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Preface

This dissertation includes three essays, henceforward referred to as “papers”, on opera-

tional and strategic problems of central banks in a world of low interest rates or with

interbank market frictions. The first paper, co-authored with Ulrike Neyer, deals with

the implementation of monetary policy. We consider a central bank that aims at steer-

ing the interest rate in the unsecured overnight segment of the interbank money market

(the “interbank rate”) under an interest corridor regime. Controlling the interbank rate

was a standard approach to implement monetary policy until the global financial crisis

started.1 Since then, and in light of the unconventional measures that major central banks

have implemented, there is a debate on whether, respectively how, monetary policy imple-

mentation frameworks or procedures need to be refined or changed.2 One of the various

problems that central banks have to consider in this respect is the past and potential

future emergence of “frictions” in the interbank money market. For example, the inter-

bank rate could become unstable and harder to control in the future due to new banking

regulations, as discussed, for instance, by Jackson and Noss (2015); Committee on the

Global Financial System and Markets Committee (2015); Bindseil (2016). Frictions in

the interbank money market of a different kind materialized in the course of the global

financial crisis. For instance, as discussed by Bucher, Hauck, and Neyer (2020, section 1),

banks had to make higher efforts to find trading counterparties or to overcome problems

of asymmetric information about counterparty credit risks. Taken altogether, this is the

context in which our paper is placed. We introduce interbank market frictions in the sem-

inal model of monetary policy implementation presented by Whitesell (2006). Our goal is

to explore whether, respectively how, a central bank can control friction-induced volatility

of the interest rate in the unsecured overnight interbank market. While a wider interest

corridor is typically associated with higher levels of interbank rate volatility, our main

finding is that, under certain circumstances, widening an implemented interest corridor

can be a measure to reduce the extent of friction-induced interbank rate volatility.

Of course, for central banks, a relatively rigorous consequence of market frictions could

be to simply turn away from targeting the interest rate in the unsecured overnight inter-

bank market (as insinuated, for instance, by Bech and Monnet, 2013, pp. 147–148). At

1See, for instance, Bech and Monnet (2013, p. 147). For a larger discussion on the concept and the
choice of an appropriate “operational target” of monetary policy see, for instance, Bindseil (2004).

2See, for instance, Bindseil (2016) and Potter (2016).
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the time we wrote our paper, the question of which variable should become the future

“key operational target of monetary policy” (for a proposal in this respect see Bindseil,

2016, p. 45, point 4) was still unanswered. By now, at least as far as the European Central

Bank (ECB) is concerned, the fact that the reference rate “EONIA” will be (or de facto

recently has been) replaced by the “euro short-term rate (eSTR)” indicates that the ECB,

in fact, might consider to target an interest rate that does not only refer to transactions

in the interbank money market.3 As a consequence, should the ECB try to implement its

monetary policy primarily by steering the eSTR in the future, it would have to take into

account that this reference rate can lie outside the interest corridor formed by its deposit

and marginal lending facility.4 To capture such a world, the theoretical framework we

apply in our paper would have to be extended by also considering agents that are counter-

parties of banks in the unsecured overnight segment of the money market but lack access

to the central bank’s standing facilities.

The second and third paper in this dissertation have a different subject matter. Both

papers are tied to the problem for central banks that, as long as cash exists, it will be hard

for them to implement significantly negative policy rates.5 So, at some point, expansionary

monetary policy cannot be implemented by simply lowering policy rates.6 The notion of

an “effective lower bound (ELB)” on monetary policy rates refers to this constraint. With

regard to the historically low level of the ECB’s key interest rates (at the end of 2019)

it is clear that the ELB-constraint is an acute problem which could be intensified should

inflation rates in the euro area decline further. As a means to relax the ELB-constraint,

Kenneth Rogoff proposes to “phase out” large-denomination banknotes (see, for instance,

Rogoff, 2017). Rogoff’s reasoning (see Rogoff, 2017, pp. 59–60) is based on the natural

assumption that a flight from negative monetary policy rates to cash would be harder if

the costs associated with large cash hoardings were higher – and hoarding costs, in turn,

for instance including transportation or storage costs, would be be higher in a world where

only small-denomination banknotes were available.

3According to the European Central Bank (2019), the “euro short-term rate” captures the price that
euro-area located banks pay for funds borrowed in the unsecured overnight segment of the wholesale euro
money market. Crucially, as pointed out in Deutsche Bundesbank (2019, section 3.1), also transactions
between a bank and a non-bank “financial counterparty” in this market segment are considered in the
computation of the euro short-term rate. As pointed out in Deutsche Bundesbank (2019, section 3.3),
some of these counterparties might lack access to the monetary policy operations of the Eurosystem.

4For a short remark on the possibility that the euro short-term rate can lie outside the ECB’s interest
corridor see, for instance, Deutsche Bundesbank (2019, section 3.3).

5See, for instance, Rogoff (2017, p. 47).
6See, for instance, Buiter and Rahbari (2015, pp. 3–4) in a paper that addresses a broader audience.
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It is an open research question why major central banks like the ECB and the Federal

Reserve are still issuing large banknotes and accept to be constrained by a higher effective

lower bound – especially with regard to their experiences during the global financial crisis

or, as far as the ECB is concerned, with regard to the environment of persistently low

interest rates in the euro area. One reason in this respect that is frequently brought forward

is the loss of seignorage revenues a central bank had to accept if it took any measures to

make large cash holdings unattractive or virtually impossible. Rogoff (2015, pp. 452)

argues that losing seignorage revenues, in turn, would weaken a central bank’s ability to

stay independent from external financing and thus to keep its operational independence.7

So, if this is actually the case, there is a trade-off for central banks between relaxing

the ELB-constraint and shielding their independence by keeping a source of seignorage

revenues. In the second and third paper in this dissertation, I take up Rogoff’s proposal

to lower the ELB and start from this trade-off. The assumption that seignorage matters

is a strong one. However, as it will become apparent, the implications this assumption has

in the theoretical framework I employ are consistent with major central banks’ behaviors

observed by now. The models I employ can also explain why it can be rational to keep

issuing large banknotes even though the net benefits from removing them immediately

would already be greater than zero.

My starting point in the second and third paper is that the aforementioned trade-off

is state-dependent. The state-dependency, in turn, creates a need to time the removal of

large-denomination banknotes optimally. In the second paper, I consider a central banker

in a one-country setting with the option to “call in” large-denomination banknotes, i.e.,

with the option to stop the issuance and to remove the legal tender status of large notes.

I assume that the net benefits from calling-in large notes depend on the natural rate

of interest which is uncertain and governed by a stochastic process. I treat the central

banker’s problem of when to optimally call in large notes as a problem of when to optimally

exercise a perpetual American option, respectively, a “real option”.8 The option structure

of the central banker’s timing problem can explain why a major central bank like the ECB

is still issuing banknotes as large as the 100- or 200-euro notes.

7See Rogoff (2015, pp. 450–452). See also Rogoff (2016, chapter 6), Buiter (2009, p. 224), Thiele,
Niepelt, Krüger, Seitz, Halver, and Michler (2015, p. 10), and Krüger and Seitz (2017, chapter 4.1).

8See Dixit and Pindyck (1994, pp. 3–25) for an introduction into the idea of treating irreversible
investment decisions under uncertainty as (“real”) option exercise problems.
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The third paper in this dissertation builds on the second paper and addresses the

question, recently raised by Rogoff (2016, chapter 13), of whether there is a need to

coordinate the elimination of large banknotes internationally. I consider a strategic setting

with two central bankers and assume that calling in large banknotes involves international

spillovers on the central bankers’ seignorage revenues. I show that strategic considerations

determine the central bankers’ timing decisions and make them end up in a prisoner’s

dilemma or face a coordination problem. Which situation will arise in this regard depends

on the substitutability of banknotes of different denominations and currencies. Altogether,

strategic interactions are a further explanation of why central banks could possibly have

the tendency to delay the elimination of large banknotes.

This dissertation is organized as a “collection” of papers. To acknowledge the inde-

pendence of each paper, I decided to deviate from the “traditional” form of corresponding

theses where each essay or paper would be assigned to a consecutively numbered chap-

ter. Instead, each of the three papers in the following is included in its original form

with the original section numbering having been maintained, respectively. Each paper

includes an abstract, a table of contents, a statement on my own contributions, acknowl-

edgments, and published paper versions, a list of figures, a list of tables (except for the

first paper), and a bibliography, respectively. The papers included in this dissertation are,

in that order, “Controlling Friction-Induced Interbank Rate Volatility under Symmetric

and Asymmetric Interest Corridor Systems”, co-authored with Ulrike Neyer, “Optimal

Timing of Calling In Large-Denomination Banknotes under Natural Rate Uncertainty”,

and “International Coordination and Optimal Timing of Calling In Large-Denomination

Banknotes in a Two-Player Game”.
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Controlling Friction-Induced Interbank Rate Volatility under

Symmetric and Asymmetric Interest Corridor Systems

Thomas Link Ulrike Neyer

Abstract

Standing facilities offered by the central bank are usually considered an effective instru-

ment to control interbank rate volatility. Narrowing the width of the respective interest

corridor or installing an asymmetric corridor are seen as appropriate measures to reduce

“liquidity shock-induced” volatility. However, since the outbreak of the global financial

crisis, interbank market frictions have gained a growing importance. We employ a theo-

retical model to show that the control of “friction-induced” interbank rate volatility can

require different measures. For instance, if friction-induced volatility emerges under an

asymmetric corridor, it can be controlled by increasing the corridor width – which is the

inversion of the traditional principle.

JEL classification: E43, E52, E58, G21

Keywords: interbank market, monetary policy implementation, interest corridor, floor

system, transaction costs, excess reserves
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1 Introduction

The design of optimal “post-crisis” monetary policy implementation frameworks remains

an open task (see, for instance, Bindseil, 2016; Potter, 2016). A number of issues have

to be addressed, like the robustness of any future implementation schemes against recent

and coming regulatory reforms.1 Proposals to adjust implementation frameworks to a new

regulatory environment range from varying the structure of open market operations (Bech

and Keister, 2017) to changing the symmetry of an established interest corridor system

(Jackson and Noss, 2015). This paper addresses the issue of how to design a monetary

policy implementation framework that allows for an effective control of interbank rate

volatility when volatility stems from market frictions brought about, for instance, by new

banking regulations.

Usually, a monetary policy implementation framework that includes standing facilities

is regarded to be effective in controlling the interbank rate. The underlying principle

is simple: By providing two standing facilities a central bank creates outside options for

banks to using the interbank market.2 The existence of these options dampens the interest

rate effects triggered by liquidity shocks to the banking system. The more attractive

these options are made to banks (relative to using the interbank market), the stronger

their stabilizing effect on the interbank rate. There are several ways to reach higher

attractiveness, such as (1) narrowing the width of the corridor, i.e., the spread between

the rates on the deposit and the lending facility or (2) installing an asymmetric corridor

system by driving the interbank rate either down (floor system) or up (ceiling system) close

to one of the facility rates which makes recourse to that facility highly attractive.3 The

European Central Bank (ECB) has already made experience with both corridor schemes:

Figure 1 shows the distribution of daily EONIA rates during two exemplary periods. The

figure illustrates the difference between a symmetric corridor and a floor system (which

1See Bindseil (2016) for a systematic overview of requirements for future monetary policy implemen-
tation frameworks.

2In this paper, the term “interbank market” always refers to the unsecured overnight segment of
interbank money markets.

3The notion of “symmetry” in this context refers to the spreads between the central bank’s target
interbank rate and the two facility rates. A corridor scheme is symmetric if the target rate is located in the
midpoint of the interest corridor. A floor, respectively a ceiling, system is an asymmetric corridor scheme.
The target rate in such a system corresponds to the rate on the deposit, respectively the lending, facility. It
is implemented by an ample, respectively an insufficient, provision of liquidity. See, for instance, Whitesell
(2006), Bindseil, Camba-Mendez, Hirsch, and Weller (2006), Berentsen and Monnet (2008), Bindseil and
Jab�lecki (2011), Bech and Monnet (2013); for an overview of several options for the design of corridor
schemes see United States – Federal Open Market Committee (2008).
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the ECB – de facto – is still implementing to date) with respect to the resulting interbank

rates. Figure 1 also indicates that during both periods the volatility of the EONIA was,

on average, relatively low.
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(a) 6 June 2003 to 5 December 2005, 645 observa-
tions, deposit rate = 1.00%, lending rate = 3.00%.
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(b) 16 March 2016 to 17 September 2019, 897 obser-
vations, deposit rate = -0.4%, lending rate = 0.25%.

Figure 1: Distribution of daily EONIA rates under (a) a symmetric corridor system and
(b) an asymmetric (floor) system. Horizontal axis: EONIA rate in percentage points.
Vertical axis: number of observations. Data: European Central Bank – Statistical Data
Warehouse (2019).

In particular, figure 1(b) suggests that, until recently, also interbank rate volatility

from market frictions was relatively low in the euro area. But there are a couple of poten-

tial sources that could account for an increase in friction-induced volatility in the future.

In times of crises, information asymmetries about counterparty credit risks or market frag-

mentation could impair interbank trading and lead to fluctuations of the interbank rate.4

Also new regulatory burdens can make transactions in the unsecured overnight interbank

market less profitable such that banks shift to other options in order to balance their

short-term liquidity needs. Theoretically, such shifts can lead to higher interbank rate

volatility as already pointed out for the case of new banking regulations by Jackson and

Noss (2015), Committee on the Global Financial System and Markets Committee (2015),

4See Bucher, Hauck, and Neyer (2020, footnote 9) for a short discussion of why asymmetric information
about counterparty credit risks can increase the costs of participating in the interbank market (Bucher,
Hauck, and Neyer (2020) mention the costs of signaling the own creditworthiness and the costs of checks for
the creditworthiness of counterparties). See also the literature on interbank market frictions that Bucher,
Hauck, and Neyer (2020) review. For an analysis of the effects of fragmentation of the banking system
respectively the interbank market see, for instance, Vari (2014).
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and Bindseil (2016). These studies consider the effects of new banking regulations and ar-

gue that concrete measures as a regulatory leverage ratio, large exposure limits, a liquidity

coverage ratio, a net stable funding ratio, or suggested risk-based capital requirements for

interbank exposures will have an impact on interbank liquidity demand and supply and

will lead to higher interbank rate volatility.5 One rationale for this increase in volatility

is that regulatory burdens on banks are bank- and time-specific. Over time, this leads to

demand and supply fluctuations in the interbank market that are transmitted into volatil-

ity of the interbank rate. This kind of volatility is the starting point of the present paper.

With regard to the role of market frictions in a “post-crisis” world the question is whether,

and if so how, a central bank can control friction-induced interbank rate volatility.

The aforementioned rules for the control of interbank rate volatility (narrowing the

width of the interest corridor, installing an asymmetric corridor) hold if volatility arises

from aggregate liquidity shocks. However, we argue that the control of volatility that arises

from interbank market frictions is subject to different rules. This is shown in a theoretical

analysis which is based on the seminal model of monetary policy implementation under

an interest corridor regime presented in Whitesell (2006). We introduce frictions into the

Whitesell-model in the form of broadly defined transaction costs that alter the relative

attractiveness of outside options for banks to using the interbank market. Transaction cost

heterogeneity across banks captures that banks differ in the degree to which they prefer

other options than using the interbank market. Ultimately, transaction cost heterogeneity

in two dimensions (cross-section and time) explains interbank rate volatility.

In the frictionless benchmark scenarios the model results are in line with those of the

existing literature on volatility control under interest corridor systems. Accordingly, the

central bank is able to control volatility that arises from aggregate liquidity shocks by

increasing the attractiveness of outside options for banks to using the interbank market –

concretely, by narrowing the interest corridor or by implementing an asymmetric corridor

scheme. However, to control volatility that stems from market frictions, the central bank

must create an unattractive outside option to using the interbank market for friction-

affected banks (for instance potential lenders which are constrained by capital or liquidity

requirements) while maintaining or improving the availability of an attractive outside

5Jackson and Noss (2015) consider the effects of a minimum leverage ratio and risk-based capital
requirements on the cross-section dispersion of market rates in a multi-agent framework that accounts for
the over-the-counter character of interbank markets and, crucially, for the different weights of regulatory
burdens for individual banks.
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option for banks that are not affected by frictions (for example potential borrowers).

Under an initially implemented symmetric corridor scheme this can only be achieved by

switching to an asymmetric scheme. Under an initially implemented asymmetric scheme,

volatility control requires the central bank to increase the width of the interest corridor.

The rationale for these results is that transaction costs make the use of the inter-

bank market less attractive, interbank market activities decline, and banks fall back on

using outside options, that is, on using the standing facilities. The drop in interbank

demand/supply is transmitted to the interbank rate. Over time, transaction cost het-

erogeneity leads to demand, respectively supply, fluctuations that cause interbank rate

volatility. While the decline in market activity is stronger the more attractive the outside

options for friction-affected banks are, the impact on the interbank rate is stronger the

lower the attractiveness of outside options for their potential interbank counterparties is.

Thus, interbank rate volatility is higher the higher the attractiveness is of outside options

to using the interbank market for friction-affected banks, and the lower the attractive-

ness of outside options for their potential interbank counterparties. The reason behind

these relationships lies in the interest sensitivity of interbank liquidity supply and demand

which increases in the attractiveness of outside options for the respective market side. Any

measures to reduce interbank rate volatility rely on the exploitation of these properties.

Therefore, the control of friction-induced volatility will be possible if the central bank

is able to systematically manipulate the attractiveness of outside options for potential

lenders and borrowers to a different extent or in opposite directions. Under an initially

implemented symmetric corridor system this cannot be achieved by simply changing the

corridor width: The symmetry of this scheme implies that any corridor width adjustment

will have an equal effect on the attractiveness of outside options for friction-affected banks

and their counterparties. The attenuating and the dampening effect on interbank rate

volatility cancel each other out. In contrast, the corridor width can be perfectly used as

an instrument to reduce friction-induced volatility if the central bank implements an asym-

metric corridor scheme, i.e., a floor or a ceiling system. Under a floor system demand-side

frictions can no longer be responsible for significant interbank rate volatility and volatility

due to supply-side frictions can be controlled by increasing the width of the interest cor-

ridor. This measure leads to a stabilization of interbank liquidity supply and therewith

of the interbank rate by reducing the attractiveness of potential lenders’ outside option

to using the interbank market (which is the deposit facility). The asymmetry of a floor
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system thereby guarantees that the lending banks’ potential counterparties still have no

attractive outside option available. Analogously, under a ceiling system supply-side fric-

tions can no longer be responsible for interbank rate volatility and widening the corridor

is a way of making a ceiling system more robust to demand-side frictions.

Section 2 reviews the related literature. Section 3 presents the model setup. Section 4

derives optimal bank behavior with respect to the banks’ use of the central bank’s standing

facilities and their interbank market activities. This allows for an in-depth analysis of the

determinants of banks’ liquidity needs, as well as of interbank loan supply and demand.

The interbank market equilibrium is identified in Section 5. Then, the implications for

the control of interbank rate volatility under a symmetric corridor system (Section 6) and

under an asymmetric corridor system (Section 7) are discussed. Section 8 contains some

concluding remarks.

2 Related Literature

The model of monetary policy implementation employed in this paper is based on the sem-

inal model of interest corridor systems proposed in Whitesell (2006). Extended versions of

that framework have been introduced in several other works, the two closest to the model

presented in this paper are those by Bech and Klee (2012) and Jackson and Noss (2015).

Whitesell (2006), in turn, is part of a large body of research that refers to the seminal

model of an overnight interbank market in Poole (1968). Poole models a representative

commercial bank’s reserve management and liquidity demand to describe the price forma-

tion in the interbank market in the presence of a central bank that provides outside options

for banks to using the interbank market. Poole’s starting point is that uncertainty about

actual liquidity needs during the day explains a precautionary motive behind bank de-

mand for liquidity. This precautionary liquidity demand serves as an explanatory variable

for interbank market activities and therefore plays an important role in the analysis of the

interbank market equilibrium (see also, for instance, Baltensperger, 1980; Clouse and Dow,

1999; Bech and Monnet, 2013; Bucher, Hauck, and Neyer, 2020). Factors that determine

bank demand for precautionary liquidity have been used to explain or predict movements,

volatility or observed patterns of the overnight interbank rate, for instance, over reserve

maintenance periods or on reserve settlement days. Such determinants are the level of

daily interbank payment volumes (Furfine, 2000), lending constraints for banks (Cassola
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and Huetl, 2010), credit constraints particularly for small banks (Ashcraft, McAndrews,

and Skeie, 2011), credit risk (Bech and Klee, 2012), fragmentation of the interbank market

(Vari, 2014), regulatory capital requirements (Jackson and Noss, 2015), or broadly defined

transaction costs (Bucher, Hauck, and Neyer, 2020). Other determinants with fundamen-

tal implications for the optimal design of monetary policy implementation frameworks are

reserve requirement schemes (Whitesell, 2006; Gaspar, Pérez Quirós, and Rodŕıguez Men-

dizábal, 2008) and specifications of the interest corridor like its width (Woodford, 2001;

Bindseil and Jab�lecki, 2011) or symmetry (Pérez Quirós and Rodŕıguez Mendizábal, 2012;

Jackson and Noss, 2015).

Similar to Bech and Klee (2012) and Jackson and Noss (2015), this paper starts with

the introduction of interbank market transaction costs in the Whitesell-model. Like Jack-

son and Noss (2015), we explore the transaction cost effect on the price formation in the

interbank market and the options a central bank has to react to this effect by adjusting

its policy implementation framework. However, we address some issues that have been

left open by Jackson and Noss (2015). For instance, we propose rules for the control of

friction-induced volatility under a symmetric as well as an asymmetric corridor with a spe-

cial focus on the width of a respective corridor. In contrast to our approach, Jackson and

Noss (2015) conduct their analysis on the basis of a multi-agent framework that captures

a crucial institutional detail of the Bank of England’s monetary policy implementation

framework, namely a system of minimum reserve requirements where banks must meet

their reserve requirements within a “target range”. One major focus of Jackson and Noss

(2015) is on how this reserve target range should be adjusted in the presence of new bank-

ing regulations. A second major focus of Jackson and Noss (2015) (and a one that is more

closely related to our research question) lies on the symmetry of a corridor system and in

particular on the advantages an asymmetric corridor has in the presence of new banking

regulations. However, Jackson and Noss (2015) do not place a major focus on the role

of the width of the interest corridor (although they make a few comments in this regard:

see, for instance, Jackson and Noss, 2015, p. 22). Bech and Klee (2012) put a stronger

focus explicitly on the corridor width (in addition to other determinants like transaction

costs) as a determinant of the interbank rate respectively of banks’ demand for central

bank reserves. However, Bech and Klee (2012) are primarily interested in the effect of

the corridor width and other factors like transaction costs on the level rather than on
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volatility of the interbank rate.6 In our analysis, we are especially interested in the effect

of transaction cost heterogeneity across banks and time on the interbank rate in a time

dimension.

3 Model Setup

The model introduced in this section is a one-period model based on the framework pro-

posed by Whitesell (2006) and contains some elements of the model presented by Bindseil

and Jab�lecki (2011).7 There is a large number of commercial banks and a central bank.

The central bank provides settlement accounts for banks, conducts open market oper-

ations, and operates two standing facilities. Banks are subject to liquidity shocks and

can balance their individual liquidity needs by using the interbank market or the central

bank’s standing facilities.8

Figure 2 illustrates the sequence of events. At the beginning of the period under

consideration (henceforth called “day”), banks settle their due claims and liabilities from

the previous period (for instance, these might stem from overnight interbank loans or from

previous recourse to the central bank’s facilities). Banks which have insufficient reserve

balances for this purpose are allowed to overdraw their settlement accounts during the

course of the day. After claims/liabilities are settled, the central bank conducts open

market operations and thus injects or withdraws liquidity to/from the banking system.

The resulting aggregate liquidity position of the banking sector at that time is denoted

by Ξ̄. Subsequently, an aggregate liquidity shock α occurs with α̃ ∼ N (0,σ2
AS) (with

α̃ denoting a random variable, α denoting its realization). Positive values of α indicate

liquidity inflows to the banking system, negative values of α liquidity outflows, so banks’

aggregate liquidity position after the occurrence of the shock is Ξ̄ + α =: Ξ. Eventually,

6For instance, Bech and Klee (2012) are also interested in the effect of “credit risk” on the interbank
rate.

7We thank Monika Bucher for her contribution to the first draft of this section at an early stage of the
paper.

8The elements we take from Bindseil and Jab�lecki (2011) are (see Bindseil and Jab�lecki, 2011, pp.
14–15): (1) the explicit consideration of two types of banks (and interbank trading), (2) a central bank
open market operation at the beginning of the “day”, (3) an aggregate liquidity shock directly after the
central bank’s open market operation, and (4) reserve shifts between banks before interbank trading takes
place (Bindseil and Jab�lecki (2011) assume that deposits of households are shifted between banks). Note,
that Bindseil and Jab�lecki (2011) also introduce interbank market transaction costs in their model but our
paper is more closely related to Jackson and Noss (2015) and Bech and Klee (2012) in this respect.
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bank customers make bank transfer payments which reshuffle reserves within the banking

sector.9

These activities imply that the banking sector’s aggregate liquidity position at noon,

Ξ, as well as an individual bank’s liquidity position at noon, denoted by ξ, might be

positive or negative. There are two types of commercial banks i ∈ {1, 2}: Letting ξ1 > 0

and ξ2 < 0, bank 1 is assumed to have a liquidity surplus at noon, bank 2 a liquidity

deficit. If the banking sector’s aggregate liquidity position at noon Ξ = ξ1 + ξ2 is strictly

positive (negative), the banking sector as a whole exhibits a liquidity surplus (deficit)

vis-à-vis the central bank. Banks have to balance their reserve accounts with the central

bank overnight. This setting thus describes an arbitrary day in a world where banks are

subject to reserve requirements which have to be precisely fulfilled each day (with end-

of-day required reserves being normalized to zero). Alternatively, the period might be

interpreted as the last day of a reserve maintenance period where banks are allowed to

make use of averaging provisions over the reserve maintenance period. Accordingly, with

hypothetical reserve requirements bank 1 would have over-fulfilled reserve requirements

at noon to the amount of ξ1. Bank 2 would not have met reserve requirements but would

exhibit a reserve deficiency at noon of |ξ2|.
To balance their liquidity positions at noon, banks can use an (overnight) interbank

market for central bank reserves. A bank’s position in this market is bi. If bi > 0 (bi < 0),

the bank will borrow (lend) the amount |bi| at rate iIBM . In both cases, transaction

costs γi |bi| accrue, with γi ≥ 0.10 Following Whitesell (2006), the level of reserve account

balances bank i wishes to hold after the closure of the interbank market, its “target reserve

account balance,” is denoted by Ti with Ti := ξi + bi. As intra-day overdrafts are allowed,

Ti might be positive or negative.

In the evening, once the interbank market is closed, bank i is hit by an idiosyncratic

reserve account shock (a “late payment shock”) εi. The shock εi is the realization of the

random variable ε̃i ∼ N (0,σ2
i ) with the publicly observable probability density function

fi and the cumulative distribution function Fi.
11 If εi > 0 (εi < 0) there will be an inflow

9Note that, as mentioned above, in part, this setup is following Bindseil and Jab�lecki (2011).
10With respect to borrower and lender specific transaction costs our model is most closely related to

Bech and Klee (2012) (see, for instance, ibid. pp. 13–18) and Jackson and Noss (2015) (see, for instance,
ibid. pp. 26–27).

11As argued by Whitesell (2006, p. 1179), a bank does not know its actual liquidity needs for the
period under consideration at the time it can trade on the interbank market because it is “[...] subject to
unexpected late payments or delayed accounting information [...]”. The term “late payment shock” in this
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(outflow) of funds. The shocks ε̃1 and ε̃2 are independent and identically distributed with

f ≡ f1 ≡ f2 and F ≡ F1 ≡ F2.

repayment of
due claims and

liabilities

beginning
of day

central bank
OMO s.t.

agg. liquidity
position is

Ξ̄

agg. liquidity
shock α s.t.
agg. liquidity
position is

Ξ:=Ξ̄+α

reshuffling
of reserves s.t.
indiv. reserve
position is

ξi

noon

IBM trading s.t.
indiv. reserve
position is

Ti:=ξi+bi

late
payment
shock εi

recourse to
central bank
facility if

end of day

Ti+εi �=0

Figure 2: Sequence of events within the period under consideration. To see to what extent
we took model ingredients from Bindseil and Jab�lecki (2011), see the respective figure in
(ibid., p. 16).

A bank’s actual end-of-day liquidity position is Ti + εi. Bank i will face an end-of-day

deficit if Ti + εi < 0 and an end-of-day surplus if Ti + εi > 0. Banks have to balance their

reserve accounts with the central bank overnight. Bank i thus has to take recourse to the

central bank’s lending facility at rate iLF in case of an end-of-day deficit, respectively,

to the central bank’s deposit facility at rate iDF in case of an end-of-day surplus (banks

can obtain/place liquidity from/at the central bank on an overnight basis unlimitedly

and without any restrictions). Eventually, at this point in time, bank i learns its actual

liquidity costs Ki being the realization of the random variable K̃i where

K̃i = iIBM · bi + γi · |bi|
− (

iLF · (Ti + ε̃i)
) · 1{εi≤−Ti}(εi) (1)

− (
iDF · (Ti + ε̃i)

) · 1{εi>−Ti}(εi)

with Ti = ξi + bi.

