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Abstract

The segregation of the human brain in cytoarchitectonic areas is an important prereq-
uisite for the allocation of functional imaging, physiological, connectivity, molecular
and genetic data to structurally well-defined entities of the human brain. Cytoarchi-
tecture describes the spatial distribution of cell bodies and their shape and size, and
is most appropriately studied at microscopic resolution based on cell-body stained
histological sections. To determine boundaries between cytoarchitectonic areas, an
observer-independent method that uses image analysis and multivariate statistical
tools to capture changes in the distribution of cell bodies is already established.
Nowadays, new technologies for high-throughput microscopy allow rapid digitization
of histological sections, which increases the need for a fully automatic brain area
segmentation method. This task is extremely challenging due to the high inter-
individual variability in cortical folding, sectioning artifacts, limited labeled training
data, and the need for large input sizes for automatic methods.

This work shows that convolutional neural networks, a special class of deep artificial
neural networks, are suitable for automatic brain area segmentation. It introduces a
semantic segmentation model that combines texture input given by high-resolution
extracts of the histological sections with prior knowledge given by an existing prob-
abilistic brain area atlas, the JuBrain atlas. This atlas prior helps the model to
localize the texture input in the brain and allows it to make topologically correct
brain area predictions. To overcome the limited amount of brain area annotations,
the model can be pre-trained on a modified task for which training data is easier
to obtain. Pre-training the model on a self-supervised task based on predicting the
spatial distance between image patches extracted from sections of the same brain
significantly increases the segmentation performance and enables the prediction of
several brain areas in previously unseen brains.

The self-supervised model learns a compact internal feature representation of the
input using the inherent structure of the brain, without having explicit access to the
concept of brain areas. Extensive evaluations indicate that these features encode
cytoarchitectonic properties. This is remarkable result which allows the data-driven
analysis of the structure of the entire brain. Although the presented model is not
yet robust enough for automatic annotation of all areas in complete human brains,
it is already leveraged for practical use by training specialized multi-scale models
to propagate brain area labels from annotated sections to spatially close sections.
This workflow has the potential to speed up current brain mapping projects by
reducing the workload of the neuroscientists and produces previously unattainable
high-resolution 3D views of single brain areas.





Zusammenfassung

Die Unterteilung des menschlichen Gehirns in zytoarchitektonische Areale ist eine
wichtige Voraussetzung für die Zuordnung von funktionalen Bildgebungs-, Konnek-
tivitäts-, physiologischen, molekularen und genetischen Daten zu strukturell wohlde-
finierten Bereichen im Gehirn. Zytoarchitektur beschreibt die räumliche Verteilung
von Zellkörpern sowie deren Form und Größe und wird am Besten mit mikroskopi-
scher Auflösung auf zellkörpergefärbten histologischen Schnitten untersucht. Um die
Grenzen zwischen zytoarchitektonischen Arealen zu bestimmen, wurde bereits eine
beobachterunabhängige Methode etabliert, die mithilfe von Bildanalyse und multi-
variaten statistischen Analysen Änderungen in der Verteilung von Zellkörpern er-
fasst. Heutzutage ermöglichen neue Technologien für die Hochdurchsatzmikroskopie
eine schnellere Digitalisierung histologischer Schnitte, was die Notwendigkeit einer
vollautomatischen Methode zur Segmentierung von zytoarchitektonischen Arealen
erhöht. Diese Aufgabe ist aufgrund der hohen interindividuellen Variabilität der kor-
tikalen Faltung, der Artefakte die während des Schneidens auftreten, der begrenzten
Trainingsdaten und der Notwendigkeit großer Bildausschnitte zum Training äußerst
anspruchsvoll.

Diese Dissertation zeigt, dass Convolutional Neural Networks, eine spezielle Klasse
von künstlichen neuronalen Netzen, für die automatische Segmentierung von zytoar-
chitektonischen Arealen geeignet sind. Es wird ein Modell zur Segmentierung von
Arealen vorgestellt, welches die Textur hochaufgelößter Bildausschnitte der histo-
logischen Schnitte mit Vorwissen aus einem probabilistischen Gehirnatlas (JuBrain
Atlas) kombiniert. Dieser sogenannte Atlas Prior hilft dem Modell, den Bildausschnitt
im Gehirn zu lokalisieren, und ermöglicht es ihm, topologisch korrekte Vorhersagen
für die Gehirnareale zu treffen. Da nur eine berenzte Anzahl von Annotationen für
Gehirnareale vorhanden ist, kann das Modell auf einer modifizierten Aufgabe vor-
trainiert werden, für die Trainingsdaten leichter zu erhalten sind. Das Vortrainieren
des Modells auf einer selbstüberwachten Aufgabe basierend auf der Vorhersage des
räumlichen Abstands zwischen zwei Bildern, die aus histologischen Schnitten des-
selben Gehirnvolumens extrahiert wurden, erhöht die Qualität der Segmentierungen
erheblich und ermöglicht die Vorhersage mehrerer Gehirnareale in zuvor nicht ver-
wendeten Gehirnen.

Das selbstüberwachte Modell lernt anhand der inhärenten Struktur des Gehirns ei-
ne kompakte interne Merkmalsdarstellung der Eingabebilder, ohne explizit das Kon-
zept der Gehirnareale zu benötigen. Umfangreiche Auswertungen zeigen, dass diese
Merkmale zytoarchitektonische Eigenschaften enkodieren. Dies ist ein bemerkens-
wertes Ergebnis welches uns die datengetriebene Analyse der Struktur des gesamten



Gehirns erlaubt. Obwohl das vorgestellte Modell noch nicht robust genug ist, um alle
Areale in menschlichen Gehirnen automatisch zu segmentieren, wird es bereits für
den praktischen Einsatz genutzt: Spezialisierte Modelle werden trainiert um Annotie-
rungen von Arealen auf räumlich nahe Schnitte des gleichen Gehirns zu übertragen.
Dieses Verfahren hat das Potenzial, aktuelle Annotierungsprojekte zu beschleunigen,
indem die Arbeitsbelastung der Neurowissenschaftler reduziert wird, und erzeugt
bisher unerreichte hochauflösende 3D-Ansichten einzelner Gehirnareale.

vi
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1 Introduction

Understanding the organization of healthy human brains is the key towards un-
derstanding how neurodegenerative diseases like Parkinson’s and Alzheimer’s dis-
ease affect the brain. Brain organization can be studied at different levels: starting
from low-resolution magnetic resonance imaging (MRI) and functional magnetic res-
onance imaging (fMRI) studies carried out in-vivo and at a population scale, towards
high-resolution single- or few-brain studies using cell-body stained histological post-
mortem sections. Histological analyses of cytoarchitecture allow the parcellation of
the cortex of the brain into cytoarchitectonic areas based on the distribution, shape,
and size of neuronal cell bodies (Amunts and Zilles, 2015). A reference atlas contain-
ing these cytoarchitectonic areas is essential for the precise allocation of functional
imaging, physiological, connectivity, molecular and genetic data to structurally well-
defined entities of the human brain (Amunts, Schleicher, et al., 2007). Current
methods for the analysis of cytoarchitecture are based on image analysis and mul-
tivariate statistical tools (Schleicher, Amunts, et al., 1999). However, they do not
scale with new high-throughput microscopy techniques that allow rapid digitization
of histological sections at 1 μm resolution.

Deep learning has enjoyed a surge in popularity in recent years due to its ability
to reach and surpass human performance in different areas. Noteworthy examples of
the power of deep learning are the better-than-human performance of convolutional
neural networks (CNNs) on image classification (He et al., 2016) and skin cancer
recognition (Esteva et al., 2017) and the recent win a deep neural network scored
in the game Go over a human champion (Silver et al., 2016). Due to its ability to
learn to recognize complex patterns in image data, deep learning is well suited to
automatically recognize and classify cortical areas. Recent research in unsupervised
and self-supervised pre-training (Doersch, Gupta, et al., 2015; Noroozi and Favaro,
2016) and transfer learning (Yosinski et al., 2014) with deep neural networks gives
the possibility to train deep learning models on a small training dataset.

The aim of this thesis is to show that deep learning can be used to recognize cytoar-
chitectonic areas in high-resolution histological cell-body stained sections. Section 1.1
highlights the challenges and potential benefits associated with this aim. The con-
crete objectives covered by this thesis are defined in Section 1.2. Finally, Section 1.3
summarizes the neural network architectures developed for this thesis and gives a
short outline of the following chapters.

1



1 Introduction

1.1 Problem statement and challenges

The aim of this thesis is to automatically parcellate high-resolution histological brain
sections into cytoarchitectonic areas using deep learning methods. Cytoarchitectonic
areas are defined by the laminar distribution of neurons throughout the cortex, the
columnar structure of the cortex, and the presence or absence of cell clusters (Amunts
and Zilles, 2015). They will also be called (cortical) brain areas in the following.
Figure 1.1 shows the structure of different cortical areas. Section 2.1 gives a more
detailed description of histological sections and definition of a cytoarchitectonic brain
area. There are several challenges associated with automatic recognition of cytoar-
chitectonic areas (see Figure 1.1b for examples):

• Localization of brain areas. Brain areas are distinguished by subtle dif-
ferences in the lamination pattern of the cortex. The human brain is highly
variable between individuals with the main source of differences being the corti-
cal folding pattern (Mangin, Riviere, et al., 2004). Some brain areas are always
located at the same position relative to an anatomical landmark like a specific
fold. For example, the primary visual cortex is located in the calcarine sulcus
and the separation between motor and somatosensory cortex is in the central
sulcus (Amunts and Zilles, 2015). However, in general, brain areas are not cor-
related to anatomical landmarks and vary in size between different individuals
(Amunts, Lepage, et al., 2013; Fischl, Rajendran, et al., 2007; Zilles, Schleicher,
et al., 1997). Automatic methods should thus not focus on the folding of the
cortex but on the cell densities inside the cortex to recognize brain areas.

• Fixed topology of brain areas. Brain areas, unlike objects in natural im-
ages, follow a topology. In every brain, each brain area always has the same
brain areas as neighbors. Although the localization of the brain area relative
to anatomical landmarks and its relative size varies between individuals, its
neighbors are fixed. Automatic methods should produce results that respect
this topology.

• Oblique cuts, curvature, and artifacts. The organization of the cortex in
laminae parallel to the surface of the brain is best visible when the sectioning
plane is perpendicular to the surface of the brain. Due to the highly folded
surface, every section contains parts of obliquely (non-perpendicularly) sec-
tioned cortex which does not show a clear lamination pattern. The sectioning
with the microtome additionally introduces sectioning artifacts (Pichat et al.,
2018). Furthermore, the cortical folds (i.e., sulci and gyri) distort the relative
thicknesses of the cortical laminae (Waehnert et al., 2014). Last, staining inho-
mogeneities can occur on the same section or between sections. Owing to these

2



1.1 Problem statement and challenges

(a) Cell-body stained histological sections
from two different brains showing areas
hOc1, hOc2, hOc3d, and hOc3v of the visual
system.

(b) Details showing cytoarchitectonic prop-
erties of different areas. They are rotated
such that the pial surface faces upwards. The
color of the border corresponds to the area
that the detail was extracted from and the
precise location is marked on the histologi-
cal section (Figure 1.1a) by a letter.

Figure 1.1: Brain area recognition is a challenging task. Brain areas, e.g., areas
hOc1 (a, e), hOc2 (b, f), hOc3d (c, g) and hOc3v (d, h), have different lamination
patterns. For a layperson differentiating between brain areas is difficult (e.g., (b) and
(g) look similar, but are different brain areas). The cortical laminae are obscured
by curvature (j), oblique sectioning (i, k) and sometimes also sectioning artifacts (l).
Areas follow a certain topology; e.g., hOc1 is surrounded by hOc2 in both brain 1
and brain 2. However, the large inter-individual variability between brains results in
different local sulci and gyri in the two sections.

3



1 Introduction

effects, the lamination pattern is obscured in many parts of the data, resulting
in additional challenges for automatic methods.

• Limited labeled training data. Brain area parcellation is a challenging task
that requires neuroanatomists. Naturally, not much labeled training data is
available, and it is expensive to generate. Thus, training deep learning models,
which usually require lots of labeled training data, is challenging.

• Large input sizes. Recognizing cytoarchitectonic patterns requires on the one
hand high-resolution images to recognize the shape and size of neurons, and
on the other hand a large field of view to recognize relevant cell clusters and
consistent patterns. These requirements result in large model architectures
and a lot of data that needs to be processed for each input thus leading to
computational challenges.

This thesis introduces deep learning based methods for automatic brain segmen-
tation that successfully deal with such difficulties. Making headway in automated
brain area parcellation has a direct impact on neuroscience. First, the models intro-
duced in this thesis have the potential to support and speed up the manual brain
area mapping process, enabling the delineation of new areas and brain volumes in
significantly less time. Second, an automatic model for analysis of high-resolution
histological sections can be used to extract compact feature representations of the
high-resolution input. These features can be automatically calculated at every loca-
tion in the cortex and correlated with other signals that are available in the same
space (e.g., connectivity data, local curvature, cortical thickness, etc.). This is not
possible when manually extracting features and allows to validate hypotheses about
brain structure and gives insights into which features are objectively useful for cor-
tical analyzes. High-resolution brain area segmentation provides unique challenges
for the application of machine learning methods as seen above. This thesis explores
several ways for dealing with limited training data that may be of use for other
applications in medical imaging settings.

1.2 Objectives

In order to show the applicability of deep learning methods for the task of brain
area parcellation, several approaches are explored in this thesis. These approaches
range from fully-supervised segmentation of brain areas in several brain volumes over
propagation of one area label to spatially close sections to self-supervised feature
learning from sections of one brain. In detail, the following objectives are defined:
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• Investigate the feasibility of using cortical profiles for automatic seg-
mentation. The currently used observer-independent brain area border confir-
mation method (Schleicher, Amunts, et al., 1999) uses gray-level index (GLI)
profiles that are extracted from the high-resolution images. To evaluate the
usefulness of these features in a machine learning setting, a 1D CNN will be
trained for the classification of profiles in different brain areas.

• Develop a model leveraging high-resolution texture input and prior
knowledge. The main advantage of deep learning models is their ability to
learn relevant feature representations from raw data. Thus, an end-to-end
model for brain area segmentation will be developed and compared to the
previous profile feature model to see if the features learned by the CNN are
different to the features encoded in the profiles. Brain areas follow a certain
topology. Thus, the effect of combining high-resolution texture information
with prior information about the topology of areas in the CNN model will be
investigated.

• Build a workflow to propagate labels from one section to spatially
close sections to support the manual mapping. In the current manual
mapping process, every 60th brain section is analyzed. A profitable application
for automatic brain area segmentation methods is to fill the gaps between two
annotated sections without requiring a registration between the sections. The
effect of limiting the brain area segmentation task to the label propagation task
will be analyzed.

• Design a self-supervised learning task to leverage unlabeled sections.
Due to the time-consuming manual brain area labeling process, training data
for supervised brain area segmentation is limited. However, a large amount of
unlabeled sections is available. A self-supervised learning task can be used to
fit models on the unlabeled sections, allowing them to learn features from the
cortex in an unsupervised manner. This auxiliary task can be used to pre-train
supervised brain area segmentation models.

1.3 Outline

This thesis describes and compares different neural network models. The Glos-
sary on page 145 provides a central list of all neural network architectures (e.g.,
NeuralNetworkArchitecture) and their trained instances (the models, e.g., nn-
model). Additionally, it describes the sets of histological sections (collections) that
were used to sample training datasets, and the training datasets X themselves. Fi-
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1 Introduction

nally, the Glossary lists the abbreviations and mathematical notation introduced in
this thesis.

Chapter 2 introduces the necessary neuroscientific and deep learning background.
First, an overview over the human brain is given, and the current approach for
brain area delineation is introduced. Second, relevant deep learning principles and
neural network architectures are introduced. Third, the datasets that are used in this
thesis are presented. Chapter 3 discusses related work on brain area parcellation,
analysis of histological sections, and training neural networks with limited training
data. Chapters 4 to 7 introduce and discuss four different approaches to automatic
analysis of brain areas on high-resolution histological sections. Figure 1.2 provides a
visual summary of all CNN architectures, their respective inputs and outputs, and
the different training tasks that were developed for these approaches.

In Chapter 4 the profile classification task is examined. For this task, profile fea-
tures are extracted from high-resolution histological brain sections and a 1D CNN
(ProfileNetwork) is trained to classify the inputs into different cortical areas. The
advantages and drawbacks of this model are discussed and the input features are
analyzed with respect to their predictiveness for different brain areas. The patch seg-
mentation task is covered by Chapter 5 with an end-to-end CNN model (BaseNetwork
and AtlasAwareNetwork) which combines high-resolution texture inputs with prior
knowledge to produce high-resolution segmentations of the input. This model is com-
pared with the 1D CNN from Chapter 4. The influence of the prior knowledge and
the learned feature maps are analyzed.

Chapter 6 introduces the self-supervised distance and location regression task which
leverages the 3D relationship between two sections of the same brain. This allows to
exploit unlabeled sections for brain area segmentation by pre-training SiameseNetwork
models on this auxiliary task, thus partly eliminating the disadvantages of limited
labeled training data. The self-supervised task allows to learn compact feature repre-
sentations from the high-resolution input which are analyzed in this chapter. Chap-
ter 7 limits the general patch segmentation task to the deep label propagation task
which has the aim of propagating one area label to spatially close sections in the
same brain volume. For this task, a MultiScaleNetwork model combining high-
resolution texture information with low-resolution texture information providing ad-
ditional context is developed. With these models, a label propagation workflow is
designed to densely predict one brain area given sparse manual annotations. These
precise predictions can then be used to provide high-resolution area reconstructions
for the multilevel human brain atlas which is being developed in the context of the
Human Brain Project (HBP) (HBP Human Brain Atlas 2018). Finally, Chapter 8
summarizes the main results and conclusions and highlights venues of future work
arising from the presented findings.

6



1.3 Outline

Figure 1.2: Visualization of neural network architectures introduced in this thesis.
Several networks partly share the same architecture. These parts are marked in
green.
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2 Background

This thesis combines understanding the structure of the human brain with deep
learning research. This chapter briefly introduces both of these research areas, fo-
cusing on aspects that are relevant for this thesis. For a more complete overview of
the human brain and its function, see Zilles and Amunts (2012). Goodfellow et al.
(2016) provide a current and in-depth overview over deep learning techniques. Since
artificial neural networks were initially inspired by biological neural networks, there
is some shared terminology between deep learning and neuroanatomy. In this thesis,
the term neuron will be exclusively used for biological neurons, and the equivalent
structures in a deep neural network will be referred to as nodes. The cortical laminae
will always be called laminae; the term layer will be exclusively used for a layer in
an artificial neural network. In addition, the term neural network will always refer
to an artificial neural network, not a biological neural network.

In the following, Section 2.1 gives an overview over the structure of the human
brain, different imaging modalities, and principles of brain mapping. Then, Sec-
tion 2.2 introduces convolutional neural networks (CNNs) and semantic segmentation
architectures, and how to train and evaluate them. Finally, Section 2.3 covers the
datasets collected from histological brain sections that will be used in the following
chapters to train models for brain area segmentation.

2.1 The human brain

The brain is our most complex organ, consisting of 86× 109 neurons (Azevedo et
al., 2009), each one connected to up to a thousand other neurons via synapses. It
controls most functions of our body and is dedicated to perception, the processing of
the stimuli, and the formulation of appropriate responses. In the following, standard
anatomical nomenclature is used. Figure 2.1 provides a coordinate system with the
most important terms.

The human brain consists of the cerebrum, the cerebellum, and the brainstem.
Out of the three, the cerebrum constitutes the biggest part of the central nervous
system. The cerebrum can be separated into two hemispheres that are roughly
mirror symmetric, although several hemispheric differences exist. Each hemisphere
can be further subdivided into the parietal, temporal, occipital, and frontal lobes
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2 Background

Figure 2.1: Overview of the human brain.1 Left: Schematic drawing of the brain
with the four lobes of the cerebrum. The insula is hidden inside the sylvian fissure.
Right: Coronal cell-body stained histological section of the brain through parietal
and temporal lobes and the cerebellum showing cortex and white matter.

and the insula based on gross anatomical landmarks (see Figure 2.1). The outer
surface of the brain contains a 2mm to 4mm thin band (Zilles and Amunts, 2012)
of interconnected neurons called the cortex or gray matter. The inside of the brain
is comprised of myelinated fiber tracts and glia cells (white matter) and subcortical
regions containing neurons (subcortical nuclei). Processing of information takes place
in the cortex and in the subcortical nuclei, while the fiber tracts connect cortical and
subcortical regions and transport sensory signals to the brain and motor signals to
the muscles.

The surface of the brain is highly folded (gyrification). Outward folds are called
gyri and inward folds sulci. Two-thirds of the cortex is buried in the sulci (Zilles
and Amunts, 2012). The insular lobe, for example, is not visible from the outside,
but buried deep in the lateral fissure which separates the temporal lobe from the
parietal and frontal lobes. There is a set of primary gyri and sulci that are present in
all humans. However, the brain is highly variable, and folding patterns and sizes of
different brain regions vary between different individuals (Amunts, Schleicher, et al.,
2002; Zilles and Palomero-Gallagher, 2015). The outer surface of the brain is called
pial surface. The border between gray matter and white matter is called white matter
surface.

Cytoarchitecture describes the cellular composition of the cortex and its variation
throughout the cortex. Using cytoarchitecture, the cortex can be divided in isocortex
and allocortex. The isocortex covers nearly 96% of the cortical surface and is char-
acterized by six laminae of different cellular composition. In contrast, the allocortex
has a more variable laminar pattern (Zilles and Amunts, 2012). Based on differ-
ences in the cellular composition of the cortical laminae, different cytoarchitectonic

1Schematic brain image retrieved from https://medicalxpress.com, under CC0 license.
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2.1 The human brain

areas (also termed (structural) brain areas in the following) can be distinguished in
the cortex (e.g., Amunts, Schleicher, et al., 2007; Amunts and Zilles, 2015; Schle-
icher, Palomero-Gallagher, et al., 2005). These brain areas are the focus of the
following sections. Section 2.1.1 describes the imaging modality that is needed to
identify different brain areas. Then Section 2.1.2, defines cytoarchitectonic brain
areas, shows examples, and discusses the relationship between structure and func-
tion. The currently used observer-independent method for brain area identification
is outlined in Section 2.1.3. This is followed by a discussion of image registration
techniques (Section 2.1.4) that are used amongst others to create the JuBrain atlas
containing probabilistic maps of cytoarchitectonic areas in a common reference space
(Section 2.1.5).

2.1.1 Imaging modalities

The brain can be observed at different scales and with different objectives. We differ-
entiate between in-vivo and post-mortem imaging modalities. Whole brain volumes
can be imaged in-vivo at a resolution of several millimeters up to 250 μm per voxel
using magnetic resonance imaging (MRI). MRI uses the magnetic properties of hy-
drogen to get contrast between different parts of the brain tissue. A structural MRI
allows to distinguish between cortex and white matter. This modality is often used
to detect tumors or other lesions in the brain or to research structural changes that
the brain undergoes during aging. Functional magnetic resonance imaging (fMRI)
measures the blood oxygen level in different regions. Since brain regions need more
oxygen when activated, this is an indirect measure of functional activation. Thus,
fMRI can be used to identify and characterize functional brain networks.

With high-field MRI, the laminar structure of the cortex could be visualized in
several cortical regions (Duyn, 2012). However, moving beyond this resolution, and
visualizing single neurons and their connectivity is not possible with current MRI
techniques. To enable a high-resolution view of the cytoarchitecture, i.e., the mor-
phology of cells and their distribution in the brain, histological sections have to be
acquired. For this modality, post-mortem brains are embedded in paraffin or frozen
(cryosectioning) and sectioned into 20 μm thin sections using a microtome. The re-
sulting tissue sections are put on a glass slide, and stained for cell-bodies using silver
staining (Merker, 1983). See Amunts, Malikovic, et al. (2000) for a detailed descrip-
tion of the tissue preparation and staining protocol. The resulting sections can then
be digitized and subsequently analyzed at 1 μm resolution using a light microscope.
A post-mortem histological human brain section can have a size of up to 8× 10 cm.
At 1 μm resolution this results in sizes of up to 80 000 × 100 000 pixels and file sizes
of 8GB at 8 bit precision for one digital scan. This resolution allows us to distinguish
the individual neurons in the cortex. Figure 2.2 shows an entire histological section
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Figure 2.2: Cell-body stained histological section of the human brain at different
magnifications. 1. Whole brain section. 2. Detail showing cortex and the cortical
laminae (roman numerals I-VI). 3. Extract of granular lamina IV showing small cells.
4. Extract of lamina III showing pyramidal cells with the characteristic triangular
shape.

and extracts of the cortex at different magnifications.

Although the individual images are only two dimensional, they can be registered
together to reconstruct a 3D volume of the original brain (see Section 2.1.4 for details
regarding registration). The BigBrain is a prominent example of such a reconstructed
3D volume (Amunts, Lepage, et al., 2013). It is the first brain volume that was re-
constructed from over 7400 cell-body stained histological sections at an isotropic
resolution of 20 μm per voxel. It is part of the Human Brain Project’s (HBP) multi-
level human brain atlas (HBP Human Brain Atlas 2018).2

Histological sections have the disadvantage that during the sectioning the tissue
will be inevitably deformed and artifacts such as rips and tears will be introduced.
Although it is possible to reconstruct a 3D volume from the individual sections (e.g.,
Amunts, Lepage, et al., 2013), this is a time-consuming process. Recently, Magnain
et al. (2014) showed that blocks of tissue that were imaged with optical coherence
tomography (OCT) contained similar information to Nissl stained histological sec-
tions3. OCT is an imaging technique that measures the backscattered light of the
tissue sample which changes depending on the refraction index of the tissue. This
allows a non-invasive analysis of blocks with a width of several centimeters. In the fu-
ture, this technique may provide an alternative to the gold-standard cell-body stained
histological sections.

2The BigBrain can be explored using an interactive web viewer at http://bigbrain.
humanbrainproject.org, and is available for download at http://bigbrain.loris.ca.

3Similar to silver staining, Nissl staining is used to visualize neuronal cell bodies.
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2.1 The human brain

Table 2.1: Characteristics of the six isocortical laminae (Trepel, 2004, p. 219)

Lamina Characteristics

I (molecular layer) no pyramidal cells, low density
II (external granular layer) granular, small pyramidal cells, high density
III (external pyramidal layer) large pyramidal cells, average density
IV (internal granular layer) granular, small pyramidal cells and other cells,

high density
V (internal pyramidal layer) very large pyramidal cells, average density
VI (multiform layer) small pyramidal cells and other cells, moderate

density
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(V2/hOc2)

Primary motor cortex
(M1/BA4)

Figure 2.3: Comparison of cortex from primary and secondary visual areas and
primary motor cortex. The size and composition of the laminae is different for each
area.

2.1.2 Cytoarchitecture

Cytoarchitecture describes the distribution, type, and size of neuronal cell bodies in
the cortex. It is studied using the cell-body stained histological sections described in
Section 2.1.1. The isocortex consists of six laminae that contain different cell types
and densities, columnar structures and repetitive, modular-like structures (Amunts
and Zilles, 2015). The six laminae of the isocortex are commonly denoted by roman
numerals starting at the pial surface going inward to the gray/white matter bor-
der. Their different characteristics are summarized in Table 2.1. Figure 2.2 shows
two extracts of cortex from different laminae (Subfigures 3 and 4). Their different
composition is clearly visible.
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2 Background

Cytoarchitectonic areas The laminar structure and the cellular composition of the
laminae of the isocortex are different at different locations. Cytoarchitectonic areas
(also termed (cortical) brain areas in the following) with distinct laminar character-
istics and thicknesses can be identified. Between different cytoarchitectonic areas,
the characteristics and thicknesses of the cortical laminae varies (see Figure 2.3).
For example, the primary visual cortex (V1) contains a very thick lamina IV that
can even be subdivided in several sub-laminae. It can be clearly separated from the
secondary visual cortex (V2) which has a thinner lamina IV without sub-layering.
In contrast, the motor and pre-motor cortex do not contain a visible lamina IV and
have a fuzzy border between lamina VI and white matter.

In the beginning of the 20th century several researchers studied differences in
cytoarchitecture and published maps of the human cerebral cortex (e.g., Brodmann,
1909; von Economo and Koskinas, 1925; C. Vogt and 0. Vogt, 1919). These maps
influence neuroscientific research even today. However, these maps were defined
based on a small sample of brains and with highly objective criteria, limiting the
reproducibility and generalizability of the maps (Zilles and Amunts, 2010). Modern
brain mapping considers brain areas as structurally and functionally well-defined
entities (Amunts and Zilles, 2015). An observer-independent method was developed
to accurately place a border between two cytoarchitectonic areas based on statistical
criteria (Schleicher, Amunts, et al., 1999; Schleicher, Palomero-Gallagher, et al.,
2005). This method is described in detail in Section 2.1.3.

Structure and function The structurally defined brain areas can be correlated to
functionally defined areas (e.g., Amunts and Zilles, 2015; Eickhoff, Paus, et al., 2007;
C. Vogt and 0. Vogt, 1919). Based on this insight, brain areas can be divided in pri-
mary, secondary, tertiary, and higher associative brain areas (Trepel, 2004, p. 218).
The primary sensory brain areas receive sensory information (e.g., visual, auditory,
somatosensory, and gustatory). For example, the primary visual cortex is located
in the occipital lobe in the calcarine sulcus and the primary somatosensory area is
located on the posterior wall of the central sulcus. The primary sensory areas are
surrounded by secondary and tertiary areas that receive information from the pri-
mary sensory areas. In contrast to the sensory areas, the primary motor area has
direct connections to the spinal cord and generates voluntary movements. It is lo-
cated opposite the primary somatosensory area on the anterior wall of the central
sulcus. Besides these brain areas that are (mostly) involved in the processing of spe-
cific sensory or motor information, higher associative areas exist (e.g., in the frontal
cortex). These areas integrate signals from various sensory inputs, and are involved
with motion planning, emotion, and memory. Primary sensory areas have a distinc-
tive laminar pattern, whereas higher associative areas have a less clear lamination.
This makes the primary areas easy to recognize and well-suited as a first test case
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2.1 The human brain

for automatic brain area recognition methods.

Structural gradients Besides structural division in distinct cortical areas, several
large-scale gradients can be found in the cortex. Recently Huntenburg et al. (2017)
have proposed that areas are arranged on a sensorimotor (sensory and motor areas) to
transmodal (higher associative areas) gradient. As already mentioned, the degree of
laminar differentiation is related to the position of the area within a sensory structural
hierarchy (Barbas, 1986). Similarly, Collins et al. (2010) found primary sensory
regions to have higher neuronal density than other cortical areas. MRI studies have
found changes of intracortical myelin (Glasser et al., 2016) and cortical thickness
(Wagstyl, Ronan, et al., 2015) along these gradients.

2.1.3 Observer-independent method for brain area mapping

The observer-independent method of Schleicher, Amunts, et al. (1999) allows to
define the position of an areal border based on statistical criteria. Cytoarchitectonic
areas are distinguished by their laminar structure and the cellular composition of
the laminae (Section 2.1.2). This laminar structure of the cortex can be captured by
the gray-value intensities (profiles) of traverses of the cortex from the pial surface to
the gray/white matter border (streamlines). For the calculation of the streamlines
precise delineations of the inner and outer boundary are provided manually. The
streamlines are calculated by following the gradient of a potential field between the
inner and outer cortical boundary calculated with Laplace’s equation (Jones et al.,
2000).

The profiles are extracted by sampling the gray-level index (GLI) image along
the cortical traverses. The GLI is calculated by segmenting the cells on a 1 μm
histological image and then calculating the volume fraction of cell bodies in windows
of 16× 16 pixel resulting in 16 μm resolution images. A higher GLI signifies a larger
fraction of cell bodies. Thus, the shape of the profile quantifies the changes in the
volume faction of cell bodies from the pial surface to the gray/white matter border
and provides valuable information about cytoarchitecture.

With the observer-independent method, cytoarchitectonic borders are identified
by significant changes between the shapes of neighboring blocks of profiles. For each
profile, 10 features are calculated based on the central moments and their derivatives.
Then, two blocks of neighboring profiles are compared by calculating the Mahanalobis
distance (Mahalanobis, 1936) between the mean feature vectors of each block. The
Mahanalobis distance is a generalized Euclidean distance that takes into account the
covariance of the features. Those locations that have significant differences in Ma-
hanalobis distances over several block sizes are accepted as borders between cortical
areas. The significance was inferentially tested with a T-test with Bonferroni correc-
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Figure 2.4: Application of the observer independent method of Schleicher, Amunts,
et al. (1999).4 Cortical traverses (streamlines) are colored in red on the cortex.
Length-normalized mean GLI profiles from neighboring cytoarchitectonic areas are
shown on the bottom right and bottom left. The borders between the cortical lami-
nae are visible by black lines. The Mahanalobis distance between neighboring blocks
of profiles is plotted for different locations on the cortex at the bottom middle. The
distance is maximal at position 55, indicating a border between two cytoarchitectonic
areas.

tion. Figure 2.4 visualizes mean profiles from two different areas and their resulting
Mahanalobis distance. The advantage of this method is that it allows for an objec-
tive definition of a border. In Chapter 4 we will build upon this method to train a
model that automatically classifies a given profile in different cytoarchitectonic areas.

