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Summary 
 

Dysregulation of MAPK pathway components is frequently associated with carcinogenesis and 

developmental disorders. The Noonan syndrome (NS), one group of these disorders, is characterized 

by dysmorphic facial features, skeletal anomalies, and intellectual and developmental disabilities. NS 

is caused by germline mutations of genes related to MAPK pathway components, such as RAF1, which 

cause a gain-of-function of the pathway. A special feature of NS patients with RAF1 mutations is the 

high occurrence of a hypertrophic cardiomyopathy (HCM), which is defined by an increased left 

ventricular wall thickness. In this doctoral study, we established a protocol for the differentiation of 

iPSC lines (wild-type RAF1 and patient-derived RAF1S257L) to highly pure, ventricular and contractile 3-

dimensional cardiac bodies (CBs). This cell model system enabled us to investigate the mechanistic 

basis of cardiac hypertrophy induced by NS-associated RAF1S257L. We observed hypertrophic features 

in RAF1S257L CBs, such as cell size enlargement, re-expression of fetal genes, a switch of myosin heavy 

chain beta to alpha, and an impaired calcium transient. Most remarkably, RAF1S257L CBs and the 

corresponding heart biopsy samples from the RAF1S257L patient revealed a lack of the I-band, the 

flexible region of the sarcomeres. These features were revertible upon treatment with a MEK inhibitor. 

Signal transduction processes were investigated in further projects related to the RHO GTPases, CDC42 

and RAC1. A gain-of-function variant of CDC42 (R186C), causing a previously unrecognized and 

distinctive hematological/autoinflammatory disorder, revealed an impaired cytosol/membrane 

shuttling due to an extraction inhibition by the GDP dissociation inhibitor (GDI) This resulted in an 

enhanced localization at the Golgi apparatus. Other issues dealt with the positive effect of RAC1 signal 

suppression in a tumor relevant surrounding. We discovered a small molecule inhibitor against VAV3, 

a RAC activator and a critical component of BCR-ABL pathway. Most strikingly, administration of this 

inhibitor to a BCR-ABL leukemia model resulted in a significant decrease in leukemic burden. Finally, 

we provided novel evidence that inhibition of RAC signaling by lovastatin mediats radioprotective 

potency on primary lung cells and rodent lung tissue following fractionated irradiation. This 

radioprotective effects of statins on normal tissue might be useful in the clinic to widen the therapeutic 

window of radiotherapy. 
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Zusammenfassung 

Eine Dysregulation der MAPK-Signalwegkomponenten ist häufig mit einer Karzinogenese und 

auftretenden Entwicklungsstörungen verbunden. Das Noonan-Syndrom (NS), eine Gruppe dieser 

Störungen, ist durch dysmorphe Gesichtsmerkmale, Skelettanomalien sowie Geistes- und 

Entwicklungsstörungen gekennzeichnet. NS wird durch Keimbahnmutationen in Genen von MAPK-

Signalwegkomponenten wie RAF1 ausgelöst, was zu einem gain-of-function des Signalwegs führt. Eine 

Besonderheit bei NS-Patienten mit RAF1-Mutationen ist das verstärkte Auftreten einer hypertrophen 

Kardiomyopathie, die durch eine erhöhte Wandstärke des linken Ventrikels definiert ist. In dieser 

Doktorarbeit wurde ein Protokoll entwickelt um iPSC-Linien (Wildtyp-RAF1 und vom Patienten 

stammende RAF1S257L) zu reinen, ventrikulären und kontraktilen dreidimensionalen Cardiac Bodies 

(CBs) zu differenzieren. Dieses Zellmodell ermöglichte uns die Untersuchung, der mechanistischen 

Grundlagen der NS-assoziierten RAF1S257L induzierte Herzhypertrophie. Wir beobachteten in RAF1S257L 

CBs hypertrophe Merkmale wie Zellvergrößerung, die erneute Expression fetaler Gene, einen 

Expressionswechsel der schweren Myosin Ketten von Beta zu Alpha und eine Beeinträchtigung der 

Calciumtransienten. Bemerkenswerterweise zeigte sich in RAF1S257L-CBs und den entsprechenden 

Herzbiopsien des RAF1S257L-Patienten ein fehlendes I-Band, die flexible Region der Sarkomere. Die 

meisten der genannten Merkmale waren nach Behandlung mit einem MEK-Inhibitor umkehrbar. 

Außerdem wurden in weiteren Teilprojekten die Signaltransduktionsprozesse im Zusammenhang mit 

den RHO-GTPasen CDC42 und RAC1 untersucht. Eine Variante von CDC42 (R186C), die eine zuvor nicht 

beschriebene hämatologische/autoinflammatorische Störung verursachte, zeigte einen gestörten 

Zytosol/Membran-Transport, der auf eine Extraktions-Hemmung durch den GDP dissociation inhibitor 

(GDI) zurückgeführt werde konnte und zu einer erhöhten Lokalisierung am Golgi-Apparat führte. 

Andere Themen befassten sich mit dem positiven Effekt der RAC1-Signalunterdrückung in einem 

tumorrelevanten Zellmilieu. Wir entdeckten einen kleinen Inhibitor gegen VAV3, einen RAC-Aktivator 

und eine kritische Komponente des BCR-ABL-Signalwegs. Am auffälligsten ist, dass die Verabreichung 

dieses Inhibitors in einem BCR-ABL-Leukämiemodell zu einer signifikanten Verringerung der 

Leukämiebelastung führte. Schließlich lieferten wir neue Beweise dafür, dass die Hemmung der RAC-

Signalübertragung durch Lovastatin nach fraktionierter Bestrahlung, eine Strahlenschutzwirkung auf 

primäre Lungenzellen und Nagetier-Lungengewebe verursachte. Diese Strahlenschutzwirkung von 

Statinen auf normales Gewebe könnte in der Klinik nützlich sein, um das therapeutische Fenster der 

Strahlentherapie zu erweitern. 
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1 The human heart 

The human heart is the contractile center of the circulatory system whose main task is to pump 

blood through the pulmonary system and peripheral organs. Therefore, the heart is responsible for 

the transport of nutrients and oxygen as well as the removal of metabolic end products. Furthermore, 

it plays a major role in the distribution of hormones and immune cells, defending the body against 

infections [1,2]. In humans, the heart is divided into four distinct chambers, the right atrium and the 

affiliated ventricle that pumps blood through the lungs, and the left atrium and its affiliated ventricle 

that pumps blood through the peripheral organs [3]. In the healthy heart, valves separate each atrium 

and ventricle, as well as the exit of each ventricle. The contractility of the heart is achieved by the 

myocardium, striated muscles that represent the main tissue of the heart wall. It is composed of 

cardiomyocytes which serve as the cellular contracting subunits [4]. 

1.1 Structure and function of cardiomyocytes 

Cardiomyocytes, also known as the contracting cells in the myocardium, enable the hearts function 

as a pumping organ. Compared to other cell types, cardiomyocytes own special features. After 

formation and differentiation of the fetal heart cardiomyocytes lose their ability to proliferate. A 

second DNA synthesis phase occurring directly after birth is associated with a karyokinesis without 

cytokinesis, resulting in binucleation of most cardiomyocytes [5,6]. Postnatal, the heart size is therefore 

not regulated by an increase in cell number but almost exclusively by an increase in cardiomyocyte 

size, a process which is referred to as hypertrophy [7]. This physiological hypertrophy results in a size 

increase of approximately 8-fold within the first 20 years of life [8]. Even if there is more occurring 

evidence that some cardiomyocytes still maintain their ability to proliferate, this small number is 

almost negligible in consideration of heart regeneration [9]. Due to that, hypertrophy of 

cardiomyocytes after injury, long lasting hemodynamic stress, or as a result of genetic alteration often 

results in a pathological state involving cardiomyocytes death and fibrotic remodeling of the heart [10]. 