Actual liquidity costs include the bank’s interest costs, resp. revenues, and its trans-

action costs that accrue when using the interbank market at noon (first line of equation

(1)) and – depending on which of the central bank’s facilities the bank uses – the interest

costs, resp. revenues, of taking recourse to the lending facility (second line), resp. deposit

facility (third line). Which of the facilities bank i uses ultimately depends on the late

payment shock and finds expression in the values of the indicator functions 1{εi≤−Ti}(εi)

and 1{εi>−Ti}(εi).

context is used, for instance, in Bech and Monnet (2013), Bindseil, Camba-Mendez, Hirsch, and Weller
(2006), and Jackson and Noss (2015).
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The rationale behind a bank’s interbank market activities is the minimization of its

expected liquidity costs. A bank’s objective function, yielding its optimal position in the

interbank market and therewith its optimal target reserve account balance, is thus given

by

E[K̃i] =−
(
iIBM +

bi
|bi| · γi

)
· ξi

−
∫ −Ti

−∞

[
iLF −

(
iIBM +

bi
|bi| · γi

)]
· (Ti + ε̃i) dF (2)

+

∫ ∞

−Ti

[(
iIBM +

bi
|bi| · γi

)
− iDF

]
· (Ti + ε̃i) dF

→ min
Ti

!

with Ti = ξi + bi.
12

The bank’s optimization problem above differs from the problem in Whitesell (2006,

p. 1180) in two respects: Firstly, a bank’s pre-trade liquidity endowment ξi as well as its

position in the interbank market bi are explicitly considered. This allows for an analysis of

the liquidity redistribution within the banking sector via the interbank market.13 Secondly,

interbank market transaction costs γi are considered. Bank-specific transaction costs

γ1 � γ2 capture the cross-section dimension of transaction cost heterogeneity (the time

dimension is considered in sections 6 and 7). In effect, transaction costs increase the

relative attractiveness of banks’ outside options to using the interbank market, as the

expression in the two square brackets formally shows. In the remainder of this paper, the

term
[
iLF −

(
iIBM + bi

|bi| · γi
)]

will be referred to as “effective marginal deficit costs,” the

term
[(

iIBM + bi
|bi| · γi

)
− iDF

]
as “effective marginal surplus costs.” Therewith, line 2 in

equation (2) captures bank i’s “expected effective deficit costs” and line 3 its “expected

effective surplus costs.”

With these extending features, equation (2) states the following:14 The first line reveals

the lower bound for a bank’s expected liquidity costs. This lower bound is determined

by the bank’s pre-trade liquidity endowment. This liquidity would be fully traded in the

interbank market at any interbank rate iIBM > iDF + γi as a lending bank, respectively,

12The expression bi
|bi| simply captures whether a bank acts as a lender ( bi

|bi| = −1) or borrower ( bi
|bi| = 1)

in the interbank market. Of course, optimizing over Ti is equivalent to the optimization over bi. However,
in the following, Ti, which captures a bank’s precautionary liquidity demand, is of special interest.

13See also, for instance, Bindseil and Jab�lecki (2011) or Jackson and Noss (2015) who consider interbank
trading explicitly, too.

14See also Whitesell (2006, p. 1180) for the original framework.
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at any iIBM < iLF − γi as a borrowing bank if there was no late payment shock. For

the interpretation of lines two and three, which reflect the expected liquidity costs due to

the late payment shock, it is useful to distinguish between lending and borrowing banks

in the interbank market. The second line reveals the expected effective deficit costs of a

bank. These are the costs of balancing the expected end-of-day deficit by taking recourse

to the lending facility at rate iLF . However, for a bank that has lent to the interbank

market, and which at the end of the day learns of having placed too much liquidity in the

interbank market at noon, the costs of using the lending facility are effectively reduced by

the interest revenues (minus transaction costs) of the bank’s excessive interbank lending.

For a borrowing bank, the effective costs of using the lending facility are the additional

costs of using the lending facility instead of the interbank market at noon. The third line

captures the expected effective surplus costs which are the effective costs of placing the

expected end-of-day liquidity surplus in the deposit facility at rate iDF . For a lending

bank, these costs are the (net) opportunity costs of using the deposit facility instead of

the interbank market. Analogously, for a borrowing bank, the third line of equation (2)

reveals the costs of “over-funding” in the interbank market at noon.

4 Optimal Bank Behavior

4.1 Optimal Target Level of Reserve Balances

The first-order condition for optimal, i.e., for expected cost-minimizing, borrowing/lending

in the interbank market and thus for the optimal target reserve account balance Ti is

[
iLF −

(
iIBM +

bi
|bi| · γi

)]
· F (−Ti)

!
=

[(
iIBM +

bi
|bi| · γi

)
− iDF

]
· (1− F (−Ti)) . (3)

Crucially, as expected liquidity needs due to the late payment shock are zero (ε̃i ∼
N (0,σ2

i )), Ti represents a bank’s demand for precautionary liquidity. With probabil-

ity F (−Ti), which is decreasing in Ti, (respectively 1− F (−Ti), which is increasing in Ti)

the bank faces an end-of-day liquidity deficit (surplus) and has to take recourse to the

lending facility (deposit facility). The first-order condition thus implies that the expected

marginal return on precautionary liquidity, in the form of avoided illiquidity costs (given

by the LHS of (3)), must equal the expected marginal costs of precautionary liquidity

(given by the RHS of (3)). Expected marginal costs are in the form of opportunity costs
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for a bank that lends to the interbank market and in the form of interest costs for a bank

that borrows from the interbank market.

For the rest of the paper, it is assumed that the liquidity surplus bank 1 always acts

as a lender, whereas the liquidity deficit bank 2 always acts as a borrower in the interbank

market. Accordingly, bank 1 increases its target level of reserve balances, T1, by cutting

down its liquidity supply to the interbank market. Respectively, bank 2 increases T2 by

increasing its interbank liquidity demand. This yields a lower bound, respectively an upper

bound, for the interbank rate beyond which no interbank trading takes place:

iIBM := iLF · F (−ξ1) + iDF · (1− F (−ξ1)) + γ1, (4)

iIBM := iLF · F (−ξ2) + iDF · (1− F (−ξ2))− γ2. (5)

4.2 Optimal Precautionary Demand for Reserves in a Frictionless World

In the absence of transaction costs (γ1 = γ2 = 0), the case that is discussed by Whitesell

(2006), the target reserve account balance that minimizes a bank’s expected funding costs

is a function of the interbank rate, the rates on the standing facilities, and the parameters

of the distribution underlying the late payment shock. Ti is derived from the first-order

condition (3) and has the following representation (for an illustration see figure 3):15

Ti(·) =
⎧⎨
⎩

−F−1
(
iIBM−iDF

iLF−iDF

)
if
{
i = 1 ∧ iIBM > iIBM

}
∨
{
i = 2 ∧ iIBM < iIBM

}

ξi otherwise.
(6)

Under the assumption of εi being distributed symmetrically around zero, the sign of Ti

depends only on whether iIBM is above or below the corridor midpoint rate. This is a

crucial result in Whitesell (2006, p. 1180): If iIBM lies in the midpoint of the interest

corridor, that is, if effective marginal deficit costs just equal the effective marginal surplus

costs, optimal bank demand for precautionary liquidity is always zero.

Explicitly considering bank i’s pre-trade liquidity endowment ξi in addition to its pre-

cautionary liquidity demand allows for the analysis of the bank’s activity in the interbank

market: Accordingly, bank i’s interbank liquidity demand (resp. supply) is the sum of a

precautionary component Ti and an exogenous component ξi:

bi(·) = Ti(·)− ξi. (7)

15F−1 denotes the inverse cumulative distribution function.
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This decomposition also illustrates that endogenous bank behavior in the interbank market

is fully explained by banks’ precautionary liquidity demand Ti(·). Crucially, it is this

precautionary demand which reflects the degree to which the redistribution of liquidity

via the interbank market is inhibited in the presence of market frictions. The remainder of

this section discusses the determinants of Ti as an explanatory variable of banks’ interbank

market activities in more detail. First, we will have a closer look at the interbank rate

iIBM , including the respective interest sensitivity of Ti. Then, we will comment on the

width w of the interest corridor formed by the rates on the facilities iDF and iLF , and

on a bank’s pre-trade reserve account balance ξi. The discussion serves as the theoretical

base for the analysis in Sections 6 and 7.

Interbank Rate

Equation (6) reveals that a bank’s precautionary liquidity demand decreases in iIBM .

Obviously, an increase in iIBM makes precautionary liquidity holdings relatively less at-

tractive: Liquidity surplus banks want to place a higher amount in the interbank market,

whereas liquidity deficit banks are willing to cover a higher portion of a potential deficit

by borrowing from the central bank’s lending facility. Formally, this reads:16

∂Ti

∂iIBM
=

∂bi
∂iIBM

= − 1

f(−Ti)(iLF − iDF )
≤ 0. (8)

With respect to the interest sensitivity of a bank’s demand for precautionary liquidity,

it is crucial how strongly the probability of facing an end-of-day deficit F (−Ti) reacts to

changes in Ti (resp. to changes in bi) as formally revealed by the first-order condition (3). If

there is only a weak response, interest sensitivity (in absolute value) will be high because

then there must be a relatively strong increase or decrease in Ti to have a sufficiently

high impact on F (−Ti) to restore optimality after a change in iIBM . As ε̃i ∼ N (0,σ2
i ),

the impact of a change in Ti on F (−Ti) is lower the more Ti deviates from 0 in either

16Equation (8) can be derived explicitly by differentiating (6) or by using (3) and applying the implicit
function theorem.
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direction, i.e., the more precautionary liquidity in absolute terms bank i holds. Formally,

this is reflected by17

∂2Ti

∂(iIBM )2
=

∂2bi
∂(iIBM )2

=
f ′ (−Ti)

(iLF − iDF )2 · (f (−Ti))
3

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

< 0 if Ti < 0

= 0 if Ti = 0

> 0 if Ti > 0.

(9)

However, for the interest sensitivity of a bank’s precautionary liquidity demand it is also

decisive how strongly the expected marginal return/costs of precautionary liquidity react

to changes in F (−Ti). This is determined by the width of the interest corridor formed

by iDF and iLF . The wider the interest corridor is, the more pronounced the expected

marginal return/costs of precautionary liquidity will react to changes in F (−Ti), that is,

the lower is the interest sensitivity of precautionary liquidity demand. This is because the

wider the interest corridor is, the larger the spreads between the interbank rate and the

facility rates might possibly become. For an individual bank, such large spreads imply

relatively high effective marginal deficit or surplus costs. Accordingly, only a relatively

small change in Ti, and therewith in the probabilities of using the facilities, is needed

to have a sufficiently strong effect on the expected marginal return on or the expected

marginal costs of precautionary liquidity to restore optimality after a change in iIBM , as

shown formally by (3). Considering symmetric changes of the interest corridor around

some given corridor midpoint rate iMR, with iDF ≡ iMR − w and iLF ≡ iMR + w, it is

∂2Ti

∂w∂iIBM
=

∂2bi
∂w∂iIBM

=
1

2w2 · f (−Ti)
− f ′ (−Ti) · (2 · F (−Ti)− 1)

4w2 · (f (−Ti))
3 ≥ 0, (10)

which formally shows that the interest sensitivity of bank i’s precautionary liquidity de-

mand (in absolute value), and therewith the interest sensitivity of interbank demand (for

i = 2) and supply (for i = 1), decreases in the width of the corridor.18

17To check the sign of ∂2Ti

∂(iIBM )2
, recall that f(·) is the probability density of the normal distribution

with f ′(−Ti) < 0 for Ti < 0, f ′(−Ti) > 0 for Ti > 0, and f ′(Ti) = 0 for Ti = 0.
18Recall, that F (·) is the cumulative distribution function of the normal distribution. To check the sign

of (10), recall the property discussed in fn. 17 and recall that F (−Ti) > 0.5 for Ti < 0, F (−Ti) < 0.5 for
Ti > 0, and F (−Ti) = 0.5 for Ti = 0.
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Width of the Interest Corridor

In general, the width of the interest corridor is a crucial determinant of a bank’s precau-

tionary liquidity demand and thus its interbank liquidity demand/supply: A symmetric

increase in the corridor width leads to an increase in a bank’s effective marginal deficit

and surplus costs and therewith to an increase in the expected marginal return on and the

expected marginal costs of precautionary liquidity. The increase in the expected marginal

return will outweigh the increase in the expected marginal costs if the bank targets a

negative reserve account balance (Ti < 0), which implies that the probability of using the

lending facility at the end of the day is greater than 0.5. Consequently, the bank will

increase the level of its precautionary liquidity holdings. Analogously, if the bank targets

a positive reserve account balance, an increase in the corridor width will induce the bank

to decrease its target reserve account balance. This formally reads (for an illustration see

figure 3):

∂Ti

∂w
=

∂bi
∂w

=
2 · F (−Ti)− 1

f (−Ti) · 2w

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

> 0 for Ti < 0

= 0 for Ti = 0

< 0 for Ti > 0.

(11)

The effect of a change in the width of the corridor on a bank’s precautionary liquidity

demand (resp. on interbank liquidity demand/supply) is stronger the more Ti deviates

from zero. The more Ti deviates from zero, the higher the probability is that one of the

facilities will be used after the occurrence of the late payment shock, hence the larger the

difference in the changes in the expected marginal return on and the expected marginal

costs of precautionary liquidity implied by a change in w. Consequently, as formally

reflected by (10), a relatively pronounced change in Ti is needed to restore optimality

after a change in the corridor width.

Pre-trade Reserve Account Balance

As a bank’s precautionary liquidity demand is independent from its pre-trade reserve

account balance per construction, a change in the bank’s pre-trade reserve account balance

is reflected completely in its interbank liquidity demand/supply:

∂bi
∂ξi

= −1. (12)
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Equations (8) to (12) illustrate that the surplus bank’s precautionary liquidity demand,

T1, as well as the deficit bank’s precautionary liquidity demand, T2, are qualitatively

affected in the same way by changes in iIBM , w, and ξ. In contrast, as discussed in the next

section, interbank market transaction costs will have opposing effects on Ti, for i = 1, 2.

4.3 Optimal Precautionary Demand for Reserves in the Presence of

Transaction Costs

The impact of interbank market transaction costs on bank i’s precautionary demand for

reserves depends on whether bank i acts as a lender or as a borrower in the interbank

market. Explicit representations of banks’ target reserve account balances that minimize

their expected funding costs in the presence of transaction costs are given by

T1(·) =
⎧⎨
⎩

−F−1
(
iIBM−γ1−iDF

iLF−iDF

)
if iIBM > iIBM

ξ1 if iIBM ≤ iIBM ,
(13)

T2(·) =
⎧⎨
⎩

−F−1
(
iIBM+γ2−iDF

iLF−iDF

)
if iIBM < iIBM

ξ2 if iIBM ≥ iIBM .
(14)

For the surplus bank 1, an increase in γ1 implies that holding precautionary liquidity

becomes more attractive as the alternative of placing excess liquidity in the interbank

market becomes more expensive. Formally, transaction costs lead to an increase in effective

marginal deficit costs (the term in square brackets on the LHS of equation (3)), and to

a decrease in effective marginal surplus costs (the term in square brackets on the RHS

of equation (3)). Consequently, bank 1 reduces its interbank liquidity supply. For the

deficit bank 2, an increase in γ2 implies that holding precautionary liquidity becomes less

attractive, as borrowing the respective liquidity from the interbank market becomes more

expensive. As a result, the deficit bank 2 reduces its liquidity demand in the interbank

market. Formally, this reads (for an illustration see figure 3):

∂T1

∂γ1
=

∂b1
∂γ1

=
1

f(−T1) · (iLF − iDF )
> 0, (15)

∂T2

∂γ2
=

∂b2
∂γ2

=
−1

f(−T2) · (iLF − iDF )
< 0. (16)

Analogously to the interest sensitivity, the transaction cost sensitivity of bank i’s

precautionary liquidity demand is higher (in absolute value) the less F (−Ti) reacts to
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changes in Ti (resp. to changes in bi) and the less the expected marginal return on or

marginal costs of precautionary liquidity react to changes in F (−Ti). Thus, the transaction

costs sensitivity of banks’ precautionary liquidity demand (in absolute value) is higher the

more Ti deviates from zero, and the narrower the interest corridor is. Formally, this is

captured by equations (17) to (20):19

∂2T1

∂iIBM∂γ1
=

∂2b1
∂iIBM∂γ1

=
−f ′(−T1)

(iLF − iDF )2 · (f(−T1))
3

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

> 0 if T1 < 0

= 0 if T1 = 0

< 0 if T1 > 0,

(17)

∂2T2

∂iIBM∂γ2
=

∂2b2
∂iIBM∂γ2

=
f ′ (−T2)

(iLF − iDF )2 · (f (−T2))
3

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

< 0 if T2 < 0

= 0 if T2 = 0

> 0 if T2 > 0,

(18)

∂2T1

∂w∂γ1
=

∂2b1
∂w∂γ1

=
−1

2w2 · f(−T1)
+

f ′(−T1) · (2 · F (−T1)− 1)

4w2 · (f(−T1))
3 ≤ 0, (19)

∂2T2

∂w∂γ2
=

∂2b2
∂w∂γ2

=
1

2w2 · f (−T2)
− f ′ (−T2) · (2 · F (−T2)− 1)

4w2 · (f (−T2))
3 ≥ 0. (20)

5 Interbank Market Equilibrium

Indicating the equilibrium variables with the superscript *, the interbank market clearing

condition reads

∑
i

b∗i (·) = 0. (21)

Considering (7) and denoting the aggregate of banks’ precautionary liquidity demand with

T :=
∑

i Ti and the banking sector’s aggregate liquidity endowment with Ξ =
∑

i ξi, the

market clearing condition (21) can be rewritten as

T ∗
(
iIBM∗

, iDF , iLF , γ1, γ2,σi

)
= T ∗

1

(
iIBM∗

, γ1, ·
)
+ T ∗

2

(
iIBM∗

, γ2, ·
)

!
= Ξ. (22)

19To check the signs of equations (17) to (20), recall the properties discussed in footnotes 17 and 18.
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Figure 3: Individual banks’ precautionary liquidity demand Ti for i = 1, 2 and its deter-
minants. Horizontal axis: Quantity of precautionary liquidity demanded. Vertical axis:
Interbank rate. (a) Impact of corridor width (see also Whitesell, 2006, p. 1181). (b) Im-
pact of borrowers’ (red line) and lenders’ (blue line) transaction costs on their individual
precautionary liquidity demand, respectively (see also Bech and Klee, 2012, p. 14). Note
that the figures were drawn by assuming that |ξi| is sufficiently large for both i = 1, 2 such
that the lower and the upper bound given by equations (4) and (5) do not become binding
in the region of the parameter space considered in the figures.

Equation (22) illustrates that the interbank market will clear at an interbank rate at which

the banking sector’s aggregate precautionary liquidity demand T is equal to its pre-trade

liquidity endowment Ξ. Hence, the liquidity in the banking sector is redistributed via

the interbank market such that each bank ends up with its optimal level of precautionary

liquidity holdings.

However, a crucial distinguishing feature of the model presented in this paper as com-

pared to the Whitesell (2006) framework is that individual banks might differ in their

precautionary liquidity demand because of different interbank market transaction costs.

Crucially, the difference in the quantities of precautionary liquidity demanded by the two

types of banks (T ∗
1 and T ∗

2 in equation (22)) will reflect the degree to which the liquidity

redistribution via the interbank market is inhibited (i.e., the extent to which transaction

costs reduce the interbank market transaction volume). The larger this difference is, the

smaller is the extent to which banks use the interbank market to balance their pre-trade

liquidity surplus/deficit, respectively, the heavier is their reliance on the standing facilities
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to balance their reserve accounts at the end of the day. Clearly, if transaction costs are

prohibitively high, no interbank trade will take place at all. But since we want to focus on

interbank rate volatility rather than on a complete breakdown of the interbank market, we

rule out the case that transaction costs can become prohibitively high for the remainder of

the paper. With respect to the equilibrium interbank rate iIBM∗
this implies that iIBM∗

will always be located between the lower and the upper bound given by equations (4) and

(5) such that interbank trade will take place.

The equilibrium interbank rate iIBM∗
is implicitly given by equation (23) which is

obtained by inserting (13) and (14) into (22):

F−1

(
iIBM∗ − γ1 − iDF

iLF − iDF

)
+ ξ1 + F−1

(
iIBM∗

+ γ2 − iDF

iLF − iDF

)
+ ξ2

!
= 0. (23)

The equilibrium level of individual banks’ precautionary liquidity demand T ∗
i and there-

with the equilibrium interbank transaction volume b∗ := b∗2 = −b∗1 is implicitly given

by

F (−T ∗
1 )− F (−T ∗

2 ) +
γ1 + γ2

iLF − iDF

!
= 0, (24)

which is obtained from the first-order condition (3) for bank i = 1, 2.

6 Volatility Control Under a Symmetric Corridor System

This section derives specific rules for the control of friction-induced interbank rate volatility

under a symmetric corridor system. First, in Section 6.1, a frictionless benchmark scenario

is considered. Within this scenario, a comparative static analysis of the interbank market

equilibrium is conducted, and model simulations illustrate the dispersion of interbank rates

(as a proxy for volatility). Then, in Section 6.2, an analogous analysis is made considering

interbank market frictions.

6.1 Frictionless World

6.1.1 Comparative Statics

The frictionless scenario (γ1 = γ2 = 0) considered in this section is the benchmark scenario

for the subsequent section. The main results are in line with the respective findings of

Whitesell (2006). The two standing facility rates form a symmetric corridor around the
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central bank’s targeted interbank rate itarget such that iDF = itarget − w and iLF =

itarget+w. The target rate thus corresponds to the mid-point rate of the interest corridor

iMR := 1
2 · (iDF + iLF ).

A crucial feature of this implementation scheme with regard to the central bank’s steer-

ing of the interbank rate is that banks’ precautionary liquidity demand at the target rate

T (itarget) is zero (Whitesell, 2006; Woodford, 2001). This property holds independently

of the absolute level of the facility rates, the width of the interest corridor, and the level

of banks’ pre-trade liquidity endowments ξ1, ξ2:

Property 1 (Demand for Precautionary Liquidity):

T (itarget) = 0 for any itarget = iMR, and for any w, ξ1, ξ2. (25)

Formally, Property 1 follows directly from the first-order condition (3). In the absence of

transaction costs the condition will be satisfied at iIBM = iMR if bank i targets a reserve

account balance of zero. In particular, Ti = 0 implies that the bank will face an end-of-day

liquidity deficit and surplus with the same probability; and exactly this is what optimality

requires when the effective marginal deficit and surplus costs are of equal height, i.e., when

iLF − iIBM = iIBM − iDF which is the case at iIBM = iMR.20

With a predictable aggregate demand for precautionary liquidity (equal to zero at

itarget), the only source of deviations of the interbank rate from the central bank’s target

is the central bank’s inability to perfectly control the liquidity conditions in the banking

system. In this paper, such an aggregate liquidity shock is captured by the realization of

the random variable α̃. In the absence of transaction costs, the interbank market will clear

at itarget = iMR if the banking sector’s aggregate liquidity position Ξ = Ξ̄ + α = 0. This

means that also its aggregate precautionary liquidity demand at itarget must be zero, as

revealed by equation (22). However, with α̃ ∼ N (0,σ2
AF ) and a central bank that therefore

chooses Ξ̄ = 0, the banking sector’s pre-trade liquidity position after the occurrence of the

shock, at noon, is Ξ = α. The implicit differentiation of (23) formally shows the interest

rate effects that are produced by any liquidity imbalances:21

20See also Whitesell (2006), p. 1180-1181.
21Recall that Ξ = ξ1 + ξ2.
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Property 2 (Liquidity Effect):

∂iIBM∗

∂ξ1
=

∂iIBM∗

∂ξ2
= − (iLF − iDF ) · f (−ξ1 − b∗1) · f (−ξ2 − b∗2)

f (−ξ1 − b∗1) + f (−ξ2 − b∗2)
< 0. (26)

It is conventional wisdom that these effects (and thus the effect of an aggregate liquidity

shock on the interbank rate) are weaker the narrower the interest corridor is. Equation

(11) reveals this property: The narrower the interest corridor is, the more attractive the

facilities are as outside options for banks to using the interbank market and thus the larger

the interest sensitivity (in absolute value) of banks’ precautionary liquidity demand is (if

γ1 = γ2 = 0). This leads to22

Property 3 (Corridor Width Effect): Narrowing the corridor width reduces possible

deviations of the interbank rate from its target, i.e.,

∂iIBM∗

∂w
=

iIBM∗ − iMR

w

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

> 0 for Ξ < 0

= 0 for Ξ = 0

< 0 for Ξ > 0.

(27)

6.1.2 Distribution of Interbank Rates and Model Simulations

Of course, the employed one-period model does not explain the evolution of interbank rates

over time but it does predict how a time series of interbank rates consistent with the model

parameters would be distributed. The dispersion of this distribution is then a proxy for

interbank rate volatility. Thus, implications for the sources of interbank rate volatility and

for the measures to control this volatility can be drawn from the results of the comparative

static analysis by mapping them into a parameter space with a time dimension. In this

regard, the employed model yields some empirically testable hypotheses, formulated in

the following as “Implications.” Properties 1–3 imply, respectively:

Implication 1 (Source of Interbank Rate Volatility): The only source of interbank

rate volatility is the aggregate liquidity shock α. Banks’ precautionary liquidity demand

does not cause any interbank rate volatility since at the target rate T (itarget) is zero with

certainty and thus stable over time, i.e., from period to period or from “day to day.”23

22To check the sign of equation (27) note that in the absence of transaction costs, the interbank market
will clear at iIBM∗

= iMR if the banking sector’s aggregate liquidity position is balanced, i.e., if Ξ = 0. An
aggregate liquidity deficit (Ξ < 0) will drive the interbank rate above iMR, an aggregate liquidity surplus
will drive the interbank rate below iMR.

23See also Whitesell (2006), Woodford (2001).
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(a) Aggregate liquidity shock effects.
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(b) Transaction cost heterogeneity effects.

Figure 4: Distribution of simulated interbank rates under a symmetric corridor system
for different values of the corridor width visualized with boxplots (lines of the box: first,
second, and third quartile; whiskers: max. 1.5 inter-quartile range). Basic parameter
values are: ε̃i ∼ N (0, 1), Ξ̄ = 0. Subfigure (a) shows the results of 10,000 draws of α̃ for
each corridor width where α̃ ∼ N (0, 0.52), γ1 = γ2 = 0. Subfigure (b) shows the results
of 10,000 independent draws of γ1 and γ2 (for each corridor width) from the truncated
normal distribution N (0, 0.12)|0.40 with α̃ kept constant at zero. The simulated interbank
rates have been obtained in MATLAB (see The MathWorks, Inc., 2016) by using the
function “fsolve” to solve equation (22) numerically. Note, to rule out the possibility of
a breakdown of the interbank market in the simulations, we implicitly assume that |ξi| is
sufficiently large for both i = 1, 2. This guarantees that the interbank rate will be located
between the lower and the upper bound given by equations (4) and (5) for the region of
the parameter space considered in the simulations.

Implication 2 (Distribution of Interbank Rates): The distribution of a time series

of interbank rates consistent with the model is determined by the distribution of aggregate

liquidity shocks.

Implication 3 (Dispersion of Interbank Rates and Corridor Width Effect):

Regarded over time, the dispersion of interbank rates is lower the smaller the width of the

interest corridor set by the central bank is. Thus, the corridor width can be systematically

used to reduce interbank rate volatility.

Figure 4(a) illustrates the relationship between the corridor width and interbank rate

volatility that stems from aggregate liquidity shocks. For specifically chosen parameter
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values, the model was solved for 10,000 draws of α̃. The dispersion of simulated interbank

rates (a proxy for interbank rate volatility) is increasing in the corridor width.24

6.2 Consideration of Transaction Cost Heterogeneity

6.2.1 Comparative Statics

Interbank market transaction costs increase the relative attractiveness of outside options

for banks to using the interbank market. Thus, transaction costs induce banks to substi-

tute away from the use of interbank loans to balance their reserve accounts at noon toward

an increased reliance on the central bank’s standing facilities at the end of the day. Such

shifts are reflected in the levels of banks’ precautionary liquidity demand:25

Property 4 (Transaction Cost Effect on Precautionary Liquidity Demand):

In the presence of transaction costs banks will target a higher (if they are potential

interbank lenders), resp. lower (if they are potential interbank borrowers), level of

precautionary liquidity holdings than in the frictionless case. Accordingly, the interbank

market transaction volume will be lower, i.e., the liquidity redistribution via the interbank

market will be inhibited, formally stated by

∂b∗

∂γ1
=

∂b∗

∂γ2
= − 1

(iLF − iDF ) · (f (−T ∗
1 ) + f (−T ∗

2 ))
< 0, (28)

∂T ∗
1

∂γi
= −∂b∗

∂γi
> 0 for i = 1, 2, (29)

∂T ∗
2

∂γi
=

∂b∗

∂γi
< 0 for i = 1, 2. (30)

The existence of transaction costs leads to the following key property of a symmetric

corridor system:

Property 5 (Demand for Precautionary Liquidity): Transaction costs imply that

the banking sector’s aggregate demand for precautionary liquidity at the target rate may

differ from zero, i.e.,

T (itarget) � 0 if γ1, γ2 ≥ 0. (31)

24This simulation approach follows Whitesell (2006).
25Recall that with the convention b∗ := b∗2 = −b∗1 it is T ∗

1 = ξ1 − b∗ and T ∗
2 = ξ2 + b∗.
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Formally, Property 5 is implied by equations (15) and (16) which show that the banking

sector’s aggregate precautionary liquidity demand T is an increasing function of potential

lenders’ transaction costs and a decreasing function of potential borrowers’ transaction

costs. The quantities of precautionary liquidity demanded by banks thereby depend on

the width of the interest corridor. A narrow corridor leads to relatively large deviations

from zero of banks’ precautionary liquidity demand at itarget (as discussed in section 4.3

and as formally captured by equations (19) and (20)).

So, with regard to the central bank’s liquidity management there are two cases that

have to be distinguished: (1) There is no heterogeneity in the cross-section dimension, i.e.,

γ1 = γ2. This implies that T1(i
target) = −T2(i

target) so that T (itarget) = 0, independent of

which banks will be active on which side of the interbank market. This means that there

is no uncertainty about T (itarget) and also no need for the central bank to accommodate

any demand for precautionary liquidity by the banking sector as a whole. (2) There is

transaction cost heterogeneity in the cross-section dimension, i.e., γ1 
= γ2, implying that

T1(i
target) 
= −T2(i

target) and T (itarget) 
= 0. Since bank customer payments reshuffle

reserves within the banking sector after the central bank has conducted its open market

operations and before interbank trading takes place, the central bank does not know “in

the early morning” which banks will be active on which interbank market side “at noon.”