2.1.4 Image registration

Image registration is the process of transforming and deforming a source image S in
such a way that it looks like a target image T . The source and target images can be
2D sections or 3D volumes. This enables for example the alignment of adjacent his-
tological sections or of two MRI volumes from different subjects. Zitova and Flusser

4Figure reproduced from Bludau (2011) by permission of Sebastian Bludau (INM-1, FZJ).
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2.1 The human brain

Figure 2.5: 3D histology
reconstruction. Histologi-
cal sections are registered
section-by-section. The re-
sulting volume is registered
to a reference MRI volume.
S is the source image and
T is the target image for a
given registration.

(2003) provide a comprehensive general overview over image registration methods
and Pichat et al. (2018) summarize approaches relevant to histology reconstruction.
The objective of the registration is to minimize an energy function E(S, T ) which
usually consists of two terms. The first one is the matching criterion, i.e., a measure
of similarity between source S and target T , and the second one is a regularization
term which constrains the space of possible transformations of source S (Pichat et al.,
2018).

Broadly, registration algorithms can be categorized in two categories based on
the type of transformations: landmark-based and intensity-based registration. For
landmark-based registration first points of interest are extracted from both S and
T . Then, correspondences between the landmarks are found and a transformation is
calculated. Thus, landmark-based registration is based only on a subset of features
from the images, and is therefore fast. Intensity-based registration, in contrast, uses
the voxel intensities of the images to estimate the similarity between S and T and is
thus slower but more accurate than landmark-based methods. The registration pro-
cedures mentioned in this thesis (e.g., the creation of the BigBrain and the JuBrain
atlas) use the more accurate intensity-based registration.

Image registration is used to reconstruct a 3D volume from the individual histo-
logical sections which are deformed during the cutting of the brain. This is usually
achieved by registering adjacent pairs of sections to each other. With only this
section-to-section registration, it is not guaranteed that the resulting volume resem-
bles the original brain volume as curves tend to be straightened out by this process.
Therefore, in a second step, the registered sections are usually registered to a refer-
ence brain volume which can for example be an MRI that was taken prior to slicing
the brain. Figure 2.5 schematically shows this process. Once a 3D histological vol-
ume exists, this can also be registered to other brain volumes from other subjects.
This is done in Section 2.1.5 for the creation of the probabilistic maps in the JuBrain
atlas.
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(a) Area hOc1 (V1) (b) Area hOc2 (V2)

Figure 2.6: Example probabilistic maps from the JuBrain atlas.5 Colors range from
red (high probability) to blue (low probability).

2.1.5 JuBrain: Probabilistic atlas of brain areas

One of the ongoing efforts at the Institute of Neuroscience and Medicine (INM-1)
is the assembly of the JuBrain atlas, a novel probabilistic atlas of cytoarchitectonic
areas (Amunts, Schleicher, et al., 2007; Amunts and Zilles, 2015; Zilles and Amunts,
2010). For each area contained in this atlas, annotations of the brain area were
made on 10 different brains using the observer-independent method of Schleicher,
Amunts, et al. (1999). These annotations are registered to a common reference
space, the Colin 27 space (Holmes et al., 1998), and averaged to form probabilistic
maps that contain for each voxel and brain area the probability that this brain area is
present. This atlas can be used to allocate the results of functional studies to specific
structural brain areas (Eickhoff, Paus, et al., 2007) and it can be used to interpret the
results of connectivity studies (S. Caspers et al., 2013). Thus, the JuBrain atlas is
an important tool for establishing further structure/function relationships (Eickhoff,
Heim, et al., 2006). Figure 2.6 shows probabilistic areas of the JuBrain atlas in the
common reference space.

Structural areas of the visual system The JuBrain atlas contains annotations
of several areas of the visual system. These areas are shortly listed here, as they
will be used as labels for the supervised classification and segmentation models in
Chapters 4, 5 and 7. The visual system is located in the occipital lobe.

Visual inputs from the retina, which have been preprocessed in subcortical areas,
reach the cerebral cortex at the calcarine sulcus. This region is known as the primary
visual cortex, or V1. Its structural equivalent is area hOc1 (Amunts, Malikovic, et
al., 2000) which can be easily identified by the stria of Gennari, a light band in
lamina IV which is formed by the optic radiation from the thalamus (see Figure 2.3).
Surrounding the primary visual cortex is the secondary visual cortex, V2, which

5Images taken from the JuBrain Cytoarchitectonic Atlas Viewer (JuBrain Atlas Viewer 2014–
2019).
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(a) Visual areas in the JuBrain atlas
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Figure 2.7: Areas of the visual system in the JuBrain atlas shown as a maximum
probability map. This visualization allows to show several (potentially overlapping)
probabilistic maps at once by showing at each voxel the area with the highest prob-
ability. Not shown are areas hOc4v, FG3, and FG4.

starts to process the visual stimuli (Trepel, 2004, p. 236). The structural equivalent
to this area is area hOc2 (Amunts, Malikovic, et al., 2000). Dorsally from hOc2
structural areas hOc3d, hOc4d (Kujovic et al., 2013) were defined. Ventrally from
hOc2 structural areas hOc3v and hOc4v (Rottschy et al., 2007), FG1, FG2 (J. Caspers
et al., 2013), FG3, and FG4 (Lorenz et al., 2015) were found. At the lateral side of
the occipital lobe, structural areas hOc4lp, hOc4la (Malikovic, Amunts, Schleicher,
Mohlberg, Kujovic, et al., 2016), and hOc5 (Malikovic, Amunts, Schleicher, Mohlberg,
Eickhoff, et al., 2006) were delineated.

Figure 2.7 shows these areas on the JuBrain atlas. The colormap for this figure, de-
fined in Figure 2.7b, will be used in the remainder of the thesis for coloring structural
areas of the visual system. From these areas, the primary visual area hOc1 is easiest
to identify. As mentioned in Section 2.1.2, it can be used as a proof-of-concept test.
To evaluate the capabilities of automatic segmentation models to recognize arbitrary
brain areas, the performance on other areas than hOc1 needs to be considered.

2.2 Deep learning for image analysis

Deep neural networks have a long history, starting from simple one layer perceptrons
(Rosenblatt, 1961) and evolving to fully connected multi-layer perceptrons (Hinton,
1986). The first hierarchical convolutional network architecture, the Neocognitron,
was developed by Fukushima and Miyake (1982). After initial periods of active
research in these architectures, they were mostly ignored until the 2000s due to com-
putational problems and learning instabilities. The renaissance of CNNs and their
wide-spread adaption in the computer vision and machine learning community was
due to a spectacular success by Krizhevsky et al. (2012) on the ImageNet compe-
tition (Deng et al., 2009). They trained a deep CNN on a 1000 class classification
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task using the 14 million natural images in the ImageNet database and were able
to beat competing methods by a large margin. The success of this model was in
large parts due to three factors (LeCun et al., 2015): 1. The efficient use of GPUs
for training the network, 2. the availability of huge amounts of data to train the
model, and 3. new training and regularization techniques (Nair and Hinton, 2010;
Srivastava et al., 2014). This success revolutionized the field of computer vision and
machine learning. Today, deep neural networks dominate in almost all recognition,
detection, and segmentation tasks. Notable successes of the last years include the
better-than-human classification of skin cancer (Esteva et al., 2017), AlphaGo which
beat the human Go champion (Silver et al., 2016), and advances in neural machine
translation (Johnson et al., 2017).

The power of deep neural networks stems from their ability to learn hierarchical
feature representations from data. Unlike classical machine learning, which learns
classifiers based on engineered features, deep learning allows to learn features directly
from the raw input data, and to derive higher level features from lower level features.
Although a multi-layer perceptron with one hidden layer can theoretically represent
any continuous function (Universal Approximation Theorem; Hornik, 1991), it is not
guaranteed that such a function will be found in practice. Deep models with many
layers have the advantage that they require fewer parameters, are well-regularized,
and have better generalization properties (Bengio, 2009).

Section 2.2.1 presents common building blocks of CNNs. Following this, Sec-
tion 2.2.2 introduces typical CNN architectures, while Section 2.2.3 focuses on seg-
mentation architectures. Then, Section 2.2.4 details the training procedure for arti-
ficial neural networks, Section 2.2.5 introduces evaluation metrics, and Section 2.2.6
explains the concept of transfer learning. In the following, lowercase characters de-
note scalars or vectors, and uppercase characters denote tensors with rank two or
higher (e.g., matrices, volumes).

2.2.1 Building blocks of artificial neural networks

A neural network is, in very general terms, a non-linear function f : D0 → D1; f(X; θ)

which is parametrized by θ. In the case of image processing, the input domain D0 is
typically three-dimensional with D0 = R

h×w×c, h, w, c ∈ N for images with height h,
width w, and c channels (e.g., c = 3 for RGB images). The semantic segmentation
network introduced in Chapter 5 produces segmentations of the input image X ∈ D0

in k classes, with the output segmentation Z = f(X; θ) ∈ D1 = R
h′×w′×k, with

h′ ≤ h and w′ ≤ w due to the loss of border pixels during valid convolutions (see
Equation (2.4)). The elements Z(i,j,m) of Z can be interpreted as the probability that
the pixel X(i,j) at row i and column j of the input X belongs to class m. In contrast,
the regression network from Chapter 6 produces a scalar value z ∈ D1 = R for an
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2.2 Deep learning for image analysis

input image X ∈ D0 = R
h×w×c.

Artificial neural networks can be visualized as directed weighted graphs. Typically,
the nodes in a network are organized in consecutive layers li(X; θ) where the outputs
of layer i − 1 (activations) serve as inputs to layer i, resulting in a feed-forward
network. A two-layer neural network is thus defined as f(X; θ) = l2(l1(X; θ1); θ2)

with θ = θ1 ∪ θ2. This layer-wise definition allows the neural network to learn
increasingly complex features that are calculated based on the features learned in
the previous layers. Neural networks are not restricted to a strict linear sequence
of layers. For example the U-Net architecture introduced in Section 2.2.3 has skip-
connections between different layers, and recurrent neural networks (RNNs) have
feedback connections, creating a loop over a set of layers. There are different types
of layers that can be employed in a neural network. In the following the layers that
area most important in the context of this work are introduced.

Fully connected layer A fully connected layer (fcl) connects every input node to
every output node. Fully connected layers were used in the multilayer perceptron, an
early neural network architecture (Hinton, 1986). Mathematically, a fully connected
layer is defined by the function lfcl : R

n → R
m which calculates a linear weighted

combination of input values x ∈ R
n followed by an element-wise non-linear activation

function ϕ:6

lfcl(x; θ) = ϕ(Ax+ b) , (2.1)

with A ∈ R
m×n, b ∈ R

m, and θ = (A, b).

Convolutional layer In a fully connected layer, the value of each output node de-
pends on every input node. However, when learning features on images, low-level
features like lines and edges can be found using only small parts of the input image,
and may occur at any position in the input. Additionally, the local relationship be-
tween pixels is relevant for recognizing structures in the image. A convolutional layer
(conv) locally connects input and output nodes and uses weight sharing to learn the
same local features at every position in the input and is thus well-suited for image
processing. It can be described in terms of a kernel A that is convolved over the
input image X and a bias term b which is added after the convolution to each output
value. We call the output of a convolution feature map.

For inputs X ∈ R
h×w×c with size h×w and c channels, a kernel A ∈ R

m×n×c with
m ≤ h and n ≤ w is used. Usually, the kernel dimensions m and n are odd. Let
p = (m− 1)/2 and q = (n− 1)/2 be the center of kernel A. The convolution of input

6Note that here the input x is a one-dimensional vector and is thus per our notation convention
denoted with a lowercase character. In the remainder of this section, the input to a layer is
usually a matrix or a tensor with rank four and is thus denoted by an uppercase character X.
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X with kernel A is defined by:

Z(i−p, j−q) = (X ∗A)(i, j) =
p∑

r=−p

q∑
t=−q

c∑
k=1

X(i+r, j+t, k) ·A(p−r, q−t, k) , (2.2)

with the convolution operation denoted by an asterisk ∗ , and i = p, ..., h − p , j =

q, ..., w − q . The above formula describes a valid convolution. It is only defined
for pixels inside the input image, thus resulting in a slightly smaller feature map
Z ∈ R

(h−2p)×(w−2q) due to the loss of border pixels where a valid convolution was
not possible. For image segmentation this is the preferred way of doing convolutions,
since padding the input image might introduce incorrect predictions at the image
border. In Equation (2.2), the kernel is applied to every pixel in the input image.
We can extend this definition to the more general strided convolution with stride
s ∈ N. In this general definition of a convolution, the kernel is applied to every s-th
pixel in the input image:

Z(
i− p

s
,
j − q

s
) = (X ∗s A)(i, j) , (2.3)

with the convolution defined as in Equation (2.2) and i = p + 0s, p + 1s, ..., h − p ,
j = q + 0s, q + 1s, ..., w − q . A stride s > 1 has the effect that it reduces the size
of the output z by factor 1/s which can be advantageous when processing very large
images.

In Equations (2.2) and (2.3) the convolution is applied to a 2D c-channel image
resulting in a 2D feature map, because the convolution calculates a weighted sum
over all c input channels. A convolutional layer typically combines d convolutions,
resulting in d feature maps. Analogous to the fully connected layer in Equation (2.1),
a convolutional layer is defined by doing a convolution on the input image, adding a
bias term b and applying a non-linear activation function ϕ. The 2D convolutional
layer is defined by the function lconv : R

h×w×c → R
((h−m+1)/s)×((w−n+1)/s)×d. The e-th

feature map is defined by:

lconv(X; θ)(:,:,e) = ϕ(X ∗s A(e) + b(e)) , (2.4)

with e = 1, ..., d , kernel A ∈ R
d×m×n×c, bias b ∈ R

d, stride s ∈ N, and parameters
θ = (A, b). In the following, we will call the above defined convolutional layer an
m× n conv layer with d kernels and stride s.

Pooling layer In a typical CNN architecture convolutional layers are alternated
with subsampling layers. These layers reduce the resolution of the feature maps
to allow the next convolutional layer to learn more general high-level features that
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depend on a larger part of the original input image and are to some extend translation
invariant (Goodfellow et al., 2016, p. 336).

The subsampling layer used in this thesis is the max pooling layer (max pool)
which takes the maximum of each input feature map in non-overlapping rectangular
neighborhoods. A pooling layer with a window size s ∈ N is a function lpool :

R
h×w×c → R

(h/s)×(w/s)×c. The result at position (i, j) in feature map k is defined as

lpool(X)(i,j,k) = max{X(p, q, k) | p = is, ..., is+ s , q = js, ..., js+ s} , (2.5)

with i = 1, ..., h/s and j = 1, ..., w/s . In the following we will call the above defined
pooling layer a s× s max pool layer.

Upsampling layer A CNN with pooling layers can learn complex, translation in-
variant features, that encompass a large part of the image. However, pooling layers
reduce the output resolution which is disadvantageous for segmentation problems.
Upsampling layers can be used to increase the resolution of the output. The upsam-
pling layer used in this thesis for the semantic segmentation architecture in Chapter 5
consists of an upsampling of the feature map by factor 2 followed by a 2×2 conv layer
(Ronneberger et al., 2015). For input feature maps X ∈ R

h×w×c let Xinterp(i, j, k) be
their interpolated indexing function using e.g., nearest neighbor interpolation. The
upsampling function UP : Rh×w×c → R

2h×2w×c is defined for the output at position
(i, j) as

UP(X)(i,j) = Xinterp(
i

2
,
j

2
) , (2.6)

with i = 1, ..., 2h and j = 1, ..., 2w . Using Equation (2.6), the upsampling layer
lup : Rh×w×c → R

(2h−1)×(2w−1)×d is defined for the e-th feature map as follows:

lup(X; θ)(e) = ϕ(UP(X) ∗ A(e) + b(e)) , (2.7)

with e = 1, ..., d, A ∈ R
d×2×2×c, b ∈ R

d, and θ = (A, b). We will call this layer a 2× 2

up-conv layer. Due to the d convolutions after the upsampling operation, it produces
d output feature maps.

Batch normalization Ioffe and Szegedy (2015) introduced batch normalization
(batch norm) to enable faster and more stable training of CNNs. It normalizes
the outputs of a convolutional layer by normalizing each feature map individually.
Let XB = {X1, ...Xm} be the activations of the current batch that should be normal-
ized, with elements X ∈ R

h×w×d and batch size m. During training, statistics for
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normalization are calculated on XB for each feature map:

μB =
1

mhw

m∑
n=1

h∑
i=1

w∑
j=1

X(i,j,:)
n ∈ R

d and (2.8)

σ2
B =

1

mhw

m∑
n=1

h∑
i=1

w∑
j=1

(X(i,j,:)
n − μB)2 ∈ R

d . (2.9)

Using only this normalization after a convolutional layer would mean that the layer
cannot represent the unit transform anymore, because inputs are always transformed
to have mean zero and variance one. In order to not loose representation capabilities,
a pair of trainable parameters γBN ∈ R

d and βBN ∈ R
d is introduced. These param-

eters allow scaling and shifting of the normalized values. The batch normalizing
transform is defined for the e-th feature map of X with e = 1, ..., d as

BN(X; γBN, βBN)
(e) = γ

(e)
BN

⎛
⎝X(:,:,e) − μ

(e)
B√

σ
2(e)
B + ε

⎞
⎠+ β

(e)
BN . (2.10)

A convolutional layer with batch normalization is defined analogous to Equa-
tion (2.4) as

lbn ◦ conv(X; θ)(e) = ϕ(BN(X ∗s A(e); γBN, βBN)) , (2.11)

with e = 1, ..., d , input X ∈ R
h×w×c, kernel A ∈ R

d×m×n×c, stride s ∈ N, and
parameters θ = (A, γBN, βBN). Note that the bias term b is omitted in this definition,
because it would not have any effect due to the normalization. The parameter βBN

takes over the role as a bias in the convolutional layer with batch norm.

During testing, instead of using per-batch statistics for μ and σ2, population statis-
tics that are accumulated during training are used to normalize each batch. Using
batch normalization after each convolutional layer of a CNN allows the use of higher
learning rates and regularizes the model (Ioffe and Szegedy, 2015).

Activation functions Non-linear activations functions ϕ : D → D introduce non-
linear properties to the neural network. Traditionally, saturating sigmoid activation
functions were used in an element-wise manner, mapping each element x of X ∈ D
to

ϕ(x) =
1

1 + exp(−x)
. (2.12)

However, convergence using saturating activation functions is slow and might lead to
vanishing gradients during training (Glorot et al., 2011). Therefore, a non-saturating
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activation function, the rectified linear unit (ReLU), is often used in CNNs:

ϕ(x) = max{0, x} . (2.13)

Softmax activation functions are applied to the output x ∈ R
k of a classifier to

represent the probability distribution over k possible classes, with
∑k

i=1 ϕ(x)
(i) = 1.

The softmax function for the i-th element of input x is given by

ϕ(x)(i) =
exp(x(i))∑k
j=1 exp(x

(j))
. (2.14)

2.2.2 Convolutional neural network architectures

The most popular CNN architectures for image classification, regression and segmen-
tation consist of the basic building blocks presented in Section 2.2.1. In the following,
the characteristic structure of neural network architectures for these tasks is described
(Figure 2.8). A common scheme for designing CNN architectures for the k-class image
classification task is to use several blocks containing one or more convolutional layers
(including a non-linear activation function and batch normalization) and a pooling
layer which reduces the spatial resolution of the internal representations and allows
to learn more complex features in the following layers. This convolutional part may
be followed by one or more fully connected layers. The last layer contains a softmax
activation function, resulting in a classification vector z ∈ R

k, with
∑k

i=1 z
(i) = 1,

where each entry z(i) can be interpreted as the probability that input X belongs to
class i. For regression tasks a similar architecture is employed. In this case, the final
fully connected layer outputs a scalar z ∈ R. To allow the model to predict any
scalar value, usually no activation function is used in the output layer.

Image segmentation can be transformed to a classification problem by classifying
each pixel in the input image separately based on an image patch centered around the
pixel. However, for the prediction of two neighboring pixels the input image patches
overlap, resulting in overlapping internal filter responses. This results in inefficient,
multiple computations of the same filter response. Thus, most segmentation archi-
tectures do not contain fully connected layers. This allows them to predict arbitrarily
sized images and to share computations for the prediction of neighboring pixels. The
output of a segmentation network is a segmented image Z ∈ R

h′×w′×k whose size
depends on the size of the input. Image segmentation architectures are described in
more detail in Section 2.2.3.

Deviating from the one-input-one-output scheme, it is possible to have neural net-
work architectures with several input branches that are concatenated at some point
in the network and with several output branches that branch off at some point in the
network. During the design of neural network architectures, special attention needs
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Figure 2.8: Example CNN architectures for classification, regression, and segmen-
tation.

to be paid that the output dimensions of one layer fit to the next layer. For example
the input to a 2 × 2 max-pool layer needs to be of even size because the pooling
summarizes blocks of 2× 2 pixels. The architectures and their input sizes presented
in this thesis were selected such that all internal layer outputs provide a valid input
for the following layer.

2.2.3 Semantic segmentation architectures

Receptive field Segmentation architectures take an input image X ∈ R
h×w and

produce an output segmentation Z ∈ R
h′×w′×k whose size depends on the size of the

input. It is important to note, that although arbitrarily large inputs are possible,
only a fixed size local window of input pixels will contribute to any output pixel.
This receptive field depends on the number and size of convolutional and pooling
layers. Starting with a receptive field of 1, a valid convolutional layer (no padding)
with a kernel of size m×m adds m− 1 pixels to the receptive field. A pooling layer
with window size s multiplies the receptive field by factor s. The receptive field of
a network is at the same time the minimal size of images that can be processed by
the model. When constructing a semantic segmentation network it is important to
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consider the receptive field, because a too small receptive field might prevent that
relevant features are learned and a too large receptive field restricts possible inputs
for the model to very large images and increases the number of parameters.

Fully convolutional networks Long et al. (2015) proposed one of the early segmen-
tation architectures, the fully convolutional networks (FCNs). A FCN uses, as the
name suggests, only convolutional layers and pooling layers, no fully connected layers.
The use of pooling layers results in a lower-resolution output segmentation. To have
an output at the same resolution as the input, Long et al. (2015) use up-convolutions
and skip connections from intermediate layers to the output layer resulting in a high-
resolution output segmentation that contains local structures and global semantic
information.

In order to produce even more detailed segmentations that are based on a large
field of view, several improvements of the original FCN have been developed. Yu
and Koltun (2015) propose to use dilated convolutions that increase the field of view
without increasing the number of parameters and without decreasing the resolution.
Similarly, L.-C. Chen et al. (2018) use atrous convolutions (“with holes") that effec-
tively increase the size of the receptive field without adding more parameters to the
model. The drawback of these two architectures is that all internal feature maps will
have the size of the input, because no pooling layers are used. This increases the
memory requirements of the models during training. For the large inputs that are
required for histological area segmentation (Section 1.1) this is not feasible, as the
model would not fit on the GPU anymore.

U-Net Ronneberger et al. (2015) proposed the U-Net architecture as a segmenta-
tion architecture that has a large receptive field and outputs precise segmentations
at the same time. Since this architecture employs a downsampling path with pooling
layers and an upsampling path with up-convolution layers, the memory requirements
of the U-Net are less prohibitive. The U-Net is a popular architecture for medical
segmentation tasks and is used in this thesis as the basis for the CNN model in
Chapters 5 and 6.

The U-Net consists of a downsampling and upsampling path which are intercon-
nected by copying activations from the downsampling to the upsampling path. Fig-
ure 2.9 shows the U-Net architecture as depicted in Ronneberger et al., 2015. Here,
the “U" after which the architecture was named is clearly visible, with the downsam-
pling path on the left side of the “U" and the upsampling path on the right. The
drawings of the U-Net-based architectures in this thesis contain flattened represen-
tations of the “U" (e.g., see Figure 5.1).

The downsampling path consists of convolutional and pooling layers and calcu-
lates a low-resolution feature representation of the input image containing context
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Figure 2.9: U-Net architecture for semantic segmentation (Ronneberger et al.,
2015).7 Contracting/downsampling path on the left, expanding/upsampling path on
the right.

information. The layers are grouped in four blocks, with each block containing two
convolutional layers with kernel size 3 × 3 and ReLU activation functions, and one
max pooling layer with window size 2× 2. Starting with 16 channels, the number of
channels is doubled in each block. At the bottom of the “U", a block of two 3 × 3

convolutional layers is located which is followed by the upsampling path.

The upsampling path consists of convolutional and up-sampling layers (up-conv)
that increase the resolution of the output and allow context propagation from the
downsampling path to the output. Again, the layers are grouped in four blocks
which mirror the blocks from the downsampling path. Each block contains one up-
conv layer and two convolutional layers with kernel size 3 × 3 and ReLU activation
functions. Each up-conv layer halves the number of channels.

Activations are copied after the last conv layer of each block in the downsampling
path to the upsampling path and concatenated to the activations that result from
the up-conv layer at the beginning of each block in the upsampling path. These skip
connections allow the network to use high-resolution location information from the
downsampling path to produce precise output segmentations.

7Reprinted from Ronneberger et al. (2015), Copyright (2015), with permission by Springer Nature.
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2.2.4 Training deep neural networks

After an artificial neural network f(X; θ) has been defined, we want to find the
optimal parameter configuration θ∗ that allows the model to make correct predic-
tions for every possible input. This optimization is done based on a training set
consisting of n inputs X = {X1, ..., Xn} and their corresponding groundtruth values
Y = {Y1, ..., Yn}. The optimal parameters θ∗ are those that minimize a loss function
L comparing the model predictions f(X ; θ) with the true values Y :

θ∗ = argminθ L(X ,Y ; θ) . (2.15)

Stochastic gradient descent In practice, the analytical minimization of Equa-
tion (2.15) is computationally intractable. Instead, an iterative numerical optimiza-
tion procedure is used. Mini-batch stochastic gradient descent (SGD) is one of the
standard optimization algorithms. Starting from (randomly or otherwise initialized)
parameters θ0, this algorithm iteratively updates the parameters based on a small
sample (batch) XB ⊆ X of the training data set with labels YB by taking steps
in the direction of the negative gradient −∇θL of the loss function with respect to
parameters θ:

Δθi+1 = −η∇θL(XB,YB; θi)

θi+1 = θi +Δθi+1 .
(2.16)

The size of the steps is controlled by the learning rate hyper-parameter η ∈ R
+.

One complete pass through all training data is called an epoch. In practice, several
(usually between 10 and 1000) epochs are needed to train a CNN model.

Nesterov accelerated gradient In order to avoid excessive oscillations of the gra-
dient due to a small batch size, SGD can be adapted to use momentum by letting
the weight updates of the previous timesteps influence the current weight update.
The optimization algorithm used in this thesis, Nesterov accelerated gradient (NAG)
(Nesterov, 1983), can be seen as SGD with momentum (Sutskever et al., 2013). In
Equation (2.16) the update of θ is the gradient of the loss function evaluated with
the current parameters. In NAG the weight update starts from the previous weight
update and is adjusted depending on the gradient of the loss function evaluated with
the updated parameters θi +Δθi:

Δθi+1 = −η∇θL(XB,YB; θi + μΔθi) + μΔθi . (2.17)

The hyper-parameter μ ∈ R>0 controls the influence of the momentum on the weight
update. A NAG update can be described as taking a SGD step, and then correcting
the update based on the gradient of the loss function at the new estimated position.
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This allows the algorithm to change the updates in a responsive way, and to behave
more stable for higher learning rates (Sutskever et al., 2013).

Back-propagation In order to calculate the update of θ, the gradient of the loss
function with respect to θ needs to be calculated. The back-propagation algorithm
(Rumelhart et al., 1986) allows the calculation of gradients in deep neural networks.
It alternates a forward pass where an input is propagated through the network to
calculate an output value, and a backward pass where the resulting loss is propagated
back through the network. It uses the chain rule of calculus to iteratively compute
the gradients for each layer.

Cross-entropy loss The cross-entropy loss is commonly used for classification and
segmentation tasks. It calculates the pixel-wise difference between groundtruth Y ∈
Y and predicted output f(X; θ) for inputs X ∈ X . If classes are imbalanced or if one
class should get special importance, the contribution of each class to the loss can be
weighted with a weight ωj ∈ R for each class j. The cross-entropy loss is defined as

L(X ,Y ; θ) = − 1

n

n∑
i=1

k∑
j=1

ωjY
(j)
i log(f(Xi; θ)

(j)) (2.18)

for a k-class classification problem with n = |X | evaluation samples Xi, and groundtruth
values Yi given in one-hot encoding. This loss is used in the profile classification and
area segmentation models from Chapters 4 and 5.

L1 loss Regression models output a scalar value y which can be compared with the
desired groundtruth value using for example an L1 loss:

L(X ,Y ; θ) =
1

n

n∑
i=1

‖f(Xi; θ)− yi‖1 . (2.19)

Using the L1 norm instead of the L2 norm has the effect that large errors are not
overly penalized. This can be advantageous in some cases (see Section 6.1).

Overfitting and weight decay If a model correctly classifies every training sample,
but does not generalize to unseen validation samples, this model is overfitting to the
training data. This happens when the training dataset is small and the model has
enough parameters to fit them to the noise in the training data instead of learning
generalizable features. There are several regularization techniques to combat overfit-
ting. One popular technique is called weight decay which adds an L2 regularization
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of the parameters θ to the loss function:

L̂(X ,Y ; θ) = L(X ,Y ; θ) + λ‖θ‖22 , (2.20)

with λ ∈ R
+. In general terms, the weight decay prevents that the weights of the

neural network keep growing in order to fit perfectly to the training data. In practice,
this reduces overfitting (Krogh and Hertz, 1992).

Hyper-parameter tuning Hyper-parameters are properties of the model or of the
optimization algorithm that are fixed before training. Hyper-parameters for neu-
ral networks include model parameters like the number and type of layers and the
number and size of convolutional kernels, as well as training parameters like learn-
ing rate η, momentum μ, and weight decay factor λ. Unfortunately there is no
one-fits-all approach that can be used to determine the hyper-parameters. Instead,
hyper-parameters need to be determined for each task and training dataset. This
is a non-trivial task, especially since a single hyper-parameter cannot be considered
independently of the other hyper-parameters.

A common strategy for choosing hyper-parameters, which is also used in this thesis,
is to start from values found in literature (e.g., a neural network architecture that was
previously used on a similar task) and to empirically optimize the hyper-parameters
from these initial values on a validation set, using either manual, random, or grid
search. However, evaluating many different configurations of hyper-parameters is
time-consuming, since for each hyper-parameter configuration a neural network needs
to be trained. A promising new approach is to use Bayesian optimization to select the
hyper-parameters (Snoek et al., 2012). The idea is build a probabilistic model of the
objective function and to use this model to choose promising hyper-parameters that
should be evaluated next. This informed choice of the next hyper-parameter configu-
ration can in practice reduce the amount of different hyper-parameter configurations
that need to be evaluated compared to grid search and random search.

2.2.5 Evaluating the training process in deep neural networks

In order to evaluate the performance of a trained k-class semantic segmentation model
f(X; θ) ∈ R

h′×w′×k several metrics can be calculated. Let X = {X1, ..., Xn |Xi ∈
R

h×w×c} be a dataset of n images and Y = {Y1, ..., Yn |Yi ∈ {0, 1}h′×w′×k} their
corresponding groundtruth labels for the k classes in one-hot encoding. Define Gk

as the set of all indices of pixels labeled as class k, Gk = {(n, i, j) |Y (i,j,k)
n = 1 , Yn ∈

Y , i = 1, ..., h , j = 1, ..., w}, and Pk as the set of all indices of pixels predicted as
class k, Pk = {(n, i, j) | argmax f(Xn; θ)

(i,j) = k , Xn ∈ X , i = 1, ..., h , j = 1, ..., w},
and s = n · h · w as the number of all evaluated pixels.
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Accuracy The accuracy is the most commonly used score in classification and seg-
mentation settings and is defined as the ratio of the number of correctly classified
pixels to the number of all pixels:

acc =

∑k
i=1 |Gi ∩ Pi|

s
. (2.21)

The accuracy has the drawback that it only focuses on correctly classified pixels, and
not on falsely classified ones. Consider for example a test dataset X with ten samples,
nine of which are of class a and one of class b. A model that predicts class a for every
sample intuitively does not perform well, but gets an accuracy of (9 + 0)/10 = 0.9.
In this thesis the accuracy is only used to control progress during training on a left
out validation set.