The ability to contract is triggered by action potentials which originate from the sinoatrial node, 

located in the right atrium of the heart. This electrical impulse is precisely orchestrated from cell to 

cell to guarantee a properly organized contraction of the whole organ [11]. The contraction of single 

cardiomyocytes is accurately regulated by a defined set of ion channels and ion exchangers which 

control the Ca2+ influx from the extracellular space as well as from the sarcoplasmic reticulum (SR) [12]. 

The action potential is initiated by depolarization of the sarcolemma, the cell membrane of myocytes, 

which results in opening of voltage dependent L-type Ca2+ channels. The influx of Ca2+, activates in turn 

the Ca2+-induced Ca2+ release from the SR which is controlled by ryanodine receptors (RyR). On a 

molecular level the muscular contractility is the result of a reversible interaction of the two proteins 

actin and myosin [13].  
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Figure 1: Calcium cycling in cardiomyocytes. 
Depolarization of the sarcolemma by rapid sodium influx results in opening of voltage-dependent L-type Ca2+ 
channels. Extracellular Ca2+ influx causes calcium-induced calcium release from the SR via the ryanodine receptor. 
The increase in free intracellular Ca2+ enables myocyte contraction. Ca2+-activated kinases phosphorylate 
phospholamban (PLN), therefore relieving its repression on SERCA2A, which rapidly re-imports Ca2+ into the SR. 
This leads to decreased levels of intracellular Ca2+. The Na+/Ca2+ exchangers help restoring the initial Ca2+ 
concentration resulting in relaxation of the sarcomeres. (Figure adapted from Baskin, et al. [14]) 

 

Every cardiomyocyte contains numerous tubular myofibrils which are composed of repeating 

sections of sarcomeres. These sarcomeres are limited by the so-called Z disc. Titin, a 3400 kDa large 

protein is furthermore contributing in stability of the sarcomeres [15]. One single titin molecule is 

stretched from each Z-disc to the middle of the sarcomeres which is usually referred to as M line. The 

regions containing myosin filaments are called A band (anisotropic when viewed with polarized light) 

and appears darker under the microscope. In contrast, regions that are lacking myosin and only contain 

actin are called I bands (isotropic) (Figure 2) [16-18]. The globular end of the myosin heads can bind to 

actin and bend, leading to sarcomere shortening due to actin-myosin filament sliding [19]. This cycle 

requires the hydrolysis of adenosine triphosphate (ATP) as a main source of energy for the contraction. 

The increase in cytosolic Ca2+ furthermore serve as important regulator of myosin-binding to 

filamentous actin by interacting with troponin and tropomyosin, therefore exposing myosin-binding 

sites [20]. Cytosolic Ca2+ is mainly removed by two mechanisms. Re-uptake of Ca2+ into the SR is 

achieved in an active manner by the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) 

which can be negatively regulated by phosphorylated phospholamban (PLN) [21]. Furthermore, Ca2+ is 

exported by a Na+/Ca2+ exchangers, guaranteeing a repolarization of the cardiomyocyte resulting in 

the relaxation of the cell [22].  



Chapter I: General introduction 

4 

 

Figure 2: Schematic illustration of a human sarcomere. 
Sarcomeres are repeating units between two Z discs. The Z discs are surrounded by the I band (for isotropic) 
which is the zone of thin actin filaments that do not contain thick myosin filaments. The A band (for anisotropic) 
contains thin and thick filaments. In the middle of each sarcomere is the M line (for middle). Titin, the biggest 
known protein, functions as a molecular spring, therefore guaranteeing the elasticity of the sarcomeres. It 
extends from the Z-line of the sarcomere to the M-band, where it interacts with the thick filaments. 

 

2 Stem cells 

Stem cells are a special cell population which can be found biologically conserved in a majority of 

multicellular organisms. Stem cells are usually characterized by two special abilities, which separate 

them from any other cell type. The ability to continuously proliferate, called self-renewal, and the 

ability to differentiate into different cell lineages that is called potency [23]. The introduction of 

embryonic stem cells (ESCs) into medical research paved the way for a new variety of possible 

experimental applications [24]. The first human ESCs were successfully isolated from the inner cell mass 

of a human blastocyst in 1998. Due to their high telomerase activity, these cells can be cultured for 

several passages without losing their karyotype and their specific stem cell characteristics [25]. 

Self-renewal of stem cells is defined as the capability to perform cell division and generating daughter 

cells that are identical to the mother cell and remain the same developmental potential [26]. Potency 

is described as the potential to differentiate into any available mature cell type. Nevertheless, the level 

of potency differs between the human stem cells, reaching from totipotent stem cells which can 

differentiate into embryonic and extraembryonic cell types up to unipotent stem cells which are solely 

able to produce one cell type but still have the property of self-renewal [27,28]. 

2.1 Induced pluripotent stem cells 

Although the use of ESCs enabled a huge variety of experimental applications, problems like cell 

derivation as well as ethical issues made it difficult for the community to work with ESCs [29]. 
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Therefore, the discovery of induced pluripotent stem cells (iPSCs) was seen as a breakthrough in 

creating an alternative to ESCs. Retroviral transduction of the four transcriptional factors OCT3/4, 

SOX2, c-MYC and KLF4 into human adult fibroblasts resulted in generation of pluripotent stem cells 

[30]. Pluripotent cells are characterized by their ability to differentiate into any cells that are derived 

from the three germ layers (ectoderm, mesoderm and endoderm) [31,32]. With the introduction of 

iPSCs, existing problems like efficiency, but also ethical and immunological issues were solved. 

Although iPSCs still reveal certain differences to ESCs in their expression and epigenetics, they share 

the characteristics of self-renewal and pluripotency as well as their morphology and the physiological 

properties of ESCs [33,34]. 

In the last decades, human stem cells were widely used as a model to study cellular processes like 

differentiation and tissue development. Furthermore, stem cells have a huge impact on biomedical 

research regarding the identification of target genes for new drugs or toxicity assays [26]. Nevertheless, 

the biggest impact of iPSCs on biomedical science is their usage in cell-based therapies and 

regenerative medicine. Human iPSCs are widely used to generate human disease models in vitro either 

to investigate the molecular mechanism of the diseases or for drug-screening against proteins of 

interest. Disease modeling starts with the isolation of patient-specific cells harboring disease-deriving 

somatic mutations, followed by their reprogramming to iPSCs. These cells are afterwards 

differentiated into the disease-relevant cell types which can be used for further investigation [35,36]. 

Moreover, iPSC-derived cells are frequently used to study their application as a replacement of 

disease-involved cells, for example in the treatment of macular degeneration or cardiac ischemia, 

where they replace fibrotic tissue [37,38] 

3 Mitogen-activated protein kinase (MAPK) pathway signaling 

Mitogen-activated protein kinases (MAPK) are usually components of a three kinase regulatory 

cascade, being key components in intracellular signal transduction of external stimuli and thereby, 

controlling multiple cellular processes including growth, proliferation, differentiation, motility, stress 

response, survival and apoptosis [39,40]. Within the cascade MAPKs are phosphorylated and activated 

by upstream MAPK kinases (MAPKK) which catalyze the phosphorylation of MAPKs on both tyrosine 

and threonine residues [41]. MAPKKs in turn are phosphorylated and activated by MAPKK kinases 

(MAPKKK). The signal transduction is controlled by guanosine-5'-triphosphate (GTP) binding proteins 

and specific kinases that might be considered as MAPKKK kinases (MAPKKKK) [42]. The variety of MAPK 

responses is regulated by spatio-temporal activation of the different cascades in response to different 

stimuli [39]. 
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4 RAS superfamily at a glance 

The members of the RAS superfamily proto-oncogenes were introduced in the 1960s by the 

discovery of two viruses causing tumors in rats. The sarcoma-causing viral genes were names after 

their discoverers Jennifer Harvey and Werner Kirsten, from this time on as Harvey rat sarcoma (HRAS) 

and Kirsten rat sarcoma (KRAS) [43,44]. Two decades later, the first activated human form of HRAS has 

been identified in bladder cancer, showing a genetic alteration in amino acid (aa) residue 12 [45-47]. 