Hence, the banking sector’s aggregate precautionary liquidity demand is uncertain and

the establishment of adequate liquidity conditions in the early morning to hit the targeted

interbank rate requires the central bank to estimate T (itarget). Forecast errors result in

deviations of the equilibrium interbank rate from the target level. Formally, the interest

rate effects of such unobservable transaction cost heterogeneity are captured by:

Property 6 (Pass-through of Transaction Costs on the Interbank Rate):

∂iIBM∗

∂γ1
=

f(−T ∗
2 )

f(−T ∗
1 ) + f(−T ∗

2 )
> 0, (32)

∂iIBM∗

∂γ2
=

− f(−T ∗
1 )

f(−T ∗
1 ) + f(−T ∗

2 )
< 0. (33)

As formally stated by the following Property 7, the magnitude of these effects depends on

the width of the interest corridor:
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Property 7 (Corridor Width Effect): Possible deviations of the interbank rate from

its target are reduced either by a widening or a narrowing of the corridor width, i.e.,

∂2iIBM∗

∂w∂γ1
=

∂b∗
∂w ·

(
−ξ1−ξ2

σ2 · f(−ξ1 + b∗) · f(−ξ2 − b∗)
)

(f(−ξ1 + b∗) + f(−ξ2 − b∗))2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

> 0 for Ξ < 0

= 0 for Ξ = 0

< 0 for Ξ > 0,

(34)

∂2iIBM∗

∂w∂γ2
=

∂b∗
∂w ·

(
−ξ1−ξ2

σ2 · f(−ξ1 + b∗) · f(−ξ2 − b∗)
)

(f(−ξ1 + b∗) + f(−ξ2 − b∗))2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

> 0 for Ξ < 0

= 0 for Ξ = 0

< 0 for Ξ > 0,

(35)

where

∂b∗

∂w
=

γ1 + γ2
2w2 (f(−ξ1 + b∗) + f(−ξ2 − b∗))

≥ 0. (36)

Equations (34) and (35) give the formal description that the corridor width cannot be used

systematically to make the interbank rate robust to bank-specific transaction costs under

a symmetric corridor system. The intuition is simple. While, as argued in section 4.2, the

high interest sensitivity of interbank liquidity demand and supply under a narrow corridor

from the central bank’s perspective is desirable in a frictionless world, it is ambivalent in

the presence of transaction costs. The following considerations for the case of supply-side

transaction costs illustrate this ambivalence: Lending transaction costs lead to a drop in

interbank liquidity supply. This drop is larger the more interest-sensitive the supply is.

Hence, the upward pressure on the interbank rate implied by a transaction cost-induced

drop in supply is larger the more interest-sensitive the supply is. This is the case under

a narrow corridor where banks have relatively attractive outside options available and

depend less on the interbank market. Now, the ambivalence of a narrow corridor in

this respect is revealed when the demand side of the interbank market is considered. If

demand is highly interest-sensitive, the equilibrium interbank rate is relatively robust to

transaction-cost induced changes in supply. So, in a comparative static view, a reduction

in the corridor width, which makes both the interbank demand and supply more interest-

sensitive, has two opposing effects on the interbank rate and on the magnitude of the

lending-transaction-cost effect on the interbank rate. The sign of the overall effect depends

on the extent to which a corridor-width reduction increases the interest sensitivity of
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demand compared to the extent to which a corridor-width reduction increases the interest

sensitivity of supply. Demand effects will dominate if there is a scarcity of aggregate

liquidity, Ξ < 0, supply effects will dominate if there is an excess of aggregate liquidity,

Ξ > 0. Both effects will be of the same magnitude if aggregate liquidity conditions are

balanced and, in this case, the lending-transaction-cost effect on the interbank rate will

even be independent of the corridor width (see equation (34)).

So, in the presence of transaction cost heterogeneity (γ1 
= γ2), whether a relatively

wide or narrow corridor is suitable for minimizing the deviations of the interbank rate from

its target thus depends on the sign of the banking sector’s pre-trade liquidity position

Ξ. However, the sign of Ξ under a symmetric corridor system is determined by the

aggregate liquidity shock. Therefore, there is no general rule the central bank could follow

in order to implement a symmetric corridor system that is relatively “robust” to lending

transaction cost effects and – with an analogous argumentation – to borrowing transaction

cost effects.26

6.2.2 Distribution of Interbank Rates and Model Simulations

Again, implications for the sources of and the measures to control the volatility of a time

series of interbank rates in a multi-period world consistent with the model can be drawn by

mapping the comparative static results into a parameter space that has a time dimension.

Now, the interesting case is the one where interbank rate volatility stems from market

frictions. This might be the case in a world where new banking regulations are fully

phased in, as discussed in Bindseil (2016), Committee on the Global Financial System

and Markets Committee (2015), or Jackson and Noss (2015). The ultimate rationale for

the increase in volatility caused by banking regulations is that the financial weights of

regulatory burdens that banks have to carry are bank- and time-specific. Transaction cost

heterogeneity, as introduced in this paper, captures the nature of such frictions in the

cross-section dimension and can easily be thought further into a time dimension:

Definition (Transaction Cost Heterogeneity in Two Dimensions): Transaction

cost heterogeneity in the two dimensions cross-section and time is present if, regarded

over time, potential interbank lenders’ and borrowers’ transaction costs γ1 and γ2 change

independently from period to period (or from “day to day”).

26These results can be derived formally from (17), (18), (19), and (20)
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In a world with transaction cost heterogeneity in two dimensions, regarded over time,

Properties 4 to 7 have the following implications:

Implication 4 (Two Sources of Interbank Rate Volatility): Transaction cost het-

erogeneity in the two dimensions cross-section and time is a source of interbank rate

volatility in addition to the first source that lies in the aggregate liquidity shock. This is

because banks’ precautionary liquidity demand at the target rate T (itarget) will be unstable

over time, i.e., from period to period or from “day to day,” if γ1 and γ2 change indepen-

dently over time. Moreover, T (itarget) is uncertain at the time the central bank conducts

open market operations. Hence, the central bank cannot perfectly offset daily fluctuations

in T (itarget) by adequate provision of liquidity. The daily fluctuations in T (itarget) cause

fluctuations in interbank liquidity demand/supply that are transmitted into the interbank

rate.

Implication 5 (Distribution of Interbank Rates): The distribution of a time series

of interbank rates consistent with the model is determined by the distribution of the time

series of potential lenders’ and borrowers’ transaction costs and by the distribution of

aggregate liquidity shocks.

Implication 6 (Dispersion of Interbank Rates and Corridor Width Effect):

The dispersion of a time series of interbank rates that is explained by transaction cost

heterogeneity under a symmetric corridor system cannot be systematically lowered by

adjusting the width of the interest corridor. This is a direct implication of Property 7.

Thus, the width of the interest corridor is not an instrument for the systematic control of

interbank rate volatility that stems from transaction cost heterogeneity. For the special

case in a world without an aggregate liquidity shock, such that the banking sector’s

aggregate liquidity position at noon is always balanced (Ξ = 0), volatility stemming from

frictions is not even correlated with the corridor width.

Figure 4(b) illustrates the neutral relationship between the corridor width and volatility

that stems from transaction cost heterogeneity for the special case of a world without an

aggregate liquidity shock, i.e., of a world in which α = 0. The crucial point is that the

dispersion of a time series of interbank rates in this special case is determined only by the

dispersion of the time series of transaction costs and is thus independent of the corridor

width. In order to illustrate this relationship, the model was solved for 10,000 draws of

lending and borrowing transaction costs from a truncated normal distribution.
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In summary, the results above suggest that a central bank which chooses to operate

a symmetric corridor system in the presence of transaction cost heterogeneity will be

confronted with a kind of “white noise” volatility stemming from frictions that cannot be

controlled through adjustments in the corridor width.27

7 Volatility Control Under an Asymmetric Corridor System

This section conducts the same analysis as the previous section assuming that the central

bank implemented an asymmetric corridor system. Section 7.1, considering a frictionless

world, provides some comparative statics with respect to the interbank rate and model

simulations which illustrate the dispersion of the interbank rate in a floor system. Section

7.2 does the same analysis considering interbank market frictions. Section 7.3 uses these

results to draw some conclusions for a ceiling system.

7.1 Frictionless World

7.1.1 Comparative Statics

A floor system is an asymmetric corridor scheme where the central bank’s targeted in-

terbank rate corresponds to the rate on the deposit facility (for analytical traceability let

itarget = iDF + δ for some small δ > 0).28 The implementation of this scheme by itself –

through an ample central bank provision of liquidity – produces a relatively stable inter-

bank rate that will fluctuate only marginally around the target rate. The corridor width

of a floor system as an instrument to control interbank rate volatility therefore plays a less

relevant role – at least in the frictionless benchmark scenario considered in this subsection.

The basic idea when implementing a floor system is to exploit the following two prop-

erties of banks’ aggregate precautionary liquidity demand:

Property 8 (Demand for Precautionary Liquidity):

T (itarget) >> 0 for |itarget − iDF | ≈ 0. (37)

27With regard to the control of volatility stemming from aggregate liquidity shocks, the model implies
a further property that also is in line with conventional wisdom (see, for instance, Bindseil and Jab�lecki,
2011, section 4). Considering ∂b∗

∂w
= γ1+γ2

2w2(f(−T∗
1
)+f(−T∗

2
))

≥ 0 for the case of γ1 + γ2 > 0 reveals that, if

transaction costs are present, the central bank must take into account that narrowing the interest corridor
leads to a reduction of trading activity in the interbank market.

28See, for instance, United States – Federal Open Market Committee (2008). The “asymmetry” of this
scheme lies in the difference of the spreads between itarget to iDF and to iLF .
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Property 9 (Interest Sensitivity of T ): Using equation (9) for ∂2Ti

∂(iIBM )2
it is

∂2T

∂(iIBM )2
=

∂2T1

∂(iIBM )2
+

∂2T2

∂(iIBM )2
> 0 if T1,2 > 0. (38)

Eventually, the interbank market will clear at the targeted rate if there is virtually zero risk

for banks to become illiquid at the end of the day due to the late payment shock, that is, if

F (−T ∗
i ) ≈ 0.29 This will be the case if the banking sector’s aggregate liquidity endowment

at noon after the realization of the aggregate liquidity shock, Ξ, still sufficiently exceeds

its expected liquidity needs (which are zero), that is, if Ξ = T (itarget) >> 0.

Thus, in order to implement an interbank rate close to iDF the central bank must use

its open market operations in the early morning to provide an ample amount of liquidity

Ξ̄ >> 0 such that only extreme left-tail events described by α << 0 could increase

the probability of and end-of-day deficit for banks significantly above zero. So, with

Ξ̄ → ∞, the liquidity risk posed by left-tail events converges to zero, that is, F (−T ∗
i ) will

remain close to zero and will be insensitive even to relatively large pre-trade aggregate

liquidity shocks. The first-order condition (3) illustrates that this insensitivity of the

cumulative distribution function F (·) translates into a high interest sensitivity of demand

for precautionary liquidity, which in turn translates into a high interest sensitivity of

interbank demand and supply.30

Therewith, the interbank rate will be insensitive to aggregate liquidity shocks if the

interbank liquidity demand and supply curves always intersect at their highly interest-

sensitive regions even after large aggregate pre-trade liquidity drains. This will be the

case if the banking sector’s aggregate liquidity endowment Ξ̄ (which is the central bank’s

choice) is sufficiently large. Thus, the principle of tight interbank rate control under a

floor system with Ξ > 0 relies on a relatively weak liquidity effect (as implied by Property

9).

7.1.2 Distribution of Interbank Rates and Model Simulations

Mapping the comparative static results for the frictionless benchmark scenario under a

floor system into a parameter space with a time dimension yields the same implications

for the source of interbank rate volatility and the distribution of interbank rates as in

29This property is implied by equation (8) in section 4.2.
30Formally, this is captured by Property 9 which is implied by equation (9) in section 4.2. See also

Poole (1968, p. 774).

45



the benchmark scenario under a symmetric corridor system. Thus, the only source of

interbank rate volatility is the aggregate liquidity shock α̃ with the distribution of a time

series of interbank rates consistent with the model being determined by the distribution of

aggregate liquidity shocks. However, with regard to the role played by the corridor width

in attenuating the effects of aggregate liquidity shocks on the interbank rate, there is the

following:

Implication 7 (Dispersion of Interbank Rates and Corridor Width Effect):

Although, regarded over time, the dispersion of interbank rates is lower the smaller the

width of the interest corridor is, a key feature of a floor system is that this effect of the

corridor width on the dispersion of interbank rates is negligible. The corridor width as an

instrument to control interbank rate volatility is less relevant.

This crucial property is illustrated by figure 5(a) which shows that the dispersion of

simulated interbank rates (as a proxy for interbank rate volatility) is relatively low even

under a relatively wide interest corridor.

7.2 Consideration of Transaction Cost Heterogeneity

7.2.1 Comparative Statics

Transaction cost heterogeneity in the two dimensions cross-section and time can make

the interbank rate more volatile – as is the case under a symmetric corridor. However,

the central bank is able to exploit some of the properties implied by the characteristic

asymmetry of a floor system to reduce friction-induced interbank rate volatility in a sys-

tematic manner. The control of volatility that stems from supply-side transaction costs

even involves the implementation of a relatively wide interest corridor.

The mechanisms at work are tied to the asymmetry in the pass-through rates of lending

and borrowing transaction costs that exists under a floor system. Under permanent excess

liquidity conditions established in a floor system, Ξ > 0, the banking sector as a whole

has to – and in particular the liquidity surplus banks have to – rely more on the deposit

facility, implying that the interest sensitivity of interbank liquidity supply is always greater

than or equal to the interest sensitivity of demand. So the pass-through rate of lending

transaction costs is always greater than or equal to the pass-through rate of borrowing

transaction costs. The crucial point is that the central bank can systematically use the

corridor width to reduce the pass-through rate of one market side’s transaction costs –
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(a) Aggregate liquidity shock effects.
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(b) Transaction cost heterogeneity effects.

Figure 5: Distribution of simulated interbank rates under a floor system for different
values of the corridor width visualized with boxplots (lines of the box: first, second,
and third quartile; whiskers: max. 1.5 inter-quartile range). Basic parameter values are:
ε̃i ∼ N (0, 1), Ξ̄ = 5 (we have also used other parameter constellations but decided to choose
this parameter constellation as it makes the effect of a wide corridor on the dispersion of
interbank rates well visible; the effect is harder to spot for other values of Ξ̄). Subfigure
(a) shows the results of 10,000 draws of α̃ for each corridor width where α̃ ∼ N (0, 0.52),
γ1 = γ2 = 0. Subfigure (b) shows the results of 10,000 draws of γ1 (for each corridor width)
from the truncated normal distribution N (0, 0.12)|0.40 with γ2 and α̃ kept constant at zero.
The simulated interbank rates have been obtained in MATLAB (see The MathWorks,
Inc., 2016) by using the function “fsolve” to solve equation (22) numerically. Note, to
rule out the possibility of a breakdown of the interbank market in the simulations, we
implicitly assume that |ξi| is sufficiently large for both i = 1, 2. This guarantees that the
interbank rate will be located between the lower and the upper bound given by equations
(4) and (5) for the region of the parameter space considered in the simulations.
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although at the expense of the other side’s pass-through rate of transaction costs. If the

corridor width is increased, it is the pass-through rate of lending transaction costs that

decreases because it is the surplus banks which react most strongly to the decline in the

attractiveness of outside options – arguing analogously to the case considered in section

6.2. So, under permanent excess liquidity conditions Property 7 is reduced to the special

case of

Property 10 (Corridor Width Effect):

∂2iIBM∗

∂w∂γ1
=

∂b∗
∂w ·

(
−ξ1−ξ2

σ2 · f(−ξ1 + b∗) · f(−ξ2 − b∗)
)

(f(−ξ1 + b∗) + f(−ξ2 − b∗))2
< 0 for Ξ > 0, (39)

∂2iIBM∗

∂w∂γ2
=

∂b∗
∂w ·

(
−ξ1−ξ2

σ2 · f(−ξ1 + b∗) · f(−ξ2 − b∗)
)

(f(−ξ1 + b∗) + f(−ξ2 − b∗))2
< 0 for Ξ > 0. (40)

Under a floor system, demand-side effects are less of a concern for the central bank. On

the one hand, potential borrowers’ transaction costs bring the interbank rate even closer to

the central bank’s target. And on the other hand, borrowing transaction costs only involve

a relatively small drop in the deficit banks’ precautionary liquidity demand (due to the

relatively low interest sensitivity of demand) such that the demand for interbank liquidity

(at low interbank rates close to itarget) and therewith the equilibrium interbank rate will be

relatively insensitive to transaction costs, too. As the interbank rate is inherently robust

to demand-side frictions under a floor system, volatility control would require the central

bank to implement a corridor system that makes the interbank rate robust to supply-side

frictions. As captured by Property 10, this is achieved by implementing a relatively wide

interest corridor.31

7.2.2 Distribution of Interbank Rates and Model Simulations

The implications of the comparative static results for the sources of interbank rate volatility

and the distribution of interbank rates under a floor system are the same as under a

symmetric corridor system in the presence of transaction costs. With transaction cost

heterogeneity in the two dimensions cross-section and time in addition to the aggregate

31The ultimate reason for this stabilizing effect is that effective marginal surplus costs and thus op-
portunity costs of liquidity banks hold in excess of their expected liquidity needs increase in the corridor
width. Consequently, targeting large quantities of precautionary liquidity, and thus the outside option of
using the deposit facility, become relatively unattractive for surplus banks (i.e., for potential lenders). A
wide corridor stabilizes potential lenders’ precautionary liquidity demand, therewith interbank liquidity
supply and ultimately the interbank rate.
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liquidity shock representing the two sources of interbank rate volatility, the distribution of a

time series of interbank rates consistent with the model is determined by the distribution of

the time series of potential lenders’ and borrowers’ transaction costs and by the distribution

of aggregate liquidity shocks. But Property 10 yields the following:

Implication 8 (Dispersion of Interbank Rates and Corridor Width Effect):

A high dispersion of a time series of potential lenders’ transaction costs leads to a

relatively pronounced increase in the dispersion of a time series of interbank rates. A

high dispersion of a time series of potential borrowers’ transaction costs only leads to

a relatively small increase in the dispersion of a time series of interbank rates. Thus,

demand-side effects are less of a concern. With regard to the control of friction-induced

interbank rate volatility the main implication is thus that the dispersion of a time series

of interbank rates that is explained by the dispersion of a time series of potential lenders’

transaction costs can be systematically lowered by increasing the width of the interest

corridor, as illustrated by figure 5(b).32

7.3 Implications for a Ceiling System

The analysis made in the previous section leads to some direct implications for a ceiling

system. This is an asymmetric corridor scheme where the targeted interbank rate cor-

responds to the central banks’ lending rate. The central bank can implement a ceiling

system by making sure that the banking sector’s aggregate liquidity position stays sig-

nificantly negative. In turn, the aggregate liquidity deficit drives up the interbank rate.

Similar to a floor system, this scheme is robust against aggregate liquidity shocks even

for a relatively wide interest corridor. However, under a ceiling system, potential inter-

bank borrowers have the more attractive outside option to using the interbank market in

the presence of market frictions. Thus, as the pass-through rate of potential borrowers’

transaction costs on the interbank rate is larger than that of potential interbank lenders,

supply-side effects are less relevant under this scheme. So, if the main source of volatil-

ity lies in borrowing transaction costs, friction-induced interbank rate volatility can be

controlled systematically by increasing the corridor width of a ceiling system.

32At that, a possibly desirable property for the central bank is that, in the presence of transaction costs,
widening the interest corridor leads to an increase in the interbank market transaction volume (formally
stated by ∂b∗

∂w
= γ1+γ2

2w2(f(−T∗
1
)+f(−T∗

2
))

≥ 0). For a discussion of trade-offs a central bank faces when choosing

the width of an interest corridor see, for instance, Bindseil and Jab�lecki (2011).
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8 Concluding Remarks

Interbank market frictions can lead to higher interbank rate volatility. Bank- and time-

specific transaction costs can cause fluctuations in interbank liquidity demand and supply

that will be transmitted into interbank rate volatility. New banking regulations that

pose additional financial burdens on interbank market participants might have such a

volatility effect (Bindseil, 2016; Committee on the Global Financial System and Markets

Committee, 2015; Jackson and Noss, 2015). Thus, at some point, central banks could

actually be confronted with interbank rate volatility that stems from market frictions.

This paper points out that the control of interbank rate volatility which has its origin

in market frictions basically is subject to different rules than the control of volatility that

stems from aggregate liquidity shocks to the banking sector. Generally, a central bank’s

options to control volatility that stems from frictions are to switch from a symmetric

corridor system to an asymmetric corridor system (floor or ceiling system) and to increase

the width of the asymmetric corridor. Under a symmetric corridor system, the corridor

width cannot be used systematically at all to control friction-induced volatility. Under

a floor system, the interbank rate is inherently robust to demand-side frictions, under a

ceiling system it is robust to supply-side frictions. Consequently, if under a symmetric

corridor system demand-side (supply-side) frictions are the dominant source of interbank

rate volatility, the central bank should switch to a floor system (ceiling system) to reduce

the volatility. If a floor system (ceiling system) is already implemented, still occurring

friction-induced volatility will then be the result of supply-side (demand-side) frictions.

The control of this volatility requires the central bank to widen the interest corridor –

which is the inversion of the traditional principle.
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Optimal Timing of Calling In Large-Denomination

Banknotes under Natural Rate Uncertainty

Thomas Link

Abstract

The elimination of large-denomination banknotes is one of several options to relax

the effective-lower-bound constraint on nominal interest rates. We explore timing issues

associated with the calling-in of large notes from a central banker’s perspective and employ

an optimal stopping model to show how the volatility and the expected path of the natural

rate of interest determine an optimal timing strategy. Our model shows that such a

strategy can involve a wait-and-see component analogously to an optimal exercise rule

for a perpetual American option. In practice, a wait-and-see component might induce a

central banker not to call in large notes until the natural rate has fallen to an exceptionally

low level.

JEL classification: E42, E58

Keywords: cashless economy, phase-out of paper currency, wait-and-see policy, option

value
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1 Introduction

It is well established that cash implies an “effective lower bound (ELB)” on nominal

interest rates and thus a constraint for monetary policy.1 Proposals to relax the ELB-

constraint range from abolishing cash straightaway (for instance Buiter, 2009), on the

one hand, to implementing measures that reduce the attractiveness of cash as an outside

option in times of negative nominal interest rates on the other hand. Concrete measures

of this kind include issuing banknotes with a “magnetic strip” that can be used to enforce

holders of such banknotes to pay a carry tax on currency (Goodfriend, 2000, p. 1016) or

“phasing out” large-denomination banknotes (Rogoff, 2017a, p. 57).2 While Goodfriend’s

approach relies on technical ways to enforce higher costs of carry for cash artificially,

Rogoff’s approach aims at directly increasing the costs associated with cash hoardings

like transportation, storage, and insurance costs.3 In this paper, we take up Rogoff’s

proposal and consider the implied decision problem of a central banker that has the power

to implement it. Our starting point is the observation that Rogoff’s approach to lower the

ELB is easy to implement, practical (in contrast to the other two approaches mentioned),

scalable, and, most notably, that it is in fact feasible within the mandate and set of

instruments of at least one major monetary authority. Evidence has recently been provided

by the European Central Bank that stopped the issuance of 500-euro notes in April 2019.4

A central bank like the European Central Bank (ECB) with a clear mandate and the

primary objective of maintaining price stability should face a relatively narrow and well-

defined problem in deciding whether or not to phase out large notes – especially since it

is not the complete “abolition” of cash that is at stake, but just an adjustment in the

1For a discussion on a “zero bound” or a “zero lower bound” see, for instance, Goodfriend (2000, p.
1007), Buiter (2009, p. 214), or Rogoff (2017a, p. 47). For the rationale of why the “effective” lower bound
on policy rates, in fact, lies below zero see, for instance, Goodfriend (2000, footnote 3), Buiter and Rahbari
(2015), or Rogoff (2017a, p. 59). However, it has also been pointed out that cash is not the only reason
that the ELB exists: We refer to Rogoff (2017a, p. 61) and (as also cited therein) to McAndrews (2015)
for a discussion of various other frictions that had to be tackled in order for central banks to be able to
effectively implement negative rates.

2See also Buiter and Panigirtzoglou (2003) for a detailed discussion with a comment on the feasibility
and a theoretical analysis of the “carry tax” approach. Buiter (2007a) discusses an alternative to that
approach which, in principle, involves the introduction of an exchange rate between cash and central bank
reserves. A discussion of the approach to “phase out” large-denomination banknotes is also presented in
Rogoff (2016) and Rogoff (2017b). For a survey of several approaches to relax the ELB-constraint and a
discussion of feasibility issues see, for instance, Agarwal and Kimball (2019).

3See Rogoff (2017a, p. 59).
4Agarwal and Kimball (2019, p. 44) suggest that the decision to curtail the denominational structure

of banknotes has increased the scope for the ECB to lower its policy rates – simply because the physical
effort of storing multiples of e 500 in cash and thus the hurdle to take a flight into euro-denominated cash
are higher now (which is the exact same rationale put forward by Rogoff, 2017a, p. 59).
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denominational structure of banknotes.5 No weight should be assigned to arguments that

stand against completely abolishing cash, such as the loss of privacy or of the possibility

to make payments independent of information technology and access to the internet (for a

central bank like the ECB, such arguments should in any case be subordinate to monetary

policy goals).6 However, even for a “cash-averse” central banker, there is a major reason

to keep issuing large banknotes: As Rogoff (2015, pp. 450–452) suggests, it is natural to

assume that phasing out large notes will reduce cash demand and thus the seignorage

revenue a central bank makes by issuing cash.7 Rogoff (2015, p. 452) states that the loss

of seignorage profits is in so far problematic for a central bank as its capacity to finance

itself and to thus shield its operational independence is put at stake.8 The decision to

phase out large banknotes thus involves a major dilemma for a central bank when it

must trade off the benefits for monetary policy from a relaxed ELB-constraint against

the loss of seignorage revenues. In this paper, a central bank’s decision problem is, in

principle, reduced to this dilemma because we believe that other arguments for or against

the issuance of large notes, for instance, of 200- and 100-euro notes, should be less relevant

for a central bank with a clear mandate like the ECB.

It is obvious that the intensity of this dilemma is state-dependent and uncertain in

many dimensions with the net benefits from phasing out large banknotes dependent on

the likeliness, frequency, and scale of ELB-episodes in the future as well as on the amount

of forgone seignorage revenues. We focus on one key determinant and start with the

hypothesis that both factors, i.e., the probability and costs of ELB-episodes in the future

as well as seignorage losses, are a monotone function of the natural rate of interest. Model-

based simulation results that point toward the assumption that a lower natural rate level

involves a higher probability of ELB-episodes are provided by Kiley and Roberts (2017)

and Chung, Gagnon, Nakata, Paustian, Schlusche, Trevino, Vilán, and Zheng (2019).

These studies assess the likelihood of ELB-episodes in the United States for different

states of the world and different interest rate levels and find a significant risk in some

5According to Mersch (2018), the ECB, particularly, the Governing Council of the ECB, can in fact
adjust the denominational structure of banknotes. Moreover, as Mersch (2018) points out, it is only the
Governing Council of the ECB that may adjust the denominational structure of euro banknotes.

6For detailed discussions of arguments in favor of and against the issuance of cash, respectively large-
denomination banknotes, see, for instance, Rogoff (1998), Rogoff (2015), Rogoff (2017a) or Krüger and
Seitz (2018).

7We use the term “seignorage” for central bank revenue from issuing cash, noting that there are other
measures of seignorage (see, for instance, Buiter, 2007b).

8See also Rogoff (2016, chapter 6), Buiter (2009, p. 224), Thiele, Niepelt, Krüger, Seitz, Halver, and
Michler (2015, p. 10), or Krüger and Seitz (2017, chapter 4.1).
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scenarios that the ELB-constraint will become binding again in the future.9 In light of

Holston, Laubach, and Williams (2017) who observe a significant fall of natural rates in

the United States, Canada, the euro area, and the United Kingdom during the last three

decades, it is thus natural to assume that the probability of ELB-episodes in those other

regions, ceteris paribus, is also now significantly higher than it was three decades ago.10

Altogether, with seignorage revenues typically decreasing in the interest rate level (we

comment on this relationship in section 2), we build our analysis on the assumption that

the net benefits from phasing out large notes are higher the lower the natural rate of

interest is.

Rogoff (2016, chapter 7) discusses how a “phase out” of large-denomination banknotes

could be implemented. In principle, the implementation schemes he considers range, on

the one hand, from removing the legal tender status of certain banknotes without delay or

at relatively short notice (similar to the calling-in of 500- and 1,000-rupee notes in India

in 2016) to, on the other hand, a “soft” implementation version where certain banknotes

are gradually removed from circulation over time by simply stopping their issuance while

keeping their legal-tender status (which is the ECB’s approach to phasing out the 500-euro

note). In this paper, a “tough” scheme is considered where the central bank stops the

issuance of a large-denomination banknote and immediately removes its status as legal

tender. We refer to this move as the “calling-in” of the large-denomination banknote.

Our goal is to explore optimal timing issues from a central banker’s perspective under

three assumptions: 1) The net benefits from calling in large notes are uncertain and a

function of the (stochastic) natural rate of interest. 2) The calling-in move is irreversible

(for instance, because the reputational costs of reversing it are prohibitively high). 3)

The move can be timed freely. With these three features, the central banker’s problem of

finding the optimal timing to make the calling-in move has a structure that is equivalent

to the optimal exercise problem of a perpetual American option or to a firm’s optimal

9Kiley and Roberts (2017) analyze the risk of ELB-episodes for different “steady-state nominal interest
rates”. Since they assume a 2% inflation target (see ibid., p. 337), the different steady-state nominal
interest rates they consider are driven by different “equilibrium real interest rates” (i.e., natural rates
of interest). Chung, Gagnon, Nakata, Paustian, Schlusche, Trevino, Vilán, and Zheng (2019) present a
related study. They show that the probability that the United States will experience an ELB-episode in
the future increases with a decreasing “neutral level of the real federal funds rate in the longer run” (see
ibid., pp. 7–8). See also Yates (2004) for a review of earlier studies on the risk of ELB-episodes.

