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Abstract

The upcoming generation of laser facilities promises extraordinarily strong electromagnetic
fields and so opens the door to completely new regimes of light-matter interaction. Special
attention is paid on that front to systematic studies on strong-field quantum electrodynamics
(QED), where the emergence of a series of novel effects is predicted. Currently, a lot of effort is
therefore put into the design of promising experimental campaigns that might be realized in the
near future. Plasma, a collective mixture of unbound charges, has gained broad interest in that
context, as it offers various opportunities.
The first part of this thesis comprises so-called QED plasmas where one is interested in the cou-
pling between collective plasma behavior and QED effects. In particular, the normal radiative-
trapping effect is investigated. This effect describes the trapping of radiatively cooled electrons
in the nodes of the superimposed electric field transiently formed by two counter-propagating
laser pulses. The trapping is subsequently shown to break in sufficiently strong fields due to col-
lective behavior of the generated electron-positron plasma. In a further step, the investigations
are generalized to the case of circularly polarized twisted light. It is emphasized that the nodes
in such configurations form helically-shaped patterns along which electrons can be radiatively
trapped. Simultaneously, circularly polarized twisted light is found to enable the laser-driven
generation of structured ultra-short (several hundred attoseconds) electron bunches.
The second part of the thesis addresses the conjectured breakdown of perturbative strong-field
QED under most extreme conditions. This high-intensity frontier is generally assumed to be far
beyond experimental reach due to the ultra-fast radiation loss time of electrons. The thesis is de-
voted to proving the assumption false by proposing configurations that might allow reaching the
fully non-perturbative regime with 100 GeV-class electrons. Three promising setups are intro-
duced in total. These include the collision with a nanometer-sized Mega-Ampere electron beam;
an ultra-intense electromagnetic attosecond pulse generated through laser–plasma interaction;
and an optical laser pulse whose leading front is cut in the ultra-thin skin layer of a solid-dense
plasma. Finally, ways how to identify and differentiate the impact of non-perturbative QED
effects from experimentally measured particle spectra are considered.
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Zusammenfassung

Die kommende Generation an Laserforschungseinrichtungen verspricht außergewöhnlich starke
elektromagnetische Felder und öffnet somit die Tür zu völlig neuen Regimen der Licht-Materie-
Wechselwirkung. Besonderes Augenmerk wird dabei auf systematische Studien zur Quan-
tenelektrodynamik (QED) in starken Feldern gelegt, wo das Auftreten einer Reihe neuer Effekte
vorausgesagt ist. Deswegen wird momentan viel Aufwand in das Design vielversprechender
experimenteller Kampagnen betrieben, die in naher Zukunft realisiert werden könnten. Plasma,
ein kollektives Gemisch aus ungebundenen Ladungen, hat in diesem Zusammenhang großes In-
teresse erlangt, da es verschiedene Möglichkeiten bietet.
Der erste Teil dieser Abschlussarbeit umfasst sogenannte QED Plasmen, bei denen man an
der Kopplung zwischen kollektivem Plasma-Verhalten und QED-Effekten interessiert ist. Im
Speziellen wird der normale Strahlungseinfangeffekt untersucht. Dieser Effekt beschreibt das
Einfangen von strahlungsgekühlten Elektronen in den Nullstellen des superponierten elektrischen
Feldes, welche durch zwei gegenläufige Laserpulse vorübergehend gebildet werden. Es wird an-
schließend gezeigt, dass dieses Einfangen in hinreichend starken Feldern aufgrund kollektiven
Verhaltens des erzeugten Elektron-Positron-Plasmas zusammenbricht. In einem weiteren Schritt
werden die Untersuchungen auf den Fall des zirkular-polarisierten verdrehten Lichts verallge-
meinert. Es wird hervorgehoben, dass die Nullstellen in solchen Konfigurationen spiralförmige
Strukturen bilden, entlang welcher Elektronen strahlungsbedingt gefangen werden können. Gle-
ichzeitig zeigt sich, dass zirkular-polarisiertes verdrehtes Licht die lasergetriebene Erzeugung
von strukturierten ultrakurzen (einige hundert Attosekunden) Elektronenbündeln ermöglicht.
Der zweite Teil der Abschlussarbeit adressiert den vermuteten Zusammenbruch der perturba-
tiven Starkfeld-QED unter extremsten Bedingungen. Es wird allgemein geglaubt, dass diese
Hochintensitätsgrenze aufgrund der ultraschnellen Strahlungsverlustzeit von Elektronen weit
außerhalb des experimentell Möglichen liegt. Die vorliegende Abschlussarbeit ist der Wider-
legung dieser Annahme gewidmet, indem Konfigurationen vorgeschlagen werden, die das Er-
reichen des (völlig) nicht perturbativen Regimes mit 100 GeV Elektronen erlauben könnten.
Drei vielversprechende Aufbauten werden insgesamt vorgestellt. Diese beinhalten die Kollision
mit einem nanometergroßen Megaampere-Elektronenstrahl; einem ultraintensiven elektromag-
netischen Attosekundenpuls, der durch eine Laser-Plasma-Wechselwirkung generiert wird; und
einem optischen Laserpuls, dessen vordere Front mittels des Skin-Effektes in einem festkör-
perdichten Plasma abgeschnitten wird. Abschließend werden Wege durchdacht, wie man den
Einfluss nicht perturbativer QED-Effekte aus experimentell gemessenen Teilchenspektren iden-
tifizieren und differenzieren kann.
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1 Introduction

With the beginning of the 20th century, Albert Einstein has vastly revolutionized physics. Mod-
ern science, but also modern life in general, would not be possible without his brilliant ideas.
A simple example is the laser whose guiding principle of stimulated emission of radiation was
put forward by Einstein already in 1916 [1]. Though it subsequently took another 40 years for
the first laser to be built by Maiman in 1960 [2], lasers quickly became indispensable. This is
due to the unique properties provided by their radiation, such as monochromaticity and large
coherence, which enable a large variety of uses. For instance, lasers are nowadays standard
components in everyday applications such as barcode readers, optical disk drives, printers, med-
ical devices, and many more. Also scientifically, lasers are of major importance for experiments
in almost all subdisciplines of physics, including (but not limited to) the formation of a Bose-
Einstein condensate which requires laser cooling [3, 4] or the detection of gravitational waves via
laser interferometry [5]. Most naturally, however, laser radiation allows studying fundamental
light-matter interactions.

Shortly after the first demonstration of a laser, peak intensites of about 1010 Wcm−2 were avail-
able in experiments. The underlying strong fields made it possible to study nonlinear optical ef-
fects in atomic systems, resulting in the experimental observation of multiphoton absorption [6]
and multiphoton ionization [7]. Moreover, Agostini et al. discovered the remarkable effect of
above-threshold ionization in the late 1970s [8], where electrons can absorb more photons than
necessary in order to be freed from the parent atom. Around the same time, record peak inten-
sities were increased by several orders of magnitude to yield 1014−15 Wcm−2. Unfortunately,
the progress in achieving higher peak intensities first stagnated at that stage due to damaging the
media used for the amplification process.

Only the invention of chirped pulse amplification (CPA) by Strickland and Mourou in 1985 [9]
solved the obstacle acceptably. Their idea was to first stretch an initially short and relatively
weak pulse to become longer. This longer pulse is then amplified in a second step. The stretching
has here the advantage that the peak power of the long pulse can be pushed significantly below
the damage threshold of the amplifying medium and so does not lead to its demolition. In
the last step, the amplified long pulse is again compressed to become short and intense. The
CPA technique led to a tremendous increase in record peak intensities in the time since, and
simultaneously opened completely new research perspectives.

Constantly growing peak intensities facilitated to go beyond atomic physics in strong fields with
the result that broad attention was paid on laser-produced plasmas. In that context, the next
fundamental scale to be surpassed was the relativistic one, where electrons reach relativistic ve-
locities (v≈ c, where c is the speed of light) due to the interaction with the laser field. The regime
is entered at intensities of 1018 Wcm−2 for optical lasers, which were experimentally available
in the mid-1990s. Such relativistic laser–plasma interactions subsequently gained a lot of inter-
est based on the vast number of applications they can be used for. It was suggested by Tajima
and Dawson to build laser–plasma accelerators for electrons [10]. There, accelerating electric
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1 Introduction

fields of tens to hundreds GVm−1 are achievable [11], which are many orders of magnitude
larger than those in conventional accelerators. This obviously allows laser–plasma accelerators
to be constructed in a much more compact manner, in this way being particularly interesting
from a financial perspective. For instance, the acceleration of electrons up to energies of 8 GeV
over cm-scale distances was demonstrated in a recent experiment [12]. Apart from electron ac-
celeration, the interaction of intense laser pulses with solid-dense plasma surfaces can also be
used for the generation of high harmonics. Depending on the exact interaction parameters, there
are different mechanisms that describe the harmonic generation in detail (see [13] for more in-
formation). All regimes, however, provide access to coherent and short-wavelength radiation.
This in turn enables the manufacture of attosecond pulses, which have the potential to visualize
ultra-fast processes as occurring in atomic and molecular systems with unprecedented temporal
resolution [14].

At state-of-the-art research facilities laser–plasma experiments can be performed well above the
relativistic threshold, with the possibility of reaching peak intensities up to 2× 1022 Wcm−2

[15, 16]. Correspondingly, the coupled light-matter interaction becomes highly nonlinear and
novel phenomena occur. The motion of single electrons in such intense fields, for instance,
is still part of active research. This is due to the electron suffering non-negligible radiation
losses as a result of the acceleration in the intense field. The back-reaction on the electron is
commonly referred to as radiation reaction. Though radiation reaction has been known for a
long time in classical electrodynamics [17, 18], its theoretical description from a pure classical
perspective still gives rise to a number of inconsistencies, and so is not yet complete. In principle,
the inconsistencies can be removed when restricting to the leading-order contribution as found
by Landau and Lifschitz [18]. More fundamentally however, they are removed in the more
general theory of quantum electrodynamics (QED); but a complete theory is lacking also here
as exact expressions can only be given for specific field configurations. The incompleteness
of current models is to some extent also reflected in recent experiments performed at the Astra-
Gemini laser facility in the United Kingdom. Even though experimental observation of radiation
reaction was reported in the collision of an intense laser beam with laser–plasma accelerated
electrons [19, 20], neither classical nor QED-based radiation-reaction models did fully explain
the measurements in all details. The request for further studies is thus immense, particularly
with regard to (planned) facilities like the Extreme Light Infrastructure (ELI) project [21], the
Vulcan 10 PW project [22], or the Exawatt Center for Extreme Light Studies (XCELS) [23],
where even higher intensities of 1023−24 Wcm−2 are envisaged. It is beyond question that laser–
plasmas in such regimes will be affected by radiation reaction. The more so as radiation reaction
can have further impacts on the dynamics than just the direct back-reaction on the electrons.
This back-reaction is naturally mediated through the emission of high-energetic photons by the
electrons. These photons themselves can interact with the strong laser field, potentially leading
to their decay into electron-positron pairs. It is exactly these mutual interactions which make
laser–plasmas to a promising environment for exploring QED.

The present thesis draws on at this juncture. In particular, it deals with finding configurations
in which QED can be investigated by means of laser–plasma interactions. There are rather
different ways of how to proceed in that regard. On the one hand, it is possible to directly study
the interplay between the main QED effects, namely γ-photon emission and pair production,
and the collective plasma behavior. This area is frequently denoted as QED-plasma physics to
highlight the interest in the strong coupling. On the other hand, one can also aim at studying
QED as a theory itself. One then exploits the laser–plasma interaction in such a way that it helps
generating fruitful configurations for QED tests. Both approaches are discussed in the following
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1.1 Outline

thesis mostly within the framework of numerical simulations. Eventually, the findings can be
relevant for the design of new experiments at the large facilities.

1.1 Outline

The thesis is structured as follows. Chapter 2 starts with an introduction about the theoretical
background. It covers general aspects of plasma such as Debye shielding and the dispersion
relation for electromagnetic waves. Afterwards, single-electron motion in plane electromag-
netic waves is discussed, particularly laying the focus on relativistic intensities. As accelerating
charges radiate, it is subsequently addressed when the corresponding radiation losses need to
be taken into account. In that regard, chapter 2 finishes with introducing the strong-field QED
regime, where novel effects become important like, for instance, γ-photon emission and pair
production. Chapter 3 then continues with a comprehensive motivation on the particle-in-cell
(PIC) approach used throughout the present thesis for large-scale laser–plasma simulations. It is
also explained in that regard how to self-consistently incorporate QED effects into the (classical)
PIC scheme. The following main part is divided into the three chapters. In chapter 4 the radiative
trapping of electrons in the standing wave of two circularly polarized laser pulses of ultra-high
intensity is investigated. Precisely, the studies include the robustness of the trapping effect with
increasing laser intensity (see section 4.2), and its behavior with respect to the use of twisted
light (see section 4.3). The fully non-perturbative regime of QED, which long has been thought
to be out of reach, is addressed in chapter 5. This chapter is divided into three sections. First, it
is discussed that the regime can be accessed in the collision of two electron beams with Mega-
Ampere currents and nanometer size (see section 5.2). The subsequent sections then explore the
feasibility of approaching the regime by means of laser–plasma interactions. In that respect, it
is explained how to convert an intense optical laser pulse into an ultra-intense attosecond pulse
(see section 5.3), or how to significantly cut the leading front of an ultra-intense optical pulse
(see section 5.4). Afterwards, a model for the particle spectra produced in the simulations from
chapter 5 is derived in chapter 6. The model purposes at advancing the issue of signatures that
allow identifying the fully non-perturbative regime of QED from experimental data. Finally,
chapter 7 draws a conclusion.

1.2 Contribution of the author

Chapter 2 is a recapitulation of the literature in order to provide the reader with all information
necessary for the understanding of the main results. The same holds for parts of chapter 3,
where the numerical PIC method is reviewed. The thesis’ author implemented the Monte-Carlo
algorithm described in section 3.3.1 (and first published by Elkina et al. [24]) into the existing
PIC code VLPL. Likewise, the author performed the simulations and analysis in to order to verify
the correct implementation (see section 3.3.2).

The setup for studying the influence of pair production on the radiative trapping in section 4.2
was conceived by the author. Similarly, the author came up with the idea to study radiative
trapping in twisted-light waves. The author performed the simulations and did the data analysis.
The simple models in section 4.3 were developed by the author. It was also the author’s idea
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1 Introduction

to relate the number of electron patterns to the total angular momentum per laser photon [see
equation (4.3.8)].

The concept of the non-perturbative QED collider was suggested by Vitaly Yakimenko (see sec-
tion 5.2). The proof of concept was supported by PIC simulations with two independent codes.
The author conducted VLPL simulations (results are given in section 5.2), which were found
to be in good agreement with OSIRIS simulations performed by Fabrizio Del Gaudio, Thomas
Grismayer and Luís O. Silva from the Instituto Superior Técnico in Lisbon, Portugal. For this
purpose, the author implemented the field initialization of ultra-relativistic particle beams into
VLPL. Moreover, the author elaborated the setups proposed in sections 5.3 and 5.4, performed
the simulations, and did the data analysis.

In chapter 6, the model to analytically describe the particle spectra was developed by Evgeny
Nerush. The author double-checked all the calculations (see also appendix A.3) and performed
the simulations.

All figures shown throughout the thesis were produced by the author. It is particularly noted that
some previously published figures were reproduced in a slightly different manner to match the
thesis design and to avoid copyright infringements. Finally, the entire text was written by the
author.

1.3 Publications in peer-review journals

Ideas presented in the thesis at hand have led to the following contributions in peer-review jour-
nals:

• C. Baumann and A. Pukhov, Influence of e−e+ creation on the radiative trapping in ul-
traintense fields of colliding laser pulses, Physical Review E 94, 063204 (2016)

• C. Baumann and A. M. Pukhov, Generation of attosecond electron packets in the inter-
action of ultraintense Laguerre–Gaussian laser beams with plasma, Quantum Electronics
47, 194 (2017)

• C. Baumann and A. Pukhov, Electron dynamics in twisted light modes of relativistic in-
tensity, Physics of Plasmas 25, 083114 (2018)

• V. Yakimenko, S. Meuren, F. Del Gaudio, C. Baumann, A. Fedotov, F. Fiuza, T. Gris-
mayer, M. J. Hogan, A. Pukhov, L. O. Silva, and G. White, Prospect of Studying Nonper-
turbative QED with Beam-Beam Collisions, Physical Review Letters 122, 190404 (2019)

• C. Baumann, E. N. Nerush, A. Pukhov and I. Yu. Kostyukov, Probing non-perturbative
QED with electron-laser collisions, Scientific Reports 9, 9407 (2019)

• C. Baumann and A. Pukhov, Laser-solid interaction and its potential for probing radia-
tive corrections in strong-field quantum electrodynamics, Plasma Physics and Controlled
Fusion 61, 074010 (2019)
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2 Theoretical background

The following chapter is devoted to giving a comprehensive introduction into the physical frame-
work considered within the thesis at hand. For this purpose, it starts with an introduction on
plasma and its characterizing properties (see section 2.1). It follows a discussion about the mo-
tion of single electrons in electromagnetic fields of relativistic strength (see section 2.3). The
reader is then guided to the question when radiation losses become meaningful and have to be
taken care of in the electron dynamics (see section 2.4). The final part introduces the theoretical
basics regarding a quantum treatment of radiation losses and the creation of electron-positron
pairs. The material presented in the first part of the chapter (see sections 2.1-2.4) is mainly
adapted from standard textbooks and reviews about plasma physics [25–27]. Further references
are given where needed.

2.1 What is plasma?

In general, plasma is an ionized gas of negatively and positively charged particles. In addition to
solids, liquids, and gases, plasma is often referred to as the fourth state of matter. On earth, only
a small portion of matter is naturally in the plasma state. This is totally different on astronomical
scales, where plasma is assumed to make up more than 99 percent of ordinary matter. Plasma is
therefore of great interest for the understanding of the universe. Physically, plasma is character-
ized by the complex interaction between a vast number of moving charges with their generated
electromagnetic fields. These in turn can affect the motion of the charges themselves. In fact,
it is that self-consistent interplay which gives rise to collective behavior and which results in
unique properties of plasma.

2.1.1 Debye shielding

Though plasma is a mixture of unbound charged particles, it behaves quasineutral on distances
that are large with respect to the Debye length. Physically speaking, the quasineutrality means
that the plasma shields the electrostatic field of arbitrary charge fluctuations. In order to under-
stand that and to get an expression for the Debye length, one starts with an arbitrary test charge q,
which is placed into a homogeneous electron-proton plasma of finite temperature. The presence
of the test charge will lead to a redistribution of charged particles inside the plasma. Namely,
charged particles with the same sign as q will be repelled, while charged particles with the oppo-
site sign will be attracted by the test charge. The resulting electrostatic potential is determined
by Poisson’s equation

∆φ =−4π

(
qδ (x)+ e(np−ne)

)
, (2.1.1)

5



2 Theoretical background

where δ (x) is Dirac’s delta function describing the test charge at the origin, e is the elementary
charge, and ne and np are the ensued electron and proton density, respectively. In thermodynamic
equilibrium, it makes sense to model the electrons in the potential φ according to a Boltzmann
distribution,

ne = n0 exp
(

eφ

kBθe

)
. (2.1.2)

Here, n0 is the density of the unperturbed plasma, kB is Boltzmann’s constant, and θe is the
electron temperature. It is further reasonable to assume the ions to be immobile on the typical
timescales of laser–plasma interactions. The proton density is thus equal to np = n0. Assuming
the perturbation induced by the test charge to be small, eφ/(kBθe)� 1, one can readily Taylor
expand the exponential in equation (2.1.2) up to linear order in φ . Together with the expres-
sion for proton density, one can insert the approximated electron density into equation (2.1.1).
Eventually, one arrives at (

∆− 1
λ 2

D

)
φ =−4πqδ (x), (2.1.3)

with λD representing the Debye length defined through

λD =

√
kBθe

4πn0e2 .
(2.1.4)

Equation (2.1.3) can be easily solved in Fourier space with subsequent back-transformation into
real space. In doing so, one finds the potential to be

φ =
q
r

exp
(
− r

λD

)
. (2.1.5)

On the basis of equation (2.1.5), it is now clear that the potential of a point charge inside a plasma
is effectively shielded and falls off much faster than the naked Coulomb potential for r & λD.
The plasma is thus almost free of large single-particle fields. It is particularly that property
that allows the plasma to show collective behavior as the details of charge fluctuations are only
important inside the Debye sphere r . λD. Simultaneously, it means that the plasma dimensions
must be large in comparison with the Debye length, L� λD. The above derivation, especially
the use of the Boltzmann distribution for the electron density, further requires the number of
particles participating in the Debye shielding to be large. This is ensured when the number of
particles in a sphere with radius λD is large, which defines the so-called plasma parameter ND,

ND =
4
3

πλ
3
D n0� 1. (2.1.6)

The discussion continues with the introduction of the plasma frequency.

2.1.2 Plasma frequency

The plasma was shown to shield local charge fluctuations over spatial scales defined by the
Debye length. The plasma frequency describes the corresponding timescale. In particular, it
gives the frequency of charge density oscillations induced to maintain the quasineutrality of the

6



2.2 Propagation of light waves in plasma

plasma. It can easily be obtained with the help of the thermal velocity of the electrons. Non-
relativistically, this is defined as

vθe =

√
kBθe

me
, (2.1.7)

where me is the electron mass. The characteristic frequency to balance any charge fluctuation is
then given by the ratio of the characteristic electron velocity to the characteristic length,

ωpe =
vθe

λD
=

√
4πn0e2

me
. (2.1.8)

As will be shown now, these collective electron oscillations strongly alter the propagation of
electromagnetic waves with respect to the vacuum case.

2.2 Propagation of light waves in plasma

As discussed in the preceding section, a plasma can be seen as a heap of freely-moving charged
particles. It is clear that an impinging electromagnetic wave leads to a distortion of the plasma.
The plasma tries to compensate these local charge fluctuations with the result that the wave
drives collective plasma oscillations. These in turn modify the dispersion relation of electromag-
netic waves in comparison with the vacuum case. A detailed analysis shows that the dispersion
relation of light waves in a background plasma is modified to

ω
2 = ω

2
pe + c2k2, (2.2.1)

where ω is the angular frequency of the light wave, k its wave number and c is the speed of light.
Equation (2.2.1) has meaningful consequences. The propagation of light waves through media
requires a finite wave number k > 0. In a background plasma this will only be possible if the
frequency ω0 of a specific light wave is greater than the electron plasma frequency, ω0 > ωpe.
This can be understood in a very simple physical picture. If the frequency of light is too large,
ω0 > ωpe, the plasma electrons cannot respond on the fast timescale determined by the wave.
The plasma is therefore only distorted marginally. Consequently, the light wave can propagate
into and through the plasma. This changes profoundly for ω0 < ωpe. There, electrons can re-
spond almost instantaneously with the result that the light-driven electron currents reflect the
incoming light wave. Mathematically, this is encoded in the wave number k becoming imag-
inary for frequencies below the plasma frequency. The imaginary k leads to an exponentially
decreasing wave amplitude, ∝ e−x/ls , characterized by the length scale ls. This characteristic
length ls is also known as skin depth and describes how deep the light wave can penetrate into
the plasma. In terms of figures, one finds

ls =
c√

ω2
pe−ω2

0

≈ c
ωpe

. (2.2.2)

The last approximation often suffices for a rough estimate of the penetration depth in solid-
dense targets, whose plasma frequencies are usually much larger than frequencies of optical
laser waves.
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2 Theoretical background

Recapitulatory one can judge the transparency properties of a plasma by comparing the plasma
frequency with the angular frequency of the light wave. In many situations, however, this is
unhandy because one first has to evaluate the plasma frequency from the target’s electron density,
which one typically has on hand. It is thus very common to introduce the so-called critical
density ncr as the density up to which a light wave with frequency ω0 can propagate. It can
be calculated by demanding that ω0 and ωpe coincide at the critical density, which yields the
symbolic expression

ncr =
meω2

0
4πe2 =

1.12×1021

(λ0/ µm)2 cm−3. (2.2.3)

In that notation plasmas with higher/lower densities, ne ≷ ncr, are opaque/transparent for light
with frequency ω0. In that sense one often uses the wording over-dense/under-dense plasma
targets.

In the case that the light wave is of relativistic strength, electrons quickly reach large Lorentz
factors γe. This is taken care of when one inserts the dynamical electron mass γeme into the
expressions for the plasma frequency and the critical density (2.2.3). In the relativistic case, the
same light wave can thus propagate into denser plasmas as a result of the increased inertia of the
electrons. When relativistic effects become important is shown in the next section.

2.3 Electron dynamics in electromagnetic waves

The section discusses the motion of electrons in external electromagnetic waves. The first part is
restricted to the relatively simple case of plane waves. The second part generalizes the discussion
to more realistic situations, where the waves have a transverse profile. In this context, the concept
of the so-called ponderomotive force will be introduced.

2.3.1 Plane electromagnetic waves

The motion of single electrons in an external electromagnetic field can be deduced solely from
the vector potential A. This can be written as

A(η) = Re
{

A0 f (η)eiηe
}
, (2.3.1)

where η = ω0t − k0x is the phase of the wave with central frequency ω0 and wave number
k0 = ω0/c that is propagating along the positive x-axis, f (η) is an arbitrary shape function that
accounts for the finite duration of the wave, A0 determines the amplitude, and e is the polariza-
tion vector. As known from classical electrodynamics, the polarization vector is perpendicular
to the propagation axis of the wave, e ⊥ êx. The electron motion in such a configuration is of-
ten considered in the Hamilton formalism, which has the advantage that all symmetries of the
problem are striking. Relativistically, the corresponding Hamiltonian reads

H = mec2

√√√√1+

(
P+ e

c A(η)
)2

(mec)2︸ ︷︷ ︸
=γe

. (2.3.2)
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2.3 Electron dynamics in electromagnetic waves

Here, P is the canonical momentum of the electron and γe its Lorentz factor. One can directly see
that the Hamiltonian depends only on P and η , H = H (P, η), and hence is independent of the
transverse coordinates y and z. Consequently, the transverse canonical momentum is a constant
of motion and thus conserved during the interaction,

P⊥ = constant. (2.3.3)

The simple dependency of H on η gives another constant of motion, which can be constructed
from Hamilton’s equations of motion dH/dt = ∂H/∂ t = ω0 ∂H/∂η and dPx/dt =−∂H/∂x =
k0 ∂H/∂η . Combining the two equations shows readily that

H− cPx = constant. (2.3.4)

Then, equations (2.3.3) and (2.3.4) allow the determination of the electron’s kinetic momentum
p = P+(e/c)A and kinetic energy Ekin = (γe−1)mec2. Under the assumption the electron was
at rest before the interaction with the plane wave pulse and noting that the vector potential is
transverse, one finds

px

mec
=

1
2

e2A2

m2
ec4 ,

p⊥
mec

=
eA

mec2 ,

Ekin

mec2 =
1
2

e2A2

m2
ec4 .

(2.3.5)

One can see that both the longitudinal kinetic momentum and the kinetic energy scale with the
square of the vector potential. The transverse kinetic momentum, in contrast to that, scales only
linearly with the vector potential. The most interesting fact, however, is that all quantities can be
characterized by a single normalized parameter, the so-called dimensionless vector potential1

a0 =
eA0

mec2 . (2.3.6)

From equations (2.3.5) and (2.3.6), it is evident that the electron reaches the relativistic regime
as soon as a0 approaches unity. Occasionally, the dimensionless parameter is also introduced in
terms of the normalized electric field a0 = eE0/(mecω0), which allows a simple interpretation.
The electric field E0 accelerates the electron to the energy a0mec2 over the distance of a reduced
wavelength λ0/(2π). Clearly, a0 can be also set in relation with the peak intensity of the wave
via

I0 = 1.37×ζ ×
(

a0

λ0/µm

)2

×1018 Wcm−2, (2.3.7)

where ζ distinguishes between linear and circular polarization. It is ζ = 1 for a linearly polarized
wave and ζ = 2 for a circularly polarized wave.