Dice score For assessing the final performance of a model, the Dice score is calcu-
lated. The Dice score (or Sorensen-Dice index, F1 score) is defined as the harmonic
mean between precision and recall. Define the precision for class i as the ratio of the
number of pixels correctly predicted as class i to the number of all pixels predicted
as class i: precisioni = |Gi ∩ Pi|/|Pi|. Define the recall for class i as the ratio of the
number of pixels correctly predicted as class i to the number of all pixels labeled as
class i: recalli = |Gi ∩ Pi|/|Gi|. With this we can define the Dice score for class i as:

Dicei = 2
precisioni · recalli
precisioni + recalli

. (2.22)

As the overall aim of the segmentation is to correctly predict as many pixels as
possible, a weighted mean of the per-class Dice scores is reported in the evaluations:

Dice =

∑k
i=1 |Gi| ·Dicei

s
. (2.23)

This metric considers both precision and recall and thus outputs a more realistic score
for the above toy example with Dicea = 2(0.9 · 1)/(0.9 + 1) = 0.95 and Diceb = 0

resulting in a final weighted Dice score of (9 · 0.95 + 1 · 0)/10 = 0.85.

Weighted misclassification error All errors influence the Dice score equally. How-
ever, in the context of brain area segmentation, the labels follow a certain topology.
The evaluation score should consider this topology by weighting different errors dif-
ferently. When two models have the same Dice score, the model that makes “more
plausible" errors is preferable. In the context of brain area segmentation, errors are
more plausible, when they confuse topologically close labels as opposed to topologi-
cally distant labels.
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Figure 2.10: Normalized distances ωij between brain areas. Calculated using
JuBrain atlas maximum probability maps.

The distance of brain areas can be calculated using the JuBrain atlas (Section 2.1.5):
For every area pair (i, j), calculate the shortest distances of every point in area i to
area j. Let dij be the mean of these distances. Define “severity" of an error as the
normalized distance between the true area i and the predicted area j:

ωij =
dij

1
k2

∑k
i=1

∑k
j=1 dij

. (2.24)

For classes k not present in the JuBrain atlas (white matter, background and un-
known cortex), set the weight ωk: = 1. Figure 2.10 shows the normalized weight
matrix which represents the topology of areas in the brain.

We can now weigh different errors by their “severities" with the weighted misclas-
sification error:

err =
∑

1≤i,j≤k,
i �=j

ωij|Gi ∩ Pj| . (2.25)

This error can be used to determine how well a model has understood the topology
of areas.

Confusion matrix A confusion matrix is a helpful tool to assess the per-class perfor-
mance of a multi-class classification model. Figure 2.11 shows an example confusion
matrix. Each row represents the instances (pixels) in a groundtruth class, and each
column represents the instances in a predicted class. Thus, the cell in row i and
column j contains the number of examples from class i that were predicted as class
j. Entries on the diagonal of the confusion matrix represent correct predictions.
The confusion matrices shown in this thesis visualize the number of instances on a
per-class normalized gray scale.
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Figure 2.11: Confusion matrix. The entry in row i and
column j represents the normalized amount of examples
from class i classified as class j. This allows to assess
the types of errors that a model makes.

Visualization and saliency After training and evaluating a model on a test set,
we might want to look inside the model to understand how it comes to its decision.
There are several techniques for this type of analysis. In the following feature map
visualization and saliency calculation are used. Let FMi(X) = li(li−1(...l1(X)...)) be
the feature maps of the i-th layer for the input image X ∈ R

h×w×c. Visualizing the
internal representations FMi(X) of the model for a given input X shows the features
that the model computes at each layer and how they are combined to form the output
prediction. Analyzing the feature maps gives us an idea of how the model works and
what features each layer focuses on.

Saliency techniques go one step further and ask: Which parts of the input were
most relevant for making the prediction? In Chapter 4 Grad-CAM (Selvaraju et
al., 2017) is used to answer this question. Grad-CAM provides coarse localization
maps S for k-class classification models showing the relevant parts of the input X for
classifying it into class k. It is especially useful to visualize saliency for models that
contain fully connected layers, which do not preserve the localization of features.
To calculate localization maps S, first the gradient of the score for class k of the
prediction z ∈ R

k, z(k), is calculated with respect to the feature maps FMl(X) ∈
R

h′×w′×d of the last convolutional layer l. Using this gradient, global average-pooled
importance weights αm are obtained for each individual feature map FMl(X)(:,:,m):

αm =
1

h′ · w′

h′∑
i=1

w′∑
j=1

∂

∂FMl(X)(i,j,m)
z(k) . (2.26)

Grad-CAM is then calculated as a weighted combination of the feature maps FMl(X)

by their importance weights α:

S = max

{
d∑

m=1

αmFMl(X)(:,:,m) , 0

}
. (2.27)

With this definition, the saliency map S shows which parts of the input contain
pixels that should be increased in order to increase the prediction score z(k) for class
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Task: classi cation of natural images Task: segmentation of histological images
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Figure 2.12: Transfer learning works by initializing a target network with weights
of a source network which was trained on an auxiliary task. The transferred weights
can be adapted during training (fine-tuning) or be frozen.

k. Thus, S can give an indication of the parts of the input that contain important
concepts used by the model to classify the input in class k.

2.2.6 Transfer learning

During training, the parameters θ of a neural network are iteratively optimized start-
ing from initial parameters θ0. Usually, the weights of the fully connected and convo-
lutional layers are set to small random values and the biases are set to constant values
(Glorot et al., 2011). However, training deep networks from scratch can be a difficult
task. First, the models require a large amount of labeled training data to find the
optimal parameters θ∗. Second, training the models is computationally expensive,
resulting in long training times. Third, there are often overfitting and convergence
issues that require repetitive adjustments in architecture and hyper-parameters.

To avoid these issues, models can be initialized with parameters obtained by train-
ing an auxiliary task on a different domain where training data is abundant. This
transfer learning scheme is visualized in Figure 2.12 and is justified as follows: In the
first layers, a CNN learns general features that are independent of the actual task and
dataset. In later layers these general features transition to task- and domain-specific
features (Yosinski et al., 2014). Using transfer learning, it is possible to leverage the
early, general features for other tasks. To do this, the weights of the first n layers of a
source network are copied to the first n layers of the target network. The parameters
of the remaining layers of the target network are randomly initialized as described
above and trained on the target task. During training, the copied layers can either
be adapted (fine-tuned) together with the randomly initialized layers or the weights
can be frozen. In the latter case the base network is used as a feature generator
for the target task. Yosinski et al. (2014) show that the performance of a network
with frozen features can drop due to splitting between co-adapted neural network
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nodes. Thus, generally fine-tuning the entire target network should be preferred.
Nevertheless, Sharif Razavian et al. (2014) have shown that transfer learning with
frozen features is a good baseline for classification, recognition, and retrieval tasks.

2.3 Datasets

Training machine learning models requires a dataset of inputs and (optionally) ground-
truth labels. For the task of automatic brain area segmentation datasets X con-
taining patches extracted from cell-body stained histological sections are used (see
Section 2.1.1, and Figure 2.2). The datasets are extracted from sections of the brain
collection of the INM-1. This brain collection contains cell-body stained histological
sections of several human brains. The brains were assigned an unique identifier “BX"
for brain number x. The brains used in this thesis were cut in 20 μm thin coronal
sections which were numbered starting from the occipital pole (the “back" of the
brain). This means that the section number i has a distance of 0.02i mm to the
occipital pole. The histological sections were scanned in a light microscope at 1 μm
resolution.

In order to define a dataset, first a set of high-resolution histological sections
(comprising one or several brain volumes), a collection, is specified. These collections
are split in train, validation, and test sections. Then, the train, validation and test
datasets are extracted from the sections of the respective split. The train dataset
X tr is used to train the models, the validation dataset X val is used to tune the hyper-
parameters (e.g., the architecture and the learning rate), and the test dataset X te

is used to compare the different models. In the following chapters, supervised and
unsupervised models are trained and evaluated on several datasets extracted from
different collections. This section introduces these collections and data associated
with them. Each histological section in the collections was visually assessed and
sections with major artifacts or staining irregularities were sorted out. The train,
validation and test datasets sampled from these collections are introduced in the
respective experiment chapters and summarized in the Glossary on page 145.

The sections used to train the area segmentation models are introduced in Sec-
tion 2.3.1. The projected probabilistic maps from the JuBrain atlas that are used as
additional input for these models are described in Section 2.3.2. Section 2.3.3 intro-
duces the large collection that is used to train the unsupervised models and contains
3727 sections of one human brain volume. Based on this collection, a gray/white
matter segmentation was calculated for the other collections (Section 2.3.4).
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Figure 2.13: Inter-individual variability of brains in the AtlasBrainsCollection.
Brains differ in visual appearance and overall gray value histograms. Histograms
were calculated from all pixels inside the tissue for a specific brain and normalized
by the total number of pixels in this brain for better comparison between the brains.

2.3.1 Labeled dataset for brain area segmentation

The brain area segmentation models are trained on the AtlasBrainsCollection
and B01Collection to segment areas of the visual system (Section 2.1.5). The
AtlasBrainsCollection consists of 450 sections from the visual system of brains
B01, B02, B03, B04, B05, B07, and B10 from the brain collection of the INM-1.
Consecutive sections have a distance of 1.2mm (up to every 60th physical section is
in the dataset). The B01Collection is a subset of this collection which only contains
sections from brain B01 (62 sections in total).

Although the histological preparation of all brains was the same, they are quite
varied in terms of appearance due to inter-subject variability and staining differ-
ences. Figure 2.13 shows example sections from each brain and average gray-value
histograms of all sections in each brain. Since brain area segmentation is an im-
mensely difficult task with large variations in each brain area due to oblique cuts,
curvature, and artifacts, the B01Collection, which does not contain additional vari-
ation due to inter-individual differences, is used to train the supervised models in
Chapters 4 and 5. In Section 6.3 the performance of the models on the more difficult
AtlasBrainsCollection is shown.

For each section in the datasets partial manual delineations of the 13 structural
areas of the visual system (introduced in Section 2.1.5) are available. The areas
were manually annotated by expert neuroanatomists and borders were confirmed
by the observer-independent method of Schleicher, Amunts, et al. (1999). Since
the annotations are partial, not every part of the cortex on the sections is labeled,
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(a) Exemplary sections with manual labels
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Figure 2.14: Labels of the B01Collection. Partial manual brain area annotations
confirmed by the observer-independent method. Areas differ in size.

and not every occurrence of a specific visual area is labeled. Figure 2.14a shows
examples of the available annotations on sections from the B01Collection. Due to
the different size of the brain areas, the annotated pixels per area are not evenly
distributed. Areas hOc1 and hOc2 are most frequent, and area hOc5 is the smallest.
Figure 2.14b shows the relative frequencies of each area in the B01Collection. The
label distribution between the B01Collection and the AtlasBrainsCollection does
not change significantly.

Train/val/test split The collections are split in train, validation, and test sections
by alternating 4 training sections, 1 validation section, 4 training sections, and 1 test
section. In this manner 80% of the annotated sections are used for training, and 20%
for validation and testing. For the AtlasBrainsCollection this results in 303 train,
75 validation, and 72 test sections. For the B01Collection 42 sections are in train,
10 sections in validation, and 10 sections in test.

2.3.2 Projection of JuBrain probabilistic maps to the labeled
dataset

Chapter 5 combines high-resolution texture inputs with prior knowledge of which ar-
eas are likely to occur in this input. For this information, the JuBrain atlas is used.
This atlas contains probabilistic maps for the location of each area in a template brain
volume (Section 2.1.5). Using standard image registration techniques (Section 2.1.4),
the JuBrain atlas (Section 2.1.5) is registered to each section of the B01Collection
and the AtlasBrainsCollection. To get probabilistic maps on individual histolog-
ical sections, each section of the B01Collection and the AtlasBrainsCollection
is registered to the template brain volume (see Section 2.1.4 for information about
image registration). Since we are only interested in rough estimates of the atlas data
on the individual section, an affine registration (i.e., shifting, rotating, scaling, and
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Figure 2.15: Projection of JuBrain atlas to several sections of the B01Collection.
The maximum probability map thresholded at probabilities > 0.4 is shown. Com-
pared to manual delineations (Figure 2.14a), the information provided by the atlas
is very coarse.

shearing of the atlas data) was calculated, which can be performed with reasonable
speed. Using this registration, the JuBrain probabilistic maps are transformed to
the individual sections. The transformation results in probabilistic maps for each of
the 13 areas annotated in the visual system (Section 2.1.5) at 8 μm resolution. For
every location, the probabilistic map of area a contains the prior probability that
this location on the high-resolution section shows area area given the averaged maps
of the JuBrain atlas. Figure 2.15 shows the transformed JuBrain atlas on several
sections from the B01Collection. The probabilistic maps are used in Chapter 5 as
additional input to the segmentation network.

2.3.3 Unlabeled dataset for unsupervised feature learning

The BigBrainCollection contains 3727 high-resolution sections from the BigBrain
(Amunts, Lepage, et al., 2013).8 Consecutive sections in this collection have a dis-
tance of 20 μm. Brain area labels were not included in this collection, however a 3D
reconstruction at 20 μm resolution is available.9 For the 3D reconstructed volume,
200 μm resolution meshes of the gray/white matter border and of the pial surface
exist (L. Lewis et al., 2014). These meshes are sliced and transformed to the high-
resolution histological sections using the existing registration. This results in 200 μm
resolution gray/white matter masks for each section. Figure 2.16 shows example sec-
tions from this dataset, their gray/white matter masks and the gray/white matter
border and pial surface meshes. This dataset is used in Chapter 6 to pre-train models
on a self-supervised task related to area segmentation.

8The entire BigBrain volume contains 7404 sections. The BigBrainCollection contains those
sections that were at the time of dataset assembly scanned at 1 μm resolution, that did not have
major artifacts, and for which the gray/white matter masks could be correctly calculated.

9Thanks to Claude Lepage (McGill University) for providing the transformation files to the 3D
BigBrain volume.
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(a) Example sections with gray/white matter masks (b) Gray/white matter bor-
der (top) and pial surface
(bottom) meshes

Figure 2.16: The BigBrainCollection

Figure 2.17: Automatic gray/white matter segmentation of several sections of the
B01Collection

Train/val/test split This dataset is split in train/val and test sections by alternat-
ing 12 train/val sections and 1 test section. Thus, 3416 of the 3727 sections in the
dataset are in the train/val split and 311 sections in the test split. For the evaluation
of the self-supervised models in Section 6.4 the dataset is further limited to contain
only the left or the right hemisphere. The models used for pre-training the segmen-
tation models in Section 6.3 are trained and validated on 1796 sections with section
numbers 1-3000 from the occipital lobe of the brain (resulting in 1646 sections in the
train/val split and 150 sections in the test split).

2.3.4 Gray/white matter segmentation of labeled dataset

Based on the gray/white matter masks of the BigBrainCollection, a CNN was
trained for automatic gray/white matter segmentation of the AtlasBrainsCollection.
This model was developed by Christian Schiffer (INM-1, FZJ) in the context of his
master’s thesis and is described in Schiffer (2018). The topic of the master’s thesis
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was the transferability of neural network models from one brain volume to other brain
volumes. Average gray values were identified as one of the main sources of differences
between different brain volumes. One possible solution is based on gamma augmenta-
tion (Equation (5.3), Page 78) of the input data to simulate gray value distributions
of other brain volumes. Fifty percent of the inputs were gamma augmented with
γ ∈ [1.5, 2.5]. With this augmentation, a BaseNetwork model (Section 5.1.1) was
trained on 60 sections from the BigBrainCollection on the gray/white matter seg-
mentation task. This model could be successfully used to segment sections from the
AtlasBrainsCollection. Figure 2.17 shows the resulting segmentation of sections
from the B01Collection.
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The aim of this thesis is the development of automatic methods for the segmentation
of brain areas on high-resolution histological sections. Section 1.1 identifies five key
challenges of this aim: localization of cortical areas in histological sections, respecting
the topology of brain areas, dealing with artifacts in histology, limited training data,
and large input sizes. Other researchers already faced several of these challenges in
slightly different contexts. This chapter introduces these related works and motivates
the approaches presented in this thesis.

Previous approaches localize cortical areas by analyzing the cortical laminae (Sec-
tion 3.1). The challenge of topologically consistent predictions is discussed by several
works on automatic brain MRI segmentation (Section 3.2). As histological sections
have distinctive characteristics that distinguish them from natural images, Section 3.3
introduces automatic histological image analysis methods that need to deal with large
input sizes and staining artifacts. Finally, Section 3.4 highlights several approaches
for learning deep models with limited training data by using data augmentation,
transfer learning, and unsupervised learning.

3.1 Analysis of the laminar structure of the cortex

Cortical areas are distinguished by the arrangement of neurons in cortical laminae.
The current state of the art method for observer-independent border detection by
Schleicher, Amunts, et al. (1999) (see Section 2.1.3) exploits this structure by cal-
culating GLI profiles that contain approximate cell-densities for each lamina, and
comparing neighboring profiles to find significant differences.

Thus, in order to segment the cortex, in theory it should be sufficient to identify
the cortical laminae and find the places where their configuration changes. This
direct approach to automatic brain area mapping was explored by Adamson et al.
(2005). They used a tracking method to follow along cortical laminae and detect
changes in the thickness of the laminae. With this, they were able to identify some
borders between cortical areas. Although promising, this work has several drawbacks
that it shares with the method of Schleicher, Amunts, et al. (1999): It will only
work on perpendicularly sectioned parts of the cortex, where all laminae are clearly
distinguishable. Due to the highly folded surface of the brain, however, many parts
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of the cortex on any 2D section will be oblique. Additionally, the tracking of the
lamina will be affected by any artifact that crosses it.

Wagstyl, Lepage, et al. (2018) take a slightly different approach to identify laminae
in the cortex: The authors use the reconstructed 20 μm BigBrain volume (Amunts,
Lepage, et al., 2013) to extract profiles as traversals of the cortex in 3D. Then they use
an automatic method that identifies the different laminae using the profiles as input.
By leveraging the 3D data of the BigBrain this approach has the advantage that
there is no obliquely sectioned data. However, this approach only identifies different
laminae, but does not attempt to parcellate brain areas based on this information.

The previously introduced approaches have in common that they use high-resolution
histological sections to extract features that encode information about the laminar
structure of the cortex. This has the advantage of directly encoding the relevant in-
formation in a feature vector and removing any information about the curvature and
other anatomical landmarks in the tissue. Motivated by this, Chapter 4 introduces a
CNN that learns to classify different cortical areas based on such features as input.
In Chapter 5 this feature-based approach is then compared with the image-based
approach introduced in Chapter 5.

3.2 Brain area parcellation in magnetic resonance
imaging

To the best of our knowledge, there are no previous works on fully automatic segmen-
tation of brain areas in histological sections. However, there are several approaches
for automatic segmentation of brain areas in MRI that respect the topology of their
labels. They can be divided in two categories: 1. Atlas registration approaches, which
directly model the topology of areas by registering an atlas to the volume of inter-
est (Section 3.2.1) and 2. Deep Learning approaches, which indirectly enforce spatial
consistency and topological correctness by including context or other prior knowledge
(Section 3.2.2).

3.2.1 Atlas registration approaches

Atlas registration approaches are commonly used to segment brain MRI volumes
(Desikan et al., 2006; Fischl, Salat, et al., 2002; Heckemann et al., 2006; Klein et al.,
2005; H. Wang and Yushkevich, 2013). Given one or more existing segmentations of
source volumes (the atlases), a registration from these volumes is calculated to the
target volume that should be segmented (Rohlfing et al., 2005). Figure 3.1 visualizes
this process. The individual methods mostly differ in the number of atlases that are
used for a new segmentation, the registration methods used for mapping the atlases
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Figure 3.1: Altas registration approach for segmenting brain MRI volumes.1 The
atlas volume is registered to a new subject (target) enabling the transfer of labels
defined on the atlas to the new subject.

to the new image, and the way the labels are fused for generating topologically correct
segmentations. See Section 2.1.4 for a short introduction to image registration. Due
to the high inter-individual variability of folding patterns, brain-to-brain registration
is a challenging task. To get good correspondence between source and target volumes,
a simple intensity-based approach is often not sufficient. Instead, landmark-based
registration can be used to align the sulci of the source and target volumes (Mangin,
Lebenberg, et al., 2016).

Atlas registration methods have the advantage that they produce topologically
correct parcellations since the new segmentation is always based on topologically
correct atlases. However, they have several drawbacks that prevent us to use them for
high-resolution histological parcellation: The quality of the resulting segmentation
is highly dependent on the registration, which is very difficult to calculate given
the inter-individual differences between brains. Additionally, the atlas registration
approaches do not take into account the relationship between image data and the atlas
labels. Instead they assume that the labels are correlated with anatomical landmarks
and use these landmarks (e.g., sulci and gyri) to calculate the mapping from atlas to
new MRI volume. This limits the accuracy of the resulting segmentation.

For high-resolution histological image parcellations, the correlation between labels
(brain areas) and anatomical landmarks cannot be assumed (Amunts and Zilles,
2015). On the contrary, the mappings of cytoarchitectonic areas can be used to
analyze the correlation between labels and anatomical landmarks. Thus, for the

1Brain images retrieved from http://brainsuite.org/processing/svreg/.
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purposes of this thesis, pure atlas-based methods are not appropriate. However,
Chapter 5 shows that combining high-resolution texture features and atlas data is
advantageous for the performance of automatic area segmentation.

3.2.2 Deep learning approaches

Akkus et al. (2017) provide a good overview of deep learning approaches for brain
MRI segmentation. In this section, the focus is on models that segment the brain
into different tissue classes or brain areas and achieve spatially consistent predictions.
Several neural network architectures that are trained on 2D or 3D image patches
extracted from the MRI volume to segment it in different classes have been proposed.
Dividing a large input image or volume in smaller image patches and training a neural
network on these patches is a common strategy to deal with large inputs and is
further discussed in Section 3.3.1. The approaches presented in this section combine
the image patches with lower resolution context patches (de Brébisson and Montana,
2015; Moeskops et al., 2016) and/or with location information (de Brébisson and
Montana, 2015; Wachinger et al., 2017).

De Brébisson and Montana (2015) train a neural network for anatomical brain
area segmentation in k = 134 classes. They combine local information with global
information to enforce spatial consistency in the resulting segmentation. As local
information, small 3D patches centered around the pixel of interest are used. For the
global information, larger, low resolution orthogonal 2D patches are used. To further
improve the spatial consistency, the location of the input patch p is encoded as the
Euclidean distance between coordinate p and the centroids ck of each of the k classes.
During training, the centroid ck is calculated as the center of mass of all voxels labeled
with class k. Since during evaluation labels are usually not available, they use an
iterative procedure to estimate the centroids from the automatic segmentation. The
distance to the centroids thus encodes the location relative to all regions and can be
used by the model to create spatially consistent segmentations.

Wachinger et al. (2017) consider a k = 25 class segmentation task of MRI volumes
(see Figure 3.2). To deal with the imbalance of background and brain tissue on an
MRI scan, in a first step a CNN is trained to segment foreground and background,
and in a second step another CNN is trained to segment the foreground in the 25
different tissue classes. To allow the network to model more complex relationships,
a deeper network than the network proposed by de Brébisson and Montana (2015)
and large 3D input patches are used. Wachinger et al. (2017) train the model to
predict not only the center voxel of a given patch, but also its 6 direct neighbors
and average predictions for each voxel for the final segmentation. This multi-task
formulation can be considered an ensemble method and results in better segmentation
performance. Similar to de Brébisson and Montana (2015) location information is
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Figure 3.2: Model proposed by Wachinger et al. (2017) for MRI segmentation.2
First, a background/foreground segmentation is calculated. Then, the foreground is
segmented in 25 tissue classes. Spectral coordinates are provided to the model to
facilitate the localization of the input patches in the brain volume.

included for each patch to resolve potential ambiguities. Here, as location information
an intrinsic brain parametrization given by spectral coordinates is used. The spectral
coordinates are defined as the eigenvectors of the Laplacian matrix of the graph
representing the brain mask and are an alternative to Cartesian coordinates. To get
a smooth output segmentation, a conditional random field (CRF) is applied to the
predicted segmentation. CRFs model the spatial relationship between neighboring
pixels and can for example penalize the assignment of different classes to neighboring
pixels to reduce noise and avoid scattered segmentations (Lafferty et al., 2001). Thus,
using a CRF on top of the neural network predictions can help to obtain smoother
segmentations.

Moeskops et al. (2016) train a CNN to segment an MRI brain volume into 6-8
tissue classes. This method uses input patches at three different scales and sizes to
provide context. In contrast to de Brébisson and Montana (2015) and Wachinger
et al. (2017) they do not include explicit location information but rather argue that
the large field of view of their model naturally leads to smoother segmentations.
However, as only the segmentation into large tissue classes is considered, this finding
is not directly applicable to brain area segmentation.

In contrast to the previous approaches, Glasser et al. (2016) leverage multi-modal
data not only from MRI, but also from task fMRI and resting state fMRI to build a
manual parcellation of the cerebral cortex. Using this manual parcellation, they train
a multi-layer perceptron on features extracted from the multi-modal input data. In
order to simplify the classification problem and to enforce topological correctness,
the authors train one binary classifier for each area and only apply it on the region
of the brain that contains the area after a registration from the manual parcellation
(spotlight classification). This restriction on the regions where a classifier is applied
constitutes an implicit encoding of location information in the classification process.

2Reprinted from Wachinger et al. (2017), Copyright (2017), with permission from Elsevier.
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The presented automatic MRI segmentation approaches use several concepts (i.e.,
context information, location information, post-processing with CRF) to get topo-
logically correct, spatially consistent and smooth segmentations. Although the above
mentioned CNN models are not directly applicable to histological area segmentation
due to the different image resolution, dimensionality and imaging modality, spatial
consistency and topological correctness are also important in the context of histolog-
ical area parcellation.

Context information3 is used by several approaches presented in this thesis, e.g., the
profile classification approach (block of profiles) and the deep label propagation net-
work. Directly including location information in the brain area segmentation models
is not desirable, because that would require a 3D reconstruction of the 2D sections.
This reconstruction is not always available and is time-consuming and error-prone to
compute. In addition, often not all sections of one brain volume are available which
makes registration and robust location information difficult. However, similar to the
spotlight classification of Glasser et al., 2016, the two stream network introduced in
Chapter 5 indirectly includes location information in the model by adding probabilis-
tic maps of which areas are likely to occur at the location of the input patch. These
probabilistic maps can be seen as a soft constraint for the topology of brain areas.
Using a graphical model (CRF) to enforce spatially consistent and smooth segmen-
tations is a popular approach. However, a CRF is applied as a post-processing step
to the predictions of a model which still requires good initial segmentations from the
CNN model. The focus of this thesis is on developing a model to create these good
initial segmentations. Applying CRF-based methods to these segmentations is left
to future work.

3.3 Automatic analysis of high-resolution histological
images

For precise identification of cytoarchitectonic brain areas it is necessary to analyze
cell-body stained histological images. This modality has distinctive characteristics
that distinguish it from natural images (Komura and Ishikawa, 2018):

• large image sizes, e.g., an average human brain section imaged with a light
microscope has a size of 75 000×100 000 pixels at 1 μm resolution (7GB with
8 bit precision),

3The segmentation network architectures presented in this thesis intrinsically use context informa-
tion in the sense that a pixel classification depends on neighboring inputs (the receptive field).
The context information discussed here refers to information provided by additional inputs that
goes beyond the small context that the CNN sees.
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Figure 3.3: Patch-based approach for cancer classification in histological sections
(D. Wang et al., 2016).4

• natural restriction of the amount of available training data, as annotations are
very time-consuming and require trained experts,

• staining inhomogeneities due to the preparation of the tissue or the staining
protocol, and

• texture-like structure of brain areas due to the repetitive pattern of neurons
which distinguishes the areas.

Approaches for deep learning with a small amount of labeled training data are dis-
cussed in Section 3.4, including the typically used data augmentation techniques
for histological images. Related work on analysis of histological sections addressing
the remaining challenges (large image sizes, staining inhomogeneities, and texture-
like structure of objects) is introduced in this section. First, patch-based solutions
dealing with large image sizes are discussed in Section 3.3.1. Then Section 3.3.2
introduces approaches addressing staining inhomogeneities through stain normaliza-
tion. Finally, CNNs that explicitly encode texture representations are introduced in
Section 3.3.2.

3.3.1 Patch-based approaches

Most approaches analyzing histological images are motivated by pathological classi-
fication, detection and segmentation tasks in a computer aided diagnosis setting. A
typical example for such a task is the identification of different tissue types or the
segmentation of cancerous cells (Komura and Ishikawa, 2018; Madabhushi and G.
Lee, 2016). For these tasks the object of interest covers a relatively small region of
the histological section. Thus most approaches subdivide the very large input image

4Image from D. Wang et al. (2016).
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in small (typically 20 × 20 to 200 × 200 pixel) image patches and train a neural
network to classify or segment the individual patches. Patch level decisions are then
aggregated to form coarse segmentation maps (Kainz et al., 2017; Y. Liu et al., 2017;
D. Wang et al., 2016; Xu et al., 2017). Figure 3.3 shows how the patch-based training
and prediction works. During training, the image patches are extracted randomly
from the training sections. For the prediction of a test section, the image patches
that are extracted and predicted lie on a grid, ensuring that every pixel is predicted.

For the task of histological brain area parcellation the object of interest (the brain
area) covers a much larger portion of the section. A cytoarchitectonic brain area
is a part of the 2mm to 4mm wide cortical ribbon. In order to identify a brain
area, the field of view of the network needs to contain at least the width of the
cortex. This results in minimal patch sizes of at least 2000 × 2000 pixels at 1 μm
resolution. Thus, the inputs for brain area segmentation are over 100 times larger
than the inputs considered in the above approaches. Therefore it was necessary to
design a custom network architecture with a large receptive field. However, similar
to the above approaches, the segmentation models introduced in this thesis also use
a patch-based approach to make training and prediction on large histological brain
sections feasible.

3.3.2 Stain-normalization methods

For brain area analysis, the histological sections are stained with silver staining
(Merker, 1983) which visualizes neuronal cell bodies. This results in gray-value scans
with the neurons appearing darker than the rest of the tissue. Due to the preparation
of the histological sections (fixation, dewaxing, and drying), the staining can have
variations in the same section and across sections. The microscope and camera used
for imaging can introduce additional variations (Pichat et al., 2018).

In order to normalize these staining differences, techniques based on histogram
matching are used (Gonzalez and Woods, 2002, p. 88) (see Figure 3.4). Malandain
and Bardinet (2003) propose a method using histogram matching in the context for
medical image processing. They calculate the continuous probability density function
for two sections and compute the optimal affine transformation between them. In
order to normalize a stack of consecutive sections, the histograms of all sections are
matched to either a representative template image or an average distribution (Pichat
et al., 2018). Recently, other stain-normalization and stain-transfer techniques based
on deep generative models have been proposed (Bentaieb and Hamarneh, 2018; Zan-
jani et al., 2018). For example Zanjani et al. (2018) propose to normalize staining
differences by training a variational autoencoder (VAE) to produce realistic images.
The VAE is trained by playing against an adversarial discriminator that tries to
distinguish the images created by the VAE from real images. The VAE learns la-
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(a) Images and histograms before histogram matching

(b) Images and histograms after histogram matching

Figure 3.4: Example of histogram matching between tissue sections with different
staining. Note that the staining differences inside the sections (e.g., img1 is darker
at the bottom than the top) are not evened.

tent variables which control the staining properties of the created image and can be
adapted to follow the staining distribution of a template image. This method has the
advantage that it can learn to treat different tissue classes differently, which is not
the case for simple histogram matching approaches (e.g., Malandain and Bardinet,
2003). Although effective for most applications, these normalization approaches are
computationally expensive and require an extra preprocessing step during training
and prediction and depend on the choice of template image. Especially when dealing
with high-resolution data, this additional time and memory constraint cannot be
neglected.

As an alternative to stain normalization, data augmentation methods that ran-
domly change the gray-value distribution can be used on the input patches. This
results in models that are invariant to different gray-value distributions in the input
patches. Y. Liu et al. (2017) reported that color normalizing images did not yield bet-
ter performance than using color augmentation. Since the augmentation of an image
patch can be done on-the-fly while assembling the batch, this method is computation-
ally less expensive. For this reason, the segmentation models that are trained directly
on the histological images (Chapters 5 and 6) use gray-value augmentation instead of
stain normalization. For intensity profiles sampled across cortical traverses, however,
augmenting the sampled profile has not the same effect as normalizing or augmenting
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the underlying image. Thus, for the profile classification model from Chapter 4 the
images are normalized by their mean and standard deviation before extracting the
profiles. The 8 times smaller resolution of the images for this task (16 μm compared
to 2 μm for the model in Chapter 5) reduces the additional time and memory needed
for this step.