Until today, more than 150 homologous proteins were discovered, collectively termed as RAS 

superfamily proteins. All of its members are small (21-25 kDa) GTP binding proteins which hydrolyze 

GTP and therefore cycle between an active, GTP-bound and an inactive, GDP-bound state (Figure 3) 

[48,49]. Structurally, RAS family GTPases share a conserved 20 kDa G domain which is involved in GTP 

binding as well as in GTP hydrolysis [48]. Furthermore, these GTPases carry an additional C-terminal 

hypervariable region (HVR) that can be posttranslationally modified and is important for membrane 

interaction [50]. Functionally, the RAS superfamily is divided into five major families, named RAS, RHO, 

RAB, ARF and RAN according to their sequence, structure and their functional similarities [51,52]. The 

members of the RAS superfamily are essential for signal transduction by sensing extracellular signals 

trough their corresponding receptors which are afterwards transmitted to their downstream 

substrates. Therefore, they regulate a huge variety of cellular functions including gene expression, 

metabolism, cell cycle progression, proliferation, survival, differentiation, vesicular transport, 

cytoskeleton organization, migration, cell motility, endocytosis, contraction and nuclear transport [53-

55]. Furthermore, somatic and germline mutations in genes that are associated to the members of the 

RAS family or their modulators are frequently correlated with the progression of cancer and 

developmental diseases [56-59].  

4.1 Structural properties of RAS GTPases 

All RAS proteins share a nearly identical tertiary structure, which is composed of six β-sheets 

surrounded by α-helices [60]. All members of the RAS superfamily share a central GTP/GDP-binding 

domain, shortly called G-domain, which is important for the nucleotide binding as well as their 

hydrolysis [49]. Furthermore, they share five conserved GDP/GTP-binding (G) motifs along their 

sequence [61]. G1, or also called P-loop (10GxxxxGKS/T17; HRAS numbering), is able to bind the beta and 

gamma phosphates resulting in high affinity binding of the nucleotides [49,62]. Codon 12 and codon 13 

in G1 are the most frequently mutated RAS codons in human tumors, resulting in a reduced intrinsic 

GTPase activity or an insensitivity against GTPase-activating proteins (GAP). Therefore, RAS is locked 

in a constant hyperactive state [58,63]. G2 and G3, also referred to as switch I and switch II, are dynamic 

regions that sense the state of the bound nucleotide and serve furthermore as main interaction site 

for RAS regulators and RAS effectors. The main conformational changes upon nucleotide exchange in 
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RAS are basically confined to the switch regions [49,64]. Moreover, switch II comprises the critical 

catalytic amino acid Q61. Similar to G12, mutations of Q61 significantly reduce the intrinsic hydrolysis 

rate and prevent the GAP-mediated inactivation [65]. Finally, G4 and G5 are crucial to determine the 

nucleotide specificity of RAS [66]. 

In the active state RAS proteins are located at the plasma membrane where they can physically 

interact with their regulators and effectors. The association of RAS proteins with the cellular lipid 

membrane is mediated through posttranslational modifications (PTM) and distinct motifs at their 

C-terminal end, which is referred to as hyper variable region (HVR) [67,68]. Almost all RAS proteins 

serve as substrates for isoprenyl-transferring enzymes, which covalently link farnesyl or geranylgeranyl 

moieties to the cysteine residue of the very C-terminal CAAX motif (C, cysteine; A, aliphatic amino acid; 

X, any amino acid) [69]. After prenylation of the RAS proteins, the AAX residues get proteolytically 

cleaved by the endopeptidase RCE1 and the terminal isoprenylcysteine gets methylated [70].  

4.2 RAS family GTPases 

RAS is a family of ubiquitously expressed small GTPase, involved in intracellular signal transduction, 

therefore regulating various cellular processes including proliferation and differentiation, cell growth 

and survival [71,72]. Of its approximately 40 members, HRAS, NRAS and KRAS4B are the best 

investigated RAS paralogues. The family members became scientifically interesting because of their 

critical role in oncogenesis [73]. The best investigated RAS signaling pathway is RAS activation by SOS1 

which is triggered through dimerization of the epidermal growth factor receptor (EGFR). Active RAS 

then consequently binds and phosphorylates the members of the rapidly accelerated fibrosarcoma 

(RAF) paralogues resulting in their activation.  

4.3 RHO family GTPases 

RAS Homologue (RHO) GTPases are a subfamily of the RAS superfamily with 20 classical members 

identified in humans. They are key regulators of several cellular functions, especially in the regulation 

of the cytoskeletal structure and dynamics [74]. Like RAS family proteins, RHO GTPases cycle between 

an inactive GDP-bound and an active GTP-bound state. RHOA, RAC1 and CDC42 are the best 

characterized members of the RHO family. Although the RHO members are strongly homologous in 

their amino acid composition, stimulation of the single members results in different cellular outcomes. 

Whereas RHOA regulates the assembly of contractile actin myosin filaments (also called stress fibers), 

RAC1 and CDC42 regulate actin polymerization to form peripheral lamellipodial and filopodial 

protrusions, respectively [75,76]. Furthermore, all three GTPase members can promote integrin 

engagement with the extracellular matrix, therefore playing a critical role in cell migration [77]. 
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4.4 Regulation of small GTPases 

The members of the RAS and RHO family GTPases can cycle between an active, GTP-bound and an 

inactive, GDP-bound state, as discussed before. Nucleotide exchange and GTP hydrolysis are tightly 

regulated by two classes of regulators, called guanine-nucleotide-exchange factors (GEFs) and GTPase-

activating proteins (GAPs), respectively [78,79]. RHO GEFs promote the exchange of GDP to GTP therby 

activating the GTPase whereas RHO GAPs negatively regulate RAS activity by enhancing its intrinsic 

GTPase activity. RHO GTPases comprise a third class of regulators which are determined as GDP 

dissociation inhibitors (GDIs) [80]. GDIs inhibit the GTPase cycle by sequestering GDP bound RHO 

GTPases from the membrane [81]. 

 

 

Figure 3: Schematic illustration of GTPase regulation and RAS downstream pathways. 
RAS proteins cycle between an inactive GDP and an active GTP-bound state. The transition between these states 
is mainly regulated by two main regulatory proteins called GEFs and GAPs. Whereas GEFs accelerate the 
exchange of GDP to GTP, GAPs enhance their intrinsic GTPase activity. GTPases are only able to transduce a signal 
in the GTP-bound state while they are located at the membrane by posttranslational modifications. Effector 
proteins of active RAS and the downstream targets are visualized below the cycle. RAS, rat sarcoma; GEF, guanine 
nucleotide exchange factor; GAP, GTPase-activating protein; RALGDS, guanine nucleotide dissociation 
stimulator; RALBP1, RALA binding protein 1; PLCε, Phospholipase C ε; DAG, diacylglycerol; IP3, inositol 
trisphosphate; PKC, protein kinase C; RASSF5, RAS-association domain family; MST, mammalian sterile 20-like 
kinase; LATS, large tumor suppressor kinase. 
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4.4.1 GAPs 

The complexity of cellular events explains the urgent need of enzymes like GAPs. Most cellular 

events can be activated within a fraction of a second up to seconds upon e.g. ligand interaction with 

membrane bound receptors. The fact that most of the known GTPases share a rather slow intrinsic 

GTP hydrolysis rate results in an accumulation of active GTPases after stimulation. Since GAPs 

negatively regulate RAS activity, enhancing its intrinsic GTPase activity by several orders of magnitude, 

they are needed to terminate the initial signal transduction [78,82]. Therefore, GAP proteins coordinate 

many processes in cells by either shutting down the main cascade or opposing signaling pathways to 

provide stability of main cascade transmission [83]. 