Notably, the exact electron trajectory can be found analytically when introducing the proper time
τ = t−x(t)/c. Nonetheless, a detailed discussion on the electron trajectory for the case of linear
and circular polarization would be too extended at this juncture, but is given in many textbooks
(see, for instance, references [25–27]). It should be just pointed out that equation (2.3.5) already

1It is emphasized that A0 sets the scale for the field strength. The shape function f (η) is of order unity.
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2 Theoretical background

gives several interesting insights. On the one hand, it can be seen that the electron oscillates syn-
chronously with the vector potential in the transverse direction. On the other hand, the electron
is always pushed in the propagation direction of the wave as px ≥ 0. The longitudinal push is
in principle also present in the non-relativistic case but becomes negligible with respect to the
dominant transverse motion since a0� 1. Non-relativistically, the motion thus becomes purely
transverse. Note also that in the end the electron will come to rest again no matter if a0� 1 or
a0� 1 as the wave has a finite duration f (η → ∞) = 0.

2.3.2 Focused electromagnetic waves

In most realistic situations strong laser waves are far away from being plane waves. A tight
focusing to spots on the µm level is necessary in order to make peak intensities of the order of
1022 Wcm−2 (or higher) experimentally practicable. Such tightly focused waves are thus char-
acterized by a spatially inhomogeneous profile in the transverse direction. This in turn directly
implies a symmetry breaking and so the non-conservation of the transverse canonical momentum
[see equation (2.3.3)]. Already this simple argument shows that the electron motion in tightly
focused waves can be strongly altered with respect to the plane-wave case. Unfortunately, exact
analytical solutions for the electron motion cannot be given in general. Qualitative insights into
the electron motion can be gained anyway. This is normally achieved by exploiting the different
scales responsible for the electron motion [28]. Usually, there is a short time scale induced by
the rapid laser oscillations

(
∼ ω

−1
0

)
and a longer time scale resulting from the envelope profile

which is assumed to vary much slower. Separating both scales and averaging over the rapid
oscillations in the equation of motion yields an effective force that determines the motion on the
long time scale,

Fpond =−mec2
∇ γ̄e, (2.3.8)

where γ̄e is the averaged Lorentz factor of the electron. The force is called ponderomotive force.
It is directed such that electrons are pushed into regions where they have a lower Lorentz factor.
By recalling equation (2.3.5), one can see that this is physically synonymous to the fact that
electrons are pushed into regions of low intensities.

2.4 Radiation losses

So far, the dynamics of single electrons in external electromagnetic fields of relativistic strength
was considered. However, it is well-known from classical electrodynamics that accelerating
charges emit radiation. This radiation in turn causes the charge to lose energy and momentum,
which is usually not included in the Lorentz force. In most cases, this is not problematic per se
as the radiation losses are negligible. In order to estimate when this evaluation changes, one can
use the relativistic Larmor formula [17, 29]

P =
2
3

e2

m2
ec3

(
γ

2
e F2
⊥+F2

‖

)
. (2.4.1)

The formula describes the power radiated off by electrons2 with energy εe = γe mec2 moving in
an electromagnetic field characterized through the force F = F‖+F⊥, where F‖ and F⊥ denote

2It is noted that the following discussion can be adopted one-to-one also to positrons.
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2.5 Strong-field QED

the contributions of the force acting parallel and perpendicular to the electron’s momentum p,
respectively. One can easily show that equation (2.4.1) can be recast into the form

P =
2
3

mec2

τC
αχ

2
e , (2.4.2)

where τC = h̄/
(
mec2

)
' 1.3× 10−21 s is the Compton time, α = e2/(h̄c) ' 1/137 is the fine-

structure constant, h̄ is Planck’s constant, and

χe =
h̄

m2
ec3

√
γ 2

e F2
⊥+F2

‖ (2.4.3)

is a dimensionless and Lorentz-invariant parameter, whose physical meaning will be discussed
shortly. Generally speaking, it becomes important to include radiation losses into the dynamics
as soon as they approach the same order of magnitude as the energy gain due to the external
field. If one assumes the characteristic time scale of the field to be ω0, one can estimate the
energy change as dεe/dt ' ω0γe mec2. Setting this in relation to equation (2.4.2) yields

2
3

αχ
2
e ' γe ω0τC, (2.4.4)

which defines the classical radiation-dominated regime [30]. For electrons with γe ∼ 1000 that
counter-propagate to an electromagnetic wave, radiation losses get important when the normal-
ized field strength approaches a0 ∼ 150. So, it corresponds to a high-intensity effect. Tech-
nically, these losses are typically modeled with the help of a friction force (see section 3.2).
The supplement ’classical’ additionally requires the parameter χe to be much smaller than unity,
χe� 1. This can be motivated with the characteristic energy of the emitted radiation. Consider-
ing, for instance, the radiation emitted in the case of pure transverse fields F‖ = 0 and F⊥ 6= 0,
which is occasionally combined under the term synchrotron radiation. There, the spectrum of
the emitted radiation is defined by the characteristic energy [18]

εc =
3
2

χeεe. (2.4.5)

Apparently, equation (2.4.5) predicts unphysical behavior when χe & 1, since the characteristic
energy carried away by the radiation exceeds the energy of the emitter. That is a lack in the
classical theory and so demands an amendment in the regime χe & 1. A further hint is also given
in χe itself, because of the proportionality to Planck’s constant3. One can therefore regard χe

as a measure of how important a fully quantum mechanical description in terms of QED—the
fundamental quantum theory describing the interaction of charged particles with electromagnetic
fields—is. The more general approach leads to the regime of strong-field QED which will be
discussed next.

2.5 Strong-field QED

The parameter χe was shown to parameterize the need for a full quantum mechanical treatment.
It is therefore known as the quantum nonlinearity parameter. Its physical origin becomes evident

3Please note that the radiated power P [see equations (2.4.1) and (2.4.2)] is a purely classical quantity as it is in total
independent of h̄.
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2 Theoretical background

when rewriting the expression for χe in equation (2.4.3) through electric field E and magnetic
field B. In doing so, one has [31]

χe =
γe

√
(E+βββ ×B)2− (βββ ·E)2

Ecrit
=

Erest

Ecrit
. (2.5.1)

Here, βββ = p/(γe mec) is the normalized velocity of the electron and Ecrit = m2
ec3/(eh̄) ' 1.3×

1016 Vcm−1 is the critical field of QED [32–34], which can perform work of mec2 over a reduced
Compton wavelength λC = h̄/(mec). In the last step, the numerator in equation (2.5.1) was
identified as the magnitude of the electric field seen by the electron in its own rest frame. The
meaning of χe is striking in that notation, and it becomes also clear why a quantum treatment is
necessary when χe & 1. Effectively, the electron sees in its own rest frame an electric field of the
order of the QED critical field. As a consequence, one enters the regime of strong-field QED,
where (nonlinear) quantum effects become important. Which effects are particularly of interest
and what approximations are used will be explained in the following.

2.5.1 Locally constant field approximation and constant-crossed fields

As discussed in the previous section, the classical regime of radiation losses has shortcomings
when the parameter χe approaches unity. These unphysical issues can be tackled by considering
the photon emission process in the framework of QED. The quantum theory provides scattering
cross sections, which describe the transition from an initial state in the infinite past to a final state
in the infinite future; and these scattering cross sections determine the probability for the process
to occur. In general, the details of the calculation depend on the geometry of the interaction
like, for instance, the spatio-temporal structure of the field and the particle’s energy-momentum.
However, if the formation length l f for the QED process is much smaller than the characteristic
length scale of the electromagnetic field variation,

l f �
|E2|
|∇ E2| ,

(2.5.2)

then the details of the global field structure will be secondary. This follows from the fact the
particle sees locally a constant field. It is thus sufficient to calculate the QED cross section for
constant electromagnetic background fields, which may reduce the calculus significantly. The
corresponding approximation is called locally constant field approximation and is an essential
ingredient for high-intensity laser-matter modeling. To make that clear, consider the case of
ultra-intense optical fields, a0 � 1 (such fields are basically studied in this thesis). There, the
formation length scales as l f ∼ λ0/a0� λ0 [35, 36]. One sees the formation length to be always
much smaller than any field-related length scale that is naturally restricted to λ0. Thus, the QED
cross sections depend only on the local electromagnetic fields at the particle position.

Unfortunately, one can still think of a vast number of different constant electromagnetic fields.
So, the calculation of the transition rate in general will require knowledge about the local shapes
of E and B. Relativistically, the fields are characterized through the electromagnetic field tensor
Fµν . On the other hand, the particle is described by its four-momentum pν . To ensure Lorentz
invariance, the QED transition formulas now can only depend on the Lorentz invariants formed
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2.5 Strong-field QED

by pν and Fµν [37]. These invariants are explicitly given by

χ =

√(
−Fµν pν

)2

mecEcrit
,

f = −
FµνFµν

2E2
crit

=
E2−B2

E2
crit

,

g =
εµναβ FµνFαβ

8E2
crit

=
E ·B
E2

crit
.

(2.5.3)

Here, χ is the previously defined quantum nonlinearity parameter [see equations (2.4.3) and
(2.5.1)] in Lorentz-invariant notation4, and f ,g are two dimensionless Lorentz-invariants charac-
terizing the electromagnetic field. The QED transition rate of a process in an arbitrarily constant
field can then be written as a function of χ , f , and g only, W = W (χ, f ,g). Importantly, fol-
lowing Nikishov and Ritus [37], one can neglect the invariants f ,g, so that one can approximate
the QED transition rate through W = W (χ,0,0). The approximation is justified as long as one
has f ,g� 1 and f ,g� χ2, implying weak fields with respect to the critical field Ecrit and ultra-
relativistic particles, respectively. Obviously, this has the advantage that all systems in which
χ is the same will give the same result, and that one can do the calculations where it is sim-
plest. The most common choices are the static magnetic field [38, 39] and the constant-crossed
field [37]. In the latter, the electric and the magnetic field are equal in magnitude

(
E2 = B2

)
and perpendicular to each other (E ·B = 0), resulting in f = g = 0. The constant-crossed case
is particularly interesting since each electromagnetic field is very close to a plane wave in the
rest frame of ultra-relativistic particles [35]. Within the locally constant field approximation the
plane wave can then be regarded as a constant-crossed field.

2.5.2 Nonlinear Compton scattering

In the context of the radiation by an accelerating electron, the main quantum effect is the recoil
on the electron caused by the emission of a single high-energy photon. This process is often
referred to as nonlinear Compton scattering5, but it is also known under quantum synchrotron
radiation or quantum radiation reaction. Formally, it can be expressed as

e−+nγl → e−+ γ, (2.5.4)

where the ultra-relativistic electron is stimulated to emit the high-energy photon γ due to the
interaction with n photons γl from the strong background field. Historically, the process is well
understood in the framework of QED, and the calculation of the corresponding scattering cross
section is possible for specific field structures. For the prominent case of constant-crossed fields,
one finds that the differential photon emission rate is given by [37, 40]

dWrad

dεγ

=−αmec2

τCε2
e

[ˆ
∞

x
duAi(u)+

(
2
x
+χγ

√
x
)

Ai′(x)
]
, (2.5.5)

4To clarify: The parameter χ can be defined for electrons, positrons, and photons. In the following, χ will only refer
to a specific particle species, if an index is given (e for electrons and positrons, and γ for photons). Otherwise, χ

is not restricted to one species.
5Note that the process is labeled as Compton and not as inverse Compton scattering, although energy is transferred

from an ultra-relativistic electron to a photon.
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where x = [χγ/(χeχ ′e)]
2/3, Ai(·) and Ai′(·) are the Airy function and its derivative, respectively.

Equation (2.5.5) describes the transition from an electron with initial energy εe and quantum
parameter χe to an electron with energy ε ′e (χ

′
e) after the emission of a high-energy photon with

energy εγ (χγ ). The recoil on the electron demands χ ′e = χe− χγ , and since the emitted photon
energy cannot exceed the energy of the emitting electron, χ ′e > 0 holds (χγ < χe). Integrating
over all possible photon energies 0 < εγ < εe yields the total photon emission rate,

Wrad =
αmec2

3
√

3πτCεe

ˆ
∞

0
du

5u2 +7u+5
(1+u)3 K2/3

(
2u
3χe

)
. (2.5.6)

Here, K2/3(·) is the modified Bessel function of the second kind. Though the integral expression
in equation (2.5.6) cannot be solved in terms of any standard algebraic function, it is possible to
find asymptotic scalings for the total photon emission rate in the limiting cases of small (χe� 1)
and large (χe� 1) values of the quantum nonlinearity parameter. The calculation leads to

Wrad '
mec2

τCεe

{
1.44αχe for χe� 1,

1.46αχ
2/3
e for χe� 1.

(2.5.7)

Physically speaking, the inverse of the total photon emission rate in equations (2.5.6) and (2.5.7)
can be interpreted as a measure for the characteristic time elapsing between the emission of two
independent photons by the ultra-relativistic electron, trad ∼W−1

rad . In similar fashion, one can
find an expression for the total power emitted by the electron,

P =
αmec2

3
√

3πτC

ˆ
∞

0
duu

4u2 +5u+4
(1+u)4 K2/3

(
2u
3χe

)
. (2.5.8)

Concentrating again on the limits χe� 1 and χe� 1, the total power equals

P' mec2

τC

{
2
3 αχ2

e for χe� 1,

0.37αχ
2/3
e for χe� 1.

(2.5.9)

Obviously, the full quantum mechanical treatment matches the classical result in the limit χe� 1
[see equation (2.4.2)], and so delivers the χ2

e scaling. In the opposite limit, however, one can see
that the scaling of the total power is reduced. This is a consequence of the fact that the energy
of the photon cannot exceed the energy of the emitting electron.

2.5.3 Multi-photon Breit-Wheeler pair production

The emission of high-energy photons has further implications than only the recoil on the elec-
tron. In a strong background field, these photons can decay into electron-positron pairs. Fre-
quently, the process is called multi-photon Breit-Wheeler pair production [41], which has no
classical counterpart. In constant-crossed fields, the energy distribution per unit time of an elec-
tron created according to the Breit-Wheeler process reads [37, 40]

dWpair

dεe−
=

αmec2

τCε2
γ

[ˆ
∞

x
duAi(u)+

(
2
x
−χγ

√
x
)

Ai′(x)
]
. (2.5.10)

The definition of the variable x remains unchanged, though the meaning of χγ , χe and χ ′e has
to be modified. Since now the high-energy photon γ initiates the process, its energy determines
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2.5 Strong-field QED

the dynamics. This means that for the created electron χe < χγ holds. Accordingly, one has
to redefine χ ′e as χ ′e = χγ − χe > 0, which now describes the created positron. Importantly,
equation (2.5.10) is symmetric under the commutation of electron and positron χe↔ χ ′e. Inte-
grating finally equation (2.5.10) over all possible electron energies 0 < εe < εγ yields the total
pair-creation rate,

Wpair =
αmec2

3
√

3πτCεγ

ˆ 1

0
du

9−u2

1−u2 K2/3

(
8

3(1−u2)χγ

)
. (2.5.11)

As for photon emission, equation (2.5.11) allows finding an asymptotic scaling behavior,

Wpair '
mec2

τCεγ

{
0.23αχγ exp[−8/(3χγ)] for χγ � 1,

0.38αχ
2/3
γ for χγ � 1.

(2.5.12)

For large values χγ � 1, the scaling is similar to that of the total photon emission rate and differs
only by a numerical factor of the order unity. Considering in contrast small values χγ � 1,
one observes a rather different behavior, and one can see that pair creation is exponentially
suppressed. This underlines the fact that pair creation describes a threshold process, and hence
the decay of photons with energy εγ . 2mec2 into electron-positron pairs is very unlikely. Note
also that the total pair-creation rate in equations (2.5.11) and (2.5.12) describes the characteristic
life time of a hard photon, before it decays into an electron-positron pair.
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3 Numerical modeling of high field
laser–plasma interactions

This chapter gives an introduction in the numerical algorithm that will be used throughout the
present thesis. It begins with a brief review about the particle-in-cell method, which is a widely
spread numerical approach in order to gain deep insights into relativistic laser–plasma interac-
tions. The subsequent sections focus on how this approach needs to be modified at extremely
high intensities. In this regard, it will be explained how synchrotron radiation can be imple-
mented in the classical (see section 3.2) and quantum limit (see section 3.3). Section 3.3 will
additionally discuss how the Breit-Wheeler pair production process can be included into the
numerical codes. Finally, the implementation of the QED module into the code VLPL will be
benchmarked in the last part of the chapter (see subsection 3.3.2).

3.1 Introduction of the particle-in-cell method

As soon as one studies plasma, one usually has to deal with a large number of charged particles.
This can be easily understood when considering a typical laser–plasma interaction in which a
homogeneous plasma with density ∼ 10ncr interacts with a laser of wavelength ∼ λ0 = 1 µm in
a cube of volume∼ λ 3

0 . There, the total number of electrons is already of the order of 1010. This
huge number makes a tracking of the individual particles impracticable from a computational
point of view. A statistical description in the phase space is therefore much more common. If
inter-particle correlations are small, then the system can be well resolved by a single-particle
distribution function fµ (x,p, t) for each particle species µ . For ultra-relativistic particles mainly
treated within this thesis (see the subsequent chapters), the time evolution of fµ (x,p, t) under
the influence of collective but arbitrary electromagnetic fields is governed by the collisionless
Boltzmann-Vlasov equation

∂ fµ

∂ t
+

p
γmµ

∇x fµ +
qµ

mµ

(
E+

p
γmµc

×B
)

∇p fµ = 0. (3.1.1)

Here, ∇x and ∇p represent the Nabla operator acting on the position and momentum space,
and mµ , qµ and γ are the particle’s mass, charge and Lorentz factor. The motion of charged
particles as described by equation (3.1.1) leads to modifications in the charge distribution ρ and
to currents j, which in turn act as a source for new electromagnetic fields in Maxwell’s equations,

div E = 4πρ, divB = 0, (3.1.2)
∂E
∂ t

= c rot B−4π j, and
∂B
∂ t

=−c rot E. (3.1.3)

The simultaneous solution of equation (3.1.1) and Maxwell’s equations allows a description
of the plasma in a self-consistent manner. Analytically, this is a rough challenge and almost
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Figure 3.1.1: (a) Typical shape of the particle distribution function fμ (x, px, t) in a two-

dimensional phase space (x, px) at time t. Only the colored area is occupied

by particles. (b) Sampling of the distribution function fμ (x, px, t) by macro-

particles.

impossible to tackle in the vast number of situations. From a numerical point of view, in contrast,

a solution can be straightforwardly enforced by discretizing the phase space as well as Maxwell’s

equations on an Eulerian grid on which the equations are solved subsequently. In fact, this ansatz

is pursued by several people (see, for example, [42–45] and the references therein). These

Vlasov-Maxwell codes, however, require a lot of computational resources even in relatively

simple problems. To make this clear, a look at the plot in figure 3.1.1(a) may help. There, one

can see the shape of an arbitrary particle distribution function fμ (x, px, t) in a two-dimensional

phase space (x, px). It is important to notice that only the colored area is meant to be filled with

particles at time t, whereas the rest of the phase space is empty. At later times, the distribution

of particles may change and particles may occupy regions of the phase space that are empty

for now. Hence, it has to be ensured at any time that the discretized phase space gathers all

the areas in which the distribution function may be non-zero over the entire simulation time.

Basically, this can be fulfilled by making the grid large enough. It should be clear that this

procedure naturally includes a lot of empty and/or unappealing phase space areas. These have

to be processed anyway, so unnecessarily wasting computational resources. Moreover, even

systems that can be well described by a single spatial coordinate typically require more than

one momentum dimension to capture the particle motion properly. In this way, one has to cover

even larger phase space volumes, making a solution of the coupled Vlasov-Maxwell system even

more computationally demanding.

At this point, the particle-in-cell (PIC) method offers an interesting and efficient alternative. First

pioneering works in that direction were conducted by Buneman already in the late 1950s [46]

and by Dawson in the early 1960s [47]. Later, these works were advanced by Hockney and

Eastwood [48] as well as by Birdsall and Langdon [49] to develop the PIC method. The idea

behind the method is in principle rather simple and intuitive. The focus is laid on the distri-

bution function itself instead of considering a huge phase space volume. This is realized by

sampling the distribution function through finite phase-fluid elements as exemplarily indicated

in figure 3.1.1(b). Figuratively speaking, the n-th finite phase-fluid element merges particles

from a small phase space volume into a single phase-fluid element characterized through its
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3.1 Introduction of the particle-in-cell method

center position xn and momentum pn. Importantly, xn and pn do not necessarily need to be
arranged on an Eulerian grid, but can be continuous instead. It is then possible to express the
entire distribution function as a sum over all phase-fluid elements Nµ ,

fµ (x,p, t)'
Nµ

∑
n

wn S (x−xn,p−pn) . (3.1.4)

Here, the weight wn is a measure for the number of particles unified in the n-th phase-fluid
element and S (x,p) stands for a function giving information about the shape of the merged
phase space volume. In the context of PIC, the shape is commonly taken to be box-like in space
and delta-like in the momenta,

S (x−xn,p−pn) = δ (p−pn)
3

∏
i=1

Θ

(
∆xi

2
−|xi− xn,i|

)
, (3.1.5)

with δ (·) and Θ(·) being the Dirac delta and the Heaviside step function, respectively. It is
also noted that the phase-fluid elements are called (numerical) macro-particles in the language
of PIC as they substitute a certain number real physical particles. Notably, each macro-particle
n needs to propagate along the characteristics of the Boltzmann-Vlasov equation (3.1.1) in or-
der to ensure the correct evolution of the distribution function in the phase space. Recalling
equation (3.1.1), one finds that the characteristics are given by

dxn

dt
=

pn

γnmµ

,

dpn

dt
= qµ

(
E+

pn

γnmµc
×B
)
.

(3.1.6)

These are exactly the relativistic equations of motion for a particle with momentum pn and po-
sition xn which is subjected to an electromagnetic field. More importantly, a macro-particle
follows the same trajectory as a single particle because their charge-to-mass ratio is the same.
As before in the Vlasov case, the current induced by the motion of the macro-particles allows a
self-consistent description of the plasma when it is used for the temporal evolution of the electro-
magnetic fields in Maxwell’s equations (3.1.2)-(3.1.3). The numerical current must necessarily
fulfill the continuity condition,

∂tρ +div j = 0. (3.1.7)

Under such circumstances it is enough to take care of the explicitly time-containing update
equations (3.1.3)—also known as Faraday’s and Ampère’s law—because equations (3.1.2) will
automatically remain fulfilled if they are in the beginning of the simulation1. Unfortunately,
there is no way to circumvent the numerical solution of Maxwell’s update equations (3.1.3) on
the grid. How this can be done in detail goes beyond the scope of this brief introduction. It
should just be mentioned here that the literature contains a series of different Maxwell solvers,
starting with the famous method by Yee [50] over pseudo-spectral approaches in Fourier space
[51] to (near-)dispersionless solvers [52, 53]. Despite, the main advantage of the PIC modeling
lies in the fact that the mesh needed for the Maxwell solver does not cover more than three
dimensions as one only has to discretize the real space. The more so as it is generally easier to
estimate which part of the real space will be filled with plasma, in this way allowing the mesh

1One can easily show this by taking the divergence of Faraday’s and Ampère’s law (3.1.2) and using the continuity
equation (3.1.7).
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3 Numerical modeling of high field laser–plasma interactions
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c v×B
)

∆t

Figure 3.1.2: Schematic illustration of a standard loop in a PIC code describing the time evo-
lution over one time step ∆t.

volume to be as small as possible. This leads to a significant reduction with respect to a six-
dimensional grid needed in Vlasov codes and makes simulations of physical problems also in
fully three-dimensional geometries feasible. Closely linked to that, there is a vast number of
PIC codes used in the community like, for instance, VLPL [52, 54], OSIRIS [55], VORPAL [56],
PICADOR [57], EPOCH [58], and SMILEI [59], to list just a few.

Recapitulatory, the PIC method samples the plasma by a finite number of representative macro-
particles which are pushed according to the relativistic equations of motion. The motion of the
macro-particles then acts as a source term in Maxwell’s equations which are finally solved on a
grid. After the initialization at the beginning of each simulation, figure 3.1.2 shows the scheme
that nicely summarizes a characteristic time step conducted by a PIC code. The scheme can be
divided into four main blocks:

• Field interpolation: Since the fields are only known on fixed grid points, they must be
interpolated to the continuous particle positions xn in order to capture the correct motion.

• Particle pushing: The particles are then pushed with the interpolated force. This can be
done with different particle pushers. The most common ones are the pushers introduced
by Boris [60] and Vay [61]. The standard pusher implemented in VLPL can be found
in [53, 54].

• Current deposition: After the particle pushing, one interpolates the generated current to
the grid on which the fields are known.

• Advance fields: Finally, the fields can be advanced with the grid currents.
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3.2 Classical radiation reaction in PIC codes

The procedure is repeated until the desired interaction time is elapsed. Numerically, the simu-
lation will show a stable evolution as long as several stability conditions are satisfied. First, the
Courant-Friedrichs-Lewy condition sets the spatial grid steps in relation to the time step ∆t [62].
One has stable behavior when

c∆t <
1√

1
(∆x)2 +

1
(∆y)2 +

1
(∆z)2

. (3.1.8)

Physically, this means that information cannot be mediated faster than at the speed of light.
Second, the time step must resolve the fastest oscillation in the system. In laser-solid interactions
this is typically the electron plasma period Tpe = 2π/ωpe. And last, one should be aware that
the Debye length is spatially resolved in order to avoid numerical heating effects [49]. This is
a major constraint in PIC codes that are momentum conserving. There, the numerical heating
will cause energy conservation to be violated. On the other hand, unphysical grid heating is
inherently suppressed in energy conserving PIC codes such as VLPL.

If all stability criteria are met, a standard PIC code will allow the (numerical) investigation of
basic laser–plasma interactions. The method described so far, however, needs to be extended at
higher laser intensities as new phenomena may occur. These include radiation losses of ultra-
relativistic particles and QED effects, like the generation of γ-rays and electron-positron pairs.
How particularly these new phenomena can be addressed with PIC codes will be explained in
the following sections.

3.2 Classical radiation reaction in PIC codes

Beyond the standard applicability range of the PIC method, it is also possible to extend its range
to account for ionization, binary collisions and QED events. Especially the latter becomes in-
creasingly vital in the interaction of high-intensity laser radiation with matter as proposed by
the next generation of laser facilities. One of the first regimes that will be in reach is the clas-
sical radiation-dominated regime (see section 2.4), where electrons suffer significant radiation
losses so causing a back-reaction on the electron motion. Though it seems at first glance that the
back-reaction is inherently included in the self-consistent PIC modeling, this is not the case. The
reason here is the frequency of the emitted radiation. It scales like ωc = 3χεe/(2h̄), where ωc is
the critical frequency of classical synchrotron radiation [18], and generally covers frequencies
up to the (hard) x-ray level. However, due to the time discretization in PIC codes, the maximum
frequency ωmax that can be numerically resolved is determined by the time step ∆t, ωmax∼ π/∆t.
Resolving (hard) x-ray frequencies on the grid would thus require extremely small time steps,
which is impracticable from a computational point of view. Luckily, the electromagnetic spec-
trum of low-frequency (induced by particle currents on the grid) and high-frequency radiation
(induced by radiation losses) is asymmetric and well separated from each other (see, for in-
stance, figures 1 and 2 in [63]). This enables the detachment of the high-frequency part from the
grid, with the result that high frequencies are treated as particle-like photons. The emission of
such a high-frequency photon then causes a recoil on the emitting electron. Though the recoil
induced by the emission of a single photon is low in the classical regime (χ � 1), the electron
emits a large number of photons which means that the cumulative recoil can have a finite impact
on the dynamics [30]. Technically, one therefore introduces—additionally to the usual Lorentz
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3 Numerical modeling of high field laser–plasma interactions

force FL—a continuous friction force Frad mediating the back-reaction,

dp
dt

= FL +Frad. (3.2.1)

This is known as radiation reaction and the force Frad is thus also referred to as radiation reaction
force. The first model that considered relativistic radiation reaction in a self-consistent way was
given by the Lorentz-Abraham-Dirac (LAD) equation [64]. Although derived from Maxwell’s
equations and the relativistic equation of motion, the LAD model will give rise to a number
of physical problems such as runaway solutions even if no external field is present. In the
literature one can therefore find a couple of approximations to the LAD equation that are used
to circumvent these issues and to simulate radiation reaction in numerical codes [65]. The most
common ones are the approximations by Landau and Lifschitz [18] and by Sokolov [66], both
of which are used in many studies [67–71].