10See Rogoff (2017a, pp. 49–51) for a more detailed discussion on the relationship between low real
interest rate levels, low monetary policy rates, and the risk of future ELB-episodes.
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timing problem for an irreversible investment under uncertainty (a “real option”).11 As

pointed out by Dixit and Pindyck (1994, pp. 6–7, 153), a key feature of corresponding

decisions with an option element is the “wait-and-see” component of an optimal timing

strategy. That is, under certain circumstances, optimality does not require a decision-

maker to exercise a real option – analogously to a financial option – until the expected net

benefits from making a move are significantly greater than zero. With regard to a central

banker’s decision problem this implies that even if the expected net benefits from calling

in large banknotes today are greater than zero, under certain circumstances, there can be

a simple reason to postpone such a calling-in move to a future date. We use a stylized

optimal stopping model to show how the optimal timing of calling in large-denomination

banknotes depends on the volatility and the expected path of the natural rate of interest.

In the idea of concentrating on the option structure of a real policy problem, our paper is

most closely related to Alvarez and Dixit (2014) who explore the euro area’s “real option”

of abandoning the common currency.12

Section 2 formalizes a central banker’s decision problem and introduces an optimal

stopping model of calling in large-denomination banknotes. The model is solved in section

3.1 for the deterministic and in section 3.2 for the stochastic case. Section 4 sheds light

on the determinants of optimal policy and the “value” of the central banker’s option to

make a calling-in move. Section 5 presents some numerical examples to assess a central

banker’s wait-and-see behavior in different states of the world. Section 6 concludes.

2 An Optimal Stopping Model of Calling In Large-

Denomination Banknotes

A central banker with power over the legal tender in a closed economy has the option to

make a change in the denominational structure of banknotes. The central banker initially

issues banknotes in two denominations, “small” and “large,” and has the authority to call

in the large denomination by stopping its issuance and removing its status as legal tender

straightaway.13 The reputational costs of reversing such a calling-in move are prohibitively

11See Dixit and Pindyck (1994, pp. 3–25) for a discussion on the analogy between financial and real
options and their characterizing features.

12In solving our model and in technical regards, we primarily draw on the dynamic programming
methods and solution concepts described by Dixit and Pindyck (1994).

13See also Rognlie (2016) who uses a model with two cash denominations in the context of the elimination
of large denominations to lower the ELB-constraint, too. However, Rognlie (2016) considers the elimination
of large denominations in the context of a New Keynesian framework and analyzes household utility under
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high, thus the change in the denominational structure is irreversible. The move is one-shot

and can be made at any time. Time is continuous and the time horizon is [0,∞).

Cash demand and banknotes in circulation are not explicitly modeled. We just assume

that small and large banknotes are only imperfect substitutes, such that cash demand

depends on the denominational structure and is larger the higher the value of the largest

denomination available is (for instance, because there is a specific demand for large notes

as a store of value, as Fischer, Köhler, and Seitz (2004) describe). Calling in the large

notes reduces cash demand and ultimately cash in circulation. For the central banker

in particular, two consequences of such a calling-in move are relevant: The benefit from

relaxing the ELB-constraint and a cost in the form of lost seignorage revenues.

Our way of capturing the costs and benefits from calling in large banknotes that will

ultimately enter the central banker’s objective function is extremely stylized: We follow

the approach that Alvarez and Dixit (2014) use to formalize a currency union’s decision

problem of choosing the optimal timing to break up the union (they consider a potential

break-up of the euro area). In principle and to put it simply, Alvarez and Dixit (2014)

capture the currency union’s costs and benefits from having the common currency by

an exogenous process of flow utilities that is independent of the union’s timing and of

other future variables.14 Although extremely stylized, this approach is convenient as it

allows for a clear analysis of the effects of uncertainty over future states of the world on

the decision-makers’ actions and wait-and-see behavior. In this manner, we capture the

central banker’s net benefits from calling in large notes by the flows of utility ut in period

t that are received once the calling-in move has been made. With Ut denoting the central

banker’s overall period-t utility we can write

Ut =

⎧⎪⎨
⎪⎩
0 for t ∈ [0,T ),

ut for t ∈ [T ,∞),

(1)

where T ∈ [0,∞) denotes the point in time when the calling-in move is made.

Since we want to describe a central banker whose main benefit from calling in large

notes is a welfare gain from the relaxation of the ELB-constraint on monetary policy rates

optimal monetary policy dependent on the existence of small and large cash denominations (see Rognlie,
2016, pp. 41–42). In contrast to our paper, Rognlie (2016) does not discuss issues regarding the optimal
timing of eliminating large denominations.

14Actually, Alvarez and Dixit (2014) start with the modeling of flow benefits a member of the currency
union has from belonging to the union, see Alvarez and Dixit (2014, p. 80, equation (3)).
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and whose main cost is the loss of seignorage revenues, we can state the central banker’s

net period utility from calling in large notes as

ut = g − rt − ω, (2)

where g ∈ R>0 and ω ∈ �>0 are known and constant parameters and rt denotes the natural

rate of interest in period t. The natural rate is governed by an Ornstein-Uhlenbeck process

(OU process) with

drt = θ(rss − rt)dt+ σdBt, t ≥ 0, (3)

where Bt is Brownian motion (with B0 = 0), θ ∈ �>0 is the speed of reversion to a

long-run mean or steady-state level rss ∈ �, and σ ∈ �≥0 is a volatility parameter. This

specific process is simple enough to allow for an analytical solution of the central banker’s

decision problem but it is also sophisticated enough to describe a variety of plausible

empirical scenarios (we discuss different scenarios in section 3.1).15 The two constants ω

and g are level parameters that capture the costs and benefits from calling in large notes

that do not depend on the state of the world, respectively on the natural rate of interest.

Letting the natural rate enter the utility function with a negative sign reflects two

assumptions. The first assumption is that the potential benefits from relaxing the ELB-

constraint on monetary policy rates by calling in large banknotes are larger the lower the

natural rate is. To accept this assumption it helps to consider the economics within a basic

New Keynesian model as, for instance, presented in Gaĺı (2015, chapter 3). The deviation

of actual output and inflation from their natural and/or efficient levels (i.e., output and

inflation gaps) in such a framework increases in the difference between the actual and the

natural real rate of interest (i.e., in the real rate gap) with a positive real rate gap being

associated with negative inflation and output gaps.16 In turn, the real rate gap during

ELB-episodes is larger the lower the natural rate of interest is during these periods.17 The

reason is that the central bank is unable to lower the policy rate during ELB-episodes to

reduce the actual real rate of interest down to a desirable level. All in all, the welfare

15Of course, the denominational structure itself and a lowered ELB could in turn influence the structure
of the economy and in particular the natural rate, but we shall ignore such and other interdependencies
and assume that the natural rate follows an exogenous process.

16See Gaĺı (2015, p. 63, equations (22) and (23)) and also Holston, Laubach, and Williams (2017, p.
560) for a short note on this relationship.

17See, for instance, Gaĺı (2015, chapter 5.4) for monetary policy under an ELB-constraint.
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losses due to the inflation and output gaps during an ELB-episode and thus the benefits

from relaxing the ELB-constraint are larger the lower the natural rate is.

The second assumption that is reflected in the negative sign of rt in the central banker’s

period utility is that the loss in seignorage revenues in the form of central bank profits from

issuing cash is larger the higher the natural rate is. A real world example can illustrate this

relationship:18 The European Central Bank’s interest income from banknotes in circulation

as stated in its profit and loss account is computed per convention. In principle, it is the

interest the ECB earns on its share of euro banknotes in circulation, applying the rule that

this share is always 8% and using a rate of return that is just the ECB’s main refinancing

rate (MRO rate). Consequently, the ECB’s interest income from banknotes in circulation

is increasing in the MRO rate and in particular it is zero at all when the MRO rate is

zero (which has been the case in recent years).19 So, returning to our model framework,

the negative dependence of the central banker’s utility from calling in large notes on the

natural rate can be thought of as describing a world where, on the one hand, the interest

income from banknotes in circulation increases in the policy rate which in turn is an

increasing function of the natural rate of interest – and on the other hand, a world where

cash demand and thus currency in circulation is smaller when only small denominations

are issued.20

Let us now consider the central banker’s timing problem. We take a t = 0-perspective

and assume that only the current level of the natural rate r0 = r ∈ � is known such that

the decision to call in large notes must be made under uncertainty over the future path

of the natural rate and thus under uncertainty over the future net benefits from making a

calling-in move. At this point we refer to the real options literature and in particular to

Dixit and Pindyck (1994, pp. 3–25) who point out the analogy between financial options

and real options, i.e., opportunities to make real investments that can be timed freely,

that are irreversible, and that are made under uncertainty over future states of the world.

18We are grateful to Franz Seitz who pointed out this example after a seminar talk in Leipzig. See also
Krüger and Seitz (2017, chapter 4.5).

19See European Central Bank (2019, p. A4) for these accounting rules. The ECB’s share is 8% irrespec-
tive of its true value so that 92% of the euro banknote issuance are allocated to euro area national central
banks that actually issue banknotes. See also European Central Bank (2019, p. A24) for the position
“interest income arising from the allocation of euro banknotes within the Eurosystem” which was zero in
2017 and 2018. In contrast, for example, with the relatively high interest rates (compared to current levels)
that prevailed ten years earlier, in 2008, this position amounted to over 2.2 billion euros (see European
Central Bank, 2009, p. 218).

20See, for instance, Rogoff (2016, chapter 6) for this last point in the context of a central bank’s
seignorage revenues.
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In principle, our central banker’s calling-in move can be regarded as an investment that

shares the three exact same characteristic features: the move is irreversible, can be timed

freely, and is made under uncertainty. So, since the central banker’s timing problem has

the same structure as the problem of pricing an American option or as a firm’s problem

of finding the optimal timing to make an investment, we use dynamic programming as

described in Dixit and Pindyck (1994, pp. 93–132, 135–174) to solve this problem. In

doing so, we follow Alvarez and Dixit (2014) who apply dynamic programming to value a

currency union’s “real option” to break up the union.

Accordingly, we solve the central banker’s problem of when to optimally call in large

notes by finding the “value” V (r) of her option to make this calling-in move depending

on the period-0 natural rate r0 = r. We use the term “calling-in option” from now on

and measure “value” in terms of utility such that the value of the calling-in option is the

expected present value of the stream of flow utilities from calling-in large notes provided

that the calling-in move will be timed optimally.21 Determining the value function yields

an optimal timing strategy for the “exercise” of the calling-in option in the form of the rule

to call in large notes as soon as the natural rate hits or falls below a certain threshold r.

We define the value of the calling-in option, given that the central banker follows this rule,

and given that the period-0 level of the natural rate is r ≥ r, as supremum of the expected

present value of the stream of flow utilities the central banker receives after having made

the calling-in move at time T . With δ ∈ �>0 denoting the rate at which the central banker

discounts future utility, the value of the calling-in option is thus

V (r) = sup
T≥0

E

[∫ ∞

T
(g − rt − ω) · exp(−δt)dt

∣∣ r0 = r

]
, (4)

where the supremum is taken over all timings T ≥ 0 to make the calling-in move. Note

that each timing is a stopping time, i.e., a random variable that is defined by a timing

strategy in the form of a rule to make the move once the natural rate hits or falls below

a certain threshold. Finding the optimal threshold r and the value V of the calling-in

option is an optimal stopping problem. We solve this problem in the next section.

21See Dixit and Pindyck (1994, pp. 99–101) for a discussion of the basic role of value functions in a
dynamic programming context.
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3 Optimal Policy and Option Value

3.1 Optimal Timing and Option Value under Perfect Foresight

Before we solve the model for the case where σ > 0 in section 3.2, we consider a world

with perfect foresight and thus without uncertainty over the future path of the natural

rate of interest. So, for the remainder of this section, we assume σ = 0. In solving a

deterministic version of the model first, we choose the same order of analysis as Dixit

and Pindyck (1994, pp. 136–147) (for a generic timing problem) in order to provide some

intuition on how the results of the model are driven by the non-stochastic variables, and

in particular, by the anticipated path of the natural rate. For that purpose, we analyze

the central banker’s timing strategy in six scenarios with different paths of the natural

rate.

The central banker’s timing problem under perfect foresight is relatively simple and the

solution is obtained as follows: Consider first the path of the natural rate. In general, with

the natural rate behaving as described by equation (3), rt conditional on r0 = r ∈ � is

Gaussian with E[rt] = r ·exp(−θt)+rss ·(1−exp(−θt)) and Var(rt) =
σ2

2θ ·(1−exp(−2θt)).22

So, the expected natural rate is a monotone function of time. For σ = 0 the actual natural

rate in period t will be equal to the expected natural rate in period t where, with r0 = r,

rt = r · exp(−θt) + rss · (1− exp(−θt)) . (5)

Therewith, we can compute the expected (period-0) present value of the stream of flow

utilities ut = g−rt−ω the central banker will receive after having called in the large note,

given that r0 = r and given that the calling-in move will be made at time T ≥ 0. For

σ = 0, this expected value equals the actually realized value F (r,T ) with23

F (r,T ) =

∫ ∞

T
(g − rt − ω) · exp(−δt)dt (6)

=
1

δ
· (g − rss − ω) · exp(−δT ) − 1

δ + θ
· (r − rss) · exp(−(δ + θ)T ).

This is the central banker’s objective function under perfect foresight. She maximizes (6)

simply by choosing an optimal point in time T ∗ ∈ [0,∞)∪{∞} to make the calling-in move

22See, for instance, Maller, Müller, and Szimayer (2009, p. 423) and Dixit and Pindyck (1994, pp.
74–78).

23Here, a great technical advantage of the OU process for our purposes becomes apparent: the integral
in (6) is easy to solve with rt as defined in (5).
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(T ∗ = ∞ means that the move will never be made). So, the optimal stopping problem (4)

degenerates to

V (r) = sup
T≥0

F (r,T ), (7)

where T ∈ [0,∞) is a deterministic variable and T ∗ ∈ [0,∞)∪ {∞} is thus already known

in period t = 0 (in the general case for σ > 0, T is a random variable). Note, that as the

central banker can simply choose never to exercise the calling-in option at all, its value V

in terms of future utility must be bounded from below by zero.24

The optimal timing strategy to make the move in period T ∗ can also be formulated

as a decision rule: do not make the calling-in move as long as the natural rate is above a

certain threshold r and make the move as soon as the natural rate hits or has fallen below

this optimal threshold. In the absence of uncertainty over the natural rate, the optimal

threshold r can easily be computed by evaluating (5) at t = T ∗ to obtain r = rT ∗ .

Therewith, the value V of the calling-in option can also be expressed as the present

value of the “exercise payoff ” V with

V (r) = V(r) · exp(−δT ∗), (8)

where the exercise payoff V at a given natural rate r is defined as the expected present

value of the stream of flow utilities from calling in the large note given that the calling-in

move is made at this given natural rate r with25

V(r) := E[F (r,T = 0)] = E

[∫ ∞

0
(g − rt − ω) · exp(−δt)dt | r0 = r

]
(9)

=
1

δ
· (g − rss − ω)− 1

δ + θ
· (r − rss). (10)

It is the specific path of the natural rate that determines whether (7) has an interior

or a corner solution. In the following, we solve the model for different scenarios and show

how T ∗ and r depend on the anticipated path of the natural rate. Recall, we have assumed

that the natural rate is governed by a mean-reverting process. In the absence of stochastic

24Note, that the value of the calling-in option cannot simply be stated as maximum of F over T since
such a maximum does not necessarily exist (think of F converging to zero from below for T → ∞). So, we
use the supremum in the formulation of the deterministic timing problem, too.

25We use the term “exercise payoff” but mean the same concept that Dixit and Pindyck (1994, p. 99)
define as “termination payoff.” For analogous timing problems see, for instance, the generic problems in
Dixit and Pindyck (1994, chapter 5) or in Chevalier-Roignant and Trigeorgis (2011, chapter 9).
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movements (if σ = 0), the path of the natural rate is a deterministic and monotone

function of time, and whether this function is decreasing or increasing in time depends on

whether the natural rate reverts to its steady state level rss from above or from below.

Therewith, the central banker’s period utility from calling in large notes ut = g − rt − ω

(as a linear function of the natural rate) features mean-reversion as well with the path of

utility being inversely related to the path of the natural rate (the two constants g and ω

are just level parameters). The long-run steady state level of period utility is thus just

uss = g − rss − ω. So, the path of period utility is monotonically increasing in time if the

natural rate reverts to its steady state from above (r0 > rss) and monotonically decreasing

if the natural rate reverts to its steady state from below (r0 < rss). In the context of the

central banker’s decision problem, these two cases describe states of the world where the

ELB-constraint becomes more, respectively less, relevant as time evolves.

Now, for the following analysis, we define two regions, A and B, of the parameter space

where A : uss > 0 and B : uss ≤ 0. A positive steady state of utility means that in the

long run the benefits from calling in large-denomination banknotes will be greater than

the costs, a negative steady state means that the costs will exceed the benefits in the long

run. In each of the two regions, we consider three scenarios I, II, and III with an initially

“high,” an initially “near-steady-state,” and an initially “low” natural rate reverting to

its steady state, respectively.

Scenario A.I (r0 = r > g − ω > rss) This scenario describes a world where in the

long run, the benefits from calling in large notes are greater than the costs. With our

interpretation of the costs and benefits this means that, in the long run, the central

banker’s benefits from relaxing the ELB-constraint exceed the costs in the form of lost

seignorage revenues. But with a relatively high natural rate in period t = 0, this scenario

also describes a world where ELB-issues are at first irrelevant and only gain importance as

time evolves and the natural rate decreases to a relatively low steady state which involves

a relatively high “risk” of policy rates hitting the ELB. Formally, this is reflected in the

period-0 flow utility u0 = g− r0−ω which is negative for r0 > g−ω but increases as time

evolves. What we want to show is that the central banker will wait to make the calling-in

move until the natural rate has fallen to a sufficiently low level – although moving earlier

would already yield a positive exercise payoff.
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Now, if the steady state of utility uss is strictly positive, we can derive the optimal

timing T ∗ of the calling-in move as well as the level r of the natural rate at which the

option is optimally exercised simply by maximizing F over T ∈ [0,∞). In this case,

V (r) = sup
T≥0

F (r,T ) = max
T≥0

F (r,T ). (11)

The first-order condition for an interior maximum is implied by

∂F (r,T )

∂T
= −(g − rss − ω) · exp(−δT ) + (r − rss) · exp(−(δ + θ)T ), (12)

and reads

(g − rss − ω) · exp(−δT ) = (r − rss) · exp(−(δ + θ)T ). (13)

This yields the unique interior solution26

T ∗ =
1

θ
· ln

(
r − rss

g − rss − ω

)
(14)

which implies

r = rt=T ∗ = g − ω. (15)

This g − ω threshold is critical: If the natural rate is below the threshold g − ω it is so

low that the central banker’s period utility ut is positive (with r = g − ω it is clear that

u = g−r′−ω > 0 for all r′ < r). With our interpretation of the central banker’s costs and

benefits we can reformulate this statement: A natural rate below the threshold g − ω is

so low that ELB-issues outweigh seignorage losses. This justifies the decision rule that is

implied by r, which is to make the calling-in move as soon as the period utility ut becomes

non-negative (recall that without stochastic fluctuations, the period utility ut will steadily

approach its steady state uss which in this scenario is positive, so once it has become

non-negative, the period utility will stay positive forever, given that σ = 0).

If the central banker times the calling-in move optimally, respectively follows the de-

cision rule to make the move once the natural rate hits r, she will receive only positive

26With ∂2F (r,T )

∂T2 = δ(g − rss − ω) · exp(−δT )− (δ + θ) · (r− rss) · exp(−(δ + θ)T ) it easily checked that
∂2F (r,T∗)/∂T2 < 0 for r > g − ω > rss and that the global maximum of F on [0,∞) is in fact in T ∗ > 0.
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flows of utility. Consequently, the present value of these flows, i.e., the value V of the

calling-in option, will be strictly positive.27 So, the central banker could still receive a

positive exercise payoff if she moved “somewhat” earlier before the natural rate hits r.

All in all, this scenario describes a situation where deferring the calling-in move is

rational although the payoff from making the move “somewhat” earlier would already be

greater than zero. The reason for this deferral is the anticipated decline of an initially high

natural rate to a relatively low steady state in the future – which describes a world where

ELB-issues are initially irrelevant but are only gaining importance over time. As making

the calling-in move at a relatively high natural rate level initially would lead to negative

period utilities, waiting until the period utility becomes greater than zero increases the

central banker’s overall payoff.

The central banker’s tendency to defer the exercise of the calling-in option, that is, to

wait due to the anticipated reversion of the natural rate to its steady state is reflected in

the length of the interval between the optimal threshold r and the “break-even threshold”

r̂ defined as the natural rate below which the central banker would make the calling-in

move in a situation where she would have to decide between making the move now or

never. The break-even threshold is implicitly defined by F (r0 = r̂,T = 0) = 0 which

yields

r̂ = g − ω +
θ

δ
· (g − rss − ω) = g − ω +

θ

δ
uss. (16)

The representation of the break-even threshold r̂ in (16) illustrates that the larger the

benefits from calling in large notes are in the long run, i.e., the larger uss is, the earlier

the central banker could make the move without incurring a negative exercise payoff.

Thus, if r0 = r ∈ (r, r̂), the period-0-value of the payoff from exercising the calling-in

option at T = 0 is already strictly greater than zero, but optimality requires the central

bank to defer the calling-in move to T ∗ until also the period flow utility ut exceeds zero

(recall that ut=T ∗ = g − rt=T ∗ − ω = 0, with rt=T ∗ = r = g − ω). So, the move is deferred

to avoid negative streams of period utilities.

Also the next two scenarios describe a world where the long-run benefits from calling

in large notes are greater than the costs (uss > 0). But with r0 < g−ω in both scenarios,

27This can easily be checked by considering V (r) = F (r,T ∗) = V(r) · exp(−δT ∗) =(
1
δ
(g − rss − ω)− 1

δ+θ
(g − rss − ω)

)
· exp(−δT ∗) = θ

δ2+δθ
· uss · exp(−δT ∗) which is strictly greater than

zero if uss > 0.
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the natural rate is and will remain so low that the short-run benefits from calling in large

notes are also so large that optimality requires the central banker to make the calling-in

move without delay in period t = 0. So, the next two scenarios describe an economic

environment where ELB-issues will be relevant from the outset and forever. Trivially, the

decision rule to make the move as soon as the natural rate hits or has fallen below the

threshold g − ω also applies in the next two scenarios.

Scenario A.II (g−ω ≥ r0 = r > rss) The optimal timing of the calling-in move in this

scenario is T ∗ = 0. This is a corner solution of maxT≥0 F (r,T ) with F (r,T = 0) > 0 and

∂F (r,T )/∂T < 0 ∀ T ∈ (0,∞). The reason that the move should be made in period t = 0 is

that period utility ut is positive from the outset (since r0 < g − ω).

Scenario A.III (g − ω > rss ≥ r0 = r) As in scenario A.II, the optimal timing

of the calling-in move is T ∗ = 0. Again, this is a corner solution of maxT≥0 F (r,T )

with F (r,T = 0) > 0 and ∂F (r,T )/∂T < 0 ∀ T ∈ [0,∞). The difference to the previous

two scenarios is that the natural rate reverts to its steady state from below. One could

interpret this scenario as describing a world during or after a financial or an economic

crisis where a relatively low natural rate produces a severe and pronounced ELB-episode.

As time evolves, this severe episode will find an end, but the relatively low steady state of

the natural rate implies that ELB-issues will remain relevant forever.

Scenario B.I (r0 = r > rss > g − ω) With a high natural rate r0 and a relatively high

steady-state level rss, this scenario describes a world in which the ELB-constraint is and

will be of no importance such that relaxing it would be useless. Neither the short-run

benefits nor the long-run benefits from making the calling-in move will exceed the costs.

With r0 = r > rss > g−ω, the period flow utility ut from calling-in large notes will never

be positive so that F (r,T ) < 0 ∀ T ≥ 0 and thus V (r) = 0. The calling-in option will

never be exercised.

Scenario B.II (rss ≥ r0 = r > g − ω) As in scenario B.I, the natural rate will always

remain so high that the period utility ut from calling in large notes will always be negative.

Hence, F (r,T ) < 0 ∀ T ≥ 0 and V (r) = 0. The calling-in move will never be made.
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Scenario B.III (rss > g − ω ≥ r0 = r > −∞) This scenario describes a world where

the benefits from making the calling-in move exceed the costs in the short run (r0 < g−ω

such that u0 > 0) but not in the long run (uss < 0). For instance, large-scale financial

or economic crises could feature such exceptionally low natural rates. With monetary

policy rates that have reached the ELB in such a scenario, calling in large notes could be

a rational move even if this decision entailed long-run losses (as long as future losses are

discounted – which we assume by setting δ > 0). The condition for making the move is

that the short-run benefits are sufficiently large, which is only the case for exceptionally

low natural rates such that the short-run period utility from calling in large notes is

significantly greater than zero. The condition for a significantly positive utility ut is that

the natural rate is significantly below the threshold g−ω. We can state this more precisely

by considering the break-even level r̂ again as defined in (16) as r̂ = g−ω+ θ
δu

ss. Recalling

that uss < 0 in this scenario, it is clear that the break-even threshold r̂ is lower, the smaller

the steady state uss is. Since the natural rate increases as time evolves, optimality requires

the central banker to make the move without delay in period t = 0 if r0 ≤ r̂. Thus, the

rule of whether or when to make the calling-in move in a world where this move implies

long-run losses (uss < 0) is implied by the optimal threshold r = r̂: move immediately if

r0 ≤ r̂, and do not move if r0 > r̂.28

3.2 Optimal Exercise Rule and Option Value under Uncertainty

We now solve the central banker’s optimal stopping problem (4) in a world without perfect

foresight where the path of the natural rate of interest is uncertain, i.e., where σ > 0.

The solution approach we use is taken from Dixit and Pindyck (1994) which is our main

reference in technical regards (as far as possible, we use the [shorthand] notation proposed

therein).29 In addition, we refer to Øksendal (2013) for some basic methods of Itô calculus

28We assume implicitly that the calling-in option is also exercised if r0 = r = r̂. Moreover, we have not
considered the case rss = g − ω so far which implies uss = 0. With (16) it becomes clear that in this case
r̂ = g− ω = rss so that the option is exercised never if r0 = r > rss and exercised at t = 0 if r0 = r < rss.
For the case r0 = r = rss = g−ω implying F (r,T ) = 0 ∀ T ∈ [0,∞) we break ties in favor of the calling-in
option being exercised at t = 0.

29For instance, Dixit and Pindyck (1994) describe how to solve the optimal stopping problem of a firm
that has the option to make a real investment under uncertainty over the future value of that investment.
Inter alia, they show how to use dynamic programming to solve the firm’s problem when the evolution of
the project value is described by geometric Brownian motion (ibid., pp. 140-147) or by a mean-reverting
process that has an absorbing state (ibid., pp. 161-167) (note, the process defined by (3) that we use to
describe the path of the natural rate has no absorbing state).
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that are used here and Lebedev (1965) for the differential equation and the solution we

obtain.

So, following Dixit and Pindyck (1994) in this technical regard, we use dynamic pro-

gramming based on Bellman’s principle of optimality to solve the optimal stopping problem

(4).30 Accordingly, the value function V (r) and the optimal threshold r can be obtained

by solving the Bellman equation

δV dt = E [dV ] (17)

for V where (17) holds for all levels of the natural rate r that are so high that optimality

requires the central banker to keep on issuing large banknotes – i.e., for all r ∈ [r,∞).31

Finding V and r is a free boundary problem.32 We solve this problem by using the

solution approach described by Dixit and Pindyck (1994, pp. 95–114, 130–132) and in

particular by ibid. (pp. 140–147). Accordingly, we start by using the Itô formula to write

the Bellman equation (17) as the homogeneous ordinary differential equation

1

2
σ2V ′′ + θ(rss − r)V ′ − δV = 0 (18)

(see appendix A for the detailed derivation).33

By introducing economically meaningful boundary conditions we can solve equation

(18) for V and obtain r.34 We assume that the solution of (18) must satisfy two left

boundary conditions, a monotonicity condition, and a non-negativity constraint. The two

left boundary conditions we apply are standard in the literature where they are often

referred to as “value-matching condition” and “smooth-pasting condition”: Referring to

Dixit and Pindyck (1994, pp. 109, 130–132, 141) and Peskir and Shiryaev (2006, chapters 8,

30See Dixit and Pindyck (1994, p. 100) for a discussion of Bellman’s principle of optimality in the
context of the valuation of investment projects.

31For a discussion of related Bellman equations that solve optimal stopping problems in continuous
time with an infinite time horizon see Dixit and Pindyck (1994, pp. 101-114) and in particular ibid. (p.
140, equation (7)) where a Bellman equation is discussed that is equivalent to the Bellman equation we
have. For a discussion of why a value function in an infinite-time-horizon setting does not explicitly depend
on time see, for instance, Dixit and Pindyck (1994, p. 107). For a Bellman equation in the context of a
monetary union’s problem of when to optimally break up the union see Alvarez and Dixit (2014, p. 81,
equation (9)).

32See Dixit and Pindyck (1994, p. 109).
33Although the context of these papers is far away from our subject, we refer to Parlour and Walden

(2009, p. 13, equation (14)), Garlappi and Yan (2011, p. 819, equation (A2)), and Suzuki (2016, p. 39,
equation (42)) who obtain equivalent/similar differential equations in their respective valuation problems
with state variables that also follow an Ornstein-Uhlenbeck process, respectively.