3.3.3 Texture representations

Brain areas are composed of neurons that are arranged in a certain repetitive pattern.
This texture-like structure distinguishes them from typical objects in natural images.
Thus, segmentation of brain areas in histological images has properties in common
with texture classification tasks. Texture classification has long been studied in
computer vision (see Tuceryan and Jain (1993) for an overview), using a variety of
statistical, geometrical, and model-based methods. Due to the use of convolutional
and pooling layers, CNNs learn translation invariant features and are well-suited to
recognize textures (L. Liu et al., 2018).

Recently, CNN architectures for fine-grained visual recognition and texture classifi-
cation have been proposed (Lin et al., 2015; C. Wang et al., 2017). The bilinear CNN
(Lin et al., 2015) generalizes traditional orderless feature descriptors and models lo-
cal pairwise interactions between learned features. It consists of two convolutional
streams fA and fB (that can be the same or different) that extract features fA(X)

and fB(X) from the input image X. The features are then combined to a bilinear
feature by computing their outer product. C. Wang et al. (2017) use a bilinear CNN
on histological images to classify image patches in eight tissue types and report better
performance than a standard CNN. A drawback of bilinear CNNs is that the bilinear
feature representation is very high dimensional. Gao et al. (2016) propose compact
bilinear pooling that reduces the dimensionality of the bilinear features. Addressing
these recent approaches was out of the scope for this work, but in the future it could
be evaluated whether these bilinear feature representations are also applicable to very
large patches of histological images.

3.4 Deep learning with limited training data

One of the central challenges for applying deep learning to brain area segmentation is
the limited amount of training data. Besides manually annotating more training data
or reducing the complexity of the model, there are two complementary approaches
for this problem:

1. automatically increase the training data set (data augmentation), and
2. use transfer learning to leverage features learned on an auxiliary task.
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Figure 3.5: Commonly used data augmentation methods applied to a patch ex-
tracted from a histological brain section.

The most commonly used method to increase the size of the training dataset is to use
data augmentation by applying geometrical and color transformations to the input
patches and adding them to the training dataset. Related works using data aug-
mentation are presented in Section 3.4.1. In transfer learning, models are initialized
from weights learned on an auxiliary task. The auxiliary tasks can be general image
classification tasks on natural images. Approaches using transfer learning for medical
imaging tasks are described in Section 3.4.2. An alternative to using representations
learned on natural images is to use unsupervised learning on histological images to
generate good initial weights for supervised models. Section 3.4.3 considers several
unsupervised tasks for learning representations on histological images.

3.4.1 Data augmentation: Generate more training data

When training with a limited number of training samples, it is useful to enhance the
training dataset by using data augmentation (e.g., Kamnitsas et al., 2017; Y. Liu et
al., 2017; Pereira et al., 2016; Ronneberger et al., 2015). Data augmentation increases
the size of the training dataset X by modifying each element X ∈ X with a function
Ψ : X → Xaug. A model which was trained with an augmented dataset is invariant to
the variation introduced by the augmentation function and thus more generalizable.
In addition, data augmentation decreases the risk that the model learns to classify
a class based on irrelevant variation in the data. The type of the augmentation
function depends on the type of invariance that should be modeled. Commonly used
augmentation functions include affine transformations (e.g., rotations) and elastic
deformations of the input images and adapting the gray-value intensities or color
channels of each input image (Ronneberger et al., 2015). Figure 3.5 shows examples
of commonly used data augmentation functions applied to a histological image patch.

Y. Liu et al., 2017 train a classifier to detect cancerous cells on histological sections
and augment their training dataset with rotations by multiples of 90 degrees and left-
right flips of the input patches. To increase the robustness to color variations, they
perturb color values by changing brightness and hue. Similar to their work, the patch
segmentation and classification CNNs introduced in this thesis (Chapters 5 and 6)
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leverage data augmentation to train more robust models by random rotations, flips
and gray-value changes.

3.4.2 Transfer learning: Leverage already trained models

As introduced in Section 2.2.6, transfer learning allows to train large architectures
on small datasets by initializing the model with general-purpose features that were
learned on an auxiliary task. Several studies have shown that the transferability of
features decreases as the difference between the base task and the target task increases
(Azizpour et al., 2015; Mahajan et al., 2018; Yosinski et al., 2014). Despite the
differences between natural images and medical images, there are several successful
examples where fine-tuned CNN models outperformed CNN models trained from
scratch and other handcrafted approaches. Tajbakhsh et al. (2016) analyze transfer
learning from AlexNet (Krizhevsky et al., 2012) which was trained on the ImageNet
dataset containing over 14 million natural images in over 1000 categories (Deng et
al., 2009), to four different medical applications. They come to the conclusion that
for tasks that deal with images that are similar to natural images, only the last few
layers of the model need to the fine-tuned, whereas for other applications fine-tuning
of all layers was necessary to get optimal performance.

Pre-training models on the ImageNet dataset was found to be useful for lymph
node detection and lung disease classification (Shin et al., 2016), and for mammogram
analysis (Carneiro et al., 2015). The most successful application of transfer learning in
medical imaging as of date is a model that was pre-trained on the ImageNet dataset
and which is able to classify skin lesions at better-than-human precision (Esteva
et al., 2017). Fine-tuning models trained on ImageNet for tissue classification and
segmentation tasks on histological images was shown to be advantageous as well
(Bayramoglu and Heikkilä, 2016; Mormont et al., 2018; Xu et al., 2017).

The previously introduced approaches deal with classification or detection prob-
lems. However, the subject of this thesis is a semantic segmentation task. Although
architectures designed for classification can be adapted for segmentation by replac-
ing fully-connected layers with convolutional layers (Long et al., 2015), specialized
architectures like the U-Net (Section 2.2.3) are better suited to efficiently compute
high-resolution output segmentations. Unfortunately, pre-trained models for seg-
mentation tasks are not yet widely available. Additionally, for high-resolution image
segmentation, a receptive field of at least 2000 × 2000 pixels at 1 μm resolution is
needed (Spitzer, Amunts, et al., 2017). None of the existing pre-trained architectures
fulfill this requirement, as images from ImageNet are only 225 × 225 pixels in size.
Thus, for our application it is necessary to train a custom architecture from scratch.
However, in order to deal with limited training data, it is possible to pre-train the
custom architectures using an unsupervised or self-supervised task (see Section 3.4.3).
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Figure 3.6: Two-layer stacked autoencoder. (1) A stacked autoencoder is trained
by first training the outer encoder-decoder layers f1 and f̂ 1 to reconstruct inputs
X. (2) Then, the inner encoder-decoder pair f2 and f̂ 2 is trained to reconstruct the
latent feature representation v = f1(X) of the encoder f1.

3.4.3 Unsupervised pre-training: Leverage unlabeled data

Like supervised auxiliary tasks, unsupervised learning can be used to initialize or pre-
train networks for supervised tasks where not much labeled training data is available.
The advantage of using unsupervised learning tasks for pre-training is that they
can be trained on the same domain as the target task (e.g. histological images),
and can thus learn features that are already adapted to the domain. Unsupervised
representation learning has a long history (Bengio et al., 2013). In the following the
focus is on two recent learning tasks that can be used for pre-training supervised
models: autoencoders and self-supervised learning.

Autoencoders

An autoencoder consists of an encoder f that maps input images X to a latent
feature representation f(X) and a decoder f̂ that reconstructs the input from the
feature representation: f̂(f(X)) = X̂. Autoencoders are trained to minimize the
reconstruction error between the input and the output (Olshausen and Field, 1996).
In their most basic form, encoder and decoder consist of one layer each. To encode
more complex features, autoencoders can be stacked and trained layer by layer (Hin-
ton et al., 2006). Figure 3.6 visualizes a two-layer stacked autoencoder. Vincent
et al. (2010) proposed stacked denoising autoencoders that learn to reconstruct the
original image from a noisy input. Using noisy inputs forces the autoencoder to
learn more robust features. This allows to use denoising autoencoders as a layer-wise
pre-training strategy for supervised tasks (Vincent et al., 2010).

Unfortunately, as of now there is no example of an autoencoder that was trained
successfully on very large images (e.g., 2000×2000 pixels that are necessary for brain
area classification). Additionally, for area classification on histological images, very
fine-grained patterns in the arrangement of neurons and not the overall structure of
the image are important for classification. When training with a reconstruction loss,
the model will first learn the general structure of the image, and not the fine-grained
patterns. Since for the task at hand the details are essential, it remains unclear what
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objective to use when training an autoencoder. Therefore this thesis does not use
autoencoders for pre-training supervised models.

Self-supervised learning

Self-supervised learning is a recent variation of unsupervised learning. It exploits
labels that are easily accessible or obtainable from the inherent structure of the
data. The motivation for self-supervised learning is that in order to solve the self-
supervised task, the model has to semantically understand the input data and learn
general purpose image features that can be used for supervised tasks.

Several approaches use external labels that are easily accessible with the data.
Agrawal et al. (2015) and Jayaraman and Grauman (2015) use egomotion data pro-
vided by sensors to train a Siamese network to predict the camera transformation
between a pair of images. They show that egomotion is a useful supervisory signal
for learning feature representations. Owens et al. (2016) use ambient sound as labels
and train a model to predict a statistical summary of the sound associated with a
video frame. A second line of approaches uses structure contained in the data itself
to design the self-supervised labels. X. Wang and Gupta (2015) used temporal data
of videos to generate the training labels: Extracting two matching frames using an
unsupervised tracking method and an arbitrary frame, they train a triplet network
model to create an embedding that is close for the two matching patches and far for
the non matching frame. H.-Y. Lee et al. (2017) also leverage the temporal coherence
in videos and design a self-supervised task based on sorting sequences.

Considering single images, Dosovitskiy et al. (2016) trained a model to be invariant
to geometric and photometric transformations. Recently, Gidaris et al. (2018) showed
that predicting image rotations is also a viable self-supervised task for natural images.
Larsson et al. (2016) and Zhang et al. (2016) use color information in the input images
to train CNNs for colorization of gray scale images. Pathak et al. (2016) propose a
context encoder, an Autoencoder like structure that is trained with an adversarial
loss to generate missing parts of an image. They show the applicability of the learned
features for CNN pre-training on classification, detection and segmentation tasks.

Doersch, Gupta, et al. (2015) designed a task based on spatial context prediction
from a single image (Figure 3.7). Given two patches sampled from one image, their
Siamese network learns to predict their spatial configuration. Solving this task re-
quires the model to understand scenes, objects and object parts. Extending this
idea, Noroozi and Favaro (2016) train a network to solve a jigsaw puzzle. The net-
work gets as input nine image tiles and has to predict their ordering. They show
that the learned features are suitable for image retrieval. Fine-tuning their model
on segmentation, detection and classification tasks they significantly outperformed
existing methods on the Pascal VOC dataset containing 20 000 images with 20 object
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Figure 3.7: Self-supervised spatial context prediction task proposed by Doersch,
Gupta, et al. (2015).5 Given two input patches sampled from the same image, the
model should learn to predict their relation to each other in the image.

categories (Everingham et al., 2010) without needing additional training data from
larger datasets such as ImageNet. Recently, Doersch and Zisserman (2017) showed
that when combining several self-supervised tasks, one can improve the performance
even further.

The self-supervised approach combines the advantages of supervised and unsuper-
vised training: The training is still supervised, meaning that we can take advantage
of the well-understood supervised training algorithms, while lots of training data is
available. The approaches introduced above show that with the right self-supervised
tasks, the model has to understand the input data in a way that is useful for further
supervised learning. Building on the research in self-supervised learning, Chapter 6
introduces a self-supervised task exploiting the inherent 3D structure of the histo-
logical sections.

5Figure adapted from Doersch, Gupta, et al. (2015). Copyright 2015 IEEE.
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features

The current state-of-the-art method for cytoarchitectonic mapping is the observer-
independent method developed by Schleicher, Amunts, et al. (1999) (Section 2.1.3).
It is based on the comparison of features extracted from gray-value intensities (pro-
files) beneath cortical traverses (streamlines) from the pial surface to the gray/white
matter border. These profiles traverse the cortical laminae and thus contain informa-
tion about the composition and thickness of each lamina. Since laminar variations
are crucial factors to determine the cortical area, profiles represent relevant features
for automatic area classification.

Motivated by the success of profile features in the observer-independent method,
this chapter investigates whether these profile features can be used for automatic area
classification. Saliency analysis of the resultant model shows which cortical laminae
are most discriminative for the prediction of certain areas. Although the performance
of the classifier is not satisfactory on 2D sections, the advantages of using profiles in
the analysis of 3D volumes is discussed.

The contents of this chapter are the result of a collaboration between Konrad
Wagstyl (University of Cambridge) and Hannah Spitzer, where Konrad Wagstyl con-
tributed expertise in extracting and using profile features and Hannah Spitzer ex-
pertise of deep learning for cortical areas. The main part of the work was done
during a stay at the ACELab under the direction of Prof. Alan Evans at the Mon-
tréal Neurological Institute (MNI), McGill, Montréal. The automated streamline
extraction pipeline, the CNN architecture and hyper-parameters were developed to-
gether. For the present thesis, the models were trained on profiles extracted from
the B01Collection to allow comparison to models trained in later chapters.

In the following, Section 4.1 describes the automatic extraction of streamlines and
profiles from the B01Collection. The CNN architecture that includes additional
spatial context in the training process is introduced in Section 4.2. Section 4.3 shows
the qualitative and quantitative performance of the model for classifying a subset
of visual areas and analyzes salient profile features. Finally, Section 4.4 discusses
the results and potential applications for profiles in the automated analysis of 3D
volumes. In Section 5.3.4 this approach is compared to a CNN model using the
high-resolution images directly as input without a separate feature extraction step.
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Figure 4.1: Selection of streamlines extracted from section 1141 of B01 colored
by their area label. Streamlines are straight lines from pial surface to gray/white
matter border and were sampled with a distance of 16 μm. Streamlines could not be
extracted in very oblique parts of the cortex.

4.1 Automatic profile extraction workflow

The aim of this chapter is to develop an automatic pipeline for profile feature ex-
traction and area learning. In total, 960 000 profiles were automatically extracted
from annotated regions of the B01Collection with a similar procedure to the one de-
scribed in Schleicher, Amunts, et al. (1999). Since the method of Schleicher, Amunts,
et al. (1999) was not developed for automatic high-throughput processing of histologi-
cal sections and requires manual delineations of the inner and outer cortical boundary,
the workflow described in the following deviates in several details from the original
profile-extraction procedure. Section 4.1.1 describes how the streamlines, i.e., the tra-
verses of the cortex, are defined, and Section 4.1.2 explains the generation of profiles
from original and smoothed versions of the histological sections.

4.1.1 Streamlines: Traverses of the cortex

To extract the streamlines, Schleicher, Amunts, et al. (1999) use precise, hand-drawn
delineations of the inner (between lamina IV and white matter) and outer (between
lamina I and II) cortical boundary. In contrast, here approximate delineations based
on 20 μm resolution are used. The advantage is that these delineations are fast to an-
notate or could be provided by an automatic contour finding method. For the present
work, the delineations were made manually. Corresponding points between the inner
and outer cortical boundary are found by following the gradient of a potential field
between the boundaries calculated with Laplace’s equation (similar to the electric
field between two charged surfaces) (Jones et al., 2000). In very oblique parts of
the cortex, this method cannot find corresponding points due to low gradients in the
potential field. However, since most oblique parts of the cortex do not offer sufficient
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information to recognize cortical areas (Amunts, Lepage, et al., 2013), the missed
profiles would not have contributed towards learning to discriminate cortical areas.

Like in Schleicher, Amunts, et al. (1999), these points are used to calculate a mid-
line through the cortex. Starting from this midline, straight equidistant streamlines
with a distance of 16 μm are calculated and expanded by 50 μm on both ends to make
sure that the whole cortex is covered (owing to the potentially imprecise delineations
of inner and outer cortical boundary). Due to the inherent translational invariance
of the convolutional layers in the neural network, the expansion will not have an
adverse effect on the performance. Figure 4.1 shows example streamlines extracted
from one section.

4.1.2 Profiles: Gray values beneath the streamlines

Profiles p ∈ R
200 are extracted by sampling 200 points along each streamline from

the pial surface to the gray/white matter border using downsampled 16 μm resolution
versions of the histological sections. This is the resolution that Schleicher, Amunts,
et al. (1999) use to extract their profile features. In addition to sampling profiles from
the original section, profiles are extracted from an anisotropically smoothed version
of the histological sections, resulting in a raw profile praw and a smooth profile psmooth

for each streamline. The images were smoothed using geometric heat equation and
nonlinear diffusion as proposed by Kimia and Siddiqi (1996) and previously used in
Wagstyl, Lepage, et al. (2018) for creating smoothed profiles. This method smooths
images by smoothing each iso-intensity level set by curvature deformation. Shapes
with higher curvature are smoothed faster, resulting in the removal of small-scale
intensity changes, while preserving larger scale changes. In contrast to isotropic
smoothing, the anisotropic smoothing maximally smooths in the direction tangential
to the cortical layers. The smoothing preserves intra-laminar intensity differences,
but removes individual cell bodies, small blood vessels, and histological artifacts from
the image. Figure 4.2 compares raw and smoothed images and resulting profiles.
Raw profiles capture local cellular structure, while smooth profiles capture broader,
layer-specific features.

The profiles used by Schleicher, Amunts, et al. (1999) are sampled from gray-
level index (GLI) images, which are calculated from 1 μm tissue sections using a cell
segmentation. In contrast, the profiles used in the automatic workflow described
here are sampled from downsampled tissue sections. This avoids the manual tuning
of the cell-segmentation step which needs to be done for each region of interest in the
method of Schleicher, Amunts, et al. (1999). Figure 4.3 compares a profile extracted
from a GLI image to a profile extracted from a downsampled gray-value histological
section at the same position. While the GLI profiles show more detail, the general
peaks and troughs can be seen in the profile extracted from the downsampled section
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(a) Raw image and resulting profile (b) Smoothed image and resulting profile

Figure 4.2: Comparison of raw and smooth profiles sampled along a streamline.
Smooth profiles are extracted from anisotropically smoothed versions of the high-
resolution image. Raw profiles capture local cellular information and smooth profiles
broader, layer-specific features.

as well. Thus, it can be expected that profiles extracted from downsampled sections
can be used to identify cortical laminae as well.

The profiles p were normalized according to the mean μ and standard deviation σ of
cortex and white matter: p̂ = (p− μ)/σ. Statistics were calculated on a per-section-
basis using an automatically calculated tissue mask (see Section 2.3.4) to account for
staining differences between individual sections. As this is a linear transformation,
it does not affect the intensity relationships between profiles from a single image.
Figure 4.4 shows raw and smooth profiles sampled from two sections before and after
normalization. After normalization, the profiles have the same value range.

A trade-off of this automatic profile extraction pipeline is that this dataset will
contain profiles from highly curved and oblique regions of the cortex. In oblique
regions, the laminae are not cut perpendicularly, which can let some laminae appear
thicker and other thinner. In regions with high curvature the relative thickness of
the laminae changes. According to the accepted equivolumetric model of Bok (1929),
each lamina has the same volume in straight and curved parts of the cortex. This
means that depending on the curvature, a lamina will appear thicker or thinner
on the cross-section. A 3D volume is necessary to calculate cortical depths with
the equivolumetric model; thus a normalization of the profiles extracted from 2D
sections to follow the equivolumetric model is not possible. Due to these problems,
the observer-independent border detection method is usually only applied to straight,
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0 50 100 150 200

(a) Raw profiles

0 50 100 150 200

downsampled image

GLI image

(b) Smooth profiles

Figure 4.3: Comparison of profiles extracted from GLI and downsampled cell-body
stained images. The smoothed profiles from both data sources have similar peaks
and troughs and thus both contain information about the cortical laminae.

1141 2161

Figure 4.4: Effect of normalization on raw and smooth profiles from area hOc1
sampled from different sections. After normalization, the intensity of the profiles is
more similar.

non-oblique parts of the cortex to ensure that the cortical laminae are not distorted.
In the following, we will evaluate whether it is possible for an automatic method to
learn to classify areas using these highly variable profiles.

4.2 1D convolutional neural network for block-wise
profile classification

Based on the extracted profiles, a CNN model for classifying single profiles or blocks
of profiles in different cortical areas is trained. Section 4.2.1 introduces the network
architecture used for this task and Section 4.2.2 describes the training procedure.
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Figure 4.5: The ProfileNetwork classifies profiles in different brain areas. The
network takes a block of raw and smooth profiles as input, and processes them using
1D convolutional layers. The mean of the resulting activations is then processed in
fully connected layers.

4.2.1 Network architecture

The network architecture is shown in Figure 4.5. The network uses 1D convolutional
layers with 16 kernels of size 25. Each convolution is followed by batch normalization
and a ReLU nonlinearity. The network architecture contains three blocks of two
convolutional layers and one max-pooling layer. The convolutional part of the model
is followed by two dense layers with 50 nodes each and a softmax output layer.

Since a single profile can be noisy (due to large blood vessels, or tissue artifacts)
and represents only a thin strip of tissue, training on a block of adjacent profiles is
recommended to increase robustness. When training with a block of profiles, each
profile is processed individually by the convolutional part of the network. After the
last pooling layer, the mean of the activations for each profile is calculated and passed
to the first dense layer. Thus, the network gets as input a block of adjacent raw and
smooth profiles Xi, ..., Xi+w with (praw, psmooth) = X ∈ R

2×200 and block size w and
predicts a brain area ŷ. This architecture contains 56 000 parameters and will be
called ProfileNetwork in the following.

4.2.2 Training procedure

As described above, raw and smooth profiles are extracted from the B01Collection.
Formally, let Xpr = {X1, ..., Xn |Xi ∈ R

2×200} be the profile dataset with n = 960 000

samples, consisting of raw profiles X(0) = praw, and smooth profiles X(1) = psmooth.
Each element X has a corresponding groundtruth brain area y ∈ Ypr. The dataset
is divided in train/val and test splits on a per-section-basis according to the split
of the B01Collection defined in Section 2.3.1. This results in 810 000 train/val
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profiles in X tr
pr ∪ X val

pr and 150 000 test profiles in X te
pr . Annotated regions on the

train/val sections are further subdivided in train and validation sets, such that train
and validation contain equal proportions of each annotated area and that validation
contains 5% of the profiles in train/val. This ensures comparable train and validation
splits, and an independent test set sampled from previously unseen sections.

The ProfileNetwork is trained on Xpr by minimizing the weighted cross-entropy
loss between predicted area and groundtruth area (Equation (2.18)). In order to
account for the imbalanced number of profiles for each area in the training set, the
loss is balanced for each area with its inverse frequency (calculated on the validation
set). The loss includes a weight decay with factor λ = 0.002.

The model was trained for 60 epochs with a batch size of 512. The initial learning
rate of η0 = 0.001 was decayed by a factor ν every epoch, with ηi = η0ν

i the learning
rate after the i-th epoch. Since a model trained with a block size of w profiles
effectively sees w times as much data in one epoch as a model with a block size of
one, the learning rate was decayed faster for these models, with νw = ν1/w, νw the
learning rate decay for a model with block size w, and ν1 = 0.875.

4.3 Results

First experiments on all areas in the dataset showed that there was a set of underrep-
resented areas that the model was not able to learn. These were either areas where
some part of the profile extraction pipeline failed and that thus had only a small
number of profiles representing them, or areas with high curvature and many oblique
parts which the profiles cannot represent well (Section 4.1.2). Since these “difficult"
areas resulted in noisy training gradients that made convergence very difficult, the
following models were trained on the subset areas that the initial models could learn,
and the remaining areas were summarized in a class all. The subset of visual areas
that the following models are trained on is thus: hOc1, hOc2, hOc4la, hOc4lp, FG3,
FG4, and all. Section 4.3.1 shows the performance of the ProfileNetwork trained
with different window sizes on this subset of areas. Then, Section 4.3.2 evaluates
which parts of the profiles the model focuses on to make its prediction.

4.3.1 Performance on the area classification task

To evaluate the effect of different block sizes, models with block size w = 1 (profile-1)
and w = 7 (profile-7) were trained using the adapted learning rate decay to ensure
that each model learns at the same speed. The profile-1 model had a Dice score of
0.59, and the profile-7 model a Dice score of 0.62 on the test set X te

pr . The detailed
per-class performance is shown in Figure 4.6 with confusion matrices calculated on
the test set. It shows that training with a block of 7 profiles slightly improves the
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Figure 4.6: Confusion matrices for profile-1 and profile-7 trained with block
sizes 1 and 7.

(a) Groundtruth annotation (b) Prediction of profiles

Figure 4.7: Qualitative results for profile-7. Legend in Figure 4.6.

performance for each area compared to training with only 1 profile. The single areas
can be predicted well, but the aggregated label all is difficult for the model to learn
as it is very diverse and contains per definition those areas that are difficult to learn.
Figure 4.7 shows qualitative results of profile-7 on a representative test section. In-
cluding context improves the performance of the model. Models with larger window
sizes than 7 do not improve further, indicating that a context of 7 profiles, which cor-
responds to a window of approximately 100 μm, already holds sufficient information
to classify the subset of “learnable" areas.

Since the automatically extracted profile dataset contains many noisy profiles due
to artifacts, oblique sections, and imprecise starting and end points, several data aug-
mentation techniques were tested. However, none of the following data augmentation
methods improved the Dice score on the validation set X val

pr :

• Dropout of several input nodes, or of intermediate nodes to regularize the
model.

• Adding random uniform or pink noise to the input profiles to model noise in
the profiles due to artifacts or staining differences.
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• Random clipping of the ends of the profiles (and subsequent resampling to 200
data points) to explicitly train the model on profiles with different start and
end points.

Due to the dense sampling of profiles from the high-resolution sections, all actually
existing variations of profiles are already in the dataset, thus the augmentation with
random noise is redundant. The normalization of histological sections before extract-
ing profiles additionally removes some of the noise of the data. Since random clipping
has no positive effect on the model, we must assume that the use of convolutional
layers is already sufficient for the model to learn to detect the correct starting point
of the profile.

4.3.2 Saliency analysis: What did the model learn?

In the previous section, we have seen that the models perform reasonably well on a
subset of areas. This section analyzes the profile-7 model and asks: Why does the
model make a certain prediction? What features in the input are most descriptive
for this classification? First, to get an estimate of the extend that the profile-7
model focuses on the raw and smooth profiles, the absolute sum of all gradients on
the raw and on the smooth profile input was calculated over the validation set. 46%
of the gradients go to the raw profile, 53% to the smoothed, indicating that both
inputs are important.

Then, Grad-CAM was used to calculate the saliency of the profiles with respect to
their predicted class (see Section 2.2.5 and Selvaraju et al., 2017). This provides a
saliency map S for each profile which shows the location of high-level features whose
presence is important for classifying the profile as the predicted class. The advantage
of using profiles as inputs as opposed to high-resolution 2D image patches is that this
map can be easily interpreted as highlighting one or several cortical laminae. This
allows us to gain an understanding of what features (i.e., cortical laminae) the neural
network uses to classify the areas. Since these features are similar to the features that
neuroscientists use when identifying cortical areas, there are possibilities to compare
neuroscientists to the automatic model and even learn from the neural network. Note
that the calculated saliency maps are dependent on the set of areas that the model
was trained on, because the model will learn different features for the same area if
it has to distinguish it from a very similar area as opposed to a very different area.
However, these analyses enable us to take a first step towards defining objective
measures of which parts of the profile (at the resolution of cortical laminae) are
important for the discrimination of specific cortical areas.

Analysis of the saliency for correctly classified hOc1 profiles shows that profile-7
mainly focuses on lamina IVc and the lower lamina IVb in order to classify a profile
as hOc1. Plotting the saliency maps for each profile on the 2D histological sections
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(a) Extract of section 1141 of B01
with areas hOc1 and hOc2

(b) Interpolated saliency maps (c) Mean saliency

Figure 4.8: Saliency maps for profiles from hOc1 (yellow) and hOc2 (blue). For
hOc1, lamina IVc is highlighted, showing that the model focuses on the distinctive
laminar pattern of the primary visual cortex to classify hOc1. The mean saliency
maps computed over the entire test set show differences between hOc1 and hOc2
saliency.

reveals that this focus on lamina IVc is consistent throughout the entirety of hOc1
(Figure 4.8). Focusing on lamina IVc and IVb is a sensible feature when distinguishing
hOc1 from surrounding visual areas, because only the primary visual cortex has this
very wide lamina IV which can be subdivided in the three sublaminae. The saliency
for area hOc2 is more varied, however the focus is mostly on lamina IV and VI. This
can also be seen in the mean saliency map for hOc2 (Figure 4.8c) which has two light
regions, whereas the mean saliency map for hOc1 only has one light region.

4.4 Discussion

The previous experiments show that it is possible to classify some visual areas based
on automatically extracted profiles from histological sections. The saliency analysis
of profile-7 shows that the model mainly focuses on lamina IVc to classify area
hOc1. As the structure of lamina IV is a distinguishing feature of area hOc1 (Amunts,
Malikovic, et al., 2000), this shows that the model correctly identified this feature as
important to distinguish between hOc1 and other areas.

However, the model was only able to learn some areas, and failed in others, which
disrupted the entire training process and made it necessary to exclude these “diffi-
cult" areas from training. This has to do with the quality of the profile dataset: as
discussed in Section 4.1.2, including regions with high curvature, oblique sectioning,
and artifacts results in a high variability of profiles for a single area that might make
it too difficult to learn this area. The observer-independent method of Schleicher,
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Amunts, et al. (1999) is highly sensitive to slight surface misplacement and extreme
care is taken by neuroscientists to ensure poor quality data is not included. With
the automatic data-extraction approach, such care cannot be taken. This has a sig-
nificant impact on what the network is able to learn. For a dataset with sufficiently
good profiles, however it is possible to learn area classification as demonstrated in
Section 4.3.1.

Although it is difficult to extract high-quality profiles from 2D sections, they can
be extracted from reconstructed 3D histological volumes (e.g., the BigBrain) or from
MRI volumes. In (reconstructed) 3D volumes, cutting artifacts and oblique sec-
tions are not an issue anymore. In addition, profiles can be normalized using the
equivolumetric model of Bok (1929) (Waehnert et al., 2014), mitigating the effect of
curvature on the profiles. For such volumes it is possible to automatically extract
high-quality profiles and analyze salient profile features in a large scale and define
objective measures of the profile features that are important for the discrimination
of cytoarchitectonic areas. This idea should be further examined in future work.

Thus we can conclude that profiles are very useful to provide interpretable features
in straight, non-oblique parts of the cortex, but their usefulness for automatic seg-
mentation of cortical areas in entire histological sections seems limited. In addition,
with the rise of deep learning methods, an end-to-end pipeline of automatic feature
extraction and classification has shown to be superior to hand-crafted features in
many different applications. Such an end-to-end approach for brain area segmenta-
tion is introduced in Chapter 5 and compared to the profile-based model from this
chapter.
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5 Area segmentation with
two-stream convolutional neural
network

In Chapter 4 hand-crafted features were used as input to the deep learning model.
Although these features are well-established in the neuroscientific community for ana-
lyzing cytoarchitecture, we have seen that leveraging them in a completely automatic
manner for brain area classification is problematic due to their failure to deal with
imperfect samples of cortex. When using deep learning methods, features are learned
automatically from the input images, potentially resulting in superior performance.

This chapter proposes an end-to-end CNN model that segments high-resolution
brain sections into areas of the visual system, thus skipping the feature extraction
step needed for the profile classification model. Enabling the model to learn features
from the high-resolution brain sections as opposed to using profiles as input, gives
it the advantage that, unlike the profile model (Section 4.4), it can learn to deal
with slightly oblique tissue parts. This model combines prior knowledge about the
topology of areas given by existing probabilistic atlases with precise local features
extracted from the high-resolution cell-body stained images of brain tissue. It is
trained with partial delineations of the visual system and produces high-resolution
segmentations. It is invariant to rotations and gray-value changes of the input data
and outperforms the profile-w model from Chapter 4.

The area segmentation model presented in this chapter was previously published
in the conference paper “Parcellation of visual cortex on high-resolution histological
brain sections using convolutional neural networks” (Spitzer, Amunts, et al., 2017).
The architecture, and general training procedure introduced in the following are
already described in this contribution. This chapter contains more evaluations than
given in the conference paper, including the rotation and gray-value invariance shown
in 5.3.1, and the feature map analysis in Section 5.3.3. Since the models presented
in this chapter were trained on a larger dataset with a slightly different learning rate
and label weighting scheme than the models presented in Spitzer, Amunts, et al.
(2017), the reported scores differ.

In the following, Section 5.1 introduces the proposed CNN model. Section 5.2 dis-
cusses how to deal with partial groundtruth labels, introduces the data selection and
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Figure 5.1: BaseNetwork for area segmentation. U-Net architecture with a recep-
tive field of 1497 px. Produces 16 μm resolution semantic segmentations of a 2 μm
resolution input image patch.

augmentation algorithms used for training the model, and examines computational
challenges that arise during training. The performance of the model is evaluated
in Section 5.3, by showing the influence of the atlas prior and the data augmenta-
tion techniques. Additionally, the activations of the model are analyzed at different
depths of the model to gain an understanding of the types of features that the model
has learned. Section 5.3.4 shows that this end-to-end segmentation model performs
better on the area segmentation task than the model from Chapter 4, which was
trained on profiles.

