive a computable expression for the achievable key rate of bothprotocols
by employing the best-known strategies: the uncertainty relation and thepostselection technique.We
compare theperformances of the twoprotocols both forfinite resources and infinitelymany signals.

Quantumkey distribution (QKD) represents one of the primary applications of quantum information science.
Since the proposal of the first QKDprotocols [1, 2], major advancements have been achieved both on the
theoretical and experimental side [3, 4]. AQKDprotocol provides a systematic procedure throughwhich two
honest parties (Alice andBob) generate a secret shared key, when connected by an insecure quantum channel
and an authenticated insecure classical channel.

Recently the generalization of such protocols tomultipartite schemes has been investigated [5, 6]. It has been
shown that there are quantum-network configurations [5] or noise regimes [6] inwhich the execution of a
multipartite scheme is advantageouswith respect to establishing amultipartite secret key viamany independent
bipartite protocols. However, the analysis ofmultipartiteQKDprotocols has only been carried out in the
unrealistic scenario of infinitelymany signals exchanged through the quantum channel.

We compare the performances of twomultipartite QKDprotocols, which constitute theN-partite versions
of the asymmetric BB84 [1] and the asymmetric six-state protocol [7], andwill be denoted asN-BB84 andN-six-
state protocol.While theN-six-state protocol was first proposed in [5], theN-BB84 constitutes a novel
multipartiteQKDprotocol.

Our analysis is conducted in the practical case of a finite amount of resources (signals) at theN parties’
disposal. The action of a potential eavesdropper (Eve) on the insecure quantum channel is not restricted at all, as
she is allowed to perform any kind of attack (coherent attacks) on the exchanged signals.What is assumed is that
the parties have access to true randomness and that the devices performingmeasurements on the quantum
systemswork according to their ideal functionality.

The article is structured as follows. In section 1we extend notions and results of bipartite QKD security
analysis to themultipartite scenario. In section 2we review theN-six-state protocol and introduce theN-BB84
protocol. Thenwe obtain a computable expression for their secret key lengths in the case offinite resources. In
section 3we compare the achievable key rates of the twoNQKDprotocols in the presence offinite and infinite
resources.We conclude the article in section 4.

1.MultipartiteQKD: general framework and achievable key length

Throughout the article we refer to the parties involved in anN-partiteQKDprotocol (NQKD) in the following
way:A for Alice, B for the set of -N 1Bobs,Bi for Bob in position i andE for the eavesdropper Eve. The
definitions of distance and entropic quantities employed in this section are given in appendix A.
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The aimof anNQKDprotocol is to establish a common secret key, sometimes also referred to as conference
key, between allN (trusted)parties.We consider the following general NQKDprotocol. Although the protocol is
presented in an entanglement-based view for clarity, there exists an equivalent prepare-and-measure scheme
which requires the adoption ofmultipartite entangled states only for a small fraction of rounds (see the protocols
in section 2).

The protocol starts with the distribution of afinite number of signals -described by genuinelymultipartite
entangled states- over the insecure quantum channel. All parties perform localmeasurements on their respective
quantum systems, collecting classical data. A short preshared randomkey indicates to the parties the type of
measurement to be performed on each individual state they hold (more on this in section 2).

In the parameter estimation (PE) step the parties reveal a random sample of the collected data, over the
insecure classical channel. This allows them to estimate the noise occurring in the quantum channel and thus to
determine the secret key length. At this point the raw keys held by the parties are partially correlated and partially
secret. In order to correct the errors in the raw keys,A performs pairwise an information reconciliation
procedurewith everyBi. The procedure consists in some classical communication occurring betweenA andBi,
which allowsBi to compute a guess ofAʼs raw key.Wewill refer to this procedure as error correction (EC). At last
the shared raw key is turned into a secret key with privacy amplification (PA). Each party applies the same
randomly chosen hash function to his/her raw key, where thefinal length of the key depends on the error rates
observed in PE and the desired level of security. Finally all parties share the same secret key.

During the execution of theNQKDprotocol, one ormore of the described subprotocolsmight fail to
produce the desired output, thus causing the abortion of the entire protocol. In the security analysis this is
accounted for by the definition of robustness:

Definition 1 [8]. AnNQKDprotocol is erob-robust on rAB if, for inputs defined by rAB, the probability that the
protocol aborts is atmost erob.

In order to study the effects offinite resources on anNQKDprotocol, one needs to extend the concept of ε-
security of a key [8] to themultipartite scenario:

Definition 2. [8, 9]. Let rA EB be a density operator. AnyNQKDprotocol, which is erob-robust on r[ ]TrE A EB , is
said to be etot-secure on rA EB if the following inequality holds:

e r r r e- - Ä¢ ¢ ( ) ( )1
1

2
, 1.1S E ES Urob totA B

where r ¢S ESA B
is the density operator describing the final keys held by the N parties and Eve’s enlarged subsystem

 ¢E (including the information of the classical channels), while rU is the uniform state on the key space of the
N parties:


år º ñá
Î =∣ ∣

⨂∣ ∣ ( )s s
1

1.2
s i

N

U
1

with  the set of possible secret keys.

The total security parameter etot quantifies the deviation of theNQKDprotocol from an ideal protocol, i.e.
one that either outputs a set of perfectly-correlated and fully-secret keys or aborts. In other words, anNQKD
protocol is etot-secure if it behaves like an ideal protocol except for probability etot.With this definition, the
parameter that actually accounts for the correctness and secrecy of the protocol when it does not abort, is:
e e-( )1tot rob . AnNQKDprotocolmay deviate from an ideal one if, for instance, its ECprocedure fails to
correct all the errors betweenA andBʼs strings. In particular, if the probability that at least oneBiholds a
different string thanA—after EC—is eEC, then theNQKDprotocol is etot-secure, with e etot EC. Formally, the
EC failure probability is defined as:

Definition 3 [8]. Let PXK be a probability distribution. Any set of ECprotocols EC =
-{ }i i

N
1

1, which is erob-robust
on PXK, is said to be eEC-secure on PXK if the following holds:

e e- $ Î ¼ - ¹( ) [ { } ˆ ] ( )i N k x1 Pr 1, , 1 : , 1.3irob EC

where the guess k̂i is computed byBi according to protocol ECi, and the probability is computed for inputs
( )x k, chosen according to PXK, conditioned on the fact that no ECi aborted. If EC =

-{ }i i
N

1
1 is eEC-secure for any

probability distribution, it is eEC-fully secure.

2
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In this article we assume that theNQKDprotocolmay abort only during the ECprocedure. Thus the
abortion probability of the chosen set of ECprocedures is also the abortion probability of thewhole protocol1.

The classical communication occurring during EC contains some information about the key. The amount of
information about the key that is leaked toE from the insecure classical channel is quantified by the leakage:

Definition 4 [8]. Let EC =
-{ }i i

N
1

1be a set of ECprotocols. TheNQKDprotocol adopting such a set of protocols for
EChas leakage:

EC º -¼ - = =∣ ∣ ( ) ( ){ } ∣H Pleak log min , 1.4N
x

X x
k

C K k
NQKD

2 1, , 1
,

min ,i

where  ¼ -N1, , 1 is the set of -( )N 1 -tuples representing all possible communication transcripts allowed by the
chosen ECprotocols, i.e.:

 = ¼ ¼ ¹¼ - - -{( ) ( ) } ( )c c P c c, , : , , 0 , 1.5N N NC1, , 1 1 1 1 1

= =∣P X xC K k, is the transcripts’ distribution conditioned onA and Bʼs raw keys and = =( )∣H P X xC K kmin , is themin-
entropy defined on a probability distribution (A.10), (A.11).

We nowpresent our results on the achievable key length (theorem 1) and theminimum leakage (theorem 2)
of a general etot-secureNQKDprotocol, which constitute a generalization of analogous results [8, lemmas 6.4.1
and 6.3.4] valid for bipartiteQKD. The general structure of the proofs is derived from the bipartite case, but deals
with the newdefinitions of security and leakage (definitions 2, 3, 4) formultipartite schemes. As in the bipartite
case, the security of anNQKDprotocol can be inferred by correctness and secrecy (appendix B).While the
correctness of a protocol is determined by its EC procedure, the secrecy is linked to the final-key length via the
leftover hashing lemma [8, corollary 5.6.1]. In fact, in PA the partiesmap their shared key to another keywhich is
short enough to be secret (i.e. unknown to the eavesdropper Eve). In theorem 1we present the achievable key
length of an etot-secureNQKDprotocol for a general two-way ECprocedure, while typically only the special case
of one-way EC is addressed. This is achieved thanks to the result on the information leakage with two-way EC
presented in appendix E [10]. A detailed version of the proofs of theorems 1 and 2 is presented in appendix B.

Theorem1. Let: e e e e> > >¯ 0, 0, 0, 0EC PA rob and rA EB be a density operator. Let rX EK be the output—prior

to EC and PA—of anNQKDprotocol applied to rA EB . If the two-way EC protocol EC =
-{ }i i

N
1

1 is eEC-secure and
erob-robust on the distribution defined by rXK, and if PP EC { },i is the post-processing protocol defined by the set of EC
protocols and by the set of two-universal hash functions  with co-domain { } ℓ0, 1 such that2 the secret key length ℓ
fulfills:

EC r
e
e

- -
-eℓ ( ∣ ) ( )¯ { }H E leak 2 log

1

2
, 1.6XEmin

,P NQKD
2

rob

PA
i

then theNQKDprotocol is etot-secure on rA EB , where etot is defined as: e e e e= + +¯2tot EC PA.
If one restricts to one-way EC, the same result holds but with the ē-environment of themin-entropy defined via

the trace distance.

Theorem2.Given a probability distribution PXK, there exists a one-way EC protocol that is: eEC-fully secure,
e- ¢( )N2 1 -robust on PXK, and has leakage:


e

+
-e¢( ∣ ) ( ) ( )H P K

N
leak max log

2 1
. 1.7

i
XK iEC

NQKD
0 2

EC
i

The upper bound in theorem2 is independent of the EC protocol, thus also bounds the leakage of an optimal
one-way ECprotocol which is eEC-fully secure and e- ¢( )N2 1 -robust on PXK.

2.N-BB84 andN-six-state protocol

Herewe present the twoNQKDprotocols whose performancewill be investigated in section 3.We introduce the
N-BB84 protocol which is theN-partite version of the asymmetric BB84 protocol [1]:

1
Note, however, that a higher global abortion probability forfixed security parameter etot may lead to higher key rates.

2
The ē-environment of themin-entropy is defined via the purified distance, see appendix A.
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N-BB84 protocol.

(i) Distribution ofN-qubit GHZ states:

ñ º ñ + ñÄ Ä∣ (∣ ∣ ) ( )GHZ
1

2
0 1 2.1N

N N

for L rounds.

(ii) In 1st-type rounds each party measures in the Z-basis, in 2nd-type rounds—which occur with probability
p3—each partymeasures in theX-basis. The total number of 2nd-type rounds is:m=Lp.

(iii) Parameter estimation:

(a) Computation of = - á ñ( )Q Z Z1 2AB
m

A B mi i
for every Bi, where Z ZA Bi

is averaged over m 1st-type
rounds randomly chosen byAlice. In the ideal situation: =Q 0AB

m
i

.

(b) Computation of = - á ñÄ( )Q X1 2X
m N

m , where ÄX N is averaged over the 2nd-type rounds. Note that
in the ideal situation: =Q 0X

m [5].

(iv) The secret key is obtained from the remaining data of = -n L m2 1st-type rounds.

(v) Classical post-processing:

(a) A sends the sameEC information to everyBi.

(b) A andB apply the same two-universal hash function to their corrected data.

Remarks.Note that the frequencies QAB
m

i
andQX

m observed in the PE step are the fraction of discordantZ-

outcomes betweenA andBi and the frequency of the outcome−1when the partiesmeasure the operator ÄX N ,
respectively.

In an equivalent prepare-and-measure scheme, Alice directly produces the -( )N 1 -qubit projection of the
GHZ state according to herfictitious randomoutcome and distributes it to the Bobs. In particular, she prepares
product states if theZ-basis is chosen andmultipartite entangled states when theX-basis is picked. Thus the
production ofmultipartite entangled states is only required for Lp rounds, while in all other rounds product
states are prepared [5].

For the protocol’s security to hold, the preshared secret key indicating to the parties the 2nd-type rounds
needs to be refreshed at every new execution of the protocol. Therefore, the net amount of new secret key bits
produced by one run of the protocol is obtained by subtracting · ( )L h p bits from thefinal key length presented
in section 2.1.We take into account this term for both protocols when investigating their performance in
section 3.

We refer to [5] for a detailed description of the steps characterizing theN-six-state protocol. However, the
only actual differences with respect to theN-BB84 protocol are that: in the 2nd-type rounds each partymeasures
randomly in theX- orY-basis and all parties jointlyflip theirZ-measurement outcomeswith probability 1/2.
The bits to beflipped can be announced byAlice after the distribution andmeasurement of the states. These
operations enable the implementation of the extended depolarization procedure [5] on the classical data,
without adding further quantumgates.

The frequencies observed in the PE step of theN-six-state protocol are again QAB
m

i
and ¢QX

m 4, plusQm
Z , i.e. the

fraction of rounds inwhich at least one Bobmeasured a differentZ-outcome thanAʼs.Wewill refer to the
corresponding probabilities as: P P,AB Xi

andPZ.
The frequencies observed in the PE steps of both protocols enable to quantify the amount of noise occurring

in the quantum channel. However, these statistics are collected onfinite-size samples, thus they only represent
an estimate of the channel’s noise. In appendix Cwe quantitatively describe how the finite statistics of PE
characterize the quantum channel’s noise, for bothNQKDprotocols.

2.1. Computable key length
In order to employ the results of section 1 in a performance comparison of the twoNQKDprotocols one needs
to characterizeEʼs knowledge about the key. This is achieved by assigning the noise in the quantum channel to
eavesdropping. Thismeans, in practice, that one can bound the unknown entropies with quantities exclusively

3 · ( )L h p bits of preshared secure key are used tomark the 2nd-type rounds.
4
Since the value of ÄX N must be registered onlywhen an even number of partiesmeasured in theY basis, ¢ =m m 2. See [5] for further

details.
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depending on the noise affecting the quantum channel. In turn, the channel’s noise is characterized by thefinite
PE statistics, as explained above.

As a result,weobtain a computable expression for the achievable key lengthof bothprotocols, that is an expression
solelydependingon theobservedPEstatistics, thedesired level of security, and the total numberof quantumsignals.

The techniques we adopt to obtain a computable key length are the following.We employ the uncertainty
relation (for smooth entropies)presented in [11] for theN-BB84 protocol, thus showing itsfirst application to
NQKD. For theN-six-state protocol we instead employ the Postselection technique (PS) [12] in combination
with the asymptotic equipartition property [8], andwe exploit the symmetries induced by the extended
depolarization procedure.

We arrive at the computable key lengths of theN-BB84 andN-six-state protocol:

Theorem3.TheN-BB84 protocol, with the optimal one-way EC protocol (which is eEC-fully secure and
e-( )N2 1 PE -robust) andwhere the secret key generated by two-universal hashing has length

x e x e
e

e
e

= - + - + -
-

-
- -

⎡
⎣⎢

⎤
⎦⎥ℓ ( ( )) ( ( )) ( )

( ) ( )

n h Q n m h Q n m
N

N

1 2 , , max 2 , , log
2 1

2 log
1 2 1

2
, 2.2

X
m

x
i

AB
m

z 2
EC

2
PE

PA

i

is etot-secure with e e e e= + +2tot PE EC PA, where ePE is defined as (C.16):

e e eº - +( ) ( )N 1 2.3z xPE

and x e( )n m, , as (C.4):

x e
e

º
+ + ⎜ ⎟⎛

⎝
⎞
⎠( ) ( )( ) ( )n m

n m m

nm
, ,

1

8
ln

1
. 2.4

2

Theorem4.The N -six-state protocol, with the optimal one-way EC protocol (which is eEC-fully secure and
e-( )N2 1 PE -robust) andwhere the secret key generated by two-universal hashing has length

e e

e
e

e

= - - - - + - -

+ - - - - - -

-
-

-
- -

- - +

G
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

ℓ

( )( ( )) ( ¯ ) ( ) ( ) ( ( ))

( ) ( ) ( ) ( ) ( )

n
P

P
P

P P
P

P
P

P P
n

h P
n

N N
L

inf 1
2

log 1
2 2

log
2

1 1 log 1 5
log 1

max log 5
2 log 1 2

log
2 1

2 log
1 2 1

2
2 2 1 log 1 , 2.5

Z
X

Z
X X

Z
X

Z

Z Z
i

AB

N

2 2

2
2

2
2 PE

2
EC

2
PE

PA

2
2

i

PE

is etot-securewith e e e e e= + + + +-( ) ( ¯ )( )L 1 2tot
2 1

PE EC PA
N2

, where P P,X ABi
and PZ areminimized over the set:



 

h e

h e h e

G º - "

 - ¢  - ¢¢

{
}

∣ ∣ ( )

∣ ∣ ( ) ∣ ∣ ( ) ( )

P P P Q P m i

Q P m Q P m

, , :
1

2
, 2,

1

2
, 2,

1

2
, 2, . 2.6

AB Z X AB
m

AB z

X
m

X x Z
m

Z z

PE i i i

The parameters e e e¢, ,x z z are linked to ePE via (C.18):

e e e eº ¢ + - +( ) ( )N 1 2.7z z xPE

while h e( )d m, , is defined as (C.19):

h e
e

º
+ +( ) ( ) ( ) ( )d m

d m

m
, ,

ln 1 ln 1

8
. 2.8

For the derivation of theorems 3 and 4, we refer to appendixD.

3. Performance comparison

Wecompare the performances of the twoNQKDprotocols by studying their secret key rates, i.e. the fraction of
shared secret bits per transmitted quantum signal (ℓ/L). For this purpose we investigate the computable key
lengths (2.2) and (2.5)—correctedwith the term ‘- · ( )L h p ’ that accounts for the preshared secret key- for a
given number of partiesN and afixed total security parameter etot.

In order to carry out a fair comparison, we assume that the PE statistics of both protocols are generated by
the same errormodel.

5
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3.1. Errormodel
Weassume that in every distribution roundwhite noise acted on the ideal state and that the action of the noise is
the same in every round5. The total distributed state over all rounds is a product state: rÄA

L
B, where the single-

round state is given by:

r n n= - ñ á +( ) ∣ ∣ ( )1 GHZ GHZ
id

2
, 3.1A N N

A
NB

B

where ν is the noise parameter and ñ∣GHZ N is theGHZ state ofN qubits (2.1).
The state (3.1) can be seen as the result of the action of a depolarizing channel on thewholeN-qubit system,

such that it is diagonal in theGHZbasis [5] and the probabilities PABi
(ofA andBihaving discordantZ-

outcomes),PX (of having the outcome−1when the partiesmeasured ÄX N ) andPZ (of having at least one Bob
with a differentZ-outcome thanAʼs) are given by:

n= " ( )P i2 , 3.2ABi

= ( )P P , 3.3X AB

=
-
-

( )P P
2 2

2
. 3.4Z

N

N AB1

For ease of notationwewill drop the index i in the probabilities PABi
.We assume that the frequencies Q Q,AB

m
X
m

i

andQm
Z observed in the PE step of both protocols are linked by the same relations (3.3), (3.4) that hold for the

corresponding probabilities.

3.2. Infinite resources
In the asymptotic limit of infinitelymany rounds (  ¥L ), all the correction terms due tofinite statistics
vanish, as well as all the correction terms due to the ε-security of the key. For instance, the PE frequencies
coincidewith their corresponding probabilities.

For the assumed errormodel, the asymptotic key rates of theN-six-state protocol ( -r6 state) and theN-BB84
protocol (rBB84) read:

= - - - -

+ - - + - - - -

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( )( ( )) ( ) ( )

‐r P N
P

P
P

P

P
P

P
P

P P h P

, 1
2

log 1
2

2
log

2
1 1 log 1 , 3.5

AB
Z

AB
Z

AB

AB
Z

AB
Z

Z Z AB

6 state 2

2 2

= -( ) ( ) ( )r P h P1 2 , 3.6AB ABBB84

wherePZ isfixed by (3.4) and the rates have beenmaximized over the probability p of performing 2nd-type
rounds. ForN=2 the rate (3.5) reduces to the asymptotic rate of the bipartite six-state protocol [3], while (3.6)
is independent ofN—forfixedPAB—and coincides with the asymptotic bipartite BB84 rate [3]. The reason for
which (3.6) does not depend onN is that theN-BB84 protocol—unlike theN-six-state—does not completely
characterize the state shared by all the parties, thus its asymptotic rate only depends onPAB andPX. For the highly
symmetric errormodel introduced in section 3.1, it holds: n= =P P 2X AB which is independent of the number
of parties involved.

Infigure 1weplot the asymptotic rate of bothprotocols as a functionof theprobability of discordant rawkey
bits betweenA andBi (PAB), for variousnumbers of partiesN. Bynoting that theN-six-state protocol outperforms
theN-BB84 for equalPAB and any number of partiesN, weobserve in theN-partite asymptotic scenario that a six-
state-type protocol produces higher rates than aBB84one, extending known results of the bipartite case [3].

Interestingly, the rate of both protocols does not decrease for an increasing number of parties and fixedPAB.
However, one should keep inmind that increasingN forfixedPABmaynot be physically reasonable. In fact,
according to our errormodel, ifPAB isfixed then also the noise parameter ν (quantifying the amount of
depolarization on allN qubits) isfixed, and increasingNwith afixed noise parametermay not describe realistic
quantum channels. Consider, for instance, the case inwhich part of the noise generating PAB is due to the failure
of imperfect bipartite gates used for the distribution of theGHZ state. Then an increase ofN, obtained by adding
gates with the same failure probability, would lead to an increase ofPAB [5].

Moreover, the adoption of other errormodels can lead to key rates decreasing in the number of parties, for
fixedPAB. For instance if the noise on the ideal distributed state ismodeled as the independent action of the
depolarizingmap

5
The same errormodel is used, for instance, in [5].
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 r n r n= - +( ) ( ) ( )1
id

2
3.72

on eachBi, i.e. the single-round state reads:

r = ñ áÄ - (∣ ∣ ) ( )( ) GHZ GHZ , 3.8A
N

N NB
1

then the probabilities of interest are given by:

n= ( )P 2, 3.9AB

=
- - -( ) ( )P

P1 1 2

2
, 3.10X

AB
N 1

= - - -( ) ( )P P1 1 , 3.11Z AB
N 1

wherewedropped the index i in the probabilities PABi
. The asymptotic key rates of theN-BB84 andN-six-state

protocol computedwith the newprobabilities (3.9)–(3.11)decrease for increasing number of parties, seefigure 2.

3.3. Finite resources
Infigure 3we compare the key rates of bothNQKDprotocols for afinite number of signals L transmitted
through the quantum channel, with noise discussed in section 3.1. The rates are numericallymaximized over the
parameters: e e e e¯p, , , ,PE EC PA, with the constraint given by the fixed value of the total security parameter:
e = ´ -5 10tot

9. The fact that we are still able to obtain non-zero rates in thefinite-key scenariomeans that the
correction term ‘- ( )h p ’ due to the preshared secret key is not prominent, as amatter of fact the optimal values
for p are typically well below 0.1.

Figure 1.Asymptotic key rates (N-six-state solid,N-BB84dashed) for = ¥N 2, 5, (blue, green, red) as a function of the probability of
discordantZ-outcomesbetweenA andBi (PAB), in the presence of a global depolarizing channel (3.1). Due to the symmetric action of the
whitenoise on the quantumchannel: =P PX AB. TheN-BB84 asymptotic key rate presents only one curve since it is independent ofN.

Figure 2.Asymptotic key rates (N-six-state solid,N-BB84 dashed) for =N 2, 5, 10 (blue, green, red) as a function of the probability
of discordantZ-outcomes betweenA andBi (PAB), in the presence of local depolarizing channels (3.8).With thismodel the rate of both
protocols decreases for increasing number of parties andfixedPAB.

7
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Weobserve that, although for large L theN-six-state still performs better than theN-BB84 protocol, there
exists a certain number of rounds—identified by the threshold function ¯ ( )L Q N,AB

m —belowwhich theN-six-
state protocol is outperformed by theN-BB84 protocol. The threshold function L̄ is defined as:

=¯ ( ) ( ) ( ) ( )‐L Q N L r L Q N r L Q N, min s.t. , , , , . 3.12AB
m

AB
m

AB
m

6 state BB84

Fromfigure 3(a) one deduces that theN-six-state protocol ismuchmore sensitive than theN-BB84 if the
number of parties is increased, displaying the opposite behavior with respect to the asymptotic case (figure 1).
This causes the threshold function to increase withN andfixedQm

AB (figure 4(a)).
On theotherhand, theN-six-state protocol ismore robust than theN-BB84protocolwhen thequantumchannels

becomenoisier (figure3(b)).As a result the threshold functiondecreases for increasingnoise andfixedN (figure4(b)).
We point out that the function L̄ maynot be a physical threshold for the number of rounds abovewhich the

N-six-state protocol ismore efficient than theN-BB84 protocol, as the achievable key rates depend on
quantitatively different estimates. As amatter of fact, it is known [11] that the uncertainty relation employed for
theN-BB84 protocol yields tighter bounds compared to the PS technique used for theN-six-state protocol,
especially for low values of L. Instead, asymptotically the correction terms introduced by the PS technique and
the uncertainty relation vanish6, allowing theN-six-state to outperform theN-BB84 protocol (figure 1).
Therefore the crossover between the two key rates at L̄ ismainly caused by the different tightness of themin-
entropy bounds used in the two protocols.

Figure 3.Key rates (N-six-state solid,N-BB84 dashed) as a function of the number of signals L. (a)Key rates as a function of the total
number of rounds L for =N 2, 5, 8 (blue, green, red; left to right) andfixed =Q 0.05AB

m . Note that even forfinite number of rounds
theN-BB84 rate is approximately independent ofN. (b)Key rates as a function of the total number of rounds L for
=Q 0.01, 0.05, 0.1AB

m (blue, green, red; left to right) andfixed =N 5.

Figure 4.The threshold L̄ as a function of one of its variables, while keeping the other one fixed. (a)Threshold function L̄ for
=Q 0.01, 0.05, 0.1AB

m (blue circles, green squares, red diamonds) as a function of the number of partiesN. (b)Threshold function L̄
for =N 2, 5, 8 (blue circles, green squares, red diamonds) as a function of QAB

m , proportional to the channel noise.

6
Recall that the correction terms due to PS allowone to extend the security of the key against collective attacks to coherent attacks, however

in the asymptotic limit these attacks are equivalent [13], thus the PS corrections vanish.
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Moreover, the PS corrections becomemore pronounced for increasing number of parties, thus explaining
the rise of the threshold functionwithN. Indeed, the reduction in the key length scales quadratically with the
dimension d of theHilbert space of a single-signal state shared by allN parties. Sincewe assume that the
quantum systemheld by each party is a qubit, =d 2N , i.e. the reduction in the key length introduced by the PS
technique scales exponentially inN.

3.4.Why different strategies?
In section 3.3we argued that theN-BB84 protocol outperforms theN-six-state protocol, at low values of L, due
to the adoption of tighter bounds on themin-entropy. One couldwonder whatwould happen if the same
strategywere used in obtaining the computable key length for both protocols. Unfortunately, this is not possible:
the two strategies employed (uncertainty relation and PS technique) are suited to the particular protocol to
which they are applied and they cannot be used in the other protocol.

In principle the uncertainty relationmay also be used to bound themin-entropy of theN-six-state protocol,
but then the additional symmetries due to the extended depolarization procedurewould be ignored, such that
one endswith the same key length as for theN-BB84 protocol.

Conversely, one could employ the PS technique in combinationwith theAEP to bound themin-entropy of the
N-BB84protocol. The problem in this casewouldbe the lack of informationprovidedby any symmetrization
procedure performedon the shared signals. Indeedwithout any further symmetrization, the degrees of freedomof
the shared signals7, reduced by thePEobservations,would still be toomany tofind a computable bound to the
min-entropy (i.e. a bound that only depends on the PE statistics andon the input parameters).

4. Conclusion and outlook

In this paper we presented thefirst completefinite-key analysis of twoNQKDprotocols, which can be regarded
as themultipartite versions of the BB84 [1] and of the six-state [7] protocol. Although both protocols adopt
genuinelymultipartite entangled states as resources, these states are only required for a small number of rounds,
while in themajority of the cases product states are distributed.

Inorder to studyfinite-size effects inNQKDschemes,we extended the information theoretic security analysis [8]
ofbipartiteQKDprotocols to themultipartite case, taking into accountbothone-way and two-wayECprotocols.
Thenweemployed the general results on the security ofNQKDto investigate theN-six-state protocol [5] and the
newly-definedN-BB84protocol. Inparticular,wederived analytical formulas for the achievable secret key lengthof
bothprotocolswhichonlydependon thePE statistics andon thedesired level of security.Weachieved this by
bounding theknowledgeof the eavesdropper about the secret keybymeansof thebest-knownstrategies adopted in
bipartiteQKD,namely theuncertainty relation for smooth entropies [11] and thepostselection technique [12].

We compared the performance of the twoNQKDprotocols in the case offinite resources and in the
asymptotic limit.We observed that, although theN-six-state protocol reaches higher rates asymptotically, there
exists a threshold value for the number of signals belowwhich it is outperformed by theN-BB84 protocol.We
argued that this crossover between the rates of the two protocols is caused by the different strategies adopted in
obtaining the computable key lengths, andwe justified the choice of the strategy for each protocol.

In order to carry out a fairer comparison between theN-six-state protocol and theN-BB84when the number
of available resources is low, it would be desirable to implement tighter bounds for themin-entropy of the
former protocol. In any case, the framework ofNQKD ε-security developed in this papermay be used for the
finite-key analysis of othermultipartiteQKDprotocols.

This work is based on the assumptions that themeasurement devices are ideal and that the parties have
access to true randomness. In order to addressmore realistic scenarios, one can consider the fact that the
measurements in theZ andX bases are not necessarily projectivemeasurements in diagonal bases, but rather
generic positive operator-valuedmeasurements. This fact could be easily implemented in ourN-BB84 protocol,
thanks to the properties of the uncertainty relation [14]. Amore drastic approach is represented by device-
independentQKD (DIQKD) [15, 16], where no assumption ismade on the devices except for spatial separation.
In this context it is worthmentioning the recent security proof of amultipartite DIQKDprotocol [6]. In that
protocol security is guaranteed for every violation of a bipartite Bell inequality (CHSH inequality [17]) between
one of the parties and the other -N 1. It is not yet knownwhether security can still be proven for violations of a
multipartite Bell inequality (MABK inequality [18–20]) that do not necessarily imply CHSHviolations.

7
Remember that we are consideringN-qubit states, thus their degrees of freedomaremuchmore than in the bipartite case.

9

New J. Phys. 20 (2018) 113014 FGrasselli et al



Acknowledgments

We thankRenato Renner for having generously provided the proof of the result presented in appendix E. This
project has received funding from the EuropeanUnionʼsHorizon 2020 research and innovation programme
under theMarie Skłodowska-Curie grant agreementNo 675662 and support from the FederalMinistry of
Education andResearch (BMBF, projectsQ.com-Q andHQS).

AppendixA.Notation

• The binary entropy function is defined as: = - - - -( ) ( ) ( )h p p p p plog 1 log 12 2 , for Î [ ]p 0, 1 .

• The norm · of an operatorO is defined as: =  [ ]†O O OTr .

•  ( ) is the set of positive-semidefinite operators on theHilbert space.

• The set of possible secret keys shared by the parties is  .

• The set of operators which are ε-close to a given density operator ρ is defined as:

    r t t t r eº Î -e  { }( ) ( ) [ ] ( ): Tr 1,
1

2
A.1

if the distance is computedwith respect to the trace distance, or as:

    r t t t r eº Îe ( ) { ( ) [ ] ( ) } ( )P: Tr 1, , A.2,P

if the distance is given by the purified distance [21]:

t r t rº -( ) ¯ ( )P F, 1 , 2

where t r¯ ( )F , is called generalized fidelity:

t r t r r tº + - -¯ ( ) ∣ ∣ ( )( ) ( )F , Tr 1 Tr 1 Tr . A.3

Since the purified distance is an upper bound to the trace distance [21], it holds:

 r rÍe e( ) ( ) ( ). A.4,P

• We say that rX is the operator representation of the probability distribution PX on the set if:


år º ñá
Î

( ) ∣ ∣ ( )P x x x A.5X
x

X

for some orthonormal basis ñ{∣ }x x.

• Wedefine the set of probability distributionswhich are ε-close to a given probability distribution PX as those
distributions whose operator representation is ε-close to the operator representation ofPX, according to (A.1)
and (A.2).

• TheRényi zero-entropy ( ∣ )H P YXY0 of the probability distribution PXY over the set ´ is given by [8, 22]:


º

Î
( ∣ ) ∣ ( ) ∣ ( )H P Y Plog max supp , A.6XY

y
X
y

0 2

wherePX
y denotes the function  ( )P x P x y: ,X

y
XY . This entropywas called ‘max-entropy’ in [8].

• The ε-smoothRényi zero-entropy e( ∣ )H P YXY0 is defined as [8, 23]:


ºe

Î e
( ∣ ) ( ∣ ) ( )

( )
H P Y H Q Ymin . A.7XY

Q P
XY0 0

XY XY

If theminimization is performed on e ( )PXY
,P the corresponding Rényi zero-entropy is denoted

as: e ( ∣ )H P YXY0
,P .

• TheRényi zero-entropy r( )H0 of the density operator ρ is defined as [8]:

r rº( ) ( ) ( )H log rank . A.80 2

• Themin-entropy of the density operator rAB relative to sB is [8, 22]:

 r s l l s rº - Î Ä -( ∣ ) { ( ) } ( )H log min : id 0 . A.9AB B A B ABmin 2

10
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Note that for r s( ∣ )H AB Bmin to exist, a necessary condition is that: r sÍ( ) ( )supp suppB B . IfB is the trivial
space , then themin-entropy reduces to:

r l r= -( ) ( ) ( )H log , A.10A Amin 2 max

where l r( )Amax is themaximum eigenvalue of rA.

• Themin-entropy of the probability distribution PXY relative to the distributionQY is [8]:

r sº( ∣ ) ( ∣ ) ( )H P Q H , A.11XY Y XY Ymin min

where rXY and sY are the operators representations (A.5) ofPXY andQY, respectively.

• Themin-entropy ofA conditioned onB of the density operator rAB is [8, 22, 24]:

  r s s s rº - Î Ä -( ∣ ) { ( ) ( ) } ( )H B log min Tr : , id 0 . A.12AB B B B A B ABmin 2

• The ε-smoothmin-entropy ofA conditioned onB of the state rAB is [8, 22]:


r rºe

r rÎ e
( ∣ ) ( ˜ ∣ ) ( )

˜ ( )
H B H Bmax . A.13AB ABmin min

AB AB

If themaximization is performed on  re ( )AB
,P the correspondingmin-entropy is denoted as: re ( ∣ )H BABmin

,P .

• Themax-entropy ofA conditioned onB of the density operator rAB is [22]:

r rº -( ∣ ) ( ∣ ) ( )H B H C , A.14AB ACmax min

where themin-entropy of the rhs is evaluated for a purification rABC of rAB.

• The ε-smoothmax-entropy ofA conditioned onB of the density operator rAB is [22]:


r rºe

r rÎ e
( ∣ ) ( ˜ ∣ ) ( )

˜ ( )
H B H Bmin . A.15AB ABmax max

AB AB

If theminimization is performed on  re ( )AB
,P the correspondingmax-entropy is denoted as: re ( ∣ )H BABmax

,P .

Appendix B. FurtherNQKDdefinitions and theorems’proofs

In this appendixwe prove the two results (theorems 1 and 2) presented in section 1.
First we show that correctness and secrecy of a protocol are a sufficient condition for security (definition 2),

analogously to the bipartite case [8, 9]:

Definition 5 [6, 14]. Let rA EB be a density operator. AnyNQKDprotocol, which is erob-robust on r[ ]TrE A EB , is
said to be e¢-correct on rA EB if:

e e- $ Î ¼ - ¹ ¢( ) [ { } ] ( )i N s s1 Pr 1, , 1 : , B.1A Brob i

where ( )s s,A B are the secret keys generated by theNQKDprotocol and the probability is conditioned on the fact
that the protocol did not abort.

Note that the definition of robustness of anNQKDprotocol is given in definition 1.

Definition 6 [6, 14]. Let rA EB be a density operator. AnyNQKDprotocol, which is erob-robust on r[ ]TrE A EB , is
said to be e-secret on rA EB if:

e r r r e- - Ä ¢ ¢ ( ) ( )1
1

2
, B.2S E U Erob A

where rU is the uniform state onAʼs key space.

The following lemmaholds:

Lemma1.Given anNQKDprotocol which is e¢-correct and e-secret, then it is also e e¢ + ( )-secure.
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Proof. From the correctness hypothesis we have:




å å d

$ Î ¼ - ¹ = - Î ¼ - ¹

= - ¼ = -
Î

[ { } ] [ { } ]
( ) ( )

i N s s i N s s

P s s P s s

Pr 1, , 1 : 1 Pr 1, , 1 :

1 , , 1 , ,

A B A B

s
S

s
S A sS

s
S B s

,

i i

A

A

A AB

B

B B

where d dº P =
-

s i
N

s ss 1
1

A A BiB
. Therefore, e¢-correctness yields:

å d
e
e

-
¢

-
( )( ) ( )P s s, 1

1
. B.3

s
S A s

s
S B s

, robA

A A

B

B B

From the secrecy hypothesis we have:








å å

å å

å å

r r r r r

r r

r r
e
e

- Ä = ñá Ä - ñá Ä

= ñá Ä -

= -

-

¢ ¢ ¢ ¢

¢ ¢

¢ ¢

 

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( ) ∣ ∣
∣ ∣

∣ ∣

∣ ∣ ( )
∣ ∣

( )
∣ ∣

B.4

P s s s s s

s s P s

P s

s

s

s

1

2

1

2
,

1

1

2
,

1

1

2
,

1

1
.

S E U E
s

S A A A E
s

s
A A E

s
A A S A E

s
E

s
S A E

s
E

s
S B

s

s
S B

s

s
S B

s

,

,

,

,

rob

A

A

A
A

A

A

A
A

A

A
A

B

B
B

B

B
B

B

B
B

Having obtained inequalities (B.3) and (B.4), we are ready to prove the thesis:

























å

å

å

å

å

å å

å

å å

å å

å å

å

r r r

r

d r

r
d
r

d r
d
r

d r
d
r

d r r r

e
e

r r

e
e

r r

r r

e
e

e
e

r d

e
e

e
e

r d

e
e

e
e

- Ä

= ñá Ä ñá Ä

- ñá Ä ñá Ä

= -

= - -

+ -

= - + ¼ -

¢
-

+ ¼ -

¢
-

+ ¼ -

+ -

¢
-

+

-

+ -

¢
-

+

-

+ -

¢
-

+

-

¢ ¢

¢

¢

¢ ¢

¢ ¢

¢ ¢

¢ ¢
¼

¢

¢
¼

¢

¢
¼

¢

¢ ¢

¢

¢

 

 

 

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥
⎥

( )

( ) ∣ ∣ ∣ ∣

∣ ∣
∣ ∣ ∣ ∣

( )
∣ ∣

( ) ( )
∣ ∣

( )
∣ ∣

( ) ( ) ( )
∣ ∣

( ) ( )
∣ ∣

( ) ( ) ( )

( )
∣ ∣

( ) ( ) ( )

( ) ( ) ( )

( )

( )

( )

( )

( )
B.5

P s s s

s s

P s

P s

P s

P s P s s

P s s

P s s P s

P s

P s

P s

s s s

s s

s

s

s

s

s

s

s

s

1

2

1

2
,

1

1

2
,

1

2
1 ,

,

1

2
1 , , ,

1

2 1

1

2
, ,

1

2 1

1

2
, , ,

1

2
,

1

2 1 1

1

2
, 1

2 1 1

1

2
, 1

1 1

S E E

s
S A A A E

s

s
s A A E

s
S A E

s s
E

s
s S A E

s s
E

s
s S A E

s s
E

s
s S A E

s

s
S A A E

s s
E

s
S A A E

s s
E

s
S A A E

s s
S A E

s

s
S A E

s
E

s
S A E

s
s

s
S A E

s
s

S U

s
S B B B

s

s
s B B

s
S B

s s

s
s S B

s s

s
s S B

s s

s
s S B

s
S

S

S
s

S B
s

s
S B

s

s
S B

s
s

s
S B

s
s

,

,

,

,

,

,

,

,

,

,

, , ,

1

rob

, ,

2

rob

, , ,

,

3

rob rob

,

4

rob rob ,

,

5

rob rob

A

A

A
A

A

A

A

A
A A

A

A A
A A

A

A A
A A

A

A A
A

A

A
A A

A

A
A A

A

A
A A

A
A

A

A
A

A

A
A

A

A

A
A

A

B

B

B
B

B

B

B

B
B B

B

B B
B B

B

B B
B B

B

B B
B

B

B

B

B

B
B

B

B
B

B

B
B

B

B

B
B

B

which concludes the proof according to the security definition in definition 2.Note that wemade use of the
following properties: (1) the fact that the operator r ¢E

s s,A B is normalized and (B.3); (2) triangle inequality; (3) (B.4);
(4) triangle inequality; ( )5 r ¢E

s s,A B is normalized and (B.3). ,

Wenowprove the result on the achievable key length of a general NQKDprotocol:
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Proof of theorem1. In the post-processing protocol PP EC { },i , the sub-protocol which transforms partially

correlated key pairs into fully correlated ones is defined by the set EC =
-{ }i i

N
1

1. Because EC =
-{ }i i

N
1

1 is eEC-secure (in
the sense of definition 3) on the classical probability distribution defined by rXK, according to definition 5 the
wholeNQKDprotocol is eEC-correct on rA EB . Thus by lemma 1we only need to show that theNQKDprotocol
is e e+( ¯ )2 PA -secret in order to complete the proof, i.e.:

r r r
e e
e

- Ä
+
-¢ ¢ 

¯ ( )1

2

2

1
. B.6S E U E

PA

rob
A

We stress the fact that in Eveʼs subsystem ¢E we included not only Eveʼs quantumdegree of freedomE , but also
her knowledge about the classical communicationC occurring during error correction (defined by EC{ }i ) and
the classical communication taking place in privacy amplificationF (defined by the set  ).

In order to prove (B.6), we start from the result in [8, corollary 5.6.1] stated in a slightly weaker form:

r r r
e
e

- Ä
¢

-
+ r

¢ ¢
- -e ¢

 
¯ ( )ℓ( ( ∣ ) )¯4

1
2 B.7S E U E

H EC

rob
A

X EC
1
2 min

valid e" ¢¯ , whereℓis the number of key bits after privacy amplification. The inequality (B.7) leads to a sufficient
condition for (B.6) to be true, namely:

r
e

e e e
-

-
+ - ¢

e¢ ℓ( ∣ ) ( ¯ ¯ ) ( )¯H EC 2 log
1

2 2 2
B.8X ECmin 2

rob

PA

therefore wewill now focus on proving (B.8), having fixed: e e¢ =¯ ¯ .
Wefirst prove the result without assuming that the classical communicationC is one-way, i.e. itmay also

depend onBʼs raw keys. Thenwe showhow to achieve a slightly stronger result by assuming one-way classical
communication.

Two-way EC: Since the purified distance is an upper bound to the trace distance, an ε-environment defined
with the latter is larger (A.4). Thus:

r re e( ∣ ) ( ∣ ) ( )¯ ¯H E H EC C . B.9X E X EC Cmin min
,P

The result stated in appendix E yields:

r r r r r- -e e( ∣ ) ( ∣ ) ( ( ) ( ∣ )) ( )¯ ¯H E H E H HC . B.10X E XE X XC C KC Kmin
,P

min
,P

0 min

Now let us concentrate on the last two terms in (B.10):

(i) By definition (A.8): r r=( ) ( )H log rankC C0 2 , with:

år = ¼ ñá
¼

-
=

-

-

( ) ⨂ ∣ ∣ ( )P c c c c, , , B.11
c c

N
i

N

i iC C
, ,

1 1
1

1

N1 1

therefore r = ¼ -( ) ∣ ∣rank NC 1, , 1 according to (1.5).

(ii) By definition (A.9): r r l= -( ∣ )H log minX XKC Kmin 2 , whereλ is a real parameter satisfying:



l r r
l

Ä -
¼ " ¼= = - -

( )
⟺ ( ∣ )∣P c c x x c ck k

id 0

, , , , , , , .
X X

X x N N

K C KC

C K k, 1 1 1 1

Therefore

l = ¼= = -( ∣ ) ( )∣P c c x kmin max , , , , B.12
x

X x N
c k

C K k
, ,

, 1 1

which yields:

r r = - ¼

=

= = -

= =

⎡
⎣⎢

⎤
⎦⎥( ∣ ) ( ∣ )

( )
∣

∣

H P c c x

H P

kmin log max , , ,

min ,

X X
x

X x N

x
X x

KC K
k c

C K k

k
C K k

min
,

2 , 1 1

,
min ,

where in the last inequality we used the definition ofmin-entropy for probability distributions (A.11).

Substituting now in (B.10), recalling definition 4 and using (B.9) yields:

ECr r -e e( ∣ ) ( ∣ ) ( )¯ ¯ { }H E H EC leak . B.13X E XECmin min
,P NQKD

i
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By using the assumption (1.6) in the last inequality concludes the proof:

EC



r r
e
e

-

+
-

e e

ℓ

( ∣ ) ( ∣ )
( )

¯ ¯ { }H E H EC leak

2 log
1

2
B.14

X E XECmin min
,P NQKD

2
rob

PA

i

sincewe have just obtained (B.8)withfixed e e¢ =¯ ¯ .
One-way EC: For the chain rule [8, equation (3.21)]we have:

r r r-e e( ∣ ) ( ∣ ) ( ) ( )¯ ¯H E H E HC , B.15X E X EC C Cmin min 0

where the quantum state is, under the assumption of one-way ECprotocols:

år r r= ñá Ä Äˆ ∣ ∣ ˆ ( )x x , B.16X E
x

x
E
x

C C

where the hat ·̂ indicates normalized density operators and:

år rº ( ) ˆ ( )P x k, . B.17E
x

X E
x

k
K

k,

Since in (B.16) the state conditioned on the classical subsystemX is a product state, by [8, equation (3.22)]we
conclude that:

r r r r+e e( ∣ ) ( ∣ ) ( ∣ ) ( )¯ ¯H E H E H . B.18X E XE X XC Cmin min min

Substituting (B.18) in (B.15) yields:

r r r r r- -e e( ∣ ) ( ∣ ) ( ( ) ( ∣ )) ( )¯ ¯H E H E H HC , B.19X E XE X XC C Cmin min 0 min

which is equivalent towhatwas obtained in the two-way scenario (B.10) except for the ε-environment of the
min-entropy, here defined via the trace distance. Analogous steps to those employed in the first part lead to the
claim valid for one-way EC. ,

Finally, we showhow to obtain an upper bound on the leakage of an optimal EC protocol.

Proof of theorem2. Let be the set of possible raw keys held byA, while  is the set of possible raw keys held by
B. Let us consider the followingN-partite one-way ECprotocol  ˆEC , (generalization of the bipartite version in
[8, lemma 6.3.3]):

Parameters:

• ̂ : family of sets Íˆ
k
i

i
parametrized by the index iwhich identifiesBi and by Îki .

•  : family of hash functions from to  .

Protocol:

(i) A receives as input the raw key Îx , whileBi receives the raw key Îki .

(ii) A chooses uniformly at random Îf R and defines º ( )z f x . Then, A sends the classical message ( f, z)
to B.

(iii) Bi selects the set ̂ k
i

i
corresponding to the key ki he is holding, and defines:  º Î =ˆ { ˆ ˆ ( ˆ ) }x f x z:i i k

i
ii

.

(iv) If  ¹ Æˆ
i thenBiʼs guess ofAʼs key is Îˆ ˆxi R i, otherwise the protocol aborts.

The proof consists of two parts. Thefirst part extends the result stated in [8, lemma 6.3.3] to themultipartite
scenario, while the second part generalizes [8, lemma 6.3.4].

Part 1:Wefirst show that the above-defined  ˆEC , , for an appropriate choice of the parameters ̂ and  , is
0-robust on eP ,XK EC-fully secure (see definition 3), and has leakage:

 
 e+ + -( ∣ ) ( ) ( ) ( )ˆ H P K Nleak max log 2 log 1 . B.20

i
XK iEC

NQKD
0 2 EC 2i,

Let eº + - +⎡⎢ ⎤⎥( ∣ ) ( ) ( )z H P K Nmax log 1 log 1i XK iEC 0 2 2 ECi and let  be a two-universal family of hash

functions from to  = { }0, 1 zEC.Moreover, let =ˆ { ˆ }k
i

i
be the family of sets defined by

 ºˆ ( )Psuppk
i

X
i k,

i
i , where ( )Psupp X

i k, i denotes the support of the function:  ( )P x P x k: ,X
i k

XK i
, i

i
. From the

choice of  we know that: ¢ = ¢¹
-[ ( ) ( )]f x f xPr 2f x x

zEC for Îf R andfixed elements ¢ Îx x, . Note that
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the two parameters ˆ , defining the ECprotocol are completelyfixed by themarginals distributions PXKi
of

the given probability distribution PXK.
For any given set of raw keys ¼ -( )x k k, , , N1 1 (not necessarily generated by PXK), one can bound the

probability that the protocol  ˆEC , does not abort and outputs awrong guess for at least one Bob, as:



















å

å

È

È

¹ Æ "  $ ¹ $ ¹

$ Î ¹

= $ Î ¹  =

¹
È

È

=
-

=
-

Î ¹

Î ¹

-
=
-

=
-

⎡⎣ ⎤⎦

[ ˆ ˆ ] [ ˆ ]
[ ˆ ˆ ˆ ]

ˆ ˆ ˆ ( ˆ) ( )
[ ( ˆ) ( )]

( )

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

i i x x i x x

x x x

x x x f x f x

f x f x

Pr : Pr :

Pr :

Pr :

Pr

2 , B.21

f i i f i

f i
N

i

f i
N

k
i

x x x

f

x x x

z

x x, ,

1
1

1
1

,

,

i

i
N

ki

i

i
N

ki

i

1
1

1
1

EC

where the third inequality is due to theunionboundand the fourth to the chosen set . Finally,we canbound (B.21)by:

 





È

e

¹ Æ "  $ ¹

-

=

=
- -

-

- -

[ ˆ ˆ ] ˆ
( ) ∣ ( ) ∣

ˆ

( ) ( ∣ )

i i x x

N P

Pr : 2

1 max max supp 2

2 2 2

f i i i
N

k
i z

i k
X
i k z

N H P K z

x, 1
1

,

log 1 max

EC

i

i

i

i
XKi i

EC

EC

2
0 EC

which proves that  ˆEC , is eEC-fully secure according to definition 3.Note that we used (A.6) for the equality
and the definition of zEC in the last inequality.

If the set of keys ¼ -( )x k k, , , N1 1 is nowgenerated by the distribution PXK, then Î "ˆx ik
i

i
since

¹ "( )P x k i, 0XK ii
(otherwise the pair ( )x k, i couldnot have been generated). Therefore, being =( )f x z trueby

definition, the sets ̂i are never empty, thus theECprotocol never aborts, i.e. it is 0-robust (definition 1)on PXK.
Let us now consider the leakage of the protocol  ˆEC , . Since it is a one-way ECprotocol where the

information sent to one Bob is then copied and then sent to all the other Bobs, the leakage reads (definition 4):

 
 
= ´ - =∣ ∣ ( ) ( )∣ˆ H Pleak log min . B.22

x
C X xEC

NQKD
2 min,

For this ECprotocol, after having fixedAʼs key x, the classical communication ( f,z) is simply depending on the
random choice of f, therefore: == ∣ ∣∣P 1C X x . Substituting in (B.22) yields:

  


 





e

e

e

= ´ -

=

= + - +

+ + - +

= + + -

⎡
⎢⎢

⎤
⎥⎥

∣ ∣ ∣ ∣
∣ ∣

( ∣ ) ( ) ( )
( ∣ ) ( ) ( )

( ∣ ) ( ) ( )

ˆ

/

/

z

H P K N

H P K N

H P K N

leak log log

log

max log 1 log 1

log 2 max log 1 log 1

max log 2 log 1 ,

i
XK i

i
XK i

i
XK i

EC
NQKD

2 2

2 EC

0 2 2

2 0 2 2

0 2 2

i

i

i

,

which concludes thefirst part of the proof (B.20).
Part 2:Nowweemploy the result (B.20) for another protocol  ˆEC , where theparameters ˆ , are definedby

anewset of distributions =
-{ ¯ }PXK i

N
1

1
i

linked to themarginals of PXK. Such anECprotocolwill be the one that satisfies
the claim (1.7). Thedistributions =

-{ ¯ }PXK i
N

1
1

i
are obtainedby thedefinitionof smoothRényi zero-entropy (A.7):

 e

" Î ¼ - $

- ¢  = e¢ 

{ } ¯
¯ ( ¯ ∣ ) ( ∣ ) ( )
i N P

P P H P K H P K

1, , 1 s.t.

2 , B.23

XK

XK XK XK i XK i0 0

i

i i i i

where the distance between twoprobability distributions is defined as:

å- = -  ∣ ( ) ( ) ∣P Q P x Q x .
x

Wedefine º¯ ( ¯ ∣ )i H P Kargmaxi XK i0 i , then (B.23) implies:



= = e

e

¢

¢

( ¯ ∣ ) ( ¯ ∣ ) ( ∣ )
( ∣ ) ( )

¯ ¯¯ ¯H P K H P K H P K

H P K

max

max . B.24

i
XK i XK i XK i

i
XK i

0 0 0

0

i i i

i

Let us now consider the protocol  ˆEC , where ̂ and  arefixed by the above-defined set of distributions

=
-{ ¯ }PXK i

N
1

1
i

. Then, by (B.20)we know that such an ECprotocol is eEC-fully secure and has leakage:
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 




e

e

+ + -

+ + -e¢

( ¯ ∣ ) ( ) ( )
( ∣ ) ( ) ( )

ˆ H P K N

H P K N

leak max log 2 log 1

max log 2 log 1 ,

i
XK i

i
XK i

EC
NQKD

0 2 EC 2

0 2 EC 2

i

i

,

wherewe used (B.24) in the second inequality.
The last thing to be shown is that such an ECprotocol is also e- ¢( )N2 1 -robust on the distribution PXK:

 e- ¢[ ] ( ) ( )( ) NPr abort 2 1 , B.25x Pk,

i.e. the probability that the protocol aborts when initiatedwith a set of keys ( )x k, generated by the distribution
PXK is lower or equal than e- ¢( )N2 1 8 . Let us compute the probability of  ˆEC , to abort:





= $ = Æ

= - ¹ Æ "

[ ] [ ˆ ]
[ ˆ ]

( ) ( )
( )

i

i

Pr abort Pr :

1 Pr .

x P x i P

x i P

k k

k

, ,

,

One of the possibilities for ̂i not to be empty is  Î « Î « ¹ˆ ˆ ¯ ( )x x P x k, 0i k
i

XK ii i
, which is not obvious

since xwas generated through the distribution PXK. Therefore:

 ¹ Æ " ¹ "[ ˆ ] [ ¯ ( ) ] ( )( ) ( )i P x k iPr Pr , 0 . B.26x i P x XK i Pk k, , i

By employing the following inequality fromprobability theory (straightforward proof based on union bound
and de-Morgan’s law):

å - -
= =

⎛
⎝⎜

⎞
⎠⎟⋂ ( ) ( ) ( )A A nPr Pr 1 , B.27

i

n

i
i

n

i
1 1

where ( )APr i is the probability of eventAi, we are able to recast the rhs of (B.26) as:

 

 å

¹ Æ " ¹ "

¹ - - -
=

-

[ ˆ ] [ ¯ ( ) ]
[ ¯ ( ) ] [( ) ] ( )

( ) ( )

( )

i P x k i

P x k N

Pr Pr , 0

Pr , 0 1 1 . B.28

x i P x XK i P

i

N

x k XK i P

k k, ,

1

1

,

i

i i

Wenow concentrate on computing ¹[ ¯ ( ) ]( ) P x kPr , 0x k XK i P, i i
, which is the probability that, having generated the

couple ( )x k, i fromdistribution PXKi
, it holds that ¹¯ ( )P x k, 0XK ii

.We employ the fact that by assumption
(B.23) the distance between the two involved distributions is bounded by e¢2 , which implies that, for instance:

 e- ¢ "∣ ( ) ¯ ( ) ∣ ( ) ( )P x k P x k x k, , 2 , . B.29XK i XK i ii i

Let us focus on the probability of the complementary event: =[ ¯ ( ) ]( ) P x kPr , 0x k XK i P, i i
. Since this event is a

sufficient condition for having  e¢( )P x k, 2XK ii
(because of (B.29)), thismeans that:

 e¢ =[ ( ) ] [ ¯ ( ) ] ( )( ) ( )P x k P x kPr , 2 Pr , 0 , B.30x k XK i P x k XK i P, ,i i i i

but the lhs of (B.30) can be bounded by:

 e e¢ ¢[ ( ) ] ( )( ) P x kPr , 2 2 , B.31x k XK i P, i i

therefore we have:

 e¹ - ¢[ ¯ ( ) ] ( )( ) P x kPr , 0 1 2 . B.32x k XK i P, i i

Substituting in (B.28) yields:

  e e¹ Æ " - - ¢ + - - = - - ¢[ ˆ ] ( )( ) ( ) ( ) ( )( ) i N N NPr 1 1 2 1 1 1 1 2 . B.33x i Pk,

With this result we can conclude that:



 e
= - ¹ Æ "

- ¢
[ ] [ ˆ ]

( )
( ) ( ) i

N

Pr abort 1 Pr

2 1
x P x i Pk k, ,

which concludes the proof. ,

AppendixC.Quantifying the channel’s noise

As anticipated in section 2, one can bound Eʼs knowledge about the secret key by quantifying the noise she
introduced in the quantum channel.

8
Note that this ECprotocol is defined by the distributions P̄XKi which are one by one e¢2 -close to themarginals of the distribution PXK

defining the EC protocol of part 1, whichwas shown to be 0-robust on PXK. It is not straightforward to infer—unlike the bipartite case—that
the newECprotocol is then e- ¢( ) ·N 1 2 -robust on PXK.

16

New J. Phys. 20 (2018) 113014 FGrasselli et al



In this sectionwe showhow the relevant noise parameters of both protocols can be estimated from thefinite
statistics collected in PE.

C.1.N-BB84 protocol
In theN-BB84 protocol, the important noise parameters that are subsequently used to characterizeEʼs
knowledge are QAB

n
i
andQX

n , i.e. the frequency of discordantZ-outcomes betweenA andBi and the frequency of

the outcome = -ÄX 1N , respectively. Both frequencies refer to hypotheticalmeasurements performed on the
remaining n signals following PE. The goal is to characterize the noise parameters based onwhat is observed in
PE (QAB

m
i
andQX

m). This is easily achieved bymeans of the following lemma (generalization of a result presented
in [14, suppl. note 2]):

Lemma2. Let e > 0. Let R be a random binary string of = +M n m bits with relativeHammingweight
L = ∣ ∣RM M

1 . Let ¼R R, , m1 be random variables obtained by sampling m random entries of R without replacement.

