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Abstract

In engineered condensed matter systems, Majorana fermions are realised as quasiparticle
excitations, called Majorana bound states, at the surface of the aforementioned topo-
logical superconductors. Majorana bound states are their own antiparticles and thereby
have zero charge, energy, and no spin. While those properties make them hard to detect,
they give rise to several interesting features, such as their non-Abelian exchange statistics.
Consequently, Majorana bound states are of immense fundamental interest and applica-
tions in quantum information processing are promising.

Within the context of this thesis, Majorana boxes, which are mesoscopic charging islands
harbouring Majorana bound states, are considered from two different perspectives. Setups
with multiple coupled Majorana boxes, which are connected by short nanowire segments,
are key ingredients to recent Majorana qubit and code network proposals. Therefore, the
first perspective is concerned with quantum transport in such coupled Majorana box sys-
tems. It includes the construction and study of the low-energy theory for multi-terminal
junctions with normal leads connected to the coupled box devices. Starting with a single
box, where the topological Kondo effect is reproduced, a distinction between simple and
non-simple Majorana-lead junctions is made. The latter breaks local fermion parities and
thereby results in a low-energy theory, which, in contrast to previously discussed single
box systems, is not purely bosonic. Within the scope of this thesis two examples with
non-simple Majorana-lead junctions are discussed in terms of their transport character-
istics. Those transport signatures can be used to test the nonlocality of Majorana-based
systems and thereby the integrity of the underlying Majorana qubits.

The second perspective is given by Majorana boxes in the presence of environmental elec-
tromagnetic noise. Coupling the Majorana box setups to quantum dots, one can engineer
driven dissipative protocols for stabilisation and manipulation of robust quantum states.
Within this thesis it is shown that the time evolution of the Majorana sector is governed
by a Lindblad master equation over a wide parameter regime. For a single Majorana box,
arbitrary pure states, alternatively dark states, can be stabilised by adjusting suitable
gate voltages. If the Majorana box harbours more than four Majorana bound states, the
introduced protocols also allow for the stabilisation of fault-tolerant Bell states. Thereby,
a single driven dissipative Majorana box works as a self-correcting quantum memory. For
devices with two coupled boxes, one can engineer manifolds of degenerate dark states,
which allow for the encoding of a dark qubit. For such a qubit, not only the stored quan-
tum information, but also manipulation protocols are protected by the driven dissipative
mechanism. Therefore, one can anticipate exceptionally high fault tolerance levels due to
a conspiracy of autonomous error correction and topology.






Zusammenfassung

In konstruierten Systemen kondensierter Materie werden Majorana-Fermionen als Qua-
siteilchenanregungen, sogenannte gebundene Majorana-Zustinde, an der Oberfliche der
oben genannten topologischen Supraleiter realisiert. Majorana-Anregungen sind ihre ei-
genen Antiteilchen und haben dadurch keine Ladung, Energie und Spin. Wihrend die-
se Eigenschaften es schwierig machen Majorana-Zustinde zu detektieren, fithren diese
zu interessanten Merkmalen, wie zum Beispiel ihrer nicht-Abelschen Austauschstatistik.
Folglich sind Majorana-Zustinde von grundlegendem Interesse und Anwendungen in der
Quanteninformationsverarbeitung sind vielversprechend.

Im Rahmen dieser Arbeit werden mesoskopische Ladungsinseln mit Majorana-Zusténden,
sogenannte Majorana-Boxen, unter zwei verschiedenen Aspekten betrachtet. Systeme aus
mehreren gekoppelten Majorana-Boxen, welche durch kurze Nanodrahtsegmente verbun-
den sind, sind wichtige Bestandteile jiingster Vorschlige fiir Majorana-basierte Quanten-
Bits und Code-Netzwerke. Daher besteht der erste Aspekt aus Quantentransport durch
Systeme aus gekoppelten Majorana-Boxen. Dieser umfasst die Konstruktion und Ana-
lyse der Niedrigenergietheorie fiir normale Leitungen, welche an die gekoppelten Boxen
angeschlossen sind. Ausgehend von einer einzelnen Box, in der der topologische Kondo-
Effekt auftritt, wird zwischen einfachen und komplexen Majorana-Kontakten unterschie-
den. Letztere brechen lokale Fermionparititen und fithren dadurch zu einer Niedrigenergie-
theorie, die im Gegensatz zu zuvor diskutierten Systemen aus einzelnen Boxen nicht rein
bosonisch ist. Im Rahmen dieser Arbeit werden zwei Beispiele mit komplexen Majorana-
Kontakten hinsichtlich ihrer Transporteigenschaften diskutiert. Diese Vorhersagen konnen
verwendet werden, um die Nichtlokalitat von Majorana-basierten Systemen und damit die
Integritit der zugrunde liegenden Majorana Quanten-Bits zu testen.

Der zweite Aspekt besteht aus Majorana-Boxen unter Beriicksichtigung des elektroma-
gnetischen Hintergrundes. Durch die Kopplung der Majorana-Boxen an Quantenpunkte
konnen getriebene dissipative Protokolle zur Stabilisierung und Manipulation robuster
Quantenzusténde entwickelt werden. In dieser Arbeit wird gezeigt, dass die zeitliche Ent-
wicklung des Majorana-Sektors iiber ein breites Parameterregime durch eine Lindblad-
Mastergleichung beschrieben ist. Fiir eine einzelne Majorana-Box konnen beliebige reine
Zustinde, auch dunkle Zustinde genannt, durch Einstellen geeigneter Gatespannungen
stabilisiert werden. Wenn die Box mehr als vier Majorana-Zustinde enthilt, ermogli-
chen die eingefiihrten Protokolle auch die Stabilisierung fehlertoleranter Bell-Zusténde.
Dabei arbeitet eine einzelne getrieben-dissipative Majorana-Box als selbstkorrigierender
Quantenspeicher. Fiir Systeme mit zwei gekoppelten Boxen kann man Mannigfaltigkeiten
entarteter dunkler Zustinde konstruieren, die die Kodierung eines dunklen Quanten-Bits
ermoglichen. Fiir ein solches Qubit werden nicht nur die gespeicherte Quanteninformation,
sondern auch Manipulationen durch den getrieben-dissipativen Mechanismus geschiitzt.
Daher kann man aufgrund eines Zusammenspiels von autonomer Fehlerkorrektur und
Topologie aufkergewohnlich hohe Fehlertoleranzniveaus erwarten.
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Chapter 1

Introduction

The story of the Majorana fermion started more than 80 years ago, when Italian physi-
cist Ettore Majorana formulated a real solution of the Dirac equation, [Majorana, 1937].
What at first might seem to be a technicality, indeed has sincere consequences for the
quantum mechanical particle, whose wave function obeys Dirac’s equation. One of those
consequences is a Majorana fermion being its own antiparticle. The hermitian conjugate
of a Majorana is the operator itself, and thereby creation and annihilation of a Majorana
fermion correspond to equal physical processes. Inevitably, a Majorana fermion then has
to be charge-neutral.

Even though the first proposals for Majorana fermions were formulated in the context
of particle physics, 20 years ago ideas appeared on how to obtain such fermions as low-
energy quasiparticles in condensed matter systems. In [Reed, 2000], Majorana bound
states are shown to appear in vortices of two-dimensional chiral p-wave superconductors.
Within the presented thesis the focus lies on one-dimensional systems, where the pio-
neering ideas were conceived by Alexei Kitaev in [Kitaev, 2001]. He showed that in an
one-dimensional lattice with nearest-neighbour interaction and p-wave pairing, there exist
a certain parameter regime in which Majorana bound states appear at the edge of the
chain. Consequently, the corresponding phase is referred to as topological.

For almost 10 years the proposals of Kitaev remained purely theoretical and elusive as
there are no p-wave superconductors in nature. In 2010, Oreg, et al., [Oreg, 2010], and
Lutchyn, et al.,|Lutchyn, 2010|, established an one-dimensional nanowire construction
of Kitaev’s lattice toy model. Here, strong spin-orbit coupling with a Zeeman field al-
lows the semiconductor nanowire to become effectively spinless. When proximitised by
a conventional s-wave superconductor, this leads to p-wave superconductivity. This led
to rapid progress in the Majorana field. In [Mourik, 2012] first experimental signatures
of Majorana bound states were reported. In the following years, different signatures,
like the ground-state degeneracy, |Albrecht, 2016], or resonant transport signatures, see
[Nichele, 2017] and |Zhang, 2018|, were observed. Although several groups have confirmed
those findings, a conclusive experiment is still to be carried out. Good candidates for such
experiments are braiding of Majorana excitations to reveal their non-abelian statistics,
cf. [Alicea, 2012], or the topological Kondo effect, see [Béri, 2012| and [Altland, 2013|.

Majorana bound states are not only of fundamental interest, but could also become use-
ful tools for quantum computation. Here, Majorana devices can be used as topologically
protected quantum memory, or alternatively, in [Alicea, 2011| discussed braiding proto-
cols allow for the implementation of protected gates. Furthermore, based on the one-
dimensional nanowire construction, [Plugge, 2017| and [Karzig, 2017] proposed a floating



island harbouring at least four Majorana excitations to serve as elementary building block
for several quantum error correcting platforms. As Majorana-based implementations,
[Landau, 2016|, are expected to have a reduced overhead in quantum error correction
compared to conventional platforms, [Terhal, 2015], they could become essential for the
long-term goal of achieving large-scale, fault-tolerant quantum computers.

As coupling multiple Majorana islands is key for the construction of surface codes, chapter
3 provides details on transport in such coupled Majorana box systems when probed by
normal-conducting leads. These transport experiments could become essential for testing
larger topological networks. Here the theoretical framework is introduced allowing for an
extensive study of an arbitrary coupled box setup. Furthermore, it contains details on two
examples; one being the loop qubit, proposed in [Karzig, 2017|, and a two-tetron device,
which is the minimal coupled box setup allowing for the implementation of an entangling
gate.

In chapter 4, the Majorana island is revisited in the context of an open quantum system.
Electromagnetic fluctuations, which are present in any Majorana experiment, provide
a natural way for dissipation. By carefully engineering the Majorana system, one can
benefit from the dissipation, and thereby, establish a driven dissipative protocol, which
autonomously stabilises the Majorana qubit. Whereas the native Majorana qubit relies
on active error correction, the driven dissipative version stabilises quantum states for an
indefinite time. Furthermore, such open systems allow for the stabilisation of a degenerate
state manifold - a dark space. As long as state manipulation protocols remain in the dark
space, one could achieve self-correcting quantum computation, making the need for active
error correction obsolete.

In chapter 5, the contribution of this work to quantum transport and quantum compu-
tation in Majorana box systems is summarised. Here, the different results are linked to
current developments towards achieving topological quantum computation. Furthermore,
this chapter concludes with an outlook on interesting future research. Especially for the
driven dissipative Majorana devices, several conceptually different directions to pursue
are presented.

Whenever possible, this thesis provides details on general techniques or results, which can
be transferred to other problems in the context of Majorana boxes. Therefore, within this
thesis any general concept is described by conventional letters, e.g. H for an arbitrary
Hamiltonian, whereas caligraphic symbols refer to specific examples, e.g. Hgoy describing
the Hamiltonian of a certain quantum dot. All three publications included in this thesis
can be found in the attachment.



Chapter 2

Fundamental Principles

This chapter provides the foundation necessary to understand the calculations and effects
explained in chapters 3-4. Beginning with Majorana fermions as a real solution to the
Dirac equation, their general properties are introduced. In condensed matter systems
superconducting systems turn out to be good candidates for hosting Majorana fermions.
Therefore a famous lattice toy model (Kitaev chain), which connects the existence of
Majorana excitations to p-wave superconductivity and thereby topological superconduc-
tors are discussed. Based on the ideas of this toy model, an one-dimensional nanowire
realisation of such topological superconductors is considered, as it provides the primary
ingredient for all systems of interest in this thesis. Since the topological degeneracy due
to Majorana zero modes is fragile in terms of single electron tunneling events, multiple
topological superconductors can be protected by charging effects. For this purpose, the
general mechanism of addressing Majorana fermions on such charging islands is intro-
duced. Furthermore, the protection by charging effects allows for a simplification of the
representation of Majorana operators by Pauli operators. The corresponding spin struc-
ture on such charging islands is then studied in terms of quantum transport. Here, the
most important techniques are introduced in order to prepare for chapter 3. Moreover,
the nonlocality of the Majorana fermions gives rise to the topological Kondo effect, which
emerges for a single charging island being addressed by more than three leads. The con-
cepts introduced here are then generalised in chapter 3 for a network of Majorana islands.
Because of the duality between a spin-1/2 particle and a qubit, such Majorana charg-
ing islands form Majorana box qubits. In order to discuss these systems with respect
to quantum computation, quantum gates will be introduced. Afterwards the Majorana
platform is analysed in terms of the requirements for quantum computers. This will
serve as a starting point for chapter 4, where an additional protection mechanism will
be introduced, leading to self-stabilising Majorana qubits. In order to achieve this, the
environment of the qubit will no longer be neglected and the system will be considered
open. Therefore, the general description of open quantum systems by Lindblad master
equations is introduced here. First, the microscopic derivation of such a master equation
is shown. Afterwards, two different approaches of determining the steady-state solution
and characteristic times of approaching that solution are presented.



2.1. MAJORANA FERMIONS IN CONDENSED MATTER SYSTEMS

2.1 Majorana fermions in condensed matter systems

This subsection is dedicated to Majorana fermions as (quasi-)particles, which are of fun-
damental interest. Starting in Sec. 2.1.1 with Ettore Majorana’s original discovery of
a real solution to the Dirac equation in 1937, [Majorana, 1937|, the defining properties
of Majorana fermions and their consequences are discussed. After a short detour over
condensed matter systems, which fail to host Majorana fermions, Kitaev’s lattice toy
model [Kitaev, 2001] is presented in Sec. 2.1.2. In this toy model the emergence of Majo-
rana fermions is linked to the existence of effective spinless superconductivity. Therefore,
Sec. 2.1.3 contains an 1D wire proposal, [Oreg, 2010| and |Lutchyn, 2010|, which can be
seen as an experimentally feasible realisation of the toy model introduced by Kitaev.
This subsection is loosely based on the excellent reviews by Alicea [Alicea, 2012], Leijnse
and Flensberg [Leijnse, 2012] and Beenakker [Beenakker, 2013].

2.1.1 Majorana fermions

In [Majorana, 1937| Ettore Majorana discussed the Dirac equation
(iv"0,, —m)(x) = 0. (2.1)

Here, ¢ (z) is the wave function of a particle with mass m and x being a four-vector. If
the matrices {7*} obey

{7 = 29" 14, Aoyt = ()] (2.2)

the wave function corresponds to a particle with spin % In the above equation g"" =
diag (1,—1,—1,—1) and I, = diag (1, 1,1, 1) were used. Conventionally one solves Eq. (2.1)
with the y-matrices in the Dirac-Pauli representation. Nevertheless Ettore Majorana
changed the game switching to a different basis, which is now called the Majorana repre-

sentation:

0 o? ioct 0 0 o? io? 0
0_ 1_ 2 3 _
7= (02 O) T ( 0 ial) T (—02 O) 7T ( 0 iog) . (23)

where ¢/ are Pauli matrices. One can check that the v matrices in Eq. (2.3) behave
in accordance with Eq. (2.2). Thereby the solution of the Dirac equation in Majorana
representation still describes a spin-1/2 particle. Furthermore all the above v matrices
have purely imaginary eigenvalues, resulting in Ettore Majorana’s discovery of a real
solution of the Dirac equation, *(z) = ¢ (x) [Majorana, 1937]. The importance of this
result can be observed when thinking of the transformation between a particle and its
antiparticle. This transformation involves complex conjugation of the respective field.
Thus, the particle Ettore Majorana proposed can be seen as its own antiparticle. Because
of this feature and the fractional spin the particle should have, one nowadays calls them
Magorana fermions (MFs).

The above mentioned properties of MFs are relatively general, which is why there are
numerous proposals for MFs spread over different fields in physics. Ettore Majorana
originally thought about neutrinos being MFs. Even 80 years after the first formulation
of this idea, it is still pursued in the high-energy community, [Avignone, 2008|. Here,
researchers all over the world are trying to detect a neutrinoless double beta decay, which
is only possible if neutrinos are indeed their own antiparticles. A very different approach
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emerged in the condensed matter community, where MFs are considered to be quasiparticle
excitations. Therefore the constituents of a MF in condensed matter systems are electrons
and ions.

The idea of a MF being a quasiparticle paves the way for various proposals of realising
such excitations. In a normal metal there are electrons and holes, which are able to
annihilate each other. In the language of second quantisation this implies ¢! creating
an electron with spin s and ¢, annihilating an electron. Alternatively, ¢y creates a hole
with spin s. Since electron and hole have opposite charges, which corresponds to c,
being non-hermitian, charge prevents a metal from hosting MFs. One can look at other
quasiparticles in condensed matter systems such as in superconductors. In conventional
superconductors electrons with opposite spin can pair up to form Cooper pairs, which
then constitute the ground-state. This conventional pairing mechanism is called s-wave,
since it involves opposite spin. Furthermore the spontaneous formation of Cooper pairs
breaks charge conservation, which allows for the appearance of Bogoliubov quasiparticles,
which are superpositions of electrons and holes

d= uci + vey. (2.4)
Conjugating Eq. (2.4) one obtains d = u*c; + v*ci. This implies that even if u and v
are real-valued the spin still prevents these quasiparticles from being MFs. Unfortunately
superconductivity in nature appears due to s-wave pairing of electrons, but the idea
of effectively spinless superconductivity raised the Majorana field. This idea was first

formulated by Alexei Kitaev in 2001 [Kitaev, 2001|, where he introduced a toy model to
discuss the emergence of MFs in a condensed matter system.

2.1.2 Kitaev chain

The starting point of the toy model introduced by Alexei Kitaev in [Kitaev, 2001] is an
1D lattice model with spinless electrons. Following the discussion in [Alicea, 2012] and
[Leijnse, 2012] we start with the Hamiltonian

1 .
Hehain = — ZMkC;:Ck; ~3 Z (tchHl + Aecpepin + h.c.) , (2.5)
e e

where ¢ is the annihilation operator of an electron in site k. The chemical potential
can be varied to change the occupation number n;, = chk in site k. Even though the
ability to tune the chemical potential at any site individually will be crucial for braiding
operations [Nayak, 2008|, for the purpose of this chapter it also suffices to assume the
isotropic case, where u; = p. The next term in Eq. (2.5) describes nearest-neighbour
hopping with amplitude t. The last term represents superconducting pairing of nearest-
neighbour electrons with pairing strength A and phase ¢. Since the electrons do not have
spin, the pairing mechanism is p-wave, which is why this lattice model is of toy nature.

One elegant way to discuss the physics of this toy model is to switch from the Dirac to
the MF representation. As discussed in Sec. 2.1.1, a MF is a real solution to the Dirac
equation. One can use this result to write any Dirac fermion in terms of Majoranas, where
the latter are essentially the real and imaginary part of the Dirac fermion. In the above

model this basis change can be achieved by writing

-

e 2
2

cp = (Ye2 + k1) - (2.6)



2.1. MAJORANA FERMIONS IN CONDENSED MATTER SYSTEMS

Eq. (2.6) implies that there are now two MFs in site k. Moreover it reflects a consequence
of the Majorana property, which was only implicitly mentioned in Sec. 2.1.1, that is: MFs
are charge-neutral. The charge degree of freedom on the right side of Eq. (2.6) is hidden
in the exponential prefactor. One can also invert the expression and thereby obtain

Vo1 = (e gck —e” 302) , Vo = ei%c;€ + G_Z%CL (2.7)
With the above definitions one can check the defining properties of a MF. They are
fermions, because the Dirac fermion algebra {ck,czr} = ckc;r + clfck = 0 implies that
the Majorana operators obey the Clifford algebra {v,,, 7} = 20m,. Moreover, this
in combination with Eq. (2.7) leads to a Majorana being its own antiparticle, because
creation and annihilation are the exact same operations, i.e. 72 = !+, = 1. Here,
another consequence of the Majorana property is shown: MFs have no well-defined occu-
pation number. A Majorana mode is always empty and occupied at the same time, since
Y Am = Ym7h, = 1. Such observations in condensed matter systems lead to the conclu-
sion that a MF is an equal superposition of an electron and a hole, which is reflected in
Eq. (2.7).
Writing the Hamiltonian in Eq. (2.5) in Majorana representation, one obtains

. N—-1

N
1 ) 7
Hevain = =5 ;_1 e (1 + ik 27k1) — B ;_1 (A + ) Yk2Vhr1a + (A = )Yk Ves12]  (2.8)

This change of representation corresponding to a decomposition of Dirac fermions into
Majoranas is depicted in Fig. 2.1. The above Hamiltonian includes operators of the form
1Yk1Vk,2, Which, in contrast to the occupation number, have a well-defined eigenvalue. In
literature, this eigenvalue is referred to as the Majorana parity, because it relates to the
occupation of the complex fermion formed by the two Majoranas, i.e. iy;17p2 = 1— ZC};Ck
[Leijnse, 2012]. Whereas the first term in Eq. (2.8) relates to the occupation of the electron
in site k, the second and third term correspond to the occupation of Dirac fermions, which
are not localised on a single site. This observation by Kitaev [Kitaev, 2001] manifests in
different physical situations depending on the parameters p, A and t. In order to clarify
the physics of this model one can therefore look at the two limiting cases, which lead to
different phases.

First, without hopping and pairing, i.e. A =t = 0, the excitations are confined to their
respective sites. If one furthermore assumes the case of an isotropic chemical potential
(ux = p), the Hamiltonian is given by

N
cham = _g Z 1 - Zr)/k 1Yk, 2 = —HK Z Cr.Ck- (29)
k=1

For a negative chemical potential, © < 0, the occupation of any of the original sites costs
precisely p. Therefore, the ground state without hopping and pairing is given by an empty
chain, i.e. ng = c,tck =0.

The second limiting case is given by the complete opposite, where no chemical potential
favours the occupation of any site, i.e. g = 0. Thus, the physics is governed by hopping
and pairing, which for simplicity are assumed to be of equal strength, t = A # 0. In this
case the last term in Eq. (2.8) is suppressed and one obtains

N—
t ~ ~
chaln - 5 Z Yk 2Vk+1,1 = =t Z <C]1;; Cr, — _) . (210)
k=1

[\3
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’71\,1 /’)/1,2 ’YJ\\T,l 7N,2
a) 06 ee ee - 00 060
C1 Co C3 CN—-1CN

’71\,1 7N,2
b) [eel @@l @@ - 06 ®d]
C1 C2 CN—-1

2 J
c) U9 9 9 - Fw

AL AL

Figure 2.1: Schematic sketch of Kitaev’s 1D lattice toy model. a) The fermionic sites
(grey boxes) can be decomposed into MFs (red dots). Pairing the Majoranas on the same
site leads to the topologically trivial phase. b) In the case of p = 0 and t = A # 0
the ground state is formed by pairing MFs belonging to neighboring sites. The pairing is
indicated by ovals, which then form the new ¢; fermions. At the very end of the chain
two Majorana zero modes appear. The corresponding phase is topological. ¢) For A # ¢
the two different coupling mechanisms in Eq. (2.8) are indicated as Ay = A +¢. Their
competition leads to an exponentially decaying Majorana wave function, which is shown
on the right side of the chain. Based on [Leijnse, 2012].

It is important to note that in the above Hamiltonian only N — 1 Majorana parities
appear, because the toy model Hamiltonian in Eq. (2.5) does not pair the ends of the
chain. Thus, pairing and hopping leaves two MFs untouched. The Hamiltonian can be
diagonalised by constructing new Dirac fermions out of the coupled Majoranas according
to ¢ = (Vkt11 +9k2) /2, see Fig. 2.1. Therefore, the new Dirac fermions are due to
non-local pairing in terms of the original sites of the chain. Moreover, it now requires
energy t to occupy the new fermionic mode E,Tcék, which implies that the ground state is
given by zero excitations in terms of the new Dirac fermions.

The main difference of this limit, compared to the situation in Eq. (2.9), is that the
ground state here is given by N — 1 empty modes. Therefore, the different phase origi-
nates from the fact that the MFs at the end are unpaired. Since they are absent from the
Hamiltonian in Eq. (2.10), both Majoranas cost zero energy. In literature they are often
referred to as Majorana zero modes (MZMs) [Alicea, 2012]. In analogy to the previous
formation of Dirac fermions, one can construct a Dirac fermion out of the two MZMs,
ie. f=(ynz2+iv.1)/2. This new fermion is highly non-local in the sense that its con-
stituents are located at the very beginning and end of the chain, which in principle could
be infinitely long. Furthermore this non-local fermionic mode f, which costs zero energy,
can either be empty or occupied - corresponding to iy; ;yn2 = £1. Consequently, the
ground state is two-fold degenerate and the two states differ only in their fermion parity.
Since this ground-state degeneracy is due to the appearance of MZMs and therefore owed
to the geometry of the system, it is called topological degeneracy |Nayak, 2008].

The two distinct phases discussed above are called (topologically) trivial and topological,
where the topology comes from the existence of MZMs. Because electron pairing is essen-
tial, one can also distinguish between a conventional and a topological superconductor.
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2.1. MAJORANA FERMIONS IN CONDENSED MATTER SYSTEMS

Due to the topological degeneracy, the latter can even exhibit odd-parity superconduc-
tivity, which in conventional superconductors is not possible, because the ground state is
formed by Cooper pairs only.

Lifting the above constraints on both limits, i.e. for y # 0 and A # ¢ # 0, the situation
changes slightly. For example, even if hopping and pairing is allowed, an infinitely strong
chemical potential can lift the topological degeneracy leading to the trivial phase. On
one hand, in |Kitaev, 2001] it was shown that the Majorana modes remain as long as the
chemical potential is placed inside the gap, i.e. for |u| < 2t. On the other hand, even if p
is sufficiently small and the hopping and pairing are not of equal strength, one observes
two different pairing mechanisms. In Eq. (2.8) we see that the second term (o< A + t)
favours coupling of the inner Majoranas of different sites. On the contrary, the third term
(ox A — t) favours pairing of outer Majoranas of different sites. In a 1D system the last
coupling mechanism is naturally weaker, as Fig. 2.1 suggests. Nevertheless the competi-
tion between both pairing mechanisms leads to the Majorana mode being not completely
localised at the ends of the lattice. In [Kitaev, 2001| it was shown that for a finite chain
length L the Majorana wave function will decay exponentially from the edges o e~ /¢,
where £ is the Majorana localisation length. This length is proportional to the ratio of the
above mentioned two processes, which is why the modes are sharply localised for A = ¢
since £ — 0. Therefore, even in the toy model the chain has to be sufficiently long in
order for the two Majorana bound states (MBSs) not to overlap and thereby physically
pair. This pairing would lift the topological degeneracy.

The importance of this toy model can be observed by summarising the ingredients needed
for topological superconductivity. The required geometry for the appearance of MBSs is
a hard boundary, which is of no difficulty in realisation. The nearest-neihbour hopping
is of no problem as well. The bottleneck of the model is given by the p-wave pairing,
since electrons naturally come with a spin. Therefore, in 2001 Kitaev changed the ques-
tion about how to obtain MFs in condensed matter systems to the question of how to
obtain an effective p-wave superconductor. His paper [Kitaev, 2001] marks the beginning
of Majorana physics in condensed matter, which is why the here discussed toy model is
famously known as Kitaev chain.

2.1.3 Nanowire realisation

After the reformulation of the problem by Kitaev in 2001 it took nearly a decade for a
feasible 1D proposal. In 2010 two groups independently came up with the same idea of
an effective 1D p-wave superconductor, [Lutchyn, 2010| and [Oreg, 2010]. Their proposal
is based on a 1D semiconducting nanowire, which is proximitised by an s-wave supercon-
ductor.
Following [Leijnse, 2012] one can start with the nanowire, where the respective Hamilto-
nian is given by

Ho= Y / dr bt (r) Ho(r) o (r), (2.11)

o="1,}

with the single-particle Hamiltonian in its first quantised form

2
p 1

Hy(r) = o TH +a(E(r)xp) o+ §g,uBB('r) ‘0. (2.12)

Here, m denotes the effective electron mass, p is the chemical potential and the elec-

trons momentum is given by p. Furthermore, Eq. (2.12) includes spin-orbit interaction of

strength . Thus, E(r) is the electric field felt by the valence electrons. The last term

8



2.1. MAJORANA FERMIONS IN CONDENSED MATTER SYSTEMS

describes an applied magnetic field B(r). ¢ is the Landé g-factor and pp is the Bohr
magneton. Finally, o is a vector of Pauli matrices. As Eq. (2.11) indicates, the electrons
have a spin and the here defined Hamiltonian is very general.

This nanowire is placed near the surface of a conventional s-wave superconductor, see
Fig. 2.2. Therefore electrons can tunnel between both systems, which results in the wire’s
electrons sensing an effective "proximity-induced’ superconducting pairing field. The cor-
responding pairing Hamiltonian for the wire electrons can be written as

Hs = /dr dr' ) (r)A(r, 7" ) (r') + hee. (2.13)

with pairing potential A (r,7’). The Hamiltonian Hp of the proximitised nanowire, which
is exposed to an external electric and magnetic field, is then given by the sum of the two
Hamiltonians, i.e. Ho + Hs.

In order to study this system it is important to access the quasiparticle excitations, for
which one needs to solve the Bogoliubov de Gennes equations. Thus, it is convenient to
introduce Nambu spinors

ZTET; %(T)

Dlr) — 1T ) = Yl (r)

Y(r) ol(r) Y (r) wj(r) (2.14)
—l(r) —1pr(r)

and rewrite the total Hamiltonian of the nanowire as

Hm:%/WWEWﬁWW%&—W+A@WﬂMﬂ- (2.15)

Here, one defines two new 4 x 4 matrices according to

Ho(r)in Ho(r)iz 0 0 0 0 A* 0
- Hy(r)ar Ho(r)se 0 0 ~. n_ |0 0 0 A
Ho = 0 0  —Hir)y —Hir)p |’ Arr)=1A 0 0 o0
0 0 —Hg(’r>21 _HS(T)QQ 0 A 0 ? )
2.16

Since the here introduced Nambu space includes electron-hole space, one observes that
the lower-right of Hy is the time-reversal of the upper-left, because holes are time-reversed
electrons. So far, the problem was only reformulated and switching to Nambu space did
not change any of the physics. It rather provides a convenient matrix representation.
Nevertheless one explicitly includes hole excitations, which were absent in Eq. (2.11).
Therefore, the reformulation doubled the number of eigenstates, reflecting that there
is an underlying symmetry here. This is electron-hole symmetry relating eigenstates
corresponding to electronic excitations to their hole counterpart.

Moreover, Eq. (2.15) now allows one to solve the Bogoliubov de Gennes equations for

eigenstates 1, (r):
mm%m+/wzmwww=a%m (2.17)

Conventionally Eq. (2.17) is diagonalised by a Bogoliubov transformation. Even though
one could solve Eq. (2.17) in its general form, for the purpose of discussing an effective
p-wave superconductor it suffices to simplify the above Hamiltonians by making some
assumptions about the specific system.
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a) 1Bt 11 b) m 2 3 M4
e [

s-wave superconductor

Vei™T T V2

Figure 2.2: Schematic sketch of a topological p-wave superconductor. a) 1D nanowire
is placed on top of a conventional s-wave superconductor. The applied magnetic field is
chosen to be along the z-direction and the electric field is not shown. One can tune the
chemical potential inside the wire by a set of gate electrodes, which are not shown in a),
but would be on top of the wire. b) Same sketch as a) but rotated by 7 about the x-axis.
Now the gate electrodes are shown and the superconductor is hidden. If the gate voltages
Ve, are tuned in such a way that the chemical potential in the respective region of the
wire lies within the gap (discussed in the main text), the 1D wire will host four MZMs
with operators 7y, with £ = 1,...,4. Based on [Alicea, 2012| and [Leijnse, 2012].

As Fig. 2.2 suggests, one can assume the 1D wire to be along the x-direction. Thus, for
a true 1D system the only relevant momentum is given by k,. The one-dimensionality
comes from tuning the chemical potential by a set of gate voltages (shown in Fig. 2.2) to
a regime, where only a single 1D subband is occupied. Furthermore, the wire is assumed
to be long enough for quantisation effects to be neglected along the wire direction and
thin enough not to occupy additional subbands. In real experiments one usually has no
precise control of the direction of the electric field. Nevertheless, as Eq. (2.12) shows,
only the crossproduct of the field with the momentum contributes to spin-orbit coupling.
Therefore, one can assume E ~ F, ¢,. Finally, the magnetic field can be assumed to
be applied in z-direction. As one will see later on, the precise axes of the spin-orbit
and magnetic field are of no importance as long as they are perpendicular to each other,
[Alicea, 2012|. With the above assumptions Eq. (2.12) is reduced to

Hy = o M + ak,o, + Bo,, (2.18)
where & = aF, is the strength of the spin-orbit field and B = %guBB is the Zeeman field.
By diagonalising Eq. (2.18), one can already see how an effective spinless regime emerges.
Thus, one can switch off the superconductivity, i.e. A = 0, in which case Eq. (2.18)
essentially describes the total system. The energy eigenvalues for A = 0 are given by

—u + \/(Gky)? + B2 (2.19)

2
€T
Ei(k,) = o
Starting by applying no magnetic field, i.e. B = 0, spin-orbit coupling shifts the two
bands according to their spin, see Fig. 2.3 a). A small Zeeman field B # 0 will then lift
the crossing at k, = 0 leading to a gap between the upper and lower band, see Fig. 2.3 b).
Inside the gap there exists only one effective spin direction. Therefore, the spin degree
of freedom can be frozen out by placing y inside the gap, |u| < |B|. Since the chemical
potential usually varies along the wire, it is important to increase the size of the gap. As
one can see in Fig. 2.3 ¢), this can be achieved by a larger Zeeman field.
Switching on the superconducting pairing, i.e. A > 0, leads to a doubling of the number
of bands due to electron-hole symmetry, see Fig. 2.3 d). For simplicity, one can assume the
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a) E b)

-
NN

(.
INGNN

xT

Figure 2.3: Eigenenergies of the proximitised nanowire. FE, (k,) in Eq. (2.19) is plotted
in red. E_ (k) is plotted in black. a) A = B = 0. Spin-orbit coupling separates the
bands according to their spin. b) A =0 and B > 0. The Zeeman field opens up a gap at
k. =0. ¢) A =0 and a larger B asin b). The gap increases with increasing Zeeman field.
d) A # 0. Proximity-induced superconductivity doubles the number of bands. Loosely
based on |Leijnse, 2012].

proximity-induced superconductivity to arise from pairing electrons, which are at the exact
same location. This implies that A (z,2") = Ad (x — 2’). With all the above assumptions
solving the Bogoliubov de Gennes equations is equivalent to the diagonalisation of the
following Hamiltonian

k:2

= —p+B  —idk, A 0
idvk E _u—B 0 A
Hpag = s ~ 2.20
pae A 0 B yu+B idk, (2:20)
0 A —idk,  —24u-B

In order to derive a criterion for topological superconductivity it is sufficient to look at
the gap at k, = 0. Here the eigenenergies are given by

Ei(k, = 0) :i\/B2+u2+A2i2\/B2 (1% + A2) (2.21)

Focussing on the positive solution and placing the chemical potential inside the spinless
regime, |u| < |B|, one finds

E_(0) =B —/p?+ A2 (2.22)

Thus, the gap closes at B = v/ 1? + A2 Note that a very large superconducting pairing
A results in a topologically trivial phase. One can formulate the criterion for p-wave
superconductivity in the nanowire geometry as

|B| > /A2 + 2, (2.23)

So far, this criterion only distinguishes between s- and p-wave superconductivity. The
phase transition between the topological and topologically trivial superconducting states

11
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can only occur by closing the gap, |Leijnse, 2012]. This one can use to indeed link the
above criterion to the emergence of Majorana modes. As discussed in [Alicea, 2011|, one
can choose the above Hamiltonian parameters to further simplify the model, but still
fulfil Eq. (2.23). Thus, it is guaranteed for the system to be inside the p-wave phase. The
specific limit is given by B > E.,A and pu = 0, where Ey, = ma?/2 is the spin-orbit
energy. In this case the spins nearly polarise and H;p can be projected onto a simpler
one-band problem, |Alicea, 2011|. The obtained effective Hamiltonian is given by

Hepr = / dz [qﬂ_(x) (2’“—2 2! ) U_(z) + i%A\If(x)kI\IJ(:C) thel,  (2.24)

m 2

where W (x) describes the creation operator for electrons in the lower band of the wire.
Here the effective strength of the superconducting pairing was reduced by a factor &/B.
Eq. (2.24) is equivalent to the continuum version of the Kitaev chain Hamiltonian, cf.
Eq. (2.8). Therefore, the obtained phase will host Majorana modes and the above crite-
rion is suited for topological superconductivity.