5.1 Two-stream U-Net for area segmentation

The CNN architecture for area segmentation is based on the U-Net (Ronneberger et
al., 2015) which is introduced in Section 2.2.3. In the following, the changes to the U-
Net architecture are described. First, the basic network architecture for segmenting
high-resolution histological sections is introduced in Section 5.1.1. Then, Section 5.1.2
describes the extension of this architecture to a two-stream network combining image
data with an atlas prior. The architectures presented in the following were published
in Spitzer, Amunts, et al. (2017).

5.1.1 Basic network architecture

In order to distinguish cytoarchitectonic areas, the cortical laminae and columnar
structures in the cortex are analyzed on 2 μm resolution image patches of cell-body
stained sections. For successful classification of cortical pixels in cytoarchitectonic
areas, all cortical laminae (i.e., the entire depth of the cortex) should be visible to
the model when making a decision (Section 2.1.2). With an average cortical depth of
2mm to 4mm, and a 2 μm input resolution, the receptive field of the CNN should be
about 1000 px to 2000 px. Thus, the receptive field of 186 px of the U-Net architecture
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needs to be increased by adding convolutional or pooling layers (Section 2.2.2).

In the presented architecture (Figure 5.1), the receptive field is increased to 1497 px

by adding additional depth to the U-Net with an input convolutional layer with
stride 4, an additional convolutional layer and a pooling layer. In order to reduce
the memory footprint of the model, the number of convolutional kernels per layer are
reduced compared to the original U-Net architecture.

The large stride of 4 in the first convolutional layer quickly reduces the input
resolution. An alternative architecture to achieving the receptive field without a
strided convolution is for example to add three blocks with two convolutional and
one pooling layer before the U-Net. Such an architecture would allow the model to
focus more on individual cells and their distribution at high resolution. However,
training such an architecture is not feasible due to the large memory requirement
resulting from the high-resolution feature maps of the first convolutional layers. In
addition, a model trained on this alternative architecture (with batch size 4), did not
perform better on the area segmentation task than the proposed architecture.

The architecture is designed in such a way that the right amount of context nec-
essary to allow segmentation of areas is shown to the network. If the receptive field
was larger, or if the architecture was to follow a multi-scale approach with additional
low-resolution input as context, the added contextual information would allow the
network to consider the local gyrification as a relevant characteristic for parcellat-
ing areas. However, cytoarchitectonic brain areas are not necessarily correlated with
local gyrification patterns (Amunts, Lepage, et al., 2013; Fischl, Rajendran, et al.,
2007). Additionally, the high inter-subject variability of the local folding patterns
(Van Essen and Dierker, 2007) has the effect that local patterns appearing in one
brain might not occur in others. Thus a larger receptive field, or a multi-scale ap-
proach is not desirable in our case, because it may lead to irrelevant features being
learned.

In order to train a converging network, it was necessary to include a batch normal-
ization layer after each convolutional layer and to use a relatively high learning rate.
Section 5.2 gives more detail about the training process. In total, this fully convolu-
tional model has 1.49× 106 parameters. For an input Xtexture ∈ R

2025×2025 at 2 μm
resolution and a k-class segmentation task, the model outputs corresponding segmen-
tation maps Y ∈ R

66×66×k at 16 μm resolution. Note that although a resolution of
2 μm is required to see the relevant cytoarchitectonic features, the expected practical
localization accuracy of the resulting cytoarchitectonic borders is much lower. Thus
an output resolution of 16 μm is adequate. In the following, we call this architecture
the BaseNetwork.
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Figure 5.2: AtlasAwareNetwork for area segmentation. Combines high-resolution
(2 μm) texture information with prior information given by probabilistic maps of each
area (8 μm).

5.1.2 Exploiting probabilistic atlas information

Inferring the cytoarchitectonic area from a 2× 2mm2 patch is a difficult task. When
manually mapping human brain areas, neuroanatomists draw on their expert knowl-
edge of the arrangement and topology of areas. First, they locate the point of interest
in the brain volume on a low resolution global view. Already knowing which areas are
likely to occur at the given section and how they usually look like, the neuroanatomist
then considers the high-resolution histological section to identify the precise border
between the areas.

Inspired by this process, the BaseNetwork is extended to combine high-resolution
input patches from cell-body stained sections with a probabilistic atlas prior. For the
atlas prior, the probabilistic JuBrain atlas is registered to the individual cell-body
stained sections as described in Section 2.3.2. This results in a rough estimate of the
brain areas on the individual sections as visualized in Figure 5.3. During the training,
the extended network gets for each high-resolution texture input an additional input
with corresponding projected probabilistic maps of each area. With this setup, the
probabilistic atlas prior gives the model information about which areas are likely
to occur at the location of the high-resolution texture input. Since the JuBrain
atlas is created by aggregating delineations from 10 different brains this information
constitutes a strong, general prior. However, due to the low-resolution registration
and the inter-individual variability between brains, the prior alone is not enough
to do a high-resolution segmentation (see Section 5.3.2). For precise borders, the
arrangement of cells using the high-resolution texture input needs to be considered.
Thus, the probabilistic maps provide a prior about the arrangement and topology
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5.1 Two-stream U-Net for area segmentation

of areas in general, and the high-resolution texture information is used to refine this
prior based on the actual conditions.

This idea is implemented by the AtlasAwareNetwork, which is a BaseNetwork
with a second contracting path, the atlas prior stream (Figure 5.2). The inputs to
this stream are probabilistic maps (one for each area) with 8 μm resolution. The
activations at the bottom of the two contracting paths are concatenated and jointly
processed in the upsampling path. This enables the network to process each input
type individually in the contracting paths and jointly in the expansive path. The
hypothesis is that this atlas prior will help the model to disambiguate areas that have
similar texture but are located in different regions of the brain.

The design of the atlas path and the point in the network where the two paths
are concatenated is by no means the only possibility. In the proposed architecture,
the atlas prior stream was built to mirror the texture stream. Considering that
the atlas information consists of mainly uniform probabilities for each brain area,
a smaller atlas prior stream with less convolutional layers might be sufficient to
process the information before concatenating it to the texture path. Such a short
atlas path might simplify the architecture, but should not change the performance
much. Another design choice is the concatenation point of the two input streams.
Preliminary experiments with an architecture that concatenates atlas and texture
information shortly before the final segmentation layer resulted in worse performance,
indicating that the model needs to process the two types of information together for
several layers. However, an earlier concatenation point closer to the input layers than
the end of the contracting path is also possible. This option was not explored in this
thesis, but is an interesting premise for future work, as it increases the number of
layers that process the texture and the atlas together and would allow the network
to learn location specific filters in early layers.

The atlas data are less complex and directly represent an estimate of the output
labels. Experiments have indicated that the network is able to learn features from
the atlas prior faster than from the high-resolution image patch. This bears the
danger that the model only bases its prediction on the atlas data input, without
considering the texture patterns contained in the cell-body stained image. Although
a local optimum, this is clearly not the best solution. This problem particularly
occurred in architectures that were joining the atlas and cell-stained image patches
earlier in the contractive paths. To overcome this challenge, noise was added to the
atlas input (set every pixel to 0 with a chance of 20%) and an iterative training
procedure was used: First, the model is trained on only the cell-body stained images
and only after convergence training is continued using both cell-body stained image
and atlas information. Technically, this is realized by first training the BaseNetwork,
and then transferring the weights to the AtlasAwareNetwork and fine-tuning it. This
procedure ensures that the model first learns to use the information contained in the
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(a) Groundtruth combining partial manual
delineations and automatic gray/white mat-
ter segmentation

(b) Maximum probability map of projected
JuBrain areas thresholded at p > 0.4

Figure 5.3: Manual annotations and projected probability maps of brain areas of
section 1141 of the B01. The projected probability maps are a coarse estimate of the
actual brain areas.

cell-body stained image, and then adapts to include information gained from the
atlas.

The final model contains 2.45× 106 trainable parameters. It produces 16 μm res-
olution segmentations Y ∈ R

66×66×k for a 2 μm texture input Xtexture ∈ R
2025×2025

and a 8 μm atlas prior input Xatlas ∈ R
507×507×k. The atlas prior input in form of

probabilistic maps provides a coarse prior for the localization and topology of cortical
areas.

5.2 Data preparation and training

The models were trained on the B01Collection using all 13 visual areas annotated
in the dataset. Section 5.2.1 describes how the groundtruth for the segmentation task
was constructed. The training data set X tr

B01, consisting of randomly sampled patches
from the B01Collection, is described in Section 5.2.2. The data augmentation
techniques used for enhancing X tr

B01 are introduced in Section 5.2.3. Section 5.2.4 gives
details about the loss function and training hyper-parameters. Finally, Section 5.2.5
discusses computational challenges posed by this task. Sections 5.2.1 to 5.2.4 contain
information from Spitzer, Amunts, et al. (2017).

5.2.1 Divide complex background class

As discussed in Section 2.3.1, for the B01Collection only partial annotations are
available. Thus, the background class for the segmentation task is inhomogeneous.
It encompasses distinct concepts like white matter, unlabeled cortex, cerebellum,
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and background. Therefore, the background class is split in the classes “white mat-
ter", “unlabeled cortex", and “background" using the automatic gray/white mat-
ter segmentation of the B01Collection that was introduced in Section 2.3.4. The
groundtruth for the area segmentation task contains 16 labels in total: The 13 visual
areas annotated in the dataset (hOc1, hOc2, hOc3d, hOc3v, hOc4d, hOc4v, hOc4la,
hOc4lp, hOc5, FG1, FG2, FG3, and FG4) and the labels cor (unlabeled cortex), bg
(background), and wm (white matter). Splitting the background class has the ad-
vantage that during prediction the network will be performing gray/white matter
segmentation and area segmentation in one pass. Figure 5.3a shows an example
section containing the final groundtruth labels used for training.

5.2.2 Training dataset generation

With the above considerations for the background class, we can now describe the
construction of the training dataset X tr

B01 used for training the area segmentation
models. A random location is selected from the train split of the B01Collection. To
ensure that the majority of the patches that are shown to the model contain brain
areas, 85% of the selected locations are inside labeled areas. The remainder is sampled
from the classes bg, wm, and cor. Figure 5.4a shows 100 random sampling locations
on one section selected following this algorithm. An image patch Xtexture ∈ R

2025×2025

centered around the selected location is extracted from the 2 μm resolution cell-body
stained image. Additionally, a 13 channel patch Xatlas ∈ R

507×507×13 is selected from
the 13 projected probabilistic maps for the labeled areas (Figure 5.3b). Each high-
resolution image patch Xtexture is normalized by the mean and standard deviation of
gray-values in the B01Collection.

These image patches constitute one neural network input (Xtexture, Xatlas) = X ∈
X tr

B01 (see Figure 5.2). Due to the random selection of the sampling locations, the
training dataset X tr

B01 can be in theory quite large. It is limited by the number of
pixels in the training sections, 1.3× 1011, although the number of non-overlapping
patches from labeled areas, 6276, provides a more realistic estimate of the number
of different training samples in X tr

B01. X val
B01 is created analogous to X tr

B01 and contains
2000 patches sampled from the validation split of the B01Collection. For each
X ∈ XB01 a groundtruth output patch Y ∈ R

66×66×16 is sampled from the combined
groundtruth labels.

5.2.3 Data augmentation

The model should be robust to the local shape of the cortex (e.g. gyri, sulci) and
learn to recognize cortical areas only by their texture as motivated in Section 1.1.
To support this, each input patch X ∈ X tr

B01 is randomly rotated round the center of
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5 Area segmentation with two-stream convolutional neural network

(a) 100 random sampling locations (b) Boxes around manual delineations that
are evaluated during testing

Figure 5.4: Training and evaluation locations on section 1141 of the B01.

the patch by the random rotation function

Ψrot(X,α) , α ∼ U(0, 2π) (5.1)

and flipped in left-right direction by the random flipping function

Ψflip(X) , (5.2)

which flips the image with a 50% chance. To avoid missing pixels after the rotation,
larger patches are sampled. For a desired input size of s × s pixels, a patch X̂ ∈
R

√
2s×√

2s is sampled from the data. After data augmentation, the rotated image
Ψrot(X̂, α) is cropped to the desired input size resulting in the input image patch
X ∈ R

s×s.

Due to staining inhomogeneities, local variations in gray values occur both inside
single sections and across sections. To further augment the data, a variable gamma
correction is applied to each input path X ∈ X tr

B01 by taking it to varying powers γ

(gamma augmentation):

Ψgamma(X, γ) = X�γ , γ ∼ U(0.5, 2) (5.3)

with � denoting the element-wise (Hadamard) power.

When evaluating models trained with random rotations and mirrorings, the pre-
diction for one input is calculated by predicting 8 versions of the input: the original
input, and its rotations by 90, 180, and 270 degrees, and the mirrored version of
the input and its rotations by 90, 180 and 270 degrees. The resulting segmentations
are averaged (after reversing their transformation) to form the final prediction. Sec-
tion 5.3.1 shows that training with these augmented images makes the model robust
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to rotations and staining inhomogeneities.1 Other, more complex augmentations such
as augmenting histological artifacts were outside the scope of this work, but might
be helpful in the future to train more invariant models.

5.2.4 Training and evaluation

The model was trained with a weighted cross-entropy loss (2.18), minimizing the
pixel-wise difference between the predicted segmentation and the groundtruth seg-
mentation. The loss includes a weight decay with weight decay factor λ = 0.001.
To account for the class imbalance in the dataset, the loss is weighted for each class
k with a weight ωk. Let Gk be the set of all indices of pixels labeled as class k in
the training set X tr

B01 (for precise definition see Section 2.2.5). The frequency of each
class k in the training set is defined by

nk =

⎧⎪⎨
⎪⎩
0.85

|Gk|∑
k |Gk| , k ∈ L \ {bg, cor, wm}

0.15/3 , k ∈ {bg, cor, wm}
(5.4)

with L the 16 labels the model is trained on and if 85% of the training samples are
sampled from labeled brain areas as described above. Then the class weights ωk are
defined as

ωk =
log(nk)∑
k log(nk)

. (5.5)

This definition results in class weights that are centered around one and correspond
to the logarithm of the inverse frequency of the area. Taking the logarithm mitigates
the effect of very over- or under-represented classes. Otherwise very small classes get
a very high importance, but for these classes training examples occur very seldom,
which leads to a noisy loss. This led to model divergence in several of our experiments.
The presented definition of class weights avoids this problem, while still assigning a
larger weight to smaller classes and a smaller weight to larger classes.

Training was done with NAG, using a momentum factor μ = 0.9 and a step-wise
learning rate decay. The step sizes were chosen such that a reduction in learning rate
occurs when the accuracy on the validation set X val

B01 plateaus. The BaseNetwork
models were trained on 10 000 batches with a batch size of 40 using texture patches
Xtexture. The learning rate started with η = 0.08, and was decayed every 2000

batches by factor 2. The AtlasAwareNetwork models were trained by first training
a BaseNetwork, transferring the learned weights to a AtlasAwareNetwork, and fine-

1Another commonly used data augmentation technique is to randomly shift the input image by a
few pixels. Since due to the random sampling of the image patches from the histological sections,
the same image patch will very rarely be seen twice, additionally introducing a random shift is
not necessary here.
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File system

CPUs

GPUs

histological sections

data sampling 
processes

training 
process

Figure 5.5: Parallel data sampling and training work-
flow. The data sampling processes sample a new batch
from the histological sections on the file system while
training process trains the model on the current batch
on the GPUs.

tuning the AtlasAwareNetwork on additional 10 000 batches with batch size 40 using
texture patches Xtexture and atlas patches Xatlas. The learning rate was set to η = 0.01

at the beginning of this phase and reduced by factor 2 every 3000 batches.
After training, scores were calculated using all sections in the test split of the

B01Collection in the following manner: Each annotated region was enclosed in its
minimal bounding box. All pixels inside at least one bounding box (constituting the
test dataset X te

B01) were predicted. From these predictions the Dice score and topolog-
ical misclassification error were calculated using the annotated regions in combination
with the automatic background segmentation as groundtruth. Figure 5.4b shows an
example section with the bounding boxes and groundtruth used for evaluating the
model.

5.2.5 Computational challenges during training

The large input patches and subsequent large model architectures lead to computa-
tional challenges:

• The sum of the internal activations gets so large that GPUs with large memory
(VRAM) are required to accommodate the model during training. Typically,
a BaseNetwork model requires around 400MB GPU memory for one training
sample.

• Large amounts of data needs to be processed leading to high I/O demands of the
application. To train a BaseNetwork, 400 000 patches of size 2025× 2025 need
to be randomly cropped from the image files on the file-system and streamed
to the GPU.

These challenges require the use of a high performance computing (HPC) system to
train the models. The models presented in this thesis are trained on the JURECA
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supercomputer (Jülich Supercomputing Centre, 2018) and the JURON pilot system
(JURON 2018) located at the Jülich Supercomputing Centre. The JURECA general-
purpose cluster contains multiple GPU nodes with two NVIDIA K80 GPUs each
(resulting in four visible GPUs per compute node), and the JURON GPU cluster is
equipped with four NVIDIA Tesla P100 GPUs.

To efficiently use these resources, a custom software stack for training was imple-
mented using TensorFlow (Abadi et al., 2015) and MPI. The models are trained on
one compute node, utilizing all of the four available GPUs. For one training step, a
batch needs to be sampled from the dataset on the file system, optionally processed
on the CPU (e.g., applying data augmentation), sent to the GPU, and processed
on the GPU with TensorFlow. The developed software utilizes several processes to
sample batch Bi+1 from the file system, while the model is being trained on batch Bi

on the GPU (Figure 5.5).
Due to the large computational challenges, the automatic brain area mapping

project was used on several occasions as a use-case for deep learning on HPC systems
by the Jülich Supercomputing Centre. An in-depth analysis conducted by Oden et al.
(2019) identified the random sampling from large files (containing the high-resolution
brain sections) on the file system as the main bottleneck. Changing the data format
of the section to a chunked HDF5 format, which allows faster random access, greatly
increased the speed of the training (Oden et al., 2019).

With this implementation the models presented in the following could be trained
with batch sizes of around 40 utilizing all GPUs of one compute node in reasonable
time. The training time of the models depends on the data that is processed; due to
the I/O bottleneck and caching effects, models that are trained on fewer histological
sections take less time to train than models trained on more histological sections
(even when both are trained for the same number of iterations). Training times varied
between 6-12 hours on one JURECA node for the patch segmentation models and
24 hours on one JURON node for the self-supervised models presented in Chapter 6.

5.3 Results

This section evaluates the AtlasAwareNetwork and its components. First, Sec-
tion 5.3.1 shows the effect of the different data augmentation techniques. This is
followed by a discussion of the influence of the atlas prior (Section 5.3.2). The in-
fluence of the atlas prior was researched in a similar manner in Spitzer, Amunts,
et al. (2017). After these ablation studies, Section 5.3.3 looks inside the model and
shows what features the model has learned at any given stage of the network. Fi-
nally, in Section 5.3.4 the patch segmentation approach is compared to the profile
classification approach from Chapter 4.
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(b) Dice score on gamma
corrected versions of X val
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(γ ∈ {1, 0.5, 2})

Figure 5.6: Effect of
data augmentation on a
BaseNetwork. Models
trained with differently
augmented versions of
X tr

B01 are evaluated on aug-
mented versions of X val

B01.
The base model trained
with all augmentations is
invariant to rotations and
gamma value differences.

5.3.1 Effect of data augmentation

During training, random rotation, random mirroring, and random gamma augmen-
tation is used. The aim of these augmentations is to ensure that the resulting model
is invariant to rotations and different gray values of the tissue, because these varia-
tions are not relevant for recognizing the cortical area in the input path. To ensure
that the data augmentation was necessary, the BaseNetwork was trained on several
augmented versions of the training dataset X tr

B01, resulting in the following trained
models:

• base, which was trained on a rotation- and gamma-augmented dataset
Ψrot(Ψflip(Ψgamma(X tr

B01)))

• base-norot, which was trained on a gamma-augmented (but not rotation-
augmented) dataset Ψgamma(X tr

B01)

• base-nogamma, which was trained on a rotation-augmented (but not gamma-
augmented) dataset Ψrot(Ψflip(X tr

B01))

To investigate the rotation invariance, base and base-norot were evaluated on
four versions of the validation set obtained by rotating it by 0, 90, 180, and 270
degrees. Figure 5.6a shows the resulting Dice scores of the two models on these
augmented versions of the validation set. While base has similar performance for
each variant of the validation set (blue dots), base-norot displays a large variation
(orange dots). Although it outperforms base for one specific rotation, in practice
it cannot be guaranteed that sections are always presented to the model in this
orientation, and thus the rotation-invariant base model should be preferred.
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To evaluate the gamma augmentation, base and base-nogamma were evaluated on
three versions of the validation set obtained by augmenting it with different gamma
values of 1, 0.5, and 2. Again, the resulting Dice scores for each version of the
validation set are close together for base, but not for base-nogamma (Figure 5.6b). In
this case, the average Dice score of base (combining all three variants of the validation
set, red line) is larger than the average Dice score of base-nogamma. These evaluations
show that using data augmentation results in a rotation- and contrast/brightness
invariant base model. The following models are trained with data augmentation.
For simplicity, let Ψrot(Ψflip(Ψgamma(X tr

B01))) ≡ X tr
B01 in the following sections.

5.3.2 Influence of atlas prior

The AtlasAwareNetwork combines high-resolution texture information with an atlas
prior extracted from the JuBrain atlas. To show the effect of the atlas prior, this
section compares three models:

1. base which is trained only on high-resolution texture information,
2. only-atlas which is trained on atlas information and low-resolution texture,

and
3. atlas which is trained on both high-resolution texture information and the

atlas prior.

The only-atlas model is trained using the AtlasAwareNetwork with only the
atlas prior path. It gets a 14-channel 8 μm resolution image as input. The first 13
channels contain probabilistic atlas information for each of the 13 visual areas in
the training dataset and the 14th channel contains a 8 μm downscaled patch from
the cell-body stained image. This low-resolution texture information is provided to
the model to allow the segmentation of background, cortex and white matter. This
information is not present in the probabilistic maps that only show how likely it is
for an area to occur at the given input position. Thus the texture input is crucial
to enable the comparison with the other two models. Note that a resolution of 8 μm
might also allow the model to recognize very prominent areas such as hOc1 (V1)
based on their cytoarchitecture, but for the most areas, a higher resolution is needed.
Thus, the only-atlas model constitutes a baseline for the performance of the atlas
model and shows how much information the atlas prior provides on its own.

The quantitative evaluation on the test set shows that atlas outperforms both
base and only-atlas model by 11 and 6 Dice score points respectively (Table 5.1).
Additionally, it has the lowest topological misclassification error, showing that the
atlas in combination with the high-resolution texture information increases the topo-
logical correctness of the predictions. The predictions on three example sections from
the test set (Figure 5.7), and the confusion matrices computed over the entire test set
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5 Area segmentation with two-stream convolutional neural network

Figure 5.7: Qualitative comparison of predictions made by base, only-atlas, and
atlas on three sections of B01. The only-atlas model produces topologically cor-
rect predictions, but does not segment the areas precisely (e.g., see hOc1/hOc2 border
marked with red marker on section 1141). The atlas model outperforms the other
two models (e.g., red circles, and magnification on section 1861), but does not predict
the “unknown cortex" label correctly (black arrows).

Table 5.1: Performance of models trained with texture (base), with atlas prior
(only-atlas), and with both (atlas) on X val

B01. The influence of the atlas prior is
evaluated by testing the atlas model on X te

B01−0 which contains zeros for the atlas
prior.

Dice err

base 0.59 0.293
only-atlas 0.65 0.251
atlas 0.71 0.211
atlas(X te

B01−0) 0.56 0.337
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Figure 5.8: Confusion matrix of models trained with and without atlas prior. Leg-
end in Figure 5.7.

(Figure 5.8) provide more details on the differences between the three models. All
models have learned to correctly segment white matter and background. The base
model has learned to predict areas hOc1, hOc2, hOc3d, and areas FG3, FG4 in some
locations. It has learned to predict the label cor for cortex that does not belong
to any visual area in some locations. The only-atlas model predicts all areas in
roughly the correct location, which can be seen in the clearly visible diagonal in the
confusion matrix. It has learned to use the label cor for regions where the probability
of a visual area is low (black arrows in Figure 5.7). However, it does not find precise
borders between cytoarchitectonic areas, even when it would be possible (e.g., the
hOc1 border on section 1141 is not identified correctly; red marker in Figure 5.7). The
atlas model, on the other hand, correctly predicts the general location of all areas
except hOc5 which is a very small area with very few examples in the training and
testing set (red circles). However, atlas does not predict the unknown cortex class
cor anymore for non-visual cortex, and instead prefers area hOc4lp (black arrows).

Overall, the effect of the atlas prior is to enable the prediction of areas that might
not be directly distinguishable by the texture alone. Its power can be observed in
atlas, which outperforms models trained only on texture and only on the atlas prior.
But how much does atlas depend on the atlas information, and how much capabili-
ties does it preserve from base? To answer this question, atlas was evaluated on the
X te

B01−0 dataset which contains zeros for the atlas prior input. This evaluation allows
us to see how dependent the model is on the atlas information. The performance of
base gives us an upper bound for the performance that we can expect of a thusly
evaluated model. The closer the scores of atlas evaluated on X te

B01−0 are to those of
base, the less atlas actually depends on the atlas prior.

The quantitative evaluation shows that atlas evaluated on X te
B01−0 performs 3 Dice

score points worse than base. Additionally it has a higher topological misclassifi-
cation error. Evaluating atlas on X te

B01−0 still allows the prediction of areas hOc1,
hOc2 and in some cases FG3, however most of the predictions are made as area hOc4lp
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(Figure 5.8). This preference for area hOc4lp could already be seen in the normal
evaluation of atlas, which predicted most unknown cortex as hOc4lp. This evalu-
ation shows that for areas hOc1 and hOc2 the model does not need the atlas prior
information. Other areas, however are dependent on a non-zero signal from the atlas
prior, even if base was able learn them.

5.3.3 Feature map analysis: What did the model learn?

After showing the performance of the proposed model for area segmentation, we now
qualitatively examine what features the model focuses on. This is similar to the
saliency analyses in Section 4.3.2, however instead of using GradCAM, this section
analyzes the feature maps directly. The reason is that a coarse GradCAM saliency
map highlights the entire high-resolution input patch as important, because small
differences in texture distributed over the whole input patch define different cortical
areas. An analysis of feature maps at different network depths shows which features
are learned where in the network.

In the following, feature maps of base (trained without the atlas prior) are ana-
lyzed on a section showing hOc1 (primary visual cortex) and hOc2 (secondary visual
cortex).2 Figure 5.9 shows examples of feature maps at different depths of the net-
work. With increasing depth, the feature maps are based on a larger receptive field
and thus may highlight increasingly complex structures. In the first block (before the
first max pool layer), the feature maps highlight cell bodies, often depending on size,
and the white matter between clusters of cells (examples in Figure 5.9a). After the
first max pool layer, the feature maps are increasingly specific to laminae with dif-
ferent cell densities (examples in Figure 5.9b). Deeper in the network, feature maps
start to distinguish between laminae in the primary and secondary visual cortex, and
specialize on different parts of the background (examples in Figure 5.9c). At the
bottom of the network between the downsampling and upsampling paths the feature
maps show activations at descriptive cytoarchitectonic properties like laminar layers,
the white matter/cortex border and the cortex/background border. Additionally,
feature maps for individual cortical areas exist. In the upsampling path these spe-
cific feature maps increase in resolution and further specialize on the different cortical
areas in the training set (examples in Figure 5.9d). These examples show that the
model focuses on cell structure and arrangement at first and then builds up more
complex features for individual cortical laminae. These concepts are similar to the
feature that neuroscientists focus on when identifying cortical areas. This indicates
that the model indeed uses cytoarchitecture to distinguish between cortical areas.

2Thanks to Kai Kiwitz (Heinrich-Heine-University Düsseldorf) for providing initial analyzes of the
feature maps.
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(c) Feature maps specific to cells in lamina III and V/VI in non primary visual cortex, and
later in the network, feature maps highlighting granular and cell poor laminae, respectively.

hOc1 hOc2

hOc3dhOc2

12
10

20

(d) Feature map for background/cortex edge, and feature map activating mostly in hOc2.
This feature map is refined in the upsampling branch.

Figure 5.9: Feature maps at different depths of the BaseNetwork for one input patch
showing areas hOc1 and hOc2. The red marker denotes the border between the two
areas. The number of the convolutional layer that produced the feature map is shown
at the bottom of each map. The schematic drawing of the network architecture shows
the location of the respective convolutional layers in the neural network.
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Figure 5.10: Comparison of area classification results from profile-7, a
ProfileNetwork trained for profile classification, and base, a BaseNetwork trained
for patch segmentation. Both models make similar mistakes in some regions (e.g.,
pink circle), but overall the base model performs better (e.g., turquoise circle) and
can segment oblique patches of cortex (e.g., red circles).

5.3.4 Comparison with profile classification model

In order to allow for a fair comparison between the end-to-end segmentation and the
profile classification, the base model is compared to the profile-7 model. Since the
BaseNetwork was trained on more labels than the ProfileNetwork, the predictions
of labels hOc3d, hOc3v, hOc4d, hOc4v, hOc5, FG1, and FG2 were grouped together in
the class all and evaluations were calculated only on cortex showing one of the brain
areas in the dataset, i.e., excluding all parts labeled with bg, wm, or cor. With this
it is ensured that both models have seen the same data during training and that the
evaluation is carried out on parts of the section that both models have predictions
for.

Figure 5.10 qualitatively compares the results on two test sections. Visually, the
patch segmentation model base performs better. The segmentation approach addi-
tionally allows to segment very oblique regions of the cortex where a profile is not
defined (e.g. islands of cortex in white matter, red circles on Figure 5.10). Overall,
base exhibits less noise than profile-7 (turquoise circle), although interestingly
both models make similar mistakes in some regions (pink circle).

To quantitatively compare the performance on the test set, the segmentation re-
sult is reduced to individual streamline classifications by assigning to each stream-
line in the test set X te

pr the maximally predicted class under this streamline. With
this preparation, the segmentation BaseNetwork has a Dice score of 0.63, and the
ProfileNetwork a Dice score of 0.62. This shows that even in an evaluation proce-
dure which is tailored towards profile classification, the segmentation model outper-
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(a) Prediction of the CNN (b) Smoothed predictions with CRF

Figure 5.11: Applying a CRF that enforces label coherency to the output of the
atlas model smooths the output.

forms the profile classification model. This increase in Dice score, together with the
above mentioned advantages of the segmentation approach, make the patch segmen-
tation model better suited for area recognition than the profile classification model.

5.4 Discussion

This chapter introduced an end-to-end CNN model for brain area segmentation. This
model extracts features from the high-resolution histological sections and combines
them with prior information given in form of probabilistic maps of the areas that
should be predicted. The atlas prior gives relevant context to the model and improves
the segmentation Dice score by 11 points. The model is invariant to rotations and
gray value differences in the inputs. It outperforms the profile model from Chapter 4.

The model employs a pixel-wise classification where each pixel is classified inde-
pendently from the neighboring pixels. Although the resulting segmentations are in
general smooth and stable (Figure 5.7), they could be improved by explicitly mod-
eling the spatial relationships between the pixels and enforcing label coherency by
using for example a conditional random field (CRF). There are several examples in
literature that apply a CRF on the CNN predictions (L.-C. Chen et al., 2018) or
embed the CRF training in the CNN (Li and Ping, 2018; Zheng et al., 2015). Fig-
ure 5.11 demonstrates the effect of applying a CRF that penalizes the assignment of
different labels to neighboring pixels to an example prediction of the atlas model.
The resulting prediction is smoother than the raw output of the CNN. Additionally,
a CRF could enable the direct modeling of the topology of areas in the brain. The
investigation of such methods remains for future work.

The atlas data is essential for the good performance. However, including the atlas
data includes an additional component in the workflow. In particular, a registration
from the atlas to the individual sections is needed. Although only a linear registration
is used to project the probability maps to the current section, it is obvious that with
a low-quality registration the performance of the model will suffer, if it relies on the
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atlas data to select probable labels for each pixel. In Section 5.3.2 we have seen
that if the atlas information is missing from the model, it performs worse than a
model trained on only the high-resolution texture. This makes it necessary to check
the output of the registration for each section that the model should be applied
to, introducing a manual component in the otherwise fully automatic segmentation
method.