Then, upon defining:

L =
å

== ∣( ) ∣ ( )R

m m

R
, C.1m

i
m

i m1

L =
∣( ) ∣ ( )

n

R
C.2n

n

as the relativeHammingweights9 of the two randomly chosen partitions of R, it holds:






x e e

x e e
x e e

L - L >

L > L +
L > L +

⎡
⎣⎢

⎤
⎦⎥∣ ∣ ( )

[ ( )]
[ ( )] ( )

n m

n m

m n

Pr
1

2
, , 2

Pr 2 , ,

Pr 2 , , , C.3

n m

n m

m n

where:

x e
e

º
+ + ⎜ ⎟⎛

⎝
⎞
⎠( ) ( )( ) ( )n m

n m m

nm
, ,

1

8
ln

1
. C.4

2

Proof. Let usfirstfix the randombit string R to a given and known string: ºR r; thus also its relativeHamming
weight isfixed to some real value: lL ºM M . Then it holds [25, theorem 1]:

l d lL - > = L = d- +[∣ ∣ ∣ ] ( )R rPr , 2 e , C.5n M M M
2 nM

m 1
2

l d lL > + = L = d- +[ ∣ ] ( )R rPr , e . C.6n M M M
2 nM

m 1
2

By defining n = m

M
, it is immediate to show the following facts for every m Î :

n n
nm m

L = L + - L
L - L > L - L >

( )
∣ ∣ ⟺ ∣ ∣ ( )

1

, C.7
M m n

n M n m

nm mL > L + L > L +⟺ ( ). C.8n M n m

Nowone canmake use of (C.5) and (C.7) in the following calculation:



å

å

m nm
l nm l

L - L > = L - L >
= = L - > = L =

=

=

m

m

-

-

+

+

[∣ ∣ ] [∣ ∣ ]
[ ] [∣ ∣ ∣ ]

[ ]

( )( )

R r R r

R r

Pr Pr

Pr Pr ,

Pr 2 e

2 e . C.9

n m n M

n M N M
r

r

2

2

nM
m

m
M

nm
m M

1
2
2

2

2

1
2

Analogously, by using (C.6) and (C.8) one obtains:

mL > L + m- +[ ] ( )( )Pr e . C.10n m
2 nm

m M

2

1
2

Finally, by choosingμ such that it holds: e=m- +( )e 2 nm
m M

2

1
2

, i.e. m x e= ( )n m2 , , with x e( )n m, , defined as in
(C.4), one obtains from (C.9) and (C.10):

9
Wedenote by ( )R m them-bit string composed by the randomvariables ¼R R, , m1 , while ( )R n is the n-bit string composed by the

remaining entries of R .
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



x e e

x e e

L - L >

L > L +

⎡
⎣⎢

⎤
⎦⎥∣ ∣ ( )

[ ( )]
n m

n m

Pr
1

2
, , 2

Pr 2 , ,

n m

n m

which is exactly the claimed result in (C.3). The last expression in (C.3) is simply obtained by exchanging the
roles of n andm. ,

In order tomake use of lemma 2, we define the following randomvectors containing the outcomes ofA and
BiʼsZ-measurement rounds devoted to PE:

º
= -
=

º
= -
=

⎧⎨⎩
⎧⎨⎩( ) ( ) ( )z

z

z

z
Z Z

1 1

0 1

1 1

0 1
. C.11a j

a j

a j
j

i j

i j
i

,

,

,

,

Analogously, we define the randomvectors containing the outcomes ofA andBʼsX-measurement rounds:

º
= -
=

º
= -
=

⎧⎨⎩
⎧⎨⎩( ) ( ) ( )x

x

x

x
X X

1 1

0 1

1 1

0 1
. C.12j

a j

a j
j

i j

i j
a i

,

,

,

,

With these definitions, it holds:




Å Å Å =
= -

=
-

=
-

=
-

⎧
⎨⎪
⎩⎪

( ) ( )
( )

( )x x

x x
X X X...

1 1

0 1
C.13j

a i

N
i j

a i

N
i j

a 1 N 1
1

1

1

1

therefore it is immediate to verify that:

=
Å

=
Å Å Å -

∣ ∣

∣ ∣ ( )

Q
m

Q
m

Z Z

X X X...
. C.14

AB
m a

X
m

i

a 1 N 1

i

Sincewewere able towrite the frequencies QAB
m

i
andQX

m as relativeHammingweights of randomvectors, we can
apply lemma 2 and state that:

  x e x e e+  + " -[ ( ) ( ) ] ( )Q Q n m Q Q n m iPr 2 , , 2 , , 1 , C.15X
n

X
m

x AB
n

AB
m

z PE
2

i i

wherewe used (B.27) and defined:

e e eº - +( ) ( )N 1 . C.16z xPE

C.2.N-six-state protocol
In this case E is supposed to gain information about the key only via collective attacks, i.e. she attacks each of the
shared signals independently and identically10. Thus, the needed noise parameters are the probabilities PX,PABi

andPZ computed on a singleN-qubit signal state, which in turn has a very simple expression [5, equation (11)]
thanks to the extended depolarization procedure.

The PE frequencies ¢Q Q,X
m

AB
m

i
andQZ

m are thus observed onmultiple copies of the sameN-qubit signal state.
Therefore they constitute an estimation of the corresponding probabilities by the law of large numbers [26]:

 

 

h e h e

h e e

- "  - ¢

 - ¢ -

¢⎡
⎣⎢

⎤
⎦⎥

∣ ∣ ( ) ∣ ∣ ( )

∣ ∣ ( ) ( )

Q P m i Q P m

Q P m

Pr
1

2
, 2,

1

2
, 2,

1

2
, 2, 1 , C.17

AB
m

AB z X
m

X x

Z
m

Z z PE

i i

wherewe used (B.27) and defined:

e e e eº ¢ + - +( ) ( )N 1 C.18z z xPE

h e
e

º
+ +( ) ( ) ( ) ( )d m

d m

m
, ,

ln 1 ln 1

8
. C.19

AppendixD.Derivation of the computable key lengths

In order to obtain a computable key length for theN-BB84 (theorem3) and theN-six-state (theorem 4) protocol
starting from the general result (theorem1), one needs to lower bound themin-entropy (which quantifiesEʼs

10
Then the result is extended to coherent attacks via the PS technique, see appendixD for the details.
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uncertainty about the key) and to upper bound the leakage termwith quantities depending on the channel’s
noise.

In this sectionwe showhow to achieve this task for both protocols and how to further characterize the noise
via the PEfinite statistics, by using the results of appendix C.

Concerning the notation, for the remainder of the sectionwe indicate with an apex the number of signals
described by the quantum state, andwe also indicate asZ the classical system containingAʼs raw key bits (since in
both protocols the raw keys are generated byZ-basismeasurements). Thus the quantum state describing the
parties’ raw keys andEʼs degree of freedom is indicated as: rZ E

n
K .

D.1.N-BB84 protocol
Leakage. The leakage of an optimal one-way ECprotocol (1.7) is bounded by the smoothRényi zero-entropy of
the probability distribution ofA andBiʼs raw keys (A.7). Note that, thanks to (A.4), we can bound such an
entropy by:

e e( ∣ ) ( ∣ ) ( )H P K H P K . D.1ZK
n

i ZK
n

i0 0
,P

i i
PE PE

In this way, one can follow the proof of [14, lemma 3] and show that there exists a probability distribution
Î e ( )R PZK

n
ZK
n,P

i i
PE such that the frequency of discordant bits (QAB

n
i
) is less or equal than x e+ ( )Q n m2 , ,AB

m
zi

,
with certainty. Note that this is not true for the distribution PZK

n
i
, since it holds condition (C.15).

This upper limit on the number of discordant bits betweenA andBi, when the keys are generated by RZK
n

i
,

allows one to bound the Rényi zero-entropy of such a distribution by x e+( ( ))nh Q n m2 , ,AB
m

zi
.

Finally, since the smoothRényi entropy of order zero is definedwith aminimization over its ε-environment
(A.7), one obtains:

 x e+e ( ∣ ) ( ( )) ( )H P K nh Q n m2 , , . D.2ZK
n

i AB
m

z0
,P

i i
PE

Combining (D.1) and (D.2)with theorem 2 leads to the desired result. The leakage occurring in theN-BB84
protocol, implementedwith the optimal one-way, eEC-fully secure and e-( )N2 1 PE —robust EC protocol, is:

 x e
e

+ +
-( ( )) ( ) ( )n h Q n m

N
leak max 2 , , log

2 1
. D.3

i
AB
m

zEC
NQKD

2
EC

i

Min-entropy. Let r +A E
n m

B
2 be the pure state describing thewhole set of quantum signals and Eʼs quantum

system. The state rZE
n is then obtained by performing independentZ-measurements onAʼs subsystems and

taking the partial trace overBʼs ones, after the PE procedure took place on m2 signals. If we nowdefine rX
n

B as
the state obtained by performing independentX-measurements onAʼs subsystems and then taking the partial
trace over E, we can employ the uncertainty relation [11]:

r r-e e( ∣ ) ( ∣ ) ( )¯ ¯H E q H B , D.4ZE
n

X
n

Bmin
,P

max
,P

where = -q clog2 , with:

= Ä Ä Ä Ä ¥ ( )( ) ( )c P P P Pmax ... ... D.5z z x x
z x,

2
n n1 1

and Ä Ä Ä ÄP P P P... , ...z z x xn n1 1
are the projectors implementing theZ- andX-measurements onAʼs

subsystems, respectively. In particular, Î ñ ñ{ }∣ ∣P P P,z 0 1i
and Î +ñ -ñ{ }∣ ∣P P P,xi

. Therefore one can easily
compute the quality factor q in this specific case: q=n11.

We can nowbound themax-entropy (A.15) of the classical-quantum states rX
n

B by performing the same
projectivemeasurement on allBʼs subsystems and by employing the data processing inequality [24, theorem
6.2]:

r re e( ∣ ) ( ∣ ) ( )¯ ¯H HB X D.6X
n

X
n

B Xmax
,P

max
,P

which inserted in (D.4) yields:

r r-e e( ∣ ) ( ∣ ) ( )¯ ¯H E n H X . D.7ZE
n

X
n

Xmin
,P

max
,P

Finally one can bound themax-entropy of the classical state rX
n

X—i.e. of the probability distribution PX
n

X—by
means of [14, lemma 3]. As amatter of fact, one can consider thewhole set ofB as one single Bobwith theX-
outcomes vector defined as:

¢ = Å Å - ( )X X X... , D.81 N 1

where the random vectors are defined in (C.12). Under this classical operation the data processing inequality
holds:

11
The norm ¥ · evaluates the largest singular value.
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r = ¢e e e
¢( ∣ ) ( ∣ ) ( ∣ ) ( )¯ ¯ ¯H H P H P XX X . D.9X

n
X
n

XX
n

X Xmax
,P

max
,P

max
,P

In this fashion, the PE parameterQX
m is exactly the frequency of discordant bits between Xa and ¢X (see its

definition in (C.14)). Therefore one can apply [14, lemma 3]:

 x e¢ +e
¢( ∣ ) ( ( )) ( )H P X nh Q n m2 , , D.10XX

n
X
m

xmax
,PPE

which combinedwith (D.9) yields:

r x e+e ( ∣ ) ( ( )) ( )H nh Q n mX 2 , , . D.11X
n

X
m

xXmax
,PPE

Finally inserting (D.11) in (D.7) after having fixed: e e=¯ PE, yields the desired result:

r x e- +e ( ∣ ) ( ( ( ))) ( )H E n h Q n m1 2 , , . D.12ZE
n

X
m

xmin
,PPE

Computable key length.By employing the bounds on the leakage (D.3) and on themin-entropy (D.12) in theorem
1, one obtains the computable key length presented in theorem3, which only depends on the PE statistics and on
the security parameters.

D.2.N-six-state protocol
As anticipated in section 2.1, the strategy adopted to achieve a computable expression of theN-six-state key
length relies on the PS technique [12]. Such a technique allows to prove a given property of a quantum channel,
acting on a generalmultipartite state, by just proving it on inputs consisting of identical and independent copies
of a state on a single subsystem. Therefore one can infer the security of aQKDprotocol -viewed as a quantum
channel- under coherent attacks (arbitrary input) from the security of the same protocol under collective attacks
(product state input) [27]. For this reason in the followingwe restrict Eʼs action to collective attacks,meaning
that the quantum state describing the parties’ raw keys andEʼs quantum system is a product state: rÄZ E

n
K , and the

raw keys’ probability distribution is a product distribution: ( )PZ
n

K .
Leakage.We start from the general upper bound stated in (1.7) and employ thefinite version of the AEP for

probability distributions [28, theorem1] to further bound the smoothRényi zero-entropy (A.7):


e

+e
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥(( ) ∣ ) ( ∣ ) ( ) ( ( )) ( )H P K n H Z K

n
log 5

2 log 1 2
, D.13ZK

n
i i0 2

2 PE
i

PE

wherewefixed e e¢ = PE as defined in (C.18) andwhere ( ∣ )H Z Ki is the conditional Shannon entropy of PZKi
.

Thanks to the symmetries introduced by the extended depolarization procedure [5] each raw key bit is uniform:
= =( ) ( )H Z H K 1i . These constraints on the probability distribution PZKi

imply that its conditional entropy
( ∣ )H Z Ki can be expressed as a function of the only parameter PABi

as follows: =( ∣ ) ( )H Z K h Pi ABi
.

Finally, we characterize the probability PABi
through the observed frequency QAB

m
i
in PE (C.17). In particular,

we exploit the composable-security property by adding ePE to the total security parameter and bymaximizing
(D.13) over the allowed probabilities. Combining this with theorem2 leads to the desired result. The leakage
occurring in theN-six-state protocol, implementedwith the optimal one-way, eEC-fully secure and

e-( )N2 1 PE —robust ECprotocol, is:

 h e
e

e

+ +

+
-

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ( )) ( ) ( ( ))

( ) ( )

n h Q m
n

N

leak max 2 , 2, log 5
2 log 1 2

log
2 1

. D.14

i
AB
m

zEC
NQKD

2
2 PE

2
EC

i

Min-entropy.Wecan bound themin-entropy of a product state via thefinite version of the AEP for quantum
states, reported in [29, equation (B7)]:

r r r
e

- -e Ä
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ∣ ) ( ) ( ) ( ¯ ) ( )¯H E n S S

n
5

log 1
, D.15ZE

n
ZE Emin

2

where r( )S is theVonNeumann entropy. The rhs of (D.15) can be recast in terms of the probabilitiesPX andPZ,
by following analogous steps in [5] and by exploiting the symmetries of the single-signal state due to the extended
depolarization procedure.

Finally, the probabilitiesPX andPZ are characterized by the PEmeasurements through (C.17). Thuswe can
minimize themin-entropy bound over the allowed probabilities while adding the PE failure probability ePE to
the total security parameter. These operations yield:
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log 1
, D.16

ZE
n Z

X
Z

X

X
Z

X
Z

Z Z

min 2

2 2
2

PE

where the set GPE is defined in (2.6).
Computable key length.By substituting the bounds (D.14) and (D.16) into theorem 1, one obtains the

computable key length of theN-six-state protocol when performed under collective attacks.
The PS technique [12] allows to extend the security of a protocol against collective attacks, to any kind of

attack, by just shortening the key length and introducing a corrective factor on the total security parameter.
Consider anNQKDprotocol  acting on L-partite systems (the L shared signals), where each of the L
constituents has dimension d (in our case each signal describes the state ofN qubits, thus =d 2N ). If  is
etot-secure against collective attacks, then the protocol ¢ obtained from  by shortening the output of the
hashing by ‘ - +( ) ( )d L2 1 log 12

2 ’ bits is e+ -( )( )L 1 d 1
tot

2
-secure against coherent attacks. By applying the PS

corrections to theN-six-state key valid for collective attacks, we extend its validity to coherent attacks, yielding
thefinal result: theorem4.

Appendix E. Information leaked from the classical channel

The following lemma is the result of a private communication [10]withRenato Renner. It shows that the
additional information thatEhas aboutAʼs raw keyX due to EC’s classical communication can be quantified by
the leakage (as defined in definition 4), even for a general two-way ECprotocol. The proof relies on the fact that
the ε-environment of the entropies is defined via the purified distance. The crucial advantage of this definition of
distance is that one can alwaysfind extensions and purifications of quantum states without increasing their
distance [30].

Lemma3. Let rX EKC be a density operator with X K C, , classical, such that theMarkov chain condition
« «( )X EC K, holds. Then, for any e 0,

r r r r r- +e e( ∣ ) ( ∣ ) ( ) ( ∣ ) ( )H E H E H HC . E.1X E XE X XC C KC Kmin
,P

min
,P

0 min

Proof.Wefirst prove the statement in the special case where e = 0. This is achieved by the following chain of
inequalities:









r r r

r r r r

r r r r

r r r r

-

+ -

+ -

+ -

( ∣ ) ( ∣ ) ( )
( ∣ ) ( ∣ ) ( )
( ∣ ) ( ∣ ) ( )
( ∣ ) ( ∣ ) ( ) ( )

( )

( )

( )

( )

H E H E H

H H E H

H H E H

H H E H

C

, E.2

X E X E

X E XE XE

X E X E XE

X X XE

C C C

C C

KC K C

KC K C

min

1

min 0

2

min min 0

3

min min 0

4

min min 0

wherewe used: (1) chain rule [8, section 3.1.3], (2) proposition 1 at the end of this section, (3) strong
subadditivity [8, lemma 3.1.7], and (4)Markov chain condition.

To prove the general statement, for any e 0, let r¢XE be the state ε-close to rXE (with respect to the purified
distance) such that:

r r= ¢e ( ∣ ) ( ∣ ) ( )H E H E . E.3XE XEmin
,P

min

Thanks to the definition of purified distance we canfind an extension of r¢XE , namely r¢X EK , such that it is still ε-
close to r r= [ ]TrX E X EK C KC [30], corollary 9].We can assume, without loss of generality, that r¢X EK is classical
onX and K and that r¢XK has support contained in the support of rXK

12. Furthermore, let X XK KC be the
CPTP recoverymap that recovers C from ( )X K, , i.e.: r r=  ( )X X X XKC K KC K . Since X K, and C are classical,
thismap can be chosen to be of the form:

 å á á ñ ñ ñá Ä ñá Ä ñá  ( ∣ ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )∣Q P x x Q x x xc k k k k k c c: , , E.4X X X
x

X XK KC K
k c

C K K
, ,

where ∣P XC K is the conditional probability distribution defined by the ECprotocol which led to the given state
rX EKC . According to the definition ofmin-entropy (A.9), for any QXK that is classical onX and K wehave that:

12
It is always possible to turn subsystems into classical ones by applying aCPTPmap that projects onto the elements of a fixed ‘classical’

basis. Note that such amap cannot increase the distance between states.
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 l= -( ( ) ∣ ) ( )H Q Q log , E.5X X X XK KC K Kmin 2

whereλ is theminimum real number that satisfies the inequality:

ål Ä - á á ñ ñ ñá Ä ñá Ä ñá( ∣ ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣∣Q P x x Q x x xc k k k k k c cid , 0,X
x

X XC K
k c

C K K
, ,

or equivalently:

l - " á á ñ ñ >( ∣ ) ∣ ∣ ∣ ∣ ( )∣P x x x Q xc k k c k k, 0 , , : 0. E.6X XC K K

Theminimumλ satisfying (E.6) is themaximumeigenvalue of the non-normalized state
å ñá( ∣ )∣ ∣∣P xc k c c,Xc C K , furthermaximized over x and k . Thus from [8, remark 3.1.3] combinedwith (E.5)
we get:

 å= ñá
á á ñ ñ>

⎛
⎝⎜

⎞
⎠⎟( ( ) ∣ ) ( ∣ ) ∣ ∣ ( )

∣ ∣ ∣ ∣
∣H Q Q H P xc k c cinf , . E.7X X X X

x x Q x
XK KC K K

k k k c
C Kmin

, : 0
min

XK

Because rX EKC satisfies theMarkov condition « «( )X EC K, , we have:

r r= Ä( )( ) ( )id . E.8X E X X E X EKC K KC K

Therefore, defining:

r r¢ = Ä ¢( )( ) ( )id E.9X E X X E X EKC K KC K

and using the fact that CPTPmaps cannot increase the distance between states, r¢X EKC is ε-close to rX EKC , so
that:

r r¢e ( ∣ ) ( ∣ ) ( )H E H EC C . E.10X E X EC Cmin
,P

min

Furthermore, since r r¢ Í( ) ( )supp suppX XK K , the action of the recoverymap is such that

r r¢ Í( ) ( )supp suppC C , and hence by [8, remark 3.1.3] it holds:

r r¢( ) ( ) ( )H H . E.11C C0 0

Note also that, because of (E.7), themin-entropy of C conditioned onX and K of any classical state QXK only
depends on the recoverymap X XK KC and on the support of QXK . Since the support of r¢XK is contained in the
support of rXK, we have:

r r r r¢ ¢( ∣ ) ( ∣ ) ( )H H . E.12X X X XKC K KC Kmin min

Since r¢X EKC by construction satisfies theMarkov chain condition, inequality (E.2) also holds for this operator,
i.e.:

r r r r r¢ ¢ ¢ + ¢ - ¢( ∣ ) ( ∣ ) ( ∣ ) ( ) ( )H E H H E HC . E.13X E X X XEC KC K Cmin min min 0

Combining (E.13), (E.3), (E.10), (E.11) and (E.12) yields the claim. ,

Proposition 1. For any density operator rABC :

r r r r+( ∣ ) ( ∣ ) ( ∣ ) ( )H C H H C . E.14ABC ABC BC BCmin min min

Proof.By definition ofmin-entropy (A.12), there exists a density operator sC such that:

r sÄr- ( )( ∣ )2 id . E.15BC
H C

B CBCmin

We thus have:

 r r sÄ Är r r r r- - - ( )( ∣ ) ( ∣ ) ( ∣ )2 id 2 id E.16ABC
H

A BC
H H C

AB CABC BC ABC BC BCmin min min

which implies the claim. ,
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Abstract
Twin-field (TF)quantumkeydistribution (QKD) represents a novelQKDapproachwhoseprincipal
merit is to beat the point-to-point private capacity of a lossy quantumchannel, thanks to performing
single-photon interference in anuntrusted node. Indeed, recent security proofs of variousTF-QKD type
protocols have confirmed that the secret key rate of these schemes scales essentially as the square root of
the transmittance of the channel.Here,we focus on theTF-QKDprotocol introducedbyCurty et al,
whose secret key rate is nearly anorder ofmagnitudehigher than previous solutions. Its security relies on
the estimationof thedetectionprobabilities associated to various photon-number states through the
decoy-statemethod.Wederive analytical boundson these quantities assuming that eachparty uses
either two, three or four decoy intensity settings, andwe investigate the protocol’s performance in this
scenario.Our simulations show that twodecoy intensity settings are enough to beat the point-to-point
private capacity of the channel, and that the use of four decoys is already basically optimal, in the sense
that it almost reproduces the ideal scenario of infinite decoys.We also observe that the protocol seems to
be quite robust against intensityfluctuations of theoptical pulses prepared by the parties.

The last few decades havewitnessedmajor advancements in thefield of quantum communication [1, 2], with
quantumkey distribution (QKD) [3–13] being itsmost developed application. Recent experiments over about
400 kmof optical fibers [14, 15] and over about 1000 kmof satellite-to-ground links [16, 17] demonstrated that
QKDover long distances is possible. Despite such remarkable experimental achievements, the private capacity
of point-to-pointQKD is intrinsically limited by fundamental bounds [18, 19]. These bounds state that in the
high-loss regime the key rate scales basically linearly with the transmittance of the channel connecting the end-
users Alice andBob, i.e. it decreases exponentially with the total channel length. This imposes strict practical
constraints on the possibility of achieving point-to-point QKDover arbitrary long distances.

Away to overcome this limitation is to employ one ormore intermediate nodes in the quantum channel
connecting the parties. For instance, the use of quantum repeaters [20] yields a polynomial scaling of the
communication efficiencywith the distance [21].Moreover, a quantum repeater scheme can be arbitrarily
iterated along the quantum channel, thus increasing in principle the total communication distance between
Alice andBob asmuch as desired. Unfortunately, however, quantum repeaters are very challenging to build in
practice with current technology: they either require quantummemories [20–22] or quantum error correction
[23, 24]. Of course, technology is improving, and quantum repeatersmay become viable in the future.

Other solutions, which attain a square-root improvement in the scaling of the key rate with respect to the
transmittance of the channel, are obtained by placing a single untrusted relay betweenAlice andBob. Such
protocols include, for instance,measurement-device-independent-QKD [6] (MDI-QKD)with quantum
memories [25, 26] and adaptiveMDI-QKD featuring quantumnon-demolitionmeasurements [27]. The
philosophy behind both types of protocols is that the central relay is able to adapt the pairings of photons
received fromAlice andBob to the photon losses. In this way, for every signal sent by Alice and Bob to the central
relay, just one of the two signals is required to arrive, leading to thementioned square-root improvement in the
key rate scaling.However, both protocols still require two-photon interference in the central node, as in the
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originalMDI-QKD scheme [6].More recently, [28] proposed the twin-field (TF)QKDprotocol, still
characterized by an untrusted central node, and conjectured a square-root improvement in the key rate scaling.
This scaling has been later on confirmed in [29, 30] for two variants of the original scheme. The advantage of TF-
QKD lies in the fact that it is designed to generate key bits from single-photon interference in the central node,
thus naturally retaining the scaling with the square-root of the transmittancewithout the need to adapt to
photon losses via sophisticated devices.

Since the original proposal, there has been an intense research activity to develop different versions of TF-
QKDprotocols equippedwith their security proofs [29–33] as well as to investigate their experimental feasibility
[34–36]. Among these protocols, the one that seems to deliver the higher secret ket rate [37] is that introduced in
[33]. Its security relies on the ability to estimate the detection statistics (usually called yields) of various Fock
states sent byAlice andBob through the decoy-statemethod [38–40]. The key-rate simulations provided in [33]
indeed exhibit an improved scalingwith the loss, but the estimation of the yields is only carried out bymeans of
numerical tools based on linear programming and considering only the case of three decoy intensity settings.

In this paper, we derive analytical bounds on the yields which are required to evaluate the key rate formula of
[33], assuming two, three and four decoy intensity settings. In so doing, we are able to show, for instance, that the
use of two decoy intensity settings is already enough to beat the point-to-point private capacity bound reported
in [19]. Also, we show that the use of four decoys is basically optimal in the sense that the resulting secret key rate
is already very close to the ideal scenario which assumes infinite decoy intensity settings. Analytical bounds
imply a fully-analytical expression for the protocol’s secret key rate, which could be very convenient for
performance optimization in scenarios where the number of parameters is high, like for instance infinite-key
security analyses. In addition, we study how the performance of TF-QKD is affected under intensity
fluctuations, which are inevitable in practice, andwe demonstrate that the protocol in [33] seems to be actually
quite robust against such fluctuations.

Like in [33], for simplicity, herewe focus on the asymptotic-key rate scenario. However, we remark that by
using the techniques reported in [41], it is cumbersome but straightforward to adapt our analyticalmethods also
to thefinite-key rate scenario, where, asmentioned above, it becomes particularly useful to have analytical
bounds for themain quantities that enter the key rate formula.

The article is structured as follows. In section 1we present the TF protocol from [33] and highlight themain
yields that need to be bounded. In section 2we provide the analytical bounds on the yields for the case of two
decoys (the cases of three and four decoys are treated in appendices C andD, respectively). In section 3we
provide simulations of the secret key rate versus the loss for a typical channelmodel (briefly described in
appendix A), andwe also evaluate the effect of intensityfluctuations.We conclude the paper in section 4.

1. The TF-QKDprotocol

As discussed above, we consider the TF-QKDprotocol presented in [33] and sketched infigure 1. Alice andBob
establish a secret shared key by sending optical pulses to a central untrusted node,C. It is assumed that the node
C shares a phase reference with Alice andBob, which can be achieved by the transmission of strong optical
pulses. The protocol is composed of the followingfive steps.

(i) Alice (Bob) chooses the X-basis with probability pX and the Z-basis with probability pZ=1−pX. Upon
choosing theX-basis, Alice (Bob) prepares an optical pulse in a coherent state añ∣ or a- ñ∣ at random,
corresponding to the key bit bA=0 (bB=0) or bA=1 (bB=1), respectively. Upon choosing theZ-basis,

Figure 1.The twin-fieldQKDprotocol introduced in [33].
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she (he) prepares an optical pulse in a phase-randomized coherent state:
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(ii) Both parties send their optical pulses to the untrusted node C via optical channels in a synchronized
manner.

(iii) The central node C applies a balanced beamsplitter to the incoming pulses and features two threshold
detectors at its output ports. The detector placed at the output port associated to constructive (destructive)
interference is denoted byDc (Dd).

(iv) The node C announces the measurement outcome kc (kd) of detector Dc (Dd), with kc=0 and kc=1
(kd=0 and =k 1d ) corresponding to a no-click and a click event, respectively.

(v) Alice and Bob form their raw keys with the bits bA and bB collected when both parties chose the X-basis and
nodeC reported a click in only one detector (kc+kd=1). Bobflips his bits bB for which the click occurred
inDd.

1.1. Secret key rate formula
The security analysis performed in [33] yields the following lower bound on the asymptotic key rateR:

 +{ } { } ( )R R Rmax , 0 max , 0 , 1.210 01

where the terms Rk kc d
, for (kc, kd)ä { (1, 0), (0, 1)}, are defined as:

= - -( )[ ( ) ( )] ( )R p p k k f h e h e, 1 , 1.3k k X c d k k k k
2 ph

c d c d c d

with = - - - -( ) ( ) ( )h x x x x xlog 1 log 12 2 being the binary entropy function, f the inefficiency function
associated to error correction, and p(kc, kd) the conditional probability that nodeC announces the outcome
(kc, kd)when both parties selected theX-basis. The probability p(kc, kd) can be expressed as:

å=
=

( ) ( ) ( ∣ ) ( )p k k p b b p k k b b, , , , , 1.4c d
b b
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where p(bA, bB) is the joint probability of Alice and Bob preparing the coherent states a- ñ∣( )1 bA and a- ñ∣( )1 bB ,
respectively. According to the protocol description above, we have: = "( )p b b b b, 1 4 ,A B A B. ( ∣ )p k k b b, ,c d A B

instead denotes the conditional probability that nodeC announced ( )k k,c d given that Alice and Bob sent the
coherent states a- ñ∣( )1 bA and a- ñ∣( )1 bB , respectively. Sincewe consider the asymptotic key-rate scenario, we
assume that ( ∣ )p k k b b, ,c d A B coincides with the correspondent distribution observed by the parties.

Finally, the terms ek kc d
and ek k

ph
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in (1.3) represent the bit-error rate in theX-basis and an upper bound on the
phase-error rate, respectively. The former is defined as:

å
=

= = = = = =

= =
= Å =

( ) ( ∣ )
( ) ( )∣

e
p b i b j p k k b i b j

p k k

, 1, 0 ,

1, 0
, 1.5

i j i j A B c d A B

c d
10

, 0 1

1

å
=

= = = = = =

= =
=

( ) ( ∣ )
( ) ( )e

p b i b i p k k b i b i

p k k

, 0, 1 ,

0, 1
, 1.6i A B c d A B

c d
01

0

1

and the latter as:

å å= +
=

¥

=

¥

+ + + +

⎡
⎣
⎢⎢
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥( ) ( )e

p k k
c c Y c c Y

1

,
, 1.7k k

c d n m
n m n m

k k

n m
n m n m

k kph

, 0
2 2 2 2

,

2

, 0
2 1 2 1 2 1 2 1

,

2

c d

c d c d

where the coefficients cn are defined as a=
a- !c nen

n
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2 and the yields Ynm
k k,c d are the conditional probabilities

that nodeC announces the outcome (kc, kd) given that Alice andBob emitted an n-photon state and anm-
photon state, respectively. Note that the only yields contributing to (1.7) are those Ynm

k k,c d such that n+m is an
even number.

The yields Ynm
k k,c d are quantities that are not directly observed by the parties, however they can be estimated

either numerically or analytically with techniques based on the decoy-statemethod [38–40]. Herewe consider
the analytical approach. In particular, we assume that Alice andBob have at their disposal either two, three or
four decoy intensity settings when choosing theZ-basis. To each further decoy intensity correspond additional
linear constraints on the yields, leading to tighter estimations of Ynm

k k,c d and thus to a higher key rate. However, a
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finite number of decoys only allows to derive non-trivial upper bounds3 on a limited number of yields in (1.7),
whereas the other yields are set to 1.Nevertheless, even bounding just four yields in a non-trivial way is enough
for the secret key rate to beat the point-to-point private capacity bound (PLOBbound) [19] at high losses (see
section 3). Also, as we showbelow, with four decoy intensity settings one can already obtain a secret key rate very
close to that achievable with infinite decoy intensity settings.

We remark that standard decoy-state-basedQKDprotocols require to lower bound the value of a few yields
(typically those associated to vacuumand single-photon pulses) [42], while the TF-QKDprotocol considered
here upper bounds the value of the phase-error rate (1.7) by upper bounding several yields. In particular, we
upper bound the yields Ynm

k k,c d for Î( )n m, , where  is a certain subset of Î{( )∣ }n m n m, , 0 which
depends on the number of decoys. Thanks to the derived upper bounds on the yields (whichwe shall denote by
Ynm

U k k, ,c d)we are able to estimate the phase error rate (1.7) as follows:
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2. Yields estimation

WhenbothAlice and Bob choose theZ-basis in the first step of the TF-QKDprotocol, they prepare phase-
randomized coherent states with intensities bA

2 and bB
2 , respectively, and send them toC. FromEve’s viewpoint,

she cannot distinguish this scenario from the case inwhich the parties prepared number states ñ∣n and ñ∣m
according to the Poissonian distributions b ( )P n

A
2 and b ( )P m

B
2 (see equation (1.1)), where m=m

m-( ) !P n ne n .

Therefore Eve’s attack can only depend on the number states ñ∣n and ñ∣m but not on the signals’ intensities bA
2

and bB
2 . As a consequence, the probability that Eve announces outcomes (kc, kd) only depends on the number of

photons (n,m) she received fromAlice andBob, i.e. the yields Ynm
k k,c d are independent of the decoy intensities

chosen by the parties.
For this reason, one can derive a set of linear constraints on the yields Ynm

k k,c d by expressing the experimentally

observed gains b bQk k,
,

c d

A B
2 2

—which are defined as the conditional probabilities that nodeC announced the outcome

(kc, kd) given that Alice andBob sent phase-randomized coherent states of intensities bA
2 and bB

2 , respectively—
in terms of the yields:

å
b b

=b b b b

=

¥
- - ( ) ( )

! ! ( )Q
n m

Ye . 2.1k k
n m

A
n

B
m

nm
k k

,
,

, 0
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,

c d

A B A B c d
2 2 2 2

As it is clear from (2.1), to every distinct pair of decoy intensities b b( ),A B
2 2 corresponds a new constraint on the

set of infinite yields { }Ynm
k k

n m
,

,
c d , which leads to tighter upper bounds and thus to a higher secret key rate. On the

other hand, having a large number of decoy intensities is experimentally demanding, hence the need to derive
the tightest possible bounds on the yields with a limited number of decoys.

In this sectionwe present a simple analyticalmethod to obtain tight bounds on the yields of largest
contribution4 in (1.7)—i.e. relative to the largest coefficients cn—when the parties use two intensity settings in
theZ-basis. It is basically aGaussian elimination-type technique but involving infinite-size coefficientmatrices.
In particular, the guiding principle that we use is to combine the constraints (2.1) so that in the resulting
expression the yield to be bounded is the onewith the largest coefficient, while the yields which had larger
coefficients in the initial constraints have been removed in the combination. However, in some cases it turns out
that is not possible to remove all the yields with larger coefficients than the one to be bounded, due to a lack of
decoy intensity settings (i.e. constraints). In other cases, wemanage to remove from the resulting expression
even some yields which had a smaller coefficient than the one to be bounded. Such a procedure can be readily
extended to the case of three and four decoy intensity settings. The results for these last two cases are presented in
appendices C andD, respectively.

Fromnowon, we assume that both optical channels linking the parties to the central nodeC have the same
transmittance h . Therefore the set of optimal decoy intensities bA

2 and bB
2 is the same for both parties [43] and

we define it as: {μ0,μ1}. In order to simplify the notation, we also omit themeasurement outcome (kc, kd) from

3
Every yield is a probability, thus it is trivially bounded by 1.

4
The samemethod can-in principle-be applied to any yield, however the limited number of decoy settings prevents fromobtaining a non-

trivial bound on every yield.
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the constraints given by (2.1). Hence the yields are subjected to the following four equality constraints:

å m mº = Îm m+

=

¥˜
! ! { } ( )Q Q

Y

n m
k le , 0, 1 , 2.2k l k l

n m

nm
k

n
l
m, ,

, 0

k l

and to the inequality constraints:

  " ( )Y n m0 1 , . 2.3nm

Belowwe derive upper bounds on the yields:Y00,Y11,Y02 andY20.

2.1. Upper bound on Y11

Consider the following combination of gains:

å m m m m= + - + = - -
=

¥˜ ˜ ( ˜ ˜ ) ! ! ( )( ) ( )G Q Q Q Q
Y

n m
. 2.4

n m

nm n n m m
11

0,0 1,1 0,1 1,0

, 0
0 1 0 1

The subscript inG11 indicates the yield that is going to be boundedwith this combination of gains. In (2.4) the
coefficients of the yieldsY0m andYn0, for any n andm, are identically zero. Thus (2.4) can be rewritten as:

åm m m m m m= - + - -
=

+ >

¥

( ) ! ! ( )( ) ( )G Y
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n m
. 2.5

n m
n m

nm n n m m
11 11 0 1

2
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2

0 1 0 1

Weobserve that the coefficients thatmultiply the yieldsYnm are always positive, being the product of two factors
of equal sign. A valid upper bound forY11 is obtained considering theworst-case scenario for the other yields,
taking into account that (2.3) holds. Since all the yield’s coefficients carry the same sign in (2.5)—regardless of
the relation betweenμ0 andμ1—, the yieldY11 ismaximal when all the other yields areminimal. Thus the upper
bound onY11 is extracted by setting all the other yields to zero in (2.5):

m m
=

-( ) ( )Y
G

, 2.6U
11

11

0 1
2

whereG11 is defined in (2.4).
We remark that by combining the gains as in (2.4), wemanage to obtain a closed expression forY11 inwhich

the contribution of all the yieldsY0m andYn0 is removed. Additionally,Y11 is now the yield with the ‘highest
weight’ in (2.5) since it has the largest coefficient. All the yield’s bounds presented in this work follow the same
philosophy.

2.2. Upper bound on Y02

Consider the following combination of gains:

åm m m m m m m m m m= + - - = - -
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In (2.7) the coefficients of the yieldsYn0 andY1m are identically zero. Thus (2.7) can be rewritten as:
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Like in the derivation ofY11ʼs bound given by (2.6), a valid upper bound forY02 is obtained by considering the
worst-case scenario for the remaining yields in (2.8).More specifically,Y02 ismaximal when the yields whose
coefficient has the same sign asY02ʼs coefficient areminimal, and the yieldswhose coefficient has opposite sign
toY02ʼs aremaximal. Recalling constraint (2.3), thismeans settingY01 andY0m to zero andYnmwith n 2 and
m 1, to 1 in (2.8). In so doing, after rearranging the termswe obtain:
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which leads to the following upper bound onY02:
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2.3. Upper bound on Y20

Consider the following combination of gains:
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In (2.11) the coefficients of the yieldsYn1 andY0m are identically zero. Thus (2.11) can be rewritten as:
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Avalid upper bound forY20 is obtained by setting to zero the yields whose coefficient has the same sign asY20ʼs
coefficient, and by setting to 1 the yields whose coefficient has opposite sign toY20ʼs. In the case of (2.12) this
means settingY10 andYn0 to zero andYnmwith n 1 and m 2, to 1. In this waywe obtain:
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which leads to the following upper bound onY20:

m m m m
m m m m

=
- - + - -

+ -

m m m m( )( )
( )( ) ( )Y

G2 e e e e 2
. 2.14U

20
0 1 1 0 20

0 1 0 1
2

0 1 0 1

2.4. Upper bound on Y00

Consider the following combination of gains:
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In (2.15) the coefficients of the yieldsY1m andYn1, for any n andm, are identically zero. Thus (2.15) can be
rewritten as:
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As usual we extract an upper bound onY00 by setting to their lowest value the yields whose coefficient has the
same sign asY00ʼs coefficient (which correspond to theYnmwith n m, 2), and by setting to theirmaximum
value the yields whose coefficient has opposite sign toY00ʼs coefficient (which correspond toY0m andYn0).We
know that every yield is trivially bounded by (2.3). However, in order to derive a tighter bound onY00, we employ
non-trivial bounds for all the yieldsYnmwith +n m 4 in (2.16). The upper bound onY00 thus satisfies:
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In this equation Yij
U are upper bounds and Yij

L are lower bounds. From (2.17)we obtain the following upper
bound onY00:
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whereYU
02 and YU

20 are given in (2.10) and (2.14), respectively. The expressions for YU
03 and YU

04 in (2.18) can be
found by starting from the same expression (2.8) that we used to derive YU

02, i.e.:
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From this expressionwe can extract an upper bound on any genericY0m as follows:
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wherewe employ the constraint (2.3). Similarly, the expressions for YU
30 and YU

40 are obtained starting from (2.12)
and deriving an upper bound on a genericYn0 as follows:
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At last, the expression for Y L
22 can be derived from the same combination of yields which led to YU

11. In particular,
from (2.5)wehave that:
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Then, by setting to 1 all the yields whose coefficient has equal sign toY22ʼs we obtain:
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Note that the upper bounds derived onY04 andY40 in this section could be used to improve the estimation of the
phase error rate given by (1.8). However, the resulting improvement in the secret key ratewould be extremely
small in this case andwe neglect it for simplicity.

3. Simulations

In this sectionwe provide plots of the secret key rate given by (1.2) against the overall loss ( h-10 log10 )measured
in dB of the two optical channels linkingAlice and Bob to nodeC. The channelmodel we use to simulate the

quantities that would be observed experimentally—i.e. the gains ( ∣ )p k k b b, ,c d A B and b bQk k,
,

c d

A B
2 2

—is given in
appendix A [33]. It accounts for: the loss in the optical channels togetherwith the non-unity detection efficiency
ofDc andDd (altogether described by the parameter η), the polarization and phasemisalignments introduced by
the channel and a dark count probability pd in each detector. For concreteness, in all the plots belowwe assume
fixed polarization and phasemisalignments of 2%, independently of the channel loss. Note that, as pointed out
in [33], the TF-QKDprotocol analyzed in this work is quite robust against phasemismatch. This is so because
phasemisalignment only affects the quantumbit error rate but not the phase error rate.

For illustration purposes every plot is obtained for three different values of the dark count rate of the
detectors, pdä {10−6, 10−7, 10−8}. The plots are obtained by numerically optimizing5 the secret key rate—for
every value of the loss—over the signal intensity (α2) and over one decoy intensity, while for simplicity the other
decoy intensities are fixed to near-to-optimal values for all values of the overall loss.More specifically, we
preliminarily performed an optimization of the key rate over thewhole set of intensity settings and noticed that
most of the decoy intensities are roughly constant with the loss and tend to be as low as possible. For instance, if
we consider the case with two decoy intensity settings (μ0 andμ1, withμ0>μ1), we observe that the optimal
value for theweakest decoyμ1 is basically the lowest possible for any value of the loss. In practice, however, it
might be difficult to generate veryweak signals due to thefinite extinction ratio of a practical intensitymodulator
[44], sowefixμ1 to a reasonable small value from an experimental point of view, sayμ1=10−5 [34, 36], while
keeping the optimization over the remaining intensities. Similarly, if we consider the case with three decoy
intensity settings (μ0,μ1 andμ2, withμ0>μ1>μ2), wefind that the optimal values for theweakest decoysμ1
andμ2 are also the lowest possible for any value of the loss.Moreover, in this last case, we show in appendix B
that the systemperformance remains basically unchanged if one increases the value of theweakest intensity to
sayμ2=10−3, whichmight be even easier to implement experimentally than 10−5. Thus, we fixμ2=10−3 and
we differentiate it fromμ1 by, for example, one order ofmagnitude (i.e. we takeμ1=10−2). The same argument

5
The optimization is carried out by using the built-in function ‘NMaximize’ of the softwareWolframMathematica 10.0.
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holds in the casewith four decoy intensity settings (see appendixB), wherewefixμ2=10−3,μ1=10−2, and
μ0=10−1.We remark, however, that ourmethod is general in the sense that the analytical upper boundson the
yields canbe evaluatedwith anydesired combinationof intensity settings,whilewe select these particular decoy
intensity values only for illustrationpurposes.Also, let us emphasize that the optimal decoy intensity values in the
finite-key regimemight bedifferent from the valuesmentioned above. The analysis of thefinite-key regime is,
however, beyond the scopeof this paper. Importantly, it turns out that the resulting asymptotic secret key rates in
these scenarios are almost indistinguishable from those obtainedbyoptimizing the value of all the intensity settings.

The optimal values of the signal and decoy intensities which are optimized as a function of the loss are also
plotted in this section. In this regard, we also study how the key rate is affectedwhen the intensities are subjected
tofluctuations around their optimal values in section 3.4.

3.1. Two decoy intensity settings
Infigure 2we plot the secret key rate against the overall loss for the case where Alice andBob use two decoy
intensity settings each. The solid lines are obtained by bounding from above the yieldsY00,Y02,Y20 andY11 by
means of the expressions derived in section 2 and by optimizing the rate over the signal intensityα2 and the
decoy intensityμ0, while the other decoy intensity is fixed toμ1=10−5 as explained above. The optimal values
forα2 andμ0 are shown infigures 3(a) and (b), respectively. The dashed lines are instead obtained by employing
the exact expression of the yields6 which is given by (A.6) for the channelmodel considered. This represents the
ideal scenario inwhich the parties have an infinite number of decoys throughwhich they can estimate all the
yields precisely. Note that in order to obtain the dashed lines infigure 2we use the exact expression of the yields
Ynm only for n m, 12 while we set the other yields to 1. This is enough to basically reproduce the behavior of
the secret key ratewhen all the infinite number of yields are computed via the channelmodel’s formula given by
(A.6), as argued in [33]. The dashed lines are only optimized over the signal intensity, since the yields are directly
given by the channelmodel. Finally, we also insert infigure 2 the PLOBbound on the secret key capacity [19],
which reads as follows in terms of the transmittance η :

h h= - -( ) ( ) ( )K log 1 . 3.12

Infigure 2we observe that even bymeans of just two decoy intensity settings the key rate can beat the PLOB
bound, provided that the dark count rate is pd10−7. This happens becausewith two decoys the parties can
already non-trivially estimate the yieldsYnmwith +n m 2 as we showed in section 2, and these yields are the
most relevant terms in the phase-error rate formula given by (1.7) [33]. Note that we did not estimate the yields
Y01 andY10 since only the yieldsYnmwith n+m an even number contribute to the phase-error rate (1.7).

However, figure 2 also shows that there is a sensible gap between the rates where the yields are estimatedwith
two decoys (solid lines) and the best possible rates one could achieve (dashed lines) if all the yieldswere known.
This clearly indicates that, although two decoys allow to estimate the yields of largest contribution in the phase-
error rate, such estimations are not sufficiently tight and the ability to estimate a larger number of yields would
increase the performance of the protocol.

Figure 2. Secret key rate in logarithmic scale as a function of the overall loss in the channels Alice-C andBob-C for three different dark
count rates (10−6 green, 10−7 red, 10−8 blue). The solid lines correspond to the casewhere the yieldsY00,Y02,Y20 andY11 are estimated
bymeans of two decoy intensity settings through the bounds presented in section 2 and the key rate is optimized over the signal
intensityα2 (seefigure 3(a)) and the decoy intensityμ0 (seefigure 3(b)). The other decoy intensity,μ1, isfixed toμ1=10−5. The
dashed lines assume that all the yields are known from the channelmodel and the secret key rate is optimized overα2. That is, these
lines show themaximumvalue of the secret key ratewhich could be achievedwith an infinite number of decoy intensity settings and
the security analysis reported in [33]. The solidmagenta line illustrates the PLOBbound [19]. The plot shows that in the presence of a
dark count rate of atmost about pd=10−7 the protocol can beat the PLOB bound evenwith just two decoy intensity settings.

6
By ‘exact expression’wemean that if the experimental apparatus were accurately described by the channelmodel in appendix A, then the

yields associated to that experimental setupwould be precisely predicted by (A.6).
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By considering figure 3 and thefixed value of the decoy intensityμ1, one notices that the optimal intensities
are rather small and thus, in a real experimental implementation, intensity fluctuationsmight be an issue. In
section 3.4we address this problemby studying how the key rate is affected under intensity fluctuations and
show that forfluctuations up to about 40% the change in the key rate performance isminimal.

Also, we notice that the optimal values of the signal intensityα2 (seefigure 3(a)) and the decoy intensityμ0

(seefigure 3(b)) are almost constant with the loss, for losses20 dB. Thismeans that in a scenario where the loss
in the quantum channels varies dynamically with timewithin a reasonable interval, one could stillfix the signal
intensity and both decoy intensities to constant values which happen to be close to the optimal ones. This
argument also holds in the case of three (see section 3.2) and four decoy intensity settings (see section 3.3).

3.2. Three decoy intensity settings
Infigure 4weplot the secret key rate against the overall loss for the casewhereAlice andBobuse three decoy intensity
settings each.The solid lines are obtainedbybounding fromabove the relevant yields +Y n msuch that 4nm (i.e.
weupperbound the yieldsY00,Y02,Y20,Y11,Y13,Y31,Y04,Y40 andY22). The exact expressions for thedifferent upper
boundson the yields canbe found in appendixC, andweomit themhere for simplicity. The solid lines are optimized
over the signal intensityα2 and thedecoy intensityμ0,while theweakest decoy intensities arefixed for simplicity to
μ1=10−2 andμ2=10−3. As explained above, the resulting secret key rate in this scenario is almost

Figure 3.Optimal values of the signal and decoy intensities a2 andμ0 for the TF-QKDprotocol [33]when the parties have at their
disposal two decoy intensity settings to estimate the yields. (a)Optimal values of the signal intensityα2 as a function of the loss between
Alice andBob for three different dark count rates. These values are obtained from the optimization of the secret key rate (solid lines) of
figure 2. (b)Optimal values of the decoy intensityμ0 as a function of the loss betweenAlice andBob for three different dark count
rates. These values are obtained from the optimization of the secret key rate (solid lines) of figure 2. The other decoy intensity is set to:
μ1=10−5.

Figure 4. Secret key rate in logarithmic scale as a function of the overall loss in the channels Alice-C andBob-C for three different dark
count rates (10−6 green, 10−7 red, 10−8 blue). The solid lines correspond to the casewhere the yieldsY00,Y02,Y20,Y11,Y13,Y31,Y04,Y40
andY22 are estimated bymeans of three decoy intensity settings through the bounds presented in appendix C and the key rate is
optimized over the signal intensityα2 (see figure 5(a)) and the decoy intensityμ0 (see figure 5(b)). The other decoy intensities arefixed
toμ1=10−2 andμ2=10−3. The dashed lines assume that all the yields are known from the channelmodel and the secret key rate is
optimized overα2. That is, these lines show themaximumvalue of the secret key rate which could be achievedwith an infinite number
of decoy intensity settings and the security analysis reported in [33]. The solidmagenta line illustrates the PLOBbound [19]. The plot
shows that alreadywith three decoy intensity settings the key rate (solid lines) is sensibly close to the ideal one inwhich all the yields are
known (dashed lines),meaning that the contribution of the other yields trivially bounded by 1 in the phase error rate isminimal.
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indistinguishable from that obtainedbyoptimizing over all the intensity settings.Theoptimal values forα2 andμ0 are
shown infigures 5(a) and (b), respectively. Thedashed lines are againobtainedby employing the exact expressionof
the yields givenby the channelmodel (A.6) and coincidewith thoseplotted infigure 2.

Weobserve infigure 4 that theuse of three decoys yields a significant improvement in theprotocol’s
performancewith respect to the two-decoys case (seefigure 2). As amatter of fact, infigure 4 the solid lines are almost
overlapping thedashed lines formost values of the channel loss. This is due to the fact thatwith three decoys the
parties constrain the yieldswithnine independent equations (instead of four equations as in the two-decoys case),
which enable a tighter estimationofY Y Y, ,00 02 20 andY11 and thenon-trivial estimationoffive additional yields.

Moreover, in the case of three decoys the optimal signal intensityα2 (seefigure 5(a)) is roughly double the
value of the correspondent intensity when using two decoys (seefigure 3(a)). The reason for this is connected to
the role ofα2 in the protocol’s key rate. In fact, the prefactor p(kc, kd)with kc+kd=1 of the key rate formula
given by (1.3) increases for increasingα2: the higher themean number of photons sent by the parties (within
certain limits) the higher the probability of having a click in one of the two detectors. On the other hand,
increasingα2 excessively also affects the phase-error rate. Note that by setting some yields to 1 in the phase error
rate formula given by (1.7)we give rise to addends like c2n c2m and + +c cn m2 1 2 1which increase for increasingα

2,
leading to an overall increase of the phase-error rate and thus decrease of the key rate. The optimal value ofα2 is
thus given by the trade-off between the effect of the prefactor p(kc, kd) and that of the terms c2n c2m and

+ +c cn m2 1 2 1. Now, by noting that the contribution of the therms c2n c2m and + +c cn m2 1 2 1decreases for increasing n,
m, we understand that their negative effect on the key rate is diminished in the case of three decoys sincewe non-
trivially estimatemore yields, i.e. a lower number of yields is set to 1. This allowsα2 to acquire higher values with
respect to the two-decoys case, as we observed infigure 5(a).

Finally we point out that such an argument does not apply to the discussion about the optimal value of the
decoy intensityμ0 in the case of two and three decoys. As amatter of fact, the key rate does not depend on the
decoy intensities in the sameway as on the signal intensity: the decoy intensities only appear in the yield’s bounds
inserted in the phase-error rate. Additionally, the analytical bounds on the yields when using two or three decoys
cannot be compared in a straightforwardway.Nonetheless we observe a similar behavior of the optimalμ0 for
two (see figure 3(b)) and three decoys (seefigure 5(b)).

3.3. Four decoy intensity settings
Infigure 6weplot the secret key rate against the overall loss for the casewhereAlice andBobuse four decoy intensity
settings each. Like in the three-decoys case, the solid lines are obtainedbybounding fromabove the yieldsY00,Y02,
Y20,Y11,Y13,Y31,Y04,Y40 andY22 bymeans of four decoys. Inparticular, for the yieldsY00,Y02,Y20,Y11 andY22weuse
the exact same analytical boundsderivedwith three decoys since they are tight enough, and theuse of a fourthdecoy
intensitywould justmake themmore cumbersomewithout providing a significant improvement of the resulting
secret key rate. For the remaining four yieldswe insteadderived tighter boundswith thehelpof the fourth intensity
μ3 (see appendixD). The solid lines are obtainedbyoptimizing the rate over the signal intensityα2 and the fourth
decoy intensityμ3. It turns out that the optimal values for the other decoy intensities are basically the lowest possible

Figure 5.Optimal values of the signal and decoy intensitiesα2 andμ0 for the TF-QKDprotocol [33]when the parties have at their
disposal three decoy intensity settings to estimate the yields. (a)Optimal values of the signal intensityα2 as a function of the loss
betweenAlice andBob for three different dark count rates. These values are obtained from the optimization of the secret key rate (solid
lines) offigure 4.Weobserve that the optimal signal intensity is roughly doubledwith respect to the two-decoys case (figure 3(a)). (b)
Optimal values of the decoy intensityμ0 as a function of the loss betweenAlice andBob for three different dark count rates. These
values are obtained from the optimization of the secret key rate (solid lines) offigure 4. The other decoy intensities are set to:
μ1=10−2 andμ2=10−3.
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for any value of the loss, so, as explained above, for simplicitywefix the smallest one to an experimentally reasonable
small value (sayμ2=10−3), and thenwedifferentiate it from theother twodecoys,μ1 andμ0, by oneorder of
magnitude, i.e. we takeμ1=10−2 andμ0=10−1. Importantly, this decisionhas aneglectable effect on the resulting
secret key rate,when compared to that obtainedbyoptimizing over all intensity settings. Theoptimal values forα2

andμ3 are shown infigures 7(a) and (b), respectively. The dashed lines are the same as infigures 2 and4.
With fourdecoys (seefigure 6) thekey rates basically reproduces the ideal ones (dashed lines) inwhich all the yields

areknown,with the gapbeing atmaximumof1dBat thevery endof theplot lines (i.e. in theveryhigh loss regime).
This demonstrates that there is noneed tobound further yields than thenine yieldswebounded in the cases of three and
fourdecoys.Of course, the tighter estimationof the yieldsY13,Y31,Y04 andY40 achievedwith fourdecoys results in an
improvementof thekey ratewith respect to the caseof threedecoys (seefigure4), especially in the regionofhigh losses.

Concerning the optimal signal intensity (see figure 7(a)), we notice a slight increase with respect to the three-
decoys case (see figure 5(a)) due to the tighter estimation of some yields in the phase-error rate formula, which
allows their correspondent coefficients to acquire a slightly higher value under an increase ofα2.

Finally, the reasonwhy the optimalμ3 plot (seefigure 7(b)) looks quite different (with values above 1) from
the optimalμ0 plots for the cases of two and three decoys (see figures 3(b) and 5(b)) is the following. In the TF-
QKDprotocol considered, themost important yields (i.e. thosewith a bigger impact on the resulting phase error

Figure 6. Secret key rate in logarithmic scale as a function of the overall loss in the channels Alice-C andBob-C for three different dark
count rates (10−6 green, 10−7 red, 10−8 blue). The solid lines correspond to the casewhere the yieldsY00,Y02,Y20,Y11 andY22 are
estimated bymeans of three decoys through the bounds presented in appendix C (i.e. for simplicity herewe disregard the information
provided by the additional fourth decoy intensity setting) andY13,Y31,Y04 andY40 are estimatedwith four decoys via the bounds in
appendixD. The key rate is optimized over the signal intensityα2 (seefigure 7(a)) and the decoy intensityμ3 (seefigure 7(b)), while the
other decoy intensities arefixed toμ0=10−1,μ1=10−2 andμ2=10−3. The dashed lines are optimized overα2 and assume that all
the yields are known from the channelmodel. They correspond to themaximumvalue of the secret key rate which could be achieved
with an infinite number of decoy intensity settings. The solidmagenta line illustrates the PLOBbound [19]. The plot indicates that the
tighter estimation of the yieldsY13,Y31,Y04 andY40 with respect to the case of three decoy intensity settings is enough to basically
reproduce the ideal scenario inwhich all the yields are known (dashed lines).

Figure 7.Optimal values of the signal and decoy intensitiesα2 andμ3 for the TF-QKDprotocol [33]when the parties have at their
disposal four decoy intensity settings to estimate the yields. (a)Optimal values of the signal intensityα2 as a function of the loss
betweenAlice andBob for three different dark count rates. These values are obtained from the optimization of the secret key rate (solid
lines) offigure 6. (b)Optimal values of the decoy intensityμ3 as a function of the loss betweenAlice andBob for three different dark
count rates. These values are obtained from the optimization of the secret key rate (solid lines) of figure 6. The other decoy intensities
are set to:μ0=10−1,μ1=10−2 andμ2=10−3. The difference between this plot and the optimalμ0 plots (see figures 3(b) and 5(b))
in the case of two and three decoys is due to the fact that, unlikeμ0, the intensityμ3 does not appear in all the yield’s bounds since we
used the fourth decoy just for boundingY13,Y31,Y04 andY40.
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rate) are those associated to pairs of pulses with zero orwith a very lownumber of photons. It is therefore very
important to be able to estimate these yields as tightly as possible. For this, we have that the optimal intensitiesμ0

andμ1 (μ0,μ1 andμ2) for the case with two (three) decoys arewell below 1, just like in standard decoy-state QKD
protocols [39, 40]. However, as explained above, herewe use the intensityμ3 to improve the upper bounds for
the yieldsY13,Y31,Y04 andY40. That is, the intensityμ3 is only used to estimate yields associated to pairs of pulses
with a total number of photons equal to four. Thus, it is natural that the optimal value ofμ3 is not too low and
greater than 1.

3.4. Intensityfluctuations
Herewe investigate the robustness of the TF-QKDprotocol against intensity fluctuations thatmay occur in the
preparation of the pulses sent by Alice andBob. This ismotivated by the fact that the optimal signal and decoy
intensities that the parties should adopt in order tomaximize the key rate for a given loss are quite small, thus the
effect of intensity fluctuationsmight be an issue in practice. On the other hand, we also note that the optimal
value of a given decoy or signal intensity is either constant or varies verymoderately with the loss.

Here we consider the simple scenario inwhich the intensity fluctuations are symmetric, i.e. we assume that
the intensity of Alice’s signalmatches perfectly with the intensity of Bob’s signal. Or, to put it in other words, we
consider that Alice’s and Bob’s signals suffer from the same intensity fluctuations and thus their intensities are

Figure 8.Comparison of the secret key rate with optimal signal and decoys intensities (dashed lines, computed in section 3)with the
secret key rates affected by increasing intensity fluctuations (solid lines): 30%, 40%and 50% (brighter colors; right to left).We assume
that thefluctuations affect each decoy intensity and the signal intensity as well. The plots show that the TF-QKDprotocol is quite
robust against intensity fluctuations, and that its robustness increaseswith the number of decoys.
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equal. Thismeans that such analysis is only valid to evaluate auto-compensating TF-QKD set-ups like, for
instance, the one introduced in [36]. It cannot be used however to analyze set-upswheremore than one laser
source is used [34, 35]. Althoughwe do not expect a dramatic change of our results when asymmetric intensity
fluctuations are considered in the latter case, specially if they are not too large.

