

The Renin-Angiotensin-Aldosterone System in the Paediatric Population: Reliable Highly Sensitive Bioanalytical Investigations via Immunoassay and Innovative Multiplex High-resolution Mass Spectrometry

INAUGURAL-DISSERTATION

Zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Fabian Konstantin Süßenbach aus Hannover

Düsseldorf, 14. Juli 2020

aus dem Institut für Klinische Pharmazie und Pharmakotherapie der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Berichterstatter:

1. Prof. Dr. Stephanie Läer

2. Prof. Dr. Rainer Weinkauf

Tag der mündlichen Prüfung: 27.05.2020

"There is always a bigger fish!"

Qui-Gon Jinn

I Erklärung zu Dissertation

Ich versichere an Eides statt, dass die vorliegende Dissertation von mir selbstständig und ohne unzulässige fremde Hilfe unter Beachtung der "Grundsätze zur Sicherung guter wissenschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf" erstellt worden ist. Die Dissertation wurde in der vorgelegten oder in ähnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keinen erfolglosen Promotionsversuch unternommen.

Ort: _____ Dat

Datum: _____

Unterschrift:

(Fabian Süßenbach)

II Danksagung

An dieser Stelle möchte ich mich für die nette und kompetente Unterstützung bedanken, die mir während der Erstellung dieser Arbeit zuteilwurde.

Bei Frau Prof. Dr. Läer bedanke ich mich herzlich für die interne Betreuung und die Möglichkeit diese Arbeit anfertigen zu können sowie für die wertvollen Einblicke und Erfahrungen im Bereich der klinischen Pharmazie, die ich während dieser Zeit erhalten habe.

Meinen Dank möchte ich weiterhin an Herrn Prof. Dr. Rainer Weinkauf für die wertvollen Tipps bezüglich der Massenspektrometrie sowie für die Funktion als Mentor und Korreferent richten.

Besonders bedanken möchte ich mich bei Dr. Björn Burckhardt, der nicht müde wurde mir mit Rat und Tat zur Seite zu stehen und ohne den diese Arbeit so nicht möglich gewesen wäre. Ebenfalls möchte ich ihm für die Funktion als Ko-Autor bei meinen Publikationen und für das Korrekturlesen sowie die konstruktiven und hilfreichen Anmerkungen danken.

Des Weiteren möchte ich mich bei Jutta Tins für die Unterstützung bei den praktischen Arbeiten im Labor und für die netten und hilfreichen Gespräche während meiner Zeit am Institut bedanken. Ebenfalls bedanke ich mich für die Mitarbeit als Ko-Autor bei den zwei gemeinsamen Publikationen.

Bei Maira Anna Deters möchte ich mich insbesondere für die uneingeschränkte Hilfsbereitschaft, die allseits lustigen Gespräche und die tolle Freundschaft bedanken.

Weiterhin bedanke ich mich bei meinen Kollegen Anke Bartel, Nina Makowski, Ilja Burdman, Samieh Farahani, Imaneh Farahani, Haidara Majid, Claire Bunse, Moshin Ali und Muhammad Faisal für die breite Unterstützung während meiner Arbeit. Insbesondere bedanke ich mich bei Tanja Gangnus und Martin Feickert für die Ko-Autorenschaft bei unserem gemeinsamen Artikel.

Zu guter Letzt möchte ich mich bei meiner Familie und meinen Freunden für die grenzenlose Unterstützung während des Erstellens dieser Arbeit bedanken. Vor allem möchte ich meiner Lebenspartnerin Yasmin Thabet danken, die mir auch in schwierigen Situation immer ein Lächeln entlocken konnte und mich in jeder Hinsicht unterstützte.

III Zusammenfassung

Kardiovaskuläre Erkrankungen zählen zu den Hauptursachen natürlicher Todesfälle in der westlichen Hemisphäre, jedoch ist die evidenzbasierte Therapie dieser Erkrankungen in der pädiatrischen Population limitiert. Dies ist unter anderem in dem mangelnden Wissen bezüglich humoraler Regelkreisläufe im heranwachsenden Organismus wie dem Renin-Angiotensin-Aldosteron-System begründet. Folglich umfasst die vorliegende Arbeit die umfangreiche Evaluierung des pädiatrischen Angiotensin-Aldosteron-Systems mittels der Entwicklung und Etablierung qualitätsgesicherter, bioanalytischer Methoden für die Erhebung pharmakodynamischer Daten in pädiatrisch-klinischen Studien.

Initial wurde die Bedeutung des Alters, des Geschlechts und therapeutischer Maßnahmen auf essenzielle Peptide des Renin-Angiotensin-Aldosteron-Systems in gesunden und kardiovaskulär erkrankten Kindern evaluiert, als auch altersbezogene Daten hinsichtlich der Plasma-Renin-Aktivität zusammengestellt. Beide systematischen Übersichtsarbeiten lassen eine altersabhängige Beeinflussung der untersuchten Parameter vermuten und zeigen relevante Datenlücken in der pädiatrischen Population auf.

Zweitens wurde ein den regulatorischen Anforderungen entsprechender Immunoassay für die Bestimmung der Plasma-Renin-Aktivität in Kindern im Rahmen der Guten Klinischen Laborpraxis etabliert. Das nötige Probenvolumen wurde auf ein in der Pädiatrie anwendbares Volumen von 100 µL reduziert und der Assay nach internationalen Richtlinien für den Einsatz in klinischen Studien validiert, um vorhandene Datenlücken zu schließen.

Drittens wurde ein Qualitätskontrollsystem für die Monitorierung bioanalytischer Methoden zur Erhebung pharmakodynamischer Daten in Kindern, im Kontext des "Labeling of Enalapril in Neonates up to Adolescents" Projektes, entwickelt. Dieses ermöglichte die qualitätsgesicherte Messung der Plasma-Renin-Aktivität über den Studienzeitraum von 24 Monaten. Dabei garantierte die Überwachung der Langzeit- und Wiederholgenauigkeit sowie der Reproduzierbarkeit eine regulatorisch adäquate, hohe Datenqualität.

Viertens wurde eine bioanalytische Methode zur hochsensitiven Bestimmung von acht essenziellen Peptiden des Renin-Angiotensin-Aldosteron-Systems mittels Flüssigchromatografie gekoppelt mit hochauflösender Massenspektrometrie entwickelt, um zuverlässige Daten bei Kindern zu generieren. Die Methode ermöglichte die simultane Quantifizierung von Angiotensin I, Angiotensin II, Angiotensin-(1-7), Angiotensin III, Angiotensin IV, Angiotensin A, Alamandine und Angiotensin-(1-9) in 50 µL Plasma. Die durchgeführte Validierung gestattete den Einsatz der Methode im pädiatrischen Kollektiv des "Labeling of Enalapril in Neonates up to Adolescents" Projektes und konnte wesentliche Unterschiede der untersuchten Parameter zwischen Kindern und Erwachsenen aufzeigen.

IV Summary

Cardiovascular diseases are the primary causes of natural deaths in the western hemisphere. However, the evidence-based pharmacotherapy in the paediatric population is limited. This constraint is affected by the lack of knowledge regarding humoral circuits of the maturing organism such as the renin-angiotensin-aldosterone system. In this regard, this thesis presents a comprehensive evaluation of the paediatric renin-angiotensinaldosterone system as well as the development and implementation of quality-assured bioanalytical methods for the assessment of related pharmacodynamic datasets in paediatric, clinical studies.

First, the significance of age, gender and therapeutic measures on essential peptides of the renin-angiotensin-aldosterone system in healthy and cardiovascular diseased paediatric patients have been evaluated. Besides, age-related data on the plasma renin activity have been compiled. Both systematic reviews indicate an age-dependent influence on the peptides and plasma renin activity and also suggest a relevant lack of knowledge in the paediatric population.

Second, an immunoassay for the determination of the plasma renin activity in children was established under Good Clinical Laboratory Practice following regulatory requirements. The required sample volume was successfully downscaled to a volume of 100 μ L applicable in paediatric research, and the assay has been validated in accordance with international bioanalytical guidelines to address the existing knowledge gap.

Third, a comprehensive quality control system for the monitoring of bioanalytical investigations of pharmacodynamic parameters in children was developed in the context of the "Labeling of Enalapril in Neonates up to Adolescents" project. The quality control system allowed the quality-assured evaluation of the plasma renin activity over the entire study period of 24 months. Moreover, the monitoring of long-term and inter-run accuracy, as well as reproducibility, ensured a high data quality in line with regulatory requirements.

Fourth, a bioanalytical method has been developed for the highly sensitive determination of eight essential peptides of the renin-angiotensin-aldosterone system by liquid chromatography coupled to high-resolution mass spectrometry, to obtain reliable data in children. This method enabled the simultaneous quantification of angiotensin I and angiotensin II, as well as angiotensin-(1-7), angiotensin III, angiotensin IV, angiotensin A, alamandine, and angiotensin-(1-9) in 50 μ L plasma. The conducted validation empowered the method to be applied in the paediatric collective of the "Labeling of Enalapril in Neonates up to Adolescents" project and was able to demonstrate notable differences of the examined parameters in paediatrics as compared to adults.

V Table of contents

I	Erklärung zu Dissertation	111
II	Danksagung	IV
Ш	Zusammenfassung	V
IV	Summary	VI
v	Table of contents	VII
VI	Abbreviations	X
VII	Figures	XII
VIII	Tables	XIV
IX	Equations	xv
1	Introduction	1
1.1	The renin-angiotensin-aldosterone system	1
1.2	The renin-angiotensin-aldosterone system in paediatric heart failure	8
1.3	Prerequisites and challenges for research and bioanalysis in children	11
1.4	The LENA project: Labeling of Enalapril from Neonates up to Adolescen	ts.14
1.5	Highly-sensitive bioanalysis via immunoassay and liquid chromatograph	у
	coupled to mass spectrometry methods	16
2	Aims of this thesis	26
3	Systematic reviews of humoral parameters of the paediatric renin- angiotensin-aldosterone system	28
3.1	Background and aim	28
3.2	Methods	30
3.2.1	Search strategy for angiotensin peptides	30
3.2.2	Search strategy for plasma renin activity	30
3.2.3	Data processing	31
3.3	Results	32
3.3.1	Angiotensin peptides in the paediatric population	32
3.3.2	Plasma renin activity in the paediatric population	41
3.4	Limitations	44
3.5	Discussion	45
3.6	Conclusion	46
4	Customisation and validation of a plasma renin activity immunoass applicable for paediatric research	-
4.1	Background and aim	47
4.2	Methods	48
4.2.1	Materials	48
4.2.2	Calibration standards	48

4.2.3	In-house customised assay procedure	49
4.2.4	Measurement of angiotensin I and determination of plasma renin activ	ity50
4.2.5	U.S. Food and Drug Administration based bioanalytical method validated	tion51
4.2.6	Interlaboratory quality assessment	54
4.2.7	Application of the validated method	54
4.3	Results	56
4.3.1	U.S. Food and Drug Administration based bioanalytical method validated	tion56
4.3.2	Interlaboratory quality assessment	60
4.3.3	Application of the validated method in paediatric patients	61
4.4	Discussion	63
4.5	Conclusion	65
5	Bioanalytical quality control system for the plasma renin activity immunoassay	66
5.1	Background and aim	
5.2	Methods	
5.2.1	Assay procedure	
5.2.1	Quality control system	
5.3	Results	
5.3.1	System suitability test	
5.3.1	Overall evaluation of calibration standards	
5.3.2 5.3.3		
5.3.3	Overall evaluation of quality controls Blank sample evaluation	
5.3.4	Incurred sample reanalysis	
5.3.6		
5.4	Interlaboratory testing Discussion	
5.5	Conclusion	
	Conclusion	
6	Development and validation of an innovative multiplex liquid chromatography high-resolution mass spectrometry method for t investigation of angiotensin peptides in plasma	
6.1	Background and aim	
6.2	Methods	89
6.2.1	Materials	89
6.2.2	Optimisation steps during method development	90
6.2.3	Final assay procedure	96
6.2.4	U.S. Food and Drug Administration based bioanalytical method validation	tion 101
6.2.5	Application of the validated method	
6.3	Results	
6.3.1	Optimisation steps	106

6.3.2	U.S. Food and Drug Administration based bioanalytical method validation 109
6.3.3	Application of the method
6.4	Discussion
6.5	Conclusion
7	Overall discussion and perspective124
8	Funding126
9	References127
10	Appendix138
10.1	Systematic reviews of humoral parameters of the paediatric renin-
	angiotensin-aldosterone system
10.2	Customisation and validation of a plasma renin activity immunoassay153
10.3	Bioanalytical quality control system for the plasma renin activity
	immunoassay169
10.4	Development and validation of an innovative multiplex liquid chromatography
	high-resolution mass spectrometry method for the investigation of
	angiotensin peptides in plasma
11	List of publications

VI Abbreviations

ACE	Angiotopoin converting on the
-	Angiotensin-converting enzyme
ACEi	Angiotensin-converting enzyme inhibitor
AGA	Appropriate for gestational age
Ala	Alamandine
Ang1-7	Angiotensin-(1-7)
Ang1-9	Angiotensin-(1-9)
AngA	Angiotensin A
Angl	Angiotensin I
Angli	Angiotensin II
Anglii	Angiotensin III
AnglV	Angiotensin IV
ANP	Atrial natriuretic peptide
APA	Aspartyl aminopeptidase A
APN	Aminopeptidase N
AA	Aminopepildase N Amino acid
ASD	Atrial septal defect
AT₁-R	Angiotensin receptor subtype 1
AT ₂ -R	Angiotensin receptor subtype 2
AT₄-R	Angiotensin receptor subtype 4
BDG	Bidirectional Glenn
CCB	Calcium channel blocker
CE	Collision energy
CHD	Congenital heart disease
CID	Collision induced dissociation
CLSI	Clinical and Laboratory Standards Institute
Cps	Counts per second
CRF	Chronic renal failure
CS	Calibration standard
CV	Coefficient of variation
CVD	Cardiovascular disease
DCM	Dilated cardiomyopathy
DP	Declustering potential
ELISA	Enzyme-linked immunosorbent assay
EMA	European Medicines Agency
ESI	
	Electrospray ionisation
ESRD	End-stage renal disease
FA	Formic acid
FDA	U.S. Food and Drug Administration
GA	Gestational age
GCLP	Good Clinical Laboratory Practice
GPCR	G-protein-coupled receptor
HETP	Height equivalent to a theoretical plate
HF	Heart failure
HPLC	High-performance liquid chromatography
HRP	Horseradish peroxidase
HRMS	High-resolution mass spectrometry
HUT	Head-up tilt
	•

	Cuelie inculin regulating eminementidage
IRAP ICH	Cyclic insulin-regulating aminopeptidase International Council for Harmonisation of Technical Requirements for
	Pharmaceuticals for Human Use
IQR	Interquartile range
IS	Internal standard
IS-MF	Internal standard normalised matrix factor
ISR	Incurred sample reanalysis
LBA	Ligand-binding assay
LC	Liquid chromatography
LENA	Labeling of Enalapril from Neonates up to Adolescents
LLOQ	Lower Limit of Quantification
LoB	Limit of Blank
LoD	Limit of Detection
Mas-R	Mas receptor
MF	Matrix factor
MLBW	Moderate-low birthweight
MrgD	Mas-related g-protein-coupled receptor, member D
MS	Mass spectrometry
m/z	Mass-to-charge
NBW	Normal birthweight
OD	Optical density
PD	Pharmacodynamic
PK	Pharmacokinetic
PMSF	Phenylmethylsulfonyl fluoride
PRA	Plasma renin activity
QC	Quality control
QCS	Quality control system
Q-TOF	Quadrupole and time-of-flight mass spectrometer
RAAS	Renin-angiotensin-aldosterone system Relative error
RE RF	Relative error Renal failure
RfB	German Reference Institute for Bioanalytics
RIA	Radioimmunoassay
RSD	Relative standard deviation
RT	Room temperature
SD	Standard deviation
SE	Standard error
SGA	Small for gestational age
SPE	Solid-phase extraction
SRINS	Steroid-resistant idiopathic nephrotic syndrome
SST	System suitability test
TMB	Tetramethylbenzidine
TQMS	Triple quadrupole mass spectrometer
ULOQ	Upper Limit of Quantification
UV/VIS	Ultraviolet/visible spectroscopy
VLBW	Very-low birthweight
VSD	Ventricular septal defect

VII Figures

Figure 1-1:	Schematic presentation of major components involved in the renin- angiotensin-aldosterone system2
Figure 1-2:	Pathophysiology of heart failure9
Figure 1-3:	Bioanalytical investigations within the "Labeling of Enalapril in Neonates up to Adolescents" project15
Figure 1-4:	Schematic presentation of a competitive enzyme-linked immunosorbent assay procedure17
Figure 1-5:	Characteristics of the stationary phase for the solid-phase extraction19
Figure 1-6:	Schematic presentation of the vertical electrospray ionisation in the positive mode22
Figure 1-7:	Descriptive scheme of the Sciex TipleTOF® 6600 and the related product lon scan mode23
Figure 1-8:	Schematic presentation of a peptide fragmentation with the corresponding nomenclature by Roepstorff and Fohlman25
Figure 3-1:	PRISMA flow diagram for the systematic review of angiotensin peptides in healthy and cardiovascular/renal diseased paediatric population32
Figure 3-2:	Age-related change of Angiotensin I, Angiotensin II, and Angiotensin-(1-7) levels in the healthy population during childhood33
Figure 3-3:	Intervention related changes of Angiotensin I, Angiotensin II, and Angiotensin-(1-7) concentrations in the paediatric population
Figure 3-4:	Impact of examined factors on plasma and serum concentrations of angiotensin peptides in the paediatric population40
Figure 3-5:	PRISMA flow diagram for the systematic review of plasma renin activity in the healthy and cardiovascular diseased paediatric population41
Figure 3-6:	Plasma renin activity in the healthy paediatric population42
Figure 3-7:	Plasma renin activity in the cardiovascular diseased paediatric population43
Figure 4-1:	The modified plasma renin activity immunoassay procedure50
Figure 4-2:	The relative error of all conducted calibration standards for the evaluation of linearity by the plasma renin activity immunoassay expressed as boxplots
Figure 4-3:	The relative error of between-run accuracy and the coefficient of variation of between-run precision for the plasma renin activity immunoassay57
Figure 4-4:	The percentage deviation of short-term stability for the plasma renin activity
Figure 4-5:	The percentage deviation of long-term stability in seven sources for the plasma renin activity60
Figure 4-6:	Example measurements of paediatric samples and the corresponding incurred sample reanalysis by the plasma renin activity immunoassay62
Figure 5-1:	Schematic presentation of the established bioanalytical quality control system
Figure 5-2:	Flow diagram of the customised bioanalytical quality control system74

Figure 5-3:	Boxplots of the relative error for the conducted system suitability tests
rigure 0-0.	for all analytical runs by the plasma renin activity immunoassay
Figure 5-4:	Boxplots of the relative error for all calibration standards in valid bioanalytical runs by the plasma renin activity immunoassay76
Figure 5-5:	The long-term and inter-run evaluation of quality control samples of the plasma renin activity immunoassay78
Figure 5-6:	The overall evaluation of blank samples in all analytical runs by the plasma renin activity immunoassay80
Figure 5-7:	Assessment of incurred sample reanalysis by the plasma renin activity immunoassay
Figure 6-1:	Schematic presentation of the difference of a product ion scan fragmentation between a peptide and small molecule
Figure 6-2:	Example mass spectra of product ion scans for every individual analyte and internal standard included in the liquid chromatography coupled to high-resolution mass spectrometry method
Figure 6-3:	Preparation of calibration standards and quality controls for the liquid chromatography coupled to high-resolution mass spectrometry method97
Figure 6-4:	The conducted precipitation procedure using 50 µL plasma prior to solid- phase extraction and liquid chromatography coupled to high-resolution mass spectrometry
Figure 6-5:	Solid-phase extraction protocol for the extraction of angiotensin peptides prior to liquid chromatography coupled to high-resolution mass spectrometry
Figure 6-6:	Example product ion scans of Angiotensin I, Angiotensin II, and Angiotensin-(1-9) of native and processed matrix of the same source106
Figure 6-7:	The in-house customised solid-phase extraction protocol compared to the standard protocol107
Figure 6-8:	Example time-of-flight mass spectra with and without precipitation step prior to solid-phase extraction108
Figure 6-9:	Schematic presentation of the influence on the sensitivity of angiotensin peptides by the addition of 1% dimethyl sulfoxide to the mobile phase109
Figure 6-10:	Example chromatogram of the system suitability test sample110
Figure 6-11:	The relative error of all conducted calibration standards for each analyte expressed as boxplots111
Figure 6-12:	Results of between-run accuracy for the three conducted runs
Figure 6-13:	Results of between-run precision for the three conducted runs
Figure 6-14:	Example presentation of analyte signals at the Lower Level of Quantification and the zero sample in human plasma
Figure 6-15:	Results of the evaluation for the internal standard normalised matrix factor of six different human sources115
Figure 6-16:	The percentage recovery of all analytes and internal standards116
Figure 6-17:	Results of the autosampler stability expressed as mean measured values over 24.2 hours
Figure 6-18:	Example chromatograms of three children suffering from heart failure118
Figure 6-19:	Example chromatograms of six healthy adult volunteers119

VIII Tables

Table 1-1:	Relative affinities of angiotensin peptides to the angiotensin receptor subtype 1 and 2 in human embryonic kidney-293 cells
Table 1-2:	Characteristics of the eight investigated angiotensin peptides7
Table 4-1:	The results of the investigated matrix effect on the plasma renin activity determination
Table 5-1:	The lot dependent results of between-run accuracy and precision for the plasma renin activity immunoassay68
Table 6-1:	The applied gradient for the liquid chromatography100
Table 6-2:	The precursor ion and collision energy for all analytes and internal standards regarding the high-resolution mass spectrometry
Table 6-3:	Nominal concentrations of the applied calibration standards for the liquid chromatography coupled to high-resolution mass spectrometry method. 102
Table 6-4:	Nominal concentrations of the implemented quality controls for the liquid chromatography coupled to high-resolution mass spectrometry method. 102
Table 6-5:	Applied concentration levels for the investigation of the matrix effect for the liquid chromatography coupled to high-resolution mass spectrometry method
Table 6-6:	Characteristics of the six investigated healthy adult volunteers for the determination of the matrix effect
Table 6-7:	Measured plasma concentrations of eight angiotensin peptides in healthy adults and paediatrics suffering from heart failure

IX Equations

Equation 1-1:	Calculation of the distribution coefficient	.20
Equation 1-2:	The Van-Deemter equation	.20
Equation 3-1:	Conversion of plasma renin activity values for standardisation of compiled literature data	.31
Equation 3-2:	Calculation of the middle point of the range for graphical representation of age ranges in Origin® 2018b	.31
Equation 3-3:	Calculation of the deviation of the centre point of the range for graphical representation of age ranges in Origin® 2018b	.31
Equation 4-1:	Calculation of the plasma renin activity	.50
Equation 4-2:	Calculation of the relative error	.52
Equation 4-3:	Calculation of the coefficient of variation.	.52
Equation 4-4:	Calculation of the percentage difference between the original sample value and measured repeat.	.55
Equation 5-1:	Calculation of the blank-to-Lower Limit of Quantification ratio.	.72
Equation 5-2:	Calculation of incurred sample reanalysis pairs meeting the guideline criteria.	.73

1 Introduction

1.1 The renin-angiotensin-aldosterone system

Background

The renin-angiotensin-aldosterone system (RAAS) is a major regulator of blood pressure, perfusion, and fluid homeostasis. It subsequently plays a key role in the development and prevalence of high blood pressure and renal failure (RF). Besides, it is actively involved in the development and prognosis of leading causes of death in the western world, such as cardiovascular diseases (CVD), including heart failure (HF) and coronary arterial disease [1, 2]. Furthermore, an influence on cerebral perfusion and the progression of stress symptoms, depression, Alzheimer's disease, Parkinson's disease or diabetes was shown [3–8]. The RAAS is described by a complex enzymatic cascade wherein the prohormone angiotensinogen represents the primary precursor. Angiotensinogen is mainly generated in the liver but can also be expressed in other tissues like kidney, brain, heart, and adrenal gland [9]. After secretion into the blood, the circulating angiotensinogen is predominantly degraded by cleavage at the N-terminal end by the aspartyl protease renin [10]. Renin itself was first described by Robert Tigerstedt and his student Per Bergmann in 1898 as a substance located in the kidney of rabbits, which lowers blood pressure [3]. Renin is activated by eliminating an N-terminal propeptide from its precursor prorenin [11, 12]. The release of renin from the juxtaglomerular apparatus of the kidney is primarily triggered by the change of the sodium chloride concentration at the *macula densa*, renal baroreceptors responsive to altering arterial perfusion, the sympathetic stimulation via beta-1 receptors, and angiotensin II (AngII) triggered negative feedback on the juxtaglomerular apparatus [9, 13].

The degradation of angiotensinogen by renin presents the beginning of an enzymatic cascade involving several physiological important peptides, which are primarily investigated in animal and cell-culture studies, as well as increasingly in the adult population. To highlight the importance of these peptides in terms of physiological functions and the influence on pathophysiological processes, the following chapter provides an overview of important peptides of the RAAS and their corresponding target receptors based on *in-vitro*, animal *in-vivo*, as well as human adult *in-vivo* data (Figure 1-1).

Figure 1-1: Schematic presentation of major components involved in the reninangiotensin-aldosterone system. Blue ovals with dashed lines represent involved enzymes (unknown enzymes are expressed as question marks). Solid lines indicate peptide-receptor interaction. Big grey arrows represent effects triggered by activation of the receptor. Amino acids sequences are expressed using the three-letter code. Potential feedback mechanisms are not illustrated here. [6, 9, 10, 12, 14–22]. APN: aminopeptidase N; APA: aspartyl-aminopeptidase A; ACE: angiotensin-converting enzyme; ACE2: angiotensin-converting enzyme 2; NEP: neutral endopeptidase; PEP: prolyl endopeptidase; MEP: metalloen endopeptidase; Carb-P: carboxypeptidase C; PO: propyl oligopeptidase; DAP: aspartyl aminopeptidase; IRAP: cyclic insulinregulating aminopeptidase; AT₁: angiotensin receptor subtype 1; AT₂: angiotensin receptor subtype 2; AT₄: angiotensin receptor subtype 4; MrgD: Mas-related Gprotein-coupled Receptor, member D; Cath. G: Cathepsin G

Essential peptides of the renin-angiotensin-aldosterone system

The cleavage of angiotensinogen by the action of renin leads to the inactive interim peptide angiotensin I (AngI), which was first described by Page et al. in 1940 [23]. The conversion of AngI from angiotensinogen is the rate-limiting step of the whole RAAS metabolism and is applied for the assessment of the renin activity. The evaluation of the plasma renin activity (PRA) is a widely established approach for the determination of renin activity in plasma, which is technically less demanding than measurement of direct renin concentration. PRA is commonly utilised for evaluating metabolic dysfunctions (e.g. PRA-aldosterone ratio for the diagnosis of primary hyperaldosteronism, a cause of hypertension and a trigger for diverse CVDs, including HF) [24].

The degradation of Angl by the metalloprotease angiotensin-converting enzyme (ACE) results in the octapeptide Angll. Since Menendez and Fasciolo first isolated Angll from renal dog blood in 1939, the homeostatic regulation of blood pressure was mainly be ascribed to Angll [25], as it presents one of the most vasoconstrictive substances ever known and thus is the most examined peptide of the RAAS [26]. Angll plays an active role in inflammatory processes, coronary atherosclerosis and fibrosis, as well as in HF and hypertension [27]. Currently, two types of receptors regarding Angll interactions are clearly identified. The angiotensin receptor subtype 1 (AT₁-R) and subtype 2 (AT₂-R) belong to the family of Gprotein-coupled receptors (GPCR). The AT1-R is ubiquitous in the body (e.g. blood vessels, kidney, heart, liver, brain, and lung) and is responsible for the increase of blood pressure, vasoconstriction, the activity of the sympathetic nervous system and the release of the mineralocorticoid receptor agonist aldosterone from the zona glomerulosa (the outermost layer of the adrenal gland) [9, 28]. Aldosterone leads to elevated water and sodium retention and consequently, to increased blood volume [9, 29, 30]. In contrast to the AT₁-R, the AT₂-R constitutes the counterpart by causing primarily protective effects like vasodilation, modulation of cell proliferation, apoptosis and regenerative processes [31, 32].

Angiotensin III (AngIII), also known as des-aspartyl-angiotensin II, was first described by Campbell et al. in 1974 who demonstrated an AngIII triggered effect on aldosterone release, indicating a comparable effect like AngII [33]. AngIII is generated from AngII by the action of the aspartyl aminopeptidase A (APA) and possesses similar characteristics like its precursor peptide (e.g. addressing the AT₁-R and AT₂-R, inducing vasoconstriction and the release of ANP, proinflammatory effects, increase in glomerular filtration rate and influence on the release of vasopressin [8, 19–21, 33–36]. These observations even led to a theory that revaluates AngIII as actual physiologically relevant peptide of RAAS, reasoned by the potential conversion of AngII to AngIII before activation of the receptors [8, 34, 37–39]. This thesis was also supported by Wright et al., who demonstrated an increase in blood pressure of spontaneously hypertensive rats by injection of APA. Conversely, the injection of aminopeptidase N (APN), which degrades AngIII, resulted in a decrease in blood pressure [40]. However, there is no consistent evidence for this thesis, as Clark et al. observed a constant activation of the mitogen-activated kinase cascade despite APA inhibition, indicating no exclusively stimulation by AngIII [41]. In addition, Wilson et al. were able to demonstrate an equivalent effect on the thirst and sodium appetite with aminopeptidaseresistant AngII and AngIII analogues [42], while administration of AngIII and AngII in baboons led to similar increases in salt and water intake [43]. However, new insights into the regulation of blood pressure as well as HF can be derived from these findings, in which AngIII is likely to play a decisive role.

The degradation of AngII or AngIII by the action of APN results in the hexapeptide Angiotensin IV (AngIV), which main target receptor significantly differs from the previously described components of the RAAS. The angiotensin receptor subtype 4 (AT₄-R) was initially described in 1992, and afterwards identified by Albiston et al. in 2001 as cyclic insulin-regulating aminopeptidase (IRAP), a type 2 transmembrane protein which belongs to the family of gluzincin aminopeptidases [4, 44, 45]. Moreover, a soluble IRAP in maternal serum, also known as oxytocinase, was described [45]. Besides neurons, brain, heart, kidney, and skeletal muscle, the membrane-bound IRAP is expressed in adipocytes in which the IRAP shows similarities to the glucose transporter type 4 [19, 45–47]. When stimulated with insulin, the receptor is transferred to the outside of the plasma membrane [46]. After this translocation, the IRAP is capable to enzymatically degrade potent vasoconstrictors such as vasopressin and AngIII, hormones like oxytocin, as well as neurokinin A and B, lys-bradykinin and somatostatin [45, 48, 49]. Thus, a decreased translocation of the IRAP by reduced insulin levels can lead to reduced degradation of vasopressin and further vasopressors [4, 46, 50, 51]. Consequently, AnglV could potentially play a role in the development of comorbidities like elevated blood pressure and HF in diabetes mellitus type 2 patients [52]. However, current research on AngIV focuses primarily on pathophysiological conditions of cognitive perception, Alzheimer's disease, epilepsy, and insulin release [9, 45, 53]. In this context, animal studies showed that AngIV plays a role in cognitive processes and sensorimotor functions [54]. Since high-affinity binding structures for AngIV are also present in humans and these are likewise localised in areas for cognitive and motor skills such as the hippocampus, neocortex, and cerebellum, the delayed progress and onset of Alzheimer's disease, observed under vascular dysregulation caused by administration of ARBs and ACE-inhibitors (ACEi) in several cohort studies, could

therefore potentially be awarded to increased conversion of AngII to AngIV [7, 55–57]. Thus, AngIV could become a potential target for Alzheimer's disease, Parkinson or dementia [49].

The discovery of a homologous enzyme to ACE, namely the angiotensin-converting enzyme 2 (ACE2), allowed further insights into an alternative pathway of the RAAS [58, 59]. In this, the leucine is cleaved from Angl by the action of ACE2 from the C-terminal end, which leads to the nonapeptide Angiotensin-(1-9) (Ang1-9). Ang1-9 could exhibit protective effects via direct agonising of the AT₂-R [60]. Besides, Ocaranza et al. demonstrated an anti-hypertrophic effect on cultured cardiac myocytes by the administration of Ang1-9 after myocardial infarction in rats [61]. Moreover, an increased plasma concentration of Ang1-9 was shown after experimental myocardial infarction and ACE/AT₁-R inhibition. The elevated Ang1-9 concentration thereby correlates with the attenuation of left heart hypertrophy [61]. Nevertheless, the mode of action and the cardiovascular effects of Ang1-9 are still not finally assessed.

The conversion of Ang1-9 by the ACE results in Angiotensin-(1-7) (Ang1-7) [59]. Alternatively, Ang1-7 could also be generated from AngII by the ACE2, angiotensinase C, and prolyl endopeptidase and could thus be synthesised via both pathways of the RAAS [62, 63]. Moreover, neprilysin is also capable to directly generate Ang1-7 out of Angl by bypassing the ACE and ACE2 pathways [64]. High-doses of Ang1-7 in animal models showed minor vasopressor effects, probably caused by weak AT₁-R stimulation [65]. Nevertheless, binding studies in human embryonic kidney-293 cells by Bosnyak et al. indicate higher effects on the AT₂-R (Table 1-1). [66] However, Ang1-7 mainly addresses the GPCR Mas (Mas-R) as well as the Mas-related GPCR, member D (MrgD) [35, 67, 68]. The Mas-R exhibits many similarities to the AT₂-R, including protective and AT₁-R antagonising effects like vasodilation, anti-inflammation as well as neurogenerative effects [18, 69–71]. Moreover, Ang1-7 possesses antiproliferative, anti-fibrotic and inhibitory effects on the growth of cardiomyocytes as well as vasodilative properties via the Mas-R. It thus is regarded as a functional antagonist of AnglI [59, 67, 72]. As a consequence, the discovery of the ACE2/Ang1-7/Mas axis might provide new potentials for the treatment of hypertension and HF.

	Angiotensi	n receptor subtype 1	Angiotensi	n receptor subtype 2
Ligand	IC ₅₀ value	Percentage affinity	IC ₅₀ value	Percentage affinity
Liyanu	(M)	of Angiotensin II	(M)	of Angiotensin II
Angiotensin II	7.92E-09	100%	5.22E-10	100%
Angiotensin III	2.11E-08	38%	6.48E-10	81%
Angiotensin IV	n/a	n/a	4.86E-08	1%
Angiotensin-(1-7)	n/a	n/a	2.46E-07	0.21%

Table 1-1:	Relative affinities of angiotensin peptides to the angiotensin receptor subtype
	1 and 2 in human embryonic kidney-293 cells.

The table was modified according to [66]. IC_{50} : half maximal inhibitory concentration; n/a: not applicable; M: molar

In recent years, investigations indicated the existence of further peptides of the angiotensinfamily that are derived from AngII. Jankowski et al. identified a novel peptide named angiotensin A (AngA), which is potentially generated from AngII by enzymatic decarboxylation and shows the same affinity on the AT₁-R, but higher affinity on AT₂-R like AngII [15]. Nevertheless, this assumption is still under discussion as other research demonstrated equal affinities of AngII and AngA to both receptor subtypes [73]. The obtained data suggest that AngA is rather dedicated to vasoconstriction than vasodilation and therefore shows similarities to AngII; yet with lower potency compared to AngII. However, experiments in the abdominal aorta of rabbits lead to the suggestion, that plasma concentrations of AngA could be significantly increased in pathophysiological conditions and hence compensate the lower potency compared to AngII [74]. All in all, there is conflicting evidence about the role of AngA in context of the RAAS and its impact on physiological functions and pathophysiological conditions like CVD.

In 2013, Lautner et al. published the discovery of the heptapeptide alamandine as well as the corresponding target receptor, which was identified as MrgD-R [17]. Alamandine could be directly formed from Ang1-7 and resembles its biological activity. As a result, alamandine is assigned protective properties similar to Ang1-7. However, the exact formation of this novel peptide and its role in CVDs is still not entirely understood. Nevertheless, the demonstrated reduction of long-term blood pressure in spontaneously hypertensive rats [17], the vasodilative effects in rabbit vessels [75], and the observed vasorelaxation in aortic rings from mice [76] suggests counteracting effects compared to AngII, AngIII and AngA.

In summary, all these described peptides might play a key role regarding the physiological function of the RAAS, which makes them interesting target structures for the investigation of CVDs (e.g. HF) and the related pharmacotherapy (Table 1-2 provides further information for all investigated physiological peptides of the RAAS within this thesis).

Table 1-2: Characteristics of the eight investigated angiotensin peptides.

The amino acid sequence of the peptides is expressed as one-letter code. The theoretical isoelectric point (pl) and the molecular mass was estimated with the "Isoelectric Point Calculator" [77].

1.2 The renin-angiotensin-aldosterone system in paediatric heart failure

The various components of the RAAS are substantially involved in the development and prognosis of HF, hypertension, and cardiac remodelling. Nevertheless, evidence regarding the interaction of humoral parameters of the RAAS and their influence on HF is primarily available in adults, while only limited knowledge regarding the maturing RAAS in children suffering from HF exists [2]. However, the current data regarding circulating concentrations of angiotensin peptides in the paediatric population is inconsistent at all. While numerous studies are conducted in the context of, e.g. PRA and AngII in the adult RAAS, there is less evidence for children than for adults. Moreover, although paediatric studies for AngII and PRA exist, just sporadic evidence regarding AngI and Ang1-7 is available in the paediatric collective, and meaningful investigations of AngIII, AngIV, AngA, alamandine and Ang1-9 are lacking in all paediatric age groups [78]. Therefore, the identification and evaluation of significant developmental changes in the maturing RAAS, which are emphasised by the rapid maturational changes in the post-natal period, might be vital for a more in-depth understanding of paediatric HF [79].

Generally, HF with preserved ejection fraction is characterised by insufficient cardiac output and is thus associated with an undersupply of metabolising tissues with oxygen, leading to oedema, respiratory distress, fatigue and weakness as clinical symptoms (Figure 1-2) [80, 81]. The International Society for Heart and Lung transplantation defines paediatric HF as "a clinical and pathophysiologic syndrome that results from ventricular dysfunction, volume, or pressure overload, alone or in combination. In children, it leads to characteristic signs and symptoms, such as poor growth, feeding difficulties, respiratory distress, exercise intolerance, and fatigue, and is associated with circulatory, neurohormonal, and molecular abnormalities" [82].

Figure 1-2: Pathophysiology of heart failure.

HF in paediatrics is the leading cause of mortality in children suffering from heart diseases [83] and, unlike the adult HF, often characterised by primary (e.g. congenital heart diseases (CHD)) rather than acquired aetiology [84, 85]. CHD could have several reasons (e.g. left-to-right-shunts, conotruncal lesions, single ventricle lesions, and valve diseases) [86] and is the primary cause for HF in children [87]. However, cardiomyopathies (e.g. dilated cardiomyopathy (DCM)) also contribute as a cause for HF in children with structurally normal hearts [86] and is characterised by systolic dysfunction and dilation mainly of the left ventricle [88]. In addition, there is evidence for shared genetic causes between CHD and cardiomyopathy, which could increase the likelihood of HF concerning CHD [86]. The

estimated annual incidence in the United States, Australia, United Kingdom, and Ireland amount to 1/100,000 children, with DCM as the most common (66%) cardiomyopathic diagnosis [89]. The clinical management in paediatric HF is generally conducted via heart transplantation or surgery, mechanical devices (e.g. pacemakers) and bridging drug therapy consisting of diuretics, beta-blockers and dominantly ACEis [90, 91]. However, studies showed that pharmacotherapy in adults could be only limited transferred to children, based on, e.g. distinctive age-dependent variability in metabolism, expression of target structures and body composition, as well as alterations in the ontogeny of maturing children [92, 93]. Yet, the pharmacological treatment strategies frequently overlap, due to the presumption of similar pathophysiological mechanisms [86, 89]. Nonetheless, evidence regarding effectivity and safety of the treatment in children is still lacking, emphasised by drugs for the treatment of paediatric HF commonly used in an off-label approach, putting the vulnerable population into jeopardy [92].

All in all, paediatric HF is a complex clinical syndrome, which is associated with congenital and acquired heart diseases, resulting in high mortality, morbidity and health-care costs [87, 94]. Although the pharmacological therapy of paediatric HF (as in adults) is predominantly based on RAAS antagonists, the paediatric RAAS has not been adequately investigated, and sophisticated evaluations of the various components are lacking.

1.3 Prerequisites and challenges for research and bioanalysis in children

Background

The off-label use of drugs and the exposure of non-evident doses are frequently the sole possibility for paediatricians to conduct treatment in children. This trend is apparent in the therapy of HF, in which several drugs are approved for HF in adults [95, 96], while only a few approved drugs are available to treat HF in all paediatric age groups. However, due to the rapid changes of factors influencing pharmacokinetics (PK) and pharmacodynamics (PD) within the maturing organism, particularly young children are prone to an increased risk of adverse effects [97]. Therefore, an increased amount of clinical investigations in paediatrics are mandatory. In Europe, this issue was addressed by the European Medicines Agency (EMA) in 2007 via the implementation of the "EU Paediatric Regulation". The aim of this regulation states "that medicines for use in children are of high quality, ethically researched and authorised appropriately and improving the availability of information on the use of medicines for children" [98]. Moreover, the regulation substantially affects the pharmaceutical industry by the requirement for paediatric investigation plans, with the aim "that most medicines used by children are specifically authorised for such use with ageappropriate forms and formulations; and to increase the availability of high-quality information about medicines used by children" [99]. However, the number of sophisticated paediatric clinical studies remains limited. This still results in a lack of evidence-based pharmacotherapy in this population, attributed by multiple difficulties in the conduct of paediatric studies [92]. Besides the common hurdles within clinical research, paediatric studies are characterised by further difficulties in study conduct. Intricate study designs, issues of guardianship, researcher competencies, barriers to recruitment, and commercial sponsorship are challenges for the performance of paediatric studies [100]. This is emphasised by high rates of study discontinuation and non-publication, which results in a high amount of "lost" paediatric participants [101]. In this regard, a discontinuation rate of 40% was reported for randomised clinical controlled trials, which were conducted in the paediatric population [101]. However, besides the aforementioned hurdles, further obstacles are reasoned by the bioanalysis of paediatric samples.

Bioanalytical challenges

The bioanalytical investigation of paediatric study samples is confronted with challenging blood sampling conditions and restricted sample volumes [101, 102]. Ethical constraints required by the EMA permits withdrawable blood volume in children of 3% of the total blood volume during a period of four weeks or 1% at a single blood sampling [90]. For an estimated blood volume of 80-90 mL/kg, the withdrawable blood volume thus amounts to 2.4 mL/kg in four weeks and 0.8 ml/kg at a single time point. By the example calculation for one-month-old boy with a bodyweight of 4.5 kg (value according to the 50% percentile of the weight-for-age table provided by the World Health Organisation), the maximal allowed blood volume amounts to 10.8 mL in four weeks and 3.6 mL at a single time point. Since bioanalytical assays often rely on serum or plasma analysis, the available matrix is further reduced by approximately 45% to a maximal amount of plasma/serum of 5.9 mL (four weeks) and 2 mL (single sampling). This volume may be sufficient for the analysis of single parameters with conventional assays. However, the simultaneous investigations of PK, PD and safety parameters are common in paediatric clinical trials which require bioanalytical assays applicable for very low sample volumes. These restrictions limit the amount of available matrix for a comprehensive investigation of humoral parameters. Therefore, routinely applied bioanalytical assays are frequently inappropriate for application in paediatrics, as these assays usually require much larger volumes. Consequently, the bioanalytical assays applied within paediatric research had to be tailored for the paediatric purpose.

Due to the ethical constraints, paediatric clinical studies are typically only conducted once [90]. In this regard, from an ethical and analytical perspective, the most effective use of the rare sample material is essential to generate a reliable evidence base for future drug therapy. This is particularly important concerning the limited number of sophisticated paediatric clinical studies, which has led to a lack of evidence-based pharmacotherapy in this vulnerable population [92]. For this reason, the highest possible knowledge must be obtained from the limited sample material. In the context of bioanalysis, sophisticated considerations regarding the individual matrix (e.g. plasma for PRA) and characteristics of each parameter to be measured (e.g. rapid degradation of peptides in plasma) are indispensable. The latter is particularly crucial as the reported low half-life of peptides in plasma (e.g. 16±1 s for AngII and 14±1 s for AngIII) require a sufficient inhibition of plasma directly after the sampling and a fast sample processing [103]. Consequently, the precise planning of blood sampling and sample processing plays a vital role in the reliable conduction of subsequent bioanalysis [104].

Bioanalytical assays which are applied in paediatric clinical trials, have to address the ethical constraints given, e.g. by the EMA [79]. Besides, the used assays are obliged to maximum quality standards and have to be in line with Good Clinical Laboratory Practice (GCLP). In this regard, a maximum effort has to be made to guarantee the acquisition of the highest data quality from the unique paediatric samples, as this population may not be investigated a second time. Moreover, critical therapeutic decisions may be derived from the obtained findings, which makes the assurance of high data quality urgently necessary. In this regard, bioanalytical quality control systems (QCSs) can substantially contribute to reliable data quality and monitor process performance. However, their use in academia is not as widespread as in the pharmaceutical industry; therefore, this deficiency requires particular attention in academia-driven research projects.

1.4 The LENA project: Labeling of Enalapril from Neonates up to Adolescents

The LENA (Labeling of Enalapril from Neonates up to Adolescents) project (Seventh Framework Programme [FP7/2007-2013] under grant agreement n°602295 [LENA]) aimed to systematically investigate the PK and PD of a novel orodispersible dosage form (orodispersible minitablets) of the ACEi enalapril maleate in paediatrics suffering from HF. Especially as no long-lasting ACEi has been licensed for paediatric use below six years of age, the achievement of a safe and child-appropriate administration of enalapril was an important priority of the LENA project. All in all, a total of 102 children (>70% below one year of age) suffering from HF expressed as CHD or DCM participated within the international multi-centre project. Besides the evaluation of PK of enalapril and its active metabolite enalaprilat, the LENA project aimed for comprehensive investigations of the PD parameters Angl, PRA, renin, and aldosterone to bridge the knowledge gap of these humoral parameters in the maturing organism. These examinations played an essential role within the LENA project, as the change in PD parameters could serve as an indicator for the effect of enalapril.

Several quality tools (e.g. a feasibility study, simulation training, audit trails, standard operation procedures, form sheets, dual control principle, external audits) were implemented to meet the regulatory requirements and provide the most reliable data acquisition [102]. This demand for quality also had to be guaranteed in the bioanalytical investigation of the study samples. In this regard, the applied bioanalytical assays must additionally be able to deal with small sample volumes (50-100 μ L) and simultaneously provide high sensitivity. Besides, all methods must be validated according to international regulatory guidelines to comply with the GCLP environment. Ultimately, the assay performance and quality had to be monitored over the entire study period to guarantee the continuous acquisition of reliable data from the unique paediatric collective (Figure 1-3).

Figure 1-3: Bioanalytical investigations within the "Labeling of Enalapril in Neonates up to Adolescents" project with a focus on the bioanalytical investigation of pharmacodynamic parameters. DCM: dilative cardiomyopathy; CHD: congenital heart disease; ODMT: orodispersible minitablet; PK: pharmacokinetic; PD: pharmacodynamic; GCLP: Good Clinical Laboratory Practice

1.5 Highly-sensitive bioanalysis via immunoassay and liquid chromatography coupled to mass spectrometry methods

The lack of reliable PD data for children suffering from severe diseases like HF impedes the development of efficient treatment options and subsequently exposes the children to a heightened risk. Thus, the sophisticated bioanalytical investigation of humoral parameters in children with HF is a valuable approach to provide a remedy. To achieve this, the applied assays have to exhibit high sensitivity as the endogenous biomarkers commonly occur in sub nanogram per millilitre ranges. For this thesis, two different bioanalytical approaches were applied. First, an enzyme-linked immunosorbent assay (ELISA) was utilised for the analysis of the PRA. Second, a solid-phase extraction (SPE) with subsequent liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS) was applied for the investigation of the angiotensin peptides Angl, AnglI, Ang1-7, AngIII, AngIV, AngA, alamandine, and Ang1-9. Both techniques are explained in more detail in the following chapters.

Bioanalysis of plasma renin activity by enzyme-linked immunosorbent assays

Currently, radioimmunoassays (RIAs) are widely used and constitute a dominant role in PRA determination. On the one hand, RIAs generally represent simple and highly sensitive radiometric methods. On the other hand, several detriments, apart from the inherent risks and costs in handling radioactive material, are mostly based on the short stability of the radioactive tracers due to radiolysis as well as challenges in disposal management [105]. This analytical effort may contribute to PRA not being regularly assessed in clinical research. More easily implemented ligand binding assays (LBAs) such as ELISA have not yet been embraced in the routine determination of PRA values in children, although their simplicity in handling might facilitate the sophisticated monitoring of PRA. The availability of such a method could be instrumental in minimising the previous knowledge gap of PRA in very young children suffering from HF. As the bioanalytical technique of the ELISA constitutes the basis for the determination of PRA within the LENA project, the basic principle is subsequently explained.

Assays based on the principle of antibody-antigen interaction were first described in 1941 [106]. Since the first ELISA was developed in 1971 by modifying the already available RIA method, the ELISA approach was continuously improved and attained crucial importance and widespread application in bioanalytics [107]. The fundamental functionality of an ELISA is described by a selective interaction between an antigen and the corresponding antibody,

which is tagged with a colour-reaction catalysing enzyme (e.g. horseradish peroxidase (HRP)). After the antibody-antigen reaction, an enzyme-specific substrate is added, and the antigen could be quantified with an absorbance reader via the extent of the colour reaction. Nowadays, several subgroups of ELISA methods exist. Since the competitive ELISA was exclusively applied in the context of this thesis, this kind of type will be explained in more detail (Figure 1-4). During the first incubation step, the unlabelled target-antigen (analyte) competes with a labelled-antigen for the immobilised anti-antigen-antibody. After washing and removal of unbound residuals, the enzyme-labelled conjugate is added, which binds to the immobilised labelled-antigen-antibody complex. Subsequently, another washing step is conducted to remove surplus materials, and the colourimetric substrate is added. Finally, the reaction is stopped by acidification, and the optical density (OD) is measured with an absorbance reader. Due to the competitive mechanism, the quantity of the investigated antigen is higher, the lesser the OD.

Figure 1-4: Schematic presentation of a competitive enzyme-linked immunosorbent assay procedure. H+: acid

Bioanalysis of peptides by solid-phase extraction and subsequent liquid chromatography coupled to high-resolution mass spectrometry

The LC-HRMS allows separation and subsequent accurate determination of analytes in complex matrices via their exact mass. In particular, the bioanalysis of complex analytes like physiological peptides has benefited from this technique. In contrast to the LBA, the combination of LC with mass spectrometry (MS) provides simultaneous quantification of various peptides with high selectivity over a broad analytical range [108]. However, the extraction and purification of the analytes from plasma with, e.g. SPE is a mandatory step prior to LC-MS analysis.

Solid-phase extraction

The determination of analytes in a complex matrix such as plasma is associated with numerous challenges. First, the components of the plasma can affect the LC by causing interfering peaks, the elevation of the baseline, and the clogging of capillaries. Secondly, matrix components can influence the ionisation of coeluting analytes in the ion source of the MS by causing amplification or suppression of the ion signal. Thirdly, they could contaminate the MS and thus affect the intensity of the analytes and the accuracy and precision of the conducted measurements. Therefore, the thorough purification of samples and the related removal of interfering matrix is a crucial element for reliable bioanalysis with LC-MS. Besides the conduction of a precipitation step to remove plasma components, liquid-liquid extractions and SPE are usually applied to purify the samples for subsequent analysis. Both techniques present widely applicable concepts for sample purification, which are universally used in several analytical fields. However, liquid-liquid separation exhibits various disadvantages. High quantities of required organic solvents, often inadequate separation of the phases, lower recovery levels and reduced sample throughput limit its application as opposed to SPE [109]. Moreover, the high sample throughput underlines the advantages of the SPE in a clinical setting like LENA. Therefore, SPE was applied as current "gold-standard" for the extraction of analytes in the context of this research.

Like liquid-liquid extraction, the SPE principle is also based on the interaction of the solved analyte with two phases. Yet, instead of two immiscible liquid phases, the SPE makes use of a liquid phase and a stationary phase. The selection of an appropriate stationary phase thereby strongly depends on the analytes of interest. According to the chemical properties of the analytes (e.g. hydrophobicity, polarity, and charge), different sorbent materials are applicable [110]. Depending on the sorbent material, various modes of interaction are achievable between the stationary phase and the analyte solution. The normal phase SPE is characterised by a polar analyte which is dissolved in a non-polar solution as liquid phase (e.g. acetone) and a polar stationary phase. The interaction of the stationary phase and analyte occurs primarily by hydrogen bonding and π - π interactions of the polar groups. In contrast, the reversed-phase requires a polar liquid phase and a non-polar stationary phase. To obtain adequate retention, the analyte should be mid- to non-polar. In this case, the interaction of the analyte with the stationary phase is caused by Van der Waals forces. The elution of the analyte could be achieved by applying a solution with higher polarity (normal phase SPE) or lower polarity (reversed-phase SPE) than the analyte of interest. As a modification of the reversed-phase SPE, the ion-exchange SPE is characterised by additional interactions of ionic compounds with charged functional groups of the sorbent material (e.g. quaternary amines for anionic compounds or sulfonic acid groups for cationic compounds). The retention of the analyte is mainly caused by electrostatic interactions of the analyte with the functional groups of the stationary phase and could be subsequently eluted with a solution of higher ionic strength [111]. However, in all types of SPE, purification of the sample could be realised by washing steps which exhibit opposite properties to the elution solvent [110].

In the course of this thesis, an Oasis[®] Prime HLB (hydrophilic-lipophilic balance) SPE from Waters[®] was used for the extraction and purification of the analytes. The Prime HLB sorbents material represents a modified version of the reversed-phase stationary phase, which exhibits mixed properties for the retention of polar and non-polar compounds (Figure 1-5).

Figure 1-5: Chemical characteristics of the stationary phase for the solid-phase extraction. The applied Oasis[®] HLB Prime material was obtained from Waters[®]. R¹- R⁶: unknown residuals.

This type of stationary phase provides advantages for both polar and non-polar analytes and is particularly suitable for substances with variable chemical properties like peptides.

High-performance liquid chromatography

The high-performance liquid chromatography (HPLC) is a powerful version of the LC and a reliable method for the qualitative and quantitative determination of mixtures of substances. In brief, the various analytes are solved in a liquid mobile phase which passed over a stationary phase (packed in high density within a column) under application of high pressure. The interactions of the analyte molecules with the two phases can be described with distribution coefficient k. It is defined as the quotient of the concentration in the stationary phase (C_{stat}) and the concentration in the mobile phase (C_{mob}) [112] (Equation 1-1).

$$k = \frac{C_{stat}}{C_{mob}}$$

Equation 1-1: Calculation of the distribution coefficient.

Thus, the efficiency of the separation process is dependent on distribution processes within the column but also impacted by further processes which could be described by the Van-Deemter equation (Equation 1-2).

HETP=
$$A + \frac{B}{v} + C * v$$

Equation 1-2: The Van-Deemter equation. HETP: height equivalent to a theoretical plate; A: Eddydiffusion; B: diffusion coefficient; C: mass transfer coefficient; v: linear velocity.

The height equivalent to a theoretical plate (HETP) represents a measure of the separation efficiency of the column and is influenced by the Eddy-diffusion, the diffusion coefficient, the mass transfer and the linear velocity. The Eddy-diffusion is almost independently of the linear velocity and is expressed as channelling of molecules triggered by non-homogenous packaging and inconsistent particle diameter of the column. The diffusion coefficient divided by the linear velocity of the mobile phase represents the longitudinal diffusion of the molecules and depends on the viscosity and temperature of the mobile phase. The mass transfer coefficient multiplied with the linear velocity describes the mass transfer between the mobile phase. Therefore, the lesser the HETP, the higher the separation efficacy of the analytes [112]. Consequently, various factors (e.g. hydrophilicity, isoelectric point, and size of the analyte) have to be recognised to achieve a sufficient separation and resolution of the analytes. This separation is indicated by the different retention time of each
analyte, which is substance-specific under constant conditions (e.g. temperature of the column, gradient, and the type of column). The different chemical characteristics of each analyte result in a separation of the mixture's components, which are subsequently transferred to the ion source of the MS.

Electrospray ionisation

The electrospray ionisation (ESI) represents a well-established method to transfer the analytes from the liquid phase to the gas phase and thus making them assessable to the MS. The ESI was developed in 1968 by Dole et al. and 1984 confirmed by Yamashita and Fenn [113, 114]. The mobile phase is transferred, ionised, and sprayed into an interface by means of a capillary on which a high voltage is applied (electrode). The applied voltage results in an electric field between the electrode and a counter-electrode. Depending on the polarity, positively charged ions (electrode as the anode) or negatively charged ions (electrode as the cathode) can be formed [115, 116]. When spraying the mobile phase, a Taylor cone occurs due to the charge repulsion of the resulting ions (Figure 1-6). Nebulisation is enhanced by an inert gas such as nitrogen. The resulting droplets now migrate to the counter-electrode [115, 116]. According to the Charge-Residue-Model by Dole et al., the solvent droplets are removed by an opposing, heated stream of gas (e.g. compressed air or nitrogen), which causes the analyte ions to cluster closer together[114]. These repel due to the same charge. The radius reduction of the droplet eventually reaches the Rayleigh limit. By exceeding this limit, the energy of the repulsive ions is greater than the surface tension, and it comes to a Coulomb explosion, whereby the droplets continue to disintegrate until the individual ions are present separately. The Ion-Evaporation-Model by Iribarne et al. [117] assumes an increase in the curvature of the droplet during evaporation. This is accompanied by an increase in the tension sufficient to desorb the ions from the surface. However, both mechanisms are not yet evidently proven.

Figure 1-6: Schematic presentation of the vertical electrospray ionisation in the positive mode. HPLC: High-performance liquid chromatography; ESI: electrospray ionisation; MS: mass spectrometer.

High-resolution mass spectrometry

The principle of MS can be traced back to 1912 when Joseph John Thomson managed to separate the neon isotopes with mass 22 and 24 [118]. To this day, the original principle has often been modified and expanded. The triple quadrupole mass spectrometer (TQMS) is regularly used in targeted peptide quantification. However, a HRMS such as a hybrid of quadrupole and time-of-flight mass spectrometer (Q-TOF) provides additional advantages. While the TQMS represents an excellent tool to investigate predefined analytes, it is not suitable for additional untargeted screenings of the sample. Since the MS is a destructive process, potentially valuable information from the rare study material can be lost. In contrast, the technique of the high-resolution Q-TOF empowers the targeted screening and precise separation of very similar analytes and differentiate between metabolites and precursors, as well as the untargeted screening over a broad mass range. Therefore, this HRMS approach allows more profound insights into the maturing organism and can provide

more valuable data with less potential cross-reaction in comparison with, e.g. LBAs. Figure 1-7 describes the applied Q-TOF within this thesis.

Figure 1-7: Descriptive scheme of the Sciex TipleTOF[®] 6600 and the related product Ion scan mode. HPLC: high-performance liquid chromatography; CDS: calibration delivery system; ESI: electrospray ionisation TOF: time-of-flight.

After the ESI of the analytes, the ions reach the front-end of the Q-TOF through the curtain plate and the orifice plate (counter-electrode). Subsequently, they pass through the QJet[®] into the analyser (mass filter) by a high vacuum. The vacuum is mandatory to prevent a collision with molecules of the air, which would result in an uncontrolled fragmentation and thus must be avoided [115, 116]. Due to the curtain gas (a stream of nitrogen behind the curtain plate) and the declustering potential (DP) (which is applied on the orifice plate), resulting clusters consisting of solvent molecules or other foreign ions will be resolved. For ion-focusing, the QJet[®] is arranged behind the orifice plate, followed by another quadrupole contributing to the further focusing and trajectory stabilisation of the ions. Thereafter, the ions reach two further series-connected quadrupoles, with the first quadrupole, serves as a

mass analyser. In this, an oscillation of the ions is achieved by a superimposed AC voltage. Consequently, ions that do not correspond to the selected mass-to-charge (m/z) ratio are neutralised at the rods and sucked from the vacuum [116, 119]. The last quadrupole represents the collision cell filled with an inert gas. The collision with the gas molecules causes the fragmentation of the ions. The degree of fragmentation is indicated by the collision energy (CE). The resulting fragments now enter the time-of-flight analyser. The ions are accelerated by pulses and hit the detector after a certain distance of the flight. A reflector additionally extends the trajectory of the individual ions. Since, depending on the m/z of the ions, the duration of the flight may be short (small m/z) or more extended (large m/z), it is possible to accurately differentiate between the charged fragments with a high resolution [112, 119].

Characteristics of peptide analysis by liquid chromatography coupled to mass spectrometry

Peptides are molecules which consist of two or more amino acids (AA), linked to a chain via peptide (amide) bonds. Depending on the amount of AA within this chain, peptides were classified as dipeptide (two AA), tripeptide (three AA) etc. Peptides with more than 10 AA are termed polypeptides [120]. All in all, twenty naturally occurring AA are directly encoded by triplet codons in the human genome.

In contrast to small molecules, the chromatographic separation of large molecules like peptides is characterised by further particularities. The size, frequently low solubility, non-specific binding to container walls, polypeptide folding due to AA side-chains and often suboptimal peak shape complicate the chromatographic separation [121]. Consequently, adequate knowledge about the analytes of interest is mandatory for the selection of SPE sorbents, mobile phases, injection solvents, chromatographic columns and the applied settings. Besides, the reported low half-life of peptides in biological fluids requires a fast sample processing [103].

In general, only molecules which carry at least one charge can be analysed with MS. This also applies to peptides, which are characterised (dependent on their AA sequence) by usually more than one charge state. In this regard, the isoelectric point of the peptide and the pH value of the surrounding milieu tributes to the kind of charge. The charge state of the molecule ion (precursor) is indicated by the superscript kind and the number of charges (e.g. $[M+3H]^{3+}$ for a precursor ion with three positive charges). The fragmentation of the peptide strongly depends on the energy of the collision-induced dissociation (CID) within the collision cell of the MS. The low-energy CID ($\leq 100 \text{ eV}$) is a frequently applied technique for the fragmentation of peptides and occurs in mass spectrometers with quadrupole

collision cells [120]. The types of fragment ions which could be observed with low-energy CID depend on various factors like primary peptide sequence, the charge state of the peptide, and the amount of internal energy. Roepstorff and Fohlman first proposed an accepted nomenclature for this fragment ions (Figure 1-8) [122]. The most common resulting fragment ions at the low-energy CID are y and b ions. However, further potential fragment ions like x, z, a, and c are plausible. Moreover, internal fragment ions and neutral-loss fragment ions (loss of ammonia, water or carbon monoxide) could potentially be found [120].

Figure 1-8: Schematic presentation of a peptide fragmentation with the corresponding nomenclature by Roepstorff and Fohlman [122]. Fragment ions comprising the N-terminal end are termed with x, y, or z, while fragment ions with the C-terminal end are termed a, b, or c. The numbering of the respective fragment ions base on the peptide bond and begins at the corresponding end (C-terminal for a, b, or c and N-terminal for x, y, or z).

2 Aims of this thesis

The lack of comprehensive data regarding humoral parameters in the paediatric population represents a barrier for the understanding of the progression and pathogenesis of HF in children. Moreover, the knowledge of pharmacodynamic effects of current pharmacotherapy on the maturing organism might contribute to a safer and more evidencebased pharmacotherapy in children. Therefore, this thesis aimed to enable deeper insights into the paediatric renin-angiotensin-aldosterone system by facilitating reliable bioanalysis of pharmacodynamic parameters in the context of the LENA project. Moreover, the assurance of a high-quality bioanalytical data acquisition throughout the entire study period, as well as a compilation of literature-based data to assist the categorisation of the obtained data within the LENA project were set as objectives.

Therefore, four principal aims were pursued during this thesis to meet these requirements. Each aim is again subdivided into sub-aims in the corresponding chapter.

1. Systematic reviews of humoral parameters of the paediatric reninangiotensin-aldosterone system.

The aim of the first part of this thesis encompassed the conduction of systematic reviews to provide an overview of angiotensin I, angiotensin II, angiotensin-(1-7), angiotensin III, and angiotensin IV values in healthy besides cardiovascular and renal diseased children to outline the current state of knowledge of the renin-angiotensin-aldosterone system in childhood. Moreover, this investigation aimed to compile literature-based plasma renin activity values in the healthy and cardiovascular diseased paediatric population to support the categorisation of obtained values within the LENA project.

2. Customisation and validation of a plasma renin activity immunoassay applicable for paediatric research.

The second aim was the reliable analysis of plasma renin activity in neonates and children to obtain new perceptions of the renin-angiotensin-aldosterone system within the maturing organism. To achieve this, an enzyme-linked immunosorbent assay appropriate for the analysis of the plasma renin activity in Good Clinical Laboratory Practice settings must be developed. The assay had to be further customised to low-volume applicability to cope with the limited sample volumes being common in paediatric clinical trials like LENA. Moreover, the U.S. Food and Drug Administration

compliant validation of the assay had to guarantee the sophisticated analysis of valuable paediatric data obligatory to comply with international regulatory requirements.

3. Implementation of a bioanalytical quality control system for the plasma renin activity immunoassay.

The third part of this thesis was dedicated to the substantiation of the high-quality acquisition of bioanalytical data within the unique paediatric population of the LENA project. Thus, the establishment of an easy-to-apply but comprehensive quality control system for the bioanalysis of the plasma renin activity by the validated enzyme-linked immunosorbent assay to support the reliability of the obtained data should be implemented. Besides, this paediatric-tailored approach should comprise well-established regulations as well as further scientific references and recommendations to handle the bioanalytical obstacles in academia-driven paediatric research in a Good Clinical Laboratory Practice environment.

4. Development and validation of an innovative multiplex liquid chromatography high-resolution mass spectrometry method for the investigation of angiotensin peptides in plasma.

Lastly, the fourth aim of this thesis intended to enable unprecedented insights in the renin-angiotensin-aldosterone system of neonates and children. This aim should be reached by the development of a high-performance liquid chromatography coupled to high-resolution mass spectrometry method for the simultaneous quantification of angiotensin I, angiotensin II, angiotensin-(1-7), angiotensin III, angiotensin IV, angiotensin A, alamandine, and angiotensin-(1-9) in the paediatric collective. Thus, the applied highly sensitive method has to cope with the limited available plasma volumes in children and should be validated to comply with U.S. Food and Drug Administration guideline requirements.

3 Systematic reviews of humoral parameters of the paediatric renin-angiotensin-aldosterone system

Some aspects of this chapter are already published on the 18th of May 2019 as "Levels of angiotensin peptides in healthy and cardiovascular/renal diseased paediatric population – an investigative review" in the peer-reviewed journal Heart Failure Reviews (doi: 10.1007/s10741-019-09797-y).

3.1 Background and aim

Pharmacological strategies for the treatment of HF are predominantly based on the inhibition of the endogenous angiotensin peptides Angl and Angll and their target receptors. However, recent cardiovascular research focuses on novel peptides of the RAAS [16], which raises a controversial discussion whether Angl and AnglI represent the most appropriate target structures or the less investigated peptides such as Ang1-7, AngIII, and AngIV could be more suitable [20]. Since the evidence-based pharmacotherapy of HF is limited in children, these peptides might represent interesting structures for a better understanding of paediatric HF. Yet, the current data regarding circulating concentrations of angiotensin peptides in children and neonates are inconsistent, which highlights the need for a meaningful evaluation of the maturing RAAS in order to facilitate future progress in paediatric care in all age groups. In addition, while numerous studies have been conducted in the context of PRA in the adult RAAS, a comprehensive picture of PRA values regarding the maturing RAAS is lacking, which makes a systematic compilation of available PRA values necessary. Ultimately, the compiled data sets might support the categorisation of the obtained data of the LENA collective as supportive reference. This is particularly noteworthy as the inclusion of healthy children as controls are limited in paediatric clinical trials like LENA.

Thus, the sub-aims of these systematic reviews were:

- To provide an overview of Angl, Angll, Ang1-7, AngIII, and AngIV values in healthy besides cardiovascular and renal diseased children to outline the current state of knowledge of the RAAS in childhood.
- To evaluate the impact of age, gender, and treatment on the plasma concentrations of the individual angiotensin peptides.

• To compile PRA values in the healthy and cardiovascular diseased paediatric population to support the categorisation of obtained values within the LENA project.

3.2 Methods

3.2.1 Search strategy for angiotensin peptides

A literature search was conducted in the MEDLINE database via PubMed between August 2018 and January 2019. For record identification, the search term "(Angiotensin I OR Angiotensin II OR Angiotensin-(1-7) OR Angiotensin III OR Angiotensin IV) AND (Child OR infant OR newborn OR toddler)" was defined. Filters were set as follows: humans, German, English, child: (birth-18 years). Healthy children were defined as children without any cardiovascular and renal diseases or other ailments with obvious evidence for influencing the RAAS. CVD was defined as congenital or acquired heart defects, including HF and DCM. The definition of subjects with RF in this literature search represents congenital or acquired nephrotic diseases, including chronic kidney diseases (stage G2-G5) as well as patients after surgical treatment of the kidney. Inclusion criteria were human in vivo serum/plasma values of Angl, Angll, Ang1-7, AngIII, and AngIV in paediatrics from birth to 18 years of age Exclusion criteria were values in adults (over 18 years, lack of obtained peptide values, ex-vivo and animal studies, imprecise date (e.g. undefined age and health status of population, undescribed analytical assay and matrix, no assignability of values and statistical operators), no possibility to access the publication, and diseases not fitting the inclusion criteria.

3.2.2 Search strategy for plasma renin activity

A further literature search was also conducted in the MEDLINE database via PubMed between January 2019 and February 2019. For record identification the search terms "Plasma renin activity AND (Heart failure OR dilated cardiomyopathy OR congenital heart defect OR congenital heart disease) AND (child OR neonate OR infant OR toddler OR paediatric)" besides "Plasma renin activity AND (Healthy) AND (child OR neonate OR infant OR infant OR toddler OR infant or toddler OR paediatric)" were defined. Detailed inclusion criteria and exclusion criteria are shown in Appendix 10.1-1.

In contrast to the systematic review of angiotensin peptides, the sole objective of this systematic review was the compilation of literature PRA values as a reference for the obtained data in the LENA collective. Therefore, the results of this search are expressed in a condensed format as figures and tables without detailed interpretation of the results.

3.2.3 Data processing

Of the included records, the age of the population, the number of participants, PRA and peptide values, sampling procedures, used analytical assays, matrices, characteristics of the collectives, statistical operators, and leading authors with publication date were transferred into a Microsoft[®] Excel[®] file (2016 MSO 16.0.4266.1011 64 bit). If required, graphical data was extracted via GetData Graph Digitizer[®] (Version 2.26.0.20), with a mean of three replicates. Peptide values were expressed as pg/mL and converted from other units, if necessary. PRA values were expressed as ng/ml/h and converted from ng/L/s, if necessary (Equation 3-1).

ng/mL/h =
$$\left(\frac{ng/L/s}{1000}\right)$$
* 60²

Equation 3-1: Conversion of plasma renin activity values for standardisation of compiled literature data

Figures were designed with Origin[®] 2018b (Version 2018b 9.55). In this context, the age of the population was converted into months, followed by conversion into days in Microsoft[®] Excel[®]. For a graphical presentation of the age of study participant's, values given in mean±standard deviation (SD) and mean±standard error (SE) were unmodified transferred in Origin[®] 2018b. For records in which the range or interquartile range (IQR) was given, values were modified into a centre point of the range and a deviation (Equation 3-2, Equation 3-3).

Center point of the range =
$$\left(\frac{\text{End point of the range - Start point of the range}}{2}\right)$$
 + Start point of the range Equation 3-2: Calculation of the middle point of the range for graphical representation of age

Deviation =
$$\left(\frac{\text{End point of the range-Start point of the range}}{2}\right)$$

ranges in Origin® 2018b.

Equation 3-3: Calculation of the deviation of the centre point of the range for graphical representation of age ranges in Origin® 2018b.

Systematic reviews of humoral parameters of the paediatric renin-angiotensin-aldosterone system - Results

3.3 Results

3.3.1 Angiotensin peptides in the paediatric population

Overall, 928 findings were screened for the angiotensin peptides literature search of which 78 were assessed for eligibility. Of these, 35 publications were classified as relevant for this review. Further details are provided in the PRISMA diagram [123] (Figure 3-1).

Figure 3-1: PRISMA flow diagram for the systematic review of angiotensin peptides in healthy and cardiovascular/renal diseased paediatric population.

Age-related change of angiotensin peptides during childhood

The ontogeny in children is related to various metabolic and enzymatic changes during childhood. Alteration in parameters occurs in different velocities, leading to continually changing conditions in the organism [92, 93, 124]. The compiled data anticipate that angiotensin peptides decrease rapidly in newborns during the first weeks of life, but remain higher in childhood compared to adult concentrations (Figure 3-2 and Appendix 10.1-2). If not otherwise indicated, statistical operators for the age and plasma concentrations in the following chapters were expressed as range and mean±SD, respectively.

Figure 3-2: Age-related change of Angiotensin I, Angiotensin II, and Angiotensin-(1-7) levels in the healthy population during childhood. Concentrations (C) are expressed as mean±standard deviation (SD), unless other classified; Thick horizontal line: range of age of investigated population, unless other classified; SE: standard error; IQR: interquartile range; BW: Birthweight. 1) Pipkin, 1975 (n=25); 2) Miyawaki, 2006 (Very low BW, n=16); 3) Miyawaki, 2006 (Moderate low BW, n=16); 4) Miyawaki, 2006 (Normal BW, n=16); 5) Miyawaki, 2008 (Very low BW, n=9); 6) Pipkin, 1977 (n=46); 7) Tang, 2015 (n=30); 8) Pipkin, 1981 (n=63); 9) El-Deek, 2017 (n=10); 10) Simões e Silva, 2004 (n=32); 11) Fiselier, 1983 (n=9-16); 12) Gheissari, 2013 (age as mean±SD) (n=30); 13) Franco, 2008 (Appropriate for gestational age) (n=31); 14) Franco, 2008 (Small for gestational age) (n=35); 15) Washburn, 2015 (normotensive pregnancy, n=78); 16) Washburn, 2015 (preeclamptic pregnancy, n=49); 17) Zhang, 2018 (age as mean±SD) (n=30); 18): Zaher, 2015 (n=35); 19) Rittig, 2006 (C and age as mean±SE) (n=10); 20) Mahler, 2012 (age as mean±SD) (n=10); 21) Tiosano, 2001 (n=2-4); 22) Van Acker, 1983 (n=20); 23) Hjortdal, 2000 (C as median (IQR), n=33); 24) Al-Daghri, 2010 (n=150); 25) Al-Daghri, 2011 (C as median (IQR), age as mean±SD, n=13); 26) Kamperis, 2012 (age as mean±SD, n=11); 27) Kamperis, 2008 (age as mean±SD, n=10); 28) Cruces, 2012 (C and age as median (IQR), n=60); 29) Rittig, 2010 (age as mean±SD, n=11); 20) South, 2017 (C as median (IQR), n=50); 31) South, 2017 (antenatal corticosteroids, C as median (IQR), n=70); 32) Mahler, 2015 (prepuberty boys, C as mean±SE, n=9); 33) Mahler, 2015 (prepuberty girls, C as mean±SE, n=9); 34) Mahler, 2015 (puberty boys, C as mean±SE, n=10); 35) Mahler, 2015 (puberty girls, C as mean±SE, n=10).

Systematic reviews of humoral parameters of the paediatric renin-angiotensin-aldosterone system - Results

Newborns

Angl values in newborns are reported by Fiselier et al. in the early 1980th only. The plasma concentrations of 9 newborns and infants (1 week-3 months) ranged from 191-468 pg/mL with a median of 302 pg/mL, which were higher than in older subjects (4 months-13 years) investigated in the same study [124]. Simultaneously measured AnglI values revealed likewise higher concentration with a range of 30-117 pg/mL and a median of 58 pg/mL than in older subjects [124]. Pipkin et al. measured Angll concentrations in newborns with prematurity or jaundice. AnglI levels significantly decreased from 178.4±26.2 pg/mL (venous cord blood) at birth to 60.3±9.2 pg/mL during the first six days but were higher than in adult controls (28.8±4.2 pg/mL) [125]. Later on, the same group investigated AngII values in 46 healthy newborns 1-11 days after birth. Newborns with less than four days of age showed non-significant higher Angll levels than newborns more than four days of age. Overall, the mean and SD was 67.7±7.1 pg/mL with a median of 50 and a wide range of 9.4-204 pg/mL, which is comparable with the further findings in this group [126]. An investigation of AnglI levels in children with varying birthweights (1-7 days) indicated a sustained decrease in the strata of infants with normal birthweight (NBW) and moderatelow birthweight (MLBW) from birth (NBW: 74 pg/mL (range 3-443 pg/mL), MLBW: 43 pg/mL (range 5-438 pg/mL) (geometric mean (range))) to 7 days after birth (NBW: 19 pg/mL (range 1-127 pg/mL), MLBW: 8 pg/mL (range 5-254 pg/mL) (geometric mean (range))). In contrast, infants with a very-low birthweight (VLBW) showed a marked increase in in AngII concentrations of 34 pg/mL (range 5-201 pg/mL) to 76 pg/mL (range 7-1041 pg/mL) (geometric mean (range)) [127]. However, two years later, the same group noted a slight decline in AnglI values from birth to day 35 in VLBW infants [128]. These contradict findings in the newborn underline the lack of comprehensive knowledge in this age group.