As discussed in Sec. 2.1.2, MZMs emerge at the boundary between topological and topo-
logically trivial phases. In the Kitaev chain the trivial state was given by the vacuum.
With the ability to tune the chemical potential, one can create regions of topological and
non-topological superconductivity inside the wire. As indicated in Fig. 2.2 b), this can
lead to the emergence of more than two MZMs in a single wire - provided that the length
of the topological region is much larger than the Majorana coherence length.

Following the discussion in [Leijnse, 2012], a summary of the constituents in the here
discussed system hints at possible materials to exhibit topological superconductivity. As
Eq. (2.23) suggests and due to deviations of the chemical potential along the wire, the
Zeeman field B has to be large. Additionally, the applied magnetic field B should not de-
stroy superconductivity, which results in materials with a large g-factor. Furthermore the
spin-orbit coupling & should be large, because the Zeeman field would otherwise suppress
the pairing mechanism, see Eq. (2.24). Thus, one requires strong spin-orbit coupling and
a large g-factor. Suitable candidates are InAs and InSb, [Lutchyn, 2018].

2.2 Majorana charging island

In this subsection Majorana charging islands, also called Majorana boxes, are introduced.
These mesoscopic structures are supposed to host a set of MBSs, where in addition to
the ingredients discussed in Sec. 2.1.3 charging energy works as a protection mechanism.
Therefore, in Sec. 2.2.1 these boxes are first introduced by their charge-conserving prop-
erties and consequences of those. One of the latter is how MZMs can be addressed by
tunneling events. In Sec. 2.2.2 the charge conservation will be used to drastically simplify
the representation of Majoranas in terms of Pauli operators. Thereby, the connection
between a set of Majorana modes and a spin-1/2 particle will be established.

Most of the content in this subsection was first studied in [Fu, 2010|, |[Zazunov, 2011| and
[Hiitzen, 2012|.

2.2.1 Majorana box and charge conservation

In general, a Majorana box or Majorana charging island is given by a set of parallel
1D nanowires, as discussed in Sec. 2.1.3, which are all proximitised by the same s-wave
superconductor. Consequently, all the nanowires essentially share the same electrons.

12
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Assuming that the Majorana coherence length is much longer than the wire length, and
neglecting all excitations above the superconducting gap, a Majorana box can be char-
acterised by a set of charge-neutral Majoranas +; with j = 1,..., M and two bosonic
variables N and ¢. Here, N denotes the total number of charges on the box and ¢ is half
the superconducting phase ¢, i.e. p = % If the island is now connected to ground via a
capacitor, i.e. the island is not grounded but floating, it undergoes charge conservation.
This situation is depicted in Fig. 2.4, which is essentially the top view of the 1D nanowire
proposal in Sec. 2.1.3. Due to a finite charging energy, the charge conservation leads to
N and ¢ becoming well-defined quantum numbers. This charge quantisation is thereby
described by the promotion of the two variables to operators obeying

[@,N} =i, €?|N)=|N+1). (2.25)

As Eq. (2.25) indicates, the operator e creates/annihilates one charge or alternatively
half a Cooper pair. The difference between the operator ¢, N and its eigenvalue ¢, N is
explicitly shown in this subsection.

One may revisit the Kitaev chain in Sec. 2.1.2 in order to discuss the charge operators
described above. The decomposition of electrons into MFs ¢, ~ €7 (yp9 + ivyg1), cf.
Eq. (2.6), included an exponential prefactor. In the case of charge conservation this ex-
ponential becomes e~ guaranteeing that - even after one changed to the charge-neutral
Majorana representation - the Hamiltonian in Eq. (2.8) remains charge-conserving. An-
other example for such charge operators is the pairing term in the Kitaev Hamiltonian,
i.e. Aecpep1. For a charge-conserving system, e = 2% accounts for the creation of
two charges, because the respective term also annihilates two fermions. This pairing of
two electrons corresponds to the formation of a Cooper pair. Thus, this reflects the ability
of a BCS superconductor to exchange electron pairs (of charge two) between its bosonic
Cooper pair condensate and the fermionic sector, [Bruus, 2016].

The Hamiltonian describing this charging effect is given by

62

= > (2.26)

. 2
Hiox = B (N =1n,) ,  Fc
The single-electron charging energy is given by F¢, reflecting that N indeed counts the
number of charges in units of electron charge e. Furthermore, the charging energy is
inversely proportional to the capacitance C of the island, |[Fu, 2010|. Finally, n, ~ Vj is
the backgate parameter, which defines the equilibrium charge of the floating box (N) = ng.
Thus, one can apply a gate voltage V, (see Fig. 2.4) to pin the total charge of the island
to a certain value. If ng is close to an integer, the charging Hamiltonian implies that
N = n, corresponds to the ground state and neighbouring charge states cost energy of
order Ec. This is called Coulomb valley condition. The opposite situation is given if n, is
close to half-integer, where the charge of the box will oscillate between two values. This
condition is usually referred to as Coulomb peak condition. Whereas the latter also leads
to interesting effects, see for example [Herviou, 2016, Michaeli, 2017]|, the focus of this
thesis lies on charge conservation due to Coulomb valley conditions.
So far, there are two relevant energy scales for the Majorana box. The first one is given
by the topological gap Arg, which is essentially the proximity gap reduced by the applied
Zeeman field, cf. Sec. 2.1.3. The second one is given by the charging energy Eo. The
capacitance of the island increases with its size. Therefore one usually works in the limit
of Fc < Arg. Nevertheless, in the following none of the two energies should be reached.

As the Majorana box has both a bosonic and fermionic sector, corresponding to the
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Figure 2.4: Schematic sketch showing a Majorana charging island with two MZMs (red
dots). The box - composed of a 1D nanowire and an s-wave superconductor - is connected
to ground via a capacitor leading to charge conservation on the island. Additionally, a
quantum dot (blue) is coupled to the island. Since the box is operated such that no
other fermionic excitations are available (see main text), the quantum dot can address

the Majorana mode as indicated by the dashed line. A is the corresponding complex
tunnel-matrix element.

Cooper pair condensate and the Majorana modes respectively, there are also two different
ways of accessing the island. The first is given by coupling it to a bulk superconductor
with phase g, which results in a Josephson coupling captured by

Hy=—FEjcos (¢ — o). (2.27)

Here, E; denotes the Josephson coupling between the mesoscopic island and the bulk
superconductor. Since the latter is assumed to be large (compared to the Majorana box),
charging effects are negligible and ¢ is not an operator. Such a coupling is able to destroy
the topological superconductivity on the island due to a field pinning ¢ ~ ¢, for E; > F¢,
cf. Eq. (2.27). In this case the mesoscopic island will end up in the topologically trivial
superconducting phase, [Hyart, 2013|.

The second and more interesting way of addressing the Majorana box is given by coupling
to the Majorana modes. On the contrary to the charge 2e transport discussed above,
coupling to the fermionic sector implies charge e transport. In Fig. 2.4 the Majorana box
is addressed by tunneling from/into a quantum dot, as single-level quantum dots are used
to probe Majorana excitations in transport experiments, |[Albrecht, 2016, Deng, 2016| and
[Deng, 2018|. Following the discussion in |[Zazunov, 2011, Hiitzen, 2012|, one can model
the tunneling between a quantum dot or lead and a Majorana by

He = AePvd+he. = A (¥ f + fT) d + hec. (2.28)

Here, A is a complex tunnel-matrix element between the MZM (with operator ) and the
fermionic state of the lead or quantum dot (with annihilation operator d). In the case of a
quantum dot, d corresponds to the annihilation of a certain mode. Whereas for a lead one
assumes point-like tunneling, such that the annihilation operator is given by d = 1(0)
with ¢ (z) being the lead-fermion operator. If Arg is indeed the largest energy in the
system and especially A < Arg, there are no other excitations available on the box and
Eq. (2.28) captures all possible tunneling processes within the fermionic sector.

As discussed in [Fu, 2010 and [Zazunov, 2011|, one way of understanding transport
through a Majorana mode is given by writing the corresponding operator in terms of
Dirac fermions f, i.e. 7 = e®f + e ¥ f1 cf. Eq. (2.7). Thus, coupling to a Majorana
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mode includes two different types of transport, see Eq. (2.28). The first one is given by an-
nihilating a dot/lead electron and creating an electron on the island (~ fTd). The second
one is given by annihilating a dot/lead electron in combination with the annihilation of
an electron on the island to form a Cooper pair (~ €% fd). Therefore, transport through
a Majorana mode can be understood as an equal superposition of in- and out-tunneling
due to a conventional fermionic state, where one of the two processes has to involve split-
ting/creating a Cooper pair.

As a topological superconductor with conserved charge has been introduced here, one
can now look at the implications of fixed charge onto the Majorana sector. Thereby, the
relevance of a floating (not grounded) topological superconductor is discussed.

2.2.2 Qubit encoding with Majorana fermions

In Sec. 2.1.2 and Sec. 2.1.3 one constantly changes between the Majorana representation
and the Dirac fermion representation. Therefore, a system described by 2N MFs can
be rewritten in terms of N complex fermions. As the Jordan-Wigner transformation
allows for the mapping of complex fermions to Pauli operators [Altland, 2010], one can
also rewrite Majorana operators by Pauli operators. Thus, one can form a Majorana
spin or Majorana qubit. While it is always possible to change the representation, charge
conservation will provide a nice working ground for the spin language.

As introduced in Sec. 2.1.2, Majorana operators 7; obey the Clifford algebra. Comparing
it to the algebra of Pauli operators o, , i.e.

{Om,is 0} = 20i;0mnls, {77} = 205515, (2.29)

one observes that, in order to replace Majorana operators by Pauli operators, one has
to manually implement the commutation of Pauli operators of different qubits (m # n).
This can be achieved by the following mapping:

Majorana operators obey anti-commutation rules and square to one, 7% = 1, so do Pauli
operators. Therefore, one may start with

N1 =01, and Yo =01, (2.30)

Because any additional Majorana operator has to anti-commute with v, and v, they have
to be proportional to oy .. This implies the following structure:

V3 = 02201z, V4 = 024012 (231)

Apparently, the above definitions lead to 7; obeying the Clifford algebra and they still
square to one. For the majority of this thesis, the above spin representation is suffi-
cient, but one can use this iterative structure to formulate a general representation of 2N
MFs in terms of Pauli operators corresponding to N spin-1/2s or qubits. This general
representation is given by

Y2i-1 = Oz H.O-n,z, Y2i = Oiy l_I‘O'n’Z7 for = 1, e N. (232)
n<t n<t

Even though the above transformation looks similar to the Jordan-Wigner transformation
it is conceptually simpler, because the Jordan-Wigner string is replaced by the product
of Pauli-z operators.

The basis discussed above can always be changed, which corresponds to identifying dif-
ferent spin objects with different MFs. Physically this corresponds to MFs being ideally
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zero energy excitations of the same system. As an example, in Sec. 2.1.2 one could have
chosen 7, ; as the real and not the imaginary part of the zero energy excitation f. In gen-
eral the decomposition of Majorana operators in Pauli matrices leads to highly non-local
objects, which is observed in Eq. (2.30) and Eq. (2.31), where two spins are spread over
four MZMs.

Whereas the above representation is very general, one can use a conserved quantity to
simplify it. In Sec. 2.1.2 the Majorana parity i7y;72;-1 = 1 — QCchi was introduced. Since
this quantity corresponds to the occupation of an auxiliary complex fermionic mode, in a
parity-conserving system it is essentially a fixed number - either plus or minus. Therefore,
one can define the fermion parity of the Majorana subsector (spanned by 2N MFs) as

N N
Prn = I (iy25725-1) = Hoj. (2.33)

=1 =

Since the parity operator Py is the product of Majorana parities its eigenvalues are
Pxn = £1. A system conserves fermion parity if its Hamiltonian commutes with Py.
Looking at the Kitaev Hamiltonian in Majorana representation, cf. Eq. (2.8), one ob-
serves that the Kitaev chain indeed conserved fermion parity. Therefore, the Hamiltonian
is quadratic in Majorana operators leading to the promised simplification, because the
products of Pauli-z operators in Eq. (2.32) square to unity after inserting them. However,
in general such a system does not conserve the fermion number, because the BCS su-
perconductor spontaneously emits and absorbs two electronic excitations, see Sec. 2.2.1.
Thus, conservation of the fermion number outplays parity conservation.

The fermion parity in the Kitaev chain or in the topological superconductor - discussed
in Sec. 2.1.3 - is no longer conserved if the system is not isolated. Tunneling events do
not commute with Py as Eq. (2.28) reflects. So, in order to effectively use the above
representation in terms of transport, one has to restore parity conservation. This can be
achieved by a large charging energy E¢ on the topologically superconducting island, see
Sec. 2.2.1. Here, charging energy dictates tunneling events to always come in pairs, which
results in cotunneling. This aspect will be intensively discussed in Sec. 2.3 and Chapter 3.
Therefore, the fermion parity conservation can be restored and the above simplification
used.

In the following, the two examples in Fig. 2.5 will be discussed, since both will be used
continuously throughout the thesis. Starting with the case shown in Fig. 2.5 a), where
two 1D nanowires are proximitised by the same s-wave superconductor, giving rise to four
MZMs with operators vy 234. One can assume odd fermion parity, which corresponds to
Py = ivam1iyays = —1. By using Eq. (2.30) and Eq. (2.31), one identifies 01, = i72m
and o0y, = i747y3. Therefore, the parity constraint implies oy, = —09,. As this already
indicates, the fermion parity constraint reduces the two Pauli-sets to a single new set of
Pauli operators. The new Pauli operators are then given by

X = 012022 = —01y01y, YV = 01202y = 014020,  Z:=01.= —03. (2.34)
Furthermore, these new Pauli operators can be written in terms of Majorana bilinears,

where the parity constraint implies two different Majorana combinations for each respec-
tive Pauli operator.

X =iv379 = iy, Y =iy = 1472, Z = ivam = i3 (2.35)
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Figure 2.5: Schematic sketch showing two different Majorana charging islands. a) A
s-wave superconductor proximitises two parallel 1D nanowires hosting four MZMs repre-
sented by 71234 (red dots). b) Three parallel 1D wires are shunted by a superconductor.
Therefore, the island is assumed to host six Majorana modes. The systems correspond to
the tetron and hexon device discussed in [Karzig, 2017].

One can understand this effective reduction by looking at the corresponding Hilbert space
and its dimension. Without the parity constraint, four Majorana operators or equiv-
alently two qubits have a Hilbert space of dimension 4. The basis states can be cho-
sen to be [00), |01), |10) and |11), which are defined by o .09./00/11) = |00/11) and
01,,09,.|01/10) = —|01/10). This reflects the eigenvalue of oy ,05, being the joint-parity
of the two qubits. P, = —1 confines the system to the odd-parity subspace spanned by
|01) and |10). Therefore, the eigenstates of the qubit, which is encoded in four Majorana
operators with a parity constraint, is given by |0) = |01) and |1) = |10).

For the example in Fig. 2.5 b) the parity constraint is a bit different. Here, the fermion
parity operator is given by an odd number of Majorana parities. Again, one can assume
odd parity, i.e. P3 = i7971174730Y67Y5 = —1. As this parity constraint can be understood
as 01,02 ,03 , = —1, one way of reducing the set of Pauli operators is given by distributing
the ’inner’ spin oy, over the outer spins o; , and o3 .. In this irreducible representation
one can identify the new set of Pauli operators with

Xl = 01202, le ‘= 01,402z, Zl =01,
Xg = 0342022, Yy = 03,y02.25 Ly = 03,z (236)

In the Majorana representation the Pauli operators corresponding to the two qubits, which
define the low-energy sector of the hexon shown in Fig. 2.5, are given by

X1 = 17372, Y1 =i, Zy =17
Xo = 19574, Yo = iv674, Za = 7675 (2.37)

For six Majorana operators the parity constraint does not only simplify the representation
in terms of Pauli operators. Furthermore it allows the device in Fig. 2.5 b) to address
products of Pauli operators in a very elegant way. Due to P3 = —1, the joint-parity
operator Z,Z5 can be written in terms of a single Majorana bilinear, i.e. 2175 = 179374.
Thus, for the here shown device the implementation of single Pauli operations is of the
same difficulty as for products of Paulis, [Karzig, 2017]. This reflects one of the key
advantages of transport through Majorana modes, which will be highlighted throughout
this thesis.

2.3 Quantum transport through a single Majorana box

Having introduced a charge-conserving, topologically superconducting island, dubbed Ma-
jorana box, and a way to address its fermionic sector, the next step is to discuss quantum

17



2.3. QUANTUM TRANSPORT THROUGH A SINGLE MAJORANA BOX

transport in such boxes. In Sec. 2.3.1, the general setup is discussed. Here, the concept
of a simple Majorana-lead junction is introduced, since this concept will be generalised
in Chapter 3. As already mentioned in Sec. 2.2.2, the large charging energy of the island
can result in cotunneling events. Sec. 2.3.2 is therefore dedicated to the derivation of a
cotunneling Hamiltonian, for which the system introduced in Sec. 2.3.1 serves as an exam-
ple. Afterwards, Sec. 2.3.3 gives a compact overview of renormalisation-group theory as
it is often used to access the low-energy physics of coupled systems. Finally, in Sec. 2.3.4
the Majorana box coupled to a set of N leads is discussed at strong coupling. Here, the
topological Kondo effect will emerge.

Quantum transport in a single Majorana box hosting at least four Majorana modes was
first discussed in [Béri, 2012, Altland, 2013]. The work in [Zazunov, 2014] can be viewed
as a more detailed reference for this section. Most of the techniques used here are dis-
cussed in the books by Gogolin, et al. |Gogolin, 2004|, Altland and Simons |Altland, 2010|
and Bruus and Flensberg [Bruus, 2016].

2.3.1 Setup and simple Majorana-lead junctions

The mesoscopic system of interest is given by a single Majorana box coupled to M non-
interacting leads, see Fig. 2.6 a). Since each lead is assumed to couple to a different single
MZM, the island has to host at least M MFs. Following the discussion in Sec. 2.1.3 N
parallel 1D strong spin-orbit nanowires, which are proximitised by the same s-wave su-
perconductor, give rise to 2N MZMs as long as the nanowire length is much larger than
the Majorana coherence length. In general the number of MFs on the island has to obey
2N > M.

The Majorana modes are assumed to have zero energy. Moreover the topological gap Arg
is sufficiently large to neglect unwanted quasiparticle excitations. Therefore, the Majo-
rana box is well described by a charging Hamiltonian, c¢f. Eq. (2.26), with charging energy
E¢ and charge operator N.

The leads can be realised by using the same nanowires as for the topological supercon-
ductors, but not inducing superconductivity, see Fig. 2.6 a). In this case due to spin-orbit
coupling and the applied Zeeman field, the leads can be modelled as non-interacting and
effectively spinless. Since the leads are used to address the Majorana modes on the island,
which lie at zero energy, it is sufficient to look at low energy scales. Therefore, the lead
Hamiltonian can be obtained by linearising the Hamiltonian of non-interacting spinless
electrons around the Fermi energy Er, which is defined to be zero. Choosing the contact
between leads and Majorana box to be at = 0, the lead Hamiltonian is described by
left- and right-moving fermions for x > 0:

M o
s = —i0e > [ do (0] 0uim = 0], 005 (2.35)
j=1"0

Here, v; /() is an 1D spinless fermion operator obeying the open boundary condition
1;1(0) = 1; r(0) and all leads are assumed to have the same Fermi velocity vp. A very
convenient simplification is achieved by unfolding the semi-infinite leads, |Gogolin, 2004].
Thus, one can switch to chiral (right-moving) fermions, ;(z), with ¢;(z) = ¢, r(x) for
x> 0 and 9;(x) = ¢;(—=) for < 0. In this case the lead Hamiltonian reduces to

M o
7-[leads - _iUF Z/ dx ¢;ax¢3 (239)
j=1 /=00
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Figure 2.6: a) Schematic sketch of a Majorana box coupled to M = 5 leads. The island
is assumed to host six MZMs (red dots). The depicted box is essentially the same as
in Fig. 2.5 b). For simplicity, the proximitised nanowires are hidden and the island
itself is transparent to highlight the most important effects. Metallic leads with fermion
operators ;(x), cf. Eq. (2.39), are coupled to Majorana modes, which are labelled by the
respective lead. b) The simple Majorana-lead junction is shown here |[Gau, 2018]|. After
the bosonisation, lead-charge fluctuations are described by ¢; and the Klein factor &;
(red circle) is coupled to Majorana operator ; with tunnel-matrix element \; (indicated
by the purple link). 7; and x; have a fixed parity leading to the simplification of the
tunneling Hamiltonian, see main text.

Having established the two subsystems one can now introduce tunneling between the two.
This tunneling will be of the form discussed in Sec. 2.2.1. With the chiral fermion operator
at the boundary VU, := ;(0) the tunneling Hamiltonian is given by

Hy = )\jk\D}’yke*w +h.c, (2.40)

Here, \j; denotes the tunnel-matrix element between the MZM with operator «; and lead
J. As discussed in Sec. 2.2.1, ¢ is the charge-conjugated operator of the island. The Hamil-
tonian describing the setup shown in Fig. 2.6 a) is thereby given as Ho = Hpox+ Hieads+ Hs-

So far, the Majorana box is described in terms of fermionic (Majoranas) and bosonic oper-
ators (charge/phase), whereas the leads are fully characterised by a fermionic description.
In [Altland, 2013, Béri, 2013] it was shown that it is beneficial to bosonise the leads such
that transport is effectively described by a purely bosonic theory. For this purpose the
left- and right-moving fermions are bosonised according to [Gogolin, 2004, cf. Fig. 2.6
b),
K .

¢;7R/L(x) - \/_Jael[%(ﬂf)i@j(w)]’ (2.41)
where « is a short-distance cutoff. ¢;(z) and 6;(x) are dual boson fields, which obey
[0 (2), 0,0k (x)] = imd (x — 2') 6, and k; is a Klein factor ensuring that different lead
fermions still anti-commute. Therefore x; can be expressed as a MF, i.e. /f} = k; and
{k;, K1} = 25;. In analogy to the phase operator on the island, e**/(®) will in- or decrease
the number of charges in lead j by one. Since 6§, is the conjugated variable, p;(z) ~ 0,0,(z)
describes the charge density in lead 7 up to position z.
The open boundary condition ;1 (0) = 1, r(0) translates to 6;(0) = 0 and with the
shorthand notation ®; = ¢;(0) and © = 9,0,(0), the lead fermion operator in Eq. (2.40)
takes the form

\1!; = 04_1/2/{]-6@]'. (2.42)

By inserting Eq. (2.41) one can rewrite the lead Hamiltonian and obtain the 1D Luttinger
liquid Hamiltonian for the non-interacting case, see |Gogolin, 2004|,

M .0
Hiends = ;—i ; /_Oo dx [(8x¢])2 + ((99591-)2} . (2.43)

19



2.3. QUANTUM TRANSPORT THROUGH A SINGLE MAJORANA BOX

The lead Hamiltonian is now exclusively described by bosonic operators, because the
corresponding Klein factors squared to unity.

For the tunneling Hamiltonian in Eq. (2.40) the situation is a different one. Here, the
bosonisation of Eq. (2.41) results in

Hy = N\jpkjme’ 79 +hee., (2.44)
where \j; was renormalised by a factor of a~ /2. Now, the tunneling Hamiltonian reflects
a separation of charge and fermionic variables. Since the complete system is still defined
by Ho, ik = £1 is a conserved quantity in the system. Thus, as long as each Majorana
mode is only coupled to a single lead and each lead is only coupled to a single Majorana, cf.
Fig. 2.6 b), one observes M local parity constraints in the system. Therefore, in Eq. (2.44)
one can fix the fermion parity and obtain a purely bosonic tunneling Hamiltonian. In
[Béri, 2013| the idea of fixing the parity in order to reduce the systems complexity was
called Majorana-Klein fusion. To establish the connection to Chapter 3 the distinction
of different coupling mechanisms - put forward in [Gau, 2018| - will be used here. Thus,
tunnel junctions, which can be described by the purely bosonic Hamiltonian

Hisimple = —idjue P79 £ hc. = Ajsin (O, — @), (2.45)

are called simple Majorana-lead junctions. As Eq. (2.45) does not contain any information
on the Majorana mode, which was addressed, the second index in the tunneling-matrix
element is suppressed throughout this section. In the following we therefore denote the
tunneling-matrix element only with respect to the lead, i.e. A; := Aj.

2.3.2 Cotunneling Hamiltonian

Without the Majorana-lead coupling, the island is in its charge ground state with (N) =
ng defined by the backgate voltage. Since the island is operated under Coulomb valley
conditions, where n, is close to an integer, the charge is indeed conserved and accessing the
nearest neighbouring charge states costs energy of order Es. Thereby, a weak Majorana-
lead coupling \j; < E¢, Arg will introduce virtual transitions between neighbouring
charge states. This can be seen by considering Hgox and Hi simple in terms of perturbation
theory in the coupling Aj;. In literature, this is often referred to as Schrieffer- Wolff
transformation.

In general, a second-order Schrieffer-Wolff transformation with respect to a Hamiltonian
H, with eigenstates |«) and perturbation H; is given by

Heg =Y Eola)(al + > |a)(/|> (E iEﬁ + = 1_ Eﬁ) (| Hy|B)(B|H: o). (2.46)
« a,al 8 @ o

Here, |5) denotes the energetically neighbouring states to |«) and Ej is the eigenenergy
of state |j). Eq. (2.46) reflects that the Schrieffer-Wolff transformation is a projection of
the system onto the ground states of Hy, where virtual excursions are penalised by the
energy difference to the ground-state energy. This also defines a time scale of the obtained
theory, since virtual excursions require time ~ 1/ (E, — Eg). Note that for the purpose of
not mixing notations the general Hamiltonians here are not written in calligraphic letters.

In the case of the Majorana box, Hj is given by Hpox and the perturbation is the tunneling
Hamiltonian H; gmple. Moreover, the charge ground state is given by |N) and the ener-
getically closest charge states are |N = 1). Due to the charge constraint on the box, the
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phase exponential operators e have to cancel out resulting in the effective second-order
Hamiltonian ] )

Hot = — 7 D AP — i D AT, (2.47)

Tk Tk
where UL = Hpox (N £ 1)—Hpox (N). The energy difference between neighbouring charge
states is of the order E., cf. Sec. 2.2.1. Therefore, one can simplify the above effective
Hamiltonian as
Heg = — Z Ji cos (D; — Dy) . (2.48)
g,k

This Hamiltonian describes charge transport from lead £ via the island into lead j. Thus,
the charge state of the island does not change on time scales larger than 1/Es and, as
Eq. (2.47) reflects, this transport has two different realisations. The first is given by an
electron tunneling from lead k onto the island and, as the charge state of the island is
increased, it is immediately reduced by an out-tunneling event to lead j. The second
realisation consist of first reducing the charge state on the box and thus, tunneling into
lead j. Afterwards, the charge on the island is restored by an in-tunneling event from
lead k. This corresponds to the access of both nearest neighbouring charge states, i.e.
|N £ 1). This cotunneling nature is included in the definition of the cotunneling energy
Sl )‘J—z’“ Note that Heg in principle contains an energy off-set due to the projection,
cf. Eq. (2.46). Nevertheless, this irrelevant renormalisation energy was dropped.
Finally, the low-energy Hamiltonian of the Majorana box coupled to M leads is given by
the effective Hamiltonian

M
Hweak - Hleads + Heff - Hleads - Z ij COS (CI)] - q)k) . (249)

J,k=1

The effective Hamiltonian in Eq. (2.48) is derived in the case of weak lead-island coupling.
In this limit tunneling only weakly effects the states of the leads and box, which are well
described by distribution functions due to temperature or applied voltages, |Bruus, 2016].
Therefore, the cotunneling Hamiltonian corresponds to the weak-coupling regime. At
very low energies, however, the correlations between leads and box, which are induced by
tunneling, become more dominant. Consequently, one is usually interested in the opposite
regime of strong-coupling. Here, the dominant degrees of freedom are typically fewer than
in the weak-coupling regime. Thus, the main challenge of a weak-coupling theory is to
identify the relevant mechanisms, which will survive in the limit of very low energies.

2.3.3 Renormalisation-group theory

In Sec. 2.3.2 the system was simplified by discarding charge fluctuations on the island. In
the same way, this section is dedicated to the low-energy sector of the leads. Unfortunately,
the leads are given by normal conductors (metals). Therefore, there density of states is
assumed to be almost constant over a large energy range |Bruus, 2016|. This makes it
impossible to distinguish the low- from the high-energy sector, since there is no separation
by a gap. Thus, the conventional perturbative approach, see Sec. 2.3.2 does not work.

Renormalisation-group theory (RG) is based on variation or renormalisation of scales
(e.g. energies, fields, space) to identify repeating structures. If, for example, the same
effect is observed at large and small scales of a problem, the ’smaller’ version of it can be
discarded, because it is more likely to be overseen in observables. [Altland, 2010| provides
a nice introduction to the field of RG. Since the RG will be used to identify the low-energy
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Figure 2.7: Schematic sketch showing one example of an operator-product expansion.
Two cotunneling processes Vip = €/®1=%2) and Vi3 = ¢/(®2-%3) (green dashed lines) are
contracted to generate \713 (thick green line). Since 1712 describes electron transport from
lead 2 to lead 1 and Vas is the cotunneling even starting in lead 3 and ending in lead 2,
the enforced process ‘713 reflects charge transport from lead 3 into lead 1.

sector of the leads, the here discussed method is a time- or frequency-shell RG. Therefore,
the renormalised quantity will be an energy.

The starting point of the RG is to define a high-energy cutoff D for the leads. States with
energy above this cutoff are considered to belong to the high-energy sector and thus, can
be integrated out. In Sec. 2.3.2 charge fluctuations on the island were discarded, which
implies that lead states of energy Eo are already overruled. The initial lead bandwidth
is given by D(¢ = 0) < E¢. Accordingly, the idea is to renormalise this cutoff

D(¢) = D(0)e™* (2.50)

with renormalisation flow parameter ¢, and study how the cotunneling amplitudes J;; are
effected as only lower and lower lead energies contribute to the system. Conceptually,
as the flow parameter increases, the lead bandwidth is decreased and lead-fermion states
with energies w > D({) are integrated out. Since, with increasing flow, the relevant
energies are exponentially reduced, the flow is towards the strong-coupling regime. Due
to the derivation of the RG equations in the weak-coupling regime, the perturbation will
eventually break down. This implies that the weak-coupling RG - discussed here - can
indicate, but not prove, the relevant low-energy physics.

The equations describing the change of physical quantities under renormalisation are
called RG equations. In this section, the field-theoretical method of operator-product
expansion (OPE) in combination with Wicks theorem, cf. [Altland, 2010], is used. Here,
this procedure is briefly sketched. In Sec. 2.3.2 the system is described by cotunneling
operators ng .= ¢ (®i=%)_ The OPE contracts two arbitrary cotunneling operators V}k (1)
and V. (7') acting almost at the same (imaginary) time 7 and 7. The result of this
contraction has to be equivalent to another cotunneling process in the system at time
(1 +7')/2. The expansion coefficients then determine the RG equations. While the field-
theoretical background is abstract, the contraction itself can be understood by simple
explanations. In Fig. 2.7, the above mentioned contraction is shown. Here, two different
cotunneling processes 1712 = ¢!(®1=%2) and ‘731 = ¢(®3=%1) are contracted in favour of the
third process Vso. Thus, as long as the cotunneling events are purely bosonic, one can
understand the OPE as the combination of two cotunneling processes in order to obtain
a third process. In Chapter 3, this will slightly change, since a remaining fermionic sector
implies certain anti-commutation and commutation constraints, cf. [Gau, 2018].

The obtained RG equations for the system - shown in Fig. 2.7 for M = 5 leads - are given
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% = TimTmks (2.51)
m#j,k

where Jj;, describes cotunneling between two distinct leads, i.e. j # k. In comparison to
the Schrieffer-Wolff transformation, the two cotunneling processes first excite an interme-
diate state in lead n, which is immediately deexcited, contributing to the process between
leads 7 and k. Furthermore, Eq. (2.51) implies that all cotunneling amplitudes flow to-
wards strong-coupling and, since they are all enforcing each other, they will flow towards
isotropy, Jji () — (1 —d;;) J (¢), [Altland, 2013]. The RG equation for the isotropic cou-
pling then reads dJ/d¢ = (M —2)J?. Here, M is the number of attached leads. Note that
for M < 3 there is no RG equation, because the reinforcing mechanism discussed above
cannot work. Here, one obtains either resonant charge transport for Coulomb peak condi-
tions, |[Fu, 2010|, or a Coulomb-blockaded island for n, close to an integer, |Hiitzen, 2012|.
Thus, at least three leads are required for the cotunneling processes to enter the strong-
coupling theory.

Having the set of RG equations one can define the energy scale, where the perturbation
theory applied in the derivation breaks down. Since the starting point of the RG was the
cotunneling Hamiltonian in Eq. (2.44), the above RG equations are not valid any longer
when the Jj, reach order ~ 1. Because RG techniques are often used to discuss spin
impurity scattering and because the object on the island is effectively a non-local spin, cf.
Sec. 2.2.2, the crossover energy scale is called Kondo temperature. In the here discussed
system the Kondo temperature is estimated to be [Gau, 2018]

Tk ~ D(0)e V/I(M=2)]] (2.52)

Thereby ,the strong-coupling regime is well-defined by energies w < Tx. Moreover, all
cotunneling processes will enter the strong-coupling theory with equal strength .J. Finally,
another feature of the present RG analysis is that it does not generate additional processes,
which were absent in the beginning. In Chapter 3 a system is discussed, where additional
interference effects create spin-density fluctuations in the leads. Whereas the fluctuations
are negligible at weak-coupling, they become more important as the lead bandwidth is
decreased. This implies that a RG analysis is capable of highlighting relevant physical
processes, even if the model initially did not include those.

2.3.4 Topological Kondo effect

As the weak-coupling RG analysis showed, the different cotunneling amplitudes flow to-
wards isotropy. This defines a fized-point in the weak-coupling RG. The aim of a strong-
coupling theory is therefore to test whether the fixed-point is indeed a stable solution
of the system. If the fixed-point turns out to be stable, the initially discussed effective
system describes the most relevant parts of the low-energy physics. When a fixed-point
turns out to be unstable, the effective description either overlooked important effects or
the strong-coupling regime is dominated by completely different mechanisms. Luckily, in
the case of the system here discussed the obtained fixed-point turns out to be stable.

Considering energy scales below the Kondo temperature Ty, the Hamiltonian Hyeax, see
Eq. (2.49), is not valid any longer. Therefore, one starts by formulating the strong-
coupling Hamiltonian, which corresponds to the fixed-point of the weak-coupling RG. In
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the case of a single Majorana box coupled to M leads, the Hamiltonian is given by

M
7-lstrong =-—J Z COs ((I)] - (bk) . (253)
j#k=1

In [Yi, 1998, Yi, 2002|, an equivalence between multi-channel Kondo problems and quan-
tum brownian motion in periodic potentials was established. The idea is that in the
strong-coupling regime Hgrong Will effectively pin the lead phase-fields to a certain con-
figuration {®,}, which minimises the energy. In this limit of pined phase-field differences
multiple configurations minimising the energy exist. Interpreting the variables ®; as coor-
dinates of a particle, leads to quantum brownian motion between different configurations
that minimise Hgtrong. This discussion can be used to show that the obtained fixed-point
is stable against anisotropies in the cotunneling amplitudes. Note that a perturbation,
which breaks the ground-state degeneracy on the box, e.g. a direct coupling of Majorana
operators, is relevant and will therefore destroy the here discussed fixed-point.