Also,we assume that the signal and all the decoy intensities suffer fromafluctuationofmagnitude 30%, 40%or
50%around their optimal value. Thismeans for example that, for afluctuation say of 30%, the signal intensityα2

and all the decoy intensitiesμkfluctuate in the intervals:  a a a0.7 1.3opt
2 2

opt
2 and  m m m0.7 1.3k k k

opt opt,

respectively,where aopt
2 and mk

opt represent theoptimal values.We then account for theworst-case scenario by
numericallyminimizing the key rate over all the intensities constrained in their respectivefluctuation interval.
Only in thiswaywecan still guarantee that the resulting key rate is associated to a secure protocol.

The results of this study are given infigure 8.Herewe plot the original key rates—i.e. withoutfluctuations of
the signal and decoy intensities—as dashed lines7 and the key rates affected by intensityfluctuations as solid
lines. The plots are given for the same dark count rates andmisalignments used in section 3, in the case of two,
three and four decoy intensity settings. The color of the solid lines becomes brighter for increasing fluctuation
magnitude.

We observe that the performance of the protocol is considerably affected by intensity fluctuations in the case
of two decoys, while the effect becomes almost negligible for three and four decoys. The reason for this lies in the
fact that the tightness of the yield’s bounds has a stronger dependence on the value of the decoy intensities when
the number of decoys—and thus constraints on the yields—is low. In other words, if the parties have at their
disposal a larger number of decoys, they can properly combine the numerous constraints on the yields and
obtain inherently tight bounds, i.e. bounds that are tight regardless of the actual values of the intensities
involved. If, instead, the parties have few decoys, say two, then the bounds they derive on the yields can be tight
or loose depending on the values assigned to the decoy intensities, since the constraints on the yields are fewer.

In conclusion, in the case of two decoys the parties can tolerate intensity fluctuations up to 40%,which
correspond to a decrease in the protocol’s key rate especially in the high-loss region, quantified by a reduction of
about 5–6 dB of themaximum tolerated loss8. Remarkably, with three decoys the decrease of themaximum
tolerated loss would be under 5 dB forfluctuations up to 50%. Finally, for four decoys the protocol’s
performance remains almost the same forfluctuations up to about 50% around the optimal values (except when
the dark count probability is the smallest considered: pd=10−8).We deduce that the TF-QKDprotocol
introduced in [33] seems to be quite robust against intensityfluctuations.

4. Conclusions

In this paper we have investigated in detail the performance of the TF-QKDprotocol presented in [33] in the
realistic scenario of afinite number of decoy intensity settings at the parties’ disposal. Indeed, the protocol
requires that Alice andBob use the decoy-statemethod [38–40] to estimate the phase-error rate by upper
bounding certain yields. UnlikemostQKDprotocols which employ suchmethod, in this case the protocol’s key
rate depends-in principle-on infinitelymany yields and it is essential to upper bound (rather than lower bound)
their values. Clearly, themore yields the parties tightly upper bound, the better the protocol’s performance is.
We have introduced an analyticalmethod to perform such estimationwhenAlice andBob use two, three or four
decoy intensity settings each. The yield’s analytical bounds provided in this work imply a fully-analytical
expression for the protocol’s secret key rate, which is very convenient for performance optimization (e.g. in the
finite-key scenario). Also, we remark that the secret key rates obtainedwith our analytical bounds basically
overlap those achievable with numerical tools like linear programming formost values of the overall loss, which
confirms that the analytical approach is actually quite tight.

In so doing, we have shown that the TF-QKDprotocol can beat the PLOBbound [19] evenwith just two
decoys for reasonable values of the setup parameters, which include: the loss, the dark count rate, the
polarizationmisalignment and the phasemismatch. Furthermore the plots assuming four decoys demonstrate
that one can approximately achieve the best possible performance by tightly estimating only nine yields. The
optimization of the key rate over the signal and decoy intensities indicates that their optimal values are all either
constant orweakly-dependent on the loss of the channel. Thismeans that the protocol is particularly suitable for
contexts where the channel loss varies in time, for instance in the scalableMDI-QKDnetworks conceived in
[43]. Finally we have investigated the scenariowhere the intensities of the optical states prepared byAlice and
Bob are affected by fluctuations and observed that the protocol seems to be very robust against such phenomena.

7
The dashed lines of the key rateswithout fluctuations correspond to the solid lines in figures 2, 4 and 6.

8
By ‘maximum tolerated loss’wemean the loss threshold abovewhich the protocol’s key rate becomes roughly zero.
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Anatural continuation of this workwould take into account thefinite-key effects due to the finite number of
pulses sent by the parties to the central relay. This could be done by combining the results presented in this paper
with thefinite-keys estimation techniques used in [41].

Acknowledgments

We thankDagmar Bruß andHermannKampermann for helpful discussions, and an anonymous referee for very
useful comments. This project has received funding from the EuropeanUnion’sHorizon 2020 research and
innovation programme under theMarie Skłodowska-Curie grant agreementNo. 675662, and from the Spanish
Ministry of Economy andCompetitiveness (MINECO), the Fondo Europeo deDesarrollo Regional (FEDER)
through grant TEC2017-88243-R.

AppendixA. Channelmodel

The channelmodel that we employ to simulate the gains that would be observed experimentally in theX-basis
(i.e. the probabilities ( ∣ )p k k b b, ,c d A B ) andZ-basis (i.e. the probabilities Qk k

k l
,
,

c d
) is taken from [33]. In all the

expressions of this sectionwe assume kc+kd=1.
In particular, a beam splitter of transmittance h accounts for the loss in thequantumchannel linkingAlice

(Bob) to nodeC and for the non-unity detection efficiency of detectorsDc andDd. Thepolarizationmisalignment
introduced by the channel Alice-C (Bob-C) ismodeledwith a unitary operationmapping thepolarization input
modes †ain ( †bin) to the orthogonal polarization outputmodes †aout and ^

†aout ( †bout and ^
†bout ) according to:

q q - ^
† † †a a acos sinA Ain out out ( q q - ^

† † †b b bcos sinB Bin out out ), for an angle θA (θB).Moreover, the phase
mismatch betweenAlice andBob’s signals arriving at nodeC ismodeled by shifting the phase of Bob’s signals by an
anglef=δ π, for a certain parameter δ. Finally themodel considers that both detectors are affected by a dark
count probability pd, which is independent of the signals received andhas the same value for both detectors.

With this setup, the gains in theX-basis can bewritten as:

= - +g-( ∣ ) ( )[ ( ∣ )] ( )p k k b b p p q k k b b, , 1 e , , , A.1c d A B d d c d A B
2

where g ha= 2 (withα being the amplitude of the signal states) and
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with θ=θA−θB. Starting from (A.1), one can readily compute the probability p(kc, kd) and the bit-error rate
ek k,c d

bymeans of equations (1.4) and (1.5), (1.6), respectively:
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The gains in theZ-basis instead read:

hm m q= - - +h m m h m m- + - +( )[( ) ( )] ( )( ) ( )Q p p I1 1 e e cos , A.5k k
k l

d d k l,
, 2

0c d
k l k l

where the function =
p

+ -∮( ) ( )( )I z t te dz t t1

2 i
2 1 1 is themodified Bessel function offirst kind.

In the simulations shown in section 3we compare the key rate computedwith our analytical bounds on the
yieldswith the key rate evaluatedwith the exact expressions of the yields, i.e. the expressions obtained directly
from the channelmodel. According to the above channelmodel, the yields read:
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To conclude, we remark that all the quantities entering the key rate formula (1.2)—i.e. (A.3), (A.4) and the gains
(A.5) indirectly through the yield’s bounds—are symmetric under the swap «k kc d due to the symmetries of
the channelmodel.
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In all the simulations shown in section 3wefix both polarization and phasemisalignments to 2%,which
means that: q q= - = arcsin 0.02A B and δ=0.02.

Appendix B. Stronger andweaker decoy intensities

As explained in section 3, the optimal key rates are basically not affected if their optimization is only performed
over the signal intensity (α) and over one decoy intensity, while having the remainingweaker decoy intensities
fixed to near-to-optimal values for all losses. Infigure B1, we compare the optimal key rate that the parties can
achievewhenfixing their weaker decoy intensities to substantially different values, in the case of three (left) and
four (right) decoy intensity settings. In particular, the solid lines are the same plotted infigures 4 and 6 for the
three- and four-decoys case, respectively, i.e. they are obtained by fixing theweaker decoy intensities to
m = -102

3 andμ1=10−2 (three decoy intensity settings) and toμ2=10−3,μ1=10−2 andμ0=10−1 (four
decoy intensity settings). The dotted–dashed lines, instead, are obtained byfixing theweaker intensities to values
which are two orders ofmagnitude lower, that isμ2=10−5 andμ1=10−4 in the case of three decoy intensity
settings andμ2=10−5,μ1=10−4 andμ0=10−3 in the case of four decoy intensity settings. Clearly, the
optimal key rates are basically not affected by employing relatively stronger pulses (those withμ2=10−3 as the
weakest intensity) for theweaker decoy intensity settings. Such stronger pulses could bemore easily
implemented experimentally and, for this, have been chosen in our simulations.

AppendixC. Yield’s boundswith three decoys

Herewe derive analytical upper bounds on the yields appearing in (1.7), following the same lines of section 2. In
this case we assume that Alice andBob can prepare their phase-randomized coherent pulses with three different
intensity settings: {μ0,μ1,μ2}, which are the same for both parties. This choice is optimal sincewe assumed that
the two optical channels linking the parties to the central nodeC have equal transmittance h [43].

Thewhole set of infinite yields is subjected to the following nine equality constraints:

å m mº = Îm m+

=

¥˜
! ! { } ( )Q Q
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n m
k le , 0, 1, 2 , C.1k l k l

n m

nm
k

n
l
m, ,

, 0

k l

and to the inequality constraints given by (2.3).
We derive bounds on the yieldsY00,Y11,Y02,Y20,Y22,Y13,Y31,Y04 andY40.

C.1.Upper bound on Y22

Consider the following combinations of gains inwhich all the termsY1m andYn1 are removed (i.e. their
coefficients are equal to zero):

Figure B1.Comparison of the optimal key rates achievable with different fixed values of theweaker decoy intensities. The two cases
analyzed (solid and dotted–dashed lines) are almost indistinguishable. (a)Optimal key rate as a function of the overall loss when the
parties use three decoy intensity settings, for three different values of the dark count rate (pd). The solid lines are obtained by fixing the
weaker decoy intensities to m = -102

3 andμ1=10−2, while the dotted–dashed lines are obtained by fixing the same intensities to
μ2=10−5 andμ1=10−4. The dashed lines assume that all the yields are known from the channelmodel and themagenta line is
the PLOBbound [19]. Note that the green dotted–dashed lines and green solid lines (pd=10−6) are almost perfectly overlapping.
(b)Optimal key rate as a function of the overall loss when the parties use four decoy intensity settings, for three different values of
the dark count rate (pd). The solid lines are obtained by fixing theweaker decoy intensities toμ2=10−3,μ1=10−2 andμ0=10−1,
while the dotted–dashed lines are obtained byfixing the same intensities toμ2=10−5,μ1=10−4 andμ0=10−3. The dashed lines
assume that all the yields are known from the channelmodel and themagenta line is the PLOBbound [19].
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where the superscripts in G k l
22

, indicate which intensities are involved, while the subscripts indicate the yield that
is going to be bounded.

Wenow combine G G,22
0,1

22
0,2 and G22

1,2 with arbitrary real coefficients c0 and c1 and impose that the resulting
expression has the yieldsY0m andYn0 removed as well:
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Note that the linear combination above is already themost general for our needs. As amatter of fact, for every
linear combination of G G,22

0,1
22
0,2 and G22

1,2 one can always factor out the coefficient in front of G22
0,1, as far as it is

not zero.However, if the particular combination of gainswhich removes the termsY0m andYn0 has a null
coefficient in front of G22

0,1, for symmetry reasons therewould also exist another combination—that also
removes the yieldsY0m andYn0—with a null coefficient in front of say G22

0,2, and this one could be found in our
case given by (C.3).

For Y m0 andYn0 to be removed in (C.3) it suffices that:

m m m m m m m m m m m m m m m m m m- - + - - + - - = "( )( ) ( )( ) ( )( ) ( )c c m0 , C.4m m m m m m
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which implies:
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A sufficient condition for this is that every coefficient of mi
m is identically zero, which happens for:

m m m
m m m
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-
-

( )
( ) ( )c , C.60
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=
-
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Substituting (C.6) and (C.7) back into (C.3) andmultiplying both sides byμ2, we get an expressionwhere all the
termsY0m,Y1m,Yn0 andYn1 are removed andwhere the termY22 gives the largest contribution:
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In order to extract a bound forY22 we need to recast the yield’s coefficients in such away that their sign becomes
manifest. Each termof the sum in (C.8)may be recast as follows:

m m m m m m m m m
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or equivalently as:
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A m A n, , , , , , , C.10nm 0 1 2

0 2 1 2
22 0 1 2 22 0 1 2

where
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Wecannow rewrite factorA22 as:
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Of course we can employ this expression also for m m m( )A n, , ,22 0 1 2 , under the substitution m n.Wewill
apply this consideration fromnowon to similar scenarios. By substituting (C.12) into (C.10), we get thefinal
expression for each term of the sum in (C.8):

å å
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That is, the sign ofYnmʼs coefficient is independent of n andm and it is the same for all terms in (C.8) (note that
the product of the two sums in (C.13) is always positive). Thus a valid upper bound forY22 is obtained by setting
all the other yields to zero in (C.8), except forY22.We obtain:
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which implies the following expression for the upper bound onY22:
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We remark that the bound given by (C.15) is not validwhen any of the intensitiesμ0,μ1 orμ2 is equal to zero. As
amatter of fact, in any of these cases the starting expression given by (C.8) becomes trivial. However, inmost
practical situations, due to thefinite extinction ratio of amplitudemodulators, none of the decoy intensities is
actually equal to zero.

C.2.Upper bound on Y11

Consider the following combinations of gains inwhich all the termsY0m andYn0 are removed:
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Wenow combine G G,11
0,1

11
0,2 and G11

1,2 with arbitrary real coefficients c0 and c1 and impose that the resulting
expression has the yieldsY2m andYn2 also removed:
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ForY2m andYn2 to be removed it suffices:
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Substituting these terms back into (C.17) yields a combination of gains inwhich the termsY0m,Yn0,Y2m andYn2
are removed:
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In order to get a valid upper bound forY11 we need to determine the signs of the coefficients of the remaining
yields.We start by recasting each termof the sum in (C.21) corresponding to theYnm, with n m, 3, as follows:

m m m m
m m m m m m

- -! ! ( )( ) ( ) · ( ) ( )Y

n m
A m A n

1
, , , , , , , C.22nm

0
2

2
2

1
2

2
2 11 0 1 2 11 0 1 2

where

m m m m m m m m m m m mº - + - + -( ) ( ) ( ) ( ) ( )A m, , , . C.23m m m
11 0 1 2 1 0

2
2
2

2 1
2

0
2

0 2
2

1
2

The factorA11 can be rewritten as:
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where the factor  "( )F m m0, 3. Substituting (C.24) back into (C.22), we recast each termof the sum in
(C.21) corresponding to theYnm, with n m, 3, as:
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so that its sign ismanifestly dependent on the factor m m m m- -( )( )0 2 1 2 .
In a similar fashion, one can rewrite each termof the sum in (C.21) corresponding to theY1m, with m 3,

as:
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thus deducing that this expression has opposite signwith respect to that given by (C.25). Same holds forYn1,
since it can be shown that its coefficient is exactly (C.26)with thesubstitution m n.

Finally, by showing that the term corresponding toY11 in (C.21) can be factorized as:
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one concludes that this expression has the same sign as that given by (C.25).
Putting together these considerations into (C.21), a valid upper bound onY11 is obtainedwhen the yields

Ynm, with n m, 3, are set to zero and the yieldsY1m andYn1 are set to theirmaximumallowed value. Since in
appendices C.5 andC.6we derive upper bounds onY13 andY31 (see (C.65)and (C.73)), we can employ them in
(C.21) instead of trivially bounding these yields with 1. In this waywe obtain:
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which leads to the following upper bound onY11:
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where the term E11 is defined as:
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C.3.Upper bound on Y02 and Y04

Consider the following combinations of gains inwhich all the termsY1m and ,Yn0 are removed:
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Wenow combine G G,02
0,1

02
0,2 and G02

1,2 with arbitrary real coefficients c0 and c1 and impose that the resulting
expression has the yieldsY2m andYn1 also removed:
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ForY2m andYn1 to be removed the coefficients c0 and c1must satisfy:
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or equivalently:
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A sufficient condition for this is that the coefficient of every mi
n and every mi

m is identically zero. This imposes six
conditions on c0 and c1, however thanks to the inherent symmetries of the system a solution exists, and reads:

m m m
m m m

= -
-
-

( )
( ) ( )c , C.350

1 0 1

2 0 2

m m m
m m m

=
-
-

( )
( ) ( )c . C.361

0 0 1

2 1 2

Substituting these expressions back into (C.32) andmultiplying both sides byμ2, yields a combination of gains in
which the termsYn0,Yn1,Y1m andY2m are removed. In particular, we obtain:
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In order to get a valid upper bound forY02 andY04 we need to study the sign of the coefficients of the remaining
yields.We start by recasting each termof the sum corresponding to theYnm, with n 3 and m 2, in (C.37) as
follows:
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andA22 is the one foundwhen boundingY22, thuswe know from (C.12) it can be recast as:
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Employing (C.40) and (C.41) into (C.38)we get:
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whichmeans that the sign of this expression is fully determined by the factor m m m m- -( )( )1 2 0 2 (note that the
product of the two sums in (C.42) is always positive).

Concerning the terms that appear in the sum in (C.37) corresponding to theY0m, with m 2, we have:

å

m m m m m m m m m m m

m m m m m

m m m m m m m m m

- - - - + -

= -

= - - - -
=

-
- - - -

! ( )[ ( ) ( ) ( )]

! ( ) ( )

! ( )( )( ) ( ) ( )

Y

m
Y

m
A m

Y

m

, , ,

, C.43

m m m m m m m

m

m

k

m
k m k m k

0
1 0 2 0 1 1 0 2 0 1 2

0
1 0 22 0 1 2

0
0 2 1 2 0 1

0

1

2 0
1

1
1

wherewe used (C.11) in the first equality and (C.40) in the second equality. Expression (C.43) implies that its
sign is always equal to the sign of the terms given by (C.42), since it is determined by the same factor
m m m m- -( )( )1 2 0 2 (note that the product of the last two factors in (C.43) is always positive).

A valid upper bound onY02 is thus obtained by setting all the other yields to zero in (C.37). By doing so, we
obtain:
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One can do the samewhen boundingY04, i.e. setting all the other yields to zero except forY04, in (C.37).Wefind
that:
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C.4.Upper bound on Y20 and Y40

Consider the following combinations of gains inwhich all the termsY0m andYn1 are removed:
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Wenow combine G G,20
0,1

20
0,2 and G20

1,2 with arbitrary real coefficients c0 and c1 and impose that the resulting
expression has the yieldsY1m andYn2 also removed:
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ForY1m andYn2 to be removed the coefficients c0 and c1must satisfy:
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This systemof linear equations coincides with the one given by (C.33) that we foundwhen boundingY02, thus
the solution is given by (C.35) for c0 and by (C.36) for c1. Substituting these expressions back into (C.47) and
multiplying both sides byμ2, yields a combination of gains inwhich the termsYn1,Yn2,Y0m andY1m are
removed:
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Since the coefficients ofYn0 andYnm coincidewith those foundwhen bounding Y02 if one exchanges ⟷m n,
we can directly use the results obtained in appendix C.3 to recast the terms that contain theYnmwith n 2 and
m 3. In particular, according to (C.42), we obtain:
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and according to (C.43) the terms that contain the yieldsYn0 can bewritten as:
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Like in the case ofY02 (see appendix C.3), a valid upper bound onY20 is thus obtained setting all the other yields
to zero in (C.49).We obtain:
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One can do the same to boundY40, i.e. to set all the other yields to zero, except forY40. In this case we obtain:
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C.5.Upper bound on Y13

We look for that combination of gains inwhich all the terms proportional toYn0,Yn1,Y0m andY2m are removed.
In order tofind it, we consider themost general combination of all gains:

å å å m m= =
= =

¥

=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

˜
! ! ( )G c Q

Y

n m
c , C.54

i j
i j

i j

n m

nm

i j
i j i

n
j
m

13
, 0

2

,
,

, 0 , 0

2

,

and impose proper conditions on the real coefficients ci,j:

å åm = "  + + = =
= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )Y c n c c c iremoved: 0 0 for 0, 1, 2, C.55n

i
i
n

j
i j i i i0

0

2

0

2

, ,0 ,1 ,2

22

New J. Phys. 21 (2019) 073001 FGrasselli andMCurty



å åm m m m m= "  + + = =
= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )Y c n c c c iremoved: 0 0 for 0, 1, 2, C.56n

i
i
n

j
j i j i i i1

0

2

0

2

, 0 ,0 1 ,1 2 ,2

å åm = "  + + = =
= =

⎛
⎝⎜

⎞
⎠⎟ ( )Y c m c c c jremoved: 0 0 for 0, 1, 2, C.57m

j
j
m

i
i j j j j0

0

2

0

2

, 0, 1, 2,

å åm m m m m= "  + + = =
= =

⎛
⎝⎜

⎞
⎠⎟ ( )Y c m c c c jremoved: 0 0 for 0, 1, 2. C.58m

j
j
m

i
i i j j j j2

0

2

0

2
2

, 0
2

0, 1
2

1, 2
2

2,

The conditions given by equations (C.55)–(C.58) form an overdetermined systemof equations for the nine
variables ci,j. However, thanks to the symmetries of the problem, a unique solution for ci,j exists and reads (we
rescale every coefficient by requiring c0,0=1):
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By substituting (C.59) back into (C.54)we get an expression inwhich the termsYn0,Yn1,Y0m andY2m are
removed:

å

å

m m m m
m m m m

m m m

m m m m m m
m m m m

=
- -
- +

+
- +

=

¥

=
=

¥
!

( )( )
( )( ) · ( )

! !
( ) · ( )

( ) ( ) ( )

G
Y

m
A m

Y

n m

A m A n

, , ,

, , , , , ,
, C.60

m

m

m
n

nm

13
2

1 0 1 0 2

1 2 1 2
22 0 1 2

2
3

22 0 1 2 11 0 1 2

1 2
2

1 2

whereA22 is the factor given by (C.11) also present in the bounds forY02 andY22, whereasA11 is the factor given
by (C.23)which appears in the bound onY11. Note that this is somehow expected: when boundingY02 andY22
we removed the termsYn0 andYn1 as we just did forY13, and in boundingY11 we removed the termsY0m andY2m
aswe did here. Therefore, by exploiting the result given by (C.12)we can recast each termof the sum
corresponding to theY1m, with m 2, in (C.60) as:
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and realize that it is always negative, regardless of the value of the intensities.
By employing the results (C.12), (C.24)we can recast each termof the sum corresponding to theYnmwith
n 3 and m 2, in (C.60) as:
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and realize that it is always positive9, regardless of the intensities.

9
F(n) is defined in (C.24).
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Avalid upper bound onY13 is then obtained by setting Y 0m1 (except forY13) and Y 1nm for all n 3
and m 2 in (C.60). As a result we obtain:
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We thus obtain the following upper bound onY13:
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whereG13 is defined in (C.54) and the coefficients of the combination of gains in (C.59).

C.6.Upper bound on Y31

We look for that combination of gains inwhich all the terms proportional toYn0,Yn2,Y0m andY1m are removed.
In order tofind it, we proceed like in the previous case. That is, we consider themost general combination of all
gains:
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The conditions (C.67)–(C.70) form an overdetermined systemof equations for the nine variables ci,j. However,
thanks to the symmetries of the problem, a unique solution for ci,j exists and reads (we rescale every coefficient by
requiring c0,0=1):
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By substituting (C.71) back into (C.66)we get an expression inwhich the termsYn0,Yn2,Y0m andY1m are
removed:
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whereA22 andA11 are again the factors fromY22 andY11 bounds given by equations (C.11), (C.23), similarly to
what happens when bounding Y13 (see appendix C.5). Therefore the analysis of the coefficient’s sign is the same
as in appendix C.5.Hence a valid upper bound onY31 is obtained by setting Y 0n1 (except forY31) and
Y 1nm in (C.72) for all n 2 and m 3 in (C.72). Analogous steps to those in appendix C.5 lead to the

following upper bound:
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whereG31 is defined in (C.66) and the coefficients of the combination of gains in (C.71).

C.7.Upper bound on Y00

Consider the following combinations of gains inwhich all the termsY1m andYn1 are removed:
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ForY2m andYn2 to be removed it suffices that for everym it holds:
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Substituting (C.77) and (C.78) back into (C.75) andmultiplying both sides by m2
2, we get an expressionwhere all

the termsY0m,Y2m,Yn0 andYn2 are removed andwhere the termY00 gives the largest contribution.More
precisely, wefind that:

å

å

å

m m
m m
m m

m
m m
m m

m m m m m m m m m m m m m

m m m m m m m m m m m m m m m m m m m m m

m m m m m m m m m m m m m m m m m m m m m

m m m m m m m

m m
m m

m m m m
m m
m m

m m m m

-
-
-

+
-
-

= - - - - + - -

+ - - + - - - - -

+ - - + - - - - -

+ - -

-
-
-

- - +
-
-

- -

=

¥

=

¥

=

¥
- - - -

- - - - - - - -
⎤
⎦⎥

( )
( )

( )
( )

[ ( ) ( )( ) ( )( )]

! [ ( )( ) ( )( ) ( )( )]

! [ ( )( ) ( )( ) ( )( )]

! ! [( )( )

( )
( ) ( )( ) ( )

( ) ( )( )
( )

G G G

Y

Y

m

Y

n

Y

n m

.

C.79

m

m m m m m m m

n

n n n n n n n

n m

nm n n m m

n n m m n n m m

2
2

00
0,1

1
2 0 1

0 2
00
0,2

0
2 0 1

1 2
00
1,2

00 2
2

0 1
2

1
2

0 1 0 2 0
2

0 1 1 2

3

0
2
2

1 0 0 1 0 1 1
2

0 1 0 2 0 2 0
2

0 1 1 2 1 2

3

0
2
2

1 0 0 1 0 1 1
2

0 1 0 2 0 2 0
2

0 1 1 2 1 2

, 3
0
2

1
2

2
2

0
1

1
1

0
1

1
1

0 1

0 2
0

1
2

1
0

1
2

1 0 1

1 2
1

1
2

1
1

1
2

1

In order to extract an upper bound onY00 we need to study the sign of the yield’s coefficients.We start by
recasting the term corresponding toY00 as:
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Weobserve that the sign of this expression is determined by the factors m m m m- -( )( )1 2 0 2 .
We then proceed by recasting each termof the sum corresponding to theYnm, with n m, 3 in (C.79) as:
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This factor can be rewritten as:
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whereA22 is defined as (C.11) in appendix C.1. Thuswe can use the result (C.12) obtained in appendix C.1 to
directly recastA00 as:
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By substituting (C.84) back into (C.81), we get the final expression for each termof the sum corresponding to the
Ynm, with n m, 3 in (C.79):
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which hasmanifestly the same sign as the expression given by (C.80), for any value of the intensities (the product
of the last two factors is always positive).
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Finally, we recast theY0mʼs terms (Yn0ʼs terms are identical under the replacement m n) as:
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wherewe employed (C.83) in the first equality and (C.84) in the second one.We observe that the sign of the
Y0mʼs terms is again determined by the factors m m m m- -( )( )0 2 1 2 .

We conclude that the coefficients of Y m0 ,Yn0 andYnm, with n m, 3, carry the same sign asY00ʼs, which
implies that a valid upper bound onY00 is obtained by setting all the other yields to zero in (C.79). In so doing, we
find that:
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AppendixD. Yield’s boundswith four decoys

Herewe derive analytical upper bounds on the yields appearing in (1.7), following the same lines of section 2. In
this case we assume that Alice andBob can prepare their phase-randomized coherent pulses with four different
intensity settings: {μ0,μ1,μ2,μ3}, which are the same for both parties. This choice is optimal sincewe assumed
that the two optical channels linking the parties to the central nodeC have equal transmittance h [43].

Thewhole set of infinite yields is subjected to the following sixteen equality constraints:
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and to the same inequality constraints given by (2.3).
In this appendixwe only obtain bounds on the yieldsY13,Y31,Y04 andY40 since the bounds derived on the

yieldsY00,Y11,Y02,Y20 andY22 in appendix C are already good enough, i.e bounding themwith one additional
decoy intensity would not result in a significant improvement of the performance of the protocol.

D.1.Upper bound on Y04

Consider the following combinations of gains inwhich all the termsY1m andYn0 are removed:
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, such that even the yieldsY2m,Y3m,Yn1 andYn2 are removed:
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wherewe implicitly assume that both indexes i, j run over the set {0, 1, 2, 3}. ForY2m,Y3m,Yn1 andYn2 to be
removed, the real coefficients ci,jmust satisfy:
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In order to solve system (D.4), we look for those coefficients ci,j such that themultiplicative factors of mi
m and mi

n

(for i = 0, 1, 2, 3) are all set to zero. This corresponds to imposing sixteen conditions on the six coefficients ci,j.
These conditions are not all independent, and a solution can be found evenwhenwe require (for simplicity) that
c0,1=1:
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By substituting the solution for the coefficients given by (D.5) back into (D.3), one gets:
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In (D.7), (D.8)we again assume that the indexes in the sums run over the set {0, 1, 2, 3} andwe define

   m m må ==- -
· · ∣... 1i i i i i i m... 3m m1 2 3 1 2 3

. From (D.7)we deduce that the sign ofY0mʼs coefficient is independent
ofm, while from (D.8)wededuce thatYnmʼs coefficient has always opposite sign to that ofY0m. Therefore a valid
upper bound onY04 is obtained by setting to zero all the other yieldsY0m and to 1 the yieldsYnmwith n 4 and
m 3 in (D.6).We thus obtain:
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which implies the following upper bound onY04:
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where ci,j are given in (D.5), G i j
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and the sumover the coefficientB04 reads:
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D.2.Upper bound on Y40

Consider the following combinations of gains inwhich all the termsY0m andYn1 are removed:
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We now take the linear combination of the Gi j
40
, such that even the yieldsY1m,Y2m,Yn2 andYn3 are removed:
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wherewe implicitly assume that both indexes i, j run over the set {0, 1, 2, 3}. ForY1m,Y2m,Yn2 andYn3 to be
removed, the real coefficients ci,jmust satisfy:
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Wenownotice that the system (D.15) is exactly the same system solved in appendixD.2while boundingY04,
thus the solution for the coefficients ci,j is given in (D.5). By substituting the solution (D.5) back into (D.14), one
gets:
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whereA04 andB04 are the coefficients defined in (D.7), (D.8)while bounding Y04. Hencewe can adopt the
observationsmade on the sign ofA04 andB04 from appendixD.1 and conclude that a valid upper bound onY40 is
obtained by setting to zero all the other yieldsYn0 and to 1 the yieldsYnmwith n 3 and m 4 in (D.16). The
upper bound onY40 then reads:
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where ci,j, Gi j
40
, , m m m m( )A , , , , 404 0 1 2 3 and the sumoverB04 are given in (D.5), (D.13), (D.11) and (D.12),

respectively.
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D.3.Upper bound on Y13

Weconsider themost general combination of all sixteen gains:
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and require that the termsYn0,Yn1,Yn2,Y0m,Y2m andY3m are removed, by imposing proper conditions on the
real coefficients ci,j:
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The twenty-four conditions given by (D.19)–(D.24) form anover-determined systemof equations for the sixteen
variables ci,j. However, thanks to the symmetries of the problem, a unique solution for ci,j exists and reads (we
rescale every coefficient by requiring c0,0=1 ):
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By substituting these expressions back into (D.18) and bymaking some simplifications, one gets:
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andCn ( n 5) is defined recursively as:
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In (D.27), (D.28)we assume that the indexes ij in the sums run over the set {0, 1, 2, 3} andwe define
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. From (D.27)wededuce that the sign ofY1mʼs coefficient is always
positive, while from (D.28)we deduce thatYnmʼs coefficient has always equal sign to that ofY1m, sinceCn is
always a positive quantity. Therefore a valid upper bound onY13 is obtained by setting to zero all the other yields
in (D.26). The upper bound onY13 then reads:
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D.4.Upper bound on Y31

Weconsider themost general combination of all sixteen gains:
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and require that the termsYn0,Yn2,Yn3,Y0m,Y1m andY2m are removed, by imposing proper conditions on the
real coefficients ci,j:
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The twenty-four conditions (D.32)–(D.37) form an over-determined systemof equations for the sixteen
variables ci,j. However, thanks to the symmetries of the problem, a unique solution for ci,j exists and reads (we
rescale every coefficient by requiring c0,0=1):
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By substituting these expressions back into (D.31) and bymaking some simplifications, one gets:
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whereA13 andCm also appear in appendixD.3when boundingY13 and are defined as (D.27) and (D.28),
respectively. Thus, following the same lines of appendixD.3, we conclude that all yields in (D.39) aremultiplied
by a positive factor. A valid upper bound onY31 is then obtained by setting to zero all the other yields in (D.39).
We obtain:
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where ci,j and m m m m( )A , , , , 313 0 1 2 3 are defined in (D.38) and (D.30), respectively.
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Abstract
Twin-Field (TF) quantumkey distribution (QKD) is amajor candidate to be the new benchmark for
far-distanceQKD implementations, since its secret key rate can overcome the repeaterless bound by
means of a simple interferometricmeasurement.Many variants of the original protocol have been
recently proven to be secure. Here, we focus on the TF-QKD type protocol proposed byCurty et al
(2019NPJQuantum Inf. 5 64), which can provide a high secret key rate andwhose practical feasibility
has been demonstrated in various recent experiments. The security of this protocol relies on the
estimation of certain detection probabilities (yields) through the decoy-state technique. Analytical
bounds on the relevant yields have been recently derived assuming that both parties use the same set of
decoy intensities, thus providing sub-optimal key rates in asymmetric-loss scenarios. Herewe derive
new analytical boundswhen the parties use either two, three or four independent decoy intensity
settings each.With the newboundswe optimize the protocol’s performance in asymmetric-loss
scenarios and show that the protocol is robust against uncorrelated intensityfluctuations affecting the
parties’ lasers.

1. Introduction

QuantumKeyDistribution (QKD) [1–5] allows two separated parties (typically called Alice andBob) to generate
identical bit strings with information-theoretic security. Due to the loss in the quantum channel connecting the
parties, the performance of point-to-point QKDgenerally decreases with the distance, being unpractical for far-
distance applications. Nonetheless, there have been remarkable efforts towards improving its range of
applicability, such as the recentQKDexperiments performed over 421 kmof opticalfiber [6] and over 1000 km
of free space in satellite-to-ground links [7, 8]. However, even for themost outstanding far-distance
experiments, the secret key rate turns out to be probably too low for commercial purposes. In fact, it has been
proven that there exist fundamental limits on the secret key rate that can be extracted from such point-to-point
configurations. These limits say that the secret key rate scales linearly with the transmittance of the quantum
channel linking the parties, or in otherwords, that it decreases exponentially with the channel length [9, 10].

Quantum repeaters [11–13] andmeasurement-device-independent QKD (MDI-QKD) protocols with
either quantummemories [14, 15] orwith quantumnon-demolitionmeasurements [16] are possible theoretical
solutions to overcome these limits. Unfortunately, in practice they require a technology that seems to be far from
available in the near future. Amore realistic solutionwas proposed recently by Lucamarini et al [17]. They
devised anMDI-QKD type protocol—called twin-fieldQKD (TF-QKD)—in which the untrusted central node
performs a single-photon interferencemeasurement on the two incoming pulses, causing the key rate to scale
with the square-root of the channel transmittance by using simple optical devices. Since the original proposal,
several variants of the TF-QKDprotocol were proven to be secure [18–23] and some of themwere
experimentally implemented [24–27].

Here we focus on the TF-QKD scheme proposed in [19]. In this protocol, Alice andBob use the decoy-state
technique to upper bound the detection probabilities associated to various photon-number states (called yields),
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which are subsequently used to obtain a bound on the phase error rate. Importantly, and in contrast to other
solutions [18, 20, 22]which use a post-selection step based on thematching of a global phase, the scheme in [19]
pre-selects the value of the global phase and thus it can provide a higher secret key rate.Moreover, the practical
feasibility of this scheme has been recently demonstrated in [24, 25, 27]. A complete analysis of the symmetric
scenariowhere both users use the same signal intensities and analytically estimate the yields using the same decoy
intensity settings was performed recently in [28]. However, using the same set of intensities is an optimal strategy
only when the quantum channels connecting the users to the central node have approximately the same
transmittance. Thus, the bounds derived in [28] are not suitable for several real-world situations in optical
networkswhere the distances between the users and the central node can be notoriously different. Furthermore,
assuming that the parties employ exactly the same intensities is problematic evenwhen the losses are symmetric.
This is due to the fact that, typically, neither Alice nor Bob can ensure that their lasers emit pulses with a perfectly
locked intensity. Instead, their intensities are typically fluctuating randomly and independently from the other
party. For these reasons, the use of independent signal intensities and the derivation of yields bounds based on
asymmetric decoy intensities is crucial for the protocol’s security in the presence of intensity fluctuations and for
addressing asymmetric-loss scenarios. This idea has already been used to optimize the earlyMDI-QKD
protocols based on two-photon interference in asymmetric-loss scenarios [29] and has recently been applied to
another type of TF-QKDprotocol in [30].Moreover, decoy-state based protocols affected by intensity
fluctuations have already been studied in [31–34].

In this paper, we address the above-mentioned problems by analyzing the performance of the TF-QKD
scheme proposed in [19] in the presence of asymmetric losses and independent laser intensity fluctuations. For
this, we derive new analytical bounds on the yieldswhenAlice andBob use asymmetric intensity settings. In
particular, we consider the practical cases where each of Alice and Bob uses two, three and four decoy intensity
settings, which are themost efficient solutions for covering long distances. In doing so, we show that the
protocol can tolerate highly-asymmetric loss scenarios and is quite robust against intensity fluctuations, thus
demonstrating its practicality for realistic network configurations.

The paper is organized as follows. In section 2we summarize the TF-QKDprotocol introduced in [19].
Then, in section 3we analyze the performance of the aforementioned protocol under the assumption that Alice
andBob use the same signal and decoy intensities. In section 4we present analytical bounds on the yieldswhen
the parties are allowed to use three independent decoy intensity settings.With the derived bounds, we investigate
the protocol’s performance in section 5when using independent signal and decoy intensities and in the presence
of uncorrelated intensityfluctuations affecting the users’ lasers. Finally, in section 6we present our conclusions.
The paper includes also a fewAppendixes with additional calculations, including the analytical bounds on the
yieldswhen each of Alice andBob uses either two or four independent decoy intensity settings.

2. TF-QKD

2.1. Protocol description
In this sectionwe briefly summarize the considered TF-QKDprotocol [19]. As shown infigure 1, it consists in
bothAlice andBob sending optical pulses through a quantum channel to an untrusted third party, Charles, who
is in charge of performing jointmeasurements on the incoming pulses and announcing the results. The protocol
is composed of the following seven steps.

50:50 BS

Figure 1. Scheme of the TF-QKDprotocol proposed in [19]. After selecting theX orZ basis randomly, Alice and Bob send optical
pulses through a quantum channel to an intermediate node controlled by the untrusted party Charles. In an honest implementation,
Charlesmakes the incoming pulses interfere in a 50:50 beam splitter (BS) and publicly announces which of the two threshold detectors
placed at the beam splitter output ports clicks. For theX basis, Alice and Bob send coherent states a ñ∣ A and a ñ∣ B , respectively. For
theZ basis, they send PRCSwhose intensities are chosen at random frompredefined sets.
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(i) Alice (Bob) chooses the X basis with probability px
A (px

B) and the Z basis with probability = -p p1z
A

x
A

( = -p p1z
B

x
B). For theX basis, Alice (Bob) prepares an optical pulse in a coherent state a- ñ∣( )1 b

A
A

( a- ñ∣( )1 b
B

B ), with bA (bB) being a randomly chosen bit and a a Î,A B , for simplicity. For theZ basis, Alice
(Bob) prepares an optical pulse in a phase-randomized coherent state (PRCS) rmk

(rnl
)whose intensityμk

(νl) is chosen from a set  m= { }A k k ( n= { }B l l)with probability pk (pl).

(ii) Both Alice and Bob send their pulses to an intermediate untrusted node, Charles, through optical channels
with transmittances ηA and ηB, respectively, in a synchronizedmanner.

(iii) Charles interferes the incoming pulses in a 50:50 beam splitter, followed by two threshold detectors
associatedwith the constructive (detectorDc) and destructive (detectorDd) interference, respectively.

(iv) Charles announces the measurement outcomes kc and kd of the detectors Dc and Dd, respectively, with
kc=1 (kd=1) corresponding to a click event and kc=0 (kd=0) corresponding to a no-click event.

(v) Alice and Bob reveal a small fraction of the bits bA (bB) collected from those events when both parties chose
theX basis andCharles reported a click only in one detector (kc+kd=1) to estimate the bit error rate.
Their raw keys consist on the remaining undisclosed bits. Also, Bobflips all the bits bB collectedwhen the
click occurred inDd.

(vi) Alice and Bob publicly announce the intensities used in all the events when both chose the Z basis, and they
use that information to estimate the phase error rate.

(vii) Alice and Bob apply error correction and privacy amplification techniques to their raw keys to distill two
identical secret keys.

2.2. Secret key rate
The asymptotic secret key rate of the protocol described above is lower bounded by [19]

 +W W{ } { } ( )R R Rmax , 0 max , 0 , 1X X
c d

where WRX is a lower bound on the secret key rate that Alice andBob can obtain from the eventΩä{Ωc,Ωd},
being W º =  =( )k k1 0c c d and W º =  =( )k k0 1d c d . This lower bound is given by
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is the conditional probability that the eventΩ occurs given that Alice and

Bob select theX basis, WeZ ,
upp is an upper bound on the phase error rate, WeX , is the bit error rate, f is the

reconciliation efficiency of the error correction process and = - - - -( ) ( ) ( ) ( )h x x x x xlog 1 log 12 2 2 is the
binary entropy function. Note that in the asymptotic scenario, which is the scenario we consider in this work, we
assume for simplicity that = »p p 1x

A
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B . The upper bound on the phase error rate, WeZ ,

upp, is given by [19]:
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not experimentally observed but can be estimated through the decoy-statemethod [35–37] (see section 4). The
bit error rate is given by
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The values of the bit error rate WeX , and of the probability W( )pX for a typical channelmodel are given in
appendix A. These are the values we use in our simulations.

3. Symmetric intensities

When analyzingQKDprotocols based on a central-node architecture, it is common to consider the symmetric
scenariowhere the transmittances of the channels Alice-Charles and Bob-Charles are equal. This is, however, an

3
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unrealistic assumption. In a practical scenario, the loss introduced by the quantum channel Alice-Charles could
significantly differ from the loss in the channel Bob-Charles. In this case, the yields bounds obtained by using the
decoy-state techniquewith the same intensity settings for Alice andBob are not optimal anymore, i.e. they are
looser than those obtainedwhen the channel losses are instead symmetric.

Indeed, as already shown inMDI-QKD [29, 38–40], if Alice andBob use the same intensity settings, they
might be in a situationwhere it is convenient for them to symmetrize the channels losses by increasing the loss in
one of the channels, in order to enhance the key rate. In doing so, the intensities of the pulses arriving at the
central node are nowof similarmagnitude, which results in an improvement of the key rate. However, if they use
different intensity settings, that is no longer the case [29, 38–40]. The same happens in the TF-QKD scheme
introduced in [19]. This is clear from figure 2, wherewe plot the secret key rate assuming that Alice andBob use
the same set of two, three and four decoy intensities. The plots are obtained by using the analytical yields bounds
for the symmetric-intensities scenario derived in [28]. The experimental parameters used for the simulations are
given in table 1 and the corresponding channelmodel is given in appendix A.

Infigure 2, the key rate is optimized over the signal intensity a a=A B
2 2 and over the strongest decoy intensity

(assumed to be equal for the two parties), while the other decoy intensities are fixed to the same values for both
parties. As amatter of fact, after having observed that in the asymptotic scenario the optimal values of theweaker
decoy intensities tend to be as small as possible regardless of the losses in the two channels, wefixed them to
reasonably low values in the key rate optimization.More precisely: theweakest decoy intensities of Alice andBob
in the two-, three- and four-decoy case arefixed to -10 ;5 the second-to-the-weakest decoy intensities in the
three- and four-decoy case are bothfixed to -10 ;4 and the third-to-the-weakest decoy intensities in the four-
decoy case are fixed to -10 3. The resulting key rate in both the three- and four-decoy case basically reproduces
the rate onewould obtainwhen optimizing even on theweaker decoy intensities [28]. In the two-decoy case,
however, the key rate can be enhanced further by decreasing the value of theweakest decoy intensity, as
explained in appendix E. The disadvantage of using symmetric signal and decoy intensity settings is clear in all
the two-, three- and four-decoy cases, since increasing the loss in one of the channels can lead to an increase of
the key rate in asymmetric-loss scenarios.

Furthermore, as alreadymentioned in the introduction, assuming that Alice andBob are using exactly the
same intensities is not realistic inmost experimental implementations [25–27] due to the intensity fluctuations
on the transmitters’ lasers. The effect of intensityfluctuations was already considered in [28] under the

Figure 2.Contour lines for the secret key rate of the TF-QKDprotocol introduced in [19] as a function of the channel loss inAlice’s
and Bob’s sides, assuming that both Alice and Bob use the same signal and decoy intensities. Specifically, in (a)–(c) they use two, three
and four decoy intensities each, respectively. The black dashed line encloses the loss regionwhere the key rate overcomes the
repeaterless bound [10].We note that for several combinations of losses, itmight be beneficial for the parties to increase the loss in one
of the channels in order tomake themmore symmetric, thusmaximizing the key rate. The experimental parameters used in the
simulations are given in table 1.

Table 1.Experimental parameters used in the
simulations. See appendix A for the definitions.

Dark count probability pd 10−7

Total polarizationmisalignment θ 2%

Phasemismatch f 2%

4
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assumption that the fluctuations are correlated among the two parties, which is satisfied in the experiment
reported in [24], but does not hold in general.

4. Asymmetric intensities

In order to enhance the protocol’s performance in the presence of asymmetric losses and to investigate
uncorrelated intensity fluctuations, in this workwe derive analytical upper bounds on the yields for the two-,
three- and four-decoy scenarios with independent intensity settings for Alice and Bob.Wenote that the use of
three or four decoy intensity settings is already enough to obtain a secret key rate close to the one that could be
achievedwith infinite decoy intensity settings [19, 28]. The derivation of the yields bounds for different decoy
intensity settings is presented in appendix F (two-decoy scenario), appendix G (three-decoy scenario) and
appendixH (four-decoy scenario). However, for illustration purposes, we present in this section the resulting
upper bounds for the three-decoy case.

According to the TF-QKDprotocol [19] summarized in section 2—when both parties choose theZ basis—
Alice prepares a PRCSwhose intensity belongs to the set m m m{ }, ,0 1 2 , with m m m> >0 1 2. Analogously, Bob
prepares a state whose intensity is instead drawn from the set n n n{ }, ,0 1 2 , with n n n> >0 1 2. The key
assumption of the decoy-statemethod is that the yields are independent of the chosen intensities and are thus
subjected to the following four equality constraints:

å m nº = Îm n+

=

¥˜
! ! { } ( )Q Q

Y

n m
k le , 0, 1, 2 , 6k l k l

n m

nm
k

n
l
m, ,

, 0

k l

where Qk l, is the gain in theZ basis given that Alice andBob choose intensities mk and nl, respectively. Note that
we omit here and inwhat follows, for readability, the dependency of the variables withΩ. Being probabilities, the
yields are additionally subjected to the inequality constraints:

  " ( )Y n m0 1 , . 7nm

By properly combining the constraints (6)with a procedure similar toGaussian elimination, we can obtain
analytical upper bounds on the yields Y Y Y Y Y Y Y Y, , , , , , ,00 11 22 02 04 20 40 13 andY31. The other yields are trivially
upper bounded by one. The upper bounds are then inserted in the expression for the phase error rate (3), which
can be rewritten as

´ W = + + + + + + D

+ + + + D

W
W W W W W W

W W W

( ) ( )
( ) ( )

e p c Y c Y c Y c Y c Y c Y

c Y c Y c Y , 8

Z X,
upp

0,0 00 0,2 02 2,0 20 2,2 22 0,4 04 4,0 40 even
2

1,1 11 1,3 13 3,1 31 odd
2

whereD = å Î
¥
( ) cn m S n meven , ,0

(D = å Î
¥
( ) cn m S n modd , ,1

), being S0 (S1) the subset of 2 0 (  +2 10 )which only
includes the (n,m) pairs of those yields that are being trivially upper bounded by one. In doing so, we can obtain
a fully analytical expression of the asymptotic secret key rate (1). Inwhat follows, we present the resulting upper
bounds on the aforementioned yields (we refer the reader to appendixG for their derivation). For this, let’s
consider themost general combination of the nine constraints (6):

å=
=

˜ ( )G c Q . 9uv
i j

i j
i j

, 0

2

,
,

For simplicity, in(9) and also below,we omit the explicit dependence of the coefficients ci j, with the value of u
and v. Then, we can obtain an upper bound on the yieldYuv by appropriately choosing the coefficients ci,j that
appear in(9).

4.1. Upper bound onY00

Anupper bound on the yieldY00 is given by

m m n n
m m m m n n n n

=
- - - -( )( )( )( ) ( )Y

G
, 10U

00
1 2 1 2 00

0 1 0 2 0 1 0 2

whereG00 is given by(9) byfixing the ci,j coefficients to those given in(G.54).
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4.2. Upper bound onY11

Anupper bound on the yieldY11 is given by

m m n n
m m m m n n n n

n n n n n n m m m m m m

n n n n n n n n n

n n n n n n

m m m m m m m m m

m m m m m m

=
+ +

- - - -
+ + + + + +

-
- - - - + - - - - + - - - -

- - -

-
- - - - + - - - - + - - - -

- - -

n n n n n n n n n

m m m m m m m m m( ) ( ) ( )
( ) ( )

( )

( )( )
( )( )( )( ) ( ) ( )

( ) ( ) ( )( )
( )( )( )

( ) ( ) ( )
( )( )( )

11

Y
G Y Y

6 6

e e e

e e e
,

U
U U

11
11 1 2 1 2

0 1 0 2 0 1 0 2

13
1 2 0 1 2 0

31
1 2 0 1 2 0

1 2 6 0
2

2
2

2 2 6 1
2

0
2

0 2 6 2
2

1
2

1 2 0 1 0 2

1 2 6 0
2

2
2

2 2 6 1
2

0
2

0 2 6 2
2

1
2

1 2 0 1 0 2

1 1
2

1
3

2 2
2

2
3

0 0
2

0
3

1 1
2

1
3

2 2
2

2
3

0 0
2

0
3

whereG11 is given by(9) byfixing the ci j, coefficients to those given in(G.16), andwhere the upper bounds YU
13

and YU
13 are provided below.

4.3. Upper bound onY22

Anupper bound on the yieldY22 is given by

m m m m n n n n
=

- - - -( )( )( )( ) ( )Y
G4

, 12U
22

22

0 1 0 2 0 1 0 2

whereG22 is given by(9) byfixing the ci j, coefficients to those given in(G.6).

4.4. Upper bounds onY02 andY04

The upper bounds on the yieldsY02 andY04 are given by, respectively,

m m
m m m m n n n n

=
- - - -( )( )( )( ) ( )Y

G2
, 13U

02
02 1 2

0 1 0 2 0 1 0 2

and

m m
m m m m n n n n n n n n n n n n n

=
- - - - + + + + +( )( )( )( )( ) ( )Y

G24
, 14U

04
02 1 2

0 1 0 2 0 1 0 2 2
2

1
2

0
2

0 1 0 2 1 2

whereG02 is given by(9) byfixing the ci j, coefficients to those given in(G.28).

4.5. Upper bounds onY20 andY40

The upper bounds on the yieldsY20 andY40 are given by, respectively,

n n
m m m m n n n n

=
- - - -( )( )( )( ) ( )Y

G2
, 15U

20
20 1 2

0 1 0 2 0 1 0 2

and

n n
m m m m n n n n m m m m m m m m m

=
- - - - + + + + +( )( )( )( )( ) ( )Y

G24
, 16U

40
20 1 2

0 1 0 2 0 1 0 2 2
2

1
2

0
2

0 1 0 2 1 2

whereG20 is given by(9) byfixing the ci j, coefficients to those given in(G.36).

4.6. Upper bound onY13

Anupper bound on the yieldY13 is given by

m m
m m m m n n n n n n n

n n n n n n
m m m m m m n n n n n n n n n

m m m m m m m m m m m m

=
- +

- - - - + +

+
- + - + -

- - - - - - + +

´ - + - + - - - - -

n n n

m m m

( )
( )( )( )( )( )

[ ( ) ( ) ( )]
( )( )( )( )( )( )( )
[ ( ) ( ) ( ) ( )( )( )] ( )

Y
G6

6 e e e

e e e , 17

U
13

1 2 13

0 1 0 2 0 1 0 2 0 1 2

1 0 0 2 2 1

0 1 0 2 1 2 0 1 0 2 1 2 0 1 2

1
2

0
2

0
2

2
2

2
2

1
2

0 1 0 2 1 2

2 1 0

2 1 0

whereG13 is given by(9) byfixing the ci j, coefficients to those given in(G.43).
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4.7. Upper bound onY31

Anupper bound on the yieldY31 is given by

n n
m m m m n n n n m m m

m m m m m m
m m m m m m n n n n n n m m m

n n n n n n n n n n n n

=
- +

- - - - + +

+
- + - + -

- - - - - - + +

´ - + - + - - - - -

m m m

n n n

( )
( )( )( )( )( )

[ ( ) ( ) ( )]
( )( )( )( )( )( )( )
[ ( ) ( ) ( ) ( )( )( )] ( )

Y
G6

6 e e e

e e e , 18

U
31

1 2 31

0 1 0 2 0 1 0 2 0 1 2

1 0 0 2 2 1

0 1 0 2 1 2 0 1 0 2 1 2 0 1 2

1
2

0
2

0
2

2
2

2
2

1
2

0 1 0 2 1 2

2 1 0

2 1 0

whereG31 is given by(9) byfixing the ci j, coefficients to those given in(G.47).

5. Simulations

In order to obtain the optimal secret key rate in the asymptotic-key regime, one needs to optimize it over theX
basis intensities aA

2 and aB
2 , and over four, six or eight decoy intensities, depending on the number of decoys

used byAlice andBob. The key rate depends on the decoy intensities through the yields bounds derived in
appendices F–H. For instance, for the three-decoy case analyzed in the previous section, we have that the vector
of parameters to be optimized is a a m m m n n n=

 ( )p , , , , , , ,A B 0 1 2 0 1 2 . In order to fairly compare the simulation
results with those of the symmetric scenario (figure 2), we use the same experimental parameters given by table 1
andwe again fix theweaker decoy intensities to the same symmetric values for Alice andBob, namely:
μ1=ν1=10−5 for the two-decoy case,μ1=ν1=10−4 andμ2=ν2=10−5 for the three-decoy case,
μ0=ν0=10−3,μ1=ν1=10−4 andμ2=ν2=10−5 for the four-decoy case. Thus the key rate is actually
optimized over a a m n=

 ( )p , , ,A B 0 0 in the two and three-decoy case, and over a a m n=
 ( )p , , ,A B 3 3 in the

four-decoy case. As explained in appendixH, note that in the four-decoy case, for convenience of our notation,
μ3 and ν3 denote the strongest decoy intensities, i.e. we use the orderingμ3>μ0>μ1>μ2 and
ν3>ν0>ν1>ν2. Although having fixed theweaker decoy intensities to the same values for both partiesmight
seem restrictive in the asymmetric-loss scenario considered here, indeed it is not. As amatter of fact, we observed
that the optimal values of theweaker decoy intensities (i.e.μ1 and ν1 in the two-decoy case,μ1,μ2 and ν1, ν2 in
the three-decoy case,μ0,μ1,μ2 and ν0, ν1, ν2 in the four-decoy case) tend to be as low as possible, independently
of the losses in Alice andBob’s channels.We thusfixed them to symmetric low values that are reasonable from
an experimental point of view [24, 25].We additionally required every non-fixed decoy intensity to be at least
one order ofmagnitude greater than any otherfixed decoy intensity of the same scenario, due to practicality
reasons in an experiment.

Fixing the decoy intensities reduces the computation complexity of the simulations, which is important
since, in contrast to theMDI-QKD scenario [41], the key rate is not, in general, a convex function of


p (see

appendix C). Thismeans that it is not possible to safely use time-efficient optimizationmethods, such as, for
instance, the coordinate descent algorithm [42]. Our optimization is thus carried out by using the built-in global
optimization algorithms ofWolframMathematica 11.0 [43].

Infigure 3we plot the asymptotic secret key rate as a function of the loss when the parties employ
independent signal and decoy intensities, and each party uses either two (figure 3(a)), three (figure 3(b)) or four
(figure 3(c)) decoy intensities. In all plots we observe that the improvement given by the use of independent
intensities in the asymmetric-loss regions is significant. That is, introducing extra losses in one of the channels
does not enhance the key rate any longer, in contrast tofigures 2(a)–(c), where the intensities are instead
symmetric for the two parties. Interestingly, this substantial improvement ismainly due to the independence of
Alice’s and Bob’s signal intensities, while the independence of the decoy intensities plays a secondary role. In fact,
theweaker dependence of the secret key rate on the asymmetry of Alice’s and Bob’s decoy intensities was recently
investigated for specific scenarios and under some approximations in [44]. Nevertheless, allowingAlice and Bob
to independently optimize both their signal and decoy intensities can almost double the secret key rate in
extremely asymmetric-loss scenarioswith respect to the case where only the signal intensities are independently
optimized. This is particularly important when the estimation of the phase error rate is poor, like in the two-
decoy case. It is also important tomention that, similarly towhat happened in section 3, in the two-decoy
scenario shown infigure 3(a) the secret key rate can be significantly enhanced by allowing theweakest decoy
intensities of Alice andBob to take lower values (see appendix E for further information). Additionally, by doing
so, the trilobal pattern that can be observed infigure 3(a) almost disappears (seefigure E1(a)), and the resulting
figure looks similar to the three- and four-decoy cases.

The simulations suggest that in order to get a high key rate, it is important that the intensities of the pulses
arriving at the central node are of similarmagnitude (but not exactly the same), so that a cleaner interference
occurs. This is clear from figure 4, wherewe plot the optimal signal and decoy intensities in the three-decoy
scenario, as a function of the loss in the channel Alice-Charles and forfixed losses in the channel Bob-Charles.
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Wenote that the optimal signal intensities aA
2 of Alice (solid lines) become greater than the correspondent ones

aB
2 of Bob (dashed lines) as soon as the loss in Alice’s side is greater than in Bob’s side. The same happens for the

decoy intensities (μ0 of Alice and ν0 of Bob) overwhich the key rate is optimized. Besides, when the losses at
Alice’s and Bob’s sides are equal (symmetric scenario), the optimal values of both the signal and decoy intensities
coincide for Alice andBob, as expected.Moreover, the bottomplots infigure 4 show that the signal intensities
arriving at the untrusted node, i.e. ηAαA

2 and h aB B
2 , are very similar to each other, while this is less pronounced in

the case of the arriving decoy intensities. This is expected since the signal intensities are used to generate the raw
keys. Thus it is optimal tominimize the bit error rate with a clean interference by tuning the signals so that the

Figure 3.Contour lines for the secret key rate of the TF-QKDprotocol introduced in [19] as a function of the channel loss inAlice’s
and Bob’s sides assuming that bothAlice andBob use independent signal and decoy intensities. In (a)–(c), the parties use two, three
and four decoy intensities each, respectively. The key rate is never enhanced by increasing the loss in one of the two quantum channels,
in contrast to the previous scenariowith symmetric intensities (figures 2(a)–(c)). The black dashed line encloses the loss regionwhere
the key rate overcomes the repeaterless bound [10]. The experimental parameters used in the simulations are given in table 1.