34See Dixit and Pindyck (1994, p. 109) for a short note on the rationales of respective boundary
conditions in optimal stopping problems in an economic context.
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9) for a further discussion of the concepts, respectively the rationales, of these conditions,

we use the value-matching condition

V (r)
!
= V(r) (19)

that requires the value of the calling-in option V to equal the option’s exercise payoff V
in the moment the option is exercised, i.e., when r = r, and the smooth-pasting condition

V ′(r) !
=

∂V(r)
∂r

(20)

that requires the value function V at r to have the same slope as the exercise payoff

function V at r.35

In addition to these two left boundary conditions, we introduce a monotonicity condi-

tion arguing that this is a natural assumption with respect to the calling-in option valued

at a higher natural rate of interest: We require that

V ′(r) < 0 ∀ r ∈ (r,∞) (21)

and thus capture the intuition that the expected present value of the exercise payoff (and

therewith the value of the calling-in option) should be smaller the longer it will presumably

take until the natural rate hits the optimal exercise threshold r.36

The value function must also satisfy the non-negativity constraint

V ≥ 0 (22)

which, trivially, just reflects that the central banker has the option to issue large notes

forever. Now, it is straightforward to use the monotonicity condition together with the

non-negativity constraint and the two left boundary conditions to obtain a particular

solution of (18). We have placed the single steps in the appendix and summarize the

results in the next proposition:

35For an application of the value-matching and smooth-pasting condition in the context of a currency
union’s optimal stopping problem of when to break up the union see Alvarez and Dixit (2014, p. 81).

36To see this, consider equation (8) stating that V (r) = V(r) · exp(−δT ∗) for the case of σ = 0 and
recall that T ∗ increases in r.
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Proposition 1. A particular solution of the Bellman equation (18) that solves the

central banker’s optimal stopping problem (4) subject to (19), (20), (21), and (22) is given

by

V (r) = c1 ·H− δ
θ

(√
θ

σ
· (r − rss)

)
, (23)

with

c1 =
1

δ + θ
·
√
θ · σ
2δ

· 1

H−1− δ
θ

(√
θ

σ · (r − rss)
) , (24)

and with r being implicitly defined by

1

δ + θ
·
√
θ · σ
2δ

·
H− δ

θ

(√
θ

σ · (r − rss)
)

H−1− δ
θ

(√
θ

σ · (r − rss)
) =

1

δ
(g − rss − ω)− 1

δ + θ
(r − rss), (25)

where Hν(z) denotes a Hermite function (as defined, for instance, in Lebedev, 1965, p.

285). Thereby, the value function is defined piecewise: The value function V (r) is given

by (23) for all r ∈ [r,∞). For all r < r, immediate exercise of the calling-in option is

optimal such that the value function for all r < r is just defined as V (r) = V(r).
Proof. See appendix (note that since our main intention is to show that the central

banker’s problem of finding the optimal timing of calling in large banknotes has a structure

that is equivalent to the structure of an option valuation problem, we just prove the

existence and not the uniqueness of our solution).

In the next section, we discuss the determinants of the optimal exercise threshold and

the value of the calling-in option in detail. In section 5, in order to obtain illustrative

results, we solve equation (25) numerically for specific parameter values and use the re-

sulting approximations of r to compute and analyze the value V of the calling-in option

in different scenarios.
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4 Determinants of Optimal Policy and Option Value

4.1 Option Value and Measures of the Central Banker’s Tendency to

Wait and See

In the following, we first make some preliminary remarks on the value of the calling-in

option and on different measures of the central banker’s tendency to wait and see. Subse-

quently, in sections 4.2 to 4.5, we discuss the determinants of the break-even threshold r̂,

the optimal exercise threshold r, and the option value.

The value of the calling-in option consists of two components. Keeping the terminology

commonly used for financial options, we refer to these two components as “intrinsic” and

“time value”. The intrinsic value (IV ) is the positive part of the payoff from immediately

making the calling-in move, that is, IV (r) = max{V(r), 0}. The time value (TV ), is

defined as TV (r) = V (r) − IV (r).37 The time value is a measure of the central banker’s

tendency to wait and see instead of calling in large banknotes at the first opportunity

where a non-negative exercise payoff could be realized.

Two factors can add time value to the calling-in option: The first one is related to

the expected path of the natural rate. If the natural rate is expected to decrease as time

evolves, the central banker will expect the benefits from calling in large notes to increase

over time. If, additionally, the long-run benefits from calling in large notes are positive,

i.e., if uss > 0, there can be a reason to delay the calling-in move until the short-run

benefits from removing large notes are sufficiently large – even if the immediate exercise of

the calling-in option yields a positive payoff (as illustrated in scenario A.I in section 3.1).

The second factor that adds time value to the calling-in option, of course, is uncertainty

over the future path of the natural rate. This uncertainty is reflected in Var(rt) for t > 0

and thus depends on the volatility parameter σ and on the speed of mean-reversion θ

(recall, as noted in section 3.1, that Var(rt) =
σ2

2θ · (1− exp(−2θt))).

The time value reflects the central banker’s tendency to wait and see and thus crucially

determines the optimal timing of the calling-in move. Below, we evaluate this tendency

to wait and see in different scenarios in terms of the option’s time value and with the

following other measures:38 The tendency to wait and see due to an expected decline

of the natural rate and thus due to increasing expected benefits from calling in large

37For a short definition of these concepts see, for instance, Hull (2019, p. 284).
38See Alvarez and Dixit (2014, pp. 85–86) for a discussion of different measures of option value.
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notes is reflected in the difference between the break-even threshold r̂ and the optimal

threshold under perfect foresight r|σ=0. The tendency to wait due to uncertainty over

the future path of the natural rate is reflected in the difference between the optimal

threshold under perfect foresight and the actually optimal threshold r. And obviously, the

“overall” tendency to wait and see is reflected in the length of the interval [r, r̂]. So, in

the following, we analyze the variables (in that order) r̂, r|σ=0, r, and TV with respect

to their dependency on σ, θ, and uss. Note, that we use the variance of rt (conditional

on r0 = r) as a measure of uncertainty over the natural rate in period t and use the

terms “long-term uncertainty” in this respect for “large” t and “short-term uncertainty”

for “small” t. With this classification, uncertainty (over both short and long horizons) is

increasing in the volatility parameter σ and decreasing the speed of mean-reversion θ.39

4.2 Determinants of the Break-Even Threshold

Uncertainty The way in which we specify our model implies that the break-even thresh-

old r̂ = g − ω + θ
δ · (g − rss − ω) = g − ω + θ

δu
ss (as stated in (16)) does not depend on

the volatility parameter σ and is thus independent of uncertainty over the future path of

the natural rate. The advantage of this specification is that the effect of σ on the optimal

exercise threshold r is – as intuition suggests – monotonic (we discuss this effect in section

4.4).40 To see that r̂ is independent of σ, recall that r̂ is determined by the expected path

of period utility which, in turn, is a linear function of the expected path of the natural

rate. There is no link between r̂ and σ because the two expected paths are independent

of the volatility parameter σ.

Steady-State Utility In a world where the central banker would lack the flexibility to

time the calling-in move freely being in a situation where she would have to choose between

making the move immediately or issuing large notes forever, a relatively high steady state

of utility (i.e., the prospect of large eternal long-run benefits from calling in large notes)

could make her willing to call in large notes even if she had to accept losses in the short run.

Thus, under special circumstances, a central banker who would have to make the decision

39While it is obvious that ∂Var(rt)
∂σ

> 0, it is not immediately clear why the second statement that
∂Var(rt)

∂θ
< 0 holds. To see why it holds, consider ∂Var(rt)

∂θ
= σ2

2θ2
· (exp(−2tθ) · (2tθ + 1)− 1). To show that

this expression is less than zero, it is sufficient to show that exp(−2tθ) · (2tθ + 1) < 1. Taking the ln(·),
rearranging and using the substitution x = 2tθ the last inequality can be transformed to ln(x + 1) < x
which, in turn, can easily be proved.

40For instance, a non-monotonic effect of volatility on a respective optimal threshold is described in
Alvarez and Dixit (2014).
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whether to call in large notes now or never while expecting large long-run benefits from

calling in large notes would be willing to make the move already and even at a relatively

high natural rate which would involve short-run losses. Thus, the break-even threshold r̂

(being the relevant threshold for a central banker in a hypothetical now-or-never situation)

is higher the higher the steady-state utility is. Formally, this relationship is captured by

(16) which illustrates that a positive steady-state utility induces a markup over the level

g−ω which is the threshold below which natural rates result in a positive period utility.41

Speed of Mean-Reversion In the following, we consider a world where the central

banker lacks the flexibility to time the calling-in move freely. Concretely, we assume that

the central banker can choose between making the calling-in move immediately or issuing

large notes forever. We consider two scenarios in this “now-or-never” world to illustrate

that a higher speed of mean-reversion either increases or decreases r̂, dependent on whether

utility has a positive or a negative steady state (which, formally, is immediately clear with

r̂ = (1 + θ
δ ) · uss + rss). Since r̂ does not depend on σ (see above), we let, without loss of

generality, σ = 0 in the following two scenarios and assume perfect foresight with respect

to the future path of the natural rate of interest. The scenarios differ in the steady state

of utility with the first scenario characterized by uss < 0 and the second by uss > 0. The

present in both scenarios is t = 0 with the natural rate at this point in time just having

hit the break-even level, i.e., r0 = r = r̂.

So, consider the first scenario where period utility has a negative steady state while

r0 = r = r̂ which implies that the natural rate reverts to its steady state from below.

With respect to the anticipated path of period utility, the future from a t = 0 perspective

can be partitioned into two consecutive phases: the first phase is one of relatively low

natural rates (since r̂ < rss) and thus a phase where the calling-in of large banknotes is

beneficial to the central banker (period utility is positive during this phase because the

ELB-constraint is relevant). The second phase features relatively high natural rates such

that (due to the irrelevance of the ELB-constraint) having stopped issuing large notes

now involves losses for the central banker (due to forgone seignorage revenues), i.e., period

utility is negative during the second phase. It is clear that making the calling-in move is

only optimal if the short-run benefits from calling in large notes outweigh the long-run

41The break-even threshold can also be written as a weighted sum of steady-state utility and the steady-
state natural rate which acts as a level parameter such that r̂ = (1 + θ

δ
) · uss + rss. This makes clear that

the exercise of the calling-in option in a now-or-never situation in a uss < 0-scenario can only be optimal
at natural rates that are strictly below their steady-state level.
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losses. That is, the move is only optimal if the first phase with positive period utilities

is sufficiently long and/or if the period utilities during this phase are sufficiently high.

However, the first phase is shorter the higher the speed of mean-reversion θ is. So, the

higher θ, the higher are the short-run benefits the central banker requires to make the

calling-in move and thus the lower the break-even threshold r̂ (see the red lines in figure

1(a) for an illustration).

Consider now the second scenario with period utility having a positive steady state.

Again, the time after the calling-in move is made can also be partitioned into two con-

secutive phases, a phase of negative period utilities followed by a phase of positive period

utilities (recall that r̂ > g − ω > rss implying that the natural rate reverts to its steady

state from above in that case). Now, with the prospect of eternal long-run benefits from

calling in large notes (that will be received once the natural rate has fallen below the level

g − ω, i.e., when ELB-issues outweigh seignorage losses), the central banker will accept

making short-run losses, that is, she will accept negative period utilities during the first

phase of relatively high natural rates. The cumulative short-run losses are smaller the

shorter the first phase is, that is, the higher the speed of mean-reversion is. Conversely,

the shorter the first phase is, the higher the period losses the central banker accepts during

the first phase. Thus, the higher θ, the higher the break-even threshold r̂ (see the red lines

in figure 1(b) for an illustration).

4.3 Determinants of the Optimal Threshold under Perfect Foresight

In this section, we analyze the optimal threshold r in the absence of uncertainty over the

natural rate in order to focus on the non-stochastic determinants of the central banker’s

optimal timing and a potential tendency to wait and see. So, let σ = 0 in the following.

Steady-State Utility First, we discuss the relationship between the optimal threshold

given σ = 0 and the steady-state utility and show why it depends on the sign of uss in the

following way (see also the illustrative scenarios in section 3.1):

r |σ=0 =

⎧⎪⎨
⎪⎩
g − ω + θ

δ · uss (= r̂), if uss < 0

g − ω, if uss ≥ 0.

(26)
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In principle, optimal timing under perfect foresight does only depend on the anticipated

path of period utility and thus on the anticipated path of the natural rate. With regard to

the dependence of the optimal threshold given σ = 0 on the steady state of period utility,

there are basically two scenarios of interest: one where the natural rate is initially below,

and one where it is initially above its steady state:

Consider first the scenario where the natural rate is initially below its steady state,

i.e., where r0 = r < rss, and where period utility thus decreases in time. In this case,

the calling-in move is either made immediately or never – there is nothing to wait for (as

discussed in section 3.1). Clearly, it is optimal to never make the move if r > r̂ which

in a world where the natural rate is below its steady state can only occur if utility has a

negative steady state.42 However, it is optimal to make the move immediately if r ≤ r̂. If

rt is increasing and ut thus decreasing in time waiting would involve the loss of potential

benefits. In this case, the present value of the stream of period utilities given that the

option is exercised in some future period t, F (r0 = r,T = t), is a decreasing function

of time. Thus, if the natural rate is below its steady state, it is optimal to exercise the

calling-in option immediately if r ≤ r̂ and thus if the exercise payoff V(r) is non-negative
– regardless of whether the utility has a positive or a negative steady state.

A calling-in move at a natural rate above its steady state will generally only be made

if uss > 0. In this case, the break-even threshold r̂ is relatively high which reflects that

the central banker would in principle accept short-run losses, i.e., negative period utilities,

during some first phase and make the calling-in move at any r0 ≤ r̂ if she lacked the

flexibility to time the move freely.43 If the flexibility to choose the optimal timing exists,

those potentially acceptable losses can be avoided by deferring the calling-in move until

the natural rate is sufficiently low such that positive period utilities will be realized. This

is the case once the natural rate has fallen below the threshold g − ω. So, if utility has a

positive steady state, r|σ=0 = g − ω.

Speed of Mean-Reversion Equation (26) shows that the optimal threshold given σ =

0 only depends on the speed of mean-reversion θ if utility has a negative steady state such

that r|σ=0 = r̂. However, as argued above, the threshold r̂ is lower the faster the natural

rate reverts to its steady state and thus the shorter the first phase is of the positive period

utilities the central banker receives after the calling-in move. So, in order to accept such a

42Recall that if utility has a positive steady state r > r̂ = (1 + θ
δ
)uss + rss would require that r > rss.

43Recall that if r > rss period utility will increase as time evolves.
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shorter initial phase the central banker requires higher period utilities during that phase

and thus a lower natural rate at the exercise of the calling-in option. Hence, as the origins

of the blue lines in figure 1(a) for uss < 0 show, the optimal threshold is decreasing in θ.

The origins of the blue lines in figure 1(b) shows that the optimal threshold is inde-

pendent of θ if the utility has a positive steady state. If uss > 0, a central banker with the

ability to choose the timing of the calling-in move freely will wait until the natural rate

hits the level g−ω below which natural rates imply positive period utilities.44 Obviously,

g − ω is independent of θ.

4.4 Determinants of the Optimal Threshold under Uncertainty

In the following, we remove the previous section’s restriction and assume that σ > 0

to discuss the effects of uncertainty over the natural rate on the optimal threshold r.

Essentially, uncertainty over the future path of the natural rate and thus about the future

utility of making the calling-in move adds value to the flexibility to time the move freely

and thus, in general, increases the central banker’s tendency to wait and see. Intuition

suggests that a higher tendency to wait and see from uncertainty due to a volatile natural

rate will be reflected in a larger difference between the exercise threshold that would be

optimal under perfect foresight and the generally optimal threshold. That is, intuition

suggests that the length of the interval [r, r|σ=0] will be increasing in σ. We confirm this

intuition for specific sets of parameter values numerically in section 5. In the following,

we refer to the effect of uncertainty on the length of the interval above as “variance effect”

(the variance, in turn, is increasing in σ and decreasing in θ).

However, the relationship between the absolute level of the optimal threshold r and

uncertainty measured in terms of Var(rt) (for some fixed t), can be non-monotonic if utility

has a negative steady state. The blue lines in figure 1(a) show this property and it is the

speed of mean-reversion θ that accounts for this non-monotonicity. The reason is that θ

affects two variables: the optimal threshold under perfect foresight (r|σ=0,uss<0 = r̂) and

the tendency to wait and see. So, in addition to a variance effect, θ has a level effect

through its impact on r̂ which in turn determines the optimal threshold under perfect

foresight if utility has a negative steady state. Since these two effects are of opposite

signs, the overall effect of θ on r depends on the relative size of the level effect compared

44Recall that g − ω > rss if uss > 0. So, expected period utility is monotonically increasing in time for
natural rates above their steady state.
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with the variance effect. With a parameter specification as in figure 1(a), the level effect

will dominate for small σ whereas the variance effect will dominate if σ is large. If utility

has a positive steady state, there will be no level effect, as shown by the blue lines in figure

1(b) where the optimal threshold is always increasing in θ for all σ > 0.

As opposed to this ambiguous relationship between the speed of mean-reversion and the

optimal threshold, we show numerically for specific parameter constellations in the next

section that a higher volatility parameter σ will reduce the level of r in these scenarios,

regardless of whether θ is small or large.45 The reason is that the exercise payoff the central

banker requires in order to be willing to make the calling-in move under uncertainty is

higher, the higher the extent of uncertainty is.46 While the extent of uncertainty, in turn,

is increasing in σ, the exercise payoff is larger, the lower the natural rate is at which large

notes will be called in (and thus the more relevant ELB-issues are compared to forgone

seignorage revenues at a low natural-rate level).

4.5 Determinants of the Time Value of the Calling-In Option

In the following, we shed light on the time value of the calling-in option in different

scenarios and its dependence on the parameters of the stochastic process that governs

the natural rate: the volatility parameter σ and the speed of mean reversion θ. From a

policy point of view, the question is simply: When is the time value large and thus the

central banker’s tendency to wait and see strong? Our statements in the following hold

for the numerical examples we provide in section 5 but intuition suggests that they can

be generalized to arbitrary parameter constellations. To obtain comparable results, we

consider the value of the calling-in option measured at r = r̂ in the different scenarios.

At this point, the option has no intrinsic but just time value (V(r̂) = 0 implies that

V (r̂) = TV (r̂)).

Short-Term Natural Rate Volatility In the next section, we present some numerical

illustrations for different scenarios to show that a higher volatility parameter σ adds time

value to the calling-in option (see the blue lines in figure 2). The reason for this positive

relationship between σ and TV is that a higher σ increases the probability that the natural

45Alvarez and Dixit (2014) describe a non-monotonic relationship between a volatility parameter and
a respective optimal threshold in a currency union’s optimal stopping problem of breaking-up the union.

46Obviously, the requirement of a higher exercise payoff with increasing uncertainty is a main charac-
teristic feature of equivalent financial/real option exercise problems (see, for instance, Dixit and Pindyck
(1994, p. 153) in this regard).
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rate will reach “exceptionally” low levels in the future. At such “exceptionally” low natural

rate levels, ELB-issues will be highly relevant such that the central banker’s benefits from

calling in large banknotes will be “exceptionally” large (for instance, because a very low

natural rate level can imply that unconstrained optimal monetary policy rates lie far below

the ELB). Exceptionally large benefits, in turn, are reflected by a relatively high exercise

payoff V(r) and thus by a relatively high time value the calling-in option has at natural

rates that lie above the optimal threshold r.

Speed of Mean Reversion The speed of mean reversion θ affects the calling-in option’s

time value through two channels: through a mean-reversion channel and through an un-

certainty channel. The uncertainty channel describes the impact θ has on the TV through

its effect on the variance of the natural rate in future periods and thus on uncertainty over

the future path of the natural rate. For σ > 0, the variance of rt is a decreasing function of

θ (as already noted in section 4.1). Analogously to the effect of σ on the TV , a lower speed

of mean reversion θ and thus higher uncertainty over the future path of the natural rate

adds time value to the calling-in option. However, the speed of mean-reversion also has a

negative effect on the time value through the mean-reversion channel such that the overall

effect of θ on the TV depends on whether it is the uncertainty or the mean-reversion effect

that dominates.

In what follows, we want to isolate the mean-reversion channel and point out how

exactly θ affects the TV at r = r̂ through this channel. For this purpose we assume,

for the moment, perfect foresight and let σ = 0: Whether the calling-in option has time

value due to mean-reversion or not in a σ = 0-setting depends on whether the natural rate

reverts to its steady state from above or from below. As argued above, if r0 = r < rss,

there will be nothing to wait for the central banker. In this case, the path of period

utility is decreasing in time and thus optimality requires the central banker to make the

calling-in move either immediately (if r ≤ r̂) or never (otherwise). If we consider r = r̂,

the existence of time value at this point will just depend on whether r̂ ≶ rss. With

r̂ = g − ω + θ
δ (g − rss − ω) = g − ω + θ

δu
ss = (1 + θ

δ )u
ss + rss showing that r̂ is greater

(less) than rss if utility has a positive (negative) steady state, it is clear that the calling-

in option will have time value at r = r̂ due to mean reversion only if uss > 0 (where

r|uss>0 < r̂|uss>0). Moreover, and obviously, if there is time value at r̂ it will be increasing

in the steady-state utility.
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Since the mean-reversion channel will be relevant only if utility has a positive steady

state, as argued above, it is sufficient to consider a perfect-foresight scenario where uss > 0:

In such a scenario, the calling-in option’s time value at r̂ is increasing in θ. Two effects

of a large θ contribute to a larger time value: Firstly, a higher speed of mean reversion

shortens the time it takes for the natural rate to decline from r̂ to r (although r̂ increases

in θ).47 And secondly, a large θ increases the payoff from exercising the calling-in option

at r.48 With V (r̂) = F (r̂,T ∗) = V(r) · exp(−δT ∗) = TV (r̂) it is clear that a larger θ (in a

σ = 0-scenario) increases the calling-in option’s time value at r̂ through its effects on the

optimal exercise time and the exercise payoff.

To conclude, if utility has a positive steady state, the sign of the overall effect of θ

on the TV , in general, will depend on the extent of the short-term volatility as captured

by σ. In the next section, we show numerically for specific parameter values that while

the effect of θ through the mean-reversion channel will dominate for small values of σ,

the effect of θ through the uncertainty channel will dominate for large values of σ. The

blue lines in figure 2(b) illustrate for a specific set of parameter values in a world where

utility has a positive steady state, i.e., where uss > 0, that the time value of the calling-in

option is increasing in θ for small σ while it is decreasing in θ for large σ. In contrast,

if utility has a negative steady state which implies that only the uncertainty channel will

be effective, the overall effect of an increase in θ will be to decrease the calling-in option’s

time value, as illustrated by the blue lines in figure 2(a).

5 Numerical Illustrations

In what follows, we present and discuss several numerical examples for the central banker’s

wait-and-see tendency in different scenarios, i.e., for specific parameter values. Our claim

is that the length of the wait-and-see region [r, r̂] together with the time value of the

calling-in option at some r ∈ [r, r̂] in the single scenarios can be used to assess the relative

47To see this, consider T ∗ = 1
θ
ln

(
r0−rss

g−rss−ω

)
which for r0 = r̂ = (1+ θ

δ
)uss+rss becomes T ∗ = 1

θ
·ln ( δ+θ

δ

)
.

It is easy to show that ∂T∗
∂θ

= 1
θ(δ+θ)

− ln( δ+θ
δ )

θ2
< 0 by making the substitution x = δ+θ

δ
and then using

the mean value theorem to show that 1 − 1
x
< ln(x) for all x > 1.

48To see this, note that at the point in time when the calling-in option is optimally exercised (which
for σ = 0 is reached when r = g − ω), the natural rate rate will be still above its steady state. So, period
utility from that point on is reverting to its steady state from below. The faster this reversion, the larger
the present value of the stream of future period utilities. Hence, the exercise payoff at r is increasing in θ.
Formally, this is obvious with V(r) = F (r = g−ω,T = 0) = 1

δ
(g− rss −ω)− 1

δ+θ
(g− rss −ω) = θ

δ(δ+θ)
uss

and
∂V(r)

∂θ
= 1

(δ+θ)2
uss > 0.
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likelihoods that wait-and-see behavior might actually be observed in corresponding sce-

narios in practice. The results in figures 1 to 3, and tables 1 and 2 have been obtained with

the computer algebra system Mathematica (see Wolfram Research, Inc., 2015) by using

the function “FindRoot” to solve equation (25) numerically for r and then using (24) to

evaluate V (r) as defined in (23). Figure 1 shows how the break-even threshold r̂ and the

optimal threshold r depend on the steady-state utility uss, on the speed of mean-reversion

θ, and on the volatility parameter σ. Figure 2 shows how the value V of the calling-in

option measured at r = r̂ (compared to the exercise payoff V) depends on uss, θ, and σ.

Figure 3 shows how the exercise payoff of the calling-in option evaluated at r = r where

V(r) = V (r) depends on these parameters. For the sake of clarity, tables 1 and 2 show

some values of V (r̂) and V(r) for selected parameter constellations.

Scenarios with Negative Steady-State Utility For the regions of the parameter

space specified below we show numerically that the length of the interval [r, r̂], the time

value of the calling-in option at r̂, as well as the exercise payoff at r will increase in σ and

decrease in θ if utility has a negative steady state (see also the argumentation in section

4). So there will be little room for wait-and-see behavior if uncertainty over the future

path of the natural rate is relatively low. This implies that the natural rate of interest

does not have to be at levels that are far below the break-even threshold to induce the

central banker to make the calling-in move. In the numerical examples given in tables 1

and 2 such scenarios (i.e., scenarios with relatively low uncertainty over the future path

of the natural rate in a world where calling in large notes involves long-run losses for the

central banker) are described for uss < 0, σ ∈ {0.01, 0.5}, and θ ∈ {0.5, 1}. While table

1 shows that the time value of the calling-in option measured at the break-even threshold

will be relatively small in the aforementioned scenarios, table 2 shows that the net benefits

the central banker will require to make the calling-in move in these scenarios are close to

or just slightly above zero. Thus, in corresponding scenarios in practice, the move could

be made as soon as the natural rate is so low that eliminating large banknotes will have

net benefits that are just slightly above zero. A severe ELB-episode during or in the

aftermath of a large-scale financial or economic crisis could be such a situation. Calling

in large banknotes would be rational in such a scenario if the short-run benefits exceeded

the long-run losses and waiting to make the move implied losing short-run benefits.
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Figure 1: Break-even threshold r̂ (red lines) and optimal threshold r (blue lines) for high
(solid lines) and low (dashed lines) speed of mean reversion in dependence on the volatility
parameter σ (parameter values (a): rss = 0, g−ω = −0.1, δ = 0.1; parameter values (b):
rss = 0, g − ω = 0.1, δ = 0.1; solid lines: θ = 1, dashed lines: θ = 0.5).

Time value of calling-in option
at break-even threshold V (r̂) = TV (r̂)

σ = 0.01 σ = 0.5 σ = 1

uss θ = 0.5 θ = 1 θ = 0.5 θ = 1 θ = 0.5 θ = 1

-0.2 ≈ 0 ≈ 0 0.148 0.019 0.654 0.084
-0.1 ≈ 0 ≈ 0 0.327 0.042 0.953 0.25

0 0.013 0.007 0.658 0.335 1.317 0.67
0.1 0.583 0.715 1.089 0.924 1.73 1.228
0.2 1.165 1.431 1.573 1.582 2.178 1.847

Table 1: Numerical solutions of the calling-in option’s value at r = r̂ for different values
of the steady-state utility uss, the volatility parameter σ, and the speed of mean-reversion
θ with rss = 0 and δ = 0.1. All values are rounded to three decimal places.

Exercise payoff at optimal threshold V(r)
σ = 0.01 σ = 0.5 σ = 1

uss U θ = 0.5 θ = 1 θ = 0.5 θ = 1 θ = 0.5 θ = 1

-0.2 -2 ≈ 0 ≈ 0 0.356 0.052 1.324 0.212
-0.1 -1 ≈ 0 ≈ 0 0.662 0.106 1.787 0.487

0 0 0.023 0.011 1.164 0.53 2.328 1.061
0.1 1 0.835 0.91 1.784 1.28 2.926 1.778
0.2 2 1.668 1.818 2.469 2.107 3.567 2.56

Table 2: Numerical solutions of the exercise payoff at r = r for different values of the
steady-state utility uss (with U being defined as U =

∫∞
0 uss · exp(−δt)dt = 1

δu
ss), the

volatility parameter σ, and the speed of mean-reversion θ with rss = 0 and δ = 0.1. All
values are rounded to three decimal places.

Scenarios with Positive Steady-State Utility In section 4, we discuss the non-

monotonic relationship between uncertainty over the future path of the natural rate of
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Figure 2: Exercise payoff V(r̂) (red lines) and option value V (r̂) (blue lines) for high (solid
lines) and low (dashed lines) speed of mean reversion in dependence on the volatility
parameter σ (parameter values (a): rss = 0, g−ω = −0.1, δ = 0.1; parameter values (b):
rss = 0, g − ω = 0.1, δ = 0.1; solid lines: θ = 1, dashed lines: θ = 0.5).
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Figure 3: Exercise payoff V(r) for high (solid lines) and low (dashed lines) speed of mean
reversion in dependence on the volatility parameter σ (parameter values (a): rss = 0, g−
ω = −0.1, δ = 0.1; parameter values (b): rss = 0, g−ω = 0.1, δ = 0.1; solid lines: θ = 1,
dashed lines: θ = 0.5).

interest (as reflected in Var(rt)) and the time value of the calling-in option in a world where

the utility from calling in large notes has a positive steady state. We also describe the

behavior of the break-even threshold and the optimal threshold which will both increase in

the speed of mean-reversion θ if uss > 0 – this means that the overall effect of a change in θ

on the length of the wait-and-see region [r, r̂] depends on which bound of the interval reacts

more sensitively to a change in θ. Taken all together, these properties imply that under

special circumstances there will be more room for wait-and-see behavior if uncertainty

over the natural rate is low (and not high, as intuition suggests). The numerical examples

given in figure 1(b) and tables 1 and 2 for uss > 0 and σ = 0.01 show this case: the length
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of [r, r̂], the time value at r̂ and the exercise payoff at r are all greater the lower the

uncertainty over the natural rate is (recall that Var(rt)|σ=0.01, θ=0.5 > Var(rt)|σ=0.01, θ=1).