One way to approach the system at strong coupling is given by a transformation of the
lead phase-fields, as was done by Béri in [Béri, 2017]. In [Gau, 2018], it was argued that,
due to the field pinning at strong coupling, the phase-differences ®; — ®;, are frozen out
and the only relevant degree of freedom is given by the center-of-mass phase

Po(w) = go;%(m), go = \/_Ma (2.54)

where the boundary center-of-mass field is given by ®; = ¢o(x = 0). Note that Eq. (2.53)
is invariant under a shift of the center-of-mass field, since the fields ®; and ®; will be
shifted by an equal amount. This justifies switching to a new basis, which for the boundary
fields reads ®; := ®; — go®, with the constraint > ®; =0, see [Gau, 2018]. The strong-
coupling Hamiltonian is then given by

M
Hstrong =—J Z COS(&)J' — ci)k) (255)
JFk=1

Interestingly, Eq. (2.55) does not include ®g, which implies that ®, can be changed with-
out energy cost. In analogy to [Yi, 1998]|, this corresponds to free motion of the particle
along the ®(-direction. Therefore, the center-of-mass field ®y will dominate the low-
energy physics of the system.

As the individual lead phase-fields are pinned, charges will heavily fluctuate between the
leads. The remaining degree of freedom is then given by ®,, which describes collective
transport between all M attached leads. This can be visualised by looking at a single pro-
cess contained in the strong-coupling model, e.g. €'® ~ i(®i=9%0%0) A g; = 1/v/M, such
a process corresponds to the absorption of a charge in lead j, where the charge was demo-
cratically collected from all leads. The physical process corresponding to this observation
is the absorption of a Cooper pair in lead j, due to resonant Andreev reflection, and this
charge is then democratically distributed over all attached leads. Thus, effectively each
lead absorbs charge 2e/M. Since the conductance is given by the product of the conduc-
tance quantum (e/h) and the net transferred charge, one obtains the zero-temperature
and zero-bias conductance of the system, |Altland, 2013, Zazunov, 2014|,

2¢? 1
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This effect of democratically dividing the charge over the attached leads is called topolog-
ical Kondo effect (TKE). It is not only an effect of strong-correlations, but arises due to
the topology of the problem. The non-local spin on the box is key for thos, since it allows
for an unique coupling of all attached leads. Therefore, the observation of the TKE is
believed to be a clear indicator for the existence of MZMs on the island. In various publi-
cations |Béri, 2012, Altland, 2013, Béri, 2013, Zazunov, 2014, Plugge, 2016a, Béri, 2017/,
corrections to the here discussed fixed-point were discussed. Some of these corrections
arise from bias voltage, temperature or interacting leads. Therefore, a single Majorana
box is well understood and a large set of predictions exist, which have yet to be verified
in experiments.

In [Gau, 2018|, the here presented discussion was generalised to a network composed of
multiple Majorana boxes. In such networks, Majorana-lead junctions can differ from the
simple coupling, and lead to Eq. (2.45), which results in new effects. Nevertheless, the
simple Majorana-lead junctions will always be present in networks of Majorana islands,
which can result in TKEs on individual boxes inside a larger network. In Chapter 3,
the notation of [Gau, 2018] will be used, in which a collection of leads - monogamously
coupling to a single Majorana mode - form a bosonic subsector. For very low energies
such bosonic subsectors exhibit the TKE.

2.4 'Topological quantum computation

In this section the focus will be laid on the importance of MBSs for quantum compu-
tation. As discussed in Sec. 2.2.2, one can always define a qubit in terms of MZMs.
Because of the nonlocality of the Majoranas, this qubit is topologically protected against
local decoherence mechanisms, |Kitaev, 2001|. Thus, the proposal to use Majoranas for
quantum information purposes is as old as the first Majorana-related publications in con-
densed matter physics, see [Beenakker, 2013|. In order to understand Majorana-based
qubits and the impact of Chapter 4 in the context of quantum information and quantum
computation, this section starts with a short introduction to quantum gates. In Sec. 2.4.2
the Majorana box qubit |Plugge, 2017|, or alternatively the tetron in [Karzig, 2017|, is in-
troduced. As this qubit is essentially the already discussed Majorana charging island, the
main goal is to establish convenient ways to access the information stored on the island,
i.e. the implementation of read-out schemes. Afterwards, Sec. 2.4.3 contains the reali-
sation of quantum gates in the tetron architecture, where the discussion of single-qubit
gates are extended to simple two-qubit operations.

The first part of this section is based on the excellent book by Nielsen and Chuang
[Nielsen, 2010|. The tetron was introduced in [Plugge, 2017| and |Karzig, 2017|. For a
discussion of networks of Majorana qubits, which form e.g. surface or color codes, see
[Landau, 2016, Plugge, 2016b, Litinski, 2017].

2.4.1 Quantum gates for universal quantum computation

For quantum computation two main directions exist. The first one is adiabatic quantum
computation, where quantum information contained in the Hilbert space of a Hamiltonian
H [£(t)], which depends on a set of parameters £(t), is manipulated by the gradual change
of the Hamiltonian parameters. One simple example for adiabatic quantum computation
is given by the equivalence of a qubit and a spin-1/2 particle. Supposing that this spin is
oriented in a random direction, a strong magnetic field, which is switched on at ¢t = 0 will
align the spin in its orientation. Thus, the qubit can be initialised in any state by choosing
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the direction of the magnetic field. Changing the direction of the magnetic field - corre-
sponding to a change of the parameter set () - will drag the spin along, since its energy
is minimised when being aligned with the field. Therefore, if the change of parameters is
slow enough for the spin to follow its variation, the qubit state will change gradually. This
way of performing quantum computation is system-dependent and important aspects are
for example the validity of the adiabatic manipulation. In order to guarantee that, one
has to compare the manipulation scheme to various competing mechanisms (present in
the respective system) leading to dephasing and determine a criterion for adiabaticity. In
Chapter 4, the idea of adiabatic quantum computation is briefly discussed for a Majorana
system.

The second and here discussed direction for quantum computation is digital, which relies
on the circuit model for quantum computation. The idea behind it is that in analogy to
classical computations, a fixed set of operations is sufficient for all possible operations.
This implies that any quantum computation can be decomposed in elementary quantum
operations, which define the universal set. Therefore, the main advantage of pursuing
this direction is the need for implementing a universal set of quantum gates, which then
represent the building block or unit cell of a quantum computer for the studied system.
Once the gates are realised quantum error correcting codes can be used for computational
purposes. As most of the quantum gates turn out to be implemented in a simple fashion,
there exist always at least one operation, which turns out to be very difficult. For Majo-
rana platforms this is the T-gate |Litinski, 2017], which will be discussed later.

Once again, operators are explicitely indicated, e.g. A , and there eigenvalues are given
by neglecting the ’hat’, e.g. Z. Furthermore, the shown matrices are in the basis of
Z-eigenstates, i.e. [0) and |1), where Z|0) = |0) and Z |1) = — [1). Tn this basis, a single
qubit is given by |¢) = a|0) + b|1), which is parameterised by two complex numbers a
and b, which have to obey |a|? 4+ |b]> = 1. As the norm reduces the number of degrees of
freedom to two, one convenient way to discuss a single qubit is the Bloch representation.
Here, the pure state |¢) is visualised by a point (¥, ¢) on the surface of the unit sphere
[Nielsen, 2010]. In general, mixed states p = >, [¢);) (1;| are then given by points inside
the unit sphere. During operations, the above norm has to be preserved, which is why
single-qubit quantum gates can be described in terms of 2 x 2 unitary matrices. One might
start with the simplest and yet most important single-qubit gates, which are described
by Pauli matrices

X:G é) f/:(? _OZ) Z:((l) _01). (2.57)

The corresponding eigenstates are then given by [0/1) for Z, |+) = \/LE (10) £ |1)) for X

(with X = +1) and [¢*) = 5 (|0) £ i|1)) for Y (with Y = +1). Because of their action
on eigenstates of anti-commuting Paulis, the operations mentioned above are called Pauli
flips. If, for example, the qubit is prepared in [0), a Pauli-X flip will lead to X |0) = [1).
In the Bloch representation this operation is thereby given by a m-rotation around the
X-axis, resulting in a flip of the state. Analogously Z flips |+) to |—).
Observing that a Pauli operation leads to a rotation of the qubit, one can look at a general
rotation given by
X —i9

e = cos ¥, —isin¥Z = (60 e%) —e W <(1) egw) : (2.58)
In Eq. (2.58) one finds a global phase of e, which is why e~ 2 will cause a 29-rotation
around the Z-axis. Following [Nielsen, 2010], conventional phase gates or S-gates of the
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form |
2y 10 % 1 —
_ ihZ N o G
sett= (1Y), e L(L )
Here, '~" denotes "up to the previously discussed global phase’ and both quantum gates

implement 7/2-rotations around the Z- and X-axis respectively. An often used additional
gate is given by the symmetric superposition of X and Z and is called the Hadamard gate

Hz%(XjLZ) :%G _11) (2.60)

The effect of the Hadamard gate H is the exchange of X- and Z-eigenstates, which is
why it can be viewed as a basis change. In literature, these quantum gates are referred
to as Clifford gates. Note that there is a redundancy in the above quantum gates. If, for
example, one is able to perform 7r/2 rotations around a given axis, then one can also rotate
about 7w. Thus, the set {X Y, Z, SZ,S,E,H} is overcomplete in the sense that X = §2
Z = 52 and Y = iXZ. Moreover, one can show that H ~ S,S,5.. Therefore, the single-
qubit Clifford group is spanned by S, and S,.

The above set of quantum gates is not universal. This implies that there are single-qubit
operations that cannot be accomplished by only using Clifford gates. In order to achieve
single-qubit universality, one has to add a non-Clifford gate. One conventional choice is
the T-gate,

T = ((1) ei2/4) ~ e i 7, (2.61)

As Eq. (2.61) indicates, the T-gate implements a 7/4-rotation of the qubit state around
the Z-axis. Due to the mentioned irrelevant global phase this gate is also known as /8-
gate, but it is better to just call it T-gate [Nielsen, 2010]. The convenience of choosing
the T-gate as an additional gate can be seen by 72 =23,. Finally, the single-qubit Clifford
group in combination with the T-gate is a universal set of single-qubit gates.

Having introduced one universal set of single-qubit gates, one needs an additional opera-
tion to couple, and moreover entangle different qubits, to reach quantum-computational
universality. Following [Nielsen, 2010|, a convenient gate for that purpose is the controlled-
NOT gate (CNOT), which is a two-qubit gate with a predefined control qubit (C) and
target qubit (T). The CNOT is given by

1 000
CNOT = 8 (1) 8 (1) % (1+Z>c®(12)T+% <1_2>c® <X>T (2.62)
0010

The action of CNOT depends on the control qubit’s state |¢). If [¢), = |0), the second
addend in Eq. (2.62) will be suppressed and the target qubit’s state will remain unchanged.
If the control qubit is in the Z = —1-eigenstate, the target qubit is flipped, i.e. X [¢).

Therefore, the CNOT is also sometimes called controlled- X gate, i.e. C, = CNOT.
Following the above logic, one can implement any controlled single-qubit operation. For
an arbitrary single-qubit unitary operation U, the controlled-U gate is given by

OU:%<1+Z> ®(]2)T+%(1—Z>C®<U)T. (2.63)

Finally, one universal set for quantum computational purposes is given by {Sx, SZ, T C }.
Even though this set is still overcomplete, because of 72 = Sz, in any platform one tends
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to implement an overcomplete set. The reason for this lies in the required fine-tuning
or complexity in realising the respective gates. As a Pauli flip is usually much easier to
implement as the T-gate, some operations will be better protected against errors than
others. This observation will be met in the following sections.

2.4.2 Majorana box qubit

In 2000, David DiVincenzo formulated five requirements for the implementation of a quan-
tum computer |[DiVincenzo, 2000, which are also known as the DiVincenzo criteria. 1)
The physical system requires well characterised qubits and it should be scalable. 2) The
ability to initialise the state of the qubits is necessary. 3) Decoherence times have to be
much longer than times related to gate operations. 4) One has to implement a universal
set of quantum gates. 5) Qubit-specific read-out has to be realised. Even though all of
the five requirements are self-explaining, it is useful to further analyse them in order to
study a specific system for its application in quantum computation.

This section is dedicated to the Majorana box qubit (MBQ), as it allows for partially pro-
tected, topological quantum computation. As there are different proposals for the tetron
architecture to, for example, implement the read-out, only one of the possible realisations
will be discussed here. For a detailed discussion see |Plugge, 2017] and [Karzig, 2017].
Starting with the qubit itself, the system of interest is given by two parallel strong spin-
orbit nanowires, which are proximitised by the same superconductor and exposed to a
magnetic field. Moreover, the system is floating and therefore exhibiting charging effects.
Thus, the qubit itself is the already discussed charging island, cf. Sec. 2.2.1. In Fig. 2.8 a),
the superconductor is indicated by the backbone, but the island itself is the same as in the
previous sections. Thereby, the Hamiltonian of the box is given by Hp.y, cf. Eq. (2.26).
As long as the wire length Ly, exceeds the Majorana localisation length &, cf. Sec. 2.1.2,
the MBSs on the two topological superconductors lie at zero energy. Thus, the system
will host four MZMs. The typical wire length is several micrometers [Albrecht, 2016].
Assuming that no other quasiparticles are accessible due to the protection by both the
topological gap Arg and E¢, the island itself is well-described by Hp,c. One can then
tune the backgate of the tetron in order to reach Coulomb valley conditions, which results
in the following qubit encoding, cf. Sec. 2.2.2,

X =iy = £ivays, Y =iveys = Fivam, Z =iy = Eivaya. (2.64)

Here, the parity constraint is given by Py = 1797374 = £1. In the following Py = 41 will
be used. In Fig. 2.8 a) different Pauli operations correspond to non-locally addressing the
tetron. Thereby, different qubit operations correspond to spatially distinct processes. For
example a Pauli-X operation corresponds to the addressing of two MZMs, which are on
the same nanowire and therefore located at opposite ends of the tetron. Therefore, the
nonlocality of the Majoranas implies that any Pauli-X operation has to be non-local in
the horizontal direction in Fig. 2.8 a). Analogously any Pauli-Z operation has to involve
two Majoranas on different wires but the same end. Thereby, the access hardware for
Pauli-Z is divided in the vertical direction in Fig. 2.8 a). These spatially distributed
qubit operations result in a protection mechanism, which is of topological nature.

As Fig. 2.8 a) suggests, the qubit is well-defined by the two topological superconductors.
Moreover, as Sec. 2.1.3 pointed out, one topological nanowire can be tuned to host more
than two MZMs. In combination with the ability to use different wires, proximitised
by different superconductors, but all exposed to the same magnetic field, this leads to
scalability. Thus, criterion 1) of the above mentioned requirements is fulfilled in this
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Figure 2.8: a) Schematic sketch of the Majorana box qubit (or tetron). Two topological
superconductors (dark grey) with four MZMs 7, 534 (red dots) are shunted by an s-wave
superconductor. The wire length Ly, is assumed to be much larger than the Majorana
localisation length £ in order to neglect Majorana hybridisation effects. The leads (purple)
are coupled to Majorana operators -, and 74 to probe the conductance G, (¢), which will
depend both on the eigenvalue of Z = iv47, and the geometric phase ¢. The latter arises
due to interference effects, because of the reference arm R, which also connects the two
leads. b) Conductance G,(¢) plotted against loop phase ¢. The red curve belongs to
G.—+1(p) and the black curve belongs to G.—_1(¢). One point of maximal resolution is
given at ¢ = 7. Based on [Plugge, 2017|.

proposal. In [Karzig, 2017|, the scalability is addressed and shown explicitly in multiple
figures.

As initialisation, decoherence times and the implementation of quantum gates correspond
to the ability of manipulating quantum information stored on the island, requirements 2)
to 4) of the DiVincenzo criteria are discussed in Sec. 2.4.3. Here, the read-out will first
be implemented, because it relies on quantum transport through the box and is therefore
easily accessible after the discussion in Sec. 2.3. In addition to the Ly, constraint, read-
out in the tetron architecture requires reference arms, which are short enough to allow
for phase-coherent tunneling events, i.e. Lr < L4. Here, Ly is the length of the reference
arm [? and Ly is the length over which phase-coherent electron transport is possible. In
[Gazibegovic, 2017], it was demonstrated that low-density semiconductors can be used as
reference arms.

In Fig. 2.8 a) two leads are shown, which couple to v, and 74. As the reference arm also
connects the two leads, two different transport paths are accessible for an electron going
from lead one into lead two. Since the box exhibits strong charging effects, one can write
down the cotunneling Hamiltonian, cf. Sec. 2.3.2, corresponding to this charge transport

Hz,leads = \IJE (to + t1Z) \Ifl + h.c.. (265)

Following the notation in Sec. 2.3, W, is the lead-fermion operator at the boundary with
the tetron. The two different paths result in a direct lead-lead connection (~ ty) and a
lead-box-lead connection (~ t; < 1/E¢). As tg,t; € C, their phase difference is gauge-
invariant and interference effects can be observed. Here ¢ = arg(t;/t) corresponds to the
geometric phase of the closed tunnel loop. Since the first interference effects of that type
were discussed by Ahoronov and Bohm [Aharonov, 1959, such a phase ¢ is sometimes
referred to as Aharonov-Bohm phase.

In [Plugge, 2017|, the interferometric conductance was computed as

2

GA@:%WMMQ with ¢, = to + 12, (2.66)
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Figure 2.9: a) Schematic sketch of a Majorana box qubit (tetron) allowing for dot-based
measurements of all Pauli operators. By tuning gate voltages and thereby (de-)connecting
quantum dots and reference arms in combination with sweeping the occupation energy
of two dots from one configuration towards the inverted configuration, topologically pro-
tected Pauli flips can be implemented. b) The quantum dots undergoing the energy sweep-
ing are indicated along with the corresponding Pauli operation. Based on |[Plugge, 2017].

where v; is the density of states in lead j and z is the eigenvalue of Z. Therefore, the
measured conductance will strongly depend on Z. As the geometric phase ¢ can be
changed by a magnetic field, such a conductance measurement can reveal the state of
the qubit, see Fig. 2.8 b). This typically requires the phase to be tuned to a point of
good resolution between the two graphs. Here electrons tunneling through both ~5 and 4
experience a relative 7 phase-shift, which depends on the Z-eigenvalue iv,v, = 4+1. This
measurement is projective and thereby collapses the state of the qubit onto either |0) or
1), cf. [Plugge, 2017]. Consequently, one way of initialising the Majorana qubit is given
by performing a conductance measurement.

An alternative measurement setup is given by coupling a pair of quantum dots to the
tetron. Due to the presence of Zeeman field and charging effects on the dot, they can
be described by an effectively spinless single fermion level, cf. [Karzig, 2017]. In the
cotunneling regime with respect to the box the measurement Hamiltonian reads

H,ops = % (didl - d;dQ) v db (to +1:12) dy + hec.. (2.67)

Here, d; describes the fermionic annihilation operator of quantum dot j, ¢, again corre-
sponds to a reference arm and t; is the cotunneling path over the tetron. Furthermore,
both quantum dots can be assumed to share a single electron. This situation is depicted
in Fig. 2.9 a), where additional wires and quantum dots allow for addressing all qubit-
components. Depending on the quantum dot energy e, different situations can arise. For
€ > |t.|, quantum dot 2 will be occupied and quantum dot 1 will be empty. If the quan-
tum dots are tuned on resonance with the island, the electron will freely oscillate between
the two quantum dots, i.e. Rabi oscillations with frequency w, = \/62 + |to + 2t1]? occur
[Plugge, 2017]. If the occupancy of one of the two quantum dots is measured, one can
infer the qubit state due to these Rabi oscillations. Different measurements of the quan-
tum dots are discussed in [Plugge, 2017|. Since the quantum dot is now measured, this
provides a less invasive measurement of the MBQ. Moreover the quantum dots allow for
various manipulation options, which will be discussed in the following section.

2.4.3 Majorana qubit manipulation protocols

As discussed in Sec. 2.4.2; the nonlocality of the Majoranas results in spatially distinct
qubit access points. Since a Pauli- X operation has to address Majoranas on different ends
of the tetron, phase-coherent transport has to be implemented in such devices. Fig. 2.9
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a) represents one possible solution to that problem. Here, three quantum dots and two
reference arms are sufficient to address all Pauli operators of the qubit. One of the ad-
vantages of the system is that the access hardware is essentially located at one end of
the tetron. Thereby, quantum dot measurements can be implemented locally, but the
topological protection of the box qubit remains.

Quantum gates can be implemented by controlled single-electron pumping events. Here,
the quantum dots in Fig. 2.9 a) are used to allow for only one cotunneling event through
the box. This event is then proportional to a Pauli operation, which implies that once
the charge is transferred, the Pauli operation was applied. Starting with the Pauli- Z
operation, one observes that quantum dot 3 should be tuned to a regime, which blocks
transport over the upper topological superconducting wire. Therefore, the backgate of
quantum dot 3 is tuned such that quantum dot 3 remains empty throughout the charge
transfer. Moreover, the reference arm is decoupled, i.e. to — 0 in Eq. (2.67). If quantum
dot 2 is initially occupied and quantum dot 1 is initially empty, tuning the respective
backgates to a regime, where the occupation of quantum dot 1 is favoured, results in a
cotunneling event. Therefore, sweeping of € — —e in Eq. (2.67) leads to a Pauli-Z flip.
Afterwards, one can also measure the occupation of quantum dot 1 in order to guarantee
that a qubit operation was applied.

For a Pauli-X operation one can analogously tune quantum dot 2 to be non-addressable.
In this case, transferring an electron from quantum dot 1 to quantum dot 3 results in a
Pauli-X operation. Note, that here, the reference arm R on the left side of Fig. 2.9 a)
has to be present. Finally, a Pauli-Y operation can be applied by transferring a charge
between quantum dots 2 and 3.

The implementation of Pauli flips relies only on single-electron charge pumping, where
the quantum dot energies are sweeped to trigger the wanted event. This does not require
fine-tuning, which, in combination with the tolerance of local errors, leads to topologically
protected Pauli operations.

By also allowing for transport through the reference arm a phase gate can be implemented.
In [Plugge, 2017|, it was shown that one can perform different qubit rotations by changing
the magnetic flux in the respective cotunneling loop. For the transport Hamiltonian in
Eq. (2.67), one can tune the tunneling links to a point, where ¢ = Re(t;/ty) = 0. In
this case a phase gate P () = e ™7 with ) = —arctan [Im(t, /t;)] can be implemented.
Thereby, arbitrary qubit rotations around the Z-axis are realised by fine-tuning the tun-
nel strengths and the magnetic flux piercing through the loop. Thus, such a phase gate
heavily relies on fine-tuning and even though the Majoranas provide a natural protection
mechanism, P(ﬁ) is not topologically protected. Nevertheless, it is possible to implement
Clifford gates in a topologically protected manner by increasing the number of qubits.

The implementation of topologically protected Clifford gates relies on two-qubit measure-
ments. Therefore, the concepts introduced in Sec. 2.4.2 have to be generalised in order
to allow for measurements of more than a single qubit. In Eq. (2.67), two tunneling
paths are shown so that the measurement outcome depends on the eigenvalue of Z. For
m different tunneling paths, where each path corresponds to a single distinct Pauli flip,
such a measurement can reveal a m-qubit measurement. In Fig. 2.10, this idea was used
to measure the joint-parity (Z,Z,), where Z; = iy1y3 and Zy = iy, are the Pauli-Z
operators of the two MBQs. The two different tunneling paths between quantum dot 5
and quantum dot 4 both involve a Pauli operator. Therefore, one can write down the
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Figure 2.10: Schematic sketch of two Majorana box qubits (tetrons). By tuning the quan-
tum dots and reference arms to facilitate certain cotunneling events, single- and two-qubit
measurements can be implemented. Here, the dot occupation will depend on the chosen
Pauli operators of the respective qubit (see main text). Moreover, topologically protected
Pauli flips can be implemented by single-electron charge pumping events. Two tetrons
allow for the implementation of measurement-based topologically protected Clifford gates.
Based on [Plugge, 2017].

corresponding cotunneling Hamiltonian as
€
Horiniaos = 5 (dlds = dids ) + d} (121 + t225) ds + .. (2.68)

In analogy to the discussion in Sec. 2.4.2, bringing the quantum dot energies on resonance
will lead to Rabi oscillations with frequency w.,,., = \/62 + |t1Z1 + t2Z5|?. Therefore, the
Rabi frequency of the oscillating electron (shared by the two quantum dots) depends on
the join-parity (Z;Z;). The same idea can be applied to implement other two-qubit mea-
surements, but due to the geometry of the system the joint-parity measurement is the
easiest to realise.

With one auxiliary qubit (ancilla), it is possible to realise quantum circuits, which are
equivalent to S'x and SZ. Such an implementation is called measurement-based quantum
gate, because it is based on multiple measurements of the two qubits and conditioned on
the measurement outcome, Pauli flips are applied. Thus, the two-tetron setup in Fig. 2.10
allows for the realisation of topologically protected Clifford gates. S, can be implemented
by first measuring the joint-parity (Z;75) — a; of the Majorana qubits 1 and the ancilla
2. Afterwards, the Pauli-X operator of the ancilla is measured, i.e. (X3) — a. Finally,
conditioned on both measurements, a Pauli- Z flip is applied to qubit 1, i.e. ZS““Q). Here,
Zy is only applied if either the joint-parity was odd (a; = —1) or the ancilla was in an
X-eigenstate with negative eigenvalue (as), i.e. only if ajas = —1. Also, an analogous
implementation of S, exist.

With the use of measurement-based quantum circuits, one can also implement a CNOT
in a topologically protected way, since it will only rely on measurements and Pauli opera-
tions. Such a two-qubit quantum gate requires an additional ancilla. Therefore, two-qubit
measurements and Pauli operations on three Majorana qubits are required to implement
an entangling gate. For details see |Plugge, 2017|.

In the case of the MBQ), it is possible to implement topologically protected Clifford gates
and a protected entangling gate with the drawback of larger system sizes and the need of
measurement-based protocols. Therefore, the requirements 2) and 4) of the DiVincenzo
criteria are theoretically fulfilled. The problem with criterion 4) is that universality re-
quires the implementation of the T-gate, which in the tetron architecture is given by a
highly fine-tuned point of a large set of Hamiltonian parameters. As this is not experi-
mentally feasible, a T-gate should be implemented in a different way.
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A possible solution is given by a state injection algorithm. An equivalence exists between
the T-gate and a CNOT, where the control is an ancilla prepared in the magic state |m),
followed by a measurement and a conditioned S, |Litinski, 2017]. Since all the required
operations can be implemented in a protected way, the T-gate realisation is equivalent to
the preparation of a qubit in the magic state

im) = T |+) = % (10) + ¢ 1)) . (2.69)

Thus, the magic state |m) is given by the Pauli-X eigenstate |+), which is rotated by
7 /4 around the Z-axis. Note that any Pauli eigenstate, which was rotated by 7/4 around
one of the other axes, can be considered a magic state. The preparation of such a state
is very difficult, since it requires fine-tuning to obtain the 7/4-phase.

Finally, the implementation of a quantum computer requires decoherence times to be
much longer than times, which are related to gate operations. Therefore, it is important
to look at the main decoherence mechanisms of the tetron. The Majorana qubit is encoded
in one of the two fermion-parity manifolds of the charging island. Thus, there are two
different processes, leading to decoherence. The first is given by electron tunneling. Here,
the island is protected by charging energy Eo. The second mechanism comes from quasi-
particles within the device. The creation of a single quasiparticle on the island changes
the fermion-parity and thereby leads to decoherence. The MBQ is protected against such
quasiparticles due to the gap Arg. This implies that at temperature 7' the error rate I
is exponentially suppressed by the gap, i.e. I' ~ e~ 21s/T |[Bonderson, 2013]. According
to |[Landau, 2016], the above discussed single-electron pumping events work beyond the
adiabatic regime. Therefore, requirement 3) of the DiVincenzo criteria should be fulfilled
and one can understand the MBQ or tetron architecture as an example for the elementary
building block of a measurement-based topologically protected Clifford computer.

2.5 Lindblad master equations

Until now, all setups and models of interest were given by closed quantum systems. In
Sec. 2.1.2, the Kitaev chain was discussed and considering an additional object, e.g. a
single quantum dot, would have changed the fermion parity in the topological supercon-
ducting phase due to tunneling. By including charging effects in Sec. 2.2.1, the system of
interest from Sec. 2.3 onwards included multiple topological superconductors and quan-
tum dots or leads. Even though the system of interest consisted of coupled devices, it did
not include any unwanted effects caused by an additional constituent. In experiments such
a foe is always present in terms of electromagnetic fields, charge fluctuations, phonons,
etc., and it is key to tune any device in a way that it is well described by a theory of a
closed quantum system.

In this section the opposite will be discussed, where the model already includes unwanted
degrees of freedom, which might interfere with the physics of interest. For this purpose,
the following section is dedicated to Lindblad master equations. In Sec. 2.5.1, the micro-
scopic derivation of a Lindblad master equation is discussed in a general way. Afterwards,
Sec. 2.5.2 establishes the connection between the master equation and a superoperator
acting inside a larger dimensional Hilbert space. This turns out to be very useful in or-
der to discuss important information contained in the Lindblad master equation. Even
though Sec. 2.5.2 provides enough tools to fully study such master equations, in Sec. 2.5.3
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a different approach is discussed. This allows for a symmetry-based analysis of a Lindblad
master equation.

It is worth mentioning that there is an open quantum system analogue of the Kitaev chain,
[Diehl, 2011]. By carefully engineering the drive and dissipation in an cold-atomic chain,
one can obtain a Lindblad master equation, where the jump operators reflect the pair-
ing mechanism in the topological phase of the Kitaev chain, |Diehl, 2011, Bardyn, 2013,
Goldman, 2016|. Thus, one obtains MBSs at the end of the driven dissipative chain.

For most of this section, the excellent books by Weiss [Weiss, 2007| and by Breuer and
Petruccione [Breuer, 2006] were used. For a detailed discussion and derivation of the
concepts in Sec. 2.5.3, see [Albert, 2014, Albert, 2016].

2.5.1 Microscopic derivation

In this section, the evolution of an open quantum system is described in terms of the
Lindblad master equation, which is a Markov master equation. Here, tensor products
are shown explicitly and all Hamiltonians do not have calligraphic symbols due to their
universal nature.

In general, one might consider a system of interest S weakly coupled to a bath B with the
interaction between S and B described by Hgp. In the following, the system of interest
S coupled to a bath B will be denoted as coupled system. Thus, the Hamiltonian of the
coupled system is given by

H(l) = Hs+ Hp + Hsp (), (2.70)

where Hg, Hp describe the system, bath Hamiltonian, respectively. Note that the time
dependence of this open quantum system is contained in the interaction Hamiltonian.
The starting point of the derivation is the evolution of the density matrix pgp, which
corresponds to the Hilbert space of both S and B. Switching to the interaction picture
of Hg + Hpg, the von Neumann equation is given by

% (t) = —i [H (). p (2)]. (2.71)

Here, the Hamiltonian of the coupled system is formulated in the interaction picture,
i.e. Hr(t) = UHgp(t)UT. The density matrix in the interaction picture is given by
p(t) = UpspU', where U = !Hs+Hz)t,

Integrating Eq. (2.71), one obtains an expression for p(t), which afterwards can be rein-

serted into the von Neumann equation. By tracing over the bath degrees of freedom one

finds
%ps (t) =trp[H;(t),p(0)] - /0 dr trp [H (t), [Hi (7)), p(7)]], (2.72)

where the reduced density matrix, describing only the system, is denoted by pg = trgp.
Eq. (2.72) describes the evolution of pg(t) at arbitrary times t. Even though the state
of the system might depend on its initial condition p(0), the evolution itself should be
independent of the starting point. Therefore, one can assume the first addend on the
right-hand side of Eq. (2.72) to vanish, i.e. one chooses H; such that

trp [Hy (t), p (0)] = 0. (2.73)

In the later discussion one finds that the assumption in Eq. (2.73) is equivalent to the
requirement of the bath to be in equilibrium.
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The next step is called Born approximation in literature. Assuming the interaction be-
tween S and B is turned on at time ¢ = 0, the initial density matrix is in a product state,
ie. p(0) = ps(0) ® pp(0). Given that the bath is in equilibrium and the interaction
between S and B is small, the influence of the system on the bath is negligible. Thus,
one can treat the bath as approximately constant [Breuer, 2006] and obtains

p(t) = ps(t) @ pp. (2.74)

Applying the weak coupling between S and B, one obtains the master equation in Born
approximation

s (1) = - / dr trg [H; (£),[H; (7). ps () @ p]]. (2.75)

The following steps can be summarised by the term Markov approximation and essentially
require the bath to have delta correlation functions. This implies that any correlation be-
tween the bath and system is lost quickly. Modelling the bath as a collection of harmonic
oscillators with an ohmic spectrum fulfils this requirement. Note that a bath with a sub-
or super-ohmic spectrum does not necessarily behave markovian, cf. |Weiss, 2007].

One way to formulate the above condition is a comparison of 75, which represents the
time scale over which the bath correlation function decays, and 7z, which denotes the
relaxation time of the system S, i.e. the time scale over which the state of S varies ap-
preciably. Using the above definitions, the Markov approximation holds for 7z > 75.
The Markov approximation consists of two steps. The first step is to derive a time-local
master equation for pg (t). Due to the fast decay of the bath correlation function, pg only
depends on its current value and not on its past. One can interpret the influence on S due
to correlations between S and B as a memory effect of the system. Thus, one can view a
markovian bath as having no memory effects. Therefore, one can effectively replace pg (7)
in Eq.(2.75) by ps ().

The second step is to replace the upper bound of Eq. (2.75) by infinity. One first substi-
tutes 7 =t — 7" and obtains trg [H; (t),[H; (t —7'), ps (t) ® pp]] as the integrand. The
new integration variable 7" indicates how far one has to go back in time to account for
memory effects. Since these memory effects are short-living within the Markov approxi-
mation, the relevant contributions come from small 7’. Therefore, the upper bound can
be replaced by infinity and the master equation reads

%ps (t) =— /OOO dr trg [Hr (), [Hi (t —7),ps (t) ® ps]] . (2.76)

The above equation is called Markov master equation in literature, cf. [Weiss, 2007,
Breuer, 2006]. Since the derivation involves the Born-Markov approximation, the evolu-
tion of any system, obeying the two required assumptions (weak system-bath coupling
and a Markovian bath), can be described in terms of the Markov master equation.

The Markov master equation of a system can be brought into Lindblad form by per-
forming an additional rotating wave approximation. In order to perform the required
approximation, while keeping the derivation general, it is convenient to write H; in terms
of eigenoperators A, of the system S and bath operators B, acting on the Hilbert space
of B. The bath operators are assumed to be hermitian, i.e. B, = B&, but the A, do not
have to. Thus, one can write H; in the interaction picture with respect to Hg and Hp as

Hy(t) =) e ™A, ® B, (1) +h.c. (2.77)
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Here, w, denotes the eigenenergy corresponding to A, and the time-dependent bath op-
erators are given by
B, (t) = B! B e~ B, (2.78)

After writing down the interaction Hamiltonian explicitly, one can revisit Eq. (2.73),
where H; was chosen such that the Markov master equation was obtained. By defining
the bath expectation value to be (B, (t)) = trp{B, (t) pg}, one can rewrite Eq. (2.73) as

0=trg [Hy( Ze%t o> ps (0] tre{ B, (t) pp} + h.c., (2.79)

where the invariance of the partial trace under cyclic permutations was used. Thus,
Eq. (2.73) can be reformulated as

(Ba (1)) = trp{Ba (t) ps} = 0, (2.80)

which implies that reservoir averages over the bath operators vanish. In [Gau, 2020b|, a
situation is met, where this is achieved by normal-ordering the interaction Hamiltonian.