Infants and toddlers

The Angl plasma concentrations of 16 healthy infants (3-12 months) ranged from 94-244 pg/mL with a median of 157 pg/mL and thus tending to be lower than obtained concentrations from newborns beforehand [124]. The obtained AngII values were equivalent to a range of 12-82 pg/mL and a median of 37 pg/mL [124]. A further cohort of 20 infants (1-12months) exhibit comparable plasma concentrations of 33.6±3.4 pg/mL (mean±SE) [129]. In contrast, Cruces et al. found higher levels in healthy infants with a median and IQR of 10 (5-24) years of age, which amount to a median of 229 pg/mL with an IQR of 157-319 pg/mL. Moreover, 30 infants (30 days-10 months) showed AngII concentrations of 300±30 pg/mL [130] and even 35 infants (1.5-13 months) a concentration of 1330±1130 pg/mL [131]. These findings indicate the high variability which is not clarified yet.

Children and adolescents

The Angl values between a cohort of children with 1-4 years of age (n=10) and a cohort of children with 4-8 years of age (n=9) showed a decrease of plasma concentration from a median of 133 pg/mL (range 83-312 pg/mL) to a median of 99 pg/mL (range 63 183 pg/mL), respectively. The latter values did not notable differ to children with 8-13 years of age (n=10) [124] but were higher than in a cohort of 32 children and adolescents (3.1-16.7 years) with 26.4±13.4 pg/mL [132]. In opposition, remarkable higher concentrations were observed in 8-13 years old boys and girls with appropriate gestational birthweight (AGA) and small gestational birthweight (SGA). Obtained values regarding AGA boys and girls were 77.4±35.6 ng/mL and 85.3±43.7 ng/mL respectively, whereas values obtained from SGA boys and girls amount to 79.7±43.0 ng/mL and 89.1±31.4 ng/mL, correspondingly [133]. AnglI values measured by the same group showed slightly higher concentration ranges. The mean plasma concentrations of boys and girls in the SGA and AGA group varied between 82.4 ng/mL and 117.8 ng/mL [133] compared to children (n=10) with the same age being born with NBW (median 22 pg/mL (range 12-67 pg/mL)) [124]. Several publications reported similar lower pg/mL levels of circulating AnglI levels in children and adolescents, supported by relatively large numbers of participants, with a broad range of age for included paediatrics [124, 132, 134-143]. Apart from that, higher concentrations were found in 1-13 years old subjects (n=10) with 1780±70 pg/mL [144], as well as in 5-12 years (n=150) and 9.4±2.6 years (mean±SD)) old children (n=131) showing serum levels of 710±530 pg/mL and a median of 570 pg/mL (IQR 440-730 pg/mL), respectively [145, 146]. Ang1-7 plasma levels were reported in children and adolescents only. Concentrations of 16.2±7.9 pg/mL were found in 3.1-16.7 years old subjects (n=32) by Simões e Silva et al. in 2004. In adolescents (14 years) born preterm without (n=50) and with antenatal corticosteroids (n=70), low levels of Ang1-7 with a median of 2.4 pg/mL (IQR 1.3-6.3 pg/mL) versus 8.1 pg/mL (IQR 2.3-13.2 pg/mL) were observed [142]. Measured Ang1-7 levels of adolescents (14 years) born prematurely with VLBW under normotensive (n=78) or preeclamptic (n=49) pregnancy were 9±10 pg/mL and 8±6 pg/mL, respectively. Comparable to previous reported Angl and AnglI values, remarkable high concentrations occurred in AGA and SGA children which amount to more than 31.7 ng/mL (mean) [133].

Sex-related differences

Sex hormones are believed to play a role in the regulation of the adult RAAS, which is reflected in altered blood pressure and pathogenesis of cardiovascular and renal diseases [147]. Whereas most of the reported studies in this review included a balanced number of male and female participants, sex-related deviations in the paediatric population regarding angiotensin peptides were reported infrequently. However, based on the growing interest in

personalised medicine approaches, gender could play an increasingly important role in prospective therapy of CVD and RF [148]. Angl and AnglI values of 32 boys and 23 girls were obtained for children subdivided into groups of 1 week-3 months, 3 months-1 year, 1-4 years, 4-8 years, and 8-13 years. No significant differences (p>0.05) of plasma concentrations were found between males and females in the corresponding groups [124]. In contrast, findings of Pipkin et al., including 20 boys and 43 girls (2 months-12 years), showed evidence (p<0.02) of higher Angll plasma concentrations (34.7±4.5 pg/mL) in girls versus (24.9±5.5 pg/mL) in boys. Subdividing into roughly numerical-equal groups of younger than 8 and older than 8 years of age showed significant (p<0.01) lower AnglI values in boys under 8 years of age. For boys older than 8 years, an equal (but not significant (p>0.6)) trend could be observed [149]. A further study was able to gather gender-specific data on Angl, Angll, and Ang1-7 in 66 children (8-13 years). However, no significant, sexrelated variations (considering the high intergroup SD) could be ascertained for all RAAS peptides between AGA boys (Angl: 77.4±35.6 ng/mL, Angll: 92.3±18.9 ng/mL, Ang1-7: 31.7±24.3 ng/mL) and girls (Angl: 85.3±43.7 ng/mL, Angll: 82.4±23.1 ng/mL, Ang1-7: 45.8±30.1 ng/mL) as well as between SGA boys (Angl: 79.7±43.0 ng/mL, AnglI: 117.8±36.8 ng/mL, Ang1-7: 41.6±31.2 ng/mL) and girls (Angl: 89.1±31.4 ng/mL, AnglI: 86.6±29.6 ng/mL, Ang1-7: 46.2±27.0 ng/mL) [133]. In a similar subject, Washburn et al. investigated AnglI and Ang1-7 values in VLBW infants of 14 years of age, which were born prematurity, either in normotensive or preeclampsia conditions. Angll and Ang1-7 values of normotensive male children were 19±10 pg/mL and 9±13 pg/mL, compared to normotensive female children of 29±13 pg/mL and 9±8 pg/mL, respectively. The preeclampsia born male children showed Angl and Ang1-7 values of 22±9 pg/mL and 10±9 pg/mL besides 24±10 pg/mL and 7±4 pg/mL, respectively for female preeclampsia born children [143]. Overall, no significant differences could be observed in circulating peptide concentrations between both genders. Further AnglI values were obtained as part of a study including 73 boys (9.0±1.8 years (mean±SD)) and 77 girls (9.3±2 years (mean±SD)). Serum concentrations for boys were 650±300 pg/mL, while values in girls were slightly higher (730±600 pg/mL) but did not reach statistical significance (p=0.45) [145]. Supplementary evidence for similar, gender independent levels of AnglI in the paediatric population was obtained by Mahler et al. No significant sex-related differences in baseline concentrations could be observed in prepuberty boys (13.4±0.1 pg/mL (mean±SE), 8.2±0.5 years, n=9) and girls (10.1±1 pg /mL (mean±SE), 8.3±0.3 years, n=9) besides puberty boys (14.8±0.2 pg/mL (mean±SE), 14.0±0.9 years, n=10) and girls (12.2±2.1 pg/mL (mean±SE), 12.8±0.8 years, n=10) (p=0.879) [150]. In contrast, the same group measured significant (p=0.03) different night time levels of AnglI in boys (71±29 pg/mL (mean±SE), 10.6±1.2 years, n=10) and girls (107±42 pg/mL (mean±SE), 10.6±1.2 years, n=10) [139].

Pharmacological intervention in cardiovascular/ renal diseased children

10.4±4.8 years (mean±SD) old children (n=32) with hypertensive chronic renal failure (CRF) receiving antihypertensive medications showed an elevation as compared to normotensive CRF children (12±4 years (mean±SD), n=28) without antihypertensive medication for plasma levels of Angl (171.8±85.4 pg/mL vs. 26.7±6.7 pg/mL), Ang1-7 (140.8±58 pg/mL vs. 18.6±6.8 pg/mL) and Angll (84.2±52.9 pg/mL vs. 22.4±9.1 pg/mL). In addition, a similar proportion was observed with respect to 11.2±4 years (mean±SD) old healthy controls (n=32) [151]. For patients in the same collective receiving antihypertensive medication either with (n=20) or without ACEi (n=14), a significant elevation for Angl (199.0±47.6 pg/mL vs. 135.3±44.6 pg/mL) and Ang1-7 (159.1±62.6 pg/mL vs. 114.7±39.7 pg/mL), as well as significantly lower levels for AngII (53.6±32.5 pg/mL vs. 127.9±45.6 pg/mL) could be observed. Additionally, antihypertensive medication led to a significant elevation of peptide levels in a hypertensive end-stage renal disease (ERSD) (n=18) group compared to ESRD patients without antihypertensive medication (n=3) for Angl (349±33.1 pg/mL vs. 230.4±47.6 pg/mL) and Ang1-7 (443.8±58.5 pg/mL vs. 271.4±32.9 pg/mL). Yet, AngII concentration did not raised significantly (117.2±25.6 pg/mL vs. 89.3±9.7 pg/mL) [151]. In contrast, antihypertensive treated ERSD children with additional ACEi (n=12) and without additional ACEi (n=9) showed comparable results for Angl, Ang1-7 and AngII [151]. Moreover, treatment of 11.6±4.8 years (mean±SD) old children suffering from essential hypertension with calcium channel blockers alone (n=12) or non-pharmacological treatment (n=3) showed no differences in RAAS profile before and after treatment for Angl (36.5±11.4 pg/mL vs. 35.7±11.2 pg/mL), Ang1-7 (78.5±20.4 pg/mL vs. 79.8±23.4 pg/mL) and AngII (21.8±10.6 pg/mL vs. 22.5±10.9 pg/mL) [132]. Moreover, administration of fosinopril in addition to prednisone in context of a randomized controlled trial in 8.7±3.5 years (mean±SD) old children (n=25) with steroid-resistant idiopathic nephrotic syndrome (SRINS) revealed no significant difference of AnglI values as compared to 8.7±3.7 years (mean±SD) old SRINS children receiving prednisone alone (n=20) after 12 weeks of treatment (78.9±26.2 pg/mL vs. 79.0±35.8 pg/mL) [152] (Figure 3-3 and Appendix 10.1-3).

Mechanical intervention in cardiovascular/ renal diseased children

The impact on circulating AnglI concentrations of newborns and infants before and after bidirectional Glenn (BDG) procedure (13±5 months (mean±SE), n=15), Fontane procedure (36±10 months (mean±SE), n=18) or elective ventricular septal defect (VSD) repair (25±8 months (mean±SE), n=10) during catheterisation was investigated by Mainwaring et al. Angll levels were slightly elevated in the BDG group at 1 hour after operation (58±5 pg/mL (mean±SE)), compared to preoperative measurements (33±4 pg/mL (mean±SE)), but returned to their preoperative values after 24 hours (34±4 pg/mL (mean±SE)) and stayed constant till day 5 after operation (32±5 pg/mL (mean±SE)). Preoperative AnglI values in the Fontane group were 40±3 pg/mL (mean±SE) and increased significantly 1 hour after operation (116±12 pg/mL (mean±SE)), followed by a decrease in 24 hours (78±13 pg/mL (mean±SE)) and 5 days (72±13 pg/mL (mean±SE)) but remained at significant elevated levels [153]. In a different manner, renal surgical correction (renal angioplasty (n=5), nephrectomy (n=1)) in 6 children with renovascular hypertension led to a significant decrease in plasma concentrations of peptides levels from before (Angl: 86.5±26.9 pg/mL, Ang1-7: 43.5±8.2 pg/mL, AngII: 62.9±21.5 pg/mL) to 6 months after successful surgery (Angl: 29.7±4.8 pg/mL, Ang1-7: 19.5±5.5 pg/mL, Angll: 21.8±2.9 pg/mL) (Figure 3-3 and Appendix 10.1-3).

Figure 3-4 provides an overview of the overall impact of examined factors on plasma and serum concentrations of Angl, Angll, Angl-7, Anglll, and Ang IV.

Figure 3-4: Impact of examined factors on plasma and serum concentrations of angiotensin peptides in the paediatric population.

3.3.2 Plasma renin activity in the paediatric population

In summary, 167 findings were screened for PRA, of which 104 records and 63 records were identified for healthy and diseased children, respectively. Furthermore, 5 records were added in the context of external full-text screening accomplished beforehand. After removal of 11 duplicates, title and abstract of 161 publications were screened, of which 62 full-text articles were assessed for eligibility. After the full-text screening, 34 publications were included for this literature search. Further details are provided in the PRISMA diagram [123] (Figure 3-5).

Figure 3-5: PRISMA flow diagram for the systematic review of plasma renin activity in the healthy and cardiovascular diseased paediatric population.

Plasma renin activity in healthy paediatrics

PRA concentrations of healthy paediatrics (n=1995) indicate an age-dependent decrease (Figure 3-6 and Appendix 10.1-4). Highest values were found in newborns and infants. The observed values for children and adolescents were lower but still higher than PRA in adult

Systematic reviews of humoral parameters of the paediatric renin-angiotensin-aldosterone system - Results

mean±SD. ■: PRA values as mean (range);▲: PRA values as median (IQR); ●: PRA values as mean±standard deviation (SD); The shown data was obtained from: Abd-Allah et al. 2004; Arvay et al. 1982; Blazy et al. 1989; Dechaux et al. 1982; Dillon et al. 1976, Dillon et al. 1975; Fiselier et al. 1984; Fiselier et al. 1983; Fukushige et al. 1993; Gjuric et al. 1982; Godard et al. 1979; Harshfield et al. 1992; Shibutani et al. 1988; Harshfield et al. 1991; Lall et al. 1995; Martinez-Aguayo et al. 2010; Stalker et al. 1976; Mardesic et al. 1979; Tiosano et al. 2011; Tu et al. 2017; Simsolo et al. 1988.

Plasma renin activity in cardiovascular diseased paediatrics

In general, the PRA values of paediatrics suffering from DCM (n=12) and CHD (n=272) showed higher levels than corresponding healthy controls. The results are shown in Figure 3-7 and Appendix 10.1-5.

Systematic reviews of humoral parameters of the paediatric renin-angiotensin-aldosterone system - Results

Figure 3-7: Plasma renin activity in cardiovascular (dilative cardiomyopathy, congenital heart disease) diseased paediatric population. For more detailed information, please refer to Appendix 10.1-5. Variation of age expressed as range, mean±standard deviation (SD) or mean±standard error (SE); ■: PRA values as mean±SE; ▲: PRA values as median (95% CI); ●: PRA values as mean±SD; The shown data was obtained from: Alvarez Kindelan et al. 1994; Buchhorn et al. 2001; Fallo et al. 1978; Parker et al. 1982; Scammel et al. 1987; Scammel et al. 1988; Scammel et al. 1989 Giardini et al. 2003; Stern et al. 1990; Saiki et al. 2015; Ationou et al. 1993; Gidding et al. 1985.

3.4 Limitations

These reviews include only MEDLINE database listed publications that were available in the English language (language bias). In addition, inclusion criteria not mentioned in the title or abstract could potentially be missed out. Incomplete reported data (e.g. unspecific age, concentration units, assays, health status of participants) was excluded, leading to a more particularised dataset. While blood sampling of entirely healthy children is ethically questionable, some of the reported values of healthy children were obtained during routine investigation or hospitalisation caused by various diseases. It was anticipated that these impacts are not to be RAAS-related. However, the influence of the plasma concentration cannot be completely ruled out. The lack of consistent and uniformly of reported raw data is another limitation of the accomplished literature search. A further limitation is the heterogeneity of reported statistical operators (e.g. mean±SD, mean±SE, and median (95% confidence interval)) of reported age and plasma concentrations, which represents an aggravating factor of data comparison.

3.5 Discussion

In the healthy paediatric population, Angl values were higher than AngII values. Yet, both plasma concentrations constantly decreased during early childhood and stayed constant afterwards, showing still higher values than in adults [16, 124]. In the case of Ang1-7, data in paediatrics is insufficiently available to generate a reliable statement, although the obtained levels appear to be low in the paediatric RAAS if compared to adults [16]. Whereas all values were obtained from healthy controls, the variation of determined values is high between each study. The phenomenon may be explained by different race, the impact of sampling, used inhibitor-cocktails, matrix, sample processing procedures and analytical principals of measurement (e.g. RIA, ELISA or ultraviolet/visible spectroscopy (UV/VIS)). Moreover, AngIII and AngIV, as well as recently investigated bioactive peptides of the RAAS like AngA, alamandine, and Ang1-9 could be subject to misinterpretation of angiotensin concentrations due to the missing selectivity of applied immunoassays [14, 15, 17]. Thus, the implications on the paediatric RAAS due to AngIII and AngIV besides further bioactive RAAS peptides is still insufficiently investigated. Consequently, an overestimation of AngII and Ang1-7 impact on the RAAS in paediatric subjects is conceivable.

In contrast to gender-specific variations of the RAAS in adults [147, 155], no clear evidence for differences between male and female infants and children regarding circulating Angl, AngII, and Ang1-7 concentrations in the paediatric population could be demonstrated. Hence, sex hormones which are believed to play a regulatory role in the adult RAAS [155], seems to be less distinctive for a discriminatory effect in children, suggesting that the gender-specific influence of the RAAS will be settled after childhood.

RAAS profiles could be subject to different states of hypertension and renal diseases [28, 150]. Because of conflicting evidence for the alteration of concentrations of RAAS components during and after treatment of cardiovascular and renal diseased children, evaluation of pharmacological and mechanical treatment effects in the very youngest are mandatory for a better prediction of therapeutic effects in the future. However, consistent evidence for changes of the angiotensin peptides related to antihypertensive drugs and surgical interventions in children is still discussed. A pharmacological intervention indicates an impact on circulating peptide concentrations due to the influence of antihypertensive medication which interferes with renal processes (especially ACEi), yet the evidence is still conflicting. However, normalisation of angiotensin peptides caused by surgical intervention is anticipated.

Systematic reviews of humoral parameters of the paediatric renin-angiotensin-aldosterone system - Conclusion

While PRA values for healthy paediatrics are necessary for a supplementary picture of the RAAS, appraisal of changes in PRA regarding diseased children is an indispensable approach for a better understanding of certain cardiovascular diseases. This review of reported PRA data facilitates an overview in an innately variable population. Moreover, the conditions of the maturing RAAS influenced by cardiovascular diseases were depicted. A coherent decrease of PRA values during the first two years of life regarding healthy paediatrics was observed. This results are in accordance with further findings and support the inverse correlation of PRA with age [124, 156-159]. Compared to children and adolescents, higher values occurred in newborns and infants, which show evidence for elevated activity of the RAAS in the very early period of childhood. Although PRA decreases during childhood, values were still higher in children and adolescents than in adults. The differences in obtained values regarding similar age groups may be assigned to different bioanalytical assays, sampling procedures, and positions during blood sampling. Although tendencies in higher PRA values for cardiovascular diseased paediatrics could be observed, variations between similar age groups exist. This unsteady values may be raised by various states of heart diseases and discrepancies in aetiology (e.g. ventricular septal defect vs. coarctation of the aorta) of the examined population [160–163]. In addition, the quantity and development of PRA values are probably influenced by pharmacological and mechanical interventions [164-167].

Since drugs in paediatric care are still prevalent used off-label [168], several initiatives like the European Commission aims to counteract the safety risks resulting from off-label use by increased funding of paediatric studies (e.g. the seventh framework program LENA trial). However, the direct comparison between control groups and severely diseased children is often limited due to ethical constraints regarding the inclusion of healthy children in clinical trials. Diligent compiled pharmacodynamic data from literature might support a meaningful assessment of obtained study results in an overall context and serve as a supportive reference for paediatric RAAS for this kind of trials.

3.6 Conclusion

A systematic review of angiotensin peptide concentrations during childhood as well as the identification of age, gender, and cardiac/ renal influences was successfully conducted. Moreover, literature PRA data were compiled as a supportive reference for the LENA project. The literature searches indicated a lack of reliable data for the various angiotensin peptides in all paediatric age groups as well as inconsistent data for PRA in healthy and cardiac diseased newborns and infants.

4 Customisation and validation of a plasma renin activity immunoassay applicable for paediatric research

Some aspects of this chapter are already published on the 23rd of October 2019 as "Customisation and validation of a low-volume plasma renin activity immunoassay: Enabling of regulatory compliant determination in paediatric trials" in the peer-reviewed journal Practical Laboratory medicine (doi: 10.1016/j.plabm.2019.e00144).

4.1 Background and aim

Among the humoral parameters involved in the RAAS, PRA is a valuable parameter for the evaluation of metabolic dysfunctions regarding CVD. Nevertheless, while corresponding reference values for the classification of disease severity are well established in adults, reliable data in children are inconsistent. Notably, the lack of data for children impedes the development of evidence-based medicine and subsequently puts children in jeopardy [92]. Moreover, high rates of off-label and unlicensed drug use in the paediatric population indicate a gap in current knowledge of PRA and further RAAS-related parameters in the very youngest [168]. A sophisticated investigation of PRA values in children suffering from HF are urgently required to overcome this hurdle. Consequently, small volume, regulatory guideline compliant bioanalytical assays tailored for paediatric application are necessary [169, 170]. In this context, the small available sample volume is an obstacle which should be addressed by the customisation of the assay and downscaling of the applicable sample volumes for paediatric research.

Therefore, the sub-aims of the present research were:

- To enable a downscaling of the required sample volume for the PRA ELISA by customisation of the assay to cope with the available sample volumes in paediatric research.
- To validate the customised microassay according to the FDA bioanalytical guideline and thus ensure the use for GCLP settings in the context of the LENA project.
- To show the applicability of the assay in a real-life approach by an example measurement of paediatric study samples.

4.2 Methods

The quantitative characterisation of PRA by ELISA is based on the determination of Angl values. The PRA can be calculated by comparing the Angl concentration in incubated human matrix with the Angl values of non-incubated matrix of the same sample. The measurement was accomplished by an in-house customised ELISA encompassing small volume applications. Units for PRA are expressed as ng/mL/h, while units for Angl are expressed as ng/mL. A comprehensive validation assured GCLP conformity of the developed assay using the FDA bioanalytical guideline, as well as further quality assurance tools (e.g. tracking software, audit trails, standard operation procedures, defined criteria for the validity of analytical runs, dual control principle, external audits, ring test participation).

4.2.1 Materials

Generation buffer, phenylmethylsulfonyl fluoride (PMSF), rabbit anti-Angl antibody-coated microwell plates, Angl-biotin conjugate, streptavidin-HRP conjugate concentrate, assay buffer, wash buffer concentrate, tetramethylbenzidine (TMB) and 1M sulphuric acid, as well as Angl calibration standards (CSs) and quality controls (QCs), were delivered by DRG Instruments GmbH (Springfield, USA). All CSs and QCs contained preservatives and emulated matrix (protein-based buffer) to mimic the effect of the human matrix. Water HPLC-grade was purchased from Fisher Scientific U.K. limited (Loughborough, United Kingdom). Angl stock solution, ethanol (>99.8% p.a.) and formic acid (FA) (≥98% p.a.) were obtained from Sigma-Aldrich (Steinheim, Germany). EIA buffer was purchased from Bertin Pharma (Montigny le Bretonneux, France). S-Monovetten[®] (Sarstedt AG & CO, Nümbrecht, Germany) were used to obtain the required plasma samples from healthy volunteers. All pipetting steps were performed using calibrated Eppendorf Research[®] pipettes in accordance with GCLP (Eppendorf, Hamburg, Germany).

4.2.2 Calibration standards

All seven non-zero CSs (0.2, 0.5, 1.5, 4, 10, 25, 60 ng/mL) were utilised as a ready-to-use solution (analyte in artificial matrix) without further processing and contained Angl solutions. The PRA represents a calculated ratio of Angl values at 0 °C and 37 °C (incubated over a fixed period of time).

4.2.3 In-house customised assay procedure

Pretreatment

Blood samples were thawed using a water bath (23 ± 3 °C). After adding 1 µL PMSF to 100 µL sample volume, the samples were vortexed for 20 s. Next, 10 µL generation buffer was added followed by a further 20 s of vortexing. The final mixture was separated into two aliquots. One aliquot was placed in an ice bath (0 °C), while the other aliquot incubated at 37 °C was put into a water bath. After 90 min, the generation process was stopped by placing the incubated aliquot in the ice bath for 5 min.

<u>Immunoassay</u>

50 µL assay buffer was dispensed in every well of the microwell plate. Subsequently, 40 µL of CSs, blanks, QCs, as well as 0 °C and 37 °C aliquots were added, respectively. The microwell plate was incubated in the dark for 5 min at 500 rpm (24 °C) followed by a reduction of the shaking speed to 300 rpm for 15 min. Then, 80 µL Angl-biotin conjugate was added to each well and a second incubation for 5 min at 700 rpm in the dark (22 °C) was conducted. Afterwards, the shaking speed was reduced to 500 rpm, and the incubation continued for 55 min. During the first automatic washing step (Tecan HydroFlexTM, Männedorf, Switzerland), the contents of the wells were rinsed with five times 500 µL wash buffer and the residual liquids were subsequently removed thoroughly. Then, 170 µL streptavidin-HRP conjugate concentrate was added to all wells and incubated for 30 min at 22 °C and 500 rpm. Then, a second washing procedure (5 times 500 µL) was conducted and 170 µL TMB solution was added to each well, followed by 10 min of incubation at 500 rpm (22 °C) in the dark. The enzyme reaction was stopped by adding 60 µL sulphuric acid and additional mixing for 3 min at 350 rpm (Figure 4-1). All incubation steps were performed by applying a ThermoMixer[®] by Eppendorf AG (Hamburg, Germany).

Customisation and validation of a plasma renin activity immunoassay applicable for paediatric research- Methods

Figure 4-1: The modified plasma renin activity immunoassay procedure. PMSF: phenylmethylsulfonyl fluoride; AB: antibody; HRP: horseradish peroxidase; TMB: tetramethylbenzidine; Rinsing: automatic washing step with 5 x 500 µL wash buffer and subsequent residual removal.

4.2.4 Measurement of angiotensin I and determination of plasma renin activity

The OD measurement of Angl (450 nm) was performed using the absorbance reader infinite[®]F50 by Tecan (Männedorf, Switzerland). All calculations of concentration levels, as well as further statistical evaluations, were performed with the corresponding MagellanTM software Tracker V 7.0 based on the 4-parameter Marquardt regression model (extrapolation 1.5) with weighting $1/y^2$. PRA was calculated using Equation 4-1.

$$PRA [ng/mL/h] = \left(\frac{(AngI [ng/mL](37^{\circ}C)) - (AngI [ng/mL](0^{\circ}C))}{1.5 h}\right) * 1.11$$

Equation 4-1: Calculation of the plasma renin activity

4.2.5 U.S. Food and Drug Administration based bioanalytical method validation

The method was validated based on the recommendations of the FDA bioanalytical guideline for LBAs [169]. Due to the nature of the assay, the accuracy, precision, total error, calibration curve/linearity, and matrix effect was assessed by the direct evaluation of Angl values. For the validation parameters stability, parallelism, and the between-run precision of the whole process, the calculation of PRA values (Equation 4-1) were conducted with the additional Angl generation step was included in the related validation runs.

Acceptance criteria of single analytical runs/ intra-run assessment

The assay was intended to be applied in the context of the LENA project, which aims to generate data for a new marketing authorization. Therefore, recommendations provided by regulatory guidance for the conduct of analytical runs were followed. As this intra-run evaluation includes comprehensive monitoring of QCs as well as CSs, this regulatory quidance appeared to be more suitable for the project aim than the sole application of Westgard rules commonly used in routine laboratories. In this regard, the acceptance criteria for a valid analytical run included CSs and QCs. The calibration curve in the PRA ELISA was established by no less than six ready-to-use CS. The CSs ranged from a concentration of 0.2 ng/mL to 60 ng/mL, containing CSs and a blank standard measured in duplicate. The back-calculated concentration of 75% of non-zero CSs including the LLOQ must not deviate by more than 25% and 20% for the calibrator at the LLOQ and the other calibrators, respectively. Exclusion of CSs was only acceptable if they failed the acceptance criteria or assignable causes. The validity of each run was assured by adding three QC levels (low, middle, high), at least measured in duplicate. The low and middle QC levels were directly delivered by DRG Instruments GmbH (Springfield, USA), while the high QC level was separately prepared in-house. A minimum of 50% of all samples per QC level must be within 20% of their nominal concentrations. Moreover, at least 67% of all QC samples must be within 20% of their respective nominal values.

Calibration curve/ linearity

The calibration curve consisted of seven non-zero CS levels (0.2, 0.5, 1.5, 4, 10, 25 and 60 ng/mL). The calibration curve was evaluated in 12 independent runs on 12 different days. Each calibration curve was formed of at least six CS levels marked with a maximal relative error (RE) of $\pm 20\%$ ($\pm 25\%$ at Lower Limit of Quantification (LLOQ)) (Equation 4-2). Standards that did not comply with this criterion were excluded, and the calibration curve

was re-constituted. The linearity of each calibration curve was considered appropriate if the corresponding r-value was ≥ 0.995 .

Relative error $[\%] = \left(\frac{\text{measured concentrat ion} - \text{nominal concentrat ion}}{\text{nominal concentrat ion}}\right) * 100$

Equation 4-2: Calculation of the relative error [%].

Accuracy, precision, and total error

The accuracy, precision, and total error of the assay were investigated at five different concentration levels (0.2, 0.5, 1.5, 4, 10, 25 and 60 ng/mL) in quintuplicate. Within-run accuracy and precision were investigated in one run, while between-run accuracy and precision were obtained in six individual runs on four different days. For the evaluation of within-run and between-run accuracy, the RE (as a measure for accuracy) should not exceed $\pm 20\%$ (± 25 for LLOQ). The coefficient of variation (CV) must be $\leq 20\%$ ($\leq 25\%$ for LLOQ) for within-run and between-run precision (Equation 4-3). The total error was calculated as the sum of the absolute value of the RE and CV. The maximal limit of the total error for within-run and between-run investigation must be $\leq 30\%$ ($\leq 40\%$ at LLOQ), following the recommendations of the FDA [169]. deviation mean

 $CV[\%] = \left(\frac{\text{standard deviation}}{\text{mean}}\right) * 100$

Equation 4-3: Calculation of the coefficient of variation (CV) [%].

In addition, the between-run precision of PRA covering the whole process (sample pretreatment and determination) was assessed. Plasma samples of seven human sources were determined in triplicate at 15 different days concerning their PRA levels. The between-run precision (CV) per source must be $\leq 20\%$.

Matrix effect

Matrix effects are defined as direct or indirect influences on the detector response caused by interacting substances within the sample. However, clear recommendations for the assessment of the matrix effect of LBAs currently lack in regulatory guidelines such as FDA and EMA [169, 170]. Therefore, the matrix effect was obtained by the comparison of native (plasma with endogenous levels of Angl only) and Angl-spiked samples of the same human source. Five different human sources were investigated, and samples were measured in duplicate. Exact final angiotensin I concentrations (obtained by the spiking of native samples with Angl working solution $(1.05 \ \mu g/mL))$ were dependent on the Angl concentration inherently present in native samples. To minimise matrix dilution, the spiked solution did not exceed 10% of the total volume. The determined Angl values of four out of five sources should not deviate more than ±20% compared to the nominal Angl values.

<u>Parallelism</u>

Plasma from one human source was spiked with Angl working solution (10.5 μ g/mL) to reach high concentrations near the Upper Limit of Quantification (ULOQ). The following dilution steps were conducted: 1:2; 1:3; 1:4; and 1:5. All dilutions were performed using the highest concentration and the corresponding amount of EIA buffer to reach the intended dilution. In addition, a blank reduction was conducted by the investigation of native samples of the same source to determine the endogenous concentration of Angl still present in the native samples. The maximum deviation of the CV between the dilutions must not be more than 30%.

<u>Stability</u>

Several stability experiments were conducted in the context of the FDA guideline to exclude an influence on analyte concentration due to limited stability during the study period, including sample preparation, and assay procedure. Analyte stability was ensured by the evaluation of freeze and thaw stability, short-term stability and long-term stability. For all experiments, freshly drawn plasma was aliquoted, snap-frozen and stored at -80 °C to mimic the same conditions as for study samples.

Freeze and thaw stability

Freeze and thaw stability was examined by passing three freeze-thaw cycles of plasma from one human source. Snap-frozen human matrix was stored at -80 °C for a minimum of 24 h before being applied for the next freeze-thaw cycle. This procedure was repeated three times. After each freeze-thaw cycle, PRA was determined in triplicate and compared to the corresponding reference value (first value obtained). A maximum of $\pm 20\%$ RE of the mean value was allowed.

Short-term stability

Short-term stability was investigated by the determination of PRA in human plasma for up to 2 hours at room temperature (RT) and for up to 4 hours at 0 °C to guarantee appropriate stability during the entire assay procedure. For stability at RT, six aliquots were thawed and stored on ice. At time points 0, 0.25, 0.5, 1, 1.5 and 2 hours, one aliquot was placed on the

bench-top at RT. The sample for the reference value was continuously stored on ice. After the 2-hour time point, all samples were measured simultaneously. Using the same method, the 4-hour stability at 0 °C was assessed (time points of determination: 0, 2, 2.5, 3, 3.5 and 4 hours (reference value)). All samples were measured in triplicate. The mean values of PRA should not deviate by more than $\pm 20\%$ from the mean PRA of the reference value.

Long-term stability

The long-term stability was determined in seven human sources (three females, four males). Each human source was aliquoted and subsequently stored at -80 °C. Initial PRA reference values were obtained by calculating the mean of three independent analytical runs on two different days. Every 2 weeks, aliquots of each human source were thawed and measured in triplicate. The stability of Angl was proven if the deviation of the mean did not exceed $\pm 20\%$ of the reference value.

4.2.6 Interlaboratory quality assessment

Besides the in-house validation procedure, the reliability of the ELISA was investigated by participation in an interlaboratory ring test in January 2018. Two samples of unknown concentration were obtained from the German Reference Institute for Bioanalytics (RfB) (Bonn, Germany) and analysed in duplicate to verify the accuracy. The measured values were back-reported and compared against 13 RIA based PRA reference methods to assess the general accuracy of the assay as well as its comparability to established RIA assays.

4.2.7 Application of the validated method

Study samples

In order to demonstrate the applicability of the paediatric approach in the context of the EUfunded LENA project, example measurements were conducted using paediatric samples from three selected subjects suffering from HF (0.12, 0.37, and 0.69 years old). Blood samples were obtained before and 4 hours after application of 0.25 mg enalapril maleate. All paediatric samples were collected in line with the Declaration of Helsinki. Written informed consent from the parent(s)/legal representatives and assent from the patient according to national legislation and as far as achievable from the child were obtained. Blood sampling was conducted by trained study staff following a specific time-monitored sampling procedure adapted to paediatric needs (e.g. use of microneedles) and parameter characteristics (e.g. limited time window between sampling, sample preparation and freezing) [104]. Each time point of the sampling process, as well as the behaviour and position of the neonate, was documented. In this context, please refer to the list of the LENA collaborators (Appendix 10.4-15) who performed the onward collection of paediatric study samples.

Incurred sample reanalysis

CSs and QCs were constructed in an emulated matrix. Since potential differences between this matrix and paediatric matrix might impact the PRA determination by altering factors such as protein binding, back-conversion metabolites and the effects of co-medication incurred sample reanalysis (ISR) was conducted to confirm the reproducibility of measured study samples and the robustness of the assay. In this regard, the here conducted ISR should demonstrate the robustness of the example measurement of the three paediatric patients. An overall evaluation of all performed ISR is shown in chapter 5. ISR was calculated as follows (Equation 4-4) [170, 171]:

Equation 4-4: Calculation of the percentage difference between the original sample value and measured repeat.

In accordance with the FDA international guideline, the percentage difference was allowed to vary no more than $\pm 30\%$ of the mean value in 67% of all repeats [169]. All ISR samples were obtained in the context of the LENA project.

4.3 Results

4.3.1 U.S. Food and Drug Administration based bioanalytical method validation

Calibration curve/ linearity

In all twelve runs, the RE of all evaluated CSs was within $\pm 20\%$ of the nominal values (including LLOQ) and thus showed compliance with the FDA guideline (Figure 4-2). All obtained r-values were ≥ 0.99884 . Implementation of a 4-parameter Marquardt regression model (extrapolation 1.5) with weighting $1/y^2$ provided the best fit for a calibration range of 0.2 ng/mL to 60 ng/mL.

Figure 4-2: The relative error of all conducted calibration standards for the evaluation of linearity (12 runs) by the plasma renin activity immunoassay expressed as boxplots. Solid lines: acceptance limits regarding U.S. Food and Drug Administration (FDA) at LLOQ; Dashed line: acceptance limits regarding FDA for the other calibrators; Box: 25-75 %; ⊥: 1.5 interquartile range; —: median; •: mean.

Accuracy, precision, and total error

Within-run accuracy over all five concentration levels showed a mean RE between -8.6% and 5.5% of the nominal values (mean of five determinations). Within-run precision varied between 2.3% and 11.1% (CV), while the total error ranged between 1.0 and 18.6%. The RE for between-run accuracy was between 4.2% and 5.0%, while the between-run precision (CV) varied between 1.2% and 6.3%. Furthermore, the total error across all concentration levels was below 16.3%. For further details, please refer to Figure 4-3 and Appendix
10.2-1/Appendix 10.2-2). In summary, the customised assay showed an appropriate accuracy and precision in the context of the applied bioanalytical guideline. All results for accuracy and precision were within the required limit of $\pm 20\%$ ($\pm 25\%$ at LLOQ). Moreover, the total error for within-run and between-run investigations did not exceed the required limits of $\pm 30\%$ ($\pm 40\%$ at LLOQ).

The determined mean PRA levels for the seven investigated sources amount to 2.85, 4.84, 0.79, 2.87, 1.96, 0.9, and 3.74 ng/mL/h with a CV of 5.2%, 9.6%, 8.3%, 9.3%, 10.4%, 10.9%, and 9.0%, respectively. Therefore, the between-run precision of the whole process complied with the predefined limit of $\leq 20\%$ (CV) (Appendix 10.2-3).

Figure 4-3: The relative error of between-run accuracy (A) and the coefficient of variation (CV) of between-run precision (B) for the plasma renin activity immunoassay. Five individual quality control samples (including the Lower Limit of Quantification (LLOQ) were determined over six runs in quintuplicate. The six determined mean angiotensin I concentration levels for each of the six runs are shown as boxplots for every individual quality control level. Solid lines: acceptance limits regarding U.S. Food and Drug Administration (FDA) at LLOQ; Dashed line: acceptance limits regarding FDA for the other calibrators. Box: 25-75 %; ⊥: 1.5 interquartile range; —: median; •: mean.

Matrix effect

The obtained Ang I concentrations in the five evaluated human sources ranged from 23.9 ng/mL to 29.0 ng/mL AngI (mean of two replicates each). The percentage deviations to the nominal concentration varied between -20.4% and -3.3%. Since 80% of the investigated sources were well within the specifications ($\pm 20\%$) and one source showed borderline

results (20.4%), no substantial matrix effect was claimed for the assay (Table 4-1 and Appendix 10.2-4).

Table 4-1:The results of the investigated matrix effect on the plasma renin activity
determination. The mean values were obtained by the measurement of two
replicates.

Source	Sex	Mean determined Angl concentration [ng/mL]	Mean deviation of Angl concentration to nominal value [%]
1	Female	26.3	12.5
2	Female	29.0	3.3
3	Female	26.9	10.4
4	Female	27.6	8.2
5	Female	23.9	20.4

<u>Parallelism</u>

All dilution steps were well within the calibration curve. The back-calculated mean Angl values were 35.1 ng/mL for the undiluted sample, 32.5 ng/mL for the 1:2 dilution, 29.5 ng/mL for the 1:3 dilution, 27.7 ng/mL for the 1:4 dilution, and 27.1 ng/mL for the 1:5 dilution step. The inter-run precision (CV) was 11.1% over the five assay runs and thus did not exceed the limit of 30%. For further details, please refer to Appendix 10.2-5.

Stability

Freeze-thaw stability

The RE of the stressed samples to the reference values showed a maximum of 11.3% after three freeze and thaw cycles. The within-run precision varied between 1.6 to 4.4% for PRA, while the between-run precision was 8.6% (CV). Since the deviations varied by no more than 20% from the reference values, accurate and precise sample analysis was not affected by the freeze-thaw cycles conducted (Appendix 10.2-7).

Short-term stability

All stability samples (2 hours bench-top and 4 hours at 0 °C) deviated by a maximum of +12.7% from the PRA reference value (Figure 4-4). Since PRA concentration level did not vary more than $\pm 20\%$, the analyte can be considered stable at RT for at least 2 hours and at least 4 hours on ice (Appendix 10.2-8).

Figure 4-4: The percentage deviation of short-term stability for the plasma renin activity. Box: bench-top; Circle: 2 2 hours on ice; Triangle: 4 hours on ice. Grey dashed lines indicate the maximum accepted deviation regarding U.S. Food and Drug Administration guidelines.

Long-term stability

Long-term stability was proven for 20 runs over a time period of 260 days. However, the 18th run was excluded from the evaluation due to a processing error (deviation of water bath temperature). After the 20th run, one source exhibited a deviation of more than 20%, and the assessment of long-term stability was terminated. Overall, long-term stability for 260 days (ca. 37 weeks) was proven (Figure 4-5 and Appendix 10.2-6).

Figure 4-5: The percentage deviation of long-term stability in seven sources for the plasma renin activity. The different sources are indicated by the different symbols. Reference values of plasma renin activity were obtained by calculating the mean of three replicates of each source. Grey dashed lines indicate the maximum accepted deviation regarding U.S. Food and Drug Administration guidelines. The vertical dotted line marks the excluded run due to a processing error.

4.3.2 Interlaboratory quality assessment

In addition to the in-house validation, an external verification by participation in a ring test executed by the RfB was successfully conducted. The ring test allowed for a comparison of the developed ELISA with established RIAs used by contract laboratories (for further details, please refer to <u>http://rfb.bio</u>). As an ELISA reference value was lacking, the reported values were compared with RIA outcomes only. The latter allowed for a comparison of the easy-to-use ELISA to the more complex RIA setup. The interlaboratory test samples (sample A and sample B) were measured a total of three times. The back-reported mean concentration values of the two unknown samples were 2.2 ng/mL/h and 2.8 ng/mL/h PRA. The RfB calculated the maximal accepted deviation based on all submitted assay results of the 14 participants. All other participating methods were conducted on the basis of RIAs. A valid result within the specification limits for both reported samples was achieved. By passing the ring test, the external quality assessment verified the reliability of the validated small-volume microassay.

4.3.3 Application of the validated method in paediatric patients

Example paediatric study samples were successfully analysed to demonstrate the applicability of the assay using a real-life approach. Moreover, ISR was conducted to assess the comparability of the obtained data during the analytical runs within the study period, which is indispensable due to the unique data derived from the study population in the LENA project. All processes relevant for an accurate determination of humoral parameters (e.g. blood sampling, sample shipment, storage, and subsequent analysis) were conducted under GCLP conditions. The determined PRA values of the study samples and corresponding ISR are presented in Figure 4-6.

Study samples

The PRA values of three randomly selected neonates were determined before as well as 4 hours after the administration of enalapril maleate. All six values were obtained in independent analytical runs. All conducted analytical runs were declared as valid in regard to the FDA acceptance criteria of an analytical run. Thus, the essential reduction of the applied sample volume from 500 μ L to 100 μ L enabled the decisive determination of PRA, proving the applicability of the ELISA for paediatric trials.

Incurred sample reanalysis

Since the CS/QC matrix used in the validation and the paediatric study matrix is not compulsively comparable, ISR samples were included in the analytical runs. In brief, six ISR samples were measured collectively with the study samples (one for each analytical run, conducted on different days). The calculated difference for all six ISRs did not exceed ±30% and was thus well within the guideline limits, thereby substantiating the reproducibility of study samples under routine conditions. The paediatric-tailored microassay demonstrated the feasibility of obtaining high-quality data under GCLP conditions and complied with sophisticated guideline requirements. Therefore, the robustness of the microassay for the determination of PRA was proven, indicating the reliable determination of study samples in the context of the LENA project.

Figure 4-6: Example measurements of paediatric samples and the corresponding incurred sample reanalysis (ISR) by the plasma renin activity immunoassay. The plasma renin activity values (connected points/ left y-axis) of three infants with congenital heart diseases before and 4 hours after administration of enalapril maleate, as well as the relative deviation of each corresponding ISR (bars/ right y-axis). Subject 1: 0.69 years of age; Subject 2: 0.12 years of age; Subject 3: 0.37 years of age; Dashed line: maximum accepted deviation for ISR.

4.4 Discussion

The PRA ELISA presented here was successfully customised and validated regarding current international FDA bioanalytical guidelines. The assay serves the overall goal of application in vulnerable populations (e.g. elderly, severely diseased patients or children) by three properties. First, PRA determination was empowered by an easy-to-handle enzyme-linked immunosorbent assay instead of commonly applied radioimmunoassays. This could support the establishment of the assay in far more laboratories than the highly skilled laboratories with access to RIA. The latter facilitates wider data generation for PRA values of the RAAS in sensitive population and could subsequently contribute to safer and more rational drug therapy. Second, the assay properties—especially the required blood volume—have been adapted for use in the aforementioned populations to reduce the burden of additional blood sampling in the context of simultaneous research to routine care. Third, the assay was validated according to current FDA bioanalytical guideline to ensure reliable data generation and its application in a GCLP-compliant environment.

The recently published EMA concept paper on guidelines for the investigation of medicinal products in the term and preterm neonates demands a greater focus on organ and enzyme system maturation differences across several paediatric age groups [172]. However, these differences and their pharmacodynamic effects can only be sophisticatedly investigated if appropriate microassays are applied. The comprehensive understanding of adult RAAS has resulted in over 20 drugs being approved for HF in adults; however, only a few approved drugs are available to treat HF in all paediatric age groups. New potential target structures within the RAAS are continuously identified and provide further insight into the adult RAAS [16], while the intervention on these humoral parameters remains unknown in children. Therefore, urgently fostered research on PRA and the maturating RAAS can only be accomplished by the establishment of customised assays. Against this background, the ELISA PRA assay was customised and characterised by a five-fold reduction in required plasma volume. Based on ethical recommendations in clinical trials [79], the total blood loss for routine care and research in neonates must not exceed 3% over 4 weeks (1.2 mL to 1.4 mL plasma per kg body weight). Even LBAs, which were used for paediatric investigation of PRA (e.g. GammaCoat[®] Plasma Renin Activity 125I RIA Kit by DiaSorin Inc. [173]) require high sample volumes of 250 μ L to 1000 μ L for a single determination; therefore, this limits the amount of practicable analysis (e.g. determination of multiple PK/PD [174–176] parameters beside investigation of safety samples) [158, 177]. Although other small-volume RIA assays (50 µL up to 150 µL for PRA determination) appropriate for investigation in children exist, a validation regarding international guidelines has not been demonstrated and subsequently does not allow for application in clinical trials. The substantial reduction in sample volume (500 μ L to 100 μ L) of the presented ELISA—without restricting the calibration range (0.2 ng/mL to 60 ng/mL)— also enables the examination in the diseased paediatric population (e.g. children suffering from HF) [173, 178–181].

The ELISA was successfully validated concerning the FDA bioanalytical guideline. This verification of quality is important in the context of applying the assay in a regulatory environment—a factor that most published assays lack [158, 174, 175, 177]. In particular, clinical studies in paediatrics are usually only performed once owing to ethical constraints. Therefore, it is of utmost importance that the generated bioanalytical data is of high quality and reliable as it will be used for decision making related to paediatric drug therapy. In addition to the successful in-house validation procedure of the presented ELISA, participation in external independent quality assurance (ring trial) confirmed the accurate performance of the customised ELISA. Furthermore, the comparability of the ELISA results with routinely applied RIA was assessed within this external quality assurance.

The outcome of this comparison indicated non-inferiority regarding the reported reference RIAs, thus highlighting the usefulness of the presented ELISA for routine application. Besides the applied analytical technique, the sample matrix used is also known to influence reliable determination. Protein binding, sample inhomogeneity, known or unknown metabolites and co-medication might affect accurate sample determination. For example, such effects can be prone to mature organisms and therefore require a corresponding investigation. Therefore, the applicability of the assay in paediatric research (e.g. the LENA project) was outlined by the random determination of six paediatric samples with corresponding ISR in different analytical runs. The conducted ISR confirmed the accurate performance of the assay in a real-application approach and the reproducibility of unknown sample results obtained in different runs. In conclusion, the in-house validation, external quality assurance and applicability demonstrated the assay's reliability, fit-for-purpose and usefulness for accurate determination of PRA in vulnerable populations.

Notably, small-volume ELISAs are not only suitable for examination in children and can also unburden severely diseased adults. The total volume of blood withdrawal and the number of blood draws in critically ill patients is related to increased consumption of blood transfusions, higher incidence of anaemia and illness severity [182]. In addition, Ullman et al. reported that anaemia occurs in 95% of all patients admitted to intensive care units at day three, which increases the risk of severe events in critically ill patients [183]. The reduced required blood volume could also facilitate the ongoing monitoring of patients and

64

contribute to avoiding additional burdens due to increased blood loss. An application of GCLP-compliant small-volume bioanalytical assays can thus bring a decisive advantage, even in an adult population.

In brief, an FDA-compliant validation was successfully accomplished for the developed microassay, enabling a reliable investigation of PRA in pivotal trials. In addition, this downscaled ELISA is applicable for paediatric trials and successfully copes with limitations in blood volume, providing a valuable alternative to commonly used RIAs.

4.5 Conclusion

The development and validation of a fit-for-purpose PRA ELISA were accomplished for paediatric application, indicating non-inferiority to commonly used RIAs. The FDA-compliant PRA assay is able to accurately and precisely quantify PRA values in 100 μ L plasma and is applicable for GCLP-compliant clinical studies, thus enabling sophisticated investigations in children within paediatric clinical studies.

5 Bioanalytical quality control system for the plasma renin activity immunoassay

Some aspects of this chapter are already published on the 28th of December 2019 as "A quality control system for ligand-binding assay of plasma renin activity: Proof-of-concept within a pharmacodynamic study" in the peer-reviewed Journal of Pharmaceutical and Biomedical Analysis (doi: 10.1016/j.jpba.2019.113090).

5.1 Background and aim

Paediatric studies are mostly characterised by intricate study designs, limited study populations, ethical constraints, challenging blood sampling conditions and restricted sample volumes [101, 102]. Accordingly, the number of successfully conducted paediatric clinical studies remains limited. However, since current publications indicate that clinical investigations in paediatric patients are not of high priority in the pharmaceutical industry, academic consortiums have been formed to address this insufficiency [184]. Thus, a GCLPcompliant environment had to be implemented for bioanalysis of PRA within the LENA project. In this regard, the PRA ELISA was validated in accordance with the regulatory requirements of the FDA to enable robust data acquisition (Chapter 4). However, validation usually investigates the performance of a method at one specific time point. Thus, additional quality measures that enable the investigation of assay comparability over the whole study period are necessary. Clear specifications for the evaluation of single analytical runs are stated in the bioanalytical guideline of the FDA [169]. Nevertheless, comprehensive recommendations for the evaluation of the inter-run performance of analytical runs within analytical life cycle management are not provided in this guideline. Therefore, recommendations of the EMA guideline on bioanalytical method validation were additionally considered to amend the requirements given by the FDA [170]. However, the recommendations of both guidelines still appear to be inadequate to guarantee sufficient inter-run monitoring of bioanalytical runs. Therefore, further scientific references and recommendations must be taken into account to ensure a qualitative data collection over the entire study period. However, this long-term monitoring is essential to investigate the assay's performance and subsequently ensure the comparability of study results. Moreover, to bridge the requirements for sophisticated monitoring of bioanalytical runs within clinical studies and academic research, the necessary bioanalytical QCSs must be lean, easy-tohandle and cost-effective. This situation generates a demand for customised and extensive QCSs that are applicable to academia-driven paediatric studies in a GCLP environment.

In this regard, the sub-aims of this research were:

- To establish an easy-to-apply but comprehensive QCS for the bioanalysis of PRA within the LENA project to substantiate the high-quality data acquisition of this unique paediatric data set.
- To compensate the lack of homogenous regulatory requirements for inter- and intra-run, as well as long-term monitoring of analytical runs by tailoring the QCS to paediatric needs by including well-established guidelines, recommendations by reputable organisations and suggestions based on scientific discussions.
- To evaluate the inter-lot performance of the applied PRA ELISA kits throughout the entire study sample analysis period.
- To evaluate the implemented QCS as a proof-of-concept for applicability in the academic-paediatric environment.

5.2 Methods

5.2.1 Assay procedure

For the determination of PRA within the LENA project, the in-house customised smallvolume ELISA was applied. This assay was validated according to FDA international bioanalytical guideline [169]. The initial validation involved assessing linearity, accuracy, precision, total error, parallelism, matrix effect as well as long- and short-term stability experiments. Due to shelf-life limitations, new ELISA kits from the vendor DRG Instruments GmbH (Marburg, Germany) were ordered as a replacement within the study period. New replacement lots were often equipped with new lots of chemicals, substances, and antibodies. Since the results provided in the vendor's quality control certificate appeared partly insufficient, partial validation was conducted for every new lot to ensure comparable assay performance between the initial and replacement lots. The validation procedure followed the recommendations issued in the FDA bioanalytical guidelines [169]. If necessary, these revalidations could involve minor changes in the method (e.g. slight variations in rotation speed during incubation steps or the implementation of an automatic strip washer). The RE for between-run accuracy and the CV for between-run precision for all five validations are presented in Table 5-1.

Table 5-1:The lot dependent results of between-run accuracy and precision for the plasma
renin activity immunoassay.

Validations	Between-run accuracy (RE)	Between-run precision (CV)
Initial validation	-13.0-11.2%	2.8-13.9%
1st replacement lot	-7.8-7.5%	5.2-11.6%
2nd replacement lot	-4.2-4.9%	2.3-14.5%
3rd replacement lot	-14.1-6.4%	3.2-10.7%
4th replacement lot	4.2-5.0%	1.2-6.3%.

The individual between-run accuracy and precision comprised five different concentration levels (0.2, 0.5, 1.5, 10, and 60 ng/mL) analysed in quintuplicate obtained in six individual runs on four different days. RE: relative error; CV coefficient of variation

5.2.2 Quality control system

Since a single comprehensive QCS for short- and long-term evaluation has yet to be described for the bioanalysis of PD parameters, a customised QCS was established to guarantee reliable data analysis. The multi-step QCS included a daily system suitability test (SST), blank sample analysis, appraisal of calibration curve standards, assessment of interand intra-run accuracy and precision via QCs, ISR evaluation, and periodic interlaboratory testing (Figure 5-1). The QCS was applied within the bioanalysis of the three paediatric studies of the LENA project (registration numbers: Eudra CT2015-002335-17, Eudra CT2015-002396-18, and Eudra CT2015-002397-21). The system presented here is specifically tailored for monitoring pharmacodynamic analysis of plasma renin activity by the competitive ELISA (secondary study endpoint). As described in chapter 4.2.7, written informed consent from the parent(s)/legal representatives and assent from the patient according to national legislation and as far as achievable from the child were obtained, and ethical guidelines were carefully followed.

Figure 5-1: Schematic presentation of the established bioanalytical quality control system. EMA: European Medicine Agency; FDA: U.S. Food and Drug Administration; ICH: International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use; CLSI: Clinical and Laboratory Standards Institute

System suitability test

Continuous daily equipment verification is crucial for reliable data generation. To evaluate potential daily variabilities in the accuracy or even malfunctions of the utilized absorbance reader (Tecan® Infinite F50), an SST was performed on each day of analysis. A fresh six-step dilution series of Alizarin Yellow GG was prepared and measured in quintuplicate. The dilutions covered the entire measuring range of the absorbance reader with the highest Alizarin solution close to the upper limit (maximal OD: 3). The OD was measured at 450 nm. On each measuring day, the obtained values of the fresh dilution series were compared to the measured reference values. Results within ±10% RE of the reference values were regarded as acceptable.

Overall evaluation of calibration standards

As mentioned before, the calibration curve of the utilised PRA immunoassay ranged from 0.2 to 60 ng/mL Angl, containing seven non-zero CS levels measured in duplicate. Every valid analytical run had to consist of at least six non-zero CS levels. Moreover, the RE of 75% of non-zero CSs should not deviate by more than 20% (25% at the LLOQ) [169]. The exclusion of CSs from the calibration curve was only acceptable if they failed the acceptance criteria or had assignable causes (e.g. pipetting errors). An overall assessment of CSs in valid analytical runs was performed to evaluate the overall performance of the calibration curve during the entire period of study sample analysis.

Overall evaluation of quality controls

For the QC assessment, liquid control material made and supplied by the manufacturer DRG was incorporated into all analytical runs. This material reflected emulated plasma (protein-based buffer with a non-mercury preservative). Patient specimens as QC material were omitted owing to the low volume of study samples, which would not allow for repeated measurement over several analytical runs. Three QC levels measured at least in duplicate were included in every run: one near the LLOQ (QC low), one in the mid-range (QC middle), and one near the ULOQ (QC high). As such, the number of QC levels fixed at three; however, the replicates per level could vary between 2-4 QC samples to comply with the guideline requirement of at least 5% of the number of study samples [169, 170]. The nominal concentration of QC low (0.97-1.21 ng/mL) and QC middle (4.35-6.51 ng/mL) altered slightly during the course of the study depending on the delivered lots, while the in-house prepared QC high concentration (42.5 ng/mL) remained constant. The three QC levels were carefully selected to allow for determination of acceptable method performance over the measuring interval of interest. Nevertheless, the lower level of QCs resulted in a minimum concentration of at least 0.97 ng/mL (~5x LLOQ) and did not fulfil recommendations in current regulatory guidelines (3x LLOQ). However, control material with lower levels was not supplied by the kit manufacturer, and laboratory-prepared material was not applicable.

Intra-run assessment

The intra-run assessment of QCs was scheduled in batch measurement mode by the conduct of the analytical run in a microplate format within one working day [185].

Although the Clinical and Laboratory Standards Institute (CLSI) guideline suggests a minimum of two levels for microplate approaches [185], the intra-run assessment met the stricter requirements of the FDA bioanalytical guideline [169]. Overall, 67% of all QC samples (at least 50% per concentration level) per analytical run should not deviate more

than $\pm 20\%$ from the nominal value to comply with the FDA bioanalytical guideline. Moreover, intra-run precision for each level must be within $\pm 20\%$ (CV) [169].

Inter-run assessment

In contrast to the between-run evaluation which is conducted during the validation of the assay and comprises a defined number of validation runs, the inter-run QCs assessment is dedicated to the examination of all analytical runs during the entire study period. The inter-run QCs investigation could therefore record possible variability over time and subsequently enable the assessment of the long-term performance of the assay. The latter is even more important in the context of long-lasting clinical studies to ensure comparability from the first to the last sample. Since the current EMA and FDA guidelines provide only recommendations for intra-run monitoring of analytical runs, further international recommendations were incorporated into this QCS. Considerations by van Bruijnsvoort et al. [187] were factored into the inter-run assessment. Subsequently, a multirule QC concept with the following rules was applied for the classification of long-term performance over the 24-month study period.

The multirule concept based on van Bruijnsvoort et al. [187]:

- 1) 1_{3S}: Not more than one measurement per QC level exceed the alert level (mean measured concentration of the QC level ±3 times the SD)
- 3_{2S}: Not more than three consecutive measurements per QC level exceed the warning level (mean measured concentration of the QC level ±2 times the SD)
- 10x: Not more than ten consecutive measurements of a QC level fall on the same side of the mean

Blank sample evaluation

All known standards (CSs and QCs) were based on a blank matrix that consisted of emulated plasma and conservatives. Thus, the blank standard potentially included some residual amounts of Angl that might impact the LLOQ level of the calibration curve. To evaluate the blank levels, two blank samples were included in each analytical run and were individually compared to the corresponding LLOQ sample to determine the blank-to-LLOQ ratio (Equation 5-1).

Blank - to - LLOQ ratio [%] =
$$\left(\frac{\text{Measured blank concentration}\left[\frac{\text{ng}}{\text{mL}}\right]}{\text{Measured LLOQ concentration}\left[\frac{\text{ng}}{\text{mL}}\right]}\right) * 100$$

Equation 5-1: Calculation of the blank-to-Lower Limit of Quantification ratio (LLOQ).

The blank sample assessment was performed considering the two following guidelines, as the blank evaluation for ligand-binding assays is not provided in the EMA or FDA guidelines. The ICH M10 draft guideline for Bioanalytical Method Validation requires that the concentration of the blank should not exceed the LLOQ concentration [171]. Additionally, calculation of the Limit of Blanks (LoB = mean_{blanks} + 1.645 x SD_{blanks}) and the Limit of Detection (LoD = LoB + 1.645 x SD_{LLOQ samples}) was performed in compliance with guideline EP17 (Protocols for Determination of Limits of Detection and Limits of Quantitation) published by the CLSI [188].

Incurred sample reanalysis

Due to potential differences between the matrix of CS/QC samples and the paediatric study samples (e.g. in protein binding, back-conversion metabolites, and sample inhomogeneity), study samples were reanalysed to confirm the reproducibility of the assay [170]. ISR was advised to ensure that the same study samples measured on different days were comparable and that the acquired data was of consistent quality. The EMA and FDA guidelines recommend reanalysing 10% of study samples if the number of study samples is less than 1000 and a further 5% if the number of study samples exceeds 1000 [169, 170]. Moreover, it is recommended to enclose study samples for ISR with concentration levels at c_{max} and within the elimination phase. This requirement indicates that this quality measure was established primarily for PK investigations. Thus, specifications of ISR applied to humoral parameters require certain adaptations. The bioanalytical analysis was conducted blinded and randomly because the merging of the acquired bioanalytical data with patient characteristics was scheduled in the study protocol to be conducted after the bioanalytical data acquisition and clearance period. This format did not permit the selection of samples at c_{max} and within the elimination phase for ISR, as demanded by the FDA [169]. A lag time at the beginning of the study was established to observe the residual blood volume applicable to the ISR during the initial months of the study. This lag time was meant to verify that the ISR can be used in paediatric studies enrolling younger children. Randomly selected, already analysed study samples were repeatedly measured, and the nominal concentration of the first valid result of a study sample (original) and the results of repeated measurement of the same corresponding study sample (repeat) were compared for the PRA value to ensure comparability and reproducibility through continuous bioanalysis. For the ISR, at least 67% of the incurred samples should be within $\pm 30\%$ of the nominal concentration of the mean of the original and reanalysed value, which was calculated using the following equations (Equation 4-4 and Equation 5-2) [170].

*I*SR
$$[\%] = \left(\frac{\text{number of ISR with difference}[\%] \le 30\%}{\text{total number of ISR pairs}}\right) *100\%$$

Equation 5-2: Calculation of incurred sample reanalysis (ISR) pairs [%] meeting the guideline criteria.

Moreover, the paired-sample Wilcoxon signed-rank test was conducted to evaluate whether the original and repeat differed significantly. The test was conducted in Origin® 2018b at a level of significance of 0.05.

Interlaboratory testing

Apart from the internal QC procedure, the accuracy of the assay was investigated by periodic (every 6 months) participation in interlaboratory tests during the LENA project. This evaluation was enclosed into the QCS within the LENA project because interlaboratory testing is a standard requirement for German laboratories involved in diagnosis and clinical analysis (e.g. hospitals and clinical research organizations). Moreover, the CLSI highly encourages the implementation of interlaboratory testing into a meaningful QCS [185]. Two samples with unknown concentrations were obtained from the RfB for each individual interlaboratory testing and analysed in duplicate to provide verification of reliable data acquisition. The measured values were back-reported and then compared to established assays used by other laboratories. Due to the lack of participating ELISA PRA methods, the reported values were compared to RIA-based methods (for further details, please refer to http://fb.bio).

5.3 Results

A total of 168 analytical runs were conducted throughout the 24-month study period. Two analytical runs were rejected due to failing the predefined CSs specifications. Of the remaining 166 runs, 142 were characterised by also fulfilling the QC requirements and were classified as valid (Figure 5-2).

Figure 5-2: Flow diagram of the customised bioanalytical quality control system. CS: calibration standard; QC: quality control

5.3.1 System suitability test

The SST was successfully implemented and performed daily prior to sample analysis. All 163 conducted SST runs showed a RE of less than 10% and thus confirmed the suitability of the equipment (Figure 5-3 and Appendix 10.3-2/Appendix 10.3-3).

5.3.2 Overall evaluation of calibration standards

All 166 valid calibration curves consisted of seven CS levels. No entire level had to be excluded due to accuracy failure or any other cause. However, two calibration curves had to be rejected due to failing the required specifications. One complete concentration level plus additional CSs failed to reach accuracy limits, thus resulting in <75% CSs availability in both calibration curves. Overall, 1970 valid CSs (including all LLOQ CSs) did not exceed the limit of ±20% RE and were utilised for the quantification of unknown study samples. The RE for each CS level (mean of two replicates per run) for the valid analytical runs is presented in Figure 5-4. For further information, please refer to Appendix 10.3-1.

Figure 5-4: Boxplots of the relative error for all calibration standards (0.2, 0.5, 1.5, 4, 10, 25, 60 ng/mL Angl) in valid bioanalytical runs by the plasma renin activity immunoassay (n = 142). Dashed lines indicate the maximally allowed deviation in regulatory bioanalytical guidelines by the European Medicine Agency and the U.S. Food and Drug Administration (±20%; ±25% for the Lower Limit of Quantification). ■: interquartile range; I: 1.5 interquartile range; —: Median; □: Mean; ◆: Outlier.

5.3.3 Overall evaluation of quality controls

Intra-run assessment

Following the evaluation of calibration curve compliance to the FDA bioanalytical guideline specifications [169], 166 analytical runs were included for QC intra-run analysis. In five runs, one complete QC level was not within the required specification. Seven runs contained one complete QC level plus additional QC samples that exceeded the rejection limits. A further 12 runs were characterised by <67% valid QCs. Overall, 142 valid runs comprising 1308 QCs were applied for the subsequent evaluation of 940 PRA study samples. The relatively high amount of QCs in relation to the PRA study samples resulted from the high effort needed to determine the enzyme activity. This was caused by the duplicate measurement of an incubated and non-incubated Angl sample to obtain the corresponding PRA value. The number of QCs was therefore adjusted to Angl samples and the corresponding guideline specifications. In total, 91.3% of the 1308 QCs distributed over three concentration levels were in accordance with the predefined FDA requirements of intra-run accuracy of $\pm 20\%$. Thus, 114 QCs (8.7%) showed a higher RE than 20%, without affecting the validity of the run (<20% RE for at least 50% per QC level and 67% of all QC levels).

Inter-run assessment

Evaluation of the inter-run assessment was scheduled and conducted as a post-hoc evaluation. The advanced investigation of inter-run accuracy by applying a combined assessment system derived from the CLSI guideline [185], the Westgard rules [186], and recommendations by van Bruijnsvoort et al. [187] showed compliance with the first two rules for all QC levels. In accordance with the first rule, in no concentration level, two subsequent QCs values exceeded the alert limit (mean measured concentration ±3 times the SD). The second rule was also met, implying that no QC level four consecutive values surpassed the warning level (mean measured concentration ±2 times the SD). However, transient shifts characterised by more than 10 consecutive QC values on one side of the mean were detected. The QC middle and QC high levels exceeded the objective threshold by 1 and 2 times, respectively. No assignable cause for the violation was identified by following the procedure described in CLSI guideline C24 on trend troubleshooting [185]. To more closely investigate whether this finding identified a substantial shift in assay performance, the effected consecutive runs were assessed using the Westgard rule 4_{1s} (4 consecutive control measurements exceed the same mean ±1 times the SD), and it was noted that this rule was not violated [186]. Further details are presented in the Levey Jennings plots in Figure 5-5.

Figure 5-5: The long-term and inter-run evaluation of quality control (QC) samples of the plasma renin activity immunoassay. A: Levey-Jennings plot with the results (means of at least duplicate) of three levels of QCs in consecutive order over 24 months. The middle horizontal solid line indicates the overall mean of QCs of the same level. Horizontal dotted lines indicate control limits (mean ±1 standard deviation (SD)). Horizontal dashed lines indicate the warning limit (mean ±2 SD). The outer horizontal solid lines indicate the alert limit (mean ±3 SD). Vertical dashed lines represent the implementation of replacement lots. B: The relative error of the back-calculated QC concentrations of all QC samples obtained in valid runs. The results were depicted separately for the three QC concentration levels with corresponding marginal histograms. Each point reflects the mean QC standard per run. Dashed vertical lines indicate a relative error of zero %.

By comparing the three QC levels, it became apparent that the QC low and QC middle levels mainly exhibited values above the nominal concentration. Additional plotting of the lot-dependent RE for all measured QC values indicated a trend toward a positive deviation of the measured QCs derived by the vendor in relation to the specified concentration. Only 21.3% of the measured QC low values were below the nominal concentration, and even less were below the nominal concentration for the QC middle value (5.6% below the nominal concentration). In contrast, the in-house QC high level exhibited a homogenous distribution (47.3% below the nominal concentration) (Figure 5-5). The reason for this finding could not be clarified since further independent measures (e.g. patient specimens) could not be established as quality controls due to limited sample volumes. For further information, please refer to Appendix 10.3-4.

5.3.4 Blank sample evaluation

Of all 284 evaluated blank samples, 197 samples exhibited concentrations below the detection limit of the absorbance reader. Of the remaining 87 blanks, 67 exhibited a blank-to-LLOQ ratio below 20%, while 20 blanks ranged between 20% and 47%. Consequently, all blanks showed a blank-to-LLOQ ratio below 100%, thus fulfilling the ICH guideline requirements of blank concentrations below the LLOQ [171]. The LoB was 0.037 ng/mL, while the estimated LoD was 0.064 ng/mL. The LLOQ of 0.2 ng/mL was predefined by the vendor and verified by validation prior to sample analysis. The theoretical value was also confirmed by the mean of all 142 measured LLOQ samples (0.203 ng/mL) (Figure 5-6 and Appendix 10.3-5).

Figure 5-6: The overall evaluation of blank samples in all analytical runs by the plasma renin activity immunoassay. Upper and right axis: Each data point represents the ratio of a blank sample (two replicates of blank samples per run) and the corresponding Lower Limit of Quantification (LLOQ) sample (blank-to-LLOQ ratio) for all 142 valid analytical runs. Lower and left axis: The histogram of blank samples (filled bars) and LLOQ samples (striped bars) with a distribution curve (black solid curve) modified according to [14]. The Limit of Blank (LoB), Limit of Detection (LoD) and LLOQ are depicted as dotted lines. Values "<minimum" were defined as zero, and the distribution curve was artificially increased.

Since no measured blank sample violated the predefined rejection limits, no substantial effect on the reliable determination of CSs and QCs was claimed for the emulated matrix.

5.3.5 Incurred sample reanalysis

After a lag time of 5 months for evaluation of residual blood volume, ISR for plasma renin activity was implemented from this time point onwards the ISR samples (repeats) were measured. Samples obtained within the 5 months evaluation time were not re-assessed after ISR was implemented due to uncertainties in the stability. Out of all 940 study samples, 110 ISR pairs (11.7%) were analysed within the 19-month ISR period, including four replacement lots with corresponding revalidations. A total of 95 ISR pairs (86.4%) met the specifications of a deviation of <±30% between the original value and the repeat. The mean PRA of all measured originals was 24.6 ng/mL/h (±16.4 ng/mL/h SD) with a median of 21.8 ng/mL/h and an interquartile range of 13.7–33.0 ng/mL/h. The mean of the repeats was 24.0 ng/mL/h (±15.0 ng/mL/h SD) with a median of 19.1 ng/mL/h and an interquartile range of 11.9–33.0 ng/mL/h. The utilized ISR samples covered a range of 5.9–70.5 ng/mL/h. The PRA values acquired with the presented assay were based on the determination of Angl concentration values. With regard to the ISR, the evaluated samples covered a range of

0.4-8.3 ng/mL (assay range: 0.2-60 ng/mL). As a result, the concentration range of the ISR is not congruent with the range of the assay range. However, the obtained concentrations of ISR pairs were in the lower and most critical range of the assay. Since different lots of ELISA kits with partially slightly modified methods were used over the 24-month study period, the comparability of the ISR pairs between the lots was further investigated. A total of nine ISR experiments were conducted in a lot-overlapping approach, characterised by the measurement of original and repeat in different lots and after different revalidations. Lotoverlapping ISR was accomplished between the second and third (n = 1), third and fourth (n = 2), fourth and fifth (n = 5), and second and fifth (n = 1) lot. Every calculated difference between the nine ISR experiments was below the rejection limit of ±30%, thus indicating consistent performance over time. The ISR pairs, which were evaluated within the second (n = 7), third (n = 11), and fifth (n = 50) replacement lot, showed no significant differences after applying the paired-sample Wilcoxon signed-rank test (level of significance $\alpha = 0.05$). Yet, a significant distinction of the ISR pairs within the fourth (n = 42) replacement lot could be detected. However, within the fourth replacement lot, 83% of the ISR pairs were within the limit of $<\pm30\%$ and thus in accordance with the guideline specifications. By comparing the mean differences between ISR pairs regarding the different lots, PRA values within the second, third, fourth, and fifth replacement lots showed mean differences between original and repeat of -0.2%, -6.1%, -11.3%, and -2.9%, respectively. For further details, please refer to Figure 5-7 and Appendix 10.3-6.

Figure 5-7: Assessment of incurred sample reanalysis (ISR) by the plasma renin activity immunoassay. A: Percentage difference plot of ISR pairs distributed over the concentration range with a marginal histogram of all plasma renin activity (PRA) values. Dotted lines indicate the ±30% acceptance thresholds given by the European Medicine Agency (EMA) and the U.S. Food and Drug Administration (FDA). B: Percentage difference plot of ISR pairs in consecutive order with a marginal histogram of the difference between the ISR pairs. Dotted lines indicate the acceptance thresholds given by the EMA and FDA of ±30% deviation, which is required to be fulfilled in at least 67% of all ISR pairs. Vertical solid lines indicate the implementation of replacement lots. C: Cumulative ISR samples indicating the overall ISR performance against the 67% regulatory limit (dotted black line). Vertical solid lines indicate the implementation of replacement lots. The cumulative ISR plot was presented, as recommended by Rudzki et al. [189]. D: Boxplots of the difference in ISR between the different assay lots. Dashed lines indicate the EMA and FDA guideline limits for the ISR difference of ±30%, which is required to be fulfilled in at least 67% of all ISR pairs. Interquartile range; I: 1.5 interquartile range; —: Median; □: Mean; ♦: Outlier.

5.3.6 Interlaboratory testing

The external verification by interlaboratory testing was conducted three times, which allowed for a comparison of the developed assay with the established assays used by other laboratories. Interlaboratory testing was conducted in January 2017, July 2017, and January 2018. Measured concentrations of 2.3 ng/mL/h and 8.1 ng/mL/h PRA were observed for sample A and sample B in January 2017, with 2.9 ng/mL/h and 2.2 ng/mL/h observed in January 2017, and 2.2 ng/mL/h and 2.8 ng/mL/h observed in January 2018. Participation in January 2017 and 2018 resulted in passing the interlaboratory tests, thus verifying the reliability of the validated assay. The evaluation of the conducted interlaboratory test in July 2017 could not be accomplished by the RfB due to a lack of applicable consensus values (<4), which are mandatory for the appraisal of reported values. These findings confirmed the accuracy of the established PRA ELISA and demonstrated the comparability between the developed easy-to-use ELISA assay and the more complex RIAs commonly applied in routine clinical analysis.

5.4 Discussion

The long-term monitoring of bioanalysis of the humoral parameter PRA within the LENA project was successfully conducted by the implementation of a multi-step QCS. Since a comprehensive QCS for the special demands of bioanalytics within long-lasting paediatric studies was lacking, a customised QCS was developed based on well-established guidelines (EMA and FDA), the recommendations given of reputable organisations (e.g. CLSI), and suggestions based on current scientific discussions. Moreover, an advantageous characteristic of the applied easy-to-handle QCS represents its applicability in academia-driven projects, enabling the acquisition of unique, high-quality data with moderate effort.