4.4.2 GEFs 

GEFs are able to bind specifically their affiliated RAS protein, accelerate the exchange of GDP for 

GTP, and thus activate the GTPase. The most common mechanism to accelerate the exchange is a 

reduction of the affinity to the bound GDP by several orders of magnitude [84]. The much higher 

intracellular concentration of GTP results from the formation of an active GTP-bound complex, which 

is in turn able to bind tightly to effector proteins. This results in conformational changes of the effector 

and in signal transduction controlling a variety of cellular functions [85,86]. The Rho GEFs from the 

diffuse B-cell lymphoma family (Dbl) consist of 74 members existing in humans [79]. A question of great 

interest is why the necessity of such a large number of GEFs exists for the relative low number of 

GTPases.  

4.4.3 GDIs 

The RHO family of GTPases holds another class of regulators, which are called GDIs. In contrast to 

the high number of GAPs and GEFs [78,79], there are only three genes in the human genome encoding 

GDIs [80]. Whereas GDI1 is ubiquitously expressed, GDI2 is mainly expressed in the hematopoietic 

tissue and GDI3 in human cerebral, lung and pancreatic tissue [87-89]. RHO GDIs main task is to 

sequester GDP-bound RHO GTPases from the membrane, therefore protecting them against both 

degradation and unspecific activation by RHO GEFs [90,91].  

5 RAF proto-oncogene serine/threonine-protein kinase 

The RAF Ser/Thr kinases link the RAS family proteins with the MEK/ERK pathway to control multiple 

biochemical processes, such as proliferation, differentiation, and survival [92]. The first RAF member 

was discovered 1983 by identification of the viral oncogene v-raf from the transforming murine 

retrovirus 3611-MSV [93]. Shortly afterwards, its first cellular homologue CRAF [94,95] was discovered, 

followed by identification of its paralogues ARAF [96] and BRAF [97]. 
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Activation of RAF kinases is a multistep process initialized by RAF recruitment from the cytosol to 

the plasma membrane, followed by binding to GTP-bound RAS proteins [98-100]. Thereafter, the RAF 

paralogues form homo- or heterodimer, resulting in the transphosphorylation of their kinase domains 

[101]. Once activated, the RAF kinases are the main link in the RAS-MAPK pathway, ultimately resulting 

in the activation of multiple other pathways [102,103]. Dysregulation of all three RAF paralogues was 

shown to be associated with carcinogenesis and occurrence of developmental disorders, e.g. Noonan 

syndrome (NS) [104-108]. 

5.1 RAF domain organization 

All three human RAF paralogues share three conserved regions (CR) (Figure 4) [109,110]. CR1 consist 

out of a RAS-binding domain (RBD) and a cysteine-rich domain (CRD), which are essential for the 

interaction with active RAS proteins as well as with the plasma membrane, respectively [111,112]. CRAF 

RBD consists of 5 β-sheets, interrupted by an α-helix, followed by two additional α-helices [113]. Amino 

acid alignment as well as structural determination of all human RAF paralogues revealed a high 

structural identity in the RBD [114]. Due to a high electrostatic complementary in their interaction 

surface, RAF RBD is able to bind the switch I region of RAS proteins [112,115]. Genetic studies and 

mutational analysis of the interaction site highlighted Arg59, Gln66, Lys84, and Arg89 (CRAF 

numbering) to have a particular contribution to the high binding affinity between RAS and RAF [116-

119]. Beside interacting with active RAS proteins, RAF RBD was found to be involved in membrane 

association of the RAF kinases. Five residues (Lys28, Arg52 Lys66, Arg68, and Lys69) in ARAF were 

shown to be engaged in lipid binding. Interestingly, named amino acids were found to be mutated in 

human cancer [118,120-122]. 

 

Figure 4: Schematic illustration of RAF serine/threonine-protein kinase domain organization. 
RAF paralogue domain organization, highlighting the evolutionary conserved regions (CR) as well as their 
domains. ARAF is the shortest paralogue, followed by CRAF. BRAF contains an additional N-terminal domain 
which is called BRAF-specific (BRS) domain. In the first conserved region, all RAFs share a Ras-binding domain 
(RBD) and a cysteine-rich domain (CRD). CR2 is described as a flexible linker between the first and the third 
conserved region which contains a regulatory multi-phosphorylation site. CR3 is composed out of the kinase 
domain. 
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The second domain in the CR1 is the CRD, which is connected to the RBD through a short linker 

fragment [123]. It is composed of two functional zinc-binding motifs which enable interaction with 

membrane lipids, like phosphatidic acid and phosphatidylserine [124,125]. Membrane interaction 

occurs mainly through its residues 143-160 (CRAF counting) which are highly conserved among 

different species [114]. Whether the CRD also directly interacts with RAS is still not fully deciphered 

[126-129]. However, CRD interaction with plasma membrane lipids stabilizes the RAS-RAF complex, 

therefore facilitating RAF activation. Mutational analysis of the zinc finger region revealed a diminished 

CRD association with phosphatidylserine-containing liposomes and a diminished HRAS-dependent 

activation [130,131]. 

CR2 is a small Ser/Thr-rich region and mainly important as multi-phosphorylation site, therefore 

negatively regulating RAF kinase function [132,133]. The region linking CR1 with CR3, is structurally 

disordered and therefore confers high structural flexibility to the kinase structure [134], which ensures 

signal transduction of the kinase domain to its substrates [135]. 

CR3 is located in the C-terminus of the protein and mainly consists of the catalytic kinase domain 

[136]. Like other kinase domains it contains two lobes which can open or close the catalytic cleft [135]. 

The opened cleft is able to bind ATP with an antiparallel β-sheet in its small lobe, whereas the α-helical 

large lobe binds protein substrates in its closed form [135,137]. Although the RAF paralogue kinase 

domains are highly conserved, they still differ in their kinase activity. BRAF was shown to have the 

highest activity for MEK activation, followed by CRAF and then ARAF [138]. Nevertheless, regarding RAF 

dimerization, a BRAF/CRAF heterodimer represents the most effective form for MEK phosphorylation 

among all possible hetero- and homodimers [139]. Unlike the other paralogues, BRAF carries an 

additional BRAF-specific region (BRS) in the N-terminus which forms an α-hairpin consisting of two 

antiparallel α-helices that are connected by a short turn. BRS was shown to be important for the 

dimerization with scaffolding proteins like the kinase suppressor of Ras (KSR) [140]. 

5.2 Regulation of the RAF kinase activity 

In unstimulated quiescent cells, RAF kinases exist in a cytosolic autoinhibited form [141] in which 

the N-terminal region inhibits the kinase domain [142,143]. This conformation is stabilized by binding 

of two 14-3-3 proteins to two phosphorylation sites with a consensus sequence RSXpSXP (pS, 

phosphor-serine; X, any amino acid; R, arginine; P, proline) [144-146]. The first site is located in CR2 

(pS259 of CRAF, pS365 of BRAF and pS214 of ARAF) and the other behind CR3 (pS621 of CRAF, pS729 

of BRAF, pS582 of ARAF) [147-150]. This simultaneous interaction results in a conformational change, 

maintaining RAF in its inactive state (Figure 5) [146].  

Activation of the RAF paralogues starts by the interaction with GTP-RAS [98,99], which is a critical 

step towards translocation to the plasma membrane [124]. RBD and CRD collectively enable the 
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interaction with RAS and the membrane phospholipids [151,152]. Furthermore, it was shown that also 

the kinase domain transiently interacts with the membrane, which may lead to further modulation of 

RAF function [153]. As the only member of the RAF kinases, BRAF was supposed to not exclusively be 

activated by RAS but furthermore also by Ras-related protein Rap-1A [154,155].  