Loss Bob-Charles=1dB
Loss Bob-Charles=20dB
Loss Bob-Charles=30dB

Loss Bob-Charles=1dB
Loss Bob-Charles=20dB
Loss Bob-Charles=30dB

Loss Bob-Charles=1dB
Loss Bob-Charles=20dB
Loss Bob-Charles=30dB

Loss Bob-Charles=1dB
Loss Bob-Charles=20dB
Loss Bob-Charles=30dB

Figure 4. (a)Optimal values of the signal intensities (aA
2 and aB

2 ) and the arriving signal intensities (a hA A
2 and a hB B

2 ) both for Alice
(solid lines) andBob (dashed lines). (b)Optimal values of the strongest decoy intensities (μ0 and ν0) and the arriving strongest decoy
intensities (μ0ηA and ν0ηB) both for Alice (solid lines) and Bob (dashed lines). All thefigures are plotted as a function of the loss in the
channel Alice-Charles for three different values of the loss in the channel Bob-Charles. The corresponding optimized key rate is given
in figure 3(b), where each party has independently three decoy intensities.We observe that it is optimal for the parties to prepare the
intensities of their pulses such that the signals arriving toCharles have similar intensities, especially for theX-basis rounds. The
experimental parameters used for the simulations are given in table 1.
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arriving pulses have similar intensities. Conversely, the decoy pulses are used to indirectly estimate the phase
error rate by upper bounding several yields. Because of the complexmathematical structure of such estimation
problem, it is not true in general that the optimal phase error rate estimation is achieved by interfering arriving
pulses of similar intensity. For completeness, the analogous figureswith the optimal arrival intensities in the
two- and four-decoy cases are shown in appendixD.

Apart from the general improvement in the secret key rate that the yields bounds derived in this work entail
in asymmetric-loss scenarios, the bounds also allow to incorporate uncorrelated intensity fluctuations into the
model, guaranteeing security inmore realistic conditions. Figure 5 illustrates how taking into account the
possible intensity fluctuations at the transmitters’ lasers affects the key rate. In particular, the dashed lines are
obtained by optimizing the key rate over the signal and decoy intensities (we consider two, three and four decoy
intensity settings) in the case of symmetric losses in the two quantum channels (figure 5(a)) andwhenBob’s loss
isfixed to 30 dB (figure 5(b)).We then apply uncorrelatedfluctuations offixedmagnitudes (20%, 30%and 40%)
on all the signal and decoy intensities of both parties and take theworst-case key rate (solid lines), i.e. the one
minimized by letting each intensity independently fluctuate in itsfluctuation range. For instance, byfixing the
fluctuationmagnitude to 30%, every signal (aA B,

2 ) and decoy (m n,k k) intensities fluctuate independently in the
following intervals centered on their optimal values (overlined terms): a a aÎ [ ¯ ¯ ]0.7 , 1.3A B A B A B,

2
,

2
,

2 ,

Figure 5.Comparison between the secret key ratewith optimal signal and decoys intensities (dashed lines)with the secret key rates
affected by increasing intensity fluctuations (solid lines): 20%, 30%and 40% (brighter colors; right to left). The number of decoy
intensity settings are two (green lines), three (red lines) and four (blue lines). In (a) the losses at Alice’s and Bob’s sides are equal
(symmetric-loss scenario)while in (b) the loss in the channel Bob-Charles isfixed to 30 dB.We assume that thefluctuations affect
each decoy intensity and each signal intensity of both parties in a independent way, i.e. thefluctuations are uncorrelated. The plots
show that the TF-QKDprotocol is quite robust against intensity fluctuations and that it can beat the repeaterless bound [10] evenwith
40% intensity fluctuations, whenAlice andBob use either three of four decoy intensities. Theweaker decoy intensities have been fixed
to the following values:μ1=ν1=10−5 for two decoy intensity settings,μ2=ν2=10−3 andμ1=ν1=10−2 for three decoy
intensity settings, andμ2=ν2=10−3,μ1=ν1=10−2 andμ0=ν0=10−1 for four decoy intensity settings. The other
experimental parameters are given in table 1.
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m m mÎ [ ¯ ¯ ]0.7 , 1.3k k k and n n nÎ [ ¯ ¯ ]0.7 , 1.3k k k . The secret key rate is thenminimized over thefluctuations of all
intensities constrained in their respective intervals. This effect has already been analyzed in [28] in the case of
symmetric losses in the two quantum channels, where the fluctuations are, however, assumed to be perfectly
correlated among the two users. This is a quite restrictive assumption, which only occurs in practice in certain
experimental implementations based on the use of only one laser [24], but does not hold in general when two
lasers are employed [25–27], even in a scenariowith symmetric losses. In order to directly compare the effect of
uncorrelated fluctuations with the results in [28], wefixed theweaker decoy intensities to exactly the same values
used in the intensity fluctuations plots of [28], that is:μ1=ν1=10−5 for two decoy intensity settings,
μ2=ν2=10−3 andμ1=ν1=10−2 for three decoy intensity settings, andμ2=ν2=10−3,μ1=ν1=10−2

andμ0=ν0=10−1 for four decoy intensity settings. Thefigures suggest that the protocol is quite robust
against intensityfluctuations evenwhen thefluctuations are uncorrelated among the two parties. In fact, the
maximal tolerable loss in the overall Alice-Bob channel for both the three and four-decoy scenarios decreases
less than 2 dB for a 20%fluctuation of the signal and decoy intensities. Remarkably, evenwith afluctuation
magnitude of 40% the decrease is still below 10 dB. Regarding the two-decoy case, it is important tomention
that the abrupt change that the key rate suffers when considering intensityfluctuations is due to a sudden change
in the optimal decoy intensities (see appendix E). In particular, a sudden increase of the optimal decoy intensity
directly implies a sudden increase of itsfluctuationmagnitude in absolute termsWhat concluded forfigure 5(a)
also applies to the asymmetric scenario shown infigure 5(b), where the loss in the channel Bob-Charles isfixed
to 30 dB.

Finally, it is also interesting to observe how the optimal values for the signal intensities in theX basis depend
on the estimation of the yields in theZ basis. Figure 6 shows the variation of the optimal aA

2 and aB
2 (X basis) as a

function of the loss in the channel Alice-Charles (the loss in the channel Bob-Charles isfixed to 30 dB) for four
different levels of accuracy in the estimation of the yields (Z basis). One can see that, when the yields’ estimation
is not so tight, theX basis intensities aA

2 and aB
2 tend to be small in order to reduce theweights cn m, of the yields

appearing in(3) and compensate the yields’ loose upper bounds. By increasing the number of decoys in theZ
basis and thus the tightness of the yields’ bounds aswell as the number of relevant yieldswhich are non-trivially
upper bounded, the optimal values of the signal intensities in theX basis also increase, showing that the optimal
signal intensities in theX basis depend on the number of decoy states used in theZ basis.

6. Conclusion

In this paper we have investigated the performance of the TF-QKDprotocol proposed in [19] under the realistic
condition of asymmetric losses in the quantum channels linking Alice andBob to the intermediate node. For
this, we have derived analytical bounds on the relevant yields that appear in the phase error rate expressionwhen
the parties use either two, three or four decoy intensity settings. In contrast to previous results [28], the bounds
derived here are valid in the general scenario of independent intensity settings for the two parties, thus

Figure 6.Optimal values of the signal intensities aA
2 and aB

2 (solid and dashed lines, respectively) as a function of the loss in the channel
Alice-Charles for different levels of accuracy in the estimation of the yields, i.e. assuming that the parties have at their disposal two,
three, four and infinite decoy intensity settings (bottom to top). The loss in the channel Bob-Charles isfixed to 30 dB.We observe that
the optimal values of the signal intensities used to prepare states in theX basis increase with the number of decoys used in theZ basis.
For the infinite decoy case, we assume that Alice andBob can estimate the yields precisely andwe used the theoretical values of the
yields, which are given in appendix B. The experimental parameters used for the simulations are given in table 1.
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optimizing the protocol’s performance in the presence of asymmetric losses in the two quantum channels. The
simulations show a significant improvement on the secret key ratewhen using independent signal and decoy
intensity settings in several asymmetric-loss scenarios. In particular, the secret key rate is never enhanced by
adding fiber in one of the channels in order to symmetrize their losses. Furthermore, we have demonstrated the
robustness of the protocol against uncorrelated intensityfluctuations on the transmitters’ lasers. These results
clearly indicate the suitability of employing the considered TF-QKDprotocol in practical QKDnetworks.
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AppendixA. Asymmetric channelmodel

Here, we present the expected values of the quantities required to calculate the lower bound on the secure key
rate given by (1), in the case of the channelmodel described in [28]. The only difference is that here the losses in
the channels Alice-Charles and Bob-Charles can differ and aremodeledwith a beamsplitter of transmittance ηA
for Alice and ηB for Bob. Note that in thismodel the phase and polarizationmisalignments are independent from
the channel’s transmittance. In order tomodel them, letf=δπbe a phase shift at Bob’s side for some
parameter δ and let θA (θB) be the polarization shift angle at Alice’s (Bob’s) side. Finally, let pd be the dark-count
probability of Charles’ detectors, whichwe assume to be the same for both detectors. Let us define for
convenience

g
h a h a

=
+ ( )
2

, A.1A A B B
2 2

c f q a a h h f q=( ) ( ) ( ) ( ), cos cos , A.2A B A B

where θ=θA−θB. Then it can be shown that the bit error rate eX,Ω and the probability pX(Ω) are given by
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2
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, , 2 2

Finally, the observed gains Qk l, used byAlice andBob to calculate the upper bounds on the yieldsYnm are just the
probabilities that the eventΩ occurredwhenAlice andBob chose intensitiesμk and νl for their PRCS. For this
channelmodel it turns out that the gains read:

m n h h q= - - -m h n h m h n h- + - +( )[ ( ( )) ( ) ] ( )( ) ( )Q p I p1 e cos 1 e , A.5k l
d k l A B d

, 2
0k A l B k A l B

where I0(x) is themodified Bessel function of thefirst kind.Note that due to the balanced redistribution of the
incoming photons in the central beam splitter, all the quantities presented here are actually independent of
which detector clicked, i.e. they read the same forΩ=Ωc,Ωd.

In the simulations in themain textwe assume that both the total polarizationmisalignment and phase
mismatched are 2%, that is, we select q = ( )2arcsin 0.02 and d = 0.02.

Appendix B. Theoretical values for the yields

In order to check the quality of the analytical bounds on the yields, it is useful to compare themwith their
theoretical values, i.e. the values directly inferred from the channelmodel and that Alice andBobwould estimate
when using an infinite number of decoy intensities. This is used, for instance, infigure 6. The theoretical values
of the yieldsYnm, according to the channelmodel presented in appendix A, are given by
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Note that the values of the yields are independent of the eventΩ.

AppendixC.Non-convexity of the secret key ratewith respect top

As one can notice from equations (1)–(5), the dependence of the key rateRwith its parameters is far from trivial.
Herewe numerically analyze the convexity of the key rate function

( )R p , being

p the vector of parameters to

optimize by the users. It is well-known that this property is noticeably useful since convex functions permit to
use efficient optimizationmethods, which are very important when the length of


p increases. Unfortunately, it

turns out that the key rate function is not convex in general, as shown infigureC1, thereforemakingmany
efficient optimization algorithmswork poorly.

For instance, if we consider the coordinate descent algorithm [42], it is clear from the plots that it would not
reach the optimal value if the starting point is any corner of theαA–αB plane and the first variable to optimize is
αB. Note that starting from a corner basicallymeans that, in the first step, the algorithmhave tomaximize the
darkest or the lightest line in figureC1(c), being bothmaximizedwhenαB isminimal. Thismeans that, in the
next step, the algorithmhas always to optimize the darkest line infigureC1(b), which again has itsmaximum
whenαA isminimal. Infigure C1, for simplicity, we assume that Alice andBob can estimate the yields precisely.
That is, we assume they use an infinite number of decoy intensities.

AppendixD.Optimal signal and decoy intensities in the two- and four-decoy case

InfigureD1we show the arriving signal and decoy intensities for the two- and four-decoy case, corresponding to
the optimal intensities employed infigures 3(a) and (c), respectively. Similarly to the three-decoy case (figure 4),
it is optimal for the parties to prepare the intensities of their signal pulses such that the resulting intensities that
arrive at Charles are of similarmagnitude. This is true for both the two- and the four-decoy case.

Regarding the arriving strongest decoy intensity, the four-decoy scenario resembles again the three-decoy
one, while the two-decoy case presents some differences. First of all, in contrast to the three- and four-decoy
case, Bob’s optimal decoy intensity when the channel loss between Bob andCharles isfixed to 1 dB is constant
and equal to the lowest allowed intensity value, i.e. ν0= 10−4 (see section 5 for the intensity range inwhich the

FigureC1. (a) Lower bound on the secret key rate as a function ofαA andαB. Also, we show in (b) and (c) some specific slices of (a).
Here we considered the¥-decoy scenario, and the losses inAlice’s andBob’s channels are 20 dB and 0 dB, respectively. It is easy to
note that the secret key rate function is clearly not convex.
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key rate optimization is performed).Moreover, evenAlice’s optimal decoy intensity is constant and equal to
10−4 at low losses, until it abruptly increases several orders ofmagnitude and behaves similarly to the three- and
four-decoy case at higher losses. The reason for this peculiar behavior does not seem to lie in numerical
optimization faults since it has been confirmed by different optimization routines.We also exclude that it is
caused by suboptimal analytical bounds on the yields, since it remains present evenwhen using linear
programming in bounding the relevant yields. Instead, we believe that the effect of having an extremely low
optimal decoy intensity at low losses followed by an abrupt increase at higher losses is inherent in the problem at
hand. In particular, the fact that the parties have only two decoy intensity settings prevents them fromobtaining
sufficiently tight upper bounds on the yields. In other words, there exist relevant decoy intensities combinations
forwhich the parties are unable to bound some yields in a non-trivial way, i.e. with a value strictly smaller than
one. This is the reasonwhywe explicitly present every yield upper bound, in the two-decoy case, as given by the
minimumbetween the obtained analytical formula and 1 (see appendix F). The resulting yields bounds are non-
smooth functions of the decoy intensities and so is the key rate. In turn, this can lead to discontinuities in the
parameters over which the key rate is optimized, as observed.

Finally, we note that the loss thresholds where the discontinuities of the optimal decoy intensities take place,
correspond to ‘crossing the border’ fromone lobe to the other in the two-decoy contour plot (figure 3(a)), thus
linking the peculiar shape offigure 3(a) to the above effect.

In order to have a better understanding of the special features arising in the two-decoy case discussed above,
in appendix Ewe perform a further key rate optimization in this scenario, but allowingmuch smaller values for
the intensity pulses.

Appendix E. Allowing lower intensities in the two-decoy case

In section 5weobserve a trilobal pattern affecting the two-decoy contour plot (figure 3(a)) andwe then link it to the
discontinuities affecting theoptimal decoy intensities in appendixD. Inparticular, weobserve that for bothparties

FigureD1. (a)Arriving signal intensities (a hA A
2 and a hB B

2 ) and arriving strongest decoy intensities (μ0ηA and ν0ηB) both for Alice
(solid lines) andBob (dashed lines), in the case of two decoy intensities. (b)Arriving signal intensities (a hA A

2 and a hB B
2 ) and arriving

strongest decoy intensities (μ3ηA and ν3ηB) both for Alice (solid lines) andBob (dashed lines), in the case of four decoy intensities. All
the figures are plotted as a function of the loss in the channel Alice-Charles for three different values of the loss in the channel Bob-
Charles. Like in the three-decoy case, we observe that it is optimal for the parties to prepare the intensities of their pulses such that the
signals arriving toCharles have similar intensities, especially for theX-basis rounds. The arriving decoy intensities in the two-decoy
case present instead discontinuities, that are probably caused by the inherent inefficiency of the yields bounds obtained in this
scenario. The experimental parameters used for the simulations are given in table 1.
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the optimal strongest decoy intensity acquires the lowest possible value at low losses (10−4), but then it experiences a
sudden increase after a certain loss threshold. In appendixDweargue that suchdiscontinuities are inherent in the
problemof optimizing the key ratewhen theparties have only twodecoy intensity settings at their disposal.

In order to checkwhether these effects are enhanced or caused by the experimentally-reasonable lower
bound (10−5) that we imposed on the decoy intensities, we rederive the same plots obtained for the two-decoy
case in themain text, but this timewe allow both the signal and the decoy intensities to acquiremuch smaller
(but probably unpractical) values. In particular, wefix the lowest decoy intensities toμ1=10−10 for Alice and
ν1=10−10 for Bob (opposed toμ1=10−5 and ν1=10−5 of themain text) andwe optimize the key rate over
the signal intensities a -10A

2 10 and a -10B
2 10 and over the decoy intensity m > -100

10 for Alice and
ν0>10−10 for Bob. In order tomake a fair comparison, we use the same experimental parameters used in the
main text, given in table 1. Because of the unpractical values allowed for both the signal and decoy intensities,
this study is driven by theoretical interest and is not intended to replace the practical one presented in themain
text and in appendixD.

In the new contour plots obtained in this scenario (figure E1) the trilobal pattern is barely visible. Indeed,
figure E1 now resemblesmuchmore the correspondent figures of the three- and four-decoy case (figures 3(b)
and (c)). This is readily explained by considering that nowwe perform the key rate optimization on awider range
of intensities, thus allowing the key rate contour lines to reach areas (i.e. loss combinations)where previously no
positive key could be extracted.

Despite the trilobal shape being almost vanished, the optimal decoy intensities (figure E2) still show the same
discontinuous behavior already observed in appendixD and acquire the lowest allowed value at low losses. This
further confirms that this effect is not due to limits in the numerical optimization or in the analytical bounds, but
it is rather inherent in the nature of the problem.

Finally,we also report the effect of intensityfluctuations on the optimized key rate (figure E3). Similarly to the
contour plots, having awider range of intensities in the key rate optimization not only allowsone to obtainmore
non-zero key points, but also has the general effect ofmaking the single plot pointsmore robust to intensity
fluctuations. For instance, theoptimal values of the decoy intensities at low losses are—in this case—lower than
those of themain text (10−10 instead of 10−4 and 10−5), thus reducing thefluctuations in absolute terms.

Figure E1.Contour lines for the secret key rate of the TF-QKDprotocol introduced in [19] as a function of the channel loss inAlice’s
and Bob’s sides assuming that bothAlice andBob use two decoy intensities each. In (a) the parties are assumed to use independent
signal and decoy intensities, while in (b) they use the same signal and decoy intensities. The lowest allowed signal and decoy intensities
are set to 10−10. Both contour plots in (a) and (b) are nowmuchmore resembling the correspondent ones obtained in the three- and
four-decoy case (figures 3 and 2, respectively). The black dashed line encloses the loss regionwhere the key rate overcomes the
repeaterless bound [10].
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Appendix F. Upper bounds on the yieldswith two decoy intensities

Herewe derive analytical upper bounds on the yields for the two-decoy scenariowith independent intensity
settings for Alice andBob. The three- and four-decoy cases follow a similar procedure and are presented in
appendices G andH, respectively.

In this scenario each party prepares PRCSwith two possible intensities, namely {μ0,μ1} (withμ0>μ1) for
Alice and {ν0, ν1} (with ν0>ν1) for Bob. The yields are subjected to the following four equality constraints:

å m nº = Îm n+

=

¥˜
! ! { } ( )Q Q

Y

n m
k le , 0, 1 , F.1k l k l

n m

nm
k

n
l
m, ,

, 0

k l

and to the inequality constraints given in (7).
Belowwe derive analytical upper bounds on the yieldsY00,Y11,Y02 andY20, while the other yields are trivially

upper bounded by one. Thismeans that we can rewrite equation (3) as

´ W = + + + D + + DW
W W W W( ) ( ) ( ) ( )e p c Y c Y c Y c Y , F.2Z X,

upp
0,0 00 0,2 02 2,0 20 even

2
1,1 11 odd

2

whereD = å Î
¥
( ) cn m S n meven , ,0

(D = å Î
¥
( ) cn m S n modd , ,1

), being S0 (S1) the subset of 2 0 (  +2 10 )which only
includes the (n,m) pairs of those yields that are being trivially upper bounded by one.

Figure E2.Arriving signal (a) and strongest decoy (b) intensity both for Alice (solid lines) andBob (dashed lines). The lowest allowed
signal and decoy intensities are set to 10−10. The corresponding optimized key rate is given infigure E1(a), where each party has
independently twodecoy intensities. Like in the casewith the higher allowed intensities (figureD1(a)), we still observe discontinuities
for the arriving strongest decoy intensities, confirming that the effect is intrinsic to the optimization problem.

Figure E3.Comparison between the secret key rate with optimal signal and decoys intensities (dashed lines)with the secret key rates
affected by increasing intensity fluctuations (solid lines): 20%, 30%and 40% (brighter colors; right to left), when the parties have two
decoy intensity settings each. In (a) the losses at Alice’s and Bob’s sides are equal (symmetric-loss scenario)while in (b) the loss in the
channel Bob-Charles isfixed to 30 dB.We assume that thefluctuations affect each decoy intensity and each signal intensity of both
parties in a independent way, i.e. thefluctuations are uncorrelated. The lowest allowed signal and decoy intensities are set to 10−10.
The plots show that the robustness of the TF-QKDprotocol is increasedwith respect to the case analyzed in themain text (figure 5,
where instead theweakest decoy intensities are set toμ1=ν1=10−5).
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F.1.Upper bound onY11

Consider the following combination of gains:

å m m n n= + - + = - -
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¥˜ ˜ ( ˜ ˜ ) ! ! ( )( ) ( )G Q Q Q Q
Y

n m
. F.3

n m

nm n n m m
11

0,0 1,1 0,1 1,0

, 0
0 1 0 1

The subscript inG11 indicates the yield that is going tobeboundedwith this combinationof gains, that is,Y11 in this case.
In (F.3) the coefficientsof the yieldsY m0 andYn0, for anyn andm, are identically zero.Thus (F.3) canbe rewrittenas:
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Note thatY11 is now the yieldwith the ‘highest weight’ in (F.4) since it has the largest coefficient. All the yields’
bounds presented in this work follow the same philosophy. A valid upper bound forY11 is obtained considering
theworst-case scenario for the other yields, taking into account that (7) holds. Since all the yields’ coefficients
carry the same sign in (F.4), the yieldY11 ismaximal when all the other yields areminimal. Thus the upper bound
onY11 is extracted by setting all the other yields to zero in (F.4):

m m n n
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- -

⎧⎨⎩
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min , 1 , F.5U

11
11

0 1 0 1

whereG11 is defined in (F.3).
By taking theminimumbetween the analytical upper bound and 1we enforce the validity of the inequality

constraints (7). This is of particular importance in the two-decoys scenario since there exist relevant
combinations of decoy intensities for which the analytical upper boundswould produce a value greater than
one. As a consequence, we achieve a tighter estimation of the phase error rate (3) and thus a better performance
of the key rate.However, the use of expressions like (F.5) can also affect the smoothness—i.e. the continuity of
thefirst derivative—of the key rate as a function of the decoy intensities. This in turn can lead to discontinuities
in the optimal decoy intensities as a function of the losses, as pointed out in appendicesD and E.

F.2.Upper bound onY02

Consider the following combination of gains:
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In (F.6) the coefficients of the yieldsYn0 andY1m are identically zero. Thus (F.6) can be rewritten as:

å åm m n n m m m m n n= - - + - -
=

¥

=
=

¥
- -

! ( )( ) ! ! ( )( ) ( )G
Y

m

Y

n m
. F.7

m

m m m

m
n

nm n n m m
02

1

0
1 0 0 1

1
2

0 1 0
1

1
1

0 1

Like in the derivation of the upper bound onY11 in the previous subsection, a valid upper bound for the generic
Y0m (where m 1 isfixed) is obtained by considering theworst-case scenario for the remaining yields in (F.7).
More specifically,Y0m ismaximal when the yieldswhose coefficient has the same sign as theY0mʼs coefficient are
minimal, and the yieldswhose coefficient has opposite sign to theY0mʼs coefficient aremaximal. Recalling the
constraint (7), thismeans setting all the yields of the formY0m′ (for ¢ ¹m m) to zero andYnmwith n 2 and
m 1 to 1 in (F.7). In so doing, after summing the termswe obtain:
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which leads to the following upper bound onY0m, for m 1:
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Byfixingm = 2, one gets the desired upper bound onY02.

F.3.Upper bound onY20

In a similar fashion, we consider the following combination of gains:
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In (F.10) the coefficients of the yieldsYn1 andY0m are identically zero. Thus (F.10) can be rewritten as:
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Avalid upper bound onYn0 (with n 1fixed) is obtained by setting to zero the yieldswhose coefficient has the
same sign as theYn0ʼs coefficient, and by setting to 1 the yields whose coefficient has opposite sign to theYn0ʼs
coefficient. In the case of (F.11), thismeans setting ¢Yn 0 (with ¢ ¹n n) to zero andYnmwith n 1 and m 2, to
one. In this waywe obtain:
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which leads to the following upper bound on Yn0, for n 1:
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Byfixing n=2, one gets the desired upper bound onY20.

F.4.Upper bound onY00

Consider the following combination of gains:
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In (F.14) the coefficients of the yieldsY1m andYn1, for anyn andm, are identically zero. Thus (F.14) canbe rewritten as:
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Asusualwe extract anupper boundonY00 by setting to their lowest value the yieldswhose coefficient has the same
sign as theY00ʼs coefficient (which correspond to theYnmwith n m, 2), and by setting to theirmaximumvalue
the yieldswhose coefficient has opposite sign to theY00ʼs coefficient (which correspond toY0m andYn0).Weknow
that every yield is trivially boundedby (7). However, in order to derive a tighter boundonY00, we employ non-
trivial bounds for all the yieldsYnmwith +n m 4 in (F.15). Theupper boundonY00 thus reads:
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where Y Y,U U
02 03 and YU

04 are given by (F.9), Y Y,U U
20 30 and YU

40 are given by (F.13) and Y L
22 can be bounded from (F.4)

when all the other yields aremaximal—since all the yields’ coefficients have the same sign. Thus the lower bound
onY22 is extracted by setting all the other yields to 1 in (F.4):
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which leads to the following lower bound onY22:
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Wealso note that the upper bounds derived onY04 andY40 in equations (F.9) and (F.13) could be used to
improve the estimation of the phase error rate given in by (3). However, it can be shown that the resulting
improvement in the secret key rate is very small in this case andwe neglect it for simplicity.

AppendixG.Upper bounds on the yieldswith three decoy intensities

Herewe derive the upper bounds on the yieldsY00,Y11,Y02,Y20,Y22,Y13,Y31,Y04 andY40 presented insection 4.
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G.1. Upper bound onY22

Weconsider themost general combination of the nine constraints (6):

å å å m n= =
= =

¥

=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

˜
! ! ( )G c Q

Y

n m
c , G.1

i j
i j

i j

n m

nm

i j
i j i

n
j
m

22
, 0

2

,
,

, 0 , 0

2

,

and require that the terms proportional to Y Y Y, ,m m n0 1 0 andYn1 are removed in the combination.We achieve
this by imposing proper conditions on the real coefficients ci j, :
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The linear systemof equations given by (G.2)–(G.5) has a unique solution in the variables ci j, (up to a global
factor that wefix by imposing c0,0=1), which reads as follows:
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By substituting the solution for the coefficients ci j, (G.6) back into (G.1) one gets:
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where

m m m m m m m m m m m mº - + - + -( ) ( ) ( ) ( ) ( )A n, , , , G.8n n n
22 0 1 2 1 0 2 2 1 0 0 2 1

is the function defined in [28]when obtaining the analogous bound onY22 in the symmetric-intensities scenario
(i.e. when the decoy intensities of Alice and Bob are drawn from the same set). Thus we can employ the result
from [28] and recast (G.8) as follows:
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Of course we can employ this expression also forA22(ν0, ν1, ν2,m) bymaking the proper substitutions.Wewill
apply this consideration fromnowon to similar scenarios. By employing (G.9) into (G.7) one gets:
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From (G.10)wededuce that the sign ofYnmʼs coefficient is independent of n andm and it is the same for all terms
in the sum. Thus a valid upper bound forY22 is obtained by setting all the other yields to zero in (G.10), except for
Y22. By doing this, we obtain(12).

G.2. Upper bound onY11

Weconsider themost general combination of the nine equality constraints:
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and require that the terms proportional toY0m,Y2m,Yn0 andYn2 are removed in the combination.We achieve
this by imposing proper conditions on the real coefficients ci j, :
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The linear systemof equations given by (G.12)–(G.15)has a unique solution in the variables ci j, (up to a global
factor that wefix by imposing c0,0=1), which reads as follows:
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By substituting the solution for the coefficients ci j, (G.16) back into (G.11) one gets:
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The functionA11(μ0,μ1,μ2, n) is defined in [28]when deriving the analogous bound in the symmetric-
intensities scenario. It reads:
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and can be recast as:
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with m m m( )F n, , ,0 1 2 being a non-negative quantity independently of the intensities, defined as:
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By employing the expression (G.19) in (G.17)we obtain:
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By looking at (G.21), we deduce that a valid upper bound onY11 is obtained by setting the yieldsY1m andYn1 to
theirmaximumallowed value and by setting to zero the yieldsYnm, for n m, 3. In particular, we use the upper
bounds derived in (G.5) and (G.6) to boundY13 andY31, respectively, while we set to 1 all the other yieldsY1m
andYn1, for n m, 4. In so doing, we obtain:
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By isolating the bound onY11 and summing the series, we obtain (11).

G.3. Upper bound onY02 andY04

Weconsider themost general combination of the nine equality constraints:
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and require that the terms proportional toY1m,Y2m,Yn0 andYn1 are removed in the combination.We achieve
this by imposing proper conditions on the real coefficients ci j, :
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The linear systemof equations given by (G.24)–(G.27)has a unique solution in the variables ci j, (up to a global
factor that wefix by imposing =c 10,0 ), which reads as follows:
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By substituting the solution for the coefficients ci j, (G.28) back into (G.23) one gets:
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whereA22 is given in (G.8) andB02 can bewritten as follows for n 3 [28]:
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We thus conclude that the sign ofY0m andYnmʼs coefficients are always equal in (G.29), regardless of the values of
the intensities. Therefore a valid upper bound onY0m—form=2, 4—is obtained by setting to zero all the other
yields in (G.29). By doing so, we obtain the upper bounds onY02 andY04 given in equations (13) and(14).

G.4. Upper bound onY20 andY40

Weconsider themost general combination of the nine equality constraints:
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and require that the terms proportional toY0m,Y1m,Yn1 andYn2 are removed in the combination.We achieve
this by imposing proper conditions on the real coefficients ci j, :

å åm n n n n= "  + + = =
= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )Y c n c c c iremoved: 0 0 for 0, 1, 2 G.32n

i
i
n

j
j i j i i i1

0

2

0

2

, 0 ,0 1 ,1 2 ,2

å åm n n n n= "  + + = =
= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )Y c n c c c iremoved: 0 0 for 0, 1, 2 G.33n

i
i
n

j
j i j i i i2

0

2

0

2
2

, 0
2

,0 1
2

,1 2
2

,2

å ån = "  + + = =
= =

⎛
⎝⎜

⎞
⎠⎟ ( )Y c m c c c jremoved: 0 0 for 0, 1, 2 G.34m

j
j
m

i
i j j j j0

0

2

0

2

, 0, 1, 2,

21

New J. Phys. 21 (2019) 113032 FGrasselli et al



å ån m m m m= "  + + = =
= =

⎛
⎝⎜

⎞
⎠⎟ ( )Y c m c c c jremoved: 0 0 for 0, 1, 2. G.35m

j
j
m

i
i i j j j j1

0

2

0

2

, 0 0, 1 1, 2 2,

The linear systemof equations given by (G.32)–(G.35)has a unique solution in the variables ci j, (up to a global
factor that wefix by imposing =c 10,0 ), which reads as follows:
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By substituting the solution for the coefficients ci j, (G.36) back into (G.31) one gets:
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whereA22 is given in (G.8) andB02 in (G.30). From (G.37)we observe that the sign ofYn0 andYnmʼs coefficients
are always the same, regardless of the values of the intensities. Therefore a valid upper bound onYn0—for
n=2,4—is obtained by setting to zero all the other yields in (G.37). By doing so, we obtain the upper bounds on
Y20 andY40 given in equations (15) and(16).

G.5. Upper bound onY13

Weconsider themost general combination of the nine equality constraints:
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and require that the terms proportional toY0m,Y2m,Yn0 andYn1 are removed in the combination.We achieve
this by imposing proper conditions on the real coefficients ci j, :
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The linear systemof equations given by (G.39)–(G.42)has a unique solution in the variables ci j, (up to a global
factor that wefix by imposing =c 10,0 ), which reads as follows:
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By substituting the solution for the coefficients ci j, (G.43) back into (G.38) one gets:
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whereA22 is given in (G.9) andA11 is given in (G.19).We thus conclude thatY1m andYnmʼs coefficients have
always opposite sign in (G.44), regardless of the values of the intensities. Therefore a valid upper bound onY13 is
obtained by setting to zero all the yields of the formY1m for ¹m 3 and by setting to 1 all the other yields of the
formYnmwith n 3 and m 2. In so doing, we obtain the following expression:
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wherewe used in the series the original expressions ofA22 andA11 that are given in (G.8) and (G.18), respectively.
By summing and rearranging the terms, we obtain the upper bound onY13 given in(17).

G.6. Upper bound onY31

In a similar fashion toY13ʼs bound, onefirst removes the terms proportional toY0m,Y1m,Yn0 andYn2 from the
general combination of the nine gains:
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by properly fixing the coefficients ci j, as follows:
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Then one substitutes the solution (G.47) back into (G.46) and gets:
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whereA22 andA11 are given in (G.9) and (G.19), respectively. By noting that the coefficients of theYn1 terms have
opposite sign to those of theYnm terms, we derive an upper bound onY31 by setting to zero all theYn1 yields (for
¹n 3) and to 1 all the other ones. The upper bound onY31 is given in(18).

G.7. Upper bound onY00

Weconsider themost general combination of the nine equality constraints:
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and require that the terms proportional toY1m,Y2m,Yn1 andYn2 are removed in the combination.We achieve
this by imposing proper conditions on the real coefficients ci j, :
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The linear systemof equations given by (G.50)–(G.53)has a unique solution in the variables ci j, (up to a global
factor that wefix by imposing c0,0=1), which reads as follows:
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By substituting the solution for the coefficients ci j, (G.43) back into (G.38) one gets:
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whereA00 is defined as [28]:
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Using the result in [28], one can recast the functionA22 as follows:
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and notice that all the yields in (G.55) have coefficients with equal sign, regardless of the intensities’ values.
Hence a valid upper bound onY00 is obtained by setting all the other yields to zero (except for the yield to be
bounded) in (G.55). The upper bound onY00 is given in(10).

AppendixH.Upper bounds on the yieldswith four decoy intensities

In this case each party prepares PRCSwith four possible intensities, namely {μ0,μ1,μ2,μ3} for Alice and {ν0, ν1,
ν2, ν3} for Bob. The yields are then subjected to the following sixteen equality constraints:
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and to the inequality constraints given in (7).
Belowwe derive tighter upper bounds on the yields Y Y Y, ,04 40 13 andY31, since the bounds derived on the

yieldsY00,Y11,Y02,Y20 andY22 in appendixG are already good enough, i.e. bounding themwith one additional
decoy intensity would not result in a significant improvement of the performance of the protocol. Note that the
bounds presented here are not valid when two decoy intensities of the same party have the same value. This case
would then reduce to the three decoy intensity case. Thus, without loss of generality, we assume the following
orderingwithin each set of intensities:μ3>μ0>μ1> μ2 and ν3>ν0>ν1>ν2.

H.1.Upper bound onY04

Weconsider the combinationof gains (G.29) that leads to theboundonY04 in the caseof threedecoy intensity settings:
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where the function ( )C n m,02
0,1,2 is defined by the rhs of (G.29), while G02

0,1,2 is the combination of gains given by
(G.23), with the coefficients ci j, of the combination given in (G.28). The subscript indicates the combination of
gains towhich it refers, while the superscript indicates the decoy intensities that are involved, namely {μ0,μ1,
μ2} for Alice and {ν0, ν1, ν2} for Bob. From (G.3)we know that the termsYn0,Yn1,Y1m andY2m are removed in
(H.2), i.e. = = = =( ) ( ) ( ) ( )C n C n C m C m, 0 , 1 1, 2, 002

0,1,2
02
0,1,2

02
0,1,2

02
0,1,2 , for any n,m. Now that the parties

have at their disposal the fourth decoy intensity (μ3 for Alice and ν3 for Bob), one can derive three additional
combinations like (H.2) by simply replacing one of the first three intensities with the fourth one:
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For instance, the combination (H.3) is obtained by replacing m m2 3 and n n2 3 in the function
( )C n m,02

0,1,2 , thus obtaining ( )C n m,02
0,1,3 . Regarding the rhs, G02

0,1,3 is obtained by replacing m m2 3 and

n n2 3 in the coefficients ci j, appearing in the combination G02
0,1,2, and bymaking the substitution ˜ ˜Q Ql l2, 3,

and ˜ ˜Q Qk k,2 ,3 on the gains in G02
0,1,2. In so doing, we obtain threemore combinations of gains (H.3)–(H.5) in

which the terms Y Y Y, ,n n m0 1 1 andY2m are removed.
At this point, we further combine the expressions (H.2), (H.3), (H.4), (H.5)with arbitrary real coefficients

di j k, ,
4:
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wherewefixed the remaining degree of freedom (global factor on all the di j k, , ) by requiring that =d 10,1,2 . The
solution of the linear system (H.7) reads:

m m n n m n n m n n m n n
m m n n m n n m n n m n n
m m n n m n n m n n m n n
m m n n m n n m n n m n n
m m m m m n n n n m n n m n n m n n
m m m m m n n n n m n n m n n m n n

=

=
- - - + - + -
- - - + - + -

=
- - - + - + -
- - - + - + -

=
- - - - - + - + -
- - - - - + - + -

( )( )[ ( ) ( ) ( )]
( )( )[ ( ) ( ) ( )]
( )( )[ ( ) ( ) ( )]
( )( )[ ( ) ( ) ( )]

( )( )( )( )[ ( ) ( ) ( )]
( )( )( )( )[ ( ) ( ) ( )] ( )

d

d

d

d

1

. H.8

0,1,2

0,1,3
0 2 0 2 0 1 3 1 3 0 3 0 1

0 3 0 3 0 2 1 1 0 2 2 1 0

0,2,3
0 1 0 1 0 2 3 2 3 0 3 0 2

0 3 0 3 0 1 2 1 2 0 2 0 1

1,2,3
0 0 1 0 2 0 1 0 2 1 3 2 2 1 3 3 2 1

1 1 2 1 3 1 2 1 3 0 1 2 1 2 0 2 0 1

By substituting the solution (H.8) back into (H.6) and by rearranging the rhs, one gets a combination of gains
where all the terms Y Y Y Y Y, , , ,n n n m m0 1 2 1 2 andY3m are removed:
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Note that we identify such a combination asH04 since it appears in boundingY04. However the elements in the combination, namely G i j k

02
, , ,

have a different subscript since they are borrowed from the bounds onY02 andY04 with three decoy intensity settings.
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1. From (H.10) and (H.12)wededuce that the coefficientsofY0mandYnmhave alwaysopposite sign,hence theupper
boundonY04 is obtained from (H.9)by settingall the yieldsY0m (with ¹m 4) to zero and theyieldsYnm (with
 n m4, 3) toone.After rearranging the terms,weget the followingexpression for theupperboundonY04:
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whereH04 is given in thefirst line of (H.6), the functionA04 evaluated form=4 reads:
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We remark that in deriving the bound (H.13)we implicitly assumed that at least one of the following equalities
does not hold: ν0=μ0, ν1=μ1 and ν2=μ2. Indeed, when all three equalities hold (i.e. whenAlice and Bob are
using the same intensities settings for three out of four decoy pulses) one gets a ‘ 0

0
form’ in the bound expression

(H.13). In order to overcome this issue (which is not likely to happen in practice due to intensity fluctuations),
we derive an additional upper bound onY04 which is valid in the particular case of: ν0=μ0, ν1=μ1 and
ν2=μ2.
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The procedure resembles that used in deriving (H.13).We start by considering the four combinations of
gains (H.2), (H.3), (H.4) and (H.5) andwe impose the conditions: ν0=μ0, ν1=μ1 and ν2=μ2. Let us indicate
the resulting gains combinations as follows:
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The tilde symbol above the gains combinationsG02 and the corresponding yields coefficientsC02 indicates that
we operated the substitutions n m⟶0 0, n m⟶1 1 and n m⟶2 2 in their original expressions.

We further combine the expressions (H.16), (H.17), (H.18) and (H.19)with arbitrary real coefficients d̃i j k, , :
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and impose that even the termsYn2 andY3m are removed. The solution for the coefficients d̃i j k, , reads:
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By substituting the solution (H.8) back into (H.6) and by rearranging the rhs, one gets a combination of gains
where all the termsYn0,Yn1,Yn2,Y1m,Y2m andY3m are removed:
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Weassume that the indexes in the sums run over the set {0, 1, 2, 3}, we define   å
-i i i... m1 2 3

n n n ==-· · ∣... 1i i i m 3m1 2 3
andwith m n⟶3 3 in (H.23)we intend that everyμ3 contained in the summust be

replacedwith a ν3.
From (H.23) and (H.24)wededuce that the coefficients ofY0m andYnmhave always opposite sign, hence the

upper bound onY04 is obtained from (H.22) by setting all the yieldsY0m (with ¹m 4) to zero and the yieldsYnm
(with  n m4, 3) to one. After rearranging the terms, we get the following expression for the upper bound
onY04 under the conditions ν0=μ0, ν1=μ1 and ν2=μ2:
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where H̃04 is given in thefirst line of (H.20), the function Ã04 evaluated form=4 reads:
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H.2.Upper bound onY40

Similarly to the bound onY04, we consider the combination of gains (G.37) that leads to the bound onY40 in the
case of three decoy intensity settings:
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where the function ( )C n m,20
0,1,2 is defined by the rhs of (G.37), while G20

0,1,2 is the combination of gains given by
(G.31), with the coefficients ci j, of the combination given in (G.36). FromG.4we know that the termsYn1,Yn2,
Y0m andY1m are removed in (H.28). Following the same procedure described in (H.1), we derive three additional
combinations of gains inwhich the termsYn1,Yn2,Y0m andY1m are removed:
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Nowwe further combine these expressions with arbitrary real coefficients di j k, , :
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and impose that even the termsYn3 andY2m are removed from the rhs of (H.32). This yields a linear systemof
equations in the variables di j k, , , whose unique solution (up to a global rescaling) reads as follows:
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By substituting the solution (H.33) back into (H.32) and by rearranging the rhs, one gets a combination of gains
where all the termsYn1,Yn2,Yn3,Y0m,Y1m andY2m are removed:
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where the functionsA04 andB04 are the same found in bounding Y04 with four decoys and are given by (H.10)
and (H.12), respectively. Note that in this case the roles of the intensitiesμi and νi are exchangedwith respect to
the bound onY04 (see (H.9)), as well as the roles of n andm. Following the same reasoning of(H.1), we can
conclude that the coefficients ofYn0 andYnmhave always opposite sign.Hence the upper bound onY40 is
obtained from (H.34) by setting all the yieldsYn0 (with ¹n 4) to zero and the yieldsYnm (with  n m3, 4) to
one. After rearranging the terms, we get the following expression for the upper bound onY40:
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whereH40 is given in thefirst line of (H.32), whileA04(ν0, ν1, ν2, ν3,μ0,μ1,μ2,μ3, 4) and the sumof the series are
given in (H.14) and (H.15), respectively, under the replacement m n«i i for i=0, 1, 2, 3.

We remark that in deriving the bound (H.35)we implicitly assumed –as in theY04 case–that at least one of
the following equalities does not hold: ν0=μ0, ν1=μ1 and ν2=μ2. Indeed, when all three equalities hold (i.e.
whenAlice andBob are using the same intensities settings for three out of four decoy pulses) one gets a ‘ 0

0
form’

in the bound expression (H.35). In order to overcome this issue, one can follow an analogous procedure to that
performed for the same issue affecting the bound onY04 (see last paragraph in (H.1)), and obtain an additional
upper bound onY40 which is valid in the particular case of: ν0=μ0, ν1=μ1 and ν2=μ2. The newbound on
Y40 reads:
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where H̃40 is given by:
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and G̃20 are the same gains combinations (H.28), (H.29), (H.30) and (H.31) derived at the beginning of this
Subsection, under the replacements: n m⟶0 0, n m⟶1 1 and n m⟶2 2. The quantity Ã04 and the sumof the
series are instead given in (H.26) and (H.27), respectively, under the replacement m n«3 3.

H.3.Upper bound onY13

We follow the same procedure used in bounding the other yields in the case of four decoy intensity settings.We
start by considering the four combination of gains inwhich the termsYn0,Yn1,Y0m andY2m are removed:
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where the last three combinations are derived from thefirst one as described in (H.1), while thefirst combination
is given by (G.44). Nowwe further combine these expressions with arbitrary real coefficients di j k, , :
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and impose that even the termsYn2 andY3m are removed from the rhs of (H.43). This yields a linear systemof
equations in the variables di j k, , , whose unique solution (up to a global rescaling) reads as follows:
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By substituting the solution (H.44) back into (H.43) and by rearranging the rhs, one gets a combination of gains
where all the terms Y Y Y Y Y, , , ,n n n m m0 1 2 0 2 andY3m are removed:
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andDn is defined recursively as [28]:
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1. Since D 0n for every n 4,wededuce that the coefficientsofY1m andYnm in (H.45)have always equal sign.
Hence theupperboundonY13 is obtained from (H.45)by setting all theother yields to zero.After rearranging the
terms,weget the following expression for theupperboundonY13:
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whereH13 is given in thefirst line of (H.43), whileA13(μ0,μ1,μ2,μ3, ν0, ν1, ν2, ν3, 3) is given by:

m m m m n n n n
m m m m n n n n

m m
m m m m n n n n
m m m m n n n n

=-
- - - -

+

´

( ) ( )( )( )( )
( )

( )
( ) ( )

A

p

q

, , , , , , , , 3 .

, , , , , , ,

, , , , , , ,
H.51

13 0 1 2 3 0 1 2 3
0 1 0 2 0 1 0 2

1 2

13 0 1 2 3 0 1 2 3

13 0 1 2 3 0 1 2 3

H.4.Upper bound onY31

We follow the same procedure used in bounding the other yields in the case of four decoy intensity settings.We
start by considering the four combination of gains inwhich the terms Y Y Y, ,n n m0 2 0 andY1m are removed:
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where the last three combinations are derived from thefirst one as described in (H.1), while thefirst combination
is given by (G.48). Nowwe further combine these expressions with arbitrary real coefficients di j k, , :
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and impose that even the termsYn3 andY2m are removed from the rhs of (H.56). This yields a linear systemof
equations in the variables di j k, , , whose unique solution (up to a global rescaling) is given in (H.44), under the
replacement: m n«i i for i=0, 1, 2, 3. By substituting the solution back into (H.56) and by rearranging the rhs,
one gets a combination of gains where all the termsYn0,Yn2,Yn3,Y0m,Y1m andY2m are removed:
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where the functionsA13 andDm are defined in (H.46) and (H.49), respectively. Since D 0m for every m 4,
we deduce that the coefficients ofYn1 andYnm in (H.57) have always equal sign.Hence the upper bound onY31 is
obtained from (H.57) by setting all the other yields to zero. After rearranging the terms, we get the following
expression for the upper bound onY31:

n n n n m m m m
= ( ) ( )Y

H

A

6

, , , , , , , , 3
, H.58U

31
31

13 0 1 2 3 0 1 2 3

whereH31 is given in thefirst line of (H.56), whileA13(ν0, ν1, ν2, ν3,μ0,μ1,μ2,μ3, 3) is given by (H.51) under the
substitution: m n«i i for i=0, 1, 2, 3.
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Abstract
The intense research activity onTwin-Field (TF) quantumkey distribution (QKD) ismotivated by the
fact that two users can establish a secret key by relying on single-photon interference in an untrusted
node. Thanks to this feature, variants of the protocol have been proven to beat the point-to-point
private capacity of a lossy quantumchannel.Herewe generalize themain idea of theTF-QKDprotocol
introduced byCurty et al to themultipartite scenario, by devising a conference key agreement (CKA)
where the users simultaneously distill a secret conference key through single-photon interference. The
newCKA is better suited to high-loss scenarios than previousmultipartiteQKD schemes and it
employs for thefirst time aW-class state as its entanglement resource.We prove the protocol’s security
in thefinite-key regime and under general attacks.We also compare its performance with the iterative
use of bipartite QKDprotocols and show that our trulymultipartite scheme can be advantageous,
depending on the loss and on the state preparation.

Themostmature and developed application of quantum communication [1, 2] is certainly quantumkey
distribution (QKD) [3–8]. Themajority of theQKDprotocols proposed so far involve just two end-users, Alice
andBob, whowant to establish a secret shared key.Nowadays there is a vibrant research towards protocols
which are proven to be secure in themost adversarial situation possible (i.e. reducing the assumption on the
devices) [9–14], but at the same time are also implementable with today’s technology [15–18]. In this context, a
protocol which recently received great attention is the Twin-Field (TF)QKDprotocol originally proposed by
Lucamarini et al [19], further developed to prove its security [20–27] and experimentally implemented [28–31].
Indeed, the TF-QKDprotocol relies only on single-photon interference occurring in an untrusted node,making
it ameasurement-device-independent (MDI)QKDprotocol capable of overcoming the repeaterless
bounds [32, 33].

In a scenario where several users are required to share a common secret key, one can for instance perform
bipartiteQKDprotocols between pairs of users and then use the secret keys established in this way to encode the
final common secret key. Alternatively, one can perform a trulymultipartiteQKD scheme—also known as
conference key agreement (CKA)—whose purpose is to deliver the same secret key to all the parties involved in
the protocol [35–39]. In order to accomplish such a task, a resource which seems necessary is themultipartite
Greenberger–Horne–Zeilinger (GHZ) state [34–38] or amultipartite private state—a ‘twisted’ version of the
GHZ state [40, 41].

In this workwe introduce aCKAwhich exploits for thefirst time themultipartite entanglement of aW-class
state [42], in order to deliver the same secret key to all users. Despite having a number of users involved, the
scheme relies on single-photon interference in an untrusted node and it is inspired by the bipartite TF-QKD
protocol byCurty et al [24].We prove the security of our CKA in thefinite-key scenario, allowing Eve to perform
themost general attacks (coherent attacks) on the transmitted signals.We compare the performance of our
genuinelymultipartite QKD schemewith the iterative use of bipartiteQKDprotocols, both in the asymptotic
regime and in thefinite-key regime. In doing so, we show that performing a trulymultipartite scheme can yield a
higher secret key rate, depending on the loss and on the state preparation.

The paper is structured as follows. In section 1we present theCKAbased on single-photon interference,
while in section 2we discuss the establishment of a secret conference keywhere the entanglement resource is aW
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state. In section 3we prove theCKA security in thefinite-key scenario (the detailed proof is given in appendix A).
In section 4we provide simulations of the protocol’s secret key rate and compare themwith the repeated use of
bipartite schemes (further comparisons in appendix C).We present our conclusions in section 5. In appendix B
we report in detail the calculations of the relevant parameters for an honest implementation of the protocol.

1. Conference key agreement

As anticipated in the introduction, ourCKA scheme is an extension of the original bipartite TF-QKDprotocol
[24], Protocol 1 to a scenariowithNusers whowant to establish a secret conference key. The parties distill the
secret key by sending optical pulses to an untrusted node and by performing suitablemeasurements on a qubit
they hold. In order to keep the notation symmetric, theN parties involved in themultipartite QKDprotocol are
named: Alice , Alice1 2, ..., AliceN. The protocol is composed of L rounds, each round is characterized by the
following eight steps (see figure 1):

(i) Every party (Alicei) prepares an optical pulse ai in an entangled state with a qubitAi, given by:

q q i N0 0 1 1 1 1, 2, , , 1.1A a A a A ai i i i i ifñ = ñ ñ + - ñ ñ " Î ¼∣ ∣ ∣ ∣ ∣ { } ( )

where q0 1, 0 ai
  ñ∣ is the vacuum state, 1 ai

ñ∣ is the single-photon state, and 0 , 1A Ai i
ñ ñ{∣ ∣ } is the

computational basis of qubitAi.

(ii) Every party sends her optical pulse ai to the untrusted node via optical channels characterized by
transmittance t, in a synchronizedmanner.

(iii) The central node applies a Bell-multiport beam splitter [43–48] with M input and output ports1 to the
incoming pulses and features a threshold detectorDi at each output port (i=1,K,M). The action of the
multiport beam splitter is defined by the unitary transformation given infigure 1.

(iv) The central node announces the measurement outcome ki for every detector Di, with ki=0 and ki=1
corresponding to a no-click and a click event, respectively. The round gets discarded if k 1i

M
i1å ¹= , i.e.

whenever single-photon interference did not occur in the central node. The probability that only detector
Dj clicked is pj.

Figure 1.TheCKAbased on single-photon interference in the untrusted central node and on trustedmeasurements performed on
each party’s (Alicei) qubit.

1
We assume that there are at least asmany input ports of the beam splitter as parties taking part to the protocol, i.e.M�N.

2
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(v) According to a preshared secret key of L h pPE· ( ) bits2, the round is classified as a parameter-estimation
(PE) roundwith probability pPE or as a key-generation (KG) roundwith probability p1 PE- . There are on
average m Mp Lpj PE= PE rounds that do not get discarded.

(a) In case of a PE round, every party measures her qubit in the Z-basis and then announces the
measurement outcome to compute the frequency: Q Z1 2Z

m N
m= + á ñÄ( ) .

(b) In case of a KG round, conditioned on detectorDj clicking, Aliceimeasures her qubit in the basis of the
operator O X Ycos sinXY i i ij j j= +( ) (whereX andY are the Pauli operators), with Uargi ijj = ( )
(Uij is given infigure 1). The parties announcem randomly chosenmeasurement results in order to
estimate the quantumbit error rate (QBER) by computing the frequency:

Q O O1 2A A
m

XY XY i m1i1
j j= - á ñ( ( ) ( ) ) , i.e. the frequency of discordant outcomes.

(vi) The secret key shared by the N users is extracted from the remaining n Mp L m2j= - raw key bits of the

KG rounds.

(vii) Alice1 broadcasts the error correction information that every other party uses to correct her raw key to

Alice1ʼs raw key.

(viii) Alice1 broadcasts a suitable two-universal hash function and every party applies it to her key for privacy
amplification.

Remarks.Note that the quantity QZ
m is the frequency of the outcome+1when the partiesmeasure the operator

Z NÄ . Bymaking an analogywith the bipartite scenario, one can view QZ
m as an estimation of the phase-error rate

between Alice1 and the other N 1- parties (when the phase-error rate is defined as in [24]).

Since the Bell-multiport beam splitter redirects each incoming photonwith equal probability to each
potential output port, the probability of having a click in only one specific detector is the same for all detectors,
i.e. pj reads the same for j=1,K,M. For this reason, the total probability of having exactly one click in any
detector is given by Mpj.

In an honest implementation of the protocol, where the parties’ state preparation and the operations of the
central node are carried out as described above, the state of the qubitsA1,K,AN fromwhich the parties distill a
secret key is approximately aW-class state ofN qubits [42], as we show in section 2. Therefore, the protocol here
introduced represents an alternative to othermultipartite QKDprotocols [34–38]where the entanglement
resource used to generate the key is, instead, a noisy version of theGHZ state ofN qubits.Moreover, theW-class
state used by theCKA is an entangled statewhich is post-selected after the interference of one single photon at
themultiport beam splitter. Thus the resulting key rate scales linearlywith the transmittance t of one of the
quantum channels linking the parties to the central node. This is in contrast to the othermentionedmultipartite
QKDprotocols [34–38], where the distribution of anN-qubit GHZ state (e.g. encoded in orthogonal
polarizations of a photon)would lead to a key ratewhich scales with t N (with t being the transmittance of the link
between one party and the node distributing theGHZ state). Thismakes ourCKAmuchmore suited to high-
loss scenarios than previously proposedmultipartiteQKDprotocols.

2.MultipartiteQKDwith aW state

Asmentioned at the end of section 1, the entanglement resource exploited to distill the secret key is a noisyW-
class state ofN qubits [42], which is post-selected after single-photon interference occurred in the central node.
In fact, the optimization of the CKAkey rate (section 4) over the parameter qweighting the initial superposition
of the qubit-photon state always yields values of q close to 1. Thismeans that the quantum signal sent by the
parties is strongly unbalanced towards the vacuum. Thus the events inwhich one of the detectors clicks are
mainly caused by the arrival and detection of one photon.However, because of the balanced superposition
generated by themultiport beam splitter, the detected photon could be sent by any party with equal probability.
Since the photon is initially entangled to the qubit in state 1ñ∣ , the qubits’ state conditioned on the detection is a
coherent superposition of states in which one qubit is in state 1ñ∣ and all the others are in state 0ñ∣ , that is the
mentionedW-class state. A secret conference key can then be extracted by propermeasurements performed on
such a state.

2
Where h x x x x xlog 1 log 12 2= - - - -( ) ( ) ( ) is the binary entropy function.

3
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Let us start by considering the simplistic scenario inwhich the parties share theN-partiteW state:

W
N

1
00 ... 01 00 ... 10 ... 10 ... 00 . 2.1Nñ = ñ + ñ + + ñ∣ [∣ ∣ ∣ ] ( )

It has been proven [35] that the parties cannot extract perfectly correlated outcomes in any set of local
measurement bases (forN�3). Indeed, the onlyN-qubit state achieving that and yielding uniformly distributed
randommeasurement outcomes is theGHZ state. Nevertheless, theN-partiteW state can still be used to extract
a secret conference key. The key bits are given by the outcomes of theX-basismeasurements performed by theN
parties on their respective qubit. The expectedQBERbetween any twoparties is given by N1 2 1- , which
amounts to subtracting the fraction h N1 2 1-( ) from the secret key rate due to error correction (h(x) is the
binary entropy). On the other hand, the eavesdropper’s knowledge about the key can be estimated via the phase-
error rateQZ (as defined in section 1,more details in appendix A), which turns out to be zero on theW state. This
is crucial for having a non-zero key rate evenwhen the number of parties is large. The resulting asymptotic key
rate, when the parties share anN-partiteW state, is given by h N1 1 2 1- -( ).

Our CKA is constructed following the same philosophy. The only difference is that the conditional state
shared by the parties after the detector’s click is not exactly theW state given by (2.1), but rather a noisyW-class
state (the full expression is given in appendix B). Indeed, themultiport beam splitter introduces complex phases
in the balanced superposition of states shared by the parties, that depend onwhich detector clicked. For this
reason, we require the parties to adjust their KGmeasurements in theX,Y plane in order to remove such phases
and obtain the sameQBER ( N1 2 1- ) theywould observe bymeasuring in theX-basis had they shared the
standardW state (2.1). However, the adjusted KGmeasurements do not commutewith the operations
performed in the untrusted node and prevent theCKA frombeing recast as anMDI prepare-and-measure
scheme, opposed to its bipartite version [24]. Consequently, themultipartite scheme presented here ismore
challenging to implement than its bipartite counterpart, i.e. the TF-QKDprotocol. In particular, it cannot be
reformulated as a schemewhere the parties prepare coherent states and send them to nodeC formeasurement.
Nonetheless, the operations that the parties are required to perform seem to bewithin technological reach
[49, 50]. In particular, the qubit system could be realized by a nitrogen-vacancy electron spin, whose coherence
time has recently reached the order of seconds [51]. The entanglement between the electron spin and the
photon’s Fock state would then be generated via selective optical pulses and coherent rotations [49], which
would entangle the electron spinwith the presence or absence of a photon.

3. Finite-key analysis

The protocol presented in section 1 can be effectively regarded as anN-partiteQKDprotocol solely

characterized by the unknownquantum state A A A
Mp L

... N

j

1 2
r , which is the global state of the parties’ qubits in all the

rounds that were not discarded3. In this waywe allow the eavesdropper, who is in total control of the untrusted
node, to perform any kind of operation (coherent attacks) on thewhole set of signals sent by the parties in the
different rounds. As described above, in each round the parties perform trustedmeasurements on the state

A A A
Mp L

... N

j

1 2
r , according to the preshared key they hold. The security of such amultipartiteQKDprotocol can be
proven thanks to thefinite-key analysis developed in [37]. In particular, since Alice1 (whoholds the key towhich
all the other parties correct their raw key)measures her qubit only in the twomutually unbiased basesZ andX,
the protocol’s security proof follows analogous lines to the one of theN-BB84 protocol presented in [37]. The
security is guaranteed evenwhen the state preparation and themeasurement devices of the other parties
(Alice , ,AliceN2¼ ) are not trusted (a detailed proof is given in appendix A).