A fit-for-purpose SST regarding analytical equipment is strongly recommended prior to sample analysis [190]. However, clear specifications are not currently mentioned in regulatory guidelines (e.g. EMA, FDA) [169, 170]. For chromatographic assays, Broadhurst et al. recommended an acceptable peak area of $\pm 10\%$ by the use of analytes in matrix-free solution [190]. These specifications were also considered suitable to ensure the appropriate performance qualification of the used absorbance reader because chromatographic specifications are commonly more rigorous than those for ligand-binding assays [170]. While investigations of the intra-run monitoring of bioanalytical runs are well defined, recommendations for the assessment of the inter-run performance of the assay are lacking in EMA and FDA guidelines [169, 170]. Therefore, the recommendations of the CLSI guideline [185], Westgard rules [186], and suggestions from van Bruijnsvoort et al. [187] were combined in the QCS to monitor deviations caused by process influencing factors (e.g. analyst, temperature, or humidity). Although the collected PRA data was not used to decide on the treatment of paediatric patients directly, the aim was to ensure the high quality of first-time PRA data in very young children with HF at the highest level. Therefore, the modified Westgard rules by van Bruijnsvoort et al. seemed appropriate, as they represented a rational consideration of the required QC standard specifications over the duration of the study and its rigour with regard to the risk of patient harm in the case of misjudgements of the analytical run [187]. Although CLSI recommended establishing two concentration levels based on clinical decision values [185], the selection of QC concentration and levels per analytical run was made on the stricter requirements issued by regulatory agencies since clinical decision values of PRA in children suffering from HF were lacking. All QC levels showed compliance with the first two rules $(1_{3S} \text{ and } 3_{2S})$ in the inter-run QC assessment. However, the third rule $(10\overline{x})$ was not fully met, and no assignable cause for the violation could be identified. As proposed by Westgard et al., violation of this rule contributes the least to error detection compared to the other rules [186]. Therefore, it was classified as a transient out-of-control condition with less impact. Further reassessment by applying the Westgard rule "4_{1s}" (not more than four consecutive results exceed the mean ±1 SD in the same direction) to the effected consecutive runs [186] as well as the application of the " 10_{1s} " rule (10 consecutive results exceed the mean ±1 SD in the same direction) on all QC samples recommended by the CLSI [185] confirmed this argumentation. The post-hoc analysis presented here showed that the implementation of such a QCS in academic research is feasible. Thus, it is recommended to establish continuous monitoring of interrun QC in line with current recommendations by CLSI for future approaches whenever appropriate. Retrospectively, continuous monitoring through performing a recalculation of statistical boundaries after every 40 samples, as proposed by van Bruijnsvoort et al. [187], would have been impractical due to the low number of analytical runs per lot and the recommendations of the CLSI guideline appearing more suitable [185]. Moreover, since deviations between the nominal versus the observed concentration of the QC low and QC middle levels were identified, the information of the certificate of analysis provided by the vendor appeared questionable. To avoid this mismatch, an in-house verification of the provided reference values is recommended and should be established by utilizing at least 20 corresponding QC values [185]. The determination of blank-to-LLOQ ratios, as well as the estimation of LoB and LoD, was demonstrated to be of high importance for reliable data acquisition due to potential interfering substances within the emulated matrices of the CSs and QCs [188, 191]. The results of the blank sample evaluation complied with recently published recommendations by Azadeh et al., who suggests a blank-to-LLOQ ration below 90 % for competitive ELISA [192], and were in line with the requirements of the ICH M10 draft guideline [171]. Continuous monitoring was established in the context of this setting, which resulted in an LoB/LoD assessment using a total of 284 blank samples and comprised five different lots over a 24-month study period. This approach was selected because different lots of chemicals could contain differing concentrations of interfering substances, making a temporally delimitated determination less sensitive to trends or fluctuations in long-term bioanalysis.

While the EMA and FDA guidelines on bioanalytical method validation and the ICH M10 draft guideline demand a fixed ratio of ISR (10% for <1000 study samples and additional 5% for >1000 study samples) [169–171], Rudzki et al. suggested that the number of incurred samples could be reduced to a fixed amount (e.g. 30 samples) without undermining the meaningfulness of the analysis [193, 194]. An ISR rate of 11.7% representing 110 ISR pairs was achieved in accordance with both of the aforementioned approaches. More than 86% of the blinded and randomly selected ISR pairs met the guideline criteria (\geq 67%).

Despite these good results, the applicability of further guideline recommendations remains limited. Any PK or PD analyses were not scheduled before the finalization of the bioanalysis and data clearance. The subsequent lack of feedback from PD evaluation prevented the assignment of analysed sample values to those near the cmax or concentrations close to the elimination phase. Furthermore, Angl and the resulting PRA values in this unique population have not been previously investigated, resulting in a lack of reference values for the classification of maximal and minimal values, as recommended by the EMA and FDA [169, 170]. Finally, the maturation of paediatric organisms [78, 158], possible influence of circadian rhythm [195, 196], and blood sampling conditions [197] complicate compliance with the aforementioned regulatory requirement. However, the extensive number of analysed incurred samples provided an appropriate distribution within the sampling profiles covering various sampling time points. The lack of recommendations regarding the reliable long-term and between-run monitoring of QCs and CSs as well as blank sample requirements indicate a topic for improvement in current EMA/FDA guidelines and also the ICH draft M10 guideline [169–171]. Since these missing items are presently only addressed by scientific references (e.g. Westgard), clear suggestions should be included in future regulatory guidance. In addition to the fact that between-run specifications should be covered by regulatory guidelines, the required number of QCs per run should be reconsidered. Within the LENA project, 1308 QC were necessary to fulfil all requirements given in the guidelines. A reduced number of QCs or a fixed number as recommended for ISR by Rudzki et al. [193, 194], could contribute to an increased throughput of study samples without undermining the meaningfulness of analysis.

In summary, the combination of well-established regulatory guidelines with alternative recommendations derived from current scientific discussions into one comprehensive customised QCS applicable to academic research has been demonstrated. This lean and cost-effective QCS complies with GCLP requirements and should encourage other academic researchers to establish comparable systems when investigating similar research topics.

5.5 Conclusion

The customised bioanalytical QCS comprised regulatory guidelines, international recommendations, and current scientific discussions. The multi-step QCS successfully monitored the short- and long-term performance of the bioanalysis of the humoral parameter PRA via ligand-binding assay and substantially contributed to the generation of reliable data. The applicability of this combined system in an academic environment was confirmed for the PRA within the FP7- funded LENA project.

86

6 Development and validation of an innovative multiplex liquid chromatography high-resolution mass spectrometry method for the investigation of angiotensin peptides in plasma

6.1 Background and aim

Of 165 newly labelled drugs in the United States between 2003 and 2012, just 28% provided paediatric study data at the time of approval, including only five medicines with data for neonates [184]. In Europe, this constraint is increasingly addressed by the "EU Paediatric Regulation" [98]. Although this regulation affects the pharmaceutical industry in Europe by the requirement of paediatric investigation plans, the amount of evidence-based medicines for the paediatric population is limited, and the number of meaningful clinical trials for children is still underrepresented compared to adults [92]. Nevertheless, paediatric research is increasingly addressed by academic consortiums like LENA. The comprehensive evaluation angiotensin peptides in the population of the LENA project is a rational approach to gain valuable new insight into the maturing RAAS and the paediatric HF. In the past decades, it became apparent that the angiotensin peptides Angl and AnglI could not be the only physiological important peptides of the RAAS. Indeed, novel angiotensin peptides such as AngIII and AngA, who are characterised by primarily AngII-like characteristics, as well as the potential functional counter-peptides Ang1-7, alamandine, and Ang1-9 are increasingly addressed by cardiovascular research. However, while there is little evidence regarding in-vivo data for these novel peptides in adults, sophisticated investigations in the healthy and cardiovascular diseased paediatric population are almost entirely lacking [78]. Thus, the development and GCLP compliant validation of bioanalytical methods applicable to paediatric research in an academic environment is a crucial step to support the evidencebased medicine for children in the future. Yet, the simultaneous quantification of complex analytes like peptides in biological fluids is one of the significant challenges in bioanalytics and is associated with various obstacles. Deficient endogenous concentrations, similar properties of the peptides to be analysed, short half-life, a challenging matrix with potential interfering compounds, a small available sample volume, as well as an adequate accuracy and precision of the method present hurdles to be overcome.

Therefore, the sub-aims of this project were:

- To develop a multiplex LC-HRMS method for the simultaneous determination of the essential angiotensin peptides Angl, Angll, Angl-7, Anglll, AnglV, AngA, alamandine, and Ang1-9 in human plasma.
- To provide an acceptable sensitivity and calibration range of the method by applying minimal sample volumes of 50 µL plasma and thus enable a meaningful investigation of these humoral parameters within the paediatric population of the LENA project.
- To achieve adequate sample purification and extraction steps by taking the short half-life of the analytes and the complex matrix into account.
- To perform a fit-for-purpose validation according to the FDA bioanalytical guideline to ensure the reliable determination of all peptides in a GCLP environment.
- To show the applicability of the method by example measurements of adult and paediatric human sources.

6.2 Methods

6.2.1 Materials

Consumables

Reaction tubes 1.5 mL Protein LB, Biosphere[®] filter tips 20 µL, Biosphere[®] filter tips 100 µL, pipette tips 1250 µL, pipette tips 10 mL, falcon tubes 50 ml, S-Monovetten[®] 9 mL K3E, and S-Monovetten[®] 1.2 mL K3E were purchased from Sarstedt AG & Co. KG (Nümbrecht, Germany). Oasis[®] Prime HLB µElution plates and AQUITY UPLC[®] 700 µL Round 96-Well plates were obtained from Waters[®] GmbH (Eschborn, Germany). Eppendorf tubes 5.0 mL, Combitips advanced[®] 10 mL, Combitips advanced[®] 5 mL, and Combitips advanced[®] 2.5 mL were purchased from Eppendorf AG (Hamburg, Germany).

Chemicals and reagents

Methanol MS-grade and water MS-grade were provided by Honeywell (Seelze, Germany). Methanol HPLC-grade and water HPLC-grade were obtained by Fisher Scientific U.K. Limited (Loughborough, United Kingdom). FA (>98%) p.a. and dichloroacetic acid (DCA) were purchased from Sigma-Aldrich (Steinheim, Germany) and dimethyl sulfoxide (DMSO) AppliChem (99.9%) was supplied by GmbH (Darmstadt, Germany). Ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA) p.a. (≥99%) (Carl Roth GmbH + Co. KG, Karlsruhe, Germany) as well as 4-(Hydroxymercuri) benzoic acid sodium salt, pepstatin A (>90%), and 1,10 phenanthroline monohydrate (Sigma-Aldrich, Steinheim, Germany) were used. Aliskiren hemifumarate was delivered from MSN Laboratories Limited (Rudraram, India). Angiotensin I human acetate salt hydrate (≥90%), angiotensin II human acetate (≥93%), angiotensin III trifluoroacetate salt hydrate (≥98%), angiotensin IV trifluoroacetate salt hydrate (≥95%), angiotensin-(1-7) acetate salt hydrate (≥90%), angiotensin A trifluoroacetate salt hydrate (≥98%), alamandine trifluoroacetate salt hydrate (≥98%), and synthetic [Val⁵]-angiotensin I (99%) were purchased from Sigma-Aldrich (Steinheim, Germany) while angiotensin-(1-9) trifluoroacetate salt hydrate (≥98%) was delivered by Adooq Bioscience (Irvine, United States) and ([ring-D₅]Phe⁸)-angiotensin II acetate salt (≥98%) was obtained from Bachem AG (Bubendorf, Switzerland).

Preparation of standard solutions

0.1% FA was used as a reconstitution solution to obtain the first stock solution (1 mg/mL) for every analyte and IS each. The first stock solution was diluted with 0.1% FA to obtain the second stock solution (10 μ g/mL). Subsequently, the analyte working solution

(100 ng/mL) was prepared by spiking 0.1% FA with the 10 μ g/mL stock solution of every analyte. By analogy, the internal standard (IS) working solution (100 ng/mL) was prepared by spiking 0.1% FA with the 10 μ g/mL stock solution of [Val⁵]-angiotensin I and ([ring-D₅]Phe⁸)-angiotensin II.

Instruments

For the preparation of stock solutions and processing of validation and study samples, Research[®] plus pipettes 0.5-10 μ L, 10-100 μ L, 0.1-10 mL, and 1-10 mL, as well as a Multipette[®] E3 (Eppendorf AG, Hamburg, Germany) were used. Furthermore, a TX4 Digital IR Vortex Mixer (VELP Scientifica, Usmate, Italy), a ThermoMixer[®] (Eppendorf AG, Hamburg, Germany), and a Centrifuge 5415R (Eppendorf AG, Hamburg, Germany) were applied. The SPE was performed using a Positive Pressure-96 Manifold from Waters[®] GmbH (Eschborn, Germany). The HPLC analysis was conducted with a Nexera XR HPLC system (Shimadzu, Duisburg, Deutschland) including a CBM-20A controller bus module, two LC20AD XR pumps, a DGU 20A5R degasser, a SIL-30AC autosampler, a FCV-11AL valve unit, and a CTO-20AC column oven. The HPLC was coupled to a TripleTOF[®] 6600 mass spectrometer from AB Sciex (Concord, Canada), which was equipped with a calibration delivering system, a roughing pump, and a Turbo V ESI source.

<u>Software</u>

Acquisition of data was performed using the Analyst[®] software version 1.7.1 (AB Sciex, Darmstadt, Germany). Processing of the generated data was accomplished with the MultiQuant[®] software version 3.0.2 (AB Sciex, Darmstadt, Germany). The appraisal of the raw data was further conducted with Microsoft Office[®] 2016 (Microsoft Corp., Redmond, WA, United States) and Origin[®] pro 2018b (OriginLab Corporation, Northampton, United States).

6.2.2 Optimisation steps during method development

During the method development, several optimisation steps were necessary to overcome the bioanalytical hurdles which are reasoned in the complex matrix, the restricted sample volume, as well as the complex characteristics of endogenous peptides.

These optimisation steps included:

1. The generation of an appropriate blank plasma to prevent the influence of endogenous peptides on method performance.

- 2. The removal of interfering matrix to avoid ion suppression or enhancement and to reduce the impact on accuracy and precision of the method.
- 3. The enhancement of the sensitivity of the method to enable an adequate LLOQ for the quantification of the peptides in a sub nanogram per millilitre range.

Optimisation of the blank plasma generation

In contrast to the bioanalytical analysis of exogenous substances (e.g. pharmaceutical drugs, herbal components or environmental toxins), the analysis of endogenous peptides, which are physiologically present in the matrix, is accompanied with further difficulties. The pre-existing endogenous concentrations in the matrix could significantly impact the accurate determination of CSs and QCs. Moreover, the endogenous plasma concentrations could increase the LLOQ. In addition, the generation of Angl by the action of renin could occur during sample preparation, which would additionally distort the quantification of Angl and all of the subordinate angiotensin peptides. Therefore, the simultaneous measurement of a blank sample with the calibration curve and the subsequent blank value reduction seemed not appropriate to guarantee a precise determination. Moreover, in LC-MS analysis, this technique is related to several inaccuracies (e.g. differing measurement time points of the CSs and the blank, as well as the higher impact on the lower part of the calibration curve and the corresponding influence on the regression). Thus, the highest possible removal of physiologically present peptides with additional inhibition of post-sampling generation of peptides prior to CS and QC preparation was conducted to bypass this issue. In this regard, the renin inhibitor aliskiren was spiked directly in S-Monovetten® to inhibit the generation of angiotensin peptides instantly. After centrifugation, the plasma was incubated at 37 °C for 90 min to degrade the remaining angiotensin peptides in the sample. This processed plasma was used for the preparation of CSs and QCs.

Optimisation of peptide purification and removal of interfering matrix

The removal of interfering substances is vital for the accurate and precise quantification of peptides in biological samples. An insufficient purification of the samples results in coeluting matrix components which could lead to an increase or suppression of analyte signals. Moreover, the accuracy and precision, as well as the individual matrix effect, could be significantly impacted by various amounts and compositions of matrix components. During the method development, several modifications had to be applied to minimise the effect of the matrix and enable a satisfactory method performance and recovery of the analytes. It became apparent that the standard SPE protocol provided by the vendor of the utilised SPE plates was not sufficient to provide adequate sample purification. This was characterised

by frequent clogging of the guard-column and the capillaries of the HPLC system, as well as by insufficient accuracy and precision which could be assigned to a high effect of matrix components on the analytes. Therefore, the SPE protocol was modified to provide better sample purification without severe loss of analyte. However, although the customised SPE protocol yielded beneficial effects on the guard column lifetime and clogging frequency without a downturn in recovery, the measurement of accuracy and precision still lacked for satisfactory results. Thus, a precipitation step before SPE was implemented to achieve additional removal of matrix components, and the SPE protocol was finally adopted.

Optimisation of sensitivity

Reliable reference values of angiotensin peptides in children and neonates suffering from HF are inconsistent or entirely lacking [78]. The calibration range is thus just limited predictable for this unique population using existing data. Consequently, a sufficient method sensitivity in combination with a broad dynamic calibration range is a crucial element for the quantification of these peptides in paediatric study samples. Thus, the increase in signal intensity of the peptides represented a further hurdle to be overcome.

First, most of the peptides are subject to unspecific adsorption on container walls (e.g. glass and polypropylene), which could result in a significant loss of analyte and reduced signals [198]. Silanisation and bovine serum albumin treatment of the glassware were evaluated but considered as inadequate to reduce peptide adsorption on the container walls effectively. Therefore, no glassware was used during sample preparation and subsequent measurement of the peptides. Moreover, the plasma samples for CSs and QCs, as well as the study samples, were exclusively prepared in 1.5 mL protein low bind reaction tubes and AQUITY UPLC[®] 700 μ L Round 96-Well plates.

Second, depending on the AS sequence, peptides could have multiple charge states which could decrease the MS signal of the selected precursor ion. The state of charge is strongly dependent on the surrounding milieu and the isoelectric point of the respective peptide. In order to achieve the highest possible sensitivity, the peptide should be preferable present in only one charge state (desirable in the state in which the peptide is most frequently present under the given conditions), since only one kind of charge state of the precursor ion could be considered for the targeted screening and quantification of the peptide. Besides acidification of the injection solvent and mobile phases (0.1% FA), DMSO was added as supercharging reagent. While the specific mechanism of DMSO as supercharging reagent is still not clearly identified, an increase in the droplet surface tension of the ESI which is directly proportional to the charge availability of the droplet is proposed [199].
Third, peptides are related to an increased fragmentation compared to small molecules, which further reduces the signal intensity and yield higher background (Figure 6-1).

 Figure 6-1:
 Schematic presentation of the difference of a product ion scan fragmentation between a peptide and small molecule. m/z: mass-to-charge ratio.

The applied Q-TOF technique enables the measurement and summation of several fragment ions, which results in increased signal intensity. Moreover, this approach allows the concurrent conduction of untargeted screening comprising broad mass ranges and thus might provide advanced insights into the unique population of the LENA project. As a consequence, the Q-TOF was the method of choice.

The following figure (divided in part A (on the next page) and part B (continued on the following page)) shows the mass spectrum of each analyte and IS with corresponding m/z of the fragment ions (Figure 6-2).

Development and validation of an innovative multiplex liquid chromatography high-resolution mass spectrometry method for the investigation of angiotensin peptides in plasma - Methods

Part A

Development and validation of an innovative multiplex liquid chromatography high-resolution mass spectrometry method for the investigation of angiotensin peptides in plasma - Methods

Figure 6-2: Example mass spectra of product ion scans for every individual analyte and internal standard included in the liquid chromatography coupled to high-resolution mass spectrometry method. Each fragment ion is indicated by its mass-to-charge ratio (m/z) and the type of fragment in the parentheses. The "y" and "z" fragments comprise the N-terminal end, while the "a" and "b" fragments comprise the C-terminal end. The numbering of the respective fragment ions based on the peptide bond and begins at the corresponding end (according to the nomenclature by Roepstorff and Fohlman[122]). A "+1" behind the parenthesis represents the isotope signal of the corresponding fragment. A "+2" behind the type of fragment within the parenthesis indicates a double charged fragment. A single capital letter in the parentheses indicates the corresponding amino acid as one-letter code, while multiple capital letters indicate internal ions which are caused by double backbone cleavage. The "-28" behind the internal ion indicates the loss of carbon monoxide.

6.2.3 Final assay procedure

Blood sampling and preparation of plasma for calibration standards and quality controls

Adult human plasma was used as matrix for the preparation of all CSs and QCs samples, as paediatric plasma samples could not be applied due to ethical constraints. The blood sampling from adults in context of this study was permitted by the Ethical Commission of the Heinrich-Heine-University Düsseldorf (Study number 6116) and written informed consent from the volunteers was obtained. The blood sampling was always conducted by trained staff.

The blood was explicitly collected and prepared to free the plasma from pre-existing analytes to generate a blank matrix applicable for the preparation of CSs and QCs. 500 μ L solution (500 ng/mL in water HPLC-grade) of the renin-inhibitor aliskiren was added to 9 mL K3E S-Monovetten[®] to prevent the post-sampling generation of Angl. The blood was sampled from a healthy adult volunteer at RT. Subsequently, the S-Monovetten[®] were centrifuged at 2000 g for 10 min at RT. Afterwards, the plasma supernatant was incubated for 90 min at 37 °C to degrade the angiotensin peptides still present in the plasma. Finally, the incubated plasma was again centrifuged at 16100 g for 20 min at RT, and the supernatant was frozen at -20 °C.

CSs and QCs had to be prepared for all validation runs and analytical runs. As the plasma for CSs and QCs should be as comparable as possible with the study samples, the plasma was spiked with a freshly prepared inhibitor cocktail (79.95 parts 0.03 M 4-(Hydroxymercuri) benzoic acid in EDTA, 10.66 parts 0.01 M 1,10-phenanthroline in DMSO, and 9.38 parts 0.03 M pepstatin A in DMSO) to mimic the study sample plasma. For the preparation of CS and QC dilution series, a plasma sample was spiked with an initial concentration of the analyte working solution (100 ng/mL). This step was conducted to keep the dilution of the plasma within the CS and QC series as low as possible. Subsequently, two independent dilution series were prepared for the CSs and the QCs from the initially spiked plasma sample, respectively (Figure 6-3).

Development and validation of an innovative multiplex liquid chromatography high-resolution mass spectrometry method for the investigation of angiotensin peptides in plasma - Methods

Figure 6-3: Preparation of calibration standards (CS) and quality controls (QC) for the liquid chromatography coupled to high-resolution mass spectrometry method. LLOQ: Lower Limit of Quantification.

Precipitation step and internal standards

A precipitation step was conducted to remove interfering matrix compounds, such as large proteins (Figure 6-4). 50 μ L plasma of each study sample, CS, and QC were pipetted into protein low-bind reaction tubes. The precipitation solution (55 parts water MS-grade, 40 parts methanol MS-grade, and 5 parts DCA) was spiked with IS solution (100 ng/mL) to obtain a precipitation-IS solution with a concentration of 800 pg/mL. The precipitation-IS solution was stored at -20 °C. Subsequently, 200 μ L cold precipitation-IS solution was added quickly to each tube. The tubes were then vortexed for 3 minutes and centrifuged at 16100 g for 10 minutes at RT. After centrifugation, 200 μ L supernatant was removed and directly loaded on the SPE plate.

Development and validation of an innovative multiplex liquid chromatography high-resolution mass spectrometry method for the investigation of angiotensin peptides in plasma - Methods

Figure 6-4: The conducted precipitation procedure using 50 µL plasma prior to solid-phase extraction and liquid chromatography coupled to high-resolution mass spectrometry.

Solid-phase extraction

The SPE was conducted to further purify the sample prior to the injection to the HPLC and to concentrate the analytes after precipitation. For the conduction of the SPE, an Oasis® Prime HLB µElution plate in combination with a Positive Pressure-96 Manifold were used. The pressure was applied on the µElution plate until a slow and uniform drop speed was reached for every cartridge. The subsequent step was only performed when the complete liquid had run through the sorbent material due to the pressure applied. Before loading the samples on the SPE cartridges, the sorbent material in each cartridge was preconditioned at the first step with 200 µL preconditioning solution (60 parts methanol HPLC-grade, 39.9 parts water HPLC-grade, and 0.1 parts FA) to remove impurities as well as manufacturing remnants. In the second step, the sorbent material was equilibrated with 200 µL water. In the third step, 400 µL water was applied on the cartridge and 200 µL of the supernatant of the precipitation step was directly spiked. The fourth step comprised the addition of 200 µL washing solution (95 parts water HPLC-grade and 5 parts FA) to remove any matrix components remaining on the sorbent material. The passed liquids in step 1-4 were discarded. The elution of the analytes from the sorbent material was achieved in the last step by applying 2 times 50 µL elution solution (60 parts methanol MS-grade, 39.9 parts water MS-grade, and 0.1 parts FA) with the application of pressure after each addition of 50 µL (Figure 6-5). The elution step was collected in an AQUITY UPLC[®] 700 µL Round 96-Well plate and evaporated using a ThermoMixer® at 50 °C and 350 rpm for 45 minutes under N₂-gas. Finally, the residue was reconstituted in 50 µL injection solvent (39.9 parts water MS-grade, 30 parts methanol MS-grade, 30 parts DMSO, and 0.1 parts FA) and vortexed for 5 minutes and 500 rpm at RT.

HPLC settings

The autosampler of the HPLC was cooled to 15 °C. The separation of the analytes was achieved with reversed-phase separation conducted with an XBridge C18 4.6 x 150 mm 2.5 μ m column (Waters GmbH, Eschborn, Germany). Moreover, an XBridge BEH C18 XP VanGuard Cartridge 130 Å, 2.5 μ m, 2.1 mm x 5 mm (Waters GmbH, Eschborn, Germany) was applied to protect the analytical column from larger impurities. The column was tempered to 60 °C, and the flow rate was set to 0.4 mL/min. The total run time of the method was 11 minutes, including 2.5 min equilibration time prior to injection of 20 μ L of injection solvent. The mobile phase A consists of 98.9 parts water MS-grade, 1 part DMSO, and 0.1 parts FA, while the mobile phase B was 98.9 parts methanol MS-grade, 1 part DMSO,

and 0.1 parts FA. After injection, the mobile phase B concentration rose in several steps from 10% up to 85% in 3.7 minutes. Then, the high mobile phase B concentration stayed constant to provide consistent conditions for the ionisation of the analytes (Table 6-1).

Table 6-1: The applied gradient for the liquid chromatography

Time (minutes)	0	0.2	0.7	2.7	3.2	3.7	8.5
Mobile phase B concentration	10%	10%	30%	50%	70%	85%	85%

ESI and HRMS settings

The ESI was run in positive ionisation mode with an ion source temperature of 550 °C and the ion source gas 1 and 2 both at 50 psi. The curtain gas was set at 30 psi, and the ion spray voltage floating was 5500 V. All analytes were measured via the product ion scan in the high sensitivity mode with nitrogen as the collision gas. The DP (95 V), the ion release delay (48 ms) and the ion release width (17 ms) were equal for all analytes while the CE was individually set for each analyte (Table 6-2).

Substance	Molecule ion (m/z)	Collision energy (eV)		
Angiotensin I	433.1	27		
Angiotensin II	523.9	30		
Angiotensin-(1-7)	450.5	27		
Angiotensin III	466.5	27		
Angiotensin IV	388.3	25		
Angiotensin A	501.8	30		
Alamandine	428.3	25		
(Val⁵)-Angiotensin I	428.6	25		
([ring-D ₅]Phe ⁸)-Angiotensin II	526.3	29		

Table 6-2:The precursor ion and collision energy for all analytes and internal standards
regarding the high-resolution mass spectrometry.

m/z: mass-to-charge ratio; eV:electron volt.

Statistical evaluation

The results of the conducted measurements were evaluated with the MultiQuant[®] Software. The MQ4 algorithm was used for the integration of the peaks with a Gaussian smooth width of 2 points, a RT half time window of 30 seconds, a minimal peak width of 3 points, a minimal peak height of 50 counts per second (cps), a baseline subtraction window of 0.2 min and a peak splitting of 3 points. The quantification of each analyte was achieved by summation of various fragments of each individual ion (Appendix 10.4-1). For the calibration curve, a quadratic regression with a weighting of $1/x^2$ was applied.

6.2.4 U.S. Food and Drug Administration based bioanalytical method validation

The method validation was performed according to the FDA bioanalytical guideline recommendations for chromatographic assays [169]. However, these recommendations notably differ from the recommendations for LBAs (see chapter 4.2.5). Therefore, the applied validation parameters for the developed LC-HRMS assay are exclusively described in this chapter. In this context, the linearity of the calibration curve, within-run and between-run accuracy and precision, the matrix effect and recovery, the sensitivity and the LLOQ, as well as the autosampler stability were evaluated. Moreover, a LC-HRMS SST was established.

System suitability test

An SST was conducted every working day prior to analysis. Injection solvent was spiked with the analyte and IS working solution (100 ng/mL) to obtain a final concentration of 500 pg/mL. This SST sample was measured in duplicate. The RT should not deviate by more than 0.2 minutes for each analyte. Moreover, the measured peak area should be within ±30% of the peak area obtained with the primary SST sample of the same batch.

Acceptance criteria of single analytical runs/ intra-run assessment

The acceptance criteria for a valid analytical run included CSs and QCs. The applied calibration curve for every angiotensin peptide consisted of seven non-zero CS levels measured in duplicate (Table 6-3). The back-calculated concentration of 75% of non-zero CSs including the LLOQ must not deviate by more than 20% and 15% for the calibrator at the LLOQ and the other calibrators, respectively. Exclusion of CSs was only acceptable if they failed the acceptance criteria or due to assignable causes.

Table 6-3: Nominal concentrations of the applied calibration standards for the liquid chromatography coupled to high-resolution mass spectrometry method.

	The nominal concentration of canoration standards (pg/me)						
Analyte	1	2	3	4	5	6	7
Angiotensin I	25.4	50.7	101.5	203.0	405.9	811.8	1623.6
Angiotensin II	22.3	44.5	89.1	178.1	356.3	712.5	1425.0
Angiotensin-(1-7)	24.3	48.5	97.0	194.0	388.0	776.0	1552.0
Angiotensin III	31.0	62.0	124.0	248.0	496.0	992.0	1984.0
Angiotensin IV	22.9	45.8	91.6	183.3	366.6	733.1	1466.2
Angiotensin A	21.8	43.7	87.4	174.8	349.5	699.0	1398.0
Alamandine	19.0	38.1	76.1	152.2	304.4	608.8	1217.6
Angiotensin-(1-9)	31.0	62.0	124.0	248.1	496.1	992.2	1984.4

The nominal concentration of calibration standards (pg/mL)

Values are rounded to one decimal place.

Three QC levels (a QC within three times the LLOQ (QC low), a QC in the mid-range (QC middle), and a QC at the upper range of the calibration curve (QC high)) were measured in duplicate in every run to guarantee the validity. The QCs were always prepared in a calibration curve independent dilution series (Table 6-4). The total amount of QCs per run must be at least 5% of the unknown samples. Moreover, \geq 67% of the QCs and at least 50% of all samples per QC level should not deviate by more than 15% of their nominal concentration.

Nominal concentrations of the implemented quality controls for the liquid Table 6-4: chromatography coupled to high-resolution mass spectrometry method.

	Nominal concentrations of the quality controls (pg/mL)					
Analyte	Low	Middle	High			
Angiotensin I	50.7	203.0	811.8			
Angiotensin II	44.5	178.1	712.1			
Angiotensin-(1-7)	48.5	194.0	776.0			
Angiotensin III	62.0	248.0	992.0			
Angiotensin IV	45.8	183.3	733.1			
Angiotensin A	43.7	174.8	699.0			
Alamandine	38.1	152.2	608.8			
Angiotensin-(1-9)	62.0	248.1	992.2			

Nominal concentrations of the quality controls (ng/ml.)

Values are rounded to one decimal place.

Calibration curve/ linearity

The calibration curve was evaluated in 6 independent runs on 6 different days. Each calibration curve must contain at least six CS levels marked with a maximal RE of $\pm 15\%$ (±20% at LLOQ). 75% of non-zero CSs, including the LLOQ, have to fulfil the criteria mentioned above. CSs that did not comply with this criterion were excluded, and the calibration curve was re-constituted. Besides, a blank sample (matrix without standards and IS) and a zero sample (matrix with IS) were measured in duplicate.

Accuracy and precision

The accuracy and precision of the assay were investigated at four different concentration levels, including the QC low, QC middle, and QC high, as well as an additional QC at the LLOQ in quintuplicate. All QC samples were prepared independently from the CSs. Within-run accuracy and precision were investigated in one run, while between-run accuracy and precision were obtained in three individual runs on three different days. For the evaluation of within-run and between-run accuracy, the RE should not deviate by more than $\pm 15\%$ (± 20 at LLOQ). The CV must be $\leq 15\%$ ($\leq 20\%$ at LLOQ) for within-run and between-run precision.

<u>Sensitivity</u>

Five LLOQ samples were measured in quintuplicate in three different runs. The RE should not exceed $\pm 20\%$ of the nominal concentration, while the CV should be $\leq 20\%$. In addition, the analyte response at the LLOQ should be at least five times the analyte response of the zero calibrator of the same source.

Matrix effect and recovery

The FDA bioanalytical guideline currently lacks clear recommendations regarding the matrix effect for chromatographic assays. However, general requirements for the evaluation of the matrix effect for these kinds of assays are provided by the EMA bioanalytical guideline. Since the EMA has a comparable claim for the bioanalytical method validation, the recommendations from the EMA bioanalytical guideline seemed appropriate and were applied for the investigation of the matrix effect [170].

Matrix effects are defined as direct or indirect influences on the detector response caused by interacting substances within the sample. The matrix effect was evaluated in six individual human sources using a low and a high concentration level (Table 6-5). In this regard, the matrix factor (MF) was calculated as the ratio between the peak area of each analyte in the presence of the matrix (post-spiked-samples) to the peak area of each analyte in the absence of the matrix (solvent samples). In addition, the IS normalised MF (IS-MF) was calculated (MF of the analyte divided by the MF of the IS). The CV of the IS-MF from six sources should not exceed 15% to fulfil the EMA requirements. The spiked solution should not exceed 10% of the total volume to minimise matrix dilution.

	Concentration level (pg/mL)			
Analytes	Low	High		
Angiotensin I	50.7	1217.7		
Angiotensin II	44.5	1068.8		
Angiotensin-(1-7)	48.5	1164.0		
Angiotensin III	62.0	1488.0		
Angiotensin IV	45.8	1099.7		
Angiotensin A	43.7	1048.5		
Alamandine	38.1	913.2		
Angiotensin-(1-9)	62.0	1217.7		

Table 6-5:Applied concentration levels for the investigation of the matrix effect for the
liquid chromatography coupled to high-resolution mass spectrometry method.

Values are rounded to one decimal place.

The recovery of an analyte is enunciated as the complete transfer from the matrix in the solution, which will be measured and is defined as the ratio between the peak area in the presence of the matrix. The complete transfer stands for 100% recovery (post-spiked samples) to the peak area to samples which are spiked before extraction (pre-spiked samples). The recovery was calculated for each analyte and IS in one adult human source using three different concentration levels (QC low, QC middle, QC high). Since the evaluation of the recovery is not subject to any rejection limits of the FDA, it was only performed to evaluate the effectiveness of the extraction procedure.

Autosampler stability

Measurement of a sample batch via HPLC-HRMS can take several hours depending on the number of samples and injections. Moreover, it may be necessary to restart a lot due to equipment malfunction, which may also result in a longer autosampler storage time. The autosampler stability was determined to ensure that no degradation took place during this time. QC low, QC middle, and QC high samples in adult human matrix at four time points within 24 hours were determined in duplicate to verify the autosampler stability. The 24 hours present a regular study sample analysis. The mean RE at each level should not exceed ±15% of the nominal value to comply with FDA guideline recommendations.

6.2.5 Application of the validated method

Cardiac diseased patients

In order to demonstrate the applicability of the validated method in the context of the EUfunded LENA project, example measurements were conducted using three study samples from paediatric subjects suffering from HF. As mentioned in chapter 4.3.3, written informed consent from the parent(s)/legal representatives and assent from the patient according to national legislation and as far as achievable from the child were obtained. Ethical guidelines such as the Declaration of Helsinki and the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines for Good Clinical Practice and Good Manufacturing Practice were carefully followed. The blood sampling was conducted by trained study staff following a specific time-monitored sampling procedure adapted to paediatric needs (e.g. use of microneedles) and a parameter-adopted sampling procedure (e.g. limited time window between sampling, sample preparation and freezing, as well as the addition of the peptide cocktail to the sampling device prior to blood sampling) [104]. Cooling conditions were consistently applied during blood sampling and subsequent sample preparation (centrifugation at 2000 g for 10 min at 0-4 °C, subsequent snap freezing of supernatant, and storage at -80 °C until analysis) to guarantee analyte stability. In this context, please refer to the list of the LENA collaborators (Appendix 10.4-15) who performed the onward collection of paediatric study samples.

Healthy adults

In addition to the paediatric study samples, the plasma of six healthy adult volunteers was analysed (Table 6-6). To mimic the blood sampling and sample preparation procedure applied for the paediatric study sample in the LENA project, the blood sampling was conducted with 9 mL K3E S-Monovetten[®], which are previously spiked with inhibitor cocktail. Moreover, the blood sampling and sample preparation were conducted according to the procedure applied for the paediatric study samples (e.g. in regard to the cooling, centrifugation, and storage conditions). The plasma of each source was measured in duplicate.

Source	Sex	Age (years)
1	Male	28
2	Male	29
3	Female	26
4	Male	26
5	Female	29
6	Male	27

 Table 6-6:
 Characteristics of the six investigated healthy adult volunteers for the determination of the matrix effect.

6.3 Results

6.3.1 Optimisation steps

Optimisation of the blank plasma generation

The conducted sample processing ensured a reduction of baseline levels for Angl, Angll, and Ang1-9 in comparison to the native unprocessed matrix of the same source, which resulted in an improvement of the LLOQ for these peptides (Figure 6-6). Since the baselines of Ang1-7, AngIII, AngIV, AngA, and alamandine were already sufficiently low in native plasma, this sample processing had no additional effect on these peptides.

Figure 6-6: Example product ion scans of Angiotensin I, Angiotensin II, and Angiotensin-(1-9) of native and processed matrix of the same source. The black area represents the processed matrix (with spiked aliskiren and incubation step). The solid black line represents the native sample without spiked aliskiren and incubation step.

Optimisation of peptide purification and removal of interfering matrix

The SPE protocol was successfully modified to improve the removal of interfering matrix (Figure 6-7). In addition, the 96-well plate approach for the SPE enabled a high-throughput of study samples which resulted in a potential measurement of up to 74 study samples per plate. Due to the application of a Positive Pressure-96 Manifold for the SPE, the entire

process time (from the beginning of sample preparation until the submitting of the samples to the HPLC-HRMS) amounts to <4 hours and could be efficiently conducted during one regular working day. Besides, the utilisation of a μ Elution SPE notably reduced the required amount of chemical reagents and organic solvents.

Figure 6-7: The in-house customised solid-phase extraction protocol compared to the standard protocol. The standard protocol was recommended by Waters[®] [200]. SPE: solid-phase extraction; FA: formic acid.

The applied precipitation step was performed with a precipitation solution tailored to the chemical properties of the analytes. The mix of 60 parts water, 40 parts methanol and 5 parts DCA enables acceptable extraction conditions for the analytes, as well as sufficient precipitation. Moreover, the supernatant could be directly loaded on the SPE while preventing breakthrough of the analytes due to the high amounts of water. By referring to the time-of-flight MS scans of a plasma sample with only SPE and a plasma sample of the same source with combined precipitation and SPE, it gets obvious, that this combination of extraction techniques effectively reduced matrix components (Figure 6-8).

Figure 6-8: Example time-of-flight mass spectra with and without precipitation step prior to solid-phase extraction. The same human plasma matrix was purified with solid-phase extraction (SPE) only (grey filled area) and with an additional prior conducted precipitation step (solid black line).

Optimisation of sensitivity

The required sensitivity of the method was obtained by the avoidance of glassware, which would result in loss of analytes due to adsorption of the peptides. Moreover, the addition of 1% DMSO to the mobile phase significantly impacted the charge states of the peptides by shifting them to a defined number of charges per molecule. The modification of the mobile phase with DMSO enabled an up to threefold increase in signal intensity of the analytes (Figure 6-9). All in all, a LLOQ of 25.4 pg/mL for AngI, 22.3 pg/mL for Ang II, 24.3 pg/mL for Ang1-7, 31.0 pg/mL for AngIII, 22.9 pg/mL for AngIV, 21.8 pg/mL AngA, 19.0 pg/mL for alamandine, and 31.0 pg/mL for Ang1-9 could be successfully established.

Development and validation of an innovative multiplex liquid chromatography high-resolution mass spectrometry method for the investigation of angiotensin peptides in plasma - Results

Figure 6-9: Schematic presentation of the influence on the sensitivity of angiotensin peptides by the addition of 1% dimethyl sulfoxide (DMSO) to the mobile phase. Equal analyte concentrations (1 ng/mL) were measured with the addition of 0.1% formic acid only (dark grey area) and with the addition of 0.1% formic acid +1% DMSO to the mobile phase (black solid line). Angiotensin A, alamandine, and angiotensin-(1-9) were included posterior to this experiment and are thus not shown.

6.3.2 U.S. Food and Drug Administration based bioanalytical method validation

System suitability test

The SST was successfully established and performed daily prior to every analytical run. The analytical run was not submitted until the SST showed acceptable results according to the predefined criteria. If an SST failed these criteria, appropriate steps were performed to recover the performance of the device (e.g. cleaning of the MS). An example chromatogram of the SST sample comprising the eight investigated analytes and the two ISs, as well as the applied HPLC gradient, is shown in Figure 6-10.

Figure 6-10: Example chromatogram of the system suitability test sample. The concentration of each analyte and internal standard of this measurement amounts to 500 pg/mL. The different peptides are indicated by the different colours of the peaks. The applied gradient is indicated by the grey line and the left y-axis of the upper chromatogram.

Calibration curve/ linearity

All six conducted evaluation runs fulfilled the criteria required by the FDA and thus could be included in the evaluation of linearity. In all six runs, the RE of the evaluated CSs was within the guideline limits of $\pm 15\%$ ($\pm 20\%$ at LLOQ) of the nominal values (Figure 6-11). All obtained r-values were ≥ 0.99152 (Appendix 10.4-2). Implementation of a quadratic regression model with a weighting of $1/x^2$ provided the best fit for the calibration range of all

analytes. Summarising, the obtained results showed an adequate calibration curve for all 8 investigated analytes and confirmed the linearity of the developed method.

Figure 6-11: The relative error of all conducted calibration standards (CSs) for each analyte (A-H) expressed as boxplots. A duplicate measurement was accomplished for each of the 6 valid runs. The variable number of CSs was caused by the exclusion of single CSs in compliance with the requirements given by the U.S. Food and Drug Administration (FDA). Nominal values were rounded to one decimal place. The dashed lines indicate the acceptance limits according to the FDA. Box: 25-75 %;⊥: 1.5 interquartile range; —: median; •: mean.

Accuracy and precision

In total, 3 runs were conducted for the assessment of between-run accuracy and precision. The within-run accuracy and precision were evaluated in one run.

Within-run accuracy over all four concentration levels showed a mean RE between -2.8% and +12.7% for Angl, -6.8% and 3.5% for AnglI, -4.9% and 6.6% for Ang1-7, -1.1% and 7.7% for AngIII, -6.4% and 1.4% for AngIV, -3.8% and 7.3% for AngA, -3.6% and 3.3% for alamandine, and -2.5% and 5.2% for Ang1-9 of the nominal values (mean of five determinations). The RE for between-run accuracy was between -7.6% and 4.8% for AngI, -6.6% and 7.2% for AngII, -7.5% and 2.6% for Ang1-7, -12.8% and 3.1% for AngIII, -2.1% and 5.9% for AngIV, -3.2% and 3.1% for AngA, -3.1% and 1.1% for alamandine, and -4.5% and 0.9% for Ang1-9 (Figure 6-12).

Figure 6-12: Results of between-run accuracy for the three conducted runs. The solid lines indicate the acceptance limits according to the U.S. Food and Drug Administration (FDA) at Lower Limit of Quantification (LLOQ). The dashed lines indicate the acceptance limits according to the FDA for the other quality controls (QCs). Box: QC at the LLOQ level; Circle: QC at the low concentration level; Rhombus: QC at the middle concentration level; Triangle: QC at the high concentration level.

The within-run precision over all four concentration levels showed a CV between 6.9% and 13.6% for Angl, 3.5% and 9.7% for AnglI, 7.8% and 9.7% for Ang1-7, 4.3% and 7.4% for AngIII, 5.5% and 15.2% for AngIV, 5.8% and 10.7% for AngA, 5.6% and 11.0% for alamandine, and 2.7% and 6.0% for Ang1-9. The between-run precision (CV) varied between 5.9% and 9.5% for AngI, 4.5% and 8.5% for AngII, 8.7% and 10.8% for Ang1-7,

7.1% and 12.8% for AngIII, 6.8% and 12.9% for AngIV, 10.4% and 12.4% for AngA, 9.0% and 10.3% for alamandine, and 5.2% and 5.9% for Ang1-9 (Figure 6-13).

Figure 6-13: Results of between-run precision for the three conducted runs. The solid lines indicate the acceptance limits according to the U.S. Food and Drug Administration (FDA) at Lower Limit of Quantification (LLOQ). The dashed lines indicate the acceptance limits according to the FDA for the other quality controls (QCs). Box: QC at the LLOQ level; Circle: QC at the low concentration level; Rhombus: QC at the middle concentration level; Triangle: QC at the high concentration level.

In summary, the developed and optimised HPLC-HRMS assay showed an appropriate accuracy and precision in the context of the applied FDA bioanalytical guideline.

Sensitivity

The sensitivity of the method was investigated in three different runs by a fivefold determination of the LLOQ. The maximal RE of the LLOQ over all 3 runs was 4.1% for Angl, 11.3% for AngII, 5.7% for Ang1-7, 18.5% for AngIII, 7.8% for AngIV, 9.3% for AngA, 5.5% for alamandine, and 12.0% for Ang1-9. The maximal CV of the LLOQ over all 3 runs was 9.1% for AngI, 9.7% for AngII, 15.3% for Ang1-7, 19.0% for AngIII, 15.2% for AngIV, 15.1% for AngA, 11.8% for alamandine, and 6.1% for Ang1-9. The RE of the LLOQ samples for all analytes was below $\pm 20\%$, while the CV was $\leq 20\%$ and thus fulfilled guideline criteria. Moreover, the analyte response at the LLOQ was ≥ 5 times the response at the zero calibrator. The only exception was AngI with an analyte response of ≥ 5 times the response in the second run and responses of ~ 3 times in run one and three. However, despite the low injection volume of 20 µL and the overall applied sample volume of 50 µL per sample,

the determination at the LLOQ showed sufficient accuracy and precision. Representative chromatograms for the LLOQ and the zero sample are shown in Figure 6-14.

Figure 6-14: Example presentation of analyte signals at the Lower Level of Quantification (LLOQ) and the zero sample in human plasma. Light grey area: LLOQ sample; Dark grey area: zero sample.

Matrix effect and recovery

The matrix effect was successfully investigated in six human sources. The unprocessed native plasma of every source was used for the investigation of the matrix effect. Therefore, a blank reduction was applied for every analyte. The calculated MF over both concentrations and all six sources ranged between 0.76 and 0.96 for Angl, 0.74 and 0.87 for AngII, 0.8 and 0.97 for Ang1-7, 0.56 and 0.75 for AngIII, 0.7 and 0.84 for AngIV, 0.37 and 0.46 for AngA, 0.74 and 0.87 for alamandine, and 0.87 and 1.05 for Ang1-9. For the ISs, the MF varied between 0.8 and 0.96 for [Val₅]-Angiotensin I and 0.65 and 0.86 for ([ring-D₅]Phe⁸)-Angiotensin II.

After the normalisation of the MF of the analyte with the MF of the corresponding IS, the IS-MF ranged between 0.9 and 1.12 for Angl, 0.9 and 1.16 for AnglI, 1.10 and 1.24 for Ang1-7, 0.83 and 1.06 for AngIII, 0.92 and 1.09 for AngIV, 0.53 and 0.7 for AngA, -1.06 and 1.23 for alamandine, and 1.26 and 1.31 for Ang1-9 (Figure 6-15).

Figure 6-15: Results of the evaluation for the internal standard normalised matrix factor (IS-MF) of six different human sources. The dashed line demonstrates a calculated IS-MF of 1, which is characterised by a complete compensation of the matrix effects from the IS and analyte signal. The individual sources are indicated by the circles (n=6). A: The calculated IS-MF of the low concentration sample. B: The calculated IS-MF of the high concentration sample.

The inter-source variability (CV) of the low concentration and the high concentration between all six investigated sources was 7.8% and 3.2% for AngI, 8.0% and 2.5% for AngII, 1.3% 3.8% for Ang1-7, 2.6% and 3.2% for AngIII, 3.7% and 2.0% for AngIV, 7.5% and 9.0% for AngA, 6.0% and 3.5% for alamandine, and 4.2% and 3.0% for Ang1-9, respectively. Since all investigated sources were well within the specifications of an inter-source variability of \leq 15%, no substantial influence of the different matrices on the assay was ascertained.

The recovery of each analyte was investigated by comparing the peak areas of post-spiked samples with the peak areas of pre-spiked samples of three concentration levels measured in triplicate (Figure 6-16). Except for Angl and [Val⁵]-Angiotensin I, all samples showed a uniform recovery over the three investigated concentration levels. Yet, the recovery of Angl showed a nearly doubled value at QC low while the corresponding [Val⁵]-Angiotensin I IS value almost halved. Nevertheless, the other QCs behaved normally. Moreover, all three investigated samples of the QC low showed comparable values. Thus, the atypical behaviour of Angl and [Val⁵]-Angiotensin I was awarded to a processing error during the preparation of the QC low. Due to the sufficient signal and the accurate and precise determination at LLOQ, the recovery was regarded as sufficient for all analytes.

Figure 6-16: The percentage recovery of all analytes and internal standards. Three quality controls (QCs) were spiked with the analytes and internal standards before (prespiked) and after (post-spiked) extraction. The percentage of recovery was determined by comparing pre-spiked samples and post-spiked samples (n=3). Error bars: standard error of the mean; QC low: light grey filled bars; QC middle: striped bars; QC high: dark grey bars.

Autosampler stability

The stability of the samples for all three concentration levels in the autosampler was proven for 24.2 h run time (Figure 6-17). Each concentration level was measured on four time points (~3.2, ~10.2, ~17.2, and ~24.2 h) in duplicate after placing the samples in the autosampler. The mean RE of every investigated concentration level was below the rejection limit of $\pm 15\%$ for all 8 analytes.

Figure 6-17: Results of the autosampler stability expressed as mean measured values over 24.2 hours. For each time point, the concentrations of the analytes were measured in duplicate. Box: angiotensin I; Circle: angiotensin II; Rhombus: angiotensin-(1-7); Triangle up: angiotensin III; Hexagon: angiotensin IV; Pentagon: angiotensin A; Triangle down: alamandine; Star: angiotensin-(1-9).

6.3.3 Application of the method

Cardiac diseased paediatrics

To demonstrate the suitability of the developed method in the context of a paediatric application, three randomly selected study samples from the LENA collective were analysed. All processes relevant for an accurate determination of the humoral parameters (e.g. blood sampling, sample shipment, storage, and subsequent analysis) were conducted under GCLP conditions. All conducted runs were declared as valid with regard to the FDA acceptance criteria of an analytical run (6.2.4). The measured analyte concentrations are shown in Table 6-7. Example chromatograms for the three different paediatric study samples are provided in Figure 6-18.

Figure 6-18: Example chromatograms of three children (A, B, and C) suffering from heart failure. The different detectable signals of the analytes are indicated by the different colours and the tagged names of the analytes. The chromatograms of analytes with no detectable signal are not shown.

Healthy adults

The plasma samples of two female and four male healthy adult volunteers were successfully analysed to demonstrate the applicability of the assay using a real-life approach. All sources demonstrated a quantifiable or detectable amount of Angl. AnglI was detectable in three sources, while Ang1-7, AngIII, AngIV, AngA, alamandine, and Ang1-9 concentrations were not detectable. The measured analyte concentrations are shown in Table 6-7. Example chromatograms for the six investigated adult sources are provided in Figure 6-19.

Figure 6-19: Example chromatograms of six healthy adult volunteers. No detectable concentrations were found for angiotensin-(1-7), angiotensin III, angiotensin IV, angiotensin A, alamandine, and angiotensin-(1-9). A: 28 years old male; B: 29 years old male; C: 26 years old female; D: 26 years old male; E: 29 years old female; F: 27 years old male.

Comparison of healthy adults and cardiac diseased paediatrics

Notably, different plasma concentrations were obtained for the healthy adult population in comparison with the cardiac diseased paediatric population (Table 6-7). To demonstrate that important information will be delineated by analysing the samples of the paediatric population, a few chromatograms of paediatric plasma samples are shown from the LENA project. Due to the preliminary status of the data analysis, information about age, gender, medication, disease are not given.

Source	Angl	Angli	Ang1-7	Anglii	AnglV	AngA	Ala	Ang1-9	
Plasma concentrations (pg/mL) in healthy adults									
1	27.64	nd	nd	nd	nd	nd	nd	nd	
2	22.05*	nd	nd	nd	nd	nd	nd	nd	
3	40.82	2.71*	nd	nd	nd	nd	nd	nd	
4	36.91	0.71*	nd	nd	nd	nd	nd	nd	
5	42.62	0.50*	nd	nd	nd	nd	nd	nd	
6	12.04*	nd	nd	nd	nd	nd	nd	nd	
Plasma concentrations (pg/mL) in cardiac diseased paediatrics									
7	287338.25*	1998.87*	109.81	18.28*	nd	nd	25.	40.21	
8	1230.57	62.26	37.14	nd	nd	nd	nd	nd	
9	858.50	89.87	41.74	nd	nd	611.42	nd	nd	

 Table 6-7:
 Measured plasma concentrations of eight angiotensin peptides in healthy adults and paediatrics suffering from heart failure.

The expressed value represents the mean of a duplicate measurement. Source 1: 28 years old male; Source 2: 29 years old male; Source 3: 26 years old female; Source 4: 26 years old male; Source 5: 29 years old female; Source 6: 27 years old male. Source 7-9: cardiac diseased paediatrics; *: extrapolated values; nd: not detectable.

In summary, the developed low volume HPLC-HRMS method demonstrated the feasibility of measuring several angiotensin peptides within a cardiac diseased paediatric collective. Moreover, the FDA compliant validation enabled the assay for the assessment of highquality data under GCLP conditions. Therefore, the sophisticated multiplex evaluation of eight important peptides of the RAAS within the LENA collective by application of this bioanalytical method was proven.

6.4 Discussion

The developed LC-HRMS method enabled the reliable determination of Angl, Angll, Angl-7, AnglII, AnglV, AngA, alamandine, and Ang1-9 in a child-appropriate volume of 50 μ L plasma. Moreover, the FDA compliant validation facilitated the applicability within clinical trials like the LENA project. The method thus contributes to a reliable quantification of these humoral parameters within the RAAS of children and neonates. The thereby achieved knowledge about the broad spectrum of angiotensin peptides could provide further valuable insights into the maturing organism.

In paediatric research, withdrawable blood volumes were limited to 3% of the total blood volume during a period of four weeks or 1% at a single blood sampling [90]. For an estimated blood volume of 80-90 mL/kg, the total withdrawable blood volume thus amounts to 0.8 mL/kg at a single time point. Since bioanalytical assays often rely on serum or plasma analysis, the available matrix is further reduced. This volume may be sufficient for the analysis of single parameters with conventional assays. However, the simultaneous investigations of PK, PD and safety parameters in clinical routine (as conducted in the LENA project) are common in paediatric clinical trials. This requires bioanalytical assays which can cope with low sample volumes. Schulz et al. reported a method for the quantification of Angll with SPE and LC-MS, which utilised 500 µL plasma [201]. The same amount of plasma was applied for the quantification of Angl by Fredline et al. using LC-MS [202]. Even methods with downscaled sample volumes for the determination of Angl required at least 150 µL sample matrix [203]. These volumes are not feasible for the bioanalysis in LENA, as an evaluation of several PK/PD and safety parameters in children was necessary. In contrast, the here presented method requires a total amount of 50 µL plasma volume for the reliable determination of all analytes without infringing the ethical considerations and therefore demonstrates applicability in paediatric clinical trials.

The simultaneous measurement of various angiotensin peptides represents a vital technique to evaluate the status and activation of the RAAS in an overall context. An LC-MS method comprising the determination of Angl, AnglI, Ang1-7, AngII, AngIV, and Ang1-9 in plasma from adults with HF was previously demonstrated [16]. While the LLOQ of the method for the different peptides ranged from 1.5 pg/mL to 4 pg/mL, the amount of utilised plasma to achieve these limits was not reported. Another LC-MS method for the determination of AngI, Ang1-7 in 50 μ L mice plasma with an LLOQ of 5 pg/mL was shown by Olkowicz et al. [204]. However, to the author's knowledge, no method exists for the additional investigation of the novel peptides AngA and alamandine

in human plasma. Besides, the establishment of an extremely low LLOQ seemed not appropriate for the investigations within the LENA collective. Instead, a wide calibration range was established to cover a broad bandwidth of possible peptide concentrations and thus enable comprehensive insights in the maturing organism. This is particularly of high importance since it permits the correlation between all these peptides and might generate relevant knowledge regarding the cardiac diseased LENA collective. Moreover, this method comprised an FDA compliant validation which empowered the method for the usage in a GCLP environment. Furthermore, the performed measurements of adult and paediatric samples substantiated the applicability of the low-volume method for the matrix of adults and children.

The observed matrix effect on the investigated peptides has proven to be a crucial factor for the quantification of the analytes within this research. The ion enhancement or ion suppression may be caused by co-eluting matrix components which could influence the ionisation efficiency of the analytes and significantly impact the accuracy and precision of the method [205]. Dams et al. reported suppression of signal intensity of up to -50% on small molecules due to the matrix effects of plasma by the usage of LC-TQMS with ESI and beforehand conducted purification step with SPE [206]. In addition, the same group detected a reduction in signal intensity of up to -75% after protein precipitation under the same conditions. However, the impact of matrix components on endogenous peptides is still poorly understood. In this regard, Ahn et al. proposed a 70%-rule for the quantification of endogenous peptides in a complex matrix [207]. This rule divides the suppression of the analyte signal by the matrix in normal (<70% ion suppression) and abnormal (>70% ion suppression). The abnormal ion suppression prevents a reliable quantification of the peptides, while the normal ion suppression still provides adequate performance of the method. The in this thesis developed LC-HRMS method combined a precipitation step with a subsequent performed SPE to provide sufficient analyte extraction and sample purification. This technique resulted in a detected MF between 0.37 and 1.05 for the eight peptides, which is equivalent to a matrix effect of -63% to +5%. Thus, these results comply with the 70%-rule. In fact, the validation demonstrated a low inter-source variability of $\leq 9\%$ for the IS-MF as well as an accurate and precise determination of all peptides in plasma.

The conducted measurements of healthy adult volunteers (26-29 years) showed mean Angl levels of 30.35 pg/mL (n=6), mean AnglI levels of 1.3 pg/mL (n=3, values were extrapolated), and no detectable concentrations of Ang1-7, AngIII, AngIV, AngA, alamandine, and Ang1-9. These results comply with the findings of Basu et al. in 36 healthy adults (46-58 years) with comparable mean AngI and AngII levels of 6 pg/mL and

5.1 pg/mL, respectively, as well as Ang1-7, AngIII, AngIV, and Ang1-9 levels <3 pg/mL [16]. In contrast, the measured peptide concentrations of the three paediatric patients indicated considerable divergent conditions of the RAAS in children suffering from HF. As a consequence, these investigations are of high priority to enable meaningful insights into feedback mechanisms and functionalities of the paediatric RAAS as well as to achieve further evidence regarding the prevalence and development of paediatric HF. Moreover, potential new target structures for the pharmacotherapy of HF might be derived from these findings.

6.5 Conclusion

The developed low-volume HPLC-HRMS method was able to accurately and precisely quantify AngI, AngII, Ang1-7, AngIII, AngIV, AngA, alamandine, and Ang1-9 in 50 µL human plasma. The conducted FDA compliant validation enabled the highly sensitive method to be applied under GCLP in clinical studies and thus substantially contributes to the sophisticated investigations of the RAAS in the paediatric population of the LENA project.

7 Overall discussion and perspective

This thesis facilitated the decisive evaluation of several humoral parameters of the maturing RAAS within a unique paediatric population. In this regard, the thorough compilation and interpretation of reference values in literature, the development and validation of a customised low-volume PRA immunoassay, as well as the subsequent establishment of a fit-for-purpose QCS for the reliable analysis of PRA in paediatric clinical trials were conducted. Moreover, an innovative highly sensitive low-volume HPLC-HRMS method for the simultaneous quantification of the well-established angiotensin peptides Angl and AnglI, as well as the novel peptides Ang1-7, AngIII, AngIV, AngA, alamandine, and Ang1-9 was developed and validated according to the FDA bioanalytical guideline, allowing valuable insights in the RAAS of children and neonates.

The conducted literature review of circulating angiotensin peptides as well as PRA provided a systematic characterisation of plasma levels within healthy and diseased paediatrics. Age was identified as a major factor on circulating Angl, Angll, and Ang1-7 levels, as well as PRA, which is reflected in an age-dependent decrease during childhood. In contrast to the data obtained in adults, no gender-related differences in angiotensin levels were identified. The observed increase in peptide concentrations regarding cardiac and renal diseased children are influenced by surgical repair, while evidence for a pharmacological impact is conflicting. However, the performed review also revealed a lack of consistent data for Angl, AngII, Ang1-7 and PRA, particularly for children below one year of age. Moreover, evidence about potential promising targets for future pharmacotherapy of CVD like AngIII, AngIV, AngA, and alamandine are still lacking. Therefore, the limited evidence-based medicine in this vulnerable age group could potentially be dedicated to the sparse data available. Besides, a comprehensive investigation of these parameters might contribute to a deeper understanding of the maturing organism and pathophysiological processes of paediatric HF. In this regard, innovative treatment strategies for children suffering from CVD might be fostered by an in-depth analysis of the paediatric RAAS. All in all, these findings emphasised the need for reliable bioanalytical investigations applicable in paediatric clinical trials.

To investigate the PRA in the cardiac diseased paediatric LENA collective, an ELISA was successfully customised for paediatric application. The microassay enabled the sophisticated determination of PRA in 100 µL plasma and thus showed applicability in trials with frequent blood samplings. Moreover, the low volume required facilitates the simultaneous determination of several PK/PD and safety parameters mandatory in pivotal clinical trials and could reduce the burden of additional blood samplings. As the ELISA

technique is characterised by a secure handling and a simple implementation in bioanalytical routine, this kind of low-volume assay could advance the quantity of conducted paediatric PRA data. Besides, the FDA compliant validation allowed the microassay to be applied in regulatory, clinical trials and assured the high-quality of obtained data. This might contribute to more homogenous obtained data sets due to a more accurate and precise assay performance. Ultimately, this research might contribute to a reliable basis of PRA data in LENA and further clinical trials to achieve an improved evidence-based pharmacotherapy of HF in the very youngest.

The customised QCS was successfully established for the analysis of PRA within the academia-driven LENA project and verified the high-quality of obtained data. The assurance of continuous quality during long-lasting study sample analysis represents a significant hurdle in sophisticated bioanalytical investigations. Yet, it might contribute to an increased assessment of continuously high data. The lack of homogenous regulatory recommendations regarding the inter-run and long-term evaluation was successfully compensated by the application of Westgard rules, CLSI guideline requirements and suggestions of scientific literature. Moreover, the QCS facilitated a careful monitoring of inter-lot dependent deviations and no severe impact on method performance could be detected. However, while systems for quality assurance are already established in the pharmaceutical industry, feasible approaches for comprehensive QCS in academic research are still underrepresented. This, in particular, is worrying as this kind of research is increasingly being addressed by academic consortiums. This proof-of-concept study might initiate other researchers to implement similar systems within their bioanalytics to substantiate the obtained data quality.

The developed and validated low-volume multiplex HPLC-HRMS method reliable quantified eight angiotensin peptides of the RAAS in 50 µL plasma. The low required sample volume and the regulatory compliant validation provided the opportunity for the investigation of these essential humoral parameters in paediatric clinical trials. This is of particular importance, as comprehensive datasets of angiotensin peptides in children and neonates are lacking. In this regard, the sophisticated evaluation of Angl and AngII, as well as the novel effector peptides Ang1-7, AngIII, AngIV, AngA, alamandine, and Ang1-9 in the unique population of the LENA project might facilitate a more in-depth knowledge of the paediatric RAAS. Ultimately, the establishment of a reliable database encompassing these crucial parameters of the RAAS could support the evidence-based therapy of paediatric HF in the future.

8 Funding

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n°602295 (LENA)

9 References

- 1. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 2017;70:1–25. doi:10.1016/j.jacc.2017.04.052.
- 2. Sayer G, Bhat G. The renin-angiotensin-aldosterone system and heart failure. Cardiol Clin. 2014;32:21-32, vii. doi:10.1016/j.ccl.2013.09.002.
- 3. Wright JW, Kawas LH, Harding JW. The development of small molecule angiotensin IV analogs to treat Alzheimer's and Parkinson's diseases. Prog Neurobiol. 2015;125:26–46. doi:10.1016/j.pneurobio.2014.11.004.
- 4. Bundel D de, Smolders I, Vanderheyden P, Michotte Y. Ang II and Ang IV: Unraveling the mechanism of action on synaptic plasticity, memory, and epilepsy. CNS Neurosci Ther. 2008;14:315–39. doi:10.1111/j.1755-5949.2008.00057.x.
- 5. Pelegrini-da-Silva A, Rosa E, Guethe LM, Juliano MA, Prado WA, Martins AR. Angiotensin III modulates the nociceptive control mediated by the periaqueductal gray matter. Neuroscience. 2009;164:1263–73. doi:10.1016/j.neuroscience.2009.09.004.
- Stragier B, Bundel D de, Sarre S, Smolders I, Vauquelin G, Dupont A, et al. Involvement of insulin-regulated aminopeptidase in the effects of the renin-angiotensin fragment angiotensin IV: A review. Heart Fail Rev. 2008;13:321–37. doi:10.1007/s10741-007-9062-x.
- Royea J, Zhang L, Tong X-K, Hamel E. Angiotensin IV Receptors Mediate the Cognitive and Cerebrovascular Benefits of Losartan in a Mouse Model of Alzheimer's Disease. J Neurosci. 2017;37:5562–73. doi:10.1523/JNEUROSCI.0329-17.2017.
- Reaux A, Fournie-Zaluski MC, Llorens-Cortes C. Angiotensin III: A central regulator of vasopressin release and blood pressure. Trends in Endocrinology & Metabolism. 2001;12:157– 62. doi:10.1016/S1043-2760(01)00381-2.
- 9. Atlas SA. The renin-angiotensin aldosterone system: Pathophysiological role and pharmacologic inhibition. J Manag Care Pharm. 2007;13:9–20. doi:10.18553/jmcp.2007.13.s8-b.9.
- Streatfeild-James RM, Williamson D, Pike RN, Tewksbury D, Carrell RW, Coughlin PB. Angiotensinogen cleavage by renin: Importance of a structurally constrained N-terminus. FEBS Lett. 1998;436:267–70.
- 11. Jan Danser AH, Batenburg WW, van Esch JHM. Prorenin and the (pro)renin receptor--an update. Nephrol Dial Transplant. 2007;22:1288–92. doi:10.1093/ndt/gfl846.
- Li W, Peng H, Seth DM, Feng Y. The Prorenin and (Pro)renin Receptor: New Players in the Brain Renin-Angiotensin System? Int J Hypertens. 2012;2012:290635. doi:10.1155/2012/290635.
- 13. Brown MJ. Direct renin inhibition a new way of targeting the renin system. J Renin Angiotensin Aldosterone Syst. 2006;7:S8. doi:10.3317/jraas.2006.035.
- Jankowski V, Tölle M, Santos RAS, Günthner T, Krause E, Beyermann M, et al. Angioprotectin: An angiotensin II-like peptide causing vasodilatory effects. FASEB J. 2011;25:2987–95. doi:10.1096/fj.11-185470.
- 15. Jankowski V, Vanholder R, van der Giet M, Tölle M, Karadogan S, Gobom J, et al. Massspectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler Thromb Vasc Biol. 2007;27:297–302. doi:10.1161/01.ATV.0000253889.09765.5f.
- Basu R, Poglitsch M, Yogasundaram H, Thomas J, Rowe BH, Oudit GY. Roles of Angiotensin Peptides and Recombinant Human ACE2 in Heart Failure. J Am Coll Cardiol. 2017;69:805–19. doi:10.1016/j.jacc.2016.11.064.
- 17. Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, et al. Discovery and characterization of alamandine: A novel component of the renin-angiotensin system. Circ Res. 2013;112:1104–11. doi:10.1161/CIRCRESAHA.113.301077.
- Iwai M, Horiuchi M. Devil and angel in the renin-angiotensin system: ACE-angiotensin II-AT1 receptor axis vs. ACE2-angiotensin-(1-7)-Mas receptor axis. Hypertens Res. 2009;32:533–6. doi:10.1038/hr.2009.74.
- 19. Jackson L, Eldahshan W, Fagan SC, Ergul A. Within the Brain: The Renin Angiotensin System. Int J Mol Sci 2018. doi:10.3390/ijms19030876.
- 20. Yugandhar VG, Clark MA. Angiotensin III: A physiological relevant peptide of the renin angiotensin system. Peptides. 2013;46:26–32. doi:10.1016/j.peptides.2013.04.014.
- 21. Wysocki J, Ye M, Batlle D. Plasma and Kidney Angiotensin Peptides: Importance of the Aminopeptidase A/Angiotensin III Axis. Am J Hypertens. 2015;28:1418–26. doi:10.1093/ajh/hpv054.

- 22. Bujak-Gizycka B, Madej J, Wołkow PP, Olszanecki R, Drabik L, Rutowski J, Korbut R. Measurement of angiotensin metabolites in organ bath and cell culture experiments by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS). J Physiol Pharmacol. 2007;58:529–40.
- 23. Page IH. A crstalline pressor substance (angiotonin) resulting from the reaction between renin and renin-activator. Journal of Experimental Medicine. 1940;71:29–42. doi:10.1084/jem.71.1.29.
- 24. Olson N, DeJongh B, Hough A, Parra D. Plasma renin activity-guided strategy for the management of hypertension. Pharmacotherapy. 2012;32:446–55. doi:10.1002/j.1875-9114.2012.01031.x.
- 25. Muñoz JM, Braun-Menéndez E, Fasciolo JC, Leloir LF. Hypertensin: The Substance Causing Renal Hypertension. Nature. 1939;144:980. doi:10.1038/144980a0.
- 26. Schulz A, Jankowski J, Zidek W, Jankowski V. Absolute quantification of endogenous angiotensin II levels in human plasma using ESI-LC-MS/MS. Clin Proteomics. 2014;11:37. doi:10.1186/1559-0275-11-37.
- 27. Li W, Li J, Hao P, Chen W, Meng X, Li H, et al. Imbalance between angiotensin II and angiotensin-(1-7) in human coronary atherosclerosis. J Renin Angiotensin Aldosterone Syst 2016. doi:10.1177/1470320316659618.
- 28. Ferrario CM. Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J Renin Angiotensin Aldosterone Syst. 2006;7:3–14. doi:10.3317/jraas.2006.003.
- 29. Mulrow PJ. Angiotensin II and aldosterone regulation. Regul Pept. 1999;80:27-32.
- 30. Coppage WS, Island DP, Cooner AE, Liddle GW. The metabolism of aldosterone in normal subjects and in patients with hepatic cirrhosis. J Clin Invest. 1962;41:1672–80. doi:10.1172/JCI104624.
- 31. Keidar S, Kaplan M, Gamliel-Lazarovich A. ACE2 of the heart: From angiotensin I to angiotensin (1-7). Cardiovasc Res. 2007;73:463–9. doi:10.1016/j.cardiores.2006.09.006.
- 32. Rodriguez-Pallares J, Quiroz CR, Parga JA, Guerra MJ, Labandeira-Garcia JL. Angiotensin II increases differentiation of dopaminergic neurons from mesencephalic precursors via angiotensin type 2 receptors. Eur J Neurosci. 2004;20:1489–98. doi:10.1111/j.1460-9568.2004.03621.x.
- 33. Campbell WB, Brooks SN, Pettinger WA. Angiotensin II- and angiotensin 3-induced aldosterone release vivo in the rat. Science. 1974;184:994–6.
- 34. Fink GD, Bruner CA. Hypertension during chronic peripheral and central infusion of angiotensin III. Am J Physiol. 1985;249:E201-8. doi:10.1152/ajpendo.1985.249.2.E201.
- 35. Batt CM, Klein EW, Harding JW, Wright JW. Pressor responses to amastatin, bestatin and Plummer's inhibitors are suppressed by pretreatment with the angiotensin receptor antagonist sarthran. Brain Res Bull. 1988;21:731–5.
- Park BM, Oh Y-B, Gao S, Cha SA, Kang KP, Kim SH. Angiotensin III stimulates high stretchinduced ANP secretion via angiotensin type 2 receptor. Peptides. 2013;42:131–7. doi:10.1016/j.peptides.2013.01.018.
- Harding JW, Felix D. The effects of the aminopeptidase inhibitors amastatin and bestatin on angiotensin-evoked neuronal activity in rat brain. Brain Research. 1987;424:299–304. doi:10.1016/0006-8993(87)91474-0.
- 38. Harding JW, Felix D. Angiotensin-sensitive neurons in the rat paraventricular nucleus: Relative potencies of angiotensin II and angiotensin III. Brain Research. 1987;410:130–4. doi:10.1016/S0006-8993(87)80033-1.
- Harding JW, Yoshida MS, Dilts RP, Woods TM, Wright JW. Cerebroventricular and Intravascular Metabolism of [125 I]Angiotensins in Rat. J Neurochem. 1986;46:1292–7. doi:10.1111/j.1471-4159.1986.tb00652.x.
- 40. Wright JW, Mizutani S, Murray CE, Amir HZ, Harding JW. Aminopeptidase-induced elevations and reductions in blood pressure in the spontaneously hypertensive rat. J Hypertens. 1990;8:969–74.
- 41. Clark MA, Nguyen C, Tran H. Distinct Molecular Effects of Angiotensin II and Angiotensin III in Rat Astrocytes. Int J Hypertens. 2013;2013:782861. doi:10.1155/2013/782861.
- 42. Wilson WL, Roques BP, Llorens-Cortes C, Speth RC, Harding JW, Wright JW. Roles of brain angiotensins II and III in thirst and sodium appetite. Brain Research. 2005;1060:108–17. doi:10.1016/j.brainres.2005.08.032.
- 43. Blair-West JR, Carey KD, Denton DA, Madden LJ, Weisinger RS, Shade RE. Possible contribution of brain angiotensin III to ingestive behaviors in baboons. Am J Physiol Regul Integr Comp Physiol. 2001;281:R1633-6. doi:10.1152/ajpregu.2001.281.5.R1633.
- 44. Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, et al. Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem. 2001;276:48623–6. doi:10.1074/jbc.C100512200.
- 45. Chai SY, Fernando R, Peck G, Ye S-Y, Mendelsohn FAO, Jenkins TA, Albiston AL. The angiotensin IV/AT4 receptor. Cell Mol Life Sci. 2004;61:2728–37. doi:10.1007/s00018-004-4246-1.
- 46. Keller SR. Role of the insulin-regulated aminopeptidase IRAP in insulin action and diabetes. Biol Pharm Bull. 2004;27:761–4.
- 47. Wright JW, Harding JW. The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning, and memory. Prog Neurobiol. 2004;72:263–93. doi:10.1016/j.pneurobio.2004.03.003.
- 48. Matsumoto H, Nagasaka T, Hattori A, Rogi T, Tsuruoka N, Mizutani S, Tsujimoto M. Expression of placental leucine aminopeptidase/oxytocinase in neuronal cells and its action on neuronal peptides. Eur J Biochem. 2001;268:3259–66.
- 49. Albiston AL, Fernando R, Ye S, Peck GR, Chai SY. Alzheimer's, angiotensin IV and an aminopeptidase. Biol Pharm Bull. 2004;27:765–7.
- 50. Herbst JJ, Ross SA, Scott HM, Bobin SA, Morris NJ, Lienhard GE, Keller SR. Insulin stimulates cell surface aminopeptidase activity toward vasopressin in adipocytes. Am J Physiol. 1997;272:E600-6. doi:10.1152/ajpendo.1997.272.4.E600.
- 51. Burbach JP, Liu B. Measurement of vasopressin-converting aminopeptidase activity and vasopressin metabolites. Meth Enzymol. 1989;168:385–97.
- 52. Garvey WT, Maianu L, Zhu JH, Brechtel-Hook G, Wallace P, Baron AD. Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest. 1998;101:2377–86. doi:10.1172/JCI1557.
- Beyer CE, Dwyer JM, Platt BJ, Neal S, Luo B, Ling H-P, et al. Angiotensin IV elevates oxytocin levels in the rat amygdala and produces anxiolytic-like activity through subsequent oxytocin receptor activation. Psychopharmacology (Berl). 2010;209:303–11. doi:10.1007/s00213-010-1791-1.
- 54. Wright JW, Stubley L, Pederson ES, Kramár EA, Hanesworth JM, Harding JW. Contributions of the brain angiotensin IV-AT4 receptor subtype system to spatial learning. J Neurosci. 1999;19:3952–61.
- 55. Zhuang S, Li J, Wang X, Wang H-f, Zhang W-j, Wang H-y, Xing C-m. Renin-angiotensin systemtargeting antihypertensive drugs and risk of vascular cognitive impairment: A meta-analysis. Neurosci Lett. 2016;615:1–8. doi:10.1016/j.neulet.2016.01.011.
- 56. Mogi M, Horiuchi M. Effects of angiotensin II receptor blockers on dementia. Hypertens Res. 2009;32:738–40. doi:10.1038/hr.2009.110.
- 57. Shibasaki Y, Mori Y, Tsutumi Y, Masaki H, Sakamoto K, Murasawa S, et al. Differential kinetics of circulating angiotensin IV and II after treatment with angiotensin II type 1 receptor antagonist and their plasma levels in patients with chronic renal failure. Clin Nephrol. 1999;51:83–91.
- Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87:E1-9.
- Iwata M, Cowling RT, Yeo SJ, Greenberg B. Targeting the ACE2-Ang-(1-7) pathway in cardiac fibroblasts to treat cardiac remodeling and heart failure. J Mol Cell Cardiol. 2011;51:542–7. doi:10.1016/j.yjmcc.2010.12.003.
- 60. Kittana N. Angiotensin-converting enzyme 2-Angiotensin 1-7/1-9 system: Novel promising targets for heart failure treatment. Fundam Clin Pharmacol. 2018;32:14–25. doi:10.1111/fcp.12318.
- 61. Ocaranza MP, Lavandero S, Jalil JE, Moya J, Pinto M, Novoa U, et al. Angiotensin-(1-9) regulates cardiac hypertrophy in vivo and in vitro. J Hypertens. 2010;28:1054–64. doi:10.1097/hjh.0b013e328335d291.
- Maier C, Schadock I, Haber PK, Wysocki J, Ye M, Kanwar Y, et al. Prolylcarboxypeptidase deficiency is associated with increased blood pressure, glomerular lesions, and cardiac dysfunction independent of altered circulating and cardiac angiotensin II. J Mol Med. 2017;95:473–86. doi:10.1007/s00109-017-1513-9.
- Kehoe K, Gielis JF, Vliegen G, van Elzen R, Verkerk R, Driessens E, et al. Dysregulation of the renin-angiotensin system during lung ischemia-reperfusion injury. Exp Lung Res. 2016;42:277– 85. doi:10.1080/01902148.2016.1207725.
- 64. Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J. 2004;383:45–51. doi:10.1042/BJ20040634.