But beyond that, the numerical examples primarily illustrate that the room for wait-

and-see behavior will in general be relatively large if utility has a positive steady state.

Table 2 shows for uss > 0 that the net benefit the central banker will require to make the

calling-in move under relatively high levels of uncertainty (σ ≥ 0.5) is significantly greater

than zero and even a multiple of the present value of the infinite stream of steady-state

utility, U , defined as U =
∫∞
0 uss · exp(−δt)dt. For uss = 0.1, σ = 1, and θ = 0.5 the

exercise payoff at the optimal threshold r is almost three times larger than the present

value U of the infinite stream of steady-state utility. In practice, central banks could keep

issuing large banknotes for a long time in a corresponding scenario even though it may

already be beneficial to eliminate them immediately.

6 Conclusion

The goal of this paper is to stimulate research on optimal timing issues associated with any

plans to phase out large-denomination banknotes. This research is essential because the

debate on such plans is incomplete if it is only concerned with the costs and benefits while

any timing aspects and a potential wait-and-see component of an optimal timing strategy

in an uncertain economic environment are ignored. We condense the stochastic state of

the economy into the natural rate and employ an optimal stopping model as a framework

to explore such timing issues and to rationalize a central banker’s wait-and-see tendency.

The purpose of this approach is not to determine the exact empirical magnitudes of our

results but to make clear that the stochastic properties and the expected path of the

natural rate can be used as a first rough indicator of wait-and-see behavior in practice. In

concrete terms, this means that the volatility and the expected path of the natural rate

can be used to gauge whether the issuance of large notes could (in a positive dimension)

or should (in a normative dimension) continue for years or decades even if the expected

net benefits from calling them in right now were already greater than zero.

We use several numerical examples to illustrate states of the world where an optimal

timing strategy to call in large notes involves or, on the other hand, does not involve a

wait-and-see component. On the basis of these theoretical examples, we can state some

conjectures and formulate three hypotheses regarding the existence of a wait-and-see com-
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ponent in practice: 1) We expect that a wait-and-see component exists in a world where

the long-run net benefits from calling in large banknotes are positive rather than in a world

where lost seignorage revenues outweigh ELB-issues in the long run; 2) that it exists in

a world where the expected path of the natural rate is decreasing rather than in a world

where ELB-issues will become less and less relevant as time evolves; 3) and that it exists

in a world where the natural rate is highly volatile rather than in a world where there is

little uncertainty over the occurrence and duration of ELB-episodes in the near future.

For corresponding scenarios, the net benefits a central banker requires to be willing to call

in large notes can by far be greater than zero. This can imply that the option to call in

large banknotes will not be exercised until the natural rate has fallen to an exceptionally

low level. Such situations could emerge in the course of pronounced recessions or in the

aftermath of large-scale economic crises where monetary policy remains stuck at the ELB.

On the basis of our simple model, a guesstimate of the ECB’s stance on plans to stop

the issuance of the 200- or the 100-euro note is not difficult to divine: It is natural to

assume that the ECB – if ever – will only make such a move during a severe ELB-episode.

Of course, this speculation is highly sensitive to the assumptions we make. Any serious

forecast in this regard will require at least a large-scale macro model as a framework

to analyze timing issues associated with calling-in plans. Our model is highly stylized

and has left out a number of factors that could change our results. For instance, the

specification with the mean-reverting Ornstein-Uhlenbeck process we chose can easily be

extended by assuming that the natural rate follows a jump diffusion. This could account

for the hypothesis that large-scale economic or financial crises can lead to exceptional drops

in the natural rate in their immediate aftermath (as indicated by the findings of Holston,

Laubach, and Williams (2017) for the global financial crisis). We have also ignored that

there is far more than one dimension of uncertainty. It is not only the future path of

the natural rate that is unknown, but also the natural rate itself and its historic path.

The reason is that the natural rate must be estimated and cannot be measured directly.49

Moreover, there is also much uncertainty regarding the costs and benefits from calling in

large notes. It could be hard to quantify them precisely. Another crucial assumption we

make is that the central banker has full flexibility to time a calling-in move freely. A central

banker approaching the end of her term in office (or a central bank’s decision-making body

shortly before its members change) could be driven by a precautionary motive from the

49See, for instance, Weber, Lemke, and Worms (2008, section 5).
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fear that her successor will have a different objective function (another issue is a potential

intervention of the government which could be driven by its own objective function and

could try to change the denominational structure of banknotes by law). A number of

further research questions will arise from allowing for the possibility of making sequential

calling-in moves (e.g., to stop the issuance of the 100-euro note at a later date than the

issuance of the 200-euro note) as well as from considering strategic interactions between

central bankers in a multi-country setting.

Appendix

A Detailed Solution of the Central Banker’s Optimal Stop-

ping Problem

A.1 Derivation of the Bellman Equation written as Ordinary Differential

Equation

We show how to derive the Bellman ordinary differential equation (18) starting from

equation (17). In technical regards, we refer to Dixit and Pindyck (1994, pp. 140–141)

where the single steps we have to take are pointed out (note, that the differential equation

in Dixit and Pindyck (1994, p. 140, equation (8)) results from geometric Brownian motion

and thus, obviously, differs from (18)).

For the derivation of (18) that follows we use that

(drt)
2 = (drt) · (drt) (27)

= θ2(rss − rt)
2(dt)2 + 2 · θ(rss − rt)dt · σdBt + σ2(dBt)

2 (28)

= σ2dt, (29)

which is obtained by using the rules dt·dt = dt·dBt = dBt ·dt = 0 and dBt ·dBt = dt (recall

that drt describes the dynamics of the mean-reverting Ornstein-Uhlenbeck process that

governs the natural rate of interest with drt = θ(rss − rt)dt+ σdBt where Bt is Brownian

motion and θ ∈ �>0, r
ss ∈ �, and σ ∈ �>0 are known constants).50

50For the rules used to compute (drt)
2 see, for instance, Øksendal (2013, p. 45, equation (4.1.8)).
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Now, let V : � → � be a twice-differentiable function for the value of the calling-in

option dependent on the natural rate of interest r. Applying the Itô formula, using (3)

and (29), we obtain

dV = V ′drt +
1

2
V ′′(drt)2 (30)

= V ′ · (θ(rss − rt)dt+ σdBt) +
1

2
V ′′ · σ2dt (31)

with

�[dV |rt = r] = θ(rss − r) · V ′dt+
1

2
σ2 · V ′′dt (32)

which is implied by �[dBt] = 0.51 The Bellman ordinary differential equation (18) can

now be obtained by using (32) to replace the right-hand side of (17).

A.2 Proof of Proposition 1

In section A.3 of this appendix, we point out how the solution of (18) can be obtained. In

this section, we just prove proposition 1 and show, first, that (23) solves the Bellman ODE

(18), second, that this solution satisfies the monotonicity condition and the non-negativity

constraint, third, how to obtain c1 in (24), and fourth, how to obtain the implicit definition

of r in (25).

The first part of the proof is thus to show that

1

2
σ2V ′′ + θ(rss − r)V ′ − δV = 0 (33)

for

V (r) = c1 ·H− δ
θ

(√
θ

σ
· (r − rss)

)
(34)

where Hν(z) denotes a Hermite function (see, for instance, Lebedev, 1965, p. 285).

51Note that the Itô formula with the notation used here is given in Dixit and Pindyck (1994, pp. 79–81,
140). A discussion of the Itô formula in greater depth and in a general context is given, for instance, in
Øksendal (2013, p. 44).
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We use the following representations of the first and second derivative of the Hermite

function as given in Lebedev (1965, p. 289) with

H ′
ν(z) :=

∂Hν(z)

∂z
= 2νHν−1(z), (35)

H ′′
ν (z) :=

∂2Hν(z)

∂z2
= 2νH ′

ν−1(z), (36)

to obtain

V ′(r) :=
∂V (r)

∂r
= c1 · 2 ·

(
−δ

θ

)
·H− δ

θ
−1

(√
θ

σ
· (r − rss)

)
·
√
θ

σ
(37)

= −2c1
δ

σ
√
θ
H− δ

θ
−1

(√
θ

σ
· (r − rss)

)
(38)

and

V ′′(r) :=
∂2V (r)

∂r2
= −2c1

δ

σ
√
θ
·H ′

− δ
θ
−1

(√
θ

σ
· (r − rss)

)
·
√
θ

σ
(39)

= −2c1
δ

σ2
H ′

− δ
θ
−1

(√
θ

σ
· (r − rss)

)
. (40)

Now, we can use (34), (38), and (40) to reformulate the left-hand side of the Bellman

ODE (33) and then show that this expression is in fact zero by making the following

transformations:

1

2
σ2 · (−2)c1

δ

σ2
H ′

− δ
θ
−1

(√
θ

σ
(r − rss)

)
+ θ(rss − r) · (−2)c1

δ

σ
√
θ
H− δ

θ
−1

(√
θ

σ
(r − rss)

)

− δc1H− δ
θ

(√
θ

σ
(r − rss)

)
= 0

∣∣∣∣ · 1

c1
(41)

⇔ − δH ′
− δ

θ
−1

(√
θ

σ
(r − rss)

)
− 2θ(rss − r)

δ

σ
√
θ
H− δ

θ
−1

(√
θ

σ
(r − rss)

)

− δH− δ
θ

(√
θ

σ
(r − rss)

)
= 0

∣∣∣∣ · 2θ (42)

⇔ − 2
δ

θ
H ′

− δ
θ
−1

(√
θ

σ
(r − rss)

)
= 2

√
θ

σ
(rss − r) · 2δ

θ
H− δ

θ
−1

(√
θ

σ
(r − rss)

)

+ 2
δ

θ
H− δ

θ

(√
θ

σ
(r − rss)

) ∣∣∣∣ substituting ν := −δ

θ
and z :=

√
θ

σ
(r − rss) (43)

⇔ 2νH ′
ν−1 (z) = 2zH ′

ν (z)− 2νHν (z) (44)
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where the last transformation is obtained by applying (35) to the first term on the right-

hand side of (43). As shown in Lebedev (1965, p. 289, equation (10.4.5)), equation (44) is

true – thus (41) is true, too. This proves that (23) is a solution of the Bellman ODE (18).

Let us now show that (23) satisfies the monotonicity condition (21) and the non-

negativity constraint (22). To see that the non-negativity constraint is satisfied, consider

the integral representation of the Hermite function for Re ν < 0 as given in Lebedev (1965,

p. 290, equation (10.5.2)) with

Hν(z) =
1

Γ(−ν)

∫ ∞

0
exp(−t2 − 2tz)t−ν−1dt, (45)

where Γ(·) is the Gamma function as defined in Lebedev (1965, p. 1). With ν = − δ
θ ∈ �<0

and therefore Γ(−ν) ∈ �>0 it becomes immediately clear that Hν(z) > 0 for all z ∈ �,

and thus that (23) is non-negative for all c1 ∈ �>0 and for all δ
θ > 0. That c1 as defined

in (24) is in fact greater than zero is easy to see with the same argument.

To see that the monotonicity condition is satisfied, consider the representation of the

first derivative of the Hermite function as given in Lebedev (1965, p. 289) with H ′
ν(z) =

2νHν−1(z). For ν − 1 < 0, it can be shown with the same argumentation as above (where

we showed that the non-negativity constraint is satisfied) that Hν−1(z) > 0 for all z ∈ �.

With (38) stating that V ′(r) = −2c1
δ

σ
√
θ
H− δ

θ
−1

(√
θ

σ · (r − rss)
)

it is immediately clear

that V ′(r) < 0 for all r ∈ (r,∞) (recall and see above that c1 > 0).

To see how c1 as defined in (24) is obtained, consider the smooth-pasting condition

(20) which requires that V ′(r) !
= ∂V(r)

∂r . Using (38) and

∂V(r)
∂r

= − 1

δ + θ
, (46)

(which is obtained by differentiating V as defined in (10)), the smooth-pasting condition

can be rearranged to obtain c1 as in (24).

To see how the implicit definition of r in (25) is obtained, consider the value-matching

condition (19) requiring that V (r)
!
= V(r). The left-hand side of equation (25) is directly

obtained by using (23) for V with c1 in the representation given by (24). The right-hand

side of equation (25) is just the exercise payoff as defined in (10) evaluated at r.
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A.3 Solution of the Bellman Ordinary Differential Equation

Let us now outline how we obtained a solution of the central banker’s optimal stopping

problem and thus of the free boundary problem of solving the Bellman ODE (18) and

finding r. As a first step, we used the computer algebra system Mathematica (see Wolfram

Research, Inc., 2015) to obtain a solution of (18) by using the Mathematica-function

“DSolve”. Mathematica returned two linearly independent solutions – one of them being

(23), the other one being a Kummer confluent hypergeometric function. After having

proved that (23) solves (18) as outlined in section A.2 of this appendix, and since we do

not need to prove uniqueness of our solution, we chose (23) to solve the central banker’s

optimal stopping problem.

To see that this solution is in fact correct, we can use the argument
√
θ

σ · (r − rss) of

the Hermite function returned by Mathematica in order to transform (18) into a canonical

form and then look up in Lebedev (1965) for the solution of this differential equation.52

To transform (18), we use the technique outlined by Dixit and Pindyck (1994, p. 163) and

accordingly introduce

z(r) =

√
θ

σ
(r − rss) with z′(r) =

√
θ

σ
, (47)

and use a function w(z) to substitute

V (r) = w(z) with V ′(r) = w′(z(r)) · z′(r) =
√
θ

σ
w′(z) and V ′′(r) =

θ

σ2
w′′(z). (48)

Therewith, and with r = σ√
θ
z + rss, equation (18) can be transformed into

1

2
σ2 θ

σ2
w′′(z) + θ

(
rss − (

σ√
θ
z + rss)

) √
θ

σ
w′(z)− δw(z) = 0, (49)

which can be simplified to

w′′ − 2zw′ + 2νw = 0, (50)

where ν := − δ
θ < 0. This differential equation, its solutions, and the Hermite function are

discussed in great detail, for instance, in Lebedev (1965, pp. 283-299).

52See, for instance, Suzuki (2016, p. 35, equation (2)) for an equivalent substitution.
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The general solution of (50) as stated by Lebedev (1965, p. 286, equation (10.2.17))

reads

w = MHν(z) +N exp(z2)H−ν−1(�z), (51)

where M ,N are constants, �
2 = −1, and Hν(z) is a Hermite function (the definition of a

Hermite function is given by Lebedev (1965, p. 285)).

Re-substituting with w = V , z =
√
θ

σ (r − rss) and ν = − δ
θ , the general solution of the

Bellman equation (18) can be written as

V (r) = c1H− δ
θ

(√
θ

σ
(r − rss)

)

+ c2 exp

⎛
⎝(√

θ

σ
(r − rss)

)2
⎞
⎠H δ

θ
−1

(
�

(√
θ

σ
(r − rss)

))
, (52)

where c1, c2 are constants. As argued above, we now let c2 = 0.53 This yields a particular

solution that satisfies the monotonicity condition (21) and the non-negativity constraint

(22). As also shown above, (19) and (20) can now be used to determine c1 and r.
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International Coordination and Optimal Timing of Calling In

Large-Denomination Banknotes in a Two-Player Game

Thomas Link

Abstract

This paper proposes a two-country version of an optimal timing model of calling in

large-denomination banknotes. Our goal is to explore whether central banks should coor-

dinate the elimination of large notes internationally. We find that coordination can prevent

central bankers from inefficient timing decisions. The inefficiencies in our model have their

root in central bankers’ expectations of extra seignorage gains or losses that arise when

timing strategies diverge. The gains from coordination depend on the substitutability of

banknotes of different denominations and currencies. The substitutability also determines

whether central bankers face a prisoner’s dilemma or a coordination problem. Under cer-

tain circumstances, optimality requires two fully symmetric central bankers to call in large

notes sequentially.

JEL classification: E42, E58

Keywords: cashless economy, phase-out of paper currency, timing game, international

monetary policy coordination
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1 Introduction

Several options to relax the effective lower bound (ELB) constraint on monetary policy are

available (see Goodfriend, 2000; Buiter, 2009; Rogoff, 2017; Agarwal and Kimball, 2019).

Calling in or gradually “phasing out” large-denomination banknotes is one of them (see

Rogoff, 2017, p. 57). In a recent paper, we took the perspective of a central banker and

showed how the volatility and the expected path of the natural rate of interest determine

the optimal timing of calling in large-denomination banknotes (see Link, 2019). There,

our starting point was that the central banker’s net benefits from calling in large notes

depend on the stochastic state of the world and in particular on the natural rate of interest.

This state dependency, in turn, creates a need to time a calling-in move optimally. Now,

we use a two-country version of the optimal timing model proposed in Link (2019) with

two central bankers to explore whether the elimination of large-denomination banknotes

should be coordinated internationally. In doing so, we address a question that was recently

raised by Rogoff (2016, chapter 13).

We argue in Link (2019) that a central banker’s problem of deciding when (if ever) to

call in large notes involves only one major trade-off in a one-country setting: On the one

hand, calling in large notes is beneficial because relaxing the ELB-constraint increases the

ability to reach monetary policy objectives. On the other hand, as suggested by Rogoff

(2015, pp. 450–452), cash demand is lower in a world without large banknotes. As a

consequence of a lower cash demand, and thus of less cash in circulation, the seignorage

profits a central bank makes by issuing cash are smaller.1 Losing seignorage profits, in

turn, can weaken a central bank’s ability to stay independent from external financing and

thus pose a threat to central bank independence.2 So, a central banker must trade off the

benefits from calling in large notes that come from a lower ELB-constraint against the

costs through forgone seignorage revenues. We outline in Link (2019) why the net benefits

from calling in large notes thus negatively depend on the natural rate of interest.

In addition to this trade-off that drives a central banker’s behavior in the one-country

setting of Link (2019), we consider international spillovers in a two-country setting in the

present paper. Our starting point is the assumption that spillovers will occur if one central

banker calls in large notes while the other central banker keeps on issuing large notes. In

1As in Link (2019), we use a narrow definition of the term “seignorage” and mean central bank revenues
from issuing cash. For a discussion of various measures of seignorage see, for instance, Buiter (2007).

2See Rogoff (2015, p. 452), Rogoff (2016, chapter 6), Buiter (2009, p. 224), Thiele, Niepelt, Krüger,
Seitz, Halver, and Michler (2015, p. 10), or Krüger and Seitz (2017, chapter 4.1).
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particular, the central banker that keeps on issuing large notes will benefit from an increase

in the demand for “her” currency and make higher seignorage profits. Rogoff (2016,

chapter 13) has pointed out these thoughts. This assumption is natural because there is a

specific demand for large banknotes as a store of value (see, for instance, Fischer, Köhler,

and Seitz, 2004; Feige, 2012; Bartzsch, Seitz, and Setzer, 2015) and from the underground

economy (see, for instance, Rogoff, 1998, 2016, chapter 13). If a near substitute for a

discontinued large banknote exists in a different currency, hoarders or criminals will have

the option to use a substitute after one central banker makes a unilateral calling-in move.

This argument is especially strong for major reserve currencies like the euro or the U.S.

dollar for which there is also high foreign demand.3 With regard to the demand for large-

denomination euro and U.S. dollar banknotes from the global shadow and underground

economy, Rogoff (2016, chapter 13) predicts that such substitution effects would possibly

occur.

We take Rogoff’s presumption that the unilateral elimination of large notes will shift

seignorage revenues between central banks and incorporate these kinds of spillovers into

a two-country version of the optimal timing model of Link (2019). We explore the timing

game between the two central bankers and show that inefficient timing decisions when

central bankers do not cooperate create a need for policy coordination. Inefficient timing

decisions can result from the fear, respectively from the prospect, of extra seignorage losses,

respectively gains, when large notes of different currencies are called in sequentially. The

point we make is that it is the substitutability of banknotes of different currencies and

of different denominations that determines the points in time and the sequence of moves

central bankers choose to call in large notes. We argue that what matters in this respect

3Especially for the euro and the U.S. dollar there is a large foreign demand not only from the under-
ground economy but also as a store of value. According to the European Central Bank (2019), a large
amount of euro currency is held outside the euro area. Precise figures are unknown but a rough indicator
for the currency in circulation outside the euro area can be obtained by summing up the observed net ship-
ments of banknotes to the rest of the world since the introduction of the euro. Concretely, the accumulated
net “shipments of euro banknotes to destinations outside the euro area” amounted to approximately 170
billion euros as of February 2019 (see European Central Bank, 2019, p. 34). However, this rough indicator
is rather a lower bound, as, for instance, outlined by Calza and Zaghini (2016, pp. 234–235). The true,
unobserved amount of euro banknotes held outside the euro area should be significantly higher. That a
large share of all euro banknotes in circulation is held abroad is also supported by Bartzsch, Rösl, and Seitz
(2013) who estimate that a share of 45% of the euro banknotes issued by Germany circulates outside the
euro area. The foreign demand for currency denominated in U.S. dollars is even higher. Even conservative
estimates point toward a share of 30 to 37% of all U.S. currency that is held abroad (see Feige, 2012).
Because the estimation of the stock of currency circulating abroad is a non-trivial task, former estimates
of the share of U.S. currency holdings abroad even range up to 70% (see Feige (2012, p. 245) who presents
an overview of several former studies that estimated the share of U.S. currency that is – or was at the time
the respective study was conducted – held abroad).
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is not only the substitutability of large notes of different currencies but also whether there

is a substitute in a smaller denomination for a discontinued large note available to private

hoarders or criminals. To illustrate this point, we discuss two scenarios: one in which

central bankers face a prisoner’s dilemma with one simultaneous move Nash equilibrium

(in pure strategies); and one scenario in which they face a coordination problem with two

sequential move equilibria. The sequential move equilibria exist even though we consider

two fully symmetric central bankers.4 The asymmetry that lies in the sequential move

equilibria emerges in the scenario where large and small banknotes are not substitutable

at all from the perspective of private hoarders or criminals. Taken all together, our analysis

illustrates that central bankers can avoid inefficient timing decisions by cooperating and

coordinating their calling-in moves.5

The next section introduces a two-country version of the optimal timing model pro-

posed in Link (2019) with international spillovers. The model is solved for a spillover-free

benchmark scenario in section 3 and for the full specification in section 4. Section 4.1 con-

tains some remarks on the solution approach we choose. Section 4.2 analyzes the optimal

behavior of central bankers in a setting with an appointed leader and an appointed fol-

lower. Section 4.3 analyzes the timing game between two fully symmetric central bankers.

Policy implications are discussed in section 5. Section 6 contains some concluding remarks.

4In posing the research question of which conditions would imply simultaneous, respectively sequen-
tial, move equilibria, we were mainly inspired, in addition to Dixit and Pindyck (1994, pp. 309–315) and
Fudenberg and Tirole (1985), by two further papers in an industrial organization context, namely Rein-
ganum (1981) and Weeds (2002). Reinganum (1981) considers a timing game between two firms which
have the option to adopt a new technology. She describes a state of the world where the game between two
identical firms has two sequential move Nash equilibria (see Reinganum, 1981, pp. 398–399). Weeds (2002)
considers a game between two firms which must choose the timing of making an investment in a research
project under uncertainty, respectively. Weeds (2002) also explores whether the timing game between the
firms has simultaneous or sequential move equilibria. Crucially, she describes a state of the world where
strategic considerations in the absence of cooperation can be a reason for a firm to delay an investment (a
major focus of Weeds (2002) lies on “strategic delay”).

5Our contribution thus tackles an issue that is outside the traditional monetary policy coordination
literature. The typical focus in the monetary policy coordination literature lies on strategies for the
instruments that are used to conduct rule-based monetary policy, e.g., a policy rate (see, for instance,
Pappa, 2004, p. 764). In principle, the question that is addressed in this literature is whether the central
banks’ individual policy rules should incorporate international spillovers. It has been pointed out that, at
least until the last decade, there was little need to coordinate rule-based monetary policy internationally
(see, for instance, Taylor (2013, pp. 4–6) and the comments on Taylor’s paper by Rogoff (2013); see also
Engel (2016, p. 22)). However, some factors can make room for gains from the international coordination
of monetary policy: For a short summary of such factors with remarks on the respective literature that
addresses these factors see Liu and Pappa (2008, p. 2086). For a survey of the monetary policy coordination
literature see Engel (2016).
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2 A Two-Country Optimal Timing Model of Calling In

Large-Denomination Banknotes

We build on a deterministic version of the optimal stopping model of calling in large-

denomination banknotes proposed in Link (2019) and extend it to a two-country setting:

There are two countries, home (H) and foreign (F ), with two symmetric central bankers

(one in the home and one in the foreign country). The two countries are symmetric as

well with the exception of the currencies they issue. Legal tender in the home country

are “small”- and “large”-denomination home currency banknotes, in the foreign country

“small”- and “large”-denomination foreign currency banknotes.6 The central bankers are

in charge of “their” currencies’ denominational structures and both have the option to call

in their large-denomination banknotes. To call in large notes in the definition that we use

here and in Link (2019) means to stop the issuance and to remove the legal tender status

of these notes with immediate effect. As in Link (2019), a calling-in move is one-shot and

irreversible (due to the high reputational costs of reintroducing a large denomination after

having previously removed it). The central bankers can time their moves freely and call

in their large notes independently from each other. Time is continuous and the points in

time when the calling-in moves are made are denoted by TH ∈ [0,∞) for the home and

TF ∈ [0,∞) for the foreign central banker’s timing. Future values are discounted at the

rate δ ∈ �>0.

We use the same highly stylized approach as in Link (2019) to capture a central banker’s

costs and benefits associated with the calling-in of large notes. The spillover effects in the

present two-country setting are introduced in this stylized way as well. Accordingly, we

capture the net benefits, including the international spillovers central banker i ∈ {H,F}

has from calling in large notes by flow utilities U i
t that are received in period t ∈ [0,∞). If

6In the context of the idea to relax the ELB by removing large banknotes, a similar formalization of a
currency that is issued in two denominations is proposed in Rognlie (2016, pp. 41–42). However, Rognlie
(2016) analyzes optimal monetary policy in a one-country New Keynesian framework. In contrast to our
subject, Rognlie (2016) does not focus on the optimal timing of removing the large denomination. Instead,
he considers household utility under optimal monetary policy dependent on the denominational structure
of cash (see Rognlie, 2016, p. 42).

108



central banker i makes her calling-in move strictly before central banker j ∈ {H,F} with

j �= i, her utility function is defined by U i
t = Ufirst

t with

Ufirst
t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for t < T first,

ut + efirst for t ∈ [T first,T second),

ut for t ≥ T second,

(1)

where T first, respectively T second, denotes the point in time when the first, respectively

second, mover calls in large notes. ut is an exogenous process that captures the beneficial

or adverse effects of a central banker’s own actions without regard to the behavior of her

counterpart. If the two central bankers’ behavior diverges, i.e., if they move sequentially,

there will be an external effect efirst on the first and esecond on the second mover’s utility.

These externalities capture the spillovers from unilateral calling-in moves. We skip the

details on ut and the externalities for the moment and discuss them further below. If

central banker i moves strictly after j, her utility function is defined by U i
t = U second

t with

U second
t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for t < T first,

esecond for t ∈ [T first,T second),

ut for t ≥ T second.

(2)

And if central banker i moves at the same time as j does with T sim denoting this point

in time, her utility function is defined by U i
t = U sim

t with

U sim
t =

⎧⎪⎨
⎪⎩
0 for t < T sim,

ut for t ≥ T sim.

(3)

Note, that in this case there are no spillovers such that U sim
t corresponds to the central

banker’s overall period-t utility function in the one-country setting in Link (2019).

Let us now specify the sub-utility function ut that describes the effects of a central

banker’s own actions. This component of overall utility U i
t describes the net benefits from

calling in large notes, though excluding the effects of international spillovers. We provided

the foundations of ut in Link (2019) and introduced it as an exogenous process of flow

utilities a central banker receives once she has made her calling-in move (in this regard, we
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follow Alvarez and Dixit (2014) who, in simplified terms, use exogenous flow utilities to

describe a currency union’s net benefits from having a common currency).7 Accordingly,

ut = g − rt − ω, (4)

where g ∈ �>0 and ω ∈ �>0 are known constants and rt is an exogenous process which

represents the (home and foreign) natural rate of interest in period t. In our symmetric

setting we do not distinguish between the home and foreign natural rate of interest,

they are identical for all t ≥ 0. In contrast to Link (2019), we always assume perfect

foresight over the future path of the natural rate of interest and define the natural rate as

a (deterministic) function with

rt = r · exp(−θt) + rss · (1− exp(−θt)) for t ≥ 0, (5)

where r0 = r ∈ � is known, rss ∈ � is the known long-run steady-state level of the natural

rate, and θ ∈ �>0 captures the speed with which the natural rate reverts to its steady

state. With this definition, we might as well say that the natural rate is governed by an

Ornstein-Uhlenbeck process (OU process) that has no stochastic component.8 We choose

this specification of the natural rate to consider different states of the world with different

paths of the natural rate. In particular, our focus is on such states where a central banker’s

optimal timing strategy to call in large notes involves a wait-and-see component.

Equation (4) that defines the sub-utility ut states that the net benefits from calling

in large notes are a negative function of the natural rate of interest. On the one hand,

this is consistent with the assumption that the benefits from relaxing the ELB-constraint

are larger the lower the natural rate is. On the other hand, (4) is consistent with the

assumption that the costs of calling in large notes in the form of lost seignorage profits

are increasing in the natural rate. We refer to our discussion in Link (2019, section 2)

for the reasoning of these properties. Ultimately, it is the state-dependency of ut on a

mean-reverting natural rate that creates the need for a central banker to time her actions

7See Link (2019, section 2).
8For t ≥ 0 and r0 = r, rt as defined in (5) describes the expected path of an Ornstein-Uhlenbeck

process with drt = θ(rss − rt)dt + σdBt where Bt is Brownian motion starting at B0 = 0 and σ ≥ 0 is a
volatility parameter (see, for instance, Maller, Müller, and Szimayer (2009, p. 423) or Dixit and Pindyck
(1994, pp. 74–78)). This stochastic specification is used in Link (2019).
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optimally. The benefits and costs of calling in large notes that do not depend on the level

of the natural rate are captured by the constants g and ω.