Including atlas information is only one possible way of including prior informa-
tion or contextual knowledge in the model. As argued in Section 5.1.1, a multi-scale
approach for including context is not feasible as brain areas are in general not corre-
lated with the local curvature of the cortex. One idea to allow the inclusion of larger
scale context is to remove or unravel the curvature of the cortex. This is similar to
working on the inflated surface of the brain (Fischl, Sereno, et al., 1999). However,
cortical surface inflation only works for complete 3D brain volumes, not for individual
histological sections, because on the latter the cortex does not form a closed ribbon.
Defining a coordinate system along the cortical ribbon is thus only possible for parts
of the section. In addition, unraveling the cortex means non-linearly deforming the
cortex which introduces artifacts. Another way to include contextual information is
to include views of the same position in the previous or next section. These views
could be beneficial in cases when the original section has an artifact at the current
position. Exploring this idea was out of the scope of this thesis and is left to future
work.

Another option for including prior knowledge about the brain is pre-training the
model on a task that teaches it about the general structure of the brain. Such a pre-
training task additionally addresses the problem that training data for the brain area
segmentation is limited, and that the variability of each brain area is large. Chapter 6
introduces a self-supervised pre-training method that leverages unlabeled data that
is readily available for our task. This pre-training complements and improves the
supervised area segmentation to a point where a pre-trained BaseNetwork (without
the atlas prior) performs almost as well as the atlas model introduced in this chapter.
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Chapter 5 has shown that prior knowledge is important for good performance of
the automatic brain area segmentation model (Section 5.3.2). One possible reason
for this dependence on additional prior information is the limited number of training
samples: For underrepresented classes, the samples do not contain enough variance to
allow the model to learn robust features for this class. Several recent works propose
self-supervised tasks that exploit structure present in the data (e.g., spatial rela-
tionships between patches sampled from one image) to train a deep model without
requiring explicitly labeled training data (e.g., Doersch, Gupta, et al., 2015; Noroozi
and Favaro, 2016; see Section 3.4.3). In these works, the resulting models are used to
extract general-purpose features from images or fine-tuned on a supervised classifi-
cation task. Following this line of research, this chapter introduces a self-supervised
task that exploits unlabeled high-resolution cytoarchitectonic sections.

Leveraging the inherent 3D relationship between individual 2D sections of one
brain volume, the spatial location of an image patch on the brain surface can be
calculated. Given two input patches sampled from the same brain volume, a CNN is
trained to predict the locations and the geodesic distance between the locations on
the brain surface (see Figure 6.1). This self-supervised distance and location task is a
suitable auxiliary task for area segmentation. By pre-training the area segmentation
model on this task, the segmentation accuracy is significantly improved. Training
models on the self-supervised task allows to learn an internal feature representation
that encodes cytoarchitectonic properties. Without explicitly training the model on
the concept of brain areas, it learns to identify plausible brain regions and several
primary cytoarchitectonic areas.

The self-supervised auxiliary distance task and the applicability for pre-training
semantic segmentation models was already reported in the article “Improving Cy-
toarchitectonic Segmentation of Human Brain Areas with Self-supervised Siamese
Networks” (Spitzer, Kiwitz, et al., 2018). In a second contribution, “Compact fea-
ture representations for human brain cytoarchitecture using self-supervised learning”
(Spitzer, Amunts, et al., 2018), the internal feature representation was analyzed.
This chapter extends these two contributions.

In the remainder of this chapter, Section 6.1 introduces and motivates the self-
supervised distance and location regression task and the neural network architecture
in detail. The training procedure and training data are introduced in Section 6.2.
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Figure 6.1: Using a 3D reconstruction, two patches X1 and X2 sampled from sec-
tions of the same brain volume are associated with their locations p1 and p2 on the
reconstructed pial surface. The distance d12 is calculated as the shortest geodesic
distance between p1 and p2 along the pial surface.

Evaluation will be done in two parts: First, Section 6.3 evaluates the applicabil-
ity of the self-supervised model to improve supervised area segmentation. Second,
Section 6.4 shows what knowledge the internal feature representations of the self-
supervised model encode about the brain and how they can be used for unsupervised
exploration of the brain.

6.1 Neural network model for the self-supervised task

The aim of this chapter is to improve the supervised area segmentation from Chap-
ter 5. Since classical cytoarchitectonic mapping is an extremely time-consuming
expert task, we cannot easily overcome the problem of limited training data (Sec-
tion 1.1). The idea is to leverage unlabeled brain sections from a 3D reconstructed
whole-brain volume, of which much larger amounts can be acquired in reasonable
time. Section 6.1.1 introduces the self-supervised task that uses the unlabeled brain
sections and Section 6.1.2 describes the neural network architecture. The contents
of this section were also described in Spitzer, Kiwitz, et al. (2018).

6.1.1 Distance and location regression task

The self-supervised distance and location regression task uses the inherent 3D re-
lationship between individual sections in the same brain volume given by a 3D re-
construction (see Figure 6.1). Let Xi ∈ R

1019×1019 be a patch sampled from the
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q2

q1

(a) Inflated left surface with locations q1 and
q2 for inputs X1 and X2 from Figure 6.1.

(b) Comparison of differences between the
geodesic distance dij and the Euclidean dis-
tance ‖pi − pj‖2 of locations on the pial sur-
face and differences between dij and ‖qi −
qj‖2 of locations on the inflated surface.

Figure 6.2: The Euclidean distance between locations qi and qj on the inflated sur-
face approximates the geodesic distance dij more closely than the Euclidean distance
between locations pi and pj on the pial surface.

cortex of one brain volume with pi ∈ R
3 its corresponding center coordinate on the

reconstructed brain surface and Xj and pj accordingly for a second patch defined in
another location of the same brain sample. The geodesic distance dij is calculated
by finding the shortest distance between coordinates pi and pj along the surface of
the brain. The distance task is to determine dij, given only the content of patches
Xi and Xj but not their location.

Why is this task useful? The aim of this chapter is to leverage unlabeled training
data for automatic brain area parcellation. Training a model on the proposed distance
task forces it to find features that are similar in spatially close patches and different
in spatially distant patches. Cytoarchitecture differs throughout the cortex. It is
similar for a small local region (a cytoarchitectonic area) and differs for examples
outside this region. Thus, the hypothesis is that the model learns features that
encode cytoarchitectonic properties in order to solve the distance regression task.
The features, in turn, are highly relevant for supervised brain area segmentation.

The CNN trained on this task learns an embedding from patches of cortex X to
a feature vector g(X) ∈ R

32. The distance d̂ij, that is predicted by the network for
inputs Xi and Xj, is the squared Euclidean distance between the feature represen-
tations ‖g(Xi) − g(Xj)‖22 = d̂ij. In this setup, the embedding g has to encode the
location of the patch on a representation of the cortical manifold. It will place two
semantically similar input images (e.g., with similar cytoarchitecture) close together,
and semantically different input images far apart.

In order to guide the model to find a suitable embedding faster, the location task is
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defined: Let qi ∈ R
3 be the location of patch Xi on the inflated brain surface. Given

a patch X with feature representation g(X), predict its location on the inflated brain
surface q̂ = h(g(X)) using a linear function h. The inflated brain surface is calculated
from the white matter surface by blowing up each hemisphere and thus smoothing
out all gyri and sulci (see Figure 6.2a). This results in a closer correlation between the
Euclidean distance of locations on the inflated surface ‖qi−qj‖2 and geodesic distance
dij than between the Euclidean distance of locations on the pial surface ‖pi − pj‖2
and dij (Figure 6.2b). Thus, the location task relates spatially close samples even
though they do not necessarily appear together as a pair during training. Although
the geodesic distance is only defined for intra-hemisphere pairs, the location is defined
for both hemispheres. We can assume that the embedding of points Xi and Xj from
different hemispheres but same brain area should be very similar. This is enforced if
the location q is defined to be the corresponding location on the left inflated brain
surface. This means that for points on the right surface the location q is calculated
by registering the right surface to the left surface. This means that the precision of
the location q depends on the quality of the registration. Since the hemispheres are
not completely mirror-symmetric (Toga and Thompson, 2003; Zilles, Dabringhaus,
et al., 1996), it is possible that right-hemisphere patches X from area1 are mapped
to a left-hemisphere location q in area2. Thus it is expected that the location task
alone is not sufficient to make the model learn cytoarchitectonically relevant features
since the location is not precise enough. However, it might guide the model towards
a suitable embedding g.

Together, the location and distance tasks learn an embedding g(X) of cortical
patches X which is similar for patches that are in similar locations (on the same
or on different hemispheres) and which is dissimilar for patches that are far apart.
These tasks are called self-supervised, because they are defined on information which
is inherently present in a 3D brain volume reconstruction and require no manual
labels.

6.1.2 Siamese network architecture

The SiameseNetwork is a Siamese network that computes distance and location re-
gression based on two input patches X1 and X2. First, the feature embeddings g(X1)

and g(X2) are computed in two branches with identical architecture and shared
weights (hence the name Siamese network). The architecture of the branches cor-
responds to the downsampling path of the BaseNetwork for supervised segmenta-
tion (Section 5.1.1) with a 32-channel fully connected layer added on top of the
last convolutional layer. This design allows easy transfer of the weights for fine-
tuning. From these feature embeddings, the network outputs the predicted geodesic
distance between p1 and p2 as the squared Euclidean distance of g(X1) and g(X2):
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Figure 6.3: SiameseNetwork for distance and location regression. The network
takes two cortical patches X1 and X2 as input and predicts their locations q1 and q2
on the cortical surface and their geodesic distance d12.

d̂12 = ‖g(X1) − g(X2)‖22. The location of each input patch is predicted by adding
a fully connected layer h with three output nodes to the top of each branch: qî =

h(g(Xi)). Figure 6.3 shows the SiameseNetwork and its outputs. It takes two patches
X1, X2 ∈ R

1019×1019 as inputs and predicts locations q̂1, q̂2 ∈ R
3 and distance d̂12 ∈ R.

The network has 7.4× 105 parameters.

6.2 Self-supervised training and fine-tuning

The models trained on the self-supervised distance and location regression task are
used in two different ways: First, they are used as starting point for fine-tuning a
model for the brain area segmentation task (Section 6.3). Second, they are used as
feature extractors to explore the automatically learned feature representation g(X)

(Section 6.4). The training data for these two use-cases is presented in Section 6.2.1.
The training loss and hyper-parameters for training on the self-supervised task are
introduced in Section 6.2.2. Section 6.2.3 describes the fine-tuning procedure for
adapting the self-supervised models to supervised brain area segmentation. The
pre-training and fine-tuning procedure was also described in Spitzer, Kiwitz, et al.
(2018).

6.2.1 Data sampling

The self-supervised models are trained on datasets sampled from the BigBrain
Collection. For this collection, pial surface and gray/white matter border meshes
are available (L. Lewis et al., 2014). Additionally, we have access to transformation
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Table 6.1: Training and evaluation datasets sampled from the BigBrainCollection
for training self-supervised SiameseNetworks.

X |X | regions of the BigBrainCollection used for sampling

X tr
vis 200 000 sections 1-3000 in train/val split

X tr
BB 500 000 all sections in train/val split

X te
BB 2000 all sections in test split

X tr
BBl 200 000 left hemisphere of sections in train/val split

X te
BBl 150 000 left hemisphere of sections in test split

X tr
BBr 200 000 right hemisphere of sections in train/val split

X te
BBl 150 000 right hemisphere of sections in test split

files which allow the calculation of locations in the 3D reconstructed brain volume
space from 2D pixel coordinates and section numbers. Pairs of patches (Xi, Xj)

with X ∈ R
1019×1019 and resolution 2 μm are sampled from two randomly selected

training sections of the BigBrainCollection in such a way that the center of the
patch is located halfway between pial surface and gray/white matter border. Their
geodesic distance dij and the locations qi and qj on the left inflated surface are cal-
culated and used as groundtruth labels during training. Each patch is rotated by
a random angle α ∈ [0, 2π], randomly flipped in left-right direction, and gamma
augmented by a random value γ ∈ [0.5, 2] (see Section 5.2.3). For clarity, we define
Ψrot(Ψflip(Ψgamma(X tr))) ≡ X tr for the remainder of this chapter.

In Section 6.3 the model is trained on patches extracted from different sets of
sections to investigate the impact of pre-training different self-supervised models for
the segmentation task. In Section 6.4 several models are trained on patches from
one hemisphere only. The datasets that these models are trained on are created
as described above, but by restricting the sections/regions where the patches were
sampled from. Table 6.1 summarizes the different training and evaluation datasets
that are used in the following.

6.2.2 Self-supervised training

The model is trained on the L1 loss between predicted and groundtruth distances
and locations

Ldist(X1, X2) = |d̂12 − d12| , (6.1)

Lloc(X) = ‖q̂ − q‖1 . (6.2)
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q1

d12

q2

1. Train on distance and location 
regression task

2. Fine-tune on area segmentation task
transfer weights

Figure 6.4: Fine-tuning from self-supervised distance and location task im-
proves supervised area segmentation. The texture downsampling path of the
AtlasAwareNetwork is initialized by the learned weights from the SiameseNetwork.

The final training loss is a weighted combination of Ldist and Lloc with β = 10:

L(X1, X2) = Ldist(X1, X2) + β(Lloc(X1) + Lloc(X2)) . (6.3)

L is regularized with a weight decay of all weights and biases, except those in the final
dense layers to allow the regression of large values. The weight decay factor is set to
λ = 0.001. Models were trained for 25 epochs (iterate over the entire training dataset
25 times) with a batch size of 32 using NAG with a momentum factor μ = 0.9. The
initial learning rate was η = 0.001. The learning rate was decreased every 5 epochs by
factor 2. Inputs to the model were normalized by the mean and standard deviation
of gray values in the training set.

6.2.3 Fine-tuning for area segmentation

After training a self-supervised model, its weights are transferred to the texture
stream of the AtlasAwareNetwork (Figure 6.4). The segmentation network is trained
as described in Section 5.2 with an iterative training procedure, but with a lower
learning rate. For the first training phase (training the BaseNetwork), the learning
rate was set to η = 0.01 and reduced every 2000 batches by factor 2. To enable faster
adaption of the weights in the randomly initialized upsampling path, the learning rate
was increased by factor 4 for these layers. For the second training phase (training
the AtlasAwareNetwork), the learning rate was set to η = 0.005 and reduced every
3000 batches by factor 2. Again, the atlas-prior path had an increased learning rate
by factor 8.

Although a 3D reconstruction is needed to train the Siamese network on the dis-
tance and location regression task, the fine-tuning can occur on any (unregistered)
dataset of labeled histological sections. As described in Section 6.3.1, the model can
be pre-trained and fine-tuned on two separate brain volumes. This allows us to utilize
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brain volumes with and without registration for the means of automatic brain area
segmentation.

6.3 Improving supervised segmentation by pre-training

The principal motivation for designing the self-supervised distance and location re-
gression task is to leverage unlabeled histological sections to pre-train the area seg-
mentation model. This section shows that the self-supervised pre-training signifi-
cantly increases the performance of the segmentation models and even allows the
training of segmentation models on several brains. Section 6.3.1 evaluates the im-
portance of the different components of the self-supervised loss function and how the
training set of the self-supervised model influences the fine-tuned area segmentation
performance. Then, Section 6.3.2 compares the pre-trained and randomly initialized
segmentation models from Chapter 5 in detail. Finally, in Section 6.3.3 the general-
izability of the resulting supervised segmentation models to unseen brain volumes is
discussed. In the following the notation model1[model2] signifies that model1 was
trained (fine-tuned) on weights initialized from model2. The experiments presented
in Sections 6.3.1 and 6.3.2 are an extension to the results presented in Spitzer, Kiwitz,
et al. (2018).

6.3.1 Evaluation of model components

For pre-training neural networks, many auxiliary tasks can be used. The more similar
the auxiliary task is to the original task (e.g., similar task, similar data), the better the
fine-tuned network will perform on the original task (Azizpour et al., 2015; Mahajan
et al., 2018; Yosinski et al., 2014). This section examines how different pre-training
tasks influence the performance of the fine-tuned area segmentation network.

Training dataset for self-supervised model The brain area dataset contains visual
areas which are located in the posterior part of the brain (occipital lobe). Thus, a
self-supervised model that has been trained on sections 1-3000 can learn features
that are specific to these areas of the brain. This should result in better fine-tuning
performance.

To test this, two self-supervised models were trained and used to fine-tune the
BaseNetwork on the B01Collection (XB01): The first one was trained on XBB con-
taining 500 000 patch pairs from the entire BigBrainCollection (base[siam-BB]),
while the second one was trained on Xvis containing 200 000 patch pairs from sec-
tions 1-3000 of the BigBrainCollection (base[siam-vis]). Table 6.2 shows that
base[siam-vis] performs better than base[siam-BB] by three Dice score points.
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Table 6.2: Comparison of supervised models trained in Chapters 5 and 6. The table
compares base (no additional data) with models using the atlas prior (only-atlas,
atlas), models pre-trained on different self-supervised tasks (base[siam-vis],
base[siam-BB], base[siam-vis-dist], base[siam-vis-loc]), and models trained
on both (atlas[siam-vis]).

name texture? atlas? Ldist? Lloc? Dice err

base � � � � 0.59 0.293

base[siam-vis] � � � � 0.67 0.209
base[siam-BB] � � � � 0.64 0.236
base[siam-vis-dist] � � � � 0.62 0.255
base[siam-vis-loc] � � � � 0.67 0.210

only-atlas � � � � 0.65 0.251
atlas � � � � 0.71 0.211
atlas[siam-vis] � � � � 0.74 0.174

This shows that the self-supervised model learned features specific to visual areas
that the supervised model was able to leverage. Note that since the self-supervised
and the segmentation models are trained on two different brain volumes (BigBrain
and B01), overfitting on B01 by the self-supervised model is not possible. Due to
the better performance of base[siam-vis], the following self-supervised models are
trained on Xvis.

Influence of loss function on distance and location regression The training loss
for the self-supervised model consists of two components (Equation (6.3)): the dis-
tance loss (Equation (6.1)) and the location loss (Equation (6.2)). To evaluate the
influence of each of these components on the self-supervised model, and subsequently
on the fine-tuned segmentation model, three self-supervised models were trained:
siam-vis-dist on the distance loss Ldist, siam-vis-loc on the location loss Lloc

and siam-vis on the combined loss L.
Table 6.3 shows the performance of these models on the distance and location

regression tasks. The measure errdist is calculated as the mean absolute difference
of predicted and groundtruth distance between all pairs (Xi, Xj) in the test set X te

BB

containing 2000 input pairs from both hemispheres:

errdist =

∑
i,j |dij − d̂ij|
|X te

BB|
. (6.4)

The measure errloc is calculated as the mean Euclidean distance between predicted
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Table 6.3: Performance of self-supervised models on distance and location regres-
sion. siam-vis is trained on the combined loss from Equation (6.3), siam-vis-dist
on the distance loss from Equation (6.1), and siam-vis-loc on the location loss
from Equation (6.2).

errdist [mm] errloc [mm]

siam-vis 24.5 23.4
siam-vis-dist 31.5 -
siam-vis-loc - 21.9

and groundtruth location on the left inflated hemisphere for all patches Xi:

errloc =

∑
i ‖qi − q̂i‖2
2|X te

BB|
. (6.5)

The self-supervised model has an average error of 24.5mm when predicting geodesic
distances, and an average error of 23.4mm when predicting locations on the inflated
cortical surface. To put these numbers in relation with the dimensions of the test
dataset, errdist is 12% of the maximal geodesic distance in test dataset, and errloc is
15% of the maximal Euclidean distance between two locations in the test dataset. A
location error of 23.4mm is in the order of brain area size. Such an error must be
expected when assuming that the model learns features encoding cytoarchitectonic
properties, as the cytoarchitecture does not change within an area and thus more
precise localization based on cytoarchitectonic features is not possible.

The siam-vis model has a lower distance error than siam-vis-dist. This shows
that the location loss Lloc could help the model to find a suitable feature representa-
tion g(X). Compared to siam-vis-loc which was trained only on Lloc, the combined
model siam-vis has a slightly higher location error. This is probably due to the fact
that the locations on the inflated surface and the geodesic distances between these
locations are not perfectly correlated due to local stretching and compression of the
cortical surface during the inflation. If the model learns an embedding that can be
used to calculate geodesic distances, the location on the inflated surface can only be
approximately represented with this embedding.

Influence of loss function on area segmentation Next, the effect of the different
loss functions on the fine-tuned segmentation performance is evaluated. Weights from
the siam-vis, siam-vis-dist and siam-vis-loc models were used to fine-tune the
BaseNetwork on the B01Collection. Here, base[siam-vis] refers to the model
fine-tuned from siam-vis (trained on the combined loss L), base[siam-vis-dist]
to the model fine-tuned from siam-vis-dist (trained on the distance loss Ldist), and
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base[siam-vis-loc] to the models fine-tuned from siam-vis-loc (trained on the
location loss Lloc). The expectation is that fine-tuning from models that are good at
localizing the input patches results in good area segmentation models.

The base[siam-vis] model performs better than base[siam-vis-dist], showing
that including the location loss Lloc improves the applicability of the model for area
segmentation (Table 6.2). This is consistent with the expectation, as siam-vis
performs better than siam-vis-dist. Interestingly, the model trained only on the
location loss base[siam-vis-loc] has the same Dice score as base[siam-vis], but
base[siam-vis] has a slightly lower topological misclassification error. Although
the difference between base[siam-vis] and base[siam-vis-loc] is not significant
in this setting, Section 6.4.3 shows that with the distance loss the model learns
more realistic features that encode cytoarchitectonic properties. Thus, the combined
distance and location loss is used in the remainder of this section.

6.3.2 Comparison to training from scratch

Section 6.3.1 has shown that the choice of pre-training task is important for the
performance of the fine-tuned model. But how much does the fine-tuned model
differ from the model trained from scratch? Regarding the quantitative evaluation
from Table 6.2, we can see that the pre-trained BaseNetwork (base[siam-vis])
performs 8 Dice score points better than the base model from Section 5.1.1. The
base[siam-vis] model additionally outperforms the model trained only on the atlas
data (only-atlas) and almost reaches the Dice score of the AtlasAwareNetwork
trained from scratch (atlas). It has a lower weighted misclassification error than
the two other models. The self-supervised pre-training allows the model to recognize
the location of the input patch from the texture in this patch, where the non pre-
trained atlas-aware models need to rely on the atlas prior inputs. The low topological
misclassification error shows that the model has learned to respect the topology of
areas from only the texture input.

Including the atlas prior in the pre-trained model improves the Dice score to
0.74 and misclassification error to 0.174. This is an improvement of 3 Dice score
points compared to the atlas model and shows that even though the pre-training
allowed the model to learn about the structure of the cortex in different regions
of the brain, the atlas prior introduces more information that helps to further in-
crease the performance. Figure 6.5 qualitatively compares the segmentation results
of atlas, base[siam-vis], and atlas[siam-vis] on three example sections. The
atlas[siam-vis] model produces smoother segmentations with less noise and accu-
rate borders (red markers in Figure 6.5). It is able to identify areas FG1, FG2, FG3,
and FG4 on section 1861, and to segment several parts of unlabeled cortex correctly
in the cor class (black arrows). As noted in Section 5.3.2, the models including the
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Figure 6.5: Qualitative comparison of models with and without fine-tuning. The
atlas[siam-vis] model outperforms the others by producing less noisy segmen-
tations and identifying several borders more precisely (red markers). It correctly
predicts the cor class for several regions (black arrows). Models that include the
atlas prior are able to identify area hOc3v (red circles).

atlas pior are able to segment area hOc3v (red circles in Figure 6.5), however they
are prone to oversegmenting the area.

For more details, Figure 6.6 shows per-label Dice scores of the models mentioned
above. With this visualization, subtle differences between the models can be ap-
preciated. Regarding the base and base[siam-vis] models, we can see that the
pre-trained BaseNetwork, base[siam-vis], has a higher Dice score than base on
labels hOc3d, hOc3v, hOc4v, hOc4la, FG2, and FG3. Areas hOc5 and FG1 could only
be predicted by the models using the atlas prior. Those are the two smallest areas in
the B01Collection which indicates that there is not enough data to allow the model
to learn representations for these areas.
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Figure 6.6: Per-label Dice score for segmentation models from Chapters 5 and 6
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B01 B02 B03 ... B10

Figure 6.7: Composition of the training datasets used in Section 6.3.3. XB01 is
sampled from B01 (the B01Collection), while XAB\B01 is sampled from all brain
samples in the AtlasBrainsCollection, except the B01. XAB contains both XB01

and XAB\B01.

6.3.3 Training on multiple brain volumes

Until now, all segmentation models were trained on one brain volume, B01. Although
including more than one brain volume in training the models looks at first glance like
an increase in training data, it also means an increase in diversity and complexity
of the data. There is a certain set of complex features that characterize each brain
area. However, every brain exhibits these features differently due to the large inter-
individual variability and individual differences in cortical folding. Additionally, the
brains comprising the AtlasBrainsCollection have a different visual appearance
due to differences in contrast between white matter and cortex and overall gray
values (see Section 2.3.1). Thus, training with more brains does not necessarily
mean better performance.

This section evaluates the effect of training with multiple brain volumes and shows
that pre-training the BaseNetwork allows to make predictions on a previously un-
seen brain volume. For this evaluation, networks are trained on training datasets
sampled from the B01Collection (XB01), the AtlasBrainsCollection ( XAB), and
the AtlasBrainsCollection without the B01Collection ( XAB\B01). The datasets
XAB and XAB\B01 are created in a similar fashion as XB01 (see Section 5.2.2) by sam-
pling from their respective set of sections. Figure 6.7 visualizes the composition of
the different datasets used in this section. A randomly initialized BaseNetwork and
a BaseNetwork pre-trained on siam-vis are trained on the different datasets and
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(a) Dice scores.
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(b) Confusion matrices (see Section 2.2.5) showing the predicted labels (x-axis) vs the
groundtruth labels (y-axis).

Figure 6.8: Comparison of BaseNetworks initialized from random weights or fine-
tuned from siam-vis, and trained on different datasets including multiple brain
volumes. The evaluation is done on X te

B01.

compared on B01, using X te
B01. For predicting sections of B01, these datasets pose

increasingly harder tasks, from training on B01, over training on all brains, to train-
ing on all brains except B01. Figure 6.8a shows the Dice score on X te

B01 of the models
trained on the different datasets. Confusion matrices are shown in Figure 6.8b.

First, consider the performance of the randomly initialized models: as expected,
including multiple brain volumes in the training (training on XAB instead of XB01)
only slightly increases the Dice score due to the increased diversity of the training
data. Additionally, we can see that without pre-training the models are not gen-
eralizable to previously unseen brain volumes. The model trained on XAB\B01 not
including the B01 can only predict area hOc1 when evaluated on the B01.

Second, we look at the performance of the pre-trained networks. When including
more brains in the training, the performance of the pre-trained models on the B01
test split drops compared to training only on the B01. This shows again that the
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AtlasBrainsCollection contains a diverse mixture of different brains and areas
and too few examples per brain and area. Although the self supervised pre-training
provides good initial features for the model, the model cannot leverage this data to
learn better representations for the B01. However, self-supervised pre-training does
allow to train models that are transferable to previously unseen brains: training a pre-
trained network on XAB\B01 results in acceptable performance on the B01. Although
still worse than a not pre-trained network trained on XB01, this model can predict
hOc1, hOc2, hOc4la and FG3.

Thus, pre-training on the distance and location task enables to learn models that
are partially transferable to previously unseen brain volumes. Overall, training on
several brain volumes does not improve results due to the large inter-individual dif-
ferences that overshadow the differences between different brain areas. It is therefore
doubtful, whether it is possible to learn a general model that provides brain area seg-
mentations for all brain volumes. Rather, it seems like specialized CNN models for
each brain are necessary in order to get good results for the segmentation. Chapter 7
takes one step further and presents an approach for training specialized models on a
pair of sections and one brain area to enable very precise segmentation of one brain
area in several spatially close sections.

6.4 Analysis of the self-supervised model

In Section 6.3, we have seen that pre-training on the self-supervised distance and
location regression task improves the performance on the area segmentation task.
This shows that the self-supervised model learns suitable internal representations
that can be leveraged during fine-tuning. But what exactly do these features repre-
sent? Do they encode cytoarchitectonic properties? This section investigates these
questions by analyzing the learned embedding of the high-resolution input patches
X to a feature vector g(X).

To evaluate the learned feature representations on the entire brain, a self-supervised
SiameseNetwork is trained on all sections of the BigBrainCollection. To get a more
independent test set, training is done on either the left or the right hemisphere and
the evaluation is done on the other hemisphere. In Section 6.4.1 we first confirm that
the model can generalize to another hemisphere. Then, Section 6.4.2 shows how the
features g(X) correlate with measures such as cortical thickness and average gray
value to get an indication of the information that is present in g(X). The learned
features g(X) are qualitatively analyzed in Section 6.4.3 by visualizing them on the
brain surface. These visualizations indicate that the feature vectors encode cytoar-
chitectonic properties and that it is possible to create plausible parcellations based
on the vectors. To gather further evidence for this hypothesis, Section 6.4.4 ana-
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6 Self-supervised brain area analysis

Table 6.4: Mean error errloc in millimeters between predicted location q̂ and true
location q of models trained and evaluated on different hemispheres. Errors are lowest
for models trained and evaluated on the same hemisphere, and higher if evaluating
on the opposite hemisphere.

evaluate on
left right

tr
ai

n
on left 21.64 26.79

right 26.42 22.07
both 25.26 25.54

lyzes the features on 2D sections and shows their clustering respects borders between
cytoarchitectonic areas. The evaluations presented in this section were inspired by
the analysis of the feature vectors published in Spitzer, Amunts, et al. (2018). Sec-
tion 6.4.3 contains a new version of the hierarchical clustering presented in Spitzer,
Amunts, et al. (2018).

6.4.1 Inter-hemisphere generalizability

To draw general conclusions from an analysis of the internal representations of the
self-supervised model, an independent test set is needed. In absence of a second dense
brain volume, models were trained on one hemisphere of the BigBrain and tested on
the other. This section confirms that features learned on one hemisphere are appli-
cable to the second hemisphere. Table 6.4 shows the error errloc (Equation (6.5)) in
millimeters between predicted location q̂ and the true location q of the input patch
X on the inflated surface for models trained on the left, right, and both hemispheres.
Models were trained with 200 000 random patch pairs from the corresponding hemi-
sphere(s) (i.e., on X tr

BBl and X tr
BBr). Evaluation was done on 150 000 patches from

each hemisphere (i.e., on X te
BBl and X te

BBr).
As expected, the error is lowest for models that were trained and evaluated on

the same hemisphere (errloc is 21.64 and 22.07 for left and right hemispheres, respec-
tively). Models trained on both hemispheres perform a little worse with errloc = 25.26

on the left and errloc = 25.54 on the right hemisphere. Compared to this, the mod-
els trained on one hemisphere and evaluated on the other hemisphere perform only
marginally worse (errloc is 26.79 and 26.42 for models trained on left and evaluated
on right and vice-versa). There is no significant difference between the hemispheres.
This shows that features are not specific to one hemisphere, but that learning lo-
cation on one hemisphere enables the model to accurately predict location on the
second hemisphere.
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6.4 Analysis of the self-supervised model

6.4.2 Relationship between learned features and cortical
properties

In order to learn the distance and location regression task, the Siamese network
model learns to calculate features g(X) that are similar for input patches that are
located close together, and different for input patches that are located far apart. The
hypothesis is that the model uses cytoarchitectonic properties of the input patches X
to calculate g(X). However, the model may detect other signals to solve the distance
and regression task, such as 1. cortical thickness, 2. average gray value of the patch,
3. absolute angle between sectioning plane and cortical surface (called obliqueness in
the following), and 4. local curvature of the cortex. Cortical thickness is a morpho-
logical measure that is systematically related to cytoarchitecture (Wagstyl, Ronan,
et al., 2015). In addition, the average gray value of cell-body stained tissue is a sub-
stitute measure for cell density. In contrast, obliqueness and local curvature are not
related to cytoarchitecture. The aim of this section is to verify whether cytoarchi-
tectonic properties are indeed the main signal that is encoded in g(X), and thereby
confirm that the auxiliary task is appropriate for the purpose of pre-training an area
segmentation model. For this aim this section assesses in the following, whether the
feature vector g(X) can be used to predict the above signals by calculating a linear
regression from g(X) to each scalar value. Following the hypothesis, cortical thick-
ness and average gray value should be predictable by g(X), and obliqueness and local
curvature not.

The cortical thickness sthick was calculated by following the gradient of the Laplace
potential field from the gray/white matter border to the pial surface and measuring
the distance while accounting for local effects of folding using the model proposed by
Bok (1929).1 The gray value sgray was calculated as the mean gray value of the high-
resolution input patch X. The mean curvature scurv was calculated for every point
on the midline between gray/white matter border and pial surface as the amount of
deviation of the curve from the tangent line (Goldman, 2005, Equation 4.2). The
obliqueness soblique was calculated as the absolute angle between the sectioning plane
and the mean of the normal of the pial surface. Figure 6.9 shows the calculated
measures on the brain surface.