 

Figure 5: Regulation of CRAF kinase activity. 
Activation of RAF starts by interaction with GTP-bound RAS and its translocation to the plasma membrane, which 
is followed by 14-3-3 dissociation and dephosphorylation of the negative regulatory site in the CR2 (pS259) by 
PP2A or a complex consisting of MRAS, SHOC2, and the dimeric PP1 phosphatase. Afterwards the N-region gets 
phosphorylated at the tyrosine residues by members of the SRC family and at the serine residues by members of 
the PAK and PKC families. Emerging negative electrostatic potential results in release of the autoinhibition and 
formation of RAF dimers. This consequently leads to transphosphorylation of the activation segment. Activated 
RAF dimers transmit the signal towards MEK1/2 which in turn phosphorylate ERK1/2. After signal transduction 
dephosphorylation at S388 by PP5 and RKIP interaction with the N-region interfere with MEK binding. ERK 
phosphorylates RAF in a negative feedback regulation at six different sites (S29/S43/S289/S296/S301/S642). 
Finally, PKA, AKT and LATS1 rephosphorylate RAF at S259 therefore recycling RA Finto its autoinhibited state. 
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Membrane translocation and RAS-association are followed by 14-3-3 dissociation and 

dephosphorylation of the negative regulatory site in the CR2 (pS259 of CRAF, pS365 of BRAF and pS214 

of ARAF) [156,157]. Currently, there are two proposed mechanisms for the dephosphorylation. In the 

first scenario, a heterotrimeric PP2A phosphatase was proposed to dephosphorylate RAF using a yet 

unclear mechanism [158-160]. The second mechanism employs a complex consisting of MRAS, SHOC2, 

and the dimeric PP1 phosphatase, therefore facilitating the dephosphorylation of the inhibitory CR2 

phosphorylation site and 14-3-3 dissociation [161-163].  

All of the previous named actions induce a conformational change which results in activation of the 

kinase domain. Afterwards, the RAF kinases have to be further phosphorylated on three more sites, 

the negatively charged regulatory region (N-region), the activation segment and the C-terminal 14-3-

3 binding site [110]. The N-region is a 4-amino acid sequence motif in the N-terminus of CR3 which 

slightly differs between the paralogues (338SSYY341 for CRAF, 446SGYY449 for BRAF and 299SGYY302 for 

ARAF) [164,165]. Members of the SRC family kinases are responsible for the phosphorylation of the 

tyrosine residues in the N-region of CRAF and ARAF. Phosphorylation of the serine residues at site I is 

achieved by members of the PAK and PKC families [166,167]. Further phosphorylation is required in the 

activation segment which is defined as two distinct residues in the kinase domain (ARAF: T452 and 

T455, BRAF: T599 and S602, CRAF: T491 and S494) [168-170]. The emerging negative electrostatic 

potential finally results in the release of the autoinhibition [142], enabling the formation of RAF dimers 

[167,171-173]. RAF kinases form homodimers and heterodimers, which influence their substrate 

specificity and catalytic efficiency [138,174]. RAF paralogues mainly dimerize through the N-terminal 

lobes of their kinase domains [175,176]. Activating phosphorylation and the subsequent dimerization 

are required for stable formation and increased local concentration of membrane-bound RAS-RAF 

complexes into so-called nanoclusters [177,178]. Activated RAF dimers transmit the signal downstream 

to MEK1 and MEK2 by phosphorylation of S218/S222 and S222/S226, respectively [179], which in turn 

phosphorylate ERK1/2 [180,181]. 

After signal transduction, the hyperphosphorylated RAF will be inactivated and translocated into 

the cytoplasm in a multistep process. Dephosphorylation at S388 by protein phosphatase 5 (PP5) and 

RAF kinase inhibitor protein (RKIP) interaction with the phosphorylated N-region interfere with MEK 

signaling and -binding, respectively [182,183]. Furthermore, CRAF was found to be phosphorylated by 

ERK in a negative feedback regulation at six different sites, at the N-terminus (S29 and S43), between 

CR2 and CR3 (S289/S296/S301) and at the C-terminus (S642) [184,185]. These phosphorylations 

interfere with RAS-RAF interaction and RAF dimerization. 

RAF paralogues are rephosphorylated at the CR2 (pS259 of CRAF, pS365 of BRAF and pS214 of ARAF) 

in a final step, that ensures 14-3-3 interaction, therefore recycling RAF into their presignaling 



Chapter I: General introduction 

14 

autoinhibited state. The main cellular kinases for CR2 phosphorylation are Protein kinase A (PKA) and 

AKT, however also the large tumor suppressor kinase 1 (LATS1) was identified to phosphorylate CR2 in 

a MST/Hippo-dependent manner [186-189]. 

6 RAS/MAPK pathway dysfunction in human diseases 

RAS GTPases control the majority of signaling networks in the MAPK pathways which collectively 

include several cellular fates. Only the RAS-MEK-ERK axis mediates early and late developmental 

processes which finally control morphological determination as well as organogenesis, growth and 

synaptic plasticity [190]. Therefore, it is not surprising that dysregulation of MAPK components results 

in drastic effects not only on carcinogenesis but also on human development. Compared to somatic 

mutations which usually result in the formation of tumors, germline mutations were found to increase 

the signal intensity to a lesser extent and, therefore, facilitate the formation of developmental diseases 

[58,191]. 

6.1 The RASopathies 

Dysregulation of MAPK pathway regulators was frequently found to correlate with the occurrence 

of developmental disorders. A clinically defined class of developmental disorders, characterized by 

autosomal dominant de novo germline mutations of genes encoding components of the MAPK 

pathway, was found to cause a subset of developmental disorders collectively named RASopathies. 

Most RASopathy phenotypes are characterized by developmental disorders like facial dysmorphism, 

skeletal abnormalities, neurocognitive impairment, cardiac malformations and an increased risk of 

cancer [104-106,192]. 

Neurofibromatosis type 1 (NF1) (gene encoding NF1) was the first described disease caused by a 

MAPK pathway alteration [193]. Since then, various diseases were identified to result from genetic 

alterations, like the NS (genes encoding KRAS4B, NRAS, RRAS1/3, RIT1, SOS1, SOS2, RASGAP1M, CRAF, 

CBL) [194], the NS with multiple lentigines (NSML) (genes encoding BRAF, CRAF, SHP2) [195,196], the 

capillary malformation–arteriovenous malformation syndrome (CM-AVM) (gene encoding 

p120RASGAP) [197], the Costello syndrome (CS) (genes encoding HRAS1, HRAS2) [198], the cardio-facio-

cutaneous syndrome (CFC) (genes encoding KRAS4B, BRAF, ERK1/2) [199] and the Legius syndrome 

(gene encoding SPRED1) [200]. 

6.1.1 Noonan syndrome 

The NS is an autosomal dominant disorder with a prevalence of approximately 1 in 1000–2500 [201]. 

Noonan syndrome individuals show a distinct dysmorphic phenotype which is characterized by low-

set ears, short webbed neck, paired with skeletal anomalies, and intellectual and developmental 

disabilities. Furthermore, cardiovascular impairments, like congenital heart defects and hypertrophic 
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cardiomyopathy as well as an increased risk of developing cancer are accompanied with NS [202]. The 

affected genes in NS all cause gain-of-function mutations of components of the RAS-MAPK pathway, 

such as PTPN11, SOS1, SOS2, KRAS, NRAS, RAF1, SHOC2, CDC42, RIT1, RRAS2, LZTR-1, PPP1CB and CBL 

(Figure 6) [203-206]. Although the phenotype is homologous for different genetic alterations, the 

occurrence differs. With around 50 % of all cases, the most frequent mutated gene is PTPN11, followed 

by SOS1 mutations with 15 % prevalence [207,208]. KRAS and NRAS mutations are a rare cause of NS 

which increase the RAS-MAPK signaling through reduction of the GTPase function [209,210]. 

 

Figure 6: Schematic view of the RAS-MAPK pathway and affected genes in NS. 
Ligand interaction with receptor tyrosine kinases results in recruitment of SOS1 to the membrane, which acts as 
a RAS GEF, that activates RAS. Active RAS transduces its signal towards the members of the RAF family. 
Subsequently, RAF phosphorylates MEK1/2 which in turn phosphorylate ERK1/2. NS is an autosomal dominant 
disorder characterized by germline mutations in genes encoding proteins involved in the RAS-MAPK pathway 
(affected genes are colored in orange). 