Continuing with the Markov equation, one can now insert Eq. (2.77) into Eq. (2.76) and
thereby obtains

iﬂs (t) = /000 dr trg (Hr (t —7) ps (t) ppHr (t) — Hy (1) Hy (t — 7) ps (t) pp) + hec.

dt
= Z (wowa)MD s (wg) [Agps () AL — Al Agps (1)] +hc.
+ Z Pl T (ws) [AD ps() AP — ADAD ps(t)] + hc.
+Z “ileemealir [Abps () Ao — AaAlps ()] +he. (2.81)
where one defined the one-sided Fourier transform I',g3

Lap (wg) = /000 dr “s7 (B! (1) Bs (t —1)). (2.82)

Recalling that the influence of the system on the bath was assumed to be weak, one
simplified pp (t) &~ pp within the Born approximation. Therefore, pp is a stationary state
of the bath, i.e. [Hg,pp] = 0. The reservoir correlation functions are then homogeneous
in time and one can use time-translation invariance to write

(BL(t) Bg (t — 7)) = trp{BL (t) Bs (t — 7) ps} = (B (7) Bs (0))

and see that the bath contribution to the master equation, namely I',s(wg), does not
depend on time.

So far, the Markov master equation was simply rewritten in terms of a general interaction
Hamiltonian H;. In order to perform the rotating wave approximation, first one needs to
define a third time scale of the open quantum system: 7g, which is the typical time scale
of the intrinsic evolution of the system S, i.e. Tg ~ |wg — wa |t

If the relaxation time of the system is much larger than the evolution due to the S-B
interaction, i.e. 7g > Tg, then one can neglect fast oscillating terms within the evolution.
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This effectively leads to neglecting all contributions in Eq.(2.81), for which wg # ws.
Moreover the fast oscillating terms oc e*?“e! are neglected as well. Thus, one obtains
the Markov master equation decomposed in eigenoperators of Hg and within the rotating

wave approximation:
d
%PS (t) = Z Faa (wa) [Aosz (t) AL - ALAapS (t)] + h.c.. (283)

Here, the index «, describing the different system operators, was enlarged to allow for
a simpler description. It is convenient to decompose the one-sided Fourier transform as
follows

T () = 37705 () + i85 (), (2.81)

where for fixed w the hermitian matrix reads

1 *
S5 () = 5 (Tas (&) ~ T3 () (2.85)
and the positive matrix is of the form
o5 = Tag (1) + T () = / dre™ (B, (1) By (0)) (2.86)

Using Eq.(2.84) and TT, =Ty, = 19ab — 1S4 one can rewrite Eq.(2.83). Since the above
master equation is already diagonal in terms of system operators A,, the Lindblad master
equation is obtained, [Lindblad, 1976, Lindblad, 1983],

Lo (1) = —iHys.ps (0] + > ) (Aaps (1) AL~ H{AL A ps <t>}) s

The new operator
Hpg = Z Saa (wa) ALAOA (288)

provides a Hamiltonian contribution to the dynamics of the system. This Hamiltonian is
often called Lamb shift Hamiltonian, since it leads to a renormalisation of the unperturbed
energy levels similar to the Lamb shift.

The non-Hamiltonian contribution in Eq.(2.87) is called the dissipator of the master
equation. In the above equation, the operators A, are referred to as jump operators
with transition rates 7,. Since the dissipator is non-hermitian, it leads to a directed
evolution, which is non-invertible. This corresponds to dissipation caused by the bath
and experienced by the system. Therefore, the density matrix pg will always approach a
steady-state solution, i.e. pgs = ps(t — 00). Since a steady-state solution corresponds to
%pss =0, it is blind to the system-bath dynamics.

Lindblad master equations are often used in quantum optics systems, where the bath
is given by a cavity and the system of interest are atoms or qubits, cf. |Leghtas, 2013,
Liu, 2016, Touzard, 2018|. In this case the engineered dynamics leads to the atom relaxing
to a state, in which it no longer interacts with the bath. For historical reasons, steady-state
solutions of a Lindblad master equation are therefore also called dark states, [Diehl, 2008].
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2.5.2 Spectrum of a Lindbladian

Throughout this thesis the Lindblad master equation is referred to as Lindbladian. There-
fore, a Lindbladian contains a coherent part and the dissipative part. The latter is called
Lindblad dissipator. Moreover, the right-hand side of the Lindbladian is sometimes re-
ferred to as Liouvillian, because of the derivation from the von Neumann equation. In
analogy to the Liouville operator one can formulate a general Lindbladian, cf. Eq. (2.87),
as

o(t) = £1p(t) =~ [1,0(0)] + 3T, DLJol0) (2:89)

Here, the Liouvillian is given by L acting on the density matrix p(t). Moreover, the pre-
viously discussed transition rates are now given by I', with corresponding jump operators
J,. The Lindblad dissipator, cf. Eq. (2.87), is then defined by

DIO]p = OpOF — %{()T(), o). (2.90)

In order to distinguish operators acting on the N-dimensional Hilbert space from later on
introduced superoperators, the 'hats’ are shown explicitly in this section.

Having derived a Lindbladian governing the dynamics of a system, it is useful to access
and study its spectrum. The spectrum contains information on the steady-state, the time
of approach towards that dark state and on whether that steady-state solution is unique.
In general, it is possible for a system to dissipate towards a certain configuration, in which
the state keeps evolving, but not due to the dissipative dynamics. A possible example is
given by an atom, which has two dark states, and is placed inside a cavity. For long times
the atom’s state will end up in one of the two dark states, but oscillations due to the dark
state degeneracy are still possibly, cf. |Touzard, 2018|. Such a feature is also accessible
by studying the spectrum of a Lindbladian.

In this section, the Choi isomorphism, which is an elegant way to study the spectrum of a
general Linbladian, will be discussed. The idea is to map the N x N density matrix p(t)
to an N2 x 1 vector |p(t)). Thereby, the action of the Liouvillian £ on the density matrix
p(t) can be understood as the action of an superoperator on the state |p(¢)). Thus, the
isomorphism maps the Liouvillian L to an N2 x N2 superoperator L and one can rewrite
the Lindbladian as

1o(0) = Lio(t). 2.91)

Here, the superoperator L acts inside a larger dimensional Hilbert space, i.e. of dimension
N2, One way of mapping the Liouvillian onto the above superoperator is given by writing
the density matrix p(t) as a vector, where the entries of |p(t)) are ordered by either
columns or rows. Afterwards, one can write down the Liouvillian explicitely in its matrix
form and separate entries with respect to the new vector entries. A more elegant way

is to observe the correspondence JpJt <j® j*) |p). Thereby, the superoperator in
Eq. (2.91) can be written as, cf. [Albert, 2014],

. X . .1 o NE T s
L:—z’(H@]I—H@H*)JrE:FM(JM®J;—§]I®<J;JM) —QJ;JM®]I), (2.92)
m

where [ = Iy denotes the N-dimensional identity matrix. Note that by implementing the
Choi isomorphism in accordance with Eq. (2.92), the density matrix is mapped onto a vec-
tor with respect to its rows. For a 2-dimensional system density matrix the corresponding
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mapping is given as

o0 = () W) = 1) = (ol e et (299)

So far, the Choi isomorphism allows to describe the Lindblad master equation as a set
of coupled differential equations by increasing the effective size of the problem. Due to
the simple structure of Eq. (2.91), the superoperator can be used to 'target’ specific dark
states, since a steady-state solution has to obey

L|pss) = 0lpss). (2.94)

Therefore, if the system of interest is given (L is fixed), the problem of determining the
dark state is essentially to find the eigenvector with an eigenvalue of zero. Analogously,
if the system of interest can be tuned, e.g. by magnetic fields, gate voltages, etc., then L
can be systematically changed to find conditions under which a specific (fixed) dark state
|pss) is stabilised. The latter will be crucial in Chapter 4.

Using the Choi isomorphism, one can establish a connection between the steady-state
solution of a Lindbladian and the zero eigenvalues of L. This also relates the number
of zero eigenvalues to the number of dark states. If a system has multiple dark states,
also superpositions of these dark states will be invariant under the Lindblad dynamics.
Therefore, it is convenient to consider any obtained steady-state solution as part of an
subspace of the original Hilbert space, which is blind to the dissipation. Such subspaces
are called decoherence-free subspaces and, since they contain multiple dark states, they
are also referred to as dark spaces. Consequently, a Lindbladian with an unique dark
state has dark space dimension D = 1. In particular, the number of zero eigenvalues of L
defines the dark space dimension D.

Moreover, Eq. (2.91) implies that the solution of the Lindblad master equation is given
by [p(t)) = e"|p(0)), where |p(0)) describes the initial density matrix - that is prior to
the system-bath coupling. This indicates that one can not only study the dark space of
a Lindbladian, but also the evolution of a system by diagonalising the respective super-
operator L and thereby obtain the spectrum of the Lindbladian. The effects of different
eigenvalues of the superoperator are nicely discussed in [Albert, 2014]. Here, negative
eigenvalues correspond to decay and imaginary eigenvalues correspond to oscillations of
the state components.

The most important information contained in the spectrum of a Lindbladian is therefore
given by the smallest real part of the non-zero eigenvalues, which is called the dissipative
gap A. The dissipative or spectral gap A reflects the characteristic time of approach to-
wards the dark state. Thereby, one can estimate stabilisation times by A~!. In addition,
purely imaginary eigenvalues correspond to the decoherence-free subspace, and reflect os-
cillations. In the previous example of an atom with two dark states, one might think of
Rabi oscillations between the two states. If such a system undergoes Rabi oscillations
between the two dark states, it corresponds to purely imaginary eigenvalues of L and
thereby can be predicted using the tools of this section.

2.5.3 Conserved quantities in Lindblad master equations

This section provides an alternative approach of studying the dark space of any Lindbla-
dian. Here, the terminology and parts of Sec. 2.5.2 will be used as well. Only the results
are shown in this section, since they will be used extensively in Chapter 4. For a more
detailed derivation and discussion see [Albert, 2014].
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The motivation for a symmetry-based analysis of the dynamics in an open quantum sys-
tem is given by its equivalent in closed systems. Closed quantum systems undergo unitary
evolution, which is governed by the von Neumann equation. If a closed system has any
conservation law, the corresponding observable C' = C' is conserved, i.e. %j =0, if and
only if it commutes with the Hamiltonian, i.e. [f], é] = 0. Based on such a conserved
quantity, one can then formulate a symmetry of the closed system, i.e. U= exp(z’¢é),
which leaves the Hamiltonian invariant. For a system undergoing unitary evolution com-
mutation, conservation and the corresponding symmetry are equivalent. Thereby, one
obtains information about a system by studying its conserved quantities.

In open quantum systems the situation is different. As an example, a conserved quantity
C’ e L1 [C’] = 0, has not to commute with the Hamiltonian H and the jump operators
Ju, cf. Eq. (2.89), individually. It could also ’commute’ with them as a whole. Luckily,
the other direction still holds. Therefore, one can define a conserved quantity by the
individual commutation: If [C’, f[] = [é, ju] =0, C'is a conserved quantity of the open
quantum system, see [Albert, 2014|. By mapping the operators onto the larger Hilbert
space, cf. Sec. 2.5.2, one can construct a symmetry with correspondlng superoperator
U = exp(ipC) with C C' being the superoperator analogue of C'. Thus, a symmetry
of an open quantum system is defined by U'LU = L.

Such conserved quantities or 'constants of motion’ can be used to discuss the steady-
state subspace of a Lindbladian, since they have to be preserved throughout the evolution
and thereby define properties of the dark space. For a Lindbladian with D conserved
quantities CA'V:17”,7D, one finds the commutation relations

[H, C} - [j,“éy} —0. (2.95)

Using an orthonormal basis, {Mu}le, to span the resulting D-dimensional dark space,
the steady state can be written as

D
Pss = }E?oe p(0) = ;cuMw (2.96)
where p(0) is the initial density matrix and the ¢, = tr[C’lp(O)] are coefficients determining
in which of the degenerate steady states the system ends up. Therefore, the operators
Mu can be seen as basis states of the larger Hilbert space, where density matrices are
described by states. Moreover, Eq. (2.96) implies that the conserved quantities are linked
to the basis states. Thus, one can use conserved quantities of a Lindbladian to determine
the steady state solution. Here, D is the dimension of the dark space in the larger Hilbert
space. Note that this corresponds to the physical dimension v/D.

One can also connect the conserved quantities of a Lindbladian to the eigenvalues of
L, discussed in Sec. 2.5.2. A unique dark state (D = 1) corresponds to a single zero
eigenvalue. In this case the conserved quantity is given by G = I, which means that the
Lindbladian is trace-preserving. In the case of a qubit space (D = 4) four quantities have
to be conserved and therefore, L has precisely four zero eigenvalues.

To summarise this section, a minimal Lindbladian will be discussed in terms of the Choi
isomorphism and the symmetry-based method. Supposing a systems evolution is described
by the following Lindbladian

S0(t) = —ilAd., p0)] + TD [5.] (1), (2.97)
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In this case, any conserved quantity has to commute with both ¢, and 6, ~ (6, + i6,),
where 0,, . are Pauli matrices. The only commuting operator is given by ¢, =1 and
D = 1. Therefore, the dark state is unique and it can be determined by the action of
both the Hamiltonian and the Lindblad dissipator. For the dark space basis state M, the
commutation with the Hamiltonian, i.e. [6,, M;] = 0, implies that M; = p|0) (0| + (1 —
p) [1) (1]. By checking D[6,|M; = 0, one obtains p = 1 and therefore the dark state is
given by ps = My = |0) (0]. The above Lindbladian describes the stabilisation of a qubit
in its Pauli-Z eigenstate with eigenvalue +1.

The alternative approach is given by the Choi isomorphism. Here the mapping described
in Eq. (2.92) implies that the above Liouvillian can be written as the superoperator

0 0 0 r
0 —% —2iA 0 0
L=1o 0 —L+2i4 0 (2.98)
0 0 0 I
As the above superoperator already indicates, pss = |0) (0] is the dark state. In order

to check for additional dark states, one can calculate the eigenvalues of L and thereby
obtains the following four eigenvalues:

r
M=0, dag=-gEi2d, =T (2.99)

Thus, the above Lindbladian has indeed only one dark state and the dissipative gap is
given by A =T1/2. As mentioned in Sec. 2.5.2, negative eigenvalues correspond to decay
and imaginary eigenvalues correspond to oscillations. As this example is a precursor to
Chapter 4, eigenvalues )93 correspond to the damped oscillations, which are present in
the stabilisation of a Majorana qubit. For this reason, not only the tools established in
this section, but also this example will be met in Chapter 4.
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Chapter 3

Quantum transport in coupled
Majorana box systems

In this chapter, a theoretical analysis of low-energy quantum transport in coupled Majo-
rana box devices is presented. A single Majorana box is a Coulomb-blockaded mesoscopic
charging island, as was discussed in Sec. 2.2, with at least four MZMs. Setups with
several Majorana boxes, where MZMs on different boxes are tunnel-coupled via short
nanowire segments, are the key ingredients to recent Majorana qubit and code network
proposals. Therefore, transport experiments in such setups can test the nonlocality of
Majorana-based systems and the integrity of the underlying Majorana qubits.

In order to address transport and Kondo physics in coupled Majorana box devices in
a comprehensive way, Sec. 3.1 starts by describing a theoretical framework suitable for
tackling such problems. In particular, Abelian bosonisation in combination with the
Klein-Majorana fusion allows for a highly versatile formulation of the theory. In Sec. 3.2,
a detailed study of the weak-coupling regime by means of a one-loop renormalisation
group (RG) analysis is presented. The system generally flows towards strong coupling,
where in marked contrast to the single-impurity TKE, see Sec. 2.3.4, an effectively bosonic
description no longer applies. In general, one has to take additional non-conserved local
fermion parities into account, which can be represented by sets of Pauli operators. Such
spin-like variables are shown to play a crucial role for an understanding of transport in
basically all coupled Majorana box devices. Sec. 3.2 also contains an explicit RG analysis
for two device examples of current experimental interest, including the ‘loop qubit’ device
proposed in [Karzig, 2017]. Next, in Sec. 3.3, the strong-coupling regime, approached
at very low energy scales, is addressed. By focusing on the most relevant degrees of
freedom, which can be identified from the weak-coupling RG flow and by employing
quantum Brownian motion arguments, cf. Sec. 2.3.4, the effective low-energy theory
corresponding to this regime is derived and discussed. Employing also Emery-Kivelson-
type transformations [Emery, 1992, Gogolin, 2004], Sec. 3.3 provides a non-perturbative
strong-coupling analysis for both examples studied in Sec. 3.2 from the weak-coupling
perspective. Finally, Sec. 3.4 contains the exact solution for quantum transport in a
simple two-box device at a Toulouse point, which exhibits two-channel Kondo physics. In
Sec. 3.5, the results are summarised.

This chapter is based on the included publication [Gau, 2018|. Due to the pedagogical
nature of this publication, much of its content was reproduced here.
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3.1 Model and effective low-energy theory

The central goal of this chapter is to understand the low-energy physics of multi-terminal
junctions defined by a set of non-interacting normal-conducting leads with point-like tun-
nel contacts to a general coupled Majorana box network. A concrete example for such a
setup is shown in Fig. 3.1. Starting in Sec. 3.1.1 with the description of the basic model
for Majorana box networks and the physical assumptions behind it, Abelian bosonisa-
tion provides a powerful tool for separating the statistical (fermionic) and charge/phase
(bosonic) degrees of freedom in such networks. Tunneling processes are then analysed in
Sec. 3.1.2, where the distinction between simple Majorana-lead contacts, cf. Sec. 2.3.1,
and non-simple junctions is treated. Finally, in Sec. 3.1.3, Coulomb valley conditions are
assumed to describe the effective low-energy theory, obtained by a projection onto the
charge ground state of each Majorana box in the system.

3.1.1 Setup

The primary ingredient of the here discussed networks is a single Majorana box, which
for the moment is assumed decoupled from all other boxes and from all leads. For
concrete layout proposals, see [Plugge, 2017, Karzig, 2017|. Following the discussion in
[Béri, 2012, Altland, 2013], on energy scales well below the proximity-induced topological
superconducting gap Arg, one can neglect above-gap quasiparticle excitations. In addi-
tion, all MBSs on a given box are assumed to be located far away from each other and
therefore can be viewed as MZMs. For a discussion of hybridisation effects between MBSs
on a given box, see [Altland, 2014]. Thus, only Cooper pairs and MZMs have to be taken
into account.

Under those conditions, the Hamiltonian of an isolated box is solely due to Coulomb
charging,

My = Fo (N - ng)2 . (3.1)

For a discussion see Sec. 2.2.1. The box charging energy F¢ is approximately Fe ~ 1 meV
for typical experimental realisations [Albrecht, 2016]. This energy scale plays a central
role for all coupled box devices studied below, cf. Sec. 2.3. In particular, it facilitates
phase-coherent electron transport, which in turn generates non-trivial correlations be-
tween different boxes and/or leads.

It is most convenient to adopt a gauge, where the Majorana operators do not carry charge
but instead are accompanied by e** operators whenever the box charge changes by one
unit, N — N £+ 1, cf. Sec. 2.2.1. By this choice, ¢ denotes the phase operator conjugate
to N, ie. [p, N] = 4. For each Majorana box, the charge dynamics is therefore captured
by a dual pair of local bosonic fields. For illustrative purposes, the boxes are considered
to harbour four MZMs. The generalisation of the discussed approach to an arbitrary even
number of MZMs for a given box is straightforward.

Next, one can include the effects of a single MZM-MZM tunnel link connecting two Ma-
jorana boxes a/b, cf. Fig. 3.1, via the tunneling Hamiltonian

H = tjakﬂja%b@i(%_%) + h.c. (3.2)

with the MZM operators ;, and 7y,. The index j, (k) here means that the MZMs belong
to box a (b), cf. Fig. 3.1, and the et operators describe the transfer of charge in a
tunneling event. Physically, the e'(¥«=%) factor in Eq. (3.2) amounts to the formation
of a charge dipole between both boxes. Finally, ¢; i, is a microscopic tunnel amplitude
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Figure 3.1: Example for a device with two Majorana boxes (a,b) connected by a single
tunnel bridge (violet). Each box is subject to a charging energy E¢ and hosts four MZMs
with corresponding Majorana operators 7, , (filled red circles). Both boxes are connected
to several normal leads, with corresponding fermion operators ¢ja/b(x) (indicated in grey),
via lead-MZM tunnel links (violet). For box a/b, one has M, simple lead-MZM tunnel
contacts. Simple contacts are characterised by an only pairwise coupling between a lead
fermion operator W; = 1, (0) and a MZM operator 7, , see Eq. (3.3), without couplings
to other leads or MZMs. For the shown case with M, = M, = 2, the only non-simple
contact corresponds to lead fermion v, . [Gau, 2018]

connecting the respective MZMs, e.g. through an intermediate non-topological nanowire
segment.

For point-like lead-MZM tunnel contacts, one can describe each non-interacting lead by a
1D spinless fermion operator 1, p/r(z), see Sec. 2.3.1, where the index j, indicates that
the lead is tunnel-coupled to box a. Choosing z = 0 as the tunnel-contact point, right-
and left-moving (R/L) fermions are defined for z < 0, with the open boundary conditions
¥;..0(0) = 9, r(0). By a standard unfolding transformation [Gogolin, 2004|, one may
switch to chiral (right-moving) fermions, v;, (), by writing ¢;, (z) = ¢;, r(x) for < 0
and v;, (x) =1, p(—x) for x > 0, cf. Sec. 2.3.1. The lead-MZM contact is then described
by the tunneling Hamiltonian

Ha = Nk Uh Y67 + hc, (3.3)

where \; 1, again is a microscopic tunneling amplitude and one employs the shorthand
notation ¥, =1, (0).

All tunnel couplings will be assumed so weak that they can neither create above-gap
quasiparticle excitations nor destroy the integrity of MBSs. Thus, one demands that
the energy scales associated with the amplitudes ¢;,,, and A; ;, are small compared to
both Apg and Eo. Moreover, physical tunnel contacts extend only over short distances
within the coupled box device. The only exception to this rule are long-ranged pairwise
cotunneling events generated via charging effects, see Sec. 3.1.3 below.

Finally, the Hamiltonian of decoupled lead no. j, cf. Eq. (2.39), is given by

Hleads = _ZUF/ dx w;axw]a (34)

where one assumes the same Fermi velocity vg for all leads and writes j = j, for notational
simplicity. Differences in Fermi velocities are negligible and can be taken into account by
renormalising the above tunneling amplitudes.

So far, a fermionic description of the leads was considered. In analogy to the case of a
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single Majorana box, see Sec. 2.3, it is useful to switch to a bosonised description for the
leads. As for the Majorana box above, fermionic (statistical) and bosonic (charge/phase)
lead variables are thereby explicitly separated. While the lead Hamiltonian (3.4) admits a
purely bosonic description, see Eq. (3.5) below, fermionic aspects do appear in tunneling
operators connecting the respective lead to MZMs or to other leads. Performing Abelian
bosonisation in terms of right- and left-movers, as was discussed in Sec. 2.3.1, one intro-
duces dual boson fields ¢; and 6; obeying the algebra [¢;(2), 0,0,(x)] = imd (z — ') 04,
and Klein factors s; in Majorana representation. Thereby, the lead Hamiltonian (3.4)
reads [Gogolin, 2004|

0

Hieads = ;—i dz [(0,6,) + (0:0,)7] . (3.5)

—00

For a description of tunneling processes, however, Klein factors play a crucial role. Using
bosonised expressions, each tunneling event is factorised into a charge-neutral fermion-
bilinear part encoding the fermionic statistics and a part describing the bosonic charge
(or phase) dynamics. Explicitly, for the lead-MZM tunneling Hamiltonian in Eq. (3.3),
one obtains

H = Njoka i Yea € P92 —9) £ hoc., (3.6)

where a factor 1/y/a has been absorbed in \;j,. Here, the shorthand notation of
Sec. 2.3.1, ie. ®;, = ¢;,(0) and ©) = 0,0;,(0), was used. Note that Eq. (3.6) con-
tains a local fermion parity operator ix;, v, with eigenvalues £1 corresponding to the
occupation number of the fermion mode built from x;, and ~y,.

3.1.2 Non-simple Majorana-lead junctions

It is convenient for the subsequent discussion to revisit the simple lead-MZM contact
of Sec. 2.3.1. For a simple contact, see Fig. 3.2(a), the tunnel-coupled Majorana (v,)
and lead (U, ) fermions are required to have no additional tunnel couplings to other
(Majorana or lead) fermions. For systems with only simple contacts, one can proceed in a
straightforward manner by employing the Klein-Majorana fusion approach put forward in
[Altland, 2013, Béri, 2013|. Thus, one observes that in such systems, each local fermion
parity built from a Klein-Majorana operator x;, and a MZM operator -;, forming the
respective tunnel contact, cf. Fig. 3.2(a), will be separately conserved, ir;, v, = %1
Similarly, all local parities associated with simple MZM-MZM tunnel links are conserved,
1Y, Yk, = 1. The above observations imply that the fermionic sector of the theory
is trivially solvable as long as all local fermion parities remain conserved. A coupled
Majorana box system with only simple contacts can thus be reduced to a purely bosonic
theory, which is generally much simpler to analyse than the original fermionic version.
All lead-MZM junctions beyond the pairwise tunnel contact in Fig. 3.2(a) are referred
to as mon-simple. Two examples of such non-simple lead-MZM contacts are shown in
Figs. 3.2(b) and (c¢). A non-simple junction also occurs when a lead-contacted MZM is
in addition tunnel-coupled to another MZM on an adjacent box, see Fig. 3.1. Similarly,
one may refer to non-simple MZM-MZM junctions if several MZMs on distinct boxes are
coupled to each other.

In this chapter the situation is addressed, where some of the above local fermion parities
are not conserved anymore. This may happen if unintentional parity-breaking mechanisms
are present, e.g. when a conventional mid-gap Andreev state is accidentally centered
near a lead-contacted MBS and thereby activates quasi-particle poisoning mechanisms
[Plugge, 2016a]. Nevertheless, the focus of this chapter lies on intentional parity-breaking
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b) c)

Figure 3.2: Simple vs non-simple lead-MZM tunnel junctions. Filled red circles correspond
to MZMs ~;, and open red circles to Klein-Majorana operators r;, within a bosonised
description of lead fermions, see Eq. (2.41). (a) Simple contact, cf. Eq. (2.45). (b) Non-
simple contact between two MZMs and one lead, cf. Eq. (3.7). (¢) Non-simple contact
between one MZM and two leads, cf. Eq. (3.8). |Gau, 2018|

effects due to non-simple tunnel contacts. Such cases pertain to many Majorana box
transport setups and quantum-information processing applications. In fact, local parity
conservation implies that for systems with only simple contacts, MZMs cannot reveal their
underlying fermionic statistics, since different measurement bases are not accessible. With
the above motivation, one can now inspect several generic scenarios with at least one non-
simple contact, where in- or out-tunneling of charge from the box can take place either
via different MZMs on the box [Fig. 3.2(b)| or through different leads [Fig. 3.2(c)|. The
presence of such contacts has important consequences on low-energy quantum transport
in coupled Majorana box junctions since the corresponding local fermion parities defined
above are not conserved anymore. In particular, after a sequence of tunneling events, some
of these parities may have been flipped along with a charge transfer between different leads.
Similar processes have been discussed in [Kashuba, 2015, Plugge, 2016a| and are known
to affect transport properties.

It is useful to identify subsets of (MZM and Klein factor) Majorana operators with con-
served overall parity. Such a subset must contain an even number m of Majorana opera-
tors, where the corresponding Majorana bilinears generate a spin operator with symme-
try group SO(m) [Béri, 2012, Altland, 2013, Béri, 2013, Altland, 2014]. For both cases
in Figs. 3.2(b,c), three Majorana operators are coupled together at the junction. Taking
into account a dummy Majorana mode not shown in Fig. 3.2, the parity associated with
these Majorana states is conserved. As a consequence, the Majorana bilinears resulting
from this subset can equivalently be described by Pauli operators o, ., cf. Sec. 2.2.2, as
will be discussed next.

As a first example, one might consider the situation in Fig. 3.2(b), where two Majorana
operators (7;,7,) on the same box are tunnel-coupled with amplitudes A, , to a single
lead. The latter is described by the fermion operator UT ~ ke®. Including also a finite
overlap integral between the MBSs (h,), the corresponding tunneling Hamiltonian (3.3)
takes the form

Hor = (Apos + )\yay)ei(@_@ +h.c. + h,o., with 0., = kY, 0, =177 (3.7)

For a specific phase relation between A, and ),, the same model describes quasiparti-
cle poisoning effects for the single-impurity TKE. As shown in [Plugge, 2016a/, in the
presence of additional leads, the RG flow will generate an additional hybridisation term
~ 0,0 between a Pauli operator and the boundary fermion density. In Sec. 3.2.3, the
generalisation of this to arbitrary complex A, will be discussed.

Next, an alternative setup shown in Fig. 3.2(c), where one MZM (+) is tunnel-coupled to
two leads with amplitudes A, ,, is treated. The respective lead fermions are now written

T,y
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E. o [ E.

¢l ¢r

Figure 3.3: Two-box setup with a single tunnel bridge connecting the two boxes. Two
central leads with boson fields ®;, = ¢;,(0) are tunnel-coupled to the respective MZMs,
see Eq. (3.9). Because of the presence of the MZM-MZM link, those lead-MZM contacts
are non-simple. In addition, My g leads are attached to the left/right box via simple
contacts, where the shown example is for M; = 3 and Mg = 2. [Gau, 2018|

as Ui~ k,,e® . From Eq. (3.3), the tunneling Hamiltonian is then given b
T,y Y q ) g g Yy

Hqo = ()\xaxei% 1 )\yaye@y) e ¥ +h.c., with o, = 7k, (3.8)

)

Note that there is no h,o, contribution with o, = ikyk,. Direct lead-lead tunneling pro-
cesses (if present) would produce different terms.

One also observes that, as long as an arbitrary coupled box system does not admit tun-
neling paths forming closed loops, all relative phases between tunneling amplitudes can
be absorbed by suitable shifts of lead boson fields and thus do not affect the physics.
Here, closed loop configurations in Hilbert space may arise from ring exchange processes
involving several boxes, for instance, a plaquette operator in Majorana code networks
[Landau, 2016|. A closed loop is also found for a lead coupled to several MZMs on the
same box, see Fig. 3.2(b). While the relative phase between A, and A, can be gauged away
for the case shown in Fig. 3.2(c), this is no longer possible for the setup in Fig. 3.2(b).
A more complicated example for a system with non-simple contacts can be analysed by
considering the two-box setup in Fig. 3.3. Similar setups arise in basic Majorana qubit
and multi-box measurements |Plugge, 2017, Karzig, 2017| and in the context of stabiliser
codes |Landau, 2016, Plugge, 2016b|. Here the left /right (a = L/R) box is connected to an
arbitrary number My p of normal leads via simple lead-MZM contacts. Figure 3.3 shows
the case of M = 3 and My = 2. In addition, two central leads with the respective fermion
operator \IflT/r ~ ml/rei‘bl/r are connected to the left /right box through non-simple contacts
to the respective MZM operator 7, (with tunneling amplitude )\l/T). The contacts are
non-simple because 7, and +, are tunnel-coupled by an amplitude t;z. With the box
phase operators ¢ g, the corresponding central part of the coupled device is described
by the Hamiltonian

Ho = tpro,ePL™?R) 4 N g, 'L 4 )\ g e $r=P) e, (3.9)

where one defines o, = 17, and o, = iyKk;. Note that one can also write o, ~ ivV.k,
since the central junction parity 7,7,k = £1 is conserved. The appearance of different
Pauli operators in Eq. (3.9) suggests that for X\;, # 0, the two-box setup in Fig. 3.3 is
more difficult to analyse than a purely bosonic counterpart with only simple contacts, e.g.
without the central leads in Fig. 3.3.
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3.1.3 Cotunneling regime

The subsequent discussion will focus on systems where all Majorana boxes are operated
at near-integer n,, i.e. the charge on each box has a quantised ground-state value. While
near-degenerate box charge states (with n, close to half-integer values) can change details
of the TKE |[Herviou, 2016, Michaeli, 2017|, they do not involve additional non-conserved
fermion parity degrees of freedom (here represented by Pauli operators). For weak tunnel-
ing amplitudes and nearly integer ny on all boxes, the system is described by cotunneling
amplitudes connecting in principle any pair of leads in the system via phase-coherent
second- or higher-order charge tunneling processes. To obtain the corresponding cotun-
neling amplitudes in a systematic way, one employs a Schrieffer-Wolff transformation
to project the full theory to the quantised charge ground-state sector of all boxes, see
Sec. 2.3.2.
The projected cotunneling Hamiltonian will now contain qualitatively different terms.
First, there are purely bosonic cotunneling contributions. Such processes do not involve
Pauli operators representing non-conserved fermion parities and have the schematic form
Njnit A5
Hios = S @007 fhue. with J, & — PR T . (3.10)
c e

The cotunneling amplitude J;, ;, contains the initial and final lead-MZM couplings A;, ;-
and Ap ;. for charge tunneling to/from lead j,/ky, via box a/b, see Egs. (3.3) and (3.6).
(Here, a = b is possible.) As a result of the projection to the charge ground-state sector,
the e« terms are no longer present in Eq. (3.10) and become effectively replaced by
1/ E¢ factors in the cotunneling amplitude, see Sec. 2.3.2. In order to obtain a contribution
for lead pairs attached to different boxes (a # b), a sequence of intermediate MZM-MZM
tunneling events with respective amplitudes t;,, cf. Eq. (3.2), is necessary. For them
to contribute to Eq. (3.10), however, such MZM-MZM links must have conserved local
parities. Note that since for each additional tunneling event, the contribution to Jj,z,
gets suppressed by a factor |t;y|/Ec < 1, the shortest tunneling path(s) between a chosen
pair of leads will dominate.
In contrast to the purely bosonic case in Eq. (3.10), one now considers the consequences
of the tunneling path connecting leads j, and k;, involving a string of Pauli operators
o™ = oy, .. Here, 0™ describes the non-conserved local fermion parity at the mth non-
simple link along the path. For a string of n > 1 Pauli operators (m = 1,...,n), the
projected Hamiltonian has the schematic form

Hubos = J;:;;""an)al o€ ®ie %) L e, (3.11)
where J](j,jb}) is a cotunneling amplitude as in Eq. (3.10) and the superscript denotes
that this amplitude applies to a specific tunneling path involving the corresponding Pauli
operator string. Concrete examples for this notation will be given in Sec. 3.2. Note that
with the conventions JJ o) Sk, and ot---0™ = 1 for n = 0, i.e. in absence of non-
simple links, Eq. (3.10) constltutes just a special case of Eq. (3.11).
There exist additional complexities in tunneling at a non-simple junction which comprises
multiple Pauli operators of the same set o,, .. For example, at non-simple contacts in
Fig. 3.2(b,c), elemental tunneling events may involve anticommuting Pauli operators o,
and o,. The corresponding path contribution now exhibits an extra suppression factor
~ |Ang|, where An, is the detuning of the backgate parameter n, away from integer
values. This suppression arises from the destructive interference between tunneling events
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with different time ordering |Landau, 2016, Plugge, 2016b|. In particular, if the box is
tuned precisely to a Coulomb valley center, An, = 0, such paths give no contribution at
all. For finite An,, both Pauli operators effectively combine to the third Pauli operator,
e.g. 0,0, = i0,. With this change and including the |An,| factor, the cotunneling
contribution is then again given by Eq. (3.11).