- 66. Bosnyak S, Jones ES, Christopoulos A, Aguilar M-I, Thomas WG, Widdop RE. Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin Sci. 2011;121:297–303. doi:10.1042/CS20110036.
- 67. Gava E, Castro CH de, Ferreira AJ, Colleta H, Melo MB, Alenina N, et al. Angiotensin-(1-7) receptor Mas is an essential modulator of extracellular matrix protein expression in the heart. Regul Pept. 2012;175:30–42. doi:10.1016/j.regpep.2012.01.001.
- Santos RAS, Simoes E Silva AC, Maric C, Silva DMR, Machado RP, Buhr I de, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003;100:8258–63. doi:10.1073/pnas.1432869100.
- 69. Ho JK, Nation DA. Cognitive benefits of Angiotensin IV and Angiotensin-(1-7): A systematic review of experimental studies. Neurosci Biobehav Rev 2018. doi:10.1016/j.neubiorev.2018.05.005.
- 70. Jiang F, Yang J, Zhang Y, Dong M, Wang S, Zhang Q, et al. Angiotensin-converting enzyme 2 and angiotensin 1-7: novel therapeutic targets. Nat Rev Cardiol. 2014;11:413–26. doi:10.1038/nrcardio.2014.59.
- 71. Villela D, Leonhardt J, Patel N, Joseph J, Kirsch S, Hallberg A, et al. Angiotensin type 2 receptor (AT2R) and receptor Mas: A complex liaison. Clin Sci. 2015;128:227–34. doi:10.1042/CS20130515.
- 72. Iwata M, Cowling RT, Gurantz D, Moore C, Zhang S, Yuan JX-J, Greenberg BH. Angiotensin-(1-7) binds to specific receptors on cardiac fibroblasts to initiate antifibrotic and antitrophic effects. Am J Physiol Heart Circ Physiol. 2005;289:H2356-63. doi:10.1152/ajpheart.00317.2005.
- Yang R, Smolders I, Vanderheyden P, Demaegdt H, van Eeckhaut A, Vauquelin G, et al. Pressor and renal hemodynamic effects of the novel angiotensin A peptide are angiotensin II type 1A receptor dependent. Hypertension. 2011;57:956–64. doi:10.1161/HYPERTENSIONAHA.110.161836.
- 74. Hrenak J, Paulis L, Simko F. Angiotensin A/Alamandine/MrgD Axis: Another Clue to Understanding Cardiovascular Pathophysiology. Int J Mol Sci 2016. doi:10.3390/ijms17071098.
- 75. Habiyakare B, Alsaadon H, Mathai ML, Hayes A, Zulli A. Reduction of angiotensin A and alamandine vasoactivity in the rabbit model of atherogenesis: Differential effects of alamandine and Ang(1-7). Int J Exp Pathol. 2014;95:290–5. doi:10.1111/iep.12087.
- 76. Le Tran Y, Forster C. Angiotensin-(1-7) and the rat aorta: Modulation by the endothelium. J Cardiovasc Pharmacol. 1997;30:676–82. doi:10.1097/00005344-199711000-00019.
- 77. Kozlowski LP. IPC Isoelectric Point Calculator. Biol Direct. 2016;11:1–16. doi:10.1186/s13062-016-0159-9.
- 78. Suessenbach FK, Burckhardt BB. Levels of angiotensin peptides in healthy and cardiovascular/renal-diseased paediatric population-an investigative review. Heart Fail Rev. 2019;24:709–23. doi:10.1007/s10741-019-09797-y.
- 79. European Medicines Agency, Committee for Medicinal Products for Human Use and Paediatric Committee. Guideline on the Investigation of Medicinal Products in the Term and Preterm neonate. 2010. https://www.ema.europa.eu/en/investigation-medicinal-products-term-preterm-neonate. Accessed 15 Apr 2019.
- 80. Gazewood JD, Turner PL. Heart Failure with Preserved Ejection Fraction: Diagnosis and Management. Am Fam Physician. 2017;96:582–8.
- 81. Masarone D, Valente F, Rubino M, Vastarella R, Gravino R, Rea A, et al. Pediatric Heart Failure: A Practical Guide to Diagnosis and Management. Pediatrics & Neonatology. 2017;58:303–12. doi:10.1016/j.pedneo.2017.01.001.
- Kirk R, Dipchand AI, Rosenthal DN, Addonizio L, Burch M, Chrisant M, et al. The International Society for Heart and Lung Transplantation Guidelines for the management of pediatric heart failure: Executive summary. Corrected. J Heart Lung Transplant. 2014;33:888–909. doi:10.1016/j.healun.2014.06.002.
- 83. Wittlieb-Weber CA, Lin KY, Zaoutis TE, O'Connor MJ, Gerald K, Paridon SM, et al. Pediatric versus adult cardiomyopathy and heart failure-related hospitalizations: A value-based analysis. J Card Fail. 2015;21:76–82. doi:10.1016/j.cardfail.2014.10.011.
- 84. Fridman MD, Mital S. Perspective on precision medicine in paediatric heart failure. Clin Sci. 2017;131:439–48. doi:10.1042/CS20160414.
- Masarone D, Valente F, Rubino M, Vastarella R, Gravino R, Rea A, et al. Pediatric Heart Failure: A Practical Guide to Diagnosis and Management. Pediatr Neonatol. 2017;58:303–12. doi:10.1016/j.pedneo.2017.01.001.

- 86. Hinton RB, Ware SM. Heart Failure in Pediatric Patients With Congenital Heart Disease. Circ Res. 2017;120:978–94. doi:10.1161/CIRCRESAHA.116.308996.
- 87. Rossano JW. Clinical management of patients with acute heart failure. Cardiol Young. 2015;25 Suppl 2:67–73. doi:10.1017/S1047951115000852.
- 88. Daubeney PEF, Nugent AW, Chondros P, Carlin JB, Colan SD, Cheung M, et al. Clinical features and outcomes of childhood dilated cardiomyopathy: Results from a national population-based study. Circulation. 2006;114:2671–8. doi:10.1161/CIRCULATIONAHA.106.635128.
- 89. Das BB, Scholl F, Vandale B, Chrisant M. Sacubitril/Valsartan: Potential treatment for paediatric heart failure. Cardiol Young. 2018;28:1077–81. doi:10.1017/S1047951118001014.
- 90. Committee for Medicinal Products for Human Use. European Union. Ethical considerations for clinical trials on medicinal products conducted with the paediatric population. Eur J Health Law. 2008;15:223–50.
- 91. Patel MD, Mohan J, Schneider C, Bajpai G, Purevjav E, Canter CE, et al. Pediatric and adult dilated cardiomyopathy represent distinct pathological entities. JCI Insight 2017. doi:10.1172/jci.insight.94382.
- 92. Momper JD, Mulugeta Y, Burckart GJ. Failed Pediatric Drug Development Trials. Clin Pharmacol Ther. 2015;98:245–51. doi:10.1002/cpt.142.
- De A, Shah P, Szmuszkovicz J, Bhombal S, Azen S, Kato RM. A retrospective review of infants receiving sildenafil. J Pediatr Pharmacol Ther. 2018;23:100–5. doi:10.5863/1551-6776-23.2.100.
- 94. Knudson JD, Cabrera AG. The Pathophysiology of Heart Failure in Children: The Basics. Curr Cardiol Rev. 2016;12:99–103.
- 95. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200. doi:10.1093/eurheartj/ehw128.
- 96. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136:e137-e161. doi:10.1161/CIR.0000000000000000009.
- 97. Kern SE. Challenges in conducting clinical trials in children: Approaches for improving performance. Expert Rev Clin Pharmacol. 2009;2:609–17. doi:10.1586/ecp.09.40.
- 98. European Commission. Regulation (EC) No 1901/2006 of the European Parliament and of the Council of 12 December 2006 on medicinal medicines for pediatric use and amending Regulation (EC) No 1768/92, Directive 2001/20/EC, Directive 2001/83/EC and Regulation (EC) No 726/2004. https://ec.europa.eu/health//sites/health/files/files/eudralex/vol-1/reg 2006 1901/reg 2006 1901 en.pdf. Accessed 22 Nov 2019.
- European Commission. State of Paediatric Medicines in the EU 10 years of the EU Paediatric Regulation. https://ec.europa.eu/health/sites/health/files/files/paediatrics/docs/2017_childrensmedicines_re port en.pdf. Accessed 22 Nov 2019.
- 100. Podany AT. Ethical considerations in pediatric research 2017: PedSAP.
- 101.Pica N, Bourgeois F. Discontinuation and Nonpublication of Randomized Clinical Trials Conducted in Children. Pediatrics 2016. doi:10.1542/peds.2016-0223.
- 102.Bajcetic M, Wildt SN de, Dalinghaus M, Breitkreutz J, Klingmann I, Lagler FB, et al. Orodispersible minitablets of enalapril for use in children with heart failure (LENA): Rationale and protocol for a multicentre pharmacokinetic bridging study and follow-up safety study. Contemp Clin Trials Commun. 2019;15:100393. doi:10.1016/j.conctc.2019.100393.
- 103. Al-Merani SA, Brooks DP, Chapman BJ, Munday KA. The half-lives of angiotensin II, angiotensin II-amide, angiotensin III, Sar1-Ala8-angiotensin II and renin in the circulatory system of the rat. The Journal of Physiology. 1978;278:471–90.
- 104. Ciplea AM, Laeer S, Bengt Burckhardt B. A feasibility study prior to an international multicentre paediatric study to assess pharmacokinetic/pharmacodynamic sampling and sample preparation procedures, logistics and bioanalysis. Contemp Clin Trials Commun. 2018;12:32–9. doi:10.1016/j.conctc.2018.08.008.
- 105. Sink TD, Lochmann RT, Fecteau KA. Validation, use, and disadvantages of enzyme-linked immunosorbent assay kits for detection of cortisol in channel catfish, largemouth bass, red pacu, and golden shiners. Fish Physiology and Biochemistry. 2008;34:95–101. doi:10.1007/s10695-007-9150-9.

- 106.Coons AH, Creech HJ, Jones RN. Immunological properties of an antibody containing a fluorescent group. Proc Soc Exp Biol Med. 1941;47:200–2.
- 107.Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides. 2015;72:4–15. doi:10.1016/j.peptides.2015.04.012.
- 108. Ewles M, Goodwin L. Bioanalytical approaches to analyzing peptides and proteins by LC--MS/MS. Bioanalysis. 2011;3:1379–97. doi:10.4155/bio.11.112.
- 109. Ötles S, Kartal C. Solid-Phase Extraction (SPE): Principles and Applications in Food Samples. Acta Sci Pol Technol Aliment. 2016;15:5–15. doi:10.17306/J.AFS.2016.1.1.
- 110.Żwir-Ferenc A, Biziuk M. Solid Phase Extraction Technique--Trends, Opportunities and Applications. Polish Journal of Environmental Studies. 2006;15.
- 111.Hennion M-C. Solid-phase extraction: Method development, sorbents, and coupling with liquid chromatography. Journal of Chromatography A. 1999;856:3–54. doi:10.1016/S0021-9673(99)00832-8.
- 112. Steinhilber, D. and A. Dominik. Instrumentelle Analytik. 2nd ed. Stuttgard: Deutscher Apotheken Verlag Stuttgard; 2002.
- 113. Yamashita, M. and J.B. Fenn. Electrospray ion source. Another variation on the free-jet theme. . The Journal of Physical Chemistry. 1984:4451–9.
- 114.Clegg GA, Dole M. Molecular beams of macroions. 3. Zein and polyvinylpyrrolidone. Biopolymers. 1971;10:821–6. doi:10.1002/bip.360100506.
- 115.Gey MH, editor. Instrumentelle Analytik und Bioanalytik. 2nd ed. Berlin Heidelberg.: Springer-Verlag; 2008.
- 116. Gross JH. Massenspektrometrie. Springer Spektrum. 2012.
- 117.Iribarne, J. and B. Thomson. On the evaporation of small ions from charged droplets. The Journal of Chemical Physics. 1976:2287–94.
- 118. Lohninger, H., et al, editor. Teach/Me Instrumentelle Analytik: Springer-Verlag GmbH & Co. KG.; 2003.
- 119.Becker JS. Inorganic mass spectrometry: Principles and applications: Wiley Online Library; 2007.
- 120. Hughes AB. Amino acids, peptides and proteins in organic chemistry, analysis and function of amino acids and peptides: John Wiley & Sons; 2013.
- 121.Mant CT, Chen Y, Yan Z, Popa TV, Kovacs JM, Mills JB, et al. HPLC Analysis and Purification of Peptides. In: Fields GB, editor. Peptide characterization and application protocols. Totowa, NJ: Humana Press; 2007. p. 3–55. doi:10.1007/978-1-59745-430-8_1.
- 122.Roepstorff P, Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomedical mass spectrometry. 1984.
- 123.Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1. doi:10.1186/2046-4053-4-1.
- 124. Fiselier TJ, Lijnen P, Monnens L, van Munster P, Jansen M, Peer P. Levels of renin, angiotensin I and II, angiotensin-converting enzyme and aldosterone in infancy and childhood. Eur J Pediatr. 1983;141:3–7.
- 125.Broughton Pipkin F, Smales OR. Proceedings: Blood pressure and angiotensin II in the newborn. Arch Dis Child. 1975;50:330.
- 126.Broughton Pipkin F, Smales OR. A study of factors affecting blood pressure and angiotensin II in newborn infants. J Pediatr. 1977;91:113–9.
- 127.Miyawaki M, Okutani T, Higuchi R, Yoshikawa N. Plasma angiotensin II concentrations in the early neonatal period. Arch Dis Child Fetal Neonatal Ed. 2006;91:F359-62. doi:10.1136/adc.2005.089573.
- 128. Miyawaki M, Okutani T, Higuchi R, Yoshikawa N. The plasma angiotensin II level increases in very low-birth weight infants with neonatal chronic lung disease. Early Hum Dev. 2008;84:375– 9. doi:10.1016/j.earlhumdev.2007.10.005.
- 129.van Acker KJ, Scharpé SL, Lynen PJ, Amery AK. Comparative study of active and inactive plasma renin in healthy infants and adults. J Clin Chem Clin Biochem. 1983;21:775–8.
- 130. Tang Y-J, Zhang Z-Z, Chen S-Q, Chen S-M, Li C-J, Chen J-W, et al. Effect of topical propranolol gel on plasma renin, angiotensin II and vascular endothelial growth factor in superficial infantile hemangiomas. J Huazhong Univ Sci Technol Med Sci. 2015;35:759–62. doi:10.1007/s11596-015-1503-5.
- 131.Zaher H, Rasheed H, El-Komy MM, Hegazy RA, Gawdat HI, Abdel Halim DM, et al. Propranolol versus captopril in the treatment of infantile hemangioma (IH): A randomized controlled trial. J Am Acad Dermatol. 2016;74:499–505. doi:10.1016/j.jaad.2015.09.061.

- 132.Simões e Silva AC, Diniz JSS, Regueira Filho A, Santos RAS. The renin angiotensin system in childhood hypertension: Selective increase of angiotensin-(1-7) in essential hypertension. J Pediatr. 2004;145:93–8. doi:10.1016/j.jpeds.2004.03.055.
- 133.Franco MCP, Casarini DE, Carneiro-Ramos MS, Sawaya AL, Barreto-Chaves MLM, Sesso R. Circulating renin-angiotensin system and catecholamines in childhood: Is there a role for birthweight? Clin Sci. 2008;114:375–80. doi:10.1042/CS20070284.
- 134.Zhang C, Chen S, Zhou G, Jin Y, Zhang R, Yang H, et al. Involvement of the renin-angiotensin system in the progression of severe hand-foot-and-mouth disease. PLoS ONE. 2018;13:e0197861. doi:10.1371/journal.pone.0197861.
- 135. Tiosano D, Schwartz Y, Braver Y, Hadash A, Gepstein V, Weisman Y, Lorber A. The reninangiotensin system, blood pressure, and heart structure in patients with hereditary vitamin Dresistance rickets (HVDRR). J Bone Miner Res. 2011;26:2252–60. doi:10.1002/jbmr.431.
- 136.Hjortdal VE, Stenbøg EV, Ravn HB, Emmertsen K, Jensen KT, Pedersen EB, et al. Neurohormonal activation late after cavopulmonary connection. Heart. 2000;83:439–43.
- 137.Kamperis K, Rittig S, Bower WF, Djurhuus JC. Effect of indomethacin on desmopressin resistant nocturnal polyuria and nocturnal enuresis. J Urol. 2012;188:1915–22. doi:10.1016/j.juro.2012.07.019.
- 138. Kamperis K, Rittig S, Radvanska E, Jorgensen KA, Djurhuus JC. The effect of desmopressin on renal water and solute handling in desmopressin resistant monosymptomatic nocturnal enuresis. J Urol. 2008;180:707-13; discussion 713-4. doi:10.1016/j.juro.2008.04.047.
- 139.Mahler B, Kamperis K, Schroeder M, Frøkiær J, Djurhuus JC, Rittig S. Sleep deprivation induces excess diuresis and natriuresis in healthy children. Am J Physiol Renal Physiol. 2012;302:F236-43. doi:10.1152/ajprenal.00283.2011.
- 140. Gheissari A, Sabri M, Pirpiran M, Merrikhi A. Possible correlation among echocardiographic measures, serum brain natriuretic peptide, and angiotensin II levels in hypertensive kidney transplanted children. Exp Clin Transplant. 2013;11:128–33. doi:10.6002/ect.2012.0140.
- 141.Rittig S, Matthiesen TB, Pedersen EB, Djurhuus JC. Circadian variation of angiotensin II and aldosterone in nocturnal enuresis: Relationship to arterial blood pressure and urine output. J Urol. 2006;176:774–80. doi:10.1016/S0022-5347(06)00594-5.
- 142.South AM, Nixon PA, Chappell MC, Diz DI, Russell GB, Snively BM, et al. Antenatal corticosteroids and the renin-angiotensin-aldosterone system in adolescents born preterm. Pediatr Res. 2017;81:88–93. doi:10.1038/pr.2016.179.
- 143. Washburn LK, Brosnihan KB, Chappell MC, Diz DI, Gwathmey TM, Nixon PA, et al. The reninangiotensin-aldosterone system in adolescent offspring born prematurely to mothers with preeclampsia. J Renin Angiotensin Aldosterone Syst. 2015;16:529–38. doi:10.1177/1470320314526940.
- 144.EI-DeeK SEM, Sayed AA, Nassar AY, Mohey-Eldeen ZM, Eldeeb HM, Meki A-RMA. Role of some vasoactive mediators in scorpion envenomed children: Possible relation to envenoming outcome. Toxicon. 2017;127:77–84. doi:10.1016/j.toxicon.2017.01.006.
- 145.Al-Daghri NM, Al-Attas OS, Alokail MS, Alkharfy KM, Draz HM. Relationship between resistin and aPAI-1 levels with insulin resistance in Saudi children. Pediatr Int. 2010;52:551–6. doi:10.1111/j.1442-200X.2010.03091.x.
- 146.Al-Daghri NM, Al-Attas OS, Alokail MS, Alkharfy KM, Yakout SM, Sabico SB, et al. Parentoffspring transmission of adipocytokine levels and their associations with metabolic traits. PLoS ONE. 2011;6:e18182. doi:10.1371/journal.pone.0018182.
- 147.Miller JA, Anacta LA, Cattran DC. Impact of gender on the renal response to angiotensin II. Kidney Int. 1999;55:278–85. doi:10.1046/j.1523-1755.1999.00260.x.
- 148.Legato MJ, Johnson PA, Manson JE. Consideration of Sex Differences in Medicine to Improve Health Care and Patient Outcomes. JAMA. 2016;316:1865–6. doi:10.1001/jama.2016.13995.
- 149.Broughton Pipkin F, Smales OR, O'Callaghan M. Renin and angiotensin levels in children. Arch Dis Child. 1981;56:298–302.
- 150.Mahler B, Kamperis K, Ankarberg-Lindgren C, Djurhuus JC, Rittig S. The effect of puberty on diurnal sodium regulation. Am J Physiol Renal Physiol. 2015;309:F873-9. doi:10.1152/ajprenal.00319.2014.
- 151.Simões e Silva AC, Diniz JSS, Pereira RM, Pinheiro SVB, Santos RAS. Circulating renin angiotensin system in childhood chronic renal failure: Marked increase of Angiotensin-(1-7) in end-stage renal disease. Pediatr Res. 2006;60:734–9. doi:10.1203/01.pdr.0000246100.14061.bc.
- 152.Yi Z, Li Z, Wu X-C, He Q-N, Dang X-Q, He X-J. Effect of fosinopril in children with steroidresistant idiopathic nephrotic syndrome. Pediatr Nephrol. 2006;21:967–72. doi:10.1007/s00467-006-0096-4.

- 153. Mainwaring RD, Lamberti JJ, Moore JW, Billman GF, Nelson JC. Comparison of the hormonal response after bidirectional Glenn and Fontan procedures. Ann Thorac Surg. 1994;57:59-63; discussion 64.
- 154. Seguias L, Zilleruelo G, Strauss J, Abitbol C, Montane B. Angiotensin-II and endothelin-1 levels in children with renoprival hypertension. Pediatr Nephrol. 2001;16:493–6.
- 155.Komukai K, Mochizuki S, Yoshimura M. Gender and the renin-angiotensin-aldosterone system. Fundam Clin Pharmacol. 2010;24:687–98. doi:10.1111/j.1472-8206.2010.00854.x.
- 156.Dillon MJ, Gillin ME, Ryness JM, Swiet M de. Plasma renin activity and aldosterone concentration in the human newborn. Arch Dis Child. 1976;51:537–40.
- 157. Fiselier T, Monnens L, van Munster P, Jansen M, Peer P, Lijnen P. The renin-angiotensinaldosterone system in infancy and childhood in basal conditions and after stimulation. Eur J Pediatr. 1984;143:18–24.
- 158.Dillon MJ, Ryness JM. Plasma renin activity and aldosterone concentration in children. BMJ. 1975;4:316–9. doi:10.1136/bmj.4.5992.316.
- 159. Sassard J, Sann L, Vincent M, Francois R, Cier JF. Plasma renin activity in normal subjects from infancy to puberty. J Clin Endocrinol Metab. 1975;40:524–5. doi:10.1210/jcem-40-3-524.
- 160. Ationu A, Singer DR, Smith A, Elliott M, Burch M, Carter ND. Studies of cardiopulmonary bypass in children: Implications for the regulation of brain natriuretic peptide. Cardiovasc Res. 1993;27:1538–41.
- 161.Alvarez Kindelan A, Pérez Navero JL, La Ibarra de Rosa I, Concha Ruiz M, Montilla López P, Romanos Lezcano A. Relationship between hemodynamic changes and blood hormone concentrations after cardiac surgery in children with congenital heart disease. Crit Care Med. 1994;22:1754–61.
- 162.Buchhorn R, Hammersen A, Bartmus D, Bürsch J. The pathogenesis of heart failure in infants with congenital heart disease. Cardiol Young. 2001;11:498–504.
- 163. Parker FB, Streeten DH, Farrell B, Blackman MS, Sondheimer HM, Anderson GH. Preoperative and postoperative renin levels in coarctation of the aorta. Circulation. 1982;66:513–4.
- 164. Scammell AM, Diver MJ. Plasma renin activity in infants with congenital heart disease. Arch Dis Child. 1987;62:1136–8.
- 165. Stern H, Weil J, Genz T, Vogt W, Bühlmeyer K. Captopril in children with dilated cardiomyopathy: Acute and long-term effects in a prospective study of hemodynamic and hormonal effects. Pediatr Cardiol. 1990;11:22–8. doi:10.1007/BF02239543.
- 166.Fallo F, Armanini D, Maragno I, Mantero F. Plasma renin activity in coarctation of the aorta before and after surgical correction. Br Heart J. 1978;40:1415–8.
- 167.Gidding SS, Rocchini AP, Beekman R, Szpunar CA, Moorehead C, Behrendt D, Rosenthal A. Therapeutic effect of propranolol on paradoxical hypertension after repair of coarctation of the aorta. N Engl J Med. 1985;312:1224–8. doi:10.1056/NEJM198505093121904.
- 168. Gore R, Chugh PK, Tripathi CD, Lhamo Y, Gautam S. Pediatric Off-Label and Unlicensed Drug Use and Its Implications. Curr Clin Pharmacol. 2017;12:18–25. doi:10.2174/1574884712666170317161935.
- 169.U.S. Food and Drug Administration, U.S. Department of of Health and Human Services. Guidance for Industry. Bioanalytical Method Validation. 2018. https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm064964 .htm. Accessed 10 Apr 2019.
- 170. European Medicines Agency, Committee fo Medicinal Products for Human Use and Paediatric Committee. Guideline on Bioanalytical Method Validation. 2011. https://www.ema.europa.eu/en/bioanalytical-method-validation. Accessed 10 Apr 2019.
- 171.International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). Bioanalytical Method Validation M10. 2019. Accessed 12 Sep 2019.
- 172. European Medicines Agency, Committee for Medicinal Products for Human Use and Paediatric Committee. Concept paper on the need for revision of the guideline on the investigation of medicinal products in the term and preterm neonate. 2019. https://www.ema.europa.eu/en/documents/scientific-guideline/adopted-concept-paper-need-revision-guideline-investigation-medicinal-products-term-preterm-neonate_en.pdf. Accessed 18 Jul 2019.
- 173.DiaSorin Inc. GammaCoat® Plasma Renin Activity 125I RIA Kit. http://catalog.diasorin.com/en/ricerca-hypertension/U,4,,,,. Accessed 6 Jun 2019.
- 174.Blazy I, Guillot F, Laborde K, Dechaux M. Comparison of plasma renin and prorenin in healthy infants and children as determined with an enzymatic method and a new direct immunoradiometric assay. Scand J Clin Lab Invest. 2011;49:413–8. doi:10.1080/00365518909089115.

- 175. Poulsen K, Jorgensen J. An easy radioimmunological microassay of renin activity, concentration and substrate in human and animal plasma and tissues based on angiotensin I trapping by antibody. J Clin Endocrinol Metab. 1974;39:816–25. doi:10.1210/jcem-39-5-816.
- 176.DRG International I. Plasma Renin Activity (PRA) ELISA. https://store.drginternational.com/pc_product_detail.asp?key=85626BE0FA20493AB28205FFCA88B5D4. Accessed 5 Jun 2019.
- 177.Abd-Allah NM, Hassan FH, Esmat AY, Hammad SA. Age dependence of the levels of plasma norepinephrine, aldosterone, renin activity and urinary vanillylmandelic acid in normal and essential hypertensives. Biol Res. 2004;37:95–106.
- 178.Eagle Bioscience. Plasma Renin Activity ELISA Assay Kit. https://eaglebio.com/product/reninelisa-assay-kit/. Accessed 5 Jun 2019.
- 179.DEMEDITEC Diagnostics GmbH. Plasma Renin Activity (PRA) ELISA. https://www.demeditec.com/en/products/plasma-renin-activity-pra-elisa-demse5600. Accessed 5 Jun 2019.
- 180.Lonati C, Bassani N, Gritti A, Biganzoli E, Morganti A. Measurement of plasma renin concentration instead of plasma renin activity decreases the positive aldosterone-to-renin ratio tests in treated patients with essential hypertension. J Hypertens. 2014;32:627–34. doi:10.1097/HJH.000000000000076.
- 181.MyBioSource I. Plasma Renin Activity (PRA), ELISA Kit. https://www.mybiosource.com/prahuman-elisa-kits/plasma-renin-activity/495044. Accessed 5 Jun 2019.
- 182.Shaffer C. Diagnostic blood loss in mechanically ventilated patients. Heart & Lung. 2007;36:217–22. doi:10.1016/j.hrtlng.2006.09.001.
- 183.Ullman AJ, Keogh S, Coyer F, Long DA, New K, Rickard CM. 'True Blood' The Critical Care Story: An audit of blood sampling practice across three adult, paediatric and neonatal intensive care settings. Australian Critical Care. 2016;29:90–5. doi:10.1016/j.aucc.2015.06.002.
- 184. Samiee-Zafarghandy S, Mazer-Amirshahi M, van den Anker JN. Trends in paediatric clinical pharmacology data in US pharmaceutical labelling. Arch Dis Child. 2014;99:862–5. doi:10.1136/archdischild-2013-305605.
- 185. Curtis A. Parvin, Nils B. Person, Nikola Baumann, Lili Duan, A. Paul DurhamValerio M. Genta, Jeremie Gras, Greg Miller, Megan E. Sawchuk, editor. C24 - Statistical Quality Control for Quantitative Measurement Procedures: Principles and Definitions. 4th ed. Wayne: Clinical and Laboratory Standards Institut; 2016.
- 186.Westgard JO, Barry PL, Hunt MR, Groth T. A multi-rule Shewhart chart for quality control in clinical chemistry. Clin Chem. 1981;27:493–501.
- 187.van Bruijnsvoort M, Meijer J, van den Beld C. The application of control charts in regulated bioanalysis for monitoring long-term reproducibility. Bioanalysis. 2017;9:1955–65. doi:10.4155/bio-2017-0163.
- 188.Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. The clinical biochemist reviews. 2008;29:S49.
- 189.Rudzki PJ, Biecek P, Kaza M. Comprehensive graphical presentation of data from incurred sample reanalysis. Bioanalysis. 2017;9:947–56. doi:10.4155/bio-2017-0038.
- 190.Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, Dunn WB. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics. 2018;14:72. doi:10.1007/s11306-018-1367-3.
- 191. Sanagi MM, Ling SL, Nasir Z, Hermawan D, Ibrahim WAW, Abu Naim A. Comparison of signalto-noise, blank determination, and linear regression methods for the estimation of detection and quantification limits for volatile organic compounds by gas chromatography. J AOAC Int. 2009;92:1833–8.
- 192. Azadeh M, Sondag P, Wang Y, Raines M, Sailstad J. Quality Controls in Ligand Binding Assays: Recommendations and Best Practices for Preparation, Qualification, Maintenance of Lot to Lot Consistency, and Prevention of Assay Drift. AAPS J. 2019;21:89. doi:10.1208/s12248-019-0354-6.
- 193. Rudzki PJ, Buś-Kwaśnik K, Kaza M. Incurred sample reanalysis: Adjusted procedure for sample size calculation. Bioanalysis. 2017;9:1719–26. doi:10.4155/bio-2017-0142.
- 194.Rudzki PJ, Biecek P, Kaza M. Incurred Sample Reanalysis: Time to Change the Sample Size Calculation? AAPS J. 2019;21:28. doi:10.1208/s12248-019-0293-2.
- 195. Armbruster H, Vetter W, Uhlschmid G, Zaruba K, Beckerhoff B, Nussberger J, et al. Circadian rhythm of plasma renin activity and plasma aldosterone in normal man and in renal allograft recipients. Proc Eur Dial Transplant Assoc. 1975;11:268–76.

- 196.Ohashi N, Isobe S, Ishigaki S, Yasuda H. Circadian rhythm of blood pressure and the reninangiotensin system in the kidney. Hypertens Res. 2017;40:413–22. doi:10.1038/hr.2016.166.
- 197.Emdin M, Fatini C, Mirizzi G, Poletti R, Borrelli C, Prontera C, et al. Biomarkers of activation of renin-angiotensin-aldosterone system in heart failure: How useful, how feasible? Clinica Chimica Acta. 2015;443:85–93.
- 198. Duncan MR, Lee JM, Warchol MP. Influence of surfactants upon protein/peptide adsorption to glass and polypropylene. Int J Pharm. 1995;120:179–88. doi:10.1016/0378-5173(94)00402-Q.
- 199. Miladinović SM, Fornelli L, Lu Y, Piech KM, Girault HH, Tsybin YO. In-spray supercharging of peptides and proteins in electrospray ionization mass spectrometry. Anal Chem. 2012;84:4647–51. doi:10.1021/ac300845n.
- 200.Zhang X, Iraneta PC, Marszalkowski [JR] FJ, Fountain KJ. A Simplified Solid Phase Extraction (SPE) Protocol for Bioanalysis Using Oasis HLB. 2014. https://www.waters.com/webassets/cms/library/docs/720005140en.pdf. Accessed 11 Feb 2020.
- 201.Schulz A, Jankowski J, Zidek W, Jankowski V. Absolute quantification of endogenous angiotensin II levels in human plasma using ESI-LC-MS/MS. Clin Proteom. 2014;11:1–9. doi:10.1186/1559-0275-11-37.
- 202.Fredline VF, Kovacs EM, Taylor PJ, Johnson AG. Measurement of Plasma Renin Activity with Use of HPLC-Electrospray-Tandem Mass Spectrometry. Clin Chem. 1999;45:659–64. doi:10.1093/clinchem/45.5.659.
- 203.Bystrom CE, Salameh W, Reitz R, Clarke NJ. Plasma renin activity by LC-MS/MS: Development of a prototypical clinical assay reveals a subpopulation of human plasma samples with substantial peptidase activity. Clin Chem. 2010;56:1561–9. doi:10.1373/clinchem.2010.146449.
- 204.Olkowicz M, Radulska A, Suraj J, Kij A, Walczak M, Chlopicki S, Smolenski RT. Development of a sensitive, accurate and robust liquid chromatography/mass spectrometric method for profiling of angiotensin peptides in plasma and its application for atherosclerotic mice. J Chromatogr A. 2015;1393:37–46. doi:10.1016/j.chroma.2015.03.012.
- 205.Zhou W, Yang S, Wang PG. Matrix effects and application of matrix effect factor. Bioanalysis. 2017;9:1839–44. doi:10.4155/bio-2017-0214.
- 206.Dams R, Huestis MA, Lambert WE, Murphy CM. Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: Influence of ionization type, sample preparation, and biofluid. J Am Soc Mass Spectrom. 2003;14:1290–4. doi:10.1016/S1044-0305(03)00574-9.
- 207.Ahn SH, Bae YJ, Moon JH, Kim MS. Matrix suppression as a guideline for reliable quantification of peptides by matrix-assisted laser desorption ionization. Anal Chem. 2013;85:8796–801. doi:10.1021/ac401967n.
- 208. Cruces P, Diaz F, Puga A, Erranz B, Donoso A, Carvajal C, et al. Angiotensin-converting enzyme insertion/deletion polymorphism is associated with severe hypoxemia in pediatric ARDS. Intensive Care Med. 2012;38:113–9. doi:10.1007/s00134-011-2381-3.
- 209.Nakagawa Y, Toya K, Natsume H, Nasuda K, Takeuchi H, Kubota A, et al. Long-term follow-up of a girl with the neonatal form of Bartter's syndrome. Endocr J. 1997;44:275–81.
- 210.Saiki H, Kuwata S, Kurishima C, Masutani S, Senzaki H. Vulnerability of Coronary Circulation After Norwood Operation. Ann Thorac Surg. 2016;101:1544–51. doi:10.1016/j.athoracsur.2015.10.077.
- 211.Tokiwa K, Iwai N, Nakamura K, Shiraishi I, Hayashi S, Onouchi Z. Pulmonary hypertension as a fatal complication of extrahepatic portal hypertension. Eur J Pediatr Surg. 1993;3:373–5. doi:10.1055/s-2008-1066049.
- 212.Friedman A, Chesney RW, Ball D, Goodfriend T. Effective use of captopril (angiotensin lconverting enzyme inhibitor) in severe childhood hypertension. J Pediatr. 1980;97:664–7.
- 213. Wagoner AL, Shaltout HA, Fortunato JE, Diz DI. Distinct neurohumoral biomarker profiles in children with hemodynamically defined orthostatic intolerance may predict treatment options. Am J Physiol Heart Circ Physiol. 2016;310:H416-25. doi:10.1152/ajpheart.00583.2015.
- 214.Blazy I, Guillot F, Laborde K, Dechaux M. Comparison of plasma renin and prorenin in healthy infants and children as determined with an enzymatic method and a new direct immunoradiometric assay. Scand J Clin Lab Invest. 1989;49:413–8.
- 215.Godard C, Geering JM, Geering K, Vallotton MB. Plasma renin activity related to sodium balance, renal function and urinary vasopressin in the newborn infant. Pediatr Res. 1979;13:742–5.
- 216.García del Río C, Acuña D, Bustamante M, Soler A, García-Torres L, Osorio C. Increased activity of the renin-angiotensin-aldosterone system during the perinatal period. Rev Esp Fisiol. 1982;38:171–6.
- 217.Gjurić G, Mardesić D, Plavsić V, Dumić M. Plasma renin activity and plasma aldosterone concentration in infants with various potassium intakes. Eur J Pediatr. 1982;139:139–41.

- 218.Stalker HP, Holland NH, Kotchen JM, Kotchen TA. Plasma renin activity in healthy children. J Pediatr. 1976;89:256–8.
- 219. Mardesić D, Gjurić G, Dumić M, Vlatković G, Plavsić V, Vlatković M. Plasma renin activity and plasma aldosterone concentration in infants with various sodium intakes. Eur J Pediatr. 1979;132:49–54.
- 220.Lall SB, Peshin SS, Karmarkar MG. Plasma renin activity in normal healthy volunteers: Effect of physiological variables. Indian J Physiol Pharmacol. 1995;39:51–4.
- 221. Fukushige J, Shimomura K, Ueda K. Influence of upright activity on plasma renin activity and aldosterone concentration in children. Eur J Pediatr. 1994;153:284–6.
- 222.Martinez-Aguayo A, Aglony M, Campino C, Garcia H, Bancalari R, Bolte L, et al. Aldosterone, plasma Renin activity, and aldosterone/renin ratio in a normotensive healthy pediatric population. Hypertension. 2010;56:391–6. doi:10.1161/HYPERTENSIONAHA.110.155135.
- 223. Tu W, Eckert GJ, Decker BS, Howard Pratt J. Varying Influences of Aldosterone on the Plasma Potassium Concentration in Blacks and Whites. Am J Hypertens. 2017;30:490–4. doi:10.1093/ajh/hpx006.
- 224.Dechaux M, Broyer M, Lenoir G, Limal JM, Sachs C. Nyctohemeral rhythm of plasma renin activity and plasma aldosterone in children. Pediatr Res. 1982;16:354–6.
- 225. Arvay G, Szathmáry G, Reuter M. Changes in angiotensin-converting enzyme activity and angiotensin I level in asthmatic and healthy children after submaximal physical work. J Allergy Clin Immunol. 1982;69:178–80.
- 226. Shibutani Y, Sakamoto K, Katsuno S, Yoshimoto S, Matsuura T. An epidemiological study of plasma renin activity in schoolchildren in Japan: Distribution and its relation with family history of hypertension. J Hypertens. 1988;6:489–93.
- 227. Harshfield GA, Alpert BS, Pulliam DA. Renin-angiotensin-aldosterone system in healthy subjects aged ten to eighteen years. J Pediatr. 1993;122:563–7.
- 228. Simsolo R, Grunfeld B, Gimenez M, Lopez M, Berri G, Becú L, Barontini M. Long-term systemic hypertension in children after successful repair of coarctation of the aorta. Am Heart J. 1988;115:1268–73.
- 229.Harshfield GA, Alpert BS, Pulliam DA, Willey ES, Somes GW, Stapelton FB. Sodium excretion and racial differences in ambulatory blood pressure patterns. Hypertension. 1991;18:813–8.
- 230.Giardini A, Formigari R, Bronzetti G, Prandstraller D, Donti A, Bonvicini M, Picchio FM. Modulation of neurohormonal activity after treatment of children in heart failure with carvedilol. Cardiol Young. 2003;13:333–6.
- 231.Scammell AM, Diver MJ. Plasma aldosterone and renin activity. Arch Dis Child. 1988;64:139– 41.
- 232.Scammell AM, Arnold R. The effect of the first dose of captopril on blood pressure in infants in heart failure. Int J Cardiol. 1989;22:377–9.

10 Appendix

Appendix 10.1-1:	Inclusion and exclusion criteria for the plasma renin activity systematic literature search
Appendix 10.1-2:	Angiotensin values, specifications and analytics of investigated healthy population141
Appendix 10.1-3:	Angiotensin values, specifications and analytics of investigated cardiovascular and renal diseased population144
Appendix 10.1-4:	Plasma renin activity, specifications and analytics of investigated healthy population147
Appendix 10.1-5:	Plasma renin activity, specifications and analytics of investigated diseased population
Appendix 10.2-1:	Inter-run accuracy and precision results for the plasma renin activity assay validation153
Appendix 10.2-2:	Results of the conducted one-way ANOVA for inter-run accuracy and precision for the plasma renin activity assay validation
Appendix 10.2-3:	Results of precision over the whole process for the plasma renin activity assay validation
Appendix 10.2-4:	Results of matrix effect experiments for the plasma renin activity assay validation160
Appendix 10.2-5:	Results of the evaluation of parallelism for the plasma renin activity assay validation
Appendix 10.2-6:	Long term stability of plasma renin activity in 7 human sources for the plasma renin activity assay validation
Appendix 10.2-7:	Results of freeze and thaw stability for the plasma renin activity assay validation
Appendix 10.2-8:	Results of short term stability for the plasma renin activity assay validation168
Appendix 10.3-1:	Results of calibration standards evaluation for every conducted valid run in the context of the bioanalytical quality control system169
Appendix 10.3-2:	Results of system suitability tests before valid analytical runs in the context of the bioanalytical quality control system
Appendix 10.3-3:	Results of system suitability tests before invalid analytical runs in the context of the bioanalytical quality control system
Appendix 10.3-4:	Results of quality control evaluation for all three quality control levels in the context of the bioanalytical quality control system177
Appendix 10.3-5:	Results of the blank sample evaluation in the context of the bioanalytical quality control system
Appendix 10.3-6:	Results of the incurred sample reanalysis evaluation in the context of the bioanalytical quality control system
Appendix 10.4-1:	The applied MultiQuant [®] parameters for the individual quantification of all analytes and internal standards by the liquid chromatography high-resolution mass spectrometry method
Appendix 10.4-2:	Evaluation of linearity for all 8 analytes by the liquid chromatography high-resolution mass spectrometry method188

Appendix 10.4-3:	The accuracy and precision of angiotensin I by the liquid chromatography high-resolution mass spectrometry method
Appendix 10.4-4:	The accuracy and precision of angiotensin II by the liquid chromatography high-resolution mass spectrometry method
Appendix 10.4-5:	The accuracy and precision of angiotensin-(1-7) by the liquid chromatography high-resolution mass spectrometry method
Appendix 10.4-6:	The accuracy and precision of angiotensin III by the liquid chromatography high-resolution mass spectrometry method
Appendix 10.4-7:	The accuracy and precision of angiotensin IV by the liquid chromatography high-resolution mass spectrometry method
Appendix 10.4-8:	The accuracy and precision of angiotensin A by the liquid chromatography high-resolution mass spectrometry method
Appendix 10.4-9:	The accuracy and precision of alamandine by the liquid chromatography high-resolution mass spectrometry method
Appendix 10.4-10:	The accuracy and precision of angiotensin-(1-9) by the liquid chromatography high-resolution mass spectrometry method200
Appendix 10.4-11:	The evaluation of the sensitivity in three different runs by the liquid chromatography high-resolution mass spectrometry method201
Appendix 10.4-12:	The evaluation of the matrix effect of six different human sources on analytes and internal standards by the liquid chromatography high-resolution mass spectrometry method204
Appendix 10.4-13:	Results of the recovery of the analytes and internal standards by the liquid chromatography high-resolution mass spectrometry method
Appendix 10.4-14:	Evaluation of autosampler stability by the liquid chromatography high-resolution mass spectrometry method206
Appendix 10.4-15:	LENA collaborator list

10.1 Systematic reviews of humoral parameters of the paediatric renin-angiotensin-aldosterone system

Inclusion criteria	Exclusion criteria
Plasma renin activity measured in the blood (Serum, Plasma, and whole blood)	No plasma renin activity data are given
0-18 years	Animal studies or ex vivo data
	Fetal or umbilical cord blood
	Disease not (only) heart failure
	Language not English or German
	Preterm infants (<2,5kg birthweight, <37 gestational weeks)
	End-stage heart failure requiring intensive care unit support
	Uncorrected primary obstructive valvular disease, significant systemic ventricular outflow
	obstruction or dilated restrictive or hypertrophic cardiomyopathy
	Uncorrected severe peripheral stenosis of large arteries
	Severe renal impairment <30mL/1.73m2

Appendix 10.1-1: Inclusion and exclusion criteria for the plasma renin activity systematic literature search.

Age	Statistical operator				Analytic	Collective	Reference			
1-7 days	Range	16		Day 0: 34 (5-201) Day 7: 76 (7-1041)		Mean (range)	Day 0: at birth Day 7: supine	Plasma / ELISA	VLBW newborns 27.9±2.9 weeks GA (mean±SD)	Miyawaki et al. 2006 [127]
1–7 days	Range	16		Day 0: 43 (5-438) Day 7: 28 (5-254)		Mean (range)	Day 0: at birth Day 7: supine	Plasma / ELISA	MLBW newborns 33.8±1.5 weeks GA (ean±SD)	Miyawaki et al. 2006 [127]
1–7 days	Range	14		Day 0: 74 (3-443) Day 7: 19 (1-127)			Day 0: at birth Day 7: supine	Plasma / ELISA	NBW newborns 38.9±1.6 weeks GA (mean±SD)	Miyawaki et al. 2006 [127]
1-11 days	Range	46		67.7±7.1 (9.4 – 204)§	– 204)§ (range) morning Inhibitor /		Plasma + Inhibitor / RIA	Newborn and infants with prematurity or jaundice	Pipkin et al. 1977 [126]	
1–35 days	Range	9		Day 0: 55 / Day 7: 52 Day 21:52 / Day 35: 13			Supine in the morning	Plasma / ELISA	VLBW newborns and infants	Miyawaki et al. 2008 [128]
6 days	mean	25		60.3±9.2		Mean±SD	n/a	Plasma / RIA	Newborns with prematurity or jaundice	Pipkin et al. 1975 [125]
1 week–3 months	Range	9	321±112#	64±31#		Mean±SD	Sober/supine in the morning	Plasma + Inhibitor / RIA	Newborns, infants, and toddlers	Fiselier et al. 1983 [124]
30 days– 10 months	Range	30		300±30		Mean±SD	n/a	Plasma / ELISA	Infants and toddlers	Tang et al. 2015 [130]
1.5–13 months	Range	35		1330±1130		Mean±SD	n/a	Plasma / ELISA	Infants and toddlers	Zaher et al. 2016 [131]
1–12 months	Range	20		33.6±4.3		Mean±SE Recumbent in the afternoon Plasma / RIA Infants and toddlers		Infants and toddlers	Van Acker et al. 1983 [129]	
2 months –12 years	Range	63		37.8±3.7 (5-103)		Mean±SD (range)	Sober/supine in the morning	Plasma + Inhibitor / RIA	Infants, toddlers, and children	Pipkin et al. 1981 [149]
3-12 months	Range	16	163±49#	42±21#		Mean±SD	Sober/supine in the morning	Plasma + Inhibitor / RIA	Infants and toddlers	Fiselier et al. 1983 [124]
10 (5–24) months	Median (IQR)	60		229 (157–319)		Median (IQR)	n/a	Plasma / ELISA	Infants and toddlers with pneumonia	Cruces et al. 2012 [208]

Appendix 10.1-2: Angiotensin values, specifications and analytics of investigated healthy population.

Age	Statistical operator	Ν	Angl [pg/mL]	Angll [pg/mL]	Ang1-7 [pg/mL]	Statistical operator	Sampling procedure	Analytic	Collective	Reference	
1–4 years	Range			Mean±SD	Sober/supine in the morning	Plasma + Inhibitor / RIA	Infants, toddlers, and children	Fiselier et al. 1983 [124]			
1-13 years	Range	10		1780±70		Mean±SD	n/a	Plasma / ELISA	Infants, toddlers, and children	El-Deek et al. 2017 [144]	
24.1±8.6 months	Mean±SD	30		29.5±7.6§		Mean±SD	n/a	Serum / ELISA	Infants and toddlers and children	Zhang et al. 2018 [134]	
3.1–16.7 years	Range	32	26.4±13.4	21.4±8.7	16.2±7.9	Mean±SD	Sober/supine in the morning	Plasma + Inhibitor / RIA	Children and adolescents	Simões e Silva et al. 2004 [132]	
4–8 years	Range	9	103±38#	24±15#		Mean±SD	Sober/supine in the morning	Plasma + Inhibitor / RIA	Children	Fiselier et al. 1983 [124]	
5–12 years	Range	15 0		710±530		Mean±SD	Fasting	Serum / RIA	Children	Al-Daghri et al. 2010 [145]	
6 and 9 years		2		39.9±35.5#		Mean±SD	Supine	Plasma / RIA	Male children	Tiosano et al. 2011 [135]	
6–16 years	Range	33		11.5 (8.4 – 15.7)		Median (IQR)	Fasting	Plasma / RIA	Children and adolescents	Hjortdal et al. 2000 [136]	
8-13 years	Range	31	∛: 77380±35570 ♀: 85280±43670	ి: 92340±18860 ♀: 82380±23140		Mean±SD	n/a	Plasma +Inhibitor HPLC- UV/VIS	AGA birthweight children and adolescents	Franco et al. 2008 [133]	
8-13 years	Range	35	ੋ: 79740±42980 ਼: 89110±31360		ੈ: 41590±31150 ਼: 46160±27040	Mean±SD	n/a	Plasma + Inhibitor / HPLC- UV/VIS	SGA birthweight children and adolescents	Franco et al. 2008 [133]	
8–13 years	Range	10	105±41#	24±16#		Mean±SD	Sober/supine in the morning	Plasma + Inhibitor/ RIA	Children and adolescents	Fiselier et al. 1983 [124]	
8.2±0.5 years	Mean±SD	9		13±0.1#		Mean±SE	Supine at 12.00 h	Plasma / RIA	Prepuberty boys	Mahler et al. 2015 [150]	
8.3±0.3 years	Mean±SD	9		10.1±1#		Mean±SE	Supine at 12.00 h	Plasma / RIA	Prepuberty girls	Mahler et al. 2015 [150]	
9.4±2.6 years	Mean±SD	13 1		570 (440 – 730)		median (IQR)	Fasting	Serum / RIA	Children and adolescents	Al-Daghri et al. 2011 [146]	

Age	Statistical operator	Ν	Angl [pg/mL]	Angll [pg/mL]	Ang1-7 [pg/mL]	Statistical operator	Sampling procedure	Analytic	Collective	Reference
10.7±0.9	Mean±SD	10		15.4±2.7#		Mean±SD Sitting in th morning		Plasma / RIA	Children and adolescents	Kamperis et al. 2008 [138]
10.0±1 year	Mean±SD	10		Girls: 107±42		Mean±SD	Supine in the night	Plasma / RIA	Female children	Mahler et al. 2012 [139]
11.1±1.1 years	Mean±SD	10		Boys: 71±29		Mean±SD	night		Male children and adolescents	Mahler et al. 2012 [139]
11.5±0.6	Mean±SD	11		12±2.4#		Mean±SD	Sitting in the morning	Plasma / RIA	Children and adolescents	Kamperis et al. 2012 [137]
11.9±7.7 years	Mean±SD	30		5.4±0.9		Mean±SD	n/a	Serum / ELISA	Children and adolescents	Gheissari et al. 2013 [140]
12–17 years	Range	4		99.0±22.9#		Mean±SD	Supine Plasma RIA		Female adolescents	Tiosano et al. 2011 [135]
12.8±0.8 years	Mean±SD	10		12.2±2.1#		Mean±SE	Supine at 12.00 h	Plasma / RIA	Puberty girls	Mahler et al. 2015 [150]
13.2±0.8 years	Mean±SD	10		Day: 10.4±1.3 Night: 22.3±3.1		Mean±SE	Sitting at day Supine at night	Plasma / RIA	Children and adolescents	Rittig et al. 2006 [141]
14±0.9 years	Mean±SD	10		14.8±0.2#		Mean±SE	Supine at 12.00 h	Plasma / RIA	Puberty boys	Mahler et al. 2015 [150]
14 years	Mean	50		22 (16.3–30.4)§	2.4 (1.3–6.3)§	Median (IQR)	Sitting	Plasma	Adolescents born preterm	South et al. 2017 [142]
14 years	Mean	70		23.3 (17.9–34.8)§	8.1 (2.3–13.2)§	Median (IQR)	Sitting	Plasma	Adolescents born preterm (ANCS)	South et al. 2017 [142]
14 years	Mean	78		25±13#	9±10§	Mean±SD	Sitting	Plasma + Inhibitor / RIA	Adolescents / prematurely with VLBW / normotensive pregnancy	Washburn et al. 2015 [143]
14 years	Mean	49		23±10#	8±6§	;ean±SD	Sitting	Plasma + Inhibitor / RIA	Adolescents / prematurely with VLBW / preeclamptic pregnancy	Washburn et al. 2015 [143]

n/a: data not available; SD: standard deviation; IQR: interquartile range; VLBW: very low birthweight; MLBW: moderate low birthweight; NBW: normal birthweight; GA: gestational age; RIA: radioimmunoassay; ELISA: enzyme-linked immunosorbent assay; HPLC: high-performance liquid chromatography; UV/VIS: ultraviolet/visible spectroscopy; AGA: appropriate for gestational age; SGA: small for gestational age; ANCS: antenatal corticosteroids; §: values calculated from pmol/L to pg/mL; #: values generated via GetData Graph Digitizer 2.26.0.20, mean of three times conduct.

Age	Statistical operator	Ν	Angl [pg/mL]	Angll [pg/mL]	Ang1-7 [pg/mL]	Statistical operator	Sampling procedure	Analytic	Collective	Reference
4 months	Single value	1		622		Single value	n/a	Plasma / RIA	A female infant with Bartter's syndrome	Nakagawa et al. 1997 [209]
1 year up to 16 years	Single value	1	No treatment: 3875 2.4 years of treatment: 541 15 years of treatment: 536	No treatment: 860 2.4 years of treatment: 85 15 years of treatment: 151		Single value	n/a	Plasma / RIA	A female child with Bartter's syndrome treated with Indomethacin	Nakagawa et al. 1997 [209]
13±5 months	Mean±SD	15		33±4		Mean±SD	n/a	Plasma / RIA	Infants and toddlers (before) undergoing BDG procedure	Mainwarin g et al. 1994 [153]
1.6±1 years	Mean±SD	29		199±223		Mean±SD	During cardiac catheteriza tion	n/a	Hypoplastic left heart syndrome infants, toddlers, and children undergoing Norwood procedure	Saiki et al. 2016 [210]
1.3±2.8 years	Mean±SD	27		38±55		Mean±SD	During cardiac catheteriza tion	n/a	Infants, toddlers, and children suffering from pulmonary atresia with AP shunt	Saiki et al. 2016 [210]
25±8 months	Mean±SD	10		31±2		Mean± SE	n/a	Plasma / RIA	Infants, toddlers, and children with VSD	Mainwarin g et al. 1994 [153]
36±10 months	Mean±SD	18		40±3		Mean± SE	n/a	Plasma / RIA	Children (before) undergoing Fontane procedure	Mainwarin g et al. 1994 [153]
2.2-17.9 years	Range	23	26.7±6.7	22.4±9.1	18.6±6.8	Mean±SD	Sober/supi ne in the morning	Plasma + Inhibitor RIA	Normotensive children and adolescents with CRF	Simões e Silva et al. 2006 [151]

Appendix 10.1-3:	: Angiotensin values, specifications and analytics of investigated cardiovascular and renal diseased population.	
------------------	--	--

Age	Statistical operator	N	Angl [pg/mL]	Angll [pg/mL]	Ang1-7 [pg/mL]	Statistical operator	Sampling procedure	Analytic	Collective	Reference
2.2-17.2 Years	Range	34	171.8±85.4*	84.2±52.9*	140.8±58.0*	Mean±SD	Sober/supi ne in the morning. Before medication	Plasma + Inhibitor / RIA	Hypertensive children and adolescents with CRF	Simões e Silva et al. 2006 [151]
2.2–15.5 years	Range	12	81.4±24.8*	59.3±17.0*	41.0±10.5*	Mean±SD	Supine in the morning. untreated	Plasma + Inhibitor / RIA	Children and adolescents with renovascular hypertension	Simões e Silva et al. 2004 [132]
2.7–17.7 years	Range	12	Untreated: 36.5±11.4 Treated: 35.7±11.2	Untreated: 21.8±10.6 Treated: 22.5±10.9	Untreated: 78.5±20.4* Treated: 79.8±23.4*	Mean±SD	Supine in the morning	Plasma + Inhibitor / RIA	Children and adolescents with essential hypertension	Simões e Silva et al. 2004 [132]
5.8±3.6 years	Mean±SD	30		13±7		Mean±SD	During cardiac catheteriza tion	n/a	Children with VSD or repaired VSD/ASD	Saiki et al. 2016 [210]
5.9-16.8 Years	Range	21	332.1±54.5*	113.2±25.8*	419.2±82.2*	Mean±SD	Supine in the morning.	Plasma + Inhibitor / RIA	Children and adolescents with ESRD	Simões e Silva et al. 2006 [151]
6–18 years	Range	8		42 (15–102)		Median (IQR)	During cardiac catheteriza tion	Plasma / RIA	Children and adolescents underwent BDG with pulmonary atresia, pulmonary stenosis, tricuspid atresia or transposition of the great arteries	Hjortdal et al. 2000 [136]
8.7±3.5 years	Mean±SD	25		78.9±26.2		Mean±SD	In the morning. After 12 weeks of treatment	Serum / RIA	Normotensive children and adolescents with SRINS receiving prednisone+fosino pril	YI et al. 2006 [152]
8.7±3.7 years	Mean±SD	20		79.0±35.8		Mean±SD	In the morning. After 12 weeks of treatment	Serum / RIA	Normotensive children and adolescents with SRINS receiving prednisone	YI et al. 2006 [152]

Age	Statistical operator	Ν	Angl [pg/mL]	Angll [pg/mL]	Ang1-7 [pg/mL]	Statistical operator	Sampling procedure	Analytic	Collective	Reference
10 years	Single value	1	Inferior vena cava: 990 Right ventricle: 1200	Inferior vena cava: 16 Right ventricle:10		Single value	n/a	n/a	A female child with pulmonary hypertension and extrahepatic portal hypertension	Tokiwa et al. 1992 [211]
10.4±4.6	Mean±SD	6	Before medication: 80-2100 With medication: 390-5370	Before medication 53-3530 With medication: 0-700		Range	Supine in the morning before/afte r captopril administrat ion	n/a	Children and adolescents with severe hypertension and diverse renal diseases	Friedman et al. 1980 [212]
12.4±5.3 years	Mean±SD	6		30.16±15.81		Mean±SD	Before haemodial ysis	Serum + EDTA / RIA	Anephric hypertensive adolescents receiving haemodialysis	Seguias et al. 2001 [154]
13.8±3.7 years	Mean±SD	6		35.8±10.5		Mean±SD	Before haemodial ysis	Serum + EDTA / RIA	Anephric normotensive adolescents receiving haemodialysis	Seguias et al. 2001 [154]
14.7±3.4 years	Mean±SD	30		7.4±0.7*		Mean±SD	n/a	Serum / ELISA	Adolescent kidney transplant recipients	Gheissari et al. 2013 [140]
15±0.4 years	Mean±SD	18		Supine position: 27.7±3# After 15 min of HUT test: 38.1±4.2#	Supine position: 12.9±1.8# After 15 min of HUT test: 15.8±1.7#	Mean±SD	Supine During HUT test	RIA	Adolescents with symptoms for orthostatic intolerance with normal HUT test	Wagoner et al. 2016 [213]
15±0.4 years	Mean±SD	30		Supine position: 30±2.2# After 15 min of HUT test: 48.6±3.6#	Supine position: 14.9±1.1# After 15 min of HUT test: 16.5±1.6#	Mean±SD	Supine During HUT test	RIA	Adolescents with symptoms for orthostatic intolerance with abnormal HUT test	Wagoner et al. 2016 [213]

n/a: data not available; SD: standard deviation; IQR: interquartile Range; SE: standard error; RIA: radioimmunoassay; ELISA: enzyme-linked immunosorbent assay; BDG: bidirectional Glenn, ASD: atrial septal defect; VSD: ventricular septal defect; CRF: chronic renal failure; ESRD: end-stage renal disease; HUT: head-up tilt; *: significant higher values compared to healthy control group; #: values generated via GetData Graph Digitizer 2.26.0.20, mean of three times conduct.

Age (Range)	Statistical	Ν	PRA (ng/mL/h)	Statistical	Sampling procedure	Anal	Matrix	Collective	Reference
	operator			operator		ytic			
16 h-1 month	Range	17	25±5 (1.5-70)	Mean±SD	Supine after 2h rest	RIA	Plasma	Newborns	Blazy et al. 1989 [214]
				(range)			EDTA		
1-2 days	Range	10	24.8±8.4 (3.7-96)	Mean±SD	Supine in the morning	RIA	Plasma	Newborns	Godard et al. 1979 [215]
				(range)			EDTA		
2-6 days	Range	15	24.7±2.84	Mean±SEM	Recumbent position in	RIA	Plasma	Newborns	Garcia del Rio et al. 1982
					the morning				[216]
6 days		21	1.53	Mean	Supine in the morning	RIA	Plasma	Newborns	Dillon et al. 1976 [156]
							EDTA		
7-9 days	Range	9	5.8±1.5 (1.1-13.8)	Mean±SD	Supine in the morning	RIA	Plasma	Newborns	Godard et al. 1979 [215]
				(range)			EDTA		
12-22 days	Range	10	8.73±0.95	Mean±SEM	Recumbent position in	RIA	Plasma	Newborns	Garcia del Rio et al. 1981
					the morning				[216]
1 week-3	Range	15	9.8 (4.0-23.8)	Mean	supine/fasting in the	RIA	Plasma	Newborns	Fiselier et al. 1984 [157]
months				(range)	morning		EDTA	and infants	
1 week-3	Range	9	12.7±4.8#	Mean±SD	supine/fasting in the	RIA	Plasma	Newborns	Fiselier et al. 1983 [124]
months					morning		EDTA	and infants	
4-9 weeks	Range	9	8.1±1.3 (3.5-12.4)	Mean±SD	Supine in the morning	RIA	Plasma	Infants	Godard et al. 1979 [215]
				(Range)			EDTA		
1 month-1 year	Range	18	1.459 (0.472-3.130)	Mean	Supine in the	RIA	Plasma	Newborns	Dillon et al. 1975 [158]
				(range)	morning/midday			and infants	
1 month-1 year	Range	11	18±4 (0.6-40)	Mean±SD	Supine after 2h rest	RIA	Plasma	Newborns	Blazy et al. 1989 [214]
				(range)			EDTA	and infants	
1-12 months	Range	20	9.99 (3.9-32.0)	Mean	Supine in the morning	RIA	Plasma	Infants	Gjuric et al. 1982 [217]
				(range)					

Appendix 10.1-4:	Plasma renin activity, specifications and analytics of investigated healthy population.

Age (Range)	Statistical operator	N	PRA (ng/mL/h)	Statistical operator	Sampling procedure	Anal ytic	Matrix	Collective	Reference
1 month-3	Range	14	4.6±1.6	Mean±SD	Sitting/supine	RIA	Plasma	Newborns	Stalker et al. 1976 [218]
years								and infants	
2-12 months	Range	20	6.16	Mean	Supine in the morning	RIA	Plasma	Infants	Mardesic et al. 1979 [219]
3-12 months	Range	32	4.5 (1.5-10.2)	Mean	Supine/fasting in the	RIA	Plasma	Infants	Fiselier et al. 1984 [157]
				(Range)	morning		EDTA		
3-12 months	Range	16	6.3±2.9#	Mean±SD	Supine/fasting in the	RIA	Plasma	Infants	Fiselier et al. 1983 [124]
			5.0.07/		morning		EDTA		E : 1: 1 1 1000 110 11
1-4 years	Range	11	5.6±2.7#	Mean±SD	Supine/fasting in the morning	RIA	Plasma EDTA	Infants and children	Fiselier et al. 1983 [124]
1-4 years	Range	20	4.4 (1.7-11.8)	Mean	Supine/fasting in the	RIA	Plasma	Infants and	Fiselier et al. 1984 [157]
				(range)	morning		EDTA	children	
1-4 years	Range	18	0.757 (0.110-2.610)	Mean	Supine in the	RIA	Plasma	Infants and	Dillon et al. 1975 [158]
				(range)	morning/midday			children	
1-5 years	Range	10	8±1.5 (0.8-16.4)	Mean±SD	Supine after 2h rest	RIA	Plasma	Infants and	Blazy et al. 1989 [214]
				(range)			EDTA	children	
2-10 years	Range	4	1.52±0.21	Mean±SD	Upright position	RIA	Plasma	Boys	Lall et al. 1995 [220]
							EDTA		
2-10 years	Range	2	1.30±0.4	Mean±SD	Upright position	RIA	Plasma	Girls	Lall et al. 1995 [220]
							EDTA		
3-6 years	Range	17	2.5±0.5	Mean±SD	Sitting/supine	RIA	Plasma	Children	Stalker et al. 1976 [218]
4-6 years	Range	36	3.42±2.02	Mean±SD	Supine/fasting in the	RIA	Plasma	Children	Fukushige et al. 1993
					morning		EDTA		[221]
4-8 years	Range	17	2.9 (0.9-9.2)	Mean	Supine/fasting in the	RIA	Plasma	Children	Fiselier et al. 1984 [157]
				(range)	morning		EDTA		
4-8 years	Range	9	2.9±1.9#	Mean±SD	Supine/fasting in the	RIA	Plasma	Children	Fiselier et al. 1983 [124]
					morning		EDTA		

Age (Range)	Statistical operator	Ν	PRA (ng/mL/h)	Statistical operator	Sampling procedure	Anal ytic	Matrix	Collective	Reference
4-16 years	Range	211	2.4 (1.6-3.2)	Median (Q1-	Sitting	RIA	Plasma	Children and	Martinez-Aguayo et al.
4-10 years	Range	211	2.4 (1.0-3.2)	, i	Sitting	NIA	Flasilla	adolescents	2010 [222]
				Q3)					
5-9 years	Range	24	0.417 (0.131-0.834)	Mean	Supine in the	RIA	Plasma	Children	Dillon et al. 1975 [158]
				(range)	morning/midday				
5-10 years	Range	25	2.44±0.69 (1.2-3.9)	Mean±SD	12 h fasting / after 30	RIA	Plasma	Children	Abd-Allah et al. 2004
				(range)	min in sitting position		EDTA		[177]
5-16 years	Range	19	3.5±0.7 (0.6-11)	Mean±SD	supine after 2h rest	RIA	Plasma	Children and	Blazy et al. 1989 [214]
				(range)			EDTA	adolescents	
5-17 years	Range	302	2.47 (0.09)	geometric	Sitting in the morning	RIA	Plasma	Children and	Tu et al. 2017 [223]
				mean				adolescents	
6 and 9 years	Range	2	2.1±1.8#	Mean±SD	Supine	RIA	Plasma	Prepubertal	Tiosano et al. 2011[135]
								boys	
6-9 years	Range	24	1.4±0.3	Mean±SD	Sitting/supine	RIA	Plasma	Children	Stalker et al. 1976 [218]
7-9 years	Range	38	3.03±1.43	Mean±SD	Supine/fasting in the	RIA	Plasma	Children	Fukushige et al. 1993
					morning		EDTA		[221]
7-15 years	Range	8	2.98±0.57	Mean±SD	Supine/fasting in the	RIA	Plasma	Children and	Dechaux et al. 1982 [224]
					morning		EDTA	adolescents	
8-13 years	Range	9	2.8±1.9#	Mean±SD	Supine/fasting in the	RIA	Plasma	Children and	Fiselier et al. 1983 [124]
					morning		EDTA	adolescents	
8-16 years	Range	19	2 (0.9-7.6)	mean	Supine/fasting in the	RIA	Plasma	Children and	Fiselier et al. 1984 [157]
	-			(range)	morning		EDTA	adolescents	
8-12 years	Range	16	Before exercise:	Mean±SD	Sitting	RIA	Plasma	Children and	Arvay et al. 1982 [225]
-			3.22±1.24		_			adolescents	
			After exercise: 5.72±1.45						
9-12 years	Range	16	1.9±0.5	Mean±SD	Sitting/supine	RIA	Plasma	Children and	Stalker et al. 1976 [218]
0 12 yours	lange		1.020.0	Mican±0D	Chang/Supino	1 10 1		adolescents	
								audiescerits	

Age (Range)	Statistical	Ν	PRA (ng/mL/h)	Statistical	Sampling procedure	Anal	Matrix	Collective	Reference
	operator			operator		ytic			
10-12 years	Range	41	2.62±1.32	Mean±SD	Supine/fasting in the	RIA	Plasma	Children and	Fukushige et al. 1993
					morning		EDTA	adolescents	[221]
10-14 years	Range	190	1.71±0.82	Mean±SD	Supine	RIA	Plasma EDTA	Boys	Shibutani et al. 1988 [226]
10-14 years	Range	188	1.63±0.69	Mean±SD	Supine	RIA	Plasma EDTA	Girls	Shibutani et al. 1988 [226]
10-15 years	Range	19	0.321 (0.55-0.899)	mean (Range)	Supine in the morning/midday	RIA	Plasma	Children and adolescents	Dillon et al. 1975 [158]
10-18 years	Range	195	2.5±1.9 (0.1-13.5)	Mean±SD (range)	Sitting	RIA	Plasma EDTA	Children and adolescents	Harshfield et al. 1993 [227]
11-15 years	Range	24	3.07±1.07 (1.6-5.4)	Mean±SD (range)	12 h fasting / after 30 min sitting position	RIA	Plasma EDTA	Adolescents	Abd-Allah et al. 2004 [177]
12-15 years	Range	16	1.8±0.3	Mean±SD	Sitting/supine	RIA	Plasma	Adolescents	Stalker et al. 1976 [218]
12.3±2.5 years	Mean±SD	24	2.5±0.4	Mean±SD	Supine/fasting in the morning	RIA	Plasma	Adolescents	Simsolo et al. 1988 [228]
12.6±2.2 years	Mean±SD	74	3.2±2	Mean±SD	Sitting	RIA	Plasma EDTA	Adolescents	Harshfield et al. 1991 [229]
12-17 years	Range	4	2.6±1.2#	Mean±SD	Supine	RIA	Plasma	Pubertal girls	Tiosano et al. 2011 [135]
13-15 years	Range	41	2.07±1.14	Mean±SD	Supine/fasting in the morning	RIA	Plasma EDTA	Adolescents	Fukushige et al. 1993 [221]
14±2.4 years	Mean±SD	66	3.4±2.4	Mean±SD	Sitting	RIA	Plasma EDTA	Adolescents	Harshfield et al. 1991 [229]
15-18 years	Range	10	1.8±0.4	Mean±SD	Sitting/supine	RIA	Plasma	Adolescents	Stalker et al. 1976 [218]

SD: standard deviation; SEM: standard error of the mean; § values calculated from pmol/L to pg/mL; #: values generated via GetData Graph Digitizer 2.26.0.20, mean of three times conduct.

Age	Statistical	Ν	PRA (ng/mL/h)	Statistical	Sampling	Anal	Matrix	Collective	Reference
	operator			operator	procedure	ytic			
1 month-11.7 years	Range	9	Baseline:31.5±7.2 Carvedilol: 21.5±5.7	Mean±SD	n/a	RIA	Plasma	Children and infants with severe cardiac failure receiving carvedilol	Giardini et al. 2003 [230]
14-84 days	Range	11	84±21 (57-126)	Mean±SD (Range)	Supine in the morning	RIA	Plasma EDTA	Infants with CHD with left to right shunts	Scammell et al. 1987 [164]
19-111 days	Range	8	87±45	Mean±SD	Supine in the morning	RIA	Plasma EDTA	Children with CHD with left to right shunts receiving diuretics and captopril	Scammell et al. 1988 [231]
19-111 days	Range	6	69.8± 34	Mean±SD	In the morning	RIA	Plasma	CHD children with left to right shunts and PH or high pulmonary blood flow receiving captopril	Scammel et al. 1989 [232]
4 weeks-15 years	Range	12	Before: 3.2 (1.5-36.2) After 2 days: 29.4 (13-52) After 3 months: 12.4 (8.7- 28.2)	Median (95% confidence interval)	Supine	RIA	Plasma EDTA	Children with DCM receiving digitalis and/or furosemide	Stern et al. 1990 [165]
1.3±2.8	Mean±SD	27	16±16	Mean±SD	During catheterization	n/a	Plasma	1-ventricular circulation other than HLHS and pulmonary atresia with AP shunt	Saiki et al. 2016 [210]
1.6±1	Mean±SD	29	63±43	Mean±SD	During catheterization	n/a	Plasma	HLHS patients after the Norwood procedure	Saiki et al. 2016 [210]
2-9 years	Range	9	25 (34)	mean (SEM)	Before elective cardiac surgery	RIA	Plasma EDTA	Children with Fallot's tetralogy, TCPC, and ASD undergoing cardiopulmonary bypass	Ationu et al. 1993 [160]
2-18 years	Range	22	3.9±2.9*	Mean±SD	Upright position	RIA	Plasma	Children with coarctation of the aorta	Fallo et al. 1978 [166]
30.6±40.7 months	Mean±SD	31	13.1±11.8	Mean±SD	Supine in the morning	RIA	Plasma EDTA	Diverse congenital diseases	Alvarez Kindelan et al. 1994 [161]
3±2 years	Mean±SD	10	88±64	Mean±SD	n/a	RIA	Plasma	Children with CHD and left-to-right shunt (RR ≤ 50 min-1)	Buchhorn et al. 2001 [162]

Appendix 10.1-5:	Plasma renin activity,	specifications and an	alvtics of investigated	diseased population.
	· · · · · · · · · · · · · · · · · · ·			

Age	Statistical	Ν	PRA (ng/mL/h)	Statistical	Sampling	Anal	Matrix	Collective	Reference
	operator			operator	procedure	ytic			
41.1±25.4 months	Mean±SD	21	13.57±9.1\$	Mean±SD	Supine in the	RIA	Plasma	Children with CHD	Alvarez
					morning		EDTA		Kindelan et al.
									1994 [161]
4±2 years	Mean±SD	7	35±40	Mean±SD	n/a	RIA	Plasma	Children with CHD and left-to-right shunt	Buchhorn et al.
								(RR ≤ 50 min-1)	2001 [162]
5-16 years	Range	8	21.4±11.3\$	Mean±SD	Upright	RIA	Plasma	Children with coarctation of the thoracic	Parker et al.
								aorta receiving furosemide	1982 [163]
5-16 years	Range	8	5.5±1.5	Mean±SD	Upright	RIA	Plasma	Children with corrected coarctation of the	Parker et al.
								thoracic aorta receiving furosemide	1982 [163]
5-18 years	Range	12	1.7±0.8*	Mean±SD	Upright position	RIA	Plasma	Children with coarctation of aorta after	Fallo et al.
								surgery	1978 [166]
5.8±3.6 years	Mean±SD	30	6±5	Mean±SD	during	n/a	n/a	Children with repaired VSD	Saiki et al.
					catheterization				2015 [210]
6±2 years	Mean±SD	10	10±7	Mean±SD	n/a	RIA	Plasma	Children with CHD and left-to-right shunt	Buchhorn et al.
								(RR ≤ 50 min-1)	2001 [162]
8.8±1 years	Mean±SD	7	2.1±1.6#	mean±SEM	supine in the	RIA	Plasma	Children before repair of coarctation of the	Gidding et al.
					morning before			aorta	1985 [167]
					surgery				
8.8±1.7 years	Mean±SD	7	2.1±1.5#	mean±SEM	supine in the	RIA	Plasma	Children before repair of coarctation of	Gidding et al.
					morning before			aorta receiving propranolol	1985 [167]
					surgery				

SD: standard deviation; SEM: standard error of the mean; § values calculated from pmol/L to pg/mL; #: values generated via GetData Graph Digitizer 2.26.0.20, mean of three times conduct, HLHS: hypoplastic left heart syndrome, ASD atrial septal defect, CHD: congenital heart disease, TCPC: total cavopulmonary connection, PH: pulmonary hypertension, RR: respiratory rate \$: recalculated from ng/l/s.