Theorem1.TheCKA in section 1, with the optimal 1-way error-correction protocol (which is ECe -fully secure and
N2 1 PEe-( ) -robust) andwhere the secret key generated by two-universal hashing has length
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is tote -secure with 2tot PE EC PAe e e e= + + , where PEe is defined as:

N 1 3.2x zPEe e eº - +( ) ( )

3
On average, the number of rounds that are not discarded by the CKA is Mp Lj .
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and n m, , ,mg eL( ) is the positive root of the following equation:
n m
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We remark that the length L h pPE· ( ) of the preshared keymust be subtracted from the secret key length in
order to have the net amount of fresh secret key bits.We also remark that our leakage estimation considers the
worst-caseQBER affecting the parties’ raw keys, which is (with high probability)not larger than theQBER
observed in appositely designatedKG roundswith the appropriate statistical correction. This is in contrast to
several other finite-key analyses [52–55], where either theQBER is assumed to be known a priori or its estimation
does not account for statisticalfluctuations.In the asymptotic regime (L  ¥), thefinite-size effects are not
present and the secret key rate (r=ℓ/L) reads:

r N Mp h Q h Q1 max , 3.4j Z
i N

A A
1, ,

i1= - -
Î ¼

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )

{ }

whereQZ and Q A Ai1
are the probabilities correspondent to the frequencies defined in section 1.

4. Simulations

In this sectionwe provide plots of the secret key rate—number of secret key bits per round—achieved by the
CKAbothwithfinite-key effects (3.1) and in the asymptotic regime (3.4), as a function of the loss in one of the
channels linking a party to the central node,measured in dB ( t10 log10- ).We assume that the protocol is
honestly implemented as described in section 1 andwe account for a dark count probability of p 10d

9= - in
every detector (which can be attainedwith superconducting nanowire single photon detectors [29]) and for a
polarization and a phasemisalignment between Alice1 and each other party of 2%. The relevant error rates and
probabilities for this configuration are given in appendix B. The plots are optimized over the parameter q of the
initial superposition between the two qubit-photon states, unless otherwise stated. The finite-key plots are
further optimized over the probability pPE of performing a PE round and over the security parameters , ,x z ECe e e
and εPA, constrained by afixed total security parameter of εtot=10−8.

In order to assess the performance of ourCKAwith an untrusted node, we consider the situation inwhich
the central node is removed and theN parties are linked by a star network, where the transmittance of the link
between any two parties is t2. For this configuration, we consider the conference key rate generated by the
following strategy and compare it to ourCKAkey rate. One selected party performs the best possible bipartite
QKD schemewith every other party in the network, i.e.N−1 times. Because of the network symmetry, every
bipartite secret key has the same length and its asymptotic rate is upper bounded by the Pirandola–Laurenza–
Ottaviani–Banchi bound [33] given by: tlog 12

2- -( ). Then, the selected party encodes thefinal conference key
by using the keys she/he established singularly with each other party. Hence, the conference key length is equal
to the bipartite keys’ lengths, but the total number of rounds4 needed to establish the conference key is given by
the number of rounds performed by a pair of parties,multiplied by the number of bipartite schemes (N−1).
Thus the conference key rate achieved by this strategy is upper bounded by:

r N
t

N

log 1

1
. 4.1direct

2
2

=
- -

-
( ) ( ) ( )

Wewill refer to (4.1) as the direct-transmission bound, even thoughwe emphasize that it only upper bounds the
achievable conference key ratewhen the strategy we just described is employed. Indeed, we do not claim that this
strategy yields the highest possible conference key rate for the considered network configuration. In this section
we show that ourCKAprovides an advantage, in terms of performance, with respect to the above strategy (4.1).

4.1. Asymptotic regime
Infigure 2we plot the asymptotic key rate of theCKA (equation (3.4), solid and dotted lines) as a function of the
loss in one of the quantum channels, for different number parties establishing the secret conference key. In
particular, the solid lines are obtained by fixingM=N, i.e. the number of input (output) ports of the beam
splitter is given by the number of parties taking part to the protocol. The dotted lines are instead obtained by
fixing the number of ports toM= 10. Finally, the dashed lines represent the direct-transmission bound (4.1) for
the correspondent number of parties.

We observe that theCKAkey rate can surpass the direct-transmission bound for sufficiently high losses. This
is expected since theCKAkey rate basically scales linearly with the transmittance t of the quantum channel

4
By roundwemean a set of steps of a givenQKDprotocol which contains only one transmission of quantum signals (more parties at the

same time can transmit a quantum signal).
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linking one party to the central node, while the direct-transmission rate scales linearly with the transmittance (t2)
of thewhole channel linking two parties [33].We note, however, that the performance advantage of the CKA
with respect to the direct-transmission bound decreases for increasing number of parties. This is due to the fact
that an increase of the number of parties ismore detrimental for theCKA rate as it severely affects theQBER5,
than for the direct-transmission bound, where it simply increases the total number of rounds dividing the key
length.Moreover, the presence of dark counts in the detectors prevents theCKA fromoutperforming the direct-
transmission bound if the number of parties is too large (see theN=9 case infigure 2). Indeed, they are the
cause of the sudden drop of the key rate at high losses, i.e. where the probability of detecting one photon becomes
comparable to the probability of having a dark count.Moreover, their effect increases with the number of parties
since the key rate optimization yields a lower probability of having a single click in one of the detectors, when
more parties are involved. Note, however, that while theCKA rate accounts for devices’ imperfections (e.g. dark
counts), the direct-transmission bound is attained only in the ideal scenario of no imperfections.

From figure 2we also deduce that performing theCKAwith a higher number of ports in the beam splitter
(dotted lines, whereM= 10) is advantageous at low losses and disadvantageous at high losses. The advantage of
havingmore output ports is that the probability that two photons arrive at the same detector diminishes (this is
an error source in our CKA). However, these errors could only occur if there is a non-negligible probability that
two photons arrive at the central node, i.e. when the losses are low. At the same time, the presence ofmore
output ports—and thus detectors—increases the chances of a dark count. And the negative effect of dark counts
on the performance becomes tangible when their probability is comparable to the probability of having a click in
a detector, i.e. at high losses.

Another relevant scenario for assessing theCKAperformance in comparison to the iteration of bipartite
protocols could be the following. The parties are given the sameCKA experimental setup but they are now
allowed to use it in pairs (or larger subgroups) in consecutive runs, effectively performing the original TF-QKD
protocol [24], Protocol 1 between one selected party and every other party. The different established keys are
then used to encode thefinal conference key, similarly to the direct-transmission scenario. This strategy can then
be compared to the case where the parties choose to use theCKA setup all at once, thus performing a truly
multipartiteQKD scheme. A detailed analysis of this comparison in the asymptotic regime is given in
appendix C. It turns out that, depending on the loss and on the state preparation, it is still advantageous to
perform amultipartite protocol instead of iteratively executing bipartite protocols, on theCKA experimental
setup.

4.2. Finite-key effects
Infigure 3(a)weplot thefinite-key conference rate (equation (3.1) divided by L) as a function of the number of
rounds L, for different fixed values of the loss (20 and 30 dB, solid and dotted–dashed lines) and different
number of parties.We stress the fact that we normalize the key length to the total number of rounds (L), i.e. we

Figure 2.TheCKAkey rate (equation (3.4), solid and dotted lines) and the direct-transmission bound (equation (4.1), dashed lines), as
a function of the loss in the channel linking one party to the central node, for different number of partiesN=2, 3, 5 and 9 (black, blue,
red and green; top to bottom). TheCKAkey rate overcomes the correspondent direct-transmission bound for increasing losses, as the
number of parties increases. For instance, theCKAperformed by 5 parties becomes advantageous at distances larger than 150 km
(assuming a fiber attenuation ofα = 0.2 dB km−1).We also observe that havingmore ports in the beam splitter than parties involved
in the protocol is advantageous at low losses (dotted lines are above the solid lines) but disadvantageous at high losses, wheremore
ports imply a higher chance of having a dark count.

5
TheQBER scales with the number of parties as N1 2 1- , see section 2.
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also take into account the rounds that get discarded due to double-clicks or no click in the detectors. The
horizontal dashed lines correspond to the value of the direct-transmission bound (4.1) for the various
combinations of losses and number of parties.We observe that the number of rounds leading to a non-zero key
rate is in general higher than othermultipartite schemes (see for example [37]). This is caused by the fact that the
CKAdevised here relies on single-photon interference events, which are only a fraction of all the events
occurring in an experiment run. A considerable amount of rounds gets thus discarded, but still contributes to
the rounds’ count. Nevertheless, the number of rounds needed for a non-zero key rate is comparable to other
bipartite TF-QKDprotocols [56, 57]. On the other hand, the advantage of relying on single-photon interference
in amultipartite scenario is the excellent scaling of the protocol’s key rate with respect to losses, which allows it to
overcome the asymptotic direct-transmission bound (dashed lines) evenwith afinite number of rounds.

Infigure 3(b)we instead plot theminimumnumber of rounds (Lmin) such that thefinite-key rate (ℓ/L) does
not decreasemore than 90%with respect to its asymptotic value r (3.4), i.e.: L L r 10min min ℓ ( ) . The
threshold Lmin is plotted as a function of the number of parties (N) and forfixed values of the loss.We observe
that Lmin increases bothwith the number of parties andwith the loss. The reason is that, in both cases, the
fraction of the total number of rounds that gets discarded increases. This has a negative effect both on the
asymptotic rate and on the finite-key rate, however the effect on the latter is greater, thus requiring a larger
number of rounds Lmin tomaintain the finite-key rate within 90% range of the asymptotic one. Indeed, a larger
fraction of discarded rounds decreases the prefactor Mpj in both thefinite- and the asymptotic-key rates, but it

additionally decreases the number of rounds used for PE in thefinite-key regime. This causes larger statistical
fluctuations and thus a smallerfinite-key rate.

5. Conclusions

In this workwe introduced a newmultipartiteQKDprotocol that exploits for the first time the correlations
derived from anN-partiteW state [42] to establish a secret conference key among theN users. In an honest
implementation of the protocol, theW state is post-selected thanks to the interference of a single photon in a
central node, extending the idea of the bipartite TFQKDprotocol devised in [24] to themultipartite scenario.
Hence the resulting key rate scales linearly with the transmittance of one of the quantum channels linking the
parties to the central node,making the protocol particularly suited for conference keys established in high-loss
scenarios.

We prove the protocol’s security in the finite-key regime by considering themost adversarial situation
possible, i.e. coherent attacks are allowed by the eavesdropper. In order to achieve this, we rely on previous
results on the finite-key security ofmultipartiteQKD schemes derived in [37] and employ the entropic
uncertainty relation [58].

Figure 3. (a) Finite-key conference rate (equation (3.1) over L) as a function of the number of rounds L, forfixed losses of 20 dB (solid
lines) and 30 dB (dotted–dashed lines), and different number of parties:N = 2, 3 and 5 (black, blue and red; top to bottom).We
observe that the rates quickly achieve their asymptotic value once the number of non-discarded rounds is enough to get a non-zero
key. TheCKAkey rates overcome the direct-transmission bound (dashed lines) even in thefinite-key scenario. (b)Minimumnumber
of rounds such that the finite-key rate (equation (3.1) over L) is at least 10%of its asymptotic value, as a function of the number of
parties and forfixed losses (1 dB blue circles, 20 dB red squares and 40 dB green diamonds).We notice that increasing the number of
parties and/or the losses ismore detrimental for thefinite-key rate than for the asymptotic one, due to an increase of the fraction of
discarded rounds and thus of the statistical fluctuations.Herewe study thefinite-key effects on ourCKA. The number of ports in the
beam splitter is given by the number of parties taking part to the protocol:M=N.
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Weprovide simulations of the conference key rate both in thefinite- and in the asymptotic-key regime.We
compare the performance of our CKA to that achieved by performing bipartiteQKD schemes between one party
and each of the others and then using the established keys to encode the conference key. In particular, we analyze
the cases where the bipartite schemes are performedwith the same setup used for theCKA (in appendix C) and
in the direct-transmission scenario (i.e. the central node is removed and the optimal bipartite QKD scheme is
performed).We show that, in both cases, the execution of a trulymultipartite scheme could be advantageous
evenwhen finite-key effects are accounted for.

Although the feasibility of the proposedCKA requires further investigation, with this workwe demonstrate
that, in principle,multipartite QKDdoes not necessarily need aGHZ-class state as its entanglement resource
and that it can be implemented even in high-loss scenarios.
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AppendixA. Security proof

In order to prove the security of our CKA in thefinite-key scenario, we start from the general security statement
given in [37, theorem1]. The resulting secret key length is thus determined by the amount of information the
eavesdropper has about the secret key and by the information the parties leak during the classical post-
processing. The former is quantified by themin-entropy H EXE

n
min r
e ( ∣ ), where XE

nr is the classical-quantum state
of Alice1ʼs raw key and the eavesdropper’s quantum systemEwhich is partially correlated to it. Since the
eavesdropper’s system is unknown, one cannot directly compute thementionedmin-entropy. Nevertheless, it
can be bounded bymeans of the uncertainty relation [58] for smooth-entropies as follows:

H E n H Z Z... , A.1XE
n

Z Z
n

Nmin max ... 2
N1

r r-e e( ∣ ) ( ∣ ) ( )
where themax-entropy on the rhs quantifies the uncertainty of Alice1ʼsZ-measurement results when theZ-
outcomes of the remainingN−1 parties are known, if all parties wouldmeasureZ in the n rounds yielding the
raw-key. Themax-entropy can be upper bounded via the phase-error rateQn

Z—as defined in section 1—of the n
raw-key rounds.We get:

H E n n h Q , A.2XE
n

Z
n

min r -e ( ∣ ) ( ) ( )
where h(·) is the binary entropy function: h x x x x xlog 1 log 12 2= - - - -( ) ( ) ( ) ( ). Finally, since the parties
do not directly observe the phase-error rateQn

Z of the n rounds producing the raw key, this can be inferred
through the theory of random samplingwithout replacement. In particular, the phase-error rate of the raw key
(Qn

Z) can be upper boundedwith high probability, once the observed phase-error rate (QZ
m) is known. For this,

wemake use of the following tail inequality [56, lemma 1]which features a tighter boundwith respect to the
Serfling inequality.

Lemma1. [56]. Let n m + be a randombinary string of n m+ bits, m be a random sample (without replacement)
ofm entries from the string n m + and n be the remaining bit string. Upon calling mL and nL the frequencies of bit
value 1 in string m and n , respectively, for any 0e > it holds:

n mPr , , , 1 , A.3n m m g e eL L + L > -[ ( )] ( )
where n m, , ,mg eL( ) is the positive root of the following equation:
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By applying lemma 1 to the case ofQn
Z , we canfinally bound the eavesdropper knowledge about the secret key as

follows:

H E n n h Q n m Q, , , . A.5XE
n

Z
m

Z
m

zmin r g e- +e ( ∣ ) ( ( ) ( )
The remaining part of the secret key length that needs to be estimated is the error-correction information sent
through the classical public channel, and thus leaked to the eavesdropper. Sincewe consider a one-way scheme
where Alice1broadcasts the same error-correction information to all the parties through the public channel, the
information gained by the eavesdropper is bounded by the binary entropy of theworstQBERbetween Alice1

and any other party, bymeans of [37, theorem2].
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Putting these considerations together, we obtain the security statement given in theorem1.
We remark that the only requirements needed for the security proof to hold are that Alice1 is actually

measuring qubits and that hermeasurement device is working as expected (i.e. itmeasures in theX andZ basis)
[58, 59]. Thismeans thatwe do not need to trust themeasurement devices of the other parties (as long as they are
memoryless), nor their state preparation (including Alice1ʼs).

Appendix B. Channelmodel

In this sectionwe compute theQBER (Q A Ak1
), the phase-error rate (QZ) and the probability that a given detector

clicked (pj), assuming that the protocol is implemented as described in section 1.We also account for a dark
count probability pd in each detector andwe consider the specific scenario inwhich there are a polarization and a
phasemisalignment of angles θ andf, respectively, betweenAlice1 and each other party. In the simulations of
section 4we set: pd=10−9 and arcsin 0.02q f= = . For simplicity, we assume that the input signals of theN
parties enter thefirstN ports of theM-port beam splitter. Nevertheless, the results in terms of achieved key rate
are independent of which input ports are used, thanks to the balanced redistribution of the input photons to the
output ports of the considered Bell-multiport beam splitter (seefigure 1).We remark that the expressions
derived here togetherwith the asymptotic key rate given in (3.4) reproduce those of the original TF-QKD
protocol [24, Protocol 1] in the case of two parties (N=2)with a balanced 2-port beam splitter (M=2).

Wefirst derive theQBER, the phase-error rate and the probability pj assuming no dark counts in the
detectors, i.e. every click is caused by the arrival of one ormore photons. In the last Subsectionwe use the derived
expressions to obtain analogous quantities, with the assumption that every detector has a probability pd of
clicking conditioned on no photon arriving.

B.1.Qubits’ state conditioned on one click
According to the protocol, the global state of the parties’ qubits and signals, before sending the signals to the
central node, reads:

q q a0 0 1 e 1 0 , B.1
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where the phasemismatchfk is defined as zero if k=1 and asf if k 1¹ , whichmeans that every other party has
the same phasemismatchwith respect to Alice1. The signals ak are then sent to the central node through lossy
optical channels, which aremodeled as beam splitters with transmittance t. The global state after the
transmission of the signals to the untrusted relay reads:
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where lk
† is the creation operator of the lost photon in channel k b,


is aN-bit vector that runs from0 to 2 1N -

in binary notation (covering all the possible combinations of qubit states) and b


∣ ∣ is theHammingweight of
vector b


. Fromnowon, we denote as g (·) the bijective function that takes as input a binary vector and outputs

the correspondent decimal number.
We assume now that the polarization of the photons sent by Alice ,... AliceN2 is rotated by an angle θwith

respect to Alice1ʼs signal:
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where θk is defined as zero if k=1 and as θ if k 1¹ , while the subscripts P and P̂ indicate the polarization of
Alice1ʼs signal and its orthogonal direction, respectively.

Finally, the global state after the application of the Bell-multiport beam splitter on the incoming signals (its
action on the incoming creation operators is reported infigure 1) is:
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where j,Ps
† and j,Ps ^

† are the creation operators of the output signals in the two orthogonal polarizations andUkj is
reported infigure 1. At this point, every output signal ismeasured in the respective threshold detector. Since the
detectors do not distinguish the polarization of the output signals, wewill use the subscript

js to indicate the
combinedHilbert space of the signals exiting port j, when there is no ambiguity.

We are now ready to compute the conditional state of the qubits A A, , N1¼ when only detectorDj clicked:
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where pj is the probability that only detectorDj clicked, A A
j

... N1
r is the normalized conditional state of the qubits

and P 0 jñs∣ is the projector on the vacuum state of output signal j. In order to compute (B.5), we start by calculating
the following quantity:
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where the effect of the projectors is to select the outcome signalσj and to remove the case g b 0=
( ) , since it

would correspond to a vacuum state for the outcome signalσj.We now focus on rewriting the following term:
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wherewe expanded the product in the first line of (B.7) by introducing a sumover the binary vector d

. The sum

runs over all theN-bit vectors d

for which dk=0whenever bk=0, for all k –the condition d b d kk k k = " .

This is tomake sure that the kth factor in thefirst line does not contribute to the expanded product in the second
linewhenever bk=0. The remaining bits of d


that are not affected by thementioned condition, can be either 1

or 0. If dk=1we intend that, for this particular term in the sum, the contribution of the kth factor in thefirst line
of (B.7) is given by itsfirst addend ( t U ...kj ( )).While if dk=0 and bk=1, wemean that the contribution is
coming from the second addend ( t l1 k- †). The exponents in the second line of (B.7) are chosen according to
these rules. Finally, (B.8) is obtained by using the definition ofUkj fromfigure 1 and by applying the creation
operators on the vacuum.Wenow expand the remaining product in (B.8)with the same technique and obtain
the following expression:
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Wenow substitute (B.9) back into (B.6) and note that the effect of the projectors P Pid i j0 0j j i
- Äs ñ ¹ ñs s( )∣ ∣ is to

remove the case g d 0=
( ) from (B.9). Hencewe get:
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By substituting (B.10) into (B.5)wefinally get the state of the qubits conditioned onDj clicking:
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Weuse theKronecker deltas to reduce the sums over d d f, ,¢
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and f ¢

. The third deltafixes the value of d¢


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Putting everything together allows to simplify (B.11) as follows:
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where the sets of binary vectors b b d, , ¢
  ( ) ( ) and f d b b, , ,¢ ¢
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Wecannow sumover the vectors f ¢
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since no termdepends on them in (B.12):
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where the asterisk on the binomial coefficientmeans that it is defined as zero if f 0=


∣ ∣ and b d b 11 1 1Å Å ¢ = .

Finally, since every term just depends on f


∣ ∣, we can sumover all the vectors f

with equalHammingweight and

obtain thefinal expression for the conditional state of the qubits when detectorDj clicked:
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B.2. Probability of exactly one click
Wecannow compute the probability pj of having just one click in detectorDj by simply computing the trace of
both sides in (B.17):
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In order to obtain an easier expression to compute, we distinguish the cases: b b0, 11 1= = and the special case
b 100 ... 0=


:
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Wecannowpartially sumover the vectors d

since the terms in the sums only depend on theHammingweight of

these vectors:

p q q
b

d

t

M
t

d

m
m d m q q

t

M

q q

b

d

t

M
t

d

m
m d m

b

d

t

M
t

d

m
m d m

1 1

cos sin 1

1

1

1
1

1

1
cos sin

1
1 cos sin .

B.20

j
g b

b

N b b

d

b d
b d

m

d
m d m N

g b
b

N b b

d

b d
b d

m

d
m d m

d

b d
b d

m

d
m d m

2
0

2 1

1

0

2

2 2 1

3
1

2 1

1 1

2

2 1 2

1

1

0

2

2 2

N

N

1

1

å å

å

å

å å

å å

q q

q q

q q

= - -

´ - + -

+ -

´
-

-
-

-
-

-

+
-

- -

=
=

-
-

=

-

=

- -

=
=

-
-

=

-

=

- -

=

-
-

=

-
























 



 
 






 



 
 






 
 




⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝

⎞
⎠

⎡

⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎤

⎦
⎥⎥

( ) ∣ ∣
∣ ∣

( )

∣ ∣ !(∣ ∣ )!( ) ( ) ( )

( )

∣ ∣
∣ ∣

( ) ∣ ∣ !(∣ ∣ )!( ) ( )

∣ ∣
∣ ∣

( ) ∣ ∣ !(∣ ∣ )!( ) ( )

( )

( )
∣ ∣ ∣ ∣

∣ ∣

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

∣ ∣
(∣ ∣ )

( )
∣ ∣ ∣ ∣

∣ ∣

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

∣ ∣
( ) (∣ ∣ )

∣ ∣

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

∣ ∣
(∣ ∣ )

By employing the following identity:
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The remaining sumoverm can be similarly simplified as follows:

l

m
m l m l l1 cos sin 1 cos . B.23

m

l
m l m

0

2
2 2 2å q q q+ - = +

=

-⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )!( )!( ) ( ) !( ) ( )( )

By substituting (B.23) into (B.22) and by partially summing over vectors b

we obtain the final expression for the

probability that only detectorDj clicks:
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Weobserve that the probability pj that only detectorDj clicks is independent of the particular detector because of
the symmetric action of themultiport beam splitter.

B.3.QBER
Starting from the conditional state (B.17), we can compute theQBERbetweenAlice1 andAlicekʼs outcomes
when theymeasure their qubit in the eigenbasis of the operator OXY 1j( ) and OXY kj( ), respectively, with
O X Ycos sinXY j j j= +( ) ( ) ( ) (X andY are the Pauli operators). The operatorOXY(j) has eigenvalues
λ=±1 and correspondent eigenvectors: 0 e 11

2
il lñ = ñ + ñj
j∣ (∣ ∣ ).

To start with, we compute the following quantity:
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andwe insert it into the probability that Alice1measured the outcome+1 andAlicekmeasured the outcome−1,
whenDj clicked:
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where b
( ) is a set of atmost 2 binary vectors, defined as: b b b b b b b b, ... ... iff 1k N k1 2 1 = Å =

 ( ) { ( )}6. This
means that the sumover b¢


is reduced to just one term, namely b b¢ =

 
, plus the possibility of a second term in

which b¢

differs from b


in position 1 and k, as long as the bits of vector b


differ from each other in those

positions. Nowwe compute the sumover b¢

as follows:

6
The straight line over a bit indicates its negation.

14

New J. Phys. 21 (2019) 123002 FGrasselli et al



P P
p

q q t

M
t

d d

m d
m d m

q q
e

t

M
t

d b

m b

d b

m b
m d m

Tr
1 1

4
1

cos sin

1

4

1

cos sin , B.27

A A
A A
j

j g b

N b b

g d d b d

d
b d

m d

d
m d d m

g b b b

N b b

M
j k

d b b b b b

d
b d

m b

d
m d m

1 1 , ,
1

2 1

1:

2 1

1

1

2

2 2

1: 1

2 1
i 1 i 1 i 2 1 1 1

, ... ...

1

1

1

1

2 1 2

k

k

N

N N

k

N
b bk

k
bk

k N

1

1

1

1

1

1

1
1

1

1 2

1

*



å å

å

å

å

å

r

q q

q q

Ä =
-

-

´
-
-

-

-
-

´ -

´
-
-

-
-

-

j f j p

+ ñ - ñ ¼
=

- -

=  =

-
-

=

- -

= Å =

- -
- + + - + - - -

Î

-

=

- -

j j

Å




 




 

   


 






 

 


 




⎜ ⎟

⎜ ⎟

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝

⎞
⎠

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

[ ] ( ) ( )

∣ ∣ ! (∣ ∣ )!( ) ( )

( )

( )

∣ ∣ ∣ ∣ !(∣ ∣ )!( ) ( ) ( )

∣ ∣
( )

∣ ∣ ∣ ∣

( )

∣ ∣
∣ ∣ ∣ ∣

∣ ∣
( ) (∣ ∣ )

( )

∣ ∣ ∣ ∣ ( ) ( ) ( ) ( )( )( )

( )

∣ ∣
∣ ∣ ∣ ∣

∣ ∣
(∣ ∣ )
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Finally, we split the sums over b

in the two sub-cases: b1=1, bk=0 and b1=0, bk=1 andwe notice that the

two contributions differ only in the exponential term. By summing the two contributions, the exponential factor
produces a cosine function and one gets:
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In a similar fashion, one computes the probability ofA1measuring the outcome−1 andAkmeasuring the
outcome+1 and obtains an identical expression to (B.29). In conclusion, theQBER conditioned onDj clicking
is given by twice the probability given in (B.29).

By fixing the anglesj1 andjk asmentioned in the protocol’s description:j1=0 and Uargk kjj = =( )
k j1 1

M

2 - -p ( )( )weminimize theQBER and thus increase the secret key rate. This requires Alicek to adjust her

measurement depending onwhich detector clicked, implying that suchmeasurement does not commutewith
the operations performed by nodeC. On the other hand, theQBER is nowminimal and reads the same
regardless of which couple (A1,Ak) one considers orwhich detectorDj clicks:
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where pj is given in (B.24).

B.4. Phase-error rate
Finally we compute the phase-error rate, defined as the probability that the product of theZ-measurement
results of all the parties equals+1 (i.e. the qubit of an even number of parties collapsed in state 1ñ∣ , which
corresponds to the outcomeZ=−1):
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where the quantum state A A
j

, , N1
r ¼ conditioned on detectorDj clicking is given in (B.17) and the case g f 0=

( ) is

excluded since 0ñ


∣ does not appear in (B.17). By following analogous steps to those presented in appendix B.2we
obtain the following expression for the phase-error rate:
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B.5.Dark counts
So farwe computed the quantities p Q,j A Ak1

andQZ assuming that every click in the detectors is due to the arrival

of one ormore photons. By namingΩph the event inwhich one ormore photons arrive at detectorDj and no
other photon arrives at any other detector, we can formally express the computed quantities as:

p Pr , B.33j ph= W( ) ( )
Q A APr , B.34A A k1 phk1 = ¹ W( ∣ ) ( )

Q ZPr 1 . B.35Z
k

N

A
1

phk= = W
=

⎛
⎝⎜

⎞
⎠⎟∣ ( )

For the setup presented in section 1 and the channelmodel described at the beginning of this section, the explicit
expressions of (B.33), (B.34) and (B.35) are given in (B.24), (B.30) and (B.32), respectively.

We now assume that every detector is characterized by a probability pd of clicking conditioned on no photon
arriving.We also defineΩclick to be the event inwhich only detectorDj clicks and no phW to be the event inwhich

no photon arrives at any detector. Then, the error rates QA A
dc

k1
and QZ

dc and the probability pj
dc that enter the key

rate formula and thatmodel the correspondent observed quantities read as follows:
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where p Q,j A Ak1
andQZ are defined in (B.33), (B.34) and (B.35), respectively, while the probabilities related to

the arrival of no photon read:

16

New J. Phys. 21 (2019) 123002 FGrasselli et al



q q tPr 1 1 B.39N
no phW = + - -( ) ( ( )( ) ( )

A APr
1

2
B.40k1 no ph¹ W =( ∣ ) ( )

Z
N

l
q q tPr 1

1

Pr 2
1 1 . B.41

k

N

A
l

N l l l

1
no ph

no ph 0

2 2 2
k

N
2

 å= W =
W

- -
= =

-⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎢⎣ ⎥⎦
∣ ( ) ( ) ( ) ( )

The probabilities (B.39), (B.40) and (B.41) are obtained by following similar steps to those presented in this
section and that led to thefinal expressions for p Q,j A Ak1

andQZ, respectively. The starting point in this case is
the conditional state of the qubits when no photon arrived at any detector:

P PPr Tr . B.42A A
l l

i
M

i
M

no ph ...
no ph , ,

, ,
1 0 4 4 1 0

N
M

N
i i1

1

1

rW = Ä F ñáF Äs s¼
¼

= ñ = ñs s( ) [ ∣ ∣ ] ( )∣ ∣

AppendixC.OptimizedCKA

Althoughwe have shown in section 4 that a trulymultipartiteQKD scheme can outperform the iterative use of
any bipartiteQKD scheme in the direct-transmission scenario (i.e. the central node is removed), this does not
necessarily holdwhen one has at hand theCKA experimental setup and uses it to performbipartite QKD
protocols. In other words, itmight be possible to outperform themultipartite CKAby iteratively executing its
bipartite version (fixN=2 in equation (3.4)) between one selected party and all the otherN−1 users, and then
using the established secret keys to encode the final conference key via one-time pad encryption. In this case the
asymptotic conference key ratewould be r N2 1-( ) ( ) according to the reasoning given at the beginning of
section 4, where r(N) is given in (3.4).More generally, itmight be advantageous to group theN parties in subsets
of equal cardinality, let themperform theCKAwithin the subset, and then use the secret keys established in each
subset to encode the conference key. Since one selected partymust belong to every subset in order to distribute
thefinal conference key to the others in a secureway, there are N d1-( ) subsets of d+1 users each. In this
case the asymptotic conference key rate would read: d r d N1 1+ -· ( ) ( ). In order to investigate which of
these configurations yields the highest asymptotic conference key rate, we optimize the ratewith respect to the
possible subdivisions of theN parties in groups of equal cardinality (i.e. wemaximize it with respect to all the
divisors d ofN−1):

r N
d

N
r dmax

1
1 , C.1

d N
opt

1
=

-
+

-
( ) ( ) ( )

∣

which includes the cases where the parties are iteratively performing bipartite protocols (d=1) andwhere theN
parties are performing theCKA all at once like in figure 2 (d N 1= - ).

Infigure C1(a)weplot the optimized conference key rate forN=5 parties (equation (C.1), solid lines) as a
function of the loss in each quantum channel, for differentfixed values of the parameter q and afixed number of
input (output) ports of the beam splitter:M=5.We also plot the direct transmission bound (4.1) for the same
number of parties. The correspondent optimal number of parties within each subset depends on the loss and on
the value of q, and it is given infigure C1(b).

From figureC1(a)we observe that the resulting key rate, although not being optimized over the parameter q,
is similar to theN=5 key rate in figure 2 formost losses, sincewefixed q to values close to the optimal ones.
Furthermore, it performs better than the standardCKAwith five parties in the high-loss region. Indeed, as
already explained in figure 2, the effect of dark counts becomes greater whenmore parties are performing the
CKA at the same time. Thus, allowing for a lower number of parties within each subset increases themaximum
tolerated loss.

Infigure C1(b)we observe that at low losses it is optimal for the five parties to perform a trulymultipartite
scheme rather than iteratively performing bipartite protocols. The reason is that in the ideal scenario of
extremely low losses (t 1⟶ ) and q close to 1, there is only one party successfully sending one photon to the
central node to be detected. In this case the post-selected state shared by the parties is theW-class state used for
establishing the secret key.Of course, there aremore chances that this event is going to happenwhenmore
parties are involved, thus amultipartite scheme is advantageouswith respect to an iteration of bipartite schemes.
One can see this also analytically, by showing that the asymptotic rate (3.4) of theCKAperformed byN parties all
at once can be approximated as follows (when the above assumptions hold):

r N Nq q t h
N

1 1
1

2

1
, C.2N 1 - - -- ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( ) ( )
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while the rate achieved by subdividing the task inN−1 bipartite schemes is:

r N
q q t

N

2 1

1
. C.3bipartite

-
-

( ) ( ) ( )
By numerically comparing (C.2)with (C.3) for sufficiently high values of q, one notices that the former results in
a higher key rate.When the value of q decreases, the probability that two ormore parties send their photon to the
central node increases, reducing the key rate. Being such eventsmore likely whenmore parties are involved, the
iterative execution of bipartite schemes is favored. Similarly, increasing the loss transforms the same events—
which aremore likely withmore parties—fromneglected events (if they cause double clicks) to harmful events
(when some photons get lost in the transmission), thus favoring the iteration of schemeswith a lownumber of
parties.
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Future quantum networks will enable long-
distance quantum key distribution (QKD) by
providing on-demand entanglement to arbitrary
combinations of users [1–4]. Paradigmatic QKD
protocols establish secure keys between pairs of
users, however when more than two parties want
to communicate, recently introduced quantum
conference quantum key agreement (CKA) pro-
tocols can drastically outperform 2-party primi-
tives in terms of resource cost [5–11]. Here we
implement a four-user quantum CKA protocol
using polarisation-encoded Greenberger-Horne-
Zeilinger (GHZ) entangled states generated by
high-brightness, telecom photon-pair sources. We
distribute these states over fibre connections of
up to 50km length and implement custom multi-
party error correction and privacy amplification
on the resulting raw keys. From a finite-key
analysis, we establish an information-theoretic
secure key of up to 1.15 × 106 bits, which is
used to encrypt and securely share an image
between the four users. Surpassing the pre-
vious maximum distance for GHZ state trans-
mission [12] by more than an order of magni-
tude, these results demonstrate the viability of
network protocols relying on multi-partite en-
tanglement. Future applications beyond quan-
tum CKA include entanglement-assisted remote
clock-synchronization [13, 14], quantum secret
sharing [15], and GHZ-based repeater proto-
cols [16].

Conference key agreement is a multi-user protocol for
sharing a common information-theoretic secure key be-
yond the two-party paradigm [5]. This key allows group-
wide encryption for authenticated users to communicate
securely, wherein exclusively members of the group can
decrypt messages broadcast by any other member. The
canonical approach to distribute a conference key is to
iterate two-party QKD (2QKD) primitives to establish
secret keys between pairs of users in the group, fol-
lowed by an additional bitwise XOR operation per pair of
users transforming the unique keys into a common secret

† These two authors contributed equally.

key [17, 18]. An alternative approach is to share genuine
multi-partite GHZ-entangled states [7, 8] between users
of the group, enabling the direct extraction of the con-
ference key without requiring this additional step. Re-
markably, quantum CKA can outperform 2QKD when
N users are arranged within some general network with
constrained channel capacity and quantum routers [7–
11]. Furthermore, quantum network coding schemes [4]
allow the distillation of a shared N-user GHZ state from a
single network use, reducing the resource cost—and thus
increasing the key rate—achievable in quantum CKA by
a factor (N-1) [7] when compared with distilling the re-
quired number of 2QKD key pairs.

Here we experimentally demonstrate the salient fea-
tures of the N-BB84 protocol introduced in [8] with a
state-of-the-art photonic platform. An untrusted quan-
tum server prepares and distributes L rounds of the
maximally entangled GHZ state, |GHZ〉 ≡ (|0〉⊗N +
|1〉⊗N )/

√
2, to N participants in the network. In our

work we implement a four-party protocol consisting of:
Alice (A), Bob 1 (B1), Bob 2 (B2), and Bob 3 (B3),
see Fig. 1 (a). Each user performs quantum mea-
surements on their respective photon in either the Z-
basis {|0〉, |1〉} constituting type-1 rounds, or the X-basis
{|+〉 .= (|0〉 + |1〉)/

√
2, |−〉 .= (|0〉 − |1〉)/

√
2} for type-2

rounds. Type-1 rounds are used to obtain the raw key
as these measurements ensure all users in the protocol
obtain the same bit value, in the absence of noise, ow-
ing to the structure of the GHZ state. Type-2 rounds
are carried out randomly with probability p, for a total
of m = L · p rounds, and are used to detect the pres-
ence of an eavesdropper. Users coordinate the measure-
ment sequence using L · h (p) bits of a pre-shared key. In
particular, one user generates the L-bit string indicating
the measurement type of each round. The string can be
classically compressed, shared, and decompressed by the
other parties. Note that the values of p are typically on
the order of 0.02, leading to a small value of h(p), i.e.,
the amount of information to be initially pre-shared is
small.

Once the measurements are complete, users proceed
to verify the security of their key by performing pa-
rameter estimation. All users announce their outcomes
for a subset of the type-1 rounds, m in total and ran-
domly chosen, and all m type-2 rounds to determine
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FIG. 1. (a) Quantum conference key agreement scheme. A quantum server distributes entangled GHZ states to Alice,
who initiates the protocol, and Bobs 1, 2, and 3. They establish a common key from a pre-agreed sequence of Z measurements
while checking the security by measuring X. (b) Experimental setup. A mode-locked picosecond laser (ti:sapph) multiplexed
to 320MHz repetition rate supplies two entangled photon sources which are based on parametric downconversion in periodically
poled KTP crystals (PPKTP), pumped bidirectionally in a Sagnac loop for producing polarisation-entangled Bell pairs [19].
Down-converted photons are separated from the pump with dichroic mirrors (DM) and coupled into fibres (FC). One photon
from each source non-classically interfere on a polarising beamsplitter (PBS) creating the four-photon GHZ state, see Methods
for details. Each user receives their photon via single-mode fibres and performs projective measurements in the Z(X) basis by
using a quarter- (QWP) and half-wave plate (HWP), and a polarising beamsplitter (PBS) before detection with superconducting
nanowire single-photon detectors (SNSPD). Detection events are time-tagged and counted in coincidence within a 1 ns time
window.

Qm
ABi

=
(
1−

〈
σA
z σ

Bi
z

〉)
/2 for i = {1, 2, 3} and Qm

X =(
1−

〈
σ⊗4x

〉)
/2 respectively. We define the quantum bit

error rate (QBER) as QBERm .
= max Qm

ABi
. All users

retain n = L − 2m bits forming the raw conference key,
subsequently corrected with an error correction scheme
and shortened with privacy amplification to ensure secu-
rity. Finally, all users remove L · h (p) bits from their se-
cret conference key to encode the pre-shared keys for sub-
sequent protocols. Hence, our protocol is a key-growing
routine, as in any known QKD scheme.

In our experiment, see Fig. 1(b), we employ
two high-brightness, polarisation-entangled photon-pair
sources [19] at telecommunication wavelength (1550 nm).
We generate four-photon GHZ states by non-classically
interfering one photon from each source on a PBS, which
has success probability of 1/2 (see for example [20]
or Methods for details). We use commercially avail-
able superconducting nanowire single-photon detectors
(SNSPDs) with typical quantum efficiencies of > 80% at
this wavelength.

We establish the upper bound on the performance of
our protocol by assuming an infinite number of rounds
can be performed, L → ∞. In this asymptotic regime
nearly all rounds are used to extract the raw key, p→ 0.
We evaluate the asymptotic key rate (AKR) as the frac-

tion of secret bits, `, extracted from the total rounds [8]:

AKR =
`

L
= 1− h(QX)− h(QBER) , (1)

where h(x) = −x log2 x−(1−x) log2(1−x) is the Shannon
entropy. From Eq. 1 we note the AKR depends only on
the noise parameters QX and QBER. We estimate these
parameters experimentally using a large sample size of
type-1 and type-2 measurements to minimise uncertain-
ties. The results are shown in Fig. 2.

We denote the network topology as {d1, d2, d3}, where
di is the fibre length in kilometres between Bi and the
server. Alice remains fixed at 2m from the server in all
cases. We implement four scenarios: {0, 0, 0}, {0, 0, 20},
{0, 10, 20}, and {20, 10, 20}, corresponding to measured
network losses (in dB) of 0, 4.84, 7.57, and 11.77. The
observed four-photon generation rates gR for these sce-
narios are 40.89Hz, 12.68Hz, 6.31Hz, and 2.03Hz. In
addition, for the finite-key analysis only, we consider a
fifth asymmetric scenario {5, 10, 20}. The conference key
rate is determined as a product of the fractional AKR
and the recorded generation rates gR. In all cases we
observe similar noise parameters, and thus AKR, indi-
cating that the entanglement quality is not degraded sig-
nificantly by the transmission fibres. The experimental
AKR is mainly limited by multiple-pair generations at
the sources and by spectral impurities of the photons,
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FIG. 2. Asymptotic key rate results. (top) We determine
the fractional asymptotic key rate (AKR) by measuring QX

and QBER without performing the full protocol. We evaluate
AKR for a range of loss conditions set by the placement of
fibre links in the network. (bottom) The conference key rate
is plotted as a function of the total fibre length in the network.
We include results of the generation rates with measurement-
basis switching using our implementation, see Methods for
details.

see Supplementary Information (SI) for details. To the
best of our knowledge, our work demonstrates for the
first time the distribution of 1550 nm four-qubit entan-
gled state in long telecom fibres, proving the viability of
polarisation-encoded photons to remain highly entangled
over long distances.

We also include the adjusted conference key rates when
we perform the protocol with actively switched measure-
ment bases. In our experiment, this is accomplished by
rotating wave plates with motorised stages that are slow
compared to the clock rate of our sources. As such, this
leads to a reduced overall rate as shown in Fig. 2 (see
Methods for details).

Our N-BB84 implementation operates at low rates and
a complete finite-key analysis, where a fractional secret
key rate (SKR) is adjusted to take into account finite
statistics from parameter estimation, is crucial. For our
experiment, we determine the optimal fraction of type-
2 measurements to be p = m/L = 0.012. With this
value of p, the amount of information reserved for the
pre-shared key is h(p) = 0.093, see Methods for more
details. Moreover, we set a total security parameter i.e.
the maximal probability that an eavesdropper gains non-
zero information about the key to be 1.8 × 10−8, see SI
for details. We implement the protocol in an asymmetric
fibre network {5, 10, 20} with a measured loss of 9.53 dB
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FIG. 3. (a) Finite key results. We implement all steps in
the N-BB84 protocol for a range of L rounds to retrieve the
final key of length ` and evaluate the secret key rate, SKR =
`/L. In our experiment we employ LDPC codes with fixed
code rates, r, using the estimated QBER in each run. We
implement privacy amplification using Toeplitz matrices, then
remove a portion of the final key for the pre-shared bits used
to encode the measurement rounds. The upper bound given
by Eq. 5 is shown compared with the experimental data. (b)
Encryption. We generate an εtot-secure conference key of
1.15×106 bits. Using 1.06×106 bits, Alice encrypts an image
(8-bit RGB, 280 by 158 pixels) employing a one-time-pad-
like scheme. Alice sends the encrypted image over a public
channel allowing only Bob 1, Bob 2, and Bob 3, who share
the conference key, to decode the image.

in total. We obtain over 4.09 × 106 type-1 rounds and
5.01× 104 type-2 rounds during 177 hours of continuous
measurement. Due to the long measurement time active
polarisation feedback was implemented to minimise noise
owing to thermal drifts in the laboratory (see Methods
for details). Once the raw key is distilled by all users,
we implement one-way error correction using low-density
parity-check (LDPC) codes complying with the Digital
Video Broadcasting (DVB-S2) standard [21]. The code
was adapted to our multi-party scenario, simultaneously
correcting Bob 1, Bob 2, and Bob 3 keys. This step en-
sures that all parties share a common key, however it
remains partly secret owing to information leaked during
error correction, and any potential eavesdropping during
the distribution step. In order to reduce the information
held by any potential eavesdropper, we implement one
round of privacy amplification on the entire raw key, re-
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ducing its final length. We use Toeplitz matrices for this
purpose, a class of universal-2 hash functions [22] that
can be implemented efficiently for our given key size.

We estimate the theoretical performance of our post-
processing steps by evaluating the noise parameters
QX = 0.05 and QBER = 0.0159, which we use to calcu-
late the upper bound set by Eq. 5 in the Methods section
and plotted in Fig 3(a) (dashed line). When performing
the protocol in earnest with a finite data set to estimate
these parameters, we replace the Shannon limit for the
error correction term h(QBERm+2ξz) in Eq. 5 with the
fraction of parity bits disclosed by Alice.

Finally, we use the secret conference key to encrypt
an image of a Cheshire cat that is shared between the
parties in a brief conference call (Fig. 3b).

The security of our protocol is based on the proof
in [8] and the assumptions therein. We note that Al-
ice’s measurement device is trusted whereas Bobs’ mea-
surement devices can be untrusted, as long as the detec-
tors are memoryless. Adapting the quantum conference-
key agreement protocol for full (measurement-)device-
independence is a work in progress, see for example [23,
24].

Experimental 2QKD key rates are bounded by the the
well-known repeaterless bound [25] established for point-
to-point rates. We remark that this bound does not ap-
ply to our scenario, where four users are connected to
a common server according to some network topology.
New bounds were recently found if repeaters are intro-
duced in a chain-like network [26] showing that higher
key-rates can in principle be achieved. As our scenario
omits repeaters these new bounds do not hold either,
however we might expect similar improvements in the
maximum key rates as opposed to standard end-to-end
2QKD protocols. An accurate model for fundamental
bounds in a general network to apply to our scenario is
still missing. We study this briefly in the SI, highlighting
the non-trivial conference key rate dependence on asym-
metric distribution of noise in the network.

Our post-processing, Fig. 3, is currently based on one-
way LDPC error correction. The well-known two-way
CASCADE protocol [27] outperforms the optimal LDPC
approach in two-party QKD for small QBER [28], how-
ever, in the multi-user case this improvement will likely
be offset by the additional iterations needed to correct
uncorrelated errors in (N − 1) raw keys. In contrast,
LDPC codes disclose a fixed amount of information that
depends only on the largest QBER between Alice and any
of the Bobs in the network. To the best of our knowl-
edge, no proof exists for the optimal strategy to achieve
the minimal bit disclosure rate when implementing error
correction in the multi-user QKD scenario, and we leave
this as an open question for future work.

Experimentally, future steps will be directed towards
GHZ rate increases, the extension to more conference
parties, and field tests in established fibre networks [29].

For direct GHZ-state transmission as demonstrated here,
quantum CKA scales unfavourably with the number of
users due to the exponential reduction in multi-photon
detection considering unavoidable transmission losses.
However, loss will not be a problem in fully-featured
quantum networks where CKA will retain its significant
(N-1) rate advantage.

METHODS

Entangled photon source

We produce photon-pairs using Type-II collinear spon-
taneous parametric down conversion (SPDC) imple-
mented in a 22mm long periodically-poled KTP (PP-
KTP) crystal. Both of our sources are optically pumped
using a mode-locked laser operating with a nominal rep-
etition rate of 80MHz, 1.4 ps pulses and its central wave-
length at 774.9 nm. A passive pulse interleaver is used to
quadruple the 80MHz pulse train to 320MHz [30]. The
PPKTP crystals are embedded within a polarisation-
based Sagnac interferometer [19] and pumped bidi-
rectionally, using a half-wave plate to set diagonally-
polarised light, to create polarisation-entangled photons
at 1549.8 nm in the approximate state:

|ψ−〉 = 1√
2
(|h〉|v〉 − |v〉|h〉) , (2)

which we can map to any Bell state via local operation
on one of the two photons.

With loose bandpass filters of 3 nm bandwidth, we
measure an average source brightness of ∼ 4100
pairs/mW/s, with a symmetric heralding efficiency of
∼ 60% [31]. The average heralding efficiency reduces by
∼ 12% with a commensurate decrease of 45% in source
brightness at the point of detection of the four users at
zero distance. We characterise each photon pair source by
performing quantum state tomography, reconstructing
density matrices using maximum-likelihood estimation
and Monte-Carlo simulations based on Poissonian count
statistics to determine errors. For each source we obtain a
typical two-photon Bell-state fidelity F = 95.58± 0.15%
and purity P = 92.07 ± 0.27%, while entanglement is
measured by concurrence C = 92.38± 0.21%.

The four-photon GHZ state is created by interfering
one photon from each source on a polarising beamsplitter
(PBS), which transmits horizontally and reflects verti-
cally polarised photons. Post-selecting on the case where
one photon is emitted in each output, which occurs with
a probability of 1/2, we obtain the state

|GHZ〉 = 1√
2
(|hhhh〉 − |vvvv〉) , (3)

where |h〉 ≡ |0〉 and |v〉 ≡ |1〉 represent horizontal and
vertical polarisations respectively. We measure indepen-
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dent two-photon interference visibility of 92.96 ± 0.95%
using 100mW pump power, and four-qubit state tomog-
raphy returns a purity and fidelity of P = 81.39± 0.83%
and F = 87.58± 0.48% respectively.

Active switching

Most QKD protocols require random switching of the
measurement basis, either passively or actively, with each
clock cycle. The same holds for the N-BB84 protocol,
where users switch between the Z/X measurement bases
according to a pre-agreed random sequence. Since all
users implement the same measurement sequence, passive
switching is not an option.

As noted, p is typically small hence switching be-
tween bases occurs relatively infrequently. In addition
the multi-photon detection rates in our experiment are
low, hence the standard method of polarisation switch-
ing with electro-optic modulators would be excessive. We
therefore implemented active switching using motorised
rotation stages with switching speeds on the order of
seconds—marginally slower than our average required
switching periods, which reduces the maximum possible
raw generation rate gR.

We evaluate the adjusted generation rate g′R for the fi-
nite key scenario for the {5, 10, 20} topology, by perform-
ing 1000 rounds of the protocol with active basis switch-
ing. We set p = 0.02, thus 20 type-2 rounds are randomly
allocated in the measurement sequence. We measured
the reduced key generation rate and found g′R/gR = 0.91.

This adjustment ratio is rate dependent. We find the
lower bound on g′R by assuming the type-2 rounds are
never sequential hence each occurrence requires time to
switch. This leads to the general expression,

g′R ≥
1

τsp+
1−p
gR

, (4)

where τs is the switching speed. We use this equation to
extrapolate the adjusted generation rates obtained in the
asymptotic case as shown by orange dots in Fig. 2.

Active polarisation control

The optical fibre links in our experiment are realised
by spools of bare SMF28 fibre. Thermal drifts in the
laboratory introduces unwanted rotations in polarisation
which, if uncorrected, leads to added noise in the pro-
tocol. These effects are typically negligible for short fi-
bre lengths, e.g., in our testing we found the 5 km spool
added no observable noise greater than with a 2m fibre
link, while the 10 km and 20 km spools showed significant
added noise in QABi measurements.

We implement active polarisation control to correct
for these effects during key transmission to preserve low-
noise operation throughout the protocol. The feedback
control loop is implemented by performing single-qubit
tomography in each fibre to characterise the unitary
transformation on the polarisation qubits. We then use
the polarisation optics in the measurement stages to undo
the rotations on the qubits and perform measurements
in the required basis. In our setup we carry out one-
qubit tomography of all four fibre links simultaneously,
including post-processing, to obtain an estimate of the
unitary operation and implement the corrective action
on the motorised waveplates. This takes less than 30
seconds and is performed once every ∼ 20 minutes for an
optimal tradeoff between maintaining a high duty-cycle
while minimising bit error rates.

Error correction using LDPC codes

The use of LDPC codes allows one party to initialise
the routine by encoding a block of k raw bits into a j-bit
codeword using a H(j−k)×j parity check matrix, where
the ratio r = k/j defines the code rate which in principle
can be any number from 0 to 1. The DVB-S2 standard
provides H matrices already computed for a set of differ-
ent code rates specified for a codeword size of j = 64′800
bits. In our experiment, we set the code rate according
to the estimated QBER using m samples with appropri-
ate ξZ correction. From the provided set of code rates
we used 1/2, 1/3 and 1/4 for small, mid and large values
of L as shown in Fig. 3(a). Alice uses the parity matrix
to calculate the parity check bits, then sends to all par-
ties the parity check bits and the H matrix through an
authenticated classical channel. Each Bob implements a
decoding algorithm consisting of simple addition, com-
parison and table look-up operations. The codes used
here have been modified from MatLAB communication
packages based on the DVB-S2 standards [21]. The num-
ber of parity bits communicated during EC is discarded
to ensure security of the final conference key.

Finite-key conference rate

When using a finite number of rounds, the estimated
parameters Qm

X and QBER from the m type-2 and type-
1 rounds, are affected by statistical error which must be
taken into account in the final key rate. The fractional
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key rate is given by,

`

L
=
n

L
[1− h(Qm

X + 2ξX)

− h(QBERm + 2ξZ)]− log2

[
2(N − 1)

εEC

] 1
L

− 2 log2

[
1− 2(N − 1)εPE

2εPA

] 1
L

− h(p) ,

(5)

where N is number of users in the protocol, (ξX , ξZ) are
finite-key correction terms and (εEC , εPE , εPA) set the
security parameters of our protocol, see SI for further
details. The final term in Eq. 5 is the portion of the final
key removed after PA, to account for the preshared key
used in marking the type-2 rounds.
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SUPPLEMENTARY INFORMATION

Experimental Noise

As outlined in the main text, for the state employed
in the protocol as in Eq. (3), we expect QX = 0 and
QBER = 0. However, in the experimental implemen-
tation, the values observed are always non-zero. In our
setup as in Fig. 1, the dominant sources of noise come
from high-order generations in the PDC process and im-
perfect mode-matching at the PBS. A comprehensive
model to account the effects of the noise on the expected
value of QX and QBER, is non-trivial and goes beyond
the scope of this work. However, we provide some quali-
tative remarks and suggestions for improvements.

Due to the probabilistic nature of the PDC process,
there is always a non-zero probability that more than a
single pair is generated within the crystal embedded in
the Sagnac interferometer. This effect can be quantita-
tively accounted for by the so-called signal-to-noise ra-
tio (SNR), defined as the ratio of single-pair events over
the multiple-pair events. Note that increasing the pump
power decreases the SNR. As shown in Fig. S1, both QX

and QBER depend indeed from the pump power. The
dependence is well fit by a linear trend, at least within
the power range we considered. Note that for the data
shown represents the setup initially, which was later op-
timised for our experiments hence the values shown here
are slightly greater than those reported in the main text
at 100mW. Importantly, whereas the QBER tends to
0 in the limit of power → 0, the QX does not. Quali-
tatively, this can be understood from the fact that the
QBER only depends on the polarisation of the photons
in the state in Eq. (3), and not on their coherence. On
the other hand, the value of QX is directly affected by
the amount of coherence in the GHZ state considered for
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FIG. S1. QX and QBER as a function of power. Within
the range of power considered, the trend is linear although
the slope for the QBER is greater than the slope for QX .
Moreover, QX is lower-bounded by the value of 0.05 at zero-
power.

the protocol. In turn, the state’s coherence is influenced
by all the degrees of freedom, i.e.: polarisation, photon-
number, time and spectrum. Decreasing the power –
therefore increasing the SNR– only affects the purity in
the photon-number degree of freedom but cannot affect
the other degrees of freedom. In particular, although our
photons are spectrally filtered at the source, they retain
some spectral mixture intrinsic to the PDC process. This
leads to non-ideal interference at the PBS, and therefore
to a non-zero lower bound for the measurable QX . Such
lower bound can be linked to the experimentally mea-
sured visibility as following. Assuming that the photons
at the PBS successfully interfere with some probability
t, we can write the state ρo after the interference as:

ρo = tρs + (1− t)ρf . (S1)

Where ρs is the density matrix of the state in case of
success, given by ρs = |GHZ〉〈GHZ|, and ρf is the den-
sity matrix in case of failure given by (|hhhh〉〈hhhh| +
|vvvv〉〈vvvv|)/2. The expected QX for this state is

QX =
1− Tr[ρo ⊗X⊗4]

2
=

1− t
2

(S2)

Note that for t = 1, QX = 0, and for t = 0, QX = 1/2.
Similarly, given the experimentally measured visibility
Vexp we expect QX = 0 and QX = 1/2 for Vexp = 1 and
Vexp = 0 respectively. We can thus, at least for these two
extreme cases, interpret t as Vexp. Assuming that t ≈
Vexp in general, we have that for Vexp = 0.9, QX = 0.05
in accordance with our results (see main text). It should
be noted however, that the interference at the PBS is a
coherent process, which might not be fully characterised
by the simple model just presented. Hence, in general,
we can conclude that QX & (1− Vexp)/2.

Security parameters in NBB84

As stated in the main text, Eq. (5) represents the
achievable secret key rate of the NBB84 protocol when
the parties perform a finite number of rounds L. In other
words, Alice needs to set the length of the PA output to
Eq. (5) in order to ensure that the established key is
secure with security parameter εtot. The security param-
eter εtot represents the maximal probability that a poten-
tial eavesdropper gains at least some information about
the established key. It is related to the failure proba-
bilities of the different stages of the protocol as follows:
εtot = εEC + εPA +2εPE , where εEC is the maximal fail-
ure probability of the EC procedure and εPA represents
the same in the case of PA, while the last term is related
to the failure probability of the PE step. In particular,
the observed values Qm

ABi
and Qm

X in the 2m rounds de-
voted to PE might differ from the correspondent values
Qn

ABi
and Qn

X characterizing the remaining n = L− 2m
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rounds which are used to extract the secret key. The de-
viation of Qn

ABi
and Qn

X is quantified by the theory of
random sampling without replacement [32] and must be
accounted for in the secret key rate Eq. (5), by taking
the worst-case in order to preserve security. As shown
in Ref. [8], the distance |Qn

ABi
−Qm

ABi
| (|Qn

X −Qm
X |) be-

tween the pairwise bit discordance (the parameter Qn
X)

and its observed value is not larger than 2ξZ (2ξX) with
probability at least 1− εZ (1− εX), where:

ξZ,X =

√
(n+m)(m+ 1)

8nm2
ln

(
1

εZ,X

)
. (S3)

By combining the above statements one can deduce that:

Pr
[
Qn

X ≤ Qm
X + 2ξX ∧ Qn

ABi
≤ Qm

ABi
+ 2ξZ ∀i

]

≥ 1− ε2PE , (S4)

where we defined the total PE failure probability ε2PE as
follows:

ε2PE ≡ (N − 1)εZ + εX . (S5)

Note that the probabilities εZ and εX , and hence ε2PE ,
can be chosen freely as to maximize the resulting secret
key rate, with the only constraint that: εPE ≤ εtot. In-
deed, in our experiment we maximize the key rate in
Eq. (5) over the failure probabilities εZ , εX , εEC and εPA

and over the fraction of type-2 rounds p, having fixed the
security parameter to εtot = 1.8×10−8 and using prelim-
inary estimations for QBER and QX . We obtain optimal
values: p = 0.012, εEC ∼ 10−13 and εPA ∼ 10−10. The
optimal value for p is then used to establish the fraction
of type-2 measurements that need to be performed dur-
ing data collection. We remark that since εEC and εPA

possess an operational meaning as described above, one
needs to verify that the actual procedures implemented
for EC and PA fail at most with probabilities 10−13 and
10−10, respectively. Due to the lack of a quantitative
estimation of the failure probability characterizing the
procedures adopted for EC and PA in our experiment,
we could not verify that they are below the stated val-
ues. Nevertheless, we confirm that both procedures never
failed in all the instances where they were used.

For further details, we refer the reader to Ref. [8].

Topology dependence in a conference key scenario

Conversely from the standard Alice-Bob scenario, con-
ference key protocols are performed over a network where
different users are connected according to some topology,
and each link might be some noisy quantum channel.
Therefore, in general, the conference key rates might de-
pend on the noise distribution in the network opening a
new problem absent in 2QKD.