Furthermore, in coupled box devices allowing for closed loops, see Sec. 3.1.2, elemental
tunneling events, which connect to distinct MZMs, may lead to the same charge transfer.
Therefore, several distinct paths with different Pauli operator content can contribute to
a given cotunneling term ~ ¢'(®ia=%%) Such effects have been exploited, for instance, for
MBQ readout and manipulation schemes, cf. Sec. 2.4. Below, cases with interfering paths
are not considered, or if present, as for the loop qubit device in Sec. 3.2.3 and 3.3.4, they
are explicitly separated.

3.2 Renormalisation-group analysis

Applying the composition rules for cotunneling Hamiltonians in Sec. 3.1.3, the derivation
and analysis of the one-loop RG equations, cf. Sec. 2.3.3, is discussed. General coupled
Majorana box devices under Coulomb valley conditions are studied, where non-conserved
local fermion parities are described by Pauli operators o™ = o,y.. at the mth link. In
Sec. 3.2.1, construction principles for RG equations for systems of this type are introduced
based on the OPE technique. Subsequently, two device examples will be discussed in order

to illustrate typical effects caused by non-conserved local fermion parities.

3.2.1 General derivation of RG equations

In order to obtain RG equations via the OPE approach, one considers arbitrary pairs of
cotunneling operators contributing to #H in Eq. (3.11). For two operators acting at almost
coinciding (imaginary) times 7 and 77, the result of such a contraction must be equivalent
to a linear combination of all possible operators at time (7 + 7’)/2, where the respective
expansion coefficients directly determine the one-loop RG equations, see Sec. 2.3.3. Thus,
one has to analyse contractions of cotunneling operator pairs. Denoting the corresponding
amplitudes by Jj(f,f}) and ij,g/}), their contraction renormalises the tunneling amplitude
J]({U”}), where the Pauli string {¢”} results from multiplication of both operator strings.
This composite tunneling amplitude thus connects leads j and k by a tunneling path
touching lead m and back. The RG equations now depend on whether the Pauli strings
ol --o™ and ¢V --- 0" commute or anticommute.

For commuting Pauli strings, the OPE approach yields the general RG equations

dJ " ({o}) 1(o")
= S (3.12)
Mt )

This result is simple to understand if both Pauli strings do not share overlapping Pauli
operators at all, cf. Sec. 2.3.3. The composite tunneling path is then obtained by stitching
together both paths, and the Pauli string {¢”} corresponds to the product of the strings
{c} and {¢’}. Moreover, if identical Pauli operators appear in both strings, say, o" and
o™ =" they effectively square to unity and thus drop out in the string {o”}. In the
following, Eq. (3.12) is discussed in more detail and for different cases of interest.

To that end, it is convenient to introduce the concept of bosonic subsectors (or simply
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subsectors). A bosonic subsector B refers to a group of M leads (with index j € B)
which are coupled to each other through purely bosonic cotunneling processes, and hence
undergo purely bosonic interactions within the subsector, cf. Eq. (3.10). For example,
this happens for simply-coupled leads that are attached to the same box. If two leads
cannot be connected via purely bosonic cotunneling processes, i.e. if a Pauli string is
involved, they must belong to distinct subsectors. In particular, a lead with a non-simple
lead-MZM contact generally defines its own subsector with M = |B| = 1. According
to this definition, all leads in a general Majorana network uniquely belong to one of its
corresponding subsectors.

First, one can revisit the system discussed in Sec. 2.3. Here M leads are attached to a given
box via simple lead-MZM contacts, thus forming a subsector B. In the simplest case, the
Hamiltonian describing purely bosonic cotunneling processes within this subsector follows
from Eq. (3.10) by summing over all tunneling paths connecting lead j # k (with j, k € B).
Such processes have amplitude Jj, and couple different leads only via the lead boson fields
P, and ®;. Adapting Eq. (3.12) to this purely bosonic problem, one can reproduce the
RG equations for the single-impurity TKE, cf. Eq. (2.51),

dJ;
d—é’“: > Timmke (3.13)
meB,m#~(j,k)

For a discussion see Sec. 2.3.3 and Sec. 2.3.4.
Apart from the purely bosonic processes behind Eq. (3.13), cotunneling events also can

kick the system out of a bosonic subsector B; into a distinct subsector By, which may
belong to the same or to another box. By definition, such processes involve a string

ol--.0™ of n > 1 Pauli operators. The corresponding Hamiltonian reads, cf. Eq. (3.11),
Hibos = Z Z J;éa})al co o™ (PP e, (3.14)
JEBY kEB2

Thus, one can study the way in which the RG equations in Eq. (3.13) for purely bosonic
couplings J;, with j # k € B are modified by the inter-subsector cotunneling processes
in Eq. (3.14). In general, such an excursion from lead j € B to some other subsector By
must involve a Pauli string o'---0™ with n > 1. In order to contribute to the RG flow
of the purely bosonic coupling Jj;, however, the tunneling path must now return to lead
k € B via the same Pauli operator string. As a result, for coupled-box networks, the RG
equations for the TKE in Eq. (3.13) receive an additional contribution,

G

= et Y LTI (3.15)
mGB,m;ﬁ(j,k) m¢3

Fig. 3.4 illustrates one example for a tunneling process contributing to Eq. (3.14) in a
rather advanced device with four boxes. The different examples in Fig. 3.4 also serve to
show the general applicability and versatility of the here discussed formalism for arbitrary
coupled box devices.

From the general equations (3.12), one obtains the RG equations for the cotunneling

amplitudes JJ(,EU}), with leads j € B; and k € B, belonging to different subsectors

dJ 7
——= > It D T (3.16)

meBa,m#k meBy,m#j
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Figure 3.4: Example for a coupled Majorana box device with four boxes (a,b,c,d). The
bosonic subsectors By p.q contain M, = My = 2 and M, = M, = 1 leads with simple
lead-MZM contacts to the respective box. The device has four MZM-MZM tunnel bridges
and three pairs of central leads [({,74), (Ip,7¢), and (., 7r4)| with non-simple lead-MZM
contacts. Each central lead also forms its own subsector. Non-conserved local fermion par-
ities are encoded by Pauli operators o7, "1*%. It also illustrates how RG terms arise from
contractions of cotunneling operators: (i) For j, # k, € B,, the second term in Eq. (3.15)

0'1 0'1 . . .
is due to contraction of J;affb) and Jib,ja) (dashed dark blue line) which renormalises J;,,
(solid dark blue). (ii) For lead indices j; # mg4 € By, the contraction of J;,,,, and Jis)

mgke

(dashed cyan) renormalises the amplitude J](ZE) (solid cyan), cf. Eq. (3.16). |Gau, 2018|

The first (second) term comprises an inter-sector transition followed by a intra-sector
tunneling in By (B1). Note that on top of the terms in Eq. (3.16), higher-order tunneling
excursions via distinct subsectors B’ # B; > may generate additional contributions. For
the applications below, however, such complications are absent.

Next, the case of anticommuting Pauli strings {¢} and {0’} is discussed. Using the
relation 7;0,(7)o,(7") = io,(7)sgn(r — 7’) for 7 — 7' (and cyclic permutations thereof),
with the time-ordering operator 7;, one first observes that contributions with different
time ordering will interfere destructively. As a consequence, there will be no additional
contributions to the RG equations (3.15) and (3.16) from such tunneling events.

However, other types of RG terms can be generated in systems allowing for closed loops,
where subsectors can be connected through distinct tunneling paths with different Pauli
strings. To this end, one can pick a tunneling path which starts at lead j € B, makes an
excursion to a lead in some other subsector, [ ¢ B, and phase-coherently returns back to
lead j. To illustrate this principle, here one focuses on the simplest scenario, where the
Pauli strings {0’} and {o} for back- and forth-tunneling, respectively, are identical except
at one link (m). At this link, one has anticommuting Pauli operators, e.g. o}* and o0},
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Contracting both cotunneling operators schematically yields

om m

g™ )TJZSE“ v “'>(- o)~ J};"’%" <) gl ioc™(T)sgn(r — 7'), (3.17)

x Y lj

J(...az

gl

where all other Pauli operators apart from 7', square out. Expanding also the e*'®s

factors, which appear in all cotunneling operators to lowest order in 7— 7', one encounters
another sgn(7 — 7’) factor and therefore a finite contribution to the RG equations. Using
the lead densities near the respective contacts, (1) = 9,0;(x = 0,7) = —i0.¢;(x = 0, 7),
one then obtains a new contribution generated by such contractions,

Mgy = Y _ Ajol0), (3.18)
J

describing a hybridisation between 07" and the lead fermion densities ©}. Depending
on the application, the coupling in Eq. (3.18) may involve other or even multiple Pauli
operators.

From Eq. (3.17), the RG flow of the coupling constants in Eq. (3.18) is then governed by

2 S e, (3.19)
1¢B

Thus, hybridisation couplings will be dynamically created during the RG flow even for
vanishing bare coupling, i.e. for A;(¢{ = 0) = 0. The A, are real-valued couplings which
are effectively controlled by the sine or cosine of the loop phase

SO;oop = arg (Z JJ(ZO';”)JZ(JUy )) . (320)

1¢8

Importantly, the hybridisations in turn feed back into the RG equations (3.16) for cotun-
neling amplitudes. In fact, one finds that Eq. (3.16) receives the additional contributions

(a:“y)
dJ,

——— ~ (A= Ay) ) (3.21)

gl

For the loop qubit example studied below, see Secs. 3.2.3, such RG feedback effects turn
out to be crucial.

The above rules show that RG equations for a general coupled Majorana box system can be
determined by contracting pairs of tunneling operators. Commuting tunneling operators
generate new composite tunneling operators and/or renormalise existing couplings, see
Egs. (3.15) and (3.16). Contractions of non-commuting operators, on the contrary, do not
contribute to the latter RG equations. However, in systems with tunneling paths forming
closed loops, hybridisation terms between Pauli operators and lead fermion densities will
be generated. Such terms will in turn feed back into the RG equations for the cotunneling
amplitudes.

Next, two examples of practical interest are discussed in terms of the above RG analysis.

3.2.2 Two tetron device

As a first example, a two-box device as shown in Fig. 3.3 is studied. One observes
that such a system does not admit tunneling paths forming closed loops, and thus the
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RG equations do not involve the hybridisations in Eq. (3.18). Using Hjeaqs in Eq. (3.5)
and taking into account the central junction described by Eq. (3.9), the Hamiltonian
H = Hieaas+Hr+Hr+Hrr is obtained by a Schrieffer-Wolff transformation to the ground-
state charge sector of both boxes, see Sec. 3.1.3. In particular, cotunneling processes
involving only boson fields connected to the left /right ( L/R) box are contained in

HL/R = — Z (JL/R>jk COS ((I)J — (I)k) — Z (JX)l/r,jUx COS ((I)l/r — q)j) s (322)

J,kE€EBL  Rr.JFk JEBL/R

where By, r denotes bosonic subsectors with My, g leads connected to the respective box
via simple lead-MZM contacts. (For the example in Fig. 3.3, M, = 3 and My = 2.) The
central leads in Fig. 3.3, with boson fields ®;/,., are coupled to the L/R box via non-simple
contacts, where non-conserved local fermion parities are encoded by the Pauli operators
Ouy.z See Eq. (3.9). Inter-box cotunneling processes are described by

Hin = =D (Jy)y oycos (B — ;) = > (Jy)u oycos (& — g)  (3.23)
j€BL kEBr
+ Z (JZ)jk O, sin (q)] — (I)k) .
jEBL,kEBR

The Ji,,r amplitudes in Eq. (3.22) are purely bosonic intra-sector couplings as in Sec. 3.2.1.
The Jx (resp., Jy) cotunneling amplitudes connect leads within bosonic subsector By g
to the central lead on the same (resp., other) box, involving the Pauli string o, (resp., o,).
Finally, the J; amplitudes link the bosonic subsectors By and B by inter-box tunneling
via the Pauli string o,.

In total, there are seven coupling families: Jp g, Jx,/r, Jy,,;, and Jz. The respective
coupling matrix elements depend on microscopic lead-MZM ( ;) and MZM-MZM (t.r)
tunneling amplitudes, cf. Eq. (3.9). Schematically, (Ji/r/x)jk ~ AjA;/Ec and (Jy/z)jk ~
NAitrr/E2. Since one can gauge away complex phases of tunneling amplitudes for
systems without closed loops, all these cotunneling amplitudes can be chosen real and
positive. Within each coupling family, one thus arrives at a real symmetric matrix.

The RG equations then follow from Eqs. (3.15) and (3.16). For j, k € By, one finds

d({lfﬁgk — Z (J1)jm (I ke + (Ix )15 (T e + (Jy )i (Jy ) ris + E (J2)jm (T2 k- (3.24)
meBL meBR
m(j.k)

Furthermore, with j € By, one obtains

d(J .
% = > W )irm(JL)mg, (3.25)
meBy,
m#£j
while for j € By, and k € Bg,
d(Jz);
(dZE)]k = )imI2)me + > (T2)im(Tr)mk- (3.26)
mef‘L meECR

The corresponding RG equations for the Jg, Jx, and Jy; couplings follow by exchanging
left /right labels.

The above RG equations can be simplified considerably by observing that different cou-
pling families effectively become isotropic at low energy scales. For small-to-moderate
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bare anisotropies of the respective coupling matrices, such an isotropisation can already
be established within the weak-coupling regime accessible to the RG approach. As shown
[Gau, 2018] by a numerical solution of the full RG equations (3.24)(3.26), the isotropi-
sation mechanism also applies for the two-box device in Fig. 3.3 (with Mz = 2). This
finding can be rationalised by noting that for any M > 2, couplings to leads in this sector
feed back into the RG flow of each other if they belong to the same family. As a conse-
quence, different coupling families are effectively described by specifying only their mean
(average) values, (Jg); — J and so on, i.e.

1 1
Jr = m Z (J1)jk, Ix; = A Z (Jx )k
AL j#keBL L keBy,
1 1
JY,T = M Z (JY)rka JZ = MM Z (JZ)jk- (327)
L keBy, LR JEBL . KEBR

Anisotropies within a given coupling family are RG irrelevant and can thus be neglected
at low energies. In fact, one expects the above conclusions to apply for general coupled
Majorana box systems.

The two-box problem in Fig. 3.3 is then described by seven running couplings, where
Eqgs. (3.24)-(3.26) yield the isotropised RG equations

d
% = (M= 2)J; + MrJg + Jxy + Jy,
dJ
% = (Mp—1)Jx,Jz,
dJy,
d—? = (Mr—1)Jy,Jz,
dJ
d—; = (M, —1)J, + (Mg —1)Jg] Jz, (3.28)

and related equations for Jg, Jx,, and Jy,;. One can briefly check Eq. (3.28) for two
limiting cases:

For vanishing MZM-MZM coupling, t;z — 0, both boxes are decoupled. Thus, one
obtains Jz = Jy,,; = 0, and o, = £1 is conserved. The above equations then reduce to a
decoupled pair of single-impurity TKE systems, cf. Eq. (3.13), where M 4+ 1 and Mg+ 1
leads are attached to the left /right box: for ¢,z = 0, the central leads [ and r in Fig. 3.3
join the respective bosonic subsector By g.

In the absence of both central leads, one finds Jx /. = Jy, = 0 and o, = == is conserved.
In this case, the RG equations for the single-impurity TKE are again recovered. However,
since both boxes are now connected by t;r # 0, one encounters the equations for a single
Kondo impurity with M + Mg attached leads. At low energies, both boxes are thus
fused together by the MZM-MZM link and thereby form a single enlarged Majorana box
subsequently exhibiting a global TKE with symmetry group SOo(My, + Mg).

For generic initial values of the isotropised cotunneling amplitudes, the RG equations
(3.28) were solved numerically. The analysis shows that the system will flow towards
strong coupling with competing separate (intra-box) and global (inter-box) TKEs. This
scenario is reminiscent of the classic two-impurity Kondo problem |Jayaprakash, 1981,
Jones, 1988, Affleck, 1995| and indicates, that a strong-coupling analysis is needed in
order to determine the ground state, see Sec. 3.3.3.
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3.2. RENORMALISATION-GROUP ANALYSIS

3.2.3 Loop qubit device

As a final example for the RG analysis, the loop qubit device shown in Fig. 3.5 is consid-
ered. This device has a single Majorana box containing M = 2 leads with simple contacts,
and a non-simple contact coupling two MZMs to a central lead (with boson field ®..), see
Sec. 3.1.2, in particular Eq. (3.7) and Fig. 3.2(b). Importantly, such a device provides the
simplest possibility for tunneling paths forming closed loops. It has been suggested as a
Majorana qubit realisation [Karzig, 2017|, where the relative phase g between the tun-
neling amplitudes connecting the central lead with the respective MZM can be changed by
a magnetic flux. Note that g corresponds to the loop phase between different tunneling
paths in Eq. (3.20). By contacting the box with leads as shown in Fig. 3.5, non-trivial
interferometric conductance measurements can be performed. In particular, a measure-
ment of the linear conductance between the central lead and one of the outer leads (@ o
in Fig. 3.5) could determine the eigenvalue of the Pauli operator o, related to the non-
conserved fermion parity of the junction [Plugge, 2017, Karzig, 2017|.

The non-simple junction is described by Hs; in Eq. (3.7) with & — &, and h, — 0. A
direct MZM-MZM coupling is not included, but MZMs instead hybridise with the fermion
density at the central contact, see below. With o, = (0, +i0,)/2, one thus obtains

Hot = (Nyoy + A 0)e@ %) fthe,  with Ay =\, Fi)e™, (3.29)

where a gauge was used, where ¢y appears at the o, link in Fig. 3.5 and the tunneling
amplitudes \,, are real-valued. Interestingly, for ¢y = /2, the same model describes
quasi-particle poisoning effects for the TKE [Plugge, 2016a].

As next step, one implements the projection to the ground-state charge of the box, see
Sec. 3.1.3. Thus, the Hamiltonian reads H = Hjeaqs + Hp. For M leads (labeled by j € B)
with simple contacts to the box, where M = 2 in Fig. 3.5, H, is given by

My, = —J Y cos(®;— D)~ Y Ao} — A0.0,
J,keB,j#k jEB
1 .
— > [(Lyoy+ Lo )e"®~%) 4 hel, (3.30)

V25
where isotropic couplings were assumed. With a tunnel coupling ) for the simple lead-
MZM contacts, the complex-valued cotunneling amplitudes between the central and the
outer leads are contained in Ly = ﬂS\Ai/EC, see Eq. (3.29). In contrast to those, the
TKE-like coupling .J describes cotunneling between leads within subsector B. Due to the
existence of tunneling paths forming closed loops, Eq. (3.30) also contains hybridisation
terms of the form in Eq. (3.18). The bare (initial) values for these couplings are A = 0 and
A >~ (AN, /Ec)sinpg. During the RG flow, both A and A, grow and approach strong
coupling.

Next, one can exploit current conservation, (07)+>_,(©%) = 0, which follows from gauge
invariance under a simultaneous shift of all boson fields ®;.. This relation allows to
further reduce the number of parameters by trading off hybridisations at the outer leads
versus an enhanced hybridisation between the central lead and o,. With A = 2(A. — /~\),
one then obtains the RG equations, cf. |[Plugge, 2016a,

d.J
= (M=) + L+ L P
dj—; = [(M—1)J+A] L., (3.31)
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3.2. RENORMALISATION-GROUP ANALYSIS

Figure 3.5: Loop qubit device contacted by normal leads. This device has been suggested
in |Karzig, 2017| for interferometric Majorana qubit measurements and manipulations.
Two long topological superconductor (TS) wires with a superconducting (SC) bridge
define a Majorana box with four MZMs, where the loop phase ¢y can be controlled by
a magnetic flux. The normal leads attached to the box correspond to boson fields ®; .
The central lead (®.) couples to two MZMs as in Fig. 3.3(b), where the non-conserved
fermion parity is encoded by Pauli operators o, .. [Gau, 2018]

dA
dl
The most interesting prediction of these equations is the onset of helicity [Plugge, 2016a),
i.e. a non-trivial flow of the couplings L. To this end, it is instructive to relate the RG

flow of the above couplings with that of the loop phase ,. First, one observes that with
Az in Eq. (3.29),

= (M 1) (L~ |L-P).

LoOP +1L-(OF ~ N2+ X,
Lo(OF = [L_(OF ~ A, sinpo. (3.32)

This implies that while the TKE-like coupling J grows and stays independent of ¢, the
hybridisation A, with initial value A(¢ = 0) ~ sin g, keeps the same dependence on ¢,
throughout the RG flow. Moreover, the complex phases of the couplings L4 are invariant
during the RG flow, since the prefactor for their self-renormalisation in Eq. (3.31) is real.
Using Ly ~ A4, the running loop phase is then defined by

po(l) = arg[i(Ly — L-)/(L+ + L-)],. (3.33)

Note that in general ¢q(¢) will change during the RG flow, because it depends on both
the complex phases and the absolute values of Li. In particular, for bare loop phases
with ¢0(0) € (0,7), one finds |L,(0)] > |L_(0)|]. While for ¢,(0) € (—m,0), one instead
obtains |L_(0)] > |L4(0)]. The RG equations (3.31) thus predict a flow of the larger
coupling L. to strong coupling, along with growing J and A, while the opposite coupling
L+ is dynamically suppressed.

In [Gau, 2018], typical results for the RG flow of ¢y obtained by numerical integration
of a fully anisotropic version of Eq. (3.31) were shown. The numerical results perfectly
recover the qualitative behaviour discussed above. In physical terms, the limiting cases
of the RG flow correspond to phase pinning at low energies, with the stable asymptotic
value ¢ = +m/2 as L, outgrows L, cf. Eq. (3.33). These two values correspond to the
helical fixed points found in [Plugge, 2016a].

For ¢y = 0 or ¢y = 7 the RG flow of the hybridisation, A(¢) ~ sinpe(¢) = 0, is fully
blocked. Here a fundamentally different problem of a single MZM coupled to two leads
occurs. For a discussion see |Gau, 2018|.

In Sec. 3.3, the strong-coupling limit is discussed. Here the loop qubit will again serve as
an example.
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3.3. STRONG-COUPLING REGIME

3.3 Strong-coupling regime

In Sec. 3.2, it was shown that the systems studied in this chapter will approach the strong-
coupling regime. At very low energies, in particular for an understanding of the ground
state, one therefore has to go beyond the RG approach. In this section, concepts developed
for a strong-coupling solution of the TKE via Abelian bosonisation, cf. Sec. 2.3.4, are
extended to the more general setting of Majorana box networks. Such strategies can
lead to additional insights, and even allow for analytical solutions in not too complicated
setups.

The arguments in Sec. 3.2 imply that for low energies, one needs to keep only isotropic
cotunneling amplitudes within and in between subsectors. In fact, if a subsector contains
more than one lead, the center-of-mass field will be the only linear combination that is not
pinned in the ground state. To access the ground state, one has to study the combined
dynamics of these center-of-mass fields and the Pauli operator strings in the system.
In this way, the complexity of the problem can be drastically reduced and the physics
becomes more transparent, see Sec. 3.3.1. A second key ingredient of the strong-coupling
approach is tied to the possibility of decoupling certain linear combinations of boson fields
via unitary transformations, see Sec. 3.3.2. This strategy is then illustrated in Sec. 3.3.3
and Sec. 3.3.4 for the two examples discussed from the RG viewpoint in Sec. 3.2.2 and
Sec. 3.2.3.

3.3.1 Reduction of bosonic subsectors

The first step in the construction of the strong-coupling theory is the reduction of every
bosonic subsector B to the corresponding center-of-mass field,

¢0<x77_) = g02¢j(x77)7 9o = —F— (3'34)

jeB

where &5 = ¢o(x = 0). For M = 1, the field ®y then coincides with the single boson
field in the respective subsector (with go = 1), but Eq. (3.34) implies a reduction of
complexity for M = |B| > 2. The usefulness of Eq. (3.34) follows from previous Abelian
bosonisation studies of the strong-coupling TKE [Béri, 2017] and the arguments explained
in Sec. 3.2. In fact, for M > 2, couplings within B grow strong, and for M > 3 also become
isotropic. In detail, one can introduce reduced boson fields, éjeg = &, — goPy, with the
constraint Z]‘ CiDj = 0. For a discussion of the low-energy physics within a single bosonic
subsector B see Sec. 2.3.4, where the analogy to the quantum Brownian motion of a
particle with coordinates &Jj in the (M — 1)-dimensional lattice defined by the potential
Hp, cf. Eq. (2.55), was established.

In networks, the main interest does not lie in effects caused by intra-subsector operations,
but instead, the question of interest is how different center-of-mass boson fields in a
coupled box device interact among themselves and with Pauli string operators. Thus, one
can assume that all reduced fields in bosonic subsectors are pinned to their static quasi-
classical minima ¢;, and then express the dynamics of ®; in terms of the center-of-mass
motion,

Pjes(7) = 45+ goPo(7). (3.35)
Inserting Eq. (3.35) into Eq. (3.14), for transitions between subsectors B; and Bs, one
obtains
Hp, 5, = Z Z JUTD G nei(Bi=3k) gi(9181-9282) (3.36)
JEB1 kEBy
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where ®; 5 denote the center-of-mass fields for subsectors B o, respectively, with g, 5 in

Eq. (3.34).
Since the relative tunnel phases between leads in each subsector were gau ed away, the
J](,EU}) in Eq. (3.36) are real and positive up to a global inter-sector phase goB B . Defining

an effective tunneling amplitude between sectors B; and B, with the correspondmg Pauli

string {0},
o}
Jlg{l%]; 1505152 Z Z J ({o}) Z(‘PJ SDk) (337)
jEBl keBso

the inter-sector cotunneling Hamiltonian is given by
Hp,B, = J[(g{lB}2 g1 ®1=02®2) 4 ) (3.38)

The full strong-coupling tunneling Hamiltonian follows by summing over all subsector
pairs. Several comments are now in order:

1. The above discussion also holds if one of the subsectors Bj s contains just a single
lead, where Eq. (3.38) applies as soon as the other subsector enters strong coupling.

2. Phase differences between individual @; (or @) in Eq. (3.37) are pinned by the
potential terms of the respective subsector, cf. Eq. (2.55). Therefore, also the inter-

sector differences ¢; — @ are fixed, and all contributions to J({ }) in Eq. (3.37) add
up with a collective inter-sector phase gpglUB}Q)

3. Equation (3.38) implies a drastic reduction in the number of boson fields at strong
coupling. However, the parameter gy in Eq. (3.34) implies that the collective
fermionic lead obtained from ¢, in general will represent an interacting fermion
theory. To see this, note that g = 1/g2 = M acts like a Luttinger liquid parameter
[Nayak, 1999, Béri, 2017|. For M > 1, thus attractive electron-electron interactions
are present.

4. One might encounter multiple tunneling paths with distinct Pauli strings connecting
both subsectors, in particular, for systems with closed loops. The strong-coupling
Hamiltonian then contains a center-of-mass term as in Eq. (3.38) for each of these
non-equivalent tunneling paths. Their relative phase,

loop __, ({o}) ({o'}) (339)

SO - 90 162 - 808182 Y

coincides with the loop phase in Eq. (3.20).

The strong-coupling projection of bosonic subsectors to center-of-mass fields is not limited
to a specific setup. In particular, the same idea allows one to elegantly discuss nonequi-
librium effects due to applied bias voltages in simply-coupled systems [Béri, 2017]. For
the resulting effective models, similar to the discussion in Sec. 3.2.1, the here discussed
approach only depends on whether tunneling paths between a pair of subsectors contain
overall commuting or anticommuting Pauli strings. For mutually commuting operators,
one arrives at RG equations as in Eqgs. (3.15) and (3.16). Now one might consider two
tunneling operators with couplings Jl(g{l‘;};) and Jl%g}), which connect subsector By with
subsectors B; and Bs, respectively, cf. Fig. 3.4. If the corresponding Pauli q‘rring@ anti-
commute, no RG contributions will be generated for arbitrary couplings ‘]818 D between
B and Bs. However, if two (or more) paths between a pair of subsectors contain anticom-
muting Pauli strings, one obtains the hybridisation and feedback contributions discussed
in Sec. 3.2.1.
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3.3. STRONG-COUPLING REGIME

3.3.2 Decoupling fields via hybridisation terms

Another key ingredient concerns a decoupling of certain linear combinations of boson
fields from cotunneling operators with Pauli strings. Such strategies go back to the work
of Emery and Kivelson (EK) |Emery, 1992| and are often used for Kondo systems, see
|Gogolin, 2004, Fabrizio, 1995, Landau, 2017|. In particular, they show that the relevant
low-energy degrees of freedom at strong coupling usually differ from those at weak cou-
pling. After an orthogonal rotation of the original set of lead boson fields {¢;(z)} to a new
set of boson fields {¢,(z)}, which corresponds to a highly non-local operation in terms of
the underlying fermions, a unitary rotation involving Pauli operators and the boundary
phase fields ®, = ¢,(0) can be performed. One thereby trades off the coupling of some
boson species with a Pauli operator in favour of a hybridisation term. These generalised
EK decoupling schemes can allow for exact results at special parameter choices (Toulouse
points) [Gogolin, 2004|, where the bare hybridisation, cf. Sec. 3.2.1, is precisely compen-
sated by the effects of the unitary transformation.

This strategy can be used to decouple relative (‘spin’) fields in the cotunneling regime
of charge-quantised coupled box systems. As an example, one might focus on the single-
MZM two-lead junction described by the junction Hamiltonian #,, in Eq. (3.8), see
Fig. 3.2(c) and Sec. 3.1.2, where the boson fields ®, , refer to the two leads coupled to a
single MZM.

First, one switches to linear combinations of the lead bosons, @.() = (¢.(z)Ed,(7))/V/2,
and analogously for the conjugate 6, fields. The transformation is written as ¢, =
(®, + ®,)/V2 and @, = (®, — ®,)/v/2 , with the implicit understanding that the trans-
formation is also carried out in the bulk. From Eq. (3.8), one then obtains

i —i%2\ i(—v)
Hio = ()\xaxe V2 4 \oye \/5) e'v2 " 4+ he, (3.40)

where only the @, field couples in an essential manner to the Pauli operators o, .

At this point, one applies the unitary transformation U = eio=2/V2, Switching to o4 =
(0, +1i0,)/2, the transformed junction Hamiltonian, H;, = UH; U, is given by

”Hl,g = [)\x <0+ + ofeﬁi%) — Ny (07 + a+e*ﬁiq’5>] ei(%*g") +h.c. (3.41)

In addition, transformation of the lead Hamiltonian generates a hybridisation term, which
is of the form (vp/v/2)0,0". The Az/y terms now contain rapidly oscillating phase expo-
nentials of ®,. In the spirit of the rotating wave approximation, one can drop such highly
irrelevant tunneling operators. Thereby, the boundary Hamiltonian reduces to

Iy

& : (59 !
b — T - — L. z 9 .
Hy = Moy —idjo_)e V2 7 +hc. + Ao, (3.42)

where A includes a bare coupling value and the above vF/\/§ term. Thus, the field &,
has been decoupled at the cost of an interaction between the lead density ~ ©’ and the
Pauli operator o,. However, at the special Toulouse point, which is determined by A =0,
the spin-field combination disappears completely.

For a discussion of a similar decoupling strategy applied to a system with near-degenerate
box charge states see |Gau, 2018|. In the remainder of this section, see also Sec. 3.4,
the above ideas are employed to study the strong-coupling regime for the applications
discussed from the weak-coupling RG perspective in Sec. 3.2.2 and Sec. 3.2.3.
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3.3. STRONG-COUPLING REGIME

3.3.3 Two tetron device

For the two-box device in Fig. 3.3, according to the strategy in Sec. 3.3.1, one first identi-
fies the important boson fields that should be kept in the strong-coupling analysis. There
are four such fields, namely the center-of-mass fields for the left /right box, ®,z, with
gr/r = 1/+/Myp g in Eq. (3.34), and the left /right central lead fields, ®;/,, with g;;, = 1.
Hence, five different inter-sector couplings remain: Jz, Jx /., and Jy, ;. Since those effec-
tive couplings are obtained by summing over individual leads, they include enhancement
factors ~ M g, cf. Sec. 3.3.1. From the cotunneling Hamiltonian in Eqs. (3.22) and
(3.23), the effective strong-coupling theory follows as

Heff = Z Hleads[¢zx; ‘91/] - % <Fb + FZ) ) (343)

v=L,R]l,r

with the boundary operator

iW(P;—gr P i(Pr—gr® (P —grP
r, = JX,lUxe( 1—9L L)+JX,rUm€( r—9R R>+JY,lUy€( 1—9r®PR)

+ Jyro-yei(q)r_gLCDL)+iJZ0-Zei(qu)L_gRq)R). (3.44)

For arbitrary device parameters, further analytical progress is difficult even though at
least one of the charge/spin combinations of the central lead fields, ®., = (®; + ®,)/v/2,
can be decoupled by an EK transformation, see Sec. 3.3.1. For instance, when studying
transport between L/R leads, a decoupling of ®, is most sensible. In any case, numerical
approaches can provide another option to investigate the physics encoded by Eq. (3.44).
Instead, the focus lies on a simpler yet non-trivial two-box setup, which does allow for
analytical progress. Such a device is shown in Fig. 3.1, where in contrast to the case
depicted in Fig. 3.3, one only has a single central lead (®;). The strong-coupling Hamil-
tonian for this device follows directly from Eqs. (3.43) and (3.44) by putting Jx/y, = 0.
The remaining couplings are given by

Jo=JIxy, Jy=Jvy, J.=Jz. (3.45)

One then performs an EK transformation with U = ¢*=(®1=92®r)  Following the steps in
Sec. 3.3.1, the transformed Hamiltonian, H.g = Hicaas + Hsp, contains the boundary term

1 /-~ -
Hy = —5 (T +T]) + Ao (0] — g0, (3.46)
Ty, = (Juop —iJ.0,)e WePL=9r%r) 4] 5,

The hybridisation parameter A = Ay — vp includes a bare coupling Ay, where vy is due
to the EK transformation of Hj.qs. Next, one performs an orthogonal rotation of the
¢r/r(x) phase fields,

¢1) 1<9L —gR)(¢L) __ [ 9
S ; = + g4, 3.47
( P2 g\ 9r 9L OR J JL T IR (3.47)
resulting in

- 1 _ A

Hy = -5 ((Jooy —iJ.0.)e 9 +hee. + Jyo,) + EUZ (90] + 9701 + grgr©5) . (3.48)

The setup with M; = Mgr = 2 in Fig. 3.1 now gives access to an exact solution at the
Toulouse point, A = 0, via the refermionisation approach [Gogolin, 2004]. Indeed, for
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g = 1, which only holds for M; = My = 2, the operator e~¥®! in Eq. (3.48) can be
expressed as fermion annihilation operator (up to a Klein factor), and Hog thus reduces
to a non-interacting fermion theory for A = 0. In the remainder of this subsection,
My = Mg = 2 are assumed, but for now still allow for A # 0.

At this stage, one can employ Eq. (2.41) backwards to obtain chiral fermion operators
Y, () associated with the respective boson field ¢,, where the mode index is given byr =
1,2,1. Using ¥, = v,(0) and recalling that Ul ~ r,e/® see Eq. (2.41), Klein factors (k)
are again represented as Majorana operators. In addition, one expresses Pauli operators
as Majorana bilinears, 04—z, . = Y270, With the overall parity constraint vov,7,7. = 1.
Noticing that k,—; is the only Klein factor which explicitly appears in 7-[eff, and that
ivok1 = £1 is conserved, iqgr; = —1 can be chosen. Hence, Eq. (3.48) yields

Hy = o (W] =) i (o — o) (4 01

i, ,
= S T idy e s 2000+ WO — T, ¢ (3.49)
where : : indicates normal-ordering and 1/y/a factors from the short-distance cutoff

in Eq. (2.41) have been absorbed in .J, .. In the Toulouse limit, one indeed has non-
interacting fermions. In the final step, one switches to chiral MFs by writing

() = & (2) + in,(2)] V2, (3.50)

where &,(x) = £ (x) and 7n,(z) = n/(x) obey the algebra {&,(z),n,(2')} = §(x — 2")6,.
The bulk Hamiltonian then takes the form

’M)F

Hleads = _7 Zy: /_OO dx (51/&7051/ + ﬁuﬁxﬁu) ’ (351)
and the Toulouse Hamiltonian is given by

. , i,

HToul = Hleads - Z\/§Jx7xn1(0> + Z\/i(t]mf)/y - Jz7z)€1 (0) - Ty’)/z’yx (352)
Interaction corrections to the above Toulouse Hamiltonian are discussed in |Gau, 2018].
Finally, noting that ¥, ~ ¢~ = ¢~#®2=®r)/VZ gne observes that the central lead (U))
decouples at the Toulouse point, i.e. no current will flow through this lead. A detailed
discussion of nonequilibrium transport for this setup is given in Sec. 3.4.