The implementation of the classical radiation reaction module in the code VLPL [72] follows the
same idea as the aforementioned approaches. The time-averaged dissipated power caused by the
friction force Frad is equal to the total emitted power P by the relativistic particle [29],

P =
2e2

3m2
ec3 γ

2

[(
dp
dt

)2

− 1
c2

(
dε

dt

)2
]
. (3.2.2)

Note that the changes in the momentum vector and in the energy are caused by the driving force
and not by the friction force. Evaluating equation (3.2.2) for the case of longitudinal dp/dt ‖ p
and transverse dp/dt ⊥ p accelerating fields, one easily finds the relations

P‖ =
2e2

3m2
ec3

[(
dp
dt

)
‖

]2

and P⊥ =
2e2

3m2
ec3 γ

2
[(

dp
dt

)
⊥

]2

. (3.2.3)

One can see that the radiation due to longitudinal accelerating fields is reduced by a factor γ2 in
comparison with an acceleration in the transverse direction, and so can be neglected since one
is only interested in ultra-relativistic particles, γ � 1. This results in a synchrotron-like case
in which the radiation is emitted into a cone with opening angle of θ ≈ 1/γ � 1 around the
particle’s propagation direction. Accordingly, it is convenient to assume that the friction force
acts only opposite to the particle’s direction of motion,

Frad =−
P⊥
c

êp. (3.2.4)

In a small time interval ∆t, this friction force induces a momentum change of ∆prad = |Frad ∆t|,
which can be easily recast into the form

∆prad =

(
4
9

α
|∆p⊥|
mec

)
h̄kc

= Nphotons h̄kc.

(3.2.5)

The equation can be understood such that in each time interval ∆t the particle emits Nphotons
photons with a characteristic momentum of h̄kc. This momentum is connected with the critical
frequency ωc via ωc = ckc, and can be calculated from

h̄kc =
3
2

h̄
mec2

|∆p⊥|
∆t

γ
2. (3.2.6)
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3.3 Implementation of QED processes into PIC codes

The momentum change in equation (3.2.5) can be straight-forwardly integrated into the typical
PIC loop and the corresponding calculation is performed after the normal Lorentz force push
(see figure 3.1.2). Moreover, the number of emitted photons Nphotons and the characteristic mo-
mentum [see equation (3.2.6)] are stored along the particle trajectory to enable further analysis
of the emitted photon spectrum.

When the quantum nonlinearity parameter approaches and exceeds unity, χ & 1, a classical
description of the radiation losses is no longer applicable. This can be nicely seen in equa-
tions (3.2.5) and (3.2.6), where the critical momentum (or frequency) appears and so defines the
energy-momentum scale of the emitted radiation. Physically speaking, it means that the clas-
sical theory predicts characteristic photon energies h̄ωc that exceed at χ & 1 the energy of the
emitting particle εe. The inconsistent behavior implies a fundamental change at χ ∼ 1 and is
solved by QED. The easiest way of including such quantum corrections from a technical per-
spective is the multiplication of the radiation reaction force with a quantum correction factor
g(χ), which is occasionally done [73]. This approach, however, relies on the radiation losses to
be continuous and smooth. Obviously, it cannot capture any substantial recoil on the electron in
a single emission nor the stochastic nature of the emission event. The following section explains
how such QED events are implemented into the PIC code VLPL.

3.3 Implementation of QED processes into PIC codes

The next generation of laser facilities like ELI or XCELS will provide light-matter experiments
that will enable studies in the onset of the QED regime. In order to study these conditions
also in numerical simulations, the standard PIC approach has been extended to include the
QED processes of nonlinear Compton scattering and Breit-Wheeler pair production in a self-
consistent way. As a consequence, a couple of QED-PIC codes have been developed in the
recent decade [55, 58, 63, 74]. Though not all codes use the same numerical algorithms, the
basic numerical concept is always the same. The QED events are implemented by means of a
Monte-Carlo algorithm. This routine enables the modeling of the probabilistic nature of quan-
tum events and is added as an additional step to the standard PIC loop. The following section
is dedicated to explain in detail how the QED events are incorporated into standard PIC codes,
considering particularly the code VLPL. Please note that the VLPL implementation follows the
alternative version of the Monte-Carlo algorithm first introduced by Elkina et al. [24].

3.3.1 Description of the Monte-Carlo algorithm

In VLPL the Monte-Carlo algorithm is executed right after the momenta of the particles are
pushed according to the Lorentz force. The algorithm can thereby be divided into two in-
dependent subroutines. The first subroutine treats the emission of high-energetic photons by
ultra-relativistic particles, frequently termed as the nonlinear Compton scattering process. The
emitting particle can be either an electron or a positron and is assigned the index e. The decision
whether such a parent particle emits a photon or not is made as follows. In a first step, one
generates a uniformly distributed random number r1 ∈ [0,1]. The random number r1 defines the
energy and the momentum of the photon that is considered to be emitted,

εγ = r1 ε
kin
e and pγ =

εγ

c
p̂e. (3.3.1)
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3 Numerical modeling of high field laser–plasma interactions

Here εkin
e = (γe− 1)mec2 stands for the (kinetic) energy of the emitting particle and p̂e is the

unit vector corresponding to the particle momentum, |p̂e| = 1. Equation (3.3.1) states that the
photon momentum is assumed to be parallel to the momentum of the emitting particle. The
reason for that is the narrow angle into which the radiation is emitted in the ultra-relativistic
case (see section 3.2). In the second step, one calculates the quantum nonlinearity parameter for
the emitting particle as well as for the photon. In the calculation one uses the electromagnetic
fields at the local position of the particles. The probability, which is supposed to characterize the
process locally within a PIC time step ∆t, is subsequently modeled as

Pγ =
dWrad

dεγ

εe ∆t. (3.3.2)

Combined with a second uniformly distributed random number r2 ∈ [0,1], equation (3.3.2) is
finally applied to decide whether the process takes place or not. Only if r2 < Pγ , a photon will
be emitted. From the computational point of view this is done by adding the photon as a new
macro-particle to the simulation domain instead of discretizing it on the grid. The particle-like
behavior is necessary because the maximum frequency that can be resolved by the grid is orders
of magnitude below the typical energy of the QED-photon, ωmax = π/∆t � εγ/h̄. The macro-
photon, in the following just referred to as photon, has the same position and weight as the parent
particle2, and its momentum is given by equation (3.3.1). The momentum remains constant3 over
the simulation since photons are electrically neutral and therefore move ballistically. Beyond,
the parent particle experiences a recoil to ensure the conservation of momentum at the emission
location. The momentum of the parent particle has to be modified accordingly,

p′e = pe−pγ . (3.3.3)

At this point it should be stressed that the Monte-Carlo routine conserves the momentum, but not
the energy. The corresponding error in the energy can be easily estimated under the assumption
of ultra-relativistic particles before and after the emission [76]. The calculation yields

∆ε = ε
′
e + εγ − εe

' mec2

2

(
1
γ ′e
− 1

γe

)
.

(3.3.4)

The equation indicates that the algorithm increases the energy as γ ′e < γe. The reason behind this
is that the algorithm does neither consider energy nor momentum from the classical background
field at the vertex. Equation (3.3.4) also states that the energy increase is small in the limit of
ultra-relativistic particles where εe,ε

′
e� mec2, and so can be neglected, especially with respect

to energies of the order of a0mec2� mec2 that are characteristic for ultra-intense laser-plasma
interactions. The above subroutine is subsequently applied to all electrons and positrons in the
simulation.

The second subroutine considers the decay of a high-energetic γ-photon into an electron-positron
pair and works similar to the case of the photon emission module explained above. A uniformly
distributed random number r̃1 ∈ [0,1] is again decisive for choosing the energy-momentum of

2Recently, Lécz and Andreev suggested the use of sub-macro-particle weights by running the QED routine more
than once per parent macro-particle. This should enhance the statistics even for low numbers of initial macro-
particles per cell [75].

3At least as long as the photon does not decay into an electron-positron pair.
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the electron,

pe− = r̃1 pγ and εe− = mec2

√
1+
(

pe−

mec

)2

. (3.3.5)

Afterwards, one calculates the quantum nonlinearity parameter for the decaying photon as well
as for the electron at the current location. In the case of Breit-Wheeler pair production, the
probability for the decay of the photon is then sampled according to

Pe+e− =
dWpair

dεe−
εγ ∆t. (3.3.6)

It is assumed that the photon decays into an electron-positron pair when r̃2 < Pe+e− , with r̃2
being a second uniformly distributed random number in the range [0,1]. Numerically, a success-
ful decay is modeled by removing the photon macro-particle from the simulation domain and
simultaneously adding an electron and a positron macro-particle. The macro-particle weight
of electrons and positrons is equal to the weight of the decaying photon macro-particle. The
momentum of the electron is given by equation (3.3.5), and the positron’s momentum follows
from the conservation of momentum at the vertex, pe+ = pe− − pγ . Afterwards, the subroutine
is applied to all particle-like photons in the simulation.

3.3.2 Testing the QED algorithm

In order to check the correct implementation of the QED module into the code VLPL, a couple
of benchmark tests are performed, and the following section presents the results.

The first test series is dedicated to confirming the characteristic radiation time of an electron trad
as predicted by equation (2.5.6), and is adopted from Kostyukov et al. [77]. For this purpose,
the interaction of an ultra-relativistic electron propagating transversely to a strong and homoge-
neous magnetic background field is investigated. To calculate trad, the simulation stops as soon
as the electron emits a photon and the elapsed time t̃rad is taken as a measure for trad. As a matter
of fact, the characteristic radiation time describes a quantum process and should thus be seen as
a mean value averaged over an ensemble of identical systems. As a consequence, the numeri-
cally calculated radiation time tsim

rad is determined as the unweighted mean of t̃rad over N = 1000
independent simulation runs. Table 3.3.1 lists the results for different initial electron energies
εe− and different magnetic fields B. One can see that the theoretically predicted value t theo

rad is
always in the tolerance interval σ sim

rad (error on the mean value) of the simulated value tsim
rad . This

indicates reasonable agreement between theory and simulation.

A similar test is also performed to calculate the characteristic life time of a hard photon, which is
subjected to a strong and homogeneous magnetic background field

(
pγ ⊥ B

)
. As in the previous

case, the simulation stops as soon as the photon decays into an electron-positron pair. The results
are averaged over N = 1000 independent runs and can be found in table 3.3.2 for different
initial photon energies εγ and different magnetic field strengths B. One can see that both the
numerically calculated time tsim

pair and theoretically predicted time t theo
pair are in good agreement,

since t theo
pair remains in the tolerance interval σ sim

pair (error on the mean value) of tsim
pair.

By means of the above benchmarks both QED subroutines are tested separately and hence inde-
pendently. It is therefore important to test in addition the interplay of the modules. The idea for

25



3 Numerical modeling of high field laser–plasma interactions

χe εe−
[
mec2

]
B
[
109 G

]
t theo
rad [fs] tsim

rad [fs] σ sim
rad [fs]

0.3 103 13 0.48 0.50 0.02
0.3 104 1.3 4.84 4.99 0.16
3 104 13 0.72 0.72 0.02
3 105 1.3 7.17 7.05 0.22
30 105 13 1.33 1.29 0.04
30 106 1.3 13.33 13.31 0.44
300 105 130 0.28 0.28 0.01

Table 3.3.1: The table shows the numerically and analytically calculated characteristic photon
emission time for different parameters. The results are averaged over 1000 indi-
vidual simulation runs. In this context, σ sim

rad denotes the error on the mean value
tsim
rad .

χγ εγ

[
mec2

]
B
[
109 G

]
t theo
pair [fs] tsim

pair [fs] σ sim
pair [fs]

3 103 130 0.81 0.79 0.02
6 104 26 2.94 2.96 0.09
6 105 2.6 29.39 29.07 0.91
30 104 130 0.60 0.59 0.02

120 104 520 0.21 0.20 0.01
300 105 130 1.09 1.12 0.04

Table 3.3.2: The table shows the numerically and analytically calculated characteristic photon
decay time in an electron-positron pair for different parameters. The results are
averaged over 1000 individual runs. In this context, σ sim

pair denotes the error on the
mean value tsim

pair.

an adequate study testing that interplay was introduced by Anguelov and Vankov in 1999 [79],
and nowadays their work is used in many codes as a reference [24, 63, 77, 80]. In particular,
the idea is to investigate the time evolution of a QED cascade which gets initiated by a single
energetic particle in a strong background field. For the benchmark shown here, the cascade
is initiated by a single electron with initial Lorentz factor γe = 2× 105 that is subjected to a
homogeneous and perpendicular magnetic field of strength B = 0.2Ecrit. The black curve in
figure 3.3.1 depicts the time evolution of the cascade as obtained from the VLPL implementa-
tion. More precisely, the figure shows the number of all charged particles with energies larger
than 10−3 γemec2 as a function of time4. Note also that the data are averaged over N = 1000
independent runs to reduce the statistical noise. Apart from the VLPL results, figure 3.3.1 also
presents the data from Elkina et al. [24] in gray. One can clearly see that they are in reasonable
agreement. The slight deviation for large times can be ascribed to the fact that not exactly the
same algorithm was used to generate the data. Elkina et al. developed two algorithms in their

4The normalization time trad corresponds to the previously defined radiation time. It refers to the initial electron
and is equal to the inverse of the strong-field limit χe� 1 in equation (2.5.7).
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Figure 3.3.1: The figure shows a benchmark of the VLPL implementation (black solid line)
against the code by Elkina et al. [24] (gray solid line). Particularly, the temporal
evolution of a QED cascade is depicted by plotting the number of particles with
a Lorentz factor exceeding 200. A single electron with Lorentz factor γe = 2×
105 moving perpendicular to a homogeneous magnetic background field (B =
0.2Ecrit) initiated the cascade. The plot profile is averaged over 1000 independent
simulation runs. Figure published in [78], © 2016 American Physical Society,
reproduced with permission, all rights reserved.

work [24]; one is called the proper event generator and the other alternative event generator. The
alternative version is implemented in VLPL, since it is quicker and more efficient from the com-
putational perspective. The data provided by Nina Elkina, however, show results for the proper
event generator5.

Following [63], a final test is performed by checking the power per unit energy dP/dεγ emitted
by an electron. This has the advantage that one can additionally check the energy distribu-
tion of the emitted photons. In particular, the test is done for an electron with γe = 100 in a
transverse magnetic background field. The field strength is such that χe = 1. Analytically, the
expression for dP/dεγ can be obtained by multiplying the differential photon emission rate [see
equation (2.5.5)] with εγ [40]. Figure 3.3.2 compares the exact result for dP/dεγ (gray solid line)
with the results from the VLPL implementation (black solid line). The VLPL result is thereby ob-
tained as follows. One runs the Monte-Carlo algorithm for a single electron (γe = 100, χe = 1)
and registers the energy of the photon if emission takes place. The procedure is repeated Nruns
times. After that, one sorts the emitted photons according to their energy in equidistant bins
of size ∆εγ . The number of photons in bin number i, which belongs to energy εγ, i = i∆εγ , is
denoted with Ni. In average, the spectral power can then be calculated from

dP
dεγ

∣∣∣∣
εγ, i

=
1

Nruns

Ni εγ, i

∆εγ ∆t
, (3.3.7)

where ∆t is the time step used in the simulation. Taking a close look at figure 3.3.2, one can
directly see that the VLPL result is in very good agreement with the exact expression.

5Similar deviations are also observed in other implementations (see, for instance, figure 10 in [63]).
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Figure 3.3.2: Results of the power per unit energy emitted by an electron with γe = 100 and
χe = 1 obtained from the Nikishov–Ritus theory [equation (2.5.5) multiplied by
εγ , gray solid line] and from simulations with the VLPL implementation of the
QED algorithm (black solid line). It is noted that the VLPL result is averaged
over 107 independent runs.

In conclusion, all tests showed that one can accurately reproduce the physics in the QED regime
with the PIC code VLPL. The following part of the thesis is therefore dedicated to actual laser–
plasma simulations in regimes, where these QED effects are important.
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4 Radiative trapping in standing waves
of two colliding laser pulses

After the comprehensive introduction into the numerical framework used throughout the thesis at
hand, the following part aims at discussing the physical problems that can be addressed with just
these methods. First, it will be shown that in the standing wave generated by two colliding ultra-
intense laser pulses, radiation loss effects change the electron dynamics in a plasma profoundly.
It becomes possible that electrons get trapped in the electric nodes of the standing wave, so
forming periodic structures. At even higher intensities, the pair production process becomes
more and more impactful. In fact, it will turn out that at some point the process will be so
effective that the generated electron-positron plasma alters the entire dynamics completely. It
will be demonstrated that it comes to a break of the standing wave structure of the two colliding
laser pulses, and correspondingly to the break of the radiative-trapping effect.
In the second part of the chapter at hand, the setup will be modified slightly. Higher-order
laser modes will be used instead of usual Gaussian laser modes. The modes of interest have
a more complex transverse profile and carry orbital angular momentum. They are therefore
also known as twisted light. As it will be shown later, this leads to surprising changes in the
electron dynamics such as radiative trapping along helical lines. It will be also pointed out that
one can drive electron structures having durations on the attosecond timescale. Depending on
the explicit laser parameters, these structures can be either disk-like electron bunches or helical
electron beams. The main features will be finally described within a semi-analytical model.

4.1 Introduction

Basically, the importance of QED effects like quantum radiation reaction or multi-photon Breit-
Wheeler pair production is described by the key parameter χ , which sets the field seen by a
particle in its own rest frame in relation to the critical field of QED [see equation (2.5.1)]. It
means that not only the field strength in the laboratory frame is important, but also the geom-
etry of the interaction plays a crucial role. The easiest example is an ultra-relativistic electron
with Lorentz factor γe propagating in the same direction as an ultra-intense laser pulse with
electric field amplitude EL. There, χe ' 1/(2γe)(EL/EQED) is relatively low. In the opposite
case of counter-propagation, χe ' 2γe (EL/EQED) is much larger which is why head-on colli-
sions of a laser beam with ultra-relativistic electrons are preferred in general. In addition to
laser-electron collisions, the interaction of two [81] or even more colliding [82, 83] laser pulses
with a target is investigated frequently. Such configurations have the advantage that particles
always have a non-zero scattering angle with at least one laser pulse, with the result that QED
effects are strongly enhanced. In this regard, these setups favor the development of QED cas-
cades [84, 85] which in turn cause strong absorption of the initial laser energy by the generated
electron-positron-photon plasma [74, 86]. It has also been shown that the collision of multiple
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4 Radiative trapping in standing waves of two colliding laser pulses

laser pulses lowers the threshold for pair production from vacuum [87]. Besides the enhance-
ment of QED effects, the standing-wave structure emerging from the superposition of two (or
multiple) counter-propagating waves allows the trapping of electrons at sufficiently high intensi-
ties induced by their radiation losses. Here, two different cases are usually distinguished1. First,
one talks about normal radiative trapping when the particles get trapped in the spatially fixed
nodes of the electric field [90]. This is possible in the standing wave generated by two laser
beams when they are either linearly polarized along the same axis [91] or circularly polarized
with opposite handedness [92]. Second, particles can also get trapped in the anti-nodes of the
electric field, which is referred to as anomalous radiative trapping [93]. At this point, it should
be stressed that, in contrast to normal radiative trapping, the anomalous trapping can only be
observed in the case of linear polarization [94]. The origins for both trapping mechanisms have
been studied recently. It has been found that normal radiative trapping is caused by the emer-
gence of attractors in the particles’ phase space as a consequence of radiation reaction [95, 96].
On the other hand, it has been suggested that anomalous radiative trapping is attributed to parti-
cles tending to move in a radiation-free direction [97].
In the following sections, the normal radiative trapping will be considered in more detail. In par-
ticular, special focus will be put on the questions how the electron-positron pairs created within
the interaction and the spatial profiles of the colliding laser pulses affect the radiative trapping.

4.2 Influence of pair production on the radiative trapping

As mentioned in the introductory part, normal radiative trapping can be observed for linearly as
well as for circularly polarized colliding laser waves. From here on, the radiative trapping will
be illuminated in more detail for the latter. This, however, requires both waves to have opposite
handedness since only in that case the standing wave can exhibit a spatially fixed node in the
electric field. Therefore, the wave propagating in the positive x-direction has left-handed orien-
tation and the other wave has right-handed orientation. It is noted that in the present thesis the
handedness of a wave is defined from the point of view of the receiver. In this definition, the
handedness coincides with the orientation of the screw formed in space by the electric (mag-
netic) field vector at a fixed moment in time. Then, neglecting in a first attempt any variations
transverse to the propagation axis x, the carrier waves can be modeled by the following vector
potentials

A1 = A0

[
cos(ω0t− k0x) êy + sin(ω0t− k0x) êz

]
,

A2 = A0

[
cos(ω0t + k0x) êy + sin(ω0t + k0x) êz

]
.

(4.2.1)

Here, k0 and ω0 are the wave number and angular frequency referring to a wavelength of λ0 =
1 µm, and A0 is the amplitude. In the simulations discussed in the following, normalized peak
values, a0 = eA0/

(
mec2

)
, between 200/

√
2 and 1500/

√
2 are assumed, corresponding to peak

intensities ranging from I = 5.5× 1022 Wcm−2 to I = 3.1× 1024 Wcm−2. Additionally, the
waves in equation (4.2.1) are multiplied with a Gaussian time envelope of e−(x−ct)2/(2τ2), where
τ is chosen such that the pulses have a full-width-at-half-maximum duration of 20 fs. The
two pulses illuminate a one-micron thick foil made of aluminum with initial electron density
ne = 50ncr from both sides at normal incidence. The density is lower than the solid density

1For the sake of completeness, trapping of particles induced by radiation reaction has also been observed in the case
of a traveling wave [88, 89].
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Figure 4.2.1: Space-time distribution of the electron density (a) without and (b) with taking
into account QED effects for irradiating laser pulses with a0 = 500/

√
2. Note

that only densities above ncr are plotted and that the color bar uses a logarithmic
scale. Data published in [78].

of aluminum and can thus be fabricated, for instance, from aluminum foams. In actual fact,
the exact ion species is of second rank as long as the ion mass-to-charge ratio is roughly two
times that of protons2. This is the case for almost each fully ionized low-Z material as which
(fully ionized) the target is assumed in the beginning. Physically, this is justified since the
intensities of the two laser pulses are clearly above the barrier-suppression-ionization threshold
of IBSI = 6.6×1020 Wcm−2 for the most tightly bound electrons in aluminum [98].

From a numerical point of view, the simulation box has a dimension of 40λ0 along x with a cell
size of ∆x = λ0/1000. Initially, the plasma fills the area 19.5 < x/λ0 < 20.5 and gets represented
by 100 macro-particles per species and cell. Both laser pulses are shifted such that they reach
the center position x0 = 20λ0 at time t = 10T0.

The effect of the radiative trapping is illustrated in figure 4.2.1, where one can see space-time
distributions of the electron density; in one case without3 [see figure 4.2.1(a)] and in the other
case with accounting for QED effects [see figure 4.2.1(b)]. The other parameters are the same
in both simulations, especially the dimensionless field amplitude of the irradiating laser pulses
which is here a0 = 500/

√
2. In the beginning, one can see that the inclusion of QED effects does

not alter the dynamics drastically. In both cases, the interaction of the incident laser pulses with
the plasma causes a piston-like push of the electrons, which leads to a symmetric compression
of the foil from both sides. It is clear that at this stage QED effects are less important as the
quantum parameter χ is low. This is basically due to electrons moving in the same direction as
their driving laser pulse, so geometrically suppressing χ . The compression continues until the
ponderomotive pressure exerted by the laser pulses is balanced by the pressure of the hot plasma.
In the end, the foil is approximately compressed by a factor 100 to a width of λ0/100 at time
t ≈ 6.75T0, simultaneously increasing the density by the same factor. Until now, the electrons

2Additional simulations with protons give similar results. In conclusion, the results are not too sensitive with respect
to the ion mass-to-charge ratio.

3It means that neither classical nor quantum radiation reaction is considered. Particles are solely pushed by the
Lorentz force. Pair production is also not treated.
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Figure 4.2.2: Space-time distribution of (a) the right-moving field component Er [see the def-
inition in equation (4.2.2)] and (b) the y-component of the electric field for the
case where a0 = 500/

√
2. In (b), the black part shows the electron density which

exceeds 10ncr plotted on a linear color scale. Data published in [78].

have gained energies in the MeV range during the interaction with the laser pulses so that they
are ultra-relativistic and rather inert. As a result, they cannot follow the driving wave oscillation,
so that the plasma becomes relativistically transparent for the incident radiation. This can be
nicely seen in a right-moving field component which is defined as

Er =
Ey +Bz

2
, (4.2.2)

and which can be found in figure 4.2.2(a). It can be retrieved that the plasma is opaque and
reflects a large part of the incident radiation in the piston-like stage. During the subsequent
stage of balance, one can observe that the fields on the left and on the right of the plasma
equalize more and more and finally match at time t ≈ 7.5T0. Physically speaking, it means that
the plasma becomes transmissive and, as consequence of this transparency, it emerges a transient
standing wave [see figure 4.2.2(b)]. Based on equation (4.2.1) and supported by figure 4.2.2(b)4,
the standing wave exhibits nodes and anti-nodes in the electric field symmetrically around x0 at

ξn− x0

λ0
=±2n+1

4
and

ζn− x0

λ0
=±n

2
, (4.2.3)

respectively (n is an integer larger than or equal zero). In the case of the magnetic field, nodes
and anti-nodes are swapped with respect to the electric field. The emergence of the transient
standing wave, however, changes the plasma dynamics profoundly. For the pure classical sim-
ulation [see figure 4.2.1(a)], it seems that the ponderomotive pressure is no longer sufficient to
confine the plasma and electrons are expelled from the center. It develops a dense jet of electrons
on both sides of the former foil and these electrons co-move with the laser pulses outwards. The
simulation with QED effects, in contrast, shows a different behavior [see figure 4.2.1(b)]. Al-
though also showing a break of the strong confinement in the center, the electrons are afterwards
not expelled far. On their way out of the center, the electrons collide with a counter-propagating
laser pulse in a nearly head-on geometry. This enhances the χ parameter with the result that

4The z-component of the electric field reveals the same structure like Ey in figures 4.2.2(a) and (b).
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Figure 4.2.3: Space-time distribution of the electron density for irradiating laser pulses with
dimensionless field amplitudes of (a) a0 = 200/

√
2 and (b) a0 = 800/

√
2. The

two arrows in (a) are meant to highlight the fraction of trapped electrons. Only
densities above ncr are again shown [see figure 4.2.1]. Data published in [78].
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Figure 4.2.4: Space-time distribution of the electron density for irradiating laser pulses with
dimensionless field amplitude of a0 = 800/

√
2. More precisely, (a) shows the

electrons from the foil and (b) the electrons resulting from Breit-Wheeler pair
production. Data published in [78].

electrons suffer significant radiation losses. In fact, the radiation losses lead to the trapping of
electrons in the nodes of the electric field which is emphasized in figure 4.2.2(b). The majority
of electrons is trapped in the closest nodes of the electric field at ±λ0/4 to the center x0, and
only some electrons reach the trapping centers at ±3λ0/4. The trapping is stable for almost six
laser periods and stops approximately with the end of the laser pulse at time t = 14.5T0. It is
noted that 0.04 pairs per primary foil electron are produced for a normalized field amplitude of
a0 = 500/

√
2 at time t = 15T0, implying that pair production is not of major importance for the

temporal evolution of the system.
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4 Radiative trapping in standing waves of two colliding laser pulses

In order to study how this radiative trapping depends on the intensity and to find out when the
production of electron-positron pairs becomes essential, further simulations with varying ampli-
tudes are conducted. Figure 4.2.3 therefore presents the space-time distributions of the electron
density for amplitudes of (a) a0 = 200/

√
2 and (b) a0 = 800/

√
2. First, one can see that the

initial piston-like inwards push is comparable for all considered amplitudes. At this stage, dif-
ferences can only be observed in the speed at which the foil is compressed. Higher intensities
leads to a faster compression as one would expect intuitively. At later times, however, the dy-
namics is different. To concretize, the low-intensity simulation, a0 = 200/

√
2, is reminiscent

of a mixture of the simulations in figure 4.2.1(a) and (b) because it shows classical as well as
QED features. For instance, one can see the formation of electron jets that are periodically ex-
pelled from the center. On the other side, there is already a fraction of electrons that is spatially
confined in the zeroes of the electric field due to radiative trapping which is stressed by the two
arrows in figure 4.2.3(a).
The high-intensity simulation, a0 = 800/

√
2, shows much more pronounced patterns than could

be observed in figure 4.2.1(b) for a dimensionless amplitude of a0 = 500/
√

2. Here, even the
fourth node of the electric field at ±7λ0/4 around the center x0 traps electrons very effectively.
In the space between two adjacent nodes, in contrast to the case a0 = 500/

√
2, the electron den-

sity does not drop to values of about zero and is rather smeared out. In addition, it is particularly
worth mentioning that the density peaks in the middle of two nodes, which coincides with an
anti-node of the electric field. These modifications in the laser–plasma dynamics can be ascribed
to the increasing weight of the pair production process on the interaction. To demonstrate this,
figure 4.2.4 shows the same simulation as figure 4.2.3(b), but makes a distinction between elec-
trons from the foil [see figure 4.2.4(a)] and electrons originated from the Breit-Wheeler process
[see figure 4.2.4(b)]. Already at first sight it is obvious that the density distributions for both
electron species differ. For electrons originating from the foil the trapping resembles the case of
a0 = 500/

√
2 because these electrons are predominantly trapped in the closest node at±λ0/4 to

the center x0. The number of trapped electrons in the next trapping node is visibly lower than be-
fore. This is related to the higher photon emission rate in the stronger field, which in turn reduces
the radiation-free path and so results in a faster trapping of the foil electrons. Just the opposite
can be seen in the distribution of the Breit-Wheeler electrons which mirrors the multifaceted
patterns from figure 4.2.3(b) and so allows explaining their origin. The photons emitted by the
foil electrons move ballistically through the standing-wave structure. If they are subjected to a
sufficiently strong field, χγ & 1, they can decay into an electron-positron pair. Predominantly,
this happens in the vicinity of maxima of the standing wave [92], which conforms to anti-nodes
of either the electric or the magnetic field. In this sense, the density peak at the electric anti-
node does not describe a proper radiative trapping by all means, but rather represents a point of
efficient pair production. After their birth, electrons and positrons also suffer radiation losses in
the standing wave with the result that they become trapped in the nodes of the electric field. On
the way to the trapping node they contribute—together with pairs being created apart from the
field maxima—to the aforementioned smearing effect of the particle density. Moreover, a closer
look at the data exposes that the pair-electron density reaches the same order of magnitude as
the foil-electron density in the most pronounced trapping center at ±λ0/4 and greatly exceeds it
elsewhere. Simultaneously, the number of pairs per primary foil electron is enhanced consider-
ably to 3.39 at time t = 15T0. One can thus infer that the production of pairs gets increasingly
dominant and will govern the temporal evolution of the entire system at some point. Indeed, this
can be already observed in the same simulation run and is demonstrated by figure 4.2.5 which
again shows the right-moving field component defined in equation (4.2.2). One can see that at
about t ≈ 13T0 there is a change in the behavior of the Er-field starting from the two electric
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Figure 4.2.5: Space-time distribution of the right-moving field component Er [see equa-
tion (4.2.2)] for irradiating laser pulses with dimensionless field amplitudes of
a0 = 800/

√
2. Data published in [78].

nodes at ±λ0/4 from x0. Physically speaking, the reason for the change is the surpassing of the
relativistically critical density by the combination of foil electrons and electron-positron plasma,
which drastically alters the transparency properties and re-establishes the opacity of the plasma.
Correspondingly, it comes to a break of the standing-wave structure before the end of the laser
pulses. At the same time, the break of the standing wave is equivalent to the end of radiative
trapping. This is confirmed by figures 4.2.4(a) and (b), where one can see that the electrons
are deflected from the nodes after time t ≈ 13T0 and so earlier than for a0 = 500/

√
2 [see fig-

ure 4.2.1(b)]. Additional simulations also suggest that the break of radiative trapping is shifted
forwards in time when considering higher intensities. Lastly, the interpretation is also under-
lined by figure 4.2.6 which shows a simulation for a0 = 800/

√
2 but without accounting for pair

production. On that condition, the radiative trapping remains stable over the whole duration of
the laser pulses. To conclude briefly, if one is particularly interested in studying the radiative
trapping effect, one should consider moderate intensities where the trapping is most likely stable
and not ruined by Breit-Wheeler pair production.