 

6.2 Pathomechanism of RAF kinases 

Most of the described CRAF mutations resulting in NS are flanking the negative regulation site 

(S259) which is important for 14-3-3 interaction, therefore controlling its autoinhibition. Fourteen 

different RAF1 missense mutations were described. Eight of these mutations are located in the flanking 

region of S259 (R256S, S257L, S259F, T260R, P261A, P261S/L, V263A). Another four mutations were 

found in the activation segment of the kinase domain (D486N/G, T491I/R) and two more in the very C-

terminal part of CR3 (S612T, L613V) [196,211]. A special outcome in NS RAF1 mutations is the high 

frequency to from a hypertrophic cardiomyopathy (HCM) which is defined by structural and functional 

abnormalities of the ventricular myocardium resulting in increased wall thickness of the left ventricle 

[190,212]. As the molecular cause of the HCM in RASopathy subjects hyperactivation of different MAPK 

pathways was hypothesized, which was experimentally proven in different cellular models 
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[196,211,213]. Similar to mutations in regulatory regions, the C-terminal L613V mutation was also 

shown to increase RAS-MAPK pathway signaling in a mouse model, consequently resulting in HCM. 

Inhibition of the RAF downstream target MEK was partially able to rescue this phenotype [104]. Other 

data indicates that Yorkie (Fly homologue to human YAP), a transcriptional co-activator in the Hippo 

pathway, which is important in organ development, is required for a CRAF-induced HCM. 

Cardiac-specific knock down of Yorkie rescued the CRAF-mediated HCM phenotype [214]. 

6.2.1 Hypertrophic cardiomyopathy 

Hypertrophic cardiomyopathy is a common cardiovascular disease which is present in 

approximately 0.2 % of the general population and is defined by structural abnormalities of the 

ventricular myocardium. This results in a non-dilated thickening of the left ventricle which was shown 

to be an important cause for contractile dysfunction, pulmonary valve stenosis, atrial fibrillation and 

finally heart failures resulting in the death of affected individuals [215,216]. To date, 12 genes encoding 

sarcomeric components have been found to be implicated in the development of hypertrophic 

cardiomyopathy. Most of them are located in the genes encoding myosin-binding protein C (MYBPC3) 

and the β myosin heavy chain (MYH7) [217]. Furthermore, mutations of genes not directly encoding 

sarcomeric proteins, like certain members of the RASopathy family, were also found to impact the 

development of HCM [218]. Although the occurrence of HCM in RASopathies is rather low (20–30%), a 

higher frequency of HCM (≈ 70 %) was identified in individuals with pathogenic variants of RAF1 and 

RIT1 [106,219].  

Whereas HCM that is caused by alterations in sarcomeric compounds usually manifests at age 8 

years on average, NS-associated HCM occurs much earlier in life with the median being 5 months [106]. 

Furthermore, NS individuals diagnosed with HCM show a 70 % chance of survival 15 years after 

diagnosis. The main cause of death for NS-associated HCM is a congestive heart failure [220]. 

Independent of the mutation, stimuli that result in the development of a cardiac hypertrophy can 

be divided into biomechanical and stretch-sensitive mechanisms, associated with the release of 

hormones, cytokines, chemokines, and peptide growth factors. These signals are further processed by 

cardiomyocytes through membrane-integrated RTKs, G-protein coupled receptors (GPCR), and gp130-

linked receptors. Signal transduction of these receptors results in hypertrophic growth due to changes 

in gene expression and altered protein homeostasis [221,222]. 

Activation of GPCR signaling is mainly initiated by angiotensin II, endothelin-1 and α-adrenergic 

catecholamines (e.g. noradrenaline and adrenaline). Upon activation, the Gαq/11 subunit of the 

heterotrimeric G proteins stimulates the activation of membrane-bound phospholipase Cβ (PLCβ), 

consequently inducing the generation of diacylglycerol (DAG) and the production of inositol-1,4,5-

trisphosphate (IP3) [223]. Generated IP3 is able to bind to its receptors which are located in the 
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membrane of the endoplasmic reticulum (ER), thereby triggering the release of internal Ca2+ storage 

into the cytosol. Increased Ca2+ can interact with the calcium-binding proteins calcineurin and 

calmodulin dependent kinase (CaMK), inducing hypertrophic signaling in two different manners. Upon 

interaction, calcineurin dephosphorylates NFAT, resulting in NFAT translocation into the nucleus 

followed by the activation of pro-hypertrophic gene expression [224]. Ca2+ mediated activation of 

CaMK causes phosphorylation of HDAC5, a suppressor of hypertrophic gene transcription, and initiates 

its nuclear export [225].  

HCM is accompanied by increased workload of the heart due to hemodynamic overload [226]. 

Cardiomyocytes use different mechanisms to detect mechanical stress through an internal sensory 

apparatus. Proteins involved in sensing mechanical alterations are integrins, that link the cytoskeleton 

to the extracellular matrix [227] as well as the small LIM-domain protein MLP (muscle LIM protein) that 

is located in the Z-disc within each sarcomere [228]. These mechanisms are crucial in the regulation of 

GTPases, like Ras and Rho and in inactivation of GSK3β [229]. 

MAPK signaling in the heart can be initiated by GPCRs, RTKs, transforming growth factor-β (TGFβ), 

gp130-linked receptors as well as by stress stimuli such as stretch. Stimulation of those MAPKs finally 

results in the phosphorylation of MAPKs including ERK, JNK and p38 which in turn activate numerous 

transcription factors [221]. 

The changes in gene expression caused by alterations in cardiomyocyte workload are typically 

involved in re-expression of a fetal gene program and go along with higher levels of stress markers like 

atrial natriuretic factor (ANF) and B-type natriuretic peptide (BNP) as well as alterations in proteins 

regulating calcium transience [230]. Ongoing hypertrophy is therefore often associated with drastic 

downregulation of the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA2a), which 

consequently results in prolonged action potential duration in the cardiomyocytes [231]. 

So far, medical therapy for NS associated HCM usually consists of Beta-blockers, disopyramide or 

calcium channel blockers [232]. 
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7 Aims of the Thesis 

The signal transduction cascades of small GTPases of the RAS and RHO families play important roles 

in diverse cellular processes, such as proliferation, adhesion, migration, and differentiation. Therefore, 

it is not surprising that any pathway dysregulation contributes to the progression of numerous 

diseases, such as cardiovascular diseases, developmental and neurological disorders, and cancer. CRAF 

is the best-investigated RAS effector linking the signals to its downstream targets MEK1/2, integral 

components of the MAPK pathway. RAF1 gain-of-function mutations are frequently associated with 

NS, an autosomal dominant developmental syndrome caused by germline mutations in genes 

encoding components of the RAS/MAPK pathway, which is accompanied by a severe HCM. 

Furthermore, several missense mutations in CDC42 were identified in patients with NS-like disease 

pattern which, moreover, resulted in the identification of a novel disorder, termed NOCARH syndrome, 

characterized by neonatal onset of pancytopenia, autoinflammation, rash, and episodes of HLH. RAC1, 

a close relative to CDC42, is involved in cell migration by regulating actin cytoskeleton reorganization 

and thus, in tumor invasion and metastasis. We were able to identify and characterize RAC1 

suppression in the treatment of BCR-ABL caused leukemia and in cell viability after fractionated 

irradiation of the lung. 

This thesis aimed at investigating the molecular mechanisms of dysregulated proteins and 

understanding the progression of the underlying diseases. It includes following functional and 

mechanistic analyzes: (i) Physiological and biochemical characterization of the RAF1 

missense-mutation towards understanding NS pathogenesis accompanied by HCM; (ii) investigating 

the molecular mechanism of NOCARH syndrome; (iii) identifying how RAC1 suppression benefits 

therapeutic approaches in distinct human diseases. 
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8 Discussion 

The members of the RAS superfamily and their downstream effectors are involved in nearly every 

aspect of cellular events. In their natural function, GTPases control incoming signals and mediate them 

to regulate the output of their effectors. A spatial and temporal organization of the signaling 

components is required to achieve this highly specialized procedure. Therefore, dysregulation of these 

components, is frequently associated with the manifestation of human diseases [233]. The variety of 

pathogenic phenotypes resulting from mutations in genes encoding proteins of the RAS/MAPK 

pathway reaches from a diverse subset of developmental diseases (e.g. RASopathies) but also includes 

multiple types of cancer [192,234]. Therefore, extensive studies of abnormal signal transduction are 

necessary to understand the molecular mechanism of the individual pathologies and develop specific 

strategies to treat the occurring diseases. 