FIG. S2. Plot of QX as a function of the noise parameters pB1

and pB2 characterising the depolarising channels (Eq. S7) of
Bob 1 and Bob 2, respectively. The noise parameter of Bob 3
is fixed to: pB3 = 1.5− pB1 − pB2. We also insert the vector
field of the gradient of QX with respect to pB1 and pB2.

Here, we study the 4-party network considered in the
main text i.e. four users connected to one common server,
with the noise affecting each link modeled as a depolar-
ising channel

D(ρ) = (1− 3p

4
)I + p

3
(XρX + Y ρY + ZρZ) (S6)

Therefore, in general we can assume the channels of Alice,
Bob 1, Bob 2 and Bob 3 to have noise parameters pA, pB1,
pB2, and pB3, respectively. For simplicity, we consider
the case where Alice’s channel is noiseless pA = 0 as
the results are qualitatively the same. In this case, the
expressions of QX and QABi, for a depolarised 4-qubit
GHZ state with noise parameters pB1, pB2 and pB3, are

QX(pB1, pB2, pB3) =
[(pB1 − 1) (pB2 − 1) (pB3 − 1) + 1]

2

QABi(pBi) =
pBi

2
(S7)

QX depends on the noise parameters of all the chan-
nels, whereas QABi only depends locally on the noise
parameter affecting the link connecting Alice and Bi. Of
course, both functions have a global minimum in (pB1,
pB2, pB3) = (0, 0, 0), that is when all the channels are
noiseless.

What is interesting to study is whether both the func-
tions have a minimum with the constraint pB1 + pB2 +
pB3 = c where c is a constant in the interval c ∈ [0, 3].
In practice, this corresponds to fix some total amount of
noise strength c on the network and finding which solu-
tion gives the highest key rate i.e. the lowest QX and
QABi. It is straightforward to see that the minimum
of maxiQABi is given by pB1 = pB2 = pB3 = c/3. To
find the minimum of QX , we compute the gradient of
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f(pB1, pB2) = QX(pB1, pB2, c− pB1 − pB2)

∂f(pB1, pB2)

∂pB1
=

1

2
(pB2 − 1)(c− 2pB1 − pB2)) (S8)

∂f(pB1, pB2)

∂pB2
=

1

2
(pB1 − 1)(c− pB1 − 2pB2)) (S9)

The plot in Fig. S2 shows the function f(pB1, pB2) for
c = 1.5 with at the bottom the vector field of the gradi-
ent as given by ∇f . One can verify that the minimum
of the function is in pB1 = pB2 = pB3 = c/3, therefore
we conclude that the maximum conference key rate is
achievable when the noise is symmetrically spread over
the network. This result intuitively reflects the symme-
try of the GHZ state, however in practice we can never
assume the same amount of noise in all the channels.
Nevertheless, it is important to note that the function is
quite flat around the minimum. It follows that for small
deviations from the symmetric configuration the effect on
the key rate could be neglected. We leave open for inves-
tigation similar studies that account for different noise
models.
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Conference key agreement (CKA), or multipartite key distribution, is a cryptographic task where
more than two parties wish to establish a common secret key. A composition of bipartite quantum
key distribution protocols can accomplish this task. However, the existence of multipartite quantum
correlations allows for new and potentially more efficient protocols, to be applied in future quantum
networks. Here, we review the existing quantum CKA protocols based on multipartite entanglement,
both in the device-dependent and the device-independent scenario.

I. INTRODUCTION

Quantum mechanics can bring unprecedented advan-
tages to the realization of information processing tasks.
A remarkable example is quantum key distribution
(QKD)[1, 2], arguably the most mature quantum technol-
ogy. QKD allows two parties, Alice and Bob, to securely
communicate by establishing a secret key that is infor-
mation theoretically secure. Security proofs are given for
different levels of assumptions. In the scenario where the
devices and/or quantum states are characterized, robust
security is proven for realistic parameters [3, 4] (see also
[5]) with implementations achieving long distances [6, 7].
Also for the device-independent scenario, i.e. no assump-
tions on the quantum states and on the working behavior
of the devices, a security proof in the fully adversarial sce-
nario is well established [8]. The required experimental
parameters are characterized [9] for protocols based on
the simplest Bell inequality [10].

The extensive development of quantum technological
applications allow near future applications which are
based on genuine multipartite quantum protocols using
shared multipartite entangled states in network struc-
tures [11–17]. Applications range from distributed quan-
tum computing to genuine multipartite quantum com-
munication protocols which may lead to the quantum
internet [18, 19].

Here we focus on conference key agreement (CKA),
or multiparty key distribution, which is a generalization
of the task of key distribution to the scenario in which
N users wish to establish a common secret key. This al-
lows the users to broadcast secure messages in a network.
CKA can e.g. be achieved by, first establishing bipartite
keys between the users, followed by securely distributing
a common key to all other users via the bipartite keys.
This solution has been discussed to be inefficient in the
classical scenario, and several classical protocols allow-
ing the parties to establish a common key were proposed
(see e.g. [20, 21] and [22, 23]). In the quantum scenario,
that is, when the parties can use quantum resources, a
secure conference key can also be established by using
several bipartite QKD links. Bipartite quantum links
are already being implemented in small quantum net-
works over metropolitan distances [24–29] and in larger
networks spanning entire countries [30–32]. The long-

term vision of a general quantum network, however, goes
beyond mere bipartite links and includes network nodes
that process quantum information, thus enabling the dis-
tribution of multipartite entangled states across the net-
work [33]. In a quantum network, quantum communica-
tion with genuine multipartite entangled states may offer
advantages over the bipartite case [34], and allow secure
interactions between an arbitrary subset of the partici-
pating partners.

The rich structure of multipartite entangled quantum
states opens the possibility for a wide variety of new key
distribution protocols. While protocols for CKA based
merely on bipartite QKD do not bring much novelty
in terms of the necessary quantum technologies or the
theoretical tools required for the security analysis, this
changes when protocols explore multipartite entangle-
ment. Here, quantum correlations can be exploited to
devise truly multipartite schemes. This is the focus of
this paper, namely we will review the proposals and de-
velopments regarding the use of multipartite quantum
entanglement for the establishment of a conference key.

II. PRELIMINARIES

A. Multipartite entangled resources

Multipartite quantum states have a more convoluted
structure than the bipartite ones [35–38]. Different
classes of states can be defined according to their entan-
glement properties, and concepts such as k-separability
and genuine multipartite entanglement arise (for a pre-
cise definition of these concepts, see [35, 36, 38]). For
multipartite systems, there exist different entanglement
classes that are not equivalent under stochastic local op-
erations and classical communication (SLOCC) [38–40].
In particular, in the tripartite case [39], two nonequiv-
alent classes of genuinely multipartite entangled states
can be defined: the GHZ-class represented by the Green-
berger–Horne–Zeilinger (GHZ) state [41]

|GHZ〉 =
1√
2

(|000〉+ |111〉) , (1)
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and the W-class represented by the W state [39]

|W〉 =
1√
3

(|001〉+ |010〉+ |100〉) . (2)

These classes of states also exhibit different physical
properties. The GHZ-state is a direct generalization of
Bell states to the multipartite case and maximally vi-
olates the well-studied family of N -party Bell inequali-
ties called MABK [42–44]. However, the entanglement
present in the GHZ-state is not robust to particle losses,
while the W-state still exhibits bipartite entanglement
when one particle is lost.

The 3-party GHZ and W states in Eqs. (1) and (2)
can be generalized in a straightforward way to N par-
ties. They constitute the resources for quantum CKA
protocols discussed in the following sections.

B. Security

1. Security definition

We consider N users, Alice, Bob1, Bob2, . . . , BobN−1.
The users wish to establish a common string of bits that
is unknown to any other party, in particular to any po-
tential eavesdropper.

The security of a quantum conference key agreement
protocol is based on two conditions: correctness and
secrecy.

Definition 1 (Correctness). A CKA protocol is εcorr-
correct if

p(KA = KB1
= . . . = KBN−1

) ≥ 1− εcorr, (3)

where KA, KBi are the final keys held by Alice and Bobi
and p(KA = KB1 = . . . = KBN−1

) is the probability that
all final keys are identical.

Definition 2 (Secrecy). A CKA protocol is εsec-secret
if, for Ω being the event that the protocol does not abort,

p(Ω)
1

2
‖ρKAE|Ω − τKA ⊗ ρE‖ ≤ εsec, (4)

where p(Ω) is the probability of the event Ω, τKA =
1
|S|
∑
si∈S |si〉〈si | is the maximally mixed state over all

possible values that the key KA can assume, and S =

{0, 1}×`, where ` is the length of the key KA.

Correctness implies that, at the end of the protocol,
Alice and the Bobs share the same string of bits except for
probability at most εcorr. The secrecy requirement states
that Alice’s key is randomly chosen among the set of
possible strings and the eavesdropper has no information
about the key, except for probability at most εsec. If a
CKA protocol is εcorr-correct and εsec-secret, then it is
said to be εs-correct-and-secret for all εs ≥ εcorr + εsec.

Additionally, a useful CKA protocol should have a ro-
bust honest implementation. This is captured by the
concept of completeness.

Definition 3 (Completeness). A quantum CKA protocol
is εc-complete if there exists an honest implementation of
the protocol, such that the probability of not aborting is
greater than 1− εc.

Finally, the security of a quantum CKA protocol can
be summarized as [45]:

Definition 4 (Security of a quantum CKA protocol). A
quantum CKA protocol is (εs, εc)-secure if

(I) (Soundness) For any implementation of the proto-
col, it is εs-correct-and-secret.

(II) (Completeness) There exists an honest implemen-
tation of the protocol, such that the probability of
not aborting is greater than 1− εc.

Definition 4 implies composable security [45–47]. This
means that the conference key generated by a protocol
satisfying the conditions stated in Definition 4 is compos-
able secure and therefore can be used as a building block
for further protocols (this, however, cannot always be in-
ferred in the device-independent scenario, see Remark 1
in Section V).

The quantum left-over hashing lemma [48, 49] estab-
lishes that a secret conference key can be obtained if the
key length ` is slightly shorter than

` . Hε
min(An1 |E) (5)

where Hε
min(An1 |E) is the conditional smooth min-

entropy [50] evaluated for the classical-quantum (cq)
state ρAn1E composed of Alice’s raw key of size n and the
quantum side information of a potential eavesdropper.

The conditional smooth min-entropy of a cq-state ρAE
is defined as

Hε
min(A|E) = sup

ρ̃AE∈Bε(ρAE)

Hmin(A|E), (6)

where ε ∈ [0, 1), and the supremum is taken over positive
sub-normalized operators that are ε-close to ρAE in the
purifying distance [50]. And the conditional min-entropy,
Hmin(A|E), of a classical variable A conditioned on the
quantum side information E is closely related to the op-
timal probability of the eavesdropper guessing the value
of A, pguess(A|E), [51]

Hmin(A|E) = − log pguess(A|E). (7)

For a precise definition and properties of entropic quan-
tities we refer the reader to [50].

The main task in the security proof of a conference key
agreement protocol is to estimateHε

min(An1 |E). Note that
this is very similar to the bipartite case of quantum key
distribution. In fact, the secrecy condition only depends
on the correlations between the eavesdropper and Alice’s
string. However, in the multipartite scenario the parties
need to ensure that all of the Bobs correct their raw key
so that the correctness requirement is satisfied.
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2. Security model

In the scenario where N parties wish to securely com-
municate, the adversary is an external party, Eve, who
can eavesdrop on all the exchanged public communica-
tion. Moreover, Eve might try to tamper with the quan-
tum channels and explore correlations with the generated
conference key.

Similar to the bipartite case, we can also classify the
attacks performed by the eavesdropper into three cate-
gories:

1. Individual attacks: the eavesdropper can only at-
tack individually each round of the protocol. In
this case she is assumed to have no quantum mem-
ory, and therefore her best strategy is to perform a
measurement on her quantum side information at
each round.

2. Collective attacks: Eve is assumed to perform the
same attack for each round of the protocol, that
is, her quantum side information is identically and
independently distributed (IID) with respect to dif-
ferent rounds. Differently from individual attacks,
Eve is now assumed to have a quantum memory.
Therefore, she can store her quantum side informa-
tion at each round and perform a global operation
on it at the end of the execution of the protocol.

3. Coherent attacks: This is the most general type
of attack where there are no assumptions on the
capabilities of the eavesdropper, except that she is
bounded by the laws of quantum mechanics. In this
case the states shared by the parties at each round
may have arbitrary correlations with previous and
future rounds.

C. Generic Protocols

The goal of quantum conference key agreement is that
the N users make use of their shared quantum resources
together with local operations and public communication
in order to establish a secure conference key.

In the following section we will present the proposed
quantum protocols that perform the task of CKA, mak-
ing use of multipartite entanglement. The protocols we
will discuss consist of the following main steps:

1. Preparation and distribution: A source dis-
tributes a multipartite entangled state to the N
parties. This step is repeated n times.

2. Measurements: Upon receiving the systems, the
parties perform local measurements and record the
classical outcome. The measurements are randomly
chosen according to the specifications of the proto-
col. One of the possible measurement settings is
used with higher probability and is called the key

generation measurement. The other measurements
are used for test rounds, which only occasionally
occur.

3. Parameter estimation: The parties announce
the inputs and outputs of their test rounds and of
some randomly chosen key generation rounds which
are used to estimate their correlation and the po-
tential influence of an eavesdropper. At the end of
this step each party is left with a string of nraw < n
bits, which constitute their raw key.

4. Information reconciliation (error correc-
tion): The parties publicly exchange classical in-
formation in order for the Bobs to correct their
string of bits to match Alice’s string. In the multi-
partite case, the information reconciliation protocol
needs to account for the correction of the strings of
all the Bobs.

5. Privacy amplification: Alice randomly picks a
hash function, chosen among a two-universal family
of hash functions (see [48]), and communicates it to
the Bobs. Every party applies the hash function to
turn her/his partially secure string of nraw bits into
a secure key of ` < nraw bits.

The key rate of a protocol is given by

r = τ
`

n
(8)

where τ is the repetition rate of the setup, i.e. the inverse
of the time it takes to implement one round of prepara-
tion and measurement of the quantum systems. In the
following sections we will typically take τ = 1 as we will
not be focused on any specific experimental implementa-
tion. The key rate in the limit of infinitely many rounds,
n → ∞, is called the asymptotic key rate and denoted
r∞.

III. PROTOCOLS FOR MULTY-QUBIT STATES

A. GHZ state protocols

The first proposals of quantum conference key agree-
ment protocols explore the multipartite correlations ex-
hibited by the N -party GHZ state:

|GHZN 〉 =
1√
2

(|00 . . . 0〉+ |11 . . . 1〉) , (9)

where {|0〉, |1〉} is the Z-basis, composed by the eigen-
states of the Pauli operator σz. The GHZ state satis-
fies all the desired conditions for a conference key agree-
ment protocol: the outcomes of measurements in the Z-
basis are perfectly correlated, random and uniformly dis-
tributed. Interestingly, for N ≥ 3 this perfect correlation
can only be achieved if all the parties measure in the Z-
basis. As shown in [34], even bipartite perfect correlation
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cannot be obtained if the parties choose a different ba-
sis. This represents a drastic difference from the bipartite
case (N = 2). Indeed, if Alice and Bob share the max-
imally entangled state |Φ〉 = 1√

2
(|00〉+ |11〉), for each

choice of local basis for Alice, there exists a local basis
for Bob such that their outcomes exhibit perfect correla-
tion. This property is exploited in the bipartite six-state
[52] and BB84 [1] protocols for QKD.

Early proposals of protocols that employ the GHZ
state to establish a conference key between three par-
ties were presented in [53]. Security is proved, against
individual attacks, for the ideal case where Alice can pre-
pare and distribute perfect GHZ states. Robustness to
noise is not considered. In Ref. [54], Chen and Lo proved
the security of quantum conference key agreement based
on the distillation of GHZ states [55, 56]. They derive
distillation rates for a protocol based on a improved ver-
sion of the multi-party hashing method [55]. These rates
correspond to conference key rates, due to the fact that
the multi-party hashing distillation protocol [55] can be
implemented by classical post-processing of the raw key.
Ref. [54] also considers distillation rates when recurrence
protocols are applied before the multi-party hashing. Re-
currence protocols are based on CSS codes [57, 58] and,
if certain conditions are met, they can also be translated
to a classical post-processing of the generated raw keys,
in a similar fashion to the bipartite case [59]. Ref. [54]
modifies the recurrence protocol introduced in [56], using
ideas of [59], to design a protocol that can be converted
to classical post-processing of the raw key. This type of
classical post-processing of the raw key requires two-way
communication and was denoted advantage distillation
[60–62].

In the following subsections, we present specific proto-
cols with GHZ states that can be regarded as the gener-
alization of the six-state and the BB84 protocols to the
multipartite case.

1. Multiparty six-state protocol

The quantum conference key agreement protocol in-
troduced in [34] can be seen as a generalization of the
six-state QKD protocol [52] to the multipartite case. In-
deed, in Ref. [34] the parties perform measurements in
the three bases {X,Y, Z}. Measurements in the Z-basis
are used with higher frequency, and they constitute the
key generation rounds. The X-basis and Y -basis are in-
stead used in fewer rounds, specifically in the test rounds,
in order to estimate the information available to a poten-
tial eavesdropper.

From the parameter estimation rounds, the statistics
of the Z-measurements is used to estimate the qubit er-
ror rates (QBERs) and thus to determine the informa-
tion that needs to be communicated by Alice for infor-
mation reconciliation. The bipartite QBERs, QABi , for
1 ≤ i ≤ N − 1, are the probabilities that the outcome
of a Z-measurement by Bobi disagrees with Alice’s Z-

measurement outcome. In the multipartite scenario we
can also define the total QBER QZ as the probability
that at least one Bob obtains an outcome different than
Alice. If the N parties share a state ρ, the QBER QZ is
given by

QZ = 1− tr
(
ρ
(
|0〉〈0|⊗N + |1〉〈1|⊗N

))
. (10)

With the statistics of the test rounds, the parties want to
estimate the expected value of the operator X⊗N . Since
the multipartite GHZ state does not exhibit perfect cor-
relation in more than one basis [34], the QBER QX is
defined as the probability that the X⊗N -measurement
gives a result that differs from the ideal case:

QX =
1− 〈X⊗N 〉

2
. (11)

Note that if the parties share the GHZ state (9), then
the corresponding QX is zero.

A crucial step in the security analysis of the protocol
presented in Ref. [34] is a reduction to depolarized states.
An N -qubit depolarized state is a state of the form:

ρdep = λ0,~0|Ψ0,~0〉〈Ψ0,~0 |+ λ1,~0|Ψ1,~0〉〈Ψ1,~0 |
+
∑

σ,~u 6=~0

λ~u|Ψσ,~u〉〈Ψσ,~u |, (12)

where

|ψσ,~u〉 =
1√
2

(
|0〉|~u〉+ (−1)σ|1〉|~̄u〉

)
(13)

for ~u ∈ {0, 1}×(N−1), ~̄u = ~u ⊕ ~1, and σ ∈ {0, 1}. The
states {|ψσ,~u〉}σ,~u form a basis, denoted as the GHZ basis.
The depolarized GHZ state is then diagonal in the GHZ
basis and such that λ0,~u = λ1,~u ≡ λ~u for ~u 6= ~0.

For a state of the form (12), one finds that

QZ(ρdep) = 1− (λ0,~0 + λ1,~0), (14)

and

QX(ρdep) =
1− (λ0,~0 − λ1,~0)

2
. (15)

Finally, the asymptotic key rate for the depolarized
state (12) is given as a function of QX , QZ and the bi-
partite QBERs QABi [34]:

r∞ =(1−QZ) (1− log(1−QZ))

+

(
1− QZ

2
−QX

)
log

(
1− QZ

2
−QX

)

+

(
QX −

QZ
2

)
log

(
QX −

QZ
2

)

− max
1≤i≤N−1

h (QABi)

. (16)

For the generality of the security analysis of [34], it
remains to argue that the reduction to depolarized states,
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(12), is not restrictive. Any N -qubit state can be brought
to the form (12) by successive application of the following
set of local operations [63, 64]

D =
{
X⊗N

}
∪
{
ZABj |1 ≤ j ≤ N − 1

}

∪ {Rk|1 ≤ k ≤ N − 1}
, (17)

where the operations ZABj and Rk are defined as

ZABj = ZA ⊗ ZBj ⊗ IB[N−1]\j (18)

and

Rk = diag(1, i)A ⊗ diag(1,−i)Bk ⊗ IB[N−1]\k . (19)

Indeed, the application of the map

ρ 7→ ρ̃ = ◦2N−1
i=1 Di[ρ] (20)

where

Di[ρ] =
1

2
ρ+

1

2
DiρD

†
i ; Di ∈ D, (21)

brings any N -qubit state to the form (12).
A crucial observation is that the map (20) can be im-

plemented in the protocol by flipping the outcomes of
some of the measurements and adding additional mea-
surements in the Y -basis [34].

Consider first the set of operations
{
X⊗N

}
∪{

ZABj |1 ≤ j ≤ N − 1
}
. Successive application of these

operations brings any N -qubit state to the GHZ-diagonal
form

ρ̃ =
∑

σ,~u

λσ,~u|ψσ,~u〉〈ψσ,~u |. (22)

For the key generation rounds, in which Alice and the
Bobs measure in the Z-basis, the application of ZABj
does not have any effect on the final outcomes and the
operation X⊗N can be equivalently applied by Alice and
the Bobs by flipping their Z-measurement outcomes. For
the estimation of X⊗N in the test rounds, the operations{
X⊗N

}
∪
{
ZABj |1 ≤ j ≤ N − 1

}
have no effect, as can

be seen by the fact that they commute with X⊗N .
The application of the operations {Rk} is what finally

brings the state to the depolarized form (12). They have
no effect on the key generation rounds as they do not
change the outcome of the Z-measurements. For the test
rounds, the action of Rk is more subtle. As shown in
[34], the action of Rk followed by a measurement in the
X-basis is equivalently implemented by Bobk performing
a Y -basis measurement. Therefore the action of the op-
erators {Rk}, which are essential to simplify the security
analysis of the protocol introduced [34], can be imple-
mented in the protocol by adding Y -basis measurements
to the test rounds.

In Ref. [34] the authors show that in a quantum net-
work with quantum routers, for a bottleneck configura-
tion with constrained channel capacity, the multipartite

six-state protocol based on the GHZ state leads to higher
rates as compared to several implementations of bipartite
QKD, when the gate quality is above certain threshold
value.

A security analysis of the multiparty six-state protocol
against coherent attacks taking into account finite size
effects was presented in [65].

2. Multiparty BB84 protocol

In Ref. [65], also a multipartite version of the BB84
protocol was introduced: here, the parties only need to
perform measurements in two bases, the Z-basis and the
X-basis. The security analysis is based on the uncer-
tainty relation for smooth entropies [66]. This technique
has previously been used in the bipartite case [3, 5] for the
security proof of the BB84 protocol in the finite regime
for parameters that are compatible with current technol-
ogy. The uncertainty relation establishes that for a pure
state |ψA~BE〉, if Alice can perform measurements in two
bases, say theX-basis and the Z-basis, then the following
relation is satisfied:

Hε
min(Zm1 |E) ≤ q −Hε

max(Xm
1 |B1 . . . BN−1) (23)

where the conditional smooth min-entropy on the l.h.s. is
evaluated for the cq-state shared by Alice and Eve when
Alice measures her systems in the Z-basis, and the con-
ditional smooth max-entropy on the r.h.s. is evaluated
for the cq-state shared by Alice and the Bobs when Al-
ice measures her systems in the X-basis. For a precise
definition of Hε

max we refer the reader to [50]. The term
q quantifies the incompatibility of the two measurements
used by Alice, and for the case where Alice can measure
X or Z the quality factor q for them rounds will be equal
to m.

The quantityHε
max(Xm

1 |B1 . . . BN−1) can be estimated
by using the X-measurements performed by the Bobs
(11). Indeed, the data processing inequality guarantees
that

Hε
max(Xm

1 |B1 . . . BN−1) ≤ Hε
max(Xm

1 | ~Xn
1 ), (24)

where ~Xm
1 contains the X-outcomes of every Bob, had

the Bobs measured in the X-basis in the m rounds.
Clearly the entropy on the r.h.s. of Eq. (24), that is
the entropy of Alice’s X-outcome string given the X-
outcome strings of the Bobs, can be estimated via the
X-basis error defined in Eq. (11).

Finally Ref. [65] establishes the asymptotic secret key
rate of the multiparty BB84 protocol

r∞ = 1− h(QX)− max
1≤i≤N−1

h(QABi). (25)

3. Comparison of multiparty six-state and BB84 protocols

For any specific implementation, the asymptotic key
rates obtained by the multiparty six-state protocol [34]
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Figure 1. Asymptotic secret key rates of the multipartite six-
state (solid) [34] and BB84 (dashed) [65] protocols as a func-
tion of the bipartite QBER between Alice and any Bob, for a
local depolarizing noise model. The rates are plotted for dif-
ferent numbers of parties (N = 2, 5, 8, right to left). The plot
shows that the multipartite six-state protocol asymptotically
outperforms the multipartite BB84 protocol.
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Figure 2. Secret key rates of the multipartite six-state (solid)
[34] and BB84 (dashed) [65] protocols as a function of the total
number of roundsM , for different number of parties (N = 2, 5
and 8, left to right) and fixed bipartite QBER (QABi = 0.03).
The noise model employed is the local depolarizing channel
given in Eqs.(26) and (27). A non-null conference key can be
obtained for fewer rounds with the multipartite BB84 proto-
col, compared to the multipartite six-state protocol, and the
advantage of the former protocol increases with the number
of parties.

are higher than those obtained by the multiparty BB84
[65]. This is because more structure can be ensured about
the underlying state in the protocol presented in [34]. For
instance, consider the implementation where Alice pre-
pares a GHZ state and distributes it to each of the Bobs
using a qubit depolarizing channel. The state shared by
the parties is thus

ρA~B = D⊗(N−1)
2 |GHZN 〉〈GHZN |, (26)

where

D2(ρ) = (1− ν)ρ+ ν
1

2
. (27)

Fig. 1 shows the comparison of the asymptotic key rates
achieved by the two multiparty protocols (N = 2, 5, 8)
in the specific implementation given by the noise model
in Eq. (26). The key rates are plotted as a function of
the bipartite QBER between Alice and any Bob, which
turns out to be a simple function of the noise parameter
characterizing the depolarizing channel: QABi = ν/2.
The figure confirms that, asymptotically, the multipartite
six-state protocol [34] overcomes the multipartite BB84
[65] in terms of performance.

Ref. [65] also performs a complete security analysis
in the finite-key regime for the multiparty six-state and
multiparty BB84 protocol. Regarding the rates in the
finite-key regime, it was shown that, even though the
six-state protocol can tolerate higher noise, for the low-
noise regime a non-zero conference key rate can be proven
for the multiparty BB84 protocol using a significantly
smaller number of rounds. This is confirmed by Fig. 2,
where the secret key rates of both protocols are plotted
as a function of the total number of protocol rounds, hav-
ing fixed the bipartite QBER. The noise model employed
is the same used for Fig. 1, i.e. the local depolarizing
channel given in Eq. (27). It is important to remark that
the lower threshold on the minimum number of signals
for a non-zero key by the multiparty BB84 protocol, may
be simply due to the techniques used to compute the
key rates. The finite-key rates of the multipartite six-
state are derived using the post-selection technique [67]
in combination with the finite version of the asymptotic
equipartition property [68] (see also [48]). These tech-
niques might lead to higher overhead terms in the finite-
key regime and therefore to a less tight estimate than
what can be obtained using the uncertainty relation for
smooth entropies [66]. However, due to the fact that in
the multiparty six-state protocol the parties are required
to perform three distinct measurements, the uncertainty
relation is not applicable.

4. Prepare-and-measure implementation

Even though entanglement plays an essential role
for the security of bipartite QKD, it is known that
some QKD protocols have a corresponding prepare-and-
measure implementation that does not require any en-
tanglement. The BB84 protocol, for example, can be
implemented with Alice transmitting single qubit states
to Bob.

Similarly, in the multipartite case we can also talk
about a corresponding prepare-and-measure implementa-
tion. However, now this reduction will require the prepa-
ration of some (N − 1)-entangled states [34].

Indeed for the key generation rounds, in which the
parties are performing measurements in the Z-basis, Al-
ice could instead randomly choose her bit and prepare
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(N − 1) copies of the corresponding single qubit state
to send to the Bobs, |0〉⊗(N−1) or |1〉⊗(N−1). Although
entanglement is not required to reproduce the statistics
of the key generation rounds, the corresponding state
shared by the Bobs when Alice performs a measurement
in the X-basis or Y -basis is entangled. Therefore, for
the test rounds, Alice is required to prepare an (N − 1)-
entangled state.

For example, when Alice performs an X-measurement,
given that she obtains the outcome a, the corresponding
state that she has to distribute to the Bobs is the (N−1)-
entangled state:

|ψa〉B1...BN−1
=

1√
2

(|00 . . . 0〉+ (−1)a|11 . . . 1〉) . (28)

The prepare-and-measure equivalence significantly re-
duces the resources required for the implementation of
the protocols [34, 65], as Alice needs to control (N − 1)-
partite entanglement instead of N -partite entanglement.
This can have significant practical implications especially
in the noisy intermediate scale (NISQ) era [69]. More-
over, it is important to remark that, for most of the
rounds, the key generation rounds, Alice can in fact pre-
pare product states, and entanglement is only required
in a small fraction of the rounds for the purpose of pa-
rameter estimation.

A prepare-and-measure protocol in which Alice only
needs to send separable states was proved secure for the
case N = 3 in [70]. However, when extending the pro-
tocol to an arbitrary number of parties N the states dis-
tributed by Alice would become increasingly distinguish-
able as N increases, which would allow an eavesdropper
to retrieve more information about the key, while caus-
ing less disturbance. Thus, the secret key rate would
decrease with increasing N , even for a perfect implemen-
tation.

B. W state protocol

Quantum conference key agreement does not necessar-
ily need to rely on the correlations provided by multi-
partite GHZ states. Indeed, the protocol devised in [71]
exploits the multipartite entanglement of a W-class state
in order to establish a conference key. The W state of N
parties is defined as

|WN 〉 =
1√
N

(|0 . . . 01〉+ |0 . . . 10〉+ . . .+ |1 . . . 00〉) ,
(29)

whereas a W-class state has a similar form to (29) but
presents arbitrary phases on each term.

In the conference key agreement protocol of Ref. [71],
the state is post-selected thanks to single-photon inter-
ference occurring in a central untrusted node, extending
the founding idea of twin-field QKD [72, 73] to the mul-
tipartite scenario.
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Figure 3. Comparison of the asymptotic conference key rate
achieved by the W state protocol [71] (solid) and by the N-
BB84 protocol [65] (dashed, the N-six-state protocol rate is
identical in this ideal scenario) as a function of the loss in
the channel linking each party to the central entanglement
distributor, for different number of parties (N = 2, 5 and 10).
We assume ideal implementations where the only source of
error is photon loss and where the GHZ state of the N-BB84
(N-six-state) protocol is encoded in orthogonal polarizations
of a photon.

In particular, each round of the protocol starts with
partyi (i = 1, 2, . . . , N) preparing the following entangled
state between an optical pulse ai and a qubit Ai:

|φ〉Aiai =
√
q|0〉Ai |0〉ai +

√
1− q|1〉Ai |1〉ai , (30)

where |0〉ai is the vacuum state, |1〉ai is the single-photon
state, and {|0〉Ai , |1〉Ai} is the computational basis of the
qubit. The state is strongly unbalanced towards the vac-
uum: q ≈ 1. Every party sends his/her optical pulse to
a central untrusted node through a lossy optical channel.
Here, the pulses are combined in a balanced multiport
beam splitter [74] featuring a threshold detector at ev-
ery output port. The central node announces whether
each detector clicked or not and the parties only keep the
rounds where exactly one detector clicked. These events
are likely to be caused by the arrival and detection of just
one photon, due to the unbalance towards the vacuum of
the prepared state (30). Because of the balanced super-
position generated by the multiport beam splitter, the
detected photon could be sent by any party with equal
probability. Thus, the main contribution to the N -qubit
state shared by the parties conditioned on the single de-
tection is a coherent superposition of states in which one
qubit is in state |1〉 and all the others are in state |0〉,
that is the mentioned W -class state. The qubits’ relative
coefficients have all equal weights but contain complex
phases introduced by the multiport beam splitter.

It has been proven that the only multiqubit state yield-
ing perfectly correlated and random outcomes upon per-
forming local measurements is the GHZ state [34]. Nev-
ertheless, the post-selectedW -class state can still be used
to distil a conference key. More specifically, the parties
obtain the key bits by measuring their qubit in a spe-
cific direction in the X-Y plane of the Bloch sphere. The
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direction is the one that minimizes the bipartite QBER
and depends on which detector clicked. For this reason,
the protocol cannot be recast as a prepare-and-measure
scheme, unlike its bipartite counterpart [73]. Finally, the
parties estimate the eavesdropper’s knowledge by com-
puting the expectation value of the Z⊗N operator and
by checking when it differs from the ideal case. Note
that if the parties are actually sharing a W -class state,
then 〈Z⊗N 〉 = −1.

In [71] the security of the protocol is proved in the
finite-key regime and under coherent attacks performed
by the eavesdropper.

The W -class N -qubit state on which the protocol is
based is post-selected thanks to single-photon interfer-
ence at the central node. Hence, the resulting key rate
scales linearly with the transmittance t of one of the
quantum channels linking each party to the central node
(if the channels are all symmetric). This contrasts with
the honest implementations of the protocols [34, 65] pre-
sented in subsection IIIA, which are based on the dis-
tribution of N -qubit GHZ states. If these states are en-
coded, e.g., in the orthogonal polarizations of a photon,
their key rate cannot scale better than tN , where t is the
transmittance of the link between one party and the cen-
tral distributor of the N -partite entangled state. This
makes the protocol based on the W state much more
suited to high-loss scenarios than the protocols of sub-
section IIIA. This is clear from Fig. 3, where we plot the
asymptotic conference key rates of protocols [71] (solid
lines) and [34, 65] (dashed lines) as a function of the loss
in the quantum channel linking one party to the cen-
tral node (−10 log10 t). We assume ideal implementa-
tions where photon loss is the only source of error. We
observe the existence of a loss threshold above which the
protocol based on the W state [71] outperforms the pro-
tocols based on the distribution of GHZ states [34, 65].
Moreover, the required loss for which the protocol [71]
outperforms the protocols [34, 65] decreases as the num-
ber of parties involved increases.

IV. CONTINUOUS VARIABLE CONFERENCE
KEY AGREEMENT

Quantum conference keys may also be established by
means of continuous variable (CV) quantum systems.
Following the first of such protocols [75], which enables
quantum conferencing among three parties without trust-
ing the measurement devices, more general and refined
protocols [76, 77] have been devised. The latter allow
an arbitrary number of users to establish conference keys
when linked to a central untrusted relay in a star net-
work. These schemes would allow high-rate intra-city
secure conferencing among several users.

Both protocols [76, 77] rely on the correlations gener-
ated by an N -mode CV GHZ state [78]:

|CVGHZ〉N =
1√
π

∫ ∞

−∞
dx|x〉⊗N , (31)

where {|x〉}x are the eigenstates of the X̂ quadrature.
However, while in [77] the central relay is required to
generate such multipartite entangled state, in [76] the
state is post-selected thanks to a multipartite CV Bell
detection at the central relay. In particular, in [76] every
user prepares a Gaussian-modulated coherent state |αk〉
(k = 1, . . . N) and sends it to the central relay. Here,
a suitable cascade of beam splitters followed by homo-
dyne detections of either quadrature X̂ or quadrature
P̂ implement the multipartite Bell detection, whose out-
come is made public. The Bell detection projects the
incoming coherent states onto the CV GHZ state (31)
up to displacements of the N modes. By employing
the public data of the Bell detection, the parties post-
process the variables {αk}Nk=1 describing the prepared
coherent states and neutralize the effect of the displace-
ments. They are thus left with variables whose corre-
lations reproduce those of the original CV GHZ state
(31) and hence can be used to distil a conference key.
This procedure closely resembles the seminal work on
measurement-device-independent (MDI) QKD with dis-
crete variables [79] and its CV counterpart [80], now ap-
plied to a multipartite scenario. Indeed, the fact that
the measurements are only performed by the untrusted
relay, makes the protocol in [76] an MDI multipartite
QKD protocol. Nevertheless, its performance does not
decrease exponentially with the number of users since
the CV Bell detection is a deterministic process, unlike
its discrete-variable counterpart [79].

Note that, unlike the discrete-variable scenario, here
the correlated variables {αk}Nk=1 used to distil a binary
key are complex numbers. Nevertheless, one can still ex-
press the resulting key rate in terms of their mutual infor-
mation I(αk, αk′) with the well-known Devetak-Winter
formula [81], which is assumed to hold also for CV-QKD
[82].

Compared to [76], the protocol in [77] is not MDI since
the multipartite GHZ state generated in the untrusted re-
lay is then distributed to the parties who perform trusted
measurements. Moreover, from a practical point of view,
this scheme is harder to implement, as it involves the
preparation of several optical modes in squeezed states
and their subsequent entanglement in a specific target
state. Nevertheless, in principle, the scheme in [77] could
achieve slightly higher performances than the more prac-
tical protocol in [76].

In terms of security, both protocols [76, 77] have been
proved to be secure against collective Gaussian attacks.
Furthermore, the protocol in [76] has been analyzed
in the framework of finite-key composable security and
proven to be secure against coherent attacks through a
Gaussian de Finetti reduction [83].
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V. DEVICE-INDEPENDENT CONFERENCE
KEY AGREEMENT

In the device-independent scenario, Alice and the Bobs
do not want to assume any knowledge about the dis-
tributed system and internal working of their devices. It
is even considered that the shared states as well as the
measurement devices can be manufactured by the adver-
sary [84]. The parties’ goal is to ensure security using
only the observed statistics of inputs and outputs. In a
device-independent protocol security is certified by the
violation of a Bell inequality.

Note that in a device-independent conference key
agreement (DICKA) protocol, an analysis against coher-
ent attacks also needs to account for the fact that the
eavesdropper might program the devices to behave in
different ways at each round of the protocol. In particu-
lar the measurement devices could have memory and be-
have in correlation with the outcomes of previous rounds.
This makes the security analysis in the fully device-
independent adversarial scenario significantly more in-
tricate.

A recently developed technique [8, 85], the entropy ac-
cumulation theorem (EAT), provides the tools to perform
the security analysis of device-independent protocols in
the fully adversarial scenario maintaining some noise ro-
bustness. The EAT [8, 85] extends the de Finnetti theo-
rems [67, 86] to the device-independent setting, allowing
to reduce the analysis to collective attacks.

Remark 1. (Composability in the device-independent
scenario) The security definition, Definition 4, implies
universal composability of conference key agreement in
the trusted device scenario. However, for the device-
independent scenario, attacks proposed in Ref. [87] show
that composability cannot be guaranteed if the same de-
vices are re-used in a subsequent protocol. Indeed, in
Ref. [87] the authors describe attacks in which infor-
mation about a previously generated key may be leaked
through the public communication of a subsequent run
of the protocol, if the devices are re-used. The attacks
described in Ref. [87] can be avoided if the parties have
sufficient control of the internal memory of their devices
and are able to re-set it after one execution of the proto-
col.

Based on the EAT, a DICKA protocol was proposed
in [88, 89]. The protocol of Ref. [88] initially consid-
ers the multipartite Mermin-Ardehali-Belinskii-Klyshko
(MABK) inequalities [42–44]. However, as shown in [90],
the MABK inequalities are not suitable for establishing
a conference key, as an overhead amount of information
is required for information reconciliation. In Ref. [89], a
new multiparty inequality is introduced and positive con-
ference key can be established in the device-independent
scenario. Fig. 4 shows the asymptotic key rates for the
device-independent protocol of Ref. [89] for N = 3, 5, 8,
for an implementation in which all the qubits are sub-
mitted to a depolarizing channel.
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Figure 4. Asymptotic secret key rate for the DICKA protocol
of Ref. [89] as a function of the QBER and for fixed num-
ber of parties (N = 3, 5, 8). We assumed an implementation
where the N -party GHZ state is submitted to the depolarizing
channel D⊗N

2 (|GHZN 〉〈GHZN |).

The key rates derived in [89] are based on an analytical
lower bound to von Neumann entropy of Alice’s outcome
conditioned on the information available to the eaves-
dropper, H(A|E), as a function of the violation of the
Bell inequality under consideration. The bound employs
a relation between the considered multipartite inequality
and the bipartite Clauser-Horne-Shimony-Holt (CHSH)
inequality [10].

In general, it is not possible to compute directly
H(A|E) as a function of the violation for an arbitrary
Bell inequality. This is due to the lack of knowledge
about the underlying system. A lower bound can be ob-
tained using the relation H(A|E) ≥ Hmin(A|E), where
Hmin(A|E) is the conditional min-entropy defined in (7).
Due to the relation with the guessing probability, (7), the
conditional min-entropy, Hmin(A|E), can be estimated
in the device-independent scenario [91] using the hierar-
chy of semi-definite approximations to the quantum set
[92, 93]. This method is, however, computationally costly
and may lead to non-tight bounds.

Bell inequalities tailored to DICKA protocols were fur-
ther investigated in [94], where the authors introduced a
family of multipartite Bell inequalities (containing the
inequality of [89] as a special case) that are maximally
violated by the GHZ state, with the Z-basis being one
of the optimal measurements for Alice. These are essen-
tial features to build a device-independent conference key
agreement protocol.

It is interesting to remark that the MABK inequalities
were previously explored in other multiparty communi-
cation protocols. Refs. [95, 96] consider a secret sharing
scenario in which Alice distributes the key in such a way
that the N − 1 Bobs need to collaborate to retrieve its
value. The authors establish that, if the eavesdropper is
restricted to individual attacks, then the violation of a
MABK inequality can guarantee security, even if some of
the Bobs collaborate with Eve. Even though this scenario
was initially denoted N -party QKD [95, 96], it should be
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distiguished from the scenario we consider in this review:
in which the goal is that all the Bobs can retrieve the key
independently.

VI. MULTIPARTITE PRIVATE STATES

Most of the quantum conference key agreement pro-
tocols presented in the previous sections exploit the cor-
relations of the multipartite GHZ state (9). Therefore,
GHZ distillation protocols are in close connection with
distillation of secret conference keys. Indeed, if the par-
ties share several copies of a resource state that can be
turned into a smaller number of GHZ states, then they
could perform a distillation protocol followed by mea-
surements to generate a secret key. The connection of
entanglement distillation and conference key agreement
protocols is discussed in [54]. Ref. [97], has recently in-
vestigated the limits on the performance of GHZ state
distribution in a network, with and without quantum re-
peaters, and its consequence for CKA protocols based on
the GHZ state.

However, it is not only through distillation of GHZ
states that one can obtain a secret key. Indeed, as shown
in [98], an ε-secure conference key can also be obtained
from bound entangled states. This result generalizes an
analogous one derived in the bipartite case [99].

The concept of private states [100] was generalized to
the multipartite case in Ref. [98, 101]. Similar to the
bipartite case, a multipartite private state can be seen
as a twisted GHZ state tensored with an extra density
matrix (the shield)

Γ
(d)

A~BA′
= Ut(|GHZdN 〉〈GHZdN | ⊗ ρA′)U†t , (32)

where |GHZdN 〉 = 1√
d

∑d−1
i=0 |ii . . . i〉 is the N -party GHZ

state of dimension d and the multipartite twisting is a
unitary operation of the form

Ut =
d−1∑

i1,...,iN=0

|i1 . . . iN 〉〈i1 . . . iN | ⊗ Ui1,...,iN (33)

for arbitrary unitaries Ui1,...,iN acting on A′.
Ref. [98] establishes that if from a resource state Alice

and the Bobs can distill an ε-secret conference key, then
there exists an LOCC protocol that can distill a state
close to a private state (32) and vice-versa. They also
exhibit examples of multipartite bound entangled states,
that are states from which a GHZ state cannot be dis-
tilled, which are ε-close to private states. This establishes
that distillation of GHZ states is not necessary for quan-
tum conference key agreement and more general classes
of protocols are possible.

In the framework of quantum channels and private
state distillation, converse bounds on the rate at which a
secret key can be distilled using multiplex channels were
recently provided in [102]. Ref. [102] establishes that

genuine multipartite entanglement is necessary for single
shot key distillation. This implies that, if key can be dis-
tilled from n copies of a multipartite state ρ, then ρ⊗n

needs to be genuine multipartite entangled. However,
this does not require that genuine multipartite entangle-
ment is present at the single round level ρ. Indeed, a
study of the entanglement properties required for a re-
source state to enable a conference key was recently per-
formed in [103]. Results of Ref. [103] show that a con-
ference key can be established even if the parties share a
biseparable state in every round.

VII. OUTLOOK

We reviewed the state-of-the-art quantum CKA
schemes based on multipartite entanglement. We dis-
cussed proposed protocols and their security proofs under
different levels of assumptions for the characterisation of
the devices, and for several types of implementations.

From an experimental point of view, the implementa-
tion of quantum CKA is increasingly accessible, due to
key developments of its fundamental ingredients. Multi-
partite entanglement has been generated in a variety of
physical systems, such as e.g. ion traps [104–106], pho-
tonic systems [107–111], superconducting circuits [112–
114] and nuclear spin qubits in diamond [115]. Also,
entanglement among several particles is naturally gen-
erated in atomic ensembles [116, 117], and methods to
quantify and manipulate this entanglement are being
developed [118–122]. A thermalised interacting photon
gas [123] may also prove to be a suitable source of gen-
uine multipartite entanglement. Recently, the first quan-
tum CKA protocol has been implemented [124] among
four parties. The experiment is based on the multi-
party BB84 protocol [65] discussed in Section IIIA. It re-
lies on the generation of polarization-encoded four-party
GHZ states at telecom wavelength by a central quantum
server. The states are then distributed to the four par-
ties over up to 50 km of optical fibers, generating a secure
conference key according to Definition 4.

While experimental progress is still necessary to scale
implementations of quantum CKA to many users, im-
provements from the theory side are crucial to reduce the
experimental demands. To this aim, the development of
new protocols and new techniques to prove security will
contribute to make quantum CKA a feasible technology.

Novel protocols exploring different resource states and
network architectures can lead to improved performance
and noise robustness. In the bi-partite case, QKD proto-
cols for d-dimensional systems achieve higher rates and
better noise tolerance [125] than the qubit-based proto-
cols. In order to explore this possibility in the multi-
partite case, quantum CKA protocols for d-dimensional
systems need to be developed. Such a generalization can
also find applications in the layered protocol presented
in [126]. In Ref. [126], asymmetric high-dimensional mul-
tipartite entangled states are used to design a layered
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protocol that establishes a secret key simultaneously be-
tween different subsets of users in a network.

Similarly, new tools to improve security proofs can
lead to better rates and noise tolerance, especially for
DICKA protocols. A family of Bell inequalities suit-
able for conference key agreement protocols has been
introduced in [94]. However, only non-tight numerical
lower bounds to the key rates are currently available for
DICKA protocols based on these inequalities. The in-
troduction of tighter analytical bounds addressing their
security proofs could lead to higher key rates in DICKA
protocols.
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Analytical entropic bounds for multiparty device-independent cryptography
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We consider a device-independent (DI) scenario where N parties test a generic full-correlator Bell
inequality with two inputs and two outcomes per party. By exploiting the inequality’s symmetries,
we drastically simplify the general form of the quantum state that can be considered, without loss of
generality. We then focus on the Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality and derive
an upper bound on the maximal violation of the MABK inequality by an arbitrary N -qubit state,
as a function of the state’s parameters. The two results enable us to derive analytical bounds on
the von Neumann entropy of the parties’ outcomes, conditioned on the eavesdropper’s information.
These quantities are crucial for the security of most cryptographic protocols and better bounds
significantly impact the protocols’ performance. In particular, we bound the conditional entropy of
a single party’s outcome and the joint conditional entropy of two parties’ outcomes, as a function
of the MABK violation observed by three parties. We extend the former bound to N parties and
prove its tightness, while we observe that the latter bound significantly improves previous results.

INTRODUCTION

Stimulated by data security concerns and by commercial
opportunities, several companies and governments are in-
creasingly investing resources in quantum cryptography
technologies [1, 2]. Those include, most prominently,
quantum key distribution (QKD) [3–10] and quantum
random number generation [11, 12]. The former enables
two parties to establish an information-theoretically se-
cure shared key, while the latter is considered the only
source of genuine randomness. In the context of emerg-
ing quantum networks [13–20], the task of QKD can be
generalized to quantum conference key agreement (CKA)
[21–27]. Here, N parties establish a common secret key
to securely broadcast messages within their network, as
proved recently in the first CKA experiment [28]. How-
ever, it is challenging to ensure that the assumptions on
the implementation of these cryptographic tasks are met
in practice, hence jeopardizing their security.

This led to the development of device-independent (DI)
cryptographic protocols, whose security holds indepen-
dently of the actual functioning of the quantum devices
and is based on the observation of a Bell inequality vio-
lation [29]. Such protocols include DIQKD [30–38] and
DICKA [39–42] schemes, where a secret key is shared
by two or more parties, respectively. Otherwise, with DI
randomness generation (DIRG) protocols [43–53] one can
generate intrinsic randomness which is guaranteed to be
private thanks to a Bell violation.

A crucial aspect of any DI protocol is the ability to
carefully estimate, from the observed Bell violation, the
minimum amount of uncertainty that a potential eaves-
dropper, Eve, could have about the protocol’s outputs.
Indeed, this quantity determines the length of the se-
cret random bitstring that can be distilled from the

∗ corresponding author: federico.grasselli@hhu.de
† corresponding author: glaucia.murta@hhu.de

protocol’s outputs. Eve’s uncertainty is often quanti-
fied by an appropriate conditional von Neumann entropy
[6, 32, 33, 37], relative to the effective state shared by the
parties in a generic round of the protocol. The goal is to
minimize the entropy over all the possible states yielding
the observed Bell inequality violation.

This task can be carried out numerically, however the
available techniques [54–57] focus on minimizing a lower
bound on the von Neumann entropy, namely the min-
entropy [6], thus producing sub-optimal results. Here we
follow an analytical approach that reduces the degrees of
freedom of the generic state shared by the parties with-
out loss of generality, by exploiting the symmetries of the
considered Bell inequality. The resulting state depends
on a small number of parameters, allowing a direct min-
imization of the conditional von Neumann entropy. This
can result in a tight bound of the eavesdropper’s uncer-
tainty, which directly translates to an increased perfor-
mance of the protocols. To the best of our knowledge,
such an analytical procedure has only been developed by
Pironio et al. [33] in the case of two parties testing the
Clauser-Horne-Shimony-Holt (CHSH) inequality [58].

In this work we develop a similar analytical procedure,
applicable to a broad class of DI scenarios. Specifically,
we consider N parties, each equipped with two measure-
ment settings with binary outcomes, testing a generic
full-correlator Bell inequality –i.e. an inequality where
each correlator involves every party [59]. Without loss
of generality, we reduce the density matrix of the generic
state shared by the N parties to a 2N × 2N diagonal ma-
trix, except for 2N−1 −N purely imaginary off-diagonal
terms. This means, for instance, that three parties share
a state completely determined by only eight independent
parameters (one is removed due to normalization). No-
tably, we recover the result of Pironio et al. when N = 2.

We then focus on the Mermin-Ardehali-Belinskii-
Klyshko (MABK) inequality [60–62] and derive an an-
alytical bound on the maximal violation of the MABK
inequality obtained by performing rank-one projective
measurements on an arbitrary N -qubit state, as a func-
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tion of the state’s parameters. This is a result of in-
dependent interest, which generalizes the bound for the
bipartite case of [63] and constitutes, to our knowledge,
the first of this kind valid for an arbitrary N -qubit state.

By combining the results on the state reduction and
on the MABK violation upper bound, we obtain ana-
lytical bounds on relevant conditional von Neumann en-
tropies when three parties, Alice, Bob and Charlie, test
the MABK inequality. Specifically, we obtain a tight
lower bound on the von Neumann entropy of Alice’s out-
come conditioned on the eavesdropper’s information. We
extend the bound to N parties by showing that it coin-
cides with one derived previously [64] on completely dif-
ferent grounds and with no allegation of tightness. The
bound can find potential application in DIRG based on
multipartite nonlocality. We also provide a heuristic ar-
gument for which full-correlator Bell inequalities, such as
the MABK inequality, are unlikely to be employed in any
DICKA protocol.

In the same tripartite context, we derive a lower bound
on the joint conditional von Neumann entropy of Alice
and Bob’s outcomes, which substantially improves the
result derived in [49], where the authors bound the cor-
responding min-entropy. The derived bound can be em-
ployed in proving the security of DI global randomness
generation schemes.

RESULTS

Reduction of the N-party quantum state

Consider a DI scenario with N parties, denoted Alice1,
. . . , AliceN . The parties test a generic full-correlator Bell
inequality [59] where each of them can choose among two
measurement settings with binary outcomes. We iden-
tify this as the (N, 2, 2) DI scenario. We assume the
setup to be characterized by an eavesdropper, Eve, dis-
tributing an unknown quantum state to the parties, and
by unknown dichotomic observables A(i)

x representing the
possible measurements settings (x = 0, 1) for each party
(i = 1, . . . , N). Then, the considered Bell inequality is a
linear combination of full-correlators of the form:

〈
A(1)
x1
· · ·A(N)

xN

〉
. (1)

From the observed Bell violation, the parties could quan-
tify Eve’s uncertainty on some of their outcomes by com-
puting an appropriate conditional von Neumann entropy.
With this result, they could enhance their outcomes’ pri-
vacy (privacy amplification [6]) and use them for various
cryptographic tasks (e.g. DICKA or DIRG).

Here we present a fundamental result which enables
a direct computation of the conditional von Neumann
entropy of interest.

We first define the GHZ basis [21] for the Hilbert space
of N qubits as follows.

Definition 1. The GHZ basis for the set of N -qubit
states is composed of the following 2N states:

|ψσ,~u〉 =
1√
2

(
|0〉 |~u〉+ (−1)σ |1〉 |~̄u〉

)
, (2)

where σ ∈ {0, 1} while ~u ∈ {0, 1}N−1 and ~̄u = ~1 ⊕ ~u are
(N − 1)-bit strings. In particular, for a three-qubit state,
the GHZ basis reads:

|ψi,j,k〉 =
1√
2

(
|0, j, k〉+ (−1)i |1, j̄, k̄〉

)
i, j, k ∈ {0, 1},

(3)
where the bar over a bit indicates its negation.

We can now state the first major result of this work,
the proof of which is reported in the Methods section.

Theorem 1. Let N parties test an (N, 2, 2) full-
correlator Bell inequality. It is not restrictive to assume
that, in each round, Eve distributes a mixture

∑
α pαρα

of N -qubit states ρα, together with a flag |α〉 (known to
her) which determines the measurements performed on
ρα given the parties’ inputs. Without loss of generality,
the measurements performed by each device on ρα are
rank-one binary projective measurements in the (x, y)-
plane of the Bloch sphere. Moreover, each state ρα is
diagonal in the GHZ basis, except for some purely imag-
inary off-diagonal terms:

ρα =
∑

~u∈{0,1}N−1

[λα0~u|ψ0,~u〉〈ψ0,~u |+λα1~u|ψ1,~u〉〈ψ1,~u |

+isα~u (|ψ0,~u〉〈ψ1,~u |−|ψ1,~u〉〈ψ0,~u |)] , (4)

Finally, N arbitrary off-diagonal terms sα~u can be as-
sumed to be zero. Independently, N pairs of the form
(λα0~u, λ

α
1~u) can be arbitrarily ordered (e.g. λα0~u ≥ λα1~u).

In the following we focus our analysis on a given state
ρα. Hence, for ease of notation we drop the symbol α in
the parameters related to the state ρα (e.g. λα0,~u and sα~u)
when there is no ambiguity.

Note that, for N = 2, we recover the result of [33]. By
applying Theorem 1 to the case of N = 3 parties, it is not
restrictive to assume that they share a mixture of states
ρα, with the following matrix representation in the GHZ
basis:

ρα =




λ000 0 0 0 0 0 0 0
0 λ100 0 0 0 0 0 0
0 0 λ001 0 0 0 0 0
0 0 0 λ101 0 0 0 0
0 0 0 0 λ010 0 0 0
0 0 0 0 0 λ110 0 0
0 0 0 0 0 0 λ011 is
0 0 0 0 0 0 −is λ111




.

(5)

The eigenvalues of (5) are given by:

ρijk = λijk (j, k) 6= (1, 1)

ρi11 =
λ011 + λ111 + (−1)i

√
(λ011 − λ111)2 + 4s2

2
. (6)
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Upper bound on MABK violation

The MABK inequality [60–62] is one possible generaliza-
tion of the CHSH inequality [58] and is derived on the
following MABK operator.

Definition 2. The MABK operator MN is defined by
recursion [64, 65]:

M2 = GCHSH(A
(1)
0 , A

(1)
1 , A

(2)
0 , A

(2)
1 )

≡ A(1)
0 ⊗A

(2)
0 +A

(1)
0 ⊗A

(2)
1 +A

(1)
1 ⊗A

(2)
0

−A(1)
1 ⊗A

(2)
1

MN =
1

2
GCHSH(MN−1,MN−1, A

(N)
0 , A

(N)
1 ), (7)

where A
(i)
xi for xi = 0, 1 are the binary observables of

Alicei ((A
(i)
xi )† = A

(i)
xi and (A

(i)
xi )2 ≤ id) and where Ml is

the operator obtained from Ml by replacing every observ-
able A(i)

xi with A(i)
1−xi . For N = 3, the MABK operator

reads:

M3 =A0 ⊗B0 ⊗ C1 +A0 ⊗B1 ⊗ C0

+A1 ⊗B0 ⊗ C0 −A1 ⊗B1 ⊗ C1 (8)

where Ax, By and Cz are Alice’s, Bob’s and Charlie’s
observables, respectively.

Then the N -partite MABK inequality reads as follows:

〈MN 〉 = Tr[MNρ] ≤





2, classical bound
2N/2, GME threshold
2(N+1)/2 quantum bound

(9)

where MN is the MABK operator and a violation of the
GME threshold implies that the parties share a genuine
multipartite entangled (GME) state.

The second major result is an upper bound on the
maximal MABK violation obtained when N parties share
an N -qubit state and perform rank-one projective mea-
surements on the respective qubits. The bound is state-
dependent and tight on certain classes of states (proof
and tightness conditions in Methods). This is, to the
best of our knowledge, the first bound of such kind for
anN -partite Bell inequality. Recently, the authors in [66]
derived a similar bound in the N = 3 case. Our bound
is tight on a larger set of states (discussion in Methods)
and is valid for general N .

Theorem 2. The maximum violation Mρ of the
N -partite MABK inequality (9), attained with rank-one
projective measurements on an N -qubit state ρ, satisfies

Mρ ≤ 2
√
t0 + t1 (10)

where t0 and t1 are the largest and second-to-the-largest
eigenvalues of the matrix TρTTρ , where Tρ is the correla-
tion matrix of ρ.

We define the correlation matrix of an N -qubit state
as follows.

Definition 3. The correlation matrix of an N -qubit state
ρ, Tρ, is a square or rectangular matrix defined by the
elements [Tρ]ij = Tr[ρσν1 ⊗ . . .⊗ σνN ] such that:

i = 1 +

dN/2e∑

k=1

3dN/2e−k(νk − 1)

j = 1 +

N∑

k=dN/2e+1

3N−k(νk − 1) (11)

where ν1, . . . , νN ∈ {1, 2, 3}, σνiare the Pauli operators
and dxe returns the smallest integer greater or equal to
x.

Remark. We remark that the most general measure-
ments to be considered in computing the maximal MABK
violation are projective measurements defined by observ-
ables (A

(i)
xi )2 = id [59], since POVMs never provide

higher violations [67, 68]. Such measurements on qubits
reduce to either (i) rank-one projective measurements
given by A(i)

xi = ~a ixi · ~σ with unit vectors ~a ixi ∈ R
3 and

where ~σ = (X,Y, Z)T is the vector of Pauli operators, or
(ii) rank-two projective measurements given by the iden-
tity A(i)

xi = ±id, i.e. measurements with a fixed outcome.
While for N = 2 parties the identity does not lead to any
violation [63] and the optimal measurements are described
by case (i), in a multipartite scenario case (ii) cannot be
ignored.

For instance, if N = 3 parties share the state id/2 ⊗
|ψ00〉〈ψ00 | (with |ψ00〉 given in Definition 1), an MABK
violation of 2

√
2 is achieved if the first party measures

A
(1)
0 = A

(1)
1 = id, whereas no violation is obtained if her

measurements are restricted to A(i)
xi = ~a ixi · ~σ.