4.2.1 Multi-dimensional effects

In order to exclude that multi-dimensional effects impinge on the main physical conclusion
drawn in the last section, two-dimensional simulations are presented subsequently. In these, the
parameters like the dimension of the simulation box and grid steps are slightly adjusted such that
the simulations become computationally practicable. To be exact, the box is 20λ0 long in the
x-direction and also 20λ0 wide in the y-direction. The grid step is enlarged to ∆x = λ0/100 along
x, while it is laterally set to ∆y = λ0/20. The target is still one micron thick and has a density of
50ncr, but is now positioned around x0 = 10λ0. Dimensionless field amplitudes of a0 = 500/

√
2

and a0 = 1200/
√

2 are considered for the irradiating laser pulses. In the former case, the number
of particles per cell and per species resolving the foil is again 100, while it is reduced to 5 in the
latter. Transversely, the laser beams are characterized by a beam waist parameter of w0 = 2.5λ0,
corresponding to a full width at half maximum spot size radius of 4.2 µm. The initial positions
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Figure 4.2.6: Space-time distribution of the electron density for irradiating laser pulses with
dimensionless field amplitude of a0 = 800/

√
2 when pair production is not taken

into account. Data published in [78].

of the laser pulses are shifted such that they reach x0 after ten or fifteen laser periods for the
cases a0 = 500/

√
2 and a0 = 1200/

√
2, respectively.

Figure 4.2.7 shows a cross-section of the spatial distribution of [(a), (b)] the electron density and
[(c), (d)] the Bz-field5. It should be further stressed that here the ordinate indeed stands for the
transverse position and not for the time as in the last section and that the plots visualize a fixed
moment in time, namely 1.18T0 (left column) and 1.6T0 (right column) after the peak intensities
reached the center x0. The plots on the left refer to the low-intensity case and the plots on the
right to the high-intensity case. At first sight, figure 4.2.7(a) resembles the patterns obtained in
the one-dimensional geometry for a0 = 500/

√
2. Within the area of the focal spot, |y| . w0,

one can clearly see that most of the electrons are concentrated at ±λ0/4 around x0, and only a
minor part reaches ±3λ0/4. In between, electrons are almost absent. The positions of the elec-
tron concentration coincide with the nodes of the electric field or with anti-nodes in terms of the
magnetic field. This can be easily proven by a comparison with the Bz-field in figure 4.2.7(c).
One can thus draw the first conclusion that multi-dimensionality does not alter the main proper-
ties of radiative trapping in a critical way.
Continuing with the high-intensity case, the density distribution of the foil electrons demon-
strates that the behavior of the system undergoes a change [see figure 4.2.7(b)]. In principle,
the foil electrons are mainly located in the nodes at ±λ0/4 to x0. But it can be seen that for
|y| . 1.5λ0 these electrons are pushed inwards. The reason for that can be deduced from the
z-component of the magnetic field which clearly reveals that the plasma is opaque in the center
[see figure 4.2.7(d)]. The opacity of the plasma causes a break of the standing-wave structure
which in turn leads to a piston-like push of the trapped electrons in the propagation direction
of the driving laser pulse. In contrast, it seems as if the radiative trapping remains stable for
|y|& 1.5λ0. This can be attributed to the transverse Gaussian profile of the laser beam. For larger
y, the field is weaker than in the center with the result that pair production is less efficient. As
a consequence, the relativistically critical density is not yet approached and the plasma remains

5It is noted that Bz is also divided by a0 which simplifies the use of a single color bar scale for the two different
cases.
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Figure 4.2.7: Results from two-dimensional simulations for the [(a), (b)] electron distribution
and [(c), (d)] the magnetic Bz-field. The results in [(a), (c)] and [(b), (c)] belong
to dimensionless field amplitudes of a0 = 500/

√
2 and a0 = 1200/

√
2, respec-

tively. For reasons of visibility and comparability, it is noted that (b) shows only
the distribution of foil electrons and that Bz is additionally divided by a0. The
data display the system 1.18T0 [(a), (c)] and 1.6T0 [(b), (d)] after the peak of each
laser pulse reached the center position. Data published in [78].

transparent. In that sense, the standing wave and so the radiative trapping can be maintained
for a longer time. The larger amplitude of the laser with respect to figure 4.2.7(a) additionally
allows the trapping of electrons at larger lateral positions.
Recalling that the breakdown of radiative trapping sets in at an amplitude of approximately
a0 = 800/

√
2 in the one-dimensional geometry, it is shifted to higher amplitudes in the two-

dimensional case. This can be easily understood when considering again the transverse profile
of the laser beams. Though not leaving the trapping center longitudinally, electrons and positrons
likely experience a ponderomotive push along the y-axis. Hence, the density in the trapping cen-
ter does not rise as fast as in the one-dimensional case, in this way leading to a higher threshold
intensity. Eventually, one can conclude that the break of radiative trapping is not affected by the
multi-dimensional geometry, but on the other hand the intensity at which the break occurs has
to be adjusted slightly.
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4 Radiative trapping in standing waves of two colliding laser pulses

4.3 Radiative trapping in the collision of twisted light pulses

The preceding section dealt with radiative trapping and its dependence on the pair production
process. It was shown that above a certain threshold intensity the pairs are generated in such
an enormous number that the plasma becomes opaque, causing the break of the standing wave
and so of the radiative trapping. The following section picks up again on the radiative trap-
ping, but illuminates it with particular regard to exotic properties of the irradiating laser pulses.
These will be modeled as Laguerre–Gaussian beams which denote higher-order solutions to the
paraxial wave equation in cylindrical coordinates. Fascinating about Laguerre–Gaussian modes
is that they are supposed to carry a well-defined orbital angular momentum, which was first
realized by Allen et al. almost three decades ago [99]. Since then, light carrying orbital angu-
lar momentum—sometimes also labeled with the prefix twisted or vortex—has gained a lot of
interest in many areas of physics due to its potential for a wide range of applications. These ap-
plications cover the fields of optical microscopy [100, 101], optical manipulation on the micron
scale [102, 103], quantum information [104, 105] and many more [106]. Usually, these appli-
cations work out at non-relativistic intensities. In fact, it is not standard practice in laboratories
around the globe to provide twisted light with relativistic intensities. So far, there are only a
couple of works that address appropriate mechanisms to change that. These include Raman am-
plification in plasma [107], the so-called light fan scheme [108], plasma surface holograms [109]
and plasma volume holograms [110]. Fortunately, first demonstrations in experiments have been
reported just recently [111, 112], which pave the way for twisted light–matter interactions in
the relativistic regime. There, it is expected that twisted light enables the acceleration of hollow
electron beams in laser-driven wakefields [113–115], of ions in ponderomotive beat waves [116],
and even allows the laser-driven wakefield acceleration of positrons [117]. Twisted light also af-
fects the generation of high harmonics in under- and over-dense plasma [118–120], preserves the
spin polarization of wakefield-accelerated electrons [121], and is already considered in the QED
regime [122, 123] with promising applications for the generation of twisted γ-rays [122–126].

The following section continues with a QED-relevant regime. The main setup remains un-
changed with reference to section 4.2, now just assuming the collision of twisted light pulses.
However, the fact that twisted light pulses carry orbital angular momentum requires simulations
in a fully three-dimensional geometry. Numerically, the simulation box has a size of 20λ0 in the
x-direction and 25λ0 in both transverse directions, divided into smaller cells of size ∆x = 0.05λ0
and ∆y,z = 0.075λ0. The one-micron thick foil is again located around x0 = 10λ0 while filling
transversely the entire space. The initial electron density of the foil is still 50ncr and the ions
now have a mass-to-charge ratio that is exactly two times that of protons. In the simulations,
10 macro-particles per cell and per species are used to resolve the target. The twisted light,
which is impinging at normal incidence onto the foil’s surface, is modeled as a circularly po-
larized Laguerre–Gaussian mode. Using cylindrical coordinates with x along the cylinder axis,
r =

√
y2 + z2 and ϕ = arctan(z/y), the transverse electric field profile can be written as [127]

E⊥ = ± E0C|m|p
w0

w(x)

(√
2r

w(x)

)|m|
L|m|p

(
2r2

w2(x)

)
exp
(
− r2

w2(x)
− (x− ct)2

2τ2

)
(4.3.1)

×
[
sin
(

ω0t∓ k0x∓mϕ +φ
|m|
p (r, x)

)
êy∓ s cos

(
ω0t∓ k0x∓mϕ +φ

|m|
p (r, x)

)
êz

]
.

Here, C m
p is a mode-dependent normalization constant defined such that E0 describes the peak

field, p is a natural number counting the zeros of the generalized Laguerre polynomial L m
p , and
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Figure 4.3.1: Electron distributions in the xy- and xz-plane at time t = 10T0 for two colliding
twisted light pulses (a0 = 500) both with m = −1 but different handedness s =
+1 (right-moving) and s = −1 (left-moving). Please note that, in contrast to
figure 4.2.7, the longitudinal axis x is shown along the ordinate. Data published
in [129].

φ m
p is a space-dependent phase given by

φ
|m|
p (r, x) =− k0r2

2R(x)
+(2p+ |m|+1)arctan

(
2x

k0w2
0

)
. (4.3.2)

The detailed shapes of the beam waist w(x) and radius of curvature R(x) are not of further in-
terest, but can be found in [127]. It is also stressed that the different signs in equation (4.3.1)
distiguish between right- and left-moving waves. In particular, the upper and lower sign rep-
resent the right- and left-moving wave in that order6. Moreover, m is an integer often called
azimuthal index and s characterizes the handedness (s = +1 for left-handed and s = −1 for
right-handed orientation). At this point, it is interesting to note that the azimuthal index m and
the handedness s are closely related to the angular momentum of light. It is generally established
that such a mode can be understood as a collection of photons each carrying an orbital angular
momentum of mh̄ and a spin angular momentum of sh̄ along their direction of motion [128]
(see also appendix A.2 for more information). Returning to the simulation parameters, both
twisted light pulses have mode indices of p = 0 and m = −17. The handednesses of the right-
and left-moving pulse are s = +1 and s = −1, respectively. As previously, the full width at
half maximum duration of the pulses is 20 fs and they have a minimal beam waist parameter of
w0 = 2.5λ0 at the focus x0 = 10λ0. The peak intensity is I = 6.86×1023 Wcm−2 which is equal
to a dimensionless field amplitude of 500. Section 4.2.1 showed that the threshold at which pair
production alters the dynamics decisively is shifted to higher intensities in higher dimensions.
The pair production module is therefore not included in the following simulations.

6This is the way the fields are modeled in the simulations.
7Modes with p = 0 and m 6= 0 are also referred to as donut modes because the field is zero on axis and non-zero off

axis, making the (time-averaged) field distribution look like a donut.
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Figure 4.3.2: The plot shows the cells in the domain 9.75 < x/λ0 < 10.25 and r/λ0 < 4 in
which the electron density exceeds 150ncr at time t = 10T0. The shading is meant
to improve the visibility of the pattern and is performed according to the x-value
of each cell. More precisely, darker shades of gray refer to larger values of x.
See figure 4.3.1 for more information about the simulation parameters.

4.3.1 Impact of twisted light modes on the standing-wave structure

The initial stage of the interaction is almost identical to the previous case of non-twisted pulses.
After the piston-like push in the beginning, the target becomes relativistically transparent for
the incident laser pulses. In the subsequent stage, however, modifications can be observed in
the interaction. Figure 4.3.1 shows the simulation results for the electron density in the xy-
[see figure 4.3.1(a)] and xz-plane [see figure 4.3.1(b)] at time t = 10T0. Already at first glance,
one can see different patterns in the electron density distribution as compared with non-twisted
pulses. First, one can observe in both cross sections that electrons accumulate at small lateral
positions. This is due to the transverse field structure of a twisted beam which, in marked contrast
to Gaussian beams, approaches zero in the center. As a consequence of this field minimum,
electrons undergo a ponderomotive push to the center. Second, radiative trapping can still be
identified in the electron distribution. Notably, the positions of the trapping centers in the xy-
and xz-plane differ clearly from each other. While the electrons are trapped at x = 10λ0 in the
xy-plane [see figure 4.3.1(a)], they are mostly found at x = 9.75λ0 and x = 10.25λ0 in the xz-
plane [see figure 4.3.1(b)]. In particular, the trapping position x = 10λ0 in the xy-plane appears
new. The asymmetry between the trapping in the xy- and xz-plane indicates that twisted beams
generate a much more complex and multifaceted standing-wave pattern. In order to understand
the trapping pattern in detail, figure 4.3.2 shows the distribution of cells in the volume 9.75 <
x/λ0 < 10.25 and r/λ0 < 4 in which the electron density exceeds 150ncr at time t = 10T0 as
a three-dimensional plot. The data are colored according to the x-position of the cells, namely
darker shades of gray belong to larger values of x. At first glance, the distribution of cells looks
like a ship’s propeller. On closer consideration, one can indeed see that the cells are arranged on
short sections of two distinct spirals. These spirals have right-handed orientation and their length
is approximately λ0/2. This suggests that in the present case of two counter-propagating twisted
beams, both characterized by the same azimuthal index m = −1 but opposite handedness, the
zeros of the electric field form a helical pattern. To check this, one starts with equation (4.3.1).
There, particularly the oscillation term in the bottom line is responsible for the shape of the
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standing wave. For the y-components of the electric field, the contributing terms are given by

Ey,1 ∝ sin(ω0t− k0x+ϕ) and Ey,2 ∝−sin(ω0t + k0x−ϕ) . (4.3.3)

The indices 1 and 2 label the right- and left-moving wave, respectively, and the proportionality
factor is the same for waves 1 and 2. For completeness, it corresponds to the first line of equa-
tion (4.3.1) with the substitution p = 0 and |m|= 1. It is further noted that the additional phase
from equation (4.3.1) is neglected because it is expected to be small in the vicinity of the focus,
and thus is only of second rank for the structure of the standing wave. Then, the total electric
field along y is the superposition of Ey,1 and Ey,2, which in the end can be expressed as

Ey,1+2 ∝−2cos(ω0t)sin(k0x−ϕ) (4.3.4)

when using the addition theorems for trigonometric functions. By analogy, one finds for the
z-component

Ez,1+2 ∝ − cos(ω0t− k0x+ϕ)+ cos(ω0t + k0x−ϕ)

∝ −2sin(ω0t)sin(k0x−ϕ) .
(4.3.5)

A subsequent comparison between equations (4.3.4) and (4.3.5) reveals that the total electric
field has time-independent nodes which coincide with the zeros of sin(k0x−ϕ). Correspond-
ingly, the argument has to be either 0 or π , yielding the two different solutions

k0x = ϕ and k0x = ϕ +π. (4.3.6)

Manifestly, equation (4.3.6) describes two different spirals both having right-handed orientation
as one can easily reconstruct. This is in agreement with the observations made in figure 4.3.2.
The calculation regarding equation (4.3.6) also shows that the orientation of the helices is a direct
consequence of the sign of the azimuthal index, so that one would expect left-handed spirals in
the case of two twisted beams with m = +1. Apart from the aforementioned, one can deduce
from equation (4.3.6) that the electric field is zero at x = 10λ0 under azimuth angles of ϕ = 0 and
ϕ = π , or at x = (10±0.25)λ0 under azimuth angles of ϕ =±π/2. Fortunately, this yields the
trapping centers observed in figure 4.3.1 from which follows that key features can be understood
within a very simple model.

Simultaneously, it arises the question how changing, for instance, the sign of the azimuthal index
of only one twisted beam modifies the radiative trapping. In doing so for the left-moving beam,
the new superimposed total electric field is given by

Ey,1+2 ∝ sin(ω0t− k0x+ϕ)− sin(ω0t + k0x+ϕ)

∝ −2cos(ω0t +ϕ)sin(k0x) ,

Ez,1+2 ∝ − cos(ω0t− k0x+ϕ)+ cos(ω0t + k0x+ϕ)

∝ −2sin(ω0t +ϕ)sin(k0x) .

(4.3.7)

One can see that under such circumstances the spatial structure of the electric nodes is more
reminiscent of the trapping with non-twisted beams as one does not expect a trapping along a
helical line. Instead, it is predicted that electrons are trapped around x = 10λ0 for all azimuth
angles ϕ . Eventually, this prediction is supported by a simulation of two counter-propagating
twisted beams with opposite azimuthal indices (and opposite handedness) as can be seen in
figures 4.3.3(a) and (b). One can see that the electrons are trapped at the same x-position in the
xy- and xz-plane which is also in agreement with equation (4.3.7).
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Figure 4.3.3: Electron distributions in the xy- and xz-plane at time t = 10T0 for two colliding
twisted light pulses (a0 = 500) with m = −1 and handedness s = +1 (right-
moving) and m =+1, s =−1 (left-moving). Data published in [129].

To conclude briefly, the structure of the trapping can be strongly modified by the presence of
twisted beams. It was shown that helical trapping centers become possible. This, however, is
only expected in the case of two counter-propagating twisted beams with the same azimuthal
index m. In contrast, if the two colliding twisted beams have different azimuthal indices, the
trapping is similar to non-twisted beams8.

4.3.2 Generation of ultra-short electron patterns

The following subsection builds on two recent publications [129, 130] and has the intention to
show that the setup can also be used to drive ultra-short electron patterns. These ultra-short
patterns can either be disk-like electron bunches or helical electron beams. The emergence of
these patterns is finally explained within a simple model.

The discussion starts with a look at figure 4.3.4 which shows the same simulation like figure 4.3.1
but four laser periods later in time9. One can see that the trapping of electrons already starts to
dissolve because the end of the laser pulse duration is reached. The more interesting effect,
however, can be observed for small lateral positions, z/λ0 < 2. Here, electrons are released in
regular distances from both sides of the target. At this point it is particularly noteworthy that the
distribution of electrons during that release is different for electrons on the left and right of the
target. While electrons are arranged on a single line on the right, they form two different lines
on the left. Moreover, it seems as if these released electrons move in positive (on the right) and
negative (on the left) x-direction. To get a clearer impression of the electron patterns, figure 4.3.5
gives a visualization of them in the three-dimensional space. To be more exact, figure 4.3.5(a)
focuses on the electrons on the right by plotting all grid cells in the volume 10.5 < x/λ0 < 15.5

8More generally, one can observe helical nodes as soon as m1 +m2 6= 0, where 1 and 2 subscript the two counter-
propagating beams.

9As a reminder, the right-moving pulse has parameters m=−1 and s=+1, while the left-moving pulse has m=−1
and s =−1.
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Figure 4.3.4: Electron distributions in the xz-plane at time t = 14T0 for two colliding twisted
light pulses (a0 = 500) both with m=−1 but different handedness s=+1 (right-
moving) and s =−1 (left-moving). Data published in [129].
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Figure 4.3.5: The plots show the cells in the volume (a) 11 < x/λ0 < 15 and r/λ0 < 1.5, (b)
4.5 < x/λ0 < 9.5 and 0.75 < r/λ0 < 1.5 in which the electron density exceeds
(a) 50ncr, (b) 10ncr at time t = 14T0. The shading in (b) is meant to improve
the visibility of the pattern and is performed according to the y-value of each
cell. Darker shades of gray refer to larger values of y. See figure 4.3.4 for more
information about the simulation parameters. Data published in [129].

and r/λ0 < 1.5 which host electrons densities above 50ncr. Under these conditions, it becomes
evident that a train of disk-like electron bunches is released from the target. The bunches are
thereby well-separated longitudinally with a regular spacing of one laser wavelength λ0 (see
also figure 4.3.6) and tightly compressed in the transverse direction. In particular the clear lon-
gitudinal separation in combination with the spacing of λ0 suggests that all the bunches have a
length significantly shorter than λ0. In fact, a longitudinal cut of the electron density through the
center of the bunches depicts that the bunches have full width at half maximum lengths down to
approximately λ0/4 (see figure 4.3.6). Expressed in terms of time, the electron bunches have an
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Figure 4.3.6: Cut of the electron density along the x-axis for fixed lateral positions y= z= 0λ0.
See figure 4.3.4 for the simulation parameters. Data published in [129].

ultra-short duration of ≈ 830 as, which potentially makes them interesting for a wide range of
applications in the attosecond sciences [14]. Beyond to their ultra-short duration, these bunches
also have extraordinarily high densities. For instance, it can be seen that the lastly released
bunch at x ≈ 11.55λ0 has a density of roughly 200ncr. Bunches that were released earlier have
lower densities, which indicates that the bunches disperse slightly in the transverse direction
with evolving time, but their density still remains high though.
Returning to the discussion about the electron patterns in the three-dimensional space, one might
naively expect two laterally displaced trains of disk-like electron bunches when looking at fig-
ure 4.3.4 with the knowledge of figure 4.3.5(a). In reality, the electron pattern on the left is
completely altered with respect to the right. This is illustrated in figure 4.3.5(b) which plots all
grid cells in the volume 4.5 < x/λ0 < 9.5 and 0.75 < r/λ0 < 1.5 in which the electron density
exceeds 10ncr. Rather than seeing laterally displaced disk-like electron bunches, one can observe
that the electrons are distributed on helical patterns instead. More detailed, one can identify two
different helices on which the electrons are arranged when taking a closer look. Both of the two
helices have right-handed orientation and twist around the x-axis with a period of 2λ0. The lon-
gitudinal separation between the two neighbored helices turns out to be λ0 (see also figure 4.3.4).
Likewise to the bunches, these helical electron patterns are also characterized by ultra-short du-
rations on the attosecond timescale. In the end, it is noted that similar electron patterns have
been reported in recent works about the interaction of circularly polarized Laguerre–Gaussian
beams of relativistic intensity with several targets, ranging from nanorods [131, 132] over micro-
droplets [133] to under-dense plasma slabs [134].

To summarize the key features discussed so far: On the target’s right, a train of disk-like electron
bunches is generated. Conversely, two helical electron beams are excited on the left. Recalling
that the right- and left-moving laser beams have mode parameters m = −1, s = +1 and m =
−1, s =−1, respectively, this gives the impression that the electron patterns can be understood
with the help of the total angular momentum per photon, j = m+ s. This quantity differs for
the two laser beams and is equal to j = 0 (right-moving) and j = −2 (left-moving). In order
to understand the connection with the generated electron patterns in detail, the phase of the
electric field turns out to be helpful. The focus is first laid on the electric field of only beam
which propagates in positive x-direction for the sake of simplicity. Thereby, p = 0 is the only
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mode parameter that is fixed, while m and s are variable to generalize the discussion as much
as possible. In addition, the geometry suggests the expression of the electric field in terms of
its radial and azimuthal components. These can be determined from the Cartesian components
according to the transformation rule

Er = Ey cos(ϕ)+Ez sin(ϕ) and Eϕ = Ez cos(ϕ)−Ey sin(ϕ) . (4.3.8)

Inserting the expressions for Ey and Ez from equation (4.3.1) and concentrating on the phase
dependence, one arrives at

Er ∝ sin
(

ω0t− k0x− jϕ +φ
|m|
p (r,x)

)
,

Eϕ ∝ − s cos
(

ω0t− k0x− jϕ +φ
|m|
p (r,x)

)
,

(4.3.9)

after making use of s =±1 and the addition theorems for trigonometric functions. It can be seen
that the index j appears in the radial and azimuthal electric field components. Even the calcula-
tion of the laser’s electric field along the propagation direction yields a similar phase dependence
(see appendix for the details of the calculation). As a result, the field has a unique dependence on
a single phase which makes an interpretation of the emerging electron patterns feasible. At first,
consider a non-zero j and neglect again the phase φ m

p (r,x) as it varies marginally for distances
not far (with respect to the Rayleigh length) from the focus. Then, one can see that for each
fixed longitudinal position x there are j angles ϕ at which the electric field has the same phase
at time t. When such a laser phase is appropriate, electrons can be captured and co-move with
the driving laser pulse for rather long times [135, 136]. This phase capture is likely responsible
for the emergence of | j| helical electron orbits. As all electrons on such a helix are caught in
the same phase, one can easily deduce further characteristics like orientation of the spiral or the
spacing between neighbored spirals. For this purpose, consider a fixed moment in time. It thus
requires

k0x+ jϕ = constant (4.3.10)

to stay in the same phase. This describes a spiral whose orientation is determined by the sign of
j. For j > 0, one needs to rotate around a negative angle ϕ in order to compensate for a phase
increase caused by incrementing x. This is equivalent to a left-handed screw. Oppositely, j < 0
results in a screw with right-handed orientation. Further, one can see that the electric field has
a spatial period of jλ0 along the propagation axis x. Since | j| helical patterns appear in total,
the spacing between two adjacent spirals is λ0. The above mentioned confirms the observations
from figures 4.3.4 and 4.3.5(b), where the twisted light beam with j = −2 < 0 excited two
intertwined spirals with right-handed orientation, each with a period of 2λ0 and a spacing of λ0
along the longitudinal axis10. The generation of a single and a triplet helix is shown in [130] at
a moderately relativistic intensity of I = 2.47×1021 Wcm−2 (a0 = 30) for the case | j|= 1 and
| j|= 3.
The case j = 0 is slightly different as the phase is completely independent of the azimuth angle
ϕ . Correspondingly, electrons with any angle ϕ can get phase-locked at a proper position x. This
explains the disk-like structure of the electron bunches. The absence of ϕ in the phase further
implies the period of the bunches to be same as the usual period of a traveling wave, namely λ0.
This is exactly the longitudinal spacing of two disk-like electron bunches, as seen in figures 4.3.4
and 4.3.5(a).
10It is noted that the findings can be directly applied to a left-moving pulse though the discussion refers to a right-

moving pulse. This is due to the fact that the handedness of a screw—which is defined by the signs of m and
s—is the same for left- and right-moving waves.
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Figure 4.3.7: Electron distributions in the xz-plane at time t = 14T0 for two colliding twisted
light pulses (a0 = 500) with m =−1 and handedness s =+1 (right-moving) and
m =+1, s =−1 (left-moving). Data published in [129].