Chapter I gives a general introduction about the topics that are reported and discussed in this 

doctoral thesis. Chapter II describes the regulatory mechanism of RAF paralogues with a special focus 

on their dysregulation in human disease and points out the importance of investigating their 

mechanism. Chapter III elucidates the advantages of iPSC-derived cardiomyocytes for the 

characterization of human genetically-caused cardiac diseases. Therefore, iPSCs, originated from 

dermal fibroblasts of NS patients with HCM were differentiated into cardiomyocytes to investigate the 

underlying RAF1S257L mutation. This technique enabled a detailed analysis of the mechanistic basis of 

RAF1S257L- induced HCM. Chapter IV and Chapter V collectively focus on the influence of missense 

mutations in CDC42, a gene encoding a small GTPase, which underlie a clinically heterogeneous group 

of phenotypes characterized by NS-like properties. These missense mutations did not only result in 

manifestation of the known developmental disorders but furthermore, in the discovery of a not yet 

described pathological phenotype involving dyshematopoiesis, inflammation, and hemophagocytic 

lymphohistiocytosis. Chapter VI deals with the discovery of a novel “pseudo natural product”, which in 

unbiased phenotypic assays and target identification led to the discovery of the first small-molecule 

ligand of the RHO GDP-dissociation inhibitor-1 (RHO GDI1), termed Rhonin. This compound inhibits 

RHO GDI1-binding to GDP-bound RHO GTPases, thereby inducing activation of GTPases and inhibiting 

signal transduction through a non-canonical Hedgehog pathway. Finally, Chapter VII and Chapter VIII 

deal with the positive aspects of RHO protein signaling inhibition. Chapter VII describes the design of 

small molecule inhibitor of RHO GEFs which can be used as an anti-cancer drug. IODVA1, a synthetic 

compound, inhibits RAC activation and signaling, and increases pro-apoptotic activity in BCR-ABL 

expressing cells. Chapter VIII describes reduced IR-induced residual DNA damage following promoted 

DNA repair due to Rac1 signaling inhibition.  The individual chapters will be further discussed in three 

main discussion sections. 
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8.1 Molecular mechanism of RAF1S257L-caused hypertrophic cardiomyopathy 

One aim of this thesis was the investigation of the mechanistic basis of  RAF1S257L-induced 

hypertrophic cardiomyopathy. To achieve this goal, a protocol for the differentiation of highly pure 

and contractile iPSC-derived ventricular 3D cardiac bodies was established.  

In comparison with previous studies [196,235] we investigated the impact of the RAF1 mutation on 

the best-known terminal downstream target ERK. As expected, RAF1S257L resulted in higher RAF 

activity, and in turn, in increased phosphorylation of ERK (pERK). Inhibition of MEK, the linking kinase 

between RAF1 and ERK, showed in turn drastically reduced levels of pERK in the mutant cells with even 

lower levels than in the untreated WT control cells. These results served as a proof-of-principle for the 

expected mutation-mediated alterations RAF signaling. Although the canonical RAS-RAF-MEK-ERK 

pathway was not shown to be crucial for regular heart development, its activation is known to regulate 

cardiac transcription factors, like GATA4, whose DNA binding capacity is thereby enhanced. GATA4 has 

been shown to regulate the transcription of several genes that are essential in a hypertrophic response 

[236-238]. It has moreover been shown that the disruption of the sarcomeric ERK-GATA4 complex 

resulted in the rescue of phenylephrine-induced cardiomyocyte hypertrophy [239]. Consequently, the 

RAF-MAPK-GATA4 axis could be one critical mediator in the occurrence of HCM, caused by hyperactive 

MAPK signaling. 

An abnormal calcium handling is, among other disfunctions, described as a consequence of 

maladaptive hypertrophy [240]. Contractile analysis of the RAF1S257L CBs revealed a slower contraction 

rate compared to the control which was almost restored after MEKi treatment from day 12 until day 

40. Correlating with this phenotype, we were able to obtain a switch in the expression of MYH6 to 

MYH7 upon mutation induction, that was also rescued after long-termed MEK inhibition. MYH7 is 

known to be rather expressed as a result of hypertrophic signaling and is further known as the slower 

contracting isoform [241]. Moreover, MYH7 is known to be expressed upon activation of GATA4 

consequently to increased MAPK signaling induced by RAF1 [242]. However, the impaired contraction 

might result from changes in calcium transients. Oscillating levels of cytosolic calcium are crucial for 

proper cardiomyocytes contraction [243]. The observed reduction in calcium transients in RAF1S257L CBs 

was already described earlier in association with occurring BRAF and MRAS mutations, all affecting the 

activity of the canonical MAPK pathway [244,245]. Impaired calcium transients do not only play a major 

role on the physiological aspects of RAFS257L cells, but also on the activity of intracellular calcium-

dependent kinase pathways. The activation of NFAT, a transcriptional regulator of hypertrophic signals, 

is directly mediated by calcineurin, which is a calcium binding protein [246]. Our data showed that 

RAF1S257L regulates the prominent NFAT target gene NPPB, whereas RAF1S257L CB treated with MEK 

inhibitor had 10-fold lower NPPB levels. Previous studies have shown that hypertrophy induction via 
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calcineurin-NFAT can be attenuated by ERK inhibitors [247]. Besides NFAT and GATA4, a huge variety 

of ERK substrates such as RSK3, ELK1, MSK1, c-MYC and NFkB, are activated by ERK1/2 in 

cardiomyocytes [248-250]. Therefore, the observed expression changes of NPPB, MYH7, MLY2, cTnI, 

SERCA2 and LTCC may be due to the co-occupation of the hypertrophy response gene promotors via 

the regulated transcription factors GATA4, AP1, MEF2, NFAT and NFkB [251]. 

 

Figure 7: Schematic illustration of the main findings in the investigation of a heterozygous RAF1S257L mutation 
in iPSC-derived cardiac bodies. 
The investigation of RAF1S257L mutation demonstrated a role for hyperactive RAF1 in the manifestation of HCM 
through an enhanced activation of the canonical MAPK pathway. This resulted in a switch to the fetal gene 
expression program and a reduction of the expression of Ca2+ channels and transporters. Furthermore, we 
obtained structural changes on the level of the sarcomeric units, e.g. the lack of the I-band. MEK inhibition 
partially rescued most of the obtained alterations. 

 

One of the main findings of this study is the impaired I-band formation that was not only found in 

the heterozygous RAF1S257L mutated iPSC-derived CBs but also in the heart biopsy of the corresponding 

patient. The I-band is characterized as the sarcomeric unit lacking myosin and only contains actin ehih 

acts as a molecular spring upon sarcomere stretching [15]. Strikingly, impaired I-band formation was 

completely reverted after a long-term treatment with MEKi. The MAPK pathway was found to be 

aligned in the N2B region of titin in the I-band, scaffolded by the protein four-and-a-half LIM domain 1 

(FHL-1) [252]. Phosphorylation of the N2B region regulates titin stiffness and thus, pressure overload-

mediated cardiac hypertrophy [253].  

In this work, we showed that also alternative RAF1-dependent pathways were altered in the 

RAF1S257L CBs. We obtained for example a higher phosphorylation of YAP. RAF1 interacts with MST1/2 

and therefore inhibits MST1/2 interaction with LATS1/2, a kinase that is responsible for YAP 

phosphorylation. As a consequence, unphosphorylated YAP can enter the nucleus and act as a 

transcriptional co-activator by association with TEAD, which results in the transcription of mitogenic 

factors such as CTGF, miR-206, c-MYC, and NOTCH2 [254]. The activation of YAP was even considered 
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to be necessary for the development of a cardiac hypertrophy induced by hyperactive RAF1 [214]. 