We point out that previous works [66, 69–71] address-
ing the violation of multipartite Bell inequalities achieved
by a given multi-qubit state have neglected case (ii) and
only considered case (i). By applying the above exam-
ple, we stress that the results of [66, 69–71] characterizing
Bell violations yielded by multi-qubit states are, in fact,
less general than claimed.

Nevertheless, for states whose maximal violation is
above the GME threshold, the bound we provide in The-
orem 2 is general and holds independently of the parties’
measurements. Indeed, measuring the identity cannot
lead to violations above the GME threshold and thus
case (i) is already the most general.

By applying Theorem 2 to the state ρα in (5), we ob-
tain an upper bound on the maximal MABK violation
Mα achievable on ρα with rank-one projective measure-
ments.

Corollary 1. For a tripartite state ρα of the form given
in (5), the maximal violationMα of the MABK inequal-
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ity achieved with rank-one projective measurements sat-
isfies:

Mα ≤M↑α = 4

√√√√
1∑

j,k=0

(ρ0jk − ρ1jk)2, (12)

where {ρijk} are the eigenvalues of the state ρα, as spec-
ified in (6).

In the Methods section, we provide the tightness condi-
tions (75) for which the upper bound in (12) is achieved.

Tight conditional entropy bound

Consider the (3, 2, 2) DI scenario where Alice, Bob and
Charlie test the tripartite MABK inequality in order
to quantify Eve’s uncertainty on Alice’s outcome X,
by computing the conditional von Neumann entropy
H(X|E). We emphasize that, in a DIRG protocol, the
entropyH(X|E) determines the asymptotic rate of secret
random bits extracted by applying privacy amplification
[6] on Alice’s X outcomes [72, 73]. Similarly, in DICKA
the secret key rate is determined by H(X|E) decreased
by the amount of classical information disclosed by the
parties in the other steps of the protocol [41, 64, 72].

We derive a tight analytical lower bound onH(X|E) as
a function of the observed MABK violation. Theorem 1
guarantees that we can restrict the computation of the
conditional entropy H(X|Etot) over a mixture of states
ρα of the form (5) and to rank-one projective measure-
ments performed by the parties. We emphasize that the
total information Etot = EΞ available to Eve includes the
knowledge of the flag Ξ which carries the value of α (see
Methods). The goal is to lower bound the conditional en-
tropy with a function F of the observed MABK violation
m. The bound is tight if, for any given MABK violation
m, there exist a quantum state and a set of measure-
ments that achieve that violation and whose conditional
entropy is exactly given by F (m).

Thanks to Theorem 1, we can be express the condi-
tional entropy H(X|Etot) as follows:

H(X|Etot) =
∑

α

pαH(X|EΞ = α)

=
∑

α

pαH(X|E)ρα , (13)

as a matter of fact the state on which H(X|Etot) is com-
puted is a classical-quantum state (see Eq. (38) in Meth-
ods). At the same time, the observed violation m can be
expressed as:

m =
∑

α

pαmα. (14)

In (13), the entropy H(X|E)ρα is the conditional entropy
of Alice’s outcome given that Eve distributed the state

ρα, while pα is the probability distribution of the mix-
ture prepared by Eve. In (14), mα is the violation that
the parties would observe had they shared the state ρα
in every round of the protocol and performed the corre-
sponding rank-one projective measurements.

We then aim at lower bounding H(X|E)ρα with a con-
vex function F of the MABK violation mα:

H(X|E)ρα ≥ F (mα). (15)

By combining (13), (14), (15) and the convexity of F ,
one can obtain the desired lower bound on H(X|Etot) as
a function of the observed violation m:

H(X|Etot) ≥ F (m). (16)

In the following we show in detail how to obtain the func-
tion F . In particular, we minimize the conditional en-
tropy H(X|E)ρα over all the states ρα of the form (5),
whose MABK violation mα achieved with rank-one pro-
jective measurements is upper bounded by (12).

The eigenvectors of the state ρα, correspondent to the
eigenvalues in (6), read:

|ρijk〉 = |ψi,j,k〉 (j, k) 6= (1, 1)

|ρ011〉 = cos(arctan q) |ψ0,1,1〉 − i sin(arctan q) |ψ1,1,1〉
|ρ111〉 = cos(arctan q) |ψ1,1,1〉 − i sin(arctan q) |ψ0,1,1〉 ,

(17)

where the parameter q is defined as:

q =
2s

λ011 − λ111 +
√

(λ011 − λ111)2 + 4s2
. (18)

By combining the freedom in ordering the diagonal ele-
ments λijk of ρα (c.f. Theorem 1) with the definition of
the eigenvalues ρijk in (6), one can impose the following
constraints on the eigenvalues:

ρ0jk ≥ ρ1jk ∀ j, k. (19)

The entropy H(X|E)ρα is computed on the classical-
quantum state:

ραXE = (EX ⊗ idE) TrBC [|φαABCE〉〈φαABCE |], (20)

where |φαABCE〉 is a purification of ρα (Eve holds the pu-
rifying system E), while EX represents Alice’s projective
measurement defined by the following projectors:

|a〉X =
1√
2

(|0〉+ (−1)aeiϕ |1〉) a ∈ {0, 1}, (21)

where ϕ ∈ [0, 2π] identifies the measurement direction in
the (x, y)-plane of the Bloch sphere. The entropy min-
imization is greatly simplified if, instead of minimizing
over the matrix elements {λijk} and s of ρα, one mini-
mizes over its eigenvalues {ρijk} and over q. Indeed, there
exists a bijective map linking the two sets of parameters,
defined by the relations (6) and (18). The remarkable
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Figure 1. Tight analytical lower bound on the conditional
entropy H(X|Etot) as a function of the MABK inequality vi-
olation (Eq. (28)) observed by three parties. We notice that
Eve has no uncertainty on Alice’s outcome X for violations
below the genuine multipartite entanglement (GME) thresh-
old.

advantage of adopting the new variables {ρijk} and q, in
the minimization of H(X|E)ρα , is that the MABK vio-
lation upper boundM↑α in (12) only depends on {ρijk}.
This allows us to first minimize the entropy over q and
ϕ without affecting the MABK violation. In particular,
one can easily verify that the entropy is minimized for
q = ϕ = 0, by using the constraints (19). In other words,
it is optimal for Eve to distribute a mixture of GHZ-
diagonal states (q = 0 implies s = 0), similarly to the
bipartite scenario studied in [33]. The resulting condi-
tional entropy reads:

H(X|E)ρα = 1−H({ρijk}) +H({ρijk + ρij̄k̄}), (22)

where the Shannon entropy of a probability distribution
{pi}i is defined as H({pi}) =

∑
i−pi log2 pi.

The final step consists in minimizing the entropy in
(22) over {ρijk} and for a given violation mα, with the
constraint given by the MABK violation upper bound
(12):

mα ≤M↑α. (23)

We perform this optimization analytically and provide
the complete proof in section V of the Supplementary
Information.

Importantly, we show that the minimal entropy is at-
tained when equality holds in (23) and by the following
family of states for every value of the violation mα:

τ(νm) = νm|ψ0,0,0〉〈ψ0,0,0 |+(1− νm)|ψ0,1,1〉〈ψ0,1,1 |.
(24)

The parameter νm is fixed by the violation mα via (23)
evaluated with the equals sign:

mα =M↑τ (νm) = 4
√

2ν2
m − 2νm + 1, (25)

where we used (12) to compute the upper bound on the
violation. The lower bound on the conditional entropy

H(X|E)ρα is thus given by the entropy of the states in
(24):

H(X|E)ρα ≥ F (mα) := H(X|E)τ (νm) (26)

The entropy of the states in (24) is easily computed from
(22) and can be expressed in terms of the violation mα

by reverting (25). We obtain:

F (mα) = 1− h
(

1

2
+

1

2

√
m2
α

8
− 1

)
, (27)

where h(p) = −p log2 p − (1 − p) log2(1 − p) is the bi-
nary entropy. Finally, the lower bound (27) is a convex
function, hence we can employ it in (16) and obtain the
desired lower bound on H(X|Etot) as a function of the
observed MABK violation:

H(X|Etot) ≥ 1− h
(

1

2
+

1

2

√
m2

8
− 1

)
. (28)

In figure 1, we plot the lower bound on the conditional
entropy derived in (28), as a function of the observed
violation of the MABK inequality. We notice that the
minimized conditional entropy is zero for violations below
the GME threshold of 2

√
2. This means that GME is

a necessary feature to guarantee private randomness of
Alice’s outcome in a tripartite MABK scenario.

Moreover, the lower bound on the conditional entropy
in (28) is tight for any given observed violation. Indeed
for every violation m, there exists a state τ(νm) whose
entropy coincides with the lower bound and that attains
an MABK violation equal to m. As a matter of fact,
the tightness conditions (75) of the MABK violation up-
per bound (12) (see Methods) are satisfied by the states
τ(νm), implying thatM↑τ =Mτ .

A lower bound on H(X|Etot) as a function of the
MABK inequality violation is also derived in [64], for
the general N -party scenario. However, we emphasize
that the bound in [64] is based on a completely differ-
ent approach and with no allegation of optimality. The
conditional entropy bound obtained in [64] reads:

H(X|Etot) ≥ 1− h
(

1

2
+

1

2

√
m2

2N
− 1

)
, (29)

where m is the observed violation of the N -partite
MABK inequality (9).

Surprisingly, the lower bound (29) for N = 3 coincides
with the tight bound (28) obtained in this work. This
observation proves the tightness of the bound (29) in the
N = 3 case. We further verify that the bound (29) is
actually tight for every number of parties N . In order
to do so, we show that the bound (29) is attained by
the following family of states that generalizes (24) to N -
parties:

τ(ν) = ν|ψ0,~0〉〈ψ0,~0 |+(1− ν)|ψ0,~1〉〈ψ0,~1 |. (30)
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In particular, by combining the conditional entropy and
the maximal MABK violation of (30), similarly to what
is done in the N = 3 case, we derive exactly the bound
in (29). Note that the family of states (30) saturates
(10), as they satisfy the tightness conditions of Theorem 2
given in Eqs. (IV.75) and (IV.80) of the Supplementary
Information. In this way we prove that also (29) is a
tight bound.

Finally, we remark that the tight entropy bound (29)
is only defined for m ≥ 2N/2, that is only for violations
above the GME threshold. Since private randomness of
a party’s outcome is a prerequisite of any DICKA proto-
col, it is an open question whether GME is a necessary
ingredient for DICKA. Besides, in the next section we
argue on the apparent incompatibility of full-correlator
Bell inequalities and DICKA protocols.

Full-correlator Bell inequalities and DICKA

We provide an heuristic argument on why full-correlator
Bell inequalities with two dichotomic observables per
party, such as the MABK inequality, seem to be useless
for DICKA protocols. We hope that this fundamental
question can spark the interest of the community towards
more conclusive results.

Any DICKA protocol is characterized by two essential
ingredients: a violation of a multipartite Bell inequality
to ensure secrecy of Alice’s outcomes and correlated out-
comes among all the parties yielding the conference key.
Since a part of Alice’s outcomes form the secret key, one
of the measurements she uses to assess the violation of
the inequality must be the same used for key generation
[33, 42, 74]. Note that, unlike Alice, the other parties are
equipped with an additional measurement option solely
used for key generation.

It is known that every full-correlator Bell inequality
with two dichotomic observables per party is maximally
violated by the GHZ state [59]. Moreover, the only mul-
tiqubit state leading to perfectly correlated and random
outcomes among all the parties is the GHZ state, when
the parties measure in the Z basis [21].

However, a GHZ state maximally violates a full-
correlator Bell inequality when the measurements are
chosen such that the resulting inequality (modulo re-
arrangements) is only composed of expectation values
of GHZ stabilizers, which acquire the extremal value 1.
Moreover, the stabilizers appearing in the inequality do
not act trivially on any qubit –i.e. do not contain the
identity– due to the full-correlator structure of the in-
equality. We call such stabilizers “full-stabilizers” for ease
of comprehension.

The problem is that none of the N -partite GHZ state
full-stabilizers, for N odd, contains the Z operator [75].
This implies that, in order to maximally violate the in-
equality, Alice’s measurement directions are orthogonal
to Z. Since one of these measurements is also used to gen-
erate her raw key, she would obtain totally uncorrelated

outcomes with the rest of the parties (perfect correlations
are only obtained with a GHZ state when measuring Z).
This causes the unwanted situation of having maximal
violation and perfect correlations among the parties’ key
bits as mutually exclusive conditions. Since both condi-
tions are required in a DICKA protocol, the above argu-
ment constitutes an initial evidence that full-correlator
Bell inequalities are not suited for DICKA protocols.

A similar argument holds when the number of parties
N is even (N > 2). As a matter of fact, in this case there
exists only one GHZ full-stabilizer which contains the Z
operator, namely: Z⊗N . If 〈Z⊗N 〉 were to appear in the
rearranged inequality expression, there should be at least
another correlator containing at least one Z operator.
Indeed, if each observable in a correlator never appears
again in any other term of the inequality, that correlator
is useless since Eve could assign to it any value (Eve is
supposed to know the inequality being tested). The lack
of any other full-stabilizer containing the Z operator pre-
vents having a second correlator containing Z, thus ex-
cluding the term 〈Z⊗N 〉 in the first place. Therefore,
also in the N -even case Alice’s measurements leading to
maximal violation are orthogonal to Z, yielding uncorre-
lated raw key bits. We remark that the N = 2 case is
peculiar since the low number of parties allows 〈ZZ〉 (ob-
tained from the term 〈A1(B0 −B1)〉 in the inequality) to
appear just once in the CHSH inequality [58].

It is worth mentioning that in Ref. [74] the apparent
incompatibility of the MABK inequality with a DICKA
protocol was already discussed. In particular, it is shown
in the tripartite case that there exists no honest imple-
mentation such that the parties’ outcomes are perfectly
correlated and at the same time the MABK inequality is
violated above the GME threshold, which is a necessary
condition as we pointed out above.

Despite the concerns on the use of MABK inequali-
ties in DICKA protocols, the results of this paper are
still of fundamental interest for DIRG [43–53] based on
multiparty nonlocality. As a further application, in the
following we improve the bound on Eve’s uncertainty of
Alice and Bob’s outcomes derived in [49].

Joint conditional entropy bound

Consider the same DI scenario introduced in section
“Tight conditional entropy bound”, and suppose that Eve
wishes to jointly guess the measurement outcomes X and
Y of Alice and Bob, respectively. This scenario may oc-
cur in DIRG protocols where the parties are assumed
to be co-located and collaborate to generate global se-
cret randomness [49, 72]. We estimate Eve’s uncertainty
by providing a lower bound on the conditional von Neu-
mann entropy H(XY |E)ρα , as a function of the MABK
violation mα. The entropy is computed on the following
quantum state:

ραXY E = (EX ⊗ EY ⊗ idE) TrC [|φαABCE〉〈φαABCE |], (31)
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where the maps EX and EY represent Alice’s and Bob’s
measurements, respectively, defined by the following
rank-one projectors:

|a〉X =
1√
2

(|0〉+ (−1)aeiϕA |1〉) a ∈ {0, 1}

|b〉Y =
1√
2

(|0〉+ (−1)beiϕB |1〉) b ∈ {0, 1}. (32)

The lower bound on H(XY |E)ρα is derived by minimiz-
ing the entropy over the eigenvalues {ρijk} of ρα and
over q given in (18), having upper bounded the observed
MABK violation with (12), by employing the same argu-
ments used for H(X|E)ρα .

We perform a fully-analytical optimization which is re-
ported in section VI of the Supplementary Information.
Notably, in analogy with the case of H(X|E)ρα , we verify
that the entropy is minimized when q = ϕA = ϕB = 0,
i.e. when ρα is a GHZ-diagonal state and both Alice and
Bob measure in the X basis.

The analytical lower bound on H(XY |E)ρα reads:

H(XY |E)ρα ≥ G(mα), (33)

where:

G(mα) := 2−H ({1− 3f(mα), f(mα), f(mα), f(mα)}) ,
(34)

and where the function f is defined as:

f(mα) =
1

4
−
√

3

24

√
m2
α − 4. (35)

Similarly to the case of H(X|E)ρα , we can exploit the
convexity of the function in (34) to lower bound the con-
ditional entropy of the global state prepared by Eve:

H(XY |Etot) ≥ G(m), (36)

where m is the violation observed by Alice, Bob and
Charlie and G(m) is the function defined in (34).

The bound in (36) is plotted in figure 2 (green line),
together with the tight lower bound on the correspondent
min-entropy obtained in [49] (magenta line).

We point out the dramatic improvement in certifying
device-independently the privacy of Alice and Bob’s out-
comes with our lower bound on the conditional von Neu-
mann entropy H(XY |Etot), as opposed to bounding the
conditional min-entropy Hmin(XY |Etot).

The min-entropy is often used to lower bound the von-
Neumann entropy in DI protocols, since it can be directly
estimated using the statistics of the measurement out-
comes [54–57]. In general it holds that H ≥ Hmin [76].
However, bounding the von Neumann entropy with the
min-entropy can be far from optimal, as in the case ana-
lyzed here (see figure 2).

From figure 2, we also observe that the conditional
entropy of the outcomesX and Y is nonzero for violations

H(XY|E) bound

Hmin(XY|E) bound

GME threshold

2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

MABK violation

co
nd
iti
on
al
en
tr
op
ie
s

Figure 2. Analytical lower bound on the conditional von Neu-
mann entropyH(XY |Etot) (green line, Eq. (36)) as a function
of the MABK violation observed by three parties. We com-
pare it to the lower bound on the conditional min-entropy
Hmin(XY |Etot) derived in [49] (magenta line). Our bound
dramatically improves the one in [49] since it directly bounds
the von Neumann entropy. Unlike the case of H(X|Etot) in
figure 1, Eve’s uncertainty on Alice and Bob’s outcomes is
nonzero even for violations below the GME threshold.

below the GME threshold unlike the entropy of Alice’s
outcome X (c.f. figure 1).

Finally we remark that, differently from the bound on
H(X|Etot) given in (28), we cannot infer the tightness of
our analytical bound on H(XY |Etot). This is discussed
in detail in section VI of the Supplementary Information.

DISCUSSION

The security of device-independent (DI) cryptographic
protocols is based on the ability to bound the entropy of
the protocols’ outcomes, conditioned on the eavesdrop-
per’s knowledge, by a Bell inequality violation. To this
aim, we considered a DI scenario where N parties test a
generic full-correlator Bell inequality, with two measure-
ment settings and two outcomes per party. We proved, in
this context, that it is not restrictive to reduce the most
general quantum state tested by the parties to a mixture
of simple N -qubit states. Our result reduces to the only
other one of this kind [33] when N = 2.

In order to obtain the entropic bounds, we proved
an analytical upper bound on the maximal violation of
the MABK inequality achieved by a given N -qubit state
when the parties perform rank-one projective measure-
ments. The bound is tight on certain classes of states
and has general validity (i.e. independent of the par-
ties’ measurements) for states whose maximal violation
is above the GME threshold. Our bound generalizes the
known result [63] valid for the CHSH inequality to an
arbitrary number of parties. To the best of our knowl-
edge, this is the first bound on the maximal violation of
a N -partite Bell inequality achievable by a given state,
expressed in terms of the state’s parameters.



8

These results enabled us to derive a tight analytical
lower bound on the conditional von Neumann entropy of
Alice’s outcome, when Alice, Bob and Charlie test the
tripartite MABK inequality. We also derived an analyt-
ical lower bound on the joint conditional von Neumann
entropy of Alice and Bob’s outcomes, which dramatically
improves a similar estimation made in [49] in terms of the
corresponding min-entropy. The improvement gained by
directly bounding the von Neumann entropy has direct
implications for randomness generation protocols, inas-
much as it increases the fraction of random bits guaran-
teed to be private.

Surprisingly, our tight lower bound on the conditional
entropy of Alice’s outcome coincides with an analogous
one [64] inferred with a completely different method-
ology, namely exploiting a correspondence between the
CHSH and the MABK inequality, and with no allegation
of tightness. Moreover, we showed that the N -partite
version of the bound in [64] is actually tight for arbitrary
N .

We deduced that genuine multipartite entanglement
(GME) is necessary to guarantee the privacy of Al-
ice’s random outcome in any device-independent scenario
based on the MABK inequality. It is an open ques-
tion whether GME is a fundamental requirement for DI
conference key agreement (DICKA). In this regard, we
heuristically argued that full-correlator Bell inequalities
with two binary observables per party, such as the MABK
inequality, are unlikely to be employed in any DICKA
protocol. We envision further and more conclusive results
in this direction from the scientific community interested
in this topic.

The bounds on the conditional entropies derived in this
work can find potential application in DI randomness
generation based on multipartite nonlocality. Depending
on the application, such protocols would generate local
randomness for one party or global randomness for two
or more parties. In all cases, the privacy of the generated
random data would be ensured by entropic bounds like
the ones we derived.

Furthermore, the techniques developed in proving The-
orem 1 can inspire analogous analytical reductions of the
quantum state for other Bell inequalities. Indeed, of par-
ticular interest are the Bell inequalities employed in the
existing DICKA protocols [41, 42], for which a result like
Theorem 1 would be the first step towards a tight security
analysis, which is still lacking.

METHODS

Here we present the proofs of Theorem 1 and Theorem 2.

Proof of Theorem 1

The proof of Theorem 1 is based on three main ingredients:
(i) the fact that each party has only two inputs with two

outputs allows to reduce the analysis to qubits and rank-one
projective measurements; (ii) the symmetries of the MABK
inequality allow us to set all the marginals to zero, without
changing the MABK violation or the information available
to the eavesdropper; (iii) the freedom in the definition of the
local axes is used to further reduce the number of free param-
eters. Our proof is inspired by a similar proof given in [33].
However, our result is valid for an arbitrary number of parties
N in the generic (N, 2, 2) DI scenario described in the main
text. Notably, for N = 2 we recover the result of [33].

In order to prove Theorem 1, we make use of the following
Lemma 1 which is a consequence of a result given in [77] and
whose proof is reported in section I of the Supplementary
Information.

Lemma 1. Let {P0, P1} and {Q0, Q1} be two projective mea-
surements acting on a Hilbert space H, such that P0, P1, Q0

and Q1 are projectors and P0 + P1 = id and Q0 + Q1 = id.
There exists an orthonormal basis in an enlarged Hilbert space
H∗ such that the four projectors are simultaneously block di-
agonal, in blocks of size 2×2. Moreover, within a 2×2 block,
each projector has rank one.

Proof of Theorem 1. The first step consists in reducing the
state distributed by Eve to a convex combination of N -
qubit states. To start with, every generalized measurement
(positive-operator valued measure) can be viewed as a pro-
jective measurement in a larger Hilbert space. Since we did
not fix the Hilbert space to which the shared quantum state
belongs, we can assume without loss of generality that the par-
ties’ measurements are binary projective measurements on a
given Hilbert space H. In particular, the projectors P (i)

0 and
P

(i)
1 (Q(i)

0 and Q(i)
1 ) correspond to Alicei’s binary observable

A
(i)
0 (A(i)

1 ) relative to input xi = 0 (xi = 1).
Now we can apply Lemma 1 to the projective measurements

of Alicei for i = 1, . . . , N and state that, at every round of
the protocol, the Hilbert space on which e.g. Alice1’s mea-
surements are acting is decomposed as:

H∗ = ⊕αH2
α , (37)

where every subspace H2
α is two-dimensional and both

Alice1’s measurements act within H2
α as rank-one projective

measurements. From Alice1’s point of view, the measurement
process consists of a projection in one of the two-dimensional
subspaces followed by a projective measurement in that sub-
space (selected according to Alice1’s input). Therefore, Eve is
effectively distributing to Alice1 a direct sum of qubits at ev-
ery round. Alice1’s measurement then selects one of the qubit
subspaces and performs a projective measurement within that
subspace. Of course, since Eve fabricates the measurement
device, the projective measurements occurring in every sub-
space can be predefined by Eve. Since this argument holds
for every party, Eve is effectively distributing a direct sum of
N -qubit states in each round.

Certainly, it cannot be worse for Eve to learn the flag α of
the subspace selected in a particular round before sending the
direct sum of N -qubit states to the parties. For this reason,
we can reformulate the state preparation and measurement in
a generic round of the protocol as Eve preparing a mixture

ρA1...ANΞ =
∑
α pαρα

⊗N
i=1|α〉〈α|ξi (38)

of N -qubit states ρα, together with a set of ancillae
Ξ := {ξi}Ni=1 (known to her) which fixes the rank-one pro-
jective measurements that each party can select on ρα.
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Let us now focus on one specific occurrence defined by a
given α, i.e. on one of the N -qubit states ρα. For ease of
notation, in the following we omit the symbol α.

We define the plane individuated by the two rank-one pro-
jective measurements of each party to be the (x, y)-plane of
the Bloch sphere. Now, we assume without loss of generality
that the statistics observed by the parties is such that every
marginal is random:

〈∏

i∈P
A(i)

〉
= 0, (39)

where A(i) is any dichotomic observable of Alicei and P is any
non-empty strict subset of all the parties: P ( {1, . . . , N}. In-
deed, if this is not the case, the parties can perform the follow-
ing classical procedure on their outcomes which enforces the
requirement in Eq. (39): “Alice1 and Alicei flip their outcome
with probability 1/2”, repeated for every i = 2, . . . , N . This
procedure does not change the observed Bell violation since an
even number of flips occurs at every time, thus leaving the cor-
relators (1) composing the Bell inequality unchanged. More-
over, it requires classical communication between the parties
which we assume to be known by Eve.

Since the observed statistics always satisfies (39), we can
imagine that it is Eve herself who performs the classical flip-
ping on the outputs in place of the parties. To this aim, Eve
could apply the following map to the state ρ she prepared,
before distributing it:

ρ 7→ ρ̄ = ◦Ni=2Di(ρ), (40)

where the composition operator in (40) represents the succes-
sive application of the following operations

Di(ρ) =
1

2
ρ+

1

2
Z1ZiρZ

†
1Z
†
i , (41)

with Zi representing the third Pauli operator applied on
Alicei’s qubit. Note that the application of Z prior to mea-
surement flips the outcome of a measurement in the (x, y)-
plane. Thus, by applying the map in (40), Eve is distributing
a state which automatically satisfies the condition (39). We
can safely assume that Eve implements the map in (40) since
this is not disadvantageous to her. As a matter of fact, her
uncertainty on the parties’ outcomes, quantified by the con-
ditional von Neumann entropy, does not increase when she
sends the state ρ̄ instead of ρ. We provide a detailed proof
of this fact in section II of the Supplementary Information.
Therefore, it is not restrictive to assume that the parties re-
ceive the state (40) from Eve, which can be recast as:

ρ̄ =
1

2N−1

bN
2
c∑

n=0

∑

x∈I(n)

ZxρZx, (42)

with

I(n) = {x ∈ {0, 1}N : ω(x) = 2n}, (43)

Zx =
N⊗

j=1

Z
xj
j , (44)

where the Hamming weight ω(x) of a bit string x returns the
total number of bits that are equal to one and byc returns the
greatest integer smaller or equal to y.

By expressing the initial generic state ρ in the GHZ basis:

ρ =
∑

~u,~v∈{0,1}N−1

1∑

σ,τ=0

ρ(σ~u)(τ~v) |ψσ,~u〉 〈ψτ,~v| , (45)

where ρ(σ~u)(τ~v) ∈ C and by substituting it into (42), we notice
that the state ρ̄ is greatly simplified in the GHZ basis. In
particular, all the coherences between states of the GHZ basis
relative to different vectors ~u are null:

ρ̄ =
∑

~u∈{0,1}N−1

1∑

σ,τ=0

ρ(σ~u)(τ~v) |ψσ,~u〉 〈ψτ,~u| . (46)

This means that the matrix representation of ρ̄ is block-
diagonal in the GHZ basis. By relabeling the non-zero matrix
coefficients, we represent ρ̄ as follows:

ρ̄ =
⊕

~u∈{0,1}N−1

[
λ0~u r~u + is~u

r~u − is~u λ1~u

]
, (47)

where λj~u, r~u and s~u are real numbers. The number of free
parameters characterizing (47) can be further reduced by ex-
ploiting the remaining degrees of freedom in the parties’ local
reference frames [33]. Indeed, although we identified the plane
containing the measurement directions to be the (x, y)-plane
for every party, they can still choose the orientation of the
axes by applying rotations R(θ) along the z direction. Conse-
quently, the state distributed by Eve without loss of generality
is given by:

ρ̄+ =
N⊗

i=1

Ri(θi) ρ̄
N⊗

i=1

R†i (θi), (48)

where the rotation Ri(θi) acts on the Hilbert space of party
number i and reads:

Ri(θi) = cos
θi
2

id + i sin
θi
2
Zi, (49)

where “ id” is the identity operator. Similarly to ρ̄, even the
global rotation operator is block-diagonal in the GHZ basis:

N⊗

i=1

Ri(θi) =
⊕

~u∈{0,1}N−1


 cos β(~θ,~u)

2
i sin β(~θ,~u)

2

i sin β(~θ,~u)
2

cos β(~θ,~u)
2


 , (50)

where ~θ is the vector defined by the rotation angles
{θ1, . . . , θN} and β is a function of ~θ and ~u defined as:

β(~θ, ~u) = θ1 +
∑N−1
j=1 (−1)ujθj+1. (51)

This fact greatly simplifies the calculation in (48), as it al-
lows to multiply the matrices (47) and (50) block-by-block.
The resulting block-diagonal matrix representing the state
distributed by Eve reads:

ρ̄+ =
⊕

~u∈{0,1}N−1

[
λ′0~u r~u + is′~u

r~u − is′~u λ′1~u

]
(52)

where the new matrix coefficients are given by:

λ′0~u =
1

2

[
λ0~u + λ1~u + (λ0~u − λ1~u) cosβ(~θ, ~u)

+2s~u sinβ(~θ, ~u)
]

(53)

s′~u =s~u cosβ(~θ, ~u)− 1

2
(λ0~u − λ1~u) sinβ(~θ, ~u) (54)

λ′1~u =
1

2

[
λ0~u + λ1~u − (λ0~u − λ1~u) cosβ(~θ, ~u)

−2s~u sinβ(~θ, ~u)
]
. (55)
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From (54) we deduce that choosing the rotation angles
θ1, . . . , θN such that the following linear constraint is verified:

θ1 +
∑N−1
j=1 (−1)ujθj+1 = arctan

2s~u
λ0~u − λ1~u

, (56)

sets the corresponding imaginary part in (52) to zero: s′~u = 0.
However, we can only impose N constraints like (56) on the N
rotation angles, thus we are able to arbitrarily set to zero N
terms like s~u in (52). Moreover, by applying further rotations
(note that the composition of rotations is still a rotation) such
that:

θ̃1 +
∑N−1
j=1 (−1)uj θ̃j+1 = π, (57)

we can exchange the diagonal terms in (52): λ′0~u = λ1~u and
λ′1~u = λ0~u. This allows us to arbitrarily order up to N pairs
(λ0~u, λ1~u), for the same argument as above. Note that the
blocks with ordered pairs are in general independent from the
blocks with null imaginary parts. It is also possible to impose
both conditions on the same block: applying (57) in (54) does
not introduce a non-zero imaginary part s′~u, if the imaginary
part was previously set to zero (s~u = 0) with (56).

Finally we construct the state ρ̄− starting from ρ̄+ given in
(52) by replacing r~u with −r~u:

ρ̄− =
⊕

~u∈{0,1}N−1

[
λ′0~u −r~u + is′~u

−r~u − is′~u λ′1~u

]
. (58)

We observe that the two states ρ̄± yield the same measure-
ment statistics and provide Eve with the same information
–i.e. their conditional entropies coincide. Additionally, it is
not disadvantageous for Eve to prepare a balanced mixture
of ρ̄+ and ρ̄− given by (ρ̄+ + ρ̄−)/2, rather than preparing
one of the two states with certainty. A detailed proof of these
observations is given in section III of the Supplementary In-
formation.

We conclude that it is not restrictive to assume that Eve
distributes to the parties a mixture of N -qubit states ρα to-
gether with an ancillary system fixing the parties’ measure-
ments. Each state ρα is represented by the following block
diagonal matrix in the GHZ basis:

ρα =
ρ̄+ + ρ̄−

2
=

⊕

~u∈{0,1}N−1

[
λ0~u is~u
−is~u λ1~u

]
, (59)

where the diagonal elements of N arbitrary blocks are ordered
and the off-diagonal elements of N blocks, chosen indepen-
dently from the previous ones, are zero. This concludes the
proof.

Proof of Theorem 2

We present the proof of Theorem 2, which generalizes the
analogous result valid in the bipartite case for the CHSH in-
equality [63]. This is, to the best of our knowledge, the only
existing upper bound on the violation of the N -partite MABK
inequality by rank-one projective measurements on an arbi-
trary N -qubit state, expressed as a function of the state’s
parameters. Note that an analogous upper bound on the vio-
lation of the tripartite MABK inequality was recently derived
in [66]. However, here we show that our bound is tight on a
broader class of states and valid for an arbitrary number of
parties. In order to prove Theorem 2 we make use of the fol-
lowing Lemma 2, which generalizes an analogous result in [63]

to rectangular matrices of arbitrary dimensions. The proof of
Lemma 2 is reported in section IV of the Supplementary In-
formation.

Lemma 2. Let Q be an m × n real matrix and let ‖~v‖ be
the Euclidean norm of vectors ~v ∈ Rk, for k = m,n. Finally,
let “·” indicate both the scalar product and the matrix-vector
multiplication. Then

max
~c⊥~c ′ s.t.
‖~c‖=‖~c ′‖=1

[
‖Q · ~c‖2 +

∥∥Q · ~c ′
∥∥2
]

= u1 + u2 , (60)

where u1 and u2 are the largest and second-to-the-largest
eigenvalues of U ≡ QTQ, respectively.

For illustration purposes, here we report the proof of The-
orem 2 for the case of N = 3 parties. The full proof is given
in section IV of the Supplementary Information.

Proof of Theorem 2 for N = 3. By assumption we restrict
the description of the parties’ observables to rank-one pro-
jective measurements on their respective qubit [59]. Hence
they can be represented as follows:

Ax = ~ax · ~σ, By = ~by · ~σ, and Cz = ~cz · ~σ, (61)

where ~ax,~by,~cz are unit vectors in R3 and where σ1 = X,σ2 =
Y and σ3 = Z. We can then express the tripartite MABK
operator (8) as follows:

M3 =
3∑

i,j,k=1

Mijkσi ⊗ σj ⊗ σk, (62)

where we defined

Mijk ≡ a0ib0jc1k + a0ib1jc0k + a1ib0jc0k − a1ib1jc1k. (63)

A generic 3-qubit state can be expressed in the Pauli basis
as follows

ρ =
1

8

3∑

µ,ν,γ=0

Λµνγσµ ⊗ σν ⊗ σγ , (64)

with Λµνγ = Tr[ρσµ⊗σν⊗σγ ] and σ0 = id. With the MABK
operator in (62), the MABK expectation value on the generic
3-qubit state in (64) is given by:

〈M3〉ρ = Tr(M3ρ)

=
1

8

3∑

i,j,k=1

3∑

µ,ν,γ=0

MijkΛµνγ Tr (σiσµ ⊗ σjσν ⊗ σkσγ)︸ ︷︷ ︸
8δi,µδj,νδk,γ

=
3∑

i,j,k=1

MijkΛijk. (65)

By recalling the correlation matrix of a tripartite state
(c.f. Definition 3), the MABK expectation value in (65) can
be recast as follows:

〈M3〉ρ = (~a0 ⊗~b1 + ~a1 ⊗~b0)T · Tρ · ~c0
+ (~a0 ⊗~b0 − ~a1 ⊗~b1)T · Tρ · ~c1. (66)
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Finally, the maximum violationMρ of the MABK inequality
achieved by an arbitrary 3-qubit state is obtained by opti-
mizing (66) over all possible observables that the parties can
choose to measure:

Mρ = max
~ai,~bi,~ci s.t.

‖~ai‖=‖~bi‖=‖~ci‖=1

(~a0 ⊗~b1 + ~a1 ⊗~b0)T · Tρ · ~c0

+ (~a0 ⊗~b0 − ~a1 ⊗~b1)T · Tρ · ~c1. (67)

Let us now evaluate the norm of the composite vectors in (67):
∥∥∥~a0 ⊗~b1 + ~a1 ⊗~b0

∥∥∥
2

= 2 + 2 cos θa cos θb︸ ︷︷ ︸
≡cos θab

= 4 cos2

(
θab
2

)
, (68)

where θa (θb) is the angle between vectors ~a0 and ~a1 (~b0 and
~b1). Similarly,

∥∥∥~a0 ⊗~b0 − ~a1 ⊗~b1
∥∥∥

2

= 4 sin2

(
θab
2

)
. (69)

We then define normalized vectors ~v0 and ~v1 such that

~a0 ⊗~b1 + ~a1 ⊗~b0 = 2 cos

(
θab
2

)
~v0, (70)

~a0 ⊗~b0 − ~a1 ⊗~b1 = 2 sin

(
θab
2

)
~v1. (71)

It can be easily checked that the normalized vectors ~v0 and ~v1

are orthogonal. By substituting the definitions (70) and (71)
into the maximal violation of the MABK inequality (67), we
can upper bound the latter as follows:

Mρ ≤ max
~ci,~vi,θab s.t.

‖~ci‖=‖~vi‖=1∧~v0⊥~v1

2 cos

(
θab
2

)
~vT0 · Tρ · ~c0

+ 2 sin

(
θab
2

)
~vT1 · Tρ · ~c1. (72)

The inequality in (72) is due to the fact that now the optimiza-
tion is over arbitrary orthonormal vectors ~v0, ~v1 and angle θab,
while originally the optimization was over variables satisfying
the structure imposed by (70) and (71). We now simplify the
r.h.s. of (72) to obtain the theorem claim. In particular, we
optimize over the unit vectors ~c0 and ~c1 by choosing them
in the directions of TTρ · ~v0 and TTρ · ~v1, respectively, and we
also optimize over θab by exploiting the fact that the general
expression A cos θ + B sin θ is maximized to

√
A2 +B2 for

θ = arctanB/A:

Mρ ≤ max
~vi,θab s.t.

‖~vi‖=1∧~v0⊥~v1

2

[
cos

(
θab
2

)∥∥∥TTρ · ~v0

∥∥∥

+ sin

(
θab
2

)∥∥∥TTρ · ~v1

∥∥∥
]

= max
~vi s.t.

‖~vi‖=1∧~v0⊥~v1

2

√∥∥TTρ · ~v0

∥∥2
+
∥∥TTρ · ~v1

∥∥2
. (73)

Finally, by applying the result of Lemma 2, we know that the
maximum in (73) is achieved when ~v0 and ~v1 are chosen in the
direction of the eigenstates of TρTTρ corresponding to the two

largest eigenvalues. This concludes the proof for the N = 3
case:

Mρ ≤ 2
√
t0 + t1 , (74)

where t0 and t1 are the two largest eigenvalues of TρTTρ .

Tightness conditions: The bound (10) is tight if the corre-
lation matrix Tρ of the considered state satisfies certain con-
ditions, i.e. for certain classes of states. Here we report the
tightness conditions valid in the N = 3 case, while the ones
for general N and their derivation are given in section IV of
the Supplementary Information.

The upper bound (10) on the maximal violation of the tri-
partite MABK inequality by a given state ρ is tight, that is
there exists an honest implementation achieving the bound,
if there exist unit vectors ~a0,~a1,~b0 and ~b1 such that the fol-
lowing identities are satisfied:

~a0 ⊗~b1 + ~a1 ⊗~b0 = 2

√
t0

t0 + t1
~t0

~a0 ⊗~b0 − ~a1 ⊗~b1 = 2

√
t1

t0 + t1
~t1, (75)

where ~t0 and ~t1 are the normalized eigenvectors of TρTTρ cor-
responding to the two largest eigenvalues t0 and t1.

It is interesting to compare the tightness of our bound with
the bound derived in [66]. The major difference is that our
bound can be saturated even when the matrix TρTTρ has no
degenerate eigenvalues, opposed to [66] which requires the de-
generacy of the largest eigenvalue of TρTTρ . When the matrix
TρT

T
ρ is degenerate in its largest eigenvalue (i.e. t0 = t1), we

recover the same tightness conditions of [66]. For this reason,
our bound is tight on a larger set of states compared to the
bound in [66].
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I. REDUCTION TO QUBITS AND RANK-ONE PROJECTIVE MEASUREMENTS

We now provide a detailed proof of Lemma 1 which is a consequence of a result proved in Ref. [77].

Lemma 1. Let {P0, P1} and {Q0, Q1} be two projective measurements acting on a Hilbert space H, such that
P0, P1, Q0 and Q1 are projectors, P0 + P1 = id and Q0 +Q1 = id. There exists an orthonormal basis in an enlarged
Hilbert space H∗ such that the four projectors are simultaneously block diagonal, in blocks of size 2 × 2. Moreover,
within a 2× 2 block, each projector has rank one.

Proof. Let us consider the following three positive operators P0, P0Q0P0 and P0Q1P0. One can check that they
commute and therefore can be simultaneously diagonalized. Let |v〉 be one of their simultaneous eigenvector. Since
P1 · P0 = 0, then P1 |v〉 = 0. So |v〉 is also an eigenvector of P1 with eigenvalue zero. Now, because Q0 +Q1 = I, we
cannot have that Q0 |v〉 = 0 and Q1 |v〉 = 0. Therefore one of the following cases hold:

• If Q0 |v〉 = 0: then Q1 |v〉 = |v〉, and the span of |v〉 corresponds to a 1 × 1 block in which P0, P1, Q0, Q1 have
|v〉 as a common eigenvector with respective eigenvalues 1, 0, 0, 1.

• If Q1 |v〉 = 0: then similarly we have a 1 × 1 block in which P0, P1, Q0, Q1 have |v〉 as a common eigenvector
with respective eigenvalues 1, 0, 1, 0.

• If Q0 |v〉 6= 0 and Q1 |v〉 6= 0: then we define the orthogonal vectors |u0〉 = Q0 |v〉 and |u1〉 = Q1 |v〉 and the
2-dimensional subspace Ev = {c0 |u0〉+ c1 |u1〉 : c0, c1 ∈ C}. We have that |v〉 ∈ Ev since |v〉 = |u0〉 + |u1〉.
Because |v〉 is also an eigenvector of P0Q0P0 and P0Q1P0, then P0 |u0〉 = P0Q0 |v〉 = P0Q0P0 |v〉 ∝ |v〉, similarly
P0 |u1〉 ∝ |v〉. Therefore, ∃ |w〉 ∈ Ev such that P0 |w〉 = 0 and then P1 |w〉 = |w〉. So the vectors |u0〉 , |u1〉 ∈ Ev
are simultaneous eigenvectors of Q0 and Q1, and the vectors |v〉 , |w〉 ∈ Ev are simultaneous eigenvectors of
P0 and P1. And the subspace Ev corresponds to a 2 × 2 simultaneous diagonal block for the measurements
operators P0, P1, Q0, Q1.

This procedure can be performed on all the simultaneous eigenvectors of P0, P0Q0P0 and P0Q1P0, and similarly on
the remaining simultaneous eigenvectors of P1, P1Q0P1 and P1Q1P1.

Now, if we restrict to a 2 × 2 subspace Ev with Πv being the projector on the subspace Ev, the projectors
ΠvP0Πv,ΠvP1Πv,ΠvQ0Πv,ΠvQ1Πv are given by

ΠvP0Πv =
|v〉〈v |
〈v|v〉

ΠvP1Πv =
|w〉〈w |
〈w|w〉

ΠvQ0Πv =
|u0〉〈u0 |
〈u0|u0〉

ΠvQ1Πv =
|u1〉〈u1 |
〈u1|u1〉

(I.76)

i.e., they are all rank-one projectors.
Within a 1 × 1 block, the two measurements defined by {P0, P1} and {Q0, Q1} have fixed outputs. Let |ṽ〉 be a

normalized simultaneous eigenvector of P0, P0Q0P0 and P0Q1P0 and consider the case Q0 |ṽ〉 = 0, which leads to a
block of size 1 × 1 formed by the span of the vector |ṽ〉. We can now artificially enlarge the system dimension by

1 corresponding author: federico.grasselli@hhu.de 2 corresponding author: glaucia.murta@hhu.de
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embedding this block into a block of size 2 × 2. Let |w̃〉〈w̃ | be a projector on the extra artificial dimension, with
|w̃〉 a normalized vector. Then we can define the two-dimensional subspace Eṽ = {c0 |ṽ〉+ c1 |w̃〉 : c0, c1 ∈ C}, and we
define the projectors within this subspace to be given by: ΠṽP0Πṽ = |ṽ〉〈ṽ |, ΠṽP1Πṽ = |w̃〉〈w̃ |, ΠṽQ0Πṽ = |w̃〉〈w̃ |,
and ΠvQ1Πv = |ṽ〉〈ṽ |. One can perform a similar embedding for the other case that leads to a 1 × 1 block, that is
Q1 |ṽ〉 = 0. Note that the new projective measurements defined on H∗, when applied to a quantum state ρ on H that
has no components in the artificial dimensions, have still fixed outcomes in the enlarged subspaces like Eṽ.

With this artificial construction, the representation of the four projectors P0, P1, Q0 and Q1 in the artificially
enlarged Hilbert space H∗ is only composed of 2× 2 diagonal blocks. Moreover, if we restrict to one of these blocks,
the two measurements defined by {P0, P1} and {Q0, Q1} are rank-one projective measurements.

II. EVE’S UNCERTAINTY IS NON-INCREASING UNDER SYMMETRIZATION OF THE OUTCOMES

In proving Theorem 1, we argue that all the marginals are random (39) without loss of generality. This can be enforced
by assuming that Eve flips the classical outcomes of the measurements in specific combinations. Otherwise, Eve could
also provide the parties with a state that inherently leads to the symmetrized marginals, which is the mixture ρ̄ given
in Eq. (42). However, Eve would provide such a state in place of the original (unknown) state ρ only if her uncertainty
on the parties’ outcomes does not increase.

In the paper, we quantify Eve’s uncertainty via the von Neumann entropy of the classical outcomes conditioned on
Eve’s quantum side information E. The specific outcomes that we consider depend on the cryptographic application
that is being addressed. For instance, in the paper we employ Theorem 1 to tightly estimate Eve’s uncertainty on
Alice’s random outcome X by computing H(X|E), when Alice, Bob and Charlie test the MABK inequality. This
result finds potential application in DICKA and DIRG protocols. Indeed, in a DICKA scheme Bob and Charlie would
correct their raw key bits to match Alice’s bits represented by X, while in a DIRG protocol the goal is to ensure that
Alice’s random outcome X is unknown to Eve. Additionally, we employ Theorem 1 to estimate Eve’s uncertainty on
the outcomes of Alice (X) and Bob (Y ) jointly, by computing H(XY |E).

For illustration purposes, here we provide the full proof that Eve’s uncertainty of Alice’s outcomeX is non-increasing
if she distributes the state ρ̄ in place of ρ to N = 3 parties. However, we remark that an analogous proof would hold
for any number of parties and any number of outcomes. Therefore, we must verify that the following condition is met:

H(X|E)ρ ≥ H(X|Etot)ρ̄, (II.1)

where Eve’s quantum system Etot = ETT ′ contains: the quantum side information E, the outcome of the random
variable T indicating to Eve which of the four states in the mixture ρ̄ to distribute, and the purifying system T ′.
Indeed, Eve preparing ρ̄ can be interpreted as she preparing one of the four states:

ρ, (Z ⊗ Z ⊗ id) ρ (Z ⊗ Z ⊗ id), (Z ⊗ id⊗ Z) ρ (Z ⊗ id⊗ Z), (id⊗ Z ⊗ Z) ρ (id⊗ Z ⊗ Z) (II.2)

depending on the outcome t of a random variable stored in the register T . Since Eve holds the purification of every
state in (II.2): {|φtABCE〉}4t=1, the global state prepared by Eve is:

ρ̄ABCET =
1

4

∑

t

|φtABCE〉 〈φtABCE | ⊗ |t〉〈t|T (II.3)

Finally, we assume that Eve holds the purifying system of the global state, thus the state she prepares is:

|φ̄ABCETT ′〉 =
1

2

∑

t

|φtABCE〉 ⊗ |t〉T ⊗ |t〉T ′ , (II.4)

which is a purification of (II.3), where both registers T and T ′ are held by Eve and thus appear in Etot.

In order to prove (II.1), we start by using the strong subadditivity property:

H(X|Etot)ρ̄ ≤ H(X|ET )ρ̄ (II.5)

where the r.h.s. entropy is computed on the following state:

ρ̄XET = (EX ⊗ idET ) TrBC [ρ̄ABCET ]

=
1

4
(EX ⊗ idET ) TrBC

[∑

t

|φtABCE〉 〈φtABCE | ⊗ |t〉〈t|T
]

≡ 1

4

∑

t

ρtXE ⊗ |t〉〈t|T , (II.6)
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where the quantum map

EX(σ) =
1∑

a=0

|a〉〈a|〈a|σ |a〉

represents the projective measurement performed by Alice. Being the state in Eq. (II.6) a c.q. state, its entropy
simplifies to:

H(X|ET )ρ̄ =
1

4

∑

t

H(X|E)ρt . (II.7)

The last part of the proof shows that H(X|E)ρt is actually independent of t and equal to conditional entropy of the
original state H(X|E)ρ. This is clear if the state ρtXE is made explicit. From Eq. (II.6) we have that:

ρtXE = (EX ⊗ idET ) TrBC
[
|φtABCE〉 〈φtABCE |

]
, (II.8)

where |φtABCE〉 is the purification of one of the four states in (II.2) prepared by Eve according to the random variable
T . For definiteness, let’s fix that state to be (Z ⊗ Z ⊗ id) ρ (Z ⊗ Z ⊗ id), although an analogous reasoning holds for
any other state in Eq. (II.2). By writing ρ in its spectral decomposition:

ρ =
∑

λ

λ|λ〉〈λ|, (II.9)

we can immediately explicit |φtABCE〉 as follows:

|φtABCE〉 =
∑

λ

√
λ |λt〉ABC ⊗ |eλ〉E , (II.10)

where the eigenstates of the operator (Z⊗Z⊗ id) ρ (Z⊗Z⊗ id) read: |λt〉 = (Z⊗Z⊗ id) |λ〉. By substituting (II.10)
into (II.8) and by expliciting the map EX we obtain the following expression:

ρtXE =
1∑

a=0

|a〉〈a|⊗
∑

λ,σ

√
λσTrBC

[
〈a| |λt〉 〈σt| |a〉

]
|eλ〉〈eσ |

=
1∑

a=0

|a〉〈a|⊗
∑

λ,σ

√
λσTrBC [〈a| (Z ⊗ Z ⊗ id) |λ〉 〈σ| (Z ⊗ Z ⊗ id) |a〉] |eλ〉〈eσ |

=
1∑

a=0

|a〉〈a|⊗
∑

λ,σ

√
λσTrBC [〈ā| |λ〉 〈σ| |ā〉] |eλ〉〈eσ |

=
1∑

a=0

|ā〉〈ā|⊗
∑

λ,σ

√
λσTrBC [〈a| |λ〉 〈σ| |a〉] |eλ〉〈eσ |

≡
1∑

a=0

|ā〉〈ā|⊗ρaE , (II.11)

where in the third equality we used the fact that Alice’s measurement lies in the (x, y)-plane hence the Z operator flips
its outcome (a→ ā) and the cyclic property of the trace. In the fourth equality we relabelled the classical outcomes:
a↔ ā. Finally, by comparing (II.11) with the analogous state ρXE obtained from the original state ρ (i.e. in the case
where Eve does not prepare the mixture of states in (II.2)):

ρXE =

1∑

a=0

|a〉〈a|⊗ρaE , (II.12)

we observe that ρtXE and ρXE are the same state up to a permutation of the classical outcomes, thus their conditional
entropies coincide:

H(X|E)ρt = H(X|E)ρ ∀ t. (II.13)

In conclusion, by combining Eqs. (II.13), (II.7) and (II.5), we obtain the claim given in Eq. (II.1). This concludes the
proof.



18

III. EQUIVALENCE OF ρ̄+ AND ρ̄−

In the main text we claim that it is not restrictive to assume that Eve distributes the following mixture

ρα =
ρ̄+ + ρ̄−

2
, (III.1)

in place of the state ρ̄+ given in Eq. (52). As argued in section II, for illustration purposes we prove the claim in the
case where three parties, Alice, Bob and Charlie, test a (3, 2, 2) full-correlator Bell inequality and are interested in
bounding Eve’s uncertainty about Alice’s outcome X, quantified by the conditional von Neumann entropy H(X|E).
Nevertheless, an analogous proof would hold for any number of parties and joint entropies.

In the first part of the proof, we verify that the states ρ̄+ and ρ̄− are equivalent from the viewpoint of the protocol.
Precisely, the statistics generated by the two states coincides, as well as Eve’s uncertainty about Alice’s outcome,
quantified by the conditional entropy H(X|E). In the second part we show that Eve’s uncertainty does not increase
if she prepares a balanced mixture of the two states (III.1), instead of preparing one of the two states singularly.

We start by computing the statistics generated by the states ρ̄+ and ρ̄− (52), which read as follows for N = 3:

ρ̄± =

1∑

i,j,k=0

λijk |ψi,j,k〉 〈ψi,j,k| ±
1∑

j,k=0

rjk (|ψ0,j,k〉 〈ψ1,j,k|+ h.c.) + is (|ψ0,1,1〉 〈ψ1,1,1| − h.c.) , (III.2)

where h.c. indicates the Hermitian conjugate of the term appearing alongside it. Note that we arbitrarily assumed
three out of four off-diagonal elements to be purely real, according to the prescription characterizing ρ̄+ and ρ̄− (52).

Since we fixed the parties’ measurements to be in the (x, y)-plane, their observables and the relative eigenstates
can be written as follows:

A = cos(ϕA)X + sin(ϕA)Y, |a〉A =
1√
2

(|0〉+ (−1)aeiϕA |1〉)

B = cos(ϕB)X + sin(ϕB)Y, |b〉B =
1√
2

(|0〉+ (−1)beiϕB |1〉)

C = cos(ϕC)X + sin(ϕC)Y, |c〉C =
1√
2

(|0〉+ (−1)ceiϕC |1〉), (III.3)

where X,Y and Z are the Pauli operators, A, B and C are the observables of Alice, Bob and Charlie, respectively,
and the measurement outcomes are defined to be a, b, c ∈ {0, 1} (where a = 0 corresponds to eigenvalue +1 and a = 1
to eigenvalue -1). Then, the statistics generated by the states ρ̄+ and ρ̄− reads:

Pr[A = a,B = b, C = c]ρ̄± =
1∑

i,j,k=0

λijk 〈ψi,j,k| |a, b, c〉〈a, b, c||ψi,j,k〉

± 2
1∑

j,k=0

rjkRe[〈ψ0,j,k| |a, b, c〉〈a, b, c||ψ1,j,k〉]

− 2 s Im[〈ψ1,1,1| |a, b, c〉〈a, b, c||ψ0,1,1〉]. (III.4)

Therefore, the two statistics coincide if and only if the coefficients of the terms rjk are all identically null:

Re[〈ψ0,j,k| |a, b, c〉〈a, b, c||ψ1,j,k〉] = 0 ∀ j, k, a, b, c. (III.5)

A straightforward calculation of the coefficients of rjk, by using the expressions in Eqs. (III.3) and (3), leads to the
following result:

〈ψ0,j,k| |a, b, c〉〈a, b, c||ψ1,j,k〉 = i
2(−1)a+b+cIm[eiϕAeiϕB(−1)jeiϕC(−1)k ]

16
, (III.6)

which is indeed purely imaginary. This proves the condition (III.5) and thus that the statistics of ρ̄+ and ρ̄− are
identical.

The next step of the proof consists in showing that Eve’s uncertainty about Alice’s outcome is unchanged if she
distributes ρ̄+ or ρ̄−, i.e. the following condition must be verified:

H(X|E)ρ̄+ = H(X|E)ρ̄− . (III.7)
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In order to show (III.7), we compute the conditional entropy produced by each state as follows:

H(X|E) = H(E|X) +H(X)−H(E) (III.8)

and verify that each term in (III.8) is identical for the two states ρ̄+ and ρ̄−. To begin with, we know that the
Shannon entropy H(X) is given by:

H(X) = h(Pr[A = 0]), (III.9)

where h(·) is the binary entropy, defined as: h(p) = −p log2 p− (1− p) log2(1− p). Since we proved that the statistics
generated by ρ̄+ and ρ̄− are the same, it follows that:

H(X)ρ̄+ = H(X)ρ̄− . (III.10)

In order to compute the other two terms in (III.8), we write ρ̄+ and ρ̄− in their spectral decomposition:

ρ̄±

1∑

i,j,k=0

ρijk|ρ±ijk〉〈ρ±ijk |, (III.11)

where ρijk are the states’ eigenvalues, which one can easily verify to be identical for the two states, while |ρ±ijk〉 are
the normalized eigenvectors, expressed for simplicity in terms of the following non-normalized eigenvectors:

|ρ̃±ijk〉 =
λ0jk − λ1jk − (−1)i

√
4r2
jk + (λ0jk − λ1jk)2

±2rjk
|ψ0,j,k〉+ |ψ1,j,k〉

≡ ±f ijk |ψ0,j,k〉+ |ψ1,j,k〉 (j, k) 6= (1, 1) (III.12)

|ρ̃±i11〉 = (±r11 + is)
λ011 − λ111 − (−1)i

√
4r2

11 + 4s2 + (λ011 − λ111)2

2(r2
11 + s2)

|ψ0,1,1〉+ |ψ1,1,1〉

≡ (±gi11 + ihi11) |ψ0,1,1〉+ |ψ1,1,1〉 . (III.13)

Since ρ̄+ and ρ̄− have the same eigenvalues, it holds that:

H(ABC)ρ̄+ = H(ABC)ρ̄− . (III.14)

Assuming that Eve holds the purification

|φ̄±ABCE〉 =

1∑

i,j,k=0

√
ρijk |ρ±ijk〉 ⊗ |eijk〉 (III.15)

of the parties’ state, where {|eijk〉} is an orthonormal basis in E, it follows that:

H(E)ρ̄+ = H(E)ρ̄− . (III.16)

The remaining term in (III.8) is H(E|X), which is computed on the c.q. state:

ρ̄±XE =

1∑

a=0

|a〉〈a|⊗
1∑

i,j,k=0
l,m,n=0

√
ρijkρlmn TrBC

[
〈a| |ρ±ijk〉 〈ρ±lmn| |a〉

]
|eijk〉〈elmn |

≡
1∑

a=0

Pr[A = a]|a〉〈a|⊗ρa,±E , (III.17)

where ρa,±E is the conditional state of Eve, given that Alice obtained outcome a. By employing the expressions in
Eqs. (III.12) and (III.13), one can verify that the operators ρa,±E are one the transpose of the other: ρa,+E = (ρa,−E )T .
Thus ρa,+E and ρa,−E have the same eigenvalues, which implies that:

H(ρa,+E ) = H(ρa,−E ) (III.18)
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Finally, since the conditional entropy H(E|X) is computed as follows on the classical quantum states in (III.17):

H(E|X)ρ̄± =
1∑

a=0

Pr[A = a]H(ρa,±E ), (III.19)

we conclude that:

H(E|X)ρ̄+ = H(E|X)ρ̄− . (III.20)

By combining the results in Eqs. (III.10), (III.16) and (III.20) into (III.7), we verified that the states ρ̄+ and ρ̄− lead
to the same conditional entropy.

The final part of the proof shows that Eve’s uncertainty in preparing the mixture ρα (III.1) does not increase with
respect to preparing one of the two states ρ̄±:

H(X|Etot)ρα ≤ H(X|E)ρ̄+ . (III.21)

In this way we can guarantee that it is not restrictive to assume that Eve prepares the mixture (III.1). In giving Eve
maximum power, we assume that she prepares the following global pure state (similarly to section II):

|φABCEMM ′〉
1√
2

∑

m=+,−
|φ̄mABCE〉 ⊗ |m〉M ⊗ |m〉M ′ , (III.22)

where |φ̄±ABCE〉 are the purifications of the individual states ρ̄± defined in (III.15), while M is an ancillary system
informing Eve on which of the two purified states she prepared and M ′ is the purifying system of the global state.
Therefore, Eve has maximum power and her quantum system comprises: Etot = EMM ′. Naturally, it holds that:

ρα = TrEtot
[|φABCEMM ′〉〈φABCEMM ′ |] . (III.23)

For the strong subadditivity property, we have that:

H(X|Etot)ρα = H(X|EMM ′)ρα ≤ H(X|EM)ρα =
1

2

∑

m=+,−
H(X|E)ρ̄m , (III.24)

where the last equality is due to the fact that the state TrM ′ [|φABCEMM ′〉 〈φABCEMM ′ |] is classical on M . Finally,
by employing the result (III.7) into (III.24), we obtain the claim in (III.21). This concludes the proof. The same
argument can be used to generalized the proof for the case of N parties and for the conditional entropy of the joint
outcome of more than one party.