To demonstrate the applicability of the phenomenological explanation once more, a simulation
is conducted in which only the azimuthal index of the left-moving beam is changed in sign
(m = +1). As a consequence, j is zero for both the right- and the left-moving twisted pulse.
Hence, one expects the generation of a train of disk-like electron bunches on both sides of the
target. This is indeed what can be retrieved from the simulation data (see figure 4.3.7). One
can see that the pattern on the left hand side of the target is modified and now also indicates
a train of electron bunches. It should be emphasized that a change of the left-moving laser
beam parameters leads to a change of the electron patterns on the target’s left. This is a nice
indicator for the plasma transparency induced within the interaction. The electron beams driven
by circularly polarized Laguerre–Gaussian laser beams thus have the potential to represent a
diagnostic tool for the optical properties of plasmas interacting with laser radiation of ultra-high
field strengths.

4.4 Summary

In summary, this chapter dealt with the normal radiative trapping effect, which describes a
trapping of electrons in the nodes of the superimposed electric field of at least two counter-
propagating laser pulses induced by radiation losses. In the first part of the chapter (see sec-
tion 4.2), the trapping was thoroughly investigated with special regard on how it behaved when
the peak intensity of the irradiating laser pulses got continuously increased. Supported by PIC
simulations in a one-dimensional geometry, it was shown that the trapping breaks down above a
certain intensity. This could be ascribed to the increasing weight of the pair production process
on the dynamics. Namely, at some point the density of generated pair plasma got so high that the
plasma changed its optical properties and became opaque for the incident radiation. This caused
a break of the standing wave with the result that also the trapping disappeared. It was further
shown that multi-dimensional effects did not impact the main conclusion decisively, but led to a
higher threshold up to which the trapping could survive.
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4.4 Summary

In the second part of the chapter (see section 4.3), the radiative trapping was considered from
the perspective of realizing it with exotic light. This was achieved by two counter-propagating
and circularly polarized Laguerre–Gaussian laser beams. Generally, Laguerre–Gaussian laser
modes are known to carry orbital angular momentum proportional to their azimuthal index m. It
was found that the trapping pattern might change profoundly. Interestingly, one could observe
that the electrons got trapped along helical patterns when the azimuthal indices of both counter-
propagating laser pulses were equal to m = −1. Conversely, as one index was changed to m =
+1, the trapping became more reminiscent of the case of non-twisted beams. Analytically, the
structure of the trapping patterns was brought in connection with the electric field nodes which
also forms helical or non-helical patterns depending on the value of the azimuthal indices.
As a side effect, it could be observed that circularly polarized twisted light beams allow the laser-
driven excitation of either disk-like electron bunches or helical electron beams. Whether the
electrons got excited as bunches or helical beams was determined by the total angular momentum
carried by a laser photon, j = m+ s. If j = 0, one will observe bunches, otherwise, one will see
| j| helical electron beams. In the latter case, the orientation of the electron spiral was given by
the sign of j. Impressively, both bunches or helical beams were characterized by durations on
the attosecond scale. This potentially makes them promising for a wide range of applications.
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5 Approaching highly supercritical
regimes of strong-field QED

The preceding chapter discussed the normal radiative-trapping effect in the standing wave tran-
siently generated by two counter-propagating and circularly polarized laser pulses. In that sce-
nario, the quantum nonlinearity parameter χ of electrons and photons doubtlessly approached
and surpassed unity. This led to efficient pair production and finally to the break of the radiative
trapping effect above a certain intensity threshold. However, χ was likely below the order of
10. In the now coming chapter, in contrast, much more extreme conditions will be addressed.
It will be shown that in the midterm future χ values above 1000 might be in reach. As will
be explained, this requires the interaction time between electrons and fields to be ultra-short.
The main purpose of the chapter at hand is thus the demonstration how to create experimental
configurations in which such ultra-short interaction times are possible.

5.1 Introduction

Quantum electrodynamics is one of the most successfully tested theories in physics. In the
strong-field regime, however, it has been only possible so far to probe the theory in the regime
χ . 1 with optical laser pulses as, for instance, in the seminal E-144 experiment at the Stanford
Linear Accelerator Center (SLAC) in the United States [137, 138] or in two recent experiments
with the Astra-Gemini laser of the Central Laser Facility at the Rutherford Appleton Laboratory
in the United Kingdom [19, 20]. Using the strong fields in aligned crystals serves as a good
alternative to laser-based setups [139, 140]. There, χ ≈ 7 has been achieved in an experiment at
CERN in the Switzerland [141]. In nature, however, it assumed that much more extreme con-
ditions can occur. Particularly in astrophysical environments such as magnetized neutron stars,
supercritical magnetic fields defined by B� BQED are present [142, 143]. Apparently, a repro-
duction of such conditions on earth would allow a deeper understanding of astrophysical objects.
Though rapid progress in technology, reaching supercritical fields directly in the laboratory is
still far beyond current capabilities. In combination with ultra-relativistic particles, however, one
can boost to supercritical fields in the proper reference frame of the particle. Note that the field
seen by such a particle is most likely not of magnetic type. The physics is thus complementary
to pure supercritical magnetic fields, but especially important with regard to the upcoming high-
intensity experiments at various facilities [21–23]. Going over to even higher fields, radiative
corrections are expected to become more and more important. Physically speaking, this means
that the emission of virtual photons by ultra-relativistic particles and the temporary conversion
of a high-energy photon into a virtual electron-positron pair contribute significantly to the rate
of the QED processes. As these radiative corrections grow unusually fast in the presence of a
strong background field (see, for instance, [144, 145]), it was already conjectured in the 1970s
by Ritus and Narozhny [146, 147]—and revisited by Fedotov in 2017 [148]—that a perturbative
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consideration of these loop corrections breaks down if αχ2/3 & 1, and hence at χ & 1600. Corre-
spondingly, QED becomes a fully non-perturbative and strongly coupled theory1. In fact, recent
works have refined that the power-law scaling of the loop corrections, which is the reason for
the conjectured breakdown of perturbation theory, can strictly speaking only be observed in the
case of a constant-crossed field [149, 150]. As noted in section 2.5.1, ultra-relativistic particles
see any field in the high-intensity limit as a constant-crossed field, and this class of background
field is also essential for the application of the Monte-Carlo algorithm (see section 3.3). This
implies that as long as the underlying approximations are justified, the QED-PIC method allows
investigating the power-law regime.

The regime αχ2/3 & 1 is barely studied at present and has only regained attraction in the last
couple of years. One of the main reasons for missing studies is the assumption of the commu-
nity that the regime is far beyond experimental reach, and therefore there is no urgent need for
detailed analyses. This follows mainly from the ultra-fast time which characterizes the radiation
losses in such extreme environments. In this regard consider an ultra-relativistic electron initially
located outside a strong field. While approaching the strong field the electron is forced to emit
high-energy photons. This can lead to significant radiation losses which reduce the energy of
the electron and, as a consequence, also the value of the quantum nonlinearity parameter χe

2. It
is therefore necessary that the switching time of the electromagnetic background field is smaller
than or at least comparable to the radiation time trad in order to mitigate radiation losses of the
electron, and so to approach the highly supercritical regime. As noted in section 3.3, the radia-
tion time can be identified with the inverse of the photon emission rate [see equations (2.5.6) and
(2.5.7)]. In the case that the electrons are subjected to supercritical fields (χe� 1), one finds

trad =W−1
rad '

(
1.46

mec2

h̄γe
αχ

2/3
e

)−1

, (5.1.1)

which reduces to3

trad ∼ γe τC (5.1.2)

in the regime αχ
2/3
e & 1. Here τC = h̄/

(
mec2

)
= 1.3 × 10−21 s is the reduced Compton time.

The minimum duration τL of a laser pulse is restricted to the laser period TL, and hence to the
femtosecond scale since high intensity laser systems operate at optical frequencies (TL ∼ 3 fs).
Resulting from that, electron energies in the multiple-TeV range

(
γe ∼ 106

)
are necessary to

boost trad to the femtosecond level. Such lepton energies are more than one order of magnitude
beyond the energies that are currently attainable with standard linear accelerators. At SLAC,
for instance, experiments with 46.6 GeV electrons were conducted in the 1990s [137, 138],
and it was even possible to accelerate electrons up to a maximum energy of 85 GeV when
combined with a plasma acceleration stage in 2007 [151]. At the Super-Proton-Synchrotron
North Area facility at CERN, single electrons and positrons with energies of ≈ 100 GeV are
available in the H4 beam line [139, 152]. Because of all that, one can conclude that the collision
of ultra-relativistic electrons and clean optical laser pulses is not promising for probing the highly
supercritical regime. Possible alternatives therefore demand finding experimentally acceptable
configurations at a lower energy scale, most likely at the 100 GeV level. Obviously, this scale

1It is noted that in the following the expressions fully non-perturbative regime, αχ2/3 & 1, and highly supercritical
fields (regime) will be used interchangeably.

2The index e means that an electron or a positron is considered. If the index is γ , then a photon will be addressed.
In the case of a missing index, χ is not restricted to a specific species.

3Note that numerical factors of the order of unity have been omitted.
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5.2 Non-perturbative QED collider

has the advantage that it is already practicable at CERNs North Area facility [152]. Moreover, it
is also worth mentioning that there is already a plan for the realization of a new linear accelerator
operating at the 100 GeV level, termed as the International Linear Collider (ILC) [153]. For
100 GeV electrons, χe = 1600 requires at least intensities of I ' 3.7× 1024 Wcm−2, which
are, in principle, predicted by upcoming laser facilities [21–23]. These laser pulses, however,
are too long because the radiation time drops to values of approximately trad ' 200 as < τL. At
this point, there are basically two distinct ways how to handle that time constraint: First, one
can think about other sources of strong electromagnetic fields apart from optical laser radiation,
like for example high-current particle beams. The length of a particle beam is not limited to
(wave)lengths on the micron scale, so allowing sub-femtosecond switching times of the field.
Additionally, the strength of the field can be controlled by the carrier current and the transverse
size. And second, one can think about mechanisms that structure the optical laser radiation in
such a way that the interaction time between the particle and the field is reduced to a minimum.
As will be discussed in the next sections, one can find feasible experimental configurations for
both approaches.

5.2 Non-perturbative QED collider

The presentation of experimentally feasible configurations starts with the non-perturbative QED
collider as recently proposed by Yakimenko et al. [154]. Figure 5.2.1 gives a sketch of the
scheme. The proposal pursues the collision of two 100 GeV-class electron (or positron) beams
of appropriate current and size in order to reach the fully non-perturbative QED regime. Since
the regime of interest is extreme, so are the parameters of the particle beams. How the parameters
have to be chosen in detail is discussed in the following by estimating the self-generated field
surrounding an ultra-relativistic beam.

5.2.1 Parameters of the collider

The profile of the ultra-relativistic beam is assumed Gaussian-like in all directions. The resulting
charge density ρ of the beam can then be written as

ρ = qen0 exp
(
− r2

2σ2
r

)
exp
(
−(x− vt)2

2σ2
x

)
. (5.2.1)

Here qe denotes the charge of the particle species (qe =−e for electrons and qe = e for positrons),
v is the velocity of the beam particles (v' c), n0 is the peak particle density, σr is the rms width
and σx corresponds to the rms length (or duration) of the beam. The charge distribution in
equation (5.2.1) generates both an electric field and a magnetic field as the charges propagate
almost at the speed of light. In order to estimate the self-fields analytically, it is reasonable
to switch for the calculation into the rest frame of the beam4 since there the field is purely
electrostatic, E′ 6= 0 and B′ = 0. Naturally, the origin of the primed coordinate system is put into
the center of the beam, where x′ = r′ = 0. For reasons of symmetry, it is also obvious that the
maximum of the field is located somewhere in the plane x′ = 0. The geometry further suggests

4All primed quantities refer to the frame of reference in which the beam is at rest.

51



5 Approaching highly supercritical regimes of strong-field QED

Figure 5.2.1: Schematic of the non-perturbative QED collider as proposed by Yakimenko

et al. [154]. The two colliding beams are supposed to have unique properties:

ultra-short duration (rms length σx = 10 nm), tight focus (rms width σr = 10 nm),

high peak current (Imax = 1.7 MA), and high energy (εe = 125 GeV). Figure pub-

lished in [154], © 2019 American Physical Society, reproduced with permission,

all rights reserved.

the electric field to be purely transverse in that plane, E′ ≡ E′⊥. It is then possible to find an

expression for the electric field E′ in the central plane directly from Gauss lawˆ
∂V ′

E′ ·dA′ = 4π
ˆ

V ′
ρ ′dV ′. (5.2.2)

The evaluation of equation (5.2.2) finally yields

E′⊥ =
4πσ2

r n′0qe

r
exp

(
− x′2

2σ ′2x

)[
1− exp

(
− r2

2σ2
r

)]
êr, (5.2.3)

where n′0 = n0/γe is the peak density in the rest frame of the beam. In the next step, the inverse

Lorentz transformation gives the electromagnetic field in the laboratory frame. At this point,

it is important to stress that any longitudinal electric field component that may arise in the rest

frame of the beam is strongly suppressed with respect to the transverse field for 100 GeV-class

electrons, |E | 
 |E⊥|/γe. Putting all together, the self-generated field can be approximated as

E =
4πσ2

r n0qe

r
exp

(
−(x− vt)2

2σ2
x

)[
1− exp

(
− r2

2σ2
r

)]
êr,

B =
4πσ2

r n0qe

r
v
c

exp

(
−(x− vt)2

2σ2
x

)[
1− exp

(
− r2

2σ2
r

)]
êϕ .

(5.2.4)

Since v ≈ c for γe � 1, the electric and magnetic field are approximately equal in magnitude,

|E| 
 |B|. It is also noteworthy that an ultra-relativistic particle beam generates a crossed field,

E⊥ B.

To estimate the beam parameters required to approach the highly supercritical regime, it is rea-

sonable to introduce the peak current related to the beam. The calculation can be performed
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5.2 Non-perturbative QED collider

straightforwardly and gives Imax = 2πσ2
r qen0c. In this manner, the prefactor in equation (5.2.4)

can be rewritten as (2Imax)/(cr), which stresses a close relationship to the field of a normal
axialsymmetric wire. It can be seen that the field vanishes on the symmetry axis (r = 0) and
scales as r−1 for r� σr. In between, the (electric) field reaches a maximum strength at ap-
proximately rmax ' 1.59σr which is given by Emax ' (0.9 Imax)/(cσr). Under the assumption
of counter-propagating beams, one can relate the ratio Imax/σr to the maximum value of the
quantum nonlinearity parameter via [see equation (2.5.1)]

0.9γe
Imax

σr
' eχe

2τCre
, (5.2.5)

where re = e2/
(
mec2

)
is the classical electron radius. To further advance the estimation of

the beam parameters, one has to ensure that the interaction time is shorter than the radiation
time trad. This is ensured when the total emission probability P is less than unity. Recalling
equation (5.1.1), this leads in the limit αχ

2/3
e ' 1 to the condition

P =
σx

γecτC
. 1 (5.2.6)

for a Gaussian longitudinal profile with duration σx/c. In order to guarantee a controlled inter-
action between two colliding beams, it is important that the beams are not distorted too much
during the collision. The emerging disruption is measured by the dimensionless parameter D
which quantifies the deflection of a particle resulting from the interaction with the self-fields of
an opposing beam. In particular, low values of D are equivalent to small disruption, and thus
are beneficial for a controlled collision [155]. For an axialsymmetric Gaussian beam, D can be
expressed as [155–157]

D =
√

2π
re

ec
Imaxσ2

x

γeσ2
r

. (5.2.7)

Combining the scaling equations (5.2.5),(5.2.6), and (5.2.7) yields the estimate for the beam
parameters σx, σr, and Imax in terms of the constraining parameters χe,P,D, and γe:

σx = γeP cτC, σr ∼
√

π

2
P2χe

D
cτC, and Imax ∼

√
π

8
P2χ2

e

γe D
ec
re
. (5.2.8)

Setting χe = 1600, γe = 2× 105 (100 GeV), P = 0.1, and D = 0.001 (low disruption) finally
gives

σx ∼ 10 nm, σr ∼ 10 nm, and Imax ∼ 1.5 MA. (5.2.9)

This is the natural scale of parameters allowing the study of non-perturbative QED with a 100-
GeV-class electron-electron collider in the low disruption limit. The parameters of the non-
perturbative QED collider differ significantly from other proposed colliders such as ILC [153]
or the Compact Linear Collider (CLIC) [158].

5.2.2 Applicability of the QED-PIC method

In order to emphasize the potential for reaching highly supercritical regimes with colliding high-
current lepton beams, PIC simulations are performed with the code VLPL. Please note that the
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5 Approaching highly supercritical regimes of strong-field QED

use of the PIC simulation technique has several advantages with respect to other codes that
are frequently used to investigate beam-beam collisions in the high-energy-physics community
(see, for instance, the codes CAIN [159] and GUINEA-PIG [160]). In particular, the most
important advantage of PIC simulations is that they are fully electromagnetic. Charged particles
are pushed according to the local electromagnetic field and act subsequently as source for new
electromagnetic fields in Maxwell’s equations. This self-consistent approach is thus capable
of simulating beam-beam collisions more accurate as changes to the fields, either due to the
creation of electron-positron pairs or to large disruption, are taken into account properly.

As described in section 3.3.1, the incorporation of QED effects into PIC codes requires the
locally constant field approximation to be applicable. Correspondingly, the formation length for
any QED process has to be smaller than the variation length of the field. In supercritical fields
(χe � 1), the formation length for a QED process behaves like l f ∼ γeλC/χ

2/3
e which gives

l f ∼ 0.7 nm for the aforementioned beam parameters. Apparently, l f is much smaller than the
scale of the field variation σx = 10 nm. In addition, the two Lorentz-invariant field parameters
f and g are supposed to be small with respect to unity, f ,g� 1 [see equation (2.5.3)], in order
to apply the QED rates in a constant-crossed field5. An evaluation of f and g is again relatively
easy in the rest frame of one beam, where the field is purely electrostatic (see also the discussion
in the previous section). From g ∝ E′ ·B′ [see equation (2.5.3)], it then follows directly that g is
equal to zero. By analogy, f is only determined by the electric field,

f =
E′2

E2
crit

. (5.2.10)

Considering now a probing electron from the opposing beam in the current frame of reference.
There, it has a normalized energy of γ ′e ' 2γ 2

e and a quantum nonlinearity parameter of χe =
(γ ′e |E′⊥|)/Ecrit. Note that χe is Lorentz-invariant and therefore it is expected to be large, χe� 1.
With regard to f this means that

f =
E′2

E2
crit

=
E′2⊥
E2

crit

E′2

E′2⊥
=

χ2
e

γ ′2e

E′2

E′2⊥
' χ2

e

γ ′2e
. (5.2.11)

In the last step, it was used that the ratio of E′2 and E′2⊥ gives a factor of the order of unity. One
then has for head-on collisions f � 1� χ2

e as 1� χe� γe� γ ′e . In that sense, the use of the
QED-PIC approach is justified for the proposed setup.

Finally, it must be emphasized that the following simulation results are only correct up to the
point at which the theory might break. However, the main intention of this chapter is to demon-
strate a reasonable path towards fully non-perturbative QED. Moreover, the Nikishov–Ritus
theory also helps in identifying the impact of high-order radiative corrections from experimental
data, as will be discussed in chapter 6.

5.2.3 Results

The concept of the non-perturbative QED collider is finally demonstrated for two colliding elec-
tron beams with rms width σr = 10 nm, rms duration σx = 10 nm, peak current Imax = 1.7 MA,

5In principle, it is also necessary that f ,g� χ2
e . However, under the assumption of χe � 1, this will always be

valid if f ,g� 1.
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Figure 5.2.2: Plot of the two colliding electron beams in the xy-plane (a) before and (b) after
the collision.

and a normalized energy per particle of εe/
(
mec2

)
= 2.5×105. The three-dimensional simula-

tion domain is divided into smaller grid cells of size 0.05σx× 0.05σr× 0.05σr. Both electron
beams are assumed Gaussian-like as noted in equation (5.2.1)6. The peak density is calculated
such that it matches the peak current Imax. In the beginning of the simulation, the electro-
magnetic field of each beam is initialized with the help of equation (5.2.4), which is a good
approximation for the real field distribution of a relativistic charged beam. The centers of the
two beams are shifted by 10σx in the longitudinal direction, and both beams are represented by
8 macro-particles per cell.

Figure 5.2.2 shows a plot of the two colliding electron beams in the xy-plane before [see subplot
(a)] and after the collision [see subplot (b)]. The beams are visualized through their corre-
sponding charge density j = ±ρc, where the different signs indicate the different propagation
directions. Particularly, the positive sign describes the electron beam propagating along the pos-
itive x-axis and the other way around for the negative sign. It can be nicely seen that the spatial
shape of the particle distribution does not change significantly during the collision. The reason
for that is low the disruption parameter of D ≈ 0.001 in the above simulation which reduces a
defocusing of the two electron beams, and so enables a highly controllable interaction.

The main intention of the collider design is the demonstration of its potential for approaching
highly supercritical fields with high-current lepton beams of nanometer dimensions. Indeed,
figure 5.2.3 corroborates the feasibility. Here the quantum nonlinearity parameter χe of the elec-
tron beam moving in the positive x-direction is plotted in different planes at the moment in time
when the two beams overlap completely. For instance, figures 5.2.3(a) and (b) show the maxi-
mum value of χe in each simulation cell, once in a longitudinal plane [see subplot (a)] and the

6Based on computational reasons it should be stressed that the beams are cut longitudinally at ±4σx and radially at
4σr around their center.
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Figure 5.2.3: Plot of the [(a), (b)] maximum and of the [(c), (d)] averaged χe parameter in each
simulation cell when both beams completely overlap. The subplots show a cut
in the [(a), (c)] xy- and in the [(b), (d)] transverse plane. The data refer to the
beam propagating along the positive x-axis. Note also that only values above
χe = 1000 are shown.

other time in the transverse plane [see subplot (b)]. As only values of χe surpassing 1000 are
shown, one can directly see that supercritical regimes of the light-matter interaction could be
reached. Besides, it should be clear that the specifically observable patterns of χe are closely
related to the structure of the field. From the axial symmetry of the field, it follows that χe

decreases for small radii r� σr and approaches zero in the center. This can be also seen in
figures 5.2.3(a) and (b)7, and leads to a donut-shaped distribution of χe in the transverse plane.
As discussed previously, the field reaches its maximum value at rmax ' 1.59σr which is simul-
taneously expected to be the region of the largest χe. This can be confirmed by the simulation
data which further predict χmax

e ' 1719, being also in agreement with equation (5.2.5). One can
also see that the longitudinal extent of high χe values is smaller than the transverse extent. This
is due to the field structure being different in both directions. Along the transverse axes the field
shows a much slower decrease, namely only a 1/r-dependence, in comparison with a Gaussian
scaling longitudinally.

7Note that the simulation data indeed show that χe is zero in the center.
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Figure 5.2.4: Plot of the generated photon beams in the xy-plane after the collision of the
two high-current electron beams. The two black arrows indicate the direction of
propagation of each photon beam.

The maximum value of χe is an important quantity because it shows that the collider design
as such is a promising configuration for studies on non-perturbative QED. It lacks, however,
information about how many particles in a specific region are actually in the interesting regime.
It is therefore valuable to have an additional look at the averaged value of χe in each simulation
cell. In the following the average is determined from

χ
avg
e

∣∣
cell j =

1
N j

∑
i∈cell j

wi χe,i with N j = ∑
i∈cell j

wi. (5.2.12)

Here the sum runs over all macro-particles that are in cell j and wi is the weight of the i-th
macro-particle. The results are shown in figure 5.2.3(c) and (d), again divided into a plot in
a longitudinal plane [see subplot (c)] and in the transverse plane [see subplot (d)]. In general,
one can see that the main patterns are the same. It is especially remarkable that χe exceeds
1600 even in the average in many cases. One can, however, notice that the plot does not show
a continuous behavior as before. There are randomly distributed cells in which the averaged χe

parameter drops to values being significantly lower compared to adjacent cells. This observation
is a consequence of the emission of high-energy photons by some ultra-relativistic electrons
which leads to a decrease in the electron energy and in the χe parameter accordingly. On the
other hand, the random character can be ascribed to the stochastic nature of the employed Monte-
Carlo routine. To quantify how much χe is modified in total by the photon emissions, it is helpful
to calculate the averaged χe parameter of the entire beam, and to compare it afterwards with the
average under the assumption that no photon emission takes place. In the latter case, one can
use the value of χmax

e for all macro-particles in the specific cell. The calculation yields roughly
962 when including photon emission and otherwise 1003. It means that the parameter is altered
by approximately −4.1%.

Photon beams

In the following, the emitted photons will be addressed in more detail. This has basically two
reasons. First, the photons represent a potentially measurable observable which can give mean-
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Figure 5.2.5: Transverse characterization of the photon beam that propagates in the positive
x-direction (x = 5σx) after the collision of both high-current electron beams.

ingful information about the physics of the collision. An in-depth characterization may thus be
of particular interest from an experimental point of view. Second, the collision of lepton beams
is a longstanding research topic and one can find a lot of literature about it. The work by Yokoya
and Chen [161] is worth mentioning at this point, as they derived estimates for the number of
photons emitted in a linear electron-electron collider. This finally allows a direct comparison of
the simulation results with the literature.

Figure 5.2.4 illustrates a density plot of the emitted photons in a longitudinal plane after the
collision of the two electron beams. It is obvious that the interaction generates two spatially sep-
arated photon beams. The two photon beams propagate in opposite directions which is indicated
in the figure by two black arrows. Though the photons accompany their parent electron beams,
it should be stressed that they are mainly generated during the interaction with the field of the
opposing beam. Besides, one can see that the photon density is low in the center (y= 0σr) which
is based on the linear scaling of the field with the radius for r� σr. This can be also observed in
figure 5.2.5, where a density plot of the forward moving photon beam is shown in the transverse
plane at x = 5σx. In principle, the plot depicts that the qualitative behavior is comparable to χe.
A detailed analysis, however, reveals the maximum photon density to be located at smaller radii
with respect to χe, namely at r ≈ 0.7σr. The reason therefor is that χe can be seen as a single
macro-particle quantity, i.e. it is calculated once for a macro-particle and so independent of the
macro-particle weight. The photon distribution, in contrast, depends explicitly on the density of
the emitting particles. In the present configuration, the maxima of the field and the electron beam
density are laterally displaced. The maximum of the transverse photon distribution is thus set by
the product of the photon emission probability and the electron density. In supercritical fields,
the former scales as χ

2/3
e [or as the transverse field to the power of 2/3, see equation (5.2.4)]

and the transverse density profile according to equation (5.2.1). Following this line of argument,
one obtains a maximum at r ' 0.71σr which nicely matches the simulation data.

To advance the investigation of the emitted photons, one should have a look at their energy
spectrum as it is likely serves an important observable. The final spectrum after the interaction is
shown in figure 5.2.6 as a dual logarithmic plot. Remarkably, in this way of plotting the spectrum
follows a linearly decreasing trend almost over the entire energy range plotted (1.25 MeV< εγ <
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Figure 5.2.6: Log-log plot of the fully developed photon spectrum (blue). The linear scaling

indicates that the spectrum obeys a power-law decrease. A power-law index
of p ' 0.73 is obtained when fitting the data to a linear function in the range
100 MeV < εγ < 100 GeV.