3.3.4 Loop qubit device

As a last example, the strong-coupling regime of the loop qubit device depicted in Fig. 3.5
is discussed. While a limiting case of the problem, cf. Eq. (3.53) below, has already
been addressed in [Plugge, 2016a|, in view of the experimental interest in this device,
[Gau, 2018] provides a more complete picture. Following the strategy in Sec. 3.3.1, one
first defines a center-of-mass field for the M outer leads, &, = g, Z]Nil ®; with g, =
1/v/M. Also recall that ®, denotes the boson field for the central lead contacting two
MZMs on the box, see Fig. 3.5. The weak-coupling analysis in Sec. 3.2.3 has identified
two qualitatively different candidate strong-coupling fixed points.

The first type is stable and describes an RG flow towards loop phase ¢y = +m/2. Without
loss of generality, one might choose ¢q = +7/2, where the complex-valued cotunneling
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amplitude L, is dominant and the amplitude L_ vanishes, c¢f. Eq. (3.30). One then
obtains the strong-coupling theory, Heg = Hicads + Hypg=r/2, With

Hopogmrjo = —Jp o€/ UEPL7%) L he + Ao, O, (3.53)

where J, = ML, /v/2 and A = 2(A. — A), see Sec. 3.2.3. For M = 1, [Plugge, 2016al
found that this model can be mapped onto a fully anisotropic single-channel Kondo model.
For M > 2, the central lead ®. instead dynamically decouples from the outer leads which
in turn develop a TKE for M > 3.

The second fixed point, taken as ¢y = 0 without loss of generality, is unstable with respect
to phase variations dgy, see [Gau, 2018|. This fixed point is qualitatively different from
the first one, as it implies L, = L_ and A ~ singy = 0. The strong-coupling theory
follows from Egs. (3.29) and (3.30),

Hoppeo = —(Joow + Jyo, ) 9EPL7%) 4 h e, (3.54)

with J,, ~ A;, in Eq. (3.29). Next, the local fermion parity representation of Pauli
operators, 0,, = iV;yK, can be used. Since both J, and J, are real, with fixed ratio
during the RG flow, one can construct a new Majorana operator

Y= (LoYe + )/, T =2+ T2 (3.55)

The central contact thus couples to a single Majorana operator v only, since the relative
tunneling phase between the lead and the two original MZMs is zero (or 7). For other val-
ues of g, such a reduction is not possible. However, the above reasoning is not restricted
to the cotunneling regime. The same steps also apply for the tunneling Hamiltonian in
Eq. (3.29), and hence one expects this effect to always appear so long as ¢g = 0 mod 7.
Finally, note that Eq. (3.54) has conserved fermion parity iyx = £1. Choosing ivx = 1,
one obtains

H<p0:0 =-=2J COS(gL(I)L — (I)c) (356)

Using the results of |Béri, 2017|, where Eq. (3.56) also appears, the full nonequilibrium
transport characteristics between the central lead and an arbitrary number M > 2 of
outer leads are accessible.

The loop qubit device in Fig. 3.5 is likely most relevant as a starting point to more
complicated Majorana multi-junctions and networks. To guide such experimental tests,
it is expedient to summarise how quantum transport is expected to depend on the loop
phase . Since experiments are performed at small but finite temperature and bias,
features of the unstable fixed point should appear in a region around ¢y, = 0 mod =
with small but non-zero hybridisation. When considering the case M = 1. If ¢y =~ 0,
the here discussed theory predicts qualitatively the same behaviour as for a two-terminal
mesoscopic Majorana wire |Hiitzen, 2012|. While transport for half-integer n,, i.e. at
a charge-degeneracy point, exhibits the quantised zero-temperature conductance Gy =
e?/h, transport in the cotunneling regime will be strongly suppressed. Conversely, as
@ is increased, the conductance should approach G largely independent of n,. Here,
tunneling of charges is not due to charge-degenerate states but rather caused by a Kondo
resonance |[Plugge, 2016a]. The latter arises due to many-body screening of the spin-1/2
impurity ~ (04, 0y,0,) built from three Majorana operators, two at the central and one
at the simply-coupled lead. Next, the case M > 2 is considered, i.e. a multi-terminal
measurement of conductance between the central lead and outer leads in Fig. 3.5. Starting
again with ¢y ~ 0, the device should display the transport behaviour expected for the
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TKE, cf. Sec. 2.3.4, with fractional conductance values at zero temperature and non-Fermi
liquid power laws in the temperature- and /or voltage-dependent conductance. In the loop
qubit device, experiments typically include probing the finite-bias conductance through
the central lead, which, for ¢y ~ 0, should reveal the features discussed in [Béri, 2017].
For increasing ¢, the ensuing hybridisation A at the central (and all other) leads will gap
out the MF pair involved in o, = iv,7,. As a consequence, transport involving the central
lead will be blocked at temperatures and/or voltages below the Kondo temperature Tk
of the box. Thus, one predicts drastically different low-energy conductance behaviour
depending on both the loop phase ¢y and the number of attached leads.

3.4 Transport in a two tetron device

In this section, nonequilibrium transport properties for the two-box device in Fig. 3.1 are
studied by employing the strong-coupling theory in Sec. 3.3.3. The system is considered
at the Toulouse point, with the non-interacting Hamiltonian Hroy in Eq. (3.52). The re-
sulting physics is expected to be generic since interaction corrections around the Toulouse
point are RG irrelevant [Gau, 2018|. For closely related models, an exact solution for
the full counting statistics of charge transport has been described in [Gogolin, 2006] and
[Landau, 2017|. In the following, those results are adapted to the setup in Fig. 3.1.

To that end, one can first recall that at the Toulouse point, the central lead ¢; will dy-
namically decouple from the transport problem, see Sec. 3.3.3.Thus, the focus lies on a
transport configuration, where the My = 2 (Mg = 2) leads attached via simple contacts
to the left (right) box are held at chemical potential +eV/2 (—eV/2). In particular,
there are no voltages applied between leads attached to the same box. If the latter were
present, quick equilibration of leads at each box is expected due to the large intra-sector
coupling. On the contrary, the inter-box coupling may be small and equilibration is
perturbed by the central non-simple junction. One then considers the outcome of a two-
terminal measurement of the fluctuating time-dependent current, [(t¢), flowing between
individual pairs of leads on different sides. During a measurement time t,,, the charge
q= J," dt'I(t') is transferred between the two leads, where the full counting statistics of
q follows from a cumulant generating function x(\). In particular, by taking derivatives
with respect to the counting field A, all cumulants can be obtained from the relation
(0"q) = (—1)"0% In x(A = 0). Below, only the average current I, and the current noise .S,
are discussed. They are given by

2
1= (g), 5= Qti (8%). (3.57)
Next, one relates the transport between individual leads attached to the left and right
box, respectively, to the transformed fermion basis at strong coupling, cf. Sec. 3.3.3. To
this end, note that the application of the operator ¥; ~ e U®L=2R)/V2 on an arbitrary
system state amounts to transporting one unit of charge between the left and right side.
Per tunneling event, the charge transferred at each individual lead reads e* = e¢/2. Thus,
one can include the counting field by letting ¥, — e*(")"*/4¥; on the forward (backward)
time branch of the Keldysh partition function for Hryoy [Gogolin, 2006]. Since the pro-
jected theory in Eq. (3.52) contains only Wy, the inclusion of a counting field is relevant
only for one out of the four fermion species in the ensuing two-channel Kondo model
[Landau, 2017].

Following |Gogolin, 2006, Landau, 2017|, where only the Green’s functions for the three
impurity-Majorana operators 7, . in Eq. (3.52) have to be updated, one obtains the
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zero-temperature generating function,

eV/2
Inx(\) = i /0 dwln (1 + T (w)[e™ —1]), (3.58)

T or

with the frequency-dependent transparency

(Mw? —T,J2)

T = s A [P = 2R+ oA + T

(3.59)

Here, the energy scales I', , ~ Jiz are defined, where the proportionality constant also
takes into account the rescaling of J, . due to the short-distance cutoff in Eq. (2.41), see
Sec. 3.3.3.

Since the Toulouse Hamiltonian in Eq. (3.52) contains not only different transport mech-
anisms between left and right leads but also a Majorana hybridisation, multiple scenarios
are possible depending on J, , .. First, the predictions of Eq. (3.58) for the current-voltage
characteristics and for shot noise in this system for J, = 0 are discussed. Afterwards,

Sec. 3.4.2 extends the discussion to the case of a finite Majorana hybridisation, i.e. .J, # 0.

3.4.1 No Majorana hybridisation

Starting with the case J, = 0, where the MZM operators ~, and v, are not hybridised,
one can define the channel hybridisations

Fl - F;m FQ - Fm + Fz (360)
such that Eq. (3.59) takes the simpler form

(D = Ty)%w?
Tr,=0(w) = Er D) 11D (3.61)

Equation (3.61) gives the transparency of two competing Majorana channels coupled by
the respective channel hybridisation I'; » to a single impurity, and therefore describes the
asymmetric two-channel Kondo effect |[Fabrizio, 1995, Landau, 2017]. The current-voltage
characteristics readily follow from Eqs. (3.57)-(3.61),

I,—T

I= %Fi - I‘i [PQ tan ! <%) — T tan~! <§—K)} . (3.62)
It is instructive to consider several limiting cases of Eq. (3.62).
First, the current (3.62) between the left and the right side vanishes identically for the
channel-symmetric case with I'y — I'y = I', — 0. In fact, this result is plausible, because
the dependence of I', on the microscopic tunnel amplitudes implies that both boxes are
decoupled in that limit, i.e. /T, ~ J, ~ AgArtrr/E% — 0.
Second, a related observation is that by increasing I', at a fixed value of I',, the current
in Eq. (3.62) will also decrease. Indeed, for I',/T", — oo, Eq. (3.60) implies that one
effectively revisits the limit I'y = I'y, where the current vanishes. Note that in order
to increase /I, ~ J, ~ A\ /Ec at fixed I',, the tunnel coupling \; between the left
box and the central lead has to be increased. Although charge transfer at the central
contact is dynamically blocked, the coupling I', still has profound effects on the system.
In particular, for I', # 0, the central junction is effectively driven out of resonance by a
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Figure 3.6: Cross-correlated Andreev reflections (AR) generated from individual corre-
lated AR processes in the two-box device with J =0and I’y — 0, see Sec. 3.4.1. (a)
A single AR at the top left lead, followed by the emission of charge e/2 into all four
leads, forms a correlated AR process as in the TKE, cf. Sec. 2.3.4. (b) A sequence of two
correlated ARs, one each at top and bottom left leads, comprises a cross-correlated AR.
This allows for the cotunneling of a Cooper pair by subsequent crossed ARs between left
(in) and right (out) leads. |Gau, 2018]|

misalignment of the spin direction ~ (o,,0,,0.) with respect to the left-right transport
direction ~ T',.

Finally, in the opposite limit I',/I", — 0, one instead approaches the single-channel case
with transparency

F2
i = = 3.63
where I'y =", = 0 in Eq. (3.60) implies I'y = T',.
For (eV,I',) < I', the transport observables are obtained from Eq. (3.57)
eV
I = — |eV -2, tan! 3.64
2h [e . <2rm)1’ (3.64)

S = 2i{&tanl<ev)— L V}.
no|2 2T, ) ~ (eV)? + 4T2

Defining the backscattered current I, = (e?/2h)V — I, one observes that for ', < eV <
I',, the shot noise power is given by S = 2e*[, with elementary charge e¢* = e/2. The
shot noise comes from the weakly coupled (I';) channel, while the strongly coupled (I';)
channel is fully transmitted (with the two-channel Kondo value of the conductance, G =
e?/2h) and thus noiseless. Equation (3.64) yields the same fractional Fano factor, F =
S/2I, = e*/e = 1/2, as recently found in a related two-channel charge Kondo system
[Landau, 2017|. In the here discussed case, a single additional Majorana operator enters
the low-energy theory for I, > 0, given by the Klein factor x; at the central lead, see
Fig. 3.1. In Eq. (3.52), it is represented by the Majorana operator ~y,. This causes the
backscattering processes in Eq. (3.64), described by the fractional charge e* = e/2.

For I'y, — 0, one also can draw an interesting link to the single-impurity TKE. Indeed,
since the left and right boxes are now joined by a strong coupling I',, this two-box setup
should be related to the TKE for a single large box with M = M + Myr = 4 attached
leads, cf. Sec. 3.2.2. For the two-terminal conductance measurement in Eq. (3.64), one
finds G, = €*/2h between any pair of individual leads j and k. Instead, for collective
inter-sector transport, |[Gau, 2018| shows that the left-right conductance is given by G =
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2¢%/h. The latter arises by summing the current over all leads in the respective subsectors,
and it comprises cross-correlated Andreev reflections involving the Cooper pair charge
er.r = 2e. The generation of these processes is detailed in Fig. 3.6. Thus, one can
predict the appearance of different effective charges due to hybridisation with the central
lead (e* = e/2) and finite-energy corrections in collective left-right inter-sector transport

(err = 2¢).

3.4.2 Finite Majorana hybridisation

Next, one can include the effects of a finite Majorana hybridisation J, # 0. In order
to obtain a qualitative understanding, the limit J, > max(I';.,eV) is analysed first,
where the impurity term —i(J,/2)7,7, in Hrou implies the fixed parity iv,v, = +1.
Eq. (3.52) can therefore be projected to a simpler single-channel model, H'1ou = Hicaas +
iv/2J,7,£1(0), where a single MZM (v,) is coupled to a single chiral Majorana mode (&,).
The parity constraint 7,7, = 41 here effectively blocks the other chiral Majorana channel
~ 1. Indeed, for J, — oo, the general transparency expression in Eq. (3.59) reduces to
the single-channel result
I

= m’

T, —o0(W) (3.65)
but with active channel ~ I', instead of I, in Eq. (3.63). Thus, the single-channel results
for conductance and shot noise are obtained, with I', as the only remaining parameter.
Left-right transport then takes place exclusively by cotunneling via the central lead [ in
Fig. 3.3.

Next, one can discuss the voltage dependence of the nonlinear conductance G = I/V,
which is plotted for typical parameters in Fig. 3.7. The shown curves have been obtained
by numerical evaluation of Eqs. (3.57)-(3.59). First, the conductance for I'y = J, = 0
(black solid curve) illustrates the single-channel case in Sec. 3.4.1, where Eq. (3.64) gives
G = €*/2h for eV < Ty, in accordance with Fig. 3.7. Second, turning to I'; < 'y but
still keeping .J, = 0 (dashed green curve, with I'y/T'y = 0.001), one observes that the
conductance vanishes for very low voltages but recovers to a large value near e?/2h within
the interval I'1 < eV < I's. Such a behaviour is consistent with the analytical result in
Eq. (3.62), which describes the asymmetric two-channel Kondo effect with two competing
Majorana channels coupled to an impurity.

The remaining two curves in Fig. 3.7 include the effects of a finite Majorana hybridisation
Jy, which now can cause antiresonances or resonances in the voltage dependence of the
conductance. First, for J, > max(I'y5,€eV), cf. the red dash-dotted curve for I'y /Ty =
0.001 and J, /T’y = 100, two of the three impurity-Majorana operators v, . are gapped
out by the large J,. One thus observes single-channel physics of the weaker channel, with
coupling I'y = I'; in Eq. (3.65). Next, for I'} < J, < I'y (blue dotted curve, I'y /T’y = 0.001
and J,/T'ys = 0.1), after approaching the single-channel value at el ~ I'y, the voltage
dependence of the conductance reveals an antiresonance for I'y < eV < J, with subsequent
recovery at eV < I'y. Here, in the low-bias regime, a combined channel as in Eq. (3.65)
is activated. Finally, for general non-zero couplings I'; > and J,, one observes a complex
interplay between the asymmetric two-channel Kondo effect and impurity hybridisation
phenomena. However, for the here discussed case with three coupled impurity-Majorana
operators, the low-frequency transparency in Eq. (3.59) always approaches the unitary
limit, 7(w — 0) = 1. This behaviour can be rationalised by noting that at sufficiently
low energies, one (rotated) Majorana pair will effectively be gapped out for J, # 0. The
third Majorana operator then remains free. This MZM provides a single-channel transport
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Figure 3.7: Two-terminal conductance G = I/V vs voltage V' between two leads attached
to different boxes in the two-box device of Fig. 3.1. The shown results hold at the Toulouse
point, see Eq. (3.52), and follow from Eqs. (3.57)-(3.59). [Gau, 2018]

resonance pinned to the Fermi level, with the universal zero-bias conductance G = €2 /2h.

3.5 Summary

In this chapter quantum transport through coupled Majorana box devices was studied.
Since Majorana boxes represent an attractive platform for realising topological qubits,
coupled box devices are of current interest for quantum information processing applica-
tions, see Sec. 2.4. When normal leads are tunnel-coupled to such a system, the spin-1/2
degrees of freedom representing MBQs will be subject to Kondo screening via cotunnel-
ing processes, culminating in the topological Kondo effect. Consequently, when different
boxes are connected, one encounters competing Kondo effects and related phenomena.
For general systems of this type, a powerful and versatile theoretical framework for study-
ing the low-energy physics and quantum transport was introduced, cf. Sec. 3.2. The
discussed theory employs Abelian bosonisation of the lead fermions together with the
Majorana-Klein fusion method. For a single box, the resulting problem is purely bosonic
and admits an asymptotically exact solution for the corresponding non-Fermi liquid fixed
point. However, for coupled-box systems additional local sets of Pauli operators due to
non-conserved local fermion parities must be taken into account. Despite the complex-
ity of the resulting problem, it is possible to make analytical progress. Approaching the
physics from the weak-coupling side (see Sec. 3.2) and further analysing it in the strong-
coupling regime (see the effective low-energy theory for the most relevant collective degrees
of freedom in Sec. 3.3), a rich interplay between different types of single- or multi-box
topological Kondo effects has been encountered.

The transport characteristics of two basic devices, where non-conserved fermion parities
play a central role, were addressed in Sec. 3.3. One of these includes the loop qubit device
suggested in |Karzig, 2017|. Importantly, the methods put forward in this work also
allow one to obtain non-perturbative transport results in moderately complex setups, cf.
Sec. 3.4. This aspect should be especially valuable in view of the fact that transport
measurements could give clear and unambiguous nonlocality signatures for Majorana
states in such devices.

68



Chapter 4

Driven dissipative Majorana boxes

In this chapter, driven dissipative (DD) Majorana platforms are introduced, which al-
low for the stabilisation and manipulation of robust quantum states. The proposed
DD Majorana-based platforms rely on the constructive interplay of topological protec-
tion mechanisms and the autonomous quantum error correction capabilities of engineered
driven dissipative systems, see also [Diehl, 2008] and[Diehl, 2011]. Thereby, one can engi-
neer systems stabilising Majorana states for an indefinite time. Once a working Majorana
platform becomes available, only standard hardware requirements are needed to imple-
ment the here discussed ideas.

In order to address state stabilisation in DD Majorana devices, Sec. 4.1 introduces the
model of a Majorana box, c¢f. Sec. 2.2.1, in the presence of environmental electromag-
netic noise and with tunnel couplings to quantum dots. For general single-box setups this
section shows that the time evolution of the Majorana sector is governed by a Lindblad
master equation over a wide parameter range, cf. Sec. 2.5. In Sec. 4.2 this Lindbladian is
then studied intensively by using the techniques summarised in Sec. 2.5. As the DD Ma-
jorana box allows for the stabilisation of arbitrary single qubit states, Sec. 4.2 starts with
the discussion of Pauli eigenstates. The robustness of the DD protocol is then emphasised
by targeting a magic state, |Nielsen, 2010|, and by discussing the effects of temperature
and a small Majorana hybridisation. Interestingly, in some cases such a hybridisation does
not lead to an additional dephasing mechanism, which is not the case for the native MBQ
in Sec. 2.3. Nevertheless, one can use read-out mechanisms and state initialisation proto-
cols of the native MBQ, making the single DD Majorana box an effectively self-correcting
quantum memory. For the purpose of quantum computation, it is beneficial to stabilise
a degenerate manifold of dark states, a dark space. Here, Sec. 4.3 provides the physical
ingredients to formulate a Lindbladian for a two-box setup allowing for space stabilisation.
Moreover, this section includes the stabilisation of maximally entangled states, where the
stabilisation protocol can also be used to initialise a specific state within the dark space.
Sec. 4.3 also provides details on an alternative architecture, which allows for Bell state
stabilisation on very short time scales. Finally, Sec. 4.4 contains the discussion of the
dark space stabilisation, where the obtained dark space is equivalent to a qubit space.
Since initialisation, read-out, and manipulation of the quantum information stored in the
stabilised dark space are discussed in Sec. 4.4, one might view this section as first step
towards autonomously error correcting Majorana devices. In Sec. 4.5, the shown results
are summarised.

This chapter is essentially a reproduction of the included publications, |Gau, 2020a| and
[Gau, 2020b|, where the pedagogical nature of this thesis allows for some additional re-
sults, which are not present in the publications.
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4.1 Driven dissipative Majorana dynamics

In this section, the theoretical concepts and physical ingredients are established, which are
needed for the DD stabilisation and manipulation of dark states using a single Majorana
box, see Fig. 4.1, and the dynamical equations are derived. The model is introduced in
Sec. 4.1.1, where the dissipation arises from environmental electromagnetic fluctuations
and the drive is applied to a pair of QDs. Afterwards, the Lindblad equation governing
the time evolution of the combined QD-Majorana system is derived in Sec. 4.1.2, where
numerical solutions to this Lindblad equation provide first insights to the dynamics of the
system. Remarkably, up to initial transient behaviours, one can describe the dynamics in
the Majorana sector in terms of a reduced Lindblad equation, where the QD degrees of
freedom have been traced out. This step is described in Sec. 4.1.3, along with a discussion
of the conditions under which this reduced Lindblad equation applies.

4.1.1 Model and low-energy theory

In this subsection, the model for the DD Majorana setup illustrated in Fig. 4.1 is intro-
duced. The hardware ingredients needed for implementing the here discussed dark state
stabilisation and manipulation protocols are outlined as well. Additionally, the effective
low-energy Hamiltonian is considered, which one obtains after the high-energy charge
states on the Majorana island are projected away.
Starting with the Majorana box, cf. Sec.3.1.1, one considers the setup depicted in Fig. 4.1,
where a floating topological superconductor island harbours M zero-energy MBSs. In
this case one has M = 4, but for generality, one can allow for general (even) values of
M. The MBSs correspond to the Majorana operators 7, = ~/, with anticommutator
{"s Y} =20, and v =1,..., M. As indicated in Fig. 4.1, they could be realised as end
states of two parallel InAs/Al nanowires [Lutchyn, 2018|. For concreteness, one considers
class-D topological superconductor wires, where time reversal symmetry is broken by a
magnetic field, cf. Sec. 2.1.3. Both nanowires are electrically connected by a supercon-
ducting bridge such that the entire island has a common charging energy, Ec = ¢2/(2C),
with typical values of the order Ec ~ 1 meV |[Lutchyn, 2018]. The isolated island (‘box’)
has the Hamiltonian

Hiox = Ec(N — N,)2. (4.1)

The operator N refers to the total electron number on the box, and N, is a tunable
backgate parameter. In Eq. (4.1), hybridisation energies resulting from a finite overlap
between different MBS pairs are neglected. These energy scales are exponentially small in
the respective MBS-MBS distance. As will be discussed in Sec. 4.2.4, a small hybridisation
between MBSs is often tolerable for DD-generated dark states or dark spaces. For the
native Majorana qubit, such effects cause dephasing.

The here discussed theory requires several conditions to be satisfied. First, one assumes
that the DD protocols only involve energy scales well below both Eo and the super-
conducting (proximity) gap A. This assumption implies that the ambient temperature
satisfies T" < min{F¢, A}. Then, one can neglect the effects of above-gap continuum
quasiparticles, as has tacitly been assumed in Eq. (4.1), which otherwise constitute an
intrinsic source of dissipation in the Majorana sector. In practice, one also needs to en-
sure that accidental low-energy Andreev states are not accessible, see [Manousakis, 2020].
Second, one considers Coulomb valley conditions, cf. Sec. 2.2.1, i.e. N, is tuned close to
an integer value and the box is only weakly coupled to the QDs in Fig. 4.1. In this case,
Hpox leads to charge quantisation, which dictates the fermion number parity of the island.
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Figure 4.1: Schematic sketch of a driven dissipative Majorana box setup. The supercon-
ducting island harbours four Majorana operators 7,, three of which are tunnel-coupled
to two single-level quantum dots (QDs, in blue). The Majoranas could be realised as
end states of two parallel topological superconductor nanowires (green) which are elec-
trically connected by a superconducting bridge (orange) |Plugge, 2017|. The tunnel links
connecting QDs to MBSs are shown as dashed lines. The phases ; in Eq. (4.44) are
also indicated. Due to the large box charging energy, transport between different QDs
through the Majorana island proceeds only via cotunneling processes. These cotunneling
processes can be inelastic, involving the emission or absorption of photons from the dis-

sipative electromagnetic environment. In addition, a driving field can pump electrons via
a tunnel link between the QDs (solid line). |Gau, 2020b]

At temperatures well below the superconducting gap, only the Majorana sector of the full
Hilbert space of the box has to be kept [Fu, 2010]. For M = 4, one arrives at a parity
constraint in the Majorana sector, y,727v3v4 = £1, cf. 2.2.2, and the lowest-energy island
state is then doubly degenerate. The corresponding Pauli operators associated with the
resulting Majorana qubit are represented by Majorana bilinears, see Sec. 2.2.2

X =173, Y =1iy%, Z=177. (4.2)

The fact that Pauli operators correspond to spatially separated pairs of Majorana oper-
ators allows for unusually versatile qubit access options.

Next, the Hamiltonian describing the two QDs, Hq, in Fig. 4.1 is introduced. One
starts from a general single-dot Hamiltonian, Hop = 3 hadld, + ec (i — ny)?, where
a labels electron spin and orbital degrees of freedom, d, are fermion operators with
n = >, did,, h, describes a single-particle energy, and ec is the (large) dot charg-
ing energy [Karzig, 2017, Flensberg, 2011, Nazarov, 2010, Altland, 2010]. On low energy
scales, the dot can be effectively described by a single spinless fermion level. Denoting

the corresponding level energy by ¢; for QD j = 1,2, one arrives at

Ha= Y edid;, (4.3)

7j=12

see |Karzig, 2017| for details. The energies €; can be controlled by variation of the gate
voltage parameter n,. Without loss of generality, e; > €; is assumed throughout, where
both energies should satisfy |e;| < min{E¢, A}. Additionally, one employs a time-
dependent electromagnetic driving field which can pump single electrons between the
two QDs via a tunnel link. To this end, a suitable AC voltage can be applied to a gate
electrode located near this link. The respective Hamiltonian contribution is given by
[Platero, 2004|

Harive(t) = w(t)didy + hoc.,  w(t) = t15 + 2A cos (wot) (4.4)
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where wy denotes the drive frequency and A the drive amplitude. In the following, one
assumes that the static contribution vanishes, t;5 = 0, because a small coupling t15 # 0
will not affect the dissipator in the Lindblad equation, which is derived below, and thus
does not change the physics in a qualitative manner.

For the discussed systems one considers the Coulomb valley regime where the total
charge on the box is fixed by the charging term in Eq. (4.1) on time scales 0t > 1/E¢
[Romito, 2014|. The total particle number on the QDs, Ny = Zj d;r-dj, is therefore also
conserved on such time scales. For even Ny € {0, 2}, the inter-QD dynamics is effectively
frozen out. Thus, the focus lies on the case Ng = 1, where the pair of QDs forms a

spin-1/2 degree of freedom corresponding to Pauli operators 7, , with 7. = (7, £1i7,)/2,
=1 =dld,, 1.=dd, —dd,=2r.7 —1 (4.5)
+ = T- =010y, Tz =010 2ly = 2T4T— . .
Next, the tunnel couplings connecting the QDs to the island are discussed.

In the above parameter regime, tunneling to the box has to proceed via MBSs since
no other low-energy island states are available. Such processes can be inelastic due to
the coupling to a bosonic environment. One here considers the case of a dissipative
electromagnetic environment, which can be modeled by including fluctuating phases 6},
in the tunneling matrix elements|Nazarov, 2010, Devoret, 1990, Girvin, 1990],

~

)\jy = )\j,,@iejy, (46)

with dimensionless complex-valued parameters J\j, subject to max{|\;,|} = 1. Here, \;,
determines the transparency of the tunnel link between the QD fermion d; and the Ma-
jorana state 7, in the absence of electromagnetic noise |Zazunov, 2016]. With the overall
hybridisation energy t, characterising the QD-MBS couplings, the tunneling Hamiltonian
is given by [Nazarov, 2010, Devoret, 1990, Girvin, 1990]

Hiwn = toe_id; Z ijd;% + h.c. (4.7)
IV
The phase operator ngS of the island obeys the commutator [N, QAS] = —¢ with the number

operator N in Eq. (4.1). The ¢ (e=*%) factor in Eq. (4.7) thus ensures that an electron
charge is added to (subtracted from) the island in a tunneling process, cf. Sec. 2.2.1.
It is well known that the electromagnetic potential fluctuations predominantly couple to
the phase of the wave function [Devoret, 1990, Girvin, 1990|. This fact is expressed by
the appearance of the fluctuating tunnel couplings j\ju, see Eq. (4.6), in the tunneling
Hamiltonian (4.7).

For concreteness, one assumes that the electromagnetic environment can be modeled by
a single bosonic bath, see also [Munk, 2019]. Representing the bath by an infinite set
of harmonic oscillators |[Weiss, 2007, Breuer, 2006|, the environmental Hamiltonian reads
Heww = D Embinbm, with the energy FE,, > 0 of the photon mode described by the
boson annihilation operator b,,. In practice, the relevant bath energies £, are strongly
suppressed above a cutoff frequency w.. With dimensionless real-valued couplings g, .,
the stochastic phase operators ¢, are written as

O = D Gjvim (b + V1) - (48)
Clearly, they commute, meaning [6,,,6;,/] = 0.
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Low-energy theory

In the following the effective low-energy theory is established. The parameter regime of
interest is defined by the conditions

max{T, A, to, wo, we, |¢;|} < min{E¢, A}. (4.9)

The parameters on the left side of Eq. (4.9) affect the dissipative transition rates in the
Lindblad equation, which is derived below. These rates in turn set the time scale on which
dark states are approached. In the following, a concise description is adopted, whereby,
for engineering a stabilisation protocol targeting a specific dark state, it suffices to adjust
the complex-valued tunnel link parameters );,. In practice, those state design parameters
can be changed via gate voltages. Note that under the conditions in Eq. (4.9), boson-
assisted processes can neither excite above-gap quasi-particles nor higher-energy charge
states on the island.

The full Hamiltonian can then be projected onto the doubly degenerate ground-state
space of the box, H(t) — Heg(t). Using a Schrieffer-Wolff transformation, cf. Sec. 2.3.2,
to implement this projection, and noting that H,., reduces to an irrelevant constant
energy shift, one arrives at the effective low-energy Hamiltonian

Heff(t) = Hd + %env + Hdrive(t) + Hcot, (410)

with the drive term in Eq. (4.4) and the cotunneling contribution

R 2
Hos =00 Y Wi (2d}dk - 5jk> = (4.11)
7,k=1,2
One here uses the operators
W= > (Adl = Al ) e (4.12)
1<p<v<M

Equation (4.11) describes cotunneling paths through the box, where the energy of the in-
termediate virtual state has been approximated by E¢, cf. Eq. (4.9), and photon emission
and absorption processes are encoded by the \ factors in Eq. (4.6).

For even QD occupation number Ng, Eq. (4.11) reduces to

H=0D = gy sgn(Ng — 1) Z W;. (4.13)

J

For N4 =1, using the notation
Wo=Wy, Wo=W,+W_, W,=iW,-W.), W.=Wy Wy,  (414)
where W_ = WL one finds that Eq. (4.11) can instead be expressed in the form

Hio ™ =g0 D W, (4.15)

A=Y,z

with the QD Pauli operators 7, in Eq. (4.5). It is worth mentioning that like the VAVJ;g
operators in Eq. (4.12), the W, still contain the phase fluctuation operators due to the

electromagnetic environment. In order to realise the most general qubit-qubit exchange
coupling between the QD spin {7,} and the M = 4 Majorana box spin (X,Y, 7) in the
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4.1. DRIVEN DISSIPATIVE MAJORANA DYNAMICS

cotunneling regime, one has to specify nine independent (tunable) real-valued coupling
constants. For the M = 4 case in Fig. 4.1, taking into account gauge invariance — which
allows one to set one of the A;, to a real value —, the five different complex-valued hopping
parameters \j, are sufficient. On top of that, the direct tunnel amplitude between the
QDs is assumed to be real-valued after setting ¢1o = 0 in Eq. (4.4).

To simplify the subsequent analysis, one assumes that the dominant contribution to the
environmental electromagnetic noise comes from the long wavelength part. In effect, such
contributions will cause dephasing of the QDs, e.g. due to the presence of a backgate
electrode. This assumption is also consistent with the picture of a single bath. To good
accuracy, the couplings g, in Eq. (4.8) then do not depend on the Majorana index v, i.e.
Gjvm = Gjm- As a consequence, also the fluctuating phases (4.8) become v-independent,
0;, = 0;. In this case, the diagonal entries Wjj are insensitive to electromagnetic noise
and the bath completely decouples for even Ny, see Eq. (4.13).

From now on, the focus lies on the case of a single electron shared by the QDs, Nq = 1.
Defining the phase operator

0=0,—0,= Z(ng — G2.m) (bm + bjn) ; (4.16)
Eq. (4.15) then yields
Heor = 290 (e"Wity +hoc.) + goW.T.. (4.17)

The operators W, and W, correspond to ‘undressed’ (6;, — 0) versions of W+ and W,
respectively. These operators act only on the Hilbert space sector describing Majorana
states. Comparing to Eq. (4.12), one has

M

Wik =Y (AwAi, = Niudin) Y- (4.18)

p<v

For the device in Fig. 4.1, the W), operators can be expressed in terms of the Pauli
operators (X, Y, 7) in Eq. (4.2), see below.

In order to allow for the derivation of the Lindblad master equation, cf. Sec. 2.5.1, for
the here discussed system, the interaction Hamiltonian in Eq. (4.17) has to be rewritten
in normal-ordered form, i.e. with respect to its bath expectation value. Therefore, the
electromagnetic environment is first characterised by its correlations function to properly
define such averaged quantities. The equilibrium density matrix of the thermal environ-
ment is given by

Py = Zote /T with  Zgpy = treny e Ten/T (4.19)

env

where ‘tre,,’ denotes a trace operation over the environmental bosons. Using (O)_ =

trenv(épenv), one can define the correlation function [Weiss, 2007|

T 0) = (000) = 001000, = [ E T feostt) — 1 coth (52) —isinten)}.
’ (4.20)
with the spectral density
J(w)=m Z(gl,m — go.m) B d(w — Ep). (4.21)
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4.1. DRIVEN DISSIPATIVE MAJORANA DYNAMICS

Switching to the continuum limit in bath frequency space, one focuses on the practically
most important Ohmic case with J(w) o w in the low-frequency limit. In concrete
calculations, the model spectral density [Weiss, 2007] is used

J(w) = awe /¥, (4.22)

where « is a dimensionless system-bath coupling and frequencies above w. are expo-
nentially suppressed. For a related discussion in the context of Majorana qubits, see
[Munk, 2019]. The parameter « is related to the environmental impedance Z(w), cf.