IV. MAXIMAL MABK VIOLATION BY AN N-QUBIT STATE: PROOF

Here we provide the full proof of Theorem 2 and of Lemma 2, which combined provide an analytical upper bound
on the maximal violation of the N -partite MABK inequality by an arbitrary N -qubit state, for rank-one projective
measurements. This is, to our knowledge, the only existing upper bound on the violation of an N -partite Bell
inequality by an N -qubit state, expressed as a function of the state’s parameters. In Ref. [66] the authors only
conjectured a bound for the N -party case based on their result valid for three parties. Analogously to the three-party
case (see the Methods section in the main text), our N -partite bound is tight on a broader class of states than the
bound conjectured in Ref. [66].

We start by proving Lemma 2, which plays an important role in the proof of Theorem 2.

Lemma 2. Let Q be an m×n real matrix and let ‖~v‖ be the Euclidean norm of vectors ~v ∈ Rk, for k = m,n. Finally,
let “·” indicate both the scalar product and the matrix-vector multiplication. Then

max
~c⊥~c ′ s.t.
‖~c‖=‖~c ′‖=1

[
‖Q · ~c‖2 + ‖Q · ~c ′‖2

]
= u1 + u2 , (IV.1)

where u1 and u2 are the largest and second-to-the-largest eigenvalues of U ≡ QTQ, respectively.
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Proof. Note that U is a symmetric n × n real matrix, thus it can be diagonalized. The eigenvalue equation for U
reads:

U · ~ui = ui ~ui i = 1, . . . , n , (IV.2)

where the set of eigenvectors forms an orthonormal basis of Rn: ~uTi ·~uj = δi,j and without loss of generality we ordered
the eigenvalues as: u1 ≥ u2 ≥ . . . ≥ un ≥ 0. Note that every eigenvalue is non-negative:

ui = ~uTi · U · ~ui = ~uTi ·QTQ · ~ui = ‖Q · ~ui‖2 ≥ 0 .

By considering that: ‖Q · ~c‖2 = ~c T ·QTQ ·~c = ~c T ·U ·~c and by expressing the vectors ~c and ~c ′ in the eigenbasis of U :

~c =
n∑

i=1

ci~ui

~c ′ =
n∑

i=1

c′i~ui ,

we can recast the claim in (60) as follows:

max
~c⊥~c ′ s.t.
‖~c‖=‖~c ′‖=1

n∑

i=1

ui(c
2
i + c′i

2
) = u1 + u2 . (IV.3)

Let us consider the most general scenario in which some of the eigenvalues of U are degenerate: u1 ≥ u2 = u3 = · · · =
ud > ud+1 ≥ . . . un ≥ 0, where d = 2, . . . , n. Note that we also account for the possibility that u1 = u2.
We are now going to prove (IV.3) by showing that for any couple of mutually-orthogonal unit vectors ~c and ~c ′ the
left-hand-side of (IV.3) is upper bounded by u1 + u2 and that the bound is tight.
We start by considering two unit vectors in Rn:

{
~c T = (c1, . . . , cn) s.t. ‖~c‖2 = 1

~c ′T = (c′1, . . . , c
′
n) s.t. ‖~c ′‖2 = 1 ,

(IV.4)

and we define two unit vectors ~v, ~w ∈ Rd−1 along the directions individuated by (c2, . . . , cd) and (c′2, . . . , c
′
d), i.e.:

cv~v
T ≡ (c2, . . . , cd)

c′w ~w
T ≡ (c′2, . . . , c

′
d) , (IV.5)

where cv and c′w are the norms of (c2, . . . , cd) and (c′2, . . . , c
′
d), respectively. For d = 2 we simply have that cv~v T = c2

and c′w ~w T = c′2.
With an abuse of notation, we can rewrite (IV.4) as:

{
~c T = (c1, cv~v

T , cd+1, . . . , cn) s.t. c21 + c2v + r = 1

~c ′T = (c′1, c
′
w ~w

T , c′d+1, . . . , c
′
n) s.t. c′1

2
+ c′w

2
+ r′ = 1 ,

(IV.6)

where r ≡∑n
i=d+1 c

2
i and r′ ≡

∑n
i=d+1 c

′
i
2 and for both holds that: 0 ≤ r ≤ 1 and 0 ≤ r′ ≤ 1. From the orthogonality

condition ~c T · ~c ′ = 0 we get that:

|c1c′1| =
∣∣∣∣∣
n∑

i=2

cic
′
i

∣∣∣∣∣ , (IV.7)

and from the Cauchy-Schwarz inequality we deduce that:
∣∣∣∣∣
n∑

i=2

cic
′
i

∣∣∣∣∣ ≤
√

(c2v + r)(c′w
2 + r′) . (IV.8)
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By employing (IV.7), (IV.8) and the normalization conditions in (IV.6), we show that c21 + c′1
2 ≤ 1 holds:

(
c21 + c′1

2
)2

= c41 + c′1
4

+ 2c21c
′
1
2

≤ c41 + c′1
4

+ 2
(
1− c21

) (
1− c′1

2
)

= 2− 2
(
c21 + c′1

2
)

+
(
c21 + c′1

2
)2

. (IV.9)

By comparing the left-hand-side with the right-hand-side one gets the desired result:

c21 + c′1
2 ≤ 1 . (IV.10)

We now prove the claim in (IV.3) through the following chain of equalities and inequalities:
n∑

i=1

ui(c
2
i + c′i

2
) = u1(c21 + c′1

2
) + u2(c2v + c′w

2
) +

n∑

i=d+1

ui(c
2
i + c′i

2
)

≤ u1(c21 + c′1
2
) + u2(1− r − c21 + 1− r′ − c′1

2
) + ud+1(r + r′)

= u2 + (u1 − u2)(c21 + c′1
2
) + u2 − (r + r′)(u2 − ud+1)

≤ u1 + u2 , (IV.11)

where we used the normalization conditions and the fact that the eigenvalues are ordered in descending order for the
first inequality, and we used (IV.10) together with the fact that r, r′ ≥ 0 for the second inequality.

We are left to show that (IV.11) is tight, that is there exist unit vectors ~c and ~c ′ for which the equality sign holds.
If u1 = u2, the upper bound is attained when r = r′ = 0. Thus the most general pair of vectors satisfying (IV.3) is
given by:

{
~c T = (~V T , 0, . . . , 0)

~c ′T = ( ~W T , 0, . . . , 0)
, ~V , ~W ∈ Rd s.t.

∥∥∥~V
∥∥∥ =

∥∥∥ ~W
∥∥∥ = 1 ∧ (~V , ~W ) = 0 . (IV.12)

If instead u1 > u2, the upper bound is attained when r = r′ = 0 and c21 + c′1
2

= 1. The second condition is verified
when the equality holds in (IV.8), which in turn happens when the unit vectors ~v and ~w are parallel. Thus the most
general pair of vectors satisfying (IV.3) is given by:

{
~c T = (c1, cv~v

T , 0, . . . , 0)

~c ′T = (c′1, c
′
w~v

T , 0, . . . , 0)
, ~v ∈ Rd−1 ∧ c21 + c′1

2
= 1 , (IV.13)

and where the orthogonality and normalization conditions hold: c1c′1 + cvc
′
w = 0, c21 + c2v = 1 and c′1

2
+ c′w

2
= 1. Such

solutions can always be parametrized as follows:
{
~c T = (cosα, sinα~v T , 0, . . . , 0)

~c ′T = (− sinα, cosα~v T , 0, . . . , 0)
, α ∈ R . (IV.14)

This concludes the proof.

We are now ready to prove Theorem 2.
Theorem 2. The maximum violation Mρ of the N -partite MABK inequality (9), attained with rank-one projective
measurements on an N -qubit state ρ, satisfies

Mρ ≤ 2
√
t0 + t1 (IV.15)

where t0 and t1 are the largest and second-to-the-largest eigenvalues of the matrix TρTTρ , where Tρ is the correlation
matrix of ρ.

Proof. Firstly, we present closed expressions for the N -partite MABK operator, defined recursively in Definition 2. In
particular, in Ref. [74] the explicit expression of the N -partite MABK operator when N is odd is given:

Modd
N =

1

2
N−3

2

∑

x∈LN
(−1)

1
2 (N−1

2 −ω(x))
N⊗

i=1

A(i)
xi , (IV.16)



23

where A(i)
0 and A

(i)
1 are the two binary observables of Alicei, while x = (x1, . . . , xN ) is a bit string with Hamming

weight given by:

ω(x) = |{1 ≤ i ≤ N |xi = 1}|, (IV.17)

and the set LN is defined as follows:

LN =

{
x ∈ {0, 1}N

∣∣∣ω(x) =
N − 1

2
mod 2

}
. (IV.18)

By applying once the MABK recursive formula (7) on (IV.16), one obtains an explicit expression of the N -partite
MABK operator for N even. We distinguish the case N/2 even:

N

2
even: M even

N =
1

2
N−2

2

∑

x∈{0,1}N
(−1)

N
4 −dω(x)

2 e
N⊗

i=1

A(i)
xi , (IV.19)

and the case N/2 odd:

N

2
odd: M

even
N =

1

2
N−2

2

∑

x∈{0,1}N
(−1)

N−2
4 −bω(x)

2 c
N⊗

i=1

A(i)
xi , (IV.20)

where dae and bac are the ceiling and floor functions, respectively.
We now derive an explicit expression of the MABK expectation value for a generic N -qubit state. As shown above,

the N -party MABK operator can be written in explicit form as follows:

MN =
1

NN
∑

x∈SN
(−1)ξN (x)

N⊗

i=1

A(i)
xi , (IV.21)

where the normalization factor NN , the set of N -bit strings SN and the exponent ξN (x) depend on the parity of
N (e.g. SN = {0, 1}N for N even and SN = LN for N odd). By assumption we restrict to rank-one projective
measurements, hence every observable A(i)

xi can be individuated by a unit vector ~a ixi ∈ R3 such that:

A(i)
xi = ~a ixi · ~σ =

3∑

νi=1

aixi,νiσνi , (IV.22)

where ~σ = (X,Y, Z)T . By substituting (IV.22) into (IV.21) are by rearranging the terms we get:

MN =
1

NN

3∑

ν1,...,νN=1

[ ∑

x∈SN
(−1)ξN (x)

N∏

i=1

aixi,νi

]
σν1 ⊗ . . .⊗ σνN

≡ 1

NN

3∑

ν1,...,νN=1

Mν1,...,νNσν1 ⊗ . . .⊗ σνN . (IV.23)

We now employ (IV.23) and the expression for a generic N -qubit state:

ρ =
1

2N

3∑

µ1...µN=0

Λµ1...µNσµ1
⊗ . . .⊗ σµN , (IV.24)

to derive an explicit expression for the MABK expectation value as follows:

〈MN 〉ρ = Tr[MNρ] =
1

NN

3∑

ν1,...,νN=1

Mν1,...,νNΛν1...νN

=
1

NN

3∑

ν1,...,νN=1

[ ∑

x∈SN
(−1)ξN (x) a1

x1,ν1 · . . . · aNxN ,νN Λν1...νN

]
, (IV.25)
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where we used the fact that Tr[σiσj ] = 2δi,j .
We now specify the expressions for NN ,SN and ξN (x) when N/2 is even and prove the theorem’s statement in this

particular case. However, a similar procedure applies to the N/2 odd and N odd cases and leads to the same final
result.

We thus have the following expression for the MABK expectation value:

〈MN 〉ρ =
1

2
N−2

2

3∑

ν1,...,νN=1


 ∑

x∈{0,1}N
(−1)

N
4 −dω(x)

2 e a1
x1,ν1 · . . . · aNxN ,νN Λν1...νN


 , (IV.26)

and we rearrange it as follows:

〈MN 〉ρ =
1

2
N−2

2

3∑

ν1,...,νN=1


 ∑

x∈{0,1}N/2

∑

y∈{0,1}N/2
(−1)

N
4 −dω(x)+ω(y)

2 e

a1
x1,ν1 · . . . · aN/2xN/2,νN/2

Λν1...νN aN/2y1,νN/2
· . . . · aNyN/2,νN

]

=
1

2
N−2

2

3∑

ν1,...,νN=1


 ∑

x∈EN/2

∑

y∈{0,1}N/2
(−1)

N
4 −dω(x)+ω(y)

2 e

a1
x1,ν1 · . . . · aN/2xN/2,νN/2

Λν1...νN aN/2y1,νN/2
· . . . · aNyN/2,νN

+
∑

x∈ON/2

∑

y∈{0,1}N/2
(−1)

N
4 −dω(x)+ω(y)

2 e

a1
x1,ν1 · . . . · aN/2xN/2,νN/2

Λν1...νN aN/2y1,νN/2
· . . . · aNyN/2,νN

]
, (IV.27)

where the sets EN/2 and ON/2 are defined as follows:

EN/2 =
{
x ∈ {0, 1}N/2|ω(x) mod 2 = 0

}
(IV.28)

ON/2 =
{
x ∈ {0, 1}N/2|ω(x) mod 2 = 1

}
. (IV.29)

We basically split the bit strings x into those with an even Hamming weight and those with an odd Hamming weight.
Now considering that the following identity holds:

⌈
ω(x) + ω(y)

2

⌉
=

{
ω(x) even: bω(x)

2 c+ bω(y)
2 c+ (ω(y) mod 2)

ω(x) odd: bω(x)
2 c+ bω(y)

2 c+ 1,
(IV.30)

we can recast the MABK expectation value in (IV.27) as follows:

〈MN 〉ρ =
1

2
N−2

2

3∑

ν1,...,νN=1




 ∑

x∈EN/2
(−1)

N
4 −bω(x)

2 c a1
x1,ν1 · . . . · aN/2xN/2,νN/2




Λν1...νN


 ∑

y∈{0,1}N/2
(−1)b

ω(y)
2 c+(ω(y) mod 2) aN/2y1,νN/2

· . . . · aNyN/2,νN




+


 ∑

x∈ON/2
(−1)

N
4 −bω(x)

2 c a1
x1,ν1 · . . . · aN/2xN/2,νN/2




Λν1...νN


 ∑

y∈{0,1}N/2
(−1)b

ω(y)
2 c+1 aN/2y1,νN/2

· . . . · aNyN/2,νN






≡ 1

2
N−2

2

[
~vT0 · Tρ · ~u0 + ~vT1 · Tρ · ~u1

]
. (IV.31)
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In the expression (IV.31) we defined the vectors:

~v0 =
∑

x∈EN/2
(−1)

N
4 −bω(x)

2 c
N/2⊗

i=1

~a ixi , (IV.32)

~v1 =
∑

x∈ON/2
(−1)

N
4 −bω(x)

2 c
N/2⊗

i=1

~a ixi , (IV.33)

~u0 =
∑

y∈{0,1}N/2
(−1)b

ω(y)
2 c+(ω(y) mod 2)

N/2⊗

i=1

~aN/2+i
yi , (IV.34)

~u1 =
∑

y∈{0,1}N/2
(−1)b

ω(y)
2 c+1

N/2⊗

i=1

~aN/2+i
yi , (IV.35)

and we used Definition 3 of the correlation matrix of an N -qubit state. The 3N/2-dimensional vectors in
(IV.32),(IV.33),(IV.34) and (IV.35) are heavily constrained by their tensor-product structure and satisfy the following
properties:

Prop. 1: ‖~v0‖2 + ‖~v1‖2 = 2N/2 (IV.36)

Prop. 2: ‖~u0‖2 = ‖~u1‖2 = 2N/2 (IV.37)
Prop. 3: ~v0 · ~v1 = 0. (IV.38)

These properties play a fundamental role in deriving a meaningful upper bound on the MABK expectation value.
We prove the first property (IV.36) by directly computing the l.h.s.:

‖~v0‖2 + ‖~v1‖2 = ~v0 · ~v0 + ~v1 · ~v1

=
∑

x,y∈EN/2
(−1)

N
2 −bω(x)

2 c−bω(y)
2 c

N/2∏

i=1

(cos θi)
xi⊕yi

+
∑

x,y∈ON/2
(−1)

N
2 −bω(x)

2 c−bω(y)
2 c

N/2∏

i=1

(cos θi)
xi⊕yi , (IV.39)

where we used the fact that ~a ixi are unit vectors and we called θi the angle between the two measurement directions
of party number i: cos θi = ~a i0 · ~a i1. Note that the symbol ⊕ is the binary operation XOR. We now define the bit
string: r = x⊕ y, whose Hamming weight can be computed as:

ω(r) = ω(x⊕ y) = ω(x) + ω(y)− 2ω(x ∧ y), (IV.40)

where ∧ is the binary operation AND. From (IV.40) it follows immediately that the Hamming weight of the string
r is always even, since the Hamming weights of x and y are either both even or both odd in (IV.39). With this
information, we can recast (IV.39) as follows:

‖~v0‖2 + ‖~v1‖2 =
∑

r∈EN/2


 ∑

y∈EN/2
(−1)b

ω(r⊕y)
2 c+bω(y)

2 c +
∑

y∈ON/2
(−1)b

ω(r⊕y)
2 c+bω(y)

2 c


N/2∏

i=1

(cos θi)
ri , (IV.41)

where we used the fact that N/2 is even and where the string x is completely fixed once r and y are fixed: x = r⊕y.
Now we employ the relation (IV.40) in (IV.41) and we make use of the information on the parity of the Hamming
weights appearing in the two sums:

‖~v0‖2 + ‖~v1‖2 =
∑

r∈EN/2


 ∑

y∈EN/2
(−1)

ω(r)
2 +ω(y)−ω(r∧y) +

∑

y∈ON/2
(−1)

ω(r)+ω(y)−2ω(r∧y)−1
2 +

ω(y)−1
2




×
N/2∏

i=1

(cos θi)
ri . (IV.42)



26

Note that ba/2c = (a− 1)/2 if a is an odd number. The expression in (IV.42) can be further simplified by considering
that even addends in the exponents of (−1) can be ignored:

‖~v0‖2 + ‖~v1‖2 =
∑

r∈EN/2


 ∑

y∈EN/2
(−1)

ω(r)
2 −ω(r∧y) +

∑

y∈ON/2
(−1)

ω(r)
2 −ω(r∧y)



N/2∏

i=1

(cos θi)
ri

=
∑

r∈EN/2
(−1)

ω(r)
2


 ∑

y∈{0,1}N/2
(−1)ω(r∧y)



N/2∏

i=1

(cos θi)
ri

= 2N/2 +
∑

r∈EN/2
r6=0

(−1)
ω(r)
2


 ∑

y∈{0,1}N/2
(−1)ω(r∧y)



N/2∏

i=1

(cos θi)
ri , (IV.43)

where we extracted the term r = 0 from the sum in the last equality.
The last step to prove the first property (IV.36) is to show that every term in the remaining sum in (IV.43) is

identically zero, i.e. we want to show that:
∑

y∈{0,1}N/2
(−1)ω(r∧y) = 0 ∀ r 6= 0. (IV.44)

In order for (IV.44) to be verified, there must be as many (−1) terms as +1 terms, and since there are in total 2N/2

terms, there must be exactly 2N/2−1 terms (half of the total) that are (−1). We can count the number of (−1) terms
in (IV.44) as follows:

∑

y∈{0,1}N/2
(ω(r ∧ y) mod 2), (IV.45)

and check whether it equals 2N/2−1, as claimed. Note that ω(r ∧ y) represents the number of ones in r that are also
in y. The parity of this number is then summed over all the possible bit strings y of length N/2. We can thus recast
the sum, as a sum over the number of ones that r and y have in common (k), times the number of bit strings y that
share k ones with r:

∑

y∈{0,1}N/2
(ω(r ∧ y) mod 2) =

ω(r)∑

k=0

(k mod 2)

(
ω(r)

k

)
2N/2−ω(r). (IV.46)

Note that the number of bit strings y that have k ones in common with a fixed string r, is given by the number of
possible combinations of k ones from the total number of ones (ω(r)) populating the string r, times the number of
possibilities (2N/2−ω(r)) that we have to fill the remaining bits of y that are not part of the k ones in common with r.

We can now adjust the r.h.s. of (IV.46) to the following computable form:

2N/2−ω(r)

ω(r)∑

k=0
k odd

(
ω(r)

k

)
= 2N/2−ω(r) 2ω(r)−1

= 2N/2−1, (IV.47)

where the first equality is obtained by combining two known facts about the binomial coefficient, namely:
n∑

k=0

(
n

k

)
= 2n (IV.48)

n∑

k=0

(−1)k
(
n

k

)
= 0. (IV.49)

Indeed, by subtracting (IV.49) from (IV.48) one gets that:

∑

k odd

(
n

k

)
= 2n−1, (IV.50)
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which is used in the first equality in (IV.47).
Combining (IV.46) and (IV.47) we conclude that (IV.44) is verified. We have thus shown the validity of the first

property (IV.36).
We move on to prove the second property (IV.37). We start from (IV.34) and use the fact that bω(x)

2 c + (ω(x)
mod 2) = (ω(x) + [ω(x) mod 2)]/2) :

‖~u0‖2 =
∑

x,y∈{0,1}N/2
(−1)

ω(x)+(ω(x) mod 2)
2 +

ω(y)+(ω(y) mod 2)
2

N/2∏

i=1

(cos(θN/2+i))
xi⊕yi

=
∑

r∈{0,1}N/2


 ∑

y∈{0,1}N/2
(−1)

ω(r)+ω(y)−2ω(r∧y)+(ω(r)+ω(y) mod 2)
2 +

ω(y)+(ω(y) mod 2)
2




×
N/2∏

i=1

(cos(θN/2+i))
ri , (IV.51)

where we defined r = x ⊕ y and we used the relation (IV.40). We proceed to simplify (IV.51) by splitting the sum
over y over the strings with even and odd Hamming weight:

‖~u0‖2 =
∑

r∈{0,1}N/2


 ∑

y∈EN/2
(−1)

ω(r)+(ω(r) mod 2)
2 −ω(r∧y)

+
∑

y∈ON/2
(−1)

ω(r)+1+(ω(r)+1 mod 2)
2 −ω(r∧y)+ω(y)



N/2∏

i=1

(cos(θN/2+i))
ri . (IV.52)

By employing the following identities:

ω(r) + (ω(r) mod 2)

2
=

⌈
ω(r)

2

⌉
(IV.53)

(−1)a = (−1)1 a odd (IV.54)

ω(r) + 1 + (ω(r) + 1 mod 2)

2
=

⌈
ω(r) + 1

2

⌉
=

⌈
ω(r)

2

⌉
+ 1− (ω(r) mod 2) (IV.55)

into (IV.52) we obtain:

‖~u0‖2 =
∑

r∈{0,1}N/2
(−1)d

ω(r)
2 e


 ∑

y∈EN/2
(−1)ω(r∧y)

+
∑

y∈ON/2
(−1)ω(r∧y)+(ω(r) mod 2)



N/2∏

i=1

(cos(θN/2+i))
ri

= 2N/2 +
∑

r∈{0,1}N/2
r 6=0

(−1)d
ω(r)
2 e


 ∑

y∈EN/2
(−1)ω(r∧y)

+
∑

y∈ON/2
(−1)ω(r∧y)+(ω(r) mod 2)



N/2∏

i=1

(cos(θN/2+i))
ri

= 2N/2 +
∑

r∈EN/2
r 6=0

(−1)d
ω(r)
2 e


 ∑

y∈{0,1}N/2
(−1)ω(r∧y)



N/2∏

i=1

(cos(θN/2+i))
ri

+
∑

r∈ON/2
(−1)d

ω(r)
2 e


 ∑

y∈EN/2
(−1)ω(r∧y) −

∑

y∈ON/2
(−1)ω(r∧y)



N/2∏

i=1

(cos(θN/2+i))
ri , (IV.56)
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where we isolated the r = 0 term in the second equality and we split the sum over r in two sums over the strings with
even and odd Hamming weights in the third equality.

The first sum in (IV.56) is zero thanks to (IV.44). From (IV.44) we also deduce that:
∑

y∈EN/2
(−1)ω(r∧y) +

∑

y∈ON/2
(−1)ω(r∧y) = 0, (IV.57)

which means that the term in square brackets in the second sum can be reduced to:

2
∑

y∈EN/2
(−1)ω(r∧y) = 0. (IV.58)

The proof that (IV.58) holds is analogous to that of (IV.44). In particular, (IV.58) is verified if the number of (−1)
terms is exactly half the total number of terms, that is 2N/2−2. We show that this is true by computing the number
of (−1) terms as follows:

∑

y∈EN/2
(ω(r ∧ y) mod 2) =

ω(r)∑

k=0

(k mod 2)

(
ω(r)

k

)
2N/2−ω(r)−1

= 2N/2−ω(r)−1

ω(r)∑

k=0
k odd

(
ω(r)

k

)
. (IV.59)

Note that this time, compared to (IV.46), the number of possibilities (2N/2−ω(r)−1) to fill the non-fixed bits of y is
halved. The reason is that in this case y is constrained to have an even number of ones, thus after fixing N/2− 1 of
its bits, no degree of freedom is left.

By employing again the result on binomial distributions (IV.50) in (IV.59), we obtain:
∑

y∈EN/2
(ω(r ∧ y) mod 2) = 2N/2−2, (IV.60)

which proves (IV.58).
We have thus shown that both the sums in (IV.56) are zero, thus proving the second property (IV.37) for ~u0. The

proof of (IV.37) for ~u1 is analogous and we omit it.
Finally we show that the third property (IV.38) is satisfied by direct computation:

~v0 · ~v1 =
∑

x∈EN/2
y∈ON/2

(−1)b
ω(x)

2 c+bω(y)
2 c

N/2∏

i=1

(cos θi)
xi⊕yi

=
∑

x∈EN/2
y∈ON/2

(−1)
ω(x)

2 +
ω(y)−1

2

N/2∏

i=1

(cos θi)
xi⊕yi

=
∑

r∈ON/2


 ∑

x∈EN/2
(−1)

ω(x)−1+ω(x)+ω(r)−2ω(r∧x)
2



N/2∏

i=1

(cos θi)
ri

=
∑

r∈ON/2
(−1)

ω(r)−1
2


 ∑

x∈EN/2
(−1)ω(r∧x)



N/2∏

i=1

(cos θi)
ri

= 0, (IV.61)

where we defined r = x⊕ y and used (IV.40) in the third equality, and used (IV.58) in the last equality.
Thanks to the properties (IV.36), (IV.37) and (IV.38), we can express the vectors ~vk and ~uk (k = 0, 1) as follows:

~v0 = 2N/4 cos θ v̂0 (IV.62)

~v1 = 2N/4 sin θ v̂1 (IV.63)

~uk = 2N/4 ûk (IV.64)
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where v̂k and ûk are unit vectors in the directions of ~vk and ~uk, respectively, and where θ is a real number. With the
expressions (IV.62), (IV.63) and (IV.64) we recast the MABK expectation value (IV.31) as follows:

〈MN 〉ρ =
2N/2

2
N−2

2

[
cos θ v̂T0 · Tρ · û0 + sin θ v̂T1 · Tρ · û1

]

= 2
[
cos θ v̂T0 · Tρ · û0 + sin θ v̂T1 · Tρ · û1

]
. (IV.65)

The maximal violation Mρ of the N -partite MABK inequality is then obtained by maximizing (IV.65) over all the
parties’ measurements directions ~a i0 and ~a i1 (for i = 1, . . . , N). A valid upper bound on the maximal violationMρ is
thus given by:

Mρ ≤ max
v̂k,ûk,θ
v̂0⊥v̂1

2
[
cos θ v̂T0 · Tρ · û0 + sin θ v̂T1 · Tρ · û1

]
, (IV.66)

where the inequality is due to the fact that we are now optimizing the expectation value over all the possible unit
vectors v̂k (such that v̂0 · v̂1 = 0) and ûk, and freely over θ, ignoring the more stringent structures (IV.32)-(IV.35)
characterizing these vectors and their relation to θ. By choosing û0 and û1 in the direction of v̂T0 · Tρ and v̂T1 · Tρ,
respectively, and by fixing θ such that:

tan θ =

∥∥TTρ · v̂1

∥∥
∥∥TTρ · v̂0

∥∥ , (IV.67)

we can simplify the maximization in (IV.66) as follows:

Mρ ≤ max
v̂k,ûk,θ
v̂0⊥v̂1

2
[
cos θ v̂T0 · Tρ · û0 + sin θ v̂T1 · Tρ · û1

]

= max
v̂k,θ
v̂0⊥v̂1

2
[
cos θ

∥∥TTρ · v̂0

∥∥+ sin θ
∥∥TTρ · v̂1

∥∥]

= max
v̂k

v̂0⊥v̂1

2

√∥∥TTρ · v̂0

∥∥2
+
∥∥TTρ · v̂1

∥∥2
. (IV.68)

Finally, by employing the result of Lemma 2 in (IV.68), we obtain the statement of the theorem:

Mρ ≤
√
t0 + t1, (IV.69)

where t0 and t1 are the two largest eigenvalues of TρTTρ . This concludes the proof.

Tightness conditions: Here we derive the conditions for which the upper bound on the MABK violation given in
(10) is tight. That is, there exist observables for the N parties such that the violation achieved on the state ρ is
exactly given by the r.h.s. of (10). We first address the case N/2 even since it is the one explicitly derived in the
proof, then we present the tightness conditions valid in the other cases.

The bound is tight when equality holds in (IV.66). Considering that we made specific choices for the unit vectors
v̂i and ûi and for θ, the vectors in (IV.32)-(IV.35) should comply with these specific choices. In particular, consider
the eigenvalue equation for TρTTρ with normalized eigenvectors and where t0 and t1 are the two largest eigenvalues:

TρT
T
ρ t̂k = tk t̂k. (IV.70)

In order to use Lemma 2 in (IV.68), it must hold that:

v̂k =
~vk
‖~vk‖

= t̂k k = 0, 1, (IV.71)

where ~vk (k = 0, 1) are defined in (IV.32) and (IV.33). Employing (IV.71) into the relation (IV.67) that fixes θ we
get:

‖~v1‖
‖~v0‖

= tan θ =

∥∥TTρ · t̂1
∥∥

∥∥TTρ · t̂0
∥∥ =

√
t1
t0
, (IV.72)
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where the last equality is due to (IV.70). Combining (IV.72) with property (IV.36) we completely fix the norms
of vectors ~v0 and ~v1, while their direction is already fixed by (IV.71). In conclusion we get the following tightness
conditions for ~v0 and ~v1, which we recall being specific combinations (IV.32) and (IV.33) of the parties’ measurement
directions:

~vk = 2N/4
√

tk
t0 + t1

t̂k k = 0, 1. (IV.73)

In addition to this, we also fixed the directions û0 and û1 to those of TTρ · v̂0 and TTρ · v̂1, respectively. Due to
(IV.71) and recalling property (IV.37), we derive the following tightness conditions on ~u0 and ~u1:

~uk =
2N/4√
tk
TTρ t̂k k = 0, 1. (IV.74)

One can verify that upon substituting the tightness conditions (IV.73) and (IV.74) into the MABK expectation value
(IV.31), the theorem claim is obtained.

Here we recapitulate the tightness conditions of theorem 2 for the two cases N even and N odd. The bound in (10)
is tight if there exist unit vectors ~a i0,~a i1 (with i = 1, . . . , N) such that:

• N even:

~vk = 2N/4
√

tk
t0 + t1

t̂k , ~uk =
2N/4√
tk
TTρ t̂k k = 0, 1, (IV.75)

where vectors ~vk and ~uk are defined in (IV.32)-(IV.35) if N/2 is even, or as follows if N/2 is odd:

~v0 =
∑

x∈EN/2
(−1)

N−2
4 −bω(x)

2 c
N/2⊗

i=1

~a ixi , (IV.76)

~v1 =
∑

x∈ON/2
(−1)

N−2
4 −bω(x)

2 c
N/2⊗

i=1

~a ixi , (IV.77)

~u0 =
∑

y∈{0,1}N/2
(−1)b

ω(y)
2 c

N/2⊗

i=1

~aN/2+i
yi , (IV.78)

~u1 =
∑

y∈{0,1}N/2
(−1)d

ω(y)
2 e

N/2⊗

i=1

~aN/2+i
yi , (IV.79)

where the sets EN/2 and ON/2 are defined in (IV.28) and (IV.29), respectively.

• N odd :

~vk = 2(N+1)/4

√
tk

t0 + t1
t̂k , ~uk =

2(N−3)/4

√
tk

TTρ t̂k k = 0, 1, (IV.80)

where vectors ~vk and ~uk are defined as follows:

~v0 =
∑

x∈E(N+1)/2

(−1)bN−1
4 c−bω(x)

2 c
(N+1)/2⊗

i=1

~a ixi , (IV.81)

~v1 =
∑

x∈O(N+1)/2

(−1)bN−1
4 c−bω(x)

2 c
(N+1)/2⊗

i=1

~a ixi , (IV.82)

~u0 =
∑

y∈J(N−1)/2

(−1)b
ω(y)

2 c
(N−1)/2⊗

i=1

~a (N+1)/2+i
yi , (IV.83)

~u1 =
∑

y∈J (N−1)/2

(−1)d
ω(y)

2 e
(N−1)/2⊗

i=1

~a (N+1)/2+i
yi , (IV.84)
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with the sets J(N−1)/2 and J (N−1)/2 fixed as:

J(N−1)/2 =

{
x ∈ {0, 1}(N−1)/2

∣∣∣ω(x) =
N − 1

2
mod 2

}
(IV.85)

J (N−1)/2 =

{
x ∈ {0, 1}(N−1)/2

∣∣∣ω(x) + 1 =
N − 1

2
mod 2

}
. (IV.86)

V. ANALYTICAL PROOF OF THE LOWER BOUND ON H(X|E)ρα

We want to derive an analytical lower bound on H(X|E)ρα , given by:

H(X|E)ρα = 1−H({ρijk}) +H({ρijk + ρij̄k̄}), (V.1)

for an observed MABK violation mα. For ease of notation, in the following we drop the subscript α in the observed
violation.

In the Methods section we provide an upper bound on the maximal MABK violation achieved on ρα, given by:

Mα ≤M↑α = 4

√√√√
1∑

j,k=0

(ρ0jk − ρ1jk)2. (V.2)

Thus, we want to solve the following optimization problem:

H(X|E)↓ρα(m) = min
{ρijk}

H(X|E)ρα

sub. to M↑α ≥ m ; ρ0jk ≥ ρ1jk ;
∑

ijk

ρijk = 1, (V.3)

where the second constraint is given in (19) and where m ≥ 2
√

2, otherwise the conditional entropy is null (see figure 1
of the paper). Because of the symmetry of the problem, we can assume w.l.o.g. that the largest element in {ρijk} is
ρ000. Then, a necessary condition such that M↑α ≥ 2

√
2 is given by ρ000 ≥ 1/2. Indeed, the following upper bound

onM↑α:

M↑α = 4

√√√√
1∑

j,k=0

(ρ0jk − ρ1jk)2 ≤ 4

√√√√
1∑

j,k=0

ρ2
0jk ≤ 4

√√√√
1∑

j,k=0

ρ000 · ρ0jk = 4

√√√√√ρ000




1∑

j,k=0

ρ0jk


 ≤ 4

√
ρ000, (V.4)

is greater than or equal to 2
√

2 when ρ000 ≥ 1/2.
Note that, by definition, the minimal entropy H(X|E)↓ρα(m) in (V.3) is monotonically increasing in m.
The upper bound on the maximal MABK violation (V.2) is tight on the following class of states (the tightness

conditions (75) are verified):

τ(ν) = ν|ψ0,0,0〉〈ψ0,0,0 |+(1− ν)|ψ0,1,1〉〈ψ0,1,1 |, (V.5)

and reads in this case

Mτ (ν) =M↑τ (ν) =4
√
ν2 + (1− ν)2. (V.6)

It is straightforward to verify that

Mτ (ρ000) ≥M↑α ∀ {ρijk}. (V.7)

Moreover, the entropy (V.1) evaluated on the states (V.5) reads:

H(X|E)τ (ν) = 1− h(ν), (V.8)

where we used the binary entropy h(p) = −p log p− (1− p) log(1− p). Here and in the following, “ log” represents the
logarithm in base 2.
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By definition, the entropy minimized over all the states with M↑α ≥ m (V.3) is upper bounded by the entropy of
any particular state withM↑α = m:

H(X|E)↓ρα(m) ≤ H(X|E)τ (νm) (V.9)

where νm is fixed such that the maximal violation of the state τ(νm) is given by m:

M↑τ (νm) = 4
√
ν2
m + (1− νm)2 = m. (V.10)

On the other hand, in the following we prove that:

H(X|E)ρα ≥ H(X|E)τ (ρ000) ∀ {ρijk}, (V.11)

where ρ000 ≥ 1/2 is the largest element in {ρijk}. In particular, the last expression holds for the state ρ∗α which is the
solution of the minimization in (V.3):

H(X|E)↓ρα(m) = H(X|E)ρ∗α ≥ H(X|E)τ (ρ∗000)

≥ H(X|E)τ (νm). (V.12)

The last inequality in (V.12) is due to a couple of observations. Firstly, by applying (V.7) to the state ρ∗α we obtain
Mτ (ρ∗000) ≥ m, which combined with (V.10) implies that ρ∗000 ≥ νm (in the interval of interest ρ∗000, νm ≥ 1/2). Then,
we observe that the entropy of the states τ in (V.8) is monotonically increasing in the interval ν ∈ [1/2, 1]. The two
observations lead to the second inequality in (V.12).

By combining (V.12) with (V.9), we obtain the desired lower bound:

H(X|E)↓ρα(m) = H(X|E)τ (νm). (V.13)

Note that the family of states τ(ν) in (V.5) minimizes the entropy for every observed violation m. The bound in
(V.13) can be expressed in terms of the violation m by reverting (V.10) and by using it in (V.8), thus obtaining
Eq. (27) of the paper.

The derived bound is tight since, for every violation m, there exists a state τ(νm) (where νm is defined in (V.10))
such that its entropy coincides with the derived lower bound (V.13) and such that it can yield an MABK violation
equal to m. Indeed, we stated that for the family τ(ν) the upper boundM↑τ is tight (V.6), i.e. there exists a set of
measurements that attain the violationM↑τ .

We are thus left to prove the inequality in (V.11), which can be recast as follows:

h(ρ000) +H({ρijk + ρij̄k̄})−H({ρijk}) ≥ 0. (V.14)

To start with, we simplify the difference of the following entropies:

h(ρ000)−H({ρijk}) = −(1− ρ000) log(1− ρ000) +
∑

(i,j,k)6=(0,0,0)

ρijk log ρijk. (V.15)

By substituting (V.15) into the l.h.s. of (V.14), we get:

H(X|E)ρα −H(X|E)τ (ρ000) =

H({ρijk + ρij̄k̄}) +
∑

(i,j,k)6=(0,0,0)

ρijk log ρijk − (1− ρ000) log(1− ρ000). (V.16)

We then apply Jensen’s inequality

f(x+ y) ≥ f(2x) + f(2y)

2
, (V.17)

where f(x) = −x log x is a concave function, to the last three terms of the first entropy in (V.16):

H({ρijk + ρij̄k̄}) = −(ρ000 + ρ011) log(ρ000 + ρ011)− (ρ001 + ρ010) log(ρ001 + ρ010)

− (ρ100 + ρ111) log(ρ100 + ρ111)− (ρ101 + ρ110) log(ρ101 + ρ110), (V.18)
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such that we get

H({ρijk + ρij̄k̄}) ≥ −(ρ000 + ρ011) log(ρ000 + ρ011) +
∑

(i,j,k)6= (0,0,0)
(0,1,1)

−ρijk log(2ρijk)

=− (ρ000 + ρ011) log(ρ000 + ρ011)− (1− ρ000 − ρ011) +
∑

(i,j,k) 6= (0,0,0)
(0,1,1)

−ρijk log ρijk. (V.19)

With this result, the difference of entropies in (V.16) can be estimated by

H(X|E)ρα −H(X|E)τ (ρ000) ≥
− (ρ000 + ρ011) log(ρ000 + ρ011)− (1− ρ000) log(2(1− ρ000)) + ρ011 log(2ρ011)

=: g(ρ000, ρ011). (V.20)

In the function g the first two terms are positive and the last is negative. We further analyze and estimate the function
g(x, y) in the range of interest, i.e. 1/2 ≤ x ≤ 1, 0 ≤ y ≤ 1−x. In this range g(x, y) is concave in x because its second
derivative is always negative:

∂2 g(x, y)

∂ x2
=− 1

ln(2)

(
1

(1− x)
+

1

(x+ y)

)
< 0. (V.21)

Consider the boundary x+y = 1 of g(x, y) for which we get g(1−y, y) = 0. Due to the concavity it holds for 0 ≤ p ≤ 1
that:

g

(
p

1

2
+ (1− p)(1− y), y

)
≥ pg

(
1

2
, y

)
+ (1− p)g(1− y, y),

or equivalently that:

g(x, y) ≥
(

1− x− y
1
2 − y

)
g

(
1

2
, y

)
. (V.22)

Note that from the parameter regimes of x and y it follows that

0 ≤
(

1− x− y
1
2 − y

)
≤ 1. (V.23)

We finally analyze the properties of g( 1
2 , y), which is convex in y as its second derivative is always positive:

∂2 g( 1
2 , y)

∂ y2
=

1

y ln(2) + y2 ln(4)
> 0. (V.24)

A convex function has a unique minimum if it exists in the parameter regime. In our case this is given by:

∂ g( 1
2 , y)

∂ y
= log(2y)− log(

1

2
+ y)

!
= 0 ⇔ y =

1

2
(V.25)

for which g( 1
2 ,

1
2 ) = 0 holds. Thus in general it holds:

g

(
1

2
, y

)
≥ 0. (V.26)

By combining these considerations we obtain the desired inequality (V.11):

H(X|E)ρα −H(X|E)τ (ρ000)
(V.20)

≥ g(ρ000, ρ011)

(V.22)

≥
(

1− ρ000 − ρ011
1
2 − ρ011

)
g

(
1

2
, ρ011

)

≥ 0, (V.27)

where in the last inequality we used the fact that the pre-factor is positive (V.23) and that g( 1
2 , ρ011) is lower bounded

by zero (V.26).
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VI. ANALYTICAL PROOF OF THE LOWER BOUND ON H(XY |E)ρα

In order to derive an analytical lower bound on H(XY |E)ρα , we employ the same argument used in minimizing
H(X|E)ρα and perform the optimization over the eigenvalues {ρijk} of ρα and over the parameter q given in (18).
This implies that we want to solve the following optimization problem:

H(XY |E)↓ρα(m) = min
{ρijk,q,ϕA,ϕB}

H(XY |E)ρα

sub. to M↑α ≥ m ; ρ0jk ≥ ρ1jk ;
∑

ijk

ρijk = 1, (VI.1)

whereM↑α is the upper bound on the MABK violation derived in the Methods section (see (V.2)), while ϕA and ϕB
determine the unknown measurement directions of Alice and Bob in the (x, y)-plane.

Eve is assumed to hold the purifying system E of the state ρα shared by Alice, Bob and Charlie. The purification
of ρα can thus be written as follows:

|φαABCE〉 =
∑

ijk

√
ρijk |ρijk〉 ⊗ |eijk〉 , (VI.2)

where |ρijk〉 are the eigenstates of ρα defined in (17), while {|eijk〉} is an orthonormal basis of Eve’s eight-dimensional
Hilbert space HE .

We restrict our proof to states ρα with a non-negative off-diagonal term s ≥ 0, which corresponds to q ≥ 0.
The complementary case corresponds to states ρ∗α which would lead to the same result. For this, we employ a
parametrization of the eigenstates slightly different from (17), which reads as follows:

|ρijk〉 = |ψijk〉 , for (j, k) 6= (1, 1)

|ρ011〉 =
√

(1− p) |ψ011〉 − i
√
p |ψ111〉

|ρ111〉 =
√
p |ψ011〉+ i

√
(1− p) |ψ111〉 ,

(VI.3)

where |ψijk〉 are the GHZ basis states (Definition 1) and where p is completely fixed by q through the relation:

p =
q2

1 + q2
, (VI.4)

from which we deduce that 0 ≤ p ≤ 1 and that p = 0 when q = 0.
From now on, we omit the subscript ρα in the entropy symbol for ease of notation. We thus have that the conditional

entropy H(XY |E) can be expressed as:

H(XY |E) =H(XY ) +H(E|XY )−H(E)

=2 +H(E|XY )−H({ρijk}). (VI.5)

where the last equation follows from the fact that all marginals have been symmetrized and from the fact that the
state on ABCE is pure (VI.2), thus H(E) = H(ABC) = H({ρijk}).

The proof of the analytical lower bound on H(XY |E) as a function of the MABK violation is subdivided in three
parts: (i) we first derive an analytical expression for H(E|XY ); (ii) we minimize H(E|XY ) with respect to q, ϕA and
ϕB ; (iii) we proceed minimizing the resulting expression in (VI.5) given a certain MABK violation. Note that we
are allowed to minimize H(E|XY ) over q, ϕA and ϕB independently of H(E), since the latter is independent of the
mentioned optimization variables.

Step 1 - Analytical expression for H(E|XY ):
In order to derive the analytical expression for H(E|XY ), we will use the following Lemma.

Lemma 3. It holds that

H(E|XY ) = H(C|XY ). (VI.6)

Proof. The proof follows from the fact that the state shared by Charlie and Eve conditioned on the outcomes X = a of
Alice and Y = b of Bob, is a pure state. Indeed, if projective measurements are applied to a pure state, the resulting
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state, conditioned on a specific outcome, remains pure. Moreover, for a pure state, the entropies of its subsystems are
equal, which implies

H(E|X=a, Y =b) = H(C|X=a, Y =b) (VI.7)

Therefore

H(E|XY ) =
∑

a,b

Pr(a, b)H(E|X = a, Y = b) (VI.8)

=
∑

a,b

Pr(a, b)H(C|X = a, Y = b) (VI.9)

= H(C|XY ). (VI.10)

This Lemma is of great use as Eve’s system is described by an eight-dimensional Hilbert space, whereas Charlie is
only in possession of a single qubit. So the computation of H(C|XY ) is significantly simpler.

We obtain Charlie’s state, conditioned on the outcomes X = a and Y = b, by partially tracing over Eve’s degrees
of freedom

ραCab = TrE
(
|φαCEab〉〈φαCEab |

)
, (VI.11)

where |φαCEab〉 is the state of Charlie and Eve given that Alice and Bob obtain outcomes X = a and Y = b respectively,
which is determined by

[|a〉〈a|⊗|b〉〈b|⊗idCE ] [|φαABCE〉〈φαABCE |] [|a〉〈a|⊗|b〉〈b|⊗idCE ] =
1

4
|a〉〈a|⊗|b〉〈b|⊗|φαCEab〉〈φαCEab |. (VI.12)

The projected state |φαCEab〉 can be computed using the definition of the purification given in Eq. (VI.2), the
definition of the eigenstates in Eq. (VI.3), and the fact that the measurements performed by Alice and Bob have been
restricted to the (x, y)-plane. Indeed, the measurements are defined by the projectors in (32) of the main text, that
we report here:

|a〉X =
1√
2

(|0〉+ (−1)aeiϕA |1〉) a ∈ {0, 1}

|b〉Y =
1√
2

(|0〉+ (−1)beiϕB |1〉) b ∈ {0, 1}. (VI.13)

In the following we abbreviate ξa = (−1)aeiϕA and ξb = (−1)beiϕB . We then have that

|φαCEab〉 =
∑

ljk
jk 6=11

1√
2

(
(δ0j + δ1jξb) |k〉+ (δ0j̄ξa + δ1j̄ξaξb)(−1)l |k̄〉

)
⊗ |eljk〉

√
ρljk

+
((√

(1− p)− i√p
)
ξb |1〉+

(√
(1− p) + i

√
p
)
ξa |0〉

)
⊗ |e011〉

√
ρ011

+
((√

p+ i

√
(1− p)

)
ξb |1〉+

(√
p− i

√
(1− p)

)
ξa |0〉

)
⊗ |e111〉

√
ρ111.

(VI.14)

Finally, the partial trace over Eve results in

ραCab =TrE
(
|φαCEab〉〈φαCEab |

)
(VI.15)

=



∑

ljk
jk 6=11

1√
2

(
(δ0j + δ1jξb) |k〉+ (δ0j̄ξa + δ1j̄ξaξb)(−1)l |k̄〉

)

 · (h.c.) ρljk

+
((√

(1− p)− i√p
)
ξb |1〉+

(√
(1− p) + i

√
p
)
ξa |0〉

)
· (h.c.) ρ011

+
((√

p+ i

√
(1− p)

)
ξb |1〉+

(√
p− i

√
(1− p)

)
ξa |0〉

)
· (h.c.) ρ111.

(VI.16)
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As ραCab is a qubit state, we can now analytically calculate its eigenvalues, which can be reduced to

λ1,2(ραCab) =
1

2
(1± |C|) , (VI.17)

where:

C = (ρ000 − ρ100) ξ2
a + (ρ001 − ρ101)

(
ξ2
b

)∗
+ (ρ010 − ρ110) ξ2

a

(
ξ2
b

)∗
+ (ρ011 − ρ111)

(
1− 2p− 2i

√
p(1− p)

)

= (ρ000 − ρ100) ei2ϕA + (ρ001 − ρ101) e−i2ϕB + (ρ010 − ρ110) ei2(ϕA−ϕB) + (ρ011 − ρ111) eiϕ3 ,
(VI.18)

where ϕ3 is a function of the parameter p. We see that the eigenvalues do not depend on the measurement outcomes
a and b of Alice and Bob. The entropy is then given by

H(E|XY ) = H(C|XY ) = h

(
1

2
(1 + |C|)

)
, (VI.19)

where h(x) = −x log x− (1− x) log(1− x) is the binary entropy.

Step 2 - Minimization of H(E|XY ):
Minimizing the binary entropy in (VI.19), with respect to the measurement directions and the parameter p, is

equivalent to maximizing the largest eigenvalue of ραCab . The optimum can directly be deduced from Eq. (VI.17).
Since it holds that (ρ0jk − ρ1jk) ≥ 0 ∀ j, k, the largest eigenvalue is maximized if

ei2ϕA = e−i2ϕB = ei2(ϕA−ϕB) = eiϕ3 , (VI.20)

which holds e.g. for ϕA = ϕB = ϕ3 = 0. Since ϕ3 = 0 implies p = q = 0, we verified that even in the minimization of
the conditional entropy of two parties’ outcomes, H(XY |E), it is optimal for Eve to distribute a GHZ-diagonal state
which Alice and Bob measure in the X basis. The largest eigenvalue is then given by

λmax =
∑

jk

ρ0jk, (VI.21)

where we used normalization of the eigenvalues to eliminate the terms ρ1jk. The lower bound on the conditional
entropy H(E|XY ) is thus given by

H(E|XY ) ≥h


∑

jk

ρ0jk


 . (VI.22)

Step 3 - Minimization of H(XY |E) with given MABK violation:
Using the result of Step 2 in (VI.5), we can concentrate on minimizing the following expression:

H(E|XY )−H(E) ≥h


∑

jk

ρ0jk


−H({ρijk}) (VI.23)

=−


∑

jk

ρ0jk


 log


∑

jk

ρ0jk


−


∑

jk

ρ1jk


 log


∑

jk

ρ1jk


+

∑

ijk

ρijk log ρijk (VI.24)

=p0

∑

jk

ρ0jk

p0
log

ρ0jk

p0
+ (1− p0)

∑

jk

ρ1jk

(1− p0)
log

ρ1jk

(1− p0)
(VI.25)

=− p0H

({
ρ0jk

p0

})
− (1− p0)H

({
ρ1jk

(1− p0)

})
, (VI.26)

where we abbreviated the probability p0 :=
∑
jk ρ0jk. We now use the concavity of the Shannon entropy over

probability distributions ~u and ~v, i.e.

p0H(~u) + (1− p0)H(~v) ≤ H(p0~u+ (1− p0)~v), (VI.27)
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to get

H(E|XY )−H(E) ≥− p0H

({
ρ0jk

p0

})
− (1− p0)H

({
ρ1jk

(1− p0)

})
(VI.28)

≥−H ({ρ0jk + ρ1jk}) . (VI.29)

With the lower bound obtained in (VI.29), the optimization problem we have to solve is now the following:

max
{ρijk}

H ({ρ0jk + ρ1jk})

sub. to
m2

16
≤
∑

jk

(ρ0jk − ρ1jk)2 ;
∑

ijk

ρijk = 1 ; ρijk ≥ 0,
(VI.30)

where m is the observed MABK violation. Now notice that for every solution {ρ0jk, ρ1jk} of the maximization
problem, there exists another equivalent solution –i.e. that leads to the same value for H ({ρ0jk + ρ1jk})– of the form
{ρ′0jk = ρ0jk + ρ1jk, ρ

′
1jk = 0}. Therefore, we can restrict the optimization to the solutions of that form:

max
{ρ0jk}

H ({ρ0jk})

sub. to
m2

16
≤
∑

jk

ρ2
0jk

∑

jk

ρ0jk = 1

ρ000 ≥ ρ001 ≥ ρ010 ≥ ρ011 ≥ 0,

(VI.31)

where we imposed the ordering of the eigenvalues without loss of generality, since the optimization problem is sym-
metric with respect to their permutations.

We have thus reduced the problem to the constrained maximization of H ({ρ0jk}), as described in (VI.31). In the
following calculations, we rescale the function H ({ρ0jk}) by ln 2, so that it is expressed in terms of natural logarithms
instead of the logarithm in base 2. This simplifies the notation when computing its derivatives but does not change
the solution of the optimization problem.

We use the Karush-Kuhn-Tucker multipliers method [78, 79] to identify necessary conditions for extremal points of
the optimization problem in (VI.31). The Lagrangian for our maximization problem is then given by:

L(ρ000, ρ001, ρ010, ρ011, u, v) =H (ρ000, ρ001, ρ010, ρ011) + u

(
ρ2

000 + ρ2
001 + ρ2

010 + ρ2
011 −

m2

16

)

+ v (ρ000 + ρ001 + ρ010 + ρ011 − 1)

(VI.32)

The necessary conditions to have an extremal point are given by the solution of the following system:




∇ρ0jkL = 0

ρ2
000 + ρ2

001 + ρ2
010 + ρ2

011 ≥ m2

16

ρ000 + ρ001 + ρ010 + ρ011 = 1

u ≥ 0

u
(
ρ2

000 + ρ2
001 + ρ2

010 + ρ2
011 − m2

16

)
= 0.

(VI.33)

The last equation in (VI.33) implies that either u = 0 or the inequality constraint holds with the equal sign. Let us
first consider the case that u = 0 and compute the derivative of L with respect to ρ0jk in the first equation of (VI.33):

∂L
∂ρ0jk

= − ln ρ0jk + v − 1 = 0 ∀ ρ0jk. (VI.34)

Since the logarithm is a monotonic function, the set of equations in the last expression imply one of the following
cases:

(a) ρ000 = ρ001 = ρ010 = ρ011,
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(b) ρ000 = ρ001 = ρ010 and ρ011 = 0,

(c) ρ000 = ρ001 and ρ010 = ρ011 = 0,

(d) ρ001 = ρ010 = ρ011 = 0.

where we accounted for the border conditions, i.e. when one or more ρ0jk are equal to zero.
By combining the equality conditions with the constraint that ρ0jk sum to one, we can easily obtain the solution of

the system (VI.33) for each of the above cases. Note that the inequality constraint is still valid, therefore the derived
solutions will only hold for certain values of m:

(a) H({ρ0jk}) = 2, valid for m ≤ 2,

(b) H({ρ0jk}) = log 3, valid for m ≤ 4/
√

3

(c) H({ρ0jk}) = 1, valid for m ≤ 2
√

2

(d) H({ρ0jk}) = 0, valid for m ≤ 4.

The cases (a) and (d) are useless since the former is never valid in the range of interest for the observed violation
(i.e. above the classical bound), while the latter leads to zero entropy, which is definitely not the solution of our
maximization problem.

Let us consider now the case u > 0, which implies that the inequality constraint becomes an equality (the last
equation in (VI.33) must be satisfied). We compute the derivatives in the first equation of (VI.33):

∂L
∂ρ0jk

= 2ρ0jku− ln ρ0jk + v − 1 = 0 ∀ ρ0jk. (VI.35)

Notice that the function g(x) = ax− lnx+ b can have at most two roots (zero points), because

g′(x) = a− 1

x
, (VI.36)

has at most a single root (zero point), corresponding to one extremum for g(x). It follows that there can be at most
a single y 6= x such that g(x) = g(y) = 0. The potential critical points of the Lagrangian L are hence restricted to
the following cases (remember we use the ordering ρ000 ≥ ρ001 ≥ ρ010 ≥ ρ011 ≥ 0)

(i) ρ000 = ρ001 = ρ010 = ρ011,

(ii) ρ000 = ρ001 = ρ010 > ρ011,

(iii) ρ000 > ρ001 = ρ010 = ρ011,

(iv) ρ000 = ρ001 > ρ010 = ρ011.

We again account for the border conditions, and analog conditions directly follow in case some ρ0jk are zero:

(v) ρ000 = ρ001 = ρ010 and ρ011 = 0,

(vi) ρ000 = ρ001 > ρ010 and ρ011 = 0,

(vii) ρ000 > ρ001 = ρ010 and ρ011 = 0,

(viii) ρ000 > ρ001 and ρ010 = ρ011 = 0,

(ix) ρ000 = ρ001 and ρ010 = ρ011 = 0,

(x) ρ001 = ρ010 = ρ011 = 0.

Note that in all the listed cases there are a maximum of two distinct eigenvalues, which are thus completely fixed
by the two equality constraints. Moreover, we observe that the cases (i), (v), (ix) and (x) correspond to the already
investigated cases (a), (b), (c) and (d), respectively.
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Analysing the resulting entropy H as a function of the MABK violation m for each of the ten possible extremal
points, we conclude that the maximum is achieved for the case (iii) for every value of m. In this case, the eigenvalues
are fixed to:

ρ000 =
1

8

(
2 +
√

3
√
m2 − 4

)
=: νm (VI.37)

ρ0jk =
(1− νm)

3
(j, k) 6= (0, 0). (VI.38)

The solution of the optimization problem in (VI.31) then reads:

H ({ρ0jk}) = H

({
νm,

1− νm
3

,
1− νm

3
,

1− νm
3

})
(VI.39)

The lower bound on the entropy difference (VI.29) is thus given by:

H(E|XY )−H(E) ≥ −H
({

νm,
1− νm

3
,

1− νm
3

,
1− νm

3

})
(VI.40)

Finally we can lower bound the entropy of Alice and Bob’s outcomes given Eve’s quantum side information by

H(XY |E) = 2 +H(E|XY )−H(E) ≥ 2−H
({

νm,
1− νm

3
,

1− νm
3

,
1− νm

3

})
, (VI.41)

with

νm =
1

4
+

√
3

8

√
m2 − 4. (VI.42)

On the tightness of the bound:
Similarly to the bound on H(X|E) (section V), we could identify a family of quantum states η(ν) defined as:

η(ν) = ν|ψ0,0,0〉〈ψ0,0,0 |+
1− ν

3

∑

(j,k)6=(0,0)

|ψ0,j,k〉〈ψ0,j,k |, (VI.43)

that attains the lower bound in (VI.41) for every observed violationm. Indeed, the conditional entropyH(XY |E)η(νm)
computed on the state η(νm), where νm is given by (VI.42), is equal to the r.h.s. of (VI.41).

The upper boundM↑η on the MABK violation (V.2) relative to the family of states (VI.43) reads:

Mη(ν) =
4√
3

√
4ν2 − 2ν + 1, (VI.44)

and for ν = νm it reduces to:

M↑η(νm) = m. (VI.45)

Now, numerical computations suggest that the tightness conditions (75) of the MABK violation upper bound are in
general not satisfied by the states η(ν). In other words, there exist no measurements that the parties can perform on
η(ν) such that the violation of the MABK inequality reaches the value given by (VI.44). In particular, when ν = νm,
there are no measurements such that the violation of value m is observed (due to Eq. VI.45).

Therefore, although the states η(νm) are such that their entropy attains the lower bound (VI.41) for a given observed
violation m, they do not prove the tightness of the bound since they cannot yield a violation of value m.

The tightness of the lower bound in (VI.41) is still an open question.
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