125 GeV). Nevertheless, it is surprising that the spectrum behaves conversely at high photon
energies instead. Before the rough cut-off at the electron beam energy ε0, it emerges a bump in
the spectrum. Although the bump appears counter-intuitively, it is indeed physically correct and
can be ascribed to the QED photon emission rate. Its discussion, however, will be postponed
to the following chapter 6. Recalling the linear part of the spectrum, it means from a physical
point of view that the spectrum obeys a power-law behavior, dNγ/dεγ ∝ ε

−p
γ , with p being the

power-law index. Note that in the dual logarithmic plot, the power-law index is equal to the
slope of the linear function. It is therefore relatively easy to determine its value numerically, for
instance, by fitting a linear function to the data. In doing so, the gnuplot fitting routine predicts
a value of p' 0.73 for the data in the energy interval 100 MeV < εγ < 100 GeV. The linear fit
is marked in figure 5.2.6 as the (shifted) blue line.

As already mentioned, it is possible to compare the simulation results with appropriate litera-
ture [161]. The parameter of interest is either the total number of photons normalized with the
initial number of electrons in the parent beams or the relative energy loss of electrons due to
photon emission. Subsequently, the notation of the accelerator physics community is adopted,
where it is common to classify the impact of strong-field QED processes in terms of the beam-
strahlung parameter ϒ. This parameter is closely related to the quantum nonlinearity parameter
χe used in the strong-field QED community. More precisely, the beamstrahlung parameter can
be regarded as the value of χe averaged over the beam profile, ϒ = χ

avg
e . In the case of Gaussian

beams, it is possible to calculate ϒ analytically, with the result being equal to

ϒ =
5

12

Ne−0
αγeλ

2
C

σrσx
. (5.2.13)

Here, Ne−0
stands for the total number of electrons in the beam. For the set of parameters given

above, the beamstrahlung parameter equals approximately ϒ' 1000 and is thus much larger than
unity8, ϒ� 1. It is then possible to estimate the amount of secondary photons that are generated

8Noteworthy, ϒ coincides with the numerically averaged value of χmax
e over the beam profile (see the discussion on

page 54), so strengthening its interpretation as an average of χe over the beam profile.
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within the collision, and one finds for the normalized number per primary beam particle

Nγ

Ne−0

' 2.57
(

σx

γeλC
αϒ

2/3
)

(5.2.14)

in the limit ϒ� 1 [161]9. The emission of photons is accompanied by a reduction of the beam
particle energy. In the average, the relative energy loss is given by [161]10

∆εe

εe
'−0.689

(
σx

γeλC
αϒ

2/3
)
. (5.2.15)

Inserting the collider parameters gives Nγ/Ne−0
' 0.194 and ∆εe/εe '−0.052, which is in agree-

ment with the simulation results of Nγ/Ne−0
' 0.205 and ∆εe/εe'−0.050 obtained with the code

VLPL.

Electron-positron beams

On their ballistic motion through space, a great majority of the photons is transiently subjected
to extreme fields, χγ & 1. This opens the possibility for the creation of copious electron-positron
pairs (see figure 5.2.7). In particular, the longitudinally summed (pair) electron [see subplots
(a) and (b)] and positron densities [see subplots (c) and (d)] are denoted in black and orange,
respectively. The two plots on the left-hand side illustrate the pair yield at the collision time.
One can see that the pair distributions resemble the transverse photon distribution as expected
(see figure 5.2.5). In addition to that, no significant difference between the electron and positron
distribution is visible. This changes profoundly within the course of the collision as can be
seen in the plots on the right [subplots (b) and (d)]. Instead of keeping their donut-shaped pro-
file, one can see that a non-vanishing fraction of the positrons is focused to the center. The
electrons, in contrast, behave reversely and get slightly defocused. On the applied color scale,
this is indicated by a relative noisy background at large radii [see subplot (b)]. In order to
understand this difference in detail, consider the electron-positron pair right after its forma-
tion. Then, both electrons and positrons propagate at the speed of light in the same direction
as the decayed parent photons. In doing so, the pairs are mainly subjected to the superimposed
self-fields of the two primary electron beams. The contribution of the co-moving primary elec-
tron beam on the transverse (de)focusing, however, is negligible since the leading order force
term scales as γ −2

e . Correspondingly, it is the interaction with the opposing primary electron
beam that causes the positrons and electrons to become focused and defocused, respectively.
Interestingly, the (de)focusing can also be observed in the fully developed pair spectra (see
figure 5.2.8). The focusing of positrons leads to an increased number of comparatively low-
energetic positrons

(
below 125 MeV, εe/ε0 < 10−3

)
with respect to the number of electrons.

At high energies instead, the spectra of electrons and positrons coincide very well. There, the
particles are relativistically too inert for (de)focusing to be important. The log-log plot further
implies a power-law behavior, dNe/dεe ∝ ε

−p̃
e , for energies εe/ε0 > 10−3. A gnuplot fit in the

interval 100 MeV < εe < 100 GeV yields a power-law index of p̃ ' 1. This differs from the
photon case discussed above and will be addressed in more detail in chapter 6.

9Note that equation (5.2.14) has a very simple origin. Up to a factor of the order of unity, the normalized number
of photons equals the ratio of the interaction time σx/c to the radiation time trad =W−1

γ .
10By analogy and again up to a factor of the order of unity, the relative energy loss is equal to the normalized

number of photons multiplied by the characteristic energy of the emitted photon. In supercritical fields, this is
approximately εγ/ε0 ' 1/4.
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Figure 5.2.7: Transverse distribution of the longitudinally summed [(a), (b)] (pair) electron (in
red) and [(c), (d)] positron density (in orange). Subplots [(a), (c)] are recorded at
the collision time and subplots [(b), (d)] after the collision.

The focusing and defocusing of the generated pair-plasma jets can have great impact on the
collision physics itself. Particularly at relatively high pair yields, and so at long interaction
times, this gets predominantly important. In the present case, the relative pair yield after the
collision is Ne+e−/Ne−0

' 8.6×10−3, which is rather low. Nonetheless, the result for the relative
pair yield is telling because it can be compared with the literature. Following Yokoya, Chen, and
Telnov, the number of pairs per primary beam particle for ϒ� 1 can be estimated as [161, 162]

Ne+e−

Ne−0

' 10.4
√

3
25π

(
σx

γeλC
αϒ

2/3
)2

ln(ϒ) . (5.2.16)

After inserting the parameters, one obtains Ne+e−/Ne−0
' 9.1× 10−3, which is again in reason-

able accordance with the previously mentioned VLPL result. Table 5.2.1 gives a summarizing
overview about all comparisons between simulation results and literature values. It is also worth
mentioning that the above results are verified by simulations with the independent code OSIRIS.
The results can be found in reference [154]. The overall good agreement strengthens the relia-
bility in VLPL simulations.
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Nγ/Ne−0
∆εe/εe Ne+e−/Ne−0

theory 0.194 −0.052 9.1×10−3

data 0.205 −0.050 8.6×10−3

Table 5.2.1: Comparison of the VLPL simulation data with the theoretical predictions by
Yokoya, Chen, and Telnov [161, 162].

5.3 Conversion of optical laser pulses into ultra-intense
attosecond pulses

In the previous section, it was shown that the head-on collision of two 100 GeV-class electron
bunches, each carrying Mega-Ampere currents and being focused to radii on the nanometer
scale, generates a promising configuration for reaching highly supercritical fields. Leading ex-
perts are indeed confident that such a collider will be technically feasible in the medium-term
future. Nevertheless, the development of alternative configurations is essential to deeply attract
attention to almost unexplored high-field regimes of the light-matter interaction. The following
section therefore introduces an alternative based on high-power laser pulses of the next gener-
ation. These laser pulses are intense enough for 100 GeV-class electrons to enter supercritical
fields but, as described in section 5.1, their duration is usually too long to mitigate radiation
losses of the electrons properly. Thus, it will be discussed subsequently how one can convert an
intense optical laser pulse to an ultra-intense attosecond pulse.

The idea for the proposed configuration is adopted from works about the generation of high
harmonics in the relativistic regime [164, 165]. Figure 5.3.1 illustrates a schematic represen-
tation of the proposal. A laser pulse with central wavelength λ0 = 1 µm impinges at oblique
incidence onto an over-dense plasma surface. The laser pulse is linearly polarized in the plane
of incidence and has a Gaussian profile in both the transverse and the longitudinal direction.
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Figure 5.3.1: Schematic of the proposed setup for converting an intense optical laser pulse into

an ultra-intense attosecond pulse. The optical pulse (a0 = 350) impinges at an

angle of θ = 30◦ onto the over-dense plasma target (ne = 150ncr). The generated

attosecond pulse is ultra-intense and finally collides with a counter-propagating

electron beam (energy εe 
 125 GeV). Figure published in [163], © 2019 The

Authors, available under the CC BY 4.0 license.

The corresponding beam waist parameter is w0 = 2.5 μm. The laser pulse is focused to the

point (x0,y0) = (10λ0,0λ0) at time t = 7.5T0, reaching a peak intensity of 1.68×1023 Wcm−2.

This is equivalent to a dimensionless field amplitude of a0 = 350, which is predicted by facil-

ities like ELI [21]. Longitudinally, the rms duration is τ = 1.5T0 such that the pulse is nearly

single-cycled. But a generalization to multi-cycled laser pulses is in principle possible when

using the attosecond lighthouse effect [166]. The angle of incidence is equal to θ = 30◦ and

is measured with respect to the target’s normal direction. The plasma target is assumed to be

fully ionized right from the beginning due to the high intensities involved. Spatially, the target

is modeled as a combination of a 5λ0 thick slab of electron density 150 ncr and an exponential

plasma density ramp n ∝ exp [(x− x0)/(0.33λ0)] for x < x0. The exponential plasma profile en-

sures a smooth transition from vacuum to over-dense plasma and impacts the efficiency of the

high harmonic generation process. In this way, it sets the requirements for the contrast of the

high-power laser pulse [167]. The ions are mobile with a mass-to-charge ratio of two times that

of protons. Basically, one could use any fully ionized low-Z element as a target material. The

probing electrons are modeled as a Gaussian-like beam with rms width and length of σ⊥ = λ0/5

and σ‖ = λ0/40, respectively. The beam density is chosen such that the total beam charge is ap-

proximately 2.8 pC, which corresponds to a peak current of Imax ≈ 13.5 kA for the above beam

width. The beam electrons have the same energy as in the proposal for the non-perturbative QED

collider, ε0/
(
mec2

)
= 2.5×105. They are propagating under an angle of θ = −30◦ (measured

from the target’s normal) with the result that a collision with the reflected radiation in a head-on

geometry is enabled. The initial position of the electron beam is determined by the focal point

of the reflected pulse. The feasibility of the proposal is numerically strengthened through two-

dimensional PIC simulations with the code VLPL. In these simulations, the numerical grid has a

size of 15λ0 in the x-direction and 20λ0 in the-y direction with a cell size of Δx = Δy = λ0/200.

The over-dense plasma target gets represented by 15 macro-particles per species and cell, while

10 macro-particles per cell resolve the probing electron beam. The QED module is incorporated

during the whole simulation, i.e. especially quantum radiation reaction is taken care of in the
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Figure 5.3.2: Plot of the Bz-field (blue-white-red) and the electron density (white-gray-black)
in the plane of incidence at time t = 7T0. It is noted that electron densities below
15ncr are not plotted in order to improve the visualization.

generation of the attosecond pulse.

Figure 5.3.2 shows simulation results for the electron density (in shades of gray) and the Bz-field
(blue-white-red) in the plane of incidence at time 7T0. One can see that the incident wave excites
electron density modulations on the surface at regular intervals of λ0/sin(θ) along y like, for
instance, at (x,y) ≈ (10λ0,0.5λ0) and (x,y) ≈ (10λ0,2.5λ0). These modulations correspond
to dense electron bunches that form at the target’s surface and afterwards cross the vacuum
region in front of the target. The electron bunches thereby appear very thin (ultra-short). On
their way, the ultra-short bunches interact with the incoming wave which in turn leads to the
emission of ultra-short electromagnetic pulses [164, 165]. In figure 5.3.2, this can be seen by
arc-like patterns crossing the incoming wave. At time 7T0, these patterns are most visible in the
vacuum region in front of the target, where they characterize emissions released at an earlier
stage in the interaction and are not overlayed by the electron bunches themselves. The arc-
like waves propagate perpendicular to the arcs inwards. In this perpendicular direction, they
appear very thin indicating their ultra-short duration. Along the arcs, however, the dimensions
are significantly larger. This results from the fact that each appropriate phase of the incoming
wave continuously excites electron bunches which, as they move through the incoming wave,
gradually convert the former into arc-like waves.

The further temporal evolution of the electromagnetic field is shown in figure 5.3.3 in the form
of plots of Bz at four different moments in time. As noted previously, it can indeed be seen that
the arc-like waves propagate perpendicular to the arc inwards [compare, for instance, subplot
(a) with (b)]. Physically speaking, it means that the electromagnetic pulses will be focused
to center of the arcs. Associated with this, the peak field strength of the ultra-short pulses
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Figure 5.3.3: Plot of the Bz-field in the plane of incidence at four different moments in time,

namely at (a) t = 9T0, (b) t = 11T0, (c) t = 13T0, and (d) t = 15T0. The highest
field is obtained at time t = 13T0 [see subplot (c)] and thus this time will also be
referred to as collision time with the counter-propagating electron beam.

will increase decisively. The highest field observed in the simulation is reached at the point
(x,y) ≈ (4.9λ0,−2.6λ0) at time 13T0 [see figure 5.3.3(c)]. Figure 5.3.3(d) finally shows the
Bz-field at time t = 15T0 after passing the focal point. It can be seen directly that the curvature
of the arcs is flipped with respect to earlier times, so indicating the divergence of the light
beam. As a consequence of this defocusing effect, the peak field strength decreases again which
elucidates that the timing of the electron beam is particularly crucial. It is highly desirable that
the electrons interact with the field structure shown in figure 5.3.3(c) in order to probe highly
supercritical fields. In this context, the focal point in subplot (c) defines the initial position of the
electron beam. The time t = 13T0 is therefore referred to as the collision time in the following.

Figure 5.3.4 provides a detailed characterization of the electromagnetic field structure at the
collision time. More precisely, figure 5.3.4(a) illustrates the longitudinal profile of the Bz-field
along the propagation axis of the probing electrons. In the plot, the abscissa r‖ represents the
longitudinal distance from the focal point, which per definition is at r‖/λ0 = 0.11 There, one
can clearly identify one main peak which is significantly larger in amplitude than the rest. In

11To concretize, the electron beam is propagating from r‖ < 0 to r‖ > 0.
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Figure 5.3.4: Cut of the (a) longitudinal and (b) transverse shape for the Bz-component of the
generated electromagnetic pulse at the collision time t = 13T0. The insets re-
veal a full-width-at-maximum duration and spot of τ ≈ 148 as and ∆≈ 222 nm,
respectively. Please note the different x-axes for top and bottom plot. Data pub-
lished in [163].

particular, one finds a maximum amplitude of eBz/(mecω0) ≈ 1450 when normalizing to the
central wavelength λ0 of the driving optical pulse. The peak amplitude implies that maximum
values of about 1760 for χe might be in reach for the probing electrons if the pulse is short
enough. To address that point, the inset in subplot (a) shows an enlarged plot of the main
peak. Two interesting features can be deduced here. First, it is evident that the main peak does
not contain internal oscillations, meaning that the main pulse is almost unipolar. And second,
one can generate an attosecond pulse without applying a spectral filter. Obviously, the latter
would simplify the experiment considerably. The data suggest the full-width-at-half-maximum
duration to be approximately 150 as. Admittedly, the duration of the main peak is twice as
long in comparison with the non-perturbative QED collider (τ ≈ 78 as, see section 5.2); but still
promisingly short with respect to the characteristic radiation time for 100 GeV-class particles
in the case αχ

2/3
e ' 1 (trad ≈ 200 as). In spite of that, it should be clear that this does not

directly imply that the electrons could approach highly supercritical fields. The reason is the
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collision time t = 13T0. Data published in [163].

pre-pulse with amplitudes of the order of eBz/(mecω0) ≈ 100 at r‖ < 0 which the electrons
have to cross before the interaction with the main peak. Though it will turn out shortly that
the pre-pulse does not prevent the entering of αχ

2/3
e ' 1, it will leave imprints in the particle

spectra (see figure 5.3.6 and the discussion in section 6.2). On the other hand, figure 5.3.4(b)
shows a transverse cut of the magnetic field Bz at the focus. The inset reveals a focal spot
size of approximately 220 nm. Combining all the parameters, one obtains a peak intensity of
2.9×1024 Wcm−2 and a peak power of 4.5 PW for the generated electromagnetic pulse. Finally,
it is noted that all spatial dimensions of the generated attosecond pulse are larger than those in
the case of the non-perturbative QED collider. The peak field, in contrast, is the same (at least
up to a factor of unity). The QED algorithm can thus be applied to the collision of the probing
electrons with the attosecond pulse (see section 5.2.2).

The demonstration that the non-perturbative regime αχ2/3 ' 1 might be accessed with the
present setup is given in figure 5.3.5, where the maximum value of the non-perturbative pa-
rameter for the probing electrons is plotted in each simulation cell. In fact, one can deduce
from the figure that the pre-pulse does not prevent all the electrons from reaching αχ

2/3
e ' 1. In

contrast, one can see that there are electrons in almost the entire vicinity of the focal point that
surpass χe values of 1600 at the collision time. For instance, the highest value observed in the
simulations is αχ

2/3
e ≈ 1.06, which is equal to χe ≈ 1750. This in turn is in very good agreement

with the maximum attainable value for electrons with energy ε0/
(
mec2

)
= 2.5× 105 colliding

with a field of strength ≈ 1450 in a head-on scenario as given above.

On their way through the field structure shown in figure 5.3.4, the probing electrons lose a part
of their kinetic energy by emitting high-energy photons. In a second step, these photons can
decay into electron-positron pairs. As already explained in the previous section, these secondary
particles might give insights into the physics of the interaction in the regime αχ2/3. In that
regard, particle spectra are probably those observables that can be accessed simplest from an ex-
perimental point of view. For this reason, figure 5.3.6 gives information about the spectra of the
particles12. It is again striking that the photon spectrum (blue line) obeys a rather well-defined

12For clarification: The spectra are only given for particles that are directly connected to the probing electrons.
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positrons (orange) obtained from the interaction of 125 GeV electrons the gen-
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published in [163].

power law over a large energy interval. In comparison with the photon spectrum generated by
the non-perturbative QED collider (see figure 5.2.6), however, the photon spectrum decays here
slightly faster13. The gnuplot fitting routine reveals a power-law index of p ' 0.97 when per-
forming a linear fit to the data in the energy interval 125 MeV < ε < 25 GeV. A comprehensive
discussion why the photon spectrum (and also all others) obeys a power law and how one can
understand the power-law index will be given in chapter 6. At this juncture, it should only be
stressed that the steeper slope in figure 5.3.6 can be ascribed to the effectively longer interaction
time, mainly caused by the pre-pulse and not by the 150 as main pulse. It is also interesting
to note that the bump at the high-energy cutoff cannot be observed here. Besides the photon
spectrum, figure 5.3.6 also shows the spectra of positrons (orange) and electrons (black). It can
be seen that both the electron and positron spectrum follow a power law over a certain interval.
Thereby, the shape of the positron spectrum resembles the one from the non-perturbative QED
collider (see figure 5.2.6). Only at low energies the behavior is qualitatively different. The rea-
son for that is basically the importance of the exact shape of the electromagnetic field for weak
relativistic particles. In the case of the collider, the collective field of the electron beams tends
to focus opposing positrons and to confine them axially based on the field’s donut shape. Such
a confinement is not possible with the present field configuration, so that the number of low-
energetic positrons is less and the qualitative behavior is the same for positrons and electrons.
Indeed, this can be seen in the figure, where the spectra of electrons and positrons match up to
an energy of approximately 1 GeV. Thereafter, it comes to a deviation in the spectra. This can
be attributed to the fact that, in contrast to figure 5.2.6, the full electron spectrum is shown, i.e.
no distinction between probing electrons and generated pair electrons is made. Simultaneously,
it means that below 1 GeV the electron spectrum is dominated by pair electrons and above by
initial beam electrons. Interestingly, the slope of the electron spectrum in the part where the
spectrum is dominated by beam electrons is flatter compared to the positrons. One can also see

13As a reminder, the photon spectrum follows a power law with an index of p ' 0.73 in the case of the non-
perturbative QED collider (see figure 5.2.6).
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that the spectrum peaks when the energy approaches ε0. The peak at ε0 refers to beam electrons
that did not suffer critical radiation losses at all, and so shows once more that the setup might be
used to probe highly supercritical fields.

5.4 Reducing the switching time of the electromagnetic
field by plasma screening

In the two preceding sections, it was shown that highly supercritical fields either might be
reached by the collision of two high-current, 100 GeV-class electron beams or by the collision of
a single 100 GeV-class electron beam with an ultra-intense attosecond pulse. It was supported
by simulations that the ultra-intense attosecond pulse can be generated in the interaction of a
high-power laser pulse with a dense plasma target. Since much effort is currently put in the con-
struction of high-intensity laser facilities all around the globe, the demonstration that high-power
laser pulses are promising for reaching extremely regimes of QED is of great interest. On the
other hand, the generation of the ultra-intense attosecond pulse can depend sensitively on the pa-
rameters of the interaction like, for instance, the angle of incidence, the profile of the pre-plasma,
or the plasma density. Exactly controlling all the parameters in the experiment, however, will be
a very challenging task. Resulting from this, it arises the question of simpler setup geometries
using high-power laser pulses. The main point that needs to be clarified is the question how one
can reduce the switching time of the ultra-strong laser field in order to mitigate radiation losses
of the electrons decisively. In the following, it will hence be motivated that instead of converting
an incident optical pulse into an attosecond pulse, the plasma itself can directly truncate the laser
pulse front. Consider in this connection a laser pulse which illuminates a solid target at normal
incidence. Typically, electron densities of the order of 1023−24 cm−3 can be reached in solid
materials14, and so extremely dense plasma (∼ 1000ncr) can be produced by ultra-high intensity
laser pulses. As a consequence, it is unlikely for the irradiating laser pulse to penetrate deeper
into the plasma than the relativistic skin depth [168]15,

ls =
λ0

2π

√
γ̄e ncr

ne
. (5.4.1)

Here γ̄e is the averaged Lorentz factor of electrons at the plasma surface. It finally emerges
a sharp interface separating the quasi field-free plasma from the non field-free vacuum. This
means that an ultra-relativistic electron beam, which is crossing the plasma towards the sharp
interface, is subjected to the laser field just in the thin skin layer. If the time ls/c, which elapses
as the electrons pass the skin layer, is shorter than or at least comparable to the characteristic
radiation time trad, then radiation losses could be mitigated sufficiently. Figure 5.4.1 illustrates a
schematic presentation of the idea.

Simulation in a one-dimensional geometry

Similar to the previous sections, the feasibility of the proposal is emphasized by PIC simulations
with the code VLPL. First, the simulations are performed in a one-dimensional geometry. The

14For instance, fully ionized aluminum has an electron density of ≈ 7.8× 1023 cm−3, fully ionized silicon of ≈
7.0×1023 cm−3, or fully ionized diamond of ≈ 1.06×1024 cm−3.

15It is assumed that the thickness of the plasma is large with respect to the skin depth.
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Figure 5.4.1: Schematic of how to reduce the effective interaction time by the plasma itself. A
circularly polarized optical pulse (a0 = 1400) impinges at normal incidence onto
a solid-dense target. The laser pulse can only penetrate in the skin layer (red)
of the plasma. A counter-propagating electron beam, ε0/

(
mec2

)
= 2.5×105, is

almost instantaneously subjected to the field of the optical pulse. Figure pub-
lished in [169], © 2019 IOP Publishing, reproduced with permission, all rights
reserved.

simulation box has a size of 15λ0 in the x-direction, where λ0 = 1 µm is again the central
wavelength of the laser pulse. The simulation domain is divided into 15,000 cells, corresponding
to a cell size of ∆x = 0.001λ0. The rather fine resolution is necessary in order to accurately
resolve the skin depth of the high-density plasma target. As such, a 7.5λ0 thick diamond foil
beginning at x = 5λ0 is used, which is assumed to have solid density and additionally to be
fully ionized right from the start of the simulation. Expressed in terms of the critical density
for a one micron wavelength this gives an ion density of ni = 158ncr and an electron density of
ne = 6ni = 948ncr. In the simulations, 30 macro-particles per cell represent the carbon ions and
180 macro-particles per cell the related electrons.
The probing electron beam is propagating in the negative x-direction and has a Gaussian density
profile, ne,probe = n0 e−x2/(2σ2

x ). Here, n0 = ncr is the peak density and σx = λ0/4 is the rms
length of the electron beam. The initial energy of each beam electron is the same as in the
two sections before, ε0/

(
mec2

)
= 2.5×105. Numerically, the electron beam is modeled by 50

macro-particles per cell. It is further noted that the electron beam has sharp edges at a distance
of 3σx from its center, which has basically the reason to save computational resources.
The plasma is driven by a laser pulse which impinges at normal incidence onto its surface. In
this way, the laser pulse is also counter-propagating with respect to the probing electron beam.
The laser pulse has a Gaussian temporal profile, a = a0 e−(x−ct)2/(2σ2

τ ). The dimensionless field
amplitude a0 and the rms duration στ are equal to 1400 and 1.5T0, respectively. If one further
assumes the laser pulse to be circularly polarized, a peak intensity of 5.4× 1024 Wcm−2 will
be reached. Although recent works about radiation pressure acceleration in ultra-intense fields
have shown that electron heating and especially radiation losses of the plasma electrons can
be significant for circular polarization [170–172], they are expected to be much stronger in the
case of linear polarization [67, 173]. To affect the laser–plasma interaction as little as possible,
circular polarization is therefore preferred.

Whether a probing electron emits a photon or not, and so experiences radiation losses, is predom-
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Figure 5.4.2: Plot of (a) the transverse force experienced by a particle moving in the negative
x-direction nearly at the speed of light according to equation (5.4.2) and (b) the
electron density of the plasma target. Both snapshots are recorded at time t =
11.125T0. Data published in [169].

inantly triggered by the force acting perpendicular to its direction of motion. For ultra-relativistic
electrons moving in the negative x-direction, the absolute value of this transverse force can be
calculated as

F⊥ = e
√
(Ey +Bz)

2 +(Ez−By)
2. (5.4.2)

For the configuration described here, the simulation result for equation (5.4.2) at time t =
11.125T0 is illustrated in figure 5.4.2(a). At first sight, one can see a clear difference in the
transverse force for x . 6.3λ0 and x & 6.3λ0. The almost step-like drop is strongly related to the
plasma electrons which fill the space x & 6.3λ0, as can be seen in figure 5.4.2(b). In fact, one
can observe electron densities at the surface that are more than 10 times higher than the initial
electron density of the target ne0 . It is this high-density plasma surface which prevents the laser
radiation from penetrating deeply into the plasma. Resulting from that the ultra-relativistic beam
electrons are not subjected to substantial transverse forces inside the plasma. Only outside the
plasma (x . 6.3λ0), the beam electrons experience a transverse acceleration and so will be stim-
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Figure 5.4.3: Plot of the maximum value for the χe parameter in each simulation cell at time
t = 11.125T0. Note that the sharp edges on the left and right are related to the
cutting of the electron beam at −3σx from its center (left side) and to the plasma
which screens the laser fields (right side). Data published in [169].

ulated to emit photons. The gradient, i.e. the distance over which the transverse force changes,
appears to be ultra-steep on the scale of λ0 = 1 µm. A closer look at the data reveals that the layer
is only 18 nm thick. Expressed in time instead, it yields that the laser field is effectively switched
on after only 60 as. Recalling that the characteristic radiation time for 100 GeV-class electrons
and αχ

2/3
e ' 1 is of the order of 200 as [see equation (5.1.1)], the skin-layer approach allows

the beam electrons to be injected directly into the most intense part of the laser field without
suffering strong radiation losses. It is further found in figure 5.4.2(a) that the normalized peak
field is ≈ 2800 = 2a0. Here the factor 2 mirrors the head-on scattering geometry. Furthermore,
it is stated that—in the same sense as described in section 5.2.2—the effective field parameters
(such as amplitude and gradient length) allow the use of the QED module with respect to the
probing electron beam.