10.2Customisation and validation of a plasma renin activity immunoassay

		V	alidity of	f the ana	lytical ru	in						Accura	cy and P	recision				
	NV (ng/mL)	Rep 1 (ng/mL)	Rep 2 (ng/mL)	Mean	AE (%)	Stdev	CV (%)	Sample	Value (ng/mL)	Dev (%)	Value (ng/mL)	Dev (%)	Value (ng/mL)	Dev (%)	Value (ng/mL)	Dev (%)	Value (ng/mL)	Dev (%)
			Ca	ibration cu	rve				QC	0.2	QC	0.5	QC	1.5	QC	10	QC	60
	0.2	0.190		0.190	5.000			1	0.210	5.1	0.402	-19.7	1.409	-6.0	9.941	-0.6	7.000	-88.3
	0.5	0.503		0.503	0.698			2	0.185	-7.3	0.518	3.5	1.361	-9.3	9.635	-3.7	59.387	-1.0
	1.5	1.501	1.513	1.507	0.447	0.009	0.573	3	0.183	-8.4	0.532	6.3	1.631	8.8	9.751	-2.5	72.679	21.1
	4	3.964	3.992	3.978	0.551	0.020	0.507	4	0.176	-12.0	0.461	-7.7	1.588	5.9	10.219	2.2	60.418	0.7
_	10	9.998	10.039	10.018	0.184	0.029	0.291	5	0.159	-20.3	0.455	-9.1	1.526	1.7	9.840	-1.6	60.628	1.0
Run	25	25.557	24.601	25.079	0.316	0.676	2.695	Mean	0.183	-8.6	0.473	-5.3	1.503	0.2	9.877	-1.2	52.022	-13.3
n 1	60	61.487	58.199	59.843	0.262	2.325	3.885	Std	0.018		0.052		0.115		0.222		25.751	
•								CV (%)	10.057		11.075		7.678		2.247		49.500	
			Q	uality contro	ols			TE (%)	18.613		16.413		7.470		1.020		36.204	
	0.98	0.940	0.978	0.959	2.173	0.027	2.803											
	5.04	4.765	4.682	4.724	6.278	0.058	1.233											
	42.5	43.016	40.077	41.547	2.244	2.078	5.002											
																		<u> </u>
		1		ibration cu			1	·	· · · · ·	0.2	QC		QC		QC		· · · ·	60
	0.2	0.168	0.159	0.164	18.163	0.007	4.091	1	0.128	-36.2	0.518	3.6	1.456	-2.9	9.762	-2.4	60.069	0.1
	0.5	0.545	0.565	0.555	11.014	0.015	2.645	2	0.170	-15.0	0.442	-11.6	1.519	1.2	10.012	0.1	61.878	3.1
	1.5	1.418	1.524	1.471	1.953	0.075	5.077	3	0.206	3.1	0.475	-5.0	1.397	-6.9	9.954	-0.5	69.550	15.9
	4	3.811	4.158	3.985	0.379	0.245	6.156	4	0.205	2.6	0.492	-1.6	1.384	-7.7	9.241	-7.6	64.059	6.8
77	10	9.823	10.298	10.061	0.607	0.336	3.336	5	0.171	-14.3	0.523	4.6	1.479	-1.4	9.681	-3.2	59.851	-0.2
Run	25	25.186	25.048	25.117	0.468	0.098	0.389	Mean	0.176	-11.9	0.490	-2.0	1.447	-3.5	9.730	-2.7	63.081	5.1
ר 2	60	58.994	62.155	60.575	0.958	2.235	3.690	Std	0.032		0.033		0.056		0.305		3.992	
								CV (%)	18.317		6.771		3.891		3.134		6.329	
			,	uality contro				TE (%)	30.247		8.784		7.427		5.833		11.465	
	0.98	0.983	1.038	1.010	3.078	0.039	3.870											
	5.04	5.144	5.088	5.116	1.505	0.039	0.764											
	42.5	41.392	41.097	41.245	2.954	0.209	0.506											

Appendix 10.2-1: Inter-run accuracy and precision results for the plasma renin activity assay validation.

		V	alidity of	f the ana	lytical ru	in						Accura	cy and Pi	recision				
	NV (ng/mL)	Rep 1 (ng/mL)	Rep 2 (ng/mL)	Mean	AE (%)	Stdev	CV (%)	Sample	Value (ng/mL)	Dev (%)	Value (ng/mL)	Dev (%)	Value (ng/mL)	Dev (%)	Value (ng/mL)	Dev (%)	Value (ng/mL)	Dev (%)
			Ca	libration cu	rve				QC	0.2	QC	0.5	QC	1.5	QC	10	QC	60
	0.2	0.207	0.182	0.195	2.633	0.018	9.103	1	0.184	-8.2	0.427	-14.7	1.423	-5.2	10.363	3.6	69.969	16.6
	0.5	0.500	0.515	0.508	1.539	0.011	2.079	2	0.185	-7.3	0.548	9.5	1.339	-10.8	10.072	0.7	71.679	19.5
	1.5	1.453	1.554	1.503	0.230	0.072	4.793	3	0.196	-2.1	0.605	21.1	1.590	6.0	10.240	2.4	78.658	31.1
	4	3.808	4.121	3.964	0.896	0.221	5.585	4	0.141	-29.3	0.556	11.1	1.608	7.2	10.388	3.9	67.101	11.8
	10	9.926	10.376	10.151	1.510	0.318	3.135	5	0.143	-28.4	0.605	21.1	1.519	1.3	10.191	1.9	62.058	3.4
Run	25	24.607	24.643	24.625	1.500	0.025	0.103	Mean	0.170	-15.1	0.548	9.6	1.496	-0.3	10.251	2.5	69.893	16.5
л З	60	60.308	60.797	60.553	0.921	0.346	0.571	Std	0.026		0.073		0.114		0.129		6.107	
								CV (%)	15.090		13.332		7.624		1.263		8.738	
			Q	uality contro	ols			TE (%)	30.166		22.958		7.914		3.771		25.227	
	0.98	1.081	1.094	1.088	10.974	0.009	0.826	1										
	5.04	5.087	4.910	4.999	0.819	0.125	2.498											
	42.5	45.847	39.804	42.826	0.766	4.273	9.978											
			Ca	libration cu	rve			-	QC	0.2	QC	0.5	QC	1.5	QC	10	QC	60
	0.2	0.191	0.204	0.197	1.393	0.009	4.600	1	0.181	-9.5	0.504	0.9	1.578	5.2	9.660	-3.4	58.846	-1.9
	0.5	0.511	0.493	0.502	0.478	0.013	2.508	2	0.188	-6.1	0.462	-7.5	1.493	-0.5	9.843	-1.6	54.603	-9.0
	1.5	1.460	1.554	1.507	0.457	0.067	4.416	3	0.228	14.1	0.517	3.4	1.479	-1.4	10.216	2.2	68.941	14.9
	4	3.880	4.094	3.987	0.334	0.151	3.797	4	0.247	23.6	0.532	6.4	1.521	1.4	9.794	-2.1	63.341	5.6
	10	9.751	10.246	9.998	0.017	0.350	3.504	5	0.261	30.7	0.548	9.7	1.490	-0.7	9.821	-1.8	63.341	5.6
Run	25	24.538	25.817	25.178	0.710	0.904	3.592	Mean	0.221	10.6	0.513	2.6	1.512	0.8	9.867	-1.3	61.814	3.0
n 4	60	56.140	63.598	59.869	0.218	5.274	8.809	Std	0.036		0.033		0.040		0.208		5.391	
-								CV (%)	16.125		6.367		2.638		2.106		8.722	
			Q	uality contro	ols			TE (%)	26.692		8.937		3.455		3.440		11.746	
	0.98	1.071	1.038	1.055	7.607	0.024	2.233											
	5.04	4.949	5.124	5.036	0.073	0.123	2.449											
	42.5	45.847	39.804	42.826	0.766	4.273	9.978											

Appendix - Customisation and validation of a plasma renin activity immunoassay

		V	alidity of	f the ana	lytical ru	ın						Accura	cy and P	recision				
	NV (ng/mL)	Rep 1 (ng/mL)	Rep 2 (ng/mL)	Mean	AE (%)	Stdev	CV (%)	Sample	Value (ng/mL)	Dev (%)	Value (ng/mL)	Dev (%)	Value (ng/mL)	Dev (%)	Value (ng/mL)	Dev (%)	Value (ng/mL)	Dev (%)
			Cal	ibration cu	rve				QC	0.2	QC	0.5	QC	1.5	QC	10	QC	60
	0.2	0.186	0.206	0.196	2.105	0.014	7.216	1	0.216	8.0	0.435	-13.0	1.431	-4.6	9.915	-0.9	65.657	9.4
	0.5	0.476	0.535	0.506	1.137	0.042	8.254	2	0.229	14.3	0.485	-2.9	1.368	-8.8	9.915	-0.9	66.573	11.0
	1.5	1.463	1.538	1.500	0.030	0.053	3.539	3	0.262	31.1	0.644	28.8	1.625	8.3	10.127	1.3	56.236	-6.3
	4	3.934	4.070	4.002	0.047	0.096	2.389	4	0.180	-10.0	0.527	5.3	1.590	6.0	10.423	4.2	62.247	3.7
	10	9.790	10.115	9.952	0.476	0.230	2.311	5	0.218	8.9	0.542	8.5	1.658	10.5	10.254	2.5	60.178	0.3
Run	25	25.405	25.131	25.268	1.072	0.194	0.767	Mean	0.221	10.4	0.527	5.3	1.534	2.3	10.127	1.3	62.178	3.6
n 5	60	57.790	61.194	59.492	0.847	2.407	4.046	Std	0.029		0.078		0.128		0.220		4.205	
0.								CV (%)	13.339		14.723		8.313		2.173		6.763	
			Qu	uality contro	ols			TE (%)	23.774		20.056		10.582		3.441		10.393	
	0.98	1.054	1.119	1.087	10.872	0.046	4.250	1										
	5.04	4.803	4.917	4.860	3.570	0.081	1.657											
	42.5	45.440	35.738	40.589	4.496	6.860	16.902											
			Cal	ibration cu	rve				QC	0.2	QC	0.5	QC	1.5	QC	10	QC	60
	0.2	0.193	0.189	0.191	4.363	0.003	1.549	1	0.215	7.7	0.480	-4.0	1.481	-1.3	10.130	1.3	61.572	2.6
	0.5	0.512	0.507	0.509	1.897	0.004	0.817	2	0.155	-22.3	0.502	0.5	1.436	-4.2	9.710	-2.9	60.828	1.4
	1.5	1.512	1.506	1.509	0.601	0.005	0.320	3	0.187	-6.7	0.583	16.5	1.660	10.7	10.055	0.6	60.308	0.5
	4	3.923	3.964	3.943	1.416	0.029	0.726	4	0.149	-25.5	0.467	-6.7	1.659	10.6	10.452	4.5	68.047	13.4
	10	10.196	10.070	10.133	1.330	0.089	0.879	5	0.186	-7.2	0.462	-7.7	1.584	5.6	10.227	2.3	56.648	-5.6
Run	25	25.308	24.282	24.795	0.820	0.725	2.926	Mean	0.178	-10.8	0.499	-0.3	1.564	4.3	10.115	1.1	57.564	-4.1
n 6	60	57.940	62.670	60.305	0.508	3.345	5.546	Std	0.027		0.049		0.102		0.271		4.132	
0,								CV (%)	15.061		9.911		6.545		2.681		7.177	
			Qı	uality contro	ols			TE (%)	25.866		10.172		10.809		3.828		11.237	
	0.98	1.141	1.107	1.124	14.720	0.024	2.157											
	5.04	4.805	4.823	4.814	4.491	0.013	0.263											
	42.5	39.032	33.627	36.330	14.519	3.822	10.520											
			<u> </u>	ntor run	2000000				4.2	3%	-1.6	E9/	-0.6		0.0	6%	1 0	
nte					accurac	-												
Inter-run					precisio					11%		8%	_	0%		9%	9.7	
5			In	ter-run t	total erro	or			7.8	89%	6.9	3%	3.2	3%	2.0	5%	11.	58%

Appendix - Customisation and validation of a plasma renin activity immunoassay

Six runs were conducted over 6 different days. QC: quality control; NV: nominal value; Rep: replicate; AE: absolute error; Std: standard deviation; CV: coefficient of deviation; Dev: deviation from nominal value; TE: total error.

		Group	Count	Sum	Mean	Variance	Value 1	Value 2	Value 3	Value 4	Value 5	
	Description	Run 1	5	0.9144	0.1829	0.0003	0.2103	0.1855	0.1833	0.1759	0.1595	
	SC	Run 2	5	0.8807	0.1761	0.0010	0.1276	0.1701	0.2062	0.2053	0.1715	
		Run 3	5	0.8492	0.1698	0.0007	0.1835	0.1853	0.1959	0.1414	0.1432	
0	pti	Run 4	5	1.1057	0.2211	0.0013	0.1810	0.1878	0.2282	0.2473	0.2615	
Ň	Q	Run 5	5	1.1044	0.2209	0.0009	0.2159	0.2285	0.2622	0.1800	0.2177	
		Run 6	5	0.8920	0.1784	0.0007	0.2155	0.1553	0.1865	0.1490	0.1857	
ng/mL		Source of v	ariation	Square sum	Degree o	of freedom	Mean squ	uare sum	F-value	P-value	Critical F- value	
	P	Difference betw	een groups	0.01345715		5	0.0026	91431	3.29729728	0.02087196	2.620654148	
	ANO	Within gr	oups	0.01959009		24	0.0008	16254				
	V A	Calculation	n of repeata	bility (%)	Calculat	ion of time-diff precision		ediate	Calculation	n of variation b	etween days	
			14.92			17.54				0.0003		
	D	Group	Count	Sum	Mean	Variance	Value 1	Value 2	Value 3	Value 4	Value 5	
	Descriptior	Run 1	5	2.3665	0.4733	0.0027	0.4016	0.5175	0.5316	0.4613	0.4545	
	SC	Run 2	5	2.4497	0.4899	0.0011	0.5179	0.4421	0.4749	0.4918	0.5231	
	<u> </u>	Run 3	5	2.7407	0.5481	0.0053	0.4266	0.5477	0.6053	0.5557	0.6053	
0	pt	Run 4	5	2.5643	0.5129	0.0011	0.5045	0.4624	0.5169	0.5322	0.5483	
0.5	ō	Run 5	5	2.6333	0.5267	0.0060	0.4352	0.4854	0.6438	0.5266	0.5424	
	П	Run 6	5	2.4935	0.4987	0.0024	0.4802	0.5023	0.5825	0.4667	0.4617	
ng/mL	*	Source of v	ariation	Square sum	Degree o	of freedom	Mean squ	uare sum	F-value	P-value	Critical F- value	
η	ANO	Difference betw	een groups	0.01799256		5	0.0035	98512	1.1539867	0.36007178	2.620654148	
•	ō	Within gr	oups	0.07483994		24	0.0031	18331				
	¥	Calculation	n of repeata	bility (%)	Calculat	ion of time-diff precision		ediate	Calculation	n of variation b	etween days	
			10.99		11.13				0.00008			

Appendix 10.2-2:	Results of the conducted one-way ANOVA for inter-run accuracy and precision for the plasma renin activity assay validation

Appendix - Customisation and validation of a plasma renin activity immunoassay

		Group	Count	Sum	Mean	Variance	Value 1	Value 2	Value 3	Value 4	Value 5
	Description	Run 1	5	7.5156	1.5031	0.0133	1.4094	1.3607	1.6314	1.5882	1.5259
	SC	Run 2	5	7.2348	1.4470	0.0032	1.4564	1.5186	1.3970	1.3841	1.4787
	ř.	Run 3	5	7.4783	1.4957	0.0130	1.4227	1.3386	1.5901	1.6077	1.5192
<u> </u>	oti	Run 4	5	7.5613	1.5123	0.0016	1.5781	1.4926	1.4794	1.5210	1.4902
СЛ	Q	Run 5	5	7.6702	1.5340	0.0163	1.4306	1.3675	1.6247	1.5897	1.6577
		Run 6	5	7.8198	1.5640	0.0105	1.4805	1.4363	1.6602	1.6587	1.5841
ng/mL		Source of v	ariation	Square sum	Degree o	of freedom	Mean squ	uare sum	F-value	P-value	Critical F- value
Ľ	ANO	Difference betw	een groups	0.03859528		5	0.0077	19056	0.80098054	0.55996887	2.620654148
	Ō	Within gr	oups	0.23128819		24	0.0096				
	¥ A	Calculation	n of repeata	bility (%)	Calculat	ion of time-diff precision		ediate	Calculation	n of variation b	etween days
			6.50			6.40				-0.0003	
		Group	Count	Sum	Mean	Variance	Value 1	Value 2	Value 3	Value 4	Value 5
	Description	Run 1	5	49.3866	9.8773	0.0493	9.9414	9.6346	9.7512	10.2190	9.8404
	SC	Run 2	5	48.6503	9.7301	0.0930	9.7620	10.0120	9.9538	9.2412	9.6813
	Ť.	Run 3	5	51.2540	10.2508	0.0168	10.3630	10.0720	10.2400	10.3880	10.1910
—	oti	Run 4	5	49.3330	9.8666	0.0432	9.6602	9.8425	10.2160	9.7936	9.8207
10	Q	Run 5	5	50.6338	10.1268	0.0484	9.9149	9.9149	10.1270	10.4230	10.2540
Ŭ		Run 6	5	50.5739	10.1148	0.0735	10.1300	9.7099	10.0550	10.4520	10.2270
ng/mL		Source of v	ariation	Square sum	Degree o	of freedom	Mean squ	uare sum	F-value	P-value	Critical F- value
ř	ANO	Difference betw	een groups	0.98833837		5	0.1976	67675	3.6591025	0.01331519	2.620654148
	Ō	Within gr	oups	1.2964994		24	0.0540				
	VA	Calculation	n of repeata	bility (%)	Calculat	ion of time-diff precision		ediate	Calculation	n of variation b	etween days
		2.33				2.79				0.0239	

Appendix - Customisation and validation of a	a plasma renin activity immunoassay
· · · · · · · · · · · · · · · · · · ·	

		Group	Count	Sum	Mean	Variance	Value 1	Value 2	Value 3	Value 4	Value 5	
	e	Run 1	5	316.3970	63.2794	29.6802	63.2850	59.3870	72.6790	60.4180	60.6280	
	SC	Run 2	5	315.4070	63.0814	15.9392	60.0690	61.8780	69.5500	64.0590	59.8510	
	Ľ.	Run 3	5	349.4650	69.8930	37.3008	69.9690	71.6790	78.6580	67.1010	62.0580	
o	pti	Run 4	5	309.0720	61.8144	29.0663	58.8460	54.6030	68.9410	63.3410	63.3410	
Õ	ion	Run 5	5	310.8910	62.1782	17.6829	65.6570	66.5730	56.2360	62.2470	60.1780	
		Run 6	5	307.4030	61.4806	17.0702	61.5720	60.8280	60.3080	68.0470	56.6480	
ıg/m		Source of v	variation	Square sum	Degree of	freedom	Mean squ	are sum	F-value	P-value	Critical F- value	
Ц Ц		Difference betw	een groups	248.363151	5	5	49.6726	63011	2.03105219	0.11025247	2.620654148	
	Ō	Within gr	roups	586.95839	24	4	24.456	59957				
	¥ A	Calculatio	n of repeata	bility (%)	Calculatio	on of time-diffe precision		ediate	Calculatio	n of variation be	tween days	
			7.77			8.41		4.2027				

The repeatability, different intermediate precision, and variation between days were calculated for all five quality control levels (0.2, 0.5, 1.5, 10, and 60ng/mL).

Run	Mean value source 1	Mean value source 2	Mean value source 3	Mean value source 4	Mean value source 5	Mean value source 6	Mean value source 7	Date of run
Run 1	2.76	4.32	0.76	2.89	1.91	0.89	3.57	08.05.2017
Run 2	2.73	4.68	0.68	2.53	1.78	0.75	3.77	23.05.2017
Run 3	2.68	4.21	0.84	2.67	1.92	0.90	3.94	06.06.2017
Run 4	2.70	4.66	0.77	2.72	1.68	0.77	3.23	20.06.2017
Run 5	2.96	4.63	0.77	2.63	1.78	0.84	3.11	04.07.2017
Run 6	2.68	4.21	0.72	2.60	1.93	0.98	3.48	18.07.2017
Run 7	2.77	4.28	0.70	2.64	1.95	0.79	3.75	01.08.2017
Run 8	2.69	4.96	0.70	2.55	1.66	0.82	3.28	15.08.2017
Run 9	2.95	4.81	0.76	2.87	1.87	0.94	3.91	29.08.2017
Run 10	3.08	5.42	0.86	3.06	2.11	1.05	4.21	19.09.2017
Run 11	2.99	5.13	0.83	3.15	2.10	0.81	3.90	10.10.2017
Run 12	3.04	5.06	0.87	3.30	1.95	1.02	3.94	24.10.2017
Run 13	3.05	5.48	0.87	3.17	2.24	1.02	4.16	07.11.2017
Run 14	2.83	5.47	0.82	3.12	2.27	0.96	3.92	21.11.2017
Run 15	2.91	5.33	0.85	3.17	2.31	0.92	3.99	05.12.2017
Mean	2.85	4.84	0.79	2.87	1.96	0.90	3.74	
CV	5.2%	9.6%	8.3%	9.3%	10.4%	10.9%	9.0%	

Appendix 10.2-3: Results of precision over the whole process for the plasma renin activity assay validation.

Seven human sources were investigated in 15 different runs on 15 different days. The shown plasma renin activity values were obtained by a triplicate measurement of an incubated and non-incubated sample for each source. CV: coefficient of variation.

Source	Value	Native Angl values (ng/mL)	Spiked Angl values (ng/mL)	Corrected Angl values (ng/mL)	Deviation from nominal* concentration (%)
	1	0.3147	23.7690	26.0343	
	2	0.4862	24.3220	26.4577	
1	Mean	0.4005	24.0455	26.2460	-12.5134
	Std	0.0857	0.2765	0.2117	
	CV [%]	21.4123	1.1499	0.8067	
	1	0.8734	27.3680	29.4090	
	2	0.9957	26.7910	28.6328	
2	Mean	0.9346	27.0795	29.0209	-3.2637
	Std	0.0611	0.2885	0.3881	
	CV [%]	6.5405	1.0654	1.3373	
	1	1.1586	25.2070	26.6937	
	2	1.0982	25.5020	27.0882	
3	Mean	1.1284	25.3545	26.8910	-10.3634
	Std	0.0302	0.1475	0.1972	
	CV [%]	2.6764	0.5818	0.7335	
	1	0.7996	26.6180	28.6584	
	2	0.7152	24.5060	26.4078	
4	Mean	0.7574	25.5620	27.5331	-8.2229
	Std	0.0422	1.0560	1.1253	
	CV [%]	5.5725	4.1311	4.0871	
	1	0.7967	22.5830	24.1828	
	2	0.6960	21.9310	23.5709	
5	Mean	0.7464	22.2570	23.8768	-20.4106
	Std	0.0504	0.3260	0.3059	
	CV [%]	6.7488	1.4647	1.2814	

Appendix 10.2-4: Results of matrix effect experiments for the plasma renin activity assay validation.

Native angiotensin I (Angl) values were obtained by the measurement of native samples. Spiked Angl values were obtained by the spiking of native samples with Angl working solution (1.05 μ g/mL) to reach a nominal Angl concentration of 30° ng/mL. Corrected Angl values were obtained by subtraction of native Angl values from spiked Angl values. Std: standard deviation; CV: coefficient of variation.

Image: blank value (0 ng/mL) 1 0.5351 0.6320 Blank value (0 ng/mL) 3 0.5270 0 Mean 0.5647 0.0477 0 Starting value (60 ng/ml) 1 37.7120 37.1770 37.1770 Starting value (60 ng/ml) 1 35.0350 34.5080 37.1770 0 Mean 35.6523 35.0877 37.1770 0 Dilution 1 (30 ng/ml) Mean 15.6523 35.0877 37.1770 0 2 1.4.948 1.5254 37.1770 0 2 1.6.8410 16.7020 2 1 17.2370 16.7020 2 2 1.6.6410 16.1140 33.4039 -10.15 33.4039 -10.15 3 1.6.8240 1.9624 33.4039 -20.63 33.4039 -20.63 Dilution 2 1 0.16370 0.1213 29.5060 -20.63 -20.63 2 10.2320 9.7050 29.5060 -20.63 -20.63	Resulted concentration of the human source	Value	Measured Ang I (ng/mL)	Blank corrected Ang I (ng/mL)	Back calculated mean Angl value (ng/mL)	Deviation from starting value (%)						
Blank value (0 ng/mL) 3 0.5270 Image: CV [%] Mean 0.5647 Image: CV [%] Image: CV [%] <thimage: [%]<="" cv="" th=""> Image: CV [%] Image</thimage:>		1	0.5351									
(0 ng/mL) Mean Std 0.5647 0.0477 Std 0.0477 CV [%] 8.4470 I 37.7120 37.1770 2 34.2100 33.5780 3 35.0350 34.5080 Mean 35.6523 35.0877 Std 1.4948 1.5254 CV [%] 4.1928 4.3473 1 17.2370 16.7020 2 16.6410 16.140 3 16.6410 16.140 Mean 16.8240 16.2593 33.4039 -10.15 Std 0.2927 0.3191 CV [%] 1.7396 1.9624 Dilution 2 1 10.3390 9.8040 2 10.6290 9.9970 3 10.4000 9.8353 29.5060 -20.63 Std 0.1677 0.1213 29.5060 -20.63 Uilloution 3 3 7.5624 7.0354 27.7341 -25.40 Dilution 3 2 7.6124 7.0354 27.3898		2	0.6320									
Std 0.0477 CV [%] 8.4470 1 37.7120 2 34.2100 35.0350 34.5080 3 35.0350 34.2100 33.5780 3 35.0350 34.5080 37.1770 0 Mean 35.6523 35.0877 Std 1.4948 1 17.2370 1 17.2370 1 16.6410 1 16.6410 1 16.8240 1 17.396 1 10.3390 9.8040 2 10.6290 9.9970 3 10.2320 9.7050 29.5060 -20.63 Std 0.1677 0.12320 9.7050 29.5060 -20.63 Std 0.1677 0.12320 9.7056 2 7.3831 6.7511 3 3 7	Blank value	3	0.5270									
CV [%] 8.4470 Image: constraint of the system of the sys	(0 ng/mL)	Mean	0.5647									
Image: Starting value (60 ng/ml) 1 37.7120 37.1770 33.5780 Starting value (60 ng/ml) 3 35.0350 34.5080 37.1770 0 Std 1.4948 1.5254 37.1770 0 CV [%] 4.1928 4.3473 37.1770 0 Dilution 1 1 17.2370 16.7020 33.4039 -10.15 Std 1.4948 1.5254 33.4039 -10.15 33.4039 -10.15 Dilution 1 (30 ng/ml) Mean 16.6410 16.1140 33.4039 -10.15 Dilution 2 (20 ng/ml) Mean 16.8240 16.2593 33.4039 -10.15 Dilution 2 (20 ng/ml) Mean 10.6290 9.9970 3 10.2320 9.7050 Z 10.6290 9.9970 3 10.2320 9.7050 -20.63 Dilution 3 (15 ng/ml) Mean 7.4982 6.9335 27.7341 -25.40 Dilution 3 (15 ng/ml) Nean 7.4982 <th></th> <th>Std</th> <th>0.0477</th> <th></th> <th></th> <th></th>		Std	0.0477									
2 34.2100 33.5780 3 37.1770 0 Starting value (60 ng/ml) Mean 35.6523 35.0877 37.1770 0 Std 1.4948 1.5254 - - - - - - - 0 Dilution 1 (30 ng/ml) 1 17.2370 16.7020 - - - - - - - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 0 - 0 1 0 <		CV [%]	8.4470									
Starting value (60 ng/ml) 3 35.0350 34.5080 37.1770 0 Mean 35.6523 35.0877 37.1770 0 Std 1.4948 1.5254 - - - - - - - - - 0 - - - - - - - - - - - - - - 0 - - - 0 - - - 0 - - - - - - 0 - - - - - - - 0 - - 0 - - - - - 1 - - - 1 - 1 - 0 - - - - - - - - - - - - - - 1 1 1 1 1 1 1 1		1	37.7120	37.1770								
Mean 35.6523 35.0877 37.1770 Std 1.4948 1.5254 37.1770 Dilution 1 1 17.2370 16.7020 2 16.5940 15.9620 33.4039 -10.15 Std 0.2927 0.3191 33.4039 -10.15 Dilution 1 (30 ng/ml) Mean 16.8240 16.2593 33.4039 -10.15 Dilution 2 1 10.6290 9.9970 33.4039 -10.15 Dilution 2 (20 ng/ml) Mean 10.42320 9.7050 29.5060 -20.63 Std 0.1677 0.1213 29.5060 -20.63 -20.63 Dilution 3 1 7.5491 7.0141 2 -25.40 Std 0.0816 0.1293 27.7341 -25.40 Dilution 3 3 7.5624 7.0354 27.7341 -25.40 Mean 7.4982 6.9335 27.7341 -25.40 Std 0.0816 0.1293 27.3898 <t< th=""><th></th><th></th><th>34.2100</th><th>33.5780</th><th></th><th></th></t<>			34.2100	33.5780								
(60 ng/ml) Mean 35.6523 35.0877 Std 1.4948 1.5254 CV [%] 4.1928 4.3473 J 17.2370 16.7020 2 16.5940 15.9620 3 16.6410 16.1140 (30 ng/ml) Mean 16.8240 16.2593 Std 0.2927 0.3191 CV [%] 1.7396 1.9624 1 10.3390 9.8040 2 10.6290 9.9970 3 10.2320 9.7050 20 ng/ml) Mean 10.4000 9.8353 Std 0.1677 0.1213 CV [%] 1.6127 1.2330 Joilution 3 3 7.5624 7.0354 27.7381 6.7511 3 7.5624 7.0354 Std 0.0816 0.1293 27.7341 -25.40 VI [%] 1.0878 1.8644 27.3898 -26.33 Std 0.1198 0.0866 27.3898 </th <th>Starting value</th> <th>3</th> <th>35.0350</th> <th>34.5080</th> <th>37 1770</th> <th>0</th>	Starting value	3	35.0350	34.5080	37 1770	0						
CV [%] 4.1928 4.3473 Dilution 1 (30 ng/ml) 1 17.2370 16.7020 2 16.5940 15.9620 3 16.6410 16.1140 (30 ng/ml) Mean 16.8240 16.2593 Std 0.2927 0.3191 CV [%] 1.7396 1.9624 J 10.6290 9.9970 3 10.2320 9.7050 2 10.6290 9.9970 3 10.2320 9.7050 2 10.6290 9.9970 3 10.2320 9.7050 Std 0.1677 0.1213 CV [%] 1.6127 1.2330 J 7.5624 7.0354 2 7.3831 6.7511 3 7.5624 7.0354 2 6.1087 5.4767 3 5.8206 5.2936 Std 0.1198 0.0866 CV [%] 1.0878 1.8644 (12.5 ng/ml)	(60 ng/ml)	Mean	35.6523	35.0877	57.1770							
Dilution 1 (30 ng/ml) 1 2 3 16.6410 16.7020 15.9620 3 16.6410 33.4039 -10.15 Mean 16.8240 16.2593 Std 0.2927 0.3191 33.4039 -10.15 Dilution 2 (20 ng/ml) 1 10.3390 9.8040 2 29.5060 -20.63 Dilution 2 (20 ng/ml) 1 10.3220 9.7050 29.5060 -20.63 Std 0.1677 0.1213 29.5060 -20.63 Dilution 3 (15 ng/ml) 1 7.5491 7.01213 29.5060 -20.63 Dilution 3 (15 ng/ml) 1 7.5491 7.0141 2 7.3831 6.7511 2 Dilution 3 (15 ng/ml) 3 7.5624 7.0354 27.7341 -25.40 CV [%] 1.0878 1.8644 2 -26.33 -26.33 Dilution 4 (12.5 ng/ml) 1 6.0130 5.4767 2 -26.33 Std 0.1198 0.0866 2 -26.33 -26.33 Mean 5.9808 5.4161 27.3898 -26.33		Std	1.4948	1.5254								
Dilution 1 (30 ng/ml) 2 3 16.6940 16.8240 15.9620 16.2593 33.4039 -10.15 Mean 16.8240 16.2593 Std 0.2927 0.3191 CV [%] -10.15 Dilution 2 (20 ng/ml) 1 10.3390 9.8040 2 2 -20.63 Mean 10.6290 9.9970 3 29.5060 -20.63 Std 0.1677 0.1213 29.5060 -20.63 V[%] 1.6127 1.2330 29.5060 -20.63 Std 0.1677 0.1213 27.7341 -25.40 Dilution 3 (15 ng/ml) 1 7.5624 7.0354 27.7341 -25.40 Mean 7.4982 6.9335 27.7341 -25.40 Dilution 4 (12.5 ng/ml) 1 6.0130 5.4767 27.3898 -26.33 Std 0.0816 0.1293 27.3898 -26.33 Mean 5.9808 5.4161 27.3898 -26.33 V[%] 2.0032 1.5994 27.3898 -26.33		CV [%]	4.1928	4.3473								
Dilution 1 (30 ng/ml) 3 16.6410 16.1140 33.4039 -10.15 Mean Std 0.2927 0.3191 33.4039 -10.15 Dilution 2 (20 ng/ml) 1 10.3390 9.8040 9.9070		1	17.2370	16.7020								
(30 ng/ml) Mean 16.8240 16.2593 33.4039 -10.15 Std 0.2927 0.3191		2	16.5940	15.9620								
(30 ng/ml) Mean 16.8240 16.2593 Std 0.2927 0.3191 CV [%] 1.7396 1.9624 1 10.3390 9.8040 2 10.6290 9.9970 3 10.2320 9.7050 (20 ng/ml) Mean 10.4000 9.8353 Std 0.1677 0.1213 CV [%] 1.6127 1.2330 J 7.5491 7.0141 2 7.3831 6.7511 3 7.5624 7.0354 Z7.7341 -25.40 Mean 7.4982 6.9335 Std 0.0816 0.1293 CV [%] 1.0878 1.8644 J 6.0130 5.4780 2 6.1087 5.4767 3 5.8206 5.2936 CV [%] 2.0032 1.5994 Mean of all back calculated Angl values (ng/mL) 31.0421 Std of all back calculated Angl values (ng/mL) 4.1790	Dilution 1	3	16.6410	16.1140	22 4020	10.15						
CV [%] 1.7396 1.9624 I 10.3390 9.8040 2 10.6290 9.9970 3 10.2320 9.7050 Kean 10.4000 9.8353 29.5060 -20.63 Mean 10.4000 9.8353 29.5060 -20.63 Mean 10.4000 9.8353 29.5060 -20.63 Dilution 3 (15 ng/ml) 1 7.5491 7.0141 2 Z 7.3831 6.7511 3 7.5624 7.0354 27.7341 -25.40 Mean 7.4982 6.9335 27.7341 -25.40 -26.33 Dilution 4 (15 ng/ml) Mean 7.4982 6.9335 27.7341 -25.40 Mean 7.4982 6.9335 27.7341 -26.33 Dilution 4 (12.5 ng/ml) 1 6.0130 5.4767 2 Mean 5.9808 5.4161 27.3898 -26.33 Mean of all back calculated Angl values (ng/mL) 31.0421 Mean of all back calculated Angl value	(30 ng/ml)	Mean	16.8240	16.2593	33.4039	-10.15						
Dilution 2 (20 ng/ml) 1 2 3 (20 ng/ml) 1 2 3 3 (20 ng/ml) 1 2 3 3 (20 ng/ml) 1 2 3 3 3 (20 ng/ml) 1 2 3 3 (20 ng/ml) 1 2 3 3 (20 ng/ml) 1 2 3 3 7.5624 2 7.0354 2 2 7.0354 2 2 7.7341 -20.63 Dilution 3 (15 ng/ml) 1 7.5624 7.0141 2 7.73831 2 7.7341 -2 5.40 Dilution 3 (15 ng/ml) 1 7.5624 7.0354 2 7.7341 -2 5.40 Dilution 3 (15 ng/ml) 1 8 td 0.0816 0.1293 2 7.7341 -2 5.40 Dilution 4 (12.5 ng/ml) 1 6.0130 5.4780 2 7.3898 -2 6.33 -2 6.33 Dilution 4 (12.5 ng/ml) 1 8 td 5.9808 5.4161 2 7.3898 -2 6.33 -2 6.33 Mean 5.9808 5.4161 2 7.3898 -2 6.33 -2 6.33 Mean of all back calculated Angl values (ng/mL) 31.0421 31.0421 Std of all back calculated Angl values (ng/mL) 4.1790 4.1790		Std	0.2927	0.3191								
Dilution 2 (20 ng/ml) 2 3 10.6290 10.2320 9.9970 9.7050 29.5060 -20.63 Mean 10.4000 9.8353 Std 0.1213 0.1213 29.5060 -20.63 Dilution 3 (15 ng/ml) Total 7.5491 7.0141 20.5060 -20.63 Dilution 3 (15 ng/ml) 1 7.5491 7.0141 20.5060 -20.63 Dilution 3 (15 ng/ml) 1 7.5491 7.0141 20.5060 -20.63 Dilution 3 (15 ng/ml) 1 7.5424 7.0354 27.7341 -25.40 Dilution 4 (12.5 ng/ml) Mean 7.4982 6.9335 27.7341 -25.40 Dilution 4 (12.5 ng/ml) 1 6.0130 5.4767 2 6.1087 5.4767 3 5.8206 5.2936 27.3898 -26.33 Mean 5.9808 5.4161 27.3898 -26.33 Mean of all back calculated Angl values (ng/mL) 31.0421 Mean of all back calculated Angl values (ng/mL) 31.0421		CV [%]	1.7396	1.9624								
Dilution 2 (20 ng/ml) 3 10.2320 9.7050 29.5060 -20.63 Kean 10.4000 9.8353 29.5060 -20.63 Std 0.1677 0.1213 - - CV [%] 1.6127 1.2330 - - Dilution 3 (15 ng/ml) 1 7.5491 7.0141 - - 2 7.3831 6.7511 - - - - 3 7.5624 7.0354 - - - - Mean 7.4982 6.9335 - - - - Std 0.0816 0.1293 - - - - Dilution 4 (12.5 ng/ml) 1 6.0130 5.4767 - <t< th=""><th></th><th>1</th><th>10.3390</th><th>9.8040</th><th></th><th></th></t<>		1	10.3390	9.8040								
Mean 10.4000 9.8353 29.5060 -20.63 Std 0.1677 0.1213 -20.63 -20.63 Std 0.1677 0.1213 -20.63 -20.63 Dilution 3 (15 ng/ml) 1 7.5491 7.0141 -20.63 Mean 7.4982 6.9335 27.7341 -25.40 Dilution 3 (15 ng/ml) Mean 7.4982 6.9335 27.7341 -25.40 Dilution 4 (12.5 ng/ml) Mean 7.4982 6.9335 27.7341 -25.40 Dilution 4 (12.5 ng/ml) Mean 5.8206 5.2936 27.3898 -26.33 Mean 5.9808 5.4161 27.3898 -26.33 Mean of all back calculated Angl values (ng/mL) 31.0421 Mean of all back calculated Angl values (ng/mL) 31.0421		2	10.6290	9.9970								
(20 ng/ml) Mean 10.4000 9.8353 Std 0.1677 0.1213 CV [%] 1.6127 1.2330 Dilution 3 (15 ng/ml) 1 7.5491 7.0141 2 7.3831 6.7511 3 7.5624 7.0354 Kd 0.0816 0.1293 Std 0.0816 0.1293 CV [%] 1.0878 1.8644 2 6.1087 5.4767 3 5.8206 5.2936 27.3898 -26.33 Dilution 4 (12.5 ng/ml) Mean 5.9808 5.4161 27.3898 -26.33 Mean of all back calculated Angl values (ng/mL) 31.0421 31.0421	Dilution 2	3	10.2320	9.7050	20 5060	20.62						
CV [%] 1.6127 1.2330 I 7.5491 7.0141 2 7.3831 6.7511 3 7.5624 7.0354 (15 ng/ml) Mean 7.4982 6.9335 Std 0.0816 0.1293 CV [%] 1.0878 1.8644 J 6.0130 5.4780 2 6.1087 5.4767 3 5.8206 5.2936 27.73898 -26.33 Mean 5.9808 5.4161 27.3898 Std 0.1198 0.0866 CV [%] CV [%] 2.0032 1.5994 31.0421 Mean of all back calculated Angl values (ng/mL) 31.0421	(20 ng/ml)	Mean	10.4000	9.8353	29.5000	-20.03						
Dilution 3 (15 ng/ml) 1 7.5491 7.0141 2 7.3831 6.7511 3 7.5624 7.0354 (15 ng/ml) Mean 7.4982 6.9335 Std 0.0816 0.1293 CV [%] 1.0878 1.8644 Jilution 4 (12.5 ng/ml) 1 6.0130 5.4780 2 6.1087 5.4767 27.3898 -26.33 Dilution 4 (12.5 ng/ml) Mean 5.9808 5.4161 27.3898 -26.33 Mean of all back calculated Angl values (ng/mL) 31.0421 31.0421 Std of all back calculated Angl values (ng/mL) 4.1790 4.1790		Std	0.1677	0.1213								
Dilution 3 (15 ng/ml) 2 7.3831 6.7511 2 27.7341 -25.40 Mean 7.4982 6.9335 2 27.7341 -25.40 Std 0.0816 0.1293 2 2 2 2 CV [%] 1.0878 1.8644 2 2 2 2 Dilution 4 (12.5 ng/ml) 1 6.0130 5.4767 2 3		CV [%]	1.6127	1.2330								
Dilution 3 (15 ng/ml) 3 7.5624 7.0354 27.7341 -25.40 Mean 7.4982 6.9335 27.7341 -25.40 Std 0.0816 0.1293 - - CV [%] 1.0878 1.8644 - - Dilution 4 (12.5 ng/ml) 1 6.0130 5.4767 - - Mean 5.9808 5.4161 - -26.33 - -26.33 Mean of all back calculated Angl values (ng/mL) 31.0421 - - -		1	7.5491	7.0141								
Mean 7.4982 6.9335 27.7341 -25.40 Std 0.0816 0.1293		2	7.3831	6.7511								
Mean 7.4982 6.9335 Std 0.0816 0.1293 CV [%] 1.0878 1.8644 Image: Part of the state	Dilution 3	3	7.5624	7.0354	07 7244	25.40						
CV [%] 1.0878 1.8644 Image: Dilution 4 (12.5 ng/ml) 1 6.0130 5.4780 Dilution 4 (12.5 ng/ml) 2 6.1087 5.4767 Std 5.8206 5.2936 27.3898 CV [%] 2.0032 1.5994 -26.33 Mean of all back calculated Angl values (ng/mL) 31.0421 Std of all back calculated Angl values (ng/mL) 4.1790	(15 ng/ml)	Mean	7.4982	6.9335	27.7341	-23.40						
Dilution 4 (12.5 ng/ml) 1 6.0130 5.4780 2 6.1087 5.4767 -26.33 Mean 5.9808 5.4161 -26.33 Std 0.1198 0.0866 -26.33 CV [%] 2.0032 1.5994 31.0421 Std of all back calculated Angl values (ng/mL) 31.0421		Std	0.0816	0.1293								
Dilution 4 (12.5 ng/ml) 2 6.1087 5.4767 2 2 6.1087 5.2936 2 2 2 3 5.8206 5.2936 2 2 3 -26.33		CV [%]	1.0878	1.8644								
Dilution 4 (12.5 ng/ml) 3 5.8206 5.2936 27.3898 -26.33 Mean 5.9808 5.4161 -26.33 -26.33 -26.33 -26.33 Std 0.1198 0.0866 -26.33 -26.33 -26.33 -26.33 Mean of all back calculated Angl values (ng/mL) 31.0421 -26.33		1	6.0130	5.4780								
Mean 5.9808 5.4161 27.3898 -26.33 Std 0.1198 0.0866 -26.33 -26.33 CV [%] 2.0032 1.5994 -26.33 Mean of all back calculated Angl values (ng/mL) 31.0421 Std of all back calculated Angl values (ng/mL) 4.1790		2	6.1087	5.4767								
Mean 5.9808 5.4161 Std 0.1198 0.0866 CV [%] 2.0032 1.5994 Mean of all back calculated Angl values (ng/mL) 31.0421 Std of all back calculated Angl values (ng/mL) 4.1790	Dilution 4	3	5.8206	5.2936	27 2000	26.22						
CV [%]2.00321.5994Mean of all back calculated Angl values (ng/mL)31.0421Std of all back calculated Angl values (ng/mL)4.1790	(12.5 ng/ml)	Mean	5.9808	5.4161	21.3090	-20.33						
Mean of all back calculated Angl values (ng/mL)31.0421Std of all back calculated Angl values (ng/mL)4.1790		Std	0.1198	0.0866								
Std of all back calculated Angl values (ng/mL)4.1790												
Std of all back calculated Angl values (ng/mL)4.1790	Mean of all ba	ick calcu	lated Angl va	alues (ng/mL)	L) 31.0421							
					13.4	46%						

Appendix 10.2-5: Results of the evaluation of parallelism for the plasma renin activity assay validation.

The blank corrected angiotensin I (Angl) value was obtained by subtracting the measured blank value (measurement of the human source without spiked Angl) from the measured Angl value. The back calculated mean Angl value (n=3) was obtained by multiplying the blank corrected Angl value with the dilution factor. Std: standard deviation; CV: coefficient of variation.

			9	Source	1	9	Source	2	:	Source	3	9	Source	4	9	Source	5	9	Source	6	s	ource	7
Run	Week	Value	Angl 0° C (ng/mL)	Angl 37° C (ng/mL)	PRA (ng/mL/h)																		
		1	0.5380	4.1713	2.6886	1.0649	8.2719	5.3332	0.5199	1.4797	0.7102	0.5860	4.4510	2.8601	1.5677	4.3414	2.0525	0.4579	1.7174	0.9321	1.9462	7.4794	4.0946
		2	0.5590	4.4622	2.8883	1.1389	8.7485	5.6311	0.4582	1.5995	0.8446	0.5499	4.3860	2.8387	1.5792	4.2017	1.9407	0.4976	1.6943	0.8856	1.9658	7.7144	4.2540
1.1	1	3	0.5269	4.3189	2.8061	1.1515	7.8855	4.9832	0.4498	1.5207	0.7925	0.6013	4.6316	2.9824	1.5398	4.4436	2.1488	0.4508	1.8296	1.0203	2.0468	6.8149	3.5284
	•	Mean	0.5413	4.3175	2.7943	1.1184	8.3020	5.3158	0.4759	1.5333	0.7824	0.5791	4.4895	2.8937	1.5622	4.3289	2.0473	0.4688	1.7471	0.9460	1.9863	7.3362	3.9590
		Std	0.0133	0.1188	0.0820	0.0382	0.3530	0.2648	0.0313	0.0497	0.0553	0.0216	0.1039	0.0633	0.0165	0.0992	0.0851	0.0206	0.0591	0.0559	0.0435	0.3809	0.3113
		CV (%)	3.0158	3.3695	2.9330	4.1833	5.2073	4.9815	8.0481	3.2422	7.0686	4.5589	2.8348	2.1878	1.2961	2.8045	4.1547	5.3785	4.1436	5.9065	2.6860	6.3591	7.8642
		1	0.5144	4.2468	2.7620	1.1515	7.4891	4.6898	0.4428	1.4344	0.7338	0.4408	4.3725	2.9095	1.5335	4.0883	1.8906	0.4057	1.5733	0.8641	1.8570	7.3102	4.0354
		2	0.6321	4.3557	2.7555	1.1212	7.6666	4.8436	0.4159	1.5823	0.8632	0.4381	4.4505	2.9692	1.4831	4.0251	1.8811	0.4099	1.6678	0.9309	1.9016	6.6336	3.5017
1.2	1	3	0.6187	4.4580	2.8411	1.2168	7.0774	4.3368	0.4747	1.3965	0.6822	0.5733	4.3653	2.8061	1.4484	4.2387	2.0648	0.3768	1.6968	0.9768	1.9047	6.9991	3.7699
		Mean	0.5884	4.3535	2.7862	1.1632	7.4110	4.6234	0.4444	1.4711	0.7597	0.4841	4.3961	2.8949	1.4883	4.1174	1.9455	0.3974	1.6460	0.9239	1.8878	6.9810	3.7690
		Std	0.0526	0.0862	0.0389	0.0399	0.2468	0.2121	0.0240	0.0802	0.0761	0.0631	0.0386	0.0674	0.0349	0.0896	0.0845	0.0147	0.0527	0.0463	0.0218	0.2765	0.2179
		CV (%)	10.9530	2.4260	1.3973	4.2027	4.0783	4.5884	6.6224	6.6728	10.0215	15.9680	1.0749	2.3273	2.8759	2.6653	4.3420	4.5364	3.8558	5.0118	1.4127	6.3591	5.7808
		1	0.6168	4.2468	2.6862	1.1684	6.8940	4.2369	0.4469	1.4799	0.7644	0.6665	4.4252	2.7814	1.4388	3.9402	1.8510	0.4414	1.5006	0.7838	1.9431	6.7377	3.5480
		2	0.6406	4.3557	2.7492	1.2588	7.2708	4.4489	0.4310	1.5533	0.8305	0.6578	4.5146	2.8540	1.4554	4.0211	1.8986	0.3625	1.6283	0.9367	1.8654	6.7568	3.6196
1.3	1	3	0.6285	4.4580	2.8339	1.2005	6.9639	4.2649	0.5159	1.4559	0.6956	0.5549	4.6757	3.0494	1.4331	4.0992	1.9729	0.4453	1.7098	0.9357	1.9351	6.7043	3.5292
		Mean	0.6289	4.3535	2.7562	1.2092	7.0429	4.3169	0.4646	1.4964	0.7635	0.6264	4.5385	2.8949	1.4424	4.0202	1.9075	0.4164	1.6129	0.8854	1.9145	6.7329	3.5656
		Std	0.0097	0.0862	0.0605	0.0374	0.1637	0.0940	0.0368	0.0414	0.0551	0.0507	0.1037	0.1132	0.0095	0.0649	0.0502	0.0381	0.0861	0.0719	0.0349	0.0217	0.0390
		CV (%)	1.8962	2.6285	2.1946	3.7877	2.8481	2.1779	9.7111	3.3918	7.2121	0.8005	2.7973	3.9091	0.8005	1.9770	2.6292	11.2160	6.5353	8.1151	2.2310	0.3947	1.0927
Reference fi	PRA value irst 3 runs)		0.59	4.34	2.75	1.16	7.59	4.71	0.46	1.50	0.76	0.56	4.47	2.87	1.50	4.16	1.95	0.43	1.67	0.91	1.93	7.02	3.73
		1	0.5228	4.0988	2.6462	1.0588	7.2337	4.5694	0.4740	1.3362	0.6380	0.5269	4.0229	2.5871	1.2922	3.5228	1.6506	0.4048	1.5264	0.8300	1.5300	6.4791	3.6623
		2	0.5026	4.2713	2.7888	1.0978	7.3008	4.5902	0.4212	1.3687	0.7011	0.5572	3.8788	2.4580	1.3856	3.7725	1.7663	0.3763	1.2907	0.6767	1.7093	6.2013	3.3241
		3	0.5462	4.2637	2.7510	1.0716	7.6597	4.8752	0.4811	1.4431	0.7119	0.4773	3.9193	2.5471	1.2213	3.8060	1.9127	0.3824	1.4004	0.7533	1.6757	6.4666	3.5453
2	2	Mean	0.5239	4.2113	2.7287	1.0761	7.3981	4.6783	0.4588	1.3827	0.6837	0.5205	3.9403	2.5307	1.2997	3.7004	1.7765	0.3878	1.4058	0.7533	1.6383	6.7329	3.7700
		Std	0.0178	0.0796	0.0603	0.0162	0.1870	0.1395	0.0267	0.0447	0.0326	0.0329	0.0607	0.0539	0.0673	0.1263	0.1072	0.0123	0.0963	0.0626	0.0778	0.1281	0.1403
		CV (%)	4.1562	2.3144	2.2102	1.8501	3.0963	2.9818	7.1319	3.3918	4.7655	0.8005	2.7973	2.1314	6.3418	4.1821	6.0353	3.8727	8.3899	8.3073	5.8180	2.4582	3.7203
		Dev (%)		99.0820			99.3427			89.7629			88.2255			91.1486			82.7687			101.0554	
		1	0.5128	3.9671	2.5562	1.0084	6.7470	4.2466	0.5264	1.6245	0.8126	0.5767	4.0471	2.5681	1.7850	4.2804	1.8466	0.5268	1.7247	0.8864	1.9766	7.1011	3.7921
		2	0.5724	4.1201	2.6253	1.0830	6.8544	4.2708	0.4404	1.5877	0.8490	0.5418	4.0768	2.6159	1.8004	4.0360	1.6543	0.4526	1.6327	0.8733	2.0447	7.6064	4.1157
3	4	3	0.5507	4.3977	2.8468	1.1621	6.7260	4.1173	0.4580	1.6289	0.8664	0.4860	4.3190	2.8364	1.5824	4.6272	2.2532	0.4259	1.7096	0.9499	2.2379	7.5188	3.9079
		Mean	0.5453	4.1616	2.6761	1.0845	6.7758	4.2116	0.4749	1.6137	0.8427	0.5348	4.1476	2.6734	1.7226	4.3145	1.9180	0.4684	1.6890	0.9032	2.0864	7.4088	3.9386
		Std	0.0246	0.1782	0.1239	0.0628	0.0562	0.0674	0.0371	0.0185	0.0224	0.0373	0.1218	0.1168	0.0993	0.2426	0.2496	0.0427	0.0403	0.0335	0.1107	0.2205	0.1339

Appendix 10.2-6:	Long term stability	of plasma renin act	ivity in 7 human sou	irces for the plasma	renin activity assa	y validation.
	1	I	I		1	1

	a plasma renin activity	
o dotor modulor i dri	a placina i cini acavia,	mmanoaooay

			9	Source	1	9	Source	2	9	Source	3	9	Source	4	9	Source	5	9	Source	6	s	ource	7
Run	Week	Value	Angl 0° C (ng/mL)	Angl 37° C (ng/mL)	PRA (ng/mL/h)																		
		CV (%)	5.5342	4.1616	4.6316	7.0892	1.0165	1.6003	9.5675	1.4005	2.6619	8.5510	3.5957	4.3708	7.0629	6.8856	13.0147	11.1620	2.9204	3.7040	6.4974	3.6447	3.3985
		Dev (%)		97.1735			89.4320			110.6432		ĺ	93.2013		1	98.4079			99.2369			105.5741	
		1	0.4515	3.9498	2.5888	0.9075	7.2239	4.6741	0.4458	1.4007	0.7066	0.4623	3.8916	2.5377	1.3967	3.7889	1.7702	0.3794	1.4443	0.7881	1.5073	6.0584	3.3678
		2	0.5141	4.3112	2.8099	0.9742	7.4268	4.7749	0.3977	1.5247	0.8340	0.4866	4.2403	2.7778	1.3674	3.3911	1.4975	0.4015	1.3854	0.7281	1.5459	5.7159	3.0858
		3	0.5419	4.1998	2.7069	1.0736	7.1826	4.5207	0.4246	1.4809	0.7817	0.4553	4.2285	2.7922	1.2578	3.6452	1.7667	0.3625	1.4369	0.7950	1.6472	6.0137	3.2312
4	6	Mean	0.5025	4.1536	2.7018	0.9851	7.2778	4.6566	0.4227	1.4688	0.7741	0.4681	4.1476	2.7229	1.3406	3.6084	1.6781	0.3811	1.4222	0.7704	1.5668	5.9293	3.2283
		Std	0.0378	0.1511	0.0903	0.0682	0.1067	0.1045	0.0197	0.0513	0.0523	0.0134	0.1617	0.1167	0.0598	0.1645	0.1277	0.0160	0.0262	0.0300	0.0590	0.1520	0.1152
		CV (%)	9.2166	4.5490	3.3434	8.4848	1.7953	2.2448	5.7086	4.2832	6.7535	3.5022	4.8066	4.2868	5.4590	5.5820	7.6107	5.1281	2.2541	3.9004	4.6128	3.6447	3.5669
		Dev (%)		98.1070			98.8815			101.6365			94.9243			86.1003			84.6433			86.5349	
		1	0.5615	4.2670	2.7421	1.1410	7.1698	4.4613	0.4876	1.4809	0.7350	0.7481	4.1643	2.5280	1.5719	4.0654	1.8452	0.4796	1.6717	0.8822	1.7842	7.0261	3.8790
		2	0.6610	4.8485	3.0988	1.1313	7.7449	4.8941	0.5352	1.6234	0.8053	0.7328	4.1653	2.5401	1.5769	3.5570	1.4653	0.4926	1.5492	0.7819	1.8363	5.3406	2.5932
		3	0.6712	4.7752	3.0370	1.2504	7.3790	4.5352	0.4827	1.5311	0.7758	0.6483	4.4727	2.8300	1.3720	4.1036	2.0214	0.4712	1.6174	0.8482	1.9251	5.7708	2.8458
5	8	Mean	0.6312	4.6302	2.9593	1.1742	7.4312	4.6302	0.5018	1.5451	0.7720	0.7097	4.2674	2.6327	1.5069	3.9087	1.7773	0.4811	1.6128	0.8374	1.8485	6.0458	3.1060
		Std	0.0495	0.2586	0.1556	0.0540	0.2377	0.1890	0.0237	0.0590	0.0288	0.0439	0.1451	0.1396	0.0954	0.2492	0.2321	0.0088	0.0501	0.0417	0.0582	0.7151	0.5562
		CV (%)	9.6012	6.8396	5.2592	5.6358	3.9172	4.0822	5.7804	4.6765	3.7296	7.5704	4.1650	5.3037	7.7556	7.7968	13.0566	2.2467	3.8070	4.9755	3.8538	14.4850	17.9088
		Dev (%)		107.4550			98.3213			101.3677			91.7801			91.1866			92.0073			83.2567	
		1	0.5641	4.0321	2.5663	1.1964	6.9697	4.2722	0.5363	1.4957	0.7099	0.6180	4.0300	2.5249	1.5840	4.1348	1.8876	0.4328	1.6697	0.9153	1.9590	6.3390	3.2412
		2	0.5841	4.2771	2.7328	1.1986	7.0324	4.3170	0.4691	1.5505	0.8003	0.6053	4.0648	2.5600	1.7536	4.2531	1.8496	0.4978	1.7288	0.9110	1.9548	7.1200	3.8222
		3	0.5682	4.2783	2.7455	1.1926	6.6678	4.0516	0.5633	1.4564	0.6609	0.6970	4.3696	2.7177	1.5891	4.3827	2.0673	0.4694	1.9590	1.1023	1.9412	6.4941	3.3691
6	10	Mean	0.5722	4.1958	2.6815	1.1959	6.8900	4.2136	0.5229	1.5009	0.7237	0.6401	4.1548	2.6009	1.6422	4.2569	1.9349	0.4667	1.7858	0.9762	1.9517	6.6510	3.4775
		Std	0.0086	0.1158	0.0816	0.0025	0.1592	0.1160	0.0396	0.0386	0.0577	0.0406	0.1525	0.0838	0.0788	0.1012	0.0949	0.0266	0.1248	0.0892	0.0076	0.3376	0.2493
		CV (%)	1.8339	3.3796	3.0447	0.2527	2.8293	2.7527	9.2828	3.1506	7.9771	7.7633	4.4968	3.2238	5.8770	2.9131	4.9058	6.9782	2.3876	9.1364	0.4773	6.2185	7.1685
		Dev (%)	0.5416	97.3690 4.0706	2.6114	1.0850	89.4760 7.0316	4.4005	0.4459	95.0189 1.2555	0.5991	0.5579	90.6713 4.1738	2.6758	1.4677	99.2710 4.1069	1.9530	0.4636	107.2554 1.4755	0.7488	1.5819	93.2163 6.7974	3.8595
		1	0.5410	4.0708	2.8114	1.0960	6.8961	4.4005	0.4459	1.4542	0.7783	0.6079	4.1758	2.5512	1.4677	3.9904	1.8625	0.3866	1.4755	0.8093	1.6722	6.6460	3.6806
		2	0.5421	4.4024	2.8566	1.0442	6.6538	4.1511	0.4144	1.3878	0.7203	0.5274	4.1485	2.6796	1.3965	4.1473	2.0356	0.3615	1.4628	0.8150	1.7236	6.5028	3.5366
7	12	3	0.5416	4.2848	2.7700	1.0751	6.8605	4.2812	0.4209	1.3658	0.6992	0.5644	4.1259	2.6355	1.4459	4.0815	1.9504	0.4039	1.4728	0.7910	1.6592	6.7329	3.7545
'	12	Mean	0.0004	0.1517	0.1122	0.0223	0.1563	0.1021	0.0184	0.0826	0.0747	0.0332	0.0509	0.0597	0.0350	0.0665	0.0707	0.0435	0.0073	0.0299	0.0586	0.1203	0.1321
		Std	0.0882	2.3144	4.0523	2.5400	2.7899	2.3848	5.3418	7.4064	10.6802	7.2040	1.5105	2.2634	2.9651	1.9968	3.6243	13.1780	0.6119	3.7861	4.3244	2.2160	3.5175
		CV (%)		100.5810			90.9111			91.8094			91.8795			100.0671			86.9087			100.6409	
		Dev (%)	0.5345	4.0305	2.5870	1.1081	7.6637	4.8511	0.4404	1.3565	0.6779	0.4843	4.0020	2.6031	1.3973	3.5690	1.6071	0.3550	1.3182	0.7128	1.7057	6.3645	3.4475
8	14	2	0.5644	4.3619	2.8102	1.1180	7.8177	4.9578	0.3758	1.4146	0.7687	0.4721	3.8451	2.4960	1.4915	3.6345	1.5858	0.4137	1.5017	0.8051	1.6228	6.1495	3.3498
-		3	0.5648	4.1830	2.6775	1.1409	7.9771	5.0588	0.4789	1.3548	0.6482	0.5348	4.0010	2.5650	1.3096	3.7344	1.7944	0.3551	1.6105	0.9290	1.7142	5.8248	3.0418
		3					-					1					-				I		

			v immunoassav

			:	Source	1	:	Source	2	!	Source	3	9	Source	4	9	Source	5	:	Source	6	9	ource	7
Run	Week	Value	Angl 0° C (ng/mL)	Angl 37° C (ng/mL)	PRA (ng/mL/h)																		
		Mean	0.5546	4.1918	2.6916	1.1223	7.8195	4.9559	0.4317	1.3753	0.6983	0.4971	3.9494	2.5547	1.3995	3.6460	1.6624	0.3746	1.4768	0.8156	1.6809	6.1129	3.2797
		Std	0.0142	0.1354	0.0916	0.0137	0.1280	0.0848	0.0425	0.0278	0.0513	0.0272	0.0737	0.0443	0.0743	0.0680	0.0937	0.0276	0.1206	0.0886	0.0412	0.2218	0.1729
		CV (%)	3.1308	3.9576	3.4049	1.4987	2.0040	1.7107	12.0670	2.4753	7.3423	6.6933	2.2866	1.7345	6.5010	2.2842	5.6363	9.0385	10.0020	10.8616	3.0030	3.6447	5.2707
		Dev (%)		97.7342			105.2379			91.6812			89.0617			85.2928			89.6135			87.9135	
		1	0.5346	4.3880	2.8515	1.0855	7.8662	5.0177	0.5315	1.5245	0.7348	0.6160	4.5199	2.8889	1.5550	4.4604	2.1500	0.5575	1.6322	0.7952	1.8538	7.3215	4.0461
		2	0.5716	4.9540	3.2430	1.1925	7.5882	4.7328	0.4679	1.5780	0.8214	0.5958	4.3610	2.7863	1.6450	3.8677	1.6448	0.5079	1.8016	0.9573	1.7602	7.5287	4.2687
		3	0.6099	4.3255	2.7496	1.2178	7.5287	4.6701	0.5166	1.5094	0.7347	0.5166	4.4969	2.9454	1.5741	4.0186	1.8089	0.4768	1.9020	1.0546	1.9375	6.5506	3.4137
9	16	Mean	0.5720	4.5558	2.9480	1.1653	7.6610	4.8069	0.5053	1.5373	0.7636	0.5761	4.4593	2.8735	1.5914	4.1156	1.8679	0.5141	1.7786	0.9357	1.8505	7.1336	3.9095
		Std	0.0307	0.2827	0.2127	0.0573	0.1471	0.1513	0.0271	0.0294	0.0409	0.0429	0.0701	0.0659	0.0387	0.2515	0.2104	0.0332	0.1113	0.1070	0.0724	0.4208	0.3622
		CV (%)	6.5762	7.5955	7.2144	6.0257	2.3513	3.1471	6.5765	2.3445	5.3520	4.4708	1.9210	2.2921	2.9791	7.5182	11.2650	7.9192	7.6690	11.4336	4.7937	7.2256	9.2638
		Dev (%)		107.0467			102.0732			100.2646			100.1770			95.8363			102.8100			104.7952	
		1	0.5600	4.1722	2.6730	1.0720	8.2325	5.2988	0.5250	1.5652	0.7698	0.5683	4.4942	2.9052	1.5951	4.2270	1.9476	0.4390	1.8458	1.0410	1.7669	7.6647	4.3644
		2	0.5522	4.9944	3.2872	1.1245	8.6204	5.5470	0.4391	1.6875	0.9238	0.5932	4.9176	3.2001	1.4781	4.4384	2.1906	0.4349	1.8636	1.0572	1.7365	7.4191	4.2051
		3	0.3585	4.8073	3.2921	1.1115	8.4125	5.4027	0.4998	1.6797	0.8731	0.5020	4.6571	3.0748	1.5965	4.5498	2.1854	0.3627	1.8030	1.0658	1.7767	7.2687	4.0641
10	19	Mean	0.4903	4.6580	3.0841	1.1027	8.4218	5.4162	0.4880	1.6441	0.8556	0.5545	4.6896	3.0600	1.5566	4.4051	2.1079	0.4122	1.8375	1.0547	1.7600	7.4508	4.2112
		Std	0.0932	0.3519	0.2907	0.0223	0.1585	0.1018	0.0360	0.0559	0.0641	0.0385	0.1744	0.1208	0.0555	0.1339	0.1134	0.0350	0.0254	0.0103	0.0171	0.1632	0.1227
		CV (%)	23.2870	7.5955	9.4254	2.4777	2.3051	1.8790	9.0441	1.0200	7.4919	8.5001	4.5544	3.9491	4.3651	3.7226	5.3778	10.4130	1.6927	0.9746	2.6829	2.6829	2.9129
		Dev (%)	0.4753	4.4287	2.9255	1.0073	115.0114 7.8939	5.0961	0.4308	1.5302	0.8136	0.4813	4.7424	3.1532	1.4597	4.3137	2.1120	0.4023	1.6337	0.9112	1.6473	7.1851	4.0980
		1	0.5308	4.6193	3.0255	1.0014	8.1532	5.2923	0.3711	1.6042	0.9125	0.4832	4.6499	3.0834	1.4967	4.2113	2.0088	0.4415	1.6843	0.9197	1.6367	6.9555	3.9359
		2	0.5373	4.6180	3.0197	1.1216	7.8873	5.0066	0.4285	1.4653	0.7672	0.5084	4.8464	3.2101	1.3057	4.2690	2.1928	0.3757	1.1779	0.5936	1.6947	6.6668	3.6794
11	22	3	0.5144	4.5553	2.9903	1.0434	7.9781	5.1317	0.4101	1.5332	0.8311	0.4910	4.7462	3.1489	1.4207	4.2647	2.1045	0.4065	1.4986	0.8082	1.6596	6.9358	3.9044
		Mean Std	0.0278	0.0895	0.0458	0.0553	0.1238	0.1193	0.0276	0.0567	0.0606	0.0124	0.0803	0.0518	0.0827	0.0419	0.0753	0.0270	0.2277	0.1517	0.0252	0.2121	0.1723
		CV (%)	6.6213	2.4076	1.5328	6.4908	1.9010	2.3253	8.2489	4.5343	7.2914	8.5001	2.0707	1.6458	7.1298	1.2034	3.5788	8.1400	4.3324	18.7767	1.8600	3.7444	4.4141
		Dev (%)		108.5806	i		108.9705			109.1201			109.7771			107.9769			88.7942			104.6590	
		1	0.5318	4.5089	2.9430	1.1321	8.1559	5.1976	0.4602	1.6921	0.9116	0.4398	5.1372	3.4761	1.4133	3.8450	1.7995	0.4195	1.6282	0.8944	1.7476	7.4378	4.2107
		2	0.5355	4.7668	3.1312	1.1222	7.8344	4.9670	0.4765	1.5515	0.7955	0.5186	4.9808	3.3020	1.3748	3.9957	1.9395	0.3953	1.8002	1.0396	1.7033	7.0157	3.9312
		3	0.5284			i -	7.9127	5.8554	0.4343	1.6210	0.8781	0.4782	4.7159	3.1359	1.2442	4.0986	2.1123	0.3502	1.8804	1.1323	1.7899	6.7644	3.6811
12	24	Mean	0.5319	4.6379	3.0384	1.1272	7.9677	5.0620	0.4570	1.6215	0.8617	0.4789	4.9446	3.3047	1.3441	3.9798	1.9504	0.3883	1.7696	1.0221	1.7469	7.0726	3.9410
		Std	0.0029	0.1290	0.0941	0.0050	0.1369	0.3764	0.0174	0.0574	0.0488	0.0322	0.1739	0.1389	0.0724	0.1041	0.1279	0.0287	0.1052	0.0979	0.0354	0.2778	0.2163
		CV (%)	1.0168	3.9310	3.0964	0.6198	2.3051	7.4357	3.8932	1.0200	5.6612	11.2730	4.3066	4.2025	6.5937	3.2052	6.5593	9.0584	7.2823	9.5797	2.4788	4.8110	5.4891
		Dev (%)		110.3289			107.4905			114.2214			115.2067			100.0683			112.3031			105.6402	
13	26	1	0.5315	4.7612	3.1300	1.0812	8.3900	5.4085	0.5304	1.6563	0.8332	0.5788	4.9907	3.2648	1.5350	4.6112	2.2764	0.4863	1.8126	0.9815	1.7404	7.5667	4.3115
			activitv immunoassav																				
--	--	--	----------------------																				

			:	Source	1	:	Source	2	!	Source	3	9	Source	4	9	Source	5	9	Source	6	9	Source	7
Run	Week	Value	Angl 0° C (ng/mL)	Angl 37° C (ng/mL)	PRA (ng/mL/h)																		
		2	0.5399	4.8247	3.1707	1.1248	8.8134	5.6896	0.4684	1.7506	0.9489	0.6015	4.8758	3.1630	1.4568	4.4459	2.2119	0.4760	1.7994	0.9793	1.7535	7.5432	4.2844
		3	0.6308	4.4954	2.8598	1.1828	8.4218	5.3569	0.4948	1.6110	0.8260	0.5433	4.6950	3.0722	1.5320	4.5658	2.2450	0.4319	1.9019	1.0878	1.8822	7.1371	3.8886
		Mean	0.5674	4.6938	3.0535	1.1296	8.5417	5.4850	0.4979	1.6726	0.8693	0.5745	4.8538	3.1667	1.5079	4.5410	2.2444	0.4647	1.8380	1.0162	1.7920	7.4157	4.1615
		Std	0.0449	0.1426	0.1380	0.0416	0.1925	0.1462	0.0254	0.0581	0.0563	0.0239	0.1217	0.0787	0.0362	0.0697	0.0263	0.0236	0.0455	0.0507	0.0640	0.1972	0.1933
		CV (%)	9.7024	3.7219	4.5182	4.5145	2.3051	2.6653	6.2503	4.2579	6.4768	5.1013	3.0707	2.4845	2.9374	1.8812	1.1725	6.2231	3.0343	4.9850	4.3726	3.2567	4.6440
		Dev (%)		110.8778			116.4728			114.1410			110.3967			115.1551			111.6508			111.5500	
		1	0.5004	4.6335	3.0585	1.0256	7.8971	5.0849	0.5382	1.6676	0.8358	0.5004	4.7482	3.1433	1.4587	4.2355	2.0548	0.4125	1.4867	0.7949	1.6894	6.8636	3.8289
		2	0.5630	4.3398	2.7949	1.0614	8.2232	5.2997	0.5303	1.6592	0.8354	0.4867	4.6537	3.0836	1.2401	4.2907	2.2574	0.4164	1.7725	1.0035	1.6294	6.9154	3.9116
		3	0.5903	4.1610	2.6423	1.0971	9.2375	6.0239	0.5261	1.5835	0.7825	0.5638	4.8073	3.1402	1.3510	4.7150	2.4894	0.3919	1.8686	1.0927	1.6976	7.1156	4.0093
14	28	Mean	0.5512	4.3781	2.8319	1.0614	8.4526	5.4695	0.5315	1.6368	0.8179	0.5170	4.7364	3.1224	1.3499	4.4137	2.2672	0.4069	1.7093	0.9637	1.6721	6.9649	3.9166
		Std	0.0376	0.1948	0.1719	0.0292	0.5708	0.4017	0.0050	0.0378	0.0250	0.0336	0.0633	0.0274	0.0892	0.2142	0.1775	0.0107	0.1622	0.1248	0.0304	0.1087	0.0737
		CV (%)	8.3581	5.4486	6.0702	3.3685	8.2698	7.3443	1.1580	0.8419	3.0584	7.9595	1.6366	0.8789	8.0958	5.9438	7.8303	3.2326	4.3324	11.6210	2.2237	1.9103	1.8827
		Dev (%)		102.8296			116.1444			107.3864			108.8522			116.3233			105.8849			104.9863	
		1	0.5761	4.5750	2.9592	1.0563	8.0487	5.1744	0.4367	1.5570	0.8291	0.5144	4.8445	3.2043	1.5372	4.5845	2.2550	0.4466	1.5904	0.8464	1.7273	7.3658	4.1725
		2	0.5986	4.7340	3.0602	1.0571	8.5508	5.5453	0.4109	1.6629	0.9265	0.5815	4.8047	3.1251	1.4108	4.6589	2.4036	0.4065	1.6612	0.9285	1.7176	7.0234	3.9263
		3	0.5837	4.2341	2.7013	1.0743	8.2092	5.2798	0.4674	1.5536	0.8038	0.5308	4.8098	3.1664	1.4399	4.4990	2.2638	0.3614	1.6767	0.9733	1.7406	6.9615	3.8635
15	30	Mean	0.5861	4.5144	2.9069	1.0626	8.2696	5.3332	0.4383	1.5912	0.8531	0.5423	4.8197	3.1653	1.4626	4.5808	2.3075	0.4048	1.6428	0.9161	1.7285	7.1169	3.9874
		Std	0.0093	0.2085	0.1511	0.0083	0.2094	0.1561	0.0231	0.0507	0.0529	0.0286	0.0177	0.0323	0.0540	0.0653	0.0681	0.0348	0.0376	0.0526	0.0094	0.1778	0.1334
		CV (%)	4.7005	5.6573	5.1985	0.9553	3.1010	2.9265	6.4519	3.9050	6.2000	6.4552	0.4500	1.0212	4.5235	4.5541	2.9503	10.5310	2.8015	5.7367	0.6678	3.7444	3.3444
		Dev (%)	0.5679	105.5542 5.3220	3.5180	1.1288	9.5632	6.2415	0.4246	112.0122	1.0048	0.4848	110.3480 5.2374	3.5169	1.7627	118.3879 4.9126	2.3309	0.3721	100.6508	1.0219	2.0840	106.8839 7.6313	4.1050
		1	0.6258	5.2749	3.4404	1.2481	9.7002	6.2546	0.4240	1.9741	1.1647	0.4590	5.4690	3.7074	1.5701	5.1724	2.6657	0.3721	1.9422	1.4372	1.9718	7.3753	3.9986
		2	0.5956	4.9547	3.2257	1.2294	8.9265	5.6959	0.6238	1.8438	0.9028	0.5833	5.3589	3.5339	1.4947	5.3251	2.8345		2.0844	1.5425	1.9945	7.3130	3.9357
16	32	Mean	0.5964	5.1839	3.3947	1.2021	9.3966	6.0640	0.4829	1.8668	1.0241	0.5090	5.3551	3.5861	1.5655	5.1367	2.6427	0.3721	1.9265	1.1503	2.0168	7.4399	4.0131
(excluded)		Std	0.0236	0.1632	0.1236	0.0524	0.3371	0.2603	0.1002	0.0799	0.1078	0.0536	0.0946	0.0861	0.1128	0.1703	0.2093	0.0000	0.1357	0.2248	0.0484	0.1377	0.0699
		CV (%)	4.8526	5.6573	3.6417	0.9553	4.3937	4.2933	25.4110	3.9050	10.5278	12.8940	2.1636	2.4004	4.5235	4.5541	7.9189		8.6283	19.5391	2.9411	2.2676	1.7413
		Dev (%)		123.2665			128.7673			134.4607			125.0184			134.3699			126.3815			107.5722	
		1	0.5331	4.5644	2.9832	1.0866	7.8721	5.0213	0.3487	1.5170	0.8645	0.5131	4.1428	2.6860	1.4477	4.1428	1.9944	0.3808	1.5719	0.8814	1.7687	6.9631	3.8439
		2	0.5707	4.8200	3.1445	1.1170	7.6975	4.8696	0.3501	1.5395	0.8802	0.4313	4.0552	2.6817	1.4578	4.0552	1.9221	0.3802	1.6548	0.9432	1.7006	6.9466	3.8820
4-	0-	3	0.5523	4.5835	2.9831	1.1085	8.0445	5.1326	0.3769	1.5601	0.8756	0.5606	4.8617	3.1828	1.3895	4.8617	2.5694	0.2869	1.8402	1.1494	1.7376	7.1667	4.0175
17	35	Mean	0.5520	4.6560	3.0369	1.1040	7.8714	5.0078	0.3586	1.5389	0.8734	0.5017	4.3532	2.8502	1.4317	4.3532	2.1620	0.3493	1.6890	0.9914	1.7356	7.0255	3.9145
		Std	0.0154	0.1163	0.0761	0.0128	0.1417	0.1078	0.0130	0.0176	0.0066	0.0534	0.3613	0.2352	0.0301	0.3613	0.2896	0.0441	0.1122	0.1146	0.0278	0.1001	0.0745
		CV (%)	3.4077	3.0580	2.5048	1.4218	2.2044	2.1530	4.4337	1.4009	0.7524	13.0360	10.1650	8.2532	2.5747	4.5541	13.3967	15.4690	8.1340	11.5593	1.9650	1.7450	1.9037

			9	Source	1	!	Source	2	:	Source	3	9	Source	4	!	Source	5	:	Source	6	9	ource	7
Run	Week	Value	Angl 0° C (ng/mL)	Angl 37° C (ng/mL)	PRA (ng/mL/h)																		
		Dev (%)		110.2744			106.3405			114.6789			99.3623			110.9231			108.9208			104.9287	
		1	0.5739	5.0203	3.2903	1.2076	8.3159	5.2601	0.5614	1.6844	0.8310	0.5621	4.7946	3.1320	1.5501	4.2578	2.0037	0.3664	1.7720	1.0401	1.7748	6.7074	3.6501
		2	0.5782	5.0539	3.3120	1.1501	8.8308	5.6837	0.5203	1.6915	0.8667	0.5574	4.7763	3.1220	1.5600	4.1693	1.9309	0.3857	1.8335	1.0714	1.7582	6.6631	3.6296
		3	0.6826	4.9127	3.1303	1.2915	9.0996	5.7780	0.3841	1.7094	0.9807	0.4649	4.8017	3.2092	1.4443	4.6206	2.3505	0.3756	1.7111	0.9882	1.7572	7.3421	4.1328
18	37	Mean	0.6116	4.9956	3.2442	1.2164	8.7488	5.5740	0.4886	1.6951	0.8928	0.5281	4.7909	3.1544	1.5181	4.3492	2.0950	0.3759	1.7722	1.0333	1.7634	6.9042	3.8042
		Std	0.0503	0.0602	0.0811	0.0581	0.3252	0.2252	0.0758	0.0105	0.0638	0.0447	0.0107	0.0390	0.0524	0.1953	0.1831	0.0079	0.0500	0.0343	0.0081	0.3102	0.2325
		CV (%)	10.0660	1.4766	2.4984	5.8426	4.5517	4.0404	18.9910	0.7607	7.1505	10.3780	0.2732	1.2354	4.2226	5.4983	8.7378	1.1459	3.4524	3.3188	0.5620	5.5020	6.1125
		Dev (%)		117.8021			118.3621			117.2210			109.9692	2		107.4883			113.5248	3		101.9725	
		1	0.5601	5.2417	3.4644	1.1556	9.5998	6.2487	0.5041	1.6221	0.8273	0.5502	4.9840	3.2810	1.7091	4.4664	2.0404	0.4266	1.7436	0.9746	1.6627	7.4613	4.2910
		2	0.6334	5.2246	3.3975	1.2428	9.8835	6.3941	0.4791	1.6274	0.8498	0.5045	5.1086	3.4070	1.7564	4.4676	2.0063	0.3927	1.7367	0.9945	1.6540	7.3732	4.2322
		3	0.6496	4.6878	2.9883	1.3214	10.3780	6.7019	0.4007	1.6454	0.9211	0.4963	4.9397	3.2882	1.6630	4.6372	2.2009	0.3612	1.7622	1.0367	1.6427	7.1667	4.0878
19	39	Mean	0.6143	5.0514	3.2834	1.2399	9.9538	6.4483	0.4613	1.6316	0.8661	0.5170	5.0108	3.3254	1.7095	4.5237	2.0825	0.3935	1.7475	1.0019	1.6531	7.3337	4.2036
		Std	0.0389	0.2572	0.2105	0.0677	0.3216	0.1889	0.0440	0.0100	0.0400	0.0237	0.0715	0.0578	0.0381	0.0802	0.0849	0.0267	0.0108	0.0259	0.0082	0.1235	0.0854
		CV (%)	3.4077	3.0580	6.4096	1.4218	2.2044	2.9299	4.4337	1.4009	4.6143	13.0360	10.1650	1.7376	2.5747	4.5541	4.0746	15.4690	8.1340	2.5859	1.9650	1.7450	2.0311
		Dev (%)		119.2250			136.9280)		113.7112	2		115.9301			106.8480			110.0835	5		112.6799	

Appendix - Customisation and validation of a plasma renin activity immunoassay

In every run, incubated (37° C) and non-incubated (0° C) samples were measured in triplicate and corresponding plasma renin activity (PRA) values were calculated. The mean PRA value of the first three runs (1.1, 1.2, 1.3) was implemented as a reference value for the subsequently conducted stability runs. The stability for every subsequently run was assessed as a percentage deviation from the reference value for each individual source. The deviation should not be more than $\pm 20\%$ to comply with U.S. Food and Drug Administration guideline recommendations. Run number 16 was exluded due to processing error. The investigation of long-term stability was stopped at run 19 (PRA value of Source 2 exceeded $\pm 20\%$). Angl: angiotensin I; Std: standard deviation; CV: coefficient of variation; Dev: deviation from the reference value.