To evaluate whether the learned feature vector contains these signals, a linear
regression from the feature vector to the signal value is calculated resulting in a
predicted signal value ŝ = wT g(X) + b , with w ∈ R

32, and b ∈ R. The goodness-of-
fit was measured as the ratio between the prediction error and the deviation of the

1Thanks to Konrad Wagstyl (University of Cambridge) for calculating the cortical thickness.
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6 Self-supervised brain area analysis

Figure 6.9: Different signals plotted on the brain surface. The cortical thickness is
highest in the motor cortex and is reduced in the primary sensory areas. The average
gray value shows staining differences between the individual sections in anterior-
posterior direction. The obliqueness, i.e., the angle between the sectioning plane and
the cortical surface, changes depending on the normal of the cortical surface. The
curvature is correlated with the outward and inward folds of the cortex. It is plotted
on the inflated white matter surface to show the areas of high negative curvature in
the bottom of the gyri.

groundtruth values s from their mean s̄:

R2 = 1−
∑n

i=1(si − ŝi)
2∑n

i=1(si − s̄)2

with n = |X tr| the size of the test dataset. A model was trained on patches from the
right hemisphere (X tr

BBr) and evaluated on patches from the left hemisphere (X te
BBl).

Figure 6.10 shows scatter plots of the predicted signal values ŝ and the true signal
values s.

Cortical thickness is systematically related to cytoarchitecture (Wagstyl, Ronan, et
al., 2015). Thus, we can expect that if the model learned to extract cytoarchitectonic
properties from the cortical patches, it should be possible to predict cortical thickness
from the feature vectors. The linear regression confirms this. 21% of the variance in
cortical thickness can be explained by g(X).

Average gray values of the input patches X can be seen as a measure of cell density,
which is a cytoarchitectonic property. However, in the BigBrainCollection the
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6.4 Analysis of the self-supervised model

Figure 6.10: Results of a linear regression from the learned feature representation
g(X) of cortical patches X to different signals. Cortical thickness and average gray
value can be predicted from the features, obliqueness and curvature not.

average gray value of the input patches is highly dependent on the individual section
due to the differences in staining intensity (cf. Section 2.1.1) as can be seen in the
vertical stripes visible in Figure 6.9. Besides this dependence on the section, the
average gray values form a smooth gradient in the medial-lateral direction, with more
medial patches being lighter. Due to this correlation, it is clear that the average gray
value will be encoded by the feature vector, because the self-supervised model was
successfully trained to predict the medial-lateral coordinate. The linear regression
shows that gray values can be predicted from the feature vectors with R2 = 0.24.

Obliqueness, i.e., the absolute angle between the sectioning plane and the cortical
surface, has an influence on the cell densities of the cortical laminae. Therefore,
following the hypothesis that the neural network model learns to represent cytoar-
chitectonic properties, the model needs to consider the obliqueness of the input patch
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6 Self-supervised brain area analysis

X in the early layers of the network. However, in the later layers of the network,
the model should abstract from the concrete obliqueness and produce similar feature
vectors for inputs from the same area but with different sectioning angles. As can
be seen from the evaluation, the obliqueness can not be predicted from the feature
vectors (R2 = 0.08)

In principle, curvature is not correlated with cytoarchitectonic properties. Cur-
vature has an impact on the widths of cortical laminae, but borders between areas
usually do not coincide with such anatomic landmarks (Amunts, Lepage, et al., 2013).
Interestingly, the linear regression could not learn to predict curvature from the fea-
ture vector (R2 = 0.01).

These evaluations show that a linear combination of the learned features can be
used to predict cortical thickness and average gray values. In contrast, the obliqueness
and the curvature, although prominently visible in the inputs, are not predictable
by the feature representation. These findings are consistent with the hypothesis that
the model learned to represent cytoarchitecture in the feature vectors.

6.4.3 3D analysis of feature vectors

Feature vectors of 7300 evenly distributed patches from the left hemisphere were
extracted using the self-supervised model trained on XBBr. In order to further
strengthen the claim that the learned feature vectors represent cytoarchitecture, we
will analyze their principal components and possible clusterings.

Principal Component Analysis The six largest principal components of the fea-
ture vectors were calculated using principal component analysis (PCA) (Abdi and
Williams, 2010) and plotted on the inflated white matter brain surface (Figure 6.11).

The first three components seem to encode mostly posterior-anterior, ventral-
dorsal, and medial-lateral gradients respectively. It is expected that these gradients
are strongly represented in the feature vector, because the model was trained with
a combination of distance and location loss and thus has to represent the spatial
coordinates in the feature vector. The next three components are especially interest-
ing, because they highlight the motor cortex on one extreme, and the primary areas
(somatosensory, visual, auditory) on the other. This is consistent with the cytoarchi-
tectonic gradients mentioned in (Huntenburg et al., 2017) and shows that the model
learned more than just to represent the location of the input patch.

Components such as those last three, which represent cytoarchitectonic gradients,
only occur in models trained with the distance loss. For comparison, Figure 6.12
shows the first 6 components of a model trained only with the location loss. The
first three components represent the three coordinate axes and explain all the vari-
ance. The remaining components only contain noise. This confirms the hypothesis
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6.4 Analysis of the self-supervised model

Figure 6.11: The six largest principal components of the learned feature represen-
tation plotted on the inflated left brain surface. The first components represent the
spatial directions. The last three components represent other signals that are similar
to cytoarchitectonic gradients.

Figure 6.12: For comparison to Figure 6.11, the six largest principal components of
the feature representation learned by a model trained only on the location loss Lloc.
There are no components representing cytoarchitectonic gradients.
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6 Self-supervised brain area analysis

discussed in Section 6.1.1 that the location task alone is not precise enough to let
the model learn cytoarchitectonically relevant features. The distance loss is vital to
learn features that represent fine-grained differences between cortical patches.

Hierarchical clustering The feature vectors were clustered using Ward’s method,
minimizing within-cluster variance using the squared Euclidean distance function as
metric (Ward Jr, 1963) and thresholded at 10 clusters. The resulting clusters are
slightly different than the ones reported in Spitzer, Amunts, et al. (2018), because
they were calculated on features extracted using a model that was trained on a
slightly different dataset. However, the results and conclusions presented here are
consistent.

The clustering is purely based on the feature vectors g(X) of the trained network.
Most importantly, the locations of the feature vectors g(X) were not included into
the clustering. Figure 6.13a shows that the clusters form smooth regions on the brain
surface. The clustered regions roughly correspond to different anatomical regions of
the brain (Figure 6.13b). For comparison, Figure 6.14 shows selected probabilistic
maps from the JuBrain atlas.

For example, clusters 8 and 10 have their boundary along the central sulcus. This
central landmark separates the motor cortex (column E) from the somatosensory
cortex (column C) which have very different cytoarchitecture. The motor cortex
is agranular and contains giant pyramidal cells, while the somatosensory is granular
with smaller cells and a more distinct laminar pattern. Other clusters also correspond
to anatomical regions: the visual cortex (column A) corresponds well to cluster 3, the
orbitofrontal cortex (column B) has the same extent as cluster 5, and the prefrontal
cortex (column D) is represented by cluster 9. This shows that feature vectors form
clusters based on cytoarchitectonic similarity and not only based on location. This
is strong evidence that the feature vectors contain cytoarchitectonic attributes.

6.4.4 2D analysis of feature vectors

In Section 6.4.3 we gained an overview over the differences in feature vectors at a
whole brain scale. This section analyzes individual cytoarchitectonic borders and
shows that several cluster borders correspond with cytoarchitectonic borders when
calculated on a per-section basis. In detail, the borders between between primary
visual cortex (hOc1) and secondary visual cortex (hOc2) and the borders between
motor, premotor and somatosensory cortex are analyzed. The cytoarchitecture of
these cortical areas is very different from each other. In order to assess the difference
of feature vectors over these borders, feature vectors were extracted from the cortex
of each section. A hierarchical clustering was calculated on a per-hemisphere and
per-section basis. Figure 6.15 shows the clustering results evaluated at 10 clusters,
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(a) (b)

Figure 6.13: (a) Hierarchical clustering of feature vectors extracted from the left
hemisphere using a model trained on the right hemisphere. (b) The clusters roughly
correspond to different cortical regions of the brain (compare to JuBrain areas in
Figure 6.14).

Figure 6.14: Probabilistic maps of selected brain areas from the JuBrain atlas shown
on the left hemisphere. The images are taken from the JuBrain Cytoarchitectonic
Atlas Viewer (JuBrain Atlas Viewer 2014–2019). Column A shows areas of the visual
cortex: hOc1, hOc2, hOc3v, hOc4v, hOc3d, hOc4d, hOc5. Column B shows areas of the
orbitofrontal cortex: Fo2, Fo3. Column C shows areas of the somatosensory cortex:
1, 3a, 3b. Column D shows areas of the prefrontal cortex: Fp1, Fp2. Column E
shows areas of the premotor and motor cortex: 6, 4a, 4p.
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1021 1356

(a) Sections of the visual system. The hOc1/hOc2 borders are marked.

3668 3762
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(b) Sections of the motor and somatosensory cortex. Border 1 separates the cingulate
cortex from the premotor cortex. Border 2 separates premotor and motor cortex. Finally,
border 3 separates the motor cortex from the primary somatosensory cortex.

Figure 6.15: Results of clustering feature vectors on a per-section basis. As a
reference, borders between cytoarchitectonic areas marked by a neuroscientific expert
are denoted by the red arrows.2 Each feature vector is plotted as a dot on its location
on the cortex and colored according to its cluster value at cluster depth 8. The blue
points represent several clusters.

on the original section.
Again, clusters correspond to cytoarchitectonic areas. In both sections showing

the visual cortex, the primary visual cortex forms its own cluster (pink cluster in
Figure 6.15a). The actual cytoarchitectonic borders (red markers) correspond well
with the cluster borders. On the sections from the motor cortex (Figure 6.15b) we
can see that the border between cingulate areas (orange cluster) and the premotor
cortex (green cluster) corresponds well with the border between the orange and green

2Thanks to Kai Kiwitz (Heinrich-Heine-University Düsseldorf) for delineating the borders between
the cytoarchitectonic areas and doing initial analyzes of the clusters.
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clusters. At the border between the premotor and the primary motor cortex the green
cluster ends in the two example sections. However, the border between primary motor
cortex and somatosensory cortex is only represented in the clustering on section 3762
(purple and red clusters). These results show that without explicitly training on the
task of area segmentation, the model has learned an internal feature representation
that allows to distinguish primary visual cortex and motor cortex from surrounding
areas. This is a strong indicator that training on the proposed auxiliary task indeed
drives the model to learn to encode cytoarchitectonic properties.

6.5 Conclusion

The self-supervised distance and location regression task allows to leverage large
quantities of unlabeled high-resolution histological sections of one human brain vol-
ume to learn feature representations that are useful for characterizing cytoarchitec-
ture. The evaluations have shown this by 1. applying the learned representations
to the area segmentation task and showing superior results compared to the base
network, and by 2. analyzing the representations directly and showing that they
represent cytoarchitectonic properties.

Pre-training models on the distance and location regression task significantly im-
proves the results of the area segmentation (Section 6.3.2). Although the pre-training
requires a brain volume with an existing 3D reconstruction, the fine-tuning for area
segmentation does not require a registration. This allows to apply the knowledge
gained from the spatial information contained in the 3D reconstruction to datasets
that are not 3D reconstructed. With this pre-training it is possible to train models
on one set of brain volumes, and apply the trained model to a previously unseen
brain volume (Section 6.3.3). The performance of the fine-tuned models depends
on the similarity of the pre-training task to the areas that should be segmented
(Section 6.3.1).

The distance and location regression task allows to learn models on one hemisphere
of the brain and apply them to the other (Section 6.4.1). A clustering of the feature
representations g(X) shows that clusters roughly represent different anatomically
and functionally relevant regions of the brain. A 2D analysis of the clusters shows
that several cluster borders directly correspond to areal borders. Principal compo-
nent analysis shows that the features encode cytoarchitectonic gradients described
in literature. To conclude, the self-supervised task is suitable for learning relevant
cytoarchitectonic characteristics in the high-resolution input patches and it can be
used to improve the area segmentation described in Chapter 5.

From these results, several avenues for future work open up. In a recent contribu-
tion, Beul et al. (2017) found that cytoarchitectonic similarity represented by neuron
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density is a good predictor for structural connectivity. The feature representation
g(X) could be used as a better estimate of cytoarchitecture to research the relation-
ship between cytoarchitecture and connectivity. In general, the distance and location
regression task is applicable to other types of brain volumes and modalities. Future
work will evaluate if this task can be used a a general-purpose feature learning al-
gorithm that extracts cytoarchitectonic features from lower resolution histological or
MRI brain volumes. Instead of extracting features based on cell densities (cytoarchi-
tecture) it could also be applied to diffusion MRI or polarized light imaging data to
extract features based on fiber tracts.
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7 Application: Deep label
propagation between sections

The previous chapters focused on learning a general-purpose model for segmenting
a set of cortical areas in one or more brains. To solve this challenging task, a model
that combines high-resolution texture information with an atlas prior was developed.
The results are very encouraging. Nevertheless, the reliability of the model does not
yet permit to perform fully automated brain mapping with sufficiently robust results
in all brain areas. Getting this precision would require more training data and more
time to develop specialized learning algorithms and architectures.

Despite these remaining challenges, the current results have a direct practical rel-
evance as will be shown in this chapter. The main idea is to use the presented CNN
models to support the neuroanatomists in the brain mapping workflow in an inter-
active setup. Instead of trying to solve the general brain area segmentation problem,
this chapter presents a specialized multi-scale CNN model that is trained with two
spatially close sections and annotations of one cortical area. The model can precisely
segment this cortical area on the sections in between the training sections. Essen-
tially, the model thus propagates the labels from one section to neighboring sections.
In the following, this task is referred to as deep label propagation (Figure 7.1).

The deep label propagation complements the current semi-automatic brain area
mapping workflow as summarized in Section 2.1.3. For mapping a new brain area,
neuroanatomists currently locate the area in approximately every 60th section, and
validate its borders using the method described by Schleicher, Amunts, et al. (1999).
The proposed multi-scale CNN model provides high-resolution segmentations be-
tween annotated sections that support and speed up the mapping process. They
are consistent over different sections and allow to create novel, 20 μm resolution 3D
reconstructions of individual brain areas. The deep label propagation does not re-
quire a registration between the individual sections; on the contrary, the resulting
predictions could be used in the future to drive the registration.

This chapter results from work done by Christian Schiffer during his masters stud-
ies under the supervision of Hannah Spitzer. The development of the data sampling
and the hyper-parameter tuning for the multi-scale CNN model was done by Chris-
tian Schiffer. Hannah Spitzer calculated the 3D reconstructions of hOc1 and hOc2
described in Section 7.4.
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Figure 7.1: Deep label propagation workflow. A brain area is mapped in several
sections (black border). For each pair of neighboring sections s1 and s2 with annota-
tions of area a, a neural network model prop-a-s1-s2 is trained on s1 and s2 to “fill
the gap" (red border) between the annotated sections.

Section 7.1 introduces the deep label propagation task and workflow to create dense
segmentations of one brain area in one brain volume and discusses related work. The
multi-scale network architecture and the training procedure used for the deep label
propagation are described in Section 7.2. Section 7.3 shows that the low-resolution
context input is beneficial for the performance and that the resulting segmentations
are precise and spatially consistent. Then, 3D reconstructions of hOc1 and hOc2 that
were calculated based on the propagated labels are shown in Section 7.4. Finally,
Section 7.5 discusses the impact and the limitations of the deep label propagation
task.

7.1 Deep label propagation workflow

The subject of this chapter is the creation of dense, precise, and high-resolution
segmentations of one brain area in one brain. With this aim, the brain area is
annotated on every n-th section of one brain with n in order of hundred sections.
Using patches samples from a pair of annotated sections s1 and s2, with s1 < s2,
a deep label propagation model prop-a-s1-s2 is trained to identify the brain area
a in sections s = s1 + 1, ..., s2 − 1 in between the training sections (Figure 7.1;
Section 7.2 provides details about the model and the training procedure). This
allows prop-a-s1-s2 to leverage the similarity between the training and evaluation
sections. To create a dense segmentation of area a, for a set of 1200 sections with
annotations on every 120th section, 10 models (prop-a-1-121, prop-a-121-241, ...,
prop-a-1001-1201) have to be trained on all pairs of consecutive annotated sections.
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7.2 Multi-scale model for label propagation

Related work Differing from atlas registration approaches for label propagation
(Rohlfing et al., 2005), this approach does not depend on the quality of the registra-
tion and takes into account the tissue values for the segmentation. In fact, the deep
label propagation workflow will work without any slice to slice registration, relying
only on the section numbers to identify gaps and ordering. Recently, Atzeni et al.
(2018) combined multi atlas fusion with a CNN to label histological sections at a
structure level. They implemented a generalized expectation-maximization (EM) al-
gorithm that is executed for every test section s using labels on neighboring training
sections s1 and s2, s1 < s < s2. First, the segmentation on the test section s is
estimated by combining the predictions of the CNN with the registered labels from
the nearest labeled sections s1 and s2 using multi-atlas fusion (E step). Then, the
CNN is fine-tuned using the labels on s1 and s2 and the estimated labels on s from
the E step (M step). Their approach yields promising results on the prediction of
large scale structure labels such as “cortex", although the difference between their
proposed EM algorithm and a simple product between the registered labels and the
predictions of the CNN is small.

However, it has several drawbacks: Each M-step of the EM algorithm signifies
training a CNN. In the case of high-resolution area segmentation this is too compu-
tationally expensive. In addition, if for every test section a separate model is trained,
this workflow is intractable to propagate labels to a large amount of test sections.
In contrast to the here presented deep label propagation, for the approach of Atzeni
et al. (2018) a slice-to-slice registration is mandatory. Nonetheless, including the test
sections in the training with an estimated label has the advantage that artifacts or
other variation specific to this test section is seen by the network during training
which allows it to adapt to it. For the deep label propagation this could mean to
first train a model on only the test sections (like the models presented in the fol-
lowing) and then train a second model using the predictions of the first model as
groundtruth. Such a cascaded training procedure seems like a promising premise for
future work on deep label propagation.

7.2 Multi-scale model for label propagation

For the deep label propagation the general area segmentation task is reduced to the
segmentation of one area in a spatially constrained set of sections from one brain.
The main difference between this task and the general area segmentation task is the
low variance of training and testing data in the deep label propagation task. Due
to the closeness of the training and testing sections, the main source of variance
are per-section artifacts and staining differences. In contrast to the training data
for the general area segmentation task, the morphology of the surface changes only
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Figure 7.2: MultiScaleNetwork for deep label propagation. The model gets a 2 μm
high-resolution texture input and a 8 μm context input. It is trained on and applied
to spatially close sections. Context information is used to localize cortical areas based
on anatomical landmarks.

slightly between training and testing sections. Curvature and obliqueness are almost
identical between spatially close sections. This allows us to use the local curvature
of the cortex to localize a brain area in a test section. Note that for the general
segmentation task, this is not possible, because the curvature of the cortex is highly
variable when considering a larger set of training sections.

The model introduced in this section uses the closeness of training and testing data
by leveraging low-resolution context information in combination with high-resolution
texture information. To deal with the small amount of training data, it is fine-tuned
from the general area segmentation model from Section 6.3. Section 7.2.1 presents the
multi-scale network architecture. Then, the generation of the training datasets for
a training on two sections and one brain area is described in Section 7.2.2. Finally,
Section 7.2.3 gives details about the training procedure for training a multi-scale
model on deep label propagation.

7.2.1 Multi-scale network architecture

Similar to the AtlasAwareNetwork from Section 5.1.2, the MultiScaleNetwork uses
a U-Net architecture with two input streams to process the high-resolution tex-
ture input and the low-resolution context information. To allow transfer learning
from the area segmentation models, the high-resolution texture input is processed
in a downsampling path which has the same architecture as the downsampling path
of the BaseNetwork (Section 5.1.1). The context input is processed in a second
downsampling path whose architecture is similar to the atlas prior stream of the
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7.2 Multi-scale model for label propagation

AtlasAwareNetwork. The two downsampling streams are concatenated before the
upsampling patch. For this, the activations of the context stream are upsampled
and cropped to fit to the resolution of the high-resolution texture stream. Figure 7.2
shows the network architecture.

The network takes a 2 μm resolution texture input Xhr ∈ R
2025×2025 and a 16 μm

resolution context input Xlr ∈ R
1123×1123 which corresponds to a 8984×8984 pixel re-

gion at 2 μm resolution. Thus, the context input shows a region that is 16 times larger
than the region that the texture input shows. For these inputs, the model outputs cor-
responding segmentations Y ∈ R

68×68 with resolution 16 μm. It has 2.44× 106 train-
able parameters. In the following, this architecture is called MultiScaleNetwork.

7.2.2 Dataset generation

The MultiScaleNetwork models presented in the following are trained on sections
from the BigBrainCollection, as this collection contains a dense set of histological
sections from one brain volume. Annotations of areas hOc1 and hOc2 were made on
every 60th section and models were trained on sections with distance 120, leaving
an annotated validation section in between the training sections. As motivated in
Section 5.2.1, an inhomogeneous background class is not desirable. Thus, the anno-
tated sections are enhanced with the gray/white matter segmentation described in
Section 2.3.3. Consequently, the MultiScaleNetworks are trained to segment input
patches in the four classes “brain area", “cortex", “white matter", and “background".
In the evaluation presented in the following, models were either trained on labels
hOc1, cor, wm, bg or on labels hOc2, cor, wm, bg.

Let Xa,s1,s2 be the training dataset for model prop-a-s1-s2 with elements X =

(Xhr ∈ R
2025×2025, Xlr ∈ R

1123×1123) ∈ Xa,s1,s2 . It is created by randomly sampling
high-resolution texture and context patches from the two training sections s1 and s2
of the BigBrainCollection. Every location (s, i, j) on section s was given a sampling
probability ps,i,j and training patches were sampled according to this probability (see
Figure 7.3).

To define the sampling probabilities, first a sampling area S consisting of those
pixels with a nonzero sampling probability was selected. Let Gk(s) be the set of
coordinates on section s that are annotated with area k, with k ∈ {a, bg, cor, wm}.
For a radius r and section s let the sampling area Sr(s) consist of those pixels whose
shortest Euclidean distance to a pixel annotated with the brain area a is smaller than
r, i.e.,

Sr(s) = {(i, j)|min dist
(
(i, j) ,Ga(s)

)
< r} . (7.1)

Then, the probability of sampling a location inside the sampling area is set to the
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7 Application: Deep label propagation between sections

Figure 7.3: Sampling area Sr(1021) for
hOc2 on section 1021 of the BigBrain.
The radius r is selected such that the
sampling area includes hOc2 and cortex
pixels at a ratio of 1:4. Inside the sam-
pling area, a sampling probability p1021,i,j
is assigned to each pixel such that each
class has equal probability of being sam-
pled.

inverse of the frequency of its label in the sampling area with

ps,i,j =

{
0, (i, j) /∈ Sr(s)

1/|Gk|, (i, j) ∈ Sr(s) ,
(7.2)

where k is the class of pixel (i, j): (i, j) ∈ Gk. Thus, the sampling area determines how
much of the section the model can possibly see during training, and the subsequent
weighting ensures that the model sees the same amount of pixels from each class.

The radius r of the sampling area is calculated for every section s as the radius
at which the sampling area contains annotated brain area pixels and cortex pixels
at a ratio of 1:τ : |Sr(s) ∩ Gcor(s)| = τ · |Ga(s)| . This ratio was empirically chosen
to allow models to correctly predict the cor class. For hOc1 the ratio was 1:1, and
for hOc2 1:4. In the latter case, a smaller ratio had the effect that, due to the small
size of hOc2 on many sections, the sampling area was very small and there were too
few samples for training. Figure 7.3 shows the sampling area for hOc2 on section
1021 of the BigBrain. For each pixel in the sampling area, its normalized sampling
probability ps,i,j/

∑
i,j ps,i,j is shown.

7.2.3 Training procedure

To provide a good starting point for training, the high-resolution texture stream of
the network is initialized with weights learned by the general area segmentation model
base[siam-vis] (Section 6.3). The low-resolution context stream is initialized with
random weights. It would be possible to use a higher learning rate for the randomly
initialized weights as done in Section 6.2.3. However, even without this modification,
convergence of the prop-a-s1-s2 models seems normal. The models are trained with
an unweighted cross-entropy loss (Equation (2.18)) for 4000 batches with a batch size
of 14. The loss included a small weight decay with weight decay factor λ = 0.0001.
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Training was done with NAG with a momentum of μ = 0.9 and a learning rate
η = 0.005. Models were evaluated with the Dice score of the brain area on the
validation section in between the training sections.

Since for dense label propagation several models need to be trained, it is important
that the training can be done in a reasonable amount of time. Therefore, the code
was optimized using an in-house adaption of Horovod (Sergeev and Balso, 2018)
to enable training on several GPUs. With these optimizations, training one model
takes 45 minutes on one JURECA node utilizing all 4 GPUs (Jülich Supercomputing
Centre, 2018). For the evaluations presented in the following, areas hOc1 and hOc2
were densely predicted. This required the training of 18 prop-hOc1-s1-s2 models
and 18 prop-hOc2-s1-s2 models.

7.3 Results

This section shows that the MultiScaleNetwork can be used to provide dense, high-
resolution segmentation of one brain area. Section 7.3.1 analyzes the impact of the
low-resolution context input for models trained on area hOc2. Then, the spatial
coherence of the resulting predictions is shown Section 7.3.2.

7.3.1 Influence of context input

The motivation for including context information in the deep label propagation mod-
els is that it can be used to localize the brain area with the help of the local curvature
of the cortex. To show the impact of the low-resolution context, MultiScaleNetwork
models (prop-a-s1-s2) are compared to single-scale BaseNetwork models (base-a-
s1-s2). Then, a MultiScaleNetwork model is analyzed to show that the model still
needs high-resolution texture information to distinguish the brain area and surround-
ing cortex.

Comparison of multi-scale and single-scale model Label propagation models
prop-hOc2-s1-s2 (uses context) and base-hOc2-s1-s2 (uses only high-resolution tex-
ture) are trained to propagate area hOc2. This area is harder to recognize and cor-
rectly segment than the primary visual cortex, area hOc1. To quantitatively compare
the prop-hOc2-s1-s2 and base-hOc2-s1-s2 models, the Dice score for area hOc2 is
calculated for the sampling areas on the validation section of each of the 18 models.
Figure 7.4 shows the Dice score of the two sets of models. In addition, Figure 7.5
shows predictions for several prop-hOc2-s1-s2 and base-hOc2-s1-s2 models. Each
image shows the validation section s of a model trained on sections s1 = s− 60 and
s2 = s + 60. Overall, the multi-scale models prop-hOc2-s1-s2 perform better and
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7 Application: Deep label propagation between sections

Figure 7.4: Deep label propagation models trained with context (prop-hOc2-s1-s2)
and without context (base-hOc2-s1-s2). Shown are the Dice scores of hOc2 on the
sampling area of the validation sections. Each point represents one model trained
on two sections. For several models, the prediction on the validation section is
additionally shown in Figure 7.5 (red circles).

are more consistent in their performance than the single-scale models base-hOc2-
s1-s2.

However, as the size of hOc2 on the sections decreases (with increasing section
numbers), predictions of both models are noisier (e.g., sections 1861, 2101 in Fig-
ure 7.5). Models trained on larger section numbers see only a small part of the tissue
where hOc2 is located (visualized by the spotlight in Figure 7.5). Note that the mod-
els do not see the validation section shown in the figure, but a comparable sampling
region on the two training sections. This focus on a spatially small sampling region
has the positive effect that the model can specialize to recognize the brain area in
spatially close sections, but has the downside that it might erroneously recognize the
brain area in other parts of the validation section as well, because it has never seen
these particular parts of the cortex before. However, as described in Section 7.4,
an automatic post-processing step can remove the noise in the cortex. After this
post-processing, only activations in the cerebellum (e.g., in section 1861) remain.
Although it has not been done for this thesis, the cerebellum can be easily masked
out based on its extremely dark appearance due to the high density of neurons. Thus,
the noise outside the sampling region can be easily removed and further evaluation
focuses on the performance of the models inside the sampling region.

Close to the occipital pole of the brain (low section numbers), models prop-hOc2-s1-s2
and base-hOc2-s1-s2 have similar Dice scores. However, the prop-hOc2-s1-s2 mod-
els are slightly better at localizing area hOc2 (e.g., sections 541, 661). This better
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Figure 7.5: Predictions of models trained with context (prop-hOc2-s1-s2) and with-
out context (base-hOc2-s1-s2). The pixels outside the sampling area S of each sec-
tion are darkened – an automatic post-processing step can remove these responses
(Section 7.4.1). For sections 1861 and 2101, S is displayed larger to show details (red
boxes). The results are discussed in Section 7.3.1. 125
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(a) Groundtruth (b) Prediction with
texture and context

(c) Prediction with
context only

(d) Prediction with
texture only

Figure 7.6: Predictions of a multi-scale mode while feeding zeros for one input type.
The model requires both low and high-resolution inputs to make correct predictions.

localization becomes more pronounced, as the sections become larger (e.g., sections
1141, 1621). The hOc2 annotations after section 1741 are very small, making it diffi-
cult for both models to localize the area in the section even with context information.
On section 1861, base-area-1801-1921 recognizes hOc2 in in many locations on the
cortex, including a correctly segmented piece of hOc2 on the left hemisphere. In
contrast, prop-hOc2-1801-1921 does not recognize hOc2 at all. For this range of
sections, the sampling region is so small that both models could not learn good
features. On section 2101, the models mostly manage to localize the area.

In conclusion, these evaluations show that the performance of the MultiScale
Network models is more consistent than the performance of the BaseNetwork models.
However, performance is limited when the size of the area on the training sections is
very small.

What is the context used for? In order to better understand what features the
model extracts from which input, a MultiScaleNetwork model is used to predict its
validation section in the following way: first, by inputting zeros instead of the context
information, and second by inputting zeros instead of the high-resolution texture
information. The results in Figure 7.6 show that without the context information, the
model predicts the label bg for the entire section (Figure 7.6d). In contrast, without
the high-resolution input, the model predicts bg for background and cortex, and wm
for white matter (Figure 7.6c). This shows that a model trained with both context
and high-resolution information uses both inputs. The context input is sufficient
for background and white matter segmentation, however the high-resolution input is
needed in order to predict hOc2 and cor. These results indicate that the MultiScale
Network uses the context information to roughly localize the brain area, and do the
cortex and background segmentation, and the high-resolution texture information to
precisely segment the brain area and surrounding cortex. This is in accordance with
our expectation and similar to the reasoning of a human expert.
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7.3 Results

(a) hOc1. Row 1 shows predictions of prop-hOc1-0961-1081. Row 2 shows predictions of
prop-hOc1-1081-1201. Row 3 shows predictions of prop-hOc1-1201-1321.

(b) hOc2. Row 1 shows predictions of prop-hOc2-0961-1081. Row 2 shows predictions of
prop-hOc2-1081-1201. Row 3 shows predictions of prop-hOc2-1201-1321.

Figure 7.7: Predictions of hOc1 and hOc2 models on a set of consecutive sections.
The predictions are compatible with each other and spatially coherent. Training
sections are marked in black, previously unlabeled sections in red.

7.3.2 Spatial coherence of predictions

The resulting segmentations are spatially coherent and the predictions for different
areas are compatible. To show this, three MultiScaleNetworks were trained on
sections (961,1081), (1081,1201), (1201,1321) for propagating areas hOc1 and hOc2.
Each model was evaluated on a set of 10 sections from the BigBrainCollection
which were located in between the two training sections.

The overlap of the hOc1 and hOc2 prediction on these sections is 0.1% of the pixels
predicted as hOc1 and hOc2. This shows that even though the models are only trained
on one brain area, they are compatible with models predicting other areas. This is
important if several brain areas should be propagated to the same section.

Figure 7.7 shows the predicted segmentation on registered sections. This allows
to appreciate the evolution of the area border throughout the sections. Although
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the predictions were done on the unregistered, non-aligned sections, the predictions
are very coherent. Predictions for area hOc1 are less noisy than predictions for area
hOc2.

7.4 High-resolution 3D reconstruction of brain areas

The dense predictions of brain areas can be used to form a high-resolution 3D mesh
of the brain area. For this step, a 3D registration between the individual sections is
required. On the one hand, this demonstrates the quality of the automatic annota-
tions. On the other hand, the resulting 3D mesh of the brain areas can be integrated
in high-resolution brain templates and atlases. In this section the 3D reconstruction
of the BigBrain was used to create 3D meshes of areas hOc1 and hOc2. Section 7.4.1
describes the workflow for creating the 3D meshes and Section 7.4.2 shows the re-
sulting reconstructions.