Furthermore, expression of miR206 regulates hypertrophy and survival of cardiomyocytes through 

upregulation of the fetal genes MYH7, NPPB and NPPA [255]. 

Collectively, this thesis provided new insights into an aberrant RAF1 function in iPSC-derived 

cardiomyocytes which resemble the observed phenotype of the corresponding patient. The Ser257Leu 

mutation in RAF1-CBs modulates RAF1-dependent signaling network as well as cardiac-specific 

proteins and functions, such as re-activation of the fetal gene program, contraction rate, calcium 

transients and the sarcomeric structures. 

8.2 CDC42 dysregulation results in a clinically heterogeneous group of 

developmental phenotypes 

Mutations affecting the same gene but resulting in substantial phenotypic differences is a very 

well-known phenomenon. The wide use of exome sequencing has led to the recognition that this event 

occurs much more common than previously predicted [256]. Although many genetic alterations result 

in the same pathogenicity, the underlying mechanisms can vary according to differential impact on 

protein function. Here, we gained new insights into the genetic alterations of CDC42, a gene encoding 

a member of the RHO family of GTPases, underlying a clinically heterogeneous group of developmental 

phenotypes. In Chapter IV and Chapter V, we identified ten different missense mutations that are 

distributed over the entire CDC42 sequence which are classified in four different groups based on their 

molecular mechanism. 

Group I contains the residues Tyr64, Arg66, and Arg68, which are located in the switch II region of 

CDC42, mediating the binding to effectors and regulators [257]. Whereas Tyr64 and Arg66 are located 

at the protein surface of CDC42, and therefore directly participate in the interaction of regulators and 

effectors, Arg68 is embedded inside the protein and stabilizes the conformation of the switch II region 

via intramolecular interactions with multiple residues. This results in slightly different effects of the 

mutations. Whereas CDC42Y64C and CDC42R68Q exhibited a robust GAP insensitivity, CDC42R66G results 

only in a mild decreased GAP-stimulated GTP hydrolysis. In contrast to alterations in residue Arg66 and 

Arg68, CDC42Y64C resulted in a nearly abolished GEF interaction. Due to their localization within the 

switch II region these mutations also resulted in a drastically lowered binding affinities zo the tested 

effectors PAK1, WASP, IQGAP1, and FMNL2. 

Group II contains the aa residues Ala159, Cys81 and Ser83 which are located within or in close 

proximity to the nucleotide-binding pocket. Whereas CDC42S83P only slightly increased WASP binding, 

CDC42A159V promoted a fast GDP/GTP cycling comparable to what has been reported in RAS proteins 

[56]. 
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Group III contains the aa residue Ile21, Tyr23, and Glu171 which are exposed residues and predicted 

to affect interactions with effectors containing a CDC42/RAC-interacting binding (CRIB) motif [258]. 

Interestingly, exchanging Glu at residue 171 into Lys does also change the electrostatic potential of this 

interaction site from a negative charge to a positive charge. Prior experiments have shown that 

electrostatics play a major role in defining the mechanisms of molecular recognition and complex 

formation. Results from our group showed that this so-called electrostatic steering is a critical step in 

the initiation of CDC42-mediated activation of WASP [259]. CDC42Y23C showed an impaired interaction 

to all tested effectors. 

Unlike to the prior introduced mutations, we characterized in Chapter V a previously unrecognized 

and distinctive hematological/autoinflammatory disorder due to Arg186Cys mutation of CDC42. The 

disease pattern considerably differs from that of previously described CDC42 mutations and is 

characterized by neonatal onset of pancytopenia, autoinflammation, rash, and episodes of HLH, 

therefore named as NOCARH syndrome. Based on structural modeling and the biochemical cell-free 

and cellular studies, we were able to elucidate an impaired interaction with known regulators and 

effectors, including RHO GDI, IQGAP1, and WASP. This resulted in atypical subcellular localization, actin 

cytoskeleton rearrangement, and reduced migration. Especially CDC42 mislocalization is consistent 

with the physiological role played by RHO GDI [260,261] Alignments between the C-terminal aa 

sequence of CDC42R186C with those of other members of the RAS superfamily revealed that the 

Arg186Cys mutation introduces a cysteine prior to the CAAX box that is palmitoylated in HRAS [262]. 

Based on this, a further study showed that CDC42R186C resulted in an aberrant addition of a palmitate 

which directly interfered with GDI1 binding, therefore inhibiting its extraction from the Golgi 

membrane [263,264]. Previous studies showed that cells expressing IQGAP1 mutants, defective in 

CDC42 binding, displayed an aberrant multipolar morphology, compared to the morphology seen in 

this study [265]. Together with the data presented in our study, this supports the notion that a proper 

IQGAP1-CDC42 interaction is crucial for cell polarization and migration. The role of actin cytoskeleton 

remodeling of immune cells has been demonstrated to be involved in the pathogenesis of 

hematological, autoinflammatory diseases. Not only alterations in RHO GTPases like RAC2, but also in 

actin-binding proteins cause abnormal migration, proliferation, and/or differentiation of myeloid cells 

and are associated with features of autoinflammation [266,267]. 

8.3 Reduction of RAC1 activity supports the anticancer efficacy in particular tumors 

The last part of this thesis deals with the positive effect of RAC1 signal suppression in a tumor 

relevant surrounding. In Chapter VII we discovered the first small molecule inhibitor against the RAC 

GEF, VAV3, which is a critical component of BCR-ABL-induced RAC activation [268]. The inhibitor of 

oncogene driven Vav3 activation, named IODVA1, was shown to bind VAV3 tightly (Kd = 400 nM) in 
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vitro and in vivo and consequently prevents RAC activation. Furthermore, IODVA1 did not interfere 

with transmembrane or cytosolic protein tyrosine kinases [269]. Cellular assays show that the specific 

IODVA1 interaction triggered an increased apoptosis similar to those observed in Vav3-/- models [268]. 

Interestingly, inhibition of VAV3 in BCR-ABL leukemic cells increased signaling through the pro-survival 

and VAV3/RAC-independent effectors AKT and STAT3 but decreased-RAC dependent activation of its 

downstream effectors such as PAK, JNK, S6, and 4EBP. The decrease in PAK activation consequently 

resulted in activation of BAD, promoting cellular apoptosis in BCR-ABL expressing cells. Most strikingly, 

IODVA1 administration to tyrosine kinase inhibitor resistant BCR-ABL (T315I) leukemia models resulted 

in a significant decrease of pJNK, pPAK, pS6, and p4EBP levels and therefore in their leukemic burden. 

This makes IODVA1 a suitable drug for malignancies in which VAV can be targeted [270-272]. 

Finally, in Chapter VIII we provided novel evidence that inhibition of RAC signaling by lovastatin 

resulted in a radioprotective potency on primary lung cells and rodent lung tissue under situation of 

hypo-fractionated irradiation. Statins act as β-hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase 

inhibitors and were shown to have multiple cholesterol-independent effects by interfering with RHO 

GTPases [273]. Lovastatin consequently accelerated the removal of radiation-induced double stand 

breaks (DBS) which was already observed before in keratinocytes [274]. One possible mechanism might 

be an interference of inhibited RAC1 with the DNA damage response originating from DSB-initiated 

ATM/ATR signaling [275]. Furthermore, inhibition of RAC1 in vivo was able to mitigate acute radiation 

pneumonitis in mice two weeks after irradiation, which was not detectable in later time points. 

However, it is noteworthy that lovastatin significantly reduced the number of residual DSBs in lung 

tissue detectable 4 weeks after concluded fractionated irradiation. Whereas it was already shown that 

statin-mediated inhibition of the RHO/ROCK axis impacts the late fate of radiation injury (i.e., fibrosis) 

[276,277], our data further indicates that statins can interfere with preceding radiotoxic effects (i.e., 

DNA damage and caspase-mediated apoptosis) by targeting RAC1 signaling. Collectively, Chapter VIII 

emphasizes radioprotective effects of statins on normal tissue what might be useful in the clinic to 

widen the therapeutic window of radiotherapy. 
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