[Devoret, 1990,
2

e
a= %ReZ(w =0). (4.23)

In the following o < 1 is considered.
For the subsequent discussion, one rewrites H.; in normal-ordered form relative to the
phase fluctuations,

Heor = HO) +V, (4.24)

where Hﬁﬂ{ is the expectation value of H., with respect to phase fluctuations and V
represents the coupling of the combined QD-MBS system to phase fluctuations. Since
(62) v diverges in the Ohmic case, one has (e¥).,, = 0, resulting in

Hgg)t = <Hcot> = QOWsz- (4.25)

env

The interaction term in Eq. (4.24) is then given by
V =2gy (¢“Wiry +hoe). (4.26)

By construction, (V) = 0. Correlation functions of exponentiated phase fluctuations
are given by (s = £1)
<6280(t)€—Z89(0)> — eJenv (t) (427)

env

with Jeny(t) in Eq. (4.20).

From now on, one shall switch to the interaction picture with respect to Hq + Henv- The
Hamiltonian then takes the form, see Eqgs. (4.10) and (4.24)

3

Hegr,1 (t) = Hos(t) + Vi(t),  Hor(t) = Harier(t) + Hio (1) (4.28)

For simplicity, the ‘I’ index (for interaction picture) is dropped in what follows and one
focuses on resonant drive conditions,

Wop = €9 — €1. (429)

In the regime wy > T considered below, one can apply the rotating wave approximation
(RWA) [Gardiner, 2004]. As a consequence, Harive(t) = Harive With

ﬂdrive =A (dJ{dQ + d£d1> = ATx, (430)

resulting in a time-independent drive Hamiltonian in the interaction picture. If the drive
frequency is slightly detuned, wy = €3 — €1 + dwp, a residual time dependence remains,
Hearive(t) = e~ Adld,+ h.c., after applying the RWA. However, one finds that the final
Lindblad equation for the dynamics of the Majorana sector in Sec. 4.1.3 is not affected to
leading order in dwy. The here discussed DD protocols are therefore robust with respect
to a mismatch in the resonance condition (4.29). In the following dwy = 0 is assumed.
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4.1. DRIVEN DISSIPATIVE MAJORANA DYNAMICS

4.1.2 Markov master equations

In this subsection, the time evolution of the reduced density matrix, p(t), describing the
coupled system defined by the MBSs and the pair of QD fermions is considered. After
tracing over the environmental bosons, one arrives at a Lindblad master equation for the
dynamics of p(t). With wy = €, — €; and gy = t3/Ec, one considers the regime

g K T < wo, A § go- (431)

In particular, T < wy is needed to justify the RWA, while gy < T is required for the Born-
Markov approximation, cf. Sec. 2.5.1. In addition, the regime gy < T" enables to neglect
emission and absorption processes taking place only in the Majorana sector since the bath
is then unable to resolve such transitions. Of course, boson-assisted inter-QD transitions
resulting from cotunneling processes are accounted for. Finally, Eq. (4.31) states that
one studies a weakly driven system with drive amplitude A < go. The opposite strongly
driven case is briefly discussed in App. A of [Gau, 2020b|. Note that inelastic corrections
to the drive Hamiltonian due to electromagnetic phase fluctuations, see Eq. (4.19), can
be neglected by the secular approximation, cf. Sec. T1.B of [Shavit, 2019].

The master equation governing the dynamics of the density matrix p(¢) for the combined
system (QDs and Majorana sector) is obtained by following the standard derivation of
Born-Markov master equations, see Sec. 2.4.1. One assumes a factorised initial (time ¢ =
0) density matrix of the total system, piot(0) = p(0)® peny, With peny in Eq. (4.19). Starting
from the von-Neumann equation for pg(t) subject to Heg(t) in Eq. (4.28), one traces
over the environmental modes and applies the Born-Markov approximation [Weiss, 2007,
Breuer, 2006, Gardiner, 2004|. As a result, p(t) obeys the master equation

Oip(t) = =i [Ho(t), p(1)] = treny /O T V(. IV (= 7) + Holt =), p(0) @ penl], (4.32)

where one has used that, by construction, tren, [V (£), p(0) ® peny] = 0. Similarly, the
mixed term involving V(¢) and Ho(t — 7) vanishes identically. Then, one is left with
the coherent evolution term due to H,(t), and the double commutator containing two V'
terms.

Unfolding the double commutator, one arrives at a master equation of Lindblad type, see
|Lindblad, 1976] and [Lindblad, 1983],

Qup(t) = —i [Hy, p(t)] + > T+DJ:]p(t). (4.33)
+

The subscript ‘L’ in Hy, is meant to clarify that this Hamiltonian appears in a Lindblad
equation. The dissipator £ acts as superoperator on p [Breuer, 2006], see Eq. (2.90). The
two jump operators in Eq. (4.33) are given by

Jj: = QWiTﬂ: = J:],L:, (4.34)
with the corresponding dissipative transition rates,

Here, one defines the quantities

Ay = / dt etiwot e (t), (4.36)
0
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4.1. DRIVEN DISSIPATIVE MAJORANA DYNAMICS

with the bath correlation function (4.20). Their imaginary parts give Lamb shift param-
eters,

which appear in the Hamiltonian governing the coherent time evolution in Eq. (4.33),

Hy, = Aty + goWer. + > heJLJ,. (4.38)
+

The first two terms in Hy, originate from Hg in Eq. (4.30), while the third term contains
the Lamb shifts (4.37).
Next one observes that Eq. (4.20) implies the general relation

Jeny (=t = 1/T) = Jony (1) (4.39)
in the complex-time plane. Using Eq. (4.39) in Eq. (4.36) then results in a detailed balance
relation, A_ = e~“/TA,. As a consequence, for arbitrary parameters, one finds

I'_ = e_wO/TF+, h_ = e_wo/Th+. (440)

In particular, for T" < wy, the dissipative rate I'_ associated with the jump operator J_
will be exponentially suppressed against the rate I',. The dissipative part of the Lindblad
equation (4.33) is therefore completely dominated by the jump operator J,.

It is a distinguishing feature of the here introduced DD platform that jump operators can
be directly implemented by designing unidirectional inelastic cotunneling paths connecting
pairs of QDs via the box, with the overall energy scale go. The QDs are also directly
coupled by a driven tunnel link w(t), see Eq. (4.4), with overall energy scale A. For
T < wy, as far as inter-dot transitions via the box are concerned, only photon emission
processes are relevant. As a consequence, only transitions from the energetically higher
QD 2 to QD 1 may take place, corresponding to the jump operator J, o 7, see Eqs. (4.5)
and (4.34). Such transitions act on the Majorana state according to the operator W,. As
shown below, this operator can be engineered at will by adjusting the tunneling parameters
Ajv, which in turn is possible by changing suitable gate voltages. The driving field pumps
the dot electron in the opposite direction, i.e. from QD 1 — 2, and for a small pumping
rate, A < gg, one obtains a steady state circulation 1 — 2 — 1 by alternating pumping
and cotunneling processes. On the contrary, for A > gg, pumping processes will dominate
and the cotunneling channel is effectively suppressed.

To facilitate analytical progress, one might consider the case wy < w.. One then finds
[Weiss, 2007]

Jeny (t) ~ —2aIn <w—} sinh(WTt)) —imasgn(t), (4.41)
T
and with the Gamma function I'(2), one arrives at
2
2g2 1
'y ~T'(1 — 2a)sin(27a) (@> ﬂ, hy ~ 5 cot(2ma)l' . (4.42)
We Wo

For the device in Fig. 4.1, using the Pauli operators (4.2), the jump operators J_ = JJF
follow from Eq. (4.34) in the general form J, = J,7, with

j+ = 2i€iﬁ2|>\23| (6_i53|/\11|X — e_i51|)\12|Y) — 0 [6_i51|>\12)\21| — 62ﬂ4|>\11)\22” Z, (443)

where the phases (3 234 are indicated in Fig. 4.1. They are connected to the phases x;,
in the tunneling parameters, \;, = |\;,|e", by the relations

Br=xi2, B2= X2, B3=x11, Ba= X2, (4-44)
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4.1. DRIVEN DISSIPATIVE MAJORANA DYNAMICS

with the gauge choice x2; = 0. In particular, 5; — 53 (f2) is the loop phase accumulated
along the shortest closed tunneling trajectory involving only QD 1 (QD 2), cf. Eq. (4.46).
These phases, as well as the absolute values |\;,|, can be experimentally varied, e.g., by
changing the voltages on nearby gates. Note that .J, is fully determined by selecting the
state design parameters Aj,. The Hamiltonian Hy, then follows as

Hy, = Ar, +2g0J.7. + Y haJL T, (4.45)
+

I D .
J. = §)\2 + sin Bo| A1 Aoz X + sin (81 — Ba) [Aa2Aas| Y (4.46)
+ [sin B4| Ag1 Aoz | — sin (81 — B3) [A1Az]] Z,

where A2 = |\j1|?+ [ Aia]2+ | Aa1 |2+ Aoz |2+ | Ags|?. Tt is worth mentioning that the operators
J. and J, act only on the Majorana subsector.

To illustrate the above general expressions, one might consider a simple example, where
the stabilisation parameters are taken subject to the conditions

A1 = A2l A2 =0, fi=—-fo=7/2, [5=p,=0. (4.47)

Using Eq. (4.43), the dominant jump operator contributing to the Lindbladian is then
given by
Jp =2\ 11] (2| Aas|oy + [Aa1]Z) 74, (4.48)

where oy = (X £4Y)/2. For |Ag3] > |A21], the Lindbladian will then automatically drive
an arbitrary Majorana state py; towards |0)(0|, with the Z-eigenstate |0) to eigenvalue
+1, i.e.,, Z]0) = |0). Here, the reduced density matrix py(t) describes the Majorana
sector only, see Sec. 4.1.3. However, the operator jz appearing in the Hamiltonian Hjy,
still contains a small X component, see Eq. (4.46), which could potentially disrupt the
action of the dissipator. Nonetheless, one finds that for small |\, the desired state |0)
is approached with high fidelity, regardless of the initial system state p(0). An optimised
parameter choice for stabilising |0) will be discussed in Sec. 4.2.

Numerical results

Next, a numerical integration of Eq. (4.33) using the approach of [Johansson, 2012,
Johansson, 2013] is used to motivate simplifying the Lindbladian. Numerical results for
the above parameters are shown in Figs. 4.2 and 4.3. While the goal of the DD protocol is
to stabilise a selected state in the Majorana sector, it is useful to also study the dynamics
in the QD sector, see Fig. 4.2. One starts from a pure initial state, p(0) = [W(0))(¥(0)],
with |U(0)) = |[4+) ® |0)4, where the 7, = +1 QD eigenstate, |0)q, describes an elec-
tron located in the energetically lower QD 1, with QD 2 left empty, see Eq. (4.5). The
initial Majorana state has been chosen as the X-eigenstate |4+) with eigenvalue +1. In
|Gau, 2020b| it was checked that the same long-time limit of p(t) is reached for other
initial states. One defines the purity of the system state as

Py(t) = trp*(t). (4.49)

The upper left panel of Fig. 4.2 shows that the purity approaches a value close to the
largest possible value (P; = 1) at long times. As observed from Fig. 4.3, the DD protocol
steers the Majorana state towards the pure state |0), i.e. towards the north pole of the
corresponding Bloch sphere. For the shown example, the QD state pq has most probability
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1.0- P.(0) 1.000+ <7, >

0.8 0.998+
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—0.054, . . . .| —0.025 . . . ,
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Figure 4.2: Driven dissipative dynamics for the setup in Fig. 4.1, illustrating the
time-dependent expectation values of the Pauli operators 7,, . describing the QDs, see
Eq. (4.5). It also shows the purity, Ps(t), of the system state, see Eq. (4.49). All results
were obtained by numerical integration of the Lindblad equation (4.33) for the density
matrix p describing the QDs and the Majorana sector, with Hyp, in Eq. (4.46). The param-
eters were chosen as in Eq. (4.47), with T'/gy = 4, wo/go = 40, w./go = 200, A/gy = 0.1,
a = 1/4, [A1] = | A2 = [As] = 1, and |Agy| = 0.1. Fast transient oscillations in (7,(t))
are not resolved on the shown time scale, corresponding to shaded regions. The respective
dynamics in the Majorana sector is depicted in Fig. 4.3. |Gau, 2020b|

weight in the energetically lower QD 1. Indeed, Fig. 4.2 shows that at long times, the
electron shared by the two QDs will predominantly relax to QD 1, corresponding to the
state |0)q. Nonetheless, it is of crucial importance that the occupation probability p for
encountering the electron in the energetically higher QD 2 (corresponding to the state
|1)q) remains finite at long times. One finds p ~ 0.001 for the parameters in Fig. 4.2.
One concludes that the system state factorises at long times, p(t) ~ py ® pg with py =
|0)(0|. The approach of the Majorana state towards |0) takes place on a time scale given
by the inverse of the dissipative gap of the reduced Lindbladian describing the Majorana
sector only, see Sec. 4.2 below. The relaxation time scales for the QD subsystem can be
longer, compare Figs. 4.2 and 4.3.

Finally, one can remark that for the special case of Ay; = 0, the electron shared by the two
QDs will not predominantly relax to the energetically lower QD 1. Here, there are only
two cotunneling paths between both QDs, namely the constituents forming the operator
4| A1 A23]04 in Eq. (4.48). Both paths interfere destructively once the Majorana island
is stabilised in the state |0). An arbitrarily weak drive can then overcome all dissipative
effects in the long-time limit. In contrast to what happens for Ay # 0, the QDs will
thus realise an equal-weight mixture of |0)q and |1)q. Nonetheless, the reduced Lindblad
equation (4.52) below still applies, with p — 1/2 and p; — 0 in Eq. (4.51).
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Figure 4.3: Time evolution of the Bloch vector, ((X), (Y), (Z))(t), describing the Majo-
rana state py(f) for the same parameters as in Fig. 4.2. The expectation value is computed
by numerically integrating the Lindblad equation. Starting from the initial X-eigenstate
|+), the DD protocol stabilises the dark state |0) at long times, corresponding to the
north pole of the Bloch sphere. The intermediate states (with alternating colors) were
obtained at times got € {5 x 103,10 x 103,...,15 x 10*}. [Gau, 2020b]

4.1.3 Lindblad master equation for the Majorana sector

The observations in Sec. 4.1.2 allow to derive a reduced Lindblad equation, which directly
describes the dynamics of pyi(t) in the Majorana sector alone. To that end, one now traces
also over the QD subspace. For long times, the above numerical simulations generically
show that p(t) factorises into a Majorana part, py(t), and a QD contribution, pq(t),

plt = 0) = pu(t) @ palt). (4.50)

For tracing over the QD part, one can effectively use a time-independent Ansatz,

l—p py
e ( S ) | (4.51)
written in the basis {|0)q4,|1)q} selected by the coupling to the QDs. Here, p # 0 refers
to the occupation probability of the energetically higher QD 2. This probability can
be determined by numerically solving Eq. (4.33), cf. Sec. 4.1.2, or it may be treated as
phenomenological parameter. A simple estimate predicts p ~ max(A, go)/wo. Noting that
a small but finite expectation value (7,) # 0 is observed in Fig. 4.2 at long times, one has
to also included an off-diagonal term (p,) in Eq. (4.51).

Inserting Eq. (4.50) into Eq. (4.33) and tracing over the QD subsystem, one arrives at a
Lindblad equation for the 2 x 2 density matrix py(¢) only,

Dpi(t) = =il pu] + 3 FoLL]pu(0), (4.52)

s==+

where the jump operators J1 have been defined in Eq. (4.43). The dissipative transition
rates 'y in Eq. (4.52) are given by

Ip=ply, To=(1-pl_, (4.53)
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cf. Egs. (4.35) and (4.42). The coherent time evolution in Eq. (4.52) is governed by the
Hamiltonian

Hy, =2(1 = 2p)go S + > haJL T, (4.54)
+

where .J, has been specified in Eq. (4.46) and the Lamb shifts /. are given by
hy =phy, h_=(1—-ph_. (4.55)

The drive amplitude A then appears only implicitly through the dependence p = p(A).
Note that within the RWA, no contributions o p, appear in Eq. (4.52). Indeed, the RWA
allows one to neglect terms o 7, p7,, which stem from p, # 0.

Importantly, apart from the initial transient behaviour, all of the numerical results for the
Majorana dynamics obtained from the full Lindblad equation for the combined QD-MBS
system, Eq. (4.33), are quantitatively reproduced by using the simpler Lindblad equation
(4.52). This statement is valid for arbitrary model parameters subject to Eqs. (4.9) and
(4.31). The integration over the QD degrees of freedom as carried out above relies on the
facts that (i) the convergence towards the target state is dictated by the Majorana sector,
and that (ii) the QD and MBS degrees of freedom always decouple in the long-time limit,
see Eq. (4.50). The latter feature has been established by extensive numerical simulations
of Eq. (4.33). The reduced Lindblad equation (4.52) is applicable as long as transient
behaviours are not of interest. In particular, when studying, e.g. the dynamics of py(t)
in the presence of time-dependent QD level energies €;(¢), Eq. (4.52) should only be used
for very slow (adiabatic) time dependences. For rapidly varying QD level energies, one
has go back to the full Lindblad equation for the combined QD-MBS system in Eq. (4.33).

4.2 Dark state stabilisation

This section contains dark state stabilisation protocols for the single-box device in Fig. 4.1.
It starts in Sec. 4.2.1 with the case of Pauli operator eigenstates, followed by the stabilisa-
tion of a magic state in Sec. 4.2.2. In Sec. 4.2.3, the role of increasing temperature on the
stabilisation protocols is examined. Interestingly, as shown in Sec. 4.2.4, one finds that
even a finite Majorana state overlap cannot deteriorate the fidelity of certain dark state
stabilisation protocols. Finally, in Sec. 4.2.5, the readout dynamics is briefly discussed.
Here, the analogy to the native MBQ allows to perform parity readout of the stabilised
states in a topologically protected way.

4.2.1 Pauli operator eigenstates

As a starting point for the discussion of the DD protocol, Pauli operator eigenstates
are targeted. Typical numerical results obtained by solving Eq. (4.52) are illustrated in
Fig. 4.4. Following the method in Sec. 2.5.2, the Z = +£1 eigenstates can be realised by
choosing

Al = [M2], Aot =Ap =0, fBi—ps==%n/2, (4.56)
with arbitrary Ao and fa4, see Eq. (4.44). Note that for A\g3 = 0, the phases (54 are
not defined. At this point, it is convenient to use the concept of a dissipative map E
[Breuer, 2006], which is defined in terms of a jump operator mapping the system onto

a specific state when acting inside the Lindblad dissipator. For example, the dissipative
maps targeting the Z = +1 eigenstates are

Ei=o0.=(X+iY)/2. (4.57)
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Figure 4.4: Dark-state stabilisation protocols for Pauli operator eigenstates. Left side
panels (blue curves): Stabilisation of |0). Right side panels (red curves): Stabilisation of
|+), where X|4) = |+). In both cases, the Majorana island has initially been prepared in
the Y-eigenstate with eigenvalue +1. The parameters were chosen as in Eq. (4.56) with

= 1/2, all other parameters are as in Fig. 4.2. With Ec = 1 meV and go/Ec = 2.5x1073,
the time units follow as shown. As explained in the main text, for the chosen parameter
set, Rabi oscillations are absent. [Gau, 2020b|

For the stabilisation parameters in Eq. (4.56), the jump operator j+ x Ei, with the +
sign determined by Eq. (4.56), completely dominates the Lindbladian part of Eq. (4.52)
at low temperatures, T' < wy. The dissipative dynamics then maps every input state to
|0) (for the + sign) or |1) (for the — sign). At the same time, the Hamiltonian evolution in
Eq. (4.52) originates from Hy, o< Z, see Eq. (4.54). Evidently, this Hamiltonian commutes
with the targeted state py(oo), and therefore does not affect the dynamics towards the
steady state generated by the dissipative map E.. The Majorana state py(t) is thus
automatically steered towards the corresponding Z-eigenstate by the Lindbladian, with
no obstruction from the Hamiltonian dynamics.

For the above protocol, the dissipative gap is given by, cf. Sec. 2.5.2,

A, = [AAdas? > T (4.58)

s==+

In general terms, the dissipative gap is defined as the real part of the smallest non-
vanishing eigenvalue of the Lindbladian (the dark state itself has eigenvalue zero), see
[Breuer, 2006]. The time scale on which the dark state will be approached is therefore
given by AJ!. Moreover, the approach of the Bloch vector towards the dark state |0) is,
in general, accompanied by damped oscillations in the (X,Y’) components, where A, is
the damping rate and the Rabi frequency follows from Eq. (4.54) as

Qz ~ 290(]_ — 2p)|)\11|2 - 8|/\11/\23|2E+ . (459)

For the special case of Ag; = 0 with p = 1/2, c¢f. Sec. 4.1.2, and noting that iLJr = 0 for
a = 1/4, cf. Eq. (4.42), one obtains 2, = 0 in Eq. (4.59). The left panels in Fig. 4.4
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therefore exhibit only damping in the (X,Y) components, without Rabi oscillations.
Next, X = +1 eigenstates are realised by choosing

|)\21| = |)\23|, A1 =X =0, [o= :F7T/27 (4-60)

with the dissipative gap A, = [4A12A01]? > [',. As shown in the right panels of Fig. 4.4,
X-eigenstates, e.g. the state |[4) for eigenvalue +1, can be stabilised using the setup in
Fig. 4.1. As for the Z-stabilisation shown in the left panels, there are no Rabi oscillations
for this parameter set.

Finally, for stabilising the Y-eigenstates with eigenvalue 41, one requires

|)\22| = |)\23|7 A2 = Ag1 =0, 52 - 53 - 64 = Ii:7T/27 (4-61)

with the dissipative gap A, = [4A\1 A2 >, I,

In all these examples, the target axis (say, é, for Z-eigenstates) is controlled by selecting
appropriate tunneling amplitude parameters \;,. Two links are switched off, and two
are matched in amplitude such that the desired jump operator j+ is implemented. For
T < wy, dissipative transitions are fully governed by this jump operator which is due to
inelastic cotunneling transitions from QD 2 — 1. Under these conditions, H;, commutes
with the Pauli operator ¢ corresponding to the target axis (e.g., 6 = Z for Z-states).
Finally, by adjusting the phases [3;, one can select the stabilised state, say, |0) or |1). It is
a remarkable feature of the here discussed Majorana-based DD setup that the Hamiltonian
H;, can be engineered to only generate 6. As a consequence, the Lindbladian dissipator
already drives the system to the desired dark state.

Stabilising mixed states

Since the phases 3; select the targeted state, one can also use the here discussed protocols
for stabilising mixed states. To give an example, one considers changing the above phase
conditions such that a mixture of Pauli eigenstates can be prepared as dark state. For
instance, by choosing the state design parameters as in Eq. (4.56) but keeping 3 = £, — 33
arbitrary, one obtains the dark state

B 1+ sinf
2

1 —sinf

0)(0] +—

(o) [1)(1]. (4.62)

The relative weight of the two components can then be altered by adjusting the phase
difference (.

4.2.2 Magic states

In order to highlight the power of the here discussed DD stabilisation protocols, one might
consider the magic state '
Im) = e~'5Y0). (4.63)

The practical importance of this state comes from the fact that a large number of ancilla
qubits approximately prepared in the state |m) are needed for the magic state distillation
protocol. The latter is an essential ingredient for implementing the T-gate required for
universal surface code quantum computation, cf. Sec.2.4.1. Targeting |m), the stabilisa-
tion conditions now involve all tunnel links in Fig. 4.1 but one and are given by

’)\12\ = ’)\23|, |>\21| = |>\11| = |>\23|/\/§, Ao =0, B3=p1+P, Bo= —77/2- (4-64)
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Figure 4.5: Fidelity for a stabilisation protocol targeting the magic state |m). Here, the
Majorana state follows from numerical integration of Eq. (4.52) using the parameters in
Eq. (4.64) with [A\o3] = 1. Other parameters are Ec = 1 meV, go/Ec = 2.5x 1073, T /gy =
4, wo/go = 40, w./go = 200, « = 1/4, and p = 0.01. Main panel: Time dependence of
the fidelity for ideal parameters [Eq. (4.64)] (red curve), with a mismatch of order 10%
in all state design parameters [|[Ay;| = —0.1 4+ 1/v/2,|Aa1| = +0.1 + 1/v/2, [A1a| = [Ao| =
0.9,83 = —fs = 117/20] (blue), and a mismatch of order 20% in the same parameters
(orange). Inset: Steady-state fidelity vs deviation Afy with otherwise ideal parameters,
where B, = —Z(1 + ApB,). |Gau, 2020b]

In analogy to Sec. 4.2.1 one can understand the state design parameters according to
their effect on the jump operator. As the targeted state |m) is obtained by a Z-rotation
of |0) around the y-axis, its Bloch vector lies inside the z-z-plane of the Bloch sphere.
Thus, the required dissipative map is a superposition of all three Pauli operators, which in
turn implies that only Ay can be switched off for convenience, cp. Eq. (4.43). Moreover
two amplitudes are matched to guarantee equal contribution to the unidirectional process
implementing the dissipative map. Finally, decreasing the remaining amplitudes by a
factor of 1/\/5 with respect to the matched links ensures that the targeted axis is precisely
the diagonal of the z-z-plane. Since the dark state is more complex compared to Pauli
eigenstates, all remaining phases [3; have to be adjusted to target |m). Note that for
2 = +m/2 the other magic state, obtained by a Z-rotation of |1) around the y-axis, can
be stabilised.

To quantify the power of the here discussed DD protocol one can define the fidelity of the
state py(t) with respect to a specific pure state, pl(\z) = ) (Y], as

F(t) = tr[[¢) (dlom(t)] - (4.65)

Numerical results for the magic state fidelity with [¢)) = |m) are shown in Fig. 4.5, using
the parameters in Eq. (4.64). One finds F' = 1 at long times for the ideal parameter choice
in Eq. (4.64). Figure 4.5 also illustrates the long-time fidelity when allowing for small de-
viations from Eq. (4.64), which are inevitable in practical implementations. Remarkably,
even for sizeable deviations from the ideal parameter set, the fidelity remains close to
unity. By determining the spectrum of the Lindbladian, one obtains the dissipative gap
as

Ay = 411 Ao Z .. (4.66)
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Using the parameters in Fig. 4.5, one finds A ! ~ 80 ns. Even though the here dis-
cussed magic state stabilisation protocol requires more parameter fine tuning than the
stabilisation of |0), the dark state |m) is reached on essentially the same time scale.

4.2.3 Effect of temperature

Next, one can address the effect of raising temperature within the conditions set by
Eq. (4.31), in particular 7' < wy. Figure 4.6 shows numerical results for the T-dependent
steady state fidelity F'(oo) with respect to the states |0) and |m), choosing ideal parameters
as in Egs. (4.56) and (4.64), respectively. Since the transition rates in Eq. (4.42) are the
same for all targeted single qubit states, i.e. they do not depend on the state design
parameters, the here discussed effect of temperature is the same for all DD stabilisation
protocols.

At very low temperatures, the fidelity stays very close to the ideal value (F = 1), since
here only the rate I';, see Eqs. (4.35) and (4.53), is significant. In this limit, corrections
to F' = 1 are exponentially small and appear to be governed by the dissipative gap,
1 — F o exp(—=A.//T). The same scaling behaviour also applies to the purity. As
temperature increases, the thermal excitation rate [_ = e‘“’O/Tf+ cannot be neglected
anymore. Focusing on the stabilisation of the state |0), one has J_ o o_. The Lindblad
dissipator f,D[j,] will then target the ‘wrong’ Z-eigenstate |1). The competition between
D[J.] and D[J_] implies that the fidelity will deteriorate as temperature increases.

This expectation is confirmed by numerical results. For the parameters in Fig. 4.6, the
fidelity noticeably drops once T' exceeds the crossover temperature 7, ~ 250 mK. Figure
4.6 also shows the temperature dependent purity of the steady state, P(co) = trpi(t —

o0). For T' <« T, one finds P(co) ~ 1. As T increases, however, the maximally mixed
state pyi(oo) = 31 with F(0o) = P(co) = 1/2 is approached, and consequently the purity
also becomes smaller.

1.0+————————————=amm= -
0.9+
0.8
0.7 1
0.61 —— F(x)

— P()
0.5 1 ' ' ' '

0.1 0.2 0.3 0.4 0.5

T [K]

Figure 4.6: Steady-state fidelity, F'(c0), and purity, P(c0), vs temperature (in Kelvin) for
the state |0) and for the magic state |m). Ideal state design parameters, see Eqs. (4.56)
and (4.64), are used with all other parameters as in Figs. 4.4 and 4.5, respectively. The
numerical results for both states cannot be distinguished for these parameter choices on
the shown scales. The frequency wy corresponds to a temperature of ~ 2.5 K. [Gau, 2020b]
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4.2.4 Majorana hybridisation

So far, the overlap between different MBSs was assumed to be negligibly small. Here, an
estimate of the effects of a finite (but small) hybridisation between different MBS pairs
on the above stabilisation protocols is given. Such terms could arise, e.g. due to the finite
nanowire length [Alicea, 2012|. They are described by a Hamiltonian term

H = i€y, (4.67)

v<v/!

with hybridisation energies ¢,,,. By construction, the above term survives the RWA and
the Schrieffer-Wolff projection in Sec. 4.1 and thus contributes to the Hamiltonian Hj, in
the Lindblad equation (4.52) without affecting the Lindbladian dissipator. In the Pauli
operator language, such terms act like a weak magnetic Zeeman field. If the corresponding
field is parallel to the target axis of the dark state, it does not cause any dephasing. For
instance, for the stabilisation of the Z-eigenstate |0), the hybridisation parameters €5 and
€34 can be tolerated since they only couple to the Pauli operator Z in Eq. (4.2). Clearly,
such couplings have no detrimental effects on the stabilisation protocols.

4.2.5 Readout dynamics

In order to read out a stabilised dark state, it is possible to use the same techniques sug-
gested previously for the native Majorana qubit, see Sec. 2.4.2. In particular, one can per-
form capacitance spectroscopy using additional single-level QDs that are tunnel-coupled
to MBS pairs. These QDs are used for measurements only, where the spectroscopic sig-
nal contains an interference term, c¢f. Eq. (2.67), which depends on the respective Pauli
matrix in Eq. (4.2). This projective readout yields the Pauli eigenvalue 41 with a state-
dependent probability |Karzig, 2017|. Of course, this method can also be used to prepare
the Majorana island in a Pauli eigenstate before the DD protocol is started.

In order for the readout not to interfere with the DD stabilisation protocol, one has to
make sure that the characteristic projective measurement time scale (see [Plugge, 2017]
and [Karzig, 2017] for detailed expressions) is much longer than the typical inelastic cotun-
neling time fjrl. Similarly, single-electron pumping protocols via a pair of QDs attached
to different MBSs allow one to apply a Pauli operator to the tetron state in a topologically
protected manner, see Sec. 2.4.3.

4.2.6 On the uniqueness of the dark state

So far, DD stabilisation protocols targeting a desired dark state were discussed. The
dark space dimension for those protocols should therefore be D = 1, see Sec. 2.5.3, which
corresponds to the steady-state solution being unique. As stabilisations of different dark
states are linked to each other by adiabatically changing the state design parameters, it
suffices to discuss the dark space dimension for a single protocol. One of the simplest
examples is given by the Z = +1 stabilisation in Sec. 4.2.1. Here the Hamiltonian is
given by Hy, o< Z and the Lindbladian dissipator reads D [o+] pyp(t). In Sec. 2.5.3, this
Lindbladian was discussed in terms of its conserved quantities, which lead to D = 1.
Since there is a unique dark state for a given choice of the state design parameters, one
could utilise a DD single-box device as a self-correcting quantum memory. By means of
adiabatic changes of the state design parameters, one can steer the Majorana state on its
Bloch sphere. However, for general state manipulation protocols, it is advantageous to
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have access to a dark space manifold with D > 1, which may be engineered in systems
with more than four MBSs. This case is addressed in the next section.

4.3 Dark space engineering

This section is dedicated to minimal DD Majorana box systems necessary for stabilising
not a dark state, but a dark space. Such a degenerate manifold of dark states may be
engineered by employing a device with at least two Majorana boxes as depicted in Fig. 4.7.
After introducing the model and the corresponding Lindblad equation in Sec. 4.3.1, the
main idea of implementing dissipative maps is emphasised. As first demonstration of the
robustness of the DD two-box system, Sec. 4.3.2 includes the stabilisation of Bell states.
Finally, Sec. 4.3.3 provides details on an alternative architecture, the hexon device, which
allows for the stabilisation of Bell states on shorter time scales compared to the two
Majorana box system in Fig. 4.7.

4.3.1 Lindblad equation for two coupled boxes

Following the discussion in Sec. 4.1.1, the two islands in Fig. 4.7 are described by Hpox =
Hbox,L. + Hoox,z, With Hyexr/r as in Eq. (4.1). Here, the four MBSs on the left (right)
box correspond to Majorana operators . (vX). Both islands are separately operated
under Coulomb valley conditions. For notational simplicity, one may assume that they
have the same charging energy, Ec; = Ecr = Ec. Focussing on the long-wavelength
components of the electromagnetic environment, one again works with a single bosonic
bath, Henv = >, E,.bl b, . where photons couple to the QDs and MBSs via fluctuating
phases, 6;, in the tunneling Hamiltonian, see Sec. 4.1.1. The setup in Fig. 4.7 requires up
to three single-level QDs, Hq = Z?Zl ejd;-dj, where QD 3 couples to both other QDs via
independently driven tunnel links. Considering the regime N4 = 1, where on time scales
dt > 1/E¢, the three QDs share a single electron.

Using the interaction picture with respect to the dot Hamiltonian Hq, the full Hamiltonian
is then given by

H(t) = Hbox + Henv + HLR + Hdrive (t) + %tun (t), (468)

where a phase-coherent tunnel link couples the boxes. Without loss of generality, one
assumes a real-valued tunneling amplitude ¢,z > 0,

Hir = itLrys7s - (4.69)
The drive Hamiltonian now has the form

Harive(t) = Z 24; cos (w;t) e dldy + h.c., (4.70)

j=1,2

where the two driving fields have the respective amplitude A; 5 and frequency w;s. In
analogy to Eq. (4.7), the QD-MBS tunnel links are described by

Hiun(t) = to Z )\jme’id’”eieje“jtd;’ys +h.c, (4.71)
jv,.k=L/R

with the phase operators ¢ g for the left /right Majorana island. Using the same approx-
imations as in Sec. 4.1.1, the electromagnetic environment enters Eq. (4.71) through the
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Figure 4.7: Schematic two-box layout for DD dark space stabilisation and manipulation
protocols, cp. Fig. 4.1 for the single-box case. The left (right) box harbours four MBSs
described by L (7). The tunneling bridge with amplitude 7 connects v¥ and 2. QD
3 has independently driven tunneling bridges to QD 1 and to QD 2 (solid lines). The three
QDs are operated in the single-electron regime, Ny = 1. The electromagnetic environment
affects the phases of the tunnel links betweens QDs and MBSs (dashed lines). The phases
f3; for this geometry are also indicated. [Gau, 2020b|

fluctuating phases ;. With the overall energy scale t;, the complex-valued parameters
A\jvx Parametrise the transparency of the tunnel contact between d; and fy',f:L/R. Similar
to Eq. (4.44), the phases f3; in Fig. 4.7 follow from the phases of these parameters. Since
(4 can be absorbed by a renormalisation of (33 for the purposes below, one can put 5, = 0.
To simplify the presentation, one can assume for QDs 1 and 2 to have the same energy
level, €; = €5. Moreover, one considers the case of equal drive frequencies, w; = wy = wy,
and identical drive amplitudes, A; = A; = A, and again impose a resonance condition,
wo = €3 — €1. However, in analogy to the discussion in Sec. 4.1.1, one expects that overly
precise fine tuning with respect to those conditions is not necessary.