Figures 5.4.3 and 5.4.4 depict simulation results for the χe value of the probing electrons. More
precisely, figure 5.4.3 compares χmax

e (red curve), the maximum value of χe in each simulation
cell, with the maximal attainable value for electrons with energies ε0/

(
mec2

)
= 2.5×105 in the

field described by figure 5.4.2 (blue curve). The result from the PIC simulation is here multiplied
with 0.99 to improve the visibility by avoiding the overlap of the red and blue curve. Already at
first glance one can see the sharp edges on the plot’s left and right. This is due to the cutting of
the beam at−3σx from its center (left side) and to the plasma which screens the laser field (right
side) [see also figures 5.4.2(a) and (b)]. Further, the plot allows drawing two more important
conclusions. First, the simulation result corroborates that χe values above 1600 might be probed
with this setup. Indeed, a maximum value of≈ 1700 is observed in the simulations. This is very
close to the prediction of

2a0
ε0

mec2
h̄ω0

mec2 ' 1698. (5.4.3)

Moreover, one still finds χe values of approximately 1650 up to the left edge of the plot. This
leads directly to a second very important point. The estimate and the PIC simulation result
coincide very well over the entire interval 5.8 < x/λ0 < 6.3. This is surprising as it states
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Figure 5.4.4: Plot of the averaged value for the quantum nonlinearity parameter in each simu-
lation cell at time t = 11.125T0. It is noted that the sharp edges on the left and
right are related to the cutting of the electron beam at −3σx from its center (left
side) and to the plasma which screens the laser field (right side). Data published
in [169].

that there are electrons that resist these extreme fields without suffering significant radiation
losses for a distance in the order of a few hundred nanometers. Obviously, these represent times
clearly above trad. In actual fact, these non-radiating beam electrons are just the exception. To
illustrate that, figure 5.4.4 shows χ

avg
e , the averaged value of χe in each simulation cell. Here, the

calculation of χ
avg
e is performed as explained in the context of equation (5.2.12). As expected,

figure 5.4.4 reveals that χe decreases in average for longer interaction distances (times). For
instance, χ

avg
e is about 500 at the left edge (x≈ 5.8λ0) and so more than three times smaller than

at the right edge (x ≈ 6.3λ0). There, one has values of 1500. In between, the data follow an
exponential law, χ

avg
e ∝ exp(−|x− xr|/Λ) for x < xr = 6.3λ0. Using again the gnuplot fitting

routine, the spatial decay length Λ is approximately 0.395λ0 at time 11.125T0. This, however,
overestimates the real spatial decay length slightly. The reason for that is the plasma surface
which is moving at the hole-boring velocity vHB along the positive x-axis. As a consequence, the
interaction is effectively shortened. Taking the motion of the surface into account and switching
to the time domain, one eventually arrives at

T =
Λ

c+ vHB
, (5.4.4)

where T stands for the temporal decay constant. In the present simulation, the hole-boring
velocity can be determined to be vHB ' 0.4c, as can be seen from the space-time distribution
of the ion density [see figure 5.4.5]. Re-inserting this subsequently into equation (5.4.4), one
obtains T ' 0.282T0 for the characteristic decay time. In relation to the characteristic radiation
time trad, the effective temporal decay constant is thus T ' 4trad at time 11.125T0. So, the
decay time describing the averaged quantum parameter is longer but still of the same order of
magnitude as trad. More interestingly, one can understand the factor 4 in a rule-of-thumb manner.
The laser field is almost constant over the interval 5.8 < x/λ0 < 6.3 [see figure 5.4.2(a)] with
the result that χ

avg
e is predominantly determined by the averaged electron energy. The ratio of

χ
avg
e at positions x ' 5.8λ0 to x ' 6.3λ0 should thus be equal to the ratio of the corresponding

averaged electron energies. As electrons emit in average photons with energy εγ ' ε0/4 in the
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Figure 5.4.5: Space-time distribution of the ion density. The target surface is pushed inwards
due to the radiation pressure exerted by the circularly polarized laser pulse. In
the time interval 10.5 ≤ t/T0 ≤ 11.5 the velocity of the front surface is equal to
vHB ' 0.4c which is indicated by the black line.

limit χe� 1, the ratio of the actual electron energy εe to the initial energy ε0 after n emissions is
εe/ε0 ' (3/4)n. Equating that with the ratio of χ

avg
e finally gives that one expects roughly n = 4

emissions from an electron between x' 5.8λ0 and x' 6.3λ0.

Simulation in a two-dimensional geometry

In order to check the impact of the reduced dimension on the results, simulations are also per-
formed in a two-dimensional geometry. The simulation parameters from the one-dimensional
case remain the same, if not stated otherwise. The specific two-dimensional parameters are as
follows. The simulation box has a size of 15λ0 in the y-direction with a cell size of ∆y = 0.1λ0.
Likewise, the diamond foil is 15λ0 wide in the transverse direction and it is represented by 5 ion
macro-particles and 30 electron macro-particles per cell. The laser pulse is focused to a mini-
mum beam waist with radius w0 = 2.5 µm located at the front of the plasma surface (x = 5λ0)
at time t = 10T0. The density profile of the probing electron beam is Gaussian-like in both di-
rections, n2D

e,probe = n1D
e,probe e−y2/(2σ2

y ), with the rms width σy = λ0/2. As for the one-dimensional
simulation, the electron beam is cut at ±3σx, but also laterally at ±3σy. Numerically, the elec-
tron beam gets resolved by 10 macro-particles per cell.

Comparable to figure 5.4.2 in the case of the one-dimensional simulation, figure 5.4.6 shows
(a) a cut along the axis y = 0λ0 of the transverse force exerted on an ultra-relativistic particle
moving in the negative x-direction and (b) of the plasma electron density. Both data are recorded
at time 11T0. Though minor deviations can be detected, the main physics is the same. The
radiation pressure associated with the laser pulse pushes the target surface inwards, resulting in
electron densities that are considerably higher than at the beginning. In that regard, peak electron
densities above 6ne0 can be obtained at t = 11T0. These peak densities, however, are below
those in the one-dimensional case [see figure 5.4.2(b)]. This is due to the inhomogeneity of
the laser pulse in the y-direction which causes a ponderomotive expulsion of the electrons from

74



5.4 Reducing the switching time of the electromagnetic field by plasma screening

0

600

1200

1800

2400

3000
(a)

0

2

4

6

8

0 2 4 6 8 10

(b)

F ⊥
/
(m

ec
ω

0)

test

n e
/n

e 0

x/λ0

Figure 5.4.6: Plot of (a) the transverse force experienced by a particle moving nearly at the
speed of light in the negative x-direction according to equation (5.4.2) and (b)
the electron density of the plasma target. Both snapshots show a cut at y = 0λ0
and are recorded at time t = 11T0.

the center. However, the density is still high enough to prevent the laser pulse from penetrating
deeply into the target. As in the previous case, the data reveal that the gradient length over
which the transverse force drops is in the order of 20 nm. It can be also found that the plasma
front is moving slower than before. As a consequence, the peak force is already reached T0/8
earlier. An explanation could be that the plasma electrons emit more γ-photons. Conversely,
energy transfer from the laser field to the ions is less efficient, finally yielding a reduction of the
hole-boring velocity [170].

The simulation result for χe is given in figure 5.4.7 which illustrates the quantum nonlinearity
parameter for every tenth beam electron at time t = 11T0. It can be clearly seen that χe values
above 1600 are still predicted. It means that the key point is not affected in a critical way through
the more realistic two-dimensional geometry.

To comment briefly, the last presented configuration may be particularly promising from an ex-
perimental point of view. Obviously, the main advantage is its very simple geometry. One just
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Figure 5.4.7: Plot of the quantum nonlinearity parameter χe obtained from the two-
dimensional simulation for a fraction of the beam electrons at time t = 11T0.
It can be seen that even in the two-dimensional case, χe surpasses the value of
1600. Data published in [169].

has to irradiate a solid material with an ultra-strong laser pulse at normal incidence. Of course,
one also needs 100 GeV-class electrons. But, these electrons do not have to be available in
terms of extremely high-current and tightly focused/compressed beams (see section 5.2). Fur-
thermore, the conversion of an optical into an ultra-intense attosecond pulse is not necessary
(see section 5.3). The latter may depend in a sensitive way on the interaction parameters and
may thus require their accurate control. However, even for the skin-layer setup further work is
essential. This particularly addresses potential observables as the spectra of particle are only
of limited suitability. This is due to the interaction with the long tail of the optical laser pulse,
which dominates the spectra. How this can be understood in detail will be covered by the next
chapter 6.

For the sake of completeness, it should be mentioned that two additional configurations have
been proposed recently. The first approach is a laser-based one. Blackburn et al. achieve the
mitigation of radiation losses by the cross-collision of 40 GeV electrons with an optical laser
beam of intensity 2× 1024 Wcm−2 [174], i.e. the scattering angle is 90◦. The driving idea is
there that it is generally easier to reduce the laser focal spot than the laser duration. In this
way, the unfavorable scattering geometry prevails over higher radiation losses in the head-on
scattering case. The second proposal builds on the interaction of ultra-relativistic electrons with
strong crystalline fields [175]. In detail, Di Piazza et al. report on TeV electrons that pass thin
tungsten crystals. Both approaches, however, focus their attention to the close, non-perturbative
QED regime with values of χ around 100.

5.5 Summary

In summary, the last chapter started with an introduction of the highly supercritical regime of
QED. This regime, which is characterized by the fact that radiative loop corrections are so im-
portant that QED perturbation theory is conjectured to break down, requires the background field
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to be extremely strong such that χ & 1600. It is widely believed that the regime is far beyond
experimental reach due to ultra-short radiation loss times. Notwithstanding the above, it was
consecutively shown via PIC simulations that radiation losses can be mitigated in several con-
figurations. Here, three experimental setups were proposed that sound promising for reaching
and so for probing the highly supercritical regime.

Firstly, it was explained in section 5.2 that one could probe the regime by the collision of two
high-current 100-GeV-class electron bunches, so circumventing the use of optical laser radiation.
Namely, when each electron bunch carries a Mega-Ampere current and is additionally focused
to a transverse size of σr = 10 nm, its collective self-field can be as strong as provided by the
most intense optical laser. Compressing the bunch also longitudinally to a length of σx = 10 nm,
it was demonstrated that electrons in each counter-propagating bunch could reach χ & 1600. It
was further argued that the photons and electron-positron pairs generated during the collision
could give insights about the physics of the interaction. Interestingly in that context, the particle
spectra were found to obey well-defined power laws over a certain energy range.

Secondly, it was proposed in section 5.3 how one can use intense optical laser radiation instead.
It was particularly argued that one could convert an incident optical laser pulse into an ultra-
intense attosecond pulse. The conversion from optical to attosecond pulse was here done with
the help of high-harmonic generation at an over-dense plasma surface. In this way, it was shown
that one could generate an almost unipolar pulse with peak intensity I ≈ 2.9×1024 Wcm−2 and
an ultra-short pulse duration of only τ ≈ 150 as. With that pulse, it was finally possible to reach
χ & 1600 for a counter-propagating 100-GeV-class electron beam.

Thirdly, it was considered in section 5.4 that one could directly use a plasma to reduce the
switching time of the strong laser field. The key word is the skin depth up to which a laser
pulse can propagate into an over-dense plasma before getting reflected. Using a solid-dense
diamond target, the penetration depth was numerically found to be of the order of ls ≈ 20 nm.
An electron beam that propagates through the plasma towards the irradiating laser pulse was
shown to facilitate approaching the highly supercritical regime.
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6 Non-perturbative QED and its
identification

The previous chapter had the intention to demonstrate that highly supercritical fields may be in
experimental reach in the not too distant future. As pointed out therein, this can be achieved
either by the collision of two counter-propagating high-current (∼ 1.7 MA) and high-energy
(∼ 100 GeV) electron bunches with dimensions on the nanometer scale (see section 5.2) or by
head-on collisions of 100 GeV electron beams with strong laser radiation (see sections 5.3 and
5.4). The prospect of promising experiments, however, also raises the question on how one can
identify the entering of such a regime experimentally. The following chapter will address this is-
sue in more detail. It will be shown that the spectra of particles being involved in the interaction
(i.e. electrons, positrons, and high-energy photons) represent an important observable. In partic-
ular, an analytical model describing the temporal evolution of the particle’s energy distribution
is introduced that finally allows differentiating the impact of non-perturbative QED effects from
the particle spectra.

6.1 Modeling the spectra of ultra-relativistic particles in
supercritical fields

The main purpose of the following section is the introduction of a model describing the ultra-
short interaction of ultra-relativistic particles with (highly) supercritical fields in a self-consistent
manner. In the end, the model gives insights about the shape of the particle spectra after the
interaction.

The analytic approach starts with the consideration of the particle dynamics in the phase space.
Although the particle’s phase space is in principle six-dimensional (three coordinates and three
momenta), the proposed experimental geometries can be used to greatly reduce the dimension-
ality and thus the complexity of the problem. For instance, the interaction time τ between
particles and fields is expected to be ultra-short. This means that for ultra-relativistic (≈ 100
GeV) electrons the transversely gained momentum p⊥ = qeEτ is much less than the longitu-
dinal one. Correspondingly, the particle trajectories are only distorted by the negligible angle
ϑ ' p⊥/(γemec)� 1 during the interaction, so that one can completely neglect the transverse
motion. Following the same line of argument, one can also neglect the impact of the fields on the
longitudinal momentum component. It is therefore reasonable to assume that all particles move
on straight lines at the speed of light, x(t) = x0 + ct. It results that the phase space becomes
effectively one-dimensional, so that the dynamics can solely be described by the particle energy
ε . Of course, the particle energy and so the particle distribution function can be altered by QED
processes. However, as will be motivated later (see section 6.2.2), the exact shape of the external
field is of second rank for χ � 1, so that one can treat the background as a globally constant
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magnetic field [176]. Then, the temporal evolution of the distribution functions is governed by
the one-dimensional Boltzmann equations

∂t fγ (ε) = −Wpair (ε) fγ (ε)

+

ˆ
∞

ε

dε̃ [ fe− (ε̃) + fe+ (ε̃)]
dWrad

dε

∣∣∣∣
ε̃→ε̃−ε

,

∂t fe−,e+ (ε) = −Wrad (ε) fe−,e+ (ε)

+

ˆ
∞

ε

dε̃

[
fγ (ε̃)

dWpair

dε

∣∣∣∣
ε̃→ε

+ fe−,e+ (ε̃)
dWrad

dε

∣∣∣∣
ε̃→ε

]
.

(6.1.1)

Here, fγ and fe−,e+ are the particle distribution functions at time t, describing high-energy pho-
tons, electrons, and positrons, respectively1. However, it should be clear that under the above
assumptions the particle distribution functions coincide with the particle spectra. In addition,
Wrad (ε) and Wpair (ε) are the total photon emission rate and the total pair creation rate for a
parent particle with energy ε , (dWrad/dε)|

ε̃→ε
is the differential photon emission rate for an

electron (or a positron) to change its energy from ε̃ to ε through the emission of a high-energy
photon2, and

(
dWpair/dε

)∣∣
ε̃→ε

is the differential pair production rate for a photon with energy ε̃

to decay into an electron with energy ε and a positron with energy ε̃−ε . The general solution of
the coupled system of Boltzmann equations (6.1.1) is very complicated. In principle, a formal
solution can be expressed in terms of time-ordered exponentials since the equations are linear
in the particle distribution functions [176]. However, a different approach will be pursued in
the following. It turns out to be convenient to solve equation (6.1.1) in perturbation theory with
respect to time t. This is reasonable as the total interaction time τ is supposed to be short on
timescales representing the QED processes, Wrad,pair τ ≤ 1. This leads to the ansatz

fµ(t) = f (0)µ + f (1)µ + f (2)µ + . . . (6.1.2)

for the particle spectra, where µ = γ, e−, and e+ indices the different particle species, and
f (i)µ ∝

(
Wrad,pair t

)i describes the spectrum in the i-th order of the perturbation theory. Recalling
the proposed experiments from the previous chapter, it is possible to determine the distributions
in zeroth order since all setups start with monoenergetic electrons of energy ε0. The initial
condition then translates into f (0)e− = δ (ε− ε0) and f (0)e+ = f (0)γ ≡ 0. Subsequently, one can solve
equation (6.1.1) in stages. In first order, the particle spectra can then be written as

f (1)e− (ε) = t ·

[
dWrad

dε

∣∣∣∣
ε0→ε

− Wrad δ (ε− ε0)

]
,

f (1)e+ (ε) = 0,

f (1)γ (ε) = t · dWrad

dε

∣∣∣∣
ε0→ε0−ε

.

(6.1.3)

The equations allow drawing several conclusions. First, the equation depicts that one does not
generate positrons in first order. This is due to the fact that Breit-Wheeler pair production is here
a two-step process: In the first step, electrons have to emit photons, which in turn can decay into
electron-positron pairs. As there is in average only a single generation of secondary particles per

1It is noted that the dependence of the distribution functions on time t is not written explicitly.
2In the above notation, one always evaluates the differential photon emission rate at electron energies. Therefore,

one inserts ε̃ (energy of the emitting electron) and ε̃ − ε in the case of the emission of a photon with energy ε

[see upper equation in (6.1.1)].
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Figure 6.1.1: The log-log plot shows the differential photon emission rate for electrons with

ε0 = 125 GeV and χ0 = 1600 in gray and the photon spectrum generated by such
electrons interacting with a clean attosecond pulse (duration 50 as). The vertical
misalignment is ascribed to different normalizations used in both plots.

time W−1
rad,pair, positrons are expected in the second order of the perturbation theory. Second, the

result of the electron and the photon spectrum is of great importance. This becomes particularly
obvious when considering ultra-short interaction times, Wrad,pair τ � 1. Higher orders of the
perturbation theory are suppressed under such circumstances with the result that the first-order
contribution is a very good approximation to the full particle spectra. Notably, this enables a
direct measurement of the differential photon emission rate from the electron and the photon
spectrum. It should also be emphasized that this includes the regime αχ2/3 ≥ 1 as no assump-
tions have been made so far on the differential QED rates. To corroborate the statement, the
interaction of 125 GeV electrons with a clean attosecond pulse (duration 50 as) is investigated in
the framework of a one-dimensional QED-PIC simulation. The supplement ’clean’ means that
the pulse has a perfect Gaussian temporal profile a0e−(x−ct)2/(2σ2

τ ). Here, στ represents the pulse
duration via τ = 2στ

√
ln(4). The field strength a0 is chosen such that maximum χe values of

1600 can be reached by the electrons. As the radiation time W−1
rad = trad ' 200 as is rather long

with respect to the pulse duration, it is expected that the photon spectrum reproduces the dif-
ferential photon emission rate. Figure 6.1.1 shows the corresponding simulation results in blue
(photon spectrum) and gray [Nikishov–Ritus differential photon emission rate for electrons with
ε0 = 125 GeV and χ0 = 1600, see equation (2.5.5)]. Overall, one can see that both the differ-
ential photon emission rate and the photon spectrum show the same behavior. They both obey a
power law almost over the entire domain shown. Even the previously observed bump emerging
at the high-energy cutoff can be identified in both plots. This strengthens the statement that the
shape of the differential photon emission rate can be accurately reproduced by the photon spec-
trum if the interaction time is ultra-short in the above sense. The mismatch in height, in contrast,
is ascribed to different normalization values for both quantities.

At this point, it is also clear that the previously observed power-law photon spectrum (see sec-
tions 5.2 and 5.3) is a direct consequence of the Nikishov–Ritus differential rates as they are
applied in all simulations. Accordingly, it is not far to seek to take a closer look at these rates.
Recalling the expression for the Nikishov–Ritus rates from equations (2.5.5) and (2.5.10), one
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finds that they depend mainly on Ai′(x) , i.e. on the first derivative of the Airy function3. The
Airy function and also its first derivative are exponentially suppressed for large arguments x� 1.
It is therefore likely that only secondary particles with x . 1 contribute significantly to the spec-
tra. In addition, the parameter x is symmetric around χγ/2 for pair creation, attaining a minimum
of xmin =

(
4/χγ

)
2/3 . In the following, the focus is thus laid on photons with χγ � 1 for which the

constraint x . 1 is ensured and even tightened to x� 1. From a physical perspective, it means
that only photons having a relatively high decay probability will be taken into account after-
wards, as they enable the development of an electromagnetic cascade. Such photons can only be
generated by electrons and positrons with χe� 1. The constraint χ� 1 for all species therefore
labels the lower limit of particles that control the spectra. On the other side, x� 1 requires the
maximum quantum nonlinearity parameter to be much less than the initiating one χ0. In fact,
these limits can be translated into a range of particle energies for which the constraint x� 1
serves as a good approximation, ε0/χ0� ε � ε0. On this energy interval, the Nikishov–Ritus
differential QED rates can be simplified to [177]

dWrad

dε

∣∣∣∣
ε̃→ε

' ν

ε̃ 4/3

1+η2

η 1/3 (1−η)2/3

(
H

Hcrit

)2/3

,

dWpair

dε

∣∣∣∣
ε̃→ε

' ν

ε̃ 4/3

η2 +(1−η)2

η 1/3 (1−η)1/3

(
H

Hcrit

)2/3

,

(6.1.4)

where the abbreviations

ν =−
αAi′ (0)

(
mec2

)4/3

h̄
and η =

ε

ε̃

(6.1.5)

are introduced, and H represents the background field. Inserting the approximations back into
equation (6.1.3), one finds that the spectra are supposed to scale as4

f (1)e− ∝ ε
−1/3
e and f (1)γ ∝ ε

−2/3
γ . (6.1.6)

Hence, the approximation features the power-law behavior and it is expected that a power-law
index of p = 2/3 describes a large part of the photon spectrum if the interaction time is short.
This coincides with the data of the photon spectrum in figure 6.1.1 whose index is very close to
p = 2/3 when performing a linear fit. On the other hand, the power-law index is slightly smaller
as predicted by the proposals (p = 0.73 for the non-perturbative QED collider and p = 0.96 for
the attosecond pulse setup), indicating that the interactions are not short enough to be able to
characterize the spectrum in first order. The same deduction can also be drawn with regard to
positrons which were observed in the proposals, but are not comprised of the first-order result.
Consequently, higher orders of the perturbation theory should be included. In this context,
it is particularly important to understand how higher orders are formed from such a power-
law behavior. For this reason, one inserts a power-law distribution function f (ε) ∝ εs into
the Boltzmann equations (6.1.1) and uses additionally the approximations in equation (6.1.4). In
doing so, it can straightforwardly be shown (see appendix A.3.1 for the details of the calculation)
that any convolution in the Boltzmann equations with a power-law distribution gives again a

3As a brief reminder, the parameter is defined as x =
[
χγ/(χe|χe−χγ |)

]2/3.
4In the case of the electron spectrum, η is much less than unity for the considered energies. Conversely, it ap-

proaches unity in the case of the photon spectrum.
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The same holds for any multiplication of the particle distribution functions with the total QED
rates (see appendix A.3.2 for the details of the calculation),

Wpair ε s

Wrad ε s

}
∝ ε

s−1/3. (6.1.8)

Surprisingly, the transformation behavior is universal since the modified power-law index is
always reduced by 1/3 to s− 1/3. Applying this to the perturbation theory, the spectra up to
second order can be finally written as

fe− (ε) ' aε
−1/3 +bε

−2/3 + cε
−1,

fe+ (ε) ' dε
−1,

fγ (ε) ' gε
−2/3−hε

−1.

(6.1.9)

Here a, b, c, d, g, and h represent positive quantities that depend quadratically on time. It is
further noted that the negative sign in front of h symbolizes those photons which have decayed
into electron-positron pairs.

In order to test the predictions of the model, the interaction of electrons with a clean electromag-
netic attosecond pulse (duration 150 as) is investigated numerically. The simulation parameters
are the same as compared to the case in figure 6.1.1 except for the longer duration. Figure 6.1.2
shows the results of the one-dimensional simulation. More precisely, the photon spectrum is
illustrated in blue, the merged seed- and pair-electron spectrum in black, and the positron spec-
trum in orange. Starting with the photon spectrum, a power law with an index of approximately
p = 0.77 can be deduced from a linear fit to the data (see the linear function in blue)5. The index
is close but not exactly equal to the first-order expectation p = 2/3, which indicates that more
than one generation of photons already contributes to the spectrum. Nonetheless, the model cor-
rectly predicts the trend, namely that the spectrum drops off faster for longer interaction times. It
is also interesting to note that the power-law index remains below the second-order contribution
p = 1. From that, it follows that the spectrum lays well within the range predicted by the model.
The same holds also for the electron spectrum. There, the fitting routine yields a power-law in-
dex p' 0.68, which is in the range predicted by equation (6.1.9). The best agreement, however,
is obtained in the case of the positron spectrum. The power-law index is approximately equal to
p = 0.99 which is very close to the prediction of the model p = 1.

In conclusion, the analytical model allows the understanding of the particle spectra with reason-
able accuracy, when the interaction time is short with respect to the characteristic time of the
QED processes.

5It is noted that the fitting range has to respect the applicability range of the approximation. Applied to the present
case, this is respected within the interval 125 MeV < ε < 25 GeV.
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Figure 6.1.2: The plot shows the energy spectrum for electrons (black), photons (blue), and
positrons (orange) obtained from the interaction of ultra-relativistic electrons
(ε0 = 125 GeV) with a clean attosecond pulse (duration 150 as). The intensity of
the electromagnetic pulse is chosen such that a maximum quantum nonlinearity
of χ0 = 1600 can be reached. The plot also contains linear fits predicting power-
law indices of p = 0.77 for photons, p = 0.68 for electrons, and p = 0.99 for
positrons in the energy range 125 MeV < ε < 25 GeV.

6.2 Identifying non-perturbative QED effects from the
particle spectra

The preceding section introduced an analytical model for the particle spectra generated in super-
critical and ultra-short interactions. To some extent, the model builds up on the Nikishov–Ritus
theory. As this theory is conjectured to break at αχ2/3 ' 1, both the particle spectra and the
model simultaneously provide opportunities to identify (fully) non-perturbative QED. How this
basically works will be explained in the following.

6.2.1 Shape of the particle spectra

A first opportunity was already given in the previous section. If the interaction time is ultra-
short in the sense that the spectrum can be described by the first-order approximation, the pho-
ton spectrum directly gives the differential photon emission rate. A simple comparison with the
Nikishov–Ritus theory would then indicate whether, and if where, non-perturbative QED effects
are significant. In addition to that, the shape of the particle spectra can also be helpful when the
spectra go beyond the first order. One can deduce from equation (6.1.4) that the scaling of the
Nikishov–Ritus rates in fields of different strengths is the same as long as the interaction stays
in the supercritical regime χ � 1. As the shape of the differential QED rates is essential for the
shape of the particle spectra, the shape of the spectra should also be comparable. To illustrate
that, the interaction of ultra-relativistic electrons (ε0 = 125 GeV) with a clean attosecond pulse
(τ = 150 as) of two different strengths is considered numerically. Figure 6.2.1 shows the pho-
ton spectra for the interaction with peak amplitudes chosen such that electrons experience either

84



6.2 Identifying non-perturbative QED effects from the particle spectra

4

5

6

7

8

9

-5 -4 -3 -2 -1 0

lo
g 1

0
dN

γ
/
dε

γ
(a

.u
.)

log10
(
εγ/ε0

)
Figure 6.2.1: One-dimensional simulation results for the spectra of photons obtained from

the interaction of ultra-relativistic electrons (ε0 = 125 GeV) with a clean 150-
attosecond pulse of different strengths. In particular, the peak field is such that
the electrons can reach χ0 = 1600 (dotted) and χ0 = 160 (solid).
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Figure 6.2.2: Nikishov–Ritus differential photon emission rate for electrons with χ0 = 10
(dashed), χ0 = 100 (solid), and χ0 = 1000 (dotted). Please note that each emis-
sion rate is normalized such that the area under all plots is unity.

χ0 = 160 (solid) or χ0 = 1600 (dotted). Again, one can see that both spectra follow a power law.
Even though a closer look reveals a slight deviation in the power-law indices—especially at low
energies—the overall shape of the spectra remains the same. Now, the Nikishov–Ritus theory is
more likely to fail at χ0 = 1600 as αχ

2/3
0 ' 1. At χ0 = 160, αχ

2/3
0 ' 0.2, in contrast, the formu-

las may still be applicable at least up to a certain extent. It means that if the experimental photon
spectra will not agree in shape, this may be a clear hint to entering the fully non-perturbative
regime of QED. This may also give insights in which part of the spectrum the theory fails.