7.4.1 Generation of reconstruction

As described in Section 7.2.3, 18 prop-hOc1-s1-s2 and prop-hOc2-s1-s2 models were
trained on consecutive pairs of sections s1 and s2 and used to predict area hOc1 and
hOc2 on sections in between s1 and s2. From these predictions, masks for hOc1 and
hOc2 were calculated on every section. These predictions were then used to construct
a high-resolution 3D volume of hOc1 and hOc2 (Figure 7.8).

Using the available transformation files for the BigBrain (calculated at 20 μm preci-
sion; Section 2.3.3), the masks were transformed to the BigBrain volume. Since some
sections were missing in the BigBrainCollection due to large tissue artifacts, there
were gaps in the masks. To form a dense volume of the area, missing masks on section
s were interpolated from their neighboring sections si and sj, with si < s < sj. For
this interpolation, the potential field between the overlap of the masks on sections
si and sj and the background was calculated with Laplace’s equation. The mask on
section s was sampled at the equipotential surface at value (s− si)/(sj − si).

As mentioned in Section 7.3.1, parts of the tissue that are far away from the location
of the brain area on the section are likely to have noisy predictions. Fortunately, this
noise is not systematic and only occurs in different regions for consecutive sections,
whereas the prediction for the brain area is always at the same place. Thus, the brain
area should form a large connected component on the resulting volume. Connected
components were calculated in the volume and every component with a size of at
least 20% of the size of the largest component was included in the final volume.
Visual inspection resulted that one of the four components for area hOc1 and two of
the eight components for area hOc2 belonged to the cerebellum and were discarded.
All the other label noise present in the original masks was filtered out by calculating
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1. mask brain area
2. interpolate 

missing sections

3a. nd largest 
connected 

components

4a. select hOc1 
components

3b. topology preserving smoothing 
using the pial surface and 

gray/white matter border meshes

Figure 7.8: 3D reconstruction workflow. Steps 3a and 4a result in a non-smoothed,
noise-free volume that shows the precision of the individual predictions. Step 3b
results in a smoothed, topologically correct volume that can be integrated in the
multilevel human brain atlas (HBP Human Brain Atlas 2018).

the largest connected components. The resulting meshes candidly show the quality
of the predictions in 3D with minimal post-processing applied.

For the integration of the predictions in the multilevel human brain atlas, more
post-processing was applied to create smoothed, topologically correct area meshes.
The brain area volume was smoothed using morphological filtering by geodesic al-
ternate sequential filters (Couprie and Bertrand, 2004).1 This method works by
smoothing the brain area mask while respecting the topology of the mask and ge-
ometrical constraints imposed by a mask of the cortical ribbon. This results in a
smoothed mask that lies inside the cortical ribbon and has the same topology as the
original mask.

7.4.2 Results: hOc1 and hOc2 meshes

Figure 7.9 shows several views of the hOc1 and hOc2 meshes created by steps 3a
and 4a. This visualization shows the extent and connection between the two areas.
These meshes were not smoothed. This can be seen in some places where hOc2
extends over the imagined smooth contour of the hOc2 mesh. This slight noise might
be due to artifacts on the individual section resulting in misclassifications. The 3D
view on the predicted areas shows that they fit well together. This shows that the
hOc1/hOc2 border has been correctly recognized by models learning to predict hOc1

1Thanks to Dr. Yann Leprince (NeuroSpin) for calculating this post-processing and for integrating
the resulting meshes in the multilevel human brain atlas.
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Figure 7.9: Views of the reconstructed hOc1 and hOc2 volumes that were created
from a few annotations using deep label propagation. Red arrows show locations
where hOc2 predictions are missing.

and by models learning to predict hOc2. However, some inconsistencies remain: The
extent of hOc2 is too small in several parts (marked with red arrows in Figure 7.9).
Several of the missing predictions could be traced to a bad training section with tissue
artifacts. This training section negatively influenced the performance of the two
models that were trained on this section. Exchanging this training section improved
the results at arrow 1. This shows that although the label propagation process is
automatic, careful selection of good training sections (i.e., no artifacts) is necessary.
The remaining missing hOc2 predictions are due to very small annotations on the
training section.

The meshes created by additional topology-preserving smoothing (step 3b) can
be integrated in the multilevel human brain atlas (HBP Human Brain Atlas 2018).
Figure 7.10 shows a screenshot of the atlas viewer where this integration was demon-
strated. This software allows users to examine the hOc1 and hOc2 predictions over-
layed on the reconstructed 20 μm BigBrain volume. After further evaluation of the
correctness of the predictions, these areas will be made available publicly available
as shown in Figure 7.10. Previously, 3D meshes of single brain areas were not avail-
able at such a resolution and precision. In the context of the Human Brain Project
(HBP), this workflow will be implemented into a toolchain, striving to map all of the
BigBrain at microscopic resolution.

7.5 Discussion

This chapter introduced the deep label propagation task which has the aim to create
dense segmentations of one brain area in one brain volume given a few manual expert
annotation of this brain area. A MultiScaleNetwork is trained on two spatially close
sections to predict one brain area on all sections in between the training sections.
Like the models introduced in Chapters 5 and 6, the prop-a-s1-s2 models use high-
resolution texture information to localize the brain area on the input. Since the
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Figure 7.10: Screenshot of the multilevel human brain atlas viewer (HBP Human
Brain Atlas 2018) showing the BigBrain with the integrated hOc1 and hOc2 meshes.

training and testing data for the deep label propagation task is very similar, the
prop-a-s1-s2 models combine the high-resolution information with low-resolution
context information that helps to localize the brain area using anatomical landmarks.

The resulting brain area segmentations are precise and spatially coherent. Predic-
tions for several areas are compatible with each other, with very little overlap between
the labels. From these predictions it is possible to calculate a 3D mesh of each brain
area at a previously unseen resolution. However, when the brain area is very small,
the whole section predictions can be noisy. Using predictions of several consecutive
sections, this noise can be filtered out by calculating connected components.

One remaining challenge is the performance of the label propagation of very small
brain areas. The models are trained on a sampling area S surrounding the brain
area. For small brain areas this sampling area does provide enough information to
train robust label propagation models. A larger context could be useful to allow
localization of these small patches.

Currently, no data augmentation is used when training the label propagation mod-
els. The rationale is that the training data is already similar to the evaluation data
and thus a generalizable area segmentation model is not needed. However, the train-
ing and evaluation sections are not registered. Thus, they might be rotated relative
to each other. Therefore, augmenting the data with random rotations by a small
angle might be helpful to further increase the precision.

The deep label propagation was executed for areas hOc1 and hOc2. Prediction of
area hOc1 is quite straight-forward and serves here as a proof-of-concept. Predic-
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tion of area hOc2 is much more difficult, especially the correct localization of the
border between hOc2 and neighboring areas hOc3d and hOc3v. The general-purpose
segmentation models based on the AtlasAwareNetwork do not always manage to lo-
calize this border. The label propagation models based on the MultiScaleNetwork,
however, correctly localize this border in many sections. Since this difficult border
is localized, it is expected that other brain areas can also be propagated using the
deep label propagation task. However, future work should evaluate the deep label
propagation for more areas.

The ability to localize arbitrary brain areas comes at the cost of needing several
annotations of the brain area in sections that are close to the section that should
be predicted. The deep label propagation therefore complements the current manual
mapping process and allows the calculation of densely labeled brain area volumes (if
a registration is present) at no additional cost to the neuroanatomist. In contrast to
related approaches (Atzeni et al., 2018), the deep label propagation itself does not
require a registration between the sections. In contrast, in the future the predicted
brain area masks could be used to drive the registration process. Another application
is to use the predictions of the label propagation model as training data for the
general-purpose area segmentation network. This way, more diverse training data
could be included in the brain area segmentation training and in particular increase
the variability of underrepresented, small brain areas.
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8 Conclusion

This work has shown that deep learning models are suitable for automatically iden-
tifying cytoarchitectonic brain areas in high-resolution digital scans of histological
human brain sections. To reach this conclusion, four different approaches using dif-
ferent network architectures and input data were developed and compared. Each
approach has different strengths and limitations which are summarized in Table 8.1
and are discussed in the following. Figure 1.2 on Page 7 shows a visual summary of
the different neural network architectures developed for this thesis.

Section 8.1 summarizes the different models and their results. Section 8.2 lists the
main contributions of this work. Then, the limitations of the models and general
recommendations for automatic brain area segmentation using deep learning are dis-
cussed in Section 8.3. The chapter ends with identifying several directions for future
work arising from the methods and models developed in this thesis (Section 8.4).

8.1 Summary

Inspired by the current observer-independent statistical method for confirming areal
borders, a workflow to automatically extract gray-value intensity profiles from the
cortex was developed. With these profiles, a 1D convolutional neural network (CNN)
was trained on the area classification task (Chapter 4). A saliency analysis of this
model gives insight into which parts of a profile, and thus which cortical laminae, are
most descriptive for identifying a cortical area. However, the classification perfor-
mance is inferior to a segmentation model based on high-resolution 2D input patches.

The segmentation model was improved by informing it with prior information from
a probabilistic atlas (Chapter 5). Although an analysis of intermediate feature maps
of the model indicates that it derives its results based on reasonable cytoarchitectonic
features, its potential is restricted by the limited amount of training data. To further
increase performance of the supervised segmentation, a self-supervised learning task
based on the 3D relationship between individual sections of the same brain volume
was developed to leverage unlabeled sections of one human brain volume (Chapter 6).
Pre-training the supervised segmentation models on this self-supervised task signifi-
cantly increases the segmentation performance and enables the prediction of several
brain areas on previously unseen brain volumes.
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Table 8.1: Characteristics, strengths and limitations of the different approaches for
brain area segmentation. Models are trained on gray-value profiles or high-resolution
image patches. As additional information, an atlas prior or context information is
used. Optionally, the models are pre-trained on an auxiliary task. Concepts that
may be added to a task in the future and that are discussed in the following are
marked with an asterisk *.

Task Used concepts Main advantages and limitations
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profile classifica-
tion

� � �* � �* + models easy to interpret
+ generalizes naturally to the 3D case
- outperformed by patch segmentation

patch segmenta-
tion

� � � � � + leverages prior knowledge and pre-training
- does not perform equally well for each area

label propagation � � � � � + precise for arbitrary areas
- needs annotations in spatially close sections

distance and loca-
tion regression

�* � � � � + learns cytoarchitectonic features
- task biases spatially close patches towards
similar features

The self-supervised task allows the model to learn a compact feature representation
of the input by exploiting the structure of the input data. Evaluations of the self-
supervised feature representations show that they encode cytoarchitectonic properties
of the input without explicitly being trained on area labels.

To show the applicability of these automatic models for current brain area mapping
projects, a specialized multi-scale CNN model for predicting one brain area in a set
of adjacent sections was introduced. This model complements the current manual
mapping process of labeling every 60th section by creating dense, high-resolution,
and precise labels of one brain area. These predictions allow the creation of high-
resolution 3D reconstructions of a single brain area at previously unseen resolutions.

8.2 Contributions

This work shows that it is possible to apply deep learning techniques to the expert
task of brain area segmentation in high-resolution histological sections. Three main
contributions with high relevance to the research field of brain area parcellation can
be identified:
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1. A CNN model for automatic brain area segmentation. This model
combines prior knowledge with high-resolution histological input patches. It
can predict several brain areas at reasonable precision in previously unseen
sections and outperforms a 1D CNN model trained on gray-value profiles. This
model demonstrates that automatic brain area segmentation is possible with
deep learning methods.

2. A specialized CNN model for label propagation between spatially
close sections. Using both high-resolution texture information and low-
resolution context, this model allows to segment one brain area given an anno-
tation of this area in a spatially close section. This shows the practical relevance
of this work in a concrete application. This workflow complements the manual
brain area mapping workflow and allows the high-resolution 3D reconstruction
of brain areas without adding to the manual parcellation workload of the neu-
roanatomist. These 3D reconstructions will be made publically available in the
multilevel human brain atlas (HBP Human Brain Atlas 2018). This workflow
has the potential to support mapping projects for new brain volumes or brain
areas.

3. A self-supervised method that learns to encode cytoarchitectonic
properties without requiring prior labels and assumptions about brain
areas. This task leverages the 3D relationship between unlabeled sections of
one brain volume. It allows the data-driven analysis of cytoarchitectonic pat-
terns in histological sections and could be used to research the relationship be-
tween cytoarchitecture and connectivity (Beul et al., 2017). This self-supervised
task is easy to extend to different resolutions or modalities.

Addressing the challenges of histological brain area analysis The proposed CNN
models overcome several of the challenges posed by automatic brain area parcellation
(Section 1.1). The difficult localization of brain areas is handled with two different
approaches: The first approach is the segmentation model from Chapter 5 where
the key idea is to combine high-resolution texture information with prior knowledge
about probable areas at the given input. The second approach is to train specialized
label propagation models that focus on predicting one brain area in spatially close
sections utilizing low-resolution texture information providing additional context to-
gether with the high-resolution texture information (Chapter 7). Thus, some form of
additional knowledge (atlas prior, or context information) was necessary for success-
ful localization of brain areas. The fixed topology of brain areas is indirectly modeled
by the atlas prior. The topological correctness of trained models was evaluated using
a weighted misclassification error. However, the segmentation model has no direct
incentive to respect the topology of areas. As motivated in Section 5.4, in future work
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a conditional random field (CRF) might be used to directly model the topology of
areas. A strength of the patch-based CNN models is their relative robustness to arti-
facts in the data. The gamma augmentation (for the segmentation models) and the
gray-value normalization (for the profile classification model) worked well to alleviate
the staining differences between individual sections. The key to overcoming the lim-
ited labeled training data was to pre-train the models on an auxiliary self-supervised
task leveraging unlabeled histological sections (Chapter 6). The pre-trained models
learned features from histological sections that could be efficiently adapted during
fine-tuning for brain area segmentation. Due to the large inputs required for brain
area segmentation, a memory-efficient segmentation model based on downsampling
and subsequent upsampling of the inputs was used. Combined with the use of sev-
eral GPUs on the JURECA supercomputer (Jülich Supercomputing Centre, 2018)
per training process, training was possible in reasonable time with batch sizes of
around 40 (Section 5.2.5).

8.3 Limitations and general recommendations

Status of automatic brain area segmentation Several models for different tasks
related to brain area segmentation were introduced in the last chapters. Do they
solve automatic brain area segmentation? The answer depends on how general the
task of brain area segmentation is posed and what data is available to train the neural
network models. In the following, different instances of the brain area segmentation
task are discussed, and recommendations for researchers that are faced with such a
task are given.
Can we solve the task of brain area segmentation with ...

• ... annotations available in spatially close sections of the same brain
volume? Yes. The deep label propagation workflow solves this task by train-
ing specialized multi-scale models for the propagation of one brain area to
spatially close sections. In this case, the model learns topological properties of
the individual subject to identify an area, which is not desired in the general
setting. Chapter 7 demonstrates that this workflow results in high precision
segmentations of areas hOc1 and hOc2 by leveraging the similarity of training
and evaluation data. The deep label propagation should work for arbitrary
areas, but currently requires annotations on every 120th section.

• ... annotations available in sections of the same brain volume? Yes,
but sufficient training data or prior knowledge is needed. The two stream
AtlasAwareNetwork combining high-resolution histological sections and an at-
las prior performed adequately on this task (Chapter 5). However, the perfor-
mance depends on how difficult an area is to recognize and how much annotated
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data is available for this area. For example no model was able to learn area hOc5
because only 14 annotations (amounting to only 3.5% of the annotated hOc1
pixels) were available. In contrast, hOc1 was learned by every model, because
this area is easy to recognize due to the characteristic stria of Gennari. If not
enough labeled training data is available, this model can be pre-trained with
a self-supervised task as demonstrated in Chapter 6. If a 3D isotropic brain
volume like the BigBrain volume at 20 μm resolution is available, using profile
features could be considered. 3D data allows to extract profiles which are always
perpendicular to the brain surface (which is not possible using 2D sections) and
thus compress relevant information of the cortical laminae. Compared to a 3D
convolutional approach, this is a much more compact representation. Like the
area segmentation model, such a profile model could be pre-trained with the
self-supervised distance task and be extended to leverage atlas information.

• ... annotations available in other brain volumes? Partly, and it de-
pends on the brain area. Fine-tuning a pre-trained AtlasAwareNetwork on
annotations in several brain volumes and applying it to a previously unseen
brain volume resulted in a model that was predicting area hOc1 correctly (Sec-
tion 6.3.3). Again, for good performance large amounts of diverse training
data are required. Transferring models to other brains is difficult due to inter-
individual differences. Although a simple gray-value augmentation technique
was used, more sophisticated normalization or domain adaptation techniques
should be investigated in the future to get better performance.

• ... no annotations available? No, but anatomically meaningful regions can
be found. The self-supervised distance and location regression task allows to
learn a feature representation for each high-resolution input patch that encodes
cytoarchitectonic properties (Chapter 6). These features cluster in anatomically
meaningful regions that respect cytoarchitectonic differences. Clusters for hOc1
and primary motor cortex were found, but usually the clusters are quite large
and encompass several brain areas. The features additionally allow to assess
similarity of cytoarchitecture and can be computed in every point in the cor-
tex. Currently, the calculation of such features requires one brain volume with
registrations between each section and a 3D cortical mesh. The transferability
of the features to a new brain volume remains to be seen.

Lessons learned about training convolutional neural networks The work pre-
sented in this thesis allows to draw several conclusions concerning the training of
CNNs in different scenarios. Several models were partly fine-tuned from weights
learned on auxiliary tasks (e.g., initialization of the downsampling path by the self-
supervised model). In such a case, it was useful to increase the learning rate of

137



8 Conclusion

the remaining randomly initialized weights and reduce the learning rate for the pre-
trained weights. This was especially necessary when only the first layers of a model
(e.g., only the downsampling path) were pre-trained and the later layers (e.g., the
upsampling path) were not. The segmentation models include an atlas prior input.
Such inputs may be useful for many medical applications where training data is lim-
ited but atlases are present. When training with an input that provides an estimate
of the output labels, it is necessary to discourage the CNN from learning the input
too quickly. In this thesis this was achieved by randomly dropping out 20 % of the
atlas prior input and using an iterative training procedure: First, the model was
trained to convergence without the atlas prior, and then it was fine-tuned with the
atlas prior.

8.4 Future work

In addition to the discussions of future work in the experiment Chapters 4 to 7, this
section highlights a few promising directions for future research based on the results
presented in this thesis. The segmentation models include an atlas prior which acts
as a soft constraint for the topology of areas. However, for future work it might be
advantageous to include a hard constraint for the topology of areas by for example
integrating a CRF on top of the segmentations of the CNN model as in L.-C. Chen
et al. (2018). Such a model could enforce spatially coherent and topological correct
segmentations without loosing the advantages of the deep learning approach.

The performance of brain area segmentation is limited by the small amount of
training data. This was partly alleviated by pre-training on the self-supervised task.
However, more training data for the original task would be advantageous. Rather
than manually labeling more training sections, the deep label propagation workflow
could be used to provide more training data. With this workflow, brain area labels
can be precisely propagated to spatially close sections. These newly labeled sections
provide valuable additional groundtruth for the multi-area segmentation models. In
particular, underrepresented labels could be boosted with this technique.

The features learned by the self-supervised distance and regression task are very
promising. They provide a way to compress cytoarchitectonic information from a
high-resolution patch to a 32-long vector and provide insights in the objectively
visible feature in the data. In the future, this feature representation could be used to
study the connection between connectivity and cytoarchitectonic similarity, similar
to previous work on less precise measurements of cytoarchitecture (e.g., Beul et al.,
2017; Wei et al., 2018). Additionally, the self-supervised distance and regression
task can be used to extract features from other imaging modalities (e.g., magnetic
resonance imaging (MRI) or polarized light imaging data) and used to validate other
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hypotheses about brain structure. Furthermore, the self-supervised task does not
have to be trained on 2D patches for cortex; it could also be applied to intensity
profiles, extracted, e.g., from the 3D BigBrain volume.

Finally, it may be worthwhile to design and evaluate other unsupervised feature
learning architectures and algorithms, and compare the learned feature representa-
tions with each other. The distance and location task has the limitation that due to
the design of the task, the resulting feature representations will be biased in such a
way that spatially close patches get similar representations. This may be desirable
when considering brain areas and cytoarchitecture (as cytoarchitectonic similarity is
correlated with location), but it bears the danger of under-emphasizing long-range
similarities in the brain.

To conclude, this work has shown that CNNs can be a powerful tool for brain
area segmentation even with limited training data. Including prior knowledge in the
training process and using self-supervised pre-training has proven to be especially
useful. Limiting the task to predict areas in spatially close sections allows to achieve
very precise segmentations for arbitrary brain areas. The self-supervised distance
and location regression task allows to learn features that encode cytoarchitectonic
properties which can be leveraged to analyze the brain in new ways and may provide
new insights in the future.
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A.1 Author contribution to publications presented in
this thesis

The work described in this thesis was already partially published in three publica-
tions with me, Hannah Spitzer, as the first author. For all of the papers I was the
main responsible for designing and implementing the neural network architectures,
training the neural networks, evaluating the results, and writing the manuscript. The
distance and location regression task presented in Spitzer, Kiwitz, et al. (2018) was
conceptualized in discussion with Dr. Timo Dickscheid. The co-authors have agreed
to the use of these papers in this thesis. In the following, the publications and the
extent to which they are used in this thesis are shortly described.

H. Spitzer, K. Amunts, et al. (2017). “Parcellation of visual cortex on high-
resolution histological brain sections using convolutional neural networks”. In:
2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).
IEEE, pp. 920–923 Authors: Spitzer, Amunts, Harmeling, and Dickscheid. This
paper describes the two stream CNN model which combines prior information with
high-resolution texture input. Chapter 5 extends this paper. The neural network ar-
chitecture (Section 5.1) and the training procedure (Sections 5.2.1 to 5.2.4) described
in this thesis are the same as in Spitzer, Amunts, et al. (2017). The evaluation of
the influence of the atlas prior described in Section 5.3.2 was done in a similar man-
ner in Spitzer, Amunts, et al. (2017). Since the models presented in this thesis
were retrained on a larger dataset and with a slightly different learning rate and
label weighting scheme, the scores reported in Spitzer, Amunts, et al. (2017) and
Section 5.3.2 differ.

H. Spitzer, K. Kiwitz, et al. (2018). “Improving cytoarchitectonic segmentation
of human brain areas with self-supervised siamese networks”. In: Medical Image
Computing and Computer Assisted Intervention – MICCAI 2018. Springer,
pp. 663–671 Authors: Spitzer, Kiwitz, Amunts, Harmeling, and Dickscheid. This
paper describes the self-supervised distance and location regression task and how
the self-supervised pre-training improves the supervised area segmentation. The
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Siamese network model (Section 6.1) and the self-supervised training and fine-tuning
(Section 6.2) are described in Spitzer, Kiwitz, et al. (2018). The ablation study from
Section 6.3.1 and the comparison to the training without fine-tuning (Section 6.3.2)
were done in a similar manner in Spitzer, Kiwitz, et al. (2018). Since the self-
supervised models presented in this thesis were trained on a larger dataset than the
models in Spitzer, Kiwitz, et al., 2018, the reported scores differ.

H. Spitzer, K. Amunts, et al. (2018). “Compact feature representations for hu-
man brain cytoarchitecture using self-supervised learning”. In: 1st International
Conference on Medical Imaging in Deep Learning. URL: https://openreview.
net/forum?id=HyjJ812of Authors: Spitzer, Amunts, Harmeling, and Dickscheid.
This contribution analyzes the self-supervised features using a hierarchical cluster-
ing. A similar clustering (which results in the same conclusions) is presented in
Section 6.4.3. The remaining subsections in Section 6.4 provide further analyzes of
the self-supervised features.

A.2 Author contribution to collaborative work
presented in this thesis

The ideas and results described in Chapters 4 and 7 are the result of collaborative
work. Currently, no publications are available, but for each of the chapters, a pub-
lication is in preparation. The collaborators have agreed to the use of the results
for this thesis. In the following, the collaborations and my contribution to them is
described.

Area classification using profile features (Chapter 4) This chapter results from a
collaboration with Konrad Wagstyl, University of Cambridge, where Konrad Wagstyl
contributed expertise in extracting and using profile features and I expertise in deep
learning for cortical areas. The main part of the work was done during a stay at
the ACELab under the direction of Prof. Alan Evans at the Montréal Neurological
Institute (MNI), McGill University, Montréal. We developed the profile extraction
pipeline (Section 4.1) and the neural network architecture (Section 4.2) together and
I trained the models discussed in Sections 4.3 and 4.4.

Application: Deep label propagation between sections (Chapter 7) This chap-
ter results from work done by Christian Schiffer during his masters studies under my
supervision. The development of the data sampling and the hyper-parameter tuning
for the multi-scale CNN model was done by Christian Schiffer (Sections 7.1 and 7.2).
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Basing on the dense predictions, I calculated the 3D reconstructions of hOc1 and
hOc2 described in Section 7.4.
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Glossary

Abbreviations
batch norm batch normalization
CNN convolutional neural network
conv convolutional layer
CRF conditional random field
EM expectation-maximization
fcl fully connected layer
FCN fully convolutional network
fMRI functional magnetic resonance imaging
GLI gray-level index
HBP Human Brain Project
HPC high performance computing
INM-1 Institute of Neuroscience and Medicine
max pool max pooling layer
MNI Montréal Neurological Institute
MRI magnetic resonance imaging
NAG Nesterov accelerated gradient
OCT optical coherence tomography
PCA principal component analysis
ReLU rectified linear unit
RNN recurrent neural network
SGD stochastic gradient descent
VAE variational autoencoder

Nomenclature

Mathematical notation
∗ convolution operator
U(a, b) uniform distribution between a and b
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Functions

X(i,j) element at row i and column j of matrix X ∈ R
n×m; i or j may

be replaced by a colon, with X(i,:) denoting row i of X and X(:,j)

denoting column j of X; can be extended to higher-dimensional
tensors

X�a Hadamard power; takes each element of matrix X to the a-th power
∇θ nabla operator; calculates partial derivatives with respect to param-

eter vector θ

x ∼ A x has the distribution A
x(i) element at index i of vector x ∈ R

n with elements x(1), ..., x(n)

Symbols
X input to neural network/layer (tensor with rank 1 or higher) 20
Y groundtruth output (tensor with rank 1 or higher) 29
Z output of neural network/layer (tensor with rank 1 or higher) 20
η learning rate 29
λ weight decay factor 31
Gk set of all indices of pixels labeled as class k for groundtruth labels Y

31
Pk set of all indices of pixels predicted as class k 31
X te test split of dataset X (used for evaluation) 36
X tr train split of dataset X (used for training) 36
X val validation split of dataset X (used for hyper-parameter tuning) 36
X set of neural network inputs X 29
Y set of groundtruth labels for inputs X 29
Dice Dice score 32
acc accuracy 32
err weighted misclassification error 33
μ momentum factor 29
θ set of parameters of a neural network 20
dij geodesic distance between location pi and pj following along the cor-

tical surface 93
p sampling location of input image X on the pial surface 93
q sampling location of input image X on the inflated gray/white matter

border mesh 93

Functions
L(X ,Y ; θ) loss function evaluating parameters θ of neural network with

respect to inputs X with labels Y 29
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Collections and datasets

Ψ(X ) data augmentation function applied to the input dataset X 53
Ψflip(X) flips input image X with a chance of 50% 78
Ψgamma(X, γ) gamma augmentation; brightens or darkens input image X by

taking it to power γ ∼ U(0.5, 2) 78
Ψrot(X,α) rotates input image X by random angle α ∼ U(0, 2π) 78
BN(X; γBN, βBN) batch normalizing transform; normalizes feature map X by

mean and variance and introduces trainable scaling and shifting
parameters γBN and βBN 24

FMi(X) outputs (feature maps) of i-th layer for input image X 34
UP(X) upsampling function 23
ϕ(x) non-linear activation function 24
f(X; θ) neural network with input X and parameters θ (may be omitted

for clarity) 20
li(X; θ) i-th layer of neural network with parameters θ (may be omitted

for clarity) 21

Collections and datasets

AtlasBrainsCollection

This collection contains 450 sections from the visual system of 7 brains labeled
with 13 visual brain areas. 37

B01Collection

Subset of the AtlasBrainsCollection, comprising 62 sections from one brain.
37

BigBrainCollection

This collection contains 6000 sections of the BigBrain brain volume, includ-
ing a 3D reconstruction between the sections. No labels of the visual system
available. 39

XAB

Dataset for area segmentation containing randomly sampled patches Xtexture

from the AtlasBrainsCollection and Xatlas from the JuBrain atlas. 103

XAB\B01

Dataset for area segmentation containing randomly sampled patches Xtexture

from the AtlasBrainsCollection without the B01Collection and Xatlas from
the JuBrain atlas. 103
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Xa,s1,s2

Dataset for deep label propagation of area a between sections s1 and s2 of the
BigBrainCollection containing randomly sampled 2 μm texture patches Xhr

(high resolution) and 16 μm context patches Xlr (low resolution). 121

XB01

Dataset for area segmentation containing randomly sampled patches Xtexture

from the B01Collection and Xatlas from the JuBrain atlas. 77

XB01−0

Dataset for area segmentation containing randomly sampled patches Xtexture

from the B01Collection and atlas prior patches Xatlas containing zeros. Used
for evaluating the influence of the atlas prior. 85

XBB

Dataset for location and distance regression containing pairs of patches X1 and
X2 sampled from the BigBrainCollection. X tr

BB contains 500 000 patch pairs
from the train/val split, and X te

BB contains 2000 patch pairs from the test split.
96

XBBl

Dataset for location and distance regression containing pairs of patches X1

and X2 sampled from the left hemisphere of the BigBrainCollection. X tr
BBl

contains 200 000 patch pairs from the train/val split, and X te
BBl contains 150 000

patch pairs from the test split. 96

XBBr

Dataset for location and distance regression containing pairs of patches X1

and X2 sampled from the right hemisphere of the BigBrainCollection. X tr
BBr

contains 200 000 patch pairs from the train/val split, and X te
BBr contains 150 000

patch pairs from the test split. 96

Xpr

Dataset for profile classification containing 960 000 raw and smooth profiles praw
and psmooth extracted from the B01Collection. 64

Xvis

Dataset for location and distance regression containing pairs of patches X1 and
X2 sampled from sections 0 to 3000 of the BigBrainCollection. X tr

vis contains
200 000 patch pairs from the train/val split. 96
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Neural network architectures and models

AtlasAwareNetwork

Two stream segmentation network combining texture and atlas prior input. 74

BaseNetwork

Basic segmentation network based on the U-net. Segments high-resolution
image patches. 72

MultiScaleNetwork

Two stream segmentation network combining high- and low-resolution texture
input to capture extended spatial context. 120

ProfileNetwork

1D CNN for classification of gray-value intensity profiles. 64

SiameseNetwork

Siamese network architecture for training self-supervised models on the distance
and location regression task. 95

atlas

AtlasAwareNetwork with only the atlas prior path trained on rotation and
gamma augmented dataset Ψrot(Ψflip(Ψgamma(XB01))) for area segmentation. 83

atlas[siam-vis]

AtlasAwareNetwork trained on XB01. Initialized from SiameseNetwork trained
on Xvis. 101

base

BaseNetwork trained on rotation and gamma augmented dataset
Ψrot(Ψflip(Ψgamma(XB01))) for area segmentation. 82

base-a-s1-s2

BaseNetwork trained on patches sampled from sections s1 and s2 from the
BigBrainCollection for the propagation of area a to sections s1+1, ..., s2−1.
123

base-nogamma

BaseNetwork trained on rotation augmented (but not gamma augmented) dataset
Ψrot(Ψflip(XB01)) for area segmentation. 82
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base-norot

BaseNetwork trained on gamma augmented (but not rotation augmented) dataset
Ψgamma(XB01) for area segmentation. 82

base[siam-BB]

BaseNetwork trained on XB01. Initialized from a SiameseNetwork trained on
XBB inclucing all sections of the BigBrainCollection. 98

base[siam-vis-dist]

BaseNetwork trained on XB01. Initialized from siam-vis-dist. 100

base[siam-vis-loc]

BaseNetwork trained on XB01. Initialized from siam-vis-loc. 100

base[siam-vis]

BaseNetwork trained on XB01. Initialized from a siam-vis. 98

only-atlas

AtlasAwareNetwork with only the atlas prior path trained on rotation and
gamma augmented dataset Ψrot(Ψflip(Ψgamma(XB01))) for area segmentation. 83

profile-w

ProfileNetwork trained on Xpr with block size w for profile classification. 65

prop-a-s1-s2

MultiScaleNetwork trained on patches sampled from sections s1 and s2 from
the BigBrainCollection for the propagation of area a to sections s1+1,...,s2−
1. 118

siam-vis

SiameseNetwork trained on Xvis. 99

siam-vis-dist

SiameseNetwork trained on Xvis using only the distance loss Ldist. 99

siam-vis-loc

SiameseNetwork trained on Xvis using only the location loss Lcoord. 99
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