We believe our way of introducing an external effect efirst on the first and esecond on

the second mover’s utility is a convenient way to capture the seignorage losses of a first,

and gains of a second, mover after a unilateral calling-in move. For the main part of

our analysis we abstract from modeling cash in circulation and thus seignorage revenues

explicitly. However, in appendix A, we set up a stylized network model of banknote

demand and shifts of seignorage profits that result from calling in large notes. This model

illustrates that all we need to describe seignorage effects within our framework is given

by the externalities efirst and esecond. In particular, it illustrates the extent to which

currency substitution can involve a disadvantage for a first and an advantage for a second

mover. The crucial point is that the magnitude of the dis-/advantage depends on the

degree of substitutability of banknotes of different denominations and currencies from the

perspective of private hoarders or criminals. We argue in the appendix that the ratio of

efirst to esecond can be related to this degree of substitutability. In this respect, we focus

on two scenarios in the analysis that follows. We interpret the constellation esecond > 0

with efirst = −esecond as describing a scenario where home and foreign as well as small

and large banknotes are substitutable. And we interpret the constellation esecond > 0

with efirst = 0 as describing a state of the world where small and large banknotes are

not substitutable at all while home and foreign banknotes of the same denomination are

substitutes. Eventually, the central bankers’ timing decisions and strategic considerations

are crucially determined by these externalities.9

9Whether, respectively why, there will be shifts in banknote demand and in seignorage revenues in
the real world is an empirical question which we leave unanswered. We just base our argumentation on a
possible reason for such shifts. When considering the theoretical case that small and large notes can be
“perfect substitutes”, there are two issues that require a short remark (in the following, the term “perfect
substitutes” shall be used for different banknote denominations if the total demand for all banknotes of
these denominations in terms of value does not depend on the denominational structure [in this case, we
might as well say that a discontinued denomination can be perfectly replaced by other notes] – accordingly,
if a large note is called in while a “perfect substitute” for that note is available, the demand for the
discontinued large note will fully shift to the remaining denominations; to be clear, this does not mean
that banknote demanders consider different notes as being “perfect substitutes” in the proper meaning of
the word while all denominations are still available): Firstly, if small and large notes were perfect substitutes
from the perspective of all agents in the economy, calling in large notes would have no effect on the ELB.
So, to be effective in terms of lowering the ELB, a calling-in move would require that there is at least one
other type of agent in the economy having a demand for banknotes but having different capabilities to
replace large by small notes. It is natural to assume that such a difference exists, for instance, between
wholesale and private demanders of cash, like banks and private households (for a note with regard to the
effect the elimination of large notes would have on “ordinary retail transactions”, respectively on the cash
hoarding costs of “large-scale financial institutions”, see Rogoff, 2017, pp. 59–60). So, for instance, while
a private household might be relatively indifferent between keeping, say, 10,000 euros in 50 200-euro notes
or in 200 50-euro notes in a safe deposit box that has a volume large enough to store a multiple of that
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The goal of a central banker i ∈ {H,F} is to maximize the present value of the stream

of period flow utilities U i
t from t = 0 on by choosing an optimal timing strategy to call

in her large-denomination banknotes. Since the stream of utilities depends not only on

the central banker’s own but also on her counterpart’s actions, an optimal strategy is

the equilibrium outcome of a timing game between the two central bankers. Before we

explore this strategic setting, we solve a central banker’s timing problem in the absence

of international spillovers in the next section to provide a benchmark for the analysis that

follows.

3 Optimal Timing in the Absence of International Spillovers

For the moment and for the remainder of this section, we ignore any international spillovers

from the calling-in of large-denomination banknotes and assume that efirst = esecond = 0.

The forces that drive a central banker’s optimal timing strategy are thus free from strategic

considerations so that we have a setting that is a useful benchmark for the analysis in the

following sections. Essentially, the home, respectively foreign, central banker’s problem is

thus reduced to the deterministic case of the timing problem in the one-country setting

that is analyzed in detail in Link (2019). This section reviews the solution of this problem

as described in Link (2019) and briefly summarizes the main results there.

In the absence of international spillovers, the period flow utility of central banker

i ∈ {H,F} is

U i
t =

⎧⎪⎨
⎪⎩
0 for t < T i,

uit for t ≥ T i,

(6)

where uit = g− rt−ω and T i denotes the point in time i makes her calling-in move. Since

central bankers are symmetric, we drop all superscripts in the remainder of this section

amount, a bank might consider the costs associated with the hoarding of several billion euros in cash to
be prohibitively high if only small banknotes were available (as noted above, for a discussion of hoarding
costs of “large-scale financial institutions” in a world where only small banknotes exist see Rogoff, 2017,
pp. 59–60). The second issue in a world where discontinued large notes can be perfectly replaced by small
notes that requires a remark is related to a central banker’s seignorage revenues: Our argumentation in
the appendix for the case that large and small notes are substitutable is based on the assumption that cash
demanders have a preference to split cash holdings equally in terms of value across the denominations that
are available to them. Crucially, the denominations that are available include banknotes of both currencies.
So, the home central banker’s calling-in move will imply a shift in banknote demand from large home to
small foreign notes which, in turn, implies an additional loss of seignorage revenues for the home central
banker.
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for ease of notation. The present value of the stream of flow utilities from t = 0 on is∫∞
0 Ut · exp(−δt)dt (recall that a central banker discounts future utility with rate δ). A

central banker aims to maximize this present value by timing her calling-in move optimally.

With equation (5) for the path of the natural rate and with r0 = r, her objective function

F , like in Link (2019), is

F (r,T ) =

∫ ∞

T
(g − rt − ω) · exp(−δt)dt (7)

=
1

δ
· (g − rss − ω) · exp(−δT ) − 1

δ + θ
· (r − rss) · exp(−(δ + θ)T ),

with the associated maximization problem

max
T≥0

F (r,T ). (8)

The optimal timing is denoted by T ∗ with T ∗ ∈ [0,∞) ∪ {∞} where T ∗ = ∞ means

that the calling-in move is never made. Our main point in the deterministic case in Link

(2019) was that any optimal timing strategy and in particular whether T ∗ is an interior

or a corner solution of the central banker’s decision problem is determined by the specific

path of the natural rate and thus by the specific path of period utility ut (note that the

process ut features mean-reversion, too, since it is only determined by the mean-reverting

process rt and the two constants g and ω). Since we rule out any stochastic movements of

the natural rate, its future path is a monotone function of time that reverts to its steady

state rss from either above or below. The same holds for the path of utility ut. As a

consequence, and with ut being defined as in (4), there is a critical threshold such that

making a calling-in move at a natural rate below (above) that threshold yields a positive

(negative) payoff with the “payoff” being defined as the present value of the stream of flow

utilities from calling in large notes. As in Link (2019), we refer to this critical threshold as

“break-even threshold” r̂ and define it as the natural rate level at which an instantaneous

calling-in move has a payoff of exactly zero. r̂ is implicitly defined by F (r = r̂,T = 0) = 0

with

r̂ = g − ω +
θ

δ
uss. (9)

We show in Link (2019) that there is a set of paths of the natural rate for which

optimality requires a central banker to “wait” and choose a strictly positive T ∗ even if the
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natural rate has already fallen below the break-even threshold r̂, i.e., even if making the

calling-in move “somewhat” earlier than at T ∗ would already lead to a positive payoff.

This set of paths is a subset of all paths of such period utility processes ut that have a

positive long-run steady state uss > 0 where uss := g − rss − ω. To see this, we consider

two scenarios in the following – one where the long-run benefits from calling in large notes

are positive (uss > 0) and one where a central banker, in the long run, incurs losses from

calling in large notes (uss < 0).

Scenario I (uss > 0): Let us first consider a world where uss > 0 and where the calling-

in of large-denomination banknotes is thus a beneficial strategy in the long run. The

first-order condition for an interior maximum of (8) is

∂F (r,T )

∂T
= −(g − rss − ω) · exp(−δT ) + (r − rss) · exp(−(δ + θ)T )

!
= 0, (10)

which implies that

T ∗ =
1

θ
· ln

(
r − rss

g − rss − ω

)
, (11)

where T ∗ > 0 for all r > g − ω given that uss = g − rss − ω > 0. We show in Link

(2019) that the second-order condition can be used to show that (11) maximizes (8) in

the specified region of the parameter space. In addition, equation (7) can be used to show

that this maximum is strictly greater than zero. By plugging in T ∗ into (5) it is easy to see

that the natural rate at time T = T ∗ is rT ∗ = g − ω. So, the timing strategy to make the

calling-in move at T ∗ can also be formulated as a simple rule to make the move once the

natural rate has hit or fallen below a specific threshold. Like in Link (2019), we refer to

this level as the “optimal threshold” and denote it by r. In case the utility has a positive

steady state the optimal threshold to make the calling-in move is thus r = g − ω.10

Comparing r with the break-even threshold r̂ illustrates the range for the natural rate

where optimality requires the central banker to wait, although an instantaneous calling-

in move would have a positive payoff. This natural rate range where waiting is optimal

is (r, r̂] which is obviously broadening in uss. The interpretation of these properties is

straightforward and starts with the path of period utility conditional on uss > 0 ⇔

10Note that (8) has a corner solution at T = 0 for all r < g−ω in case uss > 0. This can easily be seen
by recalling the constraint T ≥ 0 and considering the logarithmic term in (11). For a discussion of such
scenarios see Link (2019).
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g − ω > rss. The future path of a natural rate that is initially above its steady state,

i.e., r0 = r > rss, is monotonically decreasing. In turn, the path of period utility is

monotonically increasing in that case with ut < 0 for all rt > g − ω and with ut > 0 for

all rt < g − ω. So, a central banker with the flexibility to time her calling-in move freely

chooses to wait until the period utility from calling in large notes becomes greater than

zero – which is the case at the moment rt hits the optimal threshold r. As a consequence,

a strictly positive payoff in terms of cumulative utility can be realized. In contrast, a

calling-in move that is made at a natural rate above r involves an initial phase with

negative period utilities that partially or fully offset the cumulative benefits of the second

phase with positive period utilities once the natural rate has fallen to sufficiently low levels.

These cumulative benefits of the second phase are fully offset if the move is made at r = r̂

and partially offset if it is made at r ∈ (r, r̂).

Scenario II (uss < 0): Let us now consider a central banker’s optimal behavior in

case the utility has a negative steady state, i.e. if uss ≤ 0. We point out in Link (2019)

that there is no interior maximum of (8) in this case. Dependent on the constellation of

parameters, the move is optimally made either never or immediately at T = 0. The sole

decision criterion is whether the present value of the stream of flow utilities from making

the calling-in move immediately is positive – or, put another way, whether the natural

rate is below the break-even threshold r̂. So, if the utility has a negative steady state, the

optimal threshold r corresponds to the break-even threshold r̂ = g − ω + θ
δu

ss. In such

a scenario with r0 < r̂ < uss where the natural rate is monotonically increasing toward

its steady state and where period utility is thus monotonically decreasing in time, any

deferral to make the calling-in move later than at T = 0 would involve a loss of benefits

and is thus not an optimal timing strategy.

To sum up, the optimal behavior of a central banker in the absence of international

spillovers can be formulated as a simple decision rule that is dependent on the steady state

of period utility. The rule is to make the move if the natural rate hits or is below r with

r =

⎧⎪⎨
⎪⎩
r̂ = g − ω + θ

δ · uss, if uss ≤ 0

g − ω, if uss > 0.

(12)
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4 Optimal Timing in the Presence of International

Spillovers

4.1 Solution Approach and States of the World

In this section, we explore the set of equilibria of the timing game between two fully sym-

metric central bankers in the presence of international spillovers from unilateral calling-in

moves. In particular, our goal is to show that the substitutability of banknotes of different

denominations and currencies determines the number of Nash equilibria and – crucially

– whether central bankers’ equilibrium strategies are to make their calling-in moves si-

multaneously or sequentially even though both central bankers are fully symmetric. As a

preliminary step before we consider the game between two symmetric central bankers, we

remove symmetry and appoint one central banker as leader, the other as follower. The

leader can freely choose the timing to call in large notes, the follower must wait for the

leader to make the first move to call in her large notes. Since we restrict our analysis to

states of the world where, at some point, central bankers will make their calling-in moves,

we call the leader “first mover” and the follower “second mover.” Before symmetry is

restored in section 4.3, section 4.2 analyzes the central bankers’ timing decisions in the

case of an appointed first and second mover. We start by analyzing the second mover’s

optimal timing.11

We restrict our analysis for the rest of this paper to the interesting case where, in the

short run, that is, in period t = 0 and for some time thereafter, seignorage losses after a

calling-in move outweigh the benefits from a relaxed ELB-constraint such that the central

bankers’ optimal timing strategy has a wait-and-see component. From a t = 0-perspective

this means that no central banker would make her calling-in move immediately at t = 0.

The two conditions that are necessary to guarantee such an outcome formally are that the

net benefits from calling in large notes are negative in the short run (r0 = r > g − ω) but

positive in the long run (uss > 0) which means that, eventually, ELB-issues will outweigh

seignorage considerations. In addition to these assumptions, we only consider states of the

world that have the following characteristics: (1) The external effect of the first mover’s

11An earlier version of our model accounted for uncertainty over the future path of the natural rate
such that the game between the two central bankers would become a stochastic game. To solve this earlier
version of our model, we made use of the solution techniques for stochastic games described by Dixit and
Pindyck (1994). In particular, we took the idea to start with a leader-follower setting and to analyze the
follower’s decision problem first from Dixit and Pindyck (1994, pp. 309–315).
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unilateral calling-in move on the second mover’s utility is always greater than zero, i.e.,

esecond > 0. This describes a second mover’s free ride in the form of additional seignorage

revenues that result from currency substitution if she keeps on issuing large notes while

her counterpart has removed them. (2) The external effect on the first mover’s utility

of the second mover’s decision not to call in large notes together with the first mover is

always less than or equal to zero, i.e., efirst ≤ 0. So, there is no specific advantage for the

first mover from being able to move first. (3) We also require that efirst ∈ [−esecond, 0]

which just describes that the first mover’s extra seignorage losses until also the second

mover has called in large notes are not larger (in absolute value) than the second mover’s

additional seignorage revenues. (4) To rule out that the second mover has an incentive to

free ride forever, we let esecond < uss.

4.2 Timing in a Setting with an Appointed First and Second Mover

4.2.1 Optimal Timing of the Second Mover

Let us now assume that one central banker has the flexibility to time her calling-in move

freely at T first ≥ 0 with the sole restriction of having to move first. The other central

banker is forced to wait until her counterpart has moved but is then able to time her

move freely at T second ≥ T first (this is a strong assumption since it means that the second

mover can immediately observe the actions of her counterpart and move without delay at

T first). We take a t = 0-perspective and consider the second mover’s timing problem first.

The second mover’s objective function, given that the first central banker moves at

T first and given that the natural rate at time t = 0 is r0 = r, is

F second(r,T first,T second) =

∫ T second

T first

esecond · exp(−δt)dt

+

∫ ∞

T second

(g − rt − ω) · exp(−δt)dt (13)

=
1

δ
esecond ·

(
exp(−δT first)− exp(−δT second)

)

+
1

δ
(g − rss − ω) · exp(−δT second)

− 1

δ + θ
(r − rss) · exp(−(δ + θ)T second).

In deciding on the optimal timing of her calling-in move, the second-moving central banker

must take into account that the additional seignorage revenues (captured by the exter-
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nal effect esecond > 0) she receives after the first mover has made a calling-in move are

lost at the instant she makes her own move. We have formalized this property in equa-

tion (2). The additional seignorage revenues during the period from T first to T second

create an opportunity cost of calling in large notes. This opportunity cost makes the

second mover reluctant to make her own move. Comparing (13) with the objective

function (7) in the spillover-free benchmark illustrates this property. In the presence of

spillovers, i.e., if esecond �= 0, an additional term enters the objective function. This term,∫ T second

T first esecond · exp(−δt)dt, that captures the present value of the stream of flow exter-

nalities from T first until T second is smaller the sooner the second-moving central banker

makes her calling-in move. The second mover thus faces a trade-off between receiving an

externality in the form of additional seignorage revenues or a utility ut from making her

own calling-in move.

The assumptions we have made in section 4.1 and the state of the world we have

defined for the rest of the paper guarantee that this trade-off is resolved in favor of a

calling-in move at some finite T second∗ so that the second mover’s optimization problem

max
T second≥T first

F second(r,T first,T second) (14)

has an interior maximum. The first-order condition for an interior solution of (14) is

(g − rss − ω − esecond) · exp(−δT second) = (r − rss) · exp(−(δ + θ)T second) (15)

and yields a unique interior maximum at

T second∗ =
1

θ
· ln

(
r − rss

g − rss − ω − esecond

)
, (16)

given that the first central banker has already moved at some T first ≤ 1
θ ·

ln
(

r−rss

g−rss−ω−esecond

)
, otherwise T second∗ = T first.12

Comparing the optimal timing T second∗ as stated in (16) with the optimal timing in

the spillover-free benchmark stated in equation (11) shows that the additional seignorage

revenues (described by esecond) make the second mover more reluctant to make her own

12It is easily checked that the second-order condition for an interior maximum at T second∗ is satisfied

since ∂2Fsecond

(∂Tsecond)2
= δ(g−rss−ω−esecond) exp(−δT second)− (δ+θ)(r−rss) exp(−(δ+θ)T second) evaluated

at T second∗ as stated in (16) is less than zero if uss > 0, esecond ∈ [0,uss), and r > g − ω > rss. The
uniqueness of the maximum is implied by the monotonicity of the path of the natural rate of interest and
the fact that at some point period utility ut stays greater than esecond.
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move with T second∗ > T ∗ and with T second∗ increasing in esecond. A crucial feature is that

T second∗ does not depend on the first mover’s timing if it is an interior solution of (14). It

is only determined by ut and esecond and marks the period where the flow of period utilities

from making a calling-in move starts to exceed the flow of externalities. At T second∗ , the

natural rate starting at r0 = r has fallen to the level rT second∗ = g − ω − esecond so that

uT second∗ = esecond and that receiving a flow of utilities ut becomes an alternative that is

more attractive than receiving a flow of externalities esecond for all t > T second∗ . Beyond

this point, the benefits from calling in large notes and relaxing the ELB-constraint exceed

the costs in the form of forgone seignorage revenues when the central banker stops issuing

large notes. It is clear that the optimal threshold for the natural rate to make the calling-in

move as a second mover is thus

rsecond = g − ω − esecond, (17)

which is lower than the optimal threshold r = g − ω in the spillover-free benchmark.

4.2.2 Optimal Timing of the First Mover

The first mover’s objective function given that the second moving central banker makes

the calling-in move at T second ≥ T first is

F first(r,T first,T second) =

∫ T second

T first

efirst · exp(−δt)dt

+

∫ ∞

T first

(g − rt − ω) · exp(−δt)dt (18)

=
1

δ
efirst ·

(
exp(−δT first)− exp(−δT second)

)

+
1

δ
(g − rss − ω) · exp(−δT first)

− 1

δ + θ
(r − rss) · exp(−(δ + θ)T first).

We have already specified that efirst ∈ [−esecond, 0] (see section 4.1). efirst being

strictly smaller than zero describes states of the world where a first mover loses more

seignorage revenues if both central bankers move sequentially compared to the case where

both move simultaneously. We illustrate such a situation in appendix A and argue that the

root of a first mover’s disadvantage is the substitutability of small and large banknotes of

different currencies. If small and large notes are substitutable, a unilateral calling-in move
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at T first can imply that a share of the demand for the first mover’s large notes shifts to

the second mover’s small notes. The first term in the objective function (18) describes the

first mover’s loss of utility from additional seignorage losses if T first and T second diverge.

The first mover can anticipate the second mover’s optimal timing T second∗ , conditional

on her own actions, and solve the optimization problem

max
T first≥0

F first(r,T first,T second∗) (19)

by choosing an optimal timing T first∗ . The assumptions made in section 4.1 imply that

T first∗ is an interior solution of (19).13 The first-order condition for an interior solution

of (19) is

(g − rss − ω + efirst) · exp(−δT first) = (r − rss) · exp(−(δ + θ)T first), (20)

and yields

T first∗ =
1

θ
· ln

(
r − rss

g − rss − ω + efirst

)
. (21)

The additional seignorage losses the first central banker incurs as a first mover (cap-

tured by efirst ≤ 0) introduce an additional cost of calling in large banknotes. This cost

induces the first mover to defer her calling-in move and choose a point in time that lies

beyond the optimal timing in the spillover-free benchmark (i.e., T first∗ ≥ T ∗).14 This op-

timal timing strategy, in turn, is reflected in the natural rate threshold where the calling-in

move is optimally made. The optimal threshold for the first mover is

rfirst = g − ω + efirst, (22)

and is thus lower than the optimal threshold in the spillover-free benchmark. Once the

natural rate has fallen to that level, the first-moving central banker’s period utility from

making the move, ut, exceeds the period disadvantage from being a first mover, i.e.,

ut = g − rt − ω > |efirst| for all rt < g − ω + efirst. This is the point in time when the

13efirst ∈ [−esecond, 0] also implies that T first∗ ≤ T second∗ = 1
θ
· ln

(
r−rss

g−rss−ω−esecond

)
.

14It is easily checked that the second-order condition for an interior maximum at T first∗ is satisfied

since ∂2Ffirst

(∂Tfirst)2
= δ(g− rss − ω+ efirst) exp(−δT first)− (δ + θ)(r− rss) exp(−(δ + θ)T first) evaluated at

T first∗ as stated in (21) is less than zero if uss > 0, efirst ∈ (−uss, 0], and r > g − ω > rss.
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benefits from calling in large notes and relaxing the ELB-constraint exceed the costs in

the form of forgone seignorage revenues.

4.2.3 Non-cooperative Outcome

In the following, we explore the outcome of the timing game between the appointed first-

and second-moving central banker if they do not cooperate. We consider two different

scenarios to show how the substitutability of banknotes of different denominations and

currencies determines whether the central bankers move simultaneously or sequentially

and whether cooperation could make Pareto improvements possible.15 The state of the

world in both scenarios is as defined in section 4.1: We consider a world where the natural

rate at time t = 0 is still at a relatively high level, i.e., r0 = r > g − ω > rss. This high

level implies that at time t = 0 and for some time thereafter, the costs of calling in large

notes in the form of lost seignorage revenues will exceed the benefits from relaxing the

ELB-constraint. So, optimality will require the central bankers to defer their calling-in

moves until the natural rate has fallen to a sufficiently low level.

The optimal choice of times by the second- and first-moving central banker is stated

by equations (16) and (21) with T second∗ = 1
θ · ln

(
r−rss

g−rss−ω−esecond

)
and T first∗ =

1
θ · ln

(
r−rss

g−rss−ω+efirst

)
. To analyze whether central bankers would be better off coop-

erating and coordinating the timings of their calling-in moves, we compare the first and

second mover’s payoff functions subject to the first central banker moving at T first for

some T first ≥ 0 given that the second mover behaves optimally, as well as both central

bankers’ payoff functions if they move simultaneously at some T first = T second > 0.16 By

comparing the respective payoff functions we can state whether cooperation can lead to

Pareto improvements. So, the first mover’s payoff if she moves at T first, given that the

second central banker behaves optimally and moves at T second∗ , is the present value of the

stream of period flow utilities

F first(r,T first,T second∗) =

∫ T second∗

T first

efirst · exp(−δt)dt

+

∫ ∞

T first

(g − rt − ω) · exp(−δt)dt (23)

15We will not discuss a collective’s decision problem of the kind max(F first+F second) with an objective
function of the collective since this would lead us to issues of transfer payments or compensations between
the two central bankers.

16In methodical regards, in analyzing the respective payoff functions of a leader, a follower, and of
simultaneous movers, we drew on Fudenberg and Tirole (1985, pp. 386–389).
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=
1

δ
efirst ·

(
exp(−δT first)− exp(−δT second∗)

)

+
1

δ
(g − rss − ω) · exp(−δT first)

− 1

δ + θ
(r − rss) · exp(−(δ + θ)T first)

(note, that T second∗ = 1
θ · ln

(
r−rss

g−rss−ω−esecond

)
if T first ≤ 1

θ · ln
(

r−rss

g−rss−ω−esecond

)
and that

T second∗ = T first otherwise).17 The second mover’s payoff as a function of the first central

banker moving at T first, given that the second mover behaves optimally, is

F second(r,T first,T second∗) =

∫ T second∗

T first

esecond · exp(−δt)dt

+

∫ ∞

T second∗
(g − rt − ω) · exp(−δt)dt (24)

=
1

δ
esecond ·

(
exp(−δT first)− exp(−δT second∗)

)

+
1

δ
(g − rss − ω) · exp(−δT second∗)

− 1

δ + θ
(r − rss) · exp(−(δ + θ)T second∗),

and each central banker’s payoff as a function of T first if both agree and stick to moving

simultaneously at T first = T second ≥ 0 is

F sim(r,T first,T second = T first) =

∫ ∞

T first

(g − rt − ω) · exp(−δt)dt (25)

=
1

δ
· (g − rss − ω) · exp(−δT first)

− 1

δ + θ
· (r − rss) · exp(−(δ + θ)T first)

(note, that F sim just corresponds to the payoff function F in the spillover-free benchmark).

Figure 1 illustrates the three payoff functions for specific parameter values (the idea of

this kind of illustration is taken from Fudenberg and Tirole, 1985, p. 387).

Let us now explore the two scenarios. The scenarios we consider correspond to the two

scenarios described in appendix A. Of course, an endless number of alternative scenarios

is possible. But since our main goal is to explain the idea of how the substitutability

of different banknotes determines the outcome of the central bankers’ timing game, we

focus on two cases: Scenario I describes a state of the world where banknotes of different

17By assuming that efirst ∈ [−esecond, 0] we make sure that optimality requires the first-moving central

banker to choose T first∗ ≤ 1
θ
· ln

(
r−rss

g−rss−ω−esecond

)
.
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Figure 1: Central bankers’ payoff functions as defined by (23), (24), and (25) for r = 4,
rss = 0, θ = 1, δ = 0.1, g = 1, ω = 0, efirst = −0.5, and esecond = 0.5. te corresponds to
the optimal timing in the spillover-free benchmark. If efirst = 0, te thus also corresponds
to the optimal timing of the first mover. tl corresponds to the optimal timing of the
second mover in the presence of spillovers. If efirst = −esecond, tl also corresponds to
the optimal timing of the first mover. If efirst = 0, the first mover’s payoff function will
correspond to the payoff function of simultaneous movers (and thus to the payoff function
in the frictionless benchmark) and will thus be represented by the blue curve.

denominations and currencies are substitutes from the perspective of private hoarders

or criminals. We show in appendix A that esecond > 0 together with efirst = −esecond

describes such a world.18 The crucial point in this scenario is that the first mover’s

seignorage losses are larger if she decides to move strictly before instead of with the second

central banker. In the appendix, we explained this larger loss in seignorage revenues by a

shift in the demand for the first mover’s discontinued large notes at T first to the second

mover’s small notes. If we assume that demand shifts are symmetric, the shift of banknote

demand and thus of seignorage from the leader to the follower would be balanced by a

symmetric shift from the follower’s demand for large notes to the leader’s demand for

small notes if both central bankers move simultaneously (this is also our explanation for

why an external effect efirst or esecond only arises when T first and T second diverge).

Scenario II describes a state of the world where small and large banknotes are not sub-

stitutable at all whereas home and foreign notes of the same denomination are substitutes

from the perspective of private hoarders or criminals. In the appendix, we argue that such

a scenario can be described by efirst = 0 together with esecond > 0 if the demand for both

central bankers’ small notes remains completely unaffected by the removal of large notes

at T first and T second and if the demand for the first mover’s discontinued large notes com-

18Since we want to avoid making our argumentation overly complex, we introduce an external third
country in the appendix and only consider cash demand by private hoarders and criminals in this third
country.
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pletely shifts to the second mover’s large notes between T first and T second (see appendix

A).

Scenario I (cross-currency and cross-denomination substitutability such that

esecond > 0 and efirst = −esecond): If the first mover and the second mover are equally

affected by spillovers in absolute value, i.e., if efirst = −esecond, they move simultaneously

at T first∗ = 1
θ · ln

(
r−rss

g−rss−ω+efirst

)
= T second∗ = 1

θ · ln
(

r−rss

g−rss−ω−esecond

)
. Between T first

and T second (if the two dates were to diverge), the second mover’s period opportunity costs

of calling in large banknotes were just equal to the first mover’s period loss she incurred

as a first mover. In concrete terms, this means that the first mover’s additional loss

in seignorage revenues after having made an unilateral calling-in move would correspond

exactly to the second mover’s additional seignorage revenues she would have from deferring

her calling-in move. So, the first mover’s disadvantage from moving first would be of the

same magnitude as the second mover’s advantage from moving second. Consequently,

both central bankers require the period utility ut from calling in their large notes to be at

the level ut = −efirst = esecond to be compensated for the loss, respectively opportunity

cost, and to be willing to make a move. As a result, both defer their moves until the

natural rate hits the level rfirst = rsecond = g−ω+ efirst = g−ω− esecond and then move

simultaneously.

The lack of cooperation results in a Pareto inefficient delay by both central bankers.

The first central banker defers her move to avoid the disadvantage from moving first,

which would arise as a consequence of the second central banker delaying her move

and enjoying the free ride in the form of additional seignorage revenues between T first

and T second if the two dates did diverge. So, as stated above, both central bankers

move at T first∗ = 1
θ · ln

(
r−rss

g−rss−ω+efirst

)
= 1

θ · ln
(

r−rss

g−rss−ω−esecond

)
= T second∗ which

is later than in the spillover-free benchmark where the calling-in move is optimally

made at T ∗ = 1
θ · ln

(
r−rss

g−rss−ω

)
. The point is that now, due to the simultaneity of

the moves, neither of the central bankers is hit by spillovers at all. So, both receive

the payoff F sim(r,T first∗ ,T second∗) which is just the payoff in the spillover-free bench-

mark F (r,T = T first∗ = T second∗). By delaying her own move the first central banker

can avoid negative spillovers and ultimately prevent the second central banker from en-

joying a free ride. But as a consequence, both central bankers’ payoffs are equal to

F sim(r,T first∗ ,T second∗) and are thus lower than the maximum payoff in the benchmark
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case F (r,T ∗). Both central bankers are worse off compared to moving simultaneously at

T ∗ which means that cooperation would make a Pareto improvement possible.