Proceeding with the construction of an effective low-energy model, a Schrieffer-Wolff
transformation to the lowest-energy charge state in each box is performed. One can then
define Pauli operators (X,,Y,, Z,) with k = L, R referring to the left and right box,
respectively, using the Majorana representation

Xe =113, Ye=1%7, Ze=117. (4.72)

In the present case, it is crucial to keep all terms up to third order in the expansion
parameters (4.9) when accounting for cotunneling trajectories connecting pairs of QDs,
cf. Fig. 4.7. Note that for the single-box case in Sec. 4.1, it was sufficient to go to second
order only. The electromagnetic environment then enters the low-energy theory via the
three phase differences ; — 0, with j < k. This fact implies that, in general, one has six
different spectral densities Jji. 4 (w). One models these spectral densities by the Ohmic
form in Eq. (4.22), with system-bath couplings aji.;. For simplicity, one can employ
an average value « for these couplings below. The bath is then described by a single
spectral density J(w) again. It is important to note that the physics is not changed by
this approximation. In particular, no additional jump operators appear when allowing for
different Qg k! -

Considering the weak driving regime with 7" < wy, one can proceed along similar steps
as in Sec. 4.1.2, and thereby obtain a Lindblad master equation for the density matrix,
p(t), describing both the Majorana sector and the QD degrees of freedom. In order to
arrive at a Lindblad equation for the reduced density matrix, py(f), which refers only to
the Majorana sector of both boxes, one next traces over the QD subsector, see Sec. 4.1.3.
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For the QD steady-state density matrix, pq, one uses the Ansatz

1—p 1-—
pa = diag < 53 ,p> , (4.73)
expressed in the basis {|100), [010), |001)} with QD occupation states |nq, ny, ng) for Ng =
1. Note that since ¢; = €, was assumed, the occupation probabilities of QDs 1 and 2 are
equal. The occupation probability 0 < p < 1 refers to the energetically highest QD
3. Equation (4.73) is consistent with numerical analysis of the Lindblad equation for
p(t), where one again finds a factorised density matrix at long times, p(t) ~ pum(t) ® pg.
Furthermore, the dark space turns out to be independent of the concrete value of p.

Going through the corresponding steps in Sec. 4.1.3, one arrives at a Lindblad equation

for ph4<t)= 6
Aypm(t) = —i[Hy, pu(t Z (4.74)

The six jump operators are denoted by K,, with the respective dissipative transition rates
[,. With Apg = trr/Ec < 1, one obtains

- M1 _
K, = Kl = ze’wrﬁl)m)ﬁz — 61/63|/\1,3L)\3,3R’ZLYR>

ALR
K, =K} = _iel(ﬁg&)%—&wzl% + X2 A3.3r] XLV R, (4.75)
LR
K, = Kl - |)\1 3LA2 2L| _ eilBa=p) [AM1RA2.4R] Ya
ALR ALR

+ e 51|)\1,1R>\2,2L\ X1Zp — €i52|)\1,3L)\2,4R| 21 Xg.

The coherent evolution in Eq. (4.74) is governed by the Hamiltonian

Hy, = 2pigoK, + i ho KK, (4.76)
a=1
with the operator
K, =sin 81|\ 1rM 30| Z0 2R + sin Ba| Aaor Ao ar| XL X k. (4.77)
Here, the energy scale ,
Go = A\Lrgo = tob%R (4.78)

was used, which characterises the relevant inelastic cotunneling processes in the double-
box setup. The transition rates I', follow in the form

[y =T5 = 2pg; Re / dteoteen ™)
0

I3 =T¢=(1—-p)jRe / dteTe ) (4.79)
0

_ 1— 3
I'y=T5= 1-p) e /Ty,

2p

and the Lamb shifts h, are given by
hy = hy = s Im/ dte™otelen(t),
0
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- - 1 00

hy = he = (1 - p)ge Im / dte?e ), (4.80)
0

- - 1 — -

h4 = h5 = ( p) G_WO/Thl.

2p

For wy < w,, one can then make further analytical progress. Explicit expressions for fLQ
and hy 5 follow by comparison with Eq. (4.42). In addition, one finds

R e el G M

21-2a7(1 — a)

)

We We

~ 1 ~
h376 = —5 tan(WOé)Fg,G. (481)

By following the derivation of the reduced master equation (4.74), one observes that the
operator K (K3) originates from unidirectional transitions transferring an electron from
the energetically high-lying QD 3 to QD 1 (QD 2) via the double-box setup, collecting
all possible cotunneling trajectories allowed by third-order perturbation theory. Likewise,
the jump operator K, (Kj) describes the reversed process, with a cotunneling transition
from QD 1 (QD 2) to QD 3. For T < wy, the transition rates I'y5 and Lamb shifts hys
are exponentially suppressed, o< e “o/T against the respective contributions from K.
Moreover, the jump operators K3 and Kg in Eq. (4.75) describe cotunneling transitions
between (QDs 1 and 2. Since these QDs are not directly connected by a driven tunnel
link and have the same energy, €; = €5, the corresponding rates and Lamb shifts coincide,
[y = [g and hy = hg. Importantly, for 1/2 < o < 1, these quantities are reduced by
a factor (T/wy)?**™! < 1 against fl’g and 711,2, respectively. In the remainder of this
section, this parameter regime is studied, where the most important jump operators in
Eq. (4.74) are given by K; and K,. Nonetheless, one retains the other jump operators in
the numerical analysis as well.

Finally, note that all terms without the factor A, > 1in Egs. (4.75) and (4.77) stem from
third-order processes. While one a prior: expects that the corresponding dissipative terms
in Eq. (4.74) are suppressed against second-order contributions, by careful tuning of the
link transparencies A, ., they can become of comparable magnitude. As a consequence,
all relevant cotunneling paths will then have amplitudes corresponding to third-order
processes. This means that for the present two-box setup, the energy scale gy = t2/F¢
appearing in Eq. (4.31) has to be replaced by gy in Eq. (4.78). The Lindblad equation
(4.74) describing the weak driving limit is therefore valid under the conditions

Jgo KT <wy, A< go (4.82)

Dissipative maps

Before entering the discussion of stabilisation protocols for the layout in Fig. 4.7, it is
convenient to introduce the dissipative maps |Barreiro, 2011|

Eii=0+2Z,Zr)Xp, FEyr=0+XXg)Zg. (4.83)
These maps can be used to target the four Bell states,
1 1
V2 V2

which are eigenstates of both Z;Zz = +1 and X; Xr = 1. One observes that EL, maps
even-parity onto the respective odd-parity states, £y _|¢1) = |¢), while odd-parity states

Y1) = —=(100) £ [11)),  |¢+) = —=(]01) £ [10)), (4.84)
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do not evolve in time, E’17_|¢i) = (0. Under this dissipative map, the system will thus
be driven into the degenerate odd-parity subsector spanned by the |¢4) states. Similarly,
EA27, can drive the system into the antisymmetric subsector spanned by |¢_) and [¢_).

The key idea in the DD protocols discussed below is to identify state design param-
eters such that the jump operators effectively realise the needed dissipative map(s) in
Eq. (4.83). Recalling that a dissipative map breaks a number of conserved quantities (and
therefore symmetries) in an open quantum system, see Refs. [Albert, 2014, Albert, 2016]
and Sec. 2.5.3, one here employs this insight to either stabilise protected and maximally
entangled two-qubit dark states, see Sec. 4.2.2, or to stabilise a dark space, see Sec. 4.3.

4.3.2 Bell state stabilisation

Next, the stabilisation of Bell states is discussed, where the minimal system is sketched
in Fig. 4.7. Therefore, all six jump operators in Eq. (4.74) are present. In the low tem-
perature regime, the Lindbladian term corresponding to K5 contributes with the same
transition rate, 'y = I'y, as for K7, see Eq. (4.79). Importantly, K, and K, break differ-
ent conservation laws and thereby allow one to engineer stabilisation protocols targeting
maximally entangled two-qubit states.

Starting with the Bell singlet state |¢_) in Eq. (4.84), where Z;,Zr = —1 and X X = —1,
one can choose the state design parameters as

fr=—m, PBo=0, Bs=—-m/2, |Air|=ArrlAsc], [Aear| = Arr|A22r].  (4.85)

From Eq. (4.75), one observes that K; o EA'L_ and K, EZ— are directly expressed
in terms of the corresponding dissipative maps, see Eq. (4.83). The Lindbladian will
therefore drive the system to the dark state |¢_). The dark space dimension is thus given
by D = 1.

As shown in Fig. 4.8, the numerical solution of Eq. (4.74) confirms this expectation. For
the stabilisation parameters in Eq. (4.85), the Bell singlet state is reached with nearly
perfect fidelity when taking ideal parameter values. One can rationalise this by noting that
the coherent evolution due to ﬁL, see Eq. (4.76), involves only the operators Z;Zg and
X1 Xgr. As a consequence, the dynamics induced by the dissipative maps K; o o EA1/27_
will not be disturbed. Note that the parameters in Fig. 4.8 were chosen such that f‘l > f‘3
while staying in the regime specified in Eq. (4.82). Indeed, the observed small deviations
from the ideal value F' = 1, see Fig. 4.8, can be traced back to the jump operators K3
and Kjg, which give nominally subleading but practically important contributions to the
Lindblad equation.

Figure 4.8 shows that the stabilisation protocol is rather robust against deviations of
state design parameters from their ideal values in Eq. (4.85), see Sec. 4.2. Following the

approach in Sec. 2.5.2, one finds that the dissipative gap for stabilising |¢_) is given by
Agen = |2>\3,33|2 (|>\1,3L|2 + |)\2,2L|2) Z T, (4.86)
a=1,22,45

Due to the importance of third-order inelastic cotunneling processes, this dissipative
gap is several orders of magnitude below the corresponding gaps in the single-box case,
cf. Sec. 4.2. For the parameters in Fig. 4.8, one obtains the time scale Agelu ~ 0.3 ms.

The other Bell states in Eq. (4.84) can be targeted by changing the phases (; in Eq. (4.85).
The jump operators K; and Ky will then directly implement the desired dissipative maps,
with the dissipative gap still given by Eq. (4.86). For stabilisation of the Bell state |¢)y)
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Figure 4.8: Fidelity for stabilising the Bell singlet state |¢_) in the setup of Fig. 4.7.
Numerical results are shown, which are obtained from Eq. (4.74) with the parameters in
Eq. (4.85) and |A;131] = [A22r] = |As3r| = 1, using the initial state py(0) = 00)(00].
Other parameters are Ec = 1 meV, go/Ec = 107>, T//go = 2,w/go = 2 X 103, w./go =
10, a = 0.99, and p = 0.01. Main panel: Time dependence of F(t) for ideal parameters
[Eq. (4.85)] (red curve), and for a mismatch of order 10% in all state design parameters
[l)\l,lR| = 1-1)\LR|)\1,3L|7 |/\2,4R| = 0-9/\LR|/\2,2L|7 51 = —1.17T, 53 = —971'/20] (blue) Inset:
Steady-state fidelity vs deviation Af; from the ideal value, i.e., f1 = —7w(1 + ApB;), with
otherwise ideal parameters. |Gau, 2020b]

(Jtr—)), one has to put f; =0, B2 = 7 (B2 = 0), and S5 = /2. Similarly, |¢,) is stabilised
for 1 = —m, Py = 7w, and B3 = —7/2. One thus always has f3 — f; = 7/2, and the
remaining two phases select the targeted Bell state. In particular, [3; selects the parity of
the target state while 5 determines the symmetric vs antisymmetric state.

4.3.3 Alternative setup: the DD hexon

Instead of the DD two-box setup in Fig. 4.7, one can also work with the hexon archi-
tecture in Fig. 4.9, where a single Coulomb-blockaded topological superconductor island
harbours six MBSs. The island has the charging energy Eo and is again operated under
Coulomb valley conditions. It then harbours two Majorana qubits, see Sec. 2.2.2. A
major advantage of the hexon architecture over the two-box setup in Fig. 4.7 is that one
can formulate simpler and faster stabilisation protocols obviating the need for third-order
cotunneling processes and the associated fine-tuned balancing of tunneling amplitudes.
In any case, the methodological and conceptual steps discussed above apply for the hexon
case as well.

For the modelling of the device in Fig. 4.9, one thus proceeds as in Sec. 4.1. In the
interaction picture with respect to Hg+ Heny, the Hamiltonian is given by H(t) = Hpox +
Harive(t) + Hiun, with the drive Hamiltonian in Eq. (4.30). One again assumes €; = €,
A = Ay, and wyo = wy = €3 — €1, cf. Sec. 4.3.1. Instead of Eq. (4.71), the inelastic
tunneling Hamiltonian again takes the generic form, c¢f. Eq. (4.7). Here, in contrast to
the two-box device, only one charge-conjugated phase ¢ exists.

In the low-energy sector, charge quantisation on the box implies the overall Majorana
parity constraint v;92v3747v5Ys = £i. The island then hosts two Majorana qubits (j = 1,2)
with the Pauli operators (X;,Y;, Z;) encoded by bilinears of the six Majorana operators,
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Figure 4.9: Sketch of a DD hexon setup with three single-level QDs and six MBSs de-
scribed by ~,. QD 3 has independently driven tunneling bridges to QD 1 and to QD 2
(solid lines). The three QDs are operated in the single-electron regime, Ny = 1. The elec-

tromagnetic environment affects the phases of the tunnel links between QDs and MBSs
(dashed lines).

cf. Sec. 2.2.2,

X1 =imy2, Yi=1i%v, Zi=imms
Xo =147, Yo =175, ZL2=175%. (4.87)
The subsequent steps leading to the Lindblad master equation for the dynamics of the

reduced density matrix, py(t), describing the two Majorana qubits in Eq. (4.87) are as
before. One obtains

6

Orpw(t) = =i | Hupu(t)]| + Y TaD [La] pua(t) (4:88)

a=1

with the jump operators

L, = Lj; = iei(ﬁ3_51)|>\14/\36|X2 — i€i63|)\12)\36|21)/2

L = LT = iei(ﬁ3_62)|)\25)\36|ZQ + Zlei’B3|)\23)\36|X1YVQ (489)
Ly = L = i|A2Aa3|Y1 + jetB2— ﬁ1)|)\14)\25‘y2
—e b ‘)\14)\23|X122 —+ 26162|)\12>\25’Z1X2. (490)

The coherent part in Eq. (4.88) is governed by the Hamiltonian

6
Hy, = 2pgoL. + Y hoLi L, (4.91)
a=1
with the operator
LZ = Sin 51')\12)\14|le2 + Sin 62|)\23)\25’X1X2. (492)

Comparing the above Lindbladian with the one for the two-box setup, cf. Eq. (4.74), one
notices that all jump operators now stem from second-order cotunneling and thereby, the

relevant energy scale is again gg = Et_éc’ see Eq. (4.11). Therefore, the transition rates I’
and Lamb shifts h, are given by Eq. (4.79) and Eq. (4.80) with go — go.

In analogy to Sec. 4.3.1, in the low temperature regime, i.e. for 7' < wy, and in the regime

% < «a < 1, the dominant contribution to the Lindblad equation originates from jump
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operators L; and Ly. To stabilise the system in the Bell singlet state |¢_), see Eq. (4.84),
one chooses the state design parameters according to

T
==, Ba= 5 Bs =7, |Ai2] =[], |Aaz] = [Aaes]. (4.93)

e

It is then straightforward to check that L; o Fil,— and Ly EA27_, see Eq. (4.83),
such that the dark state of the two-qubit system is indeed given by |¢_). The coherent
part again does not obstruct the dissipative map. In contrast to the two-box case, the
conditions in Eq. (4.93) ask for equal transparency for pairs of links, rather than having
transparencies that parametrically differ by a factor A g =t r/Fc < 1, see Sec. 4.1. As
a consequence, the dissipative gap encountered for the hexon device is significantly larger,

Apehex = [2Xs6]* (|M12]” + [A2s]?) Z T, (4.94)

a=1,2,45

When compared to A in Eq. (4.94), one observes that this dissipative gap enjoys a
large enhancement factor 1/)\3 5. In fact, the dissipative gap (4.94) is of the same order
as the gaps encountered for the single-box case. Using the hexon architecture, Bell states
can thus be stabilised at about the same speed as the dark states in Sec. 4.2.

For the sake of completeness, the stabilisation conditions for the remaining Bell states
are listed below. The [|¢)1) states are realised by changing the phases in Eq. (4.93) to
p1 = —m/2, By = Fr/2, and B3 = —7. Furthermore, |¢,) will be stabilised for §; = 7/2,
fo = —7/2, and 3 = .

4.4 Driven dissipative Majorana dark spaces

In this section, it is shown that devices harbouring MBSs provide a particularly attractive
platform for the DD stabilisation of degenerate dark spaces and for manipulating states
in such spaces. As shown in Sec. 4.3.1, the dynamics in the Majorana sector is governed
by a Lindblad equation, Eq. (4.52). In Sec. 4.4.1, this Lindbladian is used to demonstrate
that the two-box system can be engineered to support a multi-dimensional degenerate
dark space. The here discussed dark space is equivalent to a qubit space. To ensure that
a generic initial state evolves towards a designated pure state within the dark space, one
has to adiabatically break the degeneracy of the dark space during intermediate stages of
the protocol. In Sec. 4.4.2 this is discussed as a paradigmatic protocol for the preparation
of a state within a degenerate dark space. Additionally, this section contains information
on how to optimise the speed of approach and the fidelity towards the designated dark
space. Finally, Sec. 4.4.3 describes different ways of manipulating the dark state inside
the dark space manifold. As initialisation, read-out, and manipulation are discussed in
this section, one can view it as first step towards dark space quantum computation.

For recent experimental progress on autonomous error correction in different DD systems
see also [Reiter, 2017] and |[Puri, 2019].

4.4.1 Dark space stabilisation

As already indicated in Sec. 4.3, the two-box setup in Fig. 4.7 is sufficient to stabilise a
dark space. Having a degenerate state manifold targeted by the DD protocol requires the
Lindbladian to conserve more than one quantity, cf. Sec. 2.5.2. Therefore, the Lindblad
master equation in Eq. (4.74) describes more dynamical processes than needed in this
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section. Conceptually, the stabilisation of a dark space is thus simpler compared to the
stabilisation of maximally entangled states. For convenience, one therefore decouples QD
2 from the system by using the parameter choice

)\2,2L = )\2,4R = Oa 52 = 0. (495)

Note that this is not the only possible parameter set for constructing a dark space. As
a consequence of Eq. (4.95), many of the jump operators in Eq. (4.75) vanish identically,
Ky = K3 = K5 = K¢ = 0. The only jump operators left are then given by K, and Kj.
At low temperatures, T < wyq, the ratios f‘4/f1 and im/izl are exponentially small, and
therefore only the jump operator K; remains relevant. In analogy to Sec. 4.1, this op-
erator can be traced back to unidirectional cotunneling transitions, where an electron is
transferred from QD 3 to QD 1 by cotunneling through the double-box setup. In the
steady state, a weak drive amplitude A is then responsible for pumping the dot electron
back (from QD 1 — 2) via the driven tunnel link. Note that the parameters A,wy, o, w,
and gy only affect the rates I, and Lamb shifts A, which in turn determine the speed of
approach towards the dark space. The dark space itself, however, will be determined by
the choice of the jump operator K7, which can be engineered by tuning the state design
parameters \; ., see Eq. (4.75). These parameters can be adjusted via gate voltages. The
ability to design jump operators via unidirectional cotunneling processes in such a manner
is rooted in the non-local Majorana representation of the Pauli operators in Eq. (4.2), and
thus in the underlying topological nature of the here discussed DD system.

Upon choosing the state design parameters according to

fr=-m, Bs=-7/2, |Mair| = ALr| 3Ll (4.96)

one can implement the dissipative map EAL_ in Eq. (4.83). Noting that EL— = Xgp—1Z1YxR,
see Bq. (4.83), one indeed arrives at K; oc E; _ from Eq. (4.75). In addition, Eq. (4.76)
shows that under the above conditions, ﬁL only generates terms o Z;Zr which do not
obstruct the dissipative dynamics. Following the procedure outlined in Sec. 2.5.3, one can
identify four conserved quantities,

1 1 ,
Cl,:l: = E(H + ZL), ng: = §(XL + ZYL)XR. (497)

The basis of the matrix Hilbert space corresponding to the dark space [Albert, 2014| then
reads

1 1 , .
Ml,i = Z(H:EZL)(H:FZR), M2,i = Z(XL:EZYL)(XR:FZYR). (498)

The above DD protocol thus stabilises a degenerate dark space of dimension D = 4, where
D is the number of conserved quantities in the matrix Hilbert space obtained after the
Choi isomorphism, cf. Sec. 2.5.2. As this isomorphism maps an N-dimensional Hilbert
space onto an N?2-dimensional matrix Hilbert space, D = 4 in turn coincides with the
dark space dimension of a stabilised qubit space. This can also be rationalised by noting
that Co . = C}_ and Cy 4 +Cy - =1L

The Pauli operators (Xp, Yp, Zp) for the resulting dark Majorana qubit can be chosen as

Xp =X Xp=—-nrn, Yo=YiXr=9mvns, Zp=2,=invy. (4.99)

Alternative Majorana representations can be obtained by using Z;Zr = —1 and/or the
above parity constraints on each box. Thereby, one can rewrite Xp = —y&~yFyfyE and
Yp = —ylyEkyE~yE. Note that the Majorana bilinear ivf~% is essential for the above
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Figure 4.10: Fidelity for approaching the dark space starting from a maximally mixed
initial state. Main panel: Fidelity vs time, with Ec = 1 meV, go/Ec = 1074, T /gy =
2,wo/go = 200,w./go = 10°,« = 0.99, p(A) = 0.01, and |Ag37| = 1. The red curve is for
ideal state design parameters, see Eq. (4.96), with |A;1z| = 1. The blue (green) curve
depicts the fidelity for parameters with 10% (20%) deviation from their respective ideal
values. Inset: Asymptotic (¢ — oo) fidelity vs percentage deviation Ap; from 3, = m,
with otherwise ideal parameters. [Gau, 2020a|

qubit encoding, which reflects the need of two boxes for the here discussed proposal.
Therefore, the DD protocol effectively merges both tetrons and allows for the formation
of a new qubit. The DD qubit encoding (4.99) is essential for fault tolerance, comparable
to the formation of logical vs physical qubits in surface codes [Fowler, 2012]. In the here
discussed case, the DD protocol adds an extra protection layer on top of the topological
protection of a native Majorana qubit. In particular, pure states will thereby be stabilised
for indefinite time.

Finally, methods for readout of the target state can be formulated as for the native
Majorana qubit, see Sec. 4.2.5. By providing additional details on the approach of the
dark space, the next subsection contains possible state initialisation protocols for the
above dark Majorana qubit.

4.4.2 Approaching the dark space

Starting from an arbitrary initial state py(0), one can monitor the approach towards
a pure target state |U) in terms of the fidelity, F(t) = tr[|¥)(¥|pm(t)], where pp(t)
is the solution of Eq. (4.52). During the time evolution, all symmetry properties of
the initial state other than parity (Z;Z;) remain preserved. For example, starting with
pm(0) = |¢ ) (b ], since X1 Xp = +1 is kept as one approaches the target state, one finds
|W) = |¢ ) within the dark space. In Fig. 4.10, we show the fidelity obtained by numerical
integration of Eq. (4.52) for a maximally mixed initial state py(0) = 11 @ I, where the
corresponding target state is |U) = (|¢4) + [¢_))/v/2. Note that if the initial state is
not precisely known, one can first stabilise an arbitrary state inside the dark space, and
subsequently drag that state towards the desired target state using the method described
in Sec. 4.4.3. A convenient way to initialise the dark qubit is to employ the tunnel
couplings to a third QD, see Sec. 4.3.2, and first stabilise a dark state. Afterwards, one
can adiabatically switch off the tunnel couplings to QD 2 in Fig. 4.7 and stabilise the

above discussed dark space. Figure 4.10 demonstrates that the dark-space fidelity is very
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robust against variations of the A;,.. Even when allowing for ‘errors’ of the order of
20% in all these parameters, the fidelity is still /' &~ 0.9. The time scale for approaching
the steady state is given by the inverse of the dissipative gap Agiss. For the above DD
protocol, one again obtains Ay =~ ]4>\173L)\2,3R|2 (fl +f4>, resulting in A;iis ~ 3 us
for the parameters in Fig. 4.10. Comparing the characteristic time of approach for the
dark space with the inverse of the Bell state gap, i.e. with Aggn, one observes that the
dark space is stabilised approximately 100-times faster. This nicely reflects the need to
only map the Majorana states onto the odd-parity manifold, and thereby, avoid unwanted
cotunneling processes connecting QD 1 and QD 2.

4.4.3 Manipulation of the dark Majorana state

Next, a general manipulation protocol is discussed, which allows to move an initial pure
state in the dark space to an arbitrary final state in the dark space. This can be achieved
by adiabatically switching on a perturbation, which breaks at least one conservation law
in Eq. (4.97). Note that adiabaticity is crucial, because of the transient behaviour in
the joint dynamics of the two boxes and the QDs. The perturbation breaks the qubit
degeneracy during the protocol but once the perturbation is switched off, the degenerate
dark space is fully stabilised again.

The main challenges are to avoid coupling the dark space to other Hilbert space sectors
that are not part of the decoherence-free subspace, and to preserve the purity of the
state. In particular, the drive should not connect odd- and even-parity sectors. One can
guarantee this by only addressing the ’outer’ MBSs involved in the dark Majorana qubit
encoding, see Eq. (4.99). Tt is convenient to break two conserved quantities at any given
time, leaving a two-fold degeneracy. The simplest protocol employs a ‘ Z -drive’ realised
by coupling v¥ and 7%, see Eq. (4.99). One thus adds a term

HZ = ZAz(t)’)/lL’)/f == Az(t)ZL. (4100)

The hybridisation energy Az(t) can be adiabatically changed using a gate-tunable tunnel
link. Hz; commutes with Z;Zr and thus conserves parity. Therefore, the evolution
generated by 7, automatically remains in the odd-parity sector. Since [Hz,Cay] # 0,
see Eq. (4.97), dark state coherences now depend on time. This is confirmed by the
numerical results for constant Ay in Fig. 4.11, where one starts from py(0) = |¢_) (o]
and finds oscillations in the real part, (Xp(t)) = (X, Xg)(t), and the imaginary part,
(Yp(t)) = (YL XR)(t), of the coherences. In the Bloch vector representation, the dark
state periodically rotates in the xy-plane with oscillation period Agl, where Agl ~ 6 ns
in Fig. 4.11. For a general adiabatic protocol Az(t), it stands to reason that an arbitrary
final state inside the dark space can be reached.

An alternative possibility is to employ single-electron pumping protocols, in analogy to
previous proposals for native Majorana qubits, see Sec. 2.4.3.
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Figure 4.11: State manipulation by a Zp-drive with Az/Ec = 107%. The state design
parameters are chosen as in in Eq. (4.96) and other parameters are as in Fig. 4.10. The
dynamics of the expectation values of the Pauli operators (4.99) reveals oscillatory qubit

coherences. At all times, one numerically finds (Zp) = 0 and, of course, (7, Zgr) = —1
(odd parity). |Gau, 2020a)

4.5 Summary

In this chapter, Majorana-based DD protocols for stabilising as well as manipulating
dark states and dark spaces are described. The underlying topological nature of the
Majorana states significantly boosts the power of DD schemes in several directions. First,
the role of uncontrolled environmental noise sources should be suppressed compared to
topologically trivial realisations, which is a key advantage for high-dimensional dark space
constructions. Second, the fact that Pauli operators describing native Majorana qubits
correspond to products of Majorana operators (pertaining to spatially separated MBSs)
allows for unique addressability options. Only through this feature, which is rooted in
its topology, it is possible to design the special unidirectional cotunneling paths, which
directly implement the jump operators appearing in the Lindblad equation.

For devices with one or two Majorana boxes coupled to driven QDs and subject to elec-
tromagnetic noise, it was shown that the dynamics in the Majorana sector is accurately
described by Lindblad master equations in a wide parameter regime, cf. Sec. 4.1. For
a single-box architecture, Sec. 4.2 provided how to stabilise arbitrary pure dark states,
i.e. states that are fault tolerant and stable on arbitrary time scales. Interestingly, the
discussed DD stabilisation protocol is robust against detuning of state design parameters,
temperature, and in some cases also a small Majorana hybridisation is tolerable. For
multiple-box devices, one can also stabilise dark spaces, i.e. manifolds of degenerate dark
states, as well as protected two-qubit Bell states, cf. Sec. 4.3. In Sec. 4.4 it was shown
that a two-box device allows one to implement a dark Majorana qubit, which in turn
could serve as basic ingredient for dark space quantum computation schemes. The here
discussed stabilisation and manipulation protocols can be implemented with available
hardware elements once a working Majorana platform becomes available.
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Chapter 5

Summary and outlook

Within this chapter the thesis is briefly summarised starting with the fundamental princi-
ples. Furthermore, this chapter contains the contribution of the included publications to
the Majorana field. Afterwards an outlook is given, where especially the driven dissipative
Majorana box opens up various directions for further investigation.

In chapter 2, the Majorana basics were discussed. After an introduction to Majorana
fermions, the Kitaev chain and its nanowire construction were considered. Charging ef-
fects allow to address the non-locally encoded quantum information by electron transport.
Furthermore, charge quantisation significantly simplifies the representation of Majorana
operators in terms of Pauli operators. Additionally, general techniques for studying quan-
tum transport in a single Majorana island were introduced. For more than three Majorana
bound states on a single box, phase-coherent transport facilitates the topological Kondo
effect. As the here discussed Majorana boxes are key for Majorana-based quantum com-
puters, chapter 2 also included the fundamentals of Majorana qubits and a discussion
in terms of the criteria for quantum computation. Even though the quantum informa-
tion stored on Majorana devices is topologically protected, natural dephasing mechanisms
require active error correction. Finally, this chapter gave insight on the derivation of Lind-
blad master equations and different techniques to study such equations of motion.

Chapter 3 generalised the transport results for a single island to more complex systems.
Here, the theoretical framework was established to study arbitrary coupled box systems,
which might be used for future research. Consequently, [Gau, 2018] systematically de-
scribed different coupled Majorana box systems, where different Majorana-lead junctions
were emphasised. By coupling leads to Majorana islands in a non-simple fashion, one can
intentionally create spins, which are non-locally distributed over boxes and leads. Fur-
thermore, it revealed that for coupled systems attached to leads, the latter host strongly-
correlated states, which can be probed by their exotic low-energy physics. This included
quantum transport resonances and unconventional Kondo effects. This work was the first
to study transport through coupled boxes, which could become essential once a working
Majorana platform is available.

In chapter 4, the Majorana box was revisited in the context of an open quantum system.
By carefully engineering the drive, one can benefit from the dissipation due to the elec-
tromagnetic environment, which is always present in experiments. Thereby, |Gau, 2020b|
introduced a drive and dissipation cycle, which allows for the stabilisation of Majorana
states for indefinite time. Comparing the performance of drive and dissipation protocols
for Majorana boxes with protocols with non-topological building blocks, reveals that the
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Majorana-based platform is superior. This is rooted in the spatial distribution of drive
and dissipation, which in turn is based on the topology of the box. The proposed dark
state stabilisation is also stable against temperature fluctuations and does not require a
highly fine-tuned setup, which might become important for future experimental realisa-
tions. A coupled box setup allows to stabilise a degenerate state manifold, a dark space,
which harbours a dark Majorana qubit. As shown in |Gau, 2020a|, such a qubit is not only
topologically protected, but also state manipulations experience an additional protection
mechanism. Therefore, it stands to reason that based on the here discussed proposals,
one can construct Majorana platforms allowing for quantum computing schemes without
active feedback. Whereas state initialisation, manipulation, and read-out are discussed in
chapter 4, there are several potential directions that allow for further investigation.

The above concepts and ideas raise many interesting perspectives for future research.
First, one expects that one can devise robust Majorana braiding protocols, which are sta-
bilised by working within a dark space manifold. Second, for chains of many boxes, DD
stabilisation protocols may allow for interesting quantum simulation applications, e.g.
a realisation of the topologically non-trivial ground state of spin ladders [Ebisu, 2019
or of the Affleck-Kennedy-Lieb-Tasaki (AKLT) spin chain [Kraus, 2008, Affleck, 1987].
Third, for superconducting qubits driven dissipative schemes and active error correction
reinforce each other, |Liu, 2016, and thereby, optimise the stabilisation protocol. For
the driven dissipative Majorana box one can envision similar effects, where the active
error correction capabilities might come in handy when going to large-scale systems. Fi-
nally, the stabilisation of a dark space allows to study problems of fundamental interest.
One could discuss several dark space manipulations allowing for the study of geometrical
phases, [Snizhko, 2019], adiabatic conditions, or the optimisation of fidelity and purity,
while performing rotations within the protected space.
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List of publications

Here, the included publications will be listed and a short description of the contribution
to the research will be given.

QUANTUM TRANSPORT IN COUPLED MAJORANA BOX SYSTEMS, PUBLISHED 16
MAyY 2018 IN PHYSIcAL REVIEW B

In this project, quantum transport in coupled Majorana box systems attached to normal
leads is investigated. My contributions include the modelling of such box systems and
the formulation of an effective low-energy theory allowing for further investigation. Here,
I performed the above described Schrieffer-Wolff transformations, Abelian bosonisation
and Majorana-Klein fusion techniques. Moreover, I derived the weak-coupling RG equa-
tions for arbitrary coupled systems and contributed to the numerical solution of those flow
equations, where I found various conserved quantities and observed different flows towards
isotropy, which allowed for the study of the strong-coupling regime. I was involved in the
establishment of the strong-coupling theory by means of performing Emery-Kivelson-type
rotations and studying different Toulouse points. Furthermore, I numerically analysed the
transport equations and was responsible for all plotted results.

Reference: Matthias Gau, Stephan Plugge, and Reinhold Egger, Quantum transport in
coupled Majorana box systems, Phys. Rev. B 97, 184506 (2018). [Selected as Editors’
Suggestion|

DRIVEN DISSIPATIVE MAJORANA DARK SPACES, SUBMITTED TO PHYSICAL
REVIEW LETTERS, 30 MARCH 2020

In this project, driven dissipative Majorana box devices are shown to stabilise dark spaces,
which are beneficial for quantum computing purposes. My contributions include the
derivation of the Lindblad master equation for a two-box device. Furthermore, I stud-
ied the Lindbladian by means of calculating its spectrum and by discussing conserved
quantities and thereby, symmetries of the open quantum system. The latter, I used to
analytically find the dark space and write down an appropriate basis allowing for fur-
ther investigation. [ introduced different manipulation protocols and discussed how to
initialise predesignated states within the dark space. Moreover, I performed all numerical
calculations.

Reference: Matthias Gau, Reinhold Egger, Alex Zazunov, and Yuval Gefen, Driven Dis-
sipative Majorana Dark Spaces, preprint arXiv:2003.13295 (2020)
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TOWARDS DARK SPACE STABILIZATION AND MANIPULATION IN DRIVEN DIS-
SIPATIVE MAJORANA PLATFORMS, SUBMITTED TO PHYSICAL REVIEW B, 31
MARCH 2020

This project contains details of driven dissipative Majorana platforms, where the main re-
sult is the stabilisation of topologically protected single- or two-qubit states for indefinite
time. I was involved in the creation of a quantum dot based proposal, where the dissi-
pation arises by tunneling between box and dot. Additionally, I modelled such systems
and performed all required calculations in order to obtain an effective low-energy theory
allowing for the derivation of a dynamical equation. Furthermore, I derived the Lindblad
master equation for single- and two-box systems, and found that one can simplify the
Lindbladian by additionally tracing over the quantum dots in a rather simple fashion.
Moreover, I studied the spectrum of all obtained Lindblad master equations, and carried
out various symmetry-based discussions allowing for the analytical study of different dark
state stabilisations. All of the analytical results were augmented by numerical calcula-
tions, which were exclusively performed by me.

Reference: Matthias Gau, Reinhold Egger, Alex Zazunov, and Yuval Gefen, Towards dark
space stabilization and manipulation in driven dissipative Majorana platforms, preprint
arXiv:2003.13979 (2020)
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