Freeze and thaw cycles	Value	Angl 0° C (ng/mL)	Angl 37° C (ng/mL)	PRA (ng/mL/h)
	1	0.8480	9.0720	6.0858
	2	0.9198	9.1089	6.0599
	3	0.8828	8.6880	5.7758
5 (4	0.7729	9.3234	6.3274
Reference value	5	0.8503	9.0856	6.0941
value	Mean	0.8548	9.0072	6.0328
	Std	0.0543	0.2296	0.1960
	CV [%]	6.3514	2.5490	3.2495
	Dev (%)		100.0000	
	1	0.7852	9.7022	6.5392
	2	0.8569	9.7164	6.4969
	3	0.8980	9.6201	6.3962
	4	0.8489	9.5642	6.3912
1 Cycle	5	0.7801	9.2085	6.1808
2	Mean	0.8338	9.5623	6.4009
	Std	0.0503	0.2073	0.1386
	CV [%]	6.0353	2.1675	2.1659
	Dev (%)		106.1014	
	1	1.0197	8.2726	5.3188
	2	0.7616	8.0946	5.3775
	3	0.8142	7.9187	5.2100
	4	0.8176	n/a	n/a
2 Cycle	5	0.5757	n/a	n/a
,	Mean	0.7978	8.0953	5.3515
	Std	0.1585	0.1770	0.0850
	CV [%]	19.8710	2.1858	1.5885
	Dev (%)		88.7070	
	1	0.8341	7.7451	5.0681
	2	0.8702	8.2923	5.4429
	3	0.8004	8.4459	5.6067
	4	0.7265	8.0694	5.3848
3 Cycle	5	0.7007	8.4595	5.6898
, • • •	Mean	0.7863	8.2024	5.4385
	Std	0.0715	0.3001	0.2406
	CV [%]	9.0883	3.6589	4.4239
	Dev (%)	0.0000	90.1489	1.1200

Appendix 10.2-7: Results of freeze and thaw stability for the plasma renin activity assay validation.

The mean plasma renin activity (PRA) value of the first measurement after thawing the samples was implemented as a reference value for the subsequently conducted stability runs. The stability for every subsequently run was assessed as a percentage deviation from the reference value. The inter-run precision should not deviate by more than $\pm 20\%$. Angl: angiotensin I; Std: standard deviation; CV: coefficient of variation; Dev: deviation from the reference value; n/a: not available

		Stability at ro	om temperature	e (ca. 20° C)		I		Stal	bility on ice (0°	C)	
Time (h)	Value	Measured Angl 0° C (ng/mL)	Measured Angl 37° C (ng/mL)	PRA (ng/mL/h)	Deviation from 0 hours value (%)	Time (h)	Value	Measured Angl 0° C (ng/mL)	Measured Angl 37° C (ng/mL)	PRA (ng/mL/h)	Deviation from 0 hours value (%)
	1	0.7227	9.2477	6.3085			1	0.6678	7.6422	5.1610	
	2	0.7176	9.1421	6.2342			2	0.7221	7.7855	5.2269	
0	3	0.7223	8.5324	5.7795	- 0	0	3	0.6314	7.7920	5.2988	- o
U	Mean	0.7209	8.9741	6.1074	U		Mean	0.6738	7.7399	5.2289	U
	Std	0.0028	0.3861	0.2864			Std	0.0456	0.0847	0.0689	
	CV [%]	0.3949	4.3026	4.6890			CV [%]	6.7687	1.0940	1.3180	
	1	0.7529	8.5509	5.7185			1	0.6743	7.1511	4.7497	
	2	0.7730	8.5695	5.7175			2	0.6880	7.5338	5.0203	
0.05	3	0.6974	8.7325	5.8924	E 70		3	0.6065	6.8473	4.5766	40.00
0.25	Mean	0.7411	8.6177	5.7762	- 5.73	2	Mean	0.6563	7.1774	4.7822	10.80
	Std	0.0391	0.0999	0.1007			Std	0.0436	0.3440	0.2236	
	CV [%]	5.2817	1.1594	1.7433			CV [%]	6.6441	4.7929	4.6764	
	1	0.8732	10.1440	6.7986			1	0.7595	8.1778	5.4401	
	2	0.8738	10.1440	6.7981			2	0.8186	8.0800	5.3250	
0 F	3	0.8907	9.5240	6.3311	0.50		3	0.7454	8.1147	5.4042	4.00
0.5	Mean	0.8764	9.4239	6.2681	-2.56	2.5	Mean	0.7745	8.1242	5.3898	-1.69
	Std	0.0099	0.3580	0.2698			Std	0.0389	0.0496	0.0589	
	CV [%]	1.1307	3.7984	4.3038			CV [%]	5.0168	0.6103	1.0925	
	1	0.9852	9.4436	6.2028			1	0.7161	8.0765	5.3976	
	2	1.0131	9.4702	6.2019			2	0.7260	8.3249	5.5725	
	3	0.9762	9.8680	6.5207	2.40		3	0.6749	8.0662	5.4203	2.04
1	Mean	0.9915	9.5939	6.3084	3.19	3	Mean	0.7057	8.1559	5.4635	-3.01
	Std	0.0193	0.2377	0.1838			Std	0.0271	0.1465	0.0951	
	CV [%]	1.9424	2.4778	2.9133			CV [%]	3.8424	1.7960	1.7407	
	1	0.9100	6.8642	4.3664			1	0.7318	8.3909	5.6167	
	2	0.9341	8.8063	5.7729			2	0.7685	9.1968	6.1808	
	3	0.9247	9.4926	6.2831	0.74		3	0.8385	8.5145	5.6291	0 70
1.5	Mean	0.9230	9.5717	6.3424	3.71	3.5	Mean	0.7796	8.7007	5.8088	-8.78
	Std	0.0122	1.3633	0.9927			Std	0.0542	0.4340	0.3221	
	CV [%]	1.3172	14.2429	15.6513			CV [%]	6.9501	4.9884	5.5458	
	1	0.9735	9.6886	6.3911			1	0.7891	8.8100	5.8820	
	2	1.0436	11.1920	7.4422			2	0.6856	9.5384	6.4921	
•	3	1.0605	10.2510	6.7397	40.04		3	0.6920	7.9270	5.3057	40.44
2	Mean	1.0258	10.3770	6.8575	-10.94	4	Mean	0.7222	8.7603	5.8946	-10.11
	Std	0.0462	0.7596	0.5354			Std	0.0580	0.8069	0.5933	
	CV [%]	4.4999	7.3201	7.8069			CV [%]	8.0314	9.2113	10.0648	

Appendix 10.2-8: Results of short term stability for the plasma renin activity assay validation.

Stability for plasma renin activity (PRA) was measured at room temperature for 2 hours and on ice for 4 hours. Angl: angiotensin I; Std: standard deviation; CV: coefficient of variation.

10.3 Bioanalytical quality control system for the plasma renin activity immunoassay

				Ca	alibration	n standar	ds (ng/m	L)	
Run	Date	Lot	0.2	0.5	1.5	4	10	25	60
1	26.08.2016	1	0.185	0.53639	1.40625	4.08905	10.897	23.949	52.6085
2	26.08.2016	1	0.18633	0.54438	1.4018	3.99525	11.1195	24.7645	51.364
3	29.08.2016	1	0.185	0.53134	1.4289	4.03445	10.864	23.6905	54.7245
4	29.08.2016	1	0.185	0.53663	1.42255	4.08785	10.7185	23.7175	53.219
5	30.08.2016	1	0.19084	0.53128	1.419	3.9591	11.4745	24.2505	50.3535
6	31.08.2016	1	0.18995	0.5387	1.40885	4.0372	11.262	23.6565	51.023
7	02.09.2016	1	0.18	0.54798	1.3892	4.07045	11.2265	24.096	49.3585
8	29.09.2016	1	0.18976	0.53603	1.417	4.08705	10.774	23.8165	53.127
9	20.10.2016	1	0.18396	0.54933	1.4085	4.0635	10.9605	23.739	51.566
10	04.11.2016	1	0.18584	0.55276	1.39335	3.99695	11.504	24.1265	48.921
11	07.11.2019	1	0.187	0.54399	1.41605	3.9718	11.4335	23.9065	49.4115
12	09.11.2016	1	0.18934	0.54493	1.3989	3.94805	11.8375	23.313	50.931
13	10.11.2016	1	0.18932	0.54007	1.406	4.0714	11.101	22.8125	55.4855
14	25.11.2016	1	0.18644	0.55304	1.3792	4.1163	10.976	24.7355	48.8255
15	28.11.2016	1	0.19029	0.54702	1.38645	4.08295	10.897	25.018	50.555
16	29.11.2016	1	0.18796	0.53931	1.4196	4.06185	10.809	24.005	52.3955
17	30.11.2016	1	0.19736	0.51047	1.4734	4.01465	10.32	24.5975	58.0445
18	01.12.2016	2	0.19894	0.50365	1.4994	3.9015	10.934	22.841	59.6155
19	14.12.2016	2	0.19948	0.50158	1.51055	3.83105	11.1765	23.6495	55.2095
20	19.12.2016	2	0.19761	0.50912	1.48295	3.90745	11.2435	22.709	56.254
21	21.12.2016	2	0.20151	0.49302	1.5366	3.82005	10.694	24.029	59.874
22	11.01.2017	2	0.20412	0.4852	1.5587	3.80615	10.4405	24.427	63.2135
23	13.01.2017	2	0.20003	0.49973	1.50875	3.90825	10.532	24.29	59.084
24	16.01.2017	2	0.20199	0.49263	1.52885	3.8892	10.3535	23.9855	63.3
25	20.01.2017	2	0.20197	0.49182	1.53375	3.8632	10.478	23.829	62.5765
26	30.01.2017	2	0.20031	0.49792	1.5296	3.75605	11.388	23.8	54.354
27	31.01.2017	2	0.20345	0.48467	1.57085	3.72255	10.789	24.825	57.9795
28	01.02.2017	2	0.20047	0.49744	1.52065	3.8634	10.6165	24.561	57.174
29	02.02.2017	2	0.20287	0.48995	1.53785	3.8626	10.3745	24.389	61.6565
30	03.04.2017	2	0.20161	0.49218	1.5441	3.77935	10.9695	23.3595	60.724
31	06.04.2017	2	0.20829	0.46587	1.64495	3.5707	10.8405	24.045	67.1
32	07.04.2017	2	0.20261	0.4869	1.57185	3.6808	11.077	24.5165	57.018
33	19.04.2017	2	0.20194	0.49125	1.54905	3.7259	11.4695	22.2015	62.163
34	21.04.2017	2	0.20259	0.48812	1.5621	3.7132	11.1305	24.0185	57.4255
35	24.04.2017	2	0.20185	0.49148	1.5492	3.7468	10.9885	24.456	56.6275
36	03.05.2017	2	0.20528	0.47849	1.5969	3.6599	10.8345	24.598	61.6525
37	05.05.2017	3	0.21561	0.46365	1.52085	4.1072	9.5564	25.8345	59.273
38	10.05.2017	3	0.21935	0.46956	1.46705	4.1683	9.8411	24.6875	60.7155
39	12.05.2017	3	0.21793	0.46543	1.49265	4.13485	9.7859	24.976	60.336

Appendix 10.3-1: Results of calibration standards evaluation for every conducted valid run in the context of the bioanalytical quality control system.

			I	Ca	alibratior	n standar	ds (ng/m	L)	
Run	Date	Lot	0.2	0.5	1.5	4	10	_, 25	60
40	15.05.2017	3	0.21598	0.45569	1.54365	4.1132	9.31645	26.3935	58.669
41	16.05.2017	3	0.22307	0.45424	1.50535	4.15055	9.5577	25.6165	59.5685
42	17.05.2017	3	0.22107	0.44579	1.53605	4.13585	9.45365	25.851	59.3775
43	18.05.2017	3	0.21471	0.45908	1.53785	4.1123	9.37425	26.2445	58.8455
44	19.05.2017	3	0.21606	0.47325	1.4792	4.1616	9.66335	25.287	59.963
45	24.05.2017	3	0.21374	0.47314	1.50095	4.0615	9.9944	24.6485	60.694
46	29.05.2017	3	0.22111	0.4436	1.53605	4.1744	9.38595	25.8105	59.529
47	30.05.2017	3	0.21842	0.45484	1.5355	4.11605	9.4725	26.0125	59.114
48	31.05.2017	3	0.20911	0.47755	1.5186	4.0379	9.8522	25.225	59.8465
49	01.06.2017	4	0.22088	0.47697	1.4406	4.2076	9.8438	24.137	62.5465
50	08.06.2017	4	0.22764	0.45636	1.4711	4.1542	9.98845	24.081	61.6625
51	14.06.2017	4	0.2249	0.47307	1.4472	4.14205	10.088	23.727	62.503
52	21.06.2017	4	0.22813	0.46368	1.41725	4.2542	10.087	23.542	63.063
53	05.07.2017	4	0.2215	0.47412	1.47935	4.0236	10.3655	23.194	63.254
54	07.07.2017	4	0.22264	0.47536	1.45225	4.15885	9.9435	24.013	62.8105
55	10.07.2017	4	0.21665	0.49013	1.4213	4.194	9.96975	23.979	62.0845
56	12.07.2017	4	0.22561	0.47031	1.4174	4.26225	9.90905	23.7445	62.4475
57	14.07.2017	4	0.23555	0.44949	1.4595	4.20005	9.8554	24.0805	62.949
58	19.07.2017	4	0.2193	0.47796	1.4506	4.1558	9.9775	24.2445	61.351
59	27.07.2017	4	0.22591	0.46666	1.4589	4.16395	9.8756	24.4725	61.25
60	28.07.2017	4	0.21473	0.48009	1.4783	4.08715	9.9737	24.593	60.8185
61	22.08.2017	4	0.22004	0.48307	1.4315	4.21335	9.7477	24.719	61.0555
62	23.08.2017	4	0.22923	0.46987	1.41925	4.2338	9.9436	23.715	62.7205
63	24.08.2017	4	0.2285	0.46171	1.45235	4.1647	10.03745	23.9635	61.769
64	28.08.2017	4	0.21878	0.47877	1.45805	4.1426	9.88245	24.67	60.796
65	30.08.2017	4	0.22172	0.47789	1.4346	4.16625	10.0675	23.9085	61.78
66	01.09.2017	4	0.23188	0.46647	1.40785	4.2029	10.327	22.6535	64.05
67	17.10.2017	4	0.22738	0.4539	1.4861	4.14025	9.90505	24.3415	61.493
68	18.10.2017	4	0.21521	0.48192	1.4517	4.2516	9.3904	26.1415	58.9805
69	25.10.2017	4	0.22628	0.47146	1.4236	4.2499	9.775	24.4185	61.5315
70 71	26.10.2017	4	0.22416	0.47122	1.44555	4.17485	9.95485	24.23	61.574
72	02.11.2017	4	0.2247 0.21879	0.4725	1.4377 1.4716	4.1844 4.11635	9.9724 9.9211	24.1 24.569	61.6945
72	13.11.2017	4	0.21879	0.46903	1.4654	4.11035	9.8831	24.509	61.0325 60.9955
74	14.11.2017	4	0.2224	0.49578	1.40005	4.21385	9.9859	23.9645	61.9345
75	15.11.2017	4	0.22465	0.47058	1.44405	4.17385	10.0145	23.826	62.3245
76	22.11.2017	4	0.22403	0.47642	1.44145	4.19615	9.8232	24.6195	60.925
77	23.11.2017	4	0.21334	0.48765	1.44735	4.13925	10.031	24.1245	61.5195
78	27.11.2017	4	0.22165	0.47157	1.46605	4.1588	9.8299	24.9155	60.609
79	28.11.2017	4	0.22157	0.47687	1.43845	4.21595	9.74665	24.722	61.0895
80	29.11.2017	4	0.21534	0.49113	1.43135	4.1584	10.0311	24.0675	61.6705
81	01.12.2017	4	0.21674	0.4831	1.45505	4.13365	9.9408	24.5305	60.917
82	04.12.2017	4	0.22312	0.4749	1.45195	4.1247	10.08045	24.0645	61.515
83	12.12.2017	4	0.21979	0.48655	1.4194	4.17175	10.1555	23.3905	63.042
84	13.12.2017	4	0.22784	0.46676	1.43615	4.18605	10.05635	23.675	62.3655
		1	L						

			l	Ca	alibration	standar	ds (ng/m	L)	
Run	Date	Lot	0.2	0.5	1.5	4	10	_, 25	60
85	04.01.2018	4	0.21241	0.4886	1.4485	4.17195	9.8316	24.663	60.898
86	05.01.2018	4	0.22265	0.47483	1.42425	4.16635	10.319	23.0755	62.893
87	10.01.2018	4	0.21957	0.47369	1.47665	4.101	9.95965	24.518	61.573
88	11.01.2018	4	0.22598	0.47434	1.38375	4.2875	10.2153	23.263	63.5815
89	15.01.2018	4	0.21976	0.47491	1.4743	4.0795	10.15635	23.879	62.161
90	16.01.2018	4	0.21085	0.49556	1.44995	4.12855	9.9273	24.5475	61.096
91	17.01.2018	5	0.19963	0.48958	1.5469	3.87655	10.1955	24.921	59.915
92	18.01.2018	5	0.19655	0.50697	1.49665	3.9912	10.0505	24.8615	60.22
93	19.01.2018	5	0.18357	0.52185	1.5031	3.978	9.9112	25.721	58.5745
94	22.01.2018	5	0.20205	0.49605	1.51005	3.94425	10.242	24.2555	61.205
95	29.01.2018	5	0.19407	0.51028	1.50635	3.9279	10.264	24.456	60.823
96	30.01.2018	5	0.19937	0.49584	1.52015	3.9791	9.90055	25.524	59.143
97	01.02.2018	5	0.18617	0.52116	1.5064	3.9172	10.166	24.9365	59.794
98	02.02.2018	5	0.1958	0.51241	1.4764	4.04785	9.94565	25.033	60.174
99	13.02.2018	5	0.18602	0.51382	1.51995	3.97935	9.826	26.1845	58.9265
100	19.02.2018	5	0.19167	0.51757	1.47995	4.02685	9.97805	25.0225	60.4435
101	21.02.2018	5	0.19225	0.50487	1.5211	3.95665	9.96125	25.4265	59.362
102	22.02.2018	5	0.18457	0.51617	1.51735	3.953	9.93265	25.7075	58.5165
103	26.02.2018	5	0.19857	0.50909	1.47595	4.0119	10.1575	24.352	61.01
104	28.02.2018	5	0.18535	0.52499	1.4925	3.9425	10.208	24.631	60.7235
105	01.03.2018	5	0.19185	0.50882	1.50475	3.9999	9.89495	25.467	59.277
106	05.03.2018	5	0.19286	0.51472	1.48535	4.0287	9.922	25.3065	59.503
107	06.03.2018	5	0.18252	0.53095	1.48865	3.98885	9.93965	25.477	59.292
108	12.03.2018	5	0.20627	0.49478	1.4833	4.0371	10.19045	24.069	61.6475
109	13.03.2018	5	0.20974	0.49232	1.4602	4.0367	10.52	22.4355	64.8015
110	15.03.2018	5	0.20933	0.49446	1.46895	4.0143	10.362	23.4625	62.7605
111	16.03.2018	5	0.20917	0.49659	1.45915	4.04095	10.377	22.9785	63.9775
112	19.03.2018	5	0.19325	0.51672	1.4761	4.0512	9.91185	25.166	59.9095
113	21.03.2018	5	0.17895	0.52895	1.5034	3.93295	10.1685	24.7825	60.1425
114	22.03.2018	5	0.18429	0.51748	1.5136	3.9569	9.96915	25.4525	59.119
115	27.03.2018	5	0.18209	0.52408	1.50255	3.95815	10.0309	25.22	59.591
116	28.03.2018	5	0.19566	0.50457	1.502	4.02875	9.7977	25.6345	59.3435
117 118	13.04.2018 16.04.2018	5 5	0.16786 0.17805	0.53601 0.52991	1.51135 1.4968	3.949 3.9694	9.9098 10.02285	25.9945 25.2295	57.632 59.606
119	17.04.2018	5	0.17805	0.52991	1.5281	3.9694	10.02285	25.2295	59.808
120	19.04.2018	5	0.16812	0.55787	1.44855	4.00615	10.0638	25.072	59.691
120	14.05.2018	5	0.17267	0.53061	1.51695	3.9075	10.0000	25.333	58.852
122	15.05.2018	5	0.18117	0.52665	1.49515	3.9487	10.1595	24.7365	60.209
123	16.05.2018	5	0.19733	0.50267	1.5043	3.9907	9.9934	25.1505	59.8425
124	18.05.2018	5	0.17892	0.53261	1.4899	3.9724	10.00645	25.32	59.3155
125	07.06.2018	5	0.18951	0.50723	1.5353	3.8462	10.4045	24.154	61.3825
126	11.06.2018	5	0.18312	0.52209	1.50845	3.98465	9.8007	26.0405	58.452
127	12.06.2018	5	0.18454	0.51975	1.5025	4.0004	9.8088	25.9115	58.532
128	14.06.2018	5	0.18948	0.51735	1.4996	3.9368	10.238	24.437	61.0285
129	19.06.2018	5	0.20632	0.48272	1.52865	3.9791	9.9404	25.359	59.328
		l	l						

				Calibration standards (ng/mL)									
Run	Date	Lot	0.2	0.5	1.5	4	10	25	60				
130	06.07.2018	5	0.18978	0.51455	1.49475	4.0362	9.78085	25.7825	58.83				
131	11.07.2018	5	0.19386	0.51263	1.4845	4.0504	9.81665	25.561	59.6195				
132	12.07.2018	5	0.20031	0.49803	1.5035	4.0127	9.90375	25.328	59.5485				
133	16.07.2018	5	0.18223	0.51114	1.5299	3.99435	9.58695	27.0605	56.4205				
134	18.07.2018	5	0.19148	0.52136	1.46825	4.04505	9.9691	24.973	60.141				
135	20.07.2018	5	0.19071	0.50821	1.51345	3.98515	9.8989	25.6145	58.8725				
136	24.07.2018	5	0.18615	0.53061	1.45915	4.0076	10.23535	23.9555	62.1535				
137	25.07.2018	5	0.17086	0.53829	1.5141	3.94255	9.95995	25.9795	58.0105				
138	30.07.2018	5	0.20282	0.47908	1.5588	3.92685	9.8555	26.007	58.1185				
139	31.07.2018	5	0.18218	0.53031	1.4793	4.01595	9.9063	25.5655	59.3155				
140	01.08.2018	5	0.1942	0.50174	1.5271	3.9439	10.0051	25.3935	59.136				
141	02.08.2018	5	0.16697	0.54341	1.50115	3.90505	10.1894	25.177	59.468				
142	06.08.2018	5	0.19376	0.5096	1.50235	3.9564	10.143	24.7065	60.423				

The calibrations standard values were expressed as the mean of two replicate (where applicable).

			Relative e	error (%)		
Date	Upper limit	Dilution 1	Dilution 2	Dilution 3	Dilution 4	Dilution 5
26.08.2016	1.8502	1.7297	3.0188	2.6905	2.8118	2.1861
29.08.2016	1.2398	1.2422	2.0387	0.3617	0.6077	2.5141
30.08.2016	2.7009	1.9367	2.9009	3.6518	2.0952	3.6696
31.08.2016	1.4954	-0.2671	0.1677	1.3577	1.8050	1.7021
02.09.2016	1.3335	1.6281	2.8189	0.6050	4.2145	-1.0541
29.09.2016	-0.1128	-0.1985	0.9959	-0.2212	0.9838	1.1001
20.10.2016	-2.3190	-0.8400	0.2634	1.0105	-0.0087	4.3006
04.11.2016	-1.0405	-1.4312	-1.0807	-1.2191	-0.6132	-2.2966
07.11.2016	1.0292	-1.3916	-1.1605	-1.2482	-0.9153	4.6236
09.11.2016	-4.0784	-3.2509	-1.6054	-2.2413	-0.5110	0.4747
10.11.2016	-3.0007	-3.0453	-1.5498	-2.4024	-0.8106	0.4135
25.11.2016	-2.6590	-0.6517	-1.7329	-1.5803	-1.4141	0.3663
28.11.2016	-0.5194	1.0738	1.4755	1.8078	-1.5571	-0.7709
29.11.2016	0.2263	3.2014	1.8239	3.0654	-1.0699	0.1209
30.11.2016	-0.4415	0.4308	0.9222	2.1517	-1.9398	1.6022
01.12.2016	-1.6287	-0.5236	-0.7531	1.4787	-1.2961	1.2999
14.12.2016	1.4900	-0.3015	0.6925	2.1201	3.5108	1.8620
19.12.2016	-2.2670	-1.8556	-0.5928	-0.8747	0.3901	-0.5477
21.12.2016	-1.8408	1.3867	2.4290	1.7445	2.3224	3.3485
11.01.2017	1.0469	3.4595	-0.4485	-1.7940	-1.6288	-7.8721
13.01.2017	1.2189	3.4130	0.4157	-1.2923	-0.6722	-4.6754
16.01.2017	-1.3835	-2.7283	-2.1535	-3.7511	-2.3576	-0.3228
20.01.2017	-2.4954	-3.7087	-2.0625	-2.5768	-1.6071	-1.3833
30.01.2017	-2.1338	0.9629	-0.0928	-0.0836	0.1089	0.0156
31.01.2017	-1.4089	0.7769	1.1525	1.6272	2.8494	1.6260
01.02.2017	-0.0855	2.5898	2.5395	2.4236	1.8240	1.4071
02.02.2017	-4.4943	-1.4941	-1.5521	-1.5190	-0.6261	-0.2345
03.04.2017	-1.8138	-4.5383	0.3316	1.3359	0.4535	-0.0764
06.04.2017	-0.0646	-7.1438	-3.7319	2.8230	5.1791	-0.1833
07.04.2017	7.5882	5.0912	2.1566	1.9937	0.5443	0.5866
19.04.2017	5.7108	6.8524	2.6376	0.7148	-2.1686	-4.1667
21.04.2017	-2.5002	-1.6128	0.1971	1.4155	2.0952	1.4014
24.04.2017	-3.2317	-3.2891	-0.6595	-1.2099	0.1159	0.2491
03.05.2017	-1.7978	-2.0573	-0.2501	-0.6791	0.7935	1.1367
05.05.2017	0.4183	-2.9297	-2.2656	-0.8926	-0.7632	0.5194
10.05.2017	-2.1138	-2.7890	-2.7167	-2.0410	-0.3681	1.9358
12.05.2017	4.6385	4.5225	5.6501	5.1436	5.0009	3.8244
15.05.2017	0.2412	-2.1311	-1.4913	-1.1763	-1.1954	-1.5980
16.05.2017	-1.0276	-2.2752	-0.8811	-1.4726	-1.3553	-1.1201
17.05.2017	0.0419	-2.7855	1.3452	1.2931	2.0120	1.4486
18.05.2017	0.6187	-0.6964	0.4241	-0.1571	0.8250	-0.6272
19.05.2017	0.0175	-2.8275	-1.5290	-2.6041	-1.9362	-0.9707
24.05.2017	-1.3369	-2.4667	-1.3426	-1.3130	-0.8023	-2.0664
29.05.2017	-0.4018	-1.8395	-0.2159	0.4559	0.9901	0.5279
30.05.2017	-0.4814	-0.8383	0.0807	-0.0638	0.3414	0.8899
31.05.2017	-9.1712	-4.0106	-1.5015	-0.0274	0.9645	1.4178
01.06.2017	-0.0727	-1.9661	-1.6747	-0.6519	-0.5804	-1.8854
08.06.2017	-5.6313	-2.8082	-1.6806	-1.1935	-1.0470	-0.7420
14.06.2017	-4.2953	-4.1792	-2.5138	-1.4076	-1.7985	-0.6208
21.06.2017	-4.0285	-1.3063	0.7773	0.4180	1.4323	1.9554
05.07.2017	-2.7800	-3.9812	-0.7080	-1.0204	-0.8062	-0.4533

Appendix 10.3-2: Results of system suitability tests before valid analytical runs in the context of the bioanalytical quality control system.

			Relative e	error (%)		
Date	Upper limit	Dilution 1	Dilution 2	Dilution 3	Dilution 4	Dilution 5
07.07.2017	-2.4241	-1.9846	1.0219	2.3808	3.3775	5.2282
10.07.2017	-1.9053	-0.9238	-0.9204	-0.3945	0.9165	-0.2115
12.07.2017	-2.7868	-1.2277	-2.1689	-0.4036	-0.0764	0.3022
14.07.2017	-3.9870	-3.6474	-3.5401	-4.7572	-3.9630	-3.1278
19.07.2017	-2.0549	0.1055	-2.5292	-3.1568	-3.2226	-4.0394
27.07.2017	-0.8797	2.1772	-0.3603	-2.0455	-2.7217	-2.8320
28.07.2017	-1.6907	1.1537	0.1002	-0.9162	-1.6781	-2.1017
22.08.2017	-2.3056	-2.5149	-0.6307	0.4238	0.0620	-0.2047
23.08.2017	-1.6865	0.3018	0.2340	0.2952	1.3205	1.7947
24.08.2017	-1.3165	-2.6910	-1.5299	-1.0952	-0.1507	-0.3149
28.08.2017	-2.7291	-3.7913	-1.9512	0.3238	-1.0280	0.4251
30.08.2017	-1.9925	-0.0440	-0.9953	0.3571	0.5760	1.4326
01.09.2017	0.5428	0.6659	1.5221	1.5428	1.8991	0.2429
17.10.2017	-1.4986	-1.3908	-0.5552	1.2566	1.8339	2.6630
18.10.2017	-2.6423	-1.7370	-1.1009	-0.1381	0.7541	1.7906
25.10.2017	1.0939	0.3782	3.2417	1.2511	1.0112	1.0721
26.10.2017	1.0725	-1.6430	2.0492	0.4791	0.6137	-0.1379
02.11.2017	-0.5964	2.3039	2.3906	1.9830	2.6282	3.2706
10.11.2017	0.3035	-0.2718	0.9422	1.0799	1.4312	1.6199
13.11.2017	0.9785	0.2409	-0.4917	0.9682	1.5960	1.5119
14.11.2017	0.8642	0.1730	1.6422	1.9737	1.9776	1.5736
15.11.2017	-3.0460	-4.5559	-1.3934	-1.0822	-1.7407	-1.6598
22.11.2017	-3.5923	-3.3745	-2.3979	-1.5933	-2.1483	-1.8426
23.11.2017	-1.9811	-2.8111	-0.3818	0.1105	-1.1208	0.0152
27.11.2017	-3.2750	-1.8513	-1.7986	-1.2156	-2.1109	-1.9205
28.11.2017	-2.8339	-4.7926	-1.0941	-1.4366	-3.2130	-2.4044
29.11.2017	-3.4556	-2.9353	-1.7193	-1.9385	-2.0939	-1.9205
01.12.2017	-4.3203	-4.2080	-1.5173	-1.8004	-3.0265	-2.2834
04.12.2017	-4.4558	-1.9426	-0.6685	-0.4743	-2.0685	-0.6351
12.12.2017	-3.7713	-2.9782	-0.7792	-1.4462	-0.9252	-0.1536
13.12.2017	-4.3914	-3.2489	-0.8342	-1.5881	-1.3621	-0.5069
04.01.2018	-3.4992	-9.2547	-6.1639	-4.6895	-3.2590	1.4387
05.01.2018	-0.0665	-1.6376	2.2147	3.1453	0.2180	-1.5453
10.01.2018	4.4537	4.2164	2.8101	4.3428	2.1709	0.1683
11.01.2018	5.5699	4.3904	3.5699	5.5932	2.1622	0.2907
15.01.2018	4.9527	4.6612	3.4204	4.3284	1.6827	0.0459
16.01.2018	4.5683	5.5445	4.5191	4.4823	1.2903	-0.2754
17.01.2018	2.7166	4.4356	3.0368	3.9725	1.0811	1.2852
18.01.2018	-2.9996	-0.0186	-0.3920	-1.1122	-0.6550	-1.4741
19.01.2018	-1.5915	-0.1299	-0.0263	-0.2325	0.1106	-0.6468
22.01.2018	-1.6226	0.6370	0.5760	0.3054	0.9528	0.2557
29.01.2018	-0.5120	0.4700	-0.6406	-1.3629	-0.5359	-1.9555
30.01.2018	-1.3493	0.3649	-0.0669	-0.9390	-0.2127	-0.8724
01.02.2018	1.3966	0.7780	1.1274	0.4813	0.6756	-0.0155
02.02.2018	-0.0073	-0.6023	-0.0098	-0.4065	-1.0307	1.3132
13.02.2018	-0.4426	-1.3363	-0.1744	-0.4532	-0.3291	-0.2317
19.02.2018	-2.1932	-0.4927	0.1824	0.7216	1.4282	0.9519
21.02.2018	-1.6440	0.6735	1.5824	2.6015	3.3177	3.6173
22.02.2018	-1.7250	-0.4428	0.9440	1.4432	2.0225	2.9192
26.02.2018	-3.3866	-3.1369	-0.8306	-0.2469	0.6653	1.7452
28.02.2018	-1.2961	3.9164	6.2747	9.3126	7.3149	5.3924
01.03.2018	-3.9225	0.4379	0.9887	2.0684	3.5440	6.9464
05.03.2018	-7.9951	-2.3560	-3.3472	-3.5519	-3.7535	-4.5221
06.03.2018	-7.1799	-3.7375	-4.9822	-4.7452	-4.4867	-4.5532

			Relative e	error (%)		
Date	Upper limit	Dilution 1	Dilution 2	Dilution 3	Dilution 4	Dilution 5
13.03.2018	-5.6211	-3.8794	-3.9259	-2.4100	-1.6673	-1.2898
15.03.2018	-8.1281	-2.6274	-2.2017	-0.1264	1.3268	1.3364
16.03.2018	-7.7256	-5.3534	-4.1237	-2.1948	-1.4054	-1.1500
19.03.2018	-1.4414	-2.5673	2.3536	0.6189	2.0696	1.8821
21.03.2018	4.7154	8.6713	9.8342	9.6106	9.3650	9.1606
22.03.2018	2.3538	5.8924	7.6759	5.8821	7.7585	8.0780
27.03.2018	4.2745	5.8378	7.8042	5.8217	6.8702	6.5956
28.03.2018	5.3977	7.5447	7.3950	6.3098	6.9552	5.9127
13.04.2018	-1.4856	-0.5588	-0.5273	0.7128	0.6255	0.4779
16.04.2018	-1.8659	-2.1726	-0.9545	0.4736	0.1911	-0.8787
17.04.2018	-2.6976	-0.8226	-0.9422	0.6472	-0.1390	-0.4471
19.04.2018	-0.0746	1.6263	-0.3125	1.2005	1.3552	1.0945
14.05.2018	-1.7168	0.4189	-0.2876	-0.2996	1.2932	1.2879
15.05.2018	-0.9841	1.7137	0.0999	0.9923	2.2697	3.5967
16.05.2018	0.6974	2.4056	0.7799	1.0345	2.4809	3.2983
18.05.2018	-0.9912	0.9077	0.3924	0.1498	0.6862	0.9581
07.06.2018	-1.2043	-1.4847	-0.3078	-0.6663	-0.3800	-0.1383
11.06.2018	-1.5659	0.1248	-0.4314	-0.8097	1.5288	1.6439
12.06.2018	-5.8844	-3.2190	-3.7762	-3.8081	-1.7879	-2.2891
14.06.2018	-3.3460	2.2271	2.4043	2.4200	3.4289	3.4721
19.06.2018	0.4705	0.7798	0.4169	0.7588	1.0192	0.7682
06.07.2018	-4.1696	-1.7526	-0.5388	1.2951	1.8949	2.7500
11.07.2018	-4.5569	-0.6450	0.8022	2.0338	3.4143	3.2656
12.07.2018	-2.3441	0.1217	1.6382	2.8473	3.0388	4.1563
16.07.2018	-4.8769	0.9067	2.2035	3.1418	4.1303	3.7031
18.07.2018	-2.2946	-3.7021	1.1513	1.1601	1.2416	0.8931
20.07.2018	-5.1186	-0.0242	1.2833	0.6101	1.6124	1.5861
24.07.2018	-5.4411	-7.8814	0.1919	1.4790	2.5522	2.5562
25.07.2018	-5.0270	-1.6488	0.9403	1.1185	2.0090	1.5245
30.07.2018	-3.6998	-2.5667	-1.1513	0.4113	1.8624	0.7391
31.07.2018	-3.5267	-0.5315	1.2065	1.5529	1.7762	1.7709
01.08.2018	-0.1284	1.1619	1.7914	3.0477	2.4930	2.6531
02.08.2018	2.1072	0.6622	1.1166	0.9417	1.8083	1.0832
06.08.2018	0.9306	-1.2556	0.4491	1.3724	1.9751	2.6217

	Relative error (%)						
Date	Upper limit	Dilution 1	Dilution 2	Dilution 3	Dilution 4	Dilution 5	
25.08.2016	3.8186	3.6664	3.8207	3.7410	3.2744	2.7327	
13.10.2016	0.2290	-3.5177	-0.6697	-0.3592	-0.5476	2.0202	
27.10.2016	-2.0885	-2.2490	-2.0893	-1.6368	-1.3063	-1.5057	
16.12.2016	-2.1538	-0.4153	0.1312	-0.9093	-0.7439	-0.1878	
04.04.2017	2.7911	-3.6894	-1.1683	2.0575	3.9819	3.1312	
05.04.2017	-1.0305	-2.7361	-1.2856	0.9215	3.5737	1.6954	
22.05.2017	-0.5942	-2.0531	-1.5549	-1.7420	-0.9849	-1.7174	
07.06.2017	-3.6493	-3.1449	-1.5979	-1.3347	-4.0530	-3.4222	
08.01.2018	6.9633	5.9506	3.5201	3.8763	1.8309	0.3519	
25.01.2018	-1.9340	0.0247	-0.8031	-0.8022	2.0332	-0.6468	
31.01.2018	-0.1524	0.3890	0.0933	-0.5280	-0.6236	-0.2781	
05.02.2018	-2.1838	-3.8334	-2.1713	-2.8502	-1.6283	-0.8188	
06.02.2018	0.2829	-0.2008	0.1990	-0.5467	-1.5070	-0.2317	
07.02.2018	-1.5707	-1.9512	0.2579	0.9859	-0.7448	-0.5407	
02.03.2018	-6.5182	-3.4908	-3.7137	-0.9032	-1.1610	1.5229	
08.03.2018	-7.9405	-2.2696	-1.7387	0.2808	1.1697	3.0769	
09.03.2018	-6.7604	-8.1411	-4.3600	-2.8640	-1.6061	-0.8858	
12.04.2018	1.1654	2.9633	4.4638	4.6594	5.7929	4.6636	
23.04.2018	-1.4643	-0.0753	-0.0317	0.7316	1.2249	0.3546	
18.06.2018	-0.3265	0.0437	-0.3127	-0.1897	0.1123	0.3841	
09.07.2018	-5.4697	-2.5193	0.4518	1.8935	2.7943	3.7656	
17.07.2018	-5.7593	0.0304	2.3147	3.4176	3.6500	3.7813	
23.07.2018	-3.3638	-2.2165	0.9786	1.0445	1.0691	1.7247	

Appendix 10.3-3: Results of system suitability tests before invalid analytical runs in the context of the bioanalytical quality control system.

			Quality contro	llow	Qua	ality control m	niddle	(Quality contro	l high
Run	Date	NV	MV (ng/mL)	RE (%)	NV	MV (ng/mL)	RE (%)	NV	MV (ng/mL)	RE (%)
1	26.08.2016	1.17	1.3298	13.6539	6.51	7.4548	14.5127	42.5	44.2350	4.0824
2	26.08.2016	1.17	1.3038	11.4388	6.51	7.5512	15.9931	42.5	39.2120	-7.7365
3	29.08.2016	1.17	1.2430	6.2393	6.51	6.7219	3.2546	42.5	40.4380	-4.8518
4	29.08.2016	1.17	1.4011	19.7500	6.51	7.3048	12.2093	42.5	38.4000	-9.6471
5	30.08.2016	1.17	1.3747	17.4936	6.51	6.8484	5.1978	42.5	39.4250	-7.2353
6	31.08.2016	1.17	1.3697	17.0684	6.51	6.9228	6.3406	42.5	39.5800	-6.8706
7	02.09.2016	1.17	1.2528	7.0769	6.51	6.8511	5.2400	42.5	37.6135	-11.4977
8	29.09.2016	1.17	1.2427	6.2115	6.51	6.9512	6.7773	42.5	39.1245	-7.9424
9	20.10.2016	1.17	1.2970	10.8547	6.51	6.7258	3.3141	42.5	37.4030	-11.9929
10	04.11.2016	1.17	1.2256	4.7479	6.51	6.9542	6.8230	42.5	36.4220	-14.3012
11	07.11.2019	1.17	1.3265	13.3718	6.51	7.1685	10.1156	42.5	35.5585	-16.3329
12	09.11.2016	1.17	1.3340	14.0192	6.51	7.1386	9.6563	42.5	38.9575	-8.3353
13	10.11.2016	1.17	1.2336	5.4338	6.51	6.9206	6.3072	42.5	43.6060	2.6024
14	25.11.2016	1.17	1.3921	18.9808	6.51	6.9007	6.0019	42.5	40.0380	-5.7929
14		-								
	28.11.2016	1.17	1.2772	9.1603	6.51	7.2708	11.6859	42.5	40.1010	-5.6447
16	29.11.2016	1.17	1.3715	17.2201	6.51	6.7102	3.0758	42.5	41.7140	-1.8494
17	30.11.2016	1.17	1.2338	5.4487	6.51	6.4624	-0.7316	42.5	36.9015	-13.1729
18	01.12.2016	0.88	0.8980	2.0477	4.53	5.1113	12.8322	42.5	40.1865	-5.4435
19	14.12.2016	0.88	0.8691	-1.2426	4.53	5.4239	19.7334	42.5	40.3225	-5.1235
20	19.12.2016	0.88	0.8912	1.2733	4.53	5.4318	19.9073	42.5	38.7350	-8.8588
21	21.12.2016	0.88	0.9294	5.6091	4.53	5.4429	20.1523	42.5	41.7925	-1.6647
22	11.01.2017	0.88	1.0174	15.6188	4.53	5.3509	18.1220	42.5	43.8815	3.2506
23	13.01.2017	0.88	0.9010	2.3804	4.53	5.3674	18.4846	42.5	44.2373	4.0877
24	16.01.2017	0.88	1.0542	19.7966	4.53	5.4077	19.3758	42.5	42.5538	0.1265
25	20.01.2017	0.88	1.0128	15.0918	4.53	5.0885	12.3284	42.5	41.9588	-1.2735
26	30.01.2017	0.88	0.9650	9.6625	4.53	5.2659	16.2450	42.5	42.1228	-0.8877
27	31.01.2017	0.88	0.9892	12.4068	4.53	5.3552	18.2152	42.5	40.7383	-4.1453
28	01.02.2017	0.88	0.9880	12.2742	4.53	5.0328	11.0988	42.5	40.0305	-5.8106
29	02.02.2017	0.88	0.9704	10.2736	4.53	5.0422	11.3057	42.5	40.5340	-4.6259
30	03.04.2017	0.88	0.9935	12.8986	4.53	5.2384	15.6374	42.5	41.8595	-1.5071
31	06.04.2017	0.88	0.9725	10.5068	4.53	4.9295	8.8179	42.5	40.8610	-3.8565
32	07.04.2017	0.88	0.9832	11.7273	4.53	5.5214	21.8841	42.5	42.5120	0.0282
33	19.04.2017	0.88	0.9335	6.0787	4.53	5.1448	13.5723	42.5	41.7115	-1.8553
34	21.04.2017	0.88	0.9613	9.2421	4.53	5.3512	18.1280	42.5	40.2720	-5.2424
35	24.04.2017	0.88	0.9827	11.6685	4.53	5.3663	18.4614	42.5	41.7710	-1.7153
36	03.05.2017	0.88	0.9156	4.0415	4.53	5.3010	17.0204	42.5	39.3860	-7.3271
37	05.05.2017	1.21	1.5043	24.3182	5.71	6.2063	8.6918	42.5	45.7550	7.6588
38	10.05.2017	1.21	1.1479	-5.1322	5.71	5.7027	-0.1283	42.5	42.7310	0.5435
39	12.05.2017	1.21	1.2350	2.0620	5.71	6.2246	9.0127	42.5	46.3850	9.1412
40	15.05.2017	1.21	1.2244	1.1901	5.71	5.9141	3.5740	42.5	40.4485	-4.8271
41	16.05.2017	1.21	1.2152	0.4256	5.71	5.6994	-0.1861	42.5	39.2045	-7.7541
42	17.05.2017	1.21	1.2537	3.6074	5.71	5.8999	3.3257	42.5	42.8580	0.8424
43	18.05.2017	1.21	1.1266	-6.8967	5.71	5.8021	1.6130	42.5	44.3840	4.4329
44	19.05.2017	1.21	1.1389	-5.8802	5.71	5.5504	-2.7955	42.5	40.0465	-5.7729
45	24.05.2017	1.21	1.1201	-7.4339	5.71	5.7503	0.7062	42.5	42.1300	-0.8706
46	29.05.2017	1.21	1.2261	1.3265	5.71	5.9657	4.4772	42.5	45.3610	6.7318
47	30.05.2017	1.21	1.3689	13.1281	5.71	6.1778	8.1918	42.5	44.7065	5.1918
48	31.05.2017	1.21	1.2510	3.3843	5.71	5.9732	4.6090	42.5	43.0155	1.2129
49	01.06.2017	0.98	1.0114	3.2041	5.04	5.5423	9.9668	42.5	45.0870	6.0871
50	08.06.2017	0.98	0.8342	-14.8806	5.04	5.6231	11.5699	42.5	41.3285	-2.7565
51	14.06.2017	0.98	1.0134	3.4082	5.04	5.4123	7.3864	42.5	40.7735	-4.0624
52	21.06.2017	0.98	0.9436	-3.7163	5.04	5.6790	12.6786	42.5	50.2900	18.3294
53	05.07.2017	0.98	1.0676	8.9388	5.04	5.6005	11.1200	42.5	43.0535	1.3024
54	07.07.2017	0.98	1.0645	8.6225	5.04	5.5930	10.9712	42.5	50.5595	18.9635
55	10.07.2017	0.98	1.0507	7.2092	5.04	5.4994	9.1141	42.5	40.0795	-5.6953
56	12.07.2017	0.98	0.9807	0.0730	5.04	5.3228	5.6116	42.5	44.2625	4.1471
57	14.07.2017	0.98	1.0699	9.1684	5.04	5.6168	11.4449	42.5	24.2918	-42.8428
58	19.07.2017	0.98	0.9998	2.0189	5.04	5.6033	11.1766	42.5	45.1535	6.2435
59	27.07.2017	0.98	1.0427	6.3929	5.04	5.7709	14.5010	42.5	42.2855	-0.5047
60	28.07.2017	0.98	1.0311	5.2143	5.04	5.7375	13.8398	42.5	32.0430	-24.6047
61	22.08.2017	0.98	1.0016	2.2046	5.04	5.6059	11.2272	42.5	44.9700	5.8118
	22.00.2011	0.30	1.0010	2.2040	0.04	0.0009	11.2212	72.J		0.0110

Appendix 10.3-4: Results of quality control evaluation for all three quality control levels in the context of the bioanalytical quality control system.

11219.03.20180.970.99382.44874.354.965714.154042.540.0590-5.743511321.03.20180.971.122615.73204.354.898912.617242.544.66155.085911422.03.20180.971.067010.00004.355.003915.031042.541.4925-2.370611527.03.20180.971.092512.62374.355.075816.684542.547.437511.617711628.03.20180.971.04627.85444.355.047016.023042.548.921515.109411713.04.20180.971.06689.97424.354.927913.283942.543.52302.407111816.04.20180.971.109914.42014.354.9906012.781042.546.08958.445911917.04.20180.971.110714.50264.354.999314.927042.539.8785-6.168212019.04.20180.971.03026.20054.355.112817.536242.533.3825-21.452912114.05.20180.971.03026.20054.354.2609-2.048342.541.7720-1.712912316.05.20180.971.179921.63404.354.867811.672442.545.05606.0141				Quality contro	llow	Qua	ality control m	niddle		Quality contro	l high
52 20.08.2017 0.98 1.0094 4.9988 6.04 5.4624 8.1916 4.755 44.750 52 20.08.2017 0.98 1.0024 4.9988 6.04 5.0100 1.10004 4.5 44.1400 2.2647 64 20.08.2017 0.98 1.0021 0.88 5.04 5.4023 8.9314 4.25 44.1400 2.268 44.1402 45.44 44.0021 7.110.2017 0.98 1.0016 4.255 6.04 5.4983 1.01415 4.256 44.0019 7.0141 4.4003 7.0141 4.4016 3.0057 7.0141 7.014 7.014 7.014 4.4003 3.004 5.0017 7.017 7.0141 7.014 4.4003 3.0057 7.0141 7.014 4.4002 4.25 4.44.1000 3.0057 7.0171 0.0101 2.1755 5.044 5.0991 1.00058 4.25 4.41080 3.0057 7.0111.0017 0.081 3.0057 3.0016 3.0016 3.0016 3.0016 3.0016	Run	Date									1
53 24.08.2017 0.08 1.0204 4.0388 6.04 5.6140 5.6140 5.6142 8.215 4.225 4.441.08 8.2588 65 30.08.2017 0.98 1.0870 8.8728 8.044 5.8429 8.314 4.25 4.47900 8.8588 65 30.08.2017 0.98 1.0979 5.2281 0.04 5.9433 1.0415 4.25 4.45084 8.335 67 71.10.2017 0.98 1.0176 5.9281 0.04 5.9451 1.04884 4.25 4.490851 3.9353 70 28.102017 0.98 1.0076 9.9482 5.04 5.9589 1.05864 2.2 4.41801 9.9417 70 28.102017 0.98 1.0087 1.2178 5.041 5.9589 1.05854 2.2 4.41801 9.9418 1.9586 71 0.10180 2.1795 5.041 5.9589 1.95264 2.2 4.31851 1.95867 71 1.10101 0.40 </th <th></th> <th>23.08.2017</th> <th>0.98</th> <th></th> <th></th> <th>5.04</th> <th></th> <th></th> <th>42.5</th> <th></th> <th></th>		23.08.2017	0.98			5.04			42.5		
95 30.08.207 0.98 1.081 10.7245 5.014 5.953 16.721 4.25 4.79000 12.8941 95 0.19 0.1915 5.2551 5.014 5.963 10.415 4.25 44.69051 5.4400 91 10.1077 0.98 10.075 9.893 5.04 5.911 10.0415 4.25 44.69051 5.7251 90 25.10.2077 0.98 10.077 9.9802 5.04 5.5191 14.0564 4.25 44.69051 5.9937 90 10.1077 19.8928 4.04 5.5191 10.7666 4.25 44.8950 5.041 90 10.881 10.031 2.1755 5.044 6.5061 12.365 4.25 44.3905 5.011 15 15.112.017 0.88 10.032 2.1755 5.044 5.0612 13.515 17.1101 12.024 13.11217 12.042 12.335 42.2 44.3101 14.201 14.2171 12.2352 2.3821	63	24.08.2017	0.98	1.0284	4.9388	5.04	5.6100	11.3095	42.5	41.4100	-2.5647
66 0109.2017 0.98 0.9419 12189 5.644 5.4788 8.873 42.5 44.0613 8.4808 67 17.10.2017 0.98 1.0176 3.8333 5.044 5.0693 1.01415 42.5 44.0623 7.4341 69 25.10217 0.98 1.0776 8.9584 5.044 5.0171 3.777 42.5 44.0423 5.0471 71 0.2112017 0.98 1.0771 2.9174 5.64 5.648 5.649 42.5 44.9303 1.9505 71 0.2112017 0.98 1.0488 7.0278 5.04 5.6864 1.24924 42.5 43.9451 1.9902 71 0.112171 0.98 1.0407 2.5163 5.044 5.6864 12.3661 42.5 43.9152 2.828 71 2.112017 0.98 0.0307 -4.3163 5.646 5.6222 9.9973 42.5 44.2803 5.604 5.6232 9.6713 42.8 44.8083 5.606 <th>64</th> <th>28.08.2017</th> <th>0.98</th> <th>1.0670</th> <th>8.8725</th> <th>5.04</th> <th>5.4629</th> <th>8.3914</th> <th>42.5</th> <th>46.1290</th> <th>8.5388</th>	64	28.08.2017	0.98	1.0670	8.8725	5.04	5.4629	8.3914	42.5	46.1290	8.5388
97 11/10/2017 0.08 1.0.916 5.2.951 6.0.4 5.6.993 10.4.415 4.2.5 44.0825 7.4.341 97 22.10.2017 0.08 1.0076 9.8.083 5.0.4 5.6.915 11.6.055 4.2.5 44.1080 3.0.35 90 22.10.2017 0.88 1.0076 9.6.083 5.0.4 5.6.150 11.4.206 4.2.5 44.1080 3.0.35 70 21.1.2017 0.88 1.0487 7.2.217 5.0.4 5.6.664 11.0.026 4.2.5 4.3.152 2.3.844 71 0.11.12017 0.88 1.0.013 2.1.7.75 5.0.4 5.6.664 1.3.363 4.2.5 4.3.125 2.3.844 74 1.4.1.2017 0.88 0.0022 7.7.4448 5.0.4 5.5.630 11.7.645 4.2.5 4.3.125 1.3.843 75 1.5.1.0 0.089 0.9220 5.5.441 9.2.2.1.2017 0.98 0.9220 5.5.415 0.4.1.2017 0.98 0.9226 5.5.818	65	30.08.2017	0.98	1.0851	10.7245	5.04	5.9533	18.1215	42.5	47.9800	12.8941
68 18:10:2017 0.08 1.0170 3.3933 5.04 5.015 19.088 4.2.5 44.1980 3.9953 70 28:10:2017 0.08 1.0776 9.9592 5.04 5.615 11.4264 42.5 44.1640 5.04 5.615 71 0:11:2017 0.08 1.0377 12.175 5.04 5.8195 10.2051 42.5 44.56 1.575 71 0:11:2017 0.08 1.0488 7.0225 5.04 5.8695 10.2051 42.5 44.55 45.865 1.5827 71 0.11:2017 0.88 1.0497 2.31217 0.88 0.9022 5.04 5.6161 12.3801 42.5 43.1315 1.4859 72 2.11:2017 0.88 0.9423 5.644 5.612 0.8673 42.5 44.855 5.5612 73 2.51:2017 0.88 0.9423 -5.644 5.5622 0.8673 42.5 44.855 5.5612 74 2.112017	66	01.09.2017	0.98	0.9919	1.2189	5.04	5.4758	8.6473	42.5	46.0915	8.4506
99 25:10:2017 0.88 1.0076 9.8942 5.04 5.6177 1.4286 42.5 44.1680 5.0471 70 281.02017 0.88 1.0076 9.8992 5.04 5.6082 14.286 42.5 44.3.5065 15.0687 71 0.11.2017 0.88 1.00488 7.0235 6.544 5.5082 14.286 42.5 44.3.1065 1.5682 73 1.31.12017 0.88 1.0030 2.1756 5.644 6.1414 21.8007 42.5 44.3.1065 8.1016 74 1.4.1.2017 0.88 0.0022 7.79408 5.044 5.6141 5.2810 0.0220 47.211 1.2803 42.5 43.13020 -2.9129 75 2.51.12017 0.88 0.9226 -5.8817 5.04 5.5323 9.5873 42.5 44.3800 4.9247 72 2.51.12017 0.88 0.9226 -5.8817 5.044 5.5024 9.1021 4.25 44.5030 4.9247	67	17.10.2017	0.98	1.0315	5.2551	5.04	5.5663	10.4415	42.5	45.6595	7.4341
TO 20:10:217 0.98 1.0776 9.9992 0.04 5.6199 11.4204 4.25 44.455 5.44 T1 02:112017 0.88 1.0037 12.112017 0.88 1.0038 7.0235 5.04 5.5695 10.8055 42.5 43.85125 2.3824 T4 14.112017 0.88 1.0300 5.7002 5.64 5.664 5.6613 12.3801 42.5 43.5125 2.3824 T4 14.12017 0.86 0.9022 -7.9408 5.644 5.6618 12.3803 42.5 47.1171 12.262 T2 21.12017 0.88 0.9327 4.3198 5.644 5.5512 2.5 45.34850 5.691 T2 21.12017 0.88 0.9283 -5.8487 5.044 5.9089 0.3384 42.5 44.8035 5.5612 T2 21.12017 0.88 0.9284 -5.847 5.044 5.0371 42.5 54.48335 5.961 T2 21.122017 <th>68</th> <th>18.10.2017</th> <th>0.98</th> <th>1.0176</th> <th>3.8393</th> <th>5.04</th> <th>5.9515</th> <th>18.0858</th> <th>42.5</th> <th>44.0825</th> <th>3.7235</th>	68	18.10.2017	0.98	1.0176	3.8393	5.04	5.9515	18.0858	42.5	44.0825	3.7235
71 02:11:2017 0.98 1.1037 12:8174 5.04 5.9893 11:8256 42.5 43:8055 1.5062 73 13:11:2017 0.98 1.0013 2.1755 5.04 5.6664 12:4002 42.5 43:8165 1.5062 74 14:11:2017 0.98 1.0013 2.1755 5.04 5.6664 12:4002 42.5 43:8157 2.3884 75 15:11:2017 0.98 0.9022 .7:2418 5.04 5.5416 9.9529 42.5 43:151 1.4850 72 21:12017 0.98 0.9237 -5.4437 5.04 5.5322 0.7334 42.5 44:583 5.5404 92 21:12017 0.98 0.9924 -1.5847 5.044 5.3021 0.7704 42.5 44:583 5.546 5.3051 5.2024 42.5 44:585 5.566 3.3068 2.3 44:55 44:585 45:586 3.3068 2.5 45:586 3.3066 3.3061 5.2044	69	25.10.2017	0.98	1.0679	8.9643	5.04	5.5177	9.4787	42.5	44.1980	3.9953
T2 10.11.2017 0.98 1.0488 7.0235 5.04 5.6845 10.0505 4.25 4.3.1665 1.5862 T3 13.112017 0.98 1.0032 2.7755 5.04 5.6618 12.3033 4.25 4.71115 1.2262 T6 15.112017 0.98 0.9022 .7.9408 5.04 5.6618 12.3033 4.25 4.71115 1.22624 T6 21.12017 0.98 0.9022 .7.9408 5.04 5.5416 9.9529 4.25 4.13161 1.4850 T7 22.112017 0.98 0.9262 5.8617 5.044 5.5416 9.9529 4.25 4.45800 6.3755 T8 27.112017 0.98 0.9263 1.3439 5.044 5.5407 8.1285 4.25 4.41820 4.22 4.48030 4.226 4.13820 4.25 4.10565 5.3366 D1.12.2017 0.89 0.9544 -3.1425 5.04 5.5416 0.03271 4.25 4.5306	70	26.10.2017	0.98	1.0776	9.9592	5.04	5.6159	11.4266	42.5	44.6450	5.0471
73 13.11.2017 0.98 1.0030 2.1755 5.04 5.6464 12.4002 4.25 4.31025 2.3824 74 14.112017 0.98 0.9022 .7.4048 5.04 6.6416 12.3833 4.25 4.30945 8.0166 75 15.11.2017 0.98 0.9022 .7.4048 5.04 6.6416 12.3833 4.25 4.1315 1.4865 77 23.11.2017 0.98 0.9327 4.3195 5.04 5.5322 9.8673 4.25 4.1325 5.404 80 29.11.2017 0.98 0.9228 5.5417 5.044 5.0502 9.1706 4.25 4.48935 5.5404 81 0.11.2017 0.98 0.9924 1.3918 5.044 5.0496 6.0374 4.25 4.4935 5.541 81 0.11.2017 0.98 0.9944 -3.1245 5.04 5.3416 6.0374 4.25 4.49350 5.541 81 0.11.2017 0.98 0.9944 <th>71</th> <th>02.11.2017</th> <th>0.98</th> <th>1.1037</th> <th>12.6174</th> <th>5.04</th> <th>5.9939</th> <th>18.9256</th> <th>42.5</th> <th>48.3635</th> <th>13.7965</th>	71	02.11.2017	0.98	1.1037	12.6174	5.04	5.9939	18.9256	42.5	48.3635	13.7965
74 14.112017 0.98 1.0000 5.7002 5.04 5.64 5.6618 12.3333 42.5 47.7115 12.2862 75 15.112017 0.98 0.9022 .7.5408 5.04 5.6418 12.3333 42.5 47.7115 12.2862 77 23.112017 0.98 0.9263 -5.4415 5.6416 9.6929 42.5 44.8620 -2.9172 78 27.112017 0.98 0.9262 -5.8617 5.04 5.5052 9.9784 42.5 44.8630 5.6912 90 0.112.2017 0.98 0.9992 1.3439 5.04 5.4497 8.1255 42.5 44.8635 -5.9316 90 0.122017 0.98 0.9944 -1.9131 5.04 5.5461 0.0214 42.5 44.9835 6.2562 91 0.122017 0.98 0.9364 -2.934 5.04 5.3761 42.5 44.9835 6.2662 91 10.12016 0.89 0.9361 4.044 </th <th>72</th> <th>10.11.2017</th> <th>0.98</th> <th>1.0488</th> <th>7.0235</th> <th>5.04</th> <th>5.5695</th> <th>10.5055</th> <th>42.5</th> <th>43.1665</th> <th>1.5682</th>	72	10.11.2017	0.98	1.0488	7.0235	5.04	5.5695	10.5055	42.5	43.1665	1.5682
75 15.11.2017 0.98 0.9022 7.7408 5.04 5.6618 12.393 42.5 47.115 12.204 76 22.11.2017 0.98 0.8077 4.3199 5.04 5.6320 11.1455 42.5 44.31315 1.4859 77 23.11.2017 0.98 0.9226 5.5467 5.04 5.5322 9.6873 42.5 44.7800 5.4094 90 23.11.2017 0.98 0.9228 1.5.8617 5.04 5.5022 9.1706 42.5 44.49305 5.640 90 23.11.2017 0.98 0.9924 1.3918 5.04 5.5022 9.1706 42.5 44.49305 5.446 90 11.212017 0.98 0.9944 1.3121 5.04 5.3744 6.5764 6.27634 4.5646 8.0357 42.5 44.54806 6.9082 24 13.12.2017 0.98 0.9361 4.1481 5.04 5.5561 10.2391 42.5 45.3786 6.7632 6.77575	73	13.11.2017	0.98	1.0013	2.1755	5.04	5.6654	12.4092	42.5	43.5125	2.3824
76 22.11.2017 0.98 1.0047 2.5163 5.04 5.6320 11.7455 4.25 4.13155 1.4865 77 23.11.2017 0.98 0.9377 4.3199 5.04 5.5212 9.5673 42.5 41.2620 -2.9129 79 23.11.2017 0.98 0.9233 -5.4437 5.04 5.5281 0.5673 42.5 44.7890 5.6612 80 0.2112.017 0.98 0.9932 1.3349 5.04 5.5449 8.1255 42.5 44.8635 6.5691 80 0.112.2017 0.98 0.9944 -2.5944 5.04 5.4467 8.1255 6.13285 20.812 81 0.12.2017 0.98 0.9944 -3.1345 5.04 5.5611 10.2391 42.5 45.3395 6.6992 83 1.21.2017 0.98 0.9944 -3.1345 5.04 5.5611 10.2391 42.5 45.3395 6.7689 84 1.01.2018 0.98 0.9305	74	14.11.2017	0.98	1.0360	5.7092	5.04	6.1418	21.8601	42.5	45.9045	8.0106
77 23.11.2017 0.98 0.3277 4.3199 5.04 5.5416 9.9529 42.5 44.280 -2.9129 78 27.11.2017 0.98 0.3283 -5.6437 5.04 5.5322 9.5873 42.5 44.8685 5.5672 79 28.11.2017 0.98 0.9226 -3.895 5.04 5.6022 9.1706 42.5 44.8685 5.5672 81 0.11.2017 0.98 0.9944 -1.5918 5.04 5.4054 8.0327 42.5 44.8635 5.5612 81 0.122017 0.98 0.9944 -3.1245 5.04 5.3714 6.5759 42.5 51.2385 20.9511 83 10.1018 0.98 0.9361 -4.4801 5.04 5.5714 42.5 51.2385 7.756 81 10.1018 0.98 0.9691 -1.1188 5.04 5.5717 81.8092 42.5 43.8706 7.8714 81 10.1018 0.98 0.9733 -0.1725	75	15.11.2017	0.98	0.9022	-7.9408	5.04	5.6618	12.3363	42.5	47.7115	12.2624
77 27.112017 0.98 0.9228 -5.8617 5.04 5.5622 9.5873 42.5 44.4800 6.9765 78 28.112017 0.98 0.9226 -5.8617 5.04 5.0928 0.9384 42.5 44.47900 5.4094 80 29.112017 0.98 0.9692 1.3439 5.04 5.5022 9.7760 42.5 44.8036 5.3066 81 0.1122017 0.98 0.9444 -1.5918 5.04 5.4497 8.1295 42.5 44.3630 6.3092 84 13.122017 0.98 0.9494 -3.1245 5.04 5.5759 42.5 51.2385 20.5612 85 0.6012018 0.98 0.93661 -4.4801 5.04 5.5779 18.0098 42.5 44.8007 7.0171 710101018 0.98 1.0453 6.0452 5.04 5.2326 5.7779 18.0096 42.5 34.0074 4.4855 810102018 0.97 1.0433 6.3224 <	76	22.11.2017	0.98	1.0047	2.5163	5.04	5.6320	11.7455	42.5	43.1315	1.4859
78 28.11.2017 0.98 0.9226 5.8617 5.04 5.0528 9.1706 42.5 44.7800 5.4004 80 29.11.2017 0.98 0.9932 1.3439 5.04 5.5022 9.1706 42.5 44.8635 5.5612 81 0.11.2017 0.98 0.9644 -1.5918 5.04 5.4447 8.1285 42.5 44.8630 4.3287 81 12.12017 0.98 0.9944 -3.1245 5.04 5.5714 6.5759 42.5 5.12385 6.20591 84 0.1018 0.98 0.9361 -4.44801 5.04 5.5714 6.5759 42.5 5.12385 6.20591 86 0.5012018 0.98 0.9361 -4.44801 5.04 5.5461 10.0214 42.5 45.8665 7.3071 87 10.012018 0.98 0.9691 -1.1168 5.04 5.3282 5.7178 42.5 44.8009 -4.729 91 150.12018 0.97 1.0337<	77	23.11.2017	0.98	0.9377	-4.3199	5.04	5.5416	9.9529	42.5	41.2620	-2.9129
80 29.11.2017 0.98 0.9802 1.3439 5.04 5.5022 9.1706 42.5 44.8635 5.6812 81 0.1.2.2017 0.98 0.99644 -1.5918 5.04 5.4497 8.1295 42.5 44.18635 4.925 82 0.41.2017 0.98 0.9944 -3.1245 5.04 5.3714 6.5759 42.5 45.4380 6.0965 84 13.12.12.2017 0.98 0.9946 -3.1245 5.04 5.5791 42.5 45.3755 6.7599 85 0.01.2018 0.98 0.9361 -4.4801 5.04 5.5779 42.5 44.25 44.8055 7.3071 87 10.01.2018 0.98 0.9961 -1.1168 5.04 5.3282 5.7178 42.5 44.82690 -1.72865 90 16.01.2018 0.98 0.9961 -1.1188 5.04 5.3282 5.7178 42.5 44.3970 4.4725 91 10.12018 0.97 1.0337 <th< th=""><th>78</th><th>27.11.2017</th><th>0.98</th><th>0.9263</th><th>-5.4837</th><th>5.04</th><th>5.5232</th><th>9.5873</th><th>42.5</th><th>45.4650</th><th>6.9765</th></th<>	78	27.11.2017	0.98	0.9263	-5.4837	5.04	5.5232	9.5873	42.5	45.4650	6.9765
81 01.12.2017 0.98 0.9644 -1.5918 5.04 5.4497 8.1295 42.5 44.5930 4.9247 82 0.4.12.2017 0.98 0.9911 1.1301 5.04 5.4450 8.0357 42.5 44.5300 -3.3965 84 13.12.2017 0.98 0.9944 -3.1245 5.04 5.5551 10.2311 42.5 44.5360 6.5092 84 13.12.2017 0.98 0.9944 -3.1245 5.04 5.55561 10.2311 42.5 44.5360 6.5092 84 0.501.2018 0.98 0.9361 -4.4801 5.04 5.5466 10.0124 42.5 44.56055 7.3071 87 10.012018 0.98 0.9783 -0.1725 5.04 5.2382 5.7178 42.5 44.3970 4.4635 91 17.012018 0.97 1.0203 3.2394 43.5 5.2282 2.0323 42.5 44.3970 4.4635 91 10.21018 0.97 <th< th=""><th>79</th><th>28.11.2017</th><th>0.98</th><th>0.9226</th><th>-5.8617</th><th>5.04</th><th>5.0598</th><th>0.3934</th><th>42.5</th><th>44.7990</th><th>5.4094</th></th<>	79	28.11.2017	0.98	0.9226	-5.8617	5.04	5.0598	0.3934	42.5	44.7990	5.4094
82 04.12.2017 0.98 0.9911 1.1301 5.04 5.3051 5.2604 42.5 41.0565 -3.3965 83 12.12.2017 0.98 0.9494 -3.1245 5.04 5.3714 6.579 42.5 51.3285 20.05612 84 13.12.2017 0.98 0.9305 -5.0485 5.04 5.5714 6.579 42.5 45.3755 6.769 86 05.01.2018 0.98 0.9305 -5.0485 5.04 5.5446 10.0124 42.5 44.8055 7.3071 87 10.01.2018 0.98 0.9991 -1.1168 5.04 5.52322 5.7178 42.5 9.4160 -7.2565 90 16.01.2018 0.98 1.0433 6.6582 5.04 5.2836 4.8338 42.5 44.3970 4.4729 91 10.1018 0.97 1.1337 1.8763 4.35 5.2821 21.4270 42.5 43.9408 3.9966 91 10.118 1.8763 4.35<	80	29.11.2017	0.98	0.9932	1.3439	5.04	5.5022	9.1706	42.5	44.8635	5.5612
83 12.12.2017 0.98 0.9546 -2.5834 5.04 5.4450 8.0357 42.5 45.4380 6.0982 84 13.12.2017 0.98 0.9844 -3.1245 5.04 5.5561 10.2311 42.5 45.3755 6.7659 86 0.01218 0.98 0.9305 -4.4801 5.04 5.5446 10.0124 42.5 45.8055 7.3071 87 10.0128 0.98 0.9691 -1.1168 5.04 5.9779 18.8096 42.5 44.8280 13.5741 89 15.01.2018 0.98 0.9691 -1.1168 5.04 5.3282 5.7178 42.5 44.8280 13.5741 80 16.01.2018 0.97 1.0337 16.8763 4.35 5.2282 5.1779 18.8096 42.5 44.8280 14.5776 42.5 44.8970 4.4725 91 10.01218 0.97 1.1337 16.8763 4.35 5.2382 20.8230 42.5 44.8950 5.1647 </th <th>81</th> <th>01.12.2017</th> <th>0.98</th> <th>0.9644</th> <th>-1.5918</th> <th>5.04</th> <th>5.4497</th> <th>8.1295</th> <th>42.5</th> <th>44.5930</th> <th>4.9247</th>	81	01.12.2017	0.98	0.9644	-1.5918	5.04	5.4497	8.1295	42.5	44.5930	4.9247
84 13.12.2017 0.98 0.9494 -3.1245 5.04 5.3714 6.5759 42.5 51.2385 20.5612 86 0.501218 0.98 0.3305 -5.0445 5.04 5.5446 10.0124 42.5 45.7055 6.7087 87 10.01.2018 0.98 1.0286 4.9941 5.04 5.4728 8.8688 42.5 49.0810 15.847 86 15.012018 0.98 0.09691 -1.1168 5.04 5.2779 18.6096 42.5 49.0810 15.847 89 15.012018 0.98 1.0453 6.6582 5.04 5.2836 4.8338 42.5 40.9990 -4.4725 91 17.0118 0.97 1.1337 16.8763 4.35 5.2821 21.4270 42.5 44.3970 44.835 92 18.012018 0.97 1.1084 14.8676 4.35 5.1302 19.0330 42.5 44.9800 1.0817 94 20.2018 0.97 1.0064	82	04.12.2017	0.98	0.9911	1.1301	5.04	5.3051	5.2604	42.5	41.0565	-3.3965
85 04.01.2018 0.98 0.9305 -5.0485 5.04 5.5561 10.2391 42.5 45.3755 6.7859 86 05.01.2018 0.98 0.9301 -4.4801 5.04 5.5444 10.0124 42.5 45.00857 7.3071 88 11.0.12018 0.98 0.9801 -1.1183 5.04 5.9779 18.6086 42.5 48.2600 13.5741 89 15.01.2018 0.98 0.9783 -0.1725 5.04 5.2826 5.7178 42.5 94.48200 13.5741 90 16.01218 0.98 1.0433 6.6682 5.044 5.2836 4.8338 42.5 44.3970 4.4835 91 10.1218 0.97 1.1324 16.8763 4.35 5.2821 2.14270 42.5 44.3970 4.4835 92 18.012018 0.97 1.1024 14.8763 4.35 5.2822 0.0233 42.5 40.8460 5.1647 93 10.01218 0.97	83	12.12.2017	0.98			5.04					
86 05.01.2018 0.98 0.9361 4.4801 5.04 5.5446 10.0124 42.5 45.6055 7.3071 87 10.01.2018 0.98 1.0266 4.9541 5.04 5.4728 8.6868 42.5 49.0810 15.482 88 11.01218 0.98 0.9733 -0.1725 5.04 5.2822 5.7178 42.5 39.4160 -7.2565 90 16.01.2018 0.97 1.0033 3.299 435.00 4.9885 14.4776 42.5 44.3970 4.4635 91 17.01218 0.97 1.1337 16.8763 4.35 5.2821 21.4270 42.5 44.5390 4.4635 91 10.018 0.97 1.1240 15.8763 4.35 5.2821 21.4270 42.5 40.8463 3.866 94 22.01.2018 0.97 1.0084 14.0619 4.35 5.1082 10.820 42.5 44.264 43.965 5.1641 96 30.0.2018 0.97 </th <th>84</th> <th>13.12.2017</th> <th>0.98</th> <th>0.9494</th> <th>-3.1245</th> <th>5.04</th> <th>5.3714</th> <th>6.5759</th> <th>42.5</th> <th>51.2385</th> <th>20.5612</th>	84	13.12.2017	0.98	0.9494	-3.1245	5.04	5.3714	6.5759	42.5	51.2385	20.5612
87 10.01.2018 0.98 1.0286 4.9541 5.04 5.4728 8.5868 42.5 49.0810 15.4847 88 15.012018 0.98 0.9691 -1.1168 5.04 5.9779 18.6094 42.5 49.0810 17.2565 90 16.012018 0.98 0.9783 -0.1725 5.04 5.2823 5.7178 42.5 49.05900 -4.4729 91 11.012018 0.97 1.0233 3.2999 435.00 4.9885 14.8770 42.5 44.0370 4.6355 92 18.012018 0.97 1.1240 15.8763 4.35 5.2851 20.8230 42.5 44.8370 4.8635 94 22.012018 0.97 1.1044 14.0619 4.35 5.1802 19.0445 42.5 44.8950 5.1802 96 30.012018 0.97 1.11247 16.4639 4.35 5.1602 18.6793 42.5 43.3995 42.5 43.3996 4.3741 10.32018 0.97	85	04.01.2018	0.98	0.9305	-5.0485	5.04	5.5561	10.2391	42.5	45.3755	6.7659
88 11.01.2018 0.98 0.9783 -0.1725 5.04 5.9779 18.6096 42.5 48.2690 13.5741 89 15.01.2018 0.98 0.9783 -0.1725 5.04 5.2836 4.338 42.5 39.4160 -7.2565 91 17.01.2018 0.97 1.0023 3.3299 435.00 4.9885 14.6776 42.5 44.3370 44.635 92 18.01.2018 0.97 1.1240 15.8763 4.35 5.2558 20.8207 42.5 44.3970 44.635 94 22.01.2018 0.97 1.1240 15.8763 4.35 5.2588 20.8207 42.5 44.8950 5.1647 96 30.012018 0.97 1.0164 14.0619 4.35 5.0798 16.776 42.5 34.3810 3.1553 97 01.02.2018 0.97 1.0164 5.0798 4.35 5.0798 142.5 43.8410 3.1553 98 0.20.2018 0.97 1.0171	86	05.01.2018	0.98	0.9361	-4.4801	5.04	5.5446	10.0124	42.5	45.6055	7.3071
89 15.01.2018 0.988 1.0453 6.6652 5.04 5.3282 5.7178 42.5 39.4160 -7.2565 90 11.01.2018 0.97 1.0453 6.6652 5.04 5.2836 4.833 4.25 44.359 4.4729 91 17.012018 0.97 1.1337 16.8763 4.35 5.2821 21.4270 42.5 45.9340 8.0800 93 18.01.2018 0.97 1.1240 15.8763 4.33 5.2821 20.14270 42.5 44.9340 8.0800 94 22.012018 0.97 1.1064 14.0619 4.35 5.1802 19.0845 42.5 44.6950 5.1647 96 0.01.2018 0.97 1.1087 5.0155 4.35 5.1802 19.0845 42.5 44.2950 5.1647 97 0.10.2018 0.97 1.1297 16.433 4.35 5.4651 20.5161 42.5 43.38410 3.1553 98 <th0.2.018< th=""> 0.97 <th1.0739< th=""><th>87</th><th>10.01.2018</th><th>0.98</th><th>1.0286</th><th>4.9541</th><th>5.04</th><th>5.4728</th><th>8.5868</th><th>42.5</th><th>49.0810</th><th>15.4847</th></th1.0739<></th0.2.018<>	87	10.01.2018	0.98	1.0286	4.9541	5.04	5.4728	8.5868	42.5	49.0810	15.4847
90 16.01.2018 0.98 1.0453 6.6582 5.04 5.2836 4.8338 42.5 40.5990 -4.4729 91 17.01.2018 0.97 1.1023 3.229 43.500 4.9885 14.6776 42.5 44.3970 44.435 92 18.01.2018 0.97 1.1240 15.8763 4.35 5.2821 21.4276 42.5 44.3970 44.435 94 22.01.2018 0.97 1.1080 9.1701 4.35 5.2332 20.0305 42.5 44.6950 5.1647 96 30.01.2018 0.97 1.0164 14.0619 4.35 5.0798 16.7776 42.5 34.1890 -7.9177 97 01.02.2018 0.97 1.1243 15.9072 4.35 5.6425 20.5161 42.5 43.38410 3.1553 99 13.02.2018 0.97 1.0711 10.4253 4.35 4.6932 7.8891 42.5 43.3840 4.3459 100 19.02.2018 0.97	88	11.01.2018	0.98	0.9691	-1.1168	5.04	5.9779	18.6096	42.5	48.2690	13.5741
91 17.01.2018 0.97 1.0023 3.3299 435.00 4.9885 14.6776 42.5 44.3970 4.4635 92 18.01.2018 0.97 1.1337 16.8763 4.35 5.2821 21.4270 42.5 44.3970 4.4635 93 19.01.2018 0.97 1.1240 15.8763 4.35 5.2632 20.8203 42.5 44.3970 5.3966 94 22.01.2018 0.97 1.1064 14.0619 4.35 5.1802 19.0484 42.5 44.29650 1.0941 95 29.01.2018 0.97 1.0187 5.0155 4.35 5.16021 19.0484 42.5 41.2945 -2.8365 98 02.02.2018 0.97 1.1243 15.9072 4.35 5.1691 18.829 42.5 41.38410 3.1553 99 13.02.2018 0.97 1.0711 10.4253 4.35 4.6531 6.9678 42.5 43.8410 3.1553 910 19.022018 0.97	89	15.01.2018	0.98	0.9783	-0.1725	5.04	5.3282	5.7178	42.5	39.4160	-7.2565
92 18.01.2018 0.97 1.1337 16.8763 4.35 5.2821 21.4270 42.5 45.9340 8.0600 93 19.01.2018 0.97 1.1240 15.8763 4.35 5.2558 20.8230 42.5 40.8185 -3.9865 94 22.01.2018 0.97 1.1064 14.0619 4.35 5.1802 19.0845 42.5 44.6950 5.1647 96 30.01.2018 0.97 1.0164 14.0619 4.35 5.1802 19.0845 42.5 44.6950 5.1647 97 01.02.2018 0.97 1.1243 15.5072 4.35 5.4624 6.6983 42.5 41.2945 -2.8365 98 0.20.2018 0.97 1.1247 16.439 4.35 4.6631 6.8674 42.5 43.2965 1.8711 101 21.02.2018 0.97 1.0711 10.4253 4.35 5.1691 18.8299 42.5 43.2965 1.8711 101 21.02.2018 0.97	90	16.01.2018	0.98	1.0453	6.6582	5.04	5.2836	4.8338	42.5	40.5990	-4.4729
93 19.01.2018 0.97 1.1240 15.8763 4.35 5.2558 20.8230 42.5 40.8185 -3.9665 94 22.01.2018 0.97 1.1064 14.0619 4.35 5.2332 20.3335 42.5 44.6950 5.1647 96 30.01.2018 0.97 1.10187 5.0155 4.35 5.0708 16.7776 42.5 44.6950 5.1647 96 30.01.2018 0.97 1.0187 5.0155 4.35 5.0798 16.7776 42.5 43.8410 3.1553 97 01.02.2018 0.97 1.1243 15.9072 4.35 5.1611 18.8299 42.5 43.8410 3.1553 99 13.02.2018 0.97 1.0711 10.4253 4.35 4.6631 6.9678 42.5 43.2965 1.8741 101 21.02.2018 0.97 1.0739 10.7088 4.35 5.1238 17.7874 42.5 43.9495 3.4106 103 26.02.2018 0.97	91	17.01.2018	0.97	1.0023	3.3299	435.00	4.9885	14.6776	42.5	44.3970	4.4635
94 22.01.2018 0.97 1.0590 9.1701 4.35 5.2332 20.3035 42.5 42.9650 1.0941 96 30.01.2018 0.97 1.1064 14.0619 4.35 5.1802 19.0845 42.5 44.6950 5.1647 96 30.01.2018 0.97 1.1087 5.0155 4.35 5.0798 16.776 42.5 39.1350 -7.9177 97 01.02.2018 0.97 1.1243 15.9072 4.35 5.2425 20.5161 42.5 43.8410 3.1553 98 02.02.2018 0.97 1.1297 16.4639 4.35 5.1691 18.8299 42.5 43.3980 -4.9459 100 19.02.2018 0.97 1.0739 10.7088 4.35 5.1238 17.7674 42.5 33.9400 -7.7647 102 2.02.2018 0.97 1.0534 8.5938 4.35 5.1238 17.7674 42.5 43.9495 3.4106 103 2.02.2018 0.97	92	18.01.2018	0.97	1.1337	16.8763	4.35	5.2821	21.4270	42.5	45.9340	8.0800
95 29.01.2018 0.97 1.1064 14.0619 4.35 5.1802 19.0845 42.5 44.6950 5.1647 96 30.01.2018 0.97 1.0187 5.0155 4.35 5.0788 16.7776 42.5 39.1350 -7.9177 97 01.02.2018 0.97 1.1243 15.9072 4.35 5.2425 20.5161 42.5 41.2945 -2.8365 99 13.02.2018 0.97 1.1297 16.4639 4.35 5.1691 18.8299 42.5 40.3980 -4.9459 100 19.02.2018 0.97 1.0739 10.7088 4.35 5.1238 17.7874 42.5 43.9495 3.4106 103 26.02.2018 0.97 0.9378 -3.3209 4.35 5.1238 17.7874 42.5 43.9495 3.4106 104 28.02.2018 0.97 0.9345 2.5247 4.35 4.8759 12.085 42.5 44.5610 9.5553 105 0.10.30218 0.97	93	19.01.2018	0.97	1.1240	15.8763	4.35	5.2558	20.8230	42.5	40.8185	-3.9565
96 30.01.2018 0.97 1.0187 5.0155 4.35 5.0798 16.7776 42.5 39.1350 -7.9177 97 01.02.2018 0.97 0.9060 -6.5943 4.35 5.2425 20.5161 42.5 41.2945 -2.8365 98 03.02.2018 0.97 1.1297 16.4639 4.35 5.1691 18.8299 42.5 40.3980 -4.9459 100 19.02.2018 0.97 1.0711 10.4253 4.35 4.6631 6.9678 42.5 43.39495 3.4106 101 21.02.2018 0.97 1.0734 8.5938 4.35 5.1238 17.7874 42.5 43.39495 3.4106 103 26.02.2018 0.97 0.9378 -3.3209 4.35 5.0225 15.4589 42.5 41.8440 -1.5435 104 28.02.2018 0.97 1.1842 22.0799 4.35 5.0308 15.6494 42.5 41.5930 -2.1341 106 0.63.2018 0.97 <th>94</th> <th>22.01.2018</th> <th>0.97</th> <th>1.0590</th> <th>9.1701</th> <th>4.35</th> <th>5.2332</th> <th>20.3035</th> <th>42.5</th> <th>42.9650</th> <th>1.0941</th>	94	22.01.2018	0.97	1.0590	9.1701	4.35	5.2332	20.3035	42.5	42.9650	1.0941
97 01.02.2018 0.97 0.9060 -6.5943 4.35 4.6544 6.9983 42.5 41.2945 -2.8365 98 02.02.2018 0.97 1.1243 15.9072 4.35 5.2425 20.5161 42.5 43.8410 3.1553 99 13.02.2018 0.97 1.1297 16.4639 4.35 5.1691 18.8299 42.5 43.39405 1.4749 101 21.02.2018 0.97 1.0739 10.0708 4.35 5.1238 17.7874 42.5 43.9495 3.4106 102 22.02.2018 0.97 0.9378 -3.3209 4.35 5.1025 15.4598 42.5 41.8440 -1.5455 104 28.02.2018 0.97 0.9378 -3.3209 4.35 5.0025 15.4594 42.5 41.8400 -1.5455 105 01.03.2018 0.97 0.9452 2.5247 4.35 4.9120 12.9184 42.5 41.8400 -1.5455 105 01.03.2018 0.97 <th>95</th> <th>29.01.2018</th> <th>0.97</th> <th>1.1064</th> <th>14.0619</th> <th>4.35</th> <th>5.1802</th> <th>19.0845</th> <th>42.5</th> <th>44.6950</th> <th>5.1647</th>	95	29.01.2018	0.97	1.1064	14.0619	4.35	5.1802	19.0845	42.5	44.6950	5.1647
98 02.02.2018 0.97 1.1243 15.9072 4.35 5.2425 20.5161 42.5 43.8410 3.1553 99 13.02.2018 0.97 1.1297 16.4639 4.35 5.1691 18.8299 42.5 40.3800 -4.9459 101 21.02.2018 0.97 1.0711 10.4253 4.35 4.6631 6.9678 42.5 43.9495 1.8741 101 21.02.2018 0.97 1.0534 8.5938 4.35 5.1238 17.7874 42.5 43.9495 3.4106 103 26.02.2018 0.97 0.9378 -3.3209 4.35 5.0225 15.4598 42.5 41.8440 -1.5435 104 28.02.2018 0.97 0.99564 -1.467 4.35 5.0225 15.4598 42.5 43.1630 1.5600 106 05.32018 0.97 1.06541 4.35 5.0238 15.4897 42.5 43.1630 1.5600 107 06.03.2018 0.97 1.0643	96	30.01.2018	0.97	1.0187	5.0155	4.35	5.0798	16.7776	42.5	39.1350	-7.9177
99 13.02.2018 0.97 1.1297 16.4639 4.35 5.1691 18.8299 42.5 40.3980 -4.9459 100 19.02.2018 0.97 1.0711 10.4253 4.35 4.6932 7.8891 42.5 43.2965 1.8741 101 21.02.2018 0.97 1.0739 10.7088 4.35 5.1231 6.9678 42.5 43.2965 1.8741 102 22.02.2018 0.97 1.0534 8.5938 4.35 5.1225 15.4598 42.5 41.840 -1.5435 103 26.02.2018 0.97 0.9378 -3.3209 4.35 5.0225 15.4598 42.5 41.840 -1.5435 104 28.02.2018 0.97 1.0842 22.0799 4.35 5.0308 15.6494 42.5 41.5930 -2.1341 106 0.50.3.2018 0.97 1.0643 9.7242 4.35 5.0313 15.6494 42.5 47.8605 12.6129 108 12.03.2018 0.97 <th>97</th> <th>01.02.2018</th> <th>0.97</th> <th>0.9060</th> <th>-6.5943</th> <th>4.35</th> <th>4.6544</th> <th>6.9983</th> <th>42.5</th> <th>41.2945</th> <th>-2.8365</th>	97	01.02.2018	0.97	0.9060	-6.5943	4.35	4.6544	6.9983	42.5	41.2945	-2.8365
100 19.02.2018 0.97 1.0711 10.4253 4.35 4.6932 7.8891 42.5 43.2965 1.8741 101 21.02.2018 0.97 1.0739 10.7088 4.35 4.6531 6.9678 42.5 39.2000 -7.7647 102 22.02.2018 0.97 1.0534 8.5938 4.35 5.1238 17.7874 42.5 43.9495 3.4106 103 26.02.2018 0.97 0.9378 -3.3209 4.35 5.0225 15.4598 42.5 41.8440 -1.5435 104 28.02.2018 0.97 0.9945 2.5247 4.35 5.0308 15.6494 42.5 41.5930 -2.1341 106 0.63.2018 0.97 1.9564 -1.4067 4.35 5.0308 15.6494 42.5 47.6605 12.6129 108 12.03.2018 0.97 1.9643 9.7242 4.35 5.0313 15.6615 42.5 39.8670 -6.1953 101 15.03.2018 0.97 <th>98</th> <th>02.02.2018</th> <th>0.97</th> <th>1.1243</th> <th>15.9072</th> <th>4.35</th> <th>5.2425</th> <th>20.5161</th> <th>42.5</th> <th>43.8410</th> <th>3.1553</th>	98	02.02.2018	0.97	1.1243	15.9072	4.35	5.2425	20.5161	42.5	43.8410	3.1553
101 21.02.2018 0.97 1.0739 10.7088 4.35 4.6531 6.9678 42.5 39.2000 -7.7647 102 22.02.2018 0.97 1.0534 8.5938 4.35 5.1238 17.7874 42.5 43.9495 3.4106 103 26.02.2018 0.97 0.9378 -3.3209 4.35 5.0225 15.4598 42.5 41.8440 -1.5455 104 28.02.2018 0.97 0.9945 2.5247 4.35 4.8759 12.0885 42.5 41.5930 -2.1341 106 05.03.2018 0.97 1.1451 18.0541 4.35 5.0238 15.6494 42.5 43.1630 1.5600 107 06.03.2018 0.97 1.0643 9.7242 4.35 5.0313 15.6615 42.5 39.4185 -7.2506 109 13.03.2018 0.97 1.0043 9.7242 4.35 4.9926 14.7713 42.5 39.8670 -6.1953 111 16.03.2018 0.97 <th>99</th> <th>13.02.2018</th> <th>0.97</th> <th>1.1297</th> <th>16.4639</th> <th>4.35</th> <th>5.1691</th> <th>18.8299</th> <th>42.5</th> <th>40.3980</th> <th>-4.9459</th>	99	13.02.2018	0.97	1.1297	16.4639	4.35	5.1691	18.8299	42.5	40.3980	-4.9459
102 22.02.2018 0.97 1.0534 8.5938 4.35 5.1238 17.7874 42.5 43.9495 3.4106 103 26.02.2018 0.97 0.9378 -3.3209 4.35 5.0225 15.4598 42.5 41.8440 -1.5435 104 28.02.2018 0.97 0.9945 2.5247 4.35 4.8759 12.0885 42.5 44.5610 9.5553 105 01.03.2018 0.97 1.1842 22.0799 4.35 5.0308 15.6494 42.5 43.1630 1.5600 107 06.03.2018 0.97 1.1451 18.0541 4.35 5.0238 15.4897 42.5 47.8605 12.6129 108 12.03.2018 0.97 1.0643 9.7242 4.35 5.0313 15.6615 42.5 39.4185 -7.2506 109 13.03.2018 0.97 1.0038 3.4887 4.35 4.9926 14.7713 42.5 39.8670 -6.1953 111 16.03.2018 0.97 <th>100</th> <th>19.02.2018</th> <th>0.97</th> <th>1.0711</th> <th>10.4253</th> <th>4.35</th> <th>4.6932</th> <th>7.8891</th> <th>42.5</th> <th>43.2965</th> <th>1.8741</th>	100	19.02.2018	0.97	1.0711	10.4253	4.35	4.6932	7.8891	42.5	43.2965	1.8741
103 26.02.2018 0.97 0.9378 -3.3209 4.35 5.0225 15.4598 42.5 41.8440 -1.5435 104 28.02.2018 0.97 0.9945 2.5247 4.35 4.8759 12.0885 42.5 46.5610 9.5553 105 01.03.2018 0.97 1.1842 22.0799 4.35 5.0308 15.6494 42.5 41.5930 -2.1341 106 05.03.2018 0.97 1.1451 18.0541 4.35 5.0238 15.4897 42.5 47.8605 12.6129 108 12.03.2018 0.97 1.0643 9.7242 4.35 5.0238 15.4897 42.5 41.9445 -1.3071 110 15.03.2018 0.97 1.0038 3.4887 4.35 4.9926 14.7713 42.5 39.8670 -6.1953 111 16.03.2018 0.97 1.0388 3.4887 4.35 4.9657 14.1540 42.5 44.6615 5.0659 112 19.03.2018 0.97 </th <th>101</th> <th>21.02.2018</th> <th>0.97</th> <th>1.0739</th> <th>10.7088</th> <th>4.35</th> <th>4.6531</th> <th>6.9678</th> <th>42.5</th> <th>39.2000</th> <th>-7.7647</th>	101	21.02.2018	0.97	1.0739	10.7088	4.35	4.6531	6.9678	42.5	39.2000	-7.7647
104 28.02.2018 0.97 0.9945 2.5247 4.35 4.8759 12.0885 42.5 46.5610 9.5553 105 01.03.2018 0.97 1.1842 22.0799 4.35 5.0308 15.6494 42.5 41.5930 -2.1341 106 05.03.2018 0.97 0.9564 -1.4067 4.35 4.9120 12.9184 42.5 43.1630 1.5600 107 06.03.2018 0.97 1.1451 18.0541 4.35 5.0238 15.4897 42.5 47.8605 12.6129 108 12.03.2018 0.97 1.0643 9.7242 4.35 5.0313 15.6615 42.5 39.4185 -7.2506 109 13.03.2018 0.97 1.0038 3.4887 4.35 4.9926 14.7713 42.5 41.9445 -1.3071 110 15.03.2018 0.97 1.0938 2.4487 4.35 4.9657 14.1540 42.5 40.0590 -5.7435 113 21.03.2018 0.97 </th <th>102</th> <th>22.02.2018</th> <th>0.97</th> <th>1.0534</th> <th>8.5938</th> <th>4.35</th> <th>5.1238</th> <th>17.7874</th> <th>42.5</th> <th>43.9495</th> <th>3.4106</th>	102	22.02.2018	0.97	1.0534	8.5938	4.35	5.1238	17.7874	42.5	43.9495	3.4106
105 01.03.2018 0.97 1.1842 22.0799 4.35 5.0308 15.6494 42.5 41.5930 -2.1341 106 05.03.2018 0.97 0.9564 -1.4067 4.35 4.9120 12.9184 42.5 43.1630 1.5600 107 06.03.2018 0.97 1.1451 18.0541 4.35 5.0238 15.4897 42.5 47.8605 12.6129 108 12.03.2018 0.97 1.0643 9.7242 4.35 5.0313 15.6615 42.5 39.4185 -7.2506 109 13.03.2018 0.97 0.8921 -8.0299 4.35 4.7307 8.7517 42.5 41.9445 -1.3071 110 15.03.2018 0.97 0.9945 -2.6327 4.35 4.9926 14.7713 42.5 40.0590 -5.7435 111 19.03.2018 0.97 1.9938 2.4487 4.35 4.9657 14.1540 42.5 44.6615 5.0859 114 22.03.2018 0.97<	103	26.02.2018	0.97	0.9378	-3.3209	4.35	5.0225	15.4598	42.5	41.8440	-1.5435
106 05.03.2018 0.97 0.9564 -1.4067 4.35 4.9120 12.9184 42.5 43.1630 1.5600 107 06.03.2018 0.97 1.1451 18.0541 4.35 5.0238 15.4897 42.5 47.8605 12.6129 108 12.03.2018 0.97 1.0643 9.7242 4.35 5.0313 15.6615 42.5 39.4185 -7.2506 109 13.03.2018 0.97 0.8921 -8.0299 4.35 4.7307 8.7517 42.5 41.9445 -1.3071 110 15.03.2018 0.97 0.9445 -2.6327 4.35 4.8792 12.1655 42.5 36.8160 -13.3741 112 19.03.2018 0.97 0.9938 2.4487 4.35 4.9657 14.1540 42.5 40.0590 -5.7435 113 21.03.2018 0.97 1.0670 10.0000 4.35 5.0039 15.0310 42.5 44.6615 5.0859 114 22.03.2018 0.97	104	28.02.2018	0.97	0.9945	2.5247	4.35	4.8759	12.0885	42.5	46.5610	9.5553
107 06.03.2018 0.97 1.1451 18.0541 4.35 5.0238 15.4897 42.5 47.8605 12.6129 108 12.03.2018 0.97 1.0643 9.7242 4.35 5.0313 15.6615 42.5 39.4185 -7.2506 109 13.03.2018 0.97 0.8921 -8.0299 4.35 4.7307 8.7517 42.5 41.9445 -1.3071 110 15.03.2018 0.97 1.0038 3.4887 4.35 4.9926 14.7713 42.5 39.8670 -6.1953 111 16.03.2018 0.97 0.9445 -2.6327 4.35 4.8792 12.1655 42.5 36.8160 -13.3741 112 19.03.2018 0.97 1.9938 2.4487 4.35 4.9657 14.1540 42.5 40.0590 -5.7435 113 21.03.2018 0.97 1.0670 10.0000 4.35 5.0039 15.0310 42.5 41.4925 -2.3706 114 22.03.2018 0.9	105	01.03.2018	0.97	1.1842	22.0799	4.35	5.0308	15.6494	42.5	41.5930	-2.1341
10812.03.20180.971.06439.72424.355.031315.661542.539.4185-7.250610913.03.20180.970.8921-8.02994.354.73078.751742.541.9445-1.307111015.03.20180.971.00383.48874.354.992614.771342.539.8670-6.195311116.03.20180.970.9445-2.63274.354.879212.165542.536.8160-13.374111219.03.20180.970.99382.44874.354.965714.154042.540.0590-5.743511321.03.20180.971.122615.73204.354.898912.617242.544.66155.085911422.03.20180.971.067010.00004.355.003915.031042.541.4925-2.370611527.03.20180.971.06627.85444.355.047016.023042.548.921515.109411713.04.20180.971.06689.97424.354.927913.283942.543.52302.407111816.04.20180.971.110714.50264.354.999314.927042.539.8785-6.168212019.04.20180.971.109914.42014.355.112817.536242.533.3825-21.452912114.05.20180.970.8468-12.69694.354.906012.781042.5	106		0.97	0.9564	-1.4067	4.35	4.9120	12.9184	42.5	43.1630	1.5600
10913.03.20180.970.8921-8.02994.354.73078.751742.541.9445-1.307111015.03.20180.971.00383.48874.354.992614.771342.539.8670-6.195311116.03.20180.970.9445-2.63274.354.879212.165542.536.8160-13.374111219.03.20180.970.99382.44874.354.965714.154042.540.0590-5.743511321.03.20180.971.122615.73204.354.898912.617242.544.66155.085911422.03.20180.971.067010.00004.355.003915.031042.541.4925-2.370611527.03.20180.971.04627.85444.355.047016.023042.548.921515.109411713.04.20180.971.06689.97424.354.927913.283942.543.52302.407111816.04.20180.971.109914.42014.354.999314.927042.539.8785-6.168212019.04.20180.970.8468-12.69694.354.40012.529942.540.2185-5.368212114.05.20180.971.03026.20054.355.112817.536242.533.3825-21.452912215.05.20180.971.03026.20054.355.112817.536242.533	107	06.03.2018	0.97	1.1451	18.0541	4.35	5.0238	15.4897	42.5	47.8605	12.6129
11015.03.20180.971.00383.48874.354.992614.771342.539.8670-6.195311116.03.20180.970.9445-2.63274.354.879212.165542.536.8160-13.374111219.03.20180.970.99382.44874.354.965714.154042.540.0590-5.743511321.03.20180.971.122615.73204.354.898912.617242.544.66155.085911422.03.20180.971.067010.00004.355.003915.031042.541.4925-2.370611527.03.20180.971.092512.62374.355.075816.684542.547.437511.617711628.03.20180.971.04627.85444.355.047016.023042.543.52302.407111713.04.20180.971.109914.42014.354.990612.781042.546.08958.445911917.04.20180.971.110714.50264.354.999314.927042.539.8785-6.168212019.04.20180.971.03026.20054.355.112817.536242.533.3825-21.452912114.05.20180.971.03026.20054.355.112817.536242.533.3825-21.452912215.05.20180.971.03026.20054.354.2609-2.048342.54		12.03.2018	0.97	1.0643	9.7242	4.35		15.6615			-7.2506
11116.03.20180.970.9445-2.63274.354.879212.165542.536.8160-13.374111219.03.20180.970.99382.44874.354.965714.154042.540.0590-5.743511321.03.20180.971.122615.73204.354.898912.617242.544.66155.085911422.03.20180.971.067010.00004.355.003915.031042.541.4925-2.370611527.03.20180.971.092512.62374.355.075816.684542.547.437511.617711628.03.20180.971.04627.85444.355.047016.023042.543.52302.407111713.04.20180.971.06689.97424.354.927913.283942.543.52302.407111816.04.20180.971.110714.50264.354.999314.927042.539.8785-6.168212019.04.20180.971.03026.20054.354.999314.927042.533.3825-21.452912114.05.20180.971.03026.20054.354.2609-2.048342.541.7720-1.712912316.05.20180.971.179921.63404.354.2609-2.048342.541.7720-1.712912316.05.20180.971.109913.48974.354.2609-2.048342.54		13.03.2018	0.97	0.8921	-8.0299	4.35	4.7307	8.7517	42.5	41.9445	-1.3071
11219.03.20180.970.99382.44874.354.965714.154042.540.0590-5.743511321.03.20180.971.122615.73204.354.898912.617242.544.66155.085911422.03.20180.971.067010.00004.355.003915.031042.541.4925-2.370611527.03.20180.971.092512.62374.355.075816.684542.547.437511.617711628.03.20180.971.04627.85444.355.047016.023042.548.921515.109411713.04.20180.971.06689.97424.354.927913.283942.543.52302.407111816.04.20180.971.110714.50264.354.9906012.781042.546.08958.445911917.04.20180.971.110714.50264.354.999314.927042.539.8785-6.168212019.04.20180.971.03026.20054.355.112817.536242.533.3825-21.452912114.05.20180.971.03026.20054.354.2609-2.048342.541.7720-1.712912316.05.20180.971.179921.63404.354.9269-2.048342.541.7720-1.712912316.05.20180.971.109913.48974.354.9269-2.048342.54			0.97	1.0038	3.4887	4.35	4.9926	14.7713	42.5		-6.1953
11321.03.20180.971.122615.73204.354.898912.617242.544.66155.085911422.03.20180.971.067010.00004.355.003915.031042.541.4925-2.370611527.03.20180.971.092512.62374.355.075816.684542.547.437511.617711628.03.20180.971.04627.85444.355.047016.023042.548.921515.109411713.04.20180.971.06689.97424.354.927913.283942.543.52302.407111816.04.20180.971.110714.50264.354.9906012.781042.540.08958.445911917.04.20180.971.110714.50264.354.999314.927042.539.8785-6.168212019.04.20180.971.03026.20054.355.112817.536242.533.3825-21.452912114.05.20180.971.03026.20054.354.2609-2.048342.541.7720-1.712912316.05.20180.971.179921.63404.354.857811.672442.545.05606.014112418.05.20180.971.100913.48974.354.992814.775942.534.1570-19.6306	111	16.03.2018	0.97	0.9445	-2.6327	4.35	4.8792	12.1655	42.5	36.8160	-13.3741
11422.03.20180.971.067010.00004.355.003915.031042.541.4925-2.370611527.03.20180.971.092512.62374.355.075816.684542.547.437511.617711628.03.20180.971.04627.85444.355.047016.023042.548.921515.109411713.04.20180.971.06689.97424.354.927913.283942.543.52302.407111816.04.20180.971.109914.42014.354.906012.781042.546.08958.445911917.04.20180.971.110714.50264.354.999314.927042.539.8785-6.168212019.04.20180.971.03026.20054.355.112817.536242.533.3825-21.452912114.05.20180.970.8501-12.63444.354.2609-2.048342.541.7720-1.712912316.05.20180.971.109913.48974.354.992814.775942.534.1570-19.6306	112	19.03.2018	0.97	0.9938	2.4487	4.35	4.9657	14.1540	42.5	40.0590	-5.7435
11527.03.20180.971.092512.62374.355.075816.684542.547.437511.617711628.03.20180.971.04627.85444.355.047016.023042.548.921515.109411713.04.20180.971.06689.97424.354.927913.283942.543.52302.407111816.04.20180.971.109914.42014.354.906012.781042.546.08958.445911917.04.20180.971.110714.50264.354.999314.927042.539.8785-6.168212019.04.20180.970.8468-12.69694.354.46012.529942.540.2185-5.368212114.05.20180.971.03026.20054.355.112817.536242.533.3825-21.452912215.05.20180.970.8501-12.36344.354.2609-2.048342.541.7720-1.712912316.05.20180.971.109913.48974.354.992814.775942.534.1570-19.6306	113		0.97	1.1226	15.7320	4.35	4.8989	12.6172	42.5	44.6615	5.0859
11628.03.20180.971.04627.85444.355.047016.023042.548.921515.109411713.04.20180.971.06689.97424.354.927913.283942.543.52302.407111816.04.20180.971.109914.42014.354.906012.781042.546.08958.445911917.04.20180.971.110714.50264.354.999314.927042.539.8785-6.168212019.04.20180.970.8468-12.69694.354.46012.529942.540.2185-5.368212114.05.20180.971.03026.20054.355.112817.536242.533.3825-21.452912215.05.20180.970.8501-12.36344.354.2609-2.048342.541.7720-1.712912316.05.20180.971.109913.48974.354.992814.775942.534.1570-19.630612418.05.20180.971.100913.48974.354.992814.775942.534.1570-19.6306	114	22.03.2018	0.97	1.0670	10.0000	4.35	5.0039	15.0310	42.5	41.4925	-2.3706
11713.04.20180.971.06689.97424.354.927913.283942.543.52302.407111816.04.20180.971.109914.42014.354.906012.781042.546.08958.445911917.04.20180.971.110714.50264.354.999314.927042.539.8785-6.168212019.04.20180.970.8468-12.69694.354.46012.529942.540.2185-5.368212114.05.20180.971.03026.20054.355.112817.536242.533.3825-21.452912215.05.20180.970.8501-12.36344.354.2609-2.048342.541.7720-1.712912316.05.20180.971.109913.48974.354.992814.775942.534.1570-19.630612418.05.20180.971.100913.48974.354.992814.775942.534.1570-19.6306	115		0.97	1.0925	12.6237	4.35		16.6845	42.5		11.6177
11816.04.20180.971.109914.42014.354.906012.781042.546.08958.445911917.04.20180.971.110714.50264.354.999314.927042.539.8785-6.168212019.04.20180.970.8468-12.69694.354.46012.529942.540.2185-5.368212114.05.20180.971.03026.20054.355.112817.536242.533.3825-21.452912215.05.20180.970.8501-12.36344.354.2609-2.048342.541.7720-1.712912316.05.20180.971.109913.48974.354.992814.775942.534.1570-19.6306	116	28.03.2018	0.97	1.0462	7.8544	4.35	5.0470	16.0230	42.5	48.9215	15.1094
11917.04.20180.971.110714.50264.354.999314.927042.539.8785-6.168212019.04.20180.970.8468-12.69694.354.46012.529942.540.2185-5.368212114.05.20180.971.03026.20054.355.112817.536242.533.3825-21.452912215.05.20180.970.8501-12.36344.354.2609-2.048342.541.7720-1.712912316.05.20180.971.179921.63404.354.857811.672442.545.05606.014112418.05.20180.971.100913.48974.354.992814.775942.534.1570-19.6306	117	13.04.2018	0.97	1.0668	9.9742	4.35	4.9279	13.2839	42.5	43.5230	2.4071
12019.04.20180.970.8468-12.69694.354.46012.529942.540.2185-5.368212114.05.20180.971.03026.20054.355.112817.536242.533.3825-21.452912215.05.20180.970.8501-12.36344.354.2609-2.048342.541.7720-1.712912316.05.20180.971.179921.63404.354.857811.672442.545.05606.014112418.05.20180.971.100913.48974.354.992814.775942.534.1570-19.6306	118	16.04.2018	0.97	1.1099	14.4201	4.35	4.9060	12.7810	42.5	46.0895	8.4459
121 14.05.2018 0.97 1.0302 6.2005 4.35 5.1128 17.5362 42.5 33.3825 -21.4529 122 15.05.2018 0.97 0.8501 -12.3634 4.35 4.2609 -2.0483 42.5 41.7720 -1.7129 123 16.05.2018 0.97 1.1799 21.6340 4.35 4.8578 11.6724 42.5 45.0560 6.0141 124 18.05.2018 0.97 1.1009 13.4897 4.35 4.9928 14.7759 42.5 34.1570 -19.6306	119	17.04.2018	0.97	1.1107	14.5026	4.35	4.9993	14.9270	42.5	39.8785	-6.1682
122 15.05.2018 0.97 0.8501 -12.3634 4.35 4.2609 -2.0483 42.5 41.7720 -1.7129 123 16.05.2018 0.97 1.1799 21.6340 4.35 4.8578 11.6724 42.5 45.0560 6.0141 124 18.05.2018 0.97 1.1009 13.4897 4.35 4.9928 14.7759 42.5 34.1570 -19.6306	120	19.04.2018	0.97	0.8468	-12.6969	4.35	4.4601	2.5299	42.5	40.2185	-5.3682
123 16.05.2018 0.97 1.1799 21.6340 4.35 4.8578 11.6724 42.5 45.0560 6.0141 124 18.05.2018 0.97 1.1009 13.4897 4.35 4.9928 14.7759 42.5 34.1570 -19.6306	121	14.05.2018	0.97	1.0302	6.2005	4.35	5.1128	17.5362	42.5	33.3825	-21.4529
124 18.05.2018 0.97 1.1009 13.4897 4.35 4.9928 14.7759 42.5 34.1570 -19.6306	122	15.05.2018	0.97	0.8501	-12.3634	4.35	4.2609	-2.0483	42.5	41.7720	-1.7129
	123	16.05.2018	0.97	1.1799	21.6340	4.35	4.8578	11.6724	42.5	45.0560	6.0141
125 07.06.2018 0.97 0.8980 -7.4258 4.35 4.7904 10.1247 42.5 44.7510 5.2965	124	18.05.2018	0.97	1.1009	13.4897	4.35	4.9928	14.7759	42.5	34.1570	-19.6306
	125	07.06.2018	0.97	0.8980	-7.4258	4.35	4.7904	10.1247	42.5	44.7510	5.2965

		(Quality contro	llow	Qua	ality control m	niddle	(Quality contro	l high
Run	Date	NV	MV (ng/mL)	RE (%)	NV	MV (ng/mL)	RE (%)	NV	MV (ng/mL)	RE (%)
126	11.06.2018	0.97	1.1334	16.8428	4.35	5.1962	19.4517	42.5	47.8525	12.5941
127	12.06.2018	0.97	1.0679	10.0928	4.35	5.0790	16.7586	42.5	35.6720	-16.0659
128	14.06.2018	0.97	1.0028	3.3843	4.35	5.0455	15.9891	42.5	43.4075	2.1353
129	19.06.2018	0.97	1.1547	19.0438	4.35	4.8787	12.1529	42.5	39.8195	-6.3071
130	06.07.2018	0.97	1.1264	16.1211	4.35	5.1498	18.3856	42.5	48.5550	14.2471
131	11.07.2018	0.97	0.9585	-1.1809	4.35	4.8922	12.4649	42.5	39.9385	-6.0271
132	12.07.2018	0.97	0.9708	0.0771	4.35	4.9808	14.5000	42.5	41.5130	-2.3224
133	16.07.2018	0.97	1.1516	18.7165	4.35	5.0684	16.5138		excluded from eval	uation
134	18.07.2018	0.97	1.0188	5.0343	4.35	5.1038	17.3287	42.5	43.9840	3.4918
135	20.07.2018	0.97	1.1551	19.0851	4.35	4.7251	8.6218	42.5	42.5180	0.0424
136	24.07.2018	0.97	1.0169	4.8361	ex	cluded from evalu	ation	42.5	43.8430	3.1600
137	25.07.2018	0.97	1.0781	11.1479	4.35	5.0934	17.0897	42.5	44.0655	3.6835
138	30.07.2018	0.97	1.0724	10.5593	4.35	5.1927	19.3718	42.5	38.8840	-8.5082
139	31.07.2018	0.97	0.9786	0.8840	4.35	4.7839	9.9753	42.5	43.2150	1.6824
140	01.08.2018	0.97	1.0976	13.1546	4.35	5.0139	15.2615	42.5	42.8085	0.7259
141	02.08.2018	0.97	0.9723	0.2381	4.35	4.9206	13.1178	42.5	44.5220	4.7577
142	06.08.2018	0.97	1.0697	10.2729	4.35	5.0860	16.9195	42.5	44.5220	4.7577

NV: nominal value (lot dependent); MV: measured value (mean of 2-4 replicate); RE: relative error. Excluded quality controls were removed from the evaluation due to processing errors and the concomitant variation in nominal concentration.

Run	Date	LLOQ (ng/mL	Blank 1 (ng/mL)	Blank 1-to- LLOQ ratio	Blank 2 (ng/mL)	Blank 2-to- LLOQ ratio
1	26.08.2016	0.191	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
2	26.08.2016	0.18946	0.00779	4.11%	0.01017	5.37%
3	29.08.2016	0.19147	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
4	29.08.2016	0.18876	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
5	30.08.2016	0.19325	0.02739	14.17%	0.03062	15.84%
6	31.08.2016	0.18945	0.00018467	0.10%	<min< th=""><th>0</th></min<>	0
7	02.09.2016	0.18744	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
8	29.09.2016	0.18976	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
9	20.10.2016	0.18396	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
10	04.11.2016	0.18584	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
11	07.11.2019	0.187	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
12	09.11.2016	0.18934	0.01496	7.90%	0.02188	11.56%
13	10.11.2016	0.18932	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
14	25.11.2016	0.18644	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
15	28.11.2016	0.19029	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
16	29.11.2016	0.18796	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
17	30.11.2016	0.19736	0.00491	2.49%	0.08072	40.90%
18	01.12.2016	0.19894	<min< th=""><th>0</th><th>0.03711</th><th>18.65%</th></min<>	0	0.03711	18.65%
19	14.12.2016	0.19948	0.04514	22.63%	0.02928	14.68%
20	19.12.2016	0.19761	0.00695	3.52%	0.01616	8.18%
21	21.12.2016	0.20151	0.01805	8.96%	0.04099	20.34%
22	11.01.2017	0.19039	0.04572	24.01%	<min< th=""><th>0</th></min<>	0
23	13.01.2017	0.20003	0.03628	18.14%	0.04777	23.88%
24	16.01.2017	0.20199	0.00078449	0.39%	0.06654	32.94%
25	20.01.2017	0.20197	0.0138	6.83%	0.01284	6.36%
26	30.01.2017	0.20031	0.01748	8.73%	0.04289	21.41%
27	31.01.2017	0.20345	0.01756	8.63%	0.09525	46.82%
28	01.02.2017	0.20047	0.02371	11.83%	0.02005	10.00%
29	02.02.2017	0.20287	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
30	03.04.2017	0.20161	<min< th=""><th>0</th><th>0.01844</th><th>9.15%</th></min<>	0	0.01844	9.15%
31	06.04.2017	0.20829	0.03278	15.74%	0.0386	18.53%
32	07.04.2017	0.20261	0.02654	13.10%	0.08285	40.89%
33	19.04.2017	0.20194	0.00961	4.76%	0.00041132	0.20%
34	21.04.2017	0.20259	0.01391	6.87%	0.0202	9.97%
35	24.04.2017	0.20185	0.01708	8.46%	0.00069585	0.34%
36	03.05.2017	0.20528	0.02178	10.61%	0.0408	19.88%
37	05.05.2017	0.21561	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
38	10.05.2017	0.21935	0.00312	1.42%	<min< th=""><th>0</th></min<>	0
39	12.05.2017	0.21793	0.00793	3.64%	0.01127	5.17%
40	15.05.2017	0.21598	0.00491	2.27%	<min< th=""><th>0</th></min<>	0
41	16.05.2017	0.22307	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
42	17.05.2017	0.22107	0.01673	7.57%	<min< th=""><th>0</th></min<>	0
43	18.05.2017	0.21471	0.00292	1.36%	0.01736	8.09%
44	19.05.2017	0.21606	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0

Appendix 10.3-5: Results of the blank sample evaluation in the context of the bioanalytical quality control system.

Run	Date	LLOQ (ng/mL	Blank 1 (ng/mL)	Blank 1-to- LLOQ ratio	Blank 2 (ng/mL)	Blank 2-to- LLOQ ratio
45	24.05.2017	0.21374	0.01984	9.28%	0.02128	9.96%
46	29.05.2017	0.22111	0.03079	13.93%	0.05822	26.33%
47	30.05.2017	0.21842	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
48	31.05.2017	0.21782	<min< th=""><th>0</th><th>0.03283</th><th>15.07%</th></min<>	0	0.03283	15.07%
49	01.06.2017	0.22088	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
50	08.06.2017	0.23689	0.01849	7.81%	0.03128	13.20%
51	14.06.2017	0.2249	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
52	21.06.2017	0.22813	0.01771	7.76%	0.01906	8.35%
53	05.07.2017	0.2215	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
54	07.07.2017	0.22264	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
55	10.07.2017	0.21665	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
56	12.07.2017	0.22561	0.01358	6.02%	<min< th=""><th>0</th></min<>	0
57	14.07.2017	0.23555	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
58	19.07.2017	0.2193	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
59	27.07.2017	0.22591	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
60	28.07.2017	0.21473	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
61	22.08.2017	0.22004	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
62	23.08.2017	0.22923	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
63	24.08.2017	0.2285	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
64	28.08.2017	0.21878	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
65	30.08.2017	0.22172	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
66	01.09.2017	0.23188	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
67	17.10.2017	0.22738	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
68	18.10.2017	0.21521	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
69	25.10.2017	0.22628	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
70	26.10.2017	0.22416	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
71	02.11.2017	0.2247	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
72	10.11.2017	0.21879	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
73	13.11.2017	0.2224	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
74	14.11.2017	0.21707	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
75	15.11.2017	0.22465	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
76	22.11.2017	0.22098	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
77	23.11.2017	0.21334	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
78	27.11.2017	0.22165	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
79	28.11.2017	0.22157	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
80	29.11.2017	0.21534	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
81	01.12.2017	0.21674	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
82	04.12.2017	0.22312	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
83	12.12.2017	0.21979	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
84	13.12.2017	0.22784	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
85	04.01.2018	0.21241	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
86	05.01.2018	0.22265	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
87	10.01.2018	0.21957	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
88	11.01.2018	0.22598	0.01664	7.36%	<min< th=""><th>0</th></min<>	0
89	15.01.2018	0.21976	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
90	16.01.2018	0.21085	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
91	17.01.2018	0.19963	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0

Run	Date	LLOQ (ng/mL	Blank 1 (ng/mL)	Blank 1-to- LLOQ ratio	Blank 2 (ng/mL)	Blank 2-to- LLOQ ratio
92	18.01.2018	0.19655	<min< th=""><th>0</th><th>0.01124</th><th>5.72%</th></min<>	0	0.01124	5.72%
93	19.01.2018	0.18357	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
94	22.01.2018	0.20205	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
95	29.01.2018	0.19407	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
96	30.01.2018	0.19937	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
97	01.02.2018	0.18617	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
98	02.02.2018	0.1958	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
99	13.02.2018	0.18602	0.00576	3.10%	<min< th=""><th>0</th></min<>	0
100	19.02.2018	0.19167	<min< th=""><th>0</th><th>0.03082</th><th>16.08%</th></min<>	0	0.03082	16.08%
101	21.02.2018	0.19225	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
102	22.02.2018	0.18457	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
103	26.02.2018	0.19857	0.01625	8.18%	<min< th=""><th>0</th></min<>	0
104	28.02.2018	0.18535	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
105	01.03.2018	0.19185	<min< th=""><th>0</th><th>0.01744</th><th>9.09%</th></min<>	0	0.01744	9.09%
106	05.03.2018	0.19286	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
107	06.03.2018	0.18252	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
108	12.03.2018	0.20627	0.006	2.91%	0.04584	22.22%
109	13.03.2018	0.20974	0.06882	32.81%	0.08896	42.41%
110	15.03.2018	0.20933	0.01921	9.18%	0.00674	3.22%
111	16.03.2018	0.20917	0.05201	24.86%	<min< th=""><th>0</th></min<>	0
112	19.03.2018	0.19325	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
113	21.03.2018	0.17895	0.05081	28.39%	<min< th=""><th>0</th></min<>	0
114	22.03.2018	0.18429	0.01079	5.85%	<min< th=""><th>0</th></min<>	0
115	27.03.2018	0.18209	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
116	28.03.2018	0.19566	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
117	13.04.2018	0.16786	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
118	16.04.2018	0.17805	<min< th=""><th>0</th><th>0.05833</th><th>32.76%</th></min<>	0	0.05833	32.76%
119	17.04.2018	0.19295	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
120	19.04.2018	0.16812	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
121	14.05.2018	0.17267	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
122	15.05.2018	0.18117	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
123	16.05.2018	0.19733	<min< th=""><th>0</th><th>0.00796</th><th>4.03%</th></min<>	0	0.00796	4.03%
124	18.05.2018	0.17892	<min< th=""><th>0</th><th>0.07319</th><th>40.91%</th></min<>	0	0.07319	40.91%
125	07.06.2018	0.18951	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
126	11.06.2018	0.18312	<min< th=""><th>0</th><th>0.0413</th><th>22.55%</th></min<>	0	0.0413	22.55%
127	12.06.2018	0.18454	<min< th=""><th>0</th><th>0.04416</th><th>23.93%</th></min<>	0	0.04416	23.93%
128	14.06.2018	0.18948	0.01532	8.09%	<min< th=""><th>0</th></min<>	0
129	19.06.2018	0.20632	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
130	06.07.2018	0.18978	0.02568	13.53%	0.02706	14.26%
131	11.07.2018	0.19386	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
132	12.07.2018	0.20031	<min< th=""><th>0</th><th>0.00684</th><th>3.41%</th></min<>	0	0.00684	3.41%
133	16.07.2018	0.18223	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
134	18.07.2018	0.19148	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
135	20.07.2018	0.19071	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
136	24.07.2018	0.18615	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
137	25.07.2018	0.17086	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
138	30.07.2018	0.20282	<min< th=""><th>0</th><th>0.03143</th><th>15.50%</th></min<>	0	0.03143	15.50%

Run	Date	LLOQ (ng/mL	Blank 1 (ng/mL)	Blank 1-to- LLOQ ratio	Blank 2 (ng/mL)	Blank 2-to- LLOQ ratio
139	31.07.2018	0.18218	<min< th=""><th>0</th><th>0.02009</th><th>11.03%</th></min<>	0	0.02009	11.03%
140	01.08.2018	0.1942	<min< th=""><th>0</th><th>0.06613</th><th>34.05%</th></min<>	0	0.06613	34.05%
141	02.08.2018	0.16697	<min< th=""><th>0</th><th><min< th=""><th>0</th></min<></th></min<>	0	<min< th=""><th>0</th></min<>	0
142	06.08.2018	0.19376	<min< th=""><th>0</th><th>0.05581</th><th>28.80%</th></min<>	0	0.05581	28.80%

The LLOQ values are expressed as the mean of two replicates.

		Orig	Original		eat	
Run	Cryo ID	Date	PRA (ng/mL/h)	Date	PRA (ng/mL/h)	Difference (%)
1	ISA 00019	30.01.2017	32.5096	30.01.2017	32.5311	0.07
2	ISA 00019	31.01.2017	32.5096	31.01.2017	34.0857	4.73
3	ISA 00266	01.02.2017	35.6055	01.02.2017	34.2444	-3.90
4	ISA 00266	02.02.2017	35.6055	02.02.2017	31.2091	-13.16
5	ISA 01514	19.04.2017	41.4116	19.04.2017	42.2327	1.94
6	ISA 01514	21.04.2017	41.4116	21.04.2017	44.5801	7.11
7	ISA 01514	24.04.2017	41.4116	24.04.2017	42.0524	1.52
8	ISA 01048	10.05.2017	34.9678	10.05.2017	26.4423	-27.77
9	ISA 01307	12.05.2017	28.1598	12.05.2017	28.9854	2.89
10	ISA 01090	15.05.2017	22.5216	15.05.2017	21.5914	-4.22
11	ISA 01090	16.05.2017	22.5216	16.05.2017	18.1184	-21.67
12	ISA 01144	17.05.2017	8.3258	17.05.2017	9.1395	9.32
13	ISA 01144	18.05.2017	8.3258	18.05.2017	8.8495	6.10
14	ISA 01144	19.05.2017	8.3258	19.05.2017	10.7588	25.50
15	ISA 01384	24.05.2017	10.2935	24.05.2017	8.8936	-14.59
16	ISA 01508	29.05.2017	9.1739	29.05.2017	7.6010	-18.75
17	ISA 01078	30.05.2017	74.0614	30.05.2017	65.3507	-12.50
18	ISA 01505	31.05.2017	25.7787	31.05.2017	22.9351	-11.67
19	ISA 01505	01.06.2017	25.7787	01.06.2017	20.5063	-22.78
20	ISA 00824	08.06.2017	5.9314	08.06.2017	5.3714	-9.91
21	ISA 01347	14.06.2017	32.9162	14.06.2017	32.4423	-1.45
22	ISA 01347	21.06.2017	32.9162	21.06.2017	36.2043	9.51
23	ISA 01347	05.07.2017	32.9162	05.07.2017	31.3664	-4.82
24	ISA 00813	07.07.2017	10.6350	07.07.2017	10.4720	-1.54
25	ISA 00813	10.07.2017	10.6350	10.07.2017	12.7973	18.46
26	ISA 00813	12.07.2017	10.6350	12.07.2017	10.0683	-5.47
27	ISA 01382	14.07.2017	23.6891	14.07.2017	21.5904	-9.27
28	ISA 01382	19.07.2017	23.6891	19.07.2017	21.1194	-11.47
29	ISA 01382	27.07.2017	23.6891	27.07.2017	19.3114	-20.36
30	ISA 01452	28.07.2017	16.7604	28.07.2017	14.5668	-14.00
31	ISA 00887	22.08.2017	9.2220	22.08.2017	8.4085	-9.23
32	ISA 00887	23.08.2017	9.2220	23.08.2017	8.2708	-10.88
33	ISA 01042	24.08.2017	59.0385	24.08.2017	51.9795	-12.72
34	ISA 01042	28.08.2017	59.0385	28.08.2017	52.8781	-11.01
35	ISA 01122	30.08.2017	33.1048	30.08.2017	34.6136	4.46
36	ISA 01122	01.09.2017	33.1048	01.09.2017	34.7594	4.88
37	ISA 01535	17.10.2017	13.3304	17.10.2017	14.2595	6.73
38	ISA 01535	18.10.2017	13.3304	18.10.2017	9.2931	-35.69
39	ISA 00944	25.10.2017	45.5585	25.10.2017	45.9456	0.85
40	ISA 00907	26.10.2017	49.1481	26.10.2017	44.2951	-10.39
41	ISA 00907	02.11.2017	49.1481	02.11.2017	39.8181	-20.97
42	ISA 01208	10.11.2017	16.3354	10.11.2017	11.6685	-33.33
43	ISA 00895	13.11.2017	7.1571	13.11.2017	6.3104	-12.57

Appendix 10.3-6: Results of the incurred sample reanalysis evaluation in the context of the bioanalytical quality control system.

		Orig	jinal	Rep	eat	
Run	Cryo ID	Date	PRA (ng/mL/h)	Date	PRA (ng/mL/h)	Difference (%)
44	ISA 00895	14.11.2017	7.1571	14.11.2017	6.6598	-7.20
45	ISA 01183	15.11.2017	13.9212	15.11.2017	12.1049	-13.96
46	ISA 01183	22.11.2017	13.9212	22.11.2017	9.6651	-36.09
47	ISA 01208	23.11.2017	16.3354	23.11.2017	10.2919	-45.39
48	ISA 01169	27.11.2017	21.3466	27.11.2017	13.7038	-43.61
49	ISA 01169	28.11.2017	21.3466	28.11.2017	19.5582	-8.74
50	ISA 01169	29.11.2017	21.3466	29.11.2017	19.0225	-11.51
51	ISA 00969	01.12.2017	15.8942	01.12.2017	19.1901	18.79
52	ISA 00969	04.12.2017	15.8942	04.12.2017	15.1002	-5.12
53	ISA 00969	12.12.2017	15.8942	12.12.2017	17.8489	11.59
54	ISA 01792	13.12.2017	17.7241	13.12.2017	15.1420	-15.71
55	ISA 01792	04.01.2018	17.7241	04.01.2018	19.0357	7.14
56	ISA 12717	05.01.2018	32.0390	05.01.2018	32.6083	1.76
57	ISA 12717	10.01.2018	32.0390	10.01.2018	29.7664	-7.35
58	ISA 00842	11.01.2018	24.4111	11.01.2018	16.1242	-51.39
59	ISA 00842	15.01.2018	24.4111	15.01.2018	17.8229	-36.96
60	ISA 00842	16.01.2018	24.4111	16.01.2018	20.9061	-16.77
61	ISA 01216	17.01.2018	15.3899	17.01.2018	16.4821	6.85
62	ISA 01216	18.01.2018	15.3899	18.01.2018	15.7025	2.01
63	ISA 01216	19.01.2018	15.3899	19.01.2018	15.6047	1.39
64	ISA 01342	22.01.2018	46.0793	22.01.2018	42.4592	-8.18
65	ISA 01342	29.01.2018	46.0793	29.01.2018	50.9507	10.04
66	ISA 01644	30.01.2018	11.2208	30.01.2018	11.2275	0.06
67	ISA 01644	01.02.2018	11.2208	01.02.2018	9.6334	-15.22
68	ISA 01692	02.02.2018	36.6599	02.02.2018	44.9110	20.23
69	ISA 01336	19.02.2018	20.4666	19.02.2018	22.9089	10.66
70	ISA 01336	21.02.2018	20.4666	21.02.2018	21.7684	5.98
71	ISA 01336	22.02.2018	20.4666	22.02.2018	22.6204	9.52
72	ISA 01790	26.02.2018	13.7691	26.02.2018	12.0034	-13.70
73	ISA 01790	28.02.2018	13.7691	28.02.2018	8.5947	-46.27
74	ISA 01790	01.03.2018	13.7691	01.03.2018	11.6702	-16.50
75	ISA 01673	05.03.2018	32.0567	05.03.2018	27.8517	-15.10
76	ISA 01673	06.03.2018	32.0567	06.03.2018	28.7315	-11.57
77	ISA 01242	12.03.2018	9.4004	12.03.2018	10.5181	11.22
78	ISA 01242	13.03.2018	9.4004	13.03.2018	8.9220	-5.22
79	ISA 12701	15.03.2018	6.8239	15.03.2018	12.2536	44.31
80	ISA 12701	16.03.2018	6.8239	16.03.2018	11.7428	41.89
81	ISA 01223	19.03.2018	36.4737	19.03.2018	37.6543	3.19
82	ISA 01223	21.03.2018	36.4737	21.03.2018	37.4974	2.77
83	ISA 01223	22.03.2018	36.4737	22.03.2018	44.6993	20.27
84	ISA 01414	13.04.2018	17.3435	13.04.2018	18.4239	5.86
85	ISA 01414	16.04.2018	17.3435	16.04.2018	20.5255	15.50
86	ISA 13207	17.04.2018	61.1424	17.04.2018	53.4710	-13.39
87	ISA 13207	19.04.2018	61.1424	19.04.2018	43.3271	-34.11
88	ISA 01013	14.05.2018	19.0540	14.05.2018	15.8261	-20.40
89	ISA 00942	15.05.2018	22.1902	15.05.2018	18.8529	-16.26

		Orig	jinal	Rep	eat	
Run	Cryo ID	Date	PRA (ng/mL/h)	Date	PRA (ng/mL/h)	Difference (%)
90	ISA 00942	16.05.2018	22.1902	16.05.2018	24.5411	10.06
91	ISA 00942	18.05.2018	22.1902	18.05.2018	25.5057	13.90
92	ISA 01711	07.06.2018	26.1062	07.06.2018	21.8921	-19.25
93	ISA 01542	11.06.2018	80.8745	11.06.2018	55.9026	-36.51
94	ISA 01622	12.06.2018	70.5247	12.06.2018	76.1573	7.40
95	ISA 01622	14.06.2018	70.5247	14.06.2018	61.2830	-15.08
96	ISA 00149	19.06.2018	8.3514	19.06.2018	8.3721	0.25
97	ISA 01665	19.06.2018	36.1158	19.06.2018	45.4487	20.54
98	ISA 01785	06.07.2018	42.8970	06.07.2018	49.4774	14.25
99	ISA 12708	11.07.2018	15.8376	11.07.2018	12.7141	-24.57
100	ISA 12708	12.07.2018	15.8376	12.07.2018	10.2027	-55.23
101	ISA 12708	16.07.2018	15.8376	16.07.2018	15.3968	-2.86
102	ISA 13328	18.07.2018	10.5506	18.07.2018	12.1936	14.45
103	ISA 13328	20.07.2018	10.5506	20.07.2018	14.6470	32.51
104	ISA 01186	24.07.2018	24.9992	24.07.2018	20.3224	-23.01
105	ISA 01186	25.07.2018	24.9992	25.07.2018	29.6870	15.79
106	ISA 01065	30.07.2018	12.2498	30.07.2018	13.1569	7.14
107	ISA 01065	31.07.2018	12.2498	31.07.2018	11.3087	-7.99
108	ISA 01065	01.08.2018	12.2498	01.08.2018	10.8561	-12.06
109	ISA 01022	02.08.2018	24.9282	02.08.2018	17.0302	-46.38
110	ISA 01022	06.08.2018	24.9282	06.08.2018	18.7736	-32.78

ISR: incurred sample reanalysis; PRA: plasma renin activity.

Appendix 10.4-1: The applied MultiQuant® parameters for the individual quantification of all analytes and internal standards by the liquid chromatography high-resolution mass spectrometry method.

Peptide	Angiotensin I	Angiotensin II	Angiotensin-(1-7)	Angiotensin III
Precursor	433.1 [M+3H] ³⁺	523.9 [M+2H] ²⁺	450.5 [M+2H] ²	466.5 [M+2H] ²
Fragment 1	86.0923-86.1023	70.0595-70.0695	70.0595-70.0695	70.0595-70.0695
Fragment 2	110.0655-110.0755	110.0655-110.0755	110.0655-110.0755	110.0655-110.0755
Fragment 3	269.1540-269.1640	263.1331-263.1431	116.0635-116.0735	263.1350-263.1450
Fragment 4	382.1816-382.1916	264.1386-264.1486	235.1123-235.1223	264.1375-264.1475
Fragment 5	513.2783-513.2883	619.3472-619.3572	534.2605-534.2705	419.2373-419.2473
Fragment 6	534.2648-534.2748	647.3498-647.3598	619.3529-619.3629	504.3225-504.3325
Fragment 7	619.3529-619.3629	648.3480-648.3580	620.3631-620.3731	532.3202-532.3302
Fragment 8	647.3426-647.3526	756.4172-756.4272	647.3426-647.3526	642.3820-642.3920
Fragment 9	648.3478-648.3578	757.4130-757.4230	648.3478-648.3578	641.3889-641.3989
Fragment 10	784.4106-784.4206	784.4106-784.4206	756.4137-756.4237	669.3768-669.3868
Fragment 11	785.4264-785.4364	785.4264-785.4364	784.4106-784.4206	670.3785-670.3885
Fragment 12			785.4147- 85.4247	
Peptide	Angiotensin IV	Angiotensin A	Alamandine	Angiotensin-(1-9)
Precursor	388.3 [M+2H] ²	501.8 [M+2H] ²	428.3 [M+2H] ²	395.2 [M+2H] ²
Fragment 1	72.0756-72.0856	70.0595-70.0695	70.0595-70.0695	86.0923-86.1023
Fragment 2	110.0655-110.0755	110.0655-110.0755	110.0655-110.0755	110.0655-110.0755
Fragment 3	136.0704-136.0804	263.1336-263.1436	116.0637-116.0737	136.0688-136.0788
Fragment 4	235.1369-235.1469	462.2777-462.2877	356.7204-356.7304	156.0708-156.0808
Fragment 5	251.1463-251.1563	490.2745-490.2845	490.2720-490.2820	303.1391-303.1491
Fragment 6	263.1333-263.1433	575.3628-575.3728	575.3605-575.3705	371.1983-371.2083
Fragment 7	414.2075-414.2175	603.3571-603.3671	603.3586-603.3686	400.1949-400.2049
Fragment 8	513.2783-513.2883	712.4226-712.4326	604.3638-604.3738	506.2681-506.2781
Fragment 9	676.3409-676.3509	723.3962-723.4062	712.4254-712.4354	534.2657-534.2757
Fragment 10	677.3473-677.3573	740.4168-740.4268	740.4236-740.4336	535.2648-535.2748
Fragment 11			758.4381-758.4481	619.3529-619.3629
Fragment 12				647.3426-647.3526
Peptide	[Val⁵]- Ang	uiotensin l	([ring_D_1Phe ⁸)	-Angiotensin II
Precursor	428.6 [N			M+2H] ²
Fragment 1	86.0923-			-70.0695
Fragment 2	110.0655-			-110.0755
Fragment 3	269.1540-			-268.1766
Fragment 4	382.1816-			-269.1640
Fragment 5 Fragment 6	<u>493.7589-</u> 534.2648-			-506.2761 -534.2706
				-534.2706 -619.3629
Fragment 7	605.3381-			
Fragment 8	606.3407-			-647.3526 -648.3578
Fragment 9	633.3321-			
Fragment 10 Fragment 11	770.3914-			-756.4235 -757.4242
	771.3910-	111.4010		
Fragment 12			784.4106	-784.4206

					Α	ngiotensin	1					
	Ru	n 1	Ru	n 2	Ru	n 3	Ru	n 4	Ru	n 5		n 6
NV (pg/mL)	MV (pg/mL)	RE (%)										
25.4	26.257	3.5%	26.557	4.7%	23.389	-7.8%	28.922	14.0%	27.107	6.8%	27.837	9.7%
25.4	25.75	1.5%	26.211	3.3%	27.741	9.3%	22.526	-11.2%	25.744	1.5%	25.678	1.2%
50.7	47.745	-5.9%	45.132	-11.1%	37.211	-26.7%	46.482	-8.4%	45.254	-10.8%	45.508	-10.3%
50.7	45.758	-9.8%	42.474	-16.3%	29.384	-42.1%	48.282	-4.8%	47.402	-6.6%	23.304	-54.1%
101.5	107.383	5.8%	89.854	-11.5%	93.155	-8.2%	107.883	6.3%	75.425	-25.7%	87.939	-13.3%
101.5	111.583	10.0%	91.33	-10.0%	95.857	-5.5%	104.217	2.7%	102.167	0.7%	90.477	-10.8%
203.0	198.422	-2.2%	225.431	11.1%	214.782	5.8%	218.715	7.8%	204.884	1.0%	211.985	4.5%
203.0	184.416	-9.1%	221.463	9.1%	229.062	12.9%	215.234	6.1%	195.38	-3.7%	194.224	-4.3%
405.9	422.508	4.1%	420.668	3.6%	398.856	-1.7%	378.815	-6.7%	438.358	8.0%	382.476	-5.8%
405.5	405.361	-0.1%	420.105	3.5%	379.567	-6.5%	464.159	14.4%	389.358	-4.1%	403.184	-0.7%
811.8	894.697	10.2%	785.975	-3.2%	831.303	2.4%	701.067	-13.6%	872.317	7.5%	812.386	0.1%
011.0	750.011	-7.6%	1000.029	23.2%	807.523	-0.5%	701.986	-13.5%	851.166	4.8%	903.911	11.3%
1623.6	1652.644	1.8%	1641.667	1.1%	1733.917	6.8%	1626.235	0.2%	1608.267	-0.9%	1816.592	11.9%
1023.0	1574.64	-3.0%	1596.658	-1.7%	1504.884	-7.3%	1744.171	7.4%	1548.409	-4.6%	1729.756	6.5%
	Correlation	coefficient										
	0.99	653	0.9	965	0.99	609	0.99	195	0.99	738	0.99	454
					Α	ngiotensin	II					
	Ru	n 1	Ru	n 2	Ru	n 3	Ru	n 4	Ru	n 5		n 6
NV (pg/mL)	MV (pg/mL)	RE (%)										
22.3	21.728	-2.4%	20.009	-10.2%	20.541	-7.8%	19.769	-11.2%	19.087	-14.3%	21.545	-3.3%
22.3	23.5	5.5%	25.354	13.8%	24.526	10.1%	25.69	15.4%	24.616	10.5%	26.653	19.7%
44.5	44.218	-0.7%	41.563	-6.7%	43.78	-1.7%	48.634	9.2%	47.057	5.7%	38.209	-14.2%
44.5	41.854	-6.0%	44.854	0.7%	44.497	-0.1%	41.479	-6.9%	45.328	1.8%	38.17	-14.3%
89.1	95.055	6.7%	86.406	-3.0%	85.043	-4.5%	77.989	-12.4%	89.565	0.6%	81.498	-8.5%
09.1	84.266	-5.4%	93.322	4.8%	84.682	-4.9%	78.562	-11.8%	90.013	1.1%	92.086	3.4%
178.1	174.926	-1.8%	161.399	-9.4%	183.201	2.8%	172.954	-2.9%	179.809	0.9%	170.249	-4.4%
170.1	178.226	0.1%	168.199	-5.6%	181.12	1.7%	179.042	0.5%	178.32	0.1%	166.83	-6.3%
356.3	346.861	-2.6%	373.669	4.9%	335.72	-5.8%	368.226	3.4%	346.523	-2.7%	337.629	-5.2%
330.3	365.697	2.7%	354.603	-0.5%	393.642	10.5%	375.554	5.4%	328.195	-7.9%	372.268	4.5%
712.5	765.295	7.4%	755.858	6.1%	722.147	1.4%	771.956	8.3%	778.785	9.3%	718.139	0.8%
/ 12.3	697.714	-2.1%	777.934	9.2%	707.782	-0.7%	793.191	11.3%	675.976	-5.1%	722.939	1.5%

Appendix 10.4-2: Evaluation of linearity for all 8 analytes by the liquid chromatography high-resolution mass spectrometry method.

igiotensin p	peptides in pi	uomu										
1425	1413.759	-0.8%	1377.908	-3.3%	1459.926	2.5%	1447.787	1.6%	1403.639	-1.5%	1594.59	11.9%
1425	1408.896	-1.1%	1391.54	-2.3%	1371.69	-3.7%	1270.704	-10.8%	1445.66	1.4%	1631.442	14.5%
	Correlation	coefficient	Correlation	coefficient	Correlation	coefficient	Correlation	coefficient	Correlation	coefficient	Correlation	coefficient
	0.99	867	0.99	526	0.99	769	0.992	291	0.99	683	0.993	177
					Ang	iotensin-(1-7)					
	Ru	n 1	Rur	12	Rur			ו 4	Ru	n 5	Rur	n 6
NV	MV	RE (%)	MV	RE (%)	MV	RE (%)	MV	RE (%)	MV	RE (%)	MV	RE (%)
(pg/mL)	(pg/mL)	RE (%)	(pg/mL)	RE (%)	(pg/mL)	RE (%)	(pg/mL)	RE (%)	(pg/mL)	RE (%)	(pg/mL)	RE (%)
24.3	21.526	-11.2%	22.193	-8.5%	40.575	67.3%	23.472	-3.2%	25.381	4.7%	24.637	1.6%
24.5	28.142	16.0%	28.113	15.9%	24.514	1.1%	40.561	67.3%	22.727	-6.3%	25.642	5.7%
48.5	43.908	-9.5%	42.763	-11.8%	53.318	9.9%	51.715	6.6%	51.431	6.0%	47.37	-2.3%
40.5	48.164	-0.7%	44.082	-9.1%	47.852	-1.3%	49.117	1.3%	47.271	-2.5%	44.894	-7.4%
97	105.258	8.5%	111.096	14.5%	82.693	-14.7%	108.018	11.4%	93.319	-3.8%	94.579	-2.5%
97	85.408	-12.0%	99.762	2.8%	82.774	-14.7%	90.719	-6.5%	99.955	3.0%	87.551	-9.7%
40.4	203.986	5.1%	176.864	-8.8%	196.762	1.4%	185.098	-4.6%	183.079	-5.6%	185.406	-4.4%
194	205.606	6.0%	193.435	-0.3%	219.005	12.9%	166.288	-14.3%	207.037	6.7%	212.501	9.5%
000	368.144	-5.1%	358.337	-7.6%	529.418	36.4%	382.155	-1.5%	225.503	-41.9%	350.535	-9.7%
388	376.746	-2.9%	357.247	-7.9%	504.105	29.9%	396.987	2.3%	226.665	-41.6%	405.269	4.5%
	788.099	1.6%	883.351	13.8%	806.933	4.0%	831.808	7.2%	773.064	-0.4%	793.656	2.3%
776	819.812	5.6%	887.525	14.4%	786.878	1.4%	827.987	6.7%	749.838	-3.4%	789.345	1.7%
	1529.1	-1.5%	1432.434	-7.7%	1485.236	-4.3%	1542.001	-0.6%	1521.55	-2.0%	1719.146	10.8%
1552	1542.384	-0.6%	1536.759	-1.0%	1586.086	2.2%	1478.532	-4.7%	1605.976	3.5%	1869.612	20.5%
	Correlation		Correlation		Correlation		Correlation		Correlation		Correlation	
	0.99		0.99		0.99		0.990		0.99		0.99	
I	1					giotensin				I		
	Ru	n 1	Rur	12	Rur		Rur	n 4	Rui	n 5	Rur	16
NV	MV		MV		MV		MV		MV		MV	
(pg/mL)	(pg/mL)	RE (%)	(pg/mL)	RE (%)	(pg/mL)	RE (%)	(pg/mL)	RE (%)	(pg/mL)	RE (%)	(pg/mL)	RE (%)
	32.853	0.00/								a 40/		-7.2%
		6.0%	33.483	8.0%	34.064	9.9%	22.879	-26.2%	31.123	0.4%	28.703	
31		6.0% 2.3%	33.483 26.205	8.0% -15.5%	34.064 29.73	9.9% -4.1%	22.879 33.22	-26.2% 7.2%	31.123 32.984	0.4% 6.4%	28.763 35.177	
	31.727	2.3%	26.205	-15.5%	29.73	-4.1%	33.22	7.2%	32.984	6.4%	35.177	13.5%
31 62	31.727 55.431	2.3% -10.6%	26.205 70.714	-15.5% 14.1%	29.73 60.821	-4.1% -1.9%	33.22 55.476	7.2% -10.5%	32.984 54.732	6.4% -11.7%	35.177 85.101	13.5% 37.3%
62	31.727 55.431 59.176	2.3% -10.6% -4.6%	26.205 70.714 64.619	-15.5% 14.1% 4.2%	29.73 60.821 53.236	-4.1% -1.9% -14.1%	33.22 55.476 57.684	7.2% -10.5% -7.0%	32.984 54.732 57.61	6.4% -11.7% -7.1%	35.177 85.101 55.697	13.5% 37.3% -10.2%
	31.727 55.431 59.176 125.665	2.3% -10.6% -4.6% 1.3%	26.205 70.714 64.619 122.106	-15.5% 14.1% 4.2% -1.5%	29.73 60.821 53.236 128.076	-4.1% -1.9% -14.1% 3.3%	33.22 55.476 57.684 98.603	7.2% -10.5% -7.0% -20.5%	32.984 54.732 57.61 132.501	6.4% -11.7% -7.1% 6.9%	35.177 85.101 55.697 122.233	13.5% 37.3% -10.2% -1.4%
62 124	31.727 55.431 59.176 125.665 109.531	2.3% -10.6% -4.6% 1.3% -11.7%	26.205 70.714 64.619 122.106 117.133	-15.5% 14.1% 4.2% -1.5% -5.5%	29.73 60.821 53.236 128.076 100.496	-4.1% -1.9% -14.1% 3.3% -19.0%	33.22 55.476 57.684 98.603 133.546	7.2% -10.5% -7.0% -20.5% 7.7%	32.984 54.732 57.61 132.501 129.45	6.4% -11.7% -7.1% 6.9% 4.4%	35.177 85.101 55.697 122.233 125.855	13.5% 37.3% -10.2% -1.4% 1.5%
62	31.727 55.431 59.176 125.665 109.531 232.986	2.3% -10.6% -4.6% 1.3% -11.7% -6.1%	26.205 70.714 64.619 122.106 117.133 197.66	-15.5% 14.1% 4.2% -1.5% -5.5% -20.3%	29.73 60.821 53.236 128.076 100.496 274.14	-4.1% -1.9% -14.1% 3.3% -19.0% 10.5%	33.22 55.476 57.684 98.603 133.546 267.268	7.2% -10.5% -7.0% -20.5% 7.7% 7.8%	32.984 54.732 57.61 132.501 129.45 250.072	6.4% -11.7% -7.1% 6.9% 4.4% 0.8%	35.177 85.101 55.697 122.233 125.855 199.212	13.5% 37.3% -10.2% -1.4% 1.5% -19.7%
62 124 248	31.727 55.431 59.176 125.665 109.531 232.986 278.252	2.3% -10.6% -4.6% 1.3% -11.7% -6.1% 12.2%	26.205 70.714 64.619 122.106 117.133 197.66 253.393	-15.5% 14.1% 4.2% -1.5% -5.5% -20.3% 2.2%	29.73 60.821 53.236 128.076 100.496 274.14 257.697	-4.1% -1.9% -14.1% 3.3% -19.0% 10.5% 3.9%	33.22 55.476 57.684 98.603 133.546 267.268 217.045	7.2% -10.5% -7.0% -20.5% 7.7% 7.8% -12.5%	32.984 54.732 57.61 132.501 129.45 250.072 247.495	6.4% -11.7% -7.1% 6.9% 4.4% 0.8% -0.2%	35.177 85.101 55.697 122.233 125.855 199.212 229.623	13.5% 37.3% -10.2% -1.4% 1.5% -19.7% -7.4%
62 124	31.727 55.431 59.176 125.665 109.531 232.986	2.3% -10.6% -4.6% 1.3% -11.7% -6.1%	26.205 70.714 64.619 122.106 117.133 197.66	-15.5% 14.1% 4.2% -1.5% -5.5% -20.3%	29.73 60.821 53.236 128.076 100.496 274.14	-4.1% -1.9% -14.1% 3.3% -19.0% 10.5%	33.22 55.476 57.684 98.603 133.546 267.268	7.2% -10.5% -7.0% -20.5% 7.7% 7.8%	32.984 54.732 57.61 132.501 129.45 250.072	6.4% -11.7% -7.1% 6.9% 4.4% 0.8%	35.177 85.101 55.697 122.233 125.855 199.212	13.5% 37.3% -10.2% -1.4% 1.5% -19.7% -7.4% -7.1% -4.1%

Appendix - Development and validation of an innovative multiplex liquid chromatography high-resolution mass spectrometry method for the investigation of angiotensin peptides in plasma

991 439 -0.1% 893 075 -10.3% 993 075 -3.9% 1130.688 14.6% 1015 599 2.4% 1001 881 1.0% 1994 1968 83 0.7% 2008 814 1.3% 1083 176 -1.0% 2007 202 5.7% 1926 77 2.2% 2279.515 14.9% 0.93931 0.93952 </th <th>angiotensin</th> <th>peptides in pi</th> <th>asma</th> <th></th>	angiotensin	peptides in pi	asma										
1994 2033.875 2.5% 172.477 1.939.946 -2.3% 2275.15 14.9% Correlation coefficient Corela		991.439	-0.1%	889.525	-10.3%	953.075	-3.9%	1136.958	14.6%	1015.599	2.4%	1001.861	1.0%
203.8/5 2.8% 203.102 2.9% 172.8/7 1939.949 2.3% 227.9.15 24.3% 227.9.15 24.3% 227.9.15 14.3% 227.9.15 14.3% 227.9.15 14.3% 227.9.15 14.3% 227.9.15 14.3% 227.9.15 0.9952 <th< td=""><td>4004</td><td>1969.83</td><td>-0.7%</td><td>2008.814</td><td>1.3%</td><td>1963.476</td><td>-1.0%</td><td>2097.202</td><td>5.7%</td><td>1926.774</td><td>-2.9%</td><td>2028.508</td><td>2.2%</td></th<>	4004	1969.83	-0.7%	2008.814	1.3%	1963.476	-1.0%	2097.202	5.7%	1926.774	-2.9%	2028.508	2.2%
0.99391 0.99604 0.99649 0.99319 0.99592 0.9952 Angiotensin IV Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 W MV MV Ref %b (pg/mL) RE (%b) (pg/mL) RE (%b) MV Ref %b (pg/mL) RE (%b) (pg/mL) RE (%b) MV Ref %b (pg/mL) RE (%b) (pg/mL) RE (%b) MV RE (%b) (pg/mL) RE (%b) (pg/mL) RE (%b) MV RE (%b) (pg/mL) RE (%b) MV RE (%b) (pg/mL) RE (%b) (pg/mL) RE (%b)	1984	2033.875	2.5%	2018.832	1.8%	2033.102	2.5%	1732.457	-12.7%	1938.946	-2.3%	2279.515	14.9%
Angiotensin IV Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 NV (pg/mL) RE (%) (pg/mL) RE (%) (pg/mL) RE (%) (pg/mL) RE (%) (pg/mL) MV (pg/mL) RE (%) (pg/mL)		Correlation	coefficient	Correlation	coefficient	Correlation	n coefficient	Correlation	coefficient	Correlation	coefficient	Correlation	coefficient
Angiotensin IV Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 NV (pg/mL) RE (%) (pg/mL) RE (%) (pg/mL) RE (%) (pg/mL) RE (%) (pg/mL) MV (pg/mL) RE (%) (pg/mL)		0.99	391	0.99	604	0.99	9649	0.99	319	0.99	592	0.99	952
NV (pg/mL) MV (pg/mL) RE (%) (pg/mL) MV (pg/mL)						Ar	ngiotensin	IV					
(pg/mL) (pg/mL) RE (%)		Ru	n 1	Ru	n 2	Ru	in 3	Ru	n 4	Ru	n 5	Ru	n 6
(pg/ml) (pg/ml) <t< td=""><td></td><td></td><td>RE (%)</td><td>MV</td><td>RE (%)</td><td></td><td>RE (%)</td><td></td><td>RE (%)</td><td></td><td>RE (%)</td><td></td><td>RE (%)</td></t<>			RE (%)	MV	RE (%)		RE (%)		RE (%)		RE (%)		RE (%)
22.9 29.626 29.3% 25.885 12.9% 25.916 13.1% 19.94 -13.0% 26.009 13.5% 25.288 10.3% 45.8 49.891 8.9% 48.648 6.2% 40.707 -112% 33.681 -26.5% 39.732 -13.3% 44.342 -3.2% 91.6 76.294 -16.7% 68.444 -25.3% 88.015 -4.0% 103.031 12.4% 86.548 -5.6% 85.027 -7.2% 105.085 14.7% 66.597 28.7% 28.794 4.0% 87.142 -4.9% 94.86 3.5% 89.49 -2.3% 105.056 12.7% 232.136 26.7% 210.284 14.7% 172.35 -6.0% 201.508 9.9% 366.6 377.53 3.0% 346.42 -3.1% 1398.246 8.6% 458.89 25.2% 364.103 -0.7% 364.251 -0.6% 373.1 787.02 7.4% 395.024 -5.5% 1420.89 -3.1% 1384	(pg/mL)												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	22.9												
49.6 44.833 2.2% 42.547 -7.1% 42.631 -7.0% 48.244 5.3% 38.988 -14.9% 37.63 -17.9% 91.6 76.294 -16.7% 68.444 -25.3% 88.015 -4.0% 103.031 12.4% 86.548 -5.6% 85.027 -7.2% 183.3 105.085 14.7% 65.937 -28.0% 87.994 -4.0% 20.10.284 14.7% 172.35 -6.0% 201.508 9.3% 183.3 177.895 -2.9% 177.544 -3.1% 189.848 3.6% 181.187 -1.1% 196.161 7.0% 364.251 -14.6% 366.6 377.53 .0% 346.642 -5.4% 355.076 -3.1% 325.95 -11.1% 405.968 10.8% 348.171 -4.9% 366.6 377.53 .0% 89.653 22.7% 746.494 1.8% 700.418 -4.5% 748.892 2.2% 785.013 7.1% 1466.2 1458.842 .0.5%	22.5												
44.833 -2.2% 42.547 -7.1% 44.2.31 -7.1% 44.2.34 5.3% 38.985 -14.9% 37.63 -17.9% 91.6 76.294 -16.7% 68.444 -25.3% 88.015 -4.0% 87.142 4.9% 94.86 3.5% 89.489 -2.3% 180.30 160.526 -12.4% 206.5 12.7% 232.136 26.7% 210.284 14.7% 172.35 -6.0% 201.508 9.9% 366.6 377.53 3.0% 346.642 -5.4% 355.076 -3.1% 325.95 -11.1% 405.968 10.8% 348.711 4.9% 366.6 377.53 3.0% 346.642 -5.4% 355.076 -3.1% 325.95 -11.1% 405.968 10.8% 348.711 4.9% 373.1 767.02 7.4% 763.245 4.1% 827.761 12.9% 628.756 14.2% 826.962 12.8% 703.13 71.4% 1486.2 1.458.842 0.6% 1432.023	15.8												
91.0 105 0.85 14.7% 65.937 -28.0% 87.994 4.0% 87.142 4.9% 94.86 3.5% 89.489 -2.3% 183.3 160.526 -12.4% 206.5 12.7% 232.136 26.7% 210.284 14.7% 172.35 -6.0% 201.508 9.9% 366.6 377.53 3.0% 346.642 -5.4% 355.076 -3.1% 325.95 -11.1% 405.968 10.8% 348.711 -4.9% 366.6 377.53 3.0% 346.642 -7.1% 398.246 8.6% 458.869 25.2% 364.103 -0.7% 364.251 -0.6% 733.1 787.02 7.4% 763.245 4.1% 827.761 12.9% 628.756 -14.2% 826.962 12.8% 730.229 -0.4% 1486.2 1.5% 1474.604 0.6% 1385.024 -5.5% 1420.89 -3.1% 1384.023 -5.6% 1485.851 1.3% 1466.2 1458.842 0.5% 1456.683 <td>45.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-7.0%</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	45.0						-7.0%						
105.055 14.7% 65.937 -26.0% 67.1924 -4.0% 67.142 -4.9% 94.86 3.3% 69.499 -2.3% 183.3 100.526 -12.4% 206.5 12.7% 232.136 26.7% 210.284 14.7% 177.35 -6.0% 201.508 9.9% 366.6 377.53 3.0% 346.642 -5.4% 350.076 -3.1% 325.95 -11.1% 405.968 10.8% 348.711 -4.9% 366.6 349.77 -4.6% 340.445 -7.1% 398.246 8.6% 458.869 25.2% 364.103 -0.7% 364.251 -0.6% 733.1 767.02 7.4% 763.245 4.1% 827.761 12.9% 628.756 -14.2% 826.962 12.8% 730.229 -0.4% 1466.2 1458.842 -0.5% 147.604 0.6% 1432.293 -3.1% 138.023 -5.6% 1488.051 1.3% 1466.2 0.9961 0.99459 0.99539 0.99186 0.9	01.6			68.444	-25.3%	88.015	-4.0%		12.4%			85.027	-7.2%
183.3 177.895 -2.9% 177.544 -3.1% 189.848 3.6% 181.187 -1.1% 196.161 7.0% 156.556 -14.6% 366.6 349.77 -4.6% 340.77 -4.6% 364.71 -4.9% 733.1 787.02 7.4% 763.245 -1.1% 398.246 8.6% 458.869 25.2% 364.103 -0.7% 364.251 -0.6% 733.1 676.25 -7.8% 899.653 22.7% 746.494 1.8% 700.418 -4.5% 748.892 2.2% 785.013 7.1% 1466.2 1447.752 1.5% 1474.604 0.6% 1382.024 -5.5% 1420.89 -3.1% 1384.023 -5.6% 1485.851 1.3% 1466.2 1458.842 -0.5% 1432.293 -2.3% 1634.834 11.5% 1410.773 -3.8% 1681.013 10.4% 0.9961 0.99459 0.99392 0.99186 0.99332 0.99565 10.97(pg/mL) RE (%) MV	91.0	105.085	14.7%	65.937		87.994	-4.0%	87.142	-4.9%	94.86	3.5%	89.489	-2.3%
177.895 -2.9% 177.54 -3.7% 189.848 3.6% 181.187 -1.1% 190.1c1 7.0% 150.556 -14.6% 366.6 377.53 3.0% 346.642 -5.4% 355.076 -3.1% 325.95 -11.1% 405.968 10.8% 348.711 -4.9% 349.77 -4.6% 340.445 -7.1% 398.246 8.6% 458.869 25.2% 364.103 -0.7% 364.251 -0.6% 733.1 787.02 7.4% 763.245 4.1% 827.761 12.9% 628.756 -14.2% 826.962 12.8% 730.229 -0.4% 676.25 -7.8% 899.653 22.7% 746.494 1.8% 700.418 -4.5% 748.892 2.2% 785.013 7.1% 1466.2 1485.752 1.5% 1474.604 0.6% 1420.89 -3.1% 1384.023 -5.6% 1485.851 1.3% 1466.2 0.5% 1456.683 -0.6% 1432.293 -2.3% 1634.834	402.2	160.526	-12.4%		12.7%	232.136	26.7%	210.284	14.7%	172.35	-6.0%	201.508	9.9%
366.6 349.77 -4.6% 340.445 -7.1% 398.246 8.6% 458.869 25.2% 364.103 -0.7% 364.251 -0.6% 733.1 787.02 7.4% 763.245 4.1% 827.761 12.9% 628.756 -14.2% 826.962 12.8% 730.229 -0.4% 766.25 -7.8% 899.653 22.7% 746.494 1.8% 700.418 -4.5% 748.892 2.2% 785.013 7.1% 1466.2 1474.604 0.6% 1385.024 -5.5% 1420.89 -3.1% 1384.023 -5.6% 1485.851 1.3% 1466.2 1474.604 0.6% 1385.024 -5.5% 1420.89 -3.1% 1384.023 -5.6% 1485.851 1.3% 1466.2 1485.851 0.9% 1492.293 -2.3% 1634.834 11.5% 1410.773 -3.8% 1618.013 10.4% 0.9961 0.99459 0.99539 0.99386 0.99332 0.99565 0.99332 0.99565	183.3	177.895	-2.9%	177.544	-3.1%	189.848	3.6%	181.187	-1.1%	196.161	7.0%	156.556	-14.6%
Add Add <td>200.0</td> <td>377.53</td> <td>3.0%</td> <td>346.642</td> <td>-5.4%</td> <td>355.076</td> <td>-3.1%</td> <td>325.95</td> <td>-11.1%</td> <td>405.968</td> <td>10.8%</td> <td>348.711</td> <td>-4.9%</td>	200.0	377.53	3.0%	346.642	-5.4%	355.076	-3.1%	325.95	-11.1%	405.968	10.8%	348.711	-4.9%
Image: https://width: https	366.6	349.77	-4.6%	340.445	-7.1%	398.246	8.6%	458.869	25.2%	364.103	-0.7%	364.251	-0.6%
Image: https://width: htttps://width: https://width: https://width: https://width: httt	700 4	787.02	7.4%	763.245	4.1%	827.761	12.9%	628.756	-14.2%	826.962	12.8%	730.229	-0.4%
1466.2 1458.842 -0.5% 1456.683 -0.6% 1432.293 -2.3% 1634.834 11.5% 1410.773 -3.8% 1618.013 10.4% Correlation coefficient Motion coefficient Mot	733.1		-7.8%		22.7%	746.494	1.8%		-4.5%		2.2%	785.013	
IdoB.842 -0.5% IdoB.083 -0.6% Idd2.293 -2.3% Idd4.834 Idd.834 Idd.7/3 -3.8% IddB.013 Id.4% Correlation coefficient Corelation coefficient	4 4 9 9 9	1487.752	1.5%	1474.604	0.6%	1385.024	-5.5%	1420.89	-3.1%	1384.023	-5.6%	1485.851	1.3%
0.9961 0.99459 0.99539 0.99186 0.99332 0.99565 K	1466.2	1458.842	-0.5%	1456.683	-0.6%	1432.293	-2.3%	1634.834	11.5%	1410.773	-3.8%	1618.013	10.4%
Angiotensin A NV (pg/mL) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 NV (pg/mL) MV (pg/mL) RE (%) MU A A A A		Correlation	coefficient	Correlation	coefficient	Correlation	n coefficient	Correlation	coefficient	Correlation	coefficient	Correlation	coefficient
Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 NV (pg/mL) MV (pg/mL) RE (%) MU <t< td=""><td></td><td>0.99</td><td>961</td><td>0.99</td><td>459</td><td>0.99</td><td>9539</td><td>0.99</td><td>186</td><td>0.99</td><td>332</td><td>0.99</td><td>565</td></t<>		0.99	961	0.99	459	0.99	9539	0.99	186	0.99	332	0.99	565
Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 NV (pg/mL) MV (pg/mL) RE (%) MU <t< td=""><td></td><td>•</td><td></td><td></td><td></td><td>Ar</td><td>ngiotensin</td><td>Α</td><td></td><td></td><td></td><td></td><td></td></t<>		•				Ar	ngiotensin	Α					
(pg/mL) (pg/mL) RE (%)		Ru	n 1	Ru	n 2				n 4	Ru	n 5	Ru	n 6
(bg/mL) (c)	NV	MV		MV		MV		MV		MV		MV	
21.8 11.243 -48.5% 20.458 -6.3% 21.56 -1.3% 11.606 -46.9% 25.113 15.0% 66.749 205.6% 43.7 43.213 -1.1% 45.798 4.8% 40.113 -8.2% 38.105 -12.8% 38.667 -11.5% 37.942 -13.2% 38.101 -12.8% 47.673 9.1% 47.443 8.6% 38.71 -11.4% 40.14 -8.1% 39.79 -8.9% 87.4 91.05 4.2% 89.88 2.9% 78.948 -9.6% 88.85 1.7% 78.551 -10.1% 87.735 0.4% 91.321 4.5% 88.771 1.6% 92.845 6.3% 94.409 8.0% 99.815 14.2% 80.562 -7.8% 174.8 160.405 -8.2% 150.303 -14.0% 195.175 11.7% 189.823 8.6% 162.8 -6.8% 189.622 8.5% 174.8 186.746 6.9% 166.676 -4.6% 196.892 12.7% 198.732 13.7% 173.456 -0.7% 166.592 -4.7%	(pg/mL)	(pg/mL)					. ,				. ,		. ,
11.243 -48.5% 20.458 -6.3% 21.56 -1.3% 11.606 -46.9% 25.113 15.0% 66.749 205.6% 43.7 43.213 -1.1% 45.798 4.8% 40.113 -8.2% 38.105 -12.8% 38.667 -11.5% 37.942 -13.2% 38.101 -12.8% 47.673 9.1% 47.443 8.6% 38.71 -11.4% 40.14 -8.1% 39.79 -8.9% 87.4 91.05 4.2% 89.88 2.9% 78.948 -9.6% 88.85 1.7% 78.551 -10.1% 87.735 0.4% 91.321 4.5% 88.771 1.6% 92.845 6.3% 94.409 8.0% 99.815 14.2% 80.562 -7.8% 174.8 160.405 -8.2% 150.303 -14.0% 195.175 11.7% 189.823 8.6% 162.8 -6.8% 189.622 8.5% 174.8 186.746 6.9% 166.676 -4.6% 196.892 12.7% 198.732 13.7% 173.456 -0.7% 166.592 -4.7%	21.0						53.8%				-6.2%		
43.7 38.101 -12.8% 47.673 9.1% 47.443 8.6% 38.71 -11.4% 40.14 -8.1% 39.79 -8.9% 87.4 91.05 4.2% 89.88 2.9% 78.948 -9.6% 88.85 1.7% 78.551 -10.1% 87.735 0.4% 91.321 4.5% 88.771 1.6% 92.845 6.3% 94.409 8.0% 99.815 14.2% 80.562 -7.8% 174.8 160.405 -8.2% 150.303 -14.0% 195.175 11.7% 189.823 8.6% 162.8 -6.8% 189.622 8.5% 186.746 6.9% 166.676 -4.6% 196.892 12.7% 198.732 13.7% 173.456 -0.7% 166.592 -4.7% 349.5 331.768 -5.1% 352.431 0.8% 357.381 2.3% 332.5 -4.9% 468.38 34.0% 355.021 1.6%	21.0	11.243	-48.5%	20.458	-6.3%	21.56	-1.3%	11.606	-46.9%	25.113	15.0%	66.749	205.6%
38.101 -12.8% 47.673 9.1% 47.443 8.6% 38.71 -11.4% 40.14 -8.1% 39.79 -8.9% 87.4 91.05 4.2% 89.88 2.9% 78.948 -9.6% 88.85 1.7% 78.551 -10.1% 87.735 0.4% 91.321 4.5% 88.771 1.6% 92.845 6.3% 94.409 8.0% 99.815 14.2% 80.562 -7.8% 160.405 -8.2% 150.303 -14.0% 195.175 11.7% 189.823 8.6% 162.8 -6.8% 189.622 8.5% 174.8 166.746 6.9% 166.676 -4.6% 196.892 12.7% 198.732 13.7% 173.456 -0.7% 166.592 -4.7% 349.5 331.768 -5.1% 352.431 0.8% 357.381 2.3% 332.5 -4.9% 468.38 34.0% 355.021 1.6%	42.7	43.213	-1.1%	45.798	4.8%	40.113	-8.2%	38.105	-12.8%	38.667	-11.5%	37.942	-13.2%
87.4 91.321 4.5% 88.771 1.6% 92.845 6.3% 94.409 8.0% 99.815 14.2% 80.562 -7.8% 174.8 160.405 -8.2% 150.303 -14.0% 195.175 11.7% 189.823 8.6% 162.8 -6.8% 189.622 8.5% 186.746 6.9% 166.676 -4.6% 196.892 12.7% 198.732 13.7% 173.456 -0.7% 166.592 -4.7% 349.5 331.768 -5.1% 352.431 0.8% 357.381 2.3% 332.5 -4.9% 468.38 34.0% 355.021 1.6%	43.7	38.101	-12.8%	47.673	9.1%	47.443	8.6%	38.71	-11.4%	40.14	-8.1%	39.79	-8.9%
87.4 91.321 4.5% 88.771 1.6% 92.845 6.3% 94.409 8.0% 99.815 14.2% 80.562 -7.8% 174.8 160.405 -8.2% 150.303 -14.0% 195.175 11.7% 189.823 8.6% 162.8 -6.8% 189.622 8.5% 186.746 6.9% 166.676 -4.6% 196.892 12.7% 198.732 13.7% 173.456 -0.7% 166.592 -4.7% 349.5 331.768 -5.1% 352.431 0.8% 357.381 2.3% 332.5 -4.9% 468.38 34.0% 355.021 1.6%	07 4												
174.8 160.405 -8.2% 150.303 -14.0% 195.175 11.7% 189.823 8.6% 162.8 -6.8% 189.622 8.5% 186.746 6.9% 166.676 -4.6% 196.892 12.7% 198.732 13.7% 173.456 -0.7% 166.592 -4.7% 349.5 331.768 -5.1% 352.431 0.8% 357.381 2.3% 332.5 -4.9% 468.38 34.0% 355.021 1.6%	07.4		4.5%	88.771	1.6%	92.845	6.3%	94.409	8.0%	99.815	14.2%	80.562	
174.8 186.746 6.9% 166.676 -4.6% 196.892 12.7% 198.732 13.7% 173.456 -0.7% 166.592 -4.7% 349.5 331.768 -5.1% 352.431 0.8% 357.381 2.3% 332.5 -4.9% 468.38 34.0% 355.021 1.6%	474.0	160.405	-8.2%	150.303	-14.0%		11.7%				-6.8%	189.622	
349 5 331.768 -5.1% 352.431 0.8% 357.381 2.3% 332.5 -4.9% 468.38 34.0% 355.021 1.6%	1/4.8												
	240 5												
	349.5	395.385	13.1%	389.031	11.3%	299.287	-14.4%	328.769	-5.9%	397.071	13.6%	462.422	32.3%

Appendix - Development and validation of an innovative multiplex liquid chromatography high-resolution mass spectrometry method for the investigation of angiotensin peptides in plasma

	pepudes in pi	asina										
699	655.893	-6.2%	724.227	3.6%	605.224	-13.4%	677.055	-3.1%	742.457	6.2%	732.908	4.9%
699	685.897	-1.9%	619.121	-11.4%	684.555	-2.1%	663.029	-5.1%	668.209	-4.4%	657.437	-5.9%
4000	1403.172	0.4%	1438.616	2.9%	1531.492	9.5%	1554.846	11.2%	1394.111	-0.3%	1808.457	29.4%
1398	1417.026	1.4%	1386.619	-0.8%	1367.738	-2.2%	1286.533	-8.0%	1369.416	-2.0%	1579.921	13.0%
	Correlation	coefficient	Correlation	coefficient	Correlatior	n coefficient	Correlation	coefficient	Correlation	coefficient	Correlation	coefficient
	0.99	658	0.99	584		931	0.99	343	0.9		0.99	348
					F	Alamandin	е					
	Ru	n 1	Ru	n 2	Ru	ın 3	Ru	n 4	Ru	n 5	Ru	n 6
NV (pg/mL)	MV (pg/mL)	RE (%)	MV (pg/mL)	RE (%)	MV (pg/mL)	RE (%)	MV (pg/mL)	RE (%)	MV (pg/mL)	RE (%)	MV (pg/mL)	RE (%)
	18.04	-5.2%	22.182	16.6%	15.501	-18.5%	17.627	-7.4%	19.645	3.2%	21.686	14.0%
19.0	19.755	3.8%	16.983	-10.8%	21.786	14.5%	30.747	61.6%	19.491	2.4%	16.601	-12.8%
00.4	36.21	-4.8%	38.992	2.5%	37.983	-0.2%	40.802	7.2%	52.203	37.2%	40.108	5.4%
38.1	41.871	10.0%	31.844	-16.3%	43.247	13.7%	40.997	7.7%	34.863	-8.4%	35.942	-5.5%
70.4	72.368	-4.9%	72.756	-4.4%	41.7	-45.2%	74.229	-2.5%	68.382	-10.1%	77.589	2.0%
76.1	76.368	0.4%	83.738	10.0%	66.113	-13.1%	82.276	8.1%	74.575	-2.0%	67.047	-11.9%
450.0	168.299	10.6%	117.34	-22.9%	161.672	6.2%	153.96	1.2%	155.416	2.1%	151.789	-0.3%
152.2	138.148	-9.2%	153.062	0.6%	145.19	-4.6%	137.065	-9.9%	166.112	9.1%	167.129	9.8%
004.4	308.986	1.5%	283.735	-6.8%	319.297	4.9%	271.73	-10.7%	209.51	-31.2%	322.433	5.9%
304.4	273.096	-10.3%	271.217	-10.9%	317.795	4.4%	310.121	1.9%	190.334	-37.5%	305.756	0.4%
000.0	645.329	6.0%	688.67	13.1%	578.154	-5.0%	629.459	3.4%	642.96	5.6%	595.961	-2.1%
608.8	636.219	4.5%	685.257	12.6%	582.776	-4.3%	714.289	17.3%	614.593	1.0%	564.691	-7.2%
4047.0	1158.687	-4.8%	1152.827	-5.3%	1126.409	-7.5%	1209.458	-0.7%	1156.723	-5.0%	1179.867	-3.1%
1217.6	1242.26	2.0%	1190.527	-2.2%	1331.259	9.3%	1238.155	1.7%	1238.776	1.7%	1282.395	5.3%
	Correlation	coefficient	Correlation	coefficient	Correlatior	n coefficient	Correlation	coefficient	Correlation	coefficient	Correlation	coefficient
	0.99	653	0.99	152	0.99	9262	0.99	649	0.99	743	0.99	547
					Ang	giotensin-(1-9)					
	Ru	n 1	Ru	n 2	Ru	in 3	Rui	n 4	Ru	n 5	Rui	n 6
NV (pg/mL)	MV (pg/mL)	RE (%)	MV (pg/mL)	RE (%)	MV (pg/mL)	RE (%)	MV (pg/mL)	RE (%)	MV (pg/mL)	RE (%)	MV (pg/mL)	RE (%)
24.0	30.536	-1.5%	31.426	1.4%	30.686	-1.0%	27.71	-10.6%	25.98	-16.2%	32.056	3.4%
31.0	32.703	5.5%	31.946	3.0%	32	3.2%	36.399	17.4%	33.881	9.3%	42.519	37.1%
62.0	62.658	1.0%	64.514	4.0%	61.829	-0.3%	65.254	5.2%	69.002	11.3%	66.144	6.7%
62.0	61.146	-1.4%	56.817	-8.4%	59.974	-3.3%	57.379	-7.5%	64.446	3.9%	60.484	-2.5%
424.0	118.293	-4.6%	119.735	-3.5%	116.758	-5.9%	107.443	-13.4%	120.142	-3.1%	112.209	-9.5%
124.0	105.456	-15.0%	122.007	-1.6%	125.653	1.3%	107.724	-13.1%	126.426	1.9%	115.723	-6.7%
040.4	244.331	-1.5%	221.356	-10.8%	247.665	-0.2%	247.578	-0.2%	237.702	-4.2%	230.687	-7.0%
248.1	259.702	4.7%	244.456	-1.4%	257.38	3.8%	235.955	-4.9%	265.247	6.9%	227.907	-8.1%
496.1	503.746	1.5%	503.391	1.5%	534.481	7.7%	543.841	9.6%	431.842	-13.0%	477.801	-3.7%

Appendix - Development and validation of an innovative multiplex liquid chromatography high-resolution mass spectrometry method for the investigation of angiotensin peptides in plasma

	538.211	8.5%	489.444	-1.3%	605.939	22.1%	546.889	10.2%	391.69	-21.0%	503.991	1.6%
992.2	988.133	-0.4%	1131.055	14.0%	948.639	-4.4%	1042.949	5.1%	1035.042	4.3%	1014.179	2.2%
9 92.2	1037.046	4.5%	1073.35	8.2%	969.847	-2.3%	1099.822	10.8%	968.631	-2.4%	1089.855	9.8%
1984.4	1966.68	-0.9%	1871.11	-5.7%	1997.923	0.7%	1945.219	-2.0%	1976.743	-0.4%	2257.783	13.8%
1904.4	1947.269	-1.9%	1946.944	-1.9%	1993.943	0.5%	1834.706	-7.5%	2015.2	1.6%	2532.518	27.6%
	Correlation co	pefficient	Correlation of	oefficient	Correlation of	coefficient	Correlation c	oefficient	Correlation	coefficient	Correlation of	coefficient
	0.9979		0.995	89	0.998	96	0.9924	43	0.99	532	0.995	44

Relative error: RE; MV: measured value; NV: nominal value.

								A	ngiot	ensin	I								
			Ru	ın 1				Run	2				Run	3			Bwtween	Between	Between-
QC	Nr	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	run RE	run CV	run CV-I
	1	24.274 23.401	23.8375				29.474 24.97	27.222				22.564 24.032	23.298			·			ſ
	2	29.998 20.13	25.064				28.656 28.245	28.4505				29.606 26.848	28.227						
LLOQ	3	28.621 27.933	28.277	6.9%	-0.5%	11.7%	21.116 23.567	22.3415	9.1%	4.7%	11.3%	26.659 26.151	26.405	8.4%	4.1%	9.1%	-3.1%	8.0%	10.6%
Q	4	25.015 24.193	24.604				29.75 24.324	27.037	-			26.442 25.961	26.2015	•					
	5	25.97	24.489				26.06	27.757	-			27.125	29.106						
	1	23.008 44.932	43.449			-	29.454 45.994	47.5115			-	31.087 52.446	50.1175			•			
	2	41.966 50.078	44,9165				49.029 45.302	44.6795	-			47.789 49.201	52.007						
Low	3	39.755 54.565	59.7175	13.6%	-2.8%	14.9%	44.057 41.174	46.7965	5.9%	-6.5%	8.9%	54.813 57.217	51.2315	8.7%	-5.2%	10.7%	4.8%	9.4%	11.6%
ž		64.87 52.078	-	13.070	-2.0 /0	14.970	52.419 44.84	-	5.9%	-0.5 %	0.970	45.246 43.154	-	0.7 70	-5.2 /0	10.7 70	4.0%	9.4%	11.0%
	4	52.369 43.25	52.2235	<u>.</u>			47.365 55.724	46.1025	_			43.938 43.834	43.546	_					
	5	49.388 213.013	46.319			,	48.481 192.369	52.1025				43.445 191.393	43.6395			-			
	1	200.066	206.5395				221.86	207.1145	_			194.5	192.9465						
Ξ	2	190.008 236.438	213.223				225.913 220.905	223.409				191.969 198.914	195.4415						
Middle	3	227.189	227.189	3.7%	5.6%	6.6%	240.296 205.911	223.1035	7.6%	4.5%	9.6%	232.345 215.687	224.016	6.4%	1.4%	6.6%	-3.9%	5.9%	7.7%
Ð	4	214.554 216.265	215.4095				203.46 238.742	221.101				208.59 196.378	202.484						
	5	216.535 202.675	209.605				183.759 187.846	185.8025				219.695 209.113	214.404						
	1	993.923 932.984	963.4535				783.694 795.78	789.737				888.814 861.846	875.33						
	2	840.042 846.438	843.24				1001.605	870.3575	1			856.4 835.55	845.975						
High	3	930.482 919.229	924.8555	7.8%	12.7%	8.2%	739.11 743.213	758.987	6.6%	2.6%	10.4%	858.502 903.334	880.918	2.2%	7.3%	3.2%	-7.6%	6.9%	8.5%
5	4	851.705	842.1835				774.761	862.662	-			895.592	859.915						
	5	832.662 941.393	1002.505				826.154 899.17	884.019	-			824.238 893.056	894.797	•					
	5	1063.617	1002.000				884.019	004.013				896.538	004.101						

Appendix 10.4-3: The accuracy and precision of angiotensin I by the liquid chromatography high-resolution mass spectrometry method.

								Α	ngiote	ensin I	I		·						
			Ru	n 1				Run	2				Run	3			Inter-run	Inter-run	Between-
QC	Nr	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)		precision	
	1	22.352 22.828	22.59				23.898 21.164	22.531				24.961 25.6	25.2805						
	2	20.588 22.349	21.4685				21.906 20.98	21.443				25.015 21.963	23.489						
LLOQ	3	25.454 26.491	25.9725	9.7%	3.5%	10.1%	17.371 22.08	19.7255	7.0%	-1.0%	9.5%	25.298 26.541	25.9195	4.9%	11.3%	6.8%	-4.6%	8.5%	9.8%
U	4	19.213 21.878	20.5455				24.2 23.483	23.8415				25.442 21.492	23.467						
	5	25.821 23.464	24.6425				21.14 24.257	22.6985				26.305 25.148	25.7265						
	1	43.106 42.613	42.8595				44.261 43.815	44.038				49.117 50.473	49.795						
	2	44.71 54.082	49.396				46.032 46.187	46.1095				43.149 36.706	39.9275						
Low	3	45.694 46.102	45.898	8.9%	-1.4%	10.3%	38.933 46.469	42.701	7.3%	2.3%	9.9%	42.416 43.284	42.85	8.5%	0.3%	9.8%	-0.4%	7.8%	9.8%
	4	44.88 39.509	42.1945				49.524 38.207	43.8655				44.885 42.768	43.8265						
	5	38.03 40.174	39.102				52.279 50.013	51.146				51.08 42.949	47.0145						
	1	158.032 173.063	165.5475				152.763 173.582	163.1725				149.708 150.178	149.943						
z	2	170.715 170.687	170.701				153.078 179.376	166.227				163.346 170.421	166.8835						
Middle	3	165.868	165.868	3.5%	-6.8%	4.4%	173.733 194.41	184.0715	5.1%	-3.3%	7.7%	146.02 180.406	163.213	6.4%	-11.3%	8.3%	7.2%	6.0%	7.7%
e	4	159.269 153.951	156.61				174.293 163.514	168.9035				137.022 151.919	144.4705						
	5	175.058 166.932	170.995				186.085 171.213	178.649				163.941 167.259	165.6						
	1	759.909 775.131	767.52				726.563 739.523	733.043				745.204 643.431	694.3175						
	2	717.515 717.208	717.3615				750.642	710.553				625.485 727.885	676.685						
High	3	717.621 702.306	709.9635	6.3%	-0.6%	6.5%	670.464 662.796	673.616	3.3%	0.0%	6.1%	655.502 743.481	699.4915	2.1%	-4.3%	6.2%	1.6%	4.5%	6.4%
_	4	665.817 618.518	642.1675				684.436 776.89	716.3905				667.643 667.307	667.475						
	5	737.475 673.466	705.4705				655.891 729.85	729.85				680.142 660.754	670.448						

Appendix 10.4-4: The accuracy and precision of angiotensin II by the liquid chromatography high-resolution mass spectrometry method.

								An	gioter	isin-(1	-7)								
			Ru	n 1				Run	2				Run	3			Inter-run	Inter-run	Between-
QC	Nr	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)		precision	
	1	22.892 24.35	23.621				25.773 28.745	27.259				22.203 27.31	24.7565						
	2	23.839 20.979	22.409	•			25.141 21.815	23.478	1			18.805 20.91	19.8575						
LLOQ	3	25.738	26.0955	9.1%	4.7%	10.6%	31.081	26.8255	9.6%	5.7%	14.9%	25.889	29.0255	15.3%	2.8%	16.5%	-4.4%	10.8%	13.7%
ã	4	26.453 30.916	28.036			ŀ	22.57 32.315	28.086	-			32.162 28.947	28.215						
		25.156 27.402				-	23.857 23.196		-			27.483 22.501							
	5	26.132	26.767				21.945	22.5705				23.038	22.7695						
	1	57.438 55.007	56.2225				47.784 43.808	45.796				50.112 53.915	52.0135						
	2	51.299 56.021	53.66				47.393 54.244	50.8185				52.223 47.32	49.7715						
Low	3	53.995 43.519	48.757	7.8%	6.6%	10.3%	40.474 57.361	48.9175	6.3%	2.9%	11.1%	54.215 54.823	54.519	11.0%	13.0%	11.0%	-7.5%	9.0%	11.1%
2	4	52.021	53.512				52.659	49.5315	-			54.928	52.505						
	5	55.003 51.303	46.2965			-	46.404 52.916	54.47	-			50.082 66.722	65.105						
	_	41.29 192.431	205.0605			-	56.024 158.588	172.743			-	63.488 188.106	185.981			,			-
	1	217.69	205.0605				186.898	172.743	-			183.856	165.961						
3	2	203.239 183.035	193.137				147.1 172.032	159.566				187.853 221.293	204.573						
Middle	3	218.222	218.222	9.7%	0.9%	10.1%	190.828 203.759	197.2935	7.9%	-7.9%	9.3%	177.064 196.476	186.77	10.4%	0.4%	11.3%	2.2%	9.8%	10.7%
e	4	198.249 192.13	195.1895				176.171 180.355	178.263				165.281 179.207	172.244						
	5	156.637	166.681				191.629 179.179	185.404	-			234.848 214.716	224.782						
	1	791.44	807.278			-	790.893	818.929			-	831.671	814.7735			•			-
		823.116 816.817	-				846.965 760.574		-			797.876 773.685							
т	2	733.595	775.206	•			724.625	742.5995	-			854.566 637.976	814.1255						
High	3	683.274	677.2295	9.1%	-4.9%	9.1%	698.647	719.353	6.4%	0.4%	8.0%	700.088	669.032	11.3%	-3.2%	11.2%	2.6%	8.7%	9.4%
	4	662.776 647.077	654.9265				740.059 850.691	776.03				814.304 805.57	809.937						
	5	767.019 784.014	775.5165	•			701.369 837.237	837.237	İ			652.246 644.12	648.183						

Appendix 10.4-5: The accuracy and precision of angiotensin-(1-7) by the liquid chromatography high-resolution mass spectrometry method.

					·			Α	ngiote	ensin I	II				·				
			Ru	n 1				Run	2				Run	3			Inter-run	Inter-run	Between-
QC	Nr	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)		precision	
	1	33.762 31.058	32.41				34.152 36.609	35.3805				36.08 36.113	36.0965						
_	2	33.232 35.673	34.4525				28.646 29.375	29.0105				28.151 33.925	31.038						
LLOQ	3	36.327 34.365	35.346	6.4%	6.1%	8.2%	51.837 44.457	48.147	19.0%	18.5%	19.1%	36.063 41.183	38.623	7.8%	13.8%	11.1%	-12.8%	12.8%	14.3%
U	4	30.115 29.872	29.9935				33.022 39.469	36.2455				34.583 36.587	35.585						
	5	28.894 35.481	32.1875				36.362 33.572	34.967				30.184 39.758	34.971						
	1	59.131 58.345	58.738				60.458 68.798	64.628				73.876 73.187	73.5315						
	2	63.523 60.546	62.0345				60.612 58.376	59.494				69.868 65.792	67.83						
Low	3	66.261 53.989	60.125	4.3%	-1.1%	7.8%	63.025 68.011	65.518	6.6%	2.5%	7.9%	69.202 56.745	62.9735	11.4%	2.5%	12.2%	-1.3%	7.7%	9.4%
	4	63.628 56.676	60.152				68.246 69.77	69.008				53.46 61.305	57.3825						
	5	60.943 70.227	65.585				63.413 54.817	59.115				54.674 57.552	56.113						
	1	218.431 276.722	247.5765				261.03 198.506	229.768				215.809 216.413	216.111						
7	2	256.032 220.657	238.3445				241.794 274.911	258.3525				257.826 230.415	244.1205						
Middle	3	285.113	285.113	7.4%	1.9%	9.5%	254.397 273.199	263.798	8.3%	-1.1%	10.9%	241.402 269.353	255.3775	12.9%	-10.1%	14.5%	3.1%	10.4%	12.3%
ē	4	249.489 235.891	242.69				223.297 211.763	217.53				196.757 240.047	218.402						
	5	235.304 263.597	249.4505				270.626 243.462	257.044				203.47 158.435	180.9525						
	1	1125.27 1165.24	1145.255				1040.344 1100.898	1070.621				1113.128 1012.52	1062.824						
	2	1099.002 1007.721	1053.3615				869.678	928.604				956.007 1038.303	997.155						
High	3	1036.834 1026.116	1031.475	4.8%	7.7%	5.3%	987.53 945.398	963.2335	5.7%	-1.1%	8.4%	878.528 1077.331	977.9295	7.0%	-2.1%	8.8%	-1.5%	7.1%	8.5%
	4	1055.333 983.902	1019.6175				981.069 1042.691	944.873				872.762 887.668	880.215						
	5	1100.12 1088.469	1094.2945				847.055 998.298	998.298				952.508 919.582	936.045						

Appendix 10.4-6: The accuracy and precision of angiotensin III by the liquid chromatography high-resolution mass spectrometry method.

								A	ngiote	nsin I	/		·						
			Ru	ın 1				Run	2				Run	3			Inter-run	Inter-run	Between-
QC	Nr	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)		precision	
	1	22.262 28.24	25.251				26.433 23.034	24.7335				21.471 19.949	20.71			•			
_	2	27.675 19.585	23.63				23.521 19.562	21.5415				21.598 30.65	26.124						
	3	19.783 25.636	22.7095	15.2%	-5.6%	20.0%	24.554 19.897	22.2255	11.4%	7.8%	13.9%	23.263 20.495	21.879	10.7%	4.3%	14.1%	-2.1%	12.9%	16.4%
Ð	4	19.618 14.767	17.1925				26.139 29.466	27.8025				24.28 24.194	24.237						
	5	20.367 18.236	19.3015				24.576 29.691	27.1335	-			27.796 25.314	26.555						
	1	39.668 32.99	36.329				39.348 47.708	43.528				49.917 38.951	44.434						
	2	39.716 45.193	42.4545				40.39 49.098	44.744	-			47.665 38.948	43.3065	-					
Low	3	49.693	52.53	14.0%	-6.4%	15.4%	36.06 44.62	40.34	3.9%	-6.7%	9.0%	47.653	45.237	5.1%	-4.5%	12.2%	5.9%	8.3%	12.1%
<	4	39.21 46.608	42.909	•			42.34	42.02	-			37.773	40.124						
	5	36.549 43.819	40.184				42.62 43.514	43.067	-			38.799 52.687	45.743						
	1	197.239 157.699	177.469				162.413 195.222	178.8175				216.517 157.296	186.9065						
	2	144.327	165.8695				159.043 172.112	165.5775	-			208.594 201.042	204.818						
Middle	3	192.094	192.094	5.5%	-3.5%	9.8%	189.327 161.747	175.537	4.9%	-6.7%	8.1%	183.449 201.23	192.3395	4.0%	5.0%	9.5%	1.7%	6.8%	10.3%
lle	4	165.315 178.111	171.713				168.085 184.405	176.245	-			168.828 201.638	185.233						
	5	183.122	177.0945				156.37 161.613	158.9915	-			189.018 197.147	193.0825						
	1	817.907 830.623	824.265				618.984 662.047	640.5155				837.06 727.896	782.478			-			
	2	707.842	716.6315				882.171	755.048	-			738.468	762.897						
High	3	725.421 744.182	725.7365	11.1%	1.4%	10.6%	627.925	615.069	9.5%	-7.0%	13.6%	787.326 748.152	769.413	7.1%	5.3%	7.8%	0.1%	10.1%	11.3%
Ţ	4	707.291	627.483				638.807 591.331	747.2705				790.674 685.507	695.474	-					
	5	644.905 820.348	821.8025	<u>.</u>			714.104 780.437	- 651.702				705.441 834.41	849.3835						
	l s	823.257	021.0020				651.702	031.702				864.357	049.0000						

Appendix 10.4-7: The accuracy and precision of angiotensin IV by the liquid chromatography high-resolution mass spectrometry method.

								Α	ngiote	ensin /	4								
			Ru	n 1				Run	2				Run	3			Inter-run	Inter-run	Between-
QC	Nr	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)			run CV-I
	1	16.49 26.549	21.5195				26.089 20.208	23.1485				29.658 20.604	25.131						r i
	2	15.959 20.976	18.4675				23.075 26.251	24.663	1			23.474 24.09	23.782						
LLOQ	3	21.04	18.8935	10.7%	-3.8%	18.1%	25.789	24.044	15.1%	4.1%	18.0%	27.611	23.978	9.5%	9.3%	15.5%	-3.2%	12.4%	17.4%
ã		16.747 20.6	-	10.170	0.070		22.299 21.84		-	1.170		20.345 21.329			0.070		0.270	12.1770	
	4	26.448	23.524				28.395	- 25.1175	-			19.075	20.202						
	5	23.128 22.179	22.6535				18.582 14.893	16.7375				28.592 23.864	26.228						
	1	37.515 46.932	42.2235				48.087 44.652	46.3695				40.622 38.242	39.432						
	2	46.103 43.152	44.6275				48.394	45.64	-			47.871	45.807						
5	3	54.19	47.37	6.8%	0.5%	11.9%	42.886 45.837	42.332	12.3%	-4.5%	13.3%	43.743 39.554	36.533	12.7%	-5.3%	13.2%	3.1%	10.4%	12.6%
Low		40.55 41.503		0.070	0.570	11.370	38.827 43.253		12.370	-4.3%	10.070	33.512 37.45	-	12.770	-0.070	10.270	5.170	10.4 /8	12.070
	4	49.511	45.507				37.982	40.6175	_			36.742	37.096	-					
	5	40.775 38.673	39.724				31.617 35.493	33.555				51.123 44.989	48.056						
	1	180.921 175.281	178.101				191.12 174.375	182.7475				146.929 138.68	142.8045						
	2	178.967	174.743				184.407	179.599	-			198.835	198.007						
S		170.519 201.575		7.00/	0.00/	0.00/	174.791 150.935		40.0%	0.00/	40.00/	197.179 191.263		40.00/	4 70/	40.00/	4.40/	44.00/	40.49/
Middle	3	179.053	201.575	7.3%	6.3%	6.9%	149.931 119.095	150.433	12.2%	-8.0%	13.0%	186.851 170.419	189.057	12.9%	-1.7%	12.6%	1.1%	11.8%	12.1%
	4	171.271	175.162				155.692	137.3935				150.557	160.488						
	5	197.091 201.84	199.4655				153.3 153.255	153.2775				172.986 164.464	168.725						
	1	797.212 776.842	787.027			·	746.271 793.52	769.8955				742.253	683.221						
	2	789.567	745.7535				793.52 607.588	586.966	-			624.189 653.809	671.7055						
I		701.94 805.425	-				566.344	-				689.602 664.335	-						
High	3	707.217	756.321	5.8%	7.3%	7.0%	531.901	534.5005	14.9%	-12.1%	15.4%	689.763	677.049	1.9%	-3.9%	6.7%	2.9%	11.7%	12.5%
	4	691.989 663.516	677.7525				537.1 605.6	569.659				654.448 646.402	650.425						
	5	778.264 784.883	781.5735				533.718 609.544	609.544	1			743.433 607.484	675.4585						

Appendix 10.4-8: The accuracy and precision of angiotensin A by the liquid chromatography high-resolution mass spectrometry method.

					<u>.</u>			ŀ	lama	ndine									
			Ru	n 1				Run	2				Run	3			Inter-run	Inter-run	Between-
QC	Nr	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	accuracy		
	1	21.368 20.312	20.84				17.254 18.291	17.7725				23.535 19.458	21.4965						
	2	21.315 23.311	22.313				21.017 16.312	18.6645				21.528 18.122	19.825						
LLOQ	3	15.773 17.204	16.4885	11.0%	3.3%	11.0%	18.098 16.008	17.053	9.7%	0.4%	13.4%	17.497 16.716	17.1065	11.8%	5.5%	16.1%	-3.1%	10.3%	13.4%
Q	4	18.96 20.262	19.611				18.08 23.388	20.734				17.948 19.616	18.782						
	5	18.979	19.0535				19.978 22.639	21.3085				19.076 27.304	23.19						
	1	38.846	35.8115				40.743 38.318	39.5305				35.82 40.839	38.3295						
	2	39.744 36.102	37.923				33.311 35.629	34.47				33.598 28.366	30.982						
Low	3	43.72	39.1385	5.6%	2.3%	11.4%	44.937	44.685	9.5%	6.3%	9.5%	35.615	35.288	8.3%	-5.7%	9.2%	-1.0%	9.0%	11.0%
٤	4	34.557 43.26	40.405				44.433 42.864	41.005				34.961 36.395	36.7975						
	5	37.55 36.11	41.3475				39.146 43.566	42.56				37.2 38.442	38.0105						
	1	46.585 151.384	154.2255				41.554 139.256	149.442				37.579 131.875	133.696						
	2	157.067 129.12	151.0045				159.628 125.64	138.101				135.517 129.923	137.5105						
Mic		172.889 173.369		0.00/	0.00/	11 40/	150.562 151.763		7.00/	0.40/	9.3%	145.098 132.637		40 50/	E 00/	10.00/	4.40/	0.00/	44.40/
Middle	3	159.061	173.369	9.8%	0.3%	11.4%	170.358 156.929	161.0605	7.3%	2.1%	9.3%	132.762 128.65	132.6995	12.5%	-5.8%	13.2%	1.1%	9.9%	11.4%
	4	148.531 131.767	153.796				172.055 168.466	164.492				146.983 161.862	137.8165						
	5	130.683	131.225				159.13	163.798				188.847	175.3545						
	1	582.79 627.101	604.9455				691.304 671.169	681.2365				681.931 581.388	631.6595						
_	2	653.718 618.498	636.108				680.117	634.6365				684.503 648.952	666.7275						
High	3	564.606 582.386	573.496	8.6%	-3.6%	8.6%	589.156 560.66	- 574.813	6.2%	4.7%	7.6%	520.175 532.622	526.3985	11.6%	-2.7%	11.8%	0.5%	9.1%	9.9%
-	4	490.571 521.715	506.143				588.966 683.48	657.754				637.658 609.082	623.37						
	5	627.937 601.223	614.58				632.028 637.781	637.781				506.411 518.092	512.2515						

Appendix 10.4-9: The accuracy and precision of alamandine by the liquid chromatography high-resolution mass spectrometry method.

								An	gioter	nsin-(1	-9)								
			Ru	n 1				Run	2				Run	3			Inter-run	Inter-run	Between-
QC	Nr	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	Value (pg/mL)	Mean (pg/mL)	CV-M (%)	RE (%)	CV-I (%)	accuracy		run CV-I
	1	30.589 31.484	31.0365				32.978 31.637	32.3075				36.252 30.928	33.59						
_	2	28.661 33.281	30.971				30.34 29.915	30.1275				33.118 35.105	34.1115				-8.0%	5.9%	7.3%
LLOQ	3	35.537 35.353	35.445	6.0%	5.2%	7.1%	35.036 34.473	34.7545	6.1%	6.9%	6.2%	31.68 38.295	34.9875	4.7%	12.0%	7.5%			
Q	4	30.837 32.768	31.8025				33.573 36.597	35.085				33.172 33.787	33.4795						
	5	35.387 32.375	33.881				33.189 33.604	33.3965				38.425 36.419	37.422						
	1	63.237 61.637	62.437				57.827 66.973	62.4				66.505 61.459	63.982						7.1%
	2	56.703 65.019	60.861				53.056 60.135	56.5955	-			67.249 59.849	63.549				-0.6%	5.2%	
Low	3	58.721 61.035	59.878	2.7%	-2.5%	6.2%	55.675 62.839	59.257	7.3%	0.3%	8.8%	69.205 66.34	67.7725	3.1%	4.0%	4.7%			
<	4	56.235 66.125	61.18				70.642	63.446 62.40	62.406										
	5	61.118 54.934	58.026				63.087 65.385	64.236	_			65.887 63.446	64.6665						
	1	244.491 255.822	250.1565				239.237 231.007	235.122			-	211.741 233.972	222.8565			-		5.4%	6.8%
	2	249.944 236.412	243.178				228.027 234.669	231.348				255.799 268.21	262.0045						
Middle	3	260.353 200.306	230.3295	3.3%	-2.0%	7.1%	246.123 245.347	245.735	7.0%	0.5%	7.0%	235.257 267.722	251.4895	6.0%	-1.2%	7.0%	0.9%		
lle	4	243.032 255.871	249.4515				257.93 267.768	262.849				239.754 240.047	239.9005						
	5	251.748 233.852	242.8				280.868 262.08	271.474	-			240.047 244.915 253.139	249.027						
	1	1058.607 1071.868	1065.2375				1060.797 1124.274	1092.5355			-	1015.187 1012.617	1013.902			-			
	2	1071.868 1126.392 1002.645	1064.5185				985.999	972.849	-			1012.817 1013.447 1154.973	1084.21						
High	3	1047.404	1051.172	5.6%	5.0%	6.4%	959.699	937.219	7.2%	3.8%	8.7%	963.088	997.519	3.9%	4.8%	5.1%	-4.5%	5.3%	6.6%
7	4	1054.94 933.328	938.9815		5.0%		898.936 975.502	1039.1845	_	3.8%		1031.95 1090.049	1082.5975					5.3%	0.078
	5	944.635 1135.679 1039.572	1087.6255				1140.88 937.489 1107.194	1107.194	-			1075.146 1026.592 1015.601	1021.0965						

Appendix 10.4-10: The accuracy and precision of angiotensin-(1-9) by the liquid chromatography high-resolution mass spectrometry method.

Appendix 10.4-11: The evaluation of the sensitivity in three different runs by the liquid chromatography high-resolution mass spectrometry method.

						Angi	otensin I							
			Run 1				Run 2				Run 3			
QC	Nr	Peak area	MV (pg/mL)	CV(%)	RE (%)	Peak area	MV (pg/mL)	CV(%)	RE (%)	Peak area	MV (pg/mL)	CV(%)	RE (%)	
	1	1430.5	23.8375			1445.5	27.222			1536.5	23.298			
	2	1508	25.064			1545	28.4505			1872	28.227			
LLOQ	3	1480.5	28.277	6.9%	-0.4%	1185	22.3415	9.1%	3.8%	1933.5	26.405	8.4%	4.1%	
	4	1356.5	24.604			1450.5	27.037			1756	26.2015			
	5	1388	24.489			1306	27.757			1844.5	29.106			
LLOQ ar	nd Zero	Mean p	oeak area	Response ratio		Mean p	oeak area	Respor	ise ratio	Mean p	beak area	Respon	se ratio	
LLC			32.7	3	:1	-	86.4	5	:1		88.5	3:	1	
Ze	ro	49	9.95	•			38.7	•		52	4.25	•	•	
						Angio	otensin II							
			Run 1				Run 2			_	Run 3			
QC	Nr	Peak area	MV (pg/mL)	CV(%)	RE (%)	Peak area	MV (pg/mL)	CV(%)	RE (%)	Peak area	MV (pg/mL)	CV(%)	RE (%)	
	1	2100	22.59			1738	22.531	7.0%		1711	25.2805			
	2	1995.5	21.4685		3.5%	1747	21.443			1584	23.489			
LLOQ	3	2384.5	25.9725	9.7%		1366	19.7255		-1.0%	1856	25.9195	4.9%	11.3%	
	4	1796.5	20.5455			1591.5	23.8415			1628	23.467			
	5	2237	24.6425			1543	22.6985			1744	25.7265			
LLOQ ar		Zero Mean peak area		Response ratio		Mean peak area		Response ratio			oeak area	Response ratio		
			02.7	6	:1		97.1	10):1		04.6	11	:1	
Ze	ro	3	52.2				6.65	<u>, </u>		15	5.15			
		1	Due 4			Angiot	ensin-(1-7)			Dum 2			
QC	Nr	Peak area	Run 1 MV (pg/mL)	CV(%)	RE (%)	Peak area	Run 2 MV (pg/mL)	CV(%)	RE (%)	Peak area	Run 3 MV (pg/mL)	CV(%)	RE (%)	
~~~	1	1140.5	23.621	34(70)	··· (70)	1168.5	27.259	<b>U I</b> ( /0)	···· (70)	1711	24.7565	<b>U</b> ( /0)	N= (70)	
	2	1087.45	22.409			1063.7	23.478			1584	19.8575			
LLOQ	3	1245	26.0955	9.1%	4.7%	1051.25	26.8255	9.6%	5.7%	1856	29.0255	15.3%	2.8%	
	4	1245	28.036	J.170	7.7 /0	1052.55	28.086	3.070	0.7 /0	1630	28.215	10.070	2.0 /0	
	5	1264	26.767		-	856.65	22.5705			1744	22.7695			
LLOQ ar	•		beak area	Respor	se ratio				Response ratio Mean peak ar					
		mean	Jour al ca	Respor		mean	vun alca	Respon		mean	Joun alea	Respon		

#### 201

LLO			04.39	6:1			38.53	- 7	:1		04.6	12	•1		
Ze	ro	18	8.75	•	•		0.35	•		14	4.05				
						Angio	otensin III								
			Run 1				Run 2			Run 3					
QC	Nr	Peak area	MV (pg/mL)	CV(%)	RE (%)	Peak area	MV (pg/mL)	CV(%)	RE (%)	Peak area	MV (pg/mL)	CV(%)	RE (%)		
	1	1352.5	32.41			1320	35.3805			1224.5	36.0965				
	2	1455.5	34.4525			1083.5	29.0105			1012.8	31.038	7.8%			
LLOQ	3	1479.5	35.346	6.4%	6.1%	1762	48.147	19.0%	18.5%	1393.5	38.623		13.8%		
	4	1156	29.9935			1176.5	36.2455	-		1245.5	35.585				
	5	1293	32.1875			1164	34.967			1157	34.971				
LLOQ a			oeak area	Respon	se ratio		beak area	Respor	ise ratio	-	eak area	Respon	se ratio		
LLO			47.3 0.1	22	2:1		01.2 .795	37	7:1		06.66	29	:1		
Ze	ro		0.1							42.07					
	Angiotensin IV														
QC	Nr	Peak area	Run 1 MV (pg/mL)	CV(%)	RE (%)	Peak area	Run 2 MV (pg/mL)	CV(%)	RE (%)	Peak area	Run 3 MV (pg/mL)	CV(%)	RE (%)		
<u> </u>	1	481.95	25.251	CV(/0)	-5.6%	433.8	24.7335	CV(70)	KE ( 70)	488.9	20.71	<u> </u>	<u> </u>		
	2	455.25	23.63			378.85	21.5415			628.2	26.124				
LLOQ	3	420	22.7095	15.2%		340.1	22.2255	11.4%	7.8%	551.45	21.879	10.7%	4.3%		
	4	295.25	17.1925			434.5	27.8025			601.15	24.237				
	5	348.75	19.3015			429.3	27.1335			637.6	26.555				
LLOQ a	nd Zero	Mean p	eak area	Respon	se ratio	Mean p	oeak area	Respor	nse ratio	Mean p	eak area	Response ratio			
LLO			0.24	25	5:1		3.31	37	7:1		1.46	42	:1		
Ze	ro	1	5.98				0.89			13	.855				
						Angio	otensin A			-					
	Na	Deals area	Run 1	0)//0/ )	DE (0/)	De als arres	Run 2	<b>0)</b> //0/ )		De els ense	Run 3	01//0/ )			
QC	Nr 1	<b>Peak area</b> 419.6	MV (pg/mL) 21.5195	CV(%)	RE (%)	<b>Peak area</b> 284.1	MV (pg/mL) 23.1485	CV(%)	RE (%)	<b>Peak area</b> 234.4	MV (pg/mL) 25.131	CV(%)	RE (%)		
	2	363.3	18.4675			326.6	23.1465			234.4	23.782				
LLOQ	3	369.45	18.8935	10.7%	-3.8%	270.05	24.003	15.1%	4.1%	237.85	23.978	9.5%	9.3%		
	4	436.25	23.524	10.170	-0.070	270.6	25.1175	10.170	7.170	180.65		0.070	0.070		
	5	433.1	22.6535		-	156.4	16.7375			249.9	26.228				

LLOQ ar	nd Zero	Mean p	beak area	Respor	nse ratio	Mean	oeak area	Respor	ise ratio	Mean p	eak area	Response ratio	
	-		94.34	9	:1		1.55	20	):1		4.64	8:	:1
Ze	ro	42	2.79			13.305				29.01			
						Alan	nandine						
			Run 1				Run 2				Run 3		
QC	Nr	Peak area	MV (pg/mL)	CV(%)	RE (%)	Peak area	MV (pg/mL)	CV(%)	RE (%)	Peak area	MV (pg/mL)	CV(%)	RE (%)
	1	633.7	20.84			512.6	17.7725			435.6	21.4965		
	2	691.35	22.313			575.65	18.6645			401.9 347.8 382.45	19.825		
LLOQ	3	452.4	16.4885	11.0%	3.3%	446.15	17.053	9.7%	0.4%		17.1065	11.8%	5.5%
	4	551.05	19.611			525.75	20.734				18.782		
	5	546.2	19.0535			556.35	21.3085	-		468.8	23.19		
LLOQ ar	nd Zero	Mean peak area		Respor	nse ratio	Mean peak area		Respor	ise ratio	Mean p	eak area	Respon	se ratio
LLC	•	574.94		7:1		523.3		26	6:1	-	7.31	16	:1
Ze	ro	8	5.19	•			).33			2	5.3		
						Angiot	ensin-(1-9	)					
			Run 1			Run 2							
QC	Nr	Peak area	MV (pg/mL)	CV(%)	RE (%)	Peak area	MV (pg/mL)	CV(%)	RE (%)	Peak area	MV (pg/mL)	CV(%)	RE (%)
	1	3695	31.0365			3236	32.3075			3266	33.59		
	2	3685.5	30.971			3150	30.1275			3363.5	34.1115		
LLOQ	3	4267	35.445	6.0%	5.2%	3212	34.7545	6.1%	6.9%	3582.5	34.9875	4.7%	12.0%
	4	3591.5	31.8025			3086.5	35.085			3379	33.4795		
	5	3999.5	33.881			2990.5	33.3965			3720.5	37.422		
LLOQ ar	nd Zero	Mean peak area		Respor	nse ratio	Mean p	oeak area	Respor	ise ratio		eak area	Respon	se ratio
LLC Ze		3847.7 116.45		33:1		3135 297.25		11:1		3462.3 241.75		14	:1

QC: quality control; MV: measured value; CV: coefficient of variation; RE: relative error.

Appendix 10.4-12: The evaluation of the matrix effect of six different human sources on analytes and internal standards by the liquid chromatography high-resolution mass spectrometry method.

			Source	1		Source	ource 2		Source	3		Source	4		Source	5		Source	6	Co	ntrol	CV of	IS-MF
		Blank	QC	QC high	low	high	QC low	QC															
-	Area	560	2004	103299	1579	1863	93388	1443	1633	87334	1642	1738	90360	529	1821	89304	866	1943	94220	2081	115248		
Angl	MF		-4%	-10%		-10%	-19%		-22%	-24%		-17%	-22%		-12%	-23%		-7%	-18%			7.8%	3.2%
<u></u>	IS-MF		8%	-7%		-2%	0%		-10%	-6%		-3%	-3%		4%	-5%		12%	1%				
⊳	Area	299	3326	123151	583	2746	108367	416	3346	109534	359	3202	111157	208	3130	109234	419	3140	109481	3829	147217		
Angli	MF		-13%	-16%		-28%	-26%		-13%	-26%		-16%	-24%		-18%	-26%		-18%	-26%			8.0%	2.5%
=	IS-MF		1%	8%		-10%	8%		16%	14%		7%	7%		5%	7%		4%	11%				
Ar	Area	0	4358	113067	0	3994	106683	0	3801	103588	0	4015	105700	0	3845	109517	0	3994	107003	4509	128767		
Ang1	MF		-3%	-12%		-11%	-17%		-16%	-20%		-11%	-18%		-15%	-15%		-11%	-17%			1.3%	3.8%
-7	IS-MF		12%	13%		12%	22%		12%	23%		14%	16%		10%	23%		13%	24%				
Þ	Area	0	4613	124567	0	4508	113582	0	4361	107242	0	4416	118083	0	4425	116183	0	4527	103023	6171	185233		
Anglii	MF		-25%	-33%		-27%	-39%		-29%	-42%		-28%	-36%		-28%	-37%		-27%	-44%			2.6%	3.2%
=	IS-MF		-13%	-13%		-8%	-10%		-6%	-12%		-8%	-10%		-7%	-9%		-7%	-17%				
₽	Area	0	1656	45785	0	1527	41508	0	1509	39597	0	1523	41583	0	1444	41895	0	1418	41237	1965	56700	Į	
AnglV	MF		-16%	-19%		-22%	-27%		-23%	-30%		-23%	-27%		-27%	-26%		-28%	-27%			3.7%	2.0%
<	IS-MF		-2%	4%		-2%	8%		2%	7%		0%	4%		-5%	7%		-8%	9%				
Þ	Area	0	1768	36088		1386	26175		1528	24852		1400	26798		1482	27403		1366	24433	3275	66105	ļ	
AngA	MF		-46%	-45%		-58%	-60%		-53%	-62%		-57%	-59%		-55%	-59%		-58%	-63%			7.5%	9.0%
	IS-MF		-37%	-30%		-47%	-42%		-38%	-43%		-45%	-43%		-42%	-40%		-47%	-45%				
~	Area	97	2621	77939	36	2743	74306	72	2598	71499	195	2396	74465	144	2639	75584	175	2439	73115	3256	89378		
Ala	MF		-19%	-13%		-16%	-17%		-20%	-20%		-26%	-17%		-19%	-15%		-25%	-18%			6.0%	3.5%
	IS-MF		-6%	12%		6%	23%		6%	22%		-5%	18%		5%	22%		-5%	23%				
Ang1	Area	124	9418	303443	88	9328	259695	182	8130	247618	46	8455	254638	81	8494	266502	113	8136	258854	8948	318383		
9 1	MF		5%	-5%		4%	-18%		-9%	-22%		-6%	-20%		-5%	-16%		-9%	-19%			4.2%	3.0%
6-	IS-MF		22%	23%		31%	20%		20%	19%		21%	13%		22%	21%		16%	22%				
SI	Area	0	36492	29653	0	37707	24985	0	35687	24813	0	35457	24998	0	34645	25232	0	34413	25118	41105	30882		
4	MF		-11%	-4%		-8%	-19%		-13%	-20%		-14%	-19%		-16%	-18%		-16%	-19%				
SI	Area		43828	43967	0	40472	38468	0	38522	37095	0	39677	40132	0	39522	39192	0	40128	37852	50995	56700		
2	MF		-14%	-22%		-21%	-32%		-24%	-35%		-22%	-29%		-22%	-31%		-21%	-33%				

The quality controls (QC) constitute of plasma samples spiked with analyte after extraction. The control samples represent a pure solution of the analyte. Before calculating the matrix factor (MF), the peak area of the blank was subtracted from the measured area (mean of three replicate) of the QCs. The MF was obtained by calculating the ratio of the QC area to the area of the control. The internal standard normalised MF (IS-MF) was calculated by dividing the MF of the analyte by the MF of the IS. Angl: angiotensin I; AnglI: angiotensin II; Ang1-7: angiotensin-(1-7); AngIII: angiotensin III: AngIV: angiotensin IV; AngA: angiotensin A; Ala: alamandine; Ang1-9: angiotensin-(1-9): CV: coefficient of variation.

Appendix 10.4-13: Results of the recovery of the analytes and internal standards by the liquid chromatography high-resolution mass spectrometry method.

	Peak area (counts)	s) before extraction			Peak area	(counts) of spik after extractior		Recovery (%)			
	of the Blank	QC low	QC middle	QC high	QC low	QC middle	QC high	QC low	QC middle	QC high	
Angl	1002	3307	29706	65936	1679	32663	87436	197%	91%	75%	
Angli	363	2442	38155	84242	2593	37785	105837	94%	101%	80%	
Ang1-7	0	1961	18030	43188	3633	35737	100534	54%	50%	43%	
AngIII	73	2305	23862	57220	3087	30950	78675	75%	77%	73%	
AngIV	0	1309	13407	33158	1348	13608	37580	97%	99%	88%	
AngA	0	883	7922	14885	926	8134	20424	95%	97%	73%	
Ala	0	1363	12785	30915	2387	25682	72266	57%	50%	43%	
Ang1-9	268	6855	77260	170865	7723	89670	233992	89%	86%	73%	
IS 1	0	19352	22445	22140	32135	22670	22660	60%	99%	98%	
IS 2	0	33997	38993	44085	35637	37397	37706	95%	104%	117%	

Angl: angiotensin I; Angll: angiotensin II; Ang1-7: angiotensin-(1-7); AngIII: angiotensin III: AngIV: angiotensin IV; AngA: angiotensin A; Ala: alamandine; Ang1-9: angiotensin-(1-9): QC: quality control

Appendix 10.4-14: Evaluation of the autosampler stability for all analytes by the liquid chromatography high-resolution mass spectrometry method.

		Quali	ty contro	ol low		Quality control high						Quality control high				
	Calc	ulated c (pg/m	oncentra nL) at:	ation	RE	Calc	ulated c (pg/m	oncentra nL) at:	ation	RE	Cal	culated c (pg/n	RE			
	3.2 h	10.2 h	17.2 h	24.2 h	(%)	3.2 h	10.2 h	17.2 h	24.2 h	(%)	3.2 h	10.2 h	17.2 h	24.2 h	(%)	
Angl	51.33	55.64	59.15	60.70	11.8%	224.07	223.45	201.71	189.55	3.3%	736.22	869.90	837.97	795.88	-0.2%	
Angli	40.04	44.97	41.42	41.89	-5.5%	178.50	159.65	163.79	155.14	-7.8%	658.53	742.31	750.09	711.81	0.4%	
Ang1-7	48.23	46.98	42.36	53.71	-1.4%	175.76	169.72	196.74	174.92	-7.6%	713.31	737.87	672.42	727.52	-8.1%	
Anglii	54.78	72.70	62.78	62.04	1.7%	258.71	222.28	258.16	227.04	-2.6%	945.18	1075.29	1016.61	993.21	1.6%	
AnglV	44.00	43.53	46.68	55.59	3.6%	168.39	192.25	199.84	147.69	-3.4%	655.51	835.59	742.20	626.14	-2.5%	
AngA	43.88	51.51	60.15	43.40	13.8%	173.07	182.09	183.15	177.79	2.4%	677.93	726.80	695.19	665.65	-1.1%	
Ala	35.36	33.53	37.94	34.29	-7.3%	138.52	155.38	147.16	130.87	-6.1%	600.60	620.90	611.22	600.02	-0.1%	
Ang1-9	56.55	69.50	69.30	68.66	6.4%	242.47	232.25	270.96	226.78	-2.0%	970.97	1044.84	1102.06	1081.50	5.8%	

The autosampler stability was assessed over 24.2 hours for three different concentration levels (low, middle, high). For each timepoint, every concentration level was measured in duplicate. The first 3.2 hours were required for the determination of the calibration curve. Consequently, the first measurement of quality controls was 3.2 hours after placing the samples in the autosampler. Angl: angiotensin I; AnglI: angiotensin II; Ang1-7: angiotensin-(1-7); AngIII: angiotensin III: AngIV: angiotensin IV; AngA: angiotensin A; Ala: alamandine; Ang1-9: angiotensin-(1-9):

#### Appendix 10.4-15: LENA collaborator list

LENA Beneficaries and Principal Investigators Prof. Dr. Stephanie Läer, Germany (Coordinator) Prof. Dr. Jörg Breitkreutz, Germany Dr. Ingrid Klingmann, Belgium PD Dr. Florian Lagler, Austria Prof. Jan de Hoon, Belgium Dr. Michiel Dalinghaus, The Netherlands Prof. Dr. Milica Bajcetic, Serbia Prof. Dr. Saskia de Wildt, The Netherlands Anne Keatley Clarke, United Kingdom Dr. Johannes Breur, The Netherlands Prof. Dr. Christoph Male, Austria Dr. Laslo Ablonczy, Hungary Prof. Dr. Thomas Mir, Germany Prof. Dr. Vladimir Vukomanovic, Serbia Prof. Dr. Milan Djukic, Serbia Prof. Dr. Ida Jovanovic, Serbia

Advanced Scientists Dr. Björn B. Burckhardt, Dr. Willi Cawello, Dr. Karl Kleine, Dr. Emina Obarcanin, Peter Wagner, Dr. Jennifer Walsh, Dr. Anne van Hecken, Lucie Spatenkova.

#### PhD Students

Mohsin Ali, Ilja Burdman, Dr. Agnes Ciplea, Muhammed Faisal, Samieh Farahani, Martin Feickert, Tanja Gangnus, Milica Lazic, Dr. Nina Makowski, Fabian Süssenbach, Dr. Marijke van der Meulen, Dr. Nori Smeets, Dr. Vanessa Swoboda

#### Clinical investigators

Dr. Maja Bijelić, Dr. Stefan Đorđević, Dr. Ann-Kathrin Holle, Dr. Bosiljka Jovičić, Prof Dr. Jovan Košutić, Dr. Sanja Ninić, Prof Dr. Vojislav Parezanovic, Dr. Andrija Pavlović, Dr. Saša Popović, Dr. Sergej Prijić, Dr. Igor Stefanović, Dr. Daniel Tordas.

Study nurses, Technicians, Social workers

Anke Bartels, Andjelka Čeko, Marissa Herborts, Annelies Hennink, Bosiljka Kosanović, Sanja Kostic, Isailović Ljiljana, Jasmina Maksimovic, Badies Manai, Nada Martinović, Gyöngyi Máté, Perišić Miloš, Jelena Reljić, Regina Pirker, Marta Salamomovic, Claudia Schlesner, Jutta Tins, Eva Wissmann.

### **11 List of publications**

Some parts of this dissertation have already been published in international peer-reviewed journals or were presented at conferences beforehand:

#### Publications in journals

Fabian Konstantin Suessenbach, Nina Makowski, Martin Feickert, Tanja Gangnus, Jutta Tins, Bjoern Bengt Burckhardt, on behalf of the LENA consortium. Implementation of a customised quality control system for ligand-binding assays in pharmacodynamic determination: Proof-of-concept within an academic environment. J Pharm Biomed Anal (2020) 181:113090. doi:10.1016/j.jpba.2019.113090

<u>F.K. Suessenbach</u>, J. Tins, B.B. Burckhardt, on behalf of the LENA consortium. **Customisation and validation of a low-volume plasma renin activity immunoassay: Enabling of regulatory compliant determination in paediatric trials.** Pract Lab Med (2019) 17:e00144. doi:10.1016/j.plabm.2019.e00144

<u>F.K. Suessenbach</u>, B.B. Burckhardt. Levels of angiotensin peptides in healthy and cardiovascular/renal-diseased paediatric population—an investigative review. Heart Fail Rev (2019) 24(5):709–723. doi:10.1007/s10741-019-09797-y

#### **Conference contributions**

<u>F.K. Suessenbach</u>, M. Feickert, J. Tins, B.B. Burckhardt. **Reliable acquisition of plasma** renin activity in the maturating renin-angiotensin-aldosterone-system by a validated small-volume assay in context of the LENA project. ESDPPP (2019), Basel, Switzerland - Poster

<u>F.K. Suessenbach</u>, T. Gangnus, I. Burdman, N. Makowski, S. Läer, B.B. Burckhardt. **Compilation of available plasma renin activity levels in the healthy and cardiac diseased paediatric population.** ESDPPP (2019), Basel, Switzerland - Poster

T. Gangnus, <u>F.K. Suessenbach</u>, N. Makowski, I. Burdman, S. Läer, B.B. Burckhardt. **Reference ranges of blood NT-proBNP in paediatric heart failure and healthy controls: compilation of literature data.** ESDPPP (2019), Basel, Switzerland - Poster

208

I. Farahani, A. Laven, S. Farahani, M.A. Deters, M. Feickert, <u>F.K. Suessenbach</u>, H. Schwender, S. Laeer. **Effectiveness of OSCEs in Training German Pharmacy Students in Consultation on Self-Medication – A Randomised Controlled Investigation.** ESDPPP (2019), Basel, Switzerland - Poster

<u>F.K. Suessenbach</u>, N. Makowski, B.B. Burckhardt. **Evaluation of renin-angiotensinaldosterone-system peptides in complex biological matrices in paediatric patients: Development and validation of a low-volume LC-HRMS Method.** DPhG annual meeting (2018), Hamburg, Germany - Poster

Makowski N, <u>Süßenbach FK</u>, Burckhardt BB. **A novel GCLP-compliant bioanalytical LC-HRMS method for the reliable determination of aldosterone, precursor and metabolite facilitating further insight into paediatric maturation of the renin-angiotensinaldosterone-system.** DPhG annual meeting (2018), Hamburg, Germany – Poster