Figure 1 illustrates this problem. The central bankers’ payoffs from making their moves

at tl which corresponds to T first∗ = T second∗ in this scenario, i.e., their actual payoffs

without cooperation, are lower than the potential payoffs from moving simultaneously at

any t ∈ [te, tl). So, while choosing te which is the optimal timing in the spillover-free case,

T ∗, leads to the maximum payoff for simultaneously moving central bankers, cooperating

and moving simultaneously at any t ∈ [te, tl) already leads to a Pareto improvement

compared to the non-cooperative outcome. In section 4.3, we argue that fully symmetric

central bankers will face a prisoner’s dilemma in a corresponding timing game if banknotes

of different denominations and currencies are substitutes.

Scenario II (cross-currency substitutability but no cross-denomination substi-

tutability such that esecond > 0 and efirst = 0): In the appendix we argue that if

small and large notes are not substitutable at all, the first-moving central banker will

have no disadvantage from moving first compared to the spillover-free benchmark and

efirst = 0. However, we also argue that if banknotes of different currencies but of the

same denomination are substitutes from the perspective of private hoarders or criminals,

there will be an advantage for the second-moving central banker. Concretely, the second

mover will benefit from a shift of the demand for the leader’s discontinued large notes to

the demand for her own large notes and make higher seignorage profits. This benefit is

reflected in esecond > 0. So, if efirst = 0 and esecond > 0, the two central bankers will

move sequentially at T first < T second (see equations (16) and (21)). Without a specific

disadvantage from moving first, the first central banker will choose the same timing as

in the spillover-free benchmark and make the calling-in move already at a relatively high

natural rate rfirst = r = g − ω. The first mover’s optimal threshold is thus higher than

the second mover’s optimal threshold rsecond = g − ω − esecond.

In this scenario, with the first and second mover being determined exogenously, there

is no need for cooperation between the two central bankers. They move sequentially at

T first∗ = 1
θ · ln

(
r−rss

g−rss−ω

)
respectively at T second∗ = 1

θ · ln
(

r−rss

g−rss−ω−esecond

)
and are unable

to achieve a Pareto improvement by changing their timing. In the absence of a spillover

for the first mover (efirst = 0) she has no disadvantage specifically from moving first so

that her payoff at T first∗ equals the maximum payoff in the spillover-free benchmark.
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The first central banker would always be worse off by deviating from this optimal timing

whereas the second central banker would indeed profit from the first mover calling in large

notes even earlier. Figure 1 illustrates this outcome: If efirst = 0, the first mover’s payoff

function is illustrated by the blue line and thus corresponds to the payoff function of

simultaneous movers, respectively to the payoff function in the spillover-free benchmark.

While the first mover maximizes her payoff by choosing T first∗ = te, the second mover’s

payoff (the red line) is increasing in the length of the period between T first and T second∗

and could thus be maximized by the first mover calling in large notes at t = 0 (given that

the second mover behaves optimally and moves at T second∗ which in figure 1 corresponds

to tl).

This scenario hints at the coordination problem that two fully symmetric central

bankers face: If both central bankers behave optimally, the increased demand for the

second mover’s large banknotes during the period between T first and T second will imply

that the second mover receives a higher payoff than the first mover does. Figure 1 shows

that the second mover’s payoff given that the first mover chooses T first∗ = te and given

that the second mover behaves optimally and chooses T second∗ = tl is greater than the first

mover’s payoff for this timing profile. If only one of the central bankers deviates from this

timing profile, at least one of them will be worse off. If the first mover chooses to move at

tl, both central bankers will receive a smaller payoff while only the follower will receives

a smaller payoff if she moves early with the leader at te. We discuss the coordination

problem in a corresponding timing game between two symmetric central bankers in the

next section.

4.3 Timing in a Setting with Symmetric Central Bankers

4.3.1 Rules of the Game

We now restore symmetry between the home and foreign central banker and drop the

assumption made in section 4.2 of the first and second mover being exogenously appointed.

The state of the world and the scenarios we consider in the following remain the same

as considered in section 4.2 and defined in section 4.1. In particular, we assume that

r0 = r > g− ω (short-run losses will be incurred if a calling-in move is made shortly after

t = 0), uss > 0 (net benefits from calling in large notes will be positive in the long run),

and esecond < uss (no eternal free ride is possible). Our goal is to explore the equilibria of
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timing games between two symmetric central bankers where the order of the two central

bankers’ calling-in moves can evolve endogenously.

If symmetric central bankers can choose in any period t ≥ 0 whether to make their

calling-in move immediately or wait and defer that decision to a later point in time they

play a dynamic game in continuous time. However, and with regard to the European

Central Bank (ECB) that communicated its decision to stop the issuance of the 500-euro

note almost three years before it was definitely implemented in 2019, we add to the central

bankers’ game the possibility to make a commitment to future actions. This additional

model ingredient simplifies the analysis and reduces the dynamic game to a static game.19

The commitment is made at a public “press conference” by announcing the timing of a

planned calling-in move. It is credible and the central bankers stick to the commitment

as the reputational costs of deviating are prohibitively high.

The number of plausible assumptions on when or on how frequently the central bankers

are able to make their commitment is large and, obviously, the outcome of the central

bankers’ game depends on the specification in this respect. While periodic commitment

opportunities can be given with press conferences in the course of regular meetings of a

central bank’s decision-making body, permanent commitment opportunities are given if a

policymaker can choose the date to announce major policy decisions at her own discretion.

With regard to our main goal in this section, which is to show how the substitutability

of banknotes of different denominations and currencies can determine whether central

bankers face a prisoner’s dilemma or a coordination problem and to explore the equilibria

of these games, we take a pragmatic approach: We assume that the commitment can and

must be made in period t = 0, and only in this period, and we define the strategy set

of central banker i ∈ {H,F} as T i = {te, tl} where te equals the optimal timing in the

spillover-free benchmark such that te := T ∗ = 1
θ · ln

(
r−rss

g−rss−ω

)
(which also corresponds

to the optimal timing by simultaneously moving central bankers) and where tl is the

19The introduction of commitment into the basic game was inspired by Hamilton and Slutsky (1990)
who (in an industrial organization context) extend a basic game between duopolists by a preplay stage
with action commitment in order to endogenize the sequence of moves in the basic game between the
two firms. However, as outlined in Hamilton and Slutsky (1990, p. 31), their basic game is a static game
where the strategic variables are interpreted as price, quantity, or product type – in contrast to our basic
game which is a dynamic game where the players’ strategic variable is their timing, respectively. In this
regard, we would like to thank Hans-Theo Normann for a fruitful discussion after a seminar talk and for
suggesting Hamilton and Slutsky (1990) to tackle the problem of endogenizing the central bankers’ roles
as first and second movers (although far away from our subject, Lambertini (1996) is a paper that already
has and previously made use of Hamilton and Slutsky (1990) in the context of international monetary
policy coordination).
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optimal timing a preassigned second mover would choose with tl := T second∗ = 1
θ ·

ln
(

r−rss

g−rss−ω−esecond

)
. This setting defines a static game the home and foreign central

banker play in period t = 0 where a central banker i ∈ {H,F} has to choose and commit

to a point in time T i ∈ {te, tl} to call in her large-denomination banknotes.

The home and foreign central banker’s payoffs in this static game are defined as follows:

The payoff πi(T i,T j) of central banker i ∈ {H,F} is a function of her own timing T i and

the timing of her peer, T j , for j ∈ {H,F} with j �= i where

πi(T i,T j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F first(r,T first = T i,T second = T j) if T i < T j ,

F second(r,T first = T j ,T second = T i) if T i > T j ,

F sim(r,T first = T i,T second = T j) = F (r,T = T i) if T i = T j ,

(26)

given that the natural rate at t = 0 is on the level r0 = r. The functions

F first(r,T first,T second), F second(r,T first,T second), and F (r,T ) are just the payoffs as de-

fined in the leader-follower setting and the spillover-free benchmark, respectively (recall,

that the payoffs describe the present value of the stream of period utilities a central banker

receives from calling in her large notes plus the present value of the stream of externalities

during an implementation-gap period if T i �= T j). The central bankers’ payoff matrix is

visualized by table 1.

F

te tl

H
te

(
πH(te, te), πF (te, te)

) (
πH(te, tl), πF (tl, te)

)
tl

(
πH(tl, te), πF (te, tl)

) (
πH(tl, tl), πF (tl, tl)

)
Table 1: Central bankers’ payoff matrix.

We evaluate the central bankers’ payoffs as given in table 1 in the following for the

same state of the world and the same two spillover scenarios that we consider in section

4.2. We only consider pure strategies and use Nash equilibrium as the solution concept

for the central bankers’ timing game. The equilibria of this game in the two scenarios are

discussed in the next section.

4.3.2 Equilibria

Scenario I (cross-currency and cross-denomination substitutability such that

esecond > 0 and efirst = −esecond): The home and foreign central banker will face a pris-
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oner’s dilemma if home and foreign as well as small and large banknotes are substitutes

from the perspective of private hoarders or criminals, i.e., if efirst = −esecond < 0. We have

already argued in section 4.2 that the prospect of additional seignorage revenues, respec-

tively losses, induces a preassigned second, respectively first, mover in a non-cooperative

setting to defer a calling-in move. We have also already explained why both central bankers

choose the same timing and delay their moves to the same extent if efirst = −esecond. It

remains to be shown that this outcome with late simultaneous moves emerges as an equi-

librium of the game between the two symmetric central bankers and that cooperation can

lead to a Pareto improvement. We show this by proving the next proposition arguing that

moving late and making sure not to be a first mover is a strictly dominant strategy:

Proposition 1 (inefficient delay). Let the state of the world be uss > 0, r > g − ω,

esecond ∈ (0,uss), and efirst = −esecond < 0. Then, (tl, tl) is the unique pure strategy Nash

equilibrium of the central bankers’ timing game Γ = ({H,F}, T ,π) where T = T H × T F

and π = (πH ,πF ). The equilibrium strategy profile (tl, tl) is Pareto inferior to the strategy

profile (te, te).

Proof. It is sufficient to show that moving late at tl is the strictly dominant strategy

for the home central banker. Since H and F are symmetric this implies that tl is also

the strictly dominant strategy for the foreign central banker so that (tl, tl) is the unique

pure strategy Nash equilibrium. Let us first consider H’s payoffs if F moves early at te.

To see why H is better off being a second mover and moving late at tl, i.e., to see why

πH(tl, te) > πH(te, te), consider H’s flow utility during the period from te to tl and during

the period from tl to ∞. If H moves late, she has a free ride in the form of a second

mover’s additional seignorage revenues and receives esecond until she makes her own move.

So H’s net utility Ut for t ∈ [te, tl] is just e
second and ut = g−rt−ω thereafter. If H moves

early and at the same time as F at te, she has no free ride but receives ut = g − rt − ω

for t ∈ [te, tl] and also ut = g − rt − ω thereafter. However, during the period [te, tl], the

natural rate rt is still on a relatively high level with g− ω ≥ rt ≥ g− ω− esecond. In turn,

for t ∈ [te, tl], H’s utility ut from calling in large notes would still be relatively small with

0 ≤ ut ≤ esecond. So, H is better off if she moves late at tl and thus receives esecond during

[te, tl].

Let us now consider H’s payoffs if F moves late at tl. If H moves late at tl, too, she

will receive ut = g − rt − ω ≥ esecond > 0 for t ∈ [tl,∞). However, if H moves first at te

while F moves late at tl, she will receive utility from calling in large notes already from
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te on but incurs an additional loss of seignorage revenues during [te, tl], i.e., she receives

the first mover’s (period flow) externality efirst = −esecond during that period. As argued

above, with a relatively high natural rate during [te, tl] the utility during that period from

calling in large notes would still be relatively small with 0 ≤ ut ≤ esecond = −efirst. So,

H’s net period utility Ut = ut + efirst = ut − esecond would be negative for t ∈ [te, tl).

Thus, H is better off choosing tl.

Finally, for the last part of the proposition, it remains to be shown that πH(te, te) >

πH(tl, tl) which implies that cooperation makes a Pareto improvement possible. This

statement is true since ut ≥ 0 for t ≥ te which means that each of the central bankers

forgoes cumulative utility to the amount of
∫ tl
te
ut · exp(−δt)dt > 0 if they both move late

at tl instead of moving early together at te (if both move simultaneously at te or at tl,

there will be no additional seignorage losses/revenues as in the case of sequentially moving

central bankers). �

Scenario II (cross-currency substitutability but no cross-denomination substi-

tutability such that esecond > 0 and efirst = 0): In the appendix, we argue that the

net benefit of a first mover from calling in large banknotes strictly before her counterpart

calls in large notes does not depend on the timing of the second mover if banknotes of

different denominations are not substitutable at all. However, we argue that if banknotes

of different currencies in the same denomination are substitutes from the perspective of

private hoarders or criminals, a second mover will be able to enjoy a free ride in the form

of additional seignorage revenues during an implementation-gap period if T first �= T second.

efirst = 0 together with esecond > 0 describe such a scenario. All in all, this leads to the

sequential-move outcome in the leader-follower setting we analyze in section 4.2.3. The

crucial point is that the free ride which makes a second mover better off is only possible

when the two central bankers move sequentially. In the game between two symmetric

central bankers this means that moving late at tl is no dominant strategy so that two

sequential-move equilibria exist, as stated in proposition 2.

Proposition 2 (coordination problem). Let the state of the world be uss > 0, r > g−ω,

esecond ∈ (0,uss), efirst = 0, and esecond > 0. Then, there are two pure strategy Nash

equilibria of the central bankers’ timing game Γ = ({H ,F}, T ,π) where T = T H×T F and

π = (πH ,πF ). The central bankers’ equilibrium strategies are to move sequentially and the

two equilibria are (te, tl) and (tl, te).
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Proof. As for the proof of proposition 1, due to the symmetry of H and F , it is sufficient

to show that the home central banker’s best response to F moving at te is to choose tl,

and that the best response to F moving at tl is to choose te. Obviously, the first statement

has already been shown in the proof of proposition 1: Moving late is H’s best response to

F moving early since H’s utility as a second mover from additional seignorage revenues

during [te, tl] is greater than the utility during [te, tl] from calling in large notes already

together with F at te would be.

On the other hand, moving early is H’s best response to F moving late since H forgoes

cumulative utility to the amount of
∫ tl
te
ut · exp(−δt)dt if she moves late at tl instead of

early at te. The reason is that, as argued above, efirst = 0 implies that a first mover’s

utility from calling in large notes does not depend on the actions of a second mover, so

optimality requires H to choose the same timing as in the spillover free benchmark. �

This scenario thus shows that there is a need for central bankers to coordinate the

timings of their calling-in moves. If they coordinate their actions and manage to agree

on one of the two equilibrium strategy profiles, this scenario also shows that states of the

world exist where optimality requires even fully symmetric central bankers to call in their

large-denomination banknotes sequentially and not at the same time.

5 Policy Implications

Our analysis has shown that the substitutability of banknotes of different denominations

and currencies – and thus the absolute amount of cross-country currency demand shifts

that occur after unilateral calling-in moves – determine the timing and the sequence of

central bankers’ calling-in moves. The non-cooperative game between two fully symmetric

central bankers can have a simultaneous move equilibrium in a prisoner’s dilemma or

multiple sequential move equilibria such that a coordination problem arises. These two

cases show that cooperation and policy coordination can lead to Pareto improvements or

help to avoid a coordination failure. However, from an empirical perspective, the question

is how large potential Pareto improvements and thus gains from policy coordination will

actually be. We have shown that the inefficiencies in the absence of cooperation have

their root in suboptimal timing decisions by non-cooperative central bankers. So, the

empirical questions are (1) how large the net benefits from calling in large notes that

central bankers will lose in the absence of cooperation or coordination actually are, and
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(2) to what extent a Pareto superior timing profile diverges from a non-cooperative or

suboptimal equilibrium.

So far, these are open research questions. But with regard to the first question it is

natural to assume that if the net benefits from calling in large-denomination banknotes are

large, calling-in moves should be coordinated internationally even if the non-cooperative

timings diverge only slightly from Pareto superior timings. Within our stylized model, the

answer to the second question depends on how fast the natural rate reverts to its long-run

steady state and on the absolute value of the external effects efirst and esecond that capture

the additional seignorage losses, respectively gains, if central bankers call in large notes

sequentially. In the prisoner’s dilemma we consider in section 4.3.2, the divergence of the

non-cooperative timing from the Pareto superior timing profile where both central bankers

move early is just reflected in the interval tl−te =
1
θ ln

(
r−rss

g−rss−ω−esecond

)
− 1

θ ln
(

r−rss

g−rss−ω

)
=

1
θ ln

(
uss

uss−esecond

)
(recall that we ruled out the possibility of an eternal free ride for a

follower and assumed esecond < uss where uss > 0). It is easy to see that this interval

is increasing in esecond and decreasing in the speed at which the natural rate reverts to

its steady state, θ.20 In the coordination problem we consider in section 4.3.2 with two

sequential move equilibria, a coordination failure would occur if both central bankers called

in large notes simultaneously, i.e., if one central banker moved (tl− te) periods “too early”

or “too late”. The interval (tl − te) thus also reflects the extent to which a coordination

failure outcome diverges from a Pareto superior sequential move equilibrium. So, taken

all together, this means that the gains from policy coordination will be larger the more

seignorage revenues are shifted between central bankers if they make their calling-in moves

sequentially. Clearly, if there are significant gains, calling-in moves should be coordinated

internationally. It should thus be an empirical goal to find estimates for these seignorage

shifts. Conducting further effort to estimate the stock of currency that is held abroad is

only one part in achieving this goal. Another crucial part – at least with respect to major

reserve currencies – is to find estimates on the specific demand for large banknotes and

on the substitutability of banknotes of different denominations and currencies from the

perspective of different types of agents in the economy.

20To see this, consider ∂(tl−te)

∂esecond = 1
θ

1
uss−esecond > 0 for esecond,uss > 0 with esecond < uss and ∂(tl−te)

∂θ
=

−θ−2 ln
(

uss

uss−esecond

)
< 0 in the region of the parameter space we consider.
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6 Concluding Remarks

Our analysis has pointed out the extent to which the expectation of cross-country shifts in

seignorage revenues, in case large banknotes are called in unilaterally, can induce central

bankers to postpone their calling-in moves to a later point in time. In Link (2019) we argue

that uncertainty over the future path of the natural rate of interest can also induce a central

banker to postpone a calling-in move. Taken together, there are thus several reasons

which suggest that major central banks – if ever – will eliminate large banknotes only in

times of exceptionally low natural rates of interest. In some circumstances, international

coordination could accelerate this process.

We have left out a couple of questions raised directly by our analysis. For instance,

a natural way to carry our analysis forward is to explore the joint effect of strategic

interactions and uncertainty over future states of the world on a central banker’s decision

to call in large notes. Such an analysis could shed light on the question of whether the

individual effects of uncertainty and strategic interactions will reinforce or dampen each

other. There is also uncertainty along many other dimensions that we have not taken

into account – uncertainty over the actual demand for large-denomination banknotes, and

thus about the magnitude of potential seignorage losses, is just one of them. Another

interesting task for further research is to explore the behavior of central bankers that

play a fully dynamic timing game with more than one point in time where they can

commit to future policies. What we have also left out for future research is an exploration

of the central bankers’ timing game in other scenarios and for alternative paths of the

natural rate. Eventually, the exploration of all these key issues will do the groundwork

for analyzing the optimal timing of calling in large-denomination banknotes in an open

economy macro model.

Appendix

A A Network Model of Banknote Demand and Seignorage

Shifts

We set up a small network model of banknote demand in this appendix. Our goal is

to illustrate how the external effect efirst respectively esecond that a first, respectively a
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second, mover receives can be interpreted as the loss, respectively the gain, in seignorage

revenues that occur if the two central bankers make their calling-in moves sequentially.

We argue that the ratio of the first and second mover’s externality can be related to the

degree of substitutability of banknotes of different denominations and currencies from the

perspective of private hoarders or criminals.

Suppose that in our stylized framework of section 2 there is an external third country.

We introduce a third country to avoid the unnecessary complexity that would emerge

if we had to specify what would happen to the foreign demand for home currency if

the home central banker called in large notes and vice versa. For instance, the third

country can be thought of as a developing country where private individuals have a specific

demand for home and foreign currency as a store of value or as a means to facilitate illegal

transactions.21 So, let us further suppose that there is a third country demand for home

and foreign currency in both banknote denominations from private hoarders or criminals,

that cash supply is fully elastic, and that the quantity of cash circulating in the third

country is thus completely demand-driven (with private hoarders or criminals being the

only demanders of cash). We denote the total value of all banknotes of size k ∈ {s, l}

of currency j ∈ {H,F} circulating in the third country at time t by Mj,k(t) where s

denotes small -denomination and l large-denomination banknotes, respectively (H and F

abbreviate home and foreign).22 Furthermore, let us abstract from all other determinants

of third country cash demand, like income fluctuations, inflation, exchange rate volatility,

opportunity costs of holding cash, etc. With these assumptions, third country cash demand

depends only on the available banknote denominations and different currencies such that

each Mj,k(t) is constant until the points in time TH and TF when the home and foreign

central banker make their calling-in moves, respectively. The changes at TH and TF occur

instantly and comprise simple, discrete demand shifts εm,n
j,k (t) ≥ 0 from Mj,k to Mm,n that

occur at time t ∈ {TH ,TF }. Importantly, we do not require the total value of currency

circulating in the third country to remain constant at TH and TF . The shrinkage in

total third country cash holdings due to the calling-in of large-denomination banknotes

of currency j at time t ∈ {TH ,TF } is denoted by εshrinkagej,l (t) ≥ 0.23 For the sake of

21See, for instance, for the store-of-value motive Fischer, Köhler, and Seitz (2004); Feige (2012);
Bartzsch, Seitz, and Setzer (2015) or for a discussion of the specific demand for large notes from the
underground economy Rogoff (1998) or Rogoff (2016, chapter 13).

22We abstract from differentiating explicitly between real and nominal money holdings but M can be
thought of as a real variable.

23An increase in total global cash holdings at TH or at TF is ruled out.
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clarity, figure 2 summarizes the possible paths of demand shifts from one denomination to

another.

MH,s

MH,l

MF ,s

MF ,l

εH,l
H,s εH,s

H,l

εF ,s
H,s

εH,s
F ,s

εF ,l
F ,s εF ,s

F ,l

εF ,l
H,l

εH,l
F ,l

εF ,s
H,l

εH,l
F ,s

εF ,l
H,s

εH,s
F ,l

Figure 2: Possible paths of shifts in banknote demand, respectively currency substitution
effects, illustrated as a network: The nodes of this network represent banknote demand
before demand shifts occur. The demand shifts, in turn, are represented by the edges.

We are aware of the oversimplification but this stylized framework is everything we need

to describe different scenarios of shifts in seignorage revenues from one central banker to

her counterpart. To obtain a definition of seignorage profits we start with the assumption

that home and foreign currency is brought into circulation in the third country in the

following way: Both central bankers are ready to fully meet third country demand for

their currencies, which is Mj,s +Mj,l for j ∈ {H,F}. To meet demand, a central banker

buys one unit of a specific third country asset (for instance, a third country government

bond) with one unit of her currency. So, a central banker just swaps one unit of newly

created currency for one unit of the third country asset. One unit of the third country asset

yields a flow return κ ∈ �≥0. κ is constant over time and, in particular, it is independent

of the (home and foreign) natural rate of interest. The present value of the stream of flow

returns from holding Mj,k units of the third country asset from time t1 to t2 is thus

St2
t1
(j, k) :=

∫ t2

t1

κMj,k(t) · exp(−δt)dt. (27)
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We refer to St2
t1
(j, k) as seignorage profits from issuing Mj,k units of currency to the third

country from t1 to t2 and use this definition of seignorage in the following.24

There are countless constellations of banknote demand and seignorage shifts across

central bankers but we shall limit our attention to two scenarios – one with and one

without a disadvantage for a first mover. Whether there is a disadvantage or not will

depend on the substitutability of small/large and home/foreign banknotes. The first

mover disadvantage will be reflected in efirst ∈ (−∞, 0]. We set up the scenarios such

that a second mover will always be better off in both cases, which means that esecond > 0.

Our goal is to illustrate how seignorage shifts after calling-in moves are described by efirst

and esecond and how the ratio of the externalities reflects the substitutability of different

banknotes and currencies.

Scenario I (cross-currency and cross-denomination substitutability such that

esecond > 0 and efirst = −esecond): Suppose that the state of the world is such that

banknotes of different currencies and denominations are substitutes from the perspective

of private hoarders and criminals in the third country. Suppose further that the allocation

of total third country cash demand to the available banknotes is just driven by a preference

to split cash holdings equally in terms of value across the available denominations and

currencies. Without loss of generality, assume that TH < TF and that third country

cash demand (and thus cash in circulation) before any central banker has called in her

large-denomination banknote is MH,s(t),MH,l(t),MF ,s(t),MF ,l(t) = 3μ for all t ∈ [0,TH)

and for some arbitrary μ > 0. Total third country cash demand is thus 12μ. In this

scenario, we assume that a discontinued large denomination can be perfectly replaced by

the remaining denominations such that total third country cash demand will stay constant

at TH and TF with the demand for the discontinued denomination, respectively, being

reallocated in equal shares to the remaining banknote alternatives. So, the shifts from

large home currency banknotes at TH are εH,s
H,l (T

H), εF ,l
H,l(T

H), εF ,s
H,l(T

H) = μ. This implies

MH,s(t),MF ,s(t),MF ,l(t) = 4μ for all t ∈ [TH ,TF ). The demand for the discontinued

denomination at TF is reallocated equally as well with εH,s
F ,l (T

F ), εF ,s
F ,l (T

F ) = 2μ, so for all

t ≥ TF it is MH,s(t),MF ,s(t) = 6μ. Thus, the foreign central banker is able to satisfy an

additional share of third country cash demand of 2μ during t ∈ [TH ,TF ) while the home

24This measure of seignorage thus, in principle, corresponds to the one Buiter (2007, p. 5) (and the
citation therein) refers to as “Central Bank revenue”. See also Buiter (2007) for other definitions or
measures of seignorage.
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central banker loses an equal share during this period. The additional, respectively lost,

flow seignorage profits during [TH ,TF ) are thus κ · 2μ. We relate esecond = −efirst to this

value.25 Figure 3 illustrates banknote demand and the demand shifts that occur at TH

and TF .

3μ

3μ

3μ

3μ

(a)

μ

μ

μ

4μ 4μ

4μ

(b)

2μ

2μ

6μ 6μ

(c)

Figure 3: Banknote demand and demand shifts in scenario I illustrated as networks. The
structure (i.e., the nodes and edges) of these networks corresponds to the structure of the
network defined in figure 2: Subfigure (a) illustrates banknote demand until TH , which is
3μ for each denomination, and the demand shifts μ that occur due to the home central
bankers calling-in move at TH . Subfigure (b) shows banknote demand between TH and
TF and the demand shifts that occur at time TF . Subfigure (c) shows the allocation of
third country banknote demand after home and foreign banknotes have been called in.

Scenario II (cross-currency substitutability but no cross-denomination sub-

stitutability such that esecond > 0 and efirst = 0): Suppose that the world at the

beginning (in t = 0) is exactly like in scenario I with the crucial difference that banknotes

of different denominations are not substitutable at all from a third country demand-side

perspective in scenario II. Instead, suppose that small and large notes are demanded for

completely different reasons and that third country demand for the discontinued large-

denomination home currency banknotes completely shifts to large-denomination foreign

currency banknotes at TH with εF ,l
H,l = 3μ so that MH,s(t),MF ,s(t) = 3μ and MF ,l(t) = 6μ

for all t ∈ [TH ,TF ). Since small -denomination banknotes are no alternative for the discon-

tinued large-denomination foreign currency banknotes, total third country cash demand

decreases by 6μ at TF and MH,s(t),MF ,s(t) = 3μ for all t ≥ TF . The point is that the

25Therewith, the present value of the additional, respectively lost, flow seignorage profits is thus∫ TF

TH κ · 2μ · exp(−δt)dt and consequently,
∫ TF

TH esecond · exp(−δt)dt = − ∫ TF

TH efirst · exp(−δt)dt can be re-
lated to this value.
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first mover’s seignorage profits once she has made her calling-in move do not depend on

the second mover’s timing nor whether a potential second mover moves at all. So, there

is no difference between being a first mover or being one of two simultaneous movers and

thus efirst = 0. On the other hand, esecond can be related to the second mover’s additional

flow seignorage profits of κ · 3μ.26 Figure 4 illustrates how banknote demand changes due

to the central bankers’ calling-in moves.

3μ

3μ

3μ

3μ

(a)

3μ

3μ 3μ

6μ

(b)

3μ 3μ

(c)

Figure 4: Banknote demand and demand shifts in scenario II illustrated as networks. The
structure (i.e., the nodes and edges) of these networks corresponds to the structure of the
network defined in figure 2: Subfigure (a) illustrates banknote demand until TH , which is
3μ for each denomination, and the demand shift 3μ from large home notes to large foreign
notes that occurs due to the home central bankers calling-in move at TH . Subfigure
(b) shows banknote demand between TH and TF . At TF , total third country banknote
demand decreases by 6μ, so there are no demand shifts from large foreign notes to the
remaining denominations. Subfigure (c) shows the allocation of third country banknote
demand after home and foreign banknotes have been called in.

26The present value of the second mover’s additional flow seignorage profits is thus∫ TF

TH κ · 3μ · exp(−δt)dt.

138



Bibliography

Agarwal, R., and M. S. Kimball (2019): “Enabling Deep Negative Rates to Fight
Recessions: A Guide,” IMF Working Paper 19/84, International Monetary Fund.

Alvarez, F., and A. Dixit (2014): “A Real Options Perspective on the Future of the
Euro,” Journal of Monetary Economics, 61, 78–109.
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