A further feature is the aforementioned bump in the photon spectrum that arises in the vicinity of
the initial electron energy. The bump in itself appears counter-intuitively as the electron is likely
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to emit all its energy in a single emission. Therefore, the bump has recently gained interest by
Tamburini and Meuren [178]. Based on the discussion so far it should be clear that the bump
originates from the Nikishov–Ritus differential photon emission rate (see figure 6.1.1), and can
formally be set in relation to the η1/3 term emerging in equation (6.1.4) (η tends to zero when
the energy of the emitted photon approaches the initial electron energy). Fortunately, the exact
details of the bump depend on the quantum nonlinearity parameter of the initiating electron χ0.
For example, the bump gets more pronounced with increasing χ0. To show that, figure 6.2.2
depicts the Nikishov–Ritus differential photon emission rate for three different values of χ0:
1000 (dotted), 100 (solid), and 10 (dashed). Clearly, the bump can be seen to be highest and
sharpest in the strongest field. Thereby, it exceeds the case χ0 = 100 significantly. In the weakest
field χ0 = 10, in contrast, the bump cannot be observed at all. This qualitative behavior is
retained in the photon spectrum. A close look at the spectra in figure 6.2.1 reveals the bump to
be more pronounced in the stronger field. Additionally, the non-existence of the bump at low χ0
can be seen in figure 5 from [163]. This is in agreement with the findings in [178], where the
bump was reported to emerge only in fields with χ0 > 16. Moreover, it was found that the height
of the bump increases monotonically with χ0. As both the shape and the existence of the bump
depend on χ0, it represents an implicit observable for the physics of the interaction, and may
thus be used as a signature for non-perturbative QED. Following [178] once more, the bump
also disappears when the interaction time is too long in the above sense, so that the spectrum
gets dominated by multiple emissions. Here, one can take the photon spectrum for the generated
attosecond pulse as an example (see figure 5.3.6). Based on the pre-pulse, the interaction time
was extended resulting in the suppression of the bump. However, even the spectra originated
from multiple generations of secondary particles can be used to identify fully non-perturbative
QED. The next section will pick up that point in the context of the H 2/3−correspondence.

6.2.2 The H 2/3−correspondence

The following part introduces the so-called H 2/3−correspondence, which has versatile conse-
quences. First, it motivates the global constant field approximation used before. In that context,
it also allows the reproduction of particle spectra through simple and fast one-dimensional sim-
ulations. And second, it may have the potential to identify significant deviations in the QED
probability distributions for χ � 1 from the particle spectra.

In order to understand the concept, one first puts the perturbation theory with respect to the in-
teraction time in the rear and starts again with the coupled Boltzmann equations (6.1.1) instead.
As already mentioned previously, one can formally express the solution of the Boltzmann equa-
tions in terms of time-ordered exponentials in the general case [176]. The particle distribution
functions at time t are thus determined by a time integral over the (differential) QED probability
rates. A closer look at these rates reveals that the dependence on the external field is universal
in the case χ� 1 [see equations (2.5.7), (2.5.12), and (6.1.4)]. To be more precise, the rates are
directly proportional to H2/3. This in turn leads to the following hypothesis. If there are two dis-
tinct systems in which electrons from the same source interact with two different fields, namely
in system 1 with field H1 (t) and in system 2 with field H2 (t), then the particle distribution
functions at time t will coincide when

ˆ t

0
dt ′H 2/3

1

(
t ′
)
=

ˆ t

0
dt ′H 2/3

2

(
t ′
)

(6.2.1)
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Figure 6.2.3: One-dimensional simulation results for the spectra of photons (blue) and
positrons (orange) obtained from the interaction of ultra-relativistic electrons
(ε0 = 125 GeV) with a clean attosecond pulse (duration 78 as). This duration
translates into a rms length of 10 nm. In this way, one can reproduce the spectra
for the non-perturbative QED collider (dotted plots, see also figures 5.2.6 and
5.2.8). Note that the plots are vertically adjusted to match in height.

holds6. This is the so-called H 2/3−correspondence which has several interesting implications.
For instance, it suggests that the exact shape of the electromagnetic field is not of prior im-
portance in the supercritical regime χ � 1, since the final particle spectra can be simply re-
produced on condition that equation (6.2.1) is fulfilled. This motivates the globally constant
field assumption and simultaneously opens up the possibility of modeling the particle spectra
in complex physical systems through much simpler geometries. As an example, simulating
the non-perturbative QED collider in three dimensions (see section 5.2) is extremely time- and
storage-consuming from a computational point of view. The final particle spectra, however, can
be reproduced by simple one-dimensional simulations, which are considerably faster and smaller
in storage. In order to check that, a one-dimensional simulation modeling the interaction of an
ultra-relativistic electron beam (ε0 = 125 GeV) with a clean attosecond pulse is conducted. The
duration (τ ' 78 as) and the peak strength of the pulse match the field of the non-perturbative
QED collider, implying that equation (6.2.1) is fulfilled. Figure 6.2.3 presents the results for the
particle spectra. In particular, the solid lines (photons in blue and positrons in orange) represent
the data from the one-dimensional simulation, whereas the black dotted lines correspond to the
fully three-dimensional simulation (see also figures 5.2.6 and 5.2.8). One can directly see that
apart from the low-energetic positrons the shapes of the spectra are in perfect agreement. It
should be stressed that the total yield in the spectra (ordinate), however, depends on the details
of the configuration—such as number of initial electrons—and was adjusted in the figure to bet-
ter visualize the coincidence. Further, the difference at low energies is not unexpected7 because
this part of the spectrum is not covered by the model approximations.

As a second example, one considers the interaction between the ultra-relativistic electrons with
the self-consistently generated attosecond pulse (see section 5.3). Although the duration of the

6In that case, electrons with χe� 1 lose in total the same amount of energy in both systems [see equation (2.5.9)].
7To be more precise, it results from the transverse motion of positrons being subjected to the focusing forces of the

opposing electron beam.
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Figure 6.2.4: One-dimensional simulation results for the spectra of photons (blue) and
positrons (orange) obtained from the interaction of ultra-relativistic electrons
(ε0 = 125 GeV) with a clean attosecond pulse (duration 350 as). This dura-
tion characterizes the interaction with the self-consistently generated attosecond
pulse from section 5.3 including the pre-pulse. The dotted lines represent the full
results obtained from two-dimensional simulations (see also figure 5.3.6). Data
published in [163].

main pulse is relatively short (τ ≈ 150 as), the power-law indices describing e.g. the photon spec-
trum do not comply well with the second-order model. Following the correspondence principle,
the main pulse is expected to produce a photon spectrum with p ' 0.77 (see figure 6.1.2 as a
reference) rather than p' 0.97 (see figure 5.3.6). The reason for that difference is the pre-pulse
which is too long to be neglected. Fortunately, the main part of the particle spectra can be recon-
structed in simple one-dimensional simulations when the H 2/3−correspondence is applied as
follows. In the first step, one calculates the integral of H2/3 along the electron trajectory. In the
second step, one chooses the duration of a clean Gaussian attosecond pulse in such a way that
the time integral over H2/3 matches the one along the electron trajectory. Applied to the self-
consistently generated pulse from section 5.3 and under the assumption of same peak strengths,
one obtains an effective duration of τ ≈ 350 as. The spectra resulting from the interaction of
such a pulse with 125 GeV electrons are given in figure 6.2.4 as solid lines together with the full
results (dotted lines, see also figure 5.3.6). It can be seen that the spectra can be reproduced with
reasonable accuracy in the energy range of interest. It is further noted that a comparison with
the spectra generated by a pulse of 150 as duration (see figure 6.1.2) gives insights into the role
of the main and pre-pulse on the distribution of particles with χ � 1.

The examples above support the applicability of the H 2/3−correspondence. Hence, it will be
addressed in the following how the correspondence principle can be valuable for the identifi-
cation of impactful high-order radiative corrections. In this context suppose that one of the
experiments proposed in chapter 5 has been performed and the interaction geometry suggests
that only a few generations of secondary particles contribute to the spectra8. One can then try
to reproduce the experimental particle spectra through simple and fast one-dimensional sim-

8The proposal in section 5.4 should be considered more carefully due to the long total interaction time which results
from the tail of the optical laser pulse.
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ulations by adjusting the effective duration of a clean attosecond pulse until one observes a
coincidence of the experimental and simulation data. If this simple reconstruction of the par-
ticle spectra via one-dimensional simulations is impossible, this will indicate the failure of the
H 2/3−correspondence. From a theoretical viewpoint, the failure of the H 2/3−correspondence
implies the break of the Nikishov–Ritus formulae as a result of entering a regime where high-
order radiative corrections become impactful. Depending on which part of the spectrum cannot
be recovered, one may also get information which part of the theory requires an amendment.

6.3 Summary

The preceding chapter dealt with the analytic modeling of energy spectra generated during the
interaction of ultra-relativistic particles with highly supercritical fields. Boltzmann equations de-
scribing the temporal evolution of the spectra served as a starting point for the analysis. Under
the assumption of ultra-short interactions in the sense that only a few generation of secondary
particles are expected, it was possible to solve the equations through an ansatz in the form of
perturbation theory. Importantly, it was found that in first-order perturbation theory the photon
spectrum coincides with the differential photon emission rate [see equation (6.1.3)]. Experimen-
tally, this is a powerful matter of fact as it allows the direct measurement of the QED probability
rate from the photon spectrum, including also the unknown regime of highly supercritical fields.
In order to understand the spectra from the simulations in detail (see sections 5.2 and 5.3), the fo-
cus was then laid on the Nikishov–Ritus probability rates. In fact, the first-order result in the case
of the standard Nikishov–Ritus theory yielded power-law particle spectra [see equation (6.1.6)],
but it was not able to correctly predict the power-law indices as observed in simulations. Further-
more, it was also not possible to exhibit information on the positron spectrum as pair creation is
a two step process. The model was therefore extended by incorporating contributions up to the
second order of the perturbation theory. The subsequent comparison with the simulated spectra
pointed out that the second-order model suffices in understanding the main features of the parti-
cle spectra. Particularly notable in that regard is the power-law index belonging to the positron
spectrum, which was in excellent agreement with the prediction of the second-order model [see
equation (6.1.9) and figure 6.1.2].

The second part of the chapter addressed the question how one could prove the entrance of
(highly) supercritical regimes from experimental data. It was argued that within the Nikishov–
Ritus theory the particle spectra retain their shape when being generated in supercritical fields.
Simple comparisons between experimental spectra in fields of different strengths would then
reveal whether, and if where, the current theory lacks. A further observable was the bump
emerging in the high-energy part of the photon spectrum. Its properties depend on the quan-
tum nonlinearity parameter of the probing electrons and thus could give information about the
physics. Moreover, the H 2/3−correspondencee was introduced as an attractive tool. The cor-
respondence principle enabled the reproduction of particle spectra through simple and fast one-
dimensional simulations, provided that the time integral over H2/3 in the one-dimensional sim-
ulation matches the integral in the proper system [see equation (6.2.1)]. It was elaborated that
if one-dimensional simulations cannot reproduce the experimental spectra, this will indicate the
failure of the H 2/3−correspondence and so indicates a break of the Nikishov–Ritus theory.
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7 Conclusion

The present thesis investigated high intensity laser–plasma interactions with special focus on
how they can be exploited in order to explore and advance QED, the fundamental theory de-
scribing the interaction of charged particles with electromagnetic fields.

Chapter 2 started with a description about the theoretical background which is necessary for the
interpretation of the results. As the majority of these results were obtained in the framework of
numerical simulations, chapter 3 gave a comprehensive overview of the applied particle-in-cell
(PIC) technique. In that regard, section 3.3.1 explained in detail how the dominant QED effects,
namely γ-photon emission and (multi-photon) Breit-Wheeler pair production, are implemented
into the PIC code VLPL. Through a series of test simulations, it was afterwards shown that the
QED module works properly (see section 3.3.2), so truly strengthening the reliability in QED-
PIC simulations performed with the code VLPL.

Physically relevant results were then presented in chapter 4, where the interaction of two circu-
larly polarized and counter-propagating high-intensity laser pulses with a thin plasma foil was
studied. It was seen that radiation reaction can strongly alter the electron dynamics. When radi-
ation reaction is included in the simulations, it became possible to trap electrons in the nodes of
the electric field emerging from the superposition of the counter-propagating waves. In a second
step, the focus was laid on the robustness of this normal radiative trapping with respect to the
intensity of the irradiating laser pulses. The simulations indicated that the radiative trapping
breaks when the intensity gets too large (a0 & 800). Physically, the increasing role of the pair
production process with increasing intensity turned out to be driving force. Pairs were created
so efficiently that the generated electron-positron plasma turned opaque, which in turn caused a
break of the standing-wave structure and so the break of radiative trapping.
In a further study, it was discussed how the radiative trapping is affected when twisted light is
used instead. The twisted light was modeled by means of two circularly polarized Laguerre–
Gaussian laser beams. Supported by analytics and simulations it was shown that under appro-
priately chosen mode parameters, the electric nodes of the emerging standing wave took on the
form of a helix. In that way, it was possible to trap electrons along a helical path. The simu-
lations further revealed that circularly polarized Laguerre–Gaussian beams can be used to drive
electron structures with ultra-short durations on the attosecond level. Depending on the laser
mode parameters, these structures can either be disk-like electron bunches or helical electron
beams. The emergence of these structures could finally be understood after introducing the total
angular momentum j = m+ s per laser photon, where m describes the azimuthal Laguerre index
and s the handedness of the laser pulse.

Chapter 5 continued with the question of how the highly supercritical regime of QED, which
so far is not covered by any theory and was previously considered as inaccessible, could soon
be brought into experimental reach. The key task involved the reduction of the electromagnetic
field’s switching time, in order to mitigate radiation losses of ultra-relativistic electrons as much
as possible. The present thesis addressed in total three promising geometries. First, it was
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discussed that a future electron-electron collider can prove beneficial when the beam parameters
are as follows (see section 5.2): each electron beam has an energy of 125 GeV (per particle),
carries a peak current of 1.7 MA, is focused to a radius of 10 nm, and has also a length of 10 nm.
Second, it was elaborated that one can indirectly tackle the highly supercritical regime with
high-intensity optical laser radiation (see section 5.3). By means of high-harmonic generation
at an over-dense plasma surface, the optical laser radiation was found to be convertible into an
ultra-intense attosecond pulse. In the simulation, the converted pulse had a duration of 150 as
and a peak intensity of 1024 Wcm−2. The head-on collision with 125 GeV electrons emphasized
the feasibility of the setup. And third, section 5.4 brought a combined laser-plasma, laser-beam
configuration into play. The idea based on the shielding properties of an over-dense plasma.
There, a laser pulse can only penetrate up to the skin depth. In that way, it was possible to limit
the penetration depth of an optical laser pulse with intensity 5.4×1024 Wcm−2 to an ultra-thin
surface of roughly 20 nm at the front of a solid-dense diamond target. The highly supercritical
regime was finally shown to be in reach for 125 GeV electrons, moving collinearly to the optical
pulse.

After showing that highly supercritical fields could in principle be probed, the final chapter 6
addressed the point of how the successful realization can be identified from experimental ob-
servables. As such, the particle spectra generated during the interaction were concluded to be
appropriate. For that reason, it was aimed at modeling the spectra also analytically in order to
understand them in detail. In that regard, it was found that the photon spectrum will match the
differential photon emission rate if the interaction is ultra-short. Experimentally, this is obvi-
ously desirable, especially because it also includes the unexplored highly supercritical regime.
Moreover, it was demonstrated that the shape of all particle spectra can be understood when only
a few generations of secondary particles contribute. In regard of identifying the highly supercrit-
ical regime, the H 2/3−correspondence principle was introduced as a powerful approach. It was
based on perturbative QED by means of the Nikishov–Ritus theory, and indicated the possibility
of reproducing experimental particle spectra through simple and fast one-dimensional simula-
tions with clean Gaussian pulses of appropriate duration. If one-dimensional simulations will
not suffice in recovering the experimental spectra, this implies the break of the Nikishov–Ritus
theory and so the entrance of the fully non-perturbative regime of QED.

In conclusion, it could be seen that laser–plasma interactions are quite multifaceted. On the
one hand, they could be used to study how and when QED effects alter the collective plasma
behavior, so allowing the exploration of QED directly in the plasma (see, for instance, chapter 4).
On the other hand, one could make use of plasma and its unique properties to create suitable
configurations in which QED could subsequently be probed (see, for instance, chapter 5). In
the future, this variety will make high intensity laser–plasmas to an absolutely essential tool for
exploring QED.
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A Appendix

A.1 Longitudinal field profile of a Laguerre–Gaussian beam

The dependence of the transverse field on the transverse coordinates y and z comes along with a
longitudinal field component in order to fulfill Gauss law in vacuum, div E = 0. Thus, the laser
field needs to ensure

−∂xEx = ∂yEy +∂zEz. (A.1.1)

Based on the symmetry, it makes sense to express the transverse Cartesian derivatives through
radius r and azimuth angle ϕ . Then, the right hand side of the above equation transforms into

−∂xEx =

(
cos(ϕ)∂r−

sin(ϕ)
r

∂ϕ

)
Ey +

(
sin(ϕ)∂r +

cos(ϕ)
r

∂ϕ

)
Ez. (A.1.2)

Without loss of generality, the calculation is shown for the right-moving wave from equa-
tion (4.3.1). Inserting that equation with the abbreviation E m

p (r,x) ≡ E m
p for the upper line

into equation (A.1.1) gives after some math
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(A.1.3)

It is noted that the relations s2 = 1, cos(ϕ) = cos(sϕ), s sin(ϕ) = sin(sϕ), as well as additional
theorems for trigonometric functions are utilized to obtain equation (A.1.3). The longitudinal
field component Ex can then be obtained by integrating equation (A.1.3) with respect to x. How-
ever, the transverse fields are given in paraxial approximation, so that the same must hold for the
longitudinal component to be consistent. In that approximation, the variation of the field profile
can be neglected on the scale determined by the wavelength. As a consequence, the integral over
x simplifies significantly as one only considers the k0x dependence. Eventually, the integral is
trivial and one has

k0Ex =

(
ms

E |m|p
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(A.1.4)

A.2 Angular momentum of electromagnetic fields

This part of the appendix is meant to show that in vacuum one typically separates the total
angular momentum of a localized electromagnetic field into two contributions; one that can be
ascribed to the spin of the radiation field, and the other that represents an orbital contribution.
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A.2.1 Orbital and spin angular momentum of electromagnetic fields

In classical electrodynamics one can determine the angular momentum of the radiation field
from the formula [17]

L =
1

4πc

ˆ
dV x× (E×B) . (A.2.1)

In order to obtain the separation into two contributions, it is now convenient to express the mag-
netic field in terms of the vector potential A. Inserting B = rot A = ∇×A into equation (A.2.1)
gives the triple cross product

x×
(

E× (∇×A)
)
. (A.2.2)

which needs to be addressed in more detail. Most easily, this can done with the help of the
Levi-Civita symbol. Applying additionally Einstein’s sum convention, the triple cross product
can then be written as

x×
(

E× (∇×A)
)
= êi εi jk x j

(
E× (∇×A)

)
k

= êi εi jk εklm x jEl (∇×A)m

= êi εi jk εklm εmno x jEl (∂nAo) .

(A.2.3)

To further advance the derivation one should notice that εmno = εnom. This allows the use of the
identity εklm εnom = δknδlo−δkoδln, where δ represents the Kronecker delta. With this in mind it
is possible to perform explicitly the sums over the indices n and o, which results in

x×
(

E× (∇×A)
)
= êi εi jk

[
x jEl (∂kAl)− x jEl (∂lAk)

]
. (A.2.4)

In vector notation, the first summand on the right-hand side of equation (A.2.4) can now be
written as

êi εi jk x jEl (∂kAl) = El (x×∇)Al. (A.2.5)

Up to here, the angular momentum is equal to

L =
1

4πc

ˆ
dV
[
El (x×∇)Al− êi εi jk x jEl (∂lAk)

]
. (A.2.6)

Through an integration by parts over the variable xl and using the fact that the field is localized
in space, |E|, |A| → 0 for |x| → ∞, one can write the second part in equation (A.2.6) as

−êi εi jk

ˆ
dV x jEl (∂lAk) = êi εi jk

ˆ
dV ∂l (x jEl)Ak. (A.2.7)

This can be simplified by explicitly taking the derivative ∂l (x jEl) = δ jlEl + x j∂lEl = δ jlEl . In
the last step the term ∂lEl was identified as ∇ ·E, which is identically zero in vacuum. Then,
equation (A.2.7) is obviously equal to

−êi εi jk

ˆ
dV x jEl (∂lAk) =

ˆ
dV (E×A) . (A.2.8)
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A.2 Angular momentum of electromagnetic fields

Putting everything together, the angular momentum of spatially localized fields can be calculated
from

L =
1

4πc

ˆ
dV (E×A)︸ ︷︷ ︸
Lspin

+
1

4πc

ˆ
dV El (x×∇)Al︸ ︷︷ ︸

Lorbital

.
(A.2.9)

One can see that the angular momentum consists of two contributions. Apparently, the first con-
tribution depends only on the field itself and not explicitly on the coordinate x. It therefore seems
to be an intrinsic property of the field, and thus this part is commonly interpreted as the spin of
the radiation field. The second contribution, in contrast, does have an explicit dependence on x.
This part is frequently referred to as orbital angular momentum, which is basically motivated by
the term x×∇ that resembles the quantum mechanical orbital angular momentum operator.

A.2.2 Total angular momentum of a circularly polarized
Laguerre–Gaussian beam

In the following subsection, equation (A.2.9) will be applied for the case of a circularly polarized
Laguerre–Gaussian beam as defined in equation (4.3.1)1. In particular, the main interest is on the
angular momentum Lx which is carried along the propagation axis x. In order to perform the cal-
culation, knowledge about the vector potential A is essential as can seen from equation (A.2.9).
If the gauge is chosen such that the scalar potential φ is equal to zero, one can determine the
vector potential through direct integration of E over time. Under the assumption that the tem-
poral envelope of the laser field varies slowly with respect to the laser period2, one can further
neglect the time dependence of the pulse envelope in first order. In doing so, one first considers
the spin contribution. When again abbreviating the upper line in equation (4.3.1) with E m

p (r,x),
it reads

Lspin,x =
1

4πc

ˆ
dV (E×A)x =

1
4πc

ˆ
dV (Ey Az−Ez Ay)

=
s

4πω0

ˆ
dV E m

p (r,x)2 .

(A.2.10)

The contribution is proportional to the handedness s of the laser field as expected. Next, one
continues with the orbital contribution for which one first takes a closer look at the x-component
of the operator (x×∇). As the field components are expressed in cylindrical coordinates [see
equation (4.3.1)], it is not far to seek to do the same for (x×∇)x. In doing so, one has (x×∇)x =
∂ϕ . In total, one can thus write

Lorbital,x =
1

4πc

ˆ
dV El (x×∇)x Al =

1
4πc

ˆ
dV El

(
∂ϕAl

)
=

m
4πω0

ˆ
dV E m

p (r,x)2 +
(m+ s)
4πω0

ˆ
dV Ex (r,x)

2 .

(A.2.11)

One can see that the contribution of the transverse fields is proportional to m. However, there
is an unexpected contribution that depends on (m+ s). The strict separation as done above is

1Equation (4.3.1) describes two waves; one that propagates along the positive and the other that propagates along
the negative x-axis. Without loss of generality, the calculation is performed for the former wave.

2Physically, this means that the laser duration τ is much longer than the laser period T0.
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thus only correct if one neglects the longitudinal components in the second term. In general,
however, one can still draw the conclusion that the total angular momentum is proportional to
j = m+ s. This can be seen when adding Lspin,x and Lorbital,x with the result

Lx =
(m+ s)
4πω0

ˆ
dV E2. (A.2.12)

Interestingly, the integral is closely related to the total energy of the laser field.

A.3 Deriving the transformation rules for power-law
functions in the Boltzmann equations

The last part of the appendix discusses the evolution of power-law distribution functions in the
Boltzmann equation in the case of supercritical fields.

A.3.1 Convolution of a power-law distribution function and the
differential QED rates

For the derivation of the analytic model in section 6.1, it was crucial to show that each convo-
lution in the Boltzmann equation with a power-law function transforms into another power-law
function. To prove this, one starts with the equations in (6.1.7) and inserts the approximation for
the differential QED rates from equation (6.1.4). In doing so, the first line in equation (6.1.7)
reads

ˆ
∞

ε

dε̃ ε̃
s dWpair

dε

∣∣∣∣
ε̃→ε

= ν

(
H

Hcrit

)2/3ˆ ∞

ε

dε̃ ε̃
s 1

ε̃ 4/3

η2 +(1−η)2

η1/3 (1−η)1/3 , (A.3.1)

where η = ε/ε̃ . It is thus convenient to integrate over η instead of ε̃ . Merging the prefactors of
the integral in the variable ν̃ , performing the substitution, and simplifying as much as possible,
one can write the integral as

ν̃ ε
s−1/3

ˆ 1

0
dη

1
η s+1

η2 +(1−η)2

(1−η)1/3 ∝ ε
s−1/3. (A.3.2)

The remaining integral does not depend either on ε or on ε̃ so that the result is proportional to
εs−1/3. However, it is important to discuss the conditions under which the integral converges
because the integrand diverges at both the upper and the lower bound of integration. The diver-
gence at η→ 1 is not problematic as it is integrable. In contrast to that, the integrand scales like
η−s−1 at the lower bound which may cause a divergence for s≥ 0. Recapitulating that only the
photon distribution function couples to (dWpair/dε)

∣∣
ε̃→ε

, the integral A.3.2 converges eventually
since the power-law index in first order is s =−2/3.
In the same manner, one obtains for the middle part in equation (6.1.7)

ˆ
∞

ε

dε̃ ε̃
s dWrad

dε

∣∣∣∣
ε̃→ε

= ν̃

ˆ
∞

ε

dε̃ ε̃
s 1

ε̃ 4/3

1+η2

η1/3 (1−η)2/3

= ν̃ ε
s−1/3

ˆ 1

0
dη

1
η s+1

1+η2

(1−η)2/3 ∝ ε
s−1/3.

(A.3.3)
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Following the same line of argument as above, one can deduce that the integral converges be-
cause (dWrad/dε)|

ε̃→ε
couples to the electron and positron distribution functions which scale as

ε̃−1/3 and 0, respectively.
Lastly, one finds

ˆ
∞

ε

dε̃ ε̃
s dWrad

dε

∣∣∣∣
ε̃→ε̃−ε

= ν̃

ˆ
∞

ε

dε̃ ε̃
s 1

ε̃ 4/3

1+(1−η)2

(1−η)1/3
η2/3

= ν̃ ε
s−1/3

ˆ 1

0
dη

1
η s+4/3

1+(1−η)2

(1−η)1/3 ∝ ε
s−1/3.

(A.3.4)

A.3.2 Multiplying a power-law distribution function with the total QED
rates

Besides, it is important to understand that each multiplication with a QED rate reduces the
power-law index by 1/3. In order to show that, one starts with the definition of Wrad,

Wrad (ε) =

ˆ
ε

0
dε̃

dWrad

dε

∣∣∣∣
ε→ε̃

. (A.3.5)

Note the permuted order of the subscript in the differential photon emission rate. This follows
from the fact that one needs to sum over all final electron energies ε̃ that can be generated by
the initial electron with energy ε to obtain the total photon emission rate. Inserting subsequently
equation (6.1.4) and performing the same steps as above, one arrives at

Wrad (ε) = ν̃ ε
−1/3
ˆ 1

0
dη

1+η2

η1/3 (1−η)2/3︸ ︷︷ ︸
≈ 5.64

∝ ε
−1/3.

(A.3.6)

Correspondingly, each multiplication by Wrad reduces the power-law index by 1/3. As a side
note, one obtains exactly the limit χ � 1 of Wrad [see equation (2.5.7)] when inserting ν̃ .
In analogy, one has

Wpair (ε) =

ˆ
ε

0
dε̃

dWpair

dε

∣∣∣∣
ε→ε̃

= ν̃ ε
−1/3
ˆ 1

0
dη

η2 +(1−η)2

η1/3 (1−η)1/3︸ ︷︷ ︸
≈ 1.47

∝ ε
−1/3,

(A.3.7)

which is also in agreement with equation (2.5.12).

In conclusion, it is shown that the interaction transforms a power-law function ε s into a new
power-law function ε s−